1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2006 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 /* Copyright (c) 1990 Mentat Inc. */ 26 27 #pragma ident "%Z%%M% %I% %E% SMI" 28 29 /* 30 * This file contains the interface control functions for IP. 31 */ 32 33 #include <sys/types.h> 34 #include <sys/stream.h> 35 #include <sys/dlpi.h> 36 #include <sys/stropts.h> 37 #include <sys/strsun.h> 38 #include <sys/sysmacros.h> 39 #include <sys/strlog.h> 40 #include <sys/ddi.h> 41 #include <sys/sunddi.h> 42 #include <sys/cmn_err.h> 43 #include <sys/kstat.h> 44 #include <sys/debug.h> 45 #include <sys/zone.h> 46 47 #include <sys/kmem.h> 48 #include <sys/systm.h> 49 #include <sys/param.h> 50 #include <sys/socket.h> 51 #include <sys/isa_defs.h> 52 #include <net/if.h> 53 #include <net/if_arp.h> 54 #include <net/if_types.h> 55 #include <net/if_dl.h> 56 #include <net/route.h> 57 #include <sys/sockio.h> 58 #include <netinet/in.h> 59 #include <netinet/ip6.h> 60 #include <netinet/icmp6.h> 61 #include <netinet/igmp_var.h> 62 #include <sys/strsun.h> 63 #include <sys/policy.h> 64 #include <sys/ethernet.h> 65 66 #include <inet/common.h> /* for various inet/mi.h and inet/nd.h needs */ 67 #include <inet/mi.h> 68 #include <inet/nd.h> 69 #include <inet/arp.h> 70 #include <inet/mib2.h> 71 #include <inet/ip.h> 72 #include <inet/ip6.h> 73 #include <inet/ip6_asp.h> 74 #include <inet/tcp.h> 75 #include <inet/ip_multi.h> 76 #include <inet/ip_ire.h> 77 #include <inet/ip_ftable.h> 78 #include <inet/ip_rts.h> 79 #include <inet/ip_ndp.h> 80 #include <inet/ip_if.h> 81 #include <inet/ip_impl.h> 82 #include <inet/tun.h> 83 #include <inet/sctp_ip.h> 84 85 #include <net/pfkeyv2.h> 86 #include <inet/ipsec_info.h> 87 #include <inet/sadb.h> 88 #include <inet/ipsec_impl.h> 89 #include <sys/iphada.h> 90 91 92 #include <netinet/igmp.h> 93 #include <inet/ip_listutils.h> 94 #include <inet/ipclassifier.h> 95 #include <sys/mac.h> 96 97 #include <sys/systeminfo.h> 98 #include <sys/bootconf.h> 99 100 #include <sys/tsol/tndb.h> 101 #include <sys/tsol/tnet.h> 102 103 /* The character which tells where the ill_name ends */ 104 #define IPIF_SEPARATOR_CHAR ':' 105 106 /* IP ioctl function table entry */ 107 typedef struct ipft_s { 108 int ipft_cmd; 109 pfi_t ipft_pfi; 110 int ipft_min_size; 111 int ipft_flags; 112 } ipft_t; 113 #define IPFT_F_NO_REPLY 0x1 /* IP ioctl does not expect any reply */ 114 #define IPFT_F_SELF_REPLY 0x2 /* ioctl callee does the ioctl reply */ 115 116 typedef struct ip_sock_ar_s { 117 union { 118 area_t ip_sock_area; 119 ared_t ip_sock_ared; 120 areq_t ip_sock_areq; 121 } ip_sock_ar_u; 122 queue_t *ip_sock_ar_q; 123 } ip_sock_ar_t; 124 125 static int nd_ill_forward_get(queue_t *, mblk_t *, caddr_t, cred_t *); 126 static int nd_ill_forward_set(queue_t *q, mblk_t *mp, 127 char *value, caddr_t cp, cred_t *ioc_cr); 128 129 static boolean_t ip_addr_ok_v4(ipaddr_t addr, ipaddr_t subnet_mask); 130 static ip_m_t *ip_m_lookup(t_uscalar_t mac_type); 131 static int ip_sioctl_addr_tail(ipif_t *ipif, sin_t *sin, queue_t *q, 132 mblk_t *mp, boolean_t need_up); 133 static int ip_sioctl_dstaddr_tail(ipif_t *ipif, sin_t *sin, queue_t *q, 134 mblk_t *mp, boolean_t need_up); 135 static int ip_sioctl_slifzone_tail(ipif_t *ipif, zoneid_t zoneid, 136 queue_t *q, mblk_t *mp, boolean_t need_up); 137 static int ip_sioctl_flags_tail(ipif_t *ipif, uint64_t flags, queue_t *q, 138 mblk_t *mp, boolean_t need_up); 139 static int ip_sioctl_netmask_tail(ipif_t *ipif, sin_t *sin, queue_t *q, 140 mblk_t *mp); 141 static int ip_sioctl_subnet_tail(ipif_t *ipif, in6_addr_t, in6_addr_t, 142 queue_t *q, mblk_t *mp, boolean_t need_up); 143 static int ip_sioctl_arp_common(ill_t *ill, queue_t *q, mblk_t *mp, 144 sin_t *sin, boolean_t x_arp_ioctl, boolean_t if_arp_ioctl); 145 static ipaddr_t ip_subnet_mask(ipaddr_t addr, ipif_t **); 146 static void ip_wput_ioctl(queue_t *q, mblk_t *mp); 147 static void ipsq_flush(ill_t *ill); 148 static void ipsq_clean_all(ill_t *ill); 149 static void ipsq_clean_ring(ill_t *ill, ill_rx_ring_t *rx_ring); 150 static int ip_sioctl_token_tail(ipif_t *ipif, sin6_t *sin6, int addrlen, 151 queue_t *q, mblk_t *mp, boolean_t need_up); 152 static void ipsq_delete(ipsq_t *); 153 154 static ipif_t *ipif_allocate(ill_t *ill, int id, uint_t ire_type, 155 boolean_t initialize); 156 static void ipif_check_bcast_ires(ipif_t *test_ipif); 157 static void ipif_down_delete_ire(ire_t *ire, char *ipif); 158 static void ipif_delete_cache_ire(ire_t *, char *); 159 static int ipif_logical_down(ipif_t *ipif, queue_t *q, mblk_t *mp); 160 static void ipif_free(ipif_t *ipif); 161 static void ipif_free_tail(ipif_t *ipif); 162 static void ipif_mtu_change(ire_t *ire, char *ipif_arg); 163 static void ipif_multicast_down(ipif_t *ipif); 164 static void ipif_recreate_interface_routes(ipif_t *old_ipif, ipif_t *ipif); 165 static void ipif_set_default(ipif_t *ipif); 166 static int ipif_set_values(queue_t *q, mblk_t *mp, 167 char *interf_name, uint_t *ppa); 168 static int ipif_set_values_tail(ill_t *ill, ipif_t *ipif, mblk_t *mp, 169 queue_t *q); 170 static ipif_t *ipif_lookup_on_name(char *name, size_t namelen, 171 boolean_t do_alloc, boolean_t *exists, boolean_t isv6, zoneid_t zoneid, 172 queue_t *q, mblk_t *mp, ipsq_func_t func, int *error); 173 static int ipif_up(ipif_t *ipif, queue_t *q, mblk_t *mp); 174 static void ipif_update_other_ipifs(ipif_t *old_ipif, ill_group_t *illgrp); 175 176 static int ill_alloc_ppa(ill_if_t *, ill_t *); 177 static int ill_arp_off(ill_t *ill); 178 static int ill_arp_on(ill_t *ill); 179 static void ill_delete_interface_type(ill_if_t *); 180 static int ill_dl_up(ill_t *ill, ipif_t *ipif, mblk_t *mp, queue_t *q); 181 static void ill_dl_down(ill_t *ill); 182 static void ill_down(ill_t *ill); 183 static void ill_downi(ire_t *ire, char *ill_arg); 184 static void ill_downi_mrtun_srcif(ire_t *ire, char *ill_arg); 185 static void ill_down_tail(ill_t *ill); 186 static void ill_free_mib(ill_t *ill); 187 static void ill_glist_delete(ill_t *); 188 static boolean_t ill_has_usable_ipif(ill_t *); 189 static int ill_lock_ipsq_ills(ipsq_t *sq, ill_t **list, int); 190 static void ill_nominate_bcast_rcv(ill_group_t *illgrp); 191 static void ill_phyint_free(ill_t *ill); 192 static void ill_phyint_reinit(ill_t *ill); 193 static void ill_set_nce_router_flags(ill_t *, boolean_t); 194 static void ill_signal_ipsq_ills(ipsq_t *, boolean_t); 195 static boolean_t ill_split_ipsq(ipsq_t *cur_sq); 196 static void ill_stq_cache_delete(ire_t *, char *); 197 198 static boolean_t ip_ether_v6intfid(uint_t, uint8_t *, in6_addr_t *); 199 static boolean_t ip_nodef_v6intfid(uint_t, uint8_t *, in6_addr_t *); 200 static boolean_t ip_ether_v6mapinfo(uint_t, uint8_t *, uint8_t *, uint32_t *, 201 in6_addr_t *); 202 static boolean_t ip_ether_v4mapinfo(uint_t, uint8_t *, uint8_t *, uint32_t *, 203 ipaddr_t *); 204 static boolean_t ip_ib_v6intfid(uint_t, uint8_t *, in6_addr_t *); 205 static boolean_t ip_ib_v6mapinfo(uint_t, uint8_t *, uint8_t *, uint32_t *, 206 in6_addr_t *); 207 static boolean_t ip_ib_v4mapinfo(uint_t, uint8_t *, uint8_t *, uint32_t *, 208 ipaddr_t *); 209 210 static void ipif_save_ire(ipif_t *, ire_t *); 211 static void ipif_remove_ire(ipif_t *, ire_t *); 212 static void ip_cgtp_bcast_add(ire_t *, ire_t *); 213 static void ip_cgtp_bcast_delete(ire_t *); 214 215 /* 216 * Per-ill IPsec capabilities management. 217 */ 218 static ill_ipsec_capab_t *ill_ipsec_capab_alloc(void); 219 static void ill_ipsec_capab_free(ill_ipsec_capab_t *); 220 static void ill_ipsec_capab_add(ill_t *, uint_t, boolean_t); 221 static void ill_ipsec_capab_delete(ill_t *, uint_t); 222 static boolean_t ill_ipsec_capab_resize_algparm(ill_ipsec_capab_t *, int); 223 static void ill_capability_proto(ill_t *, int, mblk_t *); 224 static void ill_capability_dispatch(ill_t *, mblk_t *, dl_capability_sub_t *, 225 boolean_t); 226 static void ill_capability_id_ack(ill_t *, mblk_t *, dl_capability_sub_t *); 227 static void ill_capability_mdt_ack(ill_t *, mblk_t *, dl_capability_sub_t *); 228 static void ill_capability_mdt_reset(ill_t *, mblk_t **); 229 static void ill_capability_ipsec_ack(ill_t *, mblk_t *, dl_capability_sub_t *); 230 static void ill_capability_ipsec_reset(ill_t *, mblk_t **); 231 static void ill_capability_hcksum_ack(ill_t *, mblk_t *, dl_capability_sub_t *); 232 static void ill_capability_hcksum_reset(ill_t *, mblk_t **); 233 static void ill_capability_zerocopy_ack(ill_t *, mblk_t *, 234 dl_capability_sub_t *); 235 static void ill_capability_zerocopy_reset(ill_t *, mblk_t **); 236 237 static void ill_capability_dls_ack(ill_t *, mblk_t *, dl_capability_sub_t *); 238 static mac_resource_handle_t ill_ring_add(void *, mac_resource_t *); 239 static void ill_capability_dls_reset(ill_t *, mblk_t **); 240 static void ill_capability_dls_disable(ill_t *); 241 242 static void illgrp_cache_delete(ire_t *, char *); 243 static void illgrp_delete(ill_t *ill); 244 static void illgrp_reset_schednext(ill_t *ill); 245 246 static ill_t *ill_prev_usesrc(ill_t *); 247 static int ill_relink_usesrc_ills(ill_t *, ill_t *, uint_t); 248 static void ill_disband_usesrc_group(ill_t *); 249 250 static void conn_cleanup_stale_ire(conn_t *, caddr_t); 251 252 /* 253 * if we go over the memory footprint limit more than once in this msec 254 * interval, we'll start pruning aggressively. 255 */ 256 int ip_min_frag_prune_time = 0; 257 258 /* 259 * max # of IPsec algorithms supported. Limited to 1 byte by PF_KEY 260 * and the IPsec DOI 261 */ 262 #define MAX_IPSEC_ALGS 256 263 264 #define BITSPERBYTE 8 265 #define BITS(type) (BITSPERBYTE * (long)sizeof (type)) 266 267 #define IPSEC_ALG_ENABLE(algs, algid) \ 268 ((algs)[(algid) / BITS(ipsec_capab_elem_t)] |= \ 269 (1 << ((algid) % BITS(ipsec_capab_elem_t)))) 270 271 #define IPSEC_ALG_IS_ENABLED(algid, algs) \ 272 ((algs)[(algid) / BITS(ipsec_capab_elem_t)] & \ 273 (1 << ((algid) % BITS(ipsec_capab_elem_t)))) 274 275 typedef uint8_t ipsec_capab_elem_t; 276 277 /* 278 * Per-algorithm parameters. Note that at present, only encryption 279 * algorithms have variable keysize (IKE does not provide a way to negotiate 280 * auth algorithm keysize). 281 * 282 * All sizes here are in bits. 283 */ 284 typedef struct 285 { 286 uint16_t minkeylen; 287 uint16_t maxkeylen; 288 } ipsec_capab_algparm_t; 289 290 /* 291 * Per-ill capabilities. 292 */ 293 struct ill_ipsec_capab_s { 294 ipsec_capab_elem_t *encr_hw_algs; 295 ipsec_capab_elem_t *auth_hw_algs; 296 uint32_t algs_size; /* size of _hw_algs in bytes */ 297 /* algorithm key lengths */ 298 ipsec_capab_algparm_t *encr_algparm; 299 uint32_t encr_algparm_size; 300 uint32_t encr_algparm_end; 301 }; 302 303 /* 304 * List of AH and ESP IPsec acceleration capable ills 305 */ 306 typedef struct ipsec_capab_ill_s { 307 uint_t ill_index; 308 boolean_t ill_isv6; 309 struct ipsec_capab_ill_s *next; 310 } ipsec_capab_ill_t; 311 312 static ipsec_capab_ill_t *ipsec_capab_ills_ah; 313 static ipsec_capab_ill_t *ipsec_capab_ills_esp; 314 krwlock_t ipsec_capab_ills_lock; 315 316 /* 317 * The field values are larger than strictly necessary for simple 318 * AR_ENTRY_ADDs but the padding lets us accomodate the socket ioctls. 319 */ 320 static area_t ip_area_template = { 321 AR_ENTRY_ADD, /* area_cmd */ 322 sizeof (ip_sock_ar_t) + (IP_ADDR_LEN*2) + sizeof (struct sockaddr_dl), 323 /* area_name_offset */ 324 /* area_name_length temporarily holds this structure length */ 325 sizeof (area_t), /* area_name_length */ 326 IP_ARP_PROTO_TYPE, /* area_proto */ 327 sizeof (ip_sock_ar_t), /* area_proto_addr_offset */ 328 IP_ADDR_LEN, /* area_proto_addr_length */ 329 sizeof (ip_sock_ar_t) + IP_ADDR_LEN, 330 /* area_proto_mask_offset */ 331 0, /* area_flags */ 332 sizeof (ip_sock_ar_t) + IP_ADDR_LEN + IP_ADDR_LEN, 333 /* area_hw_addr_offset */ 334 /* Zero length hw_addr_length means 'use your idea of the address' */ 335 0 /* area_hw_addr_length */ 336 }; 337 338 /* 339 * AR_ENTRY_ADD/DELETE templates have been added for IPv6 external resolver 340 * support 341 */ 342 static area_t ip6_area_template = { 343 AR_ENTRY_ADD, /* area_cmd */ 344 sizeof (ip_sock_ar_t) + (IPV6_ADDR_LEN*2) + sizeof (sin6_t), 345 /* area_name_offset */ 346 /* area_name_length temporarily holds this structure length */ 347 sizeof (area_t), /* area_name_length */ 348 IP_ARP_PROTO_TYPE, /* area_proto */ 349 sizeof (ip_sock_ar_t), /* area_proto_addr_offset */ 350 IPV6_ADDR_LEN, /* area_proto_addr_length */ 351 sizeof (ip_sock_ar_t) + IPV6_ADDR_LEN, 352 /* area_proto_mask_offset */ 353 0, /* area_flags */ 354 sizeof (ip_sock_ar_t) + IPV6_ADDR_LEN + IPV6_ADDR_LEN, 355 /* area_hw_addr_offset */ 356 /* Zero length hw_addr_length means 'use your idea of the address' */ 357 0 /* area_hw_addr_length */ 358 }; 359 360 static ared_t ip_ared_template = { 361 AR_ENTRY_DELETE, 362 sizeof (ared_t) + IP_ADDR_LEN, 363 sizeof (ared_t), 364 IP_ARP_PROTO_TYPE, 365 sizeof (ared_t), 366 IP_ADDR_LEN 367 }; 368 369 static ared_t ip6_ared_template = { 370 AR_ENTRY_DELETE, 371 sizeof (ared_t) + IPV6_ADDR_LEN, 372 sizeof (ared_t), 373 IP_ARP_PROTO_TYPE, 374 sizeof (ared_t), 375 IPV6_ADDR_LEN 376 }; 377 378 /* 379 * A template for an IPv6 AR_ENTRY_QUERY template has not been created, as 380 * as the areq doesn't include an IP address in ill_dl_up() (the only place a 381 * areq is used). 382 */ 383 static areq_t ip_areq_template = { 384 AR_ENTRY_QUERY, /* cmd */ 385 sizeof (areq_t)+(2*IP_ADDR_LEN), /* name offset */ 386 sizeof (areq_t), /* name len (filled by ill_arp_alloc) */ 387 IP_ARP_PROTO_TYPE, /* protocol, from arps perspective */ 388 sizeof (areq_t), /* target addr offset */ 389 IP_ADDR_LEN, /* target addr_length */ 390 0, /* flags */ 391 sizeof (areq_t) + IP_ADDR_LEN, /* sender addr offset */ 392 IP_ADDR_LEN, /* sender addr length */ 393 6, /* xmit_count */ 394 1000, /* (re)xmit_interval in milliseconds */ 395 4 /* max # of requests to buffer */ 396 /* anything else filled in by the code */ 397 }; 398 399 static arc_t ip_aru_template = { 400 AR_INTERFACE_UP, 401 sizeof (arc_t), /* Name offset */ 402 sizeof (arc_t) /* Name length (set by ill_arp_alloc) */ 403 }; 404 405 static arc_t ip_ard_template = { 406 AR_INTERFACE_DOWN, 407 sizeof (arc_t), /* Name offset */ 408 sizeof (arc_t) /* Name length (set by ill_arp_alloc) */ 409 }; 410 411 static arc_t ip_aron_template = { 412 AR_INTERFACE_ON, 413 sizeof (arc_t), /* Name offset */ 414 sizeof (arc_t) /* Name length (set by ill_arp_alloc) */ 415 }; 416 417 static arc_t ip_aroff_template = { 418 AR_INTERFACE_OFF, 419 sizeof (arc_t), /* Name offset */ 420 sizeof (arc_t) /* Name length (set by ill_arp_alloc) */ 421 }; 422 423 424 static arma_t ip_arma_multi_template = { 425 AR_MAPPING_ADD, 426 sizeof (arma_t) + 3*IP_ADDR_LEN + IP_MAX_HW_LEN, 427 /* Name offset */ 428 sizeof (arma_t), /* Name length (set by ill_arp_alloc) */ 429 IP_ARP_PROTO_TYPE, 430 sizeof (arma_t), /* proto_addr_offset */ 431 IP_ADDR_LEN, /* proto_addr_length */ 432 sizeof (arma_t) + IP_ADDR_LEN, /* proto_mask_offset */ 433 sizeof (arma_t) + 2*IP_ADDR_LEN, /* proto_extract_mask_offset */ 434 ACE_F_PERMANENT | ACE_F_MAPPING, /* flags */ 435 sizeof (arma_t) + 3*IP_ADDR_LEN, /* hw_addr_offset */ 436 IP_MAX_HW_LEN, /* hw_addr_length */ 437 0, /* hw_mapping_start */ 438 }; 439 440 static ipft_t ip_ioctl_ftbl[] = { 441 { IP_IOC_IRE_DELETE, ip_ire_delete, sizeof (ipid_t), 0 }, 442 { IP_IOC_IRE_DELETE_NO_REPLY, ip_ire_delete, sizeof (ipid_t), 443 IPFT_F_NO_REPLY }, 444 { IP_IOC_IRE_ADVISE_NO_REPLY, ip_ire_advise, sizeof (ipic_t), 445 IPFT_F_NO_REPLY }, 446 { IP_IOC_RTS_REQUEST, ip_rts_request, 0, IPFT_F_SELF_REPLY }, 447 { 0 } 448 }; 449 450 /* Simple ICMP IP Header Template */ 451 static ipha_t icmp_ipha = { 452 IP_SIMPLE_HDR_VERSION, 0, 0, 0, 0, 0, IPPROTO_ICMP 453 }; 454 455 /* Flag descriptors for ip_ipif_report */ 456 static nv_t ipif_nv_tbl[] = { 457 { IPIF_UP, "UP" }, 458 { IPIF_BROADCAST, "BROADCAST" }, 459 { ILLF_DEBUG, "DEBUG" }, 460 { PHYI_LOOPBACK, "LOOPBACK" }, 461 { IPIF_POINTOPOINT, "POINTOPOINT" }, 462 { ILLF_NOTRAILERS, "NOTRAILERS" }, 463 { PHYI_RUNNING, "RUNNING" }, 464 { ILLF_NOARP, "NOARP" }, 465 { PHYI_PROMISC, "PROMISC" }, 466 { PHYI_ALLMULTI, "ALLMULTI" }, 467 { PHYI_INTELLIGENT, "INTELLIGENT" }, 468 { ILLF_MULTICAST, "MULTICAST" }, 469 { PHYI_MULTI_BCAST, "MULTI_BCAST" }, 470 { IPIF_UNNUMBERED, "UNNUMBERED" }, 471 { IPIF_DHCPRUNNING, "DHCP" }, 472 { IPIF_PRIVATE, "PRIVATE" }, 473 { IPIF_NOXMIT, "NOXMIT" }, 474 { IPIF_NOLOCAL, "NOLOCAL" }, 475 { IPIF_DEPRECATED, "DEPRECATED" }, 476 { IPIF_PREFERRED, "PREFERRED" }, 477 { IPIF_TEMPORARY, "TEMPORARY" }, 478 { IPIF_ADDRCONF, "ADDRCONF" }, 479 { PHYI_VIRTUAL, "VIRTUAL" }, 480 { ILLF_ROUTER, "ROUTER" }, 481 { ILLF_NONUD, "NONUD" }, 482 { IPIF_ANYCAST, "ANYCAST" }, 483 { ILLF_NORTEXCH, "NORTEXCH" }, 484 { ILLF_IPV4, "IPV4" }, 485 { ILLF_IPV6, "IPV6" }, 486 { IPIF_MIPRUNNING, "MIP" }, 487 { IPIF_NOFAILOVER, "NOFAILOVER" }, 488 { PHYI_FAILED, "FAILED" }, 489 { PHYI_STANDBY, "STANDBY" }, 490 { PHYI_INACTIVE, "INACTIVE" }, 491 { PHYI_OFFLINE, "OFFLINE" }, 492 }; 493 494 static uchar_t ip_six_byte_all_ones[] = { 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF }; 495 496 static ip_m_t ip_m_tbl[] = { 497 { DL_ETHER, IFT_ETHER, ip_ether_v4mapinfo, ip_ether_v6mapinfo, 498 ip_ether_v6intfid }, 499 { DL_CSMACD, IFT_ISO88023, ip_ether_v4mapinfo, ip_ether_v6mapinfo, 500 ip_nodef_v6intfid }, 501 { DL_TPB, IFT_ISO88024, ip_ether_v4mapinfo, ip_ether_v6mapinfo, 502 ip_nodef_v6intfid }, 503 { DL_TPR, IFT_ISO88025, ip_ether_v4mapinfo, ip_ether_v6mapinfo, 504 ip_nodef_v6intfid }, 505 { DL_FDDI, IFT_FDDI, ip_ether_v4mapinfo, ip_ether_v6mapinfo, 506 ip_ether_v6intfid }, 507 { DL_IB, IFT_IB, ip_ib_v4mapinfo, ip_ib_v6mapinfo, 508 ip_ib_v6intfid }, 509 { SUNW_DL_VNI, IFT_OTHER, NULL, NULL, NULL}, 510 { DL_OTHER, IFT_OTHER, ip_ether_v4mapinfo, ip_ether_v6mapinfo, 511 ip_nodef_v6intfid } 512 }; 513 514 static ill_t ill_null; /* Empty ILL for init. */ 515 char ipif_loopback_name[] = "lo0"; 516 static char *ipv4_forward_suffix = ":ip_forwarding"; 517 static char *ipv6_forward_suffix = ":ip6_forwarding"; 518 static kstat_t *loopback_ksp = NULL; 519 static sin6_t sin6_null; /* Zero address for quick clears */ 520 static sin_t sin_null; /* Zero address for quick clears */ 521 static uint_t ill_index = 1; /* Used to assign interface indicies */ 522 /* When set search for unused index */ 523 static boolean_t ill_index_wrap = B_FALSE; 524 /* When set search for unused ipif_seqid */ 525 static ipif_t ipif_zero; 526 uint_t ipif_src_random; 527 528 /* 529 * For details on the protection offered by these locks please refer 530 * to the notes under the Synchronization section at the start of ip.c 531 */ 532 krwlock_t ill_g_lock; /* The global ill_g_lock */ 533 kmutex_t ip_addr_avail_lock; /* Address availability check lock */ 534 ipsq_t *ipsq_g_head; /* List of all ipsq's on the system */ 535 536 krwlock_t ill_g_usesrc_lock; /* Protects usesrc related fields */ 537 538 /* 539 * illgrp_head/ifgrp_head is protected by IP's perimeter. 540 */ 541 static ill_group_t *illgrp_head_v4; /* Head of IPv4 ill groups */ 542 ill_group_t *illgrp_head_v6; /* Head of IPv6 ill groups */ 543 544 ill_g_head_t ill_g_heads[MAX_G_HEADS]; /* ILL List Head */ 545 546 /* 547 * ppa arena is created after these many 548 * interfaces have been plumbed. 549 */ 550 uint_t ill_no_arena = 12; 551 552 #pragma align CACHE_ALIGN_SIZE(phyint_g_list) 553 static phyint_list_t phyint_g_list; /* start of phyint list */ 554 555 /* 556 * Reflects value of FAILBACK variable in IPMP config file 557 * /etc/default/mpathd. Default value is B_TRUE. 558 * Set to B_FALSE if user disabled failback by configuring "FAILBACK=no" 559 * in.mpathd uses SIOCSIPMPFAILBACK ioctl to pass this information to kernel. 560 */ 561 static boolean_t ipmp_enable_failback = B_TRUE; 562 563 /* 564 * Enable soft rings if ip_squeue_soft_ring or ip_squeue_fanout 565 * is set and ip_soft_rings_cnt > 0. ip_squeue_soft_ring is 566 * set through platform specific code (Niagara/Ontario). 567 */ 568 #define SOFT_RINGS_ENABLED() (ip_soft_rings_cnt ? \ 569 (ip_squeue_soft_ring || ip_squeue_fanout) : B_FALSE) 570 571 #define ILL_CAPAB_DLS (ILL_CAPAB_SOFT_RING | ILL_CAPAB_POLL) 572 573 static uint_t 574 ipif_rand(void) 575 { 576 ipif_src_random = ipif_src_random * 1103515245 + 12345; 577 return ((ipif_src_random >> 16) & 0x7fff); 578 } 579 580 /* 581 * Allocate per-interface mibs. Only used for ipv6. 582 * Returns true if ok. False otherwise. 583 * ipsq may not yet be allocated (loopback case ). 584 */ 585 static boolean_t 586 ill_allocate_mibs(ill_t *ill) 587 { 588 ASSERT(ill->ill_isv6); 589 590 /* Already allocated? */ 591 if (ill->ill_ip6_mib != NULL) { 592 ASSERT(ill->ill_icmp6_mib != NULL); 593 return (B_TRUE); 594 } 595 596 ill->ill_ip6_mib = kmem_zalloc(sizeof (*ill->ill_ip6_mib), 597 KM_NOSLEEP); 598 if (ill->ill_ip6_mib == NULL) { 599 return (B_FALSE); 600 } 601 ill->ill_icmp6_mib = kmem_zalloc(sizeof (*ill->ill_icmp6_mib), 602 KM_NOSLEEP); 603 if (ill->ill_icmp6_mib == NULL) { 604 kmem_free(ill->ill_ip6_mib, sizeof (*ill->ill_ip6_mib)); 605 ill->ill_ip6_mib = NULL; 606 return (B_FALSE); 607 } 608 /* 609 * The ipv6Ifindex and ipv6IfIcmpIndex will be assigned later 610 * after the phyint merge occurs in ipif_set_values -> ill_glist_insert 611 * -> ill_phyint_reinit 612 */ 613 return (B_TRUE); 614 } 615 616 /* 617 * Common code for preparation of ARP commands. Two points to remember: 618 * 1) The ill_name is tacked on at the end of the allocated space so 619 * the templates name_offset field must contain the total space 620 * to allocate less the name length. 621 * 622 * 2) The templates name_length field should contain the *template* 623 * length. We use it as a parameter to bcopy() and then write 624 * the real ill_name_length into the name_length field of the copy. 625 * (Always called as writer.) 626 */ 627 mblk_t * 628 ill_arp_alloc(ill_t *ill, uchar_t *template, caddr_t addr) 629 { 630 arc_t *arc = (arc_t *)template; 631 char *cp; 632 int len; 633 mblk_t *mp; 634 uint_t name_length = ill->ill_name_length; 635 uint_t template_len = arc->arc_name_length; 636 637 len = arc->arc_name_offset + name_length; 638 mp = allocb(len, BPRI_HI); 639 if (mp == NULL) 640 return (NULL); 641 cp = (char *)mp->b_rptr; 642 mp->b_wptr = (uchar_t *)&cp[len]; 643 if (template_len) 644 bcopy(template, cp, template_len); 645 if (len > template_len) 646 bzero(&cp[template_len], len - template_len); 647 mp->b_datap->db_type = M_PROTO; 648 649 arc = (arc_t *)cp; 650 arc->arc_name_length = name_length; 651 cp = (char *)arc + arc->arc_name_offset; 652 bcopy(ill->ill_name, cp, name_length); 653 654 if (addr) { 655 area_t *area = (area_t *)mp->b_rptr; 656 657 cp = (char *)area + area->area_proto_addr_offset; 658 bcopy(addr, cp, area->area_proto_addr_length); 659 if (area->area_cmd == AR_ENTRY_ADD) { 660 cp = (char *)area; 661 len = area->area_proto_addr_length; 662 if (area->area_proto_mask_offset) 663 cp += area->area_proto_mask_offset; 664 else 665 cp += area->area_proto_addr_offset + len; 666 while (len-- > 0) 667 *cp++ = (char)~0; 668 } 669 } 670 return (mp); 671 } 672 673 mblk_t * 674 ipif_area_alloc(ipif_t *ipif) 675 { 676 return (ill_arp_alloc(ipif->ipif_ill, (uchar_t *)&ip_area_template, 677 (char *)&ipif->ipif_lcl_addr)); 678 } 679 680 mblk_t * 681 ipif_ared_alloc(ipif_t *ipif) 682 { 683 return (ill_arp_alloc(ipif->ipif_ill, (uchar_t *)&ip_ared_template, 684 (char *)&ipif->ipif_lcl_addr)); 685 } 686 687 /* 688 * Completely vaporize a lower level tap and all associated interfaces. 689 * ill_delete is called only out of ip_close when the device control 690 * stream is being closed. 691 */ 692 void 693 ill_delete(ill_t *ill) 694 { 695 ipif_t *ipif; 696 ill_t *prev_ill; 697 698 /* 699 * ill_delete may be forcibly entering the ipsq. The previous 700 * ioctl may not have completed and may need to be aborted. 701 * ipsq_flush takes care of it. If we don't need to enter the 702 * the ipsq forcibly, the 2nd invocation of ipsq_flush in 703 * ill_delete_tail is sufficient. 704 */ 705 ipsq_flush(ill); 706 707 /* 708 * Nuke all interfaces. ipif_free will take down the interface, 709 * remove it from the list, and free the data structure. 710 * Walk down the ipif list and remove the logical interfaces 711 * first before removing the main ipif. We can't unplumb 712 * zeroth interface first in the case of IPv6 as reset_conn_ill 713 * -> ip_ll_delmulti_v6 de-references ill_ipif for checking 714 * POINTOPOINT. 715 * 716 * If ill_ipif was not properly initialized (i.e low on memory), 717 * then no interfaces to clean up. In this case just clean up the 718 * ill. 719 */ 720 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) 721 ipif_free(ipif); 722 723 /* 724 * Used only by ill_arp_on and ill_arp_off, which are writers. 725 * So nobody can be using this mp now. Free the mp allocated for 726 * honoring ILLF_NOARP 727 */ 728 freemsg(ill->ill_arp_on_mp); 729 ill->ill_arp_on_mp = NULL; 730 731 /* Clean up msgs on pending upcalls for mrouted */ 732 reset_mrt_ill(ill); 733 734 /* 735 * ipif_free -> reset_conn_ipif will remove all multicast 736 * references for IPv4. For IPv6, we need to do it here as 737 * it points only at ills. 738 */ 739 reset_conn_ill(ill); 740 741 /* 742 * ill_down will arrange to blow off any IRE's dependent on this 743 * ILL, and shut down fragmentation reassembly. 744 */ 745 ill_down(ill); 746 747 /* Let SCTP know, so that it can remove this from its list. */ 748 sctp_update_ill(ill, SCTP_ILL_REMOVE); 749 750 /* 751 * If an address on this ILL is being used as a source address then 752 * clear out the pointers in other ILLs that point to this ILL. 753 */ 754 rw_enter(&ill_g_usesrc_lock, RW_WRITER); 755 if (ill->ill_usesrc_grp_next != NULL) { 756 if (ill->ill_usesrc_ifindex == 0) { /* usesrc ILL ? */ 757 ill_disband_usesrc_group(ill); 758 } else { /* consumer of the usesrc ILL */ 759 prev_ill = ill_prev_usesrc(ill); 760 prev_ill->ill_usesrc_grp_next = 761 ill->ill_usesrc_grp_next; 762 } 763 } 764 rw_exit(&ill_g_usesrc_lock); 765 } 766 767 static void 768 ipif_non_duplicate(ipif_t *ipif) 769 { 770 ill_t *ill = ipif->ipif_ill; 771 mutex_enter(&ill->ill_lock); 772 if (ipif->ipif_flags & IPIF_DUPLICATE) { 773 ipif->ipif_flags &= ~IPIF_DUPLICATE; 774 ASSERT(ill->ill_ipif_dup_count > 0); 775 ill->ill_ipif_dup_count--; 776 } 777 mutex_exit(&ill->ill_lock); 778 } 779 780 /* 781 * ill_delete_tail is called from ip_modclose after all references 782 * to the closing ill are gone. The wait is done in ip_modclose 783 */ 784 void 785 ill_delete_tail(ill_t *ill) 786 { 787 mblk_t **mpp; 788 ipif_t *ipif; 789 790 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 791 ipif_non_duplicate(ipif); 792 ipif_down_tail(ipif); 793 } 794 795 ASSERT(ill->ill_ipif_dup_count == 0 && 796 ill->ill_arp_down_mp == NULL && 797 ill->ill_arp_del_mapping_mp == NULL); 798 799 /* 800 * If polling capability is enabled (which signifies direct 801 * upcall into IP and driver has ill saved as a handle), 802 * we need to make sure that unbind has completed before we 803 * let the ill disappear and driver no longer has any reference 804 * to this ill. 805 */ 806 mutex_enter(&ill->ill_lock); 807 while (ill->ill_state_flags & ILL_DL_UNBIND_IN_PROGRESS) 808 cv_wait(&ill->ill_cv, &ill->ill_lock); 809 mutex_exit(&ill->ill_lock); 810 811 /* 812 * Clean up polling and soft ring capabilities 813 */ 814 if (ill->ill_capabilities & (ILL_CAPAB_POLL|ILL_CAPAB_SOFT_RING)) 815 ill_capability_dls_disable(ill); 816 817 /* 818 * Send the detach if there's one to send (i.e., if we're above a 819 * style 2 DLPI driver). 820 */ 821 if (ill->ill_detach_mp != NULL) { 822 ill_dlpi_send(ill, ill->ill_detach_mp); 823 ill->ill_detach_mp = NULL; 824 } 825 826 if (ill->ill_net_type != IRE_LOOPBACK) 827 qprocsoff(ill->ill_rq); 828 829 /* 830 * We do an ipsq_flush once again now. New messages could have 831 * landed up from below (M_ERROR or M_HANGUP). Similarly ioctls 832 * could also have landed up if an ioctl thread had looked up 833 * the ill before we set the ILL_CONDEMNED flag, but not yet 834 * enqueued the ioctl when we did the ipsq_flush last time. 835 */ 836 ipsq_flush(ill); 837 838 /* 839 * Free capabilities. 840 */ 841 if (ill->ill_ipsec_capab_ah != NULL) { 842 ill_ipsec_capab_delete(ill, DL_CAPAB_IPSEC_AH); 843 ill_ipsec_capab_free(ill->ill_ipsec_capab_ah); 844 ill->ill_ipsec_capab_ah = NULL; 845 } 846 847 if (ill->ill_ipsec_capab_esp != NULL) { 848 ill_ipsec_capab_delete(ill, DL_CAPAB_IPSEC_ESP); 849 ill_ipsec_capab_free(ill->ill_ipsec_capab_esp); 850 ill->ill_ipsec_capab_esp = NULL; 851 } 852 853 if (ill->ill_mdt_capab != NULL) { 854 kmem_free(ill->ill_mdt_capab, sizeof (ill_mdt_capab_t)); 855 ill->ill_mdt_capab = NULL; 856 } 857 858 if (ill->ill_hcksum_capab != NULL) { 859 kmem_free(ill->ill_hcksum_capab, sizeof (ill_hcksum_capab_t)); 860 ill->ill_hcksum_capab = NULL; 861 } 862 863 if (ill->ill_zerocopy_capab != NULL) { 864 kmem_free(ill->ill_zerocopy_capab, 865 sizeof (ill_zerocopy_capab_t)); 866 ill->ill_zerocopy_capab = NULL; 867 } 868 869 if (ill->ill_dls_capab != NULL) { 870 CONN_DEC_REF(ill->ill_dls_capab->ill_unbind_conn); 871 ill->ill_dls_capab->ill_unbind_conn = NULL; 872 kmem_free(ill->ill_dls_capab, 873 sizeof (ill_dls_capab_t) + 874 (sizeof (ill_rx_ring_t) * ILL_MAX_RINGS)); 875 ill->ill_dls_capab = NULL; 876 } 877 878 ASSERT(!(ill->ill_capabilities & ILL_CAPAB_POLL)); 879 880 while (ill->ill_ipif != NULL) 881 ipif_free_tail(ill->ill_ipif); 882 883 ill_down_tail(ill); 884 885 /* 886 * We have removed all references to ilm from conn and the ones joined 887 * within the kernel. 888 * 889 * We don't walk conns, mrts and ires because 890 * 891 * 1) reset_conn_ill and reset_mrt_ill cleans up conns and mrts. 892 * 2) ill_down ->ill_downi walks all the ires and cleans up 893 * ill references. 894 */ 895 ASSERT(ilm_walk_ill(ill) == 0); 896 /* 897 * Take us out of the list of ILLs. ill_glist_delete -> ill_phyint_free 898 * could free the phyint. No more reference to the phyint after this 899 * point. 900 */ 901 (void) ill_glist_delete(ill); 902 903 rw_enter(&ip_g_nd_lock, RW_WRITER); 904 if (ill->ill_ndd_name != NULL) 905 nd_unload(&ip_g_nd, ill->ill_ndd_name); 906 rw_exit(&ip_g_nd_lock); 907 908 909 if (ill->ill_frag_ptr != NULL) { 910 uint_t count; 911 912 for (count = 0; count < ILL_FRAG_HASH_TBL_COUNT; count++) { 913 mutex_destroy(&ill->ill_frag_hash_tbl[count].ipfb_lock); 914 } 915 mi_free(ill->ill_frag_ptr); 916 ill->ill_frag_ptr = NULL; 917 ill->ill_frag_hash_tbl = NULL; 918 } 919 if (ill->ill_nd_lla_mp != NULL) 920 freemsg(ill->ill_nd_lla_mp); 921 /* Free all retained control messages. */ 922 mpp = &ill->ill_first_mp_to_free; 923 do { 924 while (mpp[0]) { 925 mblk_t *mp; 926 mblk_t *mp1; 927 928 mp = mpp[0]; 929 mpp[0] = mp->b_next; 930 for (mp1 = mp; mp1 != NULL; mp1 = mp1->b_cont) { 931 mp1->b_next = NULL; 932 mp1->b_prev = NULL; 933 } 934 freemsg(mp); 935 } 936 } while (mpp++ != &ill->ill_last_mp_to_free); 937 938 ill_free_mib(ill); 939 ILL_TRACE_CLEANUP(ill); 940 } 941 942 static void 943 ill_free_mib(ill_t *ill) 944 { 945 if (ill->ill_ip6_mib != NULL) { 946 kmem_free(ill->ill_ip6_mib, sizeof (*ill->ill_ip6_mib)); 947 ill->ill_ip6_mib = NULL; 948 } 949 if (ill->ill_icmp6_mib != NULL) { 950 kmem_free(ill->ill_icmp6_mib, sizeof (*ill->ill_icmp6_mib)); 951 ill->ill_icmp6_mib = NULL; 952 } 953 } 954 955 /* 956 * Concatenate together a physical address and a sap. 957 * 958 * Sap_lengths are interpreted as follows: 959 * sap_length == 0 ==> no sap 960 * sap_length > 0 ==> sap is at the head of the dlpi address 961 * sap_length < 0 ==> sap is at the tail of the dlpi address 962 */ 963 static void 964 ill_dlur_copy_address(uchar_t *phys_src, uint_t phys_length, 965 t_scalar_t sap_src, t_scalar_t sap_length, uchar_t *dst) 966 { 967 uint16_t sap_addr = (uint16_t)sap_src; 968 969 if (sap_length == 0) { 970 if (phys_src == NULL) 971 bzero(dst, phys_length); 972 else 973 bcopy(phys_src, dst, phys_length); 974 } else if (sap_length < 0) { 975 if (phys_src == NULL) 976 bzero(dst, phys_length); 977 else 978 bcopy(phys_src, dst, phys_length); 979 bcopy(&sap_addr, (char *)dst + phys_length, sizeof (sap_addr)); 980 } else { 981 bcopy(&sap_addr, dst, sizeof (sap_addr)); 982 if (phys_src == NULL) 983 bzero((char *)dst + sap_length, phys_length); 984 else 985 bcopy(phys_src, (char *)dst + sap_length, phys_length); 986 } 987 } 988 989 /* 990 * Generate a dl_unitdata_req mblk for the device and address given. 991 * addr_length is the length of the physical portion of the address. 992 * If addr is NULL include an all zero address of the specified length. 993 * TRUE? In any case, addr_length is taken to be the entire length of the 994 * dlpi address, including the absolute value of sap_length. 995 */ 996 mblk_t * 997 ill_dlur_gen(uchar_t *addr, uint_t addr_length, t_uscalar_t sap, 998 t_scalar_t sap_length) 999 { 1000 dl_unitdata_req_t *dlur; 1001 mblk_t *mp; 1002 t_scalar_t abs_sap_length; /* absolute value */ 1003 1004 abs_sap_length = ABS(sap_length); 1005 mp = ip_dlpi_alloc(sizeof (*dlur) + addr_length + abs_sap_length, 1006 DL_UNITDATA_REQ); 1007 if (mp == NULL) 1008 return (NULL); 1009 dlur = (dl_unitdata_req_t *)mp->b_rptr; 1010 /* HACK: accomodate incompatible DLPI drivers */ 1011 if (addr_length == 8) 1012 addr_length = 6; 1013 dlur->dl_dest_addr_length = addr_length + abs_sap_length; 1014 dlur->dl_dest_addr_offset = sizeof (*dlur); 1015 dlur->dl_priority.dl_min = 0; 1016 dlur->dl_priority.dl_max = 0; 1017 ill_dlur_copy_address(addr, addr_length, sap, sap_length, 1018 (uchar_t *)&dlur[1]); 1019 return (mp); 1020 } 1021 1022 /* 1023 * Add the 'mp' to the list of pending mp's headed by ill_pending_mp 1024 * Return an error if we already have 1 or more ioctls in progress. 1025 * This is used only for non-exclusive ioctls. Currently this is used 1026 * for SIOC*ARP and SIOCGTUNPARAM ioctls. Most set ioctls are exclusive 1027 * and thus need to use ipsq_pending_mp_add. 1028 */ 1029 boolean_t 1030 ill_pending_mp_add(ill_t *ill, conn_t *connp, mblk_t *add_mp) 1031 { 1032 ASSERT(MUTEX_HELD(&ill->ill_lock)); 1033 ASSERT((add_mp->b_next == NULL) && (add_mp->b_prev == NULL)); 1034 /* 1035 * M_IOCDATA from ioctls, M_IOCTL from tunnel ioctls. 1036 */ 1037 ASSERT((add_mp->b_datap->db_type == M_IOCDATA) || 1038 (add_mp->b_datap->db_type == M_IOCTL)); 1039 1040 ASSERT(MUTEX_HELD(&connp->conn_lock)); 1041 /* 1042 * Return error if the conn has started closing. The conn 1043 * could have finished cleaning up the pending mp list, 1044 * If so we should not add another mp to the list negating 1045 * the cleanup. 1046 */ 1047 if (connp->conn_state_flags & CONN_CLOSING) 1048 return (B_FALSE); 1049 /* 1050 * Add the pending mp to the head of the list, chained by b_next. 1051 * Note down the conn on which the ioctl request came, in b_prev. 1052 * This will be used to later get the conn, when we get a response 1053 * on the ill queue, from some other module (typically arp) 1054 */ 1055 add_mp->b_next = (void *)ill->ill_pending_mp; 1056 add_mp->b_queue = CONNP_TO_WQ(connp); 1057 ill->ill_pending_mp = add_mp; 1058 if (connp != NULL) 1059 connp->conn_oper_pending_ill = ill; 1060 return (B_TRUE); 1061 } 1062 1063 /* 1064 * Retrieve the ill_pending_mp and return it. We have to walk the list 1065 * of mblks starting at ill_pending_mp, and match based on the ioc_id. 1066 */ 1067 mblk_t * 1068 ill_pending_mp_get(ill_t *ill, conn_t **connpp, uint_t ioc_id) 1069 { 1070 mblk_t *prev = NULL; 1071 mblk_t *curr = NULL; 1072 uint_t id; 1073 conn_t *connp; 1074 1075 /* 1076 * When the conn closes, conn_ioctl_cleanup needs to clean 1077 * up the pending mp, but it does not know the ioc_id and 1078 * passes in a zero for it. 1079 */ 1080 mutex_enter(&ill->ill_lock); 1081 if (ioc_id != 0) 1082 *connpp = NULL; 1083 1084 /* Search the list for the appropriate ioctl based on ioc_id */ 1085 for (prev = NULL, curr = ill->ill_pending_mp; curr != NULL; 1086 prev = curr, curr = curr->b_next) { 1087 id = ((struct iocblk *)curr->b_rptr)->ioc_id; 1088 connp = Q_TO_CONN(curr->b_queue); 1089 /* Match based on the ioc_id or based on the conn */ 1090 if ((id == ioc_id) || (ioc_id == 0 && connp == *connpp)) 1091 break; 1092 } 1093 1094 if (curr != NULL) { 1095 /* Unlink the mblk from the pending mp list */ 1096 if (prev != NULL) { 1097 prev->b_next = curr->b_next; 1098 } else { 1099 ASSERT(ill->ill_pending_mp == curr); 1100 ill->ill_pending_mp = curr->b_next; 1101 } 1102 1103 /* 1104 * conn refcnt must have been bumped up at the start of 1105 * the ioctl. So we can safely access the conn. 1106 */ 1107 ASSERT(CONN_Q(curr->b_queue)); 1108 *connpp = Q_TO_CONN(curr->b_queue); 1109 curr->b_next = NULL; 1110 curr->b_queue = NULL; 1111 } 1112 1113 mutex_exit(&ill->ill_lock); 1114 1115 return (curr); 1116 } 1117 1118 /* 1119 * Add the pending mp to the list. There can be only 1 pending mp 1120 * in the list. Any exclusive ioctl that needs to wait for a response 1121 * from another module or driver needs to use this function to set 1122 * the ipsq_pending_mp to the ioctl mblk and wait for the response from 1123 * the other module/driver. This is also used while waiting for the 1124 * ipif/ill/ire refcnts to drop to zero in bringing down an ipif. 1125 */ 1126 boolean_t 1127 ipsq_pending_mp_add(conn_t *connp, ipif_t *ipif, queue_t *q, mblk_t *add_mp, 1128 int waitfor) 1129 { 1130 ipsq_t *ipsq; 1131 1132 ASSERT(IAM_WRITER_IPIF(ipif)); 1133 ASSERT(MUTEX_HELD(&ipif->ipif_ill->ill_lock)); 1134 ASSERT((add_mp->b_next == NULL) && (add_mp->b_prev == NULL)); 1135 /* 1136 * M_IOCDATA from ioctls, M_IOCTL from tunnel ioctls, 1137 * M_ERROR/M_HANGUP from driver 1138 */ 1139 ASSERT((DB_TYPE(add_mp) == M_IOCDATA) || (DB_TYPE(add_mp) == M_IOCTL) || 1140 (DB_TYPE(add_mp) == M_ERROR) || (DB_TYPE(add_mp) == M_HANGUP)); 1141 1142 ipsq = ipif->ipif_ill->ill_phyint->phyint_ipsq; 1143 if (connp != NULL) { 1144 ASSERT(MUTEX_HELD(&connp->conn_lock)); 1145 /* 1146 * Return error if the conn has started closing. The conn 1147 * could have finished cleaning up the pending mp list, 1148 * If so we should not add another mp to the list negating 1149 * the cleanup. 1150 */ 1151 if (connp->conn_state_flags & CONN_CLOSING) 1152 return (B_FALSE); 1153 } 1154 mutex_enter(&ipsq->ipsq_lock); 1155 ipsq->ipsq_pending_ipif = ipif; 1156 /* 1157 * Note down the queue in b_queue. This will be returned by 1158 * ipsq_pending_mp_get. Caller will then use these values to restart 1159 * the processing 1160 */ 1161 add_mp->b_next = NULL; 1162 add_mp->b_queue = q; 1163 ipsq->ipsq_pending_mp = add_mp; 1164 ipsq->ipsq_waitfor = waitfor; 1165 /* 1166 * ipsq_current_ipif is needed to restart the operation from 1167 * ipif_ill_refrele_tail when the last reference to the ipi/ill 1168 * is gone. Since this is not an ioctl ipsq_current_ipif has not 1169 * been set until now. 1170 */ 1171 if (DB_TYPE(add_mp) == M_ERROR || DB_TYPE(add_mp) == M_HANGUP) { 1172 ASSERT(ipsq->ipsq_current_ipif == NULL); 1173 ipsq->ipsq_current_ipif = ipif; 1174 ipsq->ipsq_last_cmd = DB_TYPE(add_mp); 1175 } 1176 if (connp != NULL) 1177 connp->conn_oper_pending_ill = ipif->ipif_ill; 1178 mutex_exit(&ipsq->ipsq_lock); 1179 return (B_TRUE); 1180 } 1181 1182 /* 1183 * Retrieve the ipsq_pending_mp and return it. There can be only 1 mp 1184 * queued in the list. 1185 */ 1186 mblk_t * 1187 ipsq_pending_mp_get(ipsq_t *ipsq, conn_t **connpp) 1188 { 1189 mblk_t *curr = NULL; 1190 1191 mutex_enter(&ipsq->ipsq_lock); 1192 *connpp = NULL; 1193 if (ipsq->ipsq_pending_mp == NULL) { 1194 mutex_exit(&ipsq->ipsq_lock); 1195 return (NULL); 1196 } 1197 1198 /* There can be only 1 such excl message */ 1199 curr = ipsq->ipsq_pending_mp; 1200 ASSERT(curr != NULL && curr->b_next == NULL); 1201 ipsq->ipsq_pending_ipif = NULL; 1202 ipsq->ipsq_pending_mp = NULL; 1203 ipsq->ipsq_waitfor = 0; 1204 mutex_exit(&ipsq->ipsq_lock); 1205 1206 if (CONN_Q(curr->b_queue)) { 1207 /* 1208 * This mp did a refhold on the conn, at the start of the ioctl. 1209 * So we can safely return a pointer to the conn to the caller. 1210 */ 1211 *connpp = Q_TO_CONN(curr->b_queue); 1212 } else { 1213 *connpp = NULL; 1214 } 1215 curr->b_next = NULL; 1216 curr->b_prev = NULL; 1217 return (curr); 1218 } 1219 1220 /* 1221 * Cleanup the ioctl mp queued in ipsq_pending_mp 1222 * - Called in the ill_delete path 1223 * - Called in the M_ERROR or M_HANGUP path on the ill. 1224 * - Called in the conn close path. 1225 */ 1226 boolean_t 1227 ipsq_pending_mp_cleanup(ill_t *ill, conn_t *connp) 1228 { 1229 mblk_t *mp; 1230 ipsq_t *ipsq; 1231 queue_t *q; 1232 ipif_t *ipif; 1233 1234 ASSERT(IAM_WRITER_ILL(ill)); 1235 ipsq = ill->ill_phyint->phyint_ipsq; 1236 mutex_enter(&ipsq->ipsq_lock); 1237 /* 1238 * If connp is null, unconditionally clean up the ipsq_pending_mp. 1239 * This happens in M_ERROR/M_HANGUP. We need to abort the current ioctl 1240 * even if it is meant for another ill, since we have to enqueue 1241 * a new mp now in ipsq_pending_mp to complete the ipif_down. 1242 * If connp is non-null we are called from the conn close path. 1243 */ 1244 mp = ipsq->ipsq_pending_mp; 1245 if (mp == NULL || (connp != NULL && 1246 mp->b_queue != CONNP_TO_WQ(connp))) { 1247 mutex_exit(&ipsq->ipsq_lock); 1248 return (B_FALSE); 1249 } 1250 /* Now remove from the ipsq_pending_mp */ 1251 ipsq->ipsq_pending_mp = NULL; 1252 q = mp->b_queue; 1253 mp->b_next = NULL; 1254 mp->b_prev = NULL; 1255 mp->b_queue = NULL; 1256 1257 /* If MOVE was in progress, clear the move_in_progress fields also. */ 1258 ill = ipsq->ipsq_pending_ipif->ipif_ill; 1259 if (ill->ill_move_in_progress) { 1260 ILL_CLEAR_MOVE(ill); 1261 } else if (ill->ill_up_ipifs) { 1262 ill_group_cleanup(ill); 1263 } 1264 1265 ipif = ipsq->ipsq_pending_ipif; 1266 ipsq->ipsq_pending_ipif = NULL; 1267 ipsq->ipsq_waitfor = 0; 1268 ipsq->ipsq_current_ipif = NULL; 1269 mutex_exit(&ipsq->ipsq_lock); 1270 1271 if (DB_TYPE(mp) == M_IOCTL || DB_TYPE(mp) == M_IOCDATA) { 1272 ip_ioctl_finish(q, mp, ENXIO, connp != NULL ? CONN_CLOSE : 1273 NO_COPYOUT, connp != NULL ? ipif : NULL, NULL); 1274 } else { 1275 /* 1276 * IP-MT XXX In the case of TLI/XTI bind / optmgmt this can't 1277 * be just inet_freemsg. we have to restart it 1278 * otherwise the thread will be stuck. 1279 */ 1280 inet_freemsg(mp); 1281 } 1282 return (B_TRUE); 1283 } 1284 1285 /* 1286 * The ill is closing. Cleanup all the pending mps. Called exclusively 1287 * towards the end of ill_delete. The refcount has gone to 0. So nobody 1288 * knows this ill, and hence nobody can add an mp to this list 1289 */ 1290 static void 1291 ill_pending_mp_cleanup(ill_t *ill) 1292 { 1293 mblk_t *mp; 1294 queue_t *q; 1295 1296 ASSERT(IAM_WRITER_ILL(ill)); 1297 1298 mutex_enter(&ill->ill_lock); 1299 /* 1300 * Every mp on the pending mp list originating from an ioctl 1301 * added 1 to the conn refcnt, at the start of the ioctl. 1302 * So bump it down now. See comments in ip_wput_nondata() 1303 */ 1304 while (ill->ill_pending_mp != NULL) { 1305 mp = ill->ill_pending_mp; 1306 ill->ill_pending_mp = mp->b_next; 1307 mutex_exit(&ill->ill_lock); 1308 1309 q = mp->b_queue; 1310 ASSERT(CONN_Q(q)); 1311 mp->b_next = NULL; 1312 mp->b_prev = NULL; 1313 mp->b_queue = NULL; 1314 ip_ioctl_finish(q, mp, ENXIO, NO_COPYOUT, NULL, NULL); 1315 mutex_enter(&ill->ill_lock); 1316 } 1317 ill->ill_pending_ipif = NULL; 1318 1319 mutex_exit(&ill->ill_lock); 1320 } 1321 1322 /* 1323 * Called in the conn close path and ill delete path 1324 */ 1325 static void 1326 ipsq_xopq_mp_cleanup(ill_t *ill, conn_t *connp) 1327 { 1328 ipsq_t *ipsq; 1329 mblk_t *prev; 1330 mblk_t *curr; 1331 mblk_t *next; 1332 queue_t *q; 1333 mblk_t *tmp_list = NULL; 1334 1335 ASSERT(IAM_WRITER_ILL(ill)); 1336 if (connp != NULL) 1337 q = CONNP_TO_WQ(connp); 1338 else 1339 q = ill->ill_wq; 1340 1341 ipsq = ill->ill_phyint->phyint_ipsq; 1342 /* 1343 * Cleanup the ioctl mp's queued in ipsq_xopq_pending_mp if any. 1344 * In the case of ioctl from a conn, there can be only 1 mp 1345 * queued on the ipsq. If an ill is being unplumbed, only messages 1346 * related to this ill are flushed, like M_ERROR or M_HANGUP message. 1347 * ioctls meant for this ill form conn's are not flushed. They will 1348 * be processed during ipsq_exit and will not find the ill and will 1349 * return error. 1350 */ 1351 mutex_enter(&ipsq->ipsq_lock); 1352 for (prev = NULL, curr = ipsq->ipsq_xopq_mphead; curr != NULL; 1353 curr = next) { 1354 next = curr->b_next; 1355 if (curr->b_queue == q || curr->b_queue == RD(q)) { 1356 /* Unlink the mblk from the pending mp list */ 1357 if (prev != NULL) { 1358 prev->b_next = curr->b_next; 1359 } else { 1360 ASSERT(ipsq->ipsq_xopq_mphead == curr); 1361 ipsq->ipsq_xopq_mphead = curr->b_next; 1362 } 1363 if (ipsq->ipsq_xopq_mptail == curr) 1364 ipsq->ipsq_xopq_mptail = prev; 1365 /* 1366 * Create a temporary list and release the ipsq lock 1367 * New elements are added to the head of the tmp_list 1368 */ 1369 curr->b_next = tmp_list; 1370 tmp_list = curr; 1371 } else { 1372 prev = curr; 1373 } 1374 } 1375 mutex_exit(&ipsq->ipsq_lock); 1376 1377 while (tmp_list != NULL) { 1378 curr = tmp_list; 1379 tmp_list = curr->b_next; 1380 curr->b_next = NULL; 1381 curr->b_prev = NULL; 1382 curr->b_queue = NULL; 1383 if (DB_TYPE(curr) == M_IOCTL || DB_TYPE(curr) == M_IOCDATA) { 1384 ip_ioctl_finish(q, curr, ENXIO, connp != NULL ? 1385 CONN_CLOSE : NO_COPYOUT, NULL, NULL); 1386 } else { 1387 /* 1388 * IP-MT XXX In the case of TLI/XTI bind / optmgmt 1389 * this can't be just inet_freemsg. we have to 1390 * restart it otherwise the thread will be stuck. 1391 */ 1392 inet_freemsg(curr); 1393 } 1394 } 1395 } 1396 1397 /* 1398 * This conn has started closing. Cleanup any pending ioctl from this conn. 1399 * STREAMS ensures that there can be at most 1 ioctl pending on a stream. 1400 */ 1401 void 1402 conn_ioctl_cleanup(conn_t *connp) 1403 { 1404 mblk_t *curr; 1405 ipsq_t *ipsq; 1406 ill_t *ill; 1407 boolean_t refheld; 1408 1409 /* 1410 * Is any exclusive ioctl pending ? If so clean it up. If the 1411 * ioctl has not yet started, the mp is pending in the list headed by 1412 * ipsq_xopq_head. If the ioctl has started the mp could be present in 1413 * ipsq_pending_mp. If the ioctl timed out in the streamhead but 1414 * is currently executing now the mp is not queued anywhere but 1415 * conn_oper_pending_ill is null. The conn close will wait 1416 * till the conn_ref drops to zero. 1417 */ 1418 mutex_enter(&connp->conn_lock); 1419 ill = connp->conn_oper_pending_ill; 1420 if (ill == NULL) { 1421 mutex_exit(&connp->conn_lock); 1422 return; 1423 } 1424 1425 curr = ill_pending_mp_get(ill, &connp, 0); 1426 if (curr != NULL) { 1427 mutex_exit(&connp->conn_lock); 1428 CONN_DEC_REF(connp); 1429 inet_freemsg(curr); 1430 return; 1431 } 1432 /* 1433 * We may not be able to refhold the ill if the ill/ipif 1434 * is changing. But we need to make sure that the ill will 1435 * not vanish. So we just bump up the ill_waiter count. 1436 */ 1437 refheld = ill_waiter_inc(ill); 1438 mutex_exit(&connp->conn_lock); 1439 if (refheld) { 1440 if (ipsq_enter(ill, B_TRUE)) { 1441 ill_waiter_dcr(ill); 1442 /* 1443 * Check whether this ioctl has started and is 1444 * pending now in ipsq_pending_mp. If it is not 1445 * found there then check whether this ioctl has 1446 * not even started and is in the ipsq_xopq list. 1447 */ 1448 if (!ipsq_pending_mp_cleanup(ill, connp)) 1449 ipsq_xopq_mp_cleanup(ill, connp); 1450 ipsq = ill->ill_phyint->phyint_ipsq; 1451 ipsq_exit(ipsq, B_TRUE, B_TRUE); 1452 return; 1453 } 1454 } 1455 1456 /* 1457 * The ill is also closing and we could not bump up the 1458 * ill_waiter_count or we could not enter the ipsq. Leave 1459 * the cleanup to ill_delete 1460 */ 1461 mutex_enter(&connp->conn_lock); 1462 while (connp->conn_oper_pending_ill != NULL) 1463 cv_wait(&connp->conn_refcv, &connp->conn_lock); 1464 mutex_exit(&connp->conn_lock); 1465 if (refheld) 1466 ill_waiter_dcr(ill); 1467 } 1468 1469 /* 1470 * ipcl_walk function for cleaning up conn_*_ill fields. 1471 */ 1472 static void 1473 conn_cleanup_ill(conn_t *connp, caddr_t arg) 1474 { 1475 ill_t *ill = (ill_t *)arg; 1476 ire_t *ire; 1477 1478 mutex_enter(&connp->conn_lock); 1479 if (connp->conn_multicast_ill == ill) { 1480 /* Revert to late binding */ 1481 connp->conn_multicast_ill = NULL; 1482 connp->conn_orig_multicast_ifindex = 0; 1483 } 1484 if (connp->conn_incoming_ill == ill) 1485 connp->conn_incoming_ill = NULL; 1486 if (connp->conn_outgoing_ill == ill) 1487 connp->conn_outgoing_ill = NULL; 1488 if (connp->conn_outgoing_pill == ill) 1489 connp->conn_outgoing_pill = NULL; 1490 if (connp->conn_nofailover_ill == ill) 1491 connp->conn_nofailover_ill = NULL; 1492 if (connp->conn_xmit_if_ill == ill) 1493 connp->conn_xmit_if_ill = NULL; 1494 if (connp->conn_ire_cache != NULL) { 1495 ire = connp->conn_ire_cache; 1496 /* 1497 * ip_newroute creates IRE_CACHE with ire_stq coming from 1498 * interface X and ipif coming from interface Y, if interface 1499 * X and Y are part of the same IPMPgroup. Thus whenever 1500 * interface X goes down, remove all references to it by 1501 * checking both on ire_ipif and ire_stq. 1502 */ 1503 if ((ire->ire_ipif != NULL && ire->ire_ipif->ipif_ill == ill) || 1504 (ire->ire_type == IRE_CACHE && 1505 ire->ire_stq == ill->ill_wq)) { 1506 connp->conn_ire_cache = NULL; 1507 mutex_exit(&connp->conn_lock); 1508 ire_refrele_notr(ire); 1509 return; 1510 } 1511 } 1512 mutex_exit(&connp->conn_lock); 1513 1514 } 1515 1516 /* ARGSUSED */ 1517 void 1518 ipif_all_down_tail(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy_arg) 1519 { 1520 ill_t *ill = q->q_ptr; 1521 ipif_t *ipif; 1522 1523 ASSERT(IAM_WRITER_IPSQ(ipsq)); 1524 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 1525 ipif_non_duplicate(ipif); 1526 ipif_down_tail(ipif); 1527 } 1528 ill_down_tail(ill); 1529 freemsg(mp); 1530 ipsq->ipsq_current_ipif = NULL; 1531 } 1532 1533 /* 1534 * ill_down_start is called when we want to down this ill and bring it up again 1535 * It is called when we receive an M_ERROR / M_HANGUP. In this case we shut down 1536 * all interfaces, but don't tear down any plumbing. 1537 */ 1538 boolean_t 1539 ill_down_start(queue_t *q, mblk_t *mp) 1540 { 1541 ill_t *ill; 1542 ipif_t *ipif; 1543 1544 ill = q->q_ptr; 1545 1546 ASSERT(IAM_WRITER_ILL(ill)); 1547 1548 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) 1549 (void) ipif_down(ipif, NULL, NULL); 1550 1551 ill_down(ill); 1552 1553 (void) ipsq_pending_mp_cleanup(ill, NULL); 1554 mutex_enter(&ill->ill_lock); 1555 /* 1556 * Atomically test and add the pending mp if references are 1557 * still active. 1558 */ 1559 if (!ill_is_quiescent(ill)) { 1560 /* 1561 * Get rid of any pending mps and cleanup. Call will 1562 * not fail since we are passing a null connp. 1563 */ 1564 (void) ipsq_pending_mp_add(NULL, ill->ill_ipif, ill->ill_rq, 1565 mp, ILL_DOWN); 1566 mutex_exit(&ill->ill_lock); 1567 return (B_FALSE); 1568 } 1569 mutex_exit(&ill->ill_lock); 1570 return (B_TRUE); 1571 } 1572 1573 static void 1574 ill_down(ill_t *ill) 1575 { 1576 /* Blow off any IREs dependent on this ILL. */ 1577 ire_walk(ill_downi, (char *)ill); 1578 1579 mutex_enter(&ire_mrtun_lock); 1580 if (ire_mrtun_count != 0) { 1581 mutex_exit(&ire_mrtun_lock); 1582 ire_walk_ill_mrtun(0, 0, ill_downi_mrtun_srcif, 1583 (char *)ill, NULL); 1584 } else { 1585 mutex_exit(&ire_mrtun_lock); 1586 } 1587 1588 /* 1589 * If any interface based forwarding table exists 1590 * Blow off the ires there dependent on this ill 1591 */ 1592 mutex_enter(&ire_srcif_table_lock); 1593 if (ire_srcif_table_count > 0) { 1594 mutex_exit(&ire_srcif_table_lock); 1595 ire_walk_srcif_table_v4(ill_downi_mrtun_srcif, (char *)ill); 1596 } else { 1597 mutex_exit(&ire_srcif_table_lock); 1598 } 1599 1600 /* Remove any conn_*_ill depending on this ill */ 1601 ipcl_walk(conn_cleanup_ill, (caddr_t)ill); 1602 1603 if (ill->ill_group != NULL) { 1604 illgrp_delete(ill); 1605 } 1606 1607 } 1608 1609 static void 1610 ill_down_tail(ill_t *ill) 1611 { 1612 int i; 1613 1614 /* Destroy ill_srcif_table if it exists */ 1615 /* Lock not reqd really because nobody should be able to access */ 1616 mutex_enter(&ill->ill_lock); 1617 if (ill->ill_srcif_table != NULL) { 1618 ill->ill_srcif_refcnt = 0; 1619 for (i = 0; i < IP_SRCIF_TABLE_SIZE; i++) { 1620 rw_destroy(&ill->ill_srcif_table[i].irb_lock); 1621 } 1622 kmem_free(ill->ill_srcif_table, 1623 IP_SRCIF_TABLE_SIZE * sizeof (irb_t)); 1624 ill->ill_srcif_table = NULL; 1625 ill->ill_srcif_refcnt = 0; 1626 ill->ill_mrtun_refcnt = 0; 1627 } 1628 mutex_exit(&ill->ill_lock); 1629 } 1630 1631 /* 1632 * ire_walk routine used to delete every IRE that depends on queues 1633 * associated with 'ill'. (Always called as writer.) 1634 */ 1635 static void 1636 ill_downi(ire_t *ire, char *ill_arg) 1637 { 1638 ill_t *ill = (ill_t *)ill_arg; 1639 1640 /* 1641 * ip_newroute creates IRE_CACHE with ire_stq coming from 1642 * interface X and ipif coming from interface Y, if interface 1643 * X and Y are part of the same IPMP group. Thus whenever interface 1644 * X goes down, remove all references to it by checking both 1645 * on ire_ipif and ire_stq. 1646 */ 1647 if ((ire->ire_ipif != NULL && ire->ire_ipif->ipif_ill == ill) || 1648 (ire->ire_type == IRE_CACHE && ire->ire_stq == ill->ill_wq)) { 1649 ire_delete(ire); 1650 } 1651 } 1652 1653 /* 1654 * A seperate routine for deleting revtun and srcif based routes 1655 * are needed because the ires only deleted when the interface 1656 * is unplumbed. Also these ires have ire_in_ill non-null as well. 1657 * we want to keep mobile IP specific code separate. 1658 */ 1659 static void 1660 ill_downi_mrtun_srcif(ire_t *ire, char *ill_arg) 1661 { 1662 ill_t *ill = (ill_t *)ill_arg; 1663 1664 ASSERT(ire->ire_in_ill != NULL); 1665 1666 if ((ire->ire_in_ill != NULL && ire->ire_in_ill == ill) || 1667 (ire->ire_stq == ill->ill_wq) || (ire->ire_stq == ill->ill_rq)) { 1668 ire_delete(ire); 1669 } 1670 } 1671 1672 /* 1673 * Remove ire/nce from the fastpath list. 1674 */ 1675 void 1676 ill_fastpath_nack(ill_t *ill) 1677 { 1678 if (ill->ill_isv6) { 1679 nce_fastpath_list_dispatch(ill, NULL, NULL); 1680 } else { 1681 ire_fastpath_list_dispatch(ill, NULL, NULL); 1682 } 1683 } 1684 1685 /* Consume an M_IOCACK of the fastpath probe. */ 1686 void 1687 ill_fastpath_ack(ill_t *ill, mblk_t *mp) 1688 { 1689 mblk_t *mp1 = mp; 1690 1691 /* 1692 * If this was the first attempt turn on the fastpath probing. 1693 */ 1694 mutex_enter(&ill->ill_lock); 1695 if (ill->ill_dlpi_fastpath_state == IDMS_INPROGRESS) 1696 ill->ill_dlpi_fastpath_state = IDMS_OK; 1697 mutex_exit(&ill->ill_lock); 1698 1699 /* Free the M_IOCACK mblk, hold on to the data */ 1700 mp = mp->b_cont; 1701 freeb(mp1); 1702 if (mp == NULL) 1703 return; 1704 if (mp->b_cont != NULL) { 1705 /* 1706 * Update all IRE's or NCE's that are waiting for 1707 * fastpath update. 1708 */ 1709 if (ill->ill_isv6) { 1710 /* 1711 * update nce's in the fastpath list. 1712 */ 1713 nce_fastpath_list_dispatch(ill, 1714 ndp_fastpath_update, mp); 1715 } else { 1716 1717 /* 1718 * update ire's in the fastpath list. 1719 */ 1720 ire_fastpath_list_dispatch(ill, 1721 ire_fastpath_update, mp); 1722 /* 1723 * Check if we need to traverse reverse tunnel table. 1724 * Since there is only single ire_type (IRE_MIPRTUN) 1725 * in the table, we don't need to match on ire_type. 1726 * We have to check ire_mrtun_count and not the 1727 * ill_mrtun_refcnt since ill_mrtun_refcnt is set 1728 * on the incoming ill and here we are dealing with 1729 * outgoing ill. 1730 */ 1731 mutex_enter(&ire_mrtun_lock); 1732 if (ire_mrtun_count != 0) { 1733 mutex_exit(&ire_mrtun_lock); 1734 ire_walk_ill_mrtun(MATCH_IRE_WQ, IRE_MIPRTUN, 1735 (void (*)(ire_t *, void *)) 1736 ire_fastpath_update, mp, ill); 1737 } else { 1738 mutex_exit(&ire_mrtun_lock); 1739 } 1740 } 1741 mp1 = mp->b_cont; 1742 freeb(mp); 1743 mp = mp1; 1744 } else { 1745 ip0dbg(("ill_fastpath_ack: no b_cont\n")); 1746 } 1747 1748 freeb(mp); 1749 } 1750 1751 /* 1752 * Throw an M_IOCTL message downstream asking "do you know fastpath?" 1753 * The data portion of the request is a dl_unitdata_req_t template for 1754 * what we would send downstream in the absence of a fastpath confirmation. 1755 */ 1756 int 1757 ill_fastpath_probe(ill_t *ill, mblk_t *dlur_mp) 1758 { 1759 struct iocblk *ioc; 1760 mblk_t *mp; 1761 1762 if (dlur_mp == NULL) 1763 return (EINVAL); 1764 1765 mutex_enter(&ill->ill_lock); 1766 switch (ill->ill_dlpi_fastpath_state) { 1767 case IDMS_FAILED: 1768 /* 1769 * Driver NAKed the first fastpath ioctl - assume it doesn't 1770 * support it. 1771 */ 1772 mutex_exit(&ill->ill_lock); 1773 return (ENOTSUP); 1774 case IDMS_UNKNOWN: 1775 /* This is the first probe */ 1776 ill->ill_dlpi_fastpath_state = IDMS_INPROGRESS; 1777 break; 1778 default: 1779 break; 1780 } 1781 mutex_exit(&ill->ill_lock); 1782 1783 if ((mp = mkiocb(DL_IOC_HDR_INFO)) == NULL) 1784 return (EAGAIN); 1785 1786 mp->b_cont = copyb(dlur_mp); 1787 if (mp->b_cont == NULL) { 1788 freeb(mp); 1789 return (EAGAIN); 1790 } 1791 1792 ioc = (struct iocblk *)mp->b_rptr; 1793 ioc->ioc_count = msgdsize(mp->b_cont); 1794 1795 putnext(ill->ill_wq, mp); 1796 return (0); 1797 } 1798 1799 void 1800 ill_capability_probe(ill_t *ill) 1801 { 1802 /* 1803 * Do so only if negotiation is enabled, capabilities are unknown, 1804 * and a capability negotiation is not already in progress. 1805 */ 1806 if (ill->ill_capab_state != IDMS_UNKNOWN && 1807 ill->ill_capab_state != IDMS_RENEG) 1808 return; 1809 1810 ill->ill_capab_state = IDMS_INPROGRESS; 1811 ip1dbg(("ill_capability_probe: starting capability negotiation\n")); 1812 ill_capability_proto(ill, DL_CAPABILITY_REQ, NULL); 1813 } 1814 1815 void 1816 ill_capability_reset(ill_t *ill) 1817 { 1818 mblk_t *sc_mp = NULL; 1819 mblk_t *tmp; 1820 1821 /* 1822 * Note here that we reset the state to UNKNOWN, and later send 1823 * down the DL_CAPABILITY_REQ without first setting the state to 1824 * INPROGRESS. We do this in order to distinguish the 1825 * DL_CAPABILITY_ACK response which may come back in response to 1826 * a "reset" apart from the "probe" DL_CAPABILITY_REQ. This would 1827 * also handle the case where the driver doesn't send us back 1828 * a DL_CAPABILITY_ACK in response, since the "probe" routine 1829 * requires the state to be in UNKNOWN anyway. In any case, all 1830 * features are turned off until the state reaches IDMS_OK. 1831 */ 1832 ill->ill_capab_state = IDMS_UNKNOWN; 1833 1834 /* 1835 * Disable sub-capabilities and request a list of sub-capability 1836 * messages which will be sent down to the driver. Each handler 1837 * allocates the corresponding dl_capability_sub_t inside an 1838 * mblk, and links it to the existing sc_mp mblk, or return it 1839 * as sc_mp if it's the first sub-capability (the passed in 1840 * sc_mp is NULL). Upon returning from all capability handlers, 1841 * sc_mp will be pulled-up, before passing it downstream. 1842 */ 1843 ill_capability_mdt_reset(ill, &sc_mp); 1844 ill_capability_hcksum_reset(ill, &sc_mp); 1845 ill_capability_zerocopy_reset(ill, &sc_mp); 1846 ill_capability_ipsec_reset(ill, &sc_mp); 1847 ill_capability_dls_reset(ill, &sc_mp); 1848 1849 /* Nothing to send down in order to disable the capabilities? */ 1850 if (sc_mp == NULL) 1851 return; 1852 1853 tmp = msgpullup(sc_mp, -1); 1854 freemsg(sc_mp); 1855 if ((sc_mp = tmp) == NULL) { 1856 cmn_err(CE_WARN, "ill_capability_reset: unable to send down " 1857 "DL_CAPABILITY_REQ (ENOMEM)\n"); 1858 return; 1859 } 1860 1861 ip1dbg(("ill_capability_reset: resetting negotiated capabilities\n")); 1862 ill_capability_proto(ill, DL_CAPABILITY_REQ, sc_mp); 1863 } 1864 1865 /* 1866 * Request or set new-style hardware capabilities supported by DLS provider. 1867 */ 1868 static void 1869 ill_capability_proto(ill_t *ill, int type, mblk_t *reqp) 1870 { 1871 mblk_t *mp; 1872 dl_capability_req_t *capb; 1873 size_t size = 0; 1874 uint8_t *ptr; 1875 1876 if (reqp != NULL) 1877 size = MBLKL(reqp); 1878 1879 mp = ip_dlpi_alloc(sizeof (dl_capability_req_t) + size, type); 1880 if (mp == NULL) { 1881 freemsg(reqp); 1882 return; 1883 } 1884 ptr = mp->b_rptr; 1885 1886 capb = (dl_capability_req_t *)ptr; 1887 ptr += sizeof (dl_capability_req_t); 1888 1889 if (reqp != NULL) { 1890 capb->dl_sub_offset = sizeof (dl_capability_req_t); 1891 capb->dl_sub_length = size; 1892 bcopy(reqp->b_rptr, ptr, size); 1893 ptr += size; 1894 mp->b_cont = reqp->b_cont; 1895 freeb(reqp); 1896 } 1897 ASSERT(ptr == mp->b_wptr); 1898 1899 ill_dlpi_send(ill, mp); 1900 } 1901 1902 static void 1903 ill_capability_id_ack(ill_t *ill, mblk_t *mp, dl_capability_sub_t *outers) 1904 { 1905 dl_capab_id_t *id_ic; 1906 uint_t sub_dl_cap = outers->dl_cap; 1907 dl_capability_sub_t *inners; 1908 uint8_t *capend; 1909 1910 ASSERT(sub_dl_cap == DL_CAPAB_ID_WRAPPER); 1911 1912 /* 1913 * Note: range checks here are not absolutely sufficient to 1914 * make us robust against malformed messages sent by drivers; 1915 * this is in keeping with the rest of IP's dlpi handling. 1916 * (Remember, it's coming from something else in the kernel 1917 * address space) 1918 */ 1919 1920 capend = (uint8_t *)(outers + 1) + outers->dl_length; 1921 if (capend > mp->b_wptr) { 1922 cmn_err(CE_WARN, "ill_capability_id_ack: " 1923 "malformed sub-capability too long for mblk"); 1924 return; 1925 } 1926 1927 id_ic = (dl_capab_id_t *)(outers + 1); 1928 1929 if (outers->dl_length < sizeof (*id_ic) || 1930 (inners = &id_ic->id_subcap, 1931 inners->dl_length > (outers->dl_length - sizeof (*inners)))) { 1932 cmn_err(CE_WARN, "ill_capability_id_ack: malformed " 1933 "encapsulated capab type %d too long for mblk", 1934 inners->dl_cap); 1935 return; 1936 } 1937 1938 if (!dlcapabcheckqid(&id_ic->id_mid, ill->ill_lmod_rq)) { 1939 ip1dbg(("ill_capability_id_ack: mid token for capab type %d " 1940 "isn't as expected; pass-thru module(s) detected, " 1941 "discarding capability\n", inners->dl_cap)); 1942 return; 1943 } 1944 1945 /* Process the encapsulated sub-capability */ 1946 ill_capability_dispatch(ill, mp, inners, B_TRUE); 1947 } 1948 1949 /* 1950 * Process Multidata Transmit capability negotiation ack received from a 1951 * DLS Provider. isub must point to the sub-capability (DL_CAPAB_MDT) of a 1952 * DL_CAPABILITY_ACK message. 1953 */ 1954 static void 1955 ill_capability_mdt_ack(ill_t *ill, mblk_t *mp, dl_capability_sub_t *isub) 1956 { 1957 mblk_t *nmp = NULL; 1958 dl_capability_req_t *oc; 1959 dl_capab_mdt_t *mdt_ic, *mdt_oc; 1960 ill_mdt_capab_t **ill_mdt_capab; 1961 uint_t sub_dl_cap = isub->dl_cap; 1962 uint8_t *capend; 1963 1964 ASSERT(sub_dl_cap == DL_CAPAB_MDT); 1965 1966 ill_mdt_capab = (ill_mdt_capab_t **)&ill->ill_mdt_capab; 1967 1968 /* 1969 * Note: range checks here are not absolutely sufficient to 1970 * make us robust against malformed messages sent by drivers; 1971 * this is in keeping with the rest of IP's dlpi handling. 1972 * (Remember, it's coming from something else in the kernel 1973 * address space) 1974 */ 1975 1976 capend = (uint8_t *)(isub + 1) + isub->dl_length; 1977 if (capend > mp->b_wptr) { 1978 cmn_err(CE_WARN, "ill_capability_mdt_ack: " 1979 "malformed sub-capability too long for mblk"); 1980 return; 1981 } 1982 1983 mdt_ic = (dl_capab_mdt_t *)(isub + 1); 1984 1985 if (mdt_ic->mdt_version != MDT_VERSION_2) { 1986 cmn_err(CE_CONT, "ill_capability_mdt_ack: " 1987 "unsupported MDT sub-capability (version %d, expected %d)", 1988 mdt_ic->mdt_version, MDT_VERSION_2); 1989 return; 1990 } 1991 1992 if (!dlcapabcheckqid(&mdt_ic->mdt_mid, ill->ill_lmod_rq)) { 1993 ip1dbg(("ill_capability_mdt_ack: mid token for MDT " 1994 "capability isn't as expected; pass-thru module(s) " 1995 "detected, discarding capability\n")); 1996 return; 1997 } 1998 1999 if (mdt_ic->mdt_flags & DL_CAPAB_MDT_ENABLE) { 2000 2001 if (*ill_mdt_capab == NULL) { 2002 *ill_mdt_capab = kmem_zalloc(sizeof (ill_mdt_capab_t), 2003 KM_NOSLEEP); 2004 2005 if (*ill_mdt_capab == NULL) { 2006 cmn_err(CE_WARN, "ill_capability_mdt_ack: " 2007 "could not enable MDT version %d " 2008 "for %s (ENOMEM)\n", MDT_VERSION_2, 2009 ill->ill_name); 2010 return; 2011 } 2012 } 2013 2014 ip1dbg(("ill_capability_mdt_ack: interface %s supports " 2015 "MDT version %d (%d bytes leading, %d bytes trailing " 2016 "header spaces, %d max pld bufs, %d span limit)\n", 2017 ill->ill_name, MDT_VERSION_2, 2018 mdt_ic->mdt_hdr_head, mdt_ic->mdt_hdr_tail, 2019 mdt_ic->mdt_max_pld, mdt_ic->mdt_span_limit)); 2020 2021 (*ill_mdt_capab)->ill_mdt_version = MDT_VERSION_2; 2022 (*ill_mdt_capab)->ill_mdt_on = 1; 2023 /* 2024 * Round the following values to the nearest 32-bit; ULP 2025 * may further adjust them to accomodate for additional 2026 * protocol headers. We pass these values to ULP during 2027 * bind time. 2028 */ 2029 (*ill_mdt_capab)->ill_mdt_hdr_head = 2030 roundup(mdt_ic->mdt_hdr_head, 4); 2031 (*ill_mdt_capab)->ill_mdt_hdr_tail = 2032 roundup(mdt_ic->mdt_hdr_tail, 4); 2033 (*ill_mdt_capab)->ill_mdt_max_pld = mdt_ic->mdt_max_pld; 2034 (*ill_mdt_capab)->ill_mdt_span_limit = mdt_ic->mdt_span_limit; 2035 2036 ill->ill_capabilities |= ILL_CAPAB_MDT; 2037 } else { 2038 uint_t size; 2039 uchar_t *rptr; 2040 2041 size = sizeof (dl_capability_req_t) + 2042 sizeof (dl_capability_sub_t) + sizeof (dl_capab_mdt_t); 2043 2044 if ((nmp = ip_dlpi_alloc(size, DL_CAPABILITY_REQ)) == NULL) { 2045 cmn_err(CE_WARN, "ill_capability_mdt_ack: " 2046 "could not enable MDT for %s (ENOMEM)\n", 2047 ill->ill_name); 2048 return; 2049 } 2050 2051 rptr = nmp->b_rptr; 2052 /* initialize dl_capability_req_t */ 2053 oc = (dl_capability_req_t *)nmp->b_rptr; 2054 oc->dl_sub_offset = sizeof (dl_capability_req_t); 2055 oc->dl_sub_length = sizeof (dl_capability_sub_t) + 2056 sizeof (dl_capab_mdt_t); 2057 nmp->b_rptr += sizeof (dl_capability_req_t); 2058 2059 /* initialize dl_capability_sub_t */ 2060 bcopy(isub, nmp->b_rptr, sizeof (*isub)); 2061 nmp->b_rptr += sizeof (*isub); 2062 2063 /* initialize dl_capab_mdt_t */ 2064 mdt_oc = (dl_capab_mdt_t *)nmp->b_rptr; 2065 bcopy(mdt_ic, mdt_oc, sizeof (*mdt_ic)); 2066 2067 nmp->b_rptr = rptr; 2068 2069 ip1dbg(("ill_capability_mdt_ack: asking interface %s " 2070 "to enable MDT version %d\n", ill->ill_name, 2071 MDT_VERSION_2)); 2072 2073 /* set ENABLE flag */ 2074 mdt_oc->mdt_flags |= DL_CAPAB_MDT_ENABLE; 2075 2076 /* nmp points to a DL_CAPABILITY_REQ message to enable MDT */ 2077 ill_dlpi_send(ill, nmp); 2078 } 2079 } 2080 2081 static void 2082 ill_capability_mdt_reset(ill_t *ill, mblk_t **sc_mp) 2083 { 2084 mblk_t *mp; 2085 dl_capab_mdt_t *mdt_subcap; 2086 dl_capability_sub_t *dl_subcap; 2087 int size; 2088 2089 if (!ILL_MDT_CAPABLE(ill)) 2090 return; 2091 2092 ASSERT(ill->ill_mdt_capab != NULL); 2093 /* 2094 * Clear the capability flag for MDT but retain the ill_mdt_capab 2095 * structure since it's possible that another thread is still 2096 * referring to it. The structure only gets deallocated when 2097 * we destroy the ill. 2098 */ 2099 ill->ill_capabilities &= ~ILL_CAPAB_MDT; 2100 2101 size = sizeof (*dl_subcap) + sizeof (*mdt_subcap); 2102 2103 mp = allocb(size, BPRI_HI); 2104 if (mp == NULL) { 2105 ip1dbg(("ill_capability_mdt_reset: unable to allocate " 2106 "request to disable MDT\n")); 2107 return; 2108 } 2109 2110 mp->b_wptr = mp->b_rptr + size; 2111 2112 dl_subcap = (dl_capability_sub_t *)mp->b_rptr; 2113 dl_subcap->dl_cap = DL_CAPAB_MDT; 2114 dl_subcap->dl_length = sizeof (*mdt_subcap); 2115 2116 mdt_subcap = (dl_capab_mdt_t *)(dl_subcap + 1); 2117 mdt_subcap->mdt_version = ill->ill_mdt_capab->ill_mdt_version; 2118 mdt_subcap->mdt_flags = 0; 2119 mdt_subcap->mdt_hdr_head = 0; 2120 mdt_subcap->mdt_hdr_tail = 0; 2121 2122 if (*sc_mp != NULL) 2123 linkb(*sc_mp, mp); 2124 else 2125 *sc_mp = mp; 2126 } 2127 2128 /* 2129 * Send a DL_NOTIFY_REQ to the specified ill to enable 2130 * DL_NOTE_PROMISC_ON/OFF_PHYS notifications. 2131 * Invoked by ill_capability_ipsec_ack() before enabling IPsec hardware 2132 * acceleration. 2133 * Returns B_TRUE on success, B_FALSE if the message could not be sent. 2134 */ 2135 static boolean_t 2136 ill_enable_promisc_notify(ill_t *ill) 2137 { 2138 mblk_t *mp; 2139 dl_notify_req_t *req; 2140 2141 IPSECHW_DEBUG(IPSECHW_PKT, ("ill_enable_promisc_notify:\n")); 2142 2143 mp = ip_dlpi_alloc(sizeof (dl_notify_req_t), DL_NOTIFY_REQ); 2144 if (mp == NULL) 2145 return (B_FALSE); 2146 2147 req = (dl_notify_req_t *)mp->b_rptr; 2148 req->dl_notifications = DL_NOTE_PROMISC_ON_PHYS | 2149 DL_NOTE_PROMISC_OFF_PHYS; 2150 2151 ill_dlpi_send(ill, mp); 2152 2153 return (B_TRUE); 2154 } 2155 2156 2157 /* 2158 * Allocate an IPsec capability request which will be filled by our 2159 * caller to turn on support for one or more algorithms. 2160 */ 2161 static mblk_t * 2162 ill_alloc_ipsec_cap_req(ill_t *ill, dl_capability_sub_t *isub) 2163 { 2164 mblk_t *nmp; 2165 dl_capability_req_t *ocap; 2166 dl_capab_ipsec_t *ocip; 2167 dl_capab_ipsec_t *icip; 2168 uint8_t *ptr; 2169 icip = (dl_capab_ipsec_t *)(isub + 1); 2170 2171 /* 2172 * The first time around, we send a DL_NOTIFY_REQ to enable 2173 * PROMISC_ON/OFF notification from the provider. We need to 2174 * do this before enabling the algorithms to avoid leakage of 2175 * cleartext packets. 2176 */ 2177 2178 if (!ill_enable_promisc_notify(ill)) 2179 return (NULL); 2180 2181 /* 2182 * Allocate new mblk which will contain a new capability 2183 * request to enable the capabilities. 2184 */ 2185 2186 nmp = ip_dlpi_alloc(sizeof (dl_capability_req_t) + 2187 sizeof (dl_capability_sub_t) + isub->dl_length, DL_CAPABILITY_REQ); 2188 if (nmp == NULL) 2189 return (NULL); 2190 2191 ptr = nmp->b_rptr; 2192 2193 /* initialize dl_capability_req_t */ 2194 ocap = (dl_capability_req_t *)ptr; 2195 ocap->dl_sub_offset = sizeof (dl_capability_req_t); 2196 ocap->dl_sub_length = sizeof (dl_capability_sub_t) + isub->dl_length; 2197 ptr += sizeof (dl_capability_req_t); 2198 2199 /* initialize dl_capability_sub_t */ 2200 bcopy(isub, ptr, sizeof (*isub)); 2201 ptr += sizeof (*isub); 2202 2203 /* initialize dl_capab_ipsec_t */ 2204 ocip = (dl_capab_ipsec_t *)ptr; 2205 bcopy(icip, ocip, sizeof (*icip)); 2206 2207 nmp->b_wptr = (uchar_t *)(&ocip->cip_data[0]); 2208 return (nmp); 2209 } 2210 2211 /* 2212 * Process an IPsec capability negotiation ack received from a DLS Provider. 2213 * isub must point to the sub-capability (DL_CAPAB_IPSEC_AH or 2214 * DL_CAPAB_IPSEC_ESP) of a DL_CAPABILITY_ACK message. 2215 */ 2216 static void 2217 ill_capability_ipsec_ack(ill_t *ill, mblk_t *mp, dl_capability_sub_t *isub) 2218 { 2219 dl_capab_ipsec_t *icip; 2220 dl_capab_ipsec_alg_t *ialg; /* ptr to input alg spec. */ 2221 dl_capab_ipsec_alg_t *oalg; /* ptr to output alg spec. */ 2222 uint_t cipher, nciphers; 2223 mblk_t *nmp; 2224 uint_t alg_len; 2225 boolean_t need_sadb_dump; 2226 uint_t sub_dl_cap = isub->dl_cap; 2227 ill_ipsec_capab_t **ill_capab; 2228 uint64_t ill_capab_flag; 2229 uint8_t *capend, *ciphend; 2230 boolean_t sadb_resync; 2231 2232 ASSERT(sub_dl_cap == DL_CAPAB_IPSEC_AH || 2233 sub_dl_cap == DL_CAPAB_IPSEC_ESP); 2234 2235 if (sub_dl_cap == DL_CAPAB_IPSEC_AH) { 2236 ill_capab = (ill_ipsec_capab_t **)&ill->ill_ipsec_capab_ah; 2237 ill_capab_flag = ILL_CAPAB_AH; 2238 } else { 2239 ill_capab = (ill_ipsec_capab_t **)&ill->ill_ipsec_capab_esp; 2240 ill_capab_flag = ILL_CAPAB_ESP; 2241 } 2242 2243 /* 2244 * If the ill capability structure exists, then this incoming 2245 * DL_CAPABILITY_ACK is a response to a "renegotiation" cycle. 2246 * If this is so, then we'd need to resynchronize the SADB 2247 * after re-enabling the offloaded ciphers. 2248 */ 2249 sadb_resync = (*ill_capab != NULL); 2250 2251 /* 2252 * Note: range checks here are not absolutely sufficient to 2253 * make us robust against malformed messages sent by drivers; 2254 * this is in keeping with the rest of IP's dlpi handling. 2255 * (Remember, it's coming from something else in the kernel 2256 * address space) 2257 */ 2258 2259 capend = (uint8_t *)(isub + 1) + isub->dl_length; 2260 if (capend > mp->b_wptr) { 2261 cmn_err(CE_WARN, "ill_capability_ipsec_ack: " 2262 "malformed sub-capability too long for mblk"); 2263 return; 2264 } 2265 2266 /* 2267 * There are two types of acks we process here: 2268 * 1. acks in reply to a (first form) generic capability req 2269 * (no ENABLE flag set) 2270 * 2. acks in reply to a ENABLE capability req. 2271 * (ENABLE flag set) 2272 * 2273 * We process the subcapability passed as argument as follows: 2274 * 1 do initializations 2275 * 1.1 initialize nmp = NULL 2276 * 1.2 set need_sadb_dump to B_FALSE 2277 * 2 for each cipher in subcapability: 2278 * 2.1 if ENABLE flag is set: 2279 * 2.1.1 update per-ill ipsec capabilities info 2280 * 2.1.2 set need_sadb_dump to B_TRUE 2281 * 2.2 if ENABLE flag is not set: 2282 * 2.2.1 if nmp is NULL: 2283 * 2.2.1.1 allocate and initialize nmp 2284 * 2.2.1.2 init current pos in nmp 2285 * 2.2.2 copy current cipher to current pos in nmp 2286 * 2.2.3 set ENABLE flag in nmp 2287 * 2.2.4 update current pos 2288 * 3 if nmp is not equal to NULL, send enable request 2289 * 3.1 send capability request 2290 * 4 if need_sadb_dump is B_TRUE 2291 * 4.1 enable promiscuous on/off notifications 2292 * 4.2 call ill_dlpi_send(isub->dlcap) to send all 2293 * AH or ESP SA's to interface. 2294 */ 2295 2296 nmp = NULL; 2297 oalg = NULL; 2298 need_sadb_dump = B_FALSE; 2299 icip = (dl_capab_ipsec_t *)(isub + 1); 2300 ialg = (dl_capab_ipsec_alg_t *)(&icip->cip_data[0]); 2301 2302 nciphers = icip->cip_nciphers; 2303 ciphend = (uint8_t *)(ialg + icip->cip_nciphers); 2304 2305 if (ciphend > capend) { 2306 cmn_err(CE_WARN, "ill_capability_ipsec_ack: " 2307 "too many ciphers for sub-capability len"); 2308 return; 2309 } 2310 2311 for (cipher = 0; cipher < nciphers; cipher++) { 2312 alg_len = sizeof (dl_capab_ipsec_alg_t); 2313 2314 if (ialg->alg_flag & DL_CAPAB_ALG_ENABLE) { 2315 /* 2316 * TBD: when we provide a way to disable capabilities 2317 * from above, need to manage the request-pending state 2318 * and fail if we were not expecting this ACK. 2319 */ 2320 IPSECHW_DEBUG(IPSECHW_CAPAB, 2321 ("ill_capability_ipsec_ack: got ENABLE ACK\n")); 2322 2323 /* 2324 * Update IPsec capabilities for this ill 2325 */ 2326 2327 if (*ill_capab == NULL) { 2328 IPSECHW_DEBUG(IPSECHW_CAPAB, 2329 ("ill_capability_ipsec_ack: " 2330 "allocating ipsec_capab for ill\n")); 2331 *ill_capab = ill_ipsec_capab_alloc(); 2332 2333 if (*ill_capab == NULL) { 2334 cmn_err(CE_WARN, 2335 "ill_capability_ipsec_ack: " 2336 "could not enable IPsec Hardware " 2337 "acceleration for %s (ENOMEM)\n", 2338 ill->ill_name); 2339 return; 2340 } 2341 } 2342 2343 ASSERT(ialg->alg_type == DL_CAPAB_IPSEC_ALG_AUTH || 2344 ialg->alg_type == DL_CAPAB_IPSEC_ALG_ENCR); 2345 2346 if (ialg->alg_prim >= MAX_IPSEC_ALGS) { 2347 cmn_err(CE_WARN, 2348 "ill_capability_ipsec_ack: " 2349 "malformed IPsec algorithm id %d", 2350 ialg->alg_prim); 2351 continue; 2352 } 2353 2354 if (ialg->alg_type == DL_CAPAB_IPSEC_ALG_AUTH) { 2355 IPSEC_ALG_ENABLE((*ill_capab)->auth_hw_algs, 2356 ialg->alg_prim); 2357 } else { 2358 ipsec_capab_algparm_t *alp; 2359 2360 IPSEC_ALG_ENABLE((*ill_capab)->encr_hw_algs, 2361 ialg->alg_prim); 2362 if (!ill_ipsec_capab_resize_algparm(*ill_capab, 2363 ialg->alg_prim)) { 2364 cmn_err(CE_WARN, 2365 "ill_capability_ipsec_ack: " 2366 "no space for IPsec alg id %d", 2367 ialg->alg_prim); 2368 continue; 2369 } 2370 alp = &((*ill_capab)->encr_algparm[ 2371 ialg->alg_prim]); 2372 alp->minkeylen = ialg->alg_minbits; 2373 alp->maxkeylen = ialg->alg_maxbits; 2374 } 2375 ill->ill_capabilities |= ill_capab_flag; 2376 /* 2377 * indicate that a capability was enabled, which 2378 * will be used below to kick off a SADB dump 2379 * to the ill. 2380 */ 2381 need_sadb_dump = B_TRUE; 2382 } else { 2383 IPSECHW_DEBUG(IPSECHW_CAPAB, 2384 ("ill_capability_ipsec_ack: enabling alg 0x%x\n", 2385 ialg->alg_prim)); 2386 2387 if (nmp == NULL) { 2388 nmp = ill_alloc_ipsec_cap_req(ill, isub); 2389 if (nmp == NULL) { 2390 /* 2391 * Sending the PROMISC_ON/OFF 2392 * notification request failed. 2393 * We cannot enable the algorithms 2394 * since the Provider will not 2395 * notify IP of promiscous mode 2396 * changes, which could lead 2397 * to leakage of packets. 2398 */ 2399 cmn_err(CE_WARN, 2400 "ill_capability_ipsec_ack: " 2401 "could not enable IPsec Hardware " 2402 "acceleration for %s (ENOMEM)\n", 2403 ill->ill_name); 2404 return; 2405 } 2406 /* ptr to current output alg specifier */ 2407 oalg = (dl_capab_ipsec_alg_t *)nmp->b_wptr; 2408 } 2409 2410 /* 2411 * Copy current alg specifier, set ENABLE 2412 * flag, and advance to next output alg. 2413 * For now we enable all IPsec capabilities. 2414 */ 2415 ASSERT(oalg != NULL); 2416 bcopy(ialg, oalg, alg_len); 2417 oalg->alg_flag |= DL_CAPAB_ALG_ENABLE; 2418 nmp->b_wptr += alg_len; 2419 oalg = (dl_capab_ipsec_alg_t *)nmp->b_wptr; 2420 } 2421 2422 /* move to next input algorithm specifier */ 2423 ialg = (dl_capab_ipsec_alg_t *) 2424 ((char *)ialg + alg_len); 2425 } 2426 2427 if (nmp != NULL) 2428 /* 2429 * nmp points to a DL_CAPABILITY_REQ message to enable 2430 * IPsec hardware acceleration. 2431 */ 2432 ill_dlpi_send(ill, nmp); 2433 2434 if (need_sadb_dump) 2435 /* 2436 * An acknowledgement corresponding to a request to 2437 * enable acceleration was received, notify SADB. 2438 */ 2439 ill_ipsec_capab_add(ill, sub_dl_cap, sadb_resync); 2440 } 2441 2442 /* 2443 * Given an mblk with enough space in it, create sub-capability entries for 2444 * DL_CAPAB_IPSEC_{AH,ESP} types which consist of previously-advertised 2445 * offloaded ciphers (both AUTH and ENCR) with their enable flags cleared, 2446 * in preparation for the reset the DL_CAPABILITY_REQ message. 2447 */ 2448 static void 2449 ill_fill_ipsec_reset(uint_t nciphers, int stype, uint_t slen, 2450 ill_ipsec_capab_t *ill_cap, mblk_t *mp) 2451 { 2452 dl_capab_ipsec_t *oipsec; 2453 dl_capab_ipsec_alg_t *oalg; 2454 dl_capability_sub_t *dl_subcap; 2455 int i, k; 2456 2457 ASSERT(nciphers > 0); 2458 ASSERT(ill_cap != NULL); 2459 ASSERT(mp != NULL); 2460 ASSERT(MBLKTAIL(mp) >= sizeof (*dl_subcap) + sizeof (*oipsec) + slen); 2461 2462 /* dl_capability_sub_t for "stype" */ 2463 dl_subcap = (dl_capability_sub_t *)mp->b_wptr; 2464 dl_subcap->dl_cap = stype; 2465 dl_subcap->dl_length = sizeof (dl_capab_ipsec_t) + slen; 2466 mp->b_wptr += sizeof (dl_capability_sub_t); 2467 2468 /* dl_capab_ipsec_t for "stype" */ 2469 oipsec = (dl_capab_ipsec_t *)mp->b_wptr; 2470 oipsec->cip_version = 1; 2471 oipsec->cip_nciphers = nciphers; 2472 mp->b_wptr = (uchar_t *)&oipsec->cip_data[0]; 2473 2474 /* create entries for "stype" AUTH ciphers */ 2475 for (i = 0; i < ill_cap->algs_size; i++) { 2476 for (k = 0; k < BITSPERBYTE; k++) { 2477 if ((ill_cap->auth_hw_algs[i] & (1 << k)) == 0) 2478 continue; 2479 2480 oalg = (dl_capab_ipsec_alg_t *)mp->b_wptr; 2481 bzero((void *)oalg, sizeof (*oalg)); 2482 oalg->alg_type = DL_CAPAB_IPSEC_ALG_AUTH; 2483 oalg->alg_prim = k + (BITSPERBYTE * i); 2484 mp->b_wptr += sizeof (dl_capab_ipsec_alg_t); 2485 } 2486 } 2487 /* create entries for "stype" ENCR ciphers */ 2488 for (i = 0; i < ill_cap->algs_size; i++) { 2489 for (k = 0; k < BITSPERBYTE; k++) { 2490 if ((ill_cap->encr_hw_algs[i] & (1 << k)) == 0) 2491 continue; 2492 2493 oalg = (dl_capab_ipsec_alg_t *)mp->b_wptr; 2494 bzero((void *)oalg, sizeof (*oalg)); 2495 oalg->alg_type = DL_CAPAB_IPSEC_ALG_ENCR; 2496 oalg->alg_prim = k + (BITSPERBYTE * i); 2497 mp->b_wptr += sizeof (dl_capab_ipsec_alg_t); 2498 } 2499 } 2500 } 2501 2502 /* 2503 * Macro to count number of 1s in a byte (8-bit word). The total count is 2504 * accumulated into the passed-in argument (sum). We could use SPARCv9's 2505 * POPC instruction, but our macro is more flexible for an arbitrary length 2506 * of bytes, such as {auth,encr}_hw_algs. These variables are currently 2507 * 256-bits long (MAX_IPSEC_ALGS), so if we know for sure that the length 2508 * stays that way, we can reduce the number of iterations required. 2509 */ 2510 #define COUNT_1S(val, sum) { \ 2511 uint8_t x = val & 0xff; \ 2512 x = (x & 0x55) + ((x >> 1) & 0x55); \ 2513 x = (x & 0x33) + ((x >> 2) & 0x33); \ 2514 sum += (x & 0xf) + ((x >> 4) & 0xf); \ 2515 } 2516 2517 /* ARGSUSED */ 2518 static void 2519 ill_capability_ipsec_reset(ill_t *ill, mblk_t **sc_mp) 2520 { 2521 mblk_t *mp; 2522 ill_ipsec_capab_t *cap_ah = ill->ill_ipsec_capab_ah; 2523 ill_ipsec_capab_t *cap_esp = ill->ill_ipsec_capab_esp; 2524 uint64_t ill_capabilities = ill->ill_capabilities; 2525 int ah_cnt = 0, esp_cnt = 0; 2526 int ah_len = 0, esp_len = 0; 2527 int i, size = 0; 2528 2529 if (!(ill_capabilities & (ILL_CAPAB_AH | ILL_CAPAB_ESP))) 2530 return; 2531 2532 ASSERT(cap_ah != NULL || !(ill_capabilities & ILL_CAPAB_AH)); 2533 ASSERT(cap_esp != NULL || !(ill_capabilities & ILL_CAPAB_ESP)); 2534 2535 /* Find out the number of ciphers for AH */ 2536 if (cap_ah != NULL) { 2537 for (i = 0; i < cap_ah->algs_size; i++) { 2538 COUNT_1S(cap_ah->auth_hw_algs[i], ah_cnt); 2539 COUNT_1S(cap_ah->encr_hw_algs[i], ah_cnt); 2540 } 2541 if (ah_cnt > 0) { 2542 size += sizeof (dl_capability_sub_t) + 2543 sizeof (dl_capab_ipsec_t); 2544 /* dl_capab_ipsec_t contains one dl_capab_ipsec_alg_t */ 2545 ah_len = (ah_cnt - 1) * sizeof (dl_capab_ipsec_alg_t); 2546 size += ah_len; 2547 } 2548 } 2549 2550 /* Find out the number of ciphers for ESP */ 2551 if (cap_esp != NULL) { 2552 for (i = 0; i < cap_esp->algs_size; i++) { 2553 COUNT_1S(cap_esp->auth_hw_algs[i], esp_cnt); 2554 COUNT_1S(cap_esp->encr_hw_algs[i], esp_cnt); 2555 } 2556 if (esp_cnt > 0) { 2557 size += sizeof (dl_capability_sub_t) + 2558 sizeof (dl_capab_ipsec_t); 2559 /* dl_capab_ipsec_t contains one dl_capab_ipsec_alg_t */ 2560 esp_len = (esp_cnt - 1) * sizeof (dl_capab_ipsec_alg_t); 2561 size += esp_len; 2562 } 2563 } 2564 2565 if (size == 0) { 2566 ip1dbg(("ill_capability_ipsec_reset: capabilities exist but " 2567 "there's nothing to reset\n")); 2568 return; 2569 } 2570 2571 mp = allocb(size, BPRI_HI); 2572 if (mp == NULL) { 2573 ip1dbg(("ill_capability_ipsec_reset: unable to allocate " 2574 "request to disable IPSEC Hardware Acceleration\n")); 2575 return; 2576 } 2577 2578 /* 2579 * Clear the capability flags for IPSec HA but retain the ill 2580 * capability structures since it's possible that another thread 2581 * is still referring to them. The structures only get deallocated 2582 * when we destroy the ill. 2583 * 2584 * Various places check the flags to see if the ill is capable of 2585 * hardware acceleration, and by clearing them we ensure that new 2586 * outbound IPSec packets are sent down encrypted. 2587 */ 2588 ill->ill_capabilities &= ~(ILL_CAPAB_AH | ILL_CAPAB_ESP); 2589 2590 /* Fill in DL_CAPAB_IPSEC_AH sub-capability entries */ 2591 if (ah_cnt > 0) { 2592 ill_fill_ipsec_reset(ah_cnt, DL_CAPAB_IPSEC_AH, ah_len, 2593 cap_ah, mp); 2594 ASSERT(mp->b_rptr + size >= mp->b_wptr); 2595 } 2596 2597 /* Fill in DL_CAPAB_IPSEC_ESP sub-capability entries */ 2598 if (esp_cnt > 0) { 2599 ill_fill_ipsec_reset(esp_cnt, DL_CAPAB_IPSEC_ESP, esp_len, 2600 cap_esp, mp); 2601 ASSERT(mp->b_rptr + size >= mp->b_wptr); 2602 } 2603 2604 /* 2605 * At this point we've composed a bunch of sub-capabilities to be 2606 * encapsulated in a DL_CAPABILITY_REQ and later sent downstream 2607 * by the caller. Upon receiving this reset message, the driver 2608 * must stop inbound decryption (by destroying all inbound SAs) 2609 * and let the corresponding packets come in encrypted. 2610 */ 2611 2612 if (*sc_mp != NULL) 2613 linkb(*sc_mp, mp); 2614 else 2615 *sc_mp = mp; 2616 } 2617 2618 static void 2619 ill_capability_dispatch(ill_t *ill, mblk_t *mp, dl_capability_sub_t *subp, 2620 boolean_t encapsulated) 2621 { 2622 boolean_t legacy = B_FALSE; 2623 2624 /* 2625 * If this DL_CAPABILITY_ACK came in as a response to our "reset" 2626 * DL_CAPABILITY_REQ, ignore it during this cycle. We've just 2627 * instructed the driver to disable its advertised capabilities, 2628 * so there's no point in accepting any response at this moment. 2629 */ 2630 if (ill->ill_capab_state == IDMS_UNKNOWN) 2631 return; 2632 2633 /* 2634 * Note that only the following two sub-capabilities may be 2635 * considered as "legacy", since their original definitions 2636 * do not incorporate the dl_mid_t module ID token, and hence 2637 * may require the use of the wrapper sub-capability. 2638 */ 2639 switch (subp->dl_cap) { 2640 case DL_CAPAB_IPSEC_AH: 2641 case DL_CAPAB_IPSEC_ESP: 2642 legacy = B_TRUE; 2643 break; 2644 } 2645 2646 /* 2647 * For legacy sub-capabilities which don't incorporate a queue_t 2648 * pointer in their structures, discard them if we detect that 2649 * there are intermediate modules in between IP and the driver. 2650 */ 2651 if (!encapsulated && legacy && ill->ill_lmod_cnt > 1) { 2652 ip1dbg(("ill_capability_dispatch: unencapsulated capab type " 2653 "%d discarded; %d module(s) present below IP\n", 2654 subp->dl_cap, ill->ill_lmod_cnt)); 2655 return; 2656 } 2657 2658 switch (subp->dl_cap) { 2659 case DL_CAPAB_IPSEC_AH: 2660 case DL_CAPAB_IPSEC_ESP: 2661 ill_capability_ipsec_ack(ill, mp, subp); 2662 break; 2663 case DL_CAPAB_MDT: 2664 ill_capability_mdt_ack(ill, mp, subp); 2665 break; 2666 case DL_CAPAB_HCKSUM: 2667 ill_capability_hcksum_ack(ill, mp, subp); 2668 break; 2669 case DL_CAPAB_ZEROCOPY: 2670 ill_capability_zerocopy_ack(ill, mp, subp); 2671 break; 2672 case DL_CAPAB_POLL: 2673 if (!SOFT_RINGS_ENABLED()) 2674 ill_capability_dls_ack(ill, mp, subp); 2675 break; 2676 case DL_CAPAB_SOFT_RING: 2677 if (SOFT_RINGS_ENABLED()) 2678 ill_capability_dls_ack(ill, mp, subp); 2679 break; 2680 default: 2681 ip1dbg(("ill_capability_dispatch: unknown capab type %d\n", 2682 subp->dl_cap)); 2683 } 2684 } 2685 2686 /* 2687 * As part of negotiating polling capability, the driver tells us 2688 * the default (or normal) blanking interval and packet threshold 2689 * (the receive timer fires if blanking interval is reached or 2690 * the packet threshold is reached). 2691 * 2692 * As part of manipulating the polling interval, we always use our 2693 * estimated interval (avg service time * number of packets queued 2694 * on the squeue) but we try to blank for a minimum of 2695 * rr_normal_blank_time * rr_max_blank_ratio. We disable the 2696 * packet threshold during this time. When we are not in polling mode 2697 * we set the blank interval typically lower, rr_normal_pkt_cnt * 2698 * rr_min_blank_ratio but up the packet cnt by a ratio of 2699 * rr_min_pkt_cnt_ratio so that we are still getting chains if 2700 * possible although for a shorter interval. 2701 */ 2702 #define RR_MAX_BLANK_RATIO 20 2703 #define RR_MIN_BLANK_RATIO 10 2704 #define RR_MAX_PKT_CNT_RATIO 3 2705 #define RR_MIN_PKT_CNT_RATIO 3 2706 2707 /* 2708 * These can be tuned via /etc/system. 2709 */ 2710 int rr_max_blank_ratio = RR_MAX_BLANK_RATIO; 2711 int rr_min_blank_ratio = RR_MIN_BLANK_RATIO; 2712 int rr_max_pkt_cnt_ratio = RR_MAX_PKT_CNT_RATIO; 2713 int rr_min_pkt_cnt_ratio = RR_MIN_PKT_CNT_RATIO; 2714 2715 static mac_resource_handle_t 2716 ill_ring_add(void *arg, mac_resource_t *mrp) 2717 { 2718 ill_t *ill = (ill_t *)arg; 2719 mac_rx_fifo_t *mrfp = (mac_rx_fifo_t *)mrp; 2720 ill_rx_ring_t *rx_ring; 2721 int ip_rx_index; 2722 2723 ASSERT(mrp != NULL); 2724 if (mrp->mr_type != MAC_RX_FIFO) { 2725 return (NULL); 2726 } 2727 ASSERT(ill != NULL); 2728 ASSERT(ill->ill_dls_capab != NULL); 2729 2730 mutex_enter(&ill->ill_lock); 2731 for (ip_rx_index = 0; ip_rx_index < ILL_MAX_RINGS; ip_rx_index++) { 2732 rx_ring = &ill->ill_dls_capab->ill_ring_tbl[ip_rx_index]; 2733 ASSERT(rx_ring != NULL); 2734 2735 if (rx_ring->rr_ring_state == ILL_RING_FREE) { 2736 time_t normal_blank_time = 2737 mrfp->mrf_normal_blank_time; 2738 uint_t normal_pkt_cnt = 2739 mrfp->mrf_normal_pkt_count; 2740 2741 bzero(rx_ring, sizeof (ill_rx_ring_t)); 2742 2743 rx_ring->rr_blank = mrfp->mrf_blank; 2744 rx_ring->rr_handle = mrfp->mrf_arg; 2745 rx_ring->rr_ill = ill; 2746 rx_ring->rr_normal_blank_time = normal_blank_time; 2747 rx_ring->rr_normal_pkt_cnt = normal_pkt_cnt; 2748 2749 rx_ring->rr_max_blank_time = 2750 normal_blank_time * rr_max_blank_ratio; 2751 rx_ring->rr_min_blank_time = 2752 normal_blank_time * rr_min_blank_ratio; 2753 rx_ring->rr_max_pkt_cnt = 2754 normal_pkt_cnt * rr_max_pkt_cnt_ratio; 2755 rx_ring->rr_min_pkt_cnt = 2756 normal_pkt_cnt * rr_min_pkt_cnt_ratio; 2757 2758 rx_ring->rr_ring_state = ILL_RING_INUSE; 2759 mutex_exit(&ill->ill_lock); 2760 2761 DTRACE_PROBE2(ill__ring__add, (void *), ill, 2762 (int), ip_rx_index); 2763 return ((mac_resource_handle_t)rx_ring); 2764 } 2765 } 2766 2767 /* 2768 * We ran out of ILL_MAX_RINGS worth rx_ring structures. If 2769 * we have devices which can overwhelm this limit, ILL_MAX_RING 2770 * should be made configurable. Meanwhile it cause no panic because 2771 * driver will pass ip_input a NULL handle which will make 2772 * IP allocate the default squeue and Polling mode will not 2773 * be used for this ring. 2774 */ 2775 cmn_err(CE_NOTE, "Reached maximum number of receiving rings (%d) " 2776 "for %s\n", ILL_MAX_RINGS, ill->ill_name); 2777 2778 mutex_exit(&ill->ill_lock); 2779 return (NULL); 2780 } 2781 2782 static boolean_t 2783 ill_capability_dls_init(ill_t *ill) 2784 { 2785 ill_dls_capab_t *ill_dls = ill->ill_dls_capab; 2786 conn_t *connp; 2787 size_t sz; 2788 2789 if (ill->ill_capabilities & ILL_CAPAB_SOFT_RING) { 2790 if (ill_dls == NULL) { 2791 cmn_err(CE_PANIC, "ill_capability_dls_init: " 2792 "soft_ring enabled for ill=%s (%p) but data " 2793 "structs uninitialized\n", ill->ill_name, 2794 (void *)ill); 2795 } 2796 return (B_TRUE); 2797 } else if (ill->ill_capabilities & ILL_CAPAB_POLL) { 2798 if (ill_dls == NULL) { 2799 cmn_err(CE_PANIC, "ill_capability_dls_init: " 2800 "polling enabled for ill=%s (%p) but data " 2801 "structs uninitialized\n", ill->ill_name, 2802 (void *)ill); 2803 } 2804 return (B_TRUE); 2805 } 2806 2807 if (ill_dls != NULL) { 2808 ill_rx_ring_t *rx_ring = ill_dls->ill_ring_tbl; 2809 /* Soft_Ring or polling is being re-enabled */ 2810 2811 connp = ill_dls->ill_unbind_conn; 2812 ASSERT(rx_ring != NULL); 2813 bzero((void *)ill_dls, sizeof (ill_dls_capab_t)); 2814 bzero((void *)rx_ring, 2815 sizeof (ill_rx_ring_t) * ILL_MAX_RINGS); 2816 ill_dls->ill_ring_tbl = rx_ring; 2817 ill_dls->ill_unbind_conn = connp; 2818 return (B_TRUE); 2819 } 2820 2821 if ((connp = ipcl_conn_create(IPCL_TCPCONN, KM_NOSLEEP)) == NULL) 2822 return (B_FALSE); 2823 2824 sz = sizeof (ill_dls_capab_t); 2825 sz += sizeof (ill_rx_ring_t) * ILL_MAX_RINGS; 2826 2827 ill_dls = kmem_zalloc(sz, KM_NOSLEEP); 2828 if (ill_dls == NULL) { 2829 cmn_err(CE_WARN, "ill_capability_dls_init: could not " 2830 "allocate dls_capab for %s (%p)\n", ill->ill_name, 2831 (void *)ill); 2832 CONN_DEC_REF(connp); 2833 return (B_FALSE); 2834 } 2835 2836 /* Allocate space to hold ring table */ 2837 ill_dls->ill_ring_tbl = (ill_rx_ring_t *)&ill_dls[1]; 2838 ill->ill_dls_capab = ill_dls; 2839 ill_dls->ill_unbind_conn = connp; 2840 return (B_TRUE); 2841 } 2842 2843 /* 2844 * ill_capability_dls_disable: disable soft_ring and/or polling 2845 * capability. Since any of the rings might already be in use, need 2846 * to call ipsq_clean_all() which gets behind the squeue to disable 2847 * direct calls if necessary. 2848 */ 2849 static void 2850 ill_capability_dls_disable(ill_t *ill) 2851 { 2852 ill_dls_capab_t *ill_dls = ill->ill_dls_capab; 2853 2854 if (ill->ill_capabilities & ILL_CAPAB_DLS) { 2855 ipsq_clean_all(ill); 2856 ill_dls->ill_tx = NULL; 2857 ill_dls->ill_tx_handle = NULL; 2858 ill_dls->ill_dls_change_status = NULL; 2859 ill_dls->ill_dls_bind = NULL; 2860 ill_dls->ill_dls_unbind = NULL; 2861 } 2862 2863 ASSERT(!(ill->ill_capabilities & ILL_CAPAB_DLS)); 2864 } 2865 2866 static void 2867 ill_capability_dls_capable(ill_t *ill, dl_capab_dls_t *idls, 2868 dl_capability_sub_t *isub) 2869 { 2870 uint_t size; 2871 uchar_t *rptr; 2872 dl_capab_dls_t dls, *odls; 2873 ill_dls_capab_t *ill_dls; 2874 mblk_t *nmp = NULL; 2875 dl_capability_req_t *ocap; 2876 uint_t sub_dl_cap = isub->dl_cap; 2877 2878 if (!ill_capability_dls_init(ill)) 2879 return; 2880 ill_dls = ill->ill_dls_capab; 2881 2882 /* Copy locally to get the members aligned */ 2883 bcopy((void *)idls, (void *)&dls, 2884 sizeof (dl_capab_dls_t)); 2885 2886 /* Get the tx function and handle from dld */ 2887 ill_dls->ill_tx = (ip_dld_tx_t)dls.dls_tx; 2888 ill_dls->ill_tx_handle = (void *)dls.dls_tx_handle; 2889 2890 if (sub_dl_cap == DL_CAPAB_SOFT_RING) { 2891 ill_dls->ill_dls_change_status = 2892 (ip_dls_chg_soft_ring_t)dls.dls_ring_change_status; 2893 ill_dls->ill_dls_bind = (ip_dls_bind_t)dls.dls_ring_bind; 2894 ill_dls->ill_dls_unbind = 2895 (ip_dls_unbind_t)dls.dls_ring_unbind; 2896 ill_dls->ill_dls_soft_ring_cnt = ip_soft_rings_cnt; 2897 } 2898 2899 size = sizeof (dl_capability_req_t) + sizeof (dl_capability_sub_t) + 2900 isub->dl_length; 2901 2902 if ((nmp = ip_dlpi_alloc(size, DL_CAPABILITY_REQ)) == NULL) { 2903 cmn_err(CE_WARN, "ill_capability_dls_capable: could " 2904 "not allocate memory for CAPAB_REQ for %s (%p)\n", 2905 ill->ill_name, (void *)ill); 2906 return; 2907 } 2908 2909 /* initialize dl_capability_req_t */ 2910 rptr = nmp->b_rptr; 2911 ocap = (dl_capability_req_t *)rptr; 2912 ocap->dl_sub_offset = sizeof (dl_capability_req_t); 2913 ocap->dl_sub_length = sizeof (dl_capability_sub_t) + isub->dl_length; 2914 rptr += sizeof (dl_capability_req_t); 2915 2916 /* initialize dl_capability_sub_t */ 2917 bcopy(isub, rptr, sizeof (*isub)); 2918 rptr += sizeof (*isub); 2919 2920 odls = (dl_capab_dls_t *)rptr; 2921 rptr += sizeof (dl_capab_dls_t); 2922 2923 /* initialize dl_capab_dls_t to be sent down */ 2924 dls.dls_rx_handle = (uintptr_t)ill; 2925 dls.dls_rx = (uintptr_t)ip_input; 2926 dls.dls_ring_add = (uintptr_t)ill_ring_add; 2927 2928 if (sub_dl_cap == DL_CAPAB_SOFT_RING) { 2929 dls.dls_ring_cnt = ip_soft_rings_cnt; 2930 dls.dls_ring_assign = (uintptr_t)ip_soft_ring_assignment; 2931 dls.dls_flags = SOFT_RING_ENABLE; 2932 } else { 2933 dls.dls_flags = POLL_ENABLE; 2934 ip1dbg(("ill_capability_dls_capable: asking interface %s " 2935 "to enable polling\n", ill->ill_name)); 2936 } 2937 bcopy((void *)&dls, (void *)odls, 2938 sizeof (dl_capab_dls_t)); 2939 ASSERT(nmp->b_wptr == (nmp->b_rptr + size)); 2940 /* 2941 * nmp points to a DL_CAPABILITY_REQ message to 2942 * enable either soft_ring or polling 2943 */ 2944 ill_dlpi_send(ill, nmp); 2945 } 2946 2947 static void 2948 ill_capability_dls_reset(ill_t *ill, mblk_t **sc_mp) 2949 { 2950 mblk_t *mp; 2951 dl_capab_dls_t *idls; 2952 dl_capability_sub_t *dl_subcap; 2953 int size; 2954 2955 if (!(ill->ill_capabilities & ILL_CAPAB_DLS)) 2956 return; 2957 2958 ASSERT(ill->ill_dls_capab != NULL); 2959 2960 size = sizeof (*dl_subcap) + sizeof (*idls); 2961 2962 mp = allocb(size, BPRI_HI); 2963 if (mp == NULL) { 2964 ip1dbg(("ill_capability_dls_reset: unable to allocate " 2965 "request to disable soft_ring\n")); 2966 return; 2967 } 2968 2969 mp->b_wptr = mp->b_rptr + size; 2970 2971 dl_subcap = (dl_capability_sub_t *)mp->b_rptr; 2972 dl_subcap->dl_length = sizeof (*idls); 2973 if (ill->ill_capabilities & ILL_CAPAB_SOFT_RING) 2974 dl_subcap->dl_cap = DL_CAPAB_SOFT_RING; 2975 else 2976 dl_subcap->dl_cap = DL_CAPAB_POLL; 2977 2978 idls = (dl_capab_dls_t *)(dl_subcap + 1); 2979 if (ill->ill_capabilities & ILL_CAPAB_SOFT_RING) 2980 idls->dls_flags = SOFT_RING_DISABLE; 2981 else 2982 idls->dls_flags = POLL_DISABLE; 2983 2984 if (*sc_mp != NULL) 2985 linkb(*sc_mp, mp); 2986 else 2987 *sc_mp = mp; 2988 } 2989 2990 /* 2991 * Process a soft_ring/poll capability negotiation ack received 2992 * from a DLS Provider.isub must point to the sub-capability 2993 * (DL_CAPAB_SOFT_RING/DL_CAPAB_POLL) of a DL_CAPABILITY_ACK message. 2994 */ 2995 static void 2996 ill_capability_dls_ack(ill_t *ill, mblk_t *mp, dl_capability_sub_t *isub) 2997 { 2998 dl_capab_dls_t *idls; 2999 uint_t sub_dl_cap = isub->dl_cap; 3000 uint8_t *capend; 3001 3002 ASSERT(sub_dl_cap == DL_CAPAB_SOFT_RING || 3003 sub_dl_cap == DL_CAPAB_POLL); 3004 3005 if (ill->ill_isv6) 3006 return; 3007 3008 /* 3009 * Note: range checks here are not absolutely sufficient to 3010 * make us robust against malformed messages sent by drivers; 3011 * this is in keeping with the rest of IP's dlpi handling. 3012 * (Remember, it's coming from something else in the kernel 3013 * address space) 3014 */ 3015 capend = (uint8_t *)(isub + 1) + isub->dl_length; 3016 if (capend > mp->b_wptr) { 3017 cmn_err(CE_WARN, "ill_capability_dls_ack: " 3018 "malformed sub-capability too long for mblk"); 3019 return; 3020 } 3021 3022 /* 3023 * There are two types of acks we process here: 3024 * 1. acks in reply to a (first form) generic capability req 3025 * (dls_flag will be set to SOFT_RING_CAPABLE or POLL_CAPABLE) 3026 * 2. acks in reply to a SOFT_RING_ENABLE or POLL_ENABLE 3027 * capability req. 3028 */ 3029 idls = (dl_capab_dls_t *)(isub + 1); 3030 3031 if (!dlcapabcheckqid(&idls->dls_mid, ill->ill_lmod_rq)) { 3032 ip1dbg(("ill_capability_dls_ack: mid token for dls " 3033 "capability isn't as expected; pass-thru " 3034 "module(s) detected, discarding capability\n")); 3035 if (ill->ill_capabilities & ILL_CAPAB_DLS) { 3036 /* 3037 * This is a capability renegotitation case. 3038 * The interface better be unusable at this 3039 * point other wise bad things will happen 3040 * if we disable direct calls on a running 3041 * and up interface. 3042 */ 3043 ill_capability_dls_disable(ill); 3044 } 3045 return; 3046 } 3047 3048 switch (idls->dls_flags) { 3049 default: 3050 /* Disable if unknown flag */ 3051 case SOFT_RING_DISABLE: 3052 case POLL_DISABLE: 3053 ill_capability_dls_disable(ill); 3054 break; 3055 case SOFT_RING_CAPABLE: 3056 case POLL_CAPABLE: 3057 /* 3058 * If the capability was already enabled, its safe 3059 * to disable it first to get rid of stale information 3060 * and then start enabling it again. 3061 */ 3062 ill_capability_dls_disable(ill); 3063 ill_capability_dls_capable(ill, idls, isub); 3064 break; 3065 case SOFT_RING_ENABLE: 3066 case POLL_ENABLE: 3067 mutex_enter(&ill->ill_lock); 3068 if (sub_dl_cap == DL_CAPAB_SOFT_RING && 3069 !(ill->ill_capabilities & ILL_CAPAB_SOFT_RING)) { 3070 ASSERT(ill->ill_dls_capab != NULL); 3071 ill->ill_capabilities |= ILL_CAPAB_SOFT_RING; 3072 } 3073 if (sub_dl_cap == DL_CAPAB_POLL && 3074 !(ill->ill_capabilities & ILL_CAPAB_POLL)) { 3075 ASSERT(ill->ill_dls_capab != NULL); 3076 ill->ill_capabilities |= ILL_CAPAB_POLL; 3077 ip1dbg(("ill_capability_dls_ack: interface %s " 3078 "has enabled polling\n", ill->ill_name)); 3079 } 3080 mutex_exit(&ill->ill_lock); 3081 break; 3082 } 3083 } 3084 3085 /* 3086 * Process a hardware checksum offload capability negotiation ack received 3087 * from a DLS Provider.isub must point to the sub-capability (DL_CAPAB_HCKSUM) 3088 * of a DL_CAPABILITY_ACK message. 3089 */ 3090 static void 3091 ill_capability_hcksum_ack(ill_t *ill, mblk_t *mp, dl_capability_sub_t *isub) 3092 { 3093 dl_capability_req_t *ocap; 3094 dl_capab_hcksum_t *ihck, *ohck; 3095 ill_hcksum_capab_t **ill_hcksum; 3096 mblk_t *nmp = NULL; 3097 uint_t sub_dl_cap = isub->dl_cap; 3098 uint8_t *capend; 3099 3100 ASSERT(sub_dl_cap == DL_CAPAB_HCKSUM); 3101 3102 ill_hcksum = (ill_hcksum_capab_t **)&ill->ill_hcksum_capab; 3103 3104 /* 3105 * Note: range checks here are not absolutely sufficient to 3106 * make us robust against malformed messages sent by drivers; 3107 * this is in keeping with the rest of IP's dlpi handling. 3108 * (Remember, it's coming from something else in the kernel 3109 * address space) 3110 */ 3111 capend = (uint8_t *)(isub + 1) + isub->dl_length; 3112 if (capend > mp->b_wptr) { 3113 cmn_err(CE_WARN, "ill_capability_hcksum_ack: " 3114 "malformed sub-capability too long for mblk"); 3115 return; 3116 } 3117 3118 /* 3119 * There are two types of acks we process here: 3120 * 1. acks in reply to a (first form) generic capability req 3121 * (no ENABLE flag set) 3122 * 2. acks in reply to a ENABLE capability req. 3123 * (ENABLE flag set) 3124 */ 3125 ihck = (dl_capab_hcksum_t *)(isub + 1); 3126 3127 if (ihck->hcksum_version != HCKSUM_VERSION_1) { 3128 cmn_err(CE_CONT, "ill_capability_hcksum_ack: " 3129 "unsupported hardware checksum " 3130 "sub-capability (version %d, expected %d)", 3131 ihck->hcksum_version, HCKSUM_VERSION_1); 3132 return; 3133 } 3134 3135 if (!dlcapabcheckqid(&ihck->hcksum_mid, ill->ill_lmod_rq)) { 3136 ip1dbg(("ill_capability_hcksum_ack: mid token for hardware " 3137 "checksum capability isn't as expected; pass-thru " 3138 "module(s) detected, discarding capability\n")); 3139 return; 3140 } 3141 3142 #define CURR_HCKSUM_CAPAB \ 3143 (HCKSUM_INET_PARTIAL | HCKSUM_INET_FULL_V4 | \ 3144 HCKSUM_INET_FULL_V6 | HCKSUM_IPHDRCKSUM) 3145 3146 if ((ihck->hcksum_txflags & HCKSUM_ENABLE) && 3147 (ihck->hcksum_txflags & CURR_HCKSUM_CAPAB)) { 3148 /* do ENABLE processing */ 3149 if (*ill_hcksum == NULL) { 3150 *ill_hcksum = kmem_zalloc(sizeof (ill_hcksum_capab_t), 3151 KM_NOSLEEP); 3152 3153 if (*ill_hcksum == NULL) { 3154 cmn_err(CE_WARN, "ill_capability_hcksum_ack: " 3155 "could not enable hcksum version %d " 3156 "for %s (ENOMEM)\n", HCKSUM_CURRENT_VERSION, 3157 ill->ill_name); 3158 return; 3159 } 3160 } 3161 3162 (*ill_hcksum)->ill_hcksum_version = ihck->hcksum_version; 3163 (*ill_hcksum)->ill_hcksum_txflags = ihck->hcksum_txflags; 3164 ill->ill_capabilities |= ILL_CAPAB_HCKSUM; 3165 ip1dbg(("ill_capability_hcksum_ack: interface %s " 3166 "has enabled hardware checksumming\n ", 3167 ill->ill_name)); 3168 } else if (ihck->hcksum_txflags & CURR_HCKSUM_CAPAB) { 3169 /* 3170 * Enabling hardware checksum offload 3171 * Currently IP supports {TCP,UDP}/IPv4 3172 * partial and full cksum offload and 3173 * IPv4 header checksum offload. 3174 * Allocate new mblk which will 3175 * contain a new capability request 3176 * to enable hardware checksum offload. 3177 */ 3178 uint_t size; 3179 uchar_t *rptr; 3180 3181 size = sizeof (dl_capability_req_t) + 3182 sizeof (dl_capability_sub_t) + isub->dl_length; 3183 3184 if ((nmp = ip_dlpi_alloc(size, DL_CAPABILITY_REQ)) == NULL) { 3185 cmn_err(CE_WARN, "ill_capability_hcksum_ack: " 3186 "could not enable hardware cksum for %s (ENOMEM)\n", 3187 ill->ill_name); 3188 return; 3189 } 3190 3191 rptr = nmp->b_rptr; 3192 /* initialize dl_capability_req_t */ 3193 ocap = (dl_capability_req_t *)nmp->b_rptr; 3194 ocap->dl_sub_offset = 3195 sizeof (dl_capability_req_t); 3196 ocap->dl_sub_length = 3197 sizeof (dl_capability_sub_t) + 3198 isub->dl_length; 3199 nmp->b_rptr += sizeof (dl_capability_req_t); 3200 3201 /* initialize dl_capability_sub_t */ 3202 bcopy(isub, nmp->b_rptr, sizeof (*isub)); 3203 nmp->b_rptr += sizeof (*isub); 3204 3205 /* initialize dl_capab_hcksum_t */ 3206 ohck = (dl_capab_hcksum_t *)nmp->b_rptr; 3207 bcopy(ihck, ohck, sizeof (*ihck)); 3208 3209 nmp->b_rptr = rptr; 3210 ASSERT(nmp->b_wptr == (nmp->b_rptr + size)); 3211 3212 /* Set ENABLE flag */ 3213 ohck->hcksum_txflags &= CURR_HCKSUM_CAPAB; 3214 ohck->hcksum_txflags |= HCKSUM_ENABLE; 3215 3216 /* 3217 * nmp points to a DL_CAPABILITY_REQ message to enable 3218 * hardware checksum acceleration. 3219 */ 3220 ill_dlpi_send(ill, nmp); 3221 } else { 3222 ip1dbg(("ill_capability_hcksum_ack: interface %s has " 3223 "advertised %x hardware checksum capability flags\n", 3224 ill->ill_name, ihck->hcksum_txflags)); 3225 } 3226 } 3227 3228 static void 3229 ill_capability_hcksum_reset(ill_t *ill, mblk_t **sc_mp) 3230 { 3231 mblk_t *mp; 3232 dl_capab_hcksum_t *hck_subcap; 3233 dl_capability_sub_t *dl_subcap; 3234 int size; 3235 3236 if (!ILL_HCKSUM_CAPABLE(ill)) 3237 return; 3238 3239 ASSERT(ill->ill_hcksum_capab != NULL); 3240 /* 3241 * Clear the capability flag for hardware checksum offload but 3242 * retain the ill_hcksum_capab structure since it's possible that 3243 * another thread is still referring to it. The structure only 3244 * gets deallocated when we destroy the ill. 3245 */ 3246 ill->ill_capabilities &= ~ILL_CAPAB_HCKSUM; 3247 3248 size = sizeof (*dl_subcap) + sizeof (*hck_subcap); 3249 3250 mp = allocb(size, BPRI_HI); 3251 if (mp == NULL) { 3252 ip1dbg(("ill_capability_hcksum_reset: unable to allocate " 3253 "request to disable hardware checksum offload\n")); 3254 return; 3255 } 3256 3257 mp->b_wptr = mp->b_rptr + size; 3258 3259 dl_subcap = (dl_capability_sub_t *)mp->b_rptr; 3260 dl_subcap->dl_cap = DL_CAPAB_HCKSUM; 3261 dl_subcap->dl_length = sizeof (*hck_subcap); 3262 3263 hck_subcap = (dl_capab_hcksum_t *)(dl_subcap + 1); 3264 hck_subcap->hcksum_version = ill->ill_hcksum_capab->ill_hcksum_version; 3265 hck_subcap->hcksum_txflags = 0; 3266 3267 if (*sc_mp != NULL) 3268 linkb(*sc_mp, mp); 3269 else 3270 *sc_mp = mp; 3271 } 3272 3273 static void 3274 ill_capability_zerocopy_ack(ill_t *ill, mblk_t *mp, dl_capability_sub_t *isub) 3275 { 3276 mblk_t *nmp = NULL; 3277 dl_capability_req_t *oc; 3278 dl_capab_zerocopy_t *zc_ic, *zc_oc; 3279 ill_zerocopy_capab_t **ill_zerocopy_capab; 3280 uint_t sub_dl_cap = isub->dl_cap; 3281 uint8_t *capend; 3282 3283 ASSERT(sub_dl_cap == DL_CAPAB_ZEROCOPY); 3284 3285 ill_zerocopy_capab = (ill_zerocopy_capab_t **)&ill->ill_zerocopy_capab; 3286 3287 /* 3288 * Note: range checks here are not absolutely sufficient to 3289 * make us robust against malformed messages sent by drivers; 3290 * this is in keeping with the rest of IP's dlpi handling. 3291 * (Remember, it's coming from something else in the kernel 3292 * address space) 3293 */ 3294 capend = (uint8_t *)(isub + 1) + isub->dl_length; 3295 if (capend > mp->b_wptr) { 3296 cmn_err(CE_WARN, "ill_capability_zerocopy_ack: " 3297 "malformed sub-capability too long for mblk"); 3298 return; 3299 } 3300 3301 zc_ic = (dl_capab_zerocopy_t *)(isub + 1); 3302 if (zc_ic->zerocopy_version != ZEROCOPY_VERSION_1) { 3303 cmn_err(CE_CONT, "ill_capability_zerocopy_ack: " 3304 "unsupported ZEROCOPY sub-capability (version %d, " 3305 "expected %d)", zc_ic->zerocopy_version, 3306 ZEROCOPY_VERSION_1); 3307 return; 3308 } 3309 3310 if (!dlcapabcheckqid(&zc_ic->zerocopy_mid, ill->ill_lmod_rq)) { 3311 ip1dbg(("ill_capability_zerocopy_ack: mid token for zerocopy " 3312 "capability isn't as expected; pass-thru module(s) " 3313 "detected, discarding capability\n")); 3314 return; 3315 } 3316 3317 if ((zc_ic->zerocopy_flags & DL_CAPAB_VMSAFE_MEM) != 0) { 3318 if (*ill_zerocopy_capab == NULL) { 3319 *ill_zerocopy_capab = 3320 kmem_zalloc(sizeof (ill_zerocopy_capab_t), 3321 KM_NOSLEEP); 3322 3323 if (*ill_zerocopy_capab == NULL) { 3324 cmn_err(CE_WARN, "ill_capability_zerocopy_ack: " 3325 "could not enable Zero-copy version %d " 3326 "for %s (ENOMEM)\n", ZEROCOPY_VERSION_1, 3327 ill->ill_name); 3328 return; 3329 } 3330 } 3331 3332 ip1dbg(("ill_capability_zerocopy_ack: interface %s " 3333 "supports Zero-copy version %d\n", ill->ill_name, 3334 ZEROCOPY_VERSION_1)); 3335 3336 (*ill_zerocopy_capab)->ill_zerocopy_version = 3337 zc_ic->zerocopy_version; 3338 (*ill_zerocopy_capab)->ill_zerocopy_flags = 3339 zc_ic->zerocopy_flags; 3340 3341 ill->ill_capabilities |= ILL_CAPAB_ZEROCOPY; 3342 } else { 3343 uint_t size; 3344 uchar_t *rptr; 3345 3346 size = sizeof (dl_capability_req_t) + 3347 sizeof (dl_capability_sub_t) + 3348 sizeof (dl_capab_zerocopy_t); 3349 3350 if ((nmp = ip_dlpi_alloc(size, DL_CAPABILITY_REQ)) == NULL) { 3351 cmn_err(CE_WARN, "ill_capability_zerocopy_ack: " 3352 "could not enable zerocopy for %s (ENOMEM)\n", 3353 ill->ill_name); 3354 return; 3355 } 3356 3357 rptr = nmp->b_rptr; 3358 /* initialize dl_capability_req_t */ 3359 oc = (dl_capability_req_t *)rptr; 3360 oc->dl_sub_offset = sizeof (dl_capability_req_t); 3361 oc->dl_sub_length = sizeof (dl_capability_sub_t) + 3362 sizeof (dl_capab_zerocopy_t); 3363 rptr += sizeof (dl_capability_req_t); 3364 3365 /* initialize dl_capability_sub_t */ 3366 bcopy(isub, rptr, sizeof (*isub)); 3367 rptr += sizeof (*isub); 3368 3369 /* initialize dl_capab_zerocopy_t */ 3370 zc_oc = (dl_capab_zerocopy_t *)rptr; 3371 *zc_oc = *zc_ic; 3372 3373 ip1dbg(("ill_capability_zerocopy_ack: asking interface %s " 3374 "to enable zero-copy version %d\n", ill->ill_name, 3375 ZEROCOPY_VERSION_1)); 3376 3377 /* set VMSAFE_MEM flag */ 3378 zc_oc->zerocopy_flags |= DL_CAPAB_VMSAFE_MEM; 3379 3380 /* nmp points to a DL_CAPABILITY_REQ message to enable zcopy */ 3381 ill_dlpi_send(ill, nmp); 3382 } 3383 } 3384 3385 static void 3386 ill_capability_zerocopy_reset(ill_t *ill, mblk_t **sc_mp) 3387 { 3388 mblk_t *mp; 3389 dl_capab_zerocopy_t *zerocopy_subcap; 3390 dl_capability_sub_t *dl_subcap; 3391 int size; 3392 3393 if (!(ill->ill_capabilities & ILL_CAPAB_ZEROCOPY)) 3394 return; 3395 3396 ASSERT(ill->ill_zerocopy_capab != NULL); 3397 /* 3398 * Clear the capability flag for Zero-copy but retain the 3399 * ill_zerocopy_capab structure since it's possible that another 3400 * thread is still referring to it. The structure only gets 3401 * deallocated when we destroy the ill. 3402 */ 3403 ill->ill_capabilities &= ~ILL_CAPAB_ZEROCOPY; 3404 3405 size = sizeof (*dl_subcap) + sizeof (*zerocopy_subcap); 3406 3407 mp = allocb(size, BPRI_HI); 3408 if (mp == NULL) { 3409 ip1dbg(("ill_capability_zerocopy_reset: unable to allocate " 3410 "request to disable Zero-copy\n")); 3411 return; 3412 } 3413 3414 mp->b_wptr = mp->b_rptr + size; 3415 3416 dl_subcap = (dl_capability_sub_t *)mp->b_rptr; 3417 dl_subcap->dl_cap = DL_CAPAB_ZEROCOPY; 3418 dl_subcap->dl_length = sizeof (*zerocopy_subcap); 3419 3420 zerocopy_subcap = (dl_capab_zerocopy_t *)(dl_subcap + 1); 3421 zerocopy_subcap->zerocopy_version = 3422 ill->ill_zerocopy_capab->ill_zerocopy_version; 3423 zerocopy_subcap->zerocopy_flags = 0; 3424 3425 if (*sc_mp != NULL) 3426 linkb(*sc_mp, mp); 3427 else 3428 *sc_mp = mp; 3429 } 3430 3431 /* 3432 * Consume a new-style hardware capabilities negotiation ack. 3433 * Called from ip_rput_dlpi_writer(). 3434 */ 3435 void 3436 ill_capability_ack(ill_t *ill, mblk_t *mp) 3437 { 3438 dl_capability_ack_t *capp; 3439 dl_capability_sub_t *subp, *endp; 3440 3441 if (ill->ill_capab_state == IDMS_INPROGRESS) 3442 ill->ill_capab_state = IDMS_OK; 3443 3444 capp = (dl_capability_ack_t *)mp->b_rptr; 3445 3446 if (capp->dl_sub_length == 0) 3447 /* no new-style capabilities */ 3448 return; 3449 3450 /* make sure the driver supplied correct dl_sub_length */ 3451 if ((sizeof (*capp) + capp->dl_sub_length) > MBLKL(mp)) { 3452 ip0dbg(("ill_capability_ack: bad DL_CAPABILITY_ACK, " 3453 "invalid dl_sub_length (%d)\n", capp->dl_sub_length)); 3454 return; 3455 } 3456 3457 #define SC(base, offset) (dl_capability_sub_t *)(((uchar_t *)(base))+(offset)) 3458 /* 3459 * There are sub-capabilities. Process the ones we know about. 3460 * Loop until we don't have room for another sub-cap header.. 3461 */ 3462 for (subp = SC(capp, capp->dl_sub_offset), 3463 endp = SC(subp, capp->dl_sub_length - sizeof (*subp)); 3464 subp <= endp; 3465 subp = SC(subp, sizeof (dl_capability_sub_t) + subp->dl_length)) { 3466 3467 switch (subp->dl_cap) { 3468 case DL_CAPAB_ID_WRAPPER: 3469 ill_capability_id_ack(ill, mp, subp); 3470 break; 3471 default: 3472 ill_capability_dispatch(ill, mp, subp, B_FALSE); 3473 break; 3474 } 3475 } 3476 #undef SC 3477 } 3478 3479 /* 3480 * This routine is called to scan the fragmentation reassembly table for 3481 * the specified ILL for any packets that are starting to smell. 3482 * dead_interval is the maximum time in seconds that will be tolerated. It 3483 * will either be the value specified in ip_g_frag_timeout, or zero if the 3484 * ILL is shutting down and it is time to blow everything off. 3485 * 3486 * It returns the number of seconds (as a time_t) that the next frag timer 3487 * should be scheduled for, 0 meaning that the timer doesn't need to be 3488 * re-started. Note that the method of calculating next_timeout isn't 3489 * entirely accurate since time will flow between the time we grab 3490 * current_time and the time we schedule the next timeout. This isn't a 3491 * big problem since this is the timer for sending an ICMP reassembly time 3492 * exceeded messages, and it doesn't have to be exactly accurate. 3493 * 3494 * This function is 3495 * sometimes called as writer, although this is not required. 3496 */ 3497 time_t 3498 ill_frag_timeout(ill_t *ill, time_t dead_interval) 3499 { 3500 ipfb_t *ipfb; 3501 ipfb_t *endp; 3502 ipf_t *ipf; 3503 ipf_t *ipfnext; 3504 mblk_t *mp; 3505 time_t current_time = gethrestime_sec(); 3506 time_t next_timeout = 0; 3507 uint32_t hdr_length; 3508 mblk_t *send_icmp_head; 3509 mblk_t *send_icmp_head_v6; 3510 3511 ipfb = ill->ill_frag_hash_tbl; 3512 if (ipfb == NULL) 3513 return (B_FALSE); 3514 endp = &ipfb[ILL_FRAG_HASH_TBL_COUNT]; 3515 /* Walk the frag hash table. */ 3516 for (; ipfb < endp; ipfb++) { 3517 send_icmp_head = NULL; 3518 send_icmp_head_v6 = NULL; 3519 mutex_enter(&ipfb->ipfb_lock); 3520 while ((ipf = ipfb->ipfb_ipf) != 0) { 3521 time_t frag_time = current_time - ipf->ipf_timestamp; 3522 time_t frag_timeout; 3523 3524 if (frag_time < dead_interval) { 3525 /* 3526 * There are some outstanding fragments 3527 * that will timeout later. Make note of 3528 * the time so that we can reschedule the 3529 * next timeout appropriately. 3530 */ 3531 frag_timeout = dead_interval - frag_time; 3532 if (next_timeout == 0 || 3533 frag_timeout < next_timeout) { 3534 next_timeout = frag_timeout; 3535 } 3536 break; 3537 } 3538 /* Time's up. Get it out of here. */ 3539 hdr_length = ipf->ipf_nf_hdr_len; 3540 ipfnext = ipf->ipf_hash_next; 3541 if (ipfnext) 3542 ipfnext->ipf_ptphn = ipf->ipf_ptphn; 3543 *ipf->ipf_ptphn = ipfnext; 3544 mp = ipf->ipf_mp->b_cont; 3545 for (; mp; mp = mp->b_cont) { 3546 /* Extra points for neatness. */ 3547 IP_REASS_SET_START(mp, 0); 3548 IP_REASS_SET_END(mp, 0); 3549 } 3550 mp = ipf->ipf_mp->b_cont; 3551 ill->ill_frag_count -= ipf->ipf_count; 3552 ASSERT(ipfb->ipfb_count >= ipf->ipf_count); 3553 ipfb->ipfb_count -= ipf->ipf_count; 3554 ASSERT(ipfb->ipfb_frag_pkts > 0); 3555 ipfb->ipfb_frag_pkts--; 3556 /* 3557 * We do not send any icmp message from here because 3558 * we currently are holding the ipfb_lock for this 3559 * hash chain. If we try and send any icmp messages 3560 * from here we may end up via a put back into ip 3561 * trying to get the same lock, causing a recursive 3562 * mutex panic. Instead we build a list and send all 3563 * the icmp messages after we have dropped the lock. 3564 */ 3565 if (ill->ill_isv6) { 3566 BUMP_MIB(ill->ill_ip6_mib, ipv6ReasmFails); 3567 if (hdr_length != 0) { 3568 mp->b_next = send_icmp_head_v6; 3569 send_icmp_head_v6 = mp; 3570 } else { 3571 freemsg(mp); 3572 } 3573 } else { 3574 BUMP_MIB(&ip_mib, ipReasmFails); 3575 if (hdr_length != 0) { 3576 mp->b_next = send_icmp_head; 3577 send_icmp_head = mp; 3578 } else { 3579 freemsg(mp); 3580 } 3581 } 3582 freeb(ipf->ipf_mp); 3583 } 3584 mutex_exit(&ipfb->ipfb_lock); 3585 /* 3586 * Now need to send any icmp messages that we delayed from 3587 * above. 3588 */ 3589 while (send_icmp_head_v6 != NULL) { 3590 mp = send_icmp_head_v6; 3591 send_icmp_head_v6 = send_icmp_head_v6->b_next; 3592 mp->b_next = NULL; 3593 icmp_time_exceeded_v6(ill->ill_wq, mp, 3594 ICMP_REASSEMBLY_TIME_EXCEEDED, B_FALSE, B_FALSE); 3595 } 3596 while (send_icmp_head != NULL) { 3597 mp = send_icmp_head; 3598 send_icmp_head = send_icmp_head->b_next; 3599 mp->b_next = NULL; 3600 icmp_time_exceeded(ill->ill_wq, mp, 3601 ICMP_REASSEMBLY_TIME_EXCEEDED); 3602 } 3603 } 3604 /* 3605 * A non-dying ILL will use the return value to decide whether to 3606 * restart the frag timer, and for how long. 3607 */ 3608 return (next_timeout); 3609 } 3610 3611 /* 3612 * This routine is called when the approximate count of mblk memory used 3613 * for the specified ILL has exceeded max_count. 3614 */ 3615 void 3616 ill_frag_prune(ill_t *ill, uint_t max_count) 3617 { 3618 ipfb_t *ipfb; 3619 ipf_t *ipf; 3620 size_t count; 3621 3622 /* 3623 * If we are here within ip_min_frag_prune_time msecs remove 3624 * ill_frag_free_num_pkts oldest packets from each bucket and increment 3625 * ill_frag_free_num_pkts. 3626 */ 3627 mutex_enter(&ill->ill_lock); 3628 if (TICK_TO_MSEC(lbolt - ill->ill_last_frag_clean_time) <= 3629 (ip_min_frag_prune_time != 0 ? 3630 ip_min_frag_prune_time : msec_per_tick)) { 3631 3632 ill->ill_frag_free_num_pkts++; 3633 3634 } else { 3635 ill->ill_frag_free_num_pkts = 0; 3636 } 3637 ill->ill_last_frag_clean_time = lbolt; 3638 mutex_exit(&ill->ill_lock); 3639 3640 /* 3641 * free ill_frag_free_num_pkts oldest packets from each bucket. 3642 */ 3643 if (ill->ill_frag_free_num_pkts != 0) { 3644 int ix; 3645 3646 for (ix = 0; ix < ILL_FRAG_HASH_TBL_COUNT; ix++) { 3647 ipfb = &ill->ill_frag_hash_tbl[ix]; 3648 mutex_enter(&ipfb->ipfb_lock); 3649 if (ipfb->ipfb_ipf != NULL) { 3650 ill_frag_free_pkts(ill, ipfb, ipfb->ipfb_ipf, 3651 ill->ill_frag_free_num_pkts); 3652 } 3653 mutex_exit(&ipfb->ipfb_lock); 3654 } 3655 } 3656 /* 3657 * While the reassembly list for this ILL is too big, prune a fragment 3658 * queue by age, oldest first. Note that the per ILL count is 3659 * approximate, while the per frag hash bucket counts are accurate. 3660 */ 3661 while (ill->ill_frag_count > max_count) { 3662 int ix; 3663 ipfb_t *oipfb = NULL; 3664 uint_t oldest = UINT_MAX; 3665 3666 count = 0; 3667 for (ix = 0; ix < ILL_FRAG_HASH_TBL_COUNT; ix++) { 3668 ipfb = &ill->ill_frag_hash_tbl[ix]; 3669 mutex_enter(&ipfb->ipfb_lock); 3670 ipf = ipfb->ipfb_ipf; 3671 if (ipf != NULL && ipf->ipf_gen < oldest) { 3672 oldest = ipf->ipf_gen; 3673 oipfb = ipfb; 3674 } 3675 count += ipfb->ipfb_count; 3676 mutex_exit(&ipfb->ipfb_lock); 3677 } 3678 /* Refresh the per ILL count */ 3679 ill->ill_frag_count = count; 3680 if (oipfb == NULL) { 3681 ill->ill_frag_count = 0; 3682 break; 3683 } 3684 if (count <= max_count) 3685 return; /* Somebody beat us to it, nothing to do */ 3686 mutex_enter(&oipfb->ipfb_lock); 3687 ipf = oipfb->ipfb_ipf; 3688 if (ipf != NULL) { 3689 ill_frag_free_pkts(ill, oipfb, ipf, 1); 3690 } 3691 mutex_exit(&oipfb->ipfb_lock); 3692 } 3693 } 3694 3695 /* 3696 * free 'free_cnt' fragmented packets starting at ipf. 3697 */ 3698 void 3699 ill_frag_free_pkts(ill_t *ill, ipfb_t *ipfb, ipf_t *ipf, int free_cnt) 3700 { 3701 size_t count; 3702 mblk_t *mp; 3703 mblk_t *tmp; 3704 ipf_t **ipfp = ipf->ipf_ptphn; 3705 3706 ASSERT(MUTEX_HELD(&ipfb->ipfb_lock)); 3707 ASSERT(ipfp != NULL); 3708 ASSERT(ipf != NULL); 3709 3710 while (ipf != NULL && free_cnt-- > 0) { 3711 count = ipf->ipf_count; 3712 mp = ipf->ipf_mp; 3713 ipf = ipf->ipf_hash_next; 3714 for (tmp = mp; tmp; tmp = tmp->b_cont) { 3715 IP_REASS_SET_START(tmp, 0); 3716 IP_REASS_SET_END(tmp, 0); 3717 } 3718 ill->ill_frag_count -= count; 3719 ASSERT(ipfb->ipfb_count >= count); 3720 ipfb->ipfb_count -= count; 3721 ASSERT(ipfb->ipfb_frag_pkts > 0); 3722 ipfb->ipfb_frag_pkts--; 3723 freemsg(mp); 3724 BUMP_MIB(&ip_mib, ipReasmFails); 3725 } 3726 3727 if (ipf) 3728 ipf->ipf_ptphn = ipfp; 3729 ipfp[0] = ipf; 3730 } 3731 3732 #define ND_FORWARD_WARNING "The <if>:ip*_forwarding ndd variables are " \ 3733 "obsolete and may be removed in a future release of Solaris. Use " \ 3734 "ifconfig(1M) to manipulate the forwarding status of an interface." 3735 3736 /* 3737 * For obsolete per-interface forwarding configuration; 3738 * called in response to ND_GET. 3739 */ 3740 /* ARGSUSED */ 3741 static int 3742 nd_ill_forward_get(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *ioc_cr) 3743 { 3744 ill_t *ill = (ill_t *)cp; 3745 3746 cmn_err(CE_WARN, ND_FORWARD_WARNING); 3747 3748 (void) mi_mpprintf(mp, "%d", (ill->ill_flags & ILLF_ROUTER) != 0); 3749 return (0); 3750 } 3751 3752 /* 3753 * For obsolete per-interface forwarding configuration; 3754 * called in response to ND_SET. 3755 */ 3756 /* ARGSUSED */ 3757 static int 3758 nd_ill_forward_set(queue_t *q, mblk_t *mp, char *valuestr, caddr_t cp, 3759 cred_t *ioc_cr) 3760 { 3761 long value; 3762 int retval; 3763 3764 cmn_err(CE_WARN, ND_FORWARD_WARNING); 3765 3766 if (ddi_strtol(valuestr, NULL, 10, &value) != 0 || 3767 value < 0 || value > 1) { 3768 return (EINVAL); 3769 } 3770 3771 rw_enter(&ill_g_lock, RW_READER); 3772 retval = ill_forward_set(q, mp, (value != 0), cp); 3773 rw_exit(&ill_g_lock); 3774 return (retval); 3775 } 3776 3777 /* 3778 * Set an ill's ILLF_ROUTER flag appropriately. If the ill is part of an 3779 * IPMP group, make sure all ill's in the group adopt the new policy. Send 3780 * up RTS_IFINFO routing socket messages for each interface whose flags we 3781 * change. 3782 */ 3783 /* ARGSUSED */ 3784 int 3785 ill_forward_set(queue_t *q, mblk_t *mp, boolean_t enable, caddr_t cp) 3786 { 3787 ill_t *ill = (ill_t *)cp; 3788 ill_group_t *illgrp; 3789 3790 ASSERT(IAM_WRITER_ILL(ill) || RW_READ_HELD(&ill_g_lock)); 3791 3792 if ((enable && (ill->ill_flags & ILLF_ROUTER)) || 3793 (!enable && !(ill->ill_flags & ILLF_ROUTER)) || 3794 (ill->ill_phyint->phyint_flags & PHYI_LOOPBACK)) 3795 return (EINVAL); 3796 3797 /* 3798 * If the ill is in an IPMP group, set the forwarding policy on all 3799 * members of the group to the same value. 3800 */ 3801 illgrp = ill->ill_group; 3802 if (illgrp != NULL) { 3803 ill_t *tmp_ill; 3804 3805 for (tmp_ill = illgrp->illgrp_ill; tmp_ill != NULL; 3806 tmp_ill = tmp_ill->ill_group_next) { 3807 ip1dbg(("ill_forward_set: %s %s forwarding on %s", 3808 (enable ? "Enabling" : "Disabling"), 3809 (tmp_ill->ill_isv6 ? "IPv6" : "IPv4"), 3810 tmp_ill->ill_name)); 3811 mutex_enter(&tmp_ill->ill_lock); 3812 if (enable) 3813 tmp_ill->ill_flags |= ILLF_ROUTER; 3814 else 3815 tmp_ill->ill_flags &= ~ILLF_ROUTER; 3816 mutex_exit(&tmp_ill->ill_lock); 3817 if (tmp_ill->ill_isv6) 3818 ill_set_nce_router_flags(tmp_ill, enable); 3819 /* Notify routing socket listeners of this change. */ 3820 ip_rts_ifmsg(tmp_ill->ill_ipif); 3821 } 3822 } else { 3823 ip1dbg(("ill_forward_set: %s %s forwarding on %s", 3824 (enable ? "Enabling" : "Disabling"), 3825 (ill->ill_isv6 ? "IPv6" : "IPv4"), ill->ill_name)); 3826 mutex_enter(&ill->ill_lock); 3827 if (enable) 3828 ill->ill_flags |= ILLF_ROUTER; 3829 else 3830 ill->ill_flags &= ~ILLF_ROUTER; 3831 mutex_exit(&ill->ill_lock); 3832 if (ill->ill_isv6) 3833 ill_set_nce_router_flags(ill, enable); 3834 /* Notify routing socket listeners of this change. */ 3835 ip_rts_ifmsg(ill->ill_ipif); 3836 } 3837 3838 return (0); 3839 } 3840 3841 /* 3842 * Based on the ILLF_ROUTER flag of an ill, make sure all local nce's for 3843 * addresses assigned to the ill have the NCE_F_ISROUTER flag appropriately 3844 * set or clear. 3845 */ 3846 static void 3847 ill_set_nce_router_flags(ill_t *ill, boolean_t enable) 3848 { 3849 ipif_t *ipif; 3850 nce_t *nce; 3851 3852 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 3853 nce = ndp_lookup_v6(ill, &ipif->ipif_v6lcl_addr, B_FALSE); 3854 if (nce != NULL) { 3855 mutex_enter(&nce->nce_lock); 3856 if (enable) 3857 nce->nce_flags |= NCE_F_ISROUTER; 3858 else 3859 nce->nce_flags &= ~NCE_F_ISROUTER; 3860 mutex_exit(&nce->nce_lock); 3861 NCE_REFRELE(nce); 3862 } 3863 } 3864 } 3865 3866 /* 3867 * Given an ill with a _valid_ name, add the ip_forwarding ndd variable 3868 * for this ill. Make sure the v6/v4 question has been answered about this 3869 * ill. The creation of this ndd variable is only for backwards compatibility. 3870 * The preferred way to control per-interface IP forwarding is through the 3871 * ILLF_ROUTER interface flag. 3872 */ 3873 static int 3874 ill_set_ndd_name(ill_t *ill) 3875 { 3876 char *suffix; 3877 3878 ASSERT(IAM_WRITER_ILL(ill)); 3879 3880 if (ill->ill_isv6) 3881 suffix = ipv6_forward_suffix; 3882 else 3883 suffix = ipv4_forward_suffix; 3884 3885 ill->ill_ndd_name = ill->ill_name + ill->ill_name_length; 3886 bcopy(ill->ill_name, ill->ill_ndd_name, ill->ill_name_length - 1); 3887 /* 3888 * Copies over the '\0'. 3889 * Note that strlen(suffix) is always bounded. 3890 */ 3891 bcopy(suffix, ill->ill_ndd_name + ill->ill_name_length - 1, 3892 strlen(suffix) + 1); 3893 3894 /* 3895 * Use of the nd table requires holding the reader lock. 3896 * Modifying the nd table thru nd_load/nd_unload requires 3897 * the writer lock. 3898 */ 3899 rw_enter(&ip_g_nd_lock, RW_WRITER); 3900 if (!nd_load(&ip_g_nd, ill->ill_ndd_name, nd_ill_forward_get, 3901 nd_ill_forward_set, (caddr_t)ill)) { 3902 /* 3903 * If the nd_load failed, it only meant that it could not 3904 * allocate a new bunch of room for further NDD expansion. 3905 * Because of that, the ill_ndd_name will be set to 0, and 3906 * this interface is at the mercy of the global ip_forwarding 3907 * variable. 3908 */ 3909 rw_exit(&ip_g_nd_lock); 3910 ill->ill_ndd_name = NULL; 3911 return (ENOMEM); 3912 } 3913 rw_exit(&ip_g_nd_lock); 3914 return (0); 3915 } 3916 3917 /* 3918 * Intializes the context structure and returns the first ill in the list 3919 * cuurently start_list and end_list can have values: 3920 * MAX_G_HEADS Traverse both IPV4 and IPV6 lists. 3921 * IP_V4_G_HEAD Traverse IPV4 list only. 3922 * IP_V6_G_HEAD Traverse IPV6 list only. 3923 */ 3924 3925 /* 3926 * We don't check for CONDEMNED ills here. Caller must do that if 3927 * necessary under the ill lock. 3928 */ 3929 ill_t * 3930 ill_first(int start_list, int end_list, ill_walk_context_t *ctx) 3931 { 3932 ill_if_t *ifp; 3933 ill_t *ill; 3934 avl_tree_t *avl_tree; 3935 3936 ASSERT(RW_LOCK_HELD(&ill_g_lock)); 3937 ASSERT(end_list <= MAX_G_HEADS && start_list >= 0); 3938 3939 /* 3940 * setup the lists to search 3941 */ 3942 if (end_list != MAX_G_HEADS) { 3943 ctx->ctx_current_list = start_list; 3944 ctx->ctx_last_list = end_list; 3945 } else { 3946 ctx->ctx_last_list = MAX_G_HEADS - 1; 3947 ctx->ctx_current_list = 0; 3948 } 3949 3950 while (ctx->ctx_current_list <= ctx->ctx_last_list) { 3951 ifp = IP_VX_ILL_G_LIST(ctx->ctx_current_list); 3952 if (ifp != (ill_if_t *) 3953 &IP_VX_ILL_G_LIST(ctx->ctx_current_list)) { 3954 avl_tree = &ifp->illif_avl_by_ppa; 3955 ill = avl_first(avl_tree); 3956 /* 3957 * ill is guaranteed to be non NULL or ifp should have 3958 * not existed. 3959 */ 3960 ASSERT(ill != NULL); 3961 return (ill); 3962 } 3963 ctx->ctx_current_list++; 3964 } 3965 3966 return (NULL); 3967 } 3968 3969 /* 3970 * returns the next ill in the list. ill_first() must have been called 3971 * before calling ill_next() or bad things will happen. 3972 */ 3973 3974 /* 3975 * We don't check for CONDEMNED ills here. Caller must do that if 3976 * necessary under the ill lock. 3977 */ 3978 ill_t * 3979 ill_next(ill_walk_context_t *ctx, ill_t *lastill) 3980 { 3981 ill_if_t *ifp; 3982 ill_t *ill; 3983 3984 3985 ASSERT(RW_LOCK_HELD(&ill_g_lock)); 3986 ASSERT(lastill->ill_ifptr != (ill_if_t *) 3987 &IP_VX_ILL_G_LIST(ctx->ctx_current_list)); 3988 if ((ill = avl_walk(&lastill->ill_ifptr->illif_avl_by_ppa, lastill, 3989 AVL_AFTER)) != NULL) { 3990 return (ill); 3991 } 3992 3993 /* goto next ill_ifp in the list. */ 3994 ifp = lastill->ill_ifptr->illif_next; 3995 3996 /* make sure not at end of circular list */ 3997 while (ifp == (ill_if_t *)&IP_VX_ILL_G_LIST(ctx->ctx_current_list)) { 3998 if (++ctx->ctx_current_list > ctx->ctx_last_list) 3999 return (NULL); 4000 ifp = IP_VX_ILL_G_LIST(ctx->ctx_current_list); 4001 } 4002 4003 return (avl_first(&ifp->illif_avl_by_ppa)); 4004 } 4005 4006 /* 4007 * Check interface name for correct format which is name+ppa. 4008 * name can contain characters and digits, the right most digits 4009 * make up the ppa number. use of octal is not allowed, name must contain 4010 * a ppa, return pointer to the start of ppa. 4011 * In case of error return NULL. 4012 */ 4013 static char * 4014 ill_get_ppa_ptr(char *name) 4015 { 4016 int namelen = mi_strlen(name); 4017 4018 int len = namelen; 4019 4020 name += len; 4021 while (len > 0) { 4022 name--; 4023 if (*name < '0' || *name > '9') 4024 break; 4025 len--; 4026 } 4027 4028 /* empty string, all digits, or no trailing digits */ 4029 if (len == 0 || len == (int)namelen) 4030 return (NULL); 4031 4032 name++; 4033 /* check for attempted use of octal */ 4034 if (*name == '0' && len != (int)namelen - 1) 4035 return (NULL); 4036 return (name); 4037 } 4038 4039 /* 4040 * use avl tree to locate the ill. 4041 */ 4042 static ill_t * 4043 ill_find_by_name(char *name, boolean_t isv6, queue_t *q, mblk_t *mp, 4044 ipsq_func_t func, int *error) 4045 { 4046 char *ppa_ptr = NULL; 4047 int len; 4048 uint_t ppa; 4049 ill_t *ill = NULL; 4050 ill_if_t *ifp; 4051 int list; 4052 ipsq_t *ipsq; 4053 4054 if (error != NULL) 4055 *error = 0; 4056 4057 /* 4058 * get ppa ptr 4059 */ 4060 if (isv6) 4061 list = IP_V6_G_HEAD; 4062 else 4063 list = IP_V4_G_HEAD; 4064 4065 if ((ppa_ptr = ill_get_ppa_ptr(name)) == NULL) { 4066 if (error != NULL) 4067 *error = ENXIO; 4068 return (NULL); 4069 } 4070 4071 len = ppa_ptr - name + 1; 4072 4073 ppa = stoi(&ppa_ptr); 4074 4075 ifp = IP_VX_ILL_G_LIST(list); 4076 4077 while (ifp != (ill_if_t *)&IP_VX_ILL_G_LIST(list)) { 4078 /* 4079 * match is done on len - 1 as the name is not null 4080 * terminated it contains ppa in addition to the interface 4081 * name. 4082 */ 4083 if ((ifp->illif_name_len == len) && 4084 bcmp(ifp->illif_name, name, len - 1) == 0) { 4085 break; 4086 } else { 4087 ifp = ifp->illif_next; 4088 } 4089 } 4090 4091 4092 if (ifp == (ill_if_t *)&IP_VX_ILL_G_LIST(list)) { 4093 /* 4094 * Even the interface type does not exist. 4095 */ 4096 if (error != NULL) 4097 *error = ENXIO; 4098 return (NULL); 4099 } 4100 4101 ill = avl_find(&ifp->illif_avl_by_ppa, (void *) &ppa, NULL); 4102 if (ill != NULL) { 4103 /* 4104 * The block comment at the start of ipif_down 4105 * explains the use of the macros used below 4106 */ 4107 GRAB_CONN_LOCK(q); 4108 mutex_enter(&ill->ill_lock); 4109 if (ILL_CAN_LOOKUP(ill)) { 4110 ill_refhold_locked(ill); 4111 mutex_exit(&ill->ill_lock); 4112 RELEASE_CONN_LOCK(q); 4113 return (ill); 4114 } else if (ILL_CAN_WAIT(ill, q)) { 4115 ipsq = ill->ill_phyint->phyint_ipsq; 4116 mutex_enter(&ipsq->ipsq_lock); 4117 mutex_exit(&ill->ill_lock); 4118 ipsq_enq(ipsq, q, mp, func, NEW_OP, ill); 4119 mutex_exit(&ipsq->ipsq_lock); 4120 RELEASE_CONN_LOCK(q); 4121 *error = EINPROGRESS; 4122 return (NULL); 4123 } 4124 mutex_exit(&ill->ill_lock); 4125 RELEASE_CONN_LOCK(q); 4126 } 4127 if (error != NULL) 4128 *error = ENXIO; 4129 return (NULL); 4130 } 4131 4132 /* 4133 * comparison function for use with avl. 4134 */ 4135 static int 4136 ill_compare_ppa(const void *ppa_ptr, const void *ill_ptr) 4137 { 4138 uint_t ppa; 4139 uint_t ill_ppa; 4140 4141 ASSERT(ppa_ptr != NULL && ill_ptr != NULL); 4142 4143 ppa = *((uint_t *)ppa_ptr); 4144 ill_ppa = ((const ill_t *)ill_ptr)->ill_ppa; 4145 /* 4146 * We want the ill with the lowest ppa to be on the 4147 * top. 4148 */ 4149 if (ill_ppa < ppa) 4150 return (1); 4151 if (ill_ppa > ppa) 4152 return (-1); 4153 return (0); 4154 } 4155 4156 /* 4157 * remove an interface type from the global list. 4158 */ 4159 static void 4160 ill_delete_interface_type(ill_if_t *interface) 4161 { 4162 ASSERT(RW_WRITE_HELD(&ill_g_lock)); 4163 4164 ASSERT(interface != NULL); 4165 ASSERT(avl_numnodes(&interface->illif_avl_by_ppa) == 0); 4166 4167 avl_destroy(&interface->illif_avl_by_ppa); 4168 if (interface->illif_ppa_arena != NULL) 4169 vmem_destroy(interface->illif_ppa_arena); 4170 4171 remque(interface); 4172 4173 mi_free(interface); 4174 } 4175 4176 /* 4177 * remove ill from the global list. 4178 */ 4179 static void 4180 ill_glist_delete(ill_t *ill) 4181 { 4182 if (ill == NULL) 4183 return; 4184 4185 rw_enter(&ill_g_lock, RW_WRITER); 4186 /* 4187 * If the ill was never inserted into the AVL tree 4188 * we skip the if branch. 4189 */ 4190 if (ill->ill_ifptr != NULL) { 4191 /* 4192 * remove from AVL tree and free ppa number 4193 */ 4194 avl_remove(&ill->ill_ifptr->illif_avl_by_ppa, ill); 4195 4196 if (ill->ill_ifptr->illif_ppa_arena != NULL) { 4197 vmem_free(ill->ill_ifptr->illif_ppa_arena, 4198 (void *)(uintptr_t)(ill->ill_ppa+1), 1); 4199 } 4200 if (avl_numnodes(&ill->ill_ifptr->illif_avl_by_ppa) == 0) { 4201 ill_delete_interface_type(ill->ill_ifptr); 4202 } 4203 4204 /* 4205 * Indicate ill is no longer in the list. 4206 */ 4207 ill->ill_ifptr = NULL; 4208 ill->ill_name_length = 0; 4209 ill->ill_name[0] = '\0'; 4210 ill->ill_ppa = UINT_MAX; 4211 } 4212 ill_phyint_free(ill); 4213 rw_exit(&ill_g_lock); 4214 } 4215 4216 /* 4217 * allocate a ppa, if the number of plumbed interfaces of this type are 4218 * less than ill_no_arena do a linear search to find a unused ppa. 4219 * When the number goes beyond ill_no_arena switch to using an arena. 4220 * Note: ppa value of zero cannot be allocated from vmem_arena as it 4221 * is the return value for an error condition, so allocation starts at one 4222 * and is decremented by one. 4223 */ 4224 static int 4225 ill_alloc_ppa(ill_if_t *ifp, ill_t *ill) 4226 { 4227 ill_t *tmp_ill; 4228 uint_t start, end; 4229 int ppa; 4230 4231 if (ifp->illif_ppa_arena == NULL && 4232 (avl_numnodes(&ifp->illif_avl_by_ppa) + 1 > ill_no_arena)) { 4233 /* 4234 * Create an arena. 4235 */ 4236 ifp->illif_ppa_arena = vmem_create(ifp->illif_name, 4237 (void *)1, UINT_MAX - 1, 1, NULL, NULL, 4238 NULL, 0, VM_SLEEP | VMC_IDENTIFIER); 4239 /* allocate what has already been assigned */ 4240 for (tmp_ill = avl_first(&ifp->illif_avl_by_ppa); 4241 tmp_ill != NULL; tmp_ill = avl_walk(&ifp->illif_avl_by_ppa, 4242 tmp_ill, AVL_AFTER)) { 4243 ppa = (int)(uintptr_t)vmem_xalloc(ifp->illif_ppa_arena, 4244 1, /* size */ 4245 1, /* align/quantum */ 4246 0, /* phase */ 4247 0, /* nocross */ 4248 (void *)((uintptr_t)tmp_ill->ill_ppa + 1), /* minaddr */ 4249 (void *)((uintptr_t)tmp_ill->ill_ppa + 2), /* maxaddr */ 4250 VM_NOSLEEP|VM_FIRSTFIT); 4251 if (ppa == 0) { 4252 ip1dbg(("ill_alloc_ppa: ppa allocation" 4253 " failed while switching")); 4254 vmem_destroy(ifp->illif_ppa_arena); 4255 ifp->illif_ppa_arena = NULL; 4256 break; 4257 } 4258 } 4259 } 4260 4261 if (ifp->illif_ppa_arena != NULL) { 4262 if (ill->ill_ppa == UINT_MAX) { 4263 ppa = (int)(uintptr_t)vmem_alloc(ifp->illif_ppa_arena, 4264 1, VM_NOSLEEP|VM_FIRSTFIT); 4265 if (ppa == 0) 4266 return (EAGAIN); 4267 ill->ill_ppa = --ppa; 4268 } else { 4269 ppa = (int)(uintptr_t)vmem_xalloc(ifp->illif_ppa_arena, 4270 1, /* size */ 4271 1, /* align/quantum */ 4272 0, /* phase */ 4273 0, /* nocross */ 4274 (void *)(uintptr_t)(ill->ill_ppa + 1), /* minaddr */ 4275 (void *)(uintptr_t)(ill->ill_ppa + 2), /* maxaddr */ 4276 VM_NOSLEEP|VM_FIRSTFIT); 4277 /* 4278 * Most likely the allocation failed because 4279 * the requested ppa was in use. 4280 */ 4281 if (ppa == 0) 4282 return (EEXIST); 4283 } 4284 return (0); 4285 } 4286 4287 /* 4288 * No arena is in use and not enough (>ill_no_arena) interfaces have 4289 * been plumbed to create one. Do a linear search to get a unused ppa. 4290 */ 4291 if (ill->ill_ppa == UINT_MAX) { 4292 end = UINT_MAX - 1; 4293 start = 0; 4294 } else { 4295 end = start = ill->ill_ppa; 4296 } 4297 4298 tmp_ill = avl_find(&ifp->illif_avl_by_ppa, (void *)&start, NULL); 4299 while (tmp_ill != NULL && tmp_ill->ill_ppa == start) { 4300 if (start++ >= end) { 4301 if (ill->ill_ppa == UINT_MAX) 4302 return (EAGAIN); 4303 else 4304 return (EEXIST); 4305 } 4306 tmp_ill = avl_walk(&ifp->illif_avl_by_ppa, tmp_ill, AVL_AFTER); 4307 } 4308 ill->ill_ppa = start; 4309 return (0); 4310 } 4311 4312 /* 4313 * Insert ill into the list of configured ill's. Once this function completes, 4314 * the ill is globally visible and is available through lookups. More precisely 4315 * this happens after the caller drops the ill_g_lock. 4316 */ 4317 static int 4318 ill_glist_insert(ill_t *ill, char *name, boolean_t isv6) 4319 { 4320 ill_if_t *ill_interface; 4321 avl_index_t where = 0; 4322 int error; 4323 int name_length; 4324 int index; 4325 boolean_t check_length = B_FALSE; 4326 4327 ASSERT(RW_WRITE_HELD(&ill_g_lock)); 4328 4329 name_length = mi_strlen(name) + 1; 4330 4331 if (isv6) 4332 index = IP_V6_G_HEAD; 4333 else 4334 index = IP_V4_G_HEAD; 4335 4336 ill_interface = IP_VX_ILL_G_LIST(index); 4337 /* 4338 * Search for interface type based on name 4339 */ 4340 while (ill_interface != (ill_if_t *)&IP_VX_ILL_G_LIST(index)) { 4341 if ((ill_interface->illif_name_len == name_length) && 4342 (strcmp(ill_interface->illif_name, name) == 0)) { 4343 break; 4344 } 4345 ill_interface = ill_interface->illif_next; 4346 } 4347 4348 /* 4349 * Interface type not found, create one. 4350 */ 4351 if (ill_interface == (ill_if_t *)&IP_VX_ILL_G_LIST(index)) { 4352 4353 ill_g_head_t ghead; 4354 4355 /* 4356 * allocate ill_if_t structure 4357 */ 4358 4359 ill_interface = (ill_if_t *)mi_zalloc(sizeof (ill_if_t)); 4360 if (ill_interface == NULL) { 4361 return (ENOMEM); 4362 } 4363 4364 4365 4366 (void) strcpy(ill_interface->illif_name, name); 4367 ill_interface->illif_name_len = name_length; 4368 4369 avl_create(&ill_interface->illif_avl_by_ppa, 4370 ill_compare_ppa, sizeof (ill_t), 4371 offsetof(struct ill_s, ill_avl_byppa)); 4372 4373 /* 4374 * link the structure in the back to maintain order 4375 * of configuration for ifconfig output. 4376 */ 4377 ghead = ill_g_heads[index]; 4378 insque(ill_interface, ghead.ill_g_list_tail); 4379 4380 } 4381 4382 if (ill->ill_ppa == UINT_MAX) 4383 check_length = B_TRUE; 4384 4385 error = ill_alloc_ppa(ill_interface, ill); 4386 if (error != 0) { 4387 if (avl_numnodes(&ill_interface->illif_avl_by_ppa) == 0) 4388 ill_delete_interface_type(ill->ill_ifptr); 4389 return (error); 4390 } 4391 4392 /* 4393 * When the ppa is choosen by the system, check that there is 4394 * enough space to insert ppa. if a specific ppa was passed in this 4395 * check is not required as the interface name passed in will have 4396 * the right ppa in it. 4397 */ 4398 if (check_length) { 4399 /* 4400 * UINT_MAX - 1 should fit in 10 chars, alloc 12 chars. 4401 */ 4402 char buf[sizeof (uint_t) * 3]; 4403 4404 /* 4405 * convert ppa to string to calculate the amount of space 4406 * required for it in the name. 4407 */ 4408 numtos(ill->ill_ppa, buf); 4409 4410 /* Do we have enough space to insert ppa ? */ 4411 4412 if ((mi_strlen(name) + mi_strlen(buf) + 1) > LIFNAMSIZ) { 4413 /* Free ppa and interface type struct */ 4414 if (ill_interface->illif_ppa_arena != NULL) { 4415 vmem_free(ill_interface->illif_ppa_arena, 4416 (void *)(uintptr_t)(ill->ill_ppa+1), 1); 4417 } 4418 if (avl_numnodes(&ill_interface->illif_avl_by_ppa) == 4419 0) { 4420 ill_delete_interface_type(ill->ill_ifptr); 4421 } 4422 4423 return (EINVAL); 4424 } 4425 } 4426 4427 (void) sprintf(ill->ill_name, "%s%u", name, ill->ill_ppa); 4428 ill->ill_name_length = mi_strlen(ill->ill_name) + 1; 4429 4430 (void) avl_find(&ill_interface->illif_avl_by_ppa, &ill->ill_ppa, 4431 &where); 4432 ill->ill_ifptr = ill_interface; 4433 avl_insert(&ill_interface->illif_avl_by_ppa, ill, where); 4434 4435 ill_phyint_reinit(ill); 4436 return (0); 4437 } 4438 4439 /* Initialize the per phyint (per IPMP group) ipsq used for serialization */ 4440 static boolean_t 4441 ipsq_init(ill_t *ill) 4442 { 4443 ipsq_t *ipsq; 4444 4445 /* Init the ipsq and impicitly enter as writer */ 4446 ill->ill_phyint->phyint_ipsq = 4447 kmem_zalloc(sizeof (ipsq_t), KM_NOSLEEP); 4448 if (ill->ill_phyint->phyint_ipsq == NULL) 4449 return (B_FALSE); 4450 ipsq = ill->ill_phyint->phyint_ipsq; 4451 ipsq->ipsq_phyint_list = ill->ill_phyint; 4452 ill->ill_phyint->phyint_ipsq_next = NULL; 4453 mutex_init(&ipsq->ipsq_lock, NULL, MUTEX_DEFAULT, 0); 4454 ipsq->ipsq_refs = 1; 4455 ipsq->ipsq_writer = curthread; 4456 ipsq->ipsq_reentry_cnt = 1; 4457 #ifdef ILL_DEBUG 4458 ipsq->ipsq_depth = getpcstack((pc_t *)ipsq->ipsq_stack, IP_STACK_DEPTH); 4459 #endif 4460 (void) strcpy(ipsq->ipsq_name, ill->ill_name); 4461 return (B_TRUE); 4462 } 4463 4464 /* 4465 * ill_init is called by ip_open when a device control stream is opened. 4466 * It does a few initializations, and shoots a DL_INFO_REQ message down 4467 * to the driver. The response is later picked up in ip_rput_dlpi and 4468 * used to set up default mechanisms for talking to the driver. (Always 4469 * called as writer.) 4470 * 4471 * If this function returns error, ip_open will call ip_close which in 4472 * turn will call ill_delete to clean up any memory allocated here that 4473 * is not yet freed. 4474 */ 4475 int 4476 ill_init(queue_t *q, ill_t *ill) 4477 { 4478 int count; 4479 dl_info_req_t *dlir; 4480 mblk_t *info_mp; 4481 uchar_t *frag_ptr; 4482 4483 /* 4484 * The ill is initialized to zero by mi_alloc*(). In addition 4485 * some fields already contain valid values, initialized in 4486 * ip_open(), before we reach here. 4487 */ 4488 mutex_init(&ill->ill_lock, NULL, MUTEX_DEFAULT, 0); 4489 4490 ill->ill_rq = q; 4491 ill->ill_wq = WR(q); 4492 4493 info_mp = allocb(MAX(sizeof (dl_info_req_t), sizeof (dl_info_ack_t)), 4494 BPRI_HI); 4495 if (info_mp == NULL) 4496 return (ENOMEM); 4497 4498 /* 4499 * Allocate sufficient space to contain our fragment hash table and 4500 * the device name. 4501 */ 4502 frag_ptr = (uchar_t *)mi_zalloc(ILL_FRAG_HASH_TBL_SIZE + 4503 2 * LIFNAMSIZ + 5 + strlen(ipv6_forward_suffix)); 4504 if (frag_ptr == NULL) { 4505 freemsg(info_mp); 4506 return (ENOMEM); 4507 } 4508 ill->ill_frag_ptr = frag_ptr; 4509 ill->ill_frag_free_num_pkts = 0; 4510 ill->ill_last_frag_clean_time = 0; 4511 ill->ill_frag_hash_tbl = (ipfb_t *)frag_ptr; 4512 ill->ill_name = (char *)(frag_ptr + ILL_FRAG_HASH_TBL_SIZE); 4513 for (count = 0; count < ILL_FRAG_HASH_TBL_COUNT; count++) { 4514 mutex_init(&ill->ill_frag_hash_tbl[count].ipfb_lock, 4515 NULL, MUTEX_DEFAULT, NULL); 4516 } 4517 4518 ill->ill_phyint = (phyint_t *)mi_zalloc(sizeof (phyint_t)); 4519 if (ill->ill_phyint == NULL) { 4520 freemsg(info_mp); 4521 mi_free(frag_ptr); 4522 return (ENOMEM); 4523 } 4524 4525 mutex_init(&ill->ill_phyint->phyint_lock, NULL, MUTEX_DEFAULT, 0); 4526 /* 4527 * For now pretend this is a v4 ill. We need to set phyint_ill* 4528 * at this point because of the following reason. If we can't 4529 * enter the ipsq at some point and cv_wait, the writer that 4530 * wakes us up tries to locate us using the list of all phyints 4531 * in an ipsq and the ills from the phyint thru the phyint_ill*. 4532 * If we don't set it now, we risk a missed wakeup. 4533 */ 4534 ill->ill_phyint->phyint_illv4 = ill; 4535 ill->ill_ppa = UINT_MAX; 4536 ill->ill_fastpath_list = &ill->ill_fastpath_list; 4537 4538 if (!ipsq_init(ill)) { 4539 freemsg(info_mp); 4540 mi_free(frag_ptr); 4541 mi_free(ill->ill_phyint); 4542 return (ENOMEM); 4543 } 4544 4545 ill->ill_state_flags |= ILL_LL_SUBNET_PENDING; 4546 4547 4548 /* Frag queue limit stuff */ 4549 ill->ill_frag_count = 0; 4550 ill->ill_ipf_gen = 0; 4551 4552 ill->ill_global_timer = INFINITY; 4553 ill->ill_mcast_type = IGMP_V3_ROUTER; /* == MLD_V2_ROUTER */ 4554 ill->ill_mcast_v1_time = ill->ill_mcast_v2_time = 0; 4555 ill->ill_mcast_v1_tset = ill->ill_mcast_v2_tset = 0; 4556 ill->ill_mcast_rv = MCAST_DEF_ROBUSTNESS; 4557 ill->ill_mcast_qi = MCAST_DEF_QUERY_INTERVAL; 4558 4559 /* 4560 * Initialize IPv6 configuration variables. The IP module is always 4561 * opened as an IPv4 module. Instead tracking down the cases where 4562 * it switches to do ipv6, we'll just initialize the IPv6 configuration 4563 * here for convenience, this has no effect until the ill is set to do 4564 * IPv6. 4565 */ 4566 ill->ill_reachable_time = ND_REACHABLE_TIME; 4567 ill->ill_reachable_retrans_time = ND_RETRANS_TIMER; 4568 ill->ill_xmit_count = ND_MAX_MULTICAST_SOLICIT; 4569 ill->ill_max_buf = ND_MAX_Q; 4570 ill->ill_refcnt = 0; 4571 4572 /* Send down the Info Request to the driver. */ 4573 info_mp->b_datap->db_type = M_PCPROTO; 4574 dlir = (dl_info_req_t *)info_mp->b_rptr; 4575 info_mp->b_wptr = (uchar_t *)&dlir[1]; 4576 dlir->dl_primitive = DL_INFO_REQ; 4577 4578 ill->ill_dlpi_pending = DL_PRIM_INVAL; 4579 4580 qprocson(q); 4581 ill_dlpi_send(ill, info_mp); 4582 4583 return (0); 4584 } 4585 4586 /* 4587 * ill_dls_info 4588 * creates datalink socket info from the device. 4589 */ 4590 int 4591 ill_dls_info(struct sockaddr_dl *sdl, const ipif_t *ipif) 4592 { 4593 size_t length; 4594 ill_t *ill = ipif->ipif_ill; 4595 4596 sdl->sdl_family = AF_LINK; 4597 sdl->sdl_index = ill->ill_phyint->phyint_ifindex; 4598 sdl->sdl_type = ipif->ipif_type; 4599 (void) ipif_get_name(ipif, sdl->sdl_data, sizeof (sdl->sdl_data)); 4600 length = mi_strlen(sdl->sdl_data); 4601 ASSERT(length < 256); 4602 sdl->sdl_nlen = (uchar_t)length; 4603 sdl->sdl_alen = ill->ill_phys_addr_length; 4604 mutex_enter(&ill->ill_lock); 4605 if (ill->ill_phys_addr_length != 0 && ill->ill_phys_addr != NULL) { 4606 bcopy(ill->ill_phys_addr, &sdl->sdl_data[length], 4607 ill->ill_phys_addr_length); 4608 } 4609 mutex_exit(&ill->ill_lock); 4610 sdl->sdl_slen = 0; 4611 return (sizeof (struct sockaddr_dl)); 4612 } 4613 4614 /* 4615 * ill_xarp_info 4616 * creates xarp info from the device. 4617 */ 4618 static int 4619 ill_xarp_info(struct sockaddr_dl *sdl, ill_t *ill) 4620 { 4621 sdl->sdl_family = AF_LINK; 4622 sdl->sdl_index = ill->ill_phyint->phyint_ifindex; 4623 sdl->sdl_type = ill->ill_type; 4624 (void) ipif_get_name(ill->ill_ipif, sdl->sdl_data, 4625 sizeof (sdl->sdl_data)); 4626 sdl->sdl_nlen = (uchar_t)mi_strlen(sdl->sdl_data); 4627 sdl->sdl_alen = ill->ill_phys_addr_length; 4628 sdl->sdl_slen = 0; 4629 return (sdl->sdl_nlen); 4630 } 4631 4632 static int 4633 loopback_kstat_update(kstat_t *ksp, int rw) 4634 { 4635 kstat_named_t *kn = KSTAT_NAMED_PTR(ksp); 4636 4637 if (rw == KSTAT_WRITE) 4638 return (EACCES); 4639 kn[0].value.ui32 = loopback_packets; 4640 kn[1].value.ui32 = loopback_packets; 4641 return (0); 4642 } 4643 4644 4645 /* 4646 * Has ifindex been plumbed already. 4647 */ 4648 static boolean_t 4649 phyint_exists(uint_t index) 4650 { 4651 phyint_t *phyi; 4652 4653 ASSERT(RW_LOCK_HELD(&ill_g_lock)); 4654 /* 4655 * Indexes are stored in the phyint - a common structure 4656 * to both IPv4 and IPv6. 4657 */ 4658 phyi = avl_find(&phyint_g_list.phyint_list_avl_by_index, 4659 (void *) &index, NULL); 4660 return (phyi != NULL); 4661 } 4662 4663 /* 4664 * Assign a unique interface index for the phyint. 4665 */ 4666 static boolean_t 4667 phyint_assign_ifindex(phyint_t *phyi) 4668 { 4669 uint_t starting_index; 4670 4671 ASSERT(phyi->phyint_ifindex == 0); 4672 if (!ill_index_wrap) { 4673 phyi->phyint_ifindex = ill_index++; 4674 if (ill_index == 0) { 4675 /* Reached the uint_t limit Next time wrap */ 4676 ill_index_wrap = B_TRUE; 4677 } 4678 return (B_TRUE); 4679 } 4680 4681 /* 4682 * Start reusing unused indexes. Note that we hold the ill_g_lock 4683 * at this point and don't want to call any function that attempts 4684 * to get the lock again. 4685 */ 4686 starting_index = ill_index++; 4687 for (; ill_index != starting_index; ill_index++) { 4688 if (ill_index != 0 && !phyint_exists(ill_index)) { 4689 /* found unused index - use it */ 4690 phyi->phyint_ifindex = ill_index; 4691 return (B_TRUE); 4692 } 4693 } 4694 4695 /* 4696 * all interface indicies are inuse. 4697 */ 4698 return (B_FALSE); 4699 } 4700 4701 /* 4702 * Return a pointer to the ill which matches the supplied name. Note that 4703 * the ill name length includes the null termination character. (May be 4704 * called as writer.) 4705 * If do_alloc and the interface is "lo0" it will be automatically created. 4706 * Cannot bump up reference on condemned ills. So dup detect can't be done 4707 * using this func. 4708 */ 4709 ill_t * 4710 ill_lookup_on_name(char *name, boolean_t do_alloc, boolean_t isv6, 4711 queue_t *q, mblk_t *mp, ipsq_func_t func, int *error, boolean_t *did_alloc) 4712 { 4713 ill_t *ill; 4714 ipif_t *ipif; 4715 kstat_named_t *kn; 4716 boolean_t isloopback; 4717 ipsq_t *old_ipsq; 4718 4719 isloopback = mi_strcmp(name, ipif_loopback_name) == 0; 4720 4721 rw_enter(&ill_g_lock, RW_READER); 4722 ill = ill_find_by_name(name, isv6, q, mp, func, error); 4723 rw_exit(&ill_g_lock); 4724 if (ill != NULL || (error != NULL && *error == EINPROGRESS)) 4725 return (ill); 4726 4727 /* 4728 * Couldn't find it. Does this happen to be a lookup for the 4729 * loopback device and are we allowed to allocate it? 4730 */ 4731 if (!isloopback || !do_alloc) 4732 return (NULL); 4733 4734 rw_enter(&ill_g_lock, RW_WRITER); 4735 4736 ill = ill_find_by_name(name, isv6, q, mp, func, error); 4737 if (ill != NULL || (error != NULL && *error == EINPROGRESS)) { 4738 rw_exit(&ill_g_lock); 4739 return (ill); 4740 } 4741 4742 /* Create the loopback device on demand */ 4743 ill = (ill_t *)(mi_alloc(sizeof (ill_t) + 4744 sizeof (ipif_loopback_name), BPRI_MED)); 4745 if (ill == NULL) 4746 goto done; 4747 4748 *ill = ill_null; 4749 mutex_init(&ill->ill_lock, NULL, MUTEX_DEFAULT, NULL); 4750 ill->ill_phyint = (phyint_t *)mi_zalloc(sizeof (phyint_t)); 4751 if (ill->ill_phyint == NULL) 4752 goto done; 4753 4754 if (isv6) 4755 ill->ill_phyint->phyint_illv6 = ill; 4756 else 4757 ill->ill_phyint->phyint_illv4 = ill; 4758 mutex_init(&ill->ill_phyint->phyint_lock, NULL, MUTEX_DEFAULT, 0); 4759 ill->ill_max_frag = IP_LOOPBACK_MTU; 4760 /* Add room for tcp+ip headers */ 4761 if (isv6) { 4762 ill->ill_isv6 = B_TRUE; 4763 ill->ill_max_frag += IPV6_HDR_LEN + 20; /* for TCP */ 4764 if (!ill_allocate_mibs(ill)) 4765 goto done; 4766 } else { 4767 ill->ill_max_frag += IP_SIMPLE_HDR_LENGTH + 20; 4768 } 4769 ill->ill_max_mtu = ill->ill_max_frag; 4770 /* 4771 * ipif_loopback_name can't be pointed at directly because its used 4772 * by both the ipv4 and ipv6 interfaces. When the ill is removed 4773 * from the glist, ill_glist_delete() sets the first character of 4774 * ill_name to '\0'. 4775 */ 4776 ill->ill_name = (char *)ill + sizeof (*ill); 4777 (void) strcpy(ill->ill_name, ipif_loopback_name); 4778 ill->ill_name_length = sizeof (ipif_loopback_name); 4779 /* Set ill_name_set for ill_phyint_reinit to work properly */ 4780 4781 ill->ill_global_timer = INFINITY; 4782 ill->ill_mcast_type = IGMP_V3_ROUTER; /* == MLD_V2_ROUTER */ 4783 ill->ill_mcast_v1_time = ill->ill_mcast_v2_time = 0; 4784 ill->ill_mcast_v1_tset = ill->ill_mcast_v2_tset = 0; 4785 ill->ill_mcast_rv = MCAST_DEF_ROBUSTNESS; 4786 ill->ill_mcast_qi = MCAST_DEF_QUERY_INTERVAL; 4787 4788 /* No resolver here. */ 4789 ill->ill_net_type = IRE_LOOPBACK; 4790 4791 /* Initialize the ipsq */ 4792 if (!ipsq_init(ill)) 4793 goto done; 4794 4795 ill->ill_phyint->phyint_ipsq->ipsq_writer = NULL; 4796 ill->ill_phyint->phyint_ipsq->ipsq_reentry_cnt--; 4797 ASSERT(ill->ill_phyint->phyint_ipsq->ipsq_reentry_cnt == 0); 4798 #ifdef ILL_DEBUG 4799 ill->ill_phyint->phyint_ipsq->ipsq_depth = 0; 4800 #endif 4801 ipif = ipif_allocate(ill, 0L, IRE_LOOPBACK, B_TRUE); 4802 if (ipif == NULL) 4803 goto done; 4804 4805 ill->ill_flags = ILLF_MULTICAST; 4806 4807 /* Set up default loopback address and mask. */ 4808 if (!isv6) { 4809 ipaddr_t inaddr_loopback = htonl(INADDR_LOOPBACK); 4810 4811 IN6_IPADDR_TO_V4MAPPED(inaddr_loopback, &ipif->ipif_v6lcl_addr); 4812 ipif->ipif_v6src_addr = ipif->ipif_v6lcl_addr; 4813 V4MASK_TO_V6(htonl(IN_CLASSA_NET), ipif->ipif_v6net_mask); 4814 V6_MASK_COPY(ipif->ipif_v6lcl_addr, ipif->ipif_v6net_mask, 4815 ipif->ipif_v6subnet); 4816 ill->ill_flags |= ILLF_IPV4; 4817 } else { 4818 ipif->ipif_v6lcl_addr = ipv6_loopback; 4819 ipif->ipif_v6src_addr = ipif->ipif_v6lcl_addr; 4820 ipif->ipif_v6net_mask = ipv6_all_ones; 4821 V6_MASK_COPY(ipif->ipif_v6lcl_addr, ipif->ipif_v6net_mask, 4822 ipif->ipif_v6subnet); 4823 ill->ill_flags |= ILLF_IPV6; 4824 } 4825 4826 /* 4827 * Chain us in at the end of the ill list. hold the ill 4828 * before we make it globally visible. 1 for the lookup. 4829 */ 4830 ill->ill_refcnt = 0; 4831 ill_refhold(ill); 4832 4833 ill->ill_frag_count = 0; 4834 ill->ill_frag_free_num_pkts = 0; 4835 ill->ill_last_frag_clean_time = 0; 4836 4837 old_ipsq = ill->ill_phyint->phyint_ipsq; 4838 4839 if (ill_glist_insert(ill, "lo", isv6) != 0) 4840 cmn_err(CE_PANIC, "cannot insert loopback interface"); 4841 4842 /* Let SCTP know so that it can add this to its list */ 4843 sctp_update_ill(ill, SCTP_ILL_INSERT); 4844 4845 /* Let SCTP know about this IPIF, so that it can add it to its list */ 4846 sctp_update_ipif(ipif, SCTP_IPIF_INSERT); 4847 4848 /* 4849 * If the ipsq was changed in ill_phyint_reinit free the old ipsq. 4850 */ 4851 if (old_ipsq != ill->ill_phyint->phyint_ipsq) { 4852 /* Loopback ills aren't in any IPMP group */ 4853 ASSERT(!(old_ipsq->ipsq_flags & IPSQ_GROUP)); 4854 ipsq_delete(old_ipsq); 4855 } 4856 4857 /* 4858 * Delay this till the ipif is allocated as ipif_allocate 4859 * de-references ill_phyint for getting the ifindex. We 4860 * can't do this before ipif_allocate because ill_phyint_reinit 4861 * -> phyint_assign_ifindex expects ipif to be present. 4862 */ 4863 mutex_enter(&ill->ill_phyint->phyint_lock); 4864 ill->ill_phyint->phyint_flags |= PHYI_LOOPBACK | PHYI_VIRTUAL; 4865 mutex_exit(&ill->ill_phyint->phyint_lock); 4866 4867 if (loopback_ksp == NULL) { 4868 /* Export loopback interface statistics */ 4869 loopback_ksp = kstat_create("lo", 0, ipif_loopback_name, "net", 4870 KSTAT_TYPE_NAMED, 2, 0); 4871 if (loopback_ksp != NULL) { 4872 loopback_ksp->ks_update = loopback_kstat_update; 4873 kn = KSTAT_NAMED_PTR(loopback_ksp); 4874 kstat_named_init(&kn[0], "ipackets", KSTAT_DATA_UINT32); 4875 kstat_named_init(&kn[1], "opackets", KSTAT_DATA_UINT32); 4876 kstat_install(loopback_ksp); 4877 } 4878 } 4879 4880 if (error != NULL) 4881 *error = 0; 4882 *did_alloc = B_TRUE; 4883 rw_exit(&ill_g_lock); 4884 return (ill); 4885 done: 4886 if (ill != NULL) { 4887 if (ill->ill_phyint != NULL) { 4888 ipsq_t *ipsq; 4889 4890 ipsq = ill->ill_phyint->phyint_ipsq; 4891 if (ipsq != NULL) 4892 kmem_free(ipsq, sizeof (ipsq_t)); 4893 mi_free(ill->ill_phyint); 4894 } 4895 ill_free_mib(ill); 4896 mi_free(ill); 4897 } 4898 rw_exit(&ill_g_lock); 4899 if (error != NULL) 4900 *error = ENOMEM; 4901 return (NULL); 4902 } 4903 4904 /* 4905 * Return a pointer to the ill which matches the index and IP version type. 4906 */ 4907 ill_t * 4908 ill_lookup_on_ifindex(uint_t index, boolean_t isv6, queue_t *q, mblk_t *mp, 4909 ipsq_func_t func, int *err) 4910 { 4911 ill_t *ill; 4912 ipsq_t *ipsq; 4913 phyint_t *phyi; 4914 4915 ASSERT((q == NULL && mp == NULL && func == NULL && err == NULL) || 4916 (q != NULL && mp != NULL && func != NULL && err != NULL)); 4917 4918 if (err != NULL) 4919 *err = 0; 4920 4921 /* 4922 * Indexes are stored in the phyint - a common structure 4923 * to both IPv4 and IPv6. 4924 */ 4925 rw_enter(&ill_g_lock, RW_READER); 4926 phyi = avl_find(&phyint_g_list.phyint_list_avl_by_index, 4927 (void *) &index, NULL); 4928 if (phyi != NULL) { 4929 ill = isv6 ? phyi->phyint_illv6: phyi->phyint_illv4; 4930 if (ill != NULL) { 4931 /* 4932 * The block comment at the start of ipif_down 4933 * explains the use of the macros used below 4934 */ 4935 GRAB_CONN_LOCK(q); 4936 mutex_enter(&ill->ill_lock); 4937 if (ILL_CAN_LOOKUP(ill)) { 4938 ill_refhold_locked(ill); 4939 mutex_exit(&ill->ill_lock); 4940 RELEASE_CONN_LOCK(q); 4941 rw_exit(&ill_g_lock); 4942 return (ill); 4943 } else if (ILL_CAN_WAIT(ill, q)) { 4944 ipsq = ill->ill_phyint->phyint_ipsq; 4945 mutex_enter(&ipsq->ipsq_lock); 4946 rw_exit(&ill_g_lock); 4947 mutex_exit(&ill->ill_lock); 4948 ipsq_enq(ipsq, q, mp, func, NEW_OP, ill); 4949 mutex_exit(&ipsq->ipsq_lock); 4950 RELEASE_CONN_LOCK(q); 4951 *err = EINPROGRESS; 4952 return (NULL); 4953 } 4954 RELEASE_CONN_LOCK(q); 4955 mutex_exit(&ill->ill_lock); 4956 } 4957 } 4958 rw_exit(&ill_g_lock); 4959 if (err != NULL) 4960 *err = ENXIO; 4961 return (NULL); 4962 } 4963 4964 /* 4965 * Obtain a reference to the ill. The ill_refcnt is a dynamic refcnt 4966 * that gives a running thread a reference to the ill. This reference must be 4967 * released by the thread when it is done accessing the ill and related 4968 * objects. ill_refcnt can not be used to account for static references 4969 * such as other structures pointing to an ill. Callers must generally 4970 * check whether an ill can be refheld by using ILL_CAN_LOOKUP macros 4971 * or be sure that the ill is not being deleted or changing state before 4972 * calling the refhold functions. A non-zero ill_refcnt ensures that the 4973 * ill won't change any of its critical state such as address, netmask etc. 4974 */ 4975 void 4976 ill_refhold(ill_t *ill) 4977 { 4978 mutex_enter(&ill->ill_lock); 4979 ill->ill_refcnt++; 4980 ILL_TRACE_REF(ill); 4981 mutex_exit(&ill->ill_lock); 4982 } 4983 4984 void 4985 ill_refhold_locked(ill_t *ill) 4986 { 4987 ASSERT(MUTEX_HELD(&ill->ill_lock)); 4988 ill->ill_refcnt++; 4989 ILL_TRACE_REF(ill); 4990 } 4991 4992 int 4993 ill_check_and_refhold(ill_t *ill) 4994 { 4995 mutex_enter(&ill->ill_lock); 4996 if (ILL_CAN_LOOKUP(ill)) { 4997 ill_refhold_locked(ill); 4998 mutex_exit(&ill->ill_lock); 4999 return (0); 5000 } 5001 mutex_exit(&ill->ill_lock); 5002 return (ILL_LOOKUP_FAILED); 5003 } 5004 5005 /* 5006 * Must not be called while holding any locks. Otherwise if this is 5007 * the last reference to be released, there is a chance of recursive mutex 5008 * panic due to ill_refrele -> ipif_ill_refrele_tail -> qwriter_ip trying 5009 * to restart an ioctl. 5010 */ 5011 void 5012 ill_refrele(ill_t *ill) 5013 { 5014 mutex_enter(&ill->ill_lock); 5015 ASSERT(ill->ill_refcnt != 0); 5016 ill->ill_refcnt--; 5017 ILL_UNTRACE_REF(ill); 5018 if (ill->ill_refcnt != 0) { 5019 /* Every ire pointing to the ill adds 1 to ill_refcnt */ 5020 mutex_exit(&ill->ill_lock); 5021 return; 5022 } 5023 5024 /* Drops the ill_lock */ 5025 ipif_ill_refrele_tail(ill); 5026 } 5027 5028 /* 5029 * Obtain a weak reference count on the ill. This reference ensures the 5030 * ill won't be freed, but the ill may change any of its critical state 5031 * such as netmask, address etc. Returns an error if the ill has started 5032 * closing. 5033 */ 5034 boolean_t 5035 ill_waiter_inc(ill_t *ill) 5036 { 5037 mutex_enter(&ill->ill_lock); 5038 if (ill->ill_state_flags & ILL_CONDEMNED) { 5039 mutex_exit(&ill->ill_lock); 5040 return (B_FALSE); 5041 } 5042 ill->ill_waiters++; 5043 mutex_exit(&ill->ill_lock); 5044 return (B_TRUE); 5045 } 5046 5047 void 5048 ill_waiter_dcr(ill_t *ill) 5049 { 5050 mutex_enter(&ill->ill_lock); 5051 ill->ill_waiters--; 5052 if (ill->ill_waiters == 0) 5053 cv_broadcast(&ill->ill_cv); 5054 mutex_exit(&ill->ill_lock); 5055 } 5056 5057 /* 5058 * Named Dispatch routine to produce a formatted report on all ILLs. 5059 * This report is accessed by using the ndd utility to "get" ND variable 5060 * "ip_ill_status". 5061 */ 5062 /* ARGSUSED */ 5063 int 5064 ip_ill_report(queue_t *q, mblk_t *mp, caddr_t arg, cred_t *ioc_cr) 5065 { 5066 ill_t *ill; 5067 ill_walk_context_t ctx; 5068 5069 (void) mi_mpprintf(mp, 5070 "ILL " MI_COL_HDRPAD_STR 5071 /* 01234567[89ABCDEF] */ 5072 "rq " MI_COL_HDRPAD_STR 5073 /* 01234567[89ABCDEF] */ 5074 "wq " MI_COL_HDRPAD_STR 5075 /* 01234567[89ABCDEF] */ 5076 "upcnt mxfrg err name"); 5077 /* 12345 12345 123 xxxxxxxx */ 5078 5079 rw_enter(&ill_g_lock, RW_READER); 5080 ill = ILL_START_WALK_ALL(&ctx); 5081 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 5082 (void) mi_mpprintf(mp, 5083 MI_COL_PTRFMT_STR MI_COL_PTRFMT_STR MI_COL_PTRFMT_STR 5084 "%05u %05u %03d %s", 5085 (void *)ill, (void *)ill->ill_rq, (void *)ill->ill_wq, 5086 ill->ill_ipif_up_count, 5087 ill->ill_max_frag, ill->ill_error, ill->ill_name); 5088 } 5089 rw_exit(&ill_g_lock); 5090 5091 return (0); 5092 } 5093 5094 /* 5095 * Named Dispatch routine to produce a formatted report on all IPIFs. 5096 * This report is accessed by using the ndd utility to "get" ND variable 5097 * "ip_ipif_status". 5098 */ 5099 /* ARGSUSED */ 5100 int 5101 ip_ipif_report(queue_t *q, mblk_t *mp, caddr_t arg, cred_t *ioc_cr) 5102 { 5103 char buf1[INET6_ADDRSTRLEN]; 5104 char buf2[INET6_ADDRSTRLEN]; 5105 char buf3[INET6_ADDRSTRLEN]; 5106 char buf4[INET6_ADDRSTRLEN]; 5107 char buf5[INET6_ADDRSTRLEN]; 5108 char buf6[INET6_ADDRSTRLEN]; 5109 char buf[LIFNAMSIZ]; 5110 ill_t *ill; 5111 ipif_t *ipif; 5112 nv_t *nvp; 5113 uint64_t flags; 5114 zoneid_t zoneid; 5115 ill_walk_context_t ctx; 5116 5117 (void) mi_mpprintf(mp, 5118 "IPIF metric mtu in/out/forward name zone flags...\n" 5119 "\tlocal address\n" 5120 "\tsrc address\n" 5121 "\tsubnet\n" 5122 "\tmask\n" 5123 "\tbroadcast\n" 5124 "\tp-p-dst"); 5125 5126 ASSERT(q->q_next == NULL); 5127 zoneid = Q_TO_CONN(q)->conn_zoneid; /* IP is a driver */ 5128 5129 rw_enter(&ill_g_lock, RW_READER); 5130 ill = ILL_START_WALK_ALL(&ctx); 5131 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 5132 for (ipif = ill->ill_ipif; ipif; ipif = ipif->ipif_next) { 5133 if (zoneid != GLOBAL_ZONEID && 5134 zoneid != ipif->ipif_zoneid && 5135 ipif->ipif_zoneid != ALL_ZONES) 5136 continue; 5137 (void) mi_mpprintf(mp, 5138 MI_COL_PTRFMT_STR 5139 "%04u %05u %u/%u/%u %s %d", 5140 (void *)ipif, 5141 ipif->ipif_metric, ipif->ipif_mtu, 5142 ipif->ipif_ib_pkt_count, 5143 ipif->ipif_ob_pkt_count, 5144 ipif->ipif_fo_pkt_count, 5145 ipif_get_name(ipif, buf, sizeof (buf)), 5146 ipif->ipif_zoneid); 5147 5148 flags = ipif->ipif_flags | ipif->ipif_ill->ill_flags | 5149 ipif->ipif_ill->ill_phyint->phyint_flags; 5150 5151 /* Tack on text strings for any flags. */ 5152 nvp = ipif_nv_tbl; 5153 for (; nvp < A_END(ipif_nv_tbl); nvp++) { 5154 if (nvp->nv_value & flags) 5155 (void) mi_mpprintf_nr(mp, " %s", 5156 nvp->nv_name); 5157 } 5158 (void) mi_mpprintf(mp, 5159 "\t%s\n\t%s\n\t%s\n\t%s\n\t%s\n\t%s", 5160 inet_ntop(AF_INET6, 5161 &ipif->ipif_v6lcl_addr, buf1, sizeof (buf1)), 5162 inet_ntop(AF_INET6, 5163 &ipif->ipif_v6src_addr, buf2, sizeof (buf2)), 5164 inet_ntop(AF_INET6, 5165 &ipif->ipif_v6subnet, buf3, sizeof (buf3)), 5166 inet_ntop(AF_INET6, 5167 &ipif->ipif_v6net_mask, buf4, sizeof (buf4)), 5168 inet_ntop(AF_INET6, 5169 &ipif->ipif_v6brd_addr, buf5, sizeof (buf5)), 5170 inet_ntop(AF_INET6, 5171 &ipif->ipif_v6pp_dst_addr, 5172 buf6, sizeof (buf6))); 5173 } 5174 } 5175 rw_exit(&ill_g_lock); 5176 return (0); 5177 } 5178 5179 /* 5180 * ip_ll_subnet_defaults is called when we get the DL_INFO_ACK back from the 5181 * driver. We construct best guess defaults for lower level information that 5182 * we need. If an interface is brought up without injection of any overriding 5183 * information from outside, we have to be ready to go with these defaults. 5184 * When we get the first DL_INFO_ACK (from ip_open() sending a DL_INFO_REQ) 5185 * we primarely want the dl_provider_style. 5186 * The subsequent DL_INFO_ACK is received after doing a DL_ATTACH and DL_BIND 5187 * at which point we assume the other part of the information is valid. 5188 */ 5189 void 5190 ip_ll_subnet_defaults(ill_t *ill, mblk_t *mp) 5191 { 5192 uchar_t *brdcst_addr; 5193 uint_t brdcst_addr_length, phys_addr_length; 5194 t_scalar_t sap_length; 5195 dl_info_ack_t *dlia; 5196 ip_m_t *ipm; 5197 dl_qos_cl_sel1_t *sel1; 5198 5199 ASSERT(IAM_WRITER_ILL(ill)); 5200 5201 /* 5202 * Till the ill is fully up ILL_CHANGING will be set and 5203 * the ill is not globally visible. So no need for a lock. 5204 */ 5205 dlia = (dl_info_ack_t *)mp->b_rptr; 5206 ill->ill_mactype = dlia->dl_mac_type; 5207 5208 ipm = ip_m_lookup(dlia->dl_mac_type); 5209 if (ipm == NULL) { 5210 ipm = ip_m_lookup(DL_OTHER); 5211 ASSERT(ipm != NULL); 5212 } 5213 ill->ill_media = ipm; 5214 5215 /* 5216 * When the new DLPI stuff is ready we'll pull lengths 5217 * from dlia. 5218 */ 5219 if (dlia->dl_version == DL_VERSION_2) { 5220 brdcst_addr_length = dlia->dl_brdcst_addr_length; 5221 brdcst_addr = mi_offset_param(mp, dlia->dl_brdcst_addr_offset, 5222 brdcst_addr_length); 5223 if (brdcst_addr == NULL) { 5224 brdcst_addr_length = 0; 5225 } 5226 sap_length = dlia->dl_sap_length; 5227 phys_addr_length = dlia->dl_addr_length - ABS(sap_length); 5228 ip1dbg(("ip: bcast_len %d, sap_len %d, phys_len %d\n", 5229 brdcst_addr_length, sap_length, phys_addr_length)); 5230 } else { 5231 brdcst_addr_length = 6; 5232 brdcst_addr = ip_six_byte_all_ones; 5233 sap_length = -2; 5234 phys_addr_length = brdcst_addr_length; 5235 } 5236 5237 ill->ill_bcast_addr_length = brdcst_addr_length; 5238 ill->ill_phys_addr_length = phys_addr_length; 5239 ill->ill_sap_length = sap_length; 5240 ill->ill_max_frag = dlia->dl_max_sdu; 5241 ill->ill_max_mtu = ill->ill_max_frag; 5242 5243 ill->ill_type = ipm->ip_m_type; 5244 5245 if (!ill->ill_dlpi_style_set) { 5246 if (dlia->dl_provider_style == DL_STYLE2) 5247 ill->ill_needs_attach = 1; 5248 5249 /* 5250 * Allocate the first ipif on this ill. We don't delay it 5251 * further as ioctl handling assumes atleast one ipif to 5252 * be present. 5253 * 5254 * At this point we don't know whether the ill is v4 or v6. 5255 * We will know this whan the SIOCSLIFNAME happens and 5256 * the correct value for ill_isv6 will be assigned in 5257 * ipif_set_values(). We need to hold the ill lock and 5258 * clear the ILL_LL_SUBNET_PENDING flag and atomically do 5259 * the wakeup. 5260 */ 5261 (void) ipif_allocate(ill, 0, IRE_LOCAL, 5262 dlia->dl_provider_style == DL_STYLE2 ? B_FALSE : B_TRUE); 5263 mutex_enter(&ill->ill_lock); 5264 ASSERT(ill->ill_dlpi_style_set == 0); 5265 ill->ill_dlpi_style_set = 1; 5266 ill->ill_state_flags &= ~ILL_LL_SUBNET_PENDING; 5267 cv_broadcast(&ill->ill_cv); 5268 mutex_exit(&ill->ill_lock); 5269 freemsg(mp); 5270 return; 5271 } 5272 ASSERT(ill->ill_ipif != NULL); 5273 /* 5274 * We know whether it is IPv4 or IPv6 now, as this is the 5275 * second DL_INFO_ACK we are recieving in response to the 5276 * DL_INFO_REQ sent in ipif_set_values. 5277 */ 5278 if (ill->ill_isv6) 5279 ill->ill_sap = IP6_DL_SAP; 5280 else 5281 ill->ill_sap = IP_DL_SAP; 5282 /* 5283 * Set ipif_mtu which is used to set the IRE's 5284 * ire_max_frag value. The driver could have sent 5285 * a different mtu from what it sent last time. No 5286 * need to call ipif_mtu_change because IREs have 5287 * not yet been created. 5288 */ 5289 ill->ill_ipif->ipif_mtu = ill->ill_max_mtu; 5290 /* 5291 * Clear all the flags that were set based on ill_bcast_addr_length 5292 * and ill_phys_addr_length (in ipif_set_values) as these could have 5293 * changed now and we need to re-evaluate. 5294 */ 5295 ill->ill_flags &= ~(ILLF_MULTICAST | ILLF_NONUD | ILLF_NOARP); 5296 ill->ill_ipif->ipif_flags &= ~(IPIF_BROADCAST | IPIF_POINTOPOINT); 5297 5298 /* 5299 * Free ill_resolver_mp and ill_bcast_mp as things could have 5300 * changed now. 5301 */ 5302 if (ill->ill_bcast_addr_length == 0) { 5303 if (ill->ill_resolver_mp != NULL) 5304 freemsg(ill->ill_resolver_mp); 5305 if (ill->ill_bcast_mp != NULL) 5306 freemsg(ill->ill_bcast_mp); 5307 if (ill->ill_flags & ILLF_XRESOLV) 5308 ill->ill_net_type = IRE_IF_RESOLVER; 5309 else 5310 ill->ill_net_type = IRE_IF_NORESOLVER; 5311 ill->ill_resolver_mp = ill_dlur_gen(NULL, 5312 ill->ill_phys_addr_length, 5313 ill->ill_sap, 5314 ill->ill_sap_length); 5315 ill->ill_bcast_mp = copymsg(ill->ill_resolver_mp); 5316 5317 if (ill->ill_isv6) 5318 /* 5319 * Note: xresolv interfaces will eventually need NOARP 5320 * set here as well, but that will require those 5321 * external resolvers to have some knowledge of 5322 * that flag and act appropriately. Not to be changed 5323 * at present. 5324 */ 5325 ill->ill_flags |= ILLF_NONUD; 5326 else 5327 ill->ill_flags |= ILLF_NOARP; 5328 5329 if (ill->ill_phys_addr_length == 0) { 5330 if (ill->ill_media->ip_m_mac_type == SUNW_DL_VNI) { 5331 ill->ill_ipif->ipif_flags |= IPIF_NOXMIT; 5332 ill->ill_phyint->phyint_flags |= PHYI_VIRTUAL; 5333 } else { 5334 /* pt-pt supports multicast. */ 5335 ill->ill_flags |= ILLF_MULTICAST; 5336 ill->ill_ipif->ipif_flags |= IPIF_POINTOPOINT; 5337 } 5338 } 5339 } else { 5340 ill->ill_net_type = IRE_IF_RESOLVER; 5341 if (ill->ill_bcast_mp != NULL) 5342 freemsg(ill->ill_bcast_mp); 5343 ill->ill_bcast_mp = ill_dlur_gen(brdcst_addr, 5344 ill->ill_bcast_addr_length, ill->ill_sap, 5345 ill->ill_sap_length); 5346 /* 5347 * Later detect lack of DLPI driver multicast 5348 * capability by catching DL_ENABMULTI errors in 5349 * ip_rput_dlpi. 5350 */ 5351 ill->ill_flags |= ILLF_MULTICAST; 5352 if (!ill->ill_isv6) 5353 ill->ill_ipif->ipif_flags |= IPIF_BROADCAST; 5354 } 5355 /* By default an interface does not support any CoS marking */ 5356 ill->ill_flags &= ~ILLF_COS_ENABLED; 5357 5358 /* 5359 * If we get QoS information in DL_INFO_ACK, the device supports 5360 * some form of CoS marking, set ILLF_COS_ENABLED. 5361 */ 5362 sel1 = (dl_qos_cl_sel1_t *)mi_offset_param(mp, dlia->dl_qos_offset, 5363 dlia->dl_qos_length); 5364 if ((sel1 != NULL) && (sel1->dl_qos_type == DL_QOS_CL_SEL1)) { 5365 ill->ill_flags |= ILLF_COS_ENABLED; 5366 } 5367 5368 /* Clear any previous error indication. */ 5369 ill->ill_error = 0; 5370 freemsg(mp); 5371 } 5372 5373 /* 5374 * Perform various checks to verify that an address would make sense as a 5375 * local, remote, or subnet interface address. 5376 */ 5377 static boolean_t 5378 ip_addr_ok_v4(ipaddr_t addr, ipaddr_t subnet_mask) 5379 { 5380 ipaddr_t net_mask; 5381 5382 /* 5383 * Don't allow all zeroes, all ones or experimental address, but allow 5384 * all ones netmask. 5385 */ 5386 if ((net_mask = ip_net_mask(addr)) == 0) 5387 return (B_FALSE); 5388 /* A given netmask overrides the "guess" netmask */ 5389 if (subnet_mask != 0) 5390 net_mask = subnet_mask; 5391 if ((net_mask != ~(ipaddr_t)0) && ((addr == (addr & net_mask)) || 5392 (addr == (addr | ~net_mask)))) { 5393 return (B_FALSE); 5394 } 5395 if (CLASSD(addr)) 5396 return (B_FALSE); 5397 5398 return (B_TRUE); 5399 } 5400 5401 /* 5402 * ipif_lookup_group 5403 * Returns held ipif 5404 */ 5405 ipif_t * 5406 ipif_lookup_group(ipaddr_t group, zoneid_t zoneid) 5407 { 5408 ire_t *ire; 5409 ipif_t *ipif; 5410 5411 ire = ire_lookup_multi(group, zoneid); 5412 if (ire == NULL) 5413 return (NULL); 5414 ipif = ire->ire_ipif; 5415 ipif_refhold(ipif); 5416 ire_refrele(ire); 5417 return (ipif); 5418 } 5419 5420 /* 5421 * Look for an ipif with the specified interface address and destination. 5422 * The destination address is used only for matching point-to-point interfaces. 5423 */ 5424 ipif_t * 5425 ipif_lookup_interface(ipaddr_t if_addr, ipaddr_t dst, queue_t *q, mblk_t *mp, 5426 ipsq_func_t func, int *error) 5427 { 5428 ipif_t *ipif; 5429 ill_t *ill; 5430 ill_walk_context_t ctx; 5431 ipsq_t *ipsq; 5432 5433 if (error != NULL) 5434 *error = 0; 5435 5436 /* 5437 * First match all the point-to-point interfaces 5438 * before looking at non-point-to-point interfaces. 5439 * This is done to avoid returning non-point-to-point 5440 * ipif instead of unnumbered point-to-point ipif. 5441 */ 5442 rw_enter(&ill_g_lock, RW_READER); 5443 ill = ILL_START_WALK_V4(&ctx); 5444 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 5445 GRAB_CONN_LOCK(q); 5446 mutex_enter(&ill->ill_lock); 5447 for (ipif = ill->ill_ipif; ipif != NULL; 5448 ipif = ipif->ipif_next) { 5449 /* Allow the ipif to be down */ 5450 if ((ipif->ipif_flags & IPIF_POINTOPOINT) && 5451 (ipif->ipif_lcl_addr == if_addr) && 5452 (ipif->ipif_pp_dst_addr == dst)) { 5453 /* 5454 * The block comment at the start of ipif_down 5455 * explains the use of the macros used below 5456 */ 5457 if (IPIF_CAN_LOOKUP(ipif)) { 5458 ipif_refhold_locked(ipif); 5459 mutex_exit(&ill->ill_lock); 5460 RELEASE_CONN_LOCK(q); 5461 rw_exit(&ill_g_lock); 5462 return (ipif); 5463 } else if (IPIF_CAN_WAIT(ipif, q)) { 5464 ipsq = ill->ill_phyint->phyint_ipsq; 5465 mutex_enter(&ipsq->ipsq_lock); 5466 mutex_exit(&ill->ill_lock); 5467 rw_exit(&ill_g_lock); 5468 ipsq_enq(ipsq, q, mp, func, NEW_OP, 5469 ill); 5470 mutex_exit(&ipsq->ipsq_lock); 5471 RELEASE_CONN_LOCK(q); 5472 *error = EINPROGRESS; 5473 return (NULL); 5474 } 5475 } 5476 } 5477 mutex_exit(&ill->ill_lock); 5478 RELEASE_CONN_LOCK(q); 5479 } 5480 rw_exit(&ill_g_lock); 5481 5482 /* lookup the ipif based on interface address */ 5483 ipif = ipif_lookup_addr(if_addr, NULL, ALL_ZONES, q, mp, func, error); 5484 ASSERT(ipif == NULL || !ipif->ipif_isv6); 5485 return (ipif); 5486 } 5487 5488 /* 5489 * Look for an ipif with the specified address. For point-point links 5490 * we look for matches on either the destination address and the local 5491 * address, but we ignore the check on the local address if IPIF_UNNUMBERED 5492 * is set. 5493 * Matches on a specific ill if match_ill is set. 5494 */ 5495 ipif_t * 5496 ipif_lookup_addr(ipaddr_t addr, ill_t *match_ill, zoneid_t zoneid, queue_t *q, 5497 mblk_t *mp, ipsq_func_t func, int *error) 5498 { 5499 ipif_t *ipif; 5500 ill_t *ill; 5501 boolean_t ptp = B_FALSE; 5502 ipsq_t *ipsq; 5503 ill_walk_context_t ctx; 5504 5505 if (error != NULL) 5506 *error = 0; 5507 5508 rw_enter(&ill_g_lock, RW_READER); 5509 /* 5510 * Repeat twice, first based on local addresses and 5511 * next time for pointopoint. 5512 */ 5513 repeat: 5514 ill = ILL_START_WALK_V4(&ctx); 5515 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 5516 if (match_ill != NULL && ill != match_ill) { 5517 continue; 5518 } 5519 GRAB_CONN_LOCK(q); 5520 mutex_enter(&ill->ill_lock); 5521 for (ipif = ill->ill_ipif; ipif != NULL; 5522 ipif = ipif->ipif_next) { 5523 if (zoneid != ALL_ZONES && 5524 zoneid != ipif->ipif_zoneid && 5525 ipif->ipif_zoneid != ALL_ZONES) 5526 continue; 5527 /* Allow the ipif to be down */ 5528 if ((!ptp && (ipif->ipif_lcl_addr == addr) && 5529 ((ipif->ipif_flags & IPIF_UNNUMBERED) == 0)) || 5530 (ptp && (ipif->ipif_flags & IPIF_POINTOPOINT) && 5531 (ipif->ipif_pp_dst_addr == addr))) { 5532 /* 5533 * The block comment at the start of ipif_down 5534 * explains the use of the macros used below 5535 */ 5536 if (IPIF_CAN_LOOKUP(ipif)) { 5537 ipif_refhold_locked(ipif); 5538 mutex_exit(&ill->ill_lock); 5539 RELEASE_CONN_LOCK(q); 5540 rw_exit(&ill_g_lock); 5541 return (ipif); 5542 } else if (IPIF_CAN_WAIT(ipif, q)) { 5543 ipsq = ill->ill_phyint->phyint_ipsq; 5544 mutex_enter(&ipsq->ipsq_lock); 5545 mutex_exit(&ill->ill_lock); 5546 rw_exit(&ill_g_lock); 5547 ipsq_enq(ipsq, q, mp, func, NEW_OP, 5548 ill); 5549 mutex_exit(&ipsq->ipsq_lock); 5550 RELEASE_CONN_LOCK(q); 5551 *error = EINPROGRESS; 5552 return (NULL); 5553 } 5554 } 5555 } 5556 mutex_exit(&ill->ill_lock); 5557 RELEASE_CONN_LOCK(q); 5558 } 5559 5560 /* Now try the ptp case */ 5561 if (ptp) { 5562 rw_exit(&ill_g_lock); 5563 if (error != NULL) 5564 *error = ENXIO; 5565 return (NULL); 5566 } 5567 ptp = B_TRUE; 5568 goto repeat; 5569 } 5570 5571 /* 5572 * Look for an ipif that matches the specified remote address i.e. the 5573 * ipif that would receive the specified packet. 5574 * First look for directly connected interfaces and then do a recursive 5575 * IRE lookup and pick the first ipif corresponding to the source address in the 5576 * ire. 5577 * Returns: held ipif 5578 */ 5579 ipif_t * 5580 ipif_lookup_remote(ill_t *ill, ipaddr_t addr, zoneid_t zoneid) 5581 { 5582 ipif_t *ipif; 5583 ire_t *ire; 5584 5585 ASSERT(!ill->ill_isv6); 5586 5587 /* 5588 * Someone could be changing this ipif currently or change it 5589 * after we return this. Thus a few packets could use the old 5590 * old values. However structure updates/creates (ire, ilg, ilm etc) 5591 * will atomically be updated or cleaned up with the new value 5592 * Thus we don't need a lock to check the flags or other attrs below. 5593 */ 5594 mutex_enter(&ill->ill_lock); 5595 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 5596 if (!IPIF_CAN_LOOKUP(ipif)) 5597 continue; 5598 if (zoneid != ALL_ZONES && zoneid != ipif->ipif_zoneid && 5599 ipif->ipif_zoneid != ALL_ZONES) 5600 continue; 5601 /* Allow the ipif to be down */ 5602 if (ipif->ipif_flags & IPIF_POINTOPOINT) { 5603 if ((ipif->ipif_pp_dst_addr == addr) || 5604 (!(ipif->ipif_flags & IPIF_UNNUMBERED) && 5605 ipif->ipif_lcl_addr == addr)) { 5606 ipif_refhold_locked(ipif); 5607 mutex_exit(&ill->ill_lock); 5608 return (ipif); 5609 } 5610 } else if (ipif->ipif_subnet == (addr & ipif->ipif_net_mask)) { 5611 ipif_refhold_locked(ipif); 5612 mutex_exit(&ill->ill_lock); 5613 return (ipif); 5614 } 5615 } 5616 mutex_exit(&ill->ill_lock); 5617 ire = ire_route_lookup(addr, 0, 0, 0, NULL, NULL, zoneid, 5618 NULL, MATCH_IRE_RECURSIVE); 5619 if (ire != NULL) { 5620 /* 5621 * The callers of this function wants to know the 5622 * interface on which they have to send the replies 5623 * back. For IRE_CACHES that have ire_stq and ire_ipif 5624 * derived from different ills, we really don't care 5625 * what we return here. 5626 */ 5627 ipif = ire->ire_ipif; 5628 if (ipif != NULL) { 5629 ipif_refhold(ipif); 5630 ire_refrele(ire); 5631 return (ipif); 5632 } 5633 ire_refrele(ire); 5634 } 5635 /* Pick the first interface */ 5636 ipif = ipif_get_next_ipif(NULL, ill); 5637 return (ipif); 5638 } 5639 5640 /* 5641 * This func does not prevent refcnt from increasing. But if 5642 * the caller has taken steps to that effect, then this func 5643 * can be used to determine whether the ill has become quiescent 5644 */ 5645 boolean_t 5646 ill_is_quiescent(ill_t *ill) 5647 { 5648 ipif_t *ipif; 5649 5650 ASSERT(MUTEX_HELD(&ill->ill_lock)); 5651 5652 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 5653 if (ipif->ipif_refcnt != 0 || ipif->ipif_ire_cnt != 0) { 5654 return (B_FALSE); 5655 } 5656 } 5657 if (ill->ill_ire_cnt != 0 || ill->ill_refcnt != 0 || 5658 ill->ill_nce_cnt != 0 || ill->ill_srcif_refcnt != 0 || 5659 ill->ill_mrtun_refcnt != 0) { 5660 return (B_FALSE); 5661 } 5662 return (B_TRUE); 5663 } 5664 5665 /* 5666 * This func does not prevent refcnt from increasing. But if 5667 * the caller has taken steps to that effect, then this func 5668 * can be used to determine whether the ipif has become quiescent 5669 */ 5670 static boolean_t 5671 ipif_is_quiescent(ipif_t *ipif) 5672 { 5673 ill_t *ill; 5674 5675 ASSERT(MUTEX_HELD(&ipif->ipif_ill->ill_lock)); 5676 5677 if (ipif->ipif_refcnt != 0 || ipif->ipif_ire_cnt != 0) { 5678 return (B_FALSE); 5679 } 5680 5681 ill = ipif->ipif_ill; 5682 if (ill->ill_ipif_up_count != 0 || ill->ill_ipif_dup_count != 0 || 5683 ill->ill_logical_down) { 5684 return (B_TRUE); 5685 } 5686 5687 /* This is the last ipif going down or being deleted on this ill */ 5688 if (ill->ill_ire_cnt != 0 || ill->ill_refcnt != 0) { 5689 return (B_FALSE); 5690 } 5691 5692 return (B_TRUE); 5693 } 5694 5695 /* 5696 * This func does not prevent refcnt from increasing. But if 5697 * the caller has taken steps to that effect, then this func 5698 * can be used to determine whether the ipifs marked with IPIF_MOVING 5699 * have become quiescent and can be moved in a failover/failback. 5700 */ 5701 static ipif_t * 5702 ill_quiescent_to_move(ill_t *ill) 5703 { 5704 ipif_t *ipif; 5705 5706 ASSERT(MUTEX_HELD(&ill->ill_lock)); 5707 5708 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 5709 if (ipif->ipif_state_flags & IPIF_MOVING) { 5710 if (ipif->ipif_refcnt != 0 || ipif->ipif_ire_cnt != 0) { 5711 return (ipif); 5712 } 5713 } 5714 } 5715 return (NULL); 5716 } 5717 5718 /* 5719 * The ipif/ill/ire has been refreled. Do the tail processing. 5720 * Determine if the ipif or ill in question has become quiescent and if so 5721 * wakeup close and/or restart any queued pending ioctl that is waiting 5722 * for the ipif_down (or ill_down) 5723 */ 5724 void 5725 ipif_ill_refrele_tail(ill_t *ill) 5726 { 5727 mblk_t *mp; 5728 conn_t *connp; 5729 ipsq_t *ipsq; 5730 ipif_t *ipif; 5731 5732 ASSERT(MUTEX_HELD(&ill->ill_lock)); 5733 5734 if ((ill->ill_state_flags & ILL_CONDEMNED) && 5735 ill_is_quiescent(ill)) { 5736 /* ill_close may be waiting */ 5737 cv_broadcast(&ill->ill_cv); 5738 } 5739 5740 /* ipsq can't change because ill_lock is held */ 5741 ipsq = ill->ill_phyint->phyint_ipsq; 5742 if (ipsq->ipsq_waitfor == 0) { 5743 /* Not waiting for anything, just return. */ 5744 mutex_exit(&ill->ill_lock); 5745 return; 5746 } 5747 ASSERT(ipsq->ipsq_pending_mp != NULL && 5748 ipsq->ipsq_pending_ipif != NULL); 5749 /* 5750 * ipif->ipif_refcnt must go down to zero for restarting REMOVEIF. 5751 * Last ipif going down needs to down the ill, so ill_ire_cnt must 5752 * be zero for restarting an ioctl that ends up downing the ill. 5753 */ 5754 ipif = ipsq->ipsq_pending_ipif; 5755 if (ipif->ipif_ill != ill) { 5756 /* The ioctl is pending on some other ill. */ 5757 mutex_exit(&ill->ill_lock); 5758 return; 5759 } 5760 5761 switch (ipsq->ipsq_waitfor) { 5762 case IPIF_DOWN: 5763 case IPIF_FREE: 5764 if (!ipif_is_quiescent(ipif)) { 5765 mutex_exit(&ill->ill_lock); 5766 return; 5767 } 5768 break; 5769 5770 case ILL_DOWN: 5771 case ILL_FREE: 5772 /* 5773 * case ILL_FREE arises only for loopback. otherwise ill_delete 5774 * waits synchronously in ip_close, and no message is queued in 5775 * ipsq_pending_mp at all in this case 5776 */ 5777 if (!ill_is_quiescent(ill)) { 5778 mutex_exit(&ill->ill_lock); 5779 return; 5780 } 5781 5782 break; 5783 5784 case ILL_MOVE_OK: 5785 if (ill_quiescent_to_move(ill) != NULL) { 5786 mutex_exit(&ill->ill_lock); 5787 return; 5788 } 5789 5790 break; 5791 default: 5792 cmn_err(CE_PANIC, "ipsq: %p unknown ipsq_waitfor %d\n", 5793 (void *)ipsq, ipsq->ipsq_waitfor); 5794 } 5795 5796 /* 5797 * Incr refcnt for the qwriter_ip call below which 5798 * does a refrele 5799 */ 5800 ill_refhold_locked(ill); 5801 mutex_exit(&ill->ill_lock); 5802 5803 mp = ipsq_pending_mp_get(ipsq, &connp); 5804 ASSERT(mp != NULL); 5805 5806 switch (mp->b_datap->db_type) { 5807 case M_ERROR: 5808 case M_HANGUP: 5809 (void) qwriter_ip(NULL, ill, ill->ill_rq, mp, 5810 ipif_all_down_tail, CUR_OP, B_TRUE); 5811 return; 5812 5813 case M_IOCTL: 5814 case M_IOCDATA: 5815 (void) qwriter_ip(NULL, ill, 5816 (connp != NULL ? CONNP_TO_WQ(connp) : ill->ill_wq), mp, 5817 ip_reprocess_ioctl, CUR_OP, B_TRUE); 5818 return; 5819 5820 default: 5821 cmn_err(CE_PANIC, "ipif_ill_refrele_tail mp %p " 5822 "db_type %d\n", (void *)mp, mp->b_datap->db_type); 5823 } 5824 } 5825 5826 #ifdef ILL_DEBUG 5827 /* Reuse trace buffer from beginning (if reached the end) and record trace */ 5828 void 5829 th_trace_rrecord(th_trace_t *th_trace) 5830 { 5831 tr_buf_t *tr_buf; 5832 uint_t lastref; 5833 5834 lastref = th_trace->th_trace_lastref; 5835 lastref++; 5836 if (lastref == TR_BUF_MAX) 5837 lastref = 0; 5838 th_trace->th_trace_lastref = lastref; 5839 tr_buf = &th_trace->th_trbuf[lastref]; 5840 tr_buf->tr_depth = getpcstack(tr_buf->tr_stack, IP_STACK_DEPTH); 5841 } 5842 5843 th_trace_t * 5844 th_trace_ipif_lookup(ipif_t *ipif) 5845 { 5846 int bucket_id; 5847 th_trace_t *th_trace; 5848 5849 ASSERT(MUTEX_HELD(&ipif->ipif_ill->ill_lock)); 5850 5851 bucket_id = IP_TR_HASH(curthread); 5852 ASSERT(bucket_id < IP_TR_HASH_MAX); 5853 5854 for (th_trace = ipif->ipif_trace[bucket_id]; th_trace != NULL; 5855 th_trace = th_trace->th_next) { 5856 if (th_trace->th_id == curthread) 5857 return (th_trace); 5858 } 5859 return (NULL); 5860 } 5861 5862 void 5863 ipif_trace_ref(ipif_t *ipif) 5864 { 5865 int bucket_id; 5866 th_trace_t *th_trace; 5867 5868 ASSERT(MUTEX_HELD(&ipif->ipif_ill->ill_lock)); 5869 5870 if (ipif->ipif_trace_disable) 5871 return; 5872 5873 /* 5874 * Attempt to locate the trace buffer for the curthread. 5875 * If it does not exist, then allocate a new trace buffer 5876 * and link it in list of trace bufs for this ipif, at the head 5877 */ 5878 th_trace = th_trace_ipif_lookup(ipif); 5879 if (th_trace == NULL) { 5880 bucket_id = IP_TR_HASH(curthread); 5881 th_trace = (th_trace_t *)kmem_zalloc(sizeof (th_trace_t), 5882 KM_NOSLEEP); 5883 if (th_trace == NULL) { 5884 ipif->ipif_trace_disable = B_TRUE; 5885 ipif_trace_cleanup(ipif); 5886 return; 5887 } 5888 th_trace->th_id = curthread; 5889 th_trace->th_next = ipif->ipif_trace[bucket_id]; 5890 th_trace->th_prev = &ipif->ipif_trace[bucket_id]; 5891 if (th_trace->th_next != NULL) 5892 th_trace->th_next->th_prev = &th_trace->th_next; 5893 ipif->ipif_trace[bucket_id] = th_trace; 5894 } 5895 ASSERT(th_trace->th_refcnt >= 0 && 5896 th_trace->th_refcnt < TR_BUF_MAX -1); 5897 th_trace->th_refcnt++; 5898 th_trace_rrecord(th_trace); 5899 } 5900 5901 void 5902 ipif_untrace_ref(ipif_t *ipif) 5903 { 5904 th_trace_t *th_trace; 5905 5906 ASSERT(MUTEX_HELD(&ipif->ipif_ill->ill_lock)); 5907 5908 if (ipif->ipif_trace_disable) 5909 return; 5910 th_trace = th_trace_ipif_lookup(ipif); 5911 ASSERT(th_trace != NULL); 5912 ASSERT(th_trace->th_refcnt > 0); 5913 5914 th_trace->th_refcnt--; 5915 th_trace_rrecord(th_trace); 5916 } 5917 5918 th_trace_t * 5919 th_trace_ill_lookup(ill_t *ill) 5920 { 5921 th_trace_t *th_trace; 5922 int bucket_id; 5923 5924 ASSERT(MUTEX_HELD(&ill->ill_lock)); 5925 5926 bucket_id = IP_TR_HASH(curthread); 5927 ASSERT(bucket_id < IP_TR_HASH_MAX); 5928 5929 for (th_trace = ill->ill_trace[bucket_id]; th_trace != NULL; 5930 th_trace = th_trace->th_next) { 5931 if (th_trace->th_id == curthread) 5932 return (th_trace); 5933 } 5934 return (NULL); 5935 } 5936 5937 void 5938 ill_trace_ref(ill_t *ill) 5939 { 5940 int bucket_id; 5941 th_trace_t *th_trace; 5942 5943 ASSERT(MUTEX_HELD(&ill->ill_lock)); 5944 if (ill->ill_trace_disable) 5945 return; 5946 /* 5947 * Attempt to locate the trace buffer for the curthread. 5948 * If it does not exist, then allocate a new trace buffer 5949 * and link it in list of trace bufs for this ill, at the head 5950 */ 5951 th_trace = th_trace_ill_lookup(ill); 5952 if (th_trace == NULL) { 5953 bucket_id = IP_TR_HASH(curthread); 5954 th_trace = (th_trace_t *)kmem_zalloc(sizeof (th_trace_t), 5955 KM_NOSLEEP); 5956 if (th_trace == NULL) { 5957 ill->ill_trace_disable = B_TRUE; 5958 ill_trace_cleanup(ill); 5959 return; 5960 } 5961 th_trace->th_id = curthread; 5962 th_trace->th_next = ill->ill_trace[bucket_id]; 5963 th_trace->th_prev = &ill->ill_trace[bucket_id]; 5964 if (th_trace->th_next != NULL) 5965 th_trace->th_next->th_prev = &th_trace->th_next; 5966 ill->ill_trace[bucket_id] = th_trace; 5967 } 5968 ASSERT(th_trace->th_refcnt >= 0 && 5969 th_trace->th_refcnt < TR_BUF_MAX - 1); 5970 5971 th_trace->th_refcnt++; 5972 th_trace_rrecord(th_trace); 5973 } 5974 5975 void 5976 ill_untrace_ref(ill_t *ill) 5977 { 5978 th_trace_t *th_trace; 5979 5980 ASSERT(MUTEX_HELD(&ill->ill_lock)); 5981 5982 if (ill->ill_trace_disable) 5983 return; 5984 th_trace = th_trace_ill_lookup(ill); 5985 ASSERT(th_trace != NULL); 5986 ASSERT(th_trace->th_refcnt > 0); 5987 5988 th_trace->th_refcnt--; 5989 th_trace_rrecord(th_trace); 5990 } 5991 5992 /* 5993 * Verify that this thread has no refs to the ipif and free 5994 * the trace buffers 5995 */ 5996 /* ARGSUSED */ 5997 void 5998 ipif_thread_exit(ipif_t *ipif, void *dummy) 5999 { 6000 th_trace_t *th_trace; 6001 6002 mutex_enter(&ipif->ipif_ill->ill_lock); 6003 6004 th_trace = th_trace_ipif_lookup(ipif); 6005 if (th_trace == NULL) { 6006 mutex_exit(&ipif->ipif_ill->ill_lock); 6007 return; 6008 } 6009 ASSERT(th_trace->th_refcnt == 0); 6010 /* unlink th_trace and free it */ 6011 *th_trace->th_prev = th_trace->th_next; 6012 if (th_trace->th_next != NULL) 6013 th_trace->th_next->th_prev = th_trace->th_prev; 6014 th_trace->th_next = NULL; 6015 th_trace->th_prev = NULL; 6016 kmem_free(th_trace, sizeof (th_trace_t)); 6017 6018 mutex_exit(&ipif->ipif_ill->ill_lock); 6019 } 6020 6021 /* 6022 * Verify that this thread has no refs to the ill and free 6023 * the trace buffers 6024 */ 6025 /* ARGSUSED */ 6026 void 6027 ill_thread_exit(ill_t *ill, void *dummy) 6028 { 6029 th_trace_t *th_trace; 6030 6031 mutex_enter(&ill->ill_lock); 6032 6033 th_trace = th_trace_ill_lookup(ill); 6034 if (th_trace == NULL) { 6035 mutex_exit(&ill->ill_lock); 6036 return; 6037 } 6038 ASSERT(th_trace->th_refcnt == 0); 6039 /* unlink th_trace and free it */ 6040 *th_trace->th_prev = th_trace->th_next; 6041 if (th_trace->th_next != NULL) 6042 th_trace->th_next->th_prev = th_trace->th_prev; 6043 th_trace->th_next = NULL; 6044 th_trace->th_prev = NULL; 6045 kmem_free(th_trace, sizeof (th_trace_t)); 6046 6047 mutex_exit(&ill->ill_lock); 6048 } 6049 #endif 6050 6051 #ifdef ILL_DEBUG 6052 void 6053 ip_thread_exit(void) 6054 { 6055 ill_t *ill; 6056 ipif_t *ipif; 6057 ill_walk_context_t ctx; 6058 6059 rw_enter(&ill_g_lock, RW_READER); 6060 ill = ILL_START_WALK_ALL(&ctx); 6061 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 6062 for (ipif = ill->ill_ipif; ipif != NULL; 6063 ipif = ipif->ipif_next) { 6064 ipif_thread_exit(ipif, NULL); 6065 } 6066 ill_thread_exit(ill, NULL); 6067 } 6068 rw_exit(&ill_g_lock); 6069 6070 ire_walk(ire_thread_exit, NULL); 6071 ndp_walk_common(&ndp4, NULL, nce_thread_exit, NULL, B_FALSE); 6072 ndp_walk_common(&ndp6, NULL, nce_thread_exit, NULL, B_FALSE); 6073 } 6074 6075 /* 6076 * Called when ipif is unplumbed or when memory alloc fails 6077 */ 6078 void 6079 ipif_trace_cleanup(ipif_t *ipif) 6080 { 6081 int i; 6082 th_trace_t *th_trace; 6083 th_trace_t *th_trace_next; 6084 6085 for (i = 0; i < IP_TR_HASH_MAX; i++) { 6086 for (th_trace = ipif->ipif_trace[i]; th_trace != NULL; 6087 th_trace = th_trace_next) { 6088 th_trace_next = th_trace->th_next; 6089 kmem_free(th_trace, sizeof (th_trace_t)); 6090 } 6091 ipif->ipif_trace[i] = NULL; 6092 } 6093 } 6094 6095 /* 6096 * Called when ill is unplumbed or when memory alloc fails 6097 */ 6098 void 6099 ill_trace_cleanup(ill_t *ill) 6100 { 6101 int i; 6102 th_trace_t *th_trace; 6103 th_trace_t *th_trace_next; 6104 6105 for (i = 0; i < IP_TR_HASH_MAX; i++) { 6106 for (th_trace = ill->ill_trace[i]; th_trace != NULL; 6107 th_trace = th_trace_next) { 6108 th_trace_next = th_trace->th_next; 6109 kmem_free(th_trace, sizeof (th_trace_t)); 6110 } 6111 ill->ill_trace[i] = NULL; 6112 } 6113 } 6114 6115 #else 6116 void ip_thread_exit(void) {} 6117 #endif 6118 6119 void 6120 ipif_refhold_locked(ipif_t *ipif) 6121 { 6122 ASSERT(MUTEX_HELD(&ipif->ipif_ill->ill_lock)); 6123 ipif->ipif_refcnt++; 6124 IPIF_TRACE_REF(ipif); 6125 } 6126 6127 void 6128 ipif_refhold(ipif_t *ipif) 6129 { 6130 ill_t *ill; 6131 6132 ill = ipif->ipif_ill; 6133 mutex_enter(&ill->ill_lock); 6134 ipif->ipif_refcnt++; 6135 IPIF_TRACE_REF(ipif); 6136 mutex_exit(&ill->ill_lock); 6137 } 6138 6139 /* 6140 * Must not be called while holding any locks. Otherwise if this is 6141 * the last reference to be released there is a chance of recursive mutex 6142 * panic due to ipif_refrele -> ipif_ill_refrele_tail -> qwriter_ip trying 6143 * to restart an ioctl. 6144 */ 6145 void 6146 ipif_refrele(ipif_t *ipif) 6147 { 6148 ill_t *ill; 6149 6150 ill = ipif->ipif_ill; 6151 6152 mutex_enter(&ill->ill_lock); 6153 ASSERT(ipif->ipif_refcnt != 0); 6154 ipif->ipif_refcnt--; 6155 IPIF_UNTRACE_REF(ipif); 6156 if (ipif->ipif_refcnt != 0) { 6157 mutex_exit(&ill->ill_lock); 6158 return; 6159 } 6160 6161 /* Drops the ill_lock */ 6162 ipif_ill_refrele_tail(ill); 6163 } 6164 6165 ipif_t * 6166 ipif_get_next_ipif(ipif_t *curr, ill_t *ill) 6167 { 6168 ipif_t *ipif; 6169 6170 mutex_enter(&ill->ill_lock); 6171 for (ipif = (curr == NULL ? ill->ill_ipif : curr->ipif_next); 6172 ipif != NULL; ipif = ipif->ipif_next) { 6173 if (!IPIF_CAN_LOOKUP(ipif)) 6174 continue; 6175 ipif_refhold_locked(ipif); 6176 mutex_exit(&ill->ill_lock); 6177 return (ipif); 6178 } 6179 mutex_exit(&ill->ill_lock); 6180 return (NULL); 6181 } 6182 6183 /* 6184 * TODO: make this table extendible at run time 6185 * Return a pointer to the mac type info for 'mac_type' 6186 */ 6187 static ip_m_t * 6188 ip_m_lookup(t_uscalar_t mac_type) 6189 { 6190 ip_m_t *ipm; 6191 6192 for (ipm = ip_m_tbl; ipm < A_END(ip_m_tbl); ipm++) 6193 if (ipm->ip_m_mac_type == mac_type) 6194 return (ipm); 6195 return (NULL); 6196 } 6197 6198 /* 6199 * ip_rt_add is called to add an IPv4 route to the forwarding table. 6200 * ipif_arg is passed in to associate it with the correct interface. 6201 * We may need to restart this operation if the ipif cannot be looked up 6202 * due to an exclusive operation that is currently in progress. The restart 6203 * entry point is specified by 'func' 6204 */ 6205 int 6206 ip_rt_add(ipaddr_t dst_addr, ipaddr_t mask, ipaddr_t gw_addr, 6207 ipaddr_t src_addr, int flags, ipif_t *ipif_arg, ipif_t *src_ipif, 6208 ire_t **ire_arg, boolean_t ioctl_msg, queue_t *q, mblk_t *mp, 6209 ipsq_func_t func, struct rtsa_s *sp) 6210 { 6211 ire_t *ire; 6212 ire_t *gw_ire = NULL; 6213 ipif_t *ipif = NULL; 6214 boolean_t ipif_refheld = B_FALSE; 6215 uint_t type; 6216 int match_flags = MATCH_IRE_TYPE; 6217 int error; 6218 tsol_gc_t *gc = NULL; 6219 tsol_gcgrp_t *gcgrp = NULL; 6220 boolean_t gcgrp_xtraref = B_FALSE; 6221 6222 ip1dbg(("ip_rt_add:")); 6223 6224 if (ire_arg != NULL) 6225 *ire_arg = NULL; 6226 6227 /* 6228 * If this is the case of RTF_HOST being set, then we set the netmask 6229 * to all ones (regardless if one was supplied). 6230 */ 6231 if (flags & RTF_HOST) 6232 mask = IP_HOST_MASK; 6233 6234 /* 6235 * Prevent routes with a zero gateway from being created (since 6236 * interfaces can currently be plumbed and brought up no assigned 6237 * address). 6238 * For routes with RTA_SRCIFP, the gateway address can be 0.0.0.0. 6239 */ 6240 if (gw_addr == 0 && src_ipif == NULL) 6241 return (ENETUNREACH); 6242 /* 6243 * Get the ipif, if any, corresponding to the gw_addr 6244 */ 6245 if (gw_addr != 0) { 6246 ipif = ipif_lookup_interface(gw_addr, dst_addr, q, mp, func, 6247 &error); 6248 if (ipif != NULL) { 6249 if (IS_VNI(ipif->ipif_ill)) { 6250 ipif_refrele(ipif); 6251 return (EINVAL); 6252 } 6253 ipif_refheld = B_TRUE; 6254 } else if (error == EINPROGRESS) { 6255 ip1dbg(("ip_rt_add: null and EINPROGRESS")); 6256 return (EINPROGRESS); 6257 } else { 6258 error = 0; 6259 } 6260 } 6261 6262 if (ipif != NULL) { 6263 ip1dbg(("ip_rt_add: ipif_lookup_interface done ipif nonnull")); 6264 ASSERT(!MUTEX_HELD(&ipif->ipif_ill->ill_lock)); 6265 } else { 6266 ip1dbg(("ip_rt_add: ipif_lookup_interface done ipif is null")); 6267 } 6268 6269 /* 6270 * GateD will attempt to create routes with a loopback interface 6271 * address as the gateway and with RTF_GATEWAY set. We allow 6272 * these routes to be added, but create them as interface routes 6273 * since the gateway is an interface address. 6274 */ 6275 if ((ipif != NULL) && (ipif->ipif_ire_type == IRE_LOOPBACK)) { 6276 flags &= ~RTF_GATEWAY; 6277 if (gw_addr == INADDR_LOOPBACK && dst_addr == INADDR_LOOPBACK && 6278 mask == IP_HOST_MASK) { 6279 ire = ire_ctable_lookup(dst_addr, 0, IRE_LOOPBACK, ipif, 6280 ALL_ZONES, NULL, match_flags); 6281 if (ire != NULL) { 6282 ire_refrele(ire); 6283 if (ipif_refheld) 6284 ipif_refrele(ipif); 6285 return (EEXIST); 6286 } 6287 ip1dbg(("ipif_up_done: 0x%p creating IRE 0x%x" 6288 "for 0x%x\n", (void *)ipif, 6289 ipif->ipif_ire_type, 6290 ntohl(ipif->ipif_lcl_addr))); 6291 ire = ire_create( 6292 (uchar_t *)&dst_addr, /* dest address */ 6293 (uchar_t *)&mask, /* mask */ 6294 (uchar_t *)&ipif->ipif_src_addr, 6295 NULL, /* no gateway */ 6296 NULL, 6297 &ipif->ipif_mtu, 6298 NULL, 6299 ipif->ipif_rq, /* recv-from queue */ 6300 NULL, /* no send-to queue */ 6301 ipif->ipif_ire_type, /* LOOPBACK */ 6302 NULL, 6303 ipif, 6304 NULL, 6305 0, 6306 0, 6307 0, 6308 (ipif->ipif_flags & IPIF_PRIVATE) ? 6309 RTF_PRIVATE : 0, 6310 &ire_uinfo_null, 6311 NULL, 6312 NULL); 6313 6314 if (ire == NULL) { 6315 if (ipif_refheld) 6316 ipif_refrele(ipif); 6317 return (ENOMEM); 6318 } 6319 error = ire_add(&ire, q, mp, func, B_FALSE); 6320 if (error == 0) 6321 goto save_ire; 6322 if (ipif_refheld) 6323 ipif_refrele(ipif); 6324 return (error); 6325 6326 } 6327 } 6328 6329 /* 6330 * Traditionally, interface routes are ones where RTF_GATEWAY isn't set 6331 * and the gateway address provided is one of the system's interface 6332 * addresses. By using the routing socket interface and supplying an 6333 * RTA_IFP sockaddr with an interface index, an alternate method of 6334 * specifying an interface route to be created is available which uses 6335 * the interface index that specifies the outgoing interface rather than 6336 * the address of an outgoing interface (which may not be able to 6337 * uniquely identify an interface). When coupled with the RTF_GATEWAY 6338 * flag, routes can be specified which not only specify the next-hop to 6339 * be used when routing to a certain prefix, but also which outgoing 6340 * interface should be used. 6341 * 6342 * Previously, interfaces would have unique addresses assigned to them 6343 * and so the address assigned to a particular interface could be used 6344 * to identify a particular interface. One exception to this was the 6345 * case of an unnumbered interface (where IPIF_UNNUMBERED was set). 6346 * 6347 * With the advent of IPv6 and its link-local addresses, this 6348 * restriction was relaxed and interfaces could share addresses between 6349 * themselves. In fact, typically all of the link-local interfaces on 6350 * an IPv6 node or router will have the same link-local address. In 6351 * order to differentiate between these interfaces, the use of an 6352 * interface index is necessary and this index can be carried inside a 6353 * RTA_IFP sockaddr (which is actually a sockaddr_dl). One restriction 6354 * of using the interface index, however, is that all of the ipif's that 6355 * are part of an ill have the same index and so the RTA_IFP sockaddr 6356 * cannot be used to differentiate between ipif's (or logical 6357 * interfaces) that belong to the same ill (physical interface). 6358 * 6359 * For example, in the following case involving IPv4 interfaces and 6360 * logical interfaces 6361 * 6362 * 192.0.2.32 255.255.255.224 192.0.2.33 U if0 6363 * 192.0.2.32 255.255.255.224 192.0.2.34 U if0:1 6364 * 192.0.2.32 255.255.255.224 192.0.2.35 U if0:2 6365 * 6366 * the ipif's corresponding to each of these interface routes can be 6367 * uniquely identified by the "gateway" (actually interface address). 6368 * 6369 * In this case involving multiple IPv6 default routes to a particular 6370 * link-local gateway, the use of RTA_IFP is necessary to specify which 6371 * default route is of interest: 6372 * 6373 * default fe80::123:4567:89ab:cdef U if0 6374 * default fe80::123:4567:89ab:cdef U if1 6375 */ 6376 6377 /* RTF_GATEWAY not set */ 6378 if (!(flags & RTF_GATEWAY)) { 6379 queue_t *stq; 6380 queue_t *rfq = NULL; 6381 ill_t *in_ill = NULL; 6382 6383 if (sp != NULL) { 6384 ip2dbg(("ip_rt_add: gateway security attributes " 6385 "cannot be set with interface route\n")); 6386 if (ipif_refheld) 6387 ipif_refrele(ipif); 6388 return (EINVAL); 6389 } 6390 6391 /* 6392 * As the interface index specified with the RTA_IFP sockaddr is 6393 * the same for all ipif's off of an ill, the matching logic 6394 * below uses MATCH_IRE_ILL if such an index was specified. 6395 * This means that routes sharing the same prefix when added 6396 * using a RTA_IFP sockaddr must have distinct interface 6397 * indices (namely, they must be on distinct ill's). 6398 * 6399 * On the other hand, since the gateway address will usually be 6400 * different for each ipif on the system, the matching logic 6401 * uses MATCH_IRE_IPIF in the case of a traditional interface 6402 * route. This means that interface routes for the same prefix 6403 * can be created if they belong to distinct ipif's and if a 6404 * RTA_IFP sockaddr is not present. 6405 */ 6406 if (ipif_arg != NULL) { 6407 if (ipif_refheld) { 6408 ipif_refrele(ipif); 6409 ipif_refheld = B_FALSE; 6410 } 6411 ipif = ipif_arg; 6412 match_flags |= MATCH_IRE_ILL; 6413 } else { 6414 /* 6415 * Check the ipif corresponding to the gw_addr 6416 */ 6417 if (ipif == NULL) 6418 return (ENETUNREACH); 6419 match_flags |= MATCH_IRE_IPIF; 6420 } 6421 ASSERT(ipif != NULL); 6422 /* 6423 * If src_ipif is not NULL, we have to create 6424 * an ire with non-null ire_in_ill value 6425 */ 6426 if (src_ipif != NULL) { 6427 in_ill = src_ipif->ipif_ill; 6428 } 6429 6430 /* 6431 * We check for an existing entry at this point. 6432 * 6433 * Since a netmask isn't passed in via the ioctl interface 6434 * (SIOCADDRT), we don't check for a matching netmask in that 6435 * case. 6436 */ 6437 if (!ioctl_msg) 6438 match_flags |= MATCH_IRE_MASK; 6439 if (src_ipif != NULL) { 6440 /* Look up in the special table */ 6441 ire = ire_srcif_table_lookup(dst_addr, IRE_INTERFACE, 6442 ipif, src_ipif->ipif_ill, match_flags); 6443 } else { 6444 ire = ire_ftable_lookup(dst_addr, mask, 0, 6445 IRE_INTERFACE, ipif, NULL, ALL_ZONES, 0, 6446 NULL, match_flags); 6447 } 6448 if (ire != NULL) { 6449 ire_refrele(ire); 6450 if (ipif_refheld) 6451 ipif_refrele(ipif); 6452 return (EEXIST); 6453 } 6454 6455 if (src_ipif != NULL) { 6456 /* 6457 * Create the special ire for the IRE table 6458 * which hangs out of ire_in_ill. This ire 6459 * is in-between IRE_CACHE and IRE_INTERFACE. 6460 * Thus rfq is non-NULL. 6461 */ 6462 rfq = ipif->ipif_rq; 6463 } 6464 /* Create the usual interface ires */ 6465 6466 stq = (ipif->ipif_net_type == IRE_IF_RESOLVER) 6467 ? ipif->ipif_rq : ipif->ipif_wq; 6468 6469 /* 6470 * Create a copy of the IRE_LOOPBACK, 6471 * IRE_IF_NORESOLVER or IRE_IF_RESOLVER with 6472 * the modified address and netmask. 6473 */ 6474 ire = ire_create( 6475 (uchar_t *)&dst_addr, 6476 (uint8_t *)&mask, 6477 (uint8_t *)&ipif->ipif_src_addr, 6478 NULL, 6479 NULL, 6480 &ipif->ipif_mtu, 6481 NULL, 6482 rfq, 6483 stq, 6484 ipif->ipif_net_type, 6485 ipif->ipif_resolver_mp, 6486 ipif, 6487 in_ill, 6488 0, 6489 0, 6490 0, 6491 flags, 6492 &ire_uinfo_null, 6493 NULL, 6494 NULL); 6495 if (ire == NULL) { 6496 if (ipif_refheld) 6497 ipif_refrele(ipif); 6498 return (ENOMEM); 6499 } 6500 6501 /* 6502 * Some software (for example, GateD and Sun Cluster) attempts 6503 * to create (what amount to) IRE_PREFIX routes with the 6504 * loopback address as the gateway. This is primarily done to 6505 * set up prefixes with the RTF_REJECT flag set (for example, 6506 * when generating aggregate routes.) 6507 * 6508 * If the IRE type (as defined by ipif->ipif_net_type) is 6509 * IRE_LOOPBACK, then we map the request into a 6510 * IRE_IF_NORESOLVER. 6511 * 6512 * Needless to say, the real IRE_LOOPBACK is NOT created by this 6513 * routine, but rather using ire_create() directly. 6514 * 6515 */ 6516 if (ipif->ipif_net_type == IRE_LOOPBACK) 6517 ire->ire_type = IRE_IF_NORESOLVER; 6518 6519 error = ire_add(&ire, q, mp, func, B_FALSE); 6520 if (error == 0) 6521 goto save_ire; 6522 6523 /* 6524 * In the result of failure, ire_add() will have already 6525 * deleted the ire in question, so there is no need to 6526 * do that here. 6527 */ 6528 if (ipif_refheld) 6529 ipif_refrele(ipif); 6530 return (error); 6531 } 6532 if (ipif_refheld) { 6533 ipif_refrele(ipif); 6534 ipif_refheld = B_FALSE; 6535 } 6536 6537 if (src_ipif != NULL) { 6538 /* RTA_SRCIFP is not supported on RTF_GATEWAY */ 6539 ip2dbg(("ip_rt_add: SRCIF cannot be set with gateway route\n")); 6540 return (EINVAL); 6541 } 6542 /* 6543 * Get an interface IRE for the specified gateway. 6544 * If we don't have an IRE_IF_NORESOLVER or IRE_IF_RESOLVER for the 6545 * gateway, it is currently unreachable and we fail the request 6546 * accordingly. 6547 */ 6548 ipif = ipif_arg; 6549 if (ipif_arg != NULL) 6550 match_flags |= MATCH_IRE_ILL; 6551 gw_ire = ire_ftable_lookup(gw_addr, 0, 0, IRE_INTERFACE, ipif_arg, NULL, 6552 ALL_ZONES, 0, NULL, match_flags); 6553 if (gw_ire == NULL) 6554 return (ENETUNREACH); 6555 6556 /* 6557 * We create one of three types of IREs as a result of this request 6558 * based on the netmask. A netmask of all ones (which is automatically 6559 * assumed when RTF_HOST is set) results in an IRE_HOST being created. 6560 * An all zeroes netmask implies a default route so an IRE_DEFAULT is 6561 * created. Otherwise, an IRE_PREFIX route is created for the 6562 * destination prefix. 6563 */ 6564 if (mask == IP_HOST_MASK) 6565 type = IRE_HOST; 6566 else if (mask == 0) 6567 type = IRE_DEFAULT; 6568 else 6569 type = IRE_PREFIX; 6570 6571 /* check for a duplicate entry */ 6572 ire = ire_ftable_lookup(dst_addr, mask, gw_addr, type, ipif_arg, 6573 NULL, ALL_ZONES, 0, NULL, 6574 match_flags | MATCH_IRE_MASK | MATCH_IRE_GW); 6575 if (ire != NULL) { 6576 ire_refrele(gw_ire); 6577 ire_refrele(ire); 6578 return (EEXIST); 6579 } 6580 6581 /* Security attribute exists */ 6582 if (sp != NULL) { 6583 tsol_gcgrp_addr_t ga; 6584 6585 /* find or create the gateway credentials group */ 6586 ga.ga_af = AF_INET; 6587 IN6_IPADDR_TO_V4MAPPED(gw_addr, &ga.ga_addr); 6588 6589 /* we hold reference to it upon success */ 6590 gcgrp = gcgrp_lookup(&ga, B_TRUE); 6591 if (gcgrp == NULL) { 6592 ire_refrele(gw_ire); 6593 return (ENOMEM); 6594 } 6595 6596 /* 6597 * Create and add the security attribute to the group; a 6598 * reference to the group is made upon allocating a new 6599 * entry successfully. If it finds an already-existing 6600 * entry for the security attribute in the group, it simply 6601 * returns it and no new reference is made to the group. 6602 */ 6603 gc = gc_create(sp, gcgrp, &gcgrp_xtraref); 6604 if (gc == NULL) { 6605 /* release reference held by gcgrp_lookup */ 6606 GCGRP_REFRELE(gcgrp); 6607 ire_refrele(gw_ire); 6608 return (ENOMEM); 6609 } 6610 } 6611 6612 /* Create the IRE. */ 6613 ire = ire_create( 6614 (uchar_t *)&dst_addr, /* dest address */ 6615 (uchar_t *)&mask, /* mask */ 6616 /* src address assigned by the caller? */ 6617 (uchar_t *)(((src_addr != INADDR_ANY) && 6618 (flags & RTF_SETSRC)) ? &src_addr : NULL), 6619 (uchar_t *)&gw_addr, /* gateway address */ 6620 NULL, /* no in-srcaddress */ 6621 &gw_ire->ire_max_frag, 6622 NULL, /* no Fast Path header */ 6623 NULL, /* no recv-from queue */ 6624 NULL, /* no send-to queue */ 6625 (ushort_t)type, /* IRE type */ 6626 NULL, 6627 ipif_arg, 6628 NULL, 6629 0, 6630 0, 6631 0, 6632 flags, 6633 &gw_ire->ire_uinfo, /* Inherit ULP info from gw */ 6634 gc, /* security attribute */ 6635 NULL); 6636 /* 6637 * The ire holds a reference to the 'gc' and the 'gc' holds a 6638 * reference to the 'gcgrp'. We can now release the extra reference 6639 * the 'gcgrp' acquired in the gcgrp_lookup, if it was not used. 6640 */ 6641 if (gcgrp_xtraref) 6642 GCGRP_REFRELE(gcgrp); 6643 if (ire == NULL) { 6644 if (gc != NULL) 6645 GC_REFRELE(gc); 6646 ire_refrele(gw_ire); 6647 return (ENOMEM); 6648 } 6649 6650 /* 6651 * POLICY: should we allow an RTF_HOST with address INADDR_ANY? 6652 * SUN/OS socket stuff does but do we really want to allow 0.0.0.0? 6653 */ 6654 6655 /* Add the new IRE. */ 6656 error = ire_add(&ire, q, mp, func, B_FALSE); 6657 if (error != 0) { 6658 /* 6659 * In the result of failure, ire_add() will have already 6660 * deleted the ire in question, so there is no need to 6661 * do that here. 6662 */ 6663 ire_refrele(gw_ire); 6664 return (error); 6665 } 6666 6667 if (flags & RTF_MULTIRT) { 6668 /* 6669 * Invoke the CGTP (multirouting) filtering module 6670 * to add the dst address in the filtering database. 6671 * Replicated inbound packets coming from that address 6672 * will be filtered to discard the duplicates. 6673 * It is not necessary to call the CGTP filter hook 6674 * when the dst address is a broadcast or multicast, 6675 * because an IP source address cannot be a broadcast 6676 * or a multicast. 6677 */ 6678 ire_t *ire_dst = ire_ctable_lookup(ire->ire_addr, 0, 6679 IRE_BROADCAST, NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE); 6680 if (ire_dst != NULL) { 6681 ip_cgtp_bcast_add(ire, ire_dst); 6682 ire_refrele(ire_dst); 6683 goto save_ire; 6684 } 6685 if ((ip_cgtp_filter_ops != NULL) && !CLASSD(ire->ire_addr)) { 6686 int res = ip_cgtp_filter_ops->cfo_add_dest_v4( 6687 ire->ire_addr, 6688 ire->ire_gateway_addr, 6689 ire->ire_src_addr, 6690 gw_ire->ire_src_addr); 6691 if (res != 0) { 6692 ire_refrele(gw_ire); 6693 ire_delete(ire); 6694 return (res); 6695 } 6696 } 6697 } 6698 6699 /* 6700 * Now that the prefix IRE entry has been created, delete any 6701 * existing gateway IRE cache entries as well as any IRE caches 6702 * using the gateway, and force them to be created through 6703 * ip_newroute. 6704 */ 6705 if (gc != NULL) { 6706 ASSERT(gcgrp != NULL); 6707 ire_clookup_delete_cache_gw(gw_addr, ALL_ZONES); 6708 } 6709 6710 save_ire: 6711 if (gw_ire != NULL) { 6712 ire_refrele(gw_ire); 6713 } 6714 /* 6715 * We do not do save_ire for the routes added with RTA_SRCIFP 6716 * flag. This route is only added and deleted by mipagent. 6717 * So, for simplicity of design, we refrain from saving 6718 * ires that are created with srcif value. This may change 6719 * in future if we find more usage of srcifp feature. 6720 */ 6721 if (ipif != NULL && src_ipif == NULL) { 6722 /* 6723 * Save enough information so that we can recreate the IRE if 6724 * the interface goes down and then up. The metrics associated 6725 * with the route will be saved as well when rts_setmetrics() is 6726 * called after the IRE has been created. In the case where 6727 * memory cannot be allocated, none of this information will be 6728 * saved. 6729 */ 6730 ipif_save_ire(ipif, ire); 6731 } 6732 if (ioctl_msg) 6733 ip_rts_rtmsg(RTM_OLDADD, ire, 0); 6734 if (ire_arg != NULL) { 6735 /* 6736 * Store the ire that was successfully added into where ire_arg 6737 * points to so that callers don't have to look it up 6738 * themselves (but they are responsible for ire_refrele()ing 6739 * the ire when they are finished with it). 6740 */ 6741 *ire_arg = ire; 6742 } else { 6743 ire_refrele(ire); /* Held in ire_add */ 6744 } 6745 if (ipif_refheld) 6746 ipif_refrele(ipif); 6747 return (0); 6748 } 6749 6750 /* 6751 * ip_rt_delete is called to delete an IPv4 route. 6752 * ipif_arg is passed in to associate it with the correct interface. 6753 * src_ipif is passed to associate the incoming interface of the packet. 6754 * We may need to restart this operation if the ipif cannot be looked up 6755 * due to an exclusive operation that is currently in progress. The restart 6756 * entry point is specified by 'func' 6757 */ 6758 /* ARGSUSED4 */ 6759 int 6760 ip_rt_delete(ipaddr_t dst_addr, ipaddr_t mask, ipaddr_t gw_addr, 6761 uint_t rtm_addrs, int flags, ipif_t *ipif_arg, ipif_t *src_ipif, 6762 boolean_t ioctl_msg, queue_t *q, mblk_t *mp, ipsq_func_t func) 6763 { 6764 ire_t *ire = NULL; 6765 ipif_t *ipif; 6766 boolean_t ipif_refheld = B_FALSE; 6767 uint_t type; 6768 uint_t match_flags = MATCH_IRE_TYPE; 6769 int err = 0; 6770 6771 ip1dbg(("ip_rt_delete:")); 6772 /* 6773 * If this is the case of RTF_HOST being set, then we set the netmask 6774 * to all ones. Otherwise, we use the netmask if one was supplied. 6775 */ 6776 if (flags & RTF_HOST) { 6777 mask = IP_HOST_MASK; 6778 match_flags |= MATCH_IRE_MASK; 6779 } else if (rtm_addrs & RTA_NETMASK) { 6780 match_flags |= MATCH_IRE_MASK; 6781 } 6782 6783 /* 6784 * Note that RTF_GATEWAY is never set on a delete, therefore 6785 * we check if the gateway address is one of our interfaces first, 6786 * and fall back on RTF_GATEWAY routes. 6787 * 6788 * This makes it possible to delete an original 6789 * IRE_IF_NORESOLVER/IRE_IF_RESOLVER - consistent with SunOS 4.1. 6790 * 6791 * As the interface index specified with the RTA_IFP sockaddr is the 6792 * same for all ipif's off of an ill, the matching logic below uses 6793 * MATCH_IRE_ILL if such an index was specified. This means a route 6794 * sharing the same prefix and interface index as the the route 6795 * intended to be deleted might be deleted instead if a RTA_IFP sockaddr 6796 * is specified in the request. 6797 * 6798 * On the other hand, since the gateway address will usually be 6799 * different for each ipif on the system, the matching logic 6800 * uses MATCH_IRE_IPIF in the case of a traditional interface 6801 * route. This means that interface routes for the same prefix can be 6802 * uniquely identified if they belong to distinct ipif's and if a 6803 * RTA_IFP sockaddr is not present. 6804 * 6805 * For more detail on specifying routes by gateway address and by 6806 * interface index, see the comments in ip_rt_add(). 6807 * gw_addr could be zero in some cases when both RTA_SRCIFP and 6808 * RTA_IFP are specified. If RTA_SRCIFP is specified and both 6809 * RTA_IFP and gateway_addr are NULL/zero, then delete will not 6810 * succeed. 6811 */ 6812 if (src_ipif != NULL) { 6813 if (ipif_arg == NULL && gw_addr != 0) { 6814 ipif_arg = ipif_lookup_interface(gw_addr, dst_addr, 6815 q, mp, func, &err); 6816 if (ipif_arg != NULL) 6817 ipif_refheld = B_TRUE; 6818 } 6819 if (ipif_arg == NULL) { 6820 err = (err == EINPROGRESS) ? err : ESRCH; 6821 return (err); 6822 } 6823 ipif = ipif_arg; 6824 } else { 6825 ipif = ipif_lookup_interface(gw_addr, dst_addr, 6826 q, mp, func, &err); 6827 if (ipif != NULL) 6828 ipif_refheld = B_TRUE; 6829 else if (err == EINPROGRESS) 6830 return (err); 6831 else 6832 err = 0; 6833 } 6834 if (ipif != NULL) { 6835 if (ipif_arg != NULL) { 6836 if (ipif_refheld) { 6837 ipif_refrele(ipif); 6838 ipif_refheld = B_FALSE; 6839 } 6840 ipif = ipif_arg; 6841 match_flags |= MATCH_IRE_ILL; 6842 } else { 6843 match_flags |= MATCH_IRE_IPIF; 6844 } 6845 if (src_ipif != NULL) { 6846 ire = ire_srcif_table_lookup(dst_addr, IRE_INTERFACE, 6847 ipif, src_ipif->ipif_ill, match_flags); 6848 } else { 6849 if (ipif->ipif_ire_type == IRE_LOOPBACK) { 6850 ire = ire_ctable_lookup(dst_addr, 0, 6851 IRE_LOOPBACK, ipif, ALL_ZONES, NULL, 6852 match_flags); 6853 } 6854 if (ire == NULL) { 6855 ire = ire_ftable_lookup(dst_addr, mask, 0, 6856 IRE_INTERFACE, ipif, NULL, ALL_ZONES, 0, 6857 NULL, match_flags); 6858 } 6859 } 6860 } 6861 6862 if (ire == NULL) { 6863 /* 6864 * At this point, the gateway address is not one of our own 6865 * addresses or a matching interface route was not found. We 6866 * set the IRE type to lookup based on whether 6867 * this is a host route, a default route or just a prefix. 6868 * 6869 * If an ipif_arg was passed in, then the lookup is based on an 6870 * interface index so MATCH_IRE_ILL is added to match_flags. 6871 * In any case, MATCH_IRE_IPIF is cleared and MATCH_IRE_GW is 6872 * set as the route being looked up is not a traditional 6873 * interface route. 6874 * Since we do not add gateway route with srcipif, we don't 6875 * expect to find it either. 6876 */ 6877 if (src_ipif != NULL) { 6878 if (ipif_refheld) 6879 ipif_refrele(ipif); 6880 return (ESRCH); 6881 } else { 6882 match_flags &= ~MATCH_IRE_IPIF; 6883 match_flags |= MATCH_IRE_GW; 6884 if (ipif_arg != NULL) 6885 match_flags |= MATCH_IRE_ILL; 6886 if (mask == IP_HOST_MASK) 6887 type = IRE_HOST; 6888 else if (mask == 0) 6889 type = IRE_DEFAULT; 6890 else 6891 type = IRE_PREFIX; 6892 ire = ire_ftable_lookup(dst_addr, mask, gw_addr, type, 6893 ipif_arg, NULL, ALL_ZONES, 0, NULL, match_flags); 6894 if (ire == NULL && type == IRE_HOST) { 6895 ire = ire_ftable_lookup(dst_addr, mask, gw_addr, 6896 IRE_HOST_REDIRECT, ipif_arg, NULL, 6897 ALL_ZONES, 0, NULL, match_flags); 6898 } 6899 } 6900 } 6901 6902 if (ipif_refheld) 6903 ipif_refrele(ipif); 6904 6905 /* ipif is not refheld anymore */ 6906 if (ire == NULL) 6907 return (ESRCH); 6908 6909 if (ire->ire_flags & RTF_MULTIRT) { 6910 /* 6911 * Invoke the CGTP (multirouting) filtering module 6912 * to remove the dst address from the filtering database. 6913 * Packets coming from that address will no longer be 6914 * filtered to remove duplicates. 6915 */ 6916 if (ip_cgtp_filter_ops != NULL) { 6917 err = ip_cgtp_filter_ops->cfo_del_dest_v4(ire->ire_addr, 6918 ire->ire_gateway_addr); 6919 } 6920 ip_cgtp_bcast_delete(ire); 6921 } 6922 6923 ipif = ire->ire_ipif; 6924 /* 6925 * Removing from ipif_saved_ire_mp is not necessary 6926 * when src_ipif being non-NULL. ip_rt_add does not 6927 * save the ires which src_ipif being non-NULL. 6928 */ 6929 if (ipif != NULL && src_ipif == NULL) { 6930 ipif_remove_ire(ipif, ire); 6931 } 6932 if (ioctl_msg) 6933 ip_rts_rtmsg(RTM_OLDDEL, ire, 0); 6934 ire_delete(ire); 6935 ire_refrele(ire); 6936 return (err); 6937 } 6938 6939 /* 6940 * ip_siocaddrt is called to complete processing of an SIOCADDRT IOCTL. 6941 */ 6942 /* ARGSUSED */ 6943 int 6944 ip_siocaddrt(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, 6945 ip_ioctl_cmd_t *ipip, void *dummy_if_req) 6946 { 6947 ipaddr_t dst_addr; 6948 ipaddr_t gw_addr; 6949 ipaddr_t mask; 6950 int error = 0; 6951 mblk_t *mp1; 6952 struct rtentry *rt; 6953 ipif_t *ipif = NULL; 6954 6955 ip1dbg(("ip_siocaddrt:")); 6956 /* Existence of mp1 verified in ip_wput_nondata */ 6957 mp1 = mp->b_cont->b_cont; 6958 rt = (struct rtentry *)mp1->b_rptr; 6959 6960 dst_addr = ((sin_t *)&rt->rt_dst)->sin_addr.s_addr; 6961 gw_addr = ((sin_t *)&rt->rt_gateway)->sin_addr.s_addr; 6962 6963 /* 6964 * If the RTF_HOST flag is on, this is a request to assign a gateway 6965 * to a particular host address. In this case, we set the netmask to 6966 * all ones for the particular destination address. Otherwise, 6967 * determine the netmask to be used based on dst_addr and the interfaces 6968 * in use. 6969 */ 6970 if (rt->rt_flags & RTF_HOST) { 6971 mask = IP_HOST_MASK; 6972 } else { 6973 /* 6974 * Note that ip_subnet_mask returns a zero mask in the case of 6975 * default (an all-zeroes address). 6976 */ 6977 mask = ip_subnet_mask(dst_addr, &ipif); 6978 } 6979 6980 error = ip_rt_add(dst_addr, mask, gw_addr, 0, rt->rt_flags, NULL, NULL, 6981 NULL, B_TRUE, q, mp, ip_process_ioctl, NULL); 6982 if (ipif != NULL) 6983 ipif_refrele(ipif); 6984 return (error); 6985 } 6986 6987 /* 6988 * ip_siocdelrt is called to complete processing of an SIOCDELRT IOCTL. 6989 */ 6990 /* ARGSUSED */ 6991 int 6992 ip_siocdelrt(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, 6993 ip_ioctl_cmd_t *ipip, void *dummy_if_req) 6994 { 6995 ipaddr_t dst_addr; 6996 ipaddr_t gw_addr; 6997 ipaddr_t mask; 6998 int error; 6999 mblk_t *mp1; 7000 struct rtentry *rt; 7001 ipif_t *ipif = NULL; 7002 7003 ip1dbg(("ip_siocdelrt:")); 7004 /* Existence of mp1 verified in ip_wput_nondata */ 7005 mp1 = mp->b_cont->b_cont; 7006 rt = (struct rtentry *)mp1->b_rptr; 7007 7008 dst_addr = ((sin_t *)&rt->rt_dst)->sin_addr.s_addr; 7009 gw_addr = ((sin_t *)&rt->rt_gateway)->sin_addr.s_addr; 7010 7011 /* 7012 * If the RTF_HOST flag is on, this is a request to delete a gateway 7013 * to a particular host address. In this case, we set the netmask to 7014 * all ones for the particular destination address. Otherwise, 7015 * determine the netmask to be used based on dst_addr and the interfaces 7016 * in use. 7017 */ 7018 if (rt->rt_flags & RTF_HOST) { 7019 mask = IP_HOST_MASK; 7020 } else { 7021 /* 7022 * Note that ip_subnet_mask returns a zero mask in the case of 7023 * default (an all-zeroes address). 7024 */ 7025 mask = ip_subnet_mask(dst_addr, &ipif); 7026 } 7027 7028 error = ip_rt_delete(dst_addr, mask, gw_addr, 7029 RTA_DST | RTA_GATEWAY | RTA_NETMASK, rt->rt_flags, NULL, NULL, 7030 B_TRUE, q, mp, ip_process_ioctl); 7031 if (ipif != NULL) 7032 ipif_refrele(ipif); 7033 return (error); 7034 } 7035 7036 /* 7037 * Enqueue the mp onto the ipsq, chained by b_next. 7038 * b_prev stores the function to be executed later, and b_queue the queue 7039 * where this mp originated. 7040 */ 7041 void 7042 ipsq_enq(ipsq_t *ipsq, queue_t *q, mblk_t *mp, ipsq_func_t func, int type, 7043 ill_t *pending_ill) 7044 { 7045 conn_t *connp = NULL; 7046 7047 ASSERT(MUTEX_HELD(&ipsq->ipsq_lock)); 7048 ASSERT(func != NULL); 7049 7050 mp->b_queue = q; 7051 mp->b_prev = (void *)func; 7052 mp->b_next = NULL; 7053 7054 switch (type) { 7055 case CUR_OP: 7056 if (ipsq->ipsq_mptail != NULL) { 7057 ASSERT(ipsq->ipsq_mphead != NULL); 7058 ipsq->ipsq_mptail->b_next = mp; 7059 } else { 7060 ASSERT(ipsq->ipsq_mphead == NULL); 7061 ipsq->ipsq_mphead = mp; 7062 } 7063 ipsq->ipsq_mptail = mp; 7064 break; 7065 7066 case NEW_OP: 7067 if (ipsq->ipsq_xopq_mptail != NULL) { 7068 ASSERT(ipsq->ipsq_xopq_mphead != NULL); 7069 ipsq->ipsq_xopq_mptail->b_next = mp; 7070 } else { 7071 ASSERT(ipsq->ipsq_xopq_mphead == NULL); 7072 ipsq->ipsq_xopq_mphead = mp; 7073 } 7074 ipsq->ipsq_xopq_mptail = mp; 7075 break; 7076 default: 7077 cmn_err(CE_PANIC, "ipsq_enq %d type \n", type); 7078 } 7079 7080 if (CONN_Q(q) && pending_ill != NULL) { 7081 connp = Q_TO_CONN(q); 7082 7083 ASSERT(MUTEX_HELD(&connp->conn_lock)); 7084 connp->conn_oper_pending_ill = pending_ill; 7085 } 7086 } 7087 7088 /* 7089 * Return the mp at the head of the ipsq. After emptying the ipsq 7090 * look at the next ioctl, if this ioctl is complete. Otherwise 7091 * return, we will resume when we complete the current ioctl. 7092 * The current ioctl will wait till it gets a response from the 7093 * driver below. 7094 */ 7095 static mblk_t * 7096 ipsq_dq(ipsq_t *ipsq) 7097 { 7098 mblk_t *mp; 7099 7100 ASSERT(MUTEX_HELD(&ipsq->ipsq_lock)); 7101 7102 mp = ipsq->ipsq_mphead; 7103 if (mp != NULL) { 7104 ipsq->ipsq_mphead = mp->b_next; 7105 if (ipsq->ipsq_mphead == NULL) 7106 ipsq->ipsq_mptail = NULL; 7107 mp->b_next = NULL; 7108 return (mp); 7109 } 7110 if (ipsq->ipsq_current_ipif != NULL) 7111 return (NULL); 7112 mp = ipsq->ipsq_xopq_mphead; 7113 if (mp != NULL) { 7114 ipsq->ipsq_xopq_mphead = mp->b_next; 7115 if (ipsq->ipsq_xopq_mphead == NULL) 7116 ipsq->ipsq_xopq_mptail = NULL; 7117 mp->b_next = NULL; 7118 return (mp); 7119 } 7120 return (NULL); 7121 } 7122 7123 /* 7124 * Enter the ipsq corresponding to ill, by waiting synchronously till 7125 * we can enter the ipsq exclusively. Unless 'force' is used, the ipsq 7126 * will have to drain completely before ipsq_enter returns success. 7127 * ipsq_current_ipif will be set if some exclusive ioctl is in progress, 7128 * and the ipsq_exit logic will start the next enqueued ioctl after 7129 * completion of the current ioctl. If 'force' is used, we don't wait 7130 * for the enqueued ioctls. This is needed when a conn_close wants to 7131 * enter the ipsq and abort an ioctl that is somehow stuck. Unplumb 7132 * of an ill can also use this option. But we dont' use it currently. 7133 */ 7134 #define ENTER_SQ_WAIT_TICKS 100 7135 boolean_t 7136 ipsq_enter(ill_t *ill, boolean_t force) 7137 { 7138 ipsq_t *ipsq; 7139 boolean_t waited_enough = B_FALSE; 7140 7141 /* 7142 * Holding the ill_lock prevents <ill-ipsq> assocs from changing. 7143 * Since the <ill-ipsq> assocs could change while we wait for the 7144 * writer, it is easier to wait on a fixed global rather than try to 7145 * cv_wait on a changing ipsq. 7146 */ 7147 mutex_enter(&ill->ill_lock); 7148 for (;;) { 7149 if (ill->ill_state_flags & ILL_CONDEMNED) { 7150 mutex_exit(&ill->ill_lock); 7151 return (B_FALSE); 7152 } 7153 7154 ipsq = ill->ill_phyint->phyint_ipsq; 7155 mutex_enter(&ipsq->ipsq_lock); 7156 if (ipsq->ipsq_writer == NULL && 7157 (ipsq->ipsq_current_ipif == NULL || waited_enough)) { 7158 break; 7159 } else if (ipsq->ipsq_writer != NULL) { 7160 mutex_exit(&ipsq->ipsq_lock); 7161 cv_wait(&ill->ill_cv, &ill->ill_lock); 7162 } else { 7163 mutex_exit(&ipsq->ipsq_lock); 7164 if (force) { 7165 (void) cv_timedwait(&ill->ill_cv, 7166 &ill->ill_lock, 7167 lbolt + ENTER_SQ_WAIT_TICKS); 7168 waited_enough = B_TRUE; 7169 continue; 7170 } else { 7171 cv_wait(&ill->ill_cv, &ill->ill_lock); 7172 } 7173 } 7174 } 7175 7176 ASSERT(ipsq->ipsq_mphead == NULL && ipsq->ipsq_mptail == NULL); 7177 ASSERT(ipsq->ipsq_reentry_cnt == 0); 7178 ipsq->ipsq_writer = curthread; 7179 ipsq->ipsq_reentry_cnt++; 7180 #ifdef ILL_DEBUG 7181 ipsq->ipsq_depth = getpcstack(ipsq->ipsq_stack, IP_STACK_DEPTH); 7182 #endif 7183 mutex_exit(&ipsq->ipsq_lock); 7184 mutex_exit(&ill->ill_lock); 7185 return (B_TRUE); 7186 } 7187 7188 /* 7189 * The ipsq_t (ipsq) is the synchronization data structure used to serialize 7190 * certain critical operations like plumbing (i.e. most set ioctls), 7191 * multicast joins, igmp/mld timers, IPMP operations etc. On a non-IPMP 7192 * system there is 1 ipsq per phyint. On an IPMP system there is 1 ipsq per 7193 * IPMP group. The ipsq serializes exclusive ioctls issued by applications 7194 * on a per ipsq basis in ipsq_xopq_mphead. It also protects against multiple 7195 * threads executing in the ipsq. Responses from the driver pertain to the 7196 * current ioctl (say a DL_BIND_ACK in response to a DL_BIND_REQUEST initiated 7197 * as part of bringing up the interface) and are enqueued in ipsq_mphead. 7198 * 7199 * If a thread does not want to reenter the ipsq when it is already writer, 7200 * it must make sure that the specified reentry point to be called later 7201 * when the ipsq is empty, nor any code path starting from the specified reentry 7202 * point must never ever try to enter the ipsq again. Otherwise it can lead 7203 * to an infinite loop. The reentry point ip_rput_dlpi_writer is an example. 7204 * When the thread that is currently exclusive finishes, it (ipsq_exit) 7205 * dequeues the requests waiting to become exclusive in ipsq_mphead and calls 7206 * the reentry point. When the list at ipsq_mphead becomes empty ipsq_exit 7207 * proceeds to dequeue the next ioctl in ipsq_xopq_mphead and start the next 7208 * ioctl if the current ioctl has completed. If the current ioctl is still 7209 * in progress it simply returns. The current ioctl could be waiting for 7210 * a response from another module (arp_ or the driver or could be waiting for 7211 * the ipif/ill/ire refcnts to drop to zero. In such a case the ipsq_pending_mp 7212 * and ipsq_pending_ipif are set. ipsq_current_ipif is set throughout the 7213 * execution of the ioctl and ipsq_exit does not start the next ioctl unless 7214 * ipsq_current_ipif is clear which happens only on ioctl completion. 7215 */ 7216 7217 /* 7218 * Try to enter the ipsq exclusively, corresponding to ipif or ill. (only 1 of 7219 * ipif or ill can be specified). The caller ensures ipif or ill is valid by 7220 * ref-holding it if necessary. If the ipsq cannot be entered, the mp is queued 7221 * completion. 7222 */ 7223 ipsq_t * 7224 ipsq_try_enter(ipif_t *ipif, ill_t *ill, queue_t *q, mblk_t *mp, 7225 ipsq_func_t func, int type, boolean_t reentry_ok) 7226 { 7227 ipsq_t *ipsq; 7228 7229 /* Only 1 of ipif or ill can be specified */ 7230 ASSERT((ipif != NULL) ^ (ill != NULL)); 7231 if (ipif != NULL) 7232 ill = ipif->ipif_ill; 7233 7234 /* 7235 * lock ordering ill_g_lock -> conn_lock -> ill_lock -> ipsq_lock 7236 * ipsq of an ill can't change when ill_lock is held. 7237 */ 7238 GRAB_CONN_LOCK(q); 7239 mutex_enter(&ill->ill_lock); 7240 ipsq = ill->ill_phyint->phyint_ipsq; 7241 mutex_enter(&ipsq->ipsq_lock); 7242 7243 /* 7244 * 1. Enter the ipsq if we are already writer and reentry is ok. 7245 * (Note: If the caller does not specify reentry_ok then neither 7246 * 'func' nor any of its callees must ever attempt to enter the ipsq 7247 * again. Otherwise it can lead to an infinite loop 7248 * 2. Enter the ipsq if there is no current writer and this attempted 7249 * entry is part of the current ioctl or operation 7250 * 3. Enter the ipsq if there is no current writer and this is a new 7251 * ioctl (or operation) and the ioctl (or operation) queue is 7252 * empty and there is no ioctl (or operation) currently in progress 7253 */ 7254 if ((ipsq->ipsq_writer == NULL && ((type == CUR_OP) || 7255 (type == NEW_OP && ipsq->ipsq_xopq_mphead == NULL && 7256 ipsq->ipsq_current_ipif == NULL))) || 7257 (ipsq->ipsq_writer == curthread && reentry_ok)) { 7258 /* Success. */ 7259 ipsq->ipsq_reentry_cnt++; 7260 ipsq->ipsq_writer = curthread; 7261 mutex_exit(&ipsq->ipsq_lock); 7262 mutex_exit(&ill->ill_lock); 7263 RELEASE_CONN_LOCK(q); 7264 #ifdef ILL_DEBUG 7265 ipsq->ipsq_depth = getpcstack(ipsq->ipsq_stack, IP_STACK_DEPTH); 7266 #endif 7267 return (ipsq); 7268 } 7269 7270 ipsq_enq(ipsq, q, mp, func, type, ill); 7271 7272 mutex_exit(&ipsq->ipsq_lock); 7273 mutex_exit(&ill->ill_lock); 7274 RELEASE_CONN_LOCK(q); 7275 return (NULL); 7276 } 7277 7278 /* 7279 * Try to enter the ipsq exclusively, corresponding to ipif or ill. (only 1 of 7280 * ipif or ill can be specified). The caller ensures ipif or ill is valid by 7281 * ref-holding it if necessary. If the ipsq cannot be entered, the mp is queued 7282 * completion. 7283 * 7284 * This function does a refrele on the ipif/ill. 7285 */ 7286 void 7287 qwriter_ip(ipif_t *ipif, ill_t *ill, queue_t *q, mblk_t *mp, 7288 ipsq_func_t func, int type, boolean_t reentry_ok) 7289 { 7290 ipsq_t *ipsq; 7291 7292 ipsq = ipsq_try_enter(ipif, ill, q, mp, func, type, reentry_ok); 7293 /* 7294 * Caller must have done a refhold on the ipif. ipif_refrele 7295 * happens on the passed ipif. We can do this since we are 7296 * already exclusive, or we won't access ipif henceforth, Both 7297 * this func and caller will just return if we ipsq_try_enter 7298 * fails above. This is needed because func needs to 7299 * see the correct refcount. Eg. removeif can work only then. 7300 */ 7301 if (ipif != NULL) 7302 ipif_refrele(ipif); 7303 else 7304 ill_refrele(ill); 7305 if (ipsq != NULL) { 7306 (*func)(ipsq, q, mp, NULL); 7307 ipsq_exit(ipsq, B_TRUE, B_TRUE); 7308 } 7309 } 7310 7311 /* 7312 * If there are more than ILL_GRP_CNT ills in a group, 7313 * we use kmem alloc'd buffers, else use the stack 7314 */ 7315 #define ILL_GRP_CNT 14 7316 /* 7317 * Drain the ipsq, if there are messages on it, and then leave the ipsq. 7318 * Called by a thread that is currently exclusive on this ipsq. 7319 */ 7320 void 7321 ipsq_exit(ipsq_t *ipsq, boolean_t start_igmp_timer, boolean_t start_mld_timer) 7322 { 7323 queue_t *q; 7324 mblk_t *mp; 7325 ipsq_func_t func; 7326 int next; 7327 ill_t **ill_list = NULL; 7328 size_t ill_list_size = 0; 7329 int cnt = 0; 7330 boolean_t need_ipsq_free = B_FALSE; 7331 7332 ASSERT(IAM_WRITER_IPSQ(ipsq)); 7333 mutex_enter(&ipsq->ipsq_lock); 7334 ASSERT(ipsq->ipsq_reentry_cnt >= 1); 7335 if (ipsq->ipsq_reentry_cnt != 1) { 7336 ipsq->ipsq_reentry_cnt--; 7337 mutex_exit(&ipsq->ipsq_lock); 7338 return; 7339 } 7340 7341 mp = ipsq_dq(ipsq); 7342 while (mp != NULL) { 7343 again: 7344 mutex_exit(&ipsq->ipsq_lock); 7345 func = (ipsq_func_t)mp->b_prev; 7346 q = (queue_t *)mp->b_queue; 7347 mp->b_prev = NULL; 7348 mp->b_queue = NULL; 7349 7350 /* 7351 * If 'q' is an conn queue, it is valid, since we did a 7352 * a refhold on the connp, at the start of the ioctl. 7353 * If 'q' is an ill queue, it is valid, since close of an 7354 * ill will clean up the 'ipsq'. 7355 */ 7356 (*func)(ipsq, q, mp, NULL); 7357 7358 mutex_enter(&ipsq->ipsq_lock); 7359 mp = ipsq_dq(ipsq); 7360 } 7361 7362 mutex_exit(&ipsq->ipsq_lock); 7363 7364 /* 7365 * Need to grab the locks in the right order. Need to 7366 * atomically check (under ipsq_lock) that there are no 7367 * messages before relinquishing the ipsq. Also need to 7368 * atomically wakeup waiters on ill_cv while holding ill_lock. 7369 * Holding ill_g_lock ensures that ipsq list of ills is stable. 7370 * If we need to call ill_split_ipsq and change <ill-ipsq> we need 7371 * to grab ill_g_lock as writer. 7372 */ 7373 rw_enter(&ill_g_lock, ipsq->ipsq_split ? RW_WRITER : RW_READER); 7374 7375 /* ipsq_refs can't change while ill_g_lock is held as reader */ 7376 if (ipsq->ipsq_refs != 0) { 7377 /* At most 2 ills v4/v6 per phyint */ 7378 cnt = ipsq->ipsq_refs << 1; 7379 ill_list_size = cnt * sizeof (ill_t *); 7380 /* 7381 * If memory allocation fails, we will do the split 7382 * the next time ipsq_exit is called for whatever reason. 7383 * As long as the ipsq_split flag is set the need to 7384 * split is remembered. 7385 */ 7386 ill_list = kmem_zalloc(ill_list_size, KM_NOSLEEP); 7387 if (ill_list != NULL) 7388 cnt = ill_lock_ipsq_ills(ipsq, ill_list, cnt); 7389 } 7390 mutex_enter(&ipsq->ipsq_lock); 7391 mp = ipsq_dq(ipsq); 7392 if (mp != NULL) { 7393 /* oops, some message has landed up, we can't get out */ 7394 if (ill_list != NULL) 7395 ill_unlock_ills(ill_list, cnt); 7396 rw_exit(&ill_g_lock); 7397 if (ill_list != NULL) 7398 kmem_free(ill_list, ill_list_size); 7399 ill_list = NULL; 7400 ill_list_size = 0; 7401 cnt = 0; 7402 goto again; 7403 } 7404 7405 /* 7406 * Split only if no ioctl is pending and if memory alloc succeeded 7407 * above. 7408 */ 7409 if (ipsq->ipsq_split && ipsq->ipsq_current_ipif == NULL && 7410 ill_list != NULL) { 7411 /* 7412 * No new ill can join this ipsq since we are holding the 7413 * ill_g_lock. Hence ill_split_ipsq can safely traverse the 7414 * ipsq. ill_split_ipsq may fail due to memory shortage. 7415 * If so we will retry on the next ipsq_exit. 7416 */ 7417 ipsq->ipsq_split = ill_split_ipsq(ipsq); 7418 } 7419 7420 /* 7421 * We are holding the ipsq lock, hence no new messages can 7422 * land up on the ipsq, and there are no messages currently. 7423 * Now safe to get out. Wake up waiters and relinquish ipsq 7424 * atomically while holding ill locks. 7425 */ 7426 ipsq->ipsq_writer = NULL; 7427 ipsq->ipsq_reentry_cnt--; 7428 ASSERT(ipsq->ipsq_reentry_cnt == 0); 7429 #ifdef ILL_DEBUG 7430 ipsq->ipsq_depth = 0; 7431 #endif 7432 mutex_exit(&ipsq->ipsq_lock); 7433 /* 7434 * For IPMP this should wake up all ills in this ipsq. 7435 * We need to hold the ill_lock while waking up waiters to 7436 * avoid missed wakeups. But there is no need to acquire all 7437 * the ill locks and then wakeup. If we have not acquired all 7438 * the locks (due to memory failure above) ill_signal_ipsq_ills 7439 * wakes up ills one at a time after getting the right ill_lock 7440 */ 7441 ill_signal_ipsq_ills(ipsq, ill_list != NULL); 7442 if (ill_list != NULL) 7443 ill_unlock_ills(ill_list, cnt); 7444 if (ipsq->ipsq_refs == 0) 7445 need_ipsq_free = B_TRUE; 7446 rw_exit(&ill_g_lock); 7447 if (ill_list != 0) 7448 kmem_free(ill_list, ill_list_size); 7449 7450 if (need_ipsq_free) { 7451 /* 7452 * Free the ipsq. ipsq_refs can't increase because ipsq can't be 7453 * looked up. ipsq can be looked up only thru ill or phyint 7454 * and there are no ills/phyint on this ipsq. 7455 */ 7456 ipsq_delete(ipsq); 7457 } 7458 /* 7459 * Now start any igmp or mld timers that could not be started 7460 * while inside the ipsq. The timers can't be started while inside 7461 * the ipsq, since igmp_start_timers may need to call untimeout() 7462 * which can't be done while holding a lock i.e. the ipsq. Otherwise 7463 * there could be a deadlock since the timeout handlers 7464 * mld_timeout_handler / igmp_timeout_handler also synchronously 7465 * wait in ipsq_enter() trying to get the ipsq. 7466 * 7467 * However there is one exception to the above. If this thread is 7468 * itself the igmp/mld timeout handler thread, then we don't want 7469 * to start any new timer until the current handler is done. The 7470 * handler thread passes in B_FALSE for start_igmp/mld_timers, while 7471 * all others pass B_TRUE. 7472 */ 7473 if (start_igmp_timer) { 7474 mutex_enter(&igmp_timer_lock); 7475 next = igmp_deferred_next; 7476 igmp_deferred_next = INFINITY; 7477 mutex_exit(&igmp_timer_lock); 7478 7479 if (next != INFINITY) 7480 igmp_start_timers(next); 7481 } 7482 7483 if (start_mld_timer) { 7484 mutex_enter(&mld_timer_lock); 7485 next = mld_deferred_next; 7486 mld_deferred_next = INFINITY; 7487 mutex_exit(&mld_timer_lock); 7488 7489 if (next != INFINITY) 7490 mld_start_timers(next); 7491 } 7492 } 7493 7494 /* 7495 * The ill is closing. Flush all messages on the ipsq that originated 7496 * from this ill. Usually there wont' be any messages on the ipsq_xopq_mphead 7497 * for this ill since ipsq_enter could not have entered until then. 7498 * New messages can't be queued since the CONDEMNED flag is set. 7499 */ 7500 static void 7501 ipsq_flush(ill_t *ill) 7502 { 7503 queue_t *q; 7504 mblk_t *prev; 7505 mblk_t *mp; 7506 mblk_t *mp_next; 7507 ipsq_t *ipsq; 7508 7509 ASSERT(IAM_WRITER_ILL(ill)); 7510 ipsq = ill->ill_phyint->phyint_ipsq; 7511 /* 7512 * Flush any messages sent up by the driver. 7513 */ 7514 mutex_enter(&ipsq->ipsq_lock); 7515 for (prev = NULL, mp = ipsq->ipsq_mphead; mp != NULL; mp = mp_next) { 7516 mp_next = mp->b_next; 7517 q = mp->b_queue; 7518 if (q == ill->ill_rq || q == ill->ill_wq) { 7519 /* Remove the mp from the ipsq */ 7520 if (prev == NULL) 7521 ipsq->ipsq_mphead = mp->b_next; 7522 else 7523 prev->b_next = mp->b_next; 7524 if (ipsq->ipsq_mptail == mp) { 7525 ASSERT(mp_next == NULL); 7526 ipsq->ipsq_mptail = prev; 7527 } 7528 inet_freemsg(mp); 7529 } else { 7530 prev = mp; 7531 } 7532 } 7533 mutex_exit(&ipsq->ipsq_lock); 7534 (void) ipsq_pending_mp_cleanup(ill, NULL); 7535 ipsq_xopq_mp_cleanup(ill, NULL); 7536 ill_pending_mp_cleanup(ill); 7537 } 7538 7539 /* 7540 * Clean up one squeue element. ill_inuse_ref is protected by ill_lock. 7541 * The real cleanup happens behind the squeue via ip_squeue_clean function but 7542 * we need to protect ourselfs from 2 threads trying to cleanup at the same 7543 * time (possible with one port going down for aggr and someone tearing down the 7544 * entire aggr simultaneously. So we use ill_inuse_ref protected by ill_lock 7545 * to indicate when the cleanup has started (1 ref) and when the cleanup 7546 * is done (0 ref). When a new ring gets assigned to squeue, we start by 7547 * putting 2 ref on ill_inuse_ref. 7548 */ 7549 static void 7550 ipsq_clean_ring(ill_t *ill, ill_rx_ring_t *rx_ring) 7551 { 7552 conn_t *connp; 7553 squeue_t *sqp; 7554 mblk_t *mp; 7555 7556 ASSERT(rx_ring != NULL); 7557 7558 /* Just clean one squeue */ 7559 mutex_enter(&ill->ill_lock); 7560 /* 7561 * Reset the ILL_SOFT_RING_ASSIGN bit so that 7562 * ip_squeue_soft_ring_affinty() will not go 7563 * ahead with assigning rings. 7564 */ 7565 ill->ill_state_flags &= ~ILL_SOFT_RING_ASSIGN; 7566 while (rx_ring->rr_ring_state == ILL_RING_INPROC) 7567 /* Some operations pending on the ring. Wait */ 7568 cv_wait(&ill->ill_cv, &ill->ill_lock); 7569 7570 if (rx_ring->rr_ring_state != ILL_RING_INUSE) { 7571 /* 7572 * Someone already trying to clean 7573 * this squeue or its already been cleaned. 7574 */ 7575 mutex_exit(&ill->ill_lock); 7576 return; 7577 } 7578 sqp = rx_ring->rr_sqp; 7579 7580 if (sqp == NULL) { 7581 /* 7582 * The rx_ring never had a squeue assigned to it. 7583 * We are under ill_lock so we can clean it up 7584 * here itself since no one can get to it. 7585 */ 7586 rx_ring->rr_blank = NULL; 7587 rx_ring->rr_handle = NULL; 7588 rx_ring->rr_sqp = NULL; 7589 rx_ring->rr_ring_state = ILL_RING_FREE; 7590 mutex_exit(&ill->ill_lock); 7591 return; 7592 } 7593 7594 /* Set the state that its being cleaned */ 7595 rx_ring->rr_ring_state = ILL_RING_BEING_FREED; 7596 ASSERT(sqp != NULL); 7597 mutex_exit(&ill->ill_lock); 7598 7599 /* 7600 * Use the preallocated ill_unbind_conn for this purpose 7601 */ 7602 connp = ill->ill_dls_capab->ill_unbind_conn; 7603 mp = &connp->conn_tcp->tcp_closemp; 7604 CONN_INC_REF(connp); 7605 squeue_enter(sqp, mp, ip_squeue_clean, connp, NULL); 7606 7607 mutex_enter(&ill->ill_lock); 7608 while (rx_ring->rr_ring_state != ILL_RING_FREE) 7609 cv_wait(&ill->ill_cv, &ill->ill_lock); 7610 7611 mutex_exit(&ill->ill_lock); 7612 } 7613 7614 static void 7615 ipsq_clean_all(ill_t *ill) 7616 { 7617 int idx; 7618 7619 /* 7620 * No need to clean if poll_capab isn't set for this ill 7621 */ 7622 if (!(ill->ill_capabilities & (ILL_CAPAB_POLL|ILL_CAPAB_SOFT_RING))) 7623 return; 7624 7625 for (idx = 0; idx < ILL_MAX_RINGS; idx++) { 7626 ill_rx_ring_t *ipr = &ill->ill_dls_capab->ill_ring_tbl[idx]; 7627 ipsq_clean_ring(ill, ipr); 7628 } 7629 7630 ill->ill_capabilities &= ~(ILL_CAPAB_POLL|ILL_CAPAB_SOFT_RING); 7631 } 7632 7633 /* ARGSUSED */ 7634 int 7635 ip_sioctl_slifoindex(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 7636 ip_ioctl_cmd_t *ipip, void *ifreq) 7637 { 7638 ill_t *ill; 7639 struct lifreq *lifr = (struct lifreq *)ifreq; 7640 boolean_t isv6; 7641 conn_t *connp; 7642 7643 connp = Q_TO_CONN(q); 7644 isv6 = connp->conn_af_isv6; 7645 /* 7646 * Set original index. 7647 * Failover and failback move logical interfaces 7648 * from one physical interface to another. The 7649 * original index indicates the parent of a logical 7650 * interface, in other words, the physical interface 7651 * the logical interface will be moved back to on 7652 * failback. 7653 */ 7654 7655 /* 7656 * Don't allow the original index to be changed 7657 * for non-failover addresses, autoconfigured 7658 * addresses, or IPv6 link local addresses. 7659 */ 7660 if (((ipif->ipif_flags & (IPIF_NOFAILOVER | IPIF_ADDRCONF)) != NULL) || 7661 (isv6 && IN6_IS_ADDR_LINKLOCAL(&ipif->ipif_v6lcl_addr))) { 7662 return (EINVAL); 7663 } 7664 /* 7665 * The new original index must be in use by some 7666 * physical interface. 7667 */ 7668 ill = ill_lookup_on_ifindex(lifr->lifr_index, isv6, NULL, NULL, 7669 NULL, NULL); 7670 if (ill == NULL) 7671 return (ENXIO); 7672 ill_refrele(ill); 7673 7674 ipif->ipif_orig_ifindex = lifr->lifr_index; 7675 /* 7676 * When this ipif gets failed back, don't 7677 * preserve the original id, as it is no 7678 * longer applicable. 7679 */ 7680 ipif->ipif_orig_ipifid = 0; 7681 /* 7682 * For IPv4, change the original index of any 7683 * multicast addresses associated with the 7684 * ipif to the new value. 7685 */ 7686 if (!isv6) { 7687 ilm_t *ilm; 7688 7689 mutex_enter(&ipif->ipif_ill->ill_lock); 7690 for (ilm = ipif->ipif_ill->ill_ilm; ilm != NULL; 7691 ilm = ilm->ilm_next) { 7692 if (ilm->ilm_ipif == ipif) { 7693 ilm->ilm_orig_ifindex = lifr->lifr_index; 7694 } 7695 } 7696 mutex_exit(&ipif->ipif_ill->ill_lock); 7697 } 7698 return (0); 7699 } 7700 7701 /* ARGSUSED */ 7702 int 7703 ip_sioctl_get_oindex(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 7704 ip_ioctl_cmd_t *ipip, void *ifreq) 7705 { 7706 struct lifreq *lifr = (struct lifreq *)ifreq; 7707 7708 /* 7709 * Get the original interface index i.e the one 7710 * before FAILOVER if it ever happened. 7711 */ 7712 lifr->lifr_index = ipif->ipif_orig_ifindex; 7713 return (0); 7714 } 7715 7716 /* 7717 * Parse an iftun_req structure coming down SIOC[GS]TUNPARAM ioctls, 7718 * refhold and return the associated ipif 7719 */ 7720 int 7721 ip_extract_tunreq(queue_t *q, mblk_t *mp, ipif_t **ipifp, ipsq_func_t func) 7722 { 7723 boolean_t exists; 7724 struct iftun_req *ta; 7725 ipif_t *ipif; 7726 ill_t *ill; 7727 boolean_t isv6; 7728 mblk_t *mp1; 7729 int error; 7730 conn_t *connp; 7731 7732 /* Existence verified in ip_wput_nondata */ 7733 mp1 = mp->b_cont->b_cont; 7734 ta = (struct iftun_req *)mp1->b_rptr; 7735 /* 7736 * Null terminate the string to protect against buffer 7737 * overrun. String was generated by user code and may not 7738 * be trusted. 7739 */ 7740 ta->ifta_lifr_name[LIFNAMSIZ - 1] = '\0'; 7741 7742 connp = Q_TO_CONN(q); 7743 isv6 = connp->conn_af_isv6; 7744 7745 /* Disallows implicit create */ 7746 ipif = ipif_lookup_on_name(ta->ifta_lifr_name, 7747 mi_strlen(ta->ifta_lifr_name), B_FALSE, &exists, isv6, 7748 connp->conn_zoneid, CONNP_TO_WQ(connp), mp, func, &error); 7749 if (ipif == NULL) 7750 return (error); 7751 7752 if (ipif->ipif_id != 0) { 7753 /* 7754 * We really don't want to set/get tunnel parameters 7755 * on virtual tunnel interfaces. Only allow the 7756 * base tunnel to do these. 7757 */ 7758 ipif_refrele(ipif); 7759 return (EINVAL); 7760 } 7761 7762 /* 7763 * Send down to tunnel mod for ioctl processing. 7764 * Will finish ioctl in ip_rput_other(). 7765 */ 7766 ill = ipif->ipif_ill; 7767 if (ill->ill_net_type == IRE_LOOPBACK) { 7768 ipif_refrele(ipif); 7769 return (EOPNOTSUPP); 7770 } 7771 7772 if (ill->ill_wq == NULL) { 7773 ipif_refrele(ipif); 7774 return (ENXIO); 7775 } 7776 /* 7777 * Mark the ioctl as coming from an IPv6 interface for 7778 * tun's convenience. 7779 */ 7780 if (ill->ill_isv6) 7781 ta->ifta_flags |= 0x80000000; 7782 *ipifp = ipif; 7783 return (0); 7784 } 7785 7786 /* 7787 * Parse an ifreq or lifreq struct coming down ioctls and refhold 7788 * and return the associated ipif. 7789 * Return value: 7790 * Non zero: An error has occurred. ci may not be filled out. 7791 * zero : ci is filled out with the ioctl cmd in ci.ci_name, and 7792 * a held ipif in ci.ci_ipif. 7793 */ 7794 int 7795 ip_extract_lifreq_cmn(queue_t *q, mblk_t *mp, int cmd_type, int flags, 7796 cmd_info_t *ci, ipsq_func_t func) 7797 { 7798 sin_t *sin; 7799 sin6_t *sin6; 7800 char *name; 7801 struct ifreq *ifr; 7802 struct lifreq *lifr; 7803 ipif_t *ipif = NULL; 7804 ill_t *ill; 7805 conn_t *connp; 7806 boolean_t isv6; 7807 struct iocblk *iocp = (struct iocblk *)mp->b_rptr; 7808 boolean_t exists; 7809 int err; 7810 mblk_t *mp1; 7811 zoneid_t zoneid; 7812 7813 if (q->q_next != NULL) { 7814 ill = (ill_t *)q->q_ptr; 7815 isv6 = ill->ill_isv6; 7816 connp = NULL; 7817 zoneid = ALL_ZONES; 7818 } else { 7819 ill = NULL; 7820 connp = Q_TO_CONN(q); 7821 isv6 = connp->conn_af_isv6; 7822 zoneid = connp->conn_zoneid; 7823 if (zoneid == GLOBAL_ZONEID) { 7824 /* global zone can access ipifs in all zones */ 7825 zoneid = ALL_ZONES; 7826 } 7827 } 7828 7829 /* Has been checked in ip_wput_nondata */ 7830 mp1 = mp->b_cont->b_cont; 7831 7832 7833 if (cmd_type == IF_CMD) { 7834 /* This a old style SIOC[GS]IF* command */ 7835 ifr = (struct ifreq *)mp1->b_rptr; 7836 /* 7837 * Null terminate the string to protect against buffer 7838 * overrun. String was generated by user code and may not 7839 * be trusted. 7840 */ 7841 ifr->ifr_name[IFNAMSIZ - 1] = '\0'; 7842 sin = (sin_t *)&ifr->ifr_addr; 7843 name = ifr->ifr_name; 7844 ci->ci_sin = sin; 7845 ci->ci_sin6 = NULL; 7846 ci->ci_lifr = (struct lifreq *)ifr; 7847 } else { 7848 /* This a new style SIOC[GS]LIF* command */ 7849 ASSERT(cmd_type == LIF_CMD); 7850 lifr = (struct lifreq *)mp1->b_rptr; 7851 /* 7852 * Null terminate the string to protect against buffer 7853 * overrun. String was generated by user code and may not 7854 * be trusted. 7855 */ 7856 lifr->lifr_name[LIFNAMSIZ - 1] = '\0'; 7857 name = lifr->lifr_name; 7858 sin = (sin_t *)&lifr->lifr_addr; 7859 sin6 = (sin6_t *)&lifr->lifr_addr; 7860 if (iocp->ioc_cmd == SIOCSLIFGROUPNAME) { 7861 (void) strncpy(ci->ci_groupname, lifr->lifr_groupname, 7862 LIFNAMSIZ); 7863 } 7864 ci->ci_sin = sin; 7865 ci->ci_sin6 = sin6; 7866 ci->ci_lifr = lifr; 7867 } 7868 7869 7870 if (iocp->ioc_cmd == SIOCSLIFNAME) { 7871 /* 7872 * The ioctl will be failed if the ioctl comes down 7873 * an conn stream 7874 */ 7875 if (ill == NULL) { 7876 /* 7877 * Not an ill queue, return EINVAL same as the 7878 * old error code. 7879 */ 7880 return (ENXIO); 7881 } 7882 ipif = ill->ill_ipif; 7883 ipif_refhold(ipif); 7884 } else { 7885 ipif = ipif_lookup_on_name(name, mi_strlen(name), B_FALSE, 7886 &exists, isv6, zoneid, 7887 (connp == NULL) ? q : CONNP_TO_WQ(connp), mp, func, &err); 7888 if (ipif == NULL) { 7889 if (err == EINPROGRESS) 7890 return (err); 7891 if (iocp->ioc_cmd == SIOCLIFFAILOVER || 7892 iocp->ioc_cmd == SIOCLIFFAILBACK) { 7893 /* 7894 * Need to try both v4 and v6 since this 7895 * ioctl can come down either v4 or v6 7896 * socket. The lifreq.lifr_family passed 7897 * down by this ioctl is AF_UNSPEC. 7898 */ 7899 ipif = ipif_lookup_on_name(name, 7900 mi_strlen(name), B_FALSE, &exists, !isv6, 7901 zoneid, (connp == NULL) ? q : 7902 CONNP_TO_WQ(connp), mp, func, &err); 7903 if (err == EINPROGRESS) 7904 return (err); 7905 } 7906 err = 0; /* Ensure we don't use it below */ 7907 } 7908 } 7909 7910 /* 7911 * Old style [GS]IFCMD does not admit IPv6 ipif 7912 */ 7913 if (ipif != NULL && ipif->ipif_isv6 && cmd_type == IF_CMD) { 7914 ipif_refrele(ipif); 7915 return (ENXIO); 7916 } 7917 7918 if (ipif == NULL && ill != NULL && ill->ill_ipif != NULL && 7919 name[0] == '\0') { 7920 /* 7921 * Handle a or a SIOC?IF* with a null name 7922 * during plumb (on the ill queue before the I_PLINK). 7923 */ 7924 ipif = ill->ill_ipif; 7925 ipif_refhold(ipif); 7926 } 7927 7928 if (ipif == NULL) 7929 return (ENXIO); 7930 7931 /* 7932 * Allow only GET operations if this ipif has been created 7933 * temporarily due to a MOVE operation. 7934 */ 7935 if (ipif->ipif_replace_zero && !(flags & IPI_REPL)) { 7936 ipif_refrele(ipif); 7937 return (EINVAL); 7938 } 7939 7940 ci->ci_ipif = ipif; 7941 return (0); 7942 } 7943 7944 /* 7945 * Return the total number of ipifs. 7946 */ 7947 static uint_t 7948 ip_get_numifs(zoneid_t zoneid) 7949 { 7950 uint_t numifs = 0; 7951 ill_t *ill; 7952 ill_walk_context_t ctx; 7953 ipif_t *ipif; 7954 7955 rw_enter(&ill_g_lock, RW_READER); 7956 ill = ILL_START_WALK_V4(&ctx); 7957 7958 while (ill != NULL) { 7959 for (ipif = ill->ill_ipif; ipif != NULL; 7960 ipif = ipif->ipif_next) { 7961 if (ipif->ipif_zoneid == zoneid || 7962 ipif->ipif_zoneid == ALL_ZONES) 7963 numifs++; 7964 } 7965 ill = ill_next(&ctx, ill); 7966 } 7967 rw_exit(&ill_g_lock); 7968 return (numifs); 7969 } 7970 7971 /* 7972 * Return the total number of ipifs. 7973 */ 7974 static uint_t 7975 ip_get_numlifs(int family, int lifn_flags, zoneid_t zoneid) 7976 { 7977 uint_t numifs = 0; 7978 ill_t *ill; 7979 ipif_t *ipif; 7980 ill_walk_context_t ctx; 7981 7982 ip1dbg(("ip_get_numlifs(%d %u %d)\n", family, lifn_flags, (int)zoneid)); 7983 7984 rw_enter(&ill_g_lock, RW_READER); 7985 if (family == AF_INET) 7986 ill = ILL_START_WALK_V4(&ctx); 7987 else if (family == AF_INET6) 7988 ill = ILL_START_WALK_V6(&ctx); 7989 else 7990 ill = ILL_START_WALK_ALL(&ctx); 7991 7992 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 7993 for (ipif = ill->ill_ipif; ipif != NULL; 7994 ipif = ipif->ipif_next) { 7995 if ((ipif->ipif_flags & IPIF_NOXMIT) && 7996 !(lifn_flags & LIFC_NOXMIT)) 7997 continue; 7998 if ((ipif->ipif_flags & IPIF_TEMPORARY) && 7999 !(lifn_flags & LIFC_TEMPORARY)) 8000 continue; 8001 if (((ipif->ipif_flags & 8002 (IPIF_NOXMIT|IPIF_NOLOCAL| 8003 IPIF_DEPRECATED)) || 8004 (ill->ill_phyint->phyint_flags & 8005 PHYI_LOOPBACK) || 8006 !(ipif->ipif_flags & IPIF_UP)) && 8007 (lifn_flags & LIFC_EXTERNAL_SOURCE)) 8008 continue; 8009 8010 if (zoneid != ipif->ipif_zoneid && 8011 ipif->ipif_zoneid != ALL_ZONES && 8012 (zoneid != GLOBAL_ZONEID || 8013 !(lifn_flags & LIFC_ALLZONES))) 8014 continue; 8015 8016 numifs++; 8017 } 8018 } 8019 rw_exit(&ill_g_lock); 8020 return (numifs); 8021 } 8022 8023 uint_t 8024 ip_get_lifsrcofnum(ill_t *ill) 8025 { 8026 uint_t numifs = 0; 8027 ill_t *ill_head = ill; 8028 8029 /* 8030 * ill_g_usesrc_lock protects ill_usesrc_grp_next, for example, some 8031 * other thread may be trying to relink the ILLs in this usesrc group 8032 * and adjusting the ill_usesrc_grp_next pointers 8033 */ 8034 rw_enter(&ill_g_usesrc_lock, RW_READER); 8035 if ((ill->ill_usesrc_ifindex == 0) && 8036 (ill->ill_usesrc_grp_next != NULL)) { 8037 for (; (ill != NULL) && (ill->ill_usesrc_grp_next != ill_head); 8038 ill = ill->ill_usesrc_grp_next) 8039 numifs++; 8040 } 8041 rw_exit(&ill_g_usesrc_lock); 8042 8043 return (numifs); 8044 } 8045 8046 /* Null values are passed in for ipif, sin, and ifreq */ 8047 /* ARGSUSED */ 8048 int 8049 ip_sioctl_get_ifnum(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, 8050 mblk_t *mp, ip_ioctl_cmd_t *ipip, void *ifreq) 8051 { 8052 int *nump; 8053 8054 ASSERT(q->q_next == NULL); /* not a valid ioctl for ip as a module */ 8055 8056 /* Existence of b_cont->b_cont checked in ip_wput_nondata */ 8057 nump = (int *)mp->b_cont->b_cont->b_rptr; 8058 8059 *nump = ip_get_numifs(Q_TO_CONN(q)->conn_zoneid); 8060 ip1dbg(("ip_sioctl_get_ifnum numifs %d", *nump)); 8061 return (0); 8062 } 8063 8064 /* Null values are passed in for ipif, sin, and ifreq */ 8065 /* ARGSUSED */ 8066 int 8067 ip_sioctl_get_lifnum(ipif_t *dummy_ipif, sin_t *dummy_sin, 8068 queue_t *q, mblk_t *mp, ip_ioctl_cmd_t *ipip, void *ifreq) 8069 { 8070 struct lifnum *lifn; 8071 mblk_t *mp1; 8072 8073 ASSERT(q->q_next == NULL); /* not a valid ioctl for ip as a module */ 8074 8075 /* Existence checked in ip_wput_nondata */ 8076 mp1 = mp->b_cont->b_cont; 8077 8078 lifn = (struct lifnum *)mp1->b_rptr; 8079 switch (lifn->lifn_family) { 8080 case AF_UNSPEC: 8081 case AF_INET: 8082 case AF_INET6: 8083 break; 8084 default: 8085 return (EAFNOSUPPORT); 8086 } 8087 8088 lifn->lifn_count = ip_get_numlifs(lifn->lifn_family, lifn->lifn_flags, 8089 Q_TO_CONN(q)->conn_zoneid); 8090 ip1dbg(("ip_sioctl_get_lifnum numifs %d", lifn->lifn_count)); 8091 return (0); 8092 } 8093 8094 /* ARGSUSED */ 8095 int 8096 ip_sioctl_get_ifconf(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, 8097 mblk_t *mp, ip_ioctl_cmd_t *ipip, void *ifreq) 8098 { 8099 STRUCT_HANDLE(ifconf, ifc); 8100 mblk_t *mp1; 8101 struct iocblk *iocp; 8102 struct ifreq *ifr; 8103 ill_walk_context_t ctx; 8104 ill_t *ill; 8105 ipif_t *ipif; 8106 struct sockaddr_in *sin; 8107 int32_t ifclen; 8108 zoneid_t zoneid; 8109 8110 ASSERT(q->q_next == NULL); /* not valid ioctls for ip as a module */ 8111 8112 ip1dbg(("ip_sioctl_get_ifconf")); 8113 /* Existence verified in ip_wput_nondata */ 8114 mp1 = mp->b_cont->b_cont; 8115 iocp = (struct iocblk *)mp->b_rptr; 8116 zoneid = Q_TO_CONN(q)->conn_zoneid; 8117 8118 /* 8119 * The original SIOCGIFCONF passed in a struct ifconf which specified 8120 * the user buffer address and length into which the list of struct 8121 * ifreqs was to be copied. Since AT&T Streams does not seem to 8122 * allow M_COPYOUT to be used in conjunction with I_STR IOCTLS, 8123 * the SIOCGIFCONF operation was redefined to simply provide 8124 * a large output buffer into which we are supposed to jam the ifreq 8125 * array. The same ioctl command code was used, despite the fact that 8126 * both the applications and the kernel code had to change, thus making 8127 * it impossible to support both interfaces. 8128 * 8129 * For reasons not good enough to try to explain, the following 8130 * algorithm is used for deciding what to do with one of these: 8131 * If the IOCTL comes in as an I_STR, it is assumed to be of the new 8132 * form with the output buffer coming down as the continuation message. 8133 * If it arrives as a TRANSPARENT IOCTL, it is assumed to be old style, 8134 * and we have to copy in the ifconf structure to find out how big the 8135 * output buffer is and where to copy out to. Sure no problem... 8136 * 8137 */ 8138 STRUCT_SET_HANDLE(ifc, iocp->ioc_flag, NULL); 8139 if ((mp1->b_wptr - mp1->b_rptr) == STRUCT_SIZE(ifc)) { 8140 int numifs = 0; 8141 size_t ifc_bufsize; 8142 8143 /* 8144 * Must be (better be!) continuation of a TRANSPARENT 8145 * IOCTL. We just copied in the ifconf structure. 8146 */ 8147 STRUCT_SET_HANDLE(ifc, iocp->ioc_flag, 8148 (struct ifconf *)mp1->b_rptr); 8149 8150 /* 8151 * Allocate a buffer to hold requested information. 8152 * 8153 * If ifc_len is larger than what is needed, we only 8154 * allocate what we will use. 8155 * 8156 * If ifc_len is smaller than what is needed, return 8157 * EINVAL. 8158 * 8159 * XXX: the ill_t structure can hava 2 counters, for 8160 * v4 and v6 (not just ill_ipif_up_count) to store the 8161 * number of interfaces for a device, so we don't need 8162 * to count them here... 8163 */ 8164 numifs = ip_get_numifs(zoneid); 8165 8166 ifclen = STRUCT_FGET(ifc, ifc_len); 8167 ifc_bufsize = numifs * sizeof (struct ifreq); 8168 if (ifc_bufsize > ifclen) { 8169 if (iocp->ioc_cmd == O_SIOCGIFCONF) { 8170 /* old behaviour */ 8171 return (EINVAL); 8172 } else { 8173 ifc_bufsize = ifclen; 8174 } 8175 } 8176 8177 mp1 = mi_copyout_alloc(q, mp, 8178 STRUCT_FGETP(ifc, ifc_buf), ifc_bufsize, B_FALSE); 8179 if (mp1 == NULL) 8180 return (ENOMEM); 8181 8182 mp1->b_wptr = mp1->b_rptr + ifc_bufsize; 8183 } 8184 bzero(mp1->b_rptr, mp1->b_wptr - mp1->b_rptr); 8185 /* 8186 * the SIOCGIFCONF ioctl only knows about 8187 * IPv4 addresses, so don't try to tell 8188 * it about interfaces with IPv6-only 8189 * addresses. (Last parm 'isv6' is B_FALSE) 8190 */ 8191 8192 ifr = (struct ifreq *)mp1->b_rptr; 8193 8194 rw_enter(&ill_g_lock, RW_READER); 8195 ill = ILL_START_WALK_V4(&ctx); 8196 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 8197 for (ipif = ill->ill_ipif; ipif; 8198 ipif = ipif->ipif_next) { 8199 if (zoneid != ipif->ipif_zoneid && 8200 ipif->ipif_zoneid != ALL_ZONES) 8201 continue; 8202 if ((uchar_t *)&ifr[1] > mp1->b_wptr) { 8203 if (iocp->ioc_cmd == O_SIOCGIFCONF) { 8204 /* old behaviour */ 8205 rw_exit(&ill_g_lock); 8206 return (EINVAL); 8207 } else { 8208 goto if_copydone; 8209 } 8210 } 8211 (void) ipif_get_name(ipif, 8212 ifr->ifr_name, 8213 sizeof (ifr->ifr_name)); 8214 sin = (sin_t *)&ifr->ifr_addr; 8215 *sin = sin_null; 8216 sin->sin_family = AF_INET; 8217 sin->sin_addr.s_addr = ipif->ipif_lcl_addr; 8218 ifr++; 8219 } 8220 } 8221 if_copydone: 8222 rw_exit(&ill_g_lock); 8223 mp1->b_wptr = (uchar_t *)ifr; 8224 8225 if (STRUCT_BUF(ifc) != NULL) { 8226 STRUCT_FSET(ifc, ifc_len, 8227 (int)((uchar_t *)ifr - mp1->b_rptr)); 8228 } 8229 return (0); 8230 } 8231 8232 /* 8233 * Get the interfaces using the address hosted on the interface passed in, 8234 * as a source adddress 8235 */ 8236 /* ARGSUSED */ 8237 int 8238 ip_sioctl_get_lifsrcof(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, 8239 mblk_t *mp, ip_ioctl_cmd_t *ipip, void *ifreq) 8240 { 8241 mblk_t *mp1; 8242 ill_t *ill, *ill_head; 8243 ipif_t *ipif, *orig_ipif; 8244 int numlifs = 0; 8245 size_t lifs_bufsize, lifsmaxlen; 8246 struct lifreq *lifr; 8247 struct iocblk *iocp = (struct iocblk *)mp->b_rptr; 8248 uint_t ifindex; 8249 zoneid_t zoneid; 8250 int err = 0; 8251 boolean_t isv6 = B_FALSE; 8252 struct sockaddr_in *sin; 8253 struct sockaddr_in6 *sin6; 8254 8255 STRUCT_HANDLE(lifsrcof, lifs); 8256 8257 ASSERT(q->q_next == NULL); 8258 8259 zoneid = Q_TO_CONN(q)->conn_zoneid; 8260 8261 /* Existence verified in ip_wput_nondata */ 8262 mp1 = mp->b_cont->b_cont; 8263 8264 /* 8265 * Must be (better be!) continuation of a TRANSPARENT 8266 * IOCTL. We just copied in the lifsrcof structure. 8267 */ 8268 STRUCT_SET_HANDLE(lifs, iocp->ioc_flag, 8269 (struct lifsrcof *)mp1->b_rptr); 8270 8271 if (MBLKL(mp1) != STRUCT_SIZE(lifs)) 8272 return (EINVAL); 8273 8274 ifindex = STRUCT_FGET(lifs, lifs_ifindex); 8275 isv6 = (Q_TO_CONN(q))->conn_af_isv6; 8276 ipif = ipif_lookup_on_ifindex(ifindex, isv6, zoneid, q, mp, 8277 ip_process_ioctl, &err); 8278 if (ipif == NULL) { 8279 ip1dbg(("ip_sioctl_get_lifsrcof: no ipif for ifindex %d\n", 8280 ifindex)); 8281 return (err); 8282 } 8283 8284 8285 /* Allocate a buffer to hold requested information */ 8286 numlifs = ip_get_lifsrcofnum(ipif->ipif_ill); 8287 lifs_bufsize = numlifs * sizeof (struct lifreq); 8288 lifsmaxlen = STRUCT_FGET(lifs, lifs_maxlen); 8289 /* The actual size needed is always returned in lifs_len */ 8290 STRUCT_FSET(lifs, lifs_len, lifs_bufsize); 8291 8292 /* If the amount we need is more than what is passed in, abort */ 8293 if (lifs_bufsize > lifsmaxlen || lifs_bufsize == 0) { 8294 ipif_refrele(ipif); 8295 return (0); 8296 } 8297 8298 mp1 = mi_copyout_alloc(q, mp, 8299 STRUCT_FGETP(lifs, lifs_buf), lifs_bufsize, B_FALSE); 8300 if (mp1 == NULL) { 8301 ipif_refrele(ipif); 8302 return (ENOMEM); 8303 } 8304 8305 mp1->b_wptr = mp1->b_rptr + lifs_bufsize; 8306 bzero(mp1->b_rptr, lifs_bufsize); 8307 8308 lifr = (struct lifreq *)mp1->b_rptr; 8309 8310 ill = ill_head = ipif->ipif_ill; 8311 orig_ipif = ipif; 8312 8313 /* ill_g_usesrc_lock protects ill_usesrc_grp_next */ 8314 rw_enter(&ill_g_usesrc_lock, RW_READER); 8315 rw_enter(&ill_g_lock, RW_READER); 8316 8317 ill = ill->ill_usesrc_grp_next; /* start from next ill */ 8318 for (; (ill != NULL) && (ill != ill_head); 8319 ill = ill->ill_usesrc_grp_next) { 8320 8321 if ((uchar_t *)&lifr[1] > mp1->b_wptr) 8322 break; 8323 8324 ipif = ill->ill_ipif; 8325 (void) ipif_get_name(ipif, 8326 lifr->lifr_name, sizeof (lifr->lifr_name)); 8327 if (ipif->ipif_isv6) { 8328 sin6 = (sin6_t *)&lifr->lifr_addr; 8329 *sin6 = sin6_null; 8330 sin6->sin6_family = AF_INET6; 8331 sin6->sin6_addr = ipif->ipif_v6lcl_addr; 8332 lifr->lifr_addrlen = ip_mask_to_plen_v6( 8333 &ipif->ipif_v6net_mask); 8334 } else { 8335 sin = (sin_t *)&lifr->lifr_addr; 8336 *sin = sin_null; 8337 sin->sin_family = AF_INET; 8338 sin->sin_addr.s_addr = ipif->ipif_lcl_addr; 8339 lifr->lifr_addrlen = ip_mask_to_plen( 8340 ipif->ipif_net_mask); 8341 } 8342 lifr++; 8343 } 8344 rw_exit(&ill_g_usesrc_lock); 8345 rw_exit(&ill_g_lock); 8346 ipif_refrele(orig_ipif); 8347 mp1->b_wptr = (uchar_t *)lifr; 8348 STRUCT_FSET(lifs, lifs_len, (int)((uchar_t *)lifr - mp1->b_rptr)); 8349 8350 return (0); 8351 } 8352 8353 /* ARGSUSED */ 8354 int 8355 ip_sioctl_get_lifconf(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, 8356 mblk_t *mp, ip_ioctl_cmd_t *ipip, void *ifreq) 8357 { 8358 mblk_t *mp1; 8359 int list; 8360 ill_t *ill; 8361 ipif_t *ipif; 8362 int flags; 8363 int numlifs = 0; 8364 size_t lifc_bufsize; 8365 struct lifreq *lifr; 8366 sa_family_t family; 8367 struct sockaddr_in *sin; 8368 struct sockaddr_in6 *sin6; 8369 ill_walk_context_t ctx; 8370 struct iocblk *iocp = (struct iocblk *)mp->b_rptr; 8371 int32_t lifclen; 8372 zoneid_t zoneid; 8373 STRUCT_HANDLE(lifconf, lifc); 8374 8375 ip1dbg(("ip_sioctl_get_lifconf")); 8376 8377 ASSERT(q->q_next == NULL); 8378 8379 zoneid = Q_TO_CONN(q)->conn_zoneid; 8380 8381 /* Existence verified in ip_wput_nondata */ 8382 mp1 = mp->b_cont->b_cont; 8383 8384 /* 8385 * An extended version of SIOCGIFCONF that takes an 8386 * additional address family and flags field. 8387 * AF_UNSPEC retrieve both IPv4 and IPv6. 8388 * Unless LIFC_NOXMIT is specified the IPIF_NOXMIT 8389 * interfaces are omitted. 8390 * Similarly, IPIF_TEMPORARY interfaces are omitted 8391 * unless LIFC_TEMPORARY is specified. 8392 * If LIFC_EXTERNAL_SOURCE is specified, IPIF_NOXMIT, 8393 * IPIF_NOLOCAL, PHYI_LOOPBACK, IPIF_DEPRECATED and 8394 * not IPIF_UP interfaces are omitted. LIFC_EXTERNAL_SOURCE 8395 * has priority over LIFC_NOXMIT. 8396 */ 8397 STRUCT_SET_HANDLE(lifc, iocp->ioc_flag, NULL); 8398 8399 if ((mp1->b_wptr - mp1->b_rptr) != STRUCT_SIZE(lifc)) 8400 return (EINVAL); 8401 8402 /* 8403 * Must be (better be!) continuation of a TRANSPARENT 8404 * IOCTL. We just copied in the lifconf structure. 8405 */ 8406 STRUCT_SET_HANDLE(lifc, iocp->ioc_flag, (struct lifconf *)mp1->b_rptr); 8407 8408 family = STRUCT_FGET(lifc, lifc_family); 8409 flags = STRUCT_FGET(lifc, lifc_flags); 8410 8411 switch (family) { 8412 case AF_UNSPEC: 8413 /* 8414 * walk all ILL's. 8415 */ 8416 list = MAX_G_HEADS; 8417 break; 8418 case AF_INET: 8419 /* 8420 * walk only IPV4 ILL's. 8421 */ 8422 list = IP_V4_G_HEAD; 8423 break; 8424 case AF_INET6: 8425 /* 8426 * walk only IPV6 ILL's. 8427 */ 8428 list = IP_V6_G_HEAD; 8429 break; 8430 default: 8431 return (EAFNOSUPPORT); 8432 } 8433 8434 /* 8435 * Allocate a buffer to hold requested information. 8436 * 8437 * If lifc_len is larger than what is needed, we only 8438 * allocate what we will use. 8439 * 8440 * If lifc_len is smaller than what is needed, return 8441 * EINVAL. 8442 */ 8443 numlifs = ip_get_numlifs(family, flags, zoneid); 8444 lifc_bufsize = numlifs * sizeof (struct lifreq); 8445 lifclen = STRUCT_FGET(lifc, lifc_len); 8446 if (lifc_bufsize > lifclen) { 8447 if (iocp->ioc_cmd == O_SIOCGLIFCONF) 8448 return (EINVAL); 8449 else 8450 lifc_bufsize = lifclen; 8451 } 8452 8453 mp1 = mi_copyout_alloc(q, mp, 8454 STRUCT_FGETP(lifc, lifc_buf), lifc_bufsize, B_FALSE); 8455 if (mp1 == NULL) 8456 return (ENOMEM); 8457 8458 mp1->b_wptr = mp1->b_rptr + lifc_bufsize; 8459 bzero(mp1->b_rptr, mp1->b_wptr - mp1->b_rptr); 8460 8461 lifr = (struct lifreq *)mp1->b_rptr; 8462 8463 rw_enter(&ill_g_lock, RW_READER); 8464 ill = ill_first(list, list, &ctx); 8465 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 8466 for (ipif = ill->ill_ipif; ipif != NULL; 8467 ipif = ipif->ipif_next) { 8468 if ((ipif->ipif_flags & IPIF_NOXMIT) && 8469 !(flags & LIFC_NOXMIT)) 8470 continue; 8471 8472 if ((ipif->ipif_flags & IPIF_TEMPORARY) && 8473 !(flags & LIFC_TEMPORARY)) 8474 continue; 8475 8476 if (((ipif->ipif_flags & 8477 (IPIF_NOXMIT|IPIF_NOLOCAL| 8478 IPIF_DEPRECATED)) || 8479 (ill->ill_phyint->phyint_flags & 8480 PHYI_LOOPBACK) || 8481 !(ipif->ipif_flags & IPIF_UP)) && 8482 (flags & LIFC_EXTERNAL_SOURCE)) 8483 continue; 8484 8485 if (zoneid != ipif->ipif_zoneid && 8486 ipif->ipif_zoneid != ALL_ZONES && 8487 (zoneid != GLOBAL_ZONEID || 8488 !(flags & LIFC_ALLZONES))) 8489 continue; 8490 8491 if ((uchar_t *)&lifr[1] > mp1->b_wptr) { 8492 if (iocp->ioc_cmd == O_SIOCGLIFCONF) { 8493 rw_exit(&ill_g_lock); 8494 return (EINVAL); 8495 } else { 8496 goto lif_copydone; 8497 } 8498 } 8499 8500 (void) ipif_get_name(ipif, 8501 lifr->lifr_name, 8502 sizeof (lifr->lifr_name)); 8503 if (ipif->ipif_isv6) { 8504 sin6 = (sin6_t *)&lifr->lifr_addr; 8505 *sin6 = sin6_null; 8506 sin6->sin6_family = AF_INET6; 8507 sin6->sin6_addr = 8508 ipif->ipif_v6lcl_addr; 8509 lifr->lifr_addrlen = 8510 ip_mask_to_plen_v6( 8511 &ipif->ipif_v6net_mask); 8512 } else { 8513 sin = (sin_t *)&lifr->lifr_addr; 8514 *sin = sin_null; 8515 sin->sin_family = AF_INET; 8516 sin->sin_addr.s_addr = 8517 ipif->ipif_lcl_addr; 8518 lifr->lifr_addrlen = 8519 ip_mask_to_plen( 8520 ipif->ipif_net_mask); 8521 } 8522 lifr++; 8523 } 8524 } 8525 lif_copydone: 8526 rw_exit(&ill_g_lock); 8527 8528 mp1->b_wptr = (uchar_t *)lifr; 8529 if (STRUCT_BUF(lifc) != NULL) { 8530 STRUCT_FSET(lifc, lifc_len, 8531 (int)((uchar_t *)lifr - mp1->b_rptr)); 8532 } 8533 return (0); 8534 } 8535 8536 /* ARGSUSED */ 8537 int 8538 ip_sioctl_set_ipmpfailback(ipif_t *dummy_ipif, sin_t *dummy_sin, 8539 queue_t *q, mblk_t *mp, ip_ioctl_cmd_t *ipip, void *ifreq) 8540 { 8541 /* Existence of b_cont->b_cont checked in ip_wput_nondata */ 8542 ipmp_enable_failback = *(int *)mp->b_cont->b_cont->b_rptr; 8543 return (0); 8544 } 8545 8546 static void 8547 ip_sioctl_ip6addrpolicy(queue_t *q, mblk_t *mp) 8548 { 8549 ip6_asp_t *table; 8550 size_t table_size; 8551 mblk_t *data_mp; 8552 struct iocblk *iocp = (struct iocblk *)mp->b_rptr; 8553 8554 /* These two ioctls are I_STR only */ 8555 if (iocp->ioc_count == TRANSPARENT) { 8556 miocnak(q, mp, 0, EINVAL); 8557 return; 8558 } 8559 8560 data_mp = mp->b_cont; 8561 if (data_mp == NULL) { 8562 /* The user passed us a NULL argument */ 8563 table = NULL; 8564 table_size = iocp->ioc_count; 8565 } else { 8566 /* 8567 * The user provided a table. The stream head 8568 * may have copied in the user data in chunks, 8569 * so make sure everything is pulled up 8570 * properly. 8571 */ 8572 if (MBLKL(data_mp) < iocp->ioc_count) { 8573 mblk_t *new_data_mp; 8574 if ((new_data_mp = msgpullup(data_mp, -1)) == 8575 NULL) { 8576 miocnak(q, mp, 0, ENOMEM); 8577 return; 8578 } 8579 freemsg(data_mp); 8580 data_mp = new_data_mp; 8581 mp->b_cont = data_mp; 8582 } 8583 table = (ip6_asp_t *)data_mp->b_rptr; 8584 table_size = iocp->ioc_count; 8585 } 8586 8587 switch (iocp->ioc_cmd) { 8588 case SIOCGIP6ADDRPOLICY: 8589 iocp->ioc_rval = ip6_asp_get(table, table_size); 8590 if (iocp->ioc_rval == -1) 8591 iocp->ioc_error = EINVAL; 8592 #if defined(_SYSCALL32_IMPL) && _LONG_LONG_ALIGNMENT_32 == 4 8593 else if (table != NULL && 8594 (iocp->ioc_flag & IOC_MODELS) == IOC_ILP32) { 8595 ip6_asp_t *src = table; 8596 ip6_asp32_t *dst = (void *)table; 8597 int count = table_size / sizeof (ip6_asp_t); 8598 int i; 8599 8600 /* 8601 * We need to do an in-place shrink of the array 8602 * to match the alignment attributes of the 8603 * 32-bit ABI looking at it. 8604 */ 8605 /* LINTED: logical expression always true: op "||" */ 8606 ASSERT(sizeof (*src) > sizeof (*dst)); 8607 for (i = 1; i < count; i++) 8608 bcopy(src + i, dst + i, sizeof (*dst)); 8609 } 8610 #endif 8611 break; 8612 8613 case SIOCSIP6ADDRPOLICY: 8614 ASSERT(mp->b_prev == NULL); 8615 mp->b_prev = (void *)q; 8616 #if defined(_SYSCALL32_IMPL) && _LONG_LONG_ALIGNMENT_32 == 4 8617 /* 8618 * We pass in the datamodel here so that the ip6_asp_replace() 8619 * routine can handle converting from 32-bit to native formats 8620 * where necessary. 8621 * 8622 * A better way to handle this might be to convert the inbound 8623 * data structure here, and hang it off a new 'mp'; thus the 8624 * ip6_asp_replace() logic would always be dealing with native 8625 * format data structures.. 8626 * 8627 * (An even simpler way to handle these ioctls is to just 8628 * add a 32-bit trailing 'pad' field to the ip6_asp_t structure 8629 * and just recompile everything that depends on it.) 8630 */ 8631 #endif 8632 ip6_asp_replace(mp, table, table_size, B_FALSE, 8633 iocp->ioc_flag & IOC_MODELS); 8634 return; 8635 } 8636 8637 DB_TYPE(mp) = (iocp->ioc_error == 0) ? M_IOCACK : M_IOCNAK; 8638 qreply(q, mp); 8639 } 8640 8641 static void 8642 ip_sioctl_dstinfo(queue_t *q, mblk_t *mp) 8643 { 8644 mblk_t *data_mp; 8645 struct dstinforeq *dir; 8646 uint8_t *end, *cur; 8647 in6_addr_t *daddr, *saddr; 8648 ipaddr_t v4daddr; 8649 ire_t *ire; 8650 char *slabel, *dlabel; 8651 boolean_t isipv4; 8652 int match_ire; 8653 ill_t *dst_ill; 8654 ipif_t *src_ipif, *ire_ipif; 8655 struct iocblk *iocp = (struct iocblk *)mp->b_rptr; 8656 zoneid_t zoneid; 8657 8658 ASSERT(q->q_next == NULL); /* this ioctl not allowed if ip is module */ 8659 zoneid = Q_TO_CONN(q)->conn_zoneid; 8660 8661 /* 8662 * This ioctl is I_STR only, and must have a 8663 * data mblk following the M_IOCTL mblk. 8664 */ 8665 data_mp = mp->b_cont; 8666 if (iocp->ioc_count == TRANSPARENT || data_mp == NULL) { 8667 miocnak(q, mp, 0, EINVAL); 8668 return; 8669 } 8670 8671 if (MBLKL(data_mp) < iocp->ioc_count) { 8672 mblk_t *new_data_mp; 8673 8674 if ((new_data_mp = msgpullup(data_mp, -1)) == NULL) { 8675 miocnak(q, mp, 0, ENOMEM); 8676 return; 8677 } 8678 freemsg(data_mp); 8679 data_mp = new_data_mp; 8680 mp->b_cont = data_mp; 8681 } 8682 match_ire = MATCH_IRE_RECURSIVE | MATCH_IRE_DEFAULT | MATCH_IRE_PARENT; 8683 8684 for (cur = data_mp->b_rptr, end = data_mp->b_wptr; 8685 end - cur >= sizeof (struct dstinforeq); 8686 cur += sizeof (struct dstinforeq)) { 8687 dir = (struct dstinforeq *)cur; 8688 daddr = &dir->dir_daddr; 8689 saddr = &dir->dir_saddr; 8690 8691 /* 8692 * ip_addr_scope_v6() and ip6_asp_lookup() handle 8693 * v4 mapped addresses; ire_ftable_lookup[_v6]() 8694 * and ipif_select_source[_v6]() do not. 8695 */ 8696 dir->dir_dscope = ip_addr_scope_v6(daddr); 8697 dlabel = ip6_asp_lookup(daddr, &dir->dir_precedence); 8698 8699 isipv4 = IN6_IS_ADDR_V4MAPPED(daddr); 8700 if (isipv4) { 8701 IN6_V4MAPPED_TO_IPADDR(daddr, v4daddr); 8702 ire = ire_ftable_lookup(v4daddr, NULL, NULL, 8703 0, NULL, NULL, zoneid, 0, NULL, match_ire); 8704 } else { 8705 ire = ire_ftable_lookup_v6(daddr, NULL, NULL, 8706 0, NULL, NULL, zoneid, 0, NULL, match_ire); 8707 } 8708 if (ire == NULL) { 8709 dir->dir_dreachable = 0; 8710 8711 /* move on to next dst addr */ 8712 continue; 8713 } 8714 dir->dir_dreachable = 1; 8715 8716 ire_ipif = ire->ire_ipif; 8717 if (ire_ipif == NULL) 8718 goto next_dst; 8719 8720 /* 8721 * We expect to get back an interface ire or a 8722 * gateway ire cache entry. For both types, the 8723 * output interface is ire_ipif->ipif_ill. 8724 */ 8725 dst_ill = ire_ipif->ipif_ill; 8726 dir->dir_dmactype = dst_ill->ill_mactype; 8727 8728 if (isipv4) { 8729 src_ipif = ipif_select_source(dst_ill, v4daddr, zoneid); 8730 } else { 8731 src_ipif = ipif_select_source_v6(dst_ill, 8732 daddr, RESTRICT_TO_NONE, IPV6_PREFER_SRC_DEFAULT, 8733 zoneid); 8734 } 8735 if (src_ipif == NULL) 8736 goto next_dst; 8737 8738 *saddr = src_ipif->ipif_v6lcl_addr; 8739 dir->dir_sscope = ip_addr_scope_v6(saddr); 8740 slabel = ip6_asp_lookup(saddr, NULL); 8741 dir->dir_labelmatch = ip6_asp_labelcmp(dlabel, slabel); 8742 dir->dir_sdeprecated = 8743 (src_ipif->ipif_flags & IPIF_DEPRECATED) ? 1 : 0; 8744 ipif_refrele(src_ipif); 8745 next_dst: 8746 ire_refrele(ire); 8747 } 8748 miocack(q, mp, iocp->ioc_count, 0); 8749 } 8750 8751 8752 /* 8753 * Check if this is an address assigned to this machine. 8754 * Skips interfaces that are down by using ire checks. 8755 * Translates mapped addresses to v4 addresses and then 8756 * treats them as such, returning true if the v4 address 8757 * associated with this mapped address is configured. 8758 * Note: Applications will have to be careful what they do 8759 * with the response; use of mapped addresses limits 8760 * what can be done with the socket, especially with 8761 * respect to socket options and ioctls - neither IPv4 8762 * options nor IPv6 sticky options/ancillary data options 8763 * may be used. 8764 */ 8765 /* ARGSUSED */ 8766 int 8767 ip_sioctl_tmyaddr(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, 8768 ip_ioctl_cmd_t *ipip, void *dummy_ifreq) 8769 { 8770 struct sioc_addrreq *sia; 8771 sin_t *sin; 8772 ire_t *ire; 8773 mblk_t *mp1; 8774 zoneid_t zoneid; 8775 8776 ip1dbg(("ip_sioctl_tmyaddr")); 8777 8778 ASSERT(q->q_next == NULL); /* this ioctl not allowed if ip is module */ 8779 zoneid = Q_TO_CONN(q)->conn_zoneid; 8780 8781 /* Existence verified in ip_wput_nondata */ 8782 mp1 = mp->b_cont->b_cont; 8783 sia = (struct sioc_addrreq *)mp1->b_rptr; 8784 sin = (sin_t *)&sia->sa_addr; 8785 switch (sin->sin_family) { 8786 case AF_INET6: { 8787 sin6_t *sin6 = (sin6_t *)sin; 8788 8789 if (IN6_IS_ADDR_V4MAPPED(&sin6->sin6_addr)) { 8790 ipaddr_t v4_addr; 8791 8792 IN6_V4MAPPED_TO_IPADDR(&sin6->sin6_addr, 8793 v4_addr); 8794 ire = ire_ctable_lookup(v4_addr, 0, 8795 IRE_LOCAL|IRE_LOOPBACK, NULL, zoneid, 8796 NULL, MATCH_IRE_TYPE | MATCH_IRE_ZONEONLY); 8797 } else { 8798 in6_addr_t v6addr; 8799 8800 v6addr = sin6->sin6_addr; 8801 ire = ire_ctable_lookup_v6(&v6addr, 0, 8802 IRE_LOCAL|IRE_LOOPBACK, NULL, zoneid, 8803 NULL, MATCH_IRE_TYPE | MATCH_IRE_ZONEONLY); 8804 } 8805 break; 8806 } 8807 case AF_INET: { 8808 ipaddr_t v4addr; 8809 8810 v4addr = sin->sin_addr.s_addr; 8811 ire = ire_ctable_lookup(v4addr, 0, 8812 IRE_LOCAL|IRE_LOOPBACK, NULL, zoneid, 8813 NULL, MATCH_IRE_TYPE | MATCH_IRE_ZONEONLY); 8814 break; 8815 } 8816 default: 8817 return (EAFNOSUPPORT); 8818 } 8819 if (ire != NULL) { 8820 sia->sa_res = 1; 8821 ire_refrele(ire); 8822 } else { 8823 sia->sa_res = 0; 8824 } 8825 return (0); 8826 } 8827 8828 /* 8829 * Check if this is an address assigned on-link i.e. neighbor, 8830 * and makes sure it's reachable from the current zone. 8831 * Returns true for my addresses as well. 8832 * Translates mapped addresses to v4 addresses and then 8833 * treats them as such, returning true if the v4 address 8834 * associated with this mapped address is configured. 8835 * Note: Applications will have to be careful what they do 8836 * with the response; use of mapped addresses limits 8837 * what can be done with the socket, especially with 8838 * respect to socket options and ioctls - neither IPv4 8839 * options nor IPv6 sticky options/ancillary data options 8840 * may be used. 8841 */ 8842 /* ARGSUSED */ 8843 int 8844 ip_sioctl_tonlink(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, 8845 ip_ioctl_cmd_t *ipip, void *duymmy_ifreq) 8846 { 8847 struct sioc_addrreq *sia; 8848 sin_t *sin; 8849 mblk_t *mp1; 8850 ire_t *ire = NULL; 8851 zoneid_t zoneid; 8852 8853 ip1dbg(("ip_sioctl_tonlink")); 8854 8855 ASSERT(q->q_next == NULL); /* this ioctl not allowed if ip is module */ 8856 zoneid = Q_TO_CONN(q)->conn_zoneid; 8857 8858 /* Existence verified in ip_wput_nondata */ 8859 mp1 = mp->b_cont->b_cont; 8860 sia = (struct sioc_addrreq *)mp1->b_rptr; 8861 sin = (sin_t *)&sia->sa_addr; 8862 8863 /* 8864 * Match addresses with a zero gateway field to avoid 8865 * routes going through a router. 8866 * Exclude broadcast and multicast addresses. 8867 */ 8868 switch (sin->sin_family) { 8869 case AF_INET6: { 8870 sin6_t *sin6 = (sin6_t *)sin; 8871 8872 if (IN6_IS_ADDR_V4MAPPED(&sin6->sin6_addr)) { 8873 ipaddr_t v4_addr; 8874 8875 IN6_V4MAPPED_TO_IPADDR(&sin6->sin6_addr, 8876 v4_addr); 8877 if (!CLASSD(v4_addr)) { 8878 ire = ire_route_lookup(v4_addr, 0, 0, 0, 8879 NULL, NULL, zoneid, NULL, 8880 MATCH_IRE_GW); 8881 } 8882 } else { 8883 in6_addr_t v6addr; 8884 in6_addr_t v6gw; 8885 8886 v6addr = sin6->sin6_addr; 8887 v6gw = ipv6_all_zeros; 8888 if (!IN6_IS_ADDR_MULTICAST(&v6addr)) { 8889 ire = ire_route_lookup_v6(&v6addr, 0, 8890 &v6gw, 0, NULL, NULL, zoneid, 8891 NULL, MATCH_IRE_GW); 8892 } 8893 } 8894 break; 8895 } 8896 case AF_INET: { 8897 ipaddr_t v4addr; 8898 8899 v4addr = sin->sin_addr.s_addr; 8900 if (!CLASSD(v4addr)) { 8901 ire = ire_route_lookup(v4addr, 0, 0, 0, 8902 NULL, NULL, zoneid, NULL, 8903 MATCH_IRE_GW); 8904 } 8905 break; 8906 } 8907 default: 8908 return (EAFNOSUPPORT); 8909 } 8910 sia->sa_res = 0; 8911 if (ire != NULL) { 8912 if (ire->ire_type & (IRE_INTERFACE|IRE_CACHE| 8913 IRE_LOCAL|IRE_LOOPBACK)) { 8914 sia->sa_res = 1; 8915 } 8916 ire_refrele(ire); 8917 } 8918 return (0); 8919 } 8920 8921 /* 8922 * TBD: implement when kernel maintaines a list of site prefixes. 8923 */ 8924 /* ARGSUSED */ 8925 int 8926 ip_sioctl_tmysite(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 8927 ip_ioctl_cmd_t *ipip, void *ifreq) 8928 { 8929 return (ENXIO); 8930 } 8931 8932 /* ARGSUSED */ 8933 int 8934 ip_sioctl_tunparam(ipif_t *ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, 8935 ip_ioctl_cmd_t *ipip, void *dummy_ifreq) 8936 { 8937 ill_t *ill; 8938 mblk_t *mp1; 8939 conn_t *connp; 8940 boolean_t success; 8941 8942 ip1dbg(("ip_sioctl_tunparam(%s:%u %p)\n", 8943 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 8944 /* ioctl comes down on an conn */ 8945 ASSERT(!(q->q_flag & QREADR) && q->q_next == NULL); 8946 connp = Q_TO_CONN(q); 8947 8948 mp->b_datap->db_type = M_IOCTL; 8949 8950 /* 8951 * Send down a copy. (copymsg does not copy b_next/b_prev). 8952 * The original mp contains contaminated b_next values due to 'mi', 8953 * which is needed to do the mi_copy_done. Unfortunately if we 8954 * send down the original mblk itself and if we are popped due to an 8955 * an unplumb before the response comes back from tunnel, 8956 * the streamhead (which does a freemsg) will see this contaminated 8957 * message and the assertion in freemsg about non-null b_next/b_prev 8958 * will panic a DEBUG kernel. 8959 */ 8960 mp1 = copymsg(mp); 8961 if (mp1 == NULL) 8962 return (ENOMEM); 8963 8964 ill = ipif->ipif_ill; 8965 mutex_enter(&connp->conn_lock); 8966 mutex_enter(&ill->ill_lock); 8967 if (ipip->ipi_cmd == SIOCSTUNPARAM || ipip->ipi_cmd == OSIOCSTUNPARAM) { 8968 success = ipsq_pending_mp_add(connp, ipif, CONNP_TO_WQ(connp), 8969 mp, 0); 8970 } else { 8971 success = ill_pending_mp_add(ill, connp, mp); 8972 } 8973 mutex_exit(&ill->ill_lock); 8974 mutex_exit(&connp->conn_lock); 8975 8976 if (success) { 8977 ip1dbg(("sending down tunparam request ")); 8978 putnext(ill->ill_wq, mp1); 8979 return (EINPROGRESS); 8980 } else { 8981 /* The conn has started closing */ 8982 freemsg(mp1); 8983 return (EINTR); 8984 } 8985 } 8986 8987 static int 8988 ip_sioctl_arp_common(ill_t *ill, queue_t *q, mblk_t *mp, sin_t *sin, 8989 boolean_t x_arp_ioctl, boolean_t if_arp_ioctl) 8990 { 8991 mblk_t *mp1; 8992 mblk_t *mp2; 8993 mblk_t *pending_mp; 8994 ipaddr_t ipaddr; 8995 area_t *area; 8996 struct iocblk *iocp; 8997 conn_t *connp; 8998 struct arpreq *ar; 8999 struct xarpreq *xar; 9000 boolean_t success; 9001 int flags, alength; 9002 char *lladdr; 9003 9004 ASSERT(!(q->q_flag & QREADR) && q->q_next == NULL); 9005 connp = Q_TO_CONN(q); 9006 9007 iocp = (struct iocblk *)mp->b_rptr; 9008 /* 9009 * ill has already been set depending on whether 9010 * bsd style or interface style ioctl. 9011 */ 9012 ASSERT(ill != NULL); 9013 9014 /* 9015 * Is this one of the new SIOC*XARP ioctls? 9016 */ 9017 if (x_arp_ioctl) { 9018 /* We have a chain - M_IOCTL-->MI_COPY_MBLK-->XARPREQ_MBLK */ 9019 xar = (struct xarpreq *)mp->b_cont->b_cont->b_rptr; 9020 ar = NULL; 9021 9022 flags = xar->xarp_flags; 9023 lladdr = LLADDR(&xar->xarp_ha); 9024 /* 9025 * Validate against user's link layer address length 9026 * input and name and addr length limits. 9027 */ 9028 alength = ill->ill_phys_addr_length; 9029 if (iocp->ioc_cmd == SIOCSXARP) { 9030 if (alength != xar->xarp_ha.sdl_alen || 9031 (alength + xar->xarp_ha.sdl_nlen > 9032 sizeof (xar->xarp_ha.sdl_data))) 9033 return (EINVAL); 9034 } 9035 } else { 9036 /* We have a chain - M_IOCTL-->MI_COPY_MBLK-->ARPREQ_MBLK */ 9037 ar = (struct arpreq *)mp->b_cont->b_cont->b_rptr; 9038 xar = NULL; 9039 9040 flags = ar->arp_flags; 9041 lladdr = ar->arp_ha.sa_data; 9042 /* 9043 * Theoretically, the sa_family could tell us what link 9044 * layer type this operation is trying to deal with. By 9045 * common usage AF_UNSPEC means ethernet. We'll assume 9046 * any attempt to use the SIOC?ARP ioctls is for ethernet, 9047 * for now. Our new SIOC*XARP ioctls can be used more 9048 * generally. 9049 * 9050 * If the underlying media happens to have a non 6 byte 9051 * address, arp module will fail set/get, but the del 9052 * operation will succeed. 9053 */ 9054 alength = 6; 9055 if ((iocp->ioc_cmd != SIOCDARP) && 9056 (alength != ill->ill_phys_addr_length)) { 9057 return (EINVAL); 9058 } 9059 } 9060 9061 /* 9062 * We are going to pass up to ARP a packet chain that looks 9063 * like: 9064 * 9065 * M_IOCTL-->ARP_op_MBLK-->ORIG_M_IOCTL-->MI_COPY_MBLK-->[X]ARPREQ_MBLK 9066 * 9067 * Get a copy of the original IOCTL mblk to head the chain, 9068 * to be sent up (in mp1). Also get another copy to store 9069 * in the ill_pending_mp list, for matching the response 9070 * when it comes back from ARP. 9071 */ 9072 mp1 = copyb(mp); 9073 pending_mp = copymsg(mp); 9074 if (mp1 == NULL || pending_mp == NULL) { 9075 if (mp1 != NULL) 9076 freeb(mp1); 9077 if (pending_mp != NULL) 9078 inet_freemsg(pending_mp); 9079 return (ENOMEM); 9080 } 9081 9082 ipaddr = sin->sin_addr.s_addr; 9083 9084 mp2 = ill_arp_alloc(ill, (uchar_t *)&ip_area_template, 9085 (caddr_t)&ipaddr); 9086 if (mp2 == NULL) { 9087 freeb(mp1); 9088 inet_freemsg(pending_mp); 9089 return (ENOMEM); 9090 } 9091 /* Put together the chain. */ 9092 mp1->b_cont = mp2; 9093 mp1->b_datap->db_type = M_IOCTL; 9094 mp2->b_cont = mp; 9095 mp2->b_datap->db_type = M_DATA; 9096 9097 iocp = (struct iocblk *)mp1->b_rptr; 9098 9099 /* 9100 * An M_IOCDATA's payload (struct copyresp) is mostly the same as an 9101 * M_IOCTL's payload (struct iocblk), but 'struct copyresp' has a 9102 * cp_private field (or cp_rval on 32-bit systems) in place of the 9103 * ioc_count field; set ioc_count to be correct. 9104 */ 9105 iocp->ioc_count = MBLKL(mp1->b_cont); 9106 9107 /* 9108 * Set the proper command in the ARP message. 9109 * Convert the SIOC{G|S|D}ARP calls into our 9110 * AR_ENTRY_xxx calls. 9111 */ 9112 area = (area_t *)mp2->b_rptr; 9113 switch (iocp->ioc_cmd) { 9114 case SIOCDARP: 9115 case SIOCDXARP: 9116 /* 9117 * We defer deleting the corresponding IRE until 9118 * we return from arp. 9119 */ 9120 area->area_cmd = AR_ENTRY_DELETE; 9121 area->area_proto_mask_offset = 0; 9122 break; 9123 case SIOCGARP: 9124 case SIOCGXARP: 9125 area->area_cmd = AR_ENTRY_SQUERY; 9126 area->area_proto_mask_offset = 0; 9127 break; 9128 case SIOCSARP: 9129 case SIOCSXARP: { 9130 /* 9131 * Delete the corresponding ire to make sure IP will 9132 * pick up any change from arp. 9133 */ 9134 if (!if_arp_ioctl) { 9135 (void) ip_ire_clookup_and_delete(ipaddr, NULL); 9136 break; 9137 } else { 9138 ipif_t *ipif = ipif_get_next_ipif(NULL, ill); 9139 if (ipif != NULL) { 9140 (void) ip_ire_clookup_and_delete(ipaddr, ipif); 9141 ipif_refrele(ipif); 9142 } 9143 break; 9144 } 9145 } 9146 } 9147 iocp->ioc_cmd = area->area_cmd; 9148 9149 /* 9150 * Before sending 'mp' to ARP, we have to clear the b_next 9151 * and b_prev. Otherwise if STREAMS encounters such a message 9152 * in freemsg(), (because ARP can close any time) it can cause 9153 * a panic. But mi code needs the b_next and b_prev values of 9154 * mp->b_cont, to complete the ioctl. So we store it here 9155 * in pending_mp->bcont, and restore it in ip_sioctl_iocack() 9156 * when the response comes down from ARP. 9157 */ 9158 pending_mp->b_cont->b_next = mp->b_cont->b_next; 9159 pending_mp->b_cont->b_prev = mp->b_cont->b_prev; 9160 mp->b_cont->b_next = NULL; 9161 mp->b_cont->b_prev = NULL; 9162 9163 mutex_enter(&connp->conn_lock); 9164 mutex_enter(&ill->ill_lock); 9165 /* conn has not yet started closing, hence this can't fail */ 9166 success = ill_pending_mp_add(ill, connp, pending_mp); 9167 ASSERT(success); 9168 mutex_exit(&ill->ill_lock); 9169 mutex_exit(&connp->conn_lock); 9170 9171 /* 9172 * Fill in the rest of the ARP operation fields. 9173 */ 9174 area->area_hw_addr_length = alength; 9175 bcopy(lladdr, 9176 (char *)area + area->area_hw_addr_offset, 9177 area->area_hw_addr_length); 9178 /* Translate the flags. */ 9179 if (flags & ATF_PERM) 9180 area->area_flags |= ACE_F_PERMANENT; 9181 if (flags & ATF_PUBL) 9182 area->area_flags |= ACE_F_PUBLISH; 9183 if (flags & ATF_AUTHORITY) 9184 area->area_flags |= ACE_F_AUTHORITY; 9185 9186 /* 9187 * Up to ARP it goes. The response will come 9188 * back in ip_wput as an M_IOCACK message, and 9189 * will be handed to ip_sioctl_iocack for 9190 * completion. 9191 */ 9192 putnext(ill->ill_rq, mp1); 9193 return (EINPROGRESS); 9194 } 9195 9196 /* ARGSUSED */ 9197 int 9198 ip_sioctl_xarp(ipif_t *ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, 9199 ip_ioctl_cmd_t *ipip, void *ifreq) 9200 { 9201 struct xarpreq *xar; 9202 boolean_t isv6; 9203 mblk_t *mp1; 9204 int err; 9205 conn_t *connp; 9206 int ifnamelen; 9207 ire_t *ire = NULL; 9208 ill_t *ill = NULL; 9209 struct sockaddr_in *sin; 9210 boolean_t if_arp_ioctl = B_FALSE; 9211 9212 /* ioctl comes down on an conn */ 9213 ASSERT(!(q->q_flag & QREADR) && q->q_next == NULL); 9214 connp = Q_TO_CONN(q); 9215 isv6 = connp->conn_af_isv6; 9216 9217 /* Existance verified in ip_wput_nondata */ 9218 mp1 = mp->b_cont->b_cont; 9219 9220 ASSERT(MBLKL(mp1) >= sizeof (*xar)); 9221 xar = (struct xarpreq *)mp1->b_rptr; 9222 sin = (sin_t *)&xar->xarp_pa; 9223 9224 if (isv6 || (xar->xarp_ha.sdl_family != AF_LINK) || 9225 (xar->xarp_pa.ss_family != AF_INET)) 9226 return (ENXIO); 9227 9228 ifnamelen = xar->xarp_ha.sdl_nlen; 9229 if (ifnamelen != 0) { 9230 char *cptr, cval; 9231 9232 if (ifnamelen >= LIFNAMSIZ) 9233 return (EINVAL); 9234 9235 /* 9236 * Instead of bcopying a bunch of bytes, 9237 * null-terminate the string in-situ. 9238 */ 9239 cptr = xar->xarp_ha.sdl_data + ifnamelen; 9240 cval = *cptr; 9241 *cptr = '\0'; 9242 ill = ill_lookup_on_name(xar->xarp_ha.sdl_data, 9243 B_FALSE, isv6, CONNP_TO_WQ(connp), mp, ip_process_ioctl, 9244 &err, NULL); 9245 *cptr = cval; 9246 if (ill == NULL) 9247 return (err); 9248 if (ill->ill_net_type != IRE_IF_RESOLVER) { 9249 ill_refrele(ill); 9250 return (ENXIO); 9251 } 9252 9253 if_arp_ioctl = B_TRUE; 9254 } else { 9255 /* 9256 * PSARC 2003/088 states that if sdl_nlen == 0, it behaves 9257 * as an extended BSD ioctl. The kernel uses the IP address 9258 * to figure out the network interface. 9259 */ 9260 ire = ire_cache_lookup(sin->sin_addr.s_addr, ALL_ZONES, NULL); 9261 if ((ire == NULL) || (ire->ire_type == IRE_LOOPBACK) || 9262 ((ill = ire_to_ill(ire)) == NULL) || 9263 (ill->ill_net_type != IRE_IF_RESOLVER)) { 9264 if (ire != NULL) 9265 ire_refrele(ire); 9266 ire = ire_ftable_lookup(sin->sin_addr.s_addr, 9267 0, 0, IRE_IF_RESOLVER, NULL, NULL, ALL_ZONES, 0, 9268 NULL, MATCH_IRE_TYPE); 9269 if ((ire == NULL) || 9270 ((ill = ire_to_ill(ire)) == NULL)) { 9271 if (ire != NULL) 9272 ire_refrele(ire); 9273 return (ENXIO); 9274 } 9275 } 9276 ASSERT(ire != NULL && ill != NULL); 9277 } 9278 9279 err = ip_sioctl_arp_common(ill, q, mp, sin, B_TRUE, if_arp_ioctl); 9280 if (if_arp_ioctl) 9281 ill_refrele(ill); 9282 if (ire != NULL) 9283 ire_refrele(ire); 9284 9285 return (err); 9286 } 9287 9288 /* 9289 * ARP IOCTLs. 9290 * How does IP get in the business of fronting ARP configuration/queries? 9291 * Well its like this, the Berkeley ARP IOCTLs (SIOCGARP, SIOCDARP, SIOCSARP) 9292 * are by tradition passed in through a datagram socket. That lands in IP. 9293 * As it happens, this is just as well since the interface is quite crude in 9294 * that it passes in no information about protocol or hardware types, or 9295 * interface association. After making the protocol assumption, IP is in 9296 * the position to look up the name of the ILL, which ARP will need, and 9297 * format a request that can be handled by ARP. The request is passed up 9298 * stream to ARP, and the original IOCTL is completed by IP when ARP passes 9299 * back a response. ARP supports its own set of more general IOCTLs, in 9300 * case anyone is interested. 9301 */ 9302 /* ARGSUSED */ 9303 int 9304 ip_sioctl_arp(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, 9305 ip_ioctl_cmd_t *ipip, void *dummy_ifreq) 9306 { 9307 struct arpreq *ar; 9308 struct sockaddr_in *sin; 9309 ire_t *ire; 9310 boolean_t isv6; 9311 mblk_t *mp1; 9312 int err; 9313 conn_t *connp; 9314 ill_t *ill; 9315 9316 /* ioctl comes down on an conn */ 9317 ASSERT(!(q->q_flag & QREADR) && q->q_next == NULL); 9318 connp = Q_TO_CONN(q); 9319 isv6 = connp->conn_af_isv6; 9320 if (isv6) 9321 return (ENXIO); 9322 9323 /* Existance verified in ip_wput_nondata */ 9324 mp1 = mp->b_cont->b_cont; 9325 9326 ar = (struct arpreq *)mp1->b_rptr; 9327 sin = (sin_t *)&ar->arp_pa; 9328 9329 /* 9330 * We need to let ARP know on which interface the IP 9331 * address has an ARP mapping. In the IPMP case, a 9332 * simple forwarding table lookup will return the 9333 * IRE_IF_RESOLVER for the first interface in the group, 9334 * which might not be the interface on which the 9335 * requested IP address was resolved due to the ill 9336 * selection algorithm (see ip_newroute_get_dst_ill()). 9337 * So we do a cache table lookup first: if the IRE cache 9338 * entry for the IP address is still there, it will 9339 * contain the ill pointer for the right interface, so 9340 * we use that. If the cache entry has been flushed, we 9341 * fall back to the forwarding table lookup. This should 9342 * be rare enough since IRE cache entries have a longer 9343 * life expectancy than ARP cache entries. 9344 */ 9345 ire = ire_cache_lookup(sin->sin_addr.s_addr, ALL_ZONES, NULL); 9346 if ((ire == NULL) || (ire->ire_type == IRE_LOOPBACK) || 9347 ((ill = ire_to_ill(ire)) == NULL)) { 9348 if (ire != NULL) 9349 ire_refrele(ire); 9350 ire = ire_ftable_lookup(sin->sin_addr.s_addr, 9351 0, 0, IRE_IF_RESOLVER, NULL, NULL, ALL_ZONES, 0, 9352 NULL, MATCH_IRE_TYPE); 9353 if ((ire == NULL) || ((ill = ire_to_ill(ire)) == NULL)) { 9354 if (ire != NULL) 9355 ire_refrele(ire); 9356 return (ENXIO); 9357 } 9358 } 9359 ASSERT(ire != NULL && ill != NULL); 9360 9361 err = ip_sioctl_arp_common(ill, q, mp, sin, B_FALSE, B_FALSE); 9362 ire_refrele(ire); 9363 return (err); 9364 } 9365 9366 /* 9367 * Do I_PLINK/I_LINK or I_PUNLINK/I_UNLINK with consistency checks and also 9368 * atomically set/clear the muxids. Also complete the ioctl by acking or 9369 * naking it. Note that the code is structured such that the link type, 9370 * whether it's persistent or not, is treated equally. ifconfig(1M) and 9371 * its clones use the persistent link, while pppd(1M) and perhaps many 9372 * other daemons may use non-persistent link. When combined with some 9373 * ill_t states, linking and unlinking lower streams may be used as 9374 * indicators of dynamic re-plumbing events [see PSARC/1999/348]. 9375 */ 9376 /* ARGSUSED */ 9377 void 9378 ip_sioctl_plink(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy_arg) 9379 { 9380 mblk_t *mp1; 9381 mblk_t *mp2; 9382 struct linkblk *li; 9383 queue_t *ipwq; 9384 char *name; 9385 struct qinit *qinfo; 9386 struct ipmx_s *ipmxp; 9387 ill_t *ill = NULL; 9388 struct iocblk *iocp = (struct iocblk *)mp->b_rptr; 9389 int err = 0; 9390 boolean_t entered_ipsq = B_FALSE; 9391 boolean_t islink; 9392 queue_t *dwq = NULL; 9393 9394 ASSERT(iocp->ioc_cmd == I_PLINK || iocp->ioc_cmd == I_PUNLINK || 9395 iocp->ioc_cmd == I_LINK || iocp->ioc_cmd == I_UNLINK); 9396 9397 islink = (iocp->ioc_cmd == I_PLINK || iocp->ioc_cmd == I_LINK) ? 9398 B_TRUE : B_FALSE; 9399 9400 mp1 = mp->b_cont; /* This is the linkblk info */ 9401 li = (struct linkblk *)mp1->b_rptr; 9402 9403 /* 9404 * ARP has added this special mblk, and the utility is asking us 9405 * to perform consistency checks, and also atomically set the 9406 * muxid. Ifconfig is an example. It achieves this by using 9407 * /dev/arp as the mux to plink the arp stream, and pushes arp on 9408 * to /dev/udp[6] stream for use as the mux when plinking the IP 9409 * stream. SIOCSLIFMUXID is not required. See ifconfig.c, arp.c 9410 * and other comments in this routine for more details. 9411 */ 9412 mp2 = mp1->b_cont; /* This is added by ARP */ 9413 9414 /* 9415 * If I_{P}LINK/I_{P}UNLINK is issued by a utility other than 9416 * ifconfig which didn't push ARP on top of the dummy mux, we won't 9417 * get the special mblk above. For backward compatibility, we just 9418 * return success. The utility will use SIOCSLIFMUXID to store 9419 * the muxids. This is not atomic, and can leave the streams 9420 * unplumbable if the utility is interrrupted, before it does the 9421 * SIOCSLIFMUXID. 9422 */ 9423 if (mp2 == NULL) { 9424 /* 9425 * At this point we don't know whether or not this is the 9426 * IP module stream or the ARP device stream. We need to 9427 * walk the lower stream in order to find this out, since 9428 * the capability negotiation is done only on the IP module 9429 * stream. IP module instance is identified by the module 9430 * name IP, non-null q_next, and it's wput not being ip_lwput. 9431 * STREAMS ensures that the lower stream (l_qbot) will not 9432 * vanish until this ioctl completes. So we can safely walk 9433 * the stream or refer to the q_ptr. 9434 */ 9435 ipwq = li->l_qbot; 9436 while (ipwq != NULL) { 9437 qinfo = ipwq->q_qinfo; 9438 name = qinfo->qi_minfo->mi_idname; 9439 if (name != NULL && name[0] != NULL && 9440 (strcmp(name, ip_mod_info.mi_idname) == 0) && 9441 ((void *)(qinfo->qi_putp) != (void *)ip_lwput) && 9442 (ipwq->q_next != NULL)) { 9443 break; 9444 } 9445 ipwq = ipwq->q_next; 9446 } 9447 /* 9448 * This looks like an IP module stream, so trigger 9449 * the capability reset or re-negotiation if necessary. 9450 */ 9451 if (ipwq != NULL) { 9452 ill = ipwq->q_ptr; 9453 ASSERT(ill != NULL); 9454 9455 if (ipsq == NULL) { 9456 ipsq = ipsq_try_enter(NULL, ill, q, mp, 9457 ip_sioctl_plink, NEW_OP, B_TRUE); 9458 if (ipsq == NULL) 9459 return; 9460 entered_ipsq = B_TRUE; 9461 } 9462 ASSERT(IAM_WRITER_ILL(ill)); 9463 /* 9464 * Store the upper read queue of the module 9465 * immediately below IP, and count the total 9466 * number of lower modules. Do this only 9467 * for I_PLINK or I_LINK event. 9468 */ 9469 ill->ill_lmod_rq = NULL; 9470 ill->ill_lmod_cnt = 0; 9471 if (islink && (dwq = ipwq->q_next) != NULL) { 9472 ill->ill_lmod_rq = RD(dwq); 9473 9474 while (dwq != NULL) { 9475 ill->ill_lmod_cnt++; 9476 dwq = dwq->q_next; 9477 } 9478 } 9479 /* 9480 * There's no point in resetting or re-negotiating if 9481 * we are not bound to the driver, so only do this if 9482 * the DLPI state is idle (up); we assume such state 9483 * since ill_ipif_up_count gets incremented in 9484 * ipif_up_done(), which is after we are bound to the 9485 * driver. Note that in the case of logical 9486 * interfaces, IP won't rebind to the driver unless 9487 * the ill_ipif_up_count is 0, meaning that all other 9488 * IP interfaces (including the main ipif) are in the 9489 * down state. Because of this, we use such counter 9490 * as an indicator, instead of relying on the IPIF_UP 9491 * flag, which is per ipif instance. 9492 */ 9493 if (ill->ill_ipif_up_count > 0) { 9494 if (islink) 9495 ill_capability_probe(ill); 9496 else 9497 ill_capability_reset(ill); 9498 } 9499 } 9500 goto done; 9501 } 9502 9503 /* 9504 * This is an I_{P}LINK sent down by ifconfig on 9505 * /dev/arp. ARP has appended this last (3rd) mblk, 9506 * giving more info. STREAMS ensures that the lower 9507 * stream (l_qbot) will not vanish until this ioctl 9508 * completes. So we can safely walk the stream or refer 9509 * to the q_ptr. 9510 */ 9511 ipmxp = (struct ipmx_s *)mp2->b_rptr; 9512 if (ipmxp->ipmx_arpdev_stream) { 9513 /* 9514 * The operation is occuring on the arp-device 9515 * stream. 9516 */ 9517 ill = ill_lookup_on_name(ipmxp->ipmx_name, B_FALSE, B_FALSE, 9518 q, mp, ip_sioctl_plink, &err, NULL); 9519 if (ill == NULL) { 9520 if (err == EINPROGRESS) { 9521 return; 9522 } else { 9523 err = EINVAL; 9524 goto done; 9525 } 9526 } 9527 9528 if (ipsq == NULL) { 9529 ipsq = ipsq_try_enter(NULL, ill, q, mp, ip_sioctl_plink, 9530 NEW_OP, B_TRUE); 9531 if (ipsq == NULL) { 9532 ill_refrele(ill); 9533 return; 9534 } 9535 entered_ipsq = B_TRUE; 9536 } 9537 ASSERT(IAM_WRITER_ILL(ill)); 9538 ill_refrele(ill); 9539 /* 9540 * To ensure consistency between IP and ARP, 9541 * the following LIFO scheme is used in 9542 * plink/punlink. (IP first, ARP last). 9543 * This is because the muxid's are stored 9544 * in the IP stream on the ill. 9545 * 9546 * I_{P}LINK: ifconfig plinks the IP stream before 9547 * plinking the ARP stream. On an arp-dev 9548 * stream, IP checks that it is not yet 9549 * plinked, and it also checks that the 9550 * corresponding IP stream is already plinked. 9551 * 9552 * I_{P}UNLINK: ifconfig punlinks the ARP stream 9553 * before punlinking the IP stream. IP does 9554 * not allow punlink of the IP stream unless 9555 * the arp stream has been punlinked. 9556 * 9557 */ 9558 if ((islink && 9559 (ill->ill_arp_muxid != 0 || ill->ill_ip_muxid == 0)) || 9560 (!islink && 9561 ill->ill_arp_muxid != li->l_index)) { 9562 err = EINVAL; 9563 goto done; 9564 } 9565 if (islink) { 9566 ill->ill_arp_muxid = li->l_index; 9567 } else { 9568 ill->ill_arp_muxid = 0; 9569 } 9570 } else { 9571 /* 9572 * This must be the IP module stream with or 9573 * without arp. Walk the stream and locate the 9574 * IP module. An IP module instance is 9575 * identified by the module name IP, non-null 9576 * q_next, and it's wput not being ip_lwput. 9577 */ 9578 ipwq = li->l_qbot; 9579 while (ipwq != NULL) { 9580 qinfo = ipwq->q_qinfo; 9581 name = qinfo->qi_minfo->mi_idname; 9582 if (name != NULL && name[0] != NULL && 9583 (strcmp(name, ip_mod_info.mi_idname) == 0) && 9584 ((void *)(qinfo->qi_putp) != (void *)ip_lwput) && 9585 (ipwq->q_next != NULL)) { 9586 break; 9587 } 9588 ipwq = ipwq->q_next; 9589 } 9590 if (ipwq != NULL) { 9591 ill = ipwq->q_ptr; 9592 ASSERT(ill != NULL); 9593 9594 if (ipsq == NULL) { 9595 ipsq = ipsq_try_enter(NULL, ill, q, mp, 9596 ip_sioctl_plink, NEW_OP, B_TRUE); 9597 if (ipsq == NULL) 9598 return; 9599 entered_ipsq = B_TRUE; 9600 } 9601 ASSERT(IAM_WRITER_ILL(ill)); 9602 /* 9603 * Return error if the ip_mux_id is 9604 * non-zero and command is I_{P}LINK. 9605 * If command is I_{P}UNLINK, return 9606 * error if the arp-devstr is not 9607 * yet punlinked. 9608 */ 9609 if ((islink && ill->ill_ip_muxid != 0) || 9610 (!islink && ill->ill_arp_muxid != 0)) { 9611 err = EINVAL; 9612 goto done; 9613 } 9614 ill->ill_lmod_rq = NULL; 9615 ill->ill_lmod_cnt = 0; 9616 if (islink) { 9617 /* 9618 * Store the upper read queue of the module 9619 * immediately below IP, and count the total 9620 * number of lower modules. 9621 */ 9622 if ((dwq = ipwq->q_next) != NULL) { 9623 ill->ill_lmod_rq = RD(dwq); 9624 9625 while (dwq != NULL) { 9626 ill->ill_lmod_cnt++; 9627 dwq = dwq->q_next; 9628 } 9629 } 9630 ill->ill_ip_muxid = li->l_index; 9631 } else { 9632 ill->ill_ip_muxid = 0; 9633 } 9634 9635 /* 9636 * See comments above about resetting/re- 9637 * negotiating driver sub-capabilities. 9638 */ 9639 if (ill->ill_ipif_up_count > 0) { 9640 if (islink) 9641 ill_capability_probe(ill); 9642 else 9643 ill_capability_reset(ill); 9644 } 9645 } 9646 } 9647 done: 9648 iocp->ioc_count = 0; 9649 iocp->ioc_error = err; 9650 if (err == 0) 9651 mp->b_datap->db_type = M_IOCACK; 9652 else 9653 mp->b_datap->db_type = M_IOCNAK; 9654 qreply(q, mp); 9655 9656 /* Conn was refheld in ip_sioctl_copyin_setup */ 9657 if (CONN_Q(q)) 9658 CONN_OPER_PENDING_DONE(Q_TO_CONN(q)); 9659 if (entered_ipsq) 9660 ipsq_exit(ipsq, B_TRUE, B_TRUE); 9661 } 9662 9663 /* 9664 * Search the ioctl command in the ioctl tables and return a pointer 9665 * to the ioctl command information. The ioctl command tables are 9666 * static and fully populated at compile time. 9667 */ 9668 ip_ioctl_cmd_t * 9669 ip_sioctl_lookup(int ioc_cmd) 9670 { 9671 int index; 9672 ip_ioctl_cmd_t *ipip; 9673 ip_ioctl_cmd_t *ipip_end; 9674 9675 if (ioc_cmd == IPI_DONTCARE) 9676 return (NULL); 9677 9678 /* 9679 * Do a 2 step search. First search the indexed table 9680 * based on the least significant byte of the ioctl cmd. 9681 * If we don't find a match, then search the misc table 9682 * serially. 9683 */ 9684 index = ioc_cmd & 0xFF; 9685 if (index < ip_ndx_ioctl_count) { 9686 ipip = &ip_ndx_ioctl_table[index]; 9687 if (ipip->ipi_cmd == ioc_cmd) { 9688 /* Found a match in the ndx table */ 9689 return (ipip); 9690 } 9691 } 9692 9693 /* Search the misc table */ 9694 ipip_end = &ip_misc_ioctl_table[ip_misc_ioctl_count]; 9695 for (ipip = ip_misc_ioctl_table; ipip < ipip_end; ipip++) { 9696 if (ipip->ipi_cmd == ioc_cmd) 9697 /* Found a match in the misc table */ 9698 return (ipip); 9699 } 9700 9701 return (NULL); 9702 } 9703 9704 /* 9705 * Wrapper function for resuming deferred ioctl processing 9706 * Used for SIOCGDSTINFO, SIOCGIP6ADDRPOLICY, SIOCGMSFILTER, 9707 * SIOCSMSFILTER, SIOCGIPMSFILTER, and SIOCSIPMSFILTER currently. 9708 */ 9709 /* ARGSUSED */ 9710 void 9711 ip_sioctl_copyin_resume(ipsq_t *dummy_ipsq, queue_t *q, mblk_t *mp, 9712 void *dummy_arg) 9713 { 9714 ip_sioctl_copyin_setup(q, mp); 9715 } 9716 9717 /* 9718 * ip_sioctl_copyin_setup is called by ip_wput with any M_IOCTL message 9719 * that arrives. Most of the IOCTLs are "socket" IOCTLs which we handle 9720 * in either I_STR or TRANSPARENT form, using the mi_copy facility. 9721 * We establish here the size of the block to be copied in. mi_copyin 9722 * arranges for this to happen, an processing continues in ip_wput with 9723 * an M_IOCDATA message. 9724 */ 9725 void 9726 ip_sioctl_copyin_setup(queue_t *q, mblk_t *mp) 9727 { 9728 int copyin_size; 9729 struct iocblk *iocp = (struct iocblk *)mp->b_rptr; 9730 ip_ioctl_cmd_t *ipip; 9731 cred_t *cr; 9732 9733 ipip = ip_sioctl_lookup(iocp->ioc_cmd); 9734 if (ipip == NULL) { 9735 /* 9736 * The ioctl is not one we understand or own. 9737 * Pass it along to be processed down stream, 9738 * if this is a module instance of IP, else nak 9739 * the ioctl. 9740 */ 9741 if (q->q_next == NULL) { 9742 goto nak; 9743 } else { 9744 putnext(q, mp); 9745 return; 9746 } 9747 } 9748 9749 /* 9750 * If this is deferred, then we will do all the checks when we 9751 * come back. 9752 */ 9753 if ((iocp->ioc_cmd == SIOCGDSTINFO || 9754 iocp->ioc_cmd == SIOCGIP6ADDRPOLICY) && !ip6_asp_can_lookup()) { 9755 ip6_asp_pending_op(q, mp, ip_sioctl_copyin_resume); 9756 return; 9757 } 9758 9759 /* 9760 * Only allow a very small subset of IP ioctls on this stream if 9761 * IP is a module and not a driver. Allowing ioctls to be processed 9762 * in this case may cause assert failures or data corruption. 9763 * Typically G[L]IFFLAGS, SLIFNAME/IF_UNITSEL are the only few 9764 * ioctls allowed on an IP module stream, after which this stream 9765 * normally becomes a multiplexor (at which time the stream head 9766 * will fail all ioctls). 9767 */ 9768 if ((q->q_next != NULL) && !(ipip->ipi_flags & IPI_MODOK)) { 9769 if (ipip->ipi_flags & IPI_PASS_DOWN) { 9770 /* 9771 * Pass common Streams ioctls which the IP 9772 * module does not own or consume along to 9773 * be processed down stream. 9774 */ 9775 putnext(q, mp); 9776 return; 9777 } else { 9778 goto nak; 9779 } 9780 } 9781 9782 /* Make sure we have ioctl data to process. */ 9783 if (mp->b_cont == NULL && !(ipip->ipi_flags & IPI_NULL_BCONT)) 9784 goto nak; 9785 9786 /* 9787 * Prefer dblk credential over ioctl credential; some synthesized 9788 * ioctls have kcred set because there's no way to crhold() 9789 * a credential in some contexts. (ioc_cr is not crfree() by 9790 * the framework; the caller of ioctl needs to hold the reference 9791 * for the duration of the call). 9792 */ 9793 cr = DB_CREDDEF(mp, iocp->ioc_cr); 9794 9795 /* Make sure normal users don't send down privileged ioctls */ 9796 if ((ipip->ipi_flags & IPI_PRIV) && 9797 (cr != NULL) && secpolicy_net_config(cr, B_TRUE) != 0) { 9798 /* We checked the privilege earlier but log it here */ 9799 miocnak(q, mp, 0, secpolicy_net_config(cr, B_FALSE)); 9800 return; 9801 } 9802 9803 /* 9804 * The ioctl command tables can only encode fixed length 9805 * ioctl data. If the length is variable, the table will 9806 * encode the length as zero. Such special cases are handled 9807 * below in the switch. 9808 */ 9809 if (ipip->ipi_copyin_size != 0) { 9810 mi_copyin(q, mp, NULL, ipip->ipi_copyin_size); 9811 return; 9812 } 9813 9814 switch (iocp->ioc_cmd) { 9815 case O_SIOCGIFCONF: 9816 case SIOCGIFCONF: 9817 /* 9818 * This IOCTL is hilarious. See comments in 9819 * ip_sioctl_get_ifconf for the story. 9820 */ 9821 if (iocp->ioc_count == TRANSPARENT) 9822 copyin_size = SIZEOF_STRUCT(ifconf, 9823 iocp->ioc_flag); 9824 else 9825 copyin_size = iocp->ioc_count; 9826 mi_copyin(q, mp, NULL, copyin_size); 9827 return; 9828 9829 case O_SIOCGLIFCONF: 9830 case SIOCGLIFCONF: 9831 copyin_size = SIZEOF_STRUCT(lifconf, iocp->ioc_flag); 9832 mi_copyin(q, mp, NULL, copyin_size); 9833 return; 9834 9835 case SIOCGLIFSRCOF: 9836 copyin_size = SIZEOF_STRUCT(lifsrcof, iocp->ioc_flag); 9837 mi_copyin(q, mp, NULL, copyin_size); 9838 return; 9839 case SIOCGIP6ADDRPOLICY: 9840 ip_sioctl_ip6addrpolicy(q, mp); 9841 ip6_asp_table_refrele(); 9842 return; 9843 9844 case SIOCSIP6ADDRPOLICY: 9845 ip_sioctl_ip6addrpolicy(q, mp); 9846 return; 9847 9848 case SIOCGDSTINFO: 9849 ip_sioctl_dstinfo(q, mp); 9850 ip6_asp_table_refrele(); 9851 return; 9852 9853 case I_PLINK: 9854 case I_PUNLINK: 9855 case I_LINK: 9856 case I_UNLINK: 9857 /* 9858 * We treat non-persistent link similarly as the persistent 9859 * link case, in terms of plumbing/unplumbing, as well as 9860 * dynamic re-plumbing events indicator. See comments 9861 * in ip_sioctl_plink() for more. 9862 * 9863 * Request can be enqueued in the 'ipsq' while waiting 9864 * to become exclusive. So bump up the conn ref. 9865 */ 9866 if (CONN_Q(q)) 9867 CONN_INC_REF(Q_TO_CONN(q)); 9868 ip_sioctl_plink(NULL, q, mp, NULL); 9869 return; 9870 9871 case ND_GET: 9872 case ND_SET: 9873 /* 9874 * Use of the nd table requires holding the reader lock. 9875 * Modifying the nd table thru nd_load/nd_unload requires 9876 * the writer lock. 9877 */ 9878 rw_enter(&ip_g_nd_lock, RW_READER); 9879 if (nd_getset(q, ip_g_nd, mp)) { 9880 rw_exit(&ip_g_nd_lock); 9881 9882 if (iocp->ioc_error) 9883 iocp->ioc_count = 0; 9884 mp->b_datap->db_type = M_IOCACK; 9885 qreply(q, mp); 9886 return; 9887 } 9888 rw_exit(&ip_g_nd_lock); 9889 /* 9890 * We don't understand this subioctl of ND_GET / ND_SET. 9891 * Maybe intended for some driver / module below us 9892 */ 9893 if (q->q_next) { 9894 putnext(q, mp); 9895 } else { 9896 iocp->ioc_error = ENOENT; 9897 mp->b_datap->db_type = M_IOCNAK; 9898 iocp->ioc_count = 0; 9899 qreply(q, mp); 9900 } 9901 return; 9902 9903 case IP_IOCTL: 9904 ip_wput_ioctl(q, mp); 9905 return; 9906 default: 9907 cmn_err(CE_PANIC, "should not happen "); 9908 } 9909 nak: 9910 if (mp->b_cont != NULL) { 9911 freemsg(mp->b_cont); 9912 mp->b_cont = NULL; 9913 } 9914 iocp->ioc_error = EINVAL; 9915 mp->b_datap->db_type = M_IOCNAK; 9916 iocp->ioc_count = 0; 9917 qreply(q, mp); 9918 } 9919 9920 /* ip_wput hands off ARP IOCTL responses to us */ 9921 void 9922 ip_sioctl_iocack(queue_t *q, mblk_t *mp) 9923 { 9924 struct arpreq *ar; 9925 struct xarpreq *xar; 9926 area_t *area; 9927 mblk_t *area_mp; 9928 struct iocblk *iocp; 9929 mblk_t *orig_ioc_mp, *tmp; 9930 struct iocblk *orig_iocp; 9931 ill_t *ill; 9932 conn_t *connp = NULL; 9933 uint_t ioc_id; 9934 mblk_t *pending_mp; 9935 int x_arp_ioctl = B_FALSE, ifx_arp_ioctl = B_FALSE; 9936 int *flagsp; 9937 char *storage = NULL; 9938 sin_t *sin; 9939 ipaddr_t addr; 9940 int err; 9941 9942 ill = q->q_ptr; 9943 ASSERT(ill != NULL); 9944 9945 /* 9946 * We should get back from ARP a packet chain that looks like: 9947 * M_IOCACK-->ARP_op_MBLK-->ORIG_M_IOCTL-->MI_COPY_MBLK-->[X]ARPREQ_MBLK 9948 */ 9949 if (!(area_mp = mp->b_cont) || 9950 (area_mp->b_wptr - area_mp->b_rptr) < sizeof (ip_sock_ar_t) || 9951 !(orig_ioc_mp = area_mp->b_cont) || 9952 !orig_ioc_mp->b_cont || !orig_ioc_mp->b_cont->b_cont) { 9953 freemsg(mp); 9954 return; 9955 } 9956 9957 orig_iocp = (struct iocblk *)orig_ioc_mp->b_rptr; 9958 9959 tmp = (orig_ioc_mp->b_cont)->b_cont; 9960 if ((orig_iocp->ioc_cmd == SIOCGXARP) || 9961 (orig_iocp->ioc_cmd == SIOCSXARP) || 9962 (orig_iocp->ioc_cmd == SIOCDXARP)) { 9963 x_arp_ioctl = B_TRUE; 9964 xar = (struct xarpreq *)tmp->b_rptr; 9965 sin = (sin_t *)&xar->xarp_pa; 9966 flagsp = &xar->xarp_flags; 9967 storage = xar->xarp_ha.sdl_data; 9968 if (xar->xarp_ha.sdl_nlen != 0) 9969 ifx_arp_ioctl = B_TRUE; 9970 } else { 9971 ar = (struct arpreq *)tmp->b_rptr; 9972 sin = (sin_t *)&ar->arp_pa; 9973 flagsp = &ar->arp_flags; 9974 storage = ar->arp_ha.sa_data; 9975 } 9976 9977 iocp = (struct iocblk *)mp->b_rptr; 9978 9979 /* 9980 * Pick out the originating queue based on the ioc_id. 9981 */ 9982 ioc_id = iocp->ioc_id; 9983 pending_mp = ill_pending_mp_get(ill, &connp, ioc_id); 9984 if (pending_mp == NULL) { 9985 ASSERT(connp == NULL); 9986 inet_freemsg(mp); 9987 return; 9988 } 9989 ASSERT(connp != NULL); 9990 q = CONNP_TO_WQ(connp); 9991 9992 /* Uncouple the internally generated IOCTL from the original one */ 9993 area = (area_t *)area_mp->b_rptr; 9994 area_mp->b_cont = NULL; 9995 9996 /* 9997 * Restore the b_next and b_prev used by mi code. This is needed 9998 * to complete the ioctl using mi* functions. We stored them in 9999 * the pending mp prior to sending the request to ARP. 10000 */ 10001 orig_ioc_mp->b_cont->b_next = pending_mp->b_cont->b_next; 10002 orig_ioc_mp->b_cont->b_prev = pending_mp->b_cont->b_prev; 10003 inet_freemsg(pending_mp); 10004 10005 /* 10006 * We're done if there was an error or if this is not an SIOCG{X}ARP 10007 * Catch the case where there is an IRE_CACHE by no entry in the 10008 * arp table. 10009 */ 10010 addr = sin->sin_addr.s_addr; 10011 if (iocp->ioc_error && iocp->ioc_cmd == AR_ENTRY_SQUERY) { 10012 ire_t *ire; 10013 dl_unitdata_req_t *dlup; 10014 mblk_t *llmp; 10015 int addr_len; 10016 ill_t *ipsqill = NULL; 10017 10018 if (ifx_arp_ioctl) { 10019 /* 10020 * There's no need to lookup the ill, since 10021 * we've already done that when we started 10022 * processing the ioctl and sent the message 10023 * to ARP on that ill. So use the ill that 10024 * is stored in q->q_ptr. 10025 */ 10026 ipsqill = ill; 10027 ire = ire_ctable_lookup(addr, 0, IRE_CACHE, 10028 ipsqill->ill_ipif, ALL_ZONES, 10029 NULL, MATCH_IRE_TYPE | MATCH_IRE_ILL); 10030 } else { 10031 ire = ire_ctable_lookup(addr, 0, IRE_CACHE, 10032 NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE); 10033 if (ire != NULL) 10034 ipsqill = ire_to_ill(ire); 10035 } 10036 10037 if ((x_arp_ioctl) && (ipsqill != NULL)) 10038 storage += ill_xarp_info(&xar->xarp_ha, ipsqill); 10039 10040 if (ire != NULL) { 10041 /* 10042 * Since the ire obtained from cachetable is used for 10043 * mac addr copying below, treat an incomplete ire as if 10044 * as if we never found it. 10045 */ 10046 if (ire->ire_nce != NULL && 10047 ire->ire_nce->nce_state != ND_REACHABLE) { 10048 ire_refrele(ire); 10049 ire = NULL; 10050 ipsqill = NULL; 10051 goto errack; 10052 } 10053 *flagsp = ATF_INUSE; 10054 llmp = (ire->ire_nce != NULL ? 10055 ire->ire_nce->nce_res_mp : NULL); 10056 if (llmp != NULL && ipsqill != NULL) { 10057 uchar_t *macaddr; 10058 10059 addr_len = ipsqill->ill_phys_addr_length; 10060 if (x_arp_ioctl && ((addr_len + 10061 ipsqill->ill_name_length) > 10062 sizeof (xar->xarp_ha.sdl_data))) { 10063 ire_refrele(ire); 10064 freemsg(mp); 10065 ip_ioctl_finish(q, orig_ioc_mp, 10066 EINVAL, NO_COPYOUT, NULL, NULL); 10067 return; 10068 } 10069 *flagsp |= ATF_COM; 10070 dlup = (dl_unitdata_req_t *)llmp->b_rptr; 10071 if (ipsqill->ill_sap_length < 0) 10072 macaddr = llmp->b_rptr + 10073 dlup->dl_dest_addr_offset; 10074 else 10075 macaddr = llmp->b_rptr + 10076 dlup->dl_dest_addr_offset + 10077 ipsqill->ill_sap_length; 10078 /* 10079 * For SIOCGARP, MAC address length 10080 * validation has already been done 10081 * before the ioctl was issued to ARP to 10082 * allow it to progress only on 6 byte 10083 * addressable (ethernet like) media. Thus 10084 * the mac address copying can not overwrite 10085 * the sa_data area below. 10086 */ 10087 bcopy(macaddr, storage, addr_len); 10088 } 10089 /* Ditch the internal IOCTL. */ 10090 freemsg(mp); 10091 ire_refrele(ire); 10092 ip_ioctl_finish(q, orig_ioc_mp, 0, COPYOUT, NULL, NULL); 10093 return; 10094 } 10095 } 10096 10097 /* 10098 * Delete the coresponding IRE_CACHE if any. 10099 * Reset the error if there was one (in case there was no entry 10100 * in arp.) 10101 */ 10102 if (iocp->ioc_cmd == AR_ENTRY_DELETE) { 10103 ipif_t *ipintf = NULL; 10104 10105 if (ifx_arp_ioctl) { 10106 /* 10107 * There's no need to lookup the ill, since 10108 * we've already done that when we started 10109 * processing the ioctl and sent the message 10110 * to ARP on that ill. So use the ill that 10111 * is stored in q->q_ptr. 10112 */ 10113 ipintf = ill->ill_ipif; 10114 } 10115 if (ip_ire_clookup_and_delete(addr, ipintf)) { 10116 /* 10117 * The address in "addr" may be an entry for a 10118 * router. If that's true, then any off-net 10119 * IRE_CACHE entries that go through the router 10120 * with address "addr" must be clobbered. Use 10121 * ire_walk to achieve this goal. 10122 */ 10123 if (ifx_arp_ioctl) 10124 ire_walk_ill_v4(MATCH_IRE_ILL, 0, 10125 ire_delete_cache_gw, (char *)&addr, ill); 10126 else 10127 ire_walk_v4(ire_delete_cache_gw, (char *)&addr, 10128 ALL_ZONES); 10129 iocp->ioc_error = 0; 10130 } 10131 } 10132 errack: 10133 if (iocp->ioc_error || iocp->ioc_cmd != AR_ENTRY_SQUERY) { 10134 err = iocp->ioc_error; 10135 freemsg(mp); 10136 ip_ioctl_finish(q, orig_ioc_mp, err, NO_COPYOUT, NULL, NULL); 10137 return; 10138 } 10139 10140 /* 10141 * Completion of an SIOCG{X}ARP. Translate the information from 10142 * the area_t into the struct {x}arpreq. 10143 */ 10144 if (x_arp_ioctl) { 10145 storage += ill_xarp_info(&xar->xarp_ha, ill); 10146 if ((ill->ill_phys_addr_length + ill->ill_name_length) > 10147 sizeof (xar->xarp_ha.sdl_data)) { 10148 freemsg(mp); 10149 ip_ioctl_finish(q, orig_ioc_mp, EINVAL, 10150 NO_COPYOUT, NULL, NULL); 10151 return; 10152 } 10153 } 10154 *flagsp = ATF_INUSE; 10155 if (area->area_flags & ACE_F_PERMANENT) 10156 *flagsp |= ATF_PERM; 10157 if (area->area_flags & ACE_F_PUBLISH) 10158 *flagsp |= ATF_PUBL; 10159 if (area->area_flags & ACE_F_AUTHORITY) 10160 *flagsp |= ATF_AUTHORITY; 10161 if (area->area_hw_addr_length != 0) { 10162 *flagsp |= ATF_COM; 10163 /* 10164 * For SIOCGARP, MAC address length validation has 10165 * already been done before the ioctl was issued to ARP 10166 * to allow it to progress only on 6 byte addressable 10167 * (ethernet like) media. Thus the mac address copying 10168 * can not overwrite the sa_data area below. 10169 */ 10170 bcopy((char *)area + area->area_hw_addr_offset, 10171 storage, area->area_hw_addr_length); 10172 } 10173 10174 /* Ditch the internal IOCTL. */ 10175 freemsg(mp); 10176 /* Complete the original. */ 10177 ip_ioctl_finish(q, orig_ioc_mp, 0, COPYOUT, NULL, NULL); 10178 } 10179 10180 /* 10181 * Create a new logical interface. If ipif_id is zero (i.e. not a logical 10182 * interface) create the next available logical interface for this 10183 * physical interface. 10184 * If ipif is NULL (i.e. the lookup didn't find one) attempt to create an 10185 * ipif with the specified name. 10186 * 10187 * If the address family is not AF_UNSPEC then set the address as well. 10188 * 10189 * If ip_sioctl_addr returns EINPROGRESS then the ioctl (the copyout) 10190 * is completed when the DL_BIND_ACK arrive in ip_rput_dlpi_writer. 10191 * 10192 * Executed as a writer on the ill or ill group. 10193 * So no lock is needed to traverse the ipif chain, or examine the 10194 * phyint flags. 10195 */ 10196 /* ARGSUSED */ 10197 int 10198 ip_sioctl_addif(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, 10199 ip_ioctl_cmd_t *dummy_ipip, void *dummy_ifreq) 10200 { 10201 mblk_t *mp1; 10202 struct lifreq *lifr; 10203 boolean_t isv6; 10204 boolean_t exists; 10205 char *name; 10206 char *endp; 10207 char *cp; 10208 int namelen; 10209 ipif_t *ipif; 10210 long id; 10211 ipsq_t *ipsq; 10212 ill_t *ill; 10213 sin_t *sin; 10214 int err = 0; 10215 boolean_t found_sep = B_FALSE; 10216 conn_t *connp; 10217 zoneid_t zoneid; 10218 int orig_ifindex = 0; 10219 10220 ip1dbg(("ip_sioctl_addif\n")); 10221 /* Existence of mp1 has been checked in ip_wput_nondata */ 10222 mp1 = mp->b_cont->b_cont; 10223 /* 10224 * Null terminate the string to protect against buffer 10225 * overrun. String was generated by user code and may not 10226 * be trusted. 10227 */ 10228 lifr = (struct lifreq *)mp1->b_rptr; 10229 lifr->lifr_name[LIFNAMSIZ - 1] = '\0'; 10230 name = lifr->lifr_name; 10231 ASSERT(CONN_Q(q)); 10232 connp = Q_TO_CONN(q); 10233 isv6 = connp->conn_af_isv6; 10234 zoneid = connp->conn_zoneid; 10235 namelen = mi_strlen(name); 10236 if (namelen == 0) 10237 return (EINVAL); 10238 10239 exists = B_FALSE; 10240 if ((namelen + 1 == sizeof (ipif_loopback_name)) && 10241 (mi_strcmp(name, ipif_loopback_name) == 0)) { 10242 /* 10243 * Allow creating lo0 using SIOCLIFADDIF. 10244 * can't be any other writer thread. So can pass null below 10245 * for the last 4 args to ipif_lookup_name. 10246 */ 10247 ipif = ipif_lookup_on_name(lifr->lifr_name, namelen, 10248 B_TRUE, &exists, isv6, zoneid, NULL, NULL, NULL, NULL); 10249 /* Prevent any further action */ 10250 if (ipif == NULL) { 10251 return (ENOBUFS); 10252 } else if (!exists) { 10253 /* We created the ipif now and as writer */ 10254 ipif_refrele(ipif); 10255 return (0); 10256 } else { 10257 ill = ipif->ipif_ill; 10258 ill_refhold(ill); 10259 ipif_refrele(ipif); 10260 } 10261 } else { 10262 /* Look for a colon in the name. */ 10263 endp = &name[namelen]; 10264 for (cp = endp; --cp > name; ) { 10265 if (*cp == IPIF_SEPARATOR_CHAR) { 10266 found_sep = B_TRUE; 10267 /* 10268 * Reject any non-decimal aliases for plumbing 10269 * of logical interfaces. Aliases with leading 10270 * zeroes are also rejected as they introduce 10271 * ambiguity in the naming of the interfaces. 10272 * Comparing with "0" takes care of all such 10273 * cases. 10274 */ 10275 if ((strncmp("0", cp+1, 1)) == 0) 10276 return (EINVAL); 10277 10278 if (ddi_strtol(cp+1, &endp, 10, &id) != 0 || 10279 id <= 0 || *endp != '\0') { 10280 return (EINVAL); 10281 } 10282 *cp = '\0'; 10283 break; 10284 } 10285 } 10286 ill = ill_lookup_on_name(name, B_FALSE, isv6, 10287 CONNP_TO_WQ(connp), mp, ip_process_ioctl, &err, NULL); 10288 if (found_sep) 10289 *cp = IPIF_SEPARATOR_CHAR; 10290 if (ill == NULL) 10291 return (err); 10292 } 10293 10294 ipsq = ipsq_try_enter(NULL, ill, q, mp, ip_process_ioctl, NEW_OP, 10295 B_TRUE); 10296 10297 /* 10298 * Release the refhold due to the lookup, now that we are excl 10299 * or we are just returning 10300 */ 10301 ill_refrele(ill); 10302 10303 if (ipsq == NULL) 10304 return (EINPROGRESS); 10305 10306 /* 10307 * If the interface is failed, inactive or offlined, look for a working 10308 * interface in the ill group and create the ipif there. If we can't 10309 * find a good interface, create the ipif anyway so that in.mpathd can 10310 * move it to the first repaired interface. 10311 */ 10312 if ((ill->ill_phyint->phyint_flags & 10313 (PHYI_FAILED|PHYI_INACTIVE|PHYI_OFFLINE)) && 10314 ill->ill_phyint->phyint_groupname_len != 0) { 10315 phyint_t *phyi; 10316 char *groupname = ill->ill_phyint->phyint_groupname; 10317 10318 /* 10319 * We're looking for a working interface, but it doesn't matter 10320 * if it's up or down; so instead of following the group lists, 10321 * we look at each physical interface and compare the groupname. 10322 * We're only interested in interfaces with IPv4 (resp. IPv6) 10323 * plumbed when we're adding an IPv4 (resp. IPv6) ipif. 10324 * Otherwise we create the ipif on the failed interface. 10325 */ 10326 rw_enter(&ill_g_lock, RW_READER); 10327 phyi = avl_first(&phyint_g_list.phyint_list_avl_by_index); 10328 for (; phyi != NULL; 10329 phyi = avl_walk(&phyint_g_list.phyint_list_avl_by_index, 10330 phyi, AVL_AFTER)) { 10331 if (phyi->phyint_groupname_len == 0) 10332 continue; 10333 ASSERT(phyi->phyint_groupname != NULL); 10334 if (mi_strcmp(groupname, phyi->phyint_groupname) == 0 && 10335 !(phyi->phyint_flags & 10336 (PHYI_FAILED|PHYI_INACTIVE|PHYI_OFFLINE)) && 10337 (ill->ill_isv6 ? (phyi->phyint_illv6 != NULL) : 10338 (phyi->phyint_illv4 != NULL))) { 10339 break; 10340 } 10341 } 10342 rw_exit(&ill_g_lock); 10343 10344 if (phyi != NULL) { 10345 orig_ifindex = ill->ill_phyint->phyint_ifindex; 10346 ill = (ill->ill_isv6 ? phyi->phyint_illv6 : 10347 phyi->phyint_illv4); 10348 } 10349 } 10350 10351 /* 10352 * We are now exclusive on the ipsq, so an ill move will be serialized 10353 * before or after us. 10354 */ 10355 ASSERT(IAM_WRITER_ILL(ill)); 10356 ASSERT(ill->ill_move_in_progress == B_FALSE); 10357 10358 if (found_sep && orig_ifindex == 0) { 10359 /* Now see if there is an IPIF with this unit number. */ 10360 for (ipif = ill->ill_ipif; ipif; ipif = ipif->ipif_next) { 10361 if (ipif->ipif_id == id) { 10362 err = EEXIST; 10363 goto done; 10364 } 10365 } 10366 } 10367 10368 /* 10369 * We use IRE_LOCAL for lo0:1 etc. for "receive only" use 10370 * of lo0. We never come here when we plumb lo0:0. It 10371 * happens in ipif_lookup_on_name. 10372 * The specified unit number is ignored when we create the ipif on a 10373 * different interface. However, we save it in ipif_orig_ipifid below so 10374 * that the ipif fails back to the right position. 10375 */ 10376 if ((ipif = ipif_allocate(ill, (found_sep && orig_ifindex == 0) ? 10377 id : -1, IRE_LOCAL, B_TRUE)) == NULL) { 10378 err = ENOBUFS; 10379 goto done; 10380 } 10381 10382 /* Return created name with ioctl */ 10383 (void) sprintf(lifr->lifr_name, "%s%c%d", ill->ill_name, 10384 IPIF_SEPARATOR_CHAR, ipif->ipif_id); 10385 ip1dbg(("created %s\n", lifr->lifr_name)); 10386 10387 /* Set address */ 10388 sin = (sin_t *)&lifr->lifr_addr; 10389 if (sin->sin_family != AF_UNSPEC) { 10390 err = ip_sioctl_addr(ipif, sin, q, mp, 10391 &ip_ndx_ioctl_table[SIOCLIFADDR_NDX], lifr); 10392 } 10393 10394 /* Set ifindex and unit number for failback */ 10395 if (err == 0 && orig_ifindex != 0) { 10396 ipif->ipif_orig_ifindex = orig_ifindex; 10397 if (found_sep) { 10398 ipif->ipif_orig_ipifid = id; 10399 } 10400 } 10401 10402 done: 10403 ipsq_exit(ipsq, B_TRUE, B_TRUE); 10404 return (err); 10405 } 10406 10407 /* 10408 * Remove an existing logical interface. If ipif_id is zero (i.e. not a logical 10409 * interface) delete it based on the IP address (on this physical interface). 10410 * Otherwise delete it based on the ipif_id. 10411 * Also, special handling to allow a removeif of lo0. 10412 */ 10413 /* ARGSUSED */ 10414 int 10415 ip_sioctl_removeif(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 10416 ip_ioctl_cmd_t *ipip, void *dummy_if_req) 10417 { 10418 conn_t *connp; 10419 ill_t *ill = ipif->ipif_ill; 10420 boolean_t success; 10421 10422 ip1dbg(("ip_sioctl_remove_if(%s:%u %p)\n", 10423 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 10424 ASSERT(IAM_WRITER_IPIF(ipif)); 10425 10426 connp = Q_TO_CONN(q); 10427 /* 10428 * Special case for unplumbing lo0 (the loopback physical interface). 10429 * If unplumbing lo0, the incoming address structure has been 10430 * initialized to all zeros. When unplumbing lo0, all its logical 10431 * interfaces must be removed too. 10432 * 10433 * Note that this interface may be called to remove a specific 10434 * loopback logical interface (eg, lo0:1). But in that case 10435 * ipif->ipif_id != 0 so that the code path for that case is the 10436 * same as any other interface (meaning it skips the code directly 10437 * below). 10438 */ 10439 if (ipif->ipif_id == 0 && ipif->ipif_net_type == IRE_LOOPBACK) { 10440 if (sin->sin_family == AF_UNSPEC && 10441 (IN6_IS_ADDR_UNSPECIFIED(&((sin6_t *)sin)->sin6_addr))) { 10442 /* 10443 * Mark it condemned. No new ref. will be made to ill. 10444 */ 10445 mutex_enter(&ill->ill_lock); 10446 ill->ill_state_flags |= ILL_CONDEMNED; 10447 for (ipif = ill->ill_ipif; ipif != NULL; 10448 ipif = ipif->ipif_next) { 10449 ipif->ipif_state_flags |= IPIF_CONDEMNED; 10450 } 10451 mutex_exit(&ill->ill_lock); 10452 10453 ipif = ill->ill_ipif; 10454 /* unplumb the loopback interface */ 10455 ill_delete(ill); 10456 mutex_enter(&connp->conn_lock); 10457 mutex_enter(&ill->ill_lock); 10458 ASSERT(ill->ill_group == NULL); 10459 10460 /* Are any references to this ill active */ 10461 if (ill_is_quiescent(ill)) { 10462 mutex_exit(&ill->ill_lock); 10463 mutex_exit(&connp->conn_lock); 10464 ill_delete_tail(ill); 10465 mi_free(ill); 10466 return (0); 10467 } 10468 success = ipsq_pending_mp_add(connp, ipif, 10469 CONNP_TO_WQ(connp), mp, ILL_FREE); 10470 mutex_exit(&connp->conn_lock); 10471 mutex_exit(&ill->ill_lock); 10472 if (success) 10473 return (EINPROGRESS); 10474 else 10475 return (EINTR); 10476 } 10477 } 10478 10479 /* 10480 * We are exclusive on the ipsq, so an ill move will be serialized 10481 * before or after us. 10482 */ 10483 ASSERT(ill->ill_move_in_progress == B_FALSE); 10484 10485 if (ipif->ipif_id == 0) { 10486 /* Find based on address */ 10487 if (ipif->ipif_isv6) { 10488 sin6_t *sin6; 10489 10490 if (sin->sin_family != AF_INET6) 10491 return (EAFNOSUPPORT); 10492 10493 sin6 = (sin6_t *)sin; 10494 /* We are a writer, so we should be able to lookup */ 10495 ipif = ipif_lookup_addr_v6(&sin6->sin6_addr, 10496 ill, ALL_ZONES, NULL, NULL, NULL, NULL); 10497 if (ipif == NULL) { 10498 /* 10499 * Maybe the address in on another interface in 10500 * the same IPMP group? We check this below. 10501 */ 10502 ipif = ipif_lookup_addr_v6(&sin6->sin6_addr, 10503 NULL, ALL_ZONES, NULL, NULL, NULL, NULL); 10504 } 10505 } else { 10506 ipaddr_t addr; 10507 10508 if (sin->sin_family != AF_INET) 10509 return (EAFNOSUPPORT); 10510 10511 addr = sin->sin_addr.s_addr; 10512 /* We are a writer, so we should be able to lookup */ 10513 ipif = ipif_lookup_addr(addr, ill, ALL_ZONES, NULL, 10514 NULL, NULL, NULL); 10515 if (ipif == NULL) { 10516 /* 10517 * Maybe the address in on another interface in 10518 * the same IPMP group? We check this below. 10519 */ 10520 ipif = ipif_lookup_addr(addr, NULL, ALL_ZONES, 10521 NULL, NULL, NULL, NULL); 10522 } 10523 } 10524 if (ipif == NULL) { 10525 return (EADDRNOTAVAIL); 10526 } 10527 /* 10528 * When the address to be removed is hosted on a different 10529 * interface, we check if the interface is in the same IPMP 10530 * group as the specified one; if so we proceed with the 10531 * removal. 10532 * ill->ill_group is NULL when the ill is down, so we have to 10533 * compare the group names instead. 10534 */ 10535 if (ipif->ipif_ill != ill && 10536 (ipif->ipif_ill->ill_phyint->phyint_groupname_len == 0 || 10537 ill->ill_phyint->phyint_groupname_len == 0 || 10538 mi_strcmp(ipif->ipif_ill->ill_phyint->phyint_groupname, 10539 ill->ill_phyint->phyint_groupname) != 0)) { 10540 ipif_refrele(ipif); 10541 return (EADDRNOTAVAIL); 10542 } 10543 10544 /* This is a writer */ 10545 ipif_refrele(ipif); 10546 } 10547 10548 /* 10549 * Can not delete instance zero since it is tied to the ill. 10550 */ 10551 if (ipif->ipif_id == 0) 10552 return (EBUSY); 10553 10554 mutex_enter(&ill->ill_lock); 10555 ipif->ipif_state_flags |= IPIF_CONDEMNED; 10556 mutex_exit(&ill->ill_lock); 10557 10558 ipif_free(ipif); 10559 10560 mutex_enter(&connp->conn_lock); 10561 mutex_enter(&ill->ill_lock); 10562 10563 /* Are any references to this ipif active */ 10564 if (ipif->ipif_refcnt == 0 && ipif->ipif_ire_cnt == 0) { 10565 mutex_exit(&ill->ill_lock); 10566 mutex_exit(&connp->conn_lock); 10567 ipif_non_duplicate(ipif); 10568 ipif_down_tail(ipif); 10569 ipif_free_tail(ipif); 10570 return (0); 10571 } 10572 success = ipsq_pending_mp_add(connp, ipif, CONNP_TO_WQ(connp), mp, 10573 IPIF_FREE); 10574 mutex_exit(&ill->ill_lock); 10575 mutex_exit(&connp->conn_lock); 10576 if (success) 10577 return (EINPROGRESS); 10578 else 10579 return (EINTR); 10580 } 10581 10582 /* 10583 * Restart the removeif ioctl. The refcnt has gone down to 0. 10584 * The ipif is already condemned. So can't find it thru lookups. 10585 */ 10586 /* ARGSUSED */ 10587 int 10588 ip_sioctl_removeif_restart(ipif_t *ipif, sin_t *dummy_sin, queue_t *q, 10589 mblk_t *mp, ip_ioctl_cmd_t *ipip, void *dummy_if_req) 10590 { 10591 ill_t *ill; 10592 10593 ip1dbg(("ip_sioctl_removeif_restart(%s:%u %p)\n", 10594 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 10595 if (ipif->ipif_id == 0 && ipif->ipif_net_type == IRE_LOOPBACK) { 10596 ill = ipif->ipif_ill; 10597 ASSERT(IAM_WRITER_ILL(ill)); 10598 ASSERT((ipif->ipif_state_flags & IPIF_CONDEMNED) && 10599 (ill->ill_state_flags & IPIF_CONDEMNED)); 10600 ill_delete_tail(ill); 10601 mi_free(ill); 10602 return (0); 10603 } 10604 10605 ill = ipif->ipif_ill; 10606 ASSERT(IAM_WRITER_IPIF(ipif)); 10607 ASSERT(ipif->ipif_state_flags & IPIF_CONDEMNED); 10608 10609 ipif_non_duplicate(ipif); 10610 ipif_down_tail(ipif); 10611 ipif_free_tail(ipif); 10612 10613 ILL_UNMARK_CHANGING(ill); 10614 return (0); 10615 } 10616 10617 /* 10618 * Set the local interface address. 10619 * Allow an address of all zero when the interface is down. 10620 */ 10621 /* ARGSUSED */ 10622 int 10623 ip_sioctl_addr(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 10624 ip_ioctl_cmd_t *dummy_ipip, void *dummy_ifreq) 10625 { 10626 int err = 0; 10627 in6_addr_t v6addr; 10628 boolean_t need_up = B_FALSE; 10629 10630 ip1dbg(("ip_sioctl_addr(%s:%u %p)\n", 10631 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 10632 10633 ASSERT(IAM_WRITER_IPIF(ipif)); 10634 10635 if (ipif->ipif_isv6) { 10636 sin6_t *sin6; 10637 ill_t *ill; 10638 phyint_t *phyi; 10639 10640 if (sin->sin_family != AF_INET6) 10641 return (EAFNOSUPPORT); 10642 10643 sin6 = (sin6_t *)sin; 10644 v6addr = sin6->sin6_addr; 10645 ill = ipif->ipif_ill; 10646 phyi = ill->ill_phyint; 10647 10648 /* 10649 * Enforce that true multicast interfaces have a link-local 10650 * address for logical unit 0. 10651 */ 10652 if (ipif->ipif_id == 0 && 10653 (ill->ill_flags & ILLF_MULTICAST) && 10654 !(ipif->ipif_flags & (IPIF_POINTOPOINT)) && 10655 !(phyi->phyint_flags & (PHYI_LOOPBACK)) && 10656 !IN6_IS_ADDR_LINKLOCAL(&v6addr)) { 10657 return (EADDRNOTAVAIL); 10658 } 10659 10660 /* 10661 * up interfaces shouldn't have the unspecified address 10662 * unless they also have the IPIF_NOLOCAL flags set and 10663 * have a subnet assigned. 10664 */ 10665 if ((ipif->ipif_flags & IPIF_UP) && 10666 IN6_IS_ADDR_UNSPECIFIED(&v6addr) && 10667 (!(ipif->ipif_flags & IPIF_NOLOCAL) || 10668 IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6subnet))) { 10669 return (EADDRNOTAVAIL); 10670 } 10671 10672 if (!ip_local_addr_ok_v6(&v6addr, &ipif->ipif_v6net_mask)) 10673 return (EADDRNOTAVAIL); 10674 } else { 10675 ipaddr_t addr; 10676 10677 if (sin->sin_family != AF_INET) 10678 return (EAFNOSUPPORT); 10679 10680 addr = sin->sin_addr.s_addr; 10681 10682 /* Allow 0 as the local address. */ 10683 if (addr != 0 && !ip_addr_ok_v4(addr, ipif->ipif_net_mask)) 10684 return (EADDRNOTAVAIL); 10685 10686 IN6_IPADDR_TO_V4MAPPED(addr, &v6addr); 10687 } 10688 10689 10690 /* 10691 * Even if there is no change we redo things just to rerun 10692 * ipif_set_default. 10693 */ 10694 if (ipif->ipif_flags & IPIF_UP) { 10695 /* 10696 * Setting a new local address, make sure 10697 * we have net and subnet bcast ire's for 10698 * the old address if we need them. 10699 */ 10700 if (!ipif->ipif_isv6) 10701 ipif_check_bcast_ires(ipif); 10702 /* 10703 * If the interface is already marked up, 10704 * we call ipif_down which will take care 10705 * of ditching any IREs that have been set 10706 * up based on the old interface address. 10707 */ 10708 err = ipif_logical_down(ipif, q, mp); 10709 if (err == EINPROGRESS) 10710 return (err); 10711 ipif_down_tail(ipif); 10712 need_up = 1; 10713 } 10714 10715 err = ip_sioctl_addr_tail(ipif, sin, q, mp, need_up); 10716 return (err); 10717 } 10718 10719 int 10720 ip_sioctl_addr_tail(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 10721 boolean_t need_up) 10722 { 10723 in6_addr_t v6addr; 10724 ipaddr_t addr; 10725 sin6_t *sin6; 10726 int err = 0; 10727 ill_t *ill = ipif->ipif_ill; 10728 boolean_t need_dl_down; 10729 boolean_t need_arp_down; 10730 10731 ip1dbg(("ip_sioctl_addr_tail(%s:%u %p)\n", 10732 ill->ill_name, ipif->ipif_id, (void *)ipif)); 10733 ASSERT(IAM_WRITER_IPIF(ipif)); 10734 10735 /* Must cancel any pending timer before taking the ill_lock */ 10736 if (ipif->ipif_recovery_id != 0) 10737 (void) untimeout(ipif->ipif_recovery_id); 10738 ipif->ipif_recovery_id = 0; 10739 10740 if (ipif->ipif_isv6) { 10741 sin6 = (sin6_t *)sin; 10742 v6addr = sin6->sin6_addr; 10743 } else { 10744 addr = sin->sin_addr.s_addr; 10745 IN6_IPADDR_TO_V4MAPPED(addr, &v6addr); 10746 } 10747 mutex_enter(&ill->ill_lock); 10748 ipif->ipif_v6lcl_addr = v6addr; 10749 if (ipif->ipif_flags & (IPIF_ANYCAST | IPIF_NOLOCAL)) { 10750 ipif->ipif_v6src_addr = ipv6_all_zeros; 10751 } else { 10752 ipif->ipif_v6src_addr = v6addr; 10753 } 10754 ipif->ipif_addr_ready = 0; 10755 10756 /* 10757 * If the interface was previously marked as a duplicate, then since 10758 * we've now got a "new" address, it should no longer be considered a 10759 * duplicate -- even if the "new" address is the same as the old one. 10760 * Note that if all ipifs are down, we may have a pending ARP down 10761 * event to handle. This is because we want to recover from duplicates 10762 * and thus delay tearing down ARP until the duplicates have been 10763 * removed or disabled. 10764 */ 10765 need_dl_down = need_arp_down = B_FALSE; 10766 if (ipif->ipif_flags & IPIF_DUPLICATE) { 10767 need_arp_down = !need_up; 10768 ipif->ipif_flags &= ~IPIF_DUPLICATE; 10769 if (--ill->ill_ipif_dup_count == 0 && !need_up && 10770 ill->ill_ipif_up_count == 0 && ill->ill_dl_up) { 10771 need_dl_down = B_TRUE; 10772 } 10773 } 10774 10775 if (ipif->ipif_isv6 && IN6_IS_ADDR_6TO4(&v6addr) && 10776 !ill->ill_is_6to4tun) { 10777 queue_t *wqp = ill->ill_wq; 10778 10779 /* 10780 * The local address of this interface is a 6to4 address, 10781 * check if this interface is in fact a 6to4 tunnel or just 10782 * an interface configured with a 6to4 address. We are only 10783 * interested in the former. 10784 */ 10785 if (wqp != NULL) { 10786 while ((wqp->q_next != NULL) && 10787 (wqp->q_next->q_qinfo != NULL) && 10788 (wqp->q_next->q_qinfo->qi_minfo != NULL)) { 10789 10790 if (wqp->q_next->q_qinfo->qi_minfo->mi_idnum 10791 == TUN6TO4_MODID) { 10792 /* set for use in IP */ 10793 ill->ill_is_6to4tun = 1; 10794 break; 10795 } 10796 wqp = wqp->q_next; 10797 } 10798 } 10799 } 10800 10801 ipif_set_default(ipif); 10802 mutex_exit(&ill->ill_lock); 10803 10804 if (need_up) { 10805 /* 10806 * Now bring the interface back up. If this 10807 * is the only IPIF for the ILL, ipif_up 10808 * will have to re-bind to the device, so 10809 * we may get back EINPROGRESS, in which 10810 * case, this IOCTL will get completed in 10811 * ip_rput_dlpi when we see the DL_BIND_ACK. 10812 */ 10813 err = ipif_up(ipif, q, mp); 10814 } else { 10815 /* 10816 * Update the IPIF list in SCTP, ipif_up_done() will do it 10817 * if need_up is true. 10818 */ 10819 sctp_update_ipif(ipif, SCTP_IPIF_UPDATE); 10820 } 10821 10822 if (need_dl_down) 10823 ill_dl_down(ill); 10824 if (need_arp_down) 10825 ipif_arp_down(ipif); 10826 10827 return (err); 10828 } 10829 10830 10831 /* 10832 * Restart entry point to restart the address set operation after the 10833 * refcounts have dropped to zero. 10834 */ 10835 /* ARGSUSED */ 10836 int 10837 ip_sioctl_addr_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 10838 ip_ioctl_cmd_t *ipip, void *ifreq) 10839 { 10840 ip1dbg(("ip_sioctl_addr_restart(%s:%u %p)\n", 10841 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 10842 ASSERT(IAM_WRITER_IPIF(ipif)); 10843 ipif_down_tail(ipif); 10844 return (ip_sioctl_addr_tail(ipif, sin, q, mp, B_TRUE)); 10845 } 10846 10847 /* ARGSUSED */ 10848 int 10849 ip_sioctl_get_addr(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 10850 ip_ioctl_cmd_t *ipip, void *if_req) 10851 { 10852 sin6_t *sin6 = (struct sockaddr_in6 *)sin; 10853 struct lifreq *lifr = (struct lifreq *)if_req; 10854 10855 ip1dbg(("ip_sioctl_get_addr(%s:%u %p)\n", 10856 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 10857 /* 10858 * The net mask and address can't change since we have a 10859 * reference to the ipif. So no lock is necessary. 10860 */ 10861 if (ipif->ipif_isv6) { 10862 *sin6 = sin6_null; 10863 sin6->sin6_family = AF_INET6; 10864 sin6->sin6_addr = ipif->ipif_v6lcl_addr; 10865 ASSERT(ipip->ipi_cmd_type == LIF_CMD); 10866 lifr->lifr_addrlen = 10867 ip_mask_to_plen_v6(&ipif->ipif_v6net_mask); 10868 } else { 10869 *sin = sin_null; 10870 sin->sin_family = AF_INET; 10871 sin->sin_addr.s_addr = ipif->ipif_lcl_addr; 10872 if (ipip->ipi_cmd_type == LIF_CMD) { 10873 lifr->lifr_addrlen = 10874 ip_mask_to_plen(ipif->ipif_net_mask); 10875 } 10876 } 10877 return (0); 10878 } 10879 10880 /* 10881 * Set the destination address for a pt-pt interface. 10882 */ 10883 /* ARGSUSED */ 10884 int 10885 ip_sioctl_dstaddr(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 10886 ip_ioctl_cmd_t *ipip, void *if_req) 10887 { 10888 int err = 0; 10889 in6_addr_t v6addr; 10890 boolean_t need_up = B_FALSE; 10891 10892 ip1dbg(("ip_sioctl_dstaddr(%s:%u %p)\n", 10893 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 10894 ASSERT(IAM_WRITER_IPIF(ipif)); 10895 10896 if (ipif->ipif_isv6) { 10897 sin6_t *sin6; 10898 10899 if (sin->sin_family != AF_INET6) 10900 return (EAFNOSUPPORT); 10901 10902 sin6 = (sin6_t *)sin; 10903 v6addr = sin6->sin6_addr; 10904 10905 if (!ip_remote_addr_ok_v6(&v6addr, &ipif->ipif_v6net_mask)) 10906 return (EADDRNOTAVAIL); 10907 } else { 10908 ipaddr_t addr; 10909 10910 if (sin->sin_family != AF_INET) 10911 return (EAFNOSUPPORT); 10912 10913 addr = sin->sin_addr.s_addr; 10914 if (!ip_addr_ok_v4(addr, ipif->ipif_net_mask)) 10915 return (EADDRNOTAVAIL); 10916 10917 IN6_IPADDR_TO_V4MAPPED(addr, &v6addr); 10918 } 10919 10920 if (IN6_ARE_ADDR_EQUAL(&ipif->ipif_v6pp_dst_addr, &v6addr)) 10921 return (0); /* No change */ 10922 10923 if (ipif->ipif_flags & IPIF_UP) { 10924 /* 10925 * If the interface is already marked up, 10926 * we call ipif_down which will take care 10927 * of ditching any IREs that have been set 10928 * up based on the old pp dst address. 10929 */ 10930 err = ipif_logical_down(ipif, q, mp); 10931 if (err == EINPROGRESS) 10932 return (err); 10933 ipif_down_tail(ipif); 10934 need_up = B_TRUE; 10935 } 10936 /* 10937 * could return EINPROGRESS. If so ioctl will complete in 10938 * ip_rput_dlpi_writer 10939 */ 10940 err = ip_sioctl_dstaddr_tail(ipif, sin, q, mp, need_up); 10941 return (err); 10942 } 10943 10944 static int 10945 ip_sioctl_dstaddr_tail(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 10946 boolean_t need_up) 10947 { 10948 in6_addr_t v6addr; 10949 ill_t *ill = ipif->ipif_ill; 10950 int err = 0; 10951 boolean_t need_dl_down; 10952 boolean_t need_arp_down; 10953 10954 ip1dbg(("ip_sioctl_dstaddr_tail(%s:%u %p)\n", ill->ill_name, 10955 ipif->ipif_id, (void *)ipif)); 10956 10957 /* Must cancel any pending timer before taking the ill_lock */ 10958 if (ipif->ipif_recovery_id != 0) 10959 (void) untimeout(ipif->ipif_recovery_id); 10960 ipif->ipif_recovery_id = 0; 10961 10962 if (ipif->ipif_isv6) { 10963 sin6_t *sin6; 10964 10965 sin6 = (sin6_t *)sin; 10966 v6addr = sin6->sin6_addr; 10967 } else { 10968 ipaddr_t addr; 10969 10970 addr = sin->sin_addr.s_addr; 10971 IN6_IPADDR_TO_V4MAPPED(addr, &v6addr); 10972 } 10973 mutex_enter(&ill->ill_lock); 10974 /* Set point to point destination address. */ 10975 if ((ipif->ipif_flags & IPIF_POINTOPOINT) == 0) { 10976 /* 10977 * Allow this as a means of creating logical 10978 * pt-pt interfaces on top of e.g. an Ethernet. 10979 * XXX Undocumented HACK for testing. 10980 * pt-pt interfaces are created with NUD disabled. 10981 */ 10982 ipif->ipif_flags |= IPIF_POINTOPOINT; 10983 ipif->ipif_flags &= ~IPIF_BROADCAST; 10984 if (ipif->ipif_isv6) 10985 ill->ill_flags |= ILLF_NONUD; 10986 } 10987 10988 /* 10989 * If the interface was previously marked as a duplicate, then since 10990 * we've now got a "new" address, it should no longer be considered a 10991 * duplicate -- even if the "new" address is the same as the old one. 10992 * Note that if all ipifs are down, we may have a pending ARP down 10993 * event to handle. 10994 */ 10995 need_dl_down = need_arp_down = B_FALSE; 10996 if (ipif->ipif_flags & IPIF_DUPLICATE) { 10997 need_arp_down = !need_up; 10998 ipif->ipif_flags &= ~IPIF_DUPLICATE; 10999 if (--ill->ill_ipif_dup_count == 0 && !need_up && 11000 ill->ill_ipif_up_count == 0 && ill->ill_dl_up) { 11001 need_dl_down = B_TRUE; 11002 } 11003 } 11004 11005 /* Set the new address. */ 11006 ipif->ipif_v6pp_dst_addr = v6addr; 11007 /* Make sure subnet tracks pp_dst */ 11008 ipif->ipif_v6subnet = ipif->ipif_v6pp_dst_addr; 11009 mutex_exit(&ill->ill_lock); 11010 11011 if (need_up) { 11012 /* 11013 * Now bring the interface back up. If this 11014 * is the only IPIF for the ILL, ipif_up 11015 * will have to re-bind to the device, so 11016 * we may get back EINPROGRESS, in which 11017 * case, this IOCTL will get completed in 11018 * ip_rput_dlpi when we see the DL_BIND_ACK. 11019 */ 11020 err = ipif_up(ipif, q, mp); 11021 } 11022 11023 if (need_dl_down) 11024 ill_dl_down(ill); 11025 11026 if (need_arp_down) 11027 ipif_arp_down(ipif); 11028 return (err); 11029 } 11030 11031 /* 11032 * Restart entry point to restart the dstaddress set operation after the 11033 * refcounts have dropped to zero. 11034 */ 11035 /* ARGSUSED */ 11036 int 11037 ip_sioctl_dstaddr_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11038 ip_ioctl_cmd_t *ipip, void *ifreq) 11039 { 11040 ip1dbg(("ip_sioctl_dstaddr_restart(%s:%u %p)\n", 11041 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11042 ipif_down_tail(ipif); 11043 return (ip_sioctl_dstaddr_tail(ipif, sin, q, mp, B_TRUE)); 11044 } 11045 11046 /* ARGSUSED */ 11047 int 11048 ip_sioctl_get_dstaddr(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11049 ip_ioctl_cmd_t *ipip, void *if_req) 11050 { 11051 sin6_t *sin6 = (struct sockaddr_in6 *)sin; 11052 11053 ip1dbg(("ip_sioctl_get_dstaddr(%s:%u %p)\n", 11054 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11055 /* 11056 * Get point to point destination address. The addresses can't 11057 * change since we hold a reference to the ipif. 11058 */ 11059 if ((ipif->ipif_flags & IPIF_POINTOPOINT) == 0) 11060 return (EADDRNOTAVAIL); 11061 11062 if (ipif->ipif_isv6) { 11063 ASSERT(ipip->ipi_cmd_type == LIF_CMD); 11064 *sin6 = sin6_null; 11065 sin6->sin6_family = AF_INET6; 11066 sin6->sin6_addr = ipif->ipif_v6pp_dst_addr; 11067 } else { 11068 *sin = sin_null; 11069 sin->sin_family = AF_INET; 11070 sin->sin_addr.s_addr = ipif->ipif_pp_dst_addr; 11071 } 11072 return (0); 11073 } 11074 11075 /* 11076 * part of ipmp, make this func return the active/inactive state and 11077 * caller can set once atomically instead of multiple mutex_enter/mutex_exit 11078 */ 11079 /* 11080 * This function either sets or clears the IFF_INACTIVE flag. 11081 * 11082 * As long as there are some addresses or multicast memberships on the 11083 * IPv4 or IPv6 interface of the "phyi" that does not belong in here, we 11084 * will consider it to be ACTIVE (clear IFF_INACTIVE) i.e the interface 11085 * will be used for outbound packets. 11086 * 11087 * Caller needs to verify the validity of setting IFF_INACTIVE. 11088 */ 11089 static void 11090 phyint_inactive(phyint_t *phyi) 11091 { 11092 ill_t *ill_v4; 11093 ill_t *ill_v6; 11094 ipif_t *ipif; 11095 ilm_t *ilm; 11096 11097 ill_v4 = phyi->phyint_illv4; 11098 ill_v6 = phyi->phyint_illv6; 11099 11100 /* 11101 * No need for a lock while traversing the list since iam 11102 * a writer 11103 */ 11104 if (ill_v4 != NULL) { 11105 ASSERT(IAM_WRITER_ILL(ill_v4)); 11106 for (ipif = ill_v4->ill_ipif; ipif != NULL; 11107 ipif = ipif->ipif_next) { 11108 if (ipif->ipif_orig_ifindex != phyi->phyint_ifindex) { 11109 mutex_enter(&phyi->phyint_lock); 11110 phyi->phyint_flags &= ~PHYI_INACTIVE; 11111 mutex_exit(&phyi->phyint_lock); 11112 return; 11113 } 11114 } 11115 for (ilm = ill_v4->ill_ilm; ilm != NULL; 11116 ilm = ilm->ilm_next) { 11117 if (ilm->ilm_orig_ifindex != phyi->phyint_ifindex) { 11118 mutex_enter(&phyi->phyint_lock); 11119 phyi->phyint_flags &= ~PHYI_INACTIVE; 11120 mutex_exit(&phyi->phyint_lock); 11121 return; 11122 } 11123 } 11124 } 11125 if (ill_v6 != NULL) { 11126 ill_v6 = phyi->phyint_illv6; 11127 for (ipif = ill_v6->ill_ipif; ipif != NULL; 11128 ipif = ipif->ipif_next) { 11129 if (ipif->ipif_orig_ifindex != phyi->phyint_ifindex) { 11130 mutex_enter(&phyi->phyint_lock); 11131 phyi->phyint_flags &= ~PHYI_INACTIVE; 11132 mutex_exit(&phyi->phyint_lock); 11133 return; 11134 } 11135 } 11136 for (ilm = ill_v6->ill_ilm; ilm != NULL; 11137 ilm = ilm->ilm_next) { 11138 if (ilm->ilm_orig_ifindex != phyi->phyint_ifindex) { 11139 mutex_enter(&phyi->phyint_lock); 11140 phyi->phyint_flags &= ~PHYI_INACTIVE; 11141 mutex_exit(&phyi->phyint_lock); 11142 return; 11143 } 11144 } 11145 } 11146 mutex_enter(&phyi->phyint_lock); 11147 phyi->phyint_flags |= PHYI_INACTIVE; 11148 mutex_exit(&phyi->phyint_lock); 11149 } 11150 11151 /* 11152 * This function is called only when the phyint flags change. Currently 11153 * called from ip_sioctl_flags. We re-do the broadcast nomination so 11154 * that we can select a good ill. 11155 */ 11156 static void 11157 ip_redo_nomination(phyint_t *phyi) 11158 { 11159 ill_t *ill_v4; 11160 11161 ill_v4 = phyi->phyint_illv4; 11162 11163 if (ill_v4 != NULL && ill_v4->ill_group != NULL) { 11164 ASSERT(IAM_WRITER_ILL(ill_v4)); 11165 if (ill_v4->ill_group->illgrp_ill_count > 1) 11166 ill_nominate_bcast_rcv(ill_v4->ill_group); 11167 } 11168 } 11169 11170 /* 11171 * Heuristic to check if ill is INACTIVE. 11172 * Checks if ill has an ipif with an usable ip address. 11173 * 11174 * Return values: 11175 * B_TRUE - ill is INACTIVE; has no usable ipif 11176 * B_FALSE - ill is not INACTIVE; ill has at least one usable ipif 11177 */ 11178 static boolean_t 11179 ill_is_inactive(ill_t *ill) 11180 { 11181 ipif_t *ipif; 11182 11183 /* Check whether it is in an IPMP group */ 11184 if (ill->ill_phyint->phyint_groupname == NULL) 11185 return (B_FALSE); 11186 11187 if (ill->ill_ipif_up_count == 0) 11188 return (B_TRUE); 11189 11190 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 11191 uint64_t flags = ipif->ipif_flags; 11192 11193 /* 11194 * This ipif is usable if it is IPIF_UP and not a 11195 * dedicated test address. A dedicated test address 11196 * is marked IPIF_NOFAILOVER *and* IPIF_DEPRECATED 11197 * (note in particular that V6 test addresses are 11198 * link-local data addresses and thus are marked 11199 * IPIF_NOFAILOVER but not IPIF_DEPRECATED). 11200 */ 11201 if ((flags & IPIF_UP) && 11202 ((flags & (IPIF_DEPRECATED|IPIF_NOFAILOVER)) != 11203 (IPIF_DEPRECATED|IPIF_NOFAILOVER))) 11204 return (B_FALSE); 11205 } 11206 return (B_TRUE); 11207 } 11208 11209 /* 11210 * Set interface flags. 11211 * Need to do special action for IPIF_UP, IPIF_DEPRECATED, IPIF_NOXMIT, 11212 * IPIF_NOLOCAL, ILLF_NONUD, ILLF_NOARP, IPIF_PRIVATE, IPIF_ANYCAST, 11213 * IPIF_PREFERRED, PHYI_STANDBY, PHYI_FAILED and PHYI_OFFLINE. 11214 * 11215 * NOTE : We really don't enforce that ipif_id zero should be used 11216 * for setting any flags other than IFF_LOGINT_FLAGS. This 11217 * is because applications generally does SICGLIFFLAGS and 11218 * ORs in the new flags (that affects the logical) and does a 11219 * SIOCSLIFFLAGS. Thus, "flags" below could contain bits other 11220 * than IFF_LOGINT_FLAGS. One could check whether "turn_on" - the 11221 * flags that will be turned on is correct with respect to 11222 * ipif_id 0. For backward compatibility reasons, it is not done. 11223 */ 11224 /* ARGSUSED */ 11225 int 11226 ip_sioctl_flags(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11227 ip_ioctl_cmd_t *ipip, void *if_req) 11228 { 11229 uint64_t turn_on; 11230 uint64_t turn_off; 11231 int err; 11232 boolean_t need_up = B_FALSE; 11233 phyint_t *phyi; 11234 ill_t *ill; 11235 uint64_t intf_flags; 11236 boolean_t phyint_flags_modified = B_FALSE; 11237 uint64_t flags; 11238 struct ifreq *ifr; 11239 struct lifreq *lifr; 11240 boolean_t set_linklocal = B_FALSE; 11241 boolean_t zero_source = B_FALSE; 11242 11243 ip1dbg(("ip_sioctl_flags(%s:%u %p)\n", 11244 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11245 11246 ASSERT(IAM_WRITER_IPIF(ipif)); 11247 11248 ill = ipif->ipif_ill; 11249 phyi = ill->ill_phyint; 11250 11251 if (ipip->ipi_cmd_type == IF_CMD) { 11252 ifr = (struct ifreq *)if_req; 11253 flags = (uint64_t)(ifr->ifr_flags & 0x0000ffff); 11254 } else { 11255 lifr = (struct lifreq *)if_req; 11256 flags = lifr->lifr_flags; 11257 } 11258 11259 intf_flags = ipif->ipif_flags | ill->ill_flags | phyi->phyint_flags; 11260 11261 /* 11262 * Has the flags been set correctly till now ? 11263 */ 11264 ASSERT((phyi->phyint_flags & ~(IFF_PHYINT_FLAGS)) == 0); 11265 ASSERT((ill->ill_flags & ~(IFF_PHYINTINST_FLAGS)) == 0); 11266 ASSERT((ipif->ipif_flags & ~(IFF_LOGINT_FLAGS)) == 0); 11267 /* 11268 * Compare the new flags to the old, and partition 11269 * into those coming on and those going off. 11270 * For the 16 bit command keep the bits above bit 16 unchanged. 11271 */ 11272 if (ipip->ipi_cmd == SIOCSIFFLAGS) 11273 flags |= intf_flags & ~0xFFFF; 11274 11275 /* 11276 * First check which bits will change and then which will 11277 * go on and off 11278 */ 11279 turn_on = (flags ^ intf_flags) & ~IFF_CANTCHANGE; 11280 if (!turn_on) 11281 return (0); /* No change */ 11282 11283 turn_off = intf_flags & turn_on; 11284 turn_on ^= turn_off; 11285 err = 0; 11286 11287 /* 11288 * Don't allow any bits belonging to the logical interface 11289 * to be set or cleared on the replacement ipif that was 11290 * created temporarily during a MOVE. 11291 */ 11292 if (ipif->ipif_replace_zero && 11293 ((turn_on|turn_off) & IFF_LOGINT_FLAGS) != 0) { 11294 return (EINVAL); 11295 } 11296 11297 /* 11298 * Only allow the IFF_XRESOLV and IFF_TEMPORARY flags to be set on 11299 * IPv6 interfaces. 11300 */ 11301 if ((turn_on & (IFF_XRESOLV|IFF_TEMPORARY)) && !(ipif->ipif_isv6)) 11302 return (EINVAL); 11303 11304 /* 11305 * Don't allow the IFF_ROUTER flag to be turned on on loopback 11306 * interfaces. It makes no sense in that context. 11307 */ 11308 if ((turn_on & IFF_ROUTER) && (phyi->phyint_flags & PHYI_LOOPBACK)) 11309 return (EINVAL); 11310 11311 if (flags & (IFF_NOLOCAL|IFF_ANYCAST)) 11312 zero_source = B_TRUE; 11313 11314 /* 11315 * For IPv6 ipif_id 0, don't allow the interface to be up without 11316 * a link local address if IFF_NOLOCAL or IFF_ANYCAST are not set. 11317 * If the link local address isn't set, and can be set, it will get 11318 * set later on in this function. 11319 */ 11320 if (ipif->ipif_id == 0 && ipif->ipif_isv6 && 11321 (flags & IFF_UP) && !zero_source && 11322 IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6lcl_addr)) { 11323 if (ipif_cant_setlinklocal(ipif)) 11324 return (EINVAL); 11325 set_linklocal = B_TRUE; 11326 } 11327 11328 /* 11329 * ILL cannot be part of a usesrc group and and IPMP group at the 11330 * same time. No need to grab ill_g_usesrc_lock here, see 11331 * synchronization notes in ip.c 11332 */ 11333 if (turn_on & PHYI_STANDBY && 11334 ipif->ipif_ill->ill_usesrc_grp_next != NULL) { 11335 return (EINVAL); 11336 } 11337 11338 /* 11339 * If we modify physical interface flags, we'll potentially need to 11340 * send up two routing socket messages for the changes (one for the 11341 * IPv4 ill, and another for the IPv6 ill). Note that here. 11342 */ 11343 if ((turn_on|turn_off) & IFF_PHYINT_FLAGS) 11344 phyint_flags_modified = B_TRUE; 11345 11346 /* 11347 * If we are setting or clearing FAILED or STANDBY or OFFLINE, 11348 * we need to flush the IRE_CACHES belonging to this ill. 11349 * We handle this case here without doing the DOWN/UP dance 11350 * like it is done for other flags. If some other flags are 11351 * being turned on/off with FAILED/STANDBY/OFFLINE, the code 11352 * below will handle it by bringing it down and then 11353 * bringing it UP. 11354 */ 11355 if ((turn_on|turn_off) & (PHYI_FAILED|PHYI_STANDBY|PHYI_OFFLINE)) { 11356 ill_t *ill_v4, *ill_v6; 11357 11358 ill_v4 = phyi->phyint_illv4; 11359 ill_v6 = phyi->phyint_illv6; 11360 11361 /* 11362 * First set the INACTIVE flag if needed. Then delete the ires. 11363 * ire_add will atomically prevent creating new IRE_CACHEs 11364 * unless hidden flag is set. 11365 * PHYI_FAILED and PHYI_INACTIVE are exclusive 11366 */ 11367 if ((turn_on & PHYI_FAILED) && 11368 ((intf_flags & PHYI_STANDBY) || !ipmp_enable_failback)) { 11369 /* Reset PHYI_INACTIVE when PHYI_FAILED is being set */ 11370 phyi->phyint_flags &= ~PHYI_INACTIVE; 11371 } 11372 if ((turn_off & PHYI_FAILED) && 11373 ((intf_flags & PHYI_STANDBY) || 11374 (!ipmp_enable_failback && ill_is_inactive(ill)))) { 11375 phyint_inactive(phyi); 11376 } 11377 11378 if (turn_on & PHYI_STANDBY) { 11379 /* 11380 * We implicitly set INACTIVE only when STANDBY is set. 11381 * INACTIVE is also set on non-STANDBY phyint when user 11382 * disables FAILBACK using configuration file. 11383 * Do not allow STANDBY to be set on such INACTIVE 11384 * phyint 11385 */ 11386 if (phyi->phyint_flags & PHYI_INACTIVE) 11387 return (EINVAL); 11388 if (!(phyi->phyint_flags & PHYI_FAILED)) 11389 phyint_inactive(phyi); 11390 } 11391 if (turn_off & PHYI_STANDBY) { 11392 if (ipmp_enable_failback) { 11393 /* 11394 * Reset PHYI_INACTIVE. 11395 */ 11396 phyi->phyint_flags &= ~PHYI_INACTIVE; 11397 } else if (ill_is_inactive(ill) && 11398 !(phyi->phyint_flags & PHYI_FAILED)) { 11399 /* 11400 * Need to set INACTIVE, when user sets 11401 * STANDBY on a non-STANDBY phyint and 11402 * later resets STANDBY 11403 */ 11404 phyint_inactive(phyi); 11405 } 11406 } 11407 /* 11408 * We should always send up a message so that the 11409 * daemons come to know of it. Note that the zeroth 11410 * interface can be down and the check below for IPIF_UP 11411 * will not make sense as we are actually setting 11412 * a phyint flag here. We assume that the ipif used 11413 * is always the zeroth ipif. (ip_rts_ifmsg does not 11414 * send up any message for non-zero ipifs). 11415 */ 11416 phyint_flags_modified = B_TRUE; 11417 11418 if (ill_v4 != NULL) { 11419 ire_walk_ill_v4(MATCH_IRE_ILL | MATCH_IRE_TYPE, 11420 IRE_CACHE, ill_stq_cache_delete, 11421 (char *)ill_v4, ill_v4); 11422 illgrp_reset_schednext(ill_v4); 11423 } 11424 if (ill_v6 != NULL) { 11425 ire_walk_ill_v6(MATCH_IRE_ILL | MATCH_IRE_TYPE, 11426 IRE_CACHE, ill_stq_cache_delete, 11427 (char *)ill_v6, ill_v6); 11428 illgrp_reset_schednext(ill_v6); 11429 } 11430 } 11431 11432 /* 11433 * If ILLF_ROUTER changes, we need to change the ip forwarding 11434 * status of the interface and, if the interface is part of an IPMP 11435 * group, all other interfaces that are part of the same IPMP 11436 * group. 11437 */ 11438 if ((turn_on | turn_off) & ILLF_ROUTER) { 11439 (void) ill_forward_set(q, mp, ((turn_on & ILLF_ROUTER) != 0), 11440 (caddr_t)ill); 11441 } 11442 11443 /* 11444 * If the interface is not UP and we are not going to 11445 * bring it UP, record the flags and return. When the 11446 * interface comes UP later, the right actions will be 11447 * taken. 11448 */ 11449 if (!(ipif->ipif_flags & IPIF_UP) && 11450 !(turn_on & IPIF_UP)) { 11451 /* Record new flags in their respective places. */ 11452 mutex_enter(&ill->ill_lock); 11453 mutex_enter(&ill->ill_phyint->phyint_lock); 11454 ipif->ipif_flags |= (turn_on & IFF_LOGINT_FLAGS); 11455 ipif->ipif_flags &= (~turn_off & IFF_LOGINT_FLAGS); 11456 ill->ill_flags |= (turn_on & IFF_PHYINTINST_FLAGS); 11457 ill->ill_flags &= (~turn_off & IFF_PHYINTINST_FLAGS); 11458 phyi->phyint_flags |= (turn_on & IFF_PHYINT_FLAGS); 11459 phyi->phyint_flags &= (~turn_off & IFF_PHYINT_FLAGS); 11460 mutex_exit(&ill->ill_lock); 11461 mutex_exit(&ill->ill_phyint->phyint_lock); 11462 11463 /* 11464 * We do the broadcast and nomination here rather 11465 * than waiting for a FAILOVER/FAILBACK to happen. In 11466 * the case of FAILBACK from INACTIVE standby to the 11467 * interface that has been repaired, PHYI_FAILED has not 11468 * been cleared yet. If there are only two interfaces in 11469 * that group, all we have is a FAILED and INACTIVE 11470 * interface. If we do the nomination soon after a failback, 11471 * the broadcast nomination code would select the 11472 * INACTIVE interface for receiving broadcasts as FAILED is 11473 * not yet cleared. As we don't want STANDBY/INACTIVE to 11474 * receive broadcast packets, we need to redo nomination 11475 * when the FAILED is cleared here. Thus, in general we 11476 * always do the nomination here for FAILED, STANDBY 11477 * and OFFLINE. 11478 */ 11479 if (((turn_on | turn_off) & 11480 (PHYI_FAILED|PHYI_STANDBY|PHYI_OFFLINE))) { 11481 ip_redo_nomination(phyi); 11482 } 11483 if (phyint_flags_modified) { 11484 if (phyi->phyint_illv4 != NULL) { 11485 ip_rts_ifmsg(phyi->phyint_illv4-> 11486 ill_ipif); 11487 } 11488 if (phyi->phyint_illv6 != NULL) { 11489 ip_rts_ifmsg(phyi->phyint_illv6-> 11490 ill_ipif); 11491 } 11492 } 11493 return (0); 11494 } else if (set_linklocal || zero_source) { 11495 mutex_enter(&ill->ill_lock); 11496 if (set_linklocal) 11497 ipif->ipif_state_flags |= IPIF_SET_LINKLOCAL; 11498 if (zero_source) 11499 ipif->ipif_state_flags |= IPIF_ZERO_SOURCE; 11500 mutex_exit(&ill->ill_lock); 11501 } 11502 11503 /* 11504 * Disallow IPv6 interfaces coming up that have the unspecified address, 11505 * or point-to-point interfaces with an unspecified destination. We do 11506 * allow the address to be unspecified for IPIF_NOLOCAL interfaces that 11507 * have a subnet assigned, which is how in.ndpd currently manages its 11508 * onlink prefix list when no addresses are configured with those 11509 * prefixes. 11510 */ 11511 if (ipif->ipif_isv6 && 11512 ((IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6lcl_addr) && 11513 (!(ipif->ipif_flags & IPIF_NOLOCAL) && !(turn_on & IPIF_NOLOCAL) || 11514 IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6subnet))) || 11515 ((ipif->ipif_flags & IPIF_POINTOPOINT) && 11516 IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6pp_dst_addr)))) { 11517 return (EINVAL); 11518 } 11519 11520 /* 11521 * Prevent IPv4 point-to-point interfaces with a 0.0.0.0 destination 11522 * from being brought up. 11523 */ 11524 if (!ipif->ipif_isv6 && 11525 ((ipif->ipif_flags & IPIF_POINTOPOINT) && 11526 ipif->ipif_pp_dst_addr == INADDR_ANY)) { 11527 return (EINVAL); 11528 } 11529 11530 /* 11531 * The only flag changes that we currently take specific action on 11532 * is IPIF_UP, IPIF_DEPRECATED, IPIF_NOXMIT, IPIF_NOLOCAL, 11533 * ILLF_NOARP, ILLF_NONUD, IPIF_PRIVATE, IPIF_ANYCAST, and 11534 * IPIF_PREFERRED. This is done by bring the ipif down, changing 11535 * the flags and bringing it back up again. 11536 */ 11537 if ((turn_on|turn_off) & 11538 (IPIF_UP|IPIF_DEPRECATED|IPIF_NOXMIT|IPIF_NOLOCAL|ILLF_NOARP| 11539 ILLF_NONUD|IPIF_PRIVATE|IPIF_ANYCAST|IPIF_PREFERRED)) { 11540 /* 11541 * Taking this ipif down, make sure we have 11542 * valid net and subnet bcast ire's for other 11543 * logical interfaces, if we need them. 11544 */ 11545 if (!ipif->ipif_isv6) 11546 ipif_check_bcast_ires(ipif); 11547 11548 if (((ipif->ipif_flags | turn_on) & IPIF_UP) && 11549 !(turn_off & IPIF_UP)) { 11550 need_up = B_TRUE; 11551 if (ipif->ipif_flags & IPIF_UP) 11552 ill->ill_logical_down = 1; 11553 turn_on &= ~IPIF_UP; 11554 } 11555 err = ipif_down(ipif, q, mp); 11556 ip1dbg(("ipif_down returns %d err ", err)); 11557 if (err == EINPROGRESS) 11558 return (err); 11559 ipif_down_tail(ipif); 11560 } 11561 return (ip_sioctl_flags_tail(ipif, flags, q, mp, need_up)); 11562 } 11563 11564 static int 11565 ip_sioctl_flags_tail(ipif_t *ipif, uint64_t flags, queue_t *q, mblk_t *mp, 11566 boolean_t need_up) 11567 { 11568 ill_t *ill; 11569 phyint_t *phyi; 11570 uint64_t turn_on; 11571 uint64_t turn_off; 11572 uint64_t intf_flags; 11573 boolean_t phyint_flags_modified = B_FALSE; 11574 int err = 0; 11575 boolean_t set_linklocal = B_FALSE; 11576 boolean_t zero_source = B_FALSE; 11577 11578 ip1dbg(("ip_sioctl_flags_tail(%s:%u)\n", 11579 ipif->ipif_ill->ill_name, ipif->ipif_id)); 11580 11581 ASSERT(IAM_WRITER_IPIF(ipif)); 11582 11583 ill = ipif->ipif_ill; 11584 phyi = ill->ill_phyint; 11585 11586 intf_flags = ipif->ipif_flags | ill->ill_flags | phyi->phyint_flags; 11587 turn_on = (flags ^ intf_flags) & ~(IFF_CANTCHANGE | IFF_UP); 11588 11589 turn_off = intf_flags & turn_on; 11590 turn_on ^= turn_off; 11591 11592 if ((turn_on|turn_off) & (PHYI_FAILED|PHYI_STANDBY|PHYI_OFFLINE)) 11593 phyint_flags_modified = B_TRUE; 11594 11595 /* 11596 * Now we change the flags. Track current value of 11597 * other flags in their respective places. 11598 */ 11599 mutex_enter(&ill->ill_lock); 11600 mutex_enter(&phyi->phyint_lock); 11601 ipif->ipif_flags |= (turn_on & IFF_LOGINT_FLAGS); 11602 ipif->ipif_flags &= (~turn_off & IFF_LOGINT_FLAGS); 11603 ill->ill_flags |= (turn_on & IFF_PHYINTINST_FLAGS); 11604 ill->ill_flags &= (~turn_off & IFF_PHYINTINST_FLAGS); 11605 phyi->phyint_flags |= (turn_on & IFF_PHYINT_FLAGS); 11606 phyi->phyint_flags &= (~turn_off & IFF_PHYINT_FLAGS); 11607 if (ipif->ipif_state_flags & IPIF_SET_LINKLOCAL) { 11608 set_linklocal = B_TRUE; 11609 ipif->ipif_state_flags &= ~IPIF_SET_LINKLOCAL; 11610 } 11611 if (ipif->ipif_state_flags & IPIF_ZERO_SOURCE) { 11612 zero_source = B_TRUE; 11613 ipif->ipif_state_flags &= ~IPIF_ZERO_SOURCE; 11614 } 11615 mutex_exit(&ill->ill_lock); 11616 mutex_exit(&phyi->phyint_lock); 11617 11618 if (((turn_on | turn_off) & (PHYI_FAILED|PHYI_STANDBY|PHYI_OFFLINE))) 11619 ip_redo_nomination(phyi); 11620 11621 if (set_linklocal) 11622 (void) ipif_setlinklocal(ipif); 11623 11624 if (zero_source) 11625 ipif->ipif_v6src_addr = ipv6_all_zeros; 11626 else 11627 ipif->ipif_v6src_addr = ipif->ipif_v6lcl_addr; 11628 11629 if (need_up) { 11630 /* 11631 * XXX ipif_up really does not know whether a phyint flags 11632 * was modified or not. So, it sends up information on 11633 * only one routing sockets message. As we don't bring up 11634 * the interface and also set STANDBY/FAILED simultaneously 11635 * it should be okay. 11636 */ 11637 err = ipif_up(ipif, q, mp); 11638 } else { 11639 /* 11640 * Make sure routing socket sees all changes to the flags. 11641 * ipif_up_done* handles this when we use ipif_up. 11642 */ 11643 if (phyint_flags_modified) { 11644 if (phyi->phyint_illv4 != NULL) { 11645 ip_rts_ifmsg(phyi->phyint_illv4-> 11646 ill_ipif); 11647 } 11648 if (phyi->phyint_illv6 != NULL) { 11649 ip_rts_ifmsg(phyi->phyint_illv6-> 11650 ill_ipif); 11651 } 11652 } else { 11653 ip_rts_ifmsg(ipif); 11654 } 11655 } 11656 return (err); 11657 } 11658 11659 /* 11660 * Restart entry point to restart the flags restart operation after the 11661 * refcounts have dropped to zero. 11662 */ 11663 /* ARGSUSED */ 11664 int 11665 ip_sioctl_flags_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11666 ip_ioctl_cmd_t *ipip, void *if_req) 11667 { 11668 int err; 11669 struct ifreq *ifr = (struct ifreq *)if_req; 11670 struct lifreq *lifr = (struct lifreq *)if_req; 11671 11672 ip1dbg(("ip_sioctl_flags_restart(%s:%u %p)\n", 11673 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11674 11675 ipif_down_tail(ipif); 11676 if (ipip->ipi_cmd_type == IF_CMD) { 11677 /* 11678 * Since ip_sioctl_flags expects an int and ifr_flags 11679 * is a short we need to cast ifr_flags into an int 11680 * to avoid having sign extension cause bits to get 11681 * set that should not be. 11682 */ 11683 err = ip_sioctl_flags_tail(ipif, 11684 (uint64_t)(ifr->ifr_flags & 0x0000ffff), 11685 q, mp, B_TRUE); 11686 } else { 11687 err = ip_sioctl_flags_tail(ipif, lifr->lifr_flags, 11688 q, mp, B_TRUE); 11689 } 11690 return (err); 11691 } 11692 11693 /* ARGSUSED */ 11694 int 11695 ip_sioctl_get_flags(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11696 ip_ioctl_cmd_t *ipip, void *if_req) 11697 { 11698 /* 11699 * Has the flags been set correctly till now ? 11700 */ 11701 ill_t *ill = ipif->ipif_ill; 11702 phyint_t *phyi = ill->ill_phyint; 11703 11704 ip1dbg(("ip_sioctl_get_flags(%s:%u %p)\n", 11705 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11706 ASSERT((phyi->phyint_flags & ~(IFF_PHYINT_FLAGS)) == 0); 11707 ASSERT((ill->ill_flags & ~(IFF_PHYINTINST_FLAGS)) == 0); 11708 ASSERT((ipif->ipif_flags & ~(IFF_LOGINT_FLAGS)) == 0); 11709 11710 /* 11711 * Need a lock since some flags can be set even when there are 11712 * references to the ipif. 11713 */ 11714 mutex_enter(&ill->ill_lock); 11715 if (ipip->ipi_cmd_type == IF_CMD) { 11716 struct ifreq *ifr = (struct ifreq *)if_req; 11717 11718 /* Get interface flags (low 16 only). */ 11719 ifr->ifr_flags = ((ipif->ipif_flags | 11720 ill->ill_flags | phyi->phyint_flags) & 0xffff); 11721 } else { 11722 struct lifreq *lifr = (struct lifreq *)if_req; 11723 11724 /* Get interface flags. */ 11725 lifr->lifr_flags = ipif->ipif_flags | 11726 ill->ill_flags | phyi->phyint_flags; 11727 } 11728 mutex_exit(&ill->ill_lock); 11729 return (0); 11730 } 11731 11732 /* ARGSUSED */ 11733 int 11734 ip_sioctl_mtu(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11735 ip_ioctl_cmd_t *ipip, void *if_req) 11736 { 11737 int mtu; 11738 int ip_min_mtu; 11739 struct ifreq *ifr; 11740 struct lifreq *lifr; 11741 ire_t *ire; 11742 11743 ip1dbg(("ip_sioctl_mtu(%s:%u %p)\n", ipif->ipif_ill->ill_name, 11744 ipif->ipif_id, (void *)ipif)); 11745 if (ipip->ipi_cmd_type == IF_CMD) { 11746 ifr = (struct ifreq *)if_req; 11747 mtu = ifr->ifr_metric; 11748 } else { 11749 lifr = (struct lifreq *)if_req; 11750 mtu = lifr->lifr_mtu; 11751 } 11752 11753 if (ipif->ipif_isv6) 11754 ip_min_mtu = IPV6_MIN_MTU; 11755 else 11756 ip_min_mtu = IP_MIN_MTU; 11757 11758 if (mtu > ipif->ipif_ill->ill_max_frag || mtu < ip_min_mtu) 11759 return (EINVAL); 11760 11761 /* 11762 * Change the MTU size in all relevant ire's. 11763 * Mtu change Vs. new ire creation - protocol below. 11764 * First change ipif_mtu and the ire_max_frag of the 11765 * interface ire. Then do an ire walk and change the 11766 * ire_max_frag of all affected ires. During ire_add 11767 * under the bucket lock, set the ire_max_frag of the 11768 * new ire being created from the ipif/ire from which 11769 * it is being derived. If an mtu change happens after 11770 * the ire is added, the new ire will be cleaned up. 11771 * Conversely if the mtu change happens before the ire 11772 * is added, ire_add will see the new value of the mtu. 11773 */ 11774 ipif->ipif_mtu = mtu; 11775 ipif->ipif_flags |= IPIF_FIXEDMTU; 11776 11777 if (ipif->ipif_isv6) 11778 ire = ipif_to_ire_v6(ipif); 11779 else 11780 ire = ipif_to_ire(ipif); 11781 if (ire != NULL) { 11782 ire->ire_max_frag = ipif->ipif_mtu; 11783 ire_refrele(ire); 11784 } 11785 if (ipif->ipif_flags & IPIF_UP) { 11786 if (ipif->ipif_isv6) 11787 ire_walk_v6(ipif_mtu_change, (char *)ipif, ALL_ZONES); 11788 else 11789 ire_walk_v4(ipif_mtu_change, (char *)ipif, ALL_ZONES); 11790 } 11791 /* Update the MTU in SCTP's list */ 11792 sctp_update_ipif(ipif, SCTP_IPIF_UPDATE); 11793 return (0); 11794 } 11795 11796 /* Get interface MTU. */ 11797 /* ARGSUSED */ 11798 int 11799 ip_sioctl_get_mtu(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11800 ip_ioctl_cmd_t *ipip, void *if_req) 11801 { 11802 struct ifreq *ifr; 11803 struct lifreq *lifr; 11804 11805 ip1dbg(("ip_sioctl_get_mtu(%s:%u %p)\n", 11806 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11807 if (ipip->ipi_cmd_type == IF_CMD) { 11808 ifr = (struct ifreq *)if_req; 11809 ifr->ifr_metric = ipif->ipif_mtu; 11810 } else { 11811 lifr = (struct lifreq *)if_req; 11812 lifr->lifr_mtu = ipif->ipif_mtu; 11813 } 11814 return (0); 11815 } 11816 11817 /* Set interface broadcast address. */ 11818 /* ARGSUSED2 */ 11819 int 11820 ip_sioctl_brdaddr(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11821 ip_ioctl_cmd_t *ipip, void *if_req) 11822 { 11823 ipaddr_t addr; 11824 ire_t *ire; 11825 11826 ip1dbg(("ip_sioctl_brdaddr(%s:%u)\n", ipif->ipif_ill->ill_name, 11827 ipif->ipif_id)); 11828 11829 ASSERT(IAM_WRITER_IPIF(ipif)); 11830 if (!(ipif->ipif_flags & IPIF_BROADCAST)) 11831 return (EADDRNOTAVAIL); 11832 11833 ASSERT(!(ipif->ipif_isv6)); /* No IPv6 broadcast */ 11834 11835 if (sin->sin_family != AF_INET) 11836 return (EAFNOSUPPORT); 11837 11838 addr = sin->sin_addr.s_addr; 11839 if (ipif->ipif_flags & IPIF_UP) { 11840 /* 11841 * If we are already up, make sure the new 11842 * broadcast address makes sense. If it does, 11843 * there should be an IRE for it already. 11844 * Don't match on ipif, only on the ill 11845 * since we are sharing these now. Don't use 11846 * MATCH_IRE_ILL_GROUP as we are looking for 11847 * the broadcast ire on this ill and each ill 11848 * in the group has its own broadcast ire. 11849 */ 11850 ire = ire_ctable_lookup(addr, 0, IRE_BROADCAST, 11851 ipif, ALL_ZONES, NULL, 11852 (MATCH_IRE_ILL | MATCH_IRE_TYPE)); 11853 if (ire == NULL) { 11854 return (EINVAL); 11855 } else { 11856 ire_refrele(ire); 11857 } 11858 } 11859 /* 11860 * Changing the broadcast addr for this ipif. 11861 * Make sure we have valid net and subnet bcast 11862 * ire's for other logical interfaces, if needed. 11863 */ 11864 if (addr != ipif->ipif_brd_addr) 11865 ipif_check_bcast_ires(ipif); 11866 IN6_IPADDR_TO_V4MAPPED(addr, &ipif->ipif_v6brd_addr); 11867 return (0); 11868 } 11869 11870 /* Get interface broadcast address. */ 11871 /* ARGSUSED */ 11872 int 11873 ip_sioctl_get_brdaddr(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11874 ip_ioctl_cmd_t *ipip, void *if_req) 11875 { 11876 ip1dbg(("ip_sioctl_get_brdaddr(%s:%u %p)\n", 11877 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11878 if (!(ipif->ipif_flags & IPIF_BROADCAST)) 11879 return (EADDRNOTAVAIL); 11880 11881 /* IPIF_BROADCAST not possible with IPv6 */ 11882 ASSERT(!ipif->ipif_isv6); 11883 *sin = sin_null; 11884 sin->sin_family = AF_INET; 11885 sin->sin_addr.s_addr = ipif->ipif_brd_addr; 11886 return (0); 11887 } 11888 11889 /* 11890 * This routine is called to handle the SIOCS*IFNETMASK IOCTL. 11891 */ 11892 /* ARGSUSED */ 11893 int 11894 ip_sioctl_netmask(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11895 ip_ioctl_cmd_t *ipip, void *if_req) 11896 { 11897 int err = 0; 11898 in6_addr_t v6mask; 11899 11900 ip1dbg(("ip_sioctl_netmask(%s:%u %p)\n", 11901 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11902 11903 ASSERT(IAM_WRITER_IPIF(ipif)); 11904 11905 if (ipif->ipif_isv6) { 11906 sin6_t *sin6; 11907 11908 if (sin->sin_family != AF_INET6) 11909 return (EAFNOSUPPORT); 11910 11911 sin6 = (sin6_t *)sin; 11912 v6mask = sin6->sin6_addr; 11913 } else { 11914 ipaddr_t mask; 11915 11916 if (sin->sin_family != AF_INET) 11917 return (EAFNOSUPPORT); 11918 11919 mask = sin->sin_addr.s_addr; 11920 V4MASK_TO_V6(mask, v6mask); 11921 } 11922 11923 /* 11924 * No big deal if the interface isn't already up, or the mask 11925 * isn't really changing, or this is pt-pt. 11926 */ 11927 if (!(ipif->ipif_flags & IPIF_UP) || 11928 IN6_ARE_ADDR_EQUAL(&v6mask, &ipif->ipif_v6net_mask) || 11929 (ipif->ipif_flags & IPIF_POINTOPOINT)) { 11930 ipif->ipif_v6net_mask = v6mask; 11931 if ((ipif->ipif_flags & IPIF_POINTOPOINT) == 0) { 11932 V6_MASK_COPY(ipif->ipif_v6lcl_addr, 11933 ipif->ipif_v6net_mask, 11934 ipif->ipif_v6subnet); 11935 } 11936 return (0); 11937 } 11938 /* 11939 * Make sure we have valid net and subnet broadcast ire's 11940 * for the old netmask, if needed by other logical interfaces. 11941 */ 11942 if (!ipif->ipif_isv6) 11943 ipif_check_bcast_ires(ipif); 11944 11945 err = ipif_logical_down(ipif, q, mp); 11946 if (err == EINPROGRESS) 11947 return (err); 11948 ipif_down_tail(ipif); 11949 err = ip_sioctl_netmask_tail(ipif, sin, q, mp); 11950 return (err); 11951 } 11952 11953 static int 11954 ip_sioctl_netmask_tail(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp) 11955 { 11956 in6_addr_t v6mask; 11957 int err = 0; 11958 11959 ip1dbg(("ip_sioctl_netmask_tail(%s:%u %p)\n", 11960 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11961 11962 if (ipif->ipif_isv6) { 11963 sin6_t *sin6; 11964 11965 sin6 = (sin6_t *)sin; 11966 v6mask = sin6->sin6_addr; 11967 } else { 11968 ipaddr_t mask; 11969 11970 mask = sin->sin_addr.s_addr; 11971 V4MASK_TO_V6(mask, v6mask); 11972 } 11973 11974 ipif->ipif_v6net_mask = v6mask; 11975 if ((ipif->ipif_flags & IPIF_POINTOPOINT) == 0) { 11976 V6_MASK_COPY(ipif->ipif_v6lcl_addr, ipif->ipif_v6net_mask, 11977 ipif->ipif_v6subnet); 11978 } 11979 err = ipif_up(ipif, q, mp); 11980 11981 if (err == 0 || err == EINPROGRESS) { 11982 /* 11983 * The interface must be DL_BOUND if this packet has to 11984 * go out on the wire. Since we only go through a logical 11985 * down and are bound with the driver during an internal 11986 * down/up that is satisfied. 11987 */ 11988 if (!ipif->ipif_isv6 && ipif->ipif_ill->ill_wq != NULL) { 11989 /* Potentially broadcast an address mask reply. */ 11990 ipif_mask_reply(ipif); 11991 } 11992 } 11993 return (err); 11994 } 11995 11996 /* ARGSUSED */ 11997 int 11998 ip_sioctl_netmask_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11999 ip_ioctl_cmd_t *ipip, void *if_req) 12000 { 12001 ip1dbg(("ip_sioctl_netmask_restart(%s:%u %p)\n", 12002 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12003 ipif_down_tail(ipif); 12004 return (ip_sioctl_netmask_tail(ipif, sin, q, mp)); 12005 } 12006 12007 /* Get interface net mask. */ 12008 /* ARGSUSED */ 12009 int 12010 ip_sioctl_get_netmask(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12011 ip_ioctl_cmd_t *ipip, void *if_req) 12012 { 12013 struct lifreq *lifr = (struct lifreq *)if_req; 12014 struct sockaddr_in6 *sin6 = (sin6_t *)sin; 12015 12016 ip1dbg(("ip_sioctl_get_netmask(%s:%u %p)\n", 12017 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12018 12019 /* 12020 * net mask can't change since we have a reference to the ipif. 12021 */ 12022 if (ipif->ipif_isv6) { 12023 ASSERT(ipip->ipi_cmd_type == LIF_CMD); 12024 *sin6 = sin6_null; 12025 sin6->sin6_family = AF_INET6; 12026 sin6->sin6_addr = ipif->ipif_v6net_mask; 12027 lifr->lifr_addrlen = 12028 ip_mask_to_plen_v6(&ipif->ipif_v6net_mask); 12029 } else { 12030 *sin = sin_null; 12031 sin->sin_family = AF_INET; 12032 sin->sin_addr.s_addr = ipif->ipif_net_mask; 12033 if (ipip->ipi_cmd_type == LIF_CMD) { 12034 lifr->lifr_addrlen = 12035 ip_mask_to_plen(ipif->ipif_net_mask); 12036 } 12037 } 12038 return (0); 12039 } 12040 12041 /* ARGSUSED */ 12042 int 12043 ip_sioctl_metric(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12044 ip_ioctl_cmd_t *ipip, void *if_req) 12045 { 12046 12047 ip1dbg(("ip_sioctl_metric(%s:%u %p)\n", 12048 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12049 /* 12050 * Set interface metric. We don't use this for 12051 * anything but we keep track of it in case it is 12052 * important to routing applications or such. 12053 */ 12054 if (ipip->ipi_cmd_type == IF_CMD) { 12055 struct ifreq *ifr; 12056 12057 ifr = (struct ifreq *)if_req; 12058 ipif->ipif_metric = ifr->ifr_metric; 12059 } else { 12060 struct lifreq *lifr; 12061 12062 lifr = (struct lifreq *)if_req; 12063 ipif->ipif_metric = lifr->lifr_metric; 12064 } 12065 return (0); 12066 } 12067 12068 12069 /* ARGSUSED */ 12070 int 12071 ip_sioctl_get_metric(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12072 ip_ioctl_cmd_t *ipip, void *if_req) 12073 { 12074 12075 /* Get interface metric. */ 12076 ip1dbg(("ip_sioctl_get_metric(%s:%u %p)\n", 12077 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12078 if (ipip->ipi_cmd_type == IF_CMD) { 12079 struct ifreq *ifr; 12080 12081 ifr = (struct ifreq *)if_req; 12082 ifr->ifr_metric = ipif->ipif_metric; 12083 } else { 12084 struct lifreq *lifr; 12085 12086 lifr = (struct lifreq *)if_req; 12087 lifr->lifr_metric = ipif->ipif_metric; 12088 } 12089 12090 return (0); 12091 } 12092 12093 /* ARGSUSED */ 12094 int 12095 ip_sioctl_muxid(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12096 ip_ioctl_cmd_t *ipip, void *if_req) 12097 { 12098 12099 ip1dbg(("ip_sioctl_muxid(%s:%u %p)\n", 12100 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12101 /* 12102 * Set the muxid returned from I_PLINK. 12103 */ 12104 if (ipip->ipi_cmd_type == IF_CMD) { 12105 struct ifreq *ifr = (struct ifreq *)if_req; 12106 12107 ipif->ipif_ill->ill_ip_muxid = ifr->ifr_ip_muxid; 12108 ipif->ipif_ill->ill_arp_muxid = ifr->ifr_arp_muxid; 12109 } else { 12110 struct lifreq *lifr = (struct lifreq *)if_req; 12111 12112 ipif->ipif_ill->ill_ip_muxid = lifr->lifr_ip_muxid; 12113 ipif->ipif_ill->ill_arp_muxid = lifr->lifr_arp_muxid; 12114 } 12115 return (0); 12116 } 12117 12118 /* ARGSUSED */ 12119 int 12120 ip_sioctl_get_muxid(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12121 ip_ioctl_cmd_t *ipip, void *if_req) 12122 { 12123 12124 ip1dbg(("ip_sioctl_get_muxid(%s:%u %p)\n", 12125 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12126 /* 12127 * Get the muxid saved in ill for I_PUNLINK. 12128 */ 12129 if (ipip->ipi_cmd_type == IF_CMD) { 12130 struct ifreq *ifr = (struct ifreq *)if_req; 12131 12132 ifr->ifr_ip_muxid = ipif->ipif_ill->ill_ip_muxid; 12133 ifr->ifr_arp_muxid = ipif->ipif_ill->ill_arp_muxid; 12134 } else { 12135 struct lifreq *lifr = (struct lifreq *)if_req; 12136 12137 lifr->lifr_ip_muxid = ipif->ipif_ill->ill_ip_muxid; 12138 lifr->lifr_arp_muxid = ipif->ipif_ill->ill_arp_muxid; 12139 } 12140 return (0); 12141 } 12142 12143 /* 12144 * Set the subnet prefix. Does not modify the broadcast address. 12145 */ 12146 /* ARGSUSED */ 12147 int 12148 ip_sioctl_subnet(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12149 ip_ioctl_cmd_t *ipip, void *if_req) 12150 { 12151 int err = 0; 12152 in6_addr_t v6addr; 12153 in6_addr_t v6mask; 12154 boolean_t need_up = B_FALSE; 12155 int addrlen; 12156 12157 ip1dbg(("ip_sioctl_subnet(%s:%u %p)\n", 12158 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12159 12160 ASSERT(IAM_WRITER_IPIF(ipif)); 12161 addrlen = ((struct lifreq *)if_req)->lifr_addrlen; 12162 12163 if (ipif->ipif_isv6) { 12164 sin6_t *sin6; 12165 12166 if (sin->sin_family != AF_INET6) 12167 return (EAFNOSUPPORT); 12168 12169 sin6 = (sin6_t *)sin; 12170 v6addr = sin6->sin6_addr; 12171 if (!ip_remote_addr_ok_v6(&v6addr, &ipv6_all_ones)) 12172 return (EADDRNOTAVAIL); 12173 } else { 12174 ipaddr_t addr; 12175 12176 if (sin->sin_family != AF_INET) 12177 return (EAFNOSUPPORT); 12178 12179 addr = sin->sin_addr.s_addr; 12180 if (!ip_addr_ok_v4(addr, 0xFFFFFFFF)) 12181 return (EADDRNOTAVAIL); 12182 IN6_IPADDR_TO_V4MAPPED(addr, &v6addr); 12183 /* Add 96 bits */ 12184 addrlen += IPV6_ABITS - IP_ABITS; 12185 } 12186 12187 if (ip_plen_to_mask_v6(addrlen, &v6mask) == NULL) 12188 return (EINVAL); 12189 12190 /* Check if bits in the address is set past the mask */ 12191 if (!V6_MASK_EQ(v6addr, v6mask, v6addr)) 12192 return (EINVAL); 12193 12194 if (IN6_ARE_ADDR_EQUAL(&ipif->ipif_v6subnet, &v6addr) && 12195 IN6_ARE_ADDR_EQUAL(&ipif->ipif_v6net_mask, &v6mask)) 12196 return (0); /* No change */ 12197 12198 if (ipif->ipif_flags & IPIF_UP) { 12199 /* 12200 * If the interface is already marked up, 12201 * we call ipif_down which will take care 12202 * of ditching any IREs that have been set 12203 * up based on the old interface address. 12204 */ 12205 err = ipif_logical_down(ipif, q, mp); 12206 if (err == EINPROGRESS) 12207 return (err); 12208 ipif_down_tail(ipif); 12209 need_up = B_TRUE; 12210 } 12211 12212 err = ip_sioctl_subnet_tail(ipif, v6addr, v6mask, q, mp, need_up); 12213 return (err); 12214 } 12215 12216 static int 12217 ip_sioctl_subnet_tail(ipif_t *ipif, in6_addr_t v6addr, in6_addr_t v6mask, 12218 queue_t *q, mblk_t *mp, boolean_t need_up) 12219 { 12220 ill_t *ill = ipif->ipif_ill; 12221 int err = 0; 12222 12223 ip1dbg(("ip_sioctl_subnet_tail(%s:%u %p)\n", 12224 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12225 12226 /* Set the new address. */ 12227 mutex_enter(&ill->ill_lock); 12228 ipif->ipif_v6net_mask = v6mask; 12229 if ((ipif->ipif_flags & IPIF_POINTOPOINT) == 0) { 12230 V6_MASK_COPY(v6addr, ipif->ipif_v6net_mask, 12231 ipif->ipif_v6subnet); 12232 } 12233 mutex_exit(&ill->ill_lock); 12234 12235 if (need_up) { 12236 /* 12237 * Now bring the interface back up. If this 12238 * is the only IPIF for the ILL, ipif_up 12239 * will have to re-bind to the device, so 12240 * we may get back EINPROGRESS, in which 12241 * case, this IOCTL will get completed in 12242 * ip_rput_dlpi when we see the DL_BIND_ACK. 12243 */ 12244 err = ipif_up(ipif, q, mp); 12245 if (err == EINPROGRESS) 12246 return (err); 12247 } 12248 return (err); 12249 } 12250 12251 /* ARGSUSED */ 12252 int 12253 ip_sioctl_subnet_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12254 ip_ioctl_cmd_t *ipip, void *if_req) 12255 { 12256 int addrlen; 12257 in6_addr_t v6addr; 12258 in6_addr_t v6mask; 12259 struct lifreq *lifr = (struct lifreq *)if_req; 12260 12261 ip1dbg(("ip_sioctl_subnet_restart(%s:%u %p)\n", 12262 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12263 ipif_down_tail(ipif); 12264 12265 addrlen = lifr->lifr_addrlen; 12266 if (ipif->ipif_isv6) { 12267 sin6_t *sin6; 12268 12269 sin6 = (sin6_t *)sin; 12270 v6addr = sin6->sin6_addr; 12271 } else { 12272 ipaddr_t addr; 12273 12274 addr = sin->sin_addr.s_addr; 12275 IN6_IPADDR_TO_V4MAPPED(addr, &v6addr); 12276 addrlen += IPV6_ABITS - IP_ABITS; 12277 } 12278 (void) ip_plen_to_mask_v6(addrlen, &v6mask); 12279 12280 return (ip_sioctl_subnet_tail(ipif, v6addr, v6mask, q, mp, B_TRUE)); 12281 } 12282 12283 /* ARGSUSED */ 12284 int 12285 ip_sioctl_get_subnet(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12286 ip_ioctl_cmd_t *ipip, void *if_req) 12287 { 12288 struct lifreq *lifr = (struct lifreq *)if_req; 12289 struct sockaddr_in6 *sin6 = (struct sockaddr_in6 *)sin; 12290 12291 ip1dbg(("ip_sioctl_get_subnet(%s:%u %p)\n", 12292 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12293 ASSERT(ipip->ipi_cmd_type == LIF_CMD); 12294 12295 if (ipif->ipif_isv6) { 12296 *sin6 = sin6_null; 12297 sin6->sin6_family = AF_INET6; 12298 sin6->sin6_addr = ipif->ipif_v6subnet; 12299 lifr->lifr_addrlen = 12300 ip_mask_to_plen_v6(&ipif->ipif_v6net_mask); 12301 } else { 12302 *sin = sin_null; 12303 sin->sin_family = AF_INET; 12304 sin->sin_addr.s_addr = ipif->ipif_subnet; 12305 lifr->lifr_addrlen = ip_mask_to_plen(ipif->ipif_net_mask); 12306 } 12307 return (0); 12308 } 12309 12310 /* 12311 * Set the IPv6 address token. 12312 */ 12313 /* ARGSUSED */ 12314 int 12315 ip_sioctl_token(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12316 ip_ioctl_cmd_t *ipi, void *if_req) 12317 { 12318 ill_t *ill = ipif->ipif_ill; 12319 int err; 12320 in6_addr_t v6addr; 12321 in6_addr_t v6mask; 12322 boolean_t need_up = B_FALSE; 12323 int i; 12324 sin6_t *sin6 = (sin6_t *)sin; 12325 struct lifreq *lifr = (struct lifreq *)if_req; 12326 int addrlen; 12327 12328 ip1dbg(("ip_sioctl_token(%s:%u %p)\n", 12329 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12330 ASSERT(IAM_WRITER_IPIF(ipif)); 12331 12332 addrlen = lifr->lifr_addrlen; 12333 /* Only allow for logical unit zero i.e. not on "le0:17" */ 12334 if (ipif->ipif_id != 0) 12335 return (EINVAL); 12336 12337 if (!ipif->ipif_isv6) 12338 return (EINVAL); 12339 12340 if (addrlen > IPV6_ABITS) 12341 return (EINVAL); 12342 12343 v6addr = sin6->sin6_addr; 12344 12345 /* 12346 * The length of the token is the length from the end. To get 12347 * the proper mask for this, compute the mask of the bits not 12348 * in the token; ie. the prefix, and then xor to get the mask. 12349 */ 12350 if (ip_plen_to_mask_v6(IPV6_ABITS - addrlen, &v6mask) == NULL) 12351 return (EINVAL); 12352 for (i = 0; i < 4; i++) { 12353 v6mask.s6_addr32[i] ^= (uint32_t)0xffffffff; 12354 } 12355 12356 if (V6_MASK_EQ(v6addr, v6mask, ill->ill_token) && 12357 ill->ill_token_length == addrlen) 12358 return (0); /* No change */ 12359 12360 if (ipif->ipif_flags & IPIF_UP) { 12361 err = ipif_logical_down(ipif, q, mp); 12362 if (err == EINPROGRESS) 12363 return (err); 12364 ipif_down_tail(ipif); 12365 need_up = B_TRUE; 12366 } 12367 err = ip_sioctl_token_tail(ipif, sin6, addrlen, q, mp, need_up); 12368 return (err); 12369 } 12370 12371 static int 12372 ip_sioctl_token_tail(ipif_t *ipif, sin6_t *sin6, int addrlen, queue_t *q, 12373 mblk_t *mp, boolean_t need_up) 12374 { 12375 in6_addr_t v6addr; 12376 in6_addr_t v6mask; 12377 ill_t *ill = ipif->ipif_ill; 12378 int i; 12379 int err = 0; 12380 12381 ip1dbg(("ip_sioctl_token_tail(%s:%u %p)\n", 12382 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12383 v6addr = sin6->sin6_addr; 12384 /* 12385 * The length of the token is the length from the end. To get 12386 * the proper mask for this, compute the mask of the bits not 12387 * in the token; ie. the prefix, and then xor to get the mask. 12388 */ 12389 (void) ip_plen_to_mask_v6(IPV6_ABITS - addrlen, &v6mask); 12390 for (i = 0; i < 4; i++) 12391 v6mask.s6_addr32[i] ^= (uint32_t)0xffffffff; 12392 12393 mutex_enter(&ill->ill_lock); 12394 V6_MASK_COPY(v6addr, v6mask, ill->ill_token); 12395 ill->ill_token_length = addrlen; 12396 mutex_exit(&ill->ill_lock); 12397 12398 if (need_up) { 12399 /* 12400 * Now bring the interface back up. If this 12401 * is the only IPIF for the ILL, ipif_up 12402 * will have to re-bind to the device, so 12403 * we may get back EINPROGRESS, in which 12404 * case, this IOCTL will get completed in 12405 * ip_rput_dlpi when we see the DL_BIND_ACK. 12406 */ 12407 err = ipif_up(ipif, q, mp); 12408 if (err == EINPROGRESS) 12409 return (err); 12410 } 12411 return (err); 12412 } 12413 12414 /* ARGSUSED */ 12415 int 12416 ip_sioctl_get_token(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12417 ip_ioctl_cmd_t *ipi, void *if_req) 12418 { 12419 ill_t *ill; 12420 sin6_t *sin6 = (sin6_t *)sin; 12421 struct lifreq *lifr = (struct lifreq *)if_req; 12422 12423 ip1dbg(("ip_sioctl_get_token(%s:%u %p)\n", 12424 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12425 if (ipif->ipif_id != 0) 12426 return (EINVAL); 12427 12428 ill = ipif->ipif_ill; 12429 if (!ill->ill_isv6) 12430 return (ENXIO); 12431 12432 *sin6 = sin6_null; 12433 sin6->sin6_family = AF_INET6; 12434 ASSERT(!IN6_IS_ADDR_V4MAPPED(&ill->ill_token)); 12435 sin6->sin6_addr = ill->ill_token; 12436 lifr->lifr_addrlen = ill->ill_token_length; 12437 return (0); 12438 } 12439 12440 /* 12441 * Set (hardware) link specific information that might override 12442 * what was acquired through the DL_INFO_ACK. 12443 * The logic is as follows. 12444 * 12445 * become exclusive 12446 * set CHANGING flag 12447 * change mtu on affected IREs 12448 * clear CHANGING flag 12449 * 12450 * An ire add that occurs before the CHANGING flag is set will have its mtu 12451 * changed by the ip_sioctl_lnkinfo. 12452 * 12453 * During the time the CHANGING flag is set, no new ires will be added to the 12454 * bucket, and ire add will fail (due the CHANGING flag). 12455 * 12456 * An ire add that occurs after the CHANGING flag is set will have the right mtu 12457 * before it is added to the bucket. 12458 * 12459 * Obviously only 1 thread can set the CHANGING flag and we need to become 12460 * exclusive to set the flag. 12461 */ 12462 /* ARGSUSED */ 12463 int 12464 ip_sioctl_lnkinfo(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12465 ip_ioctl_cmd_t *ipi, void *if_req) 12466 { 12467 ill_t *ill = ipif->ipif_ill; 12468 ipif_t *nipif; 12469 int ip_min_mtu; 12470 boolean_t mtu_walk = B_FALSE; 12471 struct lifreq *lifr = (struct lifreq *)if_req; 12472 lif_ifinfo_req_t *lir; 12473 ire_t *ire; 12474 12475 ip1dbg(("ip_sioctl_lnkinfo(%s:%u %p)\n", 12476 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12477 lir = &lifr->lifr_ifinfo; 12478 ASSERT(IAM_WRITER_IPIF(ipif)); 12479 12480 /* Only allow for logical unit zero i.e. not on "le0:17" */ 12481 if (ipif->ipif_id != 0) 12482 return (EINVAL); 12483 12484 /* Set interface MTU. */ 12485 if (ipif->ipif_isv6) 12486 ip_min_mtu = IPV6_MIN_MTU; 12487 else 12488 ip_min_mtu = IP_MIN_MTU; 12489 12490 /* 12491 * Verify values before we set anything. Allow zero to 12492 * mean unspecified. 12493 */ 12494 if (lir->lir_maxmtu != 0 && 12495 (lir->lir_maxmtu > ill->ill_max_frag || 12496 lir->lir_maxmtu < ip_min_mtu)) 12497 return (EINVAL); 12498 if (lir->lir_reachtime != 0 && 12499 lir->lir_reachtime > ND_MAX_REACHTIME) 12500 return (EINVAL); 12501 if (lir->lir_reachretrans != 0 && 12502 lir->lir_reachretrans > ND_MAX_REACHRETRANSTIME) 12503 return (EINVAL); 12504 12505 mutex_enter(&ill->ill_lock); 12506 ill->ill_state_flags |= ILL_CHANGING; 12507 for (nipif = ill->ill_ipif; nipif != NULL; 12508 nipif = nipif->ipif_next) { 12509 nipif->ipif_state_flags |= IPIF_CHANGING; 12510 } 12511 12512 mutex_exit(&ill->ill_lock); 12513 12514 if (lir->lir_maxmtu != 0) { 12515 ill->ill_max_mtu = lir->lir_maxmtu; 12516 ill->ill_mtu_userspecified = 1; 12517 mtu_walk = B_TRUE; 12518 } 12519 12520 if (lir->lir_reachtime != 0) 12521 ill->ill_reachable_time = lir->lir_reachtime; 12522 12523 if (lir->lir_reachretrans != 0) 12524 ill->ill_reachable_retrans_time = lir->lir_reachretrans; 12525 12526 ill->ill_max_hops = lir->lir_maxhops; 12527 12528 ill->ill_max_buf = ND_MAX_Q; 12529 12530 if (mtu_walk) { 12531 /* 12532 * Set the MTU on all ipifs associated with this ill except 12533 * for those whose MTU was fixed via SIOCSLIFMTU. 12534 */ 12535 for (nipif = ill->ill_ipif; nipif != NULL; 12536 nipif = nipif->ipif_next) { 12537 if (nipif->ipif_flags & IPIF_FIXEDMTU) 12538 continue; 12539 12540 nipif->ipif_mtu = ill->ill_max_mtu; 12541 12542 if (!(nipif->ipif_flags & IPIF_UP)) 12543 continue; 12544 12545 if (nipif->ipif_isv6) 12546 ire = ipif_to_ire_v6(nipif); 12547 else 12548 ire = ipif_to_ire(nipif); 12549 if (ire != NULL) { 12550 ire->ire_max_frag = ipif->ipif_mtu; 12551 ire_refrele(ire); 12552 } 12553 if (ill->ill_isv6) { 12554 ire_walk_ill_v6(MATCH_IRE_ILL, 0, 12555 ipif_mtu_change, (char *)nipif, 12556 ill); 12557 } else { 12558 ire_walk_ill_v4(MATCH_IRE_ILL, 0, 12559 ipif_mtu_change, (char *)nipif, 12560 ill); 12561 } 12562 } 12563 } 12564 12565 mutex_enter(&ill->ill_lock); 12566 for (nipif = ill->ill_ipif; nipif != NULL; 12567 nipif = nipif->ipif_next) { 12568 nipif->ipif_state_flags &= ~IPIF_CHANGING; 12569 } 12570 ILL_UNMARK_CHANGING(ill); 12571 mutex_exit(&ill->ill_lock); 12572 12573 return (0); 12574 } 12575 12576 /* ARGSUSED */ 12577 int 12578 ip_sioctl_get_lnkinfo(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12579 ip_ioctl_cmd_t *ipi, void *if_req) 12580 { 12581 struct lif_ifinfo_req *lir; 12582 ill_t *ill = ipif->ipif_ill; 12583 12584 ip1dbg(("ip_sioctl_get_lnkinfo(%s:%u %p)\n", 12585 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12586 if (ipif->ipif_id != 0) 12587 return (EINVAL); 12588 12589 lir = &((struct lifreq *)if_req)->lifr_ifinfo; 12590 lir->lir_maxhops = ill->ill_max_hops; 12591 lir->lir_reachtime = ill->ill_reachable_time; 12592 lir->lir_reachretrans = ill->ill_reachable_retrans_time; 12593 lir->lir_maxmtu = ill->ill_max_mtu; 12594 12595 return (0); 12596 } 12597 12598 /* 12599 * Return best guess as to the subnet mask for the specified address. 12600 * Based on the subnet masks for all the configured interfaces. 12601 * 12602 * We end up returning a zero mask in the case of default, multicast or 12603 * experimental. 12604 */ 12605 static ipaddr_t 12606 ip_subnet_mask(ipaddr_t addr, ipif_t **ipifp) 12607 { 12608 ipaddr_t net_mask; 12609 ill_t *ill; 12610 ipif_t *ipif; 12611 ill_walk_context_t ctx; 12612 ipif_t *fallback_ipif = NULL; 12613 12614 net_mask = ip_net_mask(addr); 12615 if (net_mask == 0) { 12616 *ipifp = NULL; 12617 return (0); 12618 } 12619 12620 /* Let's check to see if this is maybe a local subnet route. */ 12621 /* this function only applies to IPv4 interfaces */ 12622 rw_enter(&ill_g_lock, RW_READER); 12623 ill = ILL_START_WALK_V4(&ctx); 12624 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 12625 mutex_enter(&ill->ill_lock); 12626 for (ipif = ill->ill_ipif; ipif != NULL; 12627 ipif = ipif->ipif_next) { 12628 if (!IPIF_CAN_LOOKUP(ipif)) 12629 continue; 12630 if (!(ipif->ipif_flags & IPIF_UP)) 12631 continue; 12632 if ((ipif->ipif_subnet & net_mask) == 12633 (addr & net_mask)) { 12634 /* 12635 * Don't trust pt-pt interfaces if there are 12636 * other interfaces. 12637 */ 12638 if (ipif->ipif_flags & IPIF_POINTOPOINT) { 12639 if (fallback_ipif == NULL) { 12640 ipif_refhold_locked(ipif); 12641 fallback_ipif = ipif; 12642 } 12643 continue; 12644 } 12645 12646 /* 12647 * Fine. Just assume the same net mask as the 12648 * directly attached subnet interface is using. 12649 */ 12650 ipif_refhold_locked(ipif); 12651 mutex_exit(&ill->ill_lock); 12652 rw_exit(&ill_g_lock); 12653 if (fallback_ipif != NULL) 12654 ipif_refrele(fallback_ipif); 12655 *ipifp = ipif; 12656 return (ipif->ipif_net_mask); 12657 } 12658 } 12659 mutex_exit(&ill->ill_lock); 12660 } 12661 rw_exit(&ill_g_lock); 12662 12663 *ipifp = fallback_ipif; 12664 return ((fallback_ipif != NULL) ? 12665 fallback_ipif->ipif_net_mask : net_mask); 12666 } 12667 12668 /* 12669 * ip_sioctl_copyin_setup calls ip_wput_ioctl to process the IP_IOCTL ioctl. 12670 */ 12671 static void 12672 ip_wput_ioctl(queue_t *q, mblk_t *mp) 12673 { 12674 IOCP iocp; 12675 ipft_t *ipft; 12676 ipllc_t *ipllc; 12677 mblk_t *mp1; 12678 cred_t *cr; 12679 int error = 0; 12680 conn_t *connp; 12681 12682 ip1dbg(("ip_wput_ioctl")); 12683 iocp = (IOCP)mp->b_rptr; 12684 mp1 = mp->b_cont; 12685 if (mp1 == NULL) { 12686 iocp->ioc_error = EINVAL; 12687 mp->b_datap->db_type = M_IOCNAK; 12688 iocp->ioc_count = 0; 12689 qreply(q, mp); 12690 return; 12691 } 12692 12693 /* 12694 * These IOCTLs provide various control capabilities to 12695 * upstream agents such as ULPs and processes. There 12696 * are currently two such IOCTLs implemented. They 12697 * are used by TCP to provide update information for 12698 * existing IREs and to forcibly delete an IRE for a 12699 * host that is not responding, thereby forcing an 12700 * attempt at a new route. 12701 */ 12702 iocp->ioc_error = EINVAL; 12703 if (!pullupmsg(mp1, sizeof (ipllc->ipllc_cmd))) 12704 goto done; 12705 12706 ipllc = (ipllc_t *)mp1->b_rptr; 12707 for (ipft = ip_ioctl_ftbl; ipft->ipft_pfi; ipft++) { 12708 if (ipllc->ipllc_cmd == ipft->ipft_cmd) 12709 break; 12710 } 12711 /* 12712 * prefer credential from mblk over ioctl; 12713 * see ip_sioctl_copyin_setup 12714 */ 12715 cr = DB_CREDDEF(mp, iocp->ioc_cr); 12716 12717 /* 12718 * Refhold the conn in case the request gets queued up in some lookup 12719 */ 12720 ASSERT(CONN_Q(q)); 12721 connp = Q_TO_CONN(q); 12722 CONN_INC_REF(connp); 12723 if (ipft->ipft_pfi && 12724 ((mp1->b_wptr - mp1->b_rptr) >= ipft->ipft_min_size || 12725 pullupmsg(mp1, ipft->ipft_min_size))) { 12726 error = (*ipft->ipft_pfi)(q, 12727 (ipft->ipft_flags & IPFT_F_SELF_REPLY) ? mp : mp1, cr); 12728 } 12729 if (ipft->ipft_flags & IPFT_F_SELF_REPLY) { 12730 /* 12731 * CONN_OPER_PENDING_DONE happens in the function called 12732 * through ipft_pfi above. 12733 */ 12734 return; 12735 } 12736 12737 CONN_OPER_PENDING_DONE(connp); 12738 if (ipft->ipft_flags & IPFT_F_NO_REPLY) { 12739 freemsg(mp); 12740 return; 12741 } 12742 iocp->ioc_error = error; 12743 12744 done: 12745 mp->b_datap->db_type = M_IOCACK; 12746 if (iocp->ioc_error) 12747 iocp->ioc_count = 0; 12748 qreply(q, mp); 12749 } 12750 12751 /* 12752 * Lookup an ipif using the sequence id (ipif_seqid) 12753 */ 12754 ipif_t * 12755 ipif_lookup_seqid(ill_t *ill, uint_t seqid) 12756 { 12757 ipif_t *ipif; 12758 12759 ASSERT(MUTEX_HELD(&ill->ill_lock)); 12760 12761 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 12762 if (ipif->ipif_seqid == seqid && IPIF_CAN_LOOKUP(ipif)) 12763 return (ipif); 12764 } 12765 return (NULL); 12766 } 12767 12768 uint64_t ipif_g_seqid; 12769 12770 /* 12771 * Assign a unique id for the ipif. This is used later when we send 12772 * IRES to ARP for resolution where we initialize ire_ipif_seqid 12773 * to the value pointed by ire_ipif->ipif_seqid. Later when the 12774 * IRE is added, we verify that ipif has not disappeared. 12775 */ 12776 12777 static void 12778 ipif_assign_seqid(ipif_t *ipif) 12779 { 12780 ipif->ipif_seqid = atomic_add_64_nv(&ipif_g_seqid, 1); 12781 } 12782 12783 /* 12784 * Insert the ipif, so that the list of ipifs on the ill will be sorted 12785 * with respect to ipif_id. Note that an ipif with an ipif_id of -1 will 12786 * be inserted into the first space available in the list. The value of 12787 * ipif_id will then be set to the appropriate value for its position. 12788 */ 12789 static int 12790 ipif_insert(ipif_t *ipif, boolean_t acquire_g_lock, boolean_t acquire_ill_lock) 12791 { 12792 ill_t *ill; 12793 ipif_t *tipif; 12794 ipif_t **tipifp; 12795 int id; 12796 12797 ASSERT(ipif->ipif_ill->ill_net_type == IRE_LOOPBACK || 12798 IAM_WRITER_IPIF(ipif)); 12799 12800 ill = ipif->ipif_ill; 12801 ASSERT(ill != NULL); 12802 12803 /* 12804 * In the case of lo0:0 we already hold the ill_g_lock. 12805 * ill_lookup_on_name (acquires ill_g_lock) -> ipif_allocate -> 12806 * ipif_insert. Another such caller is ipif_move. 12807 */ 12808 if (acquire_g_lock) 12809 rw_enter(&ill_g_lock, RW_WRITER); 12810 if (acquire_ill_lock) 12811 mutex_enter(&ill->ill_lock); 12812 id = ipif->ipif_id; 12813 tipifp = &(ill->ill_ipif); 12814 if (id == -1) { /* need to find a real id */ 12815 id = 0; 12816 while ((tipif = *tipifp) != NULL) { 12817 ASSERT(tipif->ipif_id >= id); 12818 if (tipif->ipif_id != id) 12819 break; /* non-consecutive id */ 12820 id++; 12821 tipifp = &(tipif->ipif_next); 12822 } 12823 /* limit number of logical interfaces */ 12824 if (id >= ip_addrs_per_if) { 12825 if (acquire_ill_lock) 12826 mutex_exit(&ill->ill_lock); 12827 if (acquire_g_lock) 12828 rw_exit(&ill_g_lock); 12829 return (-1); 12830 } 12831 ipif->ipif_id = id; /* assign new id */ 12832 } else if (id < ip_addrs_per_if) { 12833 /* we have a real id; insert ipif in the right place */ 12834 while ((tipif = *tipifp) != NULL) { 12835 ASSERT(tipif->ipif_id != id); 12836 if (tipif->ipif_id > id) 12837 break; /* found correct location */ 12838 tipifp = &(tipif->ipif_next); 12839 } 12840 } else { 12841 if (acquire_ill_lock) 12842 mutex_exit(&ill->ill_lock); 12843 if (acquire_g_lock) 12844 rw_exit(&ill_g_lock); 12845 return (-1); 12846 } 12847 12848 ASSERT(tipifp != &(ill->ill_ipif) || id == 0); 12849 12850 ipif->ipif_next = tipif; 12851 *tipifp = ipif; 12852 if (acquire_ill_lock) 12853 mutex_exit(&ill->ill_lock); 12854 if (acquire_g_lock) 12855 rw_exit(&ill_g_lock); 12856 return (0); 12857 } 12858 12859 /* 12860 * Allocate and initialize a new interface control structure. (Always 12861 * called as writer.) 12862 * When ipif_allocate() is called from ip_ll_subnet_defaults, the ill 12863 * is not part of the global linked list of ills. ipif_seqid is unique 12864 * in the system and to preserve the uniqueness, it is assigned only 12865 * when ill becomes part of the global list. At that point ill will 12866 * have a name. If it doesn't get assigned here, it will get assigned 12867 * in ipif_set_values() as part of SIOCSLIFNAME processing. 12868 * Aditionally, if we come here from ip_ll_subnet_defaults, we don't set 12869 * the interface flags or any other information from the DL_INFO_ACK for 12870 * DL_STYLE2 drivers (initialize == B_FALSE), since we won't have them at 12871 * this point. The flags etc. will be set in ip_ll_subnet_defaults when the 12872 * second DL_INFO_ACK comes in from the driver. 12873 */ 12874 static ipif_t * 12875 ipif_allocate(ill_t *ill, int id, uint_t ire_type, boolean_t initialize) 12876 { 12877 ipif_t *ipif; 12878 phyint_t *phyi; 12879 12880 ip1dbg(("ipif_allocate(%s:%d ill %p)\n", 12881 ill->ill_name, id, (void *)ill)); 12882 ASSERT(ire_type == IRE_LOOPBACK || IAM_WRITER_ILL(ill)); 12883 12884 if ((ipif = (ipif_t *)mi_alloc(sizeof (ipif_t), BPRI_MED)) == NULL) 12885 return (NULL); 12886 *ipif = ipif_zero; /* start clean */ 12887 12888 ipif->ipif_ill = ill; 12889 ipif->ipif_id = id; /* could be -1 */ 12890 ipif->ipif_zoneid = GLOBAL_ZONEID; 12891 12892 mutex_init(&ipif->ipif_saved_ire_lock, NULL, MUTEX_DEFAULT, NULL); 12893 12894 ipif->ipif_refcnt = 0; 12895 ipif->ipif_saved_ire_cnt = 0; 12896 12897 if (ipif_insert(ipif, ire_type != IRE_LOOPBACK, B_TRUE)) { 12898 mi_free(ipif); 12899 return (NULL); 12900 } 12901 /* -1 id should have been replaced by real id */ 12902 id = ipif->ipif_id; 12903 ASSERT(id >= 0); 12904 12905 if (ill->ill_name[0] != '\0') { 12906 ipif_assign_seqid(ipif); 12907 if (ill->ill_phyint->phyint_ifindex != 0) 12908 sctp_update_ipif(ipif, SCTP_IPIF_INSERT); 12909 } 12910 /* 12911 * Keep a copy of original id in ipif_orig_ipifid. Failback 12912 * will attempt to restore the original id. The SIOCSLIFOINDEX 12913 * ioctl sets ipif_orig_ipifid to zero. 12914 */ 12915 ipif->ipif_orig_ipifid = id; 12916 12917 /* 12918 * We grab the ill_lock and phyint_lock to protect the flag changes. 12919 * The ipif is still not up and can't be looked up until the 12920 * ioctl completes and the IPIF_CHANGING flag is cleared. 12921 */ 12922 mutex_enter(&ill->ill_lock); 12923 mutex_enter(&ill->ill_phyint->phyint_lock); 12924 /* 12925 * Set the running flag when logical interface zero is created. 12926 * For subsequent logical interfaces, a DLPI link down 12927 * notification message may have cleared the running flag to 12928 * indicate the link is down, so we shouldn't just blindly set it. 12929 */ 12930 if (id == 0) 12931 ill->ill_phyint->phyint_flags |= PHYI_RUNNING; 12932 ipif->ipif_ire_type = ire_type; 12933 phyi = ill->ill_phyint; 12934 ipif->ipif_orig_ifindex = phyi->phyint_ifindex; 12935 12936 if (ipif->ipif_isv6) { 12937 ill->ill_flags |= ILLF_IPV6; 12938 } else { 12939 ipaddr_t inaddr_any = INADDR_ANY; 12940 12941 ill->ill_flags |= ILLF_IPV4; 12942 12943 /* Keep the IN6_IS_ADDR_V4MAPPED assertions happy */ 12944 IN6_IPADDR_TO_V4MAPPED(inaddr_any, 12945 &ipif->ipif_v6lcl_addr); 12946 IN6_IPADDR_TO_V4MAPPED(inaddr_any, 12947 &ipif->ipif_v6src_addr); 12948 IN6_IPADDR_TO_V4MAPPED(inaddr_any, 12949 &ipif->ipif_v6subnet); 12950 IN6_IPADDR_TO_V4MAPPED(inaddr_any, 12951 &ipif->ipif_v6net_mask); 12952 IN6_IPADDR_TO_V4MAPPED(inaddr_any, 12953 &ipif->ipif_v6brd_addr); 12954 IN6_IPADDR_TO_V4MAPPED(inaddr_any, 12955 &ipif->ipif_v6pp_dst_addr); 12956 } 12957 12958 /* 12959 * Don't set the interface flags etc. now, will do it in 12960 * ip_ll_subnet_defaults. 12961 */ 12962 if (!initialize) { 12963 mutex_exit(&ill->ill_lock); 12964 mutex_exit(&ill->ill_phyint->phyint_lock); 12965 return (ipif); 12966 } 12967 ipif->ipif_mtu = ill->ill_max_mtu; 12968 12969 if (ill->ill_bcast_addr_length != 0) { 12970 /* 12971 * Later detect lack of DLPI driver multicast 12972 * capability by catching DL_ENABMULTI errors in 12973 * ip_rput_dlpi. 12974 */ 12975 ill->ill_flags |= ILLF_MULTICAST; 12976 if (!ipif->ipif_isv6) 12977 ipif->ipif_flags |= IPIF_BROADCAST; 12978 } else { 12979 if (ill->ill_net_type != IRE_LOOPBACK) { 12980 if (ipif->ipif_isv6) 12981 /* 12982 * Note: xresolv interfaces will eventually need 12983 * NOARP set here as well, but that will require 12984 * those external resolvers to have some 12985 * knowledge of that flag and act appropriately. 12986 * Not to be changed at present. 12987 */ 12988 ill->ill_flags |= ILLF_NONUD; 12989 else 12990 ill->ill_flags |= ILLF_NOARP; 12991 } 12992 if (ill->ill_phys_addr_length == 0) { 12993 if (ill->ill_media && 12994 ill->ill_media->ip_m_mac_type == SUNW_DL_VNI) { 12995 ipif->ipif_flags |= IPIF_NOXMIT; 12996 phyi->phyint_flags |= PHYI_VIRTUAL; 12997 } else { 12998 /* pt-pt supports multicast. */ 12999 ill->ill_flags |= ILLF_MULTICAST; 13000 if (ill->ill_net_type == IRE_LOOPBACK) { 13001 phyi->phyint_flags |= 13002 (PHYI_LOOPBACK | PHYI_VIRTUAL); 13003 } else { 13004 ipif->ipif_flags |= IPIF_POINTOPOINT; 13005 } 13006 } 13007 } 13008 } 13009 mutex_exit(&ill->ill_lock); 13010 mutex_exit(&ill->ill_phyint->phyint_lock); 13011 return (ipif); 13012 } 13013 13014 /* 13015 * If appropriate, send a message up to the resolver delete the entry 13016 * for the address of this interface which is going out of business. 13017 * (Always called as writer). 13018 * 13019 * NOTE : We need to check for NULL mps as some of the fields are 13020 * initialized only for some interface types. See ipif_resolver_up() 13021 * for details. 13022 */ 13023 void 13024 ipif_arp_down(ipif_t *ipif) 13025 { 13026 mblk_t *mp; 13027 ill_t *ill = ipif->ipif_ill; 13028 13029 ip1dbg(("ipif_arp_down(%s:%u)\n", ill->ill_name, ipif->ipif_id)); 13030 ASSERT(IAM_WRITER_IPIF(ipif)); 13031 13032 /* Delete the mapping for the local address */ 13033 mp = ipif->ipif_arp_del_mp; 13034 if (mp != NULL) { 13035 ip1dbg(("ipif_arp_down: arp cmd %x for %s:%u\n", 13036 *(unsigned *)mp->b_rptr, ill->ill_name, ipif->ipif_id)); 13037 putnext(ill->ill_rq, mp); 13038 ipif->ipif_arp_del_mp = NULL; 13039 } 13040 13041 /* 13042 * If this is the last ipif that is going down and there are no 13043 * duplicate addresses we may yet attempt to re-probe, then we need to 13044 * clean up ARP completely. 13045 */ 13046 if (ill->ill_ipif_up_count == 0 && ill->ill_ipif_dup_count == 0) { 13047 13048 /* Send up AR_INTERFACE_DOWN message */ 13049 mp = ill->ill_arp_down_mp; 13050 if (mp != NULL) { 13051 ip1dbg(("ipif_arp_down: arp cmd %x for %s:%u\n", 13052 *(unsigned *)mp->b_rptr, ill->ill_name, 13053 ipif->ipif_id)); 13054 putnext(ill->ill_rq, mp); 13055 ill->ill_arp_down_mp = NULL; 13056 } 13057 13058 /* Tell ARP to delete the multicast mappings */ 13059 mp = ill->ill_arp_del_mapping_mp; 13060 if (mp != NULL) { 13061 ip1dbg(("ipif_arp_down: arp cmd %x for %s:%u\n", 13062 *(unsigned *)mp->b_rptr, ill->ill_name, 13063 ipif->ipif_id)); 13064 putnext(ill->ill_rq, mp); 13065 ill->ill_arp_del_mapping_mp = NULL; 13066 } 13067 } 13068 } 13069 13070 /* 13071 * This function sets up the multicast mappings in ARP. When ipif_resolver_up 13072 * calls this function, it passes a non-NULL arp_add_mapping_mp indicating 13073 * that it wants the add_mp allocated in this function to be returned 13074 * wihtout sending it to arp. When ip_rput_dlpi_writer calls this to 13075 * just re-do the multicast, it wants us to send the add_mp to ARP also. 13076 * ipif_resolver_up does not want us to do the "add" i.e sending to ARP, 13077 * as it does a ipif_arp_down after calling this function - which will 13078 * remove what we add here. 13079 * 13080 * Returns -1 on failures and 0 on success. 13081 */ 13082 int 13083 ipif_arp_setup_multicast(ipif_t *ipif, mblk_t **arp_add_mapping_mp) 13084 { 13085 mblk_t *del_mp = NULL; 13086 mblk_t *add_mp = NULL; 13087 mblk_t *mp; 13088 ill_t *ill = ipif->ipif_ill; 13089 phyint_t *phyi = ill->ill_phyint; 13090 ipaddr_t addr, mask, extract_mask = 0; 13091 arma_t *arma; 13092 uint8_t *maddr, *bphys_addr; 13093 uint32_t hw_start; 13094 dl_unitdata_req_t *dlur; 13095 13096 ASSERT(IAM_WRITER_IPIF(ipif)); 13097 if (ipif->ipif_flags & IPIF_POINTOPOINT) 13098 return (0); 13099 13100 /* 13101 * Delete the existing mapping from ARP. Normally ipif_down 13102 * -> ipif_arp_down should send this up to ARP. The only 13103 * reason we would find this when we are switching from 13104 * Multicast to Broadcast where we did not do a down. 13105 */ 13106 mp = ill->ill_arp_del_mapping_mp; 13107 if (mp != NULL) { 13108 ip1dbg(("ipif_arp_down: arp cmd %x for %s:%u\n", 13109 *(unsigned *)mp->b_rptr, ill->ill_name, ipif->ipif_id)); 13110 putnext(ill->ill_rq, mp); 13111 ill->ill_arp_del_mapping_mp = NULL; 13112 } 13113 13114 if (arp_add_mapping_mp != NULL) 13115 *arp_add_mapping_mp = NULL; 13116 13117 /* 13118 * Check that the address is not to long for the constant 13119 * length reserved in the template arma_t. 13120 */ 13121 if (ill->ill_phys_addr_length > IP_MAX_HW_LEN) 13122 return (-1); 13123 13124 /* Add mapping mblk */ 13125 addr = (ipaddr_t)htonl(INADDR_UNSPEC_GROUP); 13126 mask = (ipaddr_t)htonl(IN_CLASSD_NET); 13127 add_mp = ill_arp_alloc(ill, (uchar_t *)&ip_arma_multi_template, 13128 (caddr_t)&addr); 13129 if (add_mp == NULL) 13130 return (-1); 13131 arma = (arma_t *)add_mp->b_rptr; 13132 maddr = (uint8_t *)arma + arma->arma_hw_addr_offset; 13133 bcopy(&mask, (char *)arma + arma->arma_proto_mask_offset, IP_ADDR_LEN); 13134 arma->arma_hw_addr_length = ill->ill_phys_addr_length; 13135 13136 /* 13137 * Determine the broadcast address. 13138 */ 13139 dlur = (dl_unitdata_req_t *)ill->ill_bcast_mp->b_rptr; 13140 if (ill->ill_sap_length < 0) 13141 bphys_addr = (uchar_t *)dlur + dlur->dl_dest_addr_offset; 13142 else 13143 bphys_addr = (uchar_t *)dlur + 13144 dlur->dl_dest_addr_offset + ill->ill_sap_length; 13145 /* 13146 * Check PHYI_MULTI_BCAST and length of physical 13147 * address to determine if we use the mapping or the 13148 * broadcast address. 13149 */ 13150 if (!(phyi->phyint_flags & PHYI_MULTI_BCAST)) 13151 if (!MEDIA_V4MINFO(ill->ill_media, ill->ill_phys_addr_length, 13152 bphys_addr, maddr, &hw_start, &extract_mask)) 13153 phyi->phyint_flags |= PHYI_MULTI_BCAST; 13154 13155 if ((phyi->phyint_flags & PHYI_MULTI_BCAST) || 13156 (ill->ill_flags & ILLF_MULTICAST)) { 13157 /* Make sure this will not match the "exact" entry. */ 13158 addr = (ipaddr_t)htonl(INADDR_ALLHOSTS_GROUP); 13159 del_mp = ill_arp_alloc(ill, (uchar_t *)&ip_ared_template, 13160 (caddr_t)&addr); 13161 if (del_mp == NULL) { 13162 freemsg(add_mp); 13163 return (-1); 13164 } 13165 bcopy(&extract_mask, (char *)arma + 13166 arma->arma_proto_extract_mask_offset, IP_ADDR_LEN); 13167 if (phyi->phyint_flags & PHYI_MULTI_BCAST) { 13168 /* Use link-layer broadcast address for MULTI_BCAST */ 13169 bcopy(bphys_addr, maddr, ill->ill_phys_addr_length); 13170 ip2dbg(("ipif_arp_setup_multicast: adding" 13171 " MULTI_BCAST ARP setup for %s\n", ill->ill_name)); 13172 } else { 13173 arma->arma_hw_mapping_start = hw_start; 13174 ip2dbg(("ipif_arp_setup_multicast: adding multicast" 13175 " ARP setup for %s\n", ill->ill_name)); 13176 } 13177 } else { 13178 freemsg(add_mp); 13179 ASSERT(del_mp == NULL); 13180 /* It is neither MULTICAST nor MULTI_BCAST */ 13181 return (0); 13182 } 13183 ASSERT(add_mp != NULL && del_mp != NULL); 13184 ASSERT(ill->ill_arp_del_mapping_mp == NULL); 13185 ill->ill_arp_del_mapping_mp = del_mp; 13186 if (arp_add_mapping_mp != NULL) { 13187 /* The caller just wants the mblks allocated */ 13188 *arp_add_mapping_mp = add_mp; 13189 } else { 13190 /* The caller wants us to send it to arp */ 13191 putnext(ill->ill_rq, add_mp); 13192 } 13193 return (0); 13194 } 13195 13196 /* 13197 * Get the resolver set up for a new interface address. 13198 * (Always called as writer.) 13199 * Called both for IPv4 and IPv6 interfaces, 13200 * though it only sets up the resolver for v6 13201 * if it's an xresolv interface (one using an external resolver). 13202 * Honors ILLF_NOARP. 13203 * The enumerated value res_act is used to tune the behavior. 13204 * If set to Res_act_initial, then we set up all the resolver 13205 * structures for a new interface. If set to Res_act_move, then 13206 * we just send an AR_ENTRY_ADD message up to ARP for IPv4 13207 * interfaces; this is called by ip_rput_dlpi_writer() to handle 13208 * asynchronous hardware address change notification. If set to 13209 * Res_act_defend, then we tell ARP that it needs to send a single 13210 * gratuitous message in defense of the address. 13211 * Returns error on failure. 13212 */ 13213 int 13214 ipif_resolver_up(ipif_t *ipif, enum ip_resolver_action res_act) 13215 { 13216 caddr_t addr; 13217 mblk_t *arp_up_mp = NULL; 13218 mblk_t *arp_down_mp = NULL; 13219 mblk_t *arp_add_mp = NULL; 13220 mblk_t *arp_del_mp = NULL; 13221 mblk_t *arp_add_mapping_mp = NULL; 13222 mblk_t *arp_del_mapping_mp = NULL; 13223 ill_t *ill = ipif->ipif_ill; 13224 uchar_t *area_p = NULL; 13225 uchar_t *ared_p = NULL; 13226 int err = ENOMEM; 13227 boolean_t was_dup; 13228 13229 ip1dbg(("ipif_resolver_up(%s:%u) flags 0x%x\n", 13230 ill->ill_name, ipif->ipif_id, (uint_t)ipif->ipif_flags)); 13231 ASSERT(IAM_WRITER_IPIF(ipif)); 13232 13233 was_dup = B_FALSE; 13234 if (res_act == Res_act_initial) { 13235 ipif->ipif_addr_ready = 0; 13236 /* 13237 * We're bringing an interface up here. There's no way that we 13238 * should need to shut down ARP now. 13239 */ 13240 mutex_enter(&ill->ill_lock); 13241 if (ipif->ipif_flags & IPIF_DUPLICATE) { 13242 ipif->ipif_flags &= ~IPIF_DUPLICATE; 13243 ill->ill_ipif_dup_count--; 13244 was_dup = B_TRUE; 13245 } 13246 mutex_exit(&ill->ill_lock); 13247 } 13248 if (ipif->ipif_recovery_id != 0) 13249 (void) untimeout(ipif->ipif_recovery_id); 13250 ipif->ipif_recovery_id = 0; 13251 if (ill->ill_net_type != IRE_IF_RESOLVER) { 13252 ipif->ipif_addr_ready = 1; 13253 return (0); 13254 } 13255 /* NDP will set the ipif_addr_ready flag when it's ready */ 13256 if (ill->ill_isv6 && !(ill->ill_flags & ILLF_XRESOLV)) 13257 return (0); 13258 13259 if (ill->ill_isv6) { 13260 /* 13261 * External resolver for IPv6 13262 */ 13263 ASSERT(res_act == Res_act_initial); 13264 if (!IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6lcl_addr)) { 13265 addr = (caddr_t)&ipif->ipif_v6lcl_addr; 13266 area_p = (uchar_t *)&ip6_area_template; 13267 ared_p = (uchar_t *)&ip6_ared_template; 13268 } 13269 } else { 13270 /* 13271 * IPv4 arp case. If the ARP stream has already started 13272 * closing, fail this request for ARP bringup. Else 13273 * record the fact that an ARP bringup is pending. 13274 */ 13275 mutex_enter(&ill->ill_lock); 13276 if (ill->ill_arp_closing) { 13277 mutex_exit(&ill->ill_lock); 13278 err = EINVAL; 13279 goto failed; 13280 } else { 13281 if (ill->ill_ipif_up_count == 0 && 13282 ill->ill_ipif_dup_count == 0 && !was_dup) 13283 ill->ill_arp_bringup_pending = 1; 13284 mutex_exit(&ill->ill_lock); 13285 } 13286 if (ipif->ipif_lcl_addr != INADDR_ANY) { 13287 addr = (caddr_t)&ipif->ipif_lcl_addr; 13288 area_p = (uchar_t *)&ip_area_template; 13289 ared_p = (uchar_t *)&ip_ared_template; 13290 } 13291 } 13292 13293 /* 13294 * Add an entry for the local address in ARP only if it 13295 * is not UNNUMBERED and the address is not INADDR_ANY. 13296 */ 13297 if (!(ipif->ipif_flags & IPIF_UNNUMBERED) && area_p != NULL) { 13298 area_t *area; 13299 13300 /* Now ask ARP to publish our address. */ 13301 arp_add_mp = ill_arp_alloc(ill, area_p, addr); 13302 if (arp_add_mp == NULL) 13303 goto failed; 13304 area = (area_t *)arp_add_mp->b_rptr; 13305 if (res_act != Res_act_initial) { 13306 /* 13307 * Copy the new hardware address and length into 13308 * arp_add_mp to be sent to ARP. 13309 */ 13310 area->area_hw_addr_length = 13311 ill->ill_phys_addr_length; 13312 bcopy((char *)ill->ill_phys_addr, 13313 ((char *)area + area->area_hw_addr_offset), 13314 area->area_hw_addr_length); 13315 } 13316 13317 area->area_flags = ACE_F_PERMANENT | ACE_F_PUBLISH | 13318 ACE_F_MYADDR; 13319 13320 if (res_act == Res_act_defend) { 13321 area->area_flags |= ACE_F_DEFEND; 13322 /* 13323 * If we're just defending our address now, then 13324 * there's no need to set up ARP multicast mappings. 13325 * The publish command is enough. 13326 */ 13327 goto done; 13328 } 13329 13330 if (res_act != Res_act_initial) 13331 goto arp_setup_multicast; 13332 13333 /* 13334 * Allocate an ARP deletion message so we know we can tell ARP 13335 * when the interface goes down. 13336 */ 13337 arp_del_mp = ill_arp_alloc(ill, ared_p, addr); 13338 if (arp_del_mp == NULL) 13339 goto failed; 13340 13341 } else { 13342 if (res_act != Res_act_initial) 13343 goto done; 13344 } 13345 /* 13346 * Need to bring up ARP or setup multicast mapping only 13347 * when the first interface is coming UP. 13348 */ 13349 if (ill->ill_ipif_up_count != 0 || ill->ill_ipif_dup_count != 0 || 13350 was_dup) { 13351 goto done; 13352 } 13353 13354 /* 13355 * Allocate an ARP down message (to be saved) and an ARP up 13356 * message. 13357 */ 13358 arp_down_mp = ill_arp_alloc(ill, (uchar_t *)&ip_ard_template, 0); 13359 if (arp_down_mp == NULL) 13360 goto failed; 13361 13362 arp_up_mp = ill_arp_alloc(ill, (uchar_t *)&ip_aru_template, 0); 13363 if (arp_up_mp == NULL) 13364 goto failed; 13365 13366 if (ipif->ipif_flags & IPIF_POINTOPOINT) 13367 goto done; 13368 13369 arp_setup_multicast: 13370 /* 13371 * Setup the multicast mappings. This function initializes 13372 * ill_arp_del_mapping_mp also. This does not need to be done for 13373 * IPv6. 13374 */ 13375 if (!ill->ill_isv6) { 13376 err = ipif_arp_setup_multicast(ipif, &arp_add_mapping_mp); 13377 if (err != 0) 13378 goto failed; 13379 ASSERT(ill->ill_arp_del_mapping_mp != NULL); 13380 ASSERT(arp_add_mapping_mp != NULL); 13381 } 13382 13383 done: 13384 if (arp_del_mp != NULL) { 13385 ASSERT(ipif->ipif_arp_del_mp == NULL); 13386 ipif->ipif_arp_del_mp = arp_del_mp; 13387 } 13388 if (arp_down_mp != NULL) { 13389 ASSERT(ill->ill_arp_down_mp == NULL); 13390 ill->ill_arp_down_mp = arp_down_mp; 13391 } 13392 if (arp_del_mapping_mp != NULL) { 13393 ASSERT(ill->ill_arp_del_mapping_mp == NULL); 13394 ill->ill_arp_del_mapping_mp = arp_del_mapping_mp; 13395 } 13396 if (arp_up_mp != NULL) { 13397 ip1dbg(("ipif_resolver_up: ARP_UP for %s:%u\n", 13398 ill->ill_name, ipif->ipif_id)); 13399 putnext(ill->ill_rq, arp_up_mp); 13400 } 13401 if (arp_add_mp != NULL) { 13402 ip1dbg(("ipif_resolver_up: ARP_ADD for %s:%u\n", 13403 ill->ill_name, ipif->ipif_id)); 13404 /* 13405 * If it's an extended ARP implementation, then we'll wait to 13406 * hear that DAD has finished before using the interface. 13407 */ 13408 if (!ill->ill_arp_extend) 13409 ipif->ipif_addr_ready = 1; 13410 putnext(ill->ill_rq, arp_add_mp); 13411 } else { 13412 ipif->ipif_addr_ready = 1; 13413 } 13414 if (arp_add_mapping_mp != NULL) { 13415 ip1dbg(("ipif_resolver_up: MAPPING_ADD for %s:%u\n", 13416 ill->ill_name, ipif->ipif_id)); 13417 putnext(ill->ill_rq, arp_add_mapping_mp); 13418 } 13419 if (res_act != Res_act_initial) 13420 return (0); 13421 13422 if (ill->ill_flags & ILLF_NOARP) 13423 err = ill_arp_off(ill); 13424 else 13425 err = ill_arp_on(ill); 13426 if (err != 0) { 13427 ip0dbg(("ipif_resolver_up: arp_on/off failed %d\n", err)); 13428 freemsg(ipif->ipif_arp_del_mp); 13429 freemsg(ill->ill_arp_down_mp); 13430 freemsg(ill->ill_arp_del_mapping_mp); 13431 ipif->ipif_arp_del_mp = NULL; 13432 ill->ill_arp_down_mp = NULL; 13433 ill->ill_arp_del_mapping_mp = NULL; 13434 return (err); 13435 } 13436 return ((ill->ill_ipif_up_count != 0 || was_dup || 13437 ill->ill_ipif_dup_count != 0) ? 0 : EINPROGRESS); 13438 13439 failed: 13440 ip1dbg(("ipif_resolver_up: FAILED\n")); 13441 freemsg(arp_add_mp); 13442 freemsg(arp_del_mp); 13443 freemsg(arp_add_mapping_mp); 13444 freemsg(arp_up_mp); 13445 freemsg(arp_down_mp); 13446 ill->ill_arp_bringup_pending = 0; 13447 return (err); 13448 } 13449 13450 /* 13451 * This routine restarts IPv4 duplicate address detection (DAD) when a link has 13452 * just gone back up. 13453 */ 13454 static void 13455 ipif_arp_start_dad(ipif_t *ipif) 13456 { 13457 ill_t *ill = ipif->ipif_ill; 13458 mblk_t *arp_add_mp; 13459 area_t *area; 13460 13461 if (ill->ill_net_type != IRE_IF_RESOLVER || ill->ill_arp_closing || 13462 (ipif->ipif_flags & IPIF_UNNUMBERED) || 13463 ipif->ipif_lcl_addr == INADDR_ANY || 13464 (arp_add_mp = ill_arp_alloc(ill, (uchar_t *)&ip_area_template, 13465 (char *)&ipif->ipif_lcl_addr)) == NULL) { 13466 /* 13467 * If we can't contact ARP for some reason, that's not really a 13468 * problem. Just send out the routing socket notification that 13469 * DAD completion would have done, and continue. 13470 */ 13471 ipif_mask_reply(ipif); 13472 ip_rts_ifmsg(ipif); 13473 ip_rts_newaddrmsg(RTM_ADD, 0, ipif); 13474 sctp_update_ipif(ipif, SCTP_IPIF_UP); 13475 ipif->ipif_addr_ready = 1; 13476 return; 13477 } 13478 13479 /* Setting the 'unverified' flag restarts DAD */ 13480 area = (area_t *)arp_add_mp->b_rptr; 13481 area->area_flags = ACE_F_PERMANENT | ACE_F_PUBLISH | ACE_F_MYADDR | 13482 ACE_F_UNVERIFIED; 13483 putnext(ill->ill_rq, arp_add_mp); 13484 } 13485 13486 static void 13487 ipif_ndp_start_dad(ipif_t *ipif) 13488 { 13489 nce_t *nce; 13490 13491 nce = ndp_lookup_v6(ipif->ipif_ill, &ipif->ipif_v6lcl_addr, B_FALSE); 13492 if (nce == NULL) 13493 return; 13494 13495 if (!ndp_restart_dad(nce)) { 13496 /* 13497 * If we can't restart DAD for some reason, that's not really a 13498 * problem. Just send out the routing socket notification that 13499 * DAD completion would have done, and continue. 13500 */ 13501 ip_rts_ifmsg(ipif); 13502 ip_rts_newaddrmsg(RTM_ADD, 0, ipif); 13503 sctp_update_ipif(ipif, SCTP_IPIF_UP); 13504 ipif->ipif_addr_ready = 1; 13505 } 13506 NCE_REFRELE(nce); 13507 } 13508 13509 /* 13510 * Restart duplicate address detection on all interfaces on the given ill. 13511 * 13512 * This is called when an interface transitions from down to up 13513 * (DL_NOTE_LINK_UP) or up to down (DL_NOTE_LINK_DOWN). 13514 * 13515 * Note that since the underlying physical link has transitioned, we must cause 13516 * at least one routing socket message to be sent here, either via DAD 13517 * completion or just by default on the first ipif. (If we don't do this, then 13518 * in.mpathd will see long delays when doing link-based failure recovery.) 13519 */ 13520 void 13521 ill_restart_dad(ill_t *ill, boolean_t went_up) 13522 { 13523 ipif_t *ipif; 13524 13525 if (ill == NULL) 13526 return; 13527 13528 /* 13529 * If layer two doesn't support duplicate address detection, then just 13530 * send the routing socket message now and be done with it. 13531 */ 13532 if ((ill->ill_isv6 && (ill->ill_flags & ILLF_XRESOLV)) || 13533 (!ill->ill_isv6 && !ill->ill_arp_extend)) { 13534 ip_rts_ifmsg(ill->ill_ipif); 13535 return; 13536 } 13537 13538 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 13539 if (went_up) { 13540 if (ipif->ipif_flags & IPIF_UP) { 13541 if (ill->ill_isv6) 13542 ipif_ndp_start_dad(ipif); 13543 else 13544 ipif_arp_start_dad(ipif); 13545 } else if (ill->ill_isv6 && 13546 (ipif->ipif_flags & IPIF_DUPLICATE)) { 13547 /* 13548 * For IPv4, the ARP module itself will 13549 * automatically start the DAD process when it 13550 * sees DL_NOTE_LINK_UP. We respond to the 13551 * AR_CN_READY at the completion of that task. 13552 * For IPv6, we must kick off the bring-up 13553 * process now. 13554 */ 13555 ndp_do_recovery(ipif); 13556 } else { 13557 /* 13558 * Unfortunately, the first ipif is "special" 13559 * and represents the underlying ill in the 13560 * routing socket messages. Thus, when this 13561 * one ipif is down, we must still notify so 13562 * that the user knows the IFF_RUNNING status 13563 * change. (If the first ipif is up, then 13564 * we'll handle eventual routing socket 13565 * notification via DAD completion.) 13566 */ 13567 if (ipif == ill->ill_ipif) 13568 ip_rts_ifmsg(ill->ill_ipif); 13569 } 13570 } else { 13571 /* 13572 * After link down, we'll need to send a new routing 13573 * message when the link comes back, so clear 13574 * ipif_addr_ready. 13575 */ 13576 ipif->ipif_addr_ready = 0; 13577 } 13578 } 13579 13580 /* 13581 * If we've torn down links, then notify the user right away. 13582 */ 13583 if (!went_up) 13584 ip_rts_ifmsg(ill->ill_ipif); 13585 } 13586 13587 /* 13588 * Wakeup all threads waiting to enter the ipsq, and sleeping 13589 * on any of the ills in this ipsq. The ill_lock of the ill 13590 * must be held so that waiters don't miss wakeups 13591 */ 13592 static void 13593 ill_signal_ipsq_ills(ipsq_t *ipsq, boolean_t caller_holds_lock) 13594 { 13595 phyint_t *phyint; 13596 13597 phyint = ipsq->ipsq_phyint_list; 13598 while (phyint != NULL) { 13599 if (phyint->phyint_illv4) { 13600 if (!caller_holds_lock) 13601 mutex_enter(&phyint->phyint_illv4->ill_lock); 13602 ASSERT(MUTEX_HELD(&phyint->phyint_illv4->ill_lock)); 13603 cv_broadcast(&phyint->phyint_illv4->ill_cv); 13604 if (!caller_holds_lock) 13605 mutex_exit(&phyint->phyint_illv4->ill_lock); 13606 } 13607 if (phyint->phyint_illv6) { 13608 if (!caller_holds_lock) 13609 mutex_enter(&phyint->phyint_illv6->ill_lock); 13610 ASSERT(MUTEX_HELD(&phyint->phyint_illv6->ill_lock)); 13611 cv_broadcast(&phyint->phyint_illv6->ill_cv); 13612 if (!caller_holds_lock) 13613 mutex_exit(&phyint->phyint_illv6->ill_lock); 13614 } 13615 phyint = phyint->phyint_ipsq_next; 13616 } 13617 } 13618 13619 static ipsq_t * 13620 ipsq_create(char *groupname) 13621 { 13622 ipsq_t *ipsq; 13623 13624 ASSERT(RW_WRITE_HELD(&ill_g_lock)); 13625 ipsq = kmem_zalloc(sizeof (ipsq_t), KM_NOSLEEP); 13626 if (ipsq == NULL) { 13627 return (NULL); 13628 } 13629 13630 if (groupname != NULL) 13631 (void) strcpy(ipsq->ipsq_name, groupname); 13632 else 13633 ipsq->ipsq_name[0] = '\0'; 13634 13635 mutex_init(&ipsq->ipsq_lock, NULL, MUTEX_DEFAULT, NULL); 13636 ipsq->ipsq_flags |= IPSQ_GROUP; 13637 ipsq->ipsq_next = ipsq_g_head; 13638 ipsq_g_head = ipsq; 13639 return (ipsq); 13640 } 13641 13642 /* 13643 * Return an ipsq correspoding to the groupname. If 'create' is true 13644 * allocate a new ipsq if one does not exist. Usually an ipsq is associated 13645 * uniquely with an IPMP group. However during IPMP groupname operations, 13646 * multiple IPMP groups may be associated with a single ipsq. But no 13647 * IPMP group can be associated with more than 1 ipsq at any time. 13648 * For example 13649 * Interfaces IPMP grpname ipsq ipsq_name ipsq_refs 13650 * hme1, hme2 mpk17-84 ipsq1 mpk17-84 2 13651 * hme3, hme4 mpk17-85 ipsq2 mpk17-85 2 13652 * 13653 * Now the command ifconfig hme3 group mpk17-84 results in the temporary 13654 * status shown below during the execution of the above command. 13655 * hme1, hme2, hme3, hme4 mpk17-84, mpk17-85 ipsq1 mpk17-84 4 13656 * 13657 * After the completion of the above groupname command we return to the stable 13658 * state shown below. 13659 * hme1, hme2, hme3 mpk17-84 ipsq1 mpk17-84 3 13660 * hme4 mpk17-85 ipsq2 mpk17-85 1 13661 * 13662 * Because of the above, we don't search based on the ipsq_name since that 13663 * would miss the correct ipsq during certain windows as shown above. 13664 * The ipsq_name is only used during split of an ipsq to return the ipsq to its 13665 * natural state. 13666 */ 13667 static ipsq_t * 13668 ip_ipsq_lookup(char *groupname, boolean_t create, ipsq_t *exclude_ipsq) 13669 { 13670 ipsq_t *ipsq; 13671 int group_len; 13672 phyint_t *phyint; 13673 13674 ASSERT(RW_LOCK_HELD(&ill_g_lock)); 13675 13676 group_len = strlen(groupname); 13677 ASSERT(group_len != 0); 13678 group_len++; 13679 13680 for (ipsq = ipsq_g_head; ipsq != NULL; ipsq = ipsq->ipsq_next) { 13681 /* 13682 * When an ipsq is being split, and ill_split_ipsq 13683 * calls this function, we exclude it from being considered. 13684 */ 13685 if (ipsq == exclude_ipsq) 13686 continue; 13687 13688 /* 13689 * Compare against the ipsq_name. The groupname change happens 13690 * in 2 phases. The 1st phase merges the from group into 13691 * the to group's ipsq, by calling ill_merge_groups and restarts 13692 * the ioctl. The 2nd phase then locates the ipsq again thru 13693 * ipsq_name. At this point the phyint_groupname has not been 13694 * updated. 13695 */ 13696 if ((group_len == strlen(ipsq->ipsq_name) + 1) && 13697 (bcmp(ipsq->ipsq_name, groupname, group_len) == 0)) { 13698 /* 13699 * Verify that an ipmp groupname is exactly 13700 * part of 1 ipsq and is not found in any other 13701 * ipsq. 13702 */ 13703 ASSERT(ip_ipsq_lookup(groupname, B_FALSE, ipsq) == 13704 NULL); 13705 return (ipsq); 13706 } 13707 13708 /* 13709 * Comparison against ipsq_name alone is not sufficient. 13710 * In the case when groups are currently being 13711 * merged, the ipsq could hold other IPMP groups temporarily. 13712 * so we walk the phyint list and compare against the 13713 * phyint_groupname as well. 13714 */ 13715 phyint = ipsq->ipsq_phyint_list; 13716 while (phyint != NULL) { 13717 if ((group_len == phyint->phyint_groupname_len) && 13718 (bcmp(phyint->phyint_groupname, groupname, 13719 group_len) == 0)) { 13720 /* 13721 * Verify that an ipmp groupname is exactly 13722 * part of 1 ipsq and is not found in any other 13723 * ipsq. 13724 */ 13725 ASSERT(ip_ipsq_lookup(groupname, B_FALSE, ipsq) 13726 == NULL); 13727 return (ipsq); 13728 } 13729 phyint = phyint->phyint_ipsq_next; 13730 } 13731 } 13732 if (create) 13733 ipsq = ipsq_create(groupname); 13734 return (ipsq); 13735 } 13736 13737 static void 13738 ipsq_delete(ipsq_t *ipsq) 13739 { 13740 ipsq_t *nipsq; 13741 ipsq_t *pipsq = NULL; 13742 13743 /* 13744 * We don't hold the ipsq lock, but we are sure no new 13745 * messages can land up, since the ipsq_refs is zero. 13746 * i.e. this ipsq is unnamed and no phyint or phyint group 13747 * is associated with this ipsq. (Lookups are based on ill_name 13748 * or phyint_group_name) 13749 */ 13750 ASSERT(ipsq->ipsq_refs == 0); 13751 ASSERT(ipsq->ipsq_xopq_mphead == NULL && ipsq->ipsq_mphead == NULL); 13752 ASSERT(ipsq->ipsq_pending_mp == NULL); 13753 if (!(ipsq->ipsq_flags & IPSQ_GROUP)) { 13754 /* 13755 * This is not the ipsq of an IPMP group. 13756 */ 13757 kmem_free(ipsq, sizeof (ipsq_t)); 13758 return; 13759 } 13760 13761 rw_enter(&ill_g_lock, RW_WRITER); 13762 13763 /* 13764 * Locate the ipsq before we can remove it from 13765 * the singly linked list of ipsq's. 13766 */ 13767 for (nipsq = ipsq_g_head; nipsq != NULL; nipsq = nipsq->ipsq_next) { 13768 if (nipsq == ipsq) { 13769 break; 13770 } 13771 pipsq = nipsq; 13772 } 13773 13774 ASSERT(nipsq == ipsq); 13775 13776 /* unlink ipsq from the list */ 13777 if (pipsq != NULL) 13778 pipsq->ipsq_next = ipsq->ipsq_next; 13779 else 13780 ipsq_g_head = ipsq->ipsq_next; 13781 kmem_free(ipsq, sizeof (ipsq_t)); 13782 rw_exit(&ill_g_lock); 13783 } 13784 13785 static void 13786 ill_move_to_new_ipsq(ipsq_t *old_ipsq, ipsq_t *new_ipsq, mblk_t *current_mp, 13787 queue_t *q) 13788 13789 { 13790 13791 ASSERT(MUTEX_HELD(&new_ipsq->ipsq_lock)); 13792 ASSERT(old_ipsq->ipsq_mphead == NULL && old_ipsq->ipsq_mptail == NULL); 13793 ASSERT(old_ipsq->ipsq_pending_ipif == NULL); 13794 ASSERT(old_ipsq->ipsq_pending_mp == NULL); 13795 ASSERT(current_mp != NULL); 13796 13797 ipsq_enq(new_ipsq, q, current_mp, (ipsq_func_t)ip_process_ioctl, 13798 NEW_OP, NULL); 13799 13800 ASSERT(new_ipsq->ipsq_xopq_mptail != NULL && 13801 new_ipsq->ipsq_xopq_mphead != NULL); 13802 13803 /* 13804 * move from old ipsq to the new ipsq. 13805 */ 13806 new_ipsq->ipsq_xopq_mptail->b_next = old_ipsq->ipsq_xopq_mphead; 13807 if (old_ipsq->ipsq_xopq_mphead != NULL) 13808 new_ipsq->ipsq_xopq_mptail = old_ipsq->ipsq_xopq_mptail; 13809 13810 old_ipsq->ipsq_xopq_mphead = old_ipsq->ipsq_xopq_mptail = NULL; 13811 } 13812 13813 void 13814 ill_group_cleanup(ill_t *ill) 13815 { 13816 ill_t *ill_v4; 13817 ill_t *ill_v6; 13818 ipif_t *ipif; 13819 13820 ill_v4 = ill->ill_phyint->phyint_illv4; 13821 ill_v6 = ill->ill_phyint->phyint_illv6; 13822 13823 if (ill_v4 != NULL) { 13824 mutex_enter(&ill_v4->ill_lock); 13825 for (ipif = ill_v4->ill_ipif; ipif != NULL; 13826 ipif = ipif->ipif_next) { 13827 IPIF_UNMARK_MOVING(ipif); 13828 } 13829 ill_v4->ill_up_ipifs = B_FALSE; 13830 mutex_exit(&ill_v4->ill_lock); 13831 } 13832 13833 if (ill_v6 != NULL) { 13834 mutex_enter(&ill_v6->ill_lock); 13835 for (ipif = ill_v6->ill_ipif; ipif != NULL; 13836 ipif = ipif->ipif_next) { 13837 IPIF_UNMARK_MOVING(ipif); 13838 } 13839 ill_v6->ill_up_ipifs = B_FALSE; 13840 mutex_exit(&ill_v6->ill_lock); 13841 } 13842 } 13843 /* 13844 * This function is called when an ill has had a change in its group status 13845 * to bring up all the ipifs that were up before the change. 13846 */ 13847 int 13848 ill_up_ipifs(ill_t *ill, queue_t *q, mblk_t *mp) 13849 { 13850 ipif_t *ipif; 13851 ill_t *ill_v4; 13852 ill_t *ill_v6; 13853 ill_t *from_ill; 13854 int err = 0; 13855 13856 13857 ASSERT(IAM_WRITER_ILL(ill)); 13858 13859 /* 13860 * Except for ipif_state_flags and ill_state_flags the other 13861 * fields of the ipif/ill that are modified below are protected 13862 * implicitly since we are a writer. We would have tried to down 13863 * even an ipif that was already down, in ill_down_ipifs. So we 13864 * just blindly clear the IPIF_CHANGING flag here on all ipifs. 13865 */ 13866 ill_v4 = ill->ill_phyint->phyint_illv4; 13867 ill_v6 = ill->ill_phyint->phyint_illv6; 13868 if (ill_v4 != NULL) { 13869 ill_v4->ill_up_ipifs = B_TRUE; 13870 for (ipif = ill_v4->ill_ipif; ipif != NULL; 13871 ipif = ipif->ipif_next) { 13872 mutex_enter(&ill_v4->ill_lock); 13873 ipif->ipif_state_flags &= ~IPIF_CHANGING; 13874 IPIF_UNMARK_MOVING(ipif); 13875 mutex_exit(&ill_v4->ill_lock); 13876 if (ipif->ipif_was_up) { 13877 if (!(ipif->ipif_flags & IPIF_UP)) 13878 err = ipif_up(ipif, q, mp); 13879 ipif->ipif_was_up = B_FALSE; 13880 if (err != 0) { 13881 /* 13882 * Can there be any other error ? 13883 */ 13884 ASSERT(err == EINPROGRESS); 13885 return (err); 13886 } 13887 } 13888 } 13889 mutex_enter(&ill_v4->ill_lock); 13890 ill_v4->ill_state_flags &= ~ILL_CHANGING; 13891 mutex_exit(&ill_v4->ill_lock); 13892 ill_v4->ill_up_ipifs = B_FALSE; 13893 if (ill_v4->ill_move_in_progress) { 13894 ASSERT(ill_v4->ill_move_peer != NULL); 13895 ill_v4->ill_move_in_progress = B_FALSE; 13896 from_ill = ill_v4->ill_move_peer; 13897 from_ill->ill_move_in_progress = B_FALSE; 13898 from_ill->ill_move_peer = NULL; 13899 mutex_enter(&from_ill->ill_lock); 13900 from_ill->ill_state_flags &= ~ILL_CHANGING; 13901 mutex_exit(&from_ill->ill_lock); 13902 if (ill_v6 == NULL) { 13903 if (from_ill->ill_phyint->phyint_flags & 13904 PHYI_STANDBY) { 13905 phyint_inactive(from_ill->ill_phyint); 13906 } 13907 if (ill_v4->ill_phyint->phyint_flags & 13908 PHYI_STANDBY) { 13909 phyint_inactive(ill_v4->ill_phyint); 13910 } 13911 } 13912 ill_v4->ill_move_peer = NULL; 13913 } 13914 } 13915 13916 if (ill_v6 != NULL) { 13917 ill_v6->ill_up_ipifs = B_TRUE; 13918 for (ipif = ill_v6->ill_ipif; ipif != NULL; 13919 ipif = ipif->ipif_next) { 13920 mutex_enter(&ill_v6->ill_lock); 13921 ipif->ipif_state_flags &= ~IPIF_CHANGING; 13922 IPIF_UNMARK_MOVING(ipif); 13923 mutex_exit(&ill_v6->ill_lock); 13924 if (ipif->ipif_was_up) { 13925 if (!(ipif->ipif_flags & IPIF_UP)) 13926 err = ipif_up(ipif, q, mp); 13927 ipif->ipif_was_up = B_FALSE; 13928 if (err != 0) { 13929 /* 13930 * Can there be any other error ? 13931 */ 13932 ASSERT(err == EINPROGRESS); 13933 return (err); 13934 } 13935 } 13936 } 13937 mutex_enter(&ill_v6->ill_lock); 13938 ill_v6->ill_state_flags &= ~ILL_CHANGING; 13939 mutex_exit(&ill_v6->ill_lock); 13940 ill_v6->ill_up_ipifs = B_FALSE; 13941 if (ill_v6->ill_move_in_progress) { 13942 ASSERT(ill_v6->ill_move_peer != NULL); 13943 ill_v6->ill_move_in_progress = B_FALSE; 13944 from_ill = ill_v6->ill_move_peer; 13945 from_ill->ill_move_in_progress = B_FALSE; 13946 from_ill->ill_move_peer = NULL; 13947 mutex_enter(&from_ill->ill_lock); 13948 from_ill->ill_state_flags &= ~ILL_CHANGING; 13949 mutex_exit(&from_ill->ill_lock); 13950 if (from_ill->ill_phyint->phyint_flags & PHYI_STANDBY) { 13951 phyint_inactive(from_ill->ill_phyint); 13952 } 13953 if (ill_v6->ill_phyint->phyint_flags & PHYI_STANDBY) { 13954 phyint_inactive(ill_v6->ill_phyint); 13955 } 13956 ill_v6->ill_move_peer = NULL; 13957 } 13958 } 13959 return (0); 13960 } 13961 13962 /* 13963 * bring down all the approriate ipifs. 13964 */ 13965 /* ARGSUSED */ 13966 static void 13967 ill_down_ipifs(ill_t *ill, mblk_t *mp, int index, boolean_t chk_nofailover) 13968 { 13969 ipif_t *ipif; 13970 13971 ASSERT(IAM_WRITER_ILL(ill)); 13972 13973 /* 13974 * Except for ipif_state_flags the other fields of the ipif/ill that 13975 * are modified below are protected implicitly since we are a writer 13976 */ 13977 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 13978 if (chk_nofailover && (ipif->ipif_flags & IPIF_NOFAILOVER)) 13979 continue; 13980 if (index == 0 || index == ipif->ipif_orig_ifindex) { 13981 /* 13982 * We go through the ipif_down logic even if the ipif 13983 * is already down, since routes can be added based 13984 * on down ipifs. Going through ipif_down once again 13985 * will delete any IREs created based on these routes. 13986 */ 13987 if (ipif->ipif_flags & IPIF_UP) 13988 ipif->ipif_was_up = B_TRUE; 13989 /* 13990 * If called with chk_nofailover true ipif is moving. 13991 */ 13992 mutex_enter(&ill->ill_lock); 13993 if (chk_nofailover) { 13994 ipif->ipif_state_flags |= 13995 IPIF_MOVING | IPIF_CHANGING; 13996 } else { 13997 ipif->ipif_state_flags |= IPIF_CHANGING; 13998 } 13999 mutex_exit(&ill->ill_lock); 14000 /* 14001 * Need to re-create net/subnet bcast ires if 14002 * they are dependent on ipif. 14003 */ 14004 if (!ipif->ipif_isv6) 14005 ipif_check_bcast_ires(ipif); 14006 (void) ipif_logical_down(ipif, NULL, NULL); 14007 ipif_non_duplicate(ipif); 14008 ipif_down_tail(ipif); 14009 /* 14010 * We don't do ipif_multicast_down for IPv4 in 14011 * ipif_down. We need to set this so that 14012 * ipif_multicast_up will join the 14013 * ALLHOSTS_GROUP on to_ill. 14014 */ 14015 ipif->ipif_multicast_up = B_FALSE; 14016 } 14017 } 14018 } 14019 14020 #define IPSQ_INC_REF(ipsq) { \ 14021 ASSERT(RW_WRITE_HELD(&ill_g_lock)); \ 14022 (ipsq)->ipsq_refs++; \ 14023 } 14024 14025 #define IPSQ_DEC_REF(ipsq) { \ 14026 ASSERT(RW_WRITE_HELD(&ill_g_lock)); \ 14027 (ipsq)->ipsq_refs--; \ 14028 if ((ipsq)->ipsq_refs == 0) \ 14029 (ipsq)->ipsq_name[0] = '\0'; \ 14030 } 14031 14032 /* 14033 * Change the ipsq of all the ill's whose current ipsq is 'cur_ipsq' to 14034 * new_ipsq. 14035 */ 14036 static void 14037 ill_merge_ipsq(ipsq_t *cur_ipsq, ipsq_t *new_ipsq) 14038 { 14039 phyint_t *phyint; 14040 phyint_t *next_phyint; 14041 14042 /* 14043 * To change the ipsq of an ill, we need to hold the ill_g_lock as 14044 * writer and the ill_lock of the ill in question. Also the dest 14045 * ipsq can't vanish while we hold the ill_g_lock as writer. 14046 */ 14047 ASSERT(RW_WRITE_HELD(&ill_g_lock)); 14048 14049 phyint = cur_ipsq->ipsq_phyint_list; 14050 cur_ipsq->ipsq_phyint_list = NULL; 14051 while (phyint != NULL) { 14052 next_phyint = phyint->phyint_ipsq_next; 14053 IPSQ_DEC_REF(cur_ipsq); 14054 phyint->phyint_ipsq_next = new_ipsq->ipsq_phyint_list; 14055 new_ipsq->ipsq_phyint_list = phyint; 14056 IPSQ_INC_REF(new_ipsq); 14057 phyint->phyint_ipsq = new_ipsq; 14058 phyint = next_phyint; 14059 } 14060 } 14061 14062 #define SPLIT_SUCCESS 0 14063 #define SPLIT_NOT_NEEDED 1 14064 #define SPLIT_FAILED 2 14065 14066 int 14067 ill_split_to_grp_ipsq(phyint_t *phyint, ipsq_t *cur_ipsq, boolean_t need_retry) 14068 { 14069 ipsq_t *newipsq = NULL; 14070 14071 /* 14072 * Assertions denote pre-requisites for changing the ipsq of 14073 * a phyint 14074 */ 14075 ASSERT(RW_WRITE_HELD(&ill_g_lock)); 14076 /* 14077 * <ill-phyint> assocs can't change while ill_g_lock 14078 * is held as writer. See ill_phyint_reinit() 14079 */ 14080 ASSERT(phyint->phyint_illv4 == NULL || 14081 MUTEX_HELD(&phyint->phyint_illv4->ill_lock)); 14082 ASSERT(phyint->phyint_illv6 == NULL || 14083 MUTEX_HELD(&phyint->phyint_illv6->ill_lock)); 14084 14085 if ((phyint->phyint_groupname_len != 14086 (strlen(cur_ipsq->ipsq_name) + 1) || 14087 bcmp(phyint->phyint_groupname, cur_ipsq->ipsq_name, 14088 phyint->phyint_groupname_len) != 0)) { 14089 /* 14090 * Once we fail in creating a new ipsq due to memory shortage, 14091 * don't attempt to create new ipsq again, based on another 14092 * phyint, since we want all phyints belonging to an IPMP group 14093 * to be in the same ipsq even in the event of mem alloc fails. 14094 */ 14095 newipsq = ip_ipsq_lookup(phyint->phyint_groupname, !need_retry, 14096 cur_ipsq); 14097 if (newipsq == NULL) { 14098 /* Memory allocation failure */ 14099 return (SPLIT_FAILED); 14100 } else { 14101 /* ipsq_refs protected by ill_g_lock (writer) */ 14102 IPSQ_DEC_REF(cur_ipsq); 14103 phyint->phyint_ipsq = newipsq; 14104 phyint->phyint_ipsq_next = newipsq->ipsq_phyint_list; 14105 newipsq->ipsq_phyint_list = phyint; 14106 IPSQ_INC_REF(newipsq); 14107 return (SPLIT_SUCCESS); 14108 } 14109 } 14110 return (SPLIT_NOT_NEEDED); 14111 } 14112 14113 /* 14114 * The ill locks of the phyint and the ill_g_lock (writer) must be held 14115 * to do this split 14116 */ 14117 static int 14118 ill_split_to_own_ipsq(phyint_t *phyint, ipsq_t *cur_ipsq) 14119 { 14120 ipsq_t *newipsq; 14121 14122 ASSERT(RW_WRITE_HELD(&ill_g_lock)); 14123 /* 14124 * <ill-phyint> assocs can't change while ill_g_lock 14125 * is held as writer. See ill_phyint_reinit() 14126 */ 14127 14128 ASSERT(phyint->phyint_illv4 == NULL || 14129 MUTEX_HELD(&phyint->phyint_illv4->ill_lock)); 14130 ASSERT(phyint->phyint_illv6 == NULL || 14131 MUTEX_HELD(&phyint->phyint_illv6->ill_lock)); 14132 14133 if (!ipsq_init((phyint->phyint_illv4 != NULL) ? 14134 phyint->phyint_illv4: phyint->phyint_illv6)) { 14135 /* 14136 * ipsq_init failed due to no memory 14137 * caller will use the same ipsq 14138 */ 14139 return (SPLIT_FAILED); 14140 } 14141 14142 /* ipsq_ref is protected by ill_g_lock (writer) */ 14143 IPSQ_DEC_REF(cur_ipsq); 14144 14145 /* 14146 * This is a new ipsq that is unknown to the world. 14147 * So we don't need to hold ipsq_lock, 14148 */ 14149 newipsq = phyint->phyint_ipsq; 14150 newipsq->ipsq_writer = NULL; 14151 newipsq->ipsq_reentry_cnt--; 14152 ASSERT(newipsq->ipsq_reentry_cnt == 0); 14153 #ifdef ILL_DEBUG 14154 newipsq->ipsq_depth = 0; 14155 #endif 14156 14157 return (SPLIT_SUCCESS); 14158 } 14159 14160 /* 14161 * Change the ipsq of all the ill's whose current ipsq is 'cur_ipsq' to 14162 * ipsq's representing their individual groups or themselves. Return 14163 * whether split needs to be retried again later. 14164 */ 14165 static boolean_t 14166 ill_split_ipsq(ipsq_t *cur_ipsq) 14167 { 14168 phyint_t *phyint; 14169 phyint_t *next_phyint; 14170 int error; 14171 boolean_t need_retry = B_FALSE; 14172 14173 phyint = cur_ipsq->ipsq_phyint_list; 14174 cur_ipsq->ipsq_phyint_list = NULL; 14175 while (phyint != NULL) { 14176 next_phyint = phyint->phyint_ipsq_next; 14177 /* 14178 * 'created' will tell us whether the callee actually 14179 * created an ipsq. Lack of memory may force the callee 14180 * to return without creating an ipsq. 14181 */ 14182 if (phyint->phyint_groupname == NULL) { 14183 error = ill_split_to_own_ipsq(phyint, cur_ipsq); 14184 } else { 14185 error = ill_split_to_grp_ipsq(phyint, cur_ipsq, 14186 need_retry); 14187 } 14188 14189 switch (error) { 14190 case SPLIT_FAILED: 14191 need_retry = B_TRUE; 14192 /* FALLTHRU */ 14193 case SPLIT_NOT_NEEDED: 14194 /* 14195 * Keep it on the list. 14196 */ 14197 phyint->phyint_ipsq_next = cur_ipsq->ipsq_phyint_list; 14198 cur_ipsq->ipsq_phyint_list = phyint; 14199 break; 14200 case SPLIT_SUCCESS: 14201 break; 14202 default: 14203 ASSERT(0); 14204 } 14205 14206 phyint = next_phyint; 14207 } 14208 return (need_retry); 14209 } 14210 14211 /* 14212 * given an ipsq 'ipsq' lock all ills associated with this ipsq. 14213 * and return the ills in the list. This list will be 14214 * needed to unlock all the ills later on by the caller. 14215 * The <ill-ipsq> associations could change between the 14216 * lock and unlock. Hence the unlock can't traverse the 14217 * ipsq to get the list of ills. 14218 */ 14219 static int 14220 ill_lock_ipsq_ills(ipsq_t *ipsq, ill_t **list, int list_max) 14221 { 14222 int cnt = 0; 14223 phyint_t *phyint; 14224 14225 /* 14226 * The caller holds ill_g_lock to ensure that the ill memberships 14227 * of the ipsq don't change 14228 */ 14229 ASSERT(RW_LOCK_HELD(&ill_g_lock)); 14230 14231 phyint = ipsq->ipsq_phyint_list; 14232 while (phyint != NULL) { 14233 if (phyint->phyint_illv4 != NULL) { 14234 ASSERT(cnt < list_max); 14235 list[cnt++] = phyint->phyint_illv4; 14236 } 14237 if (phyint->phyint_illv6 != NULL) { 14238 ASSERT(cnt < list_max); 14239 list[cnt++] = phyint->phyint_illv6; 14240 } 14241 phyint = phyint->phyint_ipsq_next; 14242 } 14243 ill_lock_ills(list, cnt); 14244 return (cnt); 14245 } 14246 14247 void 14248 ill_lock_ills(ill_t **list, int cnt) 14249 { 14250 int i; 14251 14252 if (cnt > 1) { 14253 boolean_t try_again; 14254 do { 14255 try_again = B_FALSE; 14256 for (i = 0; i < cnt - 1; i++) { 14257 if (list[i] < list[i + 1]) { 14258 ill_t *tmp; 14259 14260 /* swap the elements */ 14261 tmp = list[i]; 14262 list[i] = list[i + 1]; 14263 list[i + 1] = tmp; 14264 try_again = B_TRUE; 14265 } 14266 } 14267 } while (try_again); 14268 } 14269 14270 for (i = 0; i < cnt; i++) { 14271 if (i == 0) { 14272 if (list[i] != NULL) 14273 mutex_enter(&list[i]->ill_lock); 14274 else 14275 return; 14276 } else if ((list[i-1] != list[i]) && (list[i] != NULL)) { 14277 mutex_enter(&list[i]->ill_lock); 14278 } 14279 } 14280 } 14281 14282 void 14283 ill_unlock_ills(ill_t **list, int cnt) 14284 { 14285 int i; 14286 14287 for (i = 0; i < cnt; i++) { 14288 if ((i == 0) && (list[i] != NULL)) { 14289 mutex_exit(&list[i]->ill_lock); 14290 } else if ((list[i-1] != list[i]) && (list[i] != NULL)) { 14291 mutex_exit(&list[i]->ill_lock); 14292 } 14293 } 14294 } 14295 14296 /* 14297 * Merge all the ills from 1 ipsq group into another ipsq group. 14298 * The source ipsq group is specified by the ipsq associated with 14299 * 'from_ill'. The destination ipsq group is specified by the ipsq 14300 * associated with 'to_ill' or 'groupname' respectively. 14301 * Note that ipsq itself does not have a reference count mechanism 14302 * and functions don't look up an ipsq and pass it around. Instead 14303 * functions pass around an ill or groupname, and the ipsq is looked 14304 * up from the ill or groupname and the required operation performed 14305 * atomically with the lookup on the ipsq. 14306 */ 14307 static int 14308 ill_merge_groups(ill_t *from_ill, ill_t *to_ill, char *groupname, mblk_t *mp, 14309 queue_t *q) 14310 { 14311 ipsq_t *old_ipsq; 14312 ipsq_t *new_ipsq; 14313 ill_t **ill_list; 14314 int cnt; 14315 size_t ill_list_size; 14316 boolean_t became_writer_on_new_sq = B_FALSE; 14317 14318 /* Exactly 1 of 'to_ill' and groupname can be specified. */ 14319 ASSERT((to_ill != NULL) ^ (groupname != NULL)); 14320 14321 /* 14322 * Need to hold ill_g_lock as writer and also the ill_lock to 14323 * change the <ill-ipsq> assoc of an ill. Need to hold the 14324 * ipsq_lock to prevent new messages from landing on an ipsq. 14325 */ 14326 rw_enter(&ill_g_lock, RW_WRITER); 14327 14328 old_ipsq = from_ill->ill_phyint->phyint_ipsq; 14329 if (groupname != NULL) 14330 new_ipsq = ip_ipsq_lookup(groupname, B_TRUE, NULL); 14331 else { 14332 new_ipsq = to_ill->ill_phyint->phyint_ipsq; 14333 } 14334 14335 ASSERT(old_ipsq != NULL && new_ipsq != NULL); 14336 14337 /* 14338 * both groups are on the same ipsq. 14339 */ 14340 if (old_ipsq == new_ipsq) { 14341 rw_exit(&ill_g_lock); 14342 return (0); 14343 } 14344 14345 cnt = old_ipsq->ipsq_refs << 1; 14346 ill_list_size = cnt * sizeof (ill_t *); 14347 ill_list = kmem_zalloc(ill_list_size, KM_NOSLEEP); 14348 if (ill_list == NULL) { 14349 rw_exit(&ill_g_lock); 14350 return (ENOMEM); 14351 } 14352 cnt = ill_lock_ipsq_ills(old_ipsq, ill_list, cnt); 14353 14354 /* Need ipsq lock to enque messages on new ipsq or to become writer */ 14355 mutex_enter(&new_ipsq->ipsq_lock); 14356 if ((new_ipsq->ipsq_writer == NULL && 14357 new_ipsq->ipsq_current_ipif == NULL) || 14358 (new_ipsq->ipsq_writer == curthread)) { 14359 new_ipsq->ipsq_writer = curthread; 14360 new_ipsq->ipsq_reentry_cnt++; 14361 became_writer_on_new_sq = B_TRUE; 14362 } 14363 14364 /* 14365 * We are holding ill_g_lock as writer and all the ill locks of 14366 * the old ipsq. So the old_ipsq can't be looked up, and hence no new 14367 * message can land up on the old ipsq even though we don't hold the 14368 * ipsq_lock of the old_ipsq. Now move all messages to the newipsq. 14369 */ 14370 ill_move_to_new_ipsq(old_ipsq, new_ipsq, mp, q); 14371 14372 /* 14373 * now change the ipsq of all ills in the 'old_ipsq' to 'new_ipsq'. 14374 * 'new_ipsq' has been looked up, and it can't change its <ill-ipsq> 14375 * assocs. till we release the ill_g_lock, and hence it can't vanish. 14376 */ 14377 ill_merge_ipsq(old_ipsq, new_ipsq); 14378 14379 /* 14380 * Mark the new ipsq as needing a split since it is currently 14381 * being shared by more than 1 IPMP group. The split will 14382 * occur at the end of ipsq_exit 14383 */ 14384 new_ipsq->ipsq_split = B_TRUE; 14385 14386 /* Now release all the locks */ 14387 mutex_exit(&new_ipsq->ipsq_lock); 14388 ill_unlock_ills(ill_list, cnt); 14389 rw_exit(&ill_g_lock); 14390 14391 kmem_free(ill_list, ill_list_size); 14392 14393 /* 14394 * If we succeeded in becoming writer on the new ipsq, then 14395 * drain the new ipsq and start processing all enqueued messages 14396 * including the current ioctl we are processing which is either 14397 * a set groupname or failover/failback. 14398 */ 14399 if (became_writer_on_new_sq) 14400 ipsq_exit(new_ipsq, B_TRUE, B_TRUE); 14401 14402 /* 14403 * syncq has been changed and all the messages have been moved. 14404 */ 14405 mutex_enter(&old_ipsq->ipsq_lock); 14406 old_ipsq->ipsq_current_ipif = NULL; 14407 mutex_exit(&old_ipsq->ipsq_lock); 14408 return (EINPROGRESS); 14409 } 14410 14411 /* 14412 * Delete and add the loopback copy and non-loopback copy of 14413 * the BROADCAST ire corresponding to ill and addr. Used to 14414 * group broadcast ires together when ill becomes part of 14415 * a group. 14416 * 14417 * This function is also called when ill is leaving the group 14418 * so that the ires belonging to the group gets re-grouped. 14419 */ 14420 static void 14421 ill_bcast_delete_and_add(ill_t *ill, ipaddr_t addr) 14422 { 14423 ire_t *ire, *nire, *nire_next, *ire_head = NULL; 14424 ire_t **ire_ptpn = &ire_head; 14425 14426 /* 14427 * The loopback and non-loopback IREs are inserted in the order in which 14428 * they're found, on the basis that they are correctly ordered (loopback 14429 * first). 14430 */ 14431 for (;;) { 14432 ire = ire_ctable_lookup(addr, 0, IRE_BROADCAST, ill->ill_ipif, 14433 ALL_ZONES, NULL, MATCH_IRE_TYPE | MATCH_IRE_ILL); 14434 if (ire == NULL) 14435 break; 14436 14437 /* 14438 * we are passing in KM_SLEEP because it is not easy to 14439 * go back to a sane state in case of memory failure. 14440 */ 14441 nire = kmem_cache_alloc(ire_cache, KM_SLEEP); 14442 ASSERT(nire != NULL); 14443 bzero(nire, sizeof (ire_t)); 14444 /* 14445 * Don't use ire_max_frag directly since we don't 14446 * hold on to 'ire' until we add the new ire 'nire' and 14447 * we don't want the new ire to have a dangling reference 14448 * to 'ire'. The ire_max_frag of a broadcast ire must 14449 * be in sync with the ipif_mtu of the associate ipif. 14450 * For eg. this happens as a result of SIOCSLIFNAME, 14451 * SIOCSLIFLNKINFO or a DL_NOTE_SDU_SIZE inititated by 14452 * the driver. A change in ire_max_frag triggered as 14453 * as a result of path mtu discovery, or due to an 14454 * IP_IOC_IRE_ADVISE_NOREPLY from the transport or due a 14455 * route change -mtu command does not apply to broadcast ires. 14456 * 14457 * XXX We need a recovery strategy here if ire_init fails 14458 */ 14459 if (ire_init(nire, 14460 (uchar_t *)&ire->ire_addr, 14461 (uchar_t *)&ire->ire_mask, 14462 (uchar_t *)&ire->ire_src_addr, 14463 (uchar_t *)&ire->ire_gateway_addr, 14464 (uchar_t *)&ire->ire_in_src_addr, 14465 ire->ire_stq == NULL ? &ip_loopback_mtu : 14466 &ire->ire_ipif->ipif_mtu, 14467 (ire->ire_nce != NULL ? ire->ire_nce->nce_fp_mp : NULL), 14468 ire->ire_rfq, 14469 ire->ire_stq, 14470 ire->ire_type, 14471 (ire->ire_nce != NULL? ire->ire_nce->nce_res_mp : NULL), 14472 ire->ire_ipif, 14473 ire->ire_in_ill, 14474 ire->ire_cmask, 14475 ire->ire_phandle, 14476 ire->ire_ihandle, 14477 ire->ire_flags, 14478 &ire->ire_uinfo, 14479 NULL, 14480 NULL) == NULL) { 14481 cmn_err(CE_PANIC, "ire_init() failed"); 14482 } 14483 ire_delete(ire); 14484 ire_refrele(ire); 14485 14486 /* 14487 * The newly created IREs are inserted at the tail of the list 14488 * starting with ire_head. As we've just allocated them no one 14489 * knows about them so it's safe. 14490 */ 14491 *ire_ptpn = nire; 14492 ire_ptpn = &nire->ire_next; 14493 } 14494 14495 for (nire = ire_head; nire != NULL; nire = nire_next) { 14496 int error; 14497 ire_t *oire; 14498 /* unlink the IRE from our list before calling ire_add() */ 14499 nire_next = nire->ire_next; 14500 nire->ire_next = NULL; 14501 14502 /* ire_add adds the ire at the right place in the list */ 14503 oire = nire; 14504 error = ire_add(&nire, NULL, NULL, NULL, B_FALSE); 14505 ASSERT(error == 0); 14506 ASSERT(oire == nire); 14507 ire_refrele(nire); /* Held in ire_add */ 14508 } 14509 } 14510 14511 /* 14512 * This function is usually called when an ill is inserted in 14513 * a group and all the ipifs are already UP. As all the ipifs 14514 * are already UP, the broadcast ires have already been created 14515 * and been inserted. But, ire_add_v4 would not have grouped properly. 14516 * We need to re-group for the benefit of ip_wput_ire which 14517 * expects BROADCAST ires to be grouped properly to avoid sending 14518 * more than one copy of the broadcast packet per group. 14519 * 14520 * NOTE : We don't check for ill_ipif_up_count to be non-zero here 14521 * because when ipif_up_done ends up calling this, ires have 14522 * already been added before illgrp_insert i.e before ill_group 14523 * has been initialized. 14524 */ 14525 static void 14526 ill_group_bcast_for_xmit(ill_t *ill) 14527 { 14528 ill_group_t *illgrp; 14529 ipif_t *ipif; 14530 ipaddr_t addr; 14531 ipaddr_t net_mask; 14532 ipaddr_t subnet_netmask; 14533 14534 illgrp = ill->ill_group; 14535 14536 /* 14537 * This function is called even when an ill is deleted from 14538 * the group. Hence, illgrp could be null. 14539 */ 14540 if (illgrp != NULL && illgrp->illgrp_ill_count == 1) 14541 return; 14542 14543 /* 14544 * Delete all the BROADCAST ires matching this ill and add 14545 * them back. This time, ire_add_v4 should take care of 14546 * grouping them with others because ill is part of the 14547 * group. 14548 */ 14549 ill_bcast_delete_and_add(ill, 0); 14550 ill_bcast_delete_and_add(ill, INADDR_BROADCAST); 14551 14552 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 14553 14554 if ((ipif->ipif_lcl_addr != INADDR_ANY) && 14555 !(ipif->ipif_flags & IPIF_NOLOCAL)) { 14556 net_mask = ip_net_mask(ipif->ipif_lcl_addr); 14557 } else { 14558 net_mask = htonl(IN_CLASSA_NET); 14559 } 14560 addr = net_mask & ipif->ipif_subnet; 14561 ill_bcast_delete_and_add(ill, addr); 14562 ill_bcast_delete_and_add(ill, ~net_mask | addr); 14563 14564 subnet_netmask = ipif->ipif_net_mask; 14565 addr = ipif->ipif_subnet; 14566 ill_bcast_delete_and_add(ill, addr); 14567 ill_bcast_delete_and_add(ill, ~subnet_netmask | addr); 14568 } 14569 } 14570 14571 /* 14572 * This function is called from illgrp_delete when ill is being deleted 14573 * from the group. 14574 * 14575 * As ill is not there in the group anymore, any address belonging 14576 * to this ill should be cleared of IRE_MARK_NORECV. 14577 */ 14578 static void 14579 ill_clear_bcast_mark(ill_t *ill, ipaddr_t addr) 14580 { 14581 ire_t *ire; 14582 irb_t *irb; 14583 14584 ASSERT(ill->ill_group == NULL); 14585 14586 ire = ire_ctable_lookup(addr, 0, IRE_BROADCAST, ill->ill_ipif, 14587 ALL_ZONES, NULL, MATCH_IRE_TYPE | MATCH_IRE_ILL); 14588 14589 if (ire != NULL) { 14590 /* 14591 * IPMP and plumbing operations are serialized on the ipsq, so 14592 * no one will insert or delete a broadcast ire under our feet. 14593 */ 14594 irb = ire->ire_bucket; 14595 rw_enter(&irb->irb_lock, RW_READER); 14596 ire_refrele(ire); 14597 14598 for (; ire != NULL; ire = ire->ire_next) { 14599 if (ire->ire_addr != addr) 14600 break; 14601 if (ire_to_ill(ire) != ill) 14602 continue; 14603 14604 ASSERT(!(ire->ire_marks & IRE_MARK_CONDEMNED)); 14605 ire->ire_marks &= ~IRE_MARK_NORECV; 14606 } 14607 rw_exit(&irb->irb_lock); 14608 } 14609 } 14610 14611 /* 14612 * This function must be called only after the broadcast ires 14613 * have been grouped together. For a given address addr, nominate 14614 * only one of the ires whose interface is not FAILED or OFFLINE. 14615 * 14616 * This is also called when an ipif goes down, so that we can nominate 14617 * a different ire with the same address for receiving. 14618 */ 14619 static void 14620 ill_mark_bcast(ill_group_t *illgrp, ipaddr_t addr) 14621 { 14622 irb_t *irb; 14623 ire_t *ire; 14624 ire_t *ire1; 14625 ire_t *save_ire; 14626 ire_t **irep = NULL; 14627 boolean_t first = B_TRUE; 14628 ire_t *clear_ire = NULL; 14629 ire_t *start_ire = NULL; 14630 ire_t *new_lb_ire; 14631 ire_t *new_nlb_ire; 14632 boolean_t new_lb_ire_used = B_FALSE; 14633 boolean_t new_nlb_ire_used = B_FALSE; 14634 uint64_t match_flags; 14635 uint64_t phyi_flags; 14636 boolean_t fallback = B_FALSE; 14637 14638 ire = ire_ctable_lookup(addr, 0, IRE_BROADCAST, NULL, ALL_ZONES, 14639 NULL, MATCH_IRE_TYPE); 14640 /* 14641 * We may not be able to find some ires if a previous 14642 * ire_create failed. This happens when an ipif goes 14643 * down and we are unable to create BROADCAST ires due 14644 * to memory failure. Thus, we have to check for NULL 14645 * below. This should handle the case for LOOPBACK, 14646 * POINTOPOINT and interfaces with some POINTOPOINT 14647 * logicals for which there are no BROADCAST ires. 14648 */ 14649 if (ire == NULL) 14650 return; 14651 /* 14652 * Currently IRE_BROADCASTS are deleted when an ipif 14653 * goes down which runs exclusively. Thus, setting 14654 * IRE_MARK_RCVD should not race with ire_delete marking 14655 * IRE_MARK_CONDEMNED. We grab the lock below just to 14656 * be consistent with other parts of the code that walks 14657 * a given bucket. 14658 */ 14659 save_ire = ire; 14660 irb = ire->ire_bucket; 14661 new_lb_ire = kmem_cache_alloc(ire_cache, KM_NOSLEEP); 14662 if (new_lb_ire == NULL) { 14663 ire_refrele(ire); 14664 return; 14665 } 14666 new_nlb_ire = kmem_cache_alloc(ire_cache, KM_NOSLEEP); 14667 if (new_nlb_ire == NULL) { 14668 ire_refrele(ire); 14669 kmem_cache_free(ire_cache, new_lb_ire); 14670 return; 14671 } 14672 IRB_REFHOLD(irb); 14673 rw_enter(&irb->irb_lock, RW_WRITER); 14674 /* 14675 * Get to the first ire matching the address and the 14676 * group. If the address does not match we are done 14677 * as we could not find the IRE. If the address matches 14678 * we should get to the first one matching the group. 14679 */ 14680 while (ire != NULL) { 14681 if (ire->ire_addr != addr || 14682 ire->ire_ipif->ipif_ill->ill_group == illgrp) { 14683 break; 14684 } 14685 ire = ire->ire_next; 14686 } 14687 match_flags = PHYI_FAILED | PHYI_INACTIVE; 14688 start_ire = ire; 14689 redo: 14690 while (ire != NULL && ire->ire_addr == addr && 14691 ire->ire_ipif->ipif_ill->ill_group == illgrp) { 14692 /* 14693 * The first ire for any address within a group 14694 * should always be the one with IRE_MARK_NORECV cleared 14695 * so that ip_wput_ire can avoid searching for one. 14696 * Note down the insertion point which will be used 14697 * later. 14698 */ 14699 if (first && (irep == NULL)) 14700 irep = ire->ire_ptpn; 14701 /* 14702 * PHYI_FAILED is set when the interface fails. 14703 * This interface might have become good, but the 14704 * daemon has not yet detected. We should still 14705 * not receive on this. PHYI_OFFLINE should never 14706 * be picked as this has been offlined and soon 14707 * be removed. 14708 */ 14709 phyi_flags = ire->ire_ipif->ipif_ill->ill_phyint->phyint_flags; 14710 if (phyi_flags & PHYI_OFFLINE) { 14711 ire->ire_marks |= IRE_MARK_NORECV; 14712 ire = ire->ire_next; 14713 continue; 14714 } 14715 if (phyi_flags & match_flags) { 14716 ire->ire_marks |= IRE_MARK_NORECV; 14717 ire = ire->ire_next; 14718 if ((phyi_flags & (PHYI_FAILED | PHYI_INACTIVE)) == 14719 PHYI_INACTIVE) { 14720 fallback = B_TRUE; 14721 } 14722 continue; 14723 } 14724 if (first) { 14725 /* 14726 * We will move this to the front of the list later 14727 * on. 14728 */ 14729 clear_ire = ire; 14730 ire->ire_marks &= ~IRE_MARK_NORECV; 14731 } else { 14732 ire->ire_marks |= IRE_MARK_NORECV; 14733 } 14734 first = B_FALSE; 14735 ire = ire->ire_next; 14736 } 14737 /* 14738 * If we never nominated anybody, try nominating at least 14739 * an INACTIVE, if we found one. Do it only once though. 14740 */ 14741 if (first && (match_flags == (PHYI_FAILED | PHYI_INACTIVE)) && 14742 fallback) { 14743 match_flags = PHYI_FAILED; 14744 ire = start_ire; 14745 irep = NULL; 14746 goto redo; 14747 } 14748 ire_refrele(save_ire); 14749 14750 /* 14751 * irep non-NULL indicates that we entered the while loop 14752 * above. If clear_ire is at the insertion point, we don't 14753 * have to do anything. clear_ire will be NULL if all the 14754 * interfaces are failed. 14755 * 14756 * We cannot unlink and reinsert the ire at the right place 14757 * in the list since there can be other walkers of this bucket. 14758 * Instead we delete and recreate the ire 14759 */ 14760 if (clear_ire != NULL && irep != NULL && *irep != clear_ire) { 14761 ire_t *clear_ire_stq = NULL; 14762 mblk_t *fp_mp = NULL, *res_mp = NULL; 14763 14764 bzero(new_lb_ire, sizeof (ire_t)); 14765 if (clear_ire->ire_nce != NULL) { 14766 fp_mp = clear_ire->ire_nce->nce_fp_mp; 14767 res_mp = clear_ire->ire_nce->nce_res_mp; 14768 } 14769 /* XXX We need a recovery strategy here. */ 14770 if (ire_init(new_lb_ire, 14771 (uchar_t *)&clear_ire->ire_addr, 14772 (uchar_t *)&clear_ire->ire_mask, 14773 (uchar_t *)&clear_ire->ire_src_addr, 14774 (uchar_t *)&clear_ire->ire_gateway_addr, 14775 (uchar_t *)&clear_ire->ire_in_src_addr, 14776 &clear_ire->ire_max_frag, 14777 fp_mp, 14778 clear_ire->ire_rfq, 14779 clear_ire->ire_stq, 14780 clear_ire->ire_type, 14781 res_mp, 14782 clear_ire->ire_ipif, 14783 clear_ire->ire_in_ill, 14784 clear_ire->ire_cmask, 14785 clear_ire->ire_phandle, 14786 clear_ire->ire_ihandle, 14787 clear_ire->ire_flags, 14788 &clear_ire->ire_uinfo, 14789 NULL, 14790 NULL) == NULL) 14791 cmn_err(CE_PANIC, "ire_init() failed"); 14792 if (clear_ire->ire_stq == NULL) { 14793 ire_t *ire_next = clear_ire->ire_next; 14794 if (ire_next != NULL && 14795 ire_next->ire_stq != NULL && 14796 ire_next->ire_addr == clear_ire->ire_addr && 14797 ire_next->ire_ipif->ipif_ill == 14798 clear_ire->ire_ipif->ipif_ill) { 14799 clear_ire_stq = ire_next; 14800 14801 bzero(new_nlb_ire, sizeof (ire_t)); 14802 if (clear_ire_stq->ire_nce != NULL) { 14803 fp_mp = 14804 clear_ire_stq->ire_nce->nce_fp_mp; 14805 res_mp = 14806 clear_ire_stq->ire_nce->nce_res_mp; 14807 } else { 14808 fp_mp = res_mp = NULL; 14809 } 14810 /* XXX We need a recovery strategy here. */ 14811 if (ire_init(new_nlb_ire, 14812 (uchar_t *)&clear_ire_stq->ire_addr, 14813 (uchar_t *)&clear_ire_stq->ire_mask, 14814 (uchar_t *)&clear_ire_stq->ire_src_addr, 14815 (uchar_t *)&clear_ire_stq->ire_gateway_addr, 14816 (uchar_t *)&clear_ire_stq->ire_in_src_addr, 14817 &clear_ire_stq->ire_max_frag, 14818 fp_mp, 14819 clear_ire_stq->ire_rfq, 14820 clear_ire_stq->ire_stq, 14821 clear_ire_stq->ire_type, 14822 res_mp, 14823 clear_ire_stq->ire_ipif, 14824 clear_ire_stq->ire_in_ill, 14825 clear_ire_stq->ire_cmask, 14826 clear_ire_stq->ire_phandle, 14827 clear_ire_stq->ire_ihandle, 14828 clear_ire_stq->ire_flags, 14829 &clear_ire_stq->ire_uinfo, 14830 NULL, 14831 NULL) == NULL) 14832 cmn_err(CE_PANIC, "ire_init() failed"); 14833 } 14834 } 14835 14836 /* 14837 * Delete the ire. We can't call ire_delete() since 14838 * we are holding the bucket lock. We can't release the 14839 * bucket lock since we can't allow irep to change. So just 14840 * mark it CONDEMNED. The IRB_REFRELE will delete the 14841 * ire from the list and do the refrele. 14842 */ 14843 clear_ire->ire_marks |= IRE_MARK_CONDEMNED; 14844 irb->irb_marks |= IRB_MARK_CONDEMNED; 14845 14846 if (clear_ire_stq != NULL) { 14847 ire_fastpath_list_delete( 14848 (ill_t *)clear_ire_stq->ire_stq->q_ptr, 14849 clear_ire_stq); 14850 clear_ire_stq->ire_marks |= IRE_MARK_CONDEMNED; 14851 } 14852 14853 /* 14854 * Also take care of otherfields like ib/ob pkt count 14855 * etc. Need to dup them. ditto in ill_bcast_delete_and_add 14856 */ 14857 14858 /* Add the new ire's. Insert at *irep */ 14859 new_lb_ire->ire_bucket = clear_ire->ire_bucket; 14860 ire1 = *irep; 14861 if (ire1 != NULL) 14862 ire1->ire_ptpn = &new_lb_ire->ire_next; 14863 new_lb_ire->ire_next = ire1; 14864 /* Link the new one in. */ 14865 new_lb_ire->ire_ptpn = irep; 14866 membar_producer(); 14867 *irep = new_lb_ire; 14868 new_lb_ire_used = B_TRUE; 14869 BUMP_IRE_STATS(ire_stats_v4, ire_stats_inserted); 14870 new_lb_ire->ire_bucket->irb_ire_cnt++; 14871 new_lb_ire->ire_ipif->ipif_ire_cnt++; 14872 14873 if (clear_ire_stq != NULL) { 14874 new_nlb_ire->ire_bucket = clear_ire->ire_bucket; 14875 irep = &new_lb_ire->ire_next; 14876 /* Add the new ire. Insert at *irep */ 14877 ire1 = *irep; 14878 if (ire1 != NULL) 14879 ire1->ire_ptpn = &new_nlb_ire->ire_next; 14880 new_nlb_ire->ire_next = ire1; 14881 /* Link the new one in. */ 14882 new_nlb_ire->ire_ptpn = irep; 14883 membar_producer(); 14884 *irep = new_nlb_ire; 14885 new_nlb_ire_used = B_TRUE; 14886 BUMP_IRE_STATS(ire_stats_v4, ire_stats_inserted); 14887 new_nlb_ire->ire_bucket->irb_ire_cnt++; 14888 new_nlb_ire->ire_ipif->ipif_ire_cnt++; 14889 ((ill_t *)new_nlb_ire->ire_stq->q_ptr)->ill_ire_cnt++; 14890 } 14891 } 14892 rw_exit(&irb->irb_lock); 14893 if (!new_lb_ire_used) 14894 kmem_cache_free(ire_cache, new_lb_ire); 14895 if (!new_nlb_ire_used) 14896 kmem_cache_free(ire_cache, new_nlb_ire); 14897 IRB_REFRELE(irb); 14898 } 14899 14900 /* 14901 * Whenever an ipif goes down we have to renominate a different 14902 * broadcast ire to receive. Whenever an ipif comes up, we need 14903 * to make sure that we have only one nominated to receive. 14904 */ 14905 static void 14906 ipif_renominate_bcast(ipif_t *ipif) 14907 { 14908 ill_t *ill = ipif->ipif_ill; 14909 ipaddr_t subnet_addr; 14910 ipaddr_t net_addr; 14911 ipaddr_t net_mask = 0; 14912 ipaddr_t subnet_netmask; 14913 ipaddr_t addr; 14914 ill_group_t *illgrp; 14915 14916 illgrp = ill->ill_group; 14917 /* 14918 * If this is the last ipif going down, it might take 14919 * the ill out of the group. In that case ipif_down -> 14920 * illgrp_delete takes care of doing the nomination. 14921 * ipif_down does not call for this case. 14922 */ 14923 ASSERT(illgrp != NULL); 14924 14925 /* There could not have been any ires associated with this */ 14926 if (ipif->ipif_subnet == 0) 14927 return; 14928 14929 ill_mark_bcast(illgrp, 0); 14930 ill_mark_bcast(illgrp, INADDR_BROADCAST); 14931 14932 if ((ipif->ipif_lcl_addr != INADDR_ANY) && 14933 !(ipif->ipif_flags & IPIF_NOLOCAL)) { 14934 net_mask = ip_net_mask(ipif->ipif_lcl_addr); 14935 } else { 14936 net_mask = htonl(IN_CLASSA_NET); 14937 } 14938 addr = net_mask & ipif->ipif_subnet; 14939 ill_mark_bcast(illgrp, addr); 14940 14941 net_addr = ~net_mask | addr; 14942 ill_mark_bcast(illgrp, net_addr); 14943 14944 subnet_netmask = ipif->ipif_net_mask; 14945 addr = ipif->ipif_subnet; 14946 ill_mark_bcast(illgrp, addr); 14947 14948 subnet_addr = ~subnet_netmask | addr; 14949 ill_mark_bcast(illgrp, subnet_addr); 14950 } 14951 14952 /* 14953 * Whenever we form or delete ill groups, we need to nominate one set of 14954 * BROADCAST ires for receiving in the group. 14955 * 14956 * 1) When ipif_up_done -> ilgrp_insert calls this function, BROADCAST ires 14957 * have been added, but ill_ipif_up_count is 0. Thus, we don't assert 14958 * for ill_ipif_up_count to be non-zero. This is the only case where 14959 * ill_ipif_up_count is zero and we would still find the ires. 14960 * 14961 * 2) ip_sioctl_group_name/ifgrp_insert calls this function, at least one 14962 * ipif is UP and we just have to do the nomination. 14963 * 14964 * 3) When ill_handoff_responsibility calls us, some ill has been removed 14965 * from the group. So, we have to do the nomination. 14966 * 14967 * Because of (3), there could be just one ill in the group. But we have 14968 * to nominate still as IRE_MARK_NORCV may have been marked on this. 14969 * Thus, this function does not optimize when there is only one ill as 14970 * it is not correct for (3). 14971 */ 14972 static void 14973 ill_nominate_bcast_rcv(ill_group_t *illgrp) 14974 { 14975 ill_t *ill; 14976 ipif_t *ipif; 14977 ipaddr_t subnet_addr; 14978 ipaddr_t prev_subnet_addr = 0; 14979 ipaddr_t net_addr; 14980 ipaddr_t prev_net_addr = 0; 14981 ipaddr_t net_mask = 0; 14982 ipaddr_t subnet_netmask; 14983 ipaddr_t addr; 14984 14985 /* 14986 * When the last memeber is leaving, there is nothing to 14987 * nominate. 14988 */ 14989 if (illgrp->illgrp_ill_count == 0) { 14990 ASSERT(illgrp->illgrp_ill == NULL); 14991 return; 14992 } 14993 14994 ill = illgrp->illgrp_ill; 14995 ASSERT(!ill->ill_isv6); 14996 /* 14997 * We assume that ires with same address and belonging to the 14998 * same group, has been grouped together. Nominating a *single* 14999 * ill in the group for sending and receiving broadcast is done 15000 * by making sure that the first BROADCAST ire (which will be 15001 * the one returned by ire_ctable_lookup for ip_rput and the 15002 * one that will be used in ip_wput_ire) will be the one that 15003 * will not have IRE_MARK_NORECV set. 15004 * 15005 * 1) ip_rput checks and discards packets received on ires marked 15006 * with IRE_MARK_NORECV. Thus, we don't send up duplicate 15007 * broadcast packets. We need to clear IRE_MARK_NORECV on the 15008 * first ire in the group for every broadcast address in the group. 15009 * ip_rput will accept packets only on the first ire i.e only 15010 * one copy of the ill. 15011 * 15012 * 2) ip_wput_ire needs to send out just one copy of the broadcast 15013 * packet for the whole group. It needs to send out on the ill 15014 * whose ire has not been marked with IRE_MARK_NORECV. If it sends 15015 * on the one marked with IRE_MARK_NORECV, ip_rput will accept 15016 * the copy echoed back on other port where the ire is not marked 15017 * with IRE_MARK_NORECV. 15018 * 15019 * Note that we just need to have the first IRE either loopback or 15020 * non-loopback (either of them may not exist if ire_create failed 15021 * during ipif_down) with IRE_MARK_NORECV not set. ip_rput will 15022 * always hit the first one and hence will always accept one copy. 15023 * 15024 * We have a broadcast ire per ill for all the unique prefixes 15025 * hosted on that ill. As we don't have a way of knowing the 15026 * unique prefixes on a given ill and hence in the whole group, 15027 * we just call ill_mark_bcast on all the prefixes that exist 15028 * in the group. For the common case of one prefix, the code 15029 * below optimizes by remebering the last address used for 15030 * markng. In the case of multiple prefixes, this will still 15031 * optimize depending the order of prefixes. 15032 * 15033 * The only unique address across the whole group is 0.0.0.0 and 15034 * 255.255.255.255 and thus we call only once. ill_mark_bcast enables 15035 * the first ire in the bucket for receiving and disables the 15036 * others. 15037 */ 15038 ill_mark_bcast(illgrp, 0); 15039 ill_mark_bcast(illgrp, INADDR_BROADCAST); 15040 for (; ill != NULL; ill = ill->ill_group_next) { 15041 15042 for (ipif = ill->ill_ipif; ipif != NULL; 15043 ipif = ipif->ipif_next) { 15044 15045 if (!(ipif->ipif_flags & IPIF_UP) || 15046 ipif->ipif_subnet == 0) { 15047 continue; 15048 } 15049 if ((ipif->ipif_lcl_addr != INADDR_ANY) && 15050 !(ipif->ipif_flags & IPIF_NOLOCAL)) { 15051 net_mask = ip_net_mask(ipif->ipif_lcl_addr); 15052 } else { 15053 net_mask = htonl(IN_CLASSA_NET); 15054 } 15055 addr = net_mask & ipif->ipif_subnet; 15056 if (prev_net_addr == 0 || prev_net_addr != addr) { 15057 ill_mark_bcast(illgrp, addr); 15058 net_addr = ~net_mask | addr; 15059 ill_mark_bcast(illgrp, net_addr); 15060 } 15061 prev_net_addr = addr; 15062 15063 subnet_netmask = ipif->ipif_net_mask; 15064 addr = ipif->ipif_subnet; 15065 if (prev_subnet_addr == 0 || 15066 prev_subnet_addr != addr) { 15067 ill_mark_bcast(illgrp, addr); 15068 subnet_addr = ~subnet_netmask | addr; 15069 ill_mark_bcast(illgrp, subnet_addr); 15070 } 15071 prev_subnet_addr = addr; 15072 } 15073 } 15074 } 15075 15076 /* 15077 * This function is called while forming ill groups. 15078 * 15079 * Currently, we handle only allmulti groups. We want to join 15080 * allmulti on only one of the ills in the groups. In future, 15081 * when we have link aggregation, we may have to join normal 15082 * multicast groups on multiple ills as switch does inbound load 15083 * balancing. Following are the functions that calls this 15084 * function : 15085 * 15086 * 1) ill_recover_multicast : Interface is coming back UP. 15087 * When the first ipif comes back UP, ipif_up_done/ipif_up_done_v6 15088 * will call ill_recover_multicast to recover all the multicast 15089 * groups. We need to make sure that only one member is joined 15090 * in the ill group. 15091 * 15092 * 2) ip_addmulti/ip_addmulti_v6 : ill groups has already been formed. 15093 * Somebody is joining allmulti. We need to make sure that only one 15094 * member is joined in the group. 15095 * 15096 * 3) illgrp_insert : If allmulti has already joined, we need to make 15097 * sure that only one member is joined in the group. 15098 * 15099 * 4) ip_delmulti/ip_delmulti_v6 : Somebody in the group is leaving 15100 * allmulti who we have nominated. We need to pick someother ill. 15101 * 15102 * 5) illgrp_delete : The ill we nominated is leaving the group, 15103 * we need to pick a new ill to join the group. 15104 * 15105 * For (1), (2), (5) - we just have to check whether there is 15106 * a good ill joined in the group. If we could not find any ills 15107 * joined the group, we should join. 15108 * 15109 * For (4), the one that was nominated to receive, left the group. 15110 * There could be nobody joined in the group when this function is 15111 * called. 15112 * 15113 * For (3) - we need to explicitly check whether there are multiple 15114 * ills joined in the group. 15115 * 15116 * For simplicity, we don't differentiate any of the above cases. We 15117 * just leave the group if it is joined on any of them and join on 15118 * the first good ill. 15119 */ 15120 int 15121 ill_nominate_mcast_rcv(ill_group_t *illgrp) 15122 { 15123 ilm_t *ilm; 15124 ill_t *ill; 15125 ill_t *fallback_inactive_ill = NULL; 15126 ill_t *fallback_failed_ill = NULL; 15127 int ret = 0; 15128 15129 /* 15130 * Leave the allmulti on all the ills and start fresh. 15131 */ 15132 for (ill = illgrp->illgrp_ill; ill != NULL; 15133 ill = ill->ill_group_next) { 15134 if (ill->ill_join_allmulti) 15135 (void) ip_leave_allmulti(ill->ill_ipif); 15136 } 15137 15138 /* 15139 * Choose a good ill. Fallback to inactive or failed if 15140 * none available. We need to fallback to FAILED in the 15141 * case where we have 2 interfaces in a group - where 15142 * one of them is failed and another is a good one and 15143 * the good one (not marked inactive) is leaving the group. 15144 */ 15145 ret = 0; 15146 for (ill = illgrp->illgrp_ill; ill != NULL; 15147 ill = ill->ill_group_next) { 15148 /* Never pick an offline interface */ 15149 if (ill->ill_phyint->phyint_flags & PHYI_OFFLINE) 15150 continue; 15151 15152 if (ill->ill_phyint->phyint_flags & PHYI_FAILED) { 15153 fallback_failed_ill = ill; 15154 continue; 15155 } 15156 if (ill->ill_phyint->phyint_flags & PHYI_INACTIVE) { 15157 fallback_inactive_ill = ill; 15158 continue; 15159 } 15160 for (ilm = ill->ill_ilm; ilm != NULL; ilm = ilm->ilm_next) { 15161 if (IN6_IS_ADDR_UNSPECIFIED(&ilm->ilm_v6addr)) { 15162 ret = ip_join_allmulti(ill->ill_ipif); 15163 /* 15164 * ip_join_allmulti can fail because of memory 15165 * failures. So, make sure we join at least 15166 * on one ill. 15167 */ 15168 if (ill->ill_join_allmulti) 15169 return (0); 15170 } 15171 } 15172 } 15173 if (ret != 0) { 15174 /* 15175 * If we tried nominating above and failed to do so, 15176 * return error. We might have tried multiple times. 15177 * But, return the latest error. 15178 */ 15179 return (ret); 15180 } 15181 if ((ill = fallback_inactive_ill) != NULL) { 15182 for (ilm = ill->ill_ilm; ilm != NULL; ilm = ilm->ilm_next) { 15183 if (IN6_IS_ADDR_UNSPECIFIED(&ilm->ilm_v6addr)) { 15184 ret = ip_join_allmulti(ill->ill_ipif); 15185 return (ret); 15186 } 15187 } 15188 } else if ((ill = fallback_failed_ill) != NULL) { 15189 for (ilm = ill->ill_ilm; ilm != NULL; ilm = ilm->ilm_next) { 15190 if (IN6_IS_ADDR_UNSPECIFIED(&ilm->ilm_v6addr)) { 15191 ret = ip_join_allmulti(ill->ill_ipif); 15192 return (ret); 15193 } 15194 } 15195 } 15196 return (0); 15197 } 15198 15199 /* 15200 * This function is called from illgrp_delete after it is 15201 * deleted from the group to reschedule responsibilities 15202 * to a different ill. 15203 */ 15204 static void 15205 ill_handoff_responsibility(ill_t *ill, ill_group_t *illgrp) 15206 { 15207 ilm_t *ilm; 15208 ipif_t *ipif; 15209 ipaddr_t subnet_addr; 15210 ipaddr_t net_addr; 15211 ipaddr_t net_mask = 0; 15212 ipaddr_t subnet_netmask; 15213 ipaddr_t addr; 15214 15215 ASSERT(ill->ill_group == NULL); 15216 /* 15217 * Broadcast Responsibility: 15218 * 15219 * 1. If this ill has been nominated for receiving broadcast 15220 * packets, we need to find a new one. Before we find a new 15221 * one, we need to re-group the ires that are part of this new 15222 * group (assumed by ill_nominate_bcast_rcv). We do this by 15223 * calling ill_group_bcast_for_xmit(ill) which will do the right 15224 * thing for us. 15225 * 15226 * 2. If this ill was not nominated for receiving broadcast 15227 * packets, we need to clear the IRE_MARK_NORECV flag 15228 * so that we continue to send up broadcast packets. 15229 */ 15230 if (!ill->ill_isv6) { 15231 /* 15232 * Case 1 above : No optimization here. Just redo the 15233 * nomination. 15234 */ 15235 ill_group_bcast_for_xmit(ill); 15236 ill_nominate_bcast_rcv(illgrp); 15237 15238 /* 15239 * Case 2 above : Lookup and clear IRE_MARK_NORECV. 15240 */ 15241 ill_clear_bcast_mark(ill, 0); 15242 ill_clear_bcast_mark(ill, INADDR_BROADCAST); 15243 15244 for (ipif = ill->ill_ipif; ipif != NULL; 15245 ipif = ipif->ipif_next) { 15246 15247 if (!(ipif->ipif_flags & IPIF_UP) || 15248 ipif->ipif_subnet == 0) { 15249 continue; 15250 } 15251 if ((ipif->ipif_lcl_addr != INADDR_ANY) && 15252 !(ipif->ipif_flags & IPIF_NOLOCAL)) { 15253 net_mask = ip_net_mask(ipif->ipif_lcl_addr); 15254 } else { 15255 net_mask = htonl(IN_CLASSA_NET); 15256 } 15257 addr = net_mask & ipif->ipif_subnet; 15258 ill_clear_bcast_mark(ill, addr); 15259 15260 net_addr = ~net_mask | addr; 15261 ill_clear_bcast_mark(ill, net_addr); 15262 15263 subnet_netmask = ipif->ipif_net_mask; 15264 addr = ipif->ipif_subnet; 15265 ill_clear_bcast_mark(ill, addr); 15266 15267 subnet_addr = ~subnet_netmask | addr; 15268 ill_clear_bcast_mark(ill, subnet_addr); 15269 } 15270 } 15271 15272 /* 15273 * Multicast Responsibility. 15274 * 15275 * If we have joined allmulti on this one, find a new member 15276 * in the group to join allmulti. As this ill is already part 15277 * of allmulti, we don't have to join on this one. 15278 * 15279 * If we have not joined allmulti on this one, there is no 15280 * responsibility to handoff. But we need to take new 15281 * responsibility i.e, join allmulti on this one if we need 15282 * to. 15283 */ 15284 if (ill->ill_join_allmulti) { 15285 (void) ill_nominate_mcast_rcv(illgrp); 15286 } else { 15287 for (ilm = ill->ill_ilm; ilm != NULL; ilm = ilm->ilm_next) { 15288 if (IN6_IS_ADDR_UNSPECIFIED(&ilm->ilm_v6addr)) { 15289 (void) ip_join_allmulti(ill->ill_ipif); 15290 break; 15291 } 15292 } 15293 } 15294 15295 /* 15296 * We intentionally do the flushing of IRE_CACHES only matching 15297 * on the ill and not on groups. Note that we are already deleted 15298 * from the group. 15299 * 15300 * This will make sure that all IRE_CACHES whose stq is pointing 15301 * at ill_wq or ire_ipif->ipif_ill pointing at this ill will get 15302 * deleted and IRE_CACHES that are not pointing at this ill will 15303 * be left alone. 15304 */ 15305 if (ill->ill_isv6) { 15306 ire_walk_ill_v6(MATCH_IRE_ILL | MATCH_IRE_TYPE, 15307 IRE_CACHE, illgrp_cache_delete, (char *)ill, ill); 15308 } else { 15309 ire_walk_ill_v4(MATCH_IRE_ILL | MATCH_IRE_TYPE, 15310 IRE_CACHE, illgrp_cache_delete, (char *)ill, ill); 15311 } 15312 15313 /* 15314 * Some conn may have cached one of the IREs deleted above. By removing 15315 * the ire reference, we clean up the extra reference to the ill held in 15316 * ire->ire_stq. 15317 */ 15318 ipcl_walk(conn_cleanup_stale_ire, NULL); 15319 15320 /* 15321 * Re-do source address selection for all the members in the 15322 * group, if they borrowed source address from one of the ipifs 15323 * in this ill. 15324 */ 15325 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 15326 if (ill->ill_isv6) { 15327 ipif_update_other_ipifs_v6(ipif, illgrp); 15328 } else { 15329 ipif_update_other_ipifs(ipif, illgrp); 15330 } 15331 } 15332 } 15333 15334 /* 15335 * Delete the ill from the group. The caller makes sure that it is 15336 * in a group and it okay to delete from the group. So, we always 15337 * delete here. 15338 */ 15339 static void 15340 illgrp_delete(ill_t *ill) 15341 { 15342 ill_group_t *illgrp; 15343 ill_group_t *tmpg; 15344 ill_t *tmp_ill; 15345 15346 /* 15347 * Reset illgrp_ill_schednext if it was pointing at us. 15348 * We need to do this before we set ill_group to NULL. 15349 */ 15350 rw_enter(&ill_g_lock, RW_WRITER); 15351 mutex_enter(&ill->ill_lock); 15352 15353 illgrp_reset_schednext(ill); 15354 15355 illgrp = ill->ill_group; 15356 15357 /* Delete the ill from illgrp. */ 15358 if (illgrp->illgrp_ill == ill) { 15359 illgrp->illgrp_ill = ill->ill_group_next; 15360 } else { 15361 tmp_ill = illgrp->illgrp_ill; 15362 while (tmp_ill->ill_group_next != ill) { 15363 tmp_ill = tmp_ill->ill_group_next; 15364 ASSERT(tmp_ill != NULL); 15365 } 15366 tmp_ill->ill_group_next = ill->ill_group_next; 15367 } 15368 ill->ill_group = NULL; 15369 ill->ill_group_next = NULL; 15370 15371 illgrp->illgrp_ill_count--; 15372 mutex_exit(&ill->ill_lock); 15373 rw_exit(&ill_g_lock); 15374 15375 /* 15376 * As this ill is leaving the group, we need to hand off 15377 * the responsibilities to the other ills in the group, if 15378 * this ill had some responsibilities. 15379 */ 15380 15381 ill_handoff_responsibility(ill, illgrp); 15382 15383 rw_enter(&ill_g_lock, RW_WRITER); 15384 15385 if (illgrp->illgrp_ill_count == 0) { 15386 15387 ASSERT(illgrp->illgrp_ill == NULL); 15388 if (ill->ill_isv6) { 15389 if (illgrp == illgrp_head_v6) { 15390 illgrp_head_v6 = illgrp->illgrp_next; 15391 } else { 15392 tmpg = illgrp_head_v6; 15393 while (tmpg->illgrp_next != illgrp) { 15394 tmpg = tmpg->illgrp_next; 15395 ASSERT(tmpg != NULL); 15396 } 15397 tmpg->illgrp_next = illgrp->illgrp_next; 15398 } 15399 } else { 15400 if (illgrp == illgrp_head_v4) { 15401 illgrp_head_v4 = illgrp->illgrp_next; 15402 } else { 15403 tmpg = illgrp_head_v4; 15404 while (tmpg->illgrp_next != illgrp) { 15405 tmpg = tmpg->illgrp_next; 15406 ASSERT(tmpg != NULL); 15407 } 15408 tmpg->illgrp_next = illgrp->illgrp_next; 15409 } 15410 } 15411 mutex_destroy(&illgrp->illgrp_lock); 15412 mi_free(illgrp); 15413 } 15414 rw_exit(&ill_g_lock); 15415 15416 /* 15417 * Even though the ill is out of the group its not necessary 15418 * to set ipsq_split as TRUE as the ipifs could be down temporarily 15419 * We will split the ipsq when phyint_groupname is set to NULL. 15420 */ 15421 15422 /* 15423 * Send a routing sockets message if we are deleting from 15424 * groups with names. 15425 */ 15426 if (ill->ill_phyint->phyint_groupname_len != 0) 15427 ip_rts_ifmsg(ill->ill_ipif); 15428 } 15429 15430 /* 15431 * Re-do source address selection. This is normally called when 15432 * an ill joins the group or when a non-NOLOCAL/DEPRECATED/ANYCAST 15433 * ipif comes up. 15434 */ 15435 void 15436 ill_update_source_selection(ill_t *ill) 15437 { 15438 ipif_t *ipif; 15439 15440 ASSERT(IAM_WRITER_ILL(ill)); 15441 15442 if (ill->ill_group != NULL) 15443 ill = ill->ill_group->illgrp_ill; 15444 15445 for (; ill != NULL; ill = ill->ill_group_next) { 15446 for (ipif = ill->ill_ipif; ipif != NULL; 15447 ipif = ipif->ipif_next) { 15448 if (ill->ill_isv6) 15449 ipif_recreate_interface_routes_v6(NULL, ipif); 15450 else 15451 ipif_recreate_interface_routes(NULL, ipif); 15452 } 15453 } 15454 } 15455 15456 /* 15457 * Insert ill in a group headed by illgrp_head. The caller can either 15458 * pass a groupname in which case we search for a group with the 15459 * same name to insert in or pass a group to insert in. This function 15460 * would only search groups with names. 15461 * 15462 * NOTE : The caller should make sure that there is at least one ipif 15463 * UP on this ill so that illgrp_scheduler can pick this ill 15464 * for outbound packets. If ill_ipif_up_count is zero, we have 15465 * already sent a DL_UNBIND to the driver and we don't want to 15466 * send anymore packets. We don't assert for ipif_up_count 15467 * to be greater than zero, because ipif_up_done wants to call 15468 * this function before bumping up the ipif_up_count. See 15469 * ipif_up_done() for details. 15470 */ 15471 int 15472 illgrp_insert(ill_group_t **illgrp_head, ill_t *ill, char *groupname, 15473 ill_group_t *grp_to_insert, boolean_t ipif_is_coming_up) 15474 { 15475 ill_group_t *illgrp; 15476 ill_t *prev_ill; 15477 phyint_t *phyi; 15478 15479 ASSERT(ill->ill_group == NULL); 15480 15481 rw_enter(&ill_g_lock, RW_WRITER); 15482 mutex_enter(&ill->ill_lock); 15483 15484 if (groupname != NULL) { 15485 /* 15486 * Look for a group with a matching groupname to insert. 15487 */ 15488 for (illgrp = *illgrp_head; illgrp != NULL; 15489 illgrp = illgrp->illgrp_next) { 15490 15491 ill_t *tmp_ill; 15492 15493 /* 15494 * If we have an ill_group_t in the list which has 15495 * no ill_t assigned then we must be in the process of 15496 * removing this group. We skip this as illgrp_delete() 15497 * will remove it from the list. 15498 */ 15499 if ((tmp_ill = illgrp->illgrp_ill) == NULL) { 15500 ASSERT(illgrp->illgrp_ill_count == 0); 15501 continue; 15502 } 15503 15504 ASSERT(tmp_ill->ill_phyint != NULL); 15505 phyi = tmp_ill->ill_phyint; 15506 /* 15507 * Look at groups which has names only. 15508 */ 15509 if (phyi->phyint_groupname_len == 0) 15510 continue; 15511 /* 15512 * Names are stored in the phyint common to both 15513 * IPv4 and IPv6. 15514 */ 15515 if (mi_strcmp(phyi->phyint_groupname, 15516 groupname) == 0) { 15517 break; 15518 } 15519 } 15520 } else { 15521 /* 15522 * If the caller passes in a NULL "grp_to_insert", we 15523 * allocate one below and insert this singleton. 15524 */ 15525 illgrp = grp_to_insert; 15526 } 15527 15528 ill->ill_group_next = NULL; 15529 15530 if (illgrp == NULL) { 15531 illgrp = (ill_group_t *)mi_zalloc(sizeof (ill_group_t)); 15532 if (illgrp == NULL) { 15533 return (ENOMEM); 15534 } 15535 illgrp->illgrp_next = *illgrp_head; 15536 *illgrp_head = illgrp; 15537 illgrp->illgrp_ill = ill; 15538 illgrp->illgrp_ill_count = 1; 15539 ill->ill_group = illgrp; 15540 /* 15541 * Used in illgrp_scheduler to protect multiple threads 15542 * from traversing the list. 15543 */ 15544 mutex_init(&illgrp->illgrp_lock, NULL, MUTEX_DEFAULT, 0); 15545 } else { 15546 ASSERT(ill->ill_net_type == 15547 illgrp->illgrp_ill->ill_net_type); 15548 ASSERT(ill->ill_type == illgrp->illgrp_ill->ill_type); 15549 15550 /* Insert ill at tail of this group */ 15551 prev_ill = illgrp->illgrp_ill; 15552 while (prev_ill->ill_group_next != NULL) 15553 prev_ill = prev_ill->ill_group_next; 15554 prev_ill->ill_group_next = ill; 15555 ill->ill_group = illgrp; 15556 illgrp->illgrp_ill_count++; 15557 /* 15558 * Inherit group properties. Currently only forwarding 15559 * is the property we try to keep the same with all the 15560 * ills. When there are more, we will abstract this into 15561 * a function. 15562 */ 15563 ill->ill_flags &= ~ILLF_ROUTER; 15564 ill->ill_flags |= (illgrp->illgrp_ill->ill_flags & ILLF_ROUTER); 15565 } 15566 mutex_exit(&ill->ill_lock); 15567 rw_exit(&ill_g_lock); 15568 15569 /* 15570 * 1) When ipif_up_done() calls this function, ipif_up_count 15571 * may be zero as it has not yet been bumped. But the ires 15572 * have already been added. So, we do the nomination here 15573 * itself. But, when ip_sioctl_groupname calls this, it checks 15574 * for ill_ipif_up_count != 0. Thus we don't check for 15575 * ill_ipif_up_count here while nominating broadcast ires for 15576 * receive. 15577 * 15578 * 2) Similarly, we need to call ill_group_bcast_for_xmit here 15579 * to group them properly as ire_add() has already happened 15580 * in the ipif_up_done() case. For ip_sioctl_groupname/ifgrp_insert 15581 * case, we need to do it here anyway. 15582 */ 15583 if (!ill->ill_isv6) { 15584 ill_group_bcast_for_xmit(ill); 15585 ill_nominate_bcast_rcv(illgrp); 15586 } 15587 15588 if (!ipif_is_coming_up) { 15589 /* 15590 * When ipif_up_done() calls this function, the multicast 15591 * groups have not been joined yet. So, there is no point in 15592 * nomination. ip_join_allmulti will handle groups when 15593 * ill_recover_multicast is called from ipif_up_done() later. 15594 */ 15595 (void) ill_nominate_mcast_rcv(illgrp); 15596 /* 15597 * ipif_up_done calls ill_update_source_selection 15598 * anyway. Moreover, we don't want to re-create 15599 * interface routes while ipif_up_done() still has reference 15600 * to them. Refer to ipif_up_done() for more details. 15601 */ 15602 ill_update_source_selection(ill); 15603 } 15604 15605 /* 15606 * Send a routing sockets message if we are inserting into 15607 * groups with names. 15608 */ 15609 if (groupname != NULL) 15610 ip_rts_ifmsg(ill->ill_ipif); 15611 return (0); 15612 } 15613 15614 /* 15615 * Return the first phyint matching the groupname. There could 15616 * be more than one when there are ill groups. 15617 * 15618 * Needs work: called only from ip_sioctl_groupname 15619 */ 15620 static phyint_t * 15621 phyint_lookup_group(char *groupname) 15622 { 15623 phyint_t *phyi; 15624 15625 ASSERT(RW_LOCK_HELD(&ill_g_lock)); 15626 /* 15627 * Group names are stored in the phyint - a common structure 15628 * to both IPv4 and IPv6. 15629 */ 15630 phyi = avl_first(&phyint_g_list.phyint_list_avl_by_index); 15631 for (; phyi != NULL; 15632 phyi = avl_walk(&phyint_g_list.phyint_list_avl_by_index, 15633 phyi, AVL_AFTER)) { 15634 if (phyi->phyint_groupname_len == 0) 15635 continue; 15636 ASSERT(phyi->phyint_groupname != NULL); 15637 if (mi_strcmp(groupname, phyi->phyint_groupname) == 0) 15638 return (phyi); 15639 } 15640 return (NULL); 15641 } 15642 15643 15644 15645 /* 15646 * MT notes on creation and deletion of IPMP groups 15647 * 15648 * Creation and deletion of IPMP groups introduce the need to merge or 15649 * split the associated serialization objects i.e the ipsq's. Normally all 15650 * the ills in an IPMP group would map to a single ipsq. If IPMP is not enabled 15651 * an ill-pair(v4, v6) i.e. phyint would map to a single ipsq. However during 15652 * the execution of the SIOCSLIFGROUPNAME command the picture changes. There 15653 * is a need to change the <ill-ipsq> association and we have to operate on both 15654 * the source and destination IPMP groups. For eg. attempting to set the 15655 * groupname of hme0 to mpk17-85 when it already belongs to mpk17-84 has to 15656 * handle 2 IPMP groups and 2 ipsqs. All the ills belonging to either of the 15657 * source or destination IPMP group are mapped to a single ipsq for executing 15658 * the SIOCSLIFGROUPNAME command. This is termed as a merge of the ipsq's. 15659 * The <ill-ipsq> mapping is restored back to normal at a later point. This is 15660 * termed as a split of the ipsq. The converse of the merge i.e. a split of the 15661 * ipsq happens while unwinding from ipsq_exit. If at least 1 set groupname 15662 * occurred on the ipsq, then the ipsq_split flag is set. This indicates the 15663 * ipsq has to be examined for redoing the <ill-ipsq> associations. 15664 * 15665 * In the above example the ioctl handling code locates the current ipsq of hme0 15666 * which is ipsq(mpk17-84). It then enters the above ipsq immediately or 15667 * eventually (after queueing the ioctl in ipsq(mpk17-84)). Then it locates 15668 * the destination ipsq which is ipsq(mpk17-85) and merges the source ipsq into 15669 * the destination ipsq. If the destination ipsq is not busy, it also enters 15670 * the destination ipsq exclusively. Now the actual groupname setting operation 15671 * can proceed. If the destination ipsq is busy, the operation is enqueued 15672 * on the destination (merged) ipsq and will be handled in the unwind from 15673 * ipsq_exit. 15674 * 15675 * To prevent other threads accessing the ill while the group name change is 15676 * in progres, we bring down the ipifs which also removes the ill from the 15677 * group. The group is changed in phyint and when the first ipif on the ill 15678 * is brought up, the ill is inserted into the right IPMP group by 15679 * illgrp_insert. 15680 */ 15681 /* ARGSUSED */ 15682 int 15683 ip_sioctl_groupname(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 15684 ip_ioctl_cmd_t *ipip, void *ifreq) 15685 { 15686 int i; 15687 char *tmp; 15688 int namelen; 15689 ill_t *ill = ipif->ipif_ill; 15690 ill_t *ill_v4, *ill_v6; 15691 int err = 0; 15692 phyint_t *phyi; 15693 phyint_t *phyi_tmp; 15694 struct lifreq *lifr; 15695 mblk_t *mp1; 15696 char *groupname; 15697 ipsq_t *ipsq; 15698 15699 ASSERT(IAM_WRITER_IPIF(ipif)); 15700 15701 /* Existance verified in ip_wput_nondata */ 15702 mp1 = mp->b_cont->b_cont; 15703 lifr = (struct lifreq *)mp1->b_rptr; 15704 groupname = lifr->lifr_groupname; 15705 15706 if (ipif->ipif_id != 0) 15707 return (EINVAL); 15708 15709 phyi = ill->ill_phyint; 15710 ASSERT(phyi != NULL); 15711 15712 if (phyi->phyint_flags & PHYI_VIRTUAL) 15713 return (EINVAL); 15714 15715 tmp = groupname; 15716 for (i = 0; i < LIFNAMSIZ && *tmp != '\0'; tmp++, i++) 15717 ; 15718 15719 if (i == LIFNAMSIZ) { 15720 /* no null termination */ 15721 return (EINVAL); 15722 } 15723 15724 /* 15725 * Calculate the namelen exclusive of the null 15726 * termination character. 15727 */ 15728 namelen = tmp - groupname; 15729 15730 ill_v4 = phyi->phyint_illv4; 15731 ill_v6 = phyi->phyint_illv6; 15732 15733 /* 15734 * ILL cannot be part of a usesrc group and and IPMP group at the 15735 * same time. No need to grab the ill_g_usesrc_lock here, see 15736 * synchronization notes in ip.c 15737 */ 15738 if (ipif->ipif_ill->ill_usesrc_grp_next != NULL) { 15739 return (EINVAL); 15740 } 15741 15742 /* 15743 * mark the ill as changing. 15744 * this should queue all new requests on the syncq. 15745 */ 15746 GRAB_ILL_LOCKS(ill_v4, ill_v6); 15747 15748 if (ill_v4 != NULL) 15749 ill_v4->ill_state_flags |= ILL_CHANGING; 15750 if (ill_v6 != NULL) 15751 ill_v6->ill_state_flags |= ILL_CHANGING; 15752 RELEASE_ILL_LOCKS(ill_v4, ill_v6); 15753 15754 if (namelen == 0) { 15755 /* 15756 * Null string means remove this interface from the 15757 * existing group. 15758 */ 15759 if (phyi->phyint_groupname_len == 0) { 15760 /* 15761 * Never was in a group. 15762 */ 15763 err = 0; 15764 goto done; 15765 } 15766 15767 /* 15768 * IPv4 or IPv6 may be temporarily out of the group when all 15769 * the ipifs are down. Thus, we need to check for ill_group to 15770 * be non-NULL. 15771 */ 15772 if (ill_v4 != NULL && ill_v4->ill_group != NULL) { 15773 ill_down_ipifs(ill_v4, mp, 0, B_FALSE); 15774 mutex_enter(&ill_v4->ill_lock); 15775 if (!ill_is_quiescent(ill_v4)) { 15776 /* 15777 * ipsq_pending_mp_add will not fail since 15778 * connp is NULL 15779 */ 15780 (void) ipsq_pending_mp_add(NULL, 15781 ill_v4->ill_ipif, q, mp, ILL_DOWN); 15782 mutex_exit(&ill_v4->ill_lock); 15783 err = EINPROGRESS; 15784 goto done; 15785 } 15786 mutex_exit(&ill_v4->ill_lock); 15787 } 15788 15789 if (ill_v6 != NULL && ill_v6->ill_group != NULL) { 15790 ill_down_ipifs(ill_v6, mp, 0, B_FALSE); 15791 mutex_enter(&ill_v6->ill_lock); 15792 if (!ill_is_quiescent(ill_v6)) { 15793 (void) ipsq_pending_mp_add(NULL, 15794 ill_v6->ill_ipif, q, mp, ILL_DOWN); 15795 mutex_exit(&ill_v6->ill_lock); 15796 err = EINPROGRESS; 15797 goto done; 15798 } 15799 mutex_exit(&ill_v6->ill_lock); 15800 } 15801 15802 rw_enter(&ill_g_lock, RW_WRITER); 15803 GRAB_ILL_LOCKS(ill_v4, ill_v6); 15804 mutex_enter(&phyi->phyint_lock); 15805 ASSERT(phyi->phyint_groupname != NULL); 15806 mi_free(phyi->phyint_groupname); 15807 phyi->phyint_groupname = NULL; 15808 phyi->phyint_groupname_len = 0; 15809 mutex_exit(&phyi->phyint_lock); 15810 RELEASE_ILL_LOCKS(ill_v4, ill_v6); 15811 rw_exit(&ill_g_lock); 15812 err = ill_up_ipifs(ill, q, mp); 15813 15814 /* 15815 * set the split flag so that the ipsq can be split 15816 */ 15817 mutex_enter(&phyi->phyint_ipsq->ipsq_lock); 15818 phyi->phyint_ipsq->ipsq_split = B_TRUE; 15819 mutex_exit(&phyi->phyint_ipsq->ipsq_lock); 15820 15821 } else { 15822 if (phyi->phyint_groupname_len != 0) { 15823 ASSERT(phyi->phyint_groupname != NULL); 15824 /* Are we inserting in the same group ? */ 15825 if (mi_strcmp(groupname, 15826 phyi->phyint_groupname) == 0) { 15827 err = 0; 15828 goto done; 15829 } 15830 } 15831 15832 rw_enter(&ill_g_lock, RW_READER); 15833 /* 15834 * Merge ipsq for the group's. 15835 * This check is here as multiple groups/ills might be 15836 * sharing the same ipsq. 15837 * If we have to merege than the operation is restarted 15838 * on the new ipsq. 15839 */ 15840 ipsq = ip_ipsq_lookup(groupname, B_FALSE, NULL); 15841 if (phyi->phyint_ipsq != ipsq) { 15842 rw_exit(&ill_g_lock); 15843 err = ill_merge_groups(ill, NULL, groupname, mp, q); 15844 goto done; 15845 } 15846 /* 15847 * Running exclusive on new ipsq. 15848 */ 15849 15850 ASSERT(ipsq != NULL); 15851 ASSERT(ipsq->ipsq_writer == curthread); 15852 15853 /* 15854 * Check whether the ill_type and ill_net_type matches before 15855 * we allocate any memory so that the cleanup is easier. 15856 * 15857 * We can't group dissimilar ones as we can't load spread 15858 * packets across the group because of potential link-level 15859 * header differences. 15860 */ 15861 phyi_tmp = phyint_lookup_group(groupname); 15862 if (phyi_tmp != NULL) { 15863 if ((ill_v4 != NULL && 15864 phyi_tmp->phyint_illv4 != NULL) && 15865 ((ill_v4->ill_net_type != 15866 phyi_tmp->phyint_illv4->ill_net_type) || 15867 (ill_v4->ill_type != 15868 phyi_tmp->phyint_illv4->ill_type))) { 15869 mutex_enter(&phyi->phyint_ipsq->ipsq_lock); 15870 phyi->phyint_ipsq->ipsq_split = B_TRUE; 15871 mutex_exit(&phyi->phyint_ipsq->ipsq_lock); 15872 rw_exit(&ill_g_lock); 15873 return (EINVAL); 15874 } 15875 if ((ill_v6 != NULL && 15876 phyi_tmp->phyint_illv6 != NULL) && 15877 ((ill_v6->ill_net_type != 15878 phyi_tmp->phyint_illv6->ill_net_type) || 15879 (ill_v6->ill_type != 15880 phyi_tmp->phyint_illv6->ill_type))) { 15881 mutex_enter(&phyi->phyint_ipsq->ipsq_lock); 15882 phyi->phyint_ipsq->ipsq_split = B_TRUE; 15883 mutex_exit(&phyi->phyint_ipsq->ipsq_lock); 15884 rw_exit(&ill_g_lock); 15885 return (EINVAL); 15886 } 15887 } 15888 15889 rw_exit(&ill_g_lock); 15890 15891 /* 15892 * bring down all v4 ipifs. 15893 */ 15894 if (ill_v4 != NULL) { 15895 ill_down_ipifs(ill_v4, mp, 0, B_FALSE); 15896 } 15897 15898 /* 15899 * bring down all v6 ipifs. 15900 */ 15901 if (ill_v6 != NULL) { 15902 ill_down_ipifs(ill_v6, mp, 0, B_FALSE); 15903 } 15904 15905 /* 15906 * make sure all ipifs are down and there are no active 15907 * references. Call to ipsq_pending_mp_add will not fail 15908 * since connp is NULL. 15909 */ 15910 if (ill_v4 != NULL) { 15911 mutex_enter(&ill_v4->ill_lock); 15912 if (!ill_is_quiescent(ill_v4)) { 15913 (void) ipsq_pending_mp_add(NULL, 15914 ill_v4->ill_ipif, q, mp, ILL_DOWN); 15915 mutex_exit(&ill_v4->ill_lock); 15916 err = EINPROGRESS; 15917 goto done; 15918 } 15919 mutex_exit(&ill_v4->ill_lock); 15920 } 15921 15922 if (ill_v6 != NULL) { 15923 mutex_enter(&ill_v6->ill_lock); 15924 if (!ill_is_quiescent(ill_v6)) { 15925 (void) ipsq_pending_mp_add(NULL, 15926 ill_v6->ill_ipif, q, mp, ILL_DOWN); 15927 mutex_exit(&ill_v6->ill_lock); 15928 err = EINPROGRESS; 15929 goto done; 15930 } 15931 mutex_exit(&ill_v6->ill_lock); 15932 } 15933 15934 /* 15935 * allocate including space for null terminator 15936 * before we insert. 15937 */ 15938 tmp = (char *)mi_alloc(namelen + 1, BPRI_MED); 15939 if (tmp == NULL) 15940 return (ENOMEM); 15941 15942 rw_enter(&ill_g_lock, RW_WRITER); 15943 GRAB_ILL_LOCKS(ill_v4, ill_v6); 15944 mutex_enter(&phyi->phyint_lock); 15945 if (phyi->phyint_groupname_len != 0) { 15946 ASSERT(phyi->phyint_groupname != NULL); 15947 mi_free(phyi->phyint_groupname); 15948 } 15949 15950 /* 15951 * setup the new group name. 15952 */ 15953 phyi->phyint_groupname = tmp; 15954 bcopy(groupname, phyi->phyint_groupname, namelen + 1); 15955 phyi->phyint_groupname_len = namelen + 1; 15956 mutex_exit(&phyi->phyint_lock); 15957 RELEASE_ILL_LOCKS(ill_v4, ill_v6); 15958 rw_exit(&ill_g_lock); 15959 15960 err = ill_up_ipifs(ill, q, mp); 15961 } 15962 15963 done: 15964 /* 15965 * normally ILL_CHANGING is cleared in ill_up_ipifs. 15966 */ 15967 if (err != EINPROGRESS) { 15968 GRAB_ILL_LOCKS(ill_v4, ill_v6); 15969 if (ill_v4 != NULL) 15970 ill_v4->ill_state_flags &= ~ILL_CHANGING; 15971 if (ill_v6 != NULL) 15972 ill_v6->ill_state_flags &= ~ILL_CHANGING; 15973 RELEASE_ILL_LOCKS(ill_v4, ill_v6); 15974 } 15975 return (err); 15976 } 15977 15978 /* ARGSUSED */ 15979 int 15980 ip_sioctl_get_groupname(ipif_t *ipif, sin_t *dummy_sin, queue_t *q, 15981 mblk_t *mp, ip_ioctl_cmd_t *ipip, void *dummy_ifreq) 15982 { 15983 ill_t *ill; 15984 phyint_t *phyi; 15985 struct lifreq *lifr; 15986 mblk_t *mp1; 15987 15988 /* Existence verified in ip_wput_nondata */ 15989 mp1 = mp->b_cont->b_cont; 15990 lifr = (struct lifreq *)mp1->b_rptr; 15991 ill = ipif->ipif_ill; 15992 phyi = ill->ill_phyint; 15993 15994 lifr->lifr_groupname[0] = '\0'; 15995 /* 15996 * ill_group may be null if all the interfaces 15997 * are down. But still, the phyint should always 15998 * hold the name. 15999 */ 16000 if (phyi->phyint_groupname_len != 0) { 16001 bcopy(phyi->phyint_groupname, lifr->lifr_groupname, 16002 phyi->phyint_groupname_len); 16003 } 16004 16005 return (0); 16006 } 16007 16008 16009 typedef struct conn_move_s { 16010 ill_t *cm_from_ill; 16011 ill_t *cm_to_ill; 16012 int cm_ifindex; 16013 } conn_move_t; 16014 16015 /* 16016 * ipcl_walk function for moving conn_multicast_ill for a given ill. 16017 */ 16018 static void 16019 conn_move(conn_t *connp, caddr_t arg) 16020 { 16021 conn_move_t *connm; 16022 int ifindex; 16023 int i; 16024 ill_t *from_ill; 16025 ill_t *to_ill; 16026 ilg_t *ilg; 16027 ilm_t *ret_ilm; 16028 16029 connm = (conn_move_t *)arg; 16030 ifindex = connm->cm_ifindex; 16031 from_ill = connm->cm_from_ill; 16032 to_ill = connm->cm_to_ill; 16033 16034 /* Change IP_BOUND_IF/IPV6_BOUND_IF associations. */ 16035 16036 /* All multicast fields protected by conn_lock */ 16037 mutex_enter(&connp->conn_lock); 16038 ASSERT(connp->conn_outgoing_ill == connp->conn_incoming_ill); 16039 if ((connp->conn_outgoing_ill == from_ill) && 16040 (ifindex == 0 || connp->conn_orig_bound_ifindex == ifindex)) { 16041 connp->conn_outgoing_ill = to_ill; 16042 connp->conn_incoming_ill = to_ill; 16043 } 16044 16045 /* Change IP_MULTICAST_IF/IPV6_MULTICAST_IF associations */ 16046 16047 if ((connp->conn_multicast_ill == from_ill) && 16048 (ifindex == 0 || connp->conn_orig_multicast_ifindex == ifindex)) { 16049 connp->conn_multicast_ill = connm->cm_to_ill; 16050 } 16051 16052 /* Change IP_XMIT_IF associations */ 16053 if ((connp->conn_xmit_if_ill == from_ill) && 16054 (ifindex == 0 || connp->conn_orig_xmit_ifindex == ifindex)) { 16055 connp->conn_xmit_if_ill = to_ill; 16056 } 16057 /* 16058 * Change the ilg_ill to point to the new one. This assumes 16059 * ilm_move_v6 has moved the ilms to new_ill and the driver 16060 * has been told to receive packets on this interface. 16061 * ilm_move_v6 FAILBACKS all the ilms successfully always. 16062 * But when doing a FAILOVER, it might fail with ENOMEM and so 16063 * some ilms may not have moved. We check to see whether 16064 * the ilms have moved to to_ill. We can't check on from_ill 16065 * as in the process of moving, we could have split an ilm 16066 * in to two - which has the same orig_ifindex and v6group. 16067 * 16068 * For IPv4, ilg_ipif moves implicitly. The code below really 16069 * does not do anything for IPv4 as ilg_ill is NULL for IPv4. 16070 */ 16071 for (i = connp->conn_ilg_inuse - 1; i >= 0; i--) { 16072 ilg = &connp->conn_ilg[i]; 16073 if ((ilg->ilg_ill == from_ill) && 16074 (ifindex == 0 || ilg->ilg_orig_ifindex == ifindex)) { 16075 /* ifindex != 0 indicates failback */ 16076 if (ifindex != 0) { 16077 connp->conn_ilg[i].ilg_ill = to_ill; 16078 continue; 16079 } 16080 16081 ret_ilm = ilm_lookup_ill_index_v6(to_ill, 16082 &ilg->ilg_v6group, ilg->ilg_orig_ifindex, 16083 connp->conn_zoneid); 16084 16085 if (ret_ilm != NULL) 16086 connp->conn_ilg[i].ilg_ill = to_ill; 16087 } 16088 } 16089 mutex_exit(&connp->conn_lock); 16090 } 16091 16092 static void 16093 conn_move_ill(ill_t *from_ill, ill_t *to_ill, int ifindex) 16094 { 16095 conn_move_t connm; 16096 16097 connm.cm_from_ill = from_ill; 16098 connm.cm_to_ill = to_ill; 16099 connm.cm_ifindex = ifindex; 16100 16101 ipcl_walk(conn_move, (caddr_t)&connm); 16102 } 16103 16104 /* 16105 * ilm has been moved from from_ill to to_ill. 16106 * Send DL_DISABMULTI_REQ to ill and DL_ENABMULTI_REQ on to_ill. 16107 * appropriately. 16108 * 16109 * NOTE : We can't reuse the code in ip_ll_addmulti/delmulti because 16110 * the code there de-references ipif_ill to get the ill to 16111 * send multicast requests. It does not work as ipif is on its 16112 * move and already moved when this function is called. 16113 * Thus, we need to use from_ill and to_ill send down multicast 16114 * requests. 16115 */ 16116 static void 16117 ilm_send_multicast_reqs(ill_t *from_ill, ill_t *to_ill) 16118 { 16119 ipif_t *ipif; 16120 ilm_t *ilm; 16121 16122 /* 16123 * See whether we need to send down DL_ENABMULTI_REQ on 16124 * to_ill as ilm has just been added. 16125 */ 16126 ASSERT(IAM_WRITER_ILL(to_ill)); 16127 ASSERT(IAM_WRITER_ILL(from_ill)); 16128 16129 ILM_WALKER_HOLD(to_ill); 16130 for (ilm = to_ill->ill_ilm; ilm != NULL; ilm = ilm->ilm_next) { 16131 16132 if (!ilm->ilm_is_new || (ilm->ilm_flags & ILM_DELETED)) 16133 continue; 16134 /* 16135 * no locks held, ill/ipif cannot dissappear as long 16136 * as we are writer. 16137 */ 16138 ipif = to_ill->ill_ipif; 16139 /* 16140 * No need to hold any lock as we are the writer and this 16141 * can only be changed by a writer. 16142 */ 16143 ilm->ilm_is_new = B_FALSE; 16144 16145 if (to_ill->ill_net_type != IRE_IF_RESOLVER || 16146 ipif->ipif_flags & IPIF_POINTOPOINT) { 16147 ip1dbg(("ilm_send_multicast_reqs: to_ill not " 16148 "resolver\n")); 16149 continue; /* Must be IRE_IF_NORESOLVER */ 16150 } 16151 16152 16153 if (to_ill->ill_phyint->phyint_flags & PHYI_MULTI_BCAST) { 16154 ip1dbg(("ilm_send_multicast_reqs: " 16155 "to_ill MULTI_BCAST\n")); 16156 goto from; 16157 } 16158 16159 if (to_ill->ill_isv6) 16160 mld_joingroup(ilm); 16161 else 16162 igmp_joingroup(ilm); 16163 16164 if (to_ill->ill_ipif_up_count == 0) { 16165 /* 16166 * Nobody there. All multicast addresses will be 16167 * re-joined when we get the DL_BIND_ACK bringing the 16168 * interface up. 16169 */ 16170 ilm->ilm_notify_driver = B_FALSE; 16171 ip1dbg(("ilm_send_multicast_reqs: to_ill nobody up\n")); 16172 goto from; 16173 } 16174 16175 /* 16176 * For allmulti address, we want to join on only one interface. 16177 * Checking for ilm_numentries_v6 is not correct as you may 16178 * find an ilm with zero address on to_ill, but we may not 16179 * have nominated to_ill for receiving. Thus, if we have 16180 * nominated from_ill (ill_join_allmulti is set), nominate 16181 * only if to_ill is not already nominated (to_ill normally 16182 * should not have been nominated if "from_ill" has already 16183 * been nominated. As we don't prevent failovers from happening 16184 * across groups, we don't assert). 16185 */ 16186 if (IN6_IS_ADDR_UNSPECIFIED(&ilm->ilm_v6addr)) { 16187 /* 16188 * There is no need to hold ill locks as we are 16189 * writer on both ills and when ill_join_allmulti 16190 * is changed the thread is always a writer. 16191 */ 16192 if (from_ill->ill_join_allmulti && 16193 !to_ill->ill_join_allmulti) { 16194 (void) ip_join_allmulti(to_ill->ill_ipif); 16195 } 16196 } else if (ilm->ilm_notify_driver) { 16197 16198 /* 16199 * This is a newly moved ilm so we need to tell the 16200 * driver about the new group. There can be more than 16201 * one ilm's for the same group in the list each with a 16202 * different orig_ifindex. We have to inform the driver 16203 * once. In ilm_move_v[4,6] we only set the flag 16204 * ilm_notify_driver for the first ilm. 16205 */ 16206 16207 (void) ip_ll_send_enabmulti_req(to_ill, 16208 &ilm->ilm_v6addr); 16209 } 16210 16211 ilm->ilm_notify_driver = B_FALSE; 16212 16213 /* 16214 * See whether we need to send down DL_DISABMULTI_REQ on 16215 * from_ill as ilm has just been removed. 16216 */ 16217 from: 16218 ipif = from_ill->ill_ipif; 16219 if (from_ill->ill_net_type != IRE_IF_RESOLVER || 16220 ipif->ipif_flags & IPIF_POINTOPOINT) { 16221 ip1dbg(("ilm_send_multicast_reqs: " 16222 "from_ill not resolver\n")); 16223 continue; /* Must be IRE_IF_NORESOLVER */ 16224 } 16225 16226 if (from_ill->ill_phyint->phyint_flags & PHYI_MULTI_BCAST) { 16227 ip1dbg(("ilm_send_multicast_reqs: " 16228 "from_ill MULTI_BCAST\n")); 16229 continue; 16230 } 16231 16232 if (IN6_IS_ADDR_UNSPECIFIED(&ilm->ilm_v6addr)) { 16233 if (from_ill->ill_join_allmulti) 16234 (void) ip_leave_allmulti(from_ill->ill_ipif); 16235 } else if (ilm_numentries_v6(from_ill, &ilm->ilm_v6addr) == 0) { 16236 (void) ip_ll_send_disabmulti_req(from_ill, 16237 &ilm->ilm_v6addr); 16238 } 16239 } 16240 ILM_WALKER_RELE(to_ill); 16241 } 16242 16243 /* 16244 * This function is called when all multicast memberships needs 16245 * to be moved from "from_ill" to "to_ill" for IPv6. This function is 16246 * called only once unlike the IPv4 counterpart where it is called after 16247 * every logical interface is moved. The reason is due to multicast 16248 * memberships are joined using an interface address in IPv4 while in 16249 * IPv6, interface index is used. 16250 */ 16251 static void 16252 ilm_move_v6(ill_t *from_ill, ill_t *to_ill, int ifindex) 16253 { 16254 ilm_t *ilm; 16255 ilm_t *ilm_next; 16256 ilm_t *new_ilm; 16257 ilm_t **ilmp; 16258 int count; 16259 char buf[INET6_ADDRSTRLEN]; 16260 in6_addr_t ipv6_snm = ipv6_solicited_node_mcast; 16261 16262 ASSERT(MUTEX_HELD(&to_ill->ill_lock)); 16263 ASSERT(MUTEX_HELD(&from_ill->ill_lock)); 16264 ASSERT(RW_WRITE_HELD(&ill_g_lock)); 16265 16266 if (ifindex == 0) { 16267 /* 16268 * Form the solicited node mcast address which is used later. 16269 */ 16270 ipif_t *ipif; 16271 16272 ipif = from_ill->ill_ipif; 16273 ASSERT(ipif->ipif_id == 0); 16274 16275 ipv6_snm.s6_addr32[3] |= ipif->ipif_v6lcl_addr.s6_addr32[3]; 16276 } 16277 16278 ilmp = &from_ill->ill_ilm; 16279 for (ilm = from_ill->ill_ilm; ilm != NULL; ilm = ilm_next) { 16280 ilm_next = ilm->ilm_next; 16281 16282 if (ilm->ilm_flags & ILM_DELETED) { 16283 ilmp = &ilm->ilm_next; 16284 continue; 16285 } 16286 16287 new_ilm = ilm_lookup_ill_index_v6(to_ill, &ilm->ilm_v6addr, 16288 ilm->ilm_orig_ifindex, ilm->ilm_zoneid); 16289 ASSERT(ilm->ilm_orig_ifindex != 0); 16290 if (ilm->ilm_orig_ifindex == ifindex) { 16291 /* 16292 * We are failing back multicast memberships. 16293 * If the same ilm exists in to_ill, it means somebody 16294 * has joined the same group there e.g. ff02::1 16295 * is joined within the kernel when the interfaces 16296 * came UP. 16297 */ 16298 ASSERT(ilm->ilm_ipif == NULL); 16299 if (new_ilm != NULL) { 16300 new_ilm->ilm_refcnt += ilm->ilm_refcnt; 16301 if (new_ilm->ilm_fmode != MODE_IS_EXCLUDE || 16302 !SLIST_IS_EMPTY(new_ilm->ilm_filter)) { 16303 new_ilm->ilm_is_new = B_TRUE; 16304 } 16305 } else { 16306 /* 16307 * check if we can just move the ilm 16308 */ 16309 if (from_ill->ill_ilm_walker_cnt != 0) { 16310 /* 16311 * We have walkers we cannot move 16312 * the ilm, so allocate a new ilm, 16313 * this (old) ilm will be marked 16314 * ILM_DELETED at the end of the loop 16315 * and will be freed when the 16316 * last walker exits. 16317 */ 16318 new_ilm = (ilm_t *)mi_zalloc 16319 (sizeof (ilm_t)); 16320 if (new_ilm == NULL) { 16321 ip0dbg(("ilm_move_v6: " 16322 "FAILBACK of IPv6" 16323 " multicast address %s : " 16324 "from %s to" 16325 " %s failed : ENOMEM \n", 16326 inet_ntop(AF_INET6, 16327 &ilm->ilm_v6addr, buf, 16328 sizeof (buf)), 16329 from_ill->ill_name, 16330 to_ill->ill_name)); 16331 16332 ilmp = &ilm->ilm_next; 16333 continue; 16334 } 16335 *new_ilm = *ilm; 16336 /* 16337 * we don't want new_ilm linked to 16338 * ilm's filter list. 16339 */ 16340 new_ilm->ilm_filter = NULL; 16341 } else { 16342 /* 16343 * No walkers we can move the ilm. 16344 * lets take it out of the list. 16345 */ 16346 *ilmp = ilm->ilm_next; 16347 ilm->ilm_next = NULL; 16348 new_ilm = ilm; 16349 } 16350 16351 /* 16352 * if this is the first ilm for the group 16353 * set ilm_notify_driver so that we notify the 16354 * driver in ilm_send_multicast_reqs. 16355 */ 16356 if (ilm_lookup_ill_v6(to_ill, 16357 &new_ilm->ilm_v6addr, ALL_ZONES) == NULL) 16358 new_ilm->ilm_notify_driver = B_TRUE; 16359 16360 new_ilm->ilm_ill = to_ill; 16361 /* Add to the to_ill's list */ 16362 new_ilm->ilm_next = to_ill->ill_ilm; 16363 to_ill->ill_ilm = new_ilm; 16364 /* 16365 * set the flag so that mld_joingroup is 16366 * called in ilm_send_multicast_reqs(). 16367 */ 16368 new_ilm->ilm_is_new = B_TRUE; 16369 } 16370 goto bottom; 16371 } else if (ifindex != 0) { 16372 /* 16373 * If this is FAILBACK (ifindex != 0) and the ifindex 16374 * has not matched above, look at the next ilm. 16375 */ 16376 ilmp = &ilm->ilm_next; 16377 continue; 16378 } 16379 /* 16380 * If we are here, it means ifindex is 0. Failover 16381 * everything. 16382 * 16383 * We need to handle solicited node mcast address 16384 * and all_nodes mcast address differently as they 16385 * are joined witin the kenrel (ipif_multicast_up) 16386 * and potentially from the userland. We are called 16387 * after the ipifs of from_ill has been moved. 16388 * If we still find ilms on ill with solicited node 16389 * mcast address or all_nodes mcast address, it must 16390 * belong to the UP interface that has not moved e.g. 16391 * ipif_id 0 with the link local prefix does not move. 16392 * We join this on the new ill accounting for all the 16393 * userland memberships so that applications don't 16394 * see any failure. 16395 * 16396 * We need to make sure that we account only for the 16397 * solicited node and all node multicast addresses 16398 * that was brought UP on these. In the case of 16399 * a failover from A to B, we might have ilms belonging 16400 * to A (ilm_orig_ifindex pointing at A) on B accounting 16401 * for the membership from the userland. If we are failing 16402 * over from B to C now, we will find the ones belonging 16403 * to A on B. These don't account for the ill_ipif_up_count. 16404 * They just move from B to C. The check below on 16405 * ilm_orig_ifindex ensures that. 16406 */ 16407 if ((ilm->ilm_orig_ifindex == 16408 from_ill->ill_phyint->phyint_ifindex) && 16409 (IN6_ARE_ADDR_EQUAL(&ipv6_snm, &ilm->ilm_v6addr) || 16410 IN6_ARE_ADDR_EQUAL(&ipv6_all_hosts_mcast, 16411 &ilm->ilm_v6addr))) { 16412 ASSERT(ilm->ilm_refcnt > 0); 16413 count = ilm->ilm_refcnt - from_ill->ill_ipif_up_count; 16414 /* 16415 * For indentation reasons, we are not using a 16416 * "else" here. 16417 */ 16418 if (count == 0) { 16419 ilmp = &ilm->ilm_next; 16420 continue; 16421 } 16422 ilm->ilm_refcnt -= count; 16423 if (new_ilm != NULL) { 16424 /* 16425 * Can find one with the same 16426 * ilm_orig_ifindex, if we are failing 16427 * over to a STANDBY. This happens 16428 * when somebody wants to join a group 16429 * on a STANDBY interface and we 16430 * internally join on a different one. 16431 * If we had joined on from_ill then, a 16432 * failover now will find a new ilm 16433 * with this index. 16434 */ 16435 ip1dbg(("ilm_move_v6: FAILOVER, found" 16436 " new ilm on %s, group address %s\n", 16437 to_ill->ill_name, 16438 inet_ntop(AF_INET6, 16439 &ilm->ilm_v6addr, buf, 16440 sizeof (buf)))); 16441 new_ilm->ilm_refcnt += count; 16442 if (new_ilm->ilm_fmode != MODE_IS_EXCLUDE || 16443 !SLIST_IS_EMPTY(new_ilm->ilm_filter)) { 16444 new_ilm->ilm_is_new = B_TRUE; 16445 } 16446 } else { 16447 new_ilm = (ilm_t *)mi_zalloc(sizeof (ilm_t)); 16448 if (new_ilm == NULL) { 16449 ip0dbg(("ilm_move_v6: FAILOVER of IPv6" 16450 " multicast address %s : from %s to" 16451 " %s failed : ENOMEM \n", 16452 inet_ntop(AF_INET6, 16453 &ilm->ilm_v6addr, buf, 16454 sizeof (buf)), from_ill->ill_name, 16455 to_ill->ill_name)); 16456 ilmp = &ilm->ilm_next; 16457 continue; 16458 } 16459 *new_ilm = *ilm; 16460 new_ilm->ilm_filter = NULL; 16461 new_ilm->ilm_refcnt = count; 16462 new_ilm->ilm_timer = INFINITY; 16463 new_ilm->ilm_rtx.rtx_timer = INFINITY; 16464 new_ilm->ilm_is_new = B_TRUE; 16465 /* 16466 * If the to_ill has not joined this 16467 * group we need to tell the driver in 16468 * ill_send_multicast_reqs. 16469 */ 16470 if (ilm_lookup_ill_v6(to_ill, 16471 &new_ilm->ilm_v6addr, ALL_ZONES) == NULL) 16472 new_ilm->ilm_notify_driver = B_TRUE; 16473 16474 new_ilm->ilm_ill = to_ill; 16475 /* Add to the to_ill's list */ 16476 new_ilm->ilm_next = to_ill->ill_ilm; 16477 to_ill->ill_ilm = new_ilm; 16478 ASSERT(new_ilm->ilm_ipif == NULL); 16479 } 16480 if (ilm->ilm_refcnt == 0) { 16481 goto bottom; 16482 } else { 16483 new_ilm->ilm_fmode = MODE_IS_EXCLUDE; 16484 CLEAR_SLIST(new_ilm->ilm_filter); 16485 ilmp = &ilm->ilm_next; 16486 } 16487 continue; 16488 } else { 16489 /* 16490 * ifindex = 0 means, move everything pointing at 16491 * from_ill. We are doing this becuase ill has 16492 * either FAILED or became INACTIVE. 16493 * 16494 * As we would like to move things later back to 16495 * from_ill, we want to retain the identity of this 16496 * ilm. Thus, we don't blindly increment the reference 16497 * count on the ilms matching the address alone. We 16498 * need to match on the ilm_orig_index also. new_ilm 16499 * was obtained by matching ilm_orig_index also. 16500 */ 16501 if (new_ilm != NULL) { 16502 /* 16503 * This is possible only if a previous restore 16504 * was incomplete i.e restore to 16505 * ilm_orig_ifindex left some ilms because 16506 * of some failures. Thus when we are failing 16507 * again, we might find our old friends there. 16508 */ 16509 ip1dbg(("ilm_move_v6: FAILOVER, found new ilm" 16510 " on %s, group address %s\n", 16511 to_ill->ill_name, 16512 inet_ntop(AF_INET6, 16513 &ilm->ilm_v6addr, buf, 16514 sizeof (buf)))); 16515 new_ilm->ilm_refcnt += ilm->ilm_refcnt; 16516 if (new_ilm->ilm_fmode != MODE_IS_EXCLUDE || 16517 !SLIST_IS_EMPTY(new_ilm->ilm_filter)) { 16518 new_ilm->ilm_is_new = B_TRUE; 16519 } 16520 } else { 16521 if (from_ill->ill_ilm_walker_cnt != 0) { 16522 new_ilm = (ilm_t *) 16523 mi_zalloc(sizeof (ilm_t)); 16524 if (new_ilm == NULL) { 16525 ip0dbg(("ilm_move_v6: " 16526 "FAILOVER of IPv6" 16527 " multicast address %s : " 16528 "from %s to" 16529 " %s failed : ENOMEM \n", 16530 inet_ntop(AF_INET6, 16531 &ilm->ilm_v6addr, buf, 16532 sizeof (buf)), 16533 from_ill->ill_name, 16534 to_ill->ill_name)); 16535 16536 ilmp = &ilm->ilm_next; 16537 continue; 16538 } 16539 *new_ilm = *ilm; 16540 new_ilm->ilm_filter = NULL; 16541 } else { 16542 *ilmp = ilm->ilm_next; 16543 new_ilm = ilm; 16544 } 16545 /* 16546 * If the to_ill has not joined this 16547 * group we need to tell the driver in 16548 * ill_send_multicast_reqs. 16549 */ 16550 if (ilm_lookup_ill_v6(to_ill, 16551 &new_ilm->ilm_v6addr, ALL_ZONES) == NULL) 16552 new_ilm->ilm_notify_driver = B_TRUE; 16553 16554 /* Add to the to_ill's list */ 16555 new_ilm->ilm_next = to_ill->ill_ilm; 16556 to_ill->ill_ilm = new_ilm; 16557 ASSERT(ilm->ilm_ipif == NULL); 16558 new_ilm->ilm_ill = to_ill; 16559 new_ilm->ilm_is_new = B_TRUE; 16560 } 16561 16562 } 16563 16564 bottom: 16565 /* 16566 * Revert multicast filter state to (EXCLUDE, NULL). 16567 * new_ilm->ilm_is_new should already be set if needed. 16568 */ 16569 new_ilm->ilm_fmode = MODE_IS_EXCLUDE; 16570 CLEAR_SLIST(new_ilm->ilm_filter); 16571 /* 16572 * We allocated/got a new ilm, free the old one. 16573 */ 16574 if (new_ilm != ilm) { 16575 if (from_ill->ill_ilm_walker_cnt == 0) { 16576 *ilmp = ilm->ilm_next; 16577 ilm->ilm_next = NULL; 16578 FREE_SLIST(ilm->ilm_filter); 16579 FREE_SLIST(ilm->ilm_pendsrcs); 16580 FREE_SLIST(ilm->ilm_rtx.rtx_allow); 16581 FREE_SLIST(ilm->ilm_rtx.rtx_block); 16582 mi_free((char *)ilm); 16583 } else { 16584 ilm->ilm_flags |= ILM_DELETED; 16585 from_ill->ill_ilm_cleanup_reqd = 1; 16586 ilmp = &ilm->ilm_next; 16587 } 16588 } 16589 } 16590 } 16591 16592 /* 16593 * Move all the multicast memberships to to_ill. Called when 16594 * an ipif moves from "from_ill" to "to_ill". This function is slightly 16595 * different from IPv6 counterpart as multicast memberships are associated 16596 * with ills in IPv6. This function is called after every ipif is moved 16597 * unlike IPv6, where it is moved only once. 16598 */ 16599 static void 16600 ilm_move_v4(ill_t *from_ill, ill_t *to_ill, ipif_t *ipif) 16601 { 16602 ilm_t *ilm; 16603 ilm_t *ilm_next; 16604 ilm_t *new_ilm; 16605 ilm_t **ilmp; 16606 16607 ASSERT(MUTEX_HELD(&to_ill->ill_lock)); 16608 ASSERT(MUTEX_HELD(&from_ill->ill_lock)); 16609 ASSERT(RW_WRITE_HELD(&ill_g_lock)); 16610 16611 ilmp = &from_ill->ill_ilm; 16612 for (ilm = from_ill->ill_ilm; ilm != NULL; ilm = ilm_next) { 16613 ilm_next = ilm->ilm_next; 16614 16615 if (ilm->ilm_flags & ILM_DELETED) { 16616 ilmp = &ilm->ilm_next; 16617 continue; 16618 } 16619 16620 ASSERT(ilm->ilm_ipif != NULL); 16621 16622 if (ilm->ilm_ipif != ipif) { 16623 ilmp = &ilm->ilm_next; 16624 continue; 16625 } 16626 16627 if (V4_PART_OF_V6(ilm->ilm_v6addr) == 16628 htonl(INADDR_ALLHOSTS_GROUP)) { 16629 /* 16630 * We joined this in ipif_multicast_up 16631 * and we never did an ipif_multicast_down 16632 * for IPv4. If nobody else from the userland 16633 * has reference, we free the ilm, and later 16634 * when this ipif comes up on the new ill, 16635 * we will join this again. 16636 */ 16637 if (--ilm->ilm_refcnt == 0) 16638 goto delete_ilm; 16639 16640 new_ilm = ilm_lookup_ipif(ipif, 16641 V4_PART_OF_V6(ilm->ilm_v6addr)); 16642 if (new_ilm != NULL) { 16643 new_ilm->ilm_refcnt += ilm->ilm_refcnt; 16644 /* 16645 * We still need to deal with the from_ill. 16646 */ 16647 new_ilm->ilm_is_new = B_TRUE; 16648 new_ilm->ilm_fmode = MODE_IS_EXCLUDE; 16649 CLEAR_SLIST(new_ilm->ilm_filter); 16650 goto delete_ilm; 16651 } 16652 /* 16653 * If we could not find one e.g. ipif is 16654 * still down on to_ill, we add this ilm 16655 * on ill_new to preserve the reference 16656 * count. 16657 */ 16658 } 16659 /* 16660 * When ipifs move, ilms always move with it 16661 * to the NEW ill. Thus we should never be 16662 * able to find ilm till we really move it here. 16663 */ 16664 ASSERT(ilm_lookup_ipif(ipif, 16665 V4_PART_OF_V6(ilm->ilm_v6addr)) == NULL); 16666 16667 if (from_ill->ill_ilm_walker_cnt != 0) { 16668 new_ilm = (ilm_t *)mi_zalloc(sizeof (ilm_t)); 16669 if (new_ilm == NULL) { 16670 char buf[INET6_ADDRSTRLEN]; 16671 ip0dbg(("ilm_move_v4: FAILBACK of IPv4" 16672 " multicast address %s : " 16673 "from %s to" 16674 " %s failed : ENOMEM \n", 16675 inet_ntop(AF_INET, 16676 &ilm->ilm_v6addr, buf, 16677 sizeof (buf)), 16678 from_ill->ill_name, 16679 to_ill->ill_name)); 16680 16681 ilmp = &ilm->ilm_next; 16682 continue; 16683 } 16684 *new_ilm = *ilm; 16685 /* We don't want new_ilm linked to ilm's filter list */ 16686 new_ilm->ilm_filter = NULL; 16687 } else { 16688 /* Remove from the list */ 16689 *ilmp = ilm->ilm_next; 16690 new_ilm = ilm; 16691 } 16692 16693 /* 16694 * If we have never joined this group on the to_ill 16695 * make sure we tell the driver. 16696 */ 16697 if (ilm_lookup_ill_v6(to_ill, &new_ilm->ilm_v6addr, 16698 ALL_ZONES) == NULL) 16699 new_ilm->ilm_notify_driver = B_TRUE; 16700 16701 /* Add to the to_ill's list */ 16702 new_ilm->ilm_next = to_ill->ill_ilm; 16703 to_ill->ill_ilm = new_ilm; 16704 new_ilm->ilm_is_new = B_TRUE; 16705 16706 /* 16707 * Revert multicast filter state to (EXCLUDE, NULL) 16708 */ 16709 new_ilm->ilm_fmode = MODE_IS_EXCLUDE; 16710 CLEAR_SLIST(new_ilm->ilm_filter); 16711 16712 /* 16713 * Delete only if we have allocated a new ilm. 16714 */ 16715 if (new_ilm != ilm) { 16716 delete_ilm: 16717 if (from_ill->ill_ilm_walker_cnt == 0) { 16718 /* Remove from the list */ 16719 *ilmp = ilm->ilm_next; 16720 ilm->ilm_next = NULL; 16721 FREE_SLIST(ilm->ilm_filter); 16722 FREE_SLIST(ilm->ilm_pendsrcs); 16723 FREE_SLIST(ilm->ilm_rtx.rtx_allow); 16724 FREE_SLIST(ilm->ilm_rtx.rtx_block); 16725 mi_free((char *)ilm); 16726 } else { 16727 ilm->ilm_flags |= ILM_DELETED; 16728 from_ill->ill_ilm_cleanup_reqd = 1; 16729 ilmp = &ilm->ilm_next; 16730 } 16731 } 16732 } 16733 } 16734 16735 static uint_t 16736 ipif_get_id(ill_t *ill, uint_t id) 16737 { 16738 uint_t unit; 16739 ipif_t *tipif; 16740 boolean_t found = B_FALSE; 16741 16742 /* 16743 * During failback, we want to go back to the same id 16744 * instead of the smallest id so that the original 16745 * configuration is maintained. id is non-zero in that 16746 * case. 16747 */ 16748 if (id != 0) { 16749 /* 16750 * While failing back, if we still have an ipif with 16751 * MAX_ADDRS_PER_IF, it means this will be replaced 16752 * as soon as we return from this function. It was 16753 * to set to MAX_ADDRS_PER_IF by the caller so that 16754 * we can choose the smallest id. Thus we return zero 16755 * in that case ignoring the hint. 16756 */ 16757 if (ill->ill_ipif->ipif_id == MAX_ADDRS_PER_IF) 16758 return (0); 16759 for (tipif = ill->ill_ipif; tipif != NULL; 16760 tipif = tipif->ipif_next) { 16761 if (tipif->ipif_id == id) { 16762 found = B_TRUE; 16763 break; 16764 } 16765 } 16766 /* 16767 * If somebody already plumbed another logical 16768 * with the same id, we won't be able to find it. 16769 */ 16770 if (!found) 16771 return (id); 16772 } 16773 for (unit = 0; unit <= ip_addrs_per_if; unit++) { 16774 found = B_FALSE; 16775 for (tipif = ill->ill_ipif; tipif != NULL; 16776 tipif = tipif->ipif_next) { 16777 if (tipif->ipif_id == unit) { 16778 found = B_TRUE; 16779 break; 16780 } 16781 } 16782 if (!found) 16783 break; 16784 } 16785 return (unit); 16786 } 16787 16788 /* ARGSUSED */ 16789 static int 16790 ipif_move(ipif_t *ipif, ill_t *to_ill, queue_t *q, mblk_t *mp, 16791 ipif_t **rep_ipif_ptr) 16792 { 16793 ill_t *from_ill; 16794 ipif_t *rep_ipif; 16795 ipif_t **ipifp; 16796 uint_t unit; 16797 int err = 0; 16798 ipif_t *to_ipif; 16799 struct iocblk *iocp; 16800 boolean_t failback_cmd; 16801 boolean_t remove_ipif; 16802 int rc; 16803 16804 ASSERT(IAM_WRITER_ILL(to_ill)); 16805 ASSERT(IAM_WRITER_IPIF(ipif)); 16806 16807 iocp = (struct iocblk *)mp->b_rptr; 16808 failback_cmd = (iocp->ioc_cmd == SIOCLIFFAILBACK); 16809 remove_ipif = B_FALSE; 16810 16811 from_ill = ipif->ipif_ill; 16812 16813 ASSERT(MUTEX_HELD(&to_ill->ill_lock)); 16814 ASSERT(MUTEX_HELD(&from_ill->ill_lock)); 16815 ASSERT(RW_WRITE_HELD(&ill_g_lock)); 16816 16817 /* 16818 * Don't move LINK LOCAL addresses as they are tied to 16819 * physical interface. 16820 */ 16821 if (from_ill->ill_isv6 && 16822 IN6_IS_ADDR_LINKLOCAL(&ipif->ipif_v6lcl_addr)) { 16823 ipif->ipif_was_up = B_FALSE; 16824 IPIF_UNMARK_MOVING(ipif); 16825 return (0); 16826 } 16827 16828 /* 16829 * We set the ipif_id to maximum so that the search for 16830 * ipif_id will pick the lowest number i.e 0 in the 16831 * following 2 cases : 16832 * 16833 * 1) We have a replacement ipif at the head of to_ill. 16834 * We can't remove it yet as we can exceed ip_addrs_per_if 16835 * on to_ill and hence the MOVE might fail. We want to 16836 * remove it only if we could move the ipif. Thus, by 16837 * setting it to the MAX value, we make the search in 16838 * ipif_get_id return the zeroth id. 16839 * 16840 * 2) When DR pulls out the NIC and re-plumbs the interface, 16841 * we might just have a zero address plumbed on the ipif 16842 * with zero id in the case of IPv4. We remove that while 16843 * doing the failback. We want to remove it only if we 16844 * could move the ipif. Thus, by setting it to the MAX 16845 * value, we make the search in ipif_get_id return the 16846 * zeroth id. 16847 * 16848 * Both (1) and (2) are done only when when we are moving 16849 * an ipif (either due to failover/failback) which originally 16850 * belonged to this interface i.e the ipif_orig_ifindex is 16851 * the same as to_ill's ifindex. This is needed so that 16852 * FAILOVER from A -> B ( A failed) followed by FAILOVER 16853 * from B -> A (B is being removed from the group) and 16854 * FAILBACK from A -> B restores the original configuration. 16855 * Without the check for orig_ifindex, the second FAILOVER 16856 * could make the ipif belonging to B replace the A's zeroth 16857 * ipif and the subsequent failback re-creating the replacement 16858 * ipif again. 16859 * 16860 * NOTE : We created the replacement ipif when we did a 16861 * FAILOVER (See below). We could check for FAILBACK and 16862 * then look for replacement ipif to be removed. But we don't 16863 * want to do that because we wan't to allow the possibility 16864 * of a FAILOVER from A -> B (which creates the replacement ipif), 16865 * followed by a *FAILOVER* from B -> A instead of a FAILBACK 16866 * from B -> A. 16867 */ 16868 to_ipif = to_ill->ill_ipif; 16869 if ((to_ill->ill_phyint->phyint_ifindex == 16870 ipif->ipif_orig_ifindex) && 16871 IPIF_REPL_CHECK(to_ipif, failback_cmd)) { 16872 ASSERT(to_ipif->ipif_id == 0); 16873 remove_ipif = B_TRUE; 16874 to_ipif->ipif_id = MAX_ADDRS_PER_IF; 16875 } 16876 /* 16877 * Find the lowest logical unit number on the to_ill. 16878 * If we are failing back, try to get the original id 16879 * rather than the lowest one so that the original 16880 * configuration is maintained. 16881 * 16882 * XXX need a better scheme for this. 16883 */ 16884 if (failback_cmd) { 16885 unit = ipif_get_id(to_ill, ipif->ipif_orig_ipifid); 16886 } else { 16887 unit = ipif_get_id(to_ill, 0); 16888 } 16889 16890 /* Reset back to zero in case we fail below */ 16891 if (to_ipif->ipif_id == MAX_ADDRS_PER_IF) 16892 to_ipif->ipif_id = 0; 16893 16894 if (unit == ip_addrs_per_if) { 16895 ipif->ipif_was_up = B_FALSE; 16896 IPIF_UNMARK_MOVING(ipif); 16897 return (EINVAL); 16898 } 16899 16900 /* 16901 * ipif is ready to move from "from_ill" to "to_ill". 16902 * 16903 * 1) If we are moving ipif with id zero, create a 16904 * replacement ipif for this ipif on from_ill. If this fails 16905 * fail the MOVE operation. 16906 * 16907 * 2) Remove the replacement ipif on to_ill if any. 16908 * We could remove the replacement ipif when we are moving 16909 * the ipif with id zero. But what if somebody already 16910 * unplumbed it ? Thus we always remove it if it is present. 16911 * We want to do it only if we are sure we are going to 16912 * move the ipif to to_ill which is why there are no 16913 * returns due to error till ipif is linked to to_ill. 16914 * Note that the first ipif that we failback will always 16915 * be zero if it is present. 16916 */ 16917 if (ipif->ipif_id == 0) { 16918 ipaddr_t inaddr_any = INADDR_ANY; 16919 16920 rep_ipif = (ipif_t *)mi_alloc(sizeof (ipif_t), BPRI_MED); 16921 if (rep_ipif == NULL) { 16922 ipif->ipif_was_up = B_FALSE; 16923 IPIF_UNMARK_MOVING(ipif); 16924 return (ENOMEM); 16925 } 16926 *rep_ipif = ipif_zero; 16927 /* 16928 * Before we put the ipif on the list, store the addresses 16929 * as mapped addresses as some of the ioctls e.g SIOCGIFADDR 16930 * assumes so. This logic is not any different from what 16931 * ipif_allocate does. 16932 */ 16933 IN6_IPADDR_TO_V4MAPPED(inaddr_any, 16934 &rep_ipif->ipif_v6lcl_addr); 16935 IN6_IPADDR_TO_V4MAPPED(inaddr_any, 16936 &rep_ipif->ipif_v6src_addr); 16937 IN6_IPADDR_TO_V4MAPPED(inaddr_any, 16938 &rep_ipif->ipif_v6subnet); 16939 IN6_IPADDR_TO_V4MAPPED(inaddr_any, 16940 &rep_ipif->ipif_v6net_mask); 16941 IN6_IPADDR_TO_V4MAPPED(inaddr_any, 16942 &rep_ipif->ipif_v6brd_addr); 16943 IN6_IPADDR_TO_V4MAPPED(inaddr_any, 16944 &rep_ipif->ipif_v6pp_dst_addr); 16945 /* 16946 * We mark IPIF_NOFAILOVER so that this can never 16947 * move. 16948 */ 16949 rep_ipif->ipif_flags = ipif->ipif_flags | IPIF_NOFAILOVER; 16950 rep_ipif->ipif_flags &= ~IPIF_UP & ~IPIF_DUPLICATE; 16951 rep_ipif->ipif_replace_zero = B_TRUE; 16952 mutex_init(&rep_ipif->ipif_saved_ire_lock, NULL, 16953 MUTEX_DEFAULT, NULL); 16954 rep_ipif->ipif_id = 0; 16955 rep_ipif->ipif_ire_type = ipif->ipif_ire_type; 16956 rep_ipif->ipif_ill = from_ill; 16957 rep_ipif->ipif_orig_ifindex = 16958 from_ill->ill_phyint->phyint_ifindex; 16959 /* Insert at head */ 16960 rep_ipif->ipif_next = from_ill->ill_ipif; 16961 from_ill->ill_ipif = rep_ipif; 16962 /* 16963 * We don't really care to let apps know about 16964 * this interface. 16965 */ 16966 } 16967 16968 if (remove_ipif) { 16969 /* 16970 * We set to a max value above for this case to get 16971 * id zero. ASSERT that we did get one. 16972 */ 16973 ASSERT((to_ipif->ipif_id == 0) && (unit == 0)); 16974 rep_ipif = to_ipif; 16975 to_ill->ill_ipif = rep_ipif->ipif_next; 16976 rep_ipif->ipif_next = NULL; 16977 /* 16978 * If some apps scanned and find this interface, 16979 * it is time to let them know, so that they can 16980 * delete it. 16981 */ 16982 16983 *rep_ipif_ptr = rep_ipif; 16984 } 16985 16986 /* Get it out of the ILL interface list. */ 16987 ipifp = &ipif->ipif_ill->ill_ipif; 16988 for (; *ipifp != NULL; ipifp = &ipifp[0]->ipif_next) { 16989 if (*ipifp == ipif) { 16990 *ipifp = ipif->ipif_next; 16991 break; 16992 } 16993 } 16994 16995 /* Assign the new ill */ 16996 ipif->ipif_ill = to_ill; 16997 ipif->ipif_id = unit; 16998 /* id has already been checked */ 16999 rc = ipif_insert(ipif, B_FALSE, B_FALSE); 17000 ASSERT(rc == 0); 17001 /* Let SCTP update its list */ 17002 sctp_move_ipif(ipif, from_ill, to_ill); 17003 /* 17004 * Handle the failover and failback of ipif_t between 17005 * ill_t that have differing maximum mtu values. 17006 */ 17007 if (ipif->ipif_mtu > to_ill->ill_max_mtu) { 17008 if (ipif->ipif_saved_mtu == 0) { 17009 /* 17010 * As this ipif_t is moving to an ill_t 17011 * that has a lower ill_max_mtu, its 17012 * ipif_mtu needs to be saved so it can 17013 * be restored during failback or during 17014 * failover to an ill_t which has a 17015 * higher ill_max_mtu. 17016 */ 17017 ipif->ipif_saved_mtu = ipif->ipif_mtu; 17018 ipif->ipif_mtu = to_ill->ill_max_mtu; 17019 } else { 17020 /* 17021 * The ipif_t is, once again, moving to 17022 * an ill_t that has a lower maximum mtu 17023 * value. 17024 */ 17025 ipif->ipif_mtu = to_ill->ill_max_mtu; 17026 } 17027 } else if (ipif->ipif_mtu < to_ill->ill_max_mtu && 17028 ipif->ipif_saved_mtu != 0) { 17029 /* 17030 * The mtu of this ipif_t had to be reduced 17031 * during an earlier failover; this is an 17032 * opportunity for it to be increased (either as 17033 * part of another failover or a failback). 17034 */ 17035 if (ipif->ipif_saved_mtu <= to_ill->ill_max_mtu) { 17036 ipif->ipif_mtu = ipif->ipif_saved_mtu; 17037 ipif->ipif_saved_mtu = 0; 17038 } else { 17039 ipif->ipif_mtu = to_ill->ill_max_mtu; 17040 } 17041 } 17042 17043 /* 17044 * We preserve all the other fields of the ipif including 17045 * ipif_saved_ire_mp. The routes that are saved here will 17046 * be recreated on the new interface and back on the old 17047 * interface when we move back. 17048 */ 17049 ASSERT(ipif->ipif_arp_del_mp == NULL); 17050 17051 return (err); 17052 } 17053 17054 static int 17055 ipif_move_all(ill_t *from_ill, ill_t *to_ill, queue_t *q, mblk_t *mp, 17056 int ifindex, ipif_t **rep_ipif_ptr) 17057 { 17058 ipif_t *mipif; 17059 ipif_t *ipif_next; 17060 int err; 17061 17062 /* 17063 * We don't really try to MOVE back things if some of the 17064 * operations fail. The daemon will take care of moving again 17065 * later on. 17066 */ 17067 for (mipif = from_ill->ill_ipif; mipif != NULL; mipif = ipif_next) { 17068 ipif_next = mipif->ipif_next; 17069 if (!(mipif->ipif_flags & IPIF_NOFAILOVER) && 17070 (ifindex == 0 || ifindex == mipif->ipif_orig_ifindex)) { 17071 17072 err = ipif_move(mipif, to_ill, q, mp, rep_ipif_ptr); 17073 17074 /* 17075 * When the MOVE fails, it is the job of the 17076 * application to take care of this properly 17077 * i.e try again if it is ENOMEM. 17078 */ 17079 if (mipif->ipif_ill != from_ill) { 17080 /* 17081 * ipif has moved. 17082 * 17083 * Move the multicast memberships associated 17084 * with this ipif to the new ill. For IPv6, we 17085 * do it once after all the ipifs are moved 17086 * (in ill_move) as they are not associated 17087 * with ipifs. 17088 * 17089 * We need to move the ilms as the ipif has 17090 * already been moved to a new ill even 17091 * in the case of errors. Neither 17092 * ilm_free(ipif) will find the ilm 17093 * when somebody unplumbs this ipif nor 17094 * ilm_delete(ilm) will be able to find the 17095 * ilm, if we don't move now. 17096 */ 17097 if (!from_ill->ill_isv6) 17098 ilm_move_v4(from_ill, to_ill, mipif); 17099 } 17100 17101 if (err != 0) 17102 return (err); 17103 } 17104 } 17105 return (0); 17106 } 17107 17108 static int 17109 ill_move(ill_t *from_ill, ill_t *to_ill, queue_t *q, mblk_t *mp) 17110 { 17111 int ifindex; 17112 int err; 17113 struct iocblk *iocp; 17114 ipif_t *ipif; 17115 ipif_t *rep_ipif_ptr = NULL; 17116 ipif_t *from_ipif = NULL; 17117 boolean_t check_rep_if = B_FALSE; 17118 17119 iocp = (struct iocblk *)mp->b_rptr; 17120 if (iocp->ioc_cmd == SIOCLIFFAILOVER) { 17121 /* 17122 * Move everything pointing at from_ill to to_ill. 17123 * We acheive this by passing in 0 as ifindex. 17124 */ 17125 ifindex = 0; 17126 } else { 17127 /* 17128 * Move everything pointing at from_ill whose original 17129 * ifindex of connp, ipif, ilm points at to_ill->ill_index. 17130 * We acheive this by passing in ifindex rather than 0. 17131 * Multicast vifs, ilgs move implicitly because ipifs move. 17132 */ 17133 ASSERT(iocp->ioc_cmd == SIOCLIFFAILBACK); 17134 ifindex = to_ill->ill_phyint->phyint_ifindex; 17135 } 17136 17137 /* 17138 * Determine if there is at least one ipif that would move from 17139 * 'from_ill' to 'to_ill'. If so, it is possible that the replacement 17140 * ipif (if it exists) on the to_ill would be consumed as a result of 17141 * the move, in which case we need to quiesce the replacement ipif also. 17142 */ 17143 for (from_ipif = from_ill->ill_ipif; from_ipif != NULL; 17144 from_ipif = from_ipif->ipif_next) { 17145 if (((ifindex == 0) || 17146 (ifindex == from_ipif->ipif_orig_ifindex)) && 17147 !(from_ipif->ipif_flags & IPIF_NOFAILOVER)) { 17148 check_rep_if = B_TRUE; 17149 break; 17150 } 17151 } 17152 17153 17154 ill_down_ipifs(from_ill, mp, ifindex, B_TRUE); 17155 17156 GRAB_ILL_LOCKS(from_ill, to_ill); 17157 if ((ipif = ill_quiescent_to_move(from_ill)) != NULL) { 17158 (void) ipsq_pending_mp_add(NULL, ipif, q, 17159 mp, ILL_MOVE_OK); 17160 RELEASE_ILL_LOCKS(from_ill, to_ill); 17161 return (EINPROGRESS); 17162 } 17163 17164 /* Check if the replacement ipif is quiescent to delete */ 17165 if (check_rep_if && IPIF_REPL_CHECK(to_ill->ill_ipif, 17166 (iocp->ioc_cmd == SIOCLIFFAILBACK))) { 17167 to_ill->ill_ipif->ipif_state_flags |= 17168 IPIF_MOVING | IPIF_CHANGING; 17169 if ((ipif = ill_quiescent_to_move(to_ill)) != NULL) { 17170 (void) ipsq_pending_mp_add(NULL, ipif, q, 17171 mp, ILL_MOVE_OK); 17172 RELEASE_ILL_LOCKS(from_ill, to_ill); 17173 return (EINPROGRESS); 17174 } 17175 } 17176 RELEASE_ILL_LOCKS(from_ill, to_ill); 17177 17178 ASSERT(!MUTEX_HELD(&to_ill->ill_lock)); 17179 rw_enter(&ill_g_lock, RW_WRITER); 17180 GRAB_ILL_LOCKS(from_ill, to_ill); 17181 err = ipif_move_all(from_ill, to_ill, q, mp, ifindex, &rep_ipif_ptr); 17182 17183 /* ilm_move is done inside ipif_move for IPv4 */ 17184 if (err == 0 && from_ill->ill_isv6) 17185 ilm_move_v6(from_ill, to_ill, ifindex); 17186 17187 RELEASE_ILL_LOCKS(from_ill, to_ill); 17188 rw_exit(&ill_g_lock); 17189 17190 /* 17191 * send rts messages and multicast messages. 17192 */ 17193 if (rep_ipif_ptr != NULL) { 17194 ip_rts_ifmsg(rep_ipif_ptr); 17195 ip_rts_newaddrmsg(RTM_DELETE, 0, rep_ipif_ptr); 17196 IPIF_TRACE_CLEANUP(rep_ipif_ptr); 17197 mi_free(rep_ipif_ptr); 17198 } 17199 17200 conn_move_ill(from_ill, to_ill, ifindex); 17201 17202 return (err); 17203 } 17204 17205 /* 17206 * Used to extract arguments for FAILOVER/FAILBACK ioctls. 17207 * Also checks for the validity of the arguments. 17208 * Note: We are already exclusive inside the from group. 17209 * It is upto the caller to release refcnt on the to_ill's. 17210 */ 17211 static int 17212 ip_extract_move_args(queue_t *q, mblk_t *mp, ill_t **ill_from_v4, 17213 ill_t **ill_from_v6, ill_t **ill_to_v4, ill_t **ill_to_v6) 17214 { 17215 int dst_index; 17216 ipif_t *ipif_v4, *ipif_v6; 17217 struct lifreq *lifr; 17218 mblk_t *mp1; 17219 boolean_t exists; 17220 sin_t *sin; 17221 int err = 0; 17222 17223 if ((mp1 = mp->b_cont) == NULL) 17224 return (EPROTO); 17225 17226 if ((mp1 = mp1->b_cont) == NULL) 17227 return (EPROTO); 17228 17229 lifr = (struct lifreq *)mp1->b_rptr; 17230 sin = (sin_t *)&lifr->lifr_addr; 17231 17232 /* 17233 * We operate on both IPv4 and IPv6. Thus, we don't allow IPv4/IPv6 17234 * specific operations. 17235 */ 17236 if (sin->sin_family != AF_UNSPEC) 17237 return (EINVAL); 17238 17239 /* 17240 * Get ipif with id 0. We are writer on the from ill. So we can pass 17241 * NULLs for the last 4 args and we know the lookup won't fail 17242 * with EINPROGRESS. 17243 */ 17244 ipif_v4 = ipif_lookup_on_name(lifr->lifr_name, 17245 mi_strlen(lifr->lifr_name), B_FALSE, &exists, B_FALSE, 17246 ALL_ZONES, NULL, NULL, NULL, NULL); 17247 ipif_v6 = ipif_lookup_on_name(lifr->lifr_name, 17248 mi_strlen(lifr->lifr_name), B_FALSE, &exists, B_TRUE, 17249 ALL_ZONES, NULL, NULL, NULL, NULL); 17250 17251 if (ipif_v4 == NULL && ipif_v6 == NULL) 17252 return (ENXIO); 17253 17254 if (ipif_v4 != NULL) { 17255 ASSERT(ipif_v4->ipif_refcnt != 0); 17256 if (ipif_v4->ipif_id != 0) { 17257 err = EINVAL; 17258 goto done; 17259 } 17260 17261 ASSERT(IAM_WRITER_IPIF(ipif_v4)); 17262 *ill_from_v4 = ipif_v4->ipif_ill; 17263 } 17264 17265 if (ipif_v6 != NULL) { 17266 ASSERT(ipif_v6->ipif_refcnt != 0); 17267 if (ipif_v6->ipif_id != 0) { 17268 err = EINVAL; 17269 goto done; 17270 } 17271 17272 ASSERT(IAM_WRITER_IPIF(ipif_v6)); 17273 *ill_from_v6 = ipif_v6->ipif_ill; 17274 } 17275 17276 err = 0; 17277 dst_index = lifr->lifr_movetoindex; 17278 *ill_to_v4 = ill_lookup_on_ifindex(dst_index, B_FALSE, 17279 q, mp, ip_process_ioctl, &err); 17280 if (err != 0) { 17281 /* 17282 * There could be only v6. 17283 */ 17284 if (err != ENXIO) 17285 goto done; 17286 err = 0; 17287 } 17288 17289 *ill_to_v6 = ill_lookup_on_ifindex(dst_index, B_TRUE, 17290 q, mp, ip_process_ioctl, &err); 17291 if (err != 0) { 17292 if (err != ENXIO) 17293 goto done; 17294 if (*ill_to_v4 == NULL) { 17295 err = ENXIO; 17296 goto done; 17297 } 17298 err = 0; 17299 } 17300 17301 /* 17302 * If we have something to MOVE i.e "from" not NULL, 17303 * "to" should be non-NULL. 17304 */ 17305 if ((*ill_from_v4 != NULL && *ill_to_v4 == NULL) || 17306 (*ill_from_v6 != NULL && *ill_to_v6 == NULL)) { 17307 err = EINVAL; 17308 } 17309 17310 done: 17311 if (ipif_v4 != NULL) 17312 ipif_refrele(ipif_v4); 17313 if (ipif_v6 != NULL) 17314 ipif_refrele(ipif_v6); 17315 return (err); 17316 } 17317 17318 /* 17319 * FAILOVER and FAILBACK are modelled as MOVE operations. 17320 * 17321 * We don't check whether the MOVE is within the same group or 17322 * not, because this ioctl can be used as a generic mechanism 17323 * to failover from interface A to B, though things will function 17324 * only if they are really part of the same group. Moreover, 17325 * all ipifs may be down and hence temporarily out of the group. 17326 * 17327 * ipif's that need to be moved are first brought down; V4 ipifs are brought 17328 * down first and then V6. For each we wait for the ipif's to become quiescent. 17329 * Bringing down the ipifs ensures that all ires pointing to these ipifs's 17330 * have been deleted and there are no active references. Once quiescent the 17331 * ipif's are moved and brought up on the new ill. 17332 * 17333 * Normally the source ill and destination ill belong to the same IPMP group 17334 * and hence the same ipsq_t. In the event they don't belong to the same 17335 * same group the two ipsq's are first merged into one ipsq - that of the 17336 * to_ill. The multicast memberships on the source and destination ill cannot 17337 * change during the move operation since multicast joins/leaves also have to 17338 * execute on the same ipsq and are hence serialized. 17339 */ 17340 /* ARGSUSED */ 17341 int 17342 ip_sioctl_move(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 17343 ip_ioctl_cmd_t *ipip, void *ifreq) 17344 { 17345 ill_t *ill_to_v4 = NULL; 17346 ill_t *ill_to_v6 = NULL; 17347 ill_t *ill_from_v4 = NULL; 17348 ill_t *ill_from_v6 = NULL; 17349 int err = 0; 17350 17351 /* 17352 * setup from and to ill's, we can get EINPROGRESS only for 17353 * to_ill's. 17354 */ 17355 err = ip_extract_move_args(q, mp, &ill_from_v4, &ill_from_v6, 17356 &ill_to_v4, &ill_to_v6); 17357 17358 if (err != 0) { 17359 ip0dbg(("ip_sioctl_move: extract args failed\n")); 17360 goto done; 17361 } 17362 17363 /* 17364 * nothing to do. 17365 */ 17366 if ((ill_from_v4 != NULL) && (ill_from_v4 == ill_to_v4)) { 17367 goto done; 17368 } 17369 17370 /* 17371 * nothing to do. 17372 */ 17373 if ((ill_from_v6 != NULL) && (ill_from_v6 == ill_to_v6)) { 17374 goto done; 17375 } 17376 17377 /* 17378 * Mark the ill as changing. 17379 * ILL_CHANGING flag is cleared when the ipif's are brought up 17380 * in ill_up_ipifs in case of error they are cleared below. 17381 */ 17382 17383 GRAB_ILL_LOCKS(ill_from_v4, ill_from_v6); 17384 if (ill_from_v4 != NULL) 17385 ill_from_v4->ill_state_flags |= ILL_CHANGING; 17386 if (ill_from_v6 != NULL) 17387 ill_from_v6->ill_state_flags |= ILL_CHANGING; 17388 RELEASE_ILL_LOCKS(ill_from_v4, ill_from_v6); 17389 17390 /* 17391 * Make sure that both src and dst are 17392 * in the same syncq group. If not make it happen. 17393 * We are not holding any locks because we are the writer 17394 * on the from_ipsq and we will hold locks in ill_merge_groups 17395 * to protect to_ipsq against changing. 17396 */ 17397 if (ill_from_v4 != NULL) { 17398 if (ill_from_v4->ill_phyint->phyint_ipsq != 17399 ill_to_v4->ill_phyint->phyint_ipsq) { 17400 err = ill_merge_groups(ill_from_v4, ill_to_v4, 17401 NULL, mp, q); 17402 goto err_ret; 17403 17404 } 17405 ASSERT(!MUTEX_HELD(&ill_to_v4->ill_lock)); 17406 } else { 17407 17408 if (ill_from_v6->ill_phyint->phyint_ipsq != 17409 ill_to_v6->ill_phyint->phyint_ipsq) { 17410 err = ill_merge_groups(ill_from_v6, ill_to_v6, 17411 NULL, mp, q); 17412 goto err_ret; 17413 17414 } 17415 ASSERT(!MUTEX_HELD(&ill_to_v6->ill_lock)); 17416 } 17417 17418 /* 17419 * Now that the ipsq's have been merged and we are the writer 17420 * lets mark to_ill as changing as well. 17421 */ 17422 17423 GRAB_ILL_LOCKS(ill_to_v4, ill_to_v6); 17424 if (ill_to_v4 != NULL) 17425 ill_to_v4->ill_state_flags |= ILL_CHANGING; 17426 if (ill_to_v6 != NULL) 17427 ill_to_v6->ill_state_flags |= ILL_CHANGING; 17428 RELEASE_ILL_LOCKS(ill_to_v4, ill_to_v6); 17429 17430 /* 17431 * Its ok for us to proceed with the move even if 17432 * ill_pending_mp is non null on one of the from ill's as the reply 17433 * should not be looking at the ipif, it should only care about the 17434 * ill itself. 17435 */ 17436 17437 /* 17438 * lets move ipv4 first. 17439 */ 17440 if (ill_from_v4 != NULL) { 17441 ASSERT(IAM_WRITER_ILL(ill_to_v4)); 17442 ill_from_v4->ill_move_in_progress = B_TRUE; 17443 ill_to_v4->ill_move_in_progress = B_TRUE; 17444 ill_to_v4->ill_move_peer = ill_from_v4; 17445 ill_from_v4->ill_move_peer = ill_to_v4; 17446 err = ill_move(ill_from_v4, ill_to_v4, q, mp); 17447 } 17448 17449 /* 17450 * Now lets move ipv6. 17451 */ 17452 if (err == 0 && ill_from_v6 != NULL) { 17453 ASSERT(IAM_WRITER_ILL(ill_to_v6)); 17454 ill_from_v6->ill_move_in_progress = B_TRUE; 17455 ill_to_v6->ill_move_in_progress = B_TRUE; 17456 ill_to_v6->ill_move_peer = ill_from_v6; 17457 ill_from_v6->ill_move_peer = ill_to_v6; 17458 err = ill_move(ill_from_v6, ill_to_v6, q, mp); 17459 } 17460 17461 err_ret: 17462 /* 17463 * EINPROGRESS means we are waiting for the ipif's that need to be 17464 * moved to become quiescent. 17465 */ 17466 if (err == EINPROGRESS) { 17467 goto done; 17468 } 17469 17470 /* 17471 * if err is set ill_up_ipifs will not be called 17472 * lets clear the flags. 17473 */ 17474 17475 GRAB_ILL_LOCKS(ill_to_v4, ill_to_v6); 17476 GRAB_ILL_LOCKS(ill_from_v4, ill_from_v6); 17477 /* 17478 * Some of the clearing may be redundant. But it is simple 17479 * not making any extra checks. 17480 */ 17481 if (ill_from_v6 != NULL) { 17482 ill_from_v6->ill_move_in_progress = B_FALSE; 17483 ill_from_v6->ill_move_peer = NULL; 17484 ill_from_v6->ill_state_flags &= ~ILL_CHANGING; 17485 } 17486 if (ill_from_v4 != NULL) { 17487 ill_from_v4->ill_move_in_progress = B_FALSE; 17488 ill_from_v4->ill_move_peer = NULL; 17489 ill_from_v4->ill_state_flags &= ~ILL_CHANGING; 17490 } 17491 if (ill_to_v6 != NULL) { 17492 ill_to_v6->ill_move_in_progress = B_FALSE; 17493 ill_to_v6->ill_move_peer = NULL; 17494 ill_to_v6->ill_state_flags &= ~ILL_CHANGING; 17495 } 17496 if (ill_to_v4 != NULL) { 17497 ill_to_v4->ill_move_in_progress = B_FALSE; 17498 ill_to_v4->ill_move_peer = NULL; 17499 ill_to_v4->ill_state_flags &= ~ILL_CHANGING; 17500 } 17501 17502 /* 17503 * Check for setting INACTIVE, if STANDBY is set and FAILED is not set. 17504 * Do this always to maintain proper state i.e even in case of errors. 17505 * As phyint_inactive looks at both v4 and v6 interfaces, 17506 * we need not call on both v4 and v6 interfaces. 17507 */ 17508 if (ill_from_v4 != NULL) { 17509 if ((ill_from_v4->ill_phyint->phyint_flags & 17510 (PHYI_STANDBY | PHYI_FAILED)) == PHYI_STANDBY) { 17511 phyint_inactive(ill_from_v4->ill_phyint); 17512 } 17513 } else if (ill_from_v6 != NULL) { 17514 if ((ill_from_v6->ill_phyint->phyint_flags & 17515 (PHYI_STANDBY | PHYI_FAILED)) == PHYI_STANDBY) { 17516 phyint_inactive(ill_from_v6->ill_phyint); 17517 } 17518 } 17519 17520 if (ill_to_v4 != NULL) { 17521 if (ill_to_v4->ill_phyint->phyint_flags & PHYI_INACTIVE) { 17522 ill_to_v4->ill_phyint->phyint_flags &= ~PHYI_INACTIVE; 17523 } 17524 } else if (ill_to_v6 != NULL) { 17525 if (ill_to_v6->ill_phyint->phyint_flags & PHYI_INACTIVE) { 17526 ill_to_v6->ill_phyint->phyint_flags &= ~PHYI_INACTIVE; 17527 } 17528 } 17529 17530 RELEASE_ILL_LOCKS(ill_to_v4, ill_to_v6); 17531 RELEASE_ILL_LOCKS(ill_from_v4, ill_from_v6); 17532 17533 no_err: 17534 /* 17535 * lets bring the interfaces up on the to_ill. 17536 */ 17537 if (err == 0) { 17538 err = ill_up_ipifs(ill_to_v4 == NULL ? ill_to_v6:ill_to_v4, 17539 q, mp); 17540 } 17541 17542 if (err == 0) { 17543 if (ill_from_v4 != NULL && ill_to_v4 != NULL) 17544 ilm_send_multicast_reqs(ill_from_v4, ill_to_v4); 17545 17546 if (ill_from_v6 != NULL && ill_to_v6 != NULL) 17547 ilm_send_multicast_reqs(ill_from_v6, ill_to_v6); 17548 } 17549 done: 17550 17551 if (ill_to_v4 != NULL) { 17552 ill_refrele(ill_to_v4); 17553 } 17554 if (ill_to_v6 != NULL) { 17555 ill_refrele(ill_to_v6); 17556 } 17557 17558 return (err); 17559 } 17560 17561 static void 17562 ill_dl_down(ill_t *ill) 17563 { 17564 /* 17565 * The ill is down; unbind but stay attached since we're still 17566 * associated with a PPA. 17567 */ 17568 mblk_t *mp = ill->ill_unbind_mp; 17569 17570 ill->ill_unbind_mp = NULL; 17571 ip1dbg(("ill_dl_down(%s)\n", ill->ill_name)); 17572 if (mp != NULL) { 17573 ip1dbg(("ill_dl_down: %s (%u) for %s\n", 17574 dlpi_prim_str(*(int *)mp->b_rptr), *(int *)mp->b_rptr, 17575 ill->ill_name)); 17576 mutex_enter(&ill->ill_lock); 17577 ill->ill_state_flags |= ILL_DL_UNBIND_IN_PROGRESS; 17578 mutex_exit(&ill->ill_lock); 17579 ill_dlpi_send(ill, mp); 17580 } 17581 17582 /* 17583 * Toss all of our multicast memberships. We could keep them, but 17584 * then we'd have to do bookkeeping of any joins and leaves performed 17585 * by the application while the the interface is down (we can't just 17586 * issue them because arp cannot currently process AR_ENTRY_SQUERY's 17587 * on a downed interface). 17588 */ 17589 ill_leave_multicast(ill); 17590 17591 mutex_enter(&ill->ill_lock); 17592 ill->ill_dl_up = 0; 17593 mutex_exit(&ill->ill_lock); 17594 } 17595 17596 void 17597 ill_dlpi_dispatch(ill_t *ill, mblk_t *mp) 17598 { 17599 union DL_primitives *dlp; 17600 t_uscalar_t prim; 17601 17602 ASSERT(DB_TYPE(mp) == M_PROTO || DB_TYPE(mp) == M_PCPROTO); 17603 17604 dlp = (union DL_primitives *)mp->b_rptr; 17605 prim = dlp->dl_primitive; 17606 17607 ip1dbg(("ill_dlpi_dispatch: sending %s (%u) to %s\n", 17608 dlpi_prim_str(prim), prim, ill->ill_name)); 17609 17610 switch (prim) { 17611 case DL_PHYS_ADDR_REQ: 17612 { 17613 dl_phys_addr_req_t *dlpap = (dl_phys_addr_req_t *)mp->b_rptr; 17614 ill->ill_phys_addr_pend = dlpap->dl_addr_type; 17615 break; 17616 } 17617 case DL_BIND_REQ: 17618 mutex_enter(&ill->ill_lock); 17619 ill->ill_state_flags &= ~ILL_DL_UNBIND_IN_PROGRESS; 17620 mutex_exit(&ill->ill_lock); 17621 break; 17622 } 17623 17624 ill->ill_dlpi_pending = prim; 17625 17626 /* 17627 * Some drivers send M_FLUSH up to IP as part of unbind 17628 * request. When this M_FLUSH is sent back to the driver, 17629 * this can go after we send the detach request if the 17630 * M_FLUSH ends up in IP's syncq. To avoid that, we reply 17631 * to the M_FLUSH in ip_rput and locally generate another 17632 * M_FLUSH for the correctness. This will get freed in 17633 * ip_wput_nondata. 17634 */ 17635 if (prim == DL_UNBIND_REQ) 17636 (void) putnextctl1(ill->ill_rq, M_FLUSH, FLUSHRW); 17637 17638 putnext(ill->ill_wq, mp); 17639 } 17640 17641 /* 17642 * Send a DLPI control message to the driver but make sure there 17643 * is only one outstanding message. Uses ill_dlpi_pending to tell 17644 * when it must queue. ip_rput_dlpi_writer calls ill_dlpi_done() 17645 * when an ACK or a NAK is received to process the next queued message. 17646 * 17647 * We don't protect ill_dlpi_pending with any lock. This is okay as 17648 * every place where its accessed, ip is exclusive while accessing 17649 * ill_dlpi_pending except when this function is called from ill_init() 17650 */ 17651 void 17652 ill_dlpi_send(ill_t *ill, mblk_t *mp) 17653 { 17654 mblk_t **mpp; 17655 17656 ASSERT(IAM_WRITER_ILL(ill)); 17657 ASSERT(DB_TYPE(mp) == M_PROTO || DB_TYPE(mp) == M_PCPROTO); 17658 17659 if (ill->ill_dlpi_pending != DL_PRIM_INVAL) { 17660 /* Must queue message. Tail insertion */ 17661 mpp = &ill->ill_dlpi_deferred; 17662 while (*mpp != NULL) 17663 mpp = &((*mpp)->b_next); 17664 17665 ip1dbg(("ill_dlpi_send: deferring request for %s\n", 17666 ill->ill_name)); 17667 17668 *mpp = mp; 17669 return; 17670 } 17671 17672 ill_dlpi_dispatch(ill, mp); 17673 } 17674 17675 /* 17676 * Called when an DLPI control message has been acked or nacked to 17677 * send down the next queued message (if any). 17678 */ 17679 void 17680 ill_dlpi_done(ill_t *ill, t_uscalar_t prim) 17681 { 17682 mblk_t *mp; 17683 17684 ASSERT(IAM_WRITER_ILL(ill)); 17685 17686 ASSERT(prim != DL_PRIM_INVAL); 17687 if (ill->ill_dlpi_pending != prim) { 17688 if (ill->ill_dlpi_pending == DL_PRIM_INVAL) { 17689 (void) mi_strlog(ill->ill_rq, 1, 17690 SL_CONSOLE|SL_ERROR|SL_TRACE, 17691 "ill_dlpi_done: unsolicited ack for %s from %s\n", 17692 dlpi_prim_str(prim), ill->ill_name); 17693 } else { 17694 (void) mi_strlog(ill->ill_rq, 1, 17695 SL_CONSOLE|SL_ERROR|SL_TRACE, 17696 "ill_dlpi_done: unexpected ack for %s from %s " 17697 "(expecting ack for %s)\n", 17698 dlpi_prim_str(prim), ill->ill_name, 17699 dlpi_prim_str(ill->ill_dlpi_pending)); 17700 } 17701 return; 17702 } 17703 17704 ip1dbg(("ill_dlpi_done: %s has completed %s (%u)\n", ill->ill_name, 17705 dlpi_prim_str(ill->ill_dlpi_pending), ill->ill_dlpi_pending)); 17706 17707 if ((mp = ill->ill_dlpi_deferred) == NULL) { 17708 ill->ill_dlpi_pending = DL_PRIM_INVAL; 17709 return; 17710 } 17711 17712 ill->ill_dlpi_deferred = mp->b_next; 17713 mp->b_next = NULL; 17714 17715 ill_dlpi_dispatch(ill, mp); 17716 } 17717 17718 void 17719 conn_delete_ire(conn_t *connp, caddr_t arg) 17720 { 17721 ipif_t *ipif = (ipif_t *)arg; 17722 ire_t *ire; 17723 17724 /* 17725 * Look at the cached ires on conns which has pointers to ipifs. 17726 * We just call ire_refrele which clears up the reference 17727 * to ire. Called when a conn closes. Also called from ipif_free 17728 * to cleanup indirect references to the stale ipif via the cached ire. 17729 */ 17730 mutex_enter(&connp->conn_lock); 17731 ire = connp->conn_ire_cache; 17732 if (ire != NULL && (ipif == NULL || ire->ire_ipif == ipif)) { 17733 connp->conn_ire_cache = NULL; 17734 mutex_exit(&connp->conn_lock); 17735 IRE_REFRELE_NOTR(ire); 17736 return; 17737 } 17738 mutex_exit(&connp->conn_lock); 17739 17740 } 17741 17742 /* 17743 * Some operations (illgrp_delete(), ipif_down()) conditionally delete a number 17744 * of IREs. Those IREs may have been previously cached in the conn structure. 17745 * This ipcl_walk() walker function releases all references to such IREs based 17746 * on the condemned flag. 17747 */ 17748 /* ARGSUSED */ 17749 void 17750 conn_cleanup_stale_ire(conn_t *connp, caddr_t arg) 17751 { 17752 ire_t *ire; 17753 17754 mutex_enter(&connp->conn_lock); 17755 ire = connp->conn_ire_cache; 17756 if (ire != NULL && (ire->ire_marks & IRE_MARK_CONDEMNED)) { 17757 connp->conn_ire_cache = NULL; 17758 mutex_exit(&connp->conn_lock); 17759 IRE_REFRELE_NOTR(ire); 17760 return; 17761 } 17762 mutex_exit(&connp->conn_lock); 17763 } 17764 17765 /* 17766 * Take down a specific interface, but don't lose any information about it. 17767 * Also delete interface from its interface group (ifgrp). 17768 * (Always called as writer.) 17769 * This function goes through the down sequence even if the interface is 17770 * already down. There are 2 reasons. 17771 * a. Currently we permit interface routes that depend on down interfaces 17772 * to be added. This behaviour itself is questionable. However it appears 17773 * that both Solaris and 4.3 BSD have exhibited this behaviour for a long 17774 * time. We go thru the cleanup in order to remove these routes. 17775 * b. The bringup of the interface could fail in ill_dl_up i.e. we get 17776 * DL_ERROR_ACK in response to the the DL_BIND request. The interface is 17777 * down, but we need to cleanup i.e. do ill_dl_down and 17778 * ip_rput_dlpi_writer (DL_ERROR_ACK) -> ipif_down. 17779 * 17780 * IP-MT notes: 17781 * 17782 * Model of reference to interfaces. 17783 * 17784 * The following members in ipif_t track references to the ipif. 17785 * int ipif_refcnt; Active reference count 17786 * uint_t ipif_ire_cnt; Number of ire's referencing this ipif 17787 * The following members in ill_t track references to the ill. 17788 * int ill_refcnt; active refcnt 17789 * uint_t ill_ire_cnt; Number of ires referencing ill 17790 * uint_t ill_nce_cnt; Number of nces referencing ill 17791 * 17792 * Reference to an ipif or ill can be obtained in any of the following ways. 17793 * 17794 * Through the lookup functions ipif_lookup_* / ill_lookup_* functions 17795 * Pointers to ipif / ill from other data structures viz ire and conn. 17796 * Implicit reference to the ipif / ill by holding a reference to the ire. 17797 * 17798 * The ipif/ill lookup functions return a reference held ipif / ill. 17799 * ipif_refcnt and ill_refcnt track the reference counts respectively. 17800 * This is a purely dynamic reference count associated with threads holding 17801 * references to the ipif / ill. Pointers from other structures do not 17802 * count towards this reference count. 17803 * 17804 * ipif_ire_cnt/ill_ire_cnt is the number of ire's associated with the 17805 * ipif/ill. This is incremented whenever a new ire is created referencing the 17806 * ipif/ill. This is done atomically inside ire_add_v[46] where the ire is 17807 * actually added to the ire hash table. The count is decremented in 17808 * ire_inactive where the ire is destroyed. 17809 * 17810 * nce's reference ill's thru nce_ill and the count of nce's associated with 17811 * an ill is recorded in ill_nce_cnt. This is incremented atomically in 17812 * ndp_add() where the nce is actually added to the table. Similarly it is 17813 * decremented in ndp_inactive where the nce is destroyed. 17814 * 17815 * Flow of ioctls involving interface down/up 17816 * 17817 * The following is the sequence of an attempt to set some critical flags on an 17818 * up interface. 17819 * ip_sioctl_flags 17820 * ipif_down 17821 * wait for ipif to be quiescent 17822 * ipif_down_tail 17823 * ip_sioctl_flags_tail 17824 * 17825 * All set ioctls that involve down/up sequence would have a skeleton similar 17826 * to the above. All the *tail functions are called after the refcounts have 17827 * dropped to the appropriate values. 17828 * 17829 * The mechanism to quiesce an ipif is as follows. 17830 * 17831 * Mark the ipif as IPIF_CHANGING. No more lookups will be allowed 17832 * on the ipif. Callers either pass a flag requesting wait or the lookup 17833 * functions will return NULL. 17834 * 17835 * Delete all ires referencing this ipif 17836 * 17837 * Any thread attempting to do an ipif_refhold on an ipif that has been 17838 * obtained thru a cached pointer will first make sure that 17839 * the ipif can be refheld using the macro IPIF_CAN_LOOKUP and only then 17840 * increment the refcount. 17841 * 17842 * The above guarantees that the ipif refcount will eventually come down to 17843 * zero and the ipif will quiesce, once all threads that currently hold a 17844 * reference to the ipif refrelease the ipif. The ipif is quiescent after the 17845 * ipif_refcount has dropped to zero and all ire's associated with this ipif 17846 * have also been ire_inactive'd. i.e. when ipif_ire_cnt and ipif_refcnt both 17847 * drop to zero. 17848 * 17849 * Lookups during the IPIF_CHANGING/ILL_CHANGING interval. 17850 * 17851 * Threads trying to lookup an ipif or ill can pass a flag requesting 17852 * wait and restart if the ipif / ill cannot be looked up currently. 17853 * For eg. bind, and route operations (Eg. route add / delete) cannot return 17854 * failure if the ipif is currently undergoing an exclusive operation, and 17855 * hence pass the flag. The mblk is then enqueued in the ipsq and the operation 17856 * is restarted by ipsq_exit() when the currently exclusive ioctl completes. 17857 * The lookup and enqueue is atomic using the ill_lock and ipsq_lock. The 17858 * lookup is done holding the ill_lock. Hence the ill/ipif state flags can't 17859 * change while the ill_lock is held. Before dropping the ill_lock we acquire 17860 * the ipsq_lock and call ipsq_enq. This ensures that ipsq_exit can't finish 17861 * until we release the ipsq_lock, even though the the ill/ipif state flags 17862 * can change after we drop the ill_lock. 17863 * 17864 * An attempt to send out a packet using an ipif that is currently 17865 * IPIF_CHANGING will fail. No attempt is made in this case to enqueue this 17866 * operation and restart it later when the exclusive condition on the ipif ends. 17867 * This is an example of not passing the wait flag to the lookup functions. For 17868 * example an attempt to refhold and use conn->conn_multicast_ipif and send 17869 * out a multicast packet on that ipif will fail while the ipif is 17870 * IPIF_CHANGING. An attempt to create an IRE_CACHE using an ipif that is 17871 * currently IPIF_CHANGING will also fail. 17872 */ 17873 int 17874 ipif_down(ipif_t *ipif, queue_t *q, mblk_t *mp) 17875 { 17876 ill_t *ill = ipif->ipif_ill; 17877 phyint_t *phyi; 17878 conn_t *connp; 17879 boolean_t success; 17880 boolean_t ipif_was_up = B_FALSE; 17881 17882 ASSERT(IAM_WRITER_IPIF(ipif)); 17883 17884 ip1dbg(("ipif_down(%s:%u)\n", ill->ill_name, ipif->ipif_id)); 17885 17886 if (ipif->ipif_flags & IPIF_UP) { 17887 mutex_enter(&ill->ill_lock); 17888 ipif->ipif_flags &= ~IPIF_UP; 17889 ASSERT(ill->ill_ipif_up_count > 0); 17890 --ill->ill_ipif_up_count; 17891 mutex_exit(&ill->ill_lock); 17892 ipif_was_up = B_TRUE; 17893 /* Update status in SCTP's list */ 17894 sctp_update_ipif(ipif, SCTP_IPIF_DOWN); 17895 } 17896 17897 /* 17898 * Blow away v6 memberships we established in ipif_multicast_up(); the 17899 * v4 ones are left alone (as is the ipif_multicast_up flag, so we 17900 * know not to rejoin when the interface is brought back up). 17901 */ 17902 if (ipif->ipif_isv6) 17903 ipif_multicast_down(ipif); 17904 /* 17905 * Remove from the mapping for __sin6_src_id. We insert only 17906 * when the address is not INADDR_ANY. As IPv4 addresses are 17907 * stored as mapped addresses, we need to check for mapped 17908 * INADDR_ANY also. 17909 */ 17910 if (ipif_was_up && !IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6lcl_addr) && 17911 !IN6_IS_ADDR_V4MAPPED_ANY(&ipif->ipif_v6lcl_addr) && 17912 !(ipif->ipif_flags & IPIF_NOLOCAL)) { 17913 int err; 17914 17915 err = ip_srcid_remove(&ipif->ipif_v6lcl_addr, 17916 ipif->ipif_zoneid); 17917 if (err != 0) { 17918 ip0dbg(("ipif_down: srcid_remove %d\n", err)); 17919 } 17920 } 17921 17922 /* 17923 * Before we delete the ill from the group (if any), we need 17924 * to make sure that we delete all the routes dependent on 17925 * this and also any ipifs dependent on this ipif for 17926 * source address. We need to do before we delete from 17927 * the group because 17928 * 17929 * 1) ipif_down_delete_ire de-references ill->ill_group. 17930 * 17931 * 2) ipif_update_other_ipifs needs to walk the whole group 17932 * for re-doing source address selection. Note that 17933 * ipif_select_source[_v6] called from 17934 * ipif_update_other_ipifs[_v6] will not pick this ipif 17935 * because we have already marked down here i.e cleared 17936 * IPIF_UP. 17937 */ 17938 if (ipif->ipif_isv6) 17939 ire_walk_v6(ipif_down_delete_ire, (char *)ipif, ALL_ZONES); 17940 else 17941 ire_walk_v4(ipif_down_delete_ire, (char *)ipif, ALL_ZONES); 17942 17943 /* 17944 * Need to add these also to be saved and restored when the 17945 * ipif is brought down and up 17946 */ 17947 mutex_enter(&ire_mrtun_lock); 17948 if (ire_mrtun_count != 0) { 17949 mutex_exit(&ire_mrtun_lock); 17950 ire_walk_ill_mrtun(0, 0, ipif_down_delete_ire, 17951 (char *)ipif, NULL); 17952 } else { 17953 mutex_exit(&ire_mrtun_lock); 17954 } 17955 17956 mutex_enter(&ire_srcif_table_lock); 17957 if (ire_srcif_table_count > 0) { 17958 mutex_exit(&ire_srcif_table_lock); 17959 ire_walk_srcif_table_v4(ipif_down_delete_ire, (char *)ipif); 17960 } else { 17961 mutex_exit(&ire_srcif_table_lock); 17962 } 17963 17964 /* 17965 * Cleaning up the conn_ire_cache or conns must be done only after the 17966 * ires have been deleted above. Otherwise a thread could end up 17967 * caching an ire in a conn after we have finished the cleanup of the 17968 * conn. The caching is done after making sure that the ire is not yet 17969 * condemned. Also documented in the block comment above ip_output 17970 */ 17971 ipcl_walk(conn_cleanup_stale_ire, NULL); 17972 /* Also, delete the ires cached in SCTP */ 17973 sctp_ire_cache_flush(ipif); 17974 17975 /* Resolve any IPsec/IKE NAT-T instances that depend on this ipif. */ 17976 nattymod_clean_ipif(ipif); 17977 17978 /* 17979 * Update any other ipifs which have used "our" local address as 17980 * a source address. This entails removing and recreating IRE_INTERFACE 17981 * entries for such ipifs. 17982 */ 17983 if (ipif->ipif_isv6) 17984 ipif_update_other_ipifs_v6(ipif, ill->ill_group); 17985 else 17986 ipif_update_other_ipifs(ipif, ill->ill_group); 17987 17988 if (ipif_was_up) { 17989 /* 17990 * Check whether it is last ipif to leave this group. 17991 * If this is the last ipif to leave, we should remove 17992 * this ill from the group as ipif_select_source will not 17993 * be able to find any useful ipifs if this ill is selected 17994 * for load balancing. 17995 * 17996 * For nameless groups, we should call ifgrp_delete if this 17997 * belongs to some group. As this ipif is going down, we may 17998 * need to reconstruct groups. 17999 */ 18000 phyi = ill->ill_phyint; 18001 /* 18002 * If the phyint_groupname_len is 0, it may or may not 18003 * be in the nameless group. If the phyint_groupname_len is 18004 * not 0, then this ill should be part of some group. 18005 * As we always insert this ill in the group if 18006 * phyint_groupname_len is not zero when the first ipif 18007 * comes up (in ipif_up_done), it should be in a group 18008 * when the namelen is not 0. 18009 * 18010 * NOTE : When we delete the ill from the group,it will 18011 * blow away all the IRE_CACHES pointing either at this ipif or 18012 * ill_wq (illgrp_cache_delete does this). Thus, no IRES 18013 * should be pointing at this ill. 18014 */ 18015 ASSERT(phyi->phyint_groupname_len == 0 || 18016 (phyi->phyint_groupname != NULL && ill->ill_group != NULL)); 18017 18018 if (phyi->phyint_groupname_len != 0) { 18019 if (ill->ill_ipif_up_count == 0) 18020 illgrp_delete(ill); 18021 } 18022 18023 /* 18024 * If we have deleted some of the broadcast ires associated 18025 * with this ipif, we need to re-nominate somebody else if 18026 * the ires that we deleted were the nominated ones. 18027 */ 18028 if (ill->ill_group != NULL && !ill->ill_isv6) 18029 ipif_renominate_bcast(ipif); 18030 } 18031 18032 /* 18033 * neighbor-discovery or arp entries for this interface. 18034 */ 18035 ipif_ndp_down(ipif); 18036 18037 /* 18038 * If mp is NULL the caller will wait for the appropriate refcnt. 18039 * Eg. ip_sioctl_removeif -> ipif_free -> ipif_down 18040 * and ill_delete -> ipif_free -> ipif_down 18041 */ 18042 if (mp == NULL) { 18043 ASSERT(q == NULL); 18044 return (0); 18045 } 18046 18047 if (CONN_Q(q)) { 18048 connp = Q_TO_CONN(q); 18049 mutex_enter(&connp->conn_lock); 18050 } else { 18051 connp = NULL; 18052 } 18053 mutex_enter(&ill->ill_lock); 18054 /* 18055 * Are there any ire's pointing to this ipif that are still active ? 18056 * If this is the last ipif going down, are there any ire's pointing 18057 * to this ill that are still active ? 18058 */ 18059 if (ipif_is_quiescent(ipif)) { 18060 mutex_exit(&ill->ill_lock); 18061 if (connp != NULL) 18062 mutex_exit(&connp->conn_lock); 18063 return (0); 18064 } 18065 18066 ip1dbg(("ipif_down: need to wait, adding pending mp %s ill %p", 18067 ill->ill_name, (void *)ill)); 18068 /* 18069 * Enqueue the mp atomically in ipsq_pending_mp. When the refcount 18070 * drops down, the operation will be restarted by ipif_ill_refrele_tail 18071 * which in turn is called by the last refrele on the ipif/ill/ire. 18072 */ 18073 success = ipsq_pending_mp_add(connp, ipif, q, mp, IPIF_DOWN); 18074 if (!success) { 18075 /* The conn is closing. So just return */ 18076 ASSERT(connp != NULL); 18077 mutex_exit(&ill->ill_lock); 18078 mutex_exit(&connp->conn_lock); 18079 return (EINTR); 18080 } 18081 18082 mutex_exit(&ill->ill_lock); 18083 if (connp != NULL) 18084 mutex_exit(&connp->conn_lock); 18085 return (EINPROGRESS); 18086 } 18087 18088 void 18089 ipif_down_tail(ipif_t *ipif) 18090 { 18091 ill_t *ill = ipif->ipif_ill; 18092 18093 /* 18094 * Skip any loopback interface (null wq). 18095 * If this is the last logical interface on the ill 18096 * have ill_dl_down tell the driver we are gone (unbind) 18097 * Note that lun 0 can ipif_down even though 18098 * there are other logical units that are up. 18099 * This occurs e.g. when we change a "significant" IFF_ flag. 18100 */ 18101 if (ill->ill_wq != NULL && !ill->ill_logical_down && 18102 ill->ill_ipif_up_count == 0 && ill->ill_ipif_dup_count == 0 && 18103 ill->ill_dl_up) { 18104 ill_dl_down(ill); 18105 } 18106 ill->ill_logical_down = 0; 18107 18108 /* 18109 * Have to be after removing the routes in ipif_down_delete_ire. 18110 */ 18111 if (ipif->ipif_isv6) { 18112 if (ill->ill_flags & ILLF_XRESOLV) 18113 ipif_arp_down(ipif); 18114 } else { 18115 ipif_arp_down(ipif); 18116 } 18117 18118 ip_rts_ifmsg(ipif); 18119 ip_rts_newaddrmsg(RTM_DELETE, 0, ipif); 18120 } 18121 18122 /* 18123 * Bring interface logically down without bringing the physical interface 18124 * down e.g. when the netmask is changed. This avoids long lasting link 18125 * negotiations between an ethernet interface and a certain switches. 18126 */ 18127 static int 18128 ipif_logical_down(ipif_t *ipif, queue_t *q, mblk_t *mp) 18129 { 18130 /* 18131 * The ill_logical_down flag is a transient flag. It is set here 18132 * and is cleared once the down has completed in ipif_down_tail. 18133 * This flag does not indicate whether the ill stream is in the 18134 * DL_BOUND state with the driver. Instead this flag is used by 18135 * ipif_down_tail to determine whether to DL_UNBIND the stream with 18136 * the driver. The state of the ill stream i.e. whether it is 18137 * DL_BOUND with the driver or not is indicated by the ill_dl_up flag. 18138 */ 18139 ipif->ipif_ill->ill_logical_down = 1; 18140 return (ipif_down(ipif, q, mp)); 18141 } 18142 18143 /* 18144 * This is called when the SIOCSLIFUSESRC ioctl is processed in IP. 18145 * If the usesrc client ILL is already part of a usesrc group or not, 18146 * in either case a ire_stq with the matching usesrc client ILL will 18147 * locate the IRE's that need to be deleted. We want IREs to be created 18148 * with the new source address. 18149 */ 18150 static void 18151 ipif_delete_cache_ire(ire_t *ire, char *ill_arg) 18152 { 18153 ill_t *ucill = (ill_t *)ill_arg; 18154 18155 ASSERT(IAM_WRITER_ILL(ucill)); 18156 18157 if (ire->ire_stq == NULL) 18158 return; 18159 18160 if ((ire->ire_type == IRE_CACHE) && 18161 ((ill_t *)ire->ire_stq->q_ptr == ucill)) 18162 ire_delete(ire); 18163 } 18164 18165 /* 18166 * ire_walk routine to delete every IRE dependent on the interface 18167 * address that is going down. (Always called as writer.) 18168 * Works for both v4 and v6. 18169 * In addition for checking for ire_ipif matches it also checks for 18170 * IRE_CACHE entries which have the same source address as the 18171 * disappearing ipif since ipif_select_source might have picked 18172 * that source. Note that ipif_down/ipif_update_other_ipifs takes 18173 * care of any IRE_INTERFACE with the disappearing source address. 18174 */ 18175 static void 18176 ipif_down_delete_ire(ire_t *ire, char *ipif_arg) 18177 { 18178 ipif_t *ipif = (ipif_t *)ipif_arg; 18179 ill_t *ire_ill; 18180 ill_t *ipif_ill; 18181 18182 ASSERT(IAM_WRITER_IPIF(ipif)); 18183 if (ire->ire_ipif == NULL) 18184 return; 18185 18186 /* 18187 * For IPv4, we derive source addresses for an IRE from ipif's 18188 * belonging to the same IPMP group as the IRE's outgoing 18189 * interface. If an IRE's outgoing interface isn't in the 18190 * same IPMP group as a particular ipif, then that ipif 18191 * couldn't have been used as a source address for this IRE. 18192 * 18193 * For IPv6, source addresses are only restricted to the IPMP group 18194 * if the IRE is for a link-local address or a multicast address. 18195 * Otherwise, source addresses for an IRE can be chosen from 18196 * interfaces other than the the outgoing interface for that IRE. 18197 * 18198 * For source address selection details, see ipif_select_source() 18199 * and ipif_select_source_v6(). 18200 */ 18201 if (ire->ire_ipversion == IPV4_VERSION || 18202 IN6_IS_ADDR_LINKLOCAL(&ire->ire_addr_v6) || 18203 IN6_IS_ADDR_MULTICAST(&ire->ire_addr_v6)) { 18204 ire_ill = ire->ire_ipif->ipif_ill; 18205 ipif_ill = ipif->ipif_ill; 18206 18207 if (ire_ill->ill_group != ipif_ill->ill_group) { 18208 return; 18209 } 18210 } 18211 18212 18213 if (ire->ire_ipif != ipif) { 18214 /* 18215 * Look for a matching source address. 18216 */ 18217 if (ire->ire_type != IRE_CACHE) 18218 return; 18219 if (ipif->ipif_flags & IPIF_NOLOCAL) 18220 return; 18221 18222 if (ire->ire_ipversion == IPV4_VERSION) { 18223 if (ire->ire_src_addr != ipif->ipif_src_addr) 18224 return; 18225 } else { 18226 if (!IN6_ARE_ADDR_EQUAL(&ire->ire_src_addr_v6, 18227 &ipif->ipif_v6lcl_addr)) 18228 return; 18229 } 18230 ire_delete(ire); 18231 return; 18232 } 18233 /* 18234 * ire_delete() will do an ire_flush_cache which will delete 18235 * all ire_ipif matches 18236 */ 18237 ire_delete(ire); 18238 } 18239 18240 /* 18241 * ire_walk_ill function for deleting all IRE_CACHE entries for an ill when 18242 * 1) an ipif (on that ill) changes the IPIF_DEPRECATED flags, or 18243 * 2) when an interface is brought up or down (on that ill). 18244 * This ensures that the IRE_CACHE entries don't retain stale source 18245 * address selection results. 18246 */ 18247 void 18248 ill_ipif_cache_delete(ire_t *ire, char *ill_arg) 18249 { 18250 ill_t *ill = (ill_t *)ill_arg; 18251 ill_t *ipif_ill; 18252 18253 ASSERT(IAM_WRITER_ILL(ill)); 18254 /* 18255 * We use MATCH_IRE_TYPE/IRE_CACHE while calling ire_walk_ill_v4. 18256 * Hence this should be IRE_CACHE. 18257 */ 18258 ASSERT(ire->ire_type == IRE_CACHE); 18259 18260 /* 18261 * We are called for IRE_CACHES whose ire_ipif matches ill. 18262 * We are only interested in IRE_CACHES that has borrowed 18263 * the source address from ill_arg e.g. ipif_up_done[_v6] 18264 * for which we need to look at ire_ipif->ipif_ill match 18265 * with ill. 18266 */ 18267 ASSERT(ire->ire_ipif != NULL); 18268 ipif_ill = ire->ire_ipif->ipif_ill; 18269 if (ipif_ill == ill || (ill->ill_group != NULL && 18270 ipif_ill->ill_group == ill->ill_group)) { 18271 ire_delete(ire); 18272 } 18273 } 18274 18275 /* 18276 * Delete all the ire whose stq references ill_arg. 18277 */ 18278 static void 18279 ill_stq_cache_delete(ire_t *ire, char *ill_arg) 18280 { 18281 ill_t *ill = (ill_t *)ill_arg; 18282 ill_t *ire_ill; 18283 18284 ASSERT(IAM_WRITER_ILL(ill)); 18285 /* 18286 * We use MATCH_IRE_TYPE/IRE_CACHE while calling ire_walk_ill_v4. 18287 * Hence this should be IRE_CACHE. 18288 */ 18289 ASSERT(ire->ire_type == IRE_CACHE); 18290 18291 /* 18292 * We are called for IRE_CACHES whose ire_stq and ire_ipif 18293 * matches ill. We are only interested in IRE_CACHES that 18294 * has ire_stq->q_ptr pointing at ill_arg. Thus we do the 18295 * filtering here. 18296 */ 18297 ire_ill = (ill_t *)ire->ire_stq->q_ptr; 18298 18299 if (ire_ill == ill) 18300 ire_delete(ire); 18301 } 18302 18303 /* 18304 * This is called when an ill leaves the group. We want to delete 18305 * all IRE_CACHES whose stq is pointing at ill_wq or ire_ipif is 18306 * pointing at ill. 18307 */ 18308 static void 18309 illgrp_cache_delete(ire_t *ire, char *ill_arg) 18310 { 18311 ill_t *ill = (ill_t *)ill_arg; 18312 18313 ASSERT(IAM_WRITER_ILL(ill)); 18314 ASSERT(ill->ill_group == NULL); 18315 /* 18316 * We use MATCH_IRE_TYPE/IRE_CACHE while calling ire_walk_ill_v4. 18317 * Hence this should be IRE_CACHE. 18318 */ 18319 ASSERT(ire->ire_type == IRE_CACHE); 18320 /* 18321 * We are called for IRE_CACHES whose ire_stq and ire_ipif 18322 * matches ill. We are interested in both. 18323 */ 18324 ASSERT((ill == (ill_t *)ire->ire_stq->q_ptr) || 18325 (ire->ire_ipif->ipif_ill == ill)); 18326 18327 ire_delete(ire); 18328 } 18329 18330 /* 18331 * Initiate deallocate of an IPIF. Always called as writer. Called by 18332 * ill_delete or ip_sioctl_removeif. 18333 */ 18334 static void 18335 ipif_free(ipif_t *ipif) 18336 { 18337 ASSERT(IAM_WRITER_IPIF(ipif)); 18338 18339 if (ipif->ipif_recovery_id != 0) 18340 (void) untimeout(ipif->ipif_recovery_id); 18341 ipif->ipif_recovery_id = 0; 18342 18343 /* Remove conn references */ 18344 reset_conn_ipif(ipif); 18345 18346 /* 18347 * Make sure we have valid net and subnet broadcast ire's for the 18348 * other ipif's which share them with this ipif. 18349 */ 18350 if (!ipif->ipif_isv6) 18351 ipif_check_bcast_ires(ipif); 18352 18353 /* 18354 * Take down the interface. We can be called either from ill_delete 18355 * or from ip_sioctl_removeif. 18356 */ 18357 (void) ipif_down(ipif, NULL, NULL); 18358 18359 rw_enter(&ill_g_lock, RW_WRITER); 18360 /* Remove pointers to this ill in the multicast routing tables */ 18361 reset_mrt_vif_ipif(ipif); 18362 rw_exit(&ill_g_lock); 18363 } 18364 18365 static void 18366 ipif_free_tail(ipif_t *ipif) 18367 { 18368 mblk_t *mp; 18369 ipif_t **ipifp; 18370 18371 /* 18372 * Free state for addition IRE_IF_[NO]RESOLVER ire's. 18373 */ 18374 mutex_enter(&ipif->ipif_saved_ire_lock); 18375 mp = ipif->ipif_saved_ire_mp; 18376 ipif->ipif_saved_ire_mp = NULL; 18377 mutex_exit(&ipif->ipif_saved_ire_lock); 18378 freemsg(mp); 18379 18380 /* 18381 * Need to hold both ill_g_lock and ill_lock while 18382 * inserting or removing an ipif from the linked list 18383 * of ipifs hanging off the ill. 18384 */ 18385 rw_enter(&ill_g_lock, RW_WRITER); 18386 /* 18387 * Remove all multicast memberships on the interface now. 18388 * This removes IPv4 multicast memberships joined within 18389 * the kernel as ipif_down does not do ipif_multicast_down 18390 * for IPv4. IPv6 is not handled here as the multicast memberships 18391 * are based on ill and not on ipif. 18392 */ 18393 ilm_free(ipif); 18394 18395 /* 18396 * Since we held the ill_g_lock while doing the ilm_free above, 18397 * we can assert the ilms were really deleted and not just marked 18398 * ILM_DELETED. 18399 */ 18400 ASSERT(ilm_walk_ipif(ipif) == 0); 18401 18402 18403 IPIF_TRACE_CLEANUP(ipif); 18404 18405 /* Ask SCTP to take it out of it list */ 18406 sctp_update_ipif(ipif, SCTP_IPIF_REMOVE); 18407 18408 mutex_enter(&ipif->ipif_ill->ill_lock); 18409 /* Get it out of the ILL interface list. */ 18410 ipifp = &ipif->ipif_ill->ill_ipif; 18411 for (; *ipifp != NULL; ipifp = &ipifp[0]->ipif_next) { 18412 if (*ipifp == ipif) { 18413 *ipifp = ipif->ipif_next; 18414 break; 18415 } 18416 } 18417 18418 mutex_exit(&ipif->ipif_ill->ill_lock); 18419 rw_exit(&ill_g_lock); 18420 18421 mutex_destroy(&ipif->ipif_saved_ire_lock); 18422 18423 ASSERT(!(ipif->ipif_flags & (IPIF_UP | IPIF_DUPLICATE))); 18424 18425 /* Free the memory. */ 18426 mi_free((char *)ipif); 18427 } 18428 18429 /* 18430 * Returns an ipif name in the form "ill_name/unit" if ipif_id is not zero, 18431 * "ill_name" otherwise. 18432 */ 18433 char * 18434 ipif_get_name(const ipif_t *ipif, char *buf, int len) 18435 { 18436 char lbuf[32]; 18437 char *name; 18438 size_t name_len; 18439 18440 buf[0] = '\0'; 18441 if (!ipif) 18442 return (buf); 18443 name = ipif->ipif_ill->ill_name; 18444 name_len = ipif->ipif_ill->ill_name_length; 18445 if (ipif->ipif_id != 0) { 18446 (void) sprintf(lbuf, "%s%c%d", name, IPIF_SEPARATOR_CHAR, 18447 ipif->ipif_id); 18448 name = lbuf; 18449 name_len = mi_strlen(name) + 1; 18450 } 18451 len -= 1; 18452 buf[len] = '\0'; 18453 len = MIN(len, name_len); 18454 bcopy(name, buf, len); 18455 return (buf); 18456 } 18457 18458 /* 18459 * Find an IPIF based on the name passed in. Names can be of the 18460 * form <phys> (e.g., le0), <phys>:<#> (e.g., le0:1), 18461 * The <phys> string can have forms like <dev><#> (e.g., le0), 18462 * <dev><#>.<module> (e.g. le0.foo), or <dev>.<module><#> (e.g. ip.tun3). 18463 * When there is no colon, the implied unit id is zero. <phys> must 18464 * correspond to the name of an ILL. (May be called as writer.) 18465 */ 18466 static ipif_t * 18467 ipif_lookup_on_name(char *name, size_t namelen, boolean_t do_alloc, 18468 boolean_t *exists, boolean_t isv6, zoneid_t zoneid, queue_t *q, 18469 mblk_t *mp, ipsq_func_t func, int *error) 18470 { 18471 char *cp; 18472 char *endp; 18473 long id; 18474 ill_t *ill; 18475 ipif_t *ipif; 18476 uint_t ire_type; 18477 boolean_t did_alloc = B_FALSE; 18478 ipsq_t *ipsq; 18479 18480 if (error != NULL) 18481 *error = 0; 18482 18483 /* 18484 * If the caller wants to us to create the ipif, make sure we have a 18485 * valid zoneid 18486 */ 18487 ASSERT(!do_alloc || zoneid != ALL_ZONES); 18488 18489 if (namelen == 0) { 18490 if (error != NULL) 18491 *error = ENXIO; 18492 return (NULL); 18493 } 18494 18495 *exists = B_FALSE; 18496 /* Look for a colon in the name. */ 18497 endp = &name[namelen]; 18498 for (cp = endp; --cp > name; ) { 18499 if (*cp == IPIF_SEPARATOR_CHAR) 18500 break; 18501 } 18502 18503 if (*cp == IPIF_SEPARATOR_CHAR) { 18504 /* 18505 * Reject any non-decimal aliases for logical 18506 * interfaces. Aliases with leading zeroes 18507 * are also rejected as they introduce ambiguity 18508 * in the naming of the interfaces. 18509 * In order to confirm with existing semantics, 18510 * and to not break any programs/script relying 18511 * on that behaviour, if<0>:0 is considered to be 18512 * a valid interface. 18513 * 18514 * If alias has two or more digits and the first 18515 * is zero, fail. 18516 */ 18517 if (&cp[2] < endp && cp[1] == '0') 18518 return (NULL); 18519 } 18520 18521 if (cp <= name) { 18522 cp = endp; 18523 } else { 18524 *cp = '\0'; 18525 } 18526 18527 /* 18528 * Look up the ILL, based on the portion of the name 18529 * before the slash. ill_lookup_on_name returns a held ill. 18530 * Temporary to check whether ill exists already. If so 18531 * ill_lookup_on_name will clear it. 18532 */ 18533 ill = ill_lookup_on_name(name, do_alloc, isv6, 18534 q, mp, func, error, &did_alloc); 18535 if (cp != endp) 18536 *cp = IPIF_SEPARATOR_CHAR; 18537 if (ill == NULL) 18538 return (NULL); 18539 18540 /* Establish the unit number in the name. */ 18541 id = 0; 18542 if (cp < endp && *endp == '\0') { 18543 /* If there was a colon, the unit number follows. */ 18544 cp++; 18545 if (ddi_strtol(cp, NULL, 0, &id) != 0) { 18546 ill_refrele(ill); 18547 if (error != NULL) 18548 *error = ENXIO; 18549 return (NULL); 18550 } 18551 } 18552 18553 GRAB_CONN_LOCK(q); 18554 mutex_enter(&ill->ill_lock); 18555 /* Now see if there is an IPIF with this unit number. */ 18556 for (ipif = ill->ill_ipif; ipif; ipif = ipif->ipif_next) { 18557 if (ipif->ipif_id == id) { 18558 if (zoneid != ALL_ZONES && 18559 zoneid != ipif->ipif_zoneid && 18560 ipif->ipif_zoneid != ALL_ZONES) { 18561 mutex_exit(&ill->ill_lock); 18562 RELEASE_CONN_LOCK(q); 18563 ill_refrele(ill); 18564 if (error != NULL) 18565 *error = ENXIO; 18566 return (NULL); 18567 } 18568 /* 18569 * The block comment at the start of ipif_down 18570 * explains the use of the macros used below 18571 */ 18572 if (IPIF_CAN_LOOKUP(ipif)) { 18573 ipif_refhold_locked(ipif); 18574 mutex_exit(&ill->ill_lock); 18575 if (!did_alloc) 18576 *exists = B_TRUE; 18577 /* 18578 * Drop locks before calling ill_refrele 18579 * since it can potentially call into 18580 * ipif_ill_refrele_tail which can end up 18581 * in trying to acquire any lock. 18582 */ 18583 RELEASE_CONN_LOCK(q); 18584 ill_refrele(ill); 18585 return (ipif); 18586 } else if (IPIF_CAN_WAIT(ipif, q)) { 18587 ipsq = ill->ill_phyint->phyint_ipsq; 18588 mutex_enter(&ipsq->ipsq_lock); 18589 mutex_exit(&ill->ill_lock); 18590 ipsq_enq(ipsq, q, mp, func, NEW_OP, ill); 18591 mutex_exit(&ipsq->ipsq_lock); 18592 RELEASE_CONN_LOCK(q); 18593 ill_refrele(ill); 18594 *error = EINPROGRESS; 18595 return (NULL); 18596 } 18597 } 18598 } 18599 RELEASE_CONN_LOCK(q); 18600 18601 if (!do_alloc) { 18602 mutex_exit(&ill->ill_lock); 18603 ill_refrele(ill); 18604 if (error != NULL) 18605 *error = ENXIO; 18606 return (NULL); 18607 } 18608 18609 /* 18610 * If none found, atomically allocate and return a new one. 18611 * Historically, we used IRE_LOOPBACK only for lun 0, and IRE_LOCAL 18612 * to support "receive only" use of lo0:1 etc. as is still done 18613 * below as an initial guess. 18614 * However, this is now likely to be overriden later in ipif_up_done() 18615 * when we know for sure what address has been configured on the 18616 * interface, since we might have more than one loopback interface 18617 * with a loopback address, e.g. in the case of zones, and all the 18618 * interfaces with loopback addresses need to be marked IRE_LOOPBACK. 18619 */ 18620 if (ill->ill_net_type == IRE_LOOPBACK && id == 0) 18621 ire_type = IRE_LOOPBACK; 18622 else 18623 ire_type = IRE_LOCAL; 18624 ipif = ipif_allocate(ill, id, ire_type, B_TRUE); 18625 if (ipif != NULL) 18626 ipif_refhold_locked(ipif); 18627 else if (error != NULL) 18628 *error = ENOMEM; 18629 mutex_exit(&ill->ill_lock); 18630 ill_refrele(ill); 18631 return (ipif); 18632 } 18633 18634 /* 18635 * This routine is called whenever a new address comes up on an ipif. If 18636 * we are configured to respond to address mask requests, then we are supposed 18637 * to broadcast an address mask reply at this time. This routine is also 18638 * called if we are already up, but a netmask change is made. This is legal 18639 * but might not make the system manager very popular. (May be called 18640 * as writer.) 18641 */ 18642 void 18643 ipif_mask_reply(ipif_t *ipif) 18644 { 18645 icmph_t *icmph; 18646 ipha_t *ipha; 18647 mblk_t *mp; 18648 18649 #define REPLY_LEN (sizeof (icmp_ipha) + sizeof (icmph_t) + IP_ADDR_LEN) 18650 18651 if (!ip_respond_to_address_mask_broadcast) 18652 return; 18653 18654 /* ICMP mask reply is IPv4 only */ 18655 ASSERT(!ipif->ipif_isv6); 18656 /* ICMP mask reply is not for a loopback interface */ 18657 ASSERT(ipif->ipif_ill->ill_wq != NULL); 18658 18659 mp = allocb(REPLY_LEN, BPRI_HI); 18660 if (mp == NULL) 18661 return; 18662 mp->b_wptr = mp->b_rptr + REPLY_LEN; 18663 18664 ipha = (ipha_t *)mp->b_rptr; 18665 bzero(ipha, REPLY_LEN); 18666 *ipha = icmp_ipha; 18667 ipha->ipha_ttl = ip_broadcast_ttl; 18668 ipha->ipha_src = ipif->ipif_src_addr; 18669 ipha->ipha_dst = ipif->ipif_brd_addr; 18670 ipha->ipha_length = htons(REPLY_LEN); 18671 ipha->ipha_ident = 0; 18672 18673 icmph = (icmph_t *)&ipha[1]; 18674 icmph->icmph_type = ICMP_ADDRESS_MASK_REPLY; 18675 bcopy(&ipif->ipif_net_mask, &icmph[1], IP_ADDR_LEN); 18676 icmph->icmph_checksum = IP_CSUM(mp, sizeof (ipha_t), 0); 18677 if (icmph->icmph_checksum == 0) 18678 icmph->icmph_checksum = 0xffff; 18679 18680 put(ipif->ipif_wq, mp); 18681 18682 #undef REPLY_LEN 18683 } 18684 18685 /* 18686 * When the mtu in the ipif changes, we call this routine through ire_walk 18687 * to update all the relevant IREs. 18688 * Skip IRE_LOCAL and "loopback" IRE_BROADCAST by checking ire_stq. 18689 */ 18690 static void 18691 ipif_mtu_change(ire_t *ire, char *ipif_arg) 18692 { 18693 ipif_t *ipif = (ipif_t *)ipif_arg; 18694 18695 if (ire->ire_stq == NULL || ire->ire_ipif != ipif) 18696 return; 18697 ire->ire_max_frag = MIN(ipif->ipif_mtu, IP_MAXPACKET); 18698 } 18699 18700 /* 18701 * When the mtu in the ill changes, we call this routine through ire_walk 18702 * to update all the relevant IREs. 18703 * Skip IRE_LOCAL and "loopback" IRE_BROADCAST by checking ire_stq. 18704 */ 18705 void 18706 ill_mtu_change(ire_t *ire, char *ill_arg) 18707 { 18708 ill_t *ill = (ill_t *)ill_arg; 18709 18710 if (ire->ire_stq == NULL || ire->ire_ipif->ipif_ill != ill) 18711 return; 18712 ire->ire_max_frag = ire->ire_ipif->ipif_mtu; 18713 } 18714 18715 /* 18716 * Join the ipif specific multicast groups. 18717 * Must be called after a mapping has been set up in the resolver. (Always 18718 * called as writer.) 18719 */ 18720 void 18721 ipif_multicast_up(ipif_t *ipif) 18722 { 18723 int err, index; 18724 ill_t *ill; 18725 18726 ASSERT(IAM_WRITER_IPIF(ipif)); 18727 18728 ill = ipif->ipif_ill; 18729 index = ill->ill_phyint->phyint_ifindex; 18730 18731 ip1dbg(("ipif_multicast_up\n")); 18732 if (!(ill->ill_flags & ILLF_MULTICAST) || ipif->ipif_multicast_up) 18733 return; 18734 18735 if (ipif->ipif_isv6) { 18736 if (IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6lcl_addr)) 18737 return; 18738 18739 /* Join the all hosts multicast address */ 18740 ip1dbg(("ipif_multicast_up - addmulti\n")); 18741 /* 18742 * Passing B_TRUE means we have to join the multicast 18743 * membership on this interface even though this is 18744 * FAILED. If we join on a different one in the group, 18745 * we will not be able to delete the membership later 18746 * as we currently don't track where we join when we 18747 * join within the kernel unlike applications where 18748 * we have ilg/ilg_orig_index. See ip_addmulti_v6 18749 * for more on this. 18750 */ 18751 err = ip_addmulti_v6(&ipv6_all_hosts_mcast, ill, index, 18752 ipif->ipif_zoneid, ILGSTAT_NONE, MODE_IS_EXCLUDE, NULL); 18753 if (err != 0) { 18754 ip0dbg(("ipif_multicast_up: " 18755 "all_hosts_mcast failed %d\n", 18756 err)); 18757 return; 18758 } 18759 /* 18760 * Enable multicast for the solicited node multicast address 18761 */ 18762 if (!(ipif->ipif_flags & IPIF_NOLOCAL)) { 18763 in6_addr_t ipv6_multi = ipv6_solicited_node_mcast; 18764 18765 ipv6_multi.s6_addr32[3] |= 18766 ipif->ipif_v6lcl_addr.s6_addr32[3]; 18767 18768 err = ip_addmulti_v6(&ipv6_multi, ill, index, 18769 ipif->ipif_zoneid, ILGSTAT_NONE, MODE_IS_EXCLUDE, 18770 NULL); 18771 if (err != 0) { 18772 ip0dbg(("ipif_multicast_up: solicited MC" 18773 " failed %d\n", err)); 18774 (void) ip_delmulti_v6(&ipv6_all_hosts_mcast, 18775 ill, ill->ill_phyint->phyint_ifindex, 18776 ipif->ipif_zoneid, B_TRUE, B_TRUE); 18777 return; 18778 } 18779 } 18780 } else { 18781 if (ipif->ipif_lcl_addr == INADDR_ANY) 18782 return; 18783 18784 /* Join the all hosts multicast address */ 18785 ip1dbg(("ipif_multicast_up - addmulti\n")); 18786 err = ip_addmulti(htonl(INADDR_ALLHOSTS_GROUP), ipif, 18787 ILGSTAT_NONE, MODE_IS_EXCLUDE, NULL); 18788 if (err) { 18789 ip0dbg(("ipif_multicast_up: failed %d\n", err)); 18790 return; 18791 } 18792 } 18793 ipif->ipif_multicast_up = 1; 18794 } 18795 18796 /* 18797 * Blow away any IPv6 multicast groups that we joined in ipif_multicast_up(); 18798 * any explicit memberships are blown away in ill_leave_multicast() when the 18799 * ill is brought down. 18800 */ 18801 static void 18802 ipif_multicast_down(ipif_t *ipif) 18803 { 18804 int err; 18805 18806 ASSERT(IAM_WRITER_IPIF(ipif)); 18807 18808 ip1dbg(("ipif_multicast_down\n")); 18809 if (!ipif->ipif_multicast_up) 18810 return; 18811 18812 ASSERT(ipif->ipif_isv6); 18813 18814 ip1dbg(("ipif_multicast_down - delmulti\n")); 18815 18816 /* 18817 * Leave the all hosts multicast address. Similar to ip_addmulti_v6, 18818 * we should look for ilms on this ill rather than the ones that have 18819 * been failed over here. They are here temporarily. As 18820 * ipif_multicast_up has joined on this ill, we should delete only 18821 * from this ill. 18822 */ 18823 err = ip_delmulti_v6(&ipv6_all_hosts_mcast, ipif->ipif_ill, 18824 ipif->ipif_ill->ill_phyint->phyint_ifindex, ipif->ipif_zoneid, 18825 B_TRUE, B_TRUE); 18826 if (err != 0) { 18827 ip0dbg(("ipif_multicast_down: all_hosts_mcast failed %d\n", 18828 err)); 18829 } 18830 /* 18831 * Disable multicast for the solicited node multicast address 18832 */ 18833 if (!(ipif->ipif_flags & IPIF_NOLOCAL)) { 18834 in6_addr_t ipv6_multi = ipv6_solicited_node_mcast; 18835 18836 ipv6_multi.s6_addr32[3] |= 18837 ipif->ipif_v6lcl_addr.s6_addr32[3]; 18838 18839 err = ip_delmulti_v6(&ipv6_multi, ipif->ipif_ill, 18840 ipif->ipif_ill->ill_phyint->phyint_ifindex, 18841 ipif->ipif_zoneid, B_TRUE, B_TRUE); 18842 18843 if (err != 0) { 18844 ip0dbg(("ipif_multicast_down: sol MC failed %d\n", 18845 err)); 18846 } 18847 } 18848 18849 ipif->ipif_multicast_up = 0; 18850 } 18851 18852 /* 18853 * Used when an interface comes up to recreate any extra routes on this 18854 * interface. 18855 */ 18856 static ire_t ** 18857 ipif_recover_ire(ipif_t *ipif) 18858 { 18859 mblk_t *mp; 18860 ire_t **ipif_saved_irep; 18861 ire_t **irep; 18862 18863 ip1dbg(("ipif_recover_ire(%s:%u)", ipif->ipif_ill->ill_name, 18864 ipif->ipif_id)); 18865 18866 mutex_enter(&ipif->ipif_saved_ire_lock); 18867 ipif_saved_irep = (ire_t **)kmem_zalloc(sizeof (ire_t *) * 18868 ipif->ipif_saved_ire_cnt, KM_NOSLEEP); 18869 if (ipif_saved_irep == NULL) { 18870 mutex_exit(&ipif->ipif_saved_ire_lock); 18871 return (NULL); 18872 } 18873 18874 irep = ipif_saved_irep; 18875 for (mp = ipif->ipif_saved_ire_mp; mp != NULL; mp = mp->b_cont) { 18876 ire_t *ire; 18877 queue_t *rfq; 18878 queue_t *stq; 18879 ifrt_t *ifrt; 18880 uchar_t *src_addr; 18881 uchar_t *gateway_addr; 18882 mblk_t *resolver_mp; 18883 ushort_t type; 18884 18885 /* 18886 * When the ire was initially created and then added in 18887 * ip_rt_add(), it was created either using ipif->ipif_net_type 18888 * in the case of a traditional interface route, or as one of 18889 * the IRE_OFFSUBNET types (with the exception of 18890 * IRE_HOST_REDIRECT which is created by icmp_redirect() and 18891 * which we don't need to save or recover). In the case where 18892 * ipif->ipif_net_type was IRE_LOOPBACK, ip_rt_add() will update 18893 * the ire_type to IRE_IF_NORESOLVER before calling ire_add() 18894 * to satisfy software like GateD and Sun Cluster which creates 18895 * routes using the the loopback interface's address as a 18896 * gateway. 18897 * 18898 * As ifrt->ifrt_type reflects the already updated ire_type and 18899 * since ire_create() expects that IRE_IF_NORESOLVER will have 18900 * a valid nce_res_mp field (which doesn't make sense for a 18901 * IRE_LOOPBACK), ire_create() will be called in the same way 18902 * here as in ip_rt_add(), namely using ipif->ipif_net_type when 18903 * the route looks like a traditional interface route (where 18904 * ifrt->ifrt_type & IRE_INTERFACE is true) and otherwise using 18905 * the saved ifrt->ifrt_type. This means that in the case where 18906 * ipif->ipif_net_type is IRE_LOOPBACK, the ire created by 18907 * ire_create() will be an IRE_LOOPBACK, it will then be turned 18908 * into an IRE_IF_NORESOLVER and then added by ire_add(). 18909 */ 18910 ifrt = (ifrt_t *)mp->b_rptr; 18911 if (ifrt->ifrt_type & IRE_INTERFACE) { 18912 rfq = NULL; 18913 stq = (ipif->ipif_net_type == IRE_IF_RESOLVER) 18914 ? ipif->ipif_rq : ipif->ipif_wq; 18915 src_addr = (ifrt->ifrt_flags & RTF_SETSRC) 18916 ? (uint8_t *)&ifrt->ifrt_src_addr 18917 : (uint8_t *)&ipif->ipif_src_addr; 18918 gateway_addr = NULL; 18919 resolver_mp = ipif->ipif_resolver_mp; 18920 type = ipif->ipif_net_type; 18921 } else if (ifrt->ifrt_type & IRE_BROADCAST) { 18922 /* Recover multiroute broadcast IRE. */ 18923 rfq = ipif->ipif_rq; 18924 stq = ipif->ipif_wq; 18925 src_addr = (ifrt->ifrt_flags & RTF_SETSRC) 18926 ? (uint8_t *)&ifrt->ifrt_src_addr 18927 : (uint8_t *)&ipif->ipif_src_addr; 18928 gateway_addr = (uint8_t *)&ifrt->ifrt_gateway_addr; 18929 resolver_mp = ipif->ipif_bcast_mp; 18930 type = ifrt->ifrt_type; 18931 } else { 18932 rfq = NULL; 18933 stq = NULL; 18934 src_addr = (ifrt->ifrt_flags & RTF_SETSRC) 18935 ? (uint8_t *)&ifrt->ifrt_src_addr : NULL; 18936 gateway_addr = (uint8_t *)&ifrt->ifrt_gateway_addr; 18937 resolver_mp = NULL; 18938 type = ifrt->ifrt_type; 18939 } 18940 18941 /* 18942 * Create a copy of the IRE with the saved address and netmask. 18943 */ 18944 ip1dbg(("ipif_recover_ire: creating IRE %s (%d) for " 18945 "0x%x/0x%x\n", 18946 ip_nv_lookup(ire_nv_tbl, ifrt->ifrt_type), ifrt->ifrt_type, 18947 ntohl(ifrt->ifrt_addr), 18948 ntohl(ifrt->ifrt_mask))); 18949 ire = ire_create( 18950 (uint8_t *)&ifrt->ifrt_addr, 18951 (uint8_t *)&ifrt->ifrt_mask, 18952 src_addr, 18953 gateway_addr, 18954 NULL, 18955 &ifrt->ifrt_max_frag, 18956 NULL, 18957 rfq, 18958 stq, 18959 type, 18960 resolver_mp, 18961 ipif, 18962 NULL, 18963 0, 18964 0, 18965 0, 18966 ifrt->ifrt_flags, 18967 &ifrt->ifrt_iulp_info, 18968 NULL, 18969 NULL); 18970 18971 if (ire == NULL) { 18972 mutex_exit(&ipif->ipif_saved_ire_lock); 18973 kmem_free(ipif_saved_irep, 18974 ipif->ipif_saved_ire_cnt * sizeof (ire_t *)); 18975 return (NULL); 18976 } 18977 18978 /* 18979 * Some software (for example, GateD and Sun Cluster) attempts 18980 * to create (what amount to) IRE_PREFIX routes with the 18981 * loopback address as the gateway. This is primarily done to 18982 * set up prefixes with the RTF_REJECT flag set (for example, 18983 * when generating aggregate routes.) 18984 * 18985 * If the IRE type (as defined by ipif->ipif_net_type) is 18986 * IRE_LOOPBACK, then we map the request into a 18987 * IRE_IF_NORESOLVER. 18988 */ 18989 if (ipif->ipif_net_type == IRE_LOOPBACK) 18990 ire->ire_type = IRE_IF_NORESOLVER; 18991 /* 18992 * ire held by ire_add, will be refreled' towards the 18993 * the end of ipif_up_done 18994 */ 18995 (void) ire_add(&ire, NULL, NULL, NULL, B_FALSE); 18996 *irep = ire; 18997 irep++; 18998 ip1dbg(("ipif_recover_ire: added ire %p\n", (void *)ire)); 18999 } 19000 mutex_exit(&ipif->ipif_saved_ire_lock); 19001 return (ipif_saved_irep); 19002 } 19003 19004 /* 19005 * Used to set the netmask and broadcast address to default values when the 19006 * interface is brought up. (Always called as writer.) 19007 */ 19008 static void 19009 ipif_set_default(ipif_t *ipif) 19010 { 19011 ASSERT(MUTEX_HELD(&ipif->ipif_ill->ill_lock)); 19012 19013 if (!ipif->ipif_isv6) { 19014 /* 19015 * Interface holds an IPv4 address. Default 19016 * mask is the natural netmask. 19017 */ 19018 if (!ipif->ipif_net_mask) { 19019 ipaddr_t v4mask; 19020 19021 v4mask = ip_net_mask(ipif->ipif_lcl_addr); 19022 V4MASK_TO_V6(v4mask, ipif->ipif_v6net_mask); 19023 } 19024 if (ipif->ipif_flags & IPIF_POINTOPOINT) { 19025 /* ipif_subnet is ipif_pp_dst_addr for pt-pt */ 19026 ipif->ipif_v6subnet = ipif->ipif_v6pp_dst_addr; 19027 } else { 19028 V6_MASK_COPY(ipif->ipif_v6lcl_addr, 19029 ipif->ipif_v6net_mask, ipif->ipif_v6subnet); 19030 } 19031 /* 19032 * NOTE: SunOS 4.X does this even if the broadcast address 19033 * has been already set thus we do the same here. 19034 */ 19035 if (ipif->ipif_flags & IPIF_BROADCAST) { 19036 ipaddr_t v4addr; 19037 19038 v4addr = ipif->ipif_subnet | ~ipif->ipif_net_mask; 19039 IN6_IPADDR_TO_V4MAPPED(v4addr, &ipif->ipif_v6brd_addr); 19040 } 19041 } else { 19042 /* 19043 * Interface holds an IPv6-only address. Default 19044 * mask is all-ones. 19045 */ 19046 if (IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6net_mask)) 19047 ipif->ipif_v6net_mask = ipv6_all_ones; 19048 if (ipif->ipif_flags & IPIF_POINTOPOINT) { 19049 /* ipif_subnet is ipif_pp_dst_addr for pt-pt */ 19050 ipif->ipif_v6subnet = ipif->ipif_v6pp_dst_addr; 19051 } else { 19052 V6_MASK_COPY(ipif->ipif_v6lcl_addr, 19053 ipif->ipif_v6net_mask, ipif->ipif_v6subnet); 19054 } 19055 } 19056 } 19057 19058 /* 19059 * Return 0 if this address can be used as local address without causing 19060 * duplicate address problems. Otherwise, return EADDRNOTAVAIL if the address 19061 * is already up on a different ill, and EADDRINUSE if it's up on the same ill. 19062 * Special checks are needed to allow the same IPv6 link-local address 19063 * on different ills. 19064 * TODO: allowing the same site-local address on different ill's. 19065 */ 19066 int 19067 ip_addr_availability_check(ipif_t *new_ipif) 19068 { 19069 in6_addr_t our_v6addr; 19070 ill_t *ill; 19071 ipif_t *ipif; 19072 ill_walk_context_t ctx; 19073 19074 ASSERT(IAM_WRITER_IPIF(new_ipif)); 19075 ASSERT(MUTEX_HELD(&ip_addr_avail_lock)); 19076 ASSERT(RW_READ_HELD(&ill_g_lock)); 19077 19078 new_ipif->ipif_flags &= ~IPIF_UNNUMBERED; 19079 if (IN6_IS_ADDR_UNSPECIFIED(&new_ipif->ipif_v6lcl_addr) || 19080 IN6_IS_ADDR_V4MAPPED_ANY(&new_ipif->ipif_v6lcl_addr)) 19081 return (0); 19082 19083 our_v6addr = new_ipif->ipif_v6lcl_addr; 19084 19085 if (new_ipif->ipif_isv6) 19086 ill = ILL_START_WALK_V6(&ctx); 19087 else 19088 ill = ILL_START_WALK_V4(&ctx); 19089 19090 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 19091 for (ipif = ill->ill_ipif; ipif != NULL; 19092 ipif = ipif->ipif_next) { 19093 if ((ipif == new_ipif) || 19094 !(ipif->ipif_flags & IPIF_UP) || 19095 (ipif->ipif_flags & IPIF_UNNUMBERED)) 19096 continue; 19097 if (IN6_ARE_ADDR_EQUAL(&ipif->ipif_v6lcl_addr, 19098 &our_v6addr)) { 19099 if (new_ipif->ipif_flags & IPIF_POINTOPOINT) 19100 new_ipif->ipif_flags |= IPIF_UNNUMBERED; 19101 else if (ipif->ipif_flags & IPIF_POINTOPOINT) 19102 ipif->ipif_flags |= IPIF_UNNUMBERED; 19103 else if (IN6_IS_ADDR_LINKLOCAL(&our_v6addr) && 19104 new_ipif->ipif_ill != ill) 19105 continue; 19106 else if (IN6_IS_ADDR_SITELOCAL(&our_v6addr) && 19107 new_ipif->ipif_ill != ill) 19108 continue; 19109 else if (new_ipif->ipif_zoneid != 19110 ipif->ipif_zoneid && 19111 ipif->ipif_zoneid != ALL_ZONES && 19112 (ill->ill_phyint->phyint_flags & 19113 PHYI_LOOPBACK)) 19114 continue; 19115 else if (new_ipif->ipif_ill == ill) 19116 return (EADDRINUSE); 19117 else 19118 return (EADDRNOTAVAIL); 19119 } 19120 } 19121 } 19122 19123 return (0); 19124 } 19125 19126 /* 19127 * Bring up an ipif: bring up arp/ndp, bring up the DLPI stream, and add 19128 * IREs for the ipif. 19129 * When the routine returns EINPROGRESS then mp has been consumed and 19130 * the ioctl will be acked from ip_rput_dlpi. 19131 */ 19132 static int 19133 ipif_up(ipif_t *ipif, queue_t *q, mblk_t *mp) 19134 { 19135 ill_t *ill = ipif->ipif_ill; 19136 boolean_t isv6 = ipif->ipif_isv6; 19137 int err = 0; 19138 boolean_t success; 19139 19140 ASSERT(IAM_WRITER_IPIF(ipif)); 19141 19142 ip1dbg(("ipif_up(%s:%u)\n", ill->ill_name, ipif->ipif_id)); 19143 19144 /* Shouldn't get here if it is already up. */ 19145 if (ipif->ipif_flags & IPIF_UP) 19146 return (EALREADY); 19147 19148 /* Skip arp/ndp for any loopback interface. */ 19149 if (ill->ill_wq != NULL) { 19150 conn_t *connp = Q_TO_CONN(q); 19151 ipsq_t *ipsq = ill->ill_phyint->phyint_ipsq; 19152 19153 if (!ill->ill_dl_up) { 19154 /* 19155 * ill_dl_up is not yet set. i.e. we are yet to 19156 * DL_BIND with the driver and this is the first 19157 * logical interface on the ill to become "up". 19158 * Tell the driver to get going (via DL_BIND_REQ). 19159 * Note that changing "significant" IFF_ flags 19160 * address/netmask etc cause a down/up dance, but 19161 * does not cause an unbind (DL_UNBIND) with the driver 19162 */ 19163 return (ill_dl_up(ill, ipif, mp, q)); 19164 } 19165 19166 /* 19167 * ipif_resolver_up may end up sending an 19168 * AR_INTERFACE_UP message to ARP, which would, in 19169 * turn send a DLPI message to the driver. ioctls are 19170 * serialized and so we cannot send more than one 19171 * interface up message at a time. If ipif_resolver_up 19172 * does send an interface up message to ARP, we get 19173 * EINPROGRESS and we will complete in ip_arp_done. 19174 */ 19175 19176 ASSERT(connp != NULL); 19177 ASSERT(ipsq->ipsq_pending_mp == NULL); 19178 mutex_enter(&connp->conn_lock); 19179 mutex_enter(&ill->ill_lock); 19180 success = ipsq_pending_mp_add(connp, ipif, q, mp, 0); 19181 mutex_exit(&ill->ill_lock); 19182 mutex_exit(&connp->conn_lock); 19183 if (!success) 19184 return (EINTR); 19185 19186 /* 19187 * Crank up IPv6 neighbor discovery 19188 * Unlike ARP, this should complete when 19189 * ipif_ndp_up returns. However, for 19190 * ILLF_XRESOLV interfaces we also send a 19191 * AR_INTERFACE_UP to the external resolver. 19192 * That ioctl will complete in ip_rput. 19193 */ 19194 if (isv6) { 19195 err = ipif_ndp_up(ipif, &ipif->ipif_v6lcl_addr, 19196 B_FALSE); 19197 if (err != 0) { 19198 if (err != EINPROGRESS) 19199 mp = ipsq_pending_mp_get(ipsq, &connp); 19200 return (err); 19201 } 19202 } 19203 /* Now, ARP */ 19204 err = ipif_resolver_up(ipif, Res_act_initial); 19205 if (err == EINPROGRESS) { 19206 /* We will complete it in ip_arp_done */ 19207 return (err); 19208 } 19209 mp = ipsq_pending_mp_get(ipsq, &connp); 19210 ASSERT(mp != NULL); 19211 if (err != 0) 19212 return (err); 19213 } else { 19214 /* 19215 * Interfaces without underlying hardware don't do duplicate 19216 * address detection. 19217 */ 19218 ASSERT(!(ipif->ipif_flags & IPIF_DUPLICATE)); 19219 ipif->ipif_addr_ready = 1; 19220 } 19221 return (isv6 ? ipif_up_done_v6(ipif) : ipif_up_done(ipif)); 19222 } 19223 19224 /* 19225 * Perform a bind for the physical device. 19226 * When the routine returns EINPROGRESS then mp has been consumed and 19227 * the ioctl will be acked from ip_rput_dlpi. 19228 * Allocate an unbind message and save it until ipif_down. 19229 */ 19230 static int 19231 ill_dl_up(ill_t *ill, ipif_t *ipif, mblk_t *mp, queue_t *q) 19232 { 19233 mblk_t *areq_mp = NULL; 19234 mblk_t *bind_mp = NULL; 19235 mblk_t *unbind_mp = NULL; 19236 conn_t *connp; 19237 boolean_t success; 19238 19239 ip1dbg(("ill_dl_up(%s)\n", ill->ill_name)); 19240 ASSERT(IAM_WRITER_ILL(ill)); 19241 19242 ASSERT(mp != NULL); 19243 19244 /* Create a resolver cookie for ARP */ 19245 if (!ill->ill_isv6 && ill->ill_net_type == IRE_IF_RESOLVER) { 19246 areq_t *areq; 19247 uint16_t sap_addr; 19248 19249 areq_mp = ill_arp_alloc(ill, 19250 (uchar_t *)&ip_areq_template, 0); 19251 if (areq_mp == NULL) { 19252 return (ENOMEM); 19253 } 19254 freemsg(ill->ill_resolver_mp); 19255 ill->ill_resolver_mp = areq_mp; 19256 areq = (areq_t *)areq_mp->b_rptr; 19257 sap_addr = ill->ill_sap; 19258 bcopy(&sap_addr, areq->areq_sap, sizeof (sap_addr)); 19259 /* 19260 * Wait till we call ill_pending_mp_add to determine 19261 * the success before we free the ill_resolver_mp and 19262 * attach areq_mp in it's place. 19263 */ 19264 } 19265 bind_mp = ip_dlpi_alloc(sizeof (dl_bind_req_t) + sizeof (long), 19266 DL_BIND_REQ); 19267 if (bind_mp == NULL) 19268 goto bad; 19269 ((dl_bind_req_t *)bind_mp->b_rptr)->dl_sap = ill->ill_sap; 19270 ((dl_bind_req_t *)bind_mp->b_rptr)->dl_service_mode = DL_CLDLS; 19271 19272 unbind_mp = ip_dlpi_alloc(sizeof (dl_unbind_req_t), DL_UNBIND_REQ); 19273 if (unbind_mp == NULL) 19274 goto bad; 19275 19276 /* 19277 * Record state needed to complete this operation when the 19278 * DL_BIND_ACK shows up. Also remember the pre-allocated mblks. 19279 */ 19280 if (WR(q)->q_next == NULL) { 19281 connp = Q_TO_CONN(q); 19282 mutex_enter(&connp->conn_lock); 19283 } else { 19284 connp = NULL; 19285 } 19286 mutex_enter(&ipif->ipif_ill->ill_lock); 19287 success = ipsq_pending_mp_add(connp, ipif, q, mp, 0); 19288 mutex_exit(&ipif->ipif_ill->ill_lock); 19289 if (connp != NULL) 19290 mutex_exit(&connp->conn_lock); 19291 if (!success) 19292 goto bad; 19293 19294 /* 19295 * Save the unbind message for ill_dl_down(); it will be consumed when 19296 * the interface goes down. 19297 */ 19298 ASSERT(ill->ill_unbind_mp == NULL); 19299 ill->ill_unbind_mp = unbind_mp; 19300 19301 ill_dlpi_send(ill, bind_mp); 19302 /* Send down link-layer capabilities probe if not already done. */ 19303 ill_capability_probe(ill); 19304 19305 /* 19306 * Sysid used to rely on the fact that netboots set domainname 19307 * and the like. Now that miniroot boots aren't strictly netboots 19308 * and miniroot network configuration is driven from userland 19309 * these things still need to be set. This situation can be detected 19310 * by comparing the interface being configured here to the one 19311 * dhcack was set to reference by the boot loader. Once sysid is 19312 * converted to use dhcp_ipc_getinfo() this call can go away. 19313 */ 19314 if ((ipif->ipif_flags & IPIF_DHCPRUNNING) && (dhcack != NULL) && 19315 (strcmp(ill->ill_name, dhcack) == 0) && 19316 (strlen(srpc_domain) == 0)) { 19317 if (dhcpinit() != 0) 19318 cmn_err(CE_WARN, "no cached dhcp response"); 19319 } 19320 19321 /* 19322 * This operation will complete in ip_rput_dlpi with either 19323 * a DL_BIND_ACK or DL_ERROR_ACK. 19324 */ 19325 return (EINPROGRESS); 19326 bad: 19327 ip1dbg(("ill_dl_up(%s) FAILED\n", ill->ill_name)); 19328 /* 19329 * We don't have to check for possible removal from illgrp 19330 * as we have not yet inserted in illgrp. For groups 19331 * without names, this ipif is still not UP and hence 19332 * this could not have possibly had any influence in forming 19333 * groups. 19334 */ 19335 19336 if (bind_mp != NULL) 19337 freemsg(bind_mp); 19338 if (unbind_mp != NULL) 19339 freemsg(unbind_mp); 19340 return (ENOMEM); 19341 } 19342 19343 uint_t ip_loopback_mtuplus = IP_LOOPBACK_MTU + IP_SIMPLE_HDR_LENGTH + 20; 19344 19345 /* 19346 * DLPI and ARP is up. 19347 * Create all the IREs associated with an interface bring up multicast. 19348 * Set the interface flag and finish other initialization 19349 * that potentially had to be differed to after DL_BIND_ACK. 19350 */ 19351 int 19352 ipif_up_done(ipif_t *ipif) 19353 { 19354 ire_t *ire_array[20]; 19355 ire_t **irep = ire_array; 19356 ire_t **irep1; 19357 ipaddr_t net_mask = 0; 19358 ipaddr_t subnet_mask, route_mask; 19359 ill_t *ill = ipif->ipif_ill; 19360 queue_t *stq; 19361 ipif_t *src_ipif; 19362 ipif_t *tmp_ipif; 19363 boolean_t flush_ire_cache = B_TRUE; 19364 int err = 0; 19365 phyint_t *phyi; 19366 ire_t **ipif_saved_irep = NULL; 19367 int ipif_saved_ire_cnt; 19368 int cnt; 19369 boolean_t src_ipif_held = B_FALSE; 19370 boolean_t ire_added = B_FALSE; 19371 boolean_t loopback = B_FALSE; 19372 19373 ip1dbg(("ipif_up_done(%s:%u)\n", 19374 ipif->ipif_ill->ill_name, ipif->ipif_id)); 19375 /* Check if this is a loopback interface */ 19376 if (ipif->ipif_ill->ill_wq == NULL) 19377 loopback = B_TRUE; 19378 19379 ASSERT(!MUTEX_HELD(&ipif->ipif_ill->ill_lock)); 19380 /* 19381 * If all other interfaces for this ill are down or DEPRECATED, 19382 * or otherwise unsuitable for source address selection, remove 19383 * any IRE_CACHE entries for this ill to make sure source 19384 * address selection gets to take this new ipif into account. 19385 * No need to hold ill_lock while traversing the ipif list since 19386 * we are writer 19387 */ 19388 for (tmp_ipif = ill->ill_ipif; tmp_ipif; 19389 tmp_ipif = tmp_ipif->ipif_next) { 19390 if (((tmp_ipif->ipif_flags & 19391 (IPIF_NOXMIT|IPIF_ANYCAST|IPIF_NOLOCAL|IPIF_DEPRECATED)) || 19392 !(tmp_ipif->ipif_flags & IPIF_UP)) || 19393 (tmp_ipif == ipif)) 19394 continue; 19395 /* first useable pre-existing interface */ 19396 flush_ire_cache = B_FALSE; 19397 break; 19398 } 19399 if (flush_ire_cache) 19400 ire_walk_ill_v4(MATCH_IRE_ILL_GROUP | MATCH_IRE_TYPE, 19401 IRE_CACHE, ill_ipif_cache_delete, (char *)ill, ill); 19402 19403 /* 19404 * Figure out which way the send-to queue should go. Only 19405 * IRE_IF_RESOLVER or IRE_IF_NORESOLVER or IRE_LOOPBACK 19406 * should show up here. 19407 */ 19408 switch (ill->ill_net_type) { 19409 case IRE_IF_RESOLVER: 19410 stq = ill->ill_rq; 19411 break; 19412 case IRE_IF_NORESOLVER: 19413 case IRE_LOOPBACK: 19414 stq = ill->ill_wq; 19415 break; 19416 default: 19417 return (EINVAL); 19418 } 19419 19420 if (ill->ill_phyint->phyint_flags & PHYI_LOOPBACK) { 19421 /* 19422 * lo0:1 and subsequent ipifs were marked IRE_LOCAL in 19423 * ipif_lookup_on_name(), but in the case of zones we can have 19424 * several loopback addresses on lo0. So all the interfaces with 19425 * loopback addresses need to be marked IRE_LOOPBACK. 19426 */ 19427 if (V4_PART_OF_V6(ipif->ipif_v6lcl_addr) == 19428 htonl(INADDR_LOOPBACK)) 19429 ipif->ipif_ire_type = IRE_LOOPBACK; 19430 else 19431 ipif->ipif_ire_type = IRE_LOCAL; 19432 } 19433 19434 if (ipif->ipif_flags & (IPIF_NOLOCAL|IPIF_ANYCAST|IPIF_DEPRECATED)) { 19435 /* 19436 * Can't use our source address. Select a different 19437 * source address for the IRE_INTERFACE and IRE_LOCAL 19438 */ 19439 src_ipif = ipif_select_source(ipif->ipif_ill, 19440 ipif->ipif_subnet, ipif->ipif_zoneid); 19441 if (src_ipif == NULL) 19442 src_ipif = ipif; /* Last resort */ 19443 else 19444 src_ipif_held = B_TRUE; 19445 } else { 19446 src_ipif = ipif; 19447 } 19448 19449 /* Create all the IREs associated with this interface */ 19450 if ((ipif->ipif_lcl_addr != INADDR_ANY) && 19451 !(ipif->ipif_flags & IPIF_NOLOCAL)) { 19452 19453 /* 19454 * If we're on a labeled system then make sure that zone- 19455 * private addresses have proper remote host database entries. 19456 */ 19457 if (is_system_labeled() && 19458 ipif->ipif_ire_type != IRE_LOOPBACK && 19459 !tsol_check_interface_address(ipif)) 19460 return (EINVAL); 19461 19462 /* Register the source address for __sin6_src_id */ 19463 err = ip_srcid_insert(&ipif->ipif_v6lcl_addr, 19464 ipif->ipif_zoneid); 19465 if (err != 0) { 19466 ip0dbg(("ipif_up_done: srcid_insert %d\n", err)); 19467 return (err); 19468 } 19469 19470 /* If the interface address is set, create the local IRE. */ 19471 ip1dbg(("ipif_up_done: 0x%p creating IRE 0x%x for 0x%x\n", 19472 (void *)ipif, 19473 ipif->ipif_ire_type, 19474 ntohl(ipif->ipif_lcl_addr))); 19475 *irep++ = ire_create( 19476 (uchar_t *)&ipif->ipif_lcl_addr, /* dest address */ 19477 (uchar_t *)&ip_g_all_ones, /* mask */ 19478 (uchar_t *)&src_ipif->ipif_src_addr, /* source address */ 19479 NULL, /* no gateway */ 19480 NULL, 19481 &ip_loopback_mtuplus, /* max frag size */ 19482 NULL, 19483 ipif->ipif_rq, /* recv-from queue */ 19484 NULL, /* no send-to queue */ 19485 ipif->ipif_ire_type, /* LOCAL or LOOPBACK */ 19486 NULL, 19487 ipif, 19488 NULL, 19489 0, 19490 0, 19491 0, 19492 (ipif->ipif_flags & IPIF_PRIVATE) ? 19493 RTF_PRIVATE : 0, 19494 &ire_uinfo_null, 19495 NULL, 19496 NULL); 19497 } else { 19498 ip1dbg(( 19499 "ipif_up_done: not creating IRE %d for 0x%x: flags 0x%x\n", 19500 ipif->ipif_ire_type, 19501 ntohl(ipif->ipif_lcl_addr), 19502 (uint_t)ipif->ipif_flags)); 19503 } 19504 if ((ipif->ipif_lcl_addr != INADDR_ANY) && 19505 !(ipif->ipif_flags & IPIF_NOLOCAL)) { 19506 net_mask = ip_net_mask(ipif->ipif_lcl_addr); 19507 } else { 19508 net_mask = htonl(IN_CLASSA_NET); /* fallback */ 19509 } 19510 19511 subnet_mask = ipif->ipif_net_mask; 19512 19513 /* 19514 * If mask was not specified, use natural netmask of 19515 * interface address. Also, store this mask back into the 19516 * ipif struct. 19517 */ 19518 if (subnet_mask == 0) { 19519 subnet_mask = net_mask; 19520 V4MASK_TO_V6(subnet_mask, ipif->ipif_v6net_mask); 19521 V6_MASK_COPY(ipif->ipif_v6lcl_addr, ipif->ipif_v6net_mask, 19522 ipif->ipif_v6subnet); 19523 } 19524 19525 /* Set up the IRE_IF_RESOLVER or IRE_IF_NORESOLVER, as appropriate. */ 19526 if (stq != NULL && !(ipif->ipif_flags & IPIF_NOXMIT) && 19527 ipif->ipif_subnet != INADDR_ANY) { 19528 /* ipif_subnet is ipif_pp_dst_addr for pt-pt */ 19529 19530 if (ipif->ipif_flags & IPIF_POINTOPOINT) { 19531 route_mask = IP_HOST_MASK; 19532 } else { 19533 route_mask = subnet_mask; 19534 } 19535 19536 ip1dbg(("ipif_up_done: ipif 0x%p ill 0x%p " 19537 "creating if IRE ill_net_type 0x%x for 0x%x\n", 19538 (void *)ipif, (void *)ill, 19539 ill->ill_net_type, 19540 ntohl(ipif->ipif_subnet))); 19541 *irep++ = ire_create( 19542 (uchar_t *)&ipif->ipif_subnet, /* dest address */ 19543 (uchar_t *)&route_mask, /* mask */ 19544 (uchar_t *)&src_ipif->ipif_src_addr, /* src addr */ 19545 NULL, /* no gateway */ 19546 NULL, 19547 &ipif->ipif_mtu, /* max frag */ 19548 NULL, 19549 NULL, /* no recv queue */ 19550 stq, /* send-to queue */ 19551 ill->ill_net_type, /* IF_[NO]RESOLVER */ 19552 ill->ill_resolver_mp, /* xmit header */ 19553 ipif, 19554 NULL, 19555 0, 19556 0, 19557 0, 19558 (ipif->ipif_flags & IPIF_PRIVATE) ? RTF_PRIVATE: 0, 19559 &ire_uinfo_null, 19560 NULL, 19561 NULL); 19562 } 19563 19564 /* 19565 * If the interface address is set, create the broadcast IREs. 19566 * 19567 * ire_create_bcast checks if the proposed new IRE matches 19568 * any existing IRE's with the same physical interface (ILL). 19569 * This should get rid of duplicates. 19570 * ire_create_bcast also check IPIF_NOXMIT and does not create 19571 * any broadcast ires. 19572 */ 19573 if ((ipif->ipif_subnet != INADDR_ANY) && 19574 (ipif->ipif_flags & IPIF_BROADCAST)) { 19575 ipaddr_t addr; 19576 19577 ip1dbg(("ipif_up_done: creating broadcast IRE\n")); 19578 irep = ire_check_and_create_bcast(ipif, 0, irep, 19579 (MATCH_IRE_TYPE | MATCH_IRE_ILL)); 19580 irep = ire_check_and_create_bcast(ipif, INADDR_BROADCAST, irep, 19581 (MATCH_IRE_TYPE | MATCH_IRE_ILL)); 19582 19583 /* 19584 * For backward compatibility, we need to create net 19585 * broadcast ire's based on the old "IP address class 19586 * system." The reason is that some old machines only 19587 * respond to these class derived net broadcast. 19588 * 19589 * But we should not create these net broadcast ire's if 19590 * the subnet_mask is shorter than the IP address class based 19591 * derived netmask. Otherwise, we may create a net 19592 * broadcast address which is the same as an IP address 19593 * on the subnet. Then TCP will refuse to talk to that 19594 * address. 19595 * 19596 * Nor do we need IRE_BROADCAST ire's for the interface 19597 * with the netmask as 0xFFFFFFFF, as IRE_LOCAL for that 19598 * interface is already created. Creating these broadcast 19599 * ire's will only create confusion as the "addr" is going 19600 * to be same as that of the IP address of the interface. 19601 */ 19602 if (net_mask < subnet_mask) { 19603 addr = net_mask & ipif->ipif_subnet; 19604 irep = ire_check_and_create_bcast(ipif, addr, irep, 19605 (MATCH_IRE_TYPE | MATCH_IRE_ILL)); 19606 irep = ire_check_and_create_bcast(ipif, 19607 ~net_mask | addr, irep, 19608 (MATCH_IRE_TYPE | MATCH_IRE_ILL)); 19609 } 19610 19611 if (subnet_mask != 0xFFFFFFFF) { 19612 addr = ipif->ipif_subnet; 19613 irep = ire_check_and_create_bcast(ipif, addr, irep, 19614 (MATCH_IRE_TYPE | MATCH_IRE_ILL)); 19615 irep = ire_check_and_create_bcast(ipif, 19616 ~subnet_mask|addr, irep, 19617 (MATCH_IRE_TYPE | MATCH_IRE_ILL)); 19618 } 19619 } 19620 19621 ASSERT(!MUTEX_HELD(&ipif->ipif_ill->ill_lock)); 19622 19623 /* If an earlier ire_create failed, get out now */ 19624 for (irep1 = irep; irep1 > ire_array; ) { 19625 irep1--; 19626 if (*irep1 == NULL) { 19627 ip1dbg(("ipif_up_done: NULL ire found in ire_array\n")); 19628 err = ENOMEM; 19629 goto bad; 19630 } 19631 } 19632 19633 /* 19634 * Need to atomically check for ip_addr_availablity_check 19635 * under ip_addr_avail_lock, and if it fails got bad, and remove 19636 * from group also.The ill_g_lock is grabbed as reader 19637 * just to make sure no new ills or new ipifs are being added 19638 * to the system while we are checking the uniqueness of addresses. 19639 */ 19640 rw_enter(&ill_g_lock, RW_READER); 19641 mutex_enter(&ip_addr_avail_lock); 19642 /* Mark it up, and increment counters. */ 19643 ill->ill_ipif_up_count++; 19644 ipif->ipif_flags |= IPIF_UP; 19645 err = ip_addr_availability_check(ipif); 19646 mutex_exit(&ip_addr_avail_lock); 19647 rw_exit(&ill_g_lock); 19648 19649 if (err != 0) { 19650 /* 19651 * Our address may already be up on the same ill. In this case, 19652 * the ARP entry for our ipif replaced the one for the other 19653 * ipif. So we don't want to delete it (otherwise the other ipif 19654 * would be unable to send packets). 19655 * ip_addr_availability_check() identifies this case for us and 19656 * returns EADDRINUSE; we need to turn it into EADDRNOTAVAIL 19657 * which is the expected error code. 19658 */ 19659 if (err == EADDRINUSE) { 19660 freemsg(ipif->ipif_arp_del_mp); 19661 ipif->ipif_arp_del_mp = NULL; 19662 err = EADDRNOTAVAIL; 19663 } 19664 ill->ill_ipif_up_count--; 19665 ipif->ipif_flags &= ~IPIF_UP; 19666 goto bad; 19667 } 19668 19669 /* 19670 * Add in all newly created IREs. ire_create_bcast() has 19671 * already checked for duplicates of the IRE_BROADCAST type. 19672 * We want to add before we call ifgrp_insert which wants 19673 * to know whether IRE_IF_RESOLVER exists or not. 19674 * 19675 * NOTE : We refrele the ire though we may branch to "bad" 19676 * later on where we do ire_delete. This is okay 19677 * because nobody can delete it as we are running 19678 * exclusively. 19679 */ 19680 for (irep1 = irep; irep1 > ire_array; ) { 19681 irep1--; 19682 ASSERT(!MUTEX_HELD(&((*irep1)->ire_ipif->ipif_ill->ill_lock))); 19683 /* 19684 * refheld by ire_add. refele towards the end of the func 19685 */ 19686 (void) ire_add(irep1, NULL, NULL, NULL, B_FALSE); 19687 } 19688 ire_added = B_TRUE; 19689 /* 19690 * Form groups if possible. 19691 * 19692 * If we are supposed to be in a ill_group with a name, insert it 19693 * now as we know that at least one ipif is UP. Otherwise form 19694 * nameless groups. 19695 * 19696 * If ip_enable_group_ifs is set and ipif address is not 0, insert 19697 * this ipif into the appropriate interface group, or create a 19698 * new one. If this is already in a nameless group, we try to form 19699 * a bigger group looking at other ills potentially sharing this 19700 * ipif's prefix. 19701 */ 19702 phyi = ill->ill_phyint; 19703 if (phyi->phyint_groupname_len != 0) { 19704 ASSERT(phyi->phyint_groupname != NULL); 19705 if (ill->ill_ipif_up_count == 1) { 19706 ASSERT(ill->ill_group == NULL); 19707 err = illgrp_insert(&illgrp_head_v4, ill, 19708 phyi->phyint_groupname, NULL, B_TRUE); 19709 if (err != 0) { 19710 ip1dbg(("ipif_up_done: illgrp allocation " 19711 "failed, error %d\n", err)); 19712 goto bad; 19713 } 19714 } 19715 ASSERT(ill->ill_group != NULL); 19716 } 19717 19718 /* 19719 * When this is part of group, we need to make sure that 19720 * any broadcast ires created because of this ipif coming 19721 * UP gets marked/cleared with IRE_MARK_NORECV appropriately 19722 * so that we don't receive duplicate broadcast packets. 19723 */ 19724 if (ill->ill_group != NULL && ill->ill_ipif_up_count != 0) 19725 ipif_renominate_bcast(ipif); 19726 19727 /* Recover any additional IRE_IF_[NO]RESOLVER entries for this ipif */ 19728 ipif_saved_ire_cnt = ipif->ipif_saved_ire_cnt; 19729 ipif_saved_irep = ipif_recover_ire(ipif); 19730 19731 if (!loopback) { 19732 /* 19733 * If the broadcast address has been set, make sure it makes 19734 * sense based on the interface address. 19735 * Only match on ill since we are sharing broadcast addresses. 19736 */ 19737 if ((ipif->ipif_brd_addr != INADDR_ANY) && 19738 (ipif->ipif_flags & IPIF_BROADCAST)) { 19739 ire_t *ire; 19740 19741 ire = ire_ctable_lookup(ipif->ipif_brd_addr, 0, 19742 IRE_BROADCAST, ipif, ALL_ZONES, 19743 NULL, (MATCH_IRE_TYPE | MATCH_IRE_ILL)); 19744 19745 if (ire == NULL) { 19746 /* 19747 * If there isn't a matching broadcast IRE, 19748 * revert to the default for this netmask. 19749 */ 19750 ipif->ipif_v6brd_addr = ipv6_all_zeros; 19751 mutex_enter(&ipif->ipif_ill->ill_lock); 19752 ipif_set_default(ipif); 19753 mutex_exit(&ipif->ipif_ill->ill_lock); 19754 } else { 19755 ire_refrele(ire); 19756 } 19757 } 19758 19759 } 19760 19761 /* This is the first interface on this ill */ 19762 if (ipif->ipif_ipif_up_count == 1 && !loopback) { 19763 /* 19764 * Need to recover all multicast memberships in the driver. 19765 * This had to be deferred until we had attached. 19766 */ 19767 ill_recover_multicast(ill); 19768 } 19769 /* Join the allhosts multicast address */ 19770 ipif_multicast_up(ipif); 19771 19772 if (!loopback) { 19773 /* 19774 * See whether anybody else would benefit from the 19775 * new ipif that we added. We call this always rather 19776 * than while adding a non-IPIF_NOLOCAL/DEPRECATED/ANYCAST 19777 * ipif is for the benefit of illgrp_insert (done above) 19778 * which does not do source address selection as it does 19779 * not want to re-create interface routes that we are 19780 * having reference to it here. 19781 */ 19782 ill_update_source_selection(ill); 19783 } 19784 19785 for (irep1 = irep; irep1 > ire_array; ) { 19786 irep1--; 19787 if (*irep1 != NULL) { 19788 /* was held in ire_add */ 19789 ire_refrele(*irep1); 19790 } 19791 } 19792 19793 cnt = ipif_saved_ire_cnt; 19794 for (irep1 = ipif_saved_irep; cnt > 0; irep1++, cnt--) { 19795 if (*irep1 != NULL) { 19796 /* was held in ire_add */ 19797 ire_refrele(*irep1); 19798 } 19799 } 19800 19801 if (!loopback && ipif->ipif_addr_ready) { 19802 /* Broadcast an address mask reply. */ 19803 ipif_mask_reply(ipif); 19804 } 19805 if (ipif_saved_irep != NULL) { 19806 kmem_free(ipif_saved_irep, 19807 ipif_saved_ire_cnt * sizeof (ire_t *)); 19808 } 19809 if (src_ipif_held) 19810 ipif_refrele(src_ipif); 19811 19812 /* 19813 * This had to be deferred until we had bound. Tell routing sockets and 19814 * others that this interface is up if it looks like the address has 19815 * been validated. Otherwise, if it isn't ready yet, wait for 19816 * duplicate address detection to do its thing. 19817 */ 19818 if (ipif->ipif_addr_ready) { 19819 ip_rts_ifmsg(ipif); 19820 ip_rts_newaddrmsg(RTM_ADD, 0, ipif); 19821 /* Let SCTP update the status for this ipif */ 19822 sctp_update_ipif(ipif, SCTP_IPIF_UP); 19823 } 19824 return (0); 19825 19826 bad: 19827 ip1dbg(("ipif_up_done: FAILED \n")); 19828 /* 19829 * We don't have to bother removing from ill groups because 19830 * 19831 * 1) For groups with names, we insert only when the first ipif 19832 * comes up. In that case if it fails, it will not be in any 19833 * group. So, we need not try to remove for that case. 19834 * 19835 * 2) For groups without names, either we tried to insert ipif_ill 19836 * in a group as singleton or found some other group to become 19837 * a bigger group. For the former, if it fails we don't have 19838 * anything to do as ipif_ill is not in the group and for the 19839 * latter, there are no failures in illgrp_insert/illgrp_delete 19840 * (ENOMEM can't occur for this. Check ifgrp_insert). 19841 */ 19842 while (irep > ire_array) { 19843 irep--; 19844 if (*irep != NULL) { 19845 ire_delete(*irep); 19846 if (ire_added) 19847 ire_refrele(*irep); 19848 } 19849 } 19850 (void) ip_srcid_remove(&ipif->ipif_v6lcl_addr, ipif->ipif_zoneid); 19851 19852 if (ipif_saved_irep != NULL) { 19853 kmem_free(ipif_saved_irep, 19854 ipif_saved_ire_cnt * sizeof (ire_t *)); 19855 } 19856 if (src_ipif_held) 19857 ipif_refrele(src_ipif); 19858 19859 ipif_arp_down(ipif); 19860 return (err); 19861 } 19862 19863 /* 19864 * Turn off the ARP with the ILLF_NOARP flag. 19865 */ 19866 static int 19867 ill_arp_off(ill_t *ill) 19868 { 19869 mblk_t *arp_off_mp = NULL; 19870 mblk_t *arp_on_mp = NULL; 19871 19872 ip1dbg(("ill_arp_off(%s)\n", ill->ill_name)); 19873 19874 ASSERT(IAM_WRITER_ILL(ill)); 19875 ASSERT(ill->ill_net_type == IRE_IF_RESOLVER); 19876 19877 /* 19878 * If the on message is still around we've already done 19879 * an arp_off without doing an arp_on thus there is no 19880 * work needed. 19881 */ 19882 if (ill->ill_arp_on_mp != NULL) 19883 return (0); 19884 19885 /* 19886 * Allocate an ARP on message (to be saved) and an ARP off message 19887 */ 19888 arp_off_mp = ill_arp_alloc(ill, (uchar_t *)&ip_aroff_template, 0); 19889 if (!arp_off_mp) 19890 return (ENOMEM); 19891 19892 arp_on_mp = ill_arp_alloc(ill, (uchar_t *)&ip_aron_template, 0); 19893 if (!arp_on_mp) 19894 goto failed; 19895 19896 ASSERT(ill->ill_arp_on_mp == NULL); 19897 ill->ill_arp_on_mp = arp_on_mp; 19898 19899 /* Send an AR_INTERFACE_OFF request */ 19900 putnext(ill->ill_rq, arp_off_mp); 19901 return (0); 19902 failed: 19903 19904 if (arp_off_mp) 19905 freemsg(arp_off_mp); 19906 return (ENOMEM); 19907 } 19908 19909 /* 19910 * Turn on ARP by turning off the ILLF_NOARP flag. 19911 */ 19912 static int 19913 ill_arp_on(ill_t *ill) 19914 { 19915 mblk_t *mp; 19916 19917 ip1dbg(("ipif_arp_on(%s)\n", ill->ill_name)); 19918 19919 ASSERT(ill->ill_net_type == IRE_IF_RESOLVER); 19920 19921 ASSERT(IAM_WRITER_ILL(ill)); 19922 /* 19923 * Send an AR_INTERFACE_ON request if we have already done 19924 * an arp_off (which allocated the message). 19925 */ 19926 if (ill->ill_arp_on_mp != NULL) { 19927 mp = ill->ill_arp_on_mp; 19928 ill->ill_arp_on_mp = NULL; 19929 putnext(ill->ill_rq, mp); 19930 } 19931 return (0); 19932 } 19933 19934 /* 19935 * Called after either deleting ill from the group or when setting 19936 * FAILED or STANDBY on the interface. 19937 */ 19938 static void 19939 illgrp_reset_schednext(ill_t *ill) 19940 { 19941 ill_group_t *illgrp; 19942 ill_t *save_ill; 19943 19944 ASSERT(IAM_WRITER_ILL(ill)); 19945 /* 19946 * When called from illgrp_delete, ill_group will be non-NULL. 19947 * But when called from ip_sioctl_flags, it could be NULL if 19948 * somebody is setting FAILED/INACTIVE on some interface which 19949 * is not part of a group. 19950 */ 19951 illgrp = ill->ill_group; 19952 if (illgrp == NULL) 19953 return; 19954 if (illgrp->illgrp_ill_schednext != ill) 19955 return; 19956 19957 illgrp->illgrp_ill_schednext = NULL; 19958 save_ill = ill; 19959 /* 19960 * Choose a good ill to be the next one for 19961 * outbound traffic. As the flags FAILED/STANDBY is 19962 * not yet marked when called from ip_sioctl_flags, 19963 * we check for ill separately. 19964 */ 19965 for (ill = illgrp->illgrp_ill; ill != NULL; 19966 ill = ill->ill_group_next) { 19967 if ((ill != save_ill) && 19968 !(ill->ill_phyint->phyint_flags & 19969 (PHYI_FAILED|PHYI_INACTIVE|PHYI_OFFLINE))) { 19970 illgrp->illgrp_ill_schednext = ill; 19971 return; 19972 } 19973 } 19974 } 19975 19976 /* 19977 * Given an ill, find the next ill in the group to be scheduled. 19978 * (This should be called by ip_newroute() before ire_create().) 19979 * The passed in ill may be pulled out of the group, after we have picked 19980 * up a different outgoing ill from the same group. However ire add will 19981 * atomically check this. 19982 */ 19983 ill_t * 19984 illgrp_scheduler(ill_t *ill) 19985 { 19986 ill_t *retill; 19987 ill_group_t *illgrp; 19988 int illcnt; 19989 int i; 19990 uint64_t flags; 19991 19992 /* 19993 * We don't use a lock to check for the ill_group. If this ill 19994 * is currently being inserted we may end up just returning this 19995 * ill itself. That is ok. 19996 */ 19997 if (ill->ill_group == NULL) { 19998 ill_refhold(ill); 19999 return (ill); 20000 } 20001 20002 /* 20003 * Grab the ill_g_lock as reader to make sure we are dealing with 20004 * a set of stable ills. No ill can be added or deleted or change 20005 * group while we hold the reader lock. 20006 */ 20007 rw_enter(&ill_g_lock, RW_READER); 20008 if ((illgrp = ill->ill_group) == NULL) { 20009 rw_exit(&ill_g_lock); 20010 ill_refhold(ill); 20011 return (ill); 20012 } 20013 20014 illcnt = illgrp->illgrp_ill_count; 20015 mutex_enter(&illgrp->illgrp_lock); 20016 retill = illgrp->illgrp_ill_schednext; 20017 20018 if (retill == NULL) 20019 retill = illgrp->illgrp_ill; 20020 20021 /* 20022 * We do a circular search beginning at illgrp_ill_schednext 20023 * or illgrp_ill. We don't check the flags against the ill lock 20024 * since it can change anytime. The ire creation will be atomic 20025 * and will fail if the ill is FAILED or OFFLINE. 20026 */ 20027 for (i = 0; i < illcnt; i++) { 20028 flags = retill->ill_phyint->phyint_flags; 20029 20030 if (!(flags & (PHYI_FAILED|PHYI_INACTIVE|PHYI_OFFLINE)) && 20031 ILL_CAN_LOOKUP(retill)) { 20032 illgrp->illgrp_ill_schednext = retill->ill_group_next; 20033 ill_refhold(retill); 20034 break; 20035 } 20036 retill = retill->ill_group_next; 20037 if (retill == NULL) 20038 retill = illgrp->illgrp_ill; 20039 } 20040 mutex_exit(&illgrp->illgrp_lock); 20041 rw_exit(&ill_g_lock); 20042 20043 return (i == illcnt ? NULL : retill); 20044 } 20045 20046 /* 20047 * Checks for availbility of a usable source address (if there is one) when the 20048 * destination ILL has the ill_usesrc_ifindex pointing to another ILL. Note 20049 * this selection is done regardless of the destination. 20050 */ 20051 boolean_t 20052 ipif_usesrc_avail(ill_t *ill, zoneid_t zoneid) 20053 { 20054 uint_t ifindex; 20055 ipif_t *ipif = NULL; 20056 ill_t *uill; 20057 boolean_t isv6; 20058 20059 ASSERT(ill != NULL); 20060 20061 isv6 = ill->ill_isv6; 20062 ifindex = ill->ill_usesrc_ifindex; 20063 if (ifindex != 0) { 20064 uill = ill_lookup_on_ifindex(ifindex, isv6, NULL, NULL, NULL, 20065 NULL); 20066 if (uill == NULL) 20067 return (NULL); 20068 mutex_enter(&uill->ill_lock); 20069 for (ipif = uill->ill_ipif; ipif != NULL; 20070 ipif = ipif->ipif_next) { 20071 if (!IPIF_CAN_LOOKUP(ipif)) 20072 continue; 20073 if (ipif->ipif_flags & (IPIF_NOLOCAL|IPIF_ANYCAST)) 20074 continue; 20075 if (!(ipif->ipif_flags & IPIF_UP)) 20076 continue; 20077 if (ipif->ipif_zoneid != zoneid) 20078 continue; 20079 if ((isv6 && 20080 IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6lcl_addr)) || 20081 (ipif->ipif_lcl_addr == INADDR_ANY)) 20082 continue; 20083 mutex_exit(&uill->ill_lock); 20084 ill_refrele(uill); 20085 return (B_TRUE); 20086 } 20087 mutex_exit(&uill->ill_lock); 20088 ill_refrele(uill); 20089 } 20090 return (B_FALSE); 20091 } 20092 20093 /* 20094 * Determine the best source address given a destination address and an ill. 20095 * Prefers non-deprecated over deprecated but will return a deprecated 20096 * address if there is no other choice. If there is a usable source address 20097 * on the interface pointed to by ill_usesrc_ifindex then that is given 20098 * first preference. 20099 * 20100 * Returns NULL if there is no suitable source address for the ill. 20101 * This only occurs when there is no valid source address for the ill. 20102 */ 20103 ipif_t * 20104 ipif_select_source(ill_t *ill, ipaddr_t dst, zoneid_t zoneid) 20105 { 20106 ipif_t *ipif; 20107 ipif_t *ipif_dep = NULL; /* Fallback to deprecated */ 20108 ipif_t *ipif_arr[MAX_IPIF_SELECT_SOURCE]; 20109 int index = 0; 20110 boolean_t wrapped = B_FALSE; 20111 boolean_t same_subnet_only = B_FALSE; 20112 boolean_t ipif_same_found, ipif_other_found; 20113 boolean_t specific_found; 20114 ill_t *till, *usill = NULL; 20115 tsol_tpc_t *src_rhtp, *dst_rhtp; 20116 20117 if (ill->ill_usesrc_ifindex != 0) { 20118 usill = ill_lookup_on_ifindex(ill->ill_usesrc_ifindex, B_FALSE, 20119 NULL, NULL, NULL, NULL); 20120 if (usill != NULL) 20121 ill = usill; /* Select source from usesrc ILL */ 20122 else 20123 return (NULL); 20124 } 20125 20126 /* 20127 * If we're dealing with an unlabeled destination on a labeled system, 20128 * make sure that we ignore source addresses that are incompatible with 20129 * the destination's default label. That destination's default label 20130 * must dominate the minimum label on the source address. 20131 */ 20132 dst_rhtp = NULL; 20133 if (is_system_labeled()) { 20134 dst_rhtp = find_tpc(&dst, IPV4_VERSION, B_FALSE); 20135 if (dst_rhtp == NULL) 20136 return (NULL); 20137 if (dst_rhtp->tpc_tp.host_type != UNLABELED) { 20138 TPC_RELE(dst_rhtp); 20139 dst_rhtp = NULL; 20140 } 20141 } 20142 20143 /* 20144 * Holds the ill_g_lock as reader. This makes sure that no ipif/ill 20145 * can be deleted. But an ipif/ill can get CONDEMNED any time. 20146 * After selecting the right ipif, under ill_lock make sure ipif is 20147 * not condemned, and increment refcnt. If ipif is CONDEMNED, 20148 * we retry. Inside the loop we still need to check for CONDEMNED, 20149 * but not under a lock. 20150 */ 20151 rw_enter(&ill_g_lock, RW_READER); 20152 20153 retry: 20154 till = ill; 20155 ipif_arr[0] = NULL; 20156 20157 if (till->ill_group != NULL) 20158 till = till->ill_group->illgrp_ill; 20159 20160 /* 20161 * Choose one good source address from each ill across the group. 20162 * If possible choose a source address in the same subnet as 20163 * the destination address. 20164 * 20165 * We don't check for PHYI_FAILED or PHYI_INACTIVE or PHYI_OFFLINE 20166 * This is okay because of the following. 20167 * 20168 * If PHYI_FAILED is set and we still have non-deprecated 20169 * addresses, it means the addresses have not yet been 20170 * failed over to a different interface. We potentially 20171 * select them to create IRE_CACHES, which will be later 20172 * flushed when the addresses move over. 20173 * 20174 * If PHYI_INACTIVE is set and we still have non-deprecated 20175 * addresses, it means either the user has configured them 20176 * or PHYI_INACTIVE has not been cleared after the addresses 20177 * been moved over. For the former, in.mpathd does a failover 20178 * when the interface becomes INACTIVE and hence we should 20179 * not find them. Once INACTIVE is set, we don't allow them 20180 * to create logical interfaces anymore. For the latter, a 20181 * flush will happen when INACTIVE is cleared which will 20182 * flush the IRE_CACHES. 20183 * 20184 * If PHYI_OFFLINE is set, all the addresses will be failed 20185 * over soon. We potentially select them to create IRE_CACHEs, 20186 * which will be later flushed when the addresses move over. 20187 * 20188 * NOTE : As ipif_select_source is called to borrow source address 20189 * for an ipif that is part of a group, source address selection 20190 * will be re-done whenever the group changes i.e either an 20191 * insertion/deletion in the group. 20192 * 20193 * Fill ipif_arr[] with source addresses, using these rules: 20194 * 20195 * 1. At most one source address from a given ill ends up 20196 * in ipif_arr[] -- that is, at most one of the ipif's 20197 * associated with a given ill ends up in ipif_arr[]. 20198 * 20199 * 2. If there is at least one non-deprecated ipif in the 20200 * IPMP group with a source address on the same subnet as 20201 * our destination, then fill ipif_arr[] only with 20202 * source addresses on the same subnet as our destination. 20203 * Note that because of (1), only the first 20204 * non-deprecated ipif found with a source address 20205 * matching the destination ends up in ipif_arr[]. 20206 * 20207 * 3. Otherwise, fill ipif_arr[] with non-deprecated source 20208 * addresses not in the same subnet as our destination. 20209 * Again, because of (1), only the first off-subnet source 20210 * address will be chosen. 20211 * 20212 * 4. If there are no non-deprecated ipifs, then just use 20213 * the source address associated with the last deprecated 20214 * one we find that happens to be on the same subnet, 20215 * otherwise the first one not in the same subnet. 20216 */ 20217 specific_found = B_FALSE; 20218 for (; till != NULL; till = till->ill_group_next) { 20219 ipif_same_found = B_FALSE; 20220 ipif_other_found = B_FALSE; 20221 for (ipif = till->ill_ipif; ipif != NULL; 20222 ipif = ipif->ipif_next) { 20223 if (!IPIF_CAN_LOOKUP(ipif)) 20224 continue; 20225 /* Always skip NOLOCAL and ANYCAST interfaces */ 20226 if (ipif->ipif_flags & (IPIF_NOLOCAL|IPIF_ANYCAST)) 20227 continue; 20228 if (!(ipif->ipif_flags & IPIF_UP) || 20229 !ipif->ipif_addr_ready) 20230 continue; 20231 if (ipif->ipif_zoneid != zoneid && 20232 ipif->ipif_zoneid != ALL_ZONES) 20233 continue; 20234 /* 20235 * Interfaces with 0.0.0.0 address are allowed to be UP, 20236 * but are not valid as source addresses. 20237 */ 20238 if (ipif->ipif_lcl_addr == INADDR_ANY) 20239 continue; 20240 20241 /* 20242 * Check compatibility of local address for 20243 * destination's default label if we're on a labeled 20244 * system. Incompatible addresses can't be used at 20245 * all. 20246 */ 20247 if (dst_rhtp != NULL) { 20248 boolean_t incompat; 20249 20250 src_rhtp = find_tpc(&ipif->ipif_lcl_addr, 20251 IPV4_VERSION, B_FALSE); 20252 if (src_rhtp == NULL) 20253 continue; 20254 incompat = 20255 src_rhtp->tpc_tp.host_type != SUN_CIPSO || 20256 src_rhtp->tpc_tp.tp_doi != 20257 dst_rhtp->tpc_tp.tp_doi || 20258 (!_blinrange(&dst_rhtp->tpc_tp.tp_def_label, 20259 &src_rhtp->tpc_tp.tp_sl_range_cipso) && 20260 !blinlset(&dst_rhtp->tpc_tp.tp_def_label, 20261 src_rhtp->tpc_tp.tp_sl_set_cipso)); 20262 TPC_RELE(src_rhtp); 20263 if (incompat) 20264 continue; 20265 } 20266 20267 /* 20268 * We prefer not to use all all-zones addresses, if we 20269 * can avoid it, as they pose problems with unlabeled 20270 * destinations. 20271 */ 20272 if (ipif->ipif_zoneid != ALL_ZONES) { 20273 if (!specific_found && 20274 (!same_subnet_only || 20275 (ipif->ipif_net_mask & dst) == 20276 ipif->ipif_subnet)) { 20277 index = 0; 20278 specific_found = B_TRUE; 20279 ipif_other_found = B_FALSE; 20280 } 20281 } else { 20282 if (specific_found) 20283 continue; 20284 } 20285 if (ipif->ipif_flags & IPIF_DEPRECATED) { 20286 if (ipif_dep == NULL || 20287 (ipif->ipif_net_mask & dst) == 20288 ipif->ipif_subnet) 20289 ipif_dep = ipif; 20290 continue; 20291 } 20292 if ((ipif->ipif_net_mask & dst) == ipif->ipif_subnet) { 20293 /* found a source address in the same subnet */ 20294 if (!same_subnet_only) { 20295 same_subnet_only = B_TRUE; 20296 index = 0; 20297 } 20298 ipif_same_found = B_TRUE; 20299 } else { 20300 if (same_subnet_only || ipif_other_found) 20301 continue; 20302 ipif_other_found = B_TRUE; 20303 } 20304 ipif_arr[index++] = ipif; 20305 if (index == MAX_IPIF_SELECT_SOURCE) { 20306 wrapped = B_TRUE; 20307 index = 0; 20308 } 20309 if (ipif_same_found) 20310 break; 20311 } 20312 } 20313 20314 if (ipif_arr[0] == NULL) { 20315 ipif = ipif_dep; 20316 } else { 20317 if (wrapped) 20318 index = MAX_IPIF_SELECT_SOURCE; 20319 ipif = ipif_arr[ipif_rand() % index]; 20320 ASSERT(ipif != NULL); 20321 } 20322 20323 if (ipif != NULL) { 20324 mutex_enter(&ipif->ipif_ill->ill_lock); 20325 if (!IPIF_CAN_LOOKUP(ipif)) { 20326 mutex_exit(&ipif->ipif_ill->ill_lock); 20327 goto retry; 20328 } 20329 ipif_refhold_locked(ipif); 20330 mutex_exit(&ipif->ipif_ill->ill_lock); 20331 } 20332 20333 rw_exit(&ill_g_lock); 20334 if (usill != NULL) 20335 ill_refrele(usill); 20336 if (dst_rhtp != NULL) 20337 TPC_RELE(dst_rhtp); 20338 20339 #ifdef DEBUG 20340 if (ipif == NULL) { 20341 char buf1[INET6_ADDRSTRLEN]; 20342 20343 ip1dbg(("ipif_select_source(%s, %s) -> NULL\n", 20344 ill->ill_name, 20345 inet_ntop(AF_INET, &dst, buf1, sizeof (buf1)))); 20346 } else { 20347 char buf1[INET6_ADDRSTRLEN]; 20348 char buf2[INET6_ADDRSTRLEN]; 20349 20350 ip1dbg(("ipif_select_source(%s, %s) -> %s\n", 20351 ipif->ipif_ill->ill_name, 20352 inet_ntop(AF_INET, &dst, buf1, sizeof (buf1)), 20353 inet_ntop(AF_INET, &ipif->ipif_lcl_addr, 20354 buf2, sizeof (buf2)))); 20355 } 20356 #endif /* DEBUG */ 20357 return (ipif); 20358 } 20359 20360 20361 /* 20362 * If old_ipif is not NULL, see if ipif was derived from old 20363 * ipif and if so, recreate the interface route by re-doing 20364 * source address selection. This happens when ipif_down -> 20365 * ipif_update_other_ipifs calls us. 20366 * 20367 * If old_ipif is NULL, just redo the source address selection 20368 * if needed. This happens when illgrp_insert or ipif_up_done 20369 * calls us. 20370 */ 20371 static void 20372 ipif_recreate_interface_routes(ipif_t *old_ipif, ipif_t *ipif) 20373 { 20374 ire_t *ire; 20375 ire_t *ipif_ire; 20376 queue_t *stq; 20377 ipif_t *nipif; 20378 ill_t *ill; 20379 boolean_t need_rele = B_FALSE; 20380 20381 ASSERT(old_ipif == NULL || IAM_WRITER_IPIF(old_ipif)); 20382 ASSERT(IAM_WRITER_IPIF(ipif)); 20383 20384 ill = ipif->ipif_ill; 20385 if (!(ipif->ipif_flags & 20386 (IPIF_NOLOCAL|IPIF_ANYCAST|IPIF_DEPRECATED))) { 20387 /* 20388 * Can't possibly have borrowed the source 20389 * from old_ipif. 20390 */ 20391 return; 20392 } 20393 20394 /* 20395 * Is there any work to be done? No work if the address 20396 * is INADDR_ANY, loopback or NOLOCAL or ANYCAST ( 20397 * ipif_select_source() does not borrow addresses from 20398 * NOLOCAL and ANYCAST interfaces). 20399 */ 20400 if ((old_ipif != NULL) && 20401 ((old_ipif->ipif_lcl_addr == INADDR_ANY) || 20402 (old_ipif->ipif_ill->ill_wq == NULL) || 20403 (old_ipif->ipif_flags & 20404 (IPIF_NOLOCAL|IPIF_ANYCAST)))) { 20405 return; 20406 } 20407 20408 /* 20409 * Perform the same checks as when creating the 20410 * IRE_INTERFACE in ipif_up_done. 20411 */ 20412 if (!(ipif->ipif_flags & IPIF_UP)) 20413 return; 20414 20415 if ((ipif->ipif_flags & IPIF_NOXMIT) || 20416 (ipif->ipif_subnet == INADDR_ANY)) 20417 return; 20418 20419 ipif_ire = ipif_to_ire(ipif); 20420 if (ipif_ire == NULL) 20421 return; 20422 20423 /* 20424 * We know that ipif uses some other source for its 20425 * IRE_INTERFACE. Is it using the source of this 20426 * old_ipif? 20427 */ 20428 if (old_ipif != NULL && 20429 old_ipif->ipif_lcl_addr != ipif_ire->ire_src_addr) { 20430 ire_refrele(ipif_ire); 20431 return; 20432 } 20433 if (ip_debug > 2) { 20434 /* ip1dbg */ 20435 pr_addr_dbg("ipif_recreate_interface_routes: deleting IRE for" 20436 " src %s\n", AF_INET, &ipif_ire->ire_src_addr); 20437 } 20438 20439 stq = ipif_ire->ire_stq; 20440 20441 /* 20442 * Can't use our source address. Select a different 20443 * source address for the IRE_INTERFACE. 20444 */ 20445 nipif = ipif_select_source(ill, ipif->ipif_subnet, ipif->ipif_zoneid); 20446 if (nipif == NULL) { 20447 /* Last resort - all ipif's have IPIF_NOLOCAL */ 20448 nipif = ipif; 20449 } else { 20450 need_rele = B_TRUE; 20451 } 20452 20453 ire = ire_create( 20454 (uchar_t *)&ipif->ipif_subnet, /* dest pref */ 20455 (uchar_t *)&ipif->ipif_net_mask, /* mask */ 20456 (uchar_t *)&nipif->ipif_src_addr, /* src addr */ 20457 NULL, /* no gateway */ 20458 NULL, 20459 &ipif->ipif_mtu, /* max frag */ 20460 NULL, /* fast path header */ 20461 NULL, /* no recv from queue */ 20462 stq, /* send-to queue */ 20463 ill->ill_net_type, /* IF_[NO]RESOLVER */ 20464 ill->ill_resolver_mp, /* xmit header */ 20465 ipif, 20466 NULL, 20467 0, 20468 0, 20469 0, 20470 0, 20471 &ire_uinfo_null, 20472 NULL, 20473 NULL); 20474 20475 if (ire != NULL) { 20476 ire_t *ret_ire; 20477 int error; 20478 20479 /* 20480 * We don't need ipif_ire anymore. We need to delete 20481 * before we add so that ire_add does not detect 20482 * duplicates. 20483 */ 20484 ire_delete(ipif_ire); 20485 ret_ire = ire; 20486 error = ire_add(&ret_ire, NULL, NULL, NULL, B_FALSE); 20487 ASSERT(error == 0); 20488 ASSERT(ire == ret_ire); 20489 /* Held in ire_add */ 20490 ire_refrele(ret_ire); 20491 } 20492 /* 20493 * Either we are falling through from above or could not 20494 * allocate a replacement. 20495 */ 20496 ire_refrele(ipif_ire); 20497 if (need_rele) 20498 ipif_refrele(nipif); 20499 } 20500 20501 /* 20502 * This old_ipif is going away. 20503 * 20504 * Determine if any other ipif's is using our address as 20505 * ipif_lcl_addr (due to those being IPIF_NOLOCAL, IPIF_ANYCAST, or 20506 * IPIF_DEPRECATED). 20507 * Find the IRE_INTERFACE for such ipifs and recreate them 20508 * to use an different source address following the rules in 20509 * ipif_up_done. 20510 * 20511 * This function takes an illgrp as an argument so that illgrp_delete 20512 * can call this to update source address even after deleting the 20513 * old_ipif->ipif_ill from the ill group. 20514 */ 20515 static void 20516 ipif_update_other_ipifs(ipif_t *old_ipif, ill_group_t *illgrp) 20517 { 20518 ipif_t *ipif; 20519 ill_t *ill; 20520 char buf[INET6_ADDRSTRLEN]; 20521 20522 ASSERT(IAM_WRITER_IPIF(old_ipif)); 20523 ASSERT(illgrp == NULL || IAM_WRITER_IPIF(old_ipif)); 20524 20525 ill = old_ipif->ipif_ill; 20526 20527 ip1dbg(("ipif_update_other_ipifs(%s, %s)\n", 20528 ill->ill_name, 20529 inet_ntop(AF_INET, &old_ipif->ipif_lcl_addr, 20530 buf, sizeof (buf)))); 20531 /* 20532 * If this part of a group, look at all ills as ipif_select_source 20533 * borrows source address across all the ills in the group. 20534 */ 20535 if (illgrp != NULL) 20536 ill = illgrp->illgrp_ill; 20537 20538 for (; ill != NULL; ill = ill->ill_group_next) { 20539 for (ipif = ill->ill_ipif; ipif != NULL; 20540 ipif = ipif->ipif_next) { 20541 20542 if (ipif == old_ipif) 20543 continue; 20544 20545 ipif_recreate_interface_routes(old_ipif, ipif); 20546 } 20547 } 20548 } 20549 20550 /* ARGSUSED */ 20551 int 20552 if_unitsel_restart(ipif_t *ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, 20553 ip_ioctl_cmd_t *ipip, void *dummy_ifreq) 20554 { 20555 /* 20556 * ill_phyint_reinit merged the v4 and v6 into a single 20557 * ipsq. Could also have become part of a ipmp group in the 20558 * process, and we might not have been able to complete the 20559 * operation in ipif_set_values, if we could not become 20560 * exclusive. If so restart it here. 20561 */ 20562 return (ipif_set_values_tail(ipif->ipif_ill, ipif, mp, q)); 20563 } 20564 20565 20566 /* ARGSUSED */ 20567 int 20568 if_unitsel(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, 20569 ip_ioctl_cmd_t *ipip, void *dummy_ifreq) 20570 { 20571 queue_t *q1 = q; 20572 char *cp; 20573 char interf_name[LIFNAMSIZ]; 20574 uint_t ppa = *(uint_t *)mp->b_cont->b_cont->b_rptr; 20575 20576 if (!q->q_next) { 20577 ip1dbg(( 20578 "if_unitsel: IF_UNITSEL: no q_next\n")); 20579 return (EINVAL); 20580 } 20581 20582 if (((ill_t *)(q->q_ptr))->ill_name[0] != '\0') 20583 return (EALREADY); 20584 20585 do { 20586 q1 = q1->q_next; 20587 } while (q1->q_next); 20588 cp = q1->q_qinfo->qi_minfo->mi_idname; 20589 (void) sprintf(interf_name, "%s%d", cp, ppa); 20590 20591 /* 20592 * Here we are not going to delay the ioack until after 20593 * ACKs from DL_ATTACH_REQ/DL_BIND_REQ. So no need to save the 20594 * original ioctl message before sending the requests. 20595 */ 20596 return (ipif_set_values(q, mp, interf_name, &ppa)); 20597 } 20598 20599 /* ARGSUSED */ 20600 int 20601 ip_sioctl_sifname(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, 20602 ip_ioctl_cmd_t *ipip, void *dummy_ifreq) 20603 { 20604 return (ENXIO); 20605 } 20606 20607 /* 20608 * Net and subnet broadcast ire's are now specific to the particular 20609 * physical interface (ill) and not to any one locigal interface (ipif). 20610 * However, if a particular logical interface is being taken down, it's 20611 * associated ire's will be taken down as well. Hence, when we go to 20612 * take down or change the local address, broadcast address or netmask 20613 * of a specific logical interface, we must check to make sure that we 20614 * have valid net and subnet broadcast ire's for the other logical 20615 * interfaces which may have been shared with the logical interface 20616 * being brought down or changed. 20617 * 20618 * There is one set of 0.0.0.0 and 255.255.255.255 per ill. Usually it 20619 * is tied to the first interface coming UP. If that ipif is going down, 20620 * we need to recreate them on the next valid ipif. 20621 * 20622 * Note: assume that the ipif passed in is still up so that it's IRE 20623 * entries are still valid. 20624 */ 20625 static void 20626 ipif_check_bcast_ires(ipif_t *test_ipif) 20627 { 20628 ipif_t *ipif; 20629 ire_t *test_subnet_ire, *test_net_ire; 20630 ire_t *test_allzero_ire, *test_allone_ire; 20631 ire_t *ire_array[12]; 20632 ire_t **irep = &ire_array[0]; 20633 ire_t **irep1; 20634 20635 ipaddr_t net_addr, subnet_addr, net_mask, subnet_mask; 20636 ipaddr_t test_net_addr, test_subnet_addr; 20637 ipaddr_t test_net_mask, test_subnet_mask; 20638 boolean_t need_net_bcast_ire = B_FALSE; 20639 boolean_t need_subnet_bcast_ire = B_FALSE; 20640 boolean_t allzero_bcast_ire_created = B_FALSE; 20641 boolean_t allone_bcast_ire_created = B_FALSE; 20642 boolean_t net_bcast_ire_created = B_FALSE; 20643 boolean_t subnet_bcast_ire_created = B_FALSE; 20644 20645 ipif_t *backup_ipif_net = (ipif_t *)NULL; 20646 ipif_t *backup_ipif_subnet = (ipif_t *)NULL; 20647 ipif_t *backup_ipif_allzeros = (ipif_t *)NULL; 20648 ipif_t *backup_ipif_allones = (ipif_t *)NULL; 20649 uint64_t check_flags = IPIF_DEPRECATED | IPIF_NOLOCAL | IPIF_ANYCAST; 20650 20651 ASSERT(!test_ipif->ipif_isv6); 20652 ASSERT(IAM_WRITER_IPIF(test_ipif)); 20653 20654 /* 20655 * No broadcast IREs for the LOOPBACK interface 20656 * or others such as point to point and IPIF_NOXMIT. 20657 */ 20658 if (!(test_ipif->ipif_flags & IPIF_BROADCAST) || 20659 (test_ipif->ipif_flags & IPIF_NOXMIT)) 20660 return; 20661 20662 test_allzero_ire = ire_ctable_lookup(0, 0, IRE_BROADCAST, 20663 test_ipif, ALL_ZONES, NULL, (MATCH_IRE_TYPE | MATCH_IRE_IPIF)); 20664 20665 test_allone_ire = ire_ctable_lookup(INADDR_BROADCAST, 0, IRE_BROADCAST, 20666 test_ipif, ALL_ZONES, NULL, (MATCH_IRE_TYPE | MATCH_IRE_IPIF)); 20667 20668 test_net_mask = ip_net_mask(test_ipif->ipif_subnet); 20669 test_subnet_mask = test_ipif->ipif_net_mask; 20670 20671 /* 20672 * If no net mask set, assume the default based on net class. 20673 */ 20674 if (test_subnet_mask == 0) 20675 test_subnet_mask = test_net_mask; 20676 20677 /* 20678 * Check if there is a network broadcast ire associated with this ipif 20679 */ 20680 test_net_addr = test_net_mask & test_ipif->ipif_subnet; 20681 test_net_ire = ire_ctable_lookup(test_net_addr, 0, IRE_BROADCAST, 20682 test_ipif, ALL_ZONES, NULL, (MATCH_IRE_TYPE | MATCH_IRE_IPIF)); 20683 20684 /* 20685 * Check if there is a subnet broadcast IRE associated with this ipif 20686 */ 20687 test_subnet_addr = test_subnet_mask & test_ipif->ipif_subnet; 20688 test_subnet_ire = ire_ctable_lookup(test_subnet_addr, 0, IRE_BROADCAST, 20689 test_ipif, ALL_ZONES, NULL, (MATCH_IRE_TYPE | MATCH_IRE_IPIF)); 20690 20691 /* 20692 * No broadcast ire's associated with this ipif. 20693 */ 20694 if ((test_subnet_ire == NULL) && (test_net_ire == NULL) && 20695 (test_allzero_ire == NULL) && (test_allone_ire == NULL)) { 20696 return; 20697 } 20698 20699 /* 20700 * We have established which bcast ires have to be replaced. 20701 * Next we try to locate ipifs that match there ires. 20702 * The rules are simple: If we find an ipif that matches on the subnet 20703 * address it will also match on the net address, the allzeros and 20704 * allones address. Any ipif that matches only on the net address will 20705 * also match the allzeros and allones addresses. 20706 * The other criterion is the ipif_flags. We look for non-deprecated 20707 * (and non-anycast and non-nolocal) ipifs as the best choice. 20708 * ipifs with check_flags matching (deprecated, etc) are used only 20709 * if good ipifs are not available. While looping, we save existing 20710 * deprecated ipifs as backup_ipif. 20711 * We loop through all the ipifs for this ill looking for ipifs 20712 * whose broadcast addr match the ipif passed in, but do not have 20713 * their own broadcast ires. For creating 0.0.0.0 and 20714 * 255.255.255.255 we just need an ipif on this ill to create. 20715 */ 20716 for (ipif = test_ipif->ipif_ill->ill_ipif; ipif != NULL; 20717 ipif = ipif->ipif_next) { 20718 20719 ASSERT(!ipif->ipif_isv6); 20720 /* 20721 * Already checked the ipif passed in. 20722 */ 20723 if (ipif == test_ipif) { 20724 continue; 20725 } 20726 20727 /* 20728 * We only need to recreate broadcast ires if another ipif in 20729 * the same zone uses them. The new ires must be created in the 20730 * same zone. 20731 */ 20732 if (ipif->ipif_zoneid != test_ipif->ipif_zoneid) { 20733 continue; 20734 } 20735 20736 /* 20737 * Only interested in logical interfaces with valid local 20738 * addresses or with the ability to broadcast. 20739 */ 20740 if ((ipif->ipif_subnet == 0) || 20741 !(ipif->ipif_flags & IPIF_BROADCAST) || 20742 (ipif->ipif_flags & IPIF_NOXMIT) || 20743 !(ipif->ipif_flags & IPIF_UP)) { 20744 continue; 20745 } 20746 /* 20747 * Check if there is a net broadcast ire for this 20748 * net address. If it turns out that the ipif we are 20749 * about to take down owns this ire, we must make a 20750 * new one because it is potentially going away. 20751 */ 20752 if (test_net_ire && (!net_bcast_ire_created)) { 20753 net_mask = ip_net_mask(ipif->ipif_subnet); 20754 net_addr = net_mask & ipif->ipif_subnet; 20755 if (net_addr == test_net_addr) { 20756 need_net_bcast_ire = B_TRUE; 20757 /* 20758 * Use DEPRECATED ipif only if no good 20759 * ires are available. subnet_addr is 20760 * a better match than net_addr. 20761 */ 20762 if ((ipif->ipif_flags & check_flags) && 20763 (backup_ipif_net == NULL)) { 20764 backup_ipif_net = ipif; 20765 } 20766 } 20767 } 20768 /* 20769 * Check if there is a subnet broadcast ire for this 20770 * net address. If it turns out that the ipif we are 20771 * about to take down owns this ire, we must make a 20772 * new one because it is potentially going away. 20773 */ 20774 if (test_subnet_ire && (!subnet_bcast_ire_created)) { 20775 subnet_mask = ipif->ipif_net_mask; 20776 subnet_addr = ipif->ipif_subnet; 20777 if (subnet_addr == test_subnet_addr) { 20778 need_subnet_bcast_ire = B_TRUE; 20779 if ((ipif->ipif_flags & check_flags) && 20780 (backup_ipif_subnet == NULL)) { 20781 backup_ipif_subnet = ipif; 20782 } 20783 } 20784 } 20785 20786 20787 /* Short circuit here if this ipif is deprecated */ 20788 if (ipif->ipif_flags & check_flags) { 20789 if ((test_allzero_ire != NULL) && 20790 (!allzero_bcast_ire_created) && 20791 (backup_ipif_allzeros == NULL)) { 20792 backup_ipif_allzeros = ipif; 20793 } 20794 if ((test_allone_ire != NULL) && 20795 (!allone_bcast_ire_created) && 20796 (backup_ipif_allones == NULL)) { 20797 backup_ipif_allones = ipif; 20798 } 20799 continue; 20800 } 20801 20802 /* 20803 * Found an ipif which has the same broadcast ire as the 20804 * ipif passed in and the ipif passed in "owns" the ire. 20805 * Create new broadcast ire's for this broadcast addr. 20806 */ 20807 if (need_net_bcast_ire && !net_bcast_ire_created) { 20808 irep = ire_create_bcast(ipif, net_addr, irep); 20809 irep = ire_create_bcast(ipif, 20810 ~net_mask | net_addr, irep); 20811 net_bcast_ire_created = B_TRUE; 20812 } 20813 if (need_subnet_bcast_ire && !subnet_bcast_ire_created) { 20814 irep = ire_create_bcast(ipif, subnet_addr, irep); 20815 irep = ire_create_bcast(ipif, 20816 ~subnet_mask | subnet_addr, irep); 20817 subnet_bcast_ire_created = B_TRUE; 20818 } 20819 if (test_allzero_ire != NULL && !allzero_bcast_ire_created) { 20820 irep = ire_create_bcast(ipif, 0, irep); 20821 allzero_bcast_ire_created = B_TRUE; 20822 } 20823 if (test_allone_ire != NULL && !allone_bcast_ire_created) { 20824 irep = ire_create_bcast(ipif, INADDR_BROADCAST, irep); 20825 allone_bcast_ire_created = B_TRUE; 20826 } 20827 /* 20828 * Once we have created all the appropriate ires, we 20829 * just break out of this loop to add what we have created. 20830 * This has been indented similar to ire_match_args for 20831 * readability. 20832 */ 20833 if (((test_net_ire == NULL) || 20834 (net_bcast_ire_created)) && 20835 ((test_subnet_ire == NULL) || 20836 (subnet_bcast_ire_created)) && 20837 ((test_allzero_ire == NULL) || 20838 (allzero_bcast_ire_created)) && 20839 ((test_allone_ire == NULL) || 20840 (allone_bcast_ire_created))) { 20841 break; 20842 } 20843 } 20844 20845 /* 20846 * Create bcast ires on deprecated ipifs if no non-deprecated ipifs 20847 * exist. 6 pairs of bcast ires are needed. 20848 * Note - the old ires are deleted in ipif_down. 20849 */ 20850 if (need_net_bcast_ire && !net_bcast_ire_created && backup_ipif_net) { 20851 ipif = backup_ipif_net; 20852 irep = ire_create_bcast(ipif, net_addr, irep); 20853 irep = ire_create_bcast(ipif, ~net_mask | net_addr, irep); 20854 net_bcast_ire_created = B_TRUE; 20855 } 20856 if (need_subnet_bcast_ire && !subnet_bcast_ire_created && 20857 backup_ipif_subnet) { 20858 ipif = backup_ipif_subnet; 20859 irep = ire_create_bcast(ipif, subnet_addr, irep); 20860 irep = ire_create_bcast(ipif, 20861 ~subnet_mask | subnet_addr, irep); 20862 subnet_bcast_ire_created = B_TRUE; 20863 } 20864 if (test_allzero_ire != NULL && !allzero_bcast_ire_created && 20865 backup_ipif_allzeros) { 20866 irep = ire_create_bcast(backup_ipif_allzeros, 0, irep); 20867 allzero_bcast_ire_created = B_TRUE; 20868 } 20869 if (test_allone_ire != NULL && !allone_bcast_ire_created && 20870 backup_ipif_allones) { 20871 irep = ire_create_bcast(backup_ipif_allones, 20872 INADDR_BROADCAST, irep); 20873 allone_bcast_ire_created = B_TRUE; 20874 } 20875 20876 /* 20877 * If we can't create all of them, don't add any of them. 20878 * Code in ip_wput_ire and ire_to_ill assumes that we 20879 * always have a non-loopback copy and loopback copy 20880 * for a given address. 20881 */ 20882 for (irep1 = irep; irep1 > ire_array; ) { 20883 irep1--; 20884 if (*irep1 == NULL) { 20885 ip0dbg(("ipif_check_bcast_ires: can't create " 20886 "IRE_BROADCAST, memory allocation failure\n")); 20887 while (irep > ire_array) { 20888 irep--; 20889 if (*irep != NULL) 20890 ire_delete(*irep); 20891 } 20892 goto bad; 20893 } 20894 } 20895 for (irep1 = irep; irep1 > ire_array; ) { 20896 int error; 20897 20898 irep1--; 20899 error = ire_add(irep1, NULL, NULL, NULL, B_FALSE); 20900 if (error == 0) { 20901 ire_refrele(*irep1); /* Held in ire_add */ 20902 } 20903 } 20904 bad: 20905 if (test_allzero_ire != NULL) 20906 ire_refrele(test_allzero_ire); 20907 if (test_allone_ire != NULL) 20908 ire_refrele(test_allone_ire); 20909 if (test_net_ire != NULL) 20910 ire_refrele(test_net_ire); 20911 if (test_subnet_ire != NULL) 20912 ire_refrele(test_subnet_ire); 20913 } 20914 20915 /* 20916 * Extract both the flags (including IFF_CANTCHANGE) such as IFF_IPV* 20917 * from lifr_flags and the name from lifr_name. 20918 * Set IFF_IPV* and ill_isv6 prior to doing the lookup 20919 * since ipif_lookup_on_name uses the _isv6 flags when matching. 20920 * Returns EINPROGRESS when mp has been consumed by queueing it on 20921 * ill_pending_mp and the ioctl will complete in ip_rput. 20922 */ 20923 /* ARGSUSED */ 20924 int 20925 ip_sioctl_slifname(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 20926 ip_ioctl_cmd_t *ipip, void *if_req) 20927 { 20928 int err; 20929 ill_t *ill; 20930 struct lifreq *lifr = (struct lifreq *)if_req; 20931 20932 ASSERT(ipif != NULL); 20933 ip1dbg(("ip_sioctl_slifname %s\n", lifr->lifr_name)); 20934 ASSERT(q->q_next != NULL); 20935 20936 ill = (ill_t *)q->q_ptr; 20937 /* 20938 * If we are not writer on 'q' then this interface exists already 20939 * and previous lookups (ipif_extract_lifreq_cmn) found this ipif. 20940 * So return EALREADY 20941 */ 20942 if (ill != ipif->ipif_ill) 20943 return (EALREADY); 20944 20945 if (ill->ill_name[0] != '\0') 20946 return (EALREADY); 20947 20948 /* 20949 * Set all the flags. Allows all kinds of override. Provide some 20950 * sanity checking by not allowing IFF_BROADCAST and IFF_MULTICAST 20951 * unless there is either multicast/broadcast support in the driver 20952 * or it is a pt-pt link. 20953 */ 20954 if (lifr->lifr_flags & (IFF_PROMISC|IFF_ALLMULTI)) { 20955 /* Meaningless to IP thus don't allow them to be set. */ 20956 ip1dbg(("ip_setname: EINVAL 1\n")); 20957 return (EINVAL); 20958 } 20959 /* 20960 * For a DL_STYLE2 driver (ill_needs_attach), we would not have the 20961 * ill_bcast_addr_length info. 20962 */ 20963 if (!ill->ill_needs_attach && 20964 ((lifr->lifr_flags & IFF_MULTICAST) && 20965 !(lifr->lifr_flags & IFF_POINTOPOINT) && 20966 ill->ill_bcast_addr_length == 0)) { 20967 /* Link not broadcast/pt-pt capable i.e. no multicast */ 20968 ip1dbg(("ip_setname: EINVAL 2\n")); 20969 return (EINVAL); 20970 } 20971 if ((lifr->lifr_flags & IFF_BROADCAST) && 20972 ((lifr->lifr_flags & IFF_IPV6) || 20973 (!ill->ill_needs_attach && ill->ill_bcast_addr_length == 0))) { 20974 /* Link not broadcast capable or IPv6 i.e. no broadcast */ 20975 ip1dbg(("ip_setname: EINVAL 3\n")); 20976 return (EINVAL); 20977 } 20978 if (lifr->lifr_flags & IFF_UP) { 20979 /* Can only be set with SIOCSLIFFLAGS */ 20980 ip1dbg(("ip_setname: EINVAL 4\n")); 20981 return (EINVAL); 20982 } 20983 if ((lifr->lifr_flags & (IFF_IPV6|IFF_IPV4)) != IFF_IPV6 && 20984 (lifr->lifr_flags & (IFF_IPV6|IFF_IPV4)) != IFF_IPV4) { 20985 ip1dbg(("ip_setname: EINVAL 5\n")); 20986 return (EINVAL); 20987 } 20988 /* 20989 * Only allow the IFF_XRESOLV flag to be set on IPv6 interfaces. 20990 */ 20991 if ((lifr->lifr_flags & IFF_XRESOLV) && 20992 !(lifr->lifr_flags & IFF_IPV6) && 20993 !(ipif->ipif_isv6)) { 20994 ip1dbg(("ip_setname: EINVAL 6\n")); 20995 return (EINVAL); 20996 } 20997 20998 /* 20999 * The user has done SIOCGLIFFLAGS prior to this ioctl and hence 21000 * we have all the flags here. So, we assign rather than we OR. 21001 * We can't OR the flags here because we don't want to set 21002 * both IFF_IPV4 and IFF_IPV6. We start off as IFF_IPV4 in 21003 * ipif_allocate and become IFF_IPV4 or IFF_IPV6 here depending 21004 * on lifr_flags value here. 21005 */ 21006 /* 21007 * This ill has not been inserted into the global list. 21008 * So we are still single threaded and don't need any lock 21009 */ 21010 ipif->ipif_flags = lifr->lifr_flags & IFF_LOGINT_FLAGS & 21011 ~IFF_DUPLICATE; 21012 ill->ill_flags = lifr->lifr_flags & IFF_PHYINTINST_FLAGS; 21013 ill->ill_phyint->phyint_flags = lifr->lifr_flags & IFF_PHYINT_FLAGS; 21014 21015 /* We started off as V4. */ 21016 if (ill->ill_flags & ILLF_IPV6) { 21017 ill->ill_phyint->phyint_illv6 = ill; 21018 ill->ill_phyint->phyint_illv4 = NULL; 21019 } 21020 err = ipif_set_values(q, mp, lifr->lifr_name, &lifr->lifr_ppa); 21021 return (err); 21022 } 21023 21024 /* ARGSUSED */ 21025 int 21026 ip_sioctl_slifname_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 21027 ip_ioctl_cmd_t *ipip, void *if_req) 21028 { 21029 /* 21030 * ill_phyint_reinit merged the v4 and v6 into a single 21031 * ipsq. Could also have become part of a ipmp group in the 21032 * process, and we might not have been able to complete the 21033 * slifname in ipif_set_values, if we could not become 21034 * exclusive. If so restart it here 21035 */ 21036 return (ipif_set_values_tail(ipif->ipif_ill, ipif, mp, q)); 21037 } 21038 21039 /* 21040 * Return a pointer to the ipif which matches the index, IP version type and 21041 * zoneid. 21042 */ 21043 ipif_t * 21044 ipif_lookup_on_ifindex(uint_t index, boolean_t isv6, zoneid_t zoneid, 21045 queue_t *q, mblk_t *mp, ipsq_func_t func, int *err) 21046 { 21047 ill_t *ill; 21048 ipsq_t *ipsq; 21049 phyint_t *phyi; 21050 ipif_t *ipif; 21051 21052 ASSERT((q == NULL && mp == NULL && func == NULL && err == NULL) || 21053 (q != NULL && mp != NULL && func != NULL && err != NULL)); 21054 21055 if (err != NULL) 21056 *err = 0; 21057 21058 /* 21059 * Indexes are stored in the phyint - a common structure 21060 * to both IPv4 and IPv6. 21061 */ 21062 21063 rw_enter(&ill_g_lock, RW_READER); 21064 phyi = avl_find(&phyint_g_list.phyint_list_avl_by_index, 21065 (void *) &index, NULL); 21066 if (phyi != NULL) { 21067 ill = isv6 ? phyi->phyint_illv6 : phyi->phyint_illv4; 21068 if (ill == NULL) { 21069 rw_exit(&ill_g_lock); 21070 if (err != NULL) 21071 *err = ENXIO; 21072 return (NULL); 21073 } 21074 GRAB_CONN_LOCK(q); 21075 mutex_enter(&ill->ill_lock); 21076 if (ILL_CAN_LOOKUP(ill)) { 21077 for (ipif = ill->ill_ipif; ipif != NULL; 21078 ipif = ipif->ipif_next) { 21079 if (IPIF_CAN_LOOKUP(ipif) && 21080 (zoneid == ALL_ZONES || 21081 zoneid == ipif->ipif_zoneid || 21082 ipif->ipif_zoneid == ALL_ZONES)) { 21083 ipif_refhold_locked(ipif); 21084 mutex_exit(&ill->ill_lock); 21085 RELEASE_CONN_LOCK(q); 21086 rw_exit(&ill_g_lock); 21087 return (ipif); 21088 } 21089 } 21090 } else if (ILL_CAN_WAIT(ill, q)) { 21091 ipsq = ill->ill_phyint->phyint_ipsq; 21092 mutex_enter(&ipsq->ipsq_lock); 21093 rw_exit(&ill_g_lock); 21094 mutex_exit(&ill->ill_lock); 21095 ipsq_enq(ipsq, q, mp, func, NEW_OP, ill); 21096 mutex_exit(&ipsq->ipsq_lock); 21097 RELEASE_CONN_LOCK(q); 21098 *err = EINPROGRESS; 21099 return (NULL); 21100 } 21101 mutex_exit(&ill->ill_lock); 21102 RELEASE_CONN_LOCK(q); 21103 } 21104 rw_exit(&ill_g_lock); 21105 if (err != NULL) 21106 *err = ENXIO; 21107 return (NULL); 21108 } 21109 21110 typedef struct conn_change_s { 21111 uint_t cc_old_ifindex; 21112 uint_t cc_new_ifindex; 21113 } conn_change_t; 21114 21115 /* 21116 * ipcl_walk function for changing interface index. 21117 */ 21118 static void 21119 conn_change_ifindex(conn_t *connp, caddr_t arg) 21120 { 21121 conn_change_t *connc; 21122 uint_t old_ifindex; 21123 uint_t new_ifindex; 21124 int i; 21125 ilg_t *ilg; 21126 21127 connc = (conn_change_t *)arg; 21128 old_ifindex = connc->cc_old_ifindex; 21129 new_ifindex = connc->cc_new_ifindex; 21130 21131 if (connp->conn_orig_bound_ifindex == old_ifindex) 21132 connp->conn_orig_bound_ifindex = new_ifindex; 21133 21134 if (connp->conn_orig_multicast_ifindex == old_ifindex) 21135 connp->conn_orig_multicast_ifindex = new_ifindex; 21136 21137 if (connp->conn_orig_xmit_ifindex == old_ifindex) 21138 connp->conn_orig_xmit_ifindex = new_ifindex; 21139 21140 for (i = connp->conn_ilg_inuse - 1; i >= 0; i--) { 21141 ilg = &connp->conn_ilg[i]; 21142 if (ilg->ilg_orig_ifindex == old_ifindex) 21143 ilg->ilg_orig_ifindex = new_ifindex; 21144 } 21145 } 21146 21147 /* 21148 * Walk all the ipifs and ilms on this ill and change the orig_ifindex 21149 * to new_index if it matches the old_index. 21150 * 21151 * Failovers typically happen within a group of ills. But somebody 21152 * can remove an ill from the group after a failover happened. If 21153 * we are setting the ifindex after this, we potentially need to 21154 * look at all the ills rather than just the ones in the group. 21155 * We cut down the work by looking at matching ill_net_types 21156 * and ill_types as we could not possibly grouped them together. 21157 */ 21158 static void 21159 ip_change_ifindex(ill_t *ill_orig, conn_change_t *connc) 21160 { 21161 ill_t *ill; 21162 ipif_t *ipif; 21163 uint_t old_ifindex; 21164 uint_t new_ifindex; 21165 ilm_t *ilm; 21166 ill_walk_context_t ctx; 21167 21168 old_ifindex = connc->cc_old_ifindex; 21169 new_ifindex = connc->cc_new_ifindex; 21170 21171 rw_enter(&ill_g_lock, RW_READER); 21172 ill = ILL_START_WALK_ALL(&ctx); 21173 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 21174 if ((ill_orig->ill_net_type != ill->ill_net_type) || 21175 (ill_orig->ill_type != ill->ill_type)) { 21176 continue; 21177 } 21178 for (ipif = ill->ill_ipif; ipif != NULL; 21179 ipif = ipif->ipif_next) { 21180 if (ipif->ipif_orig_ifindex == old_ifindex) 21181 ipif->ipif_orig_ifindex = new_ifindex; 21182 } 21183 for (ilm = ill->ill_ilm; ilm != NULL; ilm = ilm->ilm_next) { 21184 if (ilm->ilm_orig_ifindex == old_ifindex) 21185 ilm->ilm_orig_ifindex = new_ifindex; 21186 } 21187 } 21188 rw_exit(&ill_g_lock); 21189 } 21190 21191 /* 21192 * We first need to ensure that the new index is unique, and 21193 * then carry the change across both v4 and v6 ill representation 21194 * of the physical interface. 21195 */ 21196 /* ARGSUSED */ 21197 int 21198 ip_sioctl_slifindex(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 21199 ip_ioctl_cmd_t *ipip, void *ifreq) 21200 { 21201 ill_t *ill; 21202 ill_t *ill_other; 21203 phyint_t *phyi; 21204 int old_index; 21205 conn_change_t connc; 21206 struct ifreq *ifr = (struct ifreq *)ifreq; 21207 struct lifreq *lifr = (struct lifreq *)ifreq; 21208 uint_t index; 21209 ill_t *ill_v4; 21210 ill_t *ill_v6; 21211 21212 if (ipip->ipi_cmd_type == IF_CMD) 21213 index = ifr->ifr_index; 21214 else 21215 index = lifr->lifr_index; 21216 21217 /* 21218 * Only allow on physical interface. Also, index zero is illegal. 21219 * 21220 * Need to check for PHYI_FAILED and PHYI_INACTIVE 21221 * 21222 * 1) If PHYI_FAILED is set, a failover could have happened which 21223 * implies a possible failback might have to happen. As failback 21224 * depends on the old index, we should fail setting the index. 21225 * 21226 * 2) If PHYI_INACTIVE is set, in.mpathd does a failover so that 21227 * any addresses or multicast memberships are failed over to 21228 * a non-STANDBY interface. As failback depends on the old 21229 * index, we should fail setting the index for this case also. 21230 * 21231 * 3) If PHYI_OFFLINE is set, a possible failover has happened. 21232 * Be consistent with PHYI_FAILED and fail the ioctl. 21233 */ 21234 ill = ipif->ipif_ill; 21235 phyi = ill->ill_phyint; 21236 if ((phyi->phyint_flags & (PHYI_FAILED|PHYI_INACTIVE|PHYI_OFFLINE)) || 21237 ipif->ipif_id != 0 || index == 0) { 21238 return (EINVAL); 21239 } 21240 old_index = phyi->phyint_ifindex; 21241 21242 /* If the index is not changing, no work to do */ 21243 if (old_index == index) 21244 return (0); 21245 21246 /* 21247 * Use ill_lookup_on_ifindex to determine if the 21248 * new index is unused and if so allow the change. 21249 */ 21250 ill_v6 = ill_lookup_on_ifindex(index, B_TRUE, NULL, NULL, NULL, NULL); 21251 ill_v4 = ill_lookup_on_ifindex(index, B_FALSE, NULL, NULL, NULL, NULL); 21252 if (ill_v6 != NULL || ill_v4 != NULL) { 21253 if (ill_v4 != NULL) 21254 ill_refrele(ill_v4); 21255 if (ill_v6 != NULL) 21256 ill_refrele(ill_v6); 21257 return (EBUSY); 21258 } 21259 21260 /* 21261 * The new index is unused. Set it in the phyint. 21262 * Locate the other ill so that we can send a routing 21263 * sockets message. 21264 */ 21265 if (ill->ill_isv6) { 21266 ill_other = phyi->phyint_illv4; 21267 } else { 21268 ill_other = phyi->phyint_illv6; 21269 } 21270 21271 phyi->phyint_ifindex = index; 21272 21273 connc.cc_old_ifindex = old_index; 21274 connc.cc_new_ifindex = index; 21275 ip_change_ifindex(ill, &connc); 21276 ipcl_walk(conn_change_ifindex, (caddr_t)&connc); 21277 21278 /* Send the routing sockets message */ 21279 ip_rts_ifmsg(ipif); 21280 if (ill_other != NULL) 21281 ip_rts_ifmsg(ill_other->ill_ipif); 21282 21283 return (0); 21284 } 21285 21286 /* ARGSUSED */ 21287 int 21288 ip_sioctl_get_lifindex(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 21289 ip_ioctl_cmd_t *ipip, void *ifreq) 21290 { 21291 struct ifreq *ifr = (struct ifreq *)ifreq; 21292 struct lifreq *lifr = (struct lifreq *)ifreq; 21293 21294 ip1dbg(("ip_sioctl_get_lifindex(%s:%u %p)\n", 21295 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 21296 /* Get the interface index */ 21297 if (ipip->ipi_cmd_type == IF_CMD) { 21298 ifr->ifr_index = ipif->ipif_ill->ill_phyint->phyint_ifindex; 21299 } else { 21300 lifr->lifr_index = ipif->ipif_ill->ill_phyint->phyint_ifindex; 21301 } 21302 return (0); 21303 } 21304 21305 /* ARGSUSED */ 21306 int 21307 ip_sioctl_get_lifzone(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 21308 ip_ioctl_cmd_t *ipip, void *ifreq) 21309 { 21310 struct lifreq *lifr = (struct lifreq *)ifreq; 21311 21312 ip1dbg(("ip_sioctl_get_lifzone(%s:%u %p)\n", 21313 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 21314 /* Get the interface zone */ 21315 ASSERT(ipip->ipi_cmd_type == LIF_CMD); 21316 lifr->lifr_zoneid = ipif->ipif_zoneid; 21317 return (0); 21318 } 21319 21320 /* 21321 * Set the zoneid of an interface. 21322 */ 21323 /* ARGSUSED */ 21324 int 21325 ip_sioctl_slifzone(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 21326 ip_ioctl_cmd_t *ipip, void *ifreq) 21327 { 21328 struct lifreq *lifr = (struct lifreq *)ifreq; 21329 int err = 0; 21330 boolean_t need_up = B_FALSE; 21331 zone_t *zptr; 21332 zone_status_t status; 21333 zoneid_t zoneid; 21334 21335 ASSERT(ipip->ipi_cmd_type == LIF_CMD); 21336 if ((zoneid = lifr->lifr_zoneid) == ALL_ZONES) { 21337 if (!is_system_labeled()) 21338 return (ENOTSUP); 21339 zoneid = GLOBAL_ZONEID; 21340 } 21341 21342 /* cannot assign instance zero to a non-global zone */ 21343 if (ipif->ipif_id == 0 && zoneid != GLOBAL_ZONEID) 21344 return (ENOTSUP); 21345 21346 /* 21347 * Cannot assign to a zone that doesn't exist or is shutting down. In 21348 * the event of a race with the zone shutdown processing, since IP 21349 * serializes this ioctl and SIOCGLIFCONF/SIOCLIFREMOVEIF, we know the 21350 * interface will be cleaned up even if the zone is shut down 21351 * immediately after the status check. If the interface can't be brought 21352 * down right away, and the zone is shut down before the restart 21353 * function is called, we resolve the possible races by rechecking the 21354 * zone status in the restart function. 21355 */ 21356 if ((zptr = zone_find_by_id(zoneid)) == NULL) 21357 return (EINVAL); 21358 status = zone_status_get(zptr); 21359 zone_rele(zptr); 21360 21361 if (status != ZONE_IS_READY && status != ZONE_IS_RUNNING) 21362 return (EINVAL); 21363 21364 if (ipif->ipif_flags & IPIF_UP) { 21365 /* 21366 * If the interface is already marked up, 21367 * we call ipif_down which will take care 21368 * of ditching any IREs that have been set 21369 * up based on the old interface address. 21370 */ 21371 err = ipif_logical_down(ipif, q, mp); 21372 if (err == EINPROGRESS) 21373 return (err); 21374 ipif_down_tail(ipif); 21375 need_up = B_TRUE; 21376 } 21377 21378 err = ip_sioctl_slifzone_tail(ipif, lifr->lifr_zoneid, q, mp, need_up); 21379 return (err); 21380 } 21381 21382 static int 21383 ip_sioctl_slifzone_tail(ipif_t *ipif, zoneid_t zoneid, 21384 queue_t *q, mblk_t *mp, boolean_t need_up) 21385 { 21386 int err = 0; 21387 21388 ip1dbg(("ip_sioctl_zoneid_tail(%s:%u %p)\n", 21389 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 21390 21391 /* Set the new zone id. */ 21392 ipif->ipif_zoneid = zoneid; 21393 21394 /* Update sctp list */ 21395 sctp_update_ipif(ipif, SCTP_IPIF_UPDATE); 21396 21397 if (need_up) { 21398 /* 21399 * Now bring the interface back up. If this 21400 * is the only IPIF for the ILL, ipif_up 21401 * will have to re-bind to the device, so 21402 * we may get back EINPROGRESS, in which 21403 * case, this IOCTL will get completed in 21404 * ip_rput_dlpi when we see the DL_BIND_ACK. 21405 */ 21406 err = ipif_up(ipif, q, mp); 21407 } 21408 return (err); 21409 } 21410 21411 /* ARGSUSED */ 21412 int 21413 ip_sioctl_slifzone_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 21414 ip_ioctl_cmd_t *ipip, void *if_req) 21415 { 21416 struct lifreq *lifr = (struct lifreq *)if_req; 21417 zoneid_t zoneid; 21418 zone_t *zptr; 21419 zone_status_t status; 21420 21421 ASSERT(ipif->ipif_id != 0); 21422 ASSERT(ipip->ipi_cmd_type == LIF_CMD); 21423 if ((zoneid = lifr->lifr_zoneid) == ALL_ZONES) 21424 zoneid = GLOBAL_ZONEID; 21425 21426 ip1dbg(("ip_sioctl_slifzone_restart(%s:%u %p)\n", 21427 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 21428 21429 /* 21430 * We recheck the zone status to resolve the following race condition: 21431 * 1) process sends SIOCSLIFZONE to put hme0:1 in zone "myzone"; 21432 * 2) hme0:1 is up and can't be brought down right away; 21433 * ip_sioctl_slifzone() returns EINPROGRESS and the request is queued; 21434 * 3) zone "myzone" is halted; the zone status switches to 21435 * 'shutting_down' and the zones framework sends SIOCGLIFCONF to list 21436 * the interfaces to remove - hme0:1 is not returned because it's not 21437 * yet in "myzone", so it won't be removed; 21438 * 4) the restart function for SIOCSLIFZONE is called; without the 21439 * status check here, we would have hme0:1 in "myzone" after it's been 21440 * destroyed. 21441 * Note that if the status check fails, we need to bring the interface 21442 * back to its state prior to ip_sioctl_slifzone(), hence the call to 21443 * ipif_up_done[_v6](). 21444 */ 21445 status = ZONE_IS_UNINITIALIZED; 21446 if ((zptr = zone_find_by_id(zoneid)) != NULL) { 21447 status = zone_status_get(zptr); 21448 zone_rele(zptr); 21449 } 21450 if (status != ZONE_IS_READY && status != ZONE_IS_RUNNING) { 21451 if (ipif->ipif_isv6) { 21452 (void) ipif_up_done_v6(ipif); 21453 } else { 21454 (void) ipif_up_done(ipif); 21455 } 21456 return (EINVAL); 21457 } 21458 21459 ipif_down_tail(ipif); 21460 21461 return (ip_sioctl_slifzone_tail(ipif, lifr->lifr_zoneid, q, mp, 21462 B_TRUE)); 21463 } 21464 21465 /* ARGSUSED */ 21466 int 21467 ip_sioctl_get_lifusesrc(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 21468 ip_ioctl_cmd_t *ipip, void *ifreq) 21469 { 21470 struct lifreq *lifr = ifreq; 21471 21472 ASSERT(q->q_next == NULL); 21473 ASSERT(CONN_Q(q)); 21474 21475 ip1dbg(("ip_sioctl_get_lifusesrc(%s:%u %p)\n", 21476 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 21477 lifr->lifr_index = ipif->ipif_ill->ill_usesrc_ifindex; 21478 ip1dbg(("ip_sioctl_get_lifusesrc:lifr_index = %d\n", lifr->lifr_index)); 21479 21480 return (0); 21481 } 21482 21483 21484 /* Find the previous ILL in this usesrc group */ 21485 static ill_t * 21486 ill_prev_usesrc(ill_t *uill) 21487 { 21488 ill_t *ill; 21489 21490 for (ill = uill->ill_usesrc_grp_next; 21491 ASSERT(ill), ill->ill_usesrc_grp_next != uill; 21492 ill = ill->ill_usesrc_grp_next) 21493 /* do nothing */; 21494 return (ill); 21495 } 21496 21497 /* 21498 * Release all members of the usesrc group. This routine is called 21499 * from ill_delete when the interface being unplumbed is the 21500 * group head. 21501 */ 21502 static void 21503 ill_disband_usesrc_group(ill_t *uill) 21504 { 21505 ill_t *next_ill, *tmp_ill; 21506 ASSERT(RW_WRITE_HELD(&ill_g_usesrc_lock)); 21507 next_ill = uill->ill_usesrc_grp_next; 21508 21509 do { 21510 ASSERT(next_ill != NULL); 21511 tmp_ill = next_ill->ill_usesrc_grp_next; 21512 ASSERT(tmp_ill != NULL); 21513 next_ill->ill_usesrc_grp_next = NULL; 21514 next_ill->ill_usesrc_ifindex = 0; 21515 next_ill = tmp_ill; 21516 } while (next_ill->ill_usesrc_ifindex != 0); 21517 uill->ill_usesrc_grp_next = NULL; 21518 } 21519 21520 /* 21521 * Remove the client usesrc ILL from the list and relink to a new list 21522 */ 21523 int 21524 ill_relink_usesrc_ills(ill_t *ucill, ill_t *uill, uint_t ifindex) 21525 { 21526 ill_t *ill, *tmp_ill; 21527 21528 ASSERT((ucill != NULL) && (ucill->ill_usesrc_grp_next != NULL) && 21529 (uill != NULL) && RW_WRITE_HELD(&ill_g_usesrc_lock)); 21530 21531 /* 21532 * Check if the usesrc client ILL passed in is not already 21533 * in use as a usesrc ILL i.e one whose source address is 21534 * in use OR a usesrc ILL is not already in use as a usesrc 21535 * client ILL 21536 */ 21537 if ((ucill->ill_usesrc_ifindex == 0) || 21538 (uill->ill_usesrc_ifindex != 0)) { 21539 return (-1); 21540 } 21541 21542 ill = ill_prev_usesrc(ucill); 21543 ASSERT(ill->ill_usesrc_grp_next != NULL); 21544 21545 /* Remove from the current list */ 21546 if (ill->ill_usesrc_grp_next->ill_usesrc_grp_next == ill) { 21547 /* Only two elements in the list */ 21548 ASSERT(ill->ill_usesrc_ifindex == 0); 21549 ill->ill_usesrc_grp_next = NULL; 21550 } else { 21551 ill->ill_usesrc_grp_next = ucill->ill_usesrc_grp_next; 21552 } 21553 21554 if (ifindex == 0) { 21555 ucill->ill_usesrc_ifindex = 0; 21556 ucill->ill_usesrc_grp_next = NULL; 21557 return (0); 21558 } 21559 21560 ucill->ill_usesrc_ifindex = ifindex; 21561 tmp_ill = uill->ill_usesrc_grp_next; 21562 uill->ill_usesrc_grp_next = ucill; 21563 ucill->ill_usesrc_grp_next = 21564 (tmp_ill != NULL) ? tmp_ill : uill; 21565 return (0); 21566 } 21567 21568 /* 21569 * Set the ill_usesrc and ill_usesrc_head fields. See synchronization notes in 21570 * ip.c for locking details. 21571 */ 21572 /* ARGSUSED */ 21573 int 21574 ip_sioctl_slifusesrc(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 21575 ip_ioctl_cmd_t *ipip, void *ifreq) 21576 { 21577 struct lifreq *lifr = (struct lifreq *)ifreq; 21578 boolean_t isv6 = B_FALSE, reset_flg = B_FALSE, 21579 ill_flag_changed = B_FALSE; 21580 ill_t *usesrc_ill, *usesrc_cli_ill = ipif->ipif_ill; 21581 int err = 0, ret; 21582 uint_t ifindex; 21583 phyint_t *us_phyint, *us_cli_phyint; 21584 ipsq_t *ipsq = NULL; 21585 21586 ASSERT(IAM_WRITER_IPIF(ipif)); 21587 ASSERT(q->q_next == NULL); 21588 ASSERT(CONN_Q(q)); 21589 21590 isv6 = (Q_TO_CONN(q))->conn_af_isv6; 21591 us_cli_phyint = usesrc_cli_ill->ill_phyint; 21592 21593 ASSERT(us_cli_phyint != NULL); 21594 21595 /* 21596 * If the client ILL is being used for IPMP, abort. 21597 * Note, this can be done before ipsq_try_enter since we are already 21598 * exclusive on this ILL 21599 */ 21600 if ((us_cli_phyint->phyint_groupname != NULL) || 21601 (us_cli_phyint->phyint_flags & PHYI_STANDBY)) { 21602 return (EINVAL); 21603 } 21604 21605 ifindex = lifr->lifr_index; 21606 if (ifindex == 0) { 21607 if (usesrc_cli_ill->ill_usesrc_grp_next == NULL) { 21608 /* non usesrc group interface, nothing to reset */ 21609 return (0); 21610 } 21611 ifindex = usesrc_cli_ill->ill_usesrc_ifindex; 21612 /* valid reset request */ 21613 reset_flg = B_TRUE; 21614 } 21615 21616 usesrc_ill = ill_lookup_on_ifindex(ifindex, isv6, q, mp, 21617 ip_process_ioctl, &err); 21618 21619 if (usesrc_ill == NULL) { 21620 return (err); 21621 } 21622 21623 /* 21624 * The usesrc_cli_ill or the usesrc_ill cannot be part of an IPMP 21625 * group nor can either of the interfaces be used for standy. So 21626 * to guarantee mutual exclusion with ip_sioctl_flags (which sets 21627 * PHYI_STANDBY) and ip_sioctl_groupname (which sets the groupname) 21628 * we need to be exclusive on the ipsq belonging to the usesrc_ill. 21629 * We are already exlusive on this ipsq i.e ipsq corresponding to 21630 * the usesrc_cli_ill 21631 */ 21632 ipsq = ipsq_try_enter(NULL, usesrc_ill, q, mp, ip_process_ioctl, 21633 NEW_OP, B_TRUE); 21634 if (ipsq == NULL) { 21635 err = EINPROGRESS; 21636 /* Operation enqueued on the ipsq of the usesrc ILL */ 21637 goto done; 21638 } 21639 21640 /* Check if the usesrc_ill is used for IPMP */ 21641 us_phyint = usesrc_ill->ill_phyint; 21642 if ((us_phyint->phyint_groupname != NULL) || 21643 (us_phyint->phyint_flags & PHYI_STANDBY)) { 21644 err = EINVAL; 21645 goto done; 21646 } 21647 21648 /* 21649 * If the client is already in use as a usesrc_ill or a usesrc_ill is 21650 * already a client then return EINVAL 21651 */ 21652 if (IS_USESRC_ILL(usesrc_cli_ill) || IS_USESRC_CLI_ILL(usesrc_ill)) { 21653 err = EINVAL; 21654 goto done; 21655 } 21656 21657 /* 21658 * If the ill_usesrc_ifindex field is already set to what it needs to 21659 * be then this is a duplicate operation. 21660 */ 21661 if (!reset_flg && usesrc_cli_ill->ill_usesrc_ifindex == ifindex) { 21662 err = 0; 21663 goto done; 21664 } 21665 21666 ip1dbg(("ip_sioctl_slifusesrc: usesrc_cli_ill %s, usesrc_ill %s," 21667 " v6 = %d", usesrc_cli_ill->ill_name, usesrc_ill->ill_name, 21668 usesrc_ill->ill_isv6)); 21669 21670 /* 21671 * The next step ensures that no new ires will be created referencing 21672 * the client ill, until the ILL_CHANGING flag is cleared. Then 21673 * we go through an ire walk deleting all ire caches that reference 21674 * the client ill. New ires referencing the client ill that are added 21675 * to the ire table before the ILL_CHANGING flag is set, will be 21676 * cleaned up by the ire walk below. Attempt to add new ires referencing 21677 * the client ill while the ILL_CHANGING flag is set will be failed 21678 * during the ire_add in ire_atomic_start. ire_atomic_start atomically 21679 * checks (under the ill_g_usesrc_lock) that the ire being added 21680 * is not stale, i.e the ire_stq and ire_ipif are consistent and 21681 * belong to the same usesrc group. 21682 */ 21683 mutex_enter(&usesrc_cli_ill->ill_lock); 21684 usesrc_cli_ill->ill_state_flags |= ILL_CHANGING; 21685 mutex_exit(&usesrc_cli_ill->ill_lock); 21686 ill_flag_changed = B_TRUE; 21687 21688 if (ipif->ipif_isv6) 21689 ire_walk_v6(ipif_delete_cache_ire, (char *)usesrc_cli_ill, 21690 ALL_ZONES); 21691 else 21692 ire_walk_v4(ipif_delete_cache_ire, (char *)usesrc_cli_ill, 21693 ALL_ZONES); 21694 21695 /* 21696 * ill_g_usesrc_lock global lock protects the ill_usesrc_grp_next 21697 * and the ill_usesrc_ifindex fields 21698 */ 21699 rw_enter(&ill_g_usesrc_lock, RW_WRITER); 21700 21701 if (reset_flg) { 21702 ret = ill_relink_usesrc_ills(usesrc_cli_ill, usesrc_ill, 0); 21703 if (ret != 0) { 21704 err = EINVAL; 21705 } 21706 rw_exit(&ill_g_usesrc_lock); 21707 goto done; 21708 } 21709 21710 /* 21711 * Four possibilities to consider: 21712 * 1. Both usesrc_ill and usesrc_cli_ill are not part of any usesrc grp 21713 * 2. usesrc_ill is part of a group but usesrc_cli_ill isn't 21714 * 3. usesrc_cli_ill is part of a group but usesrc_ill isn't 21715 * 4. Both are part of their respective usesrc groups 21716 */ 21717 if ((usesrc_ill->ill_usesrc_grp_next == NULL) && 21718 (usesrc_cli_ill->ill_usesrc_grp_next == NULL)) { 21719 ASSERT(usesrc_ill->ill_usesrc_ifindex == 0); 21720 usesrc_cli_ill->ill_usesrc_ifindex = ifindex; 21721 usesrc_ill->ill_usesrc_grp_next = usesrc_cli_ill; 21722 usesrc_cli_ill->ill_usesrc_grp_next = usesrc_ill; 21723 } else if ((usesrc_ill->ill_usesrc_grp_next != NULL) && 21724 (usesrc_cli_ill->ill_usesrc_grp_next == NULL)) { 21725 usesrc_cli_ill->ill_usesrc_ifindex = ifindex; 21726 /* Insert at head of list */ 21727 usesrc_cli_ill->ill_usesrc_grp_next = 21728 usesrc_ill->ill_usesrc_grp_next; 21729 usesrc_ill->ill_usesrc_grp_next = usesrc_cli_ill; 21730 } else { 21731 ret = ill_relink_usesrc_ills(usesrc_cli_ill, usesrc_ill, 21732 ifindex); 21733 if (ret != 0) 21734 err = EINVAL; 21735 } 21736 rw_exit(&ill_g_usesrc_lock); 21737 21738 done: 21739 if (ill_flag_changed) { 21740 mutex_enter(&usesrc_cli_ill->ill_lock); 21741 usesrc_cli_ill->ill_state_flags &= ~ILL_CHANGING; 21742 mutex_exit(&usesrc_cli_ill->ill_lock); 21743 } 21744 if (ipsq != NULL) 21745 ipsq_exit(ipsq, B_TRUE, B_TRUE); 21746 /* The refrele on the lifr_name ipif is done by ip_process_ioctl */ 21747 ill_refrele(usesrc_ill); 21748 return (err); 21749 } 21750 21751 /* 21752 * comparison function used by avl. 21753 */ 21754 static int 21755 ill_phyint_compare_index(const void *index_ptr, const void *phyip) 21756 { 21757 21758 uint_t index; 21759 21760 ASSERT(phyip != NULL && index_ptr != NULL); 21761 21762 index = *((uint_t *)index_ptr); 21763 /* 21764 * let the phyint with the lowest index be on top. 21765 */ 21766 if (((phyint_t *)phyip)->phyint_ifindex < index) 21767 return (1); 21768 if (((phyint_t *)phyip)->phyint_ifindex > index) 21769 return (-1); 21770 return (0); 21771 } 21772 21773 /* 21774 * comparison function used by avl. 21775 */ 21776 static int 21777 ill_phyint_compare_name(const void *name_ptr, const void *phyip) 21778 { 21779 ill_t *ill; 21780 int res = 0; 21781 21782 ASSERT(phyip != NULL && name_ptr != NULL); 21783 21784 if (((phyint_t *)phyip)->phyint_illv4) 21785 ill = ((phyint_t *)phyip)->phyint_illv4; 21786 else 21787 ill = ((phyint_t *)phyip)->phyint_illv6; 21788 ASSERT(ill != NULL); 21789 21790 res = strcmp(ill->ill_name, (char *)name_ptr); 21791 if (res > 0) 21792 return (1); 21793 else if (res < 0) 21794 return (-1); 21795 return (0); 21796 } 21797 /* 21798 * This function is called from ill_delete when the ill is being 21799 * unplumbed. We remove the reference from the phyint and we also 21800 * free the phyint when there are no more references to it. 21801 */ 21802 static void 21803 ill_phyint_free(ill_t *ill) 21804 { 21805 phyint_t *phyi; 21806 phyint_t *next_phyint; 21807 ipsq_t *cur_ipsq; 21808 21809 ASSERT(ill->ill_phyint != NULL); 21810 21811 ASSERT(RW_WRITE_HELD(&ill_g_lock)); 21812 phyi = ill->ill_phyint; 21813 ill->ill_phyint = NULL; 21814 /* 21815 * ill_init allocates a phyint always to store the copy 21816 * of flags relevant to phyint. At that point in time, we could 21817 * not assign the name and hence phyint_illv4/v6 could not be 21818 * initialized. Later in ipif_set_values, we assign the name to 21819 * the ill, at which point in time we assign phyint_illv4/v6. 21820 * Thus we don't rely on phyint_illv6 to be initialized always. 21821 */ 21822 if (ill->ill_flags & ILLF_IPV6) { 21823 phyi->phyint_illv6 = NULL; 21824 } else { 21825 phyi->phyint_illv4 = NULL; 21826 } 21827 /* 21828 * ipif_down removes it from the group when the last ipif goes 21829 * down. 21830 */ 21831 ASSERT(ill->ill_group == NULL); 21832 21833 if (phyi->phyint_illv4 != NULL || phyi->phyint_illv6 != NULL) 21834 return; 21835 21836 /* 21837 * Make sure this phyint was put in the list. 21838 */ 21839 if (phyi->phyint_ifindex > 0) { 21840 avl_remove(&phyint_g_list.phyint_list_avl_by_index, 21841 phyi); 21842 avl_remove(&phyint_g_list.phyint_list_avl_by_name, 21843 phyi); 21844 } 21845 /* 21846 * remove phyint from the ipsq list. 21847 */ 21848 cur_ipsq = phyi->phyint_ipsq; 21849 if (phyi == cur_ipsq->ipsq_phyint_list) { 21850 cur_ipsq->ipsq_phyint_list = phyi->phyint_ipsq_next; 21851 } else { 21852 next_phyint = cur_ipsq->ipsq_phyint_list; 21853 while (next_phyint != NULL) { 21854 if (next_phyint->phyint_ipsq_next == phyi) { 21855 next_phyint->phyint_ipsq_next = 21856 phyi->phyint_ipsq_next; 21857 break; 21858 } 21859 next_phyint = next_phyint->phyint_ipsq_next; 21860 } 21861 ASSERT(next_phyint != NULL); 21862 } 21863 IPSQ_DEC_REF(cur_ipsq); 21864 21865 if (phyi->phyint_groupname_len != 0) { 21866 ASSERT(phyi->phyint_groupname != NULL); 21867 mi_free(phyi->phyint_groupname); 21868 } 21869 mi_free(phyi); 21870 } 21871 21872 /* 21873 * Attach the ill to the phyint structure which can be shared by both 21874 * IPv4 and IPv6 ill. ill_init allocates a phyint to just hold flags. This 21875 * function is called from ipif_set_values and ill_lookup_on_name (for 21876 * loopback) where we know the name of the ill. We lookup the ill and if 21877 * there is one present already with the name use that phyint. Otherwise 21878 * reuse the one allocated by ill_init. 21879 */ 21880 static void 21881 ill_phyint_reinit(ill_t *ill) 21882 { 21883 boolean_t isv6 = ill->ill_isv6; 21884 phyint_t *phyi_old; 21885 phyint_t *phyi; 21886 avl_index_t where = 0; 21887 ill_t *ill_other = NULL; 21888 ipsq_t *ipsq; 21889 21890 ASSERT(RW_WRITE_HELD(&ill_g_lock)); 21891 21892 phyi_old = ill->ill_phyint; 21893 ASSERT(isv6 || (phyi_old->phyint_illv4 == ill && 21894 phyi_old->phyint_illv6 == NULL)); 21895 ASSERT(!isv6 || (phyi_old->phyint_illv6 == ill && 21896 phyi_old->phyint_illv4 == NULL)); 21897 ASSERT(phyi_old->phyint_ifindex == 0); 21898 21899 phyi = avl_find(&phyint_g_list.phyint_list_avl_by_name, 21900 ill->ill_name, &where); 21901 21902 /* 21903 * 1. We grabbed the ill_g_lock before inserting this ill into 21904 * the global list of ills. So no other thread could have located 21905 * this ill and hence the ipsq of this ill is guaranteed to be empty. 21906 * 2. Now locate the other protocol instance of this ill. 21907 * 3. Now grab both ill locks in the right order, and the phyint lock of 21908 * the new ipsq. Holding ill locks + ill_g_lock ensures that the ipsq 21909 * of neither ill can change. 21910 * 4. Merge the phyint and thus the ipsq as well of this ill onto the 21911 * other ill. 21912 * 5. Release all locks. 21913 */ 21914 21915 /* 21916 * Look for IPv4 if we are initializing IPv6 or look for IPv6 if 21917 * we are initializing IPv4. 21918 */ 21919 if (phyi != NULL) { 21920 ill_other = (isv6) ? phyi->phyint_illv4 : 21921 phyi->phyint_illv6; 21922 ASSERT(ill_other->ill_phyint != NULL); 21923 ASSERT((isv6 && !ill_other->ill_isv6) || 21924 (!isv6 && ill_other->ill_isv6)); 21925 GRAB_ILL_LOCKS(ill, ill_other); 21926 /* 21927 * We are potentially throwing away phyint_flags which 21928 * could be different from the one that we obtain from 21929 * ill_other->ill_phyint. But it is okay as we are assuming 21930 * that the state maintained within IP is correct. 21931 */ 21932 mutex_enter(&phyi->phyint_lock); 21933 if (isv6) { 21934 ASSERT(phyi->phyint_illv6 == NULL); 21935 phyi->phyint_illv6 = ill; 21936 } else { 21937 ASSERT(phyi->phyint_illv4 == NULL); 21938 phyi->phyint_illv4 = ill; 21939 } 21940 /* 21941 * This is a new ill, currently undergoing SLIFNAME 21942 * So we could not have joined an IPMP group until now. 21943 */ 21944 ASSERT(phyi_old->phyint_ipsq_next == NULL && 21945 phyi_old->phyint_groupname == NULL); 21946 21947 /* 21948 * This phyi_old is going away. Decref ipsq_refs and 21949 * assert it is zero. The ipsq itself will be freed in 21950 * ipsq_exit 21951 */ 21952 ipsq = phyi_old->phyint_ipsq; 21953 IPSQ_DEC_REF(ipsq); 21954 ASSERT(ipsq->ipsq_refs == 0); 21955 /* Get the singleton phyint out of the ipsq list */ 21956 ASSERT(phyi_old->phyint_ipsq_next == NULL); 21957 ipsq->ipsq_phyint_list = NULL; 21958 phyi_old->phyint_illv4 = NULL; 21959 phyi_old->phyint_illv6 = NULL; 21960 mi_free(phyi_old); 21961 } else { 21962 mutex_enter(&ill->ill_lock); 21963 /* 21964 * We don't need to acquire any lock, since 21965 * the ill is not yet visible globally and we 21966 * have not yet released the ill_g_lock. 21967 */ 21968 phyi = phyi_old; 21969 mutex_enter(&phyi->phyint_lock); 21970 /* XXX We need a recovery strategy here. */ 21971 if (!phyint_assign_ifindex(phyi)) 21972 cmn_err(CE_PANIC, "phyint_assign_ifindex() failed"); 21973 21974 avl_insert(&phyint_g_list.phyint_list_avl_by_name, 21975 (void *)phyi, where); 21976 21977 (void) avl_find(&phyint_g_list.phyint_list_avl_by_index, 21978 &phyi->phyint_ifindex, &where); 21979 avl_insert(&phyint_g_list.phyint_list_avl_by_index, 21980 (void *)phyi, where); 21981 } 21982 21983 /* 21984 * Reassigning ill_phyint automatically reassigns the ipsq also. 21985 * pending mp is not affected because that is per ill basis. 21986 */ 21987 ill->ill_phyint = phyi; 21988 21989 /* 21990 * Keep the index on ipif_orig_index to be used by FAILOVER. 21991 * We do this here as when the first ipif was allocated, 21992 * ipif_allocate does not know the right interface index. 21993 */ 21994 21995 ill->ill_ipif->ipif_orig_ifindex = ill->ill_phyint->phyint_ifindex; 21996 /* 21997 * Now that the phyint's ifindex has been assigned, complete the 21998 * remaining 21999 */ 22000 if (ill->ill_isv6) { 22001 ill->ill_ip6_mib->ipv6IfIndex = 22002 ill->ill_phyint->phyint_ifindex; 22003 ill->ill_icmp6_mib->ipv6IfIcmpIfIndex = 22004 ill->ill_phyint->phyint_ifindex; 22005 } 22006 22007 RELEASE_ILL_LOCKS(ill, ill_other); 22008 mutex_exit(&phyi->phyint_lock); 22009 } 22010 22011 /* 22012 * Notify any downstream modules of the name of this interface. 22013 * An M_IOCTL is used even though we don't expect a successful reply. 22014 * Any reply message from the driver (presumably an M_IOCNAK) will 22015 * eventually get discarded somewhere upstream. The message format is 22016 * simply an SIOCSLIFNAME ioctl just as might be sent from ifconfig 22017 * to IP. 22018 */ 22019 static void 22020 ip_ifname_notify(ill_t *ill, queue_t *q) 22021 { 22022 mblk_t *mp1, *mp2; 22023 struct iocblk *iocp; 22024 struct lifreq *lifr; 22025 22026 mp1 = mkiocb(SIOCSLIFNAME); 22027 if (mp1 == NULL) 22028 return; 22029 mp2 = allocb(sizeof (struct lifreq), BPRI_HI); 22030 if (mp2 == NULL) { 22031 freeb(mp1); 22032 return; 22033 } 22034 22035 mp1->b_cont = mp2; 22036 iocp = (struct iocblk *)mp1->b_rptr; 22037 iocp->ioc_count = sizeof (struct lifreq); 22038 22039 lifr = (struct lifreq *)mp2->b_rptr; 22040 mp2->b_wptr += sizeof (struct lifreq); 22041 bzero(lifr, sizeof (struct lifreq)); 22042 22043 (void) strncpy(lifr->lifr_name, ill->ill_name, LIFNAMSIZ); 22044 lifr->lifr_ppa = ill->ill_ppa; 22045 lifr->lifr_flags = (ill->ill_flags & (ILLF_IPV4|ILLF_IPV6)); 22046 22047 putnext(q, mp1); 22048 } 22049 22050 static boolean_t ip_trash_timer_started = B_FALSE; 22051 22052 static int 22053 ipif_set_values_tail(ill_t *ill, ipif_t *ipif, mblk_t *mp, queue_t *q) 22054 { 22055 int err; 22056 22057 /* Set the obsolete NDD per-interface forwarding name. */ 22058 err = ill_set_ndd_name(ill); 22059 if (err != 0) { 22060 cmn_err(CE_WARN, "ipif_set_values: ill_set_ndd_name (%d)\n", 22061 err); 22062 } 22063 22064 /* Tell downstream modules where they are. */ 22065 ip_ifname_notify(ill, q); 22066 22067 /* 22068 * ill_dl_phys returns EINPROGRESS in the usual case. 22069 * Error cases are ENOMEM ... 22070 */ 22071 err = ill_dl_phys(ill, ipif, mp, q); 22072 22073 /* 22074 * If there is no IRE expiration timer running, get one started. 22075 * igmp and mld timers will be triggered by the first multicast 22076 */ 22077 if (!ip_trash_timer_started) { 22078 /* 22079 * acquire the lock and check again. 22080 */ 22081 mutex_enter(&ip_trash_timer_lock); 22082 if (!ip_trash_timer_started) { 22083 ip_ire_expire_id = timeout(ip_trash_timer_expire, NULL, 22084 MSEC_TO_TICK(ip_timer_interval)); 22085 ip_trash_timer_started = B_TRUE; 22086 } 22087 mutex_exit(&ip_trash_timer_lock); 22088 } 22089 22090 if (ill->ill_isv6) { 22091 mutex_enter(&mld_slowtimeout_lock); 22092 if (mld_slowtimeout_id == 0) { 22093 mld_slowtimeout_id = timeout(mld_slowtimo, NULL, 22094 MSEC_TO_TICK(MCAST_SLOWTIMO_INTERVAL)); 22095 } 22096 mutex_exit(&mld_slowtimeout_lock); 22097 } else { 22098 mutex_enter(&igmp_slowtimeout_lock); 22099 if (igmp_slowtimeout_id == 0) { 22100 igmp_slowtimeout_id = timeout(igmp_slowtimo, NULL, 22101 MSEC_TO_TICK(MCAST_SLOWTIMO_INTERVAL)); 22102 } 22103 mutex_exit(&igmp_slowtimeout_lock); 22104 } 22105 22106 return (err); 22107 } 22108 22109 /* 22110 * Common routine for ppa and ifname setting. Should be called exclusive. 22111 * 22112 * Returns EINPROGRESS when mp has been consumed by queueing it on 22113 * ill_pending_mp and the ioctl will complete in ip_rput. 22114 * 22115 * NOTE : If ppa is UNIT_MAX, we assign the next valid ppa and return 22116 * the new name and new ppa in lifr_name and lifr_ppa respectively. 22117 * For SLIFNAME, we pass these values back to the userland. 22118 */ 22119 static int 22120 ipif_set_values(queue_t *q, mblk_t *mp, char *interf_name, uint_t *new_ppa_ptr) 22121 { 22122 ill_t *ill; 22123 ipif_t *ipif; 22124 ipsq_t *ipsq; 22125 char *ppa_ptr; 22126 char *old_ptr; 22127 char old_char; 22128 int error; 22129 22130 ip1dbg(("ipif_set_values: interface %s\n", interf_name)); 22131 ASSERT(q->q_next != NULL); 22132 ASSERT(interf_name != NULL); 22133 22134 ill = (ill_t *)q->q_ptr; 22135 22136 ASSERT(ill->ill_name[0] == '\0'); 22137 ASSERT(IAM_WRITER_ILL(ill)); 22138 ASSERT((mi_strlen(interf_name) + 1) <= LIFNAMSIZ); 22139 ASSERT(ill->ill_ppa == UINT_MAX); 22140 22141 /* The ppa is sent down by ifconfig or is chosen */ 22142 if ((ppa_ptr = ill_get_ppa_ptr(interf_name)) == NULL) { 22143 return (EINVAL); 22144 } 22145 22146 /* 22147 * make sure ppa passed in is same as ppa in the name. 22148 * This check is not made when ppa == UINT_MAX in that case ppa 22149 * in the name could be anything. System will choose a ppa and 22150 * update new_ppa_ptr and inter_name to contain the choosen ppa. 22151 */ 22152 if (*new_ppa_ptr != UINT_MAX) { 22153 /* stoi changes the pointer */ 22154 old_ptr = ppa_ptr; 22155 /* 22156 * ifconfig passed in 0 for the ppa for DLPI 1 style devices 22157 * (they don't have an externally visible ppa). We assign one 22158 * here so that we can manage the interface. Note that in 22159 * the past this value was always 0 for DLPI 1 drivers. 22160 */ 22161 if (*new_ppa_ptr == 0) 22162 *new_ppa_ptr = stoi(&old_ptr); 22163 else if (*new_ppa_ptr != (uint_t)stoi(&old_ptr)) 22164 return (EINVAL); 22165 } 22166 /* 22167 * terminate string before ppa 22168 * save char at that location. 22169 */ 22170 old_char = ppa_ptr[0]; 22171 ppa_ptr[0] = '\0'; 22172 22173 ill->ill_ppa = *new_ppa_ptr; 22174 /* 22175 * Finish as much work now as possible before calling ill_glist_insert 22176 * which makes the ill globally visible and also merges it with the 22177 * other protocol instance of this phyint. The remaining work is 22178 * done after entering the ipsq which may happen sometime later. 22179 * ill_set_ndd_name occurs after the ill has been made globally visible. 22180 */ 22181 ipif = ill->ill_ipif; 22182 22183 /* We didn't do this when we allocated ipif in ip_ll_subnet_defaults */ 22184 ipif_assign_seqid(ipif); 22185 22186 if (!(ill->ill_flags & (ILLF_IPV4|ILLF_IPV6))) 22187 ill->ill_flags |= ILLF_IPV4; 22188 22189 ASSERT(ipif->ipif_next == NULL); /* Only one ipif on ill */ 22190 ASSERT((ipif->ipif_flags & IPIF_UP) == 0); 22191 22192 if (ill->ill_flags & ILLF_IPV6) { 22193 22194 ill->ill_isv6 = B_TRUE; 22195 if (ill->ill_rq != NULL) { 22196 ill->ill_rq->q_qinfo = &rinit_ipv6; 22197 ill->ill_wq->q_qinfo = &winit_ipv6; 22198 } 22199 22200 /* Keep the !IN6_IS_ADDR_V4MAPPED assertions happy */ 22201 ipif->ipif_v6lcl_addr = ipv6_all_zeros; 22202 ipif->ipif_v6src_addr = ipv6_all_zeros; 22203 ipif->ipif_v6subnet = ipv6_all_zeros; 22204 ipif->ipif_v6net_mask = ipv6_all_zeros; 22205 ipif->ipif_v6brd_addr = ipv6_all_zeros; 22206 ipif->ipif_v6pp_dst_addr = ipv6_all_zeros; 22207 /* 22208 * point-to-point or Non-mulicast capable 22209 * interfaces won't do NUD unless explicitly 22210 * configured to do so. 22211 */ 22212 if (ipif->ipif_flags & IPIF_POINTOPOINT || 22213 !(ill->ill_flags & ILLF_MULTICAST)) { 22214 ill->ill_flags |= ILLF_NONUD; 22215 } 22216 /* Make sure IPv4 specific flag is not set on IPv6 if */ 22217 if (ill->ill_flags & ILLF_NOARP) { 22218 /* 22219 * Note: xresolv interfaces will eventually need 22220 * NOARP set here as well, but that will require 22221 * those external resolvers to have some 22222 * knowledge of that flag and act appropriately. 22223 * Not to be changed at present. 22224 */ 22225 ill->ill_flags &= ~ILLF_NOARP; 22226 } 22227 /* 22228 * Set the ILLF_ROUTER flag according to the global 22229 * IPv6 forwarding policy. 22230 */ 22231 if (ipv6_forward != 0) 22232 ill->ill_flags |= ILLF_ROUTER; 22233 } else if (ill->ill_flags & ILLF_IPV4) { 22234 ill->ill_isv6 = B_FALSE; 22235 IN6_IPADDR_TO_V4MAPPED(INADDR_ANY, &ipif->ipif_v6lcl_addr); 22236 IN6_IPADDR_TO_V4MAPPED(INADDR_ANY, &ipif->ipif_v6src_addr); 22237 IN6_IPADDR_TO_V4MAPPED(INADDR_ANY, &ipif->ipif_v6subnet); 22238 IN6_IPADDR_TO_V4MAPPED(INADDR_ANY, &ipif->ipif_v6net_mask); 22239 IN6_IPADDR_TO_V4MAPPED(INADDR_ANY, &ipif->ipif_v6brd_addr); 22240 IN6_IPADDR_TO_V4MAPPED(INADDR_ANY, &ipif->ipif_v6pp_dst_addr); 22241 /* 22242 * Set the ILLF_ROUTER flag according to the global 22243 * IPv4 forwarding policy. 22244 */ 22245 if (ip_g_forward != 0) 22246 ill->ill_flags |= ILLF_ROUTER; 22247 } 22248 22249 ASSERT(ill->ill_phyint != NULL); 22250 22251 /* 22252 * The ipv6Ifindex and ipv6IfIcmpIfIndex assignments will 22253 * be completed in ill_glist_insert -> ill_phyint_reinit 22254 */ 22255 if (ill->ill_isv6) { 22256 /* allocate v6 mib */ 22257 if (!ill_allocate_mibs(ill)) 22258 return (ENOMEM); 22259 } 22260 22261 /* 22262 * Pick a default sap until we get the DL_INFO_ACK back from 22263 * the driver. 22264 */ 22265 if (ill->ill_sap == 0) { 22266 if (ill->ill_isv6) 22267 ill->ill_sap = IP6_DL_SAP; 22268 else 22269 ill->ill_sap = IP_DL_SAP; 22270 } 22271 22272 ill->ill_ifname_pending = 1; 22273 ill->ill_ifname_pending_err = 0; 22274 22275 ill_refhold(ill); 22276 rw_enter(&ill_g_lock, RW_WRITER); 22277 if ((error = ill_glist_insert(ill, interf_name, 22278 (ill->ill_flags & ILLF_IPV6) == ILLF_IPV6)) > 0) { 22279 ill->ill_ppa = UINT_MAX; 22280 ill->ill_name[0] = '\0'; 22281 /* 22282 * undo null termination done above. 22283 */ 22284 ppa_ptr[0] = old_char; 22285 rw_exit(&ill_g_lock); 22286 ill_refrele(ill); 22287 return (error); 22288 } 22289 22290 ASSERT(ill->ill_name_length <= LIFNAMSIZ); 22291 22292 /* 22293 * When we return the buffer pointed to by interf_name should contain 22294 * the same name as in ill_name. 22295 * If a ppa was choosen by the system (ppa passed in was UINT_MAX) 22296 * the buffer pointed to by new_ppa_ptr would not contain the right ppa 22297 * so copy full name and update the ppa ptr. 22298 * When ppa passed in != UINT_MAX all values are correct just undo 22299 * null termination, this saves a bcopy. 22300 */ 22301 if (*new_ppa_ptr == UINT_MAX) { 22302 bcopy(ill->ill_name, interf_name, ill->ill_name_length); 22303 *new_ppa_ptr = ill->ill_ppa; 22304 } else { 22305 /* 22306 * undo null termination done above. 22307 */ 22308 ppa_ptr[0] = old_char; 22309 } 22310 22311 /* Let SCTP know about this ILL */ 22312 sctp_update_ill(ill, SCTP_ILL_INSERT); 22313 22314 /* and also about the first ipif */ 22315 sctp_update_ipif(ipif, SCTP_IPIF_INSERT); 22316 22317 ipsq = ipsq_try_enter(NULL, ill, q, mp, ip_reprocess_ioctl, NEW_OP, 22318 B_TRUE); 22319 22320 rw_exit(&ill_g_lock); 22321 ill_refrele(ill); 22322 if (ipsq == NULL) 22323 return (EINPROGRESS); 22324 22325 /* 22326 * Need to set the ipsq_current_ipif now, if we have changed ipsq 22327 * due to the phyint merge in ill_phyint_reinit. 22328 */ 22329 ASSERT(ipsq->ipsq_current_ipif == NULL || 22330 ipsq->ipsq_current_ipif == ipif); 22331 ipsq->ipsq_current_ipif = ipif; 22332 ipsq->ipsq_last_cmd = SIOCSLIFNAME; 22333 error = ipif_set_values_tail(ill, ipif, mp, q); 22334 ipsq_exit(ipsq, B_TRUE, B_TRUE); 22335 if (error != 0 && error != EINPROGRESS) { 22336 /* 22337 * restore previous values 22338 */ 22339 ill->ill_isv6 = B_FALSE; 22340 } 22341 return (error); 22342 } 22343 22344 22345 extern void (*ip_cleanup_func)(void); 22346 22347 void 22348 ipif_init(void) 22349 { 22350 hrtime_t hrt; 22351 int i; 22352 22353 /* 22354 * Can't call drv_getparm here as it is too early in the boot. 22355 * As we use ipif_src_random just for picking a different 22356 * source address everytime, this need not be really random. 22357 */ 22358 hrt = gethrtime(); 22359 ipif_src_random = ((hrt >> 32) & 0xffffffff) * (hrt & 0xffffffff); 22360 22361 for (i = 0; i < MAX_G_HEADS; i++) { 22362 ill_g_heads[i].ill_g_list_head = (ill_if_t *)&ill_g_heads[i]; 22363 ill_g_heads[i].ill_g_list_tail = (ill_if_t *)&ill_g_heads[i]; 22364 } 22365 22366 avl_create(&phyint_g_list.phyint_list_avl_by_index, 22367 ill_phyint_compare_index, 22368 sizeof (phyint_t), 22369 offsetof(struct phyint, phyint_avl_by_index)); 22370 avl_create(&phyint_g_list.phyint_list_avl_by_name, 22371 ill_phyint_compare_name, 22372 sizeof (phyint_t), 22373 offsetof(struct phyint, phyint_avl_by_name)); 22374 22375 ip_cleanup_func = ip_thread_exit; 22376 } 22377 22378 /* 22379 * This is called by ip_rt_add when src_addr value is other than zero. 22380 * src_addr signifies the source address of the incoming packet. For 22381 * reverse tunnel route we need to create a source addr based routing 22382 * table. This routine creates ip_mrtun_table if it's empty and then 22383 * it adds the route entry hashed by source address. It verifies that 22384 * the outgoing interface is always a non-resolver interface (tunnel). 22385 */ 22386 int 22387 ip_mrtun_rt_add(ipaddr_t in_src_addr, int flags, ipif_t *ipif_arg, 22388 ipif_t *src_ipif, ire_t **ire_arg, queue_t *q, mblk_t *mp, ipsq_func_t func) 22389 { 22390 ire_t *ire; 22391 ire_t *save_ire; 22392 ipif_t *ipif; 22393 ill_t *in_ill = NULL; 22394 ill_t *out_ill; 22395 queue_t *stq; 22396 mblk_t *dlureq_mp; 22397 int error; 22398 22399 if (ire_arg != NULL) 22400 *ire_arg = NULL; 22401 ASSERT(in_src_addr != INADDR_ANY); 22402 22403 ipif = ipif_arg; 22404 if (ipif != NULL) { 22405 out_ill = ipif->ipif_ill; 22406 } else { 22407 ip1dbg(("ip_mrtun_rt_add: ipif is NULL\n")); 22408 return (EINVAL); 22409 } 22410 22411 if (src_ipif == NULL) { 22412 ip1dbg(("ip_mrtun_rt_add: src_ipif is NULL\n")); 22413 return (EINVAL); 22414 } 22415 in_ill = src_ipif->ipif_ill; 22416 22417 /* 22418 * Check for duplicates. We don't need to 22419 * match out_ill, because the uniqueness of 22420 * a route is only dependent on src_addr and 22421 * in_ill. 22422 */ 22423 ire = ire_mrtun_lookup(in_src_addr, in_ill); 22424 if (ire != NULL) { 22425 ire_refrele(ire); 22426 return (EEXIST); 22427 } 22428 if (ipif->ipif_net_type != IRE_IF_NORESOLVER) { 22429 ip2dbg(("ip_mrtun_rt_add: outgoing interface is type %d\n", 22430 ipif->ipif_net_type)); 22431 return (EINVAL); 22432 } 22433 22434 stq = ipif->ipif_wq; 22435 ASSERT(stq != NULL); 22436 22437 /* 22438 * The outgoing interface must be non-resolver 22439 * interface. 22440 */ 22441 dlureq_mp = ill_dlur_gen(NULL, 22442 out_ill->ill_phys_addr_length, out_ill->ill_sap, 22443 out_ill->ill_sap_length); 22444 22445 if (dlureq_mp == NULL) { 22446 ip1dbg(("ip_newroute: dlureq_mp NULL\n")); 22447 return (ENOMEM); 22448 } 22449 22450 /* Create the IRE. */ 22451 22452 ire = ire_create( 22453 NULL, /* Zero dst addr */ 22454 NULL, /* Zero mask */ 22455 NULL, /* Zero gateway addr */ 22456 NULL, /* Zero ipif_src addr */ 22457 (uint8_t *)&in_src_addr, /* in_src-addr */ 22458 &ipif->ipif_mtu, 22459 NULL, 22460 NULL, /* rfq */ 22461 stq, 22462 IRE_MIPRTUN, 22463 dlureq_mp, 22464 ipif, 22465 in_ill, 22466 0, 22467 0, 22468 0, 22469 flags, 22470 &ire_uinfo_null, 22471 NULL, 22472 NULL); 22473 22474 if (ire == NULL) 22475 return (ENOMEM); 22476 ip2dbg(("ip_mrtun_rt_add: mrtun route is created with type %d\n", 22477 ire->ire_type)); 22478 save_ire = ire; 22479 ASSERT(save_ire != NULL); 22480 error = ire_add_mrtun(&ire, q, mp, func); 22481 /* 22482 * If ire_add_mrtun() failed, the ire passed in was freed 22483 * so there is no need to do so here. 22484 */ 22485 if (error != 0) { 22486 return (error); 22487 } 22488 22489 /* Duplicate check */ 22490 if (ire != save_ire) { 22491 /* route already exists by now */ 22492 ire_refrele(ire); 22493 return (EEXIST); 22494 } 22495 22496 if (ire_arg != NULL) { 22497 /* 22498 * Store the ire that was just added. the caller 22499 * ip_rts_request responsible for doing ire_refrele() 22500 * on it. 22501 */ 22502 *ire_arg = ire; 22503 } else { 22504 ire_refrele(ire); /* held in ire_add_mrtun */ 22505 } 22506 22507 return (0); 22508 } 22509 22510 /* 22511 * It is called by ip_rt_delete() only when mipagent requests to delete 22512 * a reverse tunnel route that was added by ip_mrtun_rt_add() before. 22513 */ 22514 22515 int 22516 ip_mrtun_rt_delete(ipaddr_t in_src_addr, ipif_t *src_ipif) 22517 { 22518 ire_t *ire = NULL; 22519 22520 if (in_src_addr == INADDR_ANY) 22521 return (EINVAL); 22522 if (src_ipif == NULL) 22523 return (EINVAL); 22524 22525 /* search if this route exists in the ip_mrtun_table */ 22526 ire = ire_mrtun_lookup(in_src_addr, src_ipif->ipif_ill); 22527 if (ire == NULL) { 22528 ip2dbg(("ip_mrtun_rt_delete: ire not found\n")); 22529 return (ESRCH); 22530 } 22531 ire_delete(ire); 22532 ire_refrele(ire); 22533 return (0); 22534 } 22535 22536 /* 22537 * Lookup the ipif corresponding to the onlink destination address. For 22538 * point-to-point interfaces, it matches with remote endpoint destination 22539 * address. For point-to-multipoint interfaces it only tries to match the 22540 * destination with the interface's subnet address. The longest, most specific 22541 * match is found to take care of such rare network configurations like - 22542 * le0: 129.146.1.1/16 22543 * le1: 129.146.2.2/24 22544 * It is used only by SO_DONTROUTE at the moment. 22545 */ 22546 ipif_t * 22547 ipif_lookup_onlink_addr(ipaddr_t addr, zoneid_t zoneid) 22548 { 22549 ipif_t *ipif, *best_ipif; 22550 ill_t *ill; 22551 ill_walk_context_t ctx; 22552 22553 ASSERT(zoneid != ALL_ZONES); 22554 best_ipif = NULL; 22555 22556 rw_enter(&ill_g_lock, RW_READER); 22557 ill = ILL_START_WALK_V4(&ctx); 22558 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 22559 mutex_enter(&ill->ill_lock); 22560 for (ipif = ill->ill_ipif; ipif != NULL; 22561 ipif = ipif->ipif_next) { 22562 if (!IPIF_CAN_LOOKUP(ipif)) 22563 continue; 22564 if (ipif->ipif_zoneid != zoneid && 22565 ipif->ipif_zoneid != ALL_ZONES) 22566 continue; 22567 /* 22568 * Point-to-point case. Look for exact match with 22569 * destination address. 22570 */ 22571 if (ipif->ipif_flags & IPIF_POINTOPOINT) { 22572 if (ipif->ipif_pp_dst_addr == addr) { 22573 ipif_refhold_locked(ipif); 22574 mutex_exit(&ill->ill_lock); 22575 rw_exit(&ill_g_lock); 22576 if (best_ipif != NULL) 22577 ipif_refrele(best_ipif); 22578 return (ipif); 22579 } 22580 } else if (ipif->ipif_subnet == (addr & 22581 ipif->ipif_net_mask)) { 22582 /* 22583 * Point-to-multipoint case. Looping through to 22584 * find the most specific match. If there are 22585 * multiple best match ipif's then prefer ipif's 22586 * that are UP. If there is only one best match 22587 * ipif and it is DOWN we must still return it. 22588 */ 22589 if ((best_ipif == NULL) || 22590 (ipif->ipif_net_mask > 22591 best_ipif->ipif_net_mask) || 22592 ((ipif->ipif_net_mask == 22593 best_ipif->ipif_net_mask) && 22594 ((ipif->ipif_flags & IPIF_UP) && 22595 (!(best_ipif->ipif_flags & IPIF_UP))))) { 22596 ipif_refhold_locked(ipif); 22597 mutex_exit(&ill->ill_lock); 22598 rw_exit(&ill_g_lock); 22599 if (best_ipif != NULL) 22600 ipif_refrele(best_ipif); 22601 best_ipif = ipif; 22602 rw_enter(&ill_g_lock, RW_READER); 22603 mutex_enter(&ill->ill_lock); 22604 } 22605 } 22606 } 22607 mutex_exit(&ill->ill_lock); 22608 } 22609 rw_exit(&ill_g_lock); 22610 return (best_ipif); 22611 } 22612 22613 22614 /* 22615 * Save enough information so that we can recreate the IRE if 22616 * the interface goes down and then up. 22617 */ 22618 static void 22619 ipif_save_ire(ipif_t *ipif, ire_t *ire) 22620 { 22621 mblk_t *save_mp; 22622 22623 save_mp = allocb(sizeof (ifrt_t), BPRI_MED); 22624 if (save_mp != NULL) { 22625 ifrt_t *ifrt; 22626 22627 save_mp->b_wptr += sizeof (ifrt_t); 22628 ifrt = (ifrt_t *)save_mp->b_rptr; 22629 bzero(ifrt, sizeof (ifrt_t)); 22630 ifrt->ifrt_type = ire->ire_type; 22631 ifrt->ifrt_addr = ire->ire_addr; 22632 ifrt->ifrt_gateway_addr = ire->ire_gateway_addr; 22633 ifrt->ifrt_src_addr = ire->ire_src_addr; 22634 ifrt->ifrt_mask = ire->ire_mask; 22635 ifrt->ifrt_flags = ire->ire_flags; 22636 ifrt->ifrt_max_frag = ire->ire_max_frag; 22637 mutex_enter(&ipif->ipif_saved_ire_lock); 22638 save_mp->b_cont = ipif->ipif_saved_ire_mp; 22639 ipif->ipif_saved_ire_mp = save_mp; 22640 ipif->ipif_saved_ire_cnt++; 22641 mutex_exit(&ipif->ipif_saved_ire_lock); 22642 } 22643 } 22644 22645 22646 static void 22647 ipif_remove_ire(ipif_t *ipif, ire_t *ire) 22648 { 22649 mblk_t **mpp; 22650 mblk_t *mp; 22651 ifrt_t *ifrt; 22652 22653 /* Remove from ipif_saved_ire_mp list if it is there */ 22654 mutex_enter(&ipif->ipif_saved_ire_lock); 22655 for (mpp = &ipif->ipif_saved_ire_mp; *mpp != NULL; 22656 mpp = &(*mpp)->b_cont) { 22657 /* 22658 * On a given ipif, the triple of address, gateway and 22659 * mask is unique for each saved IRE (in the case of 22660 * ordinary interface routes, the gateway address is 22661 * all-zeroes). 22662 */ 22663 mp = *mpp; 22664 ifrt = (ifrt_t *)mp->b_rptr; 22665 if (ifrt->ifrt_addr == ire->ire_addr && 22666 ifrt->ifrt_gateway_addr == ire->ire_gateway_addr && 22667 ifrt->ifrt_mask == ire->ire_mask) { 22668 *mpp = mp->b_cont; 22669 ipif->ipif_saved_ire_cnt--; 22670 freeb(mp); 22671 break; 22672 } 22673 } 22674 mutex_exit(&ipif->ipif_saved_ire_lock); 22675 } 22676 22677 22678 /* 22679 * IP multirouting broadcast routes handling 22680 * Append CGTP broadcast IREs to regular ones created 22681 * at ifconfig time. 22682 */ 22683 static void 22684 ip_cgtp_bcast_add(ire_t *ire, ire_t *ire_dst) 22685 { 22686 ire_t *ire_prim; 22687 22688 ASSERT(ire != NULL); 22689 ASSERT(ire_dst != NULL); 22690 22691 ire_prim = ire_ctable_lookup(ire->ire_gateway_addr, 0, 22692 IRE_BROADCAST, NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE); 22693 if (ire_prim != NULL) { 22694 /* 22695 * We are in the special case of broadcasts for 22696 * CGTP. We add an IRE_BROADCAST that holds 22697 * the RTF_MULTIRT flag, the destination 22698 * address of ire_dst and the low level 22699 * info of ire_prim. In other words, CGTP 22700 * broadcast is added to the redundant ipif. 22701 */ 22702 ipif_t *ipif_prim; 22703 ire_t *bcast_ire; 22704 22705 ipif_prim = ire_prim->ire_ipif; 22706 22707 ip2dbg(("ip_cgtp_filter_bcast_add: " 22708 "ire_dst %p, ire_prim %p, ipif_prim %p\n", 22709 (void *)ire_dst, (void *)ire_prim, 22710 (void *)ipif_prim)); 22711 22712 bcast_ire = ire_create( 22713 (uchar_t *)&ire->ire_addr, 22714 (uchar_t *)&ip_g_all_ones, 22715 (uchar_t *)&ire_dst->ire_src_addr, 22716 (uchar_t *)&ire->ire_gateway_addr, 22717 NULL, 22718 &ipif_prim->ipif_mtu, 22719 NULL, 22720 ipif_prim->ipif_rq, 22721 ipif_prim->ipif_wq, 22722 IRE_BROADCAST, 22723 ipif_prim->ipif_bcast_mp, 22724 ipif_prim, 22725 NULL, 22726 0, 22727 0, 22728 0, 22729 ire->ire_flags, 22730 &ire_uinfo_null, 22731 NULL, 22732 NULL); 22733 22734 if (bcast_ire != NULL) { 22735 22736 if (ire_add(&bcast_ire, NULL, NULL, NULL, 22737 B_FALSE) == 0) { 22738 ip2dbg(("ip_cgtp_filter_bcast_add: " 22739 "added bcast_ire %p\n", 22740 (void *)bcast_ire)); 22741 22742 ipif_save_ire(bcast_ire->ire_ipif, 22743 bcast_ire); 22744 ire_refrele(bcast_ire); 22745 } 22746 } 22747 ire_refrele(ire_prim); 22748 } 22749 } 22750 22751 22752 /* 22753 * IP multirouting broadcast routes handling 22754 * Remove the broadcast ire 22755 */ 22756 static void 22757 ip_cgtp_bcast_delete(ire_t *ire) 22758 { 22759 ire_t *ire_dst; 22760 22761 ASSERT(ire != NULL); 22762 ire_dst = ire_ctable_lookup(ire->ire_addr, 0, IRE_BROADCAST, 22763 NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE); 22764 if (ire_dst != NULL) { 22765 ire_t *ire_prim; 22766 22767 ire_prim = ire_ctable_lookup(ire->ire_gateway_addr, 0, 22768 IRE_BROADCAST, NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE); 22769 if (ire_prim != NULL) { 22770 ipif_t *ipif_prim; 22771 ire_t *bcast_ire; 22772 22773 ipif_prim = ire_prim->ire_ipif; 22774 22775 ip2dbg(("ip_cgtp_filter_bcast_delete: " 22776 "ire_dst %p, ire_prim %p, ipif_prim %p\n", 22777 (void *)ire_dst, (void *)ire_prim, 22778 (void *)ipif_prim)); 22779 22780 bcast_ire = ire_ctable_lookup(ire->ire_addr, 22781 ire->ire_gateway_addr, 22782 IRE_BROADCAST, 22783 ipif_prim, ALL_ZONES, 22784 NULL, 22785 MATCH_IRE_TYPE | MATCH_IRE_GW | MATCH_IRE_IPIF | 22786 MATCH_IRE_MASK); 22787 22788 if (bcast_ire != NULL) { 22789 ip2dbg(("ip_cgtp_filter_bcast_delete: " 22790 "looked up bcast_ire %p\n", 22791 (void *)bcast_ire)); 22792 ipif_remove_ire(bcast_ire->ire_ipif, 22793 bcast_ire); 22794 ire_delete(bcast_ire); 22795 } 22796 ire_refrele(ire_prim); 22797 } 22798 ire_refrele(ire_dst); 22799 } 22800 } 22801 22802 /* 22803 * IPsec hardware acceleration capabilities related functions. 22804 */ 22805 22806 /* 22807 * Free a per-ill IPsec capabilities structure. 22808 */ 22809 static void 22810 ill_ipsec_capab_free(ill_ipsec_capab_t *capab) 22811 { 22812 if (capab->auth_hw_algs != NULL) 22813 kmem_free(capab->auth_hw_algs, capab->algs_size); 22814 if (capab->encr_hw_algs != NULL) 22815 kmem_free(capab->encr_hw_algs, capab->algs_size); 22816 if (capab->encr_algparm != NULL) 22817 kmem_free(capab->encr_algparm, capab->encr_algparm_size); 22818 kmem_free(capab, sizeof (ill_ipsec_capab_t)); 22819 } 22820 22821 /* 22822 * Allocate a new per-ill IPsec capabilities structure. This structure 22823 * is specific to an IPsec protocol (AH or ESP). It is implemented as 22824 * an array which specifies, for each algorithm, whether this algorithm 22825 * is supported by the ill or not. 22826 */ 22827 static ill_ipsec_capab_t * 22828 ill_ipsec_capab_alloc(void) 22829 { 22830 ill_ipsec_capab_t *capab; 22831 uint_t nelems; 22832 22833 capab = kmem_zalloc(sizeof (ill_ipsec_capab_t), KM_NOSLEEP); 22834 if (capab == NULL) 22835 return (NULL); 22836 22837 /* we need one bit per algorithm */ 22838 nelems = MAX_IPSEC_ALGS / BITS(ipsec_capab_elem_t); 22839 capab->algs_size = nelems * sizeof (ipsec_capab_elem_t); 22840 22841 /* allocate memory to store algorithm flags */ 22842 capab->encr_hw_algs = kmem_zalloc(capab->algs_size, KM_NOSLEEP); 22843 if (capab->encr_hw_algs == NULL) 22844 goto nomem; 22845 capab->auth_hw_algs = kmem_zalloc(capab->algs_size, KM_NOSLEEP); 22846 if (capab->auth_hw_algs == NULL) 22847 goto nomem; 22848 /* 22849 * Leave encr_algparm NULL for now since we won't need it half 22850 * the time 22851 */ 22852 return (capab); 22853 22854 nomem: 22855 ill_ipsec_capab_free(capab); 22856 return (NULL); 22857 } 22858 22859 /* 22860 * Resize capability array. Since we're exclusive, this is OK. 22861 */ 22862 static boolean_t 22863 ill_ipsec_capab_resize_algparm(ill_ipsec_capab_t *capab, int algid) 22864 { 22865 ipsec_capab_algparm_t *nalp, *oalp; 22866 uint32_t olen, nlen; 22867 22868 oalp = capab->encr_algparm; 22869 olen = capab->encr_algparm_size; 22870 22871 if (oalp != NULL) { 22872 if (algid < capab->encr_algparm_end) 22873 return (B_TRUE); 22874 } 22875 22876 nlen = (algid + 1) * sizeof (*nalp); 22877 nalp = kmem_zalloc(nlen, KM_NOSLEEP); 22878 if (nalp == NULL) 22879 return (B_FALSE); 22880 22881 if (oalp != NULL) { 22882 bcopy(oalp, nalp, olen); 22883 kmem_free(oalp, olen); 22884 } 22885 capab->encr_algparm = nalp; 22886 capab->encr_algparm_size = nlen; 22887 capab->encr_algparm_end = algid + 1; 22888 22889 return (B_TRUE); 22890 } 22891 22892 /* 22893 * Compare the capabilities of the specified ill with the protocol 22894 * and algorithms specified by the SA passed as argument. 22895 * If they match, returns B_TRUE, B_FALSE if they do not match. 22896 * 22897 * The ill can be passed as a pointer to it, or by specifying its index 22898 * and whether it is an IPv6 ill (ill_index and ill_isv6 arguments). 22899 * 22900 * Called by ipsec_out_is_accelerated() do decide whether an outbound 22901 * packet is eligible for hardware acceleration, and by 22902 * ill_ipsec_capab_send_all() to decide whether a SA must be sent down 22903 * to a particular ill. 22904 */ 22905 boolean_t 22906 ipsec_capab_match(ill_t *ill, uint_t ill_index, boolean_t ill_isv6, 22907 ipsa_t *sa) 22908 { 22909 boolean_t sa_isv6; 22910 uint_t algid; 22911 struct ill_ipsec_capab_s *cpp; 22912 boolean_t need_refrele = B_FALSE; 22913 22914 if (ill == NULL) { 22915 ill = ill_lookup_on_ifindex(ill_index, ill_isv6, NULL, 22916 NULL, NULL, NULL); 22917 if (ill == NULL) { 22918 ip0dbg(("ipsec_capab_match: ill doesn't exist\n")); 22919 return (B_FALSE); 22920 } 22921 need_refrele = B_TRUE; 22922 } 22923 22924 /* 22925 * Use the address length specified by the SA to determine 22926 * if it corresponds to a IPv6 address, and fail the matching 22927 * if the isv6 flag passed as argument does not match. 22928 * Note: this check is used for SADB capability checking before 22929 * sending SA information to an ill. 22930 */ 22931 sa_isv6 = (sa->ipsa_addrfam == AF_INET6); 22932 if (sa_isv6 != ill_isv6) 22933 /* protocol mismatch */ 22934 goto done; 22935 22936 /* 22937 * Check if the ill supports the protocol, algorithm(s) and 22938 * key size(s) specified by the SA, and get the pointers to 22939 * the algorithms supported by the ill. 22940 */ 22941 switch (sa->ipsa_type) { 22942 22943 case SADB_SATYPE_ESP: 22944 if (!(ill->ill_capabilities & ILL_CAPAB_ESP)) 22945 /* ill does not support ESP acceleration */ 22946 goto done; 22947 cpp = ill->ill_ipsec_capab_esp; 22948 algid = sa->ipsa_auth_alg; 22949 if (!IPSEC_ALG_IS_ENABLED(algid, cpp->auth_hw_algs)) 22950 goto done; 22951 algid = sa->ipsa_encr_alg; 22952 if (!IPSEC_ALG_IS_ENABLED(algid, cpp->encr_hw_algs)) 22953 goto done; 22954 if (algid < cpp->encr_algparm_end) { 22955 ipsec_capab_algparm_t *alp = &cpp->encr_algparm[algid]; 22956 if (sa->ipsa_encrkeybits < alp->minkeylen) 22957 goto done; 22958 if (sa->ipsa_encrkeybits > alp->maxkeylen) 22959 goto done; 22960 } 22961 break; 22962 22963 case SADB_SATYPE_AH: 22964 if (!(ill->ill_capabilities & ILL_CAPAB_AH)) 22965 /* ill does not support AH acceleration */ 22966 goto done; 22967 if (!IPSEC_ALG_IS_ENABLED(sa->ipsa_auth_alg, 22968 ill->ill_ipsec_capab_ah->auth_hw_algs)) 22969 goto done; 22970 break; 22971 } 22972 22973 if (need_refrele) 22974 ill_refrele(ill); 22975 return (B_TRUE); 22976 done: 22977 if (need_refrele) 22978 ill_refrele(ill); 22979 return (B_FALSE); 22980 } 22981 22982 22983 /* 22984 * Add a new ill to the list of IPsec capable ills. 22985 * Called from ill_capability_ipsec_ack() when an ACK was received 22986 * indicating that IPsec hardware processing was enabled for an ill. 22987 * 22988 * ill must point to the ill for which acceleration was enabled. 22989 * dl_cap must be set to DL_CAPAB_IPSEC_AH or DL_CAPAB_IPSEC_ESP. 22990 */ 22991 static void 22992 ill_ipsec_capab_add(ill_t *ill, uint_t dl_cap, boolean_t sadb_resync) 22993 { 22994 ipsec_capab_ill_t **ills, *cur_ill, *new_ill; 22995 uint_t sa_type; 22996 uint_t ipproto; 22997 22998 ASSERT((dl_cap == DL_CAPAB_IPSEC_AH) || 22999 (dl_cap == DL_CAPAB_IPSEC_ESP)); 23000 23001 switch (dl_cap) { 23002 case DL_CAPAB_IPSEC_AH: 23003 sa_type = SADB_SATYPE_AH; 23004 ills = &ipsec_capab_ills_ah; 23005 ipproto = IPPROTO_AH; 23006 break; 23007 case DL_CAPAB_IPSEC_ESP: 23008 sa_type = SADB_SATYPE_ESP; 23009 ills = &ipsec_capab_ills_esp; 23010 ipproto = IPPROTO_ESP; 23011 break; 23012 } 23013 23014 rw_enter(&ipsec_capab_ills_lock, RW_WRITER); 23015 23016 /* 23017 * Add ill index to list of hardware accelerators. If 23018 * already in list, do nothing. 23019 */ 23020 for (cur_ill = *ills; cur_ill != NULL && 23021 (cur_ill->ill_index != ill->ill_phyint->phyint_ifindex || 23022 cur_ill->ill_isv6 != ill->ill_isv6); cur_ill = cur_ill->next) 23023 ; 23024 23025 if (cur_ill == NULL) { 23026 /* if this is a new entry for this ill */ 23027 new_ill = kmem_zalloc(sizeof (ipsec_capab_ill_t), KM_NOSLEEP); 23028 if (new_ill == NULL) { 23029 rw_exit(&ipsec_capab_ills_lock); 23030 return; 23031 } 23032 23033 new_ill->ill_index = ill->ill_phyint->phyint_ifindex; 23034 new_ill->ill_isv6 = ill->ill_isv6; 23035 new_ill->next = *ills; 23036 *ills = new_ill; 23037 } else if (!sadb_resync) { 23038 /* not resync'ing SADB and an entry exists for this ill */ 23039 rw_exit(&ipsec_capab_ills_lock); 23040 return; 23041 } 23042 23043 rw_exit(&ipsec_capab_ills_lock); 23044 23045 if (ipcl_proto_fanout_v6[ipproto].connf_head != NULL) 23046 /* 23047 * IPsec module for protocol loaded, initiate dump 23048 * of the SADB to this ill. 23049 */ 23050 sadb_ill_download(ill, sa_type); 23051 } 23052 23053 /* 23054 * Remove an ill from the list of IPsec capable ills. 23055 */ 23056 static void 23057 ill_ipsec_capab_delete(ill_t *ill, uint_t dl_cap) 23058 { 23059 ipsec_capab_ill_t **ills, *cur_ill, *prev_ill; 23060 23061 ASSERT(dl_cap == DL_CAPAB_IPSEC_AH || 23062 dl_cap == DL_CAPAB_IPSEC_ESP); 23063 23064 ills = (dl_cap == DL_CAPAB_IPSEC_AH) ? &ipsec_capab_ills_ah : 23065 &ipsec_capab_ills_esp; 23066 23067 rw_enter(&ipsec_capab_ills_lock, RW_WRITER); 23068 23069 prev_ill = NULL; 23070 for (cur_ill = *ills; cur_ill != NULL && (cur_ill->ill_index != 23071 ill->ill_phyint->phyint_ifindex || cur_ill->ill_isv6 != 23072 ill->ill_isv6); prev_ill = cur_ill, cur_ill = cur_ill->next) 23073 ; 23074 if (cur_ill == NULL) { 23075 /* entry not found */ 23076 rw_exit(&ipsec_capab_ills_lock); 23077 return; 23078 } 23079 if (prev_ill == NULL) { 23080 /* entry at front of list */ 23081 *ills = NULL; 23082 } else { 23083 prev_ill->next = cur_ill->next; 23084 } 23085 kmem_free(cur_ill, sizeof (ipsec_capab_ill_t)); 23086 rw_exit(&ipsec_capab_ills_lock); 23087 } 23088 23089 23090 /* 23091 * Handling of DL_CONTROL_REQ messages that must be sent down to 23092 * an ill while having exclusive access. 23093 */ 23094 /* ARGSUSED */ 23095 static void 23096 ill_ipsec_capab_send_writer(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *arg) 23097 { 23098 ill_t *ill = (ill_t *)q->q_ptr; 23099 23100 ill_dlpi_send(ill, mp); 23101 } 23102 23103 23104 /* 23105 * Called by SADB to send a DL_CONTROL_REQ message to every ill 23106 * supporting the specified IPsec protocol acceleration. 23107 * sa_type must be SADB_SATYPE_AH or SADB_SATYPE_ESP. 23108 * We free the mblk and, if sa is non-null, release the held referece. 23109 */ 23110 void 23111 ill_ipsec_capab_send_all(uint_t sa_type, mblk_t *mp, ipsa_t *sa) 23112 { 23113 ipsec_capab_ill_t *ici, *cur_ici; 23114 ill_t *ill; 23115 mblk_t *nmp, *mp_ship_list = NULL, *next_mp; 23116 23117 ici = (sa_type == SADB_SATYPE_AH) ? ipsec_capab_ills_ah : 23118 ipsec_capab_ills_esp; 23119 23120 rw_enter(&ipsec_capab_ills_lock, RW_READER); 23121 23122 for (cur_ici = ici; cur_ici != NULL; cur_ici = cur_ici->next) { 23123 ill = ill_lookup_on_ifindex(cur_ici->ill_index, 23124 cur_ici->ill_isv6, NULL, NULL, NULL, NULL); 23125 23126 /* 23127 * Handle the case where the ill goes away while the SADB is 23128 * attempting to send messages. If it's going away, it's 23129 * nuking its shadow SADB, so we don't care.. 23130 */ 23131 23132 if (ill == NULL) 23133 continue; 23134 23135 if (sa != NULL) { 23136 /* 23137 * Make sure capabilities match before 23138 * sending SA to ill. 23139 */ 23140 if (!ipsec_capab_match(ill, cur_ici->ill_index, 23141 cur_ici->ill_isv6, sa)) { 23142 ill_refrele(ill); 23143 continue; 23144 } 23145 23146 mutex_enter(&sa->ipsa_lock); 23147 sa->ipsa_flags |= IPSA_F_HW; 23148 mutex_exit(&sa->ipsa_lock); 23149 } 23150 23151 /* 23152 * Copy template message, and add it to the front 23153 * of the mblk ship list. We want to avoid holding 23154 * the ipsec_capab_ills_lock while sending the 23155 * message to the ills. 23156 * 23157 * The b_next and b_prev are temporarily used 23158 * to build a list of mblks to be sent down, and to 23159 * save the ill to which they must be sent. 23160 */ 23161 nmp = copymsg(mp); 23162 if (nmp == NULL) { 23163 ill_refrele(ill); 23164 continue; 23165 } 23166 ASSERT(nmp->b_next == NULL && nmp->b_prev == NULL); 23167 nmp->b_next = mp_ship_list; 23168 mp_ship_list = nmp; 23169 nmp->b_prev = (mblk_t *)ill; 23170 } 23171 23172 rw_exit(&ipsec_capab_ills_lock); 23173 23174 nmp = mp_ship_list; 23175 while (nmp != NULL) { 23176 /* restore the mblk to a sane state */ 23177 next_mp = nmp->b_next; 23178 nmp->b_next = NULL; 23179 ill = (ill_t *)nmp->b_prev; 23180 nmp->b_prev = NULL; 23181 23182 /* 23183 * Ship the mblk to the ill, must be exclusive. Keep the 23184 * reference to the ill as qwriter_ip() does a ill_referele(). 23185 */ 23186 (void) qwriter_ip(NULL, ill, ill->ill_wq, nmp, 23187 ill_ipsec_capab_send_writer, NEW_OP, B_TRUE); 23188 23189 nmp = next_mp; 23190 } 23191 23192 if (sa != NULL) 23193 IPSA_REFRELE(sa); 23194 freemsg(mp); 23195 } 23196 23197 23198 /* 23199 * Derive an interface id from the link layer address. 23200 * Knows about IEEE 802 and IEEE EUI-64 mappings. 23201 */ 23202 static boolean_t 23203 ip_ether_v6intfid(uint_t phys_length, uint8_t *phys_addr, in6_addr_t *v6addr) 23204 { 23205 char *addr; 23206 23207 if (phys_length != ETHERADDRL) 23208 return (B_FALSE); 23209 23210 /* Form EUI-64 like address */ 23211 addr = (char *)&v6addr->s6_addr32[2]; 23212 bcopy((char *)phys_addr, addr, 3); 23213 addr[0] ^= 0x2; /* Toggle Universal/Local bit */ 23214 addr[3] = (char)0xff; 23215 addr[4] = (char)0xfe; 23216 bcopy((char *)phys_addr + 3, addr + 5, 3); 23217 return (B_TRUE); 23218 } 23219 23220 /* ARGSUSED */ 23221 static boolean_t 23222 ip_nodef_v6intfid(uint_t phys_length, uint8_t *phys_addr, in6_addr_t *v6addr) 23223 { 23224 return (B_FALSE); 23225 } 23226 23227 /* ARGSUSED */ 23228 static boolean_t 23229 ip_ether_v6mapinfo(uint_t lla_length, uint8_t *bphys_addr, uint8_t *maddr, 23230 uint32_t *hw_start, in6_addr_t *v6_extract_mask) 23231 { 23232 /* 23233 * Multicast address mappings used over Ethernet/802.X. 23234 * This address is used as a base for mappings. 23235 */ 23236 static uint8_t ipv6_g_phys_multi_addr[] = {0x33, 0x33, 0x00, 23237 0x00, 0x00, 0x00}; 23238 23239 /* 23240 * Extract low order 32 bits from IPv6 multicast address. 23241 * Or that into the link layer address, starting from the 23242 * second byte. 23243 */ 23244 *hw_start = 2; 23245 v6_extract_mask->s6_addr32[0] = 0; 23246 v6_extract_mask->s6_addr32[1] = 0; 23247 v6_extract_mask->s6_addr32[2] = 0; 23248 v6_extract_mask->s6_addr32[3] = 0xffffffffU; 23249 bcopy(ipv6_g_phys_multi_addr, maddr, lla_length); 23250 return (B_TRUE); 23251 } 23252 23253 /* 23254 * Indicate by return value whether multicast is supported. If not, 23255 * this code should not touch/change any parameters. 23256 */ 23257 /* ARGSUSED */ 23258 static boolean_t 23259 ip_ether_v4mapinfo(uint_t phys_length, uint8_t *bphys_addr, uint8_t *maddr, 23260 uint32_t *hw_start, ipaddr_t *extract_mask) 23261 { 23262 /* 23263 * Multicast address mappings used over Ethernet/802.X. 23264 * This address is used as a base for mappings. 23265 */ 23266 static uint8_t ip_g_phys_multi_addr[] = { 0x01, 0x00, 0x5e, 23267 0x00, 0x00, 0x00 }; 23268 23269 if (phys_length != ETHERADDRL) 23270 return (B_FALSE); 23271 23272 *extract_mask = htonl(0x007fffff); 23273 *hw_start = 2; 23274 bcopy(ip_g_phys_multi_addr, maddr, ETHERADDRL); 23275 return (B_TRUE); 23276 } 23277 23278 /* 23279 * Derive IPoIB interface id from the link layer address. 23280 */ 23281 static boolean_t 23282 ip_ib_v6intfid(uint_t phys_length, uint8_t *phys_addr, in6_addr_t *v6addr) 23283 { 23284 char *addr; 23285 23286 if (phys_length != 20) 23287 return (B_FALSE); 23288 addr = (char *)&v6addr->s6_addr32[2]; 23289 bcopy(phys_addr + 12, addr, 8); 23290 /* 23291 * In IBA 1.1 timeframe, some vendors erroneously set the u/l bit 23292 * in the globally assigned EUI-64 GUID to 1, in violation of IEEE 23293 * rules. In these cases, the IBA considers these GUIDs to be in 23294 * "Modified EUI-64" format, and thus toggling the u/l bit is not 23295 * required; vendors are required not to assign global EUI-64's 23296 * that differ only in u/l bit values, thus guaranteeing uniqueness 23297 * of the interface identifier. Whether the GUID is in modified 23298 * or proper EUI-64 format, the ipv6 identifier must have the u/l 23299 * bit set to 1. 23300 */ 23301 addr[0] |= 2; /* Set Universal/Local bit to 1 */ 23302 return (B_TRUE); 23303 } 23304 23305 /* 23306 * Note on mapping from multicast IP addresses to IPoIB multicast link 23307 * addresses. IPoIB multicast link addresses are based on IBA link addresses. 23308 * The format of an IPoIB multicast address is: 23309 * 23310 * 4 byte QPN Scope Sign. Pkey 23311 * +--------------------------------------------+ 23312 * | 00FFFFFF | FF | 1X | X01B | Pkey | GroupID | 23313 * +--------------------------------------------+ 23314 * 23315 * The Scope and Pkey components are properties of the IBA port and 23316 * network interface. They can be ascertained from the broadcast address. 23317 * The Sign. part is the signature, and is 401B for IPv4 and 601B for IPv6. 23318 */ 23319 23320 static boolean_t 23321 ip_ib_v6mapinfo(uint_t lla_length, uint8_t *bphys_addr, uint8_t *maddr, 23322 uint32_t *hw_start, in6_addr_t *v6_extract_mask) 23323 { 23324 /* 23325 * Base IPoIB IPv6 multicast address used for mappings. 23326 * Does not contain the IBA scope/Pkey values. 23327 */ 23328 static uint8_t ipv6_g_phys_ibmulti_addr[] = { 0x00, 0xff, 0xff, 0xff, 23329 0xff, 0x10, 0x60, 0x1b, 0x00, 0x00, 0x00, 0x00, 23330 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 }; 23331 23332 /* 23333 * Extract low order 80 bits from IPv6 multicast address. 23334 * Or that into the link layer address, starting from the 23335 * sixth byte. 23336 */ 23337 *hw_start = 6; 23338 bcopy(ipv6_g_phys_ibmulti_addr, maddr, lla_length); 23339 23340 /* 23341 * Now fill in the IBA scope/Pkey values from the broadcast address. 23342 */ 23343 *(maddr + 5) = *(bphys_addr + 5); 23344 *(maddr + 8) = *(bphys_addr + 8); 23345 *(maddr + 9) = *(bphys_addr + 9); 23346 23347 v6_extract_mask->s6_addr32[0] = 0; 23348 v6_extract_mask->s6_addr32[1] = htonl(0x0000ffff); 23349 v6_extract_mask->s6_addr32[2] = 0xffffffffU; 23350 v6_extract_mask->s6_addr32[3] = 0xffffffffU; 23351 return (B_TRUE); 23352 } 23353 23354 static boolean_t 23355 ip_ib_v4mapinfo(uint_t phys_length, uint8_t *bphys_addr, uint8_t *maddr, 23356 uint32_t *hw_start, ipaddr_t *extract_mask) 23357 { 23358 /* 23359 * Base IPoIB IPv4 multicast address used for mappings. 23360 * Does not contain the IBA scope/Pkey values. 23361 */ 23362 static uint8_t ipv4_g_phys_ibmulti_addr[] = { 0x00, 0xff, 0xff, 0xff, 23363 0xff, 0x10, 0x40, 0x1b, 0x00, 0x00, 0x00, 0x00, 23364 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 }; 23365 23366 if (phys_length != sizeof (ipv4_g_phys_ibmulti_addr)) 23367 return (B_FALSE); 23368 23369 /* 23370 * Extract low order 28 bits from IPv4 multicast address. 23371 * Or that into the link layer address, starting from the 23372 * sixteenth byte. 23373 */ 23374 *extract_mask = htonl(0x0fffffff); 23375 *hw_start = 16; 23376 bcopy(ipv4_g_phys_ibmulti_addr, maddr, phys_length); 23377 23378 /* 23379 * Now fill in the IBA scope/Pkey values from the broadcast address. 23380 */ 23381 *(maddr + 5) = *(bphys_addr + 5); 23382 *(maddr + 8) = *(bphys_addr + 8); 23383 *(maddr + 9) = *(bphys_addr + 9); 23384 return (B_TRUE); 23385 } 23386 23387 /* 23388 * Returns B_TRUE if an ipif is present in the given zone, matching some flags 23389 * (typically IPIF_UP). If ipifp is non-null, the held ipif is returned there. 23390 * This works for both IPv4 and IPv6; if the passed-in ill is v6, the ipif with 23391 * the link-local address is preferred. 23392 */ 23393 boolean_t 23394 ipif_lookup_zoneid(ill_t *ill, zoneid_t zoneid, int flags, ipif_t **ipifp) 23395 { 23396 ipif_t *ipif; 23397 ipif_t *maybe_ipif = NULL; 23398 23399 mutex_enter(&ill->ill_lock); 23400 if (ill->ill_state_flags & ILL_CONDEMNED) { 23401 mutex_exit(&ill->ill_lock); 23402 if (ipifp != NULL) 23403 *ipifp = NULL; 23404 return (B_FALSE); 23405 } 23406 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 23407 if (!IPIF_CAN_LOOKUP(ipif)) 23408 continue; 23409 if (zoneid != ALL_ZONES && ipif->ipif_zoneid != zoneid && 23410 ipif->ipif_zoneid != ALL_ZONES) 23411 continue; 23412 if ((ipif->ipif_flags & flags) != flags) 23413 continue; 23414 23415 if (ipifp == NULL) { 23416 mutex_exit(&ill->ill_lock); 23417 ASSERT(maybe_ipif == NULL); 23418 return (B_TRUE); 23419 } 23420 if (!ill->ill_isv6 || 23421 IN6_IS_ADDR_LINKLOCAL(&ipif->ipif_v6src_addr)) { 23422 ipif_refhold_locked(ipif); 23423 mutex_exit(&ill->ill_lock); 23424 *ipifp = ipif; 23425 return (B_TRUE); 23426 } 23427 if (maybe_ipif == NULL) 23428 maybe_ipif = ipif; 23429 } 23430 if (ipifp != NULL) { 23431 if (maybe_ipif != NULL) 23432 ipif_refhold_locked(maybe_ipif); 23433 *ipifp = maybe_ipif; 23434 } 23435 mutex_exit(&ill->ill_lock); 23436 return (maybe_ipif != NULL); 23437 } 23438 23439 /* 23440 * Same as ipif_lookup_zoneid() but looks at all the ills in the same group. 23441 */ 23442 boolean_t 23443 ipif_lookup_zoneid_group(ill_t *ill, zoneid_t zoneid, int flags, ipif_t **ipifp) 23444 { 23445 ill_t *illg; 23446 23447 /* 23448 * We look at the passed-in ill first without grabbing ill_g_lock. 23449 */ 23450 if (ipif_lookup_zoneid(ill, zoneid, flags, ipifp)) { 23451 return (B_TRUE); 23452 } 23453 rw_enter(&ill_g_lock, RW_READER); 23454 if (ill->ill_group == NULL) { 23455 /* ill not in a group */ 23456 rw_exit(&ill_g_lock); 23457 return (B_FALSE); 23458 } 23459 23460 /* 23461 * There's no ipif in the zone on ill, however ill is part of an IPMP 23462 * group. We need to look for an ipif in the zone on all the ills in the 23463 * group. 23464 */ 23465 illg = ill->ill_group->illgrp_ill; 23466 do { 23467 /* 23468 * We don't call ipif_lookup_zoneid() on ill as we already know 23469 * that it's not there. 23470 */ 23471 if (illg != ill && 23472 ipif_lookup_zoneid(illg, zoneid, flags, ipifp)) { 23473 break; 23474 } 23475 } while ((illg = illg->ill_group_next) != NULL); 23476 rw_exit(&ill_g_lock); 23477 return (illg != NULL); 23478 } 23479 23480 /* 23481 * Check if this ill is only being used to send ICMP probes for IPMP 23482 */ 23483 boolean_t 23484 ill_is_probeonly(ill_t *ill) 23485 { 23486 /* 23487 * Check if the interface is FAILED, or INACTIVE 23488 */ 23489 if (ill->ill_phyint->phyint_flags & (PHYI_FAILED|PHYI_INACTIVE)) 23490 return (B_TRUE); 23491 23492 return (B_FALSE); 23493 } 23494