1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2009 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 /* Copyright (c) 1990 Mentat Inc. */ 26 27 /* 28 * This file contains the interface control functions for IP. 29 */ 30 31 #include <sys/types.h> 32 #include <sys/stream.h> 33 #include <sys/dlpi.h> 34 #include <sys/stropts.h> 35 #include <sys/strsun.h> 36 #include <sys/sysmacros.h> 37 #include <sys/strsubr.h> 38 #include <sys/strlog.h> 39 #include <sys/ddi.h> 40 #include <sys/sunddi.h> 41 #include <sys/cmn_err.h> 42 #include <sys/kstat.h> 43 #include <sys/debug.h> 44 #include <sys/zone.h> 45 #include <sys/sunldi.h> 46 #include <sys/file.h> 47 #include <sys/bitmap.h> 48 #include <sys/cpuvar.h> 49 #include <sys/time.h> 50 #include <sys/ctype.h> 51 #include <sys/kmem.h> 52 #include <sys/systm.h> 53 #include <sys/param.h> 54 #include <sys/socket.h> 55 #include <sys/isa_defs.h> 56 #include <net/if.h> 57 #include <net/if_arp.h> 58 #include <net/if_types.h> 59 #include <net/if_dl.h> 60 #include <net/route.h> 61 #include <sys/sockio.h> 62 #include <netinet/in.h> 63 #include <netinet/ip6.h> 64 #include <netinet/icmp6.h> 65 #include <netinet/igmp_var.h> 66 #include <sys/policy.h> 67 #include <sys/ethernet.h> 68 #include <sys/callb.h> 69 #include <sys/md5.h> 70 71 #include <inet/common.h> /* for various inet/mi.h and inet/nd.h needs */ 72 #include <inet/mi.h> 73 #include <inet/nd.h> 74 #include <inet/arp.h> 75 #include <inet/mib2.h> 76 #include <inet/ip.h> 77 #include <inet/ip6.h> 78 #include <inet/ip6_asp.h> 79 #include <inet/tcp.h> 80 #include <inet/ip_multi.h> 81 #include <inet/ip_ire.h> 82 #include <inet/ip_ftable.h> 83 #include <inet/ip_rts.h> 84 #include <inet/ip_ndp.h> 85 #include <inet/ip_if.h> 86 #include <inet/ip_impl.h> 87 #include <inet/tun.h> 88 #include <inet/sctp_ip.h> 89 #include <inet/ip_netinfo.h> 90 91 #include <net/pfkeyv2.h> 92 #include <inet/ipsec_info.h> 93 #include <inet/sadb.h> 94 #include <inet/ipsec_impl.h> 95 #include <sys/iphada.h> 96 97 #include <netinet/igmp.h> 98 #include <inet/ip_listutils.h> 99 #include <inet/ipclassifier.h> 100 #include <sys/mac_client.h> 101 #include <sys/dld.h> 102 103 #include <sys/systeminfo.h> 104 #include <sys/bootconf.h> 105 106 #include <sys/tsol/tndb.h> 107 #include <sys/tsol/tnet.h> 108 109 /* The character which tells where the ill_name ends */ 110 #define IPIF_SEPARATOR_CHAR ':' 111 112 /* IP ioctl function table entry */ 113 typedef struct ipft_s { 114 int ipft_cmd; 115 pfi_t ipft_pfi; 116 int ipft_min_size; 117 int ipft_flags; 118 } ipft_t; 119 #define IPFT_F_NO_REPLY 0x1 /* IP ioctl does not expect any reply */ 120 #define IPFT_F_SELF_REPLY 0x2 /* ioctl callee does the ioctl reply */ 121 122 typedef struct ip_sock_ar_s { 123 union { 124 area_t ip_sock_area; 125 ared_t ip_sock_ared; 126 areq_t ip_sock_areq; 127 } ip_sock_ar_u; 128 queue_t *ip_sock_ar_q; 129 } ip_sock_ar_t; 130 131 static int nd_ill_forward_get(queue_t *, mblk_t *, caddr_t, cred_t *); 132 static int nd_ill_forward_set(queue_t *q, mblk_t *mp, 133 char *value, caddr_t cp, cred_t *ioc_cr); 134 135 static boolean_t ill_is_quiescent(ill_t *); 136 static boolean_t ip_addr_ok_v4(ipaddr_t addr, ipaddr_t subnet_mask); 137 static ip_m_t *ip_m_lookup(t_uscalar_t mac_type); 138 static int ip_sioctl_addr_tail(ipif_t *ipif, sin_t *sin, queue_t *q, 139 mblk_t *mp, boolean_t need_up); 140 static int ip_sioctl_dstaddr_tail(ipif_t *ipif, sin_t *sin, queue_t *q, 141 mblk_t *mp, boolean_t need_up); 142 static int ip_sioctl_slifzone_tail(ipif_t *ipif, zoneid_t zoneid, 143 queue_t *q, mblk_t *mp, boolean_t need_up); 144 static int ip_sioctl_flags_tail(ipif_t *ipif, uint64_t flags, queue_t *q, 145 mblk_t *mp); 146 static int ip_sioctl_netmask_tail(ipif_t *ipif, sin_t *sin, queue_t *q, 147 mblk_t *mp); 148 static int ip_sioctl_subnet_tail(ipif_t *ipif, in6_addr_t, in6_addr_t, 149 queue_t *q, mblk_t *mp, boolean_t need_up); 150 static int ip_sioctl_plink_ipmod(ipsq_t *ipsq, queue_t *q, mblk_t *mp, 151 int ioccmd, struct linkblk *li, boolean_t doconsist); 152 static ipaddr_t ip_subnet_mask(ipaddr_t addr, ipif_t **, ip_stack_t *); 153 static void ip_wput_ioctl(queue_t *q, mblk_t *mp); 154 static void ipsq_flush(ill_t *ill); 155 156 static int ip_sioctl_token_tail(ipif_t *ipif, sin6_t *sin6, int addrlen, 157 queue_t *q, mblk_t *mp, boolean_t need_up); 158 static void ipsq_delete(ipsq_t *); 159 160 static ipif_t *ipif_allocate(ill_t *ill, int id, uint_t ire_type, 161 boolean_t initialize, boolean_t insert); 162 static void ipif_check_bcast_ires(ipif_t *test_ipif); 163 static ire_t **ipif_create_bcast_ires(ipif_t *ipif, ire_t **irep); 164 static boolean_t ipif_comp_multi(ipif_t *old_ipif, ipif_t *new_ipif, 165 boolean_t isv6); 166 static void ipif_down_delete_ire(ire_t *ire, char *ipif); 167 static void ipif_delete_cache_ire(ire_t *, char *); 168 static int ipif_logical_down(ipif_t *ipif, queue_t *q, mblk_t *mp); 169 static void ipif_free(ipif_t *ipif); 170 static void ipif_free_tail(ipif_t *ipif); 171 static void ipif_mtu_change(ire_t *ire, char *ipif_arg); 172 static void ipif_recreate_interface_routes(ipif_t *old_ipif, ipif_t *ipif); 173 static void ipif_set_default(ipif_t *ipif); 174 static int ipif_set_values(queue_t *q, mblk_t *mp, 175 char *interf_name, uint_t *ppa); 176 static int ipif_set_values_tail(ill_t *ill, ipif_t *ipif, mblk_t *mp, 177 queue_t *q); 178 static ipif_t *ipif_lookup_on_name(char *name, size_t namelen, 179 boolean_t do_alloc, boolean_t *exists, boolean_t isv6, zoneid_t zoneid, 180 queue_t *q, mblk_t *mp, ipsq_func_t func, int *error, ip_stack_t *); 181 static void ipif_update_other_ipifs(ipif_t *old_ipif); 182 183 static int ill_alloc_ppa(ill_if_t *, ill_t *); 184 static int ill_arp_off(ill_t *ill); 185 static int ill_arp_on(ill_t *ill); 186 static void ill_delete_interface_type(ill_if_t *); 187 static int ill_dl_up(ill_t *ill, ipif_t *ipif, mblk_t *mp, queue_t *q); 188 static void ill_dl_down(ill_t *ill); 189 static void ill_down(ill_t *ill); 190 static void ill_downi(ire_t *ire, char *ill_arg); 191 static void ill_free_mib(ill_t *ill); 192 static void ill_glist_delete(ill_t *); 193 static void ill_phyint_reinit(ill_t *ill); 194 static void ill_set_nce_router_flags(ill_t *, boolean_t); 195 static void ill_set_phys_addr_tail(ipsq_t *, queue_t *, mblk_t *, void *); 196 static void ill_replumb_tail(ipsq_t *, queue_t *, mblk_t *, void *); 197 198 static ip_v6intfid_func_t ip_ether_v6intfid, ip_ib_v6intfid; 199 static ip_v6intfid_func_t ip_ipmp_v6intfid, ip_nodef_v6intfid; 200 static ip_v6mapinfo_func_t ip_ether_v6mapinfo, ip_ib_v6mapinfo; 201 static ip_v4mapinfo_func_t ip_ether_v4mapinfo, ip_ib_v4mapinfo; 202 static void ipif_save_ire(ipif_t *, ire_t *); 203 static void ipif_remove_ire(ipif_t *, ire_t *); 204 static void ip_cgtp_bcast_add(ire_t *, ire_t *, ip_stack_t *); 205 static void ip_cgtp_bcast_delete(ire_t *, ip_stack_t *); 206 static void phyint_free(phyint_t *); 207 208 /* 209 * Per-ill IPsec capabilities management. 210 */ 211 static ill_ipsec_capab_t *ill_ipsec_capab_alloc(void); 212 static void ill_ipsec_capab_free(ill_ipsec_capab_t *); 213 static void ill_ipsec_capab_add(ill_t *, uint_t, boolean_t); 214 static void ill_ipsec_capab_delete(ill_t *, uint_t); 215 static boolean_t ill_ipsec_capab_resize_algparm(ill_ipsec_capab_t *, int); 216 static void ill_capability_dispatch(ill_t *, mblk_t *, dl_capability_sub_t *, 217 boolean_t); 218 static void ill_capability_id_ack(ill_t *, mblk_t *, dl_capability_sub_t *); 219 static void ill_capability_mdt_ack(ill_t *, mblk_t *, dl_capability_sub_t *); 220 static void ill_capability_mdt_reset_fill(ill_t *, mblk_t *); 221 static void ill_capability_ipsec_ack(ill_t *, mblk_t *, dl_capability_sub_t *); 222 static void ill_capability_ipsec_reset_fill(ill_t *, mblk_t *); 223 static void ill_capability_hcksum_ack(ill_t *, mblk_t *, dl_capability_sub_t *); 224 static void ill_capability_hcksum_reset_fill(ill_t *, mblk_t *); 225 static void ill_capability_zerocopy_ack(ill_t *, mblk_t *, 226 dl_capability_sub_t *); 227 static void ill_capability_zerocopy_reset_fill(ill_t *, mblk_t *); 228 static int ill_capability_ipsec_reset_size(ill_t *, int *, int *, int *, 229 int *); 230 static void ill_capability_dld_reset_fill(ill_t *, mblk_t *); 231 static void ill_capability_dld_ack(ill_t *, mblk_t *, 232 dl_capability_sub_t *); 233 static void ill_capability_dld_enable(ill_t *); 234 static void ill_capability_ack_thr(void *); 235 static void ill_capability_lso_enable(ill_t *); 236 static void ill_capability_send(ill_t *, mblk_t *); 237 238 static ill_t *ill_prev_usesrc(ill_t *); 239 static int ill_relink_usesrc_ills(ill_t *, ill_t *, uint_t); 240 static void ill_disband_usesrc_group(ill_t *); 241 static void conn_cleanup_stale_ire(conn_t *, caddr_t); 242 243 #ifdef DEBUG 244 static void ill_trace_cleanup(const ill_t *); 245 static void ipif_trace_cleanup(const ipif_t *); 246 #endif 247 248 /* 249 * if we go over the memory footprint limit more than once in this msec 250 * interval, we'll start pruning aggressively. 251 */ 252 int ip_min_frag_prune_time = 0; 253 254 /* 255 * max # of IPsec algorithms supported. Limited to 1 byte by PF_KEY 256 * and the IPsec DOI 257 */ 258 #define MAX_IPSEC_ALGS 256 259 260 #define BITSPERBYTE 8 261 #define BITS(type) (BITSPERBYTE * (long)sizeof (type)) 262 263 #define IPSEC_ALG_ENABLE(algs, algid) \ 264 ((algs)[(algid) / BITS(ipsec_capab_elem_t)] |= \ 265 (1 << ((algid) % BITS(ipsec_capab_elem_t)))) 266 267 #define IPSEC_ALG_IS_ENABLED(algid, algs) \ 268 ((algs)[(algid) / BITS(ipsec_capab_elem_t)] & \ 269 (1 << ((algid) % BITS(ipsec_capab_elem_t)))) 270 271 typedef uint8_t ipsec_capab_elem_t; 272 273 /* 274 * Per-algorithm parameters. Note that at present, only encryption 275 * algorithms have variable keysize (IKE does not provide a way to negotiate 276 * auth algorithm keysize). 277 * 278 * All sizes here are in bits. 279 */ 280 typedef struct 281 { 282 uint16_t minkeylen; 283 uint16_t maxkeylen; 284 } ipsec_capab_algparm_t; 285 286 /* 287 * Per-ill capabilities. 288 */ 289 struct ill_ipsec_capab_s { 290 ipsec_capab_elem_t *encr_hw_algs; 291 ipsec_capab_elem_t *auth_hw_algs; 292 uint32_t algs_size; /* size of _hw_algs in bytes */ 293 /* algorithm key lengths */ 294 ipsec_capab_algparm_t *encr_algparm; 295 uint32_t encr_algparm_size; 296 uint32_t encr_algparm_end; 297 }; 298 299 /* 300 * The field values are larger than strictly necessary for simple 301 * AR_ENTRY_ADDs but the padding lets us accomodate the socket ioctls. 302 */ 303 static area_t ip_area_template = { 304 AR_ENTRY_ADD, /* area_cmd */ 305 sizeof (ip_sock_ar_t) + (IP_ADDR_LEN*2) + sizeof (struct sockaddr_dl), 306 /* area_name_offset */ 307 /* area_name_length temporarily holds this structure length */ 308 sizeof (area_t), /* area_name_length */ 309 IP_ARP_PROTO_TYPE, /* area_proto */ 310 sizeof (ip_sock_ar_t), /* area_proto_addr_offset */ 311 IP_ADDR_LEN, /* area_proto_addr_length */ 312 sizeof (ip_sock_ar_t) + IP_ADDR_LEN, 313 /* area_proto_mask_offset */ 314 0, /* area_flags */ 315 sizeof (ip_sock_ar_t) + IP_ADDR_LEN + IP_ADDR_LEN, 316 /* area_hw_addr_offset */ 317 /* Zero length hw_addr_length means 'use your idea of the address' */ 318 0 /* area_hw_addr_length */ 319 }; 320 321 /* 322 * AR_ENTRY_ADD/DELETE templates have been added for IPv6 external resolver 323 * support 324 */ 325 static area_t ip6_area_template = { 326 AR_ENTRY_ADD, /* area_cmd */ 327 sizeof (ip_sock_ar_t) + (IPV6_ADDR_LEN*2) + sizeof (sin6_t), 328 /* area_name_offset */ 329 /* area_name_length temporarily holds this structure length */ 330 sizeof (area_t), /* area_name_length */ 331 IP_ARP_PROTO_TYPE, /* area_proto */ 332 sizeof (ip_sock_ar_t), /* area_proto_addr_offset */ 333 IPV6_ADDR_LEN, /* area_proto_addr_length */ 334 sizeof (ip_sock_ar_t) + IPV6_ADDR_LEN, 335 /* area_proto_mask_offset */ 336 0, /* area_flags */ 337 sizeof (ip_sock_ar_t) + IPV6_ADDR_LEN + IPV6_ADDR_LEN, 338 /* area_hw_addr_offset */ 339 /* Zero length hw_addr_length means 'use your idea of the address' */ 340 0 /* area_hw_addr_length */ 341 }; 342 343 static ared_t ip_ared_template = { 344 AR_ENTRY_DELETE, 345 sizeof (ared_t) + IP_ADDR_LEN, 346 sizeof (ared_t), 347 IP_ARP_PROTO_TYPE, 348 sizeof (ared_t), 349 IP_ADDR_LEN, 350 0 351 }; 352 353 static ared_t ip6_ared_template = { 354 AR_ENTRY_DELETE, 355 sizeof (ared_t) + IPV6_ADDR_LEN, 356 sizeof (ared_t), 357 IP_ARP_PROTO_TYPE, 358 sizeof (ared_t), 359 IPV6_ADDR_LEN, 360 0 361 }; 362 363 /* 364 * A template for an IPv6 AR_ENTRY_QUERY template has not been created, as 365 * as the areq doesn't include an IP address in ill_dl_up() (the only place a 366 * areq is used). 367 */ 368 static areq_t ip_areq_template = { 369 AR_ENTRY_QUERY, /* cmd */ 370 sizeof (areq_t)+(2*IP_ADDR_LEN), /* name offset */ 371 sizeof (areq_t), /* name len (filled by ill_arp_alloc) */ 372 IP_ARP_PROTO_TYPE, /* protocol, from arps perspective */ 373 sizeof (areq_t), /* target addr offset */ 374 IP_ADDR_LEN, /* target addr_length */ 375 0, /* flags */ 376 sizeof (areq_t) + IP_ADDR_LEN, /* sender addr offset */ 377 IP_ADDR_LEN, /* sender addr length */ 378 AR_EQ_DEFAULT_XMIT_COUNT, /* xmit_count */ 379 AR_EQ_DEFAULT_XMIT_INTERVAL, /* (re)xmit_interval in milliseconds */ 380 AR_EQ_DEFAULT_MAX_BUFFERED /* max # of requests to buffer */ 381 /* anything else filled in by the code */ 382 }; 383 384 static arc_t ip_aru_template = { 385 AR_INTERFACE_UP, 386 sizeof (arc_t), /* Name offset */ 387 sizeof (arc_t) /* Name length (set by ill_arp_alloc) */ 388 }; 389 390 static arc_t ip_ard_template = { 391 AR_INTERFACE_DOWN, 392 sizeof (arc_t), /* Name offset */ 393 sizeof (arc_t) /* Name length (set by ill_arp_alloc) */ 394 }; 395 396 static arc_t ip_aron_template = { 397 AR_INTERFACE_ON, 398 sizeof (arc_t), /* Name offset */ 399 sizeof (arc_t) /* Name length (set by ill_arp_alloc) */ 400 }; 401 402 static arc_t ip_aroff_template = { 403 AR_INTERFACE_OFF, 404 sizeof (arc_t), /* Name offset */ 405 sizeof (arc_t) /* Name length (set by ill_arp_alloc) */ 406 }; 407 408 static arma_t ip_arma_multi_template = { 409 AR_MAPPING_ADD, 410 sizeof (arma_t) + 3*IP_ADDR_LEN + IP_MAX_HW_LEN, 411 /* Name offset */ 412 sizeof (arma_t), /* Name length (set by ill_arp_alloc) */ 413 IP_ARP_PROTO_TYPE, 414 sizeof (arma_t), /* proto_addr_offset */ 415 IP_ADDR_LEN, /* proto_addr_length */ 416 sizeof (arma_t) + IP_ADDR_LEN, /* proto_mask_offset */ 417 sizeof (arma_t) + 2*IP_ADDR_LEN, /* proto_extract_mask_offset */ 418 ACE_F_PERMANENT | ACE_F_MAPPING, /* flags */ 419 sizeof (arma_t) + 3*IP_ADDR_LEN, /* hw_addr_offset */ 420 IP_MAX_HW_LEN, /* hw_addr_length */ 421 0, /* hw_mapping_start */ 422 }; 423 424 static ipft_t ip_ioctl_ftbl[] = { 425 { IP_IOC_IRE_DELETE, ip_ire_delete, sizeof (ipid_t), 0 }, 426 { IP_IOC_IRE_DELETE_NO_REPLY, ip_ire_delete, sizeof (ipid_t), 427 IPFT_F_NO_REPLY }, 428 { IP_IOC_IRE_ADVISE_NO_REPLY, ip_ire_advise, sizeof (ipic_t), 429 IPFT_F_NO_REPLY }, 430 { IP_IOC_RTS_REQUEST, ip_rts_request, 0, IPFT_F_SELF_REPLY }, 431 { 0 } 432 }; 433 434 /* Simple ICMP IP Header Template */ 435 static ipha_t icmp_ipha = { 436 IP_SIMPLE_HDR_VERSION, 0, 0, 0, 0, 0, IPPROTO_ICMP 437 }; 438 439 static uchar_t ip_six_byte_all_ones[] = { 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF }; 440 441 static ip_m_t ip_m_tbl[] = { 442 { DL_ETHER, IFT_ETHER, ip_ether_v4mapinfo, ip_ether_v6mapinfo, 443 ip_ether_v6intfid }, 444 { DL_CSMACD, IFT_ISO88023, ip_ether_v4mapinfo, ip_ether_v6mapinfo, 445 ip_nodef_v6intfid }, 446 { DL_TPB, IFT_ISO88024, ip_ether_v4mapinfo, ip_ether_v6mapinfo, 447 ip_nodef_v6intfid }, 448 { DL_TPR, IFT_ISO88025, ip_ether_v4mapinfo, ip_ether_v6mapinfo, 449 ip_nodef_v6intfid }, 450 { DL_FDDI, IFT_FDDI, ip_ether_v4mapinfo, ip_ether_v6mapinfo, 451 ip_ether_v6intfid }, 452 { DL_IB, IFT_IB, ip_ib_v4mapinfo, ip_ib_v6mapinfo, 453 ip_ib_v6intfid }, 454 { SUNW_DL_VNI, IFT_OTHER, NULL, NULL, NULL }, 455 { SUNW_DL_IPMP, IFT_OTHER, NULL, NULL, ip_ipmp_v6intfid }, 456 { DL_OTHER, IFT_OTHER, ip_ether_v4mapinfo, ip_ether_v6mapinfo, 457 ip_nodef_v6intfid } 458 }; 459 460 static ill_t ill_null; /* Empty ILL for init. */ 461 char ipif_loopback_name[] = "lo0"; 462 static char *ipv4_forward_suffix = ":ip_forwarding"; 463 static char *ipv6_forward_suffix = ":ip6_forwarding"; 464 static sin6_t sin6_null; /* Zero address for quick clears */ 465 static sin_t sin_null; /* Zero address for quick clears */ 466 467 /* When set search for unused ipif_seqid */ 468 static ipif_t ipif_zero; 469 470 /* 471 * ppa arena is created after these many 472 * interfaces have been plumbed. 473 */ 474 uint_t ill_no_arena = 12; /* Setable in /etc/system */ 475 476 /* 477 * Allocate per-interface mibs. 478 * Returns true if ok. False otherwise. 479 * ipsq may not yet be allocated (loopback case ). 480 */ 481 static boolean_t 482 ill_allocate_mibs(ill_t *ill) 483 { 484 /* Already allocated? */ 485 if (ill->ill_ip_mib != NULL) { 486 if (ill->ill_isv6) 487 ASSERT(ill->ill_icmp6_mib != NULL); 488 return (B_TRUE); 489 } 490 491 ill->ill_ip_mib = kmem_zalloc(sizeof (*ill->ill_ip_mib), 492 KM_NOSLEEP); 493 if (ill->ill_ip_mib == NULL) { 494 return (B_FALSE); 495 } 496 497 /* Setup static information */ 498 SET_MIB(ill->ill_ip_mib->ipIfStatsEntrySize, 499 sizeof (mib2_ipIfStatsEntry_t)); 500 if (ill->ill_isv6) { 501 ill->ill_ip_mib->ipIfStatsIPVersion = MIB2_INETADDRESSTYPE_ipv6; 502 SET_MIB(ill->ill_ip_mib->ipIfStatsAddrEntrySize, 503 sizeof (mib2_ipv6AddrEntry_t)); 504 SET_MIB(ill->ill_ip_mib->ipIfStatsRouteEntrySize, 505 sizeof (mib2_ipv6RouteEntry_t)); 506 SET_MIB(ill->ill_ip_mib->ipIfStatsNetToMediaEntrySize, 507 sizeof (mib2_ipv6NetToMediaEntry_t)); 508 SET_MIB(ill->ill_ip_mib->ipIfStatsMemberEntrySize, 509 sizeof (ipv6_member_t)); 510 SET_MIB(ill->ill_ip_mib->ipIfStatsGroupSourceEntrySize, 511 sizeof (ipv6_grpsrc_t)); 512 } else { 513 ill->ill_ip_mib->ipIfStatsIPVersion = MIB2_INETADDRESSTYPE_ipv4; 514 SET_MIB(ill->ill_ip_mib->ipIfStatsAddrEntrySize, 515 sizeof (mib2_ipAddrEntry_t)); 516 SET_MIB(ill->ill_ip_mib->ipIfStatsRouteEntrySize, 517 sizeof (mib2_ipRouteEntry_t)); 518 SET_MIB(ill->ill_ip_mib->ipIfStatsNetToMediaEntrySize, 519 sizeof (mib2_ipNetToMediaEntry_t)); 520 SET_MIB(ill->ill_ip_mib->ipIfStatsMemberEntrySize, 521 sizeof (ip_member_t)); 522 SET_MIB(ill->ill_ip_mib->ipIfStatsGroupSourceEntrySize, 523 sizeof (ip_grpsrc_t)); 524 525 /* 526 * For a v4 ill, we are done at this point, because per ill 527 * icmp mibs are only used for v6. 528 */ 529 return (B_TRUE); 530 } 531 532 ill->ill_icmp6_mib = kmem_zalloc(sizeof (*ill->ill_icmp6_mib), 533 KM_NOSLEEP); 534 if (ill->ill_icmp6_mib == NULL) { 535 kmem_free(ill->ill_ip_mib, sizeof (*ill->ill_ip_mib)); 536 ill->ill_ip_mib = NULL; 537 return (B_FALSE); 538 } 539 /* static icmp info */ 540 ill->ill_icmp6_mib->ipv6IfIcmpEntrySize = 541 sizeof (mib2_ipv6IfIcmpEntry_t); 542 /* 543 * The ipIfStatsIfindex and ipv6IfIcmpIndex will be assigned later 544 * after the phyint merge occurs in ipif_set_values -> ill_glist_insert 545 * -> ill_phyint_reinit 546 */ 547 return (B_TRUE); 548 } 549 550 /* 551 * Common code for preparation of ARP commands. Two points to remember: 552 * 1) The ill_name is tacked on at the end of the allocated space so 553 * the templates name_offset field must contain the total space 554 * to allocate less the name length. 555 * 556 * 2) The templates name_length field should contain the *template* 557 * length. We use it as a parameter to bcopy() and then write 558 * the real ill_name_length into the name_length field of the copy. 559 * (Always called as writer.) 560 */ 561 mblk_t * 562 ill_arp_alloc(ill_t *ill, const uchar_t *template, caddr_t addr) 563 { 564 arc_t *arc = (arc_t *)template; 565 char *cp; 566 int len; 567 mblk_t *mp; 568 uint_t name_length = ill->ill_name_length; 569 uint_t template_len = arc->arc_name_length; 570 571 len = arc->arc_name_offset + name_length; 572 mp = allocb(len, BPRI_HI); 573 if (mp == NULL) 574 return (NULL); 575 cp = (char *)mp->b_rptr; 576 mp->b_wptr = (uchar_t *)&cp[len]; 577 if (template_len) 578 bcopy(template, cp, template_len); 579 if (len > template_len) 580 bzero(&cp[template_len], len - template_len); 581 mp->b_datap->db_type = M_PROTO; 582 583 arc = (arc_t *)cp; 584 arc->arc_name_length = name_length; 585 cp = (char *)arc + arc->arc_name_offset; 586 bcopy(ill->ill_name, cp, name_length); 587 588 if (addr) { 589 area_t *area = (area_t *)mp->b_rptr; 590 591 cp = (char *)area + area->area_proto_addr_offset; 592 bcopy(addr, cp, area->area_proto_addr_length); 593 if (area->area_cmd == AR_ENTRY_ADD) { 594 cp = (char *)area; 595 len = area->area_proto_addr_length; 596 if (area->area_proto_mask_offset) 597 cp += area->area_proto_mask_offset; 598 else 599 cp += area->area_proto_addr_offset + len; 600 while (len-- > 0) 601 *cp++ = (char)~0; 602 } 603 } 604 return (mp); 605 } 606 607 mblk_t * 608 ipif_area_alloc(ipif_t *ipif, uint_t optflags) 609 { 610 caddr_t addr; 611 mblk_t *mp; 612 area_t *area; 613 uchar_t *areap; 614 ill_t *ill = ipif->ipif_ill; 615 616 if (ill->ill_isv6) { 617 ASSERT(ill->ill_flags & ILLF_XRESOLV); 618 addr = (caddr_t)&ipif->ipif_v6lcl_addr; 619 areap = (uchar_t *)&ip6_area_template; 620 } else { 621 addr = (caddr_t)&ipif->ipif_lcl_addr; 622 areap = (uchar_t *)&ip_area_template; 623 } 624 625 if ((mp = ill_arp_alloc(ill, areap, addr)) == NULL) 626 return (NULL); 627 628 /* 629 * IPMP requires that the hardware address be included in all 630 * AR_ENTRY_ADD requests so that ARP can deduce the arl to send on. 631 * If there are no active underlying ills in the group (and thus no 632 * hardware address, DAD will be deferred until an underlying ill 633 * becomes active. 634 */ 635 if (IS_IPMP(ill)) { 636 if ((ill = ipmp_ipif_hold_bound_ill(ipif)) == NULL) { 637 freemsg(mp); 638 return (NULL); 639 } 640 } else { 641 ill_refhold(ill); 642 } 643 644 area = (area_t *)mp->b_rptr; 645 area->area_flags = ACE_F_PERMANENT | ACE_F_PUBLISH | ACE_F_MYADDR; 646 area->area_flags |= optflags; 647 area->area_hw_addr_length = ill->ill_phys_addr_length; 648 bcopy(ill->ill_phys_addr, mp->b_rptr + area->area_hw_addr_offset, 649 area->area_hw_addr_length); 650 651 ill_refrele(ill); 652 return (mp); 653 } 654 655 mblk_t * 656 ipif_ared_alloc(ipif_t *ipif) 657 { 658 caddr_t addr; 659 uchar_t *aredp; 660 661 if (ipif->ipif_ill->ill_isv6) { 662 ASSERT(ipif->ipif_ill->ill_flags & ILLF_XRESOLV); 663 addr = (caddr_t)&ipif->ipif_v6lcl_addr; 664 aredp = (uchar_t *)&ip6_ared_template; 665 } else { 666 addr = (caddr_t)&ipif->ipif_lcl_addr; 667 aredp = (uchar_t *)&ip_ared_template; 668 } 669 670 return (ill_arp_alloc(ipif->ipif_ill, aredp, addr)); 671 } 672 673 mblk_t * 674 ill_ared_alloc(ill_t *ill, ipaddr_t addr) 675 { 676 return (ill_arp_alloc(ill, (uchar_t *)&ip_ared_template, 677 (char *)&addr)); 678 } 679 680 mblk_t * 681 ill_arie_alloc(ill_t *ill, const char *grifname, const void *template) 682 { 683 mblk_t *mp = ill_arp_alloc(ill, template, 0); 684 arie_t *arie; 685 686 if (mp != NULL) { 687 arie = (arie_t *)mp->b_rptr; 688 (void) strlcpy(arie->arie_grifname, grifname, LIFNAMSIZ); 689 } 690 return (mp); 691 } 692 693 /* 694 * Completely vaporize a lower level tap and all associated interfaces. 695 * ill_delete is called only out of ip_close when the device control 696 * stream is being closed. 697 */ 698 void 699 ill_delete(ill_t *ill) 700 { 701 ipif_t *ipif; 702 ill_t *prev_ill; 703 ip_stack_t *ipst = ill->ill_ipst; 704 705 /* 706 * ill_delete may be forcibly entering the ipsq. The previous 707 * ioctl may not have completed and may need to be aborted. 708 * ipsq_flush takes care of it. If we don't need to enter the 709 * the ipsq forcibly, the 2nd invocation of ipsq_flush in 710 * ill_delete_tail is sufficient. 711 */ 712 ipsq_flush(ill); 713 714 /* 715 * Nuke all interfaces. ipif_free will take down the interface, 716 * remove it from the list, and free the data structure. 717 * Walk down the ipif list and remove the logical interfaces 718 * first before removing the main ipif. We can't unplumb 719 * zeroth interface first in the case of IPv6 as reset_conn_ill 720 * -> ip_ll_delmulti_v6 de-references ill_ipif for checking 721 * POINTOPOINT. 722 * 723 * If ill_ipif was not properly initialized (i.e low on memory), 724 * then no interfaces to clean up. In this case just clean up the 725 * ill. 726 */ 727 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) 728 ipif_free(ipif); 729 730 /* 731 * Used only by ill_arp_on and ill_arp_off, which are writers. 732 * So nobody can be using this mp now. Free the mp allocated for 733 * honoring ILLF_NOARP 734 */ 735 freemsg(ill->ill_arp_on_mp); 736 ill->ill_arp_on_mp = NULL; 737 738 /* Clean up msgs on pending upcalls for mrouted */ 739 reset_mrt_ill(ill); 740 741 /* 742 * ipif_free -> reset_conn_ipif will remove all multicast 743 * references for IPv4. For IPv6, we need to do it here as 744 * it points only at ills. 745 */ 746 reset_conn_ill(ill); 747 748 /* 749 * Remove multicast references added as a result of calls to 750 * ip_join_allmulti(). 751 */ 752 ip_purge_allmulti(ill); 753 754 /* 755 * If the ill being deleted is under IPMP, boot it out of the illgrp. 756 */ 757 if (IS_UNDER_IPMP(ill)) 758 ipmp_ill_leave_illgrp(ill); 759 760 /* 761 * ill_down will arrange to blow off any IRE's dependent on this 762 * ILL, and shut down fragmentation reassembly. 763 */ 764 ill_down(ill); 765 766 /* Let SCTP know, so that it can remove this from its list. */ 767 sctp_update_ill(ill, SCTP_ILL_REMOVE); 768 769 /* 770 * If an address on this ILL is being used as a source address then 771 * clear out the pointers in other ILLs that point to this ILL. 772 */ 773 rw_enter(&ipst->ips_ill_g_usesrc_lock, RW_WRITER); 774 if (ill->ill_usesrc_grp_next != NULL) { 775 if (ill->ill_usesrc_ifindex == 0) { /* usesrc ILL ? */ 776 ill_disband_usesrc_group(ill); 777 } else { /* consumer of the usesrc ILL */ 778 prev_ill = ill_prev_usesrc(ill); 779 prev_ill->ill_usesrc_grp_next = 780 ill->ill_usesrc_grp_next; 781 } 782 } 783 rw_exit(&ipst->ips_ill_g_usesrc_lock); 784 } 785 786 static void 787 ipif_non_duplicate(ipif_t *ipif) 788 { 789 ill_t *ill = ipif->ipif_ill; 790 mutex_enter(&ill->ill_lock); 791 if (ipif->ipif_flags & IPIF_DUPLICATE) { 792 ipif->ipif_flags &= ~IPIF_DUPLICATE; 793 ASSERT(ill->ill_ipif_dup_count > 0); 794 ill->ill_ipif_dup_count--; 795 } 796 mutex_exit(&ill->ill_lock); 797 } 798 799 /* 800 * ill_delete_tail is called from ip_modclose after all references 801 * to the closing ill are gone. The wait is done in ip_modclose 802 */ 803 void 804 ill_delete_tail(ill_t *ill) 805 { 806 mblk_t **mpp; 807 ipif_t *ipif; 808 ip_stack_t *ipst = ill->ill_ipst; 809 810 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 811 ipif_non_duplicate(ipif); 812 ipif_down_tail(ipif); 813 } 814 815 ASSERT(ill->ill_ipif_dup_count == 0 && 816 ill->ill_arp_down_mp == NULL && 817 ill->ill_arp_del_mapping_mp == NULL); 818 819 /* 820 * If polling capability is enabled (which signifies direct 821 * upcall into IP and driver has ill saved as a handle), 822 * we need to make sure that unbind has completed before we 823 * let the ill disappear and driver no longer has any reference 824 * to this ill. 825 */ 826 mutex_enter(&ill->ill_lock); 827 while (ill->ill_state_flags & ILL_DL_UNBIND_IN_PROGRESS) 828 cv_wait(&ill->ill_cv, &ill->ill_lock); 829 mutex_exit(&ill->ill_lock); 830 ASSERT(!(ill->ill_capabilities & 831 (ILL_CAPAB_DLD | ILL_CAPAB_DLD_POLL | ILL_CAPAB_DLD_DIRECT))); 832 833 if (ill->ill_net_type != IRE_LOOPBACK) 834 qprocsoff(ill->ill_rq); 835 836 /* 837 * We do an ipsq_flush once again now. New messages could have 838 * landed up from below (M_ERROR or M_HANGUP). Similarly ioctls 839 * could also have landed up if an ioctl thread had looked up 840 * the ill before we set the ILL_CONDEMNED flag, but not yet 841 * enqueued the ioctl when we did the ipsq_flush last time. 842 */ 843 ipsq_flush(ill); 844 845 /* 846 * Free capabilities. 847 */ 848 if (ill->ill_ipsec_capab_ah != NULL) { 849 ill_ipsec_capab_delete(ill, DL_CAPAB_IPSEC_AH); 850 ill_ipsec_capab_free(ill->ill_ipsec_capab_ah); 851 ill->ill_ipsec_capab_ah = NULL; 852 } 853 854 if (ill->ill_ipsec_capab_esp != NULL) { 855 ill_ipsec_capab_delete(ill, DL_CAPAB_IPSEC_ESP); 856 ill_ipsec_capab_free(ill->ill_ipsec_capab_esp); 857 ill->ill_ipsec_capab_esp = NULL; 858 } 859 860 if (ill->ill_mdt_capab != NULL) { 861 kmem_free(ill->ill_mdt_capab, sizeof (ill_mdt_capab_t)); 862 ill->ill_mdt_capab = NULL; 863 } 864 865 if (ill->ill_hcksum_capab != NULL) { 866 kmem_free(ill->ill_hcksum_capab, sizeof (ill_hcksum_capab_t)); 867 ill->ill_hcksum_capab = NULL; 868 } 869 870 if (ill->ill_zerocopy_capab != NULL) { 871 kmem_free(ill->ill_zerocopy_capab, 872 sizeof (ill_zerocopy_capab_t)); 873 ill->ill_zerocopy_capab = NULL; 874 } 875 876 if (ill->ill_lso_capab != NULL) { 877 kmem_free(ill->ill_lso_capab, sizeof (ill_lso_capab_t)); 878 ill->ill_lso_capab = NULL; 879 } 880 881 if (ill->ill_dld_capab != NULL) { 882 kmem_free(ill->ill_dld_capab, sizeof (ill_dld_capab_t)); 883 ill->ill_dld_capab = NULL; 884 } 885 886 while (ill->ill_ipif != NULL) 887 ipif_free_tail(ill->ill_ipif); 888 889 /* 890 * We have removed all references to ilm from conn and the ones joined 891 * within the kernel. 892 * 893 * We don't walk conns, mrts and ires because 894 * 895 * 1) reset_conn_ill and reset_mrt_ill cleans up conns and mrts. 896 * 2) ill_down ->ill_downi walks all the ires and cleans up 897 * ill references. 898 */ 899 ASSERT(ilm_walk_ill(ill) == 0); 900 901 /* 902 * If this ill is an IPMP meta-interface, blow away the illgrp. This 903 * is safe to do because the illgrp has already been unlinked from the 904 * group by I_PUNLINK, and thus SIOCSLIFGROUPNAME cannot find it. 905 */ 906 if (IS_IPMP(ill)) { 907 ipmp_illgrp_destroy(ill->ill_grp); 908 ill->ill_grp = NULL; 909 } 910 911 /* 912 * Take us out of the list of ILLs. ill_glist_delete -> phyint_free 913 * could free the phyint. No more reference to the phyint after this 914 * point. 915 */ 916 (void) ill_glist_delete(ill); 917 918 rw_enter(&ipst->ips_ip_g_nd_lock, RW_WRITER); 919 if (ill->ill_ndd_name != NULL) 920 nd_unload(&ipst->ips_ip_g_nd, ill->ill_ndd_name); 921 rw_exit(&ipst->ips_ip_g_nd_lock); 922 923 if (ill->ill_frag_ptr != NULL) { 924 uint_t count; 925 926 for (count = 0; count < ILL_FRAG_HASH_TBL_COUNT; count++) { 927 mutex_destroy(&ill->ill_frag_hash_tbl[count].ipfb_lock); 928 } 929 mi_free(ill->ill_frag_ptr); 930 ill->ill_frag_ptr = NULL; 931 ill->ill_frag_hash_tbl = NULL; 932 } 933 934 freemsg(ill->ill_nd_lla_mp); 935 /* Free all retained control messages. */ 936 mpp = &ill->ill_first_mp_to_free; 937 do { 938 while (mpp[0]) { 939 mblk_t *mp; 940 mblk_t *mp1; 941 942 mp = mpp[0]; 943 mpp[0] = mp->b_next; 944 for (mp1 = mp; mp1 != NULL; mp1 = mp1->b_cont) { 945 mp1->b_next = NULL; 946 mp1->b_prev = NULL; 947 } 948 freemsg(mp); 949 } 950 } while (mpp++ != &ill->ill_last_mp_to_free); 951 952 ill_free_mib(ill); 953 954 #ifdef DEBUG 955 ill_trace_cleanup(ill); 956 #endif 957 958 /* Drop refcnt here */ 959 netstack_rele(ill->ill_ipst->ips_netstack); 960 ill->ill_ipst = NULL; 961 } 962 963 static void 964 ill_free_mib(ill_t *ill) 965 { 966 ip_stack_t *ipst = ill->ill_ipst; 967 968 /* 969 * MIB statistics must not be lost, so when an interface 970 * goes away the counter values will be added to the global 971 * MIBs. 972 */ 973 if (ill->ill_ip_mib != NULL) { 974 if (ill->ill_isv6) { 975 ip_mib2_add_ip_stats(&ipst->ips_ip6_mib, 976 ill->ill_ip_mib); 977 } else { 978 ip_mib2_add_ip_stats(&ipst->ips_ip_mib, 979 ill->ill_ip_mib); 980 } 981 982 kmem_free(ill->ill_ip_mib, sizeof (*ill->ill_ip_mib)); 983 ill->ill_ip_mib = NULL; 984 } 985 if (ill->ill_icmp6_mib != NULL) { 986 ip_mib2_add_icmp6_stats(&ipst->ips_icmp6_mib, 987 ill->ill_icmp6_mib); 988 kmem_free(ill->ill_icmp6_mib, sizeof (*ill->ill_icmp6_mib)); 989 ill->ill_icmp6_mib = NULL; 990 } 991 } 992 993 /* 994 * Concatenate together a physical address and a sap. 995 * 996 * Sap_lengths are interpreted as follows: 997 * sap_length == 0 ==> no sap 998 * sap_length > 0 ==> sap is at the head of the dlpi address 999 * sap_length < 0 ==> sap is at the tail of the dlpi address 1000 */ 1001 static void 1002 ill_dlur_copy_address(uchar_t *phys_src, uint_t phys_length, 1003 t_scalar_t sap_src, t_scalar_t sap_length, uchar_t *dst) 1004 { 1005 uint16_t sap_addr = (uint16_t)sap_src; 1006 1007 if (sap_length == 0) { 1008 if (phys_src == NULL) 1009 bzero(dst, phys_length); 1010 else 1011 bcopy(phys_src, dst, phys_length); 1012 } else if (sap_length < 0) { 1013 if (phys_src == NULL) 1014 bzero(dst, phys_length); 1015 else 1016 bcopy(phys_src, dst, phys_length); 1017 bcopy(&sap_addr, (char *)dst + phys_length, sizeof (sap_addr)); 1018 } else { 1019 bcopy(&sap_addr, dst, sizeof (sap_addr)); 1020 if (phys_src == NULL) 1021 bzero((char *)dst + sap_length, phys_length); 1022 else 1023 bcopy(phys_src, (char *)dst + sap_length, phys_length); 1024 } 1025 } 1026 1027 /* 1028 * Generate a dl_unitdata_req mblk for the device and address given. 1029 * addr_length is the length of the physical portion of the address. 1030 * If addr is NULL include an all zero address of the specified length. 1031 * TRUE? In any case, addr_length is taken to be the entire length of the 1032 * dlpi address, including the absolute value of sap_length. 1033 */ 1034 mblk_t * 1035 ill_dlur_gen(uchar_t *addr, uint_t addr_length, t_uscalar_t sap, 1036 t_scalar_t sap_length) 1037 { 1038 dl_unitdata_req_t *dlur; 1039 mblk_t *mp; 1040 t_scalar_t abs_sap_length; /* absolute value */ 1041 1042 abs_sap_length = ABS(sap_length); 1043 mp = ip_dlpi_alloc(sizeof (*dlur) + addr_length + abs_sap_length, 1044 DL_UNITDATA_REQ); 1045 if (mp == NULL) 1046 return (NULL); 1047 dlur = (dl_unitdata_req_t *)mp->b_rptr; 1048 /* HACK: accomodate incompatible DLPI drivers */ 1049 if (addr_length == 8) 1050 addr_length = 6; 1051 dlur->dl_dest_addr_length = addr_length + abs_sap_length; 1052 dlur->dl_dest_addr_offset = sizeof (*dlur); 1053 dlur->dl_priority.dl_min = 0; 1054 dlur->dl_priority.dl_max = 0; 1055 ill_dlur_copy_address(addr, addr_length, sap, sap_length, 1056 (uchar_t *)&dlur[1]); 1057 return (mp); 1058 } 1059 1060 /* 1061 * Add the 'mp' to the list of pending mp's headed by ill_pending_mp 1062 * Return an error if we already have 1 or more ioctls in progress. 1063 * This is used only for non-exclusive ioctls. Currently this is used 1064 * for SIOC*ARP and SIOCGTUNPARAM ioctls. Most set ioctls are exclusive 1065 * and thus need to use ipsq_pending_mp_add. 1066 */ 1067 boolean_t 1068 ill_pending_mp_add(ill_t *ill, conn_t *connp, mblk_t *add_mp) 1069 { 1070 ASSERT(MUTEX_HELD(&ill->ill_lock)); 1071 ASSERT((add_mp->b_next == NULL) && (add_mp->b_prev == NULL)); 1072 /* 1073 * M_IOCDATA from ioctls, M_IOCTL from tunnel ioctls. 1074 */ 1075 ASSERT((add_mp->b_datap->db_type == M_IOCDATA) || 1076 (add_mp->b_datap->db_type == M_IOCTL)); 1077 1078 ASSERT(MUTEX_HELD(&connp->conn_lock)); 1079 /* 1080 * Return error if the conn has started closing. The conn 1081 * could have finished cleaning up the pending mp list, 1082 * If so we should not add another mp to the list negating 1083 * the cleanup. 1084 */ 1085 if (connp->conn_state_flags & CONN_CLOSING) 1086 return (B_FALSE); 1087 /* 1088 * Add the pending mp to the head of the list, chained by b_next. 1089 * Note down the conn on which the ioctl request came, in b_prev. 1090 * This will be used to later get the conn, when we get a response 1091 * on the ill queue, from some other module (typically arp) 1092 */ 1093 add_mp->b_next = (void *)ill->ill_pending_mp; 1094 add_mp->b_queue = CONNP_TO_WQ(connp); 1095 ill->ill_pending_mp = add_mp; 1096 if (connp != NULL) 1097 connp->conn_oper_pending_ill = ill; 1098 return (B_TRUE); 1099 } 1100 1101 /* 1102 * Retrieve the ill_pending_mp and return it. We have to walk the list 1103 * of mblks starting at ill_pending_mp, and match based on the ioc_id. 1104 */ 1105 mblk_t * 1106 ill_pending_mp_get(ill_t *ill, conn_t **connpp, uint_t ioc_id) 1107 { 1108 mblk_t *prev = NULL; 1109 mblk_t *curr = NULL; 1110 uint_t id; 1111 conn_t *connp; 1112 1113 /* 1114 * When the conn closes, conn_ioctl_cleanup needs to clean 1115 * up the pending mp, but it does not know the ioc_id and 1116 * passes in a zero for it. 1117 */ 1118 mutex_enter(&ill->ill_lock); 1119 if (ioc_id != 0) 1120 *connpp = NULL; 1121 1122 /* Search the list for the appropriate ioctl based on ioc_id */ 1123 for (prev = NULL, curr = ill->ill_pending_mp; curr != NULL; 1124 prev = curr, curr = curr->b_next) { 1125 id = ((struct iocblk *)curr->b_rptr)->ioc_id; 1126 connp = Q_TO_CONN(curr->b_queue); 1127 /* Match based on the ioc_id or based on the conn */ 1128 if ((id == ioc_id) || (ioc_id == 0 && connp == *connpp)) 1129 break; 1130 } 1131 1132 if (curr != NULL) { 1133 /* Unlink the mblk from the pending mp list */ 1134 if (prev != NULL) { 1135 prev->b_next = curr->b_next; 1136 } else { 1137 ASSERT(ill->ill_pending_mp == curr); 1138 ill->ill_pending_mp = curr->b_next; 1139 } 1140 1141 /* 1142 * conn refcnt must have been bumped up at the start of 1143 * the ioctl. So we can safely access the conn. 1144 */ 1145 ASSERT(CONN_Q(curr->b_queue)); 1146 *connpp = Q_TO_CONN(curr->b_queue); 1147 curr->b_next = NULL; 1148 curr->b_queue = NULL; 1149 } 1150 1151 mutex_exit(&ill->ill_lock); 1152 1153 return (curr); 1154 } 1155 1156 /* 1157 * Add the pending mp to the list. There can be only 1 pending mp 1158 * in the list. Any exclusive ioctl that needs to wait for a response 1159 * from another module or driver needs to use this function to set 1160 * the ipx_pending_mp to the ioctl mblk and wait for the response from 1161 * the other module/driver. This is also used while waiting for the 1162 * ipif/ill/ire refcnts to drop to zero in bringing down an ipif. 1163 */ 1164 boolean_t 1165 ipsq_pending_mp_add(conn_t *connp, ipif_t *ipif, queue_t *q, mblk_t *add_mp, 1166 int waitfor) 1167 { 1168 ipxop_t *ipx = ipif->ipif_ill->ill_phyint->phyint_ipsq->ipsq_xop; 1169 1170 ASSERT(IAM_WRITER_IPIF(ipif)); 1171 ASSERT(MUTEX_HELD(&ipif->ipif_ill->ill_lock)); 1172 ASSERT((add_mp->b_next == NULL) && (add_mp->b_prev == NULL)); 1173 ASSERT(ipx->ipx_pending_mp == NULL); 1174 /* 1175 * The caller may be using a different ipif than the one passed into 1176 * ipsq_current_start() (e.g., suppose an ioctl that came in on the V4 1177 * ill needs to wait for the V6 ill to quiesce). So we can't ASSERT 1178 * that `ipx_current_ipif == ipif'. 1179 */ 1180 ASSERT(ipx->ipx_current_ipif != NULL); 1181 1182 /* 1183 * M_IOCDATA from ioctls, M_IOCTL from tunnel ioctls, 1184 * M_ERROR/M_HANGUP/M_PROTO/M_PCPROTO from the driver. 1185 */ 1186 ASSERT((DB_TYPE(add_mp) == M_IOCDATA) || (DB_TYPE(add_mp) == M_IOCTL) || 1187 (DB_TYPE(add_mp) == M_ERROR) || (DB_TYPE(add_mp) == M_HANGUP) || 1188 (DB_TYPE(add_mp) == M_PROTO) || (DB_TYPE(add_mp) == M_PCPROTO)); 1189 1190 if (connp != NULL) { 1191 ASSERT(MUTEX_HELD(&connp->conn_lock)); 1192 /* 1193 * Return error if the conn has started closing. The conn 1194 * could have finished cleaning up the pending mp list, 1195 * If so we should not add another mp to the list negating 1196 * the cleanup. 1197 */ 1198 if (connp->conn_state_flags & CONN_CLOSING) 1199 return (B_FALSE); 1200 } 1201 mutex_enter(&ipx->ipx_lock); 1202 ipx->ipx_pending_ipif = ipif; 1203 /* 1204 * Note down the queue in b_queue. This will be returned by 1205 * ipsq_pending_mp_get. Caller will then use these values to restart 1206 * the processing 1207 */ 1208 add_mp->b_next = NULL; 1209 add_mp->b_queue = q; 1210 ipx->ipx_pending_mp = add_mp; 1211 ipx->ipx_waitfor = waitfor; 1212 mutex_exit(&ipx->ipx_lock); 1213 1214 if (connp != NULL) 1215 connp->conn_oper_pending_ill = ipif->ipif_ill; 1216 1217 return (B_TRUE); 1218 } 1219 1220 /* 1221 * Retrieve the ipx_pending_mp and return it. There can be only 1 mp 1222 * queued in the list. 1223 */ 1224 mblk_t * 1225 ipsq_pending_mp_get(ipsq_t *ipsq, conn_t **connpp) 1226 { 1227 mblk_t *curr = NULL; 1228 ipxop_t *ipx = ipsq->ipsq_xop; 1229 1230 *connpp = NULL; 1231 mutex_enter(&ipx->ipx_lock); 1232 if (ipx->ipx_pending_mp == NULL) { 1233 mutex_exit(&ipx->ipx_lock); 1234 return (NULL); 1235 } 1236 1237 /* There can be only 1 such excl message */ 1238 curr = ipx->ipx_pending_mp; 1239 ASSERT(curr->b_next == NULL); 1240 ipx->ipx_pending_ipif = NULL; 1241 ipx->ipx_pending_mp = NULL; 1242 ipx->ipx_waitfor = 0; 1243 mutex_exit(&ipx->ipx_lock); 1244 1245 if (CONN_Q(curr->b_queue)) { 1246 /* 1247 * This mp did a refhold on the conn, at the start of the ioctl. 1248 * So we can safely return a pointer to the conn to the caller. 1249 */ 1250 *connpp = Q_TO_CONN(curr->b_queue); 1251 } else { 1252 *connpp = NULL; 1253 } 1254 curr->b_next = NULL; 1255 curr->b_prev = NULL; 1256 return (curr); 1257 } 1258 1259 /* 1260 * Cleanup the ioctl mp queued in ipx_pending_mp 1261 * - Called in the ill_delete path 1262 * - Called in the M_ERROR or M_HANGUP path on the ill. 1263 * - Called in the conn close path. 1264 */ 1265 boolean_t 1266 ipsq_pending_mp_cleanup(ill_t *ill, conn_t *connp) 1267 { 1268 mblk_t *mp; 1269 ipxop_t *ipx; 1270 queue_t *q; 1271 ipif_t *ipif; 1272 1273 ASSERT(IAM_WRITER_ILL(ill)); 1274 ipx = ill->ill_phyint->phyint_ipsq->ipsq_xop; 1275 1276 /* 1277 * If connp is null, unconditionally clean up the ipx_pending_mp. 1278 * This happens in M_ERROR/M_HANGUP. We need to abort the current ioctl 1279 * even if it is meant for another ill, since we have to enqueue 1280 * a new mp now in ipx_pending_mp to complete the ipif_down. 1281 * If connp is non-null we are called from the conn close path. 1282 */ 1283 mutex_enter(&ipx->ipx_lock); 1284 mp = ipx->ipx_pending_mp; 1285 if (mp == NULL || (connp != NULL && 1286 mp->b_queue != CONNP_TO_WQ(connp))) { 1287 mutex_exit(&ipx->ipx_lock); 1288 return (B_FALSE); 1289 } 1290 /* Now remove from the ipx_pending_mp */ 1291 ipx->ipx_pending_mp = NULL; 1292 q = mp->b_queue; 1293 mp->b_next = NULL; 1294 mp->b_prev = NULL; 1295 mp->b_queue = NULL; 1296 1297 ipif = ipx->ipx_pending_ipif; 1298 ipx->ipx_pending_ipif = NULL; 1299 ipx->ipx_waitfor = 0; 1300 ipx->ipx_current_ipif = NULL; 1301 ipx->ipx_current_ioctl = 0; 1302 ipx->ipx_current_done = B_TRUE; 1303 mutex_exit(&ipx->ipx_lock); 1304 1305 if (DB_TYPE(mp) == M_IOCTL || DB_TYPE(mp) == M_IOCDATA) { 1306 if (connp == NULL) { 1307 ip_ioctl_finish(q, mp, ENXIO, NO_COPYOUT, NULL); 1308 } else { 1309 ip_ioctl_finish(q, mp, ENXIO, CONN_CLOSE, NULL); 1310 mutex_enter(&ipif->ipif_ill->ill_lock); 1311 ipif->ipif_state_flags &= ~IPIF_CHANGING; 1312 mutex_exit(&ipif->ipif_ill->ill_lock); 1313 } 1314 } else { 1315 /* 1316 * IP-MT XXX In the case of TLI/XTI bind / optmgmt this can't 1317 * be just inet_freemsg. we have to restart it 1318 * otherwise the thread will be stuck. 1319 */ 1320 inet_freemsg(mp); 1321 } 1322 return (B_TRUE); 1323 } 1324 1325 /* 1326 * The ill is closing. Cleanup all the pending mps. Called exclusively 1327 * towards the end of ill_delete. The refcount has gone to 0. So nobody 1328 * knows this ill, and hence nobody can add an mp to this list 1329 */ 1330 static void 1331 ill_pending_mp_cleanup(ill_t *ill) 1332 { 1333 mblk_t *mp; 1334 queue_t *q; 1335 1336 ASSERT(IAM_WRITER_ILL(ill)); 1337 1338 mutex_enter(&ill->ill_lock); 1339 /* 1340 * Every mp on the pending mp list originating from an ioctl 1341 * added 1 to the conn refcnt, at the start of the ioctl. 1342 * So bump it down now. See comments in ip_wput_nondata() 1343 */ 1344 while (ill->ill_pending_mp != NULL) { 1345 mp = ill->ill_pending_mp; 1346 ill->ill_pending_mp = mp->b_next; 1347 mutex_exit(&ill->ill_lock); 1348 1349 q = mp->b_queue; 1350 ASSERT(CONN_Q(q)); 1351 mp->b_next = NULL; 1352 mp->b_prev = NULL; 1353 mp->b_queue = NULL; 1354 ip_ioctl_finish(q, mp, ENXIO, NO_COPYOUT, NULL); 1355 mutex_enter(&ill->ill_lock); 1356 } 1357 ill->ill_pending_ipif = NULL; 1358 1359 mutex_exit(&ill->ill_lock); 1360 } 1361 1362 /* 1363 * Called in the conn close path and ill delete path 1364 */ 1365 static void 1366 ipsq_xopq_mp_cleanup(ill_t *ill, conn_t *connp) 1367 { 1368 ipsq_t *ipsq; 1369 mblk_t *prev; 1370 mblk_t *curr; 1371 mblk_t *next; 1372 queue_t *q; 1373 mblk_t *tmp_list = NULL; 1374 1375 ASSERT(IAM_WRITER_ILL(ill)); 1376 if (connp != NULL) 1377 q = CONNP_TO_WQ(connp); 1378 else 1379 q = ill->ill_wq; 1380 1381 ipsq = ill->ill_phyint->phyint_ipsq; 1382 /* 1383 * Cleanup the ioctl mp's queued in ipsq_xopq_pending_mp if any. 1384 * In the case of ioctl from a conn, there can be only 1 mp 1385 * queued on the ipsq. If an ill is being unplumbed, only messages 1386 * related to this ill are flushed, like M_ERROR or M_HANGUP message. 1387 * ioctls meant for this ill form conn's are not flushed. They will 1388 * be processed during ipsq_exit and will not find the ill and will 1389 * return error. 1390 */ 1391 mutex_enter(&ipsq->ipsq_lock); 1392 for (prev = NULL, curr = ipsq->ipsq_xopq_mphead; curr != NULL; 1393 curr = next) { 1394 next = curr->b_next; 1395 if (curr->b_queue == q || curr->b_queue == RD(q)) { 1396 /* Unlink the mblk from the pending mp list */ 1397 if (prev != NULL) { 1398 prev->b_next = curr->b_next; 1399 } else { 1400 ASSERT(ipsq->ipsq_xopq_mphead == curr); 1401 ipsq->ipsq_xopq_mphead = curr->b_next; 1402 } 1403 if (ipsq->ipsq_xopq_mptail == curr) 1404 ipsq->ipsq_xopq_mptail = prev; 1405 /* 1406 * Create a temporary list and release the ipsq lock 1407 * New elements are added to the head of the tmp_list 1408 */ 1409 curr->b_next = tmp_list; 1410 tmp_list = curr; 1411 } else { 1412 prev = curr; 1413 } 1414 } 1415 mutex_exit(&ipsq->ipsq_lock); 1416 1417 while (tmp_list != NULL) { 1418 curr = tmp_list; 1419 tmp_list = curr->b_next; 1420 curr->b_next = NULL; 1421 curr->b_prev = NULL; 1422 curr->b_queue = NULL; 1423 if (DB_TYPE(curr) == M_IOCTL || DB_TYPE(curr) == M_IOCDATA) { 1424 ip_ioctl_finish(q, curr, ENXIO, connp != NULL ? 1425 CONN_CLOSE : NO_COPYOUT, NULL); 1426 } else { 1427 /* 1428 * IP-MT XXX In the case of TLI/XTI bind / optmgmt 1429 * this can't be just inet_freemsg. we have to 1430 * restart it otherwise the thread will be stuck. 1431 */ 1432 inet_freemsg(curr); 1433 } 1434 } 1435 } 1436 1437 /* 1438 * This conn has started closing. Cleanup any pending ioctl from this conn. 1439 * STREAMS ensures that there can be at most 1 ioctl pending on a stream. 1440 */ 1441 void 1442 conn_ioctl_cleanup(conn_t *connp) 1443 { 1444 mblk_t *curr; 1445 ipsq_t *ipsq; 1446 ill_t *ill; 1447 boolean_t refheld; 1448 1449 /* 1450 * Is any exclusive ioctl pending ? If so clean it up. If the 1451 * ioctl has not yet started, the mp is pending in the list headed by 1452 * ipsq_xopq_head. If the ioctl has started the mp could be present in 1453 * ipx_pending_mp. If the ioctl timed out in the streamhead but 1454 * is currently executing now the mp is not queued anywhere but 1455 * conn_oper_pending_ill is null. The conn close will wait 1456 * till the conn_ref drops to zero. 1457 */ 1458 mutex_enter(&connp->conn_lock); 1459 ill = connp->conn_oper_pending_ill; 1460 if (ill == NULL) { 1461 mutex_exit(&connp->conn_lock); 1462 return; 1463 } 1464 1465 curr = ill_pending_mp_get(ill, &connp, 0); 1466 if (curr != NULL) { 1467 mutex_exit(&connp->conn_lock); 1468 CONN_DEC_REF(connp); 1469 inet_freemsg(curr); 1470 return; 1471 } 1472 /* 1473 * We may not be able to refhold the ill if the ill/ipif 1474 * is changing. But we need to make sure that the ill will 1475 * not vanish. So we just bump up the ill_waiter count. 1476 */ 1477 refheld = ill_waiter_inc(ill); 1478 mutex_exit(&connp->conn_lock); 1479 if (refheld) { 1480 if (ipsq_enter(ill, B_TRUE, NEW_OP)) { 1481 ill_waiter_dcr(ill); 1482 /* 1483 * Check whether this ioctl has started and is 1484 * pending. If it is not found there then check 1485 * whether this ioctl has not even started and is in 1486 * the ipsq_xopq list. 1487 */ 1488 if (!ipsq_pending_mp_cleanup(ill, connp)) 1489 ipsq_xopq_mp_cleanup(ill, connp); 1490 ipsq = ill->ill_phyint->phyint_ipsq; 1491 ipsq_exit(ipsq); 1492 return; 1493 } 1494 } 1495 1496 /* 1497 * The ill is also closing and we could not bump up the 1498 * ill_waiter_count or we could not enter the ipsq. Leave 1499 * the cleanup to ill_delete 1500 */ 1501 mutex_enter(&connp->conn_lock); 1502 while (connp->conn_oper_pending_ill != NULL) 1503 cv_wait(&connp->conn_refcv, &connp->conn_lock); 1504 mutex_exit(&connp->conn_lock); 1505 if (refheld) 1506 ill_waiter_dcr(ill); 1507 } 1508 1509 /* 1510 * ipcl_walk function for cleaning up conn_*_ill fields. 1511 */ 1512 static void 1513 conn_cleanup_ill(conn_t *connp, caddr_t arg) 1514 { 1515 ill_t *ill = (ill_t *)arg; 1516 ire_t *ire; 1517 1518 mutex_enter(&connp->conn_lock); 1519 if (connp->conn_multicast_ill == ill) { 1520 /* Revert to late binding */ 1521 connp->conn_multicast_ill = NULL; 1522 } 1523 if (connp->conn_incoming_ill == ill) 1524 connp->conn_incoming_ill = NULL; 1525 if (connp->conn_outgoing_ill == ill) 1526 connp->conn_outgoing_ill = NULL; 1527 if (connp->conn_dhcpinit_ill == ill) { 1528 connp->conn_dhcpinit_ill = NULL; 1529 ASSERT(ill->ill_dhcpinit != 0); 1530 atomic_dec_32(&ill->ill_dhcpinit); 1531 } 1532 if (connp->conn_ire_cache != NULL) { 1533 ire = connp->conn_ire_cache; 1534 /* 1535 * Source address selection makes it possible for IRE_CACHE 1536 * entries to be created with ire_stq coming from interface X 1537 * and ipif coming from interface Y. Thus whenever interface 1538 * X goes down, remove all references to it by checking both 1539 * on ire_ipif and ire_stq. 1540 */ 1541 if ((ire->ire_ipif != NULL && ire->ire_ipif->ipif_ill == ill) || 1542 (ire->ire_type == IRE_CACHE && 1543 ire->ire_stq == ill->ill_wq)) { 1544 connp->conn_ire_cache = NULL; 1545 mutex_exit(&connp->conn_lock); 1546 ire_refrele_notr(ire); 1547 return; 1548 } 1549 } 1550 mutex_exit(&connp->conn_lock); 1551 } 1552 1553 static void 1554 ill_down_ipifs_tail(ill_t *ill) 1555 { 1556 ipif_t *ipif; 1557 1558 ASSERT(IAM_WRITER_ILL(ill)); 1559 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 1560 ipif_non_duplicate(ipif); 1561 ipif_down_tail(ipif); 1562 } 1563 } 1564 1565 /* ARGSUSED */ 1566 void 1567 ipif_all_down_tail(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy_arg) 1568 { 1569 ASSERT(IAM_WRITER_IPSQ(ipsq)); 1570 ill_down_ipifs_tail(q->q_ptr); 1571 freemsg(mp); 1572 ipsq_current_finish(ipsq); 1573 } 1574 1575 /* 1576 * ill_down_start is called when we want to down this ill and bring it up again 1577 * It is called when we receive an M_ERROR / M_HANGUP. In this case we shut down 1578 * all interfaces, but don't tear down any plumbing. 1579 */ 1580 boolean_t 1581 ill_down_start(queue_t *q, mblk_t *mp) 1582 { 1583 ill_t *ill = q->q_ptr; 1584 ipif_t *ipif; 1585 1586 ASSERT(IAM_WRITER_ILL(ill)); 1587 1588 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) 1589 (void) ipif_down(ipif, NULL, NULL); 1590 1591 ill_down(ill); 1592 1593 (void) ipsq_pending_mp_cleanup(ill, NULL); 1594 1595 ipsq_current_start(ill->ill_phyint->phyint_ipsq, ill->ill_ipif, 0); 1596 1597 /* 1598 * Atomically test and add the pending mp if references are active. 1599 */ 1600 mutex_enter(&ill->ill_lock); 1601 if (!ill_is_quiescent(ill)) { 1602 /* call cannot fail since `conn_t *' argument is NULL */ 1603 (void) ipsq_pending_mp_add(NULL, ill->ill_ipif, ill->ill_rq, 1604 mp, ILL_DOWN); 1605 mutex_exit(&ill->ill_lock); 1606 return (B_FALSE); 1607 } 1608 mutex_exit(&ill->ill_lock); 1609 return (B_TRUE); 1610 } 1611 1612 static void 1613 ill_down(ill_t *ill) 1614 { 1615 ip_stack_t *ipst = ill->ill_ipst; 1616 1617 /* Blow off any IREs dependent on this ILL. */ 1618 ire_walk(ill_downi, ill, ipst); 1619 1620 /* Remove any conn_*_ill depending on this ill */ 1621 ipcl_walk(conn_cleanup_ill, (caddr_t)ill, ipst); 1622 } 1623 1624 /* 1625 * ire_walk routine used to delete every IRE that depends on queues 1626 * associated with 'ill'. (Always called as writer.) 1627 */ 1628 static void 1629 ill_downi(ire_t *ire, char *ill_arg) 1630 { 1631 ill_t *ill = (ill_t *)ill_arg; 1632 1633 /* 1634 * Source address selection makes it possible for IRE_CACHE 1635 * entries to be created with ire_stq coming from interface X 1636 * and ipif coming from interface Y. Thus whenever interface 1637 * X goes down, remove all references to it by checking both 1638 * on ire_ipif and ire_stq. 1639 */ 1640 if ((ire->ire_ipif != NULL && ire->ire_ipif->ipif_ill == ill) || 1641 (ire->ire_type == IRE_CACHE && ire->ire_stq == ill->ill_wq)) { 1642 ire_delete(ire); 1643 } 1644 } 1645 1646 /* 1647 * Remove ire/nce from the fastpath list. 1648 */ 1649 void 1650 ill_fastpath_nack(ill_t *ill) 1651 { 1652 nce_fastpath_list_dispatch(ill, NULL, NULL); 1653 } 1654 1655 /* Consume an M_IOCACK of the fastpath probe. */ 1656 void 1657 ill_fastpath_ack(ill_t *ill, mblk_t *mp) 1658 { 1659 mblk_t *mp1 = mp; 1660 1661 /* 1662 * If this was the first attempt turn on the fastpath probing. 1663 */ 1664 mutex_enter(&ill->ill_lock); 1665 if (ill->ill_dlpi_fastpath_state == IDS_INPROGRESS) 1666 ill->ill_dlpi_fastpath_state = IDS_OK; 1667 mutex_exit(&ill->ill_lock); 1668 1669 /* Free the M_IOCACK mblk, hold on to the data */ 1670 mp = mp->b_cont; 1671 freeb(mp1); 1672 if (mp == NULL) 1673 return; 1674 if (mp->b_cont != NULL) { 1675 /* 1676 * Update all IRE's or NCE's that are waiting for 1677 * fastpath update. 1678 */ 1679 nce_fastpath_list_dispatch(ill, ndp_fastpath_update, mp); 1680 mp1 = mp->b_cont; 1681 freeb(mp); 1682 mp = mp1; 1683 } else { 1684 ip0dbg(("ill_fastpath_ack: no b_cont\n")); 1685 } 1686 1687 freeb(mp); 1688 } 1689 1690 /* 1691 * Throw an M_IOCTL message downstream asking "do you know fastpath?" 1692 * The data portion of the request is a dl_unitdata_req_t template for 1693 * what we would send downstream in the absence of a fastpath confirmation. 1694 */ 1695 int 1696 ill_fastpath_probe(ill_t *ill, mblk_t *dlur_mp) 1697 { 1698 struct iocblk *ioc; 1699 mblk_t *mp; 1700 1701 if (dlur_mp == NULL) 1702 return (EINVAL); 1703 1704 mutex_enter(&ill->ill_lock); 1705 switch (ill->ill_dlpi_fastpath_state) { 1706 case IDS_FAILED: 1707 /* 1708 * Driver NAKed the first fastpath ioctl - assume it doesn't 1709 * support it. 1710 */ 1711 mutex_exit(&ill->ill_lock); 1712 return (ENOTSUP); 1713 case IDS_UNKNOWN: 1714 /* This is the first probe */ 1715 ill->ill_dlpi_fastpath_state = IDS_INPROGRESS; 1716 break; 1717 default: 1718 break; 1719 } 1720 mutex_exit(&ill->ill_lock); 1721 1722 if ((mp = mkiocb(DL_IOC_HDR_INFO)) == NULL) 1723 return (EAGAIN); 1724 1725 mp->b_cont = copyb(dlur_mp); 1726 if (mp->b_cont == NULL) { 1727 freeb(mp); 1728 return (EAGAIN); 1729 } 1730 1731 ioc = (struct iocblk *)mp->b_rptr; 1732 ioc->ioc_count = msgdsize(mp->b_cont); 1733 1734 putnext(ill->ill_wq, mp); 1735 return (0); 1736 } 1737 1738 void 1739 ill_capability_probe(ill_t *ill) 1740 { 1741 mblk_t *mp; 1742 1743 ASSERT(IAM_WRITER_ILL(ill)); 1744 1745 if (ill->ill_dlpi_capab_state != IDCS_UNKNOWN && 1746 ill->ill_dlpi_capab_state != IDCS_FAILED) 1747 return; 1748 1749 /* 1750 * We are starting a new cycle of capability negotiation. 1751 * Free up the capab reset messages of any previous incarnation. 1752 * We will do a fresh allocation when we get the response to our probe 1753 */ 1754 if (ill->ill_capab_reset_mp != NULL) { 1755 freemsg(ill->ill_capab_reset_mp); 1756 ill->ill_capab_reset_mp = NULL; 1757 } 1758 1759 ip1dbg(("ill_capability_probe: starting capability negotiation\n")); 1760 1761 mp = ip_dlpi_alloc(sizeof (dl_capability_req_t), DL_CAPABILITY_REQ); 1762 if (mp == NULL) 1763 return; 1764 1765 ill_capability_send(ill, mp); 1766 ill->ill_dlpi_capab_state = IDCS_PROBE_SENT; 1767 } 1768 1769 void 1770 ill_capability_reset(ill_t *ill, boolean_t reneg) 1771 { 1772 ASSERT(IAM_WRITER_ILL(ill)); 1773 1774 if (ill->ill_dlpi_capab_state != IDCS_OK) 1775 return; 1776 1777 ill->ill_dlpi_capab_state = reneg ? IDCS_RENEG : IDCS_RESET_SENT; 1778 1779 ill_capability_send(ill, ill->ill_capab_reset_mp); 1780 ill->ill_capab_reset_mp = NULL; 1781 /* 1782 * We turn off all capabilities except those pertaining to 1783 * direct function call capabilities viz. ILL_CAPAB_DLD* 1784 * which will be turned off by the corresponding reset functions. 1785 */ 1786 ill->ill_capabilities &= ~(ILL_CAPAB_MDT | ILL_CAPAB_HCKSUM | 1787 ILL_CAPAB_ZEROCOPY | ILL_CAPAB_AH | ILL_CAPAB_ESP); 1788 } 1789 1790 static void 1791 ill_capability_reset_alloc(ill_t *ill) 1792 { 1793 mblk_t *mp; 1794 size_t size = 0; 1795 int err; 1796 dl_capability_req_t *capb; 1797 1798 ASSERT(IAM_WRITER_ILL(ill)); 1799 ASSERT(ill->ill_capab_reset_mp == NULL); 1800 1801 if (ILL_MDT_CAPABLE(ill)) 1802 size += sizeof (dl_capability_sub_t) + sizeof (dl_capab_mdt_t); 1803 1804 if (ILL_HCKSUM_CAPABLE(ill)) { 1805 size += sizeof (dl_capability_sub_t) + 1806 sizeof (dl_capab_hcksum_t); 1807 } 1808 1809 if (ill->ill_capabilities & ILL_CAPAB_ZEROCOPY) { 1810 size += sizeof (dl_capability_sub_t) + 1811 sizeof (dl_capab_zerocopy_t); 1812 } 1813 1814 if (ill->ill_capabilities & (ILL_CAPAB_AH | ILL_CAPAB_ESP)) { 1815 size += sizeof (dl_capability_sub_t); 1816 size += ill_capability_ipsec_reset_size(ill, NULL, NULL, 1817 NULL, NULL); 1818 } 1819 1820 if (ill->ill_capabilities & ILL_CAPAB_DLD) { 1821 size += sizeof (dl_capability_sub_t) + 1822 sizeof (dl_capab_dld_t); 1823 } 1824 1825 mp = allocb_wait(size + sizeof (dl_capability_req_t), BPRI_MED, 1826 STR_NOSIG, &err); 1827 1828 mp->b_datap->db_type = M_PROTO; 1829 bzero(mp->b_rptr, size + sizeof (dl_capability_req_t)); 1830 1831 capb = (dl_capability_req_t *)mp->b_rptr; 1832 capb->dl_primitive = DL_CAPABILITY_REQ; 1833 capb->dl_sub_offset = sizeof (dl_capability_req_t); 1834 capb->dl_sub_length = size; 1835 1836 mp->b_wptr += sizeof (dl_capability_req_t); 1837 1838 /* 1839 * Each handler fills in the corresponding dl_capability_sub_t 1840 * inside the mblk, 1841 */ 1842 ill_capability_mdt_reset_fill(ill, mp); 1843 ill_capability_hcksum_reset_fill(ill, mp); 1844 ill_capability_zerocopy_reset_fill(ill, mp); 1845 ill_capability_ipsec_reset_fill(ill, mp); 1846 ill_capability_dld_reset_fill(ill, mp); 1847 1848 ill->ill_capab_reset_mp = mp; 1849 } 1850 1851 static void 1852 ill_capability_id_ack(ill_t *ill, mblk_t *mp, dl_capability_sub_t *outers) 1853 { 1854 dl_capab_id_t *id_ic; 1855 uint_t sub_dl_cap = outers->dl_cap; 1856 dl_capability_sub_t *inners; 1857 uint8_t *capend; 1858 1859 ASSERT(sub_dl_cap == DL_CAPAB_ID_WRAPPER); 1860 1861 /* 1862 * Note: range checks here are not absolutely sufficient to 1863 * make us robust against malformed messages sent by drivers; 1864 * this is in keeping with the rest of IP's dlpi handling. 1865 * (Remember, it's coming from something else in the kernel 1866 * address space) 1867 */ 1868 1869 capend = (uint8_t *)(outers + 1) + outers->dl_length; 1870 if (capend > mp->b_wptr) { 1871 cmn_err(CE_WARN, "ill_capability_id_ack: " 1872 "malformed sub-capability too long for mblk"); 1873 return; 1874 } 1875 1876 id_ic = (dl_capab_id_t *)(outers + 1); 1877 1878 if (outers->dl_length < sizeof (*id_ic) || 1879 (inners = &id_ic->id_subcap, 1880 inners->dl_length > (outers->dl_length - sizeof (*inners)))) { 1881 cmn_err(CE_WARN, "ill_capability_id_ack: malformed " 1882 "encapsulated capab type %d too long for mblk", 1883 inners->dl_cap); 1884 return; 1885 } 1886 1887 if (!dlcapabcheckqid(&id_ic->id_mid, ill->ill_lmod_rq)) { 1888 ip1dbg(("ill_capability_id_ack: mid token for capab type %d " 1889 "isn't as expected; pass-thru module(s) detected, " 1890 "discarding capability\n", inners->dl_cap)); 1891 return; 1892 } 1893 1894 /* Process the encapsulated sub-capability */ 1895 ill_capability_dispatch(ill, mp, inners, B_TRUE); 1896 } 1897 1898 /* 1899 * Process Multidata Transmit capability negotiation ack received from a 1900 * DLS Provider. isub must point to the sub-capability (DL_CAPAB_MDT) of a 1901 * DL_CAPABILITY_ACK message. 1902 */ 1903 static void 1904 ill_capability_mdt_ack(ill_t *ill, mblk_t *mp, dl_capability_sub_t *isub) 1905 { 1906 mblk_t *nmp = NULL; 1907 dl_capability_req_t *oc; 1908 dl_capab_mdt_t *mdt_ic, *mdt_oc; 1909 ill_mdt_capab_t **ill_mdt_capab; 1910 uint_t sub_dl_cap = isub->dl_cap; 1911 uint8_t *capend; 1912 1913 ASSERT(sub_dl_cap == DL_CAPAB_MDT); 1914 1915 ill_mdt_capab = (ill_mdt_capab_t **)&ill->ill_mdt_capab; 1916 1917 /* 1918 * Note: range checks here are not absolutely sufficient to 1919 * make us robust against malformed messages sent by drivers; 1920 * this is in keeping with the rest of IP's dlpi handling. 1921 * (Remember, it's coming from something else in the kernel 1922 * address space) 1923 */ 1924 1925 capend = (uint8_t *)(isub + 1) + isub->dl_length; 1926 if (capend > mp->b_wptr) { 1927 cmn_err(CE_WARN, "ill_capability_mdt_ack: " 1928 "malformed sub-capability too long for mblk"); 1929 return; 1930 } 1931 1932 mdt_ic = (dl_capab_mdt_t *)(isub + 1); 1933 1934 if (mdt_ic->mdt_version != MDT_VERSION_2) { 1935 cmn_err(CE_CONT, "ill_capability_mdt_ack: " 1936 "unsupported MDT sub-capability (version %d, expected %d)", 1937 mdt_ic->mdt_version, MDT_VERSION_2); 1938 return; 1939 } 1940 1941 if (!dlcapabcheckqid(&mdt_ic->mdt_mid, ill->ill_lmod_rq)) { 1942 ip1dbg(("ill_capability_mdt_ack: mid token for MDT " 1943 "capability isn't as expected; pass-thru module(s) " 1944 "detected, discarding capability\n")); 1945 return; 1946 } 1947 1948 if (mdt_ic->mdt_flags & DL_CAPAB_MDT_ENABLE) { 1949 1950 if (*ill_mdt_capab == NULL) { 1951 *ill_mdt_capab = kmem_zalloc(sizeof (ill_mdt_capab_t), 1952 KM_NOSLEEP); 1953 if (*ill_mdt_capab == NULL) { 1954 cmn_err(CE_WARN, "ill_capability_mdt_ack: " 1955 "could not enable MDT version %d " 1956 "for %s (ENOMEM)\n", MDT_VERSION_2, 1957 ill->ill_name); 1958 return; 1959 } 1960 } 1961 1962 ip1dbg(("ill_capability_mdt_ack: interface %s supports " 1963 "MDT version %d (%d bytes leading, %d bytes trailing " 1964 "header spaces, %d max pld bufs, %d span limit)\n", 1965 ill->ill_name, MDT_VERSION_2, 1966 mdt_ic->mdt_hdr_head, mdt_ic->mdt_hdr_tail, 1967 mdt_ic->mdt_max_pld, mdt_ic->mdt_span_limit)); 1968 1969 (*ill_mdt_capab)->ill_mdt_version = MDT_VERSION_2; 1970 (*ill_mdt_capab)->ill_mdt_on = 1; 1971 /* 1972 * Round the following values to the nearest 32-bit; ULP 1973 * may further adjust them to accomodate for additional 1974 * protocol headers. We pass these values to ULP during 1975 * bind time. 1976 */ 1977 (*ill_mdt_capab)->ill_mdt_hdr_head = 1978 roundup(mdt_ic->mdt_hdr_head, 4); 1979 (*ill_mdt_capab)->ill_mdt_hdr_tail = 1980 roundup(mdt_ic->mdt_hdr_tail, 4); 1981 (*ill_mdt_capab)->ill_mdt_max_pld = mdt_ic->mdt_max_pld; 1982 (*ill_mdt_capab)->ill_mdt_span_limit = mdt_ic->mdt_span_limit; 1983 1984 ill->ill_capabilities |= ILL_CAPAB_MDT; 1985 } else { 1986 uint_t size; 1987 uchar_t *rptr; 1988 1989 size = sizeof (dl_capability_req_t) + 1990 sizeof (dl_capability_sub_t) + sizeof (dl_capab_mdt_t); 1991 1992 if ((nmp = ip_dlpi_alloc(size, DL_CAPABILITY_REQ)) == NULL) { 1993 cmn_err(CE_WARN, "ill_capability_mdt_ack: " 1994 "could not enable MDT for %s (ENOMEM)\n", 1995 ill->ill_name); 1996 return; 1997 } 1998 1999 rptr = nmp->b_rptr; 2000 /* initialize dl_capability_req_t */ 2001 oc = (dl_capability_req_t *)nmp->b_rptr; 2002 oc->dl_sub_offset = sizeof (dl_capability_req_t); 2003 oc->dl_sub_length = sizeof (dl_capability_sub_t) + 2004 sizeof (dl_capab_mdt_t); 2005 nmp->b_rptr += sizeof (dl_capability_req_t); 2006 2007 /* initialize dl_capability_sub_t */ 2008 bcopy(isub, nmp->b_rptr, sizeof (*isub)); 2009 nmp->b_rptr += sizeof (*isub); 2010 2011 /* initialize dl_capab_mdt_t */ 2012 mdt_oc = (dl_capab_mdt_t *)nmp->b_rptr; 2013 bcopy(mdt_ic, mdt_oc, sizeof (*mdt_ic)); 2014 2015 nmp->b_rptr = rptr; 2016 2017 ip1dbg(("ill_capability_mdt_ack: asking interface %s " 2018 "to enable MDT version %d\n", ill->ill_name, 2019 MDT_VERSION_2)); 2020 2021 /* set ENABLE flag */ 2022 mdt_oc->mdt_flags |= DL_CAPAB_MDT_ENABLE; 2023 2024 /* nmp points to a DL_CAPABILITY_REQ message to enable MDT */ 2025 ill_capability_send(ill, nmp); 2026 } 2027 } 2028 2029 static void 2030 ill_capability_mdt_reset_fill(ill_t *ill, mblk_t *mp) 2031 { 2032 dl_capab_mdt_t *mdt_subcap; 2033 dl_capability_sub_t *dl_subcap; 2034 2035 if (!ILL_MDT_CAPABLE(ill)) 2036 return; 2037 2038 ASSERT(ill->ill_mdt_capab != NULL); 2039 2040 dl_subcap = (dl_capability_sub_t *)mp->b_wptr; 2041 dl_subcap->dl_cap = DL_CAPAB_MDT; 2042 dl_subcap->dl_length = sizeof (*mdt_subcap); 2043 2044 mdt_subcap = (dl_capab_mdt_t *)(dl_subcap + 1); 2045 mdt_subcap->mdt_version = ill->ill_mdt_capab->ill_mdt_version; 2046 mdt_subcap->mdt_flags = 0; 2047 mdt_subcap->mdt_hdr_head = 0; 2048 mdt_subcap->mdt_hdr_tail = 0; 2049 2050 mp->b_wptr += sizeof (*dl_subcap) + sizeof (*mdt_subcap); 2051 } 2052 2053 static void 2054 ill_capability_dld_reset_fill(ill_t *ill, mblk_t *mp) 2055 { 2056 dl_capability_sub_t *dl_subcap; 2057 2058 if (!(ill->ill_capabilities & ILL_CAPAB_DLD)) 2059 return; 2060 2061 /* 2062 * The dl_capab_dld_t that follows the dl_capability_sub_t is not 2063 * initialized below since it is not used by DLD. 2064 */ 2065 dl_subcap = (dl_capability_sub_t *)mp->b_wptr; 2066 dl_subcap->dl_cap = DL_CAPAB_DLD; 2067 dl_subcap->dl_length = sizeof (dl_capab_dld_t); 2068 2069 mp->b_wptr += sizeof (dl_capability_sub_t) + sizeof (dl_capab_dld_t); 2070 } 2071 2072 /* 2073 * Allocate an IPsec capability request which will be filled by our 2074 * caller to turn on support for one or more algorithms. 2075 */ 2076 /* ARGSUSED */ 2077 static mblk_t * 2078 ill_alloc_ipsec_cap_req(ill_t *ill, dl_capability_sub_t *isub) 2079 { 2080 mblk_t *nmp; 2081 dl_capability_req_t *ocap; 2082 dl_capab_ipsec_t *ocip; 2083 dl_capab_ipsec_t *icip; 2084 uint8_t *ptr; 2085 icip = (dl_capab_ipsec_t *)(isub + 1); 2086 2087 /* 2088 * Allocate new mblk which will contain a new capability 2089 * request to enable the capabilities. 2090 */ 2091 2092 nmp = ip_dlpi_alloc(sizeof (dl_capability_req_t) + 2093 sizeof (dl_capability_sub_t) + isub->dl_length, DL_CAPABILITY_REQ); 2094 if (nmp == NULL) 2095 return (NULL); 2096 2097 ptr = nmp->b_rptr; 2098 2099 /* initialize dl_capability_req_t */ 2100 ocap = (dl_capability_req_t *)ptr; 2101 ocap->dl_sub_offset = sizeof (dl_capability_req_t); 2102 ocap->dl_sub_length = sizeof (dl_capability_sub_t) + isub->dl_length; 2103 ptr += sizeof (dl_capability_req_t); 2104 2105 /* initialize dl_capability_sub_t */ 2106 bcopy(isub, ptr, sizeof (*isub)); 2107 ptr += sizeof (*isub); 2108 2109 /* initialize dl_capab_ipsec_t */ 2110 ocip = (dl_capab_ipsec_t *)ptr; 2111 bcopy(icip, ocip, sizeof (*icip)); 2112 2113 nmp->b_wptr = (uchar_t *)(&ocip->cip_data[0]); 2114 return (nmp); 2115 } 2116 2117 /* 2118 * Process an IPsec capability negotiation ack received from a DLS Provider. 2119 * isub must point to the sub-capability (DL_CAPAB_IPSEC_AH or 2120 * DL_CAPAB_IPSEC_ESP) of a DL_CAPABILITY_ACK message. 2121 */ 2122 static void 2123 ill_capability_ipsec_ack(ill_t *ill, mblk_t *mp, dl_capability_sub_t *isub) 2124 { 2125 dl_capab_ipsec_t *icip; 2126 dl_capab_ipsec_alg_t *ialg; /* ptr to input alg spec. */ 2127 dl_capab_ipsec_alg_t *oalg; /* ptr to output alg spec. */ 2128 uint_t cipher, nciphers; 2129 mblk_t *nmp; 2130 uint_t alg_len; 2131 boolean_t need_sadb_dump; 2132 uint_t sub_dl_cap = isub->dl_cap; 2133 ill_ipsec_capab_t **ill_capab; 2134 uint64_t ill_capab_flag; 2135 uint8_t *capend, *ciphend; 2136 boolean_t sadb_resync; 2137 2138 ASSERT(sub_dl_cap == DL_CAPAB_IPSEC_AH || 2139 sub_dl_cap == DL_CAPAB_IPSEC_ESP); 2140 2141 if (sub_dl_cap == DL_CAPAB_IPSEC_AH) { 2142 ill_capab = (ill_ipsec_capab_t **)&ill->ill_ipsec_capab_ah; 2143 ill_capab_flag = ILL_CAPAB_AH; 2144 } else { 2145 ill_capab = (ill_ipsec_capab_t **)&ill->ill_ipsec_capab_esp; 2146 ill_capab_flag = ILL_CAPAB_ESP; 2147 } 2148 2149 /* 2150 * If the ill capability structure exists, then this incoming 2151 * DL_CAPABILITY_ACK is a response to a "renegotiation" cycle. 2152 * If this is so, then we'd need to resynchronize the SADB 2153 * after re-enabling the offloaded ciphers. 2154 */ 2155 sadb_resync = (*ill_capab != NULL); 2156 2157 /* 2158 * Note: range checks here are not absolutely sufficient to 2159 * make us robust against malformed messages sent by drivers; 2160 * this is in keeping with the rest of IP's dlpi handling. 2161 * (Remember, it's coming from something else in the kernel 2162 * address space) 2163 */ 2164 2165 capend = (uint8_t *)(isub + 1) + isub->dl_length; 2166 if (capend > mp->b_wptr) { 2167 cmn_err(CE_WARN, "ill_capability_ipsec_ack: " 2168 "malformed sub-capability too long for mblk"); 2169 return; 2170 } 2171 2172 /* 2173 * There are two types of acks we process here: 2174 * 1. acks in reply to a (first form) generic capability req 2175 * (no ENABLE flag set) 2176 * 2. acks in reply to a ENABLE capability req. 2177 * (ENABLE flag set) 2178 * 2179 * We process the subcapability passed as argument as follows: 2180 * 1 do initializations 2181 * 1.1 initialize nmp = NULL 2182 * 1.2 set need_sadb_dump to B_FALSE 2183 * 2 for each cipher in subcapability: 2184 * 2.1 if ENABLE flag is set: 2185 * 2.1.1 update per-ill ipsec capabilities info 2186 * 2.1.2 set need_sadb_dump to B_TRUE 2187 * 2.2 if ENABLE flag is not set: 2188 * 2.2.1 if nmp is NULL: 2189 * 2.2.1.1 allocate and initialize nmp 2190 * 2.2.1.2 init current pos in nmp 2191 * 2.2.2 copy current cipher to current pos in nmp 2192 * 2.2.3 set ENABLE flag in nmp 2193 * 2.2.4 update current pos 2194 * 3 if nmp is not equal to NULL, send enable request 2195 * 3.1 send capability request 2196 * 4 if need_sadb_dump is B_TRUE 2197 * 4.1 enable promiscuous on/off notifications 2198 * 4.2 call ill_dlpi_send(isub->dlcap) to send all 2199 * AH or ESP SA's to interface. 2200 */ 2201 2202 nmp = NULL; 2203 oalg = NULL; 2204 need_sadb_dump = B_FALSE; 2205 icip = (dl_capab_ipsec_t *)(isub + 1); 2206 ialg = (dl_capab_ipsec_alg_t *)(&icip->cip_data[0]); 2207 2208 nciphers = icip->cip_nciphers; 2209 ciphend = (uint8_t *)(ialg + icip->cip_nciphers); 2210 2211 if (ciphend > capend) { 2212 cmn_err(CE_WARN, "ill_capability_ipsec_ack: " 2213 "too many ciphers for sub-capability len"); 2214 return; 2215 } 2216 2217 for (cipher = 0; cipher < nciphers; cipher++) { 2218 alg_len = sizeof (dl_capab_ipsec_alg_t); 2219 2220 if (ialg->alg_flag & DL_CAPAB_ALG_ENABLE) { 2221 /* 2222 * TBD: when we provide a way to disable capabilities 2223 * from above, need to manage the request-pending state 2224 * and fail if we were not expecting this ACK. 2225 */ 2226 IPSECHW_DEBUG(IPSECHW_CAPAB, 2227 ("ill_capability_ipsec_ack: got ENABLE ACK\n")); 2228 2229 /* 2230 * Update IPsec capabilities for this ill 2231 */ 2232 2233 if (*ill_capab == NULL) { 2234 IPSECHW_DEBUG(IPSECHW_CAPAB, 2235 ("ill_capability_ipsec_ack: " 2236 "allocating ipsec_capab for ill\n")); 2237 *ill_capab = ill_ipsec_capab_alloc(); 2238 2239 if (*ill_capab == NULL) { 2240 cmn_err(CE_WARN, 2241 "ill_capability_ipsec_ack: " 2242 "could not enable IPsec Hardware " 2243 "acceleration for %s (ENOMEM)\n", 2244 ill->ill_name); 2245 return; 2246 } 2247 } 2248 2249 ASSERT(ialg->alg_type == DL_CAPAB_IPSEC_ALG_AUTH || 2250 ialg->alg_type == DL_CAPAB_IPSEC_ALG_ENCR); 2251 2252 if (ialg->alg_prim >= MAX_IPSEC_ALGS) { 2253 cmn_err(CE_WARN, 2254 "ill_capability_ipsec_ack: " 2255 "malformed IPsec algorithm id %d", 2256 ialg->alg_prim); 2257 continue; 2258 } 2259 2260 if (ialg->alg_type == DL_CAPAB_IPSEC_ALG_AUTH) { 2261 IPSEC_ALG_ENABLE((*ill_capab)->auth_hw_algs, 2262 ialg->alg_prim); 2263 } else { 2264 ipsec_capab_algparm_t *alp; 2265 2266 IPSEC_ALG_ENABLE((*ill_capab)->encr_hw_algs, 2267 ialg->alg_prim); 2268 if (!ill_ipsec_capab_resize_algparm(*ill_capab, 2269 ialg->alg_prim)) { 2270 cmn_err(CE_WARN, 2271 "ill_capability_ipsec_ack: " 2272 "no space for IPsec alg id %d", 2273 ialg->alg_prim); 2274 continue; 2275 } 2276 alp = &((*ill_capab)->encr_algparm[ 2277 ialg->alg_prim]); 2278 alp->minkeylen = ialg->alg_minbits; 2279 alp->maxkeylen = ialg->alg_maxbits; 2280 } 2281 ill->ill_capabilities |= ill_capab_flag; 2282 /* 2283 * indicate that a capability was enabled, which 2284 * will be used below to kick off a SADB dump 2285 * to the ill. 2286 */ 2287 need_sadb_dump = B_TRUE; 2288 } else { 2289 IPSECHW_DEBUG(IPSECHW_CAPAB, 2290 ("ill_capability_ipsec_ack: enabling alg 0x%x\n", 2291 ialg->alg_prim)); 2292 2293 if (nmp == NULL) { 2294 nmp = ill_alloc_ipsec_cap_req(ill, isub); 2295 if (nmp == NULL) { 2296 /* 2297 * Sending the PROMISC_ON/OFF 2298 * notification request failed. 2299 * We cannot enable the algorithms 2300 * since the Provider will not 2301 * notify IP of promiscous mode 2302 * changes, which could lead 2303 * to leakage of packets. 2304 */ 2305 cmn_err(CE_WARN, 2306 "ill_capability_ipsec_ack: " 2307 "could not enable IPsec Hardware " 2308 "acceleration for %s (ENOMEM)\n", 2309 ill->ill_name); 2310 return; 2311 } 2312 /* ptr to current output alg specifier */ 2313 oalg = (dl_capab_ipsec_alg_t *)nmp->b_wptr; 2314 } 2315 2316 /* 2317 * Copy current alg specifier, set ENABLE 2318 * flag, and advance to next output alg. 2319 * For now we enable all IPsec capabilities. 2320 */ 2321 ASSERT(oalg != NULL); 2322 bcopy(ialg, oalg, alg_len); 2323 oalg->alg_flag |= DL_CAPAB_ALG_ENABLE; 2324 nmp->b_wptr += alg_len; 2325 oalg = (dl_capab_ipsec_alg_t *)nmp->b_wptr; 2326 } 2327 2328 /* move to next input algorithm specifier */ 2329 ialg = (dl_capab_ipsec_alg_t *) 2330 ((char *)ialg + alg_len); 2331 } 2332 2333 if (nmp != NULL) 2334 /* 2335 * nmp points to a DL_CAPABILITY_REQ message to enable 2336 * IPsec hardware acceleration. 2337 */ 2338 ill_capability_send(ill, nmp); 2339 2340 if (need_sadb_dump) 2341 /* 2342 * An acknowledgement corresponding to a request to 2343 * enable acceleration was received, notify SADB. 2344 */ 2345 ill_ipsec_capab_add(ill, sub_dl_cap, sadb_resync); 2346 } 2347 2348 /* 2349 * Given an mblk with enough space in it, create sub-capability entries for 2350 * DL_CAPAB_IPSEC_{AH,ESP} types which consist of previously-advertised 2351 * offloaded ciphers (both AUTH and ENCR) with their enable flags cleared, 2352 * in preparation for the reset the DL_CAPABILITY_REQ message. 2353 */ 2354 static void 2355 ill_fill_ipsec_reset(uint_t nciphers, int stype, uint_t slen, 2356 ill_ipsec_capab_t *ill_cap, mblk_t *mp) 2357 { 2358 dl_capab_ipsec_t *oipsec; 2359 dl_capab_ipsec_alg_t *oalg; 2360 dl_capability_sub_t *dl_subcap; 2361 int i, k; 2362 2363 ASSERT(nciphers > 0); 2364 ASSERT(ill_cap != NULL); 2365 ASSERT(mp != NULL); 2366 ASSERT(MBLKTAIL(mp) >= sizeof (*dl_subcap) + sizeof (*oipsec) + slen); 2367 2368 /* dl_capability_sub_t for "stype" */ 2369 dl_subcap = (dl_capability_sub_t *)mp->b_wptr; 2370 dl_subcap->dl_cap = stype; 2371 dl_subcap->dl_length = sizeof (dl_capab_ipsec_t) + slen; 2372 mp->b_wptr += sizeof (dl_capability_sub_t); 2373 2374 /* dl_capab_ipsec_t for "stype" */ 2375 oipsec = (dl_capab_ipsec_t *)mp->b_wptr; 2376 oipsec->cip_version = 1; 2377 oipsec->cip_nciphers = nciphers; 2378 mp->b_wptr = (uchar_t *)&oipsec->cip_data[0]; 2379 2380 /* create entries for "stype" AUTH ciphers */ 2381 for (i = 0; i < ill_cap->algs_size; i++) { 2382 for (k = 0; k < BITSPERBYTE; k++) { 2383 if ((ill_cap->auth_hw_algs[i] & (1 << k)) == 0) 2384 continue; 2385 2386 oalg = (dl_capab_ipsec_alg_t *)mp->b_wptr; 2387 bzero((void *)oalg, sizeof (*oalg)); 2388 oalg->alg_type = DL_CAPAB_IPSEC_ALG_AUTH; 2389 oalg->alg_prim = k + (BITSPERBYTE * i); 2390 mp->b_wptr += sizeof (dl_capab_ipsec_alg_t); 2391 } 2392 } 2393 /* create entries for "stype" ENCR ciphers */ 2394 for (i = 0; i < ill_cap->algs_size; i++) { 2395 for (k = 0; k < BITSPERBYTE; k++) { 2396 if ((ill_cap->encr_hw_algs[i] & (1 << k)) == 0) 2397 continue; 2398 2399 oalg = (dl_capab_ipsec_alg_t *)mp->b_wptr; 2400 bzero((void *)oalg, sizeof (*oalg)); 2401 oalg->alg_type = DL_CAPAB_IPSEC_ALG_ENCR; 2402 oalg->alg_prim = k + (BITSPERBYTE * i); 2403 mp->b_wptr += sizeof (dl_capab_ipsec_alg_t); 2404 } 2405 } 2406 } 2407 2408 /* 2409 * Macro to count number of 1s in a byte (8-bit word). The total count is 2410 * accumulated into the passed-in argument (sum). We could use SPARCv9's 2411 * POPC instruction, but our macro is more flexible for an arbitrary length 2412 * of bytes, such as {auth,encr}_hw_algs. These variables are currently 2413 * 256-bits long (MAX_IPSEC_ALGS), so if we know for sure that the length 2414 * stays that way, we can reduce the number of iterations required. 2415 */ 2416 #define COUNT_1S(val, sum) { \ 2417 uint8_t x = val & 0xff; \ 2418 x = (x & 0x55) + ((x >> 1) & 0x55); \ 2419 x = (x & 0x33) + ((x >> 2) & 0x33); \ 2420 sum += (x & 0xf) + ((x >> 4) & 0xf); \ 2421 } 2422 2423 /* ARGSUSED */ 2424 static int 2425 ill_capability_ipsec_reset_size(ill_t *ill, int *ah_cntp, int *ah_lenp, 2426 int *esp_cntp, int *esp_lenp) 2427 { 2428 ill_ipsec_capab_t *cap_ah = ill->ill_ipsec_capab_ah; 2429 ill_ipsec_capab_t *cap_esp = ill->ill_ipsec_capab_esp; 2430 uint64_t ill_capabilities = ill->ill_capabilities; 2431 int ah_cnt = 0, esp_cnt = 0; 2432 int ah_len = 0, esp_len = 0; 2433 int i, size = 0; 2434 2435 if (!(ill_capabilities & (ILL_CAPAB_AH | ILL_CAPAB_ESP))) 2436 return (0); 2437 2438 ASSERT(cap_ah != NULL || !(ill_capabilities & ILL_CAPAB_AH)); 2439 ASSERT(cap_esp != NULL || !(ill_capabilities & ILL_CAPAB_ESP)); 2440 2441 /* Find out the number of ciphers for AH */ 2442 if (cap_ah != NULL) { 2443 for (i = 0; i < cap_ah->algs_size; i++) { 2444 COUNT_1S(cap_ah->auth_hw_algs[i], ah_cnt); 2445 COUNT_1S(cap_ah->encr_hw_algs[i], ah_cnt); 2446 } 2447 if (ah_cnt > 0) { 2448 size += sizeof (dl_capability_sub_t) + 2449 sizeof (dl_capab_ipsec_t); 2450 /* dl_capab_ipsec_t contains one dl_capab_ipsec_alg_t */ 2451 ah_len = (ah_cnt - 1) * sizeof (dl_capab_ipsec_alg_t); 2452 size += ah_len; 2453 } 2454 } 2455 2456 /* Find out the number of ciphers for ESP */ 2457 if (cap_esp != NULL) { 2458 for (i = 0; i < cap_esp->algs_size; i++) { 2459 COUNT_1S(cap_esp->auth_hw_algs[i], esp_cnt); 2460 COUNT_1S(cap_esp->encr_hw_algs[i], esp_cnt); 2461 } 2462 if (esp_cnt > 0) { 2463 size += sizeof (dl_capability_sub_t) + 2464 sizeof (dl_capab_ipsec_t); 2465 /* dl_capab_ipsec_t contains one dl_capab_ipsec_alg_t */ 2466 esp_len = (esp_cnt - 1) * sizeof (dl_capab_ipsec_alg_t); 2467 size += esp_len; 2468 } 2469 } 2470 2471 if (ah_cntp != NULL) 2472 *ah_cntp = ah_cnt; 2473 if (ah_lenp != NULL) 2474 *ah_lenp = ah_len; 2475 if (esp_cntp != NULL) 2476 *esp_cntp = esp_cnt; 2477 if (esp_lenp != NULL) 2478 *esp_lenp = esp_len; 2479 2480 return (size); 2481 } 2482 2483 /* ARGSUSED */ 2484 static void 2485 ill_capability_ipsec_reset_fill(ill_t *ill, mblk_t *mp) 2486 { 2487 ill_ipsec_capab_t *cap_ah = ill->ill_ipsec_capab_ah; 2488 ill_ipsec_capab_t *cap_esp = ill->ill_ipsec_capab_esp; 2489 int ah_cnt = 0, esp_cnt = 0; 2490 int ah_len = 0, esp_len = 0; 2491 int size; 2492 2493 size = ill_capability_ipsec_reset_size(ill, &ah_cnt, &ah_len, 2494 &esp_cnt, &esp_len); 2495 if (size == 0) 2496 return; 2497 2498 /* 2499 * Clear the capability flags for IPsec HA but retain the ill 2500 * capability structures since it's possible that another thread 2501 * is still referring to them. The structures only get deallocated 2502 * when we destroy the ill. 2503 * 2504 * Various places check the flags to see if the ill is capable of 2505 * hardware acceleration, and by clearing them we ensure that new 2506 * outbound IPsec packets are sent down encrypted. 2507 */ 2508 2509 /* Fill in DL_CAPAB_IPSEC_AH sub-capability entries */ 2510 if (ah_cnt > 0) { 2511 ill_fill_ipsec_reset(ah_cnt, DL_CAPAB_IPSEC_AH, ah_len, 2512 cap_ah, mp); 2513 } 2514 2515 /* Fill in DL_CAPAB_IPSEC_ESP sub-capability entries */ 2516 if (esp_cnt > 0) { 2517 ill_fill_ipsec_reset(esp_cnt, DL_CAPAB_IPSEC_ESP, esp_len, 2518 cap_esp, mp); 2519 } 2520 2521 /* 2522 * At this point we've composed a bunch of sub-capabilities to be 2523 * encapsulated in a DL_CAPABILITY_REQ and later sent downstream 2524 * by the caller. Upon receiving this reset message, the driver 2525 * must stop inbound decryption (by destroying all inbound SAs) 2526 * and let the corresponding packets come in encrypted. 2527 */ 2528 } 2529 2530 static void 2531 ill_capability_dispatch(ill_t *ill, mblk_t *mp, dl_capability_sub_t *subp, 2532 boolean_t encapsulated) 2533 { 2534 boolean_t legacy = B_FALSE; 2535 2536 /* 2537 * Note that only the following two sub-capabilities may be 2538 * considered as "legacy", since their original definitions 2539 * do not incorporate the dl_mid_t module ID token, and hence 2540 * may require the use of the wrapper sub-capability. 2541 */ 2542 switch (subp->dl_cap) { 2543 case DL_CAPAB_IPSEC_AH: 2544 case DL_CAPAB_IPSEC_ESP: 2545 legacy = B_TRUE; 2546 break; 2547 } 2548 2549 /* 2550 * For legacy sub-capabilities which don't incorporate a queue_t 2551 * pointer in their structures, discard them if we detect that 2552 * there are intermediate modules in between IP and the driver. 2553 */ 2554 if (!encapsulated && legacy && ill->ill_lmod_cnt > 1) { 2555 ip1dbg(("ill_capability_dispatch: unencapsulated capab type " 2556 "%d discarded; %d module(s) present below IP\n", 2557 subp->dl_cap, ill->ill_lmod_cnt)); 2558 return; 2559 } 2560 2561 switch (subp->dl_cap) { 2562 case DL_CAPAB_IPSEC_AH: 2563 case DL_CAPAB_IPSEC_ESP: 2564 ill_capability_ipsec_ack(ill, mp, subp); 2565 break; 2566 case DL_CAPAB_MDT: 2567 ill_capability_mdt_ack(ill, mp, subp); 2568 break; 2569 case DL_CAPAB_HCKSUM: 2570 ill_capability_hcksum_ack(ill, mp, subp); 2571 break; 2572 case DL_CAPAB_ZEROCOPY: 2573 ill_capability_zerocopy_ack(ill, mp, subp); 2574 break; 2575 case DL_CAPAB_DLD: 2576 ill_capability_dld_ack(ill, mp, subp); 2577 break; 2578 default: 2579 ip1dbg(("ill_capability_dispatch: unknown capab type %d\n", 2580 subp->dl_cap)); 2581 } 2582 } 2583 2584 /* 2585 * Process a hardware checksum offload capability negotiation ack received 2586 * from a DLS Provider.isub must point to the sub-capability (DL_CAPAB_HCKSUM) 2587 * of a DL_CAPABILITY_ACK message. 2588 */ 2589 static void 2590 ill_capability_hcksum_ack(ill_t *ill, mblk_t *mp, dl_capability_sub_t *isub) 2591 { 2592 dl_capability_req_t *ocap; 2593 dl_capab_hcksum_t *ihck, *ohck; 2594 ill_hcksum_capab_t **ill_hcksum; 2595 mblk_t *nmp = NULL; 2596 uint_t sub_dl_cap = isub->dl_cap; 2597 uint8_t *capend; 2598 2599 ASSERT(sub_dl_cap == DL_CAPAB_HCKSUM); 2600 2601 ill_hcksum = (ill_hcksum_capab_t **)&ill->ill_hcksum_capab; 2602 2603 /* 2604 * Note: range checks here are not absolutely sufficient to 2605 * make us robust against malformed messages sent by drivers; 2606 * this is in keeping with the rest of IP's dlpi handling. 2607 * (Remember, it's coming from something else in the kernel 2608 * address space) 2609 */ 2610 capend = (uint8_t *)(isub + 1) + isub->dl_length; 2611 if (capend > mp->b_wptr) { 2612 cmn_err(CE_WARN, "ill_capability_hcksum_ack: " 2613 "malformed sub-capability too long for mblk"); 2614 return; 2615 } 2616 2617 /* 2618 * There are two types of acks we process here: 2619 * 1. acks in reply to a (first form) generic capability req 2620 * (no ENABLE flag set) 2621 * 2. acks in reply to a ENABLE capability req. 2622 * (ENABLE flag set) 2623 */ 2624 ihck = (dl_capab_hcksum_t *)(isub + 1); 2625 2626 if (ihck->hcksum_version != HCKSUM_VERSION_1) { 2627 cmn_err(CE_CONT, "ill_capability_hcksum_ack: " 2628 "unsupported hardware checksum " 2629 "sub-capability (version %d, expected %d)", 2630 ihck->hcksum_version, HCKSUM_VERSION_1); 2631 return; 2632 } 2633 2634 if (!dlcapabcheckqid(&ihck->hcksum_mid, ill->ill_lmod_rq)) { 2635 ip1dbg(("ill_capability_hcksum_ack: mid token for hardware " 2636 "checksum capability isn't as expected; pass-thru " 2637 "module(s) detected, discarding capability\n")); 2638 return; 2639 } 2640 2641 #define CURR_HCKSUM_CAPAB \ 2642 (HCKSUM_INET_PARTIAL | HCKSUM_INET_FULL_V4 | \ 2643 HCKSUM_INET_FULL_V6 | HCKSUM_IPHDRCKSUM) 2644 2645 if ((ihck->hcksum_txflags & HCKSUM_ENABLE) && 2646 (ihck->hcksum_txflags & CURR_HCKSUM_CAPAB)) { 2647 /* do ENABLE processing */ 2648 if (*ill_hcksum == NULL) { 2649 *ill_hcksum = kmem_zalloc(sizeof (ill_hcksum_capab_t), 2650 KM_NOSLEEP); 2651 2652 if (*ill_hcksum == NULL) { 2653 cmn_err(CE_WARN, "ill_capability_hcksum_ack: " 2654 "could not enable hcksum version %d " 2655 "for %s (ENOMEM)\n", HCKSUM_CURRENT_VERSION, 2656 ill->ill_name); 2657 return; 2658 } 2659 } 2660 2661 (*ill_hcksum)->ill_hcksum_version = ihck->hcksum_version; 2662 (*ill_hcksum)->ill_hcksum_txflags = ihck->hcksum_txflags; 2663 ill->ill_capabilities |= ILL_CAPAB_HCKSUM; 2664 ip1dbg(("ill_capability_hcksum_ack: interface %s " 2665 "has enabled hardware checksumming\n ", 2666 ill->ill_name)); 2667 } else if (ihck->hcksum_txflags & CURR_HCKSUM_CAPAB) { 2668 /* 2669 * Enabling hardware checksum offload 2670 * Currently IP supports {TCP,UDP}/IPv4 2671 * partial and full cksum offload and 2672 * IPv4 header checksum offload. 2673 * Allocate new mblk which will 2674 * contain a new capability request 2675 * to enable hardware checksum offload. 2676 */ 2677 uint_t size; 2678 uchar_t *rptr; 2679 2680 size = sizeof (dl_capability_req_t) + 2681 sizeof (dl_capability_sub_t) + isub->dl_length; 2682 2683 if ((nmp = ip_dlpi_alloc(size, DL_CAPABILITY_REQ)) == NULL) { 2684 cmn_err(CE_WARN, "ill_capability_hcksum_ack: " 2685 "could not enable hardware cksum for %s (ENOMEM)\n", 2686 ill->ill_name); 2687 return; 2688 } 2689 2690 rptr = nmp->b_rptr; 2691 /* initialize dl_capability_req_t */ 2692 ocap = (dl_capability_req_t *)nmp->b_rptr; 2693 ocap->dl_sub_offset = 2694 sizeof (dl_capability_req_t); 2695 ocap->dl_sub_length = 2696 sizeof (dl_capability_sub_t) + 2697 isub->dl_length; 2698 nmp->b_rptr += sizeof (dl_capability_req_t); 2699 2700 /* initialize dl_capability_sub_t */ 2701 bcopy(isub, nmp->b_rptr, sizeof (*isub)); 2702 nmp->b_rptr += sizeof (*isub); 2703 2704 /* initialize dl_capab_hcksum_t */ 2705 ohck = (dl_capab_hcksum_t *)nmp->b_rptr; 2706 bcopy(ihck, ohck, sizeof (*ihck)); 2707 2708 nmp->b_rptr = rptr; 2709 ASSERT(nmp->b_wptr == (nmp->b_rptr + size)); 2710 2711 /* Set ENABLE flag */ 2712 ohck->hcksum_txflags &= CURR_HCKSUM_CAPAB; 2713 ohck->hcksum_txflags |= HCKSUM_ENABLE; 2714 2715 /* 2716 * nmp points to a DL_CAPABILITY_REQ message to enable 2717 * hardware checksum acceleration. 2718 */ 2719 ill_capability_send(ill, nmp); 2720 } else { 2721 ip1dbg(("ill_capability_hcksum_ack: interface %s has " 2722 "advertised %x hardware checksum capability flags\n", 2723 ill->ill_name, ihck->hcksum_txflags)); 2724 } 2725 } 2726 2727 static void 2728 ill_capability_hcksum_reset_fill(ill_t *ill, mblk_t *mp) 2729 { 2730 dl_capab_hcksum_t *hck_subcap; 2731 dl_capability_sub_t *dl_subcap; 2732 2733 if (!ILL_HCKSUM_CAPABLE(ill)) 2734 return; 2735 2736 ASSERT(ill->ill_hcksum_capab != NULL); 2737 2738 dl_subcap = (dl_capability_sub_t *)mp->b_wptr; 2739 dl_subcap->dl_cap = DL_CAPAB_HCKSUM; 2740 dl_subcap->dl_length = sizeof (*hck_subcap); 2741 2742 hck_subcap = (dl_capab_hcksum_t *)(dl_subcap + 1); 2743 hck_subcap->hcksum_version = ill->ill_hcksum_capab->ill_hcksum_version; 2744 hck_subcap->hcksum_txflags = 0; 2745 2746 mp->b_wptr += sizeof (*dl_subcap) + sizeof (*hck_subcap); 2747 } 2748 2749 static void 2750 ill_capability_zerocopy_ack(ill_t *ill, mblk_t *mp, dl_capability_sub_t *isub) 2751 { 2752 mblk_t *nmp = NULL; 2753 dl_capability_req_t *oc; 2754 dl_capab_zerocopy_t *zc_ic, *zc_oc; 2755 ill_zerocopy_capab_t **ill_zerocopy_capab; 2756 uint_t sub_dl_cap = isub->dl_cap; 2757 uint8_t *capend; 2758 2759 ASSERT(sub_dl_cap == DL_CAPAB_ZEROCOPY); 2760 2761 ill_zerocopy_capab = (ill_zerocopy_capab_t **)&ill->ill_zerocopy_capab; 2762 2763 /* 2764 * Note: range checks here are not absolutely sufficient to 2765 * make us robust against malformed messages sent by drivers; 2766 * this is in keeping with the rest of IP's dlpi handling. 2767 * (Remember, it's coming from something else in the kernel 2768 * address space) 2769 */ 2770 capend = (uint8_t *)(isub + 1) + isub->dl_length; 2771 if (capend > mp->b_wptr) { 2772 cmn_err(CE_WARN, "ill_capability_zerocopy_ack: " 2773 "malformed sub-capability too long for mblk"); 2774 return; 2775 } 2776 2777 zc_ic = (dl_capab_zerocopy_t *)(isub + 1); 2778 if (zc_ic->zerocopy_version != ZEROCOPY_VERSION_1) { 2779 cmn_err(CE_CONT, "ill_capability_zerocopy_ack: " 2780 "unsupported ZEROCOPY sub-capability (version %d, " 2781 "expected %d)", zc_ic->zerocopy_version, 2782 ZEROCOPY_VERSION_1); 2783 return; 2784 } 2785 2786 if (!dlcapabcheckqid(&zc_ic->zerocopy_mid, ill->ill_lmod_rq)) { 2787 ip1dbg(("ill_capability_zerocopy_ack: mid token for zerocopy " 2788 "capability isn't as expected; pass-thru module(s) " 2789 "detected, discarding capability\n")); 2790 return; 2791 } 2792 2793 if ((zc_ic->zerocopy_flags & DL_CAPAB_VMSAFE_MEM) != 0) { 2794 if (*ill_zerocopy_capab == NULL) { 2795 *ill_zerocopy_capab = 2796 kmem_zalloc(sizeof (ill_zerocopy_capab_t), 2797 KM_NOSLEEP); 2798 2799 if (*ill_zerocopy_capab == NULL) { 2800 cmn_err(CE_WARN, "ill_capability_zerocopy_ack: " 2801 "could not enable Zero-copy version %d " 2802 "for %s (ENOMEM)\n", ZEROCOPY_VERSION_1, 2803 ill->ill_name); 2804 return; 2805 } 2806 } 2807 2808 ip1dbg(("ill_capability_zerocopy_ack: interface %s " 2809 "supports Zero-copy version %d\n", ill->ill_name, 2810 ZEROCOPY_VERSION_1)); 2811 2812 (*ill_zerocopy_capab)->ill_zerocopy_version = 2813 zc_ic->zerocopy_version; 2814 (*ill_zerocopy_capab)->ill_zerocopy_flags = 2815 zc_ic->zerocopy_flags; 2816 2817 ill->ill_capabilities |= ILL_CAPAB_ZEROCOPY; 2818 } else { 2819 uint_t size; 2820 uchar_t *rptr; 2821 2822 size = sizeof (dl_capability_req_t) + 2823 sizeof (dl_capability_sub_t) + 2824 sizeof (dl_capab_zerocopy_t); 2825 2826 if ((nmp = ip_dlpi_alloc(size, DL_CAPABILITY_REQ)) == NULL) { 2827 cmn_err(CE_WARN, "ill_capability_zerocopy_ack: " 2828 "could not enable zerocopy for %s (ENOMEM)\n", 2829 ill->ill_name); 2830 return; 2831 } 2832 2833 rptr = nmp->b_rptr; 2834 /* initialize dl_capability_req_t */ 2835 oc = (dl_capability_req_t *)rptr; 2836 oc->dl_sub_offset = sizeof (dl_capability_req_t); 2837 oc->dl_sub_length = sizeof (dl_capability_sub_t) + 2838 sizeof (dl_capab_zerocopy_t); 2839 rptr += sizeof (dl_capability_req_t); 2840 2841 /* initialize dl_capability_sub_t */ 2842 bcopy(isub, rptr, sizeof (*isub)); 2843 rptr += sizeof (*isub); 2844 2845 /* initialize dl_capab_zerocopy_t */ 2846 zc_oc = (dl_capab_zerocopy_t *)rptr; 2847 *zc_oc = *zc_ic; 2848 2849 ip1dbg(("ill_capability_zerocopy_ack: asking interface %s " 2850 "to enable zero-copy version %d\n", ill->ill_name, 2851 ZEROCOPY_VERSION_1)); 2852 2853 /* set VMSAFE_MEM flag */ 2854 zc_oc->zerocopy_flags |= DL_CAPAB_VMSAFE_MEM; 2855 2856 /* nmp points to a DL_CAPABILITY_REQ message to enable zcopy */ 2857 ill_capability_send(ill, nmp); 2858 } 2859 } 2860 2861 static void 2862 ill_capability_zerocopy_reset_fill(ill_t *ill, mblk_t *mp) 2863 { 2864 dl_capab_zerocopy_t *zerocopy_subcap; 2865 dl_capability_sub_t *dl_subcap; 2866 2867 if (!(ill->ill_capabilities & ILL_CAPAB_ZEROCOPY)) 2868 return; 2869 2870 ASSERT(ill->ill_zerocopy_capab != NULL); 2871 2872 dl_subcap = (dl_capability_sub_t *)mp->b_wptr; 2873 dl_subcap->dl_cap = DL_CAPAB_ZEROCOPY; 2874 dl_subcap->dl_length = sizeof (*zerocopy_subcap); 2875 2876 zerocopy_subcap = (dl_capab_zerocopy_t *)(dl_subcap + 1); 2877 zerocopy_subcap->zerocopy_version = 2878 ill->ill_zerocopy_capab->ill_zerocopy_version; 2879 zerocopy_subcap->zerocopy_flags = 0; 2880 2881 mp->b_wptr += sizeof (*dl_subcap) + sizeof (*zerocopy_subcap); 2882 } 2883 2884 /* 2885 * DLD capability 2886 * Refer to dld.h for more information regarding the purpose and usage 2887 * of this capability. 2888 */ 2889 static void 2890 ill_capability_dld_ack(ill_t *ill, mblk_t *mp, dl_capability_sub_t *isub) 2891 { 2892 dl_capab_dld_t *dld_ic, dld; 2893 uint_t sub_dl_cap = isub->dl_cap; 2894 uint8_t *capend; 2895 ill_dld_capab_t *idc; 2896 2897 ASSERT(IAM_WRITER_ILL(ill)); 2898 ASSERT(sub_dl_cap == DL_CAPAB_DLD); 2899 2900 /* 2901 * Note: range checks here are not absolutely sufficient to 2902 * make us robust against malformed messages sent by drivers; 2903 * this is in keeping with the rest of IP's dlpi handling. 2904 * (Remember, it's coming from something else in the kernel 2905 * address space) 2906 */ 2907 capend = (uint8_t *)(isub + 1) + isub->dl_length; 2908 if (capend > mp->b_wptr) { 2909 cmn_err(CE_WARN, "ill_capability_dld_ack: " 2910 "malformed sub-capability too long for mblk"); 2911 return; 2912 } 2913 dld_ic = (dl_capab_dld_t *)(isub + 1); 2914 if (dld_ic->dld_version != DLD_CURRENT_VERSION) { 2915 cmn_err(CE_CONT, "ill_capability_dld_ack: " 2916 "unsupported DLD sub-capability (version %d, " 2917 "expected %d)", dld_ic->dld_version, 2918 DLD_CURRENT_VERSION); 2919 return; 2920 } 2921 if (!dlcapabcheckqid(&dld_ic->dld_mid, ill->ill_lmod_rq)) { 2922 ip1dbg(("ill_capability_dld_ack: mid token for dld " 2923 "capability isn't as expected; pass-thru module(s) " 2924 "detected, discarding capability\n")); 2925 return; 2926 } 2927 2928 /* 2929 * Copy locally to ensure alignment. 2930 */ 2931 bcopy(dld_ic, &dld, sizeof (dl_capab_dld_t)); 2932 2933 if ((idc = ill->ill_dld_capab) == NULL) { 2934 idc = kmem_zalloc(sizeof (ill_dld_capab_t), KM_NOSLEEP); 2935 if (idc == NULL) { 2936 cmn_err(CE_WARN, "ill_capability_dld_ack: " 2937 "could not enable DLD version %d " 2938 "for %s (ENOMEM)\n", DLD_CURRENT_VERSION, 2939 ill->ill_name); 2940 return; 2941 } 2942 ill->ill_dld_capab = idc; 2943 } 2944 idc->idc_capab_df = (ip_capab_func_t)dld.dld_capab; 2945 idc->idc_capab_dh = (void *)dld.dld_capab_handle; 2946 ip1dbg(("ill_capability_dld_ack: interface %s " 2947 "supports DLD version %d\n", ill->ill_name, DLD_CURRENT_VERSION)); 2948 2949 ill_capability_dld_enable(ill); 2950 } 2951 2952 /* 2953 * Typically capability negotiation between IP and the driver happens via 2954 * DLPI message exchange. However GLD also offers a direct function call 2955 * mechanism to exchange the DLD_DIRECT_CAPAB and DLD_POLL_CAPAB capabilities, 2956 * But arbitrary function calls into IP or GLD are not permitted, since both 2957 * of them are protected by their own perimeter mechanism. The perimeter can 2958 * be viewed as a coarse lock or serialization mechanism. The hierarchy of 2959 * these perimeters is IP -> MAC. Thus for example to enable the squeue 2960 * polling, IP needs to enter its perimeter, then call ill_mac_perim_enter 2961 * to enter the mac perimeter and then do the direct function calls into 2962 * GLD to enable squeue polling. The ring related callbacks from the mac into 2963 * the stack to add, bind, quiesce, restart or cleanup a ring are all 2964 * protected by the mac perimeter. 2965 */ 2966 static void 2967 ill_mac_perim_enter(ill_t *ill, mac_perim_handle_t *mphp) 2968 { 2969 ill_dld_capab_t *idc = ill->ill_dld_capab; 2970 int err; 2971 2972 err = idc->idc_capab_df(idc->idc_capab_dh, DLD_CAPAB_PERIM, mphp, 2973 DLD_ENABLE); 2974 ASSERT(err == 0); 2975 } 2976 2977 static void 2978 ill_mac_perim_exit(ill_t *ill, mac_perim_handle_t mph) 2979 { 2980 ill_dld_capab_t *idc = ill->ill_dld_capab; 2981 int err; 2982 2983 err = idc->idc_capab_df(idc->idc_capab_dh, DLD_CAPAB_PERIM, mph, 2984 DLD_DISABLE); 2985 ASSERT(err == 0); 2986 } 2987 2988 boolean_t 2989 ill_mac_perim_held(ill_t *ill) 2990 { 2991 ill_dld_capab_t *idc = ill->ill_dld_capab; 2992 2993 return (idc->idc_capab_df(idc->idc_capab_dh, DLD_CAPAB_PERIM, NULL, 2994 DLD_QUERY)); 2995 } 2996 2997 static void 2998 ill_capability_direct_enable(ill_t *ill) 2999 { 3000 ill_dld_capab_t *idc = ill->ill_dld_capab; 3001 ill_dld_direct_t *idd = &idc->idc_direct; 3002 dld_capab_direct_t direct; 3003 int rc; 3004 3005 ASSERT(!ill->ill_isv6 && IAM_WRITER_ILL(ill)); 3006 3007 bzero(&direct, sizeof (direct)); 3008 direct.di_rx_cf = (uintptr_t)ip_input; 3009 direct.di_rx_ch = ill; 3010 3011 rc = idc->idc_capab_df(idc->idc_capab_dh, DLD_CAPAB_DIRECT, &direct, 3012 DLD_ENABLE); 3013 if (rc == 0) { 3014 idd->idd_tx_df = (ip_dld_tx_t)direct.di_tx_df; 3015 idd->idd_tx_dh = direct.di_tx_dh; 3016 idd->idd_tx_cb_df = (ip_dld_callb_t)direct.di_tx_cb_df; 3017 idd->idd_tx_cb_dh = direct.di_tx_cb_dh; 3018 idd->idd_tx_fctl_df = (ip_dld_fctl_t)direct.di_tx_fctl_df; 3019 idd->idd_tx_fctl_dh = direct.di_tx_fctl_dh; 3020 ASSERT(idd->idd_tx_cb_df != NULL); 3021 ASSERT(idd->idd_tx_fctl_df != NULL); 3022 ASSERT(idd->idd_tx_df != NULL); 3023 /* 3024 * One time registration of flow enable callback function 3025 */ 3026 ill->ill_flownotify_mh = idd->idd_tx_cb_df(idd->idd_tx_cb_dh, 3027 ill_flow_enable, ill); 3028 ill->ill_capabilities |= ILL_CAPAB_DLD_DIRECT; 3029 DTRACE_PROBE1(direct_on, (ill_t *), ill); 3030 } else { 3031 cmn_err(CE_WARN, "warning: could not enable DIRECT " 3032 "capability, rc = %d\n", rc); 3033 DTRACE_PROBE2(direct_off, (ill_t *), ill, (int), rc); 3034 } 3035 } 3036 3037 static void 3038 ill_capability_poll_enable(ill_t *ill) 3039 { 3040 ill_dld_capab_t *idc = ill->ill_dld_capab; 3041 dld_capab_poll_t poll; 3042 int rc; 3043 3044 ASSERT(!ill->ill_isv6 && IAM_WRITER_ILL(ill)); 3045 3046 bzero(&poll, sizeof (poll)); 3047 poll.poll_ring_add_cf = (uintptr_t)ip_squeue_add_ring; 3048 poll.poll_ring_remove_cf = (uintptr_t)ip_squeue_clean_ring; 3049 poll.poll_ring_quiesce_cf = (uintptr_t)ip_squeue_quiesce_ring; 3050 poll.poll_ring_restart_cf = (uintptr_t)ip_squeue_restart_ring; 3051 poll.poll_ring_bind_cf = (uintptr_t)ip_squeue_bind_ring; 3052 poll.poll_ring_ch = ill; 3053 rc = idc->idc_capab_df(idc->idc_capab_dh, DLD_CAPAB_POLL, &poll, 3054 DLD_ENABLE); 3055 if (rc == 0) { 3056 ill->ill_capabilities |= ILL_CAPAB_DLD_POLL; 3057 DTRACE_PROBE1(poll_on, (ill_t *), ill); 3058 } else { 3059 ip1dbg(("warning: could not enable POLL " 3060 "capability, rc = %d\n", rc)); 3061 DTRACE_PROBE2(poll_off, (ill_t *), ill, (int), rc); 3062 } 3063 } 3064 3065 /* 3066 * Enable the LSO capability. 3067 */ 3068 static void 3069 ill_capability_lso_enable(ill_t *ill) 3070 { 3071 ill_dld_capab_t *idc = ill->ill_dld_capab; 3072 dld_capab_lso_t lso; 3073 int rc; 3074 3075 ASSERT(!ill->ill_isv6 && IAM_WRITER_ILL(ill)); 3076 3077 if (ill->ill_lso_capab == NULL) { 3078 ill->ill_lso_capab = kmem_zalloc(sizeof (ill_lso_capab_t), 3079 KM_NOSLEEP); 3080 if (ill->ill_lso_capab == NULL) { 3081 cmn_err(CE_WARN, "ill_capability_lso_enable: " 3082 "could not enable LSO for %s (ENOMEM)\n", 3083 ill->ill_name); 3084 return; 3085 } 3086 } 3087 3088 bzero(&lso, sizeof (lso)); 3089 if ((rc = idc->idc_capab_df(idc->idc_capab_dh, DLD_CAPAB_LSO, &lso, 3090 DLD_ENABLE)) == 0) { 3091 ill->ill_lso_capab->ill_lso_flags = lso.lso_flags; 3092 ill->ill_lso_capab->ill_lso_max = lso.lso_max; 3093 ill->ill_capabilities |= ILL_CAPAB_DLD_LSO; 3094 ip1dbg(("ill_capability_lso_enable: interface %s " 3095 "has enabled LSO\n ", ill->ill_name)); 3096 } else { 3097 kmem_free(ill->ill_lso_capab, sizeof (ill_lso_capab_t)); 3098 ill->ill_lso_capab = NULL; 3099 DTRACE_PROBE2(lso_off, (ill_t *), ill, (int), rc); 3100 } 3101 } 3102 3103 static void 3104 ill_capability_dld_enable(ill_t *ill) 3105 { 3106 mac_perim_handle_t mph; 3107 3108 ASSERT(IAM_WRITER_ILL(ill)); 3109 3110 if (ill->ill_isv6) 3111 return; 3112 3113 ill_mac_perim_enter(ill, &mph); 3114 if (!ill->ill_isv6) { 3115 ill_capability_direct_enable(ill); 3116 ill_capability_poll_enable(ill); 3117 ill_capability_lso_enable(ill); 3118 } 3119 ill->ill_capabilities |= ILL_CAPAB_DLD; 3120 ill_mac_perim_exit(ill, mph); 3121 } 3122 3123 static void 3124 ill_capability_dld_disable(ill_t *ill) 3125 { 3126 ill_dld_capab_t *idc; 3127 ill_dld_direct_t *idd; 3128 mac_perim_handle_t mph; 3129 3130 ASSERT(IAM_WRITER_ILL(ill)); 3131 3132 if (!(ill->ill_capabilities & ILL_CAPAB_DLD)) 3133 return; 3134 3135 ill_mac_perim_enter(ill, &mph); 3136 3137 idc = ill->ill_dld_capab; 3138 if ((ill->ill_capabilities & ILL_CAPAB_DLD_DIRECT) != 0) { 3139 /* 3140 * For performance we avoid locks in the transmit data path 3141 * and don't maintain a count of the number of threads using 3142 * direct calls. Thus some threads could be using direct 3143 * transmit calls to GLD, even after the capability mechanism 3144 * turns it off. This is still safe since the handles used in 3145 * the direct calls continue to be valid until the unplumb is 3146 * completed. Remove the callback that was added (1-time) at 3147 * capab enable time. 3148 */ 3149 mutex_enter(&ill->ill_lock); 3150 ill->ill_capabilities &= ~ILL_CAPAB_DLD_DIRECT; 3151 mutex_exit(&ill->ill_lock); 3152 if (ill->ill_flownotify_mh != NULL) { 3153 idd = &idc->idc_direct; 3154 idd->idd_tx_cb_df(idd->idd_tx_cb_dh, NULL, 3155 ill->ill_flownotify_mh); 3156 ill->ill_flownotify_mh = NULL; 3157 } 3158 (void) idc->idc_capab_df(idc->idc_capab_dh, DLD_CAPAB_DIRECT, 3159 NULL, DLD_DISABLE); 3160 } 3161 3162 if ((ill->ill_capabilities & ILL_CAPAB_DLD_POLL) != 0) { 3163 ill->ill_capabilities &= ~ILL_CAPAB_DLD_POLL; 3164 ip_squeue_clean_all(ill); 3165 (void) idc->idc_capab_df(idc->idc_capab_dh, DLD_CAPAB_POLL, 3166 NULL, DLD_DISABLE); 3167 } 3168 3169 if ((ill->ill_capabilities & ILL_CAPAB_DLD_LSO) != 0) { 3170 ASSERT(ill->ill_lso_capab != NULL); 3171 /* 3172 * Clear the capability flag for LSO but retain the 3173 * ill_lso_capab structure since it's possible that another 3174 * thread is still referring to it. The structure only gets 3175 * deallocated when we destroy the ill. 3176 */ 3177 3178 ill->ill_capabilities &= ~ILL_CAPAB_DLD_LSO; 3179 (void) idc->idc_capab_df(idc->idc_capab_dh, DLD_CAPAB_LSO, 3180 NULL, DLD_DISABLE); 3181 } 3182 3183 ill->ill_capabilities &= ~ILL_CAPAB_DLD; 3184 ill_mac_perim_exit(ill, mph); 3185 } 3186 3187 /* 3188 * Capability Negotiation protocol 3189 * 3190 * We don't wait for DLPI capability operations to finish during interface 3191 * bringup or teardown. Doing so would introduce more asynchrony and the 3192 * interface up/down operations will need multiple return and restarts. 3193 * Instead the 'ipsq_current_ipif' of the ipsq is not cleared as long as 3194 * the 'ill_dlpi_deferred' chain is non-empty. This ensures that the next 3195 * exclusive operation won't start until the DLPI operations of the previous 3196 * exclusive operation complete. 3197 * 3198 * The capability state machine is shown below. 3199 * 3200 * state next state event, action 3201 * 3202 * IDCS_UNKNOWN IDCS_PROBE_SENT ill_capability_probe 3203 * IDCS_PROBE_SENT IDCS_OK ill_capability_ack 3204 * IDCS_PROBE_SENT IDCS_FAILED ip_rput_dlpi_writer (nack) 3205 * IDCS_OK IDCS_RENEG Receipt of DL_NOTE_CAPAB_RENEG 3206 * IDCS_OK IDCS_RESET_SENT ill_capability_reset 3207 * IDCS_RESET_SENT IDCS_UNKNOWN ill_capability_ack_thr 3208 * IDCS_RENEG IDCS_PROBE_SENT ill_capability_ack_thr -> 3209 * ill_capability_probe. 3210 */ 3211 3212 /* 3213 * Dedicated thread started from ip_stack_init that handles capability 3214 * disable. This thread ensures the taskq dispatch does not fail by waiting 3215 * for resources using TQ_SLEEP. The taskq mechanism is used to ensure 3216 * that direct calls to DLD are done in a cv_waitable context. 3217 */ 3218 void 3219 ill_taskq_dispatch(ip_stack_t *ipst) 3220 { 3221 callb_cpr_t cprinfo; 3222 char name[64]; 3223 mblk_t *mp; 3224 3225 (void) snprintf(name, sizeof (name), "ill_taskq_dispatch_%d", 3226 ipst->ips_netstack->netstack_stackid); 3227 CALLB_CPR_INIT(&cprinfo, &ipst->ips_capab_taskq_lock, callb_generic_cpr, 3228 name); 3229 mutex_enter(&ipst->ips_capab_taskq_lock); 3230 3231 for (;;) { 3232 mp = ipst->ips_capab_taskq_head; 3233 while (mp != NULL) { 3234 ipst->ips_capab_taskq_head = mp->b_next; 3235 if (ipst->ips_capab_taskq_head == NULL) 3236 ipst->ips_capab_taskq_tail = NULL; 3237 mutex_exit(&ipst->ips_capab_taskq_lock); 3238 mp->b_next = NULL; 3239 3240 VERIFY(taskq_dispatch(system_taskq, 3241 ill_capability_ack_thr, mp, TQ_SLEEP) != 0); 3242 mutex_enter(&ipst->ips_capab_taskq_lock); 3243 mp = ipst->ips_capab_taskq_head; 3244 } 3245 3246 if (ipst->ips_capab_taskq_quit) 3247 break; 3248 CALLB_CPR_SAFE_BEGIN(&cprinfo); 3249 cv_wait(&ipst->ips_capab_taskq_cv, &ipst->ips_capab_taskq_lock); 3250 CALLB_CPR_SAFE_END(&cprinfo, &ipst->ips_capab_taskq_lock); 3251 } 3252 VERIFY(ipst->ips_capab_taskq_head == NULL); 3253 VERIFY(ipst->ips_capab_taskq_tail == NULL); 3254 CALLB_CPR_EXIT(&cprinfo); 3255 thread_exit(); 3256 } 3257 3258 /* 3259 * Consume a new-style hardware capabilities negotiation ack. 3260 * Called via taskq on receipt of DL_CAPABBILITY_ACK. 3261 */ 3262 static void 3263 ill_capability_ack_thr(void *arg) 3264 { 3265 mblk_t *mp = arg; 3266 dl_capability_ack_t *capp; 3267 dl_capability_sub_t *subp, *endp; 3268 ill_t *ill; 3269 boolean_t reneg; 3270 3271 ill = (ill_t *)mp->b_prev; 3272 mp->b_prev = NULL; 3273 3274 VERIFY(ipsq_enter(ill, B_FALSE, CUR_OP) == B_TRUE); 3275 3276 if (ill->ill_dlpi_capab_state == IDCS_RESET_SENT || 3277 ill->ill_dlpi_capab_state == IDCS_RENEG) { 3278 /* 3279 * We have received the ack for our DL_CAPAB reset request. 3280 * There isnt' anything in the message that needs processing. 3281 * All message based capabilities have been disabled, now 3282 * do the function call based capability disable. 3283 */ 3284 reneg = ill->ill_dlpi_capab_state == IDCS_RENEG; 3285 ill_capability_dld_disable(ill); 3286 ill->ill_dlpi_capab_state = IDCS_UNKNOWN; 3287 if (reneg) 3288 ill_capability_probe(ill); 3289 goto done; 3290 } 3291 3292 if (ill->ill_dlpi_capab_state == IDCS_PROBE_SENT) 3293 ill->ill_dlpi_capab_state = IDCS_OK; 3294 3295 capp = (dl_capability_ack_t *)mp->b_rptr; 3296 3297 if (capp->dl_sub_length == 0) { 3298 /* no new-style capabilities */ 3299 goto done; 3300 } 3301 3302 /* make sure the driver supplied correct dl_sub_length */ 3303 if ((sizeof (*capp) + capp->dl_sub_length) > MBLKL(mp)) { 3304 ip0dbg(("ill_capability_ack: bad DL_CAPABILITY_ACK, " 3305 "invalid dl_sub_length (%d)\n", capp->dl_sub_length)); 3306 goto done; 3307 } 3308 3309 #define SC(base, offset) (dl_capability_sub_t *)(((uchar_t *)(base))+(offset)) 3310 /* 3311 * There are sub-capabilities. Process the ones we know about. 3312 * Loop until we don't have room for another sub-cap header.. 3313 */ 3314 for (subp = SC(capp, capp->dl_sub_offset), 3315 endp = SC(subp, capp->dl_sub_length - sizeof (*subp)); 3316 subp <= endp; 3317 subp = SC(subp, sizeof (dl_capability_sub_t) + subp->dl_length)) { 3318 3319 switch (subp->dl_cap) { 3320 case DL_CAPAB_ID_WRAPPER: 3321 ill_capability_id_ack(ill, mp, subp); 3322 break; 3323 default: 3324 ill_capability_dispatch(ill, mp, subp, B_FALSE); 3325 break; 3326 } 3327 } 3328 #undef SC 3329 done: 3330 inet_freemsg(mp); 3331 ill_capability_done(ill); 3332 ipsq_exit(ill->ill_phyint->phyint_ipsq); 3333 } 3334 3335 /* 3336 * This needs to be started in a taskq thread to provide a cv_waitable 3337 * context. 3338 */ 3339 void 3340 ill_capability_ack(ill_t *ill, mblk_t *mp) 3341 { 3342 ip_stack_t *ipst = ill->ill_ipst; 3343 3344 mp->b_prev = (mblk_t *)ill; 3345 ASSERT(mp->b_next == NULL); 3346 3347 if (taskq_dispatch(system_taskq, ill_capability_ack_thr, mp, 3348 TQ_NOSLEEP) != 0) 3349 return; 3350 3351 /* 3352 * The taskq dispatch failed. Signal the ill_taskq_dispatch thread 3353 * which will do the dispatch using TQ_SLEEP to guarantee success. 3354 */ 3355 mutex_enter(&ipst->ips_capab_taskq_lock); 3356 if (ipst->ips_capab_taskq_head == NULL) { 3357 ASSERT(ipst->ips_capab_taskq_tail == NULL); 3358 ipst->ips_capab_taskq_head = mp; 3359 } else { 3360 ipst->ips_capab_taskq_tail->b_next = mp; 3361 } 3362 ipst->ips_capab_taskq_tail = mp; 3363 3364 cv_signal(&ipst->ips_capab_taskq_cv); 3365 mutex_exit(&ipst->ips_capab_taskq_lock); 3366 } 3367 3368 /* 3369 * This routine is called to scan the fragmentation reassembly table for 3370 * the specified ILL for any packets that are starting to smell. 3371 * dead_interval is the maximum time in seconds that will be tolerated. It 3372 * will either be the value specified in ip_g_frag_timeout, or zero if the 3373 * ILL is shutting down and it is time to blow everything off. 3374 * 3375 * It returns the number of seconds (as a time_t) that the next frag timer 3376 * should be scheduled for, 0 meaning that the timer doesn't need to be 3377 * re-started. Note that the method of calculating next_timeout isn't 3378 * entirely accurate since time will flow between the time we grab 3379 * current_time and the time we schedule the next timeout. This isn't a 3380 * big problem since this is the timer for sending an ICMP reassembly time 3381 * exceeded messages, and it doesn't have to be exactly accurate. 3382 * 3383 * This function is 3384 * sometimes called as writer, although this is not required. 3385 */ 3386 time_t 3387 ill_frag_timeout(ill_t *ill, time_t dead_interval) 3388 { 3389 ipfb_t *ipfb; 3390 ipfb_t *endp; 3391 ipf_t *ipf; 3392 ipf_t *ipfnext; 3393 mblk_t *mp; 3394 time_t current_time = gethrestime_sec(); 3395 time_t next_timeout = 0; 3396 uint32_t hdr_length; 3397 mblk_t *send_icmp_head; 3398 mblk_t *send_icmp_head_v6; 3399 zoneid_t zoneid; 3400 ip_stack_t *ipst = ill->ill_ipst; 3401 3402 ipfb = ill->ill_frag_hash_tbl; 3403 if (ipfb == NULL) 3404 return (B_FALSE); 3405 endp = &ipfb[ILL_FRAG_HASH_TBL_COUNT]; 3406 /* Walk the frag hash table. */ 3407 for (; ipfb < endp; ipfb++) { 3408 send_icmp_head = NULL; 3409 send_icmp_head_v6 = NULL; 3410 mutex_enter(&ipfb->ipfb_lock); 3411 while ((ipf = ipfb->ipfb_ipf) != 0) { 3412 time_t frag_time = current_time - ipf->ipf_timestamp; 3413 time_t frag_timeout; 3414 3415 if (frag_time < dead_interval) { 3416 /* 3417 * There are some outstanding fragments 3418 * that will timeout later. Make note of 3419 * the time so that we can reschedule the 3420 * next timeout appropriately. 3421 */ 3422 frag_timeout = dead_interval - frag_time; 3423 if (next_timeout == 0 || 3424 frag_timeout < next_timeout) { 3425 next_timeout = frag_timeout; 3426 } 3427 break; 3428 } 3429 /* Time's up. Get it out of here. */ 3430 hdr_length = ipf->ipf_nf_hdr_len; 3431 ipfnext = ipf->ipf_hash_next; 3432 if (ipfnext) 3433 ipfnext->ipf_ptphn = ipf->ipf_ptphn; 3434 *ipf->ipf_ptphn = ipfnext; 3435 mp = ipf->ipf_mp->b_cont; 3436 for (; mp; mp = mp->b_cont) { 3437 /* Extra points for neatness. */ 3438 IP_REASS_SET_START(mp, 0); 3439 IP_REASS_SET_END(mp, 0); 3440 } 3441 mp = ipf->ipf_mp->b_cont; 3442 atomic_add_32(&ill->ill_frag_count, -ipf->ipf_count); 3443 ASSERT(ipfb->ipfb_count >= ipf->ipf_count); 3444 ipfb->ipfb_count -= ipf->ipf_count; 3445 ASSERT(ipfb->ipfb_frag_pkts > 0); 3446 ipfb->ipfb_frag_pkts--; 3447 /* 3448 * We do not send any icmp message from here because 3449 * we currently are holding the ipfb_lock for this 3450 * hash chain. If we try and send any icmp messages 3451 * from here we may end up via a put back into ip 3452 * trying to get the same lock, causing a recursive 3453 * mutex panic. Instead we build a list and send all 3454 * the icmp messages after we have dropped the lock. 3455 */ 3456 if (ill->ill_isv6) { 3457 if (hdr_length != 0) { 3458 mp->b_next = send_icmp_head_v6; 3459 send_icmp_head_v6 = mp; 3460 } else { 3461 freemsg(mp); 3462 } 3463 } else { 3464 if (hdr_length != 0) { 3465 mp->b_next = send_icmp_head; 3466 send_icmp_head = mp; 3467 } else { 3468 freemsg(mp); 3469 } 3470 } 3471 BUMP_MIB(ill->ill_ip_mib, ipIfStatsReasmFails); 3472 freeb(ipf->ipf_mp); 3473 } 3474 mutex_exit(&ipfb->ipfb_lock); 3475 /* 3476 * Now need to send any icmp messages that we delayed from 3477 * above. 3478 */ 3479 while (send_icmp_head_v6 != NULL) { 3480 ip6_t *ip6h; 3481 3482 mp = send_icmp_head_v6; 3483 send_icmp_head_v6 = send_icmp_head_v6->b_next; 3484 mp->b_next = NULL; 3485 if (mp->b_datap->db_type == M_CTL) 3486 ip6h = (ip6_t *)mp->b_cont->b_rptr; 3487 else 3488 ip6h = (ip6_t *)mp->b_rptr; 3489 zoneid = ipif_lookup_addr_zoneid_v6(&ip6h->ip6_dst, 3490 ill, ipst); 3491 if (zoneid == ALL_ZONES) { 3492 freemsg(mp); 3493 } else { 3494 icmp_time_exceeded_v6(ill->ill_wq, mp, 3495 ICMP_REASSEMBLY_TIME_EXCEEDED, B_FALSE, 3496 B_FALSE, zoneid, ipst); 3497 } 3498 } 3499 while (send_icmp_head != NULL) { 3500 ipaddr_t dst; 3501 3502 mp = send_icmp_head; 3503 send_icmp_head = send_icmp_head->b_next; 3504 mp->b_next = NULL; 3505 3506 if (mp->b_datap->db_type == M_CTL) 3507 dst = ((ipha_t *)mp->b_cont->b_rptr)->ipha_dst; 3508 else 3509 dst = ((ipha_t *)mp->b_rptr)->ipha_dst; 3510 3511 zoneid = ipif_lookup_addr_zoneid(dst, ill, ipst); 3512 if (zoneid == ALL_ZONES) { 3513 freemsg(mp); 3514 } else { 3515 icmp_time_exceeded(ill->ill_wq, mp, 3516 ICMP_REASSEMBLY_TIME_EXCEEDED, zoneid, 3517 ipst); 3518 } 3519 } 3520 } 3521 /* 3522 * A non-dying ILL will use the return value to decide whether to 3523 * restart the frag timer, and for how long. 3524 */ 3525 return (next_timeout); 3526 } 3527 3528 /* 3529 * This routine is called when the approximate count of mblk memory used 3530 * for the specified ILL has exceeded max_count. 3531 */ 3532 void 3533 ill_frag_prune(ill_t *ill, uint_t max_count) 3534 { 3535 ipfb_t *ipfb; 3536 ipf_t *ipf; 3537 size_t count; 3538 3539 /* 3540 * If we are here within ip_min_frag_prune_time msecs remove 3541 * ill_frag_free_num_pkts oldest packets from each bucket and increment 3542 * ill_frag_free_num_pkts. 3543 */ 3544 mutex_enter(&ill->ill_lock); 3545 if (TICK_TO_MSEC(lbolt - ill->ill_last_frag_clean_time) <= 3546 (ip_min_frag_prune_time != 0 ? 3547 ip_min_frag_prune_time : msec_per_tick)) { 3548 3549 ill->ill_frag_free_num_pkts++; 3550 3551 } else { 3552 ill->ill_frag_free_num_pkts = 0; 3553 } 3554 ill->ill_last_frag_clean_time = lbolt; 3555 mutex_exit(&ill->ill_lock); 3556 3557 /* 3558 * free ill_frag_free_num_pkts oldest packets from each bucket. 3559 */ 3560 if (ill->ill_frag_free_num_pkts != 0) { 3561 int ix; 3562 3563 for (ix = 0; ix < ILL_FRAG_HASH_TBL_COUNT; ix++) { 3564 ipfb = &ill->ill_frag_hash_tbl[ix]; 3565 mutex_enter(&ipfb->ipfb_lock); 3566 if (ipfb->ipfb_ipf != NULL) { 3567 ill_frag_free_pkts(ill, ipfb, ipfb->ipfb_ipf, 3568 ill->ill_frag_free_num_pkts); 3569 } 3570 mutex_exit(&ipfb->ipfb_lock); 3571 } 3572 } 3573 /* 3574 * While the reassembly list for this ILL is too big, prune a fragment 3575 * queue by age, oldest first. 3576 */ 3577 while (ill->ill_frag_count > max_count) { 3578 int ix; 3579 ipfb_t *oipfb = NULL; 3580 uint_t oldest = UINT_MAX; 3581 3582 count = 0; 3583 for (ix = 0; ix < ILL_FRAG_HASH_TBL_COUNT; ix++) { 3584 ipfb = &ill->ill_frag_hash_tbl[ix]; 3585 mutex_enter(&ipfb->ipfb_lock); 3586 ipf = ipfb->ipfb_ipf; 3587 if (ipf != NULL && ipf->ipf_gen < oldest) { 3588 oldest = ipf->ipf_gen; 3589 oipfb = ipfb; 3590 } 3591 count += ipfb->ipfb_count; 3592 mutex_exit(&ipfb->ipfb_lock); 3593 } 3594 if (oipfb == NULL) 3595 break; 3596 3597 if (count <= max_count) 3598 return; /* Somebody beat us to it, nothing to do */ 3599 mutex_enter(&oipfb->ipfb_lock); 3600 ipf = oipfb->ipfb_ipf; 3601 if (ipf != NULL) { 3602 ill_frag_free_pkts(ill, oipfb, ipf, 1); 3603 } 3604 mutex_exit(&oipfb->ipfb_lock); 3605 } 3606 } 3607 3608 /* 3609 * free 'free_cnt' fragmented packets starting at ipf. 3610 */ 3611 void 3612 ill_frag_free_pkts(ill_t *ill, ipfb_t *ipfb, ipf_t *ipf, int free_cnt) 3613 { 3614 size_t count; 3615 mblk_t *mp; 3616 mblk_t *tmp; 3617 ipf_t **ipfp = ipf->ipf_ptphn; 3618 3619 ASSERT(MUTEX_HELD(&ipfb->ipfb_lock)); 3620 ASSERT(ipfp != NULL); 3621 ASSERT(ipf != NULL); 3622 3623 while (ipf != NULL && free_cnt-- > 0) { 3624 count = ipf->ipf_count; 3625 mp = ipf->ipf_mp; 3626 ipf = ipf->ipf_hash_next; 3627 for (tmp = mp; tmp; tmp = tmp->b_cont) { 3628 IP_REASS_SET_START(tmp, 0); 3629 IP_REASS_SET_END(tmp, 0); 3630 } 3631 atomic_add_32(&ill->ill_frag_count, -count); 3632 ASSERT(ipfb->ipfb_count >= count); 3633 ipfb->ipfb_count -= count; 3634 ASSERT(ipfb->ipfb_frag_pkts > 0); 3635 ipfb->ipfb_frag_pkts--; 3636 freemsg(mp); 3637 BUMP_MIB(ill->ill_ip_mib, ipIfStatsReasmFails); 3638 } 3639 3640 if (ipf) 3641 ipf->ipf_ptphn = ipfp; 3642 ipfp[0] = ipf; 3643 } 3644 3645 #define ND_FORWARD_WARNING "The <if>:ip*_forwarding ndd variables are " \ 3646 "obsolete and may be removed in a future release of Solaris. Use " \ 3647 "ifconfig(1M) to manipulate the forwarding status of an interface." 3648 3649 /* 3650 * For obsolete per-interface forwarding configuration; 3651 * called in response to ND_GET. 3652 */ 3653 /* ARGSUSED */ 3654 static int 3655 nd_ill_forward_get(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *ioc_cr) 3656 { 3657 ill_t *ill = (ill_t *)cp; 3658 3659 cmn_err(CE_WARN, ND_FORWARD_WARNING); 3660 3661 (void) mi_mpprintf(mp, "%d", (ill->ill_flags & ILLF_ROUTER) != 0); 3662 return (0); 3663 } 3664 3665 /* 3666 * For obsolete per-interface forwarding configuration; 3667 * called in response to ND_SET. 3668 */ 3669 /* ARGSUSED */ 3670 static int 3671 nd_ill_forward_set(queue_t *q, mblk_t *mp, char *valuestr, caddr_t cp, 3672 cred_t *ioc_cr) 3673 { 3674 long value; 3675 int retval; 3676 ip_stack_t *ipst = CONNQ_TO_IPST(q); 3677 3678 cmn_err(CE_WARN, ND_FORWARD_WARNING); 3679 3680 if (ddi_strtol(valuestr, NULL, 10, &value) != 0 || 3681 value < 0 || value > 1) { 3682 return (EINVAL); 3683 } 3684 3685 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 3686 retval = ill_forward_set((ill_t *)cp, (value != 0)); 3687 rw_exit(&ipst->ips_ill_g_lock); 3688 return (retval); 3689 } 3690 3691 /* 3692 * Helper function for ill_forward_set(). 3693 */ 3694 static void 3695 ill_forward_set_on_ill(ill_t *ill, boolean_t enable) 3696 { 3697 ip_stack_t *ipst = ill->ill_ipst; 3698 3699 ASSERT(IAM_WRITER_ILL(ill) || RW_READ_HELD(&ipst->ips_ill_g_lock)); 3700 3701 ip1dbg(("ill_forward_set: %s %s forwarding on %s", 3702 (enable ? "Enabling" : "Disabling"), 3703 (ill->ill_isv6 ? "IPv6" : "IPv4"), ill->ill_name)); 3704 mutex_enter(&ill->ill_lock); 3705 if (enable) 3706 ill->ill_flags |= ILLF_ROUTER; 3707 else 3708 ill->ill_flags &= ~ILLF_ROUTER; 3709 mutex_exit(&ill->ill_lock); 3710 if (ill->ill_isv6) 3711 ill_set_nce_router_flags(ill, enable); 3712 /* Notify routing socket listeners of this change. */ 3713 if (ill->ill_ipif != NULL) 3714 ip_rts_ifmsg(ill->ill_ipif, RTSQ_DEFAULT); 3715 } 3716 3717 /* 3718 * Set an ill's ILLF_ROUTER flag appropriately. Send up RTS_IFINFO routing 3719 * socket messages for each interface whose flags we change. 3720 */ 3721 int 3722 ill_forward_set(ill_t *ill, boolean_t enable) 3723 { 3724 ipmp_illgrp_t *illg; 3725 ip_stack_t *ipst = ill->ill_ipst; 3726 3727 ASSERT(IAM_WRITER_ILL(ill) || RW_READ_HELD(&ipst->ips_ill_g_lock)); 3728 3729 if ((enable && (ill->ill_flags & ILLF_ROUTER)) || 3730 (!enable && !(ill->ill_flags & ILLF_ROUTER))) 3731 return (0); 3732 3733 if (IS_LOOPBACK(ill)) 3734 return (EINVAL); 3735 3736 if (IS_IPMP(ill) || IS_UNDER_IPMP(ill)) { 3737 /* 3738 * Update all of the interfaces in the group. 3739 */ 3740 illg = ill->ill_grp; 3741 ill = list_head(&illg->ig_if); 3742 for (; ill != NULL; ill = list_next(&illg->ig_if, ill)) 3743 ill_forward_set_on_ill(ill, enable); 3744 3745 /* 3746 * Update the IPMP meta-interface. 3747 */ 3748 ill_forward_set_on_ill(ipmp_illgrp_ipmp_ill(illg), enable); 3749 return (0); 3750 } 3751 3752 ill_forward_set_on_ill(ill, enable); 3753 return (0); 3754 } 3755 3756 /* 3757 * Based on the ILLF_ROUTER flag of an ill, make sure all local nce's for 3758 * addresses assigned to the ill have the NCE_F_ISROUTER flag appropriately 3759 * set or clear. 3760 */ 3761 static void 3762 ill_set_nce_router_flags(ill_t *ill, boolean_t enable) 3763 { 3764 ipif_t *ipif; 3765 nce_t *nce; 3766 3767 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 3768 /* 3769 * NOTE: we match across the illgrp because nce's for 3770 * addresses on IPMP interfaces have an nce_ill that points to 3771 * the bound underlying ill. 3772 */ 3773 nce = ndp_lookup_v6(ill, B_TRUE, &ipif->ipif_v6lcl_addr, 3774 B_FALSE); 3775 if (nce != NULL) { 3776 mutex_enter(&nce->nce_lock); 3777 if (enable) 3778 nce->nce_flags |= NCE_F_ISROUTER; 3779 else 3780 nce->nce_flags &= ~NCE_F_ISROUTER; 3781 mutex_exit(&nce->nce_lock); 3782 NCE_REFRELE(nce); 3783 } 3784 } 3785 } 3786 3787 /* 3788 * Given an ill with a _valid_ name, add the ip_forwarding ndd variable 3789 * for this ill. Make sure the v6/v4 question has been answered about this 3790 * ill. The creation of this ndd variable is only for backwards compatibility. 3791 * The preferred way to control per-interface IP forwarding is through the 3792 * ILLF_ROUTER interface flag. 3793 */ 3794 static int 3795 ill_set_ndd_name(ill_t *ill) 3796 { 3797 char *suffix; 3798 ip_stack_t *ipst = ill->ill_ipst; 3799 3800 ASSERT(IAM_WRITER_ILL(ill)); 3801 3802 if (ill->ill_isv6) 3803 suffix = ipv6_forward_suffix; 3804 else 3805 suffix = ipv4_forward_suffix; 3806 3807 ill->ill_ndd_name = ill->ill_name + ill->ill_name_length; 3808 bcopy(ill->ill_name, ill->ill_ndd_name, ill->ill_name_length - 1); 3809 /* 3810 * Copies over the '\0'. 3811 * Note that strlen(suffix) is always bounded. 3812 */ 3813 bcopy(suffix, ill->ill_ndd_name + ill->ill_name_length - 1, 3814 strlen(suffix) + 1); 3815 3816 /* 3817 * Use of the nd table requires holding the reader lock. 3818 * Modifying the nd table thru nd_load/nd_unload requires 3819 * the writer lock. 3820 */ 3821 rw_enter(&ipst->ips_ip_g_nd_lock, RW_WRITER); 3822 if (!nd_load(&ipst->ips_ip_g_nd, ill->ill_ndd_name, nd_ill_forward_get, 3823 nd_ill_forward_set, (caddr_t)ill)) { 3824 /* 3825 * If the nd_load failed, it only meant that it could not 3826 * allocate a new bunch of room for further NDD expansion. 3827 * Because of that, the ill_ndd_name will be set to 0, and 3828 * this interface is at the mercy of the global ip_forwarding 3829 * variable. 3830 */ 3831 rw_exit(&ipst->ips_ip_g_nd_lock); 3832 ill->ill_ndd_name = NULL; 3833 return (ENOMEM); 3834 } 3835 rw_exit(&ipst->ips_ip_g_nd_lock); 3836 return (0); 3837 } 3838 3839 /* 3840 * Intializes the context structure and returns the first ill in the list 3841 * cuurently start_list and end_list can have values: 3842 * MAX_G_HEADS Traverse both IPV4 and IPV6 lists. 3843 * IP_V4_G_HEAD Traverse IPV4 list only. 3844 * IP_V6_G_HEAD Traverse IPV6 list only. 3845 */ 3846 3847 /* 3848 * We don't check for CONDEMNED ills here. Caller must do that if 3849 * necessary under the ill lock. 3850 */ 3851 ill_t * 3852 ill_first(int start_list, int end_list, ill_walk_context_t *ctx, 3853 ip_stack_t *ipst) 3854 { 3855 ill_if_t *ifp; 3856 ill_t *ill; 3857 avl_tree_t *avl_tree; 3858 3859 ASSERT(RW_LOCK_HELD(&ipst->ips_ill_g_lock)); 3860 ASSERT(end_list <= MAX_G_HEADS && start_list >= 0); 3861 3862 /* 3863 * setup the lists to search 3864 */ 3865 if (end_list != MAX_G_HEADS) { 3866 ctx->ctx_current_list = start_list; 3867 ctx->ctx_last_list = end_list; 3868 } else { 3869 ctx->ctx_last_list = MAX_G_HEADS - 1; 3870 ctx->ctx_current_list = 0; 3871 } 3872 3873 while (ctx->ctx_current_list <= ctx->ctx_last_list) { 3874 ifp = IP_VX_ILL_G_LIST(ctx->ctx_current_list, ipst); 3875 if (ifp != (ill_if_t *) 3876 &IP_VX_ILL_G_LIST(ctx->ctx_current_list, ipst)) { 3877 avl_tree = &ifp->illif_avl_by_ppa; 3878 ill = avl_first(avl_tree); 3879 /* 3880 * ill is guaranteed to be non NULL or ifp should have 3881 * not existed. 3882 */ 3883 ASSERT(ill != NULL); 3884 return (ill); 3885 } 3886 ctx->ctx_current_list++; 3887 } 3888 3889 return (NULL); 3890 } 3891 3892 /* 3893 * returns the next ill in the list. ill_first() must have been called 3894 * before calling ill_next() or bad things will happen. 3895 */ 3896 3897 /* 3898 * We don't check for CONDEMNED ills here. Caller must do that if 3899 * necessary under the ill lock. 3900 */ 3901 ill_t * 3902 ill_next(ill_walk_context_t *ctx, ill_t *lastill) 3903 { 3904 ill_if_t *ifp; 3905 ill_t *ill; 3906 ip_stack_t *ipst = lastill->ill_ipst; 3907 3908 ASSERT(lastill->ill_ifptr != (ill_if_t *) 3909 &IP_VX_ILL_G_LIST(ctx->ctx_current_list, ipst)); 3910 if ((ill = avl_walk(&lastill->ill_ifptr->illif_avl_by_ppa, lastill, 3911 AVL_AFTER)) != NULL) { 3912 return (ill); 3913 } 3914 3915 /* goto next ill_ifp in the list. */ 3916 ifp = lastill->ill_ifptr->illif_next; 3917 3918 /* make sure not at end of circular list */ 3919 while (ifp == 3920 (ill_if_t *)&IP_VX_ILL_G_LIST(ctx->ctx_current_list, ipst)) { 3921 if (++ctx->ctx_current_list > ctx->ctx_last_list) 3922 return (NULL); 3923 ifp = IP_VX_ILL_G_LIST(ctx->ctx_current_list, ipst); 3924 } 3925 3926 return (avl_first(&ifp->illif_avl_by_ppa)); 3927 } 3928 3929 /* 3930 * Check interface name for correct format: [a-zA-Z]+[a-zA-Z0-9._]*[0-9]+ 3931 * The final number (PPA) must not have any leading zeros. Upon success, a 3932 * pointer to the start of the PPA is returned; otherwise NULL is returned. 3933 */ 3934 static char * 3935 ill_get_ppa_ptr(char *name) 3936 { 3937 int namelen = strlen(name); 3938 int end_ndx = namelen - 1; 3939 int ppa_ndx, i; 3940 3941 /* 3942 * Check that the first character is [a-zA-Z], and that the last 3943 * character is [0-9]. 3944 */ 3945 if (namelen == 0 || !isalpha(name[0]) || !isdigit(name[end_ndx])) 3946 return (NULL); 3947 3948 /* 3949 * Set `ppa_ndx' to the PPA start, and check for leading zeroes. 3950 */ 3951 for (ppa_ndx = end_ndx; ppa_ndx > 0; ppa_ndx--) 3952 if (!isdigit(name[ppa_ndx - 1])) 3953 break; 3954 3955 if (name[ppa_ndx] == '0' && ppa_ndx < end_ndx) 3956 return (NULL); 3957 3958 /* 3959 * Check that the intermediate characters are [a-z0-9.] 3960 */ 3961 for (i = 1; i < ppa_ndx; i++) { 3962 if (!isalpha(name[i]) && !isdigit(name[i]) && 3963 name[i] != '.' && name[i] != '_') { 3964 return (NULL); 3965 } 3966 } 3967 3968 return (name + ppa_ndx); 3969 } 3970 3971 /* 3972 * use avl tree to locate the ill. 3973 */ 3974 static ill_t * 3975 ill_find_by_name(char *name, boolean_t isv6, queue_t *q, mblk_t *mp, 3976 ipsq_func_t func, int *error, ip_stack_t *ipst) 3977 { 3978 char *ppa_ptr = NULL; 3979 int len; 3980 uint_t ppa; 3981 ill_t *ill = NULL; 3982 ill_if_t *ifp; 3983 int list; 3984 ipsq_t *ipsq; 3985 3986 if (error != NULL) 3987 *error = 0; 3988 3989 /* 3990 * get ppa ptr 3991 */ 3992 if (isv6) 3993 list = IP_V6_G_HEAD; 3994 else 3995 list = IP_V4_G_HEAD; 3996 3997 if ((ppa_ptr = ill_get_ppa_ptr(name)) == NULL) { 3998 if (error != NULL) 3999 *error = ENXIO; 4000 return (NULL); 4001 } 4002 4003 len = ppa_ptr - name + 1; 4004 4005 ppa = stoi(&ppa_ptr); 4006 4007 ifp = IP_VX_ILL_G_LIST(list, ipst); 4008 4009 while (ifp != (ill_if_t *)&IP_VX_ILL_G_LIST(list, ipst)) { 4010 /* 4011 * match is done on len - 1 as the name is not null 4012 * terminated it contains ppa in addition to the interface 4013 * name. 4014 */ 4015 if ((ifp->illif_name_len == len) && 4016 bcmp(ifp->illif_name, name, len - 1) == 0) { 4017 break; 4018 } else { 4019 ifp = ifp->illif_next; 4020 } 4021 } 4022 4023 if (ifp == (ill_if_t *)&IP_VX_ILL_G_LIST(list, ipst)) { 4024 /* 4025 * Even the interface type does not exist. 4026 */ 4027 if (error != NULL) 4028 *error = ENXIO; 4029 return (NULL); 4030 } 4031 4032 ill = avl_find(&ifp->illif_avl_by_ppa, (void *) &ppa, NULL); 4033 if (ill != NULL) { 4034 /* 4035 * The block comment at the start of ipif_down 4036 * explains the use of the macros used below 4037 */ 4038 GRAB_CONN_LOCK(q); 4039 mutex_enter(&ill->ill_lock); 4040 if (ILL_CAN_LOOKUP(ill)) { 4041 ill_refhold_locked(ill); 4042 mutex_exit(&ill->ill_lock); 4043 RELEASE_CONN_LOCK(q); 4044 return (ill); 4045 } else if (ILL_CAN_WAIT(ill, q)) { 4046 ipsq = ill->ill_phyint->phyint_ipsq; 4047 mutex_enter(&ipsq->ipsq_lock); 4048 mutex_enter(&ipsq->ipsq_xop->ipx_lock); 4049 mutex_exit(&ill->ill_lock); 4050 ipsq_enq(ipsq, q, mp, func, NEW_OP, ill); 4051 mutex_exit(&ipsq->ipsq_xop->ipx_lock); 4052 mutex_exit(&ipsq->ipsq_lock); 4053 RELEASE_CONN_LOCK(q); 4054 if (error != NULL) 4055 *error = EINPROGRESS; 4056 return (NULL); 4057 } 4058 mutex_exit(&ill->ill_lock); 4059 RELEASE_CONN_LOCK(q); 4060 } 4061 if (error != NULL) 4062 *error = ENXIO; 4063 return (NULL); 4064 } 4065 4066 /* 4067 * comparison function for use with avl. 4068 */ 4069 static int 4070 ill_compare_ppa(const void *ppa_ptr, const void *ill_ptr) 4071 { 4072 uint_t ppa; 4073 uint_t ill_ppa; 4074 4075 ASSERT(ppa_ptr != NULL && ill_ptr != NULL); 4076 4077 ppa = *((uint_t *)ppa_ptr); 4078 ill_ppa = ((const ill_t *)ill_ptr)->ill_ppa; 4079 /* 4080 * We want the ill with the lowest ppa to be on the 4081 * top. 4082 */ 4083 if (ill_ppa < ppa) 4084 return (1); 4085 if (ill_ppa > ppa) 4086 return (-1); 4087 return (0); 4088 } 4089 4090 /* 4091 * remove an interface type from the global list. 4092 */ 4093 static void 4094 ill_delete_interface_type(ill_if_t *interface) 4095 { 4096 ASSERT(interface != NULL); 4097 ASSERT(avl_numnodes(&interface->illif_avl_by_ppa) == 0); 4098 4099 avl_destroy(&interface->illif_avl_by_ppa); 4100 if (interface->illif_ppa_arena != NULL) 4101 vmem_destroy(interface->illif_ppa_arena); 4102 4103 remque(interface); 4104 4105 mi_free(interface); 4106 } 4107 4108 /* 4109 * remove ill from the global list. 4110 */ 4111 static void 4112 ill_glist_delete(ill_t *ill) 4113 { 4114 ip_stack_t *ipst; 4115 phyint_t *phyi; 4116 4117 if (ill == NULL) 4118 return; 4119 ipst = ill->ill_ipst; 4120 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 4121 4122 /* 4123 * If the ill was never inserted into the AVL tree 4124 * we skip the if branch. 4125 */ 4126 if (ill->ill_ifptr != NULL) { 4127 /* 4128 * remove from AVL tree and free ppa number 4129 */ 4130 avl_remove(&ill->ill_ifptr->illif_avl_by_ppa, ill); 4131 4132 if (ill->ill_ifptr->illif_ppa_arena != NULL) { 4133 vmem_free(ill->ill_ifptr->illif_ppa_arena, 4134 (void *)(uintptr_t)(ill->ill_ppa+1), 1); 4135 } 4136 if (avl_numnodes(&ill->ill_ifptr->illif_avl_by_ppa) == 0) { 4137 ill_delete_interface_type(ill->ill_ifptr); 4138 } 4139 4140 /* 4141 * Indicate ill is no longer in the list. 4142 */ 4143 ill->ill_ifptr = NULL; 4144 ill->ill_name_length = 0; 4145 ill->ill_name[0] = '\0'; 4146 ill->ill_ppa = UINT_MAX; 4147 } 4148 4149 /* Generate one last event for this ill. */ 4150 ill_nic_event_dispatch(ill, 0, NE_UNPLUMB, ill->ill_name, 4151 ill->ill_name_length); 4152 4153 ASSERT(ill->ill_phyint != NULL); 4154 phyi = ill->ill_phyint; 4155 ill->ill_phyint = NULL; 4156 4157 /* 4158 * ill_init allocates a phyint always to store the copy 4159 * of flags relevant to phyint. At that point in time, we could 4160 * not assign the name and hence phyint_illv4/v6 could not be 4161 * initialized. Later in ipif_set_values, we assign the name to 4162 * the ill, at which point in time we assign phyint_illv4/v6. 4163 * Thus we don't rely on phyint_illv6 to be initialized always. 4164 */ 4165 if (ill->ill_flags & ILLF_IPV6) 4166 phyi->phyint_illv6 = NULL; 4167 else 4168 phyi->phyint_illv4 = NULL; 4169 4170 if (phyi->phyint_illv4 != NULL || phyi->phyint_illv6 != NULL) { 4171 rw_exit(&ipst->ips_ill_g_lock); 4172 return; 4173 } 4174 4175 /* 4176 * There are no ills left on this phyint; pull it out of the phyint 4177 * avl trees, and free it. 4178 */ 4179 if (phyi->phyint_ifindex > 0) { 4180 avl_remove(&ipst->ips_phyint_g_list->phyint_list_avl_by_index, 4181 phyi); 4182 avl_remove(&ipst->ips_phyint_g_list->phyint_list_avl_by_name, 4183 phyi); 4184 } 4185 rw_exit(&ipst->ips_ill_g_lock); 4186 4187 phyint_free(phyi); 4188 } 4189 4190 /* 4191 * allocate a ppa, if the number of plumbed interfaces of this type are 4192 * less than ill_no_arena do a linear search to find a unused ppa. 4193 * When the number goes beyond ill_no_arena switch to using an arena. 4194 * Note: ppa value of zero cannot be allocated from vmem_arena as it 4195 * is the return value for an error condition, so allocation starts at one 4196 * and is decremented by one. 4197 */ 4198 static int 4199 ill_alloc_ppa(ill_if_t *ifp, ill_t *ill) 4200 { 4201 ill_t *tmp_ill; 4202 uint_t start, end; 4203 int ppa; 4204 4205 if (ifp->illif_ppa_arena == NULL && 4206 (avl_numnodes(&ifp->illif_avl_by_ppa) + 1 > ill_no_arena)) { 4207 /* 4208 * Create an arena. 4209 */ 4210 ifp->illif_ppa_arena = vmem_create(ifp->illif_name, 4211 (void *)1, UINT_MAX - 1, 1, NULL, NULL, 4212 NULL, 0, VM_SLEEP | VMC_IDENTIFIER); 4213 /* allocate what has already been assigned */ 4214 for (tmp_ill = avl_first(&ifp->illif_avl_by_ppa); 4215 tmp_ill != NULL; tmp_ill = avl_walk(&ifp->illif_avl_by_ppa, 4216 tmp_ill, AVL_AFTER)) { 4217 ppa = (int)(uintptr_t)vmem_xalloc(ifp->illif_ppa_arena, 4218 1, /* size */ 4219 1, /* align/quantum */ 4220 0, /* phase */ 4221 0, /* nocross */ 4222 /* minaddr */ 4223 (void *)((uintptr_t)tmp_ill->ill_ppa + 1), 4224 /* maxaddr */ 4225 (void *)((uintptr_t)tmp_ill->ill_ppa + 2), 4226 VM_NOSLEEP|VM_FIRSTFIT); 4227 if (ppa == 0) { 4228 ip1dbg(("ill_alloc_ppa: ppa allocation" 4229 " failed while switching")); 4230 vmem_destroy(ifp->illif_ppa_arena); 4231 ifp->illif_ppa_arena = NULL; 4232 break; 4233 } 4234 } 4235 } 4236 4237 if (ifp->illif_ppa_arena != NULL) { 4238 if (ill->ill_ppa == UINT_MAX) { 4239 ppa = (int)(uintptr_t)vmem_alloc(ifp->illif_ppa_arena, 4240 1, VM_NOSLEEP|VM_FIRSTFIT); 4241 if (ppa == 0) 4242 return (EAGAIN); 4243 ill->ill_ppa = --ppa; 4244 } else { 4245 ppa = (int)(uintptr_t)vmem_xalloc(ifp->illif_ppa_arena, 4246 1, /* size */ 4247 1, /* align/quantum */ 4248 0, /* phase */ 4249 0, /* nocross */ 4250 (void *)(uintptr_t)(ill->ill_ppa + 1), /* minaddr */ 4251 (void *)(uintptr_t)(ill->ill_ppa + 2), /* maxaddr */ 4252 VM_NOSLEEP|VM_FIRSTFIT); 4253 /* 4254 * Most likely the allocation failed because 4255 * the requested ppa was in use. 4256 */ 4257 if (ppa == 0) 4258 return (EEXIST); 4259 } 4260 return (0); 4261 } 4262 4263 /* 4264 * No arena is in use and not enough (>ill_no_arena) interfaces have 4265 * been plumbed to create one. Do a linear search to get a unused ppa. 4266 */ 4267 if (ill->ill_ppa == UINT_MAX) { 4268 end = UINT_MAX - 1; 4269 start = 0; 4270 } else { 4271 end = start = ill->ill_ppa; 4272 } 4273 4274 tmp_ill = avl_find(&ifp->illif_avl_by_ppa, (void *)&start, NULL); 4275 while (tmp_ill != NULL && tmp_ill->ill_ppa == start) { 4276 if (start++ >= end) { 4277 if (ill->ill_ppa == UINT_MAX) 4278 return (EAGAIN); 4279 else 4280 return (EEXIST); 4281 } 4282 tmp_ill = avl_walk(&ifp->illif_avl_by_ppa, tmp_ill, AVL_AFTER); 4283 } 4284 ill->ill_ppa = start; 4285 return (0); 4286 } 4287 4288 /* 4289 * Insert ill into the list of configured ill's. Once this function completes, 4290 * the ill is globally visible and is available through lookups. More precisely 4291 * this happens after the caller drops the ill_g_lock. 4292 */ 4293 static int 4294 ill_glist_insert(ill_t *ill, char *name, boolean_t isv6) 4295 { 4296 ill_if_t *ill_interface; 4297 avl_index_t where = 0; 4298 int error; 4299 int name_length; 4300 int index; 4301 boolean_t check_length = B_FALSE; 4302 ip_stack_t *ipst = ill->ill_ipst; 4303 4304 ASSERT(RW_WRITE_HELD(&ipst->ips_ill_g_lock)); 4305 4306 name_length = mi_strlen(name) + 1; 4307 4308 if (isv6) 4309 index = IP_V6_G_HEAD; 4310 else 4311 index = IP_V4_G_HEAD; 4312 4313 ill_interface = IP_VX_ILL_G_LIST(index, ipst); 4314 /* 4315 * Search for interface type based on name 4316 */ 4317 while (ill_interface != (ill_if_t *)&IP_VX_ILL_G_LIST(index, ipst)) { 4318 if ((ill_interface->illif_name_len == name_length) && 4319 (strcmp(ill_interface->illif_name, name) == 0)) { 4320 break; 4321 } 4322 ill_interface = ill_interface->illif_next; 4323 } 4324 4325 /* 4326 * Interface type not found, create one. 4327 */ 4328 if (ill_interface == (ill_if_t *)&IP_VX_ILL_G_LIST(index, ipst)) { 4329 ill_g_head_t ghead; 4330 4331 /* 4332 * allocate ill_if_t structure 4333 */ 4334 ill_interface = (ill_if_t *)mi_zalloc(sizeof (ill_if_t)); 4335 if (ill_interface == NULL) { 4336 return (ENOMEM); 4337 } 4338 4339 (void) strcpy(ill_interface->illif_name, name); 4340 ill_interface->illif_name_len = name_length; 4341 4342 avl_create(&ill_interface->illif_avl_by_ppa, 4343 ill_compare_ppa, sizeof (ill_t), 4344 offsetof(struct ill_s, ill_avl_byppa)); 4345 4346 /* 4347 * link the structure in the back to maintain order 4348 * of configuration for ifconfig output. 4349 */ 4350 ghead = ipst->ips_ill_g_heads[index]; 4351 insque(ill_interface, ghead.ill_g_list_tail); 4352 } 4353 4354 if (ill->ill_ppa == UINT_MAX) 4355 check_length = B_TRUE; 4356 4357 error = ill_alloc_ppa(ill_interface, ill); 4358 if (error != 0) { 4359 if (avl_numnodes(&ill_interface->illif_avl_by_ppa) == 0) 4360 ill_delete_interface_type(ill->ill_ifptr); 4361 return (error); 4362 } 4363 4364 /* 4365 * When the ppa is choosen by the system, check that there is 4366 * enough space to insert ppa. if a specific ppa was passed in this 4367 * check is not required as the interface name passed in will have 4368 * the right ppa in it. 4369 */ 4370 if (check_length) { 4371 /* 4372 * UINT_MAX - 1 should fit in 10 chars, alloc 12 chars. 4373 */ 4374 char buf[sizeof (uint_t) * 3]; 4375 4376 /* 4377 * convert ppa to string to calculate the amount of space 4378 * required for it in the name. 4379 */ 4380 numtos(ill->ill_ppa, buf); 4381 4382 /* Do we have enough space to insert ppa ? */ 4383 4384 if ((mi_strlen(name) + mi_strlen(buf) + 1) > LIFNAMSIZ) { 4385 /* Free ppa and interface type struct */ 4386 if (ill_interface->illif_ppa_arena != NULL) { 4387 vmem_free(ill_interface->illif_ppa_arena, 4388 (void *)(uintptr_t)(ill->ill_ppa+1), 1); 4389 } 4390 if (avl_numnodes(&ill_interface->illif_avl_by_ppa) == 0) 4391 ill_delete_interface_type(ill->ill_ifptr); 4392 4393 return (EINVAL); 4394 } 4395 } 4396 4397 (void) sprintf(ill->ill_name, "%s%u", name, ill->ill_ppa); 4398 ill->ill_name_length = mi_strlen(ill->ill_name) + 1; 4399 4400 (void) avl_find(&ill_interface->illif_avl_by_ppa, &ill->ill_ppa, 4401 &where); 4402 ill->ill_ifptr = ill_interface; 4403 avl_insert(&ill_interface->illif_avl_by_ppa, ill, where); 4404 4405 ill_phyint_reinit(ill); 4406 return (0); 4407 } 4408 4409 /* Initialize the per phyint ipsq used for serialization */ 4410 static boolean_t 4411 ipsq_init(ill_t *ill, boolean_t enter) 4412 { 4413 ipsq_t *ipsq; 4414 ipxop_t *ipx; 4415 4416 if ((ipsq = kmem_zalloc(sizeof (ipsq_t), KM_NOSLEEP)) == NULL) 4417 return (B_FALSE); 4418 4419 ill->ill_phyint->phyint_ipsq = ipsq; 4420 ipx = ipsq->ipsq_xop = &ipsq->ipsq_ownxop; 4421 ipx->ipx_ipsq = ipsq; 4422 ipsq->ipsq_next = ipsq; 4423 ipsq->ipsq_phyint = ill->ill_phyint; 4424 mutex_init(&ipsq->ipsq_lock, NULL, MUTEX_DEFAULT, 0); 4425 mutex_init(&ipx->ipx_lock, NULL, MUTEX_DEFAULT, 0); 4426 ipsq->ipsq_ipst = ill->ill_ipst; /* No netstack_hold */ 4427 if (enter) { 4428 ipx->ipx_writer = curthread; 4429 ipx->ipx_forced = B_FALSE; 4430 ipx->ipx_reentry_cnt = 1; 4431 #ifdef DEBUG 4432 ipx->ipx_depth = getpcstack(ipx->ipx_stack, IPX_STACK_DEPTH); 4433 #endif 4434 } 4435 return (B_TRUE); 4436 } 4437 4438 /* 4439 * ill_init is called by ip_open when a device control stream is opened. 4440 * It does a few initializations, and shoots a DL_INFO_REQ message down 4441 * to the driver. The response is later picked up in ip_rput_dlpi and 4442 * used to set up default mechanisms for talking to the driver. (Always 4443 * called as writer.) 4444 * 4445 * If this function returns error, ip_open will call ip_close which in 4446 * turn will call ill_delete to clean up any memory allocated here that 4447 * is not yet freed. 4448 */ 4449 int 4450 ill_init(queue_t *q, ill_t *ill) 4451 { 4452 int count; 4453 dl_info_req_t *dlir; 4454 mblk_t *info_mp; 4455 uchar_t *frag_ptr; 4456 4457 /* 4458 * The ill is initialized to zero by mi_alloc*(). In addition 4459 * some fields already contain valid values, initialized in 4460 * ip_open(), before we reach here. 4461 */ 4462 mutex_init(&ill->ill_lock, NULL, MUTEX_DEFAULT, 0); 4463 4464 ill->ill_rq = q; 4465 ill->ill_wq = WR(q); 4466 4467 info_mp = allocb(MAX(sizeof (dl_info_req_t), sizeof (dl_info_ack_t)), 4468 BPRI_HI); 4469 if (info_mp == NULL) 4470 return (ENOMEM); 4471 4472 /* 4473 * Allocate sufficient space to contain our fragment hash table and 4474 * the device name. 4475 */ 4476 frag_ptr = (uchar_t *)mi_zalloc(ILL_FRAG_HASH_TBL_SIZE + 4477 2 * LIFNAMSIZ + 5 + strlen(ipv6_forward_suffix)); 4478 if (frag_ptr == NULL) { 4479 freemsg(info_mp); 4480 return (ENOMEM); 4481 } 4482 ill->ill_frag_ptr = frag_ptr; 4483 ill->ill_frag_free_num_pkts = 0; 4484 ill->ill_last_frag_clean_time = 0; 4485 ill->ill_frag_hash_tbl = (ipfb_t *)frag_ptr; 4486 ill->ill_name = (char *)(frag_ptr + ILL_FRAG_HASH_TBL_SIZE); 4487 for (count = 0; count < ILL_FRAG_HASH_TBL_COUNT; count++) { 4488 mutex_init(&ill->ill_frag_hash_tbl[count].ipfb_lock, 4489 NULL, MUTEX_DEFAULT, NULL); 4490 } 4491 4492 ill->ill_phyint = (phyint_t *)mi_zalloc(sizeof (phyint_t)); 4493 if (ill->ill_phyint == NULL) { 4494 freemsg(info_mp); 4495 mi_free(frag_ptr); 4496 return (ENOMEM); 4497 } 4498 4499 mutex_init(&ill->ill_phyint->phyint_lock, NULL, MUTEX_DEFAULT, 0); 4500 /* 4501 * For now pretend this is a v4 ill. We need to set phyint_ill* 4502 * at this point because of the following reason. If we can't 4503 * enter the ipsq at some point and cv_wait, the writer that 4504 * wakes us up tries to locate us using the list of all phyints 4505 * in an ipsq and the ills from the phyint thru the phyint_ill*. 4506 * If we don't set it now, we risk a missed wakeup. 4507 */ 4508 ill->ill_phyint->phyint_illv4 = ill; 4509 ill->ill_ppa = UINT_MAX; 4510 ill->ill_fastpath_list = &ill->ill_fastpath_list; 4511 4512 if (!ipsq_init(ill, B_TRUE)) { 4513 freemsg(info_mp); 4514 mi_free(frag_ptr); 4515 mi_free(ill->ill_phyint); 4516 return (ENOMEM); 4517 } 4518 4519 ill->ill_state_flags |= ILL_LL_SUBNET_PENDING; 4520 4521 /* Frag queue limit stuff */ 4522 ill->ill_frag_count = 0; 4523 ill->ill_ipf_gen = 0; 4524 4525 ill->ill_global_timer = INFINITY; 4526 ill->ill_mcast_v1_time = ill->ill_mcast_v2_time = 0; 4527 ill->ill_mcast_v1_tset = ill->ill_mcast_v2_tset = 0; 4528 ill->ill_mcast_rv = MCAST_DEF_ROBUSTNESS; 4529 ill->ill_mcast_qi = MCAST_DEF_QUERY_INTERVAL; 4530 4531 /* 4532 * Initialize IPv6 configuration variables. The IP module is always 4533 * opened as an IPv4 module. Instead tracking down the cases where 4534 * it switches to do ipv6, we'll just initialize the IPv6 configuration 4535 * here for convenience, this has no effect until the ill is set to do 4536 * IPv6. 4537 */ 4538 ill->ill_reachable_time = ND_REACHABLE_TIME; 4539 ill->ill_reachable_retrans_time = ND_RETRANS_TIMER; 4540 ill->ill_xmit_count = ND_MAX_MULTICAST_SOLICIT; 4541 ill->ill_max_buf = ND_MAX_Q; 4542 ill->ill_refcnt = 0; 4543 4544 /* Send down the Info Request to the driver. */ 4545 info_mp->b_datap->db_type = M_PCPROTO; 4546 dlir = (dl_info_req_t *)info_mp->b_rptr; 4547 info_mp->b_wptr = (uchar_t *)&dlir[1]; 4548 dlir->dl_primitive = DL_INFO_REQ; 4549 4550 ill->ill_dlpi_pending = DL_PRIM_INVAL; 4551 4552 qprocson(q); 4553 ill_dlpi_send(ill, info_mp); 4554 4555 return (0); 4556 } 4557 4558 /* 4559 * ill_dls_info 4560 * creates datalink socket info from the device. 4561 */ 4562 int 4563 ill_dls_info(struct sockaddr_dl *sdl, const ipif_t *ipif) 4564 { 4565 size_t len; 4566 ill_t *ill = ipif->ipif_ill; 4567 4568 sdl->sdl_family = AF_LINK; 4569 sdl->sdl_index = ill->ill_phyint->phyint_ifindex; 4570 sdl->sdl_type = ill->ill_type; 4571 ipif_get_name(ipif, sdl->sdl_data, sizeof (sdl->sdl_data)); 4572 len = strlen(sdl->sdl_data); 4573 ASSERT(len < 256); 4574 sdl->sdl_nlen = (uchar_t)len; 4575 sdl->sdl_alen = ill->ill_phys_addr_length; 4576 sdl->sdl_slen = 0; 4577 if (ill->ill_phys_addr_length != 0 && ill->ill_phys_addr != NULL) 4578 bcopy(ill->ill_phys_addr, &sdl->sdl_data[len], sdl->sdl_alen); 4579 4580 return (sizeof (struct sockaddr_dl)); 4581 } 4582 4583 /* 4584 * ill_xarp_info 4585 * creates xarp info from the device. 4586 */ 4587 static int 4588 ill_xarp_info(struct sockaddr_dl *sdl, ill_t *ill) 4589 { 4590 sdl->sdl_family = AF_LINK; 4591 sdl->sdl_index = ill->ill_phyint->phyint_ifindex; 4592 sdl->sdl_type = ill->ill_type; 4593 ipif_get_name(ill->ill_ipif, sdl->sdl_data, sizeof (sdl->sdl_data)); 4594 sdl->sdl_nlen = (uchar_t)mi_strlen(sdl->sdl_data); 4595 sdl->sdl_alen = ill->ill_phys_addr_length; 4596 sdl->sdl_slen = 0; 4597 return (sdl->sdl_nlen); 4598 } 4599 4600 static int 4601 loopback_kstat_update(kstat_t *ksp, int rw) 4602 { 4603 kstat_named_t *kn; 4604 netstackid_t stackid; 4605 netstack_t *ns; 4606 ip_stack_t *ipst; 4607 4608 if (ksp == NULL || ksp->ks_data == NULL) 4609 return (EIO); 4610 4611 if (rw == KSTAT_WRITE) 4612 return (EACCES); 4613 4614 kn = KSTAT_NAMED_PTR(ksp); 4615 stackid = (zoneid_t)(uintptr_t)ksp->ks_private; 4616 4617 ns = netstack_find_by_stackid(stackid); 4618 if (ns == NULL) 4619 return (-1); 4620 4621 ipst = ns->netstack_ip; 4622 if (ipst == NULL) { 4623 netstack_rele(ns); 4624 return (-1); 4625 } 4626 kn[0].value.ui32 = ipst->ips_loopback_packets; 4627 kn[1].value.ui32 = ipst->ips_loopback_packets; 4628 netstack_rele(ns); 4629 return (0); 4630 } 4631 4632 /* 4633 * Has ifindex been plumbed already? 4634 */ 4635 boolean_t 4636 phyint_exists(uint_t index, ip_stack_t *ipst) 4637 { 4638 ASSERT(index != 0); 4639 ASSERT(RW_LOCK_HELD(&ipst->ips_ill_g_lock)); 4640 4641 return (avl_find(&ipst->ips_phyint_g_list->phyint_list_avl_by_index, 4642 &index, NULL) != NULL); 4643 } 4644 4645 /* Pick a unique ifindex */ 4646 boolean_t 4647 ip_assign_ifindex(uint_t *indexp, ip_stack_t *ipst) 4648 { 4649 uint_t starting_index; 4650 4651 if (!ipst->ips_ill_index_wrap) { 4652 *indexp = ipst->ips_ill_index++; 4653 if (ipst->ips_ill_index == 0) { 4654 /* Reached the uint_t limit Next time wrap */ 4655 ipst->ips_ill_index_wrap = B_TRUE; 4656 } 4657 return (B_TRUE); 4658 } 4659 4660 /* 4661 * Start reusing unused indexes. Note that we hold the ill_g_lock 4662 * at this point and don't want to call any function that attempts 4663 * to get the lock again. 4664 */ 4665 starting_index = ipst->ips_ill_index++; 4666 for (; ipst->ips_ill_index != starting_index; ipst->ips_ill_index++) { 4667 if (ipst->ips_ill_index != 0 && 4668 !phyint_exists(ipst->ips_ill_index, ipst)) { 4669 /* found unused index - use it */ 4670 *indexp = ipst->ips_ill_index; 4671 return (B_TRUE); 4672 } 4673 } 4674 4675 /* 4676 * all interface indicies are inuse. 4677 */ 4678 return (B_FALSE); 4679 } 4680 4681 /* 4682 * Assign a unique interface index for the phyint. 4683 */ 4684 static boolean_t 4685 phyint_assign_ifindex(phyint_t *phyi, ip_stack_t *ipst) 4686 { 4687 ASSERT(phyi->phyint_ifindex == 0); 4688 return (ip_assign_ifindex(&phyi->phyint_ifindex, ipst)); 4689 } 4690 4691 /* 4692 * Initialize the flags on `phyi' as per the provided mactype. 4693 */ 4694 static void 4695 phyint_flags_init(phyint_t *phyi, t_uscalar_t mactype) 4696 { 4697 uint64_t flags = 0; 4698 4699 /* 4700 * Initialize PHYI_RUNNING and PHYI_FAILED. For non-IPMP interfaces, 4701 * we always presume the underlying hardware is working and set 4702 * PHYI_RUNNING (if it's not, the driver will subsequently send a 4703 * DL_NOTE_LINK_DOWN message). For IPMP interfaces, at initialization 4704 * there are no active interfaces in the group so we set PHYI_FAILED. 4705 */ 4706 if (mactype == SUNW_DL_IPMP) 4707 flags |= PHYI_FAILED; 4708 else 4709 flags |= PHYI_RUNNING; 4710 4711 switch (mactype) { 4712 case SUNW_DL_VNI: 4713 flags |= PHYI_VIRTUAL; 4714 break; 4715 case SUNW_DL_IPMP: 4716 flags |= PHYI_IPMP; 4717 break; 4718 case DL_LOOP: 4719 flags |= (PHYI_LOOPBACK | PHYI_VIRTUAL); 4720 break; 4721 } 4722 4723 mutex_enter(&phyi->phyint_lock); 4724 phyi->phyint_flags |= flags; 4725 mutex_exit(&phyi->phyint_lock); 4726 } 4727 4728 /* 4729 * Return a pointer to the ill which matches the supplied name. Note that 4730 * the ill name length includes the null termination character. (May be 4731 * called as writer.) 4732 * If do_alloc and the interface is "lo0" it will be automatically created. 4733 * Cannot bump up reference on condemned ills. So dup detect can't be done 4734 * using this func. 4735 */ 4736 ill_t * 4737 ill_lookup_on_name(char *name, boolean_t do_alloc, boolean_t isv6, 4738 queue_t *q, mblk_t *mp, ipsq_func_t func, int *error, boolean_t *did_alloc, 4739 ip_stack_t *ipst) 4740 { 4741 ill_t *ill; 4742 ipif_t *ipif; 4743 ipsq_t *ipsq; 4744 kstat_named_t *kn; 4745 boolean_t isloopback; 4746 in6_addr_t ov6addr; 4747 4748 isloopback = mi_strcmp(name, ipif_loopback_name) == 0; 4749 4750 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 4751 ill = ill_find_by_name(name, isv6, q, mp, func, error, ipst); 4752 rw_exit(&ipst->ips_ill_g_lock); 4753 if (ill != NULL || (error != NULL && *error == EINPROGRESS)) 4754 return (ill); 4755 4756 /* 4757 * Couldn't find it. Does this happen to be a lookup for the 4758 * loopback device and are we allowed to allocate it? 4759 */ 4760 if (!isloopback || !do_alloc) 4761 return (NULL); 4762 4763 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 4764 4765 ill = ill_find_by_name(name, isv6, q, mp, func, error, ipst); 4766 if (ill != NULL || (error != NULL && *error == EINPROGRESS)) { 4767 rw_exit(&ipst->ips_ill_g_lock); 4768 return (ill); 4769 } 4770 4771 /* Create the loopback device on demand */ 4772 ill = (ill_t *)(mi_alloc(sizeof (ill_t) + 4773 sizeof (ipif_loopback_name), BPRI_MED)); 4774 if (ill == NULL) 4775 goto done; 4776 4777 *ill = ill_null; 4778 mutex_init(&ill->ill_lock, NULL, MUTEX_DEFAULT, NULL); 4779 ill->ill_ipst = ipst; 4780 netstack_hold(ipst->ips_netstack); 4781 /* 4782 * For exclusive stacks we set the zoneid to zero 4783 * to make IP operate as if in the global zone. 4784 */ 4785 ill->ill_zoneid = GLOBAL_ZONEID; 4786 4787 ill->ill_phyint = (phyint_t *)mi_zalloc(sizeof (phyint_t)); 4788 if (ill->ill_phyint == NULL) 4789 goto done; 4790 4791 if (isv6) 4792 ill->ill_phyint->phyint_illv6 = ill; 4793 else 4794 ill->ill_phyint->phyint_illv4 = ill; 4795 mutex_init(&ill->ill_phyint->phyint_lock, NULL, MUTEX_DEFAULT, 0); 4796 phyint_flags_init(ill->ill_phyint, DL_LOOP); 4797 4798 ill->ill_max_frag = IP_LOOPBACK_MTU; 4799 /* Add room for tcp+ip headers */ 4800 if (isv6) { 4801 ill->ill_isv6 = B_TRUE; 4802 ill->ill_max_frag += IPV6_HDR_LEN + 20; /* for TCP */ 4803 } else { 4804 ill->ill_max_frag += IP_SIMPLE_HDR_LENGTH + 20; 4805 } 4806 if (!ill_allocate_mibs(ill)) 4807 goto done; 4808 ill->ill_max_mtu = ill->ill_max_frag; 4809 /* 4810 * ipif_loopback_name can't be pointed at directly because its used 4811 * by both the ipv4 and ipv6 interfaces. When the ill is removed 4812 * from the glist, ill_glist_delete() sets the first character of 4813 * ill_name to '\0'. 4814 */ 4815 ill->ill_name = (char *)ill + sizeof (*ill); 4816 (void) strcpy(ill->ill_name, ipif_loopback_name); 4817 ill->ill_name_length = sizeof (ipif_loopback_name); 4818 /* Set ill_dlpi_pending for ipsq_current_finish() to work properly */ 4819 ill->ill_dlpi_pending = DL_PRIM_INVAL; 4820 4821 ill->ill_global_timer = INFINITY; 4822 ill->ill_mcast_v1_time = ill->ill_mcast_v2_time = 0; 4823 ill->ill_mcast_v1_tset = ill->ill_mcast_v2_tset = 0; 4824 ill->ill_mcast_rv = MCAST_DEF_ROBUSTNESS; 4825 ill->ill_mcast_qi = MCAST_DEF_QUERY_INTERVAL; 4826 4827 /* No resolver here. */ 4828 ill->ill_net_type = IRE_LOOPBACK; 4829 4830 /* Initialize the ipsq */ 4831 if (!ipsq_init(ill, B_FALSE)) 4832 goto done; 4833 4834 ipif = ipif_allocate(ill, 0L, IRE_LOOPBACK, B_TRUE, B_TRUE); 4835 if (ipif == NULL) 4836 goto done; 4837 4838 ill->ill_flags = ILLF_MULTICAST; 4839 4840 ov6addr = ipif->ipif_v6lcl_addr; 4841 /* Set up default loopback address and mask. */ 4842 if (!isv6) { 4843 ipaddr_t inaddr_loopback = htonl(INADDR_LOOPBACK); 4844 4845 IN6_IPADDR_TO_V4MAPPED(inaddr_loopback, &ipif->ipif_v6lcl_addr); 4846 ipif->ipif_v6src_addr = ipif->ipif_v6lcl_addr; 4847 V4MASK_TO_V6(htonl(IN_CLASSA_NET), ipif->ipif_v6net_mask); 4848 V6_MASK_COPY(ipif->ipif_v6lcl_addr, ipif->ipif_v6net_mask, 4849 ipif->ipif_v6subnet); 4850 ill->ill_flags |= ILLF_IPV4; 4851 } else { 4852 ipif->ipif_v6lcl_addr = ipv6_loopback; 4853 ipif->ipif_v6src_addr = ipif->ipif_v6lcl_addr; 4854 ipif->ipif_v6net_mask = ipv6_all_ones; 4855 V6_MASK_COPY(ipif->ipif_v6lcl_addr, ipif->ipif_v6net_mask, 4856 ipif->ipif_v6subnet); 4857 ill->ill_flags |= ILLF_IPV6; 4858 } 4859 4860 /* 4861 * Chain us in at the end of the ill list. hold the ill 4862 * before we make it globally visible. 1 for the lookup. 4863 */ 4864 ill->ill_refcnt = 0; 4865 ill_refhold(ill); 4866 4867 ill->ill_frag_count = 0; 4868 ill->ill_frag_free_num_pkts = 0; 4869 ill->ill_last_frag_clean_time = 0; 4870 4871 ipsq = ill->ill_phyint->phyint_ipsq; 4872 4873 if (ill_glist_insert(ill, "lo", isv6) != 0) 4874 cmn_err(CE_PANIC, "cannot insert loopback interface"); 4875 4876 /* Let SCTP know so that it can add this to its list */ 4877 sctp_update_ill(ill, SCTP_ILL_INSERT); 4878 4879 /* 4880 * We have already assigned ipif_v6lcl_addr above, but we need to 4881 * call sctp_update_ipif_addr() after SCTP_ILL_INSERT, which 4882 * requires to be after ill_glist_insert() since we need the 4883 * ill_index set. Pass on ipv6_loopback as the old address. 4884 */ 4885 sctp_update_ipif_addr(ipif, ov6addr); 4886 4887 /* 4888 * ill_glist_insert() -> ill_phyint_reinit() may have merged IPSQs. 4889 * If so, free our original one. 4890 */ 4891 if (ipsq != ill->ill_phyint->phyint_ipsq) 4892 ipsq_delete(ipsq); 4893 4894 if (ipst->ips_loopback_ksp == NULL) { 4895 /* Export loopback interface statistics */ 4896 ipst->ips_loopback_ksp = kstat_create_netstack("lo", 0, 4897 ipif_loopback_name, "net", 4898 KSTAT_TYPE_NAMED, 2, 0, 4899 ipst->ips_netstack->netstack_stackid); 4900 if (ipst->ips_loopback_ksp != NULL) { 4901 ipst->ips_loopback_ksp->ks_update = 4902 loopback_kstat_update; 4903 kn = KSTAT_NAMED_PTR(ipst->ips_loopback_ksp); 4904 kstat_named_init(&kn[0], "ipackets", KSTAT_DATA_UINT32); 4905 kstat_named_init(&kn[1], "opackets", KSTAT_DATA_UINT32); 4906 ipst->ips_loopback_ksp->ks_private = 4907 (void *)(uintptr_t)ipst->ips_netstack-> 4908 netstack_stackid; 4909 kstat_install(ipst->ips_loopback_ksp); 4910 } 4911 } 4912 4913 if (error != NULL) 4914 *error = 0; 4915 *did_alloc = B_TRUE; 4916 rw_exit(&ipst->ips_ill_g_lock); 4917 ill_nic_event_dispatch(ill, MAP_IPIF_ID(ill->ill_ipif->ipif_id), 4918 NE_PLUMB, ill->ill_name, ill->ill_name_length); 4919 return (ill); 4920 done: 4921 if (ill != NULL) { 4922 if (ill->ill_phyint != NULL) { 4923 ipsq = ill->ill_phyint->phyint_ipsq; 4924 if (ipsq != NULL) { 4925 ipsq->ipsq_phyint = NULL; 4926 ipsq_delete(ipsq); 4927 } 4928 mi_free(ill->ill_phyint); 4929 } 4930 ill_free_mib(ill); 4931 if (ill->ill_ipst != NULL) 4932 netstack_rele(ill->ill_ipst->ips_netstack); 4933 mi_free(ill); 4934 } 4935 rw_exit(&ipst->ips_ill_g_lock); 4936 if (error != NULL) 4937 *error = ENOMEM; 4938 return (NULL); 4939 } 4940 4941 /* 4942 * For IPP calls - use the ip_stack_t for global stack. 4943 */ 4944 ill_t * 4945 ill_lookup_on_ifindex_global_instance(uint_t index, boolean_t isv6, 4946 queue_t *q, mblk_t *mp, ipsq_func_t func, int *err) 4947 { 4948 ip_stack_t *ipst; 4949 ill_t *ill; 4950 4951 ipst = netstack_find_by_stackid(GLOBAL_NETSTACKID)->netstack_ip; 4952 if (ipst == NULL) { 4953 cmn_err(CE_WARN, "No ip_stack_t for zoneid zero!\n"); 4954 return (NULL); 4955 } 4956 4957 ill = ill_lookup_on_ifindex(index, isv6, q, mp, func, err, ipst); 4958 netstack_rele(ipst->ips_netstack); 4959 return (ill); 4960 } 4961 4962 /* 4963 * Return a pointer to the ill which matches the index and IP version type. 4964 */ 4965 ill_t * 4966 ill_lookup_on_ifindex(uint_t index, boolean_t isv6, queue_t *q, mblk_t *mp, 4967 ipsq_func_t func, int *err, ip_stack_t *ipst) 4968 { 4969 ill_t *ill; 4970 ipsq_t *ipsq; 4971 phyint_t *phyi; 4972 4973 ASSERT((q == NULL && mp == NULL && func == NULL && err == NULL) || 4974 (q != NULL && mp != NULL && func != NULL && err != NULL)); 4975 4976 if (err != NULL) 4977 *err = 0; 4978 4979 /* 4980 * Indexes are stored in the phyint - a common structure 4981 * to both IPv4 and IPv6. 4982 */ 4983 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 4984 phyi = avl_find(&ipst->ips_phyint_g_list->phyint_list_avl_by_index, 4985 (void *) &index, NULL); 4986 if (phyi != NULL) { 4987 ill = isv6 ? phyi->phyint_illv6: phyi->phyint_illv4; 4988 if (ill != NULL) { 4989 /* 4990 * The block comment at the start of ipif_down 4991 * explains the use of the macros used below 4992 */ 4993 GRAB_CONN_LOCK(q); 4994 mutex_enter(&ill->ill_lock); 4995 if (ILL_CAN_LOOKUP(ill)) { 4996 ill_refhold_locked(ill); 4997 mutex_exit(&ill->ill_lock); 4998 RELEASE_CONN_LOCK(q); 4999 rw_exit(&ipst->ips_ill_g_lock); 5000 return (ill); 5001 } else if (ILL_CAN_WAIT(ill, q)) { 5002 ipsq = ill->ill_phyint->phyint_ipsq; 5003 mutex_enter(&ipsq->ipsq_lock); 5004 mutex_enter(&ipsq->ipsq_xop->ipx_lock); 5005 rw_exit(&ipst->ips_ill_g_lock); 5006 mutex_exit(&ill->ill_lock); 5007 ipsq_enq(ipsq, q, mp, func, NEW_OP, ill); 5008 mutex_exit(&ipsq->ipsq_xop->ipx_lock); 5009 mutex_exit(&ipsq->ipsq_lock); 5010 RELEASE_CONN_LOCK(q); 5011 if (err != NULL) 5012 *err = EINPROGRESS; 5013 return (NULL); 5014 } 5015 RELEASE_CONN_LOCK(q); 5016 mutex_exit(&ill->ill_lock); 5017 } 5018 } 5019 rw_exit(&ipst->ips_ill_g_lock); 5020 if (err != NULL) 5021 *err = ENXIO; 5022 return (NULL); 5023 } 5024 5025 /* 5026 * Return the ifindex next in sequence after the passed in ifindex. 5027 * If there is no next ifindex for the given protocol, return 0. 5028 */ 5029 uint_t 5030 ill_get_next_ifindex(uint_t index, boolean_t isv6, ip_stack_t *ipst) 5031 { 5032 phyint_t *phyi; 5033 phyint_t *phyi_initial; 5034 uint_t ifindex; 5035 5036 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 5037 5038 if (index == 0) { 5039 phyi = avl_first( 5040 &ipst->ips_phyint_g_list->phyint_list_avl_by_index); 5041 } else { 5042 phyi = phyi_initial = avl_find( 5043 &ipst->ips_phyint_g_list->phyint_list_avl_by_index, 5044 (void *) &index, NULL); 5045 } 5046 5047 for (; phyi != NULL; 5048 phyi = avl_walk(&ipst->ips_phyint_g_list->phyint_list_avl_by_index, 5049 phyi, AVL_AFTER)) { 5050 /* 5051 * If we're not returning the first interface in the tree 5052 * and we still haven't moved past the phyint_t that 5053 * corresponds to index, avl_walk needs to be called again 5054 */ 5055 if (!((index != 0) && (phyi == phyi_initial))) { 5056 if (isv6) { 5057 if ((phyi->phyint_illv6) && 5058 ILL_CAN_LOOKUP(phyi->phyint_illv6) && 5059 (phyi->phyint_illv6->ill_isv6 == 1)) 5060 break; 5061 } else { 5062 if ((phyi->phyint_illv4) && 5063 ILL_CAN_LOOKUP(phyi->phyint_illv4) && 5064 (phyi->phyint_illv4->ill_isv6 == 0)) 5065 break; 5066 } 5067 } 5068 } 5069 5070 rw_exit(&ipst->ips_ill_g_lock); 5071 5072 if (phyi != NULL) 5073 ifindex = phyi->phyint_ifindex; 5074 else 5075 ifindex = 0; 5076 5077 return (ifindex); 5078 } 5079 5080 /* 5081 * Return the ifindex for the named interface. 5082 * If there is no next ifindex for the interface, return 0. 5083 */ 5084 uint_t 5085 ill_get_ifindex_by_name(char *name, ip_stack_t *ipst) 5086 { 5087 phyint_t *phyi; 5088 avl_index_t where = 0; 5089 uint_t ifindex; 5090 5091 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 5092 5093 if ((phyi = avl_find(&ipst->ips_phyint_g_list->phyint_list_avl_by_name, 5094 name, &where)) == NULL) { 5095 rw_exit(&ipst->ips_ill_g_lock); 5096 return (0); 5097 } 5098 5099 ifindex = phyi->phyint_ifindex; 5100 5101 rw_exit(&ipst->ips_ill_g_lock); 5102 5103 return (ifindex); 5104 } 5105 5106 /* 5107 * Obtain a reference to the ill. The ill_refcnt is a dynamic refcnt 5108 * that gives a running thread a reference to the ill. This reference must be 5109 * released by the thread when it is done accessing the ill and related 5110 * objects. ill_refcnt can not be used to account for static references 5111 * such as other structures pointing to an ill. Callers must generally 5112 * check whether an ill can be refheld by using ILL_CAN_LOOKUP macros 5113 * or be sure that the ill is not being deleted or changing state before 5114 * calling the refhold functions. A non-zero ill_refcnt ensures that the 5115 * ill won't change any of its critical state such as address, netmask etc. 5116 */ 5117 void 5118 ill_refhold(ill_t *ill) 5119 { 5120 mutex_enter(&ill->ill_lock); 5121 ill->ill_refcnt++; 5122 ILL_TRACE_REF(ill); 5123 mutex_exit(&ill->ill_lock); 5124 } 5125 5126 void 5127 ill_refhold_locked(ill_t *ill) 5128 { 5129 ASSERT(MUTEX_HELD(&ill->ill_lock)); 5130 ill->ill_refcnt++; 5131 ILL_TRACE_REF(ill); 5132 } 5133 5134 int 5135 ill_check_and_refhold(ill_t *ill) 5136 { 5137 mutex_enter(&ill->ill_lock); 5138 if (ILL_CAN_LOOKUP(ill)) { 5139 ill_refhold_locked(ill); 5140 mutex_exit(&ill->ill_lock); 5141 return (0); 5142 } 5143 mutex_exit(&ill->ill_lock); 5144 return (ILL_LOOKUP_FAILED); 5145 } 5146 5147 /* 5148 * Must not be called while holding any locks. Otherwise if this is 5149 * the last reference to be released, there is a chance of recursive mutex 5150 * panic due to ill_refrele -> ipif_ill_refrele_tail -> qwriter_ip trying 5151 * to restart an ioctl. 5152 */ 5153 void 5154 ill_refrele(ill_t *ill) 5155 { 5156 mutex_enter(&ill->ill_lock); 5157 ASSERT(ill->ill_refcnt != 0); 5158 ill->ill_refcnt--; 5159 ILL_UNTRACE_REF(ill); 5160 if (ill->ill_refcnt != 0) { 5161 /* Every ire pointing to the ill adds 1 to ill_refcnt */ 5162 mutex_exit(&ill->ill_lock); 5163 return; 5164 } 5165 5166 /* Drops the ill_lock */ 5167 ipif_ill_refrele_tail(ill); 5168 } 5169 5170 /* 5171 * Obtain a weak reference count on the ill. This reference ensures the 5172 * ill won't be freed, but the ill may change any of its critical state 5173 * such as netmask, address etc. Returns an error if the ill has started 5174 * closing. 5175 */ 5176 boolean_t 5177 ill_waiter_inc(ill_t *ill) 5178 { 5179 mutex_enter(&ill->ill_lock); 5180 if (ill->ill_state_flags & ILL_CONDEMNED) { 5181 mutex_exit(&ill->ill_lock); 5182 return (B_FALSE); 5183 } 5184 ill->ill_waiters++; 5185 mutex_exit(&ill->ill_lock); 5186 return (B_TRUE); 5187 } 5188 5189 void 5190 ill_waiter_dcr(ill_t *ill) 5191 { 5192 mutex_enter(&ill->ill_lock); 5193 ill->ill_waiters--; 5194 if (ill->ill_waiters == 0) 5195 cv_broadcast(&ill->ill_cv); 5196 mutex_exit(&ill->ill_lock); 5197 } 5198 5199 /* 5200 * ip_ll_subnet_defaults is called when we get the DL_INFO_ACK back from the 5201 * driver. We construct best guess defaults for lower level information that 5202 * we need. If an interface is brought up without injection of any overriding 5203 * information from outside, we have to be ready to go with these defaults. 5204 * When we get the first DL_INFO_ACK (from ip_open() sending a DL_INFO_REQ) 5205 * we primarely want the dl_provider_style. 5206 * The subsequent DL_INFO_ACK is received after doing a DL_ATTACH and DL_BIND 5207 * at which point we assume the other part of the information is valid. 5208 */ 5209 void 5210 ip_ll_subnet_defaults(ill_t *ill, mblk_t *mp) 5211 { 5212 uchar_t *brdcst_addr; 5213 uint_t brdcst_addr_length, phys_addr_length; 5214 t_scalar_t sap_length; 5215 dl_info_ack_t *dlia; 5216 ip_m_t *ipm; 5217 dl_qos_cl_sel1_t *sel1; 5218 int min_mtu; 5219 5220 ASSERT(IAM_WRITER_ILL(ill)); 5221 5222 /* 5223 * Till the ill is fully up ILL_CHANGING will be set and 5224 * the ill is not globally visible. So no need for a lock. 5225 */ 5226 dlia = (dl_info_ack_t *)mp->b_rptr; 5227 ill->ill_mactype = dlia->dl_mac_type; 5228 5229 ipm = ip_m_lookup(dlia->dl_mac_type); 5230 if (ipm == NULL) { 5231 ipm = ip_m_lookup(DL_OTHER); 5232 ASSERT(ipm != NULL); 5233 } 5234 ill->ill_media = ipm; 5235 5236 /* 5237 * When the new DLPI stuff is ready we'll pull lengths 5238 * from dlia. 5239 */ 5240 if (dlia->dl_version == DL_VERSION_2) { 5241 brdcst_addr_length = dlia->dl_brdcst_addr_length; 5242 brdcst_addr = mi_offset_param(mp, dlia->dl_brdcst_addr_offset, 5243 brdcst_addr_length); 5244 if (brdcst_addr == NULL) { 5245 brdcst_addr_length = 0; 5246 } 5247 sap_length = dlia->dl_sap_length; 5248 phys_addr_length = dlia->dl_addr_length - ABS(sap_length); 5249 ip1dbg(("ip: bcast_len %d, sap_len %d, phys_len %d\n", 5250 brdcst_addr_length, sap_length, phys_addr_length)); 5251 } else { 5252 brdcst_addr_length = 6; 5253 brdcst_addr = ip_six_byte_all_ones; 5254 sap_length = -2; 5255 phys_addr_length = brdcst_addr_length; 5256 } 5257 5258 ill->ill_bcast_addr_length = brdcst_addr_length; 5259 ill->ill_phys_addr_length = phys_addr_length; 5260 ill->ill_sap_length = sap_length; 5261 5262 /* 5263 * Synthetic DLPI types such as SUNW_DL_IPMP specify a zero SDU, 5264 * but we must ensure a minimum IP MTU is used since other bits of 5265 * IP will fly apart otherwise. 5266 */ 5267 min_mtu = ill->ill_isv6 ? IPV6_MIN_MTU : IP_MIN_MTU; 5268 ill->ill_max_frag = MAX(min_mtu, dlia->dl_max_sdu); 5269 ill->ill_max_mtu = ill->ill_max_frag; 5270 5271 ill->ill_type = ipm->ip_m_type; 5272 5273 if (!ill->ill_dlpi_style_set) { 5274 if (dlia->dl_provider_style == DL_STYLE2) 5275 ill->ill_needs_attach = 1; 5276 5277 phyint_flags_init(ill->ill_phyint, ill->ill_mactype); 5278 5279 /* 5280 * Allocate the first ipif on this ill. We don't delay it 5281 * further as ioctl handling assumes at least one ipif exists. 5282 * 5283 * At this point we don't know whether the ill is v4 or v6. 5284 * We will know this whan the SIOCSLIFNAME happens and 5285 * the correct value for ill_isv6 will be assigned in 5286 * ipif_set_values(). We need to hold the ill lock and 5287 * clear the ILL_LL_SUBNET_PENDING flag and atomically do 5288 * the wakeup. 5289 */ 5290 (void) ipif_allocate(ill, 0, IRE_LOCAL, 5291 dlia->dl_provider_style != DL_STYLE2, B_TRUE); 5292 mutex_enter(&ill->ill_lock); 5293 ASSERT(ill->ill_dlpi_style_set == 0); 5294 ill->ill_dlpi_style_set = 1; 5295 ill->ill_state_flags &= ~ILL_LL_SUBNET_PENDING; 5296 cv_broadcast(&ill->ill_cv); 5297 mutex_exit(&ill->ill_lock); 5298 freemsg(mp); 5299 return; 5300 } 5301 ASSERT(ill->ill_ipif != NULL); 5302 /* 5303 * We know whether it is IPv4 or IPv6 now, as this is the 5304 * second DL_INFO_ACK we are recieving in response to the 5305 * DL_INFO_REQ sent in ipif_set_values. 5306 */ 5307 if (ill->ill_isv6) 5308 ill->ill_sap = IP6_DL_SAP; 5309 else 5310 ill->ill_sap = IP_DL_SAP; 5311 /* 5312 * Set ipif_mtu which is used to set the IRE's 5313 * ire_max_frag value. The driver could have sent 5314 * a different mtu from what it sent last time. No 5315 * need to call ipif_mtu_change because IREs have 5316 * not yet been created. 5317 */ 5318 ill->ill_ipif->ipif_mtu = ill->ill_max_mtu; 5319 /* 5320 * Clear all the flags that were set based on ill_bcast_addr_length 5321 * and ill_phys_addr_length (in ipif_set_values) as these could have 5322 * changed now and we need to re-evaluate. 5323 */ 5324 ill->ill_flags &= ~(ILLF_MULTICAST | ILLF_NONUD | ILLF_NOARP); 5325 ill->ill_ipif->ipif_flags &= ~(IPIF_BROADCAST | IPIF_POINTOPOINT); 5326 5327 /* 5328 * Free ill_resolver_mp and ill_bcast_mp as things could have 5329 * changed now. 5330 * 5331 * NOTE: The IPMP meta-interface is special-cased because it starts 5332 * with no underlying interfaces (and thus an unknown broadcast 5333 * address length), but we enforce that an interface is broadcast- 5334 * capable as part of allowing it to join a group. 5335 */ 5336 if (ill->ill_bcast_addr_length == 0 && !IS_IPMP(ill)) { 5337 if (ill->ill_resolver_mp != NULL) 5338 freemsg(ill->ill_resolver_mp); 5339 if (ill->ill_bcast_mp != NULL) 5340 freemsg(ill->ill_bcast_mp); 5341 if (ill->ill_flags & ILLF_XRESOLV) 5342 ill->ill_net_type = IRE_IF_RESOLVER; 5343 else 5344 ill->ill_net_type = IRE_IF_NORESOLVER; 5345 ill->ill_resolver_mp = ill_dlur_gen(NULL, 5346 ill->ill_phys_addr_length, 5347 ill->ill_sap, 5348 ill->ill_sap_length); 5349 ill->ill_bcast_mp = copymsg(ill->ill_resolver_mp); 5350 5351 if (ill->ill_isv6) 5352 /* 5353 * Note: xresolv interfaces will eventually need NOARP 5354 * set here as well, but that will require those 5355 * external resolvers to have some knowledge of 5356 * that flag and act appropriately. Not to be changed 5357 * at present. 5358 */ 5359 ill->ill_flags |= ILLF_NONUD; 5360 else 5361 ill->ill_flags |= ILLF_NOARP; 5362 5363 if (ill->ill_phys_addr_length == 0) { 5364 if (ill->ill_media->ip_m_mac_type == SUNW_DL_VNI) { 5365 ill->ill_ipif->ipif_flags |= IPIF_NOXMIT; 5366 } else { 5367 /* pt-pt supports multicast. */ 5368 ill->ill_flags |= ILLF_MULTICAST; 5369 ill->ill_ipif->ipif_flags |= IPIF_POINTOPOINT; 5370 } 5371 } 5372 } else { 5373 ill->ill_net_type = IRE_IF_RESOLVER; 5374 if (ill->ill_bcast_mp != NULL) 5375 freemsg(ill->ill_bcast_mp); 5376 ill->ill_bcast_mp = ill_dlur_gen(brdcst_addr, 5377 ill->ill_bcast_addr_length, ill->ill_sap, 5378 ill->ill_sap_length); 5379 /* 5380 * Later detect lack of DLPI driver multicast 5381 * capability by catching DL_ENABMULTI errors in 5382 * ip_rput_dlpi. 5383 */ 5384 ill->ill_flags |= ILLF_MULTICAST; 5385 if (!ill->ill_isv6) 5386 ill->ill_ipif->ipif_flags |= IPIF_BROADCAST; 5387 } 5388 5389 /* For IPMP, PHYI_IPMP should already be set by phyint_flags_init() */ 5390 if (ill->ill_mactype == SUNW_DL_IPMP) 5391 ASSERT(ill->ill_phyint->phyint_flags & PHYI_IPMP); 5392 5393 /* By default an interface does not support any CoS marking */ 5394 ill->ill_flags &= ~ILLF_COS_ENABLED; 5395 5396 /* 5397 * If we get QoS information in DL_INFO_ACK, the device supports 5398 * some form of CoS marking, set ILLF_COS_ENABLED. 5399 */ 5400 sel1 = (dl_qos_cl_sel1_t *)mi_offset_param(mp, dlia->dl_qos_offset, 5401 dlia->dl_qos_length); 5402 if ((sel1 != NULL) && (sel1->dl_qos_type == DL_QOS_CL_SEL1)) { 5403 ill->ill_flags |= ILLF_COS_ENABLED; 5404 } 5405 5406 /* Clear any previous error indication. */ 5407 ill->ill_error = 0; 5408 freemsg(mp); 5409 } 5410 5411 /* 5412 * Perform various checks to verify that an address would make sense as a 5413 * local, remote, or subnet interface address. 5414 */ 5415 static boolean_t 5416 ip_addr_ok_v4(ipaddr_t addr, ipaddr_t subnet_mask) 5417 { 5418 ipaddr_t net_mask; 5419 5420 /* 5421 * Don't allow all zeroes, or all ones, but allow 5422 * all ones netmask. 5423 */ 5424 if ((net_mask = ip_net_mask(addr)) == 0) 5425 return (B_FALSE); 5426 /* A given netmask overrides the "guess" netmask */ 5427 if (subnet_mask != 0) 5428 net_mask = subnet_mask; 5429 if ((net_mask != ~(ipaddr_t)0) && ((addr == (addr & net_mask)) || 5430 (addr == (addr | ~net_mask)))) { 5431 return (B_FALSE); 5432 } 5433 5434 /* 5435 * Even if the netmask is all ones, we do not allow address to be 5436 * 255.255.255.255 5437 */ 5438 if (addr == INADDR_BROADCAST) 5439 return (B_FALSE); 5440 5441 if (CLASSD(addr)) 5442 return (B_FALSE); 5443 5444 return (B_TRUE); 5445 } 5446 5447 #define V6_IPIF_LINKLOCAL(p) \ 5448 IN6_IS_ADDR_LINKLOCAL(&(p)->ipif_v6lcl_addr) 5449 5450 /* 5451 * Compare two given ipifs and check if the second one is better than 5452 * the first one using the order of preference (not taking deprecated 5453 * into acount) specified in ipif_lookup_multicast(). 5454 */ 5455 static boolean_t 5456 ipif_comp_multi(ipif_t *old_ipif, ipif_t *new_ipif, boolean_t isv6) 5457 { 5458 /* Check the least preferred first. */ 5459 if (IS_LOOPBACK(old_ipif->ipif_ill)) { 5460 /* If both ipifs are the same, use the first one. */ 5461 if (IS_LOOPBACK(new_ipif->ipif_ill)) 5462 return (B_FALSE); 5463 else 5464 return (B_TRUE); 5465 } 5466 5467 /* For IPv6, check for link local address. */ 5468 if (isv6 && V6_IPIF_LINKLOCAL(old_ipif)) { 5469 if (IS_LOOPBACK(new_ipif->ipif_ill) || 5470 V6_IPIF_LINKLOCAL(new_ipif)) { 5471 /* The second one is equal or less preferred. */ 5472 return (B_FALSE); 5473 } else { 5474 return (B_TRUE); 5475 } 5476 } 5477 5478 /* Then check for point to point interface. */ 5479 if (old_ipif->ipif_flags & IPIF_POINTOPOINT) { 5480 if (IS_LOOPBACK(new_ipif->ipif_ill) || 5481 (isv6 && V6_IPIF_LINKLOCAL(new_ipif)) || 5482 (new_ipif->ipif_flags & IPIF_POINTOPOINT)) { 5483 return (B_FALSE); 5484 } else { 5485 return (B_TRUE); 5486 } 5487 } 5488 5489 /* old_ipif is a normal interface, so no need to use the new one. */ 5490 return (B_FALSE); 5491 } 5492 5493 /* 5494 * Find a mulitcast-capable ipif given an IP instance and zoneid. 5495 * The ipif must be up, and its ill must multicast-capable, not 5496 * condemned, not an underlying interface in an IPMP group, and 5497 * not a VNI interface. Order of preference: 5498 * 5499 * 1a. normal 5500 * 1b. normal, but deprecated 5501 * 2a. point to point 5502 * 2b. point to point, but deprecated 5503 * 3a. link local 5504 * 3b. link local, but deprecated 5505 * 4. loopback. 5506 */ 5507 ipif_t * 5508 ipif_lookup_multicast(ip_stack_t *ipst, zoneid_t zoneid, boolean_t isv6) 5509 { 5510 ill_t *ill; 5511 ill_walk_context_t ctx; 5512 ipif_t *ipif; 5513 ipif_t *saved_ipif = NULL; 5514 ipif_t *dep_ipif = NULL; 5515 5516 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 5517 if (isv6) 5518 ill = ILL_START_WALK_V6(&ctx, ipst); 5519 else 5520 ill = ILL_START_WALK_V4(&ctx, ipst); 5521 5522 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 5523 mutex_enter(&ill->ill_lock); 5524 if (IS_VNI(ill) || IS_UNDER_IPMP(ill) || !ILL_CAN_LOOKUP(ill) || 5525 !(ill->ill_flags & ILLF_MULTICAST)) { 5526 mutex_exit(&ill->ill_lock); 5527 continue; 5528 } 5529 for (ipif = ill->ill_ipif; ipif != NULL; 5530 ipif = ipif->ipif_next) { 5531 if (zoneid != ipif->ipif_zoneid && 5532 zoneid != ALL_ZONES && 5533 ipif->ipif_zoneid != ALL_ZONES) { 5534 continue; 5535 } 5536 if (!(ipif->ipif_flags & IPIF_UP) || 5537 !IPIF_CAN_LOOKUP(ipif)) { 5538 continue; 5539 } 5540 5541 /* 5542 * Found one candidate. If it is deprecated, 5543 * remember it in dep_ipif. If it is not deprecated, 5544 * remember it in saved_ipif. 5545 */ 5546 if (ipif->ipif_flags & IPIF_DEPRECATED) { 5547 if (dep_ipif == NULL) { 5548 dep_ipif = ipif; 5549 } else if (ipif_comp_multi(dep_ipif, ipif, 5550 isv6)) { 5551 /* 5552 * If the previous dep_ipif does not 5553 * belong to the same ill, we've done 5554 * a ipif_refhold() on it. So we need 5555 * to release it. 5556 */ 5557 if (dep_ipif->ipif_ill != ill) 5558 ipif_refrele(dep_ipif); 5559 dep_ipif = ipif; 5560 } 5561 continue; 5562 } 5563 if (saved_ipif == NULL) { 5564 saved_ipif = ipif; 5565 } else { 5566 if (ipif_comp_multi(saved_ipif, ipif, isv6)) { 5567 if (saved_ipif->ipif_ill != ill) 5568 ipif_refrele(saved_ipif); 5569 saved_ipif = ipif; 5570 } 5571 } 5572 } 5573 /* 5574 * Before going to the next ill, do a ipif_refhold() on the 5575 * saved ones. 5576 */ 5577 if (saved_ipif != NULL && saved_ipif->ipif_ill == ill) 5578 ipif_refhold_locked(saved_ipif); 5579 if (dep_ipif != NULL && dep_ipif->ipif_ill == ill) 5580 ipif_refhold_locked(dep_ipif); 5581 mutex_exit(&ill->ill_lock); 5582 } 5583 rw_exit(&ipst->ips_ill_g_lock); 5584 5585 /* 5586 * If we have only the saved_ipif, return it. But if we have both 5587 * saved_ipif and dep_ipif, check to see which one is better. 5588 */ 5589 if (saved_ipif != NULL) { 5590 if (dep_ipif != NULL) { 5591 if (ipif_comp_multi(saved_ipif, dep_ipif, isv6)) { 5592 ipif_refrele(saved_ipif); 5593 return (dep_ipif); 5594 } else { 5595 ipif_refrele(dep_ipif); 5596 return (saved_ipif); 5597 } 5598 } 5599 return (saved_ipif); 5600 } else { 5601 return (dep_ipif); 5602 } 5603 } 5604 5605 /* 5606 * This function is called when an application does not specify an interface 5607 * to be used for multicast traffic (joining a group/sending data). It 5608 * calls ire_lookup_multi() to look for an interface route for the 5609 * specified multicast group. Doing this allows the administrator to add 5610 * prefix routes for multicast to indicate which interface to be used for 5611 * multicast traffic in the above scenario. The route could be for all 5612 * multicast (224.0/4), for a single multicast group (a /32 route) or 5613 * anything in between. If there is no such multicast route, we just find 5614 * any multicast capable interface and return it. The returned ipif 5615 * is refhold'ed. 5616 */ 5617 ipif_t * 5618 ipif_lookup_group(ipaddr_t group, zoneid_t zoneid, ip_stack_t *ipst) 5619 { 5620 ire_t *ire; 5621 ipif_t *ipif; 5622 5623 ire = ire_lookup_multi(group, zoneid, ipst); 5624 if (ire != NULL) { 5625 ipif = ire->ire_ipif; 5626 ipif_refhold(ipif); 5627 ire_refrele(ire); 5628 return (ipif); 5629 } 5630 5631 return (ipif_lookup_multicast(ipst, zoneid, B_FALSE)); 5632 } 5633 5634 /* 5635 * Look for an ipif with the specified interface address and destination. 5636 * The destination address is used only for matching point-to-point interfaces. 5637 */ 5638 ipif_t * 5639 ipif_lookup_interface(ipaddr_t if_addr, ipaddr_t dst, queue_t *q, mblk_t *mp, 5640 ipsq_func_t func, int *error, ip_stack_t *ipst) 5641 { 5642 ipif_t *ipif; 5643 ill_t *ill; 5644 ill_walk_context_t ctx; 5645 ipsq_t *ipsq; 5646 5647 if (error != NULL) 5648 *error = 0; 5649 5650 /* 5651 * First match all the point-to-point interfaces 5652 * before looking at non-point-to-point interfaces. 5653 * This is done to avoid returning non-point-to-point 5654 * ipif instead of unnumbered point-to-point ipif. 5655 */ 5656 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 5657 ill = ILL_START_WALK_V4(&ctx, ipst); 5658 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 5659 GRAB_CONN_LOCK(q); 5660 mutex_enter(&ill->ill_lock); 5661 for (ipif = ill->ill_ipif; ipif != NULL; 5662 ipif = ipif->ipif_next) { 5663 /* Allow the ipif to be down */ 5664 if ((ipif->ipif_flags & IPIF_POINTOPOINT) && 5665 (ipif->ipif_lcl_addr == if_addr) && 5666 (ipif->ipif_pp_dst_addr == dst)) { 5667 /* 5668 * The block comment at the start of ipif_down 5669 * explains the use of the macros used below 5670 */ 5671 if (IPIF_CAN_LOOKUP(ipif)) { 5672 ipif_refhold_locked(ipif); 5673 mutex_exit(&ill->ill_lock); 5674 RELEASE_CONN_LOCK(q); 5675 rw_exit(&ipst->ips_ill_g_lock); 5676 return (ipif); 5677 } else if (IPIF_CAN_WAIT(ipif, q)) { 5678 ipsq = ill->ill_phyint->phyint_ipsq; 5679 mutex_enter(&ipsq->ipsq_lock); 5680 mutex_enter(&ipsq->ipsq_xop->ipx_lock); 5681 mutex_exit(&ill->ill_lock); 5682 rw_exit(&ipst->ips_ill_g_lock); 5683 ipsq_enq(ipsq, q, mp, func, NEW_OP, 5684 ill); 5685 mutex_exit(&ipsq->ipsq_xop->ipx_lock); 5686 mutex_exit(&ipsq->ipsq_lock); 5687 RELEASE_CONN_LOCK(q); 5688 if (error != NULL) 5689 *error = EINPROGRESS; 5690 return (NULL); 5691 } 5692 } 5693 } 5694 mutex_exit(&ill->ill_lock); 5695 RELEASE_CONN_LOCK(q); 5696 } 5697 rw_exit(&ipst->ips_ill_g_lock); 5698 5699 /* lookup the ipif based on interface address */ 5700 ipif = ipif_lookup_addr(if_addr, NULL, ALL_ZONES, q, mp, func, error, 5701 ipst); 5702 ASSERT(ipif == NULL || !ipif->ipif_isv6); 5703 return (ipif); 5704 } 5705 5706 /* 5707 * Common function for ipif_lookup_addr() and ipif_lookup_addr_exact(). 5708 */ 5709 static ipif_t * 5710 ipif_lookup_addr_common(ipaddr_t addr, ill_t *match_ill, boolean_t match_illgrp, 5711 zoneid_t zoneid, queue_t *q, mblk_t *mp, ipsq_func_t func, int *error, 5712 ip_stack_t *ipst) 5713 { 5714 ipif_t *ipif; 5715 ill_t *ill; 5716 boolean_t ptp = B_FALSE; 5717 ipsq_t *ipsq; 5718 ill_walk_context_t ctx; 5719 5720 if (error != NULL) 5721 *error = 0; 5722 5723 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 5724 /* 5725 * Repeat twice, first based on local addresses and 5726 * next time for pointopoint. 5727 */ 5728 repeat: 5729 ill = ILL_START_WALK_V4(&ctx, ipst); 5730 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 5731 if (match_ill != NULL && ill != match_ill && 5732 (!match_illgrp || !IS_IN_SAME_ILLGRP(ill, match_ill))) { 5733 continue; 5734 } 5735 GRAB_CONN_LOCK(q); 5736 mutex_enter(&ill->ill_lock); 5737 for (ipif = ill->ill_ipif; ipif != NULL; 5738 ipif = ipif->ipif_next) { 5739 if (zoneid != ALL_ZONES && 5740 zoneid != ipif->ipif_zoneid && 5741 ipif->ipif_zoneid != ALL_ZONES) 5742 continue; 5743 /* Allow the ipif to be down */ 5744 if ((!ptp && (ipif->ipif_lcl_addr == addr) && 5745 ((ipif->ipif_flags & IPIF_UNNUMBERED) == 0)) || 5746 (ptp && (ipif->ipif_flags & IPIF_POINTOPOINT) && 5747 (ipif->ipif_pp_dst_addr == addr))) { 5748 /* 5749 * The block comment at the start of ipif_down 5750 * explains the use of the macros used below 5751 */ 5752 if (IPIF_CAN_LOOKUP(ipif)) { 5753 ipif_refhold_locked(ipif); 5754 mutex_exit(&ill->ill_lock); 5755 RELEASE_CONN_LOCK(q); 5756 rw_exit(&ipst->ips_ill_g_lock); 5757 return (ipif); 5758 } else if (IPIF_CAN_WAIT(ipif, q)) { 5759 ipsq = ill->ill_phyint->phyint_ipsq; 5760 mutex_enter(&ipsq->ipsq_lock); 5761 mutex_enter(&ipsq->ipsq_xop->ipx_lock); 5762 mutex_exit(&ill->ill_lock); 5763 rw_exit(&ipst->ips_ill_g_lock); 5764 ipsq_enq(ipsq, q, mp, func, NEW_OP, 5765 ill); 5766 mutex_exit(&ipsq->ipsq_xop->ipx_lock); 5767 mutex_exit(&ipsq->ipsq_lock); 5768 RELEASE_CONN_LOCK(q); 5769 if (error != NULL) 5770 *error = EINPROGRESS; 5771 return (NULL); 5772 } 5773 } 5774 } 5775 mutex_exit(&ill->ill_lock); 5776 RELEASE_CONN_LOCK(q); 5777 } 5778 5779 /* If we already did the ptp case, then we are done */ 5780 if (ptp) { 5781 rw_exit(&ipst->ips_ill_g_lock); 5782 if (error != NULL) 5783 *error = ENXIO; 5784 return (NULL); 5785 } 5786 ptp = B_TRUE; 5787 goto repeat; 5788 } 5789 5790 /* 5791 * Check if the address exists in the system. 5792 * We don't hold the conn_lock as we will not perform defered ipsqueue 5793 * operation. 5794 */ 5795 boolean_t 5796 ip_addr_exists(ipaddr_t addr, zoneid_t zoneid, ip_stack_t *ipst) 5797 { 5798 ipif_t *ipif; 5799 ill_t *ill; 5800 ill_walk_context_t ctx; 5801 5802 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 5803 5804 ill = ILL_START_WALK_V4(&ctx, ipst); 5805 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 5806 mutex_enter(&ill->ill_lock); 5807 for (ipif = ill->ill_ipif; ipif != NULL; 5808 ipif = ipif->ipif_next) { 5809 if (zoneid != ALL_ZONES && 5810 zoneid != ipif->ipif_zoneid && 5811 ipif->ipif_zoneid != ALL_ZONES) 5812 continue; 5813 /* Allow the ipif to be down */ 5814 /* 5815 * XXX Different from ipif_lookup_addr(), we don't do 5816 * twice lookups. As from bind()'s point of view, we 5817 * may return once we find a match. 5818 */ 5819 if (((ipif->ipif_lcl_addr == addr) && 5820 ((ipif->ipif_flags & IPIF_UNNUMBERED) == 0)) || 5821 ((ipif->ipif_flags & IPIF_POINTOPOINT) && 5822 (ipif->ipif_pp_dst_addr == addr))) { 5823 /* 5824 * Allow bind() to be successful even if the 5825 * ipif is with IPIF_CHANGING bit set. 5826 */ 5827 mutex_exit(&ill->ill_lock); 5828 rw_exit(&ipst->ips_ill_g_lock); 5829 return (B_TRUE); 5830 } 5831 } 5832 mutex_exit(&ill->ill_lock); 5833 } 5834 5835 rw_exit(&ipst->ips_ill_g_lock); 5836 return (B_FALSE); 5837 } 5838 5839 /* 5840 * Lookup an ipif with the specified address. For point-to-point links we 5841 * look for matches on either the destination address or the local address, 5842 * but we skip the local address check if IPIF_UNNUMBERED is set. If the 5843 * `match_ill' argument is non-NULL, the lookup is restricted to that ill 5844 * (or illgrp if `match_ill' is in an IPMP group). 5845 */ 5846 ipif_t * 5847 ipif_lookup_addr(ipaddr_t addr, ill_t *match_ill, zoneid_t zoneid, queue_t *q, 5848 mblk_t *mp, ipsq_func_t func, int *error, ip_stack_t *ipst) 5849 { 5850 return (ipif_lookup_addr_common(addr, match_ill, B_TRUE, zoneid, q, mp, 5851 func, error, ipst)); 5852 } 5853 5854 /* 5855 * Special abbreviated version of ipif_lookup_addr() that doesn't match 5856 * `match_ill' across the IPMP group. This function is only needed in some 5857 * corner-cases; almost everything should use ipif_lookup_addr(). 5858 */ 5859 static ipif_t * 5860 ipif_lookup_addr_exact(ipaddr_t addr, ill_t *match_ill, ip_stack_t *ipst) 5861 { 5862 ASSERT(match_ill != NULL); 5863 return (ipif_lookup_addr_common(addr, match_ill, B_FALSE, ALL_ZONES, 5864 NULL, NULL, NULL, NULL, ipst)); 5865 } 5866 5867 /* 5868 * Look for an ipif with the specified address. For point-point links 5869 * we look for matches on either the destination address and the local 5870 * address, but we ignore the check on the local address if IPIF_UNNUMBERED 5871 * is set. 5872 * If the `match_ill' argument is non-NULL, the lookup is restricted to that 5873 * ill (or illgrp if `match_ill' is in an IPMP group). 5874 * Return the zoneid for the ipif which matches. ALL_ZONES if no match. 5875 */ 5876 zoneid_t 5877 ipif_lookup_addr_zoneid(ipaddr_t addr, ill_t *match_ill, ip_stack_t *ipst) 5878 { 5879 zoneid_t zoneid; 5880 ipif_t *ipif; 5881 ill_t *ill; 5882 boolean_t ptp = B_FALSE; 5883 ill_walk_context_t ctx; 5884 5885 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 5886 /* 5887 * Repeat twice, first based on local addresses and 5888 * next time for pointopoint. 5889 */ 5890 repeat: 5891 ill = ILL_START_WALK_V4(&ctx, ipst); 5892 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 5893 if (match_ill != NULL && ill != match_ill && 5894 !IS_IN_SAME_ILLGRP(ill, match_ill)) { 5895 continue; 5896 } 5897 mutex_enter(&ill->ill_lock); 5898 for (ipif = ill->ill_ipif; ipif != NULL; 5899 ipif = ipif->ipif_next) { 5900 /* Allow the ipif to be down */ 5901 if ((!ptp && (ipif->ipif_lcl_addr == addr) && 5902 ((ipif->ipif_flags & IPIF_UNNUMBERED) == 0)) || 5903 (ptp && (ipif->ipif_flags & IPIF_POINTOPOINT) && 5904 (ipif->ipif_pp_dst_addr == addr)) && 5905 !(ipif->ipif_state_flags & IPIF_CONDEMNED)) { 5906 zoneid = ipif->ipif_zoneid; 5907 mutex_exit(&ill->ill_lock); 5908 rw_exit(&ipst->ips_ill_g_lock); 5909 /* 5910 * If ipif_zoneid was ALL_ZONES then we have 5911 * a trusted extensions shared IP address. 5912 * In that case GLOBAL_ZONEID works to send. 5913 */ 5914 if (zoneid == ALL_ZONES) 5915 zoneid = GLOBAL_ZONEID; 5916 return (zoneid); 5917 } 5918 } 5919 mutex_exit(&ill->ill_lock); 5920 } 5921 5922 /* If we already did the ptp case, then we are done */ 5923 if (ptp) { 5924 rw_exit(&ipst->ips_ill_g_lock); 5925 return (ALL_ZONES); 5926 } 5927 ptp = B_TRUE; 5928 goto repeat; 5929 } 5930 5931 /* 5932 * Look for an ipif that matches the specified remote address i.e. the 5933 * ipif that would receive the specified packet. 5934 * First look for directly connected interfaces and then do a recursive 5935 * IRE lookup and pick the first ipif corresponding to the source address in the 5936 * ire. 5937 * Returns: held ipif 5938 */ 5939 ipif_t * 5940 ipif_lookup_remote(ill_t *ill, ipaddr_t addr, zoneid_t zoneid) 5941 { 5942 ipif_t *ipif; 5943 ire_t *ire; 5944 ip_stack_t *ipst = ill->ill_ipst; 5945 5946 ASSERT(!ill->ill_isv6); 5947 5948 /* 5949 * Someone could be changing this ipif currently or change it 5950 * after we return this. Thus a few packets could use the old 5951 * old values. However structure updates/creates (ire, ilg, ilm etc) 5952 * will atomically be updated or cleaned up with the new value 5953 * Thus we don't need a lock to check the flags or other attrs below. 5954 */ 5955 mutex_enter(&ill->ill_lock); 5956 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 5957 if (!IPIF_CAN_LOOKUP(ipif)) 5958 continue; 5959 if (zoneid != ALL_ZONES && zoneid != ipif->ipif_zoneid && 5960 ipif->ipif_zoneid != ALL_ZONES) 5961 continue; 5962 /* Allow the ipif to be down */ 5963 if (ipif->ipif_flags & IPIF_POINTOPOINT) { 5964 if ((ipif->ipif_pp_dst_addr == addr) || 5965 (!(ipif->ipif_flags & IPIF_UNNUMBERED) && 5966 ipif->ipif_lcl_addr == addr)) { 5967 ipif_refhold_locked(ipif); 5968 mutex_exit(&ill->ill_lock); 5969 return (ipif); 5970 } 5971 } else if (ipif->ipif_subnet == (addr & ipif->ipif_net_mask)) { 5972 ipif_refhold_locked(ipif); 5973 mutex_exit(&ill->ill_lock); 5974 return (ipif); 5975 } 5976 } 5977 mutex_exit(&ill->ill_lock); 5978 ire = ire_route_lookup(addr, 0, 0, 0, NULL, NULL, zoneid, 5979 NULL, MATCH_IRE_RECURSIVE, ipst); 5980 if (ire != NULL) { 5981 /* 5982 * The callers of this function wants to know the 5983 * interface on which they have to send the replies 5984 * back. For IREs that have ire_stq and ire_ipif 5985 * derived from different ills, we really don't care 5986 * what we return here. 5987 */ 5988 ipif = ire->ire_ipif; 5989 if (ipif != NULL) { 5990 ipif_refhold(ipif); 5991 ire_refrele(ire); 5992 return (ipif); 5993 } 5994 ire_refrele(ire); 5995 } 5996 /* Pick the first interface */ 5997 ipif = ipif_get_next_ipif(NULL, ill); 5998 return (ipif); 5999 } 6000 6001 /* 6002 * This func does not prevent refcnt from increasing. But if 6003 * the caller has taken steps to that effect, then this func 6004 * can be used to determine whether the ill has become quiescent 6005 */ 6006 static boolean_t 6007 ill_is_quiescent(ill_t *ill) 6008 { 6009 ipif_t *ipif; 6010 6011 ASSERT(MUTEX_HELD(&ill->ill_lock)); 6012 6013 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 6014 if (ipif->ipif_refcnt != 0 || !IPIF_DOWN_OK(ipif)) { 6015 return (B_FALSE); 6016 } 6017 } 6018 if (!ILL_DOWN_OK(ill) || ill->ill_refcnt != 0) { 6019 return (B_FALSE); 6020 } 6021 return (B_TRUE); 6022 } 6023 6024 boolean_t 6025 ill_is_freeable(ill_t *ill) 6026 { 6027 ipif_t *ipif; 6028 6029 ASSERT(MUTEX_HELD(&ill->ill_lock)); 6030 6031 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 6032 if (ipif->ipif_refcnt != 0 || !IPIF_FREE_OK(ipif)) { 6033 return (B_FALSE); 6034 } 6035 } 6036 if (!ILL_FREE_OK(ill) || ill->ill_refcnt != 0) { 6037 return (B_FALSE); 6038 } 6039 return (B_TRUE); 6040 } 6041 6042 /* 6043 * This func does not prevent refcnt from increasing. But if 6044 * the caller has taken steps to that effect, then this func 6045 * can be used to determine whether the ipif has become quiescent 6046 */ 6047 static boolean_t 6048 ipif_is_quiescent(ipif_t *ipif) 6049 { 6050 ill_t *ill; 6051 6052 ASSERT(MUTEX_HELD(&ipif->ipif_ill->ill_lock)); 6053 6054 if (ipif->ipif_refcnt != 0 || !IPIF_DOWN_OK(ipif)) { 6055 return (B_FALSE); 6056 } 6057 6058 ill = ipif->ipif_ill; 6059 if (ill->ill_ipif_up_count != 0 || ill->ill_ipif_dup_count != 0 || 6060 ill->ill_logical_down) { 6061 return (B_TRUE); 6062 } 6063 6064 /* This is the last ipif going down or being deleted on this ill */ 6065 if (!ILL_DOWN_OK(ill) || ill->ill_refcnt != 0) { 6066 return (B_FALSE); 6067 } 6068 6069 return (B_TRUE); 6070 } 6071 6072 /* 6073 * return true if the ipif can be destroyed: the ipif has to be quiescent 6074 * with zero references from ire/nce/ilm to it. 6075 */ 6076 static boolean_t 6077 ipif_is_freeable(ipif_t *ipif) 6078 { 6079 ASSERT(MUTEX_HELD(&ipif->ipif_ill->ill_lock)); 6080 ASSERT(ipif->ipif_id != 0); 6081 return (ipif->ipif_refcnt == 0 && IPIF_FREE_OK(ipif)); 6082 } 6083 6084 /* 6085 * The ipif/ill/ire has been refreled. Do the tail processing. 6086 * Determine if the ipif or ill in question has become quiescent and if so 6087 * wakeup close and/or restart any queued pending ioctl that is waiting 6088 * for the ipif_down (or ill_down) 6089 */ 6090 void 6091 ipif_ill_refrele_tail(ill_t *ill) 6092 { 6093 mblk_t *mp; 6094 conn_t *connp; 6095 ipsq_t *ipsq; 6096 ipxop_t *ipx; 6097 ipif_t *ipif; 6098 dl_notify_ind_t *dlindp; 6099 6100 ASSERT(MUTEX_HELD(&ill->ill_lock)); 6101 6102 if ((ill->ill_state_flags & ILL_CONDEMNED) && ill_is_freeable(ill)) { 6103 /* ip_modclose() may be waiting */ 6104 cv_broadcast(&ill->ill_cv); 6105 } 6106 6107 ipsq = ill->ill_phyint->phyint_ipsq; 6108 mutex_enter(&ipsq->ipsq_lock); 6109 ipx = ipsq->ipsq_xop; 6110 mutex_enter(&ipx->ipx_lock); 6111 if (ipx->ipx_waitfor == 0) /* no one's waiting; bail */ 6112 goto unlock; 6113 6114 ASSERT(ipx->ipx_pending_mp != NULL && ipx->ipx_pending_ipif != NULL); 6115 6116 ipif = ipx->ipx_pending_ipif; 6117 if (ipif->ipif_ill != ill) /* wait is for another ill; bail */ 6118 goto unlock; 6119 6120 switch (ipx->ipx_waitfor) { 6121 case IPIF_DOWN: 6122 if (!ipif_is_quiescent(ipif)) 6123 goto unlock; 6124 break; 6125 case IPIF_FREE: 6126 if (!ipif_is_freeable(ipif)) 6127 goto unlock; 6128 break; 6129 case ILL_DOWN: 6130 if (!ill_is_quiescent(ill)) 6131 goto unlock; 6132 break; 6133 case ILL_FREE: 6134 /* 6135 * ILL_FREE is only for loopback; normal ill teardown waits 6136 * synchronously in ip_modclose() without using ipx_waitfor, 6137 * handled by the cv_broadcast() at the top of this function. 6138 */ 6139 if (!ill_is_freeable(ill)) 6140 goto unlock; 6141 break; 6142 default: 6143 cmn_err(CE_PANIC, "ipsq: %p unknown ipx_waitfor %d\n", 6144 (void *)ipsq, ipx->ipx_waitfor); 6145 } 6146 6147 ill_refhold_locked(ill); /* for qwriter_ip() call below */ 6148 mutex_exit(&ipx->ipx_lock); 6149 mp = ipsq_pending_mp_get(ipsq, &connp); 6150 mutex_exit(&ipsq->ipsq_lock); 6151 mutex_exit(&ill->ill_lock); 6152 6153 ASSERT(mp != NULL); 6154 /* 6155 * NOTE: all of the qwriter_ip() calls below use CUR_OP since 6156 * we can only get here when the current operation decides it 6157 * it needs to quiesce via ipsq_pending_mp_add(). 6158 */ 6159 switch (mp->b_datap->db_type) { 6160 case M_PCPROTO: 6161 case M_PROTO: 6162 /* 6163 * For now, only DL_NOTIFY_IND messages can use this facility. 6164 */ 6165 dlindp = (dl_notify_ind_t *)mp->b_rptr; 6166 ASSERT(dlindp->dl_primitive == DL_NOTIFY_IND); 6167 6168 switch (dlindp->dl_notification) { 6169 case DL_NOTE_PHYS_ADDR: 6170 qwriter_ip(ill, ill->ill_rq, mp, 6171 ill_set_phys_addr_tail, CUR_OP, B_TRUE); 6172 return; 6173 case DL_NOTE_REPLUMB: 6174 qwriter_ip(ill, ill->ill_rq, mp, 6175 ill_replumb_tail, CUR_OP, B_TRUE); 6176 return; 6177 default: 6178 ASSERT(0); 6179 ill_refrele(ill); 6180 } 6181 break; 6182 6183 case M_ERROR: 6184 case M_HANGUP: 6185 qwriter_ip(ill, ill->ill_rq, mp, ipif_all_down_tail, CUR_OP, 6186 B_TRUE); 6187 return; 6188 6189 case M_IOCTL: 6190 case M_IOCDATA: 6191 qwriter_ip(ill, (connp != NULL ? CONNP_TO_WQ(connp) : 6192 ill->ill_wq), mp, ip_reprocess_ioctl, CUR_OP, B_TRUE); 6193 return; 6194 6195 default: 6196 cmn_err(CE_PANIC, "ipif_ill_refrele_tail mp %p " 6197 "db_type %d\n", (void *)mp, mp->b_datap->db_type); 6198 } 6199 return; 6200 unlock: 6201 mutex_exit(&ipsq->ipsq_lock); 6202 mutex_exit(&ipx->ipx_lock); 6203 mutex_exit(&ill->ill_lock); 6204 } 6205 6206 #ifdef DEBUG 6207 /* Reuse trace buffer from beginning (if reached the end) and record trace */ 6208 static void 6209 th_trace_rrecord(th_trace_t *th_trace) 6210 { 6211 tr_buf_t *tr_buf; 6212 uint_t lastref; 6213 6214 lastref = th_trace->th_trace_lastref; 6215 lastref++; 6216 if (lastref == TR_BUF_MAX) 6217 lastref = 0; 6218 th_trace->th_trace_lastref = lastref; 6219 tr_buf = &th_trace->th_trbuf[lastref]; 6220 tr_buf->tr_time = lbolt; 6221 tr_buf->tr_depth = getpcstack(tr_buf->tr_stack, TR_STACK_DEPTH); 6222 } 6223 6224 static void 6225 th_trace_free(void *value) 6226 { 6227 th_trace_t *th_trace = value; 6228 6229 ASSERT(th_trace->th_refcnt == 0); 6230 kmem_free(th_trace, sizeof (*th_trace)); 6231 } 6232 6233 /* 6234 * Find or create the per-thread hash table used to track object references. 6235 * The ipst argument is NULL if we shouldn't allocate. 6236 * 6237 * Accesses per-thread data, so there's no need to lock here. 6238 */ 6239 static mod_hash_t * 6240 th_trace_gethash(ip_stack_t *ipst) 6241 { 6242 th_hash_t *thh; 6243 6244 if ((thh = tsd_get(ip_thread_data)) == NULL && ipst != NULL) { 6245 mod_hash_t *mh; 6246 char name[256]; 6247 size_t objsize, rshift; 6248 int retv; 6249 6250 if ((thh = kmem_alloc(sizeof (*thh), KM_NOSLEEP)) == NULL) 6251 return (NULL); 6252 (void) snprintf(name, sizeof (name), "th_trace_%p", 6253 (void *)curthread); 6254 6255 /* 6256 * We use mod_hash_create_extended here rather than the more 6257 * obvious mod_hash_create_ptrhash because the latter has a 6258 * hard-coded KM_SLEEP, and we'd prefer to fail rather than 6259 * block. 6260 */ 6261 objsize = MAX(MAX(sizeof (ill_t), sizeof (ipif_t)), 6262 MAX(sizeof (ire_t), sizeof (nce_t))); 6263 rshift = highbit(objsize); 6264 mh = mod_hash_create_extended(name, 64, mod_hash_null_keydtor, 6265 th_trace_free, mod_hash_byptr, (void *)rshift, 6266 mod_hash_ptrkey_cmp, KM_NOSLEEP); 6267 if (mh == NULL) { 6268 kmem_free(thh, sizeof (*thh)); 6269 return (NULL); 6270 } 6271 thh->thh_hash = mh; 6272 thh->thh_ipst = ipst; 6273 /* 6274 * We trace ills, ipifs, ires, and nces. All of these are 6275 * per-IP-stack, so the lock on the thread list is as well. 6276 */ 6277 rw_enter(&ip_thread_rwlock, RW_WRITER); 6278 list_insert_tail(&ip_thread_list, thh); 6279 rw_exit(&ip_thread_rwlock); 6280 retv = tsd_set(ip_thread_data, thh); 6281 ASSERT(retv == 0); 6282 } 6283 return (thh != NULL ? thh->thh_hash : NULL); 6284 } 6285 6286 boolean_t 6287 th_trace_ref(const void *obj, ip_stack_t *ipst) 6288 { 6289 th_trace_t *th_trace; 6290 mod_hash_t *mh; 6291 mod_hash_val_t val; 6292 6293 if ((mh = th_trace_gethash(ipst)) == NULL) 6294 return (B_FALSE); 6295 6296 /* 6297 * Attempt to locate the trace buffer for this obj and thread. 6298 * If it does not exist, then allocate a new trace buffer and 6299 * insert into the hash. 6300 */ 6301 if (mod_hash_find(mh, (mod_hash_key_t)obj, &val) == MH_ERR_NOTFOUND) { 6302 th_trace = kmem_zalloc(sizeof (th_trace_t), KM_NOSLEEP); 6303 if (th_trace == NULL) 6304 return (B_FALSE); 6305 6306 th_trace->th_id = curthread; 6307 if (mod_hash_insert(mh, (mod_hash_key_t)obj, 6308 (mod_hash_val_t)th_trace) != 0) { 6309 kmem_free(th_trace, sizeof (th_trace_t)); 6310 return (B_FALSE); 6311 } 6312 } else { 6313 th_trace = (th_trace_t *)val; 6314 } 6315 6316 ASSERT(th_trace->th_refcnt >= 0 && 6317 th_trace->th_refcnt < TR_BUF_MAX - 1); 6318 6319 th_trace->th_refcnt++; 6320 th_trace_rrecord(th_trace); 6321 return (B_TRUE); 6322 } 6323 6324 /* 6325 * For the purpose of tracing a reference release, we assume that global 6326 * tracing is always on and that the same thread initiated the reference hold 6327 * is releasing. 6328 */ 6329 void 6330 th_trace_unref(const void *obj) 6331 { 6332 int retv; 6333 mod_hash_t *mh; 6334 th_trace_t *th_trace; 6335 mod_hash_val_t val; 6336 6337 mh = th_trace_gethash(NULL); 6338 retv = mod_hash_find(mh, (mod_hash_key_t)obj, &val); 6339 ASSERT(retv == 0); 6340 th_trace = (th_trace_t *)val; 6341 6342 ASSERT(th_trace->th_refcnt > 0); 6343 th_trace->th_refcnt--; 6344 th_trace_rrecord(th_trace); 6345 } 6346 6347 /* 6348 * If tracing has been disabled, then we assume that the reference counts are 6349 * now useless, and we clear them out before destroying the entries. 6350 */ 6351 void 6352 th_trace_cleanup(const void *obj, boolean_t trace_disable) 6353 { 6354 th_hash_t *thh; 6355 mod_hash_t *mh; 6356 mod_hash_val_t val; 6357 th_trace_t *th_trace; 6358 int retv; 6359 6360 rw_enter(&ip_thread_rwlock, RW_READER); 6361 for (thh = list_head(&ip_thread_list); thh != NULL; 6362 thh = list_next(&ip_thread_list, thh)) { 6363 if (mod_hash_find(mh = thh->thh_hash, (mod_hash_key_t)obj, 6364 &val) == 0) { 6365 th_trace = (th_trace_t *)val; 6366 if (trace_disable) 6367 th_trace->th_refcnt = 0; 6368 retv = mod_hash_destroy(mh, (mod_hash_key_t)obj); 6369 ASSERT(retv == 0); 6370 } 6371 } 6372 rw_exit(&ip_thread_rwlock); 6373 } 6374 6375 void 6376 ipif_trace_ref(ipif_t *ipif) 6377 { 6378 ASSERT(MUTEX_HELD(&ipif->ipif_ill->ill_lock)); 6379 6380 if (ipif->ipif_trace_disable) 6381 return; 6382 6383 if (!th_trace_ref(ipif, ipif->ipif_ill->ill_ipst)) { 6384 ipif->ipif_trace_disable = B_TRUE; 6385 ipif_trace_cleanup(ipif); 6386 } 6387 } 6388 6389 void 6390 ipif_untrace_ref(ipif_t *ipif) 6391 { 6392 ASSERT(MUTEX_HELD(&ipif->ipif_ill->ill_lock)); 6393 6394 if (!ipif->ipif_trace_disable) 6395 th_trace_unref(ipif); 6396 } 6397 6398 void 6399 ill_trace_ref(ill_t *ill) 6400 { 6401 ASSERT(MUTEX_HELD(&ill->ill_lock)); 6402 6403 if (ill->ill_trace_disable) 6404 return; 6405 6406 if (!th_trace_ref(ill, ill->ill_ipst)) { 6407 ill->ill_trace_disable = B_TRUE; 6408 ill_trace_cleanup(ill); 6409 } 6410 } 6411 6412 void 6413 ill_untrace_ref(ill_t *ill) 6414 { 6415 ASSERT(MUTEX_HELD(&ill->ill_lock)); 6416 6417 if (!ill->ill_trace_disable) 6418 th_trace_unref(ill); 6419 } 6420 6421 /* 6422 * Called when ipif is unplumbed or when memory alloc fails. Note that on 6423 * failure, ipif_trace_disable is set. 6424 */ 6425 static void 6426 ipif_trace_cleanup(const ipif_t *ipif) 6427 { 6428 th_trace_cleanup(ipif, ipif->ipif_trace_disable); 6429 } 6430 6431 /* 6432 * Called when ill is unplumbed or when memory alloc fails. Note that on 6433 * failure, ill_trace_disable is set. 6434 */ 6435 static void 6436 ill_trace_cleanup(const ill_t *ill) 6437 { 6438 th_trace_cleanup(ill, ill->ill_trace_disable); 6439 } 6440 #endif /* DEBUG */ 6441 6442 void 6443 ipif_refhold_locked(ipif_t *ipif) 6444 { 6445 ASSERT(MUTEX_HELD(&ipif->ipif_ill->ill_lock)); 6446 ipif->ipif_refcnt++; 6447 IPIF_TRACE_REF(ipif); 6448 } 6449 6450 void 6451 ipif_refhold(ipif_t *ipif) 6452 { 6453 ill_t *ill; 6454 6455 ill = ipif->ipif_ill; 6456 mutex_enter(&ill->ill_lock); 6457 ipif->ipif_refcnt++; 6458 IPIF_TRACE_REF(ipif); 6459 mutex_exit(&ill->ill_lock); 6460 } 6461 6462 /* 6463 * Must not be called while holding any locks. Otherwise if this is 6464 * the last reference to be released there is a chance of recursive mutex 6465 * panic due to ipif_refrele -> ipif_ill_refrele_tail -> qwriter_ip trying 6466 * to restart an ioctl. 6467 */ 6468 void 6469 ipif_refrele(ipif_t *ipif) 6470 { 6471 ill_t *ill; 6472 6473 ill = ipif->ipif_ill; 6474 6475 mutex_enter(&ill->ill_lock); 6476 ASSERT(ipif->ipif_refcnt != 0); 6477 ipif->ipif_refcnt--; 6478 IPIF_UNTRACE_REF(ipif); 6479 if (ipif->ipif_refcnt != 0) { 6480 mutex_exit(&ill->ill_lock); 6481 return; 6482 } 6483 6484 /* Drops the ill_lock */ 6485 ipif_ill_refrele_tail(ill); 6486 } 6487 6488 ipif_t * 6489 ipif_get_next_ipif(ipif_t *curr, ill_t *ill) 6490 { 6491 ipif_t *ipif; 6492 6493 mutex_enter(&ill->ill_lock); 6494 for (ipif = (curr == NULL ? ill->ill_ipif : curr->ipif_next); 6495 ipif != NULL; ipif = ipif->ipif_next) { 6496 if (!IPIF_CAN_LOOKUP(ipif)) 6497 continue; 6498 ipif_refhold_locked(ipif); 6499 mutex_exit(&ill->ill_lock); 6500 return (ipif); 6501 } 6502 mutex_exit(&ill->ill_lock); 6503 return (NULL); 6504 } 6505 6506 /* 6507 * TODO: make this table extendible at run time 6508 * Return a pointer to the mac type info for 'mac_type' 6509 */ 6510 static ip_m_t * 6511 ip_m_lookup(t_uscalar_t mac_type) 6512 { 6513 ip_m_t *ipm; 6514 6515 for (ipm = ip_m_tbl; ipm < A_END(ip_m_tbl); ipm++) 6516 if (ipm->ip_m_mac_type == mac_type) 6517 return (ipm); 6518 return (NULL); 6519 } 6520 6521 /* 6522 * ip_rt_add is called to add an IPv4 route to the forwarding table. 6523 * ipif_arg is passed in to associate it with the correct interface. 6524 * We may need to restart this operation if the ipif cannot be looked up 6525 * due to an exclusive operation that is currently in progress. The restart 6526 * entry point is specified by 'func' 6527 */ 6528 int 6529 ip_rt_add(ipaddr_t dst_addr, ipaddr_t mask, ipaddr_t gw_addr, 6530 ipaddr_t src_addr, int flags, ipif_t *ipif_arg, ire_t **ire_arg, 6531 boolean_t ioctl_msg, queue_t *q, mblk_t *mp, ipsq_func_t func, 6532 struct rtsa_s *sp, ip_stack_t *ipst) 6533 { 6534 ire_t *ire; 6535 ire_t *gw_ire = NULL; 6536 ipif_t *ipif = NULL; 6537 boolean_t ipif_refheld = B_FALSE; 6538 uint_t type; 6539 int match_flags = MATCH_IRE_TYPE; 6540 int error; 6541 tsol_gc_t *gc = NULL; 6542 tsol_gcgrp_t *gcgrp = NULL; 6543 boolean_t gcgrp_xtraref = B_FALSE; 6544 6545 ip1dbg(("ip_rt_add:")); 6546 6547 if (ire_arg != NULL) 6548 *ire_arg = NULL; 6549 6550 /* 6551 * If this is the case of RTF_HOST being set, then we set the netmask 6552 * to all ones (regardless if one was supplied). 6553 */ 6554 if (flags & RTF_HOST) 6555 mask = IP_HOST_MASK; 6556 6557 /* 6558 * Prevent routes with a zero gateway from being created (since 6559 * interfaces can currently be plumbed and brought up no assigned 6560 * address). 6561 */ 6562 if (gw_addr == 0) 6563 return (ENETUNREACH); 6564 /* 6565 * Get the ipif, if any, corresponding to the gw_addr 6566 */ 6567 ipif = ipif_lookup_interface(gw_addr, dst_addr, q, mp, func, &error, 6568 ipst); 6569 if (ipif != NULL) { 6570 if (IS_VNI(ipif->ipif_ill)) { 6571 ipif_refrele(ipif); 6572 return (EINVAL); 6573 } 6574 ipif_refheld = B_TRUE; 6575 } else if (error == EINPROGRESS) { 6576 ip1dbg(("ip_rt_add: null and EINPROGRESS")); 6577 return (EINPROGRESS); 6578 } else { 6579 error = 0; 6580 } 6581 6582 if (ipif != NULL) { 6583 ip1dbg(("ip_rt_add: ipif_lookup_interface done ipif nonnull")); 6584 ASSERT(!MUTEX_HELD(&ipif->ipif_ill->ill_lock)); 6585 } else { 6586 ip1dbg(("ip_rt_add: ipif_lookup_interface done ipif is null")); 6587 } 6588 6589 /* 6590 * GateD will attempt to create routes with a loopback interface 6591 * address as the gateway and with RTF_GATEWAY set. We allow 6592 * these routes to be added, but create them as interface routes 6593 * since the gateway is an interface address. 6594 */ 6595 if ((ipif != NULL) && (ipif->ipif_ire_type == IRE_LOOPBACK)) { 6596 flags &= ~RTF_GATEWAY; 6597 if (gw_addr == INADDR_LOOPBACK && dst_addr == INADDR_LOOPBACK && 6598 mask == IP_HOST_MASK) { 6599 ire = ire_ctable_lookup(dst_addr, 0, IRE_LOOPBACK, ipif, 6600 ALL_ZONES, NULL, match_flags, ipst); 6601 if (ire != NULL) { 6602 ire_refrele(ire); 6603 if (ipif_refheld) 6604 ipif_refrele(ipif); 6605 return (EEXIST); 6606 } 6607 ip1dbg(("ip_rt_add: 0x%p creating IRE 0x%x" 6608 "for 0x%x\n", (void *)ipif, 6609 ipif->ipif_ire_type, 6610 ntohl(ipif->ipif_lcl_addr))); 6611 ire = ire_create( 6612 (uchar_t *)&dst_addr, /* dest address */ 6613 (uchar_t *)&mask, /* mask */ 6614 (uchar_t *)&ipif->ipif_src_addr, 6615 NULL, /* no gateway */ 6616 &ipif->ipif_mtu, 6617 NULL, 6618 ipif->ipif_rq, /* recv-from queue */ 6619 NULL, /* no send-to queue */ 6620 ipif->ipif_ire_type, /* LOOPBACK */ 6621 ipif, 6622 0, 6623 0, 6624 0, 6625 (ipif->ipif_flags & IPIF_PRIVATE) ? 6626 RTF_PRIVATE : 0, 6627 &ire_uinfo_null, 6628 NULL, 6629 NULL, 6630 ipst); 6631 6632 if (ire == NULL) { 6633 if (ipif_refheld) 6634 ipif_refrele(ipif); 6635 return (ENOMEM); 6636 } 6637 error = ire_add(&ire, q, mp, func, B_FALSE); 6638 if (error == 0) 6639 goto save_ire; 6640 if (ipif_refheld) 6641 ipif_refrele(ipif); 6642 return (error); 6643 6644 } 6645 } 6646 6647 /* 6648 * Traditionally, interface routes are ones where RTF_GATEWAY isn't set 6649 * and the gateway address provided is one of the system's interface 6650 * addresses. By using the routing socket interface and supplying an 6651 * RTA_IFP sockaddr with an interface index, an alternate method of 6652 * specifying an interface route to be created is available which uses 6653 * the interface index that specifies the outgoing interface rather than 6654 * the address of an outgoing interface (which may not be able to 6655 * uniquely identify an interface). When coupled with the RTF_GATEWAY 6656 * flag, routes can be specified which not only specify the next-hop to 6657 * be used when routing to a certain prefix, but also which outgoing 6658 * interface should be used. 6659 * 6660 * Previously, interfaces would have unique addresses assigned to them 6661 * and so the address assigned to a particular interface could be used 6662 * to identify a particular interface. One exception to this was the 6663 * case of an unnumbered interface (where IPIF_UNNUMBERED was set). 6664 * 6665 * With the advent of IPv6 and its link-local addresses, this 6666 * restriction was relaxed and interfaces could share addresses between 6667 * themselves. In fact, typically all of the link-local interfaces on 6668 * an IPv6 node or router will have the same link-local address. In 6669 * order to differentiate between these interfaces, the use of an 6670 * interface index is necessary and this index can be carried inside a 6671 * RTA_IFP sockaddr (which is actually a sockaddr_dl). One restriction 6672 * of using the interface index, however, is that all of the ipif's that 6673 * are part of an ill have the same index and so the RTA_IFP sockaddr 6674 * cannot be used to differentiate between ipif's (or logical 6675 * interfaces) that belong to the same ill (physical interface). 6676 * 6677 * For example, in the following case involving IPv4 interfaces and 6678 * logical interfaces 6679 * 6680 * 192.0.2.32 255.255.255.224 192.0.2.33 U if0 6681 * 192.0.2.32 255.255.255.224 192.0.2.34 U if0:1 6682 * 192.0.2.32 255.255.255.224 192.0.2.35 U if0:2 6683 * 6684 * the ipif's corresponding to each of these interface routes can be 6685 * uniquely identified by the "gateway" (actually interface address). 6686 * 6687 * In this case involving multiple IPv6 default routes to a particular 6688 * link-local gateway, the use of RTA_IFP is necessary to specify which 6689 * default route is of interest: 6690 * 6691 * default fe80::123:4567:89ab:cdef U if0 6692 * default fe80::123:4567:89ab:cdef U if1 6693 */ 6694 6695 /* RTF_GATEWAY not set */ 6696 if (!(flags & RTF_GATEWAY)) { 6697 queue_t *stq; 6698 6699 if (sp != NULL) { 6700 ip2dbg(("ip_rt_add: gateway security attributes " 6701 "cannot be set with interface route\n")); 6702 if (ipif_refheld) 6703 ipif_refrele(ipif); 6704 return (EINVAL); 6705 } 6706 6707 /* 6708 * As the interface index specified with the RTA_IFP sockaddr is 6709 * the same for all ipif's off of an ill, the matching logic 6710 * below uses MATCH_IRE_ILL if such an index was specified. 6711 * This means that routes sharing the same prefix when added 6712 * using a RTA_IFP sockaddr must have distinct interface 6713 * indices (namely, they must be on distinct ill's). 6714 * 6715 * On the other hand, since the gateway address will usually be 6716 * different for each ipif on the system, the matching logic 6717 * uses MATCH_IRE_IPIF in the case of a traditional interface 6718 * route. This means that interface routes for the same prefix 6719 * can be created if they belong to distinct ipif's and if a 6720 * RTA_IFP sockaddr is not present. 6721 */ 6722 if (ipif_arg != NULL) { 6723 if (ipif_refheld) { 6724 ipif_refrele(ipif); 6725 ipif_refheld = B_FALSE; 6726 } 6727 ipif = ipif_arg; 6728 match_flags |= MATCH_IRE_ILL; 6729 } else { 6730 /* 6731 * Check the ipif corresponding to the gw_addr 6732 */ 6733 if (ipif == NULL) 6734 return (ENETUNREACH); 6735 match_flags |= MATCH_IRE_IPIF; 6736 } 6737 ASSERT(ipif != NULL); 6738 6739 /* 6740 * We check for an existing entry at this point. 6741 * 6742 * Since a netmask isn't passed in via the ioctl interface 6743 * (SIOCADDRT), we don't check for a matching netmask in that 6744 * case. 6745 */ 6746 if (!ioctl_msg) 6747 match_flags |= MATCH_IRE_MASK; 6748 ire = ire_ftable_lookup(dst_addr, mask, 0, IRE_INTERFACE, ipif, 6749 NULL, ALL_ZONES, 0, NULL, match_flags, ipst); 6750 if (ire != NULL) { 6751 ire_refrele(ire); 6752 if (ipif_refheld) 6753 ipif_refrele(ipif); 6754 return (EEXIST); 6755 } 6756 6757 stq = (ipif->ipif_net_type == IRE_IF_RESOLVER) 6758 ? ipif->ipif_rq : ipif->ipif_wq; 6759 6760 /* 6761 * Create a copy of the IRE_LOOPBACK, 6762 * IRE_IF_NORESOLVER or IRE_IF_RESOLVER with 6763 * the modified address and netmask. 6764 */ 6765 ire = ire_create( 6766 (uchar_t *)&dst_addr, 6767 (uint8_t *)&mask, 6768 (uint8_t *)&ipif->ipif_src_addr, 6769 NULL, 6770 &ipif->ipif_mtu, 6771 NULL, 6772 NULL, 6773 stq, 6774 ipif->ipif_net_type, 6775 ipif, 6776 0, 6777 0, 6778 0, 6779 flags, 6780 &ire_uinfo_null, 6781 NULL, 6782 NULL, 6783 ipst); 6784 if (ire == NULL) { 6785 if (ipif_refheld) 6786 ipif_refrele(ipif); 6787 return (ENOMEM); 6788 } 6789 6790 /* 6791 * Some software (for example, GateD and Sun Cluster) attempts 6792 * to create (what amount to) IRE_PREFIX routes with the 6793 * loopback address as the gateway. This is primarily done to 6794 * set up prefixes with the RTF_REJECT flag set (for example, 6795 * when generating aggregate routes.) 6796 * 6797 * If the IRE type (as defined by ipif->ipif_net_type) is 6798 * IRE_LOOPBACK, then we map the request into a 6799 * IRE_IF_NORESOLVER. We also OR in the RTF_BLACKHOLE flag as 6800 * these interface routes, by definition, can only be that. 6801 * 6802 * Needless to say, the real IRE_LOOPBACK is NOT created by this 6803 * routine, but rather using ire_create() directly. 6804 * 6805 */ 6806 if (ipif->ipif_net_type == IRE_LOOPBACK) { 6807 ire->ire_type = IRE_IF_NORESOLVER; 6808 ire->ire_flags |= RTF_BLACKHOLE; 6809 } 6810 6811 error = ire_add(&ire, q, mp, func, B_FALSE); 6812 if (error == 0) 6813 goto save_ire; 6814 6815 /* 6816 * In the result of failure, ire_add() will have already 6817 * deleted the ire in question, so there is no need to 6818 * do that here. 6819 */ 6820 if (ipif_refheld) 6821 ipif_refrele(ipif); 6822 return (error); 6823 } 6824 if (ipif_refheld) { 6825 ipif_refrele(ipif); 6826 ipif_refheld = B_FALSE; 6827 } 6828 6829 /* 6830 * Get an interface IRE for the specified gateway. 6831 * If we don't have an IRE_IF_NORESOLVER or IRE_IF_RESOLVER for the 6832 * gateway, it is currently unreachable and we fail the request 6833 * accordingly. 6834 */ 6835 ipif = ipif_arg; 6836 if (ipif_arg != NULL) 6837 match_flags |= MATCH_IRE_ILL; 6838 again: 6839 gw_ire = ire_ftable_lookup(gw_addr, 0, 0, IRE_INTERFACE, ipif_arg, NULL, 6840 ALL_ZONES, 0, NULL, match_flags, ipst); 6841 if (gw_ire == NULL) { 6842 /* 6843 * With IPMP, we allow host routes to influence in.mpathd's 6844 * target selection. However, if the test addresses are on 6845 * their own network, the above lookup will fail since the 6846 * underlying IRE_INTERFACEs are marked hidden. So allow 6847 * hidden test IREs to be found and try again. 6848 */ 6849 if (!(match_flags & MATCH_IRE_MARK_TESTHIDDEN)) { 6850 match_flags |= MATCH_IRE_MARK_TESTHIDDEN; 6851 goto again; 6852 } 6853 return (ENETUNREACH); 6854 } 6855 6856 /* 6857 * We create one of three types of IREs as a result of this request 6858 * based on the netmask. A netmask of all ones (which is automatically 6859 * assumed when RTF_HOST is set) results in an IRE_HOST being created. 6860 * An all zeroes netmask implies a default route so an IRE_DEFAULT is 6861 * created. Otherwise, an IRE_PREFIX route is created for the 6862 * destination prefix. 6863 */ 6864 if (mask == IP_HOST_MASK) 6865 type = IRE_HOST; 6866 else if (mask == 0) 6867 type = IRE_DEFAULT; 6868 else 6869 type = IRE_PREFIX; 6870 6871 /* check for a duplicate entry */ 6872 ire = ire_ftable_lookup(dst_addr, mask, gw_addr, type, ipif_arg, 6873 NULL, ALL_ZONES, 0, NULL, 6874 match_flags | MATCH_IRE_MASK | MATCH_IRE_GW, ipst); 6875 if (ire != NULL) { 6876 ire_refrele(gw_ire); 6877 ire_refrele(ire); 6878 return (EEXIST); 6879 } 6880 6881 /* Security attribute exists */ 6882 if (sp != NULL) { 6883 tsol_gcgrp_addr_t ga; 6884 6885 /* find or create the gateway credentials group */ 6886 ga.ga_af = AF_INET; 6887 IN6_IPADDR_TO_V4MAPPED(gw_addr, &ga.ga_addr); 6888 6889 /* we hold reference to it upon success */ 6890 gcgrp = gcgrp_lookup(&ga, B_TRUE); 6891 if (gcgrp == NULL) { 6892 ire_refrele(gw_ire); 6893 return (ENOMEM); 6894 } 6895 6896 /* 6897 * Create and add the security attribute to the group; a 6898 * reference to the group is made upon allocating a new 6899 * entry successfully. If it finds an already-existing 6900 * entry for the security attribute in the group, it simply 6901 * returns it and no new reference is made to the group. 6902 */ 6903 gc = gc_create(sp, gcgrp, &gcgrp_xtraref); 6904 if (gc == NULL) { 6905 /* release reference held by gcgrp_lookup */ 6906 GCGRP_REFRELE(gcgrp); 6907 ire_refrele(gw_ire); 6908 return (ENOMEM); 6909 } 6910 } 6911 6912 /* Create the IRE. */ 6913 ire = ire_create( 6914 (uchar_t *)&dst_addr, /* dest address */ 6915 (uchar_t *)&mask, /* mask */ 6916 /* src address assigned by the caller? */ 6917 (uchar_t *)(((src_addr != INADDR_ANY) && 6918 (flags & RTF_SETSRC)) ? &src_addr : NULL), 6919 (uchar_t *)&gw_addr, /* gateway address */ 6920 &gw_ire->ire_max_frag, 6921 NULL, /* no src nce */ 6922 NULL, /* no recv-from queue */ 6923 NULL, /* no send-to queue */ 6924 (ushort_t)type, /* IRE type */ 6925 ipif_arg, 6926 0, 6927 0, 6928 0, 6929 flags, 6930 &gw_ire->ire_uinfo, /* Inherit ULP info from gw */ 6931 gc, /* security attribute */ 6932 NULL, 6933 ipst); 6934 6935 /* 6936 * The ire holds a reference to the 'gc' and the 'gc' holds a 6937 * reference to the 'gcgrp'. We can now release the extra reference 6938 * the 'gcgrp' acquired in the gcgrp_lookup, if it was not used. 6939 */ 6940 if (gcgrp_xtraref) 6941 GCGRP_REFRELE(gcgrp); 6942 if (ire == NULL) { 6943 if (gc != NULL) 6944 GC_REFRELE(gc); 6945 ire_refrele(gw_ire); 6946 return (ENOMEM); 6947 } 6948 6949 /* 6950 * POLICY: should we allow an RTF_HOST with address INADDR_ANY? 6951 * SUN/OS socket stuff does but do we really want to allow 0.0.0.0? 6952 */ 6953 6954 /* Add the new IRE. */ 6955 error = ire_add(&ire, q, mp, func, B_FALSE); 6956 if (error != 0) { 6957 /* 6958 * In the result of failure, ire_add() will have already 6959 * deleted the ire in question, so there is no need to 6960 * do that here. 6961 */ 6962 ire_refrele(gw_ire); 6963 return (error); 6964 } 6965 6966 if (flags & RTF_MULTIRT) { 6967 /* 6968 * Invoke the CGTP (multirouting) filtering module 6969 * to add the dst address in the filtering database. 6970 * Replicated inbound packets coming from that address 6971 * will be filtered to discard the duplicates. 6972 * It is not necessary to call the CGTP filter hook 6973 * when the dst address is a broadcast or multicast, 6974 * because an IP source address cannot be a broadcast 6975 * or a multicast. 6976 */ 6977 ire_t *ire_dst = ire_ctable_lookup(ire->ire_addr, 0, 6978 IRE_BROADCAST, NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 6979 if (ire_dst != NULL) { 6980 ip_cgtp_bcast_add(ire, ire_dst, ipst); 6981 ire_refrele(ire_dst); 6982 goto save_ire; 6983 } 6984 if (ipst->ips_ip_cgtp_filter_ops != NULL && 6985 !CLASSD(ire->ire_addr)) { 6986 int res = ipst->ips_ip_cgtp_filter_ops->cfo_add_dest_v4( 6987 ipst->ips_netstack->netstack_stackid, 6988 ire->ire_addr, 6989 ire->ire_gateway_addr, 6990 ire->ire_src_addr, 6991 gw_ire->ire_src_addr); 6992 if (res != 0) { 6993 ire_refrele(gw_ire); 6994 ire_delete(ire); 6995 return (res); 6996 } 6997 } 6998 } 6999 7000 /* 7001 * Now that the prefix IRE entry has been created, delete any 7002 * existing gateway IRE cache entries as well as any IRE caches 7003 * using the gateway, and force them to be created through 7004 * ip_newroute. 7005 */ 7006 if (gc != NULL) { 7007 ASSERT(gcgrp != NULL); 7008 ire_clookup_delete_cache_gw(gw_addr, ALL_ZONES, ipst); 7009 } 7010 7011 save_ire: 7012 if (gw_ire != NULL) { 7013 ire_refrele(gw_ire); 7014 } 7015 if (ipif != NULL) { 7016 /* 7017 * Save enough information so that we can recreate the IRE if 7018 * the interface goes down and then up. The metrics associated 7019 * with the route will be saved as well when rts_setmetrics() is 7020 * called after the IRE has been created. In the case where 7021 * memory cannot be allocated, none of this information will be 7022 * saved. 7023 */ 7024 ipif_save_ire(ipif, ire); 7025 } 7026 if (ioctl_msg) 7027 ip_rts_rtmsg(RTM_OLDADD, ire, 0, ipst); 7028 if (ire_arg != NULL) { 7029 /* 7030 * Store the ire that was successfully added into where ire_arg 7031 * points to so that callers don't have to look it up 7032 * themselves (but they are responsible for ire_refrele()ing 7033 * the ire when they are finished with it). 7034 */ 7035 *ire_arg = ire; 7036 } else { 7037 ire_refrele(ire); /* Held in ire_add */ 7038 } 7039 if (ipif_refheld) 7040 ipif_refrele(ipif); 7041 return (0); 7042 } 7043 7044 /* 7045 * ip_rt_delete is called to delete an IPv4 route. 7046 * ipif_arg is passed in to associate it with the correct interface. 7047 * We may need to restart this operation if the ipif cannot be looked up 7048 * due to an exclusive operation that is currently in progress. The restart 7049 * entry point is specified by 'func' 7050 */ 7051 /* ARGSUSED4 */ 7052 int 7053 ip_rt_delete(ipaddr_t dst_addr, ipaddr_t mask, ipaddr_t gw_addr, 7054 uint_t rtm_addrs, int flags, ipif_t *ipif_arg, boolean_t ioctl_msg, 7055 queue_t *q, mblk_t *mp, ipsq_func_t func, ip_stack_t *ipst) 7056 { 7057 ire_t *ire = NULL; 7058 ipif_t *ipif; 7059 boolean_t ipif_refheld = B_FALSE; 7060 uint_t type; 7061 uint_t match_flags = MATCH_IRE_TYPE; 7062 int err = 0; 7063 7064 ip1dbg(("ip_rt_delete:")); 7065 /* 7066 * If this is the case of RTF_HOST being set, then we set the netmask 7067 * to all ones. Otherwise, we use the netmask if one was supplied. 7068 */ 7069 if (flags & RTF_HOST) { 7070 mask = IP_HOST_MASK; 7071 match_flags |= MATCH_IRE_MASK; 7072 } else if (rtm_addrs & RTA_NETMASK) { 7073 match_flags |= MATCH_IRE_MASK; 7074 } 7075 7076 /* 7077 * Note that RTF_GATEWAY is never set on a delete, therefore 7078 * we check if the gateway address is one of our interfaces first, 7079 * and fall back on RTF_GATEWAY routes. 7080 * 7081 * This makes it possible to delete an original 7082 * IRE_IF_NORESOLVER/IRE_IF_RESOLVER - consistent with SunOS 4.1. 7083 * 7084 * As the interface index specified with the RTA_IFP sockaddr is the 7085 * same for all ipif's off of an ill, the matching logic below uses 7086 * MATCH_IRE_ILL if such an index was specified. This means a route 7087 * sharing the same prefix and interface index as the the route 7088 * intended to be deleted might be deleted instead if a RTA_IFP sockaddr 7089 * is specified in the request. 7090 * 7091 * On the other hand, since the gateway address will usually be 7092 * different for each ipif on the system, the matching logic 7093 * uses MATCH_IRE_IPIF in the case of a traditional interface 7094 * route. This means that interface routes for the same prefix can be 7095 * uniquely identified if they belong to distinct ipif's and if a 7096 * RTA_IFP sockaddr is not present. 7097 * 7098 * For more detail on specifying routes by gateway address and by 7099 * interface index, see the comments in ip_rt_add(). 7100 */ 7101 ipif = ipif_lookup_interface(gw_addr, dst_addr, q, mp, func, &err, 7102 ipst); 7103 if (ipif != NULL) 7104 ipif_refheld = B_TRUE; 7105 else if (err == EINPROGRESS) 7106 return (err); 7107 else 7108 err = 0; 7109 if (ipif != NULL) { 7110 if (ipif_arg != NULL) { 7111 if (ipif_refheld) { 7112 ipif_refrele(ipif); 7113 ipif_refheld = B_FALSE; 7114 } 7115 ipif = ipif_arg; 7116 match_flags |= MATCH_IRE_ILL; 7117 } else { 7118 match_flags |= MATCH_IRE_IPIF; 7119 } 7120 if (ipif->ipif_ire_type == IRE_LOOPBACK) { 7121 ire = ire_ctable_lookup(dst_addr, 0, IRE_LOOPBACK, ipif, 7122 ALL_ZONES, NULL, match_flags, ipst); 7123 } 7124 if (ire == NULL) { 7125 ire = ire_ftable_lookup(dst_addr, mask, 0, 7126 IRE_INTERFACE, ipif, NULL, ALL_ZONES, 0, NULL, 7127 match_flags, ipst); 7128 } 7129 } 7130 7131 if (ire == NULL) { 7132 /* 7133 * At this point, the gateway address is not one of our own 7134 * addresses or a matching interface route was not found. We 7135 * set the IRE type to lookup based on whether 7136 * this is a host route, a default route or just a prefix. 7137 * 7138 * If an ipif_arg was passed in, then the lookup is based on an 7139 * interface index so MATCH_IRE_ILL is added to match_flags. 7140 * In any case, MATCH_IRE_IPIF is cleared and MATCH_IRE_GW is 7141 * set as the route being looked up is not a traditional 7142 * interface route. 7143 */ 7144 match_flags &= ~MATCH_IRE_IPIF; 7145 match_flags |= MATCH_IRE_GW; 7146 if (ipif_arg != NULL) 7147 match_flags |= MATCH_IRE_ILL; 7148 if (mask == IP_HOST_MASK) 7149 type = IRE_HOST; 7150 else if (mask == 0) 7151 type = IRE_DEFAULT; 7152 else 7153 type = IRE_PREFIX; 7154 ire = ire_ftable_lookup(dst_addr, mask, gw_addr, type, ipif_arg, 7155 NULL, ALL_ZONES, 0, NULL, match_flags, ipst); 7156 } 7157 7158 if (ipif_refheld) 7159 ipif_refrele(ipif); 7160 7161 /* ipif is not refheld anymore */ 7162 if (ire == NULL) 7163 return (ESRCH); 7164 7165 if (ire->ire_flags & RTF_MULTIRT) { 7166 /* 7167 * Invoke the CGTP (multirouting) filtering module 7168 * to remove the dst address from the filtering database. 7169 * Packets coming from that address will no longer be 7170 * filtered to remove duplicates. 7171 */ 7172 if (ipst->ips_ip_cgtp_filter_ops != NULL) { 7173 err = ipst->ips_ip_cgtp_filter_ops->cfo_del_dest_v4( 7174 ipst->ips_netstack->netstack_stackid, 7175 ire->ire_addr, ire->ire_gateway_addr); 7176 } 7177 ip_cgtp_bcast_delete(ire, ipst); 7178 } 7179 7180 ipif = ire->ire_ipif; 7181 if (ipif != NULL) 7182 ipif_remove_ire(ipif, ire); 7183 if (ioctl_msg) 7184 ip_rts_rtmsg(RTM_OLDDEL, ire, 0, ipst); 7185 ire_delete(ire); 7186 ire_refrele(ire); 7187 return (err); 7188 } 7189 7190 /* 7191 * ip_siocaddrt is called to complete processing of an SIOCADDRT IOCTL. 7192 */ 7193 /* ARGSUSED */ 7194 int 7195 ip_siocaddrt(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, 7196 ip_ioctl_cmd_t *ipip, void *dummy_if_req) 7197 { 7198 ipaddr_t dst_addr; 7199 ipaddr_t gw_addr; 7200 ipaddr_t mask; 7201 int error = 0; 7202 mblk_t *mp1; 7203 struct rtentry *rt; 7204 ipif_t *ipif = NULL; 7205 ip_stack_t *ipst; 7206 7207 ASSERT(q->q_next == NULL); 7208 ipst = CONNQ_TO_IPST(q); 7209 7210 ip1dbg(("ip_siocaddrt:")); 7211 /* Existence of mp1 verified in ip_wput_nondata */ 7212 mp1 = mp->b_cont->b_cont; 7213 rt = (struct rtentry *)mp1->b_rptr; 7214 7215 dst_addr = ((sin_t *)&rt->rt_dst)->sin_addr.s_addr; 7216 gw_addr = ((sin_t *)&rt->rt_gateway)->sin_addr.s_addr; 7217 7218 /* 7219 * If the RTF_HOST flag is on, this is a request to assign a gateway 7220 * to a particular host address. In this case, we set the netmask to 7221 * all ones for the particular destination address. Otherwise, 7222 * determine the netmask to be used based on dst_addr and the interfaces 7223 * in use. 7224 */ 7225 if (rt->rt_flags & RTF_HOST) { 7226 mask = IP_HOST_MASK; 7227 } else { 7228 /* 7229 * Note that ip_subnet_mask returns a zero mask in the case of 7230 * default (an all-zeroes address). 7231 */ 7232 mask = ip_subnet_mask(dst_addr, &ipif, ipst); 7233 } 7234 7235 error = ip_rt_add(dst_addr, mask, gw_addr, 0, rt->rt_flags, NULL, NULL, 7236 B_TRUE, q, mp, ip_process_ioctl, NULL, ipst); 7237 if (ipif != NULL) 7238 ipif_refrele(ipif); 7239 return (error); 7240 } 7241 7242 /* 7243 * ip_siocdelrt is called to complete processing of an SIOCDELRT IOCTL. 7244 */ 7245 /* ARGSUSED */ 7246 int 7247 ip_siocdelrt(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, 7248 ip_ioctl_cmd_t *ipip, void *dummy_if_req) 7249 { 7250 ipaddr_t dst_addr; 7251 ipaddr_t gw_addr; 7252 ipaddr_t mask; 7253 int error; 7254 mblk_t *mp1; 7255 struct rtentry *rt; 7256 ipif_t *ipif = NULL; 7257 ip_stack_t *ipst; 7258 7259 ASSERT(q->q_next == NULL); 7260 ipst = CONNQ_TO_IPST(q); 7261 7262 ip1dbg(("ip_siocdelrt:")); 7263 /* Existence of mp1 verified in ip_wput_nondata */ 7264 mp1 = mp->b_cont->b_cont; 7265 rt = (struct rtentry *)mp1->b_rptr; 7266 7267 dst_addr = ((sin_t *)&rt->rt_dst)->sin_addr.s_addr; 7268 gw_addr = ((sin_t *)&rt->rt_gateway)->sin_addr.s_addr; 7269 7270 /* 7271 * If the RTF_HOST flag is on, this is a request to delete a gateway 7272 * to a particular host address. In this case, we set the netmask to 7273 * all ones for the particular destination address. Otherwise, 7274 * determine the netmask to be used based on dst_addr and the interfaces 7275 * in use. 7276 */ 7277 if (rt->rt_flags & RTF_HOST) { 7278 mask = IP_HOST_MASK; 7279 } else { 7280 /* 7281 * Note that ip_subnet_mask returns a zero mask in the case of 7282 * default (an all-zeroes address). 7283 */ 7284 mask = ip_subnet_mask(dst_addr, &ipif, ipst); 7285 } 7286 7287 error = ip_rt_delete(dst_addr, mask, gw_addr, 7288 RTA_DST | RTA_GATEWAY | RTA_NETMASK, rt->rt_flags, NULL, B_TRUE, q, 7289 mp, ip_process_ioctl, ipst); 7290 if (ipif != NULL) 7291 ipif_refrele(ipif); 7292 return (error); 7293 } 7294 7295 /* 7296 * Enqueue the mp onto the ipsq, chained by b_next. 7297 * b_prev stores the function to be executed later, and b_queue the queue 7298 * where this mp originated. 7299 */ 7300 void 7301 ipsq_enq(ipsq_t *ipsq, queue_t *q, mblk_t *mp, ipsq_func_t func, int type, 7302 ill_t *pending_ill) 7303 { 7304 conn_t *connp; 7305 ipxop_t *ipx = ipsq->ipsq_xop; 7306 7307 ASSERT(MUTEX_HELD(&ipsq->ipsq_lock)); 7308 ASSERT(MUTEX_HELD(&ipx->ipx_lock)); 7309 ASSERT(func != NULL); 7310 7311 mp->b_queue = q; 7312 mp->b_prev = (void *)func; 7313 mp->b_next = NULL; 7314 7315 switch (type) { 7316 case CUR_OP: 7317 if (ipx->ipx_mptail != NULL) { 7318 ASSERT(ipx->ipx_mphead != NULL); 7319 ipx->ipx_mptail->b_next = mp; 7320 } else { 7321 ASSERT(ipx->ipx_mphead == NULL); 7322 ipx->ipx_mphead = mp; 7323 } 7324 ipx->ipx_mptail = mp; 7325 break; 7326 7327 case NEW_OP: 7328 if (ipsq->ipsq_xopq_mptail != NULL) { 7329 ASSERT(ipsq->ipsq_xopq_mphead != NULL); 7330 ipsq->ipsq_xopq_mptail->b_next = mp; 7331 } else { 7332 ASSERT(ipsq->ipsq_xopq_mphead == NULL); 7333 ipsq->ipsq_xopq_mphead = mp; 7334 } 7335 ipsq->ipsq_xopq_mptail = mp; 7336 ipx->ipx_ipsq_queued = B_TRUE; 7337 break; 7338 7339 case SWITCH_OP: 7340 ASSERT(ipsq->ipsq_swxop != NULL); 7341 /* only one switch operation is currently allowed */ 7342 ASSERT(ipsq->ipsq_switch_mp == NULL); 7343 ipsq->ipsq_switch_mp = mp; 7344 ipx->ipx_ipsq_queued = B_TRUE; 7345 break; 7346 default: 7347 cmn_err(CE_PANIC, "ipsq_enq %d type \n", type); 7348 } 7349 7350 if (CONN_Q(q) && pending_ill != NULL) { 7351 connp = Q_TO_CONN(q); 7352 ASSERT(MUTEX_HELD(&connp->conn_lock)); 7353 connp->conn_oper_pending_ill = pending_ill; 7354 } 7355 } 7356 7357 /* 7358 * Dequeue the next message that requested exclusive access to this IPSQ's 7359 * xop. Specifically: 7360 * 7361 * 1. If we're still processing the current operation on `ipsq', then 7362 * dequeue the next message for the operation (from ipx_mphead), or 7363 * return NULL if there are no queued messages for the operation. 7364 * These messages are queued via CUR_OP to qwriter_ip() and friends. 7365 * 7366 * 2. If the current operation on `ipsq' has completed (ipx_current_ipif is 7367 * not set) see if the ipsq has requested an xop switch. If so, switch 7368 * `ipsq' to a different xop. Xop switches only happen when joining or 7369 * leaving IPMP groups and require a careful dance -- see the comments 7370 * in-line below for details. If we're leaving a group xop or if we're 7371 * joining a group xop and become writer on it, then we proceed to (3). 7372 * Otherwise, we return NULL and exit the xop. 7373 * 7374 * 3. For each IPSQ in the xop, return any switch operation stored on 7375 * ipsq_switch_mp (set via SWITCH_OP); these must be processed before 7376 * any other messages queued on the IPSQ. Otherwise, dequeue the next 7377 * exclusive operation (queued via NEW_OP) stored on ipsq_xopq_mphead. 7378 * Note that if the phyint tied to `ipsq' is not using IPMP there will 7379 * only be one IPSQ in the xop. Otherwise, there will be one IPSQ for 7380 * each phyint in the group, including the IPMP meta-interface phyint. 7381 */ 7382 static mblk_t * 7383 ipsq_dq(ipsq_t *ipsq) 7384 { 7385 ill_t *illv4, *illv6; 7386 mblk_t *mp; 7387 ipsq_t *xopipsq; 7388 ipsq_t *leftipsq = NULL; 7389 ipxop_t *ipx; 7390 phyint_t *phyi = ipsq->ipsq_phyint; 7391 ip_stack_t *ipst = ipsq->ipsq_ipst; 7392 boolean_t emptied = B_FALSE; 7393 7394 /* 7395 * Grab all the locks we need in the defined order (ill_g_lock -> 7396 * ipsq_lock -> ipx_lock); ill_g_lock is needed to use ipsq_next. 7397 */ 7398 rw_enter(&ipst->ips_ill_g_lock, 7399 ipsq->ipsq_swxop != NULL ? RW_WRITER : RW_READER); 7400 mutex_enter(&ipsq->ipsq_lock); 7401 ipx = ipsq->ipsq_xop; 7402 mutex_enter(&ipx->ipx_lock); 7403 7404 /* 7405 * Dequeue the next message associated with the current exclusive 7406 * operation, if any. 7407 */ 7408 if ((mp = ipx->ipx_mphead) != NULL) { 7409 ipx->ipx_mphead = mp->b_next; 7410 if (ipx->ipx_mphead == NULL) 7411 ipx->ipx_mptail = NULL; 7412 mp->b_next = (void *)ipsq; 7413 goto out; 7414 } 7415 7416 if (ipx->ipx_current_ipif != NULL) 7417 goto empty; 7418 7419 if (ipsq->ipsq_swxop != NULL) { 7420 /* 7421 * The exclusive operation that is now being completed has 7422 * requested a switch to a different xop. This happens 7423 * when an interface joins or leaves an IPMP group. Joins 7424 * happen through SIOCSLIFGROUPNAME (ip_sioctl_groupname()). 7425 * Leaves happen via SIOCSLIFGROUPNAME, interface unplumb 7426 * (phyint_free()), or interface plumb for an ill type 7427 * not in the IPMP group (ip_rput_dlpi_writer()). 7428 * 7429 * Xop switches are not allowed on the IPMP meta-interface. 7430 */ 7431 ASSERT(phyi == NULL || !(phyi->phyint_flags & PHYI_IPMP)); 7432 ASSERT(RW_WRITE_HELD(&ipst->ips_ill_g_lock)); 7433 DTRACE_PROBE1(ipsq__switch, (ipsq_t *), ipsq); 7434 7435 if (ipsq->ipsq_swxop == &ipsq->ipsq_ownxop) { 7436 /* 7437 * We're switching back to our own xop, so we have two 7438 * xop's to drain/exit: our own, and the group xop 7439 * that we are leaving. 7440 * 7441 * First, pull ourselves out of the group ipsq list. 7442 * This is safe since we're writer on ill_g_lock. 7443 */ 7444 ASSERT(ipsq->ipsq_xop != &ipsq->ipsq_ownxop); 7445 7446 xopipsq = ipx->ipx_ipsq; 7447 while (xopipsq->ipsq_next != ipsq) 7448 xopipsq = xopipsq->ipsq_next; 7449 7450 xopipsq->ipsq_next = ipsq->ipsq_next; 7451 ipsq->ipsq_next = ipsq; 7452 ipsq->ipsq_xop = ipsq->ipsq_swxop; 7453 ipsq->ipsq_swxop = NULL; 7454 7455 /* 7456 * Second, prepare to exit the group xop. The actual 7457 * ipsq_exit() is done at the end of this function 7458 * since we cannot hold any locks across ipsq_exit(). 7459 * Note that although we drop the group's ipx_lock, no 7460 * threads can proceed since we're still ipx_writer. 7461 */ 7462 leftipsq = xopipsq; 7463 mutex_exit(&ipx->ipx_lock); 7464 7465 /* 7466 * Third, set ipx to point to our own xop (which was 7467 * inactive and therefore can be entered). 7468 */ 7469 ipx = ipsq->ipsq_xop; 7470 mutex_enter(&ipx->ipx_lock); 7471 ASSERT(ipx->ipx_writer == NULL); 7472 ASSERT(ipx->ipx_current_ipif == NULL); 7473 } else { 7474 /* 7475 * We're switching from our own xop to a group xop. 7476 * The requestor of the switch must ensure that the 7477 * group xop cannot go away (e.g. by ensuring the 7478 * phyint associated with the xop cannot go away). 7479 * 7480 * If we can become writer on our new xop, then we'll 7481 * do the drain. Otherwise, the current writer of our 7482 * new xop will do the drain when it exits. 7483 * 7484 * First, splice ourselves into the group IPSQ list. 7485 * This is safe since we're writer on ill_g_lock. 7486 */ 7487 ASSERT(ipsq->ipsq_xop == &ipsq->ipsq_ownxop); 7488 7489 xopipsq = ipsq->ipsq_swxop->ipx_ipsq; 7490 while (xopipsq->ipsq_next != ipsq->ipsq_swxop->ipx_ipsq) 7491 xopipsq = xopipsq->ipsq_next; 7492 7493 xopipsq->ipsq_next = ipsq; 7494 ipsq->ipsq_next = ipsq->ipsq_swxop->ipx_ipsq; 7495 ipsq->ipsq_xop = ipsq->ipsq_swxop; 7496 ipsq->ipsq_swxop = NULL; 7497 7498 /* 7499 * Second, exit our own xop, since it's now unused. 7500 * This is safe since we've got the only reference. 7501 */ 7502 ASSERT(ipx->ipx_writer == curthread); 7503 ipx->ipx_writer = NULL; 7504 VERIFY(--ipx->ipx_reentry_cnt == 0); 7505 ipx->ipx_ipsq_queued = B_FALSE; 7506 mutex_exit(&ipx->ipx_lock); 7507 7508 /* 7509 * Third, set ipx to point to our new xop, and check 7510 * if we can become writer on it. If we cannot, then 7511 * the current writer will drain the IPSQ group when 7512 * it exits. Our ipsq_xop is guaranteed to be stable 7513 * because we're still holding ipsq_lock. 7514 */ 7515 ipx = ipsq->ipsq_xop; 7516 mutex_enter(&ipx->ipx_lock); 7517 if (ipx->ipx_writer != NULL || 7518 ipx->ipx_current_ipif != NULL) { 7519 goto out; 7520 } 7521 } 7522 7523 /* 7524 * Fourth, become writer on our new ipx before we continue 7525 * with the drain. Note that we never dropped ipsq_lock 7526 * above, so no other thread could've raced with us to 7527 * become writer first. Also, we're holding ipx_lock, so 7528 * no other thread can examine the ipx right now. 7529 */ 7530 ASSERT(ipx->ipx_current_ipif == NULL); 7531 ASSERT(ipx->ipx_mphead == NULL && ipx->ipx_mptail == NULL); 7532 VERIFY(ipx->ipx_reentry_cnt++ == 0); 7533 ipx->ipx_writer = curthread; 7534 ipx->ipx_forced = B_FALSE; 7535 #ifdef DEBUG 7536 ipx->ipx_depth = getpcstack(ipx->ipx_stack, IPX_STACK_DEPTH); 7537 #endif 7538 } 7539 7540 xopipsq = ipsq; 7541 do { 7542 /* 7543 * So that other operations operate on a consistent and 7544 * complete phyint, a switch message on an IPSQ must be 7545 * handled prior to any other operations on that IPSQ. 7546 */ 7547 if ((mp = xopipsq->ipsq_switch_mp) != NULL) { 7548 xopipsq->ipsq_switch_mp = NULL; 7549 ASSERT(mp->b_next == NULL); 7550 mp->b_next = (void *)xopipsq; 7551 goto out; 7552 } 7553 7554 if ((mp = xopipsq->ipsq_xopq_mphead) != NULL) { 7555 xopipsq->ipsq_xopq_mphead = mp->b_next; 7556 if (xopipsq->ipsq_xopq_mphead == NULL) 7557 xopipsq->ipsq_xopq_mptail = NULL; 7558 mp->b_next = (void *)xopipsq; 7559 goto out; 7560 } 7561 } while ((xopipsq = xopipsq->ipsq_next) != ipsq); 7562 empty: 7563 /* 7564 * There are no messages. Further, we are holding ipx_lock, hence no 7565 * new messages can end up on any IPSQ in the xop. 7566 */ 7567 ipx->ipx_writer = NULL; 7568 ipx->ipx_forced = B_FALSE; 7569 VERIFY(--ipx->ipx_reentry_cnt == 0); 7570 ipx->ipx_ipsq_queued = B_FALSE; 7571 emptied = B_TRUE; 7572 #ifdef DEBUG 7573 ipx->ipx_depth = 0; 7574 #endif 7575 out: 7576 mutex_exit(&ipx->ipx_lock); 7577 mutex_exit(&ipsq->ipsq_lock); 7578 7579 /* 7580 * If we completely emptied the xop, then wake up any threads waiting 7581 * to enter any of the IPSQ's associated with it. 7582 */ 7583 if (emptied) { 7584 xopipsq = ipsq; 7585 do { 7586 if ((phyi = xopipsq->ipsq_phyint) == NULL) 7587 continue; 7588 7589 illv4 = phyi->phyint_illv4; 7590 illv6 = phyi->phyint_illv6; 7591 7592 GRAB_ILL_LOCKS(illv4, illv6); 7593 if (illv4 != NULL) 7594 cv_broadcast(&illv4->ill_cv); 7595 if (illv6 != NULL) 7596 cv_broadcast(&illv6->ill_cv); 7597 RELEASE_ILL_LOCKS(illv4, illv6); 7598 } while ((xopipsq = xopipsq->ipsq_next) != ipsq); 7599 } 7600 rw_exit(&ipst->ips_ill_g_lock); 7601 7602 /* 7603 * Now that all locks are dropped, exit the IPSQ we left. 7604 */ 7605 if (leftipsq != NULL) 7606 ipsq_exit(leftipsq); 7607 7608 return (mp); 7609 } 7610 7611 /* 7612 * Enter the ipsq corresponding to ill, by waiting synchronously till 7613 * we can enter the ipsq exclusively. Unless 'force' is used, the ipsq 7614 * will have to drain completely before ipsq_enter returns success. 7615 * ipx_current_ipif will be set if some exclusive op is in progress, 7616 * and the ipsq_exit logic will start the next enqueued op after 7617 * completion of the current op. If 'force' is used, we don't wait 7618 * for the enqueued ops. This is needed when a conn_close wants to 7619 * enter the ipsq and abort an ioctl that is somehow stuck. Unplumb 7620 * of an ill can also use this option. But we dont' use it currently. 7621 */ 7622 #define ENTER_SQ_WAIT_TICKS 100 7623 boolean_t 7624 ipsq_enter(ill_t *ill, boolean_t force, int type) 7625 { 7626 ipsq_t *ipsq; 7627 ipxop_t *ipx; 7628 boolean_t waited_enough = B_FALSE; 7629 7630 /* 7631 * Note that the relationship between ill and ipsq is fixed as long as 7632 * the ill is not ILL_CONDEMNED. Holding ipsq_lock ensures the 7633 * relationship between the IPSQ and xop cannot change. However, 7634 * since we cannot hold ipsq_lock across the cv_wait(), it may change 7635 * while we're waiting. We wait on ill_cv and rely on ipsq_exit() 7636 * waking up all ills in the xop when it becomes available. 7637 */ 7638 mutex_enter(&ill->ill_lock); 7639 for (;;) { 7640 if (ill->ill_state_flags & ILL_CONDEMNED) { 7641 mutex_exit(&ill->ill_lock); 7642 return (B_FALSE); 7643 } 7644 7645 ipsq = ill->ill_phyint->phyint_ipsq; 7646 mutex_enter(&ipsq->ipsq_lock); 7647 ipx = ipsq->ipsq_xop; 7648 mutex_enter(&ipx->ipx_lock); 7649 7650 if (ipx->ipx_writer == NULL && (type == CUR_OP || 7651 ipx->ipx_current_ipif == NULL || waited_enough)) 7652 break; 7653 7654 if (!force || ipx->ipx_writer != NULL) { 7655 mutex_exit(&ipx->ipx_lock); 7656 mutex_exit(&ipsq->ipsq_lock); 7657 cv_wait(&ill->ill_cv, &ill->ill_lock); 7658 } else { 7659 mutex_exit(&ipx->ipx_lock); 7660 mutex_exit(&ipsq->ipsq_lock); 7661 (void) cv_timedwait(&ill->ill_cv, 7662 &ill->ill_lock, lbolt + ENTER_SQ_WAIT_TICKS); 7663 waited_enough = B_TRUE; 7664 } 7665 } 7666 7667 ASSERT(ipx->ipx_mphead == NULL && ipx->ipx_mptail == NULL); 7668 ASSERT(ipx->ipx_reentry_cnt == 0); 7669 ipx->ipx_writer = curthread; 7670 ipx->ipx_forced = (ipx->ipx_current_ipif != NULL); 7671 ipx->ipx_reentry_cnt++; 7672 #ifdef DEBUG 7673 ipx->ipx_depth = getpcstack(ipx->ipx_stack, IPX_STACK_DEPTH); 7674 #endif 7675 mutex_exit(&ipx->ipx_lock); 7676 mutex_exit(&ipsq->ipsq_lock); 7677 mutex_exit(&ill->ill_lock); 7678 return (B_TRUE); 7679 } 7680 7681 boolean_t 7682 ill_perim_enter(ill_t *ill) 7683 { 7684 return (ipsq_enter(ill, B_FALSE, CUR_OP)); 7685 } 7686 7687 void 7688 ill_perim_exit(ill_t *ill) 7689 { 7690 ipsq_exit(ill->ill_phyint->phyint_ipsq); 7691 } 7692 7693 /* 7694 * The ipsq_t (ipsq) is the synchronization data structure used to serialize 7695 * certain critical operations like plumbing (i.e. most set ioctls), multicast 7696 * joins, igmp/mld timers, etc. There is one ipsq per phyint. The ipsq 7697 * serializes exclusive ioctls issued by applications on a per ipsq basis in 7698 * ipsq_xopq_mphead. It also protects against multiple threads executing in 7699 * the ipsq. Responses from the driver pertain to the current ioctl (say a 7700 * DL_BIND_ACK in response to a DL_BIND_REQ initiated as part of bringing 7701 * up the interface) and are enqueued in ipx_mphead. 7702 * 7703 * If a thread does not want to reenter the ipsq when it is already writer, 7704 * it must make sure that the specified reentry point to be called later 7705 * when the ipsq is empty, nor any code path starting from the specified reentry 7706 * point must never ever try to enter the ipsq again. Otherwise it can lead 7707 * to an infinite loop. The reentry point ip_rput_dlpi_writer is an example. 7708 * When the thread that is currently exclusive finishes, it (ipsq_exit) 7709 * dequeues the requests waiting to become exclusive in ipx_mphead and calls 7710 * the reentry point. When the list at ipx_mphead becomes empty ipsq_exit 7711 * proceeds to dequeue the next ioctl in ipsq_xopq_mphead and start the next 7712 * ioctl if the current ioctl has completed. If the current ioctl is still 7713 * in progress it simply returns. The current ioctl could be waiting for 7714 * a response from another module (arp or the driver or could be waiting for 7715 * the ipif/ill/ire refcnts to drop to zero. In such a case the ipx_pending_mp 7716 * and ipx_pending_ipif are set. ipx_current_ipif is set throughout the 7717 * execution of the ioctl and ipsq_exit does not start the next ioctl unless 7718 * ipx_current_ipif is NULL which happens only once the ioctl is complete and 7719 * all associated DLPI operations have completed. 7720 */ 7721 7722 /* 7723 * Try to enter the IPSQ corresponding to `ipif' or `ill' exclusively (`ipif' 7724 * and `ill' cannot both be specified). Returns a pointer to the entered IPSQ 7725 * on success, or NULL on failure. The caller ensures ipif/ill is valid by 7726 * refholding it as necessary. If the IPSQ cannot be entered and `func' is 7727 * non-NULL, then `func' will be called back with `q' and `mp' once the IPSQ 7728 * can be entered. If `func' is NULL, then `q' and `mp' are ignored. 7729 */ 7730 ipsq_t * 7731 ipsq_try_enter(ipif_t *ipif, ill_t *ill, queue_t *q, mblk_t *mp, 7732 ipsq_func_t func, int type, boolean_t reentry_ok) 7733 { 7734 ipsq_t *ipsq; 7735 ipxop_t *ipx; 7736 7737 /* Only 1 of ipif or ill can be specified */ 7738 ASSERT((ipif != NULL) ^ (ill != NULL)); 7739 if (ipif != NULL) 7740 ill = ipif->ipif_ill; 7741 7742 /* 7743 * lock ordering: conn_lock -> ill_lock -> ipsq_lock -> ipx_lock. 7744 * ipx of an ipsq can't change when ipsq_lock is held. 7745 */ 7746 GRAB_CONN_LOCK(q); 7747 mutex_enter(&ill->ill_lock); 7748 ipsq = ill->ill_phyint->phyint_ipsq; 7749 mutex_enter(&ipsq->ipsq_lock); 7750 ipx = ipsq->ipsq_xop; 7751 mutex_enter(&ipx->ipx_lock); 7752 7753 /* 7754 * 1. Enter the ipsq if we are already writer and reentry is ok. 7755 * (Note: If the caller does not specify reentry_ok then neither 7756 * 'func' nor any of its callees must ever attempt to enter the ipsq 7757 * again. Otherwise it can lead to an infinite loop 7758 * 2. Enter the ipsq if there is no current writer and this attempted 7759 * entry is part of the current operation 7760 * 3. Enter the ipsq if there is no current writer and this is a new 7761 * operation and the operation queue is empty and there is no 7762 * operation currently in progress 7763 */ 7764 if ((ipx->ipx_writer == curthread && reentry_ok) || 7765 (ipx->ipx_writer == NULL && (type == CUR_OP || (type == NEW_OP && 7766 !ipx->ipx_ipsq_queued && ipx->ipx_current_ipif == NULL)))) { 7767 /* Success. */ 7768 ipx->ipx_reentry_cnt++; 7769 ipx->ipx_writer = curthread; 7770 ipx->ipx_forced = B_FALSE; 7771 mutex_exit(&ipx->ipx_lock); 7772 mutex_exit(&ipsq->ipsq_lock); 7773 mutex_exit(&ill->ill_lock); 7774 RELEASE_CONN_LOCK(q); 7775 #ifdef DEBUG 7776 ipx->ipx_depth = getpcstack(ipx->ipx_stack, IPX_STACK_DEPTH); 7777 #endif 7778 return (ipsq); 7779 } 7780 7781 if (func != NULL) 7782 ipsq_enq(ipsq, q, mp, func, type, ill); 7783 7784 mutex_exit(&ipx->ipx_lock); 7785 mutex_exit(&ipsq->ipsq_lock); 7786 mutex_exit(&ill->ill_lock); 7787 RELEASE_CONN_LOCK(q); 7788 return (NULL); 7789 } 7790 7791 /* 7792 * Try to enter the IPSQ corresponding to `ill' as writer. The caller ensures 7793 * ill is valid by refholding it if necessary; we will refrele. If the IPSQ 7794 * cannot be entered, the mp is queued for completion. 7795 */ 7796 void 7797 qwriter_ip(ill_t *ill, queue_t *q, mblk_t *mp, ipsq_func_t func, int type, 7798 boolean_t reentry_ok) 7799 { 7800 ipsq_t *ipsq; 7801 7802 ipsq = ipsq_try_enter(NULL, ill, q, mp, func, type, reentry_ok); 7803 7804 /* 7805 * Drop the caller's refhold on the ill. This is safe since we either 7806 * entered the IPSQ (and thus are exclusive), or failed to enter the 7807 * IPSQ, in which case we return without accessing ill anymore. This 7808 * is needed because func needs to see the correct refcount. 7809 * e.g. removeif can work only then. 7810 */ 7811 ill_refrele(ill); 7812 if (ipsq != NULL) { 7813 (*func)(ipsq, q, mp, NULL); 7814 ipsq_exit(ipsq); 7815 } 7816 } 7817 7818 /* 7819 * Exit the specified IPSQ. If this is the final exit on it then drain it 7820 * prior to exiting. Caller must be writer on the specified IPSQ. 7821 */ 7822 void 7823 ipsq_exit(ipsq_t *ipsq) 7824 { 7825 mblk_t *mp; 7826 ipsq_t *mp_ipsq; 7827 queue_t *q; 7828 phyint_t *phyi; 7829 ipsq_func_t func; 7830 7831 ASSERT(IAM_WRITER_IPSQ(ipsq)); 7832 7833 ASSERT(ipsq->ipsq_xop->ipx_reentry_cnt >= 1); 7834 if (ipsq->ipsq_xop->ipx_reentry_cnt != 1) { 7835 ipsq->ipsq_xop->ipx_reentry_cnt--; 7836 return; 7837 } 7838 7839 for (;;) { 7840 phyi = ipsq->ipsq_phyint; 7841 mp = ipsq_dq(ipsq); 7842 mp_ipsq = (mp == NULL) ? NULL : (ipsq_t *)mp->b_next; 7843 7844 /* 7845 * If we've changed to a new IPSQ, and the phyint associated 7846 * with the old one has gone away, free the old IPSQ. Note 7847 * that this cannot happen while the IPSQ is in a group. 7848 */ 7849 if (mp_ipsq != ipsq && phyi == NULL) { 7850 ASSERT(ipsq->ipsq_next == ipsq); 7851 ASSERT(ipsq->ipsq_xop == &ipsq->ipsq_ownxop); 7852 ipsq_delete(ipsq); 7853 } 7854 7855 if (mp == NULL) 7856 break; 7857 7858 q = mp->b_queue; 7859 func = (ipsq_func_t)mp->b_prev; 7860 ipsq = mp_ipsq; 7861 mp->b_next = mp->b_prev = NULL; 7862 mp->b_queue = NULL; 7863 7864 /* 7865 * If 'q' is an conn queue, it is valid, since we did a 7866 * a refhold on the conn at the start of the ioctl. 7867 * If 'q' is an ill queue, it is valid, since close of an 7868 * ill will clean up its IPSQ. 7869 */ 7870 (*func)(ipsq, q, mp, NULL); 7871 } 7872 } 7873 7874 /* 7875 * Start the current exclusive operation on `ipsq'; associate it with `ipif' 7876 * and `ioccmd'. 7877 */ 7878 void 7879 ipsq_current_start(ipsq_t *ipsq, ipif_t *ipif, int ioccmd) 7880 { 7881 ill_t *ill = ipif->ipif_ill; 7882 ipxop_t *ipx = ipsq->ipsq_xop; 7883 7884 ASSERT(IAM_WRITER_IPSQ(ipsq)); 7885 ASSERT(ipx->ipx_current_ipif == NULL); 7886 ASSERT(ipx->ipx_current_ioctl == 0); 7887 7888 ipx->ipx_current_done = B_FALSE; 7889 ipx->ipx_current_ioctl = ioccmd; 7890 mutex_enter(&ipx->ipx_lock); 7891 ipx->ipx_current_ipif = ipif; 7892 mutex_exit(&ipx->ipx_lock); 7893 7894 /* 7895 * Set IPIF_CHANGING on one or more ipifs associated with the 7896 * current exclusive operation. IPIF_CHANGING prevents any new 7897 * references to the ipif (so that the references will eventually 7898 * drop to zero) and also prevents any "get" operations (e.g., 7899 * SIOCGLIFFLAGS) from being able to access the ipif until the 7900 * operation has completed and the ipif is again in a stable state. 7901 * 7902 * For ioctls, IPIF_CHANGING is set on the ipif associated with the 7903 * ioctl. For internal operations (where ioccmd is zero), all ipifs 7904 * on the ill are marked with IPIF_CHANGING since it's unclear which 7905 * ipifs will be affected. 7906 * 7907 * Note that SIOCLIFREMOVEIF is a special case as it sets 7908 * IPIF_CONDEMNED internally after identifying the right ipif to 7909 * operate on. 7910 */ 7911 switch (ioccmd) { 7912 case SIOCLIFREMOVEIF: 7913 break; 7914 case 0: 7915 mutex_enter(&ill->ill_lock); 7916 ipif = ipif->ipif_ill->ill_ipif; 7917 for (; ipif != NULL; ipif = ipif->ipif_next) 7918 ipif->ipif_state_flags |= IPIF_CHANGING; 7919 mutex_exit(&ill->ill_lock); 7920 break; 7921 default: 7922 mutex_enter(&ill->ill_lock); 7923 ipif->ipif_state_flags |= IPIF_CHANGING; 7924 mutex_exit(&ill->ill_lock); 7925 } 7926 } 7927 7928 /* 7929 * Finish the current exclusive operation on `ipsq'. Usually, this will allow 7930 * the next exclusive operation to begin once we ipsq_exit(). However, if 7931 * pending DLPI operations remain, then we will wait for the queue to drain 7932 * before allowing the next exclusive operation to begin. This ensures that 7933 * DLPI operations from one exclusive operation are never improperly processed 7934 * as part of a subsequent exclusive operation. 7935 */ 7936 void 7937 ipsq_current_finish(ipsq_t *ipsq) 7938 { 7939 ipxop_t *ipx = ipsq->ipsq_xop; 7940 t_uscalar_t dlpi_pending = DL_PRIM_INVAL; 7941 ipif_t *ipif = ipx->ipx_current_ipif; 7942 7943 ASSERT(IAM_WRITER_IPSQ(ipsq)); 7944 7945 /* 7946 * For SIOCLIFREMOVEIF, the ipif has been already been blown away 7947 * (but in that case, IPIF_CHANGING will already be clear and no 7948 * pending DLPI messages can remain). 7949 */ 7950 if (ipx->ipx_current_ioctl != SIOCLIFREMOVEIF) { 7951 ill_t *ill = ipif->ipif_ill; 7952 7953 mutex_enter(&ill->ill_lock); 7954 dlpi_pending = ill->ill_dlpi_pending; 7955 if (ipx->ipx_current_ioctl == 0) { 7956 ipif = ill->ill_ipif; 7957 for (; ipif != NULL; ipif = ipif->ipif_next) 7958 ipif->ipif_state_flags &= ~IPIF_CHANGING; 7959 } else { 7960 ipif->ipif_state_flags &= ~IPIF_CHANGING; 7961 } 7962 mutex_exit(&ill->ill_lock); 7963 } 7964 7965 ASSERT(!ipx->ipx_current_done); 7966 ipx->ipx_current_done = B_TRUE; 7967 ipx->ipx_current_ioctl = 0; 7968 if (dlpi_pending == DL_PRIM_INVAL) { 7969 mutex_enter(&ipx->ipx_lock); 7970 ipx->ipx_current_ipif = NULL; 7971 mutex_exit(&ipx->ipx_lock); 7972 } 7973 } 7974 7975 /* 7976 * The ill is closing. Flush all messages on the ipsq that originated 7977 * from this ill. Usually there wont' be any messages on the ipsq_xopq_mphead 7978 * for this ill since ipsq_enter could not have entered until then. 7979 * New messages can't be queued since the CONDEMNED flag is set. 7980 */ 7981 static void 7982 ipsq_flush(ill_t *ill) 7983 { 7984 queue_t *q; 7985 mblk_t *prev; 7986 mblk_t *mp; 7987 mblk_t *mp_next; 7988 ipxop_t *ipx = ill->ill_phyint->phyint_ipsq->ipsq_xop; 7989 7990 ASSERT(IAM_WRITER_ILL(ill)); 7991 7992 /* 7993 * Flush any messages sent up by the driver. 7994 */ 7995 mutex_enter(&ipx->ipx_lock); 7996 for (prev = NULL, mp = ipx->ipx_mphead; mp != NULL; mp = mp_next) { 7997 mp_next = mp->b_next; 7998 q = mp->b_queue; 7999 if (q == ill->ill_rq || q == ill->ill_wq) { 8000 /* dequeue mp */ 8001 if (prev == NULL) 8002 ipx->ipx_mphead = mp->b_next; 8003 else 8004 prev->b_next = mp->b_next; 8005 if (ipx->ipx_mptail == mp) { 8006 ASSERT(mp_next == NULL); 8007 ipx->ipx_mptail = prev; 8008 } 8009 inet_freemsg(mp); 8010 } else { 8011 prev = mp; 8012 } 8013 } 8014 mutex_exit(&ipx->ipx_lock); 8015 (void) ipsq_pending_mp_cleanup(ill, NULL); 8016 ipsq_xopq_mp_cleanup(ill, NULL); 8017 ill_pending_mp_cleanup(ill); 8018 } 8019 8020 /* 8021 * Parse an iftun_req structure coming down SIOC[GS]TUNPARAM ioctls, 8022 * refhold and return the associated ipif 8023 */ 8024 /* ARGSUSED */ 8025 int 8026 ip_extract_tunreq(queue_t *q, mblk_t *mp, const ip_ioctl_cmd_t *ipip, 8027 cmd_info_t *ci, ipsq_func_t func) 8028 { 8029 boolean_t exists; 8030 struct iftun_req *ta; 8031 ipif_t *ipif; 8032 ill_t *ill; 8033 boolean_t isv6; 8034 mblk_t *mp1; 8035 int error; 8036 conn_t *connp; 8037 ip_stack_t *ipst; 8038 8039 /* Existence verified in ip_wput_nondata */ 8040 mp1 = mp->b_cont->b_cont; 8041 ta = (struct iftun_req *)mp1->b_rptr; 8042 /* 8043 * Null terminate the string to protect against buffer 8044 * overrun. String was generated by user code and may not 8045 * be trusted. 8046 */ 8047 ta->ifta_lifr_name[LIFNAMSIZ - 1] = '\0'; 8048 8049 connp = Q_TO_CONN(q); 8050 isv6 = connp->conn_af_isv6; 8051 ipst = connp->conn_netstack->netstack_ip; 8052 8053 /* Disallows implicit create */ 8054 ipif = ipif_lookup_on_name(ta->ifta_lifr_name, 8055 mi_strlen(ta->ifta_lifr_name), B_FALSE, &exists, isv6, 8056 connp->conn_zoneid, CONNP_TO_WQ(connp), mp, func, &error, ipst); 8057 if (ipif == NULL) 8058 return (error); 8059 8060 if (ipif->ipif_id != 0) { 8061 /* 8062 * We really don't want to set/get tunnel parameters 8063 * on virtual tunnel interfaces. Only allow the 8064 * base tunnel to do these. 8065 */ 8066 ipif_refrele(ipif); 8067 return (EINVAL); 8068 } 8069 8070 /* 8071 * Send down to tunnel mod for ioctl processing. 8072 * Will finish ioctl in ip_rput_other(). 8073 */ 8074 ill = ipif->ipif_ill; 8075 if (ill->ill_net_type == IRE_LOOPBACK) { 8076 ipif_refrele(ipif); 8077 return (EOPNOTSUPP); 8078 } 8079 8080 if (ill->ill_wq == NULL) { 8081 ipif_refrele(ipif); 8082 return (ENXIO); 8083 } 8084 /* 8085 * Mark the ioctl as coming from an IPv6 interface for 8086 * tun's convenience. 8087 */ 8088 if (ill->ill_isv6) 8089 ta->ifta_flags |= 0x80000000; 8090 ci->ci_ipif = ipif; 8091 return (0); 8092 } 8093 8094 /* 8095 * Parse an ifreq or lifreq struct coming down ioctls and refhold 8096 * and return the associated ipif. 8097 * Return value: 8098 * Non zero: An error has occurred. ci may not be filled out. 8099 * zero : ci is filled out with the ioctl cmd in ci.ci_name, and 8100 * a held ipif in ci.ci_ipif. 8101 */ 8102 int 8103 ip_extract_lifreq(queue_t *q, mblk_t *mp, const ip_ioctl_cmd_t *ipip, 8104 cmd_info_t *ci, ipsq_func_t func) 8105 { 8106 char *name; 8107 struct ifreq *ifr; 8108 struct lifreq *lifr; 8109 ipif_t *ipif = NULL; 8110 ill_t *ill; 8111 conn_t *connp; 8112 boolean_t isv6; 8113 boolean_t exists; 8114 int err; 8115 mblk_t *mp1; 8116 zoneid_t zoneid; 8117 ip_stack_t *ipst; 8118 8119 if (q->q_next != NULL) { 8120 ill = (ill_t *)q->q_ptr; 8121 isv6 = ill->ill_isv6; 8122 connp = NULL; 8123 zoneid = ALL_ZONES; 8124 ipst = ill->ill_ipst; 8125 } else { 8126 ill = NULL; 8127 connp = Q_TO_CONN(q); 8128 isv6 = connp->conn_af_isv6; 8129 zoneid = connp->conn_zoneid; 8130 if (zoneid == GLOBAL_ZONEID) { 8131 /* global zone can access ipifs in all zones */ 8132 zoneid = ALL_ZONES; 8133 } 8134 ipst = connp->conn_netstack->netstack_ip; 8135 } 8136 8137 /* Has been checked in ip_wput_nondata */ 8138 mp1 = mp->b_cont->b_cont; 8139 8140 if (ipip->ipi_cmd_type == IF_CMD) { 8141 /* This a old style SIOC[GS]IF* command */ 8142 ifr = (struct ifreq *)mp1->b_rptr; 8143 /* 8144 * Null terminate the string to protect against buffer 8145 * overrun. String was generated by user code and may not 8146 * be trusted. 8147 */ 8148 ifr->ifr_name[IFNAMSIZ - 1] = '\0'; 8149 name = ifr->ifr_name; 8150 ci->ci_sin = (sin_t *)&ifr->ifr_addr; 8151 ci->ci_sin6 = NULL; 8152 ci->ci_lifr = (struct lifreq *)ifr; 8153 } else { 8154 /* This a new style SIOC[GS]LIF* command */ 8155 ASSERT(ipip->ipi_cmd_type == LIF_CMD); 8156 lifr = (struct lifreq *)mp1->b_rptr; 8157 /* 8158 * Null terminate the string to protect against buffer 8159 * overrun. String was generated by user code and may not 8160 * be trusted. 8161 */ 8162 lifr->lifr_name[LIFNAMSIZ - 1] = '\0'; 8163 name = lifr->lifr_name; 8164 ci->ci_sin = (sin_t *)&lifr->lifr_addr; 8165 ci->ci_sin6 = (sin6_t *)&lifr->lifr_addr; 8166 ci->ci_lifr = lifr; 8167 } 8168 8169 if (ipip->ipi_cmd == SIOCSLIFNAME) { 8170 /* 8171 * The ioctl will be failed if the ioctl comes down 8172 * an conn stream 8173 */ 8174 if (ill == NULL) { 8175 /* 8176 * Not an ill queue, return EINVAL same as the 8177 * old error code. 8178 */ 8179 return (ENXIO); 8180 } 8181 ipif = ill->ill_ipif; 8182 ipif_refhold(ipif); 8183 } else { 8184 ipif = ipif_lookup_on_name(name, mi_strlen(name), B_FALSE, 8185 &exists, isv6, zoneid, 8186 (connp == NULL) ? q : CONNP_TO_WQ(connp), mp, func, &err, 8187 ipst); 8188 if (ipif == NULL) { 8189 if (err == EINPROGRESS) 8190 return (err); 8191 err = 0; /* Ensure we don't use it below */ 8192 } 8193 } 8194 8195 /* 8196 * Old style [GS]IFCMD does not admit IPv6 ipif 8197 */ 8198 if (ipif != NULL && ipif->ipif_isv6 && ipip->ipi_cmd_type == IF_CMD) { 8199 ipif_refrele(ipif); 8200 return (ENXIO); 8201 } 8202 8203 if (ipif == NULL && ill != NULL && ill->ill_ipif != NULL && 8204 name[0] == '\0') { 8205 /* 8206 * Handle a or a SIOC?IF* with a null name 8207 * during plumb (on the ill queue before the I_PLINK). 8208 */ 8209 ipif = ill->ill_ipif; 8210 ipif_refhold(ipif); 8211 } 8212 8213 if (ipif == NULL) 8214 return (ENXIO); 8215 8216 ci->ci_ipif = ipif; 8217 return (0); 8218 } 8219 8220 /* 8221 * Return the total number of ipifs. 8222 */ 8223 static uint_t 8224 ip_get_numifs(zoneid_t zoneid, ip_stack_t *ipst) 8225 { 8226 uint_t numifs = 0; 8227 ill_t *ill; 8228 ill_walk_context_t ctx; 8229 ipif_t *ipif; 8230 8231 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 8232 ill = ILL_START_WALK_V4(&ctx, ipst); 8233 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 8234 if (IS_UNDER_IPMP(ill)) 8235 continue; 8236 for (ipif = ill->ill_ipif; ipif != NULL; 8237 ipif = ipif->ipif_next) { 8238 if (ipif->ipif_zoneid == zoneid || 8239 ipif->ipif_zoneid == ALL_ZONES) 8240 numifs++; 8241 } 8242 } 8243 rw_exit(&ipst->ips_ill_g_lock); 8244 return (numifs); 8245 } 8246 8247 /* 8248 * Return the total number of ipifs. 8249 */ 8250 static uint_t 8251 ip_get_numlifs(int family, int lifn_flags, zoneid_t zoneid, ip_stack_t *ipst) 8252 { 8253 uint_t numifs = 0; 8254 ill_t *ill; 8255 ipif_t *ipif; 8256 ill_walk_context_t ctx; 8257 8258 ip1dbg(("ip_get_numlifs(%d %u %d)\n", family, lifn_flags, (int)zoneid)); 8259 8260 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 8261 if (family == AF_INET) 8262 ill = ILL_START_WALK_V4(&ctx, ipst); 8263 else if (family == AF_INET6) 8264 ill = ILL_START_WALK_V6(&ctx, ipst); 8265 else 8266 ill = ILL_START_WALK_ALL(&ctx, ipst); 8267 8268 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 8269 if (IS_UNDER_IPMP(ill) && !(lifn_flags & LIFC_UNDER_IPMP)) 8270 continue; 8271 8272 for (ipif = ill->ill_ipif; ipif != NULL; 8273 ipif = ipif->ipif_next) { 8274 if ((ipif->ipif_flags & IPIF_NOXMIT) && 8275 !(lifn_flags & LIFC_NOXMIT)) 8276 continue; 8277 if ((ipif->ipif_flags & IPIF_TEMPORARY) && 8278 !(lifn_flags & LIFC_TEMPORARY)) 8279 continue; 8280 if (((ipif->ipif_flags & 8281 (IPIF_NOXMIT|IPIF_NOLOCAL| 8282 IPIF_DEPRECATED)) || 8283 IS_LOOPBACK(ill) || 8284 !(ipif->ipif_flags & IPIF_UP)) && 8285 (lifn_flags & LIFC_EXTERNAL_SOURCE)) 8286 continue; 8287 8288 if (zoneid != ipif->ipif_zoneid && 8289 ipif->ipif_zoneid != ALL_ZONES && 8290 (zoneid != GLOBAL_ZONEID || 8291 !(lifn_flags & LIFC_ALLZONES))) 8292 continue; 8293 8294 numifs++; 8295 } 8296 } 8297 rw_exit(&ipst->ips_ill_g_lock); 8298 return (numifs); 8299 } 8300 8301 uint_t 8302 ip_get_lifsrcofnum(ill_t *ill) 8303 { 8304 uint_t numifs = 0; 8305 ill_t *ill_head = ill; 8306 ip_stack_t *ipst = ill->ill_ipst; 8307 8308 /* 8309 * ill_g_usesrc_lock protects ill_usesrc_grp_next, for example, some 8310 * other thread may be trying to relink the ILLs in this usesrc group 8311 * and adjusting the ill_usesrc_grp_next pointers 8312 */ 8313 rw_enter(&ipst->ips_ill_g_usesrc_lock, RW_READER); 8314 if ((ill->ill_usesrc_ifindex == 0) && 8315 (ill->ill_usesrc_grp_next != NULL)) { 8316 for (; (ill != NULL) && (ill->ill_usesrc_grp_next != ill_head); 8317 ill = ill->ill_usesrc_grp_next) 8318 numifs++; 8319 } 8320 rw_exit(&ipst->ips_ill_g_usesrc_lock); 8321 8322 return (numifs); 8323 } 8324 8325 /* Null values are passed in for ipif, sin, and ifreq */ 8326 /* ARGSUSED */ 8327 int 8328 ip_sioctl_get_ifnum(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, 8329 mblk_t *mp, ip_ioctl_cmd_t *ipip, void *ifreq) 8330 { 8331 int *nump; 8332 conn_t *connp = Q_TO_CONN(q); 8333 8334 ASSERT(q->q_next == NULL); /* not a valid ioctl for ip as a module */ 8335 8336 /* Existence of b_cont->b_cont checked in ip_wput_nondata */ 8337 nump = (int *)mp->b_cont->b_cont->b_rptr; 8338 8339 *nump = ip_get_numifs(connp->conn_zoneid, 8340 connp->conn_netstack->netstack_ip); 8341 ip1dbg(("ip_sioctl_get_ifnum numifs %d", *nump)); 8342 return (0); 8343 } 8344 8345 /* Null values are passed in for ipif, sin, and ifreq */ 8346 /* ARGSUSED */ 8347 int 8348 ip_sioctl_get_lifnum(ipif_t *dummy_ipif, sin_t *dummy_sin, 8349 queue_t *q, mblk_t *mp, ip_ioctl_cmd_t *ipip, void *ifreq) 8350 { 8351 struct lifnum *lifn; 8352 mblk_t *mp1; 8353 conn_t *connp = Q_TO_CONN(q); 8354 8355 ASSERT(q->q_next == NULL); /* not a valid ioctl for ip as a module */ 8356 8357 /* Existence checked in ip_wput_nondata */ 8358 mp1 = mp->b_cont->b_cont; 8359 8360 lifn = (struct lifnum *)mp1->b_rptr; 8361 switch (lifn->lifn_family) { 8362 case AF_UNSPEC: 8363 case AF_INET: 8364 case AF_INET6: 8365 break; 8366 default: 8367 return (EAFNOSUPPORT); 8368 } 8369 8370 lifn->lifn_count = ip_get_numlifs(lifn->lifn_family, lifn->lifn_flags, 8371 connp->conn_zoneid, connp->conn_netstack->netstack_ip); 8372 ip1dbg(("ip_sioctl_get_lifnum numifs %d", lifn->lifn_count)); 8373 return (0); 8374 } 8375 8376 /* ARGSUSED */ 8377 int 8378 ip_sioctl_get_ifconf(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, 8379 mblk_t *mp, ip_ioctl_cmd_t *ipip, void *ifreq) 8380 { 8381 STRUCT_HANDLE(ifconf, ifc); 8382 mblk_t *mp1; 8383 struct iocblk *iocp; 8384 struct ifreq *ifr; 8385 ill_walk_context_t ctx; 8386 ill_t *ill; 8387 ipif_t *ipif; 8388 struct sockaddr_in *sin; 8389 int32_t ifclen; 8390 zoneid_t zoneid; 8391 ip_stack_t *ipst = CONNQ_TO_IPST(q); 8392 8393 ASSERT(q->q_next == NULL); /* not valid ioctls for ip as a module */ 8394 8395 ip1dbg(("ip_sioctl_get_ifconf")); 8396 /* Existence verified in ip_wput_nondata */ 8397 mp1 = mp->b_cont->b_cont; 8398 iocp = (struct iocblk *)mp->b_rptr; 8399 zoneid = Q_TO_CONN(q)->conn_zoneid; 8400 8401 /* 8402 * The original SIOCGIFCONF passed in a struct ifconf which specified 8403 * the user buffer address and length into which the list of struct 8404 * ifreqs was to be copied. Since AT&T Streams does not seem to 8405 * allow M_COPYOUT to be used in conjunction with I_STR IOCTLS, 8406 * the SIOCGIFCONF operation was redefined to simply provide 8407 * a large output buffer into which we are supposed to jam the ifreq 8408 * array. The same ioctl command code was used, despite the fact that 8409 * both the applications and the kernel code had to change, thus making 8410 * it impossible to support both interfaces. 8411 * 8412 * For reasons not good enough to try to explain, the following 8413 * algorithm is used for deciding what to do with one of these: 8414 * If the IOCTL comes in as an I_STR, it is assumed to be of the new 8415 * form with the output buffer coming down as the continuation message. 8416 * If it arrives as a TRANSPARENT IOCTL, it is assumed to be old style, 8417 * and we have to copy in the ifconf structure to find out how big the 8418 * output buffer is and where to copy out to. Sure no problem... 8419 * 8420 */ 8421 STRUCT_SET_HANDLE(ifc, iocp->ioc_flag, NULL); 8422 if ((mp1->b_wptr - mp1->b_rptr) == STRUCT_SIZE(ifc)) { 8423 int numifs = 0; 8424 size_t ifc_bufsize; 8425 8426 /* 8427 * Must be (better be!) continuation of a TRANSPARENT 8428 * IOCTL. We just copied in the ifconf structure. 8429 */ 8430 STRUCT_SET_HANDLE(ifc, iocp->ioc_flag, 8431 (struct ifconf *)mp1->b_rptr); 8432 8433 /* 8434 * Allocate a buffer to hold requested information. 8435 * 8436 * If ifc_len is larger than what is needed, we only 8437 * allocate what we will use. 8438 * 8439 * If ifc_len is smaller than what is needed, return 8440 * EINVAL. 8441 * 8442 * XXX: the ill_t structure can hava 2 counters, for 8443 * v4 and v6 (not just ill_ipif_up_count) to store the 8444 * number of interfaces for a device, so we don't need 8445 * to count them here... 8446 */ 8447 numifs = ip_get_numifs(zoneid, ipst); 8448 8449 ifclen = STRUCT_FGET(ifc, ifc_len); 8450 ifc_bufsize = numifs * sizeof (struct ifreq); 8451 if (ifc_bufsize > ifclen) { 8452 if (iocp->ioc_cmd == O_SIOCGIFCONF) { 8453 /* old behaviour */ 8454 return (EINVAL); 8455 } else { 8456 ifc_bufsize = ifclen; 8457 } 8458 } 8459 8460 mp1 = mi_copyout_alloc(q, mp, 8461 STRUCT_FGETP(ifc, ifc_buf), ifc_bufsize, B_FALSE); 8462 if (mp1 == NULL) 8463 return (ENOMEM); 8464 8465 mp1->b_wptr = mp1->b_rptr + ifc_bufsize; 8466 } 8467 bzero(mp1->b_rptr, mp1->b_wptr - mp1->b_rptr); 8468 /* 8469 * the SIOCGIFCONF ioctl only knows about 8470 * IPv4 addresses, so don't try to tell 8471 * it about interfaces with IPv6-only 8472 * addresses. (Last parm 'isv6' is B_FALSE) 8473 */ 8474 8475 ifr = (struct ifreq *)mp1->b_rptr; 8476 8477 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 8478 ill = ILL_START_WALK_V4(&ctx, ipst); 8479 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 8480 if (IS_UNDER_IPMP(ill)) 8481 continue; 8482 for (ipif = ill->ill_ipif; ipif != NULL; 8483 ipif = ipif->ipif_next) { 8484 if (zoneid != ipif->ipif_zoneid && 8485 ipif->ipif_zoneid != ALL_ZONES) 8486 continue; 8487 if ((uchar_t *)&ifr[1] > mp1->b_wptr) { 8488 if (iocp->ioc_cmd == O_SIOCGIFCONF) { 8489 /* old behaviour */ 8490 rw_exit(&ipst->ips_ill_g_lock); 8491 return (EINVAL); 8492 } else { 8493 goto if_copydone; 8494 } 8495 } 8496 ipif_get_name(ipif, ifr->ifr_name, 8497 sizeof (ifr->ifr_name)); 8498 sin = (sin_t *)&ifr->ifr_addr; 8499 *sin = sin_null; 8500 sin->sin_family = AF_INET; 8501 sin->sin_addr.s_addr = ipif->ipif_lcl_addr; 8502 ifr++; 8503 } 8504 } 8505 if_copydone: 8506 rw_exit(&ipst->ips_ill_g_lock); 8507 mp1->b_wptr = (uchar_t *)ifr; 8508 8509 if (STRUCT_BUF(ifc) != NULL) { 8510 STRUCT_FSET(ifc, ifc_len, 8511 (int)((uchar_t *)ifr - mp1->b_rptr)); 8512 } 8513 return (0); 8514 } 8515 8516 /* 8517 * Get the interfaces using the address hosted on the interface passed in, 8518 * as a source adddress 8519 */ 8520 /* ARGSUSED */ 8521 int 8522 ip_sioctl_get_lifsrcof(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, 8523 mblk_t *mp, ip_ioctl_cmd_t *ipip, void *ifreq) 8524 { 8525 mblk_t *mp1; 8526 ill_t *ill, *ill_head; 8527 ipif_t *ipif, *orig_ipif; 8528 int numlifs = 0; 8529 size_t lifs_bufsize, lifsmaxlen; 8530 struct lifreq *lifr; 8531 struct iocblk *iocp = (struct iocblk *)mp->b_rptr; 8532 uint_t ifindex; 8533 zoneid_t zoneid; 8534 int err = 0; 8535 boolean_t isv6 = B_FALSE; 8536 struct sockaddr_in *sin; 8537 struct sockaddr_in6 *sin6; 8538 STRUCT_HANDLE(lifsrcof, lifs); 8539 ip_stack_t *ipst; 8540 8541 ipst = CONNQ_TO_IPST(q); 8542 8543 ASSERT(q->q_next == NULL); 8544 8545 zoneid = Q_TO_CONN(q)->conn_zoneid; 8546 8547 /* Existence verified in ip_wput_nondata */ 8548 mp1 = mp->b_cont->b_cont; 8549 8550 /* 8551 * Must be (better be!) continuation of a TRANSPARENT 8552 * IOCTL. We just copied in the lifsrcof structure. 8553 */ 8554 STRUCT_SET_HANDLE(lifs, iocp->ioc_flag, 8555 (struct lifsrcof *)mp1->b_rptr); 8556 8557 if (MBLKL(mp1) != STRUCT_SIZE(lifs)) 8558 return (EINVAL); 8559 8560 ifindex = STRUCT_FGET(lifs, lifs_ifindex); 8561 isv6 = (Q_TO_CONN(q))->conn_af_isv6; 8562 ipif = ipif_lookup_on_ifindex(ifindex, isv6, zoneid, q, mp, 8563 ip_process_ioctl, &err, ipst); 8564 if (ipif == NULL) { 8565 ip1dbg(("ip_sioctl_get_lifsrcof: no ipif for ifindex %d\n", 8566 ifindex)); 8567 return (err); 8568 } 8569 8570 /* Allocate a buffer to hold requested information */ 8571 numlifs = ip_get_lifsrcofnum(ipif->ipif_ill); 8572 lifs_bufsize = numlifs * sizeof (struct lifreq); 8573 lifsmaxlen = STRUCT_FGET(lifs, lifs_maxlen); 8574 /* The actual size needed is always returned in lifs_len */ 8575 STRUCT_FSET(lifs, lifs_len, lifs_bufsize); 8576 8577 /* If the amount we need is more than what is passed in, abort */ 8578 if (lifs_bufsize > lifsmaxlen || lifs_bufsize == 0) { 8579 ipif_refrele(ipif); 8580 return (0); 8581 } 8582 8583 mp1 = mi_copyout_alloc(q, mp, 8584 STRUCT_FGETP(lifs, lifs_buf), lifs_bufsize, B_FALSE); 8585 if (mp1 == NULL) { 8586 ipif_refrele(ipif); 8587 return (ENOMEM); 8588 } 8589 8590 mp1->b_wptr = mp1->b_rptr + lifs_bufsize; 8591 bzero(mp1->b_rptr, lifs_bufsize); 8592 8593 lifr = (struct lifreq *)mp1->b_rptr; 8594 8595 ill = ill_head = ipif->ipif_ill; 8596 orig_ipif = ipif; 8597 8598 /* ill_g_usesrc_lock protects ill_usesrc_grp_next */ 8599 rw_enter(&ipst->ips_ill_g_usesrc_lock, RW_READER); 8600 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 8601 8602 ill = ill->ill_usesrc_grp_next; /* start from next ill */ 8603 for (; (ill != NULL) && (ill != ill_head); 8604 ill = ill->ill_usesrc_grp_next) { 8605 8606 if ((uchar_t *)&lifr[1] > mp1->b_wptr) 8607 break; 8608 8609 ipif = ill->ill_ipif; 8610 ipif_get_name(ipif, lifr->lifr_name, sizeof (lifr->lifr_name)); 8611 if (ipif->ipif_isv6) { 8612 sin6 = (sin6_t *)&lifr->lifr_addr; 8613 *sin6 = sin6_null; 8614 sin6->sin6_family = AF_INET6; 8615 sin6->sin6_addr = ipif->ipif_v6lcl_addr; 8616 lifr->lifr_addrlen = ip_mask_to_plen_v6( 8617 &ipif->ipif_v6net_mask); 8618 } else { 8619 sin = (sin_t *)&lifr->lifr_addr; 8620 *sin = sin_null; 8621 sin->sin_family = AF_INET; 8622 sin->sin_addr.s_addr = ipif->ipif_lcl_addr; 8623 lifr->lifr_addrlen = ip_mask_to_plen( 8624 ipif->ipif_net_mask); 8625 } 8626 lifr++; 8627 } 8628 rw_exit(&ipst->ips_ill_g_usesrc_lock); 8629 rw_exit(&ipst->ips_ill_g_lock); 8630 ipif_refrele(orig_ipif); 8631 mp1->b_wptr = (uchar_t *)lifr; 8632 STRUCT_FSET(lifs, lifs_len, (int)((uchar_t *)lifr - mp1->b_rptr)); 8633 8634 return (0); 8635 } 8636 8637 /* ARGSUSED */ 8638 int 8639 ip_sioctl_get_lifconf(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, 8640 mblk_t *mp, ip_ioctl_cmd_t *ipip, void *ifreq) 8641 { 8642 mblk_t *mp1; 8643 int list; 8644 ill_t *ill; 8645 ipif_t *ipif; 8646 int flags; 8647 int numlifs = 0; 8648 size_t lifc_bufsize; 8649 struct lifreq *lifr; 8650 sa_family_t family; 8651 struct sockaddr_in *sin; 8652 struct sockaddr_in6 *sin6; 8653 ill_walk_context_t ctx; 8654 struct iocblk *iocp = (struct iocblk *)mp->b_rptr; 8655 int32_t lifclen; 8656 zoneid_t zoneid; 8657 STRUCT_HANDLE(lifconf, lifc); 8658 ip_stack_t *ipst = CONNQ_TO_IPST(q); 8659 8660 ip1dbg(("ip_sioctl_get_lifconf")); 8661 8662 ASSERT(q->q_next == NULL); 8663 8664 zoneid = Q_TO_CONN(q)->conn_zoneid; 8665 8666 /* Existence verified in ip_wput_nondata */ 8667 mp1 = mp->b_cont->b_cont; 8668 8669 /* 8670 * An extended version of SIOCGIFCONF that takes an 8671 * additional address family and flags field. 8672 * AF_UNSPEC retrieve both IPv4 and IPv6. 8673 * Unless LIFC_NOXMIT is specified the IPIF_NOXMIT 8674 * interfaces are omitted. 8675 * Similarly, IPIF_TEMPORARY interfaces are omitted 8676 * unless LIFC_TEMPORARY is specified. 8677 * If LIFC_EXTERNAL_SOURCE is specified, IPIF_NOXMIT, 8678 * IPIF_NOLOCAL, PHYI_LOOPBACK, IPIF_DEPRECATED and 8679 * not IPIF_UP interfaces are omitted. LIFC_EXTERNAL_SOURCE 8680 * has priority over LIFC_NOXMIT. 8681 */ 8682 STRUCT_SET_HANDLE(lifc, iocp->ioc_flag, NULL); 8683 8684 if ((mp1->b_wptr - mp1->b_rptr) != STRUCT_SIZE(lifc)) 8685 return (EINVAL); 8686 8687 /* 8688 * Must be (better be!) continuation of a TRANSPARENT 8689 * IOCTL. We just copied in the lifconf structure. 8690 */ 8691 STRUCT_SET_HANDLE(lifc, iocp->ioc_flag, (struct lifconf *)mp1->b_rptr); 8692 8693 family = STRUCT_FGET(lifc, lifc_family); 8694 flags = STRUCT_FGET(lifc, lifc_flags); 8695 8696 switch (family) { 8697 case AF_UNSPEC: 8698 /* 8699 * walk all ILL's. 8700 */ 8701 list = MAX_G_HEADS; 8702 break; 8703 case AF_INET: 8704 /* 8705 * walk only IPV4 ILL's. 8706 */ 8707 list = IP_V4_G_HEAD; 8708 break; 8709 case AF_INET6: 8710 /* 8711 * walk only IPV6 ILL's. 8712 */ 8713 list = IP_V6_G_HEAD; 8714 break; 8715 default: 8716 return (EAFNOSUPPORT); 8717 } 8718 8719 /* 8720 * Allocate a buffer to hold requested information. 8721 * 8722 * If lifc_len is larger than what is needed, we only 8723 * allocate what we will use. 8724 * 8725 * If lifc_len is smaller than what is needed, return 8726 * EINVAL. 8727 */ 8728 numlifs = ip_get_numlifs(family, flags, zoneid, ipst); 8729 lifc_bufsize = numlifs * sizeof (struct lifreq); 8730 lifclen = STRUCT_FGET(lifc, lifc_len); 8731 if (lifc_bufsize > lifclen) { 8732 if (iocp->ioc_cmd == O_SIOCGLIFCONF) 8733 return (EINVAL); 8734 else 8735 lifc_bufsize = lifclen; 8736 } 8737 8738 mp1 = mi_copyout_alloc(q, mp, 8739 STRUCT_FGETP(lifc, lifc_buf), lifc_bufsize, B_FALSE); 8740 if (mp1 == NULL) 8741 return (ENOMEM); 8742 8743 mp1->b_wptr = mp1->b_rptr + lifc_bufsize; 8744 bzero(mp1->b_rptr, mp1->b_wptr - mp1->b_rptr); 8745 8746 lifr = (struct lifreq *)mp1->b_rptr; 8747 8748 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 8749 ill = ill_first(list, list, &ctx, ipst); 8750 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 8751 if (IS_UNDER_IPMP(ill) && !(flags & LIFC_UNDER_IPMP)) 8752 continue; 8753 8754 for (ipif = ill->ill_ipif; ipif != NULL; 8755 ipif = ipif->ipif_next) { 8756 if ((ipif->ipif_flags & IPIF_NOXMIT) && 8757 !(flags & LIFC_NOXMIT)) 8758 continue; 8759 8760 if ((ipif->ipif_flags & IPIF_TEMPORARY) && 8761 !(flags & LIFC_TEMPORARY)) 8762 continue; 8763 8764 if (((ipif->ipif_flags & 8765 (IPIF_NOXMIT|IPIF_NOLOCAL| 8766 IPIF_DEPRECATED)) || 8767 IS_LOOPBACK(ill) || 8768 !(ipif->ipif_flags & IPIF_UP)) && 8769 (flags & LIFC_EXTERNAL_SOURCE)) 8770 continue; 8771 8772 if (zoneid != ipif->ipif_zoneid && 8773 ipif->ipif_zoneid != ALL_ZONES && 8774 (zoneid != GLOBAL_ZONEID || 8775 !(flags & LIFC_ALLZONES))) 8776 continue; 8777 8778 if ((uchar_t *)&lifr[1] > mp1->b_wptr) { 8779 if (iocp->ioc_cmd == O_SIOCGLIFCONF) { 8780 rw_exit(&ipst->ips_ill_g_lock); 8781 return (EINVAL); 8782 } else { 8783 goto lif_copydone; 8784 } 8785 } 8786 8787 ipif_get_name(ipif, lifr->lifr_name, 8788 sizeof (lifr->lifr_name)); 8789 lifr->lifr_type = ill->ill_type; 8790 if (ipif->ipif_isv6) { 8791 sin6 = (sin6_t *)&lifr->lifr_addr; 8792 *sin6 = sin6_null; 8793 sin6->sin6_family = AF_INET6; 8794 sin6->sin6_addr = 8795 ipif->ipif_v6lcl_addr; 8796 lifr->lifr_addrlen = 8797 ip_mask_to_plen_v6( 8798 &ipif->ipif_v6net_mask); 8799 } else { 8800 sin = (sin_t *)&lifr->lifr_addr; 8801 *sin = sin_null; 8802 sin->sin_family = AF_INET; 8803 sin->sin_addr.s_addr = 8804 ipif->ipif_lcl_addr; 8805 lifr->lifr_addrlen = 8806 ip_mask_to_plen( 8807 ipif->ipif_net_mask); 8808 } 8809 lifr++; 8810 } 8811 } 8812 lif_copydone: 8813 rw_exit(&ipst->ips_ill_g_lock); 8814 8815 mp1->b_wptr = (uchar_t *)lifr; 8816 if (STRUCT_BUF(lifc) != NULL) { 8817 STRUCT_FSET(lifc, lifc_len, 8818 (int)((uchar_t *)lifr - mp1->b_rptr)); 8819 } 8820 return (0); 8821 } 8822 8823 static void 8824 ip_sioctl_ip6addrpolicy(queue_t *q, mblk_t *mp) 8825 { 8826 ip6_asp_t *table; 8827 size_t table_size; 8828 mblk_t *data_mp; 8829 struct iocblk *iocp = (struct iocblk *)mp->b_rptr; 8830 ip_stack_t *ipst; 8831 8832 if (q->q_next == NULL) 8833 ipst = CONNQ_TO_IPST(q); 8834 else 8835 ipst = ILLQ_TO_IPST(q); 8836 8837 /* These two ioctls are I_STR only */ 8838 if (iocp->ioc_count == TRANSPARENT) { 8839 miocnak(q, mp, 0, EINVAL); 8840 return; 8841 } 8842 8843 data_mp = mp->b_cont; 8844 if (data_mp == NULL) { 8845 /* The user passed us a NULL argument */ 8846 table = NULL; 8847 table_size = iocp->ioc_count; 8848 } else { 8849 /* 8850 * The user provided a table. The stream head 8851 * may have copied in the user data in chunks, 8852 * so make sure everything is pulled up 8853 * properly. 8854 */ 8855 if (MBLKL(data_mp) < iocp->ioc_count) { 8856 mblk_t *new_data_mp; 8857 if ((new_data_mp = msgpullup(data_mp, -1)) == 8858 NULL) { 8859 miocnak(q, mp, 0, ENOMEM); 8860 return; 8861 } 8862 freemsg(data_mp); 8863 data_mp = new_data_mp; 8864 mp->b_cont = data_mp; 8865 } 8866 table = (ip6_asp_t *)data_mp->b_rptr; 8867 table_size = iocp->ioc_count; 8868 } 8869 8870 switch (iocp->ioc_cmd) { 8871 case SIOCGIP6ADDRPOLICY: 8872 iocp->ioc_rval = ip6_asp_get(table, table_size, ipst); 8873 if (iocp->ioc_rval == -1) 8874 iocp->ioc_error = EINVAL; 8875 #if defined(_SYSCALL32_IMPL) && _LONG_LONG_ALIGNMENT_32 == 4 8876 else if (table != NULL && 8877 (iocp->ioc_flag & IOC_MODELS) == IOC_ILP32) { 8878 ip6_asp_t *src = table; 8879 ip6_asp32_t *dst = (void *)table; 8880 int count = table_size / sizeof (ip6_asp_t); 8881 int i; 8882 8883 /* 8884 * We need to do an in-place shrink of the array 8885 * to match the alignment attributes of the 8886 * 32-bit ABI looking at it. 8887 */ 8888 /* LINTED: logical expression always true: op "||" */ 8889 ASSERT(sizeof (*src) > sizeof (*dst)); 8890 for (i = 1; i < count; i++) 8891 bcopy(src + i, dst + i, sizeof (*dst)); 8892 } 8893 #endif 8894 break; 8895 8896 case SIOCSIP6ADDRPOLICY: 8897 ASSERT(mp->b_prev == NULL); 8898 mp->b_prev = (void *)q; 8899 #if defined(_SYSCALL32_IMPL) && _LONG_LONG_ALIGNMENT_32 == 4 8900 /* 8901 * We pass in the datamodel here so that the ip6_asp_replace() 8902 * routine can handle converting from 32-bit to native formats 8903 * where necessary. 8904 * 8905 * A better way to handle this might be to convert the inbound 8906 * data structure here, and hang it off a new 'mp'; thus the 8907 * ip6_asp_replace() logic would always be dealing with native 8908 * format data structures.. 8909 * 8910 * (An even simpler way to handle these ioctls is to just 8911 * add a 32-bit trailing 'pad' field to the ip6_asp_t structure 8912 * and just recompile everything that depends on it.) 8913 */ 8914 #endif 8915 ip6_asp_replace(mp, table, table_size, B_FALSE, ipst, 8916 iocp->ioc_flag & IOC_MODELS); 8917 return; 8918 } 8919 8920 DB_TYPE(mp) = (iocp->ioc_error == 0) ? M_IOCACK : M_IOCNAK; 8921 qreply(q, mp); 8922 } 8923 8924 static void 8925 ip_sioctl_dstinfo(queue_t *q, mblk_t *mp) 8926 { 8927 mblk_t *data_mp; 8928 struct dstinforeq *dir; 8929 uint8_t *end, *cur; 8930 in6_addr_t *daddr, *saddr; 8931 ipaddr_t v4daddr; 8932 ire_t *ire; 8933 char *slabel, *dlabel; 8934 boolean_t isipv4; 8935 int match_ire; 8936 ill_t *dst_ill; 8937 ipif_t *src_ipif, *ire_ipif; 8938 struct iocblk *iocp = (struct iocblk *)mp->b_rptr; 8939 zoneid_t zoneid; 8940 ip_stack_t *ipst = CONNQ_TO_IPST(q); 8941 8942 ASSERT(q->q_next == NULL); /* this ioctl not allowed if ip is module */ 8943 zoneid = Q_TO_CONN(q)->conn_zoneid; 8944 8945 /* 8946 * This ioctl is I_STR only, and must have a 8947 * data mblk following the M_IOCTL mblk. 8948 */ 8949 data_mp = mp->b_cont; 8950 if (iocp->ioc_count == TRANSPARENT || data_mp == NULL) { 8951 miocnak(q, mp, 0, EINVAL); 8952 return; 8953 } 8954 8955 if (MBLKL(data_mp) < iocp->ioc_count) { 8956 mblk_t *new_data_mp; 8957 8958 if ((new_data_mp = msgpullup(data_mp, -1)) == NULL) { 8959 miocnak(q, mp, 0, ENOMEM); 8960 return; 8961 } 8962 freemsg(data_mp); 8963 data_mp = new_data_mp; 8964 mp->b_cont = data_mp; 8965 } 8966 match_ire = MATCH_IRE_RECURSIVE | MATCH_IRE_DEFAULT | MATCH_IRE_PARENT; 8967 8968 for (cur = data_mp->b_rptr, end = data_mp->b_wptr; 8969 end - cur >= sizeof (struct dstinforeq); 8970 cur += sizeof (struct dstinforeq)) { 8971 dir = (struct dstinforeq *)cur; 8972 daddr = &dir->dir_daddr; 8973 saddr = &dir->dir_saddr; 8974 8975 /* 8976 * ip_addr_scope_v6() and ip6_asp_lookup() handle 8977 * v4 mapped addresses; ire_ftable_lookup[_v6]() 8978 * and ipif_select_source[_v6]() do not. 8979 */ 8980 dir->dir_dscope = ip_addr_scope_v6(daddr); 8981 dlabel = ip6_asp_lookup(daddr, &dir->dir_precedence, ipst); 8982 8983 isipv4 = IN6_IS_ADDR_V4MAPPED(daddr); 8984 if (isipv4) { 8985 IN6_V4MAPPED_TO_IPADDR(daddr, v4daddr); 8986 ire = ire_ftable_lookup(v4daddr, NULL, NULL, 8987 0, NULL, NULL, zoneid, 0, NULL, match_ire, ipst); 8988 } else { 8989 ire = ire_ftable_lookup_v6(daddr, NULL, NULL, 8990 0, NULL, NULL, zoneid, 0, NULL, match_ire, ipst); 8991 } 8992 if (ire == NULL) { 8993 dir->dir_dreachable = 0; 8994 8995 /* move on to next dst addr */ 8996 continue; 8997 } 8998 dir->dir_dreachable = 1; 8999 9000 ire_ipif = ire->ire_ipif; 9001 if (ire_ipif == NULL) 9002 goto next_dst; 9003 9004 /* 9005 * We expect to get back an interface ire or a 9006 * gateway ire cache entry. For both types, the 9007 * output interface is ire_ipif->ipif_ill. 9008 */ 9009 dst_ill = ire_ipif->ipif_ill; 9010 dir->dir_dmactype = dst_ill->ill_mactype; 9011 9012 if (isipv4) { 9013 src_ipif = ipif_select_source(dst_ill, v4daddr, zoneid); 9014 } else { 9015 src_ipif = ipif_select_source_v6(dst_ill, 9016 daddr, B_FALSE, IPV6_PREFER_SRC_DEFAULT, zoneid); 9017 } 9018 if (src_ipif == NULL) 9019 goto next_dst; 9020 9021 *saddr = src_ipif->ipif_v6lcl_addr; 9022 dir->dir_sscope = ip_addr_scope_v6(saddr); 9023 slabel = ip6_asp_lookup(saddr, NULL, ipst); 9024 dir->dir_labelmatch = ip6_asp_labelcmp(dlabel, slabel); 9025 dir->dir_sdeprecated = 9026 (src_ipif->ipif_flags & IPIF_DEPRECATED) ? 1 : 0; 9027 ipif_refrele(src_ipif); 9028 next_dst: 9029 ire_refrele(ire); 9030 } 9031 miocack(q, mp, iocp->ioc_count, 0); 9032 } 9033 9034 /* 9035 * Check if this is an address assigned to this machine. 9036 * Skips interfaces that are down by using ire checks. 9037 * Translates mapped addresses to v4 addresses and then 9038 * treats them as such, returning true if the v4 address 9039 * associated with this mapped address is configured. 9040 * Note: Applications will have to be careful what they do 9041 * with the response; use of mapped addresses limits 9042 * what can be done with the socket, especially with 9043 * respect to socket options and ioctls - neither IPv4 9044 * options nor IPv6 sticky options/ancillary data options 9045 * may be used. 9046 */ 9047 /* ARGSUSED */ 9048 int 9049 ip_sioctl_tmyaddr(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, 9050 ip_ioctl_cmd_t *ipip, void *dummy_ifreq) 9051 { 9052 struct sioc_addrreq *sia; 9053 sin_t *sin; 9054 ire_t *ire; 9055 mblk_t *mp1; 9056 zoneid_t zoneid; 9057 ip_stack_t *ipst; 9058 9059 ip1dbg(("ip_sioctl_tmyaddr")); 9060 9061 ASSERT(q->q_next == NULL); /* this ioctl not allowed if ip is module */ 9062 zoneid = Q_TO_CONN(q)->conn_zoneid; 9063 ipst = CONNQ_TO_IPST(q); 9064 9065 /* Existence verified in ip_wput_nondata */ 9066 mp1 = mp->b_cont->b_cont; 9067 sia = (struct sioc_addrreq *)mp1->b_rptr; 9068 sin = (sin_t *)&sia->sa_addr; 9069 switch (sin->sin_family) { 9070 case AF_INET6: { 9071 sin6_t *sin6 = (sin6_t *)sin; 9072 9073 if (IN6_IS_ADDR_V4MAPPED(&sin6->sin6_addr)) { 9074 ipaddr_t v4_addr; 9075 9076 IN6_V4MAPPED_TO_IPADDR(&sin6->sin6_addr, 9077 v4_addr); 9078 ire = ire_ctable_lookup(v4_addr, 0, 9079 IRE_LOCAL|IRE_LOOPBACK, NULL, zoneid, 9080 NULL, MATCH_IRE_TYPE | MATCH_IRE_ZONEONLY, ipst); 9081 } else { 9082 in6_addr_t v6addr; 9083 9084 v6addr = sin6->sin6_addr; 9085 ire = ire_ctable_lookup_v6(&v6addr, 0, 9086 IRE_LOCAL|IRE_LOOPBACK, NULL, zoneid, 9087 NULL, MATCH_IRE_TYPE | MATCH_IRE_ZONEONLY, ipst); 9088 } 9089 break; 9090 } 9091 case AF_INET: { 9092 ipaddr_t v4addr; 9093 9094 v4addr = sin->sin_addr.s_addr; 9095 ire = ire_ctable_lookup(v4addr, 0, 9096 IRE_LOCAL|IRE_LOOPBACK, NULL, zoneid, 9097 NULL, MATCH_IRE_TYPE | MATCH_IRE_ZONEONLY, ipst); 9098 break; 9099 } 9100 default: 9101 return (EAFNOSUPPORT); 9102 } 9103 if (ire != NULL) { 9104 sia->sa_res = 1; 9105 ire_refrele(ire); 9106 } else { 9107 sia->sa_res = 0; 9108 } 9109 return (0); 9110 } 9111 9112 /* 9113 * Check if this is an address assigned on-link i.e. neighbor, 9114 * and makes sure it's reachable from the current zone. 9115 * Returns true for my addresses as well. 9116 * Translates mapped addresses to v4 addresses and then 9117 * treats them as such, returning true if the v4 address 9118 * associated with this mapped address is configured. 9119 * Note: Applications will have to be careful what they do 9120 * with the response; use of mapped addresses limits 9121 * what can be done with the socket, especially with 9122 * respect to socket options and ioctls - neither IPv4 9123 * options nor IPv6 sticky options/ancillary data options 9124 * may be used. 9125 */ 9126 /* ARGSUSED */ 9127 int 9128 ip_sioctl_tonlink(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, 9129 ip_ioctl_cmd_t *ipip, void *duymmy_ifreq) 9130 { 9131 struct sioc_addrreq *sia; 9132 sin_t *sin; 9133 mblk_t *mp1; 9134 ire_t *ire = NULL; 9135 zoneid_t zoneid; 9136 ip_stack_t *ipst; 9137 9138 ip1dbg(("ip_sioctl_tonlink")); 9139 9140 ASSERT(q->q_next == NULL); /* this ioctl not allowed if ip is module */ 9141 zoneid = Q_TO_CONN(q)->conn_zoneid; 9142 ipst = CONNQ_TO_IPST(q); 9143 9144 /* Existence verified in ip_wput_nondata */ 9145 mp1 = mp->b_cont->b_cont; 9146 sia = (struct sioc_addrreq *)mp1->b_rptr; 9147 sin = (sin_t *)&sia->sa_addr; 9148 9149 /* 9150 * Match addresses with a zero gateway field to avoid 9151 * routes going through a router. 9152 * Exclude broadcast and multicast addresses. 9153 */ 9154 switch (sin->sin_family) { 9155 case AF_INET6: { 9156 sin6_t *sin6 = (sin6_t *)sin; 9157 9158 if (IN6_IS_ADDR_V4MAPPED(&sin6->sin6_addr)) { 9159 ipaddr_t v4_addr; 9160 9161 IN6_V4MAPPED_TO_IPADDR(&sin6->sin6_addr, 9162 v4_addr); 9163 if (!CLASSD(v4_addr)) { 9164 ire = ire_route_lookup(v4_addr, 0, 0, 0, 9165 NULL, NULL, zoneid, NULL, 9166 MATCH_IRE_GW, ipst); 9167 } 9168 } else { 9169 in6_addr_t v6addr; 9170 in6_addr_t v6gw; 9171 9172 v6addr = sin6->sin6_addr; 9173 v6gw = ipv6_all_zeros; 9174 if (!IN6_IS_ADDR_MULTICAST(&v6addr)) { 9175 ire = ire_route_lookup_v6(&v6addr, 0, 9176 &v6gw, 0, NULL, NULL, zoneid, 9177 NULL, MATCH_IRE_GW, ipst); 9178 } 9179 } 9180 break; 9181 } 9182 case AF_INET: { 9183 ipaddr_t v4addr; 9184 9185 v4addr = sin->sin_addr.s_addr; 9186 if (!CLASSD(v4addr)) { 9187 ire = ire_route_lookup(v4addr, 0, 0, 0, 9188 NULL, NULL, zoneid, NULL, 9189 MATCH_IRE_GW, ipst); 9190 } 9191 break; 9192 } 9193 default: 9194 return (EAFNOSUPPORT); 9195 } 9196 sia->sa_res = 0; 9197 if (ire != NULL) { 9198 if (ire->ire_type & (IRE_INTERFACE|IRE_CACHE| 9199 IRE_LOCAL|IRE_LOOPBACK)) { 9200 sia->sa_res = 1; 9201 } 9202 ire_refrele(ire); 9203 } 9204 return (0); 9205 } 9206 9207 /* 9208 * TBD: implement when kernel maintaines a list of site prefixes. 9209 */ 9210 /* ARGSUSED */ 9211 int 9212 ip_sioctl_tmysite(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 9213 ip_ioctl_cmd_t *ipip, void *ifreq) 9214 { 9215 return (ENXIO); 9216 } 9217 9218 /* ARGSUSED */ 9219 int 9220 ip_sioctl_tunparam(ipif_t *ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, 9221 ip_ioctl_cmd_t *ipip, void *dummy_ifreq) 9222 { 9223 ill_t *ill; 9224 mblk_t *mp1; 9225 conn_t *connp; 9226 boolean_t success; 9227 9228 ip1dbg(("ip_sioctl_tunparam(%s:%u %p)\n", 9229 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 9230 /* ioctl comes down on an conn */ 9231 ASSERT(!(q->q_flag & QREADR) && q->q_next == NULL); 9232 connp = Q_TO_CONN(q); 9233 9234 mp->b_datap->db_type = M_IOCTL; 9235 9236 /* 9237 * Send down a copy. (copymsg does not copy b_next/b_prev). 9238 * The original mp contains contaminated b_next values due to 'mi', 9239 * which is needed to do the mi_copy_done. Unfortunately if we 9240 * send down the original mblk itself and if we are popped due to an 9241 * an unplumb before the response comes back from tunnel, 9242 * the streamhead (which does a freemsg) will see this contaminated 9243 * message and the assertion in freemsg about non-null b_next/b_prev 9244 * will panic a DEBUG kernel. 9245 */ 9246 mp1 = copymsg(mp); 9247 if (mp1 == NULL) 9248 return (ENOMEM); 9249 9250 ill = ipif->ipif_ill; 9251 mutex_enter(&connp->conn_lock); 9252 mutex_enter(&ill->ill_lock); 9253 if (ipip->ipi_cmd == SIOCSTUNPARAM || ipip->ipi_cmd == OSIOCSTUNPARAM) { 9254 success = ipsq_pending_mp_add(connp, ipif, CONNP_TO_WQ(connp), 9255 mp, 0); 9256 } else { 9257 success = ill_pending_mp_add(ill, connp, mp); 9258 } 9259 mutex_exit(&ill->ill_lock); 9260 mutex_exit(&connp->conn_lock); 9261 9262 if (success) { 9263 ip1dbg(("sending down tunparam request ")); 9264 putnext(ill->ill_wq, mp1); 9265 return (EINPROGRESS); 9266 } else { 9267 /* The conn has started closing */ 9268 freemsg(mp1); 9269 return (EINTR); 9270 } 9271 } 9272 9273 /* 9274 * ARP IOCTLs. 9275 * How does IP get in the business of fronting ARP configuration/queries? 9276 * Well it's like this, the Berkeley ARP IOCTLs (SIOCGARP, SIOCDARP, SIOCSARP) 9277 * are by tradition passed in through a datagram socket. That lands in IP. 9278 * As it happens, this is just as well since the interface is quite crude in 9279 * that it passes in no information about protocol or hardware types, or 9280 * interface association. After making the protocol assumption, IP is in 9281 * the position to look up the name of the ILL, which ARP will need, and 9282 * format a request that can be handled by ARP. The request is passed up 9283 * stream to ARP, and the original IOCTL is completed by IP when ARP passes 9284 * back a response. ARP supports its own set of more general IOCTLs, in 9285 * case anyone is interested. 9286 */ 9287 /* ARGSUSED */ 9288 int 9289 ip_sioctl_arp(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 9290 ip_ioctl_cmd_t *ipip, void *dummy_ifreq) 9291 { 9292 mblk_t *mp1; 9293 mblk_t *mp2; 9294 mblk_t *pending_mp; 9295 ipaddr_t ipaddr; 9296 area_t *area; 9297 struct iocblk *iocp; 9298 conn_t *connp; 9299 struct arpreq *ar; 9300 struct xarpreq *xar; 9301 int flags, alength; 9302 uchar_t *lladdr; 9303 ire_t *ire; 9304 ip_stack_t *ipst; 9305 ill_t *ill = ipif->ipif_ill; 9306 ill_t *proxy_ill = NULL; 9307 ipmp_arpent_t *entp = NULL; 9308 boolean_t if_arp_ioctl = B_FALSE; 9309 boolean_t proxyarp = B_FALSE; 9310 9311 ASSERT(!(q->q_flag & QREADR) && q->q_next == NULL); 9312 connp = Q_TO_CONN(q); 9313 ipst = connp->conn_netstack->netstack_ip; 9314 9315 if (ipip->ipi_cmd_type == XARP_CMD) { 9316 /* We have a chain - M_IOCTL-->MI_COPY_MBLK-->XARPREQ_MBLK */ 9317 xar = (struct xarpreq *)mp->b_cont->b_cont->b_rptr; 9318 ar = NULL; 9319 9320 flags = xar->xarp_flags; 9321 lladdr = (uchar_t *)LLADDR(&xar->xarp_ha); 9322 if_arp_ioctl = (xar->xarp_ha.sdl_nlen != 0); 9323 /* 9324 * Validate against user's link layer address length 9325 * input and name and addr length limits. 9326 */ 9327 alength = ill->ill_phys_addr_length; 9328 if (ipip->ipi_cmd == SIOCSXARP) { 9329 if (alength != xar->xarp_ha.sdl_alen || 9330 (alength + xar->xarp_ha.sdl_nlen > 9331 sizeof (xar->xarp_ha.sdl_data))) 9332 return (EINVAL); 9333 } 9334 } else { 9335 /* We have a chain - M_IOCTL-->MI_COPY_MBLK-->ARPREQ_MBLK */ 9336 ar = (struct arpreq *)mp->b_cont->b_cont->b_rptr; 9337 xar = NULL; 9338 9339 flags = ar->arp_flags; 9340 lladdr = (uchar_t *)ar->arp_ha.sa_data; 9341 /* 9342 * Theoretically, the sa_family could tell us what link 9343 * layer type this operation is trying to deal with. By 9344 * common usage AF_UNSPEC means ethernet. We'll assume 9345 * any attempt to use the SIOC?ARP ioctls is for ethernet, 9346 * for now. Our new SIOC*XARP ioctls can be used more 9347 * generally. 9348 * 9349 * If the underlying media happens to have a non 6 byte 9350 * address, arp module will fail set/get, but the del 9351 * operation will succeed. 9352 */ 9353 alength = 6; 9354 if ((ipip->ipi_cmd != SIOCDARP) && 9355 (alength != ill->ill_phys_addr_length)) { 9356 return (EINVAL); 9357 } 9358 } 9359 9360 ipaddr = sin->sin_addr.s_addr; 9361 9362 /* 9363 * IPMP ARP special handling: 9364 * 9365 * 1. Since ARP mappings must appear consistent across the group, 9366 * prohibit changing ARP mappings on the underlying interfaces. 9367 * 9368 * 2. Since ARP mappings for IPMP data addresses are maintained by 9369 * IP itself, prohibit changing them. 9370 * 9371 * 3. For proxy ARP, use a functioning hardware address in the group, 9372 * provided one exists. If one doesn't, just add the entry as-is; 9373 * ipmp_illgrp_refresh_arpent() will refresh it if things change. 9374 */ 9375 if (IS_UNDER_IPMP(ill)) { 9376 if (ipip->ipi_cmd != SIOCGARP && ipip->ipi_cmd != SIOCGXARP) 9377 return (EPERM); 9378 } 9379 if (IS_IPMP(ill)) { 9380 ipmp_illgrp_t *illg = ill->ill_grp; 9381 9382 switch (ipip->ipi_cmd) { 9383 case SIOCSARP: 9384 case SIOCSXARP: 9385 proxy_ill = ipmp_illgrp_find_ill(illg, lladdr, alength); 9386 if (proxy_ill != NULL) { 9387 proxyarp = B_TRUE; 9388 if (!ipmp_ill_is_active(proxy_ill)) 9389 proxy_ill = ipmp_illgrp_next_ill(illg); 9390 if (proxy_ill != NULL) 9391 lladdr = proxy_ill->ill_phys_addr; 9392 } 9393 /* FALLTHRU */ 9394 case SIOCDARP: 9395 case SIOCDXARP: 9396 ire = ire_ctable_lookup(ipaddr, 0, IRE_LOCAL, NULL, 9397 ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 9398 if (ire != NULL) { 9399 ire_refrele(ire); 9400 return (EPERM); 9401 } 9402 } 9403 } 9404 9405 /* 9406 * We are going to pass up to ARP a packet chain that looks 9407 * like: 9408 * 9409 * M_IOCTL-->ARP_op_MBLK-->ORIG_M_IOCTL-->MI_COPY_MBLK-->[X]ARPREQ_MBLK 9410 * 9411 * Get a copy of the original IOCTL mblk to head the chain, 9412 * to be sent up (in mp1). Also get another copy to store 9413 * in the ill_pending_mp list, for matching the response 9414 * when it comes back from ARP. 9415 */ 9416 mp1 = copyb(mp); 9417 pending_mp = copymsg(mp); 9418 if (mp1 == NULL || pending_mp == NULL) { 9419 if (mp1 != NULL) 9420 freeb(mp1); 9421 if (pending_mp != NULL) 9422 inet_freemsg(pending_mp); 9423 return (ENOMEM); 9424 } 9425 9426 mp2 = ill_arp_alloc(ill, (uchar_t *)&ip_area_template, 9427 (caddr_t)&ipaddr); 9428 if (mp2 == NULL) { 9429 freeb(mp1); 9430 inet_freemsg(pending_mp); 9431 return (ENOMEM); 9432 } 9433 /* Put together the chain. */ 9434 mp1->b_cont = mp2; 9435 mp1->b_datap->db_type = M_IOCTL; 9436 mp2->b_cont = mp; 9437 mp2->b_datap->db_type = M_DATA; 9438 9439 iocp = (struct iocblk *)mp1->b_rptr; 9440 9441 /* 9442 * An M_IOCDATA's payload (struct copyresp) is mostly the same as an 9443 * M_IOCTL's payload (struct iocblk), but 'struct copyresp' has a 9444 * cp_private field (or cp_rval on 32-bit systems) in place of the 9445 * ioc_count field; set ioc_count to be correct. 9446 */ 9447 iocp->ioc_count = MBLKL(mp1->b_cont); 9448 9449 /* 9450 * Set the proper command in the ARP message. 9451 * Convert the SIOC{G|S|D}ARP calls into our 9452 * AR_ENTRY_xxx calls. 9453 */ 9454 area = (area_t *)mp2->b_rptr; 9455 switch (iocp->ioc_cmd) { 9456 case SIOCDARP: 9457 case SIOCDXARP: 9458 /* 9459 * We defer deleting the corresponding IRE until 9460 * we return from arp. 9461 */ 9462 area->area_cmd = AR_ENTRY_DELETE; 9463 area->area_proto_mask_offset = 0; 9464 break; 9465 case SIOCGARP: 9466 case SIOCGXARP: 9467 area->area_cmd = AR_ENTRY_SQUERY; 9468 area->area_proto_mask_offset = 0; 9469 break; 9470 case SIOCSARP: 9471 case SIOCSXARP: 9472 /* 9473 * Delete the corresponding ire to make sure IP will 9474 * pick up any change from arp. 9475 */ 9476 if (!if_arp_ioctl) { 9477 (void) ip_ire_clookup_and_delete(ipaddr, NULL, ipst); 9478 } else { 9479 ipif_t *ipif = ipif_get_next_ipif(NULL, ill); 9480 if (ipif != NULL) { 9481 (void) ip_ire_clookup_and_delete(ipaddr, ipif, 9482 ipst); 9483 ipif_refrele(ipif); 9484 } 9485 } 9486 break; 9487 } 9488 iocp->ioc_cmd = area->area_cmd; 9489 9490 /* 9491 * Fill in the rest of the ARP operation fields. 9492 */ 9493 area->area_hw_addr_length = alength; 9494 bcopy(lladdr, (char *)area + area->area_hw_addr_offset, alength); 9495 9496 /* Translate the flags. */ 9497 if (flags & ATF_PERM) 9498 area->area_flags |= ACE_F_PERMANENT; 9499 if (flags & ATF_PUBL) 9500 area->area_flags |= ACE_F_PUBLISH; 9501 if (flags & ATF_AUTHORITY) 9502 area->area_flags |= ACE_F_AUTHORITY; 9503 9504 /* 9505 * If this is a permanent AR_ENTRY_ADD on the IPMP interface, track it 9506 * so that IP can update ARP as the active ills in the group change. 9507 */ 9508 if (IS_IPMP(ill) && area->area_cmd == AR_ENTRY_ADD && 9509 (area->area_flags & ACE_F_PERMANENT)) { 9510 entp = ipmp_illgrp_create_arpent(ill->ill_grp, mp2, proxyarp); 9511 9512 /* 9513 * The second part of the conditional below handles a corner 9514 * case: if this is proxy ARP and the IPMP group has no active 9515 * interfaces, we can't send the request to ARP now since it 9516 * won't be able to build an ACE. So we return success and 9517 * notify ARP about the proxy ARP entry once an interface 9518 * becomes active. 9519 */ 9520 if (entp == NULL || (proxyarp && proxy_ill == NULL)) { 9521 mp2->b_cont = NULL; 9522 inet_freemsg(mp1); 9523 inet_freemsg(pending_mp); 9524 return (entp == NULL ? ENOMEM : 0); 9525 } 9526 } 9527 9528 /* 9529 * Before sending 'mp' to ARP, we have to clear the b_next 9530 * and b_prev. Otherwise if STREAMS encounters such a message 9531 * in freemsg(), (because ARP can close any time) it can cause 9532 * a panic. But mi code needs the b_next and b_prev values of 9533 * mp->b_cont, to complete the ioctl. So we store it here 9534 * in pending_mp->bcont, and restore it in ip_sioctl_iocack() 9535 * when the response comes down from ARP. 9536 */ 9537 pending_mp->b_cont->b_next = mp->b_cont->b_next; 9538 pending_mp->b_cont->b_prev = mp->b_cont->b_prev; 9539 mp->b_cont->b_next = NULL; 9540 mp->b_cont->b_prev = NULL; 9541 9542 mutex_enter(&connp->conn_lock); 9543 mutex_enter(&ill->ill_lock); 9544 /* conn has not yet started closing, hence this can't fail */ 9545 if (ipip->ipi_flags & IPI_WR) { 9546 VERIFY(ipsq_pending_mp_add(connp, ipif, CONNP_TO_WQ(connp), 9547 pending_mp, 0) != 0); 9548 } else { 9549 VERIFY(ill_pending_mp_add(ill, connp, pending_mp) != 0); 9550 } 9551 mutex_exit(&ill->ill_lock); 9552 mutex_exit(&connp->conn_lock); 9553 9554 /* 9555 * Up to ARP it goes. The response will come back in ip_wput() as an 9556 * M_IOCACK, and will be handed to ip_sioctl_iocack() for completion. 9557 */ 9558 putnext(ill->ill_rq, mp1); 9559 9560 /* 9561 * If we created an IPMP ARP entry, mark that we've notified ARP. 9562 */ 9563 if (entp != NULL) 9564 ipmp_illgrp_mark_arpent(ill->ill_grp, entp); 9565 9566 return (EINPROGRESS); 9567 } 9568 9569 /* 9570 * Parse an [x]arpreq structure coming down SIOC[GSD][X]ARP ioctls, identify 9571 * the associated sin and refhold and return the associated ipif via `ci'. 9572 */ 9573 int 9574 ip_extract_arpreq(queue_t *q, mblk_t *mp, const ip_ioctl_cmd_t *ipip, 9575 cmd_info_t *ci, ipsq_func_t func) 9576 { 9577 mblk_t *mp1; 9578 int err; 9579 sin_t *sin; 9580 conn_t *connp; 9581 ipif_t *ipif; 9582 ire_t *ire = NULL; 9583 ill_t *ill = NULL; 9584 boolean_t exists; 9585 ip_stack_t *ipst; 9586 struct arpreq *ar; 9587 struct xarpreq *xar; 9588 struct sockaddr_dl *sdl; 9589 9590 /* ioctl comes down on a conn */ 9591 ASSERT(!(q->q_flag & QREADR) && q->q_next == NULL); 9592 connp = Q_TO_CONN(q); 9593 if (connp->conn_af_isv6) 9594 return (ENXIO); 9595 9596 ipst = connp->conn_netstack->netstack_ip; 9597 9598 /* Verified in ip_wput_nondata */ 9599 mp1 = mp->b_cont->b_cont; 9600 9601 if (ipip->ipi_cmd_type == XARP_CMD) { 9602 ASSERT(MBLKL(mp1) >= sizeof (struct xarpreq)); 9603 xar = (struct xarpreq *)mp1->b_rptr; 9604 sin = (sin_t *)&xar->xarp_pa; 9605 sdl = &xar->xarp_ha; 9606 9607 if (sdl->sdl_family != AF_LINK || sin->sin_family != AF_INET) 9608 return (ENXIO); 9609 if (sdl->sdl_nlen >= LIFNAMSIZ) 9610 return (EINVAL); 9611 } else { 9612 ASSERT(ipip->ipi_cmd_type == ARP_CMD); 9613 ASSERT(MBLKL(mp1) >= sizeof (struct arpreq)); 9614 ar = (struct arpreq *)mp1->b_rptr; 9615 sin = (sin_t *)&ar->arp_pa; 9616 } 9617 9618 if (ipip->ipi_cmd_type == XARP_CMD && sdl->sdl_nlen != 0) { 9619 ipif = ipif_lookup_on_name(sdl->sdl_data, sdl->sdl_nlen, 9620 B_FALSE, &exists, B_FALSE, ALL_ZONES, CONNP_TO_WQ(connp), 9621 mp, func, &err, ipst); 9622 if (ipif == NULL) 9623 return (err); 9624 if (ipif->ipif_id != 0) { 9625 ipif_refrele(ipif); 9626 return (ENXIO); 9627 } 9628 } else { 9629 /* 9630 * Either an SIOC[DGS]ARP or an SIOC[DGS]XARP with an sdl_nlen 9631 * of 0: use the IP address to find the ipif. If the IP 9632 * address is an IPMP test address, ire_ftable_lookup() will 9633 * find the wrong ill, so we first do an ipif_lookup_addr(). 9634 */ 9635 ipif = ipif_lookup_addr(sin->sin_addr.s_addr, NULL, ALL_ZONES, 9636 CONNP_TO_WQ(connp), mp, func, &err, ipst); 9637 if (ipif == NULL) { 9638 ire = ire_ftable_lookup(sin->sin_addr.s_addr, 0, 0, 9639 IRE_IF_RESOLVER, NULL, NULL, ALL_ZONES, 0, NULL, 9640 MATCH_IRE_TYPE, ipst); 9641 if (ire == NULL || ((ill = ire_to_ill(ire)) == NULL)) { 9642 if (ire != NULL) 9643 ire_refrele(ire); 9644 return (ENXIO); 9645 } 9646 ipif = ill->ill_ipif; 9647 ipif_refhold(ipif); 9648 ire_refrele(ire); 9649 } 9650 } 9651 9652 if (ipif->ipif_net_type != IRE_IF_RESOLVER) { 9653 ipif_refrele(ipif); 9654 return (ENXIO); 9655 } 9656 9657 ci->ci_sin = sin; 9658 ci->ci_ipif = ipif; 9659 return (0); 9660 } 9661 9662 /* 9663 * Link or unlink the illgrp on IPMP meta-interface `ill' depending on the 9664 * value of `ioccmd'. While an illgrp is linked to an ipmp_grp_t, it is 9665 * accessible from that ipmp_grp_t, which means SIOCSLIFGROUPNAME can look it 9666 * up and thus an ill can join that illgrp. 9667 * 9668 * We use I_PLINK/I_PUNLINK to do the link/unlink operations rather than 9669 * open()/close() primarily because close() is not allowed to fail or block 9670 * forever. On the other hand, I_PUNLINK *can* fail, and there's no reason 9671 * why anyone should ever need to I_PUNLINK an in-use IPMP stream. To ensure 9672 * symmetric behavior (e.g., doing an I_PLINK after and I_PUNLINK undoes the 9673 * I_PUNLINK) we defer linking to I_PLINK. Separately, we also fail attempts 9674 * to I_LINK since I_UNLINK is optional and we'd end up in an inconsistent 9675 * state if I_UNLINK didn't occur. 9676 * 9677 * Note that for each plumb/unplumb operation, we may end up here more than 9678 * once because of the way ifconfig works. However, it's OK to link the same 9679 * illgrp more than once, or unlink an illgrp that's already unlinked. 9680 */ 9681 static int 9682 ip_sioctl_plink_ipmp(ill_t *ill, int ioccmd) 9683 { 9684 int err; 9685 ip_stack_t *ipst = ill->ill_ipst; 9686 9687 ASSERT(IS_IPMP(ill)); 9688 ASSERT(IAM_WRITER_ILL(ill)); 9689 9690 switch (ioccmd) { 9691 case I_LINK: 9692 return (ENOTSUP); 9693 9694 case I_PLINK: 9695 rw_enter(&ipst->ips_ipmp_lock, RW_WRITER); 9696 ipmp_illgrp_link_grp(ill->ill_grp, ill->ill_phyint->phyint_grp); 9697 rw_exit(&ipst->ips_ipmp_lock); 9698 break; 9699 9700 case I_PUNLINK: 9701 /* 9702 * Require all UP ipifs be brought down prior to unlinking the 9703 * illgrp so any associated IREs (and other state) is torched. 9704 */ 9705 if (ill->ill_ipif_up_count + ill->ill_ipif_dup_count > 0) 9706 return (EBUSY); 9707 9708 /* 9709 * NOTE: We hold ipmp_lock across the unlink to prevent a race 9710 * with an SIOCSLIFGROUPNAME request from an ill trying to 9711 * join this group. Specifically: ills trying to join grab 9712 * ipmp_lock and bump a "pending join" counter checked by 9713 * ipmp_illgrp_unlink_grp(). During the unlink no new pending 9714 * joins can occur (since we have ipmp_lock). Once we drop 9715 * ipmp_lock, subsequent SIOCSLIFGROUPNAME requests will not 9716 * find the illgrp (since we unlinked it) and will return 9717 * EAFNOSUPPORT. This will then take them back through the 9718 * IPMP meta-interface plumbing logic in ifconfig, and thus 9719 * back through I_PLINK above. 9720 */ 9721 rw_enter(&ipst->ips_ipmp_lock, RW_WRITER); 9722 err = ipmp_illgrp_unlink_grp(ill->ill_grp); 9723 rw_exit(&ipst->ips_ipmp_lock); 9724 return (err); 9725 default: 9726 break; 9727 } 9728 return (0); 9729 } 9730 9731 /* 9732 * Do I_PLINK/I_LINK or I_PUNLINK/I_UNLINK with consistency checks and also 9733 * atomically set/clear the muxids. Also complete the ioctl by acking or 9734 * naking it. Note that the code is structured such that the link type, 9735 * whether it's persistent or not, is treated equally. ifconfig(1M) and 9736 * its clones use the persistent link, while pppd(1M) and perhaps many 9737 * other daemons may use non-persistent link. When combined with some 9738 * ill_t states, linking and unlinking lower streams may be used as 9739 * indicators of dynamic re-plumbing events [see PSARC/1999/348]. 9740 */ 9741 /* ARGSUSED */ 9742 void 9743 ip_sioctl_plink(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy_arg) 9744 { 9745 mblk_t *mp1, *mp2; 9746 struct linkblk *li; 9747 struct ipmx_s *ipmxp; 9748 ill_t *ill; 9749 int ioccmd = ((struct iocblk *)mp->b_rptr)->ioc_cmd; 9750 int err = 0; 9751 boolean_t entered_ipsq = B_FALSE; 9752 boolean_t islink; 9753 ip_stack_t *ipst; 9754 9755 if (CONN_Q(q)) 9756 ipst = CONNQ_TO_IPST(q); 9757 else 9758 ipst = ILLQ_TO_IPST(q); 9759 9760 ASSERT(ioccmd == I_PLINK || ioccmd == I_PUNLINK || 9761 ioccmd == I_LINK || ioccmd == I_UNLINK); 9762 9763 islink = (ioccmd == I_PLINK || ioccmd == I_LINK); 9764 9765 mp1 = mp->b_cont; /* This is the linkblk info */ 9766 li = (struct linkblk *)mp1->b_rptr; 9767 9768 /* 9769 * ARP has added this special mblk, and the utility is asking us 9770 * to perform consistency checks, and also atomically set the 9771 * muxid. Ifconfig is an example. It achieves this by using 9772 * /dev/arp as the mux to plink the arp stream, and pushes arp on 9773 * to /dev/udp[6] stream for use as the mux when plinking the IP 9774 * stream. SIOCSLIFMUXID is not required. See ifconfig.c, arp.c 9775 * and other comments in this routine for more details. 9776 */ 9777 mp2 = mp1->b_cont; /* This is added by ARP */ 9778 9779 /* 9780 * If I_{P}LINK/I_{P}UNLINK is issued by a utility other than 9781 * ifconfig which didn't push ARP on top of the dummy mux, we won't 9782 * get the special mblk above. For backward compatibility, we 9783 * request ip_sioctl_plink_ipmod() to skip the consistency checks. 9784 * The utility will use SIOCSLIFMUXID to store the muxids. This is 9785 * not atomic, and can leave the streams unplumbable if the utility 9786 * is interrupted before it does the SIOCSLIFMUXID. 9787 */ 9788 if (mp2 == NULL) { 9789 err = ip_sioctl_plink_ipmod(ipsq, q, mp, ioccmd, li, B_FALSE); 9790 if (err == EINPROGRESS) 9791 return; 9792 goto done; 9793 } 9794 9795 /* 9796 * This is an I_{P}LINK sent down by ifconfig through the ARP module; 9797 * ARP has appended this last mblk to tell us whether the lower stream 9798 * is an arp-dev stream or an IP module stream. 9799 */ 9800 ipmxp = (struct ipmx_s *)mp2->b_rptr; 9801 if (ipmxp->ipmx_arpdev_stream) { 9802 /* 9803 * The lower stream is the arp-dev stream. 9804 */ 9805 ill = ill_lookup_on_name(ipmxp->ipmx_name, B_FALSE, B_FALSE, 9806 q, mp, ip_sioctl_plink, &err, NULL, ipst); 9807 if (ill == NULL) { 9808 if (err == EINPROGRESS) 9809 return; 9810 err = EINVAL; 9811 goto done; 9812 } 9813 9814 if (ipsq == NULL) { 9815 ipsq = ipsq_try_enter(NULL, ill, q, mp, ip_sioctl_plink, 9816 NEW_OP, B_FALSE); 9817 if (ipsq == NULL) { 9818 ill_refrele(ill); 9819 return; 9820 } 9821 entered_ipsq = B_TRUE; 9822 } 9823 ASSERT(IAM_WRITER_ILL(ill)); 9824 ill_refrele(ill); 9825 9826 /* 9827 * To ensure consistency between IP and ARP, the following 9828 * LIFO scheme is used in plink/punlink. (IP first, ARP last). 9829 * This is because the muxid's are stored in the IP stream on 9830 * the ill. 9831 * 9832 * I_{P}LINK: ifconfig plinks the IP stream before plinking 9833 * the ARP stream. On an arp-dev stream, IP checks that it is 9834 * not yet plinked, and it also checks that the corresponding 9835 * IP stream is already plinked. 9836 * 9837 * I_{P}UNLINK: ifconfig punlinks the ARP stream before 9838 * punlinking the IP stream. IP does not allow punlink of the 9839 * IP stream unless the arp stream has been punlinked. 9840 */ 9841 if ((islink && 9842 (ill->ill_arp_muxid != 0 || ill->ill_ip_muxid == 0)) || 9843 (!islink && ill->ill_arp_muxid != li->l_index)) { 9844 err = EINVAL; 9845 goto done; 9846 } 9847 9848 if (IS_IPMP(ill) && 9849 (err = ip_sioctl_plink_ipmp(ill, ioccmd)) != 0) 9850 goto done; 9851 9852 ill->ill_arp_muxid = islink ? li->l_index : 0; 9853 } else { 9854 /* 9855 * The lower stream is probably an IP module stream. Do 9856 * consistency checking. 9857 */ 9858 err = ip_sioctl_plink_ipmod(ipsq, q, mp, ioccmd, li, B_TRUE); 9859 if (err == EINPROGRESS) 9860 return; 9861 } 9862 done: 9863 if (err == 0) 9864 miocack(q, mp, 0, 0); 9865 else 9866 miocnak(q, mp, 0, err); 9867 9868 /* Conn was refheld in ip_sioctl_copyin_setup */ 9869 if (CONN_Q(q)) 9870 CONN_OPER_PENDING_DONE(Q_TO_CONN(q)); 9871 if (entered_ipsq) 9872 ipsq_exit(ipsq); 9873 } 9874 9875 /* 9876 * Process I_{P}LINK and I_{P}UNLINK requests named by `ioccmd' and pointed to 9877 * by `mp' and `li' for the IP module stream (if li->q_bot is in fact an IP 9878 * module stream). If `doconsist' is set, then do the extended consistency 9879 * checks requested by ifconfig(1M) and (atomically) set ill_ip_muxid here. 9880 * Returns zero on success, EINPROGRESS if the operation is still pending, or 9881 * an error code on failure. 9882 */ 9883 static int 9884 ip_sioctl_plink_ipmod(ipsq_t *ipsq, queue_t *q, mblk_t *mp, int ioccmd, 9885 struct linkblk *li, boolean_t doconsist) 9886 { 9887 int err = 0; 9888 ill_t *ill; 9889 queue_t *ipwq, *dwq; 9890 const char *name; 9891 struct qinit *qinfo; 9892 boolean_t islink = (ioccmd == I_PLINK || ioccmd == I_LINK); 9893 boolean_t entered_ipsq = B_FALSE; 9894 9895 /* 9896 * Walk the lower stream to verify it's the IP module stream. 9897 * The IP module is identified by its name, wput function, 9898 * and non-NULL q_next. STREAMS ensures that the lower stream 9899 * (li->l_qbot) will not vanish until this ioctl completes. 9900 */ 9901 for (ipwq = li->l_qbot; ipwq != NULL; ipwq = ipwq->q_next) { 9902 qinfo = ipwq->q_qinfo; 9903 name = qinfo->qi_minfo->mi_idname; 9904 if (name != NULL && strcmp(name, ip_mod_info.mi_idname) == 0 && 9905 qinfo->qi_putp != (pfi_t)ip_lwput && ipwq->q_next != NULL) { 9906 break; 9907 } 9908 } 9909 9910 /* 9911 * If this isn't an IP module stream, bail. 9912 */ 9913 if (ipwq == NULL) 9914 return (0); 9915 9916 ill = ipwq->q_ptr; 9917 ASSERT(ill != NULL); 9918 9919 if (ipsq == NULL) { 9920 ipsq = ipsq_try_enter(NULL, ill, q, mp, ip_sioctl_plink, 9921 NEW_OP, B_FALSE); 9922 if (ipsq == NULL) 9923 return (EINPROGRESS); 9924 entered_ipsq = B_TRUE; 9925 } 9926 ASSERT(IAM_WRITER_ILL(ill)); 9927 9928 if (doconsist) { 9929 /* 9930 * Consistency checking requires that I_{P}LINK occurs 9931 * prior to setting ill_ip_muxid, and that I_{P}UNLINK 9932 * occurs prior to clearing ill_arp_muxid. 9933 */ 9934 if ((islink && ill->ill_ip_muxid != 0) || 9935 (!islink && ill->ill_arp_muxid != 0)) { 9936 err = EINVAL; 9937 goto done; 9938 } 9939 } 9940 9941 if (IS_IPMP(ill) && (err = ip_sioctl_plink_ipmp(ill, ioccmd)) != 0) 9942 goto done; 9943 9944 /* 9945 * As part of I_{P}LINKing, stash the number of downstream modules and 9946 * the read queue of the module immediately below IP in the ill. 9947 * These are used during the capability negotiation below. 9948 */ 9949 ill->ill_lmod_rq = NULL; 9950 ill->ill_lmod_cnt = 0; 9951 if (islink && ((dwq = ipwq->q_next) != NULL)) { 9952 ill->ill_lmod_rq = RD(dwq); 9953 for (; dwq != NULL; dwq = dwq->q_next) 9954 ill->ill_lmod_cnt++; 9955 } 9956 9957 if (doconsist) 9958 ill->ill_ip_muxid = islink ? li->l_index : 0; 9959 9960 /* 9961 * Mark the ipsq busy until the capability operations initiated below 9962 * complete. The PLINK/UNLINK ioctl itself completes when our caller 9963 * returns, but the capability operation may complete asynchronously 9964 * much later. 9965 */ 9966 ipsq_current_start(ipsq, ill->ill_ipif, ioccmd); 9967 /* 9968 * If there's at least one up ipif on this ill, then we're bound to 9969 * the underlying driver via DLPI. In that case, renegotiate 9970 * capabilities to account for any possible change in modules 9971 * interposed between IP and the driver. 9972 */ 9973 if (ill->ill_ipif_up_count > 0) { 9974 if (islink) 9975 ill_capability_probe(ill); 9976 else 9977 ill_capability_reset(ill, B_FALSE); 9978 } 9979 ipsq_current_finish(ipsq); 9980 done: 9981 if (entered_ipsq) 9982 ipsq_exit(ipsq); 9983 9984 return (err); 9985 } 9986 9987 /* 9988 * Search the ioctl command in the ioctl tables and return a pointer 9989 * to the ioctl command information. The ioctl command tables are 9990 * static and fully populated at compile time. 9991 */ 9992 ip_ioctl_cmd_t * 9993 ip_sioctl_lookup(int ioc_cmd) 9994 { 9995 int index; 9996 ip_ioctl_cmd_t *ipip; 9997 ip_ioctl_cmd_t *ipip_end; 9998 9999 if (ioc_cmd == IPI_DONTCARE) 10000 return (NULL); 10001 10002 /* 10003 * Do a 2 step search. First search the indexed table 10004 * based on the least significant byte of the ioctl cmd. 10005 * If we don't find a match, then search the misc table 10006 * serially. 10007 */ 10008 index = ioc_cmd & 0xFF; 10009 if (index < ip_ndx_ioctl_count) { 10010 ipip = &ip_ndx_ioctl_table[index]; 10011 if (ipip->ipi_cmd == ioc_cmd) { 10012 /* Found a match in the ndx table */ 10013 return (ipip); 10014 } 10015 } 10016 10017 /* Search the misc table */ 10018 ipip_end = &ip_misc_ioctl_table[ip_misc_ioctl_count]; 10019 for (ipip = ip_misc_ioctl_table; ipip < ipip_end; ipip++) { 10020 if (ipip->ipi_cmd == ioc_cmd) 10021 /* Found a match in the misc table */ 10022 return (ipip); 10023 } 10024 10025 return (NULL); 10026 } 10027 10028 /* 10029 * Wrapper function for resuming deferred ioctl processing 10030 * Used for SIOCGDSTINFO, SIOCGIP6ADDRPOLICY, SIOCGMSFILTER, 10031 * SIOCSMSFILTER, SIOCGIPMSFILTER, and SIOCSIPMSFILTER currently. 10032 */ 10033 /* ARGSUSED */ 10034 void 10035 ip_sioctl_copyin_resume(ipsq_t *dummy_ipsq, queue_t *q, mblk_t *mp, 10036 void *dummy_arg) 10037 { 10038 ip_sioctl_copyin_setup(q, mp); 10039 } 10040 10041 /* 10042 * ip_sioctl_copyin_setup is called by ip_wput with any M_IOCTL message 10043 * that arrives. Most of the IOCTLs are "socket" IOCTLs which we handle 10044 * in either I_STR or TRANSPARENT form, using the mi_copy facility. 10045 * We establish here the size of the block to be copied in. mi_copyin 10046 * arranges for this to happen, an processing continues in ip_wput with 10047 * an M_IOCDATA message. 10048 */ 10049 void 10050 ip_sioctl_copyin_setup(queue_t *q, mblk_t *mp) 10051 { 10052 int copyin_size; 10053 struct iocblk *iocp = (struct iocblk *)mp->b_rptr; 10054 ip_ioctl_cmd_t *ipip; 10055 cred_t *cr; 10056 ip_stack_t *ipst; 10057 10058 if (CONN_Q(q)) 10059 ipst = CONNQ_TO_IPST(q); 10060 else 10061 ipst = ILLQ_TO_IPST(q); 10062 10063 ipip = ip_sioctl_lookup(iocp->ioc_cmd); 10064 if (ipip == NULL) { 10065 /* 10066 * The ioctl is not one we understand or own. 10067 * Pass it along to be processed down stream, 10068 * if this is a module instance of IP, else nak 10069 * the ioctl. 10070 */ 10071 if (q->q_next == NULL) { 10072 goto nak; 10073 } else { 10074 putnext(q, mp); 10075 return; 10076 } 10077 } 10078 10079 /* 10080 * If this is deferred, then we will do all the checks when we 10081 * come back. 10082 */ 10083 if ((iocp->ioc_cmd == SIOCGDSTINFO || 10084 iocp->ioc_cmd == SIOCGIP6ADDRPOLICY) && !ip6_asp_can_lookup(ipst)) { 10085 ip6_asp_pending_op(q, mp, ip_sioctl_copyin_resume); 10086 return; 10087 } 10088 10089 /* 10090 * Only allow a very small subset of IP ioctls on this stream if 10091 * IP is a module and not a driver. Allowing ioctls to be processed 10092 * in this case may cause assert failures or data corruption. 10093 * Typically G[L]IFFLAGS, SLIFNAME/IF_UNITSEL are the only few 10094 * ioctls allowed on an IP module stream, after which this stream 10095 * normally becomes a multiplexor (at which time the stream head 10096 * will fail all ioctls). 10097 */ 10098 if ((q->q_next != NULL) && !(ipip->ipi_flags & IPI_MODOK)) { 10099 if (ipip->ipi_flags & IPI_PASS_DOWN) { 10100 /* 10101 * Pass common Streams ioctls which the IP 10102 * module does not own or consume along to 10103 * be processed down stream. 10104 */ 10105 putnext(q, mp); 10106 return; 10107 } else { 10108 goto nak; 10109 } 10110 } 10111 10112 /* Make sure we have ioctl data to process. */ 10113 if (mp->b_cont == NULL && !(ipip->ipi_flags & IPI_NULL_BCONT)) 10114 goto nak; 10115 10116 /* 10117 * Prefer dblk credential over ioctl credential; some synthesized 10118 * ioctls have kcred set because there's no way to crhold() 10119 * a credential in some contexts. (ioc_cr is not crfree() by 10120 * the framework; the caller of ioctl needs to hold the reference 10121 * for the duration of the call). 10122 */ 10123 cr = msg_getcred(mp, NULL); 10124 if (cr == NULL) 10125 cr = iocp->ioc_cr; 10126 10127 /* Make sure normal users don't send down privileged ioctls */ 10128 if ((ipip->ipi_flags & IPI_PRIV) && 10129 (cr != NULL) && secpolicy_ip_config(cr, B_TRUE) != 0) { 10130 /* We checked the privilege earlier but log it here */ 10131 miocnak(q, mp, 0, secpolicy_ip_config(cr, B_FALSE)); 10132 return; 10133 } 10134 10135 /* 10136 * The ioctl command tables can only encode fixed length 10137 * ioctl data. If the length is variable, the table will 10138 * encode the length as zero. Such special cases are handled 10139 * below in the switch. 10140 */ 10141 if (ipip->ipi_copyin_size != 0) { 10142 mi_copyin(q, mp, NULL, ipip->ipi_copyin_size); 10143 return; 10144 } 10145 10146 switch (iocp->ioc_cmd) { 10147 case O_SIOCGIFCONF: 10148 case SIOCGIFCONF: 10149 /* 10150 * This IOCTL is hilarious. See comments in 10151 * ip_sioctl_get_ifconf for the story. 10152 */ 10153 if (iocp->ioc_count == TRANSPARENT) 10154 copyin_size = SIZEOF_STRUCT(ifconf, 10155 iocp->ioc_flag); 10156 else 10157 copyin_size = iocp->ioc_count; 10158 mi_copyin(q, mp, NULL, copyin_size); 10159 return; 10160 10161 case O_SIOCGLIFCONF: 10162 case SIOCGLIFCONF: 10163 copyin_size = SIZEOF_STRUCT(lifconf, iocp->ioc_flag); 10164 mi_copyin(q, mp, NULL, copyin_size); 10165 return; 10166 10167 case SIOCGLIFSRCOF: 10168 copyin_size = SIZEOF_STRUCT(lifsrcof, iocp->ioc_flag); 10169 mi_copyin(q, mp, NULL, copyin_size); 10170 return; 10171 case SIOCGIP6ADDRPOLICY: 10172 ip_sioctl_ip6addrpolicy(q, mp); 10173 ip6_asp_table_refrele(ipst); 10174 return; 10175 10176 case SIOCSIP6ADDRPOLICY: 10177 ip_sioctl_ip6addrpolicy(q, mp); 10178 return; 10179 10180 case SIOCGDSTINFO: 10181 ip_sioctl_dstinfo(q, mp); 10182 ip6_asp_table_refrele(ipst); 10183 return; 10184 10185 case I_PLINK: 10186 case I_PUNLINK: 10187 case I_LINK: 10188 case I_UNLINK: 10189 /* 10190 * We treat non-persistent link similarly as the persistent 10191 * link case, in terms of plumbing/unplumbing, as well as 10192 * dynamic re-plumbing events indicator. See comments 10193 * in ip_sioctl_plink() for more. 10194 * 10195 * Request can be enqueued in the 'ipsq' while waiting 10196 * to become exclusive. So bump up the conn ref. 10197 */ 10198 if (CONN_Q(q)) 10199 CONN_INC_REF(Q_TO_CONN(q)); 10200 ip_sioctl_plink(NULL, q, mp, NULL); 10201 return; 10202 10203 case ND_GET: 10204 case ND_SET: 10205 /* 10206 * Use of the nd table requires holding the reader lock. 10207 * Modifying the nd table thru nd_load/nd_unload requires 10208 * the writer lock. 10209 */ 10210 rw_enter(&ipst->ips_ip_g_nd_lock, RW_READER); 10211 if (nd_getset(q, ipst->ips_ip_g_nd, mp)) { 10212 rw_exit(&ipst->ips_ip_g_nd_lock); 10213 10214 if (iocp->ioc_error) 10215 iocp->ioc_count = 0; 10216 mp->b_datap->db_type = M_IOCACK; 10217 qreply(q, mp); 10218 return; 10219 } 10220 rw_exit(&ipst->ips_ip_g_nd_lock); 10221 /* 10222 * We don't understand this subioctl of ND_GET / ND_SET. 10223 * Maybe intended for some driver / module below us 10224 */ 10225 if (q->q_next) { 10226 putnext(q, mp); 10227 } else { 10228 iocp->ioc_error = ENOENT; 10229 mp->b_datap->db_type = M_IOCNAK; 10230 iocp->ioc_count = 0; 10231 qreply(q, mp); 10232 } 10233 return; 10234 10235 case IP_IOCTL: 10236 ip_wput_ioctl(q, mp); 10237 return; 10238 default: 10239 cmn_err(CE_PANIC, "should not happen "); 10240 } 10241 nak: 10242 if (mp->b_cont != NULL) { 10243 freemsg(mp->b_cont); 10244 mp->b_cont = NULL; 10245 } 10246 iocp->ioc_error = EINVAL; 10247 mp->b_datap->db_type = M_IOCNAK; 10248 iocp->ioc_count = 0; 10249 qreply(q, mp); 10250 } 10251 10252 /* ip_wput hands off ARP IOCTL responses to us */ 10253 /* ARGSUSED3 */ 10254 void 10255 ip_sioctl_iocack(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy_arg) 10256 { 10257 struct arpreq *ar; 10258 struct xarpreq *xar; 10259 area_t *area; 10260 mblk_t *area_mp; 10261 struct iocblk *iocp; 10262 mblk_t *orig_ioc_mp, *tmp; 10263 struct iocblk *orig_iocp; 10264 ill_t *ill; 10265 conn_t *connp = NULL; 10266 mblk_t *pending_mp; 10267 int x_arp_ioctl = B_FALSE, ifx_arp_ioctl = B_FALSE; 10268 int *flagsp; 10269 char *storage = NULL; 10270 sin_t *sin; 10271 ipaddr_t addr; 10272 int err; 10273 ip_stack_t *ipst; 10274 10275 ASSERT(ipsq == NULL || IAM_WRITER_IPSQ(ipsq)); 10276 ill = q->q_ptr; 10277 ASSERT(ill != NULL); 10278 ipst = ill->ill_ipst; 10279 10280 /* 10281 * We should get back from ARP a packet chain that looks like: 10282 * M_IOCACK-->ARP_op_MBLK-->ORIG_M_IOCTL-->MI_COPY_MBLK-->[X]ARPREQ_MBLK 10283 */ 10284 if (!(area_mp = mp->b_cont) || 10285 (area_mp->b_wptr - area_mp->b_rptr) < sizeof (ip_sock_ar_t) || 10286 !(orig_ioc_mp = area_mp->b_cont) || 10287 !orig_ioc_mp->b_cont || !orig_ioc_mp->b_cont->b_cont) { 10288 freemsg(mp); 10289 return; 10290 } 10291 10292 orig_iocp = (struct iocblk *)orig_ioc_mp->b_rptr; 10293 10294 tmp = (orig_ioc_mp->b_cont)->b_cont; 10295 if ((orig_iocp->ioc_cmd == SIOCGXARP) || 10296 (orig_iocp->ioc_cmd == SIOCSXARP) || 10297 (orig_iocp->ioc_cmd == SIOCDXARP)) { 10298 x_arp_ioctl = B_TRUE; 10299 xar = (struct xarpreq *)tmp->b_rptr; 10300 sin = (sin_t *)&xar->xarp_pa; 10301 flagsp = &xar->xarp_flags; 10302 storage = xar->xarp_ha.sdl_data; 10303 if (xar->xarp_ha.sdl_nlen != 0) 10304 ifx_arp_ioctl = B_TRUE; 10305 } else { 10306 ar = (struct arpreq *)tmp->b_rptr; 10307 sin = (sin_t *)&ar->arp_pa; 10308 flagsp = &ar->arp_flags; 10309 storage = ar->arp_ha.sa_data; 10310 } 10311 10312 iocp = (struct iocblk *)mp->b_rptr; 10313 10314 /* 10315 * Find the pending message; if we're exclusive, it'll be on our IPSQ. 10316 * Otherwise, we can find it from our ioc_id. 10317 */ 10318 if (ipsq != NULL) 10319 pending_mp = ipsq_pending_mp_get(ipsq, &connp); 10320 else 10321 pending_mp = ill_pending_mp_get(ill, &connp, iocp->ioc_id); 10322 10323 if (pending_mp == NULL) { 10324 ASSERT(connp == NULL); 10325 inet_freemsg(mp); 10326 return; 10327 } 10328 ASSERT(connp != NULL); 10329 q = CONNP_TO_WQ(connp); 10330 10331 /* Uncouple the internally generated IOCTL from the original one */ 10332 area = (area_t *)area_mp->b_rptr; 10333 area_mp->b_cont = NULL; 10334 10335 /* 10336 * Restore the b_next and b_prev used by mi code. This is needed 10337 * to complete the ioctl using mi* functions. We stored them in 10338 * the pending mp prior to sending the request to ARP. 10339 */ 10340 orig_ioc_mp->b_cont->b_next = pending_mp->b_cont->b_next; 10341 orig_ioc_mp->b_cont->b_prev = pending_mp->b_cont->b_prev; 10342 inet_freemsg(pending_mp); 10343 10344 /* 10345 * We're done if there was an error or if this is not an SIOCG{X}ARP 10346 * Catch the case where there is an IRE_CACHE by no entry in the 10347 * arp table. 10348 */ 10349 addr = sin->sin_addr.s_addr; 10350 if (iocp->ioc_error && iocp->ioc_cmd == AR_ENTRY_SQUERY) { 10351 ire_t *ire; 10352 dl_unitdata_req_t *dlup; 10353 mblk_t *llmp; 10354 int addr_len; 10355 ill_t *ipsqill = NULL; 10356 10357 if (ifx_arp_ioctl) { 10358 /* 10359 * There's no need to lookup the ill, since 10360 * we've already done that when we started 10361 * processing the ioctl and sent the message 10362 * to ARP on that ill. So use the ill that 10363 * is stored in q->q_ptr. 10364 */ 10365 ipsqill = ill; 10366 ire = ire_ctable_lookup(addr, 0, IRE_CACHE, 10367 ipsqill->ill_ipif, ALL_ZONES, 10368 NULL, MATCH_IRE_TYPE | MATCH_IRE_ILL, ipst); 10369 } else { 10370 ire = ire_ctable_lookup(addr, 0, IRE_CACHE, 10371 NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 10372 if (ire != NULL) 10373 ipsqill = ire_to_ill(ire); 10374 } 10375 10376 if ((x_arp_ioctl) && (ipsqill != NULL)) 10377 storage += ill_xarp_info(&xar->xarp_ha, ipsqill); 10378 10379 if (ire != NULL) { 10380 /* 10381 * Since the ire obtained from cachetable is used for 10382 * mac addr copying below, treat an incomplete ire as if 10383 * as if we never found it. 10384 */ 10385 if (ire->ire_nce != NULL && 10386 ire->ire_nce->nce_state != ND_REACHABLE) { 10387 ire_refrele(ire); 10388 ire = NULL; 10389 ipsqill = NULL; 10390 goto errack; 10391 } 10392 *flagsp = ATF_INUSE; 10393 llmp = (ire->ire_nce != NULL ? 10394 ire->ire_nce->nce_res_mp : NULL); 10395 if (llmp != NULL && ipsqill != NULL) { 10396 uchar_t *macaddr; 10397 10398 addr_len = ipsqill->ill_phys_addr_length; 10399 if (x_arp_ioctl && ((addr_len + 10400 ipsqill->ill_name_length) > 10401 sizeof (xar->xarp_ha.sdl_data))) { 10402 ire_refrele(ire); 10403 freemsg(mp); 10404 ip_ioctl_finish(q, orig_ioc_mp, 10405 EINVAL, NO_COPYOUT, ipsq); 10406 return; 10407 } 10408 *flagsp |= ATF_COM; 10409 dlup = (dl_unitdata_req_t *)llmp->b_rptr; 10410 if (ipsqill->ill_sap_length < 0) 10411 macaddr = llmp->b_rptr + 10412 dlup->dl_dest_addr_offset; 10413 else 10414 macaddr = llmp->b_rptr + 10415 dlup->dl_dest_addr_offset + 10416 ipsqill->ill_sap_length; 10417 /* 10418 * For SIOCGARP, MAC address length 10419 * validation has already been done 10420 * before the ioctl was issued to ARP to 10421 * allow it to progress only on 6 byte 10422 * addressable (ethernet like) media. Thus 10423 * the mac address copying can not overwrite 10424 * the sa_data area below. 10425 */ 10426 bcopy(macaddr, storage, addr_len); 10427 } 10428 /* Ditch the internal IOCTL. */ 10429 freemsg(mp); 10430 ire_refrele(ire); 10431 ip_ioctl_finish(q, orig_ioc_mp, 0, COPYOUT, ipsq); 10432 return; 10433 } 10434 } 10435 10436 /* 10437 * If this was a failed AR_ENTRY_ADD or a successful AR_ENTRY_DELETE 10438 * on the IPMP meta-interface, ensure any ARP entries added in 10439 * ip_sioctl_arp() are deleted. 10440 */ 10441 if (IS_IPMP(ill) && 10442 ((iocp->ioc_error != 0 && iocp->ioc_cmd == AR_ENTRY_ADD) || 10443 ((iocp->ioc_error == 0 && iocp->ioc_cmd == AR_ENTRY_DELETE)))) { 10444 ipmp_illgrp_t *illg = ill->ill_grp; 10445 ipmp_arpent_t *entp; 10446 10447 if ((entp = ipmp_illgrp_lookup_arpent(illg, &addr)) != NULL) 10448 ipmp_illgrp_destroy_arpent(illg, entp); 10449 } 10450 10451 /* 10452 * Delete the coresponding IRE_CACHE if any. 10453 * Reset the error if there was one (in case there was no entry 10454 * in arp.) 10455 */ 10456 if (iocp->ioc_cmd == AR_ENTRY_DELETE) { 10457 ipif_t *ipintf = NULL; 10458 10459 if (ifx_arp_ioctl) { 10460 /* 10461 * There's no need to lookup the ill, since 10462 * we've already done that when we started 10463 * processing the ioctl and sent the message 10464 * to ARP on that ill. So use the ill that 10465 * is stored in q->q_ptr. 10466 */ 10467 ipintf = ill->ill_ipif; 10468 } 10469 if (ip_ire_clookup_and_delete(addr, ipintf, ipst)) { 10470 /* 10471 * The address in "addr" may be an entry for a 10472 * router. If that's true, then any off-net 10473 * IRE_CACHE entries that go through the router 10474 * with address "addr" must be clobbered. Use 10475 * ire_walk to achieve this goal. 10476 */ 10477 if (ifx_arp_ioctl) 10478 ire_walk_ill_v4(MATCH_IRE_ILL, 0, 10479 ire_delete_cache_gw, (char *)&addr, ill); 10480 else 10481 ire_walk_v4(ire_delete_cache_gw, (char *)&addr, 10482 ALL_ZONES, ipst); 10483 iocp->ioc_error = 0; 10484 } 10485 } 10486 errack: 10487 if (iocp->ioc_error || iocp->ioc_cmd != AR_ENTRY_SQUERY) { 10488 err = iocp->ioc_error; 10489 freemsg(mp); 10490 ip_ioctl_finish(q, orig_ioc_mp, err, NO_COPYOUT, ipsq); 10491 return; 10492 } 10493 10494 /* 10495 * Completion of an SIOCG{X}ARP. Translate the information from 10496 * the area_t into the struct {x}arpreq. 10497 */ 10498 if (x_arp_ioctl) { 10499 storage += ill_xarp_info(&xar->xarp_ha, ill); 10500 if ((ill->ill_phys_addr_length + ill->ill_name_length) > 10501 sizeof (xar->xarp_ha.sdl_data)) { 10502 freemsg(mp); 10503 ip_ioctl_finish(q, orig_ioc_mp, EINVAL, NO_COPYOUT, 10504 ipsq); 10505 return; 10506 } 10507 } 10508 *flagsp = ATF_INUSE; 10509 if (area->area_flags & ACE_F_PERMANENT) 10510 *flagsp |= ATF_PERM; 10511 if (area->area_flags & ACE_F_PUBLISH) 10512 *flagsp |= ATF_PUBL; 10513 if (area->area_flags & ACE_F_AUTHORITY) 10514 *flagsp |= ATF_AUTHORITY; 10515 if (area->area_hw_addr_length != 0) { 10516 *flagsp |= ATF_COM; 10517 /* 10518 * For SIOCGARP, MAC address length validation has 10519 * already been done before the ioctl was issued to ARP 10520 * to allow it to progress only on 6 byte addressable 10521 * (ethernet like) media. Thus the mac address copying 10522 * can not overwrite the sa_data area below. 10523 */ 10524 bcopy((char *)area + area->area_hw_addr_offset, 10525 storage, area->area_hw_addr_length); 10526 } 10527 10528 /* Ditch the internal IOCTL. */ 10529 freemsg(mp); 10530 /* Complete the original. */ 10531 ip_ioctl_finish(q, orig_ioc_mp, 0, COPYOUT, ipsq); 10532 } 10533 10534 /* 10535 * Create a new logical interface. If ipif_id is zero (i.e. not a logical 10536 * interface) create the next available logical interface for this 10537 * physical interface. 10538 * If ipif is NULL (i.e. the lookup didn't find one) attempt to create an 10539 * ipif with the specified name. 10540 * 10541 * If the address family is not AF_UNSPEC then set the address as well. 10542 * 10543 * If ip_sioctl_addr returns EINPROGRESS then the ioctl (the copyout) 10544 * is completed when the DL_BIND_ACK arrive in ip_rput_dlpi_writer. 10545 * 10546 * Executed as a writer on the ill. 10547 * So no lock is needed to traverse the ipif chain, or examine the 10548 * phyint flags. 10549 */ 10550 /* ARGSUSED */ 10551 int 10552 ip_sioctl_addif(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, 10553 ip_ioctl_cmd_t *dummy_ipip, void *dummy_ifreq) 10554 { 10555 mblk_t *mp1; 10556 struct lifreq *lifr; 10557 boolean_t isv6; 10558 boolean_t exists; 10559 char *name; 10560 char *endp; 10561 char *cp; 10562 int namelen; 10563 ipif_t *ipif; 10564 long id; 10565 ipsq_t *ipsq; 10566 ill_t *ill; 10567 sin_t *sin; 10568 int err = 0; 10569 boolean_t found_sep = B_FALSE; 10570 conn_t *connp; 10571 zoneid_t zoneid; 10572 ip_stack_t *ipst = CONNQ_TO_IPST(q); 10573 10574 ASSERT(q->q_next == NULL); 10575 ip1dbg(("ip_sioctl_addif\n")); 10576 /* Existence of mp1 has been checked in ip_wput_nondata */ 10577 mp1 = mp->b_cont->b_cont; 10578 /* 10579 * Null terminate the string to protect against buffer 10580 * overrun. String was generated by user code and may not 10581 * be trusted. 10582 */ 10583 lifr = (struct lifreq *)mp1->b_rptr; 10584 lifr->lifr_name[LIFNAMSIZ - 1] = '\0'; 10585 name = lifr->lifr_name; 10586 ASSERT(CONN_Q(q)); 10587 connp = Q_TO_CONN(q); 10588 isv6 = connp->conn_af_isv6; 10589 zoneid = connp->conn_zoneid; 10590 namelen = mi_strlen(name); 10591 if (namelen == 0) 10592 return (EINVAL); 10593 10594 exists = B_FALSE; 10595 if ((namelen + 1 == sizeof (ipif_loopback_name)) && 10596 (mi_strcmp(name, ipif_loopback_name) == 0)) { 10597 /* 10598 * Allow creating lo0 using SIOCLIFADDIF. 10599 * can't be any other writer thread. So can pass null below 10600 * for the last 4 args to ipif_lookup_name. 10601 */ 10602 ipif = ipif_lookup_on_name(lifr->lifr_name, namelen, B_TRUE, 10603 &exists, isv6, zoneid, NULL, NULL, NULL, NULL, ipst); 10604 /* Prevent any further action */ 10605 if (ipif == NULL) { 10606 return (ENOBUFS); 10607 } else if (!exists) { 10608 /* We created the ipif now and as writer */ 10609 ipif_refrele(ipif); 10610 return (0); 10611 } else { 10612 ill = ipif->ipif_ill; 10613 ill_refhold(ill); 10614 ipif_refrele(ipif); 10615 } 10616 } else { 10617 /* Look for a colon in the name. */ 10618 endp = &name[namelen]; 10619 for (cp = endp; --cp > name; ) { 10620 if (*cp == IPIF_SEPARATOR_CHAR) { 10621 found_sep = B_TRUE; 10622 /* 10623 * Reject any non-decimal aliases for plumbing 10624 * of logical interfaces. Aliases with leading 10625 * zeroes are also rejected as they introduce 10626 * ambiguity in the naming of the interfaces. 10627 * Comparing with "0" takes care of all such 10628 * cases. 10629 */ 10630 if ((strncmp("0", cp+1, 1)) == 0) 10631 return (EINVAL); 10632 10633 if (ddi_strtol(cp+1, &endp, 10, &id) != 0 || 10634 id <= 0 || *endp != '\0') { 10635 return (EINVAL); 10636 } 10637 *cp = '\0'; 10638 break; 10639 } 10640 } 10641 ill = ill_lookup_on_name(name, B_FALSE, isv6, 10642 CONNP_TO_WQ(connp), mp, ip_process_ioctl, &err, NULL, ipst); 10643 if (found_sep) 10644 *cp = IPIF_SEPARATOR_CHAR; 10645 if (ill == NULL) 10646 return (err); 10647 } 10648 10649 ipsq = ipsq_try_enter(NULL, ill, q, mp, ip_process_ioctl, NEW_OP, 10650 B_TRUE); 10651 10652 /* 10653 * Release the refhold due to the lookup, now that we are excl 10654 * or we are just returning 10655 */ 10656 ill_refrele(ill); 10657 10658 if (ipsq == NULL) 10659 return (EINPROGRESS); 10660 10661 /* We are now exclusive on the IPSQ */ 10662 ASSERT(IAM_WRITER_ILL(ill)); 10663 10664 if (found_sep) { 10665 /* Now see if there is an IPIF with this unit number. */ 10666 for (ipif = ill->ill_ipif; ipif != NULL; 10667 ipif = ipif->ipif_next) { 10668 if (ipif->ipif_id == id) { 10669 err = EEXIST; 10670 goto done; 10671 } 10672 } 10673 } 10674 10675 /* 10676 * We use IRE_LOCAL for lo0:1 etc. for "receive only" use 10677 * of lo0. Plumbing for lo0:0 happens in ipif_lookup_on_name() 10678 * instead. 10679 */ 10680 if ((ipif = ipif_allocate(ill, found_sep ? id : -1, IRE_LOCAL, 10681 B_TRUE, B_TRUE)) == NULL) { 10682 err = ENOBUFS; 10683 goto done; 10684 } 10685 10686 /* Return created name with ioctl */ 10687 (void) sprintf(lifr->lifr_name, "%s%c%d", ill->ill_name, 10688 IPIF_SEPARATOR_CHAR, ipif->ipif_id); 10689 ip1dbg(("created %s\n", lifr->lifr_name)); 10690 10691 /* Set address */ 10692 sin = (sin_t *)&lifr->lifr_addr; 10693 if (sin->sin_family != AF_UNSPEC) { 10694 err = ip_sioctl_addr(ipif, sin, q, mp, 10695 &ip_ndx_ioctl_table[SIOCLIFADDR_NDX], lifr); 10696 } 10697 10698 done: 10699 ipsq_exit(ipsq); 10700 return (err); 10701 } 10702 10703 /* 10704 * Remove an existing logical interface. If ipif_id is zero (i.e. not a logical 10705 * interface) delete it based on the IP address (on this physical interface). 10706 * Otherwise delete it based on the ipif_id. 10707 * Also, special handling to allow a removeif of lo0. 10708 */ 10709 /* ARGSUSED */ 10710 int 10711 ip_sioctl_removeif(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 10712 ip_ioctl_cmd_t *ipip, void *dummy_if_req) 10713 { 10714 conn_t *connp; 10715 ill_t *ill = ipif->ipif_ill; 10716 boolean_t success; 10717 ip_stack_t *ipst; 10718 10719 ipst = CONNQ_TO_IPST(q); 10720 10721 ASSERT(q->q_next == NULL); 10722 ip1dbg(("ip_sioctl_remove_if(%s:%u %p)\n", 10723 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 10724 ASSERT(IAM_WRITER_IPIF(ipif)); 10725 10726 connp = Q_TO_CONN(q); 10727 /* 10728 * Special case for unplumbing lo0 (the loopback physical interface). 10729 * If unplumbing lo0, the incoming address structure has been 10730 * initialized to all zeros. When unplumbing lo0, all its logical 10731 * interfaces must be removed too. 10732 * 10733 * Note that this interface may be called to remove a specific 10734 * loopback logical interface (eg, lo0:1). But in that case 10735 * ipif->ipif_id != 0 so that the code path for that case is the 10736 * same as any other interface (meaning it skips the code directly 10737 * below). 10738 */ 10739 if (ipif->ipif_id == 0 && ipif->ipif_net_type == IRE_LOOPBACK) { 10740 if (sin->sin_family == AF_UNSPEC && 10741 (IN6_IS_ADDR_UNSPECIFIED(&((sin6_t *)sin)->sin6_addr))) { 10742 /* 10743 * Mark it condemned. No new ref. will be made to ill. 10744 */ 10745 mutex_enter(&ill->ill_lock); 10746 ill->ill_state_flags |= ILL_CONDEMNED; 10747 for (ipif = ill->ill_ipif; ipif != NULL; 10748 ipif = ipif->ipif_next) { 10749 ipif->ipif_state_flags |= IPIF_CONDEMNED; 10750 } 10751 mutex_exit(&ill->ill_lock); 10752 10753 ipif = ill->ill_ipif; 10754 /* unplumb the loopback interface */ 10755 ill_delete(ill); 10756 mutex_enter(&connp->conn_lock); 10757 mutex_enter(&ill->ill_lock); 10758 10759 /* Are any references to this ill active */ 10760 if (ill_is_freeable(ill)) { 10761 mutex_exit(&ill->ill_lock); 10762 mutex_exit(&connp->conn_lock); 10763 ill_delete_tail(ill); 10764 mi_free(ill); 10765 return (0); 10766 } 10767 success = ipsq_pending_mp_add(connp, ipif, 10768 CONNP_TO_WQ(connp), mp, ILL_FREE); 10769 mutex_exit(&connp->conn_lock); 10770 mutex_exit(&ill->ill_lock); 10771 if (success) 10772 return (EINPROGRESS); 10773 else 10774 return (EINTR); 10775 } 10776 } 10777 10778 if (ipif->ipif_id == 0) { 10779 ipsq_t *ipsq; 10780 10781 /* Find based on address */ 10782 if (ipif->ipif_isv6) { 10783 sin6_t *sin6; 10784 10785 if (sin->sin_family != AF_INET6) 10786 return (EAFNOSUPPORT); 10787 10788 sin6 = (sin6_t *)sin; 10789 /* We are a writer, so we should be able to lookup */ 10790 ipif = ipif_lookup_addr_exact_v6(&sin6->sin6_addr, ill, 10791 ipst); 10792 } else { 10793 if (sin->sin_family != AF_INET) 10794 return (EAFNOSUPPORT); 10795 10796 /* We are a writer, so we should be able to lookup */ 10797 ipif = ipif_lookup_addr_exact(sin->sin_addr.s_addr, ill, 10798 ipst); 10799 } 10800 if (ipif == NULL) { 10801 return (EADDRNOTAVAIL); 10802 } 10803 10804 /* 10805 * It is possible for a user to send an SIOCLIFREMOVEIF with 10806 * lifr_name of the physical interface but with an ip address 10807 * lifr_addr of a logical interface plumbed over it. 10808 * So update ipx_current_ipif now that ipif points to the 10809 * correct one. 10810 */ 10811 ipsq = ipif->ipif_ill->ill_phyint->phyint_ipsq; 10812 ipsq->ipsq_xop->ipx_current_ipif = ipif; 10813 10814 /* This is a writer */ 10815 ipif_refrele(ipif); 10816 } 10817 10818 /* 10819 * Can not delete instance zero since it is tied to the ill. 10820 */ 10821 if (ipif->ipif_id == 0) 10822 return (EBUSY); 10823 10824 mutex_enter(&ill->ill_lock); 10825 ipif->ipif_state_flags |= IPIF_CONDEMNED; 10826 mutex_exit(&ill->ill_lock); 10827 10828 ipif_free(ipif); 10829 10830 mutex_enter(&connp->conn_lock); 10831 mutex_enter(&ill->ill_lock); 10832 10833 /* Are any references to this ipif active */ 10834 if (ipif_is_freeable(ipif)) { 10835 mutex_exit(&ill->ill_lock); 10836 mutex_exit(&connp->conn_lock); 10837 ipif_non_duplicate(ipif); 10838 ipif_down_tail(ipif); 10839 ipif_free_tail(ipif); /* frees ipif */ 10840 return (0); 10841 } 10842 success = ipsq_pending_mp_add(connp, ipif, CONNP_TO_WQ(connp), mp, 10843 IPIF_FREE); 10844 mutex_exit(&ill->ill_lock); 10845 mutex_exit(&connp->conn_lock); 10846 if (success) 10847 return (EINPROGRESS); 10848 else 10849 return (EINTR); 10850 } 10851 10852 /* 10853 * Restart the removeif ioctl. The refcnt has gone down to 0. 10854 * The ipif is already condemned. So can't find it thru lookups. 10855 */ 10856 /* ARGSUSED */ 10857 int 10858 ip_sioctl_removeif_restart(ipif_t *ipif, sin_t *dummy_sin, queue_t *q, 10859 mblk_t *mp, ip_ioctl_cmd_t *ipip, void *dummy_if_req) 10860 { 10861 ill_t *ill = ipif->ipif_ill; 10862 10863 ASSERT(IAM_WRITER_IPIF(ipif)); 10864 ASSERT(ipif->ipif_state_flags & IPIF_CONDEMNED); 10865 10866 ip1dbg(("ip_sioctl_removeif_restart(%s:%u %p)\n", 10867 ill->ill_name, ipif->ipif_id, (void *)ipif)); 10868 10869 if (ipif->ipif_id == 0 && ipif->ipif_net_type == IRE_LOOPBACK) { 10870 ASSERT(ill->ill_state_flags & ILL_CONDEMNED); 10871 ill_delete_tail(ill); 10872 mi_free(ill); 10873 return (0); 10874 } 10875 10876 ipif_non_duplicate(ipif); 10877 ipif_down_tail(ipif); 10878 ipif_free_tail(ipif); 10879 10880 ILL_UNMARK_CHANGING(ill); 10881 return (0); 10882 } 10883 10884 /* 10885 * Set the local interface address. 10886 * Allow an address of all zero when the interface is down. 10887 */ 10888 /* ARGSUSED */ 10889 int 10890 ip_sioctl_addr(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 10891 ip_ioctl_cmd_t *dummy_ipip, void *dummy_ifreq) 10892 { 10893 int err = 0; 10894 in6_addr_t v6addr; 10895 boolean_t need_up = B_FALSE; 10896 10897 ip1dbg(("ip_sioctl_addr(%s:%u %p)\n", 10898 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 10899 10900 ASSERT(IAM_WRITER_IPIF(ipif)); 10901 10902 if (ipif->ipif_isv6) { 10903 sin6_t *sin6; 10904 ill_t *ill; 10905 phyint_t *phyi; 10906 10907 if (sin->sin_family != AF_INET6) 10908 return (EAFNOSUPPORT); 10909 10910 sin6 = (sin6_t *)sin; 10911 v6addr = sin6->sin6_addr; 10912 ill = ipif->ipif_ill; 10913 phyi = ill->ill_phyint; 10914 10915 /* 10916 * Enforce that true multicast interfaces have a link-local 10917 * address for logical unit 0. 10918 */ 10919 if (ipif->ipif_id == 0 && 10920 (ill->ill_flags & ILLF_MULTICAST) && 10921 !(ipif->ipif_flags & (IPIF_POINTOPOINT)) && 10922 !(phyi->phyint_flags & (PHYI_LOOPBACK)) && 10923 !IN6_IS_ADDR_LINKLOCAL(&v6addr)) { 10924 return (EADDRNOTAVAIL); 10925 } 10926 10927 /* 10928 * up interfaces shouldn't have the unspecified address 10929 * unless they also have the IPIF_NOLOCAL flags set and 10930 * have a subnet assigned. 10931 */ 10932 if ((ipif->ipif_flags & IPIF_UP) && 10933 IN6_IS_ADDR_UNSPECIFIED(&v6addr) && 10934 (!(ipif->ipif_flags & IPIF_NOLOCAL) || 10935 IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6subnet))) { 10936 return (EADDRNOTAVAIL); 10937 } 10938 10939 if (!ip_local_addr_ok_v6(&v6addr, &ipif->ipif_v6net_mask)) 10940 return (EADDRNOTAVAIL); 10941 } else { 10942 ipaddr_t addr; 10943 10944 if (sin->sin_family != AF_INET) 10945 return (EAFNOSUPPORT); 10946 10947 addr = sin->sin_addr.s_addr; 10948 10949 /* Allow 0 as the local address. */ 10950 if (addr != 0 && !ip_addr_ok_v4(addr, ipif->ipif_net_mask)) 10951 return (EADDRNOTAVAIL); 10952 10953 IN6_IPADDR_TO_V4MAPPED(addr, &v6addr); 10954 } 10955 10956 /* 10957 * Even if there is no change we redo things just to rerun 10958 * ipif_set_default. 10959 */ 10960 if (ipif->ipif_flags & IPIF_UP) { 10961 /* 10962 * Setting a new local address, make sure 10963 * we have net and subnet bcast ire's for 10964 * the old address if we need them. 10965 */ 10966 if (!ipif->ipif_isv6) 10967 ipif_check_bcast_ires(ipif); 10968 /* 10969 * If the interface is already marked up, 10970 * we call ipif_down which will take care 10971 * of ditching any IREs that have been set 10972 * up based on the old interface address. 10973 */ 10974 err = ipif_logical_down(ipif, q, mp); 10975 if (err == EINPROGRESS) 10976 return (err); 10977 ipif_down_tail(ipif); 10978 need_up = 1; 10979 } 10980 10981 err = ip_sioctl_addr_tail(ipif, sin, q, mp, need_up); 10982 return (err); 10983 } 10984 10985 int 10986 ip_sioctl_addr_tail(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 10987 boolean_t need_up) 10988 { 10989 in6_addr_t v6addr; 10990 in6_addr_t ov6addr; 10991 ipaddr_t addr; 10992 sin6_t *sin6; 10993 int sinlen; 10994 int err = 0; 10995 ill_t *ill = ipif->ipif_ill; 10996 boolean_t need_dl_down; 10997 boolean_t need_arp_down; 10998 struct iocblk *iocp; 10999 11000 iocp = (mp != NULL) ? (struct iocblk *)mp->b_rptr : NULL; 11001 11002 ip1dbg(("ip_sioctl_addr_tail(%s:%u %p)\n", 11003 ill->ill_name, ipif->ipif_id, (void *)ipif)); 11004 ASSERT(IAM_WRITER_IPIF(ipif)); 11005 11006 /* Must cancel any pending timer before taking the ill_lock */ 11007 if (ipif->ipif_recovery_id != 0) 11008 (void) untimeout(ipif->ipif_recovery_id); 11009 ipif->ipif_recovery_id = 0; 11010 11011 if (ipif->ipif_isv6) { 11012 sin6 = (sin6_t *)sin; 11013 v6addr = sin6->sin6_addr; 11014 sinlen = sizeof (struct sockaddr_in6); 11015 } else { 11016 addr = sin->sin_addr.s_addr; 11017 IN6_IPADDR_TO_V4MAPPED(addr, &v6addr); 11018 sinlen = sizeof (struct sockaddr_in); 11019 } 11020 mutex_enter(&ill->ill_lock); 11021 ov6addr = ipif->ipif_v6lcl_addr; 11022 ipif->ipif_v6lcl_addr = v6addr; 11023 sctp_update_ipif_addr(ipif, ov6addr); 11024 if (ipif->ipif_flags & (IPIF_ANYCAST | IPIF_NOLOCAL)) { 11025 ipif->ipif_v6src_addr = ipv6_all_zeros; 11026 } else { 11027 ipif->ipif_v6src_addr = v6addr; 11028 } 11029 ipif->ipif_addr_ready = 0; 11030 11031 /* 11032 * If the interface was previously marked as a duplicate, then since 11033 * we've now got a "new" address, it should no longer be considered a 11034 * duplicate -- even if the "new" address is the same as the old one. 11035 * Note that if all ipifs are down, we may have a pending ARP down 11036 * event to handle. This is because we want to recover from duplicates 11037 * and thus delay tearing down ARP until the duplicates have been 11038 * removed or disabled. 11039 */ 11040 need_dl_down = need_arp_down = B_FALSE; 11041 if (ipif->ipif_flags & IPIF_DUPLICATE) { 11042 need_arp_down = !need_up; 11043 ipif->ipif_flags &= ~IPIF_DUPLICATE; 11044 if (--ill->ill_ipif_dup_count == 0 && !need_up && 11045 ill->ill_ipif_up_count == 0 && ill->ill_dl_up) { 11046 need_dl_down = B_TRUE; 11047 } 11048 } 11049 11050 if (ipif->ipif_isv6 && IN6_IS_ADDR_6TO4(&v6addr) && 11051 !ill->ill_is_6to4tun) { 11052 queue_t *wqp = ill->ill_wq; 11053 11054 /* 11055 * The local address of this interface is a 6to4 address, 11056 * check if this interface is in fact a 6to4 tunnel or just 11057 * an interface configured with a 6to4 address. We are only 11058 * interested in the former. 11059 */ 11060 if (wqp != NULL) { 11061 while ((wqp->q_next != NULL) && 11062 (wqp->q_next->q_qinfo != NULL) && 11063 (wqp->q_next->q_qinfo->qi_minfo != NULL)) { 11064 11065 if (wqp->q_next->q_qinfo->qi_minfo->mi_idnum 11066 == TUN6TO4_MODID) { 11067 /* set for use in IP */ 11068 ill->ill_is_6to4tun = 1; 11069 break; 11070 } 11071 wqp = wqp->q_next; 11072 } 11073 } 11074 } 11075 11076 ipif_set_default(ipif); 11077 11078 /* 11079 * When publishing an interface address change event, we only notify 11080 * the event listeners of the new address. It is assumed that if they 11081 * actively care about the addresses assigned that they will have 11082 * already discovered the previous address assigned (if there was one.) 11083 * 11084 * Don't attach nic event message for SIOCLIFADDIF ioctl. 11085 */ 11086 if (iocp != NULL && iocp->ioc_cmd != SIOCLIFADDIF) { 11087 ill_nic_event_dispatch(ill, MAP_IPIF_ID(ipif->ipif_id), 11088 NE_ADDRESS_CHANGE, sin, sinlen); 11089 } 11090 11091 mutex_exit(&ill->ill_lock); 11092 11093 if (need_up) { 11094 /* 11095 * Now bring the interface back up. If this 11096 * is the only IPIF for the ILL, ipif_up 11097 * will have to re-bind to the device, so 11098 * we may get back EINPROGRESS, in which 11099 * case, this IOCTL will get completed in 11100 * ip_rput_dlpi when we see the DL_BIND_ACK. 11101 */ 11102 err = ipif_up(ipif, q, mp); 11103 } 11104 11105 if (need_dl_down) 11106 ill_dl_down(ill); 11107 if (need_arp_down) 11108 ipif_resolver_down(ipif); 11109 11110 return (err); 11111 } 11112 11113 /* 11114 * Restart entry point to restart the address set operation after the 11115 * refcounts have dropped to zero. 11116 */ 11117 /* ARGSUSED */ 11118 int 11119 ip_sioctl_addr_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11120 ip_ioctl_cmd_t *ipip, void *ifreq) 11121 { 11122 ip1dbg(("ip_sioctl_addr_restart(%s:%u %p)\n", 11123 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11124 ASSERT(IAM_WRITER_IPIF(ipif)); 11125 ipif_down_tail(ipif); 11126 return (ip_sioctl_addr_tail(ipif, sin, q, mp, B_TRUE)); 11127 } 11128 11129 /* ARGSUSED */ 11130 int 11131 ip_sioctl_get_addr(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11132 ip_ioctl_cmd_t *ipip, void *if_req) 11133 { 11134 sin6_t *sin6 = (struct sockaddr_in6 *)sin; 11135 struct lifreq *lifr = (struct lifreq *)if_req; 11136 11137 ip1dbg(("ip_sioctl_get_addr(%s:%u %p)\n", 11138 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11139 /* 11140 * The net mask and address can't change since we have a 11141 * reference to the ipif. So no lock is necessary. 11142 */ 11143 if (ipif->ipif_isv6) { 11144 *sin6 = sin6_null; 11145 sin6->sin6_family = AF_INET6; 11146 sin6->sin6_addr = ipif->ipif_v6lcl_addr; 11147 ASSERT(ipip->ipi_cmd_type == LIF_CMD); 11148 lifr->lifr_addrlen = 11149 ip_mask_to_plen_v6(&ipif->ipif_v6net_mask); 11150 } else { 11151 *sin = sin_null; 11152 sin->sin_family = AF_INET; 11153 sin->sin_addr.s_addr = ipif->ipif_lcl_addr; 11154 if (ipip->ipi_cmd_type == LIF_CMD) { 11155 lifr->lifr_addrlen = 11156 ip_mask_to_plen(ipif->ipif_net_mask); 11157 } 11158 } 11159 return (0); 11160 } 11161 11162 /* 11163 * Set the destination address for a pt-pt interface. 11164 */ 11165 /* ARGSUSED */ 11166 int 11167 ip_sioctl_dstaddr(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11168 ip_ioctl_cmd_t *ipip, void *if_req) 11169 { 11170 int err = 0; 11171 in6_addr_t v6addr; 11172 boolean_t need_up = B_FALSE; 11173 11174 ip1dbg(("ip_sioctl_dstaddr(%s:%u %p)\n", 11175 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11176 ASSERT(IAM_WRITER_IPIF(ipif)); 11177 11178 if (ipif->ipif_isv6) { 11179 sin6_t *sin6; 11180 11181 if (sin->sin_family != AF_INET6) 11182 return (EAFNOSUPPORT); 11183 11184 sin6 = (sin6_t *)sin; 11185 v6addr = sin6->sin6_addr; 11186 11187 if (!ip_remote_addr_ok_v6(&v6addr, &ipif->ipif_v6net_mask)) 11188 return (EADDRNOTAVAIL); 11189 } else { 11190 ipaddr_t addr; 11191 11192 if (sin->sin_family != AF_INET) 11193 return (EAFNOSUPPORT); 11194 11195 addr = sin->sin_addr.s_addr; 11196 if (!ip_addr_ok_v4(addr, ipif->ipif_net_mask)) 11197 return (EADDRNOTAVAIL); 11198 11199 IN6_IPADDR_TO_V4MAPPED(addr, &v6addr); 11200 } 11201 11202 if (IN6_ARE_ADDR_EQUAL(&ipif->ipif_v6pp_dst_addr, &v6addr)) 11203 return (0); /* No change */ 11204 11205 if (ipif->ipif_flags & IPIF_UP) { 11206 /* 11207 * If the interface is already marked up, 11208 * we call ipif_down which will take care 11209 * of ditching any IREs that have been set 11210 * up based on the old pp dst address. 11211 */ 11212 err = ipif_logical_down(ipif, q, mp); 11213 if (err == EINPROGRESS) 11214 return (err); 11215 ipif_down_tail(ipif); 11216 need_up = B_TRUE; 11217 } 11218 /* 11219 * could return EINPROGRESS. If so ioctl will complete in 11220 * ip_rput_dlpi_writer 11221 */ 11222 err = ip_sioctl_dstaddr_tail(ipif, sin, q, mp, need_up); 11223 return (err); 11224 } 11225 11226 static int 11227 ip_sioctl_dstaddr_tail(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11228 boolean_t need_up) 11229 { 11230 in6_addr_t v6addr; 11231 ill_t *ill = ipif->ipif_ill; 11232 int err = 0; 11233 boolean_t need_dl_down; 11234 boolean_t need_arp_down; 11235 11236 ip1dbg(("ip_sioctl_dstaddr_tail(%s:%u %p)\n", ill->ill_name, 11237 ipif->ipif_id, (void *)ipif)); 11238 11239 /* Must cancel any pending timer before taking the ill_lock */ 11240 if (ipif->ipif_recovery_id != 0) 11241 (void) untimeout(ipif->ipif_recovery_id); 11242 ipif->ipif_recovery_id = 0; 11243 11244 if (ipif->ipif_isv6) { 11245 sin6_t *sin6; 11246 11247 sin6 = (sin6_t *)sin; 11248 v6addr = sin6->sin6_addr; 11249 } else { 11250 ipaddr_t addr; 11251 11252 addr = sin->sin_addr.s_addr; 11253 IN6_IPADDR_TO_V4MAPPED(addr, &v6addr); 11254 } 11255 mutex_enter(&ill->ill_lock); 11256 /* Set point to point destination address. */ 11257 if ((ipif->ipif_flags & IPIF_POINTOPOINT) == 0) { 11258 /* 11259 * Allow this as a means of creating logical 11260 * pt-pt interfaces on top of e.g. an Ethernet. 11261 * XXX Undocumented HACK for testing. 11262 * pt-pt interfaces are created with NUD disabled. 11263 */ 11264 ipif->ipif_flags |= IPIF_POINTOPOINT; 11265 ipif->ipif_flags &= ~IPIF_BROADCAST; 11266 if (ipif->ipif_isv6) 11267 ill->ill_flags |= ILLF_NONUD; 11268 } 11269 11270 /* 11271 * If the interface was previously marked as a duplicate, then since 11272 * we've now got a "new" address, it should no longer be considered a 11273 * duplicate -- even if the "new" address is the same as the old one. 11274 * Note that if all ipifs are down, we may have a pending ARP down 11275 * event to handle. 11276 */ 11277 need_dl_down = need_arp_down = B_FALSE; 11278 if (ipif->ipif_flags & IPIF_DUPLICATE) { 11279 need_arp_down = !need_up; 11280 ipif->ipif_flags &= ~IPIF_DUPLICATE; 11281 if (--ill->ill_ipif_dup_count == 0 && !need_up && 11282 ill->ill_ipif_up_count == 0 && ill->ill_dl_up) { 11283 need_dl_down = B_TRUE; 11284 } 11285 } 11286 11287 /* Set the new address. */ 11288 ipif->ipif_v6pp_dst_addr = v6addr; 11289 /* Make sure subnet tracks pp_dst */ 11290 ipif->ipif_v6subnet = ipif->ipif_v6pp_dst_addr; 11291 mutex_exit(&ill->ill_lock); 11292 11293 if (need_up) { 11294 /* 11295 * Now bring the interface back up. If this 11296 * is the only IPIF for the ILL, ipif_up 11297 * will have to re-bind to the device, so 11298 * we may get back EINPROGRESS, in which 11299 * case, this IOCTL will get completed in 11300 * ip_rput_dlpi when we see the DL_BIND_ACK. 11301 */ 11302 err = ipif_up(ipif, q, mp); 11303 } 11304 11305 if (need_dl_down) 11306 ill_dl_down(ill); 11307 if (need_arp_down) 11308 ipif_resolver_down(ipif); 11309 11310 return (err); 11311 } 11312 11313 /* 11314 * Restart entry point to restart the dstaddress set operation after the 11315 * refcounts have dropped to zero. 11316 */ 11317 /* ARGSUSED */ 11318 int 11319 ip_sioctl_dstaddr_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11320 ip_ioctl_cmd_t *ipip, void *ifreq) 11321 { 11322 ip1dbg(("ip_sioctl_dstaddr_restart(%s:%u %p)\n", 11323 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11324 ipif_down_tail(ipif); 11325 return (ip_sioctl_dstaddr_tail(ipif, sin, q, mp, B_TRUE)); 11326 } 11327 11328 /* ARGSUSED */ 11329 int 11330 ip_sioctl_get_dstaddr(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11331 ip_ioctl_cmd_t *ipip, void *if_req) 11332 { 11333 sin6_t *sin6 = (struct sockaddr_in6 *)sin; 11334 11335 ip1dbg(("ip_sioctl_get_dstaddr(%s:%u %p)\n", 11336 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11337 /* 11338 * Get point to point destination address. The addresses can't 11339 * change since we hold a reference to the ipif. 11340 */ 11341 if ((ipif->ipif_flags & IPIF_POINTOPOINT) == 0) 11342 return (EADDRNOTAVAIL); 11343 11344 if (ipif->ipif_isv6) { 11345 ASSERT(ipip->ipi_cmd_type == LIF_CMD); 11346 *sin6 = sin6_null; 11347 sin6->sin6_family = AF_INET6; 11348 sin6->sin6_addr = ipif->ipif_v6pp_dst_addr; 11349 } else { 11350 *sin = sin_null; 11351 sin->sin_family = AF_INET; 11352 sin->sin_addr.s_addr = ipif->ipif_pp_dst_addr; 11353 } 11354 return (0); 11355 } 11356 11357 /* 11358 * Set interface flags. Many flags require special handling (e.g., 11359 * bringing the interface down); see below for details. 11360 * 11361 * NOTE : We really don't enforce that ipif_id zero should be used 11362 * for setting any flags other than IFF_LOGINT_FLAGS. This 11363 * is because applications generally does SICGLIFFLAGS and 11364 * ORs in the new flags (that affects the logical) and does a 11365 * SIOCSLIFFLAGS. Thus, "flags" below could contain bits other 11366 * than IFF_LOGINT_FLAGS. One could check whether "turn_on" - the 11367 * flags that will be turned on is correct with respect to 11368 * ipif_id 0. For backward compatibility reasons, it is not done. 11369 */ 11370 /* ARGSUSED */ 11371 int 11372 ip_sioctl_flags(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11373 ip_ioctl_cmd_t *ipip, void *if_req) 11374 { 11375 uint64_t turn_on; 11376 uint64_t turn_off; 11377 int err = 0; 11378 phyint_t *phyi; 11379 ill_t *ill; 11380 uint64_t intf_flags, cantchange_flags; 11381 boolean_t phyint_flags_modified = B_FALSE; 11382 uint64_t flags; 11383 struct ifreq *ifr; 11384 struct lifreq *lifr; 11385 boolean_t set_linklocal = B_FALSE; 11386 boolean_t zero_source = B_FALSE; 11387 11388 ip1dbg(("ip_sioctl_flags(%s:%u %p)\n", 11389 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11390 11391 ASSERT(IAM_WRITER_IPIF(ipif)); 11392 11393 ill = ipif->ipif_ill; 11394 phyi = ill->ill_phyint; 11395 11396 if (ipip->ipi_cmd_type == IF_CMD) { 11397 ifr = (struct ifreq *)if_req; 11398 flags = (uint64_t)(ifr->ifr_flags & 0x0000ffff); 11399 } else { 11400 lifr = (struct lifreq *)if_req; 11401 flags = lifr->lifr_flags; 11402 } 11403 11404 intf_flags = ipif->ipif_flags | ill->ill_flags | phyi->phyint_flags; 11405 11406 /* 11407 * Have the flags been set correctly until now? 11408 */ 11409 ASSERT((phyi->phyint_flags & ~(IFF_PHYINT_FLAGS)) == 0); 11410 ASSERT((ill->ill_flags & ~(IFF_PHYINTINST_FLAGS)) == 0); 11411 ASSERT((ipif->ipif_flags & ~(IFF_LOGINT_FLAGS)) == 0); 11412 /* 11413 * Compare the new flags to the old, and partition 11414 * into those coming on and those going off. 11415 * For the 16 bit command keep the bits above bit 16 unchanged. 11416 */ 11417 if (ipip->ipi_cmd == SIOCSIFFLAGS) 11418 flags |= intf_flags & ~0xFFFF; 11419 11420 /* 11421 * Explicitly fail attempts to change flags that are always invalid on 11422 * an IPMP meta-interface. 11423 */ 11424 if (IS_IPMP(ill) && ((flags ^ intf_flags) & IFF_IPMP_INVALID)) 11425 return (EINVAL); 11426 11427 /* 11428 * Check which flags will change; silently ignore flags which userland 11429 * is not allowed to control. (Because these flags may change between 11430 * SIOCGLIFFLAGS and SIOCSLIFFLAGS, and that's outside of userland's 11431 * control, we need to silently ignore them rather than fail.) 11432 */ 11433 cantchange_flags = IFF_CANTCHANGE; 11434 if (IS_IPMP(ill)) 11435 cantchange_flags |= IFF_IPMP_CANTCHANGE; 11436 11437 turn_on = (flags ^ intf_flags) & ~cantchange_flags; 11438 if (turn_on == 0) 11439 return (0); /* No change */ 11440 11441 turn_off = intf_flags & turn_on; 11442 turn_on ^= turn_off; 11443 11444 /* 11445 * All test addresses must be IFF_DEPRECATED (to ensure source address 11446 * selection avoids them) -- so force IFF_DEPRECATED on, and do not 11447 * allow it to be turned off. 11448 */ 11449 if ((turn_off & (IFF_DEPRECATED|IFF_NOFAILOVER)) == IFF_DEPRECATED && 11450 (turn_on|intf_flags) & IFF_NOFAILOVER) 11451 return (EINVAL); 11452 11453 if (turn_on & IFF_NOFAILOVER) { 11454 turn_on |= IFF_DEPRECATED; 11455 flags |= IFF_DEPRECATED; 11456 } 11457 11458 /* 11459 * On underlying interfaces, only allow applications to manage test 11460 * addresses -- otherwise, they may get confused when the address 11461 * moves as part of being brought up. Likewise, prevent an 11462 * application-managed test address from being converted to a data 11463 * address. To prevent migration of administratively up addresses in 11464 * the kernel, we don't allow them to be converted either. 11465 */ 11466 if (IS_UNDER_IPMP(ill)) { 11467 const uint64_t appflags = IFF_DHCPRUNNING | IFF_ADDRCONF; 11468 11469 if ((turn_on & appflags) && !(flags & IFF_NOFAILOVER)) 11470 return (EINVAL); 11471 11472 if ((turn_off & IFF_NOFAILOVER) && 11473 (flags & (appflags | IFF_UP | IFF_DUPLICATE))) 11474 return (EINVAL); 11475 } 11476 11477 /* 11478 * Only allow the IFF_XRESOLV and IFF_TEMPORARY flags to be set on 11479 * IPv6 interfaces. 11480 */ 11481 if ((turn_on & (IFF_XRESOLV|IFF_TEMPORARY)) && !(ipif->ipif_isv6)) 11482 return (EINVAL); 11483 11484 /* 11485 * cannot turn off IFF_NOXMIT on VNI interfaces. 11486 */ 11487 if ((turn_off & IFF_NOXMIT) && IS_VNI(ipif->ipif_ill)) 11488 return (EINVAL); 11489 11490 /* 11491 * Don't allow the IFF_ROUTER flag to be turned on on loopback 11492 * interfaces. It makes no sense in that context. 11493 */ 11494 if ((turn_on & IFF_ROUTER) && (phyi->phyint_flags & PHYI_LOOPBACK)) 11495 return (EINVAL); 11496 11497 if (flags & (IFF_NOLOCAL|IFF_ANYCAST)) 11498 zero_source = B_TRUE; 11499 11500 /* 11501 * For IPv6 ipif_id 0, don't allow the interface to be up without 11502 * a link local address if IFF_NOLOCAL or IFF_ANYCAST are not set. 11503 * If the link local address isn't set, and can be set, it will get 11504 * set later on in this function. 11505 */ 11506 if (ipif->ipif_id == 0 && ipif->ipif_isv6 && 11507 (flags & IFF_UP) && !zero_source && 11508 IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6lcl_addr)) { 11509 if (ipif_cant_setlinklocal(ipif)) 11510 return (EINVAL); 11511 set_linklocal = B_TRUE; 11512 } 11513 11514 /* 11515 * If we modify physical interface flags, we'll potentially need to 11516 * send up two routing socket messages for the changes (one for the 11517 * IPv4 ill, and another for the IPv6 ill). Note that here. 11518 */ 11519 if ((turn_on|turn_off) & IFF_PHYINT_FLAGS) 11520 phyint_flags_modified = B_TRUE; 11521 11522 /* 11523 * All functioning PHYI_STANDBY interfaces start life PHYI_INACTIVE 11524 * (otherwise, we'd immediately use them, defeating standby). Also, 11525 * since PHYI_INACTIVE has a separate meaning when PHYI_STANDBY is not 11526 * set, don't allow PHYI_STANDBY to be set if PHYI_INACTIVE is already 11527 * set, and clear PHYI_INACTIVE if PHYI_STANDBY is being cleared. We 11528 * also don't allow PHYI_STANDBY if VNI is enabled since its semantics 11529 * will not be honored. 11530 */ 11531 if (turn_on & PHYI_STANDBY) { 11532 /* 11533 * No need to grab ill_g_usesrc_lock here; see the 11534 * synchronization notes in ip.c. 11535 */ 11536 if (ill->ill_usesrc_grp_next != NULL || 11537 intf_flags & PHYI_INACTIVE) 11538 return (EINVAL); 11539 if (!(flags & PHYI_FAILED)) { 11540 flags |= PHYI_INACTIVE; 11541 turn_on |= PHYI_INACTIVE; 11542 } 11543 } 11544 11545 if (turn_off & PHYI_STANDBY) { 11546 flags &= ~PHYI_INACTIVE; 11547 turn_off |= PHYI_INACTIVE; 11548 } 11549 11550 /* 11551 * PHYI_FAILED and PHYI_INACTIVE are mutually exclusive; fail if both 11552 * would end up on. 11553 */ 11554 if ((flags & (PHYI_FAILED | PHYI_INACTIVE)) == 11555 (PHYI_FAILED | PHYI_INACTIVE)) 11556 return (EINVAL); 11557 11558 /* 11559 * If ILLF_ROUTER changes, we need to change the ip forwarding 11560 * status of the interface. 11561 */ 11562 if ((turn_on | turn_off) & ILLF_ROUTER) 11563 (void) ill_forward_set(ill, ((turn_on & ILLF_ROUTER) != 0)); 11564 11565 /* 11566 * If the interface is not UP and we are not going to 11567 * bring it UP, record the flags and return. When the 11568 * interface comes UP later, the right actions will be 11569 * taken. 11570 */ 11571 if (!(ipif->ipif_flags & IPIF_UP) && 11572 !(turn_on & IPIF_UP)) { 11573 /* Record new flags in their respective places. */ 11574 mutex_enter(&ill->ill_lock); 11575 mutex_enter(&ill->ill_phyint->phyint_lock); 11576 ipif->ipif_flags |= (turn_on & IFF_LOGINT_FLAGS); 11577 ipif->ipif_flags &= (~turn_off & IFF_LOGINT_FLAGS); 11578 ill->ill_flags |= (turn_on & IFF_PHYINTINST_FLAGS); 11579 ill->ill_flags &= (~turn_off & IFF_PHYINTINST_FLAGS); 11580 phyi->phyint_flags |= (turn_on & IFF_PHYINT_FLAGS); 11581 phyi->phyint_flags &= (~turn_off & IFF_PHYINT_FLAGS); 11582 mutex_exit(&ill->ill_lock); 11583 mutex_exit(&ill->ill_phyint->phyint_lock); 11584 11585 /* 11586 * PHYI_FAILED, PHYI_INACTIVE, and PHYI_OFFLINE are all the 11587 * same to the kernel: if any of them has been set by 11588 * userland, the interface cannot be used for data traffic. 11589 */ 11590 if ((turn_on|turn_off) & 11591 (PHYI_FAILED | PHYI_INACTIVE | PHYI_OFFLINE)) { 11592 ASSERT(!IS_IPMP(ill)); 11593 /* 11594 * It's possible the ill is part of an "anonymous" 11595 * IPMP group rather than a real group. In that case, 11596 * there are no other interfaces in the group and thus 11597 * no need to call ipmp_phyint_refresh_active(). 11598 */ 11599 if (IS_UNDER_IPMP(ill)) 11600 ipmp_phyint_refresh_active(phyi); 11601 } 11602 11603 if (phyint_flags_modified) { 11604 if (phyi->phyint_illv4 != NULL) { 11605 ip_rts_ifmsg(phyi->phyint_illv4-> 11606 ill_ipif, RTSQ_DEFAULT); 11607 } 11608 if (phyi->phyint_illv6 != NULL) { 11609 ip_rts_ifmsg(phyi->phyint_illv6-> 11610 ill_ipif, RTSQ_DEFAULT); 11611 } 11612 } 11613 return (0); 11614 } else if (set_linklocal || zero_source) { 11615 mutex_enter(&ill->ill_lock); 11616 if (set_linklocal) 11617 ipif->ipif_state_flags |= IPIF_SET_LINKLOCAL; 11618 if (zero_source) 11619 ipif->ipif_state_flags |= IPIF_ZERO_SOURCE; 11620 mutex_exit(&ill->ill_lock); 11621 } 11622 11623 /* 11624 * Disallow IPv6 interfaces coming up that have the unspecified address, 11625 * or point-to-point interfaces with an unspecified destination. We do 11626 * allow the address to be unspecified for IPIF_NOLOCAL interfaces that 11627 * have a subnet assigned, which is how in.ndpd currently manages its 11628 * onlink prefix list when no addresses are configured with those 11629 * prefixes. 11630 */ 11631 if (ipif->ipif_isv6 && 11632 ((IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6lcl_addr) && 11633 (!(ipif->ipif_flags & IPIF_NOLOCAL) && !(turn_on & IPIF_NOLOCAL) || 11634 IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6subnet))) || 11635 ((ipif->ipif_flags & IPIF_POINTOPOINT) && 11636 IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6pp_dst_addr)))) { 11637 return (EINVAL); 11638 } 11639 11640 /* 11641 * Prevent IPv4 point-to-point interfaces with a 0.0.0.0 destination 11642 * from being brought up. 11643 */ 11644 if (!ipif->ipif_isv6 && 11645 ((ipif->ipif_flags & IPIF_POINTOPOINT) && 11646 ipif->ipif_pp_dst_addr == INADDR_ANY)) { 11647 return (EINVAL); 11648 } 11649 11650 /* 11651 * The only flag changes that we currently take specific action on are 11652 * IPIF_UP, IPIF_DEPRECATED, IPIF_NOXMIT, IPIF_NOLOCAL, ILLF_NOARP, 11653 * ILLF_NONUD, IPIF_PRIVATE, IPIF_ANYCAST, IPIF_PREFERRED, and 11654 * IPIF_NOFAILOVER. This is done by bring the ipif down, changing the 11655 * flags and bringing it back up again. For IPIF_NOFAILOVER, the act 11656 * of bringing it back up will trigger the address to be moved. 11657 */ 11658 if ((turn_on|turn_off) & 11659 (IPIF_UP|IPIF_DEPRECATED|IPIF_NOXMIT|IPIF_NOLOCAL|ILLF_NOARP| 11660 ILLF_NONUD|IPIF_PRIVATE|IPIF_ANYCAST|IPIF_PREFERRED| 11661 IPIF_NOFAILOVER)) { 11662 /* 11663 * Taking this ipif down, make sure we have 11664 * valid net and subnet bcast ire's for other 11665 * logical interfaces, if we need them. 11666 */ 11667 if (!ipif->ipif_isv6) 11668 ipif_check_bcast_ires(ipif); 11669 11670 if (((ipif->ipif_flags | turn_on) & IPIF_UP) && 11671 !(turn_off & IPIF_UP)) { 11672 if (ipif->ipif_flags & IPIF_UP) 11673 ill->ill_logical_down = 1; 11674 turn_on &= ~IPIF_UP; 11675 } 11676 err = ipif_down(ipif, q, mp); 11677 ip1dbg(("ipif_down returns %d err ", err)); 11678 if (err == EINPROGRESS) 11679 return (err); 11680 ipif_down_tail(ipif); 11681 } 11682 return (ip_sioctl_flags_tail(ipif, flags, q, mp)); 11683 } 11684 11685 static int 11686 ip_sioctl_flags_tail(ipif_t *ipif, uint64_t flags, queue_t *q, mblk_t *mp) 11687 { 11688 ill_t *ill; 11689 phyint_t *phyi; 11690 uint64_t turn_on, turn_off; 11691 uint64_t intf_flags, cantchange_flags; 11692 boolean_t phyint_flags_modified = B_FALSE; 11693 int err = 0; 11694 boolean_t set_linklocal = B_FALSE; 11695 boolean_t zero_source = B_FALSE; 11696 11697 ip1dbg(("ip_sioctl_flags_tail(%s:%u)\n", 11698 ipif->ipif_ill->ill_name, ipif->ipif_id)); 11699 11700 ASSERT(IAM_WRITER_IPIF(ipif)); 11701 11702 ill = ipif->ipif_ill; 11703 phyi = ill->ill_phyint; 11704 11705 intf_flags = ipif->ipif_flags | ill->ill_flags | phyi->phyint_flags; 11706 cantchange_flags = IFF_CANTCHANGE | IFF_UP; 11707 if (IS_IPMP(ill)) 11708 cantchange_flags |= IFF_IPMP_CANTCHANGE; 11709 11710 turn_on = (flags ^ intf_flags) & ~cantchange_flags; 11711 turn_off = intf_flags & turn_on; 11712 turn_on ^= turn_off; 11713 11714 if ((turn_on|turn_off) & IFF_PHYINT_FLAGS) 11715 phyint_flags_modified = B_TRUE; 11716 11717 /* 11718 * Now we change the flags. Track current value of 11719 * other flags in their respective places. 11720 */ 11721 mutex_enter(&ill->ill_lock); 11722 mutex_enter(&phyi->phyint_lock); 11723 ipif->ipif_flags |= (turn_on & IFF_LOGINT_FLAGS); 11724 ipif->ipif_flags &= (~turn_off & IFF_LOGINT_FLAGS); 11725 ill->ill_flags |= (turn_on & IFF_PHYINTINST_FLAGS); 11726 ill->ill_flags &= (~turn_off & IFF_PHYINTINST_FLAGS); 11727 phyi->phyint_flags |= (turn_on & IFF_PHYINT_FLAGS); 11728 phyi->phyint_flags &= (~turn_off & IFF_PHYINT_FLAGS); 11729 if (ipif->ipif_state_flags & IPIF_SET_LINKLOCAL) { 11730 set_linklocal = B_TRUE; 11731 ipif->ipif_state_flags &= ~IPIF_SET_LINKLOCAL; 11732 } 11733 if (ipif->ipif_state_flags & IPIF_ZERO_SOURCE) { 11734 zero_source = B_TRUE; 11735 ipif->ipif_state_flags &= ~IPIF_ZERO_SOURCE; 11736 } 11737 mutex_exit(&ill->ill_lock); 11738 mutex_exit(&phyi->phyint_lock); 11739 11740 if (set_linklocal) 11741 (void) ipif_setlinklocal(ipif); 11742 11743 if (zero_source) 11744 ipif->ipif_v6src_addr = ipv6_all_zeros; 11745 else 11746 ipif->ipif_v6src_addr = ipif->ipif_v6lcl_addr; 11747 11748 /* 11749 * PHYI_FAILED, PHYI_INACTIVE, and PHYI_OFFLINE are all the same to 11750 * the kernel: if any of them has been set by userland, the interface 11751 * cannot be used for data traffic. 11752 */ 11753 if ((turn_on|turn_off) & (PHYI_FAILED | PHYI_INACTIVE | PHYI_OFFLINE)) { 11754 ASSERT(!IS_IPMP(ill)); 11755 /* 11756 * It's possible the ill is part of an "anonymous" IPMP group 11757 * rather than a real group. In that case, there are no other 11758 * interfaces in the group and thus no need for us to call 11759 * ipmp_phyint_refresh_active(). 11760 */ 11761 if (IS_UNDER_IPMP(ill)) 11762 ipmp_phyint_refresh_active(phyi); 11763 } 11764 11765 if ((flags & IFF_UP) && !(ipif->ipif_flags & IPIF_UP)) { 11766 /* 11767 * XXX ipif_up really does not know whether a phyint flags 11768 * was modified or not. So, it sends up information on 11769 * only one routing sockets message. As we don't bring up 11770 * the interface and also set PHYI_ flags simultaneously 11771 * it should be okay. 11772 */ 11773 err = ipif_up(ipif, q, mp); 11774 } else { 11775 /* 11776 * Make sure routing socket sees all changes to the flags. 11777 * ipif_up_done* handles this when we use ipif_up. 11778 */ 11779 if (phyint_flags_modified) { 11780 if (phyi->phyint_illv4 != NULL) { 11781 ip_rts_ifmsg(phyi->phyint_illv4-> 11782 ill_ipif, RTSQ_DEFAULT); 11783 } 11784 if (phyi->phyint_illv6 != NULL) { 11785 ip_rts_ifmsg(phyi->phyint_illv6-> 11786 ill_ipif, RTSQ_DEFAULT); 11787 } 11788 } else { 11789 ip_rts_ifmsg(ipif, RTSQ_DEFAULT); 11790 } 11791 /* 11792 * Update the flags in SCTP's IPIF list, ipif_up() will do 11793 * this in need_up case. 11794 */ 11795 sctp_update_ipif(ipif, SCTP_IPIF_UPDATE); 11796 } 11797 return (err); 11798 } 11799 11800 /* 11801 * Restart the flags operation now that the refcounts have dropped to zero. 11802 */ 11803 /* ARGSUSED */ 11804 int 11805 ip_sioctl_flags_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11806 ip_ioctl_cmd_t *ipip, void *if_req) 11807 { 11808 uint64_t flags; 11809 struct ifreq *ifr = if_req; 11810 struct lifreq *lifr = if_req; 11811 11812 ip1dbg(("ip_sioctl_flags_restart(%s:%u %p)\n", 11813 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11814 11815 ipif_down_tail(ipif); 11816 if (ipip->ipi_cmd_type == IF_CMD) { 11817 /* cast to uint16_t prevents unwanted sign extension */ 11818 flags = (uint16_t)ifr->ifr_flags; 11819 } else { 11820 flags = lifr->lifr_flags; 11821 } 11822 return (ip_sioctl_flags_tail(ipif, flags, q, mp)); 11823 } 11824 11825 /* 11826 * Can operate on either a module or a driver queue. 11827 */ 11828 /* ARGSUSED */ 11829 int 11830 ip_sioctl_get_flags(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11831 ip_ioctl_cmd_t *ipip, void *if_req) 11832 { 11833 /* 11834 * Has the flags been set correctly till now ? 11835 */ 11836 ill_t *ill = ipif->ipif_ill; 11837 phyint_t *phyi = ill->ill_phyint; 11838 11839 ip1dbg(("ip_sioctl_get_flags(%s:%u %p)\n", 11840 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11841 ASSERT((phyi->phyint_flags & ~(IFF_PHYINT_FLAGS)) == 0); 11842 ASSERT((ill->ill_flags & ~(IFF_PHYINTINST_FLAGS)) == 0); 11843 ASSERT((ipif->ipif_flags & ~(IFF_LOGINT_FLAGS)) == 0); 11844 11845 /* 11846 * Need a lock since some flags can be set even when there are 11847 * references to the ipif. 11848 */ 11849 mutex_enter(&ill->ill_lock); 11850 if (ipip->ipi_cmd_type == IF_CMD) { 11851 struct ifreq *ifr = (struct ifreq *)if_req; 11852 11853 /* Get interface flags (low 16 only). */ 11854 ifr->ifr_flags = ((ipif->ipif_flags | 11855 ill->ill_flags | phyi->phyint_flags) & 0xffff); 11856 } else { 11857 struct lifreq *lifr = (struct lifreq *)if_req; 11858 11859 /* Get interface flags. */ 11860 lifr->lifr_flags = ipif->ipif_flags | 11861 ill->ill_flags | phyi->phyint_flags; 11862 } 11863 mutex_exit(&ill->ill_lock); 11864 return (0); 11865 } 11866 11867 /* ARGSUSED */ 11868 int 11869 ip_sioctl_mtu(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11870 ip_ioctl_cmd_t *ipip, void *if_req) 11871 { 11872 int mtu; 11873 int ip_min_mtu; 11874 struct ifreq *ifr; 11875 struct lifreq *lifr; 11876 ire_t *ire; 11877 ip_stack_t *ipst; 11878 11879 ip1dbg(("ip_sioctl_mtu(%s:%u %p)\n", ipif->ipif_ill->ill_name, 11880 ipif->ipif_id, (void *)ipif)); 11881 if (ipip->ipi_cmd_type == IF_CMD) { 11882 ifr = (struct ifreq *)if_req; 11883 mtu = ifr->ifr_metric; 11884 } else { 11885 lifr = (struct lifreq *)if_req; 11886 mtu = lifr->lifr_mtu; 11887 } 11888 11889 if (ipif->ipif_isv6) 11890 ip_min_mtu = IPV6_MIN_MTU; 11891 else 11892 ip_min_mtu = IP_MIN_MTU; 11893 11894 if (mtu > ipif->ipif_ill->ill_max_frag || mtu < ip_min_mtu) 11895 return (EINVAL); 11896 11897 /* 11898 * Change the MTU size in all relevant ire's. 11899 * Mtu change Vs. new ire creation - protocol below. 11900 * First change ipif_mtu and the ire_max_frag of the 11901 * interface ire. Then do an ire walk and change the 11902 * ire_max_frag of all affected ires. During ire_add 11903 * under the bucket lock, set the ire_max_frag of the 11904 * new ire being created from the ipif/ire from which 11905 * it is being derived. If an mtu change happens after 11906 * the ire is added, the new ire will be cleaned up. 11907 * Conversely if the mtu change happens before the ire 11908 * is added, ire_add will see the new value of the mtu. 11909 */ 11910 ipif->ipif_mtu = mtu; 11911 ipif->ipif_flags |= IPIF_FIXEDMTU; 11912 11913 if (ipif->ipif_isv6) 11914 ire = ipif_to_ire_v6(ipif); 11915 else 11916 ire = ipif_to_ire(ipif); 11917 if (ire != NULL) { 11918 ire->ire_max_frag = ipif->ipif_mtu; 11919 ire_refrele(ire); 11920 } 11921 ipst = ipif->ipif_ill->ill_ipst; 11922 if (ipif->ipif_flags & IPIF_UP) { 11923 if (ipif->ipif_isv6) 11924 ire_walk_v6(ipif_mtu_change, (char *)ipif, ALL_ZONES, 11925 ipst); 11926 else 11927 ire_walk_v4(ipif_mtu_change, (char *)ipif, ALL_ZONES, 11928 ipst); 11929 } 11930 /* Update the MTU in SCTP's list */ 11931 sctp_update_ipif(ipif, SCTP_IPIF_UPDATE); 11932 return (0); 11933 } 11934 11935 /* Get interface MTU. */ 11936 /* ARGSUSED */ 11937 int 11938 ip_sioctl_get_mtu(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11939 ip_ioctl_cmd_t *ipip, void *if_req) 11940 { 11941 struct ifreq *ifr; 11942 struct lifreq *lifr; 11943 11944 ip1dbg(("ip_sioctl_get_mtu(%s:%u %p)\n", 11945 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11946 if (ipip->ipi_cmd_type == IF_CMD) { 11947 ifr = (struct ifreq *)if_req; 11948 ifr->ifr_metric = ipif->ipif_mtu; 11949 } else { 11950 lifr = (struct lifreq *)if_req; 11951 lifr->lifr_mtu = ipif->ipif_mtu; 11952 } 11953 return (0); 11954 } 11955 11956 /* Set interface broadcast address. */ 11957 /* ARGSUSED2 */ 11958 int 11959 ip_sioctl_brdaddr(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11960 ip_ioctl_cmd_t *ipip, void *if_req) 11961 { 11962 ipaddr_t addr; 11963 ire_t *ire; 11964 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; 11965 11966 ip1dbg(("ip_sioctl_brdaddr(%s:%u)\n", ipif->ipif_ill->ill_name, 11967 ipif->ipif_id)); 11968 11969 ASSERT(IAM_WRITER_IPIF(ipif)); 11970 if (!(ipif->ipif_flags & IPIF_BROADCAST)) 11971 return (EADDRNOTAVAIL); 11972 11973 ASSERT(!(ipif->ipif_isv6)); /* No IPv6 broadcast */ 11974 11975 if (sin->sin_family != AF_INET) 11976 return (EAFNOSUPPORT); 11977 11978 addr = sin->sin_addr.s_addr; 11979 if (ipif->ipif_flags & IPIF_UP) { 11980 /* 11981 * If we are already up, make sure the new 11982 * broadcast address makes sense. If it does, 11983 * there should be an IRE for it already. 11984 * Don't match on ipif, only on the ill 11985 * since we are sharing these now. 11986 */ 11987 ire = ire_ctable_lookup(addr, 0, IRE_BROADCAST, 11988 ipif, ALL_ZONES, NULL, 11989 (MATCH_IRE_ILL | MATCH_IRE_TYPE), ipst); 11990 if (ire == NULL) { 11991 return (EINVAL); 11992 } else { 11993 ire_refrele(ire); 11994 } 11995 } 11996 /* 11997 * Changing the broadcast addr for this ipif. 11998 * Make sure we have valid net and subnet bcast 11999 * ire's for other logical interfaces, if needed. 12000 */ 12001 if (addr != ipif->ipif_brd_addr) 12002 ipif_check_bcast_ires(ipif); 12003 IN6_IPADDR_TO_V4MAPPED(addr, &ipif->ipif_v6brd_addr); 12004 return (0); 12005 } 12006 12007 /* Get interface broadcast address. */ 12008 /* ARGSUSED */ 12009 int 12010 ip_sioctl_get_brdaddr(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12011 ip_ioctl_cmd_t *ipip, void *if_req) 12012 { 12013 ip1dbg(("ip_sioctl_get_brdaddr(%s:%u %p)\n", 12014 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12015 if (!(ipif->ipif_flags & IPIF_BROADCAST)) 12016 return (EADDRNOTAVAIL); 12017 12018 /* IPIF_BROADCAST not possible with IPv6 */ 12019 ASSERT(!ipif->ipif_isv6); 12020 *sin = sin_null; 12021 sin->sin_family = AF_INET; 12022 sin->sin_addr.s_addr = ipif->ipif_brd_addr; 12023 return (0); 12024 } 12025 12026 /* 12027 * This routine is called to handle the SIOCS*IFNETMASK IOCTL. 12028 */ 12029 /* ARGSUSED */ 12030 int 12031 ip_sioctl_netmask(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12032 ip_ioctl_cmd_t *ipip, void *if_req) 12033 { 12034 int err = 0; 12035 in6_addr_t v6mask; 12036 12037 ip1dbg(("ip_sioctl_netmask(%s:%u %p)\n", 12038 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12039 12040 ASSERT(IAM_WRITER_IPIF(ipif)); 12041 12042 if (ipif->ipif_isv6) { 12043 sin6_t *sin6; 12044 12045 if (sin->sin_family != AF_INET6) 12046 return (EAFNOSUPPORT); 12047 12048 sin6 = (sin6_t *)sin; 12049 v6mask = sin6->sin6_addr; 12050 } else { 12051 ipaddr_t mask; 12052 12053 if (sin->sin_family != AF_INET) 12054 return (EAFNOSUPPORT); 12055 12056 mask = sin->sin_addr.s_addr; 12057 V4MASK_TO_V6(mask, v6mask); 12058 } 12059 12060 /* 12061 * No big deal if the interface isn't already up, or the mask 12062 * isn't really changing, or this is pt-pt. 12063 */ 12064 if (!(ipif->ipif_flags & IPIF_UP) || 12065 IN6_ARE_ADDR_EQUAL(&v6mask, &ipif->ipif_v6net_mask) || 12066 (ipif->ipif_flags & IPIF_POINTOPOINT)) { 12067 ipif->ipif_v6net_mask = v6mask; 12068 if ((ipif->ipif_flags & IPIF_POINTOPOINT) == 0) { 12069 V6_MASK_COPY(ipif->ipif_v6lcl_addr, 12070 ipif->ipif_v6net_mask, 12071 ipif->ipif_v6subnet); 12072 } 12073 return (0); 12074 } 12075 /* 12076 * Make sure we have valid net and subnet broadcast ire's 12077 * for the old netmask, if needed by other logical interfaces. 12078 */ 12079 if (!ipif->ipif_isv6) 12080 ipif_check_bcast_ires(ipif); 12081 12082 err = ipif_logical_down(ipif, q, mp); 12083 if (err == EINPROGRESS) 12084 return (err); 12085 ipif_down_tail(ipif); 12086 err = ip_sioctl_netmask_tail(ipif, sin, q, mp); 12087 return (err); 12088 } 12089 12090 static int 12091 ip_sioctl_netmask_tail(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp) 12092 { 12093 in6_addr_t v6mask; 12094 int err = 0; 12095 12096 ip1dbg(("ip_sioctl_netmask_tail(%s:%u %p)\n", 12097 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12098 12099 if (ipif->ipif_isv6) { 12100 sin6_t *sin6; 12101 12102 sin6 = (sin6_t *)sin; 12103 v6mask = sin6->sin6_addr; 12104 } else { 12105 ipaddr_t mask; 12106 12107 mask = sin->sin_addr.s_addr; 12108 V4MASK_TO_V6(mask, v6mask); 12109 } 12110 12111 ipif->ipif_v6net_mask = v6mask; 12112 if ((ipif->ipif_flags & IPIF_POINTOPOINT) == 0) { 12113 V6_MASK_COPY(ipif->ipif_v6lcl_addr, ipif->ipif_v6net_mask, 12114 ipif->ipif_v6subnet); 12115 } 12116 err = ipif_up(ipif, q, mp); 12117 12118 if (err == 0 || err == EINPROGRESS) { 12119 /* 12120 * The interface must be DL_BOUND if this packet has to 12121 * go out on the wire. Since we only go through a logical 12122 * down and are bound with the driver during an internal 12123 * down/up that is satisfied. 12124 */ 12125 if (!ipif->ipif_isv6 && ipif->ipif_ill->ill_wq != NULL) { 12126 /* Potentially broadcast an address mask reply. */ 12127 ipif_mask_reply(ipif); 12128 } 12129 } 12130 return (err); 12131 } 12132 12133 /* ARGSUSED */ 12134 int 12135 ip_sioctl_netmask_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12136 ip_ioctl_cmd_t *ipip, void *if_req) 12137 { 12138 ip1dbg(("ip_sioctl_netmask_restart(%s:%u %p)\n", 12139 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12140 ipif_down_tail(ipif); 12141 return (ip_sioctl_netmask_tail(ipif, sin, q, mp)); 12142 } 12143 12144 /* Get interface net mask. */ 12145 /* ARGSUSED */ 12146 int 12147 ip_sioctl_get_netmask(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12148 ip_ioctl_cmd_t *ipip, void *if_req) 12149 { 12150 struct lifreq *lifr = (struct lifreq *)if_req; 12151 struct sockaddr_in6 *sin6 = (sin6_t *)sin; 12152 12153 ip1dbg(("ip_sioctl_get_netmask(%s:%u %p)\n", 12154 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12155 12156 /* 12157 * net mask can't change since we have a reference to the ipif. 12158 */ 12159 if (ipif->ipif_isv6) { 12160 ASSERT(ipip->ipi_cmd_type == LIF_CMD); 12161 *sin6 = sin6_null; 12162 sin6->sin6_family = AF_INET6; 12163 sin6->sin6_addr = ipif->ipif_v6net_mask; 12164 lifr->lifr_addrlen = 12165 ip_mask_to_plen_v6(&ipif->ipif_v6net_mask); 12166 } else { 12167 *sin = sin_null; 12168 sin->sin_family = AF_INET; 12169 sin->sin_addr.s_addr = ipif->ipif_net_mask; 12170 if (ipip->ipi_cmd_type == LIF_CMD) { 12171 lifr->lifr_addrlen = 12172 ip_mask_to_plen(ipif->ipif_net_mask); 12173 } 12174 } 12175 return (0); 12176 } 12177 12178 /* ARGSUSED */ 12179 int 12180 ip_sioctl_metric(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12181 ip_ioctl_cmd_t *ipip, void *if_req) 12182 { 12183 ip1dbg(("ip_sioctl_metric(%s:%u %p)\n", 12184 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12185 12186 /* 12187 * Since no applications should ever be setting metrics on underlying 12188 * interfaces, we explicitly fail to smoke 'em out. 12189 */ 12190 if (IS_UNDER_IPMP(ipif->ipif_ill)) 12191 return (EINVAL); 12192 12193 /* 12194 * Set interface metric. We don't use this for 12195 * anything but we keep track of it in case it is 12196 * important to routing applications or such. 12197 */ 12198 if (ipip->ipi_cmd_type == IF_CMD) { 12199 struct ifreq *ifr; 12200 12201 ifr = (struct ifreq *)if_req; 12202 ipif->ipif_metric = ifr->ifr_metric; 12203 } else { 12204 struct lifreq *lifr; 12205 12206 lifr = (struct lifreq *)if_req; 12207 ipif->ipif_metric = lifr->lifr_metric; 12208 } 12209 return (0); 12210 } 12211 12212 /* ARGSUSED */ 12213 int 12214 ip_sioctl_get_metric(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12215 ip_ioctl_cmd_t *ipip, void *if_req) 12216 { 12217 /* Get interface metric. */ 12218 ip1dbg(("ip_sioctl_get_metric(%s:%u %p)\n", 12219 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12220 12221 if (ipip->ipi_cmd_type == IF_CMD) { 12222 struct ifreq *ifr; 12223 12224 ifr = (struct ifreq *)if_req; 12225 ifr->ifr_metric = ipif->ipif_metric; 12226 } else { 12227 struct lifreq *lifr; 12228 12229 lifr = (struct lifreq *)if_req; 12230 lifr->lifr_metric = ipif->ipif_metric; 12231 } 12232 12233 return (0); 12234 } 12235 12236 /* ARGSUSED */ 12237 int 12238 ip_sioctl_muxid(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12239 ip_ioctl_cmd_t *ipip, void *if_req) 12240 { 12241 12242 ip1dbg(("ip_sioctl_muxid(%s:%u %p)\n", 12243 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12244 /* 12245 * Set the muxid returned from I_PLINK. 12246 */ 12247 if (ipip->ipi_cmd_type == IF_CMD) { 12248 struct ifreq *ifr = (struct ifreq *)if_req; 12249 12250 ipif->ipif_ill->ill_ip_muxid = ifr->ifr_ip_muxid; 12251 ipif->ipif_ill->ill_arp_muxid = ifr->ifr_arp_muxid; 12252 } else { 12253 struct lifreq *lifr = (struct lifreq *)if_req; 12254 12255 ipif->ipif_ill->ill_ip_muxid = lifr->lifr_ip_muxid; 12256 ipif->ipif_ill->ill_arp_muxid = lifr->lifr_arp_muxid; 12257 } 12258 return (0); 12259 } 12260 12261 /* ARGSUSED */ 12262 int 12263 ip_sioctl_get_muxid(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12264 ip_ioctl_cmd_t *ipip, void *if_req) 12265 { 12266 12267 ip1dbg(("ip_sioctl_get_muxid(%s:%u %p)\n", 12268 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12269 /* 12270 * Get the muxid saved in ill for I_PUNLINK. 12271 */ 12272 if (ipip->ipi_cmd_type == IF_CMD) { 12273 struct ifreq *ifr = (struct ifreq *)if_req; 12274 12275 ifr->ifr_ip_muxid = ipif->ipif_ill->ill_ip_muxid; 12276 ifr->ifr_arp_muxid = ipif->ipif_ill->ill_arp_muxid; 12277 } else { 12278 struct lifreq *lifr = (struct lifreq *)if_req; 12279 12280 lifr->lifr_ip_muxid = ipif->ipif_ill->ill_ip_muxid; 12281 lifr->lifr_arp_muxid = ipif->ipif_ill->ill_arp_muxid; 12282 } 12283 return (0); 12284 } 12285 12286 /* 12287 * Set the subnet prefix. Does not modify the broadcast address. 12288 */ 12289 /* ARGSUSED */ 12290 int 12291 ip_sioctl_subnet(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12292 ip_ioctl_cmd_t *ipip, void *if_req) 12293 { 12294 int err = 0; 12295 in6_addr_t v6addr; 12296 in6_addr_t v6mask; 12297 boolean_t need_up = B_FALSE; 12298 int addrlen; 12299 12300 ip1dbg(("ip_sioctl_subnet(%s:%u %p)\n", 12301 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12302 12303 ASSERT(IAM_WRITER_IPIF(ipif)); 12304 addrlen = ((struct lifreq *)if_req)->lifr_addrlen; 12305 12306 if (ipif->ipif_isv6) { 12307 sin6_t *sin6; 12308 12309 if (sin->sin_family != AF_INET6) 12310 return (EAFNOSUPPORT); 12311 12312 sin6 = (sin6_t *)sin; 12313 v6addr = sin6->sin6_addr; 12314 if (!ip_remote_addr_ok_v6(&v6addr, &ipv6_all_ones)) 12315 return (EADDRNOTAVAIL); 12316 } else { 12317 ipaddr_t addr; 12318 12319 if (sin->sin_family != AF_INET) 12320 return (EAFNOSUPPORT); 12321 12322 addr = sin->sin_addr.s_addr; 12323 if (!ip_addr_ok_v4(addr, 0xFFFFFFFF)) 12324 return (EADDRNOTAVAIL); 12325 IN6_IPADDR_TO_V4MAPPED(addr, &v6addr); 12326 /* Add 96 bits */ 12327 addrlen += IPV6_ABITS - IP_ABITS; 12328 } 12329 12330 if (ip_plen_to_mask_v6(addrlen, &v6mask) == NULL) 12331 return (EINVAL); 12332 12333 /* Check if bits in the address is set past the mask */ 12334 if (!V6_MASK_EQ(v6addr, v6mask, v6addr)) 12335 return (EINVAL); 12336 12337 if (IN6_ARE_ADDR_EQUAL(&ipif->ipif_v6subnet, &v6addr) && 12338 IN6_ARE_ADDR_EQUAL(&ipif->ipif_v6net_mask, &v6mask)) 12339 return (0); /* No change */ 12340 12341 if (ipif->ipif_flags & IPIF_UP) { 12342 /* 12343 * If the interface is already marked up, 12344 * we call ipif_down which will take care 12345 * of ditching any IREs that have been set 12346 * up based on the old interface address. 12347 */ 12348 err = ipif_logical_down(ipif, q, mp); 12349 if (err == EINPROGRESS) 12350 return (err); 12351 ipif_down_tail(ipif); 12352 need_up = B_TRUE; 12353 } 12354 12355 err = ip_sioctl_subnet_tail(ipif, v6addr, v6mask, q, mp, need_up); 12356 return (err); 12357 } 12358 12359 static int 12360 ip_sioctl_subnet_tail(ipif_t *ipif, in6_addr_t v6addr, in6_addr_t v6mask, 12361 queue_t *q, mblk_t *mp, boolean_t need_up) 12362 { 12363 ill_t *ill = ipif->ipif_ill; 12364 int err = 0; 12365 12366 ip1dbg(("ip_sioctl_subnet_tail(%s:%u %p)\n", 12367 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12368 12369 /* Set the new address. */ 12370 mutex_enter(&ill->ill_lock); 12371 ipif->ipif_v6net_mask = v6mask; 12372 if ((ipif->ipif_flags & IPIF_POINTOPOINT) == 0) { 12373 V6_MASK_COPY(v6addr, ipif->ipif_v6net_mask, 12374 ipif->ipif_v6subnet); 12375 } 12376 mutex_exit(&ill->ill_lock); 12377 12378 if (need_up) { 12379 /* 12380 * Now bring the interface back up. If this 12381 * is the only IPIF for the ILL, ipif_up 12382 * will have to re-bind to the device, so 12383 * we may get back EINPROGRESS, in which 12384 * case, this IOCTL will get completed in 12385 * ip_rput_dlpi when we see the DL_BIND_ACK. 12386 */ 12387 err = ipif_up(ipif, q, mp); 12388 if (err == EINPROGRESS) 12389 return (err); 12390 } 12391 return (err); 12392 } 12393 12394 /* ARGSUSED */ 12395 int 12396 ip_sioctl_subnet_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12397 ip_ioctl_cmd_t *ipip, void *if_req) 12398 { 12399 int addrlen; 12400 in6_addr_t v6addr; 12401 in6_addr_t v6mask; 12402 struct lifreq *lifr = (struct lifreq *)if_req; 12403 12404 ip1dbg(("ip_sioctl_subnet_restart(%s:%u %p)\n", 12405 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12406 ipif_down_tail(ipif); 12407 12408 addrlen = lifr->lifr_addrlen; 12409 if (ipif->ipif_isv6) { 12410 sin6_t *sin6; 12411 12412 sin6 = (sin6_t *)sin; 12413 v6addr = sin6->sin6_addr; 12414 } else { 12415 ipaddr_t addr; 12416 12417 addr = sin->sin_addr.s_addr; 12418 IN6_IPADDR_TO_V4MAPPED(addr, &v6addr); 12419 addrlen += IPV6_ABITS - IP_ABITS; 12420 } 12421 (void) ip_plen_to_mask_v6(addrlen, &v6mask); 12422 12423 return (ip_sioctl_subnet_tail(ipif, v6addr, v6mask, q, mp, B_TRUE)); 12424 } 12425 12426 /* ARGSUSED */ 12427 int 12428 ip_sioctl_get_subnet(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12429 ip_ioctl_cmd_t *ipip, void *if_req) 12430 { 12431 struct lifreq *lifr = (struct lifreq *)if_req; 12432 struct sockaddr_in6 *sin6 = (struct sockaddr_in6 *)sin; 12433 12434 ip1dbg(("ip_sioctl_get_subnet(%s:%u %p)\n", 12435 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12436 ASSERT(ipip->ipi_cmd_type == LIF_CMD); 12437 12438 if (ipif->ipif_isv6) { 12439 *sin6 = sin6_null; 12440 sin6->sin6_family = AF_INET6; 12441 sin6->sin6_addr = ipif->ipif_v6subnet; 12442 lifr->lifr_addrlen = 12443 ip_mask_to_plen_v6(&ipif->ipif_v6net_mask); 12444 } else { 12445 *sin = sin_null; 12446 sin->sin_family = AF_INET; 12447 sin->sin_addr.s_addr = ipif->ipif_subnet; 12448 lifr->lifr_addrlen = ip_mask_to_plen(ipif->ipif_net_mask); 12449 } 12450 return (0); 12451 } 12452 12453 /* 12454 * Set the IPv6 address token. 12455 */ 12456 /* ARGSUSED */ 12457 int 12458 ip_sioctl_token(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12459 ip_ioctl_cmd_t *ipi, void *if_req) 12460 { 12461 ill_t *ill = ipif->ipif_ill; 12462 int err; 12463 in6_addr_t v6addr; 12464 in6_addr_t v6mask; 12465 boolean_t need_up = B_FALSE; 12466 int i; 12467 sin6_t *sin6 = (sin6_t *)sin; 12468 struct lifreq *lifr = (struct lifreq *)if_req; 12469 int addrlen; 12470 12471 ip1dbg(("ip_sioctl_token(%s:%u %p)\n", 12472 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12473 ASSERT(IAM_WRITER_IPIF(ipif)); 12474 12475 addrlen = lifr->lifr_addrlen; 12476 /* Only allow for logical unit zero i.e. not on "le0:17" */ 12477 if (ipif->ipif_id != 0) 12478 return (EINVAL); 12479 12480 if (!ipif->ipif_isv6) 12481 return (EINVAL); 12482 12483 if (addrlen > IPV6_ABITS) 12484 return (EINVAL); 12485 12486 v6addr = sin6->sin6_addr; 12487 12488 /* 12489 * The length of the token is the length from the end. To get 12490 * the proper mask for this, compute the mask of the bits not 12491 * in the token; ie. the prefix, and then xor to get the mask. 12492 */ 12493 if (ip_plen_to_mask_v6(IPV6_ABITS - addrlen, &v6mask) == NULL) 12494 return (EINVAL); 12495 for (i = 0; i < 4; i++) { 12496 v6mask.s6_addr32[i] ^= (uint32_t)0xffffffff; 12497 } 12498 12499 if (V6_MASK_EQ(v6addr, v6mask, ill->ill_token) && 12500 ill->ill_token_length == addrlen) 12501 return (0); /* No change */ 12502 12503 if (ipif->ipif_flags & IPIF_UP) { 12504 err = ipif_logical_down(ipif, q, mp); 12505 if (err == EINPROGRESS) 12506 return (err); 12507 ipif_down_tail(ipif); 12508 need_up = B_TRUE; 12509 } 12510 err = ip_sioctl_token_tail(ipif, sin6, addrlen, q, mp, need_up); 12511 return (err); 12512 } 12513 12514 static int 12515 ip_sioctl_token_tail(ipif_t *ipif, sin6_t *sin6, int addrlen, queue_t *q, 12516 mblk_t *mp, boolean_t need_up) 12517 { 12518 in6_addr_t v6addr; 12519 in6_addr_t v6mask; 12520 ill_t *ill = ipif->ipif_ill; 12521 int i; 12522 int err = 0; 12523 12524 ip1dbg(("ip_sioctl_token_tail(%s:%u %p)\n", 12525 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12526 v6addr = sin6->sin6_addr; 12527 /* 12528 * The length of the token is the length from the end. To get 12529 * the proper mask for this, compute the mask of the bits not 12530 * in the token; ie. the prefix, and then xor to get the mask. 12531 */ 12532 (void) ip_plen_to_mask_v6(IPV6_ABITS - addrlen, &v6mask); 12533 for (i = 0; i < 4; i++) 12534 v6mask.s6_addr32[i] ^= (uint32_t)0xffffffff; 12535 12536 mutex_enter(&ill->ill_lock); 12537 V6_MASK_COPY(v6addr, v6mask, ill->ill_token); 12538 ill->ill_token_length = addrlen; 12539 mutex_exit(&ill->ill_lock); 12540 12541 if (need_up) { 12542 /* 12543 * Now bring the interface back up. If this 12544 * is the only IPIF for the ILL, ipif_up 12545 * will have to re-bind to the device, so 12546 * we may get back EINPROGRESS, in which 12547 * case, this IOCTL will get completed in 12548 * ip_rput_dlpi when we see the DL_BIND_ACK. 12549 */ 12550 err = ipif_up(ipif, q, mp); 12551 if (err == EINPROGRESS) 12552 return (err); 12553 } 12554 return (err); 12555 } 12556 12557 /* ARGSUSED */ 12558 int 12559 ip_sioctl_get_token(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12560 ip_ioctl_cmd_t *ipi, void *if_req) 12561 { 12562 ill_t *ill; 12563 sin6_t *sin6 = (sin6_t *)sin; 12564 struct lifreq *lifr = (struct lifreq *)if_req; 12565 12566 ip1dbg(("ip_sioctl_get_token(%s:%u %p)\n", 12567 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12568 if (ipif->ipif_id != 0) 12569 return (EINVAL); 12570 12571 ill = ipif->ipif_ill; 12572 if (!ill->ill_isv6) 12573 return (ENXIO); 12574 12575 *sin6 = sin6_null; 12576 sin6->sin6_family = AF_INET6; 12577 ASSERT(!IN6_IS_ADDR_V4MAPPED(&ill->ill_token)); 12578 sin6->sin6_addr = ill->ill_token; 12579 lifr->lifr_addrlen = ill->ill_token_length; 12580 return (0); 12581 } 12582 12583 /* 12584 * Set (hardware) link specific information that might override 12585 * what was acquired through the DL_INFO_ACK. 12586 * The logic is as follows. 12587 * 12588 * become exclusive 12589 * set CHANGING flag 12590 * change mtu on affected IREs 12591 * clear CHANGING flag 12592 * 12593 * An ire add that occurs before the CHANGING flag is set will have its mtu 12594 * changed by the ip_sioctl_lnkinfo. 12595 * 12596 * During the time the CHANGING flag is set, no new ires will be added to the 12597 * bucket, and ire add will fail (due the CHANGING flag). 12598 * 12599 * An ire add that occurs after the CHANGING flag is set will have the right mtu 12600 * before it is added to the bucket. 12601 * 12602 * Obviously only 1 thread can set the CHANGING flag and we need to become 12603 * exclusive to set the flag. 12604 */ 12605 /* ARGSUSED */ 12606 int 12607 ip_sioctl_lnkinfo(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12608 ip_ioctl_cmd_t *ipi, void *if_req) 12609 { 12610 ill_t *ill = ipif->ipif_ill; 12611 ipif_t *nipif; 12612 int ip_min_mtu; 12613 boolean_t mtu_walk = B_FALSE; 12614 struct lifreq *lifr = (struct lifreq *)if_req; 12615 lif_ifinfo_req_t *lir; 12616 ire_t *ire; 12617 12618 ip1dbg(("ip_sioctl_lnkinfo(%s:%u %p)\n", 12619 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12620 lir = &lifr->lifr_ifinfo; 12621 ASSERT(IAM_WRITER_IPIF(ipif)); 12622 12623 /* Only allow for logical unit zero i.e. not on "le0:17" */ 12624 if (ipif->ipif_id != 0) 12625 return (EINVAL); 12626 12627 /* Set interface MTU. */ 12628 if (ipif->ipif_isv6) 12629 ip_min_mtu = IPV6_MIN_MTU; 12630 else 12631 ip_min_mtu = IP_MIN_MTU; 12632 12633 /* 12634 * Verify values before we set anything. Allow zero to 12635 * mean unspecified. 12636 */ 12637 if (lir->lir_maxmtu != 0 && 12638 (lir->lir_maxmtu > ill->ill_max_frag || 12639 lir->lir_maxmtu < ip_min_mtu)) 12640 return (EINVAL); 12641 if (lir->lir_reachtime != 0 && 12642 lir->lir_reachtime > ND_MAX_REACHTIME) 12643 return (EINVAL); 12644 if (lir->lir_reachretrans != 0 && 12645 lir->lir_reachretrans > ND_MAX_REACHRETRANSTIME) 12646 return (EINVAL); 12647 12648 mutex_enter(&ill->ill_lock); 12649 ill->ill_state_flags |= ILL_CHANGING; 12650 for (nipif = ill->ill_ipif; nipif != NULL; 12651 nipif = nipif->ipif_next) { 12652 nipif->ipif_state_flags |= IPIF_CHANGING; 12653 } 12654 12655 if (lir->lir_maxmtu != 0) { 12656 ill->ill_max_mtu = lir->lir_maxmtu; 12657 ill->ill_user_mtu = lir->lir_maxmtu; 12658 mtu_walk = B_TRUE; 12659 } 12660 mutex_exit(&ill->ill_lock); 12661 12662 if (lir->lir_reachtime != 0) 12663 ill->ill_reachable_time = lir->lir_reachtime; 12664 12665 if (lir->lir_reachretrans != 0) 12666 ill->ill_reachable_retrans_time = lir->lir_reachretrans; 12667 12668 ill->ill_max_hops = lir->lir_maxhops; 12669 12670 ill->ill_max_buf = ND_MAX_Q; 12671 12672 if (mtu_walk) { 12673 /* 12674 * Set the MTU on all ipifs associated with this ill except 12675 * for those whose MTU was fixed via SIOCSLIFMTU. 12676 */ 12677 for (nipif = ill->ill_ipif; nipif != NULL; 12678 nipif = nipif->ipif_next) { 12679 if (nipif->ipif_flags & IPIF_FIXEDMTU) 12680 continue; 12681 12682 nipif->ipif_mtu = ill->ill_max_mtu; 12683 12684 if (!(nipif->ipif_flags & IPIF_UP)) 12685 continue; 12686 12687 if (nipif->ipif_isv6) 12688 ire = ipif_to_ire_v6(nipif); 12689 else 12690 ire = ipif_to_ire(nipif); 12691 if (ire != NULL) { 12692 ire->ire_max_frag = ipif->ipif_mtu; 12693 ire_refrele(ire); 12694 } 12695 12696 ire_walk_ill(MATCH_IRE_ILL, 0, ipif_mtu_change, 12697 nipif, ill); 12698 } 12699 } 12700 12701 mutex_enter(&ill->ill_lock); 12702 for (nipif = ill->ill_ipif; nipif != NULL; 12703 nipif = nipif->ipif_next) { 12704 nipif->ipif_state_flags &= ~IPIF_CHANGING; 12705 } 12706 ILL_UNMARK_CHANGING(ill); 12707 mutex_exit(&ill->ill_lock); 12708 12709 /* 12710 * Refresh IPMP meta-interface MTU if necessary. 12711 */ 12712 if (IS_UNDER_IPMP(ill)) 12713 ipmp_illgrp_refresh_mtu(ill->ill_grp); 12714 12715 return (0); 12716 } 12717 12718 /* ARGSUSED */ 12719 int 12720 ip_sioctl_get_lnkinfo(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12721 ip_ioctl_cmd_t *ipi, void *if_req) 12722 { 12723 struct lif_ifinfo_req *lir; 12724 ill_t *ill = ipif->ipif_ill; 12725 12726 ip1dbg(("ip_sioctl_get_lnkinfo(%s:%u %p)\n", 12727 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12728 if (ipif->ipif_id != 0) 12729 return (EINVAL); 12730 12731 lir = &((struct lifreq *)if_req)->lifr_ifinfo; 12732 lir->lir_maxhops = ill->ill_max_hops; 12733 lir->lir_reachtime = ill->ill_reachable_time; 12734 lir->lir_reachretrans = ill->ill_reachable_retrans_time; 12735 lir->lir_maxmtu = ill->ill_max_mtu; 12736 12737 return (0); 12738 } 12739 12740 /* 12741 * Return best guess as to the subnet mask for the specified address. 12742 * Based on the subnet masks for all the configured interfaces. 12743 * 12744 * We end up returning a zero mask in the case of default, multicast or 12745 * experimental. 12746 */ 12747 static ipaddr_t 12748 ip_subnet_mask(ipaddr_t addr, ipif_t **ipifp, ip_stack_t *ipst) 12749 { 12750 ipaddr_t net_mask; 12751 ill_t *ill; 12752 ipif_t *ipif; 12753 ill_walk_context_t ctx; 12754 ipif_t *fallback_ipif = NULL; 12755 12756 net_mask = ip_net_mask(addr); 12757 if (net_mask == 0) { 12758 *ipifp = NULL; 12759 return (0); 12760 } 12761 12762 /* Let's check to see if this is maybe a local subnet route. */ 12763 /* this function only applies to IPv4 interfaces */ 12764 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 12765 ill = ILL_START_WALK_V4(&ctx, ipst); 12766 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 12767 mutex_enter(&ill->ill_lock); 12768 for (ipif = ill->ill_ipif; ipif != NULL; 12769 ipif = ipif->ipif_next) { 12770 if (!IPIF_CAN_LOOKUP(ipif)) 12771 continue; 12772 if (!(ipif->ipif_flags & IPIF_UP)) 12773 continue; 12774 if ((ipif->ipif_subnet & net_mask) == 12775 (addr & net_mask)) { 12776 /* 12777 * Don't trust pt-pt interfaces if there are 12778 * other interfaces. 12779 */ 12780 if (ipif->ipif_flags & IPIF_POINTOPOINT) { 12781 if (fallback_ipif == NULL) { 12782 ipif_refhold_locked(ipif); 12783 fallback_ipif = ipif; 12784 } 12785 continue; 12786 } 12787 12788 /* 12789 * Fine. Just assume the same net mask as the 12790 * directly attached subnet interface is using. 12791 */ 12792 ipif_refhold_locked(ipif); 12793 mutex_exit(&ill->ill_lock); 12794 rw_exit(&ipst->ips_ill_g_lock); 12795 if (fallback_ipif != NULL) 12796 ipif_refrele(fallback_ipif); 12797 *ipifp = ipif; 12798 return (ipif->ipif_net_mask); 12799 } 12800 } 12801 mutex_exit(&ill->ill_lock); 12802 } 12803 rw_exit(&ipst->ips_ill_g_lock); 12804 12805 *ipifp = fallback_ipif; 12806 return ((fallback_ipif != NULL) ? 12807 fallback_ipif->ipif_net_mask : net_mask); 12808 } 12809 12810 /* 12811 * ip_sioctl_copyin_setup calls ip_wput_ioctl to process the IP_IOCTL ioctl. 12812 */ 12813 static void 12814 ip_wput_ioctl(queue_t *q, mblk_t *mp) 12815 { 12816 IOCP iocp; 12817 ipft_t *ipft; 12818 ipllc_t *ipllc; 12819 mblk_t *mp1; 12820 cred_t *cr; 12821 int error = 0; 12822 conn_t *connp; 12823 12824 ip1dbg(("ip_wput_ioctl")); 12825 iocp = (IOCP)mp->b_rptr; 12826 mp1 = mp->b_cont; 12827 if (mp1 == NULL) { 12828 iocp->ioc_error = EINVAL; 12829 mp->b_datap->db_type = M_IOCNAK; 12830 iocp->ioc_count = 0; 12831 qreply(q, mp); 12832 return; 12833 } 12834 12835 /* 12836 * These IOCTLs provide various control capabilities to 12837 * upstream agents such as ULPs and processes. There 12838 * are currently two such IOCTLs implemented. They 12839 * are used by TCP to provide update information for 12840 * existing IREs and to forcibly delete an IRE for a 12841 * host that is not responding, thereby forcing an 12842 * attempt at a new route. 12843 */ 12844 iocp->ioc_error = EINVAL; 12845 if (!pullupmsg(mp1, sizeof (ipllc->ipllc_cmd))) 12846 goto done; 12847 12848 ipllc = (ipllc_t *)mp1->b_rptr; 12849 for (ipft = ip_ioctl_ftbl; ipft->ipft_pfi; ipft++) { 12850 if (ipllc->ipllc_cmd == ipft->ipft_cmd) 12851 break; 12852 } 12853 /* 12854 * prefer credential from mblk over ioctl; 12855 * see ip_sioctl_copyin_setup 12856 */ 12857 cr = msg_getcred(mp, NULL); 12858 if (cr == NULL) 12859 cr = iocp->ioc_cr; 12860 12861 /* 12862 * Refhold the conn in case the request gets queued up in some lookup 12863 */ 12864 ASSERT(CONN_Q(q)); 12865 connp = Q_TO_CONN(q); 12866 CONN_INC_REF(connp); 12867 if (ipft->ipft_pfi && 12868 ((mp1->b_wptr - mp1->b_rptr) >= ipft->ipft_min_size || 12869 pullupmsg(mp1, ipft->ipft_min_size))) { 12870 error = (*ipft->ipft_pfi)(q, 12871 (ipft->ipft_flags & IPFT_F_SELF_REPLY) ? mp : mp1, cr); 12872 } 12873 if (ipft->ipft_flags & IPFT_F_SELF_REPLY) { 12874 /* 12875 * CONN_OPER_PENDING_DONE happens in the function called 12876 * through ipft_pfi above. 12877 */ 12878 return; 12879 } 12880 12881 CONN_OPER_PENDING_DONE(connp); 12882 if (ipft->ipft_flags & IPFT_F_NO_REPLY) { 12883 freemsg(mp); 12884 return; 12885 } 12886 iocp->ioc_error = error; 12887 12888 done: 12889 mp->b_datap->db_type = M_IOCACK; 12890 if (iocp->ioc_error) 12891 iocp->ioc_count = 0; 12892 qreply(q, mp); 12893 } 12894 12895 /* 12896 * Lookup an ipif using the sequence id (ipif_seqid) 12897 */ 12898 ipif_t * 12899 ipif_lookup_seqid(ill_t *ill, uint_t seqid) 12900 { 12901 ipif_t *ipif; 12902 12903 ASSERT(MUTEX_HELD(&ill->ill_lock)); 12904 12905 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 12906 if (ipif->ipif_seqid == seqid && IPIF_CAN_LOOKUP(ipif)) 12907 return (ipif); 12908 } 12909 return (NULL); 12910 } 12911 12912 /* 12913 * Assign a unique id for the ipif. This is used later when we send 12914 * IRES to ARP for resolution where we initialize ire_ipif_seqid 12915 * to the value pointed by ire_ipif->ipif_seqid. Later when the 12916 * IRE is added, we verify that ipif has not disappeared. 12917 */ 12918 12919 static void 12920 ipif_assign_seqid(ipif_t *ipif) 12921 { 12922 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; 12923 12924 ipif->ipif_seqid = atomic_add_64_nv(&ipst->ips_ipif_g_seqid, 1); 12925 } 12926 12927 /* 12928 * Clone the contents of `sipif' to `dipif'. Requires that both ipifs are 12929 * administratively down (i.e., no DAD), of the same type, and locked. Note 12930 * that the clone is complete -- including the seqid -- and the expectation is 12931 * that the caller will either free or overwrite `sipif' before it's unlocked. 12932 */ 12933 static void 12934 ipif_clone(const ipif_t *sipif, ipif_t *dipif) 12935 { 12936 ASSERT(MUTEX_HELD(&sipif->ipif_ill->ill_lock)); 12937 ASSERT(MUTEX_HELD(&dipif->ipif_ill->ill_lock)); 12938 ASSERT(!(sipif->ipif_flags & (IPIF_UP|IPIF_DUPLICATE))); 12939 ASSERT(!(dipif->ipif_flags & (IPIF_UP|IPIF_DUPLICATE))); 12940 ASSERT(sipif->ipif_ire_type == dipif->ipif_ire_type); 12941 ASSERT(sipif->ipif_arp_del_mp == NULL); 12942 ASSERT(dipif->ipif_arp_del_mp == NULL); 12943 ASSERT(sipif->ipif_igmp_rpt == NULL); 12944 ASSERT(dipif->ipif_igmp_rpt == NULL); 12945 ASSERT(sipif->ipif_multicast_up == 0); 12946 ASSERT(dipif->ipif_multicast_up == 0); 12947 ASSERT(sipif->ipif_joined_allhosts == 0); 12948 ASSERT(dipif->ipif_joined_allhosts == 0); 12949 12950 dipif->ipif_mtu = sipif->ipif_mtu; 12951 dipif->ipif_flags = sipif->ipif_flags; 12952 dipif->ipif_metric = sipif->ipif_metric; 12953 dipif->ipif_zoneid = sipif->ipif_zoneid; 12954 dipif->ipif_v6subnet = sipif->ipif_v6subnet; 12955 dipif->ipif_v6lcl_addr = sipif->ipif_v6lcl_addr; 12956 dipif->ipif_v6src_addr = sipif->ipif_v6src_addr; 12957 dipif->ipif_v6net_mask = sipif->ipif_v6net_mask; 12958 dipif->ipif_v6brd_addr = sipif->ipif_v6brd_addr; 12959 dipif->ipif_v6pp_dst_addr = sipif->ipif_v6pp_dst_addr; 12960 12961 /* 12962 * While dipif is down right now, it might've been up before. Since 12963 * it's changing identity, its packet counters need to be reset. 12964 */ 12965 dipif->ipif_ib_pkt_count = 0; 12966 dipif->ipif_ob_pkt_count = 0; 12967 dipif->ipif_fo_pkt_count = 0; 12968 12969 /* 12970 * As per the comment atop the function, we assume that these sipif 12971 * fields will be changed before sipif is unlocked. 12972 */ 12973 dipif->ipif_seqid = sipif->ipif_seqid; 12974 dipif->ipif_saved_ire_mp = sipif->ipif_saved_ire_mp; 12975 dipif->ipif_saved_ire_cnt = sipif->ipif_saved_ire_cnt; 12976 dipif->ipif_state_flags = sipif->ipif_state_flags; 12977 } 12978 12979 /* 12980 * Transfer the contents of `sipif' to `dipif', and then free (if `virgipif' 12981 * is NULL) or overwrite `sipif' with `virgipif', which must be a virgin 12982 * (unreferenced) ipif. Also, if `sipif' is used by the current xop, then 12983 * transfer the xop to `dipif'. Requires that all ipifs are administratively 12984 * down (i.e., no DAD), of the same type, and unlocked. 12985 */ 12986 static void 12987 ipif_transfer(ipif_t *sipif, ipif_t *dipif, ipif_t *virgipif) 12988 { 12989 ipsq_t *ipsq = sipif->ipif_ill->ill_phyint->phyint_ipsq; 12990 ipxop_t *ipx = ipsq->ipsq_xop; 12991 12992 ASSERT(sipif != dipif); 12993 ASSERT(sipif != virgipif); 12994 12995 /* 12996 * Grab all of the locks that protect the ipif in a defined order. 12997 */ 12998 GRAB_ILL_LOCKS(sipif->ipif_ill, dipif->ipif_ill); 12999 if (sipif > dipif) { 13000 mutex_enter(&sipif->ipif_saved_ire_lock); 13001 mutex_enter(&dipif->ipif_saved_ire_lock); 13002 } else { 13003 mutex_enter(&dipif->ipif_saved_ire_lock); 13004 mutex_enter(&sipif->ipif_saved_ire_lock); 13005 } 13006 13007 ipif_clone(sipif, dipif); 13008 if (virgipif != NULL) { 13009 ipif_clone(virgipif, sipif); 13010 mi_free(virgipif); 13011 } 13012 13013 mutex_exit(&sipif->ipif_saved_ire_lock); 13014 mutex_exit(&dipif->ipif_saved_ire_lock); 13015 RELEASE_ILL_LOCKS(sipif->ipif_ill, dipif->ipif_ill); 13016 13017 /* 13018 * Transfer ownership of the current xop, if necessary. 13019 */ 13020 if (ipx->ipx_current_ipif == sipif) { 13021 ASSERT(ipx->ipx_pending_ipif == NULL); 13022 mutex_enter(&ipx->ipx_lock); 13023 ipx->ipx_current_ipif = dipif; 13024 mutex_exit(&ipx->ipx_lock); 13025 } 13026 13027 if (virgipif == NULL) 13028 mi_free(sipif); 13029 } 13030 13031 /* 13032 * Insert the ipif, so that the list of ipifs on the ill will be sorted 13033 * with respect to ipif_id. Note that an ipif with an ipif_id of -1 will 13034 * be inserted into the first space available in the list. The value of 13035 * ipif_id will then be set to the appropriate value for its position. 13036 */ 13037 static int 13038 ipif_insert(ipif_t *ipif, boolean_t acquire_g_lock) 13039 { 13040 ill_t *ill; 13041 ipif_t *tipif; 13042 ipif_t **tipifp; 13043 int id; 13044 ip_stack_t *ipst; 13045 13046 ASSERT(ipif->ipif_ill->ill_net_type == IRE_LOOPBACK || 13047 IAM_WRITER_IPIF(ipif)); 13048 13049 ill = ipif->ipif_ill; 13050 ASSERT(ill != NULL); 13051 ipst = ill->ill_ipst; 13052 13053 /* 13054 * In the case of lo0:0 we already hold the ill_g_lock. 13055 * ill_lookup_on_name (acquires ill_g_lock) -> ipif_allocate -> 13056 * ipif_insert. 13057 */ 13058 if (acquire_g_lock) 13059 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 13060 mutex_enter(&ill->ill_lock); 13061 id = ipif->ipif_id; 13062 tipifp = &(ill->ill_ipif); 13063 if (id == -1) { /* need to find a real id */ 13064 id = 0; 13065 while ((tipif = *tipifp) != NULL) { 13066 ASSERT(tipif->ipif_id >= id); 13067 if (tipif->ipif_id != id) 13068 break; /* non-consecutive id */ 13069 id++; 13070 tipifp = &(tipif->ipif_next); 13071 } 13072 /* limit number of logical interfaces */ 13073 if (id >= ipst->ips_ip_addrs_per_if) { 13074 mutex_exit(&ill->ill_lock); 13075 if (acquire_g_lock) 13076 rw_exit(&ipst->ips_ill_g_lock); 13077 return (-1); 13078 } 13079 ipif->ipif_id = id; /* assign new id */ 13080 } else if (id < ipst->ips_ip_addrs_per_if) { 13081 /* we have a real id; insert ipif in the right place */ 13082 while ((tipif = *tipifp) != NULL) { 13083 ASSERT(tipif->ipif_id != id); 13084 if (tipif->ipif_id > id) 13085 break; /* found correct location */ 13086 tipifp = &(tipif->ipif_next); 13087 } 13088 } else { 13089 mutex_exit(&ill->ill_lock); 13090 if (acquire_g_lock) 13091 rw_exit(&ipst->ips_ill_g_lock); 13092 return (-1); 13093 } 13094 13095 ASSERT(tipifp != &(ill->ill_ipif) || id == 0); 13096 13097 ipif->ipif_next = tipif; 13098 *tipifp = ipif; 13099 mutex_exit(&ill->ill_lock); 13100 if (acquire_g_lock) 13101 rw_exit(&ipst->ips_ill_g_lock); 13102 13103 return (0); 13104 } 13105 13106 static void 13107 ipif_remove(ipif_t *ipif) 13108 { 13109 ipif_t **ipifp; 13110 ill_t *ill = ipif->ipif_ill; 13111 13112 ASSERT(RW_WRITE_HELD(&ill->ill_ipst->ips_ill_g_lock)); 13113 13114 mutex_enter(&ill->ill_lock); 13115 ipifp = &ill->ill_ipif; 13116 for (; *ipifp != NULL; ipifp = &ipifp[0]->ipif_next) { 13117 if (*ipifp == ipif) { 13118 *ipifp = ipif->ipif_next; 13119 break; 13120 } 13121 } 13122 mutex_exit(&ill->ill_lock); 13123 } 13124 13125 /* 13126 * Allocate and initialize a new interface control structure. (Always 13127 * called as writer.) 13128 * When ipif_allocate() is called from ip_ll_subnet_defaults, the ill 13129 * is not part of the global linked list of ills. ipif_seqid is unique 13130 * in the system and to preserve the uniqueness, it is assigned only 13131 * when ill becomes part of the global list. At that point ill will 13132 * have a name. If it doesn't get assigned here, it will get assigned 13133 * in ipif_set_values() as part of SIOCSLIFNAME processing. 13134 * Aditionally, if we come here from ip_ll_subnet_defaults, we don't set 13135 * the interface flags or any other information from the DL_INFO_ACK for 13136 * DL_STYLE2 drivers (initialize == B_FALSE), since we won't have them at 13137 * this point. The flags etc. will be set in ip_ll_subnet_defaults when the 13138 * second DL_INFO_ACK comes in from the driver. 13139 */ 13140 static ipif_t * 13141 ipif_allocate(ill_t *ill, int id, uint_t ire_type, boolean_t initialize, 13142 boolean_t insert) 13143 { 13144 ipif_t *ipif; 13145 ip_stack_t *ipst = ill->ill_ipst; 13146 13147 ip1dbg(("ipif_allocate(%s:%d ill %p)\n", 13148 ill->ill_name, id, (void *)ill)); 13149 ASSERT(ire_type == IRE_LOOPBACK || IAM_WRITER_ILL(ill)); 13150 13151 if ((ipif = (ipif_t *)mi_alloc(sizeof (ipif_t), BPRI_MED)) == NULL) 13152 return (NULL); 13153 *ipif = ipif_zero; /* start clean */ 13154 13155 ipif->ipif_ill = ill; 13156 ipif->ipif_id = id; /* could be -1 */ 13157 /* 13158 * Inherit the zoneid from the ill; for the shared stack instance 13159 * this is always the global zone 13160 */ 13161 ipif->ipif_zoneid = ill->ill_zoneid; 13162 13163 mutex_init(&ipif->ipif_saved_ire_lock, NULL, MUTEX_DEFAULT, NULL); 13164 13165 ipif->ipif_refcnt = 0; 13166 ipif->ipif_saved_ire_cnt = 0; 13167 13168 if (insert) { 13169 if (ipif_insert(ipif, ire_type != IRE_LOOPBACK) != 0) { 13170 mi_free(ipif); 13171 return (NULL); 13172 } 13173 /* -1 id should have been replaced by real id */ 13174 id = ipif->ipif_id; 13175 ASSERT(id >= 0); 13176 } 13177 13178 if (ill->ill_name[0] != '\0') 13179 ipif_assign_seqid(ipif); 13180 13181 /* 13182 * If this is the zeroth ipif on the IPMP ill, create the illgrp 13183 * (which must not exist yet because the zeroth ipif is created once 13184 * per ill). However, do not not link it to the ipmp_grp_t until 13185 * I_PLINK is called; see ip_sioctl_plink_ipmp() for details. 13186 */ 13187 if (id == 0 && IS_IPMP(ill)) { 13188 if (ipmp_illgrp_create(ill) == NULL) { 13189 if (insert) { 13190 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 13191 ipif_remove(ipif); 13192 rw_exit(&ipst->ips_ill_g_lock); 13193 } 13194 mi_free(ipif); 13195 return (NULL); 13196 } 13197 } 13198 13199 /* 13200 * We grab ill_lock to protect the flag changes. The ipif is still 13201 * not up and can't be looked up until the ioctl completes and the 13202 * IPIF_CHANGING flag is cleared. 13203 */ 13204 mutex_enter(&ill->ill_lock); 13205 13206 ipif->ipif_ire_type = ire_type; 13207 13208 if (ipif->ipif_isv6) { 13209 ill->ill_flags |= ILLF_IPV6; 13210 } else { 13211 ipaddr_t inaddr_any = INADDR_ANY; 13212 13213 ill->ill_flags |= ILLF_IPV4; 13214 13215 /* Keep the IN6_IS_ADDR_V4MAPPED assertions happy */ 13216 IN6_IPADDR_TO_V4MAPPED(inaddr_any, 13217 &ipif->ipif_v6lcl_addr); 13218 IN6_IPADDR_TO_V4MAPPED(inaddr_any, 13219 &ipif->ipif_v6src_addr); 13220 IN6_IPADDR_TO_V4MAPPED(inaddr_any, 13221 &ipif->ipif_v6subnet); 13222 IN6_IPADDR_TO_V4MAPPED(inaddr_any, 13223 &ipif->ipif_v6net_mask); 13224 IN6_IPADDR_TO_V4MAPPED(inaddr_any, 13225 &ipif->ipif_v6brd_addr); 13226 IN6_IPADDR_TO_V4MAPPED(inaddr_any, 13227 &ipif->ipif_v6pp_dst_addr); 13228 } 13229 13230 /* 13231 * Don't set the interface flags etc. now, will do it in 13232 * ip_ll_subnet_defaults. 13233 */ 13234 if (!initialize) 13235 goto out; 13236 13237 ipif->ipif_mtu = ill->ill_max_mtu; 13238 13239 /* 13240 * NOTE: The IPMP meta-interface is special-cased because it starts 13241 * with no underlying interfaces (and thus an unknown broadcast 13242 * address length), but all interfaces that can be placed into an IPMP 13243 * group are required to be broadcast-capable. 13244 */ 13245 if (ill->ill_bcast_addr_length != 0 || IS_IPMP(ill)) { 13246 /* 13247 * Later detect lack of DLPI driver multicast capability by 13248 * catching DL_ENABMULTI_REQ errors in ip_rput_dlpi(). 13249 */ 13250 ill->ill_flags |= ILLF_MULTICAST; 13251 if (!ipif->ipif_isv6) 13252 ipif->ipif_flags |= IPIF_BROADCAST; 13253 } else { 13254 if (ill->ill_net_type != IRE_LOOPBACK) { 13255 if (ipif->ipif_isv6) 13256 /* 13257 * Note: xresolv interfaces will eventually need 13258 * NOARP set here as well, but that will require 13259 * those external resolvers to have some 13260 * knowledge of that flag and act appropriately. 13261 * Not to be changed at present. 13262 */ 13263 ill->ill_flags |= ILLF_NONUD; 13264 else 13265 ill->ill_flags |= ILLF_NOARP; 13266 } 13267 if (ill->ill_phys_addr_length == 0) { 13268 if (IS_VNI(ill)) { 13269 ipif->ipif_flags |= IPIF_NOXMIT; 13270 } else { 13271 /* pt-pt supports multicast. */ 13272 ill->ill_flags |= ILLF_MULTICAST; 13273 if (ill->ill_net_type != IRE_LOOPBACK) 13274 ipif->ipif_flags |= IPIF_POINTOPOINT; 13275 } 13276 } 13277 } 13278 out: 13279 mutex_exit(&ill->ill_lock); 13280 return (ipif); 13281 } 13282 13283 /* 13284 * If appropriate, send a message up to the resolver delete the entry 13285 * for the address of this interface which is going out of business. 13286 * (Always called as writer). 13287 * 13288 * NOTE : We need to check for NULL mps as some of the fields are 13289 * initialized only for some interface types. See ipif_resolver_up() 13290 * for details. 13291 */ 13292 void 13293 ipif_resolver_down(ipif_t *ipif) 13294 { 13295 mblk_t *mp; 13296 ill_t *ill = ipif->ipif_ill; 13297 13298 ip1dbg(("ipif_resolver_down(%s:%u)\n", ill->ill_name, ipif->ipif_id)); 13299 ASSERT(IAM_WRITER_IPIF(ipif)); 13300 13301 if (ill->ill_isv6 && !(ill->ill_flags & ILLF_XRESOLV)) 13302 return; 13303 13304 /* Delete the mapping for the local address */ 13305 mp = ipif->ipif_arp_del_mp; 13306 if (mp != NULL) { 13307 ip1dbg(("ipif_resolver_down: arp cmd %x for %s:%u\n", 13308 *(unsigned *)mp->b_rptr, ill->ill_name, ipif->ipif_id)); 13309 putnext(ill->ill_rq, mp); 13310 ipif->ipif_arp_del_mp = NULL; 13311 } 13312 13313 /* 13314 * Make IPMP aware of the deleted data address. 13315 */ 13316 if (IS_IPMP(ill)) 13317 ipmp_illgrp_del_ipif(ill->ill_grp, ipif); 13318 13319 /* 13320 * If this is the last ipif that is going down and there are no 13321 * duplicate addresses we may yet attempt to re-probe, then we need to 13322 * clean up ARP completely. 13323 */ 13324 if (ill->ill_ipif_up_count == 0 && ill->ill_ipif_dup_count == 0) { 13325 /* 13326 * If this was the last ipif on an IPMP interface, purge any 13327 * IPMP ARP entries associated with it. 13328 */ 13329 if (IS_IPMP(ill)) 13330 ipmp_illgrp_refresh_arpent(ill->ill_grp); 13331 13332 /* Send up AR_INTERFACE_DOWN message */ 13333 mp = ill->ill_arp_down_mp; 13334 if (mp != NULL) { 13335 ip1dbg(("ipif_resolver_down: arp cmd %x for %s:%u\n", 13336 *(unsigned *)mp->b_rptr, ill->ill_name, 13337 ipif->ipif_id)); 13338 putnext(ill->ill_rq, mp); 13339 ill->ill_arp_down_mp = NULL; 13340 } 13341 13342 /* Tell ARP to delete the multicast mappings */ 13343 mp = ill->ill_arp_del_mapping_mp; 13344 if (mp != NULL) { 13345 ip1dbg(("ipif_resolver_down: arp cmd %x for %s:%u\n", 13346 *(unsigned *)mp->b_rptr, ill->ill_name, 13347 ipif->ipif_id)); 13348 putnext(ill->ill_rq, mp); 13349 ill->ill_arp_del_mapping_mp = NULL; 13350 } 13351 } 13352 } 13353 13354 /* 13355 * Set up the multicast mappings for `ipif' in ARP. If `arp_add_mapping_mp' 13356 * is non-NULL, then upon success it will contain an mblk that can be passed 13357 * to ARP to create the mapping. Otherwise, if it's NULL, upon success ARP 13358 * will have already been notified to create the mapping. Returns zero on 13359 * success, -1 upon failure. 13360 */ 13361 int 13362 ipif_arp_setup_multicast(ipif_t *ipif, mblk_t **arp_add_mapping_mp) 13363 { 13364 mblk_t *del_mp = NULL; 13365 mblk_t *add_mp = NULL; 13366 mblk_t *mp; 13367 ill_t *ill = ipif->ipif_ill; 13368 phyint_t *phyi = ill->ill_phyint; 13369 ipaddr_t addr, mask, extract_mask = 0; 13370 arma_t *arma; 13371 uint8_t *maddr, *bphys_addr; 13372 uint32_t hw_start; 13373 dl_unitdata_req_t *dlur; 13374 13375 ASSERT(IAM_WRITER_IPIF(ipif)); 13376 if (ipif->ipif_flags & IPIF_POINTOPOINT) 13377 return (0); 13378 13379 /* 13380 * IPMP meta-interfaces don't have any inherent multicast mappings, 13381 * and instead use the ones on the underlying interfaces. 13382 */ 13383 if (IS_IPMP(ill)) 13384 return (0); 13385 13386 /* 13387 * Delete the existing mapping from ARP. Normally, ipif_down() -> 13388 * ipif_resolver_down() will send this up to ARP, but it may be that 13389 * we are enabling PHYI_MULTI_BCAST via ip_rput_dlpi_writer(). 13390 */ 13391 mp = ill->ill_arp_del_mapping_mp; 13392 if (mp != NULL) { 13393 ip1dbg(("ipif_arp_setup_multicast: arp cmd %x for %s:%u\n", 13394 *(unsigned *)mp->b_rptr, ill->ill_name, ipif->ipif_id)); 13395 putnext(ill->ill_rq, mp); 13396 ill->ill_arp_del_mapping_mp = NULL; 13397 } 13398 13399 if (arp_add_mapping_mp != NULL) 13400 *arp_add_mapping_mp = NULL; 13401 13402 /* 13403 * Check that the address is not to long for the constant 13404 * length reserved in the template arma_t. 13405 */ 13406 if (ill->ill_phys_addr_length > IP_MAX_HW_LEN) 13407 return (-1); 13408 13409 /* Add mapping mblk */ 13410 addr = (ipaddr_t)htonl(INADDR_UNSPEC_GROUP); 13411 mask = (ipaddr_t)htonl(IN_CLASSD_NET); 13412 add_mp = ill_arp_alloc(ill, (uchar_t *)&ip_arma_multi_template, 13413 (caddr_t)&addr); 13414 if (add_mp == NULL) 13415 return (-1); 13416 arma = (arma_t *)add_mp->b_rptr; 13417 maddr = (uint8_t *)arma + arma->arma_hw_addr_offset; 13418 bcopy(&mask, (char *)arma + arma->arma_proto_mask_offset, IP_ADDR_LEN); 13419 arma->arma_hw_addr_length = ill->ill_phys_addr_length; 13420 13421 /* 13422 * Determine the broadcast address. 13423 */ 13424 dlur = (dl_unitdata_req_t *)ill->ill_bcast_mp->b_rptr; 13425 if (ill->ill_sap_length < 0) 13426 bphys_addr = (uchar_t *)dlur + dlur->dl_dest_addr_offset; 13427 else 13428 bphys_addr = (uchar_t *)dlur + 13429 dlur->dl_dest_addr_offset + ill->ill_sap_length; 13430 /* 13431 * Check PHYI_MULTI_BCAST and length of physical 13432 * address to determine if we use the mapping or the 13433 * broadcast address. 13434 */ 13435 if (!(phyi->phyint_flags & PHYI_MULTI_BCAST)) 13436 if (!MEDIA_V4MINFO(ill->ill_media, ill->ill_phys_addr_length, 13437 bphys_addr, maddr, &hw_start, &extract_mask)) 13438 phyi->phyint_flags |= PHYI_MULTI_BCAST; 13439 13440 if ((phyi->phyint_flags & PHYI_MULTI_BCAST) || 13441 (ill->ill_flags & ILLF_MULTICAST)) { 13442 /* Make sure this will not match the "exact" entry. */ 13443 addr = (ipaddr_t)htonl(INADDR_ALLHOSTS_GROUP); 13444 del_mp = ill_arp_alloc(ill, (uchar_t *)&ip_ared_template, 13445 (caddr_t)&addr); 13446 if (del_mp == NULL) { 13447 freemsg(add_mp); 13448 return (-1); 13449 } 13450 bcopy(&extract_mask, (char *)arma + 13451 arma->arma_proto_extract_mask_offset, IP_ADDR_LEN); 13452 if (phyi->phyint_flags & PHYI_MULTI_BCAST) { 13453 /* Use link-layer broadcast address for MULTI_BCAST */ 13454 bcopy(bphys_addr, maddr, ill->ill_phys_addr_length); 13455 ip2dbg(("ipif_arp_setup_multicast: adding" 13456 " MULTI_BCAST ARP setup for %s\n", ill->ill_name)); 13457 } else { 13458 arma->arma_hw_mapping_start = hw_start; 13459 ip2dbg(("ipif_arp_setup_multicast: adding multicast" 13460 " ARP setup for %s\n", ill->ill_name)); 13461 } 13462 } else { 13463 freemsg(add_mp); 13464 ASSERT(del_mp == NULL); 13465 /* It is neither MULTICAST nor MULTI_BCAST */ 13466 return (0); 13467 } 13468 ASSERT(add_mp != NULL && del_mp != NULL); 13469 ASSERT(ill->ill_arp_del_mapping_mp == NULL); 13470 ill->ill_arp_del_mapping_mp = del_mp; 13471 if (arp_add_mapping_mp != NULL) { 13472 /* The caller just wants the mblks allocated */ 13473 *arp_add_mapping_mp = add_mp; 13474 } else { 13475 /* The caller wants us to send it to arp */ 13476 putnext(ill->ill_rq, add_mp); 13477 } 13478 return (0); 13479 } 13480 13481 /* 13482 * Get the resolver set up for a new IP address. (Always called as writer.) 13483 * Called both for IPv4 and IPv6 interfaces, though it only sets up the 13484 * resolver for v6 if it's an ILLF_XRESOLV interface. Honors ILLF_NOARP. 13485 * 13486 * The enumerated value res_act tunes the behavior: 13487 * * Res_act_initial: set up all the resolver structures for a new 13488 * IP address. 13489 * * Res_act_defend: tell ARP that it needs to send a single gratuitous 13490 * ARP message in defense of the address. 13491 * * Res_act_rebind: tell ARP to change the hardware address for an IP 13492 * address (and issue gratuitous ARPs). Used by ipmp_ill_bind_ipif(). 13493 * 13494 * Returns zero on success, or an errno upon failure. 13495 */ 13496 int 13497 ipif_resolver_up(ipif_t *ipif, enum ip_resolver_action res_act) 13498 { 13499 mblk_t *arp_up_mp = NULL; 13500 mblk_t *arp_down_mp = NULL; 13501 mblk_t *arp_add_mp = NULL; 13502 mblk_t *arp_del_mp = NULL; 13503 mblk_t *arp_add_mapping_mp = NULL; 13504 mblk_t *arp_del_mapping_mp = NULL; 13505 ill_t *ill = ipif->ipif_ill; 13506 int err = ENOMEM; 13507 boolean_t added_ipif = B_FALSE; 13508 boolean_t publish; 13509 boolean_t was_dup; 13510 13511 ip1dbg(("ipif_resolver_up(%s:%u) flags 0x%x\n", 13512 ill->ill_name, ipif->ipif_id, (uint_t)ipif->ipif_flags)); 13513 ASSERT(IAM_WRITER_IPIF(ipif)); 13514 13515 was_dup = B_FALSE; 13516 if (res_act == Res_act_initial) { 13517 ipif->ipif_addr_ready = 0; 13518 /* 13519 * We're bringing an interface up here. There's no way that we 13520 * should need to shut down ARP now. 13521 */ 13522 mutex_enter(&ill->ill_lock); 13523 if (ipif->ipif_flags & IPIF_DUPLICATE) { 13524 ipif->ipif_flags &= ~IPIF_DUPLICATE; 13525 ill->ill_ipif_dup_count--; 13526 was_dup = B_TRUE; 13527 } 13528 mutex_exit(&ill->ill_lock); 13529 } 13530 if (ipif->ipif_recovery_id != 0) 13531 (void) untimeout(ipif->ipif_recovery_id); 13532 ipif->ipif_recovery_id = 0; 13533 if (ill->ill_net_type != IRE_IF_RESOLVER) { 13534 ipif->ipif_addr_ready = 1; 13535 return (0); 13536 } 13537 /* NDP will set the ipif_addr_ready flag when it's ready */ 13538 if (ill->ill_isv6 && !(ill->ill_flags & ILLF_XRESOLV)) 13539 return (0); 13540 13541 if (ill->ill_isv6) { 13542 /* 13543 * External resolver for IPv6 13544 */ 13545 ASSERT(res_act == Res_act_initial); 13546 publish = !IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6lcl_addr); 13547 } else { 13548 /* 13549 * IPv4 arp case. If the ARP stream has already started 13550 * closing, fail this request for ARP bringup. Else 13551 * record the fact that an ARP bringup is pending. 13552 */ 13553 mutex_enter(&ill->ill_lock); 13554 if (ill->ill_arp_closing) { 13555 mutex_exit(&ill->ill_lock); 13556 err = EINVAL; 13557 goto failed; 13558 } else { 13559 if (ill->ill_ipif_up_count == 0 && 13560 ill->ill_ipif_dup_count == 0 && !was_dup) 13561 ill->ill_arp_bringup_pending = 1; 13562 mutex_exit(&ill->ill_lock); 13563 } 13564 publish = (ipif->ipif_lcl_addr != INADDR_ANY); 13565 } 13566 13567 if (IS_IPMP(ill) && publish) { 13568 /* 13569 * If we're here via ipif_up(), then the ipif won't be bound 13570 * yet -- add it to the group, which will bind it if possible. 13571 * (We would add it in ipif_up(), but deleting on failure 13572 * there is gruesome.) If we're here via ipmp_ill_bind_ipif(), 13573 * then the ipif has already been added to the group and we 13574 * just need to use the binding. 13575 */ 13576 if (ipmp_ipif_bound_ill(ipif) == NULL) { 13577 if (ipmp_illgrp_add_ipif(ill->ill_grp, ipif) == NULL) { 13578 /* 13579 * We couldn't bind the ipif to an ill yet, 13580 * so we have nothing to publish. 13581 */ 13582 publish = B_FALSE; 13583 } 13584 added_ipif = B_TRUE; 13585 } 13586 } 13587 13588 /* 13589 * Add an entry for the local address in ARP only if it 13590 * is not UNNUMBERED and it is suitable for publishing. 13591 */ 13592 if (!(ipif->ipif_flags & IPIF_UNNUMBERED) && publish) { 13593 if (res_act == Res_act_defend) { 13594 arp_add_mp = ipif_area_alloc(ipif, ACE_F_DEFEND); 13595 if (arp_add_mp == NULL) 13596 goto failed; 13597 /* 13598 * If we're just defending our address now, then 13599 * there's no need to set up ARP multicast mappings. 13600 * The publish command is enough. 13601 */ 13602 goto done; 13603 } 13604 13605 /* 13606 * Allocate an ARP add message and an ARP delete message (the 13607 * latter is saved for use when the address goes down). 13608 */ 13609 if ((arp_add_mp = ipif_area_alloc(ipif, 0)) == NULL) 13610 goto failed; 13611 13612 if ((arp_del_mp = ipif_ared_alloc(ipif)) == NULL) 13613 goto failed; 13614 13615 if (res_act != Res_act_initial) 13616 goto arp_setup_multicast; 13617 } else { 13618 if (res_act != Res_act_initial) 13619 goto done; 13620 } 13621 /* 13622 * Need to bring up ARP or setup multicast mapping only 13623 * when the first interface is coming UP. 13624 */ 13625 if (ill->ill_ipif_up_count + ill->ill_ipif_dup_count > 0 || was_dup) 13626 goto done; 13627 13628 /* 13629 * Allocate an ARP down message (to be saved) and an ARP up message. 13630 */ 13631 arp_down_mp = ill_arp_alloc(ill, (uchar_t *)&ip_ard_template, 0); 13632 if (arp_down_mp == NULL) 13633 goto failed; 13634 13635 arp_up_mp = ill_arp_alloc(ill, (uchar_t *)&ip_aru_template, 0); 13636 if (arp_up_mp == NULL) 13637 goto failed; 13638 13639 if (ipif->ipif_flags & IPIF_POINTOPOINT) 13640 goto done; 13641 13642 arp_setup_multicast: 13643 /* 13644 * Setup the multicast mappings. This function initializes 13645 * ill_arp_del_mapping_mp also. This does not need to be done for 13646 * IPv6, or for the IPMP interface (since it has no link-layer). 13647 */ 13648 if (!ill->ill_isv6 && !IS_IPMP(ill)) { 13649 err = ipif_arp_setup_multicast(ipif, &arp_add_mapping_mp); 13650 if (err != 0) 13651 goto failed; 13652 ASSERT(ill->ill_arp_del_mapping_mp != NULL); 13653 ASSERT(arp_add_mapping_mp != NULL); 13654 } 13655 done: 13656 if (arp_up_mp != NULL) { 13657 ip1dbg(("ipif_resolver_up: ARP_UP for %s:%u\n", 13658 ill->ill_name, ipif->ipif_id)); 13659 putnext(ill->ill_rq, arp_up_mp); 13660 arp_up_mp = NULL; 13661 } 13662 if (arp_add_mp != NULL) { 13663 ip1dbg(("ipif_resolver_up: ARP_ADD for %s:%u\n", 13664 ill->ill_name, ipif->ipif_id)); 13665 /* 13666 * If it's an extended ARP implementation, then we'll wait to 13667 * hear that DAD has finished before using the interface. 13668 */ 13669 if (!ill->ill_arp_extend) 13670 ipif->ipif_addr_ready = 1; 13671 putnext(ill->ill_rq, arp_add_mp); 13672 arp_add_mp = NULL; 13673 } else { 13674 ipif->ipif_addr_ready = 1; 13675 } 13676 if (arp_add_mapping_mp != NULL) { 13677 ip1dbg(("ipif_resolver_up: MAPPING_ADD for %s:%u\n", 13678 ill->ill_name, ipif->ipif_id)); 13679 putnext(ill->ill_rq, arp_add_mapping_mp); 13680 arp_add_mapping_mp = NULL; 13681 } 13682 13683 if (res_act == Res_act_initial) { 13684 if (ill->ill_flags & ILLF_NOARP) 13685 err = ill_arp_off(ill); 13686 else 13687 err = ill_arp_on(ill); 13688 if (err != 0) { 13689 ip0dbg(("ipif_resolver_up: arp_on/off failed %d\n", 13690 err)); 13691 goto failed; 13692 } 13693 } 13694 13695 if (arp_del_mp != NULL) { 13696 ASSERT(ipif->ipif_arp_del_mp == NULL); 13697 ipif->ipif_arp_del_mp = arp_del_mp; 13698 } 13699 if (arp_down_mp != NULL) { 13700 ASSERT(ill->ill_arp_down_mp == NULL); 13701 ill->ill_arp_down_mp = arp_down_mp; 13702 } 13703 if (arp_del_mapping_mp != NULL) { 13704 ASSERT(ill->ill_arp_del_mapping_mp == NULL); 13705 ill->ill_arp_del_mapping_mp = arp_del_mapping_mp; 13706 } 13707 13708 return ((ill->ill_ipif_up_count != 0 || was_dup || 13709 ill->ill_ipif_dup_count != 0) ? 0 : EINPROGRESS); 13710 failed: 13711 ip1dbg(("ipif_resolver_up: FAILED\n")); 13712 if (added_ipif) 13713 ipmp_illgrp_del_ipif(ill->ill_grp, ipif); 13714 freemsg(arp_add_mp); 13715 freemsg(arp_del_mp); 13716 freemsg(arp_add_mapping_mp); 13717 freemsg(arp_up_mp); 13718 freemsg(arp_down_mp); 13719 ill->ill_arp_bringup_pending = 0; 13720 return (err); 13721 } 13722 13723 /* 13724 * This routine restarts IPv4 duplicate address detection (DAD) when a link has 13725 * just gone back up. 13726 */ 13727 static void 13728 ipif_arp_start_dad(ipif_t *ipif) 13729 { 13730 ill_t *ill = ipif->ipif_ill; 13731 mblk_t *arp_add_mp; 13732 13733 /* ACE_F_UNVERIFIED restarts DAD */ 13734 if (ill->ill_net_type != IRE_IF_RESOLVER || ill->ill_arp_closing || 13735 (ipif->ipif_flags & IPIF_UNNUMBERED) || 13736 ipif->ipif_lcl_addr == INADDR_ANY || 13737 (arp_add_mp = ipif_area_alloc(ipif, ACE_F_UNVERIFIED)) == NULL) { 13738 /* 13739 * If we can't contact ARP for some reason, that's not really a 13740 * problem. Just send out the routing socket notification that 13741 * DAD completion would have done, and continue. 13742 */ 13743 ipif_mask_reply(ipif); 13744 ipif_up_notify(ipif); 13745 ipif->ipif_addr_ready = 1; 13746 return; 13747 } 13748 13749 putnext(ill->ill_rq, arp_add_mp); 13750 } 13751 13752 static void 13753 ipif_ndp_start_dad(ipif_t *ipif) 13754 { 13755 nce_t *nce; 13756 13757 nce = ndp_lookup_v6(ipif->ipif_ill, B_TRUE, &ipif->ipif_v6lcl_addr, 13758 B_FALSE); 13759 if (nce == NULL) 13760 return; 13761 13762 if (!ndp_restart_dad(nce)) { 13763 /* 13764 * If we can't restart DAD for some reason, that's not really a 13765 * problem. Just send out the routing socket notification that 13766 * DAD completion would have done, and continue. 13767 */ 13768 ipif_up_notify(ipif); 13769 ipif->ipif_addr_ready = 1; 13770 } 13771 NCE_REFRELE(nce); 13772 } 13773 13774 /* 13775 * Restart duplicate address detection on all interfaces on the given ill. 13776 * 13777 * This is called when an interface transitions from down to up 13778 * (DL_NOTE_LINK_UP) or up to down (DL_NOTE_LINK_DOWN). 13779 * 13780 * Note that since the underlying physical link has transitioned, we must cause 13781 * at least one routing socket message to be sent here, either via DAD 13782 * completion or just by default on the first ipif. (If we don't do this, then 13783 * in.mpathd will see long delays when doing link-based failure recovery.) 13784 */ 13785 void 13786 ill_restart_dad(ill_t *ill, boolean_t went_up) 13787 { 13788 ipif_t *ipif; 13789 13790 if (ill == NULL) 13791 return; 13792 13793 /* 13794 * If layer two doesn't support duplicate address detection, then just 13795 * send the routing socket message now and be done with it. 13796 */ 13797 if ((ill->ill_isv6 && (ill->ill_flags & ILLF_XRESOLV)) || 13798 (!ill->ill_isv6 && !ill->ill_arp_extend)) { 13799 ip_rts_ifmsg(ill->ill_ipif, RTSQ_DEFAULT); 13800 return; 13801 } 13802 13803 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 13804 if (went_up) { 13805 if (ipif->ipif_flags & IPIF_UP) { 13806 if (ill->ill_isv6) 13807 ipif_ndp_start_dad(ipif); 13808 else 13809 ipif_arp_start_dad(ipif); 13810 } else if (ill->ill_isv6 && 13811 (ipif->ipif_flags & IPIF_DUPLICATE)) { 13812 /* 13813 * For IPv4, the ARP module itself will 13814 * automatically start the DAD process when it 13815 * sees DL_NOTE_LINK_UP. We respond to the 13816 * AR_CN_READY at the completion of that task. 13817 * For IPv6, we must kick off the bring-up 13818 * process now. 13819 */ 13820 ndp_do_recovery(ipif); 13821 } else { 13822 /* 13823 * Unfortunately, the first ipif is "special" 13824 * and represents the underlying ill in the 13825 * routing socket messages. Thus, when this 13826 * one ipif is down, we must still notify so 13827 * that the user knows the IFF_RUNNING status 13828 * change. (If the first ipif is up, then 13829 * we'll handle eventual routing socket 13830 * notification via DAD completion.) 13831 */ 13832 if (ipif == ill->ill_ipif) { 13833 ip_rts_ifmsg(ill->ill_ipif, 13834 RTSQ_DEFAULT); 13835 } 13836 } 13837 } else { 13838 /* 13839 * After link down, we'll need to send a new routing 13840 * message when the link comes back, so clear 13841 * ipif_addr_ready. 13842 */ 13843 ipif->ipif_addr_ready = 0; 13844 } 13845 } 13846 13847 /* 13848 * If we've torn down links, then notify the user right away. 13849 */ 13850 if (!went_up) 13851 ip_rts_ifmsg(ill->ill_ipif, RTSQ_DEFAULT); 13852 } 13853 13854 static void 13855 ipsq_delete(ipsq_t *ipsq) 13856 { 13857 ipxop_t *ipx = ipsq->ipsq_xop; 13858 13859 ipsq->ipsq_ipst = NULL; 13860 ASSERT(ipsq->ipsq_phyint == NULL); 13861 ASSERT(ipsq->ipsq_xop != NULL); 13862 ASSERT(ipsq->ipsq_xopq_mphead == NULL && ipx->ipx_mphead == NULL); 13863 ASSERT(ipx->ipx_pending_mp == NULL); 13864 kmem_free(ipsq, sizeof (ipsq_t)); 13865 } 13866 13867 static int 13868 ill_up_ipifs_on_ill(ill_t *ill, queue_t *q, mblk_t *mp) 13869 { 13870 int err; 13871 ipif_t *ipif; 13872 13873 if (ill == NULL) 13874 return (0); 13875 13876 ASSERT(IAM_WRITER_ILL(ill)); 13877 ill->ill_up_ipifs = B_TRUE; 13878 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 13879 if (ipif->ipif_was_up) { 13880 if (!(ipif->ipif_flags & IPIF_UP)) 13881 err = ipif_up(ipif, q, mp); 13882 ipif->ipif_was_up = B_FALSE; 13883 if (err != 0) { 13884 ASSERT(err == EINPROGRESS); 13885 return (err); 13886 } 13887 } 13888 } 13889 mutex_enter(&ill->ill_lock); 13890 ill->ill_state_flags &= ~ILL_CHANGING; 13891 mutex_exit(&ill->ill_lock); 13892 ill->ill_up_ipifs = B_FALSE; 13893 return (0); 13894 } 13895 13896 /* 13897 * This function is called to bring up all the ipifs that were up before 13898 * bringing the ill down via ill_down_ipifs(). 13899 */ 13900 int 13901 ill_up_ipifs(ill_t *ill, queue_t *q, mblk_t *mp) 13902 { 13903 int err; 13904 13905 ASSERT(IAM_WRITER_ILL(ill)); 13906 13907 err = ill_up_ipifs_on_ill(ill->ill_phyint->phyint_illv4, q, mp); 13908 if (err != 0) 13909 return (err); 13910 13911 return (ill_up_ipifs_on_ill(ill->ill_phyint->phyint_illv6, q, mp)); 13912 } 13913 13914 /* 13915 * Bring down any IPIF_UP ipifs on ill. If "logical" is B_TRUE, we bring 13916 * down the ipifs without sending DL_UNBIND_REQ to the driver. 13917 */ 13918 static void 13919 ill_down_ipifs(ill_t *ill, boolean_t logical) 13920 { 13921 ipif_t *ipif; 13922 13923 ASSERT(IAM_WRITER_ILL(ill)); 13924 13925 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 13926 /* 13927 * We go through the ipif_down logic even if the ipif 13928 * is already down, since routes can be added based 13929 * on down ipifs. Going through ipif_down once again 13930 * will delete any IREs created based on these routes. 13931 */ 13932 if (ipif->ipif_flags & IPIF_UP) 13933 ipif->ipif_was_up = B_TRUE; 13934 13935 /* 13936 * Need to re-create net/subnet bcast ires if 13937 * they are dependent on ipif. 13938 */ 13939 if (!ipif->ipif_isv6) 13940 ipif_check_bcast_ires(ipif); 13941 if (logical) { 13942 (void) ipif_logical_down(ipif, NULL, NULL); 13943 ipif_non_duplicate(ipif); 13944 ipif_down_tail(ipif); 13945 } else { 13946 (void) ipif_down(ipif, NULL, NULL); 13947 } 13948 } 13949 } 13950 13951 /* 13952 * Redo source address selection. This is called when a 13953 * non-NOLOCAL/DEPRECATED/ANYCAST ipif comes up. 13954 */ 13955 void 13956 ill_update_source_selection(ill_t *ill) 13957 { 13958 ipif_t *ipif; 13959 13960 ASSERT(IAM_WRITER_ILL(ill)); 13961 13962 /* 13963 * Underlying interfaces are only used for test traffic and thus 13964 * should always send with their (deprecated) source addresses. 13965 */ 13966 if (IS_UNDER_IPMP(ill)) 13967 return; 13968 13969 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 13970 if (ill->ill_isv6) 13971 ipif_recreate_interface_routes_v6(NULL, ipif); 13972 else 13973 ipif_recreate_interface_routes(NULL, ipif); 13974 } 13975 } 13976 13977 /* 13978 * Finish the group join started in ip_sioctl_groupname(). 13979 */ 13980 /* ARGSUSED */ 13981 static void 13982 ip_join_illgrps(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy) 13983 { 13984 ill_t *ill = q->q_ptr; 13985 phyint_t *phyi = ill->ill_phyint; 13986 ipmp_grp_t *grp = phyi->phyint_grp; 13987 ip_stack_t *ipst = ill->ill_ipst; 13988 13989 /* IS_UNDER_IPMP() won't work until ipmp_ill_join_illgrp() is called */ 13990 ASSERT(!IS_IPMP(ill) && grp != NULL); 13991 ASSERT(IAM_WRITER_IPSQ(ipsq)); 13992 13993 if (phyi->phyint_illv4 != NULL) { 13994 rw_enter(&ipst->ips_ipmp_lock, RW_WRITER); 13995 VERIFY(grp->gr_pendv4-- > 0); 13996 rw_exit(&ipst->ips_ipmp_lock); 13997 ipmp_ill_join_illgrp(phyi->phyint_illv4, grp->gr_v4); 13998 } 13999 if (phyi->phyint_illv6 != NULL) { 14000 rw_enter(&ipst->ips_ipmp_lock, RW_WRITER); 14001 VERIFY(grp->gr_pendv6-- > 0); 14002 rw_exit(&ipst->ips_ipmp_lock); 14003 ipmp_ill_join_illgrp(phyi->phyint_illv6, grp->gr_v6); 14004 } 14005 freemsg(mp); 14006 } 14007 14008 /* 14009 * Process an SIOCSLIFGROUPNAME request. 14010 */ 14011 /* ARGSUSED */ 14012 int 14013 ip_sioctl_groupname(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 14014 ip_ioctl_cmd_t *ipip, void *ifreq) 14015 { 14016 struct lifreq *lifr = ifreq; 14017 ill_t *ill = ipif->ipif_ill; 14018 ip_stack_t *ipst = ill->ill_ipst; 14019 phyint_t *phyi = ill->ill_phyint; 14020 ipmp_grp_t *grp = phyi->phyint_grp; 14021 mblk_t *ipsq_mp; 14022 int err = 0; 14023 14024 /* 14025 * Note that phyint_grp can only change here, where we're exclusive. 14026 */ 14027 ASSERT(IAM_WRITER_ILL(ill)); 14028 14029 if (ipif->ipif_id != 0 || ill->ill_usesrc_grp_next != NULL || 14030 (phyi->phyint_flags & PHYI_VIRTUAL)) 14031 return (EINVAL); 14032 14033 lifr->lifr_groupname[LIFGRNAMSIZ - 1] = '\0'; 14034 14035 rw_enter(&ipst->ips_ipmp_lock, RW_WRITER); 14036 14037 /* 14038 * If the name hasn't changed, there's nothing to do. 14039 */ 14040 if (grp != NULL && strcmp(grp->gr_name, lifr->lifr_groupname) == 0) 14041 goto unlock; 14042 14043 /* 14044 * Handle requests to rename an IPMP meta-interface. 14045 * 14046 * Note that creation of the IPMP meta-interface is handled in 14047 * userland through the standard plumbing sequence. As part of the 14048 * plumbing the IPMP meta-interface, its initial groupname is set to 14049 * the name of the interface (see ipif_set_values_tail()). 14050 */ 14051 if (IS_IPMP(ill)) { 14052 err = ipmp_grp_rename(grp, lifr->lifr_groupname); 14053 goto unlock; 14054 } 14055 14056 /* 14057 * Handle requests to add or remove an IP interface from a group. 14058 */ 14059 if (lifr->lifr_groupname[0] != '\0') { /* add */ 14060 /* 14061 * Moves are handled by first removing the interface from 14062 * its existing group, and then adding it to another group. 14063 * So, fail if it's already in a group. 14064 */ 14065 if (IS_UNDER_IPMP(ill)) { 14066 err = EALREADY; 14067 goto unlock; 14068 } 14069 14070 grp = ipmp_grp_lookup(lifr->lifr_groupname, ipst); 14071 if (grp == NULL) { 14072 err = ENOENT; 14073 goto unlock; 14074 } 14075 14076 /* 14077 * Check if the phyint and its ills are suitable for 14078 * inclusion into the group. 14079 */ 14080 if ((err = ipmp_grp_vet_phyint(grp, phyi)) != 0) 14081 goto unlock; 14082 14083 /* 14084 * Checks pass; join the group, and enqueue the remaining 14085 * illgrp joins for when we've become part of the group xop 14086 * and are exclusive across its IPSQs. Since qwriter_ip() 14087 * requires an mblk_t to scribble on, and since `mp' will be 14088 * freed as part of completing the ioctl, allocate another. 14089 */ 14090 if ((ipsq_mp = allocb(0, BPRI_MED)) == NULL) { 14091 err = ENOMEM; 14092 goto unlock; 14093 } 14094 14095 /* 14096 * Before we drop ipmp_lock, bump gr_pend* to ensure that the 14097 * IPMP meta-interface ills needed by `phyi' cannot go away 14098 * before ip_join_illgrps() is called back. See the comments 14099 * in ip_sioctl_plink_ipmp() for more. 14100 */ 14101 if (phyi->phyint_illv4 != NULL) 14102 grp->gr_pendv4++; 14103 if (phyi->phyint_illv6 != NULL) 14104 grp->gr_pendv6++; 14105 14106 rw_exit(&ipst->ips_ipmp_lock); 14107 14108 ipmp_phyint_join_grp(phyi, grp); 14109 ill_refhold(ill); 14110 qwriter_ip(ill, ill->ill_rq, ipsq_mp, ip_join_illgrps, 14111 SWITCH_OP, B_FALSE); 14112 return (0); 14113 } else { 14114 /* 14115 * Request to remove the interface from a group. If the 14116 * interface is not in a group, this trivially succeeds. 14117 */ 14118 rw_exit(&ipst->ips_ipmp_lock); 14119 if (IS_UNDER_IPMP(ill)) 14120 ipmp_phyint_leave_grp(phyi); 14121 return (0); 14122 } 14123 unlock: 14124 rw_exit(&ipst->ips_ipmp_lock); 14125 return (err); 14126 } 14127 14128 /* 14129 * Process an SIOCGLIFBINDING request. 14130 */ 14131 /* ARGSUSED */ 14132 int 14133 ip_sioctl_get_binding(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 14134 ip_ioctl_cmd_t *ipip, void *ifreq) 14135 { 14136 ill_t *ill; 14137 struct lifreq *lifr = ifreq; 14138 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; 14139 14140 if (!IS_IPMP(ipif->ipif_ill)) 14141 return (EINVAL); 14142 14143 rw_enter(&ipst->ips_ipmp_lock, RW_READER); 14144 if ((ill = ipif->ipif_bound_ill) == NULL) 14145 lifr->lifr_binding[0] = '\0'; 14146 else 14147 (void) strlcpy(lifr->lifr_binding, ill->ill_name, LIFNAMSIZ); 14148 rw_exit(&ipst->ips_ipmp_lock); 14149 return (0); 14150 } 14151 14152 /* 14153 * Process an SIOCGLIFGROUPNAME request. 14154 */ 14155 /* ARGSUSED */ 14156 int 14157 ip_sioctl_get_groupname(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 14158 ip_ioctl_cmd_t *ipip, void *ifreq) 14159 { 14160 ipmp_grp_t *grp; 14161 struct lifreq *lifr = ifreq; 14162 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; 14163 14164 rw_enter(&ipst->ips_ipmp_lock, RW_READER); 14165 if ((grp = ipif->ipif_ill->ill_phyint->phyint_grp) == NULL) 14166 lifr->lifr_groupname[0] = '\0'; 14167 else 14168 (void) strlcpy(lifr->lifr_groupname, grp->gr_name, LIFGRNAMSIZ); 14169 rw_exit(&ipst->ips_ipmp_lock); 14170 return (0); 14171 } 14172 14173 /* 14174 * Process an SIOCGLIFGROUPINFO request. 14175 */ 14176 /* ARGSUSED */ 14177 int 14178 ip_sioctl_groupinfo(ipif_t *dummy_ipif, sin_t *sin, queue_t *q, mblk_t *mp, 14179 ip_ioctl_cmd_t *ipip, void *dummy) 14180 { 14181 ipmp_grp_t *grp; 14182 lifgroupinfo_t *lifgr; 14183 ip_stack_t *ipst = CONNQ_TO_IPST(q); 14184 14185 /* ip_wput_nondata() verified mp->b_cont->b_cont */ 14186 lifgr = (lifgroupinfo_t *)mp->b_cont->b_cont->b_rptr; 14187 lifgr->gi_grname[LIFGRNAMSIZ - 1] = '\0'; 14188 14189 rw_enter(&ipst->ips_ipmp_lock, RW_READER); 14190 if ((grp = ipmp_grp_lookup(lifgr->gi_grname, ipst)) == NULL) { 14191 rw_exit(&ipst->ips_ipmp_lock); 14192 return (ENOENT); 14193 } 14194 ipmp_grp_info(grp, lifgr); 14195 rw_exit(&ipst->ips_ipmp_lock); 14196 return (0); 14197 } 14198 14199 static void 14200 ill_dl_down(ill_t *ill) 14201 { 14202 /* 14203 * The ill is down; unbind but stay attached since we're still 14204 * associated with a PPA. If we have negotiated DLPI capabilites 14205 * with the data link service provider (IDS_OK) then reset them. 14206 * The interval between unbinding and rebinding is potentially 14207 * unbounded hence we cannot assume things will be the same. 14208 * The DLPI capabilities will be probed again when the data link 14209 * is brought up. 14210 */ 14211 mblk_t *mp = ill->ill_unbind_mp; 14212 14213 ip1dbg(("ill_dl_down(%s)\n", ill->ill_name)); 14214 14215 ill->ill_unbind_mp = NULL; 14216 if (mp != NULL) { 14217 ip1dbg(("ill_dl_down: %s (%u) for %s\n", 14218 dl_primstr(*(int *)mp->b_rptr), *(int *)mp->b_rptr, 14219 ill->ill_name)); 14220 mutex_enter(&ill->ill_lock); 14221 ill->ill_state_flags |= ILL_DL_UNBIND_IN_PROGRESS; 14222 mutex_exit(&ill->ill_lock); 14223 /* 14224 * ip_rput does not pass up normal (M_PROTO) DLPI messages 14225 * after ILL_CONDEMNED is set. So in the unplumb case, we call 14226 * ill_capability_dld_disable disable rightaway. If this is not 14227 * an unplumb operation then the disable happens on receipt of 14228 * the capab ack via ip_rput_dlpi_writer -> 14229 * ill_capability_ack_thr. In both cases the order of 14230 * the operations seen by DLD is capability disable followed 14231 * by DL_UNBIND. Also the DLD capability disable needs a 14232 * cv_wait'able context. 14233 */ 14234 if (ill->ill_state_flags & ILL_CONDEMNED) 14235 ill_capability_dld_disable(ill); 14236 ill_capability_reset(ill, B_FALSE); 14237 ill_dlpi_send(ill, mp); 14238 } 14239 14240 /* 14241 * Toss all of our multicast memberships. We could keep them, but 14242 * then we'd have to do bookkeeping of any joins and leaves performed 14243 * by the application while the the interface is down (we can't just 14244 * issue them because arp cannot currently process AR_ENTRY_SQUERY's 14245 * on a downed interface). 14246 */ 14247 ill_leave_multicast(ill); 14248 14249 mutex_enter(&ill->ill_lock); 14250 ill->ill_dl_up = 0; 14251 ill_nic_event_dispatch(ill, 0, NE_DOWN, NULL, 0); 14252 mutex_exit(&ill->ill_lock); 14253 } 14254 14255 static void 14256 ill_dlpi_dispatch(ill_t *ill, mblk_t *mp) 14257 { 14258 union DL_primitives *dlp; 14259 t_uscalar_t prim; 14260 boolean_t waitack = B_FALSE; 14261 14262 ASSERT(DB_TYPE(mp) == M_PROTO || DB_TYPE(mp) == M_PCPROTO); 14263 14264 dlp = (union DL_primitives *)mp->b_rptr; 14265 prim = dlp->dl_primitive; 14266 14267 ip1dbg(("ill_dlpi_dispatch: sending %s (%u) to %s\n", 14268 dl_primstr(prim), prim, ill->ill_name)); 14269 14270 switch (prim) { 14271 case DL_PHYS_ADDR_REQ: 14272 { 14273 dl_phys_addr_req_t *dlpap = (dl_phys_addr_req_t *)mp->b_rptr; 14274 ill->ill_phys_addr_pend = dlpap->dl_addr_type; 14275 break; 14276 } 14277 case DL_BIND_REQ: 14278 mutex_enter(&ill->ill_lock); 14279 ill->ill_state_flags &= ~ILL_DL_UNBIND_IN_PROGRESS; 14280 mutex_exit(&ill->ill_lock); 14281 break; 14282 } 14283 14284 /* 14285 * Except for the ACKs for the M_PCPROTO messages, all other ACKs 14286 * are dropped by ip_rput() if ILL_CONDEMNED is set. Therefore 14287 * we only wait for the ACK of the DL_UNBIND_REQ. 14288 */ 14289 mutex_enter(&ill->ill_lock); 14290 if (!(ill->ill_state_flags & ILL_CONDEMNED) || 14291 (prim == DL_UNBIND_REQ)) { 14292 ill->ill_dlpi_pending = prim; 14293 waitack = B_TRUE; 14294 } 14295 14296 mutex_exit(&ill->ill_lock); 14297 putnext(ill->ill_wq, mp); 14298 14299 /* 14300 * There is no ack for DL_NOTIFY_CONF messages 14301 */ 14302 if (waitack && prim == DL_NOTIFY_CONF) 14303 ill_dlpi_done(ill, prim); 14304 } 14305 14306 /* 14307 * Helper function for ill_dlpi_send(). 14308 */ 14309 /* ARGSUSED */ 14310 static void 14311 ill_dlpi_send_writer(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *arg) 14312 { 14313 ill_dlpi_send(q->q_ptr, mp); 14314 } 14315 14316 /* 14317 * Send a DLPI control message to the driver but make sure there 14318 * is only one outstanding message. Uses ill_dlpi_pending to tell 14319 * when it must queue. ip_rput_dlpi_writer calls ill_dlpi_done() 14320 * when an ACK or a NAK is received to process the next queued message. 14321 */ 14322 void 14323 ill_dlpi_send(ill_t *ill, mblk_t *mp) 14324 { 14325 mblk_t **mpp; 14326 14327 ASSERT(DB_TYPE(mp) == M_PROTO || DB_TYPE(mp) == M_PCPROTO); 14328 14329 /* 14330 * To ensure that any DLPI requests for current exclusive operation 14331 * are always completely sent before any DLPI messages for other 14332 * operations, require writer access before enqueuing. 14333 */ 14334 if (!IAM_WRITER_ILL(ill)) { 14335 ill_refhold(ill); 14336 /* qwriter_ip() does the ill_refrele() */ 14337 qwriter_ip(ill, ill->ill_wq, mp, ill_dlpi_send_writer, 14338 NEW_OP, B_TRUE); 14339 return; 14340 } 14341 14342 mutex_enter(&ill->ill_lock); 14343 if (ill->ill_dlpi_pending != DL_PRIM_INVAL) { 14344 /* Must queue message. Tail insertion */ 14345 mpp = &ill->ill_dlpi_deferred; 14346 while (*mpp != NULL) 14347 mpp = &((*mpp)->b_next); 14348 14349 ip1dbg(("ill_dlpi_send: deferring request for %s\n", 14350 ill->ill_name)); 14351 14352 *mpp = mp; 14353 mutex_exit(&ill->ill_lock); 14354 return; 14355 } 14356 mutex_exit(&ill->ill_lock); 14357 ill_dlpi_dispatch(ill, mp); 14358 } 14359 14360 static void 14361 ill_capability_send(ill_t *ill, mblk_t *mp) 14362 { 14363 ill->ill_capab_pending_cnt++; 14364 ill_dlpi_send(ill, mp); 14365 } 14366 14367 void 14368 ill_capability_done(ill_t *ill) 14369 { 14370 ASSERT(ill->ill_capab_pending_cnt != 0); 14371 14372 ill_dlpi_done(ill, DL_CAPABILITY_REQ); 14373 14374 ill->ill_capab_pending_cnt--; 14375 if (ill->ill_capab_pending_cnt == 0 && 14376 ill->ill_dlpi_capab_state == IDCS_OK) 14377 ill_capability_reset_alloc(ill); 14378 } 14379 14380 /* 14381 * Send all deferred DLPI messages without waiting for their ACKs. 14382 */ 14383 void 14384 ill_dlpi_send_deferred(ill_t *ill) 14385 { 14386 mblk_t *mp, *nextmp; 14387 14388 /* 14389 * Clear ill_dlpi_pending so that the message is not queued in 14390 * ill_dlpi_send(). 14391 */ 14392 mutex_enter(&ill->ill_lock); 14393 ill->ill_dlpi_pending = DL_PRIM_INVAL; 14394 mp = ill->ill_dlpi_deferred; 14395 ill->ill_dlpi_deferred = NULL; 14396 mutex_exit(&ill->ill_lock); 14397 14398 for (; mp != NULL; mp = nextmp) { 14399 nextmp = mp->b_next; 14400 mp->b_next = NULL; 14401 ill_dlpi_send(ill, mp); 14402 } 14403 } 14404 14405 /* 14406 * Check if the DLPI primitive `prim' is pending; print a warning if not. 14407 */ 14408 boolean_t 14409 ill_dlpi_pending(ill_t *ill, t_uscalar_t prim) 14410 { 14411 t_uscalar_t pending; 14412 14413 mutex_enter(&ill->ill_lock); 14414 if (ill->ill_dlpi_pending == prim) { 14415 mutex_exit(&ill->ill_lock); 14416 return (B_TRUE); 14417 } 14418 14419 /* 14420 * During teardown, ill_dlpi_dispatch() will send DLPI requests 14421 * without waiting, so don't print any warnings in that case. 14422 */ 14423 if (ill->ill_state_flags & ILL_CONDEMNED) { 14424 mutex_exit(&ill->ill_lock); 14425 return (B_FALSE); 14426 } 14427 pending = ill->ill_dlpi_pending; 14428 mutex_exit(&ill->ill_lock); 14429 14430 if (pending == DL_PRIM_INVAL) { 14431 (void) mi_strlog(ill->ill_rq, 1, SL_CONSOLE|SL_ERROR|SL_TRACE, 14432 "received unsolicited ack for %s on %s\n", 14433 dl_primstr(prim), ill->ill_name); 14434 } else { 14435 (void) mi_strlog(ill->ill_rq, 1, SL_CONSOLE|SL_ERROR|SL_TRACE, 14436 "received unexpected ack for %s on %s (expecting %s)\n", 14437 dl_primstr(prim), ill->ill_name, dl_primstr(pending)); 14438 } 14439 return (B_FALSE); 14440 } 14441 14442 /* 14443 * Complete the current DLPI operation associated with `prim' on `ill' and 14444 * start the next queued DLPI operation (if any). If there are no queued DLPI 14445 * operations and the ill's current exclusive IPSQ operation has finished 14446 * (i.e., ipsq_current_finish() was called), then clear ipsq_current_ipif to 14447 * allow the next exclusive IPSQ operation to begin upon ipsq_exit(). See 14448 * the comments above ipsq_current_finish() for details. 14449 */ 14450 void 14451 ill_dlpi_done(ill_t *ill, t_uscalar_t prim) 14452 { 14453 mblk_t *mp; 14454 ipsq_t *ipsq = ill->ill_phyint->phyint_ipsq; 14455 ipxop_t *ipx = ipsq->ipsq_xop; 14456 14457 ASSERT(IAM_WRITER_IPSQ(ipsq)); 14458 mutex_enter(&ill->ill_lock); 14459 14460 ASSERT(prim != DL_PRIM_INVAL); 14461 ASSERT(ill->ill_dlpi_pending == prim); 14462 14463 ip1dbg(("ill_dlpi_done: %s has completed %s (%u)\n", ill->ill_name, 14464 dl_primstr(ill->ill_dlpi_pending), ill->ill_dlpi_pending)); 14465 14466 if ((mp = ill->ill_dlpi_deferred) == NULL) { 14467 ill->ill_dlpi_pending = DL_PRIM_INVAL; 14468 if (ipx->ipx_current_done) { 14469 mutex_enter(&ipx->ipx_lock); 14470 ipx->ipx_current_ipif = NULL; 14471 mutex_exit(&ipx->ipx_lock); 14472 } 14473 cv_signal(&ill->ill_cv); 14474 mutex_exit(&ill->ill_lock); 14475 return; 14476 } 14477 14478 ill->ill_dlpi_deferred = mp->b_next; 14479 mp->b_next = NULL; 14480 mutex_exit(&ill->ill_lock); 14481 14482 ill_dlpi_dispatch(ill, mp); 14483 } 14484 14485 void 14486 conn_delete_ire(conn_t *connp, caddr_t arg) 14487 { 14488 ipif_t *ipif = (ipif_t *)arg; 14489 ire_t *ire; 14490 14491 /* 14492 * Look at the cached ires on conns which has pointers to ipifs. 14493 * We just call ire_refrele which clears up the reference 14494 * to ire. Called when a conn closes. Also called from ipif_free 14495 * to cleanup indirect references to the stale ipif via the cached ire. 14496 */ 14497 mutex_enter(&connp->conn_lock); 14498 ire = connp->conn_ire_cache; 14499 if (ire != NULL && (ipif == NULL || ire->ire_ipif == ipif)) { 14500 connp->conn_ire_cache = NULL; 14501 mutex_exit(&connp->conn_lock); 14502 IRE_REFRELE_NOTR(ire); 14503 return; 14504 } 14505 mutex_exit(&connp->conn_lock); 14506 14507 } 14508 14509 /* 14510 * Some operations (e.g., ipif_down()) conditionally delete a number 14511 * of IREs. Those IREs may have been previously cached in the conn structure. 14512 * This ipcl_walk() walker function releases all references to such IREs based 14513 * on the condemned flag. 14514 */ 14515 /* ARGSUSED */ 14516 void 14517 conn_cleanup_stale_ire(conn_t *connp, caddr_t arg) 14518 { 14519 ire_t *ire; 14520 14521 mutex_enter(&connp->conn_lock); 14522 ire = connp->conn_ire_cache; 14523 if (ire != NULL && (ire->ire_marks & IRE_MARK_CONDEMNED)) { 14524 connp->conn_ire_cache = NULL; 14525 mutex_exit(&connp->conn_lock); 14526 IRE_REFRELE_NOTR(ire); 14527 return; 14528 } 14529 mutex_exit(&connp->conn_lock); 14530 } 14531 14532 /* 14533 * Take down a specific interface, but don't lose any information about it. 14534 * (Always called as writer.) 14535 * This function goes through the down sequence even if the interface is 14536 * already down. There are 2 reasons. 14537 * a. Currently we permit interface routes that depend on down interfaces 14538 * to be added. This behaviour itself is questionable. However it appears 14539 * that both Solaris and 4.3 BSD have exhibited this behaviour for a long 14540 * time. We go thru the cleanup in order to remove these routes. 14541 * b. The bringup of the interface could fail in ill_dl_up i.e. we get 14542 * DL_ERROR_ACK in response to the the DL_BIND request. The interface is 14543 * down, but we need to cleanup i.e. do ill_dl_down and 14544 * ip_rput_dlpi_writer (DL_ERROR_ACK) -> ipif_down. 14545 * 14546 * IP-MT notes: 14547 * 14548 * Model of reference to interfaces. 14549 * 14550 * The following members in ipif_t track references to the ipif. 14551 * int ipif_refcnt; Active reference count 14552 * uint_t ipif_ire_cnt; Number of ire's referencing this ipif 14553 * uint_t ipif_ilm_cnt; Number of ilms's references this ipif. 14554 * 14555 * The following members in ill_t track references to the ill. 14556 * int ill_refcnt; active refcnt 14557 * uint_t ill_ire_cnt; Number of ires referencing ill 14558 * uint_t ill_nce_cnt; Number of nces referencing ill 14559 * uint_t ill_ilm_cnt; Number of ilms referencing ill 14560 * 14561 * Reference to an ipif or ill can be obtained in any of the following ways. 14562 * 14563 * Through the lookup functions ipif_lookup_* / ill_lookup_* functions 14564 * Pointers to ipif / ill from other data structures viz ire and conn. 14565 * Implicit reference to the ipif / ill by holding a reference to the ire. 14566 * 14567 * The ipif/ill lookup functions return a reference held ipif / ill. 14568 * ipif_refcnt and ill_refcnt track the reference counts respectively. 14569 * This is a purely dynamic reference count associated with threads holding 14570 * references to the ipif / ill. Pointers from other structures do not 14571 * count towards this reference count. 14572 * 14573 * ipif_ire_cnt/ill_ire_cnt is the number of ire's 14574 * associated with the ipif/ill. This is incremented whenever a new 14575 * ire is created referencing the ipif/ill. This is done atomically inside 14576 * ire_add_v[46] where the ire is actually added to the ire hash table. 14577 * The count is decremented in ire_inactive where the ire is destroyed. 14578 * 14579 * nce's reference ill's thru nce_ill and the count of nce's associated with 14580 * an ill is recorded in ill_nce_cnt. This is incremented atomically in 14581 * ndp_add_v4()/ndp_add_v6() where the nce is actually added to the 14582 * table. Similarly it is decremented in ndp_inactive() where the nce 14583 * is destroyed. 14584 * 14585 * ilm's reference to the ipif (for IPv4 ilm's) or the ill (for IPv6 ilm's) 14586 * is incremented in ilm_add_v6() and decremented before the ilm is freed 14587 * in ilm_walker_cleanup() or ilm_delete(). 14588 * 14589 * Flow of ioctls involving interface down/up 14590 * 14591 * The following is the sequence of an attempt to set some critical flags on an 14592 * up interface. 14593 * ip_sioctl_flags 14594 * ipif_down 14595 * wait for ipif to be quiescent 14596 * ipif_down_tail 14597 * ip_sioctl_flags_tail 14598 * 14599 * All set ioctls that involve down/up sequence would have a skeleton similar 14600 * to the above. All the *tail functions are called after the refcounts have 14601 * dropped to the appropriate values. 14602 * 14603 * The mechanism to quiesce an ipif is as follows. 14604 * 14605 * Mark the ipif as IPIF_CHANGING. No more lookups will be allowed 14606 * on the ipif. Callers either pass a flag requesting wait or the lookup 14607 * functions will return NULL. 14608 * 14609 * Delete all ires referencing this ipif 14610 * 14611 * Any thread attempting to do an ipif_refhold on an ipif that has been 14612 * obtained thru a cached pointer will first make sure that 14613 * the ipif can be refheld using the macro IPIF_CAN_LOOKUP and only then 14614 * increment the refcount. 14615 * 14616 * The above guarantees that the ipif refcount will eventually come down to 14617 * zero and the ipif will quiesce, once all threads that currently hold a 14618 * reference to the ipif refrelease the ipif. The ipif is quiescent after the 14619 * ipif_refcount has dropped to zero and all ire's associated with this ipif 14620 * have also been ire_inactive'd. i.e. when ipif_{ire, ill}_cnt and 14621 * ipif_refcnt both drop to zero. See also: comments above IPIF_DOWN_OK() 14622 * in ip.h 14623 * 14624 * Lookups during the IPIF_CHANGING/ILL_CHANGING interval. 14625 * 14626 * Threads trying to lookup an ipif or ill can pass a flag requesting 14627 * wait and restart if the ipif / ill cannot be looked up currently. 14628 * For eg. bind, and route operations (Eg. route add / delete) cannot return 14629 * failure if the ipif is currently undergoing an exclusive operation, and 14630 * hence pass the flag. The mblk is then enqueued in the ipsq and the operation 14631 * is restarted by ipsq_exit() when the current exclusive operation completes. 14632 * The lookup and enqueue is atomic using the ill_lock and ipsq_lock. The 14633 * lookup is done holding the ill_lock. Hence the ill/ipif state flags can't 14634 * change while the ill_lock is held. Before dropping the ill_lock we acquire 14635 * the ipsq_lock and call ipsq_enq. This ensures that ipsq_exit can't finish 14636 * until we release the ipsq_lock, even though the the ill/ipif state flags 14637 * can change after we drop the ill_lock. 14638 * 14639 * An attempt to send out a packet using an ipif that is currently 14640 * IPIF_CHANGING will fail. No attempt is made in this case to enqueue this 14641 * operation and restart it later when the exclusive condition on the ipif ends. 14642 * This is an example of not passing the wait flag to the lookup functions. For 14643 * example an attempt to refhold and use conn->conn_multicast_ipif and send 14644 * out a multicast packet on that ipif will fail while the ipif is 14645 * IPIF_CHANGING. An attempt to create an IRE_CACHE using an ipif that is 14646 * currently IPIF_CHANGING will also fail. 14647 */ 14648 int 14649 ipif_down(ipif_t *ipif, queue_t *q, mblk_t *mp) 14650 { 14651 ill_t *ill = ipif->ipif_ill; 14652 conn_t *connp; 14653 boolean_t success; 14654 boolean_t ipif_was_up = B_FALSE; 14655 ip_stack_t *ipst = ill->ill_ipst; 14656 14657 ASSERT(IAM_WRITER_IPIF(ipif)); 14658 14659 ip1dbg(("ipif_down(%s:%u)\n", ill->ill_name, ipif->ipif_id)); 14660 14661 if (ipif->ipif_flags & IPIF_UP) { 14662 mutex_enter(&ill->ill_lock); 14663 ipif->ipif_flags &= ~IPIF_UP; 14664 ASSERT(ill->ill_ipif_up_count > 0); 14665 --ill->ill_ipif_up_count; 14666 mutex_exit(&ill->ill_lock); 14667 ipif_was_up = B_TRUE; 14668 /* Update status in SCTP's list */ 14669 sctp_update_ipif(ipif, SCTP_IPIF_DOWN); 14670 ill_nic_event_dispatch(ipif->ipif_ill, 14671 MAP_IPIF_ID(ipif->ipif_id), NE_LIF_DOWN, NULL, 0); 14672 } 14673 14674 /* 14675 * Blow away memberships we established in ipif_multicast_up(). 14676 */ 14677 ipif_multicast_down(ipif); 14678 14679 /* 14680 * Remove from the mapping for __sin6_src_id. We insert only 14681 * when the address is not INADDR_ANY. As IPv4 addresses are 14682 * stored as mapped addresses, we need to check for mapped 14683 * INADDR_ANY also. 14684 */ 14685 if (ipif_was_up && !IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6lcl_addr) && 14686 !IN6_IS_ADDR_V4MAPPED_ANY(&ipif->ipif_v6lcl_addr) && 14687 !(ipif->ipif_flags & IPIF_NOLOCAL)) { 14688 int err; 14689 14690 err = ip_srcid_remove(&ipif->ipif_v6lcl_addr, 14691 ipif->ipif_zoneid, ipst); 14692 if (err != 0) { 14693 ip0dbg(("ipif_down: srcid_remove %d\n", err)); 14694 } 14695 } 14696 14697 /* 14698 * Delete all IRE's pointing at this ipif or its source address. 14699 */ 14700 if (ipif->ipif_isv6) { 14701 ire_walk_v6(ipif_down_delete_ire, (char *)ipif, ALL_ZONES, 14702 ipst); 14703 } else { 14704 ire_walk_v4(ipif_down_delete_ire, (char *)ipif, ALL_ZONES, 14705 ipst); 14706 } 14707 14708 if (ipif_was_up && ill->ill_ipif_up_count == 0) { 14709 /* 14710 * Since the interface is now down, it may have just become 14711 * inactive. Note that this needs to be done even for a 14712 * lll_logical_down(), or ARP entries will not get correctly 14713 * restored when the interface comes back up. 14714 */ 14715 if (IS_UNDER_IPMP(ill)) 14716 ipmp_ill_refresh_active(ill); 14717 } 14718 14719 /* 14720 * Cleaning up the conn_ire_cache or conns must be done only after the 14721 * ires have been deleted above. Otherwise a thread could end up 14722 * caching an ire in a conn after we have finished the cleanup of the 14723 * conn. The caching is done after making sure that the ire is not yet 14724 * condemned. Also documented in the block comment above ip_output 14725 */ 14726 ipcl_walk(conn_cleanup_stale_ire, NULL, ipst); 14727 /* Also, delete the ires cached in SCTP */ 14728 sctp_ire_cache_flush(ipif); 14729 14730 /* 14731 * Update any other ipifs which have used "our" local address as 14732 * a source address. This entails removing and recreating IRE_INTERFACE 14733 * entries for such ipifs. 14734 */ 14735 if (ipif->ipif_isv6) 14736 ipif_update_other_ipifs_v6(ipif); 14737 else 14738 ipif_update_other_ipifs(ipif); 14739 14740 /* 14741 * neighbor-discovery or arp entries for this interface. 14742 */ 14743 ipif_ndp_down(ipif); 14744 14745 /* 14746 * If mp is NULL the caller will wait for the appropriate refcnt. 14747 * Eg. ip_sioctl_removeif -> ipif_free -> ipif_down 14748 * and ill_delete -> ipif_free -> ipif_down 14749 */ 14750 if (mp == NULL) { 14751 ASSERT(q == NULL); 14752 return (0); 14753 } 14754 14755 if (CONN_Q(q)) { 14756 connp = Q_TO_CONN(q); 14757 mutex_enter(&connp->conn_lock); 14758 } else { 14759 connp = NULL; 14760 } 14761 mutex_enter(&ill->ill_lock); 14762 /* 14763 * Are there any ire's pointing to this ipif that are still active ? 14764 * If this is the last ipif going down, are there any ire's pointing 14765 * to this ill that are still active ? 14766 */ 14767 if (ipif_is_quiescent(ipif)) { 14768 mutex_exit(&ill->ill_lock); 14769 if (connp != NULL) 14770 mutex_exit(&connp->conn_lock); 14771 return (0); 14772 } 14773 14774 ip1dbg(("ipif_down: need to wait, adding pending mp %s ill %p", 14775 ill->ill_name, (void *)ill)); 14776 /* 14777 * Enqueue the mp atomically in ipsq_pending_mp. When the refcount 14778 * drops down, the operation will be restarted by ipif_ill_refrele_tail 14779 * which in turn is called by the last refrele on the ipif/ill/ire. 14780 */ 14781 success = ipsq_pending_mp_add(connp, ipif, q, mp, IPIF_DOWN); 14782 if (!success) { 14783 /* The conn is closing. So just return */ 14784 ASSERT(connp != NULL); 14785 mutex_exit(&ill->ill_lock); 14786 mutex_exit(&connp->conn_lock); 14787 return (EINTR); 14788 } 14789 14790 mutex_exit(&ill->ill_lock); 14791 if (connp != NULL) 14792 mutex_exit(&connp->conn_lock); 14793 return (EINPROGRESS); 14794 } 14795 14796 void 14797 ipif_down_tail(ipif_t *ipif) 14798 { 14799 ill_t *ill = ipif->ipif_ill; 14800 14801 /* 14802 * Skip any loopback interface (null wq). 14803 * If this is the last logical interface on the ill 14804 * have ill_dl_down tell the driver we are gone (unbind) 14805 * Note that lun 0 can ipif_down even though 14806 * there are other logical units that are up. 14807 * This occurs e.g. when we change a "significant" IFF_ flag. 14808 */ 14809 if (ill->ill_wq != NULL && !ill->ill_logical_down && 14810 ill->ill_ipif_up_count == 0 && ill->ill_ipif_dup_count == 0 && 14811 ill->ill_dl_up) { 14812 ill_dl_down(ill); 14813 } 14814 ill->ill_logical_down = 0; 14815 14816 /* 14817 * Has to be after removing the routes in ipif_down_delete_ire. 14818 */ 14819 ipif_resolver_down(ipif); 14820 14821 ip_rts_ifmsg(ipif, RTSQ_DEFAULT); 14822 ip_rts_newaddrmsg(RTM_DELETE, 0, ipif, RTSQ_DEFAULT); 14823 } 14824 14825 /* 14826 * Bring interface logically down without bringing the physical interface 14827 * down e.g. when the netmask is changed. This avoids long lasting link 14828 * negotiations between an ethernet interface and a certain switches. 14829 */ 14830 static int 14831 ipif_logical_down(ipif_t *ipif, queue_t *q, mblk_t *mp) 14832 { 14833 /* 14834 * The ill_logical_down flag is a transient flag. It is set here 14835 * and is cleared once the down has completed in ipif_down_tail. 14836 * This flag does not indicate whether the ill stream is in the 14837 * DL_BOUND state with the driver. Instead this flag is used by 14838 * ipif_down_tail to determine whether to DL_UNBIND the stream with 14839 * the driver. The state of the ill stream i.e. whether it is 14840 * DL_BOUND with the driver or not is indicated by the ill_dl_up flag. 14841 */ 14842 ipif->ipif_ill->ill_logical_down = 1; 14843 return (ipif_down(ipif, q, mp)); 14844 } 14845 14846 /* 14847 * This is called when the SIOCSLIFUSESRC ioctl is processed in IP. 14848 * If the usesrc client ILL is already part of a usesrc group or not, 14849 * in either case a ire_stq with the matching usesrc client ILL will 14850 * locate the IRE's that need to be deleted. We want IREs to be created 14851 * with the new source address. 14852 */ 14853 static void 14854 ipif_delete_cache_ire(ire_t *ire, char *ill_arg) 14855 { 14856 ill_t *ucill = (ill_t *)ill_arg; 14857 14858 ASSERT(IAM_WRITER_ILL(ucill)); 14859 14860 if (ire->ire_stq == NULL) 14861 return; 14862 14863 if ((ire->ire_type == IRE_CACHE) && 14864 ((ill_t *)ire->ire_stq->q_ptr == ucill)) 14865 ire_delete(ire); 14866 } 14867 14868 /* 14869 * ire_walk routine to delete every IRE dependent on the interface 14870 * address that is going down. (Always called as writer.) 14871 * Works for both v4 and v6. 14872 * In addition for checking for ire_ipif matches it also checks for 14873 * IRE_CACHE entries which have the same source address as the 14874 * disappearing ipif since ipif_select_source might have picked 14875 * that source. Note that ipif_down/ipif_update_other_ipifs takes 14876 * care of any IRE_INTERFACE with the disappearing source address. 14877 */ 14878 static void 14879 ipif_down_delete_ire(ire_t *ire, char *ipif_arg) 14880 { 14881 ipif_t *ipif = (ipif_t *)ipif_arg; 14882 14883 ASSERT(IAM_WRITER_IPIF(ipif)); 14884 if (ire->ire_ipif == NULL) 14885 return; 14886 14887 if (ire->ire_ipif != ipif) { 14888 /* 14889 * Look for a matching source address. 14890 */ 14891 if (ire->ire_type != IRE_CACHE) 14892 return; 14893 if (ipif->ipif_flags & IPIF_NOLOCAL) 14894 return; 14895 14896 if (ire->ire_ipversion == IPV4_VERSION) { 14897 if (ire->ire_src_addr != ipif->ipif_src_addr) 14898 return; 14899 } else { 14900 if (!IN6_ARE_ADDR_EQUAL(&ire->ire_src_addr_v6, 14901 &ipif->ipif_v6lcl_addr)) 14902 return; 14903 } 14904 ire_delete(ire); 14905 return; 14906 } 14907 /* 14908 * ire_delete() will do an ire_flush_cache which will delete 14909 * all ire_ipif matches 14910 */ 14911 ire_delete(ire); 14912 } 14913 14914 /* 14915 * ire_walk_ill function for deleting all IRE_CACHE entries for an ill when 14916 * 1) an ipif (on that ill) changes the IPIF_DEPRECATED flags, or 14917 * 2) when an interface is brought up or down (on that ill). 14918 * This ensures that the IRE_CACHE entries don't retain stale source 14919 * address selection results. 14920 */ 14921 void 14922 ill_ipif_cache_delete(ire_t *ire, char *ill_arg) 14923 { 14924 ill_t *ill = (ill_t *)ill_arg; 14925 14926 ASSERT(IAM_WRITER_ILL(ill)); 14927 ASSERT(ire->ire_type == IRE_CACHE); 14928 14929 /* 14930 * We are called for IRE_CACHEs whose ire_stq or ire_ipif matches 14931 * ill, but we only want to delete the IRE if ire_ipif matches. 14932 */ 14933 ASSERT(ire->ire_ipif != NULL); 14934 if (ill == ire->ire_ipif->ipif_ill) 14935 ire_delete(ire); 14936 } 14937 14938 /* 14939 * Delete all the IREs whose ire_stq's reference `ill_arg'. IPMP uses this 14940 * instead of ill_ipif_cache_delete() because ire_ipif->ipif_ill references 14941 * the IPMP ill. 14942 */ 14943 void 14944 ill_stq_cache_delete(ire_t *ire, char *ill_arg) 14945 { 14946 ill_t *ill = (ill_t *)ill_arg; 14947 14948 ASSERT(IAM_WRITER_ILL(ill)); 14949 ASSERT(ire->ire_type == IRE_CACHE); 14950 14951 /* 14952 * We are called for IRE_CACHEs whose ire_stq or ire_ipif matches 14953 * ill, but we only want to delete the IRE if ire_stq matches. 14954 */ 14955 if (ire->ire_stq->q_ptr == ill_arg) 14956 ire_delete(ire); 14957 } 14958 14959 /* 14960 * Delete all the IREs whose ire_stq's reference any ill in the same IPMP 14961 * group as `ill_arg'. Used by ipmp_ill_deactivate() to flush all IRE_CACHE 14962 * entries for the illgrp. 14963 */ 14964 void 14965 ill_grp_cache_delete(ire_t *ire, char *ill_arg) 14966 { 14967 ill_t *ill = (ill_t *)ill_arg; 14968 14969 ASSERT(IAM_WRITER_ILL(ill)); 14970 14971 if (ire->ire_type == IRE_CACHE && 14972 IS_IN_SAME_ILLGRP((ill_t *)ire->ire_stq->q_ptr, ill)) { 14973 ire_delete(ire); 14974 } 14975 } 14976 14977 /* 14978 * Delete all broadcast IREs with a source address on `ill_arg'. 14979 */ 14980 static void 14981 ill_broadcast_delete(ire_t *ire, char *ill_arg) 14982 { 14983 ill_t *ill = (ill_t *)ill_arg; 14984 14985 ASSERT(IAM_WRITER_ILL(ill)); 14986 ASSERT(ire->ire_type == IRE_BROADCAST); 14987 14988 if (ire->ire_ipif->ipif_ill == ill) 14989 ire_delete(ire); 14990 } 14991 14992 /* 14993 * Initiate deallocate of an IPIF. Always called as writer. Called by 14994 * ill_delete or ip_sioctl_removeif. 14995 */ 14996 static void 14997 ipif_free(ipif_t *ipif) 14998 { 14999 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; 15000 15001 ASSERT(IAM_WRITER_IPIF(ipif)); 15002 15003 if (ipif->ipif_recovery_id != 0) 15004 (void) untimeout(ipif->ipif_recovery_id); 15005 ipif->ipif_recovery_id = 0; 15006 15007 /* Remove conn references */ 15008 reset_conn_ipif(ipif); 15009 15010 /* 15011 * Make sure we have valid net and subnet broadcast ire's for the 15012 * other ipif's which share them with this ipif. 15013 */ 15014 if (!ipif->ipif_isv6) 15015 ipif_check_bcast_ires(ipif); 15016 15017 /* 15018 * Take down the interface. We can be called either from ill_delete 15019 * or from ip_sioctl_removeif. 15020 */ 15021 (void) ipif_down(ipif, NULL, NULL); 15022 15023 /* 15024 * Now that the interface is down, there's no chance it can still 15025 * become a duplicate. Cancel any timer that may have been set while 15026 * tearing down. 15027 */ 15028 if (ipif->ipif_recovery_id != 0) 15029 (void) untimeout(ipif->ipif_recovery_id); 15030 ipif->ipif_recovery_id = 0; 15031 15032 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 15033 /* Remove pointers to this ill in the multicast routing tables */ 15034 reset_mrt_vif_ipif(ipif); 15035 /* If necessary, clear the cached source ipif rotor. */ 15036 if (ipif->ipif_ill->ill_src_ipif == ipif) 15037 ipif->ipif_ill->ill_src_ipif = NULL; 15038 rw_exit(&ipst->ips_ill_g_lock); 15039 } 15040 15041 static void 15042 ipif_free_tail(ipif_t *ipif) 15043 { 15044 mblk_t *mp; 15045 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; 15046 15047 /* 15048 * Free state for addition IRE_IF_[NO]RESOLVER ire's. 15049 */ 15050 mutex_enter(&ipif->ipif_saved_ire_lock); 15051 mp = ipif->ipif_saved_ire_mp; 15052 ipif->ipif_saved_ire_mp = NULL; 15053 mutex_exit(&ipif->ipif_saved_ire_lock); 15054 freemsg(mp); 15055 15056 /* 15057 * Need to hold both ill_g_lock and ill_lock while 15058 * inserting or removing an ipif from the linked list 15059 * of ipifs hanging off the ill. 15060 */ 15061 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 15062 15063 ASSERT(ilm_walk_ipif(ipif) == 0); 15064 15065 #ifdef DEBUG 15066 ipif_trace_cleanup(ipif); 15067 #endif 15068 15069 /* Ask SCTP to take it out of it list */ 15070 sctp_update_ipif(ipif, SCTP_IPIF_REMOVE); 15071 15072 /* Get it out of the ILL interface list. */ 15073 ipif_remove(ipif); 15074 rw_exit(&ipst->ips_ill_g_lock); 15075 15076 mutex_destroy(&ipif->ipif_saved_ire_lock); 15077 15078 ASSERT(!(ipif->ipif_flags & (IPIF_UP | IPIF_DUPLICATE))); 15079 ASSERT(ipif->ipif_recovery_id == 0); 15080 15081 /* Free the memory. */ 15082 mi_free(ipif); 15083 } 15084 15085 /* 15086 * Sets `buf' to an ipif name of the form "ill_name:id", or "ill_name" if "id" 15087 * is zero. 15088 */ 15089 void 15090 ipif_get_name(const ipif_t *ipif, char *buf, int len) 15091 { 15092 char lbuf[LIFNAMSIZ]; 15093 char *name; 15094 size_t name_len; 15095 15096 buf[0] = '\0'; 15097 name = ipif->ipif_ill->ill_name; 15098 name_len = ipif->ipif_ill->ill_name_length; 15099 if (ipif->ipif_id != 0) { 15100 (void) sprintf(lbuf, "%s%c%d", name, IPIF_SEPARATOR_CHAR, 15101 ipif->ipif_id); 15102 name = lbuf; 15103 name_len = mi_strlen(name) + 1; 15104 } 15105 len -= 1; 15106 buf[len] = '\0'; 15107 len = MIN(len, name_len); 15108 bcopy(name, buf, len); 15109 } 15110 15111 /* 15112 * Find an IPIF based on the name passed in. Names can be of the 15113 * form <phys> (e.g., le0), <phys>:<#> (e.g., le0:1), 15114 * The <phys> string can have forms like <dev><#> (e.g., le0), 15115 * <dev><#>.<module> (e.g. le0.foo), or <dev>.<module><#> (e.g. ip.tun3). 15116 * When there is no colon, the implied unit id is zero. <phys> must 15117 * correspond to the name of an ILL. (May be called as writer.) 15118 */ 15119 static ipif_t * 15120 ipif_lookup_on_name(char *name, size_t namelen, boolean_t do_alloc, 15121 boolean_t *exists, boolean_t isv6, zoneid_t zoneid, queue_t *q, 15122 mblk_t *mp, ipsq_func_t func, int *error, ip_stack_t *ipst) 15123 { 15124 char *cp; 15125 char *endp; 15126 long id; 15127 ill_t *ill; 15128 ipif_t *ipif; 15129 uint_t ire_type; 15130 boolean_t did_alloc = B_FALSE; 15131 ipsq_t *ipsq; 15132 15133 if (error != NULL) 15134 *error = 0; 15135 15136 /* 15137 * If the caller wants to us to create the ipif, make sure we have a 15138 * valid zoneid 15139 */ 15140 ASSERT(!do_alloc || zoneid != ALL_ZONES); 15141 15142 if (namelen == 0) { 15143 if (error != NULL) 15144 *error = ENXIO; 15145 return (NULL); 15146 } 15147 15148 *exists = B_FALSE; 15149 /* Look for a colon in the name. */ 15150 endp = &name[namelen]; 15151 for (cp = endp; --cp > name; ) { 15152 if (*cp == IPIF_SEPARATOR_CHAR) 15153 break; 15154 } 15155 15156 if (*cp == IPIF_SEPARATOR_CHAR) { 15157 /* 15158 * Reject any non-decimal aliases for logical 15159 * interfaces. Aliases with leading zeroes 15160 * are also rejected as they introduce ambiguity 15161 * in the naming of the interfaces. 15162 * In order to confirm with existing semantics, 15163 * and to not break any programs/script relying 15164 * on that behaviour, if<0>:0 is considered to be 15165 * a valid interface. 15166 * 15167 * If alias has two or more digits and the first 15168 * is zero, fail. 15169 */ 15170 if (&cp[2] < endp && cp[1] == '0') { 15171 if (error != NULL) 15172 *error = EINVAL; 15173 return (NULL); 15174 } 15175 } 15176 15177 if (cp <= name) { 15178 cp = endp; 15179 } else { 15180 *cp = '\0'; 15181 } 15182 15183 /* 15184 * Look up the ILL, based on the portion of the name 15185 * before the slash. ill_lookup_on_name returns a held ill. 15186 * Temporary to check whether ill exists already. If so 15187 * ill_lookup_on_name will clear it. 15188 */ 15189 ill = ill_lookup_on_name(name, do_alloc, isv6, 15190 q, mp, func, error, &did_alloc, ipst); 15191 if (cp != endp) 15192 *cp = IPIF_SEPARATOR_CHAR; 15193 if (ill == NULL) 15194 return (NULL); 15195 15196 /* Establish the unit number in the name. */ 15197 id = 0; 15198 if (cp < endp && *endp == '\0') { 15199 /* If there was a colon, the unit number follows. */ 15200 cp++; 15201 if (ddi_strtol(cp, NULL, 0, &id) != 0) { 15202 ill_refrele(ill); 15203 if (error != NULL) 15204 *error = ENXIO; 15205 return (NULL); 15206 } 15207 } 15208 15209 GRAB_CONN_LOCK(q); 15210 mutex_enter(&ill->ill_lock); 15211 /* Now see if there is an IPIF with this unit number. */ 15212 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 15213 if (ipif->ipif_id == id) { 15214 if (zoneid != ALL_ZONES && 15215 zoneid != ipif->ipif_zoneid && 15216 ipif->ipif_zoneid != ALL_ZONES) { 15217 mutex_exit(&ill->ill_lock); 15218 RELEASE_CONN_LOCK(q); 15219 ill_refrele(ill); 15220 if (error != NULL) 15221 *error = ENXIO; 15222 return (NULL); 15223 } 15224 /* 15225 * The block comment at the start of ipif_down 15226 * explains the use of the macros used below 15227 */ 15228 if (IPIF_CAN_LOOKUP(ipif)) { 15229 ipif_refhold_locked(ipif); 15230 mutex_exit(&ill->ill_lock); 15231 if (!did_alloc) 15232 *exists = B_TRUE; 15233 /* 15234 * Drop locks before calling ill_refrele 15235 * since it can potentially call into 15236 * ipif_ill_refrele_tail which can end up 15237 * in trying to acquire any lock. 15238 */ 15239 RELEASE_CONN_LOCK(q); 15240 ill_refrele(ill); 15241 return (ipif); 15242 } else if (IPIF_CAN_WAIT(ipif, q)) { 15243 ipsq = ill->ill_phyint->phyint_ipsq; 15244 mutex_enter(&ipsq->ipsq_lock); 15245 mutex_enter(&ipsq->ipsq_xop->ipx_lock); 15246 mutex_exit(&ill->ill_lock); 15247 ipsq_enq(ipsq, q, mp, func, NEW_OP, ill); 15248 mutex_exit(&ipsq->ipsq_xop->ipx_lock); 15249 mutex_exit(&ipsq->ipsq_lock); 15250 RELEASE_CONN_LOCK(q); 15251 ill_refrele(ill); 15252 if (error != NULL) 15253 *error = EINPROGRESS; 15254 return (NULL); 15255 } 15256 } 15257 } 15258 RELEASE_CONN_LOCK(q); 15259 15260 if (!do_alloc) { 15261 mutex_exit(&ill->ill_lock); 15262 ill_refrele(ill); 15263 if (error != NULL) 15264 *error = ENXIO; 15265 return (NULL); 15266 } 15267 15268 /* 15269 * If none found, atomically allocate and return a new one. 15270 * Historically, we used IRE_LOOPBACK only for lun 0, and IRE_LOCAL 15271 * to support "receive only" use of lo0:1 etc. as is still done 15272 * below as an initial guess. 15273 * However, this is now likely to be overriden later in ipif_up_done() 15274 * when we know for sure what address has been configured on the 15275 * interface, since we might have more than one loopback interface 15276 * with a loopback address, e.g. in the case of zones, and all the 15277 * interfaces with loopback addresses need to be marked IRE_LOOPBACK. 15278 */ 15279 if (ill->ill_net_type == IRE_LOOPBACK && id == 0) 15280 ire_type = IRE_LOOPBACK; 15281 else 15282 ire_type = IRE_LOCAL; 15283 ipif = ipif_allocate(ill, id, ire_type, B_TRUE, B_TRUE); 15284 if (ipif != NULL) 15285 ipif_refhold_locked(ipif); 15286 else if (error != NULL) 15287 *error = ENOMEM; 15288 mutex_exit(&ill->ill_lock); 15289 ill_refrele(ill); 15290 return (ipif); 15291 } 15292 15293 /* 15294 * This routine is called whenever a new address comes up on an ipif. If 15295 * we are configured to respond to address mask requests, then we are supposed 15296 * to broadcast an address mask reply at this time. This routine is also 15297 * called if we are already up, but a netmask change is made. This is legal 15298 * but might not make the system manager very popular. (May be called 15299 * as writer.) 15300 */ 15301 void 15302 ipif_mask_reply(ipif_t *ipif) 15303 { 15304 icmph_t *icmph; 15305 ipha_t *ipha; 15306 mblk_t *mp; 15307 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; 15308 15309 #define REPLY_LEN (sizeof (icmp_ipha) + sizeof (icmph_t) + IP_ADDR_LEN) 15310 15311 if (!ipst->ips_ip_respond_to_address_mask_broadcast) 15312 return; 15313 15314 /* ICMP mask reply is IPv4 only */ 15315 ASSERT(!ipif->ipif_isv6); 15316 /* ICMP mask reply is not for a loopback interface */ 15317 ASSERT(ipif->ipif_ill->ill_wq != NULL); 15318 15319 mp = allocb(REPLY_LEN, BPRI_HI); 15320 if (mp == NULL) 15321 return; 15322 mp->b_wptr = mp->b_rptr + REPLY_LEN; 15323 15324 ipha = (ipha_t *)mp->b_rptr; 15325 bzero(ipha, REPLY_LEN); 15326 *ipha = icmp_ipha; 15327 ipha->ipha_ttl = ipst->ips_ip_broadcast_ttl; 15328 ipha->ipha_src = ipif->ipif_src_addr; 15329 ipha->ipha_dst = ipif->ipif_brd_addr; 15330 ipha->ipha_length = htons(REPLY_LEN); 15331 ipha->ipha_ident = 0; 15332 15333 icmph = (icmph_t *)&ipha[1]; 15334 icmph->icmph_type = ICMP_ADDRESS_MASK_REPLY; 15335 bcopy(&ipif->ipif_net_mask, &icmph[1], IP_ADDR_LEN); 15336 icmph->icmph_checksum = IP_CSUM(mp, sizeof (ipha_t), 0); 15337 15338 put(ipif->ipif_wq, mp); 15339 15340 #undef REPLY_LEN 15341 } 15342 15343 /* 15344 * When the mtu in the ipif changes, we call this routine through ire_walk 15345 * to update all the relevant IREs. 15346 * Skip IRE_LOCAL and "loopback" IRE_BROADCAST by checking ire_stq. 15347 */ 15348 static void 15349 ipif_mtu_change(ire_t *ire, char *ipif_arg) 15350 { 15351 ipif_t *ipif = (ipif_t *)ipif_arg; 15352 15353 if (ire->ire_stq == NULL || ire->ire_ipif != ipif) 15354 return; 15355 15356 mutex_enter(&ire->ire_lock); 15357 if (ire->ire_marks & IRE_MARK_PMTU) { 15358 /* Avoid increasing the PMTU */ 15359 ire->ire_max_frag = MIN(ipif->ipif_mtu, ire->ire_max_frag); 15360 if (ire->ire_max_frag == ipif->ipif_mtu) 15361 ire->ire_marks &= ~IRE_MARK_PMTU; 15362 } else { 15363 ire->ire_max_frag = MIN(ipif->ipif_mtu, IP_MAXPACKET); 15364 } 15365 mutex_exit(&ire->ire_lock); 15366 } 15367 15368 /* 15369 * When the mtu in the ill changes, we call this routine through ire_walk 15370 * to update all the relevant IREs. 15371 * Skip IRE_LOCAL and "loopback" IRE_BROADCAST by checking ire_stq. 15372 */ 15373 void 15374 ill_mtu_change(ire_t *ire, char *ill_arg) 15375 { 15376 ill_t *ill = (ill_t *)ill_arg; 15377 15378 if (ire->ire_stq == NULL || ire->ire_ipif->ipif_ill != ill) 15379 return; 15380 15381 mutex_enter(&ire->ire_lock); 15382 if (ire->ire_marks & IRE_MARK_PMTU) { 15383 /* Avoid increasing the PMTU */ 15384 ire->ire_max_frag = MIN(ire->ire_ipif->ipif_mtu, 15385 ire->ire_max_frag); 15386 if (ire->ire_max_frag == ire->ire_ipif->ipif_mtu) { 15387 ire->ire_marks &= ~IRE_MARK_PMTU; 15388 } 15389 } else { 15390 ire->ire_max_frag = MIN(ire->ire_ipif->ipif_mtu, IP_MAXPACKET); 15391 } 15392 mutex_exit(&ire->ire_lock); 15393 } 15394 15395 /* 15396 * Join the ipif specific multicast groups. 15397 * Must be called after a mapping has been set up in the resolver. (Always 15398 * called as writer.) 15399 */ 15400 void 15401 ipif_multicast_up(ipif_t *ipif) 15402 { 15403 int err; 15404 ill_t *ill; 15405 15406 ASSERT(IAM_WRITER_IPIF(ipif)); 15407 15408 ill = ipif->ipif_ill; 15409 15410 ip1dbg(("ipif_multicast_up\n")); 15411 if (!(ill->ill_flags & ILLF_MULTICAST) || ipif->ipif_multicast_up) 15412 return; 15413 15414 if (ipif->ipif_isv6) { 15415 in6_addr_t v6allmc = ipv6_all_hosts_mcast; 15416 in6_addr_t v6solmc = ipv6_solicited_node_mcast; 15417 15418 v6solmc.s6_addr32[3] |= ipif->ipif_v6lcl_addr.s6_addr32[3]; 15419 15420 if (IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6lcl_addr)) 15421 return; 15422 15423 ip1dbg(("ipif_multicast_up - addmulti\n")); 15424 15425 /* 15426 * Join the all hosts multicast address. We skip this for 15427 * underlying IPMP interfaces since they should be invisible. 15428 */ 15429 if (!IS_UNDER_IPMP(ill)) { 15430 err = ip_addmulti_v6(&v6allmc, ill, ipif->ipif_zoneid, 15431 ILGSTAT_NONE, MODE_IS_EXCLUDE, NULL); 15432 if (err != 0) { 15433 ip0dbg(("ipif_multicast_up: " 15434 "all_hosts_mcast failed %d\n", err)); 15435 return; 15436 } 15437 ipif->ipif_joined_allhosts = 1; 15438 } 15439 15440 /* 15441 * Enable multicast for the solicited node multicast address 15442 */ 15443 if (!(ipif->ipif_flags & IPIF_NOLOCAL)) { 15444 err = ip_addmulti_v6(&v6solmc, ill, ipif->ipif_zoneid, 15445 ILGSTAT_NONE, MODE_IS_EXCLUDE, NULL); 15446 if (err != 0) { 15447 ip0dbg(("ipif_multicast_up: solicited MC" 15448 " failed %d\n", err)); 15449 if (ipif->ipif_joined_allhosts) { 15450 (void) ip_delmulti_v6(&v6allmc, ill, 15451 ipif->ipif_zoneid, B_TRUE, B_TRUE); 15452 ipif->ipif_joined_allhosts = 0; 15453 } 15454 return; 15455 } 15456 } 15457 } else { 15458 if (ipif->ipif_lcl_addr == INADDR_ANY || IS_UNDER_IPMP(ill)) 15459 return; 15460 15461 /* Join the all hosts multicast address */ 15462 ip1dbg(("ipif_multicast_up - addmulti\n")); 15463 err = ip_addmulti(htonl(INADDR_ALLHOSTS_GROUP), ipif, 15464 ILGSTAT_NONE, MODE_IS_EXCLUDE, NULL); 15465 if (err) { 15466 ip0dbg(("ipif_multicast_up: failed %d\n", err)); 15467 return; 15468 } 15469 } 15470 ipif->ipif_multicast_up = 1; 15471 } 15472 15473 /* 15474 * Blow away any multicast groups that we joined in ipif_multicast_up(). 15475 * (Explicit memberships are blown away in ill_leave_multicast() when the 15476 * ill is brought down.) 15477 */ 15478 void 15479 ipif_multicast_down(ipif_t *ipif) 15480 { 15481 int err; 15482 15483 ASSERT(IAM_WRITER_IPIF(ipif)); 15484 15485 ip1dbg(("ipif_multicast_down\n")); 15486 if (!ipif->ipif_multicast_up) 15487 return; 15488 15489 ip1dbg(("ipif_multicast_down - delmulti\n")); 15490 15491 if (!ipif->ipif_isv6) { 15492 err = ip_delmulti(htonl(INADDR_ALLHOSTS_GROUP), ipif, B_TRUE, 15493 B_TRUE); 15494 if (err != 0) 15495 ip0dbg(("ipif_multicast_down: failed %d\n", err)); 15496 15497 ipif->ipif_multicast_up = 0; 15498 return; 15499 } 15500 15501 /* 15502 * Leave the all-hosts multicast address. 15503 */ 15504 if (ipif->ipif_joined_allhosts) { 15505 err = ip_delmulti_v6(&ipv6_all_hosts_mcast, ipif->ipif_ill, 15506 ipif->ipif_zoneid, B_TRUE, B_TRUE); 15507 if (err != 0) { 15508 ip0dbg(("ipif_multicast_down: all_hosts_mcast " 15509 "failed %d\n", err)); 15510 } 15511 ipif->ipif_joined_allhosts = 0; 15512 } 15513 15514 /* 15515 * Disable multicast for the solicited node multicast address 15516 */ 15517 if (!(ipif->ipif_flags & IPIF_NOLOCAL)) { 15518 in6_addr_t ipv6_multi = ipv6_solicited_node_mcast; 15519 15520 ipv6_multi.s6_addr32[3] |= 15521 ipif->ipif_v6lcl_addr.s6_addr32[3]; 15522 15523 err = ip_delmulti_v6(&ipv6_multi, ipif->ipif_ill, 15524 ipif->ipif_zoneid, B_TRUE, B_TRUE); 15525 if (err != 0) { 15526 ip0dbg(("ipif_multicast_down: sol MC failed %d\n", 15527 err)); 15528 } 15529 } 15530 15531 ipif->ipif_multicast_up = 0; 15532 } 15533 15534 /* 15535 * Used when an interface comes up to recreate any extra routes on this 15536 * interface. 15537 */ 15538 static ire_t ** 15539 ipif_recover_ire(ipif_t *ipif) 15540 { 15541 mblk_t *mp; 15542 ire_t **ipif_saved_irep; 15543 ire_t **irep; 15544 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; 15545 15546 ip1dbg(("ipif_recover_ire(%s:%u)", ipif->ipif_ill->ill_name, 15547 ipif->ipif_id)); 15548 15549 mutex_enter(&ipif->ipif_saved_ire_lock); 15550 ipif_saved_irep = (ire_t **)kmem_zalloc(sizeof (ire_t *) * 15551 ipif->ipif_saved_ire_cnt, KM_NOSLEEP); 15552 if (ipif_saved_irep == NULL) { 15553 mutex_exit(&ipif->ipif_saved_ire_lock); 15554 return (NULL); 15555 } 15556 15557 irep = ipif_saved_irep; 15558 for (mp = ipif->ipif_saved_ire_mp; mp != NULL; mp = mp->b_cont) { 15559 ire_t *ire; 15560 queue_t *rfq; 15561 queue_t *stq; 15562 ifrt_t *ifrt; 15563 uchar_t *src_addr; 15564 uchar_t *gateway_addr; 15565 ushort_t type; 15566 15567 /* 15568 * When the ire was initially created and then added in 15569 * ip_rt_add(), it was created either using ipif->ipif_net_type 15570 * in the case of a traditional interface route, or as one of 15571 * the IRE_OFFSUBNET types (with the exception of 15572 * IRE_HOST types ire which is created by icmp_redirect() and 15573 * which we don't need to save or recover). In the case where 15574 * ipif->ipif_net_type was IRE_LOOPBACK, ip_rt_add() will update 15575 * the ire_type to IRE_IF_NORESOLVER before calling ire_add() 15576 * to satisfy software like GateD and Sun Cluster which creates 15577 * routes using the the loopback interface's address as a 15578 * gateway. 15579 * 15580 * As ifrt->ifrt_type reflects the already updated ire_type, 15581 * ire_create() will be called in the same way here as 15582 * in ip_rt_add(), namely using ipif->ipif_net_type when 15583 * the route looks like a traditional interface route (where 15584 * ifrt->ifrt_type & IRE_INTERFACE is true) and otherwise using 15585 * the saved ifrt->ifrt_type. This means that in the case where 15586 * ipif->ipif_net_type is IRE_LOOPBACK, the ire created by 15587 * ire_create() will be an IRE_LOOPBACK, it will then be turned 15588 * into an IRE_IF_NORESOLVER and then added by ire_add(). 15589 */ 15590 ifrt = (ifrt_t *)mp->b_rptr; 15591 ASSERT(ifrt->ifrt_type != IRE_CACHE); 15592 if (ifrt->ifrt_type & IRE_INTERFACE) { 15593 rfq = NULL; 15594 stq = (ipif->ipif_net_type == IRE_IF_RESOLVER) 15595 ? ipif->ipif_rq : ipif->ipif_wq; 15596 src_addr = (ifrt->ifrt_flags & RTF_SETSRC) 15597 ? (uint8_t *)&ifrt->ifrt_src_addr 15598 : (uint8_t *)&ipif->ipif_src_addr; 15599 gateway_addr = NULL; 15600 type = ipif->ipif_net_type; 15601 } else if (ifrt->ifrt_type & IRE_BROADCAST) { 15602 /* Recover multiroute broadcast IRE. */ 15603 rfq = ipif->ipif_rq; 15604 stq = ipif->ipif_wq; 15605 src_addr = (ifrt->ifrt_flags & RTF_SETSRC) 15606 ? (uint8_t *)&ifrt->ifrt_src_addr 15607 : (uint8_t *)&ipif->ipif_src_addr; 15608 gateway_addr = (uint8_t *)&ifrt->ifrt_gateway_addr; 15609 type = ifrt->ifrt_type; 15610 } else { 15611 rfq = NULL; 15612 stq = NULL; 15613 src_addr = (ifrt->ifrt_flags & RTF_SETSRC) 15614 ? (uint8_t *)&ifrt->ifrt_src_addr : NULL; 15615 gateway_addr = (uint8_t *)&ifrt->ifrt_gateway_addr; 15616 type = ifrt->ifrt_type; 15617 } 15618 15619 /* 15620 * Create a copy of the IRE with the saved address and netmask. 15621 */ 15622 ip1dbg(("ipif_recover_ire: creating IRE %s (%d) for " 15623 "0x%x/0x%x\n", 15624 ip_nv_lookup(ire_nv_tbl, ifrt->ifrt_type), ifrt->ifrt_type, 15625 ntohl(ifrt->ifrt_addr), 15626 ntohl(ifrt->ifrt_mask))); 15627 ire = ire_create( 15628 (uint8_t *)&ifrt->ifrt_addr, 15629 (uint8_t *)&ifrt->ifrt_mask, 15630 src_addr, 15631 gateway_addr, 15632 &ifrt->ifrt_max_frag, 15633 NULL, 15634 rfq, 15635 stq, 15636 type, 15637 ipif, 15638 0, 15639 0, 15640 0, 15641 ifrt->ifrt_flags, 15642 &ifrt->ifrt_iulp_info, 15643 NULL, 15644 NULL, 15645 ipst); 15646 15647 if (ire == NULL) { 15648 mutex_exit(&ipif->ipif_saved_ire_lock); 15649 kmem_free(ipif_saved_irep, 15650 ipif->ipif_saved_ire_cnt * sizeof (ire_t *)); 15651 return (NULL); 15652 } 15653 15654 /* 15655 * Some software (for example, GateD and Sun Cluster) attempts 15656 * to create (what amount to) IRE_PREFIX routes with the 15657 * loopback address as the gateway. This is primarily done to 15658 * set up prefixes with the RTF_REJECT flag set (for example, 15659 * when generating aggregate routes.) 15660 * 15661 * If the IRE type (as defined by ipif->ipif_net_type) is 15662 * IRE_LOOPBACK, then we map the request into a 15663 * IRE_IF_NORESOLVER. 15664 */ 15665 if (ipif->ipif_net_type == IRE_LOOPBACK) 15666 ire->ire_type = IRE_IF_NORESOLVER; 15667 /* 15668 * ire held by ire_add, will be refreled' towards the 15669 * the end of ipif_up_done 15670 */ 15671 (void) ire_add(&ire, NULL, NULL, NULL, B_FALSE); 15672 *irep = ire; 15673 irep++; 15674 ip1dbg(("ipif_recover_ire: added ire %p\n", (void *)ire)); 15675 } 15676 mutex_exit(&ipif->ipif_saved_ire_lock); 15677 return (ipif_saved_irep); 15678 } 15679 15680 /* 15681 * Used to set the netmask and broadcast address to default values when the 15682 * interface is brought up. (Always called as writer.) 15683 */ 15684 static void 15685 ipif_set_default(ipif_t *ipif) 15686 { 15687 ASSERT(MUTEX_HELD(&ipif->ipif_ill->ill_lock)); 15688 15689 if (!ipif->ipif_isv6) { 15690 /* 15691 * Interface holds an IPv4 address. Default 15692 * mask is the natural netmask. 15693 */ 15694 if (!ipif->ipif_net_mask) { 15695 ipaddr_t v4mask; 15696 15697 v4mask = ip_net_mask(ipif->ipif_lcl_addr); 15698 V4MASK_TO_V6(v4mask, ipif->ipif_v6net_mask); 15699 } 15700 if (ipif->ipif_flags & IPIF_POINTOPOINT) { 15701 /* ipif_subnet is ipif_pp_dst_addr for pt-pt */ 15702 ipif->ipif_v6subnet = ipif->ipif_v6pp_dst_addr; 15703 } else { 15704 V6_MASK_COPY(ipif->ipif_v6lcl_addr, 15705 ipif->ipif_v6net_mask, ipif->ipif_v6subnet); 15706 } 15707 /* 15708 * NOTE: SunOS 4.X does this even if the broadcast address 15709 * has been already set thus we do the same here. 15710 */ 15711 if (ipif->ipif_flags & IPIF_BROADCAST) { 15712 ipaddr_t v4addr; 15713 15714 v4addr = ipif->ipif_subnet | ~ipif->ipif_net_mask; 15715 IN6_IPADDR_TO_V4MAPPED(v4addr, &ipif->ipif_v6brd_addr); 15716 } 15717 } else { 15718 /* 15719 * Interface holds an IPv6-only address. Default 15720 * mask is all-ones. 15721 */ 15722 if (IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6net_mask)) 15723 ipif->ipif_v6net_mask = ipv6_all_ones; 15724 if (ipif->ipif_flags & IPIF_POINTOPOINT) { 15725 /* ipif_subnet is ipif_pp_dst_addr for pt-pt */ 15726 ipif->ipif_v6subnet = ipif->ipif_v6pp_dst_addr; 15727 } else { 15728 V6_MASK_COPY(ipif->ipif_v6lcl_addr, 15729 ipif->ipif_v6net_mask, ipif->ipif_v6subnet); 15730 } 15731 } 15732 } 15733 15734 /* 15735 * Return 0 if this address can be used as local address without causing 15736 * duplicate address problems. Otherwise, return EADDRNOTAVAIL if the address 15737 * is already up on a different ill, and EADDRINUSE if it's up on the same ill. 15738 * Note that the same IPv6 link-local address is allowed as long as the ills 15739 * are not on the same link. 15740 */ 15741 int 15742 ip_addr_availability_check(ipif_t *new_ipif) 15743 { 15744 in6_addr_t our_v6addr; 15745 ill_t *ill; 15746 ipif_t *ipif; 15747 ill_walk_context_t ctx; 15748 ip_stack_t *ipst = new_ipif->ipif_ill->ill_ipst; 15749 15750 ASSERT(IAM_WRITER_IPIF(new_ipif)); 15751 ASSERT(MUTEX_HELD(&ipst->ips_ip_addr_avail_lock)); 15752 ASSERT(RW_READ_HELD(&ipst->ips_ill_g_lock)); 15753 15754 new_ipif->ipif_flags &= ~IPIF_UNNUMBERED; 15755 if (IN6_IS_ADDR_UNSPECIFIED(&new_ipif->ipif_v6lcl_addr) || 15756 IN6_IS_ADDR_V4MAPPED_ANY(&new_ipif->ipif_v6lcl_addr)) 15757 return (0); 15758 15759 our_v6addr = new_ipif->ipif_v6lcl_addr; 15760 15761 if (new_ipif->ipif_isv6) 15762 ill = ILL_START_WALK_V6(&ctx, ipst); 15763 else 15764 ill = ILL_START_WALK_V4(&ctx, ipst); 15765 15766 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 15767 for (ipif = ill->ill_ipif; ipif != NULL; 15768 ipif = ipif->ipif_next) { 15769 if ((ipif == new_ipif) || 15770 !(ipif->ipif_flags & IPIF_UP) || 15771 (ipif->ipif_flags & IPIF_UNNUMBERED) || 15772 !IN6_ARE_ADDR_EQUAL(&ipif->ipif_v6lcl_addr, 15773 &our_v6addr)) 15774 continue; 15775 15776 if (new_ipif->ipif_flags & IPIF_POINTOPOINT) 15777 new_ipif->ipif_flags |= IPIF_UNNUMBERED; 15778 else if (ipif->ipif_flags & IPIF_POINTOPOINT) 15779 ipif->ipif_flags |= IPIF_UNNUMBERED; 15780 else if ((IN6_IS_ADDR_LINKLOCAL(&our_v6addr) || 15781 IN6_IS_ADDR_SITELOCAL(&our_v6addr)) && 15782 !IS_ON_SAME_LAN(ill, new_ipif->ipif_ill)) 15783 continue; 15784 else if (new_ipif->ipif_zoneid != ipif->ipif_zoneid && 15785 ipif->ipif_zoneid != ALL_ZONES && IS_LOOPBACK(ill)) 15786 continue; 15787 else if (new_ipif->ipif_ill == ill) 15788 return (EADDRINUSE); 15789 else 15790 return (EADDRNOTAVAIL); 15791 } 15792 } 15793 15794 return (0); 15795 } 15796 15797 /* 15798 * Bring up an ipif: bring up arp/ndp, bring up the DLPI stream, and add 15799 * IREs for the ipif. 15800 * When the routine returns EINPROGRESS then mp has been consumed and 15801 * the ioctl will be acked from ip_rput_dlpi. 15802 */ 15803 int 15804 ipif_up(ipif_t *ipif, queue_t *q, mblk_t *mp) 15805 { 15806 ill_t *ill = ipif->ipif_ill; 15807 boolean_t isv6 = ipif->ipif_isv6; 15808 int err = 0; 15809 boolean_t success; 15810 uint_t ipif_orig_id; 15811 ip_stack_t *ipst = ill->ill_ipst; 15812 15813 ASSERT(IAM_WRITER_IPIF(ipif)); 15814 15815 ip1dbg(("ipif_up(%s:%u)\n", ill->ill_name, ipif->ipif_id)); 15816 15817 /* Shouldn't get here if it is already up. */ 15818 if (ipif->ipif_flags & IPIF_UP) 15819 return (EALREADY); 15820 15821 /* 15822 * If this is a request to bring up a data address on an interface 15823 * under IPMP, then move the address to its IPMP meta-interface and 15824 * try to bring it up. One complication is that the zeroth ipif for 15825 * an ill is special, in that every ill always has one, and that code 15826 * throughout IP deferences ill->ill_ipif without holding any locks. 15827 */ 15828 if (IS_UNDER_IPMP(ill) && ipmp_ipif_is_dataaddr(ipif) && 15829 (!ipif->ipif_isv6 || !V6_IPIF_LINKLOCAL(ipif))) { 15830 ipif_t *stubipif = NULL, *moveipif = NULL; 15831 ill_t *ipmp_ill = ipmp_illgrp_ipmp_ill(ill->ill_grp); 15832 15833 /* 15834 * The ipif being brought up should be quiesced. If it's not, 15835 * something has gone amiss and we need to bail out. (If it's 15836 * quiesced, we know it will remain so via IPIF_CHANGING.) 15837 */ 15838 mutex_enter(&ill->ill_lock); 15839 if (!ipif_is_quiescent(ipif)) { 15840 mutex_exit(&ill->ill_lock); 15841 return (EINVAL); 15842 } 15843 mutex_exit(&ill->ill_lock); 15844 15845 /* 15846 * If we're going to need to allocate ipifs, do it prior 15847 * to starting the move (and grabbing locks). 15848 */ 15849 if (ipif->ipif_id == 0) { 15850 moveipif = ipif_allocate(ill, 0, IRE_LOCAL, B_TRUE, 15851 B_FALSE); 15852 stubipif = ipif_allocate(ill, 0, IRE_LOCAL, B_TRUE, 15853 B_FALSE); 15854 if (moveipif == NULL || stubipif == NULL) { 15855 mi_free(moveipif); 15856 mi_free(stubipif); 15857 return (ENOMEM); 15858 } 15859 } 15860 15861 /* 15862 * Grab or transfer the ipif to move. During the move, keep 15863 * ill_g_lock held to prevent any ill walker threads from 15864 * seeing things in an inconsistent state. 15865 */ 15866 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 15867 if (ipif->ipif_id != 0) { 15868 ipif_remove(ipif); 15869 } else { 15870 ipif_transfer(ipif, moveipif, stubipif); 15871 ipif = moveipif; 15872 } 15873 15874 /* 15875 * Place the ipif on the IPMP ill. If the zeroth ipif on 15876 * the IPMP ill is a stub (0.0.0.0 down address) then we 15877 * replace that one. Otherwise, pick the next available slot. 15878 */ 15879 ipif->ipif_ill = ipmp_ill; 15880 ipif_orig_id = ipif->ipif_id; 15881 15882 if (ipmp_ipif_is_stubaddr(ipmp_ill->ill_ipif)) { 15883 ipif_transfer(ipif, ipmp_ill->ill_ipif, NULL); 15884 ipif = ipmp_ill->ill_ipif; 15885 } else { 15886 ipif->ipif_id = -1; 15887 if (ipif_insert(ipif, B_FALSE) != 0) { 15888 /* 15889 * No more available ipif_id's -- put it back 15890 * on the original ill and fail the operation. 15891 * Since we're writer on the ill, we can be 15892 * sure our old slot is still available. 15893 */ 15894 ipif->ipif_id = ipif_orig_id; 15895 ipif->ipif_ill = ill; 15896 if (ipif_orig_id == 0) { 15897 ipif_transfer(ipif, ill->ill_ipif, 15898 NULL); 15899 } else { 15900 VERIFY(ipif_insert(ipif, B_FALSE) == 0); 15901 } 15902 rw_exit(&ipst->ips_ill_g_lock); 15903 return (ENOMEM); 15904 } 15905 } 15906 rw_exit(&ipst->ips_ill_g_lock); 15907 15908 /* 15909 * Tell SCTP that the ipif has moved. Note that even if we 15910 * had to allocate a new ipif, the original sequence id was 15911 * preserved and therefore SCTP won't know. 15912 */ 15913 sctp_move_ipif(ipif, ill, ipmp_ill); 15914 15915 /* 15916 * If the ipif being brought up was on slot zero, then we 15917 * first need to bring up the placeholder we stuck there. In 15918 * ip_rput_dlpi_writer(), ip_arp_done(), or the recursive call 15919 * to ipif_up() itself, if we successfully bring up the 15920 * placeholder, we'll check ill_move_ipif and bring it up too. 15921 */ 15922 if (ipif_orig_id == 0) { 15923 ASSERT(ill->ill_move_ipif == NULL); 15924 ill->ill_move_ipif = ipif; 15925 if ((err = ipif_up(ill->ill_ipif, q, mp)) == 0) 15926 ASSERT(ill->ill_move_ipif == NULL); 15927 if (err != EINPROGRESS) 15928 ill->ill_move_ipif = NULL; 15929 return (err); 15930 } 15931 15932 /* 15933 * Bring it up on the IPMP ill. 15934 */ 15935 return (ipif_up(ipif, q, mp)); 15936 } 15937 15938 /* Skip arp/ndp for any loopback interface. */ 15939 if (ill->ill_wq != NULL) { 15940 conn_t *connp = CONN_Q(q) ? Q_TO_CONN(q) : NULL; 15941 ipsq_t *ipsq = ill->ill_phyint->phyint_ipsq; 15942 15943 if (!ill->ill_dl_up) { 15944 /* 15945 * ill_dl_up is not yet set. i.e. we are yet to 15946 * DL_BIND with the driver and this is the first 15947 * logical interface on the ill to become "up". 15948 * Tell the driver to get going (via DL_BIND_REQ). 15949 * Note that changing "significant" IFF_ flags 15950 * address/netmask etc cause a down/up dance, but 15951 * does not cause an unbind (DL_UNBIND) with the driver 15952 */ 15953 return (ill_dl_up(ill, ipif, mp, q)); 15954 } 15955 15956 /* 15957 * ipif_resolver_up may end up sending an 15958 * AR_INTERFACE_UP message to ARP, which would, in 15959 * turn send a DLPI message to the driver. ioctls are 15960 * serialized and so we cannot send more than one 15961 * interface up message at a time. If ipif_resolver_up 15962 * does send an interface up message to ARP, we get 15963 * EINPROGRESS and we will complete in ip_arp_done. 15964 */ 15965 15966 ASSERT(connp != NULL || !CONN_Q(q)); 15967 if (connp != NULL) 15968 mutex_enter(&connp->conn_lock); 15969 mutex_enter(&ill->ill_lock); 15970 success = ipsq_pending_mp_add(connp, ipif, q, mp, 0); 15971 mutex_exit(&ill->ill_lock); 15972 if (connp != NULL) 15973 mutex_exit(&connp->conn_lock); 15974 if (!success) 15975 return (EINTR); 15976 15977 /* 15978 * Crank up the resolver. For IPv6, this cranks up the 15979 * external resolver if one is configured, but even if an 15980 * external resolver isn't configured, it must be called to 15981 * reset DAD state. For IPv6, if an external resolver is not 15982 * being used, ipif_resolver_up() will never return 15983 * EINPROGRESS, so we can always call ipif_ndp_up() here. 15984 * Note that if an external resolver is being used, there's no 15985 * need to call ipif_ndp_up() since it will do nothing. 15986 */ 15987 err = ipif_resolver_up(ipif, Res_act_initial); 15988 if (err == EINPROGRESS) { 15989 /* We will complete it in ip_arp_done() */ 15990 return (err); 15991 } 15992 15993 if (isv6 && err == 0) 15994 err = ipif_ndp_up(ipif, B_TRUE); 15995 15996 ASSERT(err != EINPROGRESS); 15997 mp = ipsq_pending_mp_get(ipsq, &connp); 15998 ASSERT(mp != NULL); 15999 if (err != 0) 16000 return (err); 16001 } else { 16002 /* 16003 * Interfaces without underlying hardware don't do duplicate 16004 * address detection. 16005 */ 16006 ASSERT(!(ipif->ipif_flags & IPIF_DUPLICATE)); 16007 ipif->ipif_addr_ready = 1; 16008 } 16009 16010 err = isv6 ? ipif_up_done_v6(ipif) : ipif_up_done(ipif); 16011 if (err == 0 && ill->ill_move_ipif != NULL) { 16012 ipif = ill->ill_move_ipif; 16013 ill->ill_move_ipif = NULL; 16014 return (ipif_up(ipif, q, mp)); 16015 } 16016 return (err); 16017 } 16018 16019 /* 16020 * Perform a bind for the physical device. 16021 * When the routine returns EINPROGRESS then mp has been consumed and 16022 * the ioctl will be acked from ip_rput_dlpi. 16023 * Allocate an unbind message and save it until ipif_down. 16024 */ 16025 static int 16026 ill_dl_up(ill_t *ill, ipif_t *ipif, mblk_t *mp, queue_t *q) 16027 { 16028 areq_t *areq; 16029 mblk_t *areq_mp = NULL; 16030 mblk_t *bind_mp = NULL; 16031 mblk_t *unbind_mp = NULL; 16032 conn_t *connp; 16033 boolean_t success; 16034 uint16_t sap_addr; 16035 16036 ip1dbg(("ill_dl_up(%s)\n", ill->ill_name)); 16037 ASSERT(IAM_WRITER_ILL(ill)); 16038 ASSERT(mp != NULL); 16039 16040 /* Create a resolver cookie for ARP */ 16041 if (!ill->ill_isv6 && ill->ill_net_type == IRE_IF_RESOLVER) { 16042 areq_mp = ill_arp_alloc(ill, (uchar_t *)&ip_areq_template, 0); 16043 if (areq_mp == NULL) 16044 return (ENOMEM); 16045 16046 freemsg(ill->ill_resolver_mp); 16047 ill->ill_resolver_mp = areq_mp; 16048 areq = (areq_t *)areq_mp->b_rptr; 16049 sap_addr = ill->ill_sap; 16050 bcopy(&sap_addr, areq->areq_sap, sizeof (sap_addr)); 16051 } 16052 bind_mp = ip_dlpi_alloc(sizeof (dl_bind_req_t) + sizeof (long), 16053 DL_BIND_REQ); 16054 if (bind_mp == NULL) 16055 goto bad; 16056 ((dl_bind_req_t *)bind_mp->b_rptr)->dl_sap = ill->ill_sap; 16057 ((dl_bind_req_t *)bind_mp->b_rptr)->dl_service_mode = DL_CLDLS; 16058 16059 unbind_mp = ip_dlpi_alloc(sizeof (dl_unbind_req_t), DL_UNBIND_REQ); 16060 if (unbind_mp == NULL) 16061 goto bad; 16062 16063 /* 16064 * Record state needed to complete this operation when the 16065 * DL_BIND_ACK shows up. Also remember the pre-allocated mblks. 16066 */ 16067 connp = CONN_Q(q) ? Q_TO_CONN(q) : NULL; 16068 ASSERT(connp != NULL || !CONN_Q(q)); 16069 GRAB_CONN_LOCK(q); 16070 mutex_enter(&ipif->ipif_ill->ill_lock); 16071 success = ipsq_pending_mp_add(connp, ipif, q, mp, 0); 16072 mutex_exit(&ipif->ipif_ill->ill_lock); 16073 RELEASE_CONN_LOCK(q); 16074 if (!success) 16075 goto bad; 16076 16077 /* 16078 * Save the unbind message for ill_dl_down(); it will be consumed when 16079 * the interface goes down. 16080 */ 16081 ASSERT(ill->ill_unbind_mp == NULL); 16082 ill->ill_unbind_mp = unbind_mp; 16083 16084 ill_dlpi_send(ill, bind_mp); 16085 /* Send down link-layer capabilities probe if not already done. */ 16086 ill_capability_probe(ill); 16087 16088 /* 16089 * Sysid used to rely on the fact that netboots set domainname 16090 * and the like. Now that miniroot boots aren't strictly netboots 16091 * and miniroot network configuration is driven from userland 16092 * these things still need to be set. This situation can be detected 16093 * by comparing the interface being configured here to the one 16094 * dhcifname was set to reference by the boot loader. Once sysid is 16095 * converted to use dhcp_ipc_getinfo() this call can go away. 16096 */ 16097 if ((ipif->ipif_flags & IPIF_DHCPRUNNING) && 16098 (strcmp(ill->ill_name, dhcifname) == 0) && 16099 (strlen(srpc_domain) == 0)) { 16100 if (dhcpinit() != 0) 16101 cmn_err(CE_WARN, "no cached dhcp response"); 16102 } 16103 16104 /* 16105 * This operation will complete in ip_rput_dlpi with either 16106 * a DL_BIND_ACK or DL_ERROR_ACK. 16107 */ 16108 return (EINPROGRESS); 16109 bad: 16110 ip1dbg(("ill_dl_up(%s) FAILED\n", ill->ill_name)); 16111 16112 freemsg(bind_mp); 16113 freemsg(unbind_mp); 16114 return (ENOMEM); 16115 } 16116 16117 uint_t ip_loopback_mtuplus = IP_LOOPBACK_MTU + IP_SIMPLE_HDR_LENGTH + 20; 16118 16119 /* 16120 * DLPI and ARP is up. 16121 * Create all the IREs associated with an interface bring up multicast. 16122 * Set the interface flag and finish other initialization 16123 * that potentially had to be differed to after DL_BIND_ACK. 16124 */ 16125 int 16126 ipif_up_done(ipif_t *ipif) 16127 { 16128 ire_t *ire_array[20]; 16129 ire_t **irep = ire_array; 16130 ire_t **irep1; 16131 ipaddr_t net_mask = 0; 16132 ipaddr_t subnet_mask, route_mask; 16133 ill_t *ill = ipif->ipif_ill; 16134 queue_t *stq; 16135 ipif_t *src_ipif; 16136 ipif_t *tmp_ipif; 16137 boolean_t flush_ire_cache = B_TRUE; 16138 int err = 0; 16139 ire_t **ipif_saved_irep = NULL; 16140 int ipif_saved_ire_cnt; 16141 int cnt; 16142 boolean_t src_ipif_held = B_FALSE; 16143 boolean_t loopback = B_FALSE; 16144 ip_stack_t *ipst = ill->ill_ipst; 16145 16146 ip1dbg(("ipif_up_done(%s:%u)\n", 16147 ipif->ipif_ill->ill_name, ipif->ipif_id)); 16148 /* Check if this is a loopback interface */ 16149 if (ipif->ipif_ill->ill_wq == NULL) 16150 loopback = B_TRUE; 16151 16152 ASSERT(!MUTEX_HELD(&ipif->ipif_ill->ill_lock)); 16153 /* 16154 * If all other interfaces for this ill are down or DEPRECATED, 16155 * or otherwise unsuitable for source address selection, remove 16156 * any IRE_CACHE entries for this ill to make sure source 16157 * address selection gets to take this new ipif into account. 16158 * No need to hold ill_lock while traversing the ipif list since 16159 * we are writer 16160 */ 16161 for (tmp_ipif = ill->ill_ipif; tmp_ipif; 16162 tmp_ipif = tmp_ipif->ipif_next) { 16163 if (((tmp_ipif->ipif_flags & 16164 (IPIF_NOXMIT|IPIF_ANYCAST|IPIF_NOLOCAL|IPIF_DEPRECATED)) || 16165 !(tmp_ipif->ipif_flags & IPIF_UP)) || 16166 (tmp_ipif == ipif)) 16167 continue; 16168 /* first useable pre-existing interface */ 16169 flush_ire_cache = B_FALSE; 16170 break; 16171 } 16172 if (flush_ire_cache) 16173 ire_walk_ill_v4(MATCH_IRE_ILL | MATCH_IRE_TYPE, 16174 IRE_CACHE, ill_ipif_cache_delete, (char *)ill, ill); 16175 16176 /* 16177 * Figure out which way the send-to queue should go. Only 16178 * IRE_IF_RESOLVER or IRE_IF_NORESOLVER or IRE_LOOPBACK 16179 * should show up here. 16180 */ 16181 switch (ill->ill_net_type) { 16182 case IRE_IF_RESOLVER: 16183 stq = ill->ill_rq; 16184 break; 16185 case IRE_IF_NORESOLVER: 16186 case IRE_LOOPBACK: 16187 stq = ill->ill_wq; 16188 break; 16189 default: 16190 return (EINVAL); 16191 } 16192 16193 if (IS_LOOPBACK(ill)) { 16194 /* 16195 * lo0:1 and subsequent ipifs were marked IRE_LOCAL in 16196 * ipif_lookup_on_name(), but in the case of zones we can have 16197 * several loopback addresses on lo0. So all the interfaces with 16198 * loopback addresses need to be marked IRE_LOOPBACK. 16199 */ 16200 if (V4_PART_OF_V6(ipif->ipif_v6lcl_addr) == 16201 htonl(INADDR_LOOPBACK)) 16202 ipif->ipif_ire_type = IRE_LOOPBACK; 16203 else 16204 ipif->ipif_ire_type = IRE_LOCAL; 16205 } 16206 16207 if (ipif->ipif_flags & (IPIF_NOLOCAL|IPIF_ANYCAST) || 16208 ((ipif->ipif_flags & IPIF_DEPRECATED) && 16209 !(ipif->ipif_flags & IPIF_NOFAILOVER))) { 16210 /* 16211 * Can't use our source address. Select a different 16212 * source address for the IRE_INTERFACE and IRE_LOCAL 16213 */ 16214 src_ipif = ipif_select_source(ipif->ipif_ill, 16215 ipif->ipif_subnet, ipif->ipif_zoneid); 16216 if (src_ipif == NULL) 16217 src_ipif = ipif; /* Last resort */ 16218 else 16219 src_ipif_held = B_TRUE; 16220 } else { 16221 src_ipif = ipif; 16222 } 16223 16224 /* Create all the IREs associated with this interface */ 16225 if ((ipif->ipif_lcl_addr != INADDR_ANY) && 16226 !(ipif->ipif_flags & IPIF_NOLOCAL)) { 16227 16228 /* 16229 * If we're on a labeled system then make sure that zone- 16230 * private addresses have proper remote host database entries. 16231 */ 16232 if (is_system_labeled() && 16233 ipif->ipif_ire_type != IRE_LOOPBACK && 16234 !tsol_check_interface_address(ipif)) 16235 return (EINVAL); 16236 16237 /* Register the source address for __sin6_src_id */ 16238 err = ip_srcid_insert(&ipif->ipif_v6lcl_addr, 16239 ipif->ipif_zoneid, ipst); 16240 if (err != 0) { 16241 ip0dbg(("ipif_up_done: srcid_insert %d\n", err)); 16242 return (err); 16243 } 16244 16245 /* If the interface address is set, create the local IRE. */ 16246 ip1dbg(("ipif_up_done: 0x%p creating IRE 0x%x for 0x%x\n", 16247 (void *)ipif, 16248 ipif->ipif_ire_type, 16249 ntohl(ipif->ipif_lcl_addr))); 16250 *irep++ = ire_create( 16251 (uchar_t *)&ipif->ipif_lcl_addr, /* dest address */ 16252 (uchar_t *)&ip_g_all_ones, /* mask */ 16253 (uchar_t *)&src_ipif->ipif_src_addr, /* source address */ 16254 NULL, /* no gateway */ 16255 &ip_loopback_mtuplus, /* max frag size */ 16256 NULL, 16257 ipif->ipif_rq, /* recv-from queue */ 16258 NULL, /* no send-to queue */ 16259 ipif->ipif_ire_type, /* LOCAL or LOOPBACK */ 16260 ipif, 16261 0, 16262 0, 16263 0, 16264 (ipif->ipif_flags & IPIF_PRIVATE) ? 16265 RTF_PRIVATE : 0, 16266 &ire_uinfo_null, 16267 NULL, 16268 NULL, 16269 ipst); 16270 } else { 16271 ip1dbg(( 16272 "ipif_up_done: not creating IRE %d for 0x%x: flags 0x%x\n", 16273 ipif->ipif_ire_type, 16274 ntohl(ipif->ipif_lcl_addr), 16275 (uint_t)ipif->ipif_flags)); 16276 } 16277 if ((ipif->ipif_lcl_addr != INADDR_ANY) && 16278 !(ipif->ipif_flags & IPIF_NOLOCAL)) { 16279 net_mask = ip_net_mask(ipif->ipif_lcl_addr); 16280 } else { 16281 net_mask = htonl(IN_CLASSA_NET); /* fallback */ 16282 } 16283 16284 subnet_mask = ipif->ipif_net_mask; 16285 16286 /* 16287 * If mask was not specified, use natural netmask of 16288 * interface address. Also, store this mask back into the 16289 * ipif struct. 16290 */ 16291 if (subnet_mask == 0) { 16292 subnet_mask = net_mask; 16293 V4MASK_TO_V6(subnet_mask, ipif->ipif_v6net_mask); 16294 V6_MASK_COPY(ipif->ipif_v6lcl_addr, ipif->ipif_v6net_mask, 16295 ipif->ipif_v6subnet); 16296 } 16297 16298 /* Set up the IRE_IF_RESOLVER or IRE_IF_NORESOLVER, as appropriate. */ 16299 if (stq != NULL && !(ipif->ipif_flags & IPIF_NOXMIT) && 16300 ipif->ipif_subnet != INADDR_ANY) { 16301 /* ipif_subnet is ipif_pp_dst_addr for pt-pt */ 16302 16303 if (ipif->ipif_flags & IPIF_POINTOPOINT) { 16304 route_mask = IP_HOST_MASK; 16305 } else { 16306 route_mask = subnet_mask; 16307 } 16308 16309 ip1dbg(("ipif_up_done: ipif 0x%p ill 0x%p " 16310 "creating if IRE ill_net_type 0x%x for 0x%x\n", 16311 (void *)ipif, (void *)ill, 16312 ill->ill_net_type, 16313 ntohl(ipif->ipif_subnet))); 16314 *irep++ = ire_create( 16315 (uchar_t *)&ipif->ipif_subnet, /* dest address */ 16316 (uchar_t *)&route_mask, /* mask */ 16317 (uchar_t *)&src_ipif->ipif_src_addr, /* src addr */ 16318 NULL, /* no gateway */ 16319 &ipif->ipif_mtu, /* max frag */ 16320 NULL, 16321 NULL, /* no recv queue */ 16322 stq, /* send-to queue */ 16323 ill->ill_net_type, /* IF_[NO]RESOLVER */ 16324 ipif, 16325 0, 16326 0, 16327 0, 16328 (ipif->ipif_flags & IPIF_PRIVATE) ? RTF_PRIVATE: 0, 16329 &ire_uinfo_null, 16330 NULL, 16331 NULL, 16332 ipst); 16333 } 16334 16335 /* 16336 * Create any necessary broadcast IREs. 16337 */ 16338 if (ipif->ipif_flags & IPIF_BROADCAST) 16339 irep = ipif_create_bcast_ires(ipif, irep); 16340 16341 ASSERT(!MUTEX_HELD(&ipif->ipif_ill->ill_lock)); 16342 16343 /* If an earlier ire_create failed, get out now */ 16344 for (irep1 = irep; irep1 > ire_array; ) { 16345 irep1--; 16346 if (*irep1 == NULL) { 16347 ip1dbg(("ipif_up_done: NULL ire found in ire_array\n")); 16348 err = ENOMEM; 16349 goto bad; 16350 } 16351 } 16352 16353 /* 16354 * Need to atomically check for IP address availability under 16355 * ip_addr_avail_lock. ill_g_lock is held as reader to ensure no new 16356 * ills or new ipifs can be added while we are checking availability. 16357 */ 16358 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 16359 mutex_enter(&ipst->ips_ip_addr_avail_lock); 16360 /* Mark it up, and increment counters. */ 16361 ipif->ipif_flags |= IPIF_UP; 16362 ill->ill_ipif_up_count++; 16363 err = ip_addr_availability_check(ipif); 16364 mutex_exit(&ipst->ips_ip_addr_avail_lock); 16365 rw_exit(&ipst->ips_ill_g_lock); 16366 16367 if (err != 0) { 16368 /* 16369 * Our address may already be up on the same ill. In this case, 16370 * the ARP entry for our ipif replaced the one for the other 16371 * ipif. So we don't want to delete it (otherwise the other ipif 16372 * would be unable to send packets). 16373 * ip_addr_availability_check() identifies this case for us and 16374 * returns EADDRINUSE; we need to turn it into EADDRNOTAVAIL 16375 * which is the expected error code. 16376 */ 16377 if (err == EADDRINUSE) { 16378 freemsg(ipif->ipif_arp_del_mp); 16379 ipif->ipif_arp_del_mp = NULL; 16380 err = EADDRNOTAVAIL; 16381 } 16382 ill->ill_ipif_up_count--; 16383 ipif->ipif_flags &= ~IPIF_UP; 16384 goto bad; 16385 } 16386 16387 /* 16388 * Add in all newly created IREs. ire_create_bcast() has 16389 * already checked for duplicates of the IRE_BROADCAST type. 16390 */ 16391 for (irep1 = irep; irep1 > ire_array; ) { 16392 irep1--; 16393 ASSERT(!MUTEX_HELD(&((*irep1)->ire_ipif->ipif_ill->ill_lock))); 16394 /* 16395 * refheld by ire_add. refele towards the end of the func 16396 */ 16397 (void) ire_add(irep1, NULL, NULL, NULL, B_FALSE); 16398 } 16399 16400 /* Recover any additional IRE_IF_[NO]RESOLVER entries for this ipif */ 16401 ipif_saved_ire_cnt = ipif->ipif_saved_ire_cnt; 16402 ipif_saved_irep = ipif_recover_ire(ipif); 16403 16404 if (!loopback) { 16405 /* 16406 * If the broadcast address has been set, make sure it makes 16407 * sense based on the interface address. 16408 * Only match on ill since we are sharing broadcast addresses. 16409 */ 16410 if ((ipif->ipif_brd_addr != INADDR_ANY) && 16411 (ipif->ipif_flags & IPIF_BROADCAST)) { 16412 ire_t *ire; 16413 16414 ire = ire_ctable_lookup(ipif->ipif_brd_addr, 0, 16415 IRE_BROADCAST, ipif, ALL_ZONES, 16416 NULL, (MATCH_IRE_TYPE | MATCH_IRE_ILL), ipst); 16417 16418 if (ire == NULL) { 16419 /* 16420 * If there isn't a matching broadcast IRE, 16421 * revert to the default for this netmask. 16422 */ 16423 ipif->ipif_v6brd_addr = ipv6_all_zeros; 16424 mutex_enter(&ipif->ipif_ill->ill_lock); 16425 ipif_set_default(ipif); 16426 mutex_exit(&ipif->ipif_ill->ill_lock); 16427 } else { 16428 ire_refrele(ire); 16429 } 16430 } 16431 16432 } 16433 16434 if (ill->ill_need_recover_multicast) { 16435 /* 16436 * Need to recover all multicast memberships in the driver. 16437 * This had to be deferred until we had attached. The same 16438 * code exists in ipif_up_done_v6() to recover IPv6 16439 * memberships. 16440 * 16441 * Note that it would be preferable to unconditionally do the 16442 * ill_recover_multicast() in ill_dl_up(), but we cannot do 16443 * that since ill_join_allmulti() depends on ill_dl_up being 16444 * set, and it is not set until we receive a DL_BIND_ACK after 16445 * having called ill_dl_up(). 16446 */ 16447 ill_recover_multicast(ill); 16448 } 16449 16450 if (ill->ill_ipif_up_count == 1) { 16451 /* 16452 * Since the interface is now up, it may now be active. 16453 */ 16454 if (IS_UNDER_IPMP(ill)) 16455 ipmp_ill_refresh_active(ill); 16456 16457 /* 16458 * If this is an IPMP interface, we may now be able to 16459 * establish ARP entries. 16460 */ 16461 if (IS_IPMP(ill)) 16462 ipmp_illgrp_refresh_arpent(ill->ill_grp); 16463 } 16464 16465 /* Join the allhosts multicast address */ 16466 ipif_multicast_up(ipif); 16467 16468 /* 16469 * See if anybody else would benefit from our new ipif. 16470 */ 16471 if (!loopback && 16472 !(ipif->ipif_flags & (IPIF_NOLOCAL|IPIF_ANYCAST|IPIF_DEPRECATED))) { 16473 ill_update_source_selection(ill); 16474 } 16475 16476 for (irep1 = irep; irep1 > ire_array; ) { 16477 irep1--; 16478 if (*irep1 != NULL) { 16479 /* was held in ire_add */ 16480 ire_refrele(*irep1); 16481 } 16482 } 16483 16484 cnt = ipif_saved_ire_cnt; 16485 for (irep1 = ipif_saved_irep; cnt > 0; irep1++, cnt--) { 16486 if (*irep1 != NULL) { 16487 /* was held in ire_add */ 16488 ire_refrele(*irep1); 16489 } 16490 } 16491 16492 if (!loopback && ipif->ipif_addr_ready) { 16493 /* Broadcast an address mask reply. */ 16494 ipif_mask_reply(ipif); 16495 } 16496 if (ipif_saved_irep != NULL) { 16497 kmem_free(ipif_saved_irep, 16498 ipif_saved_ire_cnt * sizeof (ire_t *)); 16499 } 16500 if (src_ipif_held) 16501 ipif_refrele(src_ipif); 16502 16503 /* 16504 * This had to be deferred until we had bound. Tell routing sockets and 16505 * others that this interface is up if it looks like the address has 16506 * been validated. Otherwise, if it isn't ready yet, wait for 16507 * duplicate address detection to do its thing. 16508 */ 16509 if (ipif->ipif_addr_ready) 16510 ipif_up_notify(ipif); 16511 return (0); 16512 16513 bad: 16514 ip1dbg(("ipif_up_done: FAILED \n")); 16515 16516 while (irep > ire_array) { 16517 irep--; 16518 if (*irep != NULL) 16519 ire_delete(*irep); 16520 } 16521 (void) ip_srcid_remove(&ipif->ipif_v6lcl_addr, ipif->ipif_zoneid, ipst); 16522 16523 if (ipif_saved_irep != NULL) { 16524 kmem_free(ipif_saved_irep, 16525 ipif_saved_ire_cnt * sizeof (ire_t *)); 16526 } 16527 if (src_ipif_held) 16528 ipif_refrele(src_ipif); 16529 16530 ipif_resolver_down(ipif); 16531 return (err); 16532 } 16533 16534 /* 16535 * Turn off the ARP with the ILLF_NOARP flag. 16536 */ 16537 static int 16538 ill_arp_off(ill_t *ill) 16539 { 16540 mblk_t *arp_off_mp = NULL; 16541 mblk_t *arp_on_mp = NULL; 16542 16543 ip1dbg(("ill_arp_off(%s)\n", ill->ill_name)); 16544 16545 ASSERT(IAM_WRITER_ILL(ill)); 16546 ASSERT(ill->ill_net_type == IRE_IF_RESOLVER); 16547 16548 /* 16549 * If the on message is still around we've already done 16550 * an arp_off without doing an arp_on thus there is no 16551 * work needed. 16552 */ 16553 if (ill->ill_arp_on_mp != NULL) 16554 return (0); 16555 16556 /* 16557 * Allocate an ARP on message (to be saved) and an ARP off message 16558 */ 16559 arp_off_mp = ill_arp_alloc(ill, (uchar_t *)&ip_aroff_template, 0); 16560 if (!arp_off_mp) 16561 return (ENOMEM); 16562 16563 arp_on_mp = ill_arp_alloc(ill, (uchar_t *)&ip_aron_template, 0); 16564 if (!arp_on_mp) 16565 goto failed; 16566 16567 ASSERT(ill->ill_arp_on_mp == NULL); 16568 ill->ill_arp_on_mp = arp_on_mp; 16569 16570 /* Send an AR_INTERFACE_OFF request */ 16571 putnext(ill->ill_rq, arp_off_mp); 16572 return (0); 16573 failed: 16574 16575 if (arp_off_mp) 16576 freemsg(arp_off_mp); 16577 return (ENOMEM); 16578 } 16579 16580 /* 16581 * Turn on ARP by turning off the ILLF_NOARP flag. 16582 */ 16583 static int 16584 ill_arp_on(ill_t *ill) 16585 { 16586 mblk_t *mp; 16587 16588 ip1dbg(("ipif_arp_on(%s)\n", ill->ill_name)); 16589 16590 ASSERT(ill->ill_net_type == IRE_IF_RESOLVER); 16591 16592 ASSERT(IAM_WRITER_ILL(ill)); 16593 /* 16594 * Send an AR_INTERFACE_ON request if we have already done 16595 * an arp_off (which allocated the message). 16596 */ 16597 if (ill->ill_arp_on_mp != NULL) { 16598 mp = ill->ill_arp_on_mp; 16599 ill->ill_arp_on_mp = NULL; 16600 putnext(ill->ill_rq, mp); 16601 } 16602 return (0); 16603 } 16604 16605 /* 16606 * Checks for availbility of a usable source address (if there is one) when the 16607 * destination ILL has the ill_usesrc_ifindex pointing to another ILL. Note 16608 * this selection is done regardless of the destination. 16609 */ 16610 boolean_t 16611 ipif_usesrc_avail(ill_t *ill, zoneid_t zoneid) 16612 { 16613 uint_t ifindex; 16614 ipif_t *ipif = NULL; 16615 ill_t *uill; 16616 boolean_t isv6; 16617 ip_stack_t *ipst = ill->ill_ipst; 16618 16619 ASSERT(ill != NULL); 16620 16621 isv6 = ill->ill_isv6; 16622 ifindex = ill->ill_usesrc_ifindex; 16623 if (ifindex != 0) { 16624 uill = ill_lookup_on_ifindex(ifindex, isv6, NULL, NULL, NULL, 16625 NULL, ipst); 16626 if (uill == NULL) 16627 return (NULL); 16628 mutex_enter(&uill->ill_lock); 16629 for (ipif = uill->ill_ipif; ipif != NULL; 16630 ipif = ipif->ipif_next) { 16631 if (!IPIF_CAN_LOOKUP(ipif)) 16632 continue; 16633 if (ipif->ipif_flags & (IPIF_NOLOCAL|IPIF_ANYCAST)) 16634 continue; 16635 if (!(ipif->ipif_flags & IPIF_UP)) 16636 continue; 16637 if (ipif->ipif_zoneid != zoneid) 16638 continue; 16639 if ((isv6 && 16640 IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6lcl_addr)) || 16641 (ipif->ipif_lcl_addr == INADDR_ANY)) 16642 continue; 16643 mutex_exit(&uill->ill_lock); 16644 ill_refrele(uill); 16645 return (B_TRUE); 16646 } 16647 mutex_exit(&uill->ill_lock); 16648 ill_refrele(uill); 16649 } 16650 return (B_FALSE); 16651 } 16652 16653 /* 16654 * IP source address type, sorted from worst to best. For a given type, 16655 * always prefer IP addresses on the same subnet. All-zones addresses are 16656 * suboptimal because they pose problems with unlabeled destinations. 16657 */ 16658 typedef enum { 16659 IPIF_NONE, 16660 IPIF_DIFFNET_DEPRECATED, /* deprecated and different subnet */ 16661 IPIF_SAMENET_DEPRECATED, /* deprecated and same subnet */ 16662 IPIF_DIFFNET_ALLZONES, /* allzones and different subnet */ 16663 IPIF_SAMENET_ALLZONES, /* allzones and same subnet */ 16664 IPIF_DIFFNET, /* normal and different subnet */ 16665 IPIF_SAMENET /* normal and same subnet */ 16666 } ipif_type_t; 16667 16668 /* 16669 * Pick the optimal ipif on `ill' for sending to destination `dst' from zone 16670 * `zoneid'. We rate usable ipifs from low -> high as per the ipif_type_t 16671 * enumeration, and return the highest-rated ipif. If there's a tie, we pick 16672 * the first one, unless IPMP is used in which case we round-robin among them; 16673 * see below for more. 16674 * 16675 * Returns NULL if there is no suitable source address for the ill. 16676 * This only occurs when there is no valid source address for the ill. 16677 */ 16678 ipif_t * 16679 ipif_select_source(ill_t *ill, ipaddr_t dst, zoneid_t zoneid) 16680 { 16681 ill_t *usill = NULL; 16682 ill_t *ipmp_ill = NULL; 16683 ipif_t *start_ipif, *next_ipif, *ipif, *best_ipif; 16684 ipif_type_t type, best_type; 16685 tsol_tpc_t *src_rhtp, *dst_rhtp; 16686 ip_stack_t *ipst = ill->ill_ipst; 16687 boolean_t samenet; 16688 16689 if (ill->ill_usesrc_ifindex != 0) { 16690 usill = ill_lookup_on_ifindex(ill->ill_usesrc_ifindex, 16691 B_FALSE, NULL, NULL, NULL, NULL, ipst); 16692 if (usill != NULL) 16693 ill = usill; /* Select source from usesrc ILL */ 16694 else 16695 return (NULL); 16696 } 16697 16698 /* 16699 * Test addresses should never be used for source address selection, 16700 * so if we were passed one, switch to the IPMP meta-interface. 16701 */ 16702 if (IS_UNDER_IPMP(ill)) { 16703 if ((ipmp_ill = ipmp_ill_hold_ipmp_ill(ill)) != NULL) 16704 ill = ipmp_ill; /* Select source from IPMP ill */ 16705 else 16706 return (NULL); 16707 } 16708 16709 /* 16710 * If we're dealing with an unlabeled destination on a labeled system, 16711 * make sure that we ignore source addresses that are incompatible with 16712 * the destination's default label. That destination's default label 16713 * must dominate the minimum label on the source address. 16714 */ 16715 dst_rhtp = NULL; 16716 if (is_system_labeled()) { 16717 dst_rhtp = find_tpc(&dst, IPV4_VERSION, B_FALSE); 16718 if (dst_rhtp == NULL) 16719 return (NULL); 16720 if (dst_rhtp->tpc_tp.host_type != UNLABELED) { 16721 TPC_RELE(dst_rhtp); 16722 dst_rhtp = NULL; 16723 } 16724 } 16725 16726 /* 16727 * Hold the ill_g_lock as reader. This makes sure that no ipif/ill 16728 * can be deleted. But an ipif/ill can get CONDEMNED any time. 16729 * After selecting the right ipif, under ill_lock make sure ipif is 16730 * not condemned, and increment refcnt. If ipif is CONDEMNED, 16731 * we retry. Inside the loop we still need to check for CONDEMNED, 16732 * but not under a lock. 16733 */ 16734 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 16735 retry: 16736 /* 16737 * For source address selection, we treat the ipif list as circular 16738 * and continue until we get back to where we started. This allows 16739 * IPMP to vary source address selection (which improves inbound load 16740 * spreading) by caching its last ending point and starting from 16741 * there. NOTE: we don't have to worry about ill_src_ipif changing 16742 * ills since that can't happen on the IPMP ill. 16743 */ 16744 start_ipif = ill->ill_ipif; 16745 if (IS_IPMP(ill) && ill->ill_src_ipif != NULL) 16746 start_ipif = ill->ill_src_ipif; 16747 16748 ipif = start_ipif; 16749 best_ipif = NULL; 16750 best_type = IPIF_NONE; 16751 do { 16752 if ((next_ipif = ipif->ipif_next) == NULL) 16753 next_ipif = ill->ill_ipif; 16754 16755 if (!IPIF_CAN_LOOKUP(ipif)) 16756 continue; 16757 /* Always skip NOLOCAL and ANYCAST interfaces */ 16758 if (ipif->ipif_flags & (IPIF_NOLOCAL|IPIF_ANYCAST)) 16759 continue; 16760 if (!(ipif->ipif_flags & IPIF_UP) || !ipif->ipif_addr_ready) 16761 continue; 16762 if (ipif->ipif_zoneid != zoneid && 16763 ipif->ipif_zoneid != ALL_ZONES) 16764 continue; 16765 16766 /* 16767 * Interfaces with 0.0.0.0 address are allowed to be UP, but 16768 * are not valid as source addresses. 16769 */ 16770 if (ipif->ipif_lcl_addr == INADDR_ANY) 16771 continue; 16772 16773 /* 16774 * Check compatibility of local address for destination's 16775 * default label if we're on a labeled system. Incompatible 16776 * addresses can't be used at all. 16777 */ 16778 if (dst_rhtp != NULL) { 16779 boolean_t incompat; 16780 16781 src_rhtp = find_tpc(&ipif->ipif_lcl_addr, 16782 IPV4_VERSION, B_FALSE); 16783 if (src_rhtp == NULL) 16784 continue; 16785 incompat = src_rhtp->tpc_tp.host_type != SUN_CIPSO || 16786 src_rhtp->tpc_tp.tp_doi != 16787 dst_rhtp->tpc_tp.tp_doi || 16788 (!_blinrange(&dst_rhtp->tpc_tp.tp_def_label, 16789 &src_rhtp->tpc_tp.tp_sl_range_cipso) && 16790 !blinlset(&dst_rhtp->tpc_tp.tp_def_label, 16791 src_rhtp->tpc_tp.tp_sl_set_cipso)); 16792 TPC_RELE(src_rhtp); 16793 if (incompat) 16794 continue; 16795 } 16796 16797 samenet = ((ipif->ipif_net_mask & dst) == ipif->ipif_subnet); 16798 16799 if (ipif->ipif_flags & IPIF_DEPRECATED) { 16800 type = samenet ? IPIF_SAMENET_DEPRECATED : 16801 IPIF_DIFFNET_DEPRECATED; 16802 } else if (ipif->ipif_zoneid == ALL_ZONES) { 16803 type = samenet ? IPIF_SAMENET_ALLZONES : 16804 IPIF_DIFFNET_ALLZONES; 16805 } else { 16806 type = samenet ? IPIF_SAMENET : IPIF_DIFFNET; 16807 } 16808 16809 if (type > best_type) { 16810 best_type = type; 16811 best_ipif = ipif; 16812 if (best_type == IPIF_SAMENET) 16813 break; /* can't get better */ 16814 } 16815 } while ((ipif = next_ipif) != start_ipif); 16816 16817 if ((ipif = best_ipif) != NULL) { 16818 mutex_enter(&ipif->ipif_ill->ill_lock); 16819 if (!IPIF_CAN_LOOKUP(ipif)) { 16820 mutex_exit(&ipif->ipif_ill->ill_lock); 16821 goto retry; 16822 } 16823 ipif_refhold_locked(ipif); 16824 16825 /* 16826 * For IPMP, update the source ipif rotor to the next ipif, 16827 * provided we can look it up. (We must not use it if it's 16828 * IPIF_CONDEMNED since we may have grabbed ill_g_lock after 16829 * ipif_free() checked ill_src_ipif.) 16830 */ 16831 if (IS_IPMP(ill) && ipif != NULL) { 16832 next_ipif = ipif->ipif_next; 16833 if (next_ipif != NULL && IPIF_CAN_LOOKUP(next_ipif)) 16834 ill->ill_src_ipif = next_ipif; 16835 else 16836 ill->ill_src_ipif = NULL; 16837 } 16838 mutex_exit(&ipif->ipif_ill->ill_lock); 16839 } 16840 16841 rw_exit(&ipst->ips_ill_g_lock); 16842 if (usill != NULL) 16843 ill_refrele(usill); 16844 if (ipmp_ill != NULL) 16845 ill_refrele(ipmp_ill); 16846 if (dst_rhtp != NULL) 16847 TPC_RELE(dst_rhtp); 16848 16849 #ifdef DEBUG 16850 if (ipif == NULL) { 16851 char buf1[INET6_ADDRSTRLEN]; 16852 16853 ip1dbg(("ipif_select_source(%s, %s) -> NULL\n", 16854 ill->ill_name, 16855 inet_ntop(AF_INET, &dst, buf1, sizeof (buf1)))); 16856 } else { 16857 char buf1[INET6_ADDRSTRLEN]; 16858 char buf2[INET6_ADDRSTRLEN]; 16859 16860 ip1dbg(("ipif_select_source(%s, %s) -> %s\n", 16861 ipif->ipif_ill->ill_name, 16862 inet_ntop(AF_INET, &dst, buf1, sizeof (buf1)), 16863 inet_ntop(AF_INET, &ipif->ipif_lcl_addr, 16864 buf2, sizeof (buf2)))); 16865 } 16866 #endif /* DEBUG */ 16867 return (ipif); 16868 } 16869 16870 /* 16871 * If old_ipif is not NULL, see if ipif was derived from old 16872 * ipif and if so, recreate the interface route by re-doing 16873 * source address selection. This happens when ipif_down -> 16874 * ipif_update_other_ipifs calls us. 16875 * 16876 * If old_ipif is NULL, just redo the source address selection 16877 * if needed. This happens when ipif_up_done calls us. 16878 */ 16879 static void 16880 ipif_recreate_interface_routes(ipif_t *old_ipif, ipif_t *ipif) 16881 { 16882 ire_t *ire; 16883 ire_t *ipif_ire; 16884 queue_t *stq; 16885 ipif_t *nipif; 16886 ill_t *ill; 16887 boolean_t need_rele = B_FALSE; 16888 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; 16889 16890 ASSERT(old_ipif == NULL || IAM_WRITER_IPIF(old_ipif)); 16891 ASSERT(IAM_WRITER_IPIF(ipif)); 16892 16893 ill = ipif->ipif_ill; 16894 if (!(ipif->ipif_flags & 16895 (IPIF_NOLOCAL|IPIF_ANYCAST|IPIF_DEPRECATED))) { 16896 /* 16897 * Can't possibly have borrowed the source 16898 * from old_ipif. 16899 */ 16900 return; 16901 } 16902 16903 /* 16904 * Is there any work to be done? No work if the address 16905 * is INADDR_ANY, loopback or NOLOCAL or ANYCAST ( 16906 * ipif_select_source() does not borrow addresses from 16907 * NOLOCAL and ANYCAST interfaces). 16908 */ 16909 if ((old_ipif != NULL) && 16910 ((old_ipif->ipif_lcl_addr == INADDR_ANY) || 16911 (old_ipif->ipif_ill->ill_wq == NULL) || 16912 (old_ipif->ipif_flags & 16913 (IPIF_NOLOCAL|IPIF_ANYCAST)))) { 16914 return; 16915 } 16916 16917 /* 16918 * Perform the same checks as when creating the 16919 * IRE_INTERFACE in ipif_up_done. 16920 */ 16921 if (!(ipif->ipif_flags & IPIF_UP)) 16922 return; 16923 16924 if ((ipif->ipif_flags & IPIF_NOXMIT) || 16925 (ipif->ipif_subnet == INADDR_ANY)) 16926 return; 16927 16928 ipif_ire = ipif_to_ire(ipif); 16929 if (ipif_ire == NULL) 16930 return; 16931 16932 /* 16933 * We know that ipif uses some other source for its 16934 * IRE_INTERFACE. Is it using the source of this 16935 * old_ipif? 16936 */ 16937 if (old_ipif != NULL && 16938 old_ipif->ipif_lcl_addr != ipif_ire->ire_src_addr) { 16939 ire_refrele(ipif_ire); 16940 return; 16941 } 16942 if (ip_debug > 2) { 16943 /* ip1dbg */ 16944 pr_addr_dbg("ipif_recreate_interface_routes: deleting IRE for" 16945 " src %s\n", AF_INET, &ipif_ire->ire_src_addr); 16946 } 16947 16948 stq = ipif_ire->ire_stq; 16949 16950 /* 16951 * Can't use our source address. Select a different 16952 * source address for the IRE_INTERFACE. 16953 */ 16954 nipif = ipif_select_source(ill, ipif->ipif_subnet, ipif->ipif_zoneid); 16955 if (nipif == NULL) { 16956 /* Last resort - all ipif's have IPIF_NOLOCAL */ 16957 nipif = ipif; 16958 } else { 16959 need_rele = B_TRUE; 16960 } 16961 16962 ire = ire_create( 16963 (uchar_t *)&ipif->ipif_subnet, /* dest pref */ 16964 (uchar_t *)&ipif->ipif_net_mask, /* mask */ 16965 (uchar_t *)&nipif->ipif_src_addr, /* src addr */ 16966 NULL, /* no gateway */ 16967 &ipif->ipif_mtu, /* max frag */ 16968 NULL, /* no src nce */ 16969 NULL, /* no recv from queue */ 16970 stq, /* send-to queue */ 16971 ill->ill_net_type, /* IF_[NO]RESOLVER */ 16972 ipif, 16973 0, 16974 0, 16975 0, 16976 0, 16977 &ire_uinfo_null, 16978 NULL, 16979 NULL, 16980 ipst); 16981 16982 if (ire != NULL) { 16983 ire_t *ret_ire; 16984 int error; 16985 16986 /* 16987 * We don't need ipif_ire anymore. We need to delete 16988 * before we add so that ire_add does not detect 16989 * duplicates. 16990 */ 16991 ire_delete(ipif_ire); 16992 ret_ire = ire; 16993 error = ire_add(&ret_ire, NULL, NULL, NULL, B_FALSE); 16994 ASSERT(error == 0); 16995 ASSERT(ire == ret_ire); 16996 /* Held in ire_add */ 16997 ire_refrele(ret_ire); 16998 } 16999 /* 17000 * Either we are falling through from above or could not 17001 * allocate a replacement. 17002 */ 17003 ire_refrele(ipif_ire); 17004 if (need_rele) 17005 ipif_refrele(nipif); 17006 } 17007 17008 /* 17009 * This old_ipif is going away. 17010 * 17011 * Determine if any other ipif's are using our address as 17012 * ipif_lcl_addr (due to those being IPIF_NOLOCAL, IPIF_ANYCAST, or 17013 * IPIF_DEPRECATED). 17014 * Find the IRE_INTERFACE for such ipifs and recreate them 17015 * to use an different source address following the rules in 17016 * ipif_up_done. 17017 */ 17018 static void 17019 ipif_update_other_ipifs(ipif_t *old_ipif) 17020 { 17021 ipif_t *ipif; 17022 ill_t *ill; 17023 char buf[INET6_ADDRSTRLEN]; 17024 17025 ASSERT(IAM_WRITER_IPIF(old_ipif)); 17026 17027 ill = old_ipif->ipif_ill; 17028 17029 ip1dbg(("ipif_update_other_ipifs(%s, %s)\n", ill->ill_name, 17030 inet_ntop(AF_INET, &old_ipif->ipif_lcl_addr, buf, sizeof (buf)))); 17031 17032 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 17033 if (ipif == old_ipif) 17034 continue; 17035 ipif_recreate_interface_routes(old_ipif, ipif); 17036 } 17037 } 17038 17039 /* ARGSUSED */ 17040 int 17041 if_unitsel_restart(ipif_t *ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, 17042 ip_ioctl_cmd_t *ipip, void *dummy_ifreq) 17043 { 17044 /* 17045 * ill_phyint_reinit merged the v4 and v6 into a single 17046 * ipsq. We might not have been able to complete the 17047 * operation in ipif_set_values, if we could not become 17048 * exclusive. If so restart it here. 17049 */ 17050 return (ipif_set_values_tail(ipif->ipif_ill, ipif, mp, q)); 17051 } 17052 17053 /* 17054 * Can operate on either a module or a driver queue. 17055 * Returns an error if not a module queue. 17056 */ 17057 /* ARGSUSED */ 17058 int 17059 if_unitsel(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, 17060 ip_ioctl_cmd_t *ipip, void *dummy_ifreq) 17061 { 17062 queue_t *q1 = q; 17063 char *cp; 17064 char interf_name[LIFNAMSIZ]; 17065 uint_t ppa = *(uint_t *)mp->b_cont->b_cont->b_rptr; 17066 17067 if (q->q_next == NULL) { 17068 ip1dbg(( 17069 "if_unitsel: IF_UNITSEL: no q_next\n")); 17070 return (EINVAL); 17071 } 17072 17073 if (((ill_t *)(q->q_ptr))->ill_name[0] != '\0') 17074 return (EALREADY); 17075 17076 do { 17077 q1 = q1->q_next; 17078 } while (q1->q_next); 17079 cp = q1->q_qinfo->qi_minfo->mi_idname; 17080 (void) sprintf(interf_name, "%s%d", cp, ppa); 17081 17082 /* 17083 * Here we are not going to delay the ioack until after 17084 * ACKs from DL_ATTACH_REQ/DL_BIND_REQ. So no need to save the 17085 * original ioctl message before sending the requests. 17086 */ 17087 return (ipif_set_values(q, mp, interf_name, &ppa)); 17088 } 17089 17090 /* ARGSUSED */ 17091 int 17092 ip_sioctl_sifname(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, 17093 ip_ioctl_cmd_t *ipip, void *dummy_ifreq) 17094 { 17095 return (ENXIO); 17096 } 17097 17098 /* 17099 * Refresh all IRE_BROADCAST entries associated with `ill' to ensure the 17100 * minimum (but complete) set exist. This is necessary when adding or 17101 * removing an interface to/from an IPMP group, since interfaces in an 17102 * IPMP group use the IRE_BROADCAST entries for the IPMP group (whenever 17103 * its test address subnets overlap with IPMP data addresses). It's also 17104 * used to refresh the IRE_BROADCAST entries associated with the IPMP 17105 * interface when the nominated broadcast interface changes. 17106 */ 17107 void 17108 ill_refresh_bcast(ill_t *ill) 17109 { 17110 ire_t *ire_array[12]; /* max ipif_create_bcast_ires() can create */ 17111 ire_t **irep; 17112 ipif_t *ipif; 17113 17114 ASSERT(!ill->ill_isv6); 17115 ASSERT(IAM_WRITER_ILL(ill)); 17116 17117 /* 17118 * Remove any old broadcast IREs. 17119 */ 17120 ire_walk_ill_v4(MATCH_IRE_ILL | MATCH_IRE_TYPE, IRE_BROADCAST, 17121 ill_broadcast_delete, ill, ill); 17122 17123 /* 17124 * Create new ones for any ipifs that are up and broadcast-capable. 17125 */ 17126 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 17127 if ((ipif->ipif_flags & (IPIF_UP|IPIF_BROADCAST)) != 17128 (IPIF_UP|IPIF_BROADCAST)) 17129 continue; 17130 17131 irep = ipif_create_bcast_ires(ipif, ire_array); 17132 while (irep-- > ire_array) { 17133 (void) ire_add(irep, NULL, NULL, NULL, B_FALSE); 17134 if (*irep != NULL) 17135 ire_refrele(*irep); 17136 } 17137 } 17138 } 17139 17140 /* 17141 * Create any IRE_BROADCAST entries for `ipif', and store those entries in 17142 * `irep'. Returns a pointer to the next free `irep' entry (just like 17143 * ire_check_and_create_bcast()). 17144 */ 17145 static ire_t ** 17146 ipif_create_bcast_ires(ipif_t *ipif, ire_t **irep) 17147 { 17148 ipaddr_t addr; 17149 ipaddr_t netmask = ip_net_mask(ipif->ipif_lcl_addr); 17150 ipaddr_t subnetmask = ipif->ipif_net_mask; 17151 int flags = MATCH_IRE_TYPE | MATCH_IRE_ILL; 17152 17153 ip1dbg(("ipif_create_bcast_ires: creating broadcast IREs\n")); 17154 17155 ASSERT(ipif->ipif_flags & IPIF_BROADCAST); 17156 17157 if (ipif->ipif_lcl_addr == INADDR_ANY || 17158 (ipif->ipif_flags & IPIF_NOLOCAL)) 17159 netmask = htonl(IN_CLASSA_NET); /* fallback */ 17160 17161 irep = ire_check_and_create_bcast(ipif, 0, irep, flags); 17162 irep = ire_check_and_create_bcast(ipif, INADDR_BROADCAST, irep, flags); 17163 17164 /* 17165 * For backward compatibility, we create net broadcast IREs based on 17166 * the old "IP address class system", since some old machines only 17167 * respond to these class derived net broadcast. However, we must not 17168 * create these net broadcast IREs if the subnetmask is shorter than 17169 * the IP address class based derived netmask. Otherwise, we may 17170 * create a net broadcast address which is the same as an IP address 17171 * on the subnet -- and then TCP will refuse to talk to that address. 17172 */ 17173 if (netmask < subnetmask) { 17174 addr = netmask & ipif->ipif_subnet; 17175 irep = ire_check_and_create_bcast(ipif, addr, irep, flags); 17176 irep = ire_check_and_create_bcast(ipif, ~netmask | addr, irep, 17177 flags); 17178 } 17179 17180 /* 17181 * Don't create IRE_BROADCAST IREs for the interface if the subnetmask 17182 * is 0xFFFFFFFF, as an IRE_LOCAL for that interface is already 17183 * created. Creating these broadcast IREs will only create confusion 17184 * as `addr' will be the same as the IP address. 17185 */ 17186 if (subnetmask != 0xFFFFFFFF) { 17187 addr = ipif->ipif_subnet; 17188 irep = ire_check_and_create_bcast(ipif, addr, irep, flags); 17189 irep = ire_check_and_create_bcast(ipif, ~subnetmask | addr, 17190 irep, flags); 17191 } 17192 17193 return (irep); 17194 } 17195 17196 /* 17197 * Broadcast IRE info structure used in the functions below. Since we 17198 * allocate BCAST_COUNT of them on the stack, keep the bit layout compact. 17199 */ 17200 typedef struct bcast_ireinfo { 17201 uchar_t bi_type; /* BCAST_* value from below */ 17202 uchar_t bi_willdie:1, /* will this IRE be going away? */ 17203 bi_needrep:1, /* do we need to replace it? */ 17204 bi_haverep:1, /* have we replaced it? */ 17205 bi_pad:5; 17206 ipaddr_t bi_addr; /* IRE address */ 17207 ipif_t *bi_backup; /* last-ditch ipif to replace it on */ 17208 } bcast_ireinfo_t; 17209 17210 enum { BCAST_ALLONES, BCAST_ALLZEROES, BCAST_NET, BCAST_SUBNET, BCAST_COUNT }; 17211 17212 /* 17213 * Check if `ipif' needs the dying broadcast IRE described by `bireinfop', and 17214 * return B_TRUE if it should immediately be used to recreate the IRE. 17215 */ 17216 static boolean_t 17217 ipif_consider_bcast(ipif_t *ipif, bcast_ireinfo_t *bireinfop) 17218 { 17219 ipaddr_t addr; 17220 17221 ASSERT(!bireinfop->bi_haverep && bireinfop->bi_willdie); 17222 17223 switch (bireinfop->bi_type) { 17224 case BCAST_NET: 17225 addr = ipif->ipif_subnet & ip_net_mask(ipif->ipif_subnet); 17226 if (addr != bireinfop->bi_addr) 17227 return (B_FALSE); 17228 break; 17229 case BCAST_SUBNET: 17230 if (ipif->ipif_subnet != bireinfop->bi_addr) 17231 return (B_FALSE); 17232 break; 17233 } 17234 17235 bireinfop->bi_needrep = 1; 17236 if (ipif->ipif_flags & (IPIF_DEPRECATED|IPIF_NOLOCAL|IPIF_ANYCAST)) { 17237 if (bireinfop->bi_backup == NULL) 17238 bireinfop->bi_backup = ipif; 17239 return (B_FALSE); 17240 } 17241 return (B_TRUE); 17242 } 17243 17244 /* 17245 * Create the broadcast IREs described by `bireinfop' on `ipif', and return 17246 * them ala ire_check_and_create_bcast(). 17247 */ 17248 static ire_t ** 17249 ipif_create_bcast(ipif_t *ipif, bcast_ireinfo_t *bireinfop, ire_t **irep) 17250 { 17251 ipaddr_t mask, addr; 17252 17253 ASSERT(!bireinfop->bi_haverep && bireinfop->bi_needrep); 17254 17255 addr = bireinfop->bi_addr; 17256 irep = ire_create_bcast(ipif, addr, irep); 17257 17258 switch (bireinfop->bi_type) { 17259 case BCAST_NET: 17260 mask = ip_net_mask(ipif->ipif_subnet); 17261 irep = ire_create_bcast(ipif, addr | ~mask, irep); 17262 break; 17263 case BCAST_SUBNET: 17264 mask = ipif->ipif_net_mask; 17265 irep = ire_create_bcast(ipif, addr | ~mask, irep); 17266 break; 17267 } 17268 17269 bireinfop->bi_haverep = 1; 17270 return (irep); 17271 } 17272 17273 /* 17274 * Walk through all of the ipifs on `ill' that will be affected by `test_ipif' 17275 * going away, and determine if any of the broadcast IREs (named by `bireinfop') 17276 * that are going away are still needed. If so, have ipif_create_bcast() 17277 * recreate them (except for the deprecated case, as explained below). 17278 */ 17279 static ire_t ** 17280 ill_create_bcast(ill_t *ill, ipif_t *test_ipif, bcast_ireinfo_t *bireinfo, 17281 ire_t **irep) 17282 { 17283 int i; 17284 ipif_t *ipif; 17285 17286 ASSERT(!ill->ill_isv6); 17287 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 17288 /* 17289 * Skip this ipif if it's (a) the one being taken down, (b) 17290 * not in the same zone, or (c) has no valid local address. 17291 */ 17292 if (ipif == test_ipif || 17293 ipif->ipif_zoneid != test_ipif->ipif_zoneid || 17294 ipif->ipif_subnet == 0 || 17295 (ipif->ipif_flags & (IPIF_UP|IPIF_BROADCAST|IPIF_NOXMIT)) != 17296 (IPIF_UP|IPIF_BROADCAST)) 17297 continue; 17298 17299 /* 17300 * For each dying IRE that hasn't yet been replaced, see if 17301 * `ipif' needs it and whether the IRE should be recreated on 17302 * `ipif'. If `ipif' is deprecated, ipif_consider_bcast() 17303 * will return B_FALSE even if `ipif' needs the IRE on the 17304 * hopes that we'll later find a needy non-deprecated ipif. 17305 * However, the ipif is recorded in bi_backup for possible 17306 * subsequent use by ipif_check_bcast_ires(). 17307 */ 17308 for (i = 0; i < BCAST_COUNT; i++) { 17309 if (!bireinfo[i].bi_willdie || bireinfo[i].bi_haverep) 17310 continue; 17311 if (!ipif_consider_bcast(ipif, &bireinfo[i])) 17312 continue; 17313 irep = ipif_create_bcast(ipif, &bireinfo[i], irep); 17314 } 17315 17316 /* 17317 * If we've replaced all of the broadcast IREs that are going 17318 * to be taken down, we know we're done. 17319 */ 17320 for (i = 0; i < BCAST_COUNT; i++) { 17321 if (bireinfo[i].bi_willdie && !bireinfo[i].bi_haverep) 17322 break; 17323 } 17324 if (i == BCAST_COUNT) 17325 break; 17326 } 17327 return (irep); 17328 } 17329 17330 /* 17331 * Check if `test_ipif' (which is going away) is associated with any existing 17332 * broadcast IREs, and whether any other ipifs (e.g., on the same ill) were 17333 * using those broadcast IREs. If so, recreate the broadcast IREs on one or 17334 * more of those other ipifs. (The old IREs will be deleted in ipif_down().) 17335 * 17336 * This is necessary because broadcast IREs are shared. In particular, a 17337 * given ill has one set of all-zeroes and all-ones broadcast IREs (for every 17338 * zone), plus one set of all-subnet-ones, all-subnet-zeroes, all-net-ones, 17339 * and all-net-zeroes for every net/subnet (and every zone) it has IPIF_UP 17340 * ipifs on. Thus, if there are two IPIF_UP ipifs on the same subnet with the 17341 * same zone, they will share the same set of broadcast IREs. 17342 * 17343 * Note: the upper bound of 12 IREs comes from the worst case of replacing all 17344 * six pairs (loopback and non-loopback) of broadcast IREs (all-zeroes, 17345 * all-ones, subnet-zeroes, subnet-ones, net-zeroes, and net-ones). 17346 */ 17347 static void 17348 ipif_check_bcast_ires(ipif_t *test_ipif) 17349 { 17350 ill_t *ill = test_ipif->ipif_ill; 17351 ire_t *ire, *ire_array[12]; /* see note above */ 17352 ire_t **irep1, **irep = &ire_array[0]; 17353 uint_t i, willdie; 17354 ipaddr_t mask = ip_net_mask(test_ipif->ipif_subnet); 17355 bcast_ireinfo_t bireinfo[BCAST_COUNT]; 17356 17357 ASSERT(!test_ipif->ipif_isv6); 17358 ASSERT(IAM_WRITER_IPIF(test_ipif)); 17359 17360 /* 17361 * No broadcast IREs for the LOOPBACK interface 17362 * or others such as point to point and IPIF_NOXMIT. 17363 */ 17364 if (!(test_ipif->ipif_flags & IPIF_BROADCAST) || 17365 (test_ipif->ipif_flags & IPIF_NOXMIT)) 17366 return; 17367 17368 bzero(bireinfo, sizeof (bireinfo)); 17369 bireinfo[0].bi_type = BCAST_ALLZEROES; 17370 bireinfo[0].bi_addr = 0; 17371 17372 bireinfo[1].bi_type = BCAST_ALLONES; 17373 bireinfo[1].bi_addr = INADDR_BROADCAST; 17374 17375 bireinfo[2].bi_type = BCAST_NET; 17376 bireinfo[2].bi_addr = test_ipif->ipif_subnet & mask; 17377 17378 if (test_ipif->ipif_net_mask != 0) 17379 mask = test_ipif->ipif_net_mask; 17380 bireinfo[3].bi_type = BCAST_SUBNET; 17381 bireinfo[3].bi_addr = test_ipif->ipif_subnet & mask; 17382 17383 /* 17384 * Figure out what (if any) broadcast IREs will die as a result of 17385 * `test_ipif' going away. If none will die, we're done. 17386 */ 17387 for (i = 0, willdie = 0; i < BCAST_COUNT; i++) { 17388 ire = ire_ctable_lookup(bireinfo[i].bi_addr, 0, IRE_BROADCAST, 17389 test_ipif, ALL_ZONES, NULL, 17390 (MATCH_IRE_TYPE | MATCH_IRE_IPIF), ill->ill_ipst); 17391 if (ire != NULL) { 17392 willdie++; 17393 bireinfo[i].bi_willdie = 1; 17394 ire_refrele(ire); 17395 } 17396 } 17397 17398 if (willdie == 0) 17399 return; 17400 17401 /* 17402 * Walk through all the ipifs that will be affected by the dying IREs, 17403 * and recreate the IREs as necessary. Note that all interfaces in an 17404 * IPMP illgrp share the same broadcast IREs, and thus the entire 17405 * illgrp must be walked, starting with the IPMP meta-interface (so 17406 * that broadcast IREs end up on it whenever possible). 17407 */ 17408 if (IS_UNDER_IPMP(ill)) 17409 ill = ipmp_illgrp_ipmp_ill(ill->ill_grp); 17410 17411 irep = ill_create_bcast(ill, test_ipif, bireinfo, irep); 17412 17413 if (IS_IPMP(ill) || IS_UNDER_IPMP(ill)) { 17414 ipmp_illgrp_t *illg = ill->ill_grp; 17415 17416 ill = list_head(&illg->ig_if); 17417 for (; ill != NULL; ill = list_next(&illg->ig_if, ill)) { 17418 for (i = 0; i < BCAST_COUNT; i++) { 17419 if (bireinfo[i].bi_willdie && 17420 !bireinfo[i].bi_haverep) 17421 break; 17422 } 17423 if (i == BCAST_COUNT) 17424 break; 17425 17426 irep = ill_create_bcast(ill, test_ipif, bireinfo, irep); 17427 } 17428 } 17429 17430 /* 17431 * Scan through the set of broadcast IREs and see if there are any 17432 * that we need to replace that have not yet been replaced. If so, 17433 * replace them using the appropriate backup ipif. 17434 */ 17435 for (i = 0; i < BCAST_COUNT; i++) { 17436 if (bireinfo[i].bi_needrep && !bireinfo[i].bi_haverep) 17437 irep = ipif_create_bcast(bireinfo[i].bi_backup, 17438 &bireinfo[i], irep); 17439 } 17440 17441 /* 17442 * If we can't create all of them, don't add any of them. (Code in 17443 * ip_wput_ire() and ire_to_ill() assumes that we always have a 17444 * non-loopback copy and loopback copy for a given address.) 17445 */ 17446 for (irep1 = irep; irep1 > ire_array; ) { 17447 irep1--; 17448 if (*irep1 == NULL) { 17449 ip0dbg(("ipif_check_bcast_ires: can't create " 17450 "IRE_BROADCAST, memory allocation failure\n")); 17451 while (irep > ire_array) { 17452 irep--; 17453 if (*irep != NULL) 17454 ire_delete(*irep); 17455 } 17456 return; 17457 } 17458 } 17459 17460 for (irep1 = irep; irep1 > ire_array; ) { 17461 irep1--; 17462 if (ire_add(irep1, NULL, NULL, NULL, B_FALSE) == 0) 17463 ire_refrele(*irep1); /* Held in ire_add */ 17464 } 17465 } 17466 17467 /* 17468 * Extract both the flags (including IFF_CANTCHANGE) such as IFF_IPV* 17469 * from lifr_flags and the name from lifr_name. 17470 * Set IFF_IPV* and ill_isv6 prior to doing the lookup 17471 * since ipif_lookup_on_name uses the _isv6 flags when matching. 17472 * Returns EINPROGRESS when mp has been consumed by queueing it on 17473 * ill_pending_mp and the ioctl will complete in ip_rput. 17474 * 17475 * Can operate on either a module or a driver queue. 17476 * Returns an error if not a module queue. 17477 */ 17478 /* ARGSUSED */ 17479 int 17480 ip_sioctl_slifname(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 17481 ip_ioctl_cmd_t *ipip, void *if_req) 17482 { 17483 ill_t *ill = q->q_ptr; 17484 phyint_t *phyi; 17485 ip_stack_t *ipst; 17486 struct lifreq *lifr = if_req; 17487 uint64_t new_flags; 17488 17489 ASSERT(ipif != NULL); 17490 ip1dbg(("ip_sioctl_slifname %s\n", lifr->lifr_name)); 17491 17492 if (q->q_next == NULL) { 17493 ip1dbg(("if_sioctl_slifname: SIOCSLIFNAME: no q_next\n")); 17494 return (EINVAL); 17495 } 17496 17497 /* 17498 * If we are not writer on 'q' then this interface exists already 17499 * and previous lookups (ip_extract_lifreq()) found this ipif -- 17500 * so return EALREADY. 17501 */ 17502 if (ill != ipif->ipif_ill) 17503 return (EALREADY); 17504 17505 if (ill->ill_name[0] != '\0') 17506 return (EALREADY); 17507 17508 /* 17509 * If there's another ill already with the requested name, ensure 17510 * that it's of the same type. Otherwise, ill_phyint_reinit() will 17511 * fuse together two unrelated ills, which will cause chaos. 17512 */ 17513 ipst = ill->ill_ipst; 17514 phyi = avl_find(&ipst->ips_phyint_g_list->phyint_list_avl_by_name, 17515 lifr->lifr_name, NULL); 17516 if (phyi != NULL) { 17517 ill_t *ill_mate = phyi->phyint_illv4; 17518 17519 if (ill_mate == NULL) 17520 ill_mate = phyi->phyint_illv6; 17521 ASSERT(ill_mate != NULL); 17522 17523 if (ill_mate->ill_media->ip_m_mac_type != 17524 ill->ill_media->ip_m_mac_type) { 17525 ip1dbg(("if_sioctl_slifname: SIOCSLIFNAME: attempt to " 17526 "use the same ill name on differing media\n")); 17527 return (EINVAL); 17528 } 17529 } 17530 17531 /* 17532 * We start off as IFF_IPV4 in ipif_allocate and become 17533 * IFF_IPV4 or IFF_IPV6 here depending on lifr_flags value. 17534 * The only flags that we read from user space are IFF_IPV4, 17535 * IFF_IPV6, IFF_XRESOLV and IFF_BROADCAST. 17536 * 17537 * This ill has not been inserted into the global list. 17538 * So we are still single threaded and don't need any lock 17539 * 17540 * Saniy check the flags. 17541 */ 17542 17543 if ((lifr->lifr_flags & IFF_BROADCAST) && 17544 ((lifr->lifr_flags & IFF_IPV6) || 17545 (!ill->ill_needs_attach && ill->ill_bcast_addr_length == 0))) { 17546 ip1dbg(("ip_sioctl_slifname: link not broadcast capable " 17547 "or IPv6 i.e., no broadcast \n")); 17548 return (EINVAL); 17549 } 17550 17551 new_flags = 17552 lifr->lifr_flags & (IFF_IPV6|IFF_IPV4|IFF_XRESOLV|IFF_BROADCAST); 17553 17554 if ((new_flags ^ (IFF_IPV6|IFF_IPV4)) == 0) { 17555 ip1dbg(("ip_sioctl_slifname: flags must be exactly one of " 17556 "IFF_IPV4 or IFF_IPV6\n")); 17557 return (EINVAL); 17558 } 17559 /* 17560 * Only allow the IFF_XRESOLV flag to be set on IPv6 interfaces. 17561 */ 17562 if ((new_flags & IFF_XRESOLV) && !(new_flags & IFF_IPV6) && 17563 !(ipif->ipif_isv6)) { 17564 ip1dbg(("ip_sioctl_slifname: XRESOLV only allowed on " 17565 "IPv6 interface\n")); 17566 return (EINVAL); 17567 } 17568 17569 /* 17570 * We always start off as IPv4, so only need to check for IPv6. 17571 */ 17572 if ((new_flags & IFF_IPV6) != 0) { 17573 ill->ill_flags |= ILLF_IPV6; 17574 ill->ill_flags &= ~ILLF_IPV4; 17575 } 17576 17577 if ((new_flags & IFF_BROADCAST) != 0) 17578 ipif->ipif_flags |= IPIF_BROADCAST; 17579 else 17580 ipif->ipif_flags &= ~IPIF_BROADCAST; 17581 17582 if ((new_flags & IFF_XRESOLV) != 0) 17583 ill->ill_flags |= ILLF_XRESOLV; 17584 else 17585 ill->ill_flags &= ~ILLF_XRESOLV; 17586 17587 /* We started off as V4. */ 17588 if (ill->ill_flags & ILLF_IPV6) { 17589 ill->ill_phyint->phyint_illv6 = ill; 17590 ill->ill_phyint->phyint_illv4 = NULL; 17591 } 17592 17593 return (ipif_set_values(q, mp, lifr->lifr_name, &lifr->lifr_ppa)); 17594 } 17595 17596 /* ARGSUSED */ 17597 int 17598 ip_sioctl_slifname_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 17599 ip_ioctl_cmd_t *ipip, void *if_req) 17600 { 17601 /* 17602 * ill_phyint_reinit merged the v4 and v6 into a single 17603 * ipsq. We might not have been able to complete the 17604 * slifname in ipif_set_values, if we could not become 17605 * exclusive. If so restart it here 17606 */ 17607 return (ipif_set_values_tail(ipif->ipif_ill, ipif, mp, q)); 17608 } 17609 17610 /* 17611 * Return a pointer to the ipif which matches the index, IP version type and 17612 * zoneid. 17613 */ 17614 ipif_t * 17615 ipif_lookup_on_ifindex(uint_t index, boolean_t isv6, zoneid_t zoneid, 17616 queue_t *q, mblk_t *mp, ipsq_func_t func, int *err, ip_stack_t *ipst) 17617 { 17618 ill_t *ill; 17619 ipif_t *ipif = NULL; 17620 17621 ASSERT((q == NULL && mp == NULL && func == NULL && err == NULL) || 17622 (q != NULL && mp != NULL && func != NULL && err != NULL)); 17623 17624 if (err != NULL) 17625 *err = 0; 17626 17627 ill = ill_lookup_on_ifindex(index, isv6, q, mp, func, err, ipst); 17628 if (ill != NULL) { 17629 mutex_enter(&ill->ill_lock); 17630 for (ipif = ill->ill_ipif; ipif != NULL; 17631 ipif = ipif->ipif_next) { 17632 if (IPIF_CAN_LOOKUP(ipif) && (zoneid == ALL_ZONES || 17633 zoneid == ipif->ipif_zoneid || 17634 ipif->ipif_zoneid == ALL_ZONES)) { 17635 ipif_refhold_locked(ipif); 17636 break; 17637 } 17638 } 17639 mutex_exit(&ill->ill_lock); 17640 ill_refrele(ill); 17641 if (ipif == NULL && err != NULL) 17642 *err = ENXIO; 17643 } 17644 return (ipif); 17645 } 17646 17647 /* 17648 * Change an existing physical interface's index. If the new index 17649 * is acceptable we update the index and the phyint_list_avl_by_index tree. 17650 * Finally, we update other systems which may have a dependence on the 17651 * index value. 17652 */ 17653 /* ARGSUSED */ 17654 int 17655 ip_sioctl_slifindex(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 17656 ip_ioctl_cmd_t *ipip, void *ifreq) 17657 { 17658 ill_t *ill; 17659 phyint_t *phyi; 17660 struct ifreq *ifr = (struct ifreq *)ifreq; 17661 struct lifreq *lifr = (struct lifreq *)ifreq; 17662 uint_t old_index, index; 17663 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; 17664 avl_index_t where; 17665 17666 if (ipip->ipi_cmd_type == IF_CMD) 17667 index = ifr->ifr_index; 17668 else 17669 index = lifr->lifr_index; 17670 17671 /* 17672 * Only allow on physical interface. Also, index zero is illegal. 17673 */ 17674 ill = ipif->ipif_ill; 17675 phyi = ill->ill_phyint; 17676 if (ipif->ipif_id != 0 || index == 0) { 17677 return (EINVAL); 17678 } 17679 17680 /* If the index is not changing, no work to do */ 17681 if (phyi->phyint_ifindex == index) 17682 return (0); 17683 17684 /* 17685 * Use phyint_exists() to determine if the new interface index 17686 * is already in use. If the index is unused then we need to 17687 * change the phyint's position in the phyint_list_avl_by_index 17688 * tree. If we do not do this, subsequent lookups (using the new 17689 * index value) will not find the phyint. 17690 */ 17691 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 17692 if (phyint_exists(index, ipst)) { 17693 rw_exit(&ipst->ips_ill_g_lock); 17694 return (EEXIST); 17695 } 17696 17697 /* The new index is unused. Set it in the phyint. */ 17698 old_index = phyi->phyint_ifindex; 17699 phyi->phyint_ifindex = index; 17700 17701 avl_remove(&ipst->ips_phyint_g_list->phyint_list_avl_by_index, phyi); 17702 (void) avl_find(&ipst->ips_phyint_g_list->phyint_list_avl_by_index, 17703 &index, &where); 17704 avl_insert(&ipst->ips_phyint_g_list->phyint_list_avl_by_index, 17705 phyi, where); 17706 rw_exit(&ipst->ips_ill_g_lock); 17707 17708 /* Update SCTP's ILL list */ 17709 sctp_ill_reindex(ill, old_index); 17710 17711 /* Send the routing sockets message */ 17712 ip_rts_ifmsg(ipif, RTSQ_DEFAULT); 17713 if (ILL_OTHER(ill)) 17714 ip_rts_ifmsg(ILL_OTHER(ill)->ill_ipif, RTSQ_DEFAULT); 17715 17716 return (0); 17717 } 17718 17719 /* ARGSUSED */ 17720 int 17721 ip_sioctl_get_lifindex(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 17722 ip_ioctl_cmd_t *ipip, void *ifreq) 17723 { 17724 struct ifreq *ifr = (struct ifreq *)ifreq; 17725 struct lifreq *lifr = (struct lifreq *)ifreq; 17726 17727 ip1dbg(("ip_sioctl_get_lifindex(%s:%u %p)\n", 17728 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 17729 /* Get the interface index */ 17730 if (ipip->ipi_cmd_type == IF_CMD) { 17731 ifr->ifr_index = ipif->ipif_ill->ill_phyint->phyint_ifindex; 17732 } else { 17733 lifr->lifr_index = ipif->ipif_ill->ill_phyint->phyint_ifindex; 17734 } 17735 return (0); 17736 } 17737 17738 /* ARGSUSED */ 17739 int 17740 ip_sioctl_get_lifzone(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 17741 ip_ioctl_cmd_t *ipip, void *ifreq) 17742 { 17743 struct lifreq *lifr = (struct lifreq *)ifreq; 17744 17745 ip1dbg(("ip_sioctl_get_lifzone(%s:%u %p)\n", 17746 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 17747 /* Get the interface zone */ 17748 ASSERT(ipip->ipi_cmd_type == LIF_CMD); 17749 lifr->lifr_zoneid = ipif->ipif_zoneid; 17750 return (0); 17751 } 17752 17753 /* 17754 * Set the zoneid of an interface. 17755 */ 17756 /* ARGSUSED */ 17757 int 17758 ip_sioctl_slifzone(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 17759 ip_ioctl_cmd_t *ipip, void *ifreq) 17760 { 17761 struct lifreq *lifr = (struct lifreq *)ifreq; 17762 int err = 0; 17763 boolean_t need_up = B_FALSE; 17764 zone_t *zptr; 17765 zone_status_t status; 17766 zoneid_t zoneid; 17767 17768 ASSERT(ipip->ipi_cmd_type == LIF_CMD); 17769 if ((zoneid = lifr->lifr_zoneid) == ALL_ZONES) { 17770 if (!is_system_labeled()) 17771 return (ENOTSUP); 17772 zoneid = GLOBAL_ZONEID; 17773 } 17774 17775 /* cannot assign instance zero to a non-global zone */ 17776 if (ipif->ipif_id == 0 && zoneid != GLOBAL_ZONEID) 17777 return (ENOTSUP); 17778 17779 /* 17780 * Cannot assign to a zone that doesn't exist or is shutting down. In 17781 * the event of a race with the zone shutdown processing, since IP 17782 * serializes this ioctl and SIOCGLIFCONF/SIOCLIFREMOVEIF, we know the 17783 * interface will be cleaned up even if the zone is shut down 17784 * immediately after the status check. If the interface can't be brought 17785 * down right away, and the zone is shut down before the restart 17786 * function is called, we resolve the possible races by rechecking the 17787 * zone status in the restart function. 17788 */ 17789 if ((zptr = zone_find_by_id(zoneid)) == NULL) 17790 return (EINVAL); 17791 status = zone_status_get(zptr); 17792 zone_rele(zptr); 17793 17794 if (status != ZONE_IS_READY && status != ZONE_IS_RUNNING) 17795 return (EINVAL); 17796 17797 if (ipif->ipif_flags & IPIF_UP) { 17798 /* 17799 * If the interface is already marked up, 17800 * we call ipif_down which will take care 17801 * of ditching any IREs that have been set 17802 * up based on the old interface address. 17803 */ 17804 err = ipif_logical_down(ipif, q, mp); 17805 if (err == EINPROGRESS) 17806 return (err); 17807 ipif_down_tail(ipif); 17808 need_up = B_TRUE; 17809 } 17810 17811 err = ip_sioctl_slifzone_tail(ipif, lifr->lifr_zoneid, q, mp, need_up); 17812 return (err); 17813 } 17814 17815 static int 17816 ip_sioctl_slifzone_tail(ipif_t *ipif, zoneid_t zoneid, 17817 queue_t *q, mblk_t *mp, boolean_t need_up) 17818 { 17819 int err = 0; 17820 ip_stack_t *ipst; 17821 17822 ip1dbg(("ip_sioctl_zoneid_tail(%s:%u %p)\n", 17823 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 17824 17825 if (CONN_Q(q)) 17826 ipst = CONNQ_TO_IPST(q); 17827 else 17828 ipst = ILLQ_TO_IPST(q); 17829 17830 /* 17831 * For exclusive stacks we don't allow a different zoneid than 17832 * global. 17833 */ 17834 if (ipst->ips_netstack->netstack_stackid != GLOBAL_NETSTACKID && 17835 zoneid != GLOBAL_ZONEID) 17836 return (EINVAL); 17837 17838 /* Set the new zone id. */ 17839 ipif->ipif_zoneid = zoneid; 17840 17841 /* Update sctp list */ 17842 sctp_update_ipif(ipif, SCTP_IPIF_UPDATE); 17843 17844 if (need_up) { 17845 /* 17846 * Now bring the interface back up. If this 17847 * is the only IPIF for the ILL, ipif_up 17848 * will have to re-bind to the device, so 17849 * we may get back EINPROGRESS, in which 17850 * case, this IOCTL will get completed in 17851 * ip_rput_dlpi when we see the DL_BIND_ACK. 17852 */ 17853 err = ipif_up(ipif, q, mp); 17854 } 17855 return (err); 17856 } 17857 17858 /* ARGSUSED */ 17859 int 17860 ip_sioctl_slifzone_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 17861 ip_ioctl_cmd_t *ipip, void *if_req) 17862 { 17863 struct lifreq *lifr = (struct lifreq *)if_req; 17864 zoneid_t zoneid; 17865 zone_t *zptr; 17866 zone_status_t status; 17867 17868 ASSERT(ipif->ipif_id != 0); 17869 ASSERT(ipip->ipi_cmd_type == LIF_CMD); 17870 if ((zoneid = lifr->lifr_zoneid) == ALL_ZONES) 17871 zoneid = GLOBAL_ZONEID; 17872 17873 ip1dbg(("ip_sioctl_slifzone_restart(%s:%u %p)\n", 17874 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 17875 17876 /* 17877 * We recheck the zone status to resolve the following race condition: 17878 * 1) process sends SIOCSLIFZONE to put hme0:1 in zone "myzone"; 17879 * 2) hme0:1 is up and can't be brought down right away; 17880 * ip_sioctl_slifzone() returns EINPROGRESS and the request is queued; 17881 * 3) zone "myzone" is halted; the zone status switches to 17882 * 'shutting_down' and the zones framework sends SIOCGLIFCONF to list 17883 * the interfaces to remove - hme0:1 is not returned because it's not 17884 * yet in "myzone", so it won't be removed; 17885 * 4) the restart function for SIOCSLIFZONE is called; without the 17886 * status check here, we would have hme0:1 in "myzone" after it's been 17887 * destroyed. 17888 * Note that if the status check fails, we need to bring the interface 17889 * back to its state prior to ip_sioctl_slifzone(), hence the call to 17890 * ipif_up_done[_v6](). 17891 */ 17892 status = ZONE_IS_UNINITIALIZED; 17893 if ((zptr = zone_find_by_id(zoneid)) != NULL) { 17894 status = zone_status_get(zptr); 17895 zone_rele(zptr); 17896 } 17897 if (status != ZONE_IS_READY && status != ZONE_IS_RUNNING) { 17898 if (ipif->ipif_isv6) { 17899 (void) ipif_up_done_v6(ipif); 17900 } else { 17901 (void) ipif_up_done(ipif); 17902 } 17903 return (EINVAL); 17904 } 17905 17906 ipif_down_tail(ipif); 17907 17908 return (ip_sioctl_slifzone_tail(ipif, lifr->lifr_zoneid, q, mp, 17909 B_TRUE)); 17910 } 17911 17912 /* 17913 * Return the number of addresses on `ill' with one or more of the values 17914 * in `set' set and all of the values in `clear' clear. 17915 */ 17916 static uint_t 17917 ill_flagaddr_cnt(const ill_t *ill, uint64_t set, uint64_t clear) 17918 { 17919 ipif_t *ipif; 17920 uint_t cnt = 0; 17921 17922 ASSERT(IAM_WRITER_ILL(ill)); 17923 17924 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) 17925 if ((ipif->ipif_flags & set) && !(ipif->ipif_flags & clear)) 17926 cnt++; 17927 17928 return (cnt); 17929 } 17930 17931 /* 17932 * Return the number of migratable addresses on `ill' that are under 17933 * application control. 17934 */ 17935 uint_t 17936 ill_appaddr_cnt(const ill_t *ill) 17937 { 17938 return (ill_flagaddr_cnt(ill, IPIF_DHCPRUNNING | IPIF_ADDRCONF, 17939 IPIF_NOFAILOVER)); 17940 } 17941 17942 /* 17943 * Return the number of point-to-point addresses on `ill'. 17944 */ 17945 uint_t 17946 ill_ptpaddr_cnt(const ill_t *ill) 17947 { 17948 return (ill_flagaddr_cnt(ill, IPIF_POINTOPOINT, 0)); 17949 } 17950 17951 /* ARGSUSED */ 17952 int 17953 ip_sioctl_get_lifusesrc(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 17954 ip_ioctl_cmd_t *ipip, void *ifreq) 17955 { 17956 struct lifreq *lifr = ifreq; 17957 17958 ASSERT(q->q_next == NULL); 17959 ASSERT(CONN_Q(q)); 17960 17961 ip1dbg(("ip_sioctl_get_lifusesrc(%s:%u %p)\n", 17962 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 17963 lifr->lifr_index = ipif->ipif_ill->ill_usesrc_ifindex; 17964 ip1dbg(("ip_sioctl_get_lifusesrc:lifr_index = %d\n", lifr->lifr_index)); 17965 17966 return (0); 17967 } 17968 17969 /* Find the previous ILL in this usesrc group */ 17970 static ill_t * 17971 ill_prev_usesrc(ill_t *uill) 17972 { 17973 ill_t *ill; 17974 17975 for (ill = uill->ill_usesrc_grp_next; 17976 ASSERT(ill), ill->ill_usesrc_grp_next != uill; 17977 ill = ill->ill_usesrc_grp_next) 17978 /* do nothing */; 17979 return (ill); 17980 } 17981 17982 /* 17983 * Release all members of the usesrc group. This routine is called 17984 * from ill_delete when the interface being unplumbed is the 17985 * group head. 17986 */ 17987 static void 17988 ill_disband_usesrc_group(ill_t *uill) 17989 { 17990 ill_t *next_ill, *tmp_ill; 17991 ip_stack_t *ipst = uill->ill_ipst; 17992 17993 ASSERT(RW_WRITE_HELD(&ipst->ips_ill_g_usesrc_lock)); 17994 next_ill = uill->ill_usesrc_grp_next; 17995 17996 do { 17997 ASSERT(next_ill != NULL); 17998 tmp_ill = next_ill->ill_usesrc_grp_next; 17999 ASSERT(tmp_ill != NULL); 18000 next_ill->ill_usesrc_grp_next = NULL; 18001 next_ill->ill_usesrc_ifindex = 0; 18002 next_ill = tmp_ill; 18003 } while (next_ill->ill_usesrc_ifindex != 0); 18004 uill->ill_usesrc_grp_next = NULL; 18005 } 18006 18007 /* 18008 * Remove the client usesrc ILL from the list and relink to a new list 18009 */ 18010 int 18011 ill_relink_usesrc_ills(ill_t *ucill, ill_t *uill, uint_t ifindex) 18012 { 18013 ill_t *ill, *tmp_ill; 18014 ip_stack_t *ipst = ucill->ill_ipst; 18015 18016 ASSERT((ucill != NULL) && (ucill->ill_usesrc_grp_next != NULL) && 18017 (uill != NULL) && RW_WRITE_HELD(&ipst->ips_ill_g_usesrc_lock)); 18018 18019 /* 18020 * Check if the usesrc client ILL passed in is not already 18021 * in use as a usesrc ILL i.e one whose source address is 18022 * in use OR a usesrc ILL is not already in use as a usesrc 18023 * client ILL 18024 */ 18025 if ((ucill->ill_usesrc_ifindex == 0) || 18026 (uill->ill_usesrc_ifindex != 0)) { 18027 return (-1); 18028 } 18029 18030 ill = ill_prev_usesrc(ucill); 18031 ASSERT(ill->ill_usesrc_grp_next != NULL); 18032 18033 /* Remove from the current list */ 18034 if (ill->ill_usesrc_grp_next->ill_usesrc_grp_next == ill) { 18035 /* Only two elements in the list */ 18036 ASSERT(ill->ill_usesrc_ifindex == 0); 18037 ill->ill_usesrc_grp_next = NULL; 18038 } else { 18039 ill->ill_usesrc_grp_next = ucill->ill_usesrc_grp_next; 18040 } 18041 18042 if (ifindex == 0) { 18043 ucill->ill_usesrc_ifindex = 0; 18044 ucill->ill_usesrc_grp_next = NULL; 18045 return (0); 18046 } 18047 18048 ucill->ill_usesrc_ifindex = ifindex; 18049 tmp_ill = uill->ill_usesrc_grp_next; 18050 uill->ill_usesrc_grp_next = ucill; 18051 ucill->ill_usesrc_grp_next = 18052 (tmp_ill != NULL) ? tmp_ill : uill; 18053 return (0); 18054 } 18055 18056 /* 18057 * Set the ill_usesrc and ill_usesrc_head fields. See synchronization notes in 18058 * ip.c for locking details. 18059 */ 18060 /* ARGSUSED */ 18061 int 18062 ip_sioctl_slifusesrc(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 18063 ip_ioctl_cmd_t *ipip, void *ifreq) 18064 { 18065 struct lifreq *lifr = (struct lifreq *)ifreq; 18066 boolean_t isv6 = B_FALSE, reset_flg = B_FALSE, 18067 ill_flag_changed = B_FALSE; 18068 ill_t *usesrc_ill, *usesrc_cli_ill = ipif->ipif_ill; 18069 int err = 0, ret; 18070 uint_t ifindex; 18071 ipsq_t *ipsq = NULL; 18072 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; 18073 18074 ASSERT(IAM_WRITER_IPIF(ipif)); 18075 ASSERT(q->q_next == NULL); 18076 ASSERT(CONN_Q(q)); 18077 18078 isv6 = (Q_TO_CONN(q))->conn_af_isv6; 18079 18080 ifindex = lifr->lifr_index; 18081 if (ifindex == 0) { 18082 if (usesrc_cli_ill->ill_usesrc_grp_next == NULL) { 18083 /* non usesrc group interface, nothing to reset */ 18084 return (0); 18085 } 18086 ifindex = usesrc_cli_ill->ill_usesrc_ifindex; 18087 /* valid reset request */ 18088 reset_flg = B_TRUE; 18089 } 18090 18091 usesrc_ill = ill_lookup_on_ifindex(ifindex, isv6, q, mp, 18092 ip_process_ioctl, &err, ipst); 18093 if (usesrc_ill == NULL) { 18094 return (err); 18095 } 18096 18097 ipsq = ipsq_try_enter(NULL, usesrc_ill, q, mp, ip_process_ioctl, 18098 NEW_OP, B_TRUE); 18099 if (ipsq == NULL) { 18100 err = EINPROGRESS; 18101 /* Operation enqueued on the ipsq of the usesrc ILL */ 18102 goto done; 18103 } 18104 18105 /* USESRC isn't currently supported with IPMP */ 18106 if (IS_IPMP(usesrc_ill) || IS_UNDER_IPMP(usesrc_ill)) { 18107 err = ENOTSUP; 18108 goto done; 18109 } 18110 18111 /* 18112 * USESRC isn't compatible with the STANDBY flag. (STANDBY is only 18113 * used by IPMP underlying interfaces, but someone might think it's 18114 * more general and try to use it independently with VNI.) 18115 */ 18116 if (usesrc_ill->ill_phyint->phyint_flags & PHYI_STANDBY) { 18117 err = ENOTSUP; 18118 goto done; 18119 } 18120 18121 /* 18122 * If the client is already in use as a usesrc_ill or a usesrc_ill is 18123 * already a client then return EINVAL 18124 */ 18125 if (IS_USESRC_ILL(usesrc_cli_ill) || IS_USESRC_CLI_ILL(usesrc_ill)) { 18126 err = EINVAL; 18127 goto done; 18128 } 18129 18130 /* 18131 * If the ill_usesrc_ifindex field is already set to what it needs to 18132 * be then this is a duplicate operation. 18133 */ 18134 if (!reset_flg && usesrc_cli_ill->ill_usesrc_ifindex == ifindex) { 18135 err = 0; 18136 goto done; 18137 } 18138 18139 ip1dbg(("ip_sioctl_slifusesrc: usesrc_cli_ill %s, usesrc_ill %s," 18140 " v6 = %d", usesrc_cli_ill->ill_name, usesrc_ill->ill_name, 18141 usesrc_ill->ill_isv6)); 18142 18143 /* 18144 * The next step ensures that no new ires will be created referencing 18145 * the client ill, until the ILL_CHANGING flag is cleared. Then 18146 * we go through an ire walk deleting all ire caches that reference 18147 * the client ill. New ires referencing the client ill that are added 18148 * to the ire table before the ILL_CHANGING flag is set, will be 18149 * cleaned up by the ire walk below. Attempt to add new ires referencing 18150 * the client ill while the ILL_CHANGING flag is set will be failed 18151 * during the ire_add in ire_atomic_start. ire_atomic_start atomically 18152 * checks (under the ill_g_usesrc_lock) that the ire being added 18153 * is not stale, i.e the ire_stq and ire_ipif are consistent and 18154 * belong to the same usesrc group. 18155 */ 18156 mutex_enter(&usesrc_cli_ill->ill_lock); 18157 usesrc_cli_ill->ill_state_flags |= ILL_CHANGING; 18158 mutex_exit(&usesrc_cli_ill->ill_lock); 18159 ill_flag_changed = B_TRUE; 18160 18161 if (ipif->ipif_isv6) 18162 ire_walk_v6(ipif_delete_cache_ire, (char *)usesrc_cli_ill, 18163 ALL_ZONES, ipst); 18164 else 18165 ire_walk_v4(ipif_delete_cache_ire, (char *)usesrc_cli_ill, 18166 ALL_ZONES, ipst); 18167 18168 /* 18169 * ill_g_usesrc_lock global lock protects the ill_usesrc_grp_next 18170 * and the ill_usesrc_ifindex fields 18171 */ 18172 rw_enter(&ipst->ips_ill_g_usesrc_lock, RW_WRITER); 18173 18174 if (reset_flg) { 18175 ret = ill_relink_usesrc_ills(usesrc_cli_ill, usesrc_ill, 0); 18176 if (ret != 0) { 18177 err = EINVAL; 18178 } 18179 rw_exit(&ipst->ips_ill_g_usesrc_lock); 18180 goto done; 18181 } 18182 18183 /* 18184 * Four possibilities to consider: 18185 * 1. Both usesrc_ill and usesrc_cli_ill are not part of any usesrc grp 18186 * 2. usesrc_ill is part of a group but usesrc_cli_ill isn't 18187 * 3. usesrc_cli_ill is part of a group but usesrc_ill isn't 18188 * 4. Both are part of their respective usesrc groups 18189 */ 18190 if ((usesrc_ill->ill_usesrc_grp_next == NULL) && 18191 (usesrc_cli_ill->ill_usesrc_grp_next == NULL)) { 18192 ASSERT(usesrc_ill->ill_usesrc_ifindex == 0); 18193 usesrc_cli_ill->ill_usesrc_ifindex = ifindex; 18194 usesrc_ill->ill_usesrc_grp_next = usesrc_cli_ill; 18195 usesrc_cli_ill->ill_usesrc_grp_next = usesrc_ill; 18196 } else if ((usesrc_ill->ill_usesrc_grp_next != NULL) && 18197 (usesrc_cli_ill->ill_usesrc_grp_next == NULL)) { 18198 usesrc_cli_ill->ill_usesrc_ifindex = ifindex; 18199 /* Insert at head of list */ 18200 usesrc_cli_ill->ill_usesrc_grp_next = 18201 usesrc_ill->ill_usesrc_grp_next; 18202 usesrc_ill->ill_usesrc_grp_next = usesrc_cli_ill; 18203 } else { 18204 ret = ill_relink_usesrc_ills(usesrc_cli_ill, usesrc_ill, 18205 ifindex); 18206 if (ret != 0) 18207 err = EINVAL; 18208 } 18209 rw_exit(&ipst->ips_ill_g_usesrc_lock); 18210 18211 done: 18212 if (ill_flag_changed) { 18213 mutex_enter(&usesrc_cli_ill->ill_lock); 18214 usesrc_cli_ill->ill_state_flags &= ~ILL_CHANGING; 18215 mutex_exit(&usesrc_cli_ill->ill_lock); 18216 } 18217 if (ipsq != NULL) 18218 ipsq_exit(ipsq); 18219 /* The refrele on the lifr_name ipif is done by ip_process_ioctl */ 18220 ill_refrele(usesrc_ill); 18221 return (err); 18222 } 18223 18224 /* 18225 * comparison function used by avl. 18226 */ 18227 static int 18228 ill_phyint_compare_index(const void *index_ptr, const void *phyip) 18229 { 18230 18231 uint_t index; 18232 18233 ASSERT(phyip != NULL && index_ptr != NULL); 18234 18235 index = *((uint_t *)index_ptr); 18236 /* 18237 * let the phyint with the lowest index be on top. 18238 */ 18239 if (((phyint_t *)phyip)->phyint_ifindex < index) 18240 return (1); 18241 if (((phyint_t *)phyip)->phyint_ifindex > index) 18242 return (-1); 18243 return (0); 18244 } 18245 18246 /* 18247 * comparison function used by avl. 18248 */ 18249 static int 18250 ill_phyint_compare_name(const void *name_ptr, const void *phyip) 18251 { 18252 ill_t *ill; 18253 int res = 0; 18254 18255 ASSERT(phyip != NULL && name_ptr != NULL); 18256 18257 if (((phyint_t *)phyip)->phyint_illv4) 18258 ill = ((phyint_t *)phyip)->phyint_illv4; 18259 else 18260 ill = ((phyint_t *)phyip)->phyint_illv6; 18261 ASSERT(ill != NULL); 18262 18263 res = strcmp(ill->ill_name, (char *)name_ptr); 18264 if (res > 0) 18265 return (1); 18266 else if (res < 0) 18267 return (-1); 18268 return (0); 18269 } 18270 18271 /* 18272 * This function is called on the unplumb path via ill_glist_delete() when 18273 * there are no ills left on the phyint and thus the phyint can be freed. 18274 */ 18275 static void 18276 phyint_free(phyint_t *phyi) 18277 { 18278 ip_stack_t *ipst = PHYINT_TO_IPST(phyi); 18279 18280 ASSERT(phyi->phyint_illv4 == NULL && phyi->phyint_illv6 == NULL); 18281 18282 /* 18283 * If this phyint was an IPMP meta-interface, blow away the group. 18284 * This is safe to do because all of the illgrps have already been 18285 * removed by I_PUNLINK, and thus SIOCSLIFGROUPNAME cannot find us. 18286 * If we're cleaning up as a result of failed initialization, 18287 * phyint_grp may be NULL. 18288 */ 18289 if ((phyi->phyint_flags & PHYI_IPMP) && (phyi->phyint_grp != NULL)) { 18290 rw_enter(&ipst->ips_ipmp_lock, RW_WRITER); 18291 ipmp_grp_destroy(phyi->phyint_grp); 18292 phyi->phyint_grp = NULL; 18293 rw_exit(&ipst->ips_ipmp_lock); 18294 } 18295 18296 /* 18297 * If this interface was under IPMP, take it out of the group. 18298 */ 18299 if (phyi->phyint_grp != NULL) 18300 ipmp_phyint_leave_grp(phyi); 18301 18302 /* 18303 * Delete the phyint and disassociate its ipsq. The ipsq itself 18304 * will be freed in ipsq_exit(). 18305 */ 18306 phyi->phyint_ipsq->ipsq_phyint = NULL; 18307 phyi->phyint_name[0] = '\0'; 18308 18309 mi_free(phyi); 18310 } 18311 18312 /* 18313 * Attach the ill to the phyint structure which can be shared by both 18314 * IPv4 and IPv6 ill. ill_init allocates a phyint to just hold flags. This 18315 * function is called from ipif_set_values and ill_lookup_on_name (for 18316 * loopback) where we know the name of the ill. We lookup the ill and if 18317 * there is one present already with the name use that phyint. Otherwise 18318 * reuse the one allocated by ill_init. 18319 */ 18320 static void 18321 ill_phyint_reinit(ill_t *ill) 18322 { 18323 boolean_t isv6 = ill->ill_isv6; 18324 phyint_t *phyi_old; 18325 phyint_t *phyi; 18326 avl_index_t where = 0; 18327 ill_t *ill_other = NULL; 18328 ip_stack_t *ipst = ill->ill_ipst; 18329 18330 ASSERT(RW_WRITE_HELD(&ipst->ips_ill_g_lock)); 18331 18332 phyi_old = ill->ill_phyint; 18333 ASSERT(isv6 || (phyi_old->phyint_illv4 == ill && 18334 phyi_old->phyint_illv6 == NULL)); 18335 ASSERT(!isv6 || (phyi_old->phyint_illv6 == ill && 18336 phyi_old->phyint_illv4 == NULL)); 18337 ASSERT(phyi_old->phyint_ifindex == 0); 18338 18339 /* 18340 * Now that our ill has a name, set it in the phyint. 18341 */ 18342 (void) strlcpy(ill->ill_phyint->phyint_name, ill->ill_name, LIFNAMSIZ); 18343 18344 phyi = avl_find(&ipst->ips_phyint_g_list->phyint_list_avl_by_name, 18345 ill->ill_name, &where); 18346 18347 /* 18348 * 1. We grabbed the ill_g_lock before inserting this ill into 18349 * the global list of ills. So no other thread could have located 18350 * this ill and hence the ipsq of this ill is guaranteed to be empty. 18351 * 2. Now locate the other protocol instance of this ill. 18352 * 3. Now grab both ill locks in the right order, and the phyint lock of 18353 * the new ipsq. Holding ill locks + ill_g_lock ensures that the ipsq 18354 * of neither ill can change. 18355 * 4. Merge the phyint and thus the ipsq as well of this ill onto the 18356 * other ill. 18357 * 5. Release all locks. 18358 */ 18359 18360 /* 18361 * Look for IPv4 if we are initializing IPv6 or look for IPv6 if 18362 * we are initializing IPv4. 18363 */ 18364 if (phyi != NULL) { 18365 ill_other = (isv6) ? phyi->phyint_illv4 : phyi->phyint_illv6; 18366 ASSERT(ill_other->ill_phyint != NULL); 18367 ASSERT((isv6 && !ill_other->ill_isv6) || 18368 (!isv6 && ill_other->ill_isv6)); 18369 GRAB_ILL_LOCKS(ill, ill_other); 18370 /* 18371 * We are potentially throwing away phyint_flags which 18372 * could be different from the one that we obtain from 18373 * ill_other->ill_phyint. But it is okay as we are assuming 18374 * that the state maintained within IP is correct. 18375 */ 18376 mutex_enter(&phyi->phyint_lock); 18377 if (isv6) { 18378 ASSERT(phyi->phyint_illv6 == NULL); 18379 phyi->phyint_illv6 = ill; 18380 } else { 18381 ASSERT(phyi->phyint_illv4 == NULL); 18382 phyi->phyint_illv4 = ill; 18383 } 18384 18385 /* 18386 * Delete the old phyint and make its ipsq eligible 18387 * to be freed in ipsq_exit(). 18388 */ 18389 phyi_old->phyint_illv4 = NULL; 18390 phyi_old->phyint_illv6 = NULL; 18391 phyi_old->phyint_ipsq->ipsq_phyint = NULL; 18392 phyi_old->phyint_name[0] = '\0'; 18393 mi_free(phyi_old); 18394 } else { 18395 mutex_enter(&ill->ill_lock); 18396 /* 18397 * We don't need to acquire any lock, since 18398 * the ill is not yet visible globally and we 18399 * have not yet released the ill_g_lock. 18400 */ 18401 phyi = phyi_old; 18402 mutex_enter(&phyi->phyint_lock); 18403 /* XXX We need a recovery strategy here. */ 18404 if (!phyint_assign_ifindex(phyi, ipst)) 18405 cmn_err(CE_PANIC, "phyint_assign_ifindex() failed"); 18406 18407 avl_insert(&ipst->ips_phyint_g_list->phyint_list_avl_by_name, 18408 (void *)phyi, where); 18409 18410 (void) avl_find(&ipst->ips_phyint_g_list-> 18411 phyint_list_avl_by_index, 18412 &phyi->phyint_ifindex, &where); 18413 avl_insert(&ipst->ips_phyint_g_list->phyint_list_avl_by_index, 18414 (void *)phyi, where); 18415 } 18416 18417 /* 18418 * Reassigning ill_phyint automatically reassigns the ipsq also. 18419 * pending mp is not affected because that is per ill basis. 18420 */ 18421 ill->ill_phyint = phyi; 18422 18423 /* 18424 * Now that the phyint's ifindex has been assigned, complete the 18425 * remaining 18426 */ 18427 18428 ill->ill_ip_mib->ipIfStatsIfIndex = ill->ill_phyint->phyint_ifindex; 18429 if (ill->ill_isv6) { 18430 ill->ill_icmp6_mib->ipv6IfIcmpIfIndex = 18431 ill->ill_phyint->phyint_ifindex; 18432 ill->ill_mcast_type = ipst->ips_mld_max_version; 18433 } else { 18434 ill->ill_mcast_type = ipst->ips_igmp_max_version; 18435 } 18436 18437 /* 18438 * Generate an event within the hooks framework to indicate that 18439 * a new interface has just been added to IP. For this event to 18440 * be generated, the network interface must, at least, have an 18441 * ifindex assigned to it. (We don't generate the event for 18442 * loopback since ill_lookup_on_name() has its own NE_PLUMB event.) 18443 * 18444 * This needs to be run inside the ill_g_lock perimeter to ensure 18445 * that the ordering of delivered events to listeners matches the 18446 * order of them in the kernel. 18447 */ 18448 if (!IS_LOOPBACK(ill)) { 18449 ill_nic_event_dispatch(ill, 0, NE_PLUMB, ill->ill_name, 18450 ill->ill_name_length); 18451 } 18452 RELEASE_ILL_LOCKS(ill, ill_other); 18453 mutex_exit(&phyi->phyint_lock); 18454 } 18455 18456 /* 18457 * Notify any downstream modules of the name of this interface. 18458 * An M_IOCTL is used even though we don't expect a successful reply. 18459 * Any reply message from the driver (presumably an M_IOCNAK) will 18460 * eventually get discarded somewhere upstream. The message format is 18461 * simply an SIOCSLIFNAME ioctl just as might be sent from ifconfig 18462 * to IP. 18463 */ 18464 static void 18465 ip_ifname_notify(ill_t *ill, queue_t *q) 18466 { 18467 mblk_t *mp1, *mp2; 18468 struct iocblk *iocp; 18469 struct lifreq *lifr; 18470 18471 mp1 = mkiocb(SIOCSLIFNAME); 18472 if (mp1 == NULL) 18473 return; 18474 mp2 = allocb(sizeof (struct lifreq), BPRI_HI); 18475 if (mp2 == NULL) { 18476 freeb(mp1); 18477 return; 18478 } 18479 18480 mp1->b_cont = mp2; 18481 iocp = (struct iocblk *)mp1->b_rptr; 18482 iocp->ioc_count = sizeof (struct lifreq); 18483 18484 lifr = (struct lifreq *)mp2->b_rptr; 18485 mp2->b_wptr += sizeof (struct lifreq); 18486 bzero(lifr, sizeof (struct lifreq)); 18487 18488 (void) strncpy(lifr->lifr_name, ill->ill_name, LIFNAMSIZ); 18489 lifr->lifr_ppa = ill->ill_ppa; 18490 lifr->lifr_flags = (ill->ill_flags & (ILLF_IPV4|ILLF_IPV6)); 18491 18492 putnext(q, mp1); 18493 } 18494 18495 static int 18496 ipif_set_values_tail(ill_t *ill, ipif_t *ipif, mblk_t *mp, queue_t *q) 18497 { 18498 int err; 18499 ip_stack_t *ipst = ill->ill_ipst; 18500 phyint_t *phyi = ill->ill_phyint; 18501 18502 /* Set the obsolete NDD per-interface forwarding name. */ 18503 err = ill_set_ndd_name(ill); 18504 if (err != 0) { 18505 cmn_err(CE_WARN, "ipif_set_values: ill_set_ndd_name (%d)\n", 18506 err); 18507 } 18508 18509 /* 18510 * Now that ill_name is set, the configuration for the IPMP 18511 * meta-interface can be performed. 18512 */ 18513 if (IS_IPMP(ill)) { 18514 rw_enter(&ipst->ips_ipmp_lock, RW_WRITER); 18515 /* 18516 * If phyi->phyint_grp is NULL, then this is the first IPMP 18517 * meta-interface and we need to create the IPMP group. 18518 */ 18519 if (phyi->phyint_grp == NULL) { 18520 /* 18521 * If someone has renamed another IPMP group to have 18522 * the same name as our interface, bail. 18523 */ 18524 if (ipmp_grp_lookup(ill->ill_name, ipst) != NULL) { 18525 rw_exit(&ipst->ips_ipmp_lock); 18526 return (EEXIST); 18527 } 18528 phyi->phyint_grp = ipmp_grp_create(ill->ill_name, phyi); 18529 if (phyi->phyint_grp == NULL) { 18530 rw_exit(&ipst->ips_ipmp_lock); 18531 return (ENOMEM); 18532 } 18533 } 18534 rw_exit(&ipst->ips_ipmp_lock); 18535 } 18536 18537 /* Tell downstream modules where they are. */ 18538 ip_ifname_notify(ill, q); 18539 18540 /* 18541 * ill_dl_phys returns EINPROGRESS in the usual case. 18542 * Error cases are ENOMEM ... 18543 */ 18544 err = ill_dl_phys(ill, ipif, mp, q); 18545 18546 /* 18547 * If there is no IRE expiration timer running, get one started. 18548 * igmp and mld timers will be triggered by the first multicast 18549 */ 18550 if (ipst->ips_ip_ire_expire_id == 0) { 18551 /* 18552 * acquire the lock and check again. 18553 */ 18554 mutex_enter(&ipst->ips_ip_trash_timer_lock); 18555 if (ipst->ips_ip_ire_expire_id == 0) { 18556 ipst->ips_ip_ire_expire_id = timeout( 18557 ip_trash_timer_expire, ipst, 18558 MSEC_TO_TICK(ipst->ips_ip_timer_interval)); 18559 } 18560 mutex_exit(&ipst->ips_ip_trash_timer_lock); 18561 } 18562 18563 if (ill->ill_isv6) { 18564 mutex_enter(&ipst->ips_mld_slowtimeout_lock); 18565 if (ipst->ips_mld_slowtimeout_id == 0) { 18566 ipst->ips_mld_slowtimeout_id = timeout(mld_slowtimo, 18567 (void *)ipst, 18568 MSEC_TO_TICK(MCAST_SLOWTIMO_INTERVAL)); 18569 } 18570 mutex_exit(&ipst->ips_mld_slowtimeout_lock); 18571 } else { 18572 mutex_enter(&ipst->ips_igmp_slowtimeout_lock); 18573 if (ipst->ips_igmp_slowtimeout_id == 0) { 18574 ipst->ips_igmp_slowtimeout_id = timeout(igmp_slowtimo, 18575 (void *)ipst, 18576 MSEC_TO_TICK(MCAST_SLOWTIMO_INTERVAL)); 18577 } 18578 mutex_exit(&ipst->ips_igmp_slowtimeout_lock); 18579 } 18580 18581 return (err); 18582 } 18583 18584 /* 18585 * Common routine for ppa and ifname setting. Should be called exclusive. 18586 * 18587 * Returns EINPROGRESS when mp has been consumed by queueing it on 18588 * ill_pending_mp and the ioctl will complete in ip_rput. 18589 * 18590 * NOTE : If ppa is UNIT_MAX, we assign the next valid ppa and return 18591 * the new name and new ppa in lifr_name and lifr_ppa respectively. 18592 * For SLIFNAME, we pass these values back to the userland. 18593 */ 18594 static int 18595 ipif_set_values(queue_t *q, mblk_t *mp, char *interf_name, uint_t *new_ppa_ptr) 18596 { 18597 ill_t *ill; 18598 ipif_t *ipif; 18599 ipsq_t *ipsq; 18600 char *ppa_ptr; 18601 char *old_ptr; 18602 char old_char; 18603 int error; 18604 ip_stack_t *ipst; 18605 18606 ip1dbg(("ipif_set_values: interface %s\n", interf_name)); 18607 ASSERT(q->q_next != NULL); 18608 ASSERT(interf_name != NULL); 18609 18610 ill = (ill_t *)q->q_ptr; 18611 ipst = ill->ill_ipst; 18612 18613 ASSERT(ill->ill_ipst != NULL); 18614 ASSERT(ill->ill_name[0] == '\0'); 18615 ASSERT(IAM_WRITER_ILL(ill)); 18616 ASSERT((mi_strlen(interf_name) + 1) <= LIFNAMSIZ); 18617 ASSERT(ill->ill_ppa == UINT_MAX); 18618 18619 /* The ppa is sent down by ifconfig or is chosen */ 18620 if ((ppa_ptr = ill_get_ppa_ptr(interf_name)) == NULL) { 18621 return (EINVAL); 18622 } 18623 18624 /* 18625 * make sure ppa passed in is same as ppa in the name. 18626 * This check is not made when ppa == UINT_MAX in that case ppa 18627 * in the name could be anything. System will choose a ppa and 18628 * update new_ppa_ptr and inter_name to contain the choosen ppa. 18629 */ 18630 if (*new_ppa_ptr != UINT_MAX) { 18631 /* stoi changes the pointer */ 18632 old_ptr = ppa_ptr; 18633 /* 18634 * ifconfig passed in 0 for the ppa for DLPI 1 style devices 18635 * (they don't have an externally visible ppa). We assign one 18636 * here so that we can manage the interface. Note that in 18637 * the past this value was always 0 for DLPI 1 drivers. 18638 */ 18639 if (*new_ppa_ptr == 0) 18640 *new_ppa_ptr = stoi(&old_ptr); 18641 else if (*new_ppa_ptr != (uint_t)stoi(&old_ptr)) 18642 return (EINVAL); 18643 } 18644 /* 18645 * terminate string before ppa 18646 * save char at that location. 18647 */ 18648 old_char = ppa_ptr[0]; 18649 ppa_ptr[0] = '\0'; 18650 18651 ill->ill_ppa = *new_ppa_ptr; 18652 /* 18653 * Finish as much work now as possible before calling ill_glist_insert 18654 * which makes the ill globally visible and also merges it with the 18655 * other protocol instance of this phyint. The remaining work is 18656 * done after entering the ipsq which may happen sometime later. 18657 * ill_set_ndd_name occurs after the ill has been made globally visible. 18658 */ 18659 ipif = ill->ill_ipif; 18660 18661 /* We didn't do this when we allocated ipif in ip_ll_subnet_defaults */ 18662 ipif_assign_seqid(ipif); 18663 18664 if (!(ill->ill_flags & (ILLF_IPV4|ILLF_IPV6))) 18665 ill->ill_flags |= ILLF_IPV4; 18666 18667 ASSERT(ipif->ipif_next == NULL); /* Only one ipif on ill */ 18668 ASSERT((ipif->ipif_flags & IPIF_UP) == 0); 18669 18670 if (ill->ill_flags & ILLF_IPV6) { 18671 18672 ill->ill_isv6 = B_TRUE; 18673 if (ill->ill_rq != NULL) { 18674 ill->ill_rq->q_qinfo = &iprinitv6; 18675 ill->ill_wq->q_qinfo = &ipwinitv6; 18676 } 18677 18678 /* Keep the !IN6_IS_ADDR_V4MAPPED assertions happy */ 18679 ipif->ipif_v6lcl_addr = ipv6_all_zeros; 18680 ipif->ipif_v6src_addr = ipv6_all_zeros; 18681 ipif->ipif_v6subnet = ipv6_all_zeros; 18682 ipif->ipif_v6net_mask = ipv6_all_zeros; 18683 ipif->ipif_v6brd_addr = ipv6_all_zeros; 18684 ipif->ipif_v6pp_dst_addr = ipv6_all_zeros; 18685 /* 18686 * point-to-point or Non-mulicast capable 18687 * interfaces won't do NUD unless explicitly 18688 * configured to do so. 18689 */ 18690 if (ipif->ipif_flags & IPIF_POINTOPOINT || 18691 !(ill->ill_flags & ILLF_MULTICAST)) { 18692 ill->ill_flags |= ILLF_NONUD; 18693 } 18694 /* Make sure IPv4 specific flag is not set on IPv6 if */ 18695 if (ill->ill_flags & ILLF_NOARP) { 18696 /* 18697 * Note: xresolv interfaces will eventually need 18698 * NOARP set here as well, but that will require 18699 * those external resolvers to have some 18700 * knowledge of that flag and act appropriately. 18701 * Not to be changed at present. 18702 */ 18703 ill->ill_flags &= ~ILLF_NOARP; 18704 } 18705 /* 18706 * Set the ILLF_ROUTER flag according to the global 18707 * IPv6 forwarding policy. 18708 */ 18709 if (ipst->ips_ipv6_forward != 0) 18710 ill->ill_flags |= ILLF_ROUTER; 18711 } else if (ill->ill_flags & ILLF_IPV4) { 18712 ill->ill_isv6 = B_FALSE; 18713 IN6_IPADDR_TO_V4MAPPED(INADDR_ANY, &ipif->ipif_v6lcl_addr); 18714 IN6_IPADDR_TO_V4MAPPED(INADDR_ANY, &ipif->ipif_v6src_addr); 18715 IN6_IPADDR_TO_V4MAPPED(INADDR_ANY, &ipif->ipif_v6subnet); 18716 IN6_IPADDR_TO_V4MAPPED(INADDR_ANY, &ipif->ipif_v6net_mask); 18717 IN6_IPADDR_TO_V4MAPPED(INADDR_ANY, &ipif->ipif_v6brd_addr); 18718 IN6_IPADDR_TO_V4MAPPED(INADDR_ANY, &ipif->ipif_v6pp_dst_addr); 18719 /* 18720 * Set the ILLF_ROUTER flag according to the global 18721 * IPv4 forwarding policy. 18722 */ 18723 if (ipst->ips_ip_g_forward != 0) 18724 ill->ill_flags |= ILLF_ROUTER; 18725 } 18726 18727 ASSERT(ill->ill_phyint != NULL); 18728 18729 /* 18730 * The ipIfStatsIfindex and ipv6IfIcmpIfIndex assignments will 18731 * be completed in ill_glist_insert -> ill_phyint_reinit 18732 */ 18733 if (!ill_allocate_mibs(ill)) 18734 return (ENOMEM); 18735 18736 /* 18737 * Pick a default sap until we get the DL_INFO_ACK back from 18738 * the driver. 18739 */ 18740 if (ill->ill_sap == 0) { 18741 if (ill->ill_isv6) 18742 ill->ill_sap = IP6_DL_SAP; 18743 else 18744 ill->ill_sap = IP_DL_SAP; 18745 } 18746 18747 ill->ill_ifname_pending = 1; 18748 ill->ill_ifname_pending_err = 0; 18749 18750 /* 18751 * When the first ipif comes up in ipif_up_done(), multicast groups 18752 * that were joined while this ill was not bound to the DLPI link need 18753 * to be recovered by ill_recover_multicast(). 18754 */ 18755 ill->ill_need_recover_multicast = 1; 18756 18757 ill_refhold(ill); 18758 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 18759 if ((error = ill_glist_insert(ill, interf_name, 18760 (ill->ill_flags & ILLF_IPV6) == ILLF_IPV6)) > 0) { 18761 ill->ill_ppa = UINT_MAX; 18762 ill->ill_name[0] = '\0'; 18763 /* 18764 * undo null termination done above. 18765 */ 18766 ppa_ptr[0] = old_char; 18767 rw_exit(&ipst->ips_ill_g_lock); 18768 ill_refrele(ill); 18769 return (error); 18770 } 18771 18772 ASSERT(ill->ill_name_length <= LIFNAMSIZ); 18773 18774 /* 18775 * When we return the buffer pointed to by interf_name should contain 18776 * the same name as in ill_name. 18777 * If a ppa was choosen by the system (ppa passed in was UINT_MAX) 18778 * the buffer pointed to by new_ppa_ptr would not contain the right ppa 18779 * so copy full name and update the ppa ptr. 18780 * When ppa passed in != UINT_MAX all values are correct just undo 18781 * null termination, this saves a bcopy. 18782 */ 18783 if (*new_ppa_ptr == UINT_MAX) { 18784 bcopy(ill->ill_name, interf_name, ill->ill_name_length); 18785 *new_ppa_ptr = ill->ill_ppa; 18786 } else { 18787 /* 18788 * undo null termination done above. 18789 */ 18790 ppa_ptr[0] = old_char; 18791 } 18792 18793 /* Let SCTP know about this ILL */ 18794 sctp_update_ill(ill, SCTP_ILL_INSERT); 18795 18796 ipsq = ipsq_try_enter(NULL, ill, q, mp, ip_reprocess_ioctl, NEW_OP, 18797 B_TRUE); 18798 18799 rw_exit(&ipst->ips_ill_g_lock); 18800 ill_refrele(ill); 18801 if (ipsq == NULL) 18802 return (EINPROGRESS); 18803 18804 /* 18805 * If ill_phyint_reinit() changed our ipsq, then start on the new ipsq. 18806 */ 18807 if (ipsq->ipsq_xop->ipx_current_ipif == NULL) 18808 ipsq_current_start(ipsq, ipif, SIOCSLIFNAME); 18809 else 18810 ASSERT(ipsq->ipsq_xop->ipx_current_ipif == ipif); 18811 18812 error = ipif_set_values_tail(ill, ipif, mp, q); 18813 ipsq_exit(ipsq); 18814 if (error != 0 && error != EINPROGRESS) { 18815 /* 18816 * restore previous values 18817 */ 18818 ill->ill_isv6 = B_FALSE; 18819 } 18820 return (error); 18821 } 18822 18823 void 18824 ipif_init(ip_stack_t *ipst) 18825 { 18826 int i; 18827 18828 for (i = 0; i < MAX_G_HEADS; i++) { 18829 ipst->ips_ill_g_heads[i].ill_g_list_head = 18830 (ill_if_t *)&ipst->ips_ill_g_heads[i]; 18831 ipst->ips_ill_g_heads[i].ill_g_list_tail = 18832 (ill_if_t *)&ipst->ips_ill_g_heads[i]; 18833 } 18834 18835 avl_create(&ipst->ips_phyint_g_list->phyint_list_avl_by_index, 18836 ill_phyint_compare_index, 18837 sizeof (phyint_t), 18838 offsetof(struct phyint, phyint_avl_by_index)); 18839 avl_create(&ipst->ips_phyint_g_list->phyint_list_avl_by_name, 18840 ill_phyint_compare_name, 18841 sizeof (phyint_t), 18842 offsetof(struct phyint, phyint_avl_by_name)); 18843 } 18844 18845 /* 18846 * Lookup the ipif corresponding to the onlink destination address. For 18847 * point-to-point interfaces, it matches with remote endpoint destination 18848 * address. For point-to-multipoint interfaces it only tries to match the 18849 * destination with the interface's subnet address. The longest, most specific 18850 * match is found to take care of such rare network configurations like - 18851 * le0: 129.146.1.1/16 18852 * le1: 129.146.2.2/24 18853 * 18854 * This is used by SO_DONTROUTE and IP_NEXTHOP. Since neither of those are 18855 * supported on underlying interfaces in an IPMP group, underlying interfaces 18856 * are ignored when looking up a match. (If we didn't ignore them, we'd 18857 * risk using a test address as a source for outgoing traffic.) 18858 */ 18859 ipif_t * 18860 ipif_lookup_onlink_addr(ipaddr_t addr, zoneid_t zoneid, ip_stack_t *ipst) 18861 { 18862 ipif_t *ipif, *best_ipif; 18863 ill_t *ill; 18864 ill_walk_context_t ctx; 18865 18866 ASSERT(zoneid != ALL_ZONES); 18867 best_ipif = NULL; 18868 18869 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 18870 ill = ILL_START_WALK_V4(&ctx, ipst); 18871 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 18872 if (IS_UNDER_IPMP(ill)) 18873 continue; 18874 mutex_enter(&ill->ill_lock); 18875 for (ipif = ill->ill_ipif; ipif != NULL; 18876 ipif = ipif->ipif_next) { 18877 if (!IPIF_CAN_LOOKUP(ipif)) 18878 continue; 18879 if (ipif->ipif_zoneid != zoneid && 18880 ipif->ipif_zoneid != ALL_ZONES) 18881 continue; 18882 /* 18883 * Point-to-point case. Look for exact match with 18884 * destination address. 18885 */ 18886 if (ipif->ipif_flags & IPIF_POINTOPOINT) { 18887 if (ipif->ipif_pp_dst_addr == addr) { 18888 ipif_refhold_locked(ipif); 18889 mutex_exit(&ill->ill_lock); 18890 rw_exit(&ipst->ips_ill_g_lock); 18891 if (best_ipif != NULL) 18892 ipif_refrele(best_ipif); 18893 return (ipif); 18894 } 18895 } else if (ipif->ipif_subnet == (addr & 18896 ipif->ipif_net_mask)) { 18897 /* 18898 * Point-to-multipoint case. Looping through to 18899 * find the most specific match. If there are 18900 * multiple best match ipif's then prefer ipif's 18901 * that are UP. If there is only one best match 18902 * ipif and it is DOWN we must still return it. 18903 */ 18904 if ((best_ipif == NULL) || 18905 (ipif->ipif_net_mask > 18906 best_ipif->ipif_net_mask) || 18907 ((ipif->ipif_net_mask == 18908 best_ipif->ipif_net_mask) && 18909 ((ipif->ipif_flags & IPIF_UP) && 18910 (!(best_ipif->ipif_flags & IPIF_UP))))) { 18911 ipif_refhold_locked(ipif); 18912 mutex_exit(&ill->ill_lock); 18913 rw_exit(&ipst->ips_ill_g_lock); 18914 if (best_ipif != NULL) 18915 ipif_refrele(best_ipif); 18916 best_ipif = ipif; 18917 rw_enter(&ipst->ips_ill_g_lock, 18918 RW_READER); 18919 mutex_enter(&ill->ill_lock); 18920 } 18921 } 18922 } 18923 mutex_exit(&ill->ill_lock); 18924 } 18925 rw_exit(&ipst->ips_ill_g_lock); 18926 return (best_ipif); 18927 } 18928 18929 /* 18930 * Save enough information so that we can recreate the IRE if 18931 * the interface goes down and then up. 18932 */ 18933 static void 18934 ipif_save_ire(ipif_t *ipif, ire_t *ire) 18935 { 18936 mblk_t *save_mp; 18937 18938 save_mp = allocb(sizeof (ifrt_t), BPRI_MED); 18939 if (save_mp != NULL) { 18940 ifrt_t *ifrt; 18941 18942 save_mp->b_wptr += sizeof (ifrt_t); 18943 ifrt = (ifrt_t *)save_mp->b_rptr; 18944 bzero(ifrt, sizeof (ifrt_t)); 18945 ifrt->ifrt_type = ire->ire_type; 18946 ifrt->ifrt_addr = ire->ire_addr; 18947 ifrt->ifrt_gateway_addr = ire->ire_gateway_addr; 18948 ifrt->ifrt_src_addr = ire->ire_src_addr; 18949 ifrt->ifrt_mask = ire->ire_mask; 18950 ifrt->ifrt_flags = ire->ire_flags; 18951 ifrt->ifrt_max_frag = ire->ire_max_frag; 18952 mutex_enter(&ipif->ipif_saved_ire_lock); 18953 save_mp->b_cont = ipif->ipif_saved_ire_mp; 18954 ipif->ipif_saved_ire_mp = save_mp; 18955 ipif->ipif_saved_ire_cnt++; 18956 mutex_exit(&ipif->ipif_saved_ire_lock); 18957 } 18958 } 18959 18960 static void 18961 ipif_remove_ire(ipif_t *ipif, ire_t *ire) 18962 { 18963 mblk_t **mpp; 18964 mblk_t *mp; 18965 ifrt_t *ifrt; 18966 18967 /* Remove from ipif_saved_ire_mp list if it is there */ 18968 mutex_enter(&ipif->ipif_saved_ire_lock); 18969 for (mpp = &ipif->ipif_saved_ire_mp; *mpp != NULL; 18970 mpp = &(*mpp)->b_cont) { 18971 /* 18972 * On a given ipif, the triple of address, gateway and 18973 * mask is unique for each saved IRE (in the case of 18974 * ordinary interface routes, the gateway address is 18975 * all-zeroes). 18976 */ 18977 mp = *mpp; 18978 ifrt = (ifrt_t *)mp->b_rptr; 18979 if (ifrt->ifrt_addr == ire->ire_addr && 18980 ifrt->ifrt_gateway_addr == ire->ire_gateway_addr && 18981 ifrt->ifrt_mask == ire->ire_mask) { 18982 *mpp = mp->b_cont; 18983 ipif->ipif_saved_ire_cnt--; 18984 freeb(mp); 18985 break; 18986 } 18987 } 18988 mutex_exit(&ipif->ipif_saved_ire_lock); 18989 } 18990 18991 /* 18992 * IP multirouting broadcast routes handling 18993 * Append CGTP broadcast IREs to regular ones created 18994 * at ifconfig time. 18995 */ 18996 static void 18997 ip_cgtp_bcast_add(ire_t *ire, ire_t *ire_dst, ip_stack_t *ipst) 18998 { 18999 ire_t *ire_prim; 19000 19001 ASSERT(ire != NULL); 19002 ASSERT(ire_dst != NULL); 19003 19004 ire_prim = ire_ctable_lookup(ire->ire_gateway_addr, 0, 19005 IRE_BROADCAST, NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 19006 if (ire_prim != NULL) { 19007 /* 19008 * We are in the special case of broadcasts for 19009 * CGTP. We add an IRE_BROADCAST that holds 19010 * the RTF_MULTIRT flag, the destination 19011 * address of ire_dst and the low level 19012 * info of ire_prim. In other words, CGTP 19013 * broadcast is added to the redundant ipif. 19014 */ 19015 ipif_t *ipif_prim; 19016 ire_t *bcast_ire; 19017 19018 ipif_prim = ire_prim->ire_ipif; 19019 19020 ip2dbg(("ip_cgtp_filter_bcast_add: " 19021 "ire_dst %p, ire_prim %p, ipif_prim %p\n", 19022 (void *)ire_dst, (void *)ire_prim, 19023 (void *)ipif_prim)); 19024 19025 bcast_ire = ire_create( 19026 (uchar_t *)&ire->ire_addr, 19027 (uchar_t *)&ip_g_all_ones, 19028 (uchar_t *)&ire_dst->ire_src_addr, 19029 (uchar_t *)&ire->ire_gateway_addr, 19030 &ipif_prim->ipif_mtu, 19031 NULL, 19032 ipif_prim->ipif_rq, 19033 ipif_prim->ipif_wq, 19034 IRE_BROADCAST, 19035 ipif_prim, 19036 0, 19037 0, 19038 0, 19039 ire->ire_flags, 19040 &ire_uinfo_null, 19041 NULL, 19042 NULL, 19043 ipst); 19044 19045 if (bcast_ire != NULL) { 19046 19047 if (ire_add(&bcast_ire, NULL, NULL, NULL, 19048 B_FALSE) == 0) { 19049 ip2dbg(("ip_cgtp_filter_bcast_add: " 19050 "added bcast_ire %p\n", 19051 (void *)bcast_ire)); 19052 19053 ipif_save_ire(bcast_ire->ire_ipif, 19054 bcast_ire); 19055 ire_refrele(bcast_ire); 19056 } 19057 } 19058 ire_refrele(ire_prim); 19059 } 19060 } 19061 19062 /* 19063 * IP multirouting broadcast routes handling 19064 * Remove the broadcast ire 19065 */ 19066 static void 19067 ip_cgtp_bcast_delete(ire_t *ire, ip_stack_t *ipst) 19068 { 19069 ire_t *ire_dst; 19070 19071 ASSERT(ire != NULL); 19072 ire_dst = ire_ctable_lookup(ire->ire_addr, 0, IRE_BROADCAST, 19073 NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 19074 if (ire_dst != NULL) { 19075 ire_t *ire_prim; 19076 19077 ire_prim = ire_ctable_lookup(ire->ire_gateway_addr, 0, 19078 IRE_BROADCAST, NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 19079 if (ire_prim != NULL) { 19080 ipif_t *ipif_prim; 19081 ire_t *bcast_ire; 19082 19083 ipif_prim = ire_prim->ire_ipif; 19084 19085 ip2dbg(("ip_cgtp_filter_bcast_delete: " 19086 "ire_dst %p, ire_prim %p, ipif_prim %p\n", 19087 (void *)ire_dst, (void *)ire_prim, 19088 (void *)ipif_prim)); 19089 19090 bcast_ire = ire_ctable_lookup(ire->ire_addr, 19091 ire->ire_gateway_addr, 19092 IRE_BROADCAST, 19093 ipif_prim, ALL_ZONES, 19094 NULL, 19095 MATCH_IRE_TYPE | MATCH_IRE_GW | MATCH_IRE_IPIF | 19096 MATCH_IRE_MASK, ipst); 19097 19098 if (bcast_ire != NULL) { 19099 ip2dbg(("ip_cgtp_filter_bcast_delete: " 19100 "looked up bcast_ire %p\n", 19101 (void *)bcast_ire)); 19102 ipif_remove_ire(bcast_ire->ire_ipif, 19103 bcast_ire); 19104 ire_delete(bcast_ire); 19105 ire_refrele(bcast_ire); 19106 } 19107 ire_refrele(ire_prim); 19108 } 19109 ire_refrele(ire_dst); 19110 } 19111 } 19112 19113 /* 19114 * IPsec hardware acceleration capabilities related functions. 19115 */ 19116 19117 /* 19118 * Free a per-ill IPsec capabilities structure. 19119 */ 19120 static void 19121 ill_ipsec_capab_free(ill_ipsec_capab_t *capab) 19122 { 19123 if (capab->auth_hw_algs != NULL) 19124 kmem_free(capab->auth_hw_algs, capab->algs_size); 19125 if (capab->encr_hw_algs != NULL) 19126 kmem_free(capab->encr_hw_algs, capab->algs_size); 19127 if (capab->encr_algparm != NULL) 19128 kmem_free(capab->encr_algparm, capab->encr_algparm_size); 19129 kmem_free(capab, sizeof (ill_ipsec_capab_t)); 19130 } 19131 19132 /* 19133 * Allocate a new per-ill IPsec capabilities structure. This structure 19134 * is specific to an IPsec protocol (AH or ESP). It is implemented as 19135 * an array which specifies, for each algorithm, whether this algorithm 19136 * is supported by the ill or not. 19137 */ 19138 static ill_ipsec_capab_t * 19139 ill_ipsec_capab_alloc(void) 19140 { 19141 ill_ipsec_capab_t *capab; 19142 uint_t nelems; 19143 19144 capab = kmem_zalloc(sizeof (ill_ipsec_capab_t), KM_NOSLEEP); 19145 if (capab == NULL) 19146 return (NULL); 19147 19148 /* we need one bit per algorithm */ 19149 nelems = MAX_IPSEC_ALGS / BITS(ipsec_capab_elem_t); 19150 capab->algs_size = nelems * sizeof (ipsec_capab_elem_t); 19151 19152 /* allocate memory to store algorithm flags */ 19153 capab->encr_hw_algs = kmem_zalloc(capab->algs_size, KM_NOSLEEP); 19154 if (capab->encr_hw_algs == NULL) 19155 goto nomem; 19156 capab->auth_hw_algs = kmem_zalloc(capab->algs_size, KM_NOSLEEP); 19157 if (capab->auth_hw_algs == NULL) 19158 goto nomem; 19159 /* 19160 * Leave encr_algparm NULL for now since we won't need it half 19161 * the time 19162 */ 19163 return (capab); 19164 19165 nomem: 19166 ill_ipsec_capab_free(capab); 19167 return (NULL); 19168 } 19169 19170 /* 19171 * Resize capability array. Since we're exclusive, this is OK. 19172 */ 19173 static boolean_t 19174 ill_ipsec_capab_resize_algparm(ill_ipsec_capab_t *capab, int algid) 19175 { 19176 ipsec_capab_algparm_t *nalp, *oalp; 19177 uint32_t olen, nlen; 19178 19179 oalp = capab->encr_algparm; 19180 olen = capab->encr_algparm_size; 19181 19182 if (oalp != NULL) { 19183 if (algid < capab->encr_algparm_end) 19184 return (B_TRUE); 19185 } 19186 19187 nlen = (algid + 1) * sizeof (*nalp); 19188 nalp = kmem_zalloc(nlen, KM_NOSLEEP); 19189 if (nalp == NULL) 19190 return (B_FALSE); 19191 19192 if (oalp != NULL) { 19193 bcopy(oalp, nalp, olen); 19194 kmem_free(oalp, olen); 19195 } 19196 capab->encr_algparm = nalp; 19197 capab->encr_algparm_size = nlen; 19198 capab->encr_algparm_end = algid + 1; 19199 19200 return (B_TRUE); 19201 } 19202 19203 /* 19204 * Compare the capabilities of the specified ill with the protocol 19205 * and algorithms specified by the SA passed as argument. 19206 * If they match, returns B_TRUE, B_FALSE if they do not match. 19207 * 19208 * The ill can be passed as a pointer to it, or by specifying its index 19209 * and whether it is an IPv6 ill (ill_index and ill_isv6 arguments). 19210 * 19211 * Called by ipsec_out_is_accelerated() do decide whether an outbound 19212 * packet is eligible for hardware acceleration, and by 19213 * ill_ipsec_capab_send_all() to decide whether a SA must be sent down 19214 * to a particular ill. 19215 */ 19216 boolean_t 19217 ipsec_capab_match(ill_t *ill, uint_t ill_index, boolean_t ill_isv6, 19218 ipsa_t *sa, netstack_t *ns) 19219 { 19220 boolean_t sa_isv6; 19221 uint_t algid; 19222 struct ill_ipsec_capab_s *cpp; 19223 boolean_t need_refrele = B_FALSE; 19224 ip_stack_t *ipst = ns->netstack_ip; 19225 19226 if (ill == NULL) { 19227 ill = ill_lookup_on_ifindex(ill_index, ill_isv6, NULL, 19228 NULL, NULL, NULL, ipst); 19229 if (ill == NULL) { 19230 ip0dbg(("ipsec_capab_match: ill doesn't exist\n")); 19231 return (B_FALSE); 19232 } 19233 need_refrele = B_TRUE; 19234 } 19235 19236 /* 19237 * Use the address length specified by the SA to determine 19238 * if it corresponds to a IPv6 address, and fail the matching 19239 * if the isv6 flag passed as argument does not match. 19240 * Note: this check is used for SADB capability checking before 19241 * sending SA information to an ill. 19242 */ 19243 sa_isv6 = (sa->ipsa_addrfam == AF_INET6); 19244 if (sa_isv6 != ill_isv6) 19245 /* protocol mismatch */ 19246 goto done; 19247 19248 /* 19249 * Check if the ill supports the protocol, algorithm(s) and 19250 * key size(s) specified by the SA, and get the pointers to 19251 * the algorithms supported by the ill. 19252 */ 19253 switch (sa->ipsa_type) { 19254 19255 case SADB_SATYPE_ESP: 19256 if (!(ill->ill_capabilities & ILL_CAPAB_ESP)) 19257 /* ill does not support ESP acceleration */ 19258 goto done; 19259 cpp = ill->ill_ipsec_capab_esp; 19260 algid = sa->ipsa_auth_alg; 19261 if (!IPSEC_ALG_IS_ENABLED(algid, cpp->auth_hw_algs)) 19262 goto done; 19263 algid = sa->ipsa_encr_alg; 19264 if (!IPSEC_ALG_IS_ENABLED(algid, cpp->encr_hw_algs)) 19265 goto done; 19266 if (algid < cpp->encr_algparm_end) { 19267 ipsec_capab_algparm_t *alp = &cpp->encr_algparm[algid]; 19268 if (sa->ipsa_encrkeybits < alp->minkeylen) 19269 goto done; 19270 if (sa->ipsa_encrkeybits > alp->maxkeylen) 19271 goto done; 19272 } 19273 break; 19274 19275 case SADB_SATYPE_AH: 19276 if (!(ill->ill_capabilities & ILL_CAPAB_AH)) 19277 /* ill does not support AH acceleration */ 19278 goto done; 19279 if (!IPSEC_ALG_IS_ENABLED(sa->ipsa_auth_alg, 19280 ill->ill_ipsec_capab_ah->auth_hw_algs)) 19281 goto done; 19282 break; 19283 } 19284 19285 if (need_refrele) 19286 ill_refrele(ill); 19287 return (B_TRUE); 19288 done: 19289 if (need_refrele) 19290 ill_refrele(ill); 19291 return (B_FALSE); 19292 } 19293 19294 /* 19295 * Add a new ill to the list of IPsec capable ills. 19296 * Called from ill_capability_ipsec_ack() when an ACK was received 19297 * indicating that IPsec hardware processing was enabled for an ill. 19298 * 19299 * ill must point to the ill for which acceleration was enabled. 19300 * dl_cap must be set to DL_CAPAB_IPSEC_AH or DL_CAPAB_IPSEC_ESP. 19301 */ 19302 static void 19303 ill_ipsec_capab_add(ill_t *ill, uint_t dl_cap, boolean_t sadb_resync) 19304 { 19305 ipsec_capab_ill_t **ills, *cur_ill, *new_ill; 19306 uint_t sa_type; 19307 uint_t ipproto; 19308 ip_stack_t *ipst = ill->ill_ipst; 19309 19310 ASSERT((dl_cap == DL_CAPAB_IPSEC_AH) || 19311 (dl_cap == DL_CAPAB_IPSEC_ESP)); 19312 19313 switch (dl_cap) { 19314 case DL_CAPAB_IPSEC_AH: 19315 sa_type = SADB_SATYPE_AH; 19316 ills = &ipst->ips_ipsec_capab_ills_ah; 19317 ipproto = IPPROTO_AH; 19318 break; 19319 case DL_CAPAB_IPSEC_ESP: 19320 sa_type = SADB_SATYPE_ESP; 19321 ills = &ipst->ips_ipsec_capab_ills_esp; 19322 ipproto = IPPROTO_ESP; 19323 break; 19324 } 19325 19326 rw_enter(&ipst->ips_ipsec_capab_ills_lock, RW_WRITER); 19327 19328 /* 19329 * Add ill index to list of hardware accelerators. If 19330 * already in list, do nothing. 19331 */ 19332 for (cur_ill = *ills; cur_ill != NULL && 19333 (cur_ill->ill_index != ill->ill_phyint->phyint_ifindex || 19334 cur_ill->ill_isv6 != ill->ill_isv6); cur_ill = cur_ill->next) 19335 ; 19336 19337 if (cur_ill == NULL) { 19338 /* if this is a new entry for this ill */ 19339 new_ill = kmem_zalloc(sizeof (ipsec_capab_ill_t), KM_NOSLEEP); 19340 if (new_ill == NULL) { 19341 rw_exit(&ipst->ips_ipsec_capab_ills_lock); 19342 return; 19343 } 19344 19345 new_ill->ill_index = ill->ill_phyint->phyint_ifindex; 19346 new_ill->ill_isv6 = ill->ill_isv6; 19347 new_ill->next = *ills; 19348 *ills = new_ill; 19349 } else if (!sadb_resync) { 19350 /* not resync'ing SADB and an entry exists for this ill */ 19351 rw_exit(&ipst->ips_ipsec_capab_ills_lock); 19352 return; 19353 } 19354 19355 rw_exit(&ipst->ips_ipsec_capab_ills_lock); 19356 19357 if (ipst->ips_ipcl_proto_fanout_v6[ipproto].connf_head != NULL) 19358 /* 19359 * IPsec module for protocol loaded, initiate dump 19360 * of the SADB to this ill. 19361 */ 19362 sadb_ill_download(ill, sa_type); 19363 } 19364 19365 /* 19366 * Remove an ill from the list of IPsec capable ills. 19367 */ 19368 static void 19369 ill_ipsec_capab_delete(ill_t *ill, uint_t dl_cap) 19370 { 19371 ipsec_capab_ill_t **ills, *cur_ill, *prev_ill; 19372 ip_stack_t *ipst = ill->ill_ipst; 19373 19374 ASSERT(dl_cap == DL_CAPAB_IPSEC_AH || 19375 dl_cap == DL_CAPAB_IPSEC_ESP); 19376 19377 ills = (dl_cap == DL_CAPAB_IPSEC_AH) ? &ipst->ips_ipsec_capab_ills_ah : 19378 &ipst->ips_ipsec_capab_ills_esp; 19379 19380 rw_enter(&ipst->ips_ipsec_capab_ills_lock, RW_WRITER); 19381 19382 prev_ill = NULL; 19383 for (cur_ill = *ills; cur_ill != NULL && (cur_ill->ill_index != 19384 ill->ill_phyint->phyint_ifindex || cur_ill->ill_isv6 != 19385 ill->ill_isv6); prev_ill = cur_ill, cur_ill = cur_ill->next) 19386 ; 19387 if (cur_ill == NULL) { 19388 /* entry not found */ 19389 rw_exit(&ipst->ips_ipsec_capab_ills_lock); 19390 return; 19391 } 19392 if (prev_ill == NULL) { 19393 /* entry at front of list */ 19394 *ills = NULL; 19395 } else { 19396 prev_ill->next = cur_ill->next; 19397 } 19398 kmem_free(cur_ill, sizeof (ipsec_capab_ill_t)); 19399 rw_exit(&ipst->ips_ipsec_capab_ills_lock); 19400 } 19401 19402 /* 19403 * Called by SADB to send a DL_CONTROL_REQ message to every ill 19404 * supporting the specified IPsec protocol acceleration. 19405 * sa_type must be SADB_SATYPE_AH or SADB_SATYPE_ESP. 19406 * We free the mblk and, if sa is non-null, release the held referece. 19407 */ 19408 void 19409 ill_ipsec_capab_send_all(uint_t sa_type, mblk_t *mp, ipsa_t *sa, 19410 netstack_t *ns) 19411 { 19412 ipsec_capab_ill_t *ici, *cur_ici; 19413 ill_t *ill; 19414 mblk_t *nmp, *mp_ship_list = NULL, *next_mp; 19415 ip_stack_t *ipst = ns->netstack_ip; 19416 19417 ici = (sa_type == SADB_SATYPE_AH) ? ipst->ips_ipsec_capab_ills_ah : 19418 ipst->ips_ipsec_capab_ills_esp; 19419 19420 rw_enter(&ipst->ips_ipsec_capab_ills_lock, RW_READER); 19421 19422 for (cur_ici = ici; cur_ici != NULL; cur_ici = cur_ici->next) { 19423 ill = ill_lookup_on_ifindex(cur_ici->ill_index, 19424 cur_ici->ill_isv6, NULL, NULL, NULL, NULL, ipst); 19425 19426 /* 19427 * Handle the case where the ill goes away while the SADB is 19428 * attempting to send messages. If it's going away, it's 19429 * nuking its shadow SADB, so we don't care.. 19430 */ 19431 19432 if (ill == NULL) 19433 continue; 19434 19435 if (sa != NULL) { 19436 /* 19437 * Make sure capabilities match before 19438 * sending SA to ill. 19439 */ 19440 if (!ipsec_capab_match(ill, cur_ici->ill_index, 19441 cur_ici->ill_isv6, sa, ipst->ips_netstack)) { 19442 ill_refrele(ill); 19443 continue; 19444 } 19445 19446 mutex_enter(&sa->ipsa_lock); 19447 sa->ipsa_flags |= IPSA_F_HW; 19448 mutex_exit(&sa->ipsa_lock); 19449 } 19450 19451 /* 19452 * Copy template message, and add it to the front 19453 * of the mblk ship list. We want to avoid holding 19454 * the ipsec_capab_ills_lock while sending the 19455 * message to the ills. 19456 * 19457 * The b_next and b_prev are temporarily used 19458 * to build a list of mblks to be sent down, and to 19459 * save the ill to which they must be sent. 19460 */ 19461 nmp = copymsg(mp); 19462 if (nmp == NULL) { 19463 ill_refrele(ill); 19464 continue; 19465 } 19466 ASSERT(nmp->b_next == NULL && nmp->b_prev == NULL); 19467 nmp->b_next = mp_ship_list; 19468 mp_ship_list = nmp; 19469 nmp->b_prev = (mblk_t *)ill; 19470 } 19471 19472 rw_exit(&ipst->ips_ipsec_capab_ills_lock); 19473 19474 for (nmp = mp_ship_list; nmp != NULL; nmp = next_mp) { 19475 /* restore the mblk to a sane state */ 19476 next_mp = nmp->b_next; 19477 nmp->b_next = NULL; 19478 ill = (ill_t *)nmp->b_prev; 19479 nmp->b_prev = NULL; 19480 19481 ill_dlpi_send(ill, nmp); 19482 ill_refrele(ill); 19483 } 19484 19485 if (sa != NULL) 19486 IPSA_REFRELE(sa); 19487 freemsg(mp); 19488 } 19489 19490 /* 19491 * Derive an interface id from the link layer address. 19492 * Knows about IEEE 802 and IEEE EUI-64 mappings. 19493 */ 19494 static boolean_t 19495 ip_ether_v6intfid(ill_t *ill, in6_addr_t *v6addr) 19496 { 19497 char *addr; 19498 19499 if (ill->ill_phys_addr_length != ETHERADDRL) 19500 return (B_FALSE); 19501 19502 /* Form EUI-64 like address */ 19503 addr = (char *)&v6addr->s6_addr32[2]; 19504 bcopy(ill->ill_phys_addr, addr, 3); 19505 addr[0] ^= 0x2; /* Toggle Universal/Local bit */ 19506 addr[3] = (char)0xff; 19507 addr[4] = (char)0xfe; 19508 bcopy(ill->ill_phys_addr + 3, addr + 5, 3); 19509 return (B_TRUE); 19510 } 19511 19512 /* ARGSUSED */ 19513 static boolean_t 19514 ip_nodef_v6intfid(ill_t *ill, in6_addr_t *v6addr) 19515 { 19516 return (B_FALSE); 19517 } 19518 19519 typedef struct ipmp_ifcookie { 19520 uint32_t ic_hostid; 19521 char ic_ifname[LIFNAMSIZ]; 19522 char ic_zonename[ZONENAME_MAX]; 19523 } ipmp_ifcookie_t; 19524 19525 /* 19526 * Construct a pseudo-random interface ID for the IPMP interface that's both 19527 * predictable and (almost) guaranteed to be unique. 19528 */ 19529 static boolean_t 19530 ip_ipmp_v6intfid(ill_t *ill, in6_addr_t *v6addr) 19531 { 19532 zone_t *zp; 19533 uint8_t *addr; 19534 uchar_t hash[16]; 19535 ulong_t hostid; 19536 MD5_CTX ctx; 19537 ipmp_ifcookie_t ic = { 0 }; 19538 19539 ASSERT(IS_IPMP(ill)); 19540 19541 (void) ddi_strtoul(hw_serial, NULL, 10, &hostid); 19542 ic.ic_hostid = htonl((uint32_t)hostid); 19543 19544 (void) strlcpy(ic.ic_ifname, ill->ill_name, LIFNAMSIZ); 19545 19546 if ((zp = zone_find_by_id(ill->ill_zoneid)) != NULL) { 19547 (void) strlcpy(ic.ic_zonename, zp->zone_name, ZONENAME_MAX); 19548 zone_rele(zp); 19549 } 19550 19551 MD5Init(&ctx); 19552 MD5Update(&ctx, &ic, sizeof (ic)); 19553 MD5Final(hash, &ctx); 19554 19555 /* 19556 * Map the hash to an interface ID per the basic approach in RFC3041. 19557 */ 19558 addr = &v6addr->s6_addr8[8]; 19559 bcopy(hash + 8, addr, sizeof (uint64_t)); 19560 addr[0] &= ~0x2; /* set local bit */ 19561 19562 return (B_TRUE); 19563 } 19564 19565 /* ARGSUSED */ 19566 static boolean_t 19567 ip_ether_v6mapinfo(uint_t lla_length, uint8_t *bphys_addr, uint8_t *maddr, 19568 uint32_t *hw_start, in6_addr_t *v6_extract_mask) 19569 { 19570 /* 19571 * Multicast address mappings used over Ethernet/802.X. 19572 * This address is used as a base for mappings. 19573 */ 19574 static uint8_t ipv6_g_phys_multi_addr[] = {0x33, 0x33, 0x00, 19575 0x00, 0x00, 0x00}; 19576 19577 /* 19578 * Extract low order 32 bits from IPv6 multicast address. 19579 * Or that into the link layer address, starting from the 19580 * second byte. 19581 */ 19582 *hw_start = 2; 19583 v6_extract_mask->s6_addr32[0] = 0; 19584 v6_extract_mask->s6_addr32[1] = 0; 19585 v6_extract_mask->s6_addr32[2] = 0; 19586 v6_extract_mask->s6_addr32[3] = 0xffffffffU; 19587 bcopy(ipv6_g_phys_multi_addr, maddr, lla_length); 19588 return (B_TRUE); 19589 } 19590 19591 /* 19592 * Indicate by return value whether multicast is supported. If not, 19593 * this code should not touch/change any parameters. 19594 */ 19595 /* ARGSUSED */ 19596 static boolean_t 19597 ip_ether_v4mapinfo(uint_t phys_length, uint8_t *bphys_addr, uint8_t *maddr, 19598 uint32_t *hw_start, ipaddr_t *extract_mask) 19599 { 19600 /* 19601 * Multicast address mappings used over Ethernet/802.X. 19602 * This address is used as a base for mappings. 19603 */ 19604 static uint8_t ip_g_phys_multi_addr[] = { 0x01, 0x00, 0x5e, 19605 0x00, 0x00, 0x00 }; 19606 19607 if (phys_length != ETHERADDRL) 19608 return (B_FALSE); 19609 19610 *extract_mask = htonl(0x007fffff); 19611 *hw_start = 2; 19612 bcopy(ip_g_phys_multi_addr, maddr, ETHERADDRL); 19613 return (B_TRUE); 19614 } 19615 19616 /* 19617 * Derive IPoIB interface id from the link layer address. 19618 */ 19619 static boolean_t 19620 ip_ib_v6intfid(ill_t *ill, in6_addr_t *v6addr) 19621 { 19622 char *addr; 19623 19624 if (ill->ill_phys_addr_length != 20) 19625 return (B_FALSE); 19626 addr = (char *)&v6addr->s6_addr32[2]; 19627 bcopy(ill->ill_phys_addr + 12, addr, 8); 19628 /* 19629 * In IBA 1.1 timeframe, some vendors erroneously set the u/l bit 19630 * in the globally assigned EUI-64 GUID to 1, in violation of IEEE 19631 * rules. In these cases, the IBA considers these GUIDs to be in 19632 * "Modified EUI-64" format, and thus toggling the u/l bit is not 19633 * required; vendors are required not to assign global EUI-64's 19634 * that differ only in u/l bit values, thus guaranteeing uniqueness 19635 * of the interface identifier. Whether the GUID is in modified 19636 * or proper EUI-64 format, the ipv6 identifier must have the u/l 19637 * bit set to 1. 19638 */ 19639 addr[0] |= 2; /* Set Universal/Local bit to 1 */ 19640 return (B_TRUE); 19641 } 19642 19643 /* 19644 * Note on mapping from multicast IP addresses to IPoIB multicast link 19645 * addresses. IPoIB multicast link addresses are based on IBA link addresses. 19646 * The format of an IPoIB multicast address is: 19647 * 19648 * 4 byte QPN Scope Sign. Pkey 19649 * +--------------------------------------------+ 19650 * | 00FFFFFF | FF | 1X | X01B | Pkey | GroupID | 19651 * +--------------------------------------------+ 19652 * 19653 * The Scope and Pkey components are properties of the IBA port and 19654 * network interface. They can be ascertained from the broadcast address. 19655 * The Sign. part is the signature, and is 401B for IPv4 and 601B for IPv6. 19656 */ 19657 19658 static boolean_t 19659 ip_ib_v6mapinfo(uint_t lla_length, uint8_t *bphys_addr, uint8_t *maddr, 19660 uint32_t *hw_start, in6_addr_t *v6_extract_mask) 19661 { 19662 /* 19663 * Base IPoIB IPv6 multicast address used for mappings. 19664 * Does not contain the IBA scope/Pkey values. 19665 */ 19666 static uint8_t ipv6_g_phys_ibmulti_addr[] = { 0x00, 0xff, 0xff, 0xff, 19667 0xff, 0x10, 0x60, 0x1b, 0x00, 0x00, 0x00, 0x00, 19668 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 }; 19669 19670 /* 19671 * Extract low order 80 bits from IPv6 multicast address. 19672 * Or that into the link layer address, starting from the 19673 * sixth byte. 19674 */ 19675 *hw_start = 6; 19676 bcopy(ipv6_g_phys_ibmulti_addr, maddr, lla_length); 19677 19678 /* 19679 * Now fill in the IBA scope/Pkey values from the broadcast address. 19680 */ 19681 *(maddr + 5) = *(bphys_addr + 5); 19682 *(maddr + 8) = *(bphys_addr + 8); 19683 *(maddr + 9) = *(bphys_addr + 9); 19684 19685 v6_extract_mask->s6_addr32[0] = 0; 19686 v6_extract_mask->s6_addr32[1] = htonl(0x0000ffff); 19687 v6_extract_mask->s6_addr32[2] = 0xffffffffU; 19688 v6_extract_mask->s6_addr32[3] = 0xffffffffU; 19689 return (B_TRUE); 19690 } 19691 19692 static boolean_t 19693 ip_ib_v4mapinfo(uint_t phys_length, uint8_t *bphys_addr, uint8_t *maddr, 19694 uint32_t *hw_start, ipaddr_t *extract_mask) 19695 { 19696 /* 19697 * Base IPoIB IPv4 multicast address used for mappings. 19698 * Does not contain the IBA scope/Pkey values. 19699 */ 19700 static uint8_t ipv4_g_phys_ibmulti_addr[] = { 0x00, 0xff, 0xff, 0xff, 19701 0xff, 0x10, 0x40, 0x1b, 0x00, 0x00, 0x00, 0x00, 19702 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 }; 19703 19704 if (phys_length != sizeof (ipv4_g_phys_ibmulti_addr)) 19705 return (B_FALSE); 19706 19707 /* 19708 * Extract low order 28 bits from IPv4 multicast address. 19709 * Or that into the link layer address, starting from the 19710 * sixteenth byte. 19711 */ 19712 *extract_mask = htonl(0x0fffffff); 19713 *hw_start = 16; 19714 bcopy(ipv4_g_phys_ibmulti_addr, maddr, phys_length); 19715 19716 /* 19717 * Now fill in the IBA scope/Pkey values from the broadcast address. 19718 */ 19719 *(maddr + 5) = *(bphys_addr + 5); 19720 *(maddr + 8) = *(bphys_addr + 8); 19721 *(maddr + 9) = *(bphys_addr + 9); 19722 return (B_TRUE); 19723 } 19724 19725 /* 19726 * Returns B_TRUE if an ipif is present in the given zone, matching some flags 19727 * (typically IPIF_UP). If ipifp is non-null, the held ipif is returned there. 19728 * This works for both IPv4 and IPv6; if the passed-in ill is v6, the ipif with 19729 * the link-local address is preferred. 19730 */ 19731 boolean_t 19732 ipif_lookup_zoneid(ill_t *ill, zoneid_t zoneid, int flags, ipif_t **ipifp) 19733 { 19734 ipif_t *ipif; 19735 ipif_t *maybe_ipif = NULL; 19736 19737 mutex_enter(&ill->ill_lock); 19738 if (ill->ill_state_flags & ILL_CONDEMNED) { 19739 mutex_exit(&ill->ill_lock); 19740 if (ipifp != NULL) 19741 *ipifp = NULL; 19742 return (B_FALSE); 19743 } 19744 19745 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 19746 if (!IPIF_CAN_LOOKUP(ipif)) 19747 continue; 19748 if (zoneid != ALL_ZONES && ipif->ipif_zoneid != zoneid && 19749 ipif->ipif_zoneid != ALL_ZONES) 19750 continue; 19751 if ((ipif->ipif_flags & flags) != flags) 19752 continue; 19753 19754 if (ipifp == NULL) { 19755 mutex_exit(&ill->ill_lock); 19756 ASSERT(maybe_ipif == NULL); 19757 return (B_TRUE); 19758 } 19759 if (!ill->ill_isv6 || 19760 IN6_IS_ADDR_LINKLOCAL(&ipif->ipif_v6src_addr)) { 19761 ipif_refhold_locked(ipif); 19762 mutex_exit(&ill->ill_lock); 19763 *ipifp = ipif; 19764 return (B_TRUE); 19765 } 19766 if (maybe_ipif == NULL) 19767 maybe_ipif = ipif; 19768 } 19769 if (ipifp != NULL) { 19770 if (maybe_ipif != NULL) 19771 ipif_refhold_locked(maybe_ipif); 19772 *ipifp = maybe_ipif; 19773 } 19774 mutex_exit(&ill->ill_lock); 19775 return (maybe_ipif != NULL); 19776 } 19777 19778 /* 19779 * Return a pointer to an ipif_t given a combination of (ill_idx,ipif_id) 19780 * If a pointer to an ipif_t is returned then the caller will need to do 19781 * an ill_refrele(). 19782 */ 19783 ipif_t * 19784 ipif_getby_indexes(uint_t ifindex, uint_t lifidx, boolean_t isv6, 19785 ip_stack_t *ipst) 19786 { 19787 ipif_t *ipif; 19788 ill_t *ill; 19789 19790 ill = ill_lookup_on_ifindex(ifindex, isv6, NULL, NULL, NULL, NULL, 19791 ipst); 19792 if (ill == NULL) 19793 return (NULL); 19794 19795 mutex_enter(&ill->ill_lock); 19796 if (ill->ill_state_flags & ILL_CONDEMNED) { 19797 mutex_exit(&ill->ill_lock); 19798 ill_refrele(ill); 19799 return (NULL); 19800 } 19801 19802 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 19803 if (!IPIF_CAN_LOOKUP(ipif)) 19804 continue; 19805 if (lifidx == ipif->ipif_id) { 19806 ipif_refhold_locked(ipif); 19807 break; 19808 } 19809 } 19810 19811 mutex_exit(&ill->ill_lock); 19812 ill_refrele(ill); 19813 return (ipif); 19814 } 19815 19816 /* 19817 * Flush the fastpath by deleting any nce's that are waiting for the fastpath, 19818 * There is one exceptions IRE_BROADCAST are difficult to recreate, 19819 * so instead we just nuke their nce_fp_mp's; see ndp_fastpath_flush() 19820 * for details. 19821 */ 19822 void 19823 ill_fastpath_flush(ill_t *ill) 19824 { 19825 ip_stack_t *ipst = ill->ill_ipst; 19826 19827 nce_fastpath_list_dispatch(ill, NULL, NULL); 19828 ndp_walk_common((ill->ill_isv6 ? ipst->ips_ndp6 : ipst->ips_ndp4), 19829 ill, (pfi_t)ndp_fastpath_flush, NULL, B_TRUE); 19830 } 19831 19832 /* 19833 * Set the physical address information for `ill' to the contents of the 19834 * dl_notify_ind_t pointed to by `mp'. Must be called as writer, and will be 19835 * asynchronous if `ill' cannot immediately be quiesced -- in which case 19836 * EINPROGRESS will be returned. 19837 */ 19838 int 19839 ill_set_phys_addr(ill_t *ill, mblk_t *mp) 19840 { 19841 ipsq_t *ipsq = ill->ill_phyint->phyint_ipsq; 19842 dl_notify_ind_t *dlindp = (dl_notify_ind_t *)mp->b_rptr; 19843 19844 ASSERT(IAM_WRITER_IPSQ(ipsq)); 19845 19846 if (dlindp->dl_data != DL_IPV6_LINK_LAYER_ADDR && 19847 dlindp->dl_data != DL_CURR_PHYS_ADDR) { 19848 /* Changing DL_IPV6_TOKEN is not yet supported */ 19849 return (0); 19850 } 19851 19852 /* 19853 * We need to store up to two copies of `mp' in `ill'. Due to the 19854 * design of ipsq_pending_mp_add(), we can't pass them as separate 19855 * arguments to ill_set_phys_addr_tail(). Instead, chain them 19856 * together here, then pull 'em apart in ill_set_phys_addr_tail(). 19857 */ 19858 if ((mp = copyb(mp)) == NULL || (mp->b_cont = copyb(mp)) == NULL) { 19859 freemsg(mp); 19860 return (ENOMEM); 19861 } 19862 19863 ipsq_current_start(ipsq, ill->ill_ipif, 0); 19864 19865 /* 19866 * If we can quiesce the ill, then set the address. If not, then 19867 * ill_set_phys_addr_tail() will be called from ipif_ill_refrele_tail(). 19868 */ 19869 ill_down_ipifs(ill, B_TRUE); 19870 mutex_enter(&ill->ill_lock); 19871 if (!ill_is_quiescent(ill)) { 19872 /* call cannot fail since `conn_t *' argument is NULL */ 19873 (void) ipsq_pending_mp_add(NULL, ill->ill_ipif, ill->ill_rq, 19874 mp, ILL_DOWN); 19875 mutex_exit(&ill->ill_lock); 19876 return (EINPROGRESS); 19877 } 19878 mutex_exit(&ill->ill_lock); 19879 19880 ill_set_phys_addr_tail(ipsq, ill->ill_rq, mp, NULL); 19881 return (0); 19882 } 19883 19884 /* 19885 * Once the ill associated with `q' has quiesced, set its physical address 19886 * information to the values in `addrmp'. Note that two copies of `addrmp' 19887 * are passed (linked by b_cont), since we sometimes need to save two distinct 19888 * copies in the ill_t, and our context doesn't permit sleeping or allocation 19889 * failure (we'll free the other copy if it's not needed). Since the ill_t 19890 * is quiesced, we know any stale IREs with the old address information have 19891 * already been removed, so we don't need to call ill_fastpath_flush(). 19892 */ 19893 /* ARGSUSED */ 19894 static void 19895 ill_set_phys_addr_tail(ipsq_t *ipsq, queue_t *q, mblk_t *addrmp, void *dummy) 19896 { 19897 ill_t *ill = q->q_ptr; 19898 mblk_t *addrmp2 = unlinkb(addrmp); 19899 dl_notify_ind_t *dlindp = (dl_notify_ind_t *)addrmp->b_rptr; 19900 uint_t addrlen, addroff; 19901 19902 ASSERT(IAM_WRITER_IPSQ(ipsq)); 19903 19904 addroff = dlindp->dl_addr_offset; 19905 addrlen = dlindp->dl_addr_length - ABS(ill->ill_sap_length); 19906 19907 switch (dlindp->dl_data) { 19908 case DL_IPV6_LINK_LAYER_ADDR: 19909 ill_set_ndmp(ill, addrmp, addroff, addrlen); 19910 freemsg(addrmp2); 19911 break; 19912 19913 case DL_CURR_PHYS_ADDR: 19914 freemsg(ill->ill_phys_addr_mp); 19915 ill->ill_phys_addr = addrmp->b_rptr + addroff; 19916 ill->ill_phys_addr_mp = addrmp; 19917 ill->ill_phys_addr_length = addrlen; 19918 19919 if (ill->ill_isv6 && !(ill->ill_flags & ILLF_XRESOLV)) 19920 ill_set_ndmp(ill, addrmp2, addroff, addrlen); 19921 else 19922 freemsg(addrmp2); 19923 break; 19924 default: 19925 ASSERT(0); 19926 } 19927 19928 /* 19929 * If there are ipifs to bring up, ill_up_ipifs() will return 19930 * EINPROGRESS, and ipsq_current_finish() will be called by 19931 * ip_rput_dlpi_writer() or ip_arp_done() when the last ipif is 19932 * brought up. 19933 */ 19934 if (ill_up_ipifs(ill, q, addrmp) != EINPROGRESS) 19935 ipsq_current_finish(ipsq); 19936 } 19937 19938 /* 19939 * Helper routine for setting the ill_nd_lla fields. 19940 */ 19941 void 19942 ill_set_ndmp(ill_t *ill, mblk_t *ndmp, uint_t addroff, uint_t addrlen) 19943 { 19944 freemsg(ill->ill_nd_lla_mp); 19945 ill->ill_nd_lla = ndmp->b_rptr + addroff; 19946 ill->ill_nd_lla_mp = ndmp; 19947 ill->ill_nd_lla_len = addrlen; 19948 } 19949 19950 /* 19951 * Replumb the ill. 19952 */ 19953 int 19954 ill_replumb(ill_t *ill, mblk_t *mp) 19955 { 19956 ipsq_t *ipsq = ill->ill_phyint->phyint_ipsq; 19957 19958 ASSERT(IAM_WRITER_IPSQ(ipsq)); 19959 19960 ipsq_current_start(ipsq, ill->ill_ipif, 0); 19961 19962 /* 19963 * If we can quiesce the ill, then continue. If not, then 19964 * ill_replumb_tail() will be called from ipif_ill_refrele_tail(). 19965 */ 19966 ill_down_ipifs(ill, B_FALSE); 19967 19968 mutex_enter(&ill->ill_lock); 19969 if (!ill_is_quiescent(ill)) { 19970 /* call cannot fail since `conn_t *' argument is NULL */ 19971 (void) ipsq_pending_mp_add(NULL, ill->ill_ipif, ill->ill_rq, 19972 mp, ILL_DOWN); 19973 mutex_exit(&ill->ill_lock); 19974 return (EINPROGRESS); 19975 } 19976 mutex_exit(&ill->ill_lock); 19977 19978 ill_replumb_tail(ipsq, ill->ill_rq, mp, NULL); 19979 return (0); 19980 } 19981 19982 /* ARGSUSED */ 19983 static void 19984 ill_replumb_tail(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy) 19985 { 19986 ill_t *ill = q->q_ptr; 19987 19988 ASSERT(IAM_WRITER_IPSQ(ipsq)); 19989 19990 ill_down_ipifs_tail(ill); 19991 19992 freemsg(ill->ill_replumb_mp); 19993 ill->ill_replumb_mp = copyb(mp); 19994 19995 /* 19996 * Successfully quiesced and brought down the interface, now we send 19997 * the DL_NOTE_REPLUMB_DONE message down to the driver. Reuse the 19998 * DL_NOTE_REPLUMB message. 19999 */ 20000 mp = mexchange(NULL, mp, sizeof (dl_notify_conf_t), M_PROTO, 20001 DL_NOTIFY_CONF); 20002 ASSERT(mp != NULL); 20003 ((dl_notify_conf_t *)mp->b_rptr)->dl_notification = 20004 DL_NOTE_REPLUMB_DONE; 20005 ill_dlpi_send(ill, mp); 20006 20007 /* 20008 * If there are ipifs to bring up, ill_up_ipifs() will return 20009 * EINPROGRESS, and ipsq_current_finish() will be called by 20010 * ip_rput_dlpi_writer() or ip_arp_done() when the last ipif is 20011 * brought up. 20012 */ 20013 if (ill->ill_replumb_mp == NULL || 20014 ill_up_ipifs(ill, q, ill->ill_replumb_mp) != EINPROGRESS) { 20015 ipsq_current_finish(ipsq); 20016 } 20017 } 20018 20019 major_t IP_MAJ; 20020 #define IP "ip" 20021 20022 #define UDP6DEV "/devices/pseudo/udp6@0:udp6" 20023 #define UDPDEV "/devices/pseudo/udp@0:udp" 20024 20025 /* 20026 * Issue REMOVEIF ioctls to have the loopback interfaces 20027 * go away. Other interfaces are either I_LINKed or I_PLINKed; 20028 * the former going away when the user-level processes in the zone 20029 * are killed * and the latter are cleaned up by the stream head 20030 * str_stack_shutdown callback that undoes all I_PLINKs. 20031 */ 20032 void 20033 ip_loopback_cleanup(ip_stack_t *ipst) 20034 { 20035 int error; 20036 ldi_handle_t lh = NULL; 20037 ldi_ident_t li = NULL; 20038 int rval; 20039 cred_t *cr; 20040 struct strioctl iocb; 20041 struct lifreq lifreq; 20042 20043 IP_MAJ = ddi_name_to_major(IP); 20044 20045 #ifdef NS_DEBUG 20046 (void) printf("ip_loopback_cleanup() stackid %d\n", 20047 ipst->ips_netstack->netstack_stackid); 20048 #endif 20049 20050 bzero(&lifreq, sizeof (lifreq)); 20051 (void) strcpy(lifreq.lifr_name, ipif_loopback_name); 20052 20053 error = ldi_ident_from_major(IP_MAJ, &li); 20054 if (error) { 20055 #ifdef DEBUG 20056 printf("ip_loopback_cleanup: lyr ident get failed error %d\n", 20057 error); 20058 #endif 20059 return; 20060 } 20061 20062 cr = zone_get_kcred(netstackid_to_zoneid( 20063 ipst->ips_netstack->netstack_stackid)); 20064 ASSERT(cr != NULL); 20065 error = ldi_open_by_name(UDP6DEV, FREAD|FWRITE, cr, &lh, li); 20066 if (error) { 20067 #ifdef DEBUG 20068 printf("ip_loopback_cleanup: open of UDP6DEV failed error %d\n", 20069 error); 20070 #endif 20071 goto out; 20072 } 20073 iocb.ic_cmd = SIOCLIFREMOVEIF; 20074 iocb.ic_timout = 15; 20075 iocb.ic_len = sizeof (lifreq); 20076 iocb.ic_dp = (char *)&lifreq; 20077 20078 error = ldi_ioctl(lh, I_STR, (intptr_t)&iocb, FKIOCTL, cr, &rval); 20079 /* LINTED - statement has no consequent */ 20080 if (error) { 20081 #ifdef NS_DEBUG 20082 printf("ip_loopback_cleanup: ioctl SIOCLIFREMOVEIF failed on " 20083 "UDP6 error %d\n", error); 20084 #endif 20085 } 20086 (void) ldi_close(lh, FREAD|FWRITE, cr); 20087 lh = NULL; 20088 20089 error = ldi_open_by_name(UDPDEV, FREAD|FWRITE, cr, &lh, li); 20090 if (error) { 20091 #ifdef NS_DEBUG 20092 printf("ip_loopback_cleanup: open of UDPDEV failed error %d\n", 20093 error); 20094 #endif 20095 goto out; 20096 } 20097 20098 iocb.ic_cmd = SIOCLIFREMOVEIF; 20099 iocb.ic_timout = 15; 20100 iocb.ic_len = sizeof (lifreq); 20101 iocb.ic_dp = (char *)&lifreq; 20102 20103 error = ldi_ioctl(lh, I_STR, (intptr_t)&iocb, FKIOCTL, cr, &rval); 20104 /* LINTED - statement has no consequent */ 20105 if (error) { 20106 #ifdef NS_DEBUG 20107 printf("ip_loopback_cleanup: ioctl SIOCLIFREMOVEIF failed on " 20108 "UDP error %d\n", error); 20109 #endif 20110 } 20111 (void) ldi_close(lh, FREAD|FWRITE, cr); 20112 lh = NULL; 20113 20114 out: 20115 /* Close layered handles */ 20116 if (lh) 20117 (void) ldi_close(lh, FREAD|FWRITE, cr); 20118 if (li) 20119 ldi_ident_release(li); 20120 20121 crfree(cr); 20122 } 20123 20124 /* 20125 * This needs to be in-sync with nic_event_t definition 20126 */ 20127 static const char * 20128 ill_hook_event2str(nic_event_t event) 20129 { 20130 switch (event) { 20131 case NE_PLUMB: 20132 return ("PLUMB"); 20133 case NE_UNPLUMB: 20134 return ("UNPLUMB"); 20135 case NE_UP: 20136 return ("UP"); 20137 case NE_DOWN: 20138 return ("DOWN"); 20139 case NE_ADDRESS_CHANGE: 20140 return ("ADDRESS_CHANGE"); 20141 case NE_LIF_UP: 20142 return ("LIF_UP"); 20143 case NE_LIF_DOWN: 20144 return ("LIF_DOWN"); 20145 default: 20146 return ("UNKNOWN"); 20147 } 20148 } 20149 20150 void 20151 ill_nic_event_dispatch(ill_t *ill, lif_if_t lif, nic_event_t event, 20152 nic_event_data_t data, size_t datalen) 20153 { 20154 ip_stack_t *ipst = ill->ill_ipst; 20155 hook_nic_event_int_t *info; 20156 const char *str = NULL; 20157 20158 /* create a new nic event info */ 20159 if ((info = kmem_alloc(sizeof (*info), KM_NOSLEEP)) == NULL) 20160 goto fail; 20161 20162 info->hnei_event.hne_nic = ill->ill_phyint->phyint_ifindex; 20163 info->hnei_event.hne_lif = lif; 20164 info->hnei_event.hne_event = event; 20165 info->hnei_event.hne_protocol = ill->ill_isv6 ? 20166 ipst->ips_ipv6_net_data : ipst->ips_ipv4_net_data; 20167 info->hnei_event.hne_data = NULL; 20168 info->hnei_event.hne_datalen = 0; 20169 info->hnei_stackid = ipst->ips_netstack->netstack_stackid; 20170 20171 if (data != NULL && datalen != 0) { 20172 info->hnei_event.hne_data = kmem_alloc(datalen, KM_NOSLEEP); 20173 if (info->hnei_event.hne_data == NULL) 20174 goto fail; 20175 bcopy(data, info->hnei_event.hne_data, datalen); 20176 info->hnei_event.hne_datalen = datalen; 20177 } 20178 20179 if (ddi_taskq_dispatch(eventq_queue_nic, ip_ne_queue_func, info, 20180 DDI_NOSLEEP) == DDI_SUCCESS) 20181 return; 20182 20183 fail: 20184 if (info != NULL) { 20185 if (info->hnei_event.hne_data != NULL) { 20186 kmem_free(info->hnei_event.hne_data, 20187 info->hnei_event.hne_datalen); 20188 } 20189 kmem_free(info, sizeof (hook_nic_event_t)); 20190 } 20191 str = ill_hook_event2str(event); 20192 ip2dbg(("ill_nic_event_dispatch: could not dispatch %s nic event " 20193 "information for %s (ENOMEM)\n", str, ill->ill_name)); 20194 } 20195 20196 void 20197 ipif_up_notify(ipif_t *ipif) 20198 { 20199 ip_rts_ifmsg(ipif, RTSQ_DEFAULT); 20200 ip_rts_newaddrmsg(RTM_ADD, 0, ipif, RTSQ_DEFAULT); 20201 sctp_update_ipif(ipif, SCTP_IPIF_UP); 20202 ill_nic_event_dispatch(ipif->ipif_ill, MAP_IPIF_ID(ipif->ipif_id), 20203 NE_LIF_UP, NULL, 0); 20204 } 20205