1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2008 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 /* Copyright (c) 1990 Mentat Inc. */ 26 27 /* 28 * This file contains the interface control functions for IP. 29 */ 30 31 #include <sys/types.h> 32 #include <sys/stream.h> 33 #include <sys/dlpi.h> 34 #include <sys/stropts.h> 35 #include <sys/strsun.h> 36 #include <sys/sysmacros.h> 37 #include <sys/strlog.h> 38 #include <sys/ddi.h> 39 #include <sys/sunddi.h> 40 #include <sys/cmn_err.h> 41 #include <sys/kstat.h> 42 #include <sys/debug.h> 43 #include <sys/zone.h> 44 #include <sys/sunldi.h> 45 #include <sys/file.h> 46 #include <sys/bitmap.h> 47 48 #include <sys/kmem.h> 49 #include <sys/systm.h> 50 #include <sys/param.h> 51 #include <sys/socket.h> 52 #include <sys/isa_defs.h> 53 #include <net/if.h> 54 #include <net/if_arp.h> 55 #include <net/if_types.h> 56 #include <net/if_dl.h> 57 #include <net/route.h> 58 #include <sys/sockio.h> 59 #include <netinet/in.h> 60 #include <netinet/ip6.h> 61 #include <netinet/icmp6.h> 62 #include <netinet/igmp_var.h> 63 #include <sys/strsun.h> 64 #include <sys/policy.h> 65 #include <sys/ethernet.h> 66 67 #include <inet/common.h> /* for various inet/mi.h and inet/nd.h needs */ 68 #include <inet/mi.h> 69 #include <inet/nd.h> 70 #include <inet/arp.h> 71 #include <inet/mib2.h> 72 #include <inet/ip.h> 73 #include <inet/ip6.h> 74 #include <inet/ip6_asp.h> 75 #include <inet/tcp.h> 76 #include <inet/ip_multi.h> 77 #include <inet/ip_ire.h> 78 #include <inet/ip_ftable.h> 79 #include <inet/ip_rts.h> 80 #include <inet/ip_ndp.h> 81 #include <inet/ip_if.h> 82 #include <inet/ip_impl.h> 83 #include <inet/tun.h> 84 #include <inet/sctp_ip.h> 85 #include <inet/ip_netinfo.h> 86 #include <inet/mib2.h> 87 88 #include <net/pfkeyv2.h> 89 #include <inet/ipsec_info.h> 90 #include <inet/sadb.h> 91 #include <inet/ipsec_impl.h> 92 #include <sys/iphada.h> 93 94 95 #include <netinet/igmp.h> 96 #include <inet/ip_listutils.h> 97 #include <inet/ipclassifier.h> 98 #include <sys/mac.h> 99 100 #include <sys/systeminfo.h> 101 #include <sys/bootconf.h> 102 103 #include <sys/tsol/tndb.h> 104 #include <sys/tsol/tnet.h> 105 106 /* The character which tells where the ill_name ends */ 107 #define IPIF_SEPARATOR_CHAR ':' 108 109 /* IP ioctl function table entry */ 110 typedef struct ipft_s { 111 int ipft_cmd; 112 pfi_t ipft_pfi; 113 int ipft_min_size; 114 int ipft_flags; 115 } ipft_t; 116 #define IPFT_F_NO_REPLY 0x1 /* IP ioctl does not expect any reply */ 117 #define IPFT_F_SELF_REPLY 0x2 /* ioctl callee does the ioctl reply */ 118 119 typedef struct ip_sock_ar_s { 120 union { 121 area_t ip_sock_area; 122 ared_t ip_sock_ared; 123 areq_t ip_sock_areq; 124 } ip_sock_ar_u; 125 queue_t *ip_sock_ar_q; 126 } ip_sock_ar_t; 127 128 static int nd_ill_forward_get(queue_t *, mblk_t *, caddr_t, cred_t *); 129 static int nd_ill_forward_set(queue_t *q, mblk_t *mp, 130 char *value, caddr_t cp, cred_t *ioc_cr); 131 132 static boolean_t ill_is_quiescent(ill_t *); 133 static boolean_t ip_addr_ok_v4(ipaddr_t addr, ipaddr_t subnet_mask); 134 static ip_m_t *ip_m_lookup(t_uscalar_t mac_type); 135 static int ip_sioctl_addr_tail(ipif_t *ipif, sin_t *sin, queue_t *q, 136 mblk_t *mp, boolean_t need_up); 137 static int ip_sioctl_dstaddr_tail(ipif_t *ipif, sin_t *sin, queue_t *q, 138 mblk_t *mp, boolean_t need_up); 139 static int ip_sioctl_slifzone_tail(ipif_t *ipif, zoneid_t zoneid, 140 queue_t *q, mblk_t *mp, boolean_t need_up); 141 static int ip_sioctl_flags_tail(ipif_t *ipif, uint64_t flags, queue_t *q, 142 mblk_t *mp); 143 static int ip_sioctl_netmask_tail(ipif_t *ipif, sin_t *sin, queue_t *q, 144 mblk_t *mp); 145 static int ip_sioctl_subnet_tail(ipif_t *ipif, in6_addr_t, in6_addr_t, 146 queue_t *q, mblk_t *mp, boolean_t need_up); 147 static int ip_sioctl_plink_ipmod(ipsq_t *ipsq, queue_t *q, mblk_t *mp, 148 int ioccmd, struct linkblk *li, boolean_t doconsist); 149 static ipaddr_t ip_subnet_mask(ipaddr_t addr, ipif_t **, ip_stack_t *); 150 static void ip_wput_ioctl(queue_t *q, mblk_t *mp); 151 static void ipsq_flush(ill_t *ill); 152 153 static int ip_sioctl_token_tail(ipif_t *ipif, sin6_t *sin6, int addrlen, 154 queue_t *q, mblk_t *mp, boolean_t need_up); 155 static void ipsq_delete(ipsq_t *); 156 157 static ipif_t *ipif_allocate(ill_t *ill, int id, uint_t ire_type, 158 boolean_t initialize); 159 static void ipif_check_bcast_ires(ipif_t *test_ipif); 160 static ire_t **ipif_create_bcast_ires(ipif_t *ipif, ire_t **irep); 161 static boolean_t ipif_comp_multi(ipif_t *old_ipif, ipif_t *new_ipif, 162 boolean_t isv6); 163 static void ipif_down_delete_ire(ire_t *ire, char *ipif); 164 static void ipif_delete_cache_ire(ire_t *, char *); 165 static int ipif_logical_down(ipif_t *ipif, queue_t *q, mblk_t *mp); 166 static void ipif_free(ipif_t *ipif); 167 static void ipif_free_tail(ipif_t *ipif); 168 static void ipif_mtu_change(ire_t *ire, char *ipif_arg); 169 static void ipif_multicast_down(ipif_t *ipif); 170 static void ipif_recreate_interface_routes(ipif_t *old_ipif, ipif_t *ipif); 171 static void ipif_set_default(ipif_t *ipif); 172 static int ipif_set_values(queue_t *q, mblk_t *mp, 173 char *interf_name, uint_t *ppa); 174 static int ipif_set_values_tail(ill_t *ill, ipif_t *ipif, mblk_t *mp, 175 queue_t *q); 176 static ipif_t *ipif_lookup_on_name(char *name, size_t namelen, 177 boolean_t do_alloc, boolean_t *exists, boolean_t isv6, zoneid_t zoneid, 178 queue_t *q, mblk_t *mp, ipsq_func_t func, int *error, ip_stack_t *); 179 static int ipif_up(ipif_t *ipif, queue_t *q, mblk_t *mp); 180 static void ipif_update_other_ipifs(ipif_t *old_ipif, ill_group_t *illgrp); 181 182 static int ill_alloc_ppa(ill_if_t *, ill_t *); 183 static int ill_arp_off(ill_t *ill); 184 static int ill_arp_on(ill_t *ill); 185 static void ill_delete_interface_type(ill_if_t *); 186 static int ill_dl_up(ill_t *ill, ipif_t *ipif, mblk_t *mp, queue_t *q); 187 static void ill_dl_down(ill_t *ill); 188 static void ill_down(ill_t *ill); 189 static void ill_downi(ire_t *ire, char *ill_arg); 190 static void ill_free_mib(ill_t *ill); 191 static void ill_glist_delete(ill_t *); 192 static boolean_t ill_has_usable_ipif(ill_t *); 193 static int ill_lock_ipsq_ills(ipsq_t *sq, ill_t **list, int); 194 static void ill_nominate_bcast_rcv(ill_group_t *illgrp); 195 static void ill_phyint_free(ill_t *ill); 196 static void ill_phyint_reinit(ill_t *ill); 197 static void ill_set_nce_router_flags(ill_t *, boolean_t); 198 static void ill_set_phys_addr_tail(ipsq_t *, queue_t *, mblk_t *, void *); 199 static void ill_signal_ipsq_ills(ipsq_t *, boolean_t); 200 static boolean_t ill_split_ipsq(ipsq_t *cur_sq); 201 static void ill_stq_cache_delete(ire_t *, char *); 202 203 static boolean_t ip_ether_v6intfid(uint_t, uint8_t *, in6_addr_t *); 204 static boolean_t ip_nodef_v6intfid(uint_t, uint8_t *, in6_addr_t *); 205 static boolean_t ip_ether_v6mapinfo(uint_t, uint8_t *, uint8_t *, uint32_t *, 206 in6_addr_t *); 207 static boolean_t ip_ether_v4mapinfo(uint_t, uint8_t *, uint8_t *, uint32_t *, 208 ipaddr_t *); 209 static boolean_t ip_ib_v6intfid(uint_t, uint8_t *, in6_addr_t *); 210 static boolean_t ip_ib_v6mapinfo(uint_t, uint8_t *, uint8_t *, uint32_t *, 211 in6_addr_t *); 212 static boolean_t ip_ib_v4mapinfo(uint_t, uint8_t *, uint8_t *, uint32_t *, 213 ipaddr_t *); 214 215 static void ipif_save_ire(ipif_t *, ire_t *); 216 static void ipif_remove_ire(ipif_t *, ire_t *); 217 static void ip_cgtp_bcast_add(ire_t *, ire_t *, ip_stack_t *); 218 static void ip_cgtp_bcast_delete(ire_t *, ip_stack_t *); 219 220 /* 221 * Per-ill IPsec capabilities management. 222 */ 223 static ill_ipsec_capab_t *ill_ipsec_capab_alloc(void); 224 static void ill_ipsec_capab_free(ill_ipsec_capab_t *); 225 static void ill_ipsec_capab_add(ill_t *, uint_t, boolean_t); 226 static void ill_ipsec_capab_delete(ill_t *, uint_t); 227 static boolean_t ill_ipsec_capab_resize_algparm(ill_ipsec_capab_t *, int); 228 static void ill_capability_proto(ill_t *, int, mblk_t *); 229 static void ill_capability_dispatch(ill_t *, mblk_t *, dl_capability_sub_t *, 230 boolean_t); 231 static void ill_capability_id_ack(ill_t *, mblk_t *, dl_capability_sub_t *); 232 static void ill_capability_mdt_ack(ill_t *, mblk_t *, dl_capability_sub_t *); 233 static void ill_capability_mdt_reset(ill_t *, mblk_t **); 234 static void ill_capability_ipsec_ack(ill_t *, mblk_t *, dl_capability_sub_t *); 235 static void ill_capability_ipsec_reset(ill_t *, mblk_t **); 236 static void ill_capability_hcksum_ack(ill_t *, mblk_t *, dl_capability_sub_t *); 237 static void ill_capability_hcksum_reset(ill_t *, mblk_t **); 238 static void ill_capability_zerocopy_ack(ill_t *, mblk_t *, 239 dl_capability_sub_t *); 240 static void ill_capability_zerocopy_reset(ill_t *, mblk_t **); 241 static void ill_capability_lso_ack(ill_t *, mblk_t *, dl_capability_sub_t *); 242 static void ill_capability_lso_reset(ill_t *, mblk_t **); 243 static void ill_capability_dls_ack(ill_t *, mblk_t *, dl_capability_sub_t *); 244 static mac_resource_handle_t ill_ring_add(void *, mac_resource_t *); 245 static void ill_capability_dls_reset(ill_t *, mblk_t **); 246 static void ill_capability_dls_disable(ill_t *); 247 248 static void illgrp_cache_delete(ire_t *, char *); 249 static void illgrp_delete(ill_t *ill); 250 static void illgrp_reset_schednext(ill_t *ill); 251 252 static ill_t *ill_prev_usesrc(ill_t *); 253 static int ill_relink_usesrc_ills(ill_t *, ill_t *, uint_t); 254 static void ill_disband_usesrc_group(ill_t *); 255 256 static void conn_cleanup_stale_ire(conn_t *, caddr_t); 257 258 #ifdef DEBUG 259 static void ill_trace_cleanup(const ill_t *); 260 static void ipif_trace_cleanup(const ipif_t *); 261 #endif 262 263 /* 264 * if we go over the memory footprint limit more than once in this msec 265 * interval, we'll start pruning aggressively. 266 */ 267 int ip_min_frag_prune_time = 0; 268 269 /* 270 * max # of IPsec algorithms supported. Limited to 1 byte by PF_KEY 271 * and the IPsec DOI 272 */ 273 #define MAX_IPSEC_ALGS 256 274 275 #define BITSPERBYTE 8 276 #define BITS(type) (BITSPERBYTE * (long)sizeof (type)) 277 278 #define IPSEC_ALG_ENABLE(algs, algid) \ 279 ((algs)[(algid) / BITS(ipsec_capab_elem_t)] |= \ 280 (1 << ((algid) % BITS(ipsec_capab_elem_t)))) 281 282 #define IPSEC_ALG_IS_ENABLED(algid, algs) \ 283 ((algs)[(algid) / BITS(ipsec_capab_elem_t)] & \ 284 (1 << ((algid) % BITS(ipsec_capab_elem_t)))) 285 286 typedef uint8_t ipsec_capab_elem_t; 287 288 /* 289 * Per-algorithm parameters. Note that at present, only encryption 290 * algorithms have variable keysize (IKE does not provide a way to negotiate 291 * auth algorithm keysize). 292 * 293 * All sizes here are in bits. 294 */ 295 typedef struct 296 { 297 uint16_t minkeylen; 298 uint16_t maxkeylen; 299 } ipsec_capab_algparm_t; 300 301 /* 302 * Per-ill capabilities. 303 */ 304 struct ill_ipsec_capab_s { 305 ipsec_capab_elem_t *encr_hw_algs; 306 ipsec_capab_elem_t *auth_hw_algs; 307 uint32_t algs_size; /* size of _hw_algs in bytes */ 308 /* algorithm key lengths */ 309 ipsec_capab_algparm_t *encr_algparm; 310 uint32_t encr_algparm_size; 311 uint32_t encr_algparm_end; 312 }; 313 314 /* 315 * The field values are larger than strictly necessary for simple 316 * AR_ENTRY_ADDs but the padding lets us accomodate the socket ioctls. 317 */ 318 static area_t ip_area_template = { 319 AR_ENTRY_ADD, /* area_cmd */ 320 sizeof (ip_sock_ar_t) + (IP_ADDR_LEN*2) + sizeof (struct sockaddr_dl), 321 /* area_name_offset */ 322 /* area_name_length temporarily holds this structure length */ 323 sizeof (area_t), /* area_name_length */ 324 IP_ARP_PROTO_TYPE, /* area_proto */ 325 sizeof (ip_sock_ar_t), /* area_proto_addr_offset */ 326 IP_ADDR_LEN, /* area_proto_addr_length */ 327 sizeof (ip_sock_ar_t) + IP_ADDR_LEN, 328 /* area_proto_mask_offset */ 329 0, /* area_flags */ 330 sizeof (ip_sock_ar_t) + IP_ADDR_LEN + IP_ADDR_LEN, 331 /* area_hw_addr_offset */ 332 /* Zero length hw_addr_length means 'use your idea of the address' */ 333 0 /* area_hw_addr_length */ 334 }; 335 336 /* 337 * AR_ENTRY_ADD/DELETE templates have been added for IPv6 external resolver 338 * support 339 */ 340 static area_t ip6_area_template = { 341 AR_ENTRY_ADD, /* area_cmd */ 342 sizeof (ip_sock_ar_t) + (IPV6_ADDR_LEN*2) + sizeof (sin6_t), 343 /* area_name_offset */ 344 /* area_name_length temporarily holds this structure length */ 345 sizeof (area_t), /* area_name_length */ 346 IP_ARP_PROTO_TYPE, /* area_proto */ 347 sizeof (ip_sock_ar_t), /* area_proto_addr_offset */ 348 IPV6_ADDR_LEN, /* area_proto_addr_length */ 349 sizeof (ip_sock_ar_t) + IPV6_ADDR_LEN, 350 /* area_proto_mask_offset */ 351 0, /* area_flags */ 352 sizeof (ip_sock_ar_t) + IPV6_ADDR_LEN + IPV6_ADDR_LEN, 353 /* area_hw_addr_offset */ 354 /* Zero length hw_addr_length means 'use your idea of the address' */ 355 0 /* area_hw_addr_length */ 356 }; 357 358 static ared_t ip_ared_template = { 359 AR_ENTRY_DELETE, 360 sizeof (ared_t) + IP_ADDR_LEN, 361 sizeof (ared_t), 362 IP_ARP_PROTO_TYPE, 363 sizeof (ared_t), 364 IP_ADDR_LEN, 365 0 366 }; 367 368 static ared_t ip6_ared_template = { 369 AR_ENTRY_DELETE, 370 sizeof (ared_t) + IPV6_ADDR_LEN, 371 sizeof (ared_t), 372 IP_ARP_PROTO_TYPE, 373 sizeof (ared_t), 374 IPV6_ADDR_LEN, 375 0 376 }; 377 378 /* 379 * A template for an IPv6 AR_ENTRY_QUERY template has not been created, as 380 * as the areq doesn't include an IP address in ill_dl_up() (the only place a 381 * areq is used). 382 */ 383 static areq_t ip_areq_template = { 384 AR_ENTRY_QUERY, /* cmd */ 385 sizeof (areq_t)+(2*IP_ADDR_LEN), /* name offset */ 386 sizeof (areq_t), /* name len (filled by ill_arp_alloc) */ 387 IP_ARP_PROTO_TYPE, /* protocol, from arps perspective */ 388 sizeof (areq_t), /* target addr offset */ 389 IP_ADDR_LEN, /* target addr_length */ 390 0, /* flags */ 391 sizeof (areq_t) + IP_ADDR_LEN, /* sender addr offset */ 392 IP_ADDR_LEN, /* sender addr length */ 393 AR_EQ_DEFAULT_XMIT_COUNT, /* xmit_count */ 394 AR_EQ_DEFAULT_XMIT_INTERVAL, /* (re)xmit_interval in milliseconds */ 395 AR_EQ_DEFAULT_MAX_BUFFERED /* max # of requests to buffer */ 396 /* anything else filled in by the code */ 397 }; 398 399 static arc_t ip_aru_template = { 400 AR_INTERFACE_UP, 401 sizeof (arc_t), /* Name offset */ 402 sizeof (arc_t) /* Name length (set by ill_arp_alloc) */ 403 }; 404 405 static arc_t ip_ard_template = { 406 AR_INTERFACE_DOWN, 407 sizeof (arc_t), /* Name offset */ 408 sizeof (arc_t) /* Name length (set by ill_arp_alloc) */ 409 }; 410 411 static arc_t ip_aron_template = { 412 AR_INTERFACE_ON, 413 sizeof (arc_t), /* Name offset */ 414 sizeof (arc_t) /* Name length (set by ill_arp_alloc) */ 415 }; 416 417 static arc_t ip_aroff_template = { 418 AR_INTERFACE_OFF, 419 sizeof (arc_t), /* Name offset */ 420 sizeof (arc_t) /* Name length (set by ill_arp_alloc) */ 421 }; 422 423 static arma_t ip_arma_multi_template = { 424 AR_MAPPING_ADD, 425 sizeof (arma_t) + 3*IP_ADDR_LEN + IP_MAX_HW_LEN, 426 /* Name offset */ 427 sizeof (arma_t), /* Name length (set by ill_arp_alloc) */ 428 IP_ARP_PROTO_TYPE, 429 sizeof (arma_t), /* proto_addr_offset */ 430 IP_ADDR_LEN, /* proto_addr_length */ 431 sizeof (arma_t) + IP_ADDR_LEN, /* proto_mask_offset */ 432 sizeof (arma_t) + 2*IP_ADDR_LEN, /* proto_extract_mask_offset */ 433 ACE_F_PERMANENT | ACE_F_MAPPING, /* flags */ 434 sizeof (arma_t) + 3*IP_ADDR_LEN, /* hw_addr_offset */ 435 IP_MAX_HW_LEN, /* hw_addr_length */ 436 0, /* hw_mapping_start */ 437 }; 438 439 static ipft_t ip_ioctl_ftbl[] = { 440 { IP_IOC_IRE_DELETE, ip_ire_delete, sizeof (ipid_t), 0 }, 441 { IP_IOC_IRE_DELETE_NO_REPLY, ip_ire_delete, sizeof (ipid_t), 442 IPFT_F_NO_REPLY }, 443 { IP_IOC_IRE_ADVISE_NO_REPLY, ip_ire_advise, sizeof (ipic_t), 444 IPFT_F_NO_REPLY }, 445 { IP_IOC_RTS_REQUEST, ip_rts_request, 0, IPFT_F_SELF_REPLY }, 446 { 0 } 447 }; 448 449 /* Simple ICMP IP Header Template */ 450 static ipha_t icmp_ipha = { 451 IP_SIMPLE_HDR_VERSION, 0, 0, 0, 0, 0, IPPROTO_ICMP 452 }; 453 454 /* Flag descriptors for ip_ipif_report */ 455 static nv_t ipif_nv_tbl[] = { 456 { IPIF_UP, "UP" }, 457 { IPIF_BROADCAST, "BROADCAST" }, 458 { ILLF_DEBUG, "DEBUG" }, 459 { PHYI_LOOPBACK, "LOOPBACK" }, 460 { IPIF_POINTOPOINT, "POINTOPOINT" }, 461 { ILLF_NOTRAILERS, "NOTRAILERS" }, 462 { PHYI_RUNNING, "RUNNING" }, 463 { ILLF_NOARP, "NOARP" }, 464 { PHYI_PROMISC, "PROMISC" }, 465 { PHYI_ALLMULTI, "ALLMULTI" }, 466 { PHYI_INTELLIGENT, "INTELLIGENT" }, 467 { ILLF_MULTICAST, "MULTICAST" }, 468 { PHYI_MULTI_BCAST, "MULTI_BCAST" }, 469 { IPIF_UNNUMBERED, "UNNUMBERED" }, 470 { IPIF_DHCPRUNNING, "DHCP" }, 471 { IPIF_PRIVATE, "PRIVATE" }, 472 { IPIF_NOXMIT, "NOXMIT" }, 473 { IPIF_NOLOCAL, "NOLOCAL" }, 474 { IPIF_DEPRECATED, "DEPRECATED" }, 475 { IPIF_PREFERRED, "PREFERRED" }, 476 { IPIF_TEMPORARY, "TEMPORARY" }, 477 { IPIF_ADDRCONF, "ADDRCONF" }, 478 { PHYI_VIRTUAL, "VIRTUAL" }, 479 { ILLF_ROUTER, "ROUTER" }, 480 { ILLF_NONUD, "NONUD" }, 481 { IPIF_ANYCAST, "ANYCAST" }, 482 { ILLF_NORTEXCH, "NORTEXCH" }, 483 { ILLF_IPV4, "IPV4" }, 484 { ILLF_IPV6, "IPV6" }, 485 { IPIF_NOFAILOVER, "NOFAILOVER" }, 486 { PHYI_FAILED, "FAILED" }, 487 { PHYI_STANDBY, "STANDBY" }, 488 { PHYI_INACTIVE, "INACTIVE" }, 489 { PHYI_OFFLINE, "OFFLINE" }, 490 }; 491 492 static uchar_t ip_six_byte_all_ones[] = { 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF }; 493 494 static ip_m_t ip_m_tbl[] = { 495 { DL_ETHER, IFT_ETHER, ip_ether_v4mapinfo, ip_ether_v6mapinfo, 496 ip_ether_v6intfid }, 497 { DL_CSMACD, IFT_ISO88023, ip_ether_v4mapinfo, ip_ether_v6mapinfo, 498 ip_nodef_v6intfid }, 499 { DL_TPB, IFT_ISO88024, ip_ether_v4mapinfo, ip_ether_v6mapinfo, 500 ip_nodef_v6intfid }, 501 { DL_TPR, IFT_ISO88025, ip_ether_v4mapinfo, ip_ether_v6mapinfo, 502 ip_nodef_v6intfid }, 503 { DL_FDDI, IFT_FDDI, ip_ether_v4mapinfo, ip_ether_v6mapinfo, 504 ip_ether_v6intfid }, 505 { DL_IB, IFT_IB, ip_ib_v4mapinfo, ip_ib_v6mapinfo, 506 ip_ib_v6intfid }, 507 { SUNW_DL_VNI, IFT_OTHER, NULL, NULL, NULL}, 508 { DL_OTHER, IFT_OTHER, ip_ether_v4mapinfo, ip_ether_v6mapinfo, 509 ip_nodef_v6intfid } 510 }; 511 512 static ill_t ill_null; /* Empty ILL for init. */ 513 char ipif_loopback_name[] = "lo0"; 514 static char *ipv4_forward_suffix = ":ip_forwarding"; 515 static char *ipv6_forward_suffix = ":ip6_forwarding"; 516 static sin6_t sin6_null; /* Zero address for quick clears */ 517 static sin_t sin_null; /* Zero address for quick clears */ 518 519 /* When set search for unused ipif_seqid */ 520 static ipif_t ipif_zero; 521 522 /* 523 * ppa arena is created after these many 524 * interfaces have been plumbed. 525 */ 526 uint_t ill_no_arena = 12; /* Setable in /etc/system */ 527 528 /* 529 * Enable soft rings if ip_squeue_soft_ring or ip_squeue_fanout 530 * is set and ip_soft_rings_cnt > 0. ip_squeue_soft_ring is 531 * set through platform specific code (Niagara/Ontario). 532 */ 533 #define SOFT_RINGS_ENABLED() (ip_soft_rings_cnt ? \ 534 (ip_squeue_soft_ring || ip_squeue_fanout) : B_FALSE) 535 536 #define ILL_CAPAB_DLS (ILL_CAPAB_SOFT_RING | ILL_CAPAB_POLL) 537 538 static uint_t 539 ipif_rand(ip_stack_t *ipst) 540 { 541 ipst->ips_ipif_src_random = ipst->ips_ipif_src_random * 1103515245 + 542 12345; 543 return ((ipst->ips_ipif_src_random >> 16) & 0x7fff); 544 } 545 546 /* 547 * Allocate per-interface mibs. 548 * Returns true if ok. False otherwise. 549 * ipsq may not yet be allocated (loopback case ). 550 */ 551 static boolean_t 552 ill_allocate_mibs(ill_t *ill) 553 { 554 /* Already allocated? */ 555 if (ill->ill_ip_mib != NULL) { 556 if (ill->ill_isv6) 557 ASSERT(ill->ill_icmp6_mib != NULL); 558 return (B_TRUE); 559 } 560 561 ill->ill_ip_mib = kmem_zalloc(sizeof (*ill->ill_ip_mib), 562 KM_NOSLEEP); 563 if (ill->ill_ip_mib == NULL) { 564 return (B_FALSE); 565 } 566 567 /* Setup static information */ 568 SET_MIB(ill->ill_ip_mib->ipIfStatsEntrySize, 569 sizeof (mib2_ipIfStatsEntry_t)); 570 if (ill->ill_isv6) { 571 ill->ill_ip_mib->ipIfStatsIPVersion = MIB2_INETADDRESSTYPE_ipv6; 572 SET_MIB(ill->ill_ip_mib->ipIfStatsAddrEntrySize, 573 sizeof (mib2_ipv6AddrEntry_t)); 574 SET_MIB(ill->ill_ip_mib->ipIfStatsRouteEntrySize, 575 sizeof (mib2_ipv6RouteEntry_t)); 576 SET_MIB(ill->ill_ip_mib->ipIfStatsNetToMediaEntrySize, 577 sizeof (mib2_ipv6NetToMediaEntry_t)); 578 SET_MIB(ill->ill_ip_mib->ipIfStatsMemberEntrySize, 579 sizeof (ipv6_member_t)); 580 SET_MIB(ill->ill_ip_mib->ipIfStatsGroupSourceEntrySize, 581 sizeof (ipv6_grpsrc_t)); 582 } else { 583 ill->ill_ip_mib->ipIfStatsIPVersion = MIB2_INETADDRESSTYPE_ipv4; 584 SET_MIB(ill->ill_ip_mib->ipIfStatsAddrEntrySize, 585 sizeof (mib2_ipAddrEntry_t)); 586 SET_MIB(ill->ill_ip_mib->ipIfStatsRouteEntrySize, 587 sizeof (mib2_ipRouteEntry_t)); 588 SET_MIB(ill->ill_ip_mib->ipIfStatsNetToMediaEntrySize, 589 sizeof (mib2_ipNetToMediaEntry_t)); 590 SET_MIB(ill->ill_ip_mib->ipIfStatsMemberEntrySize, 591 sizeof (ip_member_t)); 592 SET_MIB(ill->ill_ip_mib->ipIfStatsGroupSourceEntrySize, 593 sizeof (ip_grpsrc_t)); 594 595 /* 596 * For a v4 ill, we are done at this point, because per ill 597 * icmp mibs are only used for v6. 598 */ 599 return (B_TRUE); 600 } 601 602 ill->ill_icmp6_mib = kmem_zalloc(sizeof (*ill->ill_icmp6_mib), 603 KM_NOSLEEP); 604 if (ill->ill_icmp6_mib == NULL) { 605 kmem_free(ill->ill_ip_mib, sizeof (*ill->ill_ip_mib)); 606 ill->ill_ip_mib = NULL; 607 return (B_FALSE); 608 } 609 /* static icmp info */ 610 ill->ill_icmp6_mib->ipv6IfIcmpEntrySize = 611 sizeof (mib2_ipv6IfIcmpEntry_t); 612 /* 613 * The ipIfStatsIfindex and ipv6IfIcmpIndex will be assigned later 614 * after the phyint merge occurs in ipif_set_values -> ill_glist_insert 615 * -> ill_phyint_reinit 616 */ 617 return (B_TRUE); 618 } 619 620 /* 621 * Common code for preparation of ARP commands. Two points to remember: 622 * 1) The ill_name is tacked on at the end of the allocated space so 623 * the templates name_offset field must contain the total space 624 * to allocate less the name length. 625 * 626 * 2) The templates name_length field should contain the *template* 627 * length. We use it as a parameter to bcopy() and then write 628 * the real ill_name_length into the name_length field of the copy. 629 * (Always called as writer.) 630 */ 631 mblk_t * 632 ill_arp_alloc(ill_t *ill, uchar_t *template, caddr_t addr) 633 { 634 arc_t *arc = (arc_t *)template; 635 char *cp; 636 int len; 637 mblk_t *mp; 638 uint_t name_length = ill->ill_name_length; 639 uint_t template_len = arc->arc_name_length; 640 641 len = arc->arc_name_offset + name_length; 642 mp = allocb(len, BPRI_HI); 643 if (mp == NULL) 644 return (NULL); 645 cp = (char *)mp->b_rptr; 646 mp->b_wptr = (uchar_t *)&cp[len]; 647 if (template_len) 648 bcopy(template, cp, template_len); 649 if (len > template_len) 650 bzero(&cp[template_len], len - template_len); 651 mp->b_datap->db_type = M_PROTO; 652 653 arc = (arc_t *)cp; 654 arc->arc_name_length = name_length; 655 cp = (char *)arc + arc->arc_name_offset; 656 bcopy(ill->ill_name, cp, name_length); 657 658 if (addr) { 659 area_t *area = (area_t *)mp->b_rptr; 660 661 cp = (char *)area + area->area_proto_addr_offset; 662 bcopy(addr, cp, area->area_proto_addr_length); 663 if (area->area_cmd == AR_ENTRY_ADD) { 664 cp = (char *)area; 665 len = area->area_proto_addr_length; 666 if (area->area_proto_mask_offset) 667 cp += area->area_proto_mask_offset; 668 else 669 cp += area->area_proto_addr_offset + len; 670 while (len-- > 0) 671 *cp++ = (char)~0; 672 } 673 } 674 return (mp); 675 } 676 677 mblk_t * 678 ipif_area_alloc(ipif_t *ipif) 679 { 680 return (ill_arp_alloc(ipif->ipif_ill, (uchar_t *)&ip_area_template, 681 (char *)&ipif->ipif_lcl_addr)); 682 } 683 684 mblk_t * 685 ipif_ared_alloc(ipif_t *ipif) 686 { 687 return (ill_arp_alloc(ipif->ipif_ill, (uchar_t *)&ip_ared_template, 688 (char *)&ipif->ipif_lcl_addr)); 689 } 690 691 mblk_t * 692 ill_ared_alloc(ill_t *ill, ipaddr_t addr) 693 { 694 return (ill_arp_alloc(ill, (uchar_t *)&ip_ared_template, 695 (char *)&addr)); 696 } 697 698 /* 699 * Completely vaporize a lower level tap and all associated interfaces. 700 * ill_delete is called only out of ip_close when the device control 701 * stream is being closed. 702 */ 703 void 704 ill_delete(ill_t *ill) 705 { 706 ipif_t *ipif; 707 ill_t *prev_ill; 708 ip_stack_t *ipst = ill->ill_ipst; 709 710 /* 711 * ill_delete may be forcibly entering the ipsq. The previous 712 * ioctl may not have completed and may need to be aborted. 713 * ipsq_flush takes care of it. If we don't need to enter the 714 * the ipsq forcibly, the 2nd invocation of ipsq_flush in 715 * ill_delete_tail is sufficient. 716 */ 717 ipsq_flush(ill); 718 719 /* 720 * Nuke all interfaces. ipif_free will take down the interface, 721 * remove it from the list, and free the data structure. 722 * Walk down the ipif list and remove the logical interfaces 723 * first before removing the main ipif. We can't unplumb 724 * zeroth interface first in the case of IPv6 as reset_conn_ill 725 * -> ip_ll_delmulti_v6 de-references ill_ipif for checking 726 * POINTOPOINT. 727 * 728 * If ill_ipif was not properly initialized (i.e low on memory), 729 * then no interfaces to clean up. In this case just clean up the 730 * ill. 731 */ 732 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) 733 ipif_free(ipif); 734 735 /* 736 * Used only by ill_arp_on and ill_arp_off, which are writers. 737 * So nobody can be using this mp now. Free the mp allocated for 738 * honoring ILLF_NOARP 739 */ 740 freemsg(ill->ill_arp_on_mp); 741 ill->ill_arp_on_mp = NULL; 742 743 /* Clean up msgs on pending upcalls for mrouted */ 744 reset_mrt_ill(ill); 745 746 /* 747 * ipif_free -> reset_conn_ipif will remove all multicast 748 * references for IPv4. For IPv6, we need to do it here as 749 * it points only at ills. 750 */ 751 reset_conn_ill(ill); 752 753 /* 754 * ill_down will arrange to blow off any IRE's dependent on this 755 * ILL, and shut down fragmentation reassembly. 756 */ 757 ill_down(ill); 758 759 /* Let SCTP know, so that it can remove this from its list. */ 760 sctp_update_ill(ill, SCTP_ILL_REMOVE); 761 762 /* 763 * If an address on this ILL is being used as a source address then 764 * clear out the pointers in other ILLs that point to this ILL. 765 */ 766 rw_enter(&ipst->ips_ill_g_usesrc_lock, RW_WRITER); 767 if (ill->ill_usesrc_grp_next != NULL) { 768 if (ill->ill_usesrc_ifindex == 0) { /* usesrc ILL ? */ 769 ill_disband_usesrc_group(ill); 770 } else { /* consumer of the usesrc ILL */ 771 prev_ill = ill_prev_usesrc(ill); 772 prev_ill->ill_usesrc_grp_next = 773 ill->ill_usesrc_grp_next; 774 } 775 } 776 rw_exit(&ipst->ips_ill_g_usesrc_lock); 777 } 778 779 static void 780 ipif_non_duplicate(ipif_t *ipif) 781 { 782 ill_t *ill = ipif->ipif_ill; 783 mutex_enter(&ill->ill_lock); 784 if (ipif->ipif_flags & IPIF_DUPLICATE) { 785 ipif->ipif_flags &= ~IPIF_DUPLICATE; 786 ASSERT(ill->ill_ipif_dup_count > 0); 787 ill->ill_ipif_dup_count--; 788 } 789 mutex_exit(&ill->ill_lock); 790 } 791 792 /* 793 * ill_delete_tail is called from ip_modclose after all references 794 * to the closing ill are gone. The wait is done in ip_modclose 795 */ 796 void 797 ill_delete_tail(ill_t *ill) 798 { 799 mblk_t **mpp; 800 ipif_t *ipif; 801 ip_stack_t *ipst = ill->ill_ipst; 802 803 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 804 ipif_non_duplicate(ipif); 805 ipif_down_tail(ipif); 806 } 807 808 ASSERT(ill->ill_ipif_dup_count == 0 && 809 ill->ill_arp_down_mp == NULL && 810 ill->ill_arp_del_mapping_mp == NULL); 811 812 /* 813 * If polling capability is enabled (which signifies direct 814 * upcall into IP and driver has ill saved as a handle), 815 * we need to make sure that unbind has completed before we 816 * let the ill disappear and driver no longer has any reference 817 * to this ill. 818 */ 819 mutex_enter(&ill->ill_lock); 820 while (ill->ill_state_flags & ILL_DL_UNBIND_IN_PROGRESS) 821 cv_wait(&ill->ill_cv, &ill->ill_lock); 822 mutex_exit(&ill->ill_lock); 823 824 /* 825 * Clean up polling and soft ring capabilities 826 */ 827 if (ill->ill_capabilities & (ILL_CAPAB_POLL|ILL_CAPAB_SOFT_RING)) 828 ill_capability_dls_disable(ill); 829 830 if (ill->ill_net_type != IRE_LOOPBACK) 831 qprocsoff(ill->ill_rq); 832 833 /* 834 * We do an ipsq_flush once again now. New messages could have 835 * landed up from below (M_ERROR or M_HANGUP). Similarly ioctls 836 * could also have landed up if an ioctl thread had looked up 837 * the ill before we set the ILL_CONDEMNED flag, but not yet 838 * enqueued the ioctl when we did the ipsq_flush last time. 839 */ 840 ipsq_flush(ill); 841 842 /* 843 * Free capabilities. 844 */ 845 if (ill->ill_ipsec_capab_ah != NULL) { 846 ill_ipsec_capab_delete(ill, DL_CAPAB_IPSEC_AH); 847 ill_ipsec_capab_free(ill->ill_ipsec_capab_ah); 848 ill->ill_ipsec_capab_ah = NULL; 849 } 850 851 if (ill->ill_ipsec_capab_esp != NULL) { 852 ill_ipsec_capab_delete(ill, DL_CAPAB_IPSEC_ESP); 853 ill_ipsec_capab_free(ill->ill_ipsec_capab_esp); 854 ill->ill_ipsec_capab_esp = NULL; 855 } 856 857 if (ill->ill_mdt_capab != NULL) { 858 kmem_free(ill->ill_mdt_capab, sizeof (ill_mdt_capab_t)); 859 ill->ill_mdt_capab = NULL; 860 } 861 862 if (ill->ill_hcksum_capab != NULL) { 863 kmem_free(ill->ill_hcksum_capab, sizeof (ill_hcksum_capab_t)); 864 ill->ill_hcksum_capab = NULL; 865 } 866 867 if (ill->ill_zerocopy_capab != NULL) { 868 kmem_free(ill->ill_zerocopy_capab, 869 sizeof (ill_zerocopy_capab_t)); 870 ill->ill_zerocopy_capab = NULL; 871 } 872 873 if (ill->ill_lso_capab != NULL) { 874 kmem_free(ill->ill_lso_capab, sizeof (ill_lso_capab_t)); 875 ill->ill_lso_capab = NULL; 876 } 877 878 if (ill->ill_dls_capab != NULL) { 879 CONN_DEC_REF(ill->ill_dls_capab->ill_unbind_conn); 880 ill->ill_dls_capab->ill_unbind_conn = NULL; 881 kmem_free(ill->ill_dls_capab, 882 sizeof (ill_dls_capab_t) + 883 (sizeof (ill_rx_ring_t) * ILL_MAX_RINGS)); 884 ill->ill_dls_capab = NULL; 885 } 886 887 ASSERT(!(ill->ill_capabilities & ILL_CAPAB_POLL)); 888 889 while (ill->ill_ipif != NULL) 890 ipif_free_tail(ill->ill_ipif); 891 892 /* 893 * We have removed all references to ilm from conn and the ones joined 894 * within the kernel. 895 * 896 * We don't walk conns, mrts and ires because 897 * 898 * 1) reset_conn_ill and reset_mrt_ill cleans up conns and mrts. 899 * 2) ill_down ->ill_downi walks all the ires and cleans up 900 * ill references. 901 */ 902 ASSERT(ilm_walk_ill(ill) == 0); 903 /* 904 * Take us out of the list of ILLs. ill_glist_delete -> ill_phyint_free 905 * could free the phyint. No more reference to the phyint after this 906 * point. 907 */ 908 (void) ill_glist_delete(ill); 909 910 rw_enter(&ipst->ips_ip_g_nd_lock, RW_WRITER); 911 if (ill->ill_ndd_name != NULL) 912 nd_unload(&ipst->ips_ip_g_nd, ill->ill_ndd_name); 913 rw_exit(&ipst->ips_ip_g_nd_lock); 914 915 if (ill->ill_frag_ptr != NULL) { 916 uint_t count; 917 918 for (count = 0; count < ILL_FRAG_HASH_TBL_COUNT; count++) { 919 mutex_destroy(&ill->ill_frag_hash_tbl[count].ipfb_lock); 920 } 921 mi_free(ill->ill_frag_ptr); 922 ill->ill_frag_ptr = NULL; 923 ill->ill_frag_hash_tbl = NULL; 924 } 925 926 freemsg(ill->ill_nd_lla_mp); 927 /* Free all retained control messages. */ 928 mpp = &ill->ill_first_mp_to_free; 929 do { 930 while (mpp[0]) { 931 mblk_t *mp; 932 mblk_t *mp1; 933 934 mp = mpp[0]; 935 mpp[0] = mp->b_next; 936 for (mp1 = mp; mp1 != NULL; mp1 = mp1->b_cont) { 937 mp1->b_next = NULL; 938 mp1->b_prev = NULL; 939 } 940 freemsg(mp); 941 } 942 } while (mpp++ != &ill->ill_last_mp_to_free); 943 944 ill_free_mib(ill); 945 946 #ifdef DEBUG 947 ill_trace_cleanup(ill); 948 #endif 949 950 /* Drop refcnt here */ 951 netstack_rele(ill->ill_ipst->ips_netstack); 952 ill->ill_ipst = NULL; 953 } 954 955 static void 956 ill_free_mib(ill_t *ill) 957 { 958 ip_stack_t *ipst = ill->ill_ipst; 959 960 /* 961 * MIB statistics must not be lost, so when an interface 962 * goes away the counter values will be added to the global 963 * MIBs. 964 */ 965 if (ill->ill_ip_mib != NULL) { 966 if (ill->ill_isv6) { 967 ip_mib2_add_ip_stats(&ipst->ips_ip6_mib, 968 ill->ill_ip_mib); 969 } else { 970 ip_mib2_add_ip_stats(&ipst->ips_ip_mib, 971 ill->ill_ip_mib); 972 } 973 974 kmem_free(ill->ill_ip_mib, sizeof (*ill->ill_ip_mib)); 975 ill->ill_ip_mib = NULL; 976 } 977 if (ill->ill_icmp6_mib != NULL) { 978 ip_mib2_add_icmp6_stats(&ipst->ips_icmp6_mib, 979 ill->ill_icmp6_mib); 980 kmem_free(ill->ill_icmp6_mib, sizeof (*ill->ill_icmp6_mib)); 981 ill->ill_icmp6_mib = NULL; 982 } 983 } 984 985 /* 986 * Concatenate together a physical address and a sap. 987 * 988 * Sap_lengths are interpreted as follows: 989 * sap_length == 0 ==> no sap 990 * sap_length > 0 ==> sap is at the head of the dlpi address 991 * sap_length < 0 ==> sap is at the tail of the dlpi address 992 */ 993 static void 994 ill_dlur_copy_address(uchar_t *phys_src, uint_t phys_length, 995 t_scalar_t sap_src, t_scalar_t sap_length, uchar_t *dst) 996 { 997 uint16_t sap_addr = (uint16_t)sap_src; 998 999 if (sap_length == 0) { 1000 if (phys_src == NULL) 1001 bzero(dst, phys_length); 1002 else 1003 bcopy(phys_src, dst, phys_length); 1004 } else if (sap_length < 0) { 1005 if (phys_src == NULL) 1006 bzero(dst, phys_length); 1007 else 1008 bcopy(phys_src, dst, phys_length); 1009 bcopy(&sap_addr, (char *)dst + phys_length, sizeof (sap_addr)); 1010 } else { 1011 bcopy(&sap_addr, dst, sizeof (sap_addr)); 1012 if (phys_src == NULL) 1013 bzero((char *)dst + sap_length, phys_length); 1014 else 1015 bcopy(phys_src, (char *)dst + sap_length, phys_length); 1016 } 1017 } 1018 1019 /* 1020 * Generate a dl_unitdata_req mblk for the device and address given. 1021 * addr_length is the length of the physical portion of the address. 1022 * If addr is NULL include an all zero address of the specified length. 1023 * TRUE? In any case, addr_length is taken to be the entire length of the 1024 * dlpi address, including the absolute value of sap_length. 1025 */ 1026 mblk_t * 1027 ill_dlur_gen(uchar_t *addr, uint_t addr_length, t_uscalar_t sap, 1028 t_scalar_t sap_length) 1029 { 1030 dl_unitdata_req_t *dlur; 1031 mblk_t *mp; 1032 t_scalar_t abs_sap_length; /* absolute value */ 1033 1034 abs_sap_length = ABS(sap_length); 1035 mp = ip_dlpi_alloc(sizeof (*dlur) + addr_length + abs_sap_length, 1036 DL_UNITDATA_REQ); 1037 if (mp == NULL) 1038 return (NULL); 1039 dlur = (dl_unitdata_req_t *)mp->b_rptr; 1040 /* HACK: accomodate incompatible DLPI drivers */ 1041 if (addr_length == 8) 1042 addr_length = 6; 1043 dlur->dl_dest_addr_length = addr_length + abs_sap_length; 1044 dlur->dl_dest_addr_offset = sizeof (*dlur); 1045 dlur->dl_priority.dl_min = 0; 1046 dlur->dl_priority.dl_max = 0; 1047 ill_dlur_copy_address(addr, addr_length, sap, sap_length, 1048 (uchar_t *)&dlur[1]); 1049 return (mp); 1050 } 1051 1052 /* 1053 * Add the 'mp' to the list of pending mp's headed by ill_pending_mp 1054 * Return an error if we already have 1 or more ioctls in progress. 1055 * This is used only for non-exclusive ioctls. Currently this is used 1056 * for SIOC*ARP and SIOCGTUNPARAM ioctls. Most set ioctls are exclusive 1057 * and thus need to use ipsq_pending_mp_add. 1058 */ 1059 boolean_t 1060 ill_pending_mp_add(ill_t *ill, conn_t *connp, mblk_t *add_mp) 1061 { 1062 ASSERT(MUTEX_HELD(&ill->ill_lock)); 1063 ASSERT((add_mp->b_next == NULL) && (add_mp->b_prev == NULL)); 1064 /* 1065 * M_IOCDATA from ioctls, M_IOCTL from tunnel ioctls. 1066 */ 1067 ASSERT((add_mp->b_datap->db_type == M_IOCDATA) || 1068 (add_mp->b_datap->db_type == M_IOCTL)); 1069 1070 ASSERT(MUTEX_HELD(&connp->conn_lock)); 1071 /* 1072 * Return error if the conn has started closing. The conn 1073 * could have finished cleaning up the pending mp list, 1074 * If so we should not add another mp to the list negating 1075 * the cleanup. 1076 */ 1077 if (connp->conn_state_flags & CONN_CLOSING) 1078 return (B_FALSE); 1079 /* 1080 * Add the pending mp to the head of the list, chained by b_next. 1081 * Note down the conn on which the ioctl request came, in b_prev. 1082 * This will be used to later get the conn, when we get a response 1083 * on the ill queue, from some other module (typically arp) 1084 */ 1085 add_mp->b_next = (void *)ill->ill_pending_mp; 1086 add_mp->b_queue = CONNP_TO_WQ(connp); 1087 ill->ill_pending_mp = add_mp; 1088 if (connp != NULL) 1089 connp->conn_oper_pending_ill = ill; 1090 return (B_TRUE); 1091 } 1092 1093 /* 1094 * Retrieve the ill_pending_mp and return it. We have to walk the list 1095 * of mblks starting at ill_pending_mp, and match based on the ioc_id. 1096 */ 1097 mblk_t * 1098 ill_pending_mp_get(ill_t *ill, conn_t **connpp, uint_t ioc_id) 1099 { 1100 mblk_t *prev = NULL; 1101 mblk_t *curr = NULL; 1102 uint_t id; 1103 conn_t *connp; 1104 1105 /* 1106 * When the conn closes, conn_ioctl_cleanup needs to clean 1107 * up the pending mp, but it does not know the ioc_id and 1108 * passes in a zero for it. 1109 */ 1110 mutex_enter(&ill->ill_lock); 1111 if (ioc_id != 0) 1112 *connpp = NULL; 1113 1114 /* Search the list for the appropriate ioctl based on ioc_id */ 1115 for (prev = NULL, curr = ill->ill_pending_mp; curr != NULL; 1116 prev = curr, curr = curr->b_next) { 1117 id = ((struct iocblk *)curr->b_rptr)->ioc_id; 1118 connp = Q_TO_CONN(curr->b_queue); 1119 /* Match based on the ioc_id or based on the conn */ 1120 if ((id == ioc_id) || (ioc_id == 0 && connp == *connpp)) 1121 break; 1122 } 1123 1124 if (curr != NULL) { 1125 /* Unlink the mblk from the pending mp list */ 1126 if (prev != NULL) { 1127 prev->b_next = curr->b_next; 1128 } else { 1129 ASSERT(ill->ill_pending_mp == curr); 1130 ill->ill_pending_mp = curr->b_next; 1131 } 1132 1133 /* 1134 * conn refcnt must have been bumped up at the start of 1135 * the ioctl. So we can safely access the conn. 1136 */ 1137 ASSERT(CONN_Q(curr->b_queue)); 1138 *connpp = Q_TO_CONN(curr->b_queue); 1139 curr->b_next = NULL; 1140 curr->b_queue = NULL; 1141 } 1142 1143 mutex_exit(&ill->ill_lock); 1144 1145 return (curr); 1146 } 1147 1148 /* 1149 * Add the pending mp to the list. There can be only 1 pending mp 1150 * in the list. Any exclusive ioctl that needs to wait for a response 1151 * from another module or driver needs to use this function to set 1152 * the ipsq_pending_mp to the ioctl mblk and wait for the response from 1153 * the other module/driver. This is also used while waiting for the 1154 * ipif/ill/ire refcnts to drop to zero in bringing down an ipif. 1155 */ 1156 boolean_t 1157 ipsq_pending_mp_add(conn_t *connp, ipif_t *ipif, queue_t *q, mblk_t *add_mp, 1158 int waitfor) 1159 { 1160 ipsq_t *ipsq = ipif->ipif_ill->ill_phyint->phyint_ipsq; 1161 1162 ASSERT(IAM_WRITER_IPIF(ipif)); 1163 ASSERT(MUTEX_HELD(&ipif->ipif_ill->ill_lock)); 1164 ASSERT((add_mp->b_next == NULL) && (add_mp->b_prev == NULL)); 1165 ASSERT(ipsq->ipsq_pending_mp == NULL); 1166 /* 1167 * The caller may be using a different ipif than the one passed into 1168 * ipsq_current_start() (e.g., suppose an ioctl that came in on the V4 1169 * ill needs to wait for the V6 ill to quiesce). So we can't ASSERT 1170 * that `ipsq_current_ipif == ipif'. 1171 */ 1172 ASSERT(ipsq->ipsq_current_ipif != NULL); 1173 1174 /* 1175 * M_IOCDATA from ioctls, M_IOCTL from tunnel ioctls, 1176 * M_ERROR/M_HANGUP/M_PROTO/M_PCPROTO from the driver. 1177 */ 1178 ASSERT((DB_TYPE(add_mp) == M_IOCDATA) || (DB_TYPE(add_mp) == M_IOCTL) || 1179 (DB_TYPE(add_mp) == M_ERROR) || (DB_TYPE(add_mp) == M_HANGUP) || 1180 (DB_TYPE(add_mp) == M_PROTO) || (DB_TYPE(add_mp) == M_PCPROTO)); 1181 1182 if (connp != NULL) { 1183 ASSERT(MUTEX_HELD(&connp->conn_lock)); 1184 /* 1185 * Return error if the conn has started closing. The conn 1186 * could have finished cleaning up the pending mp list, 1187 * If so we should not add another mp to the list negating 1188 * the cleanup. 1189 */ 1190 if (connp->conn_state_flags & CONN_CLOSING) 1191 return (B_FALSE); 1192 } 1193 mutex_enter(&ipsq->ipsq_lock); 1194 ipsq->ipsq_pending_ipif = ipif; 1195 /* 1196 * Note down the queue in b_queue. This will be returned by 1197 * ipsq_pending_mp_get. Caller will then use these values to restart 1198 * the processing 1199 */ 1200 add_mp->b_next = NULL; 1201 add_mp->b_queue = q; 1202 ipsq->ipsq_pending_mp = add_mp; 1203 ipsq->ipsq_waitfor = waitfor; 1204 1205 if (connp != NULL) 1206 connp->conn_oper_pending_ill = ipif->ipif_ill; 1207 mutex_exit(&ipsq->ipsq_lock); 1208 return (B_TRUE); 1209 } 1210 1211 /* 1212 * Retrieve the ipsq_pending_mp and return it. There can be only 1 mp 1213 * queued in the list. 1214 */ 1215 mblk_t * 1216 ipsq_pending_mp_get(ipsq_t *ipsq, conn_t **connpp) 1217 { 1218 mblk_t *curr = NULL; 1219 1220 mutex_enter(&ipsq->ipsq_lock); 1221 *connpp = NULL; 1222 if (ipsq->ipsq_pending_mp == NULL) { 1223 mutex_exit(&ipsq->ipsq_lock); 1224 return (NULL); 1225 } 1226 1227 /* There can be only 1 such excl message */ 1228 curr = ipsq->ipsq_pending_mp; 1229 ASSERT(curr != NULL && curr->b_next == NULL); 1230 ipsq->ipsq_pending_ipif = NULL; 1231 ipsq->ipsq_pending_mp = NULL; 1232 ipsq->ipsq_waitfor = 0; 1233 mutex_exit(&ipsq->ipsq_lock); 1234 1235 if (CONN_Q(curr->b_queue)) { 1236 /* 1237 * This mp did a refhold on the conn, at the start of the ioctl. 1238 * So we can safely return a pointer to the conn to the caller. 1239 */ 1240 *connpp = Q_TO_CONN(curr->b_queue); 1241 } else { 1242 *connpp = NULL; 1243 } 1244 curr->b_next = NULL; 1245 curr->b_prev = NULL; 1246 return (curr); 1247 } 1248 1249 /* 1250 * Cleanup the ioctl mp queued in ipsq_pending_mp 1251 * - Called in the ill_delete path 1252 * - Called in the M_ERROR or M_HANGUP path on the ill. 1253 * - Called in the conn close path. 1254 */ 1255 boolean_t 1256 ipsq_pending_mp_cleanup(ill_t *ill, conn_t *connp) 1257 { 1258 mblk_t *mp; 1259 ipsq_t *ipsq; 1260 queue_t *q; 1261 ipif_t *ipif; 1262 1263 ASSERT(IAM_WRITER_ILL(ill)); 1264 ipsq = ill->ill_phyint->phyint_ipsq; 1265 mutex_enter(&ipsq->ipsq_lock); 1266 /* 1267 * If connp is null, unconditionally clean up the ipsq_pending_mp. 1268 * This happens in M_ERROR/M_HANGUP. We need to abort the current ioctl 1269 * even if it is meant for another ill, since we have to enqueue 1270 * a new mp now in ipsq_pending_mp to complete the ipif_down. 1271 * If connp is non-null we are called from the conn close path. 1272 */ 1273 mp = ipsq->ipsq_pending_mp; 1274 if (mp == NULL || (connp != NULL && 1275 mp->b_queue != CONNP_TO_WQ(connp))) { 1276 mutex_exit(&ipsq->ipsq_lock); 1277 return (B_FALSE); 1278 } 1279 /* Now remove from the ipsq_pending_mp */ 1280 ipsq->ipsq_pending_mp = NULL; 1281 q = mp->b_queue; 1282 mp->b_next = NULL; 1283 mp->b_prev = NULL; 1284 mp->b_queue = NULL; 1285 1286 /* If MOVE was in progress, clear the move_in_progress fields also. */ 1287 ill = ipsq->ipsq_pending_ipif->ipif_ill; 1288 if (ill->ill_move_in_progress) { 1289 ILL_CLEAR_MOVE(ill); 1290 } else if (ill->ill_up_ipifs) { 1291 ill_group_cleanup(ill); 1292 } 1293 1294 ipif = ipsq->ipsq_pending_ipif; 1295 ipsq->ipsq_pending_ipif = NULL; 1296 ipsq->ipsq_waitfor = 0; 1297 ipsq->ipsq_current_ipif = NULL; 1298 ipsq->ipsq_current_ioctl = 0; 1299 ipsq->ipsq_current_done = B_TRUE; 1300 mutex_exit(&ipsq->ipsq_lock); 1301 1302 if (DB_TYPE(mp) == M_IOCTL || DB_TYPE(mp) == M_IOCDATA) { 1303 if (connp == NULL) { 1304 ip_ioctl_finish(q, mp, ENXIO, NO_COPYOUT, NULL); 1305 } else { 1306 ip_ioctl_finish(q, mp, ENXIO, CONN_CLOSE, NULL); 1307 mutex_enter(&ipif->ipif_ill->ill_lock); 1308 ipif->ipif_state_flags &= ~IPIF_CHANGING; 1309 mutex_exit(&ipif->ipif_ill->ill_lock); 1310 } 1311 } else { 1312 /* 1313 * IP-MT XXX In the case of TLI/XTI bind / optmgmt this can't 1314 * be just inet_freemsg. we have to restart it 1315 * otherwise the thread will be stuck. 1316 */ 1317 inet_freemsg(mp); 1318 } 1319 return (B_TRUE); 1320 } 1321 1322 /* 1323 * The ill is closing. Cleanup all the pending mps. Called exclusively 1324 * towards the end of ill_delete. The refcount has gone to 0. So nobody 1325 * knows this ill, and hence nobody can add an mp to this list 1326 */ 1327 static void 1328 ill_pending_mp_cleanup(ill_t *ill) 1329 { 1330 mblk_t *mp; 1331 queue_t *q; 1332 1333 ASSERT(IAM_WRITER_ILL(ill)); 1334 1335 mutex_enter(&ill->ill_lock); 1336 /* 1337 * Every mp on the pending mp list originating from an ioctl 1338 * added 1 to the conn refcnt, at the start of the ioctl. 1339 * So bump it down now. See comments in ip_wput_nondata() 1340 */ 1341 while (ill->ill_pending_mp != NULL) { 1342 mp = ill->ill_pending_mp; 1343 ill->ill_pending_mp = mp->b_next; 1344 mutex_exit(&ill->ill_lock); 1345 1346 q = mp->b_queue; 1347 ASSERT(CONN_Q(q)); 1348 mp->b_next = NULL; 1349 mp->b_prev = NULL; 1350 mp->b_queue = NULL; 1351 ip_ioctl_finish(q, mp, ENXIO, NO_COPYOUT, NULL); 1352 mutex_enter(&ill->ill_lock); 1353 } 1354 ill->ill_pending_ipif = NULL; 1355 1356 mutex_exit(&ill->ill_lock); 1357 } 1358 1359 /* 1360 * Called in the conn close path and ill delete path 1361 */ 1362 static void 1363 ipsq_xopq_mp_cleanup(ill_t *ill, conn_t *connp) 1364 { 1365 ipsq_t *ipsq; 1366 mblk_t *prev; 1367 mblk_t *curr; 1368 mblk_t *next; 1369 queue_t *q; 1370 mblk_t *tmp_list = NULL; 1371 1372 ASSERT(IAM_WRITER_ILL(ill)); 1373 if (connp != NULL) 1374 q = CONNP_TO_WQ(connp); 1375 else 1376 q = ill->ill_wq; 1377 1378 ipsq = ill->ill_phyint->phyint_ipsq; 1379 /* 1380 * Cleanup the ioctl mp's queued in ipsq_xopq_pending_mp if any. 1381 * In the case of ioctl from a conn, there can be only 1 mp 1382 * queued on the ipsq. If an ill is being unplumbed, only messages 1383 * related to this ill are flushed, like M_ERROR or M_HANGUP message. 1384 * ioctls meant for this ill form conn's are not flushed. They will 1385 * be processed during ipsq_exit and will not find the ill and will 1386 * return error. 1387 */ 1388 mutex_enter(&ipsq->ipsq_lock); 1389 for (prev = NULL, curr = ipsq->ipsq_xopq_mphead; curr != NULL; 1390 curr = next) { 1391 next = curr->b_next; 1392 if (curr->b_queue == q || curr->b_queue == RD(q)) { 1393 /* Unlink the mblk from the pending mp list */ 1394 if (prev != NULL) { 1395 prev->b_next = curr->b_next; 1396 } else { 1397 ASSERT(ipsq->ipsq_xopq_mphead == curr); 1398 ipsq->ipsq_xopq_mphead = curr->b_next; 1399 } 1400 if (ipsq->ipsq_xopq_mptail == curr) 1401 ipsq->ipsq_xopq_mptail = prev; 1402 /* 1403 * Create a temporary list and release the ipsq lock 1404 * New elements are added to the head of the tmp_list 1405 */ 1406 curr->b_next = tmp_list; 1407 tmp_list = curr; 1408 } else { 1409 prev = curr; 1410 } 1411 } 1412 mutex_exit(&ipsq->ipsq_lock); 1413 1414 while (tmp_list != NULL) { 1415 curr = tmp_list; 1416 tmp_list = curr->b_next; 1417 curr->b_next = NULL; 1418 curr->b_prev = NULL; 1419 curr->b_queue = NULL; 1420 if (DB_TYPE(curr) == M_IOCTL || DB_TYPE(curr) == M_IOCDATA) { 1421 ip_ioctl_finish(q, curr, ENXIO, connp != NULL ? 1422 CONN_CLOSE : NO_COPYOUT, NULL); 1423 } else { 1424 /* 1425 * IP-MT XXX In the case of TLI/XTI bind / optmgmt 1426 * this can't be just inet_freemsg. we have to 1427 * restart it otherwise the thread will be stuck. 1428 */ 1429 inet_freemsg(curr); 1430 } 1431 } 1432 } 1433 1434 /* 1435 * This conn has started closing. Cleanup any pending ioctl from this conn. 1436 * STREAMS ensures that there can be at most 1 ioctl pending on a stream. 1437 */ 1438 void 1439 conn_ioctl_cleanup(conn_t *connp) 1440 { 1441 mblk_t *curr; 1442 ipsq_t *ipsq; 1443 ill_t *ill; 1444 boolean_t refheld; 1445 1446 /* 1447 * Is any exclusive ioctl pending ? If so clean it up. If the 1448 * ioctl has not yet started, the mp is pending in the list headed by 1449 * ipsq_xopq_head. If the ioctl has started the mp could be present in 1450 * ipsq_pending_mp. If the ioctl timed out in the streamhead but 1451 * is currently executing now the mp is not queued anywhere but 1452 * conn_oper_pending_ill is null. The conn close will wait 1453 * till the conn_ref drops to zero. 1454 */ 1455 mutex_enter(&connp->conn_lock); 1456 ill = connp->conn_oper_pending_ill; 1457 if (ill == NULL) { 1458 mutex_exit(&connp->conn_lock); 1459 return; 1460 } 1461 1462 curr = ill_pending_mp_get(ill, &connp, 0); 1463 if (curr != NULL) { 1464 mutex_exit(&connp->conn_lock); 1465 CONN_DEC_REF(connp); 1466 inet_freemsg(curr); 1467 return; 1468 } 1469 /* 1470 * We may not be able to refhold the ill if the ill/ipif 1471 * is changing. But we need to make sure that the ill will 1472 * not vanish. So we just bump up the ill_waiter count. 1473 */ 1474 refheld = ill_waiter_inc(ill); 1475 mutex_exit(&connp->conn_lock); 1476 if (refheld) { 1477 if (ipsq_enter(ill, B_TRUE)) { 1478 ill_waiter_dcr(ill); 1479 /* 1480 * Check whether this ioctl has started and is 1481 * pending now in ipsq_pending_mp. If it is not 1482 * found there then check whether this ioctl has 1483 * not even started and is in the ipsq_xopq list. 1484 */ 1485 if (!ipsq_pending_mp_cleanup(ill, connp)) 1486 ipsq_xopq_mp_cleanup(ill, connp); 1487 ipsq = ill->ill_phyint->phyint_ipsq; 1488 ipsq_exit(ipsq); 1489 return; 1490 } 1491 } 1492 1493 /* 1494 * The ill is also closing and we could not bump up the 1495 * ill_waiter_count or we could not enter the ipsq. Leave 1496 * the cleanup to ill_delete 1497 */ 1498 mutex_enter(&connp->conn_lock); 1499 while (connp->conn_oper_pending_ill != NULL) 1500 cv_wait(&connp->conn_refcv, &connp->conn_lock); 1501 mutex_exit(&connp->conn_lock); 1502 if (refheld) 1503 ill_waiter_dcr(ill); 1504 } 1505 1506 /* 1507 * ipcl_walk function for cleaning up conn_*_ill fields. 1508 */ 1509 static void 1510 conn_cleanup_ill(conn_t *connp, caddr_t arg) 1511 { 1512 ill_t *ill = (ill_t *)arg; 1513 ire_t *ire; 1514 1515 mutex_enter(&connp->conn_lock); 1516 if (connp->conn_multicast_ill == ill) { 1517 /* Revert to late binding */ 1518 connp->conn_multicast_ill = NULL; 1519 connp->conn_orig_multicast_ifindex = 0; 1520 } 1521 if (connp->conn_incoming_ill == ill) 1522 connp->conn_incoming_ill = NULL; 1523 if (connp->conn_outgoing_ill == ill) 1524 connp->conn_outgoing_ill = NULL; 1525 if (connp->conn_outgoing_pill == ill) 1526 connp->conn_outgoing_pill = NULL; 1527 if (connp->conn_nofailover_ill == ill) 1528 connp->conn_nofailover_ill = NULL; 1529 if (connp->conn_dhcpinit_ill == ill) { 1530 connp->conn_dhcpinit_ill = NULL; 1531 ASSERT(ill->ill_dhcpinit != 0); 1532 atomic_dec_32(&ill->ill_dhcpinit); 1533 } 1534 if (connp->conn_ire_cache != NULL) { 1535 ire = connp->conn_ire_cache; 1536 /* 1537 * ip_newroute creates IRE_CACHE with ire_stq coming from 1538 * interface X and ipif coming from interface Y, if interface 1539 * X and Y are part of the same IPMPgroup. Thus whenever 1540 * interface X goes down, remove all references to it by 1541 * checking both on ire_ipif and ire_stq. 1542 */ 1543 if ((ire->ire_ipif != NULL && ire->ire_ipif->ipif_ill == ill) || 1544 (ire->ire_type == IRE_CACHE && 1545 ire->ire_stq == ill->ill_wq)) { 1546 connp->conn_ire_cache = NULL; 1547 mutex_exit(&connp->conn_lock); 1548 ire_refrele_notr(ire); 1549 return; 1550 } 1551 } 1552 mutex_exit(&connp->conn_lock); 1553 } 1554 1555 /* ARGSUSED */ 1556 void 1557 ipif_all_down_tail(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy_arg) 1558 { 1559 ill_t *ill = q->q_ptr; 1560 ipif_t *ipif; 1561 1562 ASSERT(IAM_WRITER_IPSQ(ipsq)); 1563 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 1564 ipif_non_duplicate(ipif); 1565 ipif_down_tail(ipif); 1566 } 1567 freemsg(mp); 1568 ipsq_current_finish(ipsq); 1569 } 1570 1571 /* 1572 * ill_down_start is called when we want to down this ill and bring it up again 1573 * It is called when we receive an M_ERROR / M_HANGUP. In this case we shut down 1574 * all interfaces, but don't tear down any plumbing. 1575 */ 1576 boolean_t 1577 ill_down_start(queue_t *q, mblk_t *mp) 1578 { 1579 ill_t *ill = q->q_ptr; 1580 ipif_t *ipif; 1581 1582 ASSERT(IAM_WRITER_ILL(ill)); 1583 1584 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) 1585 (void) ipif_down(ipif, NULL, NULL); 1586 1587 ill_down(ill); 1588 1589 (void) ipsq_pending_mp_cleanup(ill, NULL); 1590 1591 ipsq_current_start(ill->ill_phyint->phyint_ipsq, ill->ill_ipif, 0); 1592 1593 /* 1594 * Atomically test and add the pending mp if references are active. 1595 */ 1596 mutex_enter(&ill->ill_lock); 1597 if (!ill_is_quiescent(ill)) { 1598 /* call cannot fail since `conn_t *' argument is NULL */ 1599 (void) ipsq_pending_mp_add(NULL, ill->ill_ipif, ill->ill_rq, 1600 mp, ILL_DOWN); 1601 mutex_exit(&ill->ill_lock); 1602 return (B_FALSE); 1603 } 1604 mutex_exit(&ill->ill_lock); 1605 return (B_TRUE); 1606 } 1607 1608 static void 1609 ill_down(ill_t *ill) 1610 { 1611 ip_stack_t *ipst = ill->ill_ipst; 1612 1613 /* Blow off any IREs dependent on this ILL. */ 1614 ire_walk(ill_downi, (char *)ill, ipst); 1615 1616 /* Remove any conn_*_ill depending on this ill */ 1617 ipcl_walk(conn_cleanup_ill, (caddr_t)ill, ipst); 1618 1619 if (ill->ill_group != NULL) { 1620 illgrp_delete(ill); 1621 } 1622 } 1623 1624 /* 1625 * ire_walk routine used to delete every IRE that depends on queues 1626 * associated with 'ill'. (Always called as writer.) 1627 */ 1628 static void 1629 ill_downi(ire_t *ire, char *ill_arg) 1630 { 1631 ill_t *ill = (ill_t *)ill_arg; 1632 1633 /* 1634 * ip_newroute creates IRE_CACHE with ire_stq coming from 1635 * interface X and ipif coming from interface Y, if interface 1636 * X and Y are part of the same IPMP group. Thus whenever interface 1637 * X goes down, remove all references to it by checking both 1638 * on ire_ipif and ire_stq. 1639 */ 1640 if ((ire->ire_ipif != NULL && ire->ire_ipif->ipif_ill == ill) || 1641 (ire->ire_type == IRE_CACHE && ire->ire_stq == ill->ill_wq)) { 1642 ire_delete(ire); 1643 } 1644 } 1645 1646 /* 1647 * Remove ire/nce from the fastpath list. 1648 */ 1649 void 1650 ill_fastpath_nack(ill_t *ill) 1651 { 1652 nce_fastpath_list_dispatch(ill, NULL, NULL); 1653 } 1654 1655 /* Consume an M_IOCACK of the fastpath probe. */ 1656 void 1657 ill_fastpath_ack(ill_t *ill, mblk_t *mp) 1658 { 1659 mblk_t *mp1 = mp; 1660 1661 /* 1662 * If this was the first attempt turn on the fastpath probing. 1663 */ 1664 mutex_enter(&ill->ill_lock); 1665 if (ill->ill_dlpi_fastpath_state == IDS_INPROGRESS) 1666 ill->ill_dlpi_fastpath_state = IDS_OK; 1667 mutex_exit(&ill->ill_lock); 1668 1669 /* Free the M_IOCACK mblk, hold on to the data */ 1670 mp = mp->b_cont; 1671 freeb(mp1); 1672 if (mp == NULL) 1673 return; 1674 if (mp->b_cont != NULL) { 1675 /* 1676 * Update all IRE's or NCE's that are waiting for 1677 * fastpath update. 1678 */ 1679 nce_fastpath_list_dispatch(ill, ndp_fastpath_update, mp); 1680 mp1 = mp->b_cont; 1681 freeb(mp); 1682 mp = mp1; 1683 } else { 1684 ip0dbg(("ill_fastpath_ack: no b_cont\n")); 1685 } 1686 1687 freeb(mp); 1688 } 1689 1690 /* 1691 * Throw an M_IOCTL message downstream asking "do you know fastpath?" 1692 * The data portion of the request is a dl_unitdata_req_t template for 1693 * what we would send downstream in the absence of a fastpath confirmation. 1694 */ 1695 int 1696 ill_fastpath_probe(ill_t *ill, mblk_t *dlur_mp) 1697 { 1698 struct iocblk *ioc; 1699 mblk_t *mp; 1700 1701 if (dlur_mp == NULL) 1702 return (EINVAL); 1703 1704 mutex_enter(&ill->ill_lock); 1705 switch (ill->ill_dlpi_fastpath_state) { 1706 case IDS_FAILED: 1707 /* 1708 * Driver NAKed the first fastpath ioctl - assume it doesn't 1709 * support it. 1710 */ 1711 mutex_exit(&ill->ill_lock); 1712 return (ENOTSUP); 1713 case IDS_UNKNOWN: 1714 /* This is the first probe */ 1715 ill->ill_dlpi_fastpath_state = IDS_INPROGRESS; 1716 break; 1717 default: 1718 break; 1719 } 1720 mutex_exit(&ill->ill_lock); 1721 1722 if ((mp = mkiocb(DL_IOC_HDR_INFO)) == NULL) 1723 return (EAGAIN); 1724 1725 mp->b_cont = copyb(dlur_mp); 1726 if (mp->b_cont == NULL) { 1727 freeb(mp); 1728 return (EAGAIN); 1729 } 1730 1731 ioc = (struct iocblk *)mp->b_rptr; 1732 ioc->ioc_count = msgdsize(mp->b_cont); 1733 1734 putnext(ill->ill_wq, mp); 1735 return (0); 1736 } 1737 1738 void 1739 ill_capability_probe(ill_t *ill) 1740 { 1741 /* 1742 * Do so only if capabilities are still unknown. 1743 */ 1744 if (ill->ill_dlpi_capab_state != IDS_UNKNOWN) 1745 return; 1746 1747 ill->ill_dlpi_capab_state = IDS_INPROGRESS; 1748 ip1dbg(("ill_capability_probe: starting capability negotiation\n")); 1749 ill_capability_proto(ill, DL_CAPABILITY_REQ, NULL); 1750 } 1751 1752 void 1753 ill_capability_reset(ill_t *ill) 1754 { 1755 mblk_t *sc_mp = NULL; 1756 mblk_t *tmp; 1757 1758 /* 1759 * Note here that we reset the state to UNKNOWN, and later send 1760 * down the DL_CAPABILITY_REQ without first setting the state to 1761 * INPROGRESS. We do this in order to distinguish the 1762 * DL_CAPABILITY_ACK response which may come back in response to 1763 * a "reset" apart from the "probe" DL_CAPABILITY_REQ. This would 1764 * also handle the case where the driver doesn't send us back 1765 * a DL_CAPABILITY_ACK in response, since the "probe" routine 1766 * requires the state to be in UNKNOWN anyway. In any case, all 1767 * features are turned off until the state reaches IDS_OK. 1768 */ 1769 ill->ill_dlpi_capab_state = IDS_UNKNOWN; 1770 ill->ill_capab_reneg = B_FALSE; 1771 1772 /* 1773 * Disable sub-capabilities and request a list of sub-capability 1774 * messages which will be sent down to the driver. Each handler 1775 * allocates the corresponding dl_capability_sub_t inside an 1776 * mblk, and links it to the existing sc_mp mblk, or return it 1777 * as sc_mp if it's the first sub-capability (the passed in 1778 * sc_mp is NULL). Upon returning from all capability handlers, 1779 * sc_mp will be pulled-up, before passing it downstream. 1780 */ 1781 ill_capability_mdt_reset(ill, &sc_mp); 1782 ill_capability_hcksum_reset(ill, &sc_mp); 1783 ill_capability_zerocopy_reset(ill, &sc_mp); 1784 ill_capability_ipsec_reset(ill, &sc_mp); 1785 ill_capability_dls_reset(ill, &sc_mp); 1786 ill_capability_lso_reset(ill, &sc_mp); 1787 1788 /* Nothing to send down in order to disable the capabilities? */ 1789 if (sc_mp == NULL) 1790 return; 1791 1792 tmp = msgpullup(sc_mp, -1); 1793 freemsg(sc_mp); 1794 if ((sc_mp = tmp) == NULL) { 1795 cmn_err(CE_WARN, "ill_capability_reset: unable to send down " 1796 "DL_CAPABILITY_REQ (ENOMEM)\n"); 1797 return; 1798 } 1799 1800 ip1dbg(("ill_capability_reset: resetting negotiated capabilities\n")); 1801 ill_capability_proto(ill, DL_CAPABILITY_REQ, sc_mp); 1802 } 1803 1804 /* 1805 * Request or set new-style hardware capabilities supported by DLS provider. 1806 */ 1807 static void 1808 ill_capability_proto(ill_t *ill, int type, mblk_t *reqp) 1809 { 1810 mblk_t *mp; 1811 dl_capability_req_t *capb; 1812 size_t size = 0; 1813 uint8_t *ptr; 1814 1815 if (reqp != NULL) 1816 size = MBLKL(reqp); 1817 1818 mp = ip_dlpi_alloc(sizeof (dl_capability_req_t) + size, type); 1819 if (mp == NULL) { 1820 freemsg(reqp); 1821 return; 1822 } 1823 ptr = mp->b_rptr; 1824 1825 capb = (dl_capability_req_t *)ptr; 1826 ptr += sizeof (dl_capability_req_t); 1827 1828 if (reqp != NULL) { 1829 capb->dl_sub_offset = sizeof (dl_capability_req_t); 1830 capb->dl_sub_length = size; 1831 bcopy(reqp->b_rptr, ptr, size); 1832 ptr += size; 1833 mp->b_cont = reqp->b_cont; 1834 freeb(reqp); 1835 } 1836 ASSERT(ptr == mp->b_wptr); 1837 1838 ill_dlpi_send(ill, mp); 1839 } 1840 1841 static void 1842 ill_capability_id_ack(ill_t *ill, mblk_t *mp, dl_capability_sub_t *outers) 1843 { 1844 dl_capab_id_t *id_ic; 1845 uint_t sub_dl_cap = outers->dl_cap; 1846 dl_capability_sub_t *inners; 1847 uint8_t *capend; 1848 1849 ASSERT(sub_dl_cap == DL_CAPAB_ID_WRAPPER); 1850 1851 /* 1852 * Note: range checks here are not absolutely sufficient to 1853 * make us robust against malformed messages sent by drivers; 1854 * this is in keeping with the rest of IP's dlpi handling. 1855 * (Remember, it's coming from something else in the kernel 1856 * address space) 1857 */ 1858 1859 capend = (uint8_t *)(outers + 1) + outers->dl_length; 1860 if (capend > mp->b_wptr) { 1861 cmn_err(CE_WARN, "ill_capability_id_ack: " 1862 "malformed sub-capability too long for mblk"); 1863 return; 1864 } 1865 1866 id_ic = (dl_capab_id_t *)(outers + 1); 1867 1868 if (outers->dl_length < sizeof (*id_ic) || 1869 (inners = &id_ic->id_subcap, 1870 inners->dl_length > (outers->dl_length - sizeof (*inners)))) { 1871 cmn_err(CE_WARN, "ill_capability_id_ack: malformed " 1872 "encapsulated capab type %d too long for mblk", 1873 inners->dl_cap); 1874 return; 1875 } 1876 1877 if (!dlcapabcheckqid(&id_ic->id_mid, ill->ill_lmod_rq)) { 1878 ip1dbg(("ill_capability_id_ack: mid token for capab type %d " 1879 "isn't as expected; pass-thru module(s) detected, " 1880 "discarding capability\n", inners->dl_cap)); 1881 return; 1882 } 1883 1884 /* Process the encapsulated sub-capability */ 1885 ill_capability_dispatch(ill, mp, inners, B_TRUE); 1886 } 1887 1888 /* 1889 * Process Multidata Transmit capability negotiation ack received from a 1890 * DLS Provider. isub must point to the sub-capability (DL_CAPAB_MDT) of a 1891 * DL_CAPABILITY_ACK message. 1892 */ 1893 static void 1894 ill_capability_mdt_ack(ill_t *ill, mblk_t *mp, dl_capability_sub_t *isub) 1895 { 1896 mblk_t *nmp = NULL; 1897 dl_capability_req_t *oc; 1898 dl_capab_mdt_t *mdt_ic, *mdt_oc; 1899 ill_mdt_capab_t **ill_mdt_capab; 1900 uint_t sub_dl_cap = isub->dl_cap; 1901 uint8_t *capend; 1902 1903 ASSERT(sub_dl_cap == DL_CAPAB_MDT); 1904 1905 ill_mdt_capab = (ill_mdt_capab_t **)&ill->ill_mdt_capab; 1906 1907 /* 1908 * Note: range checks here are not absolutely sufficient to 1909 * make us robust against malformed messages sent by drivers; 1910 * this is in keeping with the rest of IP's dlpi handling. 1911 * (Remember, it's coming from something else in the kernel 1912 * address space) 1913 */ 1914 1915 capend = (uint8_t *)(isub + 1) + isub->dl_length; 1916 if (capend > mp->b_wptr) { 1917 cmn_err(CE_WARN, "ill_capability_mdt_ack: " 1918 "malformed sub-capability too long for mblk"); 1919 return; 1920 } 1921 1922 mdt_ic = (dl_capab_mdt_t *)(isub + 1); 1923 1924 if (mdt_ic->mdt_version != MDT_VERSION_2) { 1925 cmn_err(CE_CONT, "ill_capability_mdt_ack: " 1926 "unsupported MDT sub-capability (version %d, expected %d)", 1927 mdt_ic->mdt_version, MDT_VERSION_2); 1928 return; 1929 } 1930 1931 if (!dlcapabcheckqid(&mdt_ic->mdt_mid, ill->ill_lmod_rq)) { 1932 ip1dbg(("ill_capability_mdt_ack: mid token for MDT " 1933 "capability isn't as expected; pass-thru module(s) " 1934 "detected, discarding capability\n")); 1935 return; 1936 } 1937 1938 if (mdt_ic->mdt_flags & DL_CAPAB_MDT_ENABLE) { 1939 1940 if (*ill_mdt_capab == NULL) { 1941 *ill_mdt_capab = kmem_zalloc(sizeof (ill_mdt_capab_t), 1942 KM_NOSLEEP); 1943 1944 if (*ill_mdt_capab == NULL) { 1945 cmn_err(CE_WARN, "ill_capability_mdt_ack: " 1946 "could not enable MDT version %d " 1947 "for %s (ENOMEM)\n", MDT_VERSION_2, 1948 ill->ill_name); 1949 return; 1950 } 1951 } 1952 1953 ip1dbg(("ill_capability_mdt_ack: interface %s supports " 1954 "MDT version %d (%d bytes leading, %d bytes trailing " 1955 "header spaces, %d max pld bufs, %d span limit)\n", 1956 ill->ill_name, MDT_VERSION_2, 1957 mdt_ic->mdt_hdr_head, mdt_ic->mdt_hdr_tail, 1958 mdt_ic->mdt_max_pld, mdt_ic->mdt_span_limit)); 1959 1960 (*ill_mdt_capab)->ill_mdt_version = MDT_VERSION_2; 1961 (*ill_mdt_capab)->ill_mdt_on = 1; 1962 /* 1963 * Round the following values to the nearest 32-bit; ULP 1964 * may further adjust them to accomodate for additional 1965 * protocol headers. We pass these values to ULP during 1966 * bind time. 1967 */ 1968 (*ill_mdt_capab)->ill_mdt_hdr_head = 1969 roundup(mdt_ic->mdt_hdr_head, 4); 1970 (*ill_mdt_capab)->ill_mdt_hdr_tail = 1971 roundup(mdt_ic->mdt_hdr_tail, 4); 1972 (*ill_mdt_capab)->ill_mdt_max_pld = mdt_ic->mdt_max_pld; 1973 (*ill_mdt_capab)->ill_mdt_span_limit = mdt_ic->mdt_span_limit; 1974 1975 ill->ill_capabilities |= ILL_CAPAB_MDT; 1976 } else { 1977 uint_t size; 1978 uchar_t *rptr; 1979 1980 size = sizeof (dl_capability_req_t) + 1981 sizeof (dl_capability_sub_t) + sizeof (dl_capab_mdt_t); 1982 1983 if ((nmp = ip_dlpi_alloc(size, DL_CAPABILITY_REQ)) == NULL) { 1984 cmn_err(CE_WARN, "ill_capability_mdt_ack: " 1985 "could not enable MDT for %s (ENOMEM)\n", 1986 ill->ill_name); 1987 return; 1988 } 1989 1990 rptr = nmp->b_rptr; 1991 /* initialize dl_capability_req_t */ 1992 oc = (dl_capability_req_t *)nmp->b_rptr; 1993 oc->dl_sub_offset = sizeof (dl_capability_req_t); 1994 oc->dl_sub_length = sizeof (dl_capability_sub_t) + 1995 sizeof (dl_capab_mdt_t); 1996 nmp->b_rptr += sizeof (dl_capability_req_t); 1997 1998 /* initialize dl_capability_sub_t */ 1999 bcopy(isub, nmp->b_rptr, sizeof (*isub)); 2000 nmp->b_rptr += sizeof (*isub); 2001 2002 /* initialize dl_capab_mdt_t */ 2003 mdt_oc = (dl_capab_mdt_t *)nmp->b_rptr; 2004 bcopy(mdt_ic, mdt_oc, sizeof (*mdt_ic)); 2005 2006 nmp->b_rptr = rptr; 2007 2008 ip1dbg(("ill_capability_mdt_ack: asking interface %s " 2009 "to enable MDT version %d\n", ill->ill_name, 2010 MDT_VERSION_2)); 2011 2012 /* set ENABLE flag */ 2013 mdt_oc->mdt_flags |= DL_CAPAB_MDT_ENABLE; 2014 2015 /* nmp points to a DL_CAPABILITY_REQ message to enable MDT */ 2016 ill_dlpi_send(ill, nmp); 2017 } 2018 } 2019 2020 static void 2021 ill_capability_mdt_reset(ill_t *ill, mblk_t **sc_mp) 2022 { 2023 mblk_t *mp; 2024 dl_capab_mdt_t *mdt_subcap; 2025 dl_capability_sub_t *dl_subcap; 2026 int size; 2027 2028 if (!ILL_MDT_CAPABLE(ill)) 2029 return; 2030 2031 ASSERT(ill->ill_mdt_capab != NULL); 2032 /* 2033 * Clear the capability flag for MDT but retain the ill_mdt_capab 2034 * structure since it's possible that another thread is still 2035 * referring to it. The structure only gets deallocated when 2036 * we destroy the ill. 2037 */ 2038 ill->ill_capabilities &= ~ILL_CAPAB_MDT; 2039 2040 size = sizeof (*dl_subcap) + sizeof (*mdt_subcap); 2041 2042 mp = allocb(size, BPRI_HI); 2043 if (mp == NULL) { 2044 ip1dbg(("ill_capability_mdt_reset: unable to allocate " 2045 "request to disable MDT\n")); 2046 return; 2047 } 2048 2049 mp->b_wptr = mp->b_rptr + size; 2050 2051 dl_subcap = (dl_capability_sub_t *)mp->b_rptr; 2052 dl_subcap->dl_cap = DL_CAPAB_MDT; 2053 dl_subcap->dl_length = sizeof (*mdt_subcap); 2054 2055 mdt_subcap = (dl_capab_mdt_t *)(dl_subcap + 1); 2056 mdt_subcap->mdt_version = ill->ill_mdt_capab->ill_mdt_version; 2057 mdt_subcap->mdt_flags = 0; 2058 mdt_subcap->mdt_hdr_head = 0; 2059 mdt_subcap->mdt_hdr_tail = 0; 2060 2061 if (*sc_mp != NULL) 2062 linkb(*sc_mp, mp); 2063 else 2064 *sc_mp = mp; 2065 } 2066 2067 /* 2068 * Send a DL_NOTIFY_REQ to the specified ill to enable 2069 * DL_NOTE_PROMISC_ON/OFF_PHYS notifications. 2070 * Invoked by ill_capability_ipsec_ack() before enabling IPsec hardware 2071 * acceleration. 2072 * Returns B_TRUE on success, B_FALSE if the message could not be sent. 2073 */ 2074 static boolean_t 2075 ill_enable_promisc_notify(ill_t *ill) 2076 { 2077 mblk_t *mp; 2078 dl_notify_req_t *req; 2079 2080 IPSECHW_DEBUG(IPSECHW_PKT, ("ill_enable_promisc_notify:\n")); 2081 2082 mp = ip_dlpi_alloc(sizeof (dl_notify_req_t), DL_NOTIFY_REQ); 2083 if (mp == NULL) 2084 return (B_FALSE); 2085 2086 req = (dl_notify_req_t *)mp->b_rptr; 2087 req->dl_notifications = DL_NOTE_PROMISC_ON_PHYS | 2088 DL_NOTE_PROMISC_OFF_PHYS; 2089 2090 ill_dlpi_send(ill, mp); 2091 2092 return (B_TRUE); 2093 } 2094 2095 /* 2096 * Allocate an IPsec capability request which will be filled by our 2097 * caller to turn on support for one or more algorithms. 2098 */ 2099 static mblk_t * 2100 ill_alloc_ipsec_cap_req(ill_t *ill, dl_capability_sub_t *isub) 2101 { 2102 mblk_t *nmp; 2103 dl_capability_req_t *ocap; 2104 dl_capab_ipsec_t *ocip; 2105 dl_capab_ipsec_t *icip; 2106 uint8_t *ptr; 2107 icip = (dl_capab_ipsec_t *)(isub + 1); 2108 2109 /* 2110 * The first time around, we send a DL_NOTIFY_REQ to enable 2111 * PROMISC_ON/OFF notification from the provider. We need to 2112 * do this before enabling the algorithms to avoid leakage of 2113 * cleartext packets. 2114 */ 2115 2116 if (!ill_enable_promisc_notify(ill)) 2117 return (NULL); 2118 2119 /* 2120 * Allocate new mblk which will contain a new capability 2121 * request to enable the capabilities. 2122 */ 2123 2124 nmp = ip_dlpi_alloc(sizeof (dl_capability_req_t) + 2125 sizeof (dl_capability_sub_t) + isub->dl_length, DL_CAPABILITY_REQ); 2126 if (nmp == NULL) 2127 return (NULL); 2128 2129 ptr = nmp->b_rptr; 2130 2131 /* initialize dl_capability_req_t */ 2132 ocap = (dl_capability_req_t *)ptr; 2133 ocap->dl_sub_offset = sizeof (dl_capability_req_t); 2134 ocap->dl_sub_length = sizeof (dl_capability_sub_t) + isub->dl_length; 2135 ptr += sizeof (dl_capability_req_t); 2136 2137 /* initialize dl_capability_sub_t */ 2138 bcopy(isub, ptr, sizeof (*isub)); 2139 ptr += sizeof (*isub); 2140 2141 /* initialize dl_capab_ipsec_t */ 2142 ocip = (dl_capab_ipsec_t *)ptr; 2143 bcopy(icip, ocip, sizeof (*icip)); 2144 2145 nmp->b_wptr = (uchar_t *)(&ocip->cip_data[0]); 2146 return (nmp); 2147 } 2148 2149 /* 2150 * Process an IPsec capability negotiation ack received from a DLS Provider. 2151 * isub must point to the sub-capability (DL_CAPAB_IPSEC_AH or 2152 * DL_CAPAB_IPSEC_ESP) of a DL_CAPABILITY_ACK message. 2153 */ 2154 static void 2155 ill_capability_ipsec_ack(ill_t *ill, mblk_t *mp, dl_capability_sub_t *isub) 2156 { 2157 dl_capab_ipsec_t *icip; 2158 dl_capab_ipsec_alg_t *ialg; /* ptr to input alg spec. */ 2159 dl_capab_ipsec_alg_t *oalg; /* ptr to output alg spec. */ 2160 uint_t cipher, nciphers; 2161 mblk_t *nmp; 2162 uint_t alg_len; 2163 boolean_t need_sadb_dump; 2164 uint_t sub_dl_cap = isub->dl_cap; 2165 ill_ipsec_capab_t **ill_capab; 2166 uint64_t ill_capab_flag; 2167 uint8_t *capend, *ciphend; 2168 boolean_t sadb_resync; 2169 2170 ASSERT(sub_dl_cap == DL_CAPAB_IPSEC_AH || 2171 sub_dl_cap == DL_CAPAB_IPSEC_ESP); 2172 2173 if (sub_dl_cap == DL_CAPAB_IPSEC_AH) { 2174 ill_capab = (ill_ipsec_capab_t **)&ill->ill_ipsec_capab_ah; 2175 ill_capab_flag = ILL_CAPAB_AH; 2176 } else { 2177 ill_capab = (ill_ipsec_capab_t **)&ill->ill_ipsec_capab_esp; 2178 ill_capab_flag = ILL_CAPAB_ESP; 2179 } 2180 2181 /* 2182 * If the ill capability structure exists, then this incoming 2183 * DL_CAPABILITY_ACK is a response to a "renegotiation" cycle. 2184 * If this is so, then we'd need to resynchronize the SADB 2185 * after re-enabling the offloaded ciphers. 2186 */ 2187 sadb_resync = (*ill_capab != NULL); 2188 2189 /* 2190 * Note: range checks here are not absolutely sufficient to 2191 * make us robust against malformed messages sent by drivers; 2192 * this is in keeping with the rest of IP's dlpi handling. 2193 * (Remember, it's coming from something else in the kernel 2194 * address space) 2195 */ 2196 2197 capend = (uint8_t *)(isub + 1) + isub->dl_length; 2198 if (capend > mp->b_wptr) { 2199 cmn_err(CE_WARN, "ill_capability_ipsec_ack: " 2200 "malformed sub-capability too long for mblk"); 2201 return; 2202 } 2203 2204 /* 2205 * There are two types of acks we process here: 2206 * 1. acks in reply to a (first form) generic capability req 2207 * (no ENABLE flag set) 2208 * 2. acks in reply to a ENABLE capability req. 2209 * (ENABLE flag set) 2210 * 2211 * We process the subcapability passed as argument as follows: 2212 * 1 do initializations 2213 * 1.1 initialize nmp = NULL 2214 * 1.2 set need_sadb_dump to B_FALSE 2215 * 2 for each cipher in subcapability: 2216 * 2.1 if ENABLE flag is set: 2217 * 2.1.1 update per-ill ipsec capabilities info 2218 * 2.1.2 set need_sadb_dump to B_TRUE 2219 * 2.2 if ENABLE flag is not set: 2220 * 2.2.1 if nmp is NULL: 2221 * 2.2.1.1 allocate and initialize nmp 2222 * 2.2.1.2 init current pos in nmp 2223 * 2.2.2 copy current cipher to current pos in nmp 2224 * 2.2.3 set ENABLE flag in nmp 2225 * 2.2.4 update current pos 2226 * 3 if nmp is not equal to NULL, send enable request 2227 * 3.1 send capability request 2228 * 4 if need_sadb_dump is B_TRUE 2229 * 4.1 enable promiscuous on/off notifications 2230 * 4.2 call ill_dlpi_send(isub->dlcap) to send all 2231 * AH or ESP SA's to interface. 2232 */ 2233 2234 nmp = NULL; 2235 oalg = NULL; 2236 need_sadb_dump = B_FALSE; 2237 icip = (dl_capab_ipsec_t *)(isub + 1); 2238 ialg = (dl_capab_ipsec_alg_t *)(&icip->cip_data[0]); 2239 2240 nciphers = icip->cip_nciphers; 2241 ciphend = (uint8_t *)(ialg + icip->cip_nciphers); 2242 2243 if (ciphend > capend) { 2244 cmn_err(CE_WARN, "ill_capability_ipsec_ack: " 2245 "too many ciphers for sub-capability len"); 2246 return; 2247 } 2248 2249 for (cipher = 0; cipher < nciphers; cipher++) { 2250 alg_len = sizeof (dl_capab_ipsec_alg_t); 2251 2252 if (ialg->alg_flag & DL_CAPAB_ALG_ENABLE) { 2253 /* 2254 * TBD: when we provide a way to disable capabilities 2255 * from above, need to manage the request-pending state 2256 * and fail if we were not expecting this ACK. 2257 */ 2258 IPSECHW_DEBUG(IPSECHW_CAPAB, 2259 ("ill_capability_ipsec_ack: got ENABLE ACK\n")); 2260 2261 /* 2262 * Update IPsec capabilities for this ill 2263 */ 2264 2265 if (*ill_capab == NULL) { 2266 IPSECHW_DEBUG(IPSECHW_CAPAB, 2267 ("ill_capability_ipsec_ack: " 2268 "allocating ipsec_capab for ill\n")); 2269 *ill_capab = ill_ipsec_capab_alloc(); 2270 2271 if (*ill_capab == NULL) { 2272 cmn_err(CE_WARN, 2273 "ill_capability_ipsec_ack: " 2274 "could not enable IPsec Hardware " 2275 "acceleration for %s (ENOMEM)\n", 2276 ill->ill_name); 2277 return; 2278 } 2279 } 2280 2281 ASSERT(ialg->alg_type == DL_CAPAB_IPSEC_ALG_AUTH || 2282 ialg->alg_type == DL_CAPAB_IPSEC_ALG_ENCR); 2283 2284 if (ialg->alg_prim >= MAX_IPSEC_ALGS) { 2285 cmn_err(CE_WARN, 2286 "ill_capability_ipsec_ack: " 2287 "malformed IPsec algorithm id %d", 2288 ialg->alg_prim); 2289 continue; 2290 } 2291 2292 if (ialg->alg_type == DL_CAPAB_IPSEC_ALG_AUTH) { 2293 IPSEC_ALG_ENABLE((*ill_capab)->auth_hw_algs, 2294 ialg->alg_prim); 2295 } else { 2296 ipsec_capab_algparm_t *alp; 2297 2298 IPSEC_ALG_ENABLE((*ill_capab)->encr_hw_algs, 2299 ialg->alg_prim); 2300 if (!ill_ipsec_capab_resize_algparm(*ill_capab, 2301 ialg->alg_prim)) { 2302 cmn_err(CE_WARN, 2303 "ill_capability_ipsec_ack: " 2304 "no space for IPsec alg id %d", 2305 ialg->alg_prim); 2306 continue; 2307 } 2308 alp = &((*ill_capab)->encr_algparm[ 2309 ialg->alg_prim]); 2310 alp->minkeylen = ialg->alg_minbits; 2311 alp->maxkeylen = ialg->alg_maxbits; 2312 } 2313 ill->ill_capabilities |= ill_capab_flag; 2314 /* 2315 * indicate that a capability was enabled, which 2316 * will be used below to kick off a SADB dump 2317 * to the ill. 2318 */ 2319 need_sadb_dump = B_TRUE; 2320 } else { 2321 IPSECHW_DEBUG(IPSECHW_CAPAB, 2322 ("ill_capability_ipsec_ack: enabling alg 0x%x\n", 2323 ialg->alg_prim)); 2324 2325 if (nmp == NULL) { 2326 nmp = ill_alloc_ipsec_cap_req(ill, isub); 2327 if (nmp == NULL) { 2328 /* 2329 * Sending the PROMISC_ON/OFF 2330 * notification request failed. 2331 * We cannot enable the algorithms 2332 * since the Provider will not 2333 * notify IP of promiscous mode 2334 * changes, which could lead 2335 * to leakage of packets. 2336 */ 2337 cmn_err(CE_WARN, 2338 "ill_capability_ipsec_ack: " 2339 "could not enable IPsec Hardware " 2340 "acceleration for %s (ENOMEM)\n", 2341 ill->ill_name); 2342 return; 2343 } 2344 /* ptr to current output alg specifier */ 2345 oalg = (dl_capab_ipsec_alg_t *)nmp->b_wptr; 2346 } 2347 2348 /* 2349 * Copy current alg specifier, set ENABLE 2350 * flag, and advance to next output alg. 2351 * For now we enable all IPsec capabilities. 2352 */ 2353 ASSERT(oalg != NULL); 2354 bcopy(ialg, oalg, alg_len); 2355 oalg->alg_flag |= DL_CAPAB_ALG_ENABLE; 2356 nmp->b_wptr += alg_len; 2357 oalg = (dl_capab_ipsec_alg_t *)nmp->b_wptr; 2358 } 2359 2360 /* move to next input algorithm specifier */ 2361 ialg = (dl_capab_ipsec_alg_t *) 2362 ((char *)ialg + alg_len); 2363 } 2364 2365 if (nmp != NULL) 2366 /* 2367 * nmp points to a DL_CAPABILITY_REQ message to enable 2368 * IPsec hardware acceleration. 2369 */ 2370 ill_dlpi_send(ill, nmp); 2371 2372 if (need_sadb_dump) 2373 /* 2374 * An acknowledgement corresponding to a request to 2375 * enable acceleration was received, notify SADB. 2376 */ 2377 ill_ipsec_capab_add(ill, sub_dl_cap, sadb_resync); 2378 } 2379 2380 /* 2381 * Given an mblk with enough space in it, create sub-capability entries for 2382 * DL_CAPAB_IPSEC_{AH,ESP} types which consist of previously-advertised 2383 * offloaded ciphers (both AUTH and ENCR) with their enable flags cleared, 2384 * in preparation for the reset the DL_CAPABILITY_REQ message. 2385 */ 2386 static void 2387 ill_fill_ipsec_reset(uint_t nciphers, int stype, uint_t slen, 2388 ill_ipsec_capab_t *ill_cap, mblk_t *mp) 2389 { 2390 dl_capab_ipsec_t *oipsec; 2391 dl_capab_ipsec_alg_t *oalg; 2392 dl_capability_sub_t *dl_subcap; 2393 int i, k; 2394 2395 ASSERT(nciphers > 0); 2396 ASSERT(ill_cap != NULL); 2397 ASSERT(mp != NULL); 2398 ASSERT(MBLKTAIL(mp) >= sizeof (*dl_subcap) + sizeof (*oipsec) + slen); 2399 2400 /* dl_capability_sub_t for "stype" */ 2401 dl_subcap = (dl_capability_sub_t *)mp->b_wptr; 2402 dl_subcap->dl_cap = stype; 2403 dl_subcap->dl_length = sizeof (dl_capab_ipsec_t) + slen; 2404 mp->b_wptr += sizeof (dl_capability_sub_t); 2405 2406 /* dl_capab_ipsec_t for "stype" */ 2407 oipsec = (dl_capab_ipsec_t *)mp->b_wptr; 2408 oipsec->cip_version = 1; 2409 oipsec->cip_nciphers = nciphers; 2410 mp->b_wptr = (uchar_t *)&oipsec->cip_data[0]; 2411 2412 /* create entries for "stype" AUTH ciphers */ 2413 for (i = 0; i < ill_cap->algs_size; i++) { 2414 for (k = 0; k < BITSPERBYTE; k++) { 2415 if ((ill_cap->auth_hw_algs[i] & (1 << k)) == 0) 2416 continue; 2417 2418 oalg = (dl_capab_ipsec_alg_t *)mp->b_wptr; 2419 bzero((void *)oalg, sizeof (*oalg)); 2420 oalg->alg_type = DL_CAPAB_IPSEC_ALG_AUTH; 2421 oalg->alg_prim = k + (BITSPERBYTE * i); 2422 mp->b_wptr += sizeof (dl_capab_ipsec_alg_t); 2423 } 2424 } 2425 /* create entries for "stype" ENCR ciphers */ 2426 for (i = 0; i < ill_cap->algs_size; i++) { 2427 for (k = 0; k < BITSPERBYTE; k++) { 2428 if ((ill_cap->encr_hw_algs[i] & (1 << k)) == 0) 2429 continue; 2430 2431 oalg = (dl_capab_ipsec_alg_t *)mp->b_wptr; 2432 bzero((void *)oalg, sizeof (*oalg)); 2433 oalg->alg_type = DL_CAPAB_IPSEC_ALG_ENCR; 2434 oalg->alg_prim = k + (BITSPERBYTE * i); 2435 mp->b_wptr += sizeof (dl_capab_ipsec_alg_t); 2436 } 2437 } 2438 } 2439 2440 /* 2441 * Macro to count number of 1s in a byte (8-bit word). The total count is 2442 * accumulated into the passed-in argument (sum). We could use SPARCv9's 2443 * POPC instruction, but our macro is more flexible for an arbitrary length 2444 * of bytes, such as {auth,encr}_hw_algs. These variables are currently 2445 * 256-bits long (MAX_IPSEC_ALGS), so if we know for sure that the length 2446 * stays that way, we can reduce the number of iterations required. 2447 */ 2448 #define COUNT_1S(val, sum) { \ 2449 uint8_t x = val & 0xff; \ 2450 x = (x & 0x55) + ((x >> 1) & 0x55); \ 2451 x = (x & 0x33) + ((x >> 2) & 0x33); \ 2452 sum += (x & 0xf) + ((x >> 4) & 0xf); \ 2453 } 2454 2455 /* ARGSUSED */ 2456 static void 2457 ill_capability_ipsec_reset(ill_t *ill, mblk_t **sc_mp) 2458 { 2459 mblk_t *mp; 2460 ill_ipsec_capab_t *cap_ah = ill->ill_ipsec_capab_ah; 2461 ill_ipsec_capab_t *cap_esp = ill->ill_ipsec_capab_esp; 2462 uint64_t ill_capabilities = ill->ill_capabilities; 2463 int ah_cnt = 0, esp_cnt = 0; 2464 int ah_len = 0, esp_len = 0; 2465 int i, size = 0; 2466 2467 if (!(ill_capabilities & (ILL_CAPAB_AH | ILL_CAPAB_ESP))) 2468 return; 2469 2470 ASSERT(cap_ah != NULL || !(ill_capabilities & ILL_CAPAB_AH)); 2471 ASSERT(cap_esp != NULL || !(ill_capabilities & ILL_CAPAB_ESP)); 2472 2473 /* Find out the number of ciphers for AH */ 2474 if (cap_ah != NULL) { 2475 for (i = 0; i < cap_ah->algs_size; i++) { 2476 COUNT_1S(cap_ah->auth_hw_algs[i], ah_cnt); 2477 COUNT_1S(cap_ah->encr_hw_algs[i], ah_cnt); 2478 } 2479 if (ah_cnt > 0) { 2480 size += sizeof (dl_capability_sub_t) + 2481 sizeof (dl_capab_ipsec_t); 2482 /* dl_capab_ipsec_t contains one dl_capab_ipsec_alg_t */ 2483 ah_len = (ah_cnt - 1) * sizeof (dl_capab_ipsec_alg_t); 2484 size += ah_len; 2485 } 2486 } 2487 2488 /* Find out the number of ciphers for ESP */ 2489 if (cap_esp != NULL) { 2490 for (i = 0; i < cap_esp->algs_size; i++) { 2491 COUNT_1S(cap_esp->auth_hw_algs[i], esp_cnt); 2492 COUNT_1S(cap_esp->encr_hw_algs[i], esp_cnt); 2493 } 2494 if (esp_cnt > 0) { 2495 size += sizeof (dl_capability_sub_t) + 2496 sizeof (dl_capab_ipsec_t); 2497 /* dl_capab_ipsec_t contains one dl_capab_ipsec_alg_t */ 2498 esp_len = (esp_cnt - 1) * sizeof (dl_capab_ipsec_alg_t); 2499 size += esp_len; 2500 } 2501 } 2502 2503 if (size == 0) { 2504 ip1dbg(("ill_capability_ipsec_reset: capabilities exist but " 2505 "there's nothing to reset\n")); 2506 return; 2507 } 2508 2509 mp = allocb(size, BPRI_HI); 2510 if (mp == NULL) { 2511 ip1dbg(("ill_capability_ipsec_reset: unable to allocate " 2512 "request to disable IPSEC Hardware Acceleration\n")); 2513 return; 2514 } 2515 2516 /* 2517 * Clear the capability flags for IPsec HA but retain the ill 2518 * capability structures since it's possible that another thread 2519 * is still referring to them. The structures only get deallocated 2520 * when we destroy the ill. 2521 * 2522 * Various places check the flags to see if the ill is capable of 2523 * hardware acceleration, and by clearing them we ensure that new 2524 * outbound IPsec packets are sent down encrypted. 2525 */ 2526 ill->ill_capabilities &= ~(ILL_CAPAB_AH | ILL_CAPAB_ESP); 2527 2528 /* Fill in DL_CAPAB_IPSEC_AH sub-capability entries */ 2529 if (ah_cnt > 0) { 2530 ill_fill_ipsec_reset(ah_cnt, DL_CAPAB_IPSEC_AH, ah_len, 2531 cap_ah, mp); 2532 ASSERT(mp->b_rptr + size >= mp->b_wptr); 2533 } 2534 2535 /* Fill in DL_CAPAB_IPSEC_ESP sub-capability entries */ 2536 if (esp_cnt > 0) { 2537 ill_fill_ipsec_reset(esp_cnt, DL_CAPAB_IPSEC_ESP, esp_len, 2538 cap_esp, mp); 2539 ASSERT(mp->b_rptr + size >= mp->b_wptr); 2540 } 2541 2542 /* 2543 * At this point we've composed a bunch of sub-capabilities to be 2544 * encapsulated in a DL_CAPABILITY_REQ and later sent downstream 2545 * by the caller. Upon receiving this reset message, the driver 2546 * must stop inbound decryption (by destroying all inbound SAs) 2547 * and let the corresponding packets come in encrypted. 2548 */ 2549 2550 if (*sc_mp != NULL) 2551 linkb(*sc_mp, mp); 2552 else 2553 *sc_mp = mp; 2554 } 2555 2556 static void 2557 ill_capability_dispatch(ill_t *ill, mblk_t *mp, dl_capability_sub_t *subp, 2558 boolean_t encapsulated) 2559 { 2560 boolean_t legacy = B_FALSE; 2561 2562 /* 2563 * If this DL_CAPABILITY_ACK came in as a response to our "reset" 2564 * DL_CAPABILITY_REQ, ignore it during this cycle. We've just 2565 * instructed the driver to disable its advertised capabilities, 2566 * so there's no point in accepting any response at this moment. 2567 */ 2568 if (ill->ill_dlpi_capab_state == IDS_UNKNOWN) 2569 return; 2570 2571 /* 2572 * Note that only the following two sub-capabilities may be 2573 * considered as "legacy", since their original definitions 2574 * do not incorporate the dl_mid_t module ID token, and hence 2575 * may require the use of the wrapper sub-capability. 2576 */ 2577 switch (subp->dl_cap) { 2578 case DL_CAPAB_IPSEC_AH: 2579 case DL_CAPAB_IPSEC_ESP: 2580 legacy = B_TRUE; 2581 break; 2582 } 2583 2584 /* 2585 * For legacy sub-capabilities which don't incorporate a queue_t 2586 * pointer in their structures, discard them if we detect that 2587 * there are intermediate modules in between IP and the driver. 2588 */ 2589 if (!encapsulated && legacy && ill->ill_lmod_cnt > 1) { 2590 ip1dbg(("ill_capability_dispatch: unencapsulated capab type " 2591 "%d discarded; %d module(s) present below IP\n", 2592 subp->dl_cap, ill->ill_lmod_cnt)); 2593 return; 2594 } 2595 2596 switch (subp->dl_cap) { 2597 case DL_CAPAB_IPSEC_AH: 2598 case DL_CAPAB_IPSEC_ESP: 2599 ill_capability_ipsec_ack(ill, mp, subp); 2600 break; 2601 case DL_CAPAB_MDT: 2602 ill_capability_mdt_ack(ill, mp, subp); 2603 break; 2604 case DL_CAPAB_HCKSUM: 2605 ill_capability_hcksum_ack(ill, mp, subp); 2606 break; 2607 case DL_CAPAB_ZEROCOPY: 2608 ill_capability_zerocopy_ack(ill, mp, subp); 2609 break; 2610 case DL_CAPAB_POLL: 2611 if (!SOFT_RINGS_ENABLED()) 2612 ill_capability_dls_ack(ill, mp, subp); 2613 break; 2614 case DL_CAPAB_SOFT_RING: 2615 if (SOFT_RINGS_ENABLED()) 2616 ill_capability_dls_ack(ill, mp, subp); 2617 break; 2618 case DL_CAPAB_LSO: 2619 ill_capability_lso_ack(ill, mp, subp); 2620 break; 2621 default: 2622 ip1dbg(("ill_capability_dispatch: unknown capab type %d\n", 2623 subp->dl_cap)); 2624 } 2625 } 2626 2627 /* 2628 * As part of negotiating polling capability, the driver tells us 2629 * the default (or normal) blanking interval and packet threshold 2630 * (the receive timer fires if blanking interval is reached or 2631 * the packet threshold is reached). 2632 * 2633 * As part of manipulating the polling interval, we always use our 2634 * estimated interval (avg service time * number of packets queued 2635 * on the squeue) but we try to blank for a minimum of 2636 * rr_normal_blank_time * rr_max_blank_ratio. We disable the 2637 * packet threshold during this time. When we are not in polling mode 2638 * we set the blank interval typically lower, rr_normal_pkt_cnt * 2639 * rr_min_blank_ratio but up the packet cnt by a ratio of 2640 * rr_min_pkt_cnt_ratio so that we are still getting chains if 2641 * possible although for a shorter interval. 2642 */ 2643 #define RR_MAX_BLANK_RATIO 20 2644 #define RR_MIN_BLANK_RATIO 10 2645 #define RR_MAX_PKT_CNT_RATIO 3 2646 #define RR_MIN_PKT_CNT_RATIO 3 2647 2648 /* 2649 * These can be tuned via /etc/system. 2650 */ 2651 int rr_max_blank_ratio = RR_MAX_BLANK_RATIO; 2652 int rr_min_blank_ratio = RR_MIN_BLANK_RATIO; 2653 int rr_max_pkt_cnt_ratio = RR_MAX_PKT_CNT_RATIO; 2654 int rr_min_pkt_cnt_ratio = RR_MIN_PKT_CNT_RATIO; 2655 2656 static mac_resource_handle_t 2657 ill_ring_add(void *arg, mac_resource_t *mrp) 2658 { 2659 ill_t *ill = (ill_t *)arg; 2660 mac_rx_fifo_t *mrfp = (mac_rx_fifo_t *)mrp; 2661 ill_rx_ring_t *rx_ring; 2662 int ip_rx_index; 2663 2664 ASSERT(mrp != NULL); 2665 if (mrp->mr_type != MAC_RX_FIFO) { 2666 return (NULL); 2667 } 2668 ASSERT(ill != NULL); 2669 ASSERT(ill->ill_dls_capab != NULL); 2670 2671 mutex_enter(&ill->ill_lock); 2672 for (ip_rx_index = 0; ip_rx_index < ILL_MAX_RINGS; ip_rx_index++) { 2673 rx_ring = &ill->ill_dls_capab->ill_ring_tbl[ip_rx_index]; 2674 ASSERT(rx_ring != NULL); 2675 2676 if (rx_ring->rr_ring_state == ILL_RING_FREE) { 2677 time_t normal_blank_time = 2678 mrfp->mrf_normal_blank_time; 2679 uint_t normal_pkt_cnt = 2680 mrfp->mrf_normal_pkt_count; 2681 2682 bzero(rx_ring, sizeof (ill_rx_ring_t)); 2683 2684 rx_ring->rr_blank = mrfp->mrf_blank; 2685 rx_ring->rr_handle = mrfp->mrf_arg; 2686 rx_ring->rr_ill = ill; 2687 rx_ring->rr_normal_blank_time = normal_blank_time; 2688 rx_ring->rr_normal_pkt_cnt = normal_pkt_cnt; 2689 2690 rx_ring->rr_max_blank_time = 2691 normal_blank_time * rr_max_blank_ratio; 2692 rx_ring->rr_min_blank_time = 2693 normal_blank_time * rr_min_blank_ratio; 2694 rx_ring->rr_max_pkt_cnt = 2695 normal_pkt_cnt * rr_max_pkt_cnt_ratio; 2696 rx_ring->rr_min_pkt_cnt = 2697 normal_pkt_cnt * rr_min_pkt_cnt_ratio; 2698 2699 rx_ring->rr_ring_state = ILL_RING_INUSE; 2700 mutex_exit(&ill->ill_lock); 2701 2702 DTRACE_PROBE2(ill__ring__add, (void *), ill, 2703 (int), ip_rx_index); 2704 return ((mac_resource_handle_t)rx_ring); 2705 } 2706 } 2707 2708 /* 2709 * We ran out of ILL_MAX_RINGS worth rx_ring structures. If 2710 * we have devices which can overwhelm this limit, ILL_MAX_RING 2711 * should be made configurable. Meanwhile it cause no panic because 2712 * driver will pass ip_input a NULL handle which will make 2713 * IP allocate the default squeue and Polling mode will not 2714 * be used for this ring. 2715 */ 2716 cmn_err(CE_NOTE, "Reached maximum number of receiving rings (%d) " 2717 "for %s\n", ILL_MAX_RINGS, ill->ill_name); 2718 2719 mutex_exit(&ill->ill_lock); 2720 return (NULL); 2721 } 2722 2723 static boolean_t 2724 ill_capability_dls_init(ill_t *ill) 2725 { 2726 ill_dls_capab_t *ill_dls = ill->ill_dls_capab; 2727 conn_t *connp; 2728 size_t sz; 2729 ip_stack_t *ipst = ill->ill_ipst; 2730 2731 if (ill->ill_capabilities & ILL_CAPAB_SOFT_RING) { 2732 if (ill_dls == NULL) { 2733 cmn_err(CE_PANIC, "ill_capability_dls_init: " 2734 "soft_ring enabled for ill=%s (%p) but data " 2735 "structs uninitialized\n", ill->ill_name, 2736 (void *)ill); 2737 } 2738 return (B_TRUE); 2739 } else if (ill->ill_capabilities & ILL_CAPAB_POLL) { 2740 if (ill_dls == NULL) { 2741 cmn_err(CE_PANIC, "ill_capability_dls_init: " 2742 "polling enabled for ill=%s (%p) but data " 2743 "structs uninitialized\n", ill->ill_name, 2744 (void *)ill); 2745 } 2746 return (B_TRUE); 2747 } 2748 2749 if (ill_dls != NULL) { 2750 ill_rx_ring_t *rx_ring = ill_dls->ill_ring_tbl; 2751 /* Soft_Ring or polling is being re-enabled */ 2752 2753 connp = ill_dls->ill_unbind_conn; 2754 ASSERT(rx_ring != NULL); 2755 bzero((void *)ill_dls, sizeof (ill_dls_capab_t)); 2756 bzero((void *)rx_ring, 2757 sizeof (ill_rx_ring_t) * ILL_MAX_RINGS); 2758 ill_dls->ill_ring_tbl = rx_ring; 2759 ill_dls->ill_unbind_conn = connp; 2760 return (B_TRUE); 2761 } 2762 2763 if ((connp = ipcl_conn_create(IPCL_TCPCONN, KM_NOSLEEP, 2764 ipst->ips_netstack)) == NULL) 2765 return (B_FALSE); 2766 2767 sz = sizeof (ill_dls_capab_t); 2768 sz += sizeof (ill_rx_ring_t) * ILL_MAX_RINGS; 2769 2770 ill_dls = kmem_zalloc(sz, KM_NOSLEEP); 2771 if (ill_dls == NULL) { 2772 cmn_err(CE_WARN, "ill_capability_dls_init: could not " 2773 "allocate dls_capab for %s (%p)\n", ill->ill_name, 2774 (void *)ill); 2775 CONN_DEC_REF(connp); 2776 return (B_FALSE); 2777 } 2778 2779 /* Allocate space to hold ring table */ 2780 ill_dls->ill_ring_tbl = (ill_rx_ring_t *)&ill_dls[1]; 2781 ill->ill_dls_capab = ill_dls; 2782 ill_dls->ill_unbind_conn = connp; 2783 return (B_TRUE); 2784 } 2785 2786 /* 2787 * ill_capability_dls_disable: disable soft_ring and/or polling 2788 * capability. Since any of the rings might already be in use, need 2789 * to call ip_squeue_clean_all() which gets behind the squeue to disable 2790 * direct calls if necessary. 2791 */ 2792 static void 2793 ill_capability_dls_disable(ill_t *ill) 2794 { 2795 ill_dls_capab_t *ill_dls = ill->ill_dls_capab; 2796 2797 if (ill->ill_capabilities & ILL_CAPAB_DLS) { 2798 ip_squeue_clean_all(ill); 2799 ill_dls->ill_tx = NULL; 2800 ill_dls->ill_tx_handle = NULL; 2801 ill_dls->ill_dls_change_status = NULL; 2802 ill_dls->ill_dls_bind = NULL; 2803 ill_dls->ill_dls_unbind = NULL; 2804 } 2805 2806 ASSERT(!(ill->ill_capabilities & ILL_CAPAB_DLS)); 2807 } 2808 2809 static void 2810 ill_capability_dls_capable(ill_t *ill, dl_capab_dls_t *idls, 2811 dl_capability_sub_t *isub) 2812 { 2813 uint_t size; 2814 uchar_t *rptr; 2815 dl_capab_dls_t dls, *odls; 2816 ill_dls_capab_t *ill_dls; 2817 mblk_t *nmp = NULL; 2818 dl_capability_req_t *ocap; 2819 uint_t sub_dl_cap = isub->dl_cap; 2820 2821 if (!ill_capability_dls_init(ill)) 2822 return; 2823 ill_dls = ill->ill_dls_capab; 2824 2825 /* Copy locally to get the members aligned */ 2826 bcopy((void *)idls, (void *)&dls, 2827 sizeof (dl_capab_dls_t)); 2828 2829 /* Get the tx function and handle from dld */ 2830 ill_dls->ill_tx = (ip_dld_tx_t)dls.dls_tx; 2831 ill_dls->ill_tx_handle = (void *)dls.dls_tx_handle; 2832 2833 if (sub_dl_cap == DL_CAPAB_SOFT_RING) { 2834 ill_dls->ill_dls_change_status = 2835 (ip_dls_chg_soft_ring_t)dls.dls_ring_change_status; 2836 ill_dls->ill_dls_bind = (ip_dls_bind_t)dls.dls_ring_bind; 2837 ill_dls->ill_dls_unbind = 2838 (ip_dls_unbind_t)dls.dls_ring_unbind; 2839 ill_dls->ill_dls_soft_ring_cnt = ip_soft_rings_cnt; 2840 } 2841 2842 size = sizeof (dl_capability_req_t) + sizeof (dl_capability_sub_t) + 2843 isub->dl_length; 2844 2845 if ((nmp = ip_dlpi_alloc(size, DL_CAPABILITY_REQ)) == NULL) { 2846 cmn_err(CE_WARN, "ill_capability_dls_capable: could " 2847 "not allocate memory for CAPAB_REQ for %s (%p)\n", 2848 ill->ill_name, (void *)ill); 2849 return; 2850 } 2851 2852 /* initialize dl_capability_req_t */ 2853 rptr = nmp->b_rptr; 2854 ocap = (dl_capability_req_t *)rptr; 2855 ocap->dl_sub_offset = sizeof (dl_capability_req_t); 2856 ocap->dl_sub_length = sizeof (dl_capability_sub_t) + isub->dl_length; 2857 rptr += sizeof (dl_capability_req_t); 2858 2859 /* initialize dl_capability_sub_t */ 2860 bcopy(isub, rptr, sizeof (*isub)); 2861 rptr += sizeof (*isub); 2862 2863 odls = (dl_capab_dls_t *)rptr; 2864 rptr += sizeof (dl_capab_dls_t); 2865 2866 /* initialize dl_capab_dls_t to be sent down */ 2867 dls.dls_rx_handle = (uintptr_t)ill; 2868 dls.dls_rx = (uintptr_t)ip_input; 2869 dls.dls_ring_add = (uintptr_t)ill_ring_add; 2870 2871 if (sub_dl_cap == DL_CAPAB_SOFT_RING) { 2872 dls.dls_ring_cnt = ip_soft_rings_cnt; 2873 dls.dls_ring_assign = (uintptr_t)ip_soft_ring_assignment; 2874 dls.dls_flags = SOFT_RING_ENABLE; 2875 } else { 2876 dls.dls_flags = POLL_ENABLE; 2877 ip1dbg(("ill_capability_dls_capable: asking interface %s " 2878 "to enable polling\n", ill->ill_name)); 2879 } 2880 bcopy((void *)&dls, (void *)odls, 2881 sizeof (dl_capab_dls_t)); 2882 ASSERT(nmp->b_wptr == (nmp->b_rptr + size)); 2883 /* 2884 * nmp points to a DL_CAPABILITY_REQ message to 2885 * enable either soft_ring or polling 2886 */ 2887 ill_dlpi_send(ill, nmp); 2888 } 2889 2890 static void 2891 ill_capability_dls_reset(ill_t *ill, mblk_t **sc_mp) 2892 { 2893 mblk_t *mp; 2894 dl_capab_dls_t *idls; 2895 dl_capability_sub_t *dl_subcap; 2896 int size; 2897 2898 if (!(ill->ill_capabilities & ILL_CAPAB_DLS)) 2899 return; 2900 2901 ASSERT(ill->ill_dls_capab != NULL); 2902 2903 size = sizeof (*dl_subcap) + sizeof (*idls); 2904 2905 mp = allocb(size, BPRI_HI); 2906 if (mp == NULL) { 2907 ip1dbg(("ill_capability_dls_reset: unable to allocate " 2908 "request to disable soft_ring\n")); 2909 return; 2910 } 2911 2912 mp->b_wptr = mp->b_rptr + size; 2913 2914 dl_subcap = (dl_capability_sub_t *)mp->b_rptr; 2915 dl_subcap->dl_length = sizeof (*idls); 2916 if (ill->ill_capabilities & ILL_CAPAB_SOFT_RING) 2917 dl_subcap->dl_cap = DL_CAPAB_SOFT_RING; 2918 else 2919 dl_subcap->dl_cap = DL_CAPAB_POLL; 2920 2921 idls = (dl_capab_dls_t *)(dl_subcap + 1); 2922 if (ill->ill_capabilities & ILL_CAPAB_SOFT_RING) 2923 idls->dls_flags = SOFT_RING_DISABLE; 2924 else 2925 idls->dls_flags = POLL_DISABLE; 2926 2927 if (*sc_mp != NULL) 2928 linkb(*sc_mp, mp); 2929 else 2930 *sc_mp = mp; 2931 } 2932 2933 /* 2934 * Process a soft_ring/poll capability negotiation ack received 2935 * from a DLS Provider.isub must point to the sub-capability 2936 * (DL_CAPAB_SOFT_RING/DL_CAPAB_POLL) of a DL_CAPABILITY_ACK message. 2937 */ 2938 static void 2939 ill_capability_dls_ack(ill_t *ill, mblk_t *mp, dl_capability_sub_t *isub) 2940 { 2941 dl_capab_dls_t *idls; 2942 uint_t sub_dl_cap = isub->dl_cap; 2943 uint8_t *capend; 2944 2945 ASSERT(sub_dl_cap == DL_CAPAB_SOFT_RING || 2946 sub_dl_cap == DL_CAPAB_POLL); 2947 2948 if (ill->ill_isv6) 2949 return; 2950 2951 /* 2952 * Note: range checks here are not absolutely sufficient to 2953 * make us robust against malformed messages sent by drivers; 2954 * this is in keeping with the rest of IP's dlpi handling. 2955 * (Remember, it's coming from something else in the kernel 2956 * address space) 2957 */ 2958 capend = (uint8_t *)(isub + 1) + isub->dl_length; 2959 if (capend > mp->b_wptr) { 2960 cmn_err(CE_WARN, "ill_capability_dls_ack: " 2961 "malformed sub-capability too long for mblk"); 2962 return; 2963 } 2964 2965 /* 2966 * There are two types of acks we process here: 2967 * 1. acks in reply to a (first form) generic capability req 2968 * (dls_flag will be set to SOFT_RING_CAPABLE or POLL_CAPABLE) 2969 * 2. acks in reply to a SOFT_RING_ENABLE or POLL_ENABLE 2970 * capability req. 2971 */ 2972 idls = (dl_capab_dls_t *)(isub + 1); 2973 2974 if (!dlcapabcheckqid(&idls->dls_mid, ill->ill_lmod_rq)) { 2975 ip1dbg(("ill_capability_dls_ack: mid token for dls " 2976 "capability isn't as expected; pass-thru " 2977 "module(s) detected, discarding capability\n")); 2978 if (ill->ill_capabilities & ILL_CAPAB_DLS) { 2979 /* 2980 * This is a capability renegotitation case. 2981 * The interface better be unusable at this 2982 * point other wise bad things will happen 2983 * if we disable direct calls on a running 2984 * and up interface. 2985 */ 2986 ill_capability_dls_disable(ill); 2987 } 2988 return; 2989 } 2990 2991 switch (idls->dls_flags) { 2992 default: 2993 /* Disable if unknown flag */ 2994 case SOFT_RING_DISABLE: 2995 case POLL_DISABLE: 2996 ill_capability_dls_disable(ill); 2997 break; 2998 case SOFT_RING_CAPABLE: 2999 case POLL_CAPABLE: 3000 /* 3001 * If the capability was already enabled, its safe 3002 * to disable it first to get rid of stale information 3003 * and then start enabling it again. 3004 */ 3005 ill_capability_dls_disable(ill); 3006 ill_capability_dls_capable(ill, idls, isub); 3007 break; 3008 case SOFT_RING_ENABLE: 3009 case POLL_ENABLE: 3010 mutex_enter(&ill->ill_lock); 3011 if (sub_dl_cap == DL_CAPAB_SOFT_RING && 3012 !(ill->ill_capabilities & ILL_CAPAB_SOFT_RING)) { 3013 ASSERT(ill->ill_dls_capab != NULL); 3014 ill->ill_capabilities |= ILL_CAPAB_SOFT_RING; 3015 } 3016 if (sub_dl_cap == DL_CAPAB_POLL && 3017 !(ill->ill_capabilities & ILL_CAPAB_POLL)) { 3018 ASSERT(ill->ill_dls_capab != NULL); 3019 ill->ill_capabilities |= ILL_CAPAB_POLL; 3020 ip1dbg(("ill_capability_dls_ack: interface %s " 3021 "has enabled polling\n", ill->ill_name)); 3022 } 3023 mutex_exit(&ill->ill_lock); 3024 break; 3025 } 3026 } 3027 3028 /* 3029 * Process a hardware checksum offload capability negotiation ack received 3030 * from a DLS Provider.isub must point to the sub-capability (DL_CAPAB_HCKSUM) 3031 * of a DL_CAPABILITY_ACK message. 3032 */ 3033 static void 3034 ill_capability_hcksum_ack(ill_t *ill, mblk_t *mp, dl_capability_sub_t *isub) 3035 { 3036 dl_capability_req_t *ocap; 3037 dl_capab_hcksum_t *ihck, *ohck; 3038 ill_hcksum_capab_t **ill_hcksum; 3039 mblk_t *nmp = NULL; 3040 uint_t sub_dl_cap = isub->dl_cap; 3041 uint8_t *capend; 3042 3043 ASSERT(sub_dl_cap == DL_CAPAB_HCKSUM); 3044 3045 ill_hcksum = (ill_hcksum_capab_t **)&ill->ill_hcksum_capab; 3046 3047 /* 3048 * Note: range checks here are not absolutely sufficient to 3049 * make us robust against malformed messages sent by drivers; 3050 * this is in keeping with the rest of IP's dlpi handling. 3051 * (Remember, it's coming from something else in the kernel 3052 * address space) 3053 */ 3054 capend = (uint8_t *)(isub + 1) + isub->dl_length; 3055 if (capend > mp->b_wptr) { 3056 cmn_err(CE_WARN, "ill_capability_hcksum_ack: " 3057 "malformed sub-capability too long for mblk"); 3058 return; 3059 } 3060 3061 /* 3062 * There are two types of acks we process here: 3063 * 1. acks in reply to a (first form) generic capability req 3064 * (no ENABLE flag set) 3065 * 2. acks in reply to a ENABLE capability req. 3066 * (ENABLE flag set) 3067 */ 3068 ihck = (dl_capab_hcksum_t *)(isub + 1); 3069 3070 if (ihck->hcksum_version != HCKSUM_VERSION_1) { 3071 cmn_err(CE_CONT, "ill_capability_hcksum_ack: " 3072 "unsupported hardware checksum " 3073 "sub-capability (version %d, expected %d)", 3074 ihck->hcksum_version, HCKSUM_VERSION_1); 3075 return; 3076 } 3077 3078 if (!dlcapabcheckqid(&ihck->hcksum_mid, ill->ill_lmod_rq)) { 3079 ip1dbg(("ill_capability_hcksum_ack: mid token for hardware " 3080 "checksum capability isn't as expected; pass-thru " 3081 "module(s) detected, discarding capability\n")); 3082 return; 3083 } 3084 3085 #define CURR_HCKSUM_CAPAB \ 3086 (HCKSUM_INET_PARTIAL | HCKSUM_INET_FULL_V4 | \ 3087 HCKSUM_INET_FULL_V6 | HCKSUM_IPHDRCKSUM) 3088 3089 if ((ihck->hcksum_txflags & HCKSUM_ENABLE) && 3090 (ihck->hcksum_txflags & CURR_HCKSUM_CAPAB)) { 3091 /* do ENABLE processing */ 3092 if (*ill_hcksum == NULL) { 3093 *ill_hcksum = kmem_zalloc(sizeof (ill_hcksum_capab_t), 3094 KM_NOSLEEP); 3095 3096 if (*ill_hcksum == NULL) { 3097 cmn_err(CE_WARN, "ill_capability_hcksum_ack: " 3098 "could not enable hcksum version %d " 3099 "for %s (ENOMEM)\n", HCKSUM_CURRENT_VERSION, 3100 ill->ill_name); 3101 return; 3102 } 3103 } 3104 3105 (*ill_hcksum)->ill_hcksum_version = ihck->hcksum_version; 3106 (*ill_hcksum)->ill_hcksum_txflags = ihck->hcksum_txflags; 3107 ill->ill_capabilities |= ILL_CAPAB_HCKSUM; 3108 ip1dbg(("ill_capability_hcksum_ack: interface %s " 3109 "has enabled hardware checksumming\n ", 3110 ill->ill_name)); 3111 } else if (ihck->hcksum_txflags & CURR_HCKSUM_CAPAB) { 3112 /* 3113 * Enabling hardware checksum offload 3114 * Currently IP supports {TCP,UDP}/IPv4 3115 * partial and full cksum offload and 3116 * IPv4 header checksum offload. 3117 * Allocate new mblk which will 3118 * contain a new capability request 3119 * to enable hardware checksum offload. 3120 */ 3121 uint_t size; 3122 uchar_t *rptr; 3123 3124 size = sizeof (dl_capability_req_t) + 3125 sizeof (dl_capability_sub_t) + isub->dl_length; 3126 3127 if ((nmp = ip_dlpi_alloc(size, DL_CAPABILITY_REQ)) == NULL) { 3128 cmn_err(CE_WARN, "ill_capability_hcksum_ack: " 3129 "could not enable hardware cksum for %s (ENOMEM)\n", 3130 ill->ill_name); 3131 return; 3132 } 3133 3134 rptr = nmp->b_rptr; 3135 /* initialize dl_capability_req_t */ 3136 ocap = (dl_capability_req_t *)nmp->b_rptr; 3137 ocap->dl_sub_offset = 3138 sizeof (dl_capability_req_t); 3139 ocap->dl_sub_length = 3140 sizeof (dl_capability_sub_t) + 3141 isub->dl_length; 3142 nmp->b_rptr += sizeof (dl_capability_req_t); 3143 3144 /* initialize dl_capability_sub_t */ 3145 bcopy(isub, nmp->b_rptr, sizeof (*isub)); 3146 nmp->b_rptr += sizeof (*isub); 3147 3148 /* initialize dl_capab_hcksum_t */ 3149 ohck = (dl_capab_hcksum_t *)nmp->b_rptr; 3150 bcopy(ihck, ohck, sizeof (*ihck)); 3151 3152 nmp->b_rptr = rptr; 3153 ASSERT(nmp->b_wptr == (nmp->b_rptr + size)); 3154 3155 /* Set ENABLE flag */ 3156 ohck->hcksum_txflags &= CURR_HCKSUM_CAPAB; 3157 ohck->hcksum_txflags |= HCKSUM_ENABLE; 3158 3159 /* 3160 * nmp points to a DL_CAPABILITY_REQ message to enable 3161 * hardware checksum acceleration. 3162 */ 3163 ill_dlpi_send(ill, nmp); 3164 } else { 3165 ip1dbg(("ill_capability_hcksum_ack: interface %s has " 3166 "advertised %x hardware checksum capability flags\n", 3167 ill->ill_name, ihck->hcksum_txflags)); 3168 } 3169 } 3170 3171 static void 3172 ill_capability_hcksum_reset(ill_t *ill, mblk_t **sc_mp) 3173 { 3174 mblk_t *mp; 3175 dl_capab_hcksum_t *hck_subcap; 3176 dl_capability_sub_t *dl_subcap; 3177 int size; 3178 3179 if (!ILL_HCKSUM_CAPABLE(ill)) 3180 return; 3181 3182 ASSERT(ill->ill_hcksum_capab != NULL); 3183 /* 3184 * Clear the capability flag for hardware checksum offload but 3185 * retain the ill_hcksum_capab structure since it's possible that 3186 * another thread is still referring to it. The structure only 3187 * gets deallocated when we destroy the ill. 3188 */ 3189 ill->ill_capabilities &= ~ILL_CAPAB_HCKSUM; 3190 3191 size = sizeof (*dl_subcap) + sizeof (*hck_subcap); 3192 3193 mp = allocb(size, BPRI_HI); 3194 if (mp == NULL) { 3195 ip1dbg(("ill_capability_hcksum_reset: unable to allocate " 3196 "request to disable hardware checksum offload\n")); 3197 return; 3198 } 3199 3200 mp->b_wptr = mp->b_rptr + size; 3201 3202 dl_subcap = (dl_capability_sub_t *)mp->b_rptr; 3203 dl_subcap->dl_cap = DL_CAPAB_HCKSUM; 3204 dl_subcap->dl_length = sizeof (*hck_subcap); 3205 3206 hck_subcap = (dl_capab_hcksum_t *)(dl_subcap + 1); 3207 hck_subcap->hcksum_version = ill->ill_hcksum_capab->ill_hcksum_version; 3208 hck_subcap->hcksum_txflags = 0; 3209 3210 if (*sc_mp != NULL) 3211 linkb(*sc_mp, mp); 3212 else 3213 *sc_mp = mp; 3214 } 3215 3216 static void 3217 ill_capability_zerocopy_ack(ill_t *ill, mblk_t *mp, dl_capability_sub_t *isub) 3218 { 3219 mblk_t *nmp = NULL; 3220 dl_capability_req_t *oc; 3221 dl_capab_zerocopy_t *zc_ic, *zc_oc; 3222 ill_zerocopy_capab_t **ill_zerocopy_capab; 3223 uint_t sub_dl_cap = isub->dl_cap; 3224 uint8_t *capend; 3225 3226 ASSERT(sub_dl_cap == DL_CAPAB_ZEROCOPY); 3227 3228 ill_zerocopy_capab = (ill_zerocopy_capab_t **)&ill->ill_zerocopy_capab; 3229 3230 /* 3231 * Note: range checks here are not absolutely sufficient to 3232 * make us robust against malformed messages sent by drivers; 3233 * this is in keeping with the rest of IP's dlpi handling. 3234 * (Remember, it's coming from something else in the kernel 3235 * address space) 3236 */ 3237 capend = (uint8_t *)(isub + 1) + isub->dl_length; 3238 if (capend > mp->b_wptr) { 3239 cmn_err(CE_WARN, "ill_capability_zerocopy_ack: " 3240 "malformed sub-capability too long for mblk"); 3241 return; 3242 } 3243 3244 zc_ic = (dl_capab_zerocopy_t *)(isub + 1); 3245 if (zc_ic->zerocopy_version != ZEROCOPY_VERSION_1) { 3246 cmn_err(CE_CONT, "ill_capability_zerocopy_ack: " 3247 "unsupported ZEROCOPY sub-capability (version %d, " 3248 "expected %d)", zc_ic->zerocopy_version, 3249 ZEROCOPY_VERSION_1); 3250 return; 3251 } 3252 3253 if (!dlcapabcheckqid(&zc_ic->zerocopy_mid, ill->ill_lmod_rq)) { 3254 ip1dbg(("ill_capability_zerocopy_ack: mid token for zerocopy " 3255 "capability isn't as expected; pass-thru module(s) " 3256 "detected, discarding capability\n")); 3257 return; 3258 } 3259 3260 if ((zc_ic->zerocopy_flags & DL_CAPAB_VMSAFE_MEM) != 0) { 3261 if (*ill_zerocopy_capab == NULL) { 3262 *ill_zerocopy_capab = 3263 kmem_zalloc(sizeof (ill_zerocopy_capab_t), 3264 KM_NOSLEEP); 3265 3266 if (*ill_zerocopy_capab == NULL) { 3267 cmn_err(CE_WARN, "ill_capability_zerocopy_ack: " 3268 "could not enable Zero-copy version %d " 3269 "for %s (ENOMEM)\n", ZEROCOPY_VERSION_1, 3270 ill->ill_name); 3271 return; 3272 } 3273 } 3274 3275 ip1dbg(("ill_capability_zerocopy_ack: interface %s " 3276 "supports Zero-copy version %d\n", ill->ill_name, 3277 ZEROCOPY_VERSION_1)); 3278 3279 (*ill_zerocopy_capab)->ill_zerocopy_version = 3280 zc_ic->zerocopy_version; 3281 (*ill_zerocopy_capab)->ill_zerocopy_flags = 3282 zc_ic->zerocopy_flags; 3283 3284 ill->ill_capabilities |= ILL_CAPAB_ZEROCOPY; 3285 } else { 3286 uint_t size; 3287 uchar_t *rptr; 3288 3289 size = sizeof (dl_capability_req_t) + 3290 sizeof (dl_capability_sub_t) + 3291 sizeof (dl_capab_zerocopy_t); 3292 3293 if ((nmp = ip_dlpi_alloc(size, DL_CAPABILITY_REQ)) == NULL) { 3294 cmn_err(CE_WARN, "ill_capability_zerocopy_ack: " 3295 "could not enable zerocopy for %s (ENOMEM)\n", 3296 ill->ill_name); 3297 return; 3298 } 3299 3300 rptr = nmp->b_rptr; 3301 /* initialize dl_capability_req_t */ 3302 oc = (dl_capability_req_t *)rptr; 3303 oc->dl_sub_offset = sizeof (dl_capability_req_t); 3304 oc->dl_sub_length = sizeof (dl_capability_sub_t) + 3305 sizeof (dl_capab_zerocopy_t); 3306 rptr += sizeof (dl_capability_req_t); 3307 3308 /* initialize dl_capability_sub_t */ 3309 bcopy(isub, rptr, sizeof (*isub)); 3310 rptr += sizeof (*isub); 3311 3312 /* initialize dl_capab_zerocopy_t */ 3313 zc_oc = (dl_capab_zerocopy_t *)rptr; 3314 *zc_oc = *zc_ic; 3315 3316 ip1dbg(("ill_capability_zerocopy_ack: asking interface %s " 3317 "to enable zero-copy version %d\n", ill->ill_name, 3318 ZEROCOPY_VERSION_1)); 3319 3320 /* set VMSAFE_MEM flag */ 3321 zc_oc->zerocopy_flags |= DL_CAPAB_VMSAFE_MEM; 3322 3323 /* nmp points to a DL_CAPABILITY_REQ message to enable zcopy */ 3324 ill_dlpi_send(ill, nmp); 3325 } 3326 } 3327 3328 static void 3329 ill_capability_zerocopy_reset(ill_t *ill, mblk_t **sc_mp) 3330 { 3331 mblk_t *mp; 3332 dl_capab_zerocopy_t *zerocopy_subcap; 3333 dl_capability_sub_t *dl_subcap; 3334 int size; 3335 3336 if (!(ill->ill_capabilities & ILL_CAPAB_ZEROCOPY)) 3337 return; 3338 3339 ASSERT(ill->ill_zerocopy_capab != NULL); 3340 /* 3341 * Clear the capability flag for Zero-copy but retain the 3342 * ill_zerocopy_capab structure since it's possible that another 3343 * thread is still referring to it. The structure only gets 3344 * deallocated when we destroy the ill. 3345 */ 3346 ill->ill_capabilities &= ~ILL_CAPAB_ZEROCOPY; 3347 3348 size = sizeof (*dl_subcap) + sizeof (*zerocopy_subcap); 3349 3350 mp = allocb(size, BPRI_HI); 3351 if (mp == NULL) { 3352 ip1dbg(("ill_capability_zerocopy_reset: unable to allocate " 3353 "request to disable Zero-copy\n")); 3354 return; 3355 } 3356 3357 mp->b_wptr = mp->b_rptr + size; 3358 3359 dl_subcap = (dl_capability_sub_t *)mp->b_rptr; 3360 dl_subcap->dl_cap = DL_CAPAB_ZEROCOPY; 3361 dl_subcap->dl_length = sizeof (*zerocopy_subcap); 3362 3363 zerocopy_subcap = (dl_capab_zerocopy_t *)(dl_subcap + 1); 3364 zerocopy_subcap->zerocopy_version = 3365 ill->ill_zerocopy_capab->ill_zerocopy_version; 3366 zerocopy_subcap->zerocopy_flags = 0; 3367 3368 if (*sc_mp != NULL) 3369 linkb(*sc_mp, mp); 3370 else 3371 *sc_mp = mp; 3372 } 3373 3374 /* 3375 * Process Large Segment Offload capability negotiation ack received from a 3376 * DLS Provider. isub must point to the sub-capability (DL_CAPAB_LSO) of a 3377 * DL_CAPABILITY_ACK message. 3378 */ 3379 static void 3380 ill_capability_lso_ack(ill_t *ill, mblk_t *mp, dl_capability_sub_t *isub) 3381 { 3382 mblk_t *nmp = NULL; 3383 dl_capability_req_t *oc; 3384 dl_capab_lso_t *lso_ic, *lso_oc; 3385 ill_lso_capab_t **ill_lso_capab; 3386 uint_t sub_dl_cap = isub->dl_cap; 3387 uint8_t *capend; 3388 3389 ASSERT(sub_dl_cap == DL_CAPAB_LSO); 3390 3391 ill_lso_capab = (ill_lso_capab_t **)&ill->ill_lso_capab; 3392 3393 /* 3394 * Note: range checks here are not absolutely sufficient to 3395 * make us robust against malformed messages sent by drivers; 3396 * this is in keeping with the rest of IP's dlpi handling. 3397 * (Remember, it's coming from something else in the kernel 3398 * address space) 3399 */ 3400 capend = (uint8_t *)(isub + 1) + isub->dl_length; 3401 if (capend > mp->b_wptr) { 3402 cmn_err(CE_WARN, "ill_capability_lso_ack: " 3403 "malformed sub-capability too long for mblk"); 3404 return; 3405 } 3406 3407 lso_ic = (dl_capab_lso_t *)(isub + 1); 3408 3409 if (lso_ic->lso_version != LSO_VERSION_1) { 3410 cmn_err(CE_CONT, "ill_capability_lso_ack: " 3411 "unsupported LSO sub-capability (version %d, expected %d)", 3412 lso_ic->lso_version, LSO_VERSION_1); 3413 return; 3414 } 3415 3416 if (!dlcapabcheckqid(&lso_ic->lso_mid, ill->ill_lmod_rq)) { 3417 ip1dbg(("ill_capability_lso_ack: mid token for LSO " 3418 "capability isn't as expected; pass-thru module(s) " 3419 "detected, discarding capability\n")); 3420 return; 3421 } 3422 3423 if ((lso_ic->lso_flags & LSO_TX_ENABLE) && 3424 (lso_ic->lso_flags & LSO_TX_BASIC_TCP_IPV4)) { 3425 if (*ill_lso_capab == NULL) { 3426 *ill_lso_capab = kmem_zalloc(sizeof (ill_lso_capab_t), 3427 KM_NOSLEEP); 3428 3429 if (*ill_lso_capab == NULL) { 3430 cmn_err(CE_WARN, "ill_capability_lso_ack: " 3431 "could not enable LSO version %d " 3432 "for %s (ENOMEM)\n", LSO_VERSION_1, 3433 ill->ill_name); 3434 return; 3435 } 3436 } 3437 3438 (*ill_lso_capab)->ill_lso_version = lso_ic->lso_version; 3439 (*ill_lso_capab)->ill_lso_flags = lso_ic->lso_flags; 3440 (*ill_lso_capab)->ill_lso_max = lso_ic->lso_max; 3441 ill->ill_capabilities |= ILL_CAPAB_LSO; 3442 3443 ip1dbg(("ill_capability_lso_ack: interface %s " 3444 "has enabled LSO\n ", ill->ill_name)); 3445 } else if (lso_ic->lso_flags & LSO_TX_BASIC_TCP_IPV4) { 3446 uint_t size; 3447 uchar_t *rptr; 3448 3449 size = sizeof (dl_capability_req_t) + 3450 sizeof (dl_capability_sub_t) + sizeof (dl_capab_lso_t); 3451 3452 if ((nmp = ip_dlpi_alloc(size, DL_CAPABILITY_REQ)) == NULL) { 3453 cmn_err(CE_WARN, "ill_capability_lso_ack: " 3454 "could not enable LSO for %s (ENOMEM)\n", 3455 ill->ill_name); 3456 return; 3457 } 3458 3459 rptr = nmp->b_rptr; 3460 /* initialize dl_capability_req_t */ 3461 oc = (dl_capability_req_t *)nmp->b_rptr; 3462 oc->dl_sub_offset = sizeof (dl_capability_req_t); 3463 oc->dl_sub_length = sizeof (dl_capability_sub_t) + 3464 sizeof (dl_capab_lso_t); 3465 nmp->b_rptr += sizeof (dl_capability_req_t); 3466 3467 /* initialize dl_capability_sub_t */ 3468 bcopy(isub, nmp->b_rptr, sizeof (*isub)); 3469 nmp->b_rptr += sizeof (*isub); 3470 3471 /* initialize dl_capab_lso_t */ 3472 lso_oc = (dl_capab_lso_t *)nmp->b_rptr; 3473 bcopy(lso_ic, lso_oc, sizeof (*lso_ic)); 3474 3475 nmp->b_rptr = rptr; 3476 ASSERT(nmp->b_wptr == (nmp->b_rptr + size)); 3477 3478 /* set ENABLE flag */ 3479 lso_oc->lso_flags |= LSO_TX_ENABLE; 3480 3481 /* nmp points to a DL_CAPABILITY_REQ message to enable LSO */ 3482 ill_dlpi_send(ill, nmp); 3483 } else { 3484 ip1dbg(("ill_capability_lso_ack: interface %s has " 3485 "advertised %x LSO capability flags\n", 3486 ill->ill_name, lso_ic->lso_flags)); 3487 } 3488 } 3489 3490 static void 3491 ill_capability_lso_reset(ill_t *ill, mblk_t **sc_mp) 3492 { 3493 mblk_t *mp; 3494 dl_capab_lso_t *lso_subcap; 3495 dl_capability_sub_t *dl_subcap; 3496 int size; 3497 3498 if (!(ill->ill_capabilities & ILL_CAPAB_LSO)) 3499 return; 3500 3501 ASSERT(ill->ill_lso_capab != NULL); 3502 /* 3503 * Clear the capability flag for LSO but retain the 3504 * ill_lso_capab structure since it's possible that another 3505 * thread is still referring to it. The structure only gets 3506 * deallocated when we destroy the ill. 3507 */ 3508 ill->ill_capabilities &= ~ILL_CAPAB_LSO; 3509 3510 size = sizeof (*dl_subcap) + sizeof (*lso_subcap); 3511 3512 mp = allocb(size, BPRI_HI); 3513 if (mp == NULL) { 3514 ip1dbg(("ill_capability_lso_reset: unable to allocate " 3515 "request to disable LSO\n")); 3516 return; 3517 } 3518 3519 mp->b_wptr = mp->b_rptr + size; 3520 3521 dl_subcap = (dl_capability_sub_t *)mp->b_rptr; 3522 dl_subcap->dl_cap = DL_CAPAB_LSO; 3523 dl_subcap->dl_length = sizeof (*lso_subcap); 3524 3525 lso_subcap = (dl_capab_lso_t *)(dl_subcap + 1); 3526 lso_subcap->lso_version = ill->ill_lso_capab->ill_lso_version; 3527 lso_subcap->lso_flags = 0; 3528 3529 if (*sc_mp != NULL) 3530 linkb(*sc_mp, mp); 3531 else 3532 *sc_mp = mp; 3533 } 3534 3535 /* 3536 * Consume a new-style hardware capabilities negotiation ack. 3537 * Called from ip_rput_dlpi_writer(). 3538 */ 3539 void 3540 ill_capability_ack(ill_t *ill, mblk_t *mp) 3541 { 3542 dl_capability_ack_t *capp; 3543 dl_capability_sub_t *subp, *endp; 3544 3545 if (ill->ill_dlpi_capab_state == IDS_INPROGRESS) 3546 ill->ill_dlpi_capab_state = IDS_OK; 3547 3548 capp = (dl_capability_ack_t *)mp->b_rptr; 3549 3550 if (capp->dl_sub_length == 0) 3551 /* no new-style capabilities */ 3552 return; 3553 3554 /* make sure the driver supplied correct dl_sub_length */ 3555 if ((sizeof (*capp) + capp->dl_sub_length) > MBLKL(mp)) { 3556 ip0dbg(("ill_capability_ack: bad DL_CAPABILITY_ACK, " 3557 "invalid dl_sub_length (%d)\n", capp->dl_sub_length)); 3558 return; 3559 } 3560 3561 #define SC(base, offset) (dl_capability_sub_t *)(((uchar_t *)(base))+(offset)) 3562 /* 3563 * There are sub-capabilities. Process the ones we know about. 3564 * Loop until we don't have room for another sub-cap header.. 3565 */ 3566 for (subp = SC(capp, capp->dl_sub_offset), 3567 endp = SC(subp, capp->dl_sub_length - sizeof (*subp)); 3568 subp <= endp; 3569 subp = SC(subp, sizeof (dl_capability_sub_t) + subp->dl_length)) { 3570 3571 switch (subp->dl_cap) { 3572 case DL_CAPAB_ID_WRAPPER: 3573 ill_capability_id_ack(ill, mp, subp); 3574 break; 3575 default: 3576 ill_capability_dispatch(ill, mp, subp, B_FALSE); 3577 break; 3578 } 3579 } 3580 #undef SC 3581 } 3582 3583 /* 3584 * This routine is called to scan the fragmentation reassembly table for 3585 * the specified ILL for any packets that are starting to smell. 3586 * dead_interval is the maximum time in seconds that will be tolerated. It 3587 * will either be the value specified in ip_g_frag_timeout, or zero if the 3588 * ILL is shutting down and it is time to blow everything off. 3589 * 3590 * It returns the number of seconds (as a time_t) that the next frag timer 3591 * should be scheduled for, 0 meaning that the timer doesn't need to be 3592 * re-started. Note that the method of calculating next_timeout isn't 3593 * entirely accurate since time will flow between the time we grab 3594 * current_time and the time we schedule the next timeout. This isn't a 3595 * big problem since this is the timer for sending an ICMP reassembly time 3596 * exceeded messages, and it doesn't have to be exactly accurate. 3597 * 3598 * This function is 3599 * sometimes called as writer, although this is not required. 3600 */ 3601 time_t 3602 ill_frag_timeout(ill_t *ill, time_t dead_interval) 3603 { 3604 ipfb_t *ipfb; 3605 ipfb_t *endp; 3606 ipf_t *ipf; 3607 ipf_t *ipfnext; 3608 mblk_t *mp; 3609 time_t current_time = gethrestime_sec(); 3610 time_t next_timeout = 0; 3611 uint32_t hdr_length; 3612 mblk_t *send_icmp_head; 3613 mblk_t *send_icmp_head_v6; 3614 zoneid_t zoneid; 3615 ip_stack_t *ipst = ill->ill_ipst; 3616 3617 ipfb = ill->ill_frag_hash_tbl; 3618 if (ipfb == NULL) 3619 return (B_FALSE); 3620 endp = &ipfb[ILL_FRAG_HASH_TBL_COUNT]; 3621 /* Walk the frag hash table. */ 3622 for (; ipfb < endp; ipfb++) { 3623 send_icmp_head = NULL; 3624 send_icmp_head_v6 = NULL; 3625 mutex_enter(&ipfb->ipfb_lock); 3626 while ((ipf = ipfb->ipfb_ipf) != 0) { 3627 time_t frag_time = current_time - ipf->ipf_timestamp; 3628 time_t frag_timeout; 3629 3630 if (frag_time < dead_interval) { 3631 /* 3632 * There are some outstanding fragments 3633 * that will timeout later. Make note of 3634 * the time so that we can reschedule the 3635 * next timeout appropriately. 3636 */ 3637 frag_timeout = dead_interval - frag_time; 3638 if (next_timeout == 0 || 3639 frag_timeout < next_timeout) { 3640 next_timeout = frag_timeout; 3641 } 3642 break; 3643 } 3644 /* Time's up. Get it out of here. */ 3645 hdr_length = ipf->ipf_nf_hdr_len; 3646 ipfnext = ipf->ipf_hash_next; 3647 if (ipfnext) 3648 ipfnext->ipf_ptphn = ipf->ipf_ptphn; 3649 *ipf->ipf_ptphn = ipfnext; 3650 mp = ipf->ipf_mp->b_cont; 3651 for (; mp; mp = mp->b_cont) { 3652 /* Extra points for neatness. */ 3653 IP_REASS_SET_START(mp, 0); 3654 IP_REASS_SET_END(mp, 0); 3655 } 3656 mp = ipf->ipf_mp->b_cont; 3657 atomic_add_32(&ill->ill_frag_count, -ipf->ipf_count); 3658 ASSERT(ipfb->ipfb_count >= ipf->ipf_count); 3659 ipfb->ipfb_count -= ipf->ipf_count; 3660 ASSERT(ipfb->ipfb_frag_pkts > 0); 3661 ipfb->ipfb_frag_pkts--; 3662 /* 3663 * We do not send any icmp message from here because 3664 * we currently are holding the ipfb_lock for this 3665 * hash chain. If we try and send any icmp messages 3666 * from here we may end up via a put back into ip 3667 * trying to get the same lock, causing a recursive 3668 * mutex panic. Instead we build a list and send all 3669 * the icmp messages after we have dropped the lock. 3670 */ 3671 if (ill->ill_isv6) { 3672 if (hdr_length != 0) { 3673 mp->b_next = send_icmp_head_v6; 3674 send_icmp_head_v6 = mp; 3675 } else { 3676 freemsg(mp); 3677 } 3678 } else { 3679 if (hdr_length != 0) { 3680 mp->b_next = send_icmp_head; 3681 send_icmp_head = mp; 3682 } else { 3683 freemsg(mp); 3684 } 3685 } 3686 BUMP_MIB(ill->ill_ip_mib, ipIfStatsReasmFails); 3687 freeb(ipf->ipf_mp); 3688 } 3689 mutex_exit(&ipfb->ipfb_lock); 3690 /* 3691 * Now need to send any icmp messages that we delayed from 3692 * above. 3693 */ 3694 while (send_icmp_head_v6 != NULL) { 3695 ip6_t *ip6h; 3696 3697 mp = send_icmp_head_v6; 3698 send_icmp_head_v6 = send_icmp_head_v6->b_next; 3699 mp->b_next = NULL; 3700 if (mp->b_datap->db_type == M_CTL) 3701 ip6h = (ip6_t *)mp->b_cont->b_rptr; 3702 else 3703 ip6h = (ip6_t *)mp->b_rptr; 3704 zoneid = ipif_lookup_addr_zoneid_v6(&ip6h->ip6_dst, 3705 ill, ipst); 3706 if (zoneid == ALL_ZONES) { 3707 freemsg(mp); 3708 } else { 3709 icmp_time_exceeded_v6(ill->ill_wq, mp, 3710 ICMP_REASSEMBLY_TIME_EXCEEDED, B_FALSE, 3711 B_FALSE, zoneid, ipst); 3712 } 3713 } 3714 while (send_icmp_head != NULL) { 3715 ipaddr_t dst; 3716 3717 mp = send_icmp_head; 3718 send_icmp_head = send_icmp_head->b_next; 3719 mp->b_next = NULL; 3720 3721 if (mp->b_datap->db_type == M_CTL) 3722 dst = ((ipha_t *)mp->b_cont->b_rptr)->ipha_dst; 3723 else 3724 dst = ((ipha_t *)mp->b_rptr)->ipha_dst; 3725 3726 zoneid = ipif_lookup_addr_zoneid(dst, ill, ipst); 3727 if (zoneid == ALL_ZONES) { 3728 freemsg(mp); 3729 } else { 3730 icmp_time_exceeded(ill->ill_wq, mp, 3731 ICMP_REASSEMBLY_TIME_EXCEEDED, zoneid, 3732 ipst); 3733 } 3734 } 3735 } 3736 /* 3737 * A non-dying ILL will use the return value to decide whether to 3738 * restart the frag timer, and for how long. 3739 */ 3740 return (next_timeout); 3741 } 3742 3743 /* 3744 * This routine is called when the approximate count of mblk memory used 3745 * for the specified ILL has exceeded max_count. 3746 */ 3747 void 3748 ill_frag_prune(ill_t *ill, uint_t max_count) 3749 { 3750 ipfb_t *ipfb; 3751 ipf_t *ipf; 3752 size_t count; 3753 3754 /* 3755 * If we are here within ip_min_frag_prune_time msecs remove 3756 * ill_frag_free_num_pkts oldest packets from each bucket and increment 3757 * ill_frag_free_num_pkts. 3758 */ 3759 mutex_enter(&ill->ill_lock); 3760 if (TICK_TO_MSEC(lbolt - ill->ill_last_frag_clean_time) <= 3761 (ip_min_frag_prune_time != 0 ? 3762 ip_min_frag_prune_time : msec_per_tick)) { 3763 3764 ill->ill_frag_free_num_pkts++; 3765 3766 } else { 3767 ill->ill_frag_free_num_pkts = 0; 3768 } 3769 ill->ill_last_frag_clean_time = lbolt; 3770 mutex_exit(&ill->ill_lock); 3771 3772 /* 3773 * free ill_frag_free_num_pkts oldest packets from each bucket. 3774 */ 3775 if (ill->ill_frag_free_num_pkts != 0) { 3776 int ix; 3777 3778 for (ix = 0; ix < ILL_FRAG_HASH_TBL_COUNT; ix++) { 3779 ipfb = &ill->ill_frag_hash_tbl[ix]; 3780 mutex_enter(&ipfb->ipfb_lock); 3781 if (ipfb->ipfb_ipf != NULL) { 3782 ill_frag_free_pkts(ill, ipfb, ipfb->ipfb_ipf, 3783 ill->ill_frag_free_num_pkts); 3784 } 3785 mutex_exit(&ipfb->ipfb_lock); 3786 } 3787 } 3788 /* 3789 * While the reassembly list for this ILL is too big, prune a fragment 3790 * queue by age, oldest first. 3791 */ 3792 while (ill->ill_frag_count > max_count) { 3793 int ix; 3794 ipfb_t *oipfb = NULL; 3795 uint_t oldest = UINT_MAX; 3796 3797 count = 0; 3798 for (ix = 0; ix < ILL_FRAG_HASH_TBL_COUNT; ix++) { 3799 ipfb = &ill->ill_frag_hash_tbl[ix]; 3800 mutex_enter(&ipfb->ipfb_lock); 3801 ipf = ipfb->ipfb_ipf; 3802 if (ipf != NULL && ipf->ipf_gen < oldest) { 3803 oldest = ipf->ipf_gen; 3804 oipfb = ipfb; 3805 } 3806 count += ipfb->ipfb_count; 3807 mutex_exit(&ipfb->ipfb_lock); 3808 } 3809 if (oipfb == NULL) 3810 break; 3811 3812 if (count <= max_count) 3813 return; /* Somebody beat us to it, nothing to do */ 3814 mutex_enter(&oipfb->ipfb_lock); 3815 ipf = oipfb->ipfb_ipf; 3816 if (ipf != NULL) { 3817 ill_frag_free_pkts(ill, oipfb, ipf, 1); 3818 } 3819 mutex_exit(&oipfb->ipfb_lock); 3820 } 3821 } 3822 3823 /* 3824 * free 'free_cnt' fragmented packets starting at ipf. 3825 */ 3826 void 3827 ill_frag_free_pkts(ill_t *ill, ipfb_t *ipfb, ipf_t *ipf, int free_cnt) 3828 { 3829 size_t count; 3830 mblk_t *mp; 3831 mblk_t *tmp; 3832 ipf_t **ipfp = ipf->ipf_ptphn; 3833 3834 ASSERT(MUTEX_HELD(&ipfb->ipfb_lock)); 3835 ASSERT(ipfp != NULL); 3836 ASSERT(ipf != NULL); 3837 3838 while (ipf != NULL && free_cnt-- > 0) { 3839 count = ipf->ipf_count; 3840 mp = ipf->ipf_mp; 3841 ipf = ipf->ipf_hash_next; 3842 for (tmp = mp; tmp; tmp = tmp->b_cont) { 3843 IP_REASS_SET_START(tmp, 0); 3844 IP_REASS_SET_END(tmp, 0); 3845 } 3846 atomic_add_32(&ill->ill_frag_count, -count); 3847 ASSERT(ipfb->ipfb_count >= count); 3848 ipfb->ipfb_count -= count; 3849 ASSERT(ipfb->ipfb_frag_pkts > 0); 3850 ipfb->ipfb_frag_pkts--; 3851 freemsg(mp); 3852 BUMP_MIB(ill->ill_ip_mib, ipIfStatsReasmFails); 3853 } 3854 3855 if (ipf) 3856 ipf->ipf_ptphn = ipfp; 3857 ipfp[0] = ipf; 3858 } 3859 3860 #define ND_FORWARD_WARNING "The <if>:ip*_forwarding ndd variables are " \ 3861 "obsolete and may be removed in a future release of Solaris. Use " \ 3862 "ifconfig(1M) to manipulate the forwarding status of an interface." 3863 3864 /* 3865 * For obsolete per-interface forwarding configuration; 3866 * called in response to ND_GET. 3867 */ 3868 /* ARGSUSED */ 3869 static int 3870 nd_ill_forward_get(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *ioc_cr) 3871 { 3872 ill_t *ill = (ill_t *)cp; 3873 3874 cmn_err(CE_WARN, ND_FORWARD_WARNING); 3875 3876 (void) mi_mpprintf(mp, "%d", (ill->ill_flags & ILLF_ROUTER) != 0); 3877 return (0); 3878 } 3879 3880 /* 3881 * For obsolete per-interface forwarding configuration; 3882 * called in response to ND_SET. 3883 */ 3884 /* ARGSUSED */ 3885 static int 3886 nd_ill_forward_set(queue_t *q, mblk_t *mp, char *valuestr, caddr_t cp, 3887 cred_t *ioc_cr) 3888 { 3889 long value; 3890 int retval; 3891 ip_stack_t *ipst = CONNQ_TO_IPST(q); 3892 3893 cmn_err(CE_WARN, ND_FORWARD_WARNING); 3894 3895 if (ddi_strtol(valuestr, NULL, 10, &value) != 0 || 3896 value < 0 || value > 1) { 3897 return (EINVAL); 3898 } 3899 3900 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 3901 retval = ill_forward_set((ill_t *)cp, (value != 0)); 3902 rw_exit(&ipst->ips_ill_g_lock); 3903 return (retval); 3904 } 3905 3906 /* 3907 * Set an ill's ILLF_ROUTER flag appropriately. If the ill is part of an 3908 * IPMP group, make sure all ill's in the group adopt the new policy. Send 3909 * up RTS_IFINFO routing socket messages for each interface whose flags we 3910 * change. 3911 */ 3912 int 3913 ill_forward_set(ill_t *ill, boolean_t enable) 3914 { 3915 ill_group_t *illgrp; 3916 ip_stack_t *ipst = ill->ill_ipst; 3917 3918 ASSERT(IAM_WRITER_ILL(ill) || RW_READ_HELD(&ipst->ips_ill_g_lock)); 3919 3920 if ((enable && (ill->ill_flags & ILLF_ROUTER)) || 3921 (!enable && !(ill->ill_flags & ILLF_ROUTER))) 3922 return (0); 3923 3924 if (IS_LOOPBACK(ill)) 3925 return (EINVAL); 3926 3927 /* 3928 * If the ill is in an IPMP group, set the forwarding policy on all 3929 * members of the group to the same value. 3930 */ 3931 illgrp = ill->ill_group; 3932 if (illgrp != NULL) { 3933 ill_t *tmp_ill; 3934 3935 for (tmp_ill = illgrp->illgrp_ill; tmp_ill != NULL; 3936 tmp_ill = tmp_ill->ill_group_next) { 3937 ip1dbg(("ill_forward_set: %s %s forwarding on %s", 3938 (enable ? "Enabling" : "Disabling"), 3939 (tmp_ill->ill_isv6 ? "IPv6" : "IPv4"), 3940 tmp_ill->ill_name)); 3941 mutex_enter(&tmp_ill->ill_lock); 3942 if (enable) 3943 tmp_ill->ill_flags |= ILLF_ROUTER; 3944 else 3945 tmp_ill->ill_flags &= ~ILLF_ROUTER; 3946 mutex_exit(&tmp_ill->ill_lock); 3947 if (tmp_ill->ill_isv6) 3948 ill_set_nce_router_flags(tmp_ill, enable); 3949 /* Notify routing socket listeners of this change. */ 3950 ip_rts_ifmsg(tmp_ill->ill_ipif); 3951 } 3952 } else { 3953 ip1dbg(("ill_forward_set: %s %s forwarding on %s", 3954 (enable ? "Enabling" : "Disabling"), 3955 (ill->ill_isv6 ? "IPv6" : "IPv4"), ill->ill_name)); 3956 mutex_enter(&ill->ill_lock); 3957 if (enable) 3958 ill->ill_flags |= ILLF_ROUTER; 3959 else 3960 ill->ill_flags &= ~ILLF_ROUTER; 3961 mutex_exit(&ill->ill_lock); 3962 if (ill->ill_isv6) 3963 ill_set_nce_router_flags(ill, enable); 3964 /* Notify routing socket listeners of this change. */ 3965 ip_rts_ifmsg(ill->ill_ipif); 3966 } 3967 3968 return (0); 3969 } 3970 3971 /* 3972 * Based on the ILLF_ROUTER flag of an ill, make sure all local nce's for 3973 * addresses assigned to the ill have the NCE_F_ISROUTER flag appropriately 3974 * set or clear. 3975 */ 3976 static void 3977 ill_set_nce_router_flags(ill_t *ill, boolean_t enable) 3978 { 3979 ipif_t *ipif; 3980 nce_t *nce; 3981 3982 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 3983 nce = ndp_lookup_v6(ill, &ipif->ipif_v6lcl_addr, B_FALSE); 3984 if (nce != NULL) { 3985 mutex_enter(&nce->nce_lock); 3986 if (enable) 3987 nce->nce_flags |= NCE_F_ISROUTER; 3988 else 3989 nce->nce_flags &= ~NCE_F_ISROUTER; 3990 mutex_exit(&nce->nce_lock); 3991 NCE_REFRELE(nce); 3992 } 3993 } 3994 } 3995 3996 /* 3997 * Given an ill with a _valid_ name, add the ip_forwarding ndd variable 3998 * for this ill. Make sure the v6/v4 question has been answered about this 3999 * ill. The creation of this ndd variable is only for backwards compatibility. 4000 * The preferred way to control per-interface IP forwarding is through the 4001 * ILLF_ROUTER interface flag. 4002 */ 4003 static int 4004 ill_set_ndd_name(ill_t *ill) 4005 { 4006 char *suffix; 4007 ip_stack_t *ipst = ill->ill_ipst; 4008 4009 ASSERT(IAM_WRITER_ILL(ill)); 4010 4011 if (ill->ill_isv6) 4012 suffix = ipv6_forward_suffix; 4013 else 4014 suffix = ipv4_forward_suffix; 4015 4016 ill->ill_ndd_name = ill->ill_name + ill->ill_name_length; 4017 bcopy(ill->ill_name, ill->ill_ndd_name, ill->ill_name_length - 1); 4018 /* 4019 * Copies over the '\0'. 4020 * Note that strlen(suffix) is always bounded. 4021 */ 4022 bcopy(suffix, ill->ill_ndd_name + ill->ill_name_length - 1, 4023 strlen(suffix) + 1); 4024 4025 /* 4026 * Use of the nd table requires holding the reader lock. 4027 * Modifying the nd table thru nd_load/nd_unload requires 4028 * the writer lock. 4029 */ 4030 rw_enter(&ipst->ips_ip_g_nd_lock, RW_WRITER); 4031 if (!nd_load(&ipst->ips_ip_g_nd, ill->ill_ndd_name, nd_ill_forward_get, 4032 nd_ill_forward_set, (caddr_t)ill)) { 4033 /* 4034 * If the nd_load failed, it only meant that it could not 4035 * allocate a new bunch of room for further NDD expansion. 4036 * Because of that, the ill_ndd_name will be set to 0, and 4037 * this interface is at the mercy of the global ip_forwarding 4038 * variable. 4039 */ 4040 rw_exit(&ipst->ips_ip_g_nd_lock); 4041 ill->ill_ndd_name = NULL; 4042 return (ENOMEM); 4043 } 4044 rw_exit(&ipst->ips_ip_g_nd_lock); 4045 return (0); 4046 } 4047 4048 /* 4049 * Intializes the context structure and returns the first ill in the list 4050 * cuurently start_list and end_list can have values: 4051 * MAX_G_HEADS Traverse both IPV4 and IPV6 lists. 4052 * IP_V4_G_HEAD Traverse IPV4 list only. 4053 * IP_V6_G_HEAD Traverse IPV6 list only. 4054 */ 4055 4056 /* 4057 * We don't check for CONDEMNED ills here. Caller must do that if 4058 * necessary under the ill lock. 4059 */ 4060 ill_t * 4061 ill_first(int start_list, int end_list, ill_walk_context_t *ctx, 4062 ip_stack_t *ipst) 4063 { 4064 ill_if_t *ifp; 4065 ill_t *ill; 4066 avl_tree_t *avl_tree; 4067 4068 ASSERT(RW_LOCK_HELD(&ipst->ips_ill_g_lock)); 4069 ASSERT(end_list <= MAX_G_HEADS && start_list >= 0); 4070 4071 /* 4072 * setup the lists to search 4073 */ 4074 if (end_list != MAX_G_HEADS) { 4075 ctx->ctx_current_list = start_list; 4076 ctx->ctx_last_list = end_list; 4077 } else { 4078 ctx->ctx_last_list = MAX_G_HEADS - 1; 4079 ctx->ctx_current_list = 0; 4080 } 4081 4082 while (ctx->ctx_current_list <= ctx->ctx_last_list) { 4083 ifp = IP_VX_ILL_G_LIST(ctx->ctx_current_list, ipst); 4084 if (ifp != (ill_if_t *) 4085 &IP_VX_ILL_G_LIST(ctx->ctx_current_list, ipst)) { 4086 avl_tree = &ifp->illif_avl_by_ppa; 4087 ill = avl_first(avl_tree); 4088 /* 4089 * ill is guaranteed to be non NULL or ifp should have 4090 * not existed. 4091 */ 4092 ASSERT(ill != NULL); 4093 return (ill); 4094 } 4095 ctx->ctx_current_list++; 4096 } 4097 4098 return (NULL); 4099 } 4100 4101 /* 4102 * returns the next ill in the list. ill_first() must have been called 4103 * before calling ill_next() or bad things will happen. 4104 */ 4105 4106 /* 4107 * We don't check for CONDEMNED ills here. Caller must do that if 4108 * necessary under the ill lock. 4109 */ 4110 ill_t * 4111 ill_next(ill_walk_context_t *ctx, ill_t *lastill) 4112 { 4113 ill_if_t *ifp; 4114 ill_t *ill; 4115 ip_stack_t *ipst = lastill->ill_ipst; 4116 4117 ASSERT(lastill->ill_ifptr != (ill_if_t *) 4118 &IP_VX_ILL_G_LIST(ctx->ctx_current_list, ipst)); 4119 if ((ill = avl_walk(&lastill->ill_ifptr->illif_avl_by_ppa, lastill, 4120 AVL_AFTER)) != NULL) { 4121 return (ill); 4122 } 4123 4124 /* goto next ill_ifp in the list. */ 4125 ifp = lastill->ill_ifptr->illif_next; 4126 4127 /* make sure not at end of circular list */ 4128 while (ifp == 4129 (ill_if_t *)&IP_VX_ILL_G_LIST(ctx->ctx_current_list, ipst)) { 4130 if (++ctx->ctx_current_list > ctx->ctx_last_list) 4131 return (NULL); 4132 ifp = IP_VX_ILL_G_LIST(ctx->ctx_current_list, ipst); 4133 } 4134 4135 return (avl_first(&ifp->illif_avl_by_ppa)); 4136 } 4137 4138 /* 4139 * Check interface name for correct format which is name+ppa. 4140 * name can contain characters and digits, the right most digits 4141 * make up the ppa number. use of octal is not allowed, name must contain 4142 * a ppa, return pointer to the start of ppa. 4143 * In case of error return NULL. 4144 */ 4145 static char * 4146 ill_get_ppa_ptr(char *name) 4147 { 4148 int namelen = mi_strlen(name); 4149 4150 int len = namelen; 4151 4152 name += len; 4153 while (len > 0) { 4154 name--; 4155 if (*name < '0' || *name > '9') 4156 break; 4157 len--; 4158 } 4159 4160 /* empty string, all digits, or no trailing digits */ 4161 if (len == 0 || len == (int)namelen) 4162 return (NULL); 4163 4164 name++; 4165 /* check for attempted use of octal */ 4166 if (*name == '0' && len != (int)namelen - 1) 4167 return (NULL); 4168 return (name); 4169 } 4170 4171 /* 4172 * use avl tree to locate the ill. 4173 */ 4174 static ill_t * 4175 ill_find_by_name(char *name, boolean_t isv6, queue_t *q, mblk_t *mp, 4176 ipsq_func_t func, int *error, ip_stack_t *ipst) 4177 { 4178 char *ppa_ptr = NULL; 4179 int len; 4180 uint_t ppa; 4181 ill_t *ill = NULL; 4182 ill_if_t *ifp; 4183 int list; 4184 ipsq_t *ipsq; 4185 4186 if (error != NULL) 4187 *error = 0; 4188 4189 /* 4190 * get ppa ptr 4191 */ 4192 if (isv6) 4193 list = IP_V6_G_HEAD; 4194 else 4195 list = IP_V4_G_HEAD; 4196 4197 if ((ppa_ptr = ill_get_ppa_ptr(name)) == NULL) { 4198 if (error != NULL) 4199 *error = ENXIO; 4200 return (NULL); 4201 } 4202 4203 len = ppa_ptr - name + 1; 4204 4205 ppa = stoi(&ppa_ptr); 4206 4207 ifp = IP_VX_ILL_G_LIST(list, ipst); 4208 4209 while (ifp != (ill_if_t *)&IP_VX_ILL_G_LIST(list, ipst)) { 4210 /* 4211 * match is done on len - 1 as the name is not null 4212 * terminated it contains ppa in addition to the interface 4213 * name. 4214 */ 4215 if ((ifp->illif_name_len == len) && 4216 bcmp(ifp->illif_name, name, len - 1) == 0) { 4217 break; 4218 } else { 4219 ifp = ifp->illif_next; 4220 } 4221 } 4222 4223 if (ifp == (ill_if_t *)&IP_VX_ILL_G_LIST(list, ipst)) { 4224 /* 4225 * Even the interface type does not exist. 4226 */ 4227 if (error != NULL) 4228 *error = ENXIO; 4229 return (NULL); 4230 } 4231 4232 ill = avl_find(&ifp->illif_avl_by_ppa, (void *) &ppa, NULL); 4233 if (ill != NULL) { 4234 /* 4235 * The block comment at the start of ipif_down 4236 * explains the use of the macros used below 4237 */ 4238 GRAB_CONN_LOCK(q); 4239 mutex_enter(&ill->ill_lock); 4240 if (ILL_CAN_LOOKUP(ill)) { 4241 ill_refhold_locked(ill); 4242 mutex_exit(&ill->ill_lock); 4243 RELEASE_CONN_LOCK(q); 4244 return (ill); 4245 } else if (ILL_CAN_WAIT(ill, q)) { 4246 ipsq = ill->ill_phyint->phyint_ipsq; 4247 mutex_enter(&ipsq->ipsq_lock); 4248 mutex_exit(&ill->ill_lock); 4249 ipsq_enq(ipsq, q, mp, func, NEW_OP, ill); 4250 mutex_exit(&ipsq->ipsq_lock); 4251 RELEASE_CONN_LOCK(q); 4252 if (error != NULL) 4253 *error = EINPROGRESS; 4254 return (NULL); 4255 } 4256 mutex_exit(&ill->ill_lock); 4257 RELEASE_CONN_LOCK(q); 4258 } 4259 if (error != NULL) 4260 *error = ENXIO; 4261 return (NULL); 4262 } 4263 4264 /* 4265 * comparison function for use with avl. 4266 */ 4267 static int 4268 ill_compare_ppa(const void *ppa_ptr, const void *ill_ptr) 4269 { 4270 uint_t ppa; 4271 uint_t ill_ppa; 4272 4273 ASSERT(ppa_ptr != NULL && ill_ptr != NULL); 4274 4275 ppa = *((uint_t *)ppa_ptr); 4276 ill_ppa = ((const ill_t *)ill_ptr)->ill_ppa; 4277 /* 4278 * We want the ill with the lowest ppa to be on the 4279 * top. 4280 */ 4281 if (ill_ppa < ppa) 4282 return (1); 4283 if (ill_ppa > ppa) 4284 return (-1); 4285 return (0); 4286 } 4287 4288 /* 4289 * remove an interface type from the global list. 4290 */ 4291 static void 4292 ill_delete_interface_type(ill_if_t *interface) 4293 { 4294 ASSERT(interface != NULL); 4295 ASSERT(avl_numnodes(&interface->illif_avl_by_ppa) == 0); 4296 4297 avl_destroy(&interface->illif_avl_by_ppa); 4298 if (interface->illif_ppa_arena != NULL) 4299 vmem_destroy(interface->illif_ppa_arena); 4300 4301 remque(interface); 4302 4303 mi_free(interface); 4304 } 4305 4306 /* 4307 * remove ill from the global list. 4308 */ 4309 static void 4310 ill_glist_delete(ill_t *ill) 4311 { 4312 ip_stack_t *ipst; 4313 4314 if (ill == NULL) 4315 return; 4316 ipst = ill->ill_ipst; 4317 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 4318 4319 /* 4320 * If the ill was never inserted into the AVL tree 4321 * we skip the if branch. 4322 */ 4323 if (ill->ill_ifptr != NULL) { 4324 /* 4325 * remove from AVL tree and free ppa number 4326 */ 4327 avl_remove(&ill->ill_ifptr->illif_avl_by_ppa, ill); 4328 4329 if (ill->ill_ifptr->illif_ppa_arena != NULL) { 4330 vmem_free(ill->ill_ifptr->illif_ppa_arena, 4331 (void *)(uintptr_t)(ill->ill_ppa+1), 1); 4332 } 4333 if (avl_numnodes(&ill->ill_ifptr->illif_avl_by_ppa) == 0) { 4334 ill_delete_interface_type(ill->ill_ifptr); 4335 } 4336 4337 /* 4338 * Indicate ill is no longer in the list. 4339 */ 4340 ill->ill_ifptr = NULL; 4341 ill->ill_name_length = 0; 4342 ill->ill_name[0] = '\0'; 4343 ill->ill_ppa = UINT_MAX; 4344 } 4345 4346 /* 4347 * Run the unplumb hook after the NIC has disappeared from being 4348 * visible so that attempts to revalidate its existance will fail. 4349 * 4350 * This needs to be run inside the ill_g_lock perimeter to ensure 4351 * that the ordering of delivered events to listeners matches the 4352 * order of them in the kernel. 4353 */ 4354 mutex_enter(&ill->ill_lock); 4355 ill_nic_info_dispatch(ill); 4356 mutex_exit(&ill->ill_lock); 4357 4358 /* Generate NE_UNPLUMB event for ill_name. */ 4359 (void) ill_hook_event_create(ill, 0, NE_UNPLUMB, ill->ill_name, 4360 ill->ill_name_length); 4361 4362 ill_phyint_free(ill); 4363 4364 mutex_enter(&ill->ill_lock); 4365 ill_nic_info_dispatch(ill); 4366 mutex_exit(&ill->ill_lock); 4367 4368 rw_exit(&ipst->ips_ill_g_lock); 4369 } 4370 4371 /* 4372 * allocate a ppa, if the number of plumbed interfaces of this type are 4373 * less than ill_no_arena do a linear search to find a unused ppa. 4374 * When the number goes beyond ill_no_arena switch to using an arena. 4375 * Note: ppa value of zero cannot be allocated from vmem_arena as it 4376 * is the return value for an error condition, so allocation starts at one 4377 * and is decremented by one. 4378 */ 4379 static int 4380 ill_alloc_ppa(ill_if_t *ifp, ill_t *ill) 4381 { 4382 ill_t *tmp_ill; 4383 uint_t start, end; 4384 int ppa; 4385 4386 if (ifp->illif_ppa_arena == NULL && 4387 (avl_numnodes(&ifp->illif_avl_by_ppa) + 1 > ill_no_arena)) { 4388 /* 4389 * Create an arena. 4390 */ 4391 ifp->illif_ppa_arena = vmem_create(ifp->illif_name, 4392 (void *)1, UINT_MAX - 1, 1, NULL, NULL, 4393 NULL, 0, VM_SLEEP | VMC_IDENTIFIER); 4394 /* allocate what has already been assigned */ 4395 for (tmp_ill = avl_first(&ifp->illif_avl_by_ppa); 4396 tmp_ill != NULL; tmp_ill = avl_walk(&ifp->illif_avl_by_ppa, 4397 tmp_ill, AVL_AFTER)) { 4398 ppa = (int)(uintptr_t)vmem_xalloc(ifp->illif_ppa_arena, 4399 1, /* size */ 4400 1, /* align/quantum */ 4401 0, /* phase */ 4402 0, /* nocross */ 4403 /* minaddr */ 4404 (void *)((uintptr_t)tmp_ill->ill_ppa + 1), 4405 /* maxaddr */ 4406 (void *)((uintptr_t)tmp_ill->ill_ppa + 2), 4407 VM_NOSLEEP|VM_FIRSTFIT); 4408 if (ppa == 0) { 4409 ip1dbg(("ill_alloc_ppa: ppa allocation" 4410 " failed while switching")); 4411 vmem_destroy(ifp->illif_ppa_arena); 4412 ifp->illif_ppa_arena = NULL; 4413 break; 4414 } 4415 } 4416 } 4417 4418 if (ifp->illif_ppa_arena != NULL) { 4419 if (ill->ill_ppa == UINT_MAX) { 4420 ppa = (int)(uintptr_t)vmem_alloc(ifp->illif_ppa_arena, 4421 1, VM_NOSLEEP|VM_FIRSTFIT); 4422 if (ppa == 0) 4423 return (EAGAIN); 4424 ill->ill_ppa = --ppa; 4425 } else { 4426 ppa = (int)(uintptr_t)vmem_xalloc(ifp->illif_ppa_arena, 4427 1, /* size */ 4428 1, /* align/quantum */ 4429 0, /* phase */ 4430 0, /* nocross */ 4431 (void *)(uintptr_t)(ill->ill_ppa + 1), /* minaddr */ 4432 (void *)(uintptr_t)(ill->ill_ppa + 2), /* maxaddr */ 4433 VM_NOSLEEP|VM_FIRSTFIT); 4434 /* 4435 * Most likely the allocation failed because 4436 * the requested ppa was in use. 4437 */ 4438 if (ppa == 0) 4439 return (EEXIST); 4440 } 4441 return (0); 4442 } 4443 4444 /* 4445 * No arena is in use and not enough (>ill_no_arena) interfaces have 4446 * been plumbed to create one. Do a linear search to get a unused ppa. 4447 */ 4448 if (ill->ill_ppa == UINT_MAX) { 4449 end = UINT_MAX - 1; 4450 start = 0; 4451 } else { 4452 end = start = ill->ill_ppa; 4453 } 4454 4455 tmp_ill = avl_find(&ifp->illif_avl_by_ppa, (void *)&start, NULL); 4456 while (tmp_ill != NULL && tmp_ill->ill_ppa == start) { 4457 if (start++ >= end) { 4458 if (ill->ill_ppa == UINT_MAX) 4459 return (EAGAIN); 4460 else 4461 return (EEXIST); 4462 } 4463 tmp_ill = avl_walk(&ifp->illif_avl_by_ppa, tmp_ill, AVL_AFTER); 4464 } 4465 ill->ill_ppa = start; 4466 return (0); 4467 } 4468 4469 /* 4470 * Insert ill into the list of configured ill's. Once this function completes, 4471 * the ill is globally visible and is available through lookups. More precisely 4472 * this happens after the caller drops the ill_g_lock. 4473 */ 4474 static int 4475 ill_glist_insert(ill_t *ill, char *name, boolean_t isv6) 4476 { 4477 ill_if_t *ill_interface; 4478 avl_index_t where = 0; 4479 int error; 4480 int name_length; 4481 int index; 4482 boolean_t check_length = B_FALSE; 4483 ip_stack_t *ipst = ill->ill_ipst; 4484 4485 ASSERT(RW_WRITE_HELD(&ipst->ips_ill_g_lock)); 4486 4487 name_length = mi_strlen(name) + 1; 4488 4489 if (isv6) 4490 index = IP_V6_G_HEAD; 4491 else 4492 index = IP_V4_G_HEAD; 4493 4494 ill_interface = IP_VX_ILL_G_LIST(index, ipst); 4495 /* 4496 * Search for interface type based on name 4497 */ 4498 while (ill_interface != (ill_if_t *)&IP_VX_ILL_G_LIST(index, ipst)) { 4499 if ((ill_interface->illif_name_len == name_length) && 4500 (strcmp(ill_interface->illif_name, name) == 0)) { 4501 break; 4502 } 4503 ill_interface = ill_interface->illif_next; 4504 } 4505 4506 /* 4507 * Interface type not found, create one. 4508 */ 4509 if (ill_interface == (ill_if_t *)&IP_VX_ILL_G_LIST(index, ipst)) { 4510 4511 ill_g_head_t ghead; 4512 4513 /* 4514 * allocate ill_if_t structure 4515 */ 4516 4517 ill_interface = (ill_if_t *)mi_zalloc(sizeof (ill_if_t)); 4518 if (ill_interface == NULL) { 4519 return (ENOMEM); 4520 } 4521 4522 4523 4524 (void) strcpy(ill_interface->illif_name, name); 4525 ill_interface->illif_name_len = name_length; 4526 4527 avl_create(&ill_interface->illif_avl_by_ppa, 4528 ill_compare_ppa, sizeof (ill_t), 4529 offsetof(struct ill_s, ill_avl_byppa)); 4530 4531 /* 4532 * link the structure in the back to maintain order 4533 * of configuration for ifconfig output. 4534 */ 4535 ghead = ipst->ips_ill_g_heads[index]; 4536 insque(ill_interface, ghead.ill_g_list_tail); 4537 4538 } 4539 4540 if (ill->ill_ppa == UINT_MAX) 4541 check_length = B_TRUE; 4542 4543 error = ill_alloc_ppa(ill_interface, ill); 4544 if (error != 0) { 4545 if (avl_numnodes(&ill_interface->illif_avl_by_ppa) == 0) 4546 ill_delete_interface_type(ill->ill_ifptr); 4547 return (error); 4548 } 4549 4550 /* 4551 * When the ppa is choosen by the system, check that there is 4552 * enough space to insert ppa. if a specific ppa was passed in this 4553 * check is not required as the interface name passed in will have 4554 * the right ppa in it. 4555 */ 4556 if (check_length) { 4557 /* 4558 * UINT_MAX - 1 should fit in 10 chars, alloc 12 chars. 4559 */ 4560 char buf[sizeof (uint_t) * 3]; 4561 4562 /* 4563 * convert ppa to string to calculate the amount of space 4564 * required for it in the name. 4565 */ 4566 numtos(ill->ill_ppa, buf); 4567 4568 /* Do we have enough space to insert ppa ? */ 4569 4570 if ((mi_strlen(name) + mi_strlen(buf) + 1) > LIFNAMSIZ) { 4571 /* Free ppa and interface type struct */ 4572 if (ill_interface->illif_ppa_arena != NULL) { 4573 vmem_free(ill_interface->illif_ppa_arena, 4574 (void *)(uintptr_t)(ill->ill_ppa+1), 1); 4575 } 4576 if (avl_numnodes(&ill_interface->illif_avl_by_ppa) == 0) 4577 ill_delete_interface_type(ill->ill_ifptr); 4578 4579 return (EINVAL); 4580 } 4581 } 4582 4583 (void) sprintf(ill->ill_name, "%s%u", name, ill->ill_ppa); 4584 ill->ill_name_length = mi_strlen(ill->ill_name) + 1; 4585 4586 (void) avl_find(&ill_interface->illif_avl_by_ppa, &ill->ill_ppa, 4587 &where); 4588 ill->ill_ifptr = ill_interface; 4589 avl_insert(&ill_interface->illif_avl_by_ppa, ill, where); 4590 4591 ill_phyint_reinit(ill); 4592 return (0); 4593 } 4594 4595 /* Initialize the per phyint (per IPMP group) ipsq used for serialization */ 4596 static boolean_t 4597 ipsq_init(ill_t *ill) 4598 { 4599 ipsq_t *ipsq; 4600 4601 /* Init the ipsq and impicitly enter as writer */ 4602 ill->ill_phyint->phyint_ipsq = 4603 kmem_zalloc(sizeof (ipsq_t), KM_NOSLEEP); 4604 if (ill->ill_phyint->phyint_ipsq == NULL) 4605 return (B_FALSE); 4606 ipsq = ill->ill_phyint->phyint_ipsq; 4607 ipsq->ipsq_phyint_list = ill->ill_phyint; 4608 ill->ill_phyint->phyint_ipsq_next = NULL; 4609 mutex_init(&ipsq->ipsq_lock, NULL, MUTEX_DEFAULT, 0); 4610 ipsq->ipsq_refs = 1; 4611 ipsq->ipsq_writer = curthread; 4612 ipsq->ipsq_reentry_cnt = 1; 4613 ipsq->ipsq_ipst = ill->ill_ipst; /* No netstack_hold */ 4614 #ifdef DEBUG 4615 ipsq->ipsq_depth = getpcstack((pc_t *)ipsq->ipsq_stack, 4616 IPSQ_STACK_DEPTH); 4617 #endif 4618 (void) strcpy(ipsq->ipsq_name, ill->ill_name); 4619 return (B_TRUE); 4620 } 4621 4622 /* 4623 * ill_init is called by ip_open when a device control stream is opened. 4624 * It does a few initializations, and shoots a DL_INFO_REQ message down 4625 * to the driver. The response is later picked up in ip_rput_dlpi and 4626 * used to set up default mechanisms for talking to the driver. (Always 4627 * called as writer.) 4628 * 4629 * If this function returns error, ip_open will call ip_close which in 4630 * turn will call ill_delete to clean up any memory allocated here that 4631 * is not yet freed. 4632 */ 4633 int 4634 ill_init(queue_t *q, ill_t *ill) 4635 { 4636 int count; 4637 dl_info_req_t *dlir; 4638 mblk_t *info_mp; 4639 uchar_t *frag_ptr; 4640 4641 /* 4642 * The ill is initialized to zero by mi_alloc*(). In addition 4643 * some fields already contain valid values, initialized in 4644 * ip_open(), before we reach here. 4645 */ 4646 mutex_init(&ill->ill_lock, NULL, MUTEX_DEFAULT, 0); 4647 4648 ill->ill_rq = q; 4649 ill->ill_wq = WR(q); 4650 4651 info_mp = allocb(MAX(sizeof (dl_info_req_t), sizeof (dl_info_ack_t)), 4652 BPRI_HI); 4653 if (info_mp == NULL) 4654 return (ENOMEM); 4655 4656 /* 4657 * Allocate sufficient space to contain our fragment hash table and 4658 * the device name. 4659 */ 4660 frag_ptr = (uchar_t *)mi_zalloc(ILL_FRAG_HASH_TBL_SIZE + 4661 2 * LIFNAMSIZ + 5 + strlen(ipv6_forward_suffix)); 4662 if (frag_ptr == NULL) { 4663 freemsg(info_mp); 4664 return (ENOMEM); 4665 } 4666 ill->ill_frag_ptr = frag_ptr; 4667 ill->ill_frag_free_num_pkts = 0; 4668 ill->ill_last_frag_clean_time = 0; 4669 ill->ill_frag_hash_tbl = (ipfb_t *)frag_ptr; 4670 ill->ill_name = (char *)(frag_ptr + ILL_FRAG_HASH_TBL_SIZE); 4671 for (count = 0; count < ILL_FRAG_HASH_TBL_COUNT; count++) { 4672 mutex_init(&ill->ill_frag_hash_tbl[count].ipfb_lock, 4673 NULL, MUTEX_DEFAULT, NULL); 4674 } 4675 4676 ill->ill_phyint = (phyint_t *)mi_zalloc(sizeof (phyint_t)); 4677 if (ill->ill_phyint == NULL) { 4678 freemsg(info_mp); 4679 mi_free(frag_ptr); 4680 return (ENOMEM); 4681 } 4682 4683 mutex_init(&ill->ill_phyint->phyint_lock, NULL, MUTEX_DEFAULT, 0); 4684 /* 4685 * For now pretend this is a v4 ill. We need to set phyint_ill* 4686 * at this point because of the following reason. If we can't 4687 * enter the ipsq at some point and cv_wait, the writer that 4688 * wakes us up tries to locate us using the list of all phyints 4689 * in an ipsq and the ills from the phyint thru the phyint_ill*. 4690 * If we don't set it now, we risk a missed wakeup. 4691 */ 4692 ill->ill_phyint->phyint_illv4 = ill; 4693 ill->ill_ppa = UINT_MAX; 4694 ill->ill_fastpath_list = &ill->ill_fastpath_list; 4695 4696 if (!ipsq_init(ill)) { 4697 freemsg(info_mp); 4698 mi_free(frag_ptr); 4699 mi_free(ill->ill_phyint); 4700 return (ENOMEM); 4701 } 4702 4703 ill->ill_state_flags |= ILL_LL_SUBNET_PENDING; 4704 4705 /* Frag queue limit stuff */ 4706 ill->ill_frag_count = 0; 4707 ill->ill_ipf_gen = 0; 4708 4709 ill->ill_global_timer = INFINITY; 4710 ill->ill_mcast_v1_time = ill->ill_mcast_v2_time = 0; 4711 ill->ill_mcast_v1_tset = ill->ill_mcast_v2_tset = 0; 4712 ill->ill_mcast_rv = MCAST_DEF_ROBUSTNESS; 4713 ill->ill_mcast_qi = MCAST_DEF_QUERY_INTERVAL; 4714 4715 /* 4716 * Initialize IPv6 configuration variables. The IP module is always 4717 * opened as an IPv4 module. Instead tracking down the cases where 4718 * it switches to do ipv6, we'll just initialize the IPv6 configuration 4719 * here for convenience, this has no effect until the ill is set to do 4720 * IPv6. 4721 */ 4722 ill->ill_reachable_time = ND_REACHABLE_TIME; 4723 ill->ill_reachable_retrans_time = ND_RETRANS_TIMER; 4724 ill->ill_xmit_count = ND_MAX_MULTICAST_SOLICIT; 4725 ill->ill_max_buf = ND_MAX_Q; 4726 ill->ill_refcnt = 0; 4727 4728 /* Send down the Info Request to the driver. */ 4729 info_mp->b_datap->db_type = M_PCPROTO; 4730 dlir = (dl_info_req_t *)info_mp->b_rptr; 4731 info_mp->b_wptr = (uchar_t *)&dlir[1]; 4732 dlir->dl_primitive = DL_INFO_REQ; 4733 4734 ill->ill_dlpi_pending = DL_PRIM_INVAL; 4735 4736 qprocson(q); 4737 ill_dlpi_send(ill, info_mp); 4738 4739 return (0); 4740 } 4741 4742 /* 4743 * ill_dls_info 4744 * creates datalink socket info from the device. 4745 */ 4746 int 4747 ill_dls_info(struct sockaddr_dl *sdl, const ipif_t *ipif) 4748 { 4749 size_t len; 4750 ill_t *ill = ipif->ipif_ill; 4751 4752 sdl->sdl_family = AF_LINK; 4753 sdl->sdl_index = ill->ill_phyint->phyint_ifindex; 4754 sdl->sdl_type = ill->ill_type; 4755 ipif_get_name(ipif, sdl->sdl_data, sizeof (sdl->sdl_data)); 4756 len = strlen(sdl->sdl_data); 4757 ASSERT(len < 256); 4758 sdl->sdl_nlen = (uchar_t)len; 4759 sdl->sdl_alen = ill->ill_phys_addr_length; 4760 sdl->sdl_slen = 0; 4761 if (ill->ill_phys_addr_length != 0 && ill->ill_phys_addr != NULL) 4762 bcopy(ill->ill_phys_addr, &sdl->sdl_data[len], sdl->sdl_alen); 4763 4764 return (sizeof (struct sockaddr_dl)); 4765 } 4766 4767 /* 4768 * ill_xarp_info 4769 * creates xarp info from the device. 4770 */ 4771 static int 4772 ill_xarp_info(struct sockaddr_dl *sdl, ill_t *ill) 4773 { 4774 sdl->sdl_family = AF_LINK; 4775 sdl->sdl_index = ill->ill_phyint->phyint_ifindex; 4776 sdl->sdl_type = ill->ill_type; 4777 ipif_get_name(ill->ill_ipif, sdl->sdl_data, sizeof (sdl->sdl_data)); 4778 sdl->sdl_nlen = (uchar_t)mi_strlen(sdl->sdl_data); 4779 sdl->sdl_alen = ill->ill_phys_addr_length; 4780 sdl->sdl_slen = 0; 4781 return (sdl->sdl_nlen); 4782 } 4783 4784 static int 4785 loopback_kstat_update(kstat_t *ksp, int rw) 4786 { 4787 kstat_named_t *kn; 4788 netstackid_t stackid; 4789 netstack_t *ns; 4790 ip_stack_t *ipst; 4791 4792 if (ksp == NULL || ksp->ks_data == NULL) 4793 return (EIO); 4794 4795 if (rw == KSTAT_WRITE) 4796 return (EACCES); 4797 4798 kn = KSTAT_NAMED_PTR(ksp); 4799 stackid = (zoneid_t)(uintptr_t)ksp->ks_private; 4800 4801 ns = netstack_find_by_stackid(stackid); 4802 if (ns == NULL) 4803 return (-1); 4804 4805 ipst = ns->netstack_ip; 4806 if (ipst == NULL) { 4807 netstack_rele(ns); 4808 return (-1); 4809 } 4810 kn[0].value.ui32 = ipst->ips_loopback_packets; 4811 kn[1].value.ui32 = ipst->ips_loopback_packets; 4812 netstack_rele(ns); 4813 return (0); 4814 } 4815 4816 /* 4817 * Has ifindex been plumbed already. 4818 * Compares both phyint_ifindex and phyint_group_ifindex. 4819 */ 4820 static boolean_t 4821 phyint_exists(uint_t index, ip_stack_t *ipst) 4822 { 4823 phyint_t *phyi; 4824 4825 ASSERT(index != 0); 4826 ASSERT(RW_LOCK_HELD(&ipst->ips_ill_g_lock)); 4827 /* 4828 * Indexes are stored in the phyint - a common structure 4829 * to both IPv4 and IPv6. 4830 */ 4831 phyi = avl_first(&ipst->ips_phyint_g_list->phyint_list_avl_by_index); 4832 for (; phyi != NULL; 4833 phyi = avl_walk(&ipst->ips_phyint_g_list->phyint_list_avl_by_index, 4834 phyi, AVL_AFTER)) { 4835 if (phyi->phyint_ifindex == index || 4836 phyi->phyint_group_ifindex == index) 4837 return (B_TRUE); 4838 } 4839 return (B_FALSE); 4840 } 4841 4842 /* Pick a unique ifindex */ 4843 boolean_t 4844 ip_assign_ifindex(uint_t *indexp, ip_stack_t *ipst) 4845 { 4846 uint_t starting_index; 4847 4848 if (!ipst->ips_ill_index_wrap) { 4849 *indexp = ipst->ips_ill_index++; 4850 if (ipst->ips_ill_index == 0) { 4851 /* Reached the uint_t limit Next time wrap */ 4852 ipst->ips_ill_index_wrap = B_TRUE; 4853 } 4854 return (B_TRUE); 4855 } 4856 4857 /* 4858 * Start reusing unused indexes. Note that we hold the ill_g_lock 4859 * at this point and don't want to call any function that attempts 4860 * to get the lock again. 4861 */ 4862 starting_index = ipst->ips_ill_index++; 4863 for (; ipst->ips_ill_index != starting_index; ipst->ips_ill_index++) { 4864 if (ipst->ips_ill_index != 0 && 4865 !phyint_exists(ipst->ips_ill_index, ipst)) { 4866 /* found unused index - use it */ 4867 *indexp = ipst->ips_ill_index; 4868 return (B_TRUE); 4869 } 4870 } 4871 4872 /* 4873 * all interface indicies are inuse. 4874 */ 4875 return (B_FALSE); 4876 } 4877 4878 /* 4879 * Assign a unique interface index for the phyint. 4880 */ 4881 static boolean_t 4882 phyint_assign_ifindex(phyint_t *phyi, ip_stack_t *ipst) 4883 { 4884 ASSERT(phyi->phyint_ifindex == 0); 4885 return (ip_assign_ifindex(&phyi->phyint_ifindex, ipst)); 4886 } 4887 4888 /* 4889 * Return a pointer to the ill which matches the supplied name. Note that 4890 * the ill name length includes the null termination character. (May be 4891 * called as writer.) 4892 * If do_alloc and the interface is "lo0" it will be automatically created. 4893 * Cannot bump up reference on condemned ills. So dup detect can't be done 4894 * using this func. 4895 */ 4896 ill_t * 4897 ill_lookup_on_name(char *name, boolean_t do_alloc, boolean_t isv6, 4898 queue_t *q, mblk_t *mp, ipsq_func_t func, int *error, boolean_t *did_alloc, 4899 ip_stack_t *ipst) 4900 { 4901 ill_t *ill; 4902 ipif_t *ipif; 4903 kstat_named_t *kn; 4904 boolean_t isloopback; 4905 ipsq_t *old_ipsq; 4906 in6_addr_t ov6addr; 4907 4908 isloopback = mi_strcmp(name, ipif_loopback_name) == 0; 4909 4910 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 4911 ill = ill_find_by_name(name, isv6, q, mp, func, error, ipst); 4912 rw_exit(&ipst->ips_ill_g_lock); 4913 if (ill != NULL || (error != NULL && *error == EINPROGRESS)) 4914 return (ill); 4915 4916 /* 4917 * Couldn't find it. Does this happen to be a lookup for the 4918 * loopback device and are we allowed to allocate it? 4919 */ 4920 if (!isloopback || !do_alloc) 4921 return (NULL); 4922 4923 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 4924 4925 ill = ill_find_by_name(name, isv6, q, mp, func, error, ipst); 4926 if (ill != NULL || (error != NULL && *error == EINPROGRESS)) { 4927 rw_exit(&ipst->ips_ill_g_lock); 4928 return (ill); 4929 } 4930 4931 /* Create the loopback device on demand */ 4932 ill = (ill_t *)(mi_alloc(sizeof (ill_t) + 4933 sizeof (ipif_loopback_name), BPRI_MED)); 4934 if (ill == NULL) 4935 goto done; 4936 4937 *ill = ill_null; 4938 mutex_init(&ill->ill_lock, NULL, MUTEX_DEFAULT, NULL); 4939 ill->ill_ipst = ipst; 4940 netstack_hold(ipst->ips_netstack); 4941 /* 4942 * For exclusive stacks we set the zoneid to zero 4943 * to make IP operate as if in the global zone. 4944 */ 4945 ill->ill_zoneid = GLOBAL_ZONEID; 4946 4947 ill->ill_phyint = (phyint_t *)mi_zalloc(sizeof (phyint_t)); 4948 if (ill->ill_phyint == NULL) 4949 goto done; 4950 4951 if (isv6) 4952 ill->ill_phyint->phyint_illv6 = ill; 4953 else 4954 ill->ill_phyint->phyint_illv4 = ill; 4955 mutex_init(&ill->ill_phyint->phyint_lock, NULL, MUTEX_DEFAULT, 0); 4956 ill->ill_max_frag = IP_LOOPBACK_MTU; 4957 /* Add room for tcp+ip headers */ 4958 if (isv6) { 4959 ill->ill_isv6 = B_TRUE; 4960 ill->ill_max_frag += IPV6_HDR_LEN + 20; /* for TCP */ 4961 } else { 4962 ill->ill_max_frag += IP_SIMPLE_HDR_LENGTH + 20; 4963 } 4964 if (!ill_allocate_mibs(ill)) 4965 goto done; 4966 ill->ill_max_mtu = ill->ill_max_frag; 4967 /* 4968 * ipif_loopback_name can't be pointed at directly because its used 4969 * by both the ipv4 and ipv6 interfaces. When the ill is removed 4970 * from the glist, ill_glist_delete() sets the first character of 4971 * ill_name to '\0'. 4972 */ 4973 ill->ill_name = (char *)ill + sizeof (*ill); 4974 (void) strcpy(ill->ill_name, ipif_loopback_name); 4975 ill->ill_name_length = sizeof (ipif_loopback_name); 4976 /* Set ill_dlpi_pending for ipsq_current_finish() to work properly */ 4977 ill->ill_dlpi_pending = DL_PRIM_INVAL; 4978 4979 ill->ill_global_timer = INFINITY; 4980 ill->ill_mcast_v1_time = ill->ill_mcast_v2_time = 0; 4981 ill->ill_mcast_v1_tset = ill->ill_mcast_v2_tset = 0; 4982 ill->ill_mcast_rv = MCAST_DEF_ROBUSTNESS; 4983 ill->ill_mcast_qi = MCAST_DEF_QUERY_INTERVAL; 4984 4985 /* No resolver here. */ 4986 ill->ill_net_type = IRE_LOOPBACK; 4987 4988 /* Initialize the ipsq */ 4989 if (!ipsq_init(ill)) 4990 goto done; 4991 4992 ill->ill_phyint->phyint_ipsq->ipsq_writer = NULL; 4993 ill->ill_phyint->phyint_ipsq->ipsq_reentry_cnt--; 4994 ASSERT(ill->ill_phyint->phyint_ipsq->ipsq_reentry_cnt == 0); 4995 #ifdef DEBUG 4996 ill->ill_phyint->phyint_ipsq->ipsq_depth = 0; 4997 #endif 4998 ipif = ipif_allocate(ill, 0L, IRE_LOOPBACK, B_TRUE); 4999 if (ipif == NULL) 5000 goto done; 5001 5002 ill->ill_flags = ILLF_MULTICAST; 5003 5004 ov6addr = ipif->ipif_v6lcl_addr; 5005 /* Set up default loopback address and mask. */ 5006 if (!isv6) { 5007 ipaddr_t inaddr_loopback = htonl(INADDR_LOOPBACK); 5008 5009 IN6_IPADDR_TO_V4MAPPED(inaddr_loopback, &ipif->ipif_v6lcl_addr); 5010 ipif->ipif_v6src_addr = ipif->ipif_v6lcl_addr; 5011 V4MASK_TO_V6(htonl(IN_CLASSA_NET), ipif->ipif_v6net_mask); 5012 V6_MASK_COPY(ipif->ipif_v6lcl_addr, ipif->ipif_v6net_mask, 5013 ipif->ipif_v6subnet); 5014 ill->ill_flags |= ILLF_IPV4; 5015 } else { 5016 ipif->ipif_v6lcl_addr = ipv6_loopback; 5017 ipif->ipif_v6src_addr = ipif->ipif_v6lcl_addr; 5018 ipif->ipif_v6net_mask = ipv6_all_ones; 5019 V6_MASK_COPY(ipif->ipif_v6lcl_addr, ipif->ipif_v6net_mask, 5020 ipif->ipif_v6subnet); 5021 ill->ill_flags |= ILLF_IPV6; 5022 } 5023 5024 /* 5025 * Chain us in at the end of the ill list. hold the ill 5026 * before we make it globally visible. 1 for the lookup. 5027 */ 5028 ill->ill_refcnt = 0; 5029 ill_refhold(ill); 5030 5031 ill->ill_frag_count = 0; 5032 ill->ill_frag_free_num_pkts = 0; 5033 ill->ill_last_frag_clean_time = 0; 5034 5035 old_ipsq = ill->ill_phyint->phyint_ipsq; 5036 5037 if (ill_glist_insert(ill, "lo", isv6) != 0) 5038 cmn_err(CE_PANIC, "cannot insert loopback interface"); 5039 5040 /* Let SCTP know so that it can add this to its list */ 5041 sctp_update_ill(ill, SCTP_ILL_INSERT); 5042 5043 /* 5044 * We have already assigned ipif_v6lcl_addr above, but we need to 5045 * call sctp_update_ipif_addr() after SCTP_ILL_INSERT, which 5046 * requires to be after ill_glist_insert() since we need the 5047 * ill_index set. Pass on ipv6_loopback as the old address. 5048 */ 5049 sctp_update_ipif_addr(ipif, ov6addr); 5050 5051 /* 5052 * If the ipsq was changed in ill_phyint_reinit free the old ipsq. 5053 */ 5054 if (old_ipsq != ill->ill_phyint->phyint_ipsq) { 5055 /* Loopback ills aren't in any IPMP group */ 5056 ASSERT(!(old_ipsq->ipsq_flags & IPSQ_GROUP)); 5057 ipsq_delete(old_ipsq); 5058 } 5059 5060 /* 5061 * Delay this till the ipif is allocated as ipif_allocate 5062 * de-references ill_phyint for getting the ifindex. We 5063 * can't do this before ipif_allocate because ill_phyint_reinit 5064 * -> phyint_assign_ifindex expects ipif to be present. 5065 */ 5066 mutex_enter(&ill->ill_phyint->phyint_lock); 5067 ill->ill_phyint->phyint_flags |= PHYI_LOOPBACK | PHYI_VIRTUAL; 5068 mutex_exit(&ill->ill_phyint->phyint_lock); 5069 5070 if (ipst->ips_loopback_ksp == NULL) { 5071 /* Export loopback interface statistics */ 5072 ipst->ips_loopback_ksp = kstat_create_netstack("lo", 0, 5073 ipif_loopback_name, "net", 5074 KSTAT_TYPE_NAMED, 2, 0, 5075 ipst->ips_netstack->netstack_stackid); 5076 if (ipst->ips_loopback_ksp != NULL) { 5077 ipst->ips_loopback_ksp->ks_update = 5078 loopback_kstat_update; 5079 kn = KSTAT_NAMED_PTR(ipst->ips_loopback_ksp); 5080 kstat_named_init(&kn[0], "ipackets", KSTAT_DATA_UINT32); 5081 kstat_named_init(&kn[1], "opackets", KSTAT_DATA_UINT32); 5082 ipst->ips_loopback_ksp->ks_private = 5083 (void *)(uintptr_t)ipst->ips_netstack-> 5084 netstack_stackid; 5085 kstat_install(ipst->ips_loopback_ksp); 5086 } 5087 } 5088 5089 if (error != NULL) 5090 *error = 0; 5091 *did_alloc = B_TRUE; 5092 rw_exit(&ipst->ips_ill_g_lock); 5093 return (ill); 5094 done: 5095 if (ill != NULL) { 5096 if (ill->ill_phyint != NULL) { 5097 ipsq_t *ipsq; 5098 5099 ipsq = ill->ill_phyint->phyint_ipsq; 5100 if (ipsq != NULL) { 5101 ipsq->ipsq_ipst = NULL; 5102 kmem_free(ipsq, sizeof (ipsq_t)); 5103 } 5104 mi_free(ill->ill_phyint); 5105 } 5106 ill_free_mib(ill); 5107 if (ill->ill_ipst != NULL) 5108 netstack_rele(ill->ill_ipst->ips_netstack); 5109 mi_free(ill); 5110 } 5111 rw_exit(&ipst->ips_ill_g_lock); 5112 if (error != NULL) 5113 *error = ENOMEM; 5114 return (NULL); 5115 } 5116 5117 /* 5118 * For IPP calls - use the ip_stack_t for global stack. 5119 */ 5120 ill_t * 5121 ill_lookup_on_ifindex_global_instance(uint_t index, boolean_t isv6, 5122 queue_t *q, mblk_t *mp, ipsq_func_t func, int *err) 5123 { 5124 ip_stack_t *ipst; 5125 ill_t *ill; 5126 5127 ipst = netstack_find_by_stackid(GLOBAL_NETSTACKID)->netstack_ip; 5128 if (ipst == NULL) { 5129 cmn_err(CE_WARN, "No ip_stack_t for zoneid zero!\n"); 5130 return (NULL); 5131 } 5132 5133 ill = ill_lookup_on_ifindex(index, isv6, q, mp, func, err, ipst); 5134 netstack_rele(ipst->ips_netstack); 5135 return (ill); 5136 } 5137 5138 /* 5139 * Return a pointer to the ill which matches the index and IP version type. 5140 */ 5141 ill_t * 5142 ill_lookup_on_ifindex(uint_t index, boolean_t isv6, queue_t *q, mblk_t *mp, 5143 ipsq_func_t func, int *err, ip_stack_t *ipst) 5144 { 5145 ill_t *ill; 5146 ipsq_t *ipsq; 5147 phyint_t *phyi; 5148 5149 ASSERT((q == NULL && mp == NULL && func == NULL && err == NULL) || 5150 (q != NULL && mp != NULL && func != NULL && err != NULL)); 5151 5152 if (err != NULL) 5153 *err = 0; 5154 5155 /* 5156 * Indexes are stored in the phyint - a common structure 5157 * to both IPv4 and IPv6. 5158 */ 5159 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 5160 phyi = avl_find(&ipst->ips_phyint_g_list->phyint_list_avl_by_index, 5161 (void *) &index, NULL); 5162 if (phyi != NULL) { 5163 ill = isv6 ? phyi->phyint_illv6: phyi->phyint_illv4; 5164 if (ill != NULL) { 5165 /* 5166 * The block comment at the start of ipif_down 5167 * explains the use of the macros used below 5168 */ 5169 GRAB_CONN_LOCK(q); 5170 mutex_enter(&ill->ill_lock); 5171 if (ILL_CAN_LOOKUP(ill)) { 5172 ill_refhold_locked(ill); 5173 mutex_exit(&ill->ill_lock); 5174 RELEASE_CONN_LOCK(q); 5175 rw_exit(&ipst->ips_ill_g_lock); 5176 return (ill); 5177 } else if (ILL_CAN_WAIT(ill, q)) { 5178 ipsq = ill->ill_phyint->phyint_ipsq; 5179 mutex_enter(&ipsq->ipsq_lock); 5180 rw_exit(&ipst->ips_ill_g_lock); 5181 mutex_exit(&ill->ill_lock); 5182 ipsq_enq(ipsq, q, mp, func, NEW_OP, ill); 5183 mutex_exit(&ipsq->ipsq_lock); 5184 RELEASE_CONN_LOCK(q); 5185 if (err != NULL) 5186 *err = EINPROGRESS; 5187 return (NULL); 5188 } 5189 RELEASE_CONN_LOCK(q); 5190 mutex_exit(&ill->ill_lock); 5191 } 5192 } 5193 rw_exit(&ipst->ips_ill_g_lock); 5194 if (err != NULL) 5195 *err = ENXIO; 5196 return (NULL); 5197 } 5198 5199 /* 5200 * Return the ifindex next in sequence after the passed in ifindex. 5201 * If there is no next ifindex for the given protocol, return 0. 5202 */ 5203 uint_t 5204 ill_get_next_ifindex(uint_t index, boolean_t isv6, ip_stack_t *ipst) 5205 { 5206 phyint_t *phyi; 5207 phyint_t *phyi_initial; 5208 uint_t ifindex; 5209 5210 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 5211 5212 if (index == 0) { 5213 phyi = avl_first( 5214 &ipst->ips_phyint_g_list->phyint_list_avl_by_index); 5215 } else { 5216 phyi = phyi_initial = avl_find( 5217 &ipst->ips_phyint_g_list->phyint_list_avl_by_index, 5218 (void *) &index, NULL); 5219 } 5220 5221 for (; phyi != NULL; 5222 phyi = avl_walk(&ipst->ips_phyint_g_list->phyint_list_avl_by_index, 5223 phyi, AVL_AFTER)) { 5224 /* 5225 * If we're not returning the first interface in the tree 5226 * and we still haven't moved past the phyint_t that 5227 * corresponds to index, avl_walk needs to be called again 5228 */ 5229 if (!((index != 0) && (phyi == phyi_initial))) { 5230 if (isv6) { 5231 if ((phyi->phyint_illv6) && 5232 ILL_CAN_LOOKUP(phyi->phyint_illv6) && 5233 (phyi->phyint_illv6->ill_isv6 == 1)) 5234 break; 5235 } else { 5236 if ((phyi->phyint_illv4) && 5237 ILL_CAN_LOOKUP(phyi->phyint_illv4) && 5238 (phyi->phyint_illv4->ill_isv6 == 0)) 5239 break; 5240 } 5241 } 5242 } 5243 5244 rw_exit(&ipst->ips_ill_g_lock); 5245 5246 if (phyi != NULL) 5247 ifindex = phyi->phyint_ifindex; 5248 else 5249 ifindex = 0; 5250 5251 return (ifindex); 5252 } 5253 5254 /* 5255 * Return the ifindex for the named interface. 5256 * If there is no next ifindex for the interface, return 0. 5257 */ 5258 uint_t 5259 ill_get_ifindex_by_name(char *name, ip_stack_t *ipst) 5260 { 5261 phyint_t *phyi; 5262 avl_index_t where = 0; 5263 uint_t ifindex; 5264 5265 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 5266 5267 if ((phyi = avl_find(&ipst->ips_phyint_g_list->phyint_list_avl_by_name, 5268 name, &where)) == NULL) { 5269 rw_exit(&ipst->ips_ill_g_lock); 5270 return (0); 5271 } 5272 5273 ifindex = phyi->phyint_ifindex; 5274 5275 rw_exit(&ipst->ips_ill_g_lock); 5276 5277 return (ifindex); 5278 } 5279 5280 /* 5281 * Obtain a reference to the ill. The ill_refcnt is a dynamic refcnt 5282 * that gives a running thread a reference to the ill. This reference must be 5283 * released by the thread when it is done accessing the ill and related 5284 * objects. ill_refcnt can not be used to account for static references 5285 * such as other structures pointing to an ill. Callers must generally 5286 * check whether an ill can be refheld by using ILL_CAN_LOOKUP macros 5287 * or be sure that the ill is not being deleted or changing state before 5288 * calling the refhold functions. A non-zero ill_refcnt ensures that the 5289 * ill won't change any of its critical state such as address, netmask etc. 5290 */ 5291 void 5292 ill_refhold(ill_t *ill) 5293 { 5294 mutex_enter(&ill->ill_lock); 5295 ill->ill_refcnt++; 5296 ILL_TRACE_REF(ill); 5297 mutex_exit(&ill->ill_lock); 5298 } 5299 5300 void 5301 ill_refhold_locked(ill_t *ill) 5302 { 5303 ASSERT(MUTEX_HELD(&ill->ill_lock)); 5304 ill->ill_refcnt++; 5305 ILL_TRACE_REF(ill); 5306 } 5307 5308 int 5309 ill_check_and_refhold(ill_t *ill) 5310 { 5311 mutex_enter(&ill->ill_lock); 5312 if (ILL_CAN_LOOKUP(ill)) { 5313 ill_refhold_locked(ill); 5314 mutex_exit(&ill->ill_lock); 5315 return (0); 5316 } 5317 mutex_exit(&ill->ill_lock); 5318 return (ILL_LOOKUP_FAILED); 5319 } 5320 5321 /* 5322 * Must not be called while holding any locks. Otherwise if this is 5323 * the last reference to be released, there is a chance of recursive mutex 5324 * panic due to ill_refrele -> ipif_ill_refrele_tail -> qwriter_ip trying 5325 * to restart an ioctl. 5326 */ 5327 void 5328 ill_refrele(ill_t *ill) 5329 { 5330 mutex_enter(&ill->ill_lock); 5331 ASSERT(ill->ill_refcnt != 0); 5332 ill->ill_refcnt--; 5333 ILL_UNTRACE_REF(ill); 5334 if (ill->ill_refcnt != 0) { 5335 /* Every ire pointing to the ill adds 1 to ill_refcnt */ 5336 mutex_exit(&ill->ill_lock); 5337 return; 5338 } 5339 5340 /* Drops the ill_lock */ 5341 ipif_ill_refrele_tail(ill); 5342 } 5343 5344 /* 5345 * Obtain a weak reference count on the ill. This reference ensures the 5346 * ill won't be freed, but the ill may change any of its critical state 5347 * such as netmask, address etc. Returns an error if the ill has started 5348 * closing. 5349 */ 5350 boolean_t 5351 ill_waiter_inc(ill_t *ill) 5352 { 5353 mutex_enter(&ill->ill_lock); 5354 if (ill->ill_state_flags & ILL_CONDEMNED) { 5355 mutex_exit(&ill->ill_lock); 5356 return (B_FALSE); 5357 } 5358 ill->ill_waiters++; 5359 mutex_exit(&ill->ill_lock); 5360 return (B_TRUE); 5361 } 5362 5363 void 5364 ill_waiter_dcr(ill_t *ill) 5365 { 5366 mutex_enter(&ill->ill_lock); 5367 ill->ill_waiters--; 5368 if (ill->ill_waiters == 0) 5369 cv_broadcast(&ill->ill_cv); 5370 mutex_exit(&ill->ill_lock); 5371 } 5372 5373 /* 5374 * Named Dispatch routine to produce a formatted report on all ILLs. 5375 * This report is accessed by using the ndd utility to "get" ND variable 5376 * "ip_ill_status". 5377 */ 5378 /* ARGSUSED */ 5379 int 5380 ip_ill_report(queue_t *q, mblk_t *mp, caddr_t arg, cred_t *ioc_cr) 5381 { 5382 ill_t *ill; 5383 ill_walk_context_t ctx; 5384 ip_stack_t *ipst; 5385 5386 ipst = CONNQ_TO_IPST(q); 5387 5388 (void) mi_mpprintf(mp, 5389 "ILL " MI_COL_HDRPAD_STR 5390 /* 01234567[89ABCDEF] */ 5391 "rq " MI_COL_HDRPAD_STR 5392 /* 01234567[89ABCDEF] */ 5393 "wq " MI_COL_HDRPAD_STR 5394 /* 01234567[89ABCDEF] */ 5395 "upcnt mxfrg err name"); 5396 /* 12345 12345 123 xxxxxxxx */ 5397 5398 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 5399 ill = ILL_START_WALK_ALL(&ctx, ipst); 5400 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 5401 (void) mi_mpprintf(mp, 5402 MI_COL_PTRFMT_STR MI_COL_PTRFMT_STR MI_COL_PTRFMT_STR 5403 "%05u %05u %03d %s", 5404 (void *)ill, (void *)ill->ill_rq, (void *)ill->ill_wq, 5405 ill->ill_ipif_up_count, 5406 ill->ill_max_frag, ill->ill_error, ill->ill_name); 5407 } 5408 rw_exit(&ipst->ips_ill_g_lock); 5409 5410 return (0); 5411 } 5412 5413 /* 5414 * Named Dispatch routine to produce a formatted report on all IPIFs. 5415 * This report is accessed by using the ndd utility to "get" ND variable 5416 * "ip_ipif_status". 5417 */ 5418 /* ARGSUSED */ 5419 int 5420 ip_ipif_report(queue_t *q, mblk_t *mp, caddr_t arg, cred_t *ioc_cr) 5421 { 5422 char buf1[INET6_ADDRSTRLEN]; 5423 char buf2[INET6_ADDRSTRLEN]; 5424 char buf3[INET6_ADDRSTRLEN]; 5425 char buf4[INET6_ADDRSTRLEN]; 5426 char buf5[INET6_ADDRSTRLEN]; 5427 char buf6[INET6_ADDRSTRLEN]; 5428 char buf[LIFNAMSIZ]; 5429 ill_t *ill; 5430 ipif_t *ipif; 5431 nv_t *nvp; 5432 uint64_t flags; 5433 zoneid_t zoneid; 5434 ill_walk_context_t ctx; 5435 ip_stack_t *ipst = CONNQ_TO_IPST(q); 5436 5437 (void) mi_mpprintf(mp, 5438 "IPIF metric mtu in/out/forward name zone flags...\n" 5439 "\tlocal address\n" 5440 "\tsrc address\n" 5441 "\tsubnet\n" 5442 "\tmask\n" 5443 "\tbroadcast\n" 5444 "\tp-p-dst"); 5445 5446 ASSERT(q->q_next == NULL); 5447 zoneid = Q_TO_CONN(q)->conn_zoneid; /* IP is a driver */ 5448 5449 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 5450 ill = ILL_START_WALK_ALL(&ctx, ipst); 5451 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 5452 for (ipif = ill->ill_ipif; ipif != NULL; 5453 ipif = ipif->ipif_next) { 5454 if (zoneid != GLOBAL_ZONEID && 5455 zoneid != ipif->ipif_zoneid && 5456 ipif->ipif_zoneid != ALL_ZONES) 5457 continue; 5458 5459 ipif_get_name(ipif, buf, sizeof (buf)); 5460 (void) mi_mpprintf(mp, 5461 MI_COL_PTRFMT_STR 5462 "%04u %05u %u/%u/%u %s %d", 5463 (void *)ipif, 5464 ipif->ipif_metric, ipif->ipif_mtu, 5465 ipif->ipif_ib_pkt_count, 5466 ipif->ipif_ob_pkt_count, 5467 ipif->ipif_fo_pkt_count, 5468 buf, 5469 ipif->ipif_zoneid); 5470 5471 flags = ipif->ipif_flags | ipif->ipif_ill->ill_flags | 5472 ipif->ipif_ill->ill_phyint->phyint_flags; 5473 5474 /* Tack on text strings for any flags. */ 5475 nvp = ipif_nv_tbl; 5476 for (; nvp < A_END(ipif_nv_tbl); nvp++) { 5477 if (nvp->nv_value & flags) 5478 (void) mi_mpprintf_nr(mp, " %s", 5479 nvp->nv_name); 5480 } 5481 (void) mi_mpprintf(mp, 5482 "\t%s\n\t%s\n\t%s\n\t%s\n\t%s\n\t%s", 5483 inet_ntop(AF_INET6, 5484 &ipif->ipif_v6lcl_addr, buf1, sizeof (buf1)), 5485 inet_ntop(AF_INET6, 5486 &ipif->ipif_v6src_addr, buf2, sizeof (buf2)), 5487 inet_ntop(AF_INET6, 5488 &ipif->ipif_v6subnet, buf3, sizeof (buf3)), 5489 inet_ntop(AF_INET6, 5490 &ipif->ipif_v6net_mask, buf4, sizeof (buf4)), 5491 inet_ntop(AF_INET6, 5492 &ipif->ipif_v6brd_addr, buf5, sizeof (buf5)), 5493 inet_ntop(AF_INET6, 5494 &ipif->ipif_v6pp_dst_addr, buf6, sizeof (buf6))); 5495 } 5496 } 5497 rw_exit(&ipst->ips_ill_g_lock); 5498 return (0); 5499 } 5500 5501 /* 5502 * ip_ll_subnet_defaults is called when we get the DL_INFO_ACK back from the 5503 * driver. We construct best guess defaults for lower level information that 5504 * we need. If an interface is brought up without injection of any overriding 5505 * information from outside, we have to be ready to go with these defaults. 5506 * When we get the first DL_INFO_ACK (from ip_open() sending a DL_INFO_REQ) 5507 * we primarely want the dl_provider_style. 5508 * The subsequent DL_INFO_ACK is received after doing a DL_ATTACH and DL_BIND 5509 * at which point we assume the other part of the information is valid. 5510 */ 5511 void 5512 ip_ll_subnet_defaults(ill_t *ill, mblk_t *mp) 5513 { 5514 uchar_t *brdcst_addr; 5515 uint_t brdcst_addr_length, phys_addr_length; 5516 t_scalar_t sap_length; 5517 dl_info_ack_t *dlia; 5518 ip_m_t *ipm; 5519 dl_qos_cl_sel1_t *sel1; 5520 5521 ASSERT(IAM_WRITER_ILL(ill)); 5522 5523 /* 5524 * Till the ill is fully up ILL_CHANGING will be set and 5525 * the ill is not globally visible. So no need for a lock. 5526 */ 5527 dlia = (dl_info_ack_t *)mp->b_rptr; 5528 ill->ill_mactype = dlia->dl_mac_type; 5529 5530 ipm = ip_m_lookup(dlia->dl_mac_type); 5531 if (ipm == NULL) { 5532 ipm = ip_m_lookup(DL_OTHER); 5533 ASSERT(ipm != NULL); 5534 } 5535 ill->ill_media = ipm; 5536 5537 /* 5538 * When the new DLPI stuff is ready we'll pull lengths 5539 * from dlia. 5540 */ 5541 if (dlia->dl_version == DL_VERSION_2) { 5542 brdcst_addr_length = dlia->dl_brdcst_addr_length; 5543 brdcst_addr = mi_offset_param(mp, dlia->dl_brdcst_addr_offset, 5544 brdcst_addr_length); 5545 if (brdcst_addr == NULL) { 5546 brdcst_addr_length = 0; 5547 } 5548 sap_length = dlia->dl_sap_length; 5549 phys_addr_length = dlia->dl_addr_length - ABS(sap_length); 5550 ip1dbg(("ip: bcast_len %d, sap_len %d, phys_len %d\n", 5551 brdcst_addr_length, sap_length, phys_addr_length)); 5552 } else { 5553 brdcst_addr_length = 6; 5554 brdcst_addr = ip_six_byte_all_ones; 5555 sap_length = -2; 5556 phys_addr_length = brdcst_addr_length; 5557 } 5558 5559 ill->ill_bcast_addr_length = brdcst_addr_length; 5560 ill->ill_phys_addr_length = phys_addr_length; 5561 ill->ill_sap_length = sap_length; 5562 ill->ill_max_frag = dlia->dl_max_sdu; 5563 ill->ill_max_mtu = ill->ill_max_frag; 5564 5565 ill->ill_type = ipm->ip_m_type; 5566 5567 if (!ill->ill_dlpi_style_set) { 5568 if (dlia->dl_provider_style == DL_STYLE2) 5569 ill->ill_needs_attach = 1; 5570 5571 /* 5572 * Allocate the first ipif on this ill. We don't delay it 5573 * further as ioctl handling assumes atleast one ipif to 5574 * be present. 5575 * 5576 * At this point we don't know whether the ill is v4 or v6. 5577 * We will know this whan the SIOCSLIFNAME happens and 5578 * the correct value for ill_isv6 will be assigned in 5579 * ipif_set_values(). We need to hold the ill lock and 5580 * clear the ILL_LL_SUBNET_PENDING flag and atomically do 5581 * the wakeup. 5582 */ 5583 (void) ipif_allocate(ill, 0, IRE_LOCAL, 5584 dlia->dl_provider_style == DL_STYLE2 ? B_FALSE : B_TRUE); 5585 mutex_enter(&ill->ill_lock); 5586 ASSERT(ill->ill_dlpi_style_set == 0); 5587 ill->ill_dlpi_style_set = 1; 5588 ill->ill_state_flags &= ~ILL_LL_SUBNET_PENDING; 5589 cv_broadcast(&ill->ill_cv); 5590 mutex_exit(&ill->ill_lock); 5591 freemsg(mp); 5592 return; 5593 } 5594 ASSERT(ill->ill_ipif != NULL); 5595 /* 5596 * We know whether it is IPv4 or IPv6 now, as this is the 5597 * second DL_INFO_ACK we are recieving in response to the 5598 * DL_INFO_REQ sent in ipif_set_values. 5599 */ 5600 if (ill->ill_isv6) 5601 ill->ill_sap = IP6_DL_SAP; 5602 else 5603 ill->ill_sap = IP_DL_SAP; 5604 /* 5605 * Set ipif_mtu which is used to set the IRE's 5606 * ire_max_frag value. The driver could have sent 5607 * a different mtu from what it sent last time. No 5608 * need to call ipif_mtu_change because IREs have 5609 * not yet been created. 5610 */ 5611 ill->ill_ipif->ipif_mtu = ill->ill_max_mtu; 5612 /* 5613 * Clear all the flags that were set based on ill_bcast_addr_length 5614 * and ill_phys_addr_length (in ipif_set_values) as these could have 5615 * changed now and we need to re-evaluate. 5616 */ 5617 ill->ill_flags &= ~(ILLF_MULTICAST | ILLF_NONUD | ILLF_NOARP); 5618 ill->ill_ipif->ipif_flags &= ~(IPIF_BROADCAST | IPIF_POINTOPOINT); 5619 5620 /* 5621 * Free ill_resolver_mp and ill_bcast_mp as things could have 5622 * changed now. 5623 */ 5624 if (ill->ill_bcast_addr_length == 0) { 5625 if (ill->ill_resolver_mp != NULL) 5626 freemsg(ill->ill_resolver_mp); 5627 if (ill->ill_bcast_mp != NULL) 5628 freemsg(ill->ill_bcast_mp); 5629 if (ill->ill_flags & ILLF_XRESOLV) 5630 ill->ill_net_type = IRE_IF_RESOLVER; 5631 else 5632 ill->ill_net_type = IRE_IF_NORESOLVER; 5633 ill->ill_resolver_mp = ill_dlur_gen(NULL, 5634 ill->ill_phys_addr_length, 5635 ill->ill_sap, 5636 ill->ill_sap_length); 5637 ill->ill_bcast_mp = copymsg(ill->ill_resolver_mp); 5638 5639 if (ill->ill_isv6) 5640 /* 5641 * Note: xresolv interfaces will eventually need NOARP 5642 * set here as well, but that will require those 5643 * external resolvers to have some knowledge of 5644 * that flag and act appropriately. Not to be changed 5645 * at present. 5646 */ 5647 ill->ill_flags |= ILLF_NONUD; 5648 else 5649 ill->ill_flags |= ILLF_NOARP; 5650 5651 if (ill->ill_phys_addr_length == 0) { 5652 if (ill->ill_media->ip_m_mac_type == SUNW_DL_VNI) { 5653 ill->ill_ipif->ipif_flags |= IPIF_NOXMIT; 5654 ill->ill_phyint->phyint_flags |= PHYI_VIRTUAL; 5655 } else { 5656 /* pt-pt supports multicast. */ 5657 ill->ill_flags |= ILLF_MULTICAST; 5658 ill->ill_ipif->ipif_flags |= IPIF_POINTOPOINT; 5659 } 5660 } 5661 } else { 5662 ill->ill_net_type = IRE_IF_RESOLVER; 5663 if (ill->ill_bcast_mp != NULL) 5664 freemsg(ill->ill_bcast_mp); 5665 ill->ill_bcast_mp = ill_dlur_gen(brdcst_addr, 5666 ill->ill_bcast_addr_length, ill->ill_sap, 5667 ill->ill_sap_length); 5668 /* 5669 * Later detect lack of DLPI driver multicast 5670 * capability by catching DL_ENABMULTI errors in 5671 * ip_rput_dlpi. 5672 */ 5673 ill->ill_flags |= ILLF_MULTICAST; 5674 if (!ill->ill_isv6) 5675 ill->ill_ipif->ipif_flags |= IPIF_BROADCAST; 5676 } 5677 /* By default an interface does not support any CoS marking */ 5678 ill->ill_flags &= ~ILLF_COS_ENABLED; 5679 5680 /* 5681 * If we get QoS information in DL_INFO_ACK, the device supports 5682 * some form of CoS marking, set ILLF_COS_ENABLED. 5683 */ 5684 sel1 = (dl_qos_cl_sel1_t *)mi_offset_param(mp, dlia->dl_qos_offset, 5685 dlia->dl_qos_length); 5686 if ((sel1 != NULL) && (sel1->dl_qos_type == DL_QOS_CL_SEL1)) { 5687 ill->ill_flags |= ILLF_COS_ENABLED; 5688 } 5689 5690 /* Clear any previous error indication. */ 5691 ill->ill_error = 0; 5692 freemsg(mp); 5693 } 5694 5695 /* 5696 * Perform various checks to verify that an address would make sense as a 5697 * local, remote, or subnet interface address. 5698 */ 5699 static boolean_t 5700 ip_addr_ok_v4(ipaddr_t addr, ipaddr_t subnet_mask) 5701 { 5702 ipaddr_t net_mask; 5703 5704 /* 5705 * Don't allow all zeroes, or all ones, but allow 5706 * all ones netmask. 5707 */ 5708 if ((net_mask = ip_net_mask(addr)) == 0) 5709 return (B_FALSE); 5710 /* A given netmask overrides the "guess" netmask */ 5711 if (subnet_mask != 0) 5712 net_mask = subnet_mask; 5713 if ((net_mask != ~(ipaddr_t)0) && ((addr == (addr & net_mask)) || 5714 (addr == (addr | ~net_mask)))) { 5715 return (B_FALSE); 5716 } 5717 5718 /* 5719 * Even if the netmask is all ones, we do not allow address to be 5720 * 255.255.255.255 5721 */ 5722 if (addr == INADDR_BROADCAST) 5723 return (B_FALSE); 5724 5725 if (CLASSD(addr)) 5726 return (B_FALSE); 5727 5728 return (B_TRUE); 5729 } 5730 5731 #define V6_IPIF_LINKLOCAL(p) \ 5732 IN6_IS_ADDR_LINKLOCAL(&(p)->ipif_v6lcl_addr) 5733 5734 /* 5735 * Compare two given ipifs and check if the second one is better than 5736 * the first one using the order of preference (not taking deprecated 5737 * into acount) specified in ipif_lookup_multicast(). 5738 */ 5739 static boolean_t 5740 ipif_comp_multi(ipif_t *old_ipif, ipif_t *new_ipif, boolean_t isv6) 5741 { 5742 /* Check the least preferred first. */ 5743 if (IS_LOOPBACK(old_ipif->ipif_ill)) { 5744 /* If both ipifs are the same, use the first one. */ 5745 if (IS_LOOPBACK(new_ipif->ipif_ill)) 5746 return (B_FALSE); 5747 else 5748 return (B_TRUE); 5749 } 5750 5751 /* For IPv6, check for link local address. */ 5752 if (isv6 && V6_IPIF_LINKLOCAL(old_ipif)) { 5753 if (IS_LOOPBACK(new_ipif->ipif_ill) || 5754 V6_IPIF_LINKLOCAL(new_ipif)) { 5755 /* The second one is equal or less preferred. */ 5756 return (B_FALSE); 5757 } else { 5758 return (B_TRUE); 5759 } 5760 } 5761 5762 /* Then check for point to point interface. */ 5763 if (old_ipif->ipif_flags & IPIF_POINTOPOINT) { 5764 if (IS_LOOPBACK(new_ipif->ipif_ill) || 5765 (isv6 && V6_IPIF_LINKLOCAL(new_ipif)) || 5766 (new_ipif->ipif_flags & IPIF_POINTOPOINT)) { 5767 return (B_FALSE); 5768 } else { 5769 return (B_TRUE); 5770 } 5771 } 5772 5773 /* old_ipif is a normal interface, so no need to use the new one. */ 5774 return (B_FALSE); 5775 } 5776 5777 /* 5778 * Find any non-virtual, not condemned, and up multicast capable interface 5779 * given an IP instance and zoneid. Order of preference is: 5780 * 5781 * 1. normal 5782 * 1.1 normal, but deprecated 5783 * 2. point to point 5784 * 2.1 point to point, but deprecated 5785 * 3. link local 5786 * 3.1 link local, but deprecated 5787 * 4. loopback. 5788 */ 5789 ipif_t * 5790 ipif_lookup_multicast(ip_stack_t *ipst, zoneid_t zoneid, boolean_t isv6) 5791 { 5792 ill_t *ill; 5793 ill_walk_context_t ctx; 5794 ipif_t *ipif; 5795 ipif_t *saved_ipif = NULL; 5796 ipif_t *dep_ipif = NULL; 5797 5798 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 5799 if (isv6) 5800 ill = ILL_START_WALK_V6(&ctx, ipst); 5801 else 5802 ill = ILL_START_WALK_V4(&ctx, ipst); 5803 5804 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 5805 mutex_enter(&ill->ill_lock); 5806 if (IS_VNI(ill) || !ILL_CAN_LOOKUP(ill) || 5807 !(ill->ill_flags & ILLF_MULTICAST)) { 5808 mutex_exit(&ill->ill_lock); 5809 continue; 5810 } 5811 for (ipif = ill->ill_ipif; ipif != NULL; 5812 ipif = ipif->ipif_next) { 5813 if (zoneid != ipif->ipif_zoneid && 5814 zoneid != ALL_ZONES && 5815 ipif->ipif_zoneid != ALL_ZONES) { 5816 continue; 5817 } 5818 if (!(ipif->ipif_flags & IPIF_UP) || 5819 !IPIF_CAN_LOOKUP(ipif)) { 5820 continue; 5821 } 5822 5823 /* 5824 * Found one candidate. If it is deprecated, 5825 * remember it in dep_ipif. If it is not deprecated, 5826 * remember it in saved_ipif. 5827 */ 5828 if (ipif->ipif_flags & IPIF_DEPRECATED) { 5829 if (dep_ipif == NULL) { 5830 dep_ipif = ipif; 5831 } else if (ipif_comp_multi(dep_ipif, ipif, 5832 isv6)) { 5833 /* 5834 * If the previous dep_ipif does not 5835 * belong to the same ill, we've done 5836 * a ipif_refhold() on it. So we need 5837 * to release it. 5838 */ 5839 if (dep_ipif->ipif_ill != ill) 5840 ipif_refrele(dep_ipif); 5841 dep_ipif = ipif; 5842 } 5843 continue; 5844 } 5845 if (saved_ipif == NULL) { 5846 saved_ipif = ipif; 5847 } else { 5848 if (ipif_comp_multi(saved_ipif, ipif, isv6)) { 5849 if (saved_ipif->ipif_ill != ill) 5850 ipif_refrele(saved_ipif); 5851 saved_ipif = ipif; 5852 } 5853 } 5854 } 5855 /* 5856 * Before going to the next ill, do a ipif_refhold() on the 5857 * saved ones. 5858 */ 5859 if (saved_ipif != NULL && saved_ipif->ipif_ill == ill) 5860 ipif_refhold_locked(saved_ipif); 5861 if (dep_ipif != NULL && dep_ipif->ipif_ill == ill) 5862 ipif_refhold_locked(dep_ipif); 5863 mutex_exit(&ill->ill_lock); 5864 } 5865 rw_exit(&ipst->ips_ill_g_lock); 5866 5867 /* 5868 * If we have only the saved_ipif, return it. But if we have both 5869 * saved_ipif and dep_ipif, check to see which one is better. 5870 */ 5871 if (saved_ipif != NULL) { 5872 if (dep_ipif != NULL) { 5873 if (ipif_comp_multi(saved_ipif, dep_ipif, isv6)) { 5874 ipif_refrele(saved_ipif); 5875 return (dep_ipif); 5876 } else { 5877 ipif_refrele(dep_ipif); 5878 return (saved_ipif); 5879 } 5880 } 5881 return (saved_ipif); 5882 } else { 5883 return (dep_ipif); 5884 } 5885 } 5886 5887 /* 5888 * This function is called when an application does not specify an interface 5889 * to be used for multicast traffic (joining a group/sending data). It 5890 * calls ire_lookup_multi() to look for an interface route for the 5891 * specified multicast group. Doing this allows the administrator to add 5892 * prefix routes for multicast to indicate which interface to be used for 5893 * multicast traffic in the above scenario. The route could be for all 5894 * multicast (224.0/4), for a single multicast group (a /32 route) or 5895 * anything in between. If there is no such multicast route, we just find 5896 * any multicast capable interface and return it. The returned ipif 5897 * is refhold'ed. 5898 */ 5899 ipif_t * 5900 ipif_lookup_group(ipaddr_t group, zoneid_t zoneid, ip_stack_t *ipst) 5901 { 5902 ire_t *ire; 5903 ipif_t *ipif; 5904 5905 ire = ire_lookup_multi(group, zoneid, ipst); 5906 if (ire != NULL) { 5907 ipif = ire->ire_ipif; 5908 ipif_refhold(ipif); 5909 ire_refrele(ire); 5910 return (ipif); 5911 } 5912 5913 return (ipif_lookup_multicast(ipst, zoneid, B_FALSE)); 5914 } 5915 5916 /* 5917 * Look for an ipif with the specified interface address and destination. 5918 * The destination address is used only for matching point-to-point interfaces. 5919 */ 5920 ipif_t * 5921 ipif_lookup_interface(ipaddr_t if_addr, ipaddr_t dst, queue_t *q, mblk_t *mp, 5922 ipsq_func_t func, int *error, ip_stack_t *ipst) 5923 { 5924 ipif_t *ipif; 5925 ill_t *ill; 5926 ill_walk_context_t ctx; 5927 ipsq_t *ipsq; 5928 5929 if (error != NULL) 5930 *error = 0; 5931 5932 /* 5933 * First match all the point-to-point interfaces 5934 * before looking at non-point-to-point interfaces. 5935 * This is done to avoid returning non-point-to-point 5936 * ipif instead of unnumbered point-to-point ipif. 5937 */ 5938 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 5939 ill = ILL_START_WALK_V4(&ctx, ipst); 5940 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 5941 GRAB_CONN_LOCK(q); 5942 mutex_enter(&ill->ill_lock); 5943 for (ipif = ill->ill_ipif; ipif != NULL; 5944 ipif = ipif->ipif_next) { 5945 /* Allow the ipif to be down */ 5946 if ((ipif->ipif_flags & IPIF_POINTOPOINT) && 5947 (ipif->ipif_lcl_addr == if_addr) && 5948 (ipif->ipif_pp_dst_addr == dst)) { 5949 /* 5950 * The block comment at the start of ipif_down 5951 * explains the use of the macros used below 5952 */ 5953 if (IPIF_CAN_LOOKUP(ipif)) { 5954 ipif_refhold_locked(ipif); 5955 mutex_exit(&ill->ill_lock); 5956 RELEASE_CONN_LOCK(q); 5957 rw_exit(&ipst->ips_ill_g_lock); 5958 return (ipif); 5959 } else if (IPIF_CAN_WAIT(ipif, q)) { 5960 ipsq = ill->ill_phyint->phyint_ipsq; 5961 mutex_enter(&ipsq->ipsq_lock); 5962 mutex_exit(&ill->ill_lock); 5963 rw_exit(&ipst->ips_ill_g_lock); 5964 ipsq_enq(ipsq, q, mp, func, NEW_OP, 5965 ill); 5966 mutex_exit(&ipsq->ipsq_lock); 5967 RELEASE_CONN_LOCK(q); 5968 if (error != NULL) 5969 *error = EINPROGRESS; 5970 return (NULL); 5971 } 5972 } 5973 } 5974 mutex_exit(&ill->ill_lock); 5975 RELEASE_CONN_LOCK(q); 5976 } 5977 rw_exit(&ipst->ips_ill_g_lock); 5978 5979 /* lookup the ipif based on interface address */ 5980 ipif = ipif_lookup_addr(if_addr, NULL, ALL_ZONES, q, mp, func, error, 5981 ipst); 5982 ASSERT(ipif == NULL || !ipif->ipif_isv6); 5983 return (ipif); 5984 } 5985 5986 /* 5987 * Look for an ipif with the specified address. For point-point links 5988 * we look for matches on either the destination address and the local 5989 * address, but we ignore the check on the local address if IPIF_UNNUMBERED 5990 * is set. 5991 * Matches on a specific ill if match_ill is set. 5992 */ 5993 ipif_t * 5994 ipif_lookup_addr(ipaddr_t addr, ill_t *match_ill, zoneid_t zoneid, queue_t *q, 5995 mblk_t *mp, ipsq_func_t func, int *error, ip_stack_t *ipst) 5996 { 5997 ipif_t *ipif; 5998 ill_t *ill; 5999 boolean_t ptp = B_FALSE; 6000 ipsq_t *ipsq; 6001 ill_walk_context_t ctx; 6002 6003 if (error != NULL) 6004 *error = 0; 6005 6006 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 6007 /* 6008 * Repeat twice, first based on local addresses and 6009 * next time for pointopoint. 6010 */ 6011 repeat: 6012 ill = ILL_START_WALK_V4(&ctx, ipst); 6013 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 6014 if (match_ill != NULL && ill != match_ill) { 6015 continue; 6016 } 6017 GRAB_CONN_LOCK(q); 6018 mutex_enter(&ill->ill_lock); 6019 for (ipif = ill->ill_ipif; ipif != NULL; 6020 ipif = ipif->ipif_next) { 6021 if (zoneid != ALL_ZONES && 6022 zoneid != ipif->ipif_zoneid && 6023 ipif->ipif_zoneid != ALL_ZONES) 6024 continue; 6025 /* Allow the ipif to be down */ 6026 if ((!ptp && (ipif->ipif_lcl_addr == addr) && 6027 ((ipif->ipif_flags & IPIF_UNNUMBERED) == 0)) || 6028 (ptp && (ipif->ipif_flags & IPIF_POINTOPOINT) && 6029 (ipif->ipif_pp_dst_addr == addr))) { 6030 /* 6031 * The block comment at the start of ipif_down 6032 * explains the use of the macros used below 6033 */ 6034 if (IPIF_CAN_LOOKUP(ipif)) { 6035 ipif_refhold_locked(ipif); 6036 mutex_exit(&ill->ill_lock); 6037 RELEASE_CONN_LOCK(q); 6038 rw_exit(&ipst->ips_ill_g_lock); 6039 return (ipif); 6040 } else if (IPIF_CAN_WAIT(ipif, q)) { 6041 ipsq = ill->ill_phyint->phyint_ipsq; 6042 mutex_enter(&ipsq->ipsq_lock); 6043 mutex_exit(&ill->ill_lock); 6044 rw_exit(&ipst->ips_ill_g_lock); 6045 ipsq_enq(ipsq, q, mp, func, NEW_OP, 6046 ill); 6047 mutex_exit(&ipsq->ipsq_lock); 6048 RELEASE_CONN_LOCK(q); 6049 if (error != NULL) 6050 *error = EINPROGRESS; 6051 return (NULL); 6052 } 6053 } 6054 } 6055 mutex_exit(&ill->ill_lock); 6056 RELEASE_CONN_LOCK(q); 6057 } 6058 6059 /* If we already did the ptp case, then we are done */ 6060 if (ptp) { 6061 rw_exit(&ipst->ips_ill_g_lock); 6062 if (error != NULL) 6063 *error = ENXIO; 6064 return (NULL); 6065 } 6066 ptp = B_TRUE; 6067 goto repeat; 6068 } 6069 6070 /* 6071 * Look for an ipif with the specified address. For point-point links 6072 * we look for matches on either the destination address and the local 6073 * address, but we ignore the check on the local address if IPIF_UNNUMBERED 6074 * is set. 6075 * Matches on a specific ill if match_ill is set. 6076 * Return the zoneid for the ipif which matches. ALL_ZONES if no match. 6077 */ 6078 zoneid_t 6079 ipif_lookup_addr_zoneid(ipaddr_t addr, ill_t *match_ill, ip_stack_t *ipst) 6080 { 6081 zoneid_t zoneid; 6082 ipif_t *ipif; 6083 ill_t *ill; 6084 boolean_t ptp = B_FALSE; 6085 ill_walk_context_t ctx; 6086 6087 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 6088 /* 6089 * Repeat twice, first based on local addresses and 6090 * next time for pointopoint. 6091 */ 6092 repeat: 6093 ill = ILL_START_WALK_V4(&ctx, ipst); 6094 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 6095 if (match_ill != NULL && ill != match_ill) { 6096 continue; 6097 } 6098 mutex_enter(&ill->ill_lock); 6099 for (ipif = ill->ill_ipif; ipif != NULL; 6100 ipif = ipif->ipif_next) { 6101 /* Allow the ipif to be down */ 6102 if ((!ptp && (ipif->ipif_lcl_addr == addr) && 6103 ((ipif->ipif_flags & IPIF_UNNUMBERED) == 0)) || 6104 (ptp && (ipif->ipif_flags & IPIF_POINTOPOINT) && 6105 (ipif->ipif_pp_dst_addr == addr)) && 6106 !(ipif->ipif_state_flags & IPIF_CONDEMNED)) { 6107 zoneid = ipif->ipif_zoneid; 6108 mutex_exit(&ill->ill_lock); 6109 rw_exit(&ipst->ips_ill_g_lock); 6110 /* 6111 * If ipif_zoneid was ALL_ZONES then we have 6112 * a trusted extensions shared IP address. 6113 * In that case GLOBAL_ZONEID works to send. 6114 */ 6115 if (zoneid == ALL_ZONES) 6116 zoneid = GLOBAL_ZONEID; 6117 return (zoneid); 6118 } 6119 } 6120 mutex_exit(&ill->ill_lock); 6121 } 6122 6123 /* If we already did the ptp case, then we are done */ 6124 if (ptp) { 6125 rw_exit(&ipst->ips_ill_g_lock); 6126 return (ALL_ZONES); 6127 } 6128 ptp = B_TRUE; 6129 goto repeat; 6130 } 6131 6132 /* 6133 * Look for an ipif that matches the specified remote address i.e. the 6134 * ipif that would receive the specified packet. 6135 * First look for directly connected interfaces and then do a recursive 6136 * IRE lookup and pick the first ipif corresponding to the source address in the 6137 * ire. 6138 * Returns: held ipif 6139 */ 6140 ipif_t * 6141 ipif_lookup_remote(ill_t *ill, ipaddr_t addr, zoneid_t zoneid) 6142 { 6143 ipif_t *ipif; 6144 ire_t *ire; 6145 ip_stack_t *ipst = ill->ill_ipst; 6146 6147 ASSERT(!ill->ill_isv6); 6148 6149 /* 6150 * Someone could be changing this ipif currently or change it 6151 * after we return this. Thus a few packets could use the old 6152 * old values. However structure updates/creates (ire, ilg, ilm etc) 6153 * will atomically be updated or cleaned up with the new value 6154 * Thus we don't need a lock to check the flags or other attrs below. 6155 */ 6156 mutex_enter(&ill->ill_lock); 6157 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 6158 if (!IPIF_CAN_LOOKUP(ipif)) 6159 continue; 6160 if (zoneid != ALL_ZONES && zoneid != ipif->ipif_zoneid && 6161 ipif->ipif_zoneid != ALL_ZONES) 6162 continue; 6163 /* Allow the ipif to be down */ 6164 if (ipif->ipif_flags & IPIF_POINTOPOINT) { 6165 if ((ipif->ipif_pp_dst_addr == addr) || 6166 (!(ipif->ipif_flags & IPIF_UNNUMBERED) && 6167 ipif->ipif_lcl_addr == addr)) { 6168 ipif_refhold_locked(ipif); 6169 mutex_exit(&ill->ill_lock); 6170 return (ipif); 6171 } 6172 } else if (ipif->ipif_subnet == (addr & ipif->ipif_net_mask)) { 6173 ipif_refhold_locked(ipif); 6174 mutex_exit(&ill->ill_lock); 6175 return (ipif); 6176 } 6177 } 6178 mutex_exit(&ill->ill_lock); 6179 ire = ire_route_lookup(addr, 0, 0, 0, NULL, NULL, zoneid, 6180 NULL, MATCH_IRE_RECURSIVE, ipst); 6181 if (ire != NULL) { 6182 /* 6183 * The callers of this function wants to know the 6184 * interface on which they have to send the replies 6185 * back. For IRE_CACHES that have ire_stq and ire_ipif 6186 * derived from different ills, we really don't care 6187 * what we return here. 6188 */ 6189 ipif = ire->ire_ipif; 6190 if (ipif != NULL) { 6191 ipif_refhold(ipif); 6192 ire_refrele(ire); 6193 return (ipif); 6194 } 6195 ire_refrele(ire); 6196 } 6197 /* Pick the first interface */ 6198 ipif = ipif_get_next_ipif(NULL, ill); 6199 return (ipif); 6200 } 6201 6202 /* 6203 * This func does not prevent refcnt from increasing. But if 6204 * the caller has taken steps to that effect, then this func 6205 * can be used to determine whether the ill has become quiescent 6206 */ 6207 static boolean_t 6208 ill_is_quiescent(ill_t *ill) 6209 { 6210 ipif_t *ipif; 6211 6212 ASSERT(MUTEX_HELD(&ill->ill_lock)); 6213 6214 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 6215 if (ipif->ipif_refcnt != 0 || !IPIF_DOWN_OK(ipif)) { 6216 return (B_FALSE); 6217 } 6218 } 6219 if (!ILL_DOWN_OK(ill) || ill->ill_refcnt != 0) { 6220 return (B_FALSE); 6221 } 6222 return (B_TRUE); 6223 } 6224 6225 boolean_t 6226 ill_is_freeable(ill_t *ill) 6227 { 6228 ipif_t *ipif; 6229 6230 ASSERT(MUTEX_HELD(&ill->ill_lock)); 6231 6232 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 6233 if (ipif->ipif_refcnt != 0 || !IPIF_FREE_OK(ipif)) { 6234 return (B_FALSE); 6235 } 6236 } 6237 if (!ILL_FREE_OK(ill) || ill->ill_refcnt != 0) { 6238 return (B_FALSE); 6239 } 6240 return (B_TRUE); 6241 } 6242 6243 /* 6244 * This func does not prevent refcnt from increasing. But if 6245 * the caller has taken steps to that effect, then this func 6246 * can be used to determine whether the ipif has become quiescent 6247 */ 6248 static boolean_t 6249 ipif_is_quiescent(ipif_t *ipif) 6250 { 6251 ill_t *ill; 6252 6253 ASSERT(MUTEX_HELD(&ipif->ipif_ill->ill_lock)); 6254 6255 if (ipif->ipif_refcnt != 0 || !IPIF_DOWN_OK(ipif)) { 6256 return (B_FALSE); 6257 } 6258 6259 ill = ipif->ipif_ill; 6260 if (ill->ill_ipif_up_count != 0 || ill->ill_ipif_dup_count != 0 || 6261 ill->ill_logical_down) { 6262 return (B_TRUE); 6263 } 6264 6265 /* This is the last ipif going down or being deleted on this ill */ 6266 if (!ILL_DOWN_OK(ill) || ill->ill_refcnt != 0) { 6267 return (B_FALSE); 6268 } 6269 6270 return (B_TRUE); 6271 } 6272 6273 /* 6274 * return true if the ipif can be destroyed: the ipif has to be quiescent 6275 * with zero references from ire/nce/ilm to it. 6276 */ 6277 static boolean_t 6278 ipif_is_freeable(ipif_t *ipif) 6279 { 6280 6281 ill_t *ill; 6282 6283 ASSERT(MUTEX_HELD(&ipif->ipif_ill->ill_lock)); 6284 6285 if (ipif->ipif_refcnt != 0 || !IPIF_FREE_OK(ipif)) { 6286 return (B_FALSE); 6287 } 6288 6289 ill = ipif->ipif_ill; 6290 if (ill->ill_ipif_up_count != 0 || ill->ill_ipif_dup_count != 0 || 6291 ill->ill_logical_down) { 6292 return (B_TRUE); 6293 } 6294 6295 /* This is the last ipif going down or being deleted on this ill */ 6296 if (!ILL_FREE_OK(ill) || ill->ill_refcnt != 0) { 6297 return (B_FALSE); 6298 } 6299 6300 return (B_TRUE); 6301 } 6302 6303 /* 6304 * This func does not prevent refcnt from increasing. But if 6305 * the caller has taken steps to that effect, then this func 6306 * can be used to determine whether the ipifs marked with IPIF_MOVING 6307 * have become quiescent and can be moved in a failover/failback. 6308 */ 6309 static ipif_t * 6310 ill_quiescent_to_move(ill_t *ill) 6311 { 6312 ipif_t *ipif; 6313 6314 ASSERT(MUTEX_HELD(&ill->ill_lock)); 6315 6316 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 6317 if (ipif->ipif_state_flags & IPIF_MOVING) { 6318 if (ipif->ipif_refcnt != 0 || 6319 !IPIF_DOWN_OK(ipif)) { 6320 return (ipif); 6321 } 6322 } 6323 } 6324 return (NULL); 6325 } 6326 6327 /* 6328 * The ipif/ill/ire has been refreled. Do the tail processing. 6329 * Determine if the ipif or ill in question has become quiescent and if so 6330 * wakeup close and/or restart any queued pending ioctl that is waiting 6331 * for the ipif_down (or ill_down) 6332 */ 6333 void 6334 ipif_ill_refrele_tail(ill_t *ill) 6335 { 6336 mblk_t *mp; 6337 conn_t *connp; 6338 ipsq_t *ipsq; 6339 ipif_t *ipif; 6340 dl_notify_ind_t *dlindp; 6341 6342 ASSERT(MUTEX_HELD(&ill->ill_lock)); 6343 6344 if ((ill->ill_state_flags & ILL_CONDEMNED) && 6345 ill_is_freeable(ill)) { 6346 /* ill_close may be waiting */ 6347 cv_broadcast(&ill->ill_cv); 6348 } 6349 6350 /* ipsq can't change because ill_lock is held */ 6351 ipsq = ill->ill_phyint->phyint_ipsq; 6352 if (ipsq->ipsq_waitfor == 0) { 6353 /* Not waiting for anything, just return. */ 6354 mutex_exit(&ill->ill_lock); 6355 return; 6356 } 6357 ASSERT(ipsq->ipsq_pending_mp != NULL && 6358 ipsq->ipsq_pending_ipif != NULL); 6359 /* 6360 * ipif->ipif_refcnt must go down to zero for restarting REMOVEIF. 6361 * Last ipif going down needs to down the ill, so ill_ire_cnt must 6362 * be zero for restarting an ioctl that ends up downing the ill. 6363 */ 6364 ipif = ipsq->ipsq_pending_ipif; 6365 if (ipif->ipif_ill != ill) { 6366 /* The ioctl is pending on some other ill. */ 6367 mutex_exit(&ill->ill_lock); 6368 return; 6369 } 6370 6371 switch (ipsq->ipsq_waitfor) { 6372 case IPIF_DOWN: 6373 if (!ipif_is_quiescent(ipif)) { 6374 mutex_exit(&ill->ill_lock); 6375 return; 6376 } 6377 break; 6378 case IPIF_FREE: 6379 if (!ipif_is_freeable(ipif)) { 6380 mutex_exit(&ill->ill_lock); 6381 return; 6382 } 6383 break; 6384 6385 case ILL_DOWN: 6386 if (!ill_is_quiescent(ill)) { 6387 mutex_exit(&ill->ill_lock); 6388 return; 6389 } 6390 break; 6391 case ILL_FREE: 6392 /* 6393 * case ILL_FREE arises only for loopback. otherwise ill_delete 6394 * waits synchronously in ip_close, and no message is queued in 6395 * ipsq_pending_mp at all in this case 6396 */ 6397 if (!ill_is_freeable(ill)) { 6398 mutex_exit(&ill->ill_lock); 6399 return; 6400 } 6401 break; 6402 6403 case ILL_MOVE_OK: 6404 if (ill_quiescent_to_move(ill) != NULL) { 6405 mutex_exit(&ill->ill_lock); 6406 return; 6407 } 6408 break; 6409 default: 6410 cmn_err(CE_PANIC, "ipsq: %p unknown ipsq_waitfor %d\n", 6411 (void *)ipsq, ipsq->ipsq_waitfor); 6412 } 6413 6414 /* 6415 * Incr refcnt for the qwriter_ip call below which 6416 * does a refrele 6417 */ 6418 ill_refhold_locked(ill); 6419 mp = ipsq_pending_mp_get(ipsq, &connp); 6420 mutex_exit(&ill->ill_lock); 6421 6422 ASSERT(mp != NULL); 6423 /* 6424 * NOTE: all of the qwriter_ip() calls below use CUR_OP since 6425 * we can only get here when the current operation decides it 6426 * it needs to quiesce via ipsq_pending_mp_add(). 6427 */ 6428 switch (mp->b_datap->db_type) { 6429 case M_PCPROTO: 6430 case M_PROTO: 6431 /* 6432 * For now, only DL_NOTIFY_IND messages can use this facility. 6433 */ 6434 dlindp = (dl_notify_ind_t *)mp->b_rptr; 6435 ASSERT(dlindp->dl_primitive == DL_NOTIFY_IND); 6436 6437 switch (dlindp->dl_notification) { 6438 case DL_NOTE_PHYS_ADDR: 6439 qwriter_ip(ill, ill->ill_rq, mp, 6440 ill_set_phys_addr_tail, CUR_OP, B_TRUE); 6441 return; 6442 default: 6443 ASSERT(0); 6444 } 6445 break; 6446 6447 case M_ERROR: 6448 case M_HANGUP: 6449 qwriter_ip(ill, ill->ill_rq, mp, ipif_all_down_tail, CUR_OP, 6450 B_TRUE); 6451 return; 6452 6453 case M_IOCTL: 6454 case M_IOCDATA: 6455 qwriter_ip(ill, (connp != NULL ? CONNP_TO_WQ(connp) : 6456 ill->ill_wq), mp, ip_reprocess_ioctl, CUR_OP, B_TRUE); 6457 return; 6458 6459 default: 6460 cmn_err(CE_PANIC, "ipif_ill_refrele_tail mp %p " 6461 "db_type %d\n", (void *)mp, mp->b_datap->db_type); 6462 } 6463 } 6464 6465 #ifdef DEBUG 6466 /* Reuse trace buffer from beginning (if reached the end) and record trace */ 6467 static void 6468 th_trace_rrecord(th_trace_t *th_trace) 6469 { 6470 tr_buf_t *tr_buf; 6471 uint_t lastref; 6472 6473 lastref = th_trace->th_trace_lastref; 6474 lastref++; 6475 if (lastref == TR_BUF_MAX) 6476 lastref = 0; 6477 th_trace->th_trace_lastref = lastref; 6478 tr_buf = &th_trace->th_trbuf[lastref]; 6479 tr_buf->tr_time = lbolt; 6480 tr_buf->tr_depth = getpcstack(tr_buf->tr_stack, TR_STACK_DEPTH); 6481 } 6482 6483 static void 6484 th_trace_free(void *value) 6485 { 6486 th_trace_t *th_trace = value; 6487 6488 ASSERT(th_trace->th_refcnt == 0); 6489 kmem_free(th_trace, sizeof (*th_trace)); 6490 } 6491 6492 /* 6493 * Find or create the per-thread hash table used to track object references. 6494 * The ipst argument is NULL if we shouldn't allocate. 6495 * 6496 * Accesses per-thread data, so there's no need to lock here. 6497 */ 6498 static mod_hash_t * 6499 th_trace_gethash(ip_stack_t *ipst) 6500 { 6501 th_hash_t *thh; 6502 6503 if ((thh = tsd_get(ip_thread_data)) == NULL && ipst != NULL) { 6504 mod_hash_t *mh; 6505 char name[256]; 6506 size_t objsize, rshift; 6507 int retv; 6508 6509 if ((thh = kmem_alloc(sizeof (*thh), KM_NOSLEEP)) == NULL) 6510 return (NULL); 6511 (void) snprintf(name, sizeof (name), "th_trace_%p", 6512 (void *)curthread); 6513 6514 /* 6515 * We use mod_hash_create_extended here rather than the more 6516 * obvious mod_hash_create_ptrhash because the latter has a 6517 * hard-coded KM_SLEEP, and we'd prefer to fail rather than 6518 * block. 6519 */ 6520 objsize = MAX(MAX(sizeof (ill_t), sizeof (ipif_t)), 6521 MAX(sizeof (ire_t), sizeof (nce_t))); 6522 rshift = highbit(objsize); 6523 mh = mod_hash_create_extended(name, 64, mod_hash_null_keydtor, 6524 th_trace_free, mod_hash_byptr, (void *)rshift, 6525 mod_hash_ptrkey_cmp, KM_NOSLEEP); 6526 if (mh == NULL) { 6527 kmem_free(thh, sizeof (*thh)); 6528 return (NULL); 6529 } 6530 thh->thh_hash = mh; 6531 thh->thh_ipst = ipst; 6532 /* 6533 * We trace ills, ipifs, ires, and nces. All of these are 6534 * per-IP-stack, so the lock on the thread list is as well. 6535 */ 6536 rw_enter(&ip_thread_rwlock, RW_WRITER); 6537 list_insert_tail(&ip_thread_list, thh); 6538 rw_exit(&ip_thread_rwlock); 6539 retv = tsd_set(ip_thread_data, thh); 6540 ASSERT(retv == 0); 6541 } 6542 return (thh != NULL ? thh->thh_hash : NULL); 6543 } 6544 6545 boolean_t 6546 th_trace_ref(const void *obj, ip_stack_t *ipst) 6547 { 6548 th_trace_t *th_trace; 6549 mod_hash_t *mh; 6550 mod_hash_val_t val; 6551 6552 if ((mh = th_trace_gethash(ipst)) == NULL) 6553 return (B_FALSE); 6554 6555 /* 6556 * Attempt to locate the trace buffer for this obj and thread. 6557 * If it does not exist, then allocate a new trace buffer and 6558 * insert into the hash. 6559 */ 6560 if (mod_hash_find(mh, (mod_hash_key_t)obj, &val) == MH_ERR_NOTFOUND) { 6561 th_trace = kmem_zalloc(sizeof (th_trace_t), KM_NOSLEEP); 6562 if (th_trace == NULL) 6563 return (B_FALSE); 6564 6565 th_trace->th_id = curthread; 6566 if (mod_hash_insert(mh, (mod_hash_key_t)obj, 6567 (mod_hash_val_t)th_trace) != 0) { 6568 kmem_free(th_trace, sizeof (th_trace_t)); 6569 return (B_FALSE); 6570 } 6571 } else { 6572 th_trace = (th_trace_t *)val; 6573 } 6574 6575 ASSERT(th_trace->th_refcnt >= 0 && 6576 th_trace->th_refcnt < TR_BUF_MAX - 1); 6577 6578 th_trace->th_refcnt++; 6579 th_trace_rrecord(th_trace); 6580 return (B_TRUE); 6581 } 6582 6583 /* 6584 * For the purpose of tracing a reference release, we assume that global 6585 * tracing is always on and that the same thread initiated the reference hold 6586 * is releasing. 6587 */ 6588 void 6589 th_trace_unref(const void *obj) 6590 { 6591 int retv; 6592 mod_hash_t *mh; 6593 th_trace_t *th_trace; 6594 mod_hash_val_t val; 6595 6596 mh = th_trace_gethash(NULL); 6597 retv = mod_hash_find(mh, (mod_hash_key_t)obj, &val); 6598 ASSERT(retv == 0); 6599 th_trace = (th_trace_t *)val; 6600 6601 ASSERT(th_trace->th_refcnt > 0); 6602 th_trace->th_refcnt--; 6603 th_trace_rrecord(th_trace); 6604 } 6605 6606 /* 6607 * If tracing has been disabled, then we assume that the reference counts are 6608 * now useless, and we clear them out before destroying the entries. 6609 */ 6610 void 6611 th_trace_cleanup(const void *obj, boolean_t trace_disable) 6612 { 6613 th_hash_t *thh; 6614 mod_hash_t *mh; 6615 mod_hash_val_t val; 6616 th_trace_t *th_trace; 6617 int retv; 6618 6619 rw_enter(&ip_thread_rwlock, RW_READER); 6620 for (thh = list_head(&ip_thread_list); thh != NULL; 6621 thh = list_next(&ip_thread_list, thh)) { 6622 if (mod_hash_find(mh = thh->thh_hash, (mod_hash_key_t)obj, 6623 &val) == 0) { 6624 th_trace = (th_trace_t *)val; 6625 if (trace_disable) 6626 th_trace->th_refcnt = 0; 6627 retv = mod_hash_destroy(mh, (mod_hash_key_t)obj); 6628 ASSERT(retv == 0); 6629 } 6630 } 6631 rw_exit(&ip_thread_rwlock); 6632 } 6633 6634 void 6635 ipif_trace_ref(ipif_t *ipif) 6636 { 6637 ASSERT(MUTEX_HELD(&ipif->ipif_ill->ill_lock)); 6638 6639 if (ipif->ipif_trace_disable) 6640 return; 6641 6642 if (!th_trace_ref(ipif, ipif->ipif_ill->ill_ipst)) { 6643 ipif->ipif_trace_disable = B_TRUE; 6644 ipif_trace_cleanup(ipif); 6645 } 6646 } 6647 6648 void 6649 ipif_untrace_ref(ipif_t *ipif) 6650 { 6651 ASSERT(MUTEX_HELD(&ipif->ipif_ill->ill_lock)); 6652 6653 if (!ipif->ipif_trace_disable) 6654 th_trace_unref(ipif); 6655 } 6656 6657 void 6658 ill_trace_ref(ill_t *ill) 6659 { 6660 ASSERT(MUTEX_HELD(&ill->ill_lock)); 6661 6662 if (ill->ill_trace_disable) 6663 return; 6664 6665 if (!th_trace_ref(ill, ill->ill_ipst)) { 6666 ill->ill_trace_disable = B_TRUE; 6667 ill_trace_cleanup(ill); 6668 } 6669 } 6670 6671 void 6672 ill_untrace_ref(ill_t *ill) 6673 { 6674 ASSERT(MUTEX_HELD(&ill->ill_lock)); 6675 6676 if (!ill->ill_trace_disable) 6677 th_trace_unref(ill); 6678 } 6679 6680 /* 6681 * Called when ipif is unplumbed or when memory alloc fails. Note that on 6682 * failure, ipif_trace_disable is set. 6683 */ 6684 static void 6685 ipif_trace_cleanup(const ipif_t *ipif) 6686 { 6687 th_trace_cleanup(ipif, ipif->ipif_trace_disable); 6688 } 6689 6690 /* 6691 * Called when ill is unplumbed or when memory alloc fails. Note that on 6692 * failure, ill_trace_disable is set. 6693 */ 6694 static void 6695 ill_trace_cleanup(const ill_t *ill) 6696 { 6697 th_trace_cleanup(ill, ill->ill_trace_disable); 6698 } 6699 #endif /* DEBUG */ 6700 6701 void 6702 ipif_refhold_locked(ipif_t *ipif) 6703 { 6704 ASSERT(MUTEX_HELD(&ipif->ipif_ill->ill_lock)); 6705 ipif->ipif_refcnt++; 6706 IPIF_TRACE_REF(ipif); 6707 } 6708 6709 void 6710 ipif_refhold(ipif_t *ipif) 6711 { 6712 ill_t *ill; 6713 6714 ill = ipif->ipif_ill; 6715 mutex_enter(&ill->ill_lock); 6716 ipif->ipif_refcnt++; 6717 IPIF_TRACE_REF(ipif); 6718 mutex_exit(&ill->ill_lock); 6719 } 6720 6721 /* 6722 * Must not be called while holding any locks. Otherwise if this is 6723 * the last reference to be released there is a chance of recursive mutex 6724 * panic due to ipif_refrele -> ipif_ill_refrele_tail -> qwriter_ip trying 6725 * to restart an ioctl. 6726 */ 6727 void 6728 ipif_refrele(ipif_t *ipif) 6729 { 6730 ill_t *ill; 6731 6732 ill = ipif->ipif_ill; 6733 6734 mutex_enter(&ill->ill_lock); 6735 ASSERT(ipif->ipif_refcnt != 0); 6736 ipif->ipif_refcnt--; 6737 IPIF_UNTRACE_REF(ipif); 6738 if (ipif->ipif_refcnt != 0) { 6739 mutex_exit(&ill->ill_lock); 6740 return; 6741 } 6742 6743 /* Drops the ill_lock */ 6744 ipif_ill_refrele_tail(ill); 6745 } 6746 6747 ipif_t * 6748 ipif_get_next_ipif(ipif_t *curr, ill_t *ill) 6749 { 6750 ipif_t *ipif; 6751 6752 mutex_enter(&ill->ill_lock); 6753 for (ipif = (curr == NULL ? ill->ill_ipif : curr->ipif_next); 6754 ipif != NULL; ipif = ipif->ipif_next) { 6755 if (!IPIF_CAN_LOOKUP(ipif)) 6756 continue; 6757 ipif_refhold_locked(ipif); 6758 mutex_exit(&ill->ill_lock); 6759 return (ipif); 6760 } 6761 mutex_exit(&ill->ill_lock); 6762 return (NULL); 6763 } 6764 6765 /* 6766 * TODO: make this table extendible at run time 6767 * Return a pointer to the mac type info for 'mac_type' 6768 */ 6769 static ip_m_t * 6770 ip_m_lookup(t_uscalar_t mac_type) 6771 { 6772 ip_m_t *ipm; 6773 6774 for (ipm = ip_m_tbl; ipm < A_END(ip_m_tbl); ipm++) 6775 if (ipm->ip_m_mac_type == mac_type) 6776 return (ipm); 6777 return (NULL); 6778 } 6779 6780 /* 6781 * ip_rt_add is called to add an IPv4 route to the forwarding table. 6782 * ipif_arg is passed in to associate it with the correct interface. 6783 * We may need to restart this operation if the ipif cannot be looked up 6784 * due to an exclusive operation that is currently in progress. The restart 6785 * entry point is specified by 'func' 6786 */ 6787 int 6788 ip_rt_add(ipaddr_t dst_addr, ipaddr_t mask, ipaddr_t gw_addr, 6789 ipaddr_t src_addr, int flags, ipif_t *ipif_arg, ire_t **ire_arg, 6790 boolean_t ioctl_msg, queue_t *q, mblk_t *mp, ipsq_func_t func, 6791 struct rtsa_s *sp, ip_stack_t *ipst) 6792 { 6793 ire_t *ire; 6794 ire_t *gw_ire = NULL; 6795 ipif_t *ipif = NULL; 6796 boolean_t ipif_refheld = B_FALSE; 6797 uint_t type; 6798 int match_flags = MATCH_IRE_TYPE; 6799 int error; 6800 tsol_gc_t *gc = NULL; 6801 tsol_gcgrp_t *gcgrp = NULL; 6802 boolean_t gcgrp_xtraref = B_FALSE; 6803 6804 ip1dbg(("ip_rt_add:")); 6805 6806 if (ire_arg != NULL) 6807 *ire_arg = NULL; 6808 6809 /* 6810 * If this is the case of RTF_HOST being set, then we set the netmask 6811 * to all ones (regardless if one was supplied). 6812 */ 6813 if (flags & RTF_HOST) 6814 mask = IP_HOST_MASK; 6815 6816 /* 6817 * Prevent routes with a zero gateway from being created (since 6818 * interfaces can currently be plumbed and brought up no assigned 6819 * address). 6820 */ 6821 if (gw_addr == 0) 6822 return (ENETUNREACH); 6823 /* 6824 * Get the ipif, if any, corresponding to the gw_addr 6825 */ 6826 ipif = ipif_lookup_interface(gw_addr, dst_addr, q, mp, func, &error, 6827 ipst); 6828 if (ipif != NULL) { 6829 if (IS_VNI(ipif->ipif_ill)) { 6830 ipif_refrele(ipif); 6831 return (EINVAL); 6832 } 6833 ipif_refheld = B_TRUE; 6834 } else if (error == EINPROGRESS) { 6835 ip1dbg(("ip_rt_add: null and EINPROGRESS")); 6836 return (EINPROGRESS); 6837 } else { 6838 error = 0; 6839 } 6840 6841 if (ipif != NULL) { 6842 ip1dbg(("ip_rt_add: ipif_lookup_interface done ipif nonnull")); 6843 ASSERT(!MUTEX_HELD(&ipif->ipif_ill->ill_lock)); 6844 } else { 6845 ip1dbg(("ip_rt_add: ipif_lookup_interface done ipif is null")); 6846 } 6847 6848 /* 6849 * GateD will attempt to create routes with a loopback interface 6850 * address as the gateway and with RTF_GATEWAY set. We allow 6851 * these routes to be added, but create them as interface routes 6852 * since the gateway is an interface address. 6853 */ 6854 if ((ipif != NULL) && (ipif->ipif_ire_type == IRE_LOOPBACK)) { 6855 flags &= ~RTF_GATEWAY; 6856 if (gw_addr == INADDR_LOOPBACK && dst_addr == INADDR_LOOPBACK && 6857 mask == IP_HOST_MASK) { 6858 ire = ire_ctable_lookup(dst_addr, 0, IRE_LOOPBACK, ipif, 6859 ALL_ZONES, NULL, match_flags, ipst); 6860 if (ire != NULL) { 6861 ire_refrele(ire); 6862 if (ipif_refheld) 6863 ipif_refrele(ipif); 6864 return (EEXIST); 6865 } 6866 ip1dbg(("ipif_up_done: 0x%p creating IRE 0x%x" 6867 "for 0x%x\n", (void *)ipif, 6868 ipif->ipif_ire_type, 6869 ntohl(ipif->ipif_lcl_addr))); 6870 ire = ire_create( 6871 (uchar_t *)&dst_addr, /* dest address */ 6872 (uchar_t *)&mask, /* mask */ 6873 (uchar_t *)&ipif->ipif_src_addr, 6874 NULL, /* no gateway */ 6875 &ipif->ipif_mtu, 6876 NULL, 6877 ipif->ipif_rq, /* recv-from queue */ 6878 NULL, /* no send-to queue */ 6879 ipif->ipif_ire_type, /* LOOPBACK */ 6880 ipif, 6881 0, 6882 0, 6883 0, 6884 (ipif->ipif_flags & IPIF_PRIVATE) ? 6885 RTF_PRIVATE : 0, 6886 &ire_uinfo_null, 6887 NULL, 6888 NULL, 6889 ipst); 6890 6891 if (ire == NULL) { 6892 if (ipif_refheld) 6893 ipif_refrele(ipif); 6894 return (ENOMEM); 6895 } 6896 error = ire_add(&ire, q, mp, func, B_FALSE); 6897 if (error == 0) 6898 goto save_ire; 6899 if (ipif_refheld) 6900 ipif_refrele(ipif); 6901 return (error); 6902 6903 } 6904 } 6905 6906 /* 6907 * Traditionally, interface routes are ones where RTF_GATEWAY isn't set 6908 * and the gateway address provided is one of the system's interface 6909 * addresses. By using the routing socket interface and supplying an 6910 * RTA_IFP sockaddr with an interface index, an alternate method of 6911 * specifying an interface route to be created is available which uses 6912 * the interface index that specifies the outgoing interface rather than 6913 * the address of an outgoing interface (which may not be able to 6914 * uniquely identify an interface). When coupled with the RTF_GATEWAY 6915 * flag, routes can be specified which not only specify the next-hop to 6916 * be used when routing to a certain prefix, but also which outgoing 6917 * interface should be used. 6918 * 6919 * Previously, interfaces would have unique addresses assigned to them 6920 * and so the address assigned to a particular interface could be used 6921 * to identify a particular interface. One exception to this was the 6922 * case of an unnumbered interface (where IPIF_UNNUMBERED was set). 6923 * 6924 * With the advent of IPv6 and its link-local addresses, this 6925 * restriction was relaxed and interfaces could share addresses between 6926 * themselves. In fact, typically all of the link-local interfaces on 6927 * an IPv6 node or router will have the same link-local address. In 6928 * order to differentiate between these interfaces, the use of an 6929 * interface index is necessary and this index can be carried inside a 6930 * RTA_IFP sockaddr (which is actually a sockaddr_dl). One restriction 6931 * of using the interface index, however, is that all of the ipif's that 6932 * are part of an ill have the same index and so the RTA_IFP sockaddr 6933 * cannot be used to differentiate between ipif's (or logical 6934 * interfaces) that belong to the same ill (physical interface). 6935 * 6936 * For example, in the following case involving IPv4 interfaces and 6937 * logical interfaces 6938 * 6939 * 192.0.2.32 255.255.255.224 192.0.2.33 U if0 6940 * 192.0.2.32 255.255.255.224 192.0.2.34 U if0:1 6941 * 192.0.2.32 255.255.255.224 192.0.2.35 U if0:2 6942 * 6943 * the ipif's corresponding to each of these interface routes can be 6944 * uniquely identified by the "gateway" (actually interface address). 6945 * 6946 * In this case involving multiple IPv6 default routes to a particular 6947 * link-local gateway, the use of RTA_IFP is necessary to specify which 6948 * default route is of interest: 6949 * 6950 * default fe80::123:4567:89ab:cdef U if0 6951 * default fe80::123:4567:89ab:cdef U if1 6952 */ 6953 6954 /* RTF_GATEWAY not set */ 6955 if (!(flags & RTF_GATEWAY)) { 6956 queue_t *stq; 6957 6958 if (sp != NULL) { 6959 ip2dbg(("ip_rt_add: gateway security attributes " 6960 "cannot be set with interface route\n")); 6961 if (ipif_refheld) 6962 ipif_refrele(ipif); 6963 return (EINVAL); 6964 } 6965 6966 /* 6967 * As the interface index specified with the RTA_IFP sockaddr is 6968 * the same for all ipif's off of an ill, the matching logic 6969 * below uses MATCH_IRE_ILL if such an index was specified. 6970 * This means that routes sharing the same prefix when added 6971 * using a RTA_IFP sockaddr must have distinct interface 6972 * indices (namely, they must be on distinct ill's). 6973 * 6974 * On the other hand, since the gateway address will usually be 6975 * different for each ipif on the system, the matching logic 6976 * uses MATCH_IRE_IPIF in the case of a traditional interface 6977 * route. This means that interface routes for the same prefix 6978 * can be created if they belong to distinct ipif's and if a 6979 * RTA_IFP sockaddr is not present. 6980 */ 6981 if (ipif_arg != NULL) { 6982 if (ipif_refheld) { 6983 ipif_refrele(ipif); 6984 ipif_refheld = B_FALSE; 6985 } 6986 ipif = ipif_arg; 6987 match_flags |= MATCH_IRE_ILL; 6988 } else { 6989 /* 6990 * Check the ipif corresponding to the gw_addr 6991 */ 6992 if (ipif == NULL) 6993 return (ENETUNREACH); 6994 match_flags |= MATCH_IRE_IPIF; 6995 } 6996 ASSERT(ipif != NULL); 6997 6998 /* 6999 * We check for an existing entry at this point. 7000 * 7001 * Since a netmask isn't passed in via the ioctl interface 7002 * (SIOCADDRT), we don't check for a matching netmask in that 7003 * case. 7004 */ 7005 if (!ioctl_msg) 7006 match_flags |= MATCH_IRE_MASK; 7007 ire = ire_ftable_lookup(dst_addr, mask, 0, IRE_INTERFACE, ipif, 7008 NULL, ALL_ZONES, 0, NULL, match_flags, ipst); 7009 if (ire != NULL) { 7010 ire_refrele(ire); 7011 if (ipif_refheld) 7012 ipif_refrele(ipif); 7013 return (EEXIST); 7014 } 7015 7016 stq = (ipif->ipif_net_type == IRE_IF_RESOLVER) 7017 ? ipif->ipif_rq : ipif->ipif_wq; 7018 7019 /* 7020 * Create a copy of the IRE_LOOPBACK, 7021 * IRE_IF_NORESOLVER or IRE_IF_RESOLVER with 7022 * the modified address and netmask. 7023 */ 7024 ire = ire_create( 7025 (uchar_t *)&dst_addr, 7026 (uint8_t *)&mask, 7027 (uint8_t *)&ipif->ipif_src_addr, 7028 NULL, 7029 &ipif->ipif_mtu, 7030 NULL, 7031 NULL, 7032 stq, 7033 ipif->ipif_net_type, 7034 ipif, 7035 0, 7036 0, 7037 0, 7038 flags, 7039 &ire_uinfo_null, 7040 NULL, 7041 NULL, 7042 ipst); 7043 if (ire == NULL) { 7044 if (ipif_refheld) 7045 ipif_refrele(ipif); 7046 return (ENOMEM); 7047 } 7048 7049 /* 7050 * Some software (for example, GateD and Sun Cluster) attempts 7051 * to create (what amount to) IRE_PREFIX routes with the 7052 * loopback address as the gateway. This is primarily done to 7053 * set up prefixes with the RTF_REJECT flag set (for example, 7054 * when generating aggregate routes.) 7055 * 7056 * If the IRE type (as defined by ipif->ipif_net_type) is 7057 * IRE_LOOPBACK, then we map the request into a 7058 * IRE_IF_NORESOLVER. We also OR in the RTF_BLACKHOLE flag as 7059 * these interface routes, by definition, can only be that. 7060 * 7061 * Needless to say, the real IRE_LOOPBACK is NOT created by this 7062 * routine, but rather using ire_create() directly. 7063 * 7064 */ 7065 if (ipif->ipif_net_type == IRE_LOOPBACK) { 7066 ire->ire_type = IRE_IF_NORESOLVER; 7067 ire->ire_flags |= RTF_BLACKHOLE; 7068 } 7069 7070 error = ire_add(&ire, q, mp, func, B_FALSE); 7071 if (error == 0) 7072 goto save_ire; 7073 7074 /* 7075 * In the result of failure, ire_add() will have already 7076 * deleted the ire in question, so there is no need to 7077 * do that here. 7078 */ 7079 if (ipif_refheld) 7080 ipif_refrele(ipif); 7081 return (error); 7082 } 7083 if (ipif_refheld) { 7084 ipif_refrele(ipif); 7085 ipif_refheld = B_FALSE; 7086 } 7087 7088 /* 7089 * Get an interface IRE for the specified gateway. 7090 * If we don't have an IRE_IF_NORESOLVER or IRE_IF_RESOLVER for the 7091 * gateway, it is currently unreachable and we fail the request 7092 * accordingly. 7093 */ 7094 ipif = ipif_arg; 7095 if (ipif_arg != NULL) 7096 match_flags |= MATCH_IRE_ILL; 7097 gw_ire = ire_ftable_lookup(gw_addr, 0, 0, IRE_INTERFACE, ipif_arg, NULL, 7098 ALL_ZONES, 0, NULL, match_flags, ipst); 7099 if (gw_ire == NULL) 7100 return (ENETUNREACH); 7101 7102 /* 7103 * We create one of three types of IREs as a result of this request 7104 * based on the netmask. A netmask of all ones (which is automatically 7105 * assumed when RTF_HOST is set) results in an IRE_HOST being created. 7106 * An all zeroes netmask implies a default route so an IRE_DEFAULT is 7107 * created. Otherwise, an IRE_PREFIX route is created for the 7108 * destination prefix. 7109 */ 7110 if (mask == IP_HOST_MASK) 7111 type = IRE_HOST; 7112 else if (mask == 0) 7113 type = IRE_DEFAULT; 7114 else 7115 type = IRE_PREFIX; 7116 7117 /* check for a duplicate entry */ 7118 ire = ire_ftable_lookup(dst_addr, mask, gw_addr, type, ipif_arg, 7119 NULL, ALL_ZONES, 0, NULL, 7120 match_flags | MATCH_IRE_MASK | MATCH_IRE_GW, ipst); 7121 if (ire != NULL) { 7122 ire_refrele(gw_ire); 7123 ire_refrele(ire); 7124 return (EEXIST); 7125 } 7126 7127 /* Security attribute exists */ 7128 if (sp != NULL) { 7129 tsol_gcgrp_addr_t ga; 7130 7131 /* find or create the gateway credentials group */ 7132 ga.ga_af = AF_INET; 7133 IN6_IPADDR_TO_V4MAPPED(gw_addr, &ga.ga_addr); 7134 7135 /* we hold reference to it upon success */ 7136 gcgrp = gcgrp_lookup(&ga, B_TRUE); 7137 if (gcgrp == NULL) { 7138 ire_refrele(gw_ire); 7139 return (ENOMEM); 7140 } 7141 7142 /* 7143 * Create and add the security attribute to the group; a 7144 * reference to the group is made upon allocating a new 7145 * entry successfully. If it finds an already-existing 7146 * entry for the security attribute in the group, it simply 7147 * returns it and no new reference is made to the group. 7148 */ 7149 gc = gc_create(sp, gcgrp, &gcgrp_xtraref); 7150 if (gc == NULL) { 7151 /* release reference held by gcgrp_lookup */ 7152 GCGRP_REFRELE(gcgrp); 7153 ire_refrele(gw_ire); 7154 return (ENOMEM); 7155 } 7156 } 7157 7158 /* Create the IRE. */ 7159 ire = ire_create( 7160 (uchar_t *)&dst_addr, /* dest address */ 7161 (uchar_t *)&mask, /* mask */ 7162 /* src address assigned by the caller? */ 7163 (uchar_t *)(((src_addr != INADDR_ANY) && 7164 (flags & RTF_SETSRC)) ? &src_addr : NULL), 7165 (uchar_t *)&gw_addr, /* gateway address */ 7166 &gw_ire->ire_max_frag, 7167 NULL, /* no src nce */ 7168 NULL, /* no recv-from queue */ 7169 NULL, /* no send-to queue */ 7170 (ushort_t)type, /* IRE type */ 7171 ipif_arg, 7172 0, 7173 0, 7174 0, 7175 flags, 7176 &gw_ire->ire_uinfo, /* Inherit ULP info from gw */ 7177 gc, /* security attribute */ 7178 NULL, 7179 ipst); 7180 7181 /* 7182 * The ire holds a reference to the 'gc' and the 'gc' holds a 7183 * reference to the 'gcgrp'. We can now release the extra reference 7184 * the 'gcgrp' acquired in the gcgrp_lookup, if it was not used. 7185 */ 7186 if (gcgrp_xtraref) 7187 GCGRP_REFRELE(gcgrp); 7188 if (ire == NULL) { 7189 if (gc != NULL) 7190 GC_REFRELE(gc); 7191 ire_refrele(gw_ire); 7192 return (ENOMEM); 7193 } 7194 7195 /* 7196 * POLICY: should we allow an RTF_HOST with address INADDR_ANY? 7197 * SUN/OS socket stuff does but do we really want to allow 0.0.0.0? 7198 */ 7199 7200 /* Add the new IRE. */ 7201 error = ire_add(&ire, q, mp, func, B_FALSE); 7202 if (error != 0) { 7203 /* 7204 * In the result of failure, ire_add() will have already 7205 * deleted the ire in question, so there is no need to 7206 * do that here. 7207 */ 7208 ire_refrele(gw_ire); 7209 return (error); 7210 } 7211 7212 if (flags & RTF_MULTIRT) { 7213 /* 7214 * Invoke the CGTP (multirouting) filtering module 7215 * to add the dst address in the filtering database. 7216 * Replicated inbound packets coming from that address 7217 * will be filtered to discard the duplicates. 7218 * It is not necessary to call the CGTP filter hook 7219 * when the dst address is a broadcast or multicast, 7220 * because an IP source address cannot be a broadcast 7221 * or a multicast. 7222 */ 7223 ire_t *ire_dst = ire_ctable_lookup(ire->ire_addr, 0, 7224 IRE_BROADCAST, NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 7225 if (ire_dst != NULL) { 7226 ip_cgtp_bcast_add(ire, ire_dst, ipst); 7227 ire_refrele(ire_dst); 7228 goto save_ire; 7229 } 7230 if (ipst->ips_ip_cgtp_filter_ops != NULL && 7231 !CLASSD(ire->ire_addr)) { 7232 int res = ipst->ips_ip_cgtp_filter_ops->cfo_add_dest_v4( 7233 ipst->ips_netstack->netstack_stackid, 7234 ire->ire_addr, 7235 ire->ire_gateway_addr, 7236 ire->ire_src_addr, 7237 gw_ire->ire_src_addr); 7238 if (res != 0) { 7239 ire_refrele(gw_ire); 7240 ire_delete(ire); 7241 return (res); 7242 } 7243 } 7244 } 7245 7246 /* 7247 * Now that the prefix IRE entry has been created, delete any 7248 * existing gateway IRE cache entries as well as any IRE caches 7249 * using the gateway, and force them to be created through 7250 * ip_newroute. 7251 */ 7252 if (gc != NULL) { 7253 ASSERT(gcgrp != NULL); 7254 ire_clookup_delete_cache_gw(gw_addr, ALL_ZONES, ipst); 7255 } 7256 7257 save_ire: 7258 if (gw_ire != NULL) { 7259 ire_refrele(gw_ire); 7260 } 7261 if (ipif != NULL) { 7262 /* 7263 * Save enough information so that we can recreate the IRE if 7264 * the interface goes down and then up. The metrics associated 7265 * with the route will be saved as well when rts_setmetrics() is 7266 * called after the IRE has been created. In the case where 7267 * memory cannot be allocated, none of this information will be 7268 * saved. 7269 */ 7270 ipif_save_ire(ipif, ire); 7271 } 7272 if (ioctl_msg) 7273 ip_rts_rtmsg(RTM_OLDADD, ire, 0, ipst); 7274 if (ire_arg != NULL) { 7275 /* 7276 * Store the ire that was successfully added into where ire_arg 7277 * points to so that callers don't have to look it up 7278 * themselves (but they are responsible for ire_refrele()ing 7279 * the ire when they are finished with it). 7280 */ 7281 *ire_arg = ire; 7282 } else { 7283 ire_refrele(ire); /* Held in ire_add */ 7284 } 7285 if (ipif_refheld) 7286 ipif_refrele(ipif); 7287 return (0); 7288 } 7289 7290 /* 7291 * ip_rt_delete is called to delete an IPv4 route. 7292 * ipif_arg is passed in to associate it with the correct interface. 7293 * We may need to restart this operation if the ipif cannot be looked up 7294 * due to an exclusive operation that is currently in progress. The restart 7295 * entry point is specified by 'func' 7296 */ 7297 /* ARGSUSED4 */ 7298 int 7299 ip_rt_delete(ipaddr_t dst_addr, ipaddr_t mask, ipaddr_t gw_addr, 7300 uint_t rtm_addrs, int flags, ipif_t *ipif_arg, boolean_t ioctl_msg, 7301 queue_t *q, mblk_t *mp, ipsq_func_t func, ip_stack_t *ipst) 7302 { 7303 ire_t *ire = NULL; 7304 ipif_t *ipif; 7305 boolean_t ipif_refheld = B_FALSE; 7306 uint_t type; 7307 uint_t match_flags = MATCH_IRE_TYPE; 7308 int err = 0; 7309 7310 ip1dbg(("ip_rt_delete:")); 7311 /* 7312 * If this is the case of RTF_HOST being set, then we set the netmask 7313 * to all ones. Otherwise, we use the netmask if one was supplied. 7314 */ 7315 if (flags & RTF_HOST) { 7316 mask = IP_HOST_MASK; 7317 match_flags |= MATCH_IRE_MASK; 7318 } else if (rtm_addrs & RTA_NETMASK) { 7319 match_flags |= MATCH_IRE_MASK; 7320 } 7321 7322 /* 7323 * Note that RTF_GATEWAY is never set on a delete, therefore 7324 * we check if the gateway address is one of our interfaces first, 7325 * and fall back on RTF_GATEWAY routes. 7326 * 7327 * This makes it possible to delete an original 7328 * IRE_IF_NORESOLVER/IRE_IF_RESOLVER - consistent with SunOS 4.1. 7329 * 7330 * As the interface index specified with the RTA_IFP sockaddr is the 7331 * same for all ipif's off of an ill, the matching logic below uses 7332 * MATCH_IRE_ILL if such an index was specified. This means a route 7333 * sharing the same prefix and interface index as the the route 7334 * intended to be deleted might be deleted instead if a RTA_IFP sockaddr 7335 * is specified in the request. 7336 * 7337 * On the other hand, since the gateway address will usually be 7338 * different for each ipif on the system, the matching logic 7339 * uses MATCH_IRE_IPIF in the case of a traditional interface 7340 * route. This means that interface routes for the same prefix can be 7341 * uniquely identified if they belong to distinct ipif's and if a 7342 * RTA_IFP sockaddr is not present. 7343 * 7344 * For more detail on specifying routes by gateway address and by 7345 * interface index, see the comments in ip_rt_add(). 7346 */ 7347 ipif = ipif_lookup_interface(gw_addr, dst_addr, q, mp, func, &err, 7348 ipst); 7349 if (ipif != NULL) 7350 ipif_refheld = B_TRUE; 7351 else if (err == EINPROGRESS) 7352 return (err); 7353 else 7354 err = 0; 7355 if (ipif != NULL) { 7356 if (ipif_arg != NULL) { 7357 if (ipif_refheld) { 7358 ipif_refrele(ipif); 7359 ipif_refheld = B_FALSE; 7360 } 7361 ipif = ipif_arg; 7362 match_flags |= MATCH_IRE_ILL; 7363 } else { 7364 match_flags |= MATCH_IRE_IPIF; 7365 } 7366 if (ipif->ipif_ire_type == IRE_LOOPBACK) { 7367 ire = ire_ctable_lookup(dst_addr, 0, IRE_LOOPBACK, ipif, 7368 ALL_ZONES, NULL, match_flags, ipst); 7369 } 7370 if (ire == NULL) { 7371 ire = ire_ftable_lookup(dst_addr, mask, 0, 7372 IRE_INTERFACE, ipif, NULL, ALL_ZONES, 0, NULL, 7373 match_flags, ipst); 7374 } 7375 } 7376 7377 if (ire == NULL) { 7378 /* 7379 * At this point, the gateway address is not one of our own 7380 * addresses or a matching interface route was not found. We 7381 * set the IRE type to lookup based on whether 7382 * this is a host route, a default route or just a prefix. 7383 * 7384 * If an ipif_arg was passed in, then the lookup is based on an 7385 * interface index so MATCH_IRE_ILL is added to match_flags. 7386 * In any case, MATCH_IRE_IPIF is cleared and MATCH_IRE_GW is 7387 * set as the route being looked up is not a traditional 7388 * interface route. 7389 */ 7390 match_flags &= ~MATCH_IRE_IPIF; 7391 match_flags |= MATCH_IRE_GW; 7392 if (ipif_arg != NULL) 7393 match_flags |= MATCH_IRE_ILL; 7394 if (mask == IP_HOST_MASK) 7395 type = IRE_HOST; 7396 else if (mask == 0) 7397 type = IRE_DEFAULT; 7398 else 7399 type = IRE_PREFIX; 7400 ire = ire_ftable_lookup(dst_addr, mask, gw_addr, type, ipif_arg, 7401 NULL, ALL_ZONES, 0, NULL, match_flags, ipst); 7402 } 7403 7404 if (ipif_refheld) 7405 ipif_refrele(ipif); 7406 7407 /* ipif is not refheld anymore */ 7408 if (ire == NULL) 7409 return (ESRCH); 7410 7411 if (ire->ire_flags & RTF_MULTIRT) { 7412 /* 7413 * Invoke the CGTP (multirouting) filtering module 7414 * to remove the dst address from the filtering database. 7415 * Packets coming from that address will no longer be 7416 * filtered to remove duplicates. 7417 */ 7418 if (ipst->ips_ip_cgtp_filter_ops != NULL) { 7419 err = ipst->ips_ip_cgtp_filter_ops->cfo_del_dest_v4( 7420 ipst->ips_netstack->netstack_stackid, 7421 ire->ire_addr, ire->ire_gateway_addr); 7422 } 7423 ip_cgtp_bcast_delete(ire, ipst); 7424 } 7425 7426 ipif = ire->ire_ipif; 7427 if (ipif != NULL) 7428 ipif_remove_ire(ipif, ire); 7429 if (ioctl_msg) 7430 ip_rts_rtmsg(RTM_OLDDEL, ire, 0, ipst); 7431 ire_delete(ire); 7432 ire_refrele(ire); 7433 return (err); 7434 } 7435 7436 /* 7437 * ip_siocaddrt is called to complete processing of an SIOCADDRT IOCTL. 7438 */ 7439 /* ARGSUSED */ 7440 int 7441 ip_siocaddrt(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, 7442 ip_ioctl_cmd_t *ipip, void *dummy_if_req) 7443 { 7444 ipaddr_t dst_addr; 7445 ipaddr_t gw_addr; 7446 ipaddr_t mask; 7447 int error = 0; 7448 mblk_t *mp1; 7449 struct rtentry *rt; 7450 ipif_t *ipif = NULL; 7451 ip_stack_t *ipst; 7452 7453 ASSERT(q->q_next == NULL); 7454 ipst = CONNQ_TO_IPST(q); 7455 7456 ip1dbg(("ip_siocaddrt:")); 7457 /* Existence of mp1 verified in ip_wput_nondata */ 7458 mp1 = mp->b_cont->b_cont; 7459 rt = (struct rtentry *)mp1->b_rptr; 7460 7461 dst_addr = ((sin_t *)&rt->rt_dst)->sin_addr.s_addr; 7462 gw_addr = ((sin_t *)&rt->rt_gateway)->sin_addr.s_addr; 7463 7464 /* 7465 * If the RTF_HOST flag is on, this is a request to assign a gateway 7466 * to a particular host address. In this case, we set the netmask to 7467 * all ones for the particular destination address. Otherwise, 7468 * determine the netmask to be used based on dst_addr and the interfaces 7469 * in use. 7470 */ 7471 if (rt->rt_flags & RTF_HOST) { 7472 mask = IP_HOST_MASK; 7473 } else { 7474 /* 7475 * Note that ip_subnet_mask returns a zero mask in the case of 7476 * default (an all-zeroes address). 7477 */ 7478 mask = ip_subnet_mask(dst_addr, &ipif, ipst); 7479 } 7480 7481 error = ip_rt_add(dst_addr, mask, gw_addr, 0, rt->rt_flags, NULL, NULL, 7482 B_TRUE, q, mp, ip_process_ioctl, NULL, ipst); 7483 if (ipif != NULL) 7484 ipif_refrele(ipif); 7485 return (error); 7486 } 7487 7488 /* 7489 * ip_siocdelrt is called to complete processing of an SIOCDELRT IOCTL. 7490 */ 7491 /* ARGSUSED */ 7492 int 7493 ip_siocdelrt(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, 7494 ip_ioctl_cmd_t *ipip, void *dummy_if_req) 7495 { 7496 ipaddr_t dst_addr; 7497 ipaddr_t gw_addr; 7498 ipaddr_t mask; 7499 int error; 7500 mblk_t *mp1; 7501 struct rtentry *rt; 7502 ipif_t *ipif = NULL; 7503 ip_stack_t *ipst; 7504 7505 ASSERT(q->q_next == NULL); 7506 ipst = CONNQ_TO_IPST(q); 7507 7508 ip1dbg(("ip_siocdelrt:")); 7509 /* Existence of mp1 verified in ip_wput_nondata */ 7510 mp1 = mp->b_cont->b_cont; 7511 rt = (struct rtentry *)mp1->b_rptr; 7512 7513 dst_addr = ((sin_t *)&rt->rt_dst)->sin_addr.s_addr; 7514 gw_addr = ((sin_t *)&rt->rt_gateway)->sin_addr.s_addr; 7515 7516 /* 7517 * If the RTF_HOST flag is on, this is a request to delete a gateway 7518 * to a particular host address. In this case, we set the netmask to 7519 * all ones for the particular destination address. Otherwise, 7520 * determine the netmask to be used based on dst_addr and the interfaces 7521 * in use. 7522 */ 7523 if (rt->rt_flags & RTF_HOST) { 7524 mask = IP_HOST_MASK; 7525 } else { 7526 /* 7527 * Note that ip_subnet_mask returns a zero mask in the case of 7528 * default (an all-zeroes address). 7529 */ 7530 mask = ip_subnet_mask(dst_addr, &ipif, ipst); 7531 } 7532 7533 error = ip_rt_delete(dst_addr, mask, gw_addr, 7534 RTA_DST | RTA_GATEWAY | RTA_NETMASK, rt->rt_flags, NULL, B_TRUE, q, 7535 mp, ip_process_ioctl, ipst); 7536 if (ipif != NULL) 7537 ipif_refrele(ipif); 7538 return (error); 7539 } 7540 7541 /* 7542 * Enqueue the mp onto the ipsq, chained by b_next. 7543 * b_prev stores the function to be executed later, and b_queue the queue 7544 * where this mp originated. 7545 */ 7546 void 7547 ipsq_enq(ipsq_t *ipsq, queue_t *q, mblk_t *mp, ipsq_func_t func, int type, 7548 ill_t *pending_ill) 7549 { 7550 conn_t *connp = NULL; 7551 7552 ASSERT(MUTEX_HELD(&ipsq->ipsq_lock)); 7553 ASSERT(func != NULL); 7554 7555 mp->b_queue = q; 7556 mp->b_prev = (void *)func; 7557 mp->b_next = NULL; 7558 7559 switch (type) { 7560 case CUR_OP: 7561 if (ipsq->ipsq_mptail != NULL) { 7562 ASSERT(ipsq->ipsq_mphead != NULL); 7563 ipsq->ipsq_mptail->b_next = mp; 7564 } else { 7565 ASSERT(ipsq->ipsq_mphead == NULL); 7566 ipsq->ipsq_mphead = mp; 7567 } 7568 ipsq->ipsq_mptail = mp; 7569 break; 7570 7571 case NEW_OP: 7572 if (ipsq->ipsq_xopq_mptail != NULL) { 7573 ASSERT(ipsq->ipsq_xopq_mphead != NULL); 7574 ipsq->ipsq_xopq_mptail->b_next = mp; 7575 } else { 7576 ASSERT(ipsq->ipsq_xopq_mphead == NULL); 7577 ipsq->ipsq_xopq_mphead = mp; 7578 } 7579 ipsq->ipsq_xopq_mptail = mp; 7580 break; 7581 default: 7582 cmn_err(CE_PANIC, "ipsq_enq %d type \n", type); 7583 } 7584 7585 if (CONN_Q(q) && pending_ill != NULL) { 7586 connp = Q_TO_CONN(q); 7587 7588 ASSERT(MUTEX_HELD(&connp->conn_lock)); 7589 connp->conn_oper_pending_ill = pending_ill; 7590 } 7591 } 7592 7593 /* 7594 * Return the mp at the head of the ipsq. After emptying the ipsq 7595 * look at the next ioctl, if this ioctl is complete. Otherwise 7596 * return, we will resume when we complete the current ioctl. 7597 * The current ioctl will wait till it gets a response from the 7598 * driver below. 7599 */ 7600 static mblk_t * 7601 ipsq_dq(ipsq_t *ipsq) 7602 { 7603 mblk_t *mp; 7604 7605 ASSERT(MUTEX_HELD(&ipsq->ipsq_lock)); 7606 7607 mp = ipsq->ipsq_mphead; 7608 if (mp != NULL) { 7609 ipsq->ipsq_mphead = mp->b_next; 7610 if (ipsq->ipsq_mphead == NULL) 7611 ipsq->ipsq_mptail = NULL; 7612 mp->b_next = NULL; 7613 return (mp); 7614 } 7615 if (ipsq->ipsq_current_ipif != NULL) 7616 return (NULL); 7617 mp = ipsq->ipsq_xopq_mphead; 7618 if (mp != NULL) { 7619 ipsq->ipsq_xopq_mphead = mp->b_next; 7620 if (ipsq->ipsq_xopq_mphead == NULL) 7621 ipsq->ipsq_xopq_mptail = NULL; 7622 mp->b_next = NULL; 7623 return (mp); 7624 } 7625 return (NULL); 7626 } 7627 7628 /* 7629 * Enter the ipsq corresponding to ill, by waiting synchronously till 7630 * we can enter the ipsq exclusively. Unless 'force' is used, the ipsq 7631 * will have to drain completely before ipsq_enter returns success. 7632 * ipsq_current_ipif will be set if some exclusive ioctl is in progress, 7633 * and the ipsq_exit logic will start the next enqueued ioctl after 7634 * completion of the current ioctl. If 'force' is used, we don't wait 7635 * for the enqueued ioctls. This is needed when a conn_close wants to 7636 * enter the ipsq and abort an ioctl that is somehow stuck. Unplumb 7637 * of an ill can also use this option. But we dont' use it currently. 7638 */ 7639 #define ENTER_SQ_WAIT_TICKS 100 7640 boolean_t 7641 ipsq_enter(ill_t *ill, boolean_t force) 7642 { 7643 ipsq_t *ipsq; 7644 boolean_t waited_enough = B_FALSE; 7645 7646 /* 7647 * Holding the ill_lock prevents <ill-ipsq> assocs from changing. 7648 * Since the <ill-ipsq> assocs could change while we wait for the 7649 * writer, it is easier to wait on a fixed global rather than try to 7650 * cv_wait on a changing ipsq. 7651 */ 7652 mutex_enter(&ill->ill_lock); 7653 for (;;) { 7654 if (ill->ill_state_flags & ILL_CONDEMNED) { 7655 mutex_exit(&ill->ill_lock); 7656 return (B_FALSE); 7657 } 7658 7659 ipsq = ill->ill_phyint->phyint_ipsq; 7660 mutex_enter(&ipsq->ipsq_lock); 7661 if (ipsq->ipsq_writer == NULL && 7662 (ipsq->ipsq_current_ipif == NULL || waited_enough)) { 7663 break; 7664 } else if (ipsq->ipsq_writer != NULL) { 7665 mutex_exit(&ipsq->ipsq_lock); 7666 cv_wait(&ill->ill_cv, &ill->ill_lock); 7667 } else { 7668 mutex_exit(&ipsq->ipsq_lock); 7669 if (force) { 7670 (void) cv_timedwait(&ill->ill_cv, 7671 &ill->ill_lock, 7672 lbolt + ENTER_SQ_WAIT_TICKS); 7673 waited_enough = B_TRUE; 7674 continue; 7675 } else { 7676 cv_wait(&ill->ill_cv, &ill->ill_lock); 7677 } 7678 } 7679 } 7680 7681 ASSERT(ipsq->ipsq_mphead == NULL && ipsq->ipsq_mptail == NULL); 7682 ASSERT(ipsq->ipsq_reentry_cnt == 0); 7683 ipsq->ipsq_writer = curthread; 7684 ipsq->ipsq_reentry_cnt++; 7685 #ifdef DEBUG 7686 ipsq->ipsq_depth = getpcstack(ipsq->ipsq_stack, IPSQ_STACK_DEPTH); 7687 #endif 7688 mutex_exit(&ipsq->ipsq_lock); 7689 mutex_exit(&ill->ill_lock); 7690 return (B_TRUE); 7691 } 7692 7693 /* 7694 * The ipsq_t (ipsq) is the synchronization data structure used to serialize 7695 * certain critical operations like plumbing (i.e. most set ioctls), 7696 * multicast joins, igmp/mld timers, IPMP operations etc. On a non-IPMP 7697 * system there is 1 ipsq per phyint. On an IPMP system there is 1 ipsq per 7698 * IPMP group. The ipsq serializes exclusive ioctls issued by applications 7699 * on a per ipsq basis in ipsq_xopq_mphead. It also protects against multiple 7700 * threads executing in the ipsq. Responses from the driver pertain to the 7701 * current ioctl (say a DL_BIND_ACK in response to a DL_BIND_REQUEST initiated 7702 * as part of bringing up the interface) and are enqueued in ipsq_mphead. 7703 * 7704 * If a thread does not want to reenter the ipsq when it is already writer, 7705 * it must make sure that the specified reentry point to be called later 7706 * when the ipsq is empty, nor any code path starting from the specified reentry 7707 * point must never ever try to enter the ipsq again. Otherwise it can lead 7708 * to an infinite loop. The reentry point ip_rput_dlpi_writer is an example. 7709 * When the thread that is currently exclusive finishes, it (ipsq_exit) 7710 * dequeues the requests waiting to become exclusive in ipsq_mphead and calls 7711 * the reentry point. When the list at ipsq_mphead becomes empty ipsq_exit 7712 * proceeds to dequeue the next ioctl in ipsq_xopq_mphead and start the next 7713 * ioctl if the current ioctl has completed. If the current ioctl is still 7714 * in progress it simply returns. The current ioctl could be waiting for 7715 * a response from another module (arp_ or the driver or could be waiting for 7716 * the ipif/ill/ire refcnts to drop to zero. In such a case the ipsq_pending_mp 7717 * and ipsq_pending_ipif are set. ipsq_current_ipif is set throughout the 7718 * execution of the ioctl and ipsq_exit does not start the next ioctl unless 7719 * ipsq_current_ipif is clear which happens only on ioctl completion. 7720 */ 7721 7722 /* 7723 * Try to enter the ipsq exclusively, corresponding to ipif or ill. (only 1 of 7724 * ipif or ill can be specified). The caller ensures ipif or ill is valid by 7725 * ref-holding it if necessary. If the ipsq cannot be entered, the mp is queued 7726 * completion. 7727 */ 7728 ipsq_t * 7729 ipsq_try_enter(ipif_t *ipif, ill_t *ill, queue_t *q, mblk_t *mp, 7730 ipsq_func_t func, int type, boolean_t reentry_ok) 7731 { 7732 ipsq_t *ipsq; 7733 7734 /* Only 1 of ipif or ill can be specified */ 7735 ASSERT((ipif != NULL) ^ (ill != NULL)); 7736 if (ipif != NULL) 7737 ill = ipif->ipif_ill; 7738 7739 /* 7740 * lock ordering ill_g_lock -> conn_lock -> ill_lock -> ipsq_lock 7741 * ipsq of an ill can't change when ill_lock is held. 7742 */ 7743 GRAB_CONN_LOCK(q); 7744 mutex_enter(&ill->ill_lock); 7745 ipsq = ill->ill_phyint->phyint_ipsq; 7746 mutex_enter(&ipsq->ipsq_lock); 7747 7748 /* 7749 * 1. Enter the ipsq if we are already writer and reentry is ok. 7750 * (Note: If the caller does not specify reentry_ok then neither 7751 * 'func' nor any of its callees must ever attempt to enter the ipsq 7752 * again. Otherwise it can lead to an infinite loop 7753 * 2. Enter the ipsq if there is no current writer and this attempted 7754 * entry is part of the current ioctl or operation 7755 * 3. Enter the ipsq if there is no current writer and this is a new 7756 * ioctl (or operation) and the ioctl (or operation) queue is 7757 * empty and there is no ioctl (or operation) currently in progress 7758 */ 7759 if ((ipsq->ipsq_writer == NULL && ((type == CUR_OP) || 7760 (type == NEW_OP && ipsq->ipsq_xopq_mphead == NULL && 7761 ipsq->ipsq_current_ipif == NULL))) || 7762 (ipsq->ipsq_writer == curthread && reentry_ok)) { 7763 /* Success. */ 7764 ipsq->ipsq_reentry_cnt++; 7765 ipsq->ipsq_writer = curthread; 7766 mutex_exit(&ipsq->ipsq_lock); 7767 mutex_exit(&ill->ill_lock); 7768 RELEASE_CONN_LOCK(q); 7769 #ifdef DEBUG 7770 ipsq->ipsq_depth = getpcstack(ipsq->ipsq_stack, 7771 IPSQ_STACK_DEPTH); 7772 #endif 7773 return (ipsq); 7774 } 7775 7776 ipsq_enq(ipsq, q, mp, func, type, ill); 7777 7778 mutex_exit(&ipsq->ipsq_lock); 7779 mutex_exit(&ill->ill_lock); 7780 RELEASE_CONN_LOCK(q); 7781 return (NULL); 7782 } 7783 7784 /* 7785 * Try to enter the IPSQ corresponding to `ill' as writer. The caller ensures 7786 * ill is valid by refholding it if necessary; we will refrele. If the IPSQ 7787 * cannot be entered, the mp is queued for completion. 7788 */ 7789 void 7790 qwriter_ip(ill_t *ill, queue_t *q, mblk_t *mp, ipsq_func_t func, int type, 7791 boolean_t reentry_ok) 7792 { 7793 ipsq_t *ipsq; 7794 7795 ipsq = ipsq_try_enter(NULL, ill, q, mp, func, type, reentry_ok); 7796 7797 /* 7798 * Drop the caller's refhold on the ill. This is safe since we either 7799 * entered the IPSQ (and thus are exclusive), or failed to enter the 7800 * IPSQ, in which case we return without accessing ill anymore. This 7801 * is needed because func needs to see the correct refcount. 7802 * e.g. removeif can work only then. 7803 */ 7804 ill_refrele(ill); 7805 if (ipsq != NULL) { 7806 (*func)(ipsq, q, mp, NULL); 7807 ipsq_exit(ipsq); 7808 } 7809 } 7810 7811 /* 7812 * If there are more than ILL_GRP_CNT ills in a group, 7813 * we use kmem alloc'd buffers, else use the stack 7814 */ 7815 #define ILL_GRP_CNT 14 7816 /* 7817 * Drain the ipsq, if there are messages on it, and then leave the ipsq. 7818 * Called by a thread that is currently exclusive on this ipsq. 7819 */ 7820 void 7821 ipsq_exit(ipsq_t *ipsq) 7822 { 7823 queue_t *q; 7824 mblk_t *mp; 7825 ipsq_func_t func; 7826 int next; 7827 ill_t **ill_list = NULL; 7828 size_t ill_list_size = 0; 7829 int cnt = 0; 7830 boolean_t need_ipsq_free = B_FALSE; 7831 ip_stack_t *ipst = ipsq->ipsq_ipst; 7832 7833 ASSERT(IAM_WRITER_IPSQ(ipsq)); 7834 mutex_enter(&ipsq->ipsq_lock); 7835 ASSERT(ipsq->ipsq_reentry_cnt >= 1); 7836 if (ipsq->ipsq_reentry_cnt != 1) { 7837 ipsq->ipsq_reentry_cnt--; 7838 mutex_exit(&ipsq->ipsq_lock); 7839 return; 7840 } 7841 7842 mp = ipsq_dq(ipsq); 7843 while (mp != NULL) { 7844 again: 7845 mutex_exit(&ipsq->ipsq_lock); 7846 func = (ipsq_func_t)mp->b_prev; 7847 q = (queue_t *)mp->b_queue; 7848 mp->b_prev = NULL; 7849 mp->b_queue = NULL; 7850 7851 /* 7852 * If 'q' is an conn queue, it is valid, since we did a 7853 * a refhold on the connp, at the start of the ioctl. 7854 * If 'q' is an ill queue, it is valid, since close of an 7855 * ill will clean up the 'ipsq'. 7856 */ 7857 (*func)(ipsq, q, mp, NULL); 7858 7859 mutex_enter(&ipsq->ipsq_lock); 7860 mp = ipsq_dq(ipsq); 7861 } 7862 7863 mutex_exit(&ipsq->ipsq_lock); 7864 7865 /* 7866 * Need to grab the locks in the right order. Need to 7867 * atomically check (under ipsq_lock) that there are no 7868 * messages before relinquishing the ipsq. Also need to 7869 * atomically wakeup waiters on ill_cv while holding ill_lock. 7870 * Holding ill_g_lock ensures that ipsq list of ills is stable. 7871 * If we need to call ill_split_ipsq and change <ill-ipsq> we need 7872 * to grab ill_g_lock as writer. 7873 */ 7874 rw_enter(&ipst->ips_ill_g_lock, 7875 ipsq->ipsq_split ? RW_WRITER : RW_READER); 7876 7877 /* ipsq_refs can't change while ill_g_lock is held as reader */ 7878 if (ipsq->ipsq_refs != 0) { 7879 /* At most 2 ills v4/v6 per phyint */ 7880 cnt = ipsq->ipsq_refs << 1; 7881 ill_list_size = cnt * sizeof (ill_t *); 7882 /* 7883 * If memory allocation fails, we will do the split 7884 * the next time ipsq_exit is called for whatever reason. 7885 * As long as the ipsq_split flag is set the need to 7886 * split is remembered. 7887 */ 7888 ill_list = kmem_zalloc(ill_list_size, KM_NOSLEEP); 7889 if (ill_list != NULL) 7890 cnt = ill_lock_ipsq_ills(ipsq, ill_list, cnt); 7891 } 7892 mutex_enter(&ipsq->ipsq_lock); 7893 mp = ipsq_dq(ipsq); 7894 if (mp != NULL) { 7895 /* oops, some message has landed up, we can't get out */ 7896 if (ill_list != NULL) 7897 ill_unlock_ills(ill_list, cnt); 7898 rw_exit(&ipst->ips_ill_g_lock); 7899 if (ill_list != NULL) 7900 kmem_free(ill_list, ill_list_size); 7901 ill_list = NULL; 7902 ill_list_size = 0; 7903 cnt = 0; 7904 goto again; 7905 } 7906 7907 /* 7908 * Split only if no ioctl is pending and if memory alloc succeeded 7909 * above. 7910 */ 7911 if (ipsq->ipsq_split && ipsq->ipsq_current_ipif == NULL && 7912 ill_list != NULL) { 7913 /* 7914 * No new ill can join this ipsq since we are holding the 7915 * ill_g_lock. Hence ill_split_ipsq can safely traverse the 7916 * ipsq. ill_split_ipsq may fail due to memory shortage. 7917 * If so we will retry on the next ipsq_exit. 7918 */ 7919 ipsq->ipsq_split = ill_split_ipsq(ipsq); 7920 } 7921 7922 /* 7923 * We are holding the ipsq lock, hence no new messages can 7924 * land up on the ipsq, and there are no messages currently. 7925 * Now safe to get out. Wake up waiters and relinquish ipsq 7926 * atomically while holding ill locks. 7927 */ 7928 ipsq->ipsq_writer = NULL; 7929 ipsq->ipsq_reentry_cnt--; 7930 ASSERT(ipsq->ipsq_reentry_cnt == 0); 7931 #ifdef DEBUG 7932 ipsq->ipsq_depth = 0; 7933 #endif 7934 mutex_exit(&ipsq->ipsq_lock); 7935 /* 7936 * For IPMP this should wake up all ills in this ipsq. 7937 * We need to hold the ill_lock while waking up waiters to 7938 * avoid missed wakeups. But there is no need to acquire all 7939 * the ill locks and then wakeup. If we have not acquired all 7940 * the locks (due to memory failure above) ill_signal_ipsq_ills 7941 * wakes up ills one at a time after getting the right ill_lock 7942 */ 7943 ill_signal_ipsq_ills(ipsq, ill_list != NULL); 7944 if (ill_list != NULL) 7945 ill_unlock_ills(ill_list, cnt); 7946 if (ipsq->ipsq_refs == 0) 7947 need_ipsq_free = B_TRUE; 7948 rw_exit(&ipst->ips_ill_g_lock); 7949 if (ill_list != 0) 7950 kmem_free(ill_list, ill_list_size); 7951 7952 if (need_ipsq_free) { 7953 /* 7954 * Free the ipsq. ipsq_refs can't increase because ipsq can't be 7955 * looked up. ipsq can be looked up only thru ill or phyint 7956 * and there are no ills/phyint on this ipsq. 7957 */ 7958 ipsq_delete(ipsq); 7959 } 7960 7961 /* 7962 * Now that we're outside the IPSQ, start any IGMP/MLD timers. We 7963 * can't start these inside the IPSQ since e.g. igmp_start_timers() -> 7964 * untimeout() (inside the IPSQ, waiting for an executing timeout to 7965 * finish) could deadlock with igmp_timeout_handler() -> ipsq_enter() 7966 * (executing the timeout, waiting to get inside the IPSQ). 7967 * 7968 * However, there is one exception to the above: if this thread *is* 7969 * the IGMP/MLD timeout handler thread, then we must not start its 7970 * timer until the current handler is done. 7971 */ 7972 mutex_enter(&ipst->ips_igmp_timer_lock); 7973 if (curthread != ipst->ips_igmp_timer_thread) { 7974 next = ipst->ips_igmp_deferred_next; 7975 ipst->ips_igmp_deferred_next = INFINITY; 7976 mutex_exit(&ipst->ips_igmp_timer_lock); 7977 7978 if (next != INFINITY) 7979 igmp_start_timers(next, ipst); 7980 } else { 7981 mutex_exit(&ipst->ips_igmp_timer_lock); 7982 } 7983 7984 mutex_enter(&ipst->ips_mld_timer_lock); 7985 if (curthread != ipst->ips_mld_timer_thread) { 7986 next = ipst->ips_mld_deferred_next; 7987 ipst->ips_mld_deferred_next = INFINITY; 7988 mutex_exit(&ipst->ips_mld_timer_lock); 7989 7990 if (next != INFINITY) 7991 mld_start_timers(next, ipst); 7992 } else { 7993 mutex_exit(&ipst->ips_mld_timer_lock); 7994 } 7995 } 7996 7997 /* 7998 * Start the current exclusive operation on `ipsq'; associate it with `ipif' 7999 * and `ioccmd'. 8000 */ 8001 void 8002 ipsq_current_start(ipsq_t *ipsq, ipif_t *ipif, int ioccmd) 8003 { 8004 ASSERT(IAM_WRITER_IPSQ(ipsq)); 8005 8006 mutex_enter(&ipsq->ipsq_lock); 8007 ASSERT(ipsq->ipsq_current_ipif == NULL); 8008 ASSERT(ipsq->ipsq_current_ioctl == 0); 8009 ipsq->ipsq_current_done = B_FALSE; 8010 ipsq->ipsq_current_ipif = ipif; 8011 ipsq->ipsq_current_ioctl = ioccmd; 8012 mutex_exit(&ipsq->ipsq_lock); 8013 } 8014 8015 /* 8016 * Finish the current exclusive operation on `ipsq'. Usually, this will allow 8017 * the next exclusive operation to begin once we ipsq_exit(). However, if 8018 * pending DLPI operations remain, then we will wait for the queue to drain 8019 * before allowing the next exclusive operation to begin. This ensures that 8020 * DLPI operations from one exclusive operation are never improperly processed 8021 * as part of a subsequent exclusive operation. 8022 */ 8023 void 8024 ipsq_current_finish(ipsq_t *ipsq) 8025 { 8026 ipif_t *ipif = ipsq->ipsq_current_ipif; 8027 t_uscalar_t dlpi_pending = DL_PRIM_INVAL; 8028 8029 ASSERT(IAM_WRITER_IPSQ(ipsq)); 8030 8031 /* 8032 * For SIOCSLIFREMOVEIF, the ipif has been already been blown away 8033 * (but in that case, IPIF_CHANGING will already be clear and no 8034 * pending DLPI messages can remain). 8035 */ 8036 if (ipsq->ipsq_current_ioctl != SIOCLIFREMOVEIF) { 8037 ill_t *ill = ipif->ipif_ill; 8038 8039 mutex_enter(&ill->ill_lock); 8040 dlpi_pending = ill->ill_dlpi_pending; 8041 ipif->ipif_state_flags &= ~IPIF_CHANGING; 8042 /* Send any queued event */ 8043 ill_nic_info_dispatch(ill); 8044 mutex_exit(&ill->ill_lock); 8045 } 8046 8047 mutex_enter(&ipsq->ipsq_lock); 8048 ipsq->ipsq_current_ioctl = 0; 8049 ipsq->ipsq_current_done = B_TRUE; 8050 if (dlpi_pending == DL_PRIM_INVAL) 8051 ipsq->ipsq_current_ipif = NULL; 8052 mutex_exit(&ipsq->ipsq_lock); 8053 } 8054 8055 /* 8056 * The ill is closing. Flush all messages on the ipsq that originated 8057 * from this ill. Usually there wont' be any messages on the ipsq_xopq_mphead 8058 * for this ill since ipsq_enter could not have entered until then. 8059 * New messages can't be queued since the CONDEMNED flag is set. 8060 */ 8061 static void 8062 ipsq_flush(ill_t *ill) 8063 { 8064 queue_t *q; 8065 mblk_t *prev; 8066 mblk_t *mp; 8067 mblk_t *mp_next; 8068 ipsq_t *ipsq; 8069 8070 ASSERT(IAM_WRITER_ILL(ill)); 8071 ipsq = ill->ill_phyint->phyint_ipsq; 8072 /* 8073 * Flush any messages sent up by the driver. 8074 */ 8075 mutex_enter(&ipsq->ipsq_lock); 8076 for (prev = NULL, mp = ipsq->ipsq_mphead; mp != NULL; mp = mp_next) { 8077 mp_next = mp->b_next; 8078 q = mp->b_queue; 8079 if (q == ill->ill_rq || q == ill->ill_wq) { 8080 /* Remove the mp from the ipsq */ 8081 if (prev == NULL) 8082 ipsq->ipsq_mphead = mp->b_next; 8083 else 8084 prev->b_next = mp->b_next; 8085 if (ipsq->ipsq_mptail == mp) { 8086 ASSERT(mp_next == NULL); 8087 ipsq->ipsq_mptail = prev; 8088 } 8089 inet_freemsg(mp); 8090 } else { 8091 prev = mp; 8092 } 8093 } 8094 mutex_exit(&ipsq->ipsq_lock); 8095 (void) ipsq_pending_mp_cleanup(ill, NULL); 8096 ipsq_xopq_mp_cleanup(ill, NULL); 8097 ill_pending_mp_cleanup(ill); 8098 } 8099 8100 /* ARGSUSED */ 8101 int 8102 ip_sioctl_slifoindex(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 8103 ip_ioctl_cmd_t *ipip, void *ifreq) 8104 { 8105 ill_t *ill; 8106 struct lifreq *lifr = (struct lifreq *)ifreq; 8107 boolean_t isv6; 8108 conn_t *connp; 8109 ip_stack_t *ipst; 8110 8111 connp = Q_TO_CONN(q); 8112 ipst = connp->conn_netstack->netstack_ip; 8113 isv6 = connp->conn_af_isv6; 8114 /* 8115 * Set original index. 8116 * Failover and failback move logical interfaces 8117 * from one physical interface to another. The 8118 * original index indicates the parent of a logical 8119 * interface, in other words, the physical interface 8120 * the logical interface will be moved back to on 8121 * failback. 8122 */ 8123 8124 /* 8125 * Don't allow the original index to be changed 8126 * for non-failover addresses, autoconfigured 8127 * addresses, or IPv6 link local addresses. 8128 */ 8129 if (((ipif->ipif_flags & (IPIF_NOFAILOVER | IPIF_ADDRCONF)) != NULL) || 8130 (isv6 && IN6_IS_ADDR_LINKLOCAL(&ipif->ipif_v6lcl_addr))) { 8131 return (EINVAL); 8132 } 8133 /* 8134 * The new original index must be in use by some 8135 * physical interface. 8136 */ 8137 ill = ill_lookup_on_ifindex(lifr->lifr_index, isv6, NULL, NULL, 8138 NULL, NULL, ipst); 8139 if (ill == NULL) 8140 return (ENXIO); 8141 ill_refrele(ill); 8142 8143 ipif->ipif_orig_ifindex = lifr->lifr_index; 8144 /* 8145 * When this ipif gets failed back, don't 8146 * preserve the original id, as it is no 8147 * longer applicable. 8148 */ 8149 ipif->ipif_orig_ipifid = 0; 8150 /* 8151 * For IPv4, change the original index of any 8152 * multicast addresses associated with the 8153 * ipif to the new value. 8154 */ 8155 if (!isv6) { 8156 ilm_t *ilm; 8157 8158 mutex_enter(&ipif->ipif_ill->ill_lock); 8159 for (ilm = ipif->ipif_ill->ill_ilm; ilm != NULL; 8160 ilm = ilm->ilm_next) { 8161 if (ilm->ilm_ipif == ipif) { 8162 ilm->ilm_orig_ifindex = lifr->lifr_index; 8163 } 8164 } 8165 mutex_exit(&ipif->ipif_ill->ill_lock); 8166 } 8167 return (0); 8168 } 8169 8170 /* ARGSUSED */ 8171 int 8172 ip_sioctl_get_oindex(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 8173 ip_ioctl_cmd_t *ipip, void *ifreq) 8174 { 8175 struct lifreq *lifr = (struct lifreq *)ifreq; 8176 8177 /* 8178 * Get the original interface index i.e the one 8179 * before FAILOVER if it ever happened. 8180 */ 8181 lifr->lifr_index = ipif->ipif_orig_ifindex; 8182 return (0); 8183 } 8184 8185 /* 8186 * Parse an iftun_req structure coming down SIOC[GS]TUNPARAM ioctls, 8187 * refhold and return the associated ipif 8188 */ 8189 /* ARGSUSED */ 8190 int 8191 ip_extract_tunreq(queue_t *q, mblk_t *mp, const ip_ioctl_cmd_t *ipip, 8192 cmd_info_t *ci, ipsq_func_t func) 8193 { 8194 boolean_t exists; 8195 struct iftun_req *ta; 8196 ipif_t *ipif; 8197 ill_t *ill; 8198 boolean_t isv6; 8199 mblk_t *mp1; 8200 int error; 8201 conn_t *connp; 8202 ip_stack_t *ipst; 8203 8204 /* Existence verified in ip_wput_nondata */ 8205 mp1 = mp->b_cont->b_cont; 8206 ta = (struct iftun_req *)mp1->b_rptr; 8207 /* 8208 * Null terminate the string to protect against buffer 8209 * overrun. String was generated by user code and may not 8210 * be trusted. 8211 */ 8212 ta->ifta_lifr_name[LIFNAMSIZ - 1] = '\0'; 8213 8214 connp = Q_TO_CONN(q); 8215 isv6 = connp->conn_af_isv6; 8216 ipst = connp->conn_netstack->netstack_ip; 8217 8218 /* Disallows implicit create */ 8219 ipif = ipif_lookup_on_name(ta->ifta_lifr_name, 8220 mi_strlen(ta->ifta_lifr_name), B_FALSE, &exists, isv6, 8221 connp->conn_zoneid, CONNP_TO_WQ(connp), mp, func, &error, ipst); 8222 if (ipif == NULL) 8223 return (error); 8224 8225 if (ipif->ipif_id != 0) { 8226 /* 8227 * We really don't want to set/get tunnel parameters 8228 * on virtual tunnel interfaces. Only allow the 8229 * base tunnel to do these. 8230 */ 8231 ipif_refrele(ipif); 8232 return (EINVAL); 8233 } 8234 8235 /* 8236 * Send down to tunnel mod for ioctl processing. 8237 * Will finish ioctl in ip_rput_other(). 8238 */ 8239 ill = ipif->ipif_ill; 8240 if (ill->ill_net_type == IRE_LOOPBACK) { 8241 ipif_refrele(ipif); 8242 return (EOPNOTSUPP); 8243 } 8244 8245 if (ill->ill_wq == NULL) { 8246 ipif_refrele(ipif); 8247 return (ENXIO); 8248 } 8249 /* 8250 * Mark the ioctl as coming from an IPv6 interface for 8251 * tun's convenience. 8252 */ 8253 if (ill->ill_isv6) 8254 ta->ifta_flags |= 0x80000000; 8255 ci->ci_ipif = ipif; 8256 return (0); 8257 } 8258 8259 /* 8260 * Parse an ifreq or lifreq struct coming down ioctls and refhold 8261 * and return the associated ipif. 8262 * Return value: 8263 * Non zero: An error has occurred. ci may not be filled out. 8264 * zero : ci is filled out with the ioctl cmd in ci.ci_name, and 8265 * a held ipif in ci.ci_ipif. 8266 */ 8267 int 8268 ip_extract_lifreq(queue_t *q, mblk_t *mp, const ip_ioctl_cmd_t *ipip, 8269 cmd_info_t *ci, ipsq_func_t func) 8270 { 8271 sin_t *sin; 8272 sin6_t *sin6; 8273 char *name; 8274 struct ifreq *ifr; 8275 struct lifreq *lifr; 8276 ipif_t *ipif = NULL; 8277 ill_t *ill; 8278 conn_t *connp; 8279 boolean_t isv6; 8280 boolean_t exists; 8281 int err; 8282 mblk_t *mp1; 8283 zoneid_t zoneid; 8284 ip_stack_t *ipst; 8285 8286 if (q->q_next != NULL) { 8287 ill = (ill_t *)q->q_ptr; 8288 isv6 = ill->ill_isv6; 8289 connp = NULL; 8290 zoneid = ALL_ZONES; 8291 ipst = ill->ill_ipst; 8292 } else { 8293 ill = NULL; 8294 connp = Q_TO_CONN(q); 8295 isv6 = connp->conn_af_isv6; 8296 zoneid = connp->conn_zoneid; 8297 if (zoneid == GLOBAL_ZONEID) { 8298 /* global zone can access ipifs in all zones */ 8299 zoneid = ALL_ZONES; 8300 } 8301 ipst = connp->conn_netstack->netstack_ip; 8302 } 8303 8304 /* Has been checked in ip_wput_nondata */ 8305 mp1 = mp->b_cont->b_cont; 8306 8307 if (ipip->ipi_cmd_type == IF_CMD) { 8308 /* This a old style SIOC[GS]IF* command */ 8309 ifr = (struct ifreq *)mp1->b_rptr; 8310 /* 8311 * Null terminate the string to protect against buffer 8312 * overrun. String was generated by user code and may not 8313 * be trusted. 8314 */ 8315 ifr->ifr_name[IFNAMSIZ - 1] = '\0'; 8316 sin = (sin_t *)&ifr->ifr_addr; 8317 name = ifr->ifr_name; 8318 ci->ci_sin = sin; 8319 ci->ci_sin6 = NULL; 8320 ci->ci_lifr = (struct lifreq *)ifr; 8321 } else { 8322 /* This a new style SIOC[GS]LIF* command */ 8323 ASSERT(ipip->ipi_cmd_type == LIF_CMD); 8324 lifr = (struct lifreq *)mp1->b_rptr; 8325 /* 8326 * Null terminate the string to protect against buffer 8327 * overrun. String was generated by user code and may not 8328 * be trusted. 8329 */ 8330 lifr->lifr_name[LIFNAMSIZ - 1] = '\0'; 8331 name = lifr->lifr_name; 8332 sin = (sin_t *)&lifr->lifr_addr; 8333 sin6 = (sin6_t *)&lifr->lifr_addr; 8334 if (ipip->ipi_cmd == SIOCSLIFGROUPNAME) { 8335 (void) strncpy(ci->ci_groupname, lifr->lifr_groupname, 8336 LIFNAMSIZ); 8337 } 8338 ci->ci_sin = sin; 8339 ci->ci_sin6 = sin6; 8340 ci->ci_lifr = lifr; 8341 } 8342 8343 if (ipip->ipi_cmd == SIOCSLIFNAME) { 8344 /* 8345 * The ioctl will be failed if the ioctl comes down 8346 * an conn stream 8347 */ 8348 if (ill == NULL) { 8349 /* 8350 * Not an ill queue, return EINVAL same as the 8351 * old error code. 8352 */ 8353 return (ENXIO); 8354 } 8355 ipif = ill->ill_ipif; 8356 ipif_refhold(ipif); 8357 } else { 8358 ipif = ipif_lookup_on_name(name, mi_strlen(name), B_FALSE, 8359 &exists, isv6, zoneid, 8360 (connp == NULL) ? q : CONNP_TO_WQ(connp), mp, func, &err, 8361 ipst); 8362 if (ipif == NULL) { 8363 if (err == EINPROGRESS) 8364 return (err); 8365 if (ipip->ipi_cmd == SIOCLIFFAILOVER || 8366 ipip->ipi_cmd == SIOCLIFFAILBACK) { 8367 /* 8368 * Need to try both v4 and v6 since this 8369 * ioctl can come down either v4 or v6 8370 * socket. The lifreq.lifr_family passed 8371 * down by this ioctl is AF_UNSPEC. 8372 */ 8373 ipif = ipif_lookup_on_name(name, 8374 mi_strlen(name), B_FALSE, &exists, !isv6, 8375 zoneid, (connp == NULL) ? q : 8376 CONNP_TO_WQ(connp), mp, func, &err, ipst); 8377 if (err == EINPROGRESS) 8378 return (err); 8379 } 8380 err = 0; /* Ensure we don't use it below */ 8381 } 8382 } 8383 8384 /* 8385 * Old style [GS]IFCMD does not admit IPv6 ipif 8386 */ 8387 if (ipif != NULL && ipif->ipif_isv6 && ipip->ipi_cmd_type == IF_CMD) { 8388 ipif_refrele(ipif); 8389 return (ENXIO); 8390 } 8391 8392 if (ipif == NULL && ill != NULL && ill->ill_ipif != NULL && 8393 name[0] == '\0') { 8394 /* 8395 * Handle a or a SIOC?IF* with a null name 8396 * during plumb (on the ill queue before the I_PLINK). 8397 */ 8398 ipif = ill->ill_ipif; 8399 ipif_refhold(ipif); 8400 } 8401 8402 if (ipif == NULL) 8403 return (ENXIO); 8404 8405 /* 8406 * Allow only GET operations if this ipif has been created 8407 * temporarily due to a MOVE operation. 8408 */ 8409 if (ipif->ipif_replace_zero && !(ipip->ipi_flags & IPI_REPL)) { 8410 ipif_refrele(ipif); 8411 return (EINVAL); 8412 } 8413 8414 ci->ci_ipif = ipif; 8415 return (0); 8416 } 8417 8418 /* 8419 * Return the total number of ipifs. 8420 */ 8421 static uint_t 8422 ip_get_numifs(zoneid_t zoneid, ip_stack_t *ipst) 8423 { 8424 uint_t numifs = 0; 8425 ill_t *ill; 8426 ill_walk_context_t ctx; 8427 ipif_t *ipif; 8428 8429 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 8430 ill = ILL_START_WALK_V4(&ctx, ipst); 8431 8432 while (ill != NULL) { 8433 for (ipif = ill->ill_ipif; ipif != NULL; 8434 ipif = ipif->ipif_next) { 8435 if (ipif->ipif_zoneid == zoneid || 8436 ipif->ipif_zoneid == ALL_ZONES) 8437 numifs++; 8438 } 8439 ill = ill_next(&ctx, ill); 8440 } 8441 rw_exit(&ipst->ips_ill_g_lock); 8442 return (numifs); 8443 } 8444 8445 /* 8446 * Return the total number of ipifs. 8447 */ 8448 static uint_t 8449 ip_get_numlifs(int family, int lifn_flags, zoneid_t zoneid, ip_stack_t *ipst) 8450 { 8451 uint_t numifs = 0; 8452 ill_t *ill; 8453 ipif_t *ipif; 8454 ill_walk_context_t ctx; 8455 8456 ip1dbg(("ip_get_numlifs(%d %u %d)\n", family, lifn_flags, (int)zoneid)); 8457 8458 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 8459 if (family == AF_INET) 8460 ill = ILL_START_WALK_V4(&ctx, ipst); 8461 else if (family == AF_INET6) 8462 ill = ILL_START_WALK_V6(&ctx, ipst); 8463 else 8464 ill = ILL_START_WALK_ALL(&ctx, ipst); 8465 8466 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 8467 for (ipif = ill->ill_ipif; ipif != NULL; 8468 ipif = ipif->ipif_next) { 8469 if ((ipif->ipif_flags & IPIF_NOXMIT) && 8470 !(lifn_flags & LIFC_NOXMIT)) 8471 continue; 8472 if ((ipif->ipif_flags & IPIF_TEMPORARY) && 8473 !(lifn_flags & LIFC_TEMPORARY)) 8474 continue; 8475 if (((ipif->ipif_flags & 8476 (IPIF_NOXMIT|IPIF_NOLOCAL| 8477 IPIF_DEPRECATED)) || 8478 IS_LOOPBACK(ill) || 8479 !(ipif->ipif_flags & IPIF_UP)) && 8480 (lifn_flags & LIFC_EXTERNAL_SOURCE)) 8481 continue; 8482 8483 if (zoneid != ipif->ipif_zoneid && 8484 ipif->ipif_zoneid != ALL_ZONES && 8485 (zoneid != GLOBAL_ZONEID || 8486 !(lifn_flags & LIFC_ALLZONES))) 8487 continue; 8488 8489 numifs++; 8490 } 8491 } 8492 rw_exit(&ipst->ips_ill_g_lock); 8493 return (numifs); 8494 } 8495 8496 uint_t 8497 ip_get_lifsrcofnum(ill_t *ill) 8498 { 8499 uint_t numifs = 0; 8500 ill_t *ill_head = ill; 8501 ip_stack_t *ipst = ill->ill_ipst; 8502 8503 /* 8504 * ill_g_usesrc_lock protects ill_usesrc_grp_next, for example, some 8505 * other thread may be trying to relink the ILLs in this usesrc group 8506 * and adjusting the ill_usesrc_grp_next pointers 8507 */ 8508 rw_enter(&ipst->ips_ill_g_usesrc_lock, RW_READER); 8509 if ((ill->ill_usesrc_ifindex == 0) && 8510 (ill->ill_usesrc_grp_next != NULL)) { 8511 for (; (ill != NULL) && (ill->ill_usesrc_grp_next != ill_head); 8512 ill = ill->ill_usesrc_grp_next) 8513 numifs++; 8514 } 8515 rw_exit(&ipst->ips_ill_g_usesrc_lock); 8516 8517 return (numifs); 8518 } 8519 8520 /* Null values are passed in for ipif, sin, and ifreq */ 8521 /* ARGSUSED */ 8522 int 8523 ip_sioctl_get_ifnum(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, 8524 mblk_t *mp, ip_ioctl_cmd_t *ipip, void *ifreq) 8525 { 8526 int *nump; 8527 conn_t *connp = Q_TO_CONN(q); 8528 8529 ASSERT(q->q_next == NULL); /* not a valid ioctl for ip as a module */ 8530 8531 /* Existence of b_cont->b_cont checked in ip_wput_nondata */ 8532 nump = (int *)mp->b_cont->b_cont->b_rptr; 8533 8534 *nump = ip_get_numifs(connp->conn_zoneid, 8535 connp->conn_netstack->netstack_ip); 8536 ip1dbg(("ip_sioctl_get_ifnum numifs %d", *nump)); 8537 return (0); 8538 } 8539 8540 /* Null values are passed in for ipif, sin, and ifreq */ 8541 /* ARGSUSED */ 8542 int 8543 ip_sioctl_get_lifnum(ipif_t *dummy_ipif, sin_t *dummy_sin, 8544 queue_t *q, mblk_t *mp, ip_ioctl_cmd_t *ipip, void *ifreq) 8545 { 8546 struct lifnum *lifn; 8547 mblk_t *mp1; 8548 conn_t *connp = Q_TO_CONN(q); 8549 8550 ASSERT(q->q_next == NULL); /* not a valid ioctl for ip as a module */ 8551 8552 /* Existence checked in ip_wput_nondata */ 8553 mp1 = mp->b_cont->b_cont; 8554 8555 lifn = (struct lifnum *)mp1->b_rptr; 8556 switch (lifn->lifn_family) { 8557 case AF_UNSPEC: 8558 case AF_INET: 8559 case AF_INET6: 8560 break; 8561 default: 8562 return (EAFNOSUPPORT); 8563 } 8564 8565 lifn->lifn_count = ip_get_numlifs(lifn->lifn_family, lifn->lifn_flags, 8566 connp->conn_zoneid, connp->conn_netstack->netstack_ip); 8567 ip1dbg(("ip_sioctl_get_lifnum numifs %d", lifn->lifn_count)); 8568 return (0); 8569 } 8570 8571 /* ARGSUSED */ 8572 int 8573 ip_sioctl_get_ifconf(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, 8574 mblk_t *mp, ip_ioctl_cmd_t *ipip, void *ifreq) 8575 { 8576 STRUCT_HANDLE(ifconf, ifc); 8577 mblk_t *mp1; 8578 struct iocblk *iocp; 8579 struct ifreq *ifr; 8580 ill_walk_context_t ctx; 8581 ill_t *ill; 8582 ipif_t *ipif; 8583 struct sockaddr_in *sin; 8584 int32_t ifclen; 8585 zoneid_t zoneid; 8586 ip_stack_t *ipst = CONNQ_TO_IPST(q); 8587 8588 ASSERT(q->q_next == NULL); /* not valid ioctls for ip as a module */ 8589 8590 ip1dbg(("ip_sioctl_get_ifconf")); 8591 /* Existence verified in ip_wput_nondata */ 8592 mp1 = mp->b_cont->b_cont; 8593 iocp = (struct iocblk *)mp->b_rptr; 8594 zoneid = Q_TO_CONN(q)->conn_zoneid; 8595 8596 /* 8597 * The original SIOCGIFCONF passed in a struct ifconf which specified 8598 * the user buffer address and length into which the list of struct 8599 * ifreqs was to be copied. Since AT&T Streams does not seem to 8600 * allow M_COPYOUT to be used in conjunction with I_STR IOCTLS, 8601 * the SIOCGIFCONF operation was redefined to simply provide 8602 * a large output buffer into which we are supposed to jam the ifreq 8603 * array. The same ioctl command code was used, despite the fact that 8604 * both the applications and the kernel code had to change, thus making 8605 * it impossible to support both interfaces. 8606 * 8607 * For reasons not good enough to try to explain, the following 8608 * algorithm is used for deciding what to do with one of these: 8609 * If the IOCTL comes in as an I_STR, it is assumed to be of the new 8610 * form with the output buffer coming down as the continuation message. 8611 * If it arrives as a TRANSPARENT IOCTL, it is assumed to be old style, 8612 * and we have to copy in the ifconf structure to find out how big the 8613 * output buffer is and where to copy out to. Sure no problem... 8614 * 8615 */ 8616 STRUCT_SET_HANDLE(ifc, iocp->ioc_flag, NULL); 8617 if ((mp1->b_wptr - mp1->b_rptr) == STRUCT_SIZE(ifc)) { 8618 int numifs = 0; 8619 size_t ifc_bufsize; 8620 8621 /* 8622 * Must be (better be!) continuation of a TRANSPARENT 8623 * IOCTL. We just copied in the ifconf structure. 8624 */ 8625 STRUCT_SET_HANDLE(ifc, iocp->ioc_flag, 8626 (struct ifconf *)mp1->b_rptr); 8627 8628 /* 8629 * Allocate a buffer to hold requested information. 8630 * 8631 * If ifc_len is larger than what is needed, we only 8632 * allocate what we will use. 8633 * 8634 * If ifc_len is smaller than what is needed, return 8635 * EINVAL. 8636 * 8637 * XXX: the ill_t structure can hava 2 counters, for 8638 * v4 and v6 (not just ill_ipif_up_count) to store the 8639 * number of interfaces for a device, so we don't need 8640 * to count them here... 8641 */ 8642 numifs = ip_get_numifs(zoneid, ipst); 8643 8644 ifclen = STRUCT_FGET(ifc, ifc_len); 8645 ifc_bufsize = numifs * sizeof (struct ifreq); 8646 if (ifc_bufsize > ifclen) { 8647 if (iocp->ioc_cmd == O_SIOCGIFCONF) { 8648 /* old behaviour */ 8649 return (EINVAL); 8650 } else { 8651 ifc_bufsize = ifclen; 8652 } 8653 } 8654 8655 mp1 = mi_copyout_alloc(q, mp, 8656 STRUCT_FGETP(ifc, ifc_buf), ifc_bufsize, B_FALSE); 8657 if (mp1 == NULL) 8658 return (ENOMEM); 8659 8660 mp1->b_wptr = mp1->b_rptr + ifc_bufsize; 8661 } 8662 bzero(mp1->b_rptr, mp1->b_wptr - mp1->b_rptr); 8663 /* 8664 * the SIOCGIFCONF ioctl only knows about 8665 * IPv4 addresses, so don't try to tell 8666 * it about interfaces with IPv6-only 8667 * addresses. (Last parm 'isv6' is B_FALSE) 8668 */ 8669 8670 ifr = (struct ifreq *)mp1->b_rptr; 8671 8672 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 8673 ill = ILL_START_WALK_V4(&ctx, ipst); 8674 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 8675 for (ipif = ill->ill_ipif; ipif != NULL; 8676 ipif = ipif->ipif_next) { 8677 if (zoneid != ipif->ipif_zoneid && 8678 ipif->ipif_zoneid != ALL_ZONES) 8679 continue; 8680 if ((uchar_t *)&ifr[1] > mp1->b_wptr) { 8681 if (iocp->ioc_cmd == O_SIOCGIFCONF) { 8682 /* old behaviour */ 8683 rw_exit(&ipst->ips_ill_g_lock); 8684 return (EINVAL); 8685 } else { 8686 goto if_copydone; 8687 } 8688 } 8689 ipif_get_name(ipif, ifr->ifr_name, 8690 sizeof (ifr->ifr_name)); 8691 sin = (sin_t *)&ifr->ifr_addr; 8692 *sin = sin_null; 8693 sin->sin_family = AF_INET; 8694 sin->sin_addr.s_addr = ipif->ipif_lcl_addr; 8695 ifr++; 8696 } 8697 } 8698 if_copydone: 8699 rw_exit(&ipst->ips_ill_g_lock); 8700 mp1->b_wptr = (uchar_t *)ifr; 8701 8702 if (STRUCT_BUF(ifc) != NULL) { 8703 STRUCT_FSET(ifc, ifc_len, 8704 (int)((uchar_t *)ifr - mp1->b_rptr)); 8705 } 8706 return (0); 8707 } 8708 8709 /* 8710 * Get the interfaces using the address hosted on the interface passed in, 8711 * as a source adddress 8712 */ 8713 /* ARGSUSED */ 8714 int 8715 ip_sioctl_get_lifsrcof(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, 8716 mblk_t *mp, ip_ioctl_cmd_t *ipip, void *ifreq) 8717 { 8718 mblk_t *mp1; 8719 ill_t *ill, *ill_head; 8720 ipif_t *ipif, *orig_ipif; 8721 int numlifs = 0; 8722 size_t lifs_bufsize, lifsmaxlen; 8723 struct lifreq *lifr; 8724 struct iocblk *iocp = (struct iocblk *)mp->b_rptr; 8725 uint_t ifindex; 8726 zoneid_t zoneid; 8727 int err = 0; 8728 boolean_t isv6 = B_FALSE; 8729 struct sockaddr_in *sin; 8730 struct sockaddr_in6 *sin6; 8731 STRUCT_HANDLE(lifsrcof, lifs); 8732 ip_stack_t *ipst; 8733 8734 ipst = CONNQ_TO_IPST(q); 8735 8736 ASSERT(q->q_next == NULL); 8737 8738 zoneid = Q_TO_CONN(q)->conn_zoneid; 8739 8740 /* Existence verified in ip_wput_nondata */ 8741 mp1 = mp->b_cont->b_cont; 8742 8743 /* 8744 * Must be (better be!) continuation of a TRANSPARENT 8745 * IOCTL. We just copied in the lifsrcof structure. 8746 */ 8747 STRUCT_SET_HANDLE(lifs, iocp->ioc_flag, 8748 (struct lifsrcof *)mp1->b_rptr); 8749 8750 if (MBLKL(mp1) != STRUCT_SIZE(lifs)) 8751 return (EINVAL); 8752 8753 ifindex = STRUCT_FGET(lifs, lifs_ifindex); 8754 isv6 = (Q_TO_CONN(q))->conn_af_isv6; 8755 ipif = ipif_lookup_on_ifindex(ifindex, isv6, zoneid, q, mp, 8756 ip_process_ioctl, &err, ipst); 8757 if (ipif == NULL) { 8758 ip1dbg(("ip_sioctl_get_lifsrcof: no ipif for ifindex %d\n", 8759 ifindex)); 8760 return (err); 8761 } 8762 8763 /* Allocate a buffer to hold requested information */ 8764 numlifs = ip_get_lifsrcofnum(ipif->ipif_ill); 8765 lifs_bufsize = numlifs * sizeof (struct lifreq); 8766 lifsmaxlen = STRUCT_FGET(lifs, lifs_maxlen); 8767 /* The actual size needed is always returned in lifs_len */ 8768 STRUCT_FSET(lifs, lifs_len, lifs_bufsize); 8769 8770 /* If the amount we need is more than what is passed in, abort */ 8771 if (lifs_bufsize > lifsmaxlen || lifs_bufsize == 0) { 8772 ipif_refrele(ipif); 8773 return (0); 8774 } 8775 8776 mp1 = mi_copyout_alloc(q, mp, 8777 STRUCT_FGETP(lifs, lifs_buf), lifs_bufsize, B_FALSE); 8778 if (mp1 == NULL) { 8779 ipif_refrele(ipif); 8780 return (ENOMEM); 8781 } 8782 8783 mp1->b_wptr = mp1->b_rptr + lifs_bufsize; 8784 bzero(mp1->b_rptr, lifs_bufsize); 8785 8786 lifr = (struct lifreq *)mp1->b_rptr; 8787 8788 ill = ill_head = ipif->ipif_ill; 8789 orig_ipif = ipif; 8790 8791 /* ill_g_usesrc_lock protects ill_usesrc_grp_next */ 8792 rw_enter(&ipst->ips_ill_g_usesrc_lock, RW_READER); 8793 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 8794 8795 ill = ill->ill_usesrc_grp_next; /* start from next ill */ 8796 for (; (ill != NULL) && (ill != ill_head); 8797 ill = ill->ill_usesrc_grp_next) { 8798 8799 if ((uchar_t *)&lifr[1] > mp1->b_wptr) 8800 break; 8801 8802 ipif = ill->ill_ipif; 8803 ipif_get_name(ipif, lifr->lifr_name, sizeof (lifr->lifr_name)); 8804 if (ipif->ipif_isv6) { 8805 sin6 = (sin6_t *)&lifr->lifr_addr; 8806 *sin6 = sin6_null; 8807 sin6->sin6_family = AF_INET6; 8808 sin6->sin6_addr = ipif->ipif_v6lcl_addr; 8809 lifr->lifr_addrlen = ip_mask_to_plen_v6( 8810 &ipif->ipif_v6net_mask); 8811 } else { 8812 sin = (sin_t *)&lifr->lifr_addr; 8813 *sin = sin_null; 8814 sin->sin_family = AF_INET; 8815 sin->sin_addr.s_addr = ipif->ipif_lcl_addr; 8816 lifr->lifr_addrlen = ip_mask_to_plen( 8817 ipif->ipif_net_mask); 8818 } 8819 lifr++; 8820 } 8821 rw_exit(&ipst->ips_ill_g_usesrc_lock); 8822 rw_exit(&ipst->ips_ill_g_lock); 8823 ipif_refrele(orig_ipif); 8824 mp1->b_wptr = (uchar_t *)lifr; 8825 STRUCT_FSET(lifs, lifs_len, (int)((uchar_t *)lifr - mp1->b_rptr)); 8826 8827 return (0); 8828 } 8829 8830 /* ARGSUSED */ 8831 int 8832 ip_sioctl_get_lifconf(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, 8833 mblk_t *mp, ip_ioctl_cmd_t *ipip, void *ifreq) 8834 { 8835 mblk_t *mp1; 8836 int list; 8837 ill_t *ill; 8838 ipif_t *ipif; 8839 int flags; 8840 int numlifs = 0; 8841 size_t lifc_bufsize; 8842 struct lifreq *lifr; 8843 sa_family_t family; 8844 struct sockaddr_in *sin; 8845 struct sockaddr_in6 *sin6; 8846 ill_walk_context_t ctx; 8847 struct iocblk *iocp = (struct iocblk *)mp->b_rptr; 8848 int32_t lifclen; 8849 zoneid_t zoneid; 8850 STRUCT_HANDLE(lifconf, lifc); 8851 ip_stack_t *ipst = CONNQ_TO_IPST(q); 8852 8853 ip1dbg(("ip_sioctl_get_lifconf")); 8854 8855 ASSERT(q->q_next == NULL); 8856 8857 zoneid = Q_TO_CONN(q)->conn_zoneid; 8858 8859 /* Existence verified in ip_wput_nondata */ 8860 mp1 = mp->b_cont->b_cont; 8861 8862 /* 8863 * An extended version of SIOCGIFCONF that takes an 8864 * additional address family and flags field. 8865 * AF_UNSPEC retrieve both IPv4 and IPv6. 8866 * Unless LIFC_NOXMIT is specified the IPIF_NOXMIT 8867 * interfaces are omitted. 8868 * Similarly, IPIF_TEMPORARY interfaces are omitted 8869 * unless LIFC_TEMPORARY is specified. 8870 * If LIFC_EXTERNAL_SOURCE is specified, IPIF_NOXMIT, 8871 * IPIF_NOLOCAL, PHYI_LOOPBACK, IPIF_DEPRECATED and 8872 * not IPIF_UP interfaces are omitted. LIFC_EXTERNAL_SOURCE 8873 * has priority over LIFC_NOXMIT. 8874 */ 8875 STRUCT_SET_HANDLE(lifc, iocp->ioc_flag, NULL); 8876 8877 if ((mp1->b_wptr - mp1->b_rptr) != STRUCT_SIZE(lifc)) 8878 return (EINVAL); 8879 8880 /* 8881 * Must be (better be!) continuation of a TRANSPARENT 8882 * IOCTL. We just copied in the lifconf structure. 8883 */ 8884 STRUCT_SET_HANDLE(lifc, iocp->ioc_flag, (struct lifconf *)mp1->b_rptr); 8885 8886 family = STRUCT_FGET(lifc, lifc_family); 8887 flags = STRUCT_FGET(lifc, lifc_flags); 8888 8889 switch (family) { 8890 case AF_UNSPEC: 8891 /* 8892 * walk all ILL's. 8893 */ 8894 list = MAX_G_HEADS; 8895 break; 8896 case AF_INET: 8897 /* 8898 * walk only IPV4 ILL's. 8899 */ 8900 list = IP_V4_G_HEAD; 8901 break; 8902 case AF_INET6: 8903 /* 8904 * walk only IPV6 ILL's. 8905 */ 8906 list = IP_V6_G_HEAD; 8907 break; 8908 default: 8909 return (EAFNOSUPPORT); 8910 } 8911 8912 /* 8913 * Allocate a buffer to hold requested information. 8914 * 8915 * If lifc_len is larger than what is needed, we only 8916 * allocate what we will use. 8917 * 8918 * If lifc_len is smaller than what is needed, return 8919 * EINVAL. 8920 */ 8921 numlifs = ip_get_numlifs(family, flags, zoneid, ipst); 8922 lifc_bufsize = numlifs * sizeof (struct lifreq); 8923 lifclen = STRUCT_FGET(lifc, lifc_len); 8924 if (lifc_bufsize > lifclen) { 8925 if (iocp->ioc_cmd == O_SIOCGLIFCONF) 8926 return (EINVAL); 8927 else 8928 lifc_bufsize = lifclen; 8929 } 8930 8931 mp1 = mi_copyout_alloc(q, mp, 8932 STRUCT_FGETP(lifc, lifc_buf), lifc_bufsize, B_FALSE); 8933 if (mp1 == NULL) 8934 return (ENOMEM); 8935 8936 mp1->b_wptr = mp1->b_rptr + lifc_bufsize; 8937 bzero(mp1->b_rptr, mp1->b_wptr - mp1->b_rptr); 8938 8939 lifr = (struct lifreq *)mp1->b_rptr; 8940 8941 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 8942 ill = ill_first(list, list, &ctx, ipst); 8943 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 8944 for (ipif = ill->ill_ipif; ipif != NULL; 8945 ipif = ipif->ipif_next) { 8946 if ((ipif->ipif_flags & IPIF_NOXMIT) && 8947 !(flags & LIFC_NOXMIT)) 8948 continue; 8949 8950 if ((ipif->ipif_flags & IPIF_TEMPORARY) && 8951 !(flags & LIFC_TEMPORARY)) 8952 continue; 8953 8954 if (((ipif->ipif_flags & 8955 (IPIF_NOXMIT|IPIF_NOLOCAL| 8956 IPIF_DEPRECATED)) || 8957 IS_LOOPBACK(ill) || 8958 !(ipif->ipif_flags & IPIF_UP)) && 8959 (flags & LIFC_EXTERNAL_SOURCE)) 8960 continue; 8961 8962 if (zoneid != ipif->ipif_zoneid && 8963 ipif->ipif_zoneid != ALL_ZONES && 8964 (zoneid != GLOBAL_ZONEID || 8965 !(flags & LIFC_ALLZONES))) 8966 continue; 8967 8968 if ((uchar_t *)&lifr[1] > mp1->b_wptr) { 8969 if (iocp->ioc_cmd == O_SIOCGLIFCONF) { 8970 rw_exit(&ipst->ips_ill_g_lock); 8971 return (EINVAL); 8972 } else { 8973 goto lif_copydone; 8974 } 8975 } 8976 8977 ipif_get_name(ipif, lifr->lifr_name, 8978 sizeof (lifr->lifr_name)); 8979 if (ipif->ipif_isv6) { 8980 sin6 = (sin6_t *)&lifr->lifr_addr; 8981 *sin6 = sin6_null; 8982 sin6->sin6_family = AF_INET6; 8983 sin6->sin6_addr = 8984 ipif->ipif_v6lcl_addr; 8985 lifr->lifr_addrlen = 8986 ip_mask_to_plen_v6( 8987 &ipif->ipif_v6net_mask); 8988 } else { 8989 sin = (sin_t *)&lifr->lifr_addr; 8990 *sin = sin_null; 8991 sin->sin_family = AF_INET; 8992 sin->sin_addr.s_addr = 8993 ipif->ipif_lcl_addr; 8994 lifr->lifr_addrlen = 8995 ip_mask_to_plen( 8996 ipif->ipif_net_mask); 8997 } 8998 lifr++; 8999 } 9000 } 9001 lif_copydone: 9002 rw_exit(&ipst->ips_ill_g_lock); 9003 9004 mp1->b_wptr = (uchar_t *)lifr; 9005 if (STRUCT_BUF(lifc) != NULL) { 9006 STRUCT_FSET(lifc, lifc_len, 9007 (int)((uchar_t *)lifr - mp1->b_rptr)); 9008 } 9009 return (0); 9010 } 9011 9012 /* ARGSUSED */ 9013 int 9014 ip_sioctl_set_ipmpfailback(ipif_t *dummy_ipif, sin_t *dummy_sin, 9015 queue_t *q, mblk_t *mp, ip_ioctl_cmd_t *ipip, void *ifreq) 9016 { 9017 ip_stack_t *ipst; 9018 9019 if (q->q_next == NULL) 9020 ipst = CONNQ_TO_IPST(q); 9021 else 9022 ipst = ILLQ_TO_IPST(q); 9023 9024 /* Existence of b_cont->b_cont checked in ip_wput_nondata */ 9025 ipst->ips_ipmp_enable_failback = *(int *)mp->b_cont->b_cont->b_rptr; 9026 return (0); 9027 } 9028 9029 static void 9030 ip_sioctl_ip6addrpolicy(queue_t *q, mblk_t *mp) 9031 { 9032 ip6_asp_t *table; 9033 size_t table_size; 9034 mblk_t *data_mp; 9035 struct iocblk *iocp = (struct iocblk *)mp->b_rptr; 9036 ip_stack_t *ipst; 9037 9038 if (q->q_next == NULL) 9039 ipst = CONNQ_TO_IPST(q); 9040 else 9041 ipst = ILLQ_TO_IPST(q); 9042 9043 /* These two ioctls are I_STR only */ 9044 if (iocp->ioc_count == TRANSPARENT) { 9045 miocnak(q, mp, 0, EINVAL); 9046 return; 9047 } 9048 9049 data_mp = mp->b_cont; 9050 if (data_mp == NULL) { 9051 /* The user passed us a NULL argument */ 9052 table = NULL; 9053 table_size = iocp->ioc_count; 9054 } else { 9055 /* 9056 * The user provided a table. The stream head 9057 * may have copied in the user data in chunks, 9058 * so make sure everything is pulled up 9059 * properly. 9060 */ 9061 if (MBLKL(data_mp) < iocp->ioc_count) { 9062 mblk_t *new_data_mp; 9063 if ((new_data_mp = msgpullup(data_mp, -1)) == 9064 NULL) { 9065 miocnak(q, mp, 0, ENOMEM); 9066 return; 9067 } 9068 freemsg(data_mp); 9069 data_mp = new_data_mp; 9070 mp->b_cont = data_mp; 9071 } 9072 table = (ip6_asp_t *)data_mp->b_rptr; 9073 table_size = iocp->ioc_count; 9074 } 9075 9076 switch (iocp->ioc_cmd) { 9077 case SIOCGIP6ADDRPOLICY: 9078 iocp->ioc_rval = ip6_asp_get(table, table_size, ipst); 9079 if (iocp->ioc_rval == -1) 9080 iocp->ioc_error = EINVAL; 9081 #if defined(_SYSCALL32_IMPL) && _LONG_LONG_ALIGNMENT_32 == 4 9082 else if (table != NULL && 9083 (iocp->ioc_flag & IOC_MODELS) == IOC_ILP32) { 9084 ip6_asp_t *src = table; 9085 ip6_asp32_t *dst = (void *)table; 9086 int count = table_size / sizeof (ip6_asp_t); 9087 int i; 9088 9089 /* 9090 * We need to do an in-place shrink of the array 9091 * to match the alignment attributes of the 9092 * 32-bit ABI looking at it. 9093 */ 9094 /* LINTED: logical expression always true: op "||" */ 9095 ASSERT(sizeof (*src) > sizeof (*dst)); 9096 for (i = 1; i < count; i++) 9097 bcopy(src + i, dst + i, sizeof (*dst)); 9098 } 9099 #endif 9100 break; 9101 9102 case SIOCSIP6ADDRPOLICY: 9103 ASSERT(mp->b_prev == NULL); 9104 mp->b_prev = (void *)q; 9105 #if defined(_SYSCALL32_IMPL) && _LONG_LONG_ALIGNMENT_32 == 4 9106 /* 9107 * We pass in the datamodel here so that the ip6_asp_replace() 9108 * routine can handle converting from 32-bit to native formats 9109 * where necessary. 9110 * 9111 * A better way to handle this might be to convert the inbound 9112 * data structure here, and hang it off a new 'mp'; thus the 9113 * ip6_asp_replace() logic would always be dealing with native 9114 * format data structures.. 9115 * 9116 * (An even simpler way to handle these ioctls is to just 9117 * add a 32-bit trailing 'pad' field to the ip6_asp_t structure 9118 * and just recompile everything that depends on it.) 9119 */ 9120 #endif 9121 ip6_asp_replace(mp, table, table_size, B_FALSE, ipst, 9122 iocp->ioc_flag & IOC_MODELS); 9123 return; 9124 } 9125 9126 DB_TYPE(mp) = (iocp->ioc_error == 0) ? M_IOCACK : M_IOCNAK; 9127 qreply(q, mp); 9128 } 9129 9130 static void 9131 ip_sioctl_dstinfo(queue_t *q, mblk_t *mp) 9132 { 9133 mblk_t *data_mp; 9134 struct dstinforeq *dir; 9135 uint8_t *end, *cur; 9136 in6_addr_t *daddr, *saddr; 9137 ipaddr_t v4daddr; 9138 ire_t *ire; 9139 char *slabel, *dlabel; 9140 boolean_t isipv4; 9141 int match_ire; 9142 ill_t *dst_ill; 9143 ipif_t *src_ipif, *ire_ipif; 9144 struct iocblk *iocp = (struct iocblk *)mp->b_rptr; 9145 zoneid_t zoneid; 9146 ip_stack_t *ipst = CONNQ_TO_IPST(q); 9147 9148 ASSERT(q->q_next == NULL); /* this ioctl not allowed if ip is module */ 9149 zoneid = Q_TO_CONN(q)->conn_zoneid; 9150 9151 /* 9152 * This ioctl is I_STR only, and must have a 9153 * data mblk following the M_IOCTL mblk. 9154 */ 9155 data_mp = mp->b_cont; 9156 if (iocp->ioc_count == TRANSPARENT || data_mp == NULL) { 9157 miocnak(q, mp, 0, EINVAL); 9158 return; 9159 } 9160 9161 if (MBLKL(data_mp) < iocp->ioc_count) { 9162 mblk_t *new_data_mp; 9163 9164 if ((new_data_mp = msgpullup(data_mp, -1)) == NULL) { 9165 miocnak(q, mp, 0, ENOMEM); 9166 return; 9167 } 9168 freemsg(data_mp); 9169 data_mp = new_data_mp; 9170 mp->b_cont = data_mp; 9171 } 9172 match_ire = MATCH_IRE_RECURSIVE | MATCH_IRE_DEFAULT | MATCH_IRE_PARENT; 9173 9174 for (cur = data_mp->b_rptr, end = data_mp->b_wptr; 9175 end - cur >= sizeof (struct dstinforeq); 9176 cur += sizeof (struct dstinforeq)) { 9177 dir = (struct dstinforeq *)cur; 9178 daddr = &dir->dir_daddr; 9179 saddr = &dir->dir_saddr; 9180 9181 /* 9182 * ip_addr_scope_v6() and ip6_asp_lookup() handle 9183 * v4 mapped addresses; ire_ftable_lookup[_v6]() 9184 * and ipif_select_source[_v6]() do not. 9185 */ 9186 dir->dir_dscope = ip_addr_scope_v6(daddr); 9187 dlabel = ip6_asp_lookup(daddr, &dir->dir_precedence, ipst); 9188 9189 isipv4 = IN6_IS_ADDR_V4MAPPED(daddr); 9190 if (isipv4) { 9191 IN6_V4MAPPED_TO_IPADDR(daddr, v4daddr); 9192 ire = ire_ftable_lookup(v4daddr, NULL, NULL, 9193 0, NULL, NULL, zoneid, 0, NULL, match_ire, ipst); 9194 } else { 9195 ire = ire_ftable_lookup_v6(daddr, NULL, NULL, 9196 0, NULL, NULL, zoneid, 0, NULL, match_ire, ipst); 9197 } 9198 if (ire == NULL) { 9199 dir->dir_dreachable = 0; 9200 9201 /* move on to next dst addr */ 9202 continue; 9203 } 9204 dir->dir_dreachable = 1; 9205 9206 ire_ipif = ire->ire_ipif; 9207 if (ire_ipif == NULL) 9208 goto next_dst; 9209 9210 /* 9211 * We expect to get back an interface ire or a 9212 * gateway ire cache entry. For both types, the 9213 * output interface is ire_ipif->ipif_ill. 9214 */ 9215 dst_ill = ire_ipif->ipif_ill; 9216 dir->dir_dmactype = dst_ill->ill_mactype; 9217 9218 if (isipv4) { 9219 src_ipif = ipif_select_source(dst_ill, v4daddr, zoneid); 9220 } else { 9221 src_ipif = ipif_select_source_v6(dst_ill, 9222 daddr, RESTRICT_TO_NONE, IPV6_PREFER_SRC_DEFAULT, 9223 zoneid); 9224 } 9225 if (src_ipif == NULL) 9226 goto next_dst; 9227 9228 *saddr = src_ipif->ipif_v6lcl_addr; 9229 dir->dir_sscope = ip_addr_scope_v6(saddr); 9230 slabel = ip6_asp_lookup(saddr, NULL, ipst); 9231 dir->dir_labelmatch = ip6_asp_labelcmp(dlabel, slabel); 9232 dir->dir_sdeprecated = 9233 (src_ipif->ipif_flags & IPIF_DEPRECATED) ? 1 : 0; 9234 ipif_refrele(src_ipif); 9235 next_dst: 9236 ire_refrele(ire); 9237 } 9238 miocack(q, mp, iocp->ioc_count, 0); 9239 } 9240 9241 /* 9242 * Check if this is an address assigned to this machine. 9243 * Skips interfaces that are down by using ire checks. 9244 * Translates mapped addresses to v4 addresses and then 9245 * treats them as such, returning true if the v4 address 9246 * associated with this mapped address is configured. 9247 * Note: Applications will have to be careful what they do 9248 * with the response; use of mapped addresses limits 9249 * what can be done with the socket, especially with 9250 * respect to socket options and ioctls - neither IPv4 9251 * options nor IPv6 sticky options/ancillary data options 9252 * may be used. 9253 */ 9254 /* ARGSUSED */ 9255 int 9256 ip_sioctl_tmyaddr(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, 9257 ip_ioctl_cmd_t *ipip, void *dummy_ifreq) 9258 { 9259 struct sioc_addrreq *sia; 9260 sin_t *sin; 9261 ire_t *ire; 9262 mblk_t *mp1; 9263 zoneid_t zoneid; 9264 ip_stack_t *ipst; 9265 9266 ip1dbg(("ip_sioctl_tmyaddr")); 9267 9268 ASSERT(q->q_next == NULL); /* this ioctl not allowed if ip is module */ 9269 zoneid = Q_TO_CONN(q)->conn_zoneid; 9270 ipst = CONNQ_TO_IPST(q); 9271 9272 /* Existence verified in ip_wput_nondata */ 9273 mp1 = mp->b_cont->b_cont; 9274 sia = (struct sioc_addrreq *)mp1->b_rptr; 9275 sin = (sin_t *)&sia->sa_addr; 9276 switch (sin->sin_family) { 9277 case AF_INET6: { 9278 sin6_t *sin6 = (sin6_t *)sin; 9279 9280 if (IN6_IS_ADDR_V4MAPPED(&sin6->sin6_addr)) { 9281 ipaddr_t v4_addr; 9282 9283 IN6_V4MAPPED_TO_IPADDR(&sin6->sin6_addr, 9284 v4_addr); 9285 ire = ire_ctable_lookup(v4_addr, 0, 9286 IRE_LOCAL|IRE_LOOPBACK, NULL, zoneid, 9287 NULL, MATCH_IRE_TYPE | MATCH_IRE_ZONEONLY, ipst); 9288 } else { 9289 in6_addr_t v6addr; 9290 9291 v6addr = sin6->sin6_addr; 9292 ire = ire_ctable_lookup_v6(&v6addr, 0, 9293 IRE_LOCAL|IRE_LOOPBACK, NULL, zoneid, 9294 NULL, MATCH_IRE_TYPE | MATCH_IRE_ZONEONLY, ipst); 9295 } 9296 break; 9297 } 9298 case AF_INET: { 9299 ipaddr_t v4addr; 9300 9301 v4addr = sin->sin_addr.s_addr; 9302 ire = ire_ctable_lookup(v4addr, 0, 9303 IRE_LOCAL|IRE_LOOPBACK, NULL, zoneid, 9304 NULL, MATCH_IRE_TYPE | MATCH_IRE_ZONEONLY, ipst); 9305 break; 9306 } 9307 default: 9308 return (EAFNOSUPPORT); 9309 } 9310 if (ire != NULL) { 9311 sia->sa_res = 1; 9312 ire_refrele(ire); 9313 } else { 9314 sia->sa_res = 0; 9315 } 9316 return (0); 9317 } 9318 9319 /* 9320 * Check if this is an address assigned on-link i.e. neighbor, 9321 * and makes sure it's reachable from the current zone. 9322 * Returns true for my addresses as well. 9323 * Translates mapped addresses to v4 addresses and then 9324 * treats them as such, returning true if the v4 address 9325 * associated with this mapped address is configured. 9326 * Note: Applications will have to be careful what they do 9327 * with the response; use of mapped addresses limits 9328 * what can be done with the socket, especially with 9329 * respect to socket options and ioctls - neither IPv4 9330 * options nor IPv6 sticky options/ancillary data options 9331 * may be used. 9332 */ 9333 /* ARGSUSED */ 9334 int 9335 ip_sioctl_tonlink(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, 9336 ip_ioctl_cmd_t *ipip, void *duymmy_ifreq) 9337 { 9338 struct sioc_addrreq *sia; 9339 sin_t *sin; 9340 mblk_t *mp1; 9341 ire_t *ire = NULL; 9342 zoneid_t zoneid; 9343 ip_stack_t *ipst; 9344 9345 ip1dbg(("ip_sioctl_tonlink")); 9346 9347 ASSERT(q->q_next == NULL); /* this ioctl not allowed if ip is module */ 9348 zoneid = Q_TO_CONN(q)->conn_zoneid; 9349 ipst = CONNQ_TO_IPST(q); 9350 9351 /* Existence verified in ip_wput_nondata */ 9352 mp1 = mp->b_cont->b_cont; 9353 sia = (struct sioc_addrreq *)mp1->b_rptr; 9354 sin = (sin_t *)&sia->sa_addr; 9355 9356 /* 9357 * Match addresses with a zero gateway field to avoid 9358 * routes going through a router. 9359 * Exclude broadcast and multicast addresses. 9360 */ 9361 switch (sin->sin_family) { 9362 case AF_INET6: { 9363 sin6_t *sin6 = (sin6_t *)sin; 9364 9365 if (IN6_IS_ADDR_V4MAPPED(&sin6->sin6_addr)) { 9366 ipaddr_t v4_addr; 9367 9368 IN6_V4MAPPED_TO_IPADDR(&sin6->sin6_addr, 9369 v4_addr); 9370 if (!CLASSD(v4_addr)) { 9371 ire = ire_route_lookup(v4_addr, 0, 0, 0, 9372 NULL, NULL, zoneid, NULL, 9373 MATCH_IRE_GW, ipst); 9374 } 9375 } else { 9376 in6_addr_t v6addr; 9377 in6_addr_t v6gw; 9378 9379 v6addr = sin6->sin6_addr; 9380 v6gw = ipv6_all_zeros; 9381 if (!IN6_IS_ADDR_MULTICAST(&v6addr)) { 9382 ire = ire_route_lookup_v6(&v6addr, 0, 9383 &v6gw, 0, NULL, NULL, zoneid, 9384 NULL, MATCH_IRE_GW, ipst); 9385 } 9386 } 9387 break; 9388 } 9389 case AF_INET: { 9390 ipaddr_t v4addr; 9391 9392 v4addr = sin->sin_addr.s_addr; 9393 if (!CLASSD(v4addr)) { 9394 ire = ire_route_lookup(v4addr, 0, 0, 0, 9395 NULL, NULL, zoneid, NULL, 9396 MATCH_IRE_GW, ipst); 9397 } 9398 break; 9399 } 9400 default: 9401 return (EAFNOSUPPORT); 9402 } 9403 sia->sa_res = 0; 9404 if (ire != NULL) { 9405 if (ire->ire_type & (IRE_INTERFACE|IRE_CACHE| 9406 IRE_LOCAL|IRE_LOOPBACK)) { 9407 sia->sa_res = 1; 9408 } 9409 ire_refrele(ire); 9410 } 9411 return (0); 9412 } 9413 9414 /* 9415 * TBD: implement when kernel maintaines a list of site prefixes. 9416 */ 9417 /* ARGSUSED */ 9418 int 9419 ip_sioctl_tmysite(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 9420 ip_ioctl_cmd_t *ipip, void *ifreq) 9421 { 9422 return (ENXIO); 9423 } 9424 9425 /* ARGSUSED */ 9426 int 9427 ip_sioctl_tunparam(ipif_t *ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, 9428 ip_ioctl_cmd_t *ipip, void *dummy_ifreq) 9429 { 9430 ill_t *ill; 9431 mblk_t *mp1; 9432 conn_t *connp; 9433 boolean_t success; 9434 9435 ip1dbg(("ip_sioctl_tunparam(%s:%u %p)\n", 9436 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 9437 /* ioctl comes down on an conn */ 9438 ASSERT(!(q->q_flag & QREADR) && q->q_next == NULL); 9439 connp = Q_TO_CONN(q); 9440 9441 mp->b_datap->db_type = M_IOCTL; 9442 9443 /* 9444 * Send down a copy. (copymsg does not copy b_next/b_prev). 9445 * The original mp contains contaminated b_next values due to 'mi', 9446 * which is needed to do the mi_copy_done. Unfortunately if we 9447 * send down the original mblk itself and if we are popped due to an 9448 * an unplumb before the response comes back from tunnel, 9449 * the streamhead (which does a freemsg) will see this contaminated 9450 * message and the assertion in freemsg about non-null b_next/b_prev 9451 * will panic a DEBUG kernel. 9452 */ 9453 mp1 = copymsg(mp); 9454 if (mp1 == NULL) 9455 return (ENOMEM); 9456 9457 ill = ipif->ipif_ill; 9458 mutex_enter(&connp->conn_lock); 9459 mutex_enter(&ill->ill_lock); 9460 if (ipip->ipi_cmd == SIOCSTUNPARAM || ipip->ipi_cmd == OSIOCSTUNPARAM) { 9461 success = ipsq_pending_mp_add(connp, ipif, CONNP_TO_WQ(connp), 9462 mp, 0); 9463 } else { 9464 success = ill_pending_mp_add(ill, connp, mp); 9465 } 9466 mutex_exit(&ill->ill_lock); 9467 mutex_exit(&connp->conn_lock); 9468 9469 if (success) { 9470 ip1dbg(("sending down tunparam request ")); 9471 putnext(ill->ill_wq, mp1); 9472 return (EINPROGRESS); 9473 } else { 9474 /* The conn has started closing */ 9475 freemsg(mp1); 9476 return (EINTR); 9477 } 9478 } 9479 9480 /* 9481 * ARP IOCTLs. 9482 * How does IP get in the business of fronting ARP configuration/queries? 9483 * Well it's like this, the Berkeley ARP IOCTLs (SIOCGARP, SIOCDARP, SIOCSARP) 9484 * are by tradition passed in through a datagram socket. That lands in IP. 9485 * As it happens, this is just as well since the interface is quite crude in 9486 * that it passes in no information about protocol or hardware types, or 9487 * interface association. After making the protocol assumption, IP is in 9488 * the position to look up the name of the ILL, which ARP will need, and 9489 * format a request that can be handled by ARP. The request is passed up 9490 * stream to ARP, and the original IOCTL is completed by IP when ARP passes 9491 * back a response. ARP supports its own set of more general IOCTLs, in 9492 * case anyone is interested. 9493 */ 9494 /* ARGSUSED */ 9495 int 9496 ip_sioctl_arp(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 9497 ip_ioctl_cmd_t *ipip, void *dummy_ifreq) 9498 { 9499 mblk_t *mp1; 9500 mblk_t *mp2; 9501 mblk_t *pending_mp; 9502 ipaddr_t ipaddr; 9503 area_t *area; 9504 struct iocblk *iocp; 9505 conn_t *connp; 9506 struct arpreq *ar; 9507 struct xarpreq *xar; 9508 int flags, alength; 9509 char *lladdr; 9510 ip_stack_t *ipst; 9511 ill_t *ill = ipif->ipif_ill; 9512 boolean_t if_arp_ioctl = B_FALSE; 9513 9514 ASSERT(!(q->q_flag & QREADR) && q->q_next == NULL); 9515 connp = Q_TO_CONN(q); 9516 ipst = connp->conn_netstack->netstack_ip; 9517 9518 if (ipip->ipi_cmd_type == XARP_CMD) { 9519 /* We have a chain - M_IOCTL-->MI_COPY_MBLK-->XARPREQ_MBLK */ 9520 xar = (struct xarpreq *)mp->b_cont->b_cont->b_rptr; 9521 ar = NULL; 9522 9523 flags = xar->xarp_flags; 9524 lladdr = LLADDR(&xar->xarp_ha); 9525 if_arp_ioctl = (xar->xarp_ha.sdl_nlen != 0); 9526 /* 9527 * Validate against user's link layer address length 9528 * input and name and addr length limits. 9529 */ 9530 alength = ill->ill_phys_addr_length; 9531 if (ipip->ipi_cmd == SIOCSXARP) { 9532 if (alength != xar->xarp_ha.sdl_alen || 9533 (alength + xar->xarp_ha.sdl_nlen > 9534 sizeof (xar->xarp_ha.sdl_data))) 9535 return (EINVAL); 9536 } 9537 } else { 9538 /* We have a chain - M_IOCTL-->MI_COPY_MBLK-->ARPREQ_MBLK */ 9539 ar = (struct arpreq *)mp->b_cont->b_cont->b_rptr; 9540 xar = NULL; 9541 9542 flags = ar->arp_flags; 9543 lladdr = ar->arp_ha.sa_data; 9544 /* 9545 * Theoretically, the sa_family could tell us what link 9546 * layer type this operation is trying to deal with. By 9547 * common usage AF_UNSPEC means ethernet. We'll assume 9548 * any attempt to use the SIOC?ARP ioctls is for ethernet, 9549 * for now. Our new SIOC*XARP ioctls can be used more 9550 * generally. 9551 * 9552 * If the underlying media happens to have a non 6 byte 9553 * address, arp module will fail set/get, but the del 9554 * operation will succeed. 9555 */ 9556 alength = 6; 9557 if ((ipip->ipi_cmd != SIOCDARP) && 9558 (alength != ill->ill_phys_addr_length)) { 9559 return (EINVAL); 9560 } 9561 } 9562 9563 /* 9564 * We are going to pass up to ARP a packet chain that looks 9565 * like: 9566 * 9567 * M_IOCTL-->ARP_op_MBLK-->ORIG_M_IOCTL-->MI_COPY_MBLK-->[X]ARPREQ_MBLK 9568 * 9569 * Get a copy of the original IOCTL mblk to head the chain, 9570 * to be sent up (in mp1). Also get another copy to store 9571 * in the ill_pending_mp list, for matching the response 9572 * when it comes back from ARP. 9573 */ 9574 mp1 = copyb(mp); 9575 pending_mp = copymsg(mp); 9576 if (mp1 == NULL || pending_mp == NULL) { 9577 if (mp1 != NULL) 9578 freeb(mp1); 9579 if (pending_mp != NULL) 9580 inet_freemsg(pending_mp); 9581 return (ENOMEM); 9582 } 9583 9584 ipaddr = sin->sin_addr.s_addr; 9585 9586 mp2 = ill_arp_alloc(ill, (uchar_t *)&ip_area_template, 9587 (caddr_t)&ipaddr); 9588 if (mp2 == NULL) { 9589 freeb(mp1); 9590 inet_freemsg(pending_mp); 9591 return (ENOMEM); 9592 } 9593 /* Put together the chain. */ 9594 mp1->b_cont = mp2; 9595 mp1->b_datap->db_type = M_IOCTL; 9596 mp2->b_cont = mp; 9597 mp2->b_datap->db_type = M_DATA; 9598 9599 iocp = (struct iocblk *)mp1->b_rptr; 9600 9601 /* 9602 * An M_IOCDATA's payload (struct copyresp) is mostly the same as an 9603 * M_IOCTL's payload (struct iocblk), but 'struct copyresp' has a 9604 * cp_private field (or cp_rval on 32-bit systems) in place of the 9605 * ioc_count field; set ioc_count to be correct. 9606 */ 9607 iocp->ioc_count = MBLKL(mp1->b_cont); 9608 9609 /* 9610 * Set the proper command in the ARP message. 9611 * Convert the SIOC{G|S|D}ARP calls into our 9612 * AR_ENTRY_xxx calls. 9613 */ 9614 area = (area_t *)mp2->b_rptr; 9615 switch (iocp->ioc_cmd) { 9616 case SIOCDARP: 9617 case SIOCDXARP: 9618 /* 9619 * We defer deleting the corresponding IRE until 9620 * we return from arp. 9621 */ 9622 area->area_cmd = AR_ENTRY_DELETE; 9623 area->area_proto_mask_offset = 0; 9624 break; 9625 case SIOCGARP: 9626 case SIOCGXARP: 9627 area->area_cmd = AR_ENTRY_SQUERY; 9628 area->area_proto_mask_offset = 0; 9629 break; 9630 case SIOCSARP: 9631 case SIOCSXARP: 9632 /* 9633 * Delete the corresponding ire to make sure IP will 9634 * pick up any change from arp. 9635 */ 9636 if (!if_arp_ioctl) { 9637 (void) ip_ire_clookup_and_delete(ipaddr, NULL, ipst); 9638 } else { 9639 ipif_t *ipif = ipif_get_next_ipif(NULL, ill); 9640 if (ipif != NULL) { 9641 (void) ip_ire_clookup_and_delete(ipaddr, ipif, 9642 ipst); 9643 ipif_refrele(ipif); 9644 } 9645 } 9646 break; 9647 } 9648 iocp->ioc_cmd = area->area_cmd; 9649 9650 /* 9651 * Fill in the rest of the ARP operation fields. 9652 */ 9653 area->area_hw_addr_length = alength; 9654 bcopy(lladdr, (char *)area + area->area_hw_addr_offset, alength); 9655 9656 /* Translate the flags. */ 9657 if (flags & ATF_PERM) 9658 area->area_flags |= ACE_F_PERMANENT; 9659 if (flags & ATF_PUBL) 9660 area->area_flags |= ACE_F_PUBLISH; 9661 if (flags & ATF_AUTHORITY) 9662 area->area_flags |= ACE_F_AUTHORITY; 9663 9664 /* 9665 * Before sending 'mp' to ARP, we have to clear the b_next 9666 * and b_prev. Otherwise if STREAMS encounters such a message 9667 * in freemsg(), (because ARP can close any time) it can cause 9668 * a panic. But mi code needs the b_next and b_prev values of 9669 * mp->b_cont, to complete the ioctl. So we store it here 9670 * in pending_mp->bcont, and restore it in ip_sioctl_iocack() 9671 * when the response comes down from ARP. 9672 */ 9673 pending_mp->b_cont->b_next = mp->b_cont->b_next; 9674 pending_mp->b_cont->b_prev = mp->b_cont->b_prev; 9675 mp->b_cont->b_next = NULL; 9676 mp->b_cont->b_prev = NULL; 9677 9678 mutex_enter(&connp->conn_lock); 9679 mutex_enter(&ill->ill_lock); 9680 /* conn has not yet started closing, hence this can't fail */ 9681 VERIFY(ill_pending_mp_add(ill, connp, pending_mp) != 0); 9682 mutex_exit(&ill->ill_lock); 9683 mutex_exit(&connp->conn_lock); 9684 9685 /* 9686 * Up to ARP it goes. The response will come back in ip_wput() as an 9687 * M_IOCACK, and will be handed to ip_sioctl_iocack() for completion. 9688 */ 9689 putnext(ill->ill_rq, mp1); 9690 return (EINPROGRESS); 9691 } 9692 9693 /* 9694 * Parse an [x]arpreq structure coming down SIOC[GSD][X]ARP ioctls, identify 9695 * the associated sin and refhold and return the associated ipif via `ci'. 9696 */ 9697 int 9698 ip_extract_arpreq(queue_t *q, mblk_t *mp, const ip_ioctl_cmd_t *ipip, 9699 cmd_info_t *ci, ipsq_func_t func) 9700 { 9701 mblk_t *mp1; 9702 int err; 9703 sin_t *sin; 9704 conn_t *connp; 9705 ipif_t *ipif; 9706 ire_t *ire = NULL; 9707 ill_t *ill = NULL; 9708 boolean_t exists; 9709 ip_stack_t *ipst; 9710 struct arpreq *ar; 9711 struct xarpreq *xar; 9712 struct sockaddr_dl *sdl; 9713 9714 /* ioctl comes down on a conn */ 9715 ASSERT(!(q->q_flag & QREADR) && q->q_next == NULL); 9716 connp = Q_TO_CONN(q); 9717 if (connp->conn_af_isv6) 9718 return (ENXIO); 9719 9720 ipst = connp->conn_netstack->netstack_ip; 9721 9722 /* Verified in ip_wput_nondata */ 9723 mp1 = mp->b_cont->b_cont; 9724 9725 if (ipip->ipi_cmd_type == XARP_CMD) { 9726 ASSERT(MBLKL(mp1) >= sizeof (struct xarpreq)); 9727 xar = (struct xarpreq *)mp1->b_rptr; 9728 sin = (sin_t *)&xar->xarp_pa; 9729 sdl = &xar->xarp_ha; 9730 9731 if (sdl->sdl_family != AF_LINK || sin->sin_family != AF_INET) 9732 return (ENXIO); 9733 if (sdl->sdl_nlen >= LIFNAMSIZ) 9734 return (EINVAL); 9735 } else { 9736 ASSERT(ipip->ipi_cmd_type == ARP_CMD); 9737 ASSERT(MBLKL(mp1) >= sizeof (struct arpreq)); 9738 ar = (struct arpreq *)mp1->b_rptr; 9739 sin = (sin_t *)&ar->arp_pa; 9740 } 9741 9742 if (ipip->ipi_cmd_type == XARP_CMD && sdl->sdl_nlen != 0) { 9743 ipif = ipif_lookup_on_name(sdl->sdl_data, sdl->sdl_nlen, 9744 B_FALSE, &exists, B_FALSE, ALL_ZONES, CONNP_TO_WQ(connp), 9745 mp, func, &err, ipst); 9746 if (ipif == NULL) 9747 return (err); 9748 if (ipif->ipif_id != 0 || 9749 ipif->ipif_net_type != IRE_IF_RESOLVER) { 9750 ipif_refrele(ipif); 9751 return (ENXIO); 9752 } 9753 } else { 9754 /* 9755 * Either an SIOC[DGS]ARP or an SIOC[DGS]XARP with sdl_nlen == 9756 * 0: use the IP address to figure out the ill. In the IPMP 9757 * case, a simple forwarding table lookup will return the 9758 * IRE_IF_RESOLVER for the first interface in the group, which 9759 * might not be the interface on which the requested IP 9760 * address was resolved due to the ill selection algorithm 9761 * (see ip_newroute_get_dst_ill()). So we do a cache table 9762 * lookup first: if the IRE cache entry for the IP address is 9763 * still there, it will contain the ill pointer for the right 9764 * interface, so we use that. If the cache entry has been 9765 * flushed, we fall back to the forwarding table lookup. This 9766 * should be rare enough since IRE cache entries have a longer 9767 * life expectancy than ARP cache entries. 9768 */ 9769 ire = ire_cache_lookup(sin->sin_addr.s_addr, ALL_ZONES, NULL, 9770 ipst); 9771 if ((ire == NULL) || (ire->ire_type == IRE_LOOPBACK) || 9772 ((ill = ire_to_ill(ire)) == NULL) || 9773 (ill->ill_net_type != IRE_IF_RESOLVER)) { 9774 if (ire != NULL) 9775 ire_refrele(ire); 9776 ire = ire_ftable_lookup(sin->sin_addr.s_addr, 9777 0, 0, IRE_IF_RESOLVER, NULL, NULL, ALL_ZONES, 0, 9778 NULL, MATCH_IRE_TYPE, ipst); 9779 if (ire == NULL || ((ill = ire_to_ill(ire)) == NULL)) { 9780 9781 if (ire != NULL) 9782 ire_refrele(ire); 9783 return (ENXIO); 9784 } 9785 } 9786 ASSERT(ire != NULL && ill != NULL); 9787 ipif = ill->ill_ipif; 9788 ipif_refhold(ipif); 9789 ire_refrele(ire); 9790 } 9791 ci->ci_sin = sin; 9792 ci->ci_ipif = ipif; 9793 return (0); 9794 } 9795 9796 /* 9797 * Do I_PLINK/I_LINK or I_PUNLINK/I_UNLINK with consistency checks and also 9798 * atomically set/clear the muxids. Also complete the ioctl by acking or 9799 * naking it. Note that the code is structured such that the link type, 9800 * whether it's persistent or not, is treated equally. ifconfig(1M) and 9801 * its clones use the persistent link, while pppd(1M) and perhaps many 9802 * other daemons may use non-persistent link. When combined with some 9803 * ill_t states, linking and unlinking lower streams may be used as 9804 * indicators of dynamic re-plumbing events [see PSARC/1999/348]. 9805 */ 9806 /* ARGSUSED */ 9807 void 9808 ip_sioctl_plink(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy_arg) 9809 { 9810 mblk_t *mp1, *mp2; 9811 struct linkblk *li; 9812 struct ipmx_s *ipmxp; 9813 ill_t *ill; 9814 int ioccmd = ((struct iocblk *)mp->b_rptr)->ioc_cmd; 9815 int err = 0; 9816 boolean_t entered_ipsq = B_FALSE; 9817 boolean_t islink; 9818 ip_stack_t *ipst; 9819 9820 if (CONN_Q(q)) 9821 ipst = CONNQ_TO_IPST(q); 9822 else 9823 ipst = ILLQ_TO_IPST(q); 9824 9825 ASSERT(ioccmd == I_PLINK || ioccmd == I_PUNLINK || 9826 ioccmd == I_LINK || ioccmd == I_UNLINK); 9827 9828 islink = (ioccmd == I_PLINK || ioccmd == I_LINK); 9829 9830 mp1 = mp->b_cont; /* This is the linkblk info */ 9831 li = (struct linkblk *)mp1->b_rptr; 9832 9833 /* 9834 * ARP has added this special mblk, and the utility is asking us 9835 * to perform consistency checks, and also atomically set the 9836 * muxid. Ifconfig is an example. It achieves this by using 9837 * /dev/arp as the mux to plink the arp stream, and pushes arp on 9838 * to /dev/udp[6] stream for use as the mux when plinking the IP 9839 * stream. SIOCSLIFMUXID is not required. See ifconfig.c, arp.c 9840 * and other comments in this routine for more details. 9841 */ 9842 mp2 = mp1->b_cont; /* This is added by ARP */ 9843 9844 /* 9845 * If I_{P}LINK/I_{P}UNLINK is issued by a utility other than 9846 * ifconfig which didn't push ARP on top of the dummy mux, we won't 9847 * get the special mblk above. For backward compatibility, we 9848 * request ip_sioctl_plink_ipmod() to skip the consistency checks. 9849 * The utility will use SIOCSLIFMUXID to store the muxids. This is 9850 * not atomic, and can leave the streams unplumbable if the utility 9851 * is interrupted before it does the SIOCSLIFMUXID. 9852 */ 9853 if (mp2 == NULL) { 9854 err = ip_sioctl_plink_ipmod(ipsq, q, mp, ioccmd, li, B_FALSE); 9855 if (err == EINPROGRESS) 9856 return; 9857 goto done; 9858 } 9859 9860 /* 9861 * This is an I_{P}LINK sent down by ifconfig through the ARP module; 9862 * ARP has appended this last mblk to tell us whether the lower stream 9863 * is an arp-dev stream or an IP module stream. 9864 */ 9865 ipmxp = (struct ipmx_s *)mp2->b_rptr; 9866 if (ipmxp->ipmx_arpdev_stream) { 9867 /* 9868 * The lower stream is the arp-dev stream. 9869 */ 9870 ill = ill_lookup_on_name(ipmxp->ipmx_name, B_FALSE, B_FALSE, 9871 q, mp, ip_sioctl_plink, &err, NULL, ipst); 9872 if (ill == NULL) { 9873 if (err == EINPROGRESS) 9874 return; 9875 err = EINVAL; 9876 goto done; 9877 } 9878 9879 if (ipsq == NULL) { 9880 ipsq = ipsq_try_enter(NULL, ill, q, mp, ip_sioctl_plink, 9881 NEW_OP, B_TRUE); 9882 if (ipsq == NULL) { 9883 ill_refrele(ill); 9884 return; 9885 } 9886 entered_ipsq = B_TRUE; 9887 } 9888 ASSERT(IAM_WRITER_ILL(ill)); 9889 ill_refrele(ill); 9890 9891 /* 9892 * To ensure consistency between IP and ARP, the following 9893 * LIFO scheme is used in plink/punlink. (IP first, ARP last). 9894 * This is because the muxid's are stored in the IP stream on 9895 * the ill. 9896 * 9897 * I_{P}LINK: ifconfig plinks the IP stream before plinking 9898 * the ARP stream. On an arp-dev stream, IP checks that it is 9899 * not yet plinked, and it also checks that the corresponding 9900 * IP stream is already plinked. 9901 * 9902 * I_{P}UNLINK: ifconfig punlinks the ARP stream before 9903 * punlinking the IP stream. IP does not allow punlink of the 9904 * IP stream unless the arp stream has been punlinked. 9905 */ 9906 if ((islink && 9907 (ill->ill_arp_muxid != 0 || ill->ill_ip_muxid == 0)) || 9908 (!islink && ill->ill_arp_muxid != li->l_index)) { 9909 err = EINVAL; 9910 goto done; 9911 } 9912 ill->ill_arp_muxid = islink ? li->l_index : 0; 9913 } else { 9914 /* 9915 * The lower stream is probably an IP module stream. Do 9916 * consistency checking. 9917 */ 9918 err = ip_sioctl_plink_ipmod(ipsq, q, mp, ioccmd, li, B_TRUE); 9919 if (err == EINPROGRESS) 9920 return; 9921 } 9922 done: 9923 if (err == 0) 9924 miocack(q, mp, 0, 0); 9925 else 9926 miocnak(q, mp, 0, err); 9927 9928 /* Conn was refheld in ip_sioctl_copyin_setup */ 9929 if (CONN_Q(q)) 9930 CONN_OPER_PENDING_DONE(Q_TO_CONN(q)); 9931 if (entered_ipsq) 9932 ipsq_exit(ipsq); 9933 } 9934 9935 /* 9936 * Process I_{P}LINK and I_{P}UNLINK requests named by `ioccmd' and pointed to 9937 * by `mp' and `li' for the IP module stream (if li->q_bot is in fact an IP 9938 * module stream). If `doconsist' is set, then do the extended consistency 9939 * checks requested by ifconfig(1M) and (atomically) set ill_ip_muxid here. 9940 * Returns zero on success, EINPROGRESS if the operation is still pending, or 9941 * an error code on failure. 9942 */ 9943 static int 9944 ip_sioctl_plink_ipmod(ipsq_t *ipsq, queue_t *q, mblk_t *mp, int ioccmd, 9945 struct linkblk *li, boolean_t doconsist) 9946 { 9947 ill_t *ill; 9948 queue_t *ipwq, *dwq; 9949 const char *name; 9950 struct qinit *qinfo; 9951 boolean_t islink = (ioccmd == I_PLINK || ioccmd == I_LINK); 9952 boolean_t entered_ipsq = B_FALSE; 9953 9954 /* 9955 * Walk the lower stream to verify it's the IP module stream. 9956 * The IP module is identified by its name, wput function, 9957 * and non-NULL q_next. STREAMS ensures that the lower stream 9958 * (li->l_qbot) will not vanish until this ioctl completes. 9959 */ 9960 for (ipwq = li->l_qbot; ipwq != NULL; ipwq = ipwq->q_next) { 9961 qinfo = ipwq->q_qinfo; 9962 name = qinfo->qi_minfo->mi_idname; 9963 if (name != NULL && strcmp(name, ip_mod_info.mi_idname) == 0 && 9964 qinfo->qi_putp != (pfi_t)ip_lwput && ipwq->q_next != NULL) { 9965 break; 9966 } 9967 } 9968 9969 /* 9970 * If this isn't an IP module stream, bail. 9971 */ 9972 if (ipwq == NULL) 9973 return (0); 9974 9975 ill = ipwq->q_ptr; 9976 ASSERT(ill != NULL); 9977 9978 if (ipsq == NULL) { 9979 ipsq = ipsq_try_enter(NULL, ill, q, mp, ip_sioctl_plink, 9980 NEW_OP, B_TRUE); 9981 if (ipsq == NULL) 9982 return (EINPROGRESS); 9983 entered_ipsq = B_TRUE; 9984 } 9985 ASSERT(IAM_WRITER_ILL(ill)); 9986 9987 if (doconsist) { 9988 /* 9989 * Consistency checking requires that I_{P}LINK occurs 9990 * prior to setting ill_ip_muxid, and that I_{P}UNLINK 9991 * occurs prior to clearing ill_arp_muxid. 9992 */ 9993 if ((islink && ill->ill_ip_muxid != 0) || 9994 (!islink && ill->ill_arp_muxid != 0)) { 9995 if (entered_ipsq) 9996 ipsq_exit(ipsq); 9997 return (EINVAL); 9998 } 9999 } 10000 10001 /* 10002 * As part of I_{P}LINKing, stash the number of downstream modules and 10003 * the read queue of the module immediately below IP in the ill. 10004 * These are used during the capability negotiation below. 10005 */ 10006 ill->ill_lmod_rq = NULL; 10007 ill->ill_lmod_cnt = 0; 10008 if (islink && ((dwq = ipwq->q_next) != NULL)) { 10009 ill->ill_lmod_rq = RD(dwq); 10010 for (; dwq != NULL; dwq = dwq->q_next) 10011 ill->ill_lmod_cnt++; 10012 } 10013 10014 if (doconsist) 10015 ill->ill_ip_muxid = islink ? li->l_index : 0; 10016 10017 /* 10018 * If there's at least one up ipif on this ill, then we're bound to 10019 * the underlying driver via DLPI. In that case, renegotiate 10020 * capabilities to account for any possible change in modules 10021 * interposed between IP and the driver. 10022 */ 10023 if (ill->ill_ipif_up_count > 0) { 10024 if (islink) 10025 ill_capability_probe(ill); 10026 else 10027 ill_capability_reset(ill); 10028 } 10029 10030 if (entered_ipsq) 10031 ipsq_exit(ipsq); 10032 10033 return (0); 10034 } 10035 10036 /* 10037 * Search the ioctl command in the ioctl tables and return a pointer 10038 * to the ioctl command information. The ioctl command tables are 10039 * static and fully populated at compile time. 10040 */ 10041 ip_ioctl_cmd_t * 10042 ip_sioctl_lookup(int ioc_cmd) 10043 { 10044 int index; 10045 ip_ioctl_cmd_t *ipip; 10046 ip_ioctl_cmd_t *ipip_end; 10047 10048 if (ioc_cmd == IPI_DONTCARE) 10049 return (NULL); 10050 10051 /* 10052 * Do a 2 step search. First search the indexed table 10053 * based on the least significant byte of the ioctl cmd. 10054 * If we don't find a match, then search the misc table 10055 * serially. 10056 */ 10057 index = ioc_cmd & 0xFF; 10058 if (index < ip_ndx_ioctl_count) { 10059 ipip = &ip_ndx_ioctl_table[index]; 10060 if (ipip->ipi_cmd == ioc_cmd) { 10061 /* Found a match in the ndx table */ 10062 return (ipip); 10063 } 10064 } 10065 10066 /* Search the misc table */ 10067 ipip_end = &ip_misc_ioctl_table[ip_misc_ioctl_count]; 10068 for (ipip = ip_misc_ioctl_table; ipip < ipip_end; ipip++) { 10069 if (ipip->ipi_cmd == ioc_cmd) 10070 /* Found a match in the misc table */ 10071 return (ipip); 10072 } 10073 10074 return (NULL); 10075 } 10076 10077 /* 10078 * Wrapper function for resuming deferred ioctl processing 10079 * Used for SIOCGDSTINFO, SIOCGIP6ADDRPOLICY, SIOCGMSFILTER, 10080 * SIOCSMSFILTER, SIOCGIPMSFILTER, and SIOCSIPMSFILTER currently. 10081 */ 10082 /* ARGSUSED */ 10083 void 10084 ip_sioctl_copyin_resume(ipsq_t *dummy_ipsq, queue_t *q, mblk_t *mp, 10085 void *dummy_arg) 10086 { 10087 ip_sioctl_copyin_setup(q, mp); 10088 } 10089 10090 /* 10091 * ip_sioctl_copyin_setup is called by ip_wput with any M_IOCTL message 10092 * that arrives. Most of the IOCTLs are "socket" IOCTLs which we handle 10093 * in either I_STR or TRANSPARENT form, using the mi_copy facility. 10094 * We establish here the size of the block to be copied in. mi_copyin 10095 * arranges for this to happen, an processing continues in ip_wput with 10096 * an M_IOCDATA message. 10097 */ 10098 void 10099 ip_sioctl_copyin_setup(queue_t *q, mblk_t *mp) 10100 { 10101 int copyin_size; 10102 struct iocblk *iocp = (struct iocblk *)mp->b_rptr; 10103 ip_ioctl_cmd_t *ipip; 10104 cred_t *cr; 10105 ip_stack_t *ipst; 10106 10107 if (CONN_Q(q)) 10108 ipst = CONNQ_TO_IPST(q); 10109 else 10110 ipst = ILLQ_TO_IPST(q); 10111 10112 ipip = ip_sioctl_lookup(iocp->ioc_cmd); 10113 if (ipip == NULL) { 10114 /* 10115 * The ioctl is not one we understand or own. 10116 * Pass it along to be processed down stream, 10117 * if this is a module instance of IP, else nak 10118 * the ioctl. 10119 */ 10120 if (q->q_next == NULL) { 10121 goto nak; 10122 } else { 10123 putnext(q, mp); 10124 return; 10125 } 10126 } 10127 10128 /* 10129 * If this is deferred, then we will do all the checks when we 10130 * come back. 10131 */ 10132 if ((iocp->ioc_cmd == SIOCGDSTINFO || 10133 iocp->ioc_cmd == SIOCGIP6ADDRPOLICY) && !ip6_asp_can_lookup(ipst)) { 10134 ip6_asp_pending_op(q, mp, ip_sioctl_copyin_resume); 10135 return; 10136 } 10137 10138 /* 10139 * Only allow a very small subset of IP ioctls on this stream if 10140 * IP is a module and not a driver. Allowing ioctls to be processed 10141 * in this case may cause assert failures or data corruption. 10142 * Typically G[L]IFFLAGS, SLIFNAME/IF_UNITSEL are the only few 10143 * ioctls allowed on an IP module stream, after which this stream 10144 * normally becomes a multiplexor (at which time the stream head 10145 * will fail all ioctls). 10146 */ 10147 if ((q->q_next != NULL) && !(ipip->ipi_flags & IPI_MODOK)) { 10148 if (ipip->ipi_flags & IPI_PASS_DOWN) { 10149 /* 10150 * Pass common Streams ioctls which the IP 10151 * module does not own or consume along to 10152 * be processed down stream. 10153 */ 10154 putnext(q, mp); 10155 return; 10156 } else { 10157 goto nak; 10158 } 10159 } 10160 10161 /* Make sure we have ioctl data to process. */ 10162 if (mp->b_cont == NULL && !(ipip->ipi_flags & IPI_NULL_BCONT)) 10163 goto nak; 10164 10165 /* 10166 * Prefer dblk credential over ioctl credential; some synthesized 10167 * ioctls have kcred set because there's no way to crhold() 10168 * a credential in some contexts. (ioc_cr is not crfree() by 10169 * the framework; the caller of ioctl needs to hold the reference 10170 * for the duration of the call). 10171 */ 10172 cr = DB_CREDDEF(mp, iocp->ioc_cr); 10173 10174 /* Make sure normal users don't send down privileged ioctls */ 10175 if ((ipip->ipi_flags & IPI_PRIV) && 10176 (cr != NULL) && secpolicy_ip_config(cr, B_TRUE) != 0) { 10177 /* We checked the privilege earlier but log it here */ 10178 miocnak(q, mp, 0, secpolicy_ip_config(cr, B_FALSE)); 10179 return; 10180 } 10181 10182 /* 10183 * The ioctl command tables can only encode fixed length 10184 * ioctl data. If the length is variable, the table will 10185 * encode the length as zero. Such special cases are handled 10186 * below in the switch. 10187 */ 10188 if (ipip->ipi_copyin_size != 0) { 10189 mi_copyin(q, mp, NULL, ipip->ipi_copyin_size); 10190 return; 10191 } 10192 10193 switch (iocp->ioc_cmd) { 10194 case O_SIOCGIFCONF: 10195 case SIOCGIFCONF: 10196 /* 10197 * This IOCTL is hilarious. See comments in 10198 * ip_sioctl_get_ifconf for the story. 10199 */ 10200 if (iocp->ioc_count == TRANSPARENT) 10201 copyin_size = SIZEOF_STRUCT(ifconf, 10202 iocp->ioc_flag); 10203 else 10204 copyin_size = iocp->ioc_count; 10205 mi_copyin(q, mp, NULL, copyin_size); 10206 return; 10207 10208 case O_SIOCGLIFCONF: 10209 case SIOCGLIFCONF: 10210 copyin_size = SIZEOF_STRUCT(lifconf, iocp->ioc_flag); 10211 mi_copyin(q, mp, NULL, copyin_size); 10212 return; 10213 10214 case SIOCGLIFSRCOF: 10215 copyin_size = SIZEOF_STRUCT(lifsrcof, iocp->ioc_flag); 10216 mi_copyin(q, mp, NULL, copyin_size); 10217 return; 10218 case SIOCGIP6ADDRPOLICY: 10219 ip_sioctl_ip6addrpolicy(q, mp); 10220 ip6_asp_table_refrele(ipst); 10221 return; 10222 10223 case SIOCSIP6ADDRPOLICY: 10224 ip_sioctl_ip6addrpolicy(q, mp); 10225 return; 10226 10227 case SIOCGDSTINFO: 10228 ip_sioctl_dstinfo(q, mp); 10229 ip6_asp_table_refrele(ipst); 10230 return; 10231 10232 case I_PLINK: 10233 case I_PUNLINK: 10234 case I_LINK: 10235 case I_UNLINK: 10236 /* 10237 * We treat non-persistent link similarly as the persistent 10238 * link case, in terms of plumbing/unplumbing, as well as 10239 * dynamic re-plumbing events indicator. See comments 10240 * in ip_sioctl_plink() for more. 10241 * 10242 * Request can be enqueued in the 'ipsq' while waiting 10243 * to become exclusive. So bump up the conn ref. 10244 */ 10245 if (CONN_Q(q)) 10246 CONN_INC_REF(Q_TO_CONN(q)); 10247 ip_sioctl_plink(NULL, q, mp, NULL); 10248 return; 10249 10250 case ND_GET: 10251 case ND_SET: 10252 /* 10253 * Use of the nd table requires holding the reader lock. 10254 * Modifying the nd table thru nd_load/nd_unload requires 10255 * the writer lock. 10256 */ 10257 rw_enter(&ipst->ips_ip_g_nd_lock, RW_READER); 10258 if (nd_getset(q, ipst->ips_ip_g_nd, mp)) { 10259 rw_exit(&ipst->ips_ip_g_nd_lock); 10260 10261 if (iocp->ioc_error) 10262 iocp->ioc_count = 0; 10263 mp->b_datap->db_type = M_IOCACK; 10264 qreply(q, mp); 10265 return; 10266 } 10267 rw_exit(&ipst->ips_ip_g_nd_lock); 10268 /* 10269 * We don't understand this subioctl of ND_GET / ND_SET. 10270 * Maybe intended for some driver / module below us 10271 */ 10272 if (q->q_next) { 10273 putnext(q, mp); 10274 } else { 10275 iocp->ioc_error = ENOENT; 10276 mp->b_datap->db_type = M_IOCNAK; 10277 iocp->ioc_count = 0; 10278 qreply(q, mp); 10279 } 10280 return; 10281 10282 case IP_IOCTL: 10283 ip_wput_ioctl(q, mp); 10284 return; 10285 default: 10286 cmn_err(CE_PANIC, "should not happen "); 10287 } 10288 nak: 10289 if (mp->b_cont != NULL) { 10290 freemsg(mp->b_cont); 10291 mp->b_cont = NULL; 10292 } 10293 iocp->ioc_error = EINVAL; 10294 mp->b_datap->db_type = M_IOCNAK; 10295 iocp->ioc_count = 0; 10296 qreply(q, mp); 10297 } 10298 10299 /* ip_wput hands off ARP IOCTL responses to us */ 10300 void 10301 ip_sioctl_iocack(queue_t *q, mblk_t *mp) 10302 { 10303 struct arpreq *ar; 10304 struct xarpreq *xar; 10305 area_t *area; 10306 mblk_t *area_mp; 10307 struct iocblk *iocp; 10308 mblk_t *orig_ioc_mp, *tmp; 10309 struct iocblk *orig_iocp; 10310 ill_t *ill; 10311 conn_t *connp = NULL; 10312 uint_t ioc_id; 10313 mblk_t *pending_mp; 10314 int x_arp_ioctl = B_FALSE, ifx_arp_ioctl = B_FALSE; 10315 int *flagsp; 10316 char *storage = NULL; 10317 sin_t *sin; 10318 ipaddr_t addr; 10319 int err; 10320 ip_stack_t *ipst; 10321 10322 ill = q->q_ptr; 10323 ASSERT(ill != NULL); 10324 ipst = ill->ill_ipst; 10325 10326 /* 10327 * We should get back from ARP a packet chain that looks like: 10328 * M_IOCACK-->ARP_op_MBLK-->ORIG_M_IOCTL-->MI_COPY_MBLK-->[X]ARPREQ_MBLK 10329 */ 10330 if (!(area_mp = mp->b_cont) || 10331 (area_mp->b_wptr - area_mp->b_rptr) < sizeof (ip_sock_ar_t) || 10332 !(orig_ioc_mp = area_mp->b_cont) || 10333 !orig_ioc_mp->b_cont || !orig_ioc_mp->b_cont->b_cont) { 10334 freemsg(mp); 10335 return; 10336 } 10337 10338 orig_iocp = (struct iocblk *)orig_ioc_mp->b_rptr; 10339 10340 tmp = (orig_ioc_mp->b_cont)->b_cont; 10341 if ((orig_iocp->ioc_cmd == SIOCGXARP) || 10342 (orig_iocp->ioc_cmd == SIOCSXARP) || 10343 (orig_iocp->ioc_cmd == SIOCDXARP)) { 10344 x_arp_ioctl = B_TRUE; 10345 xar = (struct xarpreq *)tmp->b_rptr; 10346 sin = (sin_t *)&xar->xarp_pa; 10347 flagsp = &xar->xarp_flags; 10348 storage = xar->xarp_ha.sdl_data; 10349 if (xar->xarp_ha.sdl_nlen != 0) 10350 ifx_arp_ioctl = B_TRUE; 10351 } else { 10352 ar = (struct arpreq *)tmp->b_rptr; 10353 sin = (sin_t *)&ar->arp_pa; 10354 flagsp = &ar->arp_flags; 10355 storage = ar->arp_ha.sa_data; 10356 } 10357 10358 iocp = (struct iocblk *)mp->b_rptr; 10359 10360 /* 10361 * Pick out the originating queue based on the ioc_id. 10362 */ 10363 ioc_id = iocp->ioc_id; 10364 pending_mp = ill_pending_mp_get(ill, &connp, ioc_id); 10365 if (pending_mp == NULL) { 10366 ASSERT(connp == NULL); 10367 inet_freemsg(mp); 10368 return; 10369 } 10370 ASSERT(connp != NULL); 10371 q = CONNP_TO_WQ(connp); 10372 10373 /* Uncouple the internally generated IOCTL from the original one */ 10374 area = (area_t *)area_mp->b_rptr; 10375 area_mp->b_cont = NULL; 10376 10377 /* 10378 * Restore the b_next and b_prev used by mi code. This is needed 10379 * to complete the ioctl using mi* functions. We stored them in 10380 * the pending mp prior to sending the request to ARP. 10381 */ 10382 orig_ioc_mp->b_cont->b_next = pending_mp->b_cont->b_next; 10383 orig_ioc_mp->b_cont->b_prev = pending_mp->b_cont->b_prev; 10384 inet_freemsg(pending_mp); 10385 10386 /* 10387 * We're done if there was an error or if this is not an SIOCG{X}ARP 10388 * Catch the case where there is an IRE_CACHE by no entry in the 10389 * arp table. 10390 */ 10391 addr = sin->sin_addr.s_addr; 10392 if (iocp->ioc_error && iocp->ioc_cmd == AR_ENTRY_SQUERY) { 10393 ire_t *ire; 10394 dl_unitdata_req_t *dlup; 10395 mblk_t *llmp; 10396 int addr_len; 10397 ill_t *ipsqill = NULL; 10398 10399 if (ifx_arp_ioctl) { 10400 /* 10401 * There's no need to lookup the ill, since 10402 * we've already done that when we started 10403 * processing the ioctl and sent the message 10404 * to ARP on that ill. So use the ill that 10405 * is stored in q->q_ptr. 10406 */ 10407 ipsqill = ill; 10408 ire = ire_ctable_lookup(addr, 0, IRE_CACHE, 10409 ipsqill->ill_ipif, ALL_ZONES, 10410 NULL, MATCH_IRE_TYPE | MATCH_IRE_ILL, ipst); 10411 } else { 10412 ire = ire_ctable_lookup(addr, 0, IRE_CACHE, 10413 NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 10414 if (ire != NULL) 10415 ipsqill = ire_to_ill(ire); 10416 } 10417 10418 if ((x_arp_ioctl) && (ipsqill != NULL)) 10419 storage += ill_xarp_info(&xar->xarp_ha, ipsqill); 10420 10421 if (ire != NULL) { 10422 /* 10423 * Since the ire obtained from cachetable is used for 10424 * mac addr copying below, treat an incomplete ire as if 10425 * as if we never found it. 10426 */ 10427 if (ire->ire_nce != NULL && 10428 ire->ire_nce->nce_state != ND_REACHABLE) { 10429 ire_refrele(ire); 10430 ire = NULL; 10431 ipsqill = NULL; 10432 goto errack; 10433 } 10434 *flagsp = ATF_INUSE; 10435 llmp = (ire->ire_nce != NULL ? 10436 ire->ire_nce->nce_res_mp : NULL); 10437 if (llmp != NULL && ipsqill != NULL) { 10438 uchar_t *macaddr; 10439 10440 addr_len = ipsqill->ill_phys_addr_length; 10441 if (x_arp_ioctl && ((addr_len + 10442 ipsqill->ill_name_length) > 10443 sizeof (xar->xarp_ha.sdl_data))) { 10444 ire_refrele(ire); 10445 freemsg(mp); 10446 ip_ioctl_finish(q, orig_ioc_mp, 10447 EINVAL, NO_COPYOUT, NULL); 10448 return; 10449 } 10450 *flagsp |= ATF_COM; 10451 dlup = (dl_unitdata_req_t *)llmp->b_rptr; 10452 if (ipsqill->ill_sap_length < 0) 10453 macaddr = llmp->b_rptr + 10454 dlup->dl_dest_addr_offset; 10455 else 10456 macaddr = llmp->b_rptr + 10457 dlup->dl_dest_addr_offset + 10458 ipsqill->ill_sap_length; 10459 /* 10460 * For SIOCGARP, MAC address length 10461 * validation has already been done 10462 * before the ioctl was issued to ARP to 10463 * allow it to progress only on 6 byte 10464 * addressable (ethernet like) media. Thus 10465 * the mac address copying can not overwrite 10466 * the sa_data area below. 10467 */ 10468 bcopy(macaddr, storage, addr_len); 10469 } 10470 /* Ditch the internal IOCTL. */ 10471 freemsg(mp); 10472 ire_refrele(ire); 10473 ip_ioctl_finish(q, orig_ioc_mp, 0, COPYOUT, NULL); 10474 return; 10475 } 10476 } 10477 10478 /* 10479 * Delete the coresponding IRE_CACHE if any. 10480 * Reset the error if there was one (in case there was no entry 10481 * in arp.) 10482 */ 10483 if (iocp->ioc_cmd == AR_ENTRY_DELETE) { 10484 ipif_t *ipintf = NULL; 10485 10486 if (ifx_arp_ioctl) { 10487 /* 10488 * There's no need to lookup the ill, since 10489 * we've already done that when we started 10490 * processing the ioctl and sent the message 10491 * to ARP on that ill. So use the ill that 10492 * is stored in q->q_ptr. 10493 */ 10494 ipintf = ill->ill_ipif; 10495 } 10496 if (ip_ire_clookup_and_delete(addr, ipintf, ipst)) { 10497 /* 10498 * The address in "addr" may be an entry for a 10499 * router. If that's true, then any off-net 10500 * IRE_CACHE entries that go through the router 10501 * with address "addr" must be clobbered. Use 10502 * ire_walk to achieve this goal. 10503 */ 10504 if (ifx_arp_ioctl) 10505 ire_walk_ill_v4(MATCH_IRE_ILL, 0, 10506 ire_delete_cache_gw, (char *)&addr, ill); 10507 else 10508 ire_walk_v4(ire_delete_cache_gw, (char *)&addr, 10509 ALL_ZONES, ipst); 10510 iocp->ioc_error = 0; 10511 } 10512 } 10513 errack: 10514 if (iocp->ioc_error || iocp->ioc_cmd != AR_ENTRY_SQUERY) { 10515 err = iocp->ioc_error; 10516 freemsg(mp); 10517 ip_ioctl_finish(q, orig_ioc_mp, err, NO_COPYOUT, NULL); 10518 return; 10519 } 10520 10521 /* 10522 * Completion of an SIOCG{X}ARP. Translate the information from 10523 * the area_t into the struct {x}arpreq. 10524 */ 10525 if (x_arp_ioctl) { 10526 storage += ill_xarp_info(&xar->xarp_ha, ill); 10527 if ((ill->ill_phys_addr_length + ill->ill_name_length) > 10528 sizeof (xar->xarp_ha.sdl_data)) { 10529 freemsg(mp); 10530 ip_ioctl_finish(q, orig_ioc_mp, EINVAL, NO_COPYOUT, 10531 NULL); 10532 return; 10533 } 10534 } 10535 *flagsp = ATF_INUSE; 10536 if (area->area_flags & ACE_F_PERMANENT) 10537 *flagsp |= ATF_PERM; 10538 if (area->area_flags & ACE_F_PUBLISH) 10539 *flagsp |= ATF_PUBL; 10540 if (area->area_flags & ACE_F_AUTHORITY) 10541 *flagsp |= ATF_AUTHORITY; 10542 if (area->area_hw_addr_length != 0) { 10543 *flagsp |= ATF_COM; 10544 /* 10545 * For SIOCGARP, MAC address length validation has 10546 * already been done before the ioctl was issued to ARP 10547 * to allow it to progress only on 6 byte addressable 10548 * (ethernet like) media. Thus the mac address copying 10549 * can not overwrite the sa_data area below. 10550 */ 10551 bcopy((char *)area + area->area_hw_addr_offset, 10552 storage, area->area_hw_addr_length); 10553 } 10554 10555 /* Ditch the internal IOCTL. */ 10556 freemsg(mp); 10557 /* Complete the original. */ 10558 ip_ioctl_finish(q, orig_ioc_mp, 0, COPYOUT, NULL); 10559 } 10560 10561 /* 10562 * Create a new logical interface. If ipif_id is zero (i.e. not a logical 10563 * interface) create the next available logical interface for this 10564 * physical interface. 10565 * If ipif is NULL (i.e. the lookup didn't find one) attempt to create an 10566 * ipif with the specified name. 10567 * 10568 * If the address family is not AF_UNSPEC then set the address as well. 10569 * 10570 * If ip_sioctl_addr returns EINPROGRESS then the ioctl (the copyout) 10571 * is completed when the DL_BIND_ACK arrive in ip_rput_dlpi_writer. 10572 * 10573 * Executed as a writer on the ill or ill group. 10574 * So no lock is needed to traverse the ipif chain, or examine the 10575 * phyint flags. 10576 */ 10577 /* ARGSUSED */ 10578 int 10579 ip_sioctl_addif(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, 10580 ip_ioctl_cmd_t *dummy_ipip, void *dummy_ifreq) 10581 { 10582 mblk_t *mp1; 10583 struct lifreq *lifr; 10584 boolean_t isv6; 10585 boolean_t exists; 10586 char *name; 10587 char *endp; 10588 char *cp; 10589 int namelen; 10590 ipif_t *ipif; 10591 long id; 10592 ipsq_t *ipsq; 10593 ill_t *ill; 10594 sin_t *sin; 10595 int err = 0; 10596 boolean_t found_sep = B_FALSE; 10597 conn_t *connp; 10598 zoneid_t zoneid; 10599 int orig_ifindex = 0; 10600 ip_stack_t *ipst = CONNQ_TO_IPST(q); 10601 10602 ASSERT(q->q_next == NULL); 10603 ip1dbg(("ip_sioctl_addif\n")); 10604 /* Existence of mp1 has been checked in ip_wput_nondata */ 10605 mp1 = mp->b_cont->b_cont; 10606 /* 10607 * Null terminate the string to protect against buffer 10608 * overrun. String was generated by user code and may not 10609 * be trusted. 10610 */ 10611 lifr = (struct lifreq *)mp1->b_rptr; 10612 lifr->lifr_name[LIFNAMSIZ - 1] = '\0'; 10613 name = lifr->lifr_name; 10614 ASSERT(CONN_Q(q)); 10615 connp = Q_TO_CONN(q); 10616 isv6 = connp->conn_af_isv6; 10617 zoneid = connp->conn_zoneid; 10618 namelen = mi_strlen(name); 10619 if (namelen == 0) 10620 return (EINVAL); 10621 10622 exists = B_FALSE; 10623 if ((namelen + 1 == sizeof (ipif_loopback_name)) && 10624 (mi_strcmp(name, ipif_loopback_name) == 0)) { 10625 /* 10626 * Allow creating lo0 using SIOCLIFADDIF. 10627 * can't be any other writer thread. So can pass null below 10628 * for the last 4 args to ipif_lookup_name. 10629 */ 10630 ipif = ipif_lookup_on_name(lifr->lifr_name, namelen, B_TRUE, 10631 &exists, isv6, zoneid, NULL, NULL, NULL, NULL, ipst); 10632 /* Prevent any further action */ 10633 if (ipif == NULL) { 10634 return (ENOBUFS); 10635 } else if (!exists) { 10636 /* We created the ipif now and as writer */ 10637 ipif_refrele(ipif); 10638 return (0); 10639 } else { 10640 ill = ipif->ipif_ill; 10641 ill_refhold(ill); 10642 ipif_refrele(ipif); 10643 } 10644 } else { 10645 /* Look for a colon in the name. */ 10646 endp = &name[namelen]; 10647 for (cp = endp; --cp > name; ) { 10648 if (*cp == IPIF_SEPARATOR_CHAR) { 10649 found_sep = B_TRUE; 10650 /* 10651 * Reject any non-decimal aliases for plumbing 10652 * of logical interfaces. Aliases with leading 10653 * zeroes are also rejected as they introduce 10654 * ambiguity in the naming of the interfaces. 10655 * Comparing with "0" takes care of all such 10656 * cases. 10657 */ 10658 if ((strncmp("0", cp+1, 1)) == 0) 10659 return (EINVAL); 10660 10661 if (ddi_strtol(cp+1, &endp, 10, &id) != 0 || 10662 id <= 0 || *endp != '\0') { 10663 return (EINVAL); 10664 } 10665 *cp = '\0'; 10666 break; 10667 } 10668 } 10669 ill = ill_lookup_on_name(name, B_FALSE, isv6, 10670 CONNP_TO_WQ(connp), mp, ip_process_ioctl, &err, NULL, ipst); 10671 if (found_sep) 10672 *cp = IPIF_SEPARATOR_CHAR; 10673 if (ill == NULL) 10674 return (err); 10675 } 10676 10677 ipsq = ipsq_try_enter(NULL, ill, q, mp, ip_process_ioctl, NEW_OP, 10678 B_TRUE); 10679 10680 /* 10681 * Release the refhold due to the lookup, now that we are excl 10682 * or we are just returning 10683 */ 10684 ill_refrele(ill); 10685 10686 if (ipsq == NULL) 10687 return (EINPROGRESS); 10688 10689 /* 10690 * If the interface is failed, inactive or offlined, look for a working 10691 * interface in the ill group and create the ipif there. If we can't 10692 * find a good interface, create the ipif anyway so that in.mpathd can 10693 * move it to the first repaired interface. 10694 */ 10695 if ((ill->ill_phyint->phyint_flags & 10696 (PHYI_FAILED|PHYI_INACTIVE|PHYI_OFFLINE)) && 10697 ill->ill_phyint->phyint_groupname_len != 0) { 10698 phyint_t *phyi; 10699 char *groupname = ill->ill_phyint->phyint_groupname; 10700 10701 /* 10702 * We're looking for a working interface, but it doesn't matter 10703 * if it's up or down; so instead of following the group lists, 10704 * we look at each physical interface and compare the groupname. 10705 * We're only interested in interfaces with IPv4 (resp. IPv6) 10706 * plumbed when we're adding an IPv4 (resp. IPv6) ipif. 10707 * Otherwise we create the ipif on the failed interface. 10708 */ 10709 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 10710 phyi = avl_first(&ipst->ips_phyint_g_list-> 10711 phyint_list_avl_by_index); 10712 for (; phyi != NULL; 10713 phyi = avl_walk(&ipst->ips_phyint_g_list-> 10714 phyint_list_avl_by_index, 10715 phyi, AVL_AFTER)) { 10716 if (phyi->phyint_groupname_len == 0) 10717 continue; 10718 ASSERT(phyi->phyint_groupname != NULL); 10719 if (mi_strcmp(groupname, phyi->phyint_groupname) == 0 && 10720 !(phyi->phyint_flags & 10721 (PHYI_FAILED|PHYI_INACTIVE|PHYI_OFFLINE)) && 10722 (ill->ill_isv6 ? (phyi->phyint_illv6 != NULL) : 10723 (phyi->phyint_illv4 != NULL))) { 10724 break; 10725 } 10726 } 10727 rw_exit(&ipst->ips_ill_g_lock); 10728 10729 if (phyi != NULL) { 10730 orig_ifindex = ill->ill_phyint->phyint_ifindex; 10731 ill = (ill->ill_isv6 ? phyi->phyint_illv6 : 10732 phyi->phyint_illv4); 10733 } 10734 } 10735 10736 /* 10737 * We are now exclusive on the ipsq, so an ill move will be serialized 10738 * before or after us. 10739 */ 10740 ASSERT(IAM_WRITER_ILL(ill)); 10741 ASSERT(ill->ill_move_in_progress == B_FALSE); 10742 10743 if (found_sep && orig_ifindex == 0) { 10744 /* Now see if there is an IPIF with this unit number. */ 10745 for (ipif = ill->ill_ipif; ipif != NULL; 10746 ipif = ipif->ipif_next) { 10747 if (ipif->ipif_id == id) { 10748 err = EEXIST; 10749 goto done; 10750 } 10751 } 10752 } 10753 10754 /* 10755 * We use IRE_LOCAL for lo0:1 etc. for "receive only" use 10756 * of lo0. We never come here when we plumb lo0:0. It 10757 * happens in ipif_lookup_on_name. 10758 * The specified unit number is ignored when we create the ipif on a 10759 * different interface. However, we save it in ipif_orig_ipifid below so 10760 * that the ipif fails back to the right position. 10761 */ 10762 if ((ipif = ipif_allocate(ill, (found_sep && orig_ifindex == 0) ? 10763 id : -1, IRE_LOCAL, B_TRUE)) == NULL) { 10764 err = ENOBUFS; 10765 goto done; 10766 } 10767 10768 /* Return created name with ioctl */ 10769 (void) sprintf(lifr->lifr_name, "%s%c%d", ill->ill_name, 10770 IPIF_SEPARATOR_CHAR, ipif->ipif_id); 10771 ip1dbg(("created %s\n", lifr->lifr_name)); 10772 10773 /* Set address */ 10774 sin = (sin_t *)&lifr->lifr_addr; 10775 if (sin->sin_family != AF_UNSPEC) { 10776 err = ip_sioctl_addr(ipif, sin, q, mp, 10777 &ip_ndx_ioctl_table[SIOCLIFADDR_NDX], lifr); 10778 } 10779 10780 /* Set ifindex and unit number for failback */ 10781 if (err == 0 && orig_ifindex != 0) { 10782 ipif->ipif_orig_ifindex = orig_ifindex; 10783 if (found_sep) { 10784 ipif->ipif_orig_ipifid = id; 10785 } 10786 } 10787 10788 done: 10789 ipsq_exit(ipsq); 10790 return (err); 10791 } 10792 10793 /* 10794 * Remove an existing logical interface. If ipif_id is zero (i.e. not a logical 10795 * interface) delete it based on the IP address (on this physical interface). 10796 * Otherwise delete it based on the ipif_id. 10797 * Also, special handling to allow a removeif of lo0. 10798 */ 10799 /* ARGSUSED */ 10800 int 10801 ip_sioctl_removeif(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 10802 ip_ioctl_cmd_t *ipip, void *dummy_if_req) 10803 { 10804 conn_t *connp; 10805 ill_t *ill = ipif->ipif_ill; 10806 boolean_t success; 10807 ip_stack_t *ipst; 10808 10809 ipst = CONNQ_TO_IPST(q); 10810 10811 ASSERT(q->q_next == NULL); 10812 ip1dbg(("ip_sioctl_remove_if(%s:%u %p)\n", 10813 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 10814 ASSERT(IAM_WRITER_IPIF(ipif)); 10815 10816 connp = Q_TO_CONN(q); 10817 /* 10818 * Special case for unplumbing lo0 (the loopback physical interface). 10819 * If unplumbing lo0, the incoming address structure has been 10820 * initialized to all zeros. When unplumbing lo0, all its logical 10821 * interfaces must be removed too. 10822 * 10823 * Note that this interface may be called to remove a specific 10824 * loopback logical interface (eg, lo0:1). But in that case 10825 * ipif->ipif_id != 0 so that the code path for that case is the 10826 * same as any other interface (meaning it skips the code directly 10827 * below). 10828 */ 10829 if (ipif->ipif_id == 0 && ipif->ipif_net_type == IRE_LOOPBACK) { 10830 if (sin->sin_family == AF_UNSPEC && 10831 (IN6_IS_ADDR_UNSPECIFIED(&((sin6_t *)sin)->sin6_addr))) { 10832 /* 10833 * Mark it condemned. No new ref. will be made to ill. 10834 */ 10835 mutex_enter(&ill->ill_lock); 10836 ill->ill_state_flags |= ILL_CONDEMNED; 10837 for (ipif = ill->ill_ipif; ipif != NULL; 10838 ipif = ipif->ipif_next) { 10839 ipif->ipif_state_flags |= IPIF_CONDEMNED; 10840 } 10841 mutex_exit(&ill->ill_lock); 10842 10843 ipif = ill->ill_ipif; 10844 /* unplumb the loopback interface */ 10845 ill_delete(ill); 10846 mutex_enter(&connp->conn_lock); 10847 mutex_enter(&ill->ill_lock); 10848 ASSERT(ill->ill_group == NULL); 10849 10850 /* Are any references to this ill active */ 10851 if (ill_is_freeable(ill)) { 10852 mutex_exit(&ill->ill_lock); 10853 mutex_exit(&connp->conn_lock); 10854 ill_delete_tail(ill); 10855 mi_free(ill); 10856 return (0); 10857 } 10858 success = ipsq_pending_mp_add(connp, ipif, 10859 CONNP_TO_WQ(connp), mp, ILL_FREE); 10860 mutex_exit(&connp->conn_lock); 10861 mutex_exit(&ill->ill_lock); 10862 if (success) 10863 return (EINPROGRESS); 10864 else 10865 return (EINTR); 10866 } 10867 } 10868 10869 /* 10870 * We are exclusive on the ipsq, so an ill move will be serialized 10871 * before or after us. 10872 */ 10873 ASSERT(ill->ill_move_in_progress == B_FALSE); 10874 10875 if (ipif->ipif_id == 0) { 10876 10877 ipsq_t *ipsq; 10878 10879 /* Find based on address */ 10880 if (ipif->ipif_isv6) { 10881 sin6_t *sin6; 10882 10883 if (sin->sin_family != AF_INET6) 10884 return (EAFNOSUPPORT); 10885 10886 sin6 = (sin6_t *)sin; 10887 /* We are a writer, so we should be able to lookup */ 10888 ipif = ipif_lookup_addr_v6(&sin6->sin6_addr, 10889 ill, ALL_ZONES, NULL, NULL, NULL, NULL, ipst); 10890 if (ipif == NULL) { 10891 /* 10892 * Maybe the address in on another interface in 10893 * the same IPMP group? We check this below. 10894 */ 10895 ipif = ipif_lookup_addr_v6(&sin6->sin6_addr, 10896 NULL, ALL_ZONES, NULL, NULL, NULL, NULL, 10897 ipst); 10898 } 10899 } else { 10900 ipaddr_t addr; 10901 10902 if (sin->sin_family != AF_INET) 10903 return (EAFNOSUPPORT); 10904 10905 addr = sin->sin_addr.s_addr; 10906 /* We are a writer, so we should be able to lookup */ 10907 ipif = ipif_lookup_addr(addr, ill, ALL_ZONES, NULL, 10908 NULL, NULL, NULL, ipst); 10909 if (ipif == NULL) { 10910 /* 10911 * Maybe the address in on another interface in 10912 * the same IPMP group? We check this below. 10913 */ 10914 ipif = ipif_lookup_addr(addr, NULL, ALL_ZONES, 10915 NULL, NULL, NULL, NULL, ipst); 10916 } 10917 } 10918 if (ipif == NULL) { 10919 return (EADDRNOTAVAIL); 10920 } 10921 10922 /* 10923 * It is possible for a user to send an SIOCLIFREMOVEIF with 10924 * lifr_name of the physical interface but with an ip address 10925 * lifr_addr of a logical interface plumbed over it. 10926 * So update ipsq_current_ipif once ipif points to the 10927 * correct interface after doing ipif_lookup_addr(). 10928 */ 10929 ipsq = ipif->ipif_ill->ill_phyint->phyint_ipsq; 10930 ASSERT(ipsq != NULL); 10931 10932 mutex_enter(&ipsq->ipsq_lock); 10933 ipsq->ipsq_current_ipif = ipif; 10934 mutex_exit(&ipsq->ipsq_lock); 10935 10936 /* 10937 * When the address to be removed is hosted on a different 10938 * interface, we check if the interface is in the same IPMP 10939 * group as the specified one; if so we proceed with the 10940 * removal. 10941 * ill->ill_group is NULL when the ill is down, so we have to 10942 * compare the group names instead. 10943 */ 10944 if (ipif->ipif_ill != ill && 10945 (ipif->ipif_ill->ill_phyint->phyint_groupname_len == 0 || 10946 ill->ill_phyint->phyint_groupname_len == 0 || 10947 mi_strcmp(ipif->ipif_ill->ill_phyint->phyint_groupname, 10948 ill->ill_phyint->phyint_groupname) != 0)) { 10949 ipif_refrele(ipif); 10950 return (EADDRNOTAVAIL); 10951 } 10952 10953 /* This is a writer */ 10954 ipif_refrele(ipif); 10955 } 10956 10957 /* 10958 * Can not delete instance zero since it is tied to the ill. 10959 */ 10960 if (ipif->ipif_id == 0) 10961 return (EBUSY); 10962 10963 mutex_enter(&ill->ill_lock); 10964 ipif->ipif_state_flags |= IPIF_CONDEMNED; 10965 mutex_exit(&ill->ill_lock); 10966 10967 ipif_free(ipif); 10968 10969 mutex_enter(&connp->conn_lock); 10970 mutex_enter(&ill->ill_lock); 10971 10972 10973 /* Are any references to this ipif active */ 10974 if (ipif_is_freeable(ipif)) { 10975 mutex_exit(&ill->ill_lock); 10976 mutex_exit(&connp->conn_lock); 10977 ipif_non_duplicate(ipif); 10978 ipif_down_tail(ipif); 10979 ipif_free_tail(ipif); /* frees ipif */ 10980 return (0); 10981 } 10982 success = ipsq_pending_mp_add(connp, ipif, CONNP_TO_WQ(connp), mp, 10983 IPIF_FREE); 10984 mutex_exit(&ill->ill_lock); 10985 mutex_exit(&connp->conn_lock); 10986 if (success) 10987 return (EINPROGRESS); 10988 else 10989 return (EINTR); 10990 } 10991 10992 /* 10993 * Restart the removeif ioctl. The refcnt has gone down to 0. 10994 * The ipif is already condemned. So can't find it thru lookups. 10995 */ 10996 /* ARGSUSED */ 10997 int 10998 ip_sioctl_removeif_restart(ipif_t *ipif, sin_t *dummy_sin, queue_t *q, 10999 mblk_t *mp, ip_ioctl_cmd_t *ipip, void *dummy_if_req) 11000 { 11001 ill_t *ill = ipif->ipif_ill; 11002 11003 ASSERT(IAM_WRITER_IPIF(ipif)); 11004 ASSERT(ipif->ipif_state_flags & IPIF_CONDEMNED); 11005 11006 ip1dbg(("ip_sioctl_removeif_restart(%s:%u %p)\n", 11007 ill->ill_name, ipif->ipif_id, (void *)ipif)); 11008 11009 if (ipif->ipif_id == 0 && ipif->ipif_net_type == IRE_LOOPBACK) { 11010 ASSERT(ill->ill_state_flags & ILL_CONDEMNED); 11011 ill_delete_tail(ill); 11012 mi_free(ill); 11013 return (0); 11014 } 11015 11016 ipif_non_duplicate(ipif); 11017 ipif_down_tail(ipif); 11018 ipif_free_tail(ipif); 11019 11020 ILL_UNMARK_CHANGING(ill); 11021 return (0); 11022 } 11023 11024 /* 11025 * Set the local interface address. 11026 * Allow an address of all zero when the interface is down. 11027 */ 11028 /* ARGSUSED */ 11029 int 11030 ip_sioctl_addr(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11031 ip_ioctl_cmd_t *dummy_ipip, void *dummy_ifreq) 11032 { 11033 int err = 0; 11034 in6_addr_t v6addr; 11035 boolean_t need_up = B_FALSE; 11036 11037 ip1dbg(("ip_sioctl_addr(%s:%u %p)\n", 11038 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11039 11040 ASSERT(IAM_WRITER_IPIF(ipif)); 11041 11042 if (ipif->ipif_isv6) { 11043 sin6_t *sin6; 11044 ill_t *ill; 11045 phyint_t *phyi; 11046 11047 if (sin->sin_family != AF_INET6) 11048 return (EAFNOSUPPORT); 11049 11050 sin6 = (sin6_t *)sin; 11051 v6addr = sin6->sin6_addr; 11052 ill = ipif->ipif_ill; 11053 phyi = ill->ill_phyint; 11054 11055 /* 11056 * Enforce that true multicast interfaces have a link-local 11057 * address for logical unit 0. 11058 */ 11059 if (ipif->ipif_id == 0 && 11060 (ill->ill_flags & ILLF_MULTICAST) && 11061 !(ipif->ipif_flags & (IPIF_POINTOPOINT)) && 11062 !(phyi->phyint_flags & (PHYI_LOOPBACK)) && 11063 !IN6_IS_ADDR_LINKLOCAL(&v6addr)) { 11064 return (EADDRNOTAVAIL); 11065 } 11066 11067 /* 11068 * up interfaces shouldn't have the unspecified address 11069 * unless they also have the IPIF_NOLOCAL flags set and 11070 * have a subnet assigned. 11071 */ 11072 if ((ipif->ipif_flags & IPIF_UP) && 11073 IN6_IS_ADDR_UNSPECIFIED(&v6addr) && 11074 (!(ipif->ipif_flags & IPIF_NOLOCAL) || 11075 IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6subnet))) { 11076 return (EADDRNOTAVAIL); 11077 } 11078 11079 if (!ip_local_addr_ok_v6(&v6addr, &ipif->ipif_v6net_mask)) 11080 return (EADDRNOTAVAIL); 11081 } else { 11082 ipaddr_t addr; 11083 11084 if (sin->sin_family != AF_INET) 11085 return (EAFNOSUPPORT); 11086 11087 addr = sin->sin_addr.s_addr; 11088 11089 /* Allow 0 as the local address. */ 11090 if (addr != 0 && !ip_addr_ok_v4(addr, ipif->ipif_net_mask)) 11091 return (EADDRNOTAVAIL); 11092 11093 IN6_IPADDR_TO_V4MAPPED(addr, &v6addr); 11094 } 11095 11096 /* 11097 * Even if there is no change we redo things just to rerun 11098 * ipif_set_default. 11099 */ 11100 if (ipif->ipif_flags & IPIF_UP) { 11101 /* 11102 * Setting a new local address, make sure 11103 * we have net and subnet bcast ire's for 11104 * the old address if we need them. 11105 */ 11106 if (!ipif->ipif_isv6) 11107 ipif_check_bcast_ires(ipif); 11108 /* 11109 * If the interface is already marked up, 11110 * we call ipif_down which will take care 11111 * of ditching any IREs that have been set 11112 * up based on the old interface address. 11113 */ 11114 err = ipif_logical_down(ipif, q, mp); 11115 if (err == EINPROGRESS) 11116 return (err); 11117 ipif_down_tail(ipif); 11118 need_up = 1; 11119 } 11120 11121 err = ip_sioctl_addr_tail(ipif, sin, q, mp, need_up); 11122 return (err); 11123 } 11124 11125 int 11126 ip_sioctl_addr_tail(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11127 boolean_t need_up) 11128 { 11129 in6_addr_t v6addr; 11130 in6_addr_t ov6addr; 11131 ipaddr_t addr; 11132 sin6_t *sin6; 11133 int sinlen; 11134 int err = 0; 11135 ill_t *ill = ipif->ipif_ill; 11136 boolean_t need_dl_down; 11137 boolean_t need_arp_down; 11138 struct iocblk *iocp; 11139 11140 iocp = (mp != NULL) ? (struct iocblk *)mp->b_rptr : NULL; 11141 11142 ip1dbg(("ip_sioctl_addr_tail(%s:%u %p)\n", 11143 ill->ill_name, ipif->ipif_id, (void *)ipif)); 11144 ASSERT(IAM_WRITER_IPIF(ipif)); 11145 11146 /* Must cancel any pending timer before taking the ill_lock */ 11147 if (ipif->ipif_recovery_id != 0) 11148 (void) untimeout(ipif->ipif_recovery_id); 11149 ipif->ipif_recovery_id = 0; 11150 11151 if (ipif->ipif_isv6) { 11152 sin6 = (sin6_t *)sin; 11153 v6addr = sin6->sin6_addr; 11154 sinlen = sizeof (struct sockaddr_in6); 11155 } else { 11156 addr = sin->sin_addr.s_addr; 11157 IN6_IPADDR_TO_V4MAPPED(addr, &v6addr); 11158 sinlen = sizeof (struct sockaddr_in); 11159 } 11160 mutex_enter(&ill->ill_lock); 11161 ov6addr = ipif->ipif_v6lcl_addr; 11162 ipif->ipif_v6lcl_addr = v6addr; 11163 sctp_update_ipif_addr(ipif, ov6addr); 11164 if (ipif->ipif_flags & (IPIF_ANYCAST | IPIF_NOLOCAL)) { 11165 ipif->ipif_v6src_addr = ipv6_all_zeros; 11166 } else { 11167 ipif->ipif_v6src_addr = v6addr; 11168 } 11169 ipif->ipif_addr_ready = 0; 11170 11171 /* 11172 * If the interface was previously marked as a duplicate, then since 11173 * we've now got a "new" address, it should no longer be considered a 11174 * duplicate -- even if the "new" address is the same as the old one. 11175 * Note that if all ipifs are down, we may have a pending ARP down 11176 * event to handle. This is because we want to recover from duplicates 11177 * and thus delay tearing down ARP until the duplicates have been 11178 * removed or disabled. 11179 */ 11180 need_dl_down = need_arp_down = B_FALSE; 11181 if (ipif->ipif_flags & IPIF_DUPLICATE) { 11182 need_arp_down = !need_up; 11183 ipif->ipif_flags &= ~IPIF_DUPLICATE; 11184 if (--ill->ill_ipif_dup_count == 0 && !need_up && 11185 ill->ill_ipif_up_count == 0 && ill->ill_dl_up) { 11186 need_dl_down = B_TRUE; 11187 } 11188 } 11189 11190 if (ipif->ipif_isv6 && IN6_IS_ADDR_6TO4(&v6addr) && 11191 !ill->ill_is_6to4tun) { 11192 queue_t *wqp = ill->ill_wq; 11193 11194 /* 11195 * The local address of this interface is a 6to4 address, 11196 * check if this interface is in fact a 6to4 tunnel or just 11197 * an interface configured with a 6to4 address. We are only 11198 * interested in the former. 11199 */ 11200 if (wqp != NULL) { 11201 while ((wqp->q_next != NULL) && 11202 (wqp->q_next->q_qinfo != NULL) && 11203 (wqp->q_next->q_qinfo->qi_minfo != NULL)) { 11204 11205 if (wqp->q_next->q_qinfo->qi_minfo->mi_idnum 11206 == TUN6TO4_MODID) { 11207 /* set for use in IP */ 11208 ill->ill_is_6to4tun = 1; 11209 break; 11210 } 11211 wqp = wqp->q_next; 11212 } 11213 } 11214 } 11215 11216 ipif_set_default(ipif); 11217 11218 /* 11219 * When publishing an interface address change event, we only notify 11220 * the event listeners of the new address. It is assumed that if they 11221 * actively care about the addresses assigned that they will have 11222 * already discovered the previous address assigned (if there was one.) 11223 * 11224 * Don't attach nic event message for SIOCLIFADDIF ioctl. 11225 */ 11226 if (iocp != NULL && iocp->ioc_cmd != SIOCLIFADDIF) { 11227 (void) ill_hook_event_create(ill, MAP_IPIF_ID(ipif->ipif_id), 11228 NE_ADDRESS_CHANGE, sin, sinlen); 11229 } 11230 11231 mutex_exit(&ill->ill_lock); 11232 11233 if (need_up) { 11234 /* 11235 * Now bring the interface back up. If this 11236 * is the only IPIF for the ILL, ipif_up 11237 * will have to re-bind to the device, so 11238 * we may get back EINPROGRESS, in which 11239 * case, this IOCTL will get completed in 11240 * ip_rput_dlpi when we see the DL_BIND_ACK. 11241 */ 11242 err = ipif_up(ipif, q, mp); 11243 } 11244 11245 if (need_dl_down) 11246 ill_dl_down(ill); 11247 if (need_arp_down) 11248 ipif_arp_down(ipif); 11249 11250 return (err); 11251 } 11252 11253 11254 /* 11255 * Restart entry point to restart the address set operation after the 11256 * refcounts have dropped to zero. 11257 */ 11258 /* ARGSUSED */ 11259 int 11260 ip_sioctl_addr_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11261 ip_ioctl_cmd_t *ipip, void *ifreq) 11262 { 11263 ip1dbg(("ip_sioctl_addr_restart(%s:%u %p)\n", 11264 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11265 ASSERT(IAM_WRITER_IPIF(ipif)); 11266 ipif_down_tail(ipif); 11267 return (ip_sioctl_addr_tail(ipif, sin, q, mp, B_TRUE)); 11268 } 11269 11270 /* ARGSUSED */ 11271 int 11272 ip_sioctl_get_addr(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11273 ip_ioctl_cmd_t *ipip, void *if_req) 11274 { 11275 sin6_t *sin6 = (struct sockaddr_in6 *)sin; 11276 struct lifreq *lifr = (struct lifreq *)if_req; 11277 11278 ip1dbg(("ip_sioctl_get_addr(%s:%u %p)\n", 11279 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11280 /* 11281 * The net mask and address can't change since we have a 11282 * reference to the ipif. So no lock is necessary. 11283 */ 11284 if (ipif->ipif_isv6) { 11285 *sin6 = sin6_null; 11286 sin6->sin6_family = AF_INET6; 11287 sin6->sin6_addr = ipif->ipif_v6lcl_addr; 11288 ASSERT(ipip->ipi_cmd_type == LIF_CMD); 11289 lifr->lifr_addrlen = 11290 ip_mask_to_plen_v6(&ipif->ipif_v6net_mask); 11291 } else { 11292 *sin = sin_null; 11293 sin->sin_family = AF_INET; 11294 sin->sin_addr.s_addr = ipif->ipif_lcl_addr; 11295 if (ipip->ipi_cmd_type == LIF_CMD) { 11296 lifr->lifr_addrlen = 11297 ip_mask_to_plen(ipif->ipif_net_mask); 11298 } 11299 } 11300 return (0); 11301 } 11302 11303 /* 11304 * Set the destination address for a pt-pt interface. 11305 */ 11306 /* ARGSUSED */ 11307 int 11308 ip_sioctl_dstaddr(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11309 ip_ioctl_cmd_t *ipip, void *if_req) 11310 { 11311 int err = 0; 11312 in6_addr_t v6addr; 11313 boolean_t need_up = B_FALSE; 11314 11315 ip1dbg(("ip_sioctl_dstaddr(%s:%u %p)\n", 11316 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11317 ASSERT(IAM_WRITER_IPIF(ipif)); 11318 11319 if (ipif->ipif_isv6) { 11320 sin6_t *sin6; 11321 11322 if (sin->sin_family != AF_INET6) 11323 return (EAFNOSUPPORT); 11324 11325 sin6 = (sin6_t *)sin; 11326 v6addr = sin6->sin6_addr; 11327 11328 if (!ip_remote_addr_ok_v6(&v6addr, &ipif->ipif_v6net_mask)) 11329 return (EADDRNOTAVAIL); 11330 } else { 11331 ipaddr_t addr; 11332 11333 if (sin->sin_family != AF_INET) 11334 return (EAFNOSUPPORT); 11335 11336 addr = sin->sin_addr.s_addr; 11337 if (!ip_addr_ok_v4(addr, ipif->ipif_net_mask)) 11338 return (EADDRNOTAVAIL); 11339 11340 IN6_IPADDR_TO_V4MAPPED(addr, &v6addr); 11341 } 11342 11343 if (IN6_ARE_ADDR_EQUAL(&ipif->ipif_v6pp_dst_addr, &v6addr)) 11344 return (0); /* No change */ 11345 11346 if (ipif->ipif_flags & IPIF_UP) { 11347 /* 11348 * If the interface is already marked up, 11349 * we call ipif_down which will take care 11350 * of ditching any IREs that have been set 11351 * up based on the old pp dst address. 11352 */ 11353 err = ipif_logical_down(ipif, q, mp); 11354 if (err == EINPROGRESS) 11355 return (err); 11356 ipif_down_tail(ipif); 11357 need_up = B_TRUE; 11358 } 11359 /* 11360 * could return EINPROGRESS. If so ioctl will complete in 11361 * ip_rput_dlpi_writer 11362 */ 11363 err = ip_sioctl_dstaddr_tail(ipif, sin, q, mp, need_up); 11364 return (err); 11365 } 11366 11367 static int 11368 ip_sioctl_dstaddr_tail(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11369 boolean_t need_up) 11370 { 11371 in6_addr_t v6addr; 11372 ill_t *ill = ipif->ipif_ill; 11373 int err = 0; 11374 boolean_t need_dl_down; 11375 boolean_t need_arp_down; 11376 11377 ip1dbg(("ip_sioctl_dstaddr_tail(%s:%u %p)\n", ill->ill_name, 11378 ipif->ipif_id, (void *)ipif)); 11379 11380 /* Must cancel any pending timer before taking the ill_lock */ 11381 if (ipif->ipif_recovery_id != 0) 11382 (void) untimeout(ipif->ipif_recovery_id); 11383 ipif->ipif_recovery_id = 0; 11384 11385 if (ipif->ipif_isv6) { 11386 sin6_t *sin6; 11387 11388 sin6 = (sin6_t *)sin; 11389 v6addr = sin6->sin6_addr; 11390 } else { 11391 ipaddr_t addr; 11392 11393 addr = sin->sin_addr.s_addr; 11394 IN6_IPADDR_TO_V4MAPPED(addr, &v6addr); 11395 } 11396 mutex_enter(&ill->ill_lock); 11397 /* Set point to point destination address. */ 11398 if ((ipif->ipif_flags & IPIF_POINTOPOINT) == 0) { 11399 /* 11400 * Allow this as a means of creating logical 11401 * pt-pt interfaces on top of e.g. an Ethernet. 11402 * XXX Undocumented HACK for testing. 11403 * pt-pt interfaces are created with NUD disabled. 11404 */ 11405 ipif->ipif_flags |= IPIF_POINTOPOINT; 11406 ipif->ipif_flags &= ~IPIF_BROADCAST; 11407 if (ipif->ipif_isv6) 11408 ill->ill_flags |= ILLF_NONUD; 11409 } 11410 11411 /* 11412 * If the interface was previously marked as a duplicate, then since 11413 * we've now got a "new" address, it should no longer be considered a 11414 * duplicate -- even if the "new" address is the same as the old one. 11415 * Note that if all ipifs are down, we may have a pending ARP down 11416 * event to handle. 11417 */ 11418 need_dl_down = need_arp_down = B_FALSE; 11419 if (ipif->ipif_flags & IPIF_DUPLICATE) { 11420 need_arp_down = !need_up; 11421 ipif->ipif_flags &= ~IPIF_DUPLICATE; 11422 if (--ill->ill_ipif_dup_count == 0 && !need_up && 11423 ill->ill_ipif_up_count == 0 && ill->ill_dl_up) { 11424 need_dl_down = B_TRUE; 11425 } 11426 } 11427 11428 /* Set the new address. */ 11429 ipif->ipif_v6pp_dst_addr = v6addr; 11430 /* Make sure subnet tracks pp_dst */ 11431 ipif->ipif_v6subnet = ipif->ipif_v6pp_dst_addr; 11432 mutex_exit(&ill->ill_lock); 11433 11434 if (need_up) { 11435 /* 11436 * Now bring the interface back up. If this 11437 * is the only IPIF for the ILL, ipif_up 11438 * will have to re-bind to the device, so 11439 * we may get back EINPROGRESS, in which 11440 * case, this IOCTL will get completed in 11441 * ip_rput_dlpi when we see the DL_BIND_ACK. 11442 */ 11443 err = ipif_up(ipif, q, mp); 11444 } 11445 11446 if (need_dl_down) 11447 ill_dl_down(ill); 11448 11449 if (need_arp_down) 11450 ipif_arp_down(ipif); 11451 return (err); 11452 } 11453 11454 /* 11455 * Restart entry point to restart the dstaddress set operation after the 11456 * refcounts have dropped to zero. 11457 */ 11458 /* ARGSUSED */ 11459 int 11460 ip_sioctl_dstaddr_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11461 ip_ioctl_cmd_t *ipip, void *ifreq) 11462 { 11463 ip1dbg(("ip_sioctl_dstaddr_restart(%s:%u %p)\n", 11464 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11465 ipif_down_tail(ipif); 11466 return (ip_sioctl_dstaddr_tail(ipif, sin, q, mp, B_TRUE)); 11467 } 11468 11469 /* ARGSUSED */ 11470 int 11471 ip_sioctl_get_dstaddr(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11472 ip_ioctl_cmd_t *ipip, void *if_req) 11473 { 11474 sin6_t *sin6 = (struct sockaddr_in6 *)sin; 11475 11476 ip1dbg(("ip_sioctl_get_dstaddr(%s:%u %p)\n", 11477 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11478 /* 11479 * Get point to point destination address. The addresses can't 11480 * change since we hold a reference to the ipif. 11481 */ 11482 if ((ipif->ipif_flags & IPIF_POINTOPOINT) == 0) 11483 return (EADDRNOTAVAIL); 11484 11485 if (ipif->ipif_isv6) { 11486 ASSERT(ipip->ipi_cmd_type == LIF_CMD); 11487 *sin6 = sin6_null; 11488 sin6->sin6_family = AF_INET6; 11489 sin6->sin6_addr = ipif->ipif_v6pp_dst_addr; 11490 } else { 11491 *sin = sin_null; 11492 sin->sin_family = AF_INET; 11493 sin->sin_addr.s_addr = ipif->ipif_pp_dst_addr; 11494 } 11495 return (0); 11496 } 11497 11498 /* 11499 * part of ipmp, make this func return the active/inactive state and 11500 * caller can set once atomically instead of multiple mutex_enter/mutex_exit 11501 */ 11502 /* 11503 * This function either sets or clears the IFF_INACTIVE flag. 11504 * 11505 * As long as there are some addresses or multicast memberships on the 11506 * IPv4 or IPv6 interface of the "phyi" that does not belong in here, we 11507 * will consider it to be ACTIVE (clear IFF_INACTIVE) i.e the interface 11508 * will be used for outbound packets. 11509 * 11510 * Caller needs to verify the validity of setting IFF_INACTIVE. 11511 */ 11512 static void 11513 phyint_inactive(phyint_t *phyi) 11514 { 11515 ill_t *ill_v4; 11516 ill_t *ill_v6; 11517 ipif_t *ipif; 11518 ilm_t *ilm; 11519 11520 ill_v4 = phyi->phyint_illv4; 11521 ill_v6 = phyi->phyint_illv6; 11522 11523 /* 11524 * No need for a lock while traversing the list since iam 11525 * a writer 11526 */ 11527 if (ill_v4 != NULL) { 11528 ASSERT(IAM_WRITER_ILL(ill_v4)); 11529 for (ipif = ill_v4->ill_ipif; ipif != NULL; 11530 ipif = ipif->ipif_next) { 11531 if (ipif->ipif_orig_ifindex != phyi->phyint_ifindex) { 11532 mutex_enter(&phyi->phyint_lock); 11533 phyi->phyint_flags &= ~PHYI_INACTIVE; 11534 mutex_exit(&phyi->phyint_lock); 11535 return; 11536 } 11537 } 11538 for (ilm = ill_v4->ill_ilm; ilm != NULL; 11539 ilm = ilm->ilm_next) { 11540 if (ilm->ilm_orig_ifindex != phyi->phyint_ifindex) { 11541 mutex_enter(&phyi->phyint_lock); 11542 phyi->phyint_flags &= ~PHYI_INACTIVE; 11543 mutex_exit(&phyi->phyint_lock); 11544 return; 11545 } 11546 } 11547 } 11548 if (ill_v6 != NULL) { 11549 ill_v6 = phyi->phyint_illv6; 11550 for (ipif = ill_v6->ill_ipif; ipif != NULL; 11551 ipif = ipif->ipif_next) { 11552 if (ipif->ipif_orig_ifindex != phyi->phyint_ifindex) { 11553 mutex_enter(&phyi->phyint_lock); 11554 phyi->phyint_flags &= ~PHYI_INACTIVE; 11555 mutex_exit(&phyi->phyint_lock); 11556 return; 11557 } 11558 } 11559 for (ilm = ill_v6->ill_ilm; ilm != NULL; 11560 ilm = ilm->ilm_next) { 11561 if (ilm->ilm_orig_ifindex != phyi->phyint_ifindex) { 11562 mutex_enter(&phyi->phyint_lock); 11563 phyi->phyint_flags &= ~PHYI_INACTIVE; 11564 mutex_exit(&phyi->phyint_lock); 11565 return; 11566 } 11567 } 11568 } 11569 mutex_enter(&phyi->phyint_lock); 11570 phyi->phyint_flags |= PHYI_INACTIVE; 11571 mutex_exit(&phyi->phyint_lock); 11572 } 11573 11574 /* 11575 * This function is called only when the phyint flags change. Currently 11576 * called from ip_sioctl_flags. We re-do the broadcast nomination so 11577 * that we can select a good ill. 11578 */ 11579 static void 11580 ip_redo_nomination(phyint_t *phyi) 11581 { 11582 ill_t *ill_v4; 11583 11584 ill_v4 = phyi->phyint_illv4; 11585 11586 if (ill_v4 != NULL && ill_v4->ill_group != NULL) { 11587 ASSERT(IAM_WRITER_ILL(ill_v4)); 11588 if (ill_v4->ill_group->illgrp_ill_count > 1) 11589 ill_nominate_bcast_rcv(ill_v4->ill_group); 11590 } 11591 } 11592 11593 /* 11594 * Heuristic to check if ill is INACTIVE. 11595 * Checks if ill has an ipif with an usable ip address. 11596 * 11597 * Return values: 11598 * B_TRUE - ill is INACTIVE; has no usable ipif 11599 * B_FALSE - ill is not INACTIVE; ill has at least one usable ipif 11600 */ 11601 static boolean_t 11602 ill_is_inactive(ill_t *ill) 11603 { 11604 ipif_t *ipif; 11605 11606 /* Check whether it is in an IPMP group */ 11607 if (ill->ill_phyint->phyint_groupname == NULL) 11608 return (B_FALSE); 11609 11610 if (ill->ill_ipif_up_count == 0) 11611 return (B_TRUE); 11612 11613 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 11614 uint64_t flags = ipif->ipif_flags; 11615 11616 /* 11617 * This ipif is usable if it is IPIF_UP and not a 11618 * dedicated test address. A dedicated test address 11619 * is marked IPIF_NOFAILOVER *and* IPIF_DEPRECATED 11620 * (note in particular that V6 test addresses are 11621 * link-local data addresses and thus are marked 11622 * IPIF_NOFAILOVER but not IPIF_DEPRECATED). 11623 */ 11624 if ((flags & IPIF_UP) && 11625 ((flags & (IPIF_DEPRECATED|IPIF_NOFAILOVER)) != 11626 (IPIF_DEPRECATED|IPIF_NOFAILOVER))) 11627 return (B_FALSE); 11628 } 11629 return (B_TRUE); 11630 } 11631 11632 /* 11633 * Set interface flags. 11634 * Need to do special action for IPIF_UP, IPIF_DEPRECATED, IPIF_NOXMIT, 11635 * IPIF_NOLOCAL, ILLF_NONUD, ILLF_NOARP, IPIF_PRIVATE, IPIF_ANYCAST, 11636 * IPIF_PREFERRED, PHYI_STANDBY, PHYI_FAILED and PHYI_OFFLINE. 11637 * 11638 * NOTE : We really don't enforce that ipif_id zero should be used 11639 * for setting any flags other than IFF_LOGINT_FLAGS. This 11640 * is because applications generally does SICGLIFFLAGS and 11641 * ORs in the new flags (that affects the logical) and does a 11642 * SIOCSLIFFLAGS. Thus, "flags" below could contain bits other 11643 * than IFF_LOGINT_FLAGS. One could check whether "turn_on" - the 11644 * flags that will be turned on is correct with respect to 11645 * ipif_id 0. For backward compatibility reasons, it is not done. 11646 */ 11647 /* ARGSUSED */ 11648 int 11649 ip_sioctl_flags(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11650 ip_ioctl_cmd_t *ipip, void *if_req) 11651 { 11652 uint64_t turn_on; 11653 uint64_t turn_off; 11654 int err; 11655 phyint_t *phyi; 11656 ill_t *ill; 11657 uint64_t intf_flags; 11658 boolean_t phyint_flags_modified = B_FALSE; 11659 uint64_t flags; 11660 struct ifreq *ifr; 11661 struct lifreq *lifr; 11662 boolean_t set_linklocal = B_FALSE; 11663 boolean_t zero_source = B_FALSE; 11664 ip_stack_t *ipst; 11665 11666 ip1dbg(("ip_sioctl_flags(%s:%u %p)\n", 11667 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11668 11669 ASSERT(IAM_WRITER_IPIF(ipif)); 11670 11671 ill = ipif->ipif_ill; 11672 phyi = ill->ill_phyint; 11673 ipst = ill->ill_ipst; 11674 11675 if (ipip->ipi_cmd_type == IF_CMD) { 11676 ifr = (struct ifreq *)if_req; 11677 flags = (uint64_t)(ifr->ifr_flags & 0x0000ffff); 11678 } else { 11679 lifr = (struct lifreq *)if_req; 11680 flags = lifr->lifr_flags; 11681 } 11682 11683 intf_flags = ipif->ipif_flags | ill->ill_flags | phyi->phyint_flags; 11684 11685 /* 11686 * Have the flags been set correctly until now? 11687 */ 11688 ASSERT((phyi->phyint_flags & ~(IFF_PHYINT_FLAGS)) == 0); 11689 ASSERT((ill->ill_flags & ~(IFF_PHYINTINST_FLAGS)) == 0); 11690 ASSERT((ipif->ipif_flags & ~(IFF_LOGINT_FLAGS)) == 0); 11691 /* 11692 * Compare the new flags to the old, and partition 11693 * into those coming on and those going off. 11694 * For the 16 bit command keep the bits above bit 16 unchanged. 11695 */ 11696 if (ipip->ipi_cmd == SIOCSIFFLAGS) 11697 flags |= intf_flags & ~0xFFFF; 11698 11699 /* 11700 * First check which bits will change and then which will 11701 * go on and off 11702 */ 11703 turn_on = (flags ^ intf_flags) & ~IFF_CANTCHANGE; 11704 if (!turn_on) 11705 return (0); /* No change */ 11706 11707 turn_off = intf_flags & turn_on; 11708 turn_on ^= turn_off; 11709 err = 0; 11710 11711 /* 11712 * Don't allow any bits belonging to the logical interface 11713 * to be set or cleared on the replacement ipif that was 11714 * created temporarily during a MOVE. 11715 */ 11716 if (ipif->ipif_replace_zero && 11717 ((turn_on|turn_off) & IFF_LOGINT_FLAGS) != 0) { 11718 return (EINVAL); 11719 } 11720 11721 /* 11722 * Only allow the IFF_XRESOLV and IFF_TEMPORARY flags to be set on 11723 * IPv6 interfaces. 11724 */ 11725 if ((turn_on & (IFF_XRESOLV|IFF_TEMPORARY)) && !(ipif->ipif_isv6)) 11726 return (EINVAL); 11727 11728 /* 11729 * cannot turn off IFF_NOXMIT on VNI interfaces. 11730 */ 11731 if ((turn_off & IFF_NOXMIT) && IS_VNI(ipif->ipif_ill)) 11732 return (EINVAL); 11733 11734 /* 11735 * Don't allow the IFF_ROUTER flag to be turned on on loopback 11736 * interfaces. It makes no sense in that context. 11737 */ 11738 if ((turn_on & IFF_ROUTER) && (phyi->phyint_flags & PHYI_LOOPBACK)) 11739 return (EINVAL); 11740 11741 if (flags & (IFF_NOLOCAL|IFF_ANYCAST)) 11742 zero_source = B_TRUE; 11743 11744 /* 11745 * For IPv6 ipif_id 0, don't allow the interface to be up without 11746 * a link local address if IFF_NOLOCAL or IFF_ANYCAST are not set. 11747 * If the link local address isn't set, and can be set, it will get 11748 * set later on in this function. 11749 */ 11750 if (ipif->ipif_id == 0 && ipif->ipif_isv6 && 11751 (flags & IFF_UP) && !zero_source && 11752 IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6lcl_addr)) { 11753 if (ipif_cant_setlinklocal(ipif)) 11754 return (EINVAL); 11755 set_linklocal = B_TRUE; 11756 } 11757 11758 /* 11759 * ILL cannot be part of a usesrc group and and IPMP group at the 11760 * same time. No need to grab ill_g_usesrc_lock here, see 11761 * synchronization notes in ip.c 11762 */ 11763 if (turn_on & PHYI_STANDBY && 11764 ipif->ipif_ill->ill_usesrc_grp_next != NULL) { 11765 return (EINVAL); 11766 } 11767 11768 /* 11769 * If we modify physical interface flags, we'll potentially need to 11770 * send up two routing socket messages for the changes (one for the 11771 * IPv4 ill, and another for the IPv6 ill). Note that here. 11772 */ 11773 if ((turn_on|turn_off) & IFF_PHYINT_FLAGS) 11774 phyint_flags_modified = B_TRUE; 11775 11776 /* 11777 * If we are setting or clearing FAILED or STANDBY or OFFLINE, 11778 * we need to flush the IRE_CACHES belonging to this ill. 11779 * We handle this case here without doing the DOWN/UP dance 11780 * like it is done for other flags. If some other flags are 11781 * being turned on/off with FAILED/STANDBY/OFFLINE, the code 11782 * below will handle it by bringing it down and then 11783 * bringing it UP. 11784 */ 11785 if ((turn_on|turn_off) & (PHYI_FAILED|PHYI_STANDBY|PHYI_OFFLINE)) { 11786 ill_t *ill_v4, *ill_v6; 11787 11788 ill_v4 = phyi->phyint_illv4; 11789 ill_v6 = phyi->phyint_illv6; 11790 11791 /* 11792 * First set the INACTIVE flag if needed. Then delete the ires. 11793 * ire_add will atomically prevent creating new IRE_CACHEs 11794 * unless hidden flag is set. 11795 * PHYI_FAILED and PHYI_INACTIVE are exclusive 11796 */ 11797 if ((turn_on & PHYI_FAILED) && 11798 ((intf_flags & PHYI_STANDBY) || 11799 !ipst->ips_ipmp_enable_failback)) { 11800 /* Reset PHYI_INACTIVE when PHYI_FAILED is being set */ 11801 phyi->phyint_flags &= ~PHYI_INACTIVE; 11802 } 11803 if ((turn_off & PHYI_FAILED) && 11804 ((intf_flags & PHYI_STANDBY) || 11805 (!ipst->ips_ipmp_enable_failback && 11806 ill_is_inactive(ill)))) { 11807 phyint_inactive(phyi); 11808 } 11809 11810 if (turn_on & PHYI_STANDBY) { 11811 /* 11812 * We implicitly set INACTIVE only when STANDBY is set. 11813 * INACTIVE is also set on non-STANDBY phyint when user 11814 * disables FAILBACK using configuration file. 11815 * Do not allow STANDBY to be set on such INACTIVE 11816 * phyint 11817 */ 11818 if (phyi->phyint_flags & PHYI_INACTIVE) 11819 return (EINVAL); 11820 if (!(phyi->phyint_flags & PHYI_FAILED)) 11821 phyint_inactive(phyi); 11822 } 11823 if (turn_off & PHYI_STANDBY) { 11824 if (ipst->ips_ipmp_enable_failback) { 11825 /* 11826 * Reset PHYI_INACTIVE. 11827 */ 11828 phyi->phyint_flags &= ~PHYI_INACTIVE; 11829 } else if (ill_is_inactive(ill) && 11830 !(phyi->phyint_flags & PHYI_FAILED)) { 11831 /* 11832 * Need to set INACTIVE, when user sets 11833 * STANDBY on a non-STANDBY phyint and 11834 * later resets STANDBY 11835 */ 11836 phyint_inactive(phyi); 11837 } 11838 } 11839 /* 11840 * We should always send up a message so that the 11841 * daemons come to know of it. Note that the zeroth 11842 * interface can be down and the check below for IPIF_UP 11843 * will not make sense as we are actually setting 11844 * a phyint flag here. We assume that the ipif used 11845 * is always the zeroth ipif. (ip_rts_ifmsg does not 11846 * send up any message for non-zero ipifs). 11847 */ 11848 phyint_flags_modified = B_TRUE; 11849 11850 if (ill_v4 != NULL) { 11851 ire_walk_ill_v4(MATCH_IRE_ILL | MATCH_IRE_TYPE, 11852 IRE_CACHE, ill_stq_cache_delete, 11853 (char *)ill_v4, ill_v4); 11854 illgrp_reset_schednext(ill_v4); 11855 } 11856 if (ill_v6 != NULL) { 11857 ire_walk_ill_v6(MATCH_IRE_ILL | MATCH_IRE_TYPE, 11858 IRE_CACHE, ill_stq_cache_delete, 11859 (char *)ill_v6, ill_v6); 11860 illgrp_reset_schednext(ill_v6); 11861 } 11862 } 11863 11864 /* 11865 * If ILLF_ROUTER changes, we need to change the ip forwarding 11866 * status of the interface and, if the interface is part of an IPMP 11867 * group, all other interfaces that are part of the same IPMP 11868 * group. 11869 */ 11870 if ((turn_on | turn_off) & ILLF_ROUTER) 11871 (void) ill_forward_set(ill, ((turn_on & ILLF_ROUTER) != 0)); 11872 11873 /* 11874 * If the interface is not UP and we are not going to 11875 * bring it UP, record the flags and return. When the 11876 * interface comes UP later, the right actions will be 11877 * taken. 11878 */ 11879 if (!(ipif->ipif_flags & IPIF_UP) && 11880 !(turn_on & IPIF_UP)) { 11881 /* Record new flags in their respective places. */ 11882 mutex_enter(&ill->ill_lock); 11883 mutex_enter(&ill->ill_phyint->phyint_lock); 11884 ipif->ipif_flags |= (turn_on & IFF_LOGINT_FLAGS); 11885 ipif->ipif_flags &= (~turn_off & IFF_LOGINT_FLAGS); 11886 ill->ill_flags |= (turn_on & IFF_PHYINTINST_FLAGS); 11887 ill->ill_flags &= (~turn_off & IFF_PHYINTINST_FLAGS); 11888 phyi->phyint_flags |= (turn_on & IFF_PHYINT_FLAGS); 11889 phyi->phyint_flags &= (~turn_off & IFF_PHYINT_FLAGS); 11890 mutex_exit(&ill->ill_lock); 11891 mutex_exit(&ill->ill_phyint->phyint_lock); 11892 11893 /* 11894 * We do the broadcast and nomination here rather 11895 * than waiting for a FAILOVER/FAILBACK to happen. In 11896 * the case of FAILBACK from INACTIVE standby to the 11897 * interface that has been repaired, PHYI_FAILED has not 11898 * been cleared yet. If there are only two interfaces in 11899 * that group, all we have is a FAILED and INACTIVE 11900 * interface. If we do the nomination soon after a failback, 11901 * the broadcast nomination code would select the 11902 * INACTIVE interface for receiving broadcasts as FAILED is 11903 * not yet cleared. As we don't want STANDBY/INACTIVE to 11904 * receive broadcast packets, we need to redo nomination 11905 * when the FAILED is cleared here. Thus, in general we 11906 * always do the nomination here for FAILED, STANDBY 11907 * and OFFLINE. 11908 */ 11909 if (((turn_on | turn_off) & 11910 (PHYI_FAILED|PHYI_STANDBY|PHYI_OFFLINE))) { 11911 ip_redo_nomination(phyi); 11912 } 11913 if (phyint_flags_modified) { 11914 if (phyi->phyint_illv4 != NULL) { 11915 ip_rts_ifmsg(phyi->phyint_illv4-> 11916 ill_ipif); 11917 } 11918 if (phyi->phyint_illv6 != NULL) { 11919 ip_rts_ifmsg(phyi->phyint_illv6-> 11920 ill_ipif); 11921 } 11922 } 11923 return (0); 11924 } else if (set_linklocal || zero_source) { 11925 mutex_enter(&ill->ill_lock); 11926 if (set_linklocal) 11927 ipif->ipif_state_flags |= IPIF_SET_LINKLOCAL; 11928 if (zero_source) 11929 ipif->ipif_state_flags |= IPIF_ZERO_SOURCE; 11930 mutex_exit(&ill->ill_lock); 11931 } 11932 11933 /* 11934 * Disallow IPv6 interfaces coming up that have the unspecified address, 11935 * or point-to-point interfaces with an unspecified destination. We do 11936 * allow the address to be unspecified for IPIF_NOLOCAL interfaces that 11937 * have a subnet assigned, which is how in.ndpd currently manages its 11938 * onlink prefix list when no addresses are configured with those 11939 * prefixes. 11940 */ 11941 if (ipif->ipif_isv6 && 11942 ((IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6lcl_addr) && 11943 (!(ipif->ipif_flags & IPIF_NOLOCAL) && !(turn_on & IPIF_NOLOCAL) || 11944 IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6subnet))) || 11945 ((ipif->ipif_flags & IPIF_POINTOPOINT) && 11946 IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6pp_dst_addr)))) { 11947 return (EINVAL); 11948 } 11949 11950 /* 11951 * Prevent IPv4 point-to-point interfaces with a 0.0.0.0 destination 11952 * from being brought up. 11953 */ 11954 if (!ipif->ipif_isv6 && 11955 ((ipif->ipif_flags & IPIF_POINTOPOINT) && 11956 ipif->ipif_pp_dst_addr == INADDR_ANY)) { 11957 return (EINVAL); 11958 } 11959 11960 /* 11961 * The only flag changes that we currently take specific action on 11962 * is IPIF_UP, IPIF_DEPRECATED, IPIF_NOXMIT, IPIF_NOLOCAL, 11963 * ILLF_NOARP, ILLF_NONUD, IPIF_PRIVATE, IPIF_ANYCAST, and 11964 * IPIF_PREFERRED. This is done by bring the ipif down, changing 11965 * the flags and bringing it back up again. 11966 */ 11967 if ((turn_on|turn_off) & 11968 (IPIF_UP|IPIF_DEPRECATED|IPIF_NOXMIT|IPIF_NOLOCAL|ILLF_NOARP| 11969 ILLF_NONUD|IPIF_PRIVATE|IPIF_ANYCAST|IPIF_PREFERRED)) { 11970 /* 11971 * Taking this ipif down, make sure we have 11972 * valid net and subnet bcast ire's for other 11973 * logical interfaces, if we need them. 11974 */ 11975 if (!ipif->ipif_isv6) 11976 ipif_check_bcast_ires(ipif); 11977 11978 if (((ipif->ipif_flags | turn_on) & IPIF_UP) && 11979 !(turn_off & IPIF_UP)) { 11980 if (ipif->ipif_flags & IPIF_UP) 11981 ill->ill_logical_down = 1; 11982 turn_on &= ~IPIF_UP; 11983 } 11984 err = ipif_down(ipif, q, mp); 11985 ip1dbg(("ipif_down returns %d err ", err)); 11986 if (err == EINPROGRESS) 11987 return (err); 11988 ipif_down_tail(ipif); 11989 } 11990 return (ip_sioctl_flags_tail(ipif, flags, q, mp)); 11991 } 11992 11993 static int 11994 ip_sioctl_flags_tail(ipif_t *ipif, uint64_t flags, queue_t *q, mblk_t *mp) 11995 { 11996 ill_t *ill; 11997 phyint_t *phyi; 11998 uint64_t turn_on; 11999 uint64_t turn_off; 12000 uint64_t intf_flags; 12001 boolean_t phyint_flags_modified = B_FALSE; 12002 int err = 0; 12003 boolean_t set_linklocal = B_FALSE; 12004 boolean_t zero_source = B_FALSE; 12005 12006 ip1dbg(("ip_sioctl_flags_tail(%s:%u)\n", 12007 ipif->ipif_ill->ill_name, ipif->ipif_id)); 12008 12009 ASSERT(IAM_WRITER_IPIF(ipif)); 12010 12011 ill = ipif->ipif_ill; 12012 phyi = ill->ill_phyint; 12013 12014 intf_flags = ipif->ipif_flags | ill->ill_flags | phyi->phyint_flags; 12015 turn_on = (flags ^ intf_flags) & ~(IFF_CANTCHANGE | IFF_UP); 12016 12017 turn_off = intf_flags & turn_on; 12018 turn_on ^= turn_off; 12019 12020 if ((turn_on|turn_off) & (PHYI_FAILED|PHYI_STANDBY|PHYI_OFFLINE)) 12021 phyint_flags_modified = B_TRUE; 12022 12023 /* 12024 * Now we change the flags. Track current value of 12025 * other flags in their respective places. 12026 */ 12027 mutex_enter(&ill->ill_lock); 12028 mutex_enter(&phyi->phyint_lock); 12029 ipif->ipif_flags |= (turn_on & IFF_LOGINT_FLAGS); 12030 ipif->ipif_flags &= (~turn_off & IFF_LOGINT_FLAGS); 12031 ill->ill_flags |= (turn_on & IFF_PHYINTINST_FLAGS); 12032 ill->ill_flags &= (~turn_off & IFF_PHYINTINST_FLAGS); 12033 phyi->phyint_flags |= (turn_on & IFF_PHYINT_FLAGS); 12034 phyi->phyint_flags &= (~turn_off & IFF_PHYINT_FLAGS); 12035 if (ipif->ipif_state_flags & IPIF_SET_LINKLOCAL) { 12036 set_linklocal = B_TRUE; 12037 ipif->ipif_state_flags &= ~IPIF_SET_LINKLOCAL; 12038 } 12039 if (ipif->ipif_state_flags & IPIF_ZERO_SOURCE) { 12040 zero_source = B_TRUE; 12041 ipif->ipif_state_flags &= ~IPIF_ZERO_SOURCE; 12042 } 12043 mutex_exit(&ill->ill_lock); 12044 mutex_exit(&phyi->phyint_lock); 12045 12046 if (((turn_on | turn_off) & (PHYI_FAILED|PHYI_STANDBY|PHYI_OFFLINE))) 12047 ip_redo_nomination(phyi); 12048 12049 if (set_linklocal) 12050 (void) ipif_setlinklocal(ipif); 12051 12052 if (zero_source) 12053 ipif->ipif_v6src_addr = ipv6_all_zeros; 12054 else 12055 ipif->ipif_v6src_addr = ipif->ipif_v6lcl_addr; 12056 12057 if ((flags & IFF_UP) && !(ipif->ipif_flags & IPIF_UP)) { 12058 /* 12059 * XXX ipif_up really does not know whether a phyint flags 12060 * was modified or not. So, it sends up information on 12061 * only one routing sockets message. As we don't bring up 12062 * the interface and also set STANDBY/FAILED simultaneously 12063 * it should be okay. 12064 */ 12065 err = ipif_up(ipif, q, mp); 12066 } else { 12067 /* 12068 * Make sure routing socket sees all changes to the flags. 12069 * ipif_up_done* handles this when we use ipif_up. 12070 */ 12071 if (phyint_flags_modified) { 12072 if (phyi->phyint_illv4 != NULL) { 12073 ip_rts_ifmsg(phyi->phyint_illv4-> 12074 ill_ipif); 12075 } 12076 if (phyi->phyint_illv6 != NULL) { 12077 ip_rts_ifmsg(phyi->phyint_illv6-> 12078 ill_ipif); 12079 } 12080 } else { 12081 ip_rts_ifmsg(ipif); 12082 } 12083 /* 12084 * Update the flags in SCTP's IPIF list, ipif_up() will do 12085 * this in need_up case. 12086 */ 12087 sctp_update_ipif(ipif, SCTP_IPIF_UPDATE); 12088 } 12089 return (err); 12090 } 12091 12092 /* 12093 * Restart the flags operation now that the refcounts have dropped to zero. 12094 */ 12095 /* ARGSUSED */ 12096 int 12097 ip_sioctl_flags_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12098 ip_ioctl_cmd_t *ipip, void *if_req) 12099 { 12100 uint64_t flags; 12101 struct ifreq *ifr = if_req; 12102 struct lifreq *lifr = if_req; 12103 12104 ip1dbg(("ip_sioctl_flags_restart(%s:%u %p)\n", 12105 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12106 12107 ipif_down_tail(ipif); 12108 if (ipip->ipi_cmd_type == IF_CMD) { 12109 /* cast to uint16_t prevents unwanted sign extension */ 12110 flags = (uint16_t)ifr->ifr_flags; 12111 } else { 12112 flags = lifr->lifr_flags; 12113 } 12114 return (ip_sioctl_flags_tail(ipif, flags, q, mp)); 12115 } 12116 12117 /* 12118 * Can operate on either a module or a driver queue. 12119 */ 12120 /* ARGSUSED */ 12121 int 12122 ip_sioctl_get_flags(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12123 ip_ioctl_cmd_t *ipip, void *if_req) 12124 { 12125 /* 12126 * Has the flags been set correctly till now ? 12127 */ 12128 ill_t *ill = ipif->ipif_ill; 12129 phyint_t *phyi = ill->ill_phyint; 12130 12131 ip1dbg(("ip_sioctl_get_flags(%s:%u %p)\n", 12132 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12133 ASSERT((phyi->phyint_flags & ~(IFF_PHYINT_FLAGS)) == 0); 12134 ASSERT((ill->ill_flags & ~(IFF_PHYINTINST_FLAGS)) == 0); 12135 ASSERT((ipif->ipif_flags & ~(IFF_LOGINT_FLAGS)) == 0); 12136 12137 /* 12138 * Need a lock since some flags can be set even when there are 12139 * references to the ipif. 12140 */ 12141 mutex_enter(&ill->ill_lock); 12142 if (ipip->ipi_cmd_type == IF_CMD) { 12143 struct ifreq *ifr = (struct ifreq *)if_req; 12144 12145 /* Get interface flags (low 16 only). */ 12146 ifr->ifr_flags = ((ipif->ipif_flags | 12147 ill->ill_flags | phyi->phyint_flags) & 0xffff); 12148 } else { 12149 struct lifreq *lifr = (struct lifreq *)if_req; 12150 12151 /* Get interface flags. */ 12152 lifr->lifr_flags = ipif->ipif_flags | 12153 ill->ill_flags | phyi->phyint_flags; 12154 } 12155 mutex_exit(&ill->ill_lock); 12156 return (0); 12157 } 12158 12159 /* ARGSUSED */ 12160 int 12161 ip_sioctl_mtu(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12162 ip_ioctl_cmd_t *ipip, void *if_req) 12163 { 12164 int mtu; 12165 int ip_min_mtu; 12166 struct ifreq *ifr; 12167 struct lifreq *lifr; 12168 ire_t *ire; 12169 ip_stack_t *ipst; 12170 12171 ip1dbg(("ip_sioctl_mtu(%s:%u %p)\n", ipif->ipif_ill->ill_name, 12172 ipif->ipif_id, (void *)ipif)); 12173 if (ipip->ipi_cmd_type == IF_CMD) { 12174 ifr = (struct ifreq *)if_req; 12175 mtu = ifr->ifr_metric; 12176 } else { 12177 lifr = (struct lifreq *)if_req; 12178 mtu = lifr->lifr_mtu; 12179 } 12180 12181 if (ipif->ipif_isv6) 12182 ip_min_mtu = IPV6_MIN_MTU; 12183 else 12184 ip_min_mtu = IP_MIN_MTU; 12185 12186 if (mtu > ipif->ipif_ill->ill_max_frag || mtu < ip_min_mtu) 12187 return (EINVAL); 12188 12189 /* 12190 * Change the MTU size in all relevant ire's. 12191 * Mtu change Vs. new ire creation - protocol below. 12192 * First change ipif_mtu and the ire_max_frag of the 12193 * interface ire. Then do an ire walk and change the 12194 * ire_max_frag of all affected ires. During ire_add 12195 * under the bucket lock, set the ire_max_frag of the 12196 * new ire being created from the ipif/ire from which 12197 * it is being derived. If an mtu change happens after 12198 * the ire is added, the new ire will be cleaned up. 12199 * Conversely if the mtu change happens before the ire 12200 * is added, ire_add will see the new value of the mtu. 12201 */ 12202 ipif->ipif_mtu = mtu; 12203 ipif->ipif_flags |= IPIF_FIXEDMTU; 12204 12205 if (ipif->ipif_isv6) 12206 ire = ipif_to_ire_v6(ipif); 12207 else 12208 ire = ipif_to_ire(ipif); 12209 if (ire != NULL) { 12210 ire->ire_max_frag = ipif->ipif_mtu; 12211 ire_refrele(ire); 12212 } 12213 ipst = ipif->ipif_ill->ill_ipst; 12214 if (ipif->ipif_flags & IPIF_UP) { 12215 if (ipif->ipif_isv6) 12216 ire_walk_v6(ipif_mtu_change, (char *)ipif, ALL_ZONES, 12217 ipst); 12218 else 12219 ire_walk_v4(ipif_mtu_change, (char *)ipif, ALL_ZONES, 12220 ipst); 12221 } 12222 /* Update the MTU in SCTP's list */ 12223 sctp_update_ipif(ipif, SCTP_IPIF_UPDATE); 12224 return (0); 12225 } 12226 12227 /* Get interface MTU. */ 12228 /* ARGSUSED */ 12229 int 12230 ip_sioctl_get_mtu(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12231 ip_ioctl_cmd_t *ipip, void *if_req) 12232 { 12233 struct ifreq *ifr; 12234 struct lifreq *lifr; 12235 12236 ip1dbg(("ip_sioctl_get_mtu(%s:%u %p)\n", 12237 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12238 if (ipip->ipi_cmd_type == IF_CMD) { 12239 ifr = (struct ifreq *)if_req; 12240 ifr->ifr_metric = ipif->ipif_mtu; 12241 } else { 12242 lifr = (struct lifreq *)if_req; 12243 lifr->lifr_mtu = ipif->ipif_mtu; 12244 } 12245 return (0); 12246 } 12247 12248 /* Set interface broadcast address. */ 12249 /* ARGSUSED2 */ 12250 int 12251 ip_sioctl_brdaddr(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12252 ip_ioctl_cmd_t *ipip, void *if_req) 12253 { 12254 ipaddr_t addr; 12255 ire_t *ire; 12256 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; 12257 12258 ip1dbg(("ip_sioctl_brdaddr(%s:%u)\n", ipif->ipif_ill->ill_name, 12259 ipif->ipif_id)); 12260 12261 ASSERT(IAM_WRITER_IPIF(ipif)); 12262 if (!(ipif->ipif_flags & IPIF_BROADCAST)) 12263 return (EADDRNOTAVAIL); 12264 12265 ASSERT(!(ipif->ipif_isv6)); /* No IPv6 broadcast */ 12266 12267 if (sin->sin_family != AF_INET) 12268 return (EAFNOSUPPORT); 12269 12270 addr = sin->sin_addr.s_addr; 12271 if (ipif->ipif_flags & IPIF_UP) { 12272 /* 12273 * If we are already up, make sure the new 12274 * broadcast address makes sense. If it does, 12275 * there should be an IRE for it already. 12276 * Don't match on ipif, only on the ill 12277 * since we are sharing these now. Don't use 12278 * MATCH_IRE_ILL_GROUP as we are looking for 12279 * the broadcast ire on this ill and each ill 12280 * in the group has its own broadcast ire. 12281 */ 12282 ire = ire_ctable_lookup(addr, 0, IRE_BROADCAST, 12283 ipif, ALL_ZONES, NULL, 12284 (MATCH_IRE_ILL | MATCH_IRE_TYPE), ipst); 12285 if (ire == NULL) { 12286 return (EINVAL); 12287 } else { 12288 ire_refrele(ire); 12289 } 12290 } 12291 /* 12292 * Changing the broadcast addr for this ipif. 12293 * Make sure we have valid net and subnet bcast 12294 * ire's for other logical interfaces, if needed. 12295 */ 12296 if (addr != ipif->ipif_brd_addr) 12297 ipif_check_bcast_ires(ipif); 12298 IN6_IPADDR_TO_V4MAPPED(addr, &ipif->ipif_v6brd_addr); 12299 return (0); 12300 } 12301 12302 /* Get interface broadcast address. */ 12303 /* ARGSUSED */ 12304 int 12305 ip_sioctl_get_brdaddr(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12306 ip_ioctl_cmd_t *ipip, void *if_req) 12307 { 12308 ip1dbg(("ip_sioctl_get_brdaddr(%s:%u %p)\n", 12309 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12310 if (!(ipif->ipif_flags & IPIF_BROADCAST)) 12311 return (EADDRNOTAVAIL); 12312 12313 /* IPIF_BROADCAST not possible with IPv6 */ 12314 ASSERT(!ipif->ipif_isv6); 12315 *sin = sin_null; 12316 sin->sin_family = AF_INET; 12317 sin->sin_addr.s_addr = ipif->ipif_brd_addr; 12318 return (0); 12319 } 12320 12321 /* 12322 * This routine is called to handle the SIOCS*IFNETMASK IOCTL. 12323 */ 12324 /* ARGSUSED */ 12325 int 12326 ip_sioctl_netmask(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12327 ip_ioctl_cmd_t *ipip, void *if_req) 12328 { 12329 int err = 0; 12330 in6_addr_t v6mask; 12331 12332 ip1dbg(("ip_sioctl_netmask(%s:%u %p)\n", 12333 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12334 12335 ASSERT(IAM_WRITER_IPIF(ipif)); 12336 12337 if (ipif->ipif_isv6) { 12338 sin6_t *sin6; 12339 12340 if (sin->sin_family != AF_INET6) 12341 return (EAFNOSUPPORT); 12342 12343 sin6 = (sin6_t *)sin; 12344 v6mask = sin6->sin6_addr; 12345 } else { 12346 ipaddr_t mask; 12347 12348 if (sin->sin_family != AF_INET) 12349 return (EAFNOSUPPORT); 12350 12351 mask = sin->sin_addr.s_addr; 12352 V4MASK_TO_V6(mask, v6mask); 12353 } 12354 12355 /* 12356 * No big deal if the interface isn't already up, or the mask 12357 * isn't really changing, or this is pt-pt. 12358 */ 12359 if (!(ipif->ipif_flags & IPIF_UP) || 12360 IN6_ARE_ADDR_EQUAL(&v6mask, &ipif->ipif_v6net_mask) || 12361 (ipif->ipif_flags & IPIF_POINTOPOINT)) { 12362 ipif->ipif_v6net_mask = v6mask; 12363 if ((ipif->ipif_flags & IPIF_POINTOPOINT) == 0) { 12364 V6_MASK_COPY(ipif->ipif_v6lcl_addr, 12365 ipif->ipif_v6net_mask, 12366 ipif->ipif_v6subnet); 12367 } 12368 return (0); 12369 } 12370 /* 12371 * Make sure we have valid net and subnet broadcast ire's 12372 * for the old netmask, if needed by other logical interfaces. 12373 */ 12374 if (!ipif->ipif_isv6) 12375 ipif_check_bcast_ires(ipif); 12376 12377 err = ipif_logical_down(ipif, q, mp); 12378 if (err == EINPROGRESS) 12379 return (err); 12380 ipif_down_tail(ipif); 12381 err = ip_sioctl_netmask_tail(ipif, sin, q, mp); 12382 return (err); 12383 } 12384 12385 static int 12386 ip_sioctl_netmask_tail(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp) 12387 { 12388 in6_addr_t v6mask; 12389 int err = 0; 12390 12391 ip1dbg(("ip_sioctl_netmask_tail(%s:%u %p)\n", 12392 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12393 12394 if (ipif->ipif_isv6) { 12395 sin6_t *sin6; 12396 12397 sin6 = (sin6_t *)sin; 12398 v6mask = sin6->sin6_addr; 12399 } else { 12400 ipaddr_t mask; 12401 12402 mask = sin->sin_addr.s_addr; 12403 V4MASK_TO_V6(mask, v6mask); 12404 } 12405 12406 ipif->ipif_v6net_mask = v6mask; 12407 if ((ipif->ipif_flags & IPIF_POINTOPOINT) == 0) { 12408 V6_MASK_COPY(ipif->ipif_v6lcl_addr, ipif->ipif_v6net_mask, 12409 ipif->ipif_v6subnet); 12410 } 12411 err = ipif_up(ipif, q, mp); 12412 12413 if (err == 0 || err == EINPROGRESS) { 12414 /* 12415 * The interface must be DL_BOUND if this packet has to 12416 * go out on the wire. Since we only go through a logical 12417 * down and are bound with the driver during an internal 12418 * down/up that is satisfied. 12419 */ 12420 if (!ipif->ipif_isv6 && ipif->ipif_ill->ill_wq != NULL) { 12421 /* Potentially broadcast an address mask reply. */ 12422 ipif_mask_reply(ipif); 12423 } 12424 } 12425 return (err); 12426 } 12427 12428 /* ARGSUSED */ 12429 int 12430 ip_sioctl_netmask_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12431 ip_ioctl_cmd_t *ipip, void *if_req) 12432 { 12433 ip1dbg(("ip_sioctl_netmask_restart(%s:%u %p)\n", 12434 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12435 ipif_down_tail(ipif); 12436 return (ip_sioctl_netmask_tail(ipif, sin, q, mp)); 12437 } 12438 12439 /* Get interface net mask. */ 12440 /* ARGSUSED */ 12441 int 12442 ip_sioctl_get_netmask(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12443 ip_ioctl_cmd_t *ipip, void *if_req) 12444 { 12445 struct lifreq *lifr = (struct lifreq *)if_req; 12446 struct sockaddr_in6 *sin6 = (sin6_t *)sin; 12447 12448 ip1dbg(("ip_sioctl_get_netmask(%s:%u %p)\n", 12449 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12450 12451 /* 12452 * net mask can't change since we have a reference to the ipif. 12453 */ 12454 if (ipif->ipif_isv6) { 12455 ASSERT(ipip->ipi_cmd_type == LIF_CMD); 12456 *sin6 = sin6_null; 12457 sin6->sin6_family = AF_INET6; 12458 sin6->sin6_addr = ipif->ipif_v6net_mask; 12459 lifr->lifr_addrlen = 12460 ip_mask_to_plen_v6(&ipif->ipif_v6net_mask); 12461 } else { 12462 *sin = sin_null; 12463 sin->sin_family = AF_INET; 12464 sin->sin_addr.s_addr = ipif->ipif_net_mask; 12465 if (ipip->ipi_cmd_type == LIF_CMD) { 12466 lifr->lifr_addrlen = 12467 ip_mask_to_plen(ipif->ipif_net_mask); 12468 } 12469 } 12470 return (0); 12471 } 12472 12473 /* ARGSUSED */ 12474 int 12475 ip_sioctl_metric(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12476 ip_ioctl_cmd_t *ipip, void *if_req) 12477 { 12478 12479 ip1dbg(("ip_sioctl_metric(%s:%u %p)\n", 12480 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12481 /* 12482 * Set interface metric. We don't use this for 12483 * anything but we keep track of it in case it is 12484 * important to routing applications or such. 12485 */ 12486 if (ipip->ipi_cmd_type == IF_CMD) { 12487 struct ifreq *ifr; 12488 12489 ifr = (struct ifreq *)if_req; 12490 ipif->ipif_metric = ifr->ifr_metric; 12491 } else { 12492 struct lifreq *lifr; 12493 12494 lifr = (struct lifreq *)if_req; 12495 ipif->ipif_metric = lifr->lifr_metric; 12496 } 12497 return (0); 12498 } 12499 12500 /* ARGSUSED */ 12501 int 12502 ip_sioctl_get_metric(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12503 ip_ioctl_cmd_t *ipip, void *if_req) 12504 { 12505 /* Get interface metric. */ 12506 ip1dbg(("ip_sioctl_get_metric(%s:%u %p)\n", 12507 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12508 if (ipip->ipi_cmd_type == IF_CMD) { 12509 struct ifreq *ifr; 12510 12511 ifr = (struct ifreq *)if_req; 12512 ifr->ifr_metric = ipif->ipif_metric; 12513 } else { 12514 struct lifreq *lifr; 12515 12516 lifr = (struct lifreq *)if_req; 12517 lifr->lifr_metric = ipif->ipif_metric; 12518 } 12519 12520 return (0); 12521 } 12522 12523 /* ARGSUSED */ 12524 int 12525 ip_sioctl_muxid(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12526 ip_ioctl_cmd_t *ipip, void *if_req) 12527 { 12528 12529 ip1dbg(("ip_sioctl_muxid(%s:%u %p)\n", 12530 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12531 /* 12532 * Set the muxid returned from I_PLINK. 12533 */ 12534 if (ipip->ipi_cmd_type == IF_CMD) { 12535 struct ifreq *ifr = (struct ifreq *)if_req; 12536 12537 ipif->ipif_ill->ill_ip_muxid = ifr->ifr_ip_muxid; 12538 ipif->ipif_ill->ill_arp_muxid = ifr->ifr_arp_muxid; 12539 } else { 12540 struct lifreq *lifr = (struct lifreq *)if_req; 12541 12542 ipif->ipif_ill->ill_ip_muxid = lifr->lifr_ip_muxid; 12543 ipif->ipif_ill->ill_arp_muxid = lifr->lifr_arp_muxid; 12544 } 12545 return (0); 12546 } 12547 12548 /* ARGSUSED */ 12549 int 12550 ip_sioctl_get_muxid(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12551 ip_ioctl_cmd_t *ipip, void *if_req) 12552 { 12553 12554 ip1dbg(("ip_sioctl_get_muxid(%s:%u %p)\n", 12555 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12556 /* 12557 * Get the muxid saved in ill for I_PUNLINK. 12558 */ 12559 if (ipip->ipi_cmd_type == IF_CMD) { 12560 struct ifreq *ifr = (struct ifreq *)if_req; 12561 12562 ifr->ifr_ip_muxid = ipif->ipif_ill->ill_ip_muxid; 12563 ifr->ifr_arp_muxid = ipif->ipif_ill->ill_arp_muxid; 12564 } else { 12565 struct lifreq *lifr = (struct lifreq *)if_req; 12566 12567 lifr->lifr_ip_muxid = ipif->ipif_ill->ill_ip_muxid; 12568 lifr->lifr_arp_muxid = ipif->ipif_ill->ill_arp_muxid; 12569 } 12570 return (0); 12571 } 12572 12573 /* 12574 * Set the subnet prefix. Does not modify the broadcast address. 12575 */ 12576 /* ARGSUSED */ 12577 int 12578 ip_sioctl_subnet(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12579 ip_ioctl_cmd_t *ipip, void *if_req) 12580 { 12581 int err = 0; 12582 in6_addr_t v6addr; 12583 in6_addr_t v6mask; 12584 boolean_t need_up = B_FALSE; 12585 int addrlen; 12586 12587 ip1dbg(("ip_sioctl_subnet(%s:%u %p)\n", 12588 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12589 12590 ASSERT(IAM_WRITER_IPIF(ipif)); 12591 addrlen = ((struct lifreq *)if_req)->lifr_addrlen; 12592 12593 if (ipif->ipif_isv6) { 12594 sin6_t *sin6; 12595 12596 if (sin->sin_family != AF_INET6) 12597 return (EAFNOSUPPORT); 12598 12599 sin6 = (sin6_t *)sin; 12600 v6addr = sin6->sin6_addr; 12601 if (!ip_remote_addr_ok_v6(&v6addr, &ipv6_all_ones)) 12602 return (EADDRNOTAVAIL); 12603 } else { 12604 ipaddr_t addr; 12605 12606 if (sin->sin_family != AF_INET) 12607 return (EAFNOSUPPORT); 12608 12609 addr = sin->sin_addr.s_addr; 12610 if (!ip_addr_ok_v4(addr, 0xFFFFFFFF)) 12611 return (EADDRNOTAVAIL); 12612 IN6_IPADDR_TO_V4MAPPED(addr, &v6addr); 12613 /* Add 96 bits */ 12614 addrlen += IPV6_ABITS - IP_ABITS; 12615 } 12616 12617 if (ip_plen_to_mask_v6(addrlen, &v6mask) == NULL) 12618 return (EINVAL); 12619 12620 /* Check if bits in the address is set past the mask */ 12621 if (!V6_MASK_EQ(v6addr, v6mask, v6addr)) 12622 return (EINVAL); 12623 12624 if (IN6_ARE_ADDR_EQUAL(&ipif->ipif_v6subnet, &v6addr) && 12625 IN6_ARE_ADDR_EQUAL(&ipif->ipif_v6net_mask, &v6mask)) 12626 return (0); /* No change */ 12627 12628 if (ipif->ipif_flags & IPIF_UP) { 12629 /* 12630 * If the interface is already marked up, 12631 * we call ipif_down which will take care 12632 * of ditching any IREs that have been set 12633 * up based on the old interface address. 12634 */ 12635 err = ipif_logical_down(ipif, q, mp); 12636 if (err == EINPROGRESS) 12637 return (err); 12638 ipif_down_tail(ipif); 12639 need_up = B_TRUE; 12640 } 12641 12642 err = ip_sioctl_subnet_tail(ipif, v6addr, v6mask, q, mp, need_up); 12643 return (err); 12644 } 12645 12646 static int 12647 ip_sioctl_subnet_tail(ipif_t *ipif, in6_addr_t v6addr, in6_addr_t v6mask, 12648 queue_t *q, mblk_t *mp, boolean_t need_up) 12649 { 12650 ill_t *ill = ipif->ipif_ill; 12651 int err = 0; 12652 12653 ip1dbg(("ip_sioctl_subnet_tail(%s:%u %p)\n", 12654 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12655 12656 /* Set the new address. */ 12657 mutex_enter(&ill->ill_lock); 12658 ipif->ipif_v6net_mask = v6mask; 12659 if ((ipif->ipif_flags & IPIF_POINTOPOINT) == 0) { 12660 V6_MASK_COPY(v6addr, ipif->ipif_v6net_mask, 12661 ipif->ipif_v6subnet); 12662 } 12663 mutex_exit(&ill->ill_lock); 12664 12665 if (need_up) { 12666 /* 12667 * Now bring the interface back up. If this 12668 * is the only IPIF for the ILL, ipif_up 12669 * will have to re-bind to the device, so 12670 * we may get back EINPROGRESS, in which 12671 * case, this IOCTL will get completed in 12672 * ip_rput_dlpi when we see the DL_BIND_ACK. 12673 */ 12674 err = ipif_up(ipif, q, mp); 12675 if (err == EINPROGRESS) 12676 return (err); 12677 } 12678 return (err); 12679 } 12680 12681 /* ARGSUSED */ 12682 int 12683 ip_sioctl_subnet_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12684 ip_ioctl_cmd_t *ipip, void *if_req) 12685 { 12686 int addrlen; 12687 in6_addr_t v6addr; 12688 in6_addr_t v6mask; 12689 struct lifreq *lifr = (struct lifreq *)if_req; 12690 12691 ip1dbg(("ip_sioctl_subnet_restart(%s:%u %p)\n", 12692 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12693 ipif_down_tail(ipif); 12694 12695 addrlen = lifr->lifr_addrlen; 12696 if (ipif->ipif_isv6) { 12697 sin6_t *sin6; 12698 12699 sin6 = (sin6_t *)sin; 12700 v6addr = sin6->sin6_addr; 12701 } else { 12702 ipaddr_t addr; 12703 12704 addr = sin->sin_addr.s_addr; 12705 IN6_IPADDR_TO_V4MAPPED(addr, &v6addr); 12706 addrlen += IPV6_ABITS - IP_ABITS; 12707 } 12708 (void) ip_plen_to_mask_v6(addrlen, &v6mask); 12709 12710 return (ip_sioctl_subnet_tail(ipif, v6addr, v6mask, q, mp, B_TRUE)); 12711 } 12712 12713 /* ARGSUSED */ 12714 int 12715 ip_sioctl_get_subnet(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12716 ip_ioctl_cmd_t *ipip, void *if_req) 12717 { 12718 struct lifreq *lifr = (struct lifreq *)if_req; 12719 struct sockaddr_in6 *sin6 = (struct sockaddr_in6 *)sin; 12720 12721 ip1dbg(("ip_sioctl_get_subnet(%s:%u %p)\n", 12722 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12723 ASSERT(ipip->ipi_cmd_type == LIF_CMD); 12724 12725 if (ipif->ipif_isv6) { 12726 *sin6 = sin6_null; 12727 sin6->sin6_family = AF_INET6; 12728 sin6->sin6_addr = ipif->ipif_v6subnet; 12729 lifr->lifr_addrlen = 12730 ip_mask_to_plen_v6(&ipif->ipif_v6net_mask); 12731 } else { 12732 *sin = sin_null; 12733 sin->sin_family = AF_INET; 12734 sin->sin_addr.s_addr = ipif->ipif_subnet; 12735 lifr->lifr_addrlen = ip_mask_to_plen(ipif->ipif_net_mask); 12736 } 12737 return (0); 12738 } 12739 12740 /* 12741 * Set the IPv6 address token. 12742 */ 12743 /* ARGSUSED */ 12744 int 12745 ip_sioctl_token(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12746 ip_ioctl_cmd_t *ipi, void *if_req) 12747 { 12748 ill_t *ill = ipif->ipif_ill; 12749 int err; 12750 in6_addr_t v6addr; 12751 in6_addr_t v6mask; 12752 boolean_t need_up = B_FALSE; 12753 int i; 12754 sin6_t *sin6 = (sin6_t *)sin; 12755 struct lifreq *lifr = (struct lifreq *)if_req; 12756 int addrlen; 12757 12758 ip1dbg(("ip_sioctl_token(%s:%u %p)\n", 12759 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12760 ASSERT(IAM_WRITER_IPIF(ipif)); 12761 12762 addrlen = lifr->lifr_addrlen; 12763 /* Only allow for logical unit zero i.e. not on "le0:17" */ 12764 if (ipif->ipif_id != 0) 12765 return (EINVAL); 12766 12767 if (!ipif->ipif_isv6) 12768 return (EINVAL); 12769 12770 if (addrlen > IPV6_ABITS) 12771 return (EINVAL); 12772 12773 v6addr = sin6->sin6_addr; 12774 12775 /* 12776 * The length of the token is the length from the end. To get 12777 * the proper mask for this, compute the mask of the bits not 12778 * in the token; ie. the prefix, and then xor to get the mask. 12779 */ 12780 if (ip_plen_to_mask_v6(IPV6_ABITS - addrlen, &v6mask) == NULL) 12781 return (EINVAL); 12782 for (i = 0; i < 4; i++) { 12783 v6mask.s6_addr32[i] ^= (uint32_t)0xffffffff; 12784 } 12785 12786 if (V6_MASK_EQ(v6addr, v6mask, ill->ill_token) && 12787 ill->ill_token_length == addrlen) 12788 return (0); /* No change */ 12789 12790 if (ipif->ipif_flags & IPIF_UP) { 12791 err = ipif_logical_down(ipif, q, mp); 12792 if (err == EINPROGRESS) 12793 return (err); 12794 ipif_down_tail(ipif); 12795 need_up = B_TRUE; 12796 } 12797 err = ip_sioctl_token_tail(ipif, sin6, addrlen, q, mp, need_up); 12798 return (err); 12799 } 12800 12801 static int 12802 ip_sioctl_token_tail(ipif_t *ipif, sin6_t *sin6, int addrlen, queue_t *q, 12803 mblk_t *mp, boolean_t need_up) 12804 { 12805 in6_addr_t v6addr; 12806 in6_addr_t v6mask; 12807 ill_t *ill = ipif->ipif_ill; 12808 int i; 12809 int err = 0; 12810 12811 ip1dbg(("ip_sioctl_token_tail(%s:%u %p)\n", 12812 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12813 v6addr = sin6->sin6_addr; 12814 /* 12815 * The length of the token is the length from the end. To get 12816 * the proper mask for this, compute the mask of the bits not 12817 * in the token; ie. the prefix, and then xor to get the mask. 12818 */ 12819 (void) ip_plen_to_mask_v6(IPV6_ABITS - addrlen, &v6mask); 12820 for (i = 0; i < 4; i++) 12821 v6mask.s6_addr32[i] ^= (uint32_t)0xffffffff; 12822 12823 mutex_enter(&ill->ill_lock); 12824 V6_MASK_COPY(v6addr, v6mask, ill->ill_token); 12825 ill->ill_token_length = addrlen; 12826 mutex_exit(&ill->ill_lock); 12827 12828 if (need_up) { 12829 /* 12830 * Now bring the interface back up. If this 12831 * is the only IPIF for the ILL, ipif_up 12832 * will have to re-bind to the device, so 12833 * we may get back EINPROGRESS, in which 12834 * case, this IOCTL will get completed in 12835 * ip_rput_dlpi when we see the DL_BIND_ACK. 12836 */ 12837 err = ipif_up(ipif, q, mp); 12838 if (err == EINPROGRESS) 12839 return (err); 12840 } 12841 return (err); 12842 } 12843 12844 /* ARGSUSED */ 12845 int 12846 ip_sioctl_get_token(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12847 ip_ioctl_cmd_t *ipi, void *if_req) 12848 { 12849 ill_t *ill; 12850 sin6_t *sin6 = (sin6_t *)sin; 12851 struct lifreq *lifr = (struct lifreq *)if_req; 12852 12853 ip1dbg(("ip_sioctl_get_token(%s:%u %p)\n", 12854 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12855 if (ipif->ipif_id != 0) 12856 return (EINVAL); 12857 12858 ill = ipif->ipif_ill; 12859 if (!ill->ill_isv6) 12860 return (ENXIO); 12861 12862 *sin6 = sin6_null; 12863 sin6->sin6_family = AF_INET6; 12864 ASSERT(!IN6_IS_ADDR_V4MAPPED(&ill->ill_token)); 12865 sin6->sin6_addr = ill->ill_token; 12866 lifr->lifr_addrlen = ill->ill_token_length; 12867 return (0); 12868 } 12869 12870 /* 12871 * Set (hardware) link specific information that might override 12872 * what was acquired through the DL_INFO_ACK. 12873 * The logic is as follows. 12874 * 12875 * become exclusive 12876 * set CHANGING flag 12877 * change mtu on affected IREs 12878 * clear CHANGING flag 12879 * 12880 * An ire add that occurs before the CHANGING flag is set will have its mtu 12881 * changed by the ip_sioctl_lnkinfo. 12882 * 12883 * During the time the CHANGING flag is set, no new ires will be added to the 12884 * bucket, and ire add will fail (due the CHANGING flag). 12885 * 12886 * An ire add that occurs after the CHANGING flag is set will have the right mtu 12887 * before it is added to the bucket. 12888 * 12889 * Obviously only 1 thread can set the CHANGING flag and we need to become 12890 * exclusive to set the flag. 12891 */ 12892 /* ARGSUSED */ 12893 int 12894 ip_sioctl_lnkinfo(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12895 ip_ioctl_cmd_t *ipi, void *if_req) 12896 { 12897 ill_t *ill = ipif->ipif_ill; 12898 ipif_t *nipif; 12899 int ip_min_mtu; 12900 boolean_t mtu_walk = B_FALSE; 12901 struct lifreq *lifr = (struct lifreq *)if_req; 12902 lif_ifinfo_req_t *lir; 12903 ire_t *ire; 12904 12905 ip1dbg(("ip_sioctl_lnkinfo(%s:%u %p)\n", 12906 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12907 lir = &lifr->lifr_ifinfo; 12908 ASSERT(IAM_WRITER_IPIF(ipif)); 12909 12910 /* Only allow for logical unit zero i.e. not on "le0:17" */ 12911 if (ipif->ipif_id != 0) 12912 return (EINVAL); 12913 12914 /* Set interface MTU. */ 12915 if (ipif->ipif_isv6) 12916 ip_min_mtu = IPV6_MIN_MTU; 12917 else 12918 ip_min_mtu = IP_MIN_MTU; 12919 12920 /* 12921 * Verify values before we set anything. Allow zero to 12922 * mean unspecified. 12923 */ 12924 if (lir->lir_maxmtu != 0 && 12925 (lir->lir_maxmtu > ill->ill_max_frag || 12926 lir->lir_maxmtu < ip_min_mtu)) 12927 return (EINVAL); 12928 if (lir->lir_reachtime != 0 && 12929 lir->lir_reachtime > ND_MAX_REACHTIME) 12930 return (EINVAL); 12931 if (lir->lir_reachretrans != 0 && 12932 lir->lir_reachretrans > ND_MAX_REACHRETRANSTIME) 12933 return (EINVAL); 12934 12935 mutex_enter(&ill->ill_lock); 12936 ill->ill_state_flags |= ILL_CHANGING; 12937 for (nipif = ill->ill_ipif; nipif != NULL; 12938 nipif = nipif->ipif_next) { 12939 nipif->ipif_state_flags |= IPIF_CHANGING; 12940 } 12941 12942 mutex_exit(&ill->ill_lock); 12943 12944 if (lir->lir_maxmtu != 0) { 12945 ill->ill_max_mtu = lir->lir_maxmtu; 12946 ill->ill_mtu_userspecified = 1; 12947 mtu_walk = B_TRUE; 12948 } 12949 12950 if (lir->lir_reachtime != 0) 12951 ill->ill_reachable_time = lir->lir_reachtime; 12952 12953 if (lir->lir_reachretrans != 0) 12954 ill->ill_reachable_retrans_time = lir->lir_reachretrans; 12955 12956 ill->ill_max_hops = lir->lir_maxhops; 12957 12958 ill->ill_max_buf = ND_MAX_Q; 12959 12960 if (mtu_walk) { 12961 /* 12962 * Set the MTU on all ipifs associated with this ill except 12963 * for those whose MTU was fixed via SIOCSLIFMTU. 12964 */ 12965 for (nipif = ill->ill_ipif; nipif != NULL; 12966 nipif = nipif->ipif_next) { 12967 if (nipif->ipif_flags & IPIF_FIXEDMTU) 12968 continue; 12969 12970 nipif->ipif_mtu = ill->ill_max_mtu; 12971 12972 if (!(nipif->ipif_flags & IPIF_UP)) 12973 continue; 12974 12975 if (nipif->ipif_isv6) 12976 ire = ipif_to_ire_v6(nipif); 12977 else 12978 ire = ipif_to_ire(nipif); 12979 if (ire != NULL) { 12980 ire->ire_max_frag = ipif->ipif_mtu; 12981 ire_refrele(ire); 12982 } 12983 12984 ire_walk_ill(MATCH_IRE_ILL, 0, ipif_mtu_change, 12985 nipif, ill); 12986 } 12987 } 12988 12989 mutex_enter(&ill->ill_lock); 12990 for (nipif = ill->ill_ipif; nipif != NULL; 12991 nipif = nipif->ipif_next) { 12992 nipif->ipif_state_flags &= ~IPIF_CHANGING; 12993 } 12994 ILL_UNMARK_CHANGING(ill); 12995 mutex_exit(&ill->ill_lock); 12996 12997 return (0); 12998 } 12999 13000 /* ARGSUSED */ 13001 int 13002 ip_sioctl_get_lnkinfo(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 13003 ip_ioctl_cmd_t *ipi, void *if_req) 13004 { 13005 struct lif_ifinfo_req *lir; 13006 ill_t *ill = ipif->ipif_ill; 13007 13008 ip1dbg(("ip_sioctl_get_lnkinfo(%s:%u %p)\n", 13009 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 13010 if (ipif->ipif_id != 0) 13011 return (EINVAL); 13012 13013 lir = &((struct lifreq *)if_req)->lifr_ifinfo; 13014 lir->lir_maxhops = ill->ill_max_hops; 13015 lir->lir_reachtime = ill->ill_reachable_time; 13016 lir->lir_reachretrans = ill->ill_reachable_retrans_time; 13017 lir->lir_maxmtu = ill->ill_max_mtu; 13018 13019 return (0); 13020 } 13021 13022 /* 13023 * Return best guess as to the subnet mask for the specified address. 13024 * Based on the subnet masks for all the configured interfaces. 13025 * 13026 * We end up returning a zero mask in the case of default, multicast or 13027 * experimental. 13028 */ 13029 static ipaddr_t 13030 ip_subnet_mask(ipaddr_t addr, ipif_t **ipifp, ip_stack_t *ipst) 13031 { 13032 ipaddr_t net_mask; 13033 ill_t *ill; 13034 ipif_t *ipif; 13035 ill_walk_context_t ctx; 13036 ipif_t *fallback_ipif = NULL; 13037 13038 net_mask = ip_net_mask(addr); 13039 if (net_mask == 0) { 13040 *ipifp = NULL; 13041 return (0); 13042 } 13043 13044 /* Let's check to see if this is maybe a local subnet route. */ 13045 /* this function only applies to IPv4 interfaces */ 13046 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 13047 ill = ILL_START_WALK_V4(&ctx, ipst); 13048 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 13049 mutex_enter(&ill->ill_lock); 13050 for (ipif = ill->ill_ipif; ipif != NULL; 13051 ipif = ipif->ipif_next) { 13052 if (!IPIF_CAN_LOOKUP(ipif)) 13053 continue; 13054 if (!(ipif->ipif_flags & IPIF_UP)) 13055 continue; 13056 if ((ipif->ipif_subnet & net_mask) == 13057 (addr & net_mask)) { 13058 /* 13059 * Don't trust pt-pt interfaces if there are 13060 * other interfaces. 13061 */ 13062 if (ipif->ipif_flags & IPIF_POINTOPOINT) { 13063 if (fallback_ipif == NULL) { 13064 ipif_refhold_locked(ipif); 13065 fallback_ipif = ipif; 13066 } 13067 continue; 13068 } 13069 13070 /* 13071 * Fine. Just assume the same net mask as the 13072 * directly attached subnet interface is using. 13073 */ 13074 ipif_refhold_locked(ipif); 13075 mutex_exit(&ill->ill_lock); 13076 rw_exit(&ipst->ips_ill_g_lock); 13077 if (fallback_ipif != NULL) 13078 ipif_refrele(fallback_ipif); 13079 *ipifp = ipif; 13080 return (ipif->ipif_net_mask); 13081 } 13082 } 13083 mutex_exit(&ill->ill_lock); 13084 } 13085 rw_exit(&ipst->ips_ill_g_lock); 13086 13087 *ipifp = fallback_ipif; 13088 return ((fallback_ipif != NULL) ? 13089 fallback_ipif->ipif_net_mask : net_mask); 13090 } 13091 13092 /* 13093 * ip_sioctl_copyin_setup calls ip_wput_ioctl to process the IP_IOCTL ioctl. 13094 */ 13095 static void 13096 ip_wput_ioctl(queue_t *q, mblk_t *mp) 13097 { 13098 IOCP iocp; 13099 ipft_t *ipft; 13100 ipllc_t *ipllc; 13101 mblk_t *mp1; 13102 cred_t *cr; 13103 int error = 0; 13104 conn_t *connp; 13105 13106 ip1dbg(("ip_wput_ioctl")); 13107 iocp = (IOCP)mp->b_rptr; 13108 mp1 = mp->b_cont; 13109 if (mp1 == NULL) { 13110 iocp->ioc_error = EINVAL; 13111 mp->b_datap->db_type = M_IOCNAK; 13112 iocp->ioc_count = 0; 13113 qreply(q, mp); 13114 return; 13115 } 13116 13117 /* 13118 * These IOCTLs provide various control capabilities to 13119 * upstream agents such as ULPs and processes. There 13120 * are currently two such IOCTLs implemented. They 13121 * are used by TCP to provide update information for 13122 * existing IREs and to forcibly delete an IRE for a 13123 * host that is not responding, thereby forcing an 13124 * attempt at a new route. 13125 */ 13126 iocp->ioc_error = EINVAL; 13127 if (!pullupmsg(mp1, sizeof (ipllc->ipllc_cmd))) 13128 goto done; 13129 13130 ipllc = (ipllc_t *)mp1->b_rptr; 13131 for (ipft = ip_ioctl_ftbl; ipft->ipft_pfi; ipft++) { 13132 if (ipllc->ipllc_cmd == ipft->ipft_cmd) 13133 break; 13134 } 13135 /* 13136 * prefer credential from mblk over ioctl; 13137 * see ip_sioctl_copyin_setup 13138 */ 13139 cr = DB_CREDDEF(mp, iocp->ioc_cr); 13140 13141 /* 13142 * Refhold the conn in case the request gets queued up in some lookup 13143 */ 13144 ASSERT(CONN_Q(q)); 13145 connp = Q_TO_CONN(q); 13146 CONN_INC_REF(connp); 13147 if (ipft->ipft_pfi && 13148 ((mp1->b_wptr - mp1->b_rptr) >= ipft->ipft_min_size || 13149 pullupmsg(mp1, ipft->ipft_min_size))) { 13150 error = (*ipft->ipft_pfi)(q, 13151 (ipft->ipft_flags & IPFT_F_SELF_REPLY) ? mp : mp1, cr); 13152 } 13153 if (ipft->ipft_flags & IPFT_F_SELF_REPLY) { 13154 /* 13155 * CONN_OPER_PENDING_DONE happens in the function called 13156 * through ipft_pfi above. 13157 */ 13158 return; 13159 } 13160 13161 CONN_OPER_PENDING_DONE(connp); 13162 if (ipft->ipft_flags & IPFT_F_NO_REPLY) { 13163 freemsg(mp); 13164 return; 13165 } 13166 iocp->ioc_error = error; 13167 13168 done: 13169 mp->b_datap->db_type = M_IOCACK; 13170 if (iocp->ioc_error) 13171 iocp->ioc_count = 0; 13172 qreply(q, mp); 13173 } 13174 13175 /* 13176 * Lookup an ipif using the sequence id (ipif_seqid) 13177 */ 13178 ipif_t * 13179 ipif_lookup_seqid(ill_t *ill, uint_t seqid) 13180 { 13181 ipif_t *ipif; 13182 13183 ASSERT(MUTEX_HELD(&ill->ill_lock)); 13184 13185 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 13186 if (ipif->ipif_seqid == seqid && IPIF_CAN_LOOKUP(ipif)) 13187 return (ipif); 13188 } 13189 return (NULL); 13190 } 13191 13192 /* 13193 * Assign a unique id for the ipif. This is used later when we send 13194 * IRES to ARP for resolution where we initialize ire_ipif_seqid 13195 * to the value pointed by ire_ipif->ipif_seqid. Later when the 13196 * IRE is added, we verify that ipif has not disappeared. 13197 */ 13198 13199 static void 13200 ipif_assign_seqid(ipif_t *ipif) 13201 { 13202 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; 13203 13204 ipif->ipif_seqid = atomic_add_64_nv(&ipst->ips_ipif_g_seqid, 1); 13205 } 13206 13207 /* 13208 * Insert the ipif, so that the list of ipifs on the ill will be sorted 13209 * with respect to ipif_id. Note that an ipif with an ipif_id of -1 will 13210 * be inserted into the first space available in the list. The value of 13211 * ipif_id will then be set to the appropriate value for its position. 13212 */ 13213 static int 13214 ipif_insert(ipif_t *ipif, boolean_t acquire_g_lock, boolean_t acquire_ill_lock) 13215 { 13216 ill_t *ill; 13217 ipif_t *tipif; 13218 ipif_t **tipifp; 13219 int id; 13220 ip_stack_t *ipst; 13221 13222 ASSERT(ipif->ipif_ill->ill_net_type == IRE_LOOPBACK || 13223 IAM_WRITER_IPIF(ipif)); 13224 13225 ill = ipif->ipif_ill; 13226 ASSERT(ill != NULL); 13227 ipst = ill->ill_ipst; 13228 13229 /* 13230 * In the case of lo0:0 we already hold the ill_g_lock. 13231 * ill_lookup_on_name (acquires ill_g_lock) -> ipif_allocate -> 13232 * ipif_insert. Another such caller is ipif_move. 13233 */ 13234 if (acquire_g_lock) 13235 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 13236 if (acquire_ill_lock) 13237 mutex_enter(&ill->ill_lock); 13238 id = ipif->ipif_id; 13239 tipifp = &(ill->ill_ipif); 13240 if (id == -1) { /* need to find a real id */ 13241 id = 0; 13242 while ((tipif = *tipifp) != NULL) { 13243 ASSERT(tipif->ipif_id >= id); 13244 if (tipif->ipif_id != id) 13245 break; /* non-consecutive id */ 13246 id++; 13247 tipifp = &(tipif->ipif_next); 13248 } 13249 /* limit number of logical interfaces */ 13250 if (id >= ipst->ips_ip_addrs_per_if) { 13251 if (acquire_ill_lock) 13252 mutex_exit(&ill->ill_lock); 13253 if (acquire_g_lock) 13254 rw_exit(&ipst->ips_ill_g_lock); 13255 return (-1); 13256 } 13257 ipif->ipif_id = id; /* assign new id */ 13258 } else if (id < ipst->ips_ip_addrs_per_if) { 13259 /* we have a real id; insert ipif in the right place */ 13260 while ((tipif = *tipifp) != NULL) { 13261 ASSERT(tipif->ipif_id != id); 13262 if (tipif->ipif_id > id) 13263 break; /* found correct location */ 13264 tipifp = &(tipif->ipif_next); 13265 } 13266 } else { 13267 if (acquire_ill_lock) 13268 mutex_exit(&ill->ill_lock); 13269 if (acquire_g_lock) 13270 rw_exit(&ipst->ips_ill_g_lock); 13271 return (-1); 13272 } 13273 13274 ASSERT(tipifp != &(ill->ill_ipif) || id == 0); 13275 13276 ipif->ipif_next = tipif; 13277 *tipifp = ipif; 13278 if (acquire_ill_lock) 13279 mutex_exit(&ill->ill_lock); 13280 if (acquire_g_lock) 13281 rw_exit(&ipst->ips_ill_g_lock); 13282 return (0); 13283 } 13284 13285 static void 13286 ipif_remove(ipif_t *ipif, boolean_t acquire_ill_lock) 13287 { 13288 ipif_t **ipifp; 13289 ill_t *ill = ipif->ipif_ill; 13290 13291 ASSERT(RW_WRITE_HELD(&ill->ill_ipst->ips_ill_g_lock)); 13292 if (acquire_ill_lock) 13293 mutex_enter(&ill->ill_lock); 13294 else 13295 ASSERT(MUTEX_HELD(&ill->ill_lock)); 13296 13297 ipifp = &ill->ill_ipif; 13298 for (; *ipifp != NULL; ipifp = &ipifp[0]->ipif_next) { 13299 if (*ipifp == ipif) { 13300 *ipifp = ipif->ipif_next; 13301 break; 13302 } 13303 } 13304 13305 if (acquire_ill_lock) 13306 mutex_exit(&ill->ill_lock); 13307 } 13308 13309 /* 13310 * Allocate and initialize a new interface control structure. (Always 13311 * called as writer.) 13312 * When ipif_allocate() is called from ip_ll_subnet_defaults, the ill 13313 * is not part of the global linked list of ills. ipif_seqid is unique 13314 * in the system and to preserve the uniqueness, it is assigned only 13315 * when ill becomes part of the global list. At that point ill will 13316 * have a name. If it doesn't get assigned here, it will get assigned 13317 * in ipif_set_values() as part of SIOCSLIFNAME processing. 13318 * Aditionally, if we come here from ip_ll_subnet_defaults, we don't set 13319 * the interface flags or any other information from the DL_INFO_ACK for 13320 * DL_STYLE2 drivers (initialize == B_FALSE), since we won't have them at 13321 * this point. The flags etc. will be set in ip_ll_subnet_defaults when the 13322 * second DL_INFO_ACK comes in from the driver. 13323 */ 13324 static ipif_t * 13325 ipif_allocate(ill_t *ill, int id, uint_t ire_type, boolean_t initialize) 13326 { 13327 ipif_t *ipif; 13328 phyint_t *phyi; 13329 13330 ip1dbg(("ipif_allocate(%s:%d ill %p)\n", 13331 ill->ill_name, id, (void *)ill)); 13332 ASSERT(ire_type == IRE_LOOPBACK || IAM_WRITER_ILL(ill)); 13333 13334 if ((ipif = (ipif_t *)mi_alloc(sizeof (ipif_t), BPRI_MED)) == NULL) 13335 return (NULL); 13336 *ipif = ipif_zero; /* start clean */ 13337 13338 ipif->ipif_ill = ill; 13339 ipif->ipif_id = id; /* could be -1 */ 13340 /* 13341 * Inherit the zoneid from the ill; for the shared stack instance 13342 * this is always the global zone 13343 */ 13344 ipif->ipif_zoneid = ill->ill_zoneid; 13345 13346 mutex_init(&ipif->ipif_saved_ire_lock, NULL, MUTEX_DEFAULT, NULL); 13347 13348 ipif->ipif_refcnt = 0; 13349 ipif->ipif_saved_ire_cnt = 0; 13350 13351 if (ipif_insert(ipif, ire_type != IRE_LOOPBACK, B_TRUE)) { 13352 mi_free(ipif); 13353 return (NULL); 13354 } 13355 /* -1 id should have been replaced by real id */ 13356 id = ipif->ipif_id; 13357 ASSERT(id >= 0); 13358 13359 if (ill->ill_name[0] != '\0') 13360 ipif_assign_seqid(ipif); 13361 13362 /* 13363 * Keep a copy of original id in ipif_orig_ipifid. Failback 13364 * will attempt to restore the original id. The SIOCSLIFOINDEX 13365 * ioctl sets ipif_orig_ipifid to zero. 13366 */ 13367 ipif->ipif_orig_ipifid = id; 13368 13369 /* 13370 * We grab the ill_lock and phyint_lock to protect the flag changes. 13371 * The ipif is still not up and can't be looked up until the 13372 * ioctl completes and the IPIF_CHANGING flag is cleared. 13373 */ 13374 mutex_enter(&ill->ill_lock); 13375 mutex_enter(&ill->ill_phyint->phyint_lock); 13376 /* 13377 * Set the running flag when logical interface zero is created. 13378 * For subsequent logical interfaces, a DLPI link down 13379 * notification message may have cleared the running flag to 13380 * indicate the link is down, so we shouldn't just blindly set it. 13381 */ 13382 if (id == 0) 13383 ill->ill_phyint->phyint_flags |= PHYI_RUNNING; 13384 ipif->ipif_ire_type = ire_type; 13385 phyi = ill->ill_phyint; 13386 ipif->ipif_orig_ifindex = phyi->phyint_ifindex; 13387 13388 if (ipif->ipif_isv6) { 13389 ill->ill_flags |= ILLF_IPV6; 13390 } else { 13391 ipaddr_t inaddr_any = INADDR_ANY; 13392 13393 ill->ill_flags |= ILLF_IPV4; 13394 13395 /* Keep the IN6_IS_ADDR_V4MAPPED assertions happy */ 13396 IN6_IPADDR_TO_V4MAPPED(inaddr_any, 13397 &ipif->ipif_v6lcl_addr); 13398 IN6_IPADDR_TO_V4MAPPED(inaddr_any, 13399 &ipif->ipif_v6src_addr); 13400 IN6_IPADDR_TO_V4MAPPED(inaddr_any, 13401 &ipif->ipif_v6subnet); 13402 IN6_IPADDR_TO_V4MAPPED(inaddr_any, 13403 &ipif->ipif_v6net_mask); 13404 IN6_IPADDR_TO_V4MAPPED(inaddr_any, 13405 &ipif->ipif_v6brd_addr); 13406 IN6_IPADDR_TO_V4MAPPED(inaddr_any, 13407 &ipif->ipif_v6pp_dst_addr); 13408 } 13409 13410 /* 13411 * Don't set the interface flags etc. now, will do it in 13412 * ip_ll_subnet_defaults. 13413 */ 13414 if (!initialize) { 13415 mutex_exit(&ill->ill_lock); 13416 mutex_exit(&ill->ill_phyint->phyint_lock); 13417 return (ipif); 13418 } 13419 ipif->ipif_mtu = ill->ill_max_mtu; 13420 13421 if (ill->ill_bcast_addr_length != 0) { 13422 /* 13423 * Later detect lack of DLPI driver multicast 13424 * capability by catching DL_ENABMULTI errors in 13425 * ip_rput_dlpi. 13426 */ 13427 ill->ill_flags |= ILLF_MULTICAST; 13428 if (!ipif->ipif_isv6) 13429 ipif->ipif_flags |= IPIF_BROADCAST; 13430 } else { 13431 if (ill->ill_net_type != IRE_LOOPBACK) { 13432 if (ipif->ipif_isv6) 13433 /* 13434 * Note: xresolv interfaces will eventually need 13435 * NOARP set here as well, but that will require 13436 * those external resolvers to have some 13437 * knowledge of that flag and act appropriately. 13438 * Not to be changed at present. 13439 */ 13440 ill->ill_flags |= ILLF_NONUD; 13441 else 13442 ill->ill_flags |= ILLF_NOARP; 13443 } 13444 if (ill->ill_phys_addr_length == 0) { 13445 if (ill->ill_media && 13446 ill->ill_media->ip_m_mac_type == SUNW_DL_VNI) { 13447 ipif->ipif_flags |= IPIF_NOXMIT; 13448 phyi->phyint_flags |= PHYI_VIRTUAL; 13449 } else { 13450 /* pt-pt supports multicast. */ 13451 ill->ill_flags |= ILLF_MULTICAST; 13452 if (ill->ill_net_type == IRE_LOOPBACK) { 13453 phyi->phyint_flags |= 13454 (PHYI_LOOPBACK | PHYI_VIRTUAL); 13455 } else { 13456 ipif->ipif_flags |= IPIF_POINTOPOINT; 13457 } 13458 } 13459 } 13460 } 13461 mutex_exit(&ill->ill_lock); 13462 mutex_exit(&ill->ill_phyint->phyint_lock); 13463 return (ipif); 13464 } 13465 13466 /* 13467 * If appropriate, send a message up to the resolver delete the entry 13468 * for the address of this interface which is going out of business. 13469 * (Always called as writer). 13470 * 13471 * NOTE : We need to check for NULL mps as some of the fields are 13472 * initialized only for some interface types. See ipif_resolver_up() 13473 * for details. 13474 */ 13475 void 13476 ipif_arp_down(ipif_t *ipif) 13477 { 13478 mblk_t *mp; 13479 ill_t *ill = ipif->ipif_ill; 13480 13481 ip1dbg(("ipif_arp_down(%s:%u)\n", ill->ill_name, ipif->ipif_id)); 13482 ASSERT(IAM_WRITER_IPIF(ipif)); 13483 13484 /* Delete the mapping for the local address */ 13485 mp = ipif->ipif_arp_del_mp; 13486 if (mp != NULL) { 13487 ip1dbg(("ipif_arp_down: arp cmd %x for %s:%u\n", 13488 *(unsigned *)mp->b_rptr, ill->ill_name, ipif->ipif_id)); 13489 putnext(ill->ill_rq, mp); 13490 ipif->ipif_arp_del_mp = NULL; 13491 } 13492 13493 /* 13494 * If this is the last ipif that is going down and there are no 13495 * duplicate addresses we may yet attempt to re-probe, then we need to 13496 * clean up ARP completely. 13497 */ 13498 if (ill->ill_ipif_up_count == 0 && ill->ill_ipif_dup_count == 0) { 13499 13500 /* Send up AR_INTERFACE_DOWN message */ 13501 mp = ill->ill_arp_down_mp; 13502 if (mp != NULL) { 13503 ip1dbg(("ipif_arp_down: arp cmd %x for %s:%u\n", 13504 *(unsigned *)mp->b_rptr, ill->ill_name, 13505 ipif->ipif_id)); 13506 putnext(ill->ill_rq, mp); 13507 ill->ill_arp_down_mp = NULL; 13508 } 13509 13510 /* Tell ARP to delete the multicast mappings */ 13511 mp = ill->ill_arp_del_mapping_mp; 13512 if (mp != NULL) { 13513 ip1dbg(("ipif_arp_down: arp cmd %x for %s:%u\n", 13514 *(unsigned *)mp->b_rptr, ill->ill_name, 13515 ipif->ipif_id)); 13516 putnext(ill->ill_rq, mp); 13517 ill->ill_arp_del_mapping_mp = NULL; 13518 } 13519 } 13520 } 13521 13522 /* 13523 * This function sets up the multicast mappings in ARP. When ipif_resolver_up 13524 * calls this function, it passes a non-NULL arp_add_mapping_mp indicating 13525 * that it wants the add_mp allocated in this function to be returned 13526 * wihtout sending it to arp. When ip_rput_dlpi_writer calls this to 13527 * just re-do the multicast, it wants us to send the add_mp to ARP also. 13528 * ipif_resolver_up does not want us to do the "add" i.e sending to ARP, 13529 * as it does a ipif_arp_down after calling this function - which will 13530 * remove what we add here. 13531 * 13532 * Returns -1 on failures and 0 on success. 13533 */ 13534 int 13535 ipif_arp_setup_multicast(ipif_t *ipif, mblk_t **arp_add_mapping_mp) 13536 { 13537 mblk_t *del_mp = NULL; 13538 mblk_t *add_mp = NULL; 13539 mblk_t *mp; 13540 ill_t *ill = ipif->ipif_ill; 13541 phyint_t *phyi = ill->ill_phyint; 13542 ipaddr_t addr, mask, extract_mask = 0; 13543 arma_t *arma; 13544 uint8_t *maddr, *bphys_addr; 13545 uint32_t hw_start; 13546 dl_unitdata_req_t *dlur; 13547 13548 ASSERT(IAM_WRITER_IPIF(ipif)); 13549 if (ipif->ipif_flags & IPIF_POINTOPOINT) 13550 return (0); 13551 13552 /* 13553 * Delete the existing mapping from ARP. Normally ipif_down 13554 * -> ipif_arp_down should send this up to ARP. The only 13555 * reason we would find this when we are switching from 13556 * Multicast to Broadcast where we did not do a down. 13557 */ 13558 mp = ill->ill_arp_del_mapping_mp; 13559 if (mp != NULL) { 13560 ip1dbg(("ipif_arp_down: arp cmd %x for %s:%u\n", 13561 *(unsigned *)mp->b_rptr, ill->ill_name, ipif->ipif_id)); 13562 putnext(ill->ill_rq, mp); 13563 ill->ill_arp_del_mapping_mp = NULL; 13564 } 13565 13566 if (arp_add_mapping_mp != NULL) 13567 *arp_add_mapping_mp = NULL; 13568 13569 /* 13570 * Check that the address is not to long for the constant 13571 * length reserved in the template arma_t. 13572 */ 13573 if (ill->ill_phys_addr_length > IP_MAX_HW_LEN) 13574 return (-1); 13575 13576 /* Add mapping mblk */ 13577 addr = (ipaddr_t)htonl(INADDR_UNSPEC_GROUP); 13578 mask = (ipaddr_t)htonl(IN_CLASSD_NET); 13579 add_mp = ill_arp_alloc(ill, (uchar_t *)&ip_arma_multi_template, 13580 (caddr_t)&addr); 13581 if (add_mp == NULL) 13582 return (-1); 13583 arma = (arma_t *)add_mp->b_rptr; 13584 maddr = (uint8_t *)arma + arma->arma_hw_addr_offset; 13585 bcopy(&mask, (char *)arma + arma->arma_proto_mask_offset, IP_ADDR_LEN); 13586 arma->arma_hw_addr_length = ill->ill_phys_addr_length; 13587 13588 /* 13589 * Determine the broadcast address. 13590 */ 13591 dlur = (dl_unitdata_req_t *)ill->ill_bcast_mp->b_rptr; 13592 if (ill->ill_sap_length < 0) 13593 bphys_addr = (uchar_t *)dlur + dlur->dl_dest_addr_offset; 13594 else 13595 bphys_addr = (uchar_t *)dlur + 13596 dlur->dl_dest_addr_offset + ill->ill_sap_length; 13597 /* 13598 * Check PHYI_MULTI_BCAST and length of physical 13599 * address to determine if we use the mapping or the 13600 * broadcast address. 13601 */ 13602 if (!(phyi->phyint_flags & PHYI_MULTI_BCAST)) 13603 if (!MEDIA_V4MINFO(ill->ill_media, ill->ill_phys_addr_length, 13604 bphys_addr, maddr, &hw_start, &extract_mask)) 13605 phyi->phyint_flags |= PHYI_MULTI_BCAST; 13606 13607 if ((phyi->phyint_flags & PHYI_MULTI_BCAST) || 13608 (ill->ill_flags & ILLF_MULTICAST)) { 13609 /* Make sure this will not match the "exact" entry. */ 13610 addr = (ipaddr_t)htonl(INADDR_ALLHOSTS_GROUP); 13611 del_mp = ill_arp_alloc(ill, (uchar_t *)&ip_ared_template, 13612 (caddr_t)&addr); 13613 if (del_mp == NULL) { 13614 freemsg(add_mp); 13615 return (-1); 13616 } 13617 bcopy(&extract_mask, (char *)arma + 13618 arma->arma_proto_extract_mask_offset, IP_ADDR_LEN); 13619 if (phyi->phyint_flags & PHYI_MULTI_BCAST) { 13620 /* Use link-layer broadcast address for MULTI_BCAST */ 13621 bcopy(bphys_addr, maddr, ill->ill_phys_addr_length); 13622 ip2dbg(("ipif_arp_setup_multicast: adding" 13623 " MULTI_BCAST ARP setup for %s\n", ill->ill_name)); 13624 } else { 13625 arma->arma_hw_mapping_start = hw_start; 13626 ip2dbg(("ipif_arp_setup_multicast: adding multicast" 13627 " ARP setup for %s\n", ill->ill_name)); 13628 } 13629 } else { 13630 freemsg(add_mp); 13631 ASSERT(del_mp == NULL); 13632 /* It is neither MULTICAST nor MULTI_BCAST */ 13633 return (0); 13634 } 13635 ASSERT(add_mp != NULL && del_mp != NULL); 13636 ASSERT(ill->ill_arp_del_mapping_mp == NULL); 13637 ill->ill_arp_del_mapping_mp = del_mp; 13638 if (arp_add_mapping_mp != NULL) { 13639 /* The caller just wants the mblks allocated */ 13640 *arp_add_mapping_mp = add_mp; 13641 } else { 13642 /* The caller wants us to send it to arp */ 13643 putnext(ill->ill_rq, add_mp); 13644 } 13645 return (0); 13646 } 13647 13648 /* 13649 * Get the resolver set up for a new interface address. 13650 * (Always called as writer.) 13651 * Called both for IPv4 and IPv6 interfaces, 13652 * though it only sets up the resolver for v6 13653 * if it's an xresolv interface (one using an external resolver). 13654 * Honors ILLF_NOARP. 13655 * The enumerated value res_act is used to tune the behavior. 13656 * If set to Res_act_initial, then we set up all the resolver 13657 * structures for a new interface. If set to Res_act_move, then 13658 * we just send an AR_ENTRY_ADD message up to ARP for IPv4 13659 * interfaces; this is called by ip_rput_dlpi_writer() to handle 13660 * asynchronous hardware address change notification. If set to 13661 * Res_act_defend, then we tell ARP that it needs to send a single 13662 * gratuitous message in defense of the address. 13663 * Returns error on failure. 13664 */ 13665 int 13666 ipif_resolver_up(ipif_t *ipif, enum ip_resolver_action res_act) 13667 { 13668 caddr_t addr; 13669 mblk_t *arp_up_mp = NULL; 13670 mblk_t *arp_down_mp = NULL; 13671 mblk_t *arp_add_mp = NULL; 13672 mblk_t *arp_del_mp = NULL; 13673 mblk_t *arp_add_mapping_mp = NULL; 13674 mblk_t *arp_del_mapping_mp = NULL; 13675 ill_t *ill = ipif->ipif_ill; 13676 uchar_t *area_p = NULL; 13677 uchar_t *ared_p = NULL; 13678 int err = ENOMEM; 13679 boolean_t was_dup; 13680 13681 ip1dbg(("ipif_resolver_up(%s:%u) flags 0x%x\n", 13682 ill->ill_name, ipif->ipif_id, (uint_t)ipif->ipif_flags)); 13683 ASSERT(IAM_WRITER_IPIF(ipif)); 13684 13685 was_dup = B_FALSE; 13686 if (res_act == Res_act_initial) { 13687 ipif->ipif_addr_ready = 0; 13688 /* 13689 * We're bringing an interface up here. There's no way that we 13690 * should need to shut down ARP now. 13691 */ 13692 mutex_enter(&ill->ill_lock); 13693 if (ipif->ipif_flags & IPIF_DUPLICATE) { 13694 ipif->ipif_flags &= ~IPIF_DUPLICATE; 13695 ill->ill_ipif_dup_count--; 13696 was_dup = B_TRUE; 13697 } 13698 mutex_exit(&ill->ill_lock); 13699 } 13700 if (ipif->ipif_recovery_id != 0) 13701 (void) untimeout(ipif->ipif_recovery_id); 13702 ipif->ipif_recovery_id = 0; 13703 if (ill->ill_net_type != IRE_IF_RESOLVER) { 13704 ipif->ipif_addr_ready = 1; 13705 return (0); 13706 } 13707 /* NDP will set the ipif_addr_ready flag when it's ready */ 13708 if (ill->ill_isv6 && !(ill->ill_flags & ILLF_XRESOLV)) 13709 return (0); 13710 13711 if (ill->ill_isv6) { 13712 /* 13713 * External resolver for IPv6 13714 */ 13715 ASSERT(res_act == Res_act_initial); 13716 if (!IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6lcl_addr)) { 13717 addr = (caddr_t)&ipif->ipif_v6lcl_addr; 13718 area_p = (uchar_t *)&ip6_area_template; 13719 ared_p = (uchar_t *)&ip6_ared_template; 13720 } 13721 } else { 13722 /* 13723 * IPv4 arp case. If the ARP stream has already started 13724 * closing, fail this request for ARP bringup. Else 13725 * record the fact that an ARP bringup is pending. 13726 */ 13727 mutex_enter(&ill->ill_lock); 13728 if (ill->ill_arp_closing) { 13729 mutex_exit(&ill->ill_lock); 13730 err = EINVAL; 13731 goto failed; 13732 } else { 13733 if (ill->ill_ipif_up_count == 0 && 13734 ill->ill_ipif_dup_count == 0 && !was_dup) 13735 ill->ill_arp_bringup_pending = 1; 13736 mutex_exit(&ill->ill_lock); 13737 } 13738 if (ipif->ipif_lcl_addr != INADDR_ANY) { 13739 addr = (caddr_t)&ipif->ipif_lcl_addr; 13740 area_p = (uchar_t *)&ip_area_template; 13741 ared_p = (uchar_t *)&ip_ared_template; 13742 } 13743 } 13744 13745 /* 13746 * Add an entry for the local address in ARP only if it 13747 * is not UNNUMBERED and the address is not INADDR_ANY. 13748 */ 13749 if (!(ipif->ipif_flags & IPIF_UNNUMBERED) && area_p != NULL) { 13750 area_t *area; 13751 13752 /* Now ask ARP to publish our address. */ 13753 arp_add_mp = ill_arp_alloc(ill, area_p, addr); 13754 if (arp_add_mp == NULL) 13755 goto failed; 13756 area = (area_t *)arp_add_mp->b_rptr; 13757 if (res_act != Res_act_initial) { 13758 /* 13759 * Copy the new hardware address and length into 13760 * arp_add_mp to be sent to ARP. 13761 */ 13762 area->area_hw_addr_length = ill->ill_phys_addr_length; 13763 bcopy(ill->ill_phys_addr, 13764 ((char *)area + area->area_hw_addr_offset), 13765 area->area_hw_addr_length); 13766 } 13767 13768 area->area_flags = ACE_F_PERMANENT | ACE_F_PUBLISH | 13769 ACE_F_MYADDR; 13770 13771 if (res_act == Res_act_defend) { 13772 area->area_flags |= ACE_F_DEFEND; 13773 /* 13774 * If we're just defending our address now, then 13775 * there's no need to set up ARP multicast mappings. 13776 * The publish command is enough. 13777 */ 13778 goto done; 13779 } 13780 13781 if (res_act != Res_act_initial) 13782 goto arp_setup_multicast; 13783 13784 /* 13785 * Allocate an ARP deletion message so we know we can tell ARP 13786 * when the interface goes down. 13787 */ 13788 arp_del_mp = ill_arp_alloc(ill, ared_p, addr); 13789 if (arp_del_mp == NULL) 13790 goto failed; 13791 13792 } else { 13793 if (res_act != Res_act_initial) 13794 goto done; 13795 } 13796 /* 13797 * Need to bring up ARP or setup multicast mapping only 13798 * when the first interface is coming UP. 13799 */ 13800 if (ill->ill_ipif_up_count != 0 || ill->ill_ipif_dup_count != 0 || 13801 was_dup) { 13802 goto done; 13803 } 13804 13805 /* 13806 * Allocate an ARP down message (to be saved) and an ARP up 13807 * message. 13808 */ 13809 arp_down_mp = ill_arp_alloc(ill, (uchar_t *)&ip_ard_template, 0); 13810 if (arp_down_mp == NULL) 13811 goto failed; 13812 13813 arp_up_mp = ill_arp_alloc(ill, (uchar_t *)&ip_aru_template, 0); 13814 if (arp_up_mp == NULL) 13815 goto failed; 13816 13817 if (ipif->ipif_flags & IPIF_POINTOPOINT) 13818 goto done; 13819 13820 arp_setup_multicast: 13821 /* 13822 * Setup the multicast mappings. This function initializes 13823 * ill_arp_del_mapping_mp also. This does not need to be done for 13824 * IPv6. 13825 */ 13826 if (!ill->ill_isv6) { 13827 err = ipif_arp_setup_multicast(ipif, &arp_add_mapping_mp); 13828 if (err != 0) 13829 goto failed; 13830 ASSERT(ill->ill_arp_del_mapping_mp != NULL); 13831 ASSERT(arp_add_mapping_mp != NULL); 13832 } 13833 13834 done: 13835 if (arp_del_mp != NULL) { 13836 ASSERT(ipif->ipif_arp_del_mp == NULL); 13837 ipif->ipif_arp_del_mp = arp_del_mp; 13838 } 13839 if (arp_down_mp != NULL) { 13840 ASSERT(ill->ill_arp_down_mp == NULL); 13841 ill->ill_arp_down_mp = arp_down_mp; 13842 } 13843 if (arp_del_mapping_mp != NULL) { 13844 ASSERT(ill->ill_arp_del_mapping_mp == NULL); 13845 ill->ill_arp_del_mapping_mp = arp_del_mapping_mp; 13846 } 13847 if (arp_up_mp != NULL) { 13848 ip1dbg(("ipif_resolver_up: ARP_UP for %s:%u\n", 13849 ill->ill_name, ipif->ipif_id)); 13850 putnext(ill->ill_rq, arp_up_mp); 13851 } 13852 if (arp_add_mp != NULL) { 13853 ip1dbg(("ipif_resolver_up: ARP_ADD for %s:%u\n", 13854 ill->ill_name, ipif->ipif_id)); 13855 /* 13856 * If it's an extended ARP implementation, then we'll wait to 13857 * hear that DAD has finished before using the interface. 13858 */ 13859 if (!ill->ill_arp_extend) 13860 ipif->ipif_addr_ready = 1; 13861 putnext(ill->ill_rq, arp_add_mp); 13862 } else { 13863 ipif->ipif_addr_ready = 1; 13864 } 13865 if (arp_add_mapping_mp != NULL) { 13866 ip1dbg(("ipif_resolver_up: MAPPING_ADD for %s:%u\n", 13867 ill->ill_name, ipif->ipif_id)); 13868 putnext(ill->ill_rq, arp_add_mapping_mp); 13869 } 13870 if (res_act != Res_act_initial) 13871 return (0); 13872 13873 if (ill->ill_flags & ILLF_NOARP) 13874 err = ill_arp_off(ill); 13875 else 13876 err = ill_arp_on(ill); 13877 if (err != 0) { 13878 ip0dbg(("ipif_resolver_up: arp_on/off failed %d\n", err)); 13879 freemsg(ipif->ipif_arp_del_mp); 13880 freemsg(ill->ill_arp_down_mp); 13881 freemsg(ill->ill_arp_del_mapping_mp); 13882 ipif->ipif_arp_del_mp = NULL; 13883 ill->ill_arp_down_mp = NULL; 13884 ill->ill_arp_del_mapping_mp = NULL; 13885 return (err); 13886 } 13887 return ((ill->ill_ipif_up_count != 0 || was_dup || 13888 ill->ill_ipif_dup_count != 0) ? 0 : EINPROGRESS); 13889 13890 failed: 13891 ip1dbg(("ipif_resolver_up: FAILED\n")); 13892 freemsg(arp_add_mp); 13893 freemsg(arp_del_mp); 13894 freemsg(arp_add_mapping_mp); 13895 freemsg(arp_up_mp); 13896 freemsg(arp_down_mp); 13897 ill->ill_arp_bringup_pending = 0; 13898 return (err); 13899 } 13900 13901 /* 13902 * This routine restarts IPv4 duplicate address detection (DAD) when a link has 13903 * just gone back up. 13904 */ 13905 static void 13906 ipif_arp_start_dad(ipif_t *ipif) 13907 { 13908 ill_t *ill = ipif->ipif_ill; 13909 mblk_t *arp_add_mp; 13910 area_t *area; 13911 13912 if (ill->ill_net_type != IRE_IF_RESOLVER || ill->ill_arp_closing || 13913 (ipif->ipif_flags & IPIF_UNNUMBERED) || 13914 ipif->ipif_lcl_addr == INADDR_ANY || 13915 (arp_add_mp = ill_arp_alloc(ill, (uchar_t *)&ip_area_template, 13916 (char *)&ipif->ipif_lcl_addr)) == NULL) { 13917 /* 13918 * If we can't contact ARP for some reason, that's not really a 13919 * problem. Just send out the routing socket notification that 13920 * DAD completion would have done, and continue. 13921 */ 13922 ipif_mask_reply(ipif); 13923 ip_rts_ifmsg(ipif); 13924 ip_rts_newaddrmsg(RTM_ADD, 0, ipif); 13925 sctp_update_ipif(ipif, SCTP_IPIF_UP); 13926 ipif->ipif_addr_ready = 1; 13927 return; 13928 } 13929 13930 /* Setting the 'unverified' flag restarts DAD */ 13931 area = (area_t *)arp_add_mp->b_rptr; 13932 area->area_flags = ACE_F_PERMANENT | ACE_F_PUBLISH | ACE_F_MYADDR | 13933 ACE_F_UNVERIFIED; 13934 putnext(ill->ill_rq, arp_add_mp); 13935 } 13936 13937 static void 13938 ipif_ndp_start_dad(ipif_t *ipif) 13939 { 13940 nce_t *nce; 13941 13942 nce = ndp_lookup_v6(ipif->ipif_ill, &ipif->ipif_v6lcl_addr, B_FALSE); 13943 if (nce == NULL) 13944 return; 13945 13946 if (!ndp_restart_dad(nce)) { 13947 /* 13948 * If we can't restart DAD for some reason, that's not really a 13949 * problem. Just send out the routing socket notification that 13950 * DAD completion would have done, and continue. 13951 */ 13952 ip_rts_ifmsg(ipif); 13953 ip_rts_newaddrmsg(RTM_ADD, 0, ipif); 13954 sctp_update_ipif(ipif, SCTP_IPIF_UP); 13955 ipif->ipif_addr_ready = 1; 13956 } 13957 NCE_REFRELE(nce); 13958 } 13959 13960 /* 13961 * Restart duplicate address detection on all interfaces on the given ill. 13962 * 13963 * This is called when an interface transitions from down to up 13964 * (DL_NOTE_LINK_UP) or up to down (DL_NOTE_LINK_DOWN). 13965 * 13966 * Note that since the underlying physical link has transitioned, we must cause 13967 * at least one routing socket message to be sent here, either via DAD 13968 * completion or just by default on the first ipif. (If we don't do this, then 13969 * in.mpathd will see long delays when doing link-based failure recovery.) 13970 */ 13971 void 13972 ill_restart_dad(ill_t *ill, boolean_t went_up) 13973 { 13974 ipif_t *ipif; 13975 13976 if (ill == NULL) 13977 return; 13978 13979 /* 13980 * If layer two doesn't support duplicate address detection, then just 13981 * send the routing socket message now and be done with it. 13982 */ 13983 if ((ill->ill_isv6 && (ill->ill_flags & ILLF_XRESOLV)) || 13984 (!ill->ill_isv6 && !ill->ill_arp_extend)) { 13985 ip_rts_ifmsg(ill->ill_ipif); 13986 return; 13987 } 13988 13989 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 13990 if (went_up) { 13991 if (ipif->ipif_flags & IPIF_UP) { 13992 if (ill->ill_isv6) 13993 ipif_ndp_start_dad(ipif); 13994 else 13995 ipif_arp_start_dad(ipif); 13996 } else if (ill->ill_isv6 && 13997 (ipif->ipif_flags & IPIF_DUPLICATE)) { 13998 /* 13999 * For IPv4, the ARP module itself will 14000 * automatically start the DAD process when it 14001 * sees DL_NOTE_LINK_UP. We respond to the 14002 * AR_CN_READY at the completion of that task. 14003 * For IPv6, we must kick off the bring-up 14004 * process now. 14005 */ 14006 ndp_do_recovery(ipif); 14007 } else { 14008 /* 14009 * Unfortunately, the first ipif is "special" 14010 * and represents the underlying ill in the 14011 * routing socket messages. Thus, when this 14012 * one ipif is down, we must still notify so 14013 * that the user knows the IFF_RUNNING status 14014 * change. (If the first ipif is up, then 14015 * we'll handle eventual routing socket 14016 * notification via DAD completion.) 14017 */ 14018 if (ipif == ill->ill_ipif) 14019 ip_rts_ifmsg(ill->ill_ipif); 14020 } 14021 } else { 14022 /* 14023 * After link down, we'll need to send a new routing 14024 * message when the link comes back, so clear 14025 * ipif_addr_ready. 14026 */ 14027 ipif->ipif_addr_ready = 0; 14028 } 14029 } 14030 14031 /* 14032 * If we've torn down links, then notify the user right away. 14033 */ 14034 if (!went_up) 14035 ip_rts_ifmsg(ill->ill_ipif); 14036 } 14037 14038 /* 14039 * Wakeup all threads waiting to enter the ipsq, and sleeping 14040 * on any of the ills in this ipsq. The ill_lock of the ill 14041 * must be held so that waiters don't miss wakeups 14042 */ 14043 static void 14044 ill_signal_ipsq_ills(ipsq_t *ipsq, boolean_t caller_holds_lock) 14045 { 14046 phyint_t *phyint; 14047 14048 phyint = ipsq->ipsq_phyint_list; 14049 while (phyint != NULL) { 14050 if (phyint->phyint_illv4) { 14051 if (!caller_holds_lock) 14052 mutex_enter(&phyint->phyint_illv4->ill_lock); 14053 ASSERT(MUTEX_HELD(&phyint->phyint_illv4->ill_lock)); 14054 cv_broadcast(&phyint->phyint_illv4->ill_cv); 14055 if (!caller_holds_lock) 14056 mutex_exit(&phyint->phyint_illv4->ill_lock); 14057 } 14058 if (phyint->phyint_illv6) { 14059 if (!caller_holds_lock) 14060 mutex_enter(&phyint->phyint_illv6->ill_lock); 14061 ASSERT(MUTEX_HELD(&phyint->phyint_illv6->ill_lock)); 14062 cv_broadcast(&phyint->phyint_illv6->ill_cv); 14063 if (!caller_holds_lock) 14064 mutex_exit(&phyint->phyint_illv6->ill_lock); 14065 } 14066 phyint = phyint->phyint_ipsq_next; 14067 } 14068 } 14069 14070 static ipsq_t * 14071 ipsq_create(char *groupname, ip_stack_t *ipst) 14072 { 14073 ipsq_t *ipsq; 14074 14075 ASSERT(RW_WRITE_HELD(&ipst->ips_ill_g_lock)); 14076 ipsq = kmem_zalloc(sizeof (ipsq_t), KM_NOSLEEP); 14077 if (ipsq == NULL) { 14078 return (NULL); 14079 } 14080 14081 if (groupname != NULL) 14082 (void) strcpy(ipsq->ipsq_name, groupname); 14083 else 14084 ipsq->ipsq_name[0] = '\0'; 14085 14086 mutex_init(&ipsq->ipsq_lock, NULL, MUTEX_DEFAULT, NULL); 14087 ipsq->ipsq_flags |= IPSQ_GROUP; 14088 ipsq->ipsq_next = ipst->ips_ipsq_g_head; 14089 ipst->ips_ipsq_g_head = ipsq; 14090 ipsq->ipsq_ipst = ipst; /* No netstack_hold */ 14091 return (ipsq); 14092 } 14093 14094 /* 14095 * Return an ipsq correspoding to the groupname. If 'create' is true 14096 * allocate a new ipsq if one does not exist. Usually an ipsq is associated 14097 * uniquely with an IPMP group. However during IPMP groupname operations, 14098 * multiple IPMP groups may be associated with a single ipsq. But no 14099 * IPMP group can be associated with more than 1 ipsq at any time. 14100 * For example 14101 * Interfaces IPMP grpname ipsq ipsq_name ipsq_refs 14102 * hme1, hme2 mpk17-84 ipsq1 mpk17-84 2 14103 * hme3, hme4 mpk17-85 ipsq2 mpk17-85 2 14104 * 14105 * Now the command ifconfig hme3 group mpk17-84 results in the temporary 14106 * status shown below during the execution of the above command. 14107 * hme1, hme2, hme3, hme4 mpk17-84, mpk17-85 ipsq1 mpk17-84 4 14108 * 14109 * After the completion of the above groupname command we return to the stable 14110 * state shown below. 14111 * hme1, hme2, hme3 mpk17-84 ipsq1 mpk17-84 3 14112 * hme4 mpk17-85 ipsq2 mpk17-85 1 14113 * 14114 * Because of the above, we don't search based on the ipsq_name since that 14115 * would miss the correct ipsq during certain windows as shown above. 14116 * The ipsq_name is only used during split of an ipsq to return the ipsq to its 14117 * natural state. 14118 */ 14119 static ipsq_t * 14120 ip_ipsq_lookup(char *groupname, boolean_t create, ipsq_t *exclude_ipsq, 14121 ip_stack_t *ipst) 14122 { 14123 ipsq_t *ipsq; 14124 int group_len; 14125 phyint_t *phyint; 14126 14127 ASSERT(RW_LOCK_HELD(&ipst->ips_ill_g_lock)); 14128 14129 group_len = strlen(groupname); 14130 ASSERT(group_len != 0); 14131 group_len++; 14132 14133 for (ipsq = ipst->ips_ipsq_g_head; 14134 ipsq != NULL; 14135 ipsq = ipsq->ipsq_next) { 14136 /* 14137 * When an ipsq is being split, and ill_split_ipsq 14138 * calls this function, we exclude it from being considered. 14139 */ 14140 if (ipsq == exclude_ipsq) 14141 continue; 14142 14143 /* 14144 * Compare against the ipsq_name. The groupname change happens 14145 * in 2 phases. The 1st phase merges the from group into 14146 * the to group's ipsq, by calling ill_merge_groups and restarts 14147 * the ioctl. The 2nd phase then locates the ipsq again thru 14148 * ipsq_name. At this point the phyint_groupname has not been 14149 * updated. 14150 */ 14151 if ((group_len == strlen(ipsq->ipsq_name) + 1) && 14152 (bcmp(ipsq->ipsq_name, groupname, group_len) == 0)) { 14153 /* 14154 * Verify that an ipmp groupname is exactly 14155 * part of 1 ipsq and is not found in any other 14156 * ipsq. 14157 */ 14158 ASSERT(ip_ipsq_lookup(groupname, B_FALSE, ipsq, ipst) == 14159 NULL); 14160 return (ipsq); 14161 } 14162 14163 /* 14164 * Comparison against ipsq_name alone is not sufficient. 14165 * In the case when groups are currently being 14166 * merged, the ipsq could hold other IPMP groups temporarily. 14167 * so we walk the phyint list and compare against the 14168 * phyint_groupname as well. 14169 */ 14170 phyint = ipsq->ipsq_phyint_list; 14171 while (phyint != NULL) { 14172 if ((group_len == phyint->phyint_groupname_len) && 14173 (bcmp(phyint->phyint_groupname, groupname, 14174 group_len) == 0)) { 14175 /* 14176 * Verify that an ipmp groupname is exactly 14177 * part of 1 ipsq and is not found in any other 14178 * ipsq. 14179 */ 14180 ASSERT(ip_ipsq_lookup(groupname, B_FALSE, ipsq, 14181 ipst) == NULL); 14182 return (ipsq); 14183 } 14184 phyint = phyint->phyint_ipsq_next; 14185 } 14186 } 14187 if (create) 14188 ipsq = ipsq_create(groupname, ipst); 14189 return (ipsq); 14190 } 14191 14192 static void 14193 ipsq_delete(ipsq_t *ipsq) 14194 { 14195 ipsq_t *nipsq; 14196 ipsq_t *pipsq = NULL; 14197 ip_stack_t *ipst = ipsq->ipsq_ipst; 14198 14199 /* 14200 * We don't hold the ipsq lock, but we are sure no new 14201 * messages can land up, since the ipsq_refs is zero. 14202 * i.e. this ipsq is unnamed and no phyint or phyint group 14203 * is associated with this ipsq. (Lookups are based on ill_name 14204 * or phyint_groupname) 14205 */ 14206 ASSERT(ipsq->ipsq_refs == 0); 14207 ASSERT(ipsq->ipsq_xopq_mphead == NULL && ipsq->ipsq_mphead == NULL); 14208 ASSERT(ipsq->ipsq_pending_mp == NULL); 14209 if (!(ipsq->ipsq_flags & IPSQ_GROUP)) { 14210 /* 14211 * This is not the ipsq of an IPMP group. 14212 */ 14213 ipsq->ipsq_ipst = NULL; 14214 kmem_free(ipsq, sizeof (ipsq_t)); 14215 return; 14216 } 14217 14218 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 14219 14220 /* 14221 * Locate the ipsq before we can remove it from 14222 * the singly linked list of ipsq's. 14223 */ 14224 for (nipsq = ipst->ips_ipsq_g_head; nipsq != NULL; 14225 nipsq = nipsq->ipsq_next) { 14226 if (nipsq == ipsq) { 14227 break; 14228 } 14229 pipsq = nipsq; 14230 } 14231 14232 ASSERT(nipsq == ipsq); 14233 14234 /* unlink ipsq from the list */ 14235 if (pipsq != NULL) 14236 pipsq->ipsq_next = ipsq->ipsq_next; 14237 else 14238 ipst->ips_ipsq_g_head = ipsq->ipsq_next; 14239 ipsq->ipsq_ipst = NULL; 14240 kmem_free(ipsq, sizeof (ipsq_t)); 14241 rw_exit(&ipst->ips_ill_g_lock); 14242 } 14243 14244 static void 14245 ill_move_to_new_ipsq(ipsq_t *old_ipsq, ipsq_t *new_ipsq, mblk_t *current_mp, 14246 queue_t *q) 14247 { 14248 ASSERT(MUTEX_HELD(&new_ipsq->ipsq_lock)); 14249 ASSERT(old_ipsq->ipsq_mphead == NULL && old_ipsq->ipsq_mptail == NULL); 14250 ASSERT(old_ipsq->ipsq_pending_ipif == NULL); 14251 ASSERT(old_ipsq->ipsq_pending_mp == NULL); 14252 ASSERT(current_mp != NULL); 14253 14254 ipsq_enq(new_ipsq, q, current_mp, (ipsq_func_t)ip_process_ioctl, 14255 NEW_OP, NULL); 14256 14257 ASSERT(new_ipsq->ipsq_xopq_mptail != NULL && 14258 new_ipsq->ipsq_xopq_mphead != NULL); 14259 14260 /* 14261 * move from old ipsq to the new ipsq. 14262 */ 14263 new_ipsq->ipsq_xopq_mptail->b_next = old_ipsq->ipsq_xopq_mphead; 14264 if (old_ipsq->ipsq_xopq_mphead != NULL) 14265 new_ipsq->ipsq_xopq_mptail = old_ipsq->ipsq_xopq_mptail; 14266 14267 old_ipsq->ipsq_xopq_mphead = old_ipsq->ipsq_xopq_mptail = NULL; 14268 } 14269 14270 void 14271 ill_group_cleanup(ill_t *ill) 14272 { 14273 ill_t *ill_v4; 14274 ill_t *ill_v6; 14275 ipif_t *ipif; 14276 14277 ill_v4 = ill->ill_phyint->phyint_illv4; 14278 ill_v6 = ill->ill_phyint->phyint_illv6; 14279 14280 if (ill_v4 != NULL) { 14281 mutex_enter(&ill_v4->ill_lock); 14282 for (ipif = ill_v4->ill_ipif; ipif != NULL; 14283 ipif = ipif->ipif_next) { 14284 IPIF_UNMARK_MOVING(ipif); 14285 } 14286 ill_v4->ill_up_ipifs = B_FALSE; 14287 mutex_exit(&ill_v4->ill_lock); 14288 } 14289 14290 if (ill_v6 != NULL) { 14291 mutex_enter(&ill_v6->ill_lock); 14292 for (ipif = ill_v6->ill_ipif; ipif != NULL; 14293 ipif = ipif->ipif_next) { 14294 IPIF_UNMARK_MOVING(ipif); 14295 } 14296 ill_v6->ill_up_ipifs = B_FALSE; 14297 mutex_exit(&ill_v6->ill_lock); 14298 } 14299 } 14300 /* 14301 * This function is called when an ill has had a change in its group status 14302 * to bring up all the ipifs that were up before the change. 14303 */ 14304 int 14305 ill_up_ipifs(ill_t *ill, queue_t *q, mblk_t *mp) 14306 { 14307 ipif_t *ipif; 14308 ill_t *ill_v4; 14309 ill_t *ill_v6; 14310 ill_t *from_ill; 14311 int err = 0; 14312 14313 ASSERT(IAM_WRITER_ILL(ill)); 14314 14315 /* 14316 * Except for ipif_state_flags and ill_state_flags the other 14317 * fields of the ipif/ill that are modified below are protected 14318 * implicitly since we are a writer. We would have tried to down 14319 * even an ipif that was already down, in ill_down_ipifs. So we 14320 * just blindly clear the IPIF_CHANGING flag here on all ipifs. 14321 */ 14322 ill_v4 = ill->ill_phyint->phyint_illv4; 14323 ill_v6 = ill->ill_phyint->phyint_illv6; 14324 if (ill_v4 != NULL) { 14325 ill_v4->ill_up_ipifs = B_TRUE; 14326 for (ipif = ill_v4->ill_ipif; ipif != NULL; 14327 ipif = ipif->ipif_next) { 14328 mutex_enter(&ill_v4->ill_lock); 14329 ipif->ipif_state_flags &= ~IPIF_CHANGING; 14330 IPIF_UNMARK_MOVING(ipif); 14331 mutex_exit(&ill_v4->ill_lock); 14332 if (ipif->ipif_was_up) { 14333 if (!(ipif->ipif_flags & IPIF_UP)) 14334 err = ipif_up(ipif, q, mp); 14335 ipif->ipif_was_up = B_FALSE; 14336 if (err != 0) { 14337 /* 14338 * Can there be any other error ? 14339 */ 14340 ASSERT(err == EINPROGRESS); 14341 return (err); 14342 } 14343 } 14344 } 14345 mutex_enter(&ill_v4->ill_lock); 14346 ill_v4->ill_state_flags &= ~ILL_CHANGING; 14347 mutex_exit(&ill_v4->ill_lock); 14348 ill_v4->ill_up_ipifs = B_FALSE; 14349 if (ill_v4->ill_move_in_progress) { 14350 ASSERT(ill_v4->ill_move_peer != NULL); 14351 ill_v4->ill_move_in_progress = B_FALSE; 14352 from_ill = ill_v4->ill_move_peer; 14353 from_ill->ill_move_in_progress = B_FALSE; 14354 from_ill->ill_move_peer = NULL; 14355 mutex_enter(&from_ill->ill_lock); 14356 from_ill->ill_state_flags &= ~ILL_CHANGING; 14357 mutex_exit(&from_ill->ill_lock); 14358 if (ill_v6 == NULL) { 14359 if (from_ill->ill_phyint->phyint_flags & 14360 PHYI_STANDBY) { 14361 phyint_inactive(from_ill->ill_phyint); 14362 } 14363 if (ill_v4->ill_phyint->phyint_flags & 14364 PHYI_STANDBY) { 14365 phyint_inactive(ill_v4->ill_phyint); 14366 } 14367 } 14368 ill_v4->ill_move_peer = NULL; 14369 } 14370 } 14371 14372 if (ill_v6 != NULL) { 14373 ill_v6->ill_up_ipifs = B_TRUE; 14374 for (ipif = ill_v6->ill_ipif; ipif != NULL; 14375 ipif = ipif->ipif_next) { 14376 mutex_enter(&ill_v6->ill_lock); 14377 ipif->ipif_state_flags &= ~IPIF_CHANGING; 14378 IPIF_UNMARK_MOVING(ipif); 14379 mutex_exit(&ill_v6->ill_lock); 14380 if (ipif->ipif_was_up) { 14381 if (!(ipif->ipif_flags & IPIF_UP)) 14382 err = ipif_up(ipif, q, mp); 14383 ipif->ipif_was_up = B_FALSE; 14384 if (err != 0) { 14385 /* 14386 * Can there be any other error ? 14387 */ 14388 ASSERT(err == EINPROGRESS); 14389 return (err); 14390 } 14391 } 14392 } 14393 mutex_enter(&ill_v6->ill_lock); 14394 ill_v6->ill_state_flags &= ~ILL_CHANGING; 14395 mutex_exit(&ill_v6->ill_lock); 14396 ill_v6->ill_up_ipifs = B_FALSE; 14397 if (ill_v6->ill_move_in_progress) { 14398 ASSERT(ill_v6->ill_move_peer != NULL); 14399 ill_v6->ill_move_in_progress = B_FALSE; 14400 from_ill = ill_v6->ill_move_peer; 14401 from_ill->ill_move_in_progress = B_FALSE; 14402 from_ill->ill_move_peer = NULL; 14403 mutex_enter(&from_ill->ill_lock); 14404 from_ill->ill_state_flags &= ~ILL_CHANGING; 14405 mutex_exit(&from_ill->ill_lock); 14406 if (from_ill->ill_phyint->phyint_flags & PHYI_STANDBY) { 14407 phyint_inactive(from_ill->ill_phyint); 14408 } 14409 if (ill_v6->ill_phyint->phyint_flags & PHYI_STANDBY) { 14410 phyint_inactive(ill_v6->ill_phyint); 14411 } 14412 ill_v6->ill_move_peer = NULL; 14413 } 14414 } 14415 return (0); 14416 } 14417 14418 /* 14419 * bring down all the approriate ipifs. 14420 */ 14421 /* ARGSUSED */ 14422 static void 14423 ill_down_ipifs(ill_t *ill, mblk_t *mp, int index, boolean_t chk_nofailover) 14424 { 14425 ipif_t *ipif; 14426 14427 ASSERT(IAM_WRITER_ILL(ill)); 14428 14429 /* 14430 * Except for ipif_state_flags the other fields of the ipif/ill that 14431 * are modified below are protected implicitly since we are a writer 14432 */ 14433 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 14434 if (chk_nofailover && (ipif->ipif_flags & IPIF_NOFAILOVER)) 14435 continue; 14436 /* 14437 * Don't bring down the LINK LOCAL addresses as they are tied 14438 * to physical interface and they don't move. Treat them as 14439 * IPIF_NOFAILOVER. 14440 */ 14441 if (chk_nofailover && ill->ill_isv6 && 14442 IN6_IS_ADDR_LINKLOCAL(&ipif->ipif_v6lcl_addr)) 14443 continue; 14444 if (index == 0 || index == ipif->ipif_orig_ifindex) { 14445 /* 14446 * We go through the ipif_down logic even if the ipif 14447 * is already down, since routes can be added based 14448 * on down ipifs. Going through ipif_down once again 14449 * will delete any IREs created based on these routes. 14450 */ 14451 if (ipif->ipif_flags & IPIF_UP) 14452 ipif->ipif_was_up = B_TRUE; 14453 /* 14454 * If called with chk_nofailover true ipif is moving. 14455 */ 14456 mutex_enter(&ill->ill_lock); 14457 if (chk_nofailover) { 14458 ipif->ipif_state_flags |= 14459 IPIF_MOVING | IPIF_CHANGING; 14460 } else { 14461 ipif->ipif_state_flags |= IPIF_CHANGING; 14462 } 14463 mutex_exit(&ill->ill_lock); 14464 /* 14465 * Need to re-create net/subnet bcast ires if 14466 * they are dependent on ipif. 14467 */ 14468 if (!ipif->ipif_isv6) 14469 ipif_check_bcast_ires(ipif); 14470 (void) ipif_logical_down(ipif, NULL, NULL); 14471 ipif_non_duplicate(ipif); 14472 ipif_down_tail(ipif); 14473 } 14474 } 14475 } 14476 14477 #define IPSQ_INC_REF(ipsq, ipst) { \ 14478 ASSERT(RW_WRITE_HELD(&ipst->ips_ill_g_lock)); \ 14479 (ipsq)->ipsq_refs++; \ 14480 } 14481 14482 #define IPSQ_DEC_REF(ipsq, ipst) { \ 14483 ASSERT(RW_WRITE_HELD(&ipst->ips_ill_g_lock)); \ 14484 (ipsq)->ipsq_refs--; \ 14485 if ((ipsq)->ipsq_refs == 0) \ 14486 (ipsq)->ipsq_name[0] = '\0'; \ 14487 } 14488 14489 /* 14490 * Change the ipsq of all the ill's whose current ipsq is 'cur_ipsq' to 14491 * new_ipsq. 14492 */ 14493 static void 14494 ill_merge_ipsq(ipsq_t *cur_ipsq, ipsq_t *new_ipsq, ip_stack_t *ipst) 14495 { 14496 phyint_t *phyint; 14497 phyint_t *next_phyint; 14498 14499 /* 14500 * To change the ipsq of an ill, we need to hold the ill_g_lock as 14501 * writer and the ill_lock of the ill in question. Also the dest 14502 * ipsq can't vanish while we hold the ill_g_lock as writer. 14503 */ 14504 ASSERT(RW_WRITE_HELD(&ipst->ips_ill_g_lock)); 14505 14506 phyint = cur_ipsq->ipsq_phyint_list; 14507 cur_ipsq->ipsq_phyint_list = NULL; 14508 while (phyint != NULL) { 14509 next_phyint = phyint->phyint_ipsq_next; 14510 IPSQ_DEC_REF(cur_ipsq, ipst); 14511 phyint->phyint_ipsq_next = new_ipsq->ipsq_phyint_list; 14512 new_ipsq->ipsq_phyint_list = phyint; 14513 IPSQ_INC_REF(new_ipsq, ipst); 14514 phyint->phyint_ipsq = new_ipsq; 14515 phyint = next_phyint; 14516 } 14517 } 14518 14519 #define SPLIT_SUCCESS 0 14520 #define SPLIT_NOT_NEEDED 1 14521 #define SPLIT_FAILED 2 14522 14523 int 14524 ill_split_to_grp_ipsq(phyint_t *phyint, ipsq_t *cur_ipsq, boolean_t need_retry, 14525 ip_stack_t *ipst) 14526 { 14527 ipsq_t *newipsq = NULL; 14528 14529 /* 14530 * Assertions denote pre-requisites for changing the ipsq of 14531 * a phyint 14532 */ 14533 ASSERT(RW_WRITE_HELD(&ipst->ips_ill_g_lock)); 14534 /* 14535 * <ill-phyint> assocs can't change while ill_g_lock 14536 * is held as writer. See ill_phyint_reinit() 14537 */ 14538 ASSERT(phyint->phyint_illv4 == NULL || 14539 MUTEX_HELD(&phyint->phyint_illv4->ill_lock)); 14540 ASSERT(phyint->phyint_illv6 == NULL || 14541 MUTEX_HELD(&phyint->phyint_illv6->ill_lock)); 14542 14543 if ((phyint->phyint_groupname_len != 14544 (strlen(cur_ipsq->ipsq_name) + 1) || 14545 bcmp(phyint->phyint_groupname, cur_ipsq->ipsq_name, 14546 phyint->phyint_groupname_len) != 0)) { 14547 /* 14548 * Once we fail in creating a new ipsq due to memory shortage, 14549 * don't attempt to create new ipsq again, based on another 14550 * phyint, since we want all phyints belonging to an IPMP group 14551 * to be in the same ipsq even in the event of mem alloc fails. 14552 */ 14553 newipsq = ip_ipsq_lookup(phyint->phyint_groupname, !need_retry, 14554 cur_ipsq, ipst); 14555 if (newipsq == NULL) { 14556 /* Memory allocation failure */ 14557 return (SPLIT_FAILED); 14558 } else { 14559 /* ipsq_refs protected by ill_g_lock (writer) */ 14560 IPSQ_DEC_REF(cur_ipsq, ipst); 14561 phyint->phyint_ipsq = newipsq; 14562 phyint->phyint_ipsq_next = newipsq->ipsq_phyint_list; 14563 newipsq->ipsq_phyint_list = phyint; 14564 IPSQ_INC_REF(newipsq, ipst); 14565 return (SPLIT_SUCCESS); 14566 } 14567 } 14568 return (SPLIT_NOT_NEEDED); 14569 } 14570 14571 /* 14572 * The ill locks of the phyint and the ill_g_lock (writer) must be held 14573 * to do this split 14574 */ 14575 static int 14576 ill_split_to_own_ipsq(phyint_t *phyint, ipsq_t *cur_ipsq, ip_stack_t *ipst) 14577 { 14578 ipsq_t *newipsq; 14579 14580 ASSERT(RW_WRITE_HELD(&ipst->ips_ill_g_lock)); 14581 /* 14582 * <ill-phyint> assocs can't change while ill_g_lock 14583 * is held as writer. See ill_phyint_reinit() 14584 */ 14585 14586 ASSERT(phyint->phyint_illv4 == NULL || 14587 MUTEX_HELD(&phyint->phyint_illv4->ill_lock)); 14588 ASSERT(phyint->phyint_illv6 == NULL || 14589 MUTEX_HELD(&phyint->phyint_illv6->ill_lock)); 14590 14591 if (!ipsq_init((phyint->phyint_illv4 != NULL) ? 14592 phyint->phyint_illv4: phyint->phyint_illv6)) { 14593 /* 14594 * ipsq_init failed due to no memory 14595 * caller will use the same ipsq 14596 */ 14597 return (SPLIT_FAILED); 14598 } 14599 14600 /* ipsq_ref is protected by ill_g_lock (writer) */ 14601 IPSQ_DEC_REF(cur_ipsq, ipst); 14602 14603 /* 14604 * This is a new ipsq that is unknown to the world. 14605 * So we don't need to hold ipsq_lock, 14606 */ 14607 newipsq = phyint->phyint_ipsq; 14608 newipsq->ipsq_writer = NULL; 14609 newipsq->ipsq_reentry_cnt--; 14610 ASSERT(newipsq->ipsq_reentry_cnt == 0); 14611 #ifdef DEBUG 14612 newipsq->ipsq_depth = 0; 14613 #endif 14614 14615 return (SPLIT_SUCCESS); 14616 } 14617 14618 /* 14619 * Change the ipsq of all the ill's whose current ipsq is 'cur_ipsq' to 14620 * ipsq's representing their individual groups or themselves. Return 14621 * whether split needs to be retried again later. 14622 */ 14623 static boolean_t 14624 ill_split_ipsq(ipsq_t *cur_ipsq) 14625 { 14626 phyint_t *phyint; 14627 phyint_t *next_phyint; 14628 int error; 14629 boolean_t need_retry = B_FALSE; 14630 ip_stack_t *ipst = cur_ipsq->ipsq_ipst; 14631 14632 phyint = cur_ipsq->ipsq_phyint_list; 14633 cur_ipsq->ipsq_phyint_list = NULL; 14634 while (phyint != NULL) { 14635 next_phyint = phyint->phyint_ipsq_next; 14636 /* 14637 * 'created' will tell us whether the callee actually 14638 * created an ipsq. Lack of memory may force the callee 14639 * to return without creating an ipsq. 14640 */ 14641 if (phyint->phyint_groupname == NULL) { 14642 error = ill_split_to_own_ipsq(phyint, cur_ipsq, ipst); 14643 } else { 14644 error = ill_split_to_grp_ipsq(phyint, cur_ipsq, 14645 need_retry, ipst); 14646 } 14647 14648 switch (error) { 14649 case SPLIT_FAILED: 14650 need_retry = B_TRUE; 14651 /* FALLTHRU */ 14652 case SPLIT_NOT_NEEDED: 14653 /* 14654 * Keep it on the list. 14655 */ 14656 phyint->phyint_ipsq_next = cur_ipsq->ipsq_phyint_list; 14657 cur_ipsq->ipsq_phyint_list = phyint; 14658 break; 14659 case SPLIT_SUCCESS: 14660 break; 14661 default: 14662 ASSERT(0); 14663 } 14664 14665 phyint = next_phyint; 14666 } 14667 return (need_retry); 14668 } 14669 14670 /* 14671 * given an ipsq 'ipsq' lock all ills associated with this ipsq. 14672 * and return the ills in the list. This list will be 14673 * needed to unlock all the ills later on by the caller. 14674 * The <ill-ipsq> associations could change between the 14675 * lock and unlock. Hence the unlock can't traverse the 14676 * ipsq to get the list of ills. 14677 */ 14678 static int 14679 ill_lock_ipsq_ills(ipsq_t *ipsq, ill_t **list, int list_max) 14680 { 14681 int cnt = 0; 14682 phyint_t *phyint; 14683 ip_stack_t *ipst = ipsq->ipsq_ipst; 14684 14685 /* 14686 * The caller holds ill_g_lock to ensure that the ill memberships 14687 * of the ipsq don't change 14688 */ 14689 ASSERT(RW_LOCK_HELD(&ipst->ips_ill_g_lock)); 14690 14691 phyint = ipsq->ipsq_phyint_list; 14692 while (phyint != NULL) { 14693 if (phyint->phyint_illv4 != NULL) { 14694 ASSERT(cnt < list_max); 14695 list[cnt++] = phyint->phyint_illv4; 14696 } 14697 if (phyint->phyint_illv6 != NULL) { 14698 ASSERT(cnt < list_max); 14699 list[cnt++] = phyint->phyint_illv6; 14700 } 14701 phyint = phyint->phyint_ipsq_next; 14702 } 14703 ill_lock_ills(list, cnt); 14704 return (cnt); 14705 } 14706 14707 void 14708 ill_lock_ills(ill_t **list, int cnt) 14709 { 14710 int i; 14711 14712 if (cnt > 1) { 14713 boolean_t try_again; 14714 do { 14715 try_again = B_FALSE; 14716 for (i = 0; i < cnt - 1; i++) { 14717 if (list[i] < list[i + 1]) { 14718 ill_t *tmp; 14719 14720 /* swap the elements */ 14721 tmp = list[i]; 14722 list[i] = list[i + 1]; 14723 list[i + 1] = tmp; 14724 try_again = B_TRUE; 14725 } 14726 } 14727 } while (try_again); 14728 } 14729 14730 for (i = 0; i < cnt; i++) { 14731 if (i == 0) { 14732 if (list[i] != NULL) 14733 mutex_enter(&list[i]->ill_lock); 14734 else 14735 return; 14736 } else if ((list[i-1] != list[i]) && (list[i] != NULL)) { 14737 mutex_enter(&list[i]->ill_lock); 14738 } 14739 } 14740 } 14741 14742 void 14743 ill_unlock_ills(ill_t **list, int cnt) 14744 { 14745 int i; 14746 14747 for (i = 0; i < cnt; i++) { 14748 if ((i == 0) && (list[i] != NULL)) { 14749 mutex_exit(&list[i]->ill_lock); 14750 } else if ((list[i-1] != list[i]) && (list[i] != NULL)) { 14751 mutex_exit(&list[i]->ill_lock); 14752 } 14753 } 14754 } 14755 14756 /* 14757 * Merge all the ills from 1 ipsq group into another ipsq group. 14758 * The source ipsq group is specified by the ipsq associated with 14759 * 'from_ill'. The destination ipsq group is specified by the ipsq 14760 * associated with 'to_ill' or 'groupname' respectively. 14761 * Note that ipsq itself does not have a reference count mechanism 14762 * and functions don't look up an ipsq and pass it around. Instead 14763 * functions pass around an ill or groupname, and the ipsq is looked 14764 * up from the ill or groupname and the required operation performed 14765 * atomically with the lookup on the ipsq. 14766 */ 14767 static int 14768 ill_merge_groups(ill_t *from_ill, ill_t *to_ill, char *groupname, mblk_t *mp, 14769 queue_t *q) 14770 { 14771 ipsq_t *old_ipsq; 14772 ipsq_t *new_ipsq; 14773 ill_t **ill_list; 14774 int cnt; 14775 size_t ill_list_size; 14776 boolean_t became_writer_on_new_sq = B_FALSE; 14777 ip_stack_t *ipst = from_ill->ill_ipst; 14778 14779 ASSERT(to_ill == NULL || ipst == to_ill->ill_ipst); 14780 /* Exactly 1 of 'to_ill' and groupname can be specified. */ 14781 ASSERT((to_ill != NULL) ^ (groupname != NULL)); 14782 14783 /* 14784 * Need to hold ill_g_lock as writer and also the ill_lock to 14785 * change the <ill-ipsq> assoc of an ill. Need to hold the 14786 * ipsq_lock to prevent new messages from landing on an ipsq. 14787 */ 14788 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 14789 14790 old_ipsq = from_ill->ill_phyint->phyint_ipsq; 14791 if (groupname != NULL) 14792 new_ipsq = ip_ipsq_lookup(groupname, B_TRUE, NULL, ipst); 14793 else { 14794 new_ipsq = to_ill->ill_phyint->phyint_ipsq; 14795 } 14796 14797 ASSERT(old_ipsq != NULL && new_ipsq != NULL); 14798 14799 /* 14800 * both groups are on the same ipsq. 14801 */ 14802 if (old_ipsq == new_ipsq) { 14803 rw_exit(&ipst->ips_ill_g_lock); 14804 return (0); 14805 } 14806 14807 cnt = old_ipsq->ipsq_refs << 1; 14808 ill_list_size = cnt * sizeof (ill_t *); 14809 ill_list = kmem_zalloc(ill_list_size, KM_NOSLEEP); 14810 if (ill_list == NULL) { 14811 rw_exit(&ipst->ips_ill_g_lock); 14812 return (ENOMEM); 14813 } 14814 cnt = ill_lock_ipsq_ills(old_ipsq, ill_list, cnt); 14815 14816 /* Need ipsq lock to enque messages on new ipsq or to become writer */ 14817 mutex_enter(&new_ipsq->ipsq_lock); 14818 if ((new_ipsq->ipsq_writer == NULL && 14819 new_ipsq->ipsq_current_ipif == NULL) || 14820 (new_ipsq->ipsq_writer == curthread)) { 14821 new_ipsq->ipsq_writer = curthread; 14822 new_ipsq->ipsq_reentry_cnt++; 14823 became_writer_on_new_sq = B_TRUE; 14824 } 14825 14826 /* 14827 * We are holding ill_g_lock as writer and all the ill locks of 14828 * the old ipsq. So the old_ipsq can't be looked up, and hence no new 14829 * message can land up on the old ipsq even though we don't hold the 14830 * ipsq_lock of the old_ipsq. Now move all messages to the newipsq. 14831 */ 14832 ill_move_to_new_ipsq(old_ipsq, new_ipsq, mp, q); 14833 14834 /* 14835 * now change the ipsq of all ills in the 'old_ipsq' to 'new_ipsq'. 14836 * 'new_ipsq' has been looked up, and it can't change its <ill-ipsq> 14837 * assocs. till we release the ill_g_lock, and hence it can't vanish. 14838 */ 14839 ill_merge_ipsq(old_ipsq, new_ipsq, ipst); 14840 14841 /* 14842 * Mark the new ipsq as needing a split since it is currently 14843 * being shared by more than 1 IPMP group. The split will 14844 * occur at the end of ipsq_exit 14845 */ 14846 new_ipsq->ipsq_split = B_TRUE; 14847 14848 /* Now release all the locks */ 14849 mutex_exit(&new_ipsq->ipsq_lock); 14850 ill_unlock_ills(ill_list, cnt); 14851 rw_exit(&ipst->ips_ill_g_lock); 14852 14853 kmem_free(ill_list, ill_list_size); 14854 14855 /* 14856 * If we succeeded in becoming writer on the new ipsq, then 14857 * drain the new ipsq and start processing all enqueued messages 14858 * including the current ioctl we are processing which is either 14859 * a set groupname or failover/failback. 14860 */ 14861 if (became_writer_on_new_sq) 14862 ipsq_exit(new_ipsq); 14863 14864 /* 14865 * syncq has been changed and all the messages have been moved. 14866 */ 14867 mutex_enter(&old_ipsq->ipsq_lock); 14868 old_ipsq->ipsq_current_ipif = NULL; 14869 old_ipsq->ipsq_current_ioctl = 0; 14870 old_ipsq->ipsq_current_done = B_TRUE; 14871 mutex_exit(&old_ipsq->ipsq_lock); 14872 return (EINPROGRESS); 14873 } 14874 14875 /* 14876 * Delete and add the loopback copy and non-loopback copy of 14877 * the BROADCAST ire corresponding to ill and addr. Used to 14878 * group broadcast ires together when ill becomes part of 14879 * a group. 14880 * 14881 * This function is also called when ill is leaving the group 14882 * so that the ires belonging to the group gets re-grouped. 14883 */ 14884 static void 14885 ill_bcast_delete_and_add(ill_t *ill, ipaddr_t addr) 14886 { 14887 ire_t *ire, *nire, *nire_next, *ire_head = NULL; 14888 ire_t **ire_ptpn = &ire_head; 14889 ip_stack_t *ipst = ill->ill_ipst; 14890 14891 /* 14892 * The loopback and non-loopback IREs are inserted in the order in which 14893 * they're found, on the basis that they are correctly ordered (loopback 14894 * first). 14895 */ 14896 for (;;) { 14897 ire = ire_ctable_lookup(addr, 0, IRE_BROADCAST, ill->ill_ipif, 14898 ALL_ZONES, NULL, MATCH_IRE_TYPE | MATCH_IRE_ILL, ipst); 14899 if (ire == NULL) 14900 break; 14901 14902 /* 14903 * we are passing in KM_SLEEP because it is not easy to 14904 * go back to a sane state in case of memory failure. 14905 */ 14906 nire = kmem_cache_alloc(ire_cache, KM_SLEEP); 14907 ASSERT(nire != NULL); 14908 bzero(nire, sizeof (ire_t)); 14909 /* 14910 * Don't use ire_max_frag directly since we don't 14911 * hold on to 'ire' until we add the new ire 'nire' and 14912 * we don't want the new ire to have a dangling reference 14913 * to 'ire'. The ire_max_frag of a broadcast ire must 14914 * be in sync with the ipif_mtu of the associate ipif. 14915 * For eg. this happens as a result of SIOCSLIFNAME, 14916 * SIOCSLIFLNKINFO or a DL_NOTE_SDU_SIZE inititated by 14917 * the driver. A change in ire_max_frag triggered as 14918 * as a result of path mtu discovery, or due to an 14919 * IP_IOC_IRE_ADVISE_NOREPLY from the transport or due a 14920 * route change -mtu command does not apply to broadcast ires. 14921 * 14922 * XXX We need a recovery strategy here if ire_init fails 14923 */ 14924 if (ire_init(nire, 14925 (uchar_t *)&ire->ire_addr, 14926 (uchar_t *)&ire->ire_mask, 14927 (uchar_t *)&ire->ire_src_addr, 14928 (uchar_t *)&ire->ire_gateway_addr, 14929 ire->ire_stq == NULL ? &ip_loopback_mtu : 14930 &ire->ire_ipif->ipif_mtu, 14931 ire->ire_nce, 14932 ire->ire_rfq, 14933 ire->ire_stq, 14934 ire->ire_type, 14935 ire->ire_ipif, 14936 ire->ire_cmask, 14937 ire->ire_phandle, 14938 ire->ire_ihandle, 14939 ire->ire_flags, 14940 &ire->ire_uinfo, 14941 NULL, 14942 NULL, 14943 ipst) == NULL) { 14944 cmn_err(CE_PANIC, "ire_init() failed"); 14945 } 14946 ire_delete(ire); 14947 ire_refrele(ire); 14948 14949 /* 14950 * The newly created IREs are inserted at the tail of the list 14951 * starting with ire_head. As we've just allocated them no one 14952 * knows about them so it's safe. 14953 */ 14954 *ire_ptpn = nire; 14955 ire_ptpn = &nire->ire_next; 14956 } 14957 14958 for (nire = ire_head; nire != NULL; nire = nire_next) { 14959 int error; 14960 ire_t *oire; 14961 /* unlink the IRE from our list before calling ire_add() */ 14962 nire_next = nire->ire_next; 14963 nire->ire_next = NULL; 14964 14965 /* ire_add adds the ire at the right place in the list */ 14966 oire = nire; 14967 error = ire_add(&nire, NULL, NULL, NULL, B_FALSE); 14968 ASSERT(error == 0); 14969 ASSERT(oire == nire); 14970 ire_refrele(nire); /* Held in ire_add */ 14971 } 14972 } 14973 14974 /* 14975 * This function is usually called when an ill is inserted in 14976 * a group and all the ipifs are already UP. As all the ipifs 14977 * are already UP, the broadcast ires have already been created 14978 * and been inserted. But, ire_add_v4 would not have grouped properly. 14979 * We need to re-group for the benefit of ip_wput_ire which 14980 * expects BROADCAST ires to be grouped properly to avoid sending 14981 * more than one copy of the broadcast packet per group. 14982 * 14983 * NOTE : We don't check for ill_ipif_up_count to be non-zero here 14984 * because when ipif_up_done ends up calling this, ires have 14985 * already been added before illgrp_insert i.e before ill_group 14986 * has been initialized. 14987 */ 14988 static void 14989 ill_group_bcast_for_xmit(ill_t *ill) 14990 { 14991 ill_group_t *illgrp; 14992 ipif_t *ipif; 14993 ipaddr_t addr; 14994 ipaddr_t net_mask; 14995 ipaddr_t subnet_netmask; 14996 14997 illgrp = ill->ill_group; 14998 14999 /* 15000 * This function is called even when an ill is deleted from 15001 * the group. Hence, illgrp could be null. 15002 */ 15003 if (illgrp != NULL && illgrp->illgrp_ill_count == 1) 15004 return; 15005 15006 /* 15007 * Delete all the BROADCAST ires matching this ill and add 15008 * them back. This time, ire_add_v4 should take care of 15009 * grouping them with others because ill is part of the 15010 * group. 15011 */ 15012 ill_bcast_delete_and_add(ill, 0); 15013 ill_bcast_delete_and_add(ill, INADDR_BROADCAST); 15014 15015 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 15016 15017 if ((ipif->ipif_lcl_addr != INADDR_ANY) && 15018 !(ipif->ipif_flags & IPIF_NOLOCAL)) { 15019 net_mask = ip_net_mask(ipif->ipif_lcl_addr); 15020 } else { 15021 net_mask = htonl(IN_CLASSA_NET); 15022 } 15023 addr = net_mask & ipif->ipif_subnet; 15024 ill_bcast_delete_and_add(ill, addr); 15025 ill_bcast_delete_and_add(ill, ~net_mask | addr); 15026 15027 subnet_netmask = ipif->ipif_net_mask; 15028 addr = ipif->ipif_subnet; 15029 ill_bcast_delete_and_add(ill, addr); 15030 ill_bcast_delete_and_add(ill, ~subnet_netmask | addr); 15031 } 15032 } 15033 15034 /* 15035 * This function is called from illgrp_delete when ill is being deleted 15036 * from the group. 15037 * 15038 * As ill is not there in the group anymore, any address belonging 15039 * to this ill should be cleared of IRE_MARK_NORECV. 15040 */ 15041 static void 15042 ill_clear_bcast_mark(ill_t *ill, ipaddr_t addr) 15043 { 15044 ire_t *ire; 15045 irb_t *irb; 15046 ip_stack_t *ipst = ill->ill_ipst; 15047 15048 ASSERT(ill->ill_group == NULL); 15049 15050 ire = ire_ctable_lookup(addr, 0, IRE_BROADCAST, ill->ill_ipif, 15051 ALL_ZONES, NULL, MATCH_IRE_TYPE | MATCH_IRE_ILL, ipst); 15052 15053 if (ire != NULL) { 15054 /* 15055 * IPMP and plumbing operations are serialized on the ipsq, so 15056 * no one will insert or delete a broadcast ire under our feet. 15057 */ 15058 irb = ire->ire_bucket; 15059 rw_enter(&irb->irb_lock, RW_READER); 15060 ire_refrele(ire); 15061 15062 for (; ire != NULL; ire = ire->ire_next) { 15063 if (ire->ire_addr != addr) 15064 break; 15065 if (ire_to_ill(ire) != ill) 15066 continue; 15067 15068 ASSERT(!(ire->ire_marks & IRE_MARK_CONDEMNED)); 15069 ire->ire_marks &= ~IRE_MARK_NORECV; 15070 } 15071 rw_exit(&irb->irb_lock); 15072 } 15073 } 15074 15075 /* 15076 * This function must be called only after the broadcast ires 15077 * have been grouped together. For a given address addr, nominate 15078 * only one of the ires whose interface is not FAILED or OFFLINE. 15079 * 15080 * This is also called when an ipif goes down, so that we can nominate 15081 * a different ire with the same address for receiving. 15082 */ 15083 static void 15084 ill_mark_bcast(ill_group_t *illgrp, ipaddr_t addr, ip_stack_t *ipst) 15085 { 15086 irb_t *irb; 15087 ire_t *ire; 15088 ire_t *ire1; 15089 ire_t *save_ire; 15090 ire_t **irep = NULL; 15091 boolean_t first = B_TRUE; 15092 ire_t *clear_ire = NULL; 15093 ire_t *start_ire = NULL; 15094 ire_t *new_lb_ire; 15095 ire_t *new_nlb_ire; 15096 boolean_t new_lb_ire_used = B_FALSE; 15097 boolean_t new_nlb_ire_used = B_FALSE; 15098 uint64_t match_flags; 15099 uint64_t phyi_flags; 15100 boolean_t fallback = B_FALSE; 15101 uint_t max_frag; 15102 15103 ire = ire_ctable_lookup(addr, 0, IRE_BROADCAST, NULL, ALL_ZONES, 15104 NULL, MATCH_IRE_TYPE, ipst); 15105 /* 15106 * We may not be able to find some ires if a previous 15107 * ire_create failed. This happens when an ipif goes 15108 * down and we are unable to create BROADCAST ires due 15109 * to memory failure. Thus, we have to check for NULL 15110 * below. This should handle the case for LOOPBACK, 15111 * POINTOPOINT and interfaces with some POINTOPOINT 15112 * logicals for which there are no BROADCAST ires. 15113 */ 15114 if (ire == NULL) 15115 return; 15116 /* 15117 * Currently IRE_BROADCASTS are deleted when an ipif 15118 * goes down which runs exclusively. Thus, setting 15119 * IRE_MARK_RCVD should not race with ire_delete marking 15120 * IRE_MARK_CONDEMNED. We grab the lock below just to 15121 * be consistent with other parts of the code that walks 15122 * a given bucket. 15123 */ 15124 save_ire = ire; 15125 irb = ire->ire_bucket; 15126 new_lb_ire = kmem_cache_alloc(ire_cache, KM_NOSLEEP); 15127 if (new_lb_ire == NULL) { 15128 ire_refrele(ire); 15129 return; 15130 } 15131 new_nlb_ire = kmem_cache_alloc(ire_cache, KM_NOSLEEP); 15132 if (new_nlb_ire == NULL) { 15133 ire_refrele(ire); 15134 kmem_cache_free(ire_cache, new_lb_ire); 15135 return; 15136 } 15137 IRB_REFHOLD(irb); 15138 rw_enter(&irb->irb_lock, RW_WRITER); 15139 /* 15140 * Get to the first ire matching the address and the 15141 * group. If the address does not match we are done 15142 * as we could not find the IRE. If the address matches 15143 * we should get to the first one matching the group. 15144 */ 15145 while (ire != NULL) { 15146 if (ire->ire_addr != addr || 15147 ire->ire_ipif->ipif_ill->ill_group == illgrp) { 15148 break; 15149 } 15150 ire = ire->ire_next; 15151 } 15152 match_flags = PHYI_FAILED | PHYI_INACTIVE; 15153 start_ire = ire; 15154 redo: 15155 while (ire != NULL && ire->ire_addr == addr && 15156 ire->ire_ipif->ipif_ill->ill_group == illgrp) { 15157 /* 15158 * The first ire for any address within a group 15159 * should always be the one with IRE_MARK_NORECV cleared 15160 * so that ip_wput_ire can avoid searching for one. 15161 * Note down the insertion point which will be used 15162 * later. 15163 */ 15164 if (first && (irep == NULL)) 15165 irep = ire->ire_ptpn; 15166 /* 15167 * PHYI_FAILED is set when the interface fails. 15168 * This interface might have become good, but the 15169 * daemon has not yet detected. We should still 15170 * not receive on this. PHYI_OFFLINE should never 15171 * be picked as this has been offlined and soon 15172 * be removed. 15173 */ 15174 phyi_flags = ire->ire_ipif->ipif_ill->ill_phyint->phyint_flags; 15175 if (phyi_flags & PHYI_OFFLINE) { 15176 ire->ire_marks |= IRE_MARK_NORECV; 15177 ire = ire->ire_next; 15178 continue; 15179 } 15180 if (phyi_flags & match_flags) { 15181 ire->ire_marks |= IRE_MARK_NORECV; 15182 ire = ire->ire_next; 15183 if ((phyi_flags & (PHYI_FAILED | PHYI_INACTIVE)) == 15184 PHYI_INACTIVE) { 15185 fallback = B_TRUE; 15186 } 15187 continue; 15188 } 15189 if (first) { 15190 /* 15191 * We will move this to the front of the list later 15192 * on. 15193 */ 15194 clear_ire = ire; 15195 ire->ire_marks &= ~IRE_MARK_NORECV; 15196 } else { 15197 ire->ire_marks |= IRE_MARK_NORECV; 15198 } 15199 first = B_FALSE; 15200 ire = ire->ire_next; 15201 } 15202 /* 15203 * If we never nominated anybody, try nominating at least 15204 * an INACTIVE, if we found one. Do it only once though. 15205 */ 15206 if (first && (match_flags == (PHYI_FAILED | PHYI_INACTIVE)) && 15207 fallback) { 15208 match_flags = PHYI_FAILED; 15209 ire = start_ire; 15210 irep = NULL; 15211 goto redo; 15212 } 15213 ire_refrele(save_ire); 15214 15215 /* 15216 * irep non-NULL indicates that we entered the while loop 15217 * above. If clear_ire is at the insertion point, we don't 15218 * have to do anything. clear_ire will be NULL if all the 15219 * interfaces are failed. 15220 * 15221 * We cannot unlink and reinsert the ire at the right place 15222 * in the list since there can be other walkers of this bucket. 15223 * Instead we delete and recreate the ire 15224 */ 15225 if (clear_ire != NULL && irep != NULL && *irep != clear_ire) { 15226 ire_t *clear_ire_stq = NULL; 15227 15228 bzero(new_lb_ire, sizeof (ire_t)); 15229 /* XXX We need a recovery strategy here. */ 15230 if (ire_init(new_lb_ire, 15231 (uchar_t *)&clear_ire->ire_addr, 15232 (uchar_t *)&clear_ire->ire_mask, 15233 (uchar_t *)&clear_ire->ire_src_addr, 15234 (uchar_t *)&clear_ire->ire_gateway_addr, 15235 &clear_ire->ire_max_frag, 15236 NULL, /* let ire_nce_init derive the resolver info */ 15237 clear_ire->ire_rfq, 15238 clear_ire->ire_stq, 15239 clear_ire->ire_type, 15240 clear_ire->ire_ipif, 15241 clear_ire->ire_cmask, 15242 clear_ire->ire_phandle, 15243 clear_ire->ire_ihandle, 15244 clear_ire->ire_flags, 15245 &clear_ire->ire_uinfo, 15246 NULL, 15247 NULL, 15248 ipst) == NULL) 15249 cmn_err(CE_PANIC, "ire_init() failed"); 15250 if (clear_ire->ire_stq == NULL) { 15251 ire_t *ire_next = clear_ire->ire_next; 15252 if (ire_next != NULL && 15253 ire_next->ire_stq != NULL && 15254 ire_next->ire_addr == clear_ire->ire_addr && 15255 ire_next->ire_ipif->ipif_ill == 15256 clear_ire->ire_ipif->ipif_ill) { 15257 clear_ire_stq = ire_next; 15258 15259 bzero(new_nlb_ire, sizeof (ire_t)); 15260 /* XXX We need a recovery strategy here. */ 15261 if (ire_init(new_nlb_ire, 15262 (uchar_t *)&clear_ire_stq->ire_addr, 15263 (uchar_t *)&clear_ire_stq->ire_mask, 15264 (uchar_t *)&clear_ire_stq->ire_src_addr, 15265 (uchar_t *)&clear_ire_stq->ire_gateway_addr, 15266 &clear_ire_stq->ire_max_frag, 15267 NULL, 15268 clear_ire_stq->ire_rfq, 15269 clear_ire_stq->ire_stq, 15270 clear_ire_stq->ire_type, 15271 clear_ire_stq->ire_ipif, 15272 clear_ire_stq->ire_cmask, 15273 clear_ire_stq->ire_phandle, 15274 clear_ire_stq->ire_ihandle, 15275 clear_ire_stq->ire_flags, 15276 &clear_ire_stq->ire_uinfo, 15277 NULL, 15278 NULL, 15279 ipst) == NULL) 15280 cmn_err(CE_PANIC, "ire_init() failed"); 15281 } 15282 } 15283 15284 /* 15285 * Delete the ire. We can't call ire_delete() since 15286 * we are holding the bucket lock. We can't release the 15287 * bucket lock since we can't allow irep to change. So just 15288 * mark it CONDEMNED. The IRB_REFRELE will delete the 15289 * ire from the list and do the refrele. 15290 */ 15291 clear_ire->ire_marks |= IRE_MARK_CONDEMNED; 15292 irb->irb_marks |= IRB_MARK_CONDEMNED; 15293 15294 if (clear_ire_stq != NULL && clear_ire_stq->ire_nce != NULL) { 15295 nce_fastpath_list_delete(clear_ire_stq->ire_nce); 15296 clear_ire_stq->ire_marks |= IRE_MARK_CONDEMNED; 15297 } 15298 15299 /* 15300 * Also take care of otherfields like ib/ob pkt count 15301 * etc. Need to dup them. ditto in ill_bcast_delete_and_add 15302 */ 15303 15304 /* Set the max_frag before adding the ire */ 15305 max_frag = *new_lb_ire->ire_max_fragp; 15306 new_lb_ire->ire_max_fragp = NULL; 15307 new_lb_ire->ire_max_frag = max_frag; 15308 15309 /* Add the new ire's. Insert at *irep */ 15310 new_lb_ire->ire_bucket = clear_ire->ire_bucket; 15311 ire1 = *irep; 15312 if (ire1 != NULL) 15313 ire1->ire_ptpn = &new_lb_ire->ire_next; 15314 new_lb_ire->ire_next = ire1; 15315 /* Link the new one in. */ 15316 new_lb_ire->ire_ptpn = irep; 15317 membar_producer(); 15318 *irep = new_lb_ire; 15319 new_lb_ire_used = B_TRUE; 15320 BUMP_IRE_STATS(ipst->ips_ire_stats_v4, ire_stats_inserted); 15321 new_lb_ire->ire_bucket->irb_ire_cnt++; 15322 DTRACE_PROBE3(ipif__incr__cnt, (ipif_t *), new_lb_ire->ire_ipif, 15323 (char *), "ire", (void *), new_lb_ire); 15324 new_lb_ire->ire_ipif->ipif_ire_cnt++; 15325 15326 if (clear_ire_stq != NULL) { 15327 /* Set the max_frag before adding the ire */ 15328 max_frag = *new_nlb_ire->ire_max_fragp; 15329 new_nlb_ire->ire_max_fragp = NULL; 15330 new_nlb_ire->ire_max_frag = max_frag; 15331 15332 new_nlb_ire->ire_bucket = clear_ire->ire_bucket; 15333 irep = &new_lb_ire->ire_next; 15334 /* Add the new ire. Insert at *irep */ 15335 ire1 = *irep; 15336 if (ire1 != NULL) 15337 ire1->ire_ptpn = &new_nlb_ire->ire_next; 15338 new_nlb_ire->ire_next = ire1; 15339 /* Link the new one in. */ 15340 new_nlb_ire->ire_ptpn = irep; 15341 membar_producer(); 15342 *irep = new_nlb_ire; 15343 new_nlb_ire_used = B_TRUE; 15344 BUMP_IRE_STATS(ipst->ips_ire_stats_v4, 15345 ire_stats_inserted); 15346 new_nlb_ire->ire_bucket->irb_ire_cnt++; 15347 DTRACE_PROBE3(ipif__incr__cnt, 15348 (ipif_t *), new_nlb_ire->ire_ipif, 15349 (char *), "ire", (void *), new_nlb_ire); 15350 new_nlb_ire->ire_ipif->ipif_ire_cnt++; 15351 DTRACE_PROBE3(ill__incr__cnt, 15352 (ill_t *), new_nlb_ire->ire_stq->q_ptr, 15353 (char *), "ire", (void *), new_nlb_ire); 15354 ((ill_t *)(new_nlb_ire->ire_stq->q_ptr))->ill_ire_cnt++; 15355 } 15356 } 15357 rw_exit(&irb->irb_lock); 15358 if (!new_lb_ire_used) 15359 kmem_cache_free(ire_cache, new_lb_ire); 15360 if (!new_nlb_ire_used) 15361 kmem_cache_free(ire_cache, new_nlb_ire); 15362 IRB_REFRELE(irb); 15363 } 15364 15365 /* 15366 * Whenever an ipif goes down we have to renominate a different 15367 * broadcast ire to receive. Whenever an ipif comes up, we need 15368 * to make sure that we have only one nominated to receive. 15369 */ 15370 static void 15371 ipif_renominate_bcast(ipif_t *ipif) 15372 { 15373 ill_t *ill = ipif->ipif_ill; 15374 ipaddr_t subnet_addr; 15375 ipaddr_t net_addr; 15376 ipaddr_t net_mask = 0; 15377 ipaddr_t subnet_netmask; 15378 ipaddr_t addr; 15379 ill_group_t *illgrp; 15380 ip_stack_t *ipst = ill->ill_ipst; 15381 15382 illgrp = ill->ill_group; 15383 /* 15384 * If this is the last ipif going down, it might take 15385 * the ill out of the group. In that case ipif_down -> 15386 * illgrp_delete takes care of doing the nomination. 15387 * ipif_down does not call for this case. 15388 */ 15389 ASSERT(illgrp != NULL); 15390 15391 /* There could not have been any ires associated with this */ 15392 if (ipif->ipif_subnet == 0) 15393 return; 15394 15395 ill_mark_bcast(illgrp, 0, ipst); 15396 ill_mark_bcast(illgrp, INADDR_BROADCAST, ipst); 15397 15398 if ((ipif->ipif_lcl_addr != INADDR_ANY) && 15399 !(ipif->ipif_flags & IPIF_NOLOCAL)) { 15400 net_mask = ip_net_mask(ipif->ipif_lcl_addr); 15401 } else { 15402 net_mask = htonl(IN_CLASSA_NET); 15403 } 15404 addr = net_mask & ipif->ipif_subnet; 15405 ill_mark_bcast(illgrp, addr, ipst); 15406 15407 net_addr = ~net_mask | addr; 15408 ill_mark_bcast(illgrp, net_addr, ipst); 15409 15410 subnet_netmask = ipif->ipif_net_mask; 15411 addr = ipif->ipif_subnet; 15412 ill_mark_bcast(illgrp, addr, ipst); 15413 15414 subnet_addr = ~subnet_netmask | addr; 15415 ill_mark_bcast(illgrp, subnet_addr, ipst); 15416 } 15417 15418 /* 15419 * Whenever we form or delete ill groups, we need to nominate one set of 15420 * BROADCAST ires for receiving in the group. 15421 * 15422 * 1) When ipif_up_done -> ilgrp_insert calls this function, BROADCAST ires 15423 * have been added, but ill_ipif_up_count is 0. Thus, we don't assert 15424 * for ill_ipif_up_count to be non-zero. This is the only case where 15425 * ill_ipif_up_count is zero and we would still find the ires. 15426 * 15427 * 2) ip_sioctl_group_name/ifgrp_insert calls this function, at least one 15428 * ipif is UP and we just have to do the nomination. 15429 * 15430 * 3) When ill_handoff_responsibility calls us, some ill has been removed 15431 * from the group. So, we have to do the nomination. 15432 * 15433 * Because of (3), there could be just one ill in the group. But we have 15434 * to nominate still as IRE_MARK_NORCV may have been marked on this. 15435 * Thus, this function does not optimize when there is only one ill as 15436 * it is not correct for (3). 15437 */ 15438 static void 15439 ill_nominate_bcast_rcv(ill_group_t *illgrp) 15440 { 15441 ill_t *ill; 15442 ipif_t *ipif; 15443 ipaddr_t subnet_addr; 15444 ipaddr_t prev_subnet_addr = 0; 15445 ipaddr_t net_addr; 15446 ipaddr_t prev_net_addr = 0; 15447 ipaddr_t net_mask = 0; 15448 ipaddr_t subnet_netmask; 15449 ipaddr_t addr; 15450 ip_stack_t *ipst; 15451 15452 /* 15453 * When the last memeber is leaving, there is nothing to 15454 * nominate. 15455 */ 15456 if (illgrp->illgrp_ill_count == 0) { 15457 ASSERT(illgrp->illgrp_ill == NULL); 15458 return; 15459 } 15460 15461 ill = illgrp->illgrp_ill; 15462 ASSERT(!ill->ill_isv6); 15463 ipst = ill->ill_ipst; 15464 /* 15465 * We assume that ires with same address and belonging to the 15466 * same group, has been grouped together. Nominating a *single* 15467 * ill in the group for sending and receiving broadcast is done 15468 * by making sure that the first BROADCAST ire (which will be 15469 * the one returned by ire_ctable_lookup for ip_rput and the 15470 * one that will be used in ip_wput_ire) will be the one that 15471 * will not have IRE_MARK_NORECV set. 15472 * 15473 * 1) ip_rput checks and discards packets received on ires marked 15474 * with IRE_MARK_NORECV. Thus, we don't send up duplicate 15475 * broadcast packets. We need to clear IRE_MARK_NORECV on the 15476 * first ire in the group for every broadcast address in the group. 15477 * ip_rput will accept packets only on the first ire i.e only 15478 * one copy of the ill. 15479 * 15480 * 2) ip_wput_ire needs to send out just one copy of the broadcast 15481 * packet for the whole group. It needs to send out on the ill 15482 * whose ire has not been marked with IRE_MARK_NORECV. If it sends 15483 * on the one marked with IRE_MARK_NORECV, ip_rput will accept 15484 * the copy echoed back on other port where the ire is not marked 15485 * with IRE_MARK_NORECV. 15486 * 15487 * Note that we just need to have the first IRE either loopback or 15488 * non-loopback (either of them may not exist if ire_create failed 15489 * during ipif_down) with IRE_MARK_NORECV not set. ip_rput will 15490 * always hit the first one and hence will always accept one copy. 15491 * 15492 * We have a broadcast ire per ill for all the unique prefixes 15493 * hosted on that ill. As we don't have a way of knowing the 15494 * unique prefixes on a given ill and hence in the whole group, 15495 * we just call ill_mark_bcast on all the prefixes that exist 15496 * in the group. For the common case of one prefix, the code 15497 * below optimizes by remebering the last address used for 15498 * markng. In the case of multiple prefixes, this will still 15499 * optimize depending the order of prefixes. 15500 * 15501 * The only unique address across the whole group is 0.0.0.0 and 15502 * 255.255.255.255 and thus we call only once. ill_mark_bcast enables 15503 * the first ire in the bucket for receiving and disables the 15504 * others. 15505 */ 15506 ill_mark_bcast(illgrp, 0, ipst); 15507 ill_mark_bcast(illgrp, INADDR_BROADCAST, ipst); 15508 for (; ill != NULL; ill = ill->ill_group_next) { 15509 15510 for (ipif = ill->ill_ipif; ipif != NULL; 15511 ipif = ipif->ipif_next) { 15512 15513 if (!(ipif->ipif_flags & IPIF_UP) || 15514 ipif->ipif_subnet == 0) { 15515 continue; 15516 } 15517 if ((ipif->ipif_lcl_addr != INADDR_ANY) && 15518 !(ipif->ipif_flags & IPIF_NOLOCAL)) { 15519 net_mask = ip_net_mask(ipif->ipif_lcl_addr); 15520 } else { 15521 net_mask = htonl(IN_CLASSA_NET); 15522 } 15523 addr = net_mask & ipif->ipif_subnet; 15524 if (prev_net_addr == 0 || prev_net_addr != addr) { 15525 ill_mark_bcast(illgrp, addr, ipst); 15526 net_addr = ~net_mask | addr; 15527 ill_mark_bcast(illgrp, net_addr, ipst); 15528 } 15529 prev_net_addr = addr; 15530 15531 subnet_netmask = ipif->ipif_net_mask; 15532 addr = ipif->ipif_subnet; 15533 if (prev_subnet_addr == 0 || 15534 prev_subnet_addr != addr) { 15535 ill_mark_bcast(illgrp, addr, ipst); 15536 subnet_addr = ~subnet_netmask | addr; 15537 ill_mark_bcast(illgrp, subnet_addr, ipst); 15538 } 15539 prev_subnet_addr = addr; 15540 } 15541 } 15542 } 15543 15544 /* 15545 * This function is called while forming ill groups. 15546 * 15547 * Currently, we handle only allmulti groups. We want to join 15548 * allmulti on only one of the ills in the groups. In future, 15549 * when we have link aggregation, we may have to join normal 15550 * multicast groups on multiple ills as switch does inbound load 15551 * balancing. Following are the functions that calls this 15552 * function : 15553 * 15554 * 1) ill_recover_multicast : Interface is coming back UP. 15555 * When the first ipif comes back UP, ipif_up_done/ipif_up_done_v6 15556 * will call ill_recover_multicast to recover all the multicast 15557 * groups. We need to make sure that only one member is joined 15558 * in the ill group. 15559 * 15560 * 2) ip_addmulti/ip_addmulti_v6 : ill groups has already been formed. 15561 * Somebody is joining allmulti. We need to make sure that only one 15562 * member is joined in the group. 15563 * 15564 * 3) illgrp_insert : If allmulti has already joined, we need to make 15565 * sure that only one member is joined in the group. 15566 * 15567 * 4) ip_delmulti/ip_delmulti_v6 : Somebody in the group is leaving 15568 * allmulti who we have nominated. We need to pick someother ill. 15569 * 15570 * 5) illgrp_delete : The ill we nominated is leaving the group, 15571 * we need to pick a new ill to join the group. 15572 * 15573 * For (1), (2), (5) - we just have to check whether there is 15574 * a good ill joined in the group. If we could not find any ills 15575 * joined the group, we should join. 15576 * 15577 * For (4), the one that was nominated to receive, left the group. 15578 * There could be nobody joined in the group when this function is 15579 * called. 15580 * 15581 * For (3) - we need to explicitly check whether there are multiple 15582 * ills joined in the group. 15583 * 15584 * For simplicity, we don't differentiate any of the above cases. We 15585 * just leave the group if it is joined on any of them and join on 15586 * the first good ill. 15587 */ 15588 int 15589 ill_nominate_mcast_rcv(ill_group_t *illgrp) 15590 { 15591 ilm_t *ilm; 15592 ill_t *ill; 15593 ill_t *fallback_inactive_ill = NULL; 15594 ill_t *fallback_failed_ill = NULL; 15595 int ret = 0; 15596 15597 /* 15598 * Leave the allmulti on all the ills and start fresh. 15599 */ 15600 for (ill = illgrp->illgrp_ill; ill != NULL; 15601 ill = ill->ill_group_next) { 15602 if (ill->ill_join_allmulti) 15603 (void) ip_leave_allmulti(ill->ill_ipif); 15604 } 15605 15606 /* 15607 * Choose a good ill. Fallback to inactive or failed if 15608 * none available. We need to fallback to FAILED in the 15609 * case where we have 2 interfaces in a group - where 15610 * one of them is failed and another is a good one and 15611 * the good one (not marked inactive) is leaving the group. 15612 */ 15613 ret = 0; 15614 for (ill = illgrp->illgrp_ill; ill != NULL; 15615 ill = ill->ill_group_next) { 15616 /* Never pick an offline interface */ 15617 if (ill->ill_phyint->phyint_flags & PHYI_OFFLINE) 15618 continue; 15619 15620 if (ill->ill_phyint->phyint_flags & PHYI_FAILED) { 15621 fallback_failed_ill = ill; 15622 continue; 15623 } 15624 if (ill->ill_phyint->phyint_flags & PHYI_INACTIVE) { 15625 fallback_inactive_ill = ill; 15626 continue; 15627 } 15628 for (ilm = ill->ill_ilm; ilm != NULL; ilm = ilm->ilm_next) { 15629 if (IN6_IS_ADDR_UNSPECIFIED(&ilm->ilm_v6addr)) { 15630 ret = ip_join_allmulti(ill->ill_ipif); 15631 /* 15632 * ip_join_allmulti can fail because of memory 15633 * failures. So, make sure we join at least 15634 * on one ill. 15635 */ 15636 if (ill->ill_join_allmulti) 15637 return (0); 15638 } 15639 } 15640 } 15641 if (ret != 0) { 15642 /* 15643 * If we tried nominating above and failed to do so, 15644 * return error. We might have tried multiple times. 15645 * But, return the latest error. 15646 */ 15647 return (ret); 15648 } 15649 if ((ill = fallback_inactive_ill) != NULL) { 15650 for (ilm = ill->ill_ilm; ilm != NULL; ilm = ilm->ilm_next) { 15651 if (IN6_IS_ADDR_UNSPECIFIED(&ilm->ilm_v6addr)) { 15652 ret = ip_join_allmulti(ill->ill_ipif); 15653 return (ret); 15654 } 15655 } 15656 } else if ((ill = fallback_failed_ill) != NULL) { 15657 for (ilm = ill->ill_ilm; ilm != NULL; ilm = ilm->ilm_next) { 15658 if (IN6_IS_ADDR_UNSPECIFIED(&ilm->ilm_v6addr)) { 15659 ret = ip_join_allmulti(ill->ill_ipif); 15660 return (ret); 15661 } 15662 } 15663 } 15664 return (0); 15665 } 15666 15667 /* 15668 * This function is called from illgrp_delete after it is 15669 * deleted from the group to reschedule responsibilities 15670 * to a different ill. 15671 */ 15672 static void 15673 ill_handoff_responsibility(ill_t *ill, ill_group_t *illgrp) 15674 { 15675 ilm_t *ilm; 15676 ipif_t *ipif; 15677 ipaddr_t subnet_addr; 15678 ipaddr_t net_addr; 15679 ipaddr_t net_mask = 0; 15680 ipaddr_t subnet_netmask; 15681 ipaddr_t addr; 15682 ip_stack_t *ipst = ill->ill_ipst; 15683 15684 ASSERT(ill->ill_group == NULL); 15685 /* 15686 * Broadcast Responsibility: 15687 * 15688 * 1. If this ill has been nominated for receiving broadcast 15689 * packets, we need to find a new one. Before we find a new 15690 * one, we need to re-group the ires that are part of this new 15691 * group (assumed by ill_nominate_bcast_rcv). We do this by 15692 * calling ill_group_bcast_for_xmit(ill) which will do the right 15693 * thing for us. 15694 * 15695 * 2. If this ill was not nominated for receiving broadcast 15696 * packets, we need to clear the IRE_MARK_NORECV flag 15697 * so that we continue to send up broadcast packets. 15698 */ 15699 if (!ill->ill_isv6) { 15700 /* 15701 * Case 1 above : No optimization here. Just redo the 15702 * nomination. 15703 */ 15704 ill_group_bcast_for_xmit(ill); 15705 ill_nominate_bcast_rcv(illgrp); 15706 15707 /* 15708 * Case 2 above : Lookup and clear IRE_MARK_NORECV. 15709 */ 15710 ill_clear_bcast_mark(ill, 0); 15711 ill_clear_bcast_mark(ill, INADDR_BROADCAST); 15712 15713 for (ipif = ill->ill_ipif; ipif != NULL; 15714 ipif = ipif->ipif_next) { 15715 15716 if (!(ipif->ipif_flags & IPIF_UP) || 15717 ipif->ipif_subnet == 0) { 15718 continue; 15719 } 15720 if ((ipif->ipif_lcl_addr != INADDR_ANY) && 15721 !(ipif->ipif_flags & IPIF_NOLOCAL)) { 15722 net_mask = ip_net_mask(ipif->ipif_lcl_addr); 15723 } else { 15724 net_mask = htonl(IN_CLASSA_NET); 15725 } 15726 addr = net_mask & ipif->ipif_subnet; 15727 ill_clear_bcast_mark(ill, addr); 15728 15729 net_addr = ~net_mask | addr; 15730 ill_clear_bcast_mark(ill, net_addr); 15731 15732 subnet_netmask = ipif->ipif_net_mask; 15733 addr = ipif->ipif_subnet; 15734 ill_clear_bcast_mark(ill, addr); 15735 15736 subnet_addr = ~subnet_netmask | addr; 15737 ill_clear_bcast_mark(ill, subnet_addr); 15738 } 15739 } 15740 15741 /* 15742 * Multicast Responsibility. 15743 * 15744 * If we have joined allmulti on this one, find a new member 15745 * in the group to join allmulti. As this ill is already part 15746 * of allmulti, we don't have to join on this one. 15747 * 15748 * If we have not joined allmulti on this one, there is no 15749 * responsibility to handoff. But we need to take new 15750 * responsibility i.e, join allmulti on this one if we need 15751 * to. 15752 */ 15753 if (ill->ill_join_allmulti) { 15754 (void) ill_nominate_mcast_rcv(illgrp); 15755 } else { 15756 for (ilm = ill->ill_ilm; ilm != NULL; ilm = ilm->ilm_next) { 15757 if (IN6_IS_ADDR_UNSPECIFIED(&ilm->ilm_v6addr)) { 15758 (void) ip_join_allmulti(ill->ill_ipif); 15759 break; 15760 } 15761 } 15762 } 15763 15764 /* 15765 * We intentionally do the flushing of IRE_CACHES only matching 15766 * on the ill and not on groups. Note that we are already deleted 15767 * from the group. 15768 * 15769 * This will make sure that all IRE_CACHES whose stq is pointing 15770 * at ill_wq or ire_ipif->ipif_ill pointing at this ill will get 15771 * deleted and IRE_CACHES that are not pointing at this ill will 15772 * be left alone. 15773 */ 15774 ire_walk_ill(MATCH_IRE_ILL | MATCH_IRE_TYPE, IRE_CACHE, 15775 illgrp_cache_delete, ill, ill); 15776 15777 /* 15778 * Some conn may have cached one of the IREs deleted above. By removing 15779 * the ire reference, we clean up the extra reference to the ill held in 15780 * ire->ire_stq. 15781 */ 15782 ipcl_walk(conn_cleanup_stale_ire, NULL, ipst); 15783 15784 /* 15785 * Re-do source address selection for all the members in the 15786 * group, if they borrowed source address from one of the ipifs 15787 * in this ill. 15788 */ 15789 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 15790 if (ill->ill_isv6) { 15791 ipif_update_other_ipifs_v6(ipif, illgrp); 15792 } else { 15793 ipif_update_other_ipifs(ipif, illgrp); 15794 } 15795 } 15796 } 15797 15798 /* 15799 * Delete the ill from the group. The caller makes sure that it is 15800 * in a group and it okay to delete from the group. So, we always 15801 * delete here. 15802 */ 15803 static void 15804 illgrp_delete(ill_t *ill) 15805 { 15806 ill_group_t *illgrp; 15807 ill_group_t *tmpg; 15808 ill_t *tmp_ill; 15809 ip_stack_t *ipst = ill->ill_ipst; 15810 15811 /* 15812 * Reset illgrp_ill_schednext if it was pointing at us. 15813 * We need to do this before we set ill_group to NULL. 15814 */ 15815 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 15816 mutex_enter(&ill->ill_lock); 15817 15818 illgrp_reset_schednext(ill); 15819 15820 illgrp = ill->ill_group; 15821 15822 /* Delete the ill from illgrp. */ 15823 if (illgrp->illgrp_ill == ill) { 15824 illgrp->illgrp_ill = ill->ill_group_next; 15825 } else { 15826 tmp_ill = illgrp->illgrp_ill; 15827 while (tmp_ill->ill_group_next != ill) { 15828 tmp_ill = tmp_ill->ill_group_next; 15829 ASSERT(tmp_ill != NULL); 15830 } 15831 tmp_ill->ill_group_next = ill->ill_group_next; 15832 } 15833 ill->ill_group = NULL; 15834 ill->ill_group_next = NULL; 15835 15836 illgrp->illgrp_ill_count--; 15837 mutex_exit(&ill->ill_lock); 15838 rw_exit(&ipst->ips_ill_g_lock); 15839 15840 /* 15841 * As this ill is leaving the group, we need to hand off 15842 * the responsibilities to the other ills in the group, if 15843 * this ill had some responsibilities. 15844 */ 15845 15846 ill_handoff_responsibility(ill, illgrp); 15847 15848 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 15849 15850 if (illgrp->illgrp_ill_count == 0) { 15851 15852 ASSERT(illgrp->illgrp_ill == NULL); 15853 if (ill->ill_isv6) { 15854 if (illgrp == ipst->ips_illgrp_head_v6) { 15855 ipst->ips_illgrp_head_v6 = illgrp->illgrp_next; 15856 } else { 15857 tmpg = ipst->ips_illgrp_head_v6; 15858 while (tmpg->illgrp_next != illgrp) { 15859 tmpg = tmpg->illgrp_next; 15860 ASSERT(tmpg != NULL); 15861 } 15862 tmpg->illgrp_next = illgrp->illgrp_next; 15863 } 15864 } else { 15865 if (illgrp == ipst->ips_illgrp_head_v4) { 15866 ipst->ips_illgrp_head_v4 = illgrp->illgrp_next; 15867 } else { 15868 tmpg = ipst->ips_illgrp_head_v4; 15869 while (tmpg->illgrp_next != illgrp) { 15870 tmpg = tmpg->illgrp_next; 15871 ASSERT(tmpg != NULL); 15872 } 15873 tmpg->illgrp_next = illgrp->illgrp_next; 15874 } 15875 } 15876 mutex_destroy(&illgrp->illgrp_lock); 15877 mi_free(illgrp); 15878 } 15879 rw_exit(&ipst->ips_ill_g_lock); 15880 15881 /* 15882 * Even though the ill is out of the group its not necessary 15883 * to set ipsq_split as TRUE as the ipifs could be down temporarily 15884 * We will split the ipsq when phyint_groupname is set to NULL. 15885 */ 15886 15887 /* 15888 * Send a routing sockets message if we are deleting from 15889 * groups with names. 15890 */ 15891 if (ill->ill_phyint->phyint_groupname_len != 0) 15892 ip_rts_ifmsg(ill->ill_ipif); 15893 } 15894 15895 /* 15896 * Re-do source address selection. This is normally called when 15897 * an ill joins the group or when a non-NOLOCAL/DEPRECATED/ANYCAST 15898 * ipif comes up. 15899 */ 15900 void 15901 ill_update_source_selection(ill_t *ill) 15902 { 15903 ipif_t *ipif; 15904 15905 ASSERT(IAM_WRITER_ILL(ill)); 15906 15907 if (ill->ill_group != NULL) 15908 ill = ill->ill_group->illgrp_ill; 15909 15910 for (; ill != NULL; ill = ill->ill_group_next) { 15911 for (ipif = ill->ill_ipif; ipif != NULL; 15912 ipif = ipif->ipif_next) { 15913 if (ill->ill_isv6) 15914 ipif_recreate_interface_routes_v6(NULL, ipif); 15915 else 15916 ipif_recreate_interface_routes(NULL, ipif); 15917 } 15918 } 15919 } 15920 15921 /* 15922 * Insert ill in a group headed by illgrp_head. The caller can either 15923 * pass a groupname in which case we search for a group with the 15924 * same name to insert in or pass a group to insert in. This function 15925 * would only search groups with names. 15926 * 15927 * NOTE : The caller should make sure that there is at least one ipif 15928 * UP on this ill so that illgrp_scheduler can pick this ill 15929 * for outbound packets. If ill_ipif_up_count is zero, we have 15930 * already sent a DL_UNBIND to the driver and we don't want to 15931 * send anymore packets. We don't assert for ipif_up_count 15932 * to be greater than zero, because ipif_up_done wants to call 15933 * this function before bumping up the ipif_up_count. See 15934 * ipif_up_done() for details. 15935 */ 15936 int 15937 illgrp_insert(ill_group_t **illgrp_head, ill_t *ill, char *groupname, 15938 ill_group_t *grp_to_insert, boolean_t ipif_is_coming_up) 15939 { 15940 ill_group_t *illgrp; 15941 ill_t *prev_ill; 15942 phyint_t *phyi; 15943 ip_stack_t *ipst = ill->ill_ipst; 15944 15945 ASSERT(ill->ill_group == NULL); 15946 15947 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 15948 mutex_enter(&ill->ill_lock); 15949 15950 if (groupname != NULL) { 15951 /* 15952 * Look for a group with a matching groupname to insert. 15953 */ 15954 for (illgrp = *illgrp_head; illgrp != NULL; 15955 illgrp = illgrp->illgrp_next) { 15956 15957 ill_t *tmp_ill; 15958 15959 /* 15960 * If we have an ill_group_t in the list which has 15961 * no ill_t assigned then we must be in the process of 15962 * removing this group. We skip this as illgrp_delete() 15963 * will remove it from the list. 15964 */ 15965 if ((tmp_ill = illgrp->illgrp_ill) == NULL) { 15966 ASSERT(illgrp->illgrp_ill_count == 0); 15967 continue; 15968 } 15969 15970 ASSERT(tmp_ill->ill_phyint != NULL); 15971 phyi = tmp_ill->ill_phyint; 15972 /* 15973 * Look at groups which has names only. 15974 */ 15975 if (phyi->phyint_groupname_len == 0) 15976 continue; 15977 /* 15978 * Names are stored in the phyint common to both 15979 * IPv4 and IPv6. 15980 */ 15981 if (mi_strcmp(phyi->phyint_groupname, 15982 groupname) == 0) { 15983 break; 15984 } 15985 } 15986 } else { 15987 /* 15988 * If the caller passes in a NULL "grp_to_insert", we 15989 * allocate one below and insert this singleton. 15990 */ 15991 illgrp = grp_to_insert; 15992 } 15993 15994 ill->ill_group_next = NULL; 15995 15996 if (illgrp == NULL) { 15997 illgrp = (ill_group_t *)mi_zalloc(sizeof (ill_group_t)); 15998 if (illgrp == NULL) { 15999 return (ENOMEM); 16000 } 16001 illgrp->illgrp_next = *illgrp_head; 16002 *illgrp_head = illgrp; 16003 illgrp->illgrp_ill = ill; 16004 illgrp->illgrp_ill_count = 1; 16005 ill->ill_group = illgrp; 16006 /* 16007 * Used in illgrp_scheduler to protect multiple threads 16008 * from traversing the list. 16009 */ 16010 mutex_init(&illgrp->illgrp_lock, NULL, MUTEX_DEFAULT, 0); 16011 } else { 16012 ASSERT(ill->ill_net_type == 16013 illgrp->illgrp_ill->ill_net_type); 16014 ASSERT(ill->ill_type == illgrp->illgrp_ill->ill_type); 16015 16016 /* Insert ill at tail of this group */ 16017 prev_ill = illgrp->illgrp_ill; 16018 while (prev_ill->ill_group_next != NULL) 16019 prev_ill = prev_ill->ill_group_next; 16020 prev_ill->ill_group_next = ill; 16021 ill->ill_group = illgrp; 16022 illgrp->illgrp_ill_count++; 16023 /* 16024 * Inherit group properties. Currently only forwarding 16025 * is the property we try to keep the same with all the 16026 * ills. When there are more, we will abstract this into 16027 * a function. 16028 */ 16029 ill->ill_flags &= ~ILLF_ROUTER; 16030 ill->ill_flags |= (illgrp->illgrp_ill->ill_flags & ILLF_ROUTER); 16031 } 16032 mutex_exit(&ill->ill_lock); 16033 rw_exit(&ipst->ips_ill_g_lock); 16034 16035 /* 16036 * 1) When ipif_up_done() calls this function, ipif_up_count 16037 * may be zero as it has not yet been bumped. But the ires 16038 * have already been added. So, we do the nomination here 16039 * itself. But, when ip_sioctl_groupname calls this, it checks 16040 * for ill_ipif_up_count != 0. Thus we don't check for 16041 * ill_ipif_up_count here while nominating broadcast ires for 16042 * receive. 16043 * 16044 * 2) Similarly, we need to call ill_group_bcast_for_xmit here 16045 * to group them properly as ire_add() has already happened 16046 * in the ipif_up_done() case. For ip_sioctl_groupname/ifgrp_insert 16047 * case, we need to do it here anyway. 16048 */ 16049 if (!ill->ill_isv6) { 16050 ill_group_bcast_for_xmit(ill); 16051 ill_nominate_bcast_rcv(illgrp); 16052 } 16053 16054 if (!ipif_is_coming_up) { 16055 /* 16056 * When ipif_up_done() calls this function, the multicast 16057 * groups have not been joined yet. So, there is no point in 16058 * nomination. ip_join_allmulti will handle groups when 16059 * ill_recover_multicast is called from ipif_up_done() later. 16060 */ 16061 (void) ill_nominate_mcast_rcv(illgrp); 16062 /* 16063 * ipif_up_done calls ill_update_source_selection 16064 * anyway. Moreover, we don't want to re-create 16065 * interface routes while ipif_up_done() still has reference 16066 * to them. Refer to ipif_up_done() for more details. 16067 */ 16068 ill_update_source_selection(ill); 16069 } 16070 16071 /* 16072 * Send a routing sockets message if we are inserting into 16073 * groups with names. 16074 */ 16075 if (groupname != NULL) 16076 ip_rts_ifmsg(ill->ill_ipif); 16077 return (0); 16078 } 16079 16080 /* 16081 * Return the first phyint matching the groupname. There could 16082 * be more than one when there are ill groups. 16083 * 16084 * If 'usable' is set, then we exclude ones that are marked with any of 16085 * (PHYI_FAILED|PHYI_OFFLINE|PHYI_INACTIVE). 16086 * Needs work: called only from ip_sioctl_groupname and from the ipmp/netinfo 16087 * emulation of ipmp. 16088 */ 16089 phyint_t * 16090 phyint_lookup_group(char *groupname, boolean_t usable, ip_stack_t *ipst) 16091 { 16092 phyint_t *phyi; 16093 16094 ASSERT(RW_LOCK_HELD(&ipst->ips_ill_g_lock)); 16095 /* 16096 * Group names are stored in the phyint - a common structure 16097 * to both IPv4 and IPv6. 16098 */ 16099 phyi = avl_first(&ipst->ips_phyint_g_list->phyint_list_avl_by_index); 16100 for (; phyi != NULL; 16101 phyi = avl_walk(&ipst->ips_phyint_g_list->phyint_list_avl_by_index, 16102 phyi, AVL_AFTER)) { 16103 if (phyi->phyint_groupname_len == 0) 16104 continue; 16105 /* 16106 * Skip the ones that should not be used since the callers 16107 * sometime use this for sending packets. 16108 */ 16109 if (usable && (phyi->phyint_flags & 16110 (PHYI_FAILED|PHYI_OFFLINE|PHYI_INACTIVE))) 16111 continue; 16112 16113 ASSERT(phyi->phyint_groupname != NULL); 16114 if (mi_strcmp(groupname, phyi->phyint_groupname) == 0) 16115 return (phyi); 16116 } 16117 return (NULL); 16118 } 16119 16120 16121 /* 16122 * Return the first usable phyint matching the group index. By 'usable' 16123 * we exclude ones that are marked ununsable with any of 16124 * (PHYI_FAILED|PHYI_OFFLINE|PHYI_INACTIVE). 16125 * 16126 * Used only for the ipmp/netinfo emulation of ipmp. 16127 */ 16128 phyint_t * 16129 phyint_lookup_group_ifindex(uint_t group_ifindex, ip_stack_t *ipst) 16130 { 16131 phyint_t *phyi; 16132 16133 ASSERT(RW_LOCK_HELD(&ipst->ips_ill_g_lock)); 16134 16135 if (!ipst->ips_ipmp_hook_emulation) 16136 return (NULL); 16137 16138 /* 16139 * Group indicies are stored in the phyint - a common structure 16140 * to both IPv4 and IPv6. 16141 */ 16142 phyi = avl_first(&ipst->ips_phyint_g_list->phyint_list_avl_by_index); 16143 for (; phyi != NULL; 16144 phyi = avl_walk(&ipst->ips_phyint_g_list->phyint_list_avl_by_index, 16145 phyi, AVL_AFTER)) { 16146 /* Ignore the ones that do not have a group */ 16147 if (phyi->phyint_groupname_len == 0) 16148 continue; 16149 16150 ASSERT(phyi->phyint_group_ifindex != 0); 16151 /* 16152 * Skip the ones that should not be used since the callers 16153 * sometime use this for sending packets. 16154 */ 16155 if (phyi->phyint_flags & 16156 (PHYI_FAILED|PHYI_OFFLINE|PHYI_INACTIVE)) 16157 continue; 16158 if (phyi->phyint_group_ifindex == group_ifindex) 16159 return (phyi); 16160 } 16161 return (NULL); 16162 } 16163 16164 /* 16165 * MT notes on creation and deletion of IPMP groups 16166 * 16167 * Creation and deletion of IPMP groups introduce the need to merge or 16168 * split the associated serialization objects i.e the ipsq's. Normally all 16169 * the ills in an IPMP group would map to a single ipsq. If IPMP is not enabled 16170 * an ill-pair(v4, v6) i.e. phyint would map to a single ipsq. However during 16171 * the execution of the SIOCSLIFGROUPNAME command the picture changes. There 16172 * is a need to change the <ill-ipsq> association and we have to operate on both 16173 * the source and destination IPMP groups. For eg. attempting to set the 16174 * groupname of hme0 to mpk17-85 when it already belongs to mpk17-84 has to 16175 * handle 2 IPMP groups and 2 ipsqs. All the ills belonging to either of the 16176 * source or destination IPMP group are mapped to a single ipsq for executing 16177 * the SIOCSLIFGROUPNAME command. This is termed as a merge of the ipsq's. 16178 * The <ill-ipsq> mapping is restored back to normal at a later point. This is 16179 * termed as a split of the ipsq. The converse of the merge i.e. a split of the 16180 * ipsq happens while unwinding from ipsq_exit. If at least 1 set groupname 16181 * occurred on the ipsq, then the ipsq_split flag is set. This indicates the 16182 * ipsq has to be examined for redoing the <ill-ipsq> associations. 16183 * 16184 * In the above example the ioctl handling code locates the current ipsq of hme0 16185 * which is ipsq(mpk17-84). It then enters the above ipsq immediately or 16186 * eventually (after queueing the ioctl in ipsq(mpk17-84)). Then it locates 16187 * the destination ipsq which is ipsq(mpk17-85) and merges the source ipsq into 16188 * the destination ipsq. If the destination ipsq is not busy, it also enters 16189 * the destination ipsq exclusively. Now the actual groupname setting operation 16190 * can proceed. If the destination ipsq is busy, the operation is enqueued 16191 * on the destination (merged) ipsq and will be handled in the unwind from 16192 * ipsq_exit. 16193 * 16194 * To prevent other threads accessing the ill while the group name change is 16195 * in progres, we bring down the ipifs which also removes the ill from the 16196 * group. The group is changed in phyint and when the first ipif on the ill 16197 * is brought up, the ill is inserted into the right IPMP group by 16198 * illgrp_insert. 16199 */ 16200 /* ARGSUSED */ 16201 int 16202 ip_sioctl_groupname(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 16203 ip_ioctl_cmd_t *ipip, void *ifreq) 16204 { 16205 int i; 16206 char *tmp; 16207 int namelen; 16208 ill_t *ill = ipif->ipif_ill; 16209 ill_t *ill_v4, *ill_v6; 16210 int err = 0; 16211 phyint_t *phyi; 16212 phyint_t *phyi_tmp; 16213 struct lifreq *lifr; 16214 mblk_t *mp1; 16215 char *groupname; 16216 ipsq_t *ipsq; 16217 ip_stack_t *ipst = ill->ill_ipst; 16218 16219 ASSERT(IAM_WRITER_IPIF(ipif)); 16220 16221 /* Existance verified in ip_wput_nondata */ 16222 mp1 = mp->b_cont->b_cont; 16223 lifr = (struct lifreq *)mp1->b_rptr; 16224 groupname = lifr->lifr_groupname; 16225 16226 if (ipif->ipif_id != 0) 16227 return (EINVAL); 16228 16229 phyi = ill->ill_phyint; 16230 ASSERT(phyi != NULL); 16231 16232 if (phyi->phyint_flags & PHYI_VIRTUAL) 16233 return (EINVAL); 16234 16235 tmp = groupname; 16236 for (i = 0; i < LIFNAMSIZ && *tmp != '\0'; tmp++, i++) 16237 ; 16238 16239 if (i == LIFNAMSIZ) { 16240 /* no null termination */ 16241 return (EINVAL); 16242 } 16243 16244 /* 16245 * Calculate the namelen exclusive of the null 16246 * termination character. 16247 */ 16248 namelen = tmp - groupname; 16249 16250 ill_v4 = phyi->phyint_illv4; 16251 ill_v6 = phyi->phyint_illv6; 16252 16253 /* 16254 * ILL cannot be part of a usesrc group and and IPMP group at the 16255 * same time. No need to grab the ill_g_usesrc_lock here, see 16256 * synchronization notes in ip.c 16257 */ 16258 if (ipif->ipif_ill->ill_usesrc_grp_next != NULL) { 16259 return (EINVAL); 16260 } 16261 16262 /* 16263 * mark the ill as changing. 16264 * this should queue all new requests on the syncq. 16265 */ 16266 GRAB_ILL_LOCKS(ill_v4, ill_v6); 16267 16268 if (ill_v4 != NULL) 16269 ill_v4->ill_state_flags |= ILL_CHANGING; 16270 if (ill_v6 != NULL) 16271 ill_v6->ill_state_flags |= ILL_CHANGING; 16272 RELEASE_ILL_LOCKS(ill_v4, ill_v6); 16273 16274 if (namelen == 0) { 16275 /* 16276 * Null string means remove this interface from the 16277 * existing group. 16278 */ 16279 if (phyi->phyint_groupname_len == 0) { 16280 /* 16281 * Never was in a group. 16282 */ 16283 err = 0; 16284 goto done; 16285 } 16286 16287 /* 16288 * IPv4 or IPv6 may be temporarily out of the group when all 16289 * the ipifs are down. Thus, we need to check for ill_group to 16290 * be non-NULL. 16291 */ 16292 if (ill_v4 != NULL && ill_v4->ill_group != NULL) { 16293 ill_down_ipifs(ill_v4, mp, 0, B_FALSE); 16294 mutex_enter(&ill_v4->ill_lock); 16295 if (!ill_is_quiescent(ill_v4)) { 16296 /* 16297 * ipsq_pending_mp_add will not fail since 16298 * connp is NULL 16299 */ 16300 (void) ipsq_pending_mp_add(NULL, 16301 ill_v4->ill_ipif, q, mp, ILL_DOWN); 16302 mutex_exit(&ill_v4->ill_lock); 16303 err = EINPROGRESS; 16304 goto done; 16305 } 16306 mutex_exit(&ill_v4->ill_lock); 16307 } 16308 16309 if (ill_v6 != NULL && ill_v6->ill_group != NULL) { 16310 ill_down_ipifs(ill_v6, mp, 0, B_FALSE); 16311 mutex_enter(&ill_v6->ill_lock); 16312 if (!ill_is_quiescent(ill_v6)) { 16313 (void) ipsq_pending_mp_add(NULL, 16314 ill_v6->ill_ipif, q, mp, ILL_DOWN); 16315 mutex_exit(&ill_v6->ill_lock); 16316 err = EINPROGRESS; 16317 goto done; 16318 } 16319 mutex_exit(&ill_v6->ill_lock); 16320 } 16321 16322 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 16323 GRAB_ILL_LOCKS(ill_v4, ill_v6); 16324 mutex_enter(&phyi->phyint_lock); 16325 ASSERT(phyi->phyint_groupname != NULL); 16326 mi_free(phyi->phyint_groupname); 16327 phyi->phyint_groupname = NULL; 16328 phyi->phyint_groupname_len = 0; 16329 16330 /* Restore the ifindex used to be the per interface one */ 16331 phyi->phyint_group_ifindex = 0; 16332 phyi->phyint_hook_ifindex = phyi->phyint_ifindex; 16333 mutex_exit(&phyi->phyint_lock); 16334 RELEASE_ILL_LOCKS(ill_v4, ill_v6); 16335 rw_exit(&ipst->ips_ill_g_lock); 16336 err = ill_up_ipifs(ill, q, mp); 16337 16338 /* 16339 * set the split flag so that the ipsq can be split 16340 */ 16341 mutex_enter(&phyi->phyint_ipsq->ipsq_lock); 16342 phyi->phyint_ipsq->ipsq_split = B_TRUE; 16343 mutex_exit(&phyi->phyint_ipsq->ipsq_lock); 16344 16345 } else { 16346 if (phyi->phyint_groupname_len != 0) { 16347 ASSERT(phyi->phyint_groupname != NULL); 16348 /* Are we inserting in the same group ? */ 16349 if (mi_strcmp(groupname, 16350 phyi->phyint_groupname) == 0) { 16351 err = 0; 16352 goto done; 16353 } 16354 } 16355 16356 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 16357 /* 16358 * Merge ipsq for the group's. 16359 * This check is here as multiple groups/ills might be 16360 * sharing the same ipsq. 16361 * If we have to merege than the operation is restarted 16362 * on the new ipsq. 16363 */ 16364 ipsq = ip_ipsq_lookup(groupname, B_FALSE, NULL, ipst); 16365 if (phyi->phyint_ipsq != ipsq) { 16366 rw_exit(&ipst->ips_ill_g_lock); 16367 err = ill_merge_groups(ill, NULL, groupname, mp, q); 16368 goto done; 16369 } 16370 /* 16371 * Running exclusive on new ipsq. 16372 */ 16373 16374 ASSERT(ipsq != NULL); 16375 ASSERT(ipsq->ipsq_writer == curthread); 16376 16377 /* 16378 * Check whether the ill_type and ill_net_type matches before 16379 * we allocate any memory so that the cleanup is easier. 16380 * 16381 * We can't group dissimilar ones as we can't load spread 16382 * packets across the group because of potential link-level 16383 * header differences. 16384 */ 16385 phyi_tmp = phyint_lookup_group(groupname, B_FALSE, ipst); 16386 if (phyi_tmp != NULL) { 16387 if ((ill_v4 != NULL && 16388 phyi_tmp->phyint_illv4 != NULL) && 16389 ((ill_v4->ill_net_type != 16390 phyi_tmp->phyint_illv4->ill_net_type) || 16391 (ill_v4->ill_type != 16392 phyi_tmp->phyint_illv4->ill_type))) { 16393 mutex_enter(&phyi->phyint_ipsq->ipsq_lock); 16394 phyi->phyint_ipsq->ipsq_split = B_TRUE; 16395 mutex_exit(&phyi->phyint_ipsq->ipsq_lock); 16396 rw_exit(&ipst->ips_ill_g_lock); 16397 return (EINVAL); 16398 } 16399 if ((ill_v6 != NULL && 16400 phyi_tmp->phyint_illv6 != NULL) && 16401 ((ill_v6->ill_net_type != 16402 phyi_tmp->phyint_illv6->ill_net_type) || 16403 (ill_v6->ill_type != 16404 phyi_tmp->phyint_illv6->ill_type))) { 16405 mutex_enter(&phyi->phyint_ipsq->ipsq_lock); 16406 phyi->phyint_ipsq->ipsq_split = B_TRUE; 16407 mutex_exit(&phyi->phyint_ipsq->ipsq_lock); 16408 rw_exit(&ipst->ips_ill_g_lock); 16409 return (EINVAL); 16410 } 16411 } 16412 16413 rw_exit(&ipst->ips_ill_g_lock); 16414 16415 /* 16416 * bring down all v4 ipifs. 16417 */ 16418 if (ill_v4 != NULL) { 16419 ill_down_ipifs(ill_v4, mp, 0, B_FALSE); 16420 } 16421 16422 /* 16423 * bring down all v6 ipifs. 16424 */ 16425 if (ill_v6 != NULL) { 16426 ill_down_ipifs(ill_v6, mp, 0, B_FALSE); 16427 } 16428 16429 /* 16430 * make sure all ipifs are down and there are no active 16431 * references. Call to ipsq_pending_mp_add will not fail 16432 * since connp is NULL. 16433 */ 16434 if (ill_v4 != NULL) { 16435 mutex_enter(&ill_v4->ill_lock); 16436 if (!ill_is_quiescent(ill_v4)) { 16437 (void) ipsq_pending_mp_add(NULL, 16438 ill_v4->ill_ipif, q, mp, ILL_DOWN); 16439 mutex_exit(&ill_v4->ill_lock); 16440 err = EINPROGRESS; 16441 goto done; 16442 } 16443 mutex_exit(&ill_v4->ill_lock); 16444 } 16445 16446 if (ill_v6 != NULL) { 16447 mutex_enter(&ill_v6->ill_lock); 16448 if (!ill_is_quiescent(ill_v6)) { 16449 (void) ipsq_pending_mp_add(NULL, 16450 ill_v6->ill_ipif, q, mp, ILL_DOWN); 16451 mutex_exit(&ill_v6->ill_lock); 16452 err = EINPROGRESS; 16453 goto done; 16454 } 16455 mutex_exit(&ill_v6->ill_lock); 16456 } 16457 16458 /* 16459 * allocate including space for null terminator 16460 * before we insert. 16461 */ 16462 tmp = (char *)mi_alloc(namelen + 1, BPRI_MED); 16463 if (tmp == NULL) 16464 return (ENOMEM); 16465 16466 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 16467 GRAB_ILL_LOCKS(ill_v4, ill_v6); 16468 mutex_enter(&phyi->phyint_lock); 16469 if (phyi->phyint_groupname_len != 0) { 16470 ASSERT(phyi->phyint_groupname != NULL); 16471 mi_free(phyi->phyint_groupname); 16472 } 16473 16474 /* 16475 * setup the new group name. 16476 */ 16477 phyi->phyint_groupname = tmp; 16478 bcopy(groupname, phyi->phyint_groupname, namelen + 1); 16479 phyi->phyint_groupname_len = namelen + 1; 16480 16481 if (ipst->ips_ipmp_hook_emulation) { 16482 /* 16483 * If the group already exists we use the existing 16484 * group_ifindex, otherwise we pick a new index here. 16485 */ 16486 if (phyi_tmp != NULL) { 16487 phyi->phyint_group_ifindex = 16488 phyi_tmp->phyint_group_ifindex; 16489 } else { 16490 /* XXX We need a recovery strategy here. */ 16491 if (!ip_assign_ifindex( 16492 &phyi->phyint_group_ifindex, ipst)) 16493 cmn_err(CE_PANIC, 16494 "ip_assign_ifindex() failed"); 16495 } 16496 } 16497 /* 16498 * Select whether the netinfo and hook use the per-interface 16499 * or per-group ifindex. 16500 */ 16501 if (ipst->ips_ipmp_hook_emulation) 16502 phyi->phyint_hook_ifindex = phyi->phyint_group_ifindex; 16503 else 16504 phyi->phyint_hook_ifindex = phyi->phyint_ifindex; 16505 16506 if (ipst->ips_ipmp_hook_emulation && 16507 phyi_tmp != NULL) { 16508 /* First phyint in group - group PLUMB event */ 16509 ill_nic_info_plumb(ill, B_TRUE); 16510 } 16511 mutex_exit(&phyi->phyint_lock); 16512 RELEASE_ILL_LOCKS(ill_v4, ill_v6); 16513 rw_exit(&ipst->ips_ill_g_lock); 16514 16515 err = ill_up_ipifs(ill, q, mp); 16516 } 16517 16518 done: 16519 /* 16520 * normally ILL_CHANGING is cleared in ill_up_ipifs. 16521 */ 16522 if (err != EINPROGRESS) { 16523 GRAB_ILL_LOCKS(ill_v4, ill_v6); 16524 if (ill_v4 != NULL) 16525 ill_v4->ill_state_flags &= ~ILL_CHANGING; 16526 if (ill_v6 != NULL) 16527 ill_v6->ill_state_flags &= ~ILL_CHANGING; 16528 RELEASE_ILL_LOCKS(ill_v4, ill_v6); 16529 } 16530 return (err); 16531 } 16532 16533 /* ARGSUSED */ 16534 int 16535 ip_sioctl_get_groupname(ipif_t *ipif, sin_t *dummy_sin, queue_t *q, 16536 mblk_t *mp, ip_ioctl_cmd_t *ipip, void *dummy_ifreq) 16537 { 16538 ill_t *ill; 16539 phyint_t *phyi; 16540 struct lifreq *lifr; 16541 mblk_t *mp1; 16542 16543 /* Existence verified in ip_wput_nondata */ 16544 mp1 = mp->b_cont->b_cont; 16545 lifr = (struct lifreq *)mp1->b_rptr; 16546 ill = ipif->ipif_ill; 16547 phyi = ill->ill_phyint; 16548 16549 lifr->lifr_groupname[0] = '\0'; 16550 /* 16551 * ill_group may be null if all the interfaces 16552 * are down. But still, the phyint should always 16553 * hold the name. 16554 */ 16555 if (phyi->phyint_groupname_len != 0) { 16556 bcopy(phyi->phyint_groupname, lifr->lifr_groupname, 16557 phyi->phyint_groupname_len); 16558 } 16559 16560 return (0); 16561 } 16562 16563 16564 typedef struct conn_move_s { 16565 ill_t *cm_from_ill; 16566 ill_t *cm_to_ill; 16567 int cm_ifindex; 16568 } conn_move_t; 16569 16570 /* 16571 * ipcl_walk function for moving conn_multicast_ill for a given ill. 16572 */ 16573 static void 16574 conn_move(conn_t *connp, caddr_t arg) 16575 { 16576 conn_move_t *connm; 16577 int ifindex; 16578 int i; 16579 ill_t *from_ill; 16580 ill_t *to_ill; 16581 ilg_t *ilg; 16582 ilm_t *ret_ilm; 16583 16584 connm = (conn_move_t *)arg; 16585 ifindex = connm->cm_ifindex; 16586 from_ill = connm->cm_from_ill; 16587 to_ill = connm->cm_to_ill; 16588 16589 /* Change IP_BOUND_IF/IPV6_BOUND_IF associations. */ 16590 16591 /* All multicast fields protected by conn_lock */ 16592 mutex_enter(&connp->conn_lock); 16593 ASSERT(connp->conn_outgoing_ill == connp->conn_incoming_ill); 16594 if ((connp->conn_outgoing_ill == from_ill) && 16595 (ifindex == 0 || connp->conn_orig_bound_ifindex == ifindex)) { 16596 connp->conn_outgoing_ill = to_ill; 16597 connp->conn_incoming_ill = to_ill; 16598 } 16599 16600 /* Change IP_MULTICAST_IF/IPV6_MULTICAST_IF associations */ 16601 16602 if ((connp->conn_multicast_ill == from_ill) && 16603 (ifindex == 0 || connp->conn_orig_multicast_ifindex == ifindex)) { 16604 connp->conn_multicast_ill = connm->cm_to_ill; 16605 } 16606 16607 /* 16608 * Change the ilg_ill to point to the new one. This assumes 16609 * ilm_move_v6 has moved the ilms to new_ill and the driver 16610 * has been told to receive packets on this interface. 16611 * ilm_move_v6 FAILBACKS all the ilms successfully always. 16612 * But when doing a FAILOVER, it might fail with ENOMEM and so 16613 * some ilms may not have moved. We check to see whether 16614 * the ilms have moved to to_ill. We can't check on from_ill 16615 * as in the process of moving, we could have split an ilm 16616 * in to two - which has the same orig_ifindex and v6group. 16617 * 16618 * For IPv4, ilg_ipif moves implicitly. The code below really 16619 * does not do anything for IPv4 as ilg_ill is NULL for IPv4. 16620 */ 16621 for (i = connp->conn_ilg_inuse - 1; i >= 0; i--) { 16622 ilg = &connp->conn_ilg[i]; 16623 if ((ilg->ilg_ill == from_ill) && 16624 (ifindex == 0 || ilg->ilg_orig_ifindex == ifindex)) { 16625 /* ifindex != 0 indicates failback */ 16626 if (ifindex != 0) { 16627 connp->conn_ilg[i].ilg_ill = to_ill; 16628 continue; 16629 } 16630 16631 mutex_enter(&to_ill->ill_lock); 16632 ret_ilm = ilm_lookup_ill_index_v6(to_ill, 16633 &ilg->ilg_v6group, ilg->ilg_orig_ifindex, 16634 connp->conn_zoneid); 16635 mutex_exit(&to_ill->ill_lock); 16636 16637 if (ret_ilm != NULL) 16638 connp->conn_ilg[i].ilg_ill = to_ill; 16639 } 16640 } 16641 mutex_exit(&connp->conn_lock); 16642 } 16643 16644 static void 16645 conn_move_ill(ill_t *from_ill, ill_t *to_ill, int ifindex) 16646 { 16647 conn_move_t connm; 16648 ip_stack_t *ipst = from_ill->ill_ipst; 16649 16650 connm.cm_from_ill = from_ill; 16651 connm.cm_to_ill = to_ill; 16652 connm.cm_ifindex = ifindex; 16653 16654 ipcl_walk(conn_move, (caddr_t)&connm, ipst); 16655 } 16656 16657 /* 16658 * ilm has been moved from from_ill to to_ill. 16659 * Send DL_DISABMULTI_REQ to ill and DL_ENABMULTI_REQ on to_ill. 16660 * appropriately. 16661 * 16662 * NOTE : We can't reuse the code in ip_ll_addmulti/delmulti because 16663 * the code there de-references ipif_ill to get the ill to 16664 * send multicast requests. It does not work as ipif is on its 16665 * move and already moved when this function is called. 16666 * Thus, we need to use from_ill and to_ill send down multicast 16667 * requests. 16668 */ 16669 static void 16670 ilm_send_multicast_reqs(ill_t *from_ill, ill_t *to_ill) 16671 { 16672 ipif_t *ipif; 16673 ilm_t *ilm; 16674 16675 /* 16676 * See whether we need to send down DL_ENABMULTI_REQ on 16677 * to_ill as ilm has just been added. 16678 */ 16679 ASSERT(IAM_WRITER_ILL(to_ill)); 16680 ASSERT(IAM_WRITER_ILL(from_ill)); 16681 16682 ILM_WALKER_HOLD(to_ill); 16683 for (ilm = to_ill->ill_ilm; ilm != NULL; ilm = ilm->ilm_next) { 16684 16685 if (!ilm->ilm_is_new || (ilm->ilm_flags & ILM_DELETED)) 16686 continue; 16687 /* 16688 * no locks held, ill/ipif cannot dissappear as long 16689 * as we are writer. 16690 */ 16691 ipif = to_ill->ill_ipif; 16692 /* 16693 * No need to hold any lock as we are the writer and this 16694 * can only be changed by a writer. 16695 */ 16696 ilm->ilm_is_new = B_FALSE; 16697 16698 if (to_ill->ill_net_type != IRE_IF_RESOLVER || 16699 ipif->ipif_flags & IPIF_POINTOPOINT) { 16700 ip1dbg(("ilm_send_multicast_reqs: to_ill not " 16701 "resolver\n")); 16702 continue; /* Must be IRE_IF_NORESOLVER */ 16703 } 16704 16705 if (to_ill->ill_phyint->phyint_flags & PHYI_MULTI_BCAST) { 16706 ip1dbg(("ilm_send_multicast_reqs: " 16707 "to_ill MULTI_BCAST\n")); 16708 goto from; 16709 } 16710 16711 if (to_ill->ill_isv6) 16712 mld_joingroup(ilm); 16713 else 16714 igmp_joingroup(ilm); 16715 16716 if (to_ill->ill_ipif_up_count == 0) { 16717 /* 16718 * Nobody there. All multicast addresses will be 16719 * re-joined when we get the DL_BIND_ACK bringing the 16720 * interface up. 16721 */ 16722 ilm->ilm_notify_driver = B_FALSE; 16723 ip1dbg(("ilm_send_multicast_reqs: to_ill nobody up\n")); 16724 goto from; 16725 } 16726 16727 /* 16728 * For allmulti address, we want to join on only one interface. 16729 * Checking for ilm_numentries_v6 is not correct as you may 16730 * find an ilm with zero address on to_ill, but we may not 16731 * have nominated to_ill for receiving. Thus, if we have 16732 * nominated from_ill (ill_join_allmulti is set), nominate 16733 * only if to_ill is not already nominated (to_ill normally 16734 * should not have been nominated if "from_ill" has already 16735 * been nominated. As we don't prevent failovers from happening 16736 * across groups, we don't assert). 16737 */ 16738 if (IN6_IS_ADDR_UNSPECIFIED(&ilm->ilm_v6addr)) { 16739 /* 16740 * There is no need to hold ill locks as we are 16741 * writer on both ills and when ill_join_allmulti 16742 * is changed the thread is always a writer. 16743 */ 16744 if (from_ill->ill_join_allmulti && 16745 !to_ill->ill_join_allmulti) { 16746 (void) ip_join_allmulti(to_ill->ill_ipif); 16747 } 16748 } else if (ilm->ilm_notify_driver) { 16749 16750 /* 16751 * This is a newly moved ilm so we need to tell the 16752 * driver about the new group. There can be more than 16753 * one ilm's for the same group in the list each with a 16754 * different orig_ifindex. We have to inform the driver 16755 * once. In ilm_move_v[4,6] we only set the flag 16756 * ilm_notify_driver for the first ilm. 16757 */ 16758 16759 (void) ip_ll_send_enabmulti_req(to_ill, 16760 &ilm->ilm_v6addr); 16761 } 16762 16763 ilm->ilm_notify_driver = B_FALSE; 16764 16765 /* 16766 * See whether we need to send down DL_DISABMULTI_REQ on 16767 * from_ill as ilm has just been removed. 16768 */ 16769 from: 16770 ipif = from_ill->ill_ipif; 16771 if (from_ill->ill_net_type != IRE_IF_RESOLVER || 16772 ipif->ipif_flags & IPIF_POINTOPOINT) { 16773 ip1dbg(("ilm_send_multicast_reqs: " 16774 "from_ill not resolver\n")); 16775 continue; /* Must be IRE_IF_NORESOLVER */ 16776 } 16777 16778 if (from_ill->ill_phyint->phyint_flags & PHYI_MULTI_BCAST) { 16779 ip1dbg(("ilm_send_multicast_reqs: " 16780 "from_ill MULTI_BCAST\n")); 16781 continue; 16782 } 16783 16784 if (IN6_IS_ADDR_UNSPECIFIED(&ilm->ilm_v6addr)) { 16785 if (from_ill->ill_join_allmulti) 16786 (void) ip_leave_allmulti(from_ill->ill_ipif); 16787 } else if (ilm_numentries_v6(from_ill, &ilm->ilm_v6addr) == 0) { 16788 (void) ip_ll_send_disabmulti_req(from_ill, 16789 &ilm->ilm_v6addr); 16790 } 16791 } 16792 ILM_WALKER_RELE(to_ill); 16793 } 16794 16795 /* 16796 * This function is called when all multicast memberships needs 16797 * to be moved from "from_ill" to "to_ill" for IPv6. This function is 16798 * called only once unlike the IPv4 counterpart where it is called after 16799 * every logical interface is moved. The reason is due to multicast 16800 * memberships are joined using an interface address in IPv4 while in 16801 * IPv6, interface index is used. 16802 */ 16803 static void 16804 ilm_move_v6(ill_t *from_ill, ill_t *to_ill, int ifindex) 16805 { 16806 ilm_t *ilm; 16807 ilm_t *ilm_next; 16808 ilm_t *new_ilm; 16809 ilm_t **ilmp; 16810 int count; 16811 char buf[INET6_ADDRSTRLEN]; 16812 in6_addr_t ipv6_snm = ipv6_solicited_node_mcast; 16813 ip_stack_t *ipst = from_ill->ill_ipst; 16814 16815 ASSERT(MUTEX_HELD(&to_ill->ill_lock)); 16816 ASSERT(MUTEX_HELD(&from_ill->ill_lock)); 16817 ASSERT(RW_WRITE_HELD(&ipst->ips_ill_g_lock)); 16818 16819 if (ifindex == 0) { 16820 /* 16821 * Form the solicited node mcast address which is used later. 16822 */ 16823 ipif_t *ipif; 16824 16825 ipif = from_ill->ill_ipif; 16826 ASSERT(ipif->ipif_id == 0); 16827 16828 ipv6_snm.s6_addr32[3] |= ipif->ipif_v6lcl_addr.s6_addr32[3]; 16829 } 16830 16831 ilmp = &from_ill->ill_ilm; 16832 for (ilm = from_ill->ill_ilm; ilm != NULL; ilm = ilm_next) { 16833 ilm_next = ilm->ilm_next; 16834 16835 if (ilm->ilm_flags & ILM_DELETED) { 16836 ilmp = &ilm->ilm_next; 16837 continue; 16838 } 16839 16840 new_ilm = ilm_lookup_ill_index_v6(to_ill, &ilm->ilm_v6addr, 16841 ilm->ilm_orig_ifindex, ilm->ilm_zoneid); 16842 ASSERT(ilm->ilm_orig_ifindex != 0); 16843 if (ilm->ilm_orig_ifindex == ifindex) { 16844 /* 16845 * We are failing back multicast memberships. 16846 * If the same ilm exists in to_ill, it means somebody 16847 * has joined the same group there e.g. ff02::1 16848 * is joined within the kernel when the interfaces 16849 * came UP. 16850 */ 16851 ASSERT(ilm->ilm_ipif == NULL); 16852 if (new_ilm != NULL) { 16853 new_ilm->ilm_refcnt += ilm->ilm_refcnt; 16854 if (new_ilm->ilm_fmode != MODE_IS_EXCLUDE || 16855 !SLIST_IS_EMPTY(new_ilm->ilm_filter)) { 16856 new_ilm->ilm_is_new = B_TRUE; 16857 } 16858 } else { 16859 /* 16860 * check if we can just move the ilm 16861 */ 16862 if (from_ill->ill_ilm_walker_cnt != 0) { 16863 /* 16864 * We have walkers we cannot move 16865 * the ilm, so allocate a new ilm, 16866 * this (old) ilm will be marked 16867 * ILM_DELETED at the end of the loop 16868 * and will be freed when the 16869 * last walker exits. 16870 */ 16871 new_ilm = (ilm_t *)mi_zalloc 16872 (sizeof (ilm_t)); 16873 if (new_ilm == NULL) { 16874 ip0dbg(("ilm_move_v6: " 16875 "FAILBACK of IPv6" 16876 " multicast address %s : " 16877 "from %s to" 16878 " %s failed : ENOMEM \n", 16879 inet_ntop(AF_INET6, 16880 &ilm->ilm_v6addr, buf, 16881 sizeof (buf)), 16882 from_ill->ill_name, 16883 to_ill->ill_name)); 16884 16885 ilmp = &ilm->ilm_next; 16886 continue; 16887 } 16888 *new_ilm = *ilm; 16889 /* 16890 * we don't want new_ilm linked to 16891 * ilm's filter list. 16892 */ 16893 new_ilm->ilm_filter = NULL; 16894 } else { 16895 /* 16896 * No walkers we can move the ilm. 16897 * lets take it out of the list. 16898 */ 16899 *ilmp = ilm->ilm_next; 16900 ilm->ilm_next = NULL; 16901 DTRACE_PROBE3(ill__decr__cnt, 16902 (ill_t *), from_ill, 16903 (char *), "ilm", (void *), ilm); 16904 ASSERT(from_ill->ill_ilm_cnt > 0); 16905 from_ill->ill_ilm_cnt--; 16906 16907 new_ilm = ilm; 16908 } 16909 16910 /* 16911 * if this is the first ilm for the group 16912 * set ilm_notify_driver so that we notify the 16913 * driver in ilm_send_multicast_reqs. 16914 */ 16915 if (ilm_lookup_ill_v6(to_ill, 16916 &new_ilm->ilm_v6addr, ALL_ZONES) == NULL) 16917 new_ilm->ilm_notify_driver = B_TRUE; 16918 16919 DTRACE_PROBE3(ill__incr__cnt, (ill_t *), to_ill, 16920 (char *), "ilm", (void *), new_ilm); 16921 new_ilm->ilm_ill = to_ill; 16922 to_ill->ill_ilm_cnt++; 16923 16924 /* Add to the to_ill's list */ 16925 new_ilm->ilm_next = to_ill->ill_ilm; 16926 to_ill->ill_ilm = new_ilm; 16927 /* 16928 * set the flag so that mld_joingroup is 16929 * called in ilm_send_multicast_reqs(). 16930 */ 16931 new_ilm->ilm_is_new = B_TRUE; 16932 } 16933 goto bottom; 16934 } else if (ifindex != 0) { 16935 /* 16936 * If this is FAILBACK (ifindex != 0) and the ifindex 16937 * has not matched above, look at the next ilm. 16938 */ 16939 ilmp = &ilm->ilm_next; 16940 continue; 16941 } 16942 /* 16943 * If we are here, it means ifindex is 0. Failover 16944 * everything. 16945 * 16946 * We need to handle solicited node mcast address 16947 * and all_nodes mcast address differently as they 16948 * are joined witin the kenrel (ipif_multicast_up) 16949 * and potentially from the userland. We are called 16950 * after the ipifs of from_ill has been moved. 16951 * If we still find ilms on ill with solicited node 16952 * mcast address or all_nodes mcast address, it must 16953 * belong to the UP interface that has not moved e.g. 16954 * ipif_id 0 with the link local prefix does not move. 16955 * We join this on the new ill accounting for all the 16956 * userland memberships so that applications don't 16957 * see any failure. 16958 * 16959 * We need to make sure that we account only for the 16960 * solicited node and all node multicast addresses 16961 * that was brought UP on these. In the case of 16962 * a failover from A to B, we might have ilms belonging 16963 * to A (ilm_orig_ifindex pointing at A) on B accounting 16964 * for the membership from the userland. If we are failing 16965 * over from B to C now, we will find the ones belonging 16966 * to A on B. These don't account for the ill_ipif_up_count. 16967 * They just move from B to C. The check below on 16968 * ilm_orig_ifindex ensures that. 16969 */ 16970 if ((ilm->ilm_orig_ifindex == 16971 from_ill->ill_phyint->phyint_ifindex) && 16972 (IN6_ARE_ADDR_EQUAL(&ipv6_snm, &ilm->ilm_v6addr) || 16973 IN6_ARE_ADDR_EQUAL(&ipv6_all_hosts_mcast, 16974 &ilm->ilm_v6addr))) { 16975 ASSERT(ilm->ilm_refcnt > 0); 16976 count = ilm->ilm_refcnt - from_ill->ill_ipif_up_count; 16977 /* 16978 * For indentation reasons, we are not using a 16979 * "else" here. 16980 */ 16981 if (count == 0) { 16982 ilmp = &ilm->ilm_next; 16983 continue; 16984 } 16985 ilm->ilm_refcnt -= count; 16986 if (new_ilm != NULL) { 16987 /* 16988 * Can find one with the same 16989 * ilm_orig_ifindex, if we are failing 16990 * over to a STANDBY. This happens 16991 * when somebody wants to join a group 16992 * on a STANDBY interface and we 16993 * internally join on a different one. 16994 * If we had joined on from_ill then, a 16995 * failover now will find a new ilm 16996 * with this index. 16997 */ 16998 ip1dbg(("ilm_move_v6: FAILOVER, found" 16999 " new ilm on %s, group address %s\n", 17000 to_ill->ill_name, 17001 inet_ntop(AF_INET6, 17002 &ilm->ilm_v6addr, buf, 17003 sizeof (buf)))); 17004 new_ilm->ilm_refcnt += count; 17005 if (new_ilm->ilm_fmode != MODE_IS_EXCLUDE || 17006 !SLIST_IS_EMPTY(new_ilm->ilm_filter)) { 17007 new_ilm->ilm_is_new = B_TRUE; 17008 } 17009 } else { 17010 new_ilm = (ilm_t *)mi_zalloc(sizeof (ilm_t)); 17011 if (new_ilm == NULL) { 17012 ip0dbg(("ilm_move_v6: FAILOVER of IPv6" 17013 " multicast address %s : from %s to" 17014 " %s failed : ENOMEM \n", 17015 inet_ntop(AF_INET6, 17016 &ilm->ilm_v6addr, buf, 17017 sizeof (buf)), from_ill->ill_name, 17018 to_ill->ill_name)); 17019 ilmp = &ilm->ilm_next; 17020 continue; 17021 } 17022 *new_ilm = *ilm; 17023 new_ilm->ilm_filter = NULL; 17024 new_ilm->ilm_refcnt = count; 17025 new_ilm->ilm_timer = INFINITY; 17026 new_ilm->ilm_rtx.rtx_timer = INFINITY; 17027 new_ilm->ilm_is_new = B_TRUE; 17028 /* 17029 * If the to_ill has not joined this 17030 * group we need to tell the driver in 17031 * ill_send_multicast_reqs. 17032 */ 17033 if (ilm_lookup_ill_v6(to_ill, 17034 &new_ilm->ilm_v6addr, ALL_ZONES) == NULL) 17035 new_ilm->ilm_notify_driver = B_TRUE; 17036 17037 new_ilm->ilm_ill = to_ill; 17038 DTRACE_PROBE3(ill__incr__cnt, (ill_t *), to_ill, 17039 (char *), "ilm", (void *), new_ilm); 17040 to_ill->ill_ilm_cnt++; 17041 17042 /* Add to the to_ill's list */ 17043 new_ilm->ilm_next = to_ill->ill_ilm; 17044 to_ill->ill_ilm = new_ilm; 17045 ASSERT(new_ilm->ilm_ipif == NULL); 17046 } 17047 if (ilm->ilm_refcnt == 0) { 17048 goto bottom; 17049 } else { 17050 new_ilm->ilm_fmode = MODE_IS_EXCLUDE; 17051 CLEAR_SLIST(new_ilm->ilm_filter); 17052 ilmp = &ilm->ilm_next; 17053 } 17054 continue; 17055 } else { 17056 /* 17057 * ifindex = 0 means, move everything pointing at 17058 * from_ill. We are doing this becuase ill has 17059 * either FAILED or became INACTIVE. 17060 * 17061 * As we would like to move things later back to 17062 * from_ill, we want to retain the identity of this 17063 * ilm. Thus, we don't blindly increment the reference 17064 * count on the ilms matching the address alone. We 17065 * need to match on the ilm_orig_index also. new_ilm 17066 * was obtained by matching ilm_orig_index also. 17067 */ 17068 if (new_ilm != NULL) { 17069 /* 17070 * This is possible only if a previous restore 17071 * was incomplete i.e restore to 17072 * ilm_orig_ifindex left some ilms because 17073 * of some failures. Thus when we are failing 17074 * again, we might find our old friends there. 17075 */ 17076 ip1dbg(("ilm_move_v6: FAILOVER, found new ilm" 17077 " on %s, group address %s\n", 17078 to_ill->ill_name, 17079 inet_ntop(AF_INET6, 17080 &ilm->ilm_v6addr, buf, 17081 sizeof (buf)))); 17082 new_ilm->ilm_refcnt += ilm->ilm_refcnt; 17083 if (new_ilm->ilm_fmode != MODE_IS_EXCLUDE || 17084 !SLIST_IS_EMPTY(new_ilm->ilm_filter)) { 17085 new_ilm->ilm_is_new = B_TRUE; 17086 } 17087 } else { 17088 if (from_ill->ill_ilm_walker_cnt != 0) { 17089 new_ilm = (ilm_t *) 17090 mi_zalloc(sizeof (ilm_t)); 17091 if (new_ilm == NULL) { 17092 ip0dbg(("ilm_move_v6: " 17093 "FAILOVER of IPv6" 17094 " multicast address %s : " 17095 "from %s to" 17096 " %s failed : ENOMEM \n", 17097 inet_ntop(AF_INET6, 17098 &ilm->ilm_v6addr, buf, 17099 sizeof (buf)), 17100 from_ill->ill_name, 17101 to_ill->ill_name)); 17102 17103 ilmp = &ilm->ilm_next; 17104 continue; 17105 } 17106 *new_ilm = *ilm; 17107 new_ilm->ilm_filter = NULL; 17108 } else { 17109 *ilmp = ilm->ilm_next; 17110 DTRACE_PROBE3(ill__decr__cnt, 17111 (ill_t *), from_ill, 17112 (char *), "ilm", (void *), ilm); 17113 ASSERT(from_ill->ill_ilm_cnt > 0); 17114 from_ill->ill_ilm_cnt--; 17115 17116 new_ilm = ilm; 17117 } 17118 /* 17119 * If the to_ill has not joined this 17120 * group we need to tell the driver in 17121 * ill_send_multicast_reqs. 17122 */ 17123 if (ilm_lookup_ill_v6(to_ill, 17124 &new_ilm->ilm_v6addr, ALL_ZONES) == NULL) 17125 new_ilm->ilm_notify_driver = B_TRUE; 17126 17127 /* Add to the to_ill's list */ 17128 new_ilm->ilm_next = to_ill->ill_ilm; 17129 to_ill->ill_ilm = new_ilm; 17130 ASSERT(ilm->ilm_ipif == NULL); 17131 new_ilm->ilm_ill = to_ill; 17132 DTRACE_PROBE3(ill__incr__cnt, (ill_t *), to_ill, 17133 (char *), "ilm", (void *), new_ilm); 17134 to_ill->ill_ilm_cnt++; 17135 new_ilm->ilm_is_new = B_TRUE; 17136 } 17137 17138 } 17139 17140 bottom: 17141 /* 17142 * Revert multicast filter state to (EXCLUDE, NULL). 17143 * new_ilm->ilm_is_new should already be set if needed. 17144 */ 17145 new_ilm->ilm_fmode = MODE_IS_EXCLUDE; 17146 CLEAR_SLIST(new_ilm->ilm_filter); 17147 /* 17148 * We allocated/got a new ilm, free the old one. 17149 */ 17150 if (new_ilm != ilm) { 17151 if (from_ill->ill_ilm_walker_cnt == 0) { 17152 *ilmp = ilm->ilm_next; 17153 17154 ASSERT(ilm->ilm_ipif == NULL); /* ipv6 */ 17155 DTRACE_PROBE3(ill__decr__cnt, (ill_t *), 17156 from_ill, (char *), "ilm", (void *), ilm); 17157 ASSERT(from_ill->ill_ilm_cnt > 0); 17158 from_ill->ill_ilm_cnt--; 17159 17160 ilm_inactive(ilm); /* frees this ilm */ 17161 17162 } else { 17163 ilm->ilm_flags |= ILM_DELETED; 17164 from_ill->ill_ilm_cleanup_reqd = 1; 17165 ilmp = &ilm->ilm_next; 17166 } 17167 } 17168 } 17169 } 17170 17171 /* 17172 * Move all the multicast memberships to to_ill. Called when 17173 * an ipif moves from "from_ill" to "to_ill". This function is slightly 17174 * different from IPv6 counterpart as multicast memberships are associated 17175 * with ills in IPv6. This function is called after every ipif is moved 17176 * unlike IPv6, where it is moved only once. 17177 */ 17178 static void 17179 ilm_move_v4(ill_t *from_ill, ill_t *to_ill, ipif_t *ipif) 17180 { 17181 ilm_t *ilm; 17182 ilm_t *ilm_next; 17183 ilm_t *new_ilm; 17184 ilm_t **ilmp; 17185 ip_stack_t *ipst = from_ill->ill_ipst; 17186 17187 ASSERT(MUTEX_HELD(&to_ill->ill_lock)); 17188 ASSERT(MUTEX_HELD(&from_ill->ill_lock)); 17189 ASSERT(RW_WRITE_HELD(&ipst->ips_ill_g_lock)); 17190 17191 ilmp = &from_ill->ill_ilm; 17192 for (ilm = from_ill->ill_ilm; ilm != NULL; ilm = ilm_next) { 17193 ilm_next = ilm->ilm_next; 17194 17195 if (ilm->ilm_flags & ILM_DELETED) { 17196 ilmp = &ilm->ilm_next; 17197 continue; 17198 } 17199 17200 ASSERT(ilm->ilm_ipif != NULL); 17201 17202 if (ilm->ilm_ipif != ipif) { 17203 ilmp = &ilm->ilm_next; 17204 continue; 17205 } 17206 17207 if (V4_PART_OF_V6(ilm->ilm_v6addr) == 17208 htonl(INADDR_ALLHOSTS_GROUP)) { 17209 new_ilm = ilm_lookup_ipif(ipif, 17210 V4_PART_OF_V6(ilm->ilm_v6addr)); 17211 if (new_ilm != NULL) { 17212 new_ilm->ilm_refcnt += ilm->ilm_refcnt; 17213 /* 17214 * We still need to deal with the from_ill. 17215 */ 17216 new_ilm->ilm_is_new = B_TRUE; 17217 new_ilm->ilm_fmode = MODE_IS_EXCLUDE; 17218 CLEAR_SLIST(new_ilm->ilm_filter); 17219 ASSERT(ilm->ilm_ipif == ipif); 17220 ASSERT(ilm->ilm_ipif->ipif_ilm_cnt > 0); 17221 if (from_ill->ill_ilm_walker_cnt == 0) { 17222 DTRACE_PROBE3(ill__decr__cnt, 17223 (ill_t *), from_ill, 17224 (char *), "ilm", (void *), ilm); 17225 ASSERT(ilm->ilm_ipif->ipif_ilm_cnt > 0); 17226 } 17227 goto delete_ilm; 17228 } 17229 /* 17230 * If we could not find one e.g. ipif is 17231 * still down on to_ill, we add this ilm 17232 * on ill_new to preserve the reference 17233 * count. 17234 */ 17235 } 17236 /* 17237 * When ipifs move, ilms always move with it 17238 * to the NEW ill. Thus we should never be 17239 * able to find ilm till we really move it here. 17240 */ 17241 ASSERT(ilm_lookup_ipif(ipif, 17242 V4_PART_OF_V6(ilm->ilm_v6addr)) == NULL); 17243 17244 if (from_ill->ill_ilm_walker_cnt != 0) { 17245 new_ilm = (ilm_t *)mi_zalloc(sizeof (ilm_t)); 17246 if (new_ilm == NULL) { 17247 char buf[INET6_ADDRSTRLEN]; 17248 ip0dbg(("ilm_move_v4: FAILBACK of IPv4" 17249 " multicast address %s : " 17250 "from %s to" 17251 " %s failed : ENOMEM \n", 17252 inet_ntop(AF_INET, 17253 &ilm->ilm_v6addr, buf, 17254 sizeof (buf)), 17255 from_ill->ill_name, 17256 to_ill->ill_name)); 17257 17258 ilmp = &ilm->ilm_next; 17259 continue; 17260 } 17261 *new_ilm = *ilm; 17262 DTRACE_PROBE3(ipif__incr__cnt, (ipif_t *), ipif, 17263 (char *), "ilm", (void *), ilm); 17264 new_ilm->ilm_ipif->ipif_ilm_cnt++; 17265 /* We don't want new_ilm linked to ilm's filter list */ 17266 new_ilm->ilm_filter = NULL; 17267 } else { 17268 /* Remove from the list */ 17269 *ilmp = ilm->ilm_next; 17270 new_ilm = ilm; 17271 } 17272 17273 /* 17274 * If we have never joined this group on the to_ill 17275 * make sure we tell the driver. 17276 */ 17277 if (ilm_lookup_ill_v6(to_ill, &new_ilm->ilm_v6addr, 17278 ALL_ZONES) == NULL) 17279 new_ilm->ilm_notify_driver = B_TRUE; 17280 17281 /* Add to the to_ill's list */ 17282 new_ilm->ilm_next = to_ill->ill_ilm; 17283 to_ill->ill_ilm = new_ilm; 17284 new_ilm->ilm_is_new = B_TRUE; 17285 17286 /* 17287 * Revert multicast filter state to (EXCLUDE, NULL) 17288 */ 17289 new_ilm->ilm_fmode = MODE_IS_EXCLUDE; 17290 CLEAR_SLIST(new_ilm->ilm_filter); 17291 17292 /* 17293 * Delete only if we have allocated a new ilm. 17294 */ 17295 if (new_ilm != ilm) { 17296 delete_ilm: 17297 if (from_ill->ill_ilm_walker_cnt == 0) { 17298 /* Remove from the list */ 17299 *ilmp = ilm->ilm_next; 17300 ilm->ilm_next = NULL; 17301 DTRACE_PROBE3(ipif__decr__cnt, 17302 (ipif_t *), ilm->ilm_ipif, 17303 (char *), "ilm", (void *), ilm); 17304 ASSERT(ilm->ilm_ipif->ipif_ilm_cnt > 0); 17305 ilm->ilm_ipif->ipif_ilm_cnt--; 17306 ilm_inactive(ilm); 17307 } else { 17308 ilm->ilm_flags |= ILM_DELETED; 17309 from_ill->ill_ilm_cleanup_reqd = 1; 17310 ilmp = &ilm->ilm_next; 17311 } 17312 } 17313 } 17314 } 17315 17316 static uint_t 17317 ipif_get_id(ill_t *ill, uint_t id) 17318 { 17319 uint_t unit; 17320 ipif_t *tipif; 17321 boolean_t found = B_FALSE; 17322 ip_stack_t *ipst = ill->ill_ipst; 17323 17324 /* 17325 * During failback, we want to go back to the same id 17326 * instead of the smallest id so that the original 17327 * configuration is maintained. id is non-zero in that 17328 * case. 17329 */ 17330 if (id != 0) { 17331 /* 17332 * While failing back, if we still have an ipif with 17333 * MAX_ADDRS_PER_IF, it means this will be replaced 17334 * as soon as we return from this function. It was 17335 * to set to MAX_ADDRS_PER_IF by the caller so that 17336 * we can choose the smallest id. Thus we return zero 17337 * in that case ignoring the hint. 17338 */ 17339 if (ill->ill_ipif->ipif_id == MAX_ADDRS_PER_IF) 17340 return (0); 17341 for (tipif = ill->ill_ipif; tipif != NULL; 17342 tipif = tipif->ipif_next) { 17343 if (tipif->ipif_id == id) { 17344 found = B_TRUE; 17345 break; 17346 } 17347 } 17348 /* 17349 * If somebody already plumbed another logical 17350 * with the same id, we won't be able to find it. 17351 */ 17352 if (!found) 17353 return (id); 17354 } 17355 for (unit = 0; unit <= ipst->ips_ip_addrs_per_if; unit++) { 17356 found = B_FALSE; 17357 for (tipif = ill->ill_ipif; tipif != NULL; 17358 tipif = tipif->ipif_next) { 17359 if (tipif->ipif_id == unit) { 17360 found = B_TRUE; 17361 break; 17362 } 17363 } 17364 if (!found) 17365 break; 17366 } 17367 return (unit); 17368 } 17369 17370 /* ARGSUSED */ 17371 static int 17372 ipif_move(ipif_t *ipif, ill_t *to_ill, queue_t *q, mblk_t *mp, 17373 ipif_t **rep_ipif_ptr) 17374 { 17375 ill_t *from_ill; 17376 ipif_t *rep_ipif; 17377 uint_t unit; 17378 int err = 0; 17379 ipif_t *to_ipif; 17380 struct iocblk *iocp; 17381 boolean_t failback_cmd; 17382 boolean_t remove_ipif; 17383 int rc; 17384 ip_stack_t *ipst; 17385 17386 ASSERT(IAM_WRITER_ILL(to_ill)); 17387 ASSERT(IAM_WRITER_IPIF(ipif)); 17388 17389 iocp = (struct iocblk *)mp->b_rptr; 17390 failback_cmd = (iocp->ioc_cmd == SIOCLIFFAILBACK); 17391 remove_ipif = B_FALSE; 17392 17393 from_ill = ipif->ipif_ill; 17394 ipst = from_ill->ill_ipst; 17395 17396 ASSERT(MUTEX_HELD(&to_ill->ill_lock)); 17397 ASSERT(MUTEX_HELD(&from_ill->ill_lock)); 17398 ASSERT(RW_WRITE_HELD(&ipst->ips_ill_g_lock)); 17399 17400 /* 17401 * Don't move LINK LOCAL addresses as they are tied to 17402 * physical interface. 17403 */ 17404 if (from_ill->ill_isv6 && 17405 IN6_IS_ADDR_LINKLOCAL(&ipif->ipif_v6lcl_addr)) { 17406 ipif->ipif_was_up = B_FALSE; 17407 IPIF_UNMARK_MOVING(ipif); 17408 return (0); 17409 } 17410 17411 /* 17412 * We set the ipif_id to maximum so that the search for 17413 * ipif_id will pick the lowest number i.e 0 in the 17414 * following 2 cases : 17415 * 17416 * 1) We have a replacement ipif at the head of to_ill. 17417 * We can't remove it yet as we can exceed ip_addrs_per_if 17418 * on to_ill and hence the MOVE might fail. We want to 17419 * remove it only if we could move the ipif. Thus, by 17420 * setting it to the MAX value, we make the search in 17421 * ipif_get_id return the zeroth id. 17422 * 17423 * 2) When DR pulls out the NIC and re-plumbs the interface, 17424 * we might just have a zero address plumbed on the ipif 17425 * with zero id in the case of IPv4. We remove that while 17426 * doing the failback. We want to remove it only if we 17427 * could move the ipif. Thus, by setting it to the MAX 17428 * value, we make the search in ipif_get_id return the 17429 * zeroth id. 17430 * 17431 * Both (1) and (2) are done only when when we are moving 17432 * an ipif (either due to failover/failback) which originally 17433 * belonged to this interface i.e the ipif_orig_ifindex is 17434 * the same as to_ill's ifindex. This is needed so that 17435 * FAILOVER from A -> B ( A failed) followed by FAILOVER 17436 * from B -> A (B is being removed from the group) and 17437 * FAILBACK from A -> B restores the original configuration. 17438 * Without the check for orig_ifindex, the second FAILOVER 17439 * could make the ipif belonging to B replace the A's zeroth 17440 * ipif and the subsequent failback re-creating the replacement 17441 * ipif again. 17442 * 17443 * NOTE : We created the replacement ipif when we did a 17444 * FAILOVER (See below). We could check for FAILBACK and 17445 * then look for replacement ipif to be removed. But we don't 17446 * want to do that because we wan't to allow the possibility 17447 * of a FAILOVER from A -> B (which creates the replacement ipif), 17448 * followed by a *FAILOVER* from B -> A instead of a FAILBACK 17449 * from B -> A. 17450 */ 17451 to_ipif = to_ill->ill_ipif; 17452 if ((to_ill->ill_phyint->phyint_ifindex == 17453 ipif->ipif_orig_ifindex) && 17454 to_ipif->ipif_replace_zero) { 17455 ASSERT(to_ipif->ipif_id == 0); 17456 remove_ipif = B_TRUE; 17457 to_ipif->ipif_id = MAX_ADDRS_PER_IF; 17458 } 17459 /* 17460 * Find the lowest logical unit number on the to_ill. 17461 * If we are failing back, try to get the original id 17462 * rather than the lowest one so that the original 17463 * configuration is maintained. 17464 * 17465 * XXX need a better scheme for this. 17466 */ 17467 if (failback_cmd) { 17468 unit = ipif_get_id(to_ill, ipif->ipif_orig_ipifid); 17469 } else { 17470 unit = ipif_get_id(to_ill, 0); 17471 } 17472 17473 /* Reset back to zero in case we fail below */ 17474 if (to_ipif->ipif_id == MAX_ADDRS_PER_IF) 17475 to_ipif->ipif_id = 0; 17476 17477 if (unit == ipst->ips_ip_addrs_per_if) { 17478 ipif->ipif_was_up = B_FALSE; 17479 IPIF_UNMARK_MOVING(ipif); 17480 return (EINVAL); 17481 } 17482 17483 /* 17484 * ipif is ready to move from "from_ill" to "to_ill". 17485 * 17486 * 1) If we are moving ipif with id zero, create a 17487 * replacement ipif for this ipif on from_ill. If this fails 17488 * fail the MOVE operation. 17489 * 17490 * 2) Remove the replacement ipif on to_ill if any. 17491 * We could remove the replacement ipif when we are moving 17492 * the ipif with id zero. But what if somebody already 17493 * unplumbed it ? Thus we always remove it if it is present. 17494 * We want to do it only if we are sure we are going to 17495 * move the ipif to to_ill which is why there are no 17496 * returns due to error till ipif is linked to to_ill. 17497 * Note that the first ipif that we failback will always 17498 * be zero if it is present. 17499 */ 17500 if (ipif->ipif_id == 0) { 17501 ipaddr_t inaddr_any = INADDR_ANY; 17502 17503 rep_ipif = (ipif_t *)mi_alloc(sizeof (ipif_t), BPRI_MED); 17504 if (rep_ipif == NULL) { 17505 ipif->ipif_was_up = B_FALSE; 17506 IPIF_UNMARK_MOVING(ipif); 17507 return (ENOMEM); 17508 } 17509 *rep_ipif = ipif_zero; 17510 /* 17511 * Before we put the ipif on the list, store the addresses 17512 * as mapped addresses as some of the ioctls e.g SIOCGIFADDR 17513 * assumes so. This logic is not any different from what 17514 * ipif_allocate does. 17515 */ 17516 IN6_IPADDR_TO_V4MAPPED(inaddr_any, 17517 &rep_ipif->ipif_v6lcl_addr); 17518 IN6_IPADDR_TO_V4MAPPED(inaddr_any, 17519 &rep_ipif->ipif_v6src_addr); 17520 IN6_IPADDR_TO_V4MAPPED(inaddr_any, 17521 &rep_ipif->ipif_v6subnet); 17522 IN6_IPADDR_TO_V4MAPPED(inaddr_any, 17523 &rep_ipif->ipif_v6net_mask); 17524 IN6_IPADDR_TO_V4MAPPED(inaddr_any, 17525 &rep_ipif->ipif_v6brd_addr); 17526 IN6_IPADDR_TO_V4MAPPED(inaddr_any, 17527 &rep_ipif->ipif_v6pp_dst_addr); 17528 /* 17529 * We mark IPIF_NOFAILOVER so that this can never 17530 * move. 17531 */ 17532 rep_ipif->ipif_flags = ipif->ipif_flags | IPIF_NOFAILOVER; 17533 rep_ipif->ipif_flags &= ~IPIF_UP & ~IPIF_DUPLICATE; 17534 rep_ipif->ipif_replace_zero = B_TRUE; 17535 mutex_init(&rep_ipif->ipif_saved_ire_lock, NULL, 17536 MUTEX_DEFAULT, NULL); 17537 rep_ipif->ipif_id = 0; 17538 rep_ipif->ipif_ire_type = ipif->ipif_ire_type; 17539 rep_ipif->ipif_ill = from_ill; 17540 rep_ipif->ipif_orig_ifindex = 17541 from_ill->ill_phyint->phyint_ifindex; 17542 /* Insert at head */ 17543 rep_ipif->ipif_next = from_ill->ill_ipif; 17544 from_ill->ill_ipif = rep_ipif; 17545 /* 17546 * We don't really care to let apps know about 17547 * this interface. 17548 */ 17549 } 17550 17551 if (remove_ipif) { 17552 /* 17553 * We set to a max value above for this case to get 17554 * id zero. ASSERT that we did get one. 17555 */ 17556 ASSERT((to_ipif->ipif_id == 0) && (unit == 0)); 17557 rep_ipif = to_ipif; 17558 to_ill->ill_ipif = rep_ipif->ipif_next; 17559 rep_ipif->ipif_next = NULL; 17560 /* 17561 * If some apps scanned and find this interface, 17562 * it is time to let them know, so that they can 17563 * delete it. 17564 */ 17565 17566 *rep_ipif_ptr = rep_ipif; 17567 } 17568 17569 /* Get it out of the ILL interface list. */ 17570 ipif_remove(ipif, B_FALSE); 17571 17572 /* Assign the new ill */ 17573 ipif->ipif_ill = to_ill; 17574 ipif->ipif_id = unit; 17575 /* id has already been checked */ 17576 rc = ipif_insert(ipif, B_FALSE, B_FALSE); 17577 ASSERT(rc == 0); 17578 /* Let SCTP update its list */ 17579 sctp_move_ipif(ipif, from_ill, to_ill); 17580 /* 17581 * Handle the failover and failback of ipif_t between 17582 * ill_t that have differing maximum mtu values. 17583 */ 17584 if (ipif->ipif_mtu > to_ill->ill_max_mtu) { 17585 if (ipif->ipif_saved_mtu == 0) { 17586 /* 17587 * As this ipif_t is moving to an ill_t 17588 * that has a lower ill_max_mtu, its 17589 * ipif_mtu needs to be saved so it can 17590 * be restored during failback or during 17591 * failover to an ill_t which has a 17592 * higher ill_max_mtu. 17593 */ 17594 ipif->ipif_saved_mtu = ipif->ipif_mtu; 17595 ipif->ipif_mtu = to_ill->ill_max_mtu; 17596 } else { 17597 /* 17598 * The ipif_t is, once again, moving to 17599 * an ill_t that has a lower maximum mtu 17600 * value. 17601 */ 17602 ipif->ipif_mtu = to_ill->ill_max_mtu; 17603 } 17604 } else if (ipif->ipif_mtu < to_ill->ill_max_mtu && 17605 ipif->ipif_saved_mtu != 0) { 17606 /* 17607 * The mtu of this ipif_t had to be reduced 17608 * during an earlier failover; this is an 17609 * opportunity for it to be increased (either as 17610 * part of another failover or a failback). 17611 */ 17612 if (ipif->ipif_saved_mtu <= to_ill->ill_max_mtu) { 17613 ipif->ipif_mtu = ipif->ipif_saved_mtu; 17614 ipif->ipif_saved_mtu = 0; 17615 } else { 17616 ipif->ipif_mtu = to_ill->ill_max_mtu; 17617 } 17618 } 17619 17620 /* 17621 * We preserve all the other fields of the ipif including 17622 * ipif_saved_ire_mp. The routes that are saved here will 17623 * be recreated on the new interface and back on the old 17624 * interface when we move back. 17625 */ 17626 ASSERT(ipif->ipif_arp_del_mp == NULL); 17627 17628 return (err); 17629 } 17630 17631 static int 17632 ipif_move_all(ill_t *from_ill, ill_t *to_ill, queue_t *q, mblk_t *mp, 17633 int ifindex, ipif_t **rep_ipif_ptr) 17634 { 17635 ipif_t *mipif; 17636 ipif_t *ipif_next; 17637 int err; 17638 17639 /* 17640 * We don't really try to MOVE back things if some of the 17641 * operations fail. The daemon will take care of moving again 17642 * later on. 17643 */ 17644 for (mipif = from_ill->ill_ipif; mipif != NULL; mipif = ipif_next) { 17645 ipif_next = mipif->ipif_next; 17646 if (!(mipif->ipif_flags & IPIF_NOFAILOVER) && 17647 (ifindex == 0 || ifindex == mipif->ipif_orig_ifindex)) { 17648 17649 err = ipif_move(mipif, to_ill, q, mp, rep_ipif_ptr); 17650 17651 /* 17652 * When the MOVE fails, it is the job of the 17653 * application to take care of this properly 17654 * i.e try again if it is ENOMEM. 17655 */ 17656 if (mipif->ipif_ill != from_ill) { 17657 /* 17658 * ipif has moved. 17659 * 17660 * Move the multicast memberships associated 17661 * with this ipif to the new ill. For IPv6, we 17662 * do it once after all the ipifs are moved 17663 * (in ill_move) as they are not associated 17664 * with ipifs. 17665 * 17666 * We need to move the ilms as the ipif has 17667 * already been moved to a new ill even 17668 * in the case of errors. Neither 17669 * ilm_free(ipif) will find the ilm 17670 * when somebody unplumbs this ipif nor 17671 * ilm_delete(ilm) will be able to find the 17672 * ilm, if we don't move now. 17673 */ 17674 if (!from_ill->ill_isv6) 17675 ilm_move_v4(from_ill, to_ill, mipif); 17676 } 17677 17678 if (err != 0) 17679 return (err); 17680 } 17681 } 17682 return (0); 17683 } 17684 17685 static int 17686 ill_move(ill_t *from_ill, ill_t *to_ill, queue_t *q, mblk_t *mp) 17687 { 17688 int ifindex; 17689 int err; 17690 struct iocblk *iocp; 17691 ipif_t *ipif; 17692 ipif_t *rep_ipif_ptr = NULL; 17693 ipif_t *from_ipif = NULL; 17694 boolean_t check_rep_if = B_FALSE; 17695 ip_stack_t *ipst = from_ill->ill_ipst; 17696 17697 iocp = (struct iocblk *)mp->b_rptr; 17698 if (iocp->ioc_cmd == SIOCLIFFAILOVER) { 17699 /* 17700 * Move everything pointing at from_ill to to_ill. 17701 * We acheive this by passing in 0 as ifindex. 17702 */ 17703 ifindex = 0; 17704 } else { 17705 /* 17706 * Move everything pointing at from_ill whose original 17707 * ifindex of connp, ipif, ilm points at to_ill->ill_index. 17708 * We acheive this by passing in ifindex rather than 0. 17709 * Multicast vifs, ilgs move implicitly because ipifs move. 17710 */ 17711 ASSERT(iocp->ioc_cmd == SIOCLIFFAILBACK); 17712 ifindex = to_ill->ill_phyint->phyint_ifindex; 17713 } 17714 17715 /* 17716 * Determine if there is at least one ipif that would move from 17717 * 'from_ill' to 'to_ill'. If so, it is possible that the replacement 17718 * ipif (if it exists) on the to_ill would be consumed as a result of 17719 * the move, in which case we need to quiesce the replacement ipif also. 17720 */ 17721 for (from_ipif = from_ill->ill_ipif; from_ipif != NULL; 17722 from_ipif = from_ipif->ipif_next) { 17723 if (((ifindex == 0) || 17724 (ifindex == from_ipif->ipif_orig_ifindex)) && 17725 !(from_ipif->ipif_flags & IPIF_NOFAILOVER)) { 17726 check_rep_if = B_TRUE; 17727 break; 17728 } 17729 } 17730 17731 ill_down_ipifs(from_ill, mp, ifindex, B_TRUE); 17732 17733 GRAB_ILL_LOCKS(from_ill, to_ill); 17734 if ((ipif = ill_quiescent_to_move(from_ill)) != NULL) { 17735 (void) ipsq_pending_mp_add(NULL, ipif, q, 17736 mp, ILL_MOVE_OK); 17737 RELEASE_ILL_LOCKS(from_ill, to_ill); 17738 return (EINPROGRESS); 17739 } 17740 17741 /* Check if the replacement ipif is quiescent to delete */ 17742 if (check_rep_if && IPIF_REPL_CHECK(to_ill->ill_ipif, 17743 (iocp->ioc_cmd == SIOCLIFFAILBACK))) { 17744 to_ill->ill_ipif->ipif_state_flags |= 17745 IPIF_MOVING | IPIF_CHANGING; 17746 if ((ipif = ill_quiescent_to_move(to_ill)) != NULL) { 17747 (void) ipsq_pending_mp_add(NULL, ipif, q, 17748 mp, ILL_MOVE_OK); 17749 RELEASE_ILL_LOCKS(from_ill, to_ill); 17750 return (EINPROGRESS); 17751 } 17752 } 17753 RELEASE_ILL_LOCKS(from_ill, to_ill); 17754 17755 ASSERT(!MUTEX_HELD(&to_ill->ill_lock)); 17756 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 17757 GRAB_ILL_LOCKS(from_ill, to_ill); 17758 err = ipif_move_all(from_ill, to_ill, q, mp, ifindex, &rep_ipif_ptr); 17759 17760 /* ilm_move is done inside ipif_move for IPv4 */ 17761 if (err == 0 && from_ill->ill_isv6) 17762 ilm_move_v6(from_ill, to_ill, ifindex); 17763 17764 RELEASE_ILL_LOCKS(from_ill, to_ill); 17765 rw_exit(&ipst->ips_ill_g_lock); 17766 17767 /* 17768 * send rts messages and multicast messages. 17769 */ 17770 if (rep_ipif_ptr != NULL) { 17771 if (rep_ipif_ptr->ipif_recovery_id != 0) { 17772 (void) untimeout(rep_ipif_ptr->ipif_recovery_id); 17773 rep_ipif_ptr->ipif_recovery_id = 0; 17774 } 17775 ip_rts_ifmsg(rep_ipif_ptr); 17776 ip_rts_newaddrmsg(RTM_DELETE, 0, rep_ipif_ptr); 17777 #ifdef DEBUG 17778 ipif_trace_cleanup(rep_ipif_ptr); 17779 #endif 17780 mi_free(rep_ipif_ptr); 17781 } 17782 17783 conn_move_ill(from_ill, to_ill, ifindex); 17784 17785 return (err); 17786 } 17787 17788 /* 17789 * Used to extract arguments for FAILOVER/FAILBACK ioctls. 17790 * Also checks for the validity of the arguments. 17791 * Note: We are already exclusive inside the from group. 17792 * It is upto the caller to release refcnt on the to_ill's. 17793 */ 17794 static int 17795 ip_extract_move_args(queue_t *q, mblk_t *mp, ill_t **ill_from_v4, 17796 ill_t **ill_from_v6, ill_t **ill_to_v4, ill_t **ill_to_v6) 17797 { 17798 int dst_index; 17799 ipif_t *ipif_v4, *ipif_v6; 17800 struct lifreq *lifr; 17801 mblk_t *mp1; 17802 boolean_t exists; 17803 sin_t *sin; 17804 int err = 0; 17805 ip_stack_t *ipst; 17806 17807 if (CONN_Q(q)) 17808 ipst = CONNQ_TO_IPST(q); 17809 else 17810 ipst = ILLQ_TO_IPST(q); 17811 17812 if ((mp1 = mp->b_cont) == NULL) 17813 return (EPROTO); 17814 17815 if ((mp1 = mp1->b_cont) == NULL) 17816 return (EPROTO); 17817 17818 lifr = (struct lifreq *)mp1->b_rptr; 17819 sin = (sin_t *)&lifr->lifr_addr; 17820 17821 /* 17822 * We operate on both IPv4 and IPv6. Thus, we don't allow IPv4/IPv6 17823 * specific operations. 17824 */ 17825 if (sin->sin_family != AF_UNSPEC) 17826 return (EINVAL); 17827 17828 /* 17829 * Get ipif with id 0. We are writer on the from ill. So we can pass 17830 * NULLs for the last 4 args and we know the lookup won't fail 17831 * with EINPROGRESS. 17832 */ 17833 ipif_v4 = ipif_lookup_on_name(lifr->lifr_name, 17834 mi_strlen(lifr->lifr_name), B_FALSE, &exists, B_FALSE, 17835 ALL_ZONES, NULL, NULL, NULL, NULL, ipst); 17836 ipif_v6 = ipif_lookup_on_name(lifr->lifr_name, 17837 mi_strlen(lifr->lifr_name), B_FALSE, &exists, B_TRUE, 17838 ALL_ZONES, NULL, NULL, NULL, NULL, ipst); 17839 17840 if (ipif_v4 == NULL && ipif_v6 == NULL) 17841 return (ENXIO); 17842 17843 if (ipif_v4 != NULL) { 17844 ASSERT(ipif_v4->ipif_refcnt != 0); 17845 if (ipif_v4->ipif_id != 0) { 17846 err = EINVAL; 17847 goto done; 17848 } 17849 17850 ASSERT(IAM_WRITER_IPIF(ipif_v4)); 17851 *ill_from_v4 = ipif_v4->ipif_ill; 17852 } 17853 17854 if (ipif_v6 != NULL) { 17855 ASSERT(ipif_v6->ipif_refcnt != 0); 17856 if (ipif_v6->ipif_id != 0) { 17857 err = EINVAL; 17858 goto done; 17859 } 17860 17861 ASSERT(IAM_WRITER_IPIF(ipif_v6)); 17862 *ill_from_v6 = ipif_v6->ipif_ill; 17863 } 17864 17865 err = 0; 17866 dst_index = lifr->lifr_movetoindex; 17867 *ill_to_v4 = ill_lookup_on_ifindex(dst_index, B_FALSE, 17868 q, mp, ip_process_ioctl, &err, ipst); 17869 if (err != 0) { 17870 /* 17871 * A move may be in progress, EINPROGRESS looking up the "to" 17872 * ill means changes already done to the "from" ipsq need to 17873 * be undone to avoid potential deadlocks. 17874 * 17875 * ENXIO will usually be because there is only v6 on the ill, 17876 * that's not treated as an error unless an ENXIO is also 17877 * seen when looking up the v6 "to" ill. 17878 * 17879 * If EINPROGRESS, the mp has been enqueued and can not be 17880 * used to look up the v6 "to" ill, but a preemptive clean 17881 * up of changes to the v6 "from" ipsq is done. 17882 */ 17883 if (err == EINPROGRESS) { 17884 if (*ill_from_v4 != NULL) { 17885 ill_t *from_ill; 17886 ipsq_t *from_ipsq; 17887 17888 from_ill = ipif_v4->ipif_ill; 17889 from_ipsq = from_ill->ill_phyint->phyint_ipsq; 17890 17891 mutex_enter(&from_ipsq->ipsq_lock); 17892 from_ipsq->ipsq_current_ipif = NULL; 17893 mutex_exit(&from_ipsq->ipsq_lock); 17894 } 17895 if (*ill_from_v6 != NULL) { 17896 ill_t *from_ill; 17897 ipsq_t *from_ipsq; 17898 17899 from_ill = ipif_v6->ipif_ill; 17900 from_ipsq = from_ill->ill_phyint->phyint_ipsq; 17901 17902 mutex_enter(&from_ipsq->ipsq_lock); 17903 from_ipsq->ipsq_current_ipif = NULL; 17904 mutex_exit(&from_ipsq->ipsq_lock); 17905 } 17906 goto done; 17907 } 17908 ASSERT(err == ENXIO); 17909 err = 0; 17910 } 17911 17912 *ill_to_v6 = ill_lookup_on_ifindex(dst_index, B_TRUE, 17913 q, mp, ip_process_ioctl, &err, ipst); 17914 if (err != 0) { 17915 /* 17916 * A move may be in progress, EINPROGRESS looking up the "to" 17917 * ill means changes already done to the "from" ipsq need to 17918 * be undone to avoid potential deadlocks. 17919 */ 17920 if (err == EINPROGRESS) { 17921 if (*ill_from_v6 != NULL) { 17922 ill_t *from_ill; 17923 ipsq_t *from_ipsq; 17924 17925 from_ill = ipif_v6->ipif_ill; 17926 from_ipsq = from_ill->ill_phyint->phyint_ipsq; 17927 17928 mutex_enter(&from_ipsq->ipsq_lock); 17929 from_ipsq->ipsq_current_ipif = NULL; 17930 mutex_exit(&from_ipsq->ipsq_lock); 17931 } 17932 goto done; 17933 } 17934 ASSERT(err == ENXIO); 17935 17936 /* Both v4 and v6 lookup failed */ 17937 if (*ill_to_v4 == NULL) { 17938 err = ENXIO; 17939 goto done; 17940 } 17941 err = 0; 17942 } 17943 17944 /* 17945 * If we have something to MOVE i.e "from" not NULL, 17946 * "to" should be non-NULL. 17947 */ 17948 if ((*ill_from_v4 != NULL && *ill_to_v4 == NULL) || 17949 (*ill_from_v6 != NULL && *ill_to_v6 == NULL)) { 17950 err = EINVAL; 17951 } 17952 17953 done: 17954 if (ipif_v4 != NULL) 17955 ipif_refrele(ipif_v4); 17956 if (ipif_v6 != NULL) 17957 ipif_refrele(ipif_v6); 17958 return (err); 17959 } 17960 17961 /* 17962 * FAILOVER and FAILBACK are modelled as MOVE operations. 17963 * 17964 * We don't check whether the MOVE is within the same group or 17965 * not, because this ioctl can be used as a generic mechanism 17966 * to failover from interface A to B, though things will function 17967 * only if they are really part of the same group. Moreover, 17968 * all ipifs may be down and hence temporarily out of the group. 17969 * 17970 * ipif's that need to be moved are first brought down; V4 ipifs are brought 17971 * down first and then V6. For each we wait for the ipif's to become quiescent. 17972 * Bringing down the ipifs ensures that all ires pointing to these ipifs's 17973 * have been deleted and there are no active references. Once quiescent the 17974 * ipif's are moved and brought up on the new ill. 17975 * 17976 * Normally the source ill and destination ill belong to the same IPMP group 17977 * and hence the same ipsq_t. In the event they don't belong to the same 17978 * same group the two ipsq's are first merged into one ipsq - that of the 17979 * to_ill. The multicast memberships on the source and destination ill cannot 17980 * change during the move operation since multicast joins/leaves also have to 17981 * execute on the same ipsq and are hence serialized. 17982 */ 17983 /* ARGSUSED */ 17984 int 17985 ip_sioctl_move(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 17986 ip_ioctl_cmd_t *ipip, void *ifreq) 17987 { 17988 ill_t *ill_to_v4 = NULL; 17989 ill_t *ill_to_v6 = NULL; 17990 ill_t *ill_from_v4 = NULL; 17991 ill_t *ill_from_v6 = NULL; 17992 int err = 0; 17993 17994 /* 17995 * setup from and to ill's, we can get EINPROGRESS only for 17996 * to_ill's. 17997 */ 17998 err = ip_extract_move_args(q, mp, &ill_from_v4, &ill_from_v6, 17999 &ill_to_v4, &ill_to_v6); 18000 18001 if (err != 0) { 18002 ip0dbg(("ip_sioctl_move: extract args failed\n")); 18003 goto done; 18004 } 18005 18006 /* 18007 * nothing to do. 18008 */ 18009 if ((ill_from_v4 != NULL) && (ill_from_v4 == ill_to_v4)) { 18010 goto done; 18011 } 18012 18013 /* 18014 * nothing to do. 18015 */ 18016 if ((ill_from_v6 != NULL) && (ill_from_v6 == ill_to_v6)) { 18017 goto done; 18018 } 18019 18020 /* 18021 * Mark the ill as changing. 18022 * ILL_CHANGING flag is cleared when the ipif's are brought up 18023 * in ill_up_ipifs in case of error they are cleared below. 18024 */ 18025 18026 GRAB_ILL_LOCKS(ill_from_v4, ill_from_v6); 18027 if (ill_from_v4 != NULL) 18028 ill_from_v4->ill_state_flags |= ILL_CHANGING; 18029 if (ill_from_v6 != NULL) 18030 ill_from_v6->ill_state_flags |= ILL_CHANGING; 18031 RELEASE_ILL_LOCKS(ill_from_v4, ill_from_v6); 18032 18033 /* 18034 * Make sure that both src and dst are 18035 * in the same syncq group. If not make it happen. 18036 * We are not holding any locks because we are the writer 18037 * on the from_ipsq and we will hold locks in ill_merge_groups 18038 * to protect to_ipsq against changing. 18039 */ 18040 if (ill_from_v4 != NULL) { 18041 if (ill_from_v4->ill_phyint->phyint_ipsq != 18042 ill_to_v4->ill_phyint->phyint_ipsq) { 18043 err = ill_merge_groups(ill_from_v4, ill_to_v4, 18044 NULL, mp, q); 18045 goto err_ret; 18046 18047 } 18048 ASSERT(!MUTEX_HELD(&ill_to_v4->ill_lock)); 18049 } else { 18050 18051 if (ill_from_v6->ill_phyint->phyint_ipsq != 18052 ill_to_v6->ill_phyint->phyint_ipsq) { 18053 err = ill_merge_groups(ill_from_v6, ill_to_v6, 18054 NULL, mp, q); 18055 goto err_ret; 18056 18057 } 18058 ASSERT(!MUTEX_HELD(&ill_to_v6->ill_lock)); 18059 } 18060 18061 /* 18062 * Now that the ipsq's have been merged and we are the writer 18063 * lets mark to_ill as changing as well. 18064 */ 18065 18066 GRAB_ILL_LOCKS(ill_to_v4, ill_to_v6); 18067 if (ill_to_v4 != NULL) 18068 ill_to_v4->ill_state_flags |= ILL_CHANGING; 18069 if (ill_to_v6 != NULL) 18070 ill_to_v6->ill_state_flags |= ILL_CHANGING; 18071 RELEASE_ILL_LOCKS(ill_to_v4, ill_to_v6); 18072 18073 /* 18074 * Its ok for us to proceed with the move even if 18075 * ill_pending_mp is non null on one of the from ill's as the reply 18076 * should not be looking at the ipif, it should only care about the 18077 * ill itself. 18078 */ 18079 18080 /* 18081 * lets move ipv4 first. 18082 */ 18083 if (ill_from_v4 != NULL) { 18084 ASSERT(IAM_WRITER_ILL(ill_to_v4)); 18085 ill_from_v4->ill_move_in_progress = B_TRUE; 18086 ill_to_v4->ill_move_in_progress = B_TRUE; 18087 ill_to_v4->ill_move_peer = ill_from_v4; 18088 ill_from_v4->ill_move_peer = ill_to_v4; 18089 err = ill_move(ill_from_v4, ill_to_v4, q, mp); 18090 } 18091 18092 /* 18093 * Now lets move ipv6. 18094 */ 18095 if (err == 0 && ill_from_v6 != NULL) { 18096 ASSERT(IAM_WRITER_ILL(ill_to_v6)); 18097 ill_from_v6->ill_move_in_progress = B_TRUE; 18098 ill_to_v6->ill_move_in_progress = B_TRUE; 18099 ill_to_v6->ill_move_peer = ill_from_v6; 18100 ill_from_v6->ill_move_peer = ill_to_v6; 18101 err = ill_move(ill_from_v6, ill_to_v6, q, mp); 18102 } 18103 18104 err_ret: 18105 /* 18106 * EINPROGRESS means we are waiting for the ipif's that need to be 18107 * moved to become quiescent. 18108 */ 18109 if (err == EINPROGRESS) { 18110 goto done; 18111 } 18112 18113 /* 18114 * if err is set ill_up_ipifs will not be called 18115 * lets clear the flags. 18116 */ 18117 18118 GRAB_ILL_LOCKS(ill_to_v4, ill_to_v6); 18119 GRAB_ILL_LOCKS(ill_from_v4, ill_from_v6); 18120 /* 18121 * Some of the clearing may be redundant. But it is simple 18122 * not making any extra checks. 18123 */ 18124 if (ill_from_v6 != NULL) { 18125 ill_from_v6->ill_move_in_progress = B_FALSE; 18126 ill_from_v6->ill_move_peer = NULL; 18127 ill_from_v6->ill_state_flags &= ~ILL_CHANGING; 18128 } 18129 if (ill_from_v4 != NULL) { 18130 ill_from_v4->ill_move_in_progress = B_FALSE; 18131 ill_from_v4->ill_move_peer = NULL; 18132 ill_from_v4->ill_state_flags &= ~ILL_CHANGING; 18133 } 18134 if (ill_to_v6 != NULL) { 18135 ill_to_v6->ill_move_in_progress = B_FALSE; 18136 ill_to_v6->ill_move_peer = NULL; 18137 ill_to_v6->ill_state_flags &= ~ILL_CHANGING; 18138 } 18139 if (ill_to_v4 != NULL) { 18140 ill_to_v4->ill_move_in_progress = B_FALSE; 18141 ill_to_v4->ill_move_peer = NULL; 18142 ill_to_v4->ill_state_flags &= ~ILL_CHANGING; 18143 } 18144 18145 /* 18146 * Check for setting INACTIVE, if STANDBY is set and FAILED is not set. 18147 * Do this always to maintain proper state i.e even in case of errors. 18148 * As phyint_inactive looks at both v4 and v6 interfaces, 18149 * we need not call on both v4 and v6 interfaces. 18150 */ 18151 if (ill_from_v4 != NULL) { 18152 if ((ill_from_v4->ill_phyint->phyint_flags & 18153 (PHYI_STANDBY | PHYI_FAILED)) == PHYI_STANDBY) { 18154 phyint_inactive(ill_from_v4->ill_phyint); 18155 } 18156 } else if (ill_from_v6 != NULL) { 18157 if ((ill_from_v6->ill_phyint->phyint_flags & 18158 (PHYI_STANDBY | PHYI_FAILED)) == PHYI_STANDBY) { 18159 phyint_inactive(ill_from_v6->ill_phyint); 18160 } 18161 } 18162 18163 if (ill_to_v4 != NULL) { 18164 if (ill_to_v4->ill_phyint->phyint_flags & PHYI_INACTIVE) { 18165 ill_to_v4->ill_phyint->phyint_flags &= ~PHYI_INACTIVE; 18166 } 18167 } else if (ill_to_v6 != NULL) { 18168 if (ill_to_v6->ill_phyint->phyint_flags & PHYI_INACTIVE) { 18169 ill_to_v6->ill_phyint->phyint_flags &= ~PHYI_INACTIVE; 18170 } 18171 } 18172 18173 RELEASE_ILL_LOCKS(ill_to_v4, ill_to_v6); 18174 RELEASE_ILL_LOCKS(ill_from_v4, ill_from_v6); 18175 18176 no_err: 18177 /* 18178 * lets bring the interfaces up on the to_ill. 18179 */ 18180 if (err == 0) { 18181 err = ill_up_ipifs(ill_to_v4 == NULL ? ill_to_v6:ill_to_v4, 18182 q, mp); 18183 } 18184 18185 if (err == 0) { 18186 if (ill_from_v4 != NULL && ill_to_v4 != NULL) 18187 ilm_send_multicast_reqs(ill_from_v4, ill_to_v4); 18188 18189 if (ill_from_v6 != NULL && ill_to_v6 != NULL) 18190 ilm_send_multicast_reqs(ill_from_v6, ill_to_v6); 18191 } 18192 done: 18193 18194 if (ill_to_v4 != NULL) { 18195 ill_refrele(ill_to_v4); 18196 } 18197 if (ill_to_v6 != NULL) { 18198 ill_refrele(ill_to_v6); 18199 } 18200 18201 return (err); 18202 } 18203 18204 static void 18205 ill_dl_down(ill_t *ill) 18206 { 18207 /* 18208 * The ill is down; unbind but stay attached since we're still 18209 * associated with a PPA. If we have negotiated DLPI capabilites 18210 * with the data link service provider (IDS_OK) then reset them. 18211 * The interval between unbinding and rebinding is potentially 18212 * unbounded hence we cannot assume things will be the same. 18213 * The DLPI capabilities will be probed again when the data link 18214 * is brought up. 18215 */ 18216 mblk_t *mp = ill->ill_unbind_mp; 18217 18218 ip1dbg(("ill_dl_down(%s)\n", ill->ill_name)); 18219 18220 ill->ill_unbind_mp = NULL; 18221 if (mp != NULL) { 18222 ip1dbg(("ill_dl_down: %s (%u) for %s\n", 18223 dl_primstr(*(int *)mp->b_rptr), *(int *)mp->b_rptr, 18224 ill->ill_name)); 18225 mutex_enter(&ill->ill_lock); 18226 ill->ill_state_flags |= ILL_DL_UNBIND_IN_PROGRESS; 18227 mutex_exit(&ill->ill_lock); 18228 /* 18229 * Reset the capabilities if the negotiation is done or is 18230 * still in progress. Note that ill_capability_reset() will 18231 * set ill_dlpi_capab_state to IDS_UNKNOWN, so the subsequent 18232 * DL_CAPABILITY_ACK and DL_NOTE_CAPAB_RENEG will be ignored. 18233 * 18234 * Further, reset ill_capab_reneg to be B_FALSE so that the 18235 * subsequent DL_CAPABILITY_ACK can be ignored, to prevent 18236 * the capabilities renegotiation from happening. 18237 */ 18238 if (ill->ill_dlpi_capab_state != IDS_UNKNOWN) 18239 ill_capability_reset(ill); 18240 ill->ill_capab_reneg = B_FALSE; 18241 18242 ill_dlpi_send(ill, mp); 18243 } 18244 18245 /* 18246 * Toss all of our multicast memberships. We could keep them, but 18247 * then we'd have to do bookkeeping of any joins and leaves performed 18248 * by the application while the the interface is down (we can't just 18249 * issue them because arp cannot currently process AR_ENTRY_SQUERY's 18250 * on a downed interface). 18251 */ 18252 ill_leave_multicast(ill); 18253 18254 mutex_enter(&ill->ill_lock); 18255 ill->ill_dl_up = 0; 18256 (void) ill_hook_event_create(ill, 0, NE_DOWN, NULL, 0); 18257 mutex_exit(&ill->ill_lock); 18258 } 18259 18260 static void 18261 ill_dlpi_dispatch(ill_t *ill, mblk_t *mp) 18262 { 18263 union DL_primitives *dlp; 18264 t_uscalar_t prim; 18265 18266 ASSERT(DB_TYPE(mp) == M_PROTO || DB_TYPE(mp) == M_PCPROTO); 18267 18268 dlp = (union DL_primitives *)mp->b_rptr; 18269 prim = dlp->dl_primitive; 18270 18271 ip1dbg(("ill_dlpi_dispatch: sending %s (%u) to %s\n", 18272 dl_primstr(prim), prim, ill->ill_name)); 18273 18274 switch (prim) { 18275 case DL_PHYS_ADDR_REQ: 18276 { 18277 dl_phys_addr_req_t *dlpap = (dl_phys_addr_req_t *)mp->b_rptr; 18278 ill->ill_phys_addr_pend = dlpap->dl_addr_type; 18279 break; 18280 } 18281 case DL_BIND_REQ: 18282 mutex_enter(&ill->ill_lock); 18283 ill->ill_state_flags &= ~ILL_DL_UNBIND_IN_PROGRESS; 18284 mutex_exit(&ill->ill_lock); 18285 break; 18286 } 18287 18288 /* 18289 * Except for the ACKs for the M_PCPROTO messages, all other ACKs 18290 * are dropped by ip_rput() if ILL_CONDEMNED is set. Therefore 18291 * we only wait for the ACK of the DL_UNBIND_REQ. 18292 */ 18293 mutex_enter(&ill->ill_lock); 18294 if (!(ill->ill_state_flags & ILL_CONDEMNED) || 18295 (prim == DL_UNBIND_REQ)) { 18296 ill->ill_dlpi_pending = prim; 18297 } 18298 mutex_exit(&ill->ill_lock); 18299 18300 putnext(ill->ill_wq, mp); 18301 } 18302 18303 /* 18304 * Helper function for ill_dlpi_send(). 18305 */ 18306 /* ARGSUSED */ 18307 static void 18308 ill_dlpi_send_writer(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *arg) 18309 { 18310 ill_dlpi_send(q->q_ptr, mp); 18311 } 18312 18313 /* 18314 * Send a DLPI control message to the driver but make sure there 18315 * is only one outstanding message. Uses ill_dlpi_pending to tell 18316 * when it must queue. ip_rput_dlpi_writer calls ill_dlpi_done() 18317 * when an ACK or a NAK is received to process the next queued message. 18318 */ 18319 void 18320 ill_dlpi_send(ill_t *ill, mblk_t *mp) 18321 { 18322 mblk_t **mpp; 18323 18324 ASSERT(DB_TYPE(mp) == M_PROTO || DB_TYPE(mp) == M_PCPROTO); 18325 18326 /* 18327 * To ensure that any DLPI requests for current exclusive operation 18328 * are always completely sent before any DLPI messages for other 18329 * operations, require writer access before enqueuing. 18330 */ 18331 if (!IAM_WRITER_ILL(ill)) { 18332 ill_refhold(ill); 18333 /* qwriter_ip() does the ill_refrele() */ 18334 qwriter_ip(ill, ill->ill_wq, mp, ill_dlpi_send_writer, 18335 NEW_OP, B_TRUE); 18336 return; 18337 } 18338 18339 mutex_enter(&ill->ill_lock); 18340 if (ill->ill_dlpi_pending != DL_PRIM_INVAL) { 18341 /* Must queue message. Tail insertion */ 18342 mpp = &ill->ill_dlpi_deferred; 18343 while (*mpp != NULL) 18344 mpp = &((*mpp)->b_next); 18345 18346 ip1dbg(("ill_dlpi_send: deferring request for %s\n", 18347 ill->ill_name)); 18348 18349 *mpp = mp; 18350 mutex_exit(&ill->ill_lock); 18351 return; 18352 } 18353 mutex_exit(&ill->ill_lock); 18354 ill_dlpi_dispatch(ill, mp); 18355 } 18356 18357 /* 18358 * Send all deferred DLPI messages without waiting for their ACKs. 18359 */ 18360 void 18361 ill_dlpi_send_deferred(ill_t *ill) 18362 { 18363 mblk_t *mp, *nextmp; 18364 18365 /* 18366 * Clear ill_dlpi_pending so that the message is not queued in 18367 * ill_dlpi_send(). 18368 */ 18369 mutex_enter(&ill->ill_lock); 18370 ill->ill_dlpi_pending = DL_PRIM_INVAL; 18371 mp = ill->ill_dlpi_deferred; 18372 ill->ill_dlpi_deferred = NULL; 18373 mutex_exit(&ill->ill_lock); 18374 18375 for (; mp != NULL; mp = nextmp) { 18376 nextmp = mp->b_next; 18377 mp->b_next = NULL; 18378 ill_dlpi_send(ill, mp); 18379 } 18380 } 18381 18382 /* 18383 * Check if the DLPI primitive `prim' is pending; print a warning if not. 18384 */ 18385 boolean_t 18386 ill_dlpi_pending(ill_t *ill, t_uscalar_t prim) 18387 { 18388 t_uscalar_t pending; 18389 18390 mutex_enter(&ill->ill_lock); 18391 if (ill->ill_dlpi_pending == prim) { 18392 mutex_exit(&ill->ill_lock); 18393 return (B_TRUE); 18394 } 18395 18396 /* 18397 * During teardown, ill_dlpi_dispatch() will send DLPI requests 18398 * without waiting, so don't print any warnings in that case. 18399 */ 18400 if (ill->ill_state_flags & ILL_CONDEMNED) { 18401 mutex_exit(&ill->ill_lock); 18402 return (B_FALSE); 18403 } 18404 pending = ill->ill_dlpi_pending; 18405 mutex_exit(&ill->ill_lock); 18406 18407 if (pending == DL_PRIM_INVAL) { 18408 (void) mi_strlog(ill->ill_rq, 1, SL_CONSOLE|SL_ERROR|SL_TRACE, 18409 "received unsolicited ack for %s on %s\n", 18410 dl_primstr(prim), ill->ill_name); 18411 } else { 18412 (void) mi_strlog(ill->ill_rq, 1, SL_CONSOLE|SL_ERROR|SL_TRACE, 18413 "received unexpected ack for %s on %s (expecting %s)\n", 18414 dl_primstr(prim), ill->ill_name, dl_primstr(pending)); 18415 } 18416 return (B_FALSE); 18417 } 18418 18419 /* 18420 * Complete the current DLPI operation associated with `prim' on `ill' and 18421 * start the next queued DLPI operation (if any). If there are no queued DLPI 18422 * operations and the ill's current exclusive IPSQ operation has finished 18423 * (i.e., ipsq_current_finish() was called), then clear ipsq_current_ipif to 18424 * allow the next exclusive IPSQ operation to begin upon ipsq_exit(). See 18425 * the comments above ipsq_current_finish() for details. 18426 */ 18427 void 18428 ill_dlpi_done(ill_t *ill, t_uscalar_t prim) 18429 { 18430 mblk_t *mp; 18431 ipsq_t *ipsq = ill->ill_phyint->phyint_ipsq; 18432 18433 ASSERT(IAM_WRITER_IPSQ(ipsq)); 18434 mutex_enter(&ill->ill_lock); 18435 18436 ASSERT(prim != DL_PRIM_INVAL); 18437 ASSERT(ill->ill_dlpi_pending == prim); 18438 18439 ip1dbg(("ill_dlpi_done: %s has completed %s (%u)\n", ill->ill_name, 18440 dl_primstr(ill->ill_dlpi_pending), ill->ill_dlpi_pending)); 18441 18442 if ((mp = ill->ill_dlpi_deferred) == NULL) { 18443 ill->ill_dlpi_pending = DL_PRIM_INVAL; 18444 18445 mutex_enter(&ipsq->ipsq_lock); 18446 if (ipsq->ipsq_current_done) 18447 ipsq->ipsq_current_ipif = NULL; 18448 mutex_exit(&ipsq->ipsq_lock); 18449 18450 cv_signal(&ill->ill_cv); 18451 mutex_exit(&ill->ill_lock); 18452 return; 18453 } 18454 18455 ill->ill_dlpi_deferred = mp->b_next; 18456 mp->b_next = NULL; 18457 mutex_exit(&ill->ill_lock); 18458 18459 ill_dlpi_dispatch(ill, mp); 18460 } 18461 18462 void 18463 conn_delete_ire(conn_t *connp, caddr_t arg) 18464 { 18465 ipif_t *ipif = (ipif_t *)arg; 18466 ire_t *ire; 18467 18468 /* 18469 * Look at the cached ires on conns which has pointers to ipifs. 18470 * We just call ire_refrele which clears up the reference 18471 * to ire. Called when a conn closes. Also called from ipif_free 18472 * to cleanup indirect references to the stale ipif via the cached ire. 18473 */ 18474 mutex_enter(&connp->conn_lock); 18475 ire = connp->conn_ire_cache; 18476 if (ire != NULL && (ipif == NULL || ire->ire_ipif == ipif)) { 18477 connp->conn_ire_cache = NULL; 18478 mutex_exit(&connp->conn_lock); 18479 IRE_REFRELE_NOTR(ire); 18480 return; 18481 } 18482 mutex_exit(&connp->conn_lock); 18483 18484 } 18485 18486 /* 18487 * Some operations (illgrp_delete(), ipif_down()) conditionally delete a number 18488 * of IREs. Those IREs may have been previously cached in the conn structure. 18489 * This ipcl_walk() walker function releases all references to such IREs based 18490 * on the condemned flag. 18491 */ 18492 /* ARGSUSED */ 18493 void 18494 conn_cleanup_stale_ire(conn_t *connp, caddr_t arg) 18495 { 18496 ire_t *ire; 18497 18498 mutex_enter(&connp->conn_lock); 18499 ire = connp->conn_ire_cache; 18500 if (ire != NULL && (ire->ire_marks & IRE_MARK_CONDEMNED)) { 18501 connp->conn_ire_cache = NULL; 18502 mutex_exit(&connp->conn_lock); 18503 IRE_REFRELE_NOTR(ire); 18504 return; 18505 } 18506 mutex_exit(&connp->conn_lock); 18507 } 18508 18509 /* 18510 * Take down a specific interface, but don't lose any information about it. 18511 * Also delete interface from its interface group (ifgrp). 18512 * (Always called as writer.) 18513 * This function goes through the down sequence even if the interface is 18514 * already down. There are 2 reasons. 18515 * a. Currently we permit interface routes that depend on down interfaces 18516 * to be added. This behaviour itself is questionable. However it appears 18517 * that both Solaris and 4.3 BSD have exhibited this behaviour for a long 18518 * time. We go thru the cleanup in order to remove these routes. 18519 * b. The bringup of the interface could fail in ill_dl_up i.e. we get 18520 * DL_ERROR_ACK in response to the the DL_BIND request. The interface is 18521 * down, but we need to cleanup i.e. do ill_dl_down and 18522 * ip_rput_dlpi_writer (DL_ERROR_ACK) -> ipif_down. 18523 * 18524 * IP-MT notes: 18525 * 18526 * Model of reference to interfaces. 18527 * 18528 * The following members in ipif_t track references to the ipif. 18529 * int ipif_refcnt; Active reference count 18530 * uint_t ipif_ire_cnt; Number of ire's referencing this ipif 18531 * uint_t ipif_ilm_cnt; Number of ilms's references this ipif. 18532 * 18533 * The following members in ill_t track references to the ill. 18534 * int ill_refcnt; active refcnt 18535 * uint_t ill_ire_cnt; Number of ires referencing ill 18536 * uint_t ill_nce_cnt; Number of nces referencing ill 18537 * uint_t ill_ilm_cnt; Number of ilms referencing ill 18538 * 18539 * Reference to an ipif or ill can be obtained in any of the following ways. 18540 * 18541 * Through the lookup functions ipif_lookup_* / ill_lookup_* functions 18542 * Pointers to ipif / ill from other data structures viz ire and conn. 18543 * Implicit reference to the ipif / ill by holding a reference to the ire. 18544 * 18545 * The ipif/ill lookup functions return a reference held ipif / ill. 18546 * ipif_refcnt and ill_refcnt track the reference counts respectively. 18547 * This is a purely dynamic reference count associated with threads holding 18548 * references to the ipif / ill. Pointers from other structures do not 18549 * count towards this reference count. 18550 * 18551 * ipif_ire_cnt/ill_ire_cnt is the number of ire's 18552 * associated with the ipif/ill. This is incremented whenever a new 18553 * ire is created referencing the ipif/ill. This is done atomically inside 18554 * ire_add_v[46] where the ire is actually added to the ire hash table. 18555 * The count is decremented in ire_inactive where the ire is destroyed. 18556 * 18557 * nce's reference ill's thru nce_ill and the count of nce's associated with 18558 * an ill is recorded in ill_nce_cnt. This is incremented atomically in 18559 * ndp_add_v4()/ndp_add_v6() where the nce is actually added to the 18560 * table. Similarly it is decremented in ndp_inactive() where the nce 18561 * is destroyed. 18562 * 18563 * ilm's reference to the ipif (for IPv4 ilm's) or the ill (for IPv6 ilm's) 18564 * is incremented in ilm_add_v6() and decremented before the ilm is freed 18565 * in ilm_walker_cleanup() or ilm_delete(). 18566 * 18567 * Flow of ioctls involving interface down/up 18568 * 18569 * The following is the sequence of an attempt to set some critical flags on an 18570 * up interface. 18571 * ip_sioctl_flags 18572 * ipif_down 18573 * wait for ipif to be quiescent 18574 * ipif_down_tail 18575 * ip_sioctl_flags_tail 18576 * 18577 * All set ioctls that involve down/up sequence would have a skeleton similar 18578 * to the above. All the *tail functions are called after the refcounts have 18579 * dropped to the appropriate values. 18580 * 18581 * The mechanism to quiesce an ipif is as follows. 18582 * 18583 * Mark the ipif as IPIF_CHANGING. No more lookups will be allowed 18584 * on the ipif. Callers either pass a flag requesting wait or the lookup 18585 * functions will return NULL. 18586 * 18587 * Delete all ires referencing this ipif 18588 * 18589 * Any thread attempting to do an ipif_refhold on an ipif that has been 18590 * obtained thru a cached pointer will first make sure that 18591 * the ipif can be refheld using the macro IPIF_CAN_LOOKUP and only then 18592 * increment the refcount. 18593 * 18594 * The above guarantees that the ipif refcount will eventually come down to 18595 * zero and the ipif will quiesce, once all threads that currently hold a 18596 * reference to the ipif refrelease the ipif. The ipif is quiescent after the 18597 * ipif_refcount has dropped to zero and all ire's associated with this ipif 18598 * have also been ire_inactive'd. i.e. when ipif_{ire, ill}_cnt and 18599 * ipif_refcnt both drop to zero. See also: comments above IPIF_DOWN_OK() 18600 * in ip.h 18601 * 18602 * Lookups during the IPIF_CHANGING/ILL_CHANGING interval. 18603 * 18604 * Threads trying to lookup an ipif or ill can pass a flag requesting 18605 * wait and restart if the ipif / ill cannot be looked up currently. 18606 * For eg. bind, and route operations (Eg. route add / delete) cannot return 18607 * failure if the ipif is currently undergoing an exclusive operation, and 18608 * hence pass the flag. The mblk is then enqueued in the ipsq and the operation 18609 * is restarted by ipsq_exit() when the currently exclusive ioctl completes. 18610 * The lookup and enqueue is atomic using the ill_lock and ipsq_lock. The 18611 * lookup is done holding the ill_lock. Hence the ill/ipif state flags can't 18612 * change while the ill_lock is held. Before dropping the ill_lock we acquire 18613 * the ipsq_lock and call ipsq_enq. This ensures that ipsq_exit can't finish 18614 * until we release the ipsq_lock, even though the the ill/ipif state flags 18615 * can change after we drop the ill_lock. 18616 * 18617 * An attempt to send out a packet using an ipif that is currently 18618 * IPIF_CHANGING will fail. No attempt is made in this case to enqueue this 18619 * operation and restart it later when the exclusive condition on the ipif ends. 18620 * This is an example of not passing the wait flag to the lookup functions. For 18621 * example an attempt to refhold and use conn->conn_multicast_ipif and send 18622 * out a multicast packet on that ipif will fail while the ipif is 18623 * IPIF_CHANGING. An attempt to create an IRE_CACHE using an ipif that is 18624 * currently IPIF_CHANGING will also fail. 18625 */ 18626 int 18627 ipif_down(ipif_t *ipif, queue_t *q, mblk_t *mp) 18628 { 18629 ill_t *ill = ipif->ipif_ill; 18630 phyint_t *phyi; 18631 conn_t *connp; 18632 boolean_t success; 18633 boolean_t ipif_was_up = B_FALSE; 18634 ip_stack_t *ipst = ill->ill_ipst; 18635 18636 ASSERT(IAM_WRITER_IPIF(ipif)); 18637 18638 ip1dbg(("ipif_down(%s:%u)\n", ill->ill_name, ipif->ipif_id)); 18639 18640 if (ipif->ipif_flags & IPIF_UP) { 18641 mutex_enter(&ill->ill_lock); 18642 ipif->ipif_flags &= ~IPIF_UP; 18643 ASSERT(ill->ill_ipif_up_count > 0); 18644 --ill->ill_ipif_up_count; 18645 mutex_exit(&ill->ill_lock); 18646 ipif_was_up = B_TRUE; 18647 /* Update status in SCTP's list */ 18648 sctp_update_ipif(ipif, SCTP_IPIF_DOWN); 18649 } 18650 18651 /* 18652 * Blow away memberships we established in ipif_multicast_up(). 18653 */ 18654 ipif_multicast_down(ipif); 18655 18656 /* 18657 * Remove from the mapping for __sin6_src_id. We insert only 18658 * when the address is not INADDR_ANY. As IPv4 addresses are 18659 * stored as mapped addresses, we need to check for mapped 18660 * INADDR_ANY also. 18661 */ 18662 if (ipif_was_up && !IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6lcl_addr) && 18663 !IN6_IS_ADDR_V4MAPPED_ANY(&ipif->ipif_v6lcl_addr) && 18664 !(ipif->ipif_flags & IPIF_NOLOCAL)) { 18665 int err; 18666 18667 err = ip_srcid_remove(&ipif->ipif_v6lcl_addr, 18668 ipif->ipif_zoneid, ipst); 18669 if (err != 0) { 18670 ip0dbg(("ipif_down: srcid_remove %d\n", err)); 18671 } 18672 } 18673 18674 /* 18675 * Before we delete the ill from the group (if any), we need 18676 * to make sure that we delete all the routes dependent on 18677 * this and also any ipifs dependent on this ipif for 18678 * source address. We need to do before we delete from 18679 * the group because 18680 * 18681 * 1) ipif_down_delete_ire de-references ill->ill_group. 18682 * 18683 * 2) ipif_update_other_ipifs needs to walk the whole group 18684 * for re-doing source address selection. Note that 18685 * ipif_select_source[_v6] called from 18686 * ipif_update_other_ipifs[_v6] will not pick this ipif 18687 * because we have already marked down here i.e cleared 18688 * IPIF_UP. 18689 */ 18690 if (ipif->ipif_isv6) { 18691 ire_walk_v6(ipif_down_delete_ire, (char *)ipif, ALL_ZONES, 18692 ipst); 18693 } else { 18694 ire_walk_v4(ipif_down_delete_ire, (char *)ipif, ALL_ZONES, 18695 ipst); 18696 } 18697 18698 /* 18699 * Cleaning up the conn_ire_cache or conns must be done only after the 18700 * ires have been deleted above. Otherwise a thread could end up 18701 * caching an ire in a conn after we have finished the cleanup of the 18702 * conn. The caching is done after making sure that the ire is not yet 18703 * condemned. Also documented in the block comment above ip_output 18704 */ 18705 ipcl_walk(conn_cleanup_stale_ire, NULL, ipst); 18706 /* Also, delete the ires cached in SCTP */ 18707 sctp_ire_cache_flush(ipif); 18708 18709 /* 18710 * Update any other ipifs which have used "our" local address as 18711 * a source address. This entails removing and recreating IRE_INTERFACE 18712 * entries for such ipifs. 18713 */ 18714 if (ipif->ipif_isv6) 18715 ipif_update_other_ipifs_v6(ipif, ill->ill_group); 18716 else 18717 ipif_update_other_ipifs(ipif, ill->ill_group); 18718 18719 if (ipif_was_up) { 18720 /* 18721 * Check whether it is last ipif to leave this group. 18722 * If this is the last ipif to leave, we should remove 18723 * this ill from the group as ipif_select_source will not 18724 * be able to find any useful ipifs if this ill is selected 18725 * for load balancing. 18726 * 18727 * For nameless groups, we should call ifgrp_delete if this 18728 * belongs to some group. As this ipif is going down, we may 18729 * need to reconstruct groups. 18730 */ 18731 phyi = ill->ill_phyint; 18732 /* 18733 * If the phyint_groupname_len is 0, it may or may not 18734 * be in the nameless group. If the phyint_groupname_len is 18735 * not 0, then this ill should be part of some group. 18736 * As we always insert this ill in the group if 18737 * phyint_groupname_len is not zero when the first ipif 18738 * comes up (in ipif_up_done), it should be in a group 18739 * when the namelen is not 0. 18740 * 18741 * NOTE : When we delete the ill from the group,it will 18742 * blow away all the IRE_CACHES pointing either at this ipif or 18743 * ill_wq (illgrp_cache_delete does this). Thus, no IRES 18744 * should be pointing at this ill. 18745 */ 18746 ASSERT(phyi->phyint_groupname_len == 0 || 18747 (phyi->phyint_groupname != NULL && ill->ill_group != NULL)); 18748 18749 if (phyi->phyint_groupname_len != 0) { 18750 if (ill->ill_ipif_up_count == 0) 18751 illgrp_delete(ill); 18752 } 18753 18754 /* 18755 * If we have deleted some of the broadcast ires associated 18756 * with this ipif, we need to re-nominate somebody else if 18757 * the ires that we deleted were the nominated ones. 18758 */ 18759 if (ill->ill_group != NULL && !ill->ill_isv6) 18760 ipif_renominate_bcast(ipif); 18761 } 18762 18763 /* 18764 * neighbor-discovery or arp entries for this interface. 18765 */ 18766 ipif_ndp_down(ipif); 18767 18768 /* 18769 * If mp is NULL the caller will wait for the appropriate refcnt. 18770 * Eg. ip_sioctl_removeif -> ipif_free -> ipif_down 18771 * and ill_delete -> ipif_free -> ipif_down 18772 */ 18773 if (mp == NULL) { 18774 ASSERT(q == NULL); 18775 return (0); 18776 } 18777 18778 if (CONN_Q(q)) { 18779 connp = Q_TO_CONN(q); 18780 mutex_enter(&connp->conn_lock); 18781 } else { 18782 connp = NULL; 18783 } 18784 mutex_enter(&ill->ill_lock); 18785 /* 18786 * Are there any ire's pointing to this ipif that are still active ? 18787 * If this is the last ipif going down, are there any ire's pointing 18788 * to this ill that are still active ? 18789 */ 18790 if (ipif_is_quiescent(ipif)) { 18791 mutex_exit(&ill->ill_lock); 18792 if (connp != NULL) 18793 mutex_exit(&connp->conn_lock); 18794 return (0); 18795 } 18796 18797 ip1dbg(("ipif_down: need to wait, adding pending mp %s ill %p", 18798 ill->ill_name, (void *)ill)); 18799 /* 18800 * Enqueue the mp atomically in ipsq_pending_mp. When the refcount 18801 * drops down, the operation will be restarted by ipif_ill_refrele_tail 18802 * which in turn is called by the last refrele on the ipif/ill/ire. 18803 */ 18804 success = ipsq_pending_mp_add(connp, ipif, q, mp, IPIF_DOWN); 18805 if (!success) { 18806 /* The conn is closing. So just return */ 18807 ASSERT(connp != NULL); 18808 mutex_exit(&ill->ill_lock); 18809 mutex_exit(&connp->conn_lock); 18810 return (EINTR); 18811 } 18812 18813 mutex_exit(&ill->ill_lock); 18814 if (connp != NULL) 18815 mutex_exit(&connp->conn_lock); 18816 return (EINPROGRESS); 18817 } 18818 18819 void 18820 ipif_down_tail(ipif_t *ipif) 18821 { 18822 ill_t *ill = ipif->ipif_ill; 18823 18824 /* 18825 * Skip any loopback interface (null wq). 18826 * If this is the last logical interface on the ill 18827 * have ill_dl_down tell the driver we are gone (unbind) 18828 * Note that lun 0 can ipif_down even though 18829 * there are other logical units that are up. 18830 * This occurs e.g. when we change a "significant" IFF_ flag. 18831 */ 18832 if (ill->ill_wq != NULL && !ill->ill_logical_down && 18833 ill->ill_ipif_up_count == 0 && ill->ill_ipif_dup_count == 0 && 18834 ill->ill_dl_up) { 18835 ill_dl_down(ill); 18836 } 18837 ill->ill_logical_down = 0; 18838 18839 /* 18840 * Have to be after removing the routes in ipif_down_delete_ire. 18841 */ 18842 if (ipif->ipif_isv6) { 18843 if (ill->ill_flags & ILLF_XRESOLV) 18844 ipif_arp_down(ipif); 18845 } else { 18846 ipif_arp_down(ipif); 18847 } 18848 18849 ip_rts_ifmsg(ipif); 18850 ip_rts_newaddrmsg(RTM_DELETE, 0, ipif); 18851 } 18852 18853 /* 18854 * Bring interface logically down without bringing the physical interface 18855 * down e.g. when the netmask is changed. This avoids long lasting link 18856 * negotiations between an ethernet interface and a certain switches. 18857 */ 18858 static int 18859 ipif_logical_down(ipif_t *ipif, queue_t *q, mblk_t *mp) 18860 { 18861 /* 18862 * The ill_logical_down flag is a transient flag. It is set here 18863 * and is cleared once the down has completed in ipif_down_tail. 18864 * This flag does not indicate whether the ill stream is in the 18865 * DL_BOUND state with the driver. Instead this flag is used by 18866 * ipif_down_tail to determine whether to DL_UNBIND the stream with 18867 * the driver. The state of the ill stream i.e. whether it is 18868 * DL_BOUND with the driver or not is indicated by the ill_dl_up flag. 18869 */ 18870 ipif->ipif_ill->ill_logical_down = 1; 18871 return (ipif_down(ipif, q, mp)); 18872 } 18873 18874 /* 18875 * This is called when the SIOCSLIFUSESRC ioctl is processed in IP. 18876 * If the usesrc client ILL is already part of a usesrc group or not, 18877 * in either case a ire_stq with the matching usesrc client ILL will 18878 * locate the IRE's that need to be deleted. We want IREs to be created 18879 * with the new source address. 18880 */ 18881 static void 18882 ipif_delete_cache_ire(ire_t *ire, char *ill_arg) 18883 { 18884 ill_t *ucill = (ill_t *)ill_arg; 18885 18886 ASSERT(IAM_WRITER_ILL(ucill)); 18887 18888 if (ire->ire_stq == NULL) 18889 return; 18890 18891 if ((ire->ire_type == IRE_CACHE) && 18892 ((ill_t *)ire->ire_stq->q_ptr == ucill)) 18893 ire_delete(ire); 18894 } 18895 18896 /* 18897 * ire_walk routine to delete every IRE dependent on the interface 18898 * address that is going down. (Always called as writer.) 18899 * Works for both v4 and v6. 18900 * In addition for checking for ire_ipif matches it also checks for 18901 * IRE_CACHE entries which have the same source address as the 18902 * disappearing ipif since ipif_select_source might have picked 18903 * that source. Note that ipif_down/ipif_update_other_ipifs takes 18904 * care of any IRE_INTERFACE with the disappearing source address. 18905 */ 18906 static void 18907 ipif_down_delete_ire(ire_t *ire, char *ipif_arg) 18908 { 18909 ipif_t *ipif = (ipif_t *)ipif_arg; 18910 ill_t *ire_ill; 18911 ill_t *ipif_ill; 18912 18913 ASSERT(IAM_WRITER_IPIF(ipif)); 18914 if (ire->ire_ipif == NULL) 18915 return; 18916 18917 /* 18918 * For IPv4, we derive source addresses for an IRE from ipif's 18919 * belonging to the same IPMP group as the IRE's outgoing 18920 * interface. If an IRE's outgoing interface isn't in the 18921 * same IPMP group as a particular ipif, then that ipif 18922 * couldn't have been used as a source address for this IRE. 18923 * 18924 * For IPv6, source addresses are only restricted to the IPMP group 18925 * if the IRE is for a link-local address or a multicast address. 18926 * Otherwise, source addresses for an IRE can be chosen from 18927 * interfaces other than the the outgoing interface for that IRE. 18928 * 18929 * For source address selection details, see ipif_select_source() 18930 * and ipif_select_source_v6(). 18931 */ 18932 if (ire->ire_ipversion == IPV4_VERSION || 18933 IN6_IS_ADDR_LINKLOCAL(&ire->ire_addr_v6) || 18934 IN6_IS_ADDR_MULTICAST(&ire->ire_addr_v6)) { 18935 ire_ill = ire->ire_ipif->ipif_ill; 18936 ipif_ill = ipif->ipif_ill; 18937 18938 if (ire_ill->ill_group != ipif_ill->ill_group) { 18939 return; 18940 } 18941 } 18942 18943 if (ire->ire_ipif != ipif) { 18944 /* 18945 * Look for a matching source address. 18946 */ 18947 if (ire->ire_type != IRE_CACHE) 18948 return; 18949 if (ipif->ipif_flags & IPIF_NOLOCAL) 18950 return; 18951 18952 if (ire->ire_ipversion == IPV4_VERSION) { 18953 if (ire->ire_src_addr != ipif->ipif_src_addr) 18954 return; 18955 } else { 18956 if (!IN6_ARE_ADDR_EQUAL(&ire->ire_src_addr_v6, 18957 &ipif->ipif_v6lcl_addr)) 18958 return; 18959 } 18960 ire_delete(ire); 18961 return; 18962 } 18963 /* 18964 * ire_delete() will do an ire_flush_cache which will delete 18965 * all ire_ipif matches 18966 */ 18967 ire_delete(ire); 18968 } 18969 18970 /* 18971 * ire_walk_ill function for deleting all IRE_CACHE entries for an ill when 18972 * 1) an ipif (on that ill) changes the IPIF_DEPRECATED flags, or 18973 * 2) when an interface is brought up or down (on that ill). 18974 * This ensures that the IRE_CACHE entries don't retain stale source 18975 * address selection results. 18976 */ 18977 void 18978 ill_ipif_cache_delete(ire_t *ire, char *ill_arg) 18979 { 18980 ill_t *ill = (ill_t *)ill_arg; 18981 ill_t *ipif_ill; 18982 18983 ASSERT(IAM_WRITER_ILL(ill)); 18984 /* 18985 * We use MATCH_IRE_TYPE/IRE_CACHE while calling ire_walk_ill_v4. 18986 * Hence this should be IRE_CACHE. 18987 */ 18988 ASSERT(ire->ire_type == IRE_CACHE); 18989 18990 /* 18991 * We are called for IRE_CACHES whose ire_ipif matches ill. 18992 * We are only interested in IRE_CACHES that has borrowed 18993 * the source address from ill_arg e.g. ipif_up_done[_v6] 18994 * for which we need to look at ire_ipif->ipif_ill match 18995 * with ill. 18996 */ 18997 ASSERT(ire->ire_ipif != NULL); 18998 ipif_ill = ire->ire_ipif->ipif_ill; 18999 if (ipif_ill == ill || (ill->ill_group != NULL && 19000 ipif_ill->ill_group == ill->ill_group)) { 19001 ire_delete(ire); 19002 } 19003 } 19004 19005 /* 19006 * Delete all the ire whose stq references ill_arg. 19007 */ 19008 static void 19009 ill_stq_cache_delete(ire_t *ire, char *ill_arg) 19010 { 19011 ill_t *ill = (ill_t *)ill_arg; 19012 ill_t *ire_ill; 19013 19014 ASSERT(IAM_WRITER_ILL(ill)); 19015 /* 19016 * We use MATCH_IRE_TYPE/IRE_CACHE while calling ire_walk_ill_v4. 19017 * Hence this should be IRE_CACHE. 19018 */ 19019 ASSERT(ire->ire_type == IRE_CACHE); 19020 19021 /* 19022 * We are called for IRE_CACHES whose ire_stq and ire_ipif 19023 * matches ill. We are only interested in IRE_CACHES that 19024 * has ire_stq->q_ptr pointing at ill_arg. Thus we do the 19025 * filtering here. 19026 */ 19027 ire_ill = (ill_t *)ire->ire_stq->q_ptr; 19028 19029 if (ire_ill == ill) 19030 ire_delete(ire); 19031 } 19032 19033 /* 19034 * This is called when an ill leaves the group. We want to delete 19035 * all IRE_CACHES whose stq is pointing at ill_wq or ire_ipif is 19036 * pointing at ill. 19037 */ 19038 static void 19039 illgrp_cache_delete(ire_t *ire, char *ill_arg) 19040 { 19041 ill_t *ill = (ill_t *)ill_arg; 19042 19043 ASSERT(IAM_WRITER_ILL(ill)); 19044 ASSERT(ill->ill_group == NULL); 19045 /* 19046 * We use MATCH_IRE_TYPE/IRE_CACHE while calling ire_walk_ill_v4. 19047 * Hence this should be IRE_CACHE. 19048 */ 19049 ASSERT(ire->ire_type == IRE_CACHE); 19050 /* 19051 * We are called for IRE_CACHES whose ire_stq and ire_ipif 19052 * matches ill. We are interested in both. 19053 */ 19054 ASSERT((ill == (ill_t *)ire->ire_stq->q_ptr) || 19055 (ire->ire_ipif->ipif_ill == ill)); 19056 19057 ire_delete(ire); 19058 } 19059 19060 /* 19061 * Initiate deallocate of an IPIF. Always called as writer. Called by 19062 * ill_delete or ip_sioctl_removeif. 19063 */ 19064 static void 19065 ipif_free(ipif_t *ipif) 19066 { 19067 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; 19068 19069 ASSERT(IAM_WRITER_IPIF(ipif)); 19070 19071 if (ipif->ipif_recovery_id != 0) 19072 (void) untimeout(ipif->ipif_recovery_id); 19073 ipif->ipif_recovery_id = 0; 19074 19075 /* Remove conn references */ 19076 reset_conn_ipif(ipif); 19077 19078 /* 19079 * Make sure we have valid net and subnet broadcast ire's for the 19080 * other ipif's which share them with this ipif. 19081 */ 19082 if (!ipif->ipif_isv6) 19083 ipif_check_bcast_ires(ipif); 19084 19085 /* 19086 * Take down the interface. We can be called either from ill_delete 19087 * or from ip_sioctl_removeif. 19088 */ 19089 (void) ipif_down(ipif, NULL, NULL); 19090 19091 /* 19092 * Now that the interface is down, there's no chance it can still 19093 * become a duplicate. Cancel any timer that may have been set while 19094 * tearing down. 19095 */ 19096 if (ipif->ipif_recovery_id != 0) 19097 (void) untimeout(ipif->ipif_recovery_id); 19098 ipif->ipif_recovery_id = 0; 19099 19100 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 19101 /* Remove pointers to this ill in the multicast routing tables */ 19102 reset_mrt_vif_ipif(ipif); 19103 rw_exit(&ipst->ips_ill_g_lock); 19104 } 19105 19106 /* 19107 * Warning: this is not the only function that calls mi_free on an ipif_t. See 19108 * also ill_move(). 19109 */ 19110 static void 19111 ipif_free_tail(ipif_t *ipif) 19112 { 19113 mblk_t *mp; 19114 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; 19115 19116 /* 19117 * Free state for addition IRE_IF_[NO]RESOLVER ire's. 19118 */ 19119 mutex_enter(&ipif->ipif_saved_ire_lock); 19120 mp = ipif->ipif_saved_ire_mp; 19121 ipif->ipif_saved_ire_mp = NULL; 19122 mutex_exit(&ipif->ipif_saved_ire_lock); 19123 freemsg(mp); 19124 19125 /* 19126 * Need to hold both ill_g_lock and ill_lock while 19127 * inserting or removing an ipif from the linked list 19128 * of ipifs hanging off the ill. 19129 */ 19130 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 19131 19132 ASSERT(ilm_walk_ipif(ipif) == 0); 19133 19134 #ifdef DEBUG 19135 ipif_trace_cleanup(ipif); 19136 #endif 19137 19138 /* Ask SCTP to take it out of it list */ 19139 sctp_update_ipif(ipif, SCTP_IPIF_REMOVE); 19140 19141 /* Get it out of the ILL interface list. */ 19142 ipif_remove(ipif, B_TRUE); 19143 rw_exit(&ipst->ips_ill_g_lock); 19144 19145 mutex_destroy(&ipif->ipif_saved_ire_lock); 19146 19147 ASSERT(!(ipif->ipif_flags & (IPIF_UP | IPIF_DUPLICATE))); 19148 ASSERT(ipif->ipif_recovery_id == 0); 19149 19150 /* Free the memory. */ 19151 mi_free(ipif); 19152 } 19153 19154 /* 19155 * Sets `buf' to an ipif name of the form "ill_name:id", or "ill_name" if "id" 19156 * is zero. 19157 */ 19158 void 19159 ipif_get_name(const ipif_t *ipif, char *buf, int len) 19160 { 19161 char lbuf[LIFNAMSIZ]; 19162 char *name; 19163 size_t name_len; 19164 19165 buf[0] = '\0'; 19166 name = ipif->ipif_ill->ill_name; 19167 name_len = ipif->ipif_ill->ill_name_length; 19168 if (ipif->ipif_id != 0) { 19169 (void) sprintf(lbuf, "%s%c%d", name, IPIF_SEPARATOR_CHAR, 19170 ipif->ipif_id); 19171 name = lbuf; 19172 name_len = mi_strlen(name) + 1; 19173 } 19174 len -= 1; 19175 buf[len] = '\0'; 19176 len = MIN(len, name_len); 19177 bcopy(name, buf, len); 19178 } 19179 19180 /* 19181 * Find an IPIF based on the name passed in. Names can be of the 19182 * form <phys> (e.g., le0), <phys>:<#> (e.g., le0:1), 19183 * The <phys> string can have forms like <dev><#> (e.g., le0), 19184 * <dev><#>.<module> (e.g. le0.foo), or <dev>.<module><#> (e.g. ip.tun3). 19185 * When there is no colon, the implied unit id is zero. <phys> must 19186 * correspond to the name of an ILL. (May be called as writer.) 19187 */ 19188 static ipif_t * 19189 ipif_lookup_on_name(char *name, size_t namelen, boolean_t do_alloc, 19190 boolean_t *exists, boolean_t isv6, zoneid_t zoneid, queue_t *q, 19191 mblk_t *mp, ipsq_func_t func, int *error, ip_stack_t *ipst) 19192 { 19193 char *cp; 19194 char *endp; 19195 long id; 19196 ill_t *ill; 19197 ipif_t *ipif; 19198 uint_t ire_type; 19199 boolean_t did_alloc = B_FALSE; 19200 ipsq_t *ipsq; 19201 19202 if (error != NULL) 19203 *error = 0; 19204 19205 /* 19206 * If the caller wants to us to create the ipif, make sure we have a 19207 * valid zoneid 19208 */ 19209 ASSERT(!do_alloc || zoneid != ALL_ZONES); 19210 19211 if (namelen == 0) { 19212 if (error != NULL) 19213 *error = ENXIO; 19214 return (NULL); 19215 } 19216 19217 *exists = B_FALSE; 19218 /* Look for a colon in the name. */ 19219 endp = &name[namelen]; 19220 for (cp = endp; --cp > name; ) { 19221 if (*cp == IPIF_SEPARATOR_CHAR) 19222 break; 19223 } 19224 19225 if (*cp == IPIF_SEPARATOR_CHAR) { 19226 /* 19227 * Reject any non-decimal aliases for logical 19228 * interfaces. Aliases with leading zeroes 19229 * are also rejected as they introduce ambiguity 19230 * in the naming of the interfaces. 19231 * In order to confirm with existing semantics, 19232 * and to not break any programs/script relying 19233 * on that behaviour, if<0>:0 is considered to be 19234 * a valid interface. 19235 * 19236 * If alias has two or more digits and the first 19237 * is zero, fail. 19238 */ 19239 if (&cp[2] < endp && cp[1] == '0') { 19240 if (error != NULL) 19241 *error = EINVAL; 19242 return (NULL); 19243 } 19244 } 19245 19246 if (cp <= name) { 19247 cp = endp; 19248 } else { 19249 *cp = '\0'; 19250 } 19251 19252 /* 19253 * Look up the ILL, based on the portion of the name 19254 * before the slash. ill_lookup_on_name returns a held ill. 19255 * Temporary to check whether ill exists already. If so 19256 * ill_lookup_on_name will clear it. 19257 */ 19258 ill = ill_lookup_on_name(name, do_alloc, isv6, 19259 q, mp, func, error, &did_alloc, ipst); 19260 if (cp != endp) 19261 *cp = IPIF_SEPARATOR_CHAR; 19262 if (ill == NULL) 19263 return (NULL); 19264 19265 /* Establish the unit number in the name. */ 19266 id = 0; 19267 if (cp < endp && *endp == '\0') { 19268 /* If there was a colon, the unit number follows. */ 19269 cp++; 19270 if (ddi_strtol(cp, NULL, 0, &id) != 0) { 19271 ill_refrele(ill); 19272 if (error != NULL) 19273 *error = ENXIO; 19274 return (NULL); 19275 } 19276 } 19277 19278 GRAB_CONN_LOCK(q); 19279 mutex_enter(&ill->ill_lock); 19280 /* Now see if there is an IPIF with this unit number. */ 19281 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 19282 if (ipif->ipif_id == id) { 19283 if (zoneid != ALL_ZONES && 19284 zoneid != ipif->ipif_zoneid && 19285 ipif->ipif_zoneid != ALL_ZONES) { 19286 mutex_exit(&ill->ill_lock); 19287 RELEASE_CONN_LOCK(q); 19288 ill_refrele(ill); 19289 if (error != NULL) 19290 *error = ENXIO; 19291 return (NULL); 19292 } 19293 /* 19294 * The block comment at the start of ipif_down 19295 * explains the use of the macros used below 19296 */ 19297 if (IPIF_CAN_LOOKUP(ipif)) { 19298 ipif_refhold_locked(ipif); 19299 mutex_exit(&ill->ill_lock); 19300 if (!did_alloc) 19301 *exists = B_TRUE; 19302 /* 19303 * Drop locks before calling ill_refrele 19304 * since it can potentially call into 19305 * ipif_ill_refrele_tail which can end up 19306 * in trying to acquire any lock. 19307 */ 19308 RELEASE_CONN_LOCK(q); 19309 ill_refrele(ill); 19310 return (ipif); 19311 } else if (IPIF_CAN_WAIT(ipif, q)) { 19312 ipsq = ill->ill_phyint->phyint_ipsq; 19313 mutex_enter(&ipsq->ipsq_lock); 19314 mutex_exit(&ill->ill_lock); 19315 ipsq_enq(ipsq, q, mp, func, NEW_OP, ill); 19316 mutex_exit(&ipsq->ipsq_lock); 19317 RELEASE_CONN_LOCK(q); 19318 ill_refrele(ill); 19319 if (error != NULL) 19320 *error = EINPROGRESS; 19321 return (NULL); 19322 } 19323 } 19324 } 19325 RELEASE_CONN_LOCK(q); 19326 19327 if (!do_alloc) { 19328 mutex_exit(&ill->ill_lock); 19329 ill_refrele(ill); 19330 if (error != NULL) 19331 *error = ENXIO; 19332 return (NULL); 19333 } 19334 19335 /* 19336 * If none found, atomically allocate and return a new one. 19337 * Historically, we used IRE_LOOPBACK only for lun 0, and IRE_LOCAL 19338 * to support "receive only" use of lo0:1 etc. as is still done 19339 * below as an initial guess. 19340 * However, this is now likely to be overriden later in ipif_up_done() 19341 * when we know for sure what address has been configured on the 19342 * interface, since we might have more than one loopback interface 19343 * with a loopback address, e.g. in the case of zones, and all the 19344 * interfaces with loopback addresses need to be marked IRE_LOOPBACK. 19345 */ 19346 if (ill->ill_net_type == IRE_LOOPBACK && id == 0) 19347 ire_type = IRE_LOOPBACK; 19348 else 19349 ire_type = IRE_LOCAL; 19350 ipif = ipif_allocate(ill, id, ire_type, B_TRUE); 19351 if (ipif != NULL) 19352 ipif_refhold_locked(ipif); 19353 else if (error != NULL) 19354 *error = ENOMEM; 19355 mutex_exit(&ill->ill_lock); 19356 ill_refrele(ill); 19357 return (ipif); 19358 } 19359 19360 /* 19361 * This routine is called whenever a new address comes up on an ipif. If 19362 * we are configured to respond to address mask requests, then we are supposed 19363 * to broadcast an address mask reply at this time. This routine is also 19364 * called if we are already up, but a netmask change is made. This is legal 19365 * but might not make the system manager very popular. (May be called 19366 * as writer.) 19367 */ 19368 void 19369 ipif_mask_reply(ipif_t *ipif) 19370 { 19371 icmph_t *icmph; 19372 ipha_t *ipha; 19373 mblk_t *mp; 19374 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; 19375 19376 #define REPLY_LEN (sizeof (icmp_ipha) + sizeof (icmph_t) + IP_ADDR_LEN) 19377 19378 if (!ipst->ips_ip_respond_to_address_mask_broadcast) 19379 return; 19380 19381 /* ICMP mask reply is IPv4 only */ 19382 ASSERT(!ipif->ipif_isv6); 19383 /* ICMP mask reply is not for a loopback interface */ 19384 ASSERT(ipif->ipif_ill->ill_wq != NULL); 19385 19386 mp = allocb(REPLY_LEN, BPRI_HI); 19387 if (mp == NULL) 19388 return; 19389 mp->b_wptr = mp->b_rptr + REPLY_LEN; 19390 19391 ipha = (ipha_t *)mp->b_rptr; 19392 bzero(ipha, REPLY_LEN); 19393 *ipha = icmp_ipha; 19394 ipha->ipha_ttl = ipst->ips_ip_broadcast_ttl; 19395 ipha->ipha_src = ipif->ipif_src_addr; 19396 ipha->ipha_dst = ipif->ipif_brd_addr; 19397 ipha->ipha_length = htons(REPLY_LEN); 19398 ipha->ipha_ident = 0; 19399 19400 icmph = (icmph_t *)&ipha[1]; 19401 icmph->icmph_type = ICMP_ADDRESS_MASK_REPLY; 19402 bcopy(&ipif->ipif_net_mask, &icmph[1], IP_ADDR_LEN); 19403 icmph->icmph_checksum = IP_CSUM(mp, sizeof (ipha_t), 0); 19404 19405 put(ipif->ipif_wq, mp); 19406 19407 #undef REPLY_LEN 19408 } 19409 19410 /* 19411 * When the mtu in the ipif changes, we call this routine through ire_walk 19412 * to update all the relevant IREs. 19413 * Skip IRE_LOCAL and "loopback" IRE_BROADCAST by checking ire_stq. 19414 */ 19415 static void 19416 ipif_mtu_change(ire_t *ire, char *ipif_arg) 19417 { 19418 ipif_t *ipif = (ipif_t *)ipif_arg; 19419 19420 if (ire->ire_stq == NULL || ire->ire_ipif != ipif) 19421 return; 19422 ire->ire_max_frag = MIN(ipif->ipif_mtu, IP_MAXPACKET); 19423 } 19424 19425 /* 19426 * When the mtu in the ill changes, we call this routine through ire_walk 19427 * to update all the relevant IREs. 19428 * Skip IRE_LOCAL and "loopback" IRE_BROADCAST by checking ire_stq. 19429 */ 19430 void 19431 ill_mtu_change(ire_t *ire, char *ill_arg) 19432 { 19433 ill_t *ill = (ill_t *)ill_arg; 19434 19435 if (ire->ire_stq == NULL || ire->ire_ipif->ipif_ill != ill) 19436 return; 19437 ire->ire_max_frag = ire->ire_ipif->ipif_mtu; 19438 } 19439 19440 /* 19441 * Join the ipif specific multicast groups. 19442 * Must be called after a mapping has been set up in the resolver. (Always 19443 * called as writer.) 19444 */ 19445 void 19446 ipif_multicast_up(ipif_t *ipif) 19447 { 19448 int err, index; 19449 ill_t *ill; 19450 19451 ASSERT(IAM_WRITER_IPIF(ipif)); 19452 19453 ill = ipif->ipif_ill; 19454 index = ill->ill_phyint->phyint_ifindex; 19455 19456 ip1dbg(("ipif_multicast_up\n")); 19457 if (!(ill->ill_flags & ILLF_MULTICAST) || ipif->ipif_multicast_up) 19458 return; 19459 19460 if (ipif->ipif_isv6) { 19461 if (IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6lcl_addr)) 19462 return; 19463 19464 /* Join the all hosts multicast address */ 19465 ip1dbg(("ipif_multicast_up - addmulti\n")); 19466 /* 19467 * Passing B_TRUE means we have to join the multicast 19468 * membership on this interface even though this is 19469 * FAILED. If we join on a different one in the group, 19470 * we will not be able to delete the membership later 19471 * as we currently don't track where we join when we 19472 * join within the kernel unlike applications where 19473 * we have ilg/ilg_orig_index. See ip_addmulti_v6 19474 * for more on this. 19475 */ 19476 err = ip_addmulti_v6(&ipv6_all_hosts_mcast, ill, index, 19477 ipif->ipif_zoneid, ILGSTAT_NONE, MODE_IS_EXCLUDE, NULL); 19478 if (err != 0) { 19479 ip0dbg(("ipif_multicast_up: " 19480 "all_hosts_mcast failed %d\n", 19481 err)); 19482 return; 19483 } 19484 /* 19485 * Enable multicast for the solicited node multicast address 19486 */ 19487 if (!(ipif->ipif_flags & IPIF_NOLOCAL)) { 19488 in6_addr_t ipv6_multi = ipv6_solicited_node_mcast; 19489 19490 ipv6_multi.s6_addr32[3] |= 19491 ipif->ipif_v6lcl_addr.s6_addr32[3]; 19492 19493 err = ip_addmulti_v6(&ipv6_multi, ill, index, 19494 ipif->ipif_zoneid, ILGSTAT_NONE, MODE_IS_EXCLUDE, 19495 NULL); 19496 if (err != 0) { 19497 ip0dbg(("ipif_multicast_up: solicited MC" 19498 " failed %d\n", err)); 19499 (void) ip_delmulti_v6(&ipv6_all_hosts_mcast, 19500 ill, ill->ill_phyint->phyint_ifindex, 19501 ipif->ipif_zoneid, B_TRUE, B_TRUE); 19502 return; 19503 } 19504 } 19505 } else { 19506 if (ipif->ipif_lcl_addr == INADDR_ANY) 19507 return; 19508 19509 /* Join the all hosts multicast address */ 19510 ip1dbg(("ipif_multicast_up - addmulti\n")); 19511 err = ip_addmulti(htonl(INADDR_ALLHOSTS_GROUP), ipif, 19512 ILGSTAT_NONE, MODE_IS_EXCLUDE, NULL); 19513 if (err) { 19514 ip0dbg(("ipif_multicast_up: failed %d\n", err)); 19515 return; 19516 } 19517 } 19518 ipif->ipif_multicast_up = 1; 19519 } 19520 19521 /* 19522 * Blow away any multicast groups that we joined in ipif_multicast_up(). 19523 * (Explicit memberships are blown away in ill_leave_multicast() when the 19524 * ill is brought down.) 19525 */ 19526 static void 19527 ipif_multicast_down(ipif_t *ipif) 19528 { 19529 int err; 19530 19531 ASSERT(IAM_WRITER_IPIF(ipif)); 19532 19533 ip1dbg(("ipif_multicast_down\n")); 19534 if (!ipif->ipif_multicast_up) 19535 return; 19536 19537 ip1dbg(("ipif_multicast_down - delmulti\n")); 19538 19539 if (!ipif->ipif_isv6) { 19540 err = ip_delmulti(htonl(INADDR_ALLHOSTS_GROUP), ipif, B_TRUE, 19541 B_TRUE); 19542 if (err != 0) 19543 ip0dbg(("ipif_multicast_down: failed %d\n", err)); 19544 19545 ipif->ipif_multicast_up = 0; 19546 return; 19547 } 19548 19549 /* 19550 * Leave the all hosts multicast address. Similar to ip_addmulti_v6, 19551 * we should look for ilms on this ill rather than the ones that have 19552 * been failed over here. They are here temporarily. As 19553 * ipif_multicast_up has joined on this ill, we should delete only 19554 * from this ill. 19555 */ 19556 err = ip_delmulti_v6(&ipv6_all_hosts_mcast, ipif->ipif_ill, 19557 ipif->ipif_ill->ill_phyint->phyint_ifindex, ipif->ipif_zoneid, 19558 B_TRUE, B_TRUE); 19559 if (err != 0) { 19560 ip0dbg(("ipif_multicast_down: all_hosts_mcast failed %d\n", 19561 err)); 19562 } 19563 /* 19564 * Disable multicast for the solicited node multicast address 19565 */ 19566 if (!(ipif->ipif_flags & IPIF_NOLOCAL)) { 19567 in6_addr_t ipv6_multi = ipv6_solicited_node_mcast; 19568 19569 ipv6_multi.s6_addr32[3] |= 19570 ipif->ipif_v6lcl_addr.s6_addr32[3]; 19571 19572 err = ip_delmulti_v6(&ipv6_multi, ipif->ipif_ill, 19573 ipif->ipif_ill->ill_phyint->phyint_ifindex, 19574 ipif->ipif_zoneid, B_TRUE, B_TRUE); 19575 19576 if (err != 0) { 19577 ip0dbg(("ipif_multicast_down: sol MC failed %d\n", 19578 err)); 19579 } 19580 } 19581 19582 ipif->ipif_multicast_up = 0; 19583 } 19584 19585 /* 19586 * Used when an interface comes up to recreate any extra routes on this 19587 * interface. 19588 */ 19589 static ire_t ** 19590 ipif_recover_ire(ipif_t *ipif) 19591 { 19592 mblk_t *mp; 19593 ire_t **ipif_saved_irep; 19594 ire_t **irep; 19595 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; 19596 19597 ip1dbg(("ipif_recover_ire(%s:%u)", ipif->ipif_ill->ill_name, 19598 ipif->ipif_id)); 19599 19600 mutex_enter(&ipif->ipif_saved_ire_lock); 19601 ipif_saved_irep = (ire_t **)kmem_zalloc(sizeof (ire_t *) * 19602 ipif->ipif_saved_ire_cnt, KM_NOSLEEP); 19603 if (ipif_saved_irep == NULL) { 19604 mutex_exit(&ipif->ipif_saved_ire_lock); 19605 return (NULL); 19606 } 19607 19608 irep = ipif_saved_irep; 19609 for (mp = ipif->ipif_saved_ire_mp; mp != NULL; mp = mp->b_cont) { 19610 ire_t *ire; 19611 queue_t *rfq; 19612 queue_t *stq; 19613 ifrt_t *ifrt; 19614 uchar_t *src_addr; 19615 uchar_t *gateway_addr; 19616 ushort_t type; 19617 19618 /* 19619 * When the ire was initially created and then added in 19620 * ip_rt_add(), it was created either using ipif->ipif_net_type 19621 * in the case of a traditional interface route, or as one of 19622 * the IRE_OFFSUBNET types (with the exception of 19623 * IRE_HOST types ire which is created by icmp_redirect() and 19624 * which we don't need to save or recover). In the case where 19625 * ipif->ipif_net_type was IRE_LOOPBACK, ip_rt_add() will update 19626 * the ire_type to IRE_IF_NORESOLVER before calling ire_add() 19627 * to satisfy software like GateD and Sun Cluster which creates 19628 * routes using the the loopback interface's address as a 19629 * gateway. 19630 * 19631 * As ifrt->ifrt_type reflects the already updated ire_type, 19632 * ire_create() will be called in the same way here as 19633 * in ip_rt_add(), namely using ipif->ipif_net_type when 19634 * the route looks like a traditional interface route (where 19635 * ifrt->ifrt_type & IRE_INTERFACE is true) and otherwise using 19636 * the saved ifrt->ifrt_type. This means that in the case where 19637 * ipif->ipif_net_type is IRE_LOOPBACK, the ire created by 19638 * ire_create() will be an IRE_LOOPBACK, it will then be turned 19639 * into an IRE_IF_NORESOLVER and then added by ire_add(). 19640 */ 19641 ifrt = (ifrt_t *)mp->b_rptr; 19642 ASSERT(ifrt->ifrt_type != IRE_CACHE); 19643 if (ifrt->ifrt_type & IRE_INTERFACE) { 19644 rfq = NULL; 19645 stq = (ipif->ipif_net_type == IRE_IF_RESOLVER) 19646 ? ipif->ipif_rq : ipif->ipif_wq; 19647 src_addr = (ifrt->ifrt_flags & RTF_SETSRC) 19648 ? (uint8_t *)&ifrt->ifrt_src_addr 19649 : (uint8_t *)&ipif->ipif_src_addr; 19650 gateway_addr = NULL; 19651 type = ipif->ipif_net_type; 19652 } else if (ifrt->ifrt_type & IRE_BROADCAST) { 19653 /* Recover multiroute broadcast IRE. */ 19654 rfq = ipif->ipif_rq; 19655 stq = ipif->ipif_wq; 19656 src_addr = (ifrt->ifrt_flags & RTF_SETSRC) 19657 ? (uint8_t *)&ifrt->ifrt_src_addr 19658 : (uint8_t *)&ipif->ipif_src_addr; 19659 gateway_addr = (uint8_t *)&ifrt->ifrt_gateway_addr; 19660 type = ifrt->ifrt_type; 19661 } else { 19662 rfq = NULL; 19663 stq = NULL; 19664 src_addr = (ifrt->ifrt_flags & RTF_SETSRC) 19665 ? (uint8_t *)&ifrt->ifrt_src_addr : NULL; 19666 gateway_addr = (uint8_t *)&ifrt->ifrt_gateway_addr; 19667 type = ifrt->ifrt_type; 19668 } 19669 19670 /* 19671 * Create a copy of the IRE with the saved address and netmask. 19672 */ 19673 ip1dbg(("ipif_recover_ire: creating IRE %s (%d) for " 19674 "0x%x/0x%x\n", 19675 ip_nv_lookup(ire_nv_tbl, ifrt->ifrt_type), ifrt->ifrt_type, 19676 ntohl(ifrt->ifrt_addr), 19677 ntohl(ifrt->ifrt_mask))); 19678 ire = ire_create( 19679 (uint8_t *)&ifrt->ifrt_addr, 19680 (uint8_t *)&ifrt->ifrt_mask, 19681 src_addr, 19682 gateway_addr, 19683 &ifrt->ifrt_max_frag, 19684 NULL, 19685 rfq, 19686 stq, 19687 type, 19688 ipif, 19689 0, 19690 0, 19691 0, 19692 ifrt->ifrt_flags, 19693 &ifrt->ifrt_iulp_info, 19694 NULL, 19695 NULL, 19696 ipst); 19697 19698 if (ire == NULL) { 19699 mutex_exit(&ipif->ipif_saved_ire_lock); 19700 kmem_free(ipif_saved_irep, 19701 ipif->ipif_saved_ire_cnt * sizeof (ire_t *)); 19702 return (NULL); 19703 } 19704 19705 /* 19706 * Some software (for example, GateD and Sun Cluster) attempts 19707 * to create (what amount to) IRE_PREFIX routes with the 19708 * loopback address as the gateway. This is primarily done to 19709 * set up prefixes with the RTF_REJECT flag set (for example, 19710 * when generating aggregate routes.) 19711 * 19712 * If the IRE type (as defined by ipif->ipif_net_type) is 19713 * IRE_LOOPBACK, then we map the request into a 19714 * IRE_IF_NORESOLVER. 19715 */ 19716 if (ipif->ipif_net_type == IRE_LOOPBACK) 19717 ire->ire_type = IRE_IF_NORESOLVER; 19718 /* 19719 * ire held by ire_add, will be refreled' towards the 19720 * the end of ipif_up_done 19721 */ 19722 (void) ire_add(&ire, NULL, NULL, NULL, B_FALSE); 19723 *irep = ire; 19724 irep++; 19725 ip1dbg(("ipif_recover_ire: added ire %p\n", (void *)ire)); 19726 } 19727 mutex_exit(&ipif->ipif_saved_ire_lock); 19728 return (ipif_saved_irep); 19729 } 19730 19731 /* 19732 * Used to set the netmask and broadcast address to default values when the 19733 * interface is brought up. (Always called as writer.) 19734 */ 19735 static void 19736 ipif_set_default(ipif_t *ipif) 19737 { 19738 ASSERT(MUTEX_HELD(&ipif->ipif_ill->ill_lock)); 19739 19740 if (!ipif->ipif_isv6) { 19741 /* 19742 * Interface holds an IPv4 address. Default 19743 * mask is the natural netmask. 19744 */ 19745 if (!ipif->ipif_net_mask) { 19746 ipaddr_t v4mask; 19747 19748 v4mask = ip_net_mask(ipif->ipif_lcl_addr); 19749 V4MASK_TO_V6(v4mask, ipif->ipif_v6net_mask); 19750 } 19751 if (ipif->ipif_flags & IPIF_POINTOPOINT) { 19752 /* ipif_subnet is ipif_pp_dst_addr for pt-pt */ 19753 ipif->ipif_v6subnet = ipif->ipif_v6pp_dst_addr; 19754 } else { 19755 V6_MASK_COPY(ipif->ipif_v6lcl_addr, 19756 ipif->ipif_v6net_mask, ipif->ipif_v6subnet); 19757 } 19758 /* 19759 * NOTE: SunOS 4.X does this even if the broadcast address 19760 * has been already set thus we do the same here. 19761 */ 19762 if (ipif->ipif_flags & IPIF_BROADCAST) { 19763 ipaddr_t v4addr; 19764 19765 v4addr = ipif->ipif_subnet | ~ipif->ipif_net_mask; 19766 IN6_IPADDR_TO_V4MAPPED(v4addr, &ipif->ipif_v6brd_addr); 19767 } 19768 } else { 19769 /* 19770 * Interface holds an IPv6-only address. Default 19771 * mask is all-ones. 19772 */ 19773 if (IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6net_mask)) 19774 ipif->ipif_v6net_mask = ipv6_all_ones; 19775 if (ipif->ipif_flags & IPIF_POINTOPOINT) { 19776 /* ipif_subnet is ipif_pp_dst_addr for pt-pt */ 19777 ipif->ipif_v6subnet = ipif->ipif_v6pp_dst_addr; 19778 } else { 19779 V6_MASK_COPY(ipif->ipif_v6lcl_addr, 19780 ipif->ipif_v6net_mask, ipif->ipif_v6subnet); 19781 } 19782 } 19783 } 19784 19785 /* 19786 * Return 0 if this address can be used as local address without causing 19787 * duplicate address problems. Otherwise, return EADDRNOTAVAIL if the address 19788 * is already up on a different ill, and EADDRINUSE if it's up on the same ill. 19789 * Special checks are needed to allow the same IPv6 link-local address 19790 * on different ills. 19791 * TODO: allowing the same site-local address on different ill's. 19792 */ 19793 int 19794 ip_addr_availability_check(ipif_t *new_ipif) 19795 { 19796 in6_addr_t our_v6addr; 19797 ill_t *ill; 19798 ipif_t *ipif; 19799 ill_walk_context_t ctx; 19800 ip_stack_t *ipst = new_ipif->ipif_ill->ill_ipst; 19801 19802 ASSERT(IAM_WRITER_IPIF(new_ipif)); 19803 ASSERT(MUTEX_HELD(&ipst->ips_ip_addr_avail_lock)); 19804 ASSERT(RW_READ_HELD(&ipst->ips_ill_g_lock)); 19805 19806 new_ipif->ipif_flags &= ~IPIF_UNNUMBERED; 19807 if (IN6_IS_ADDR_UNSPECIFIED(&new_ipif->ipif_v6lcl_addr) || 19808 IN6_IS_ADDR_V4MAPPED_ANY(&new_ipif->ipif_v6lcl_addr)) 19809 return (0); 19810 19811 our_v6addr = new_ipif->ipif_v6lcl_addr; 19812 19813 if (new_ipif->ipif_isv6) 19814 ill = ILL_START_WALK_V6(&ctx, ipst); 19815 else 19816 ill = ILL_START_WALK_V4(&ctx, ipst); 19817 19818 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 19819 for (ipif = ill->ill_ipif; ipif != NULL; 19820 ipif = ipif->ipif_next) { 19821 if ((ipif == new_ipif) || 19822 !(ipif->ipif_flags & IPIF_UP) || 19823 (ipif->ipif_flags & IPIF_UNNUMBERED)) 19824 continue; 19825 if (IN6_ARE_ADDR_EQUAL(&ipif->ipif_v6lcl_addr, 19826 &our_v6addr)) { 19827 if (new_ipif->ipif_flags & IPIF_POINTOPOINT) 19828 new_ipif->ipif_flags |= IPIF_UNNUMBERED; 19829 else if (ipif->ipif_flags & IPIF_POINTOPOINT) 19830 ipif->ipif_flags |= IPIF_UNNUMBERED; 19831 else if (IN6_IS_ADDR_LINKLOCAL(&our_v6addr) && 19832 new_ipif->ipif_ill != ill) 19833 continue; 19834 else if (IN6_IS_ADDR_SITELOCAL(&our_v6addr) && 19835 new_ipif->ipif_ill != ill) 19836 continue; 19837 else if (new_ipif->ipif_zoneid != 19838 ipif->ipif_zoneid && 19839 ipif->ipif_zoneid != ALL_ZONES && 19840 IS_LOOPBACK(ill)) 19841 continue; 19842 else if (new_ipif->ipif_ill == ill) 19843 return (EADDRINUSE); 19844 else 19845 return (EADDRNOTAVAIL); 19846 } 19847 } 19848 } 19849 19850 return (0); 19851 } 19852 19853 /* 19854 * Bring up an ipif: bring up arp/ndp, bring up the DLPI stream, and add 19855 * IREs for the ipif. 19856 * When the routine returns EINPROGRESS then mp has been consumed and 19857 * the ioctl will be acked from ip_rput_dlpi. 19858 */ 19859 static int 19860 ipif_up(ipif_t *ipif, queue_t *q, mblk_t *mp) 19861 { 19862 ill_t *ill = ipif->ipif_ill; 19863 boolean_t isv6 = ipif->ipif_isv6; 19864 int err = 0; 19865 boolean_t success; 19866 19867 ASSERT(IAM_WRITER_IPIF(ipif)); 19868 19869 ip1dbg(("ipif_up(%s:%u)\n", ill->ill_name, ipif->ipif_id)); 19870 19871 /* Shouldn't get here if it is already up. */ 19872 if (ipif->ipif_flags & IPIF_UP) 19873 return (EALREADY); 19874 19875 /* Skip arp/ndp for any loopback interface. */ 19876 if (ill->ill_wq != NULL) { 19877 conn_t *connp = CONN_Q(q) ? Q_TO_CONN(q) : NULL; 19878 ipsq_t *ipsq = ill->ill_phyint->phyint_ipsq; 19879 19880 if (!ill->ill_dl_up) { 19881 /* 19882 * ill_dl_up is not yet set. i.e. we are yet to 19883 * DL_BIND with the driver and this is the first 19884 * logical interface on the ill to become "up". 19885 * Tell the driver to get going (via DL_BIND_REQ). 19886 * Note that changing "significant" IFF_ flags 19887 * address/netmask etc cause a down/up dance, but 19888 * does not cause an unbind (DL_UNBIND) with the driver 19889 */ 19890 return (ill_dl_up(ill, ipif, mp, q)); 19891 } 19892 19893 /* 19894 * ipif_resolver_up may end up sending an 19895 * AR_INTERFACE_UP message to ARP, which would, in 19896 * turn send a DLPI message to the driver. ioctls are 19897 * serialized and so we cannot send more than one 19898 * interface up message at a time. If ipif_resolver_up 19899 * does send an interface up message to ARP, we get 19900 * EINPROGRESS and we will complete in ip_arp_done. 19901 */ 19902 19903 ASSERT(connp != NULL || !CONN_Q(q)); 19904 ASSERT(ipsq->ipsq_pending_mp == NULL); 19905 if (connp != NULL) 19906 mutex_enter(&connp->conn_lock); 19907 mutex_enter(&ill->ill_lock); 19908 success = ipsq_pending_mp_add(connp, ipif, q, mp, 0); 19909 mutex_exit(&ill->ill_lock); 19910 if (connp != NULL) 19911 mutex_exit(&connp->conn_lock); 19912 if (!success) 19913 return (EINTR); 19914 19915 /* 19916 * Crank up IPv6 neighbor discovery 19917 * Unlike ARP, this should complete when 19918 * ipif_ndp_up returns. However, for 19919 * ILLF_XRESOLV interfaces we also send a 19920 * AR_INTERFACE_UP to the external resolver. 19921 * That ioctl will complete in ip_rput. 19922 */ 19923 if (isv6) { 19924 err = ipif_ndp_up(ipif); 19925 if (err != 0) { 19926 if (err != EINPROGRESS) 19927 mp = ipsq_pending_mp_get(ipsq, &connp); 19928 return (err); 19929 } 19930 } 19931 /* Now, ARP */ 19932 err = ipif_resolver_up(ipif, Res_act_initial); 19933 if (err == EINPROGRESS) { 19934 /* We will complete it in ip_arp_done */ 19935 return (err); 19936 } 19937 mp = ipsq_pending_mp_get(ipsq, &connp); 19938 ASSERT(mp != NULL); 19939 if (err != 0) 19940 return (err); 19941 } else { 19942 /* 19943 * Interfaces without underlying hardware don't do duplicate 19944 * address detection. 19945 */ 19946 ASSERT(!(ipif->ipif_flags & IPIF_DUPLICATE)); 19947 ipif->ipif_addr_ready = 1; 19948 } 19949 return (isv6 ? ipif_up_done_v6(ipif) : ipif_up_done(ipif)); 19950 } 19951 19952 /* 19953 * Perform a bind for the physical device. 19954 * When the routine returns EINPROGRESS then mp has been consumed and 19955 * the ioctl will be acked from ip_rput_dlpi. 19956 * Allocate an unbind message and save it until ipif_down. 19957 */ 19958 static int 19959 ill_dl_up(ill_t *ill, ipif_t *ipif, mblk_t *mp, queue_t *q) 19960 { 19961 areq_t *areq; 19962 mblk_t *areq_mp = NULL; 19963 mblk_t *bind_mp = NULL; 19964 mblk_t *unbind_mp = NULL; 19965 conn_t *connp; 19966 boolean_t success; 19967 uint16_t sap_addr; 19968 19969 ip1dbg(("ill_dl_up(%s)\n", ill->ill_name)); 19970 ASSERT(IAM_WRITER_ILL(ill)); 19971 ASSERT(mp != NULL); 19972 19973 /* Create a resolver cookie for ARP */ 19974 if (!ill->ill_isv6 && ill->ill_net_type == IRE_IF_RESOLVER) { 19975 areq_mp = ill_arp_alloc(ill, (uchar_t *)&ip_areq_template, 0); 19976 if (areq_mp == NULL) 19977 return (ENOMEM); 19978 19979 freemsg(ill->ill_resolver_mp); 19980 ill->ill_resolver_mp = areq_mp; 19981 areq = (areq_t *)areq_mp->b_rptr; 19982 sap_addr = ill->ill_sap; 19983 bcopy(&sap_addr, areq->areq_sap, sizeof (sap_addr)); 19984 } 19985 bind_mp = ip_dlpi_alloc(sizeof (dl_bind_req_t) + sizeof (long), 19986 DL_BIND_REQ); 19987 if (bind_mp == NULL) 19988 goto bad; 19989 ((dl_bind_req_t *)bind_mp->b_rptr)->dl_sap = ill->ill_sap; 19990 ((dl_bind_req_t *)bind_mp->b_rptr)->dl_service_mode = DL_CLDLS; 19991 19992 unbind_mp = ip_dlpi_alloc(sizeof (dl_unbind_req_t), DL_UNBIND_REQ); 19993 if (unbind_mp == NULL) 19994 goto bad; 19995 19996 /* 19997 * Record state needed to complete this operation when the 19998 * DL_BIND_ACK shows up. Also remember the pre-allocated mblks. 19999 */ 20000 ASSERT(WR(q)->q_next == NULL); 20001 connp = Q_TO_CONN(q); 20002 20003 mutex_enter(&connp->conn_lock); 20004 mutex_enter(&ipif->ipif_ill->ill_lock); 20005 success = ipsq_pending_mp_add(connp, ipif, q, mp, 0); 20006 mutex_exit(&ipif->ipif_ill->ill_lock); 20007 mutex_exit(&connp->conn_lock); 20008 if (!success) 20009 goto bad; 20010 20011 /* 20012 * Save the unbind message for ill_dl_down(); it will be consumed when 20013 * the interface goes down. 20014 */ 20015 ASSERT(ill->ill_unbind_mp == NULL); 20016 ill->ill_unbind_mp = unbind_mp; 20017 20018 ill_dlpi_send(ill, bind_mp); 20019 /* Send down link-layer capabilities probe if not already done. */ 20020 ill_capability_probe(ill); 20021 20022 /* 20023 * Sysid used to rely on the fact that netboots set domainname 20024 * and the like. Now that miniroot boots aren't strictly netboots 20025 * and miniroot network configuration is driven from userland 20026 * these things still need to be set. This situation can be detected 20027 * by comparing the interface being configured here to the one 20028 * dhcifname was set to reference by the boot loader. Once sysid is 20029 * converted to use dhcp_ipc_getinfo() this call can go away. 20030 */ 20031 if ((ipif->ipif_flags & IPIF_DHCPRUNNING) && 20032 (strcmp(ill->ill_name, dhcifname) == 0) && 20033 (strlen(srpc_domain) == 0)) { 20034 if (dhcpinit() != 0) 20035 cmn_err(CE_WARN, "no cached dhcp response"); 20036 } 20037 20038 /* 20039 * This operation will complete in ip_rput_dlpi with either 20040 * a DL_BIND_ACK or DL_ERROR_ACK. 20041 */ 20042 return (EINPROGRESS); 20043 bad: 20044 ip1dbg(("ill_dl_up(%s) FAILED\n", ill->ill_name)); 20045 /* 20046 * We don't have to check for possible removal from illgrp 20047 * as we have not yet inserted in illgrp. For groups 20048 * without names, this ipif is still not UP and hence 20049 * this could not have possibly had any influence in forming 20050 * groups. 20051 */ 20052 20053 freemsg(bind_mp); 20054 freemsg(unbind_mp); 20055 return (ENOMEM); 20056 } 20057 20058 uint_t ip_loopback_mtuplus = IP_LOOPBACK_MTU + IP_SIMPLE_HDR_LENGTH + 20; 20059 20060 /* 20061 * DLPI and ARP is up. 20062 * Create all the IREs associated with an interface bring up multicast. 20063 * Set the interface flag and finish other initialization 20064 * that potentially had to be differed to after DL_BIND_ACK. 20065 */ 20066 int 20067 ipif_up_done(ipif_t *ipif) 20068 { 20069 ire_t *ire_array[20]; 20070 ire_t **irep = ire_array; 20071 ire_t **irep1; 20072 ipaddr_t net_mask = 0; 20073 ipaddr_t subnet_mask, route_mask; 20074 ill_t *ill = ipif->ipif_ill; 20075 queue_t *stq; 20076 ipif_t *src_ipif; 20077 ipif_t *tmp_ipif; 20078 boolean_t flush_ire_cache = B_TRUE; 20079 int err = 0; 20080 phyint_t *phyi; 20081 ire_t **ipif_saved_irep = NULL; 20082 int ipif_saved_ire_cnt; 20083 int cnt; 20084 boolean_t src_ipif_held = B_FALSE; 20085 boolean_t ire_added = B_FALSE; 20086 boolean_t loopback = B_FALSE; 20087 ip_stack_t *ipst = ill->ill_ipst; 20088 20089 ip1dbg(("ipif_up_done(%s:%u)\n", 20090 ipif->ipif_ill->ill_name, ipif->ipif_id)); 20091 /* Check if this is a loopback interface */ 20092 if (ipif->ipif_ill->ill_wq == NULL) 20093 loopback = B_TRUE; 20094 20095 ASSERT(!MUTEX_HELD(&ipif->ipif_ill->ill_lock)); 20096 /* 20097 * If all other interfaces for this ill are down or DEPRECATED, 20098 * or otherwise unsuitable for source address selection, remove 20099 * any IRE_CACHE entries for this ill to make sure source 20100 * address selection gets to take this new ipif into account. 20101 * No need to hold ill_lock while traversing the ipif list since 20102 * we are writer 20103 */ 20104 for (tmp_ipif = ill->ill_ipif; tmp_ipif; 20105 tmp_ipif = tmp_ipif->ipif_next) { 20106 if (((tmp_ipif->ipif_flags & 20107 (IPIF_NOXMIT|IPIF_ANYCAST|IPIF_NOLOCAL|IPIF_DEPRECATED)) || 20108 !(tmp_ipif->ipif_flags & IPIF_UP)) || 20109 (tmp_ipif == ipif)) 20110 continue; 20111 /* first useable pre-existing interface */ 20112 flush_ire_cache = B_FALSE; 20113 break; 20114 } 20115 if (flush_ire_cache) 20116 ire_walk_ill_v4(MATCH_IRE_ILL_GROUP | MATCH_IRE_TYPE, 20117 IRE_CACHE, ill_ipif_cache_delete, (char *)ill, ill); 20118 20119 /* 20120 * Figure out which way the send-to queue should go. Only 20121 * IRE_IF_RESOLVER or IRE_IF_NORESOLVER or IRE_LOOPBACK 20122 * should show up here. 20123 */ 20124 switch (ill->ill_net_type) { 20125 case IRE_IF_RESOLVER: 20126 stq = ill->ill_rq; 20127 break; 20128 case IRE_IF_NORESOLVER: 20129 case IRE_LOOPBACK: 20130 stq = ill->ill_wq; 20131 break; 20132 default: 20133 return (EINVAL); 20134 } 20135 20136 if (IS_LOOPBACK(ill)) { 20137 /* 20138 * lo0:1 and subsequent ipifs were marked IRE_LOCAL in 20139 * ipif_lookup_on_name(), but in the case of zones we can have 20140 * several loopback addresses on lo0. So all the interfaces with 20141 * loopback addresses need to be marked IRE_LOOPBACK. 20142 */ 20143 if (V4_PART_OF_V6(ipif->ipif_v6lcl_addr) == 20144 htonl(INADDR_LOOPBACK)) 20145 ipif->ipif_ire_type = IRE_LOOPBACK; 20146 else 20147 ipif->ipif_ire_type = IRE_LOCAL; 20148 } 20149 20150 if (ipif->ipif_flags & (IPIF_NOLOCAL|IPIF_ANYCAST|IPIF_DEPRECATED)) { 20151 /* 20152 * Can't use our source address. Select a different 20153 * source address for the IRE_INTERFACE and IRE_LOCAL 20154 */ 20155 src_ipif = ipif_select_source(ipif->ipif_ill, 20156 ipif->ipif_subnet, ipif->ipif_zoneid); 20157 if (src_ipif == NULL) 20158 src_ipif = ipif; /* Last resort */ 20159 else 20160 src_ipif_held = B_TRUE; 20161 } else { 20162 src_ipif = ipif; 20163 } 20164 20165 /* Create all the IREs associated with this interface */ 20166 if ((ipif->ipif_lcl_addr != INADDR_ANY) && 20167 !(ipif->ipif_flags & IPIF_NOLOCAL)) { 20168 20169 /* 20170 * If we're on a labeled system then make sure that zone- 20171 * private addresses have proper remote host database entries. 20172 */ 20173 if (is_system_labeled() && 20174 ipif->ipif_ire_type != IRE_LOOPBACK && 20175 !tsol_check_interface_address(ipif)) 20176 return (EINVAL); 20177 20178 /* Register the source address for __sin6_src_id */ 20179 err = ip_srcid_insert(&ipif->ipif_v6lcl_addr, 20180 ipif->ipif_zoneid, ipst); 20181 if (err != 0) { 20182 ip0dbg(("ipif_up_done: srcid_insert %d\n", err)); 20183 return (err); 20184 } 20185 20186 /* If the interface address is set, create the local IRE. */ 20187 ip1dbg(("ipif_up_done: 0x%p creating IRE 0x%x for 0x%x\n", 20188 (void *)ipif, 20189 ipif->ipif_ire_type, 20190 ntohl(ipif->ipif_lcl_addr))); 20191 *irep++ = ire_create( 20192 (uchar_t *)&ipif->ipif_lcl_addr, /* dest address */ 20193 (uchar_t *)&ip_g_all_ones, /* mask */ 20194 (uchar_t *)&src_ipif->ipif_src_addr, /* source address */ 20195 NULL, /* no gateway */ 20196 &ip_loopback_mtuplus, /* max frag size */ 20197 NULL, 20198 ipif->ipif_rq, /* recv-from queue */ 20199 NULL, /* no send-to queue */ 20200 ipif->ipif_ire_type, /* LOCAL or LOOPBACK */ 20201 ipif, 20202 0, 20203 0, 20204 0, 20205 (ipif->ipif_flags & IPIF_PRIVATE) ? 20206 RTF_PRIVATE : 0, 20207 &ire_uinfo_null, 20208 NULL, 20209 NULL, 20210 ipst); 20211 } else { 20212 ip1dbg(( 20213 "ipif_up_done: not creating IRE %d for 0x%x: flags 0x%x\n", 20214 ipif->ipif_ire_type, 20215 ntohl(ipif->ipif_lcl_addr), 20216 (uint_t)ipif->ipif_flags)); 20217 } 20218 if ((ipif->ipif_lcl_addr != INADDR_ANY) && 20219 !(ipif->ipif_flags & IPIF_NOLOCAL)) { 20220 net_mask = ip_net_mask(ipif->ipif_lcl_addr); 20221 } else { 20222 net_mask = htonl(IN_CLASSA_NET); /* fallback */ 20223 } 20224 20225 subnet_mask = ipif->ipif_net_mask; 20226 20227 /* 20228 * If mask was not specified, use natural netmask of 20229 * interface address. Also, store this mask back into the 20230 * ipif struct. 20231 */ 20232 if (subnet_mask == 0) { 20233 subnet_mask = net_mask; 20234 V4MASK_TO_V6(subnet_mask, ipif->ipif_v6net_mask); 20235 V6_MASK_COPY(ipif->ipif_v6lcl_addr, ipif->ipif_v6net_mask, 20236 ipif->ipif_v6subnet); 20237 } 20238 20239 /* Set up the IRE_IF_RESOLVER or IRE_IF_NORESOLVER, as appropriate. */ 20240 if (stq != NULL && !(ipif->ipif_flags & IPIF_NOXMIT) && 20241 ipif->ipif_subnet != INADDR_ANY) { 20242 /* ipif_subnet is ipif_pp_dst_addr for pt-pt */ 20243 20244 if (ipif->ipif_flags & IPIF_POINTOPOINT) { 20245 route_mask = IP_HOST_MASK; 20246 } else { 20247 route_mask = subnet_mask; 20248 } 20249 20250 ip1dbg(("ipif_up_done: ipif 0x%p ill 0x%p " 20251 "creating if IRE ill_net_type 0x%x for 0x%x\n", 20252 (void *)ipif, (void *)ill, 20253 ill->ill_net_type, 20254 ntohl(ipif->ipif_subnet))); 20255 *irep++ = ire_create( 20256 (uchar_t *)&ipif->ipif_subnet, /* dest address */ 20257 (uchar_t *)&route_mask, /* mask */ 20258 (uchar_t *)&src_ipif->ipif_src_addr, /* src addr */ 20259 NULL, /* no gateway */ 20260 &ipif->ipif_mtu, /* max frag */ 20261 NULL, 20262 NULL, /* no recv queue */ 20263 stq, /* send-to queue */ 20264 ill->ill_net_type, /* IF_[NO]RESOLVER */ 20265 ipif, 20266 0, 20267 0, 20268 0, 20269 (ipif->ipif_flags & IPIF_PRIVATE) ? RTF_PRIVATE: 0, 20270 &ire_uinfo_null, 20271 NULL, 20272 NULL, 20273 ipst); 20274 } 20275 20276 /* 20277 * Create any necessary broadcast IREs. 20278 */ 20279 if (ipif->ipif_flags & IPIF_BROADCAST) 20280 irep = ipif_create_bcast_ires(ipif, irep); 20281 20282 ASSERT(!MUTEX_HELD(&ipif->ipif_ill->ill_lock)); 20283 20284 /* If an earlier ire_create failed, get out now */ 20285 for (irep1 = irep; irep1 > ire_array; ) { 20286 irep1--; 20287 if (*irep1 == NULL) { 20288 ip1dbg(("ipif_up_done: NULL ire found in ire_array\n")); 20289 err = ENOMEM; 20290 goto bad; 20291 } 20292 } 20293 20294 /* 20295 * Need to atomically check for ip_addr_availablity_check 20296 * under ip_addr_avail_lock, and if it fails got bad, and remove 20297 * from group also.The ill_g_lock is grabbed as reader 20298 * just to make sure no new ills or new ipifs are being added 20299 * to the system while we are checking the uniqueness of addresses. 20300 */ 20301 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 20302 mutex_enter(&ipst->ips_ip_addr_avail_lock); 20303 /* Mark it up, and increment counters. */ 20304 ipif->ipif_flags |= IPIF_UP; 20305 ill->ill_ipif_up_count++; 20306 err = ip_addr_availability_check(ipif); 20307 mutex_exit(&ipst->ips_ip_addr_avail_lock); 20308 rw_exit(&ipst->ips_ill_g_lock); 20309 20310 if (err != 0) { 20311 /* 20312 * Our address may already be up on the same ill. In this case, 20313 * the ARP entry for our ipif replaced the one for the other 20314 * ipif. So we don't want to delete it (otherwise the other ipif 20315 * would be unable to send packets). 20316 * ip_addr_availability_check() identifies this case for us and 20317 * returns EADDRINUSE; we need to turn it into EADDRNOTAVAIL 20318 * which is the expected error code. 20319 */ 20320 if (err == EADDRINUSE) { 20321 freemsg(ipif->ipif_arp_del_mp); 20322 ipif->ipif_arp_del_mp = NULL; 20323 err = EADDRNOTAVAIL; 20324 } 20325 ill->ill_ipif_up_count--; 20326 ipif->ipif_flags &= ~IPIF_UP; 20327 goto bad; 20328 } 20329 20330 /* 20331 * Add in all newly created IREs. ire_create_bcast() has 20332 * already checked for duplicates of the IRE_BROADCAST type. 20333 * We want to add before we call ifgrp_insert which wants 20334 * to know whether IRE_IF_RESOLVER exists or not. 20335 * 20336 * NOTE : We refrele the ire though we may branch to "bad" 20337 * later on where we do ire_delete. This is okay 20338 * because nobody can delete it as we are running 20339 * exclusively. 20340 */ 20341 for (irep1 = irep; irep1 > ire_array; ) { 20342 irep1--; 20343 ASSERT(!MUTEX_HELD(&((*irep1)->ire_ipif->ipif_ill->ill_lock))); 20344 /* 20345 * refheld by ire_add. refele towards the end of the func 20346 */ 20347 (void) ire_add(irep1, NULL, NULL, NULL, B_FALSE); 20348 } 20349 ire_added = B_TRUE; 20350 /* 20351 * Form groups if possible. 20352 * 20353 * If we are supposed to be in a ill_group with a name, insert it 20354 * now as we know that at least one ipif is UP. Otherwise form 20355 * nameless groups. 20356 * 20357 * If ip_enable_group_ifs is set and ipif address is not 0, insert 20358 * this ipif into the appropriate interface group, or create a 20359 * new one. If this is already in a nameless group, we try to form 20360 * a bigger group looking at other ills potentially sharing this 20361 * ipif's prefix. 20362 */ 20363 phyi = ill->ill_phyint; 20364 if (phyi->phyint_groupname_len != 0) { 20365 ASSERT(phyi->phyint_groupname != NULL); 20366 if (ill->ill_ipif_up_count == 1) { 20367 ASSERT(ill->ill_group == NULL); 20368 err = illgrp_insert(&ipst->ips_illgrp_head_v4, ill, 20369 phyi->phyint_groupname, NULL, B_TRUE); 20370 if (err != 0) { 20371 ip1dbg(("ipif_up_done: illgrp allocation " 20372 "failed, error %d\n", err)); 20373 goto bad; 20374 } 20375 } 20376 ASSERT(ill->ill_group != NULL); 20377 } 20378 20379 /* 20380 * When this is part of group, we need to make sure that 20381 * any broadcast ires created because of this ipif coming 20382 * UP gets marked/cleared with IRE_MARK_NORECV appropriately 20383 * so that we don't receive duplicate broadcast packets. 20384 */ 20385 if (ill->ill_group != NULL && ill->ill_ipif_up_count != 0) 20386 ipif_renominate_bcast(ipif); 20387 20388 /* Recover any additional IRE_IF_[NO]RESOLVER entries for this ipif */ 20389 ipif_saved_ire_cnt = ipif->ipif_saved_ire_cnt; 20390 ipif_saved_irep = ipif_recover_ire(ipif); 20391 20392 if (!loopback) { 20393 /* 20394 * If the broadcast address has been set, make sure it makes 20395 * sense based on the interface address. 20396 * Only match on ill since we are sharing broadcast addresses. 20397 */ 20398 if ((ipif->ipif_brd_addr != INADDR_ANY) && 20399 (ipif->ipif_flags & IPIF_BROADCAST)) { 20400 ire_t *ire; 20401 20402 ire = ire_ctable_lookup(ipif->ipif_brd_addr, 0, 20403 IRE_BROADCAST, ipif, ALL_ZONES, 20404 NULL, (MATCH_IRE_TYPE | MATCH_IRE_ILL), ipst); 20405 20406 if (ire == NULL) { 20407 /* 20408 * If there isn't a matching broadcast IRE, 20409 * revert to the default for this netmask. 20410 */ 20411 ipif->ipif_v6brd_addr = ipv6_all_zeros; 20412 mutex_enter(&ipif->ipif_ill->ill_lock); 20413 ipif_set_default(ipif); 20414 mutex_exit(&ipif->ipif_ill->ill_lock); 20415 } else { 20416 ire_refrele(ire); 20417 } 20418 } 20419 20420 } 20421 20422 /* This is the first interface on this ill */ 20423 if (ipif->ipif_ipif_up_count == 1 && !loopback) { 20424 /* 20425 * Need to recover all multicast memberships in the driver. 20426 * This had to be deferred until we had attached. 20427 */ 20428 ill_recover_multicast(ill); 20429 } 20430 /* Join the allhosts multicast address */ 20431 ipif_multicast_up(ipif); 20432 20433 if (!loopback) { 20434 /* 20435 * See whether anybody else would benefit from the 20436 * new ipif that we added. We call this always rather 20437 * than while adding a non-IPIF_NOLOCAL/DEPRECATED/ANYCAST 20438 * ipif is for the benefit of illgrp_insert (done above) 20439 * which does not do source address selection as it does 20440 * not want to re-create interface routes that we are 20441 * having reference to it here. 20442 */ 20443 ill_update_source_selection(ill); 20444 } 20445 20446 for (irep1 = irep; irep1 > ire_array; ) { 20447 irep1--; 20448 if (*irep1 != NULL) { 20449 /* was held in ire_add */ 20450 ire_refrele(*irep1); 20451 } 20452 } 20453 20454 cnt = ipif_saved_ire_cnt; 20455 for (irep1 = ipif_saved_irep; cnt > 0; irep1++, cnt--) { 20456 if (*irep1 != NULL) { 20457 /* was held in ire_add */ 20458 ire_refrele(*irep1); 20459 } 20460 } 20461 20462 if (!loopback && ipif->ipif_addr_ready) { 20463 /* Broadcast an address mask reply. */ 20464 ipif_mask_reply(ipif); 20465 } 20466 if (ipif_saved_irep != NULL) { 20467 kmem_free(ipif_saved_irep, 20468 ipif_saved_ire_cnt * sizeof (ire_t *)); 20469 } 20470 if (src_ipif_held) 20471 ipif_refrele(src_ipif); 20472 20473 /* 20474 * This had to be deferred until we had bound. Tell routing sockets and 20475 * others that this interface is up if it looks like the address has 20476 * been validated. Otherwise, if it isn't ready yet, wait for 20477 * duplicate address detection to do its thing. 20478 */ 20479 if (ipif->ipif_addr_ready) { 20480 ip_rts_ifmsg(ipif); 20481 ip_rts_newaddrmsg(RTM_ADD, 0, ipif); 20482 /* Let SCTP update the status for this ipif */ 20483 sctp_update_ipif(ipif, SCTP_IPIF_UP); 20484 } 20485 return (0); 20486 20487 bad: 20488 ip1dbg(("ipif_up_done: FAILED \n")); 20489 /* 20490 * We don't have to bother removing from ill groups because 20491 * 20492 * 1) For groups with names, we insert only when the first ipif 20493 * comes up. In that case if it fails, it will not be in any 20494 * group. So, we need not try to remove for that case. 20495 * 20496 * 2) For groups without names, either we tried to insert ipif_ill 20497 * in a group as singleton or found some other group to become 20498 * a bigger group. For the former, if it fails we don't have 20499 * anything to do as ipif_ill is not in the group and for the 20500 * latter, there are no failures in illgrp_insert/illgrp_delete 20501 * (ENOMEM can't occur for this. Check ifgrp_insert). 20502 */ 20503 while (irep > ire_array) { 20504 irep--; 20505 if (*irep != NULL) { 20506 ire_delete(*irep); 20507 if (ire_added) 20508 ire_refrele(*irep); 20509 } 20510 } 20511 (void) ip_srcid_remove(&ipif->ipif_v6lcl_addr, ipif->ipif_zoneid, ipst); 20512 20513 if (ipif_saved_irep != NULL) { 20514 kmem_free(ipif_saved_irep, 20515 ipif_saved_ire_cnt * sizeof (ire_t *)); 20516 } 20517 if (src_ipif_held) 20518 ipif_refrele(src_ipif); 20519 20520 ipif_arp_down(ipif); 20521 return (err); 20522 } 20523 20524 /* 20525 * Turn off the ARP with the ILLF_NOARP flag. 20526 */ 20527 static int 20528 ill_arp_off(ill_t *ill) 20529 { 20530 mblk_t *arp_off_mp = NULL; 20531 mblk_t *arp_on_mp = NULL; 20532 20533 ip1dbg(("ill_arp_off(%s)\n", ill->ill_name)); 20534 20535 ASSERT(IAM_WRITER_ILL(ill)); 20536 ASSERT(ill->ill_net_type == IRE_IF_RESOLVER); 20537 20538 /* 20539 * If the on message is still around we've already done 20540 * an arp_off without doing an arp_on thus there is no 20541 * work needed. 20542 */ 20543 if (ill->ill_arp_on_mp != NULL) 20544 return (0); 20545 20546 /* 20547 * Allocate an ARP on message (to be saved) and an ARP off message 20548 */ 20549 arp_off_mp = ill_arp_alloc(ill, (uchar_t *)&ip_aroff_template, 0); 20550 if (!arp_off_mp) 20551 return (ENOMEM); 20552 20553 arp_on_mp = ill_arp_alloc(ill, (uchar_t *)&ip_aron_template, 0); 20554 if (!arp_on_mp) 20555 goto failed; 20556 20557 ASSERT(ill->ill_arp_on_mp == NULL); 20558 ill->ill_arp_on_mp = arp_on_mp; 20559 20560 /* Send an AR_INTERFACE_OFF request */ 20561 putnext(ill->ill_rq, arp_off_mp); 20562 return (0); 20563 failed: 20564 20565 if (arp_off_mp) 20566 freemsg(arp_off_mp); 20567 return (ENOMEM); 20568 } 20569 20570 /* 20571 * Turn on ARP by turning off the ILLF_NOARP flag. 20572 */ 20573 static int 20574 ill_arp_on(ill_t *ill) 20575 { 20576 mblk_t *mp; 20577 20578 ip1dbg(("ipif_arp_on(%s)\n", ill->ill_name)); 20579 20580 ASSERT(ill->ill_net_type == IRE_IF_RESOLVER); 20581 20582 ASSERT(IAM_WRITER_ILL(ill)); 20583 /* 20584 * Send an AR_INTERFACE_ON request if we have already done 20585 * an arp_off (which allocated the message). 20586 */ 20587 if (ill->ill_arp_on_mp != NULL) { 20588 mp = ill->ill_arp_on_mp; 20589 ill->ill_arp_on_mp = NULL; 20590 putnext(ill->ill_rq, mp); 20591 } 20592 return (0); 20593 } 20594 20595 /* 20596 * Called after either deleting ill from the group or when setting 20597 * FAILED or STANDBY on the interface. 20598 */ 20599 static void 20600 illgrp_reset_schednext(ill_t *ill) 20601 { 20602 ill_group_t *illgrp; 20603 ill_t *save_ill; 20604 20605 ASSERT(IAM_WRITER_ILL(ill)); 20606 /* 20607 * When called from illgrp_delete, ill_group will be non-NULL. 20608 * But when called from ip_sioctl_flags, it could be NULL if 20609 * somebody is setting FAILED/INACTIVE on some interface which 20610 * is not part of a group. 20611 */ 20612 illgrp = ill->ill_group; 20613 if (illgrp == NULL) 20614 return; 20615 if (illgrp->illgrp_ill_schednext != ill) 20616 return; 20617 20618 illgrp->illgrp_ill_schednext = NULL; 20619 save_ill = ill; 20620 /* 20621 * Choose a good ill to be the next one for 20622 * outbound traffic. As the flags FAILED/STANDBY is 20623 * not yet marked when called from ip_sioctl_flags, 20624 * we check for ill separately. 20625 */ 20626 for (ill = illgrp->illgrp_ill; ill != NULL; 20627 ill = ill->ill_group_next) { 20628 if ((ill != save_ill) && 20629 !(ill->ill_phyint->phyint_flags & 20630 (PHYI_FAILED|PHYI_INACTIVE|PHYI_OFFLINE))) { 20631 illgrp->illgrp_ill_schednext = ill; 20632 return; 20633 } 20634 } 20635 } 20636 20637 /* 20638 * Given an ill, find the next ill in the group to be scheduled. 20639 * (This should be called by ip_newroute() before ire_create().) 20640 * The passed in ill may be pulled out of the group, after we have picked 20641 * up a different outgoing ill from the same group. However ire add will 20642 * atomically check this. 20643 */ 20644 ill_t * 20645 illgrp_scheduler(ill_t *ill) 20646 { 20647 ill_t *retill; 20648 ill_group_t *illgrp; 20649 int illcnt; 20650 int i; 20651 uint64_t flags; 20652 ip_stack_t *ipst = ill->ill_ipst; 20653 20654 /* 20655 * We don't use a lock to check for the ill_group. If this ill 20656 * is currently being inserted we may end up just returning this 20657 * ill itself. That is ok. 20658 */ 20659 if (ill->ill_group == NULL) { 20660 ill_refhold(ill); 20661 return (ill); 20662 } 20663 20664 /* 20665 * Grab the ill_g_lock as reader to make sure we are dealing with 20666 * a set of stable ills. No ill can be added or deleted or change 20667 * group while we hold the reader lock. 20668 */ 20669 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 20670 if ((illgrp = ill->ill_group) == NULL) { 20671 rw_exit(&ipst->ips_ill_g_lock); 20672 ill_refhold(ill); 20673 return (ill); 20674 } 20675 20676 illcnt = illgrp->illgrp_ill_count; 20677 mutex_enter(&illgrp->illgrp_lock); 20678 retill = illgrp->illgrp_ill_schednext; 20679 20680 if (retill == NULL) 20681 retill = illgrp->illgrp_ill; 20682 20683 /* 20684 * We do a circular search beginning at illgrp_ill_schednext 20685 * or illgrp_ill. We don't check the flags against the ill lock 20686 * since it can change anytime. The ire creation will be atomic 20687 * and will fail if the ill is FAILED or OFFLINE. 20688 */ 20689 for (i = 0; i < illcnt; i++) { 20690 flags = retill->ill_phyint->phyint_flags; 20691 20692 if (!(flags & (PHYI_FAILED|PHYI_INACTIVE|PHYI_OFFLINE)) && 20693 ILL_CAN_LOOKUP(retill)) { 20694 illgrp->illgrp_ill_schednext = retill->ill_group_next; 20695 ill_refhold(retill); 20696 break; 20697 } 20698 retill = retill->ill_group_next; 20699 if (retill == NULL) 20700 retill = illgrp->illgrp_ill; 20701 } 20702 mutex_exit(&illgrp->illgrp_lock); 20703 rw_exit(&ipst->ips_ill_g_lock); 20704 20705 return (i == illcnt ? NULL : retill); 20706 } 20707 20708 /* 20709 * Checks for availbility of a usable source address (if there is one) when the 20710 * destination ILL has the ill_usesrc_ifindex pointing to another ILL. Note 20711 * this selection is done regardless of the destination. 20712 */ 20713 boolean_t 20714 ipif_usesrc_avail(ill_t *ill, zoneid_t zoneid) 20715 { 20716 uint_t ifindex; 20717 ipif_t *ipif = NULL; 20718 ill_t *uill; 20719 boolean_t isv6; 20720 ip_stack_t *ipst = ill->ill_ipst; 20721 20722 ASSERT(ill != NULL); 20723 20724 isv6 = ill->ill_isv6; 20725 ifindex = ill->ill_usesrc_ifindex; 20726 if (ifindex != 0) { 20727 uill = ill_lookup_on_ifindex(ifindex, isv6, NULL, NULL, NULL, 20728 NULL, ipst); 20729 if (uill == NULL) 20730 return (NULL); 20731 mutex_enter(&uill->ill_lock); 20732 for (ipif = uill->ill_ipif; ipif != NULL; 20733 ipif = ipif->ipif_next) { 20734 if (!IPIF_CAN_LOOKUP(ipif)) 20735 continue; 20736 if (ipif->ipif_flags & (IPIF_NOLOCAL|IPIF_ANYCAST)) 20737 continue; 20738 if (!(ipif->ipif_flags & IPIF_UP)) 20739 continue; 20740 if (ipif->ipif_zoneid != zoneid) 20741 continue; 20742 if ((isv6 && 20743 IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6lcl_addr)) || 20744 (ipif->ipif_lcl_addr == INADDR_ANY)) 20745 continue; 20746 mutex_exit(&uill->ill_lock); 20747 ill_refrele(uill); 20748 return (B_TRUE); 20749 } 20750 mutex_exit(&uill->ill_lock); 20751 ill_refrele(uill); 20752 } 20753 return (B_FALSE); 20754 } 20755 20756 /* 20757 * Determine the best source address given a destination address and an ill. 20758 * Prefers non-deprecated over deprecated but will return a deprecated 20759 * address if there is no other choice. If there is a usable source address 20760 * on the interface pointed to by ill_usesrc_ifindex then that is given 20761 * first preference. 20762 * 20763 * Returns NULL if there is no suitable source address for the ill. 20764 * This only occurs when there is no valid source address for the ill. 20765 */ 20766 ipif_t * 20767 ipif_select_source(ill_t *ill, ipaddr_t dst, zoneid_t zoneid) 20768 { 20769 ipif_t *ipif; 20770 ipif_t *ipif_dep = NULL; /* Fallback to deprecated */ 20771 ipif_t *ipif_arr[MAX_IPIF_SELECT_SOURCE]; 20772 int index = 0; 20773 boolean_t wrapped = B_FALSE; 20774 boolean_t same_subnet_only = B_FALSE; 20775 boolean_t ipif_same_found, ipif_other_found; 20776 boolean_t specific_found; 20777 ill_t *till, *usill = NULL; 20778 tsol_tpc_t *src_rhtp, *dst_rhtp; 20779 ip_stack_t *ipst = ill->ill_ipst; 20780 20781 if (ill->ill_usesrc_ifindex != 0) { 20782 usill = ill_lookup_on_ifindex(ill->ill_usesrc_ifindex, 20783 B_FALSE, NULL, NULL, NULL, NULL, ipst); 20784 if (usill != NULL) 20785 ill = usill; /* Select source from usesrc ILL */ 20786 else 20787 return (NULL); 20788 } 20789 20790 /* 20791 * If we're dealing with an unlabeled destination on a labeled system, 20792 * make sure that we ignore source addresses that are incompatible with 20793 * the destination's default label. That destination's default label 20794 * must dominate the minimum label on the source address. 20795 */ 20796 dst_rhtp = NULL; 20797 if (is_system_labeled()) { 20798 dst_rhtp = find_tpc(&dst, IPV4_VERSION, B_FALSE); 20799 if (dst_rhtp == NULL) 20800 return (NULL); 20801 if (dst_rhtp->tpc_tp.host_type != UNLABELED) { 20802 TPC_RELE(dst_rhtp); 20803 dst_rhtp = NULL; 20804 } 20805 } 20806 20807 /* 20808 * Holds the ill_g_lock as reader. This makes sure that no ipif/ill 20809 * can be deleted. But an ipif/ill can get CONDEMNED any time. 20810 * After selecting the right ipif, under ill_lock make sure ipif is 20811 * not condemned, and increment refcnt. If ipif is CONDEMNED, 20812 * we retry. Inside the loop we still need to check for CONDEMNED, 20813 * but not under a lock. 20814 */ 20815 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 20816 20817 retry: 20818 till = ill; 20819 ipif_arr[0] = NULL; 20820 20821 if (till->ill_group != NULL) 20822 till = till->ill_group->illgrp_ill; 20823 20824 /* 20825 * Choose one good source address from each ill across the group. 20826 * If possible choose a source address in the same subnet as 20827 * the destination address. 20828 * 20829 * We don't check for PHYI_FAILED or PHYI_INACTIVE or PHYI_OFFLINE 20830 * This is okay because of the following. 20831 * 20832 * If PHYI_FAILED is set and we still have non-deprecated 20833 * addresses, it means the addresses have not yet been 20834 * failed over to a different interface. We potentially 20835 * select them to create IRE_CACHES, which will be later 20836 * flushed when the addresses move over. 20837 * 20838 * If PHYI_INACTIVE is set and we still have non-deprecated 20839 * addresses, it means either the user has configured them 20840 * or PHYI_INACTIVE has not been cleared after the addresses 20841 * been moved over. For the former, in.mpathd does a failover 20842 * when the interface becomes INACTIVE and hence we should 20843 * not find them. Once INACTIVE is set, we don't allow them 20844 * to create logical interfaces anymore. For the latter, a 20845 * flush will happen when INACTIVE is cleared which will 20846 * flush the IRE_CACHES. 20847 * 20848 * If PHYI_OFFLINE is set, all the addresses will be failed 20849 * over soon. We potentially select them to create IRE_CACHEs, 20850 * which will be later flushed when the addresses move over. 20851 * 20852 * NOTE : As ipif_select_source is called to borrow source address 20853 * for an ipif that is part of a group, source address selection 20854 * will be re-done whenever the group changes i.e either an 20855 * insertion/deletion in the group. 20856 * 20857 * Fill ipif_arr[] with source addresses, using these rules: 20858 * 20859 * 1. At most one source address from a given ill ends up 20860 * in ipif_arr[] -- that is, at most one of the ipif's 20861 * associated with a given ill ends up in ipif_arr[]. 20862 * 20863 * 2. If there is at least one non-deprecated ipif in the 20864 * IPMP group with a source address on the same subnet as 20865 * our destination, then fill ipif_arr[] only with 20866 * source addresses on the same subnet as our destination. 20867 * Note that because of (1), only the first 20868 * non-deprecated ipif found with a source address 20869 * matching the destination ends up in ipif_arr[]. 20870 * 20871 * 3. Otherwise, fill ipif_arr[] with non-deprecated source 20872 * addresses not in the same subnet as our destination. 20873 * Again, because of (1), only the first off-subnet source 20874 * address will be chosen. 20875 * 20876 * 4. If there are no non-deprecated ipifs, then just use 20877 * the source address associated with the last deprecated 20878 * one we find that happens to be on the same subnet, 20879 * otherwise the first one not in the same subnet. 20880 */ 20881 specific_found = B_FALSE; 20882 for (; till != NULL; till = till->ill_group_next) { 20883 ipif_same_found = B_FALSE; 20884 ipif_other_found = B_FALSE; 20885 for (ipif = till->ill_ipif; ipif != NULL; 20886 ipif = ipif->ipif_next) { 20887 if (!IPIF_CAN_LOOKUP(ipif)) 20888 continue; 20889 /* Always skip NOLOCAL and ANYCAST interfaces */ 20890 if (ipif->ipif_flags & (IPIF_NOLOCAL|IPIF_ANYCAST)) 20891 continue; 20892 if (!(ipif->ipif_flags & IPIF_UP) || 20893 !ipif->ipif_addr_ready) 20894 continue; 20895 if (ipif->ipif_zoneid != zoneid && 20896 ipif->ipif_zoneid != ALL_ZONES) 20897 continue; 20898 /* 20899 * Interfaces with 0.0.0.0 address are allowed to be UP, 20900 * but are not valid as source addresses. 20901 */ 20902 if (ipif->ipif_lcl_addr == INADDR_ANY) 20903 continue; 20904 20905 /* 20906 * Check compatibility of local address for 20907 * destination's default label if we're on a labeled 20908 * system. Incompatible addresses can't be used at 20909 * all. 20910 */ 20911 if (dst_rhtp != NULL) { 20912 boolean_t incompat; 20913 20914 src_rhtp = find_tpc(&ipif->ipif_lcl_addr, 20915 IPV4_VERSION, B_FALSE); 20916 if (src_rhtp == NULL) 20917 continue; 20918 incompat = 20919 src_rhtp->tpc_tp.host_type != SUN_CIPSO || 20920 src_rhtp->tpc_tp.tp_doi != 20921 dst_rhtp->tpc_tp.tp_doi || 20922 (!_blinrange(&dst_rhtp->tpc_tp.tp_def_label, 20923 &src_rhtp->tpc_tp.tp_sl_range_cipso) && 20924 !blinlset(&dst_rhtp->tpc_tp.tp_def_label, 20925 src_rhtp->tpc_tp.tp_sl_set_cipso)); 20926 TPC_RELE(src_rhtp); 20927 if (incompat) 20928 continue; 20929 } 20930 20931 /* 20932 * We prefer not to use all all-zones addresses, if we 20933 * can avoid it, as they pose problems with unlabeled 20934 * destinations. 20935 */ 20936 if (ipif->ipif_zoneid != ALL_ZONES) { 20937 if (!specific_found && 20938 (!same_subnet_only || 20939 (ipif->ipif_net_mask & dst) == 20940 ipif->ipif_subnet)) { 20941 index = 0; 20942 specific_found = B_TRUE; 20943 ipif_other_found = B_FALSE; 20944 } 20945 } else { 20946 if (specific_found) 20947 continue; 20948 } 20949 if (ipif->ipif_flags & IPIF_DEPRECATED) { 20950 if (ipif_dep == NULL || 20951 (ipif->ipif_net_mask & dst) == 20952 ipif->ipif_subnet) 20953 ipif_dep = ipif; 20954 continue; 20955 } 20956 if ((ipif->ipif_net_mask & dst) == ipif->ipif_subnet) { 20957 /* found a source address in the same subnet */ 20958 if (!same_subnet_only) { 20959 same_subnet_only = B_TRUE; 20960 index = 0; 20961 } 20962 ipif_same_found = B_TRUE; 20963 } else { 20964 if (same_subnet_only || ipif_other_found) 20965 continue; 20966 ipif_other_found = B_TRUE; 20967 } 20968 ipif_arr[index++] = ipif; 20969 if (index == MAX_IPIF_SELECT_SOURCE) { 20970 wrapped = B_TRUE; 20971 index = 0; 20972 } 20973 if (ipif_same_found) 20974 break; 20975 } 20976 } 20977 20978 if (ipif_arr[0] == NULL) { 20979 ipif = ipif_dep; 20980 } else { 20981 if (wrapped) 20982 index = MAX_IPIF_SELECT_SOURCE; 20983 ipif = ipif_arr[ipif_rand(ipst) % index]; 20984 ASSERT(ipif != NULL); 20985 } 20986 20987 if (ipif != NULL) { 20988 mutex_enter(&ipif->ipif_ill->ill_lock); 20989 if (!IPIF_CAN_LOOKUP(ipif)) { 20990 mutex_exit(&ipif->ipif_ill->ill_lock); 20991 goto retry; 20992 } 20993 ipif_refhold_locked(ipif); 20994 mutex_exit(&ipif->ipif_ill->ill_lock); 20995 } 20996 20997 rw_exit(&ipst->ips_ill_g_lock); 20998 if (usill != NULL) 20999 ill_refrele(usill); 21000 if (dst_rhtp != NULL) 21001 TPC_RELE(dst_rhtp); 21002 21003 #ifdef DEBUG 21004 if (ipif == NULL) { 21005 char buf1[INET6_ADDRSTRLEN]; 21006 21007 ip1dbg(("ipif_select_source(%s, %s) -> NULL\n", 21008 ill->ill_name, 21009 inet_ntop(AF_INET, &dst, buf1, sizeof (buf1)))); 21010 } else { 21011 char buf1[INET6_ADDRSTRLEN]; 21012 char buf2[INET6_ADDRSTRLEN]; 21013 21014 ip1dbg(("ipif_select_source(%s, %s) -> %s\n", 21015 ipif->ipif_ill->ill_name, 21016 inet_ntop(AF_INET, &dst, buf1, sizeof (buf1)), 21017 inet_ntop(AF_INET, &ipif->ipif_lcl_addr, 21018 buf2, sizeof (buf2)))); 21019 } 21020 #endif /* DEBUG */ 21021 return (ipif); 21022 } 21023 21024 21025 /* 21026 * If old_ipif is not NULL, see if ipif was derived from old 21027 * ipif and if so, recreate the interface route by re-doing 21028 * source address selection. This happens when ipif_down -> 21029 * ipif_update_other_ipifs calls us. 21030 * 21031 * If old_ipif is NULL, just redo the source address selection 21032 * if needed. This happens when illgrp_insert or ipif_up_done 21033 * calls us. 21034 */ 21035 static void 21036 ipif_recreate_interface_routes(ipif_t *old_ipif, ipif_t *ipif) 21037 { 21038 ire_t *ire; 21039 ire_t *ipif_ire; 21040 queue_t *stq; 21041 ipif_t *nipif; 21042 ill_t *ill; 21043 boolean_t need_rele = B_FALSE; 21044 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; 21045 21046 ASSERT(old_ipif == NULL || IAM_WRITER_IPIF(old_ipif)); 21047 ASSERT(IAM_WRITER_IPIF(ipif)); 21048 21049 ill = ipif->ipif_ill; 21050 if (!(ipif->ipif_flags & 21051 (IPIF_NOLOCAL|IPIF_ANYCAST|IPIF_DEPRECATED))) { 21052 /* 21053 * Can't possibly have borrowed the source 21054 * from old_ipif. 21055 */ 21056 return; 21057 } 21058 21059 /* 21060 * Is there any work to be done? No work if the address 21061 * is INADDR_ANY, loopback or NOLOCAL or ANYCAST ( 21062 * ipif_select_source() does not borrow addresses from 21063 * NOLOCAL and ANYCAST interfaces). 21064 */ 21065 if ((old_ipif != NULL) && 21066 ((old_ipif->ipif_lcl_addr == INADDR_ANY) || 21067 (old_ipif->ipif_ill->ill_wq == NULL) || 21068 (old_ipif->ipif_flags & 21069 (IPIF_NOLOCAL|IPIF_ANYCAST)))) { 21070 return; 21071 } 21072 21073 /* 21074 * Perform the same checks as when creating the 21075 * IRE_INTERFACE in ipif_up_done. 21076 */ 21077 if (!(ipif->ipif_flags & IPIF_UP)) 21078 return; 21079 21080 if ((ipif->ipif_flags & IPIF_NOXMIT) || 21081 (ipif->ipif_subnet == INADDR_ANY)) 21082 return; 21083 21084 ipif_ire = ipif_to_ire(ipif); 21085 if (ipif_ire == NULL) 21086 return; 21087 21088 /* 21089 * We know that ipif uses some other source for its 21090 * IRE_INTERFACE. Is it using the source of this 21091 * old_ipif? 21092 */ 21093 if (old_ipif != NULL && 21094 old_ipif->ipif_lcl_addr != ipif_ire->ire_src_addr) { 21095 ire_refrele(ipif_ire); 21096 return; 21097 } 21098 if (ip_debug > 2) { 21099 /* ip1dbg */ 21100 pr_addr_dbg("ipif_recreate_interface_routes: deleting IRE for" 21101 " src %s\n", AF_INET, &ipif_ire->ire_src_addr); 21102 } 21103 21104 stq = ipif_ire->ire_stq; 21105 21106 /* 21107 * Can't use our source address. Select a different 21108 * source address for the IRE_INTERFACE. 21109 */ 21110 nipif = ipif_select_source(ill, ipif->ipif_subnet, ipif->ipif_zoneid); 21111 if (nipif == NULL) { 21112 /* Last resort - all ipif's have IPIF_NOLOCAL */ 21113 nipif = ipif; 21114 } else { 21115 need_rele = B_TRUE; 21116 } 21117 21118 ire = ire_create( 21119 (uchar_t *)&ipif->ipif_subnet, /* dest pref */ 21120 (uchar_t *)&ipif->ipif_net_mask, /* mask */ 21121 (uchar_t *)&nipif->ipif_src_addr, /* src addr */ 21122 NULL, /* no gateway */ 21123 &ipif->ipif_mtu, /* max frag */ 21124 NULL, /* no src nce */ 21125 NULL, /* no recv from queue */ 21126 stq, /* send-to queue */ 21127 ill->ill_net_type, /* IF_[NO]RESOLVER */ 21128 ipif, 21129 0, 21130 0, 21131 0, 21132 0, 21133 &ire_uinfo_null, 21134 NULL, 21135 NULL, 21136 ipst); 21137 21138 if (ire != NULL) { 21139 ire_t *ret_ire; 21140 int error; 21141 21142 /* 21143 * We don't need ipif_ire anymore. We need to delete 21144 * before we add so that ire_add does not detect 21145 * duplicates. 21146 */ 21147 ire_delete(ipif_ire); 21148 ret_ire = ire; 21149 error = ire_add(&ret_ire, NULL, NULL, NULL, B_FALSE); 21150 ASSERT(error == 0); 21151 ASSERT(ire == ret_ire); 21152 /* Held in ire_add */ 21153 ire_refrele(ret_ire); 21154 } 21155 /* 21156 * Either we are falling through from above or could not 21157 * allocate a replacement. 21158 */ 21159 ire_refrele(ipif_ire); 21160 if (need_rele) 21161 ipif_refrele(nipif); 21162 } 21163 21164 /* 21165 * This old_ipif is going away. 21166 * 21167 * Determine if any other ipif's is using our address as 21168 * ipif_lcl_addr (due to those being IPIF_NOLOCAL, IPIF_ANYCAST, or 21169 * IPIF_DEPRECATED). 21170 * Find the IRE_INTERFACE for such ipifs and recreate them 21171 * to use an different source address following the rules in 21172 * ipif_up_done. 21173 * 21174 * This function takes an illgrp as an argument so that illgrp_delete 21175 * can call this to update source address even after deleting the 21176 * old_ipif->ipif_ill from the ill group. 21177 */ 21178 static void 21179 ipif_update_other_ipifs(ipif_t *old_ipif, ill_group_t *illgrp) 21180 { 21181 ipif_t *ipif; 21182 ill_t *ill; 21183 char buf[INET6_ADDRSTRLEN]; 21184 21185 ASSERT(IAM_WRITER_IPIF(old_ipif)); 21186 ASSERT(illgrp == NULL || IAM_WRITER_IPIF(old_ipif)); 21187 21188 ill = old_ipif->ipif_ill; 21189 21190 ip1dbg(("ipif_update_other_ipifs(%s, %s)\n", 21191 ill->ill_name, 21192 inet_ntop(AF_INET, &old_ipif->ipif_lcl_addr, 21193 buf, sizeof (buf)))); 21194 /* 21195 * If this part of a group, look at all ills as ipif_select_source 21196 * borrows source address across all the ills in the group. 21197 */ 21198 if (illgrp != NULL) 21199 ill = illgrp->illgrp_ill; 21200 21201 for (; ill != NULL; ill = ill->ill_group_next) { 21202 for (ipif = ill->ill_ipif; ipif != NULL; 21203 ipif = ipif->ipif_next) { 21204 21205 if (ipif == old_ipif) 21206 continue; 21207 21208 ipif_recreate_interface_routes(old_ipif, ipif); 21209 } 21210 } 21211 } 21212 21213 /* ARGSUSED */ 21214 int 21215 if_unitsel_restart(ipif_t *ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, 21216 ip_ioctl_cmd_t *ipip, void *dummy_ifreq) 21217 { 21218 /* 21219 * ill_phyint_reinit merged the v4 and v6 into a single 21220 * ipsq. Could also have become part of a ipmp group in the 21221 * process, and we might not have been able to complete the 21222 * operation in ipif_set_values, if we could not become 21223 * exclusive. If so restart it here. 21224 */ 21225 return (ipif_set_values_tail(ipif->ipif_ill, ipif, mp, q)); 21226 } 21227 21228 /* 21229 * Can operate on either a module or a driver queue. 21230 * Returns an error if not a module queue. 21231 */ 21232 /* ARGSUSED */ 21233 int 21234 if_unitsel(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, 21235 ip_ioctl_cmd_t *ipip, void *dummy_ifreq) 21236 { 21237 queue_t *q1 = q; 21238 char *cp; 21239 char interf_name[LIFNAMSIZ]; 21240 uint_t ppa = *(uint_t *)mp->b_cont->b_cont->b_rptr; 21241 21242 if (q->q_next == NULL) { 21243 ip1dbg(( 21244 "if_unitsel: IF_UNITSEL: no q_next\n")); 21245 return (EINVAL); 21246 } 21247 21248 if (((ill_t *)(q->q_ptr))->ill_name[0] != '\0') 21249 return (EALREADY); 21250 21251 do { 21252 q1 = q1->q_next; 21253 } while (q1->q_next); 21254 cp = q1->q_qinfo->qi_minfo->mi_idname; 21255 (void) sprintf(interf_name, "%s%d", cp, ppa); 21256 21257 /* 21258 * Here we are not going to delay the ioack until after 21259 * ACKs from DL_ATTACH_REQ/DL_BIND_REQ. So no need to save the 21260 * original ioctl message before sending the requests. 21261 */ 21262 return (ipif_set_values(q, mp, interf_name, &ppa)); 21263 } 21264 21265 /* ARGSUSED */ 21266 int 21267 ip_sioctl_sifname(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, 21268 ip_ioctl_cmd_t *ipip, void *dummy_ifreq) 21269 { 21270 return (ENXIO); 21271 } 21272 21273 /* 21274 * Create any IRE_BROADCAST entries for `ipif', and store those entries in 21275 * `irep'. Returns a pointer to the next free `irep' entry (just like 21276 * ire_check_and_create_bcast()). 21277 */ 21278 static ire_t ** 21279 ipif_create_bcast_ires(ipif_t *ipif, ire_t **irep) 21280 { 21281 ipaddr_t addr; 21282 ipaddr_t netmask = ip_net_mask(ipif->ipif_lcl_addr); 21283 ipaddr_t subnetmask = ipif->ipif_net_mask; 21284 int flags = MATCH_IRE_TYPE | MATCH_IRE_ILL; 21285 21286 ip1dbg(("ipif_create_bcast_ires: creating broadcast IREs\n")); 21287 21288 ASSERT(ipif->ipif_flags & IPIF_BROADCAST); 21289 21290 if (ipif->ipif_lcl_addr == INADDR_ANY || 21291 (ipif->ipif_flags & IPIF_NOLOCAL)) 21292 netmask = htonl(IN_CLASSA_NET); /* fallback */ 21293 21294 irep = ire_check_and_create_bcast(ipif, 0, irep, flags); 21295 irep = ire_check_and_create_bcast(ipif, INADDR_BROADCAST, irep, flags); 21296 21297 /* 21298 * For backward compatibility, we create net broadcast IREs based on 21299 * the old "IP address class system", since some old machines only 21300 * respond to these class derived net broadcast. However, we must not 21301 * create these net broadcast IREs if the subnetmask is shorter than 21302 * the IP address class based derived netmask. Otherwise, we may 21303 * create a net broadcast address which is the same as an IP address 21304 * on the subnet -- and then TCP will refuse to talk to that address. 21305 */ 21306 if (netmask < subnetmask) { 21307 addr = netmask & ipif->ipif_subnet; 21308 irep = ire_check_and_create_bcast(ipif, addr, irep, flags); 21309 irep = ire_check_and_create_bcast(ipif, ~netmask | addr, irep, 21310 flags); 21311 } 21312 21313 /* 21314 * Don't create IRE_BROADCAST IREs for the interface if the subnetmask 21315 * is 0xFFFFFFFF, as an IRE_LOCAL for that interface is already 21316 * created. Creating these broadcast IREs will only create confusion 21317 * as `addr' will be the same as the IP address. 21318 */ 21319 if (subnetmask != 0xFFFFFFFF) { 21320 addr = ipif->ipif_subnet; 21321 irep = ire_check_and_create_bcast(ipif, addr, irep, flags); 21322 irep = ire_check_and_create_bcast(ipif, ~subnetmask | addr, 21323 irep, flags); 21324 } 21325 21326 return (irep); 21327 } 21328 21329 /* 21330 * Broadcast IRE info structure used in the functions below. Since we 21331 * allocate BCAST_COUNT of them on the stack, keep the bit layout compact. 21332 */ 21333 typedef struct bcast_ireinfo { 21334 uchar_t bi_type; /* BCAST_* value from below */ 21335 uchar_t bi_willdie:1, /* will this IRE be going away? */ 21336 bi_needrep:1, /* do we need to replace it? */ 21337 bi_haverep:1, /* have we replaced it? */ 21338 bi_pad:5; 21339 ipaddr_t bi_addr; /* IRE address */ 21340 ipif_t *bi_backup; /* last-ditch ipif to replace it on */ 21341 } bcast_ireinfo_t; 21342 21343 enum { BCAST_ALLONES, BCAST_ALLZEROES, BCAST_NET, BCAST_SUBNET, BCAST_COUNT }; 21344 21345 /* 21346 * Check if `ipif' needs the dying broadcast IRE described by `bireinfop', and 21347 * return B_TRUE if it should immediately be used to recreate the IRE. 21348 */ 21349 static boolean_t 21350 ipif_consider_bcast(ipif_t *ipif, bcast_ireinfo_t *bireinfop) 21351 { 21352 ipaddr_t addr; 21353 21354 ASSERT(!bireinfop->bi_haverep && bireinfop->bi_willdie); 21355 21356 switch (bireinfop->bi_type) { 21357 case BCAST_NET: 21358 addr = ipif->ipif_subnet & ip_net_mask(ipif->ipif_subnet); 21359 if (addr != bireinfop->bi_addr) 21360 return (B_FALSE); 21361 break; 21362 case BCAST_SUBNET: 21363 if (ipif->ipif_subnet != bireinfop->bi_addr) 21364 return (B_FALSE); 21365 break; 21366 } 21367 21368 bireinfop->bi_needrep = 1; 21369 if (ipif->ipif_flags & (IPIF_DEPRECATED|IPIF_NOLOCAL|IPIF_ANYCAST)) { 21370 if (bireinfop->bi_backup == NULL) 21371 bireinfop->bi_backup = ipif; 21372 return (B_FALSE); 21373 } 21374 return (B_TRUE); 21375 } 21376 21377 /* 21378 * Create the broadcast IREs described by `bireinfop' on `ipif', and return 21379 * them ala ire_check_and_create_bcast(). 21380 */ 21381 static ire_t ** 21382 ipif_create_bcast(ipif_t *ipif, bcast_ireinfo_t *bireinfop, ire_t **irep) 21383 { 21384 ipaddr_t mask, addr; 21385 21386 ASSERT(!bireinfop->bi_haverep && bireinfop->bi_needrep); 21387 21388 addr = bireinfop->bi_addr; 21389 irep = ire_create_bcast(ipif, addr, irep); 21390 21391 switch (bireinfop->bi_type) { 21392 case BCAST_NET: 21393 mask = ip_net_mask(ipif->ipif_subnet); 21394 irep = ire_create_bcast(ipif, addr | ~mask, irep); 21395 break; 21396 case BCAST_SUBNET: 21397 mask = ipif->ipif_net_mask; 21398 irep = ire_create_bcast(ipif, addr | ~mask, irep); 21399 break; 21400 } 21401 21402 bireinfop->bi_haverep = 1; 21403 return (irep); 21404 } 21405 21406 /* 21407 * Walk through all of the ipifs on `ill' that will be affected by `test_ipif' 21408 * going away, and determine if any of the broadcast IREs (named by `bireinfop') 21409 * that are going away are still needed. If so, have ipif_create_bcast() 21410 * recreate them (except for the deprecated case, as explained below). 21411 */ 21412 static ire_t ** 21413 ill_create_bcast(ill_t *ill, ipif_t *test_ipif, bcast_ireinfo_t *bireinfo, 21414 ire_t **irep) 21415 { 21416 int i; 21417 ipif_t *ipif; 21418 21419 ASSERT(!ill->ill_isv6); 21420 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 21421 /* 21422 * Skip this ipif if it's (a) the one being taken down, (b) 21423 * not in the same zone, or (c) has no valid local address. 21424 */ 21425 if (ipif == test_ipif || 21426 ipif->ipif_zoneid != test_ipif->ipif_zoneid || 21427 ipif->ipif_subnet == 0 || 21428 (ipif->ipif_flags & (IPIF_UP|IPIF_BROADCAST|IPIF_NOXMIT)) != 21429 (IPIF_UP|IPIF_BROADCAST)) 21430 continue; 21431 21432 /* 21433 * For each dying IRE that hasn't yet been replaced, see if 21434 * `ipif' needs it and whether the IRE should be recreated on 21435 * `ipif'. If `ipif' is deprecated, ipif_consider_bcast() 21436 * will return B_FALSE even if `ipif' needs the IRE on the 21437 * hopes that we'll later find a needy non-deprecated ipif. 21438 * However, the ipif is recorded in bi_backup for possible 21439 * subsequent use by ipif_check_bcast_ires(). 21440 */ 21441 for (i = 0; i < BCAST_COUNT; i++) { 21442 if (!bireinfo[i].bi_willdie || bireinfo[i].bi_haverep) 21443 continue; 21444 if (!ipif_consider_bcast(ipif, &bireinfo[i])) 21445 continue; 21446 irep = ipif_create_bcast(ipif, &bireinfo[i], irep); 21447 } 21448 21449 /* 21450 * If we've replaced all of the broadcast IREs that are going 21451 * to be taken down, we know we're done. 21452 */ 21453 for (i = 0; i < BCAST_COUNT; i++) { 21454 if (bireinfo[i].bi_willdie && !bireinfo[i].bi_haverep) 21455 break; 21456 } 21457 if (i == BCAST_COUNT) 21458 break; 21459 } 21460 return (irep); 21461 } 21462 21463 /* 21464 * Check if `test_ipif' (which is going away) is associated with any existing 21465 * broadcast IREs, and whether any other ipifs (e.g., on the same ill) were 21466 * using those broadcast IREs. If so, recreate the broadcast IREs on one or 21467 * more of those other ipifs. (The old IREs will be deleted in ipif_down().) 21468 * 21469 * This is necessary because broadcast IREs are shared. In particular, a 21470 * given ill has one set of all-zeroes and all-ones broadcast IREs (for every 21471 * zone), plus one set of all-subnet-ones, all-subnet-zeroes, all-net-ones, 21472 * and all-net-zeroes for every net/subnet (and every zone) it has IPIF_UP 21473 * ipifs on. Thus, if there are two IPIF_UP ipifs on the same subnet with the 21474 * same zone, they will share the same set of broadcast IREs. 21475 * 21476 * Note: the upper bound of 12 IREs comes from the worst case of replacing all 21477 * six pairs (loopback and non-loopback) of broadcast IREs (all-zeroes, 21478 * all-ones, subnet-zeroes, subnet-ones, net-zeroes, and net-ones). 21479 */ 21480 static void 21481 ipif_check_bcast_ires(ipif_t *test_ipif) 21482 { 21483 ill_t *ill = test_ipif->ipif_ill; 21484 ire_t *ire, *ire_array[12]; /* see note above */ 21485 ire_t **irep1, **irep = &ire_array[0]; 21486 uint_t i, willdie; 21487 ipaddr_t mask = ip_net_mask(test_ipif->ipif_subnet); 21488 bcast_ireinfo_t bireinfo[BCAST_COUNT]; 21489 21490 ASSERT(!test_ipif->ipif_isv6); 21491 ASSERT(IAM_WRITER_IPIF(test_ipif)); 21492 21493 /* 21494 * No broadcast IREs for the LOOPBACK interface 21495 * or others such as point to point and IPIF_NOXMIT. 21496 */ 21497 if (!(test_ipif->ipif_flags & IPIF_BROADCAST) || 21498 (test_ipif->ipif_flags & IPIF_NOXMIT)) 21499 return; 21500 21501 bzero(bireinfo, sizeof (bireinfo)); 21502 bireinfo[0].bi_type = BCAST_ALLZEROES; 21503 bireinfo[0].bi_addr = 0; 21504 21505 bireinfo[1].bi_type = BCAST_ALLONES; 21506 bireinfo[1].bi_addr = INADDR_BROADCAST; 21507 21508 bireinfo[2].bi_type = BCAST_NET; 21509 bireinfo[2].bi_addr = test_ipif->ipif_subnet & mask; 21510 21511 if (test_ipif->ipif_net_mask != 0) 21512 mask = test_ipif->ipif_net_mask; 21513 bireinfo[3].bi_type = BCAST_SUBNET; 21514 bireinfo[3].bi_addr = test_ipif->ipif_subnet & mask; 21515 21516 /* 21517 * Figure out what (if any) broadcast IREs will die as a result of 21518 * `test_ipif' going away. If none will die, we're done. 21519 */ 21520 for (i = 0, willdie = 0; i < BCAST_COUNT; i++) { 21521 ire = ire_ctable_lookup(bireinfo[i].bi_addr, 0, IRE_BROADCAST, 21522 test_ipif, ALL_ZONES, NULL, 21523 (MATCH_IRE_TYPE | MATCH_IRE_IPIF), ill->ill_ipst); 21524 if (ire != NULL) { 21525 willdie++; 21526 bireinfo[i].bi_willdie = 1; 21527 ire_refrele(ire); 21528 } 21529 } 21530 21531 if (willdie == 0) 21532 return; 21533 21534 /* 21535 * Walk through all the ipifs that will be affected by the dying IREs, 21536 * and recreate the IREs as necessary. 21537 */ 21538 irep = ill_create_bcast(ill, test_ipif, bireinfo, irep); 21539 21540 /* 21541 * Scan through the set of broadcast IREs and see if there are any 21542 * that we need to replace that have not yet been replaced. If so, 21543 * replace them using the appropriate backup ipif. 21544 */ 21545 for (i = 0; i < BCAST_COUNT; i++) { 21546 if (bireinfo[i].bi_needrep && !bireinfo[i].bi_haverep) 21547 irep = ipif_create_bcast(bireinfo[i].bi_backup, 21548 &bireinfo[i], irep); 21549 } 21550 21551 /* 21552 * If we can't create all of them, don't add any of them. (Code in 21553 * ip_wput_ire() and ire_to_ill() assumes that we always have a 21554 * non-loopback copy and loopback copy for a given address.) 21555 */ 21556 for (irep1 = irep; irep1 > ire_array; ) { 21557 irep1--; 21558 if (*irep1 == NULL) { 21559 ip0dbg(("ipif_check_bcast_ires: can't create " 21560 "IRE_BROADCAST, memory allocation failure\n")); 21561 while (irep > ire_array) { 21562 irep--; 21563 if (*irep != NULL) 21564 ire_delete(*irep); 21565 } 21566 return; 21567 } 21568 } 21569 21570 for (irep1 = irep; irep1 > ire_array; ) { 21571 irep1--; 21572 if (ire_add(irep1, NULL, NULL, NULL, B_FALSE) == 0) 21573 ire_refrele(*irep1); /* Held in ire_add */ 21574 } 21575 } 21576 21577 /* 21578 * Extract both the flags (including IFF_CANTCHANGE) such as IFF_IPV* 21579 * from lifr_flags and the name from lifr_name. 21580 * Set IFF_IPV* and ill_isv6 prior to doing the lookup 21581 * since ipif_lookup_on_name uses the _isv6 flags when matching. 21582 * Returns EINPROGRESS when mp has been consumed by queueing it on 21583 * ill_pending_mp and the ioctl will complete in ip_rput. 21584 * 21585 * Can operate on either a module or a driver queue. 21586 * Returns an error if not a module queue. 21587 */ 21588 /* ARGSUSED */ 21589 int 21590 ip_sioctl_slifname(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 21591 ip_ioctl_cmd_t *ipip, void *if_req) 21592 { 21593 ill_t *ill = q->q_ptr; 21594 phyint_t *phyi; 21595 ip_stack_t *ipst; 21596 struct lifreq *lifr = if_req; 21597 21598 ASSERT(ipif != NULL); 21599 ip1dbg(("ip_sioctl_slifname %s\n", lifr->lifr_name)); 21600 21601 if (q->q_next == NULL) { 21602 ip1dbg(("if_sioctl_slifname: SIOCSLIFNAME: no q_next\n")); 21603 return (EINVAL); 21604 } 21605 21606 /* 21607 * If we are not writer on 'q' then this interface exists already 21608 * and previous lookups (ip_extract_lifreq()) found this ipif -- 21609 * so return EALREADY. 21610 */ 21611 if (ill != ipif->ipif_ill) 21612 return (EALREADY); 21613 21614 if (ill->ill_name[0] != '\0') 21615 return (EALREADY); 21616 21617 /* 21618 * Set all the flags. Allows all kinds of override. Provide some 21619 * sanity checking by not allowing IFF_BROADCAST and IFF_MULTICAST 21620 * unless there is either multicast/broadcast support in the driver 21621 * or it is a pt-pt link. 21622 */ 21623 if (lifr->lifr_flags & (IFF_PROMISC|IFF_ALLMULTI)) { 21624 /* Meaningless to IP thus don't allow them to be set. */ 21625 ip1dbg(("ip_setname: EINVAL 1\n")); 21626 return (EINVAL); 21627 } 21628 21629 /* 21630 * If there's another ill already with the requested name, ensure 21631 * that it's of the same type. Otherwise, ill_phyint_reinit() will 21632 * fuse together two unrelated ills, which will cause chaos. 21633 */ 21634 ipst = ill->ill_ipst; 21635 phyi = avl_find(&ipst->ips_phyint_g_list->phyint_list_avl_by_name, 21636 lifr->lifr_name, NULL); 21637 if (phyi != NULL) { 21638 ill_t *ill_mate = phyi->phyint_illv4; 21639 21640 if (ill_mate == NULL) 21641 ill_mate = phyi->phyint_illv6; 21642 ASSERT(ill_mate != NULL); 21643 21644 if (ill_mate->ill_media->ip_m_mac_type != 21645 ill->ill_media->ip_m_mac_type) { 21646 ip1dbg(("if_sioctl_slifname: SIOCSLIFNAME: attempt to " 21647 "use the same ill name on differing media\n")); 21648 return (EINVAL); 21649 } 21650 } 21651 21652 /* 21653 * For a DL_STYLE2 driver (ill_needs_attach), we would not have the 21654 * ill_bcast_addr_length info. 21655 */ 21656 if (!ill->ill_needs_attach && 21657 ((lifr->lifr_flags & IFF_MULTICAST) && 21658 !(lifr->lifr_flags & IFF_POINTOPOINT) && 21659 ill->ill_bcast_addr_length == 0)) { 21660 /* Link not broadcast/pt-pt capable i.e. no multicast */ 21661 ip1dbg(("ip_setname: EINVAL 2\n")); 21662 return (EINVAL); 21663 } 21664 if ((lifr->lifr_flags & IFF_BROADCAST) && 21665 ((lifr->lifr_flags & IFF_IPV6) || 21666 (!ill->ill_needs_attach && ill->ill_bcast_addr_length == 0))) { 21667 /* Link not broadcast capable or IPv6 i.e. no broadcast */ 21668 ip1dbg(("ip_setname: EINVAL 3\n")); 21669 return (EINVAL); 21670 } 21671 if (lifr->lifr_flags & IFF_UP) { 21672 /* Can only be set with SIOCSLIFFLAGS */ 21673 ip1dbg(("ip_setname: EINVAL 4\n")); 21674 return (EINVAL); 21675 } 21676 if ((lifr->lifr_flags & (IFF_IPV6|IFF_IPV4)) != IFF_IPV6 && 21677 (lifr->lifr_flags & (IFF_IPV6|IFF_IPV4)) != IFF_IPV4) { 21678 ip1dbg(("ip_setname: EINVAL 5\n")); 21679 return (EINVAL); 21680 } 21681 /* 21682 * Only allow the IFF_XRESOLV flag to be set on IPv6 interfaces. 21683 */ 21684 if ((lifr->lifr_flags & IFF_XRESOLV) && 21685 !(lifr->lifr_flags & IFF_IPV6) && 21686 !(ipif->ipif_isv6)) { 21687 ip1dbg(("ip_setname: EINVAL 6\n")); 21688 return (EINVAL); 21689 } 21690 21691 /* 21692 * The user has done SIOCGLIFFLAGS prior to this ioctl and hence 21693 * we have all the flags here. So, we assign rather than we OR. 21694 * We can't OR the flags here because we don't want to set 21695 * both IFF_IPV4 and IFF_IPV6. We start off as IFF_IPV4 in 21696 * ipif_allocate and become IFF_IPV4 or IFF_IPV6 here depending 21697 * on lifr_flags value here. 21698 */ 21699 /* 21700 * This ill has not been inserted into the global list. 21701 * So we are still single threaded and don't need any lock 21702 */ 21703 ipif->ipif_flags = lifr->lifr_flags & IFF_LOGINT_FLAGS & ~IFF_DUPLICATE; 21704 ill->ill_flags = lifr->lifr_flags & IFF_PHYINTINST_FLAGS; 21705 ill->ill_phyint->phyint_flags = lifr->lifr_flags & IFF_PHYINT_FLAGS; 21706 21707 /* We started off as V4. */ 21708 if (ill->ill_flags & ILLF_IPV6) { 21709 ill->ill_phyint->phyint_illv6 = ill; 21710 ill->ill_phyint->phyint_illv4 = NULL; 21711 } 21712 21713 return (ipif_set_values(q, mp, lifr->lifr_name, &lifr->lifr_ppa)); 21714 } 21715 21716 /* ARGSUSED */ 21717 int 21718 ip_sioctl_slifname_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 21719 ip_ioctl_cmd_t *ipip, void *if_req) 21720 { 21721 /* 21722 * ill_phyint_reinit merged the v4 and v6 into a single 21723 * ipsq. Could also have become part of a ipmp group in the 21724 * process, and we might not have been able to complete the 21725 * slifname in ipif_set_values, if we could not become 21726 * exclusive. If so restart it here 21727 */ 21728 return (ipif_set_values_tail(ipif->ipif_ill, ipif, mp, q)); 21729 } 21730 21731 /* 21732 * Return a pointer to the ipif which matches the index, IP version type and 21733 * zoneid. 21734 */ 21735 ipif_t * 21736 ipif_lookup_on_ifindex(uint_t index, boolean_t isv6, zoneid_t zoneid, 21737 queue_t *q, mblk_t *mp, ipsq_func_t func, int *err, ip_stack_t *ipst) 21738 { 21739 ill_t *ill; 21740 ipif_t *ipif = NULL; 21741 21742 ASSERT((q == NULL && mp == NULL && func == NULL && err == NULL) || 21743 (q != NULL && mp != NULL && func != NULL && err != NULL)); 21744 21745 if (err != NULL) 21746 *err = 0; 21747 21748 ill = ill_lookup_on_ifindex(index, isv6, q, mp, func, err, ipst); 21749 if (ill != NULL) { 21750 mutex_enter(&ill->ill_lock); 21751 for (ipif = ill->ill_ipif; ipif != NULL; 21752 ipif = ipif->ipif_next) { 21753 if (IPIF_CAN_LOOKUP(ipif) && (zoneid == ALL_ZONES || 21754 zoneid == ipif->ipif_zoneid || 21755 ipif->ipif_zoneid == ALL_ZONES)) { 21756 ipif_refhold_locked(ipif); 21757 break; 21758 } 21759 } 21760 mutex_exit(&ill->ill_lock); 21761 ill_refrele(ill); 21762 if (ipif == NULL && err != NULL) 21763 *err = ENXIO; 21764 } 21765 return (ipif); 21766 } 21767 21768 typedef struct conn_change_s { 21769 uint_t cc_old_ifindex; 21770 uint_t cc_new_ifindex; 21771 } conn_change_t; 21772 21773 /* 21774 * ipcl_walk function for changing interface index. 21775 */ 21776 static void 21777 conn_change_ifindex(conn_t *connp, caddr_t arg) 21778 { 21779 conn_change_t *connc; 21780 uint_t old_ifindex; 21781 uint_t new_ifindex; 21782 int i; 21783 ilg_t *ilg; 21784 21785 connc = (conn_change_t *)arg; 21786 old_ifindex = connc->cc_old_ifindex; 21787 new_ifindex = connc->cc_new_ifindex; 21788 21789 if (connp->conn_orig_bound_ifindex == old_ifindex) 21790 connp->conn_orig_bound_ifindex = new_ifindex; 21791 21792 if (connp->conn_orig_multicast_ifindex == old_ifindex) 21793 connp->conn_orig_multicast_ifindex = new_ifindex; 21794 21795 for (i = connp->conn_ilg_inuse - 1; i >= 0; i--) { 21796 ilg = &connp->conn_ilg[i]; 21797 if (ilg->ilg_orig_ifindex == old_ifindex) 21798 ilg->ilg_orig_ifindex = new_ifindex; 21799 } 21800 } 21801 21802 /* 21803 * Walk all the ipifs and ilms on this ill and change the orig_ifindex 21804 * to new_index if it matches the old_index. 21805 * 21806 * Failovers typically happen within a group of ills. But somebody 21807 * can remove an ill from the group after a failover happened. If 21808 * we are setting the ifindex after this, we potentially need to 21809 * look at all the ills rather than just the ones in the group. 21810 * We cut down the work by looking at matching ill_net_types 21811 * and ill_types as we could not possibly grouped them together. 21812 */ 21813 static void 21814 ip_change_ifindex(ill_t *ill_orig, conn_change_t *connc) 21815 { 21816 ill_t *ill; 21817 ipif_t *ipif; 21818 uint_t old_ifindex; 21819 uint_t new_ifindex; 21820 ilm_t *ilm; 21821 ill_walk_context_t ctx; 21822 ip_stack_t *ipst = ill_orig->ill_ipst; 21823 21824 old_ifindex = connc->cc_old_ifindex; 21825 new_ifindex = connc->cc_new_ifindex; 21826 21827 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 21828 ill = ILL_START_WALK_ALL(&ctx, ipst); 21829 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 21830 if ((ill_orig->ill_net_type != ill->ill_net_type) || 21831 (ill_orig->ill_type != ill->ill_type)) { 21832 continue; 21833 } 21834 for (ipif = ill->ill_ipif; ipif != NULL; 21835 ipif = ipif->ipif_next) { 21836 if (ipif->ipif_orig_ifindex == old_ifindex) 21837 ipif->ipif_orig_ifindex = new_ifindex; 21838 } 21839 for (ilm = ill->ill_ilm; ilm != NULL; ilm = ilm->ilm_next) { 21840 if (ilm->ilm_orig_ifindex == old_ifindex) 21841 ilm->ilm_orig_ifindex = new_ifindex; 21842 } 21843 } 21844 rw_exit(&ipst->ips_ill_g_lock); 21845 } 21846 21847 /* 21848 * We first need to ensure that the new index is unique, and 21849 * then carry the change across both v4 and v6 ill representation 21850 * of the physical interface. 21851 */ 21852 /* ARGSUSED */ 21853 int 21854 ip_sioctl_slifindex(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 21855 ip_ioctl_cmd_t *ipip, void *ifreq) 21856 { 21857 ill_t *ill; 21858 ill_t *ill_other; 21859 phyint_t *phyi; 21860 int old_index; 21861 conn_change_t connc; 21862 struct ifreq *ifr = (struct ifreq *)ifreq; 21863 struct lifreq *lifr = (struct lifreq *)ifreq; 21864 uint_t index; 21865 ill_t *ill_v4; 21866 ill_t *ill_v6; 21867 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; 21868 21869 if (ipip->ipi_cmd_type == IF_CMD) 21870 index = ifr->ifr_index; 21871 else 21872 index = lifr->lifr_index; 21873 21874 /* 21875 * Only allow on physical interface. Also, index zero is illegal. 21876 * 21877 * Need to check for PHYI_FAILED and PHYI_INACTIVE 21878 * 21879 * 1) If PHYI_FAILED is set, a failover could have happened which 21880 * implies a possible failback might have to happen. As failback 21881 * depends on the old index, we should fail setting the index. 21882 * 21883 * 2) If PHYI_INACTIVE is set, in.mpathd does a failover so that 21884 * any addresses or multicast memberships are failed over to 21885 * a non-STANDBY interface. As failback depends on the old 21886 * index, we should fail setting the index for this case also. 21887 * 21888 * 3) If PHYI_OFFLINE is set, a possible failover has happened. 21889 * Be consistent with PHYI_FAILED and fail the ioctl. 21890 */ 21891 ill = ipif->ipif_ill; 21892 phyi = ill->ill_phyint; 21893 if ((phyi->phyint_flags & (PHYI_FAILED|PHYI_INACTIVE|PHYI_OFFLINE)) || 21894 ipif->ipif_id != 0 || index == 0) { 21895 return (EINVAL); 21896 } 21897 old_index = phyi->phyint_ifindex; 21898 21899 /* If the index is not changing, no work to do */ 21900 if (old_index == index) 21901 return (0); 21902 21903 /* 21904 * Use ill_lookup_on_ifindex to determine if the 21905 * new index is unused and if so allow the change. 21906 */ 21907 ill_v6 = ill_lookup_on_ifindex(index, B_TRUE, NULL, NULL, NULL, NULL, 21908 ipst); 21909 ill_v4 = ill_lookup_on_ifindex(index, B_FALSE, NULL, NULL, NULL, NULL, 21910 ipst); 21911 if (ill_v6 != NULL || ill_v4 != NULL) { 21912 if (ill_v4 != NULL) 21913 ill_refrele(ill_v4); 21914 if (ill_v6 != NULL) 21915 ill_refrele(ill_v6); 21916 return (EBUSY); 21917 } 21918 21919 /* 21920 * The new index is unused. Set it in the phyint. 21921 * Locate the other ill so that we can send a routing 21922 * sockets message. 21923 */ 21924 if (ill->ill_isv6) { 21925 ill_other = phyi->phyint_illv4; 21926 } else { 21927 ill_other = phyi->phyint_illv6; 21928 } 21929 21930 phyi->phyint_ifindex = index; 21931 21932 /* Update SCTP's ILL list */ 21933 sctp_ill_reindex(ill, old_index); 21934 21935 connc.cc_old_ifindex = old_index; 21936 connc.cc_new_ifindex = index; 21937 ip_change_ifindex(ill, &connc); 21938 ipcl_walk(conn_change_ifindex, (caddr_t)&connc, ipst); 21939 21940 /* Send the routing sockets message */ 21941 ip_rts_ifmsg(ipif); 21942 if (ill_other != NULL) 21943 ip_rts_ifmsg(ill_other->ill_ipif); 21944 21945 return (0); 21946 } 21947 21948 /* ARGSUSED */ 21949 int 21950 ip_sioctl_get_lifindex(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 21951 ip_ioctl_cmd_t *ipip, void *ifreq) 21952 { 21953 struct ifreq *ifr = (struct ifreq *)ifreq; 21954 struct lifreq *lifr = (struct lifreq *)ifreq; 21955 21956 ip1dbg(("ip_sioctl_get_lifindex(%s:%u %p)\n", 21957 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 21958 /* Get the interface index */ 21959 if (ipip->ipi_cmd_type == IF_CMD) { 21960 ifr->ifr_index = ipif->ipif_ill->ill_phyint->phyint_ifindex; 21961 } else { 21962 lifr->lifr_index = ipif->ipif_ill->ill_phyint->phyint_ifindex; 21963 } 21964 return (0); 21965 } 21966 21967 /* ARGSUSED */ 21968 int 21969 ip_sioctl_get_lifzone(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 21970 ip_ioctl_cmd_t *ipip, void *ifreq) 21971 { 21972 struct lifreq *lifr = (struct lifreq *)ifreq; 21973 21974 ip1dbg(("ip_sioctl_get_lifzone(%s:%u %p)\n", 21975 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 21976 /* Get the interface zone */ 21977 ASSERT(ipip->ipi_cmd_type == LIF_CMD); 21978 lifr->lifr_zoneid = ipif->ipif_zoneid; 21979 return (0); 21980 } 21981 21982 /* 21983 * Set the zoneid of an interface. 21984 */ 21985 /* ARGSUSED */ 21986 int 21987 ip_sioctl_slifzone(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 21988 ip_ioctl_cmd_t *ipip, void *ifreq) 21989 { 21990 struct lifreq *lifr = (struct lifreq *)ifreq; 21991 int err = 0; 21992 boolean_t need_up = B_FALSE; 21993 zone_t *zptr; 21994 zone_status_t status; 21995 zoneid_t zoneid; 21996 21997 ASSERT(ipip->ipi_cmd_type == LIF_CMD); 21998 if ((zoneid = lifr->lifr_zoneid) == ALL_ZONES) { 21999 if (!is_system_labeled()) 22000 return (ENOTSUP); 22001 zoneid = GLOBAL_ZONEID; 22002 } 22003 22004 /* cannot assign instance zero to a non-global zone */ 22005 if (ipif->ipif_id == 0 && zoneid != GLOBAL_ZONEID) 22006 return (ENOTSUP); 22007 22008 /* 22009 * Cannot assign to a zone that doesn't exist or is shutting down. In 22010 * the event of a race with the zone shutdown processing, since IP 22011 * serializes this ioctl and SIOCGLIFCONF/SIOCLIFREMOVEIF, we know the 22012 * interface will be cleaned up even if the zone is shut down 22013 * immediately after the status check. If the interface can't be brought 22014 * down right away, and the zone is shut down before the restart 22015 * function is called, we resolve the possible races by rechecking the 22016 * zone status in the restart function. 22017 */ 22018 if ((zptr = zone_find_by_id(zoneid)) == NULL) 22019 return (EINVAL); 22020 status = zone_status_get(zptr); 22021 zone_rele(zptr); 22022 22023 if (status != ZONE_IS_READY && status != ZONE_IS_RUNNING) 22024 return (EINVAL); 22025 22026 if (ipif->ipif_flags & IPIF_UP) { 22027 /* 22028 * If the interface is already marked up, 22029 * we call ipif_down which will take care 22030 * of ditching any IREs that have been set 22031 * up based on the old interface address. 22032 */ 22033 err = ipif_logical_down(ipif, q, mp); 22034 if (err == EINPROGRESS) 22035 return (err); 22036 ipif_down_tail(ipif); 22037 need_up = B_TRUE; 22038 } 22039 22040 err = ip_sioctl_slifzone_tail(ipif, lifr->lifr_zoneid, q, mp, need_up); 22041 return (err); 22042 } 22043 22044 static int 22045 ip_sioctl_slifzone_tail(ipif_t *ipif, zoneid_t zoneid, 22046 queue_t *q, mblk_t *mp, boolean_t need_up) 22047 { 22048 int err = 0; 22049 ip_stack_t *ipst; 22050 22051 ip1dbg(("ip_sioctl_zoneid_tail(%s:%u %p)\n", 22052 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 22053 22054 if (CONN_Q(q)) 22055 ipst = CONNQ_TO_IPST(q); 22056 else 22057 ipst = ILLQ_TO_IPST(q); 22058 22059 /* 22060 * For exclusive stacks we don't allow a different zoneid than 22061 * global. 22062 */ 22063 if (ipst->ips_netstack->netstack_stackid != GLOBAL_NETSTACKID && 22064 zoneid != GLOBAL_ZONEID) 22065 return (EINVAL); 22066 22067 /* Set the new zone id. */ 22068 ipif->ipif_zoneid = zoneid; 22069 22070 /* Update sctp list */ 22071 sctp_update_ipif(ipif, SCTP_IPIF_UPDATE); 22072 22073 if (need_up) { 22074 /* 22075 * Now bring the interface back up. If this 22076 * is the only IPIF for the ILL, ipif_up 22077 * will have to re-bind to the device, so 22078 * we may get back EINPROGRESS, in which 22079 * case, this IOCTL will get completed in 22080 * ip_rput_dlpi when we see the DL_BIND_ACK. 22081 */ 22082 err = ipif_up(ipif, q, mp); 22083 } 22084 return (err); 22085 } 22086 22087 /* ARGSUSED */ 22088 int 22089 ip_sioctl_slifzone_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 22090 ip_ioctl_cmd_t *ipip, void *if_req) 22091 { 22092 struct lifreq *lifr = (struct lifreq *)if_req; 22093 zoneid_t zoneid; 22094 zone_t *zptr; 22095 zone_status_t status; 22096 22097 ASSERT(ipif->ipif_id != 0); 22098 ASSERT(ipip->ipi_cmd_type == LIF_CMD); 22099 if ((zoneid = lifr->lifr_zoneid) == ALL_ZONES) 22100 zoneid = GLOBAL_ZONEID; 22101 22102 ip1dbg(("ip_sioctl_slifzone_restart(%s:%u %p)\n", 22103 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 22104 22105 /* 22106 * We recheck the zone status to resolve the following race condition: 22107 * 1) process sends SIOCSLIFZONE to put hme0:1 in zone "myzone"; 22108 * 2) hme0:1 is up and can't be brought down right away; 22109 * ip_sioctl_slifzone() returns EINPROGRESS and the request is queued; 22110 * 3) zone "myzone" is halted; the zone status switches to 22111 * 'shutting_down' and the zones framework sends SIOCGLIFCONF to list 22112 * the interfaces to remove - hme0:1 is not returned because it's not 22113 * yet in "myzone", so it won't be removed; 22114 * 4) the restart function for SIOCSLIFZONE is called; without the 22115 * status check here, we would have hme0:1 in "myzone" after it's been 22116 * destroyed. 22117 * Note that if the status check fails, we need to bring the interface 22118 * back to its state prior to ip_sioctl_slifzone(), hence the call to 22119 * ipif_up_done[_v6](). 22120 */ 22121 status = ZONE_IS_UNINITIALIZED; 22122 if ((zptr = zone_find_by_id(zoneid)) != NULL) { 22123 status = zone_status_get(zptr); 22124 zone_rele(zptr); 22125 } 22126 if (status != ZONE_IS_READY && status != ZONE_IS_RUNNING) { 22127 if (ipif->ipif_isv6) { 22128 (void) ipif_up_done_v6(ipif); 22129 } else { 22130 (void) ipif_up_done(ipif); 22131 } 22132 return (EINVAL); 22133 } 22134 22135 ipif_down_tail(ipif); 22136 22137 return (ip_sioctl_slifzone_tail(ipif, lifr->lifr_zoneid, q, mp, 22138 B_TRUE)); 22139 } 22140 22141 /* ARGSUSED */ 22142 int 22143 ip_sioctl_get_lifusesrc(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 22144 ip_ioctl_cmd_t *ipip, void *ifreq) 22145 { 22146 struct lifreq *lifr = ifreq; 22147 22148 ASSERT(q->q_next == NULL); 22149 ASSERT(CONN_Q(q)); 22150 22151 ip1dbg(("ip_sioctl_get_lifusesrc(%s:%u %p)\n", 22152 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 22153 lifr->lifr_index = ipif->ipif_ill->ill_usesrc_ifindex; 22154 ip1dbg(("ip_sioctl_get_lifusesrc:lifr_index = %d\n", lifr->lifr_index)); 22155 22156 return (0); 22157 } 22158 22159 /* Find the previous ILL in this usesrc group */ 22160 static ill_t * 22161 ill_prev_usesrc(ill_t *uill) 22162 { 22163 ill_t *ill; 22164 22165 for (ill = uill->ill_usesrc_grp_next; 22166 ASSERT(ill), ill->ill_usesrc_grp_next != uill; 22167 ill = ill->ill_usesrc_grp_next) 22168 /* do nothing */; 22169 return (ill); 22170 } 22171 22172 /* 22173 * Release all members of the usesrc group. This routine is called 22174 * from ill_delete when the interface being unplumbed is the 22175 * group head. 22176 */ 22177 static void 22178 ill_disband_usesrc_group(ill_t *uill) 22179 { 22180 ill_t *next_ill, *tmp_ill; 22181 ip_stack_t *ipst = uill->ill_ipst; 22182 22183 ASSERT(RW_WRITE_HELD(&ipst->ips_ill_g_usesrc_lock)); 22184 next_ill = uill->ill_usesrc_grp_next; 22185 22186 do { 22187 ASSERT(next_ill != NULL); 22188 tmp_ill = next_ill->ill_usesrc_grp_next; 22189 ASSERT(tmp_ill != NULL); 22190 next_ill->ill_usesrc_grp_next = NULL; 22191 next_ill->ill_usesrc_ifindex = 0; 22192 next_ill = tmp_ill; 22193 } while (next_ill->ill_usesrc_ifindex != 0); 22194 uill->ill_usesrc_grp_next = NULL; 22195 } 22196 22197 /* 22198 * Remove the client usesrc ILL from the list and relink to a new list 22199 */ 22200 int 22201 ill_relink_usesrc_ills(ill_t *ucill, ill_t *uill, uint_t ifindex) 22202 { 22203 ill_t *ill, *tmp_ill; 22204 ip_stack_t *ipst = ucill->ill_ipst; 22205 22206 ASSERT((ucill != NULL) && (ucill->ill_usesrc_grp_next != NULL) && 22207 (uill != NULL) && RW_WRITE_HELD(&ipst->ips_ill_g_usesrc_lock)); 22208 22209 /* 22210 * Check if the usesrc client ILL passed in is not already 22211 * in use as a usesrc ILL i.e one whose source address is 22212 * in use OR a usesrc ILL is not already in use as a usesrc 22213 * client ILL 22214 */ 22215 if ((ucill->ill_usesrc_ifindex == 0) || 22216 (uill->ill_usesrc_ifindex != 0)) { 22217 return (-1); 22218 } 22219 22220 ill = ill_prev_usesrc(ucill); 22221 ASSERT(ill->ill_usesrc_grp_next != NULL); 22222 22223 /* Remove from the current list */ 22224 if (ill->ill_usesrc_grp_next->ill_usesrc_grp_next == ill) { 22225 /* Only two elements in the list */ 22226 ASSERT(ill->ill_usesrc_ifindex == 0); 22227 ill->ill_usesrc_grp_next = NULL; 22228 } else { 22229 ill->ill_usesrc_grp_next = ucill->ill_usesrc_grp_next; 22230 } 22231 22232 if (ifindex == 0) { 22233 ucill->ill_usesrc_ifindex = 0; 22234 ucill->ill_usesrc_grp_next = NULL; 22235 return (0); 22236 } 22237 22238 ucill->ill_usesrc_ifindex = ifindex; 22239 tmp_ill = uill->ill_usesrc_grp_next; 22240 uill->ill_usesrc_grp_next = ucill; 22241 ucill->ill_usesrc_grp_next = 22242 (tmp_ill != NULL) ? tmp_ill : uill; 22243 return (0); 22244 } 22245 22246 /* 22247 * Set the ill_usesrc and ill_usesrc_head fields. See synchronization notes in 22248 * ip.c for locking details. 22249 */ 22250 /* ARGSUSED */ 22251 int 22252 ip_sioctl_slifusesrc(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 22253 ip_ioctl_cmd_t *ipip, void *ifreq) 22254 { 22255 struct lifreq *lifr = (struct lifreq *)ifreq; 22256 boolean_t isv6 = B_FALSE, reset_flg = B_FALSE, 22257 ill_flag_changed = B_FALSE; 22258 ill_t *usesrc_ill, *usesrc_cli_ill = ipif->ipif_ill; 22259 int err = 0, ret; 22260 uint_t ifindex; 22261 phyint_t *us_phyint, *us_cli_phyint; 22262 ipsq_t *ipsq = NULL; 22263 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; 22264 22265 ASSERT(IAM_WRITER_IPIF(ipif)); 22266 ASSERT(q->q_next == NULL); 22267 ASSERT(CONN_Q(q)); 22268 22269 isv6 = (Q_TO_CONN(q))->conn_af_isv6; 22270 us_cli_phyint = usesrc_cli_ill->ill_phyint; 22271 22272 ASSERT(us_cli_phyint != NULL); 22273 22274 /* 22275 * If the client ILL is being used for IPMP, abort. 22276 * Note, this can be done before ipsq_try_enter since we are already 22277 * exclusive on this ILL 22278 */ 22279 if ((us_cli_phyint->phyint_groupname != NULL) || 22280 (us_cli_phyint->phyint_flags & PHYI_STANDBY)) { 22281 return (EINVAL); 22282 } 22283 22284 ifindex = lifr->lifr_index; 22285 if (ifindex == 0) { 22286 if (usesrc_cli_ill->ill_usesrc_grp_next == NULL) { 22287 /* non usesrc group interface, nothing to reset */ 22288 return (0); 22289 } 22290 ifindex = usesrc_cli_ill->ill_usesrc_ifindex; 22291 /* valid reset request */ 22292 reset_flg = B_TRUE; 22293 } 22294 22295 usesrc_ill = ill_lookup_on_ifindex(ifindex, isv6, q, mp, 22296 ip_process_ioctl, &err, ipst); 22297 22298 if (usesrc_ill == NULL) { 22299 return (err); 22300 } 22301 22302 /* 22303 * The usesrc_cli_ill or the usesrc_ill cannot be part of an IPMP 22304 * group nor can either of the interfaces be used for standy. So 22305 * to guarantee mutual exclusion with ip_sioctl_flags (which sets 22306 * PHYI_STANDBY) and ip_sioctl_groupname (which sets the groupname) 22307 * we need to be exclusive on the ipsq belonging to the usesrc_ill. 22308 * We are already exlusive on this ipsq i.e ipsq corresponding to 22309 * the usesrc_cli_ill 22310 */ 22311 ipsq = ipsq_try_enter(NULL, usesrc_ill, q, mp, ip_process_ioctl, 22312 NEW_OP, B_TRUE); 22313 if (ipsq == NULL) { 22314 err = EINPROGRESS; 22315 /* Operation enqueued on the ipsq of the usesrc ILL */ 22316 goto done; 22317 } 22318 22319 /* Check if the usesrc_ill is used for IPMP */ 22320 us_phyint = usesrc_ill->ill_phyint; 22321 if ((us_phyint->phyint_groupname != NULL) || 22322 (us_phyint->phyint_flags & PHYI_STANDBY)) { 22323 err = EINVAL; 22324 goto done; 22325 } 22326 22327 /* 22328 * If the client is already in use as a usesrc_ill or a usesrc_ill is 22329 * already a client then return EINVAL 22330 */ 22331 if (IS_USESRC_ILL(usesrc_cli_ill) || IS_USESRC_CLI_ILL(usesrc_ill)) { 22332 err = EINVAL; 22333 goto done; 22334 } 22335 22336 /* 22337 * If the ill_usesrc_ifindex field is already set to what it needs to 22338 * be then this is a duplicate operation. 22339 */ 22340 if (!reset_flg && usesrc_cli_ill->ill_usesrc_ifindex == ifindex) { 22341 err = 0; 22342 goto done; 22343 } 22344 22345 ip1dbg(("ip_sioctl_slifusesrc: usesrc_cli_ill %s, usesrc_ill %s," 22346 " v6 = %d", usesrc_cli_ill->ill_name, usesrc_ill->ill_name, 22347 usesrc_ill->ill_isv6)); 22348 22349 /* 22350 * The next step ensures that no new ires will be created referencing 22351 * the client ill, until the ILL_CHANGING flag is cleared. Then 22352 * we go through an ire walk deleting all ire caches that reference 22353 * the client ill. New ires referencing the client ill that are added 22354 * to the ire table before the ILL_CHANGING flag is set, will be 22355 * cleaned up by the ire walk below. Attempt to add new ires referencing 22356 * the client ill while the ILL_CHANGING flag is set will be failed 22357 * during the ire_add in ire_atomic_start. ire_atomic_start atomically 22358 * checks (under the ill_g_usesrc_lock) that the ire being added 22359 * is not stale, i.e the ire_stq and ire_ipif are consistent and 22360 * belong to the same usesrc group. 22361 */ 22362 mutex_enter(&usesrc_cli_ill->ill_lock); 22363 usesrc_cli_ill->ill_state_flags |= ILL_CHANGING; 22364 mutex_exit(&usesrc_cli_ill->ill_lock); 22365 ill_flag_changed = B_TRUE; 22366 22367 if (ipif->ipif_isv6) 22368 ire_walk_v6(ipif_delete_cache_ire, (char *)usesrc_cli_ill, 22369 ALL_ZONES, ipst); 22370 else 22371 ire_walk_v4(ipif_delete_cache_ire, (char *)usesrc_cli_ill, 22372 ALL_ZONES, ipst); 22373 22374 /* 22375 * ill_g_usesrc_lock global lock protects the ill_usesrc_grp_next 22376 * and the ill_usesrc_ifindex fields 22377 */ 22378 rw_enter(&ipst->ips_ill_g_usesrc_lock, RW_WRITER); 22379 22380 if (reset_flg) { 22381 ret = ill_relink_usesrc_ills(usesrc_cli_ill, usesrc_ill, 0); 22382 if (ret != 0) { 22383 err = EINVAL; 22384 } 22385 rw_exit(&ipst->ips_ill_g_usesrc_lock); 22386 goto done; 22387 } 22388 22389 /* 22390 * Four possibilities to consider: 22391 * 1. Both usesrc_ill and usesrc_cli_ill are not part of any usesrc grp 22392 * 2. usesrc_ill is part of a group but usesrc_cli_ill isn't 22393 * 3. usesrc_cli_ill is part of a group but usesrc_ill isn't 22394 * 4. Both are part of their respective usesrc groups 22395 */ 22396 if ((usesrc_ill->ill_usesrc_grp_next == NULL) && 22397 (usesrc_cli_ill->ill_usesrc_grp_next == NULL)) { 22398 ASSERT(usesrc_ill->ill_usesrc_ifindex == 0); 22399 usesrc_cli_ill->ill_usesrc_ifindex = ifindex; 22400 usesrc_ill->ill_usesrc_grp_next = usesrc_cli_ill; 22401 usesrc_cli_ill->ill_usesrc_grp_next = usesrc_ill; 22402 } else if ((usesrc_ill->ill_usesrc_grp_next != NULL) && 22403 (usesrc_cli_ill->ill_usesrc_grp_next == NULL)) { 22404 usesrc_cli_ill->ill_usesrc_ifindex = ifindex; 22405 /* Insert at head of list */ 22406 usesrc_cli_ill->ill_usesrc_grp_next = 22407 usesrc_ill->ill_usesrc_grp_next; 22408 usesrc_ill->ill_usesrc_grp_next = usesrc_cli_ill; 22409 } else { 22410 ret = ill_relink_usesrc_ills(usesrc_cli_ill, usesrc_ill, 22411 ifindex); 22412 if (ret != 0) 22413 err = EINVAL; 22414 } 22415 rw_exit(&ipst->ips_ill_g_usesrc_lock); 22416 22417 done: 22418 if (ill_flag_changed) { 22419 mutex_enter(&usesrc_cli_ill->ill_lock); 22420 usesrc_cli_ill->ill_state_flags &= ~ILL_CHANGING; 22421 mutex_exit(&usesrc_cli_ill->ill_lock); 22422 } 22423 if (ipsq != NULL) 22424 ipsq_exit(ipsq); 22425 /* The refrele on the lifr_name ipif is done by ip_process_ioctl */ 22426 ill_refrele(usesrc_ill); 22427 return (err); 22428 } 22429 22430 /* 22431 * comparison function used by avl. 22432 */ 22433 static int 22434 ill_phyint_compare_index(const void *index_ptr, const void *phyip) 22435 { 22436 22437 uint_t index; 22438 22439 ASSERT(phyip != NULL && index_ptr != NULL); 22440 22441 index = *((uint_t *)index_ptr); 22442 /* 22443 * let the phyint with the lowest index be on top. 22444 */ 22445 if (((phyint_t *)phyip)->phyint_ifindex < index) 22446 return (1); 22447 if (((phyint_t *)phyip)->phyint_ifindex > index) 22448 return (-1); 22449 return (0); 22450 } 22451 22452 /* 22453 * comparison function used by avl. 22454 */ 22455 static int 22456 ill_phyint_compare_name(const void *name_ptr, const void *phyip) 22457 { 22458 ill_t *ill; 22459 int res = 0; 22460 22461 ASSERT(phyip != NULL && name_ptr != NULL); 22462 22463 if (((phyint_t *)phyip)->phyint_illv4) 22464 ill = ((phyint_t *)phyip)->phyint_illv4; 22465 else 22466 ill = ((phyint_t *)phyip)->phyint_illv6; 22467 ASSERT(ill != NULL); 22468 22469 res = strcmp(ill->ill_name, (char *)name_ptr); 22470 if (res > 0) 22471 return (1); 22472 else if (res < 0) 22473 return (-1); 22474 return (0); 22475 } 22476 /* 22477 * This function is called from ill_delete when the ill is being 22478 * unplumbed. We remove the reference from the phyint and we also 22479 * free the phyint when there are no more references to it. 22480 */ 22481 static void 22482 ill_phyint_free(ill_t *ill) 22483 { 22484 phyint_t *phyi; 22485 phyint_t *next_phyint; 22486 ipsq_t *cur_ipsq; 22487 ip_stack_t *ipst = ill->ill_ipst; 22488 22489 ASSERT(ill->ill_phyint != NULL); 22490 22491 ASSERT(RW_WRITE_HELD(&ipst->ips_ill_g_lock)); 22492 phyi = ill->ill_phyint; 22493 ill->ill_phyint = NULL; 22494 /* 22495 * ill_init allocates a phyint always to store the copy 22496 * of flags relevant to phyint. At that point in time, we could 22497 * not assign the name and hence phyint_illv4/v6 could not be 22498 * initialized. Later in ipif_set_values, we assign the name to 22499 * the ill, at which point in time we assign phyint_illv4/v6. 22500 * Thus we don't rely on phyint_illv6 to be initialized always. 22501 */ 22502 if (ill->ill_flags & ILLF_IPV6) { 22503 phyi->phyint_illv6 = NULL; 22504 } else { 22505 phyi->phyint_illv4 = NULL; 22506 } 22507 /* 22508 * ipif_down removes it from the group when the last ipif goes 22509 * down. 22510 */ 22511 ASSERT(ill->ill_group == NULL); 22512 22513 if (phyi->phyint_illv4 != NULL || phyi->phyint_illv6 != NULL) 22514 return; 22515 22516 /* 22517 * Make sure this phyint was put in the list. 22518 */ 22519 if (phyi->phyint_ifindex > 0) { 22520 avl_remove(&ipst->ips_phyint_g_list->phyint_list_avl_by_index, 22521 phyi); 22522 avl_remove(&ipst->ips_phyint_g_list->phyint_list_avl_by_name, 22523 phyi); 22524 } 22525 /* 22526 * remove phyint from the ipsq list. 22527 */ 22528 cur_ipsq = phyi->phyint_ipsq; 22529 if (phyi == cur_ipsq->ipsq_phyint_list) { 22530 cur_ipsq->ipsq_phyint_list = phyi->phyint_ipsq_next; 22531 } else { 22532 next_phyint = cur_ipsq->ipsq_phyint_list; 22533 while (next_phyint != NULL) { 22534 if (next_phyint->phyint_ipsq_next == phyi) { 22535 next_phyint->phyint_ipsq_next = 22536 phyi->phyint_ipsq_next; 22537 break; 22538 } 22539 next_phyint = next_phyint->phyint_ipsq_next; 22540 } 22541 ASSERT(next_phyint != NULL); 22542 } 22543 IPSQ_DEC_REF(cur_ipsq, ipst); 22544 22545 if (phyi->phyint_groupname_len != 0) { 22546 ASSERT(phyi->phyint_groupname != NULL); 22547 mi_free(phyi->phyint_groupname); 22548 } 22549 mi_free(phyi); 22550 } 22551 22552 /* 22553 * Attach the ill to the phyint structure which can be shared by both 22554 * IPv4 and IPv6 ill. ill_init allocates a phyint to just hold flags. This 22555 * function is called from ipif_set_values and ill_lookup_on_name (for 22556 * loopback) where we know the name of the ill. We lookup the ill and if 22557 * there is one present already with the name use that phyint. Otherwise 22558 * reuse the one allocated by ill_init. 22559 */ 22560 static void 22561 ill_phyint_reinit(ill_t *ill) 22562 { 22563 boolean_t isv6 = ill->ill_isv6; 22564 phyint_t *phyi_old; 22565 phyint_t *phyi; 22566 avl_index_t where = 0; 22567 ill_t *ill_other = NULL; 22568 ipsq_t *ipsq; 22569 ip_stack_t *ipst = ill->ill_ipst; 22570 22571 ASSERT(RW_WRITE_HELD(&ipst->ips_ill_g_lock)); 22572 22573 phyi_old = ill->ill_phyint; 22574 ASSERT(isv6 || (phyi_old->phyint_illv4 == ill && 22575 phyi_old->phyint_illv6 == NULL)); 22576 ASSERT(!isv6 || (phyi_old->phyint_illv6 == ill && 22577 phyi_old->phyint_illv4 == NULL)); 22578 ASSERT(phyi_old->phyint_ifindex == 0); 22579 22580 phyi = avl_find(&ipst->ips_phyint_g_list->phyint_list_avl_by_name, 22581 ill->ill_name, &where); 22582 22583 /* 22584 * 1. We grabbed the ill_g_lock before inserting this ill into 22585 * the global list of ills. So no other thread could have located 22586 * this ill and hence the ipsq of this ill is guaranteed to be empty. 22587 * 2. Now locate the other protocol instance of this ill. 22588 * 3. Now grab both ill locks in the right order, and the phyint lock of 22589 * the new ipsq. Holding ill locks + ill_g_lock ensures that the ipsq 22590 * of neither ill can change. 22591 * 4. Merge the phyint and thus the ipsq as well of this ill onto the 22592 * other ill. 22593 * 5. Release all locks. 22594 */ 22595 22596 /* 22597 * Look for IPv4 if we are initializing IPv6 or look for IPv6 if 22598 * we are initializing IPv4. 22599 */ 22600 if (phyi != NULL) { 22601 ill_other = (isv6) ? phyi->phyint_illv4 : 22602 phyi->phyint_illv6; 22603 ASSERT(ill_other->ill_phyint != NULL); 22604 ASSERT((isv6 && !ill_other->ill_isv6) || 22605 (!isv6 && ill_other->ill_isv6)); 22606 GRAB_ILL_LOCKS(ill, ill_other); 22607 /* 22608 * We are potentially throwing away phyint_flags which 22609 * could be different from the one that we obtain from 22610 * ill_other->ill_phyint. But it is okay as we are assuming 22611 * that the state maintained within IP is correct. 22612 */ 22613 mutex_enter(&phyi->phyint_lock); 22614 if (isv6) { 22615 ASSERT(phyi->phyint_illv6 == NULL); 22616 phyi->phyint_illv6 = ill; 22617 } else { 22618 ASSERT(phyi->phyint_illv4 == NULL); 22619 phyi->phyint_illv4 = ill; 22620 } 22621 /* 22622 * This is a new ill, currently undergoing SLIFNAME 22623 * So we could not have joined an IPMP group until now. 22624 */ 22625 ASSERT(phyi_old->phyint_ipsq_next == NULL && 22626 phyi_old->phyint_groupname == NULL); 22627 22628 /* 22629 * This phyi_old is going away. Decref ipsq_refs and 22630 * assert it is zero. The ipsq itself will be freed in 22631 * ipsq_exit 22632 */ 22633 ipsq = phyi_old->phyint_ipsq; 22634 IPSQ_DEC_REF(ipsq, ipst); 22635 ASSERT(ipsq->ipsq_refs == 0); 22636 /* Get the singleton phyint out of the ipsq list */ 22637 ASSERT(phyi_old->phyint_ipsq_next == NULL); 22638 ipsq->ipsq_phyint_list = NULL; 22639 phyi_old->phyint_illv4 = NULL; 22640 phyi_old->phyint_illv6 = NULL; 22641 mi_free(phyi_old); 22642 } else { 22643 mutex_enter(&ill->ill_lock); 22644 /* 22645 * We don't need to acquire any lock, since 22646 * the ill is not yet visible globally and we 22647 * have not yet released the ill_g_lock. 22648 */ 22649 phyi = phyi_old; 22650 mutex_enter(&phyi->phyint_lock); 22651 /* XXX We need a recovery strategy here. */ 22652 if (!phyint_assign_ifindex(phyi, ipst)) 22653 cmn_err(CE_PANIC, "phyint_assign_ifindex() failed"); 22654 22655 /* No IPMP group yet, thus the hook uses the ifindex */ 22656 phyi->phyint_hook_ifindex = phyi->phyint_ifindex; 22657 22658 avl_insert(&ipst->ips_phyint_g_list->phyint_list_avl_by_name, 22659 (void *)phyi, where); 22660 22661 (void) avl_find(&ipst->ips_phyint_g_list-> 22662 phyint_list_avl_by_index, 22663 &phyi->phyint_ifindex, &where); 22664 avl_insert(&ipst->ips_phyint_g_list->phyint_list_avl_by_index, 22665 (void *)phyi, where); 22666 } 22667 22668 /* 22669 * Reassigning ill_phyint automatically reassigns the ipsq also. 22670 * pending mp is not affected because that is per ill basis. 22671 */ 22672 ill->ill_phyint = phyi; 22673 22674 /* 22675 * Keep the index on ipif_orig_index to be used by FAILOVER. 22676 * We do this here as when the first ipif was allocated, 22677 * ipif_allocate does not know the right interface index. 22678 */ 22679 22680 ill->ill_ipif->ipif_orig_ifindex = ill->ill_phyint->phyint_ifindex; 22681 /* 22682 * Now that the phyint's ifindex has been assigned, complete the 22683 * remaining 22684 */ 22685 22686 ill->ill_ip_mib->ipIfStatsIfIndex = ill->ill_phyint->phyint_ifindex; 22687 if (ill->ill_isv6) { 22688 ill->ill_icmp6_mib->ipv6IfIcmpIfIndex = 22689 ill->ill_phyint->phyint_ifindex; 22690 ill->ill_mcast_type = ipst->ips_mld_max_version; 22691 } else { 22692 ill->ill_mcast_type = ipst->ips_igmp_max_version; 22693 } 22694 22695 /* 22696 * Generate an event within the hooks framework to indicate that 22697 * a new interface has just been added to IP. For this event to 22698 * be generated, the network interface must, at least, have an 22699 * ifindex assigned to it. 22700 * 22701 * This needs to be run inside the ill_g_lock perimeter to ensure 22702 * that the ordering of delivered events to listeners matches the 22703 * order of them in the kernel. 22704 * 22705 * This function could be called from ill_lookup_on_name. In that case 22706 * the interface is loopback "lo", which will not generate a NIC event. 22707 */ 22708 if (ill->ill_name_length <= 2 || 22709 ill->ill_name[0] != 'l' || ill->ill_name[1] != 'o') { 22710 /* 22711 * Generate nic plumb event for ill_name even if 22712 * ipmp_hook_emulation is set. That avoids generating events 22713 * for the ill_names should ipmp_hook_emulation be turned on 22714 * later. 22715 */ 22716 ill_nic_info_plumb(ill, B_FALSE); 22717 } 22718 RELEASE_ILL_LOCKS(ill, ill_other); 22719 mutex_exit(&phyi->phyint_lock); 22720 } 22721 22722 /* 22723 * Allocate a NE_PLUMB nic info event and store in the ill. 22724 * If 'group' is set we do it for the group name, otherwise the ill name. 22725 * It will be sent when we leave the ipsq. 22726 */ 22727 void 22728 ill_nic_info_plumb(ill_t *ill, boolean_t group) 22729 { 22730 phyint_t *phyi = ill->ill_phyint; 22731 char *name; 22732 int namelen; 22733 22734 ASSERT(MUTEX_HELD(&ill->ill_lock)); 22735 22736 if (group) { 22737 ASSERT(phyi->phyint_groupname_len != 0); 22738 namelen = phyi->phyint_groupname_len; 22739 name = phyi->phyint_groupname; 22740 } else { 22741 namelen = ill->ill_name_length; 22742 name = ill->ill_name; 22743 } 22744 22745 (void) ill_hook_event_create(ill, 0, NE_PLUMB, name, namelen); 22746 } 22747 22748 /* 22749 * Unhook the nic event message from the ill and enqueue it 22750 * into the nic event taskq. 22751 */ 22752 void 22753 ill_nic_info_dispatch(ill_t *ill) 22754 { 22755 hook_nic_event_int_t *info; 22756 22757 ASSERT(MUTEX_HELD(&ill->ill_lock)); 22758 22759 if ((info = ill->ill_nic_event_info) != NULL) { 22760 if (ddi_taskq_dispatch(eventq_queue_nic, 22761 ip_ne_queue_func, info, DDI_SLEEP) == DDI_FAILURE) { 22762 ip2dbg(("ill_nic_info_dispatch: " 22763 "ddi_taskq_dispatch failed\n")); 22764 if (info->hnei_event.hne_data != NULL) { 22765 kmem_free(info->hnei_event.hne_data, 22766 info->hnei_event.hne_datalen); 22767 } 22768 kmem_free(info, sizeof (*info)); 22769 } 22770 ill->ill_nic_event_info = NULL; 22771 } 22772 } 22773 22774 /* 22775 * Notify any downstream modules of the name of this interface. 22776 * An M_IOCTL is used even though we don't expect a successful reply. 22777 * Any reply message from the driver (presumably an M_IOCNAK) will 22778 * eventually get discarded somewhere upstream. The message format is 22779 * simply an SIOCSLIFNAME ioctl just as might be sent from ifconfig 22780 * to IP. 22781 */ 22782 static void 22783 ip_ifname_notify(ill_t *ill, queue_t *q) 22784 { 22785 mblk_t *mp1, *mp2; 22786 struct iocblk *iocp; 22787 struct lifreq *lifr; 22788 22789 mp1 = mkiocb(SIOCSLIFNAME); 22790 if (mp1 == NULL) 22791 return; 22792 mp2 = allocb(sizeof (struct lifreq), BPRI_HI); 22793 if (mp2 == NULL) { 22794 freeb(mp1); 22795 return; 22796 } 22797 22798 mp1->b_cont = mp2; 22799 iocp = (struct iocblk *)mp1->b_rptr; 22800 iocp->ioc_count = sizeof (struct lifreq); 22801 22802 lifr = (struct lifreq *)mp2->b_rptr; 22803 mp2->b_wptr += sizeof (struct lifreq); 22804 bzero(lifr, sizeof (struct lifreq)); 22805 22806 (void) strncpy(lifr->lifr_name, ill->ill_name, LIFNAMSIZ); 22807 lifr->lifr_ppa = ill->ill_ppa; 22808 lifr->lifr_flags = (ill->ill_flags & (ILLF_IPV4|ILLF_IPV6)); 22809 22810 putnext(q, mp1); 22811 } 22812 22813 static int 22814 ipif_set_values_tail(ill_t *ill, ipif_t *ipif, mblk_t *mp, queue_t *q) 22815 { 22816 int err; 22817 ip_stack_t *ipst = ill->ill_ipst; 22818 22819 /* Set the obsolete NDD per-interface forwarding name. */ 22820 err = ill_set_ndd_name(ill); 22821 if (err != 0) { 22822 cmn_err(CE_WARN, "ipif_set_values: ill_set_ndd_name (%d)\n", 22823 err); 22824 } 22825 22826 /* Tell downstream modules where they are. */ 22827 ip_ifname_notify(ill, q); 22828 22829 /* 22830 * ill_dl_phys returns EINPROGRESS in the usual case. 22831 * Error cases are ENOMEM ... 22832 */ 22833 err = ill_dl_phys(ill, ipif, mp, q); 22834 22835 /* 22836 * If there is no IRE expiration timer running, get one started. 22837 * igmp and mld timers will be triggered by the first multicast 22838 */ 22839 if (ipst->ips_ip_ire_expire_id == 0) { 22840 /* 22841 * acquire the lock and check again. 22842 */ 22843 mutex_enter(&ipst->ips_ip_trash_timer_lock); 22844 if (ipst->ips_ip_ire_expire_id == 0) { 22845 ipst->ips_ip_ire_expire_id = timeout( 22846 ip_trash_timer_expire, ipst, 22847 MSEC_TO_TICK(ipst->ips_ip_timer_interval)); 22848 } 22849 mutex_exit(&ipst->ips_ip_trash_timer_lock); 22850 } 22851 22852 if (ill->ill_isv6) { 22853 mutex_enter(&ipst->ips_mld_slowtimeout_lock); 22854 if (ipst->ips_mld_slowtimeout_id == 0) { 22855 ipst->ips_mld_slowtimeout_id = timeout(mld_slowtimo, 22856 (void *)ipst, 22857 MSEC_TO_TICK(MCAST_SLOWTIMO_INTERVAL)); 22858 } 22859 mutex_exit(&ipst->ips_mld_slowtimeout_lock); 22860 } else { 22861 mutex_enter(&ipst->ips_igmp_slowtimeout_lock); 22862 if (ipst->ips_igmp_slowtimeout_id == 0) { 22863 ipst->ips_igmp_slowtimeout_id = timeout(igmp_slowtimo, 22864 (void *)ipst, 22865 MSEC_TO_TICK(MCAST_SLOWTIMO_INTERVAL)); 22866 } 22867 mutex_exit(&ipst->ips_igmp_slowtimeout_lock); 22868 } 22869 22870 return (err); 22871 } 22872 22873 /* 22874 * Common routine for ppa and ifname setting. Should be called exclusive. 22875 * 22876 * Returns EINPROGRESS when mp has been consumed by queueing it on 22877 * ill_pending_mp and the ioctl will complete in ip_rput. 22878 * 22879 * NOTE : If ppa is UNIT_MAX, we assign the next valid ppa and return 22880 * the new name and new ppa in lifr_name and lifr_ppa respectively. 22881 * For SLIFNAME, we pass these values back to the userland. 22882 */ 22883 static int 22884 ipif_set_values(queue_t *q, mblk_t *mp, char *interf_name, uint_t *new_ppa_ptr) 22885 { 22886 ill_t *ill; 22887 ipif_t *ipif; 22888 ipsq_t *ipsq; 22889 char *ppa_ptr; 22890 char *old_ptr; 22891 char old_char; 22892 int error; 22893 ip_stack_t *ipst; 22894 22895 ip1dbg(("ipif_set_values: interface %s\n", interf_name)); 22896 ASSERT(q->q_next != NULL); 22897 ASSERT(interf_name != NULL); 22898 22899 ill = (ill_t *)q->q_ptr; 22900 ipst = ill->ill_ipst; 22901 22902 ASSERT(ill->ill_ipst != NULL); 22903 ASSERT(ill->ill_name[0] == '\0'); 22904 ASSERT(IAM_WRITER_ILL(ill)); 22905 ASSERT((mi_strlen(interf_name) + 1) <= LIFNAMSIZ); 22906 ASSERT(ill->ill_ppa == UINT_MAX); 22907 22908 /* The ppa is sent down by ifconfig or is chosen */ 22909 if ((ppa_ptr = ill_get_ppa_ptr(interf_name)) == NULL) { 22910 return (EINVAL); 22911 } 22912 22913 /* 22914 * make sure ppa passed in is same as ppa in the name. 22915 * This check is not made when ppa == UINT_MAX in that case ppa 22916 * in the name could be anything. System will choose a ppa and 22917 * update new_ppa_ptr and inter_name to contain the choosen ppa. 22918 */ 22919 if (*new_ppa_ptr != UINT_MAX) { 22920 /* stoi changes the pointer */ 22921 old_ptr = ppa_ptr; 22922 /* 22923 * ifconfig passed in 0 for the ppa for DLPI 1 style devices 22924 * (they don't have an externally visible ppa). We assign one 22925 * here so that we can manage the interface. Note that in 22926 * the past this value was always 0 for DLPI 1 drivers. 22927 */ 22928 if (*new_ppa_ptr == 0) 22929 *new_ppa_ptr = stoi(&old_ptr); 22930 else if (*new_ppa_ptr != (uint_t)stoi(&old_ptr)) 22931 return (EINVAL); 22932 } 22933 /* 22934 * terminate string before ppa 22935 * save char at that location. 22936 */ 22937 old_char = ppa_ptr[0]; 22938 ppa_ptr[0] = '\0'; 22939 22940 ill->ill_ppa = *new_ppa_ptr; 22941 /* 22942 * Finish as much work now as possible before calling ill_glist_insert 22943 * which makes the ill globally visible and also merges it with the 22944 * other protocol instance of this phyint. The remaining work is 22945 * done after entering the ipsq which may happen sometime later. 22946 * ill_set_ndd_name occurs after the ill has been made globally visible. 22947 */ 22948 ipif = ill->ill_ipif; 22949 22950 /* We didn't do this when we allocated ipif in ip_ll_subnet_defaults */ 22951 ipif_assign_seqid(ipif); 22952 22953 if (!(ill->ill_flags & (ILLF_IPV4|ILLF_IPV6))) 22954 ill->ill_flags |= ILLF_IPV4; 22955 22956 ASSERT(ipif->ipif_next == NULL); /* Only one ipif on ill */ 22957 ASSERT((ipif->ipif_flags & IPIF_UP) == 0); 22958 22959 if (ill->ill_flags & ILLF_IPV6) { 22960 22961 ill->ill_isv6 = B_TRUE; 22962 if (ill->ill_rq != NULL) { 22963 ill->ill_rq->q_qinfo = &iprinitv6; 22964 ill->ill_wq->q_qinfo = &ipwinitv6; 22965 } 22966 22967 /* Keep the !IN6_IS_ADDR_V4MAPPED assertions happy */ 22968 ipif->ipif_v6lcl_addr = ipv6_all_zeros; 22969 ipif->ipif_v6src_addr = ipv6_all_zeros; 22970 ipif->ipif_v6subnet = ipv6_all_zeros; 22971 ipif->ipif_v6net_mask = ipv6_all_zeros; 22972 ipif->ipif_v6brd_addr = ipv6_all_zeros; 22973 ipif->ipif_v6pp_dst_addr = ipv6_all_zeros; 22974 /* 22975 * point-to-point or Non-mulicast capable 22976 * interfaces won't do NUD unless explicitly 22977 * configured to do so. 22978 */ 22979 if (ipif->ipif_flags & IPIF_POINTOPOINT || 22980 !(ill->ill_flags & ILLF_MULTICAST)) { 22981 ill->ill_flags |= ILLF_NONUD; 22982 } 22983 /* Make sure IPv4 specific flag is not set on IPv6 if */ 22984 if (ill->ill_flags & ILLF_NOARP) { 22985 /* 22986 * Note: xresolv interfaces will eventually need 22987 * NOARP set here as well, but that will require 22988 * those external resolvers to have some 22989 * knowledge of that flag and act appropriately. 22990 * Not to be changed at present. 22991 */ 22992 ill->ill_flags &= ~ILLF_NOARP; 22993 } 22994 /* 22995 * Set the ILLF_ROUTER flag according to the global 22996 * IPv6 forwarding policy. 22997 */ 22998 if (ipst->ips_ipv6_forward != 0) 22999 ill->ill_flags |= ILLF_ROUTER; 23000 } else if (ill->ill_flags & ILLF_IPV4) { 23001 ill->ill_isv6 = B_FALSE; 23002 IN6_IPADDR_TO_V4MAPPED(INADDR_ANY, &ipif->ipif_v6lcl_addr); 23003 IN6_IPADDR_TO_V4MAPPED(INADDR_ANY, &ipif->ipif_v6src_addr); 23004 IN6_IPADDR_TO_V4MAPPED(INADDR_ANY, &ipif->ipif_v6subnet); 23005 IN6_IPADDR_TO_V4MAPPED(INADDR_ANY, &ipif->ipif_v6net_mask); 23006 IN6_IPADDR_TO_V4MAPPED(INADDR_ANY, &ipif->ipif_v6brd_addr); 23007 IN6_IPADDR_TO_V4MAPPED(INADDR_ANY, &ipif->ipif_v6pp_dst_addr); 23008 /* 23009 * Set the ILLF_ROUTER flag according to the global 23010 * IPv4 forwarding policy. 23011 */ 23012 if (ipst->ips_ip_g_forward != 0) 23013 ill->ill_flags |= ILLF_ROUTER; 23014 } 23015 23016 ASSERT(ill->ill_phyint != NULL); 23017 23018 /* 23019 * The ipIfStatsIfindex and ipv6IfIcmpIfIndex assignments will 23020 * be completed in ill_glist_insert -> ill_phyint_reinit 23021 */ 23022 if (!ill_allocate_mibs(ill)) 23023 return (ENOMEM); 23024 23025 /* 23026 * Pick a default sap until we get the DL_INFO_ACK back from 23027 * the driver. 23028 */ 23029 if (ill->ill_sap == 0) { 23030 if (ill->ill_isv6) 23031 ill->ill_sap = IP6_DL_SAP; 23032 else 23033 ill->ill_sap = IP_DL_SAP; 23034 } 23035 23036 ill->ill_ifname_pending = 1; 23037 ill->ill_ifname_pending_err = 0; 23038 23039 ill_refhold(ill); 23040 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 23041 if ((error = ill_glist_insert(ill, interf_name, 23042 (ill->ill_flags & ILLF_IPV6) == ILLF_IPV6)) > 0) { 23043 ill->ill_ppa = UINT_MAX; 23044 ill->ill_name[0] = '\0'; 23045 /* 23046 * undo null termination done above. 23047 */ 23048 ppa_ptr[0] = old_char; 23049 rw_exit(&ipst->ips_ill_g_lock); 23050 ill_refrele(ill); 23051 return (error); 23052 } 23053 23054 ASSERT(ill->ill_name_length <= LIFNAMSIZ); 23055 23056 /* 23057 * When we return the buffer pointed to by interf_name should contain 23058 * the same name as in ill_name. 23059 * If a ppa was choosen by the system (ppa passed in was UINT_MAX) 23060 * the buffer pointed to by new_ppa_ptr would not contain the right ppa 23061 * so copy full name and update the ppa ptr. 23062 * When ppa passed in != UINT_MAX all values are correct just undo 23063 * null termination, this saves a bcopy. 23064 */ 23065 if (*new_ppa_ptr == UINT_MAX) { 23066 bcopy(ill->ill_name, interf_name, ill->ill_name_length); 23067 *new_ppa_ptr = ill->ill_ppa; 23068 } else { 23069 /* 23070 * undo null termination done above. 23071 */ 23072 ppa_ptr[0] = old_char; 23073 } 23074 23075 /* Let SCTP know about this ILL */ 23076 sctp_update_ill(ill, SCTP_ILL_INSERT); 23077 23078 ipsq = ipsq_try_enter(NULL, ill, q, mp, ip_reprocess_ioctl, NEW_OP, 23079 B_TRUE); 23080 23081 rw_exit(&ipst->ips_ill_g_lock); 23082 ill_refrele(ill); 23083 if (ipsq == NULL) 23084 return (EINPROGRESS); 23085 23086 /* 23087 * If ill_phyint_reinit() changed our ipsq, then start on the new ipsq. 23088 */ 23089 if (ipsq->ipsq_current_ipif == NULL) 23090 ipsq_current_start(ipsq, ipif, SIOCSLIFNAME); 23091 else 23092 ASSERT(ipsq->ipsq_current_ipif == ipif); 23093 23094 error = ipif_set_values_tail(ill, ipif, mp, q); 23095 ipsq_exit(ipsq); 23096 if (error != 0 && error != EINPROGRESS) { 23097 /* 23098 * restore previous values 23099 */ 23100 ill->ill_isv6 = B_FALSE; 23101 } 23102 return (error); 23103 } 23104 23105 23106 void 23107 ipif_init(ip_stack_t *ipst) 23108 { 23109 hrtime_t hrt; 23110 int i; 23111 23112 /* 23113 * Can't call drv_getparm here as it is too early in the boot. 23114 * As we use ipif_src_random just for picking a different 23115 * source address everytime, this need not be really random. 23116 */ 23117 hrt = gethrtime(); 23118 ipst->ips_ipif_src_random = 23119 ((hrt >> 32) & 0xffffffff) * (hrt & 0xffffffff); 23120 23121 for (i = 0; i < MAX_G_HEADS; i++) { 23122 ipst->ips_ill_g_heads[i].ill_g_list_head = 23123 (ill_if_t *)&ipst->ips_ill_g_heads[i]; 23124 ipst->ips_ill_g_heads[i].ill_g_list_tail = 23125 (ill_if_t *)&ipst->ips_ill_g_heads[i]; 23126 } 23127 23128 avl_create(&ipst->ips_phyint_g_list->phyint_list_avl_by_index, 23129 ill_phyint_compare_index, 23130 sizeof (phyint_t), 23131 offsetof(struct phyint, phyint_avl_by_index)); 23132 avl_create(&ipst->ips_phyint_g_list->phyint_list_avl_by_name, 23133 ill_phyint_compare_name, 23134 sizeof (phyint_t), 23135 offsetof(struct phyint, phyint_avl_by_name)); 23136 } 23137 23138 /* 23139 * Lookup the ipif corresponding to the onlink destination address. For 23140 * point-to-point interfaces, it matches with remote endpoint destination 23141 * address. For point-to-multipoint interfaces it only tries to match the 23142 * destination with the interface's subnet address. The longest, most specific 23143 * match is found to take care of such rare network configurations like - 23144 * le0: 129.146.1.1/16 23145 * le1: 129.146.2.2/24 23146 * It is used only by SO_DONTROUTE at the moment. 23147 */ 23148 ipif_t * 23149 ipif_lookup_onlink_addr(ipaddr_t addr, zoneid_t zoneid, ip_stack_t *ipst) 23150 { 23151 ipif_t *ipif, *best_ipif; 23152 ill_t *ill; 23153 ill_walk_context_t ctx; 23154 23155 ASSERT(zoneid != ALL_ZONES); 23156 best_ipif = NULL; 23157 23158 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 23159 ill = ILL_START_WALK_V4(&ctx, ipst); 23160 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 23161 mutex_enter(&ill->ill_lock); 23162 for (ipif = ill->ill_ipif; ipif != NULL; 23163 ipif = ipif->ipif_next) { 23164 if (!IPIF_CAN_LOOKUP(ipif)) 23165 continue; 23166 if (ipif->ipif_zoneid != zoneid && 23167 ipif->ipif_zoneid != ALL_ZONES) 23168 continue; 23169 /* 23170 * Point-to-point case. Look for exact match with 23171 * destination address. 23172 */ 23173 if (ipif->ipif_flags & IPIF_POINTOPOINT) { 23174 if (ipif->ipif_pp_dst_addr == addr) { 23175 ipif_refhold_locked(ipif); 23176 mutex_exit(&ill->ill_lock); 23177 rw_exit(&ipst->ips_ill_g_lock); 23178 if (best_ipif != NULL) 23179 ipif_refrele(best_ipif); 23180 return (ipif); 23181 } 23182 } else if (ipif->ipif_subnet == (addr & 23183 ipif->ipif_net_mask)) { 23184 /* 23185 * Point-to-multipoint case. Looping through to 23186 * find the most specific match. If there are 23187 * multiple best match ipif's then prefer ipif's 23188 * that are UP. If there is only one best match 23189 * ipif and it is DOWN we must still return it. 23190 */ 23191 if ((best_ipif == NULL) || 23192 (ipif->ipif_net_mask > 23193 best_ipif->ipif_net_mask) || 23194 ((ipif->ipif_net_mask == 23195 best_ipif->ipif_net_mask) && 23196 ((ipif->ipif_flags & IPIF_UP) && 23197 (!(best_ipif->ipif_flags & IPIF_UP))))) { 23198 ipif_refhold_locked(ipif); 23199 mutex_exit(&ill->ill_lock); 23200 rw_exit(&ipst->ips_ill_g_lock); 23201 if (best_ipif != NULL) 23202 ipif_refrele(best_ipif); 23203 best_ipif = ipif; 23204 rw_enter(&ipst->ips_ill_g_lock, 23205 RW_READER); 23206 mutex_enter(&ill->ill_lock); 23207 } 23208 } 23209 } 23210 mutex_exit(&ill->ill_lock); 23211 } 23212 rw_exit(&ipst->ips_ill_g_lock); 23213 return (best_ipif); 23214 } 23215 23216 /* 23217 * Save enough information so that we can recreate the IRE if 23218 * the interface goes down and then up. 23219 */ 23220 static void 23221 ipif_save_ire(ipif_t *ipif, ire_t *ire) 23222 { 23223 mblk_t *save_mp; 23224 23225 save_mp = allocb(sizeof (ifrt_t), BPRI_MED); 23226 if (save_mp != NULL) { 23227 ifrt_t *ifrt; 23228 23229 save_mp->b_wptr += sizeof (ifrt_t); 23230 ifrt = (ifrt_t *)save_mp->b_rptr; 23231 bzero(ifrt, sizeof (ifrt_t)); 23232 ifrt->ifrt_type = ire->ire_type; 23233 ifrt->ifrt_addr = ire->ire_addr; 23234 ifrt->ifrt_gateway_addr = ire->ire_gateway_addr; 23235 ifrt->ifrt_src_addr = ire->ire_src_addr; 23236 ifrt->ifrt_mask = ire->ire_mask; 23237 ifrt->ifrt_flags = ire->ire_flags; 23238 ifrt->ifrt_max_frag = ire->ire_max_frag; 23239 mutex_enter(&ipif->ipif_saved_ire_lock); 23240 save_mp->b_cont = ipif->ipif_saved_ire_mp; 23241 ipif->ipif_saved_ire_mp = save_mp; 23242 ipif->ipif_saved_ire_cnt++; 23243 mutex_exit(&ipif->ipif_saved_ire_lock); 23244 } 23245 } 23246 23247 static void 23248 ipif_remove_ire(ipif_t *ipif, ire_t *ire) 23249 { 23250 mblk_t **mpp; 23251 mblk_t *mp; 23252 ifrt_t *ifrt; 23253 23254 /* Remove from ipif_saved_ire_mp list if it is there */ 23255 mutex_enter(&ipif->ipif_saved_ire_lock); 23256 for (mpp = &ipif->ipif_saved_ire_mp; *mpp != NULL; 23257 mpp = &(*mpp)->b_cont) { 23258 /* 23259 * On a given ipif, the triple of address, gateway and 23260 * mask is unique for each saved IRE (in the case of 23261 * ordinary interface routes, the gateway address is 23262 * all-zeroes). 23263 */ 23264 mp = *mpp; 23265 ifrt = (ifrt_t *)mp->b_rptr; 23266 if (ifrt->ifrt_addr == ire->ire_addr && 23267 ifrt->ifrt_gateway_addr == ire->ire_gateway_addr && 23268 ifrt->ifrt_mask == ire->ire_mask) { 23269 *mpp = mp->b_cont; 23270 ipif->ipif_saved_ire_cnt--; 23271 freeb(mp); 23272 break; 23273 } 23274 } 23275 mutex_exit(&ipif->ipif_saved_ire_lock); 23276 } 23277 23278 /* 23279 * IP multirouting broadcast routes handling 23280 * Append CGTP broadcast IREs to regular ones created 23281 * at ifconfig time. 23282 */ 23283 static void 23284 ip_cgtp_bcast_add(ire_t *ire, ire_t *ire_dst, ip_stack_t *ipst) 23285 { 23286 ire_t *ire_prim; 23287 23288 ASSERT(ire != NULL); 23289 ASSERT(ire_dst != NULL); 23290 23291 ire_prim = ire_ctable_lookup(ire->ire_gateway_addr, 0, 23292 IRE_BROADCAST, NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 23293 if (ire_prim != NULL) { 23294 /* 23295 * We are in the special case of broadcasts for 23296 * CGTP. We add an IRE_BROADCAST that holds 23297 * the RTF_MULTIRT flag, the destination 23298 * address of ire_dst and the low level 23299 * info of ire_prim. In other words, CGTP 23300 * broadcast is added to the redundant ipif. 23301 */ 23302 ipif_t *ipif_prim; 23303 ire_t *bcast_ire; 23304 23305 ipif_prim = ire_prim->ire_ipif; 23306 23307 ip2dbg(("ip_cgtp_filter_bcast_add: " 23308 "ire_dst %p, ire_prim %p, ipif_prim %p\n", 23309 (void *)ire_dst, (void *)ire_prim, 23310 (void *)ipif_prim)); 23311 23312 bcast_ire = ire_create( 23313 (uchar_t *)&ire->ire_addr, 23314 (uchar_t *)&ip_g_all_ones, 23315 (uchar_t *)&ire_dst->ire_src_addr, 23316 (uchar_t *)&ire->ire_gateway_addr, 23317 &ipif_prim->ipif_mtu, 23318 NULL, 23319 ipif_prim->ipif_rq, 23320 ipif_prim->ipif_wq, 23321 IRE_BROADCAST, 23322 ipif_prim, 23323 0, 23324 0, 23325 0, 23326 ire->ire_flags, 23327 &ire_uinfo_null, 23328 NULL, 23329 NULL, 23330 ipst); 23331 23332 if (bcast_ire != NULL) { 23333 23334 if (ire_add(&bcast_ire, NULL, NULL, NULL, 23335 B_FALSE) == 0) { 23336 ip2dbg(("ip_cgtp_filter_bcast_add: " 23337 "added bcast_ire %p\n", 23338 (void *)bcast_ire)); 23339 23340 ipif_save_ire(bcast_ire->ire_ipif, 23341 bcast_ire); 23342 ire_refrele(bcast_ire); 23343 } 23344 } 23345 ire_refrele(ire_prim); 23346 } 23347 } 23348 23349 23350 /* 23351 * IP multirouting broadcast routes handling 23352 * Remove the broadcast ire 23353 */ 23354 static void 23355 ip_cgtp_bcast_delete(ire_t *ire, ip_stack_t *ipst) 23356 { 23357 ire_t *ire_dst; 23358 23359 ASSERT(ire != NULL); 23360 ire_dst = ire_ctable_lookup(ire->ire_addr, 0, IRE_BROADCAST, 23361 NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 23362 if (ire_dst != NULL) { 23363 ire_t *ire_prim; 23364 23365 ire_prim = ire_ctable_lookup(ire->ire_gateway_addr, 0, 23366 IRE_BROADCAST, NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 23367 if (ire_prim != NULL) { 23368 ipif_t *ipif_prim; 23369 ire_t *bcast_ire; 23370 23371 ipif_prim = ire_prim->ire_ipif; 23372 23373 ip2dbg(("ip_cgtp_filter_bcast_delete: " 23374 "ire_dst %p, ire_prim %p, ipif_prim %p\n", 23375 (void *)ire_dst, (void *)ire_prim, 23376 (void *)ipif_prim)); 23377 23378 bcast_ire = ire_ctable_lookup(ire->ire_addr, 23379 ire->ire_gateway_addr, 23380 IRE_BROADCAST, 23381 ipif_prim, ALL_ZONES, 23382 NULL, 23383 MATCH_IRE_TYPE | MATCH_IRE_GW | MATCH_IRE_IPIF | 23384 MATCH_IRE_MASK, ipst); 23385 23386 if (bcast_ire != NULL) { 23387 ip2dbg(("ip_cgtp_filter_bcast_delete: " 23388 "looked up bcast_ire %p\n", 23389 (void *)bcast_ire)); 23390 ipif_remove_ire(bcast_ire->ire_ipif, 23391 bcast_ire); 23392 ire_delete(bcast_ire); 23393 ire_refrele(bcast_ire); 23394 } 23395 ire_refrele(ire_prim); 23396 } 23397 ire_refrele(ire_dst); 23398 } 23399 } 23400 23401 /* 23402 * IPsec hardware acceleration capabilities related functions. 23403 */ 23404 23405 /* 23406 * Free a per-ill IPsec capabilities structure. 23407 */ 23408 static void 23409 ill_ipsec_capab_free(ill_ipsec_capab_t *capab) 23410 { 23411 if (capab->auth_hw_algs != NULL) 23412 kmem_free(capab->auth_hw_algs, capab->algs_size); 23413 if (capab->encr_hw_algs != NULL) 23414 kmem_free(capab->encr_hw_algs, capab->algs_size); 23415 if (capab->encr_algparm != NULL) 23416 kmem_free(capab->encr_algparm, capab->encr_algparm_size); 23417 kmem_free(capab, sizeof (ill_ipsec_capab_t)); 23418 } 23419 23420 /* 23421 * Allocate a new per-ill IPsec capabilities structure. This structure 23422 * is specific to an IPsec protocol (AH or ESP). It is implemented as 23423 * an array which specifies, for each algorithm, whether this algorithm 23424 * is supported by the ill or not. 23425 */ 23426 static ill_ipsec_capab_t * 23427 ill_ipsec_capab_alloc(void) 23428 { 23429 ill_ipsec_capab_t *capab; 23430 uint_t nelems; 23431 23432 capab = kmem_zalloc(sizeof (ill_ipsec_capab_t), KM_NOSLEEP); 23433 if (capab == NULL) 23434 return (NULL); 23435 23436 /* we need one bit per algorithm */ 23437 nelems = MAX_IPSEC_ALGS / BITS(ipsec_capab_elem_t); 23438 capab->algs_size = nelems * sizeof (ipsec_capab_elem_t); 23439 23440 /* allocate memory to store algorithm flags */ 23441 capab->encr_hw_algs = kmem_zalloc(capab->algs_size, KM_NOSLEEP); 23442 if (capab->encr_hw_algs == NULL) 23443 goto nomem; 23444 capab->auth_hw_algs = kmem_zalloc(capab->algs_size, KM_NOSLEEP); 23445 if (capab->auth_hw_algs == NULL) 23446 goto nomem; 23447 /* 23448 * Leave encr_algparm NULL for now since we won't need it half 23449 * the time 23450 */ 23451 return (capab); 23452 23453 nomem: 23454 ill_ipsec_capab_free(capab); 23455 return (NULL); 23456 } 23457 23458 /* 23459 * Resize capability array. Since we're exclusive, this is OK. 23460 */ 23461 static boolean_t 23462 ill_ipsec_capab_resize_algparm(ill_ipsec_capab_t *capab, int algid) 23463 { 23464 ipsec_capab_algparm_t *nalp, *oalp; 23465 uint32_t olen, nlen; 23466 23467 oalp = capab->encr_algparm; 23468 olen = capab->encr_algparm_size; 23469 23470 if (oalp != NULL) { 23471 if (algid < capab->encr_algparm_end) 23472 return (B_TRUE); 23473 } 23474 23475 nlen = (algid + 1) * sizeof (*nalp); 23476 nalp = kmem_zalloc(nlen, KM_NOSLEEP); 23477 if (nalp == NULL) 23478 return (B_FALSE); 23479 23480 if (oalp != NULL) { 23481 bcopy(oalp, nalp, olen); 23482 kmem_free(oalp, olen); 23483 } 23484 capab->encr_algparm = nalp; 23485 capab->encr_algparm_size = nlen; 23486 capab->encr_algparm_end = algid + 1; 23487 23488 return (B_TRUE); 23489 } 23490 23491 /* 23492 * Compare the capabilities of the specified ill with the protocol 23493 * and algorithms specified by the SA passed as argument. 23494 * If they match, returns B_TRUE, B_FALSE if they do not match. 23495 * 23496 * The ill can be passed as a pointer to it, or by specifying its index 23497 * and whether it is an IPv6 ill (ill_index and ill_isv6 arguments). 23498 * 23499 * Called by ipsec_out_is_accelerated() do decide whether an outbound 23500 * packet is eligible for hardware acceleration, and by 23501 * ill_ipsec_capab_send_all() to decide whether a SA must be sent down 23502 * to a particular ill. 23503 */ 23504 boolean_t 23505 ipsec_capab_match(ill_t *ill, uint_t ill_index, boolean_t ill_isv6, 23506 ipsa_t *sa, netstack_t *ns) 23507 { 23508 boolean_t sa_isv6; 23509 uint_t algid; 23510 struct ill_ipsec_capab_s *cpp; 23511 boolean_t need_refrele = B_FALSE; 23512 ip_stack_t *ipst = ns->netstack_ip; 23513 23514 if (ill == NULL) { 23515 ill = ill_lookup_on_ifindex(ill_index, ill_isv6, NULL, 23516 NULL, NULL, NULL, ipst); 23517 if (ill == NULL) { 23518 ip0dbg(("ipsec_capab_match: ill doesn't exist\n")); 23519 return (B_FALSE); 23520 } 23521 need_refrele = B_TRUE; 23522 } 23523 23524 /* 23525 * Use the address length specified by the SA to determine 23526 * if it corresponds to a IPv6 address, and fail the matching 23527 * if the isv6 flag passed as argument does not match. 23528 * Note: this check is used for SADB capability checking before 23529 * sending SA information to an ill. 23530 */ 23531 sa_isv6 = (sa->ipsa_addrfam == AF_INET6); 23532 if (sa_isv6 != ill_isv6) 23533 /* protocol mismatch */ 23534 goto done; 23535 23536 /* 23537 * Check if the ill supports the protocol, algorithm(s) and 23538 * key size(s) specified by the SA, and get the pointers to 23539 * the algorithms supported by the ill. 23540 */ 23541 switch (sa->ipsa_type) { 23542 23543 case SADB_SATYPE_ESP: 23544 if (!(ill->ill_capabilities & ILL_CAPAB_ESP)) 23545 /* ill does not support ESP acceleration */ 23546 goto done; 23547 cpp = ill->ill_ipsec_capab_esp; 23548 algid = sa->ipsa_auth_alg; 23549 if (!IPSEC_ALG_IS_ENABLED(algid, cpp->auth_hw_algs)) 23550 goto done; 23551 algid = sa->ipsa_encr_alg; 23552 if (!IPSEC_ALG_IS_ENABLED(algid, cpp->encr_hw_algs)) 23553 goto done; 23554 if (algid < cpp->encr_algparm_end) { 23555 ipsec_capab_algparm_t *alp = &cpp->encr_algparm[algid]; 23556 if (sa->ipsa_encrkeybits < alp->minkeylen) 23557 goto done; 23558 if (sa->ipsa_encrkeybits > alp->maxkeylen) 23559 goto done; 23560 } 23561 break; 23562 23563 case SADB_SATYPE_AH: 23564 if (!(ill->ill_capabilities & ILL_CAPAB_AH)) 23565 /* ill does not support AH acceleration */ 23566 goto done; 23567 if (!IPSEC_ALG_IS_ENABLED(sa->ipsa_auth_alg, 23568 ill->ill_ipsec_capab_ah->auth_hw_algs)) 23569 goto done; 23570 break; 23571 } 23572 23573 if (need_refrele) 23574 ill_refrele(ill); 23575 return (B_TRUE); 23576 done: 23577 if (need_refrele) 23578 ill_refrele(ill); 23579 return (B_FALSE); 23580 } 23581 23582 /* 23583 * Add a new ill to the list of IPsec capable ills. 23584 * Called from ill_capability_ipsec_ack() when an ACK was received 23585 * indicating that IPsec hardware processing was enabled for an ill. 23586 * 23587 * ill must point to the ill for which acceleration was enabled. 23588 * dl_cap must be set to DL_CAPAB_IPSEC_AH or DL_CAPAB_IPSEC_ESP. 23589 */ 23590 static void 23591 ill_ipsec_capab_add(ill_t *ill, uint_t dl_cap, boolean_t sadb_resync) 23592 { 23593 ipsec_capab_ill_t **ills, *cur_ill, *new_ill; 23594 uint_t sa_type; 23595 uint_t ipproto; 23596 ip_stack_t *ipst = ill->ill_ipst; 23597 23598 ASSERT((dl_cap == DL_CAPAB_IPSEC_AH) || 23599 (dl_cap == DL_CAPAB_IPSEC_ESP)); 23600 23601 switch (dl_cap) { 23602 case DL_CAPAB_IPSEC_AH: 23603 sa_type = SADB_SATYPE_AH; 23604 ills = &ipst->ips_ipsec_capab_ills_ah; 23605 ipproto = IPPROTO_AH; 23606 break; 23607 case DL_CAPAB_IPSEC_ESP: 23608 sa_type = SADB_SATYPE_ESP; 23609 ills = &ipst->ips_ipsec_capab_ills_esp; 23610 ipproto = IPPROTO_ESP; 23611 break; 23612 } 23613 23614 rw_enter(&ipst->ips_ipsec_capab_ills_lock, RW_WRITER); 23615 23616 /* 23617 * Add ill index to list of hardware accelerators. If 23618 * already in list, do nothing. 23619 */ 23620 for (cur_ill = *ills; cur_ill != NULL && 23621 (cur_ill->ill_index != ill->ill_phyint->phyint_ifindex || 23622 cur_ill->ill_isv6 != ill->ill_isv6); cur_ill = cur_ill->next) 23623 ; 23624 23625 if (cur_ill == NULL) { 23626 /* if this is a new entry for this ill */ 23627 new_ill = kmem_zalloc(sizeof (ipsec_capab_ill_t), KM_NOSLEEP); 23628 if (new_ill == NULL) { 23629 rw_exit(&ipst->ips_ipsec_capab_ills_lock); 23630 return; 23631 } 23632 23633 new_ill->ill_index = ill->ill_phyint->phyint_ifindex; 23634 new_ill->ill_isv6 = ill->ill_isv6; 23635 new_ill->next = *ills; 23636 *ills = new_ill; 23637 } else if (!sadb_resync) { 23638 /* not resync'ing SADB and an entry exists for this ill */ 23639 rw_exit(&ipst->ips_ipsec_capab_ills_lock); 23640 return; 23641 } 23642 23643 rw_exit(&ipst->ips_ipsec_capab_ills_lock); 23644 23645 if (ipst->ips_ipcl_proto_fanout_v6[ipproto].connf_head != NULL) 23646 /* 23647 * IPsec module for protocol loaded, initiate dump 23648 * of the SADB to this ill. 23649 */ 23650 sadb_ill_download(ill, sa_type); 23651 } 23652 23653 /* 23654 * Remove an ill from the list of IPsec capable ills. 23655 */ 23656 static void 23657 ill_ipsec_capab_delete(ill_t *ill, uint_t dl_cap) 23658 { 23659 ipsec_capab_ill_t **ills, *cur_ill, *prev_ill; 23660 ip_stack_t *ipst = ill->ill_ipst; 23661 23662 ASSERT(dl_cap == DL_CAPAB_IPSEC_AH || 23663 dl_cap == DL_CAPAB_IPSEC_ESP); 23664 23665 ills = (dl_cap == DL_CAPAB_IPSEC_AH) ? &ipst->ips_ipsec_capab_ills_ah : 23666 &ipst->ips_ipsec_capab_ills_esp; 23667 23668 rw_enter(&ipst->ips_ipsec_capab_ills_lock, RW_WRITER); 23669 23670 prev_ill = NULL; 23671 for (cur_ill = *ills; cur_ill != NULL && (cur_ill->ill_index != 23672 ill->ill_phyint->phyint_ifindex || cur_ill->ill_isv6 != 23673 ill->ill_isv6); prev_ill = cur_ill, cur_ill = cur_ill->next) 23674 ; 23675 if (cur_ill == NULL) { 23676 /* entry not found */ 23677 rw_exit(&ipst->ips_ipsec_capab_ills_lock); 23678 return; 23679 } 23680 if (prev_ill == NULL) { 23681 /* entry at front of list */ 23682 *ills = NULL; 23683 } else { 23684 prev_ill->next = cur_ill->next; 23685 } 23686 kmem_free(cur_ill, sizeof (ipsec_capab_ill_t)); 23687 rw_exit(&ipst->ips_ipsec_capab_ills_lock); 23688 } 23689 23690 /* 23691 * Called by SADB to send a DL_CONTROL_REQ message to every ill 23692 * supporting the specified IPsec protocol acceleration. 23693 * sa_type must be SADB_SATYPE_AH or SADB_SATYPE_ESP. 23694 * We free the mblk and, if sa is non-null, release the held referece. 23695 */ 23696 void 23697 ill_ipsec_capab_send_all(uint_t sa_type, mblk_t *mp, ipsa_t *sa, 23698 netstack_t *ns) 23699 { 23700 ipsec_capab_ill_t *ici, *cur_ici; 23701 ill_t *ill; 23702 mblk_t *nmp, *mp_ship_list = NULL, *next_mp; 23703 ip_stack_t *ipst = ns->netstack_ip; 23704 23705 ici = (sa_type == SADB_SATYPE_AH) ? ipst->ips_ipsec_capab_ills_ah : 23706 ipst->ips_ipsec_capab_ills_esp; 23707 23708 rw_enter(&ipst->ips_ipsec_capab_ills_lock, RW_READER); 23709 23710 for (cur_ici = ici; cur_ici != NULL; cur_ici = cur_ici->next) { 23711 ill = ill_lookup_on_ifindex(cur_ici->ill_index, 23712 cur_ici->ill_isv6, NULL, NULL, NULL, NULL, ipst); 23713 23714 /* 23715 * Handle the case where the ill goes away while the SADB is 23716 * attempting to send messages. If it's going away, it's 23717 * nuking its shadow SADB, so we don't care.. 23718 */ 23719 23720 if (ill == NULL) 23721 continue; 23722 23723 if (sa != NULL) { 23724 /* 23725 * Make sure capabilities match before 23726 * sending SA to ill. 23727 */ 23728 if (!ipsec_capab_match(ill, cur_ici->ill_index, 23729 cur_ici->ill_isv6, sa, ipst->ips_netstack)) { 23730 ill_refrele(ill); 23731 continue; 23732 } 23733 23734 mutex_enter(&sa->ipsa_lock); 23735 sa->ipsa_flags |= IPSA_F_HW; 23736 mutex_exit(&sa->ipsa_lock); 23737 } 23738 23739 /* 23740 * Copy template message, and add it to the front 23741 * of the mblk ship list. We want to avoid holding 23742 * the ipsec_capab_ills_lock while sending the 23743 * message to the ills. 23744 * 23745 * The b_next and b_prev are temporarily used 23746 * to build a list of mblks to be sent down, and to 23747 * save the ill to which they must be sent. 23748 */ 23749 nmp = copymsg(mp); 23750 if (nmp == NULL) { 23751 ill_refrele(ill); 23752 continue; 23753 } 23754 ASSERT(nmp->b_next == NULL && nmp->b_prev == NULL); 23755 nmp->b_next = mp_ship_list; 23756 mp_ship_list = nmp; 23757 nmp->b_prev = (mblk_t *)ill; 23758 } 23759 23760 rw_exit(&ipst->ips_ipsec_capab_ills_lock); 23761 23762 for (nmp = mp_ship_list; nmp != NULL; nmp = next_mp) { 23763 /* restore the mblk to a sane state */ 23764 next_mp = nmp->b_next; 23765 nmp->b_next = NULL; 23766 ill = (ill_t *)nmp->b_prev; 23767 nmp->b_prev = NULL; 23768 23769 ill_dlpi_send(ill, nmp); 23770 ill_refrele(ill); 23771 } 23772 23773 if (sa != NULL) 23774 IPSA_REFRELE(sa); 23775 freemsg(mp); 23776 } 23777 23778 /* 23779 * Derive an interface id from the link layer address. 23780 * Knows about IEEE 802 and IEEE EUI-64 mappings. 23781 */ 23782 static boolean_t 23783 ip_ether_v6intfid(uint_t phys_length, uint8_t *phys_addr, in6_addr_t *v6addr) 23784 { 23785 char *addr; 23786 23787 if (phys_length != ETHERADDRL) 23788 return (B_FALSE); 23789 23790 /* Form EUI-64 like address */ 23791 addr = (char *)&v6addr->s6_addr32[2]; 23792 bcopy((char *)phys_addr, addr, 3); 23793 addr[0] ^= 0x2; /* Toggle Universal/Local bit */ 23794 addr[3] = (char)0xff; 23795 addr[4] = (char)0xfe; 23796 bcopy((char *)phys_addr + 3, addr + 5, 3); 23797 return (B_TRUE); 23798 } 23799 23800 /* ARGSUSED */ 23801 static boolean_t 23802 ip_nodef_v6intfid(uint_t phys_length, uint8_t *phys_addr, in6_addr_t *v6addr) 23803 { 23804 return (B_FALSE); 23805 } 23806 23807 /* ARGSUSED */ 23808 static boolean_t 23809 ip_ether_v6mapinfo(uint_t lla_length, uint8_t *bphys_addr, uint8_t *maddr, 23810 uint32_t *hw_start, in6_addr_t *v6_extract_mask) 23811 { 23812 /* 23813 * Multicast address mappings used over Ethernet/802.X. 23814 * This address is used as a base for mappings. 23815 */ 23816 static uint8_t ipv6_g_phys_multi_addr[] = {0x33, 0x33, 0x00, 23817 0x00, 0x00, 0x00}; 23818 23819 /* 23820 * Extract low order 32 bits from IPv6 multicast address. 23821 * Or that into the link layer address, starting from the 23822 * second byte. 23823 */ 23824 *hw_start = 2; 23825 v6_extract_mask->s6_addr32[0] = 0; 23826 v6_extract_mask->s6_addr32[1] = 0; 23827 v6_extract_mask->s6_addr32[2] = 0; 23828 v6_extract_mask->s6_addr32[3] = 0xffffffffU; 23829 bcopy(ipv6_g_phys_multi_addr, maddr, lla_length); 23830 return (B_TRUE); 23831 } 23832 23833 /* 23834 * Indicate by return value whether multicast is supported. If not, 23835 * this code should not touch/change any parameters. 23836 */ 23837 /* ARGSUSED */ 23838 static boolean_t 23839 ip_ether_v4mapinfo(uint_t phys_length, uint8_t *bphys_addr, uint8_t *maddr, 23840 uint32_t *hw_start, ipaddr_t *extract_mask) 23841 { 23842 /* 23843 * Multicast address mappings used over Ethernet/802.X. 23844 * This address is used as a base for mappings. 23845 */ 23846 static uint8_t ip_g_phys_multi_addr[] = { 0x01, 0x00, 0x5e, 23847 0x00, 0x00, 0x00 }; 23848 23849 if (phys_length != ETHERADDRL) 23850 return (B_FALSE); 23851 23852 *extract_mask = htonl(0x007fffff); 23853 *hw_start = 2; 23854 bcopy(ip_g_phys_multi_addr, maddr, ETHERADDRL); 23855 return (B_TRUE); 23856 } 23857 23858 /* 23859 * Derive IPoIB interface id from the link layer address. 23860 */ 23861 static boolean_t 23862 ip_ib_v6intfid(uint_t phys_length, uint8_t *phys_addr, in6_addr_t *v6addr) 23863 { 23864 char *addr; 23865 23866 if (phys_length != 20) 23867 return (B_FALSE); 23868 addr = (char *)&v6addr->s6_addr32[2]; 23869 bcopy(phys_addr + 12, addr, 8); 23870 /* 23871 * In IBA 1.1 timeframe, some vendors erroneously set the u/l bit 23872 * in the globally assigned EUI-64 GUID to 1, in violation of IEEE 23873 * rules. In these cases, the IBA considers these GUIDs to be in 23874 * "Modified EUI-64" format, and thus toggling the u/l bit is not 23875 * required; vendors are required not to assign global EUI-64's 23876 * that differ only in u/l bit values, thus guaranteeing uniqueness 23877 * of the interface identifier. Whether the GUID is in modified 23878 * or proper EUI-64 format, the ipv6 identifier must have the u/l 23879 * bit set to 1. 23880 */ 23881 addr[0] |= 2; /* Set Universal/Local bit to 1 */ 23882 return (B_TRUE); 23883 } 23884 23885 /* 23886 * Note on mapping from multicast IP addresses to IPoIB multicast link 23887 * addresses. IPoIB multicast link addresses are based on IBA link addresses. 23888 * The format of an IPoIB multicast address is: 23889 * 23890 * 4 byte QPN Scope Sign. Pkey 23891 * +--------------------------------------------+ 23892 * | 00FFFFFF | FF | 1X | X01B | Pkey | GroupID | 23893 * +--------------------------------------------+ 23894 * 23895 * The Scope and Pkey components are properties of the IBA port and 23896 * network interface. They can be ascertained from the broadcast address. 23897 * The Sign. part is the signature, and is 401B for IPv4 and 601B for IPv6. 23898 */ 23899 23900 static boolean_t 23901 ip_ib_v6mapinfo(uint_t lla_length, uint8_t *bphys_addr, uint8_t *maddr, 23902 uint32_t *hw_start, in6_addr_t *v6_extract_mask) 23903 { 23904 /* 23905 * Base IPoIB IPv6 multicast address used for mappings. 23906 * Does not contain the IBA scope/Pkey values. 23907 */ 23908 static uint8_t ipv6_g_phys_ibmulti_addr[] = { 0x00, 0xff, 0xff, 0xff, 23909 0xff, 0x10, 0x60, 0x1b, 0x00, 0x00, 0x00, 0x00, 23910 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 }; 23911 23912 /* 23913 * Extract low order 80 bits from IPv6 multicast address. 23914 * Or that into the link layer address, starting from the 23915 * sixth byte. 23916 */ 23917 *hw_start = 6; 23918 bcopy(ipv6_g_phys_ibmulti_addr, maddr, lla_length); 23919 23920 /* 23921 * Now fill in the IBA scope/Pkey values from the broadcast address. 23922 */ 23923 *(maddr + 5) = *(bphys_addr + 5); 23924 *(maddr + 8) = *(bphys_addr + 8); 23925 *(maddr + 9) = *(bphys_addr + 9); 23926 23927 v6_extract_mask->s6_addr32[0] = 0; 23928 v6_extract_mask->s6_addr32[1] = htonl(0x0000ffff); 23929 v6_extract_mask->s6_addr32[2] = 0xffffffffU; 23930 v6_extract_mask->s6_addr32[3] = 0xffffffffU; 23931 return (B_TRUE); 23932 } 23933 23934 static boolean_t 23935 ip_ib_v4mapinfo(uint_t phys_length, uint8_t *bphys_addr, uint8_t *maddr, 23936 uint32_t *hw_start, ipaddr_t *extract_mask) 23937 { 23938 /* 23939 * Base IPoIB IPv4 multicast address used for mappings. 23940 * Does not contain the IBA scope/Pkey values. 23941 */ 23942 static uint8_t ipv4_g_phys_ibmulti_addr[] = { 0x00, 0xff, 0xff, 0xff, 23943 0xff, 0x10, 0x40, 0x1b, 0x00, 0x00, 0x00, 0x00, 23944 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 }; 23945 23946 if (phys_length != sizeof (ipv4_g_phys_ibmulti_addr)) 23947 return (B_FALSE); 23948 23949 /* 23950 * Extract low order 28 bits from IPv4 multicast address. 23951 * Or that into the link layer address, starting from the 23952 * sixteenth byte. 23953 */ 23954 *extract_mask = htonl(0x0fffffff); 23955 *hw_start = 16; 23956 bcopy(ipv4_g_phys_ibmulti_addr, maddr, phys_length); 23957 23958 /* 23959 * Now fill in the IBA scope/Pkey values from the broadcast address. 23960 */ 23961 *(maddr + 5) = *(bphys_addr + 5); 23962 *(maddr + 8) = *(bphys_addr + 8); 23963 *(maddr + 9) = *(bphys_addr + 9); 23964 return (B_TRUE); 23965 } 23966 23967 /* 23968 * Returns B_TRUE if an ipif is present in the given zone, matching some flags 23969 * (typically IPIF_UP). If ipifp is non-null, the held ipif is returned there. 23970 * This works for both IPv4 and IPv6; if the passed-in ill is v6, the ipif with 23971 * the link-local address is preferred. 23972 */ 23973 boolean_t 23974 ipif_lookup_zoneid(ill_t *ill, zoneid_t zoneid, int flags, ipif_t **ipifp) 23975 { 23976 ipif_t *ipif; 23977 ipif_t *maybe_ipif = NULL; 23978 23979 mutex_enter(&ill->ill_lock); 23980 if (ill->ill_state_flags & ILL_CONDEMNED) { 23981 mutex_exit(&ill->ill_lock); 23982 if (ipifp != NULL) 23983 *ipifp = NULL; 23984 return (B_FALSE); 23985 } 23986 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 23987 if (!IPIF_CAN_LOOKUP(ipif)) 23988 continue; 23989 if (zoneid != ALL_ZONES && ipif->ipif_zoneid != zoneid && 23990 ipif->ipif_zoneid != ALL_ZONES) 23991 continue; 23992 if ((ipif->ipif_flags & flags) != flags) 23993 continue; 23994 23995 if (ipifp == NULL) { 23996 mutex_exit(&ill->ill_lock); 23997 ASSERT(maybe_ipif == NULL); 23998 return (B_TRUE); 23999 } 24000 if (!ill->ill_isv6 || 24001 IN6_IS_ADDR_LINKLOCAL(&ipif->ipif_v6src_addr)) { 24002 ipif_refhold_locked(ipif); 24003 mutex_exit(&ill->ill_lock); 24004 *ipifp = ipif; 24005 return (B_TRUE); 24006 } 24007 if (maybe_ipif == NULL) 24008 maybe_ipif = ipif; 24009 } 24010 if (ipifp != NULL) { 24011 if (maybe_ipif != NULL) 24012 ipif_refhold_locked(maybe_ipif); 24013 *ipifp = maybe_ipif; 24014 } 24015 mutex_exit(&ill->ill_lock); 24016 return (maybe_ipif != NULL); 24017 } 24018 24019 /* 24020 * Same as ipif_lookup_zoneid() but looks at all the ills in the same group. 24021 */ 24022 boolean_t 24023 ipif_lookup_zoneid_group(ill_t *ill, zoneid_t zoneid, int flags, ipif_t **ipifp) 24024 { 24025 ill_t *illg; 24026 ip_stack_t *ipst = ill->ill_ipst; 24027 24028 /* 24029 * We look at the passed-in ill first without grabbing ill_g_lock. 24030 */ 24031 if (ipif_lookup_zoneid(ill, zoneid, flags, ipifp)) { 24032 return (B_TRUE); 24033 } 24034 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 24035 if (ill->ill_group == NULL) { 24036 /* ill not in a group */ 24037 rw_exit(&ipst->ips_ill_g_lock); 24038 return (B_FALSE); 24039 } 24040 24041 /* 24042 * There's no ipif in the zone on ill, however ill is part of an IPMP 24043 * group. We need to look for an ipif in the zone on all the ills in the 24044 * group. 24045 */ 24046 illg = ill->ill_group->illgrp_ill; 24047 do { 24048 /* 24049 * We don't call ipif_lookup_zoneid() on ill as we already know 24050 * that it's not there. 24051 */ 24052 if (illg != ill && 24053 ipif_lookup_zoneid(illg, zoneid, flags, ipifp)) { 24054 break; 24055 } 24056 } while ((illg = illg->ill_group_next) != NULL); 24057 rw_exit(&ipst->ips_ill_g_lock); 24058 return (illg != NULL); 24059 } 24060 24061 /* 24062 * Check if this ill is only being used to send ICMP probes for IPMP 24063 */ 24064 boolean_t 24065 ill_is_probeonly(ill_t *ill) 24066 { 24067 /* 24068 * Check if the interface is FAILED, or INACTIVE 24069 */ 24070 if (ill->ill_phyint->phyint_flags & (PHYI_FAILED|PHYI_INACTIVE)) 24071 return (B_TRUE); 24072 24073 return (B_FALSE); 24074 } 24075 24076 /* 24077 * Return a pointer to an ipif_t given a combination of (ill_idx,ipif_id) 24078 * If a pointer to an ipif_t is returned then the caller will need to do 24079 * an ill_refrele(). 24080 * 24081 * If there is no real interface which matches the ifindex, then it looks 24082 * for a group that has a matching index. In the case of a group match the 24083 * lifidx must be zero. We don't need emulate the logical interfaces 24084 * since IP Filter's use of netinfo doesn't use that. 24085 */ 24086 ipif_t * 24087 ipif_getby_indexes(uint_t ifindex, uint_t lifidx, boolean_t isv6, 24088 ip_stack_t *ipst) 24089 { 24090 ipif_t *ipif; 24091 ill_t *ill; 24092 24093 ill = ill_lookup_on_ifindex(ifindex, isv6, NULL, NULL, NULL, NULL, 24094 ipst); 24095 24096 if (ill == NULL) { 24097 /* Fallback to group names only if hook_emulation set */ 24098 if (!ipst->ips_ipmp_hook_emulation) 24099 return (NULL); 24100 24101 if (lifidx != 0) 24102 return (NULL); 24103 ill = ill_group_lookup_on_ifindex(ifindex, isv6, ipst); 24104 if (ill == NULL) 24105 return (NULL); 24106 } 24107 24108 mutex_enter(&ill->ill_lock); 24109 if (ill->ill_state_flags & ILL_CONDEMNED) { 24110 mutex_exit(&ill->ill_lock); 24111 ill_refrele(ill); 24112 return (NULL); 24113 } 24114 24115 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 24116 if (!IPIF_CAN_LOOKUP(ipif)) 24117 continue; 24118 if (lifidx == ipif->ipif_id) { 24119 ipif_refhold_locked(ipif); 24120 break; 24121 } 24122 } 24123 24124 mutex_exit(&ill->ill_lock); 24125 ill_refrele(ill); 24126 return (ipif); 24127 } 24128 24129 /* 24130 * Flush the fastpath by deleting any nce's that are waiting for the fastpath, 24131 * There is one exceptions IRE_BROADCAST are difficult to recreate, 24132 * so instead we just nuke their nce_fp_mp's; see ndp_fastpath_flush() 24133 * for details. 24134 */ 24135 void 24136 ill_fastpath_flush(ill_t *ill) 24137 { 24138 ip_stack_t *ipst = ill->ill_ipst; 24139 24140 nce_fastpath_list_dispatch(ill, NULL, NULL); 24141 ndp_walk_common((ill->ill_isv6 ? ipst->ips_ndp6 : ipst->ips_ndp4), 24142 ill, (pfi_t)ndp_fastpath_flush, NULL, B_TRUE); 24143 } 24144 24145 /* 24146 * Set the physical address information for `ill' to the contents of the 24147 * dl_notify_ind_t pointed to by `mp'. Must be called as writer, and will be 24148 * asynchronous if `ill' cannot immediately be quiesced -- in which case 24149 * EINPROGRESS will be returned. 24150 */ 24151 int 24152 ill_set_phys_addr(ill_t *ill, mblk_t *mp) 24153 { 24154 ipsq_t *ipsq = ill->ill_phyint->phyint_ipsq; 24155 dl_notify_ind_t *dlindp = (dl_notify_ind_t *)mp->b_rptr; 24156 24157 ASSERT(IAM_WRITER_IPSQ(ipsq)); 24158 24159 if (dlindp->dl_data != DL_IPV6_LINK_LAYER_ADDR && 24160 dlindp->dl_data != DL_CURR_PHYS_ADDR) { 24161 /* Changing DL_IPV6_TOKEN is not yet supported */ 24162 return (0); 24163 } 24164 24165 /* 24166 * We need to store up to two copies of `mp' in `ill'. Due to the 24167 * design of ipsq_pending_mp_add(), we can't pass them as separate 24168 * arguments to ill_set_phys_addr_tail(). Instead, chain them 24169 * together here, then pull 'em apart in ill_set_phys_addr_tail(). 24170 */ 24171 if ((mp = copyb(mp)) == NULL || (mp->b_cont = copyb(mp)) == NULL) { 24172 freemsg(mp); 24173 return (ENOMEM); 24174 } 24175 24176 ipsq_current_start(ipsq, ill->ill_ipif, 0); 24177 24178 /* 24179 * If we can quiesce the ill, then set the address. If not, then 24180 * ill_set_phys_addr_tail() will be called from ipif_ill_refrele_tail(). 24181 */ 24182 ill_down_ipifs(ill, NULL, 0, B_FALSE); 24183 mutex_enter(&ill->ill_lock); 24184 if (!ill_is_quiescent(ill)) { 24185 /* call cannot fail since `conn_t *' argument is NULL */ 24186 (void) ipsq_pending_mp_add(NULL, ill->ill_ipif, ill->ill_rq, 24187 mp, ILL_DOWN); 24188 mutex_exit(&ill->ill_lock); 24189 return (EINPROGRESS); 24190 } 24191 mutex_exit(&ill->ill_lock); 24192 24193 ill_set_phys_addr_tail(ipsq, ill->ill_rq, mp, NULL); 24194 return (0); 24195 } 24196 24197 /* 24198 * Once the ill associated with `q' has quiesced, set its physical address 24199 * information to the values in `addrmp'. Note that two copies of `addrmp' 24200 * are passed (linked by b_cont), since we sometimes need to save two distinct 24201 * copies in the ill_t, and our context doesn't permit sleeping or allocation 24202 * failure (we'll free the other copy if it's not needed). Since the ill_t 24203 * is quiesced, we know any stale IREs with the old address information have 24204 * already been removed, so we don't need to call ill_fastpath_flush(). 24205 */ 24206 /* ARGSUSED */ 24207 static void 24208 ill_set_phys_addr_tail(ipsq_t *ipsq, queue_t *q, mblk_t *addrmp, void *dummy) 24209 { 24210 ill_t *ill = q->q_ptr; 24211 mblk_t *addrmp2 = unlinkb(addrmp); 24212 dl_notify_ind_t *dlindp = (dl_notify_ind_t *)addrmp->b_rptr; 24213 uint_t addrlen, addroff; 24214 24215 ASSERT(IAM_WRITER_IPSQ(ipsq)); 24216 24217 addroff = dlindp->dl_addr_offset; 24218 addrlen = dlindp->dl_addr_length - ABS(ill->ill_sap_length); 24219 24220 switch (dlindp->dl_data) { 24221 case DL_IPV6_LINK_LAYER_ADDR: 24222 ill_set_ndmp(ill, addrmp, addroff, addrlen); 24223 freemsg(addrmp2); 24224 break; 24225 24226 case DL_CURR_PHYS_ADDR: 24227 freemsg(ill->ill_phys_addr_mp); 24228 ill->ill_phys_addr = addrmp->b_rptr + addroff; 24229 ill->ill_phys_addr_mp = addrmp; 24230 ill->ill_phys_addr_length = addrlen; 24231 24232 if (ill->ill_isv6 && !(ill->ill_flags & ILLF_XRESOLV)) 24233 ill_set_ndmp(ill, addrmp2, addroff, addrlen); 24234 else 24235 freemsg(addrmp2); 24236 break; 24237 default: 24238 ASSERT(0); 24239 } 24240 24241 /* 24242 * If there are ipifs to bring up, ill_up_ipifs() will return 24243 * EINPROGRESS, and ipsq_current_finish() will be called by 24244 * ip_rput_dlpi_writer() or ip_arp_done() when the last ipif is 24245 * brought up. 24246 */ 24247 if (ill_up_ipifs(ill, q, addrmp) != EINPROGRESS) 24248 ipsq_current_finish(ipsq); 24249 } 24250 24251 /* 24252 * Helper routine for setting the ill_nd_lla fields. 24253 */ 24254 void 24255 ill_set_ndmp(ill_t *ill, mblk_t *ndmp, uint_t addroff, uint_t addrlen) 24256 { 24257 freemsg(ill->ill_nd_lla_mp); 24258 ill->ill_nd_lla = ndmp->b_rptr + addroff; 24259 ill->ill_nd_lla_mp = ndmp; 24260 ill->ill_nd_lla_len = addrlen; 24261 } 24262 24263 major_t IP_MAJ; 24264 #define IP "ip" 24265 24266 #define UDP6DEV "/devices/pseudo/udp6@0:udp6" 24267 #define UDPDEV "/devices/pseudo/udp@0:udp" 24268 24269 /* 24270 * Issue REMOVEIF ioctls to have the loopback interfaces 24271 * go away. Other interfaces are either I_LINKed or I_PLINKed; 24272 * the former going away when the user-level processes in the zone 24273 * are killed * and the latter are cleaned up by the stream head 24274 * str_stack_shutdown callback that undoes all I_PLINKs. 24275 */ 24276 void 24277 ip_loopback_cleanup(ip_stack_t *ipst) 24278 { 24279 int error; 24280 ldi_handle_t lh = NULL; 24281 ldi_ident_t li = NULL; 24282 int rval; 24283 cred_t *cr; 24284 struct strioctl iocb; 24285 struct lifreq lifreq; 24286 24287 IP_MAJ = ddi_name_to_major(IP); 24288 24289 #ifdef NS_DEBUG 24290 (void) printf("ip_loopback_cleanup() stackid %d\n", 24291 ipst->ips_netstack->netstack_stackid); 24292 #endif 24293 24294 bzero(&lifreq, sizeof (lifreq)); 24295 (void) strcpy(lifreq.lifr_name, ipif_loopback_name); 24296 24297 error = ldi_ident_from_major(IP_MAJ, &li); 24298 if (error) { 24299 #ifdef DEBUG 24300 printf("ip_loopback_cleanup: lyr ident get failed error %d\n", 24301 error); 24302 #endif 24303 return; 24304 } 24305 24306 cr = zone_get_kcred(netstackid_to_zoneid( 24307 ipst->ips_netstack->netstack_stackid)); 24308 ASSERT(cr != NULL); 24309 error = ldi_open_by_name(UDP6DEV, FREAD|FWRITE, cr, &lh, li); 24310 if (error) { 24311 #ifdef DEBUG 24312 printf("ip_loopback_cleanup: open of UDP6DEV failed error %d\n", 24313 error); 24314 #endif 24315 goto out; 24316 } 24317 iocb.ic_cmd = SIOCLIFREMOVEIF; 24318 iocb.ic_timout = 15; 24319 iocb.ic_len = sizeof (lifreq); 24320 iocb.ic_dp = (char *)&lifreq; 24321 24322 error = ldi_ioctl(lh, I_STR, (intptr_t)&iocb, FKIOCTL, cr, &rval); 24323 /* LINTED - statement has no consequent */ 24324 if (error) { 24325 #ifdef NS_DEBUG 24326 printf("ip_loopback_cleanup: ioctl SIOCLIFREMOVEIF failed on " 24327 "UDP6 error %d\n", error); 24328 #endif 24329 } 24330 (void) ldi_close(lh, FREAD|FWRITE, cr); 24331 lh = NULL; 24332 24333 error = ldi_open_by_name(UDPDEV, FREAD|FWRITE, cr, &lh, li); 24334 if (error) { 24335 #ifdef NS_DEBUG 24336 printf("ip_loopback_cleanup: open of UDPDEV failed error %d\n", 24337 error); 24338 #endif 24339 goto out; 24340 } 24341 24342 iocb.ic_cmd = SIOCLIFREMOVEIF; 24343 iocb.ic_timout = 15; 24344 iocb.ic_len = sizeof (lifreq); 24345 iocb.ic_dp = (char *)&lifreq; 24346 24347 error = ldi_ioctl(lh, I_STR, (intptr_t)&iocb, FKIOCTL, cr, &rval); 24348 /* LINTED - statement has no consequent */ 24349 if (error) { 24350 #ifdef NS_DEBUG 24351 printf("ip_loopback_cleanup: ioctl SIOCLIFREMOVEIF failed on " 24352 "UDP error %d\n", error); 24353 #endif 24354 } 24355 (void) ldi_close(lh, FREAD|FWRITE, cr); 24356 lh = NULL; 24357 24358 out: 24359 /* Close layered handles */ 24360 if (lh) 24361 (void) ldi_close(lh, FREAD|FWRITE, cr); 24362 if (li) 24363 ldi_ident_release(li); 24364 24365 crfree(cr); 24366 } 24367 24368 /* 24369 * This needs to be in-sync with nic_event_t definition 24370 */ 24371 static const char * 24372 ill_hook_event2str(nic_event_t event) 24373 { 24374 switch (event) { 24375 case NE_PLUMB: 24376 return ("PLUMB"); 24377 case NE_UNPLUMB: 24378 return ("UNPLUMB"); 24379 case NE_UP: 24380 return ("UP"); 24381 case NE_DOWN: 24382 return ("DOWN"); 24383 case NE_ADDRESS_CHANGE: 24384 return ("ADDRESS_CHANGE"); 24385 default: 24386 return ("UNKNOWN"); 24387 } 24388 } 24389 24390 static void 24391 ill_hook_event_destroy(ill_t *ill) 24392 { 24393 hook_nic_event_int_t *info; 24394 24395 if ((info = ill->ill_nic_event_info) != NULL) { 24396 if (info->hnei_event.hne_data != NULL) { 24397 kmem_free(info->hnei_event.hne_data, 24398 info->hnei_event.hne_datalen); 24399 } 24400 kmem_free(info, sizeof (*info)); 24401 24402 ill->ill_nic_event_info = NULL; 24403 } 24404 24405 } 24406 24407 boolean_t 24408 ill_hook_event_create(ill_t *ill, lif_if_t lif, nic_event_t event, 24409 nic_event_data_t data, size_t datalen) 24410 { 24411 ip_stack_t *ipst = ill->ill_ipst; 24412 hook_nic_event_int_t *info; 24413 const char *str = NULL; 24414 24415 /* destroy nic event info if it exists */ 24416 if ((info = ill->ill_nic_event_info) != NULL) { 24417 str = ill_hook_event2str(info->hnei_event.hne_event); 24418 ip2dbg(("ill_hook_event_create: unexpected nic event %s " 24419 "attached for %s\n", str, ill->ill_name)); 24420 ill_hook_event_destroy(ill); 24421 } 24422 24423 /* create a new nic event info */ 24424 info = kmem_alloc(sizeof (*info), KM_NOSLEEP); 24425 if (info == NULL) 24426 goto fail; 24427 24428 ill->ill_nic_event_info = info; 24429 24430 if (event == NE_UNPLUMB) 24431 info->hnei_event.hne_nic = ill->ill_phyint->phyint_ifindex; 24432 else 24433 info->hnei_event.hne_nic = ill->ill_phyint->phyint_hook_ifindex; 24434 info->hnei_event.hne_lif = lif; 24435 info->hnei_event.hne_event = event; 24436 info->hnei_event.hne_protocol = ill->ill_isv6 ? 24437 ipst->ips_ipv6_net_data : ipst->ips_ipv4_net_data; 24438 info->hnei_event.hne_data = NULL; 24439 info->hnei_event.hne_datalen = 0; 24440 info->hnei_stackid = ipst->ips_netstack->netstack_stackid; 24441 24442 if (data != NULL && datalen != 0) { 24443 info->hnei_event.hne_data = kmem_alloc(datalen, KM_NOSLEEP); 24444 if (info->hnei_event.hne_data != NULL) { 24445 bcopy(data, info->hnei_event.hne_data, datalen); 24446 info->hnei_event.hne_datalen = datalen; 24447 } else { 24448 ill_hook_event_destroy(ill); 24449 goto fail; 24450 } 24451 } 24452 24453 return (B_TRUE); 24454 fail: 24455 str = ill_hook_event2str(event); 24456 ip2dbg(("ill_hook_event_create: could not attach %s nic event " 24457 "information for %s (ENOMEM)\n", str, ill->ill_name)); 24458 return (B_FALSE); 24459 } 24460