1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2008 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 /* Copyright (c) 1990 Mentat Inc. */ 26 27 /* 28 * This file contains the interface control functions for IP. 29 */ 30 31 #include <sys/types.h> 32 #include <sys/stream.h> 33 #include <sys/dlpi.h> 34 #include <sys/stropts.h> 35 #include <sys/strsun.h> 36 #include <sys/sysmacros.h> 37 #include <sys/strlog.h> 38 #include <sys/ddi.h> 39 #include <sys/sunddi.h> 40 #include <sys/cmn_err.h> 41 #include <sys/kstat.h> 42 #include <sys/debug.h> 43 #include <sys/zone.h> 44 #include <sys/sunldi.h> 45 #include <sys/file.h> 46 #include <sys/bitmap.h> 47 48 #include <sys/kmem.h> 49 #include <sys/systm.h> 50 #include <sys/param.h> 51 #include <sys/socket.h> 52 #include <sys/isa_defs.h> 53 #include <net/if.h> 54 #include <net/if_arp.h> 55 #include <net/if_types.h> 56 #include <net/if_dl.h> 57 #include <net/route.h> 58 #include <sys/sockio.h> 59 #include <netinet/in.h> 60 #include <netinet/ip6.h> 61 #include <netinet/icmp6.h> 62 #include <netinet/igmp_var.h> 63 #include <sys/strsun.h> 64 #include <sys/policy.h> 65 #include <sys/ethernet.h> 66 67 #include <inet/common.h> /* for various inet/mi.h and inet/nd.h needs */ 68 #include <inet/mi.h> 69 #include <inet/nd.h> 70 #include <inet/arp.h> 71 #include <inet/mib2.h> 72 #include <inet/ip.h> 73 #include <inet/ip6.h> 74 #include <inet/ip6_asp.h> 75 #include <inet/tcp.h> 76 #include <inet/ip_multi.h> 77 #include <inet/ip_ire.h> 78 #include <inet/ip_ftable.h> 79 #include <inet/ip_rts.h> 80 #include <inet/ip_ndp.h> 81 #include <inet/ip_if.h> 82 #include <inet/ip_impl.h> 83 #include <inet/tun.h> 84 #include <inet/sctp_ip.h> 85 #include <inet/ip_netinfo.h> 86 #include <inet/mib2.h> 87 88 #include <net/pfkeyv2.h> 89 #include <inet/ipsec_info.h> 90 #include <inet/sadb.h> 91 #include <inet/ipsec_impl.h> 92 #include <sys/iphada.h> 93 94 95 #include <netinet/igmp.h> 96 #include <inet/ip_listutils.h> 97 #include <inet/ipclassifier.h> 98 #include <sys/mac.h> 99 100 #include <sys/systeminfo.h> 101 #include <sys/bootconf.h> 102 103 #include <sys/tsol/tndb.h> 104 #include <sys/tsol/tnet.h> 105 106 /* The character which tells where the ill_name ends */ 107 #define IPIF_SEPARATOR_CHAR ':' 108 109 /* IP ioctl function table entry */ 110 typedef struct ipft_s { 111 int ipft_cmd; 112 pfi_t ipft_pfi; 113 int ipft_min_size; 114 int ipft_flags; 115 } ipft_t; 116 #define IPFT_F_NO_REPLY 0x1 /* IP ioctl does not expect any reply */ 117 #define IPFT_F_SELF_REPLY 0x2 /* ioctl callee does the ioctl reply */ 118 119 typedef struct ip_sock_ar_s { 120 union { 121 area_t ip_sock_area; 122 ared_t ip_sock_ared; 123 areq_t ip_sock_areq; 124 } ip_sock_ar_u; 125 queue_t *ip_sock_ar_q; 126 } ip_sock_ar_t; 127 128 static int nd_ill_forward_get(queue_t *, mblk_t *, caddr_t, cred_t *); 129 static int nd_ill_forward_set(queue_t *q, mblk_t *mp, 130 char *value, caddr_t cp, cred_t *ioc_cr); 131 132 static boolean_t ill_is_quiescent(ill_t *); 133 static boolean_t ip_addr_ok_v4(ipaddr_t addr, ipaddr_t subnet_mask); 134 static ip_m_t *ip_m_lookup(t_uscalar_t mac_type); 135 static int ip_sioctl_addr_tail(ipif_t *ipif, sin_t *sin, queue_t *q, 136 mblk_t *mp, boolean_t need_up); 137 static int ip_sioctl_dstaddr_tail(ipif_t *ipif, sin_t *sin, queue_t *q, 138 mblk_t *mp, boolean_t need_up); 139 static int ip_sioctl_slifzone_tail(ipif_t *ipif, zoneid_t zoneid, 140 queue_t *q, mblk_t *mp, boolean_t need_up); 141 static int ip_sioctl_flags_tail(ipif_t *ipif, uint64_t flags, queue_t *q, 142 mblk_t *mp); 143 static int ip_sioctl_netmask_tail(ipif_t *ipif, sin_t *sin, queue_t *q, 144 mblk_t *mp); 145 static int ip_sioctl_subnet_tail(ipif_t *ipif, in6_addr_t, in6_addr_t, 146 queue_t *q, mblk_t *mp, boolean_t need_up); 147 static int ip_sioctl_plink_ipmod(ipsq_t *ipsq, queue_t *q, mblk_t *mp, 148 int ioccmd, struct linkblk *li, boolean_t doconsist); 149 static ipaddr_t ip_subnet_mask(ipaddr_t addr, ipif_t **, ip_stack_t *); 150 static void ip_wput_ioctl(queue_t *q, mblk_t *mp); 151 static void ipsq_flush(ill_t *ill); 152 153 static int ip_sioctl_token_tail(ipif_t *ipif, sin6_t *sin6, int addrlen, 154 queue_t *q, mblk_t *mp, boolean_t need_up); 155 static void ipsq_delete(ipsq_t *); 156 157 static ipif_t *ipif_allocate(ill_t *ill, int id, uint_t ire_type, 158 boolean_t initialize); 159 static void ipif_check_bcast_ires(ipif_t *test_ipif); 160 static ire_t **ipif_create_bcast_ires(ipif_t *ipif, ire_t **irep); 161 static boolean_t ipif_comp_multi(ipif_t *old_ipif, ipif_t *new_ipif, 162 boolean_t isv6); 163 static void ipif_down_delete_ire(ire_t *ire, char *ipif); 164 static void ipif_delete_cache_ire(ire_t *, char *); 165 static int ipif_logical_down(ipif_t *ipif, queue_t *q, mblk_t *mp); 166 static void ipif_free(ipif_t *ipif); 167 static void ipif_free_tail(ipif_t *ipif); 168 static void ipif_mtu_change(ire_t *ire, char *ipif_arg); 169 static void ipif_multicast_down(ipif_t *ipif); 170 static void ipif_recreate_interface_routes(ipif_t *old_ipif, ipif_t *ipif); 171 static void ipif_set_default(ipif_t *ipif); 172 static int ipif_set_values(queue_t *q, mblk_t *mp, 173 char *interf_name, uint_t *ppa); 174 static int ipif_set_values_tail(ill_t *ill, ipif_t *ipif, mblk_t *mp, 175 queue_t *q); 176 static ipif_t *ipif_lookup_on_name(char *name, size_t namelen, 177 boolean_t do_alloc, boolean_t *exists, boolean_t isv6, zoneid_t zoneid, 178 queue_t *q, mblk_t *mp, ipsq_func_t func, int *error, ip_stack_t *); 179 static int ipif_up(ipif_t *ipif, queue_t *q, mblk_t *mp); 180 static void ipif_update_other_ipifs(ipif_t *old_ipif, ill_group_t *illgrp); 181 182 static int ill_alloc_ppa(ill_if_t *, ill_t *); 183 static int ill_arp_off(ill_t *ill); 184 static int ill_arp_on(ill_t *ill); 185 static void ill_delete_interface_type(ill_if_t *); 186 static int ill_dl_up(ill_t *ill, ipif_t *ipif, mblk_t *mp, queue_t *q); 187 static void ill_dl_down(ill_t *ill); 188 static void ill_down(ill_t *ill); 189 static void ill_downi(ire_t *ire, char *ill_arg); 190 static void ill_free_mib(ill_t *ill); 191 static void ill_glist_delete(ill_t *); 192 static boolean_t ill_has_usable_ipif(ill_t *); 193 static int ill_lock_ipsq_ills(ipsq_t *sq, ill_t **list, int); 194 static void ill_nominate_bcast_rcv(ill_group_t *illgrp); 195 static void ill_phyint_free(ill_t *ill); 196 static void ill_phyint_reinit(ill_t *ill); 197 static void ill_set_nce_router_flags(ill_t *, boolean_t); 198 static void ill_set_phys_addr_tail(ipsq_t *, queue_t *, mblk_t *, void *); 199 static void ill_signal_ipsq_ills(ipsq_t *, boolean_t); 200 static boolean_t ill_split_ipsq(ipsq_t *cur_sq); 201 static void ill_stq_cache_delete(ire_t *, char *); 202 203 static boolean_t ip_ether_v6intfid(uint_t, uint8_t *, in6_addr_t *); 204 static boolean_t ip_nodef_v6intfid(uint_t, uint8_t *, in6_addr_t *); 205 static boolean_t ip_ether_v6mapinfo(uint_t, uint8_t *, uint8_t *, uint32_t *, 206 in6_addr_t *); 207 static boolean_t ip_ether_v4mapinfo(uint_t, uint8_t *, uint8_t *, uint32_t *, 208 ipaddr_t *); 209 static boolean_t ip_ib_v6intfid(uint_t, uint8_t *, in6_addr_t *); 210 static boolean_t ip_ib_v6mapinfo(uint_t, uint8_t *, uint8_t *, uint32_t *, 211 in6_addr_t *); 212 static boolean_t ip_ib_v4mapinfo(uint_t, uint8_t *, uint8_t *, uint32_t *, 213 ipaddr_t *); 214 215 static void ipif_save_ire(ipif_t *, ire_t *); 216 static void ipif_remove_ire(ipif_t *, ire_t *); 217 static void ip_cgtp_bcast_add(ire_t *, ire_t *, ip_stack_t *); 218 static void ip_cgtp_bcast_delete(ire_t *, ip_stack_t *); 219 220 /* 221 * Per-ill IPsec capabilities management. 222 */ 223 static ill_ipsec_capab_t *ill_ipsec_capab_alloc(void); 224 static void ill_ipsec_capab_free(ill_ipsec_capab_t *); 225 static void ill_ipsec_capab_add(ill_t *, uint_t, boolean_t); 226 static void ill_ipsec_capab_delete(ill_t *, uint_t); 227 static boolean_t ill_ipsec_capab_resize_algparm(ill_ipsec_capab_t *, int); 228 static void ill_capability_proto(ill_t *, int, mblk_t *); 229 static void ill_capability_dispatch(ill_t *, mblk_t *, dl_capability_sub_t *, 230 boolean_t); 231 static void ill_capability_id_ack(ill_t *, mblk_t *, dl_capability_sub_t *); 232 static void ill_capability_mdt_ack(ill_t *, mblk_t *, dl_capability_sub_t *); 233 static void ill_capability_mdt_reset(ill_t *, mblk_t **); 234 static void ill_capability_ipsec_ack(ill_t *, mblk_t *, dl_capability_sub_t *); 235 static void ill_capability_ipsec_reset(ill_t *, mblk_t **); 236 static void ill_capability_hcksum_ack(ill_t *, mblk_t *, dl_capability_sub_t *); 237 static void ill_capability_hcksum_reset(ill_t *, mblk_t **); 238 static void ill_capability_zerocopy_ack(ill_t *, mblk_t *, 239 dl_capability_sub_t *); 240 static void ill_capability_zerocopy_reset(ill_t *, mblk_t **); 241 static void ill_capability_lso_ack(ill_t *, mblk_t *, dl_capability_sub_t *); 242 static void ill_capability_lso_reset(ill_t *, mblk_t **); 243 static void ill_capability_dls_ack(ill_t *, mblk_t *, dl_capability_sub_t *); 244 static mac_resource_handle_t ill_ring_add(void *, mac_resource_t *); 245 static void ill_capability_dls_reset(ill_t *, mblk_t **); 246 static void ill_capability_dls_disable(ill_t *); 247 248 static void illgrp_cache_delete(ire_t *, char *); 249 static void illgrp_delete(ill_t *ill); 250 static void illgrp_reset_schednext(ill_t *ill); 251 252 static ill_t *ill_prev_usesrc(ill_t *); 253 static int ill_relink_usesrc_ills(ill_t *, ill_t *, uint_t); 254 static void ill_disband_usesrc_group(ill_t *); 255 256 static void conn_cleanup_stale_ire(conn_t *, caddr_t); 257 258 #ifdef DEBUG 259 static void ill_trace_cleanup(const ill_t *); 260 static void ipif_trace_cleanup(const ipif_t *); 261 #endif 262 263 /* 264 * if we go over the memory footprint limit more than once in this msec 265 * interval, we'll start pruning aggressively. 266 */ 267 int ip_min_frag_prune_time = 0; 268 269 /* 270 * max # of IPsec algorithms supported. Limited to 1 byte by PF_KEY 271 * and the IPsec DOI 272 */ 273 #define MAX_IPSEC_ALGS 256 274 275 #define BITSPERBYTE 8 276 #define BITS(type) (BITSPERBYTE * (long)sizeof (type)) 277 278 #define IPSEC_ALG_ENABLE(algs, algid) \ 279 ((algs)[(algid) / BITS(ipsec_capab_elem_t)] |= \ 280 (1 << ((algid) % BITS(ipsec_capab_elem_t)))) 281 282 #define IPSEC_ALG_IS_ENABLED(algid, algs) \ 283 ((algs)[(algid) / BITS(ipsec_capab_elem_t)] & \ 284 (1 << ((algid) % BITS(ipsec_capab_elem_t)))) 285 286 typedef uint8_t ipsec_capab_elem_t; 287 288 /* 289 * Per-algorithm parameters. Note that at present, only encryption 290 * algorithms have variable keysize (IKE does not provide a way to negotiate 291 * auth algorithm keysize). 292 * 293 * All sizes here are in bits. 294 */ 295 typedef struct 296 { 297 uint16_t minkeylen; 298 uint16_t maxkeylen; 299 } ipsec_capab_algparm_t; 300 301 /* 302 * Per-ill capabilities. 303 */ 304 struct ill_ipsec_capab_s { 305 ipsec_capab_elem_t *encr_hw_algs; 306 ipsec_capab_elem_t *auth_hw_algs; 307 uint32_t algs_size; /* size of _hw_algs in bytes */ 308 /* algorithm key lengths */ 309 ipsec_capab_algparm_t *encr_algparm; 310 uint32_t encr_algparm_size; 311 uint32_t encr_algparm_end; 312 }; 313 314 /* 315 * The field values are larger than strictly necessary for simple 316 * AR_ENTRY_ADDs but the padding lets us accomodate the socket ioctls. 317 */ 318 static area_t ip_area_template = { 319 AR_ENTRY_ADD, /* area_cmd */ 320 sizeof (ip_sock_ar_t) + (IP_ADDR_LEN*2) + sizeof (struct sockaddr_dl), 321 /* area_name_offset */ 322 /* area_name_length temporarily holds this structure length */ 323 sizeof (area_t), /* area_name_length */ 324 IP_ARP_PROTO_TYPE, /* area_proto */ 325 sizeof (ip_sock_ar_t), /* area_proto_addr_offset */ 326 IP_ADDR_LEN, /* area_proto_addr_length */ 327 sizeof (ip_sock_ar_t) + IP_ADDR_LEN, 328 /* area_proto_mask_offset */ 329 0, /* area_flags */ 330 sizeof (ip_sock_ar_t) + IP_ADDR_LEN + IP_ADDR_LEN, 331 /* area_hw_addr_offset */ 332 /* Zero length hw_addr_length means 'use your idea of the address' */ 333 0 /* area_hw_addr_length */ 334 }; 335 336 /* 337 * AR_ENTRY_ADD/DELETE templates have been added for IPv6 external resolver 338 * support 339 */ 340 static area_t ip6_area_template = { 341 AR_ENTRY_ADD, /* area_cmd */ 342 sizeof (ip_sock_ar_t) + (IPV6_ADDR_LEN*2) + sizeof (sin6_t), 343 /* area_name_offset */ 344 /* area_name_length temporarily holds this structure length */ 345 sizeof (area_t), /* area_name_length */ 346 IP_ARP_PROTO_TYPE, /* area_proto */ 347 sizeof (ip_sock_ar_t), /* area_proto_addr_offset */ 348 IPV6_ADDR_LEN, /* area_proto_addr_length */ 349 sizeof (ip_sock_ar_t) + IPV6_ADDR_LEN, 350 /* area_proto_mask_offset */ 351 0, /* area_flags */ 352 sizeof (ip_sock_ar_t) + IPV6_ADDR_LEN + IPV6_ADDR_LEN, 353 /* area_hw_addr_offset */ 354 /* Zero length hw_addr_length means 'use your idea of the address' */ 355 0 /* area_hw_addr_length */ 356 }; 357 358 static ared_t ip_ared_template = { 359 AR_ENTRY_DELETE, 360 sizeof (ared_t) + IP_ADDR_LEN, 361 sizeof (ared_t), 362 IP_ARP_PROTO_TYPE, 363 sizeof (ared_t), 364 IP_ADDR_LEN, 365 0 366 }; 367 368 static ared_t ip6_ared_template = { 369 AR_ENTRY_DELETE, 370 sizeof (ared_t) + IPV6_ADDR_LEN, 371 sizeof (ared_t), 372 IP_ARP_PROTO_TYPE, 373 sizeof (ared_t), 374 IPV6_ADDR_LEN, 375 0 376 }; 377 378 /* 379 * A template for an IPv6 AR_ENTRY_QUERY template has not been created, as 380 * as the areq doesn't include an IP address in ill_dl_up() (the only place a 381 * areq is used). 382 */ 383 static areq_t ip_areq_template = { 384 AR_ENTRY_QUERY, /* cmd */ 385 sizeof (areq_t)+(2*IP_ADDR_LEN), /* name offset */ 386 sizeof (areq_t), /* name len (filled by ill_arp_alloc) */ 387 IP_ARP_PROTO_TYPE, /* protocol, from arps perspective */ 388 sizeof (areq_t), /* target addr offset */ 389 IP_ADDR_LEN, /* target addr_length */ 390 0, /* flags */ 391 sizeof (areq_t) + IP_ADDR_LEN, /* sender addr offset */ 392 IP_ADDR_LEN, /* sender addr length */ 393 AR_EQ_DEFAULT_XMIT_COUNT, /* xmit_count */ 394 AR_EQ_DEFAULT_XMIT_INTERVAL, /* (re)xmit_interval in milliseconds */ 395 AR_EQ_DEFAULT_MAX_BUFFERED /* max # of requests to buffer */ 396 /* anything else filled in by the code */ 397 }; 398 399 static arc_t ip_aru_template = { 400 AR_INTERFACE_UP, 401 sizeof (arc_t), /* Name offset */ 402 sizeof (arc_t) /* Name length (set by ill_arp_alloc) */ 403 }; 404 405 static arc_t ip_ard_template = { 406 AR_INTERFACE_DOWN, 407 sizeof (arc_t), /* Name offset */ 408 sizeof (arc_t) /* Name length (set by ill_arp_alloc) */ 409 }; 410 411 static arc_t ip_aron_template = { 412 AR_INTERFACE_ON, 413 sizeof (arc_t), /* Name offset */ 414 sizeof (arc_t) /* Name length (set by ill_arp_alloc) */ 415 }; 416 417 static arc_t ip_aroff_template = { 418 AR_INTERFACE_OFF, 419 sizeof (arc_t), /* Name offset */ 420 sizeof (arc_t) /* Name length (set by ill_arp_alloc) */ 421 }; 422 423 static arma_t ip_arma_multi_template = { 424 AR_MAPPING_ADD, 425 sizeof (arma_t) + 3*IP_ADDR_LEN + IP_MAX_HW_LEN, 426 /* Name offset */ 427 sizeof (arma_t), /* Name length (set by ill_arp_alloc) */ 428 IP_ARP_PROTO_TYPE, 429 sizeof (arma_t), /* proto_addr_offset */ 430 IP_ADDR_LEN, /* proto_addr_length */ 431 sizeof (arma_t) + IP_ADDR_LEN, /* proto_mask_offset */ 432 sizeof (arma_t) + 2*IP_ADDR_LEN, /* proto_extract_mask_offset */ 433 ACE_F_PERMANENT | ACE_F_MAPPING, /* flags */ 434 sizeof (arma_t) + 3*IP_ADDR_LEN, /* hw_addr_offset */ 435 IP_MAX_HW_LEN, /* hw_addr_length */ 436 0, /* hw_mapping_start */ 437 }; 438 439 static ipft_t ip_ioctl_ftbl[] = { 440 { IP_IOC_IRE_DELETE, ip_ire_delete, sizeof (ipid_t), 0 }, 441 { IP_IOC_IRE_DELETE_NO_REPLY, ip_ire_delete, sizeof (ipid_t), 442 IPFT_F_NO_REPLY }, 443 { IP_IOC_IRE_ADVISE_NO_REPLY, ip_ire_advise, sizeof (ipic_t), 444 IPFT_F_NO_REPLY }, 445 { IP_IOC_RTS_REQUEST, ip_rts_request, 0, IPFT_F_SELF_REPLY }, 446 { 0 } 447 }; 448 449 /* Simple ICMP IP Header Template */ 450 static ipha_t icmp_ipha = { 451 IP_SIMPLE_HDR_VERSION, 0, 0, 0, 0, 0, IPPROTO_ICMP 452 }; 453 454 /* Flag descriptors for ip_ipif_report */ 455 static nv_t ipif_nv_tbl[] = { 456 { IPIF_UP, "UP" }, 457 { IPIF_BROADCAST, "BROADCAST" }, 458 { ILLF_DEBUG, "DEBUG" }, 459 { PHYI_LOOPBACK, "LOOPBACK" }, 460 { IPIF_POINTOPOINT, "POINTOPOINT" }, 461 { ILLF_NOTRAILERS, "NOTRAILERS" }, 462 { PHYI_RUNNING, "RUNNING" }, 463 { ILLF_NOARP, "NOARP" }, 464 { PHYI_PROMISC, "PROMISC" }, 465 { PHYI_ALLMULTI, "ALLMULTI" }, 466 { PHYI_INTELLIGENT, "INTELLIGENT" }, 467 { ILLF_MULTICAST, "MULTICAST" }, 468 { PHYI_MULTI_BCAST, "MULTI_BCAST" }, 469 { IPIF_UNNUMBERED, "UNNUMBERED" }, 470 { IPIF_DHCPRUNNING, "DHCP" }, 471 { IPIF_PRIVATE, "PRIVATE" }, 472 { IPIF_NOXMIT, "NOXMIT" }, 473 { IPIF_NOLOCAL, "NOLOCAL" }, 474 { IPIF_DEPRECATED, "DEPRECATED" }, 475 { IPIF_PREFERRED, "PREFERRED" }, 476 { IPIF_TEMPORARY, "TEMPORARY" }, 477 { IPIF_ADDRCONF, "ADDRCONF" }, 478 { PHYI_VIRTUAL, "VIRTUAL" }, 479 { ILLF_ROUTER, "ROUTER" }, 480 { ILLF_NONUD, "NONUD" }, 481 { IPIF_ANYCAST, "ANYCAST" }, 482 { ILLF_NORTEXCH, "NORTEXCH" }, 483 { ILLF_IPV4, "IPV4" }, 484 { ILLF_IPV6, "IPV6" }, 485 { IPIF_NOFAILOVER, "NOFAILOVER" }, 486 { PHYI_FAILED, "FAILED" }, 487 { PHYI_STANDBY, "STANDBY" }, 488 { PHYI_INACTIVE, "INACTIVE" }, 489 { PHYI_OFFLINE, "OFFLINE" }, 490 }; 491 492 static uchar_t ip_six_byte_all_ones[] = { 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF }; 493 494 static ip_m_t ip_m_tbl[] = { 495 { DL_ETHER, IFT_ETHER, ip_ether_v4mapinfo, ip_ether_v6mapinfo, 496 ip_ether_v6intfid }, 497 { DL_CSMACD, IFT_ISO88023, ip_ether_v4mapinfo, ip_ether_v6mapinfo, 498 ip_nodef_v6intfid }, 499 { DL_TPB, IFT_ISO88024, ip_ether_v4mapinfo, ip_ether_v6mapinfo, 500 ip_nodef_v6intfid }, 501 { DL_TPR, IFT_ISO88025, ip_ether_v4mapinfo, ip_ether_v6mapinfo, 502 ip_nodef_v6intfid }, 503 { DL_FDDI, IFT_FDDI, ip_ether_v4mapinfo, ip_ether_v6mapinfo, 504 ip_ether_v6intfid }, 505 { DL_IB, IFT_IB, ip_ib_v4mapinfo, ip_ib_v6mapinfo, 506 ip_ib_v6intfid }, 507 { SUNW_DL_VNI, IFT_OTHER, NULL, NULL, NULL}, 508 { DL_OTHER, IFT_OTHER, ip_ether_v4mapinfo, ip_ether_v6mapinfo, 509 ip_nodef_v6intfid } 510 }; 511 512 static ill_t ill_null; /* Empty ILL for init. */ 513 char ipif_loopback_name[] = "lo0"; 514 static char *ipv4_forward_suffix = ":ip_forwarding"; 515 static char *ipv6_forward_suffix = ":ip6_forwarding"; 516 static sin6_t sin6_null; /* Zero address for quick clears */ 517 static sin_t sin_null; /* Zero address for quick clears */ 518 519 /* When set search for unused ipif_seqid */ 520 static ipif_t ipif_zero; 521 522 /* 523 * ppa arena is created after these many 524 * interfaces have been plumbed. 525 */ 526 uint_t ill_no_arena = 12; /* Setable in /etc/system */ 527 528 /* 529 * Enable soft rings if ip_squeue_soft_ring or ip_squeue_fanout 530 * is set and ip_soft_rings_cnt > 0. ip_squeue_soft_ring is 531 * set through platform specific code (Niagara/Ontario). 532 */ 533 #define SOFT_RINGS_ENABLED() (ip_soft_rings_cnt ? \ 534 (ip_squeue_soft_ring || ip_squeue_fanout) : B_FALSE) 535 536 #define ILL_CAPAB_DLS (ILL_CAPAB_SOFT_RING | ILL_CAPAB_POLL) 537 538 static uint_t 539 ipif_rand(ip_stack_t *ipst) 540 { 541 ipst->ips_ipif_src_random = ipst->ips_ipif_src_random * 1103515245 + 542 12345; 543 return ((ipst->ips_ipif_src_random >> 16) & 0x7fff); 544 } 545 546 /* 547 * Allocate per-interface mibs. 548 * Returns true if ok. False otherwise. 549 * ipsq may not yet be allocated (loopback case ). 550 */ 551 static boolean_t 552 ill_allocate_mibs(ill_t *ill) 553 { 554 /* Already allocated? */ 555 if (ill->ill_ip_mib != NULL) { 556 if (ill->ill_isv6) 557 ASSERT(ill->ill_icmp6_mib != NULL); 558 return (B_TRUE); 559 } 560 561 ill->ill_ip_mib = kmem_zalloc(sizeof (*ill->ill_ip_mib), 562 KM_NOSLEEP); 563 if (ill->ill_ip_mib == NULL) { 564 return (B_FALSE); 565 } 566 567 /* Setup static information */ 568 SET_MIB(ill->ill_ip_mib->ipIfStatsEntrySize, 569 sizeof (mib2_ipIfStatsEntry_t)); 570 if (ill->ill_isv6) { 571 ill->ill_ip_mib->ipIfStatsIPVersion = MIB2_INETADDRESSTYPE_ipv6; 572 SET_MIB(ill->ill_ip_mib->ipIfStatsAddrEntrySize, 573 sizeof (mib2_ipv6AddrEntry_t)); 574 SET_MIB(ill->ill_ip_mib->ipIfStatsRouteEntrySize, 575 sizeof (mib2_ipv6RouteEntry_t)); 576 SET_MIB(ill->ill_ip_mib->ipIfStatsNetToMediaEntrySize, 577 sizeof (mib2_ipv6NetToMediaEntry_t)); 578 SET_MIB(ill->ill_ip_mib->ipIfStatsMemberEntrySize, 579 sizeof (ipv6_member_t)); 580 SET_MIB(ill->ill_ip_mib->ipIfStatsGroupSourceEntrySize, 581 sizeof (ipv6_grpsrc_t)); 582 } else { 583 ill->ill_ip_mib->ipIfStatsIPVersion = MIB2_INETADDRESSTYPE_ipv4; 584 SET_MIB(ill->ill_ip_mib->ipIfStatsAddrEntrySize, 585 sizeof (mib2_ipAddrEntry_t)); 586 SET_MIB(ill->ill_ip_mib->ipIfStatsRouteEntrySize, 587 sizeof (mib2_ipRouteEntry_t)); 588 SET_MIB(ill->ill_ip_mib->ipIfStatsNetToMediaEntrySize, 589 sizeof (mib2_ipNetToMediaEntry_t)); 590 SET_MIB(ill->ill_ip_mib->ipIfStatsMemberEntrySize, 591 sizeof (ip_member_t)); 592 SET_MIB(ill->ill_ip_mib->ipIfStatsGroupSourceEntrySize, 593 sizeof (ip_grpsrc_t)); 594 595 /* 596 * For a v4 ill, we are done at this point, because per ill 597 * icmp mibs are only used for v6. 598 */ 599 return (B_TRUE); 600 } 601 602 ill->ill_icmp6_mib = kmem_zalloc(sizeof (*ill->ill_icmp6_mib), 603 KM_NOSLEEP); 604 if (ill->ill_icmp6_mib == NULL) { 605 kmem_free(ill->ill_ip_mib, sizeof (*ill->ill_ip_mib)); 606 ill->ill_ip_mib = NULL; 607 return (B_FALSE); 608 } 609 /* static icmp info */ 610 ill->ill_icmp6_mib->ipv6IfIcmpEntrySize = 611 sizeof (mib2_ipv6IfIcmpEntry_t); 612 /* 613 * The ipIfStatsIfindex and ipv6IfIcmpIndex will be assigned later 614 * after the phyint merge occurs in ipif_set_values -> ill_glist_insert 615 * -> ill_phyint_reinit 616 */ 617 return (B_TRUE); 618 } 619 620 /* 621 * Common code for preparation of ARP commands. Two points to remember: 622 * 1) The ill_name is tacked on at the end of the allocated space so 623 * the templates name_offset field must contain the total space 624 * to allocate less the name length. 625 * 626 * 2) The templates name_length field should contain the *template* 627 * length. We use it as a parameter to bcopy() and then write 628 * the real ill_name_length into the name_length field of the copy. 629 * (Always called as writer.) 630 */ 631 mblk_t * 632 ill_arp_alloc(ill_t *ill, uchar_t *template, caddr_t addr) 633 { 634 arc_t *arc = (arc_t *)template; 635 char *cp; 636 int len; 637 mblk_t *mp; 638 uint_t name_length = ill->ill_name_length; 639 uint_t template_len = arc->arc_name_length; 640 641 len = arc->arc_name_offset + name_length; 642 mp = allocb(len, BPRI_HI); 643 if (mp == NULL) 644 return (NULL); 645 cp = (char *)mp->b_rptr; 646 mp->b_wptr = (uchar_t *)&cp[len]; 647 if (template_len) 648 bcopy(template, cp, template_len); 649 if (len > template_len) 650 bzero(&cp[template_len], len - template_len); 651 mp->b_datap->db_type = M_PROTO; 652 653 arc = (arc_t *)cp; 654 arc->arc_name_length = name_length; 655 cp = (char *)arc + arc->arc_name_offset; 656 bcopy(ill->ill_name, cp, name_length); 657 658 if (addr) { 659 area_t *area = (area_t *)mp->b_rptr; 660 661 cp = (char *)area + area->area_proto_addr_offset; 662 bcopy(addr, cp, area->area_proto_addr_length); 663 if (area->area_cmd == AR_ENTRY_ADD) { 664 cp = (char *)area; 665 len = area->area_proto_addr_length; 666 if (area->area_proto_mask_offset) 667 cp += area->area_proto_mask_offset; 668 else 669 cp += area->area_proto_addr_offset + len; 670 while (len-- > 0) 671 *cp++ = (char)~0; 672 } 673 } 674 return (mp); 675 } 676 677 mblk_t * 678 ipif_area_alloc(ipif_t *ipif) 679 { 680 return (ill_arp_alloc(ipif->ipif_ill, (uchar_t *)&ip_area_template, 681 (char *)&ipif->ipif_lcl_addr)); 682 } 683 684 mblk_t * 685 ipif_ared_alloc(ipif_t *ipif) 686 { 687 return (ill_arp_alloc(ipif->ipif_ill, (uchar_t *)&ip_ared_template, 688 (char *)&ipif->ipif_lcl_addr)); 689 } 690 691 mblk_t * 692 ill_ared_alloc(ill_t *ill, ipaddr_t addr) 693 { 694 return (ill_arp_alloc(ill, (uchar_t *)&ip_ared_template, 695 (char *)&addr)); 696 } 697 698 /* 699 * Completely vaporize a lower level tap and all associated interfaces. 700 * ill_delete is called only out of ip_close when the device control 701 * stream is being closed. 702 */ 703 void 704 ill_delete(ill_t *ill) 705 { 706 ipif_t *ipif; 707 ill_t *prev_ill; 708 ip_stack_t *ipst = ill->ill_ipst; 709 710 /* 711 * ill_delete may be forcibly entering the ipsq. The previous 712 * ioctl may not have completed and may need to be aborted. 713 * ipsq_flush takes care of it. If we don't need to enter the 714 * the ipsq forcibly, the 2nd invocation of ipsq_flush in 715 * ill_delete_tail is sufficient. 716 */ 717 ipsq_flush(ill); 718 719 /* 720 * Nuke all interfaces. ipif_free will take down the interface, 721 * remove it from the list, and free the data structure. 722 * Walk down the ipif list and remove the logical interfaces 723 * first before removing the main ipif. We can't unplumb 724 * zeroth interface first in the case of IPv6 as reset_conn_ill 725 * -> ip_ll_delmulti_v6 de-references ill_ipif for checking 726 * POINTOPOINT. 727 * 728 * If ill_ipif was not properly initialized (i.e low on memory), 729 * then no interfaces to clean up. In this case just clean up the 730 * ill. 731 */ 732 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) 733 ipif_free(ipif); 734 735 /* 736 * Used only by ill_arp_on and ill_arp_off, which are writers. 737 * So nobody can be using this mp now. Free the mp allocated for 738 * honoring ILLF_NOARP 739 */ 740 freemsg(ill->ill_arp_on_mp); 741 ill->ill_arp_on_mp = NULL; 742 743 /* Clean up msgs on pending upcalls for mrouted */ 744 reset_mrt_ill(ill); 745 746 /* 747 * ipif_free -> reset_conn_ipif will remove all multicast 748 * references for IPv4. For IPv6, we need to do it here as 749 * it points only at ills. 750 */ 751 reset_conn_ill(ill); 752 753 /* 754 * ill_down will arrange to blow off any IRE's dependent on this 755 * ILL, and shut down fragmentation reassembly. 756 */ 757 ill_down(ill); 758 759 /* Let SCTP know, so that it can remove this from its list. */ 760 sctp_update_ill(ill, SCTP_ILL_REMOVE); 761 762 /* 763 * If an address on this ILL is being used as a source address then 764 * clear out the pointers in other ILLs that point to this ILL. 765 */ 766 rw_enter(&ipst->ips_ill_g_usesrc_lock, RW_WRITER); 767 if (ill->ill_usesrc_grp_next != NULL) { 768 if (ill->ill_usesrc_ifindex == 0) { /* usesrc ILL ? */ 769 ill_disband_usesrc_group(ill); 770 } else { /* consumer of the usesrc ILL */ 771 prev_ill = ill_prev_usesrc(ill); 772 prev_ill->ill_usesrc_grp_next = 773 ill->ill_usesrc_grp_next; 774 } 775 } 776 rw_exit(&ipst->ips_ill_g_usesrc_lock); 777 } 778 779 static void 780 ipif_non_duplicate(ipif_t *ipif) 781 { 782 ill_t *ill = ipif->ipif_ill; 783 mutex_enter(&ill->ill_lock); 784 if (ipif->ipif_flags & IPIF_DUPLICATE) { 785 ipif->ipif_flags &= ~IPIF_DUPLICATE; 786 ASSERT(ill->ill_ipif_dup_count > 0); 787 ill->ill_ipif_dup_count--; 788 } 789 mutex_exit(&ill->ill_lock); 790 } 791 792 /* 793 * ill_delete_tail is called from ip_modclose after all references 794 * to the closing ill are gone. The wait is done in ip_modclose 795 */ 796 void 797 ill_delete_tail(ill_t *ill) 798 { 799 mblk_t **mpp; 800 ipif_t *ipif; 801 ip_stack_t *ipst = ill->ill_ipst; 802 803 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 804 ipif_non_duplicate(ipif); 805 ipif_down_tail(ipif); 806 } 807 808 ASSERT(ill->ill_ipif_dup_count == 0 && 809 ill->ill_arp_down_mp == NULL && 810 ill->ill_arp_del_mapping_mp == NULL); 811 812 /* 813 * If polling capability is enabled (which signifies direct 814 * upcall into IP and driver has ill saved as a handle), 815 * we need to make sure that unbind has completed before we 816 * let the ill disappear and driver no longer has any reference 817 * to this ill. 818 */ 819 mutex_enter(&ill->ill_lock); 820 while (ill->ill_state_flags & ILL_DL_UNBIND_IN_PROGRESS) 821 cv_wait(&ill->ill_cv, &ill->ill_lock); 822 mutex_exit(&ill->ill_lock); 823 824 /* 825 * Clean up polling and soft ring capabilities 826 */ 827 if (ill->ill_capabilities & (ILL_CAPAB_POLL|ILL_CAPAB_SOFT_RING)) 828 ill_capability_dls_disable(ill); 829 830 if (ill->ill_net_type != IRE_LOOPBACK) 831 qprocsoff(ill->ill_rq); 832 833 /* 834 * We do an ipsq_flush once again now. New messages could have 835 * landed up from below (M_ERROR or M_HANGUP). Similarly ioctls 836 * could also have landed up if an ioctl thread had looked up 837 * the ill before we set the ILL_CONDEMNED flag, but not yet 838 * enqueued the ioctl when we did the ipsq_flush last time. 839 */ 840 ipsq_flush(ill); 841 842 /* 843 * Free capabilities. 844 */ 845 if (ill->ill_ipsec_capab_ah != NULL) { 846 ill_ipsec_capab_delete(ill, DL_CAPAB_IPSEC_AH); 847 ill_ipsec_capab_free(ill->ill_ipsec_capab_ah); 848 ill->ill_ipsec_capab_ah = NULL; 849 } 850 851 if (ill->ill_ipsec_capab_esp != NULL) { 852 ill_ipsec_capab_delete(ill, DL_CAPAB_IPSEC_ESP); 853 ill_ipsec_capab_free(ill->ill_ipsec_capab_esp); 854 ill->ill_ipsec_capab_esp = NULL; 855 } 856 857 if (ill->ill_mdt_capab != NULL) { 858 kmem_free(ill->ill_mdt_capab, sizeof (ill_mdt_capab_t)); 859 ill->ill_mdt_capab = NULL; 860 } 861 862 if (ill->ill_hcksum_capab != NULL) { 863 kmem_free(ill->ill_hcksum_capab, sizeof (ill_hcksum_capab_t)); 864 ill->ill_hcksum_capab = NULL; 865 } 866 867 if (ill->ill_zerocopy_capab != NULL) { 868 kmem_free(ill->ill_zerocopy_capab, 869 sizeof (ill_zerocopy_capab_t)); 870 ill->ill_zerocopy_capab = NULL; 871 } 872 873 if (ill->ill_lso_capab != NULL) { 874 kmem_free(ill->ill_lso_capab, sizeof (ill_lso_capab_t)); 875 ill->ill_lso_capab = NULL; 876 } 877 878 if (ill->ill_dls_capab != NULL) { 879 CONN_DEC_REF(ill->ill_dls_capab->ill_unbind_conn); 880 ill->ill_dls_capab->ill_unbind_conn = NULL; 881 kmem_free(ill->ill_dls_capab, 882 sizeof (ill_dls_capab_t) + 883 (sizeof (ill_rx_ring_t) * ILL_MAX_RINGS)); 884 ill->ill_dls_capab = NULL; 885 } 886 887 ASSERT(!(ill->ill_capabilities & ILL_CAPAB_POLL)); 888 889 while (ill->ill_ipif != NULL) 890 ipif_free_tail(ill->ill_ipif); 891 892 /* 893 * We have removed all references to ilm from conn and the ones joined 894 * within the kernel. 895 * 896 * We don't walk conns, mrts and ires because 897 * 898 * 1) reset_conn_ill and reset_mrt_ill cleans up conns and mrts. 899 * 2) ill_down ->ill_downi walks all the ires and cleans up 900 * ill references. 901 */ 902 ASSERT(ilm_walk_ill(ill) == 0); 903 /* 904 * Take us out of the list of ILLs. ill_glist_delete -> ill_phyint_free 905 * could free the phyint. No more reference to the phyint after this 906 * point. 907 */ 908 (void) ill_glist_delete(ill); 909 910 rw_enter(&ipst->ips_ip_g_nd_lock, RW_WRITER); 911 if (ill->ill_ndd_name != NULL) 912 nd_unload(&ipst->ips_ip_g_nd, ill->ill_ndd_name); 913 rw_exit(&ipst->ips_ip_g_nd_lock); 914 915 if (ill->ill_frag_ptr != NULL) { 916 uint_t count; 917 918 for (count = 0; count < ILL_FRAG_HASH_TBL_COUNT; count++) { 919 mutex_destroy(&ill->ill_frag_hash_tbl[count].ipfb_lock); 920 } 921 mi_free(ill->ill_frag_ptr); 922 ill->ill_frag_ptr = NULL; 923 ill->ill_frag_hash_tbl = NULL; 924 } 925 926 freemsg(ill->ill_nd_lla_mp); 927 /* Free all retained control messages. */ 928 mpp = &ill->ill_first_mp_to_free; 929 do { 930 while (mpp[0]) { 931 mblk_t *mp; 932 mblk_t *mp1; 933 934 mp = mpp[0]; 935 mpp[0] = mp->b_next; 936 for (mp1 = mp; mp1 != NULL; mp1 = mp1->b_cont) { 937 mp1->b_next = NULL; 938 mp1->b_prev = NULL; 939 } 940 freemsg(mp); 941 } 942 } while (mpp++ != &ill->ill_last_mp_to_free); 943 944 ill_free_mib(ill); 945 946 #ifdef DEBUG 947 ill_trace_cleanup(ill); 948 #endif 949 950 /* Drop refcnt here */ 951 netstack_rele(ill->ill_ipst->ips_netstack); 952 ill->ill_ipst = NULL; 953 } 954 955 static void 956 ill_free_mib(ill_t *ill) 957 { 958 ip_stack_t *ipst = ill->ill_ipst; 959 960 /* 961 * MIB statistics must not be lost, so when an interface 962 * goes away the counter values will be added to the global 963 * MIBs. 964 */ 965 if (ill->ill_ip_mib != NULL) { 966 if (ill->ill_isv6) { 967 ip_mib2_add_ip_stats(&ipst->ips_ip6_mib, 968 ill->ill_ip_mib); 969 } else { 970 ip_mib2_add_ip_stats(&ipst->ips_ip_mib, 971 ill->ill_ip_mib); 972 } 973 974 kmem_free(ill->ill_ip_mib, sizeof (*ill->ill_ip_mib)); 975 ill->ill_ip_mib = NULL; 976 } 977 if (ill->ill_icmp6_mib != NULL) { 978 ip_mib2_add_icmp6_stats(&ipst->ips_icmp6_mib, 979 ill->ill_icmp6_mib); 980 kmem_free(ill->ill_icmp6_mib, sizeof (*ill->ill_icmp6_mib)); 981 ill->ill_icmp6_mib = NULL; 982 } 983 } 984 985 /* 986 * Concatenate together a physical address and a sap. 987 * 988 * Sap_lengths are interpreted as follows: 989 * sap_length == 0 ==> no sap 990 * sap_length > 0 ==> sap is at the head of the dlpi address 991 * sap_length < 0 ==> sap is at the tail of the dlpi address 992 */ 993 static void 994 ill_dlur_copy_address(uchar_t *phys_src, uint_t phys_length, 995 t_scalar_t sap_src, t_scalar_t sap_length, uchar_t *dst) 996 { 997 uint16_t sap_addr = (uint16_t)sap_src; 998 999 if (sap_length == 0) { 1000 if (phys_src == NULL) 1001 bzero(dst, phys_length); 1002 else 1003 bcopy(phys_src, dst, phys_length); 1004 } else if (sap_length < 0) { 1005 if (phys_src == NULL) 1006 bzero(dst, phys_length); 1007 else 1008 bcopy(phys_src, dst, phys_length); 1009 bcopy(&sap_addr, (char *)dst + phys_length, sizeof (sap_addr)); 1010 } else { 1011 bcopy(&sap_addr, dst, sizeof (sap_addr)); 1012 if (phys_src == NULL) 1013 bzero((char *)dst + sap_length, phys_length); 1014 else 1015 bcopy(phys_src, (char *)dst + sap_length, phys_length); 1016 } 1017 } 1018 1019 /* 1020 * Generate a dl_unitdata_req mblk for the device and address given. 1021 * addr_length is the length of the physical portion of the address. 1022 * If addr is NULL include an all zero address of the specified length. 1023 * TRUE? In any case, addr_length is taken to be the entire length of the 1024 * dlpi address, including the absolute value of sap_length. 1025 */ 1026 mblk_t * 1027 ill_dlur_gen(uchar_t *addr, uint_t addr_length, t_uscalar_t sap, 1028 t_scalar_t sap_length) 1029 { 1030 dl_unitdata_req_t *dlur; 1031 mblk_t *mp; 1032 t_scalar_t abs_sap_length; /* absolute value */ 1033 1034 abs_sap_length = ABS(sap_length); 1035 mp = ip_dlpi_alloc(sizeof (*dlur) + addr_length + abs_sap_length, 1036 DL_UNITDATA_REQ); 1037 if (mp == NULL) 1038 return (NULL); 1039 dlur = (dl_unitdata_req_t *)mp->b_rptr; 1040 /* HACK: accomodate incompatible DLPI drivers */ 1041 if (addr_length == 8) 1042 addr_length = 6; 1043 dlur->dl_dest_addr_length = addr_length + abs_sap_length; 1044 dlur->dl_dest_addr_offset = sizeof (*dlur); 1045 dlur->dl_priority.dl_min = 0; 1046 dlur->dl_priority.dl_max = 0; 1047 ill_dlur_copy_address(addr, addr_length, sap, sap_length, 1048 (uchar_t *)&dlur[1]); 1049 return (mp); 1050 } 1051 1052 /* 1053 * Add the 'mp' to the list of pending mp's headed by ill_pending_mp 1054 * Return an error if we already have 1 or more ioctls in progress. 1055 * This is used only for non-exclusive ioctls. Currently this is used 1056 * for SIOC*ARP and SIOCGTUNPARAM ioctls. Most set ioctls are exclusive 1057 * and thus need to use ipsq_pending_mp_add. 1058 */ 1059 boolean_t 1060 ill_pending_mp_add(ill_t *ill, conn_t *connp, mblk_t *add_mp) 1061 { 1062 ASSERT(MUTEX_HELD(&ill->ill_lock)); 1063 ASSERT((add_mp->b_next == NULL) && (add_mp->b_prev == NULL)); 1064 /* 1065 * M_IOCDATA from ioctls, M_IOCTL from tunnel ioctls. 1066 */ 1067 ASSERT((add_mp->b_datap->db_type == M_IOCDATA) || 1068 (add_mp->b_datap->db_type == M_IOCTL)); 1069 1070 ASSERT(MUTEX_HELD(&connp->conn_lock)); 1071 /* 1072 * Return error if the conn has started closing. The conn 1073 * could have finished cleaning up the pending mp list, 1074 * If so we should not add another mp to the list negating 1075 * the cleanup. 1076 */ 1077 if (connp->conn_state_flags & CONN_CLOSING) 1078 return (B_FALSE); 1079 /* 1080 * Add the pending mp to the head of the list, chained by b_next. 1081 * Note down the conn on which the ioctl request came, in b_prev. 1082 * This will be used to later get the conn, when we get a response 1083 * on the ill queue, from some other module (typically arp) 1084 */ 1085 add_mp->b_next = (void *)ill->ill_pending_mp; 1086 add_mp->b_queue = CONNP_TO_WQ(connp); 1087 ill->ill_pending_mp = add_mp; 1088 if (connp != NULL) 1089 connp->conn_oper_pending_ill = ill; 1090 return (B_TRUE); 1091 } 1092 1093 /* 1094 * Retrieve the ill_pending_mp and return it. We have to walk the list 1095 * of mblks starting at ill_pending_mp, and match based on the ioc_id. 1096 */ 1097 mblk_t * 1098 ill_pending_mp_get(ill_t *ill, conn_t **connpp, uint_t ioc_id) 1099 { 1100 mblk_t *prev = NULL; 1101 mblk_t *curr = NULL; 1102 uint_t id; 1103 conn_t *connp; 1104 1105 /* 1106 * When the conn closes, conn_ioctl_cleanup needs to clean 1107 * up the pending mp, but it does not know the ioc_id and 1108 * passes in a zero for it. 1109 */ 1110 mutex_enter(&ill->ill_lock); 1111 if (ioc_id != 0) 1112 *connpp = NULL; 1113 1114 /* Search the list for the appropriate ioctl based on ioc_id */ 1115 for (prev = NULL, curr = ill->ill_pending_mp; curr != NULL; 1116 prev = curr, curr = curr->b_next) { 1117 id = ((struct iocblk *)curr->b_rptr)->ioc_id; 1118 connp = Q_TO_CONN(curr->b_queue); 1119 /* Match based on the ioc_id or based on the conn */ 1120 if ((id == ioc_id) || (ioc_id == 0 && connp == *connpp)) 1121 break; 1122 } 1123 1124 if (curr != NULL) { 1125 /* Unlink the mblk from the pending mp list */ 1126 if (prev != NULL) { 1127 prev->b_next = curr->b_next; 1128 } else { 1129 ASSERT(ill->ill_pending_mp == curr); 1130 ill->ill_pending_mp = curr->b_next; 1131 } 1132 1133 /* 1134 * conn refcnt must have been bumped up at the start of 1135 * the ioctl. So we can safely access the conn. 1136 */ 1137 ASSERT(CONN_Q(curr->b_queue)); 1138 *connpp = Q_TO_CONN(curr->b_queue); 1139 curr->b_next = NULL; 1140 curr->b_queue = NULL; 1141 } 1142 1143 mutex_exit(&ill->ill_lock); 1144 1145 return (curr); 1146 } 1147 1148 /* 1149 * Add the pending mp to the list. There can be only 1 pending mp 1150 * in the list. Any exclusive ioctl that needs to wait for a response 1151 * from another module or driver needs to use this function to set 1152 * the ipsq_pending_mp to the ioctl mblk and wait for the response from 1153 * the other module/driver. This is also used while waiting for the 1154 * ipif/ill/ire refcnts to drop to zero in bringing down an ipif. 1155 */ 1156 boolean_t 1157 ipsq_pending_mp_add(conn_t *connp, ipif_t *ipif, queue_t *q, mblk_t *add_mp, 1158 int waitfor) 1159 { 1160 ipsq_t *ipsq = ipif->ipif_ill->ill_phyint->phyint_ipsq; 1161 1162 ASSERT(IAM_WRITER_IPIF(ipif)); 1163 ASSERT(MUTEX_HELD(&ipif->ipif_ill->ill_lock)); 1164 ASSERT((add_mp->b_next == NULL) && (add_mp->b_prev == NULL)); 1165 ASSERT(ipsq->ipsq_pending_mp == NULL); 1166 /* 1167 * The caller may be using a different ipif than the one passed into 1168 * ipsq_current_start() (e.g., suppose an ioctl that came in on the V4 1169 * ill needs to wait for the V6 ill to quiesce). So we can't ASSERT 1170 * that `ipsq_current_ipif == ipif'. 1171 */ 1172 ASSERT(ipsq->ipsq_current_ipif != NULL); 1173 1174 /* 1175 * M_IOCDATA from ioctls, M_IOCTL from tunnel ioctls, 1176 * M_ERROR/M_HANGUP/M_PROTO/M_PCPROTO from the driver. 1177 */ 1178 ASSERT((DB_TYPE(add_mp) == M_IOCDATA) || (DB_TYPE(add_mp) == M_IOCTL) || 1179 (DB_TYPE(add_mp) == M_ERROR) || (DB_TYPE(add_mp) == M_HANGUP) || 1180 (DB_TYPE(add_mp) == M_PROTO) || (DB_TYPE(add_mp) == M_PCPROTO)); 1181 1182 if (connp != NULL) { 1183 ASSERT(MUTEX_HELD(&connp->conn_lock)); 1184 /* 1185 * Return error if the conn has started closing. The conn 1186 * could have finished cleaning up the pending mp list, 1187 * If so we should not add another mp to the list negating 1188 * the cleanup. 1189 */ 1190 if (connp->conn_state_flags & CONN_CLOSING) 1191 return (B_FALSE); 1192 } 1193 mutex_enter(&ipsq->ipsq_lock); 1194 ipsq->ipsq_pending_ipif = ipif; 1195 /* 1196 * Note down the queue in b_queue. This will be returned by 1197 * ipsq_pending_mp_get. Caller will then use these values to restart 1198 * the processing 1199 */ 1200 add_mp->b_next = NULL; 1201 add_mp->b_queue = q; 1202 ipsq->ipsq_pending_mp = add_mp; 1203 ipsq->ipsq_waitfor = waitfor; 1204 1205 if (connp != NULL) 1206 connp->conn_oper_pending_ill = ipif->ipif_ill; 1207 mutex_exit(&ipsq->ipsq_lock); 1208 return (B_TRUE); 1209 } 1210 1211 /* 1212 * Retrieve the ipsq_pending_mp and return it. There can be only 1 mp 1213 * queued in the list. 1214 */ 1215 mblk_t * 1216 ipsq_pending_mp_get(ipsq_t *ipsq, conn_t **connpp) 1217 { 1218 mblk_t *curr = NULL; 1219 1220 mutex_enter(&ipsq->ipsq_lock); 1221 *connpp = NULL; 1222 if (ipsq->ipsq_pending_mp == NULL) { 1223 mutex_exit(&ipsq->ipsq_lock); 1224 return (NULL); 1225 } 1226 1227 /* There can be only 1 such excl message */ 1228 curr = ipsq->ipsq_pending_mp; 1229 ASSERT(curr != NULL && curr->b_next == NULL); 1230 ipsq->ipsq_pending_ipif = NULL; 1231 ipsq->ipsq_pending_mp = NULL; 1232 ipsq->ipsq_waitfor = 0; 1233 mutex_exit(&ipsq->ipsq_lock); 1234 1235 if (CONN_Q(curr->b_queue)) { 1236 /* 1237 * This mp did a refhold on the conn, at the start of the ioctl. 1238 * So we can safely return a pointer to the conn to the caller. 1239 */ 1240 *connpp = Q_TO_CONN(curr->b_queue); 1241 } else { 1242 *connpp = NULL; 1243 } 1244 curr->b_next = NULL; 1245 curr->b_prev = NULL; 1246 return (curr); 1247 } 1248 1249 /* 1250 * Cleanup the ioctl mp queued in ipsq_pending_mp 1251 * - Called in the ill_delete path 1252 * - Called in the M_ERROR or M_HANGUP path on the ill. 1253 * - Called in the conn close path. 1254 */ 1255 boolean_t 1256 ipsq_pending_mp_cleanup(ill_t *ill, conn_t *connp) 1257 { 1258 mblk_t *mp; 1259 ipsq_t *ipsq; 1260 queue_t *q; 1261 ipif_t *ipif; 1262 1263 ASSERT(IAM_WRITER_ILL(ill)); 1264 ipsq = ill->ill_phyint->phyint_ipsq; 1265 mutex_enter(&ipsq->ipsq_lock); 1266 /* 1267 * If connp is null, unconditionally clean up the ipsq_pending_mp. 1268 * This happens in M_ERROR/M_HANGUP. We need to abort the current ioctl 1269 * even if it is meant for another ill, since we have to enqueue 1270 * a new mp now in ipsq_pending_mp to complete the ipif_down. 1271 * If connp is non-null we are called from the conn close path. 1272 */ 1273 mp = ipsq->ipsq_pending_mp; 1274 if (mp == NULL || (connp != NULL && 1275 mp->b_queue != CONNP_TO_WQ(connp))) { 1276 mutex_exit(&ipsq->ipsq_lock); 1277 return (B_FALSE); 1278 } 1279 /* Now remove from the ipsq_pending_mp */ 1280 ipsq->ipsq_pending_mp = NULL; 1281 q = mp->b_queue; 1282 mp->b_next = NULL; 1283 mp->b_prev = NULL; 1284 mp->b_queue = NULL; 1285 1286 /* If MOVE was in progress, clear the move_in_progress fields also. */ 1287 ill = ipsq->ipsq_pending_ipif->ipif_ill; 1288 if (ill->ill_move_in_progress) { 1289 ILL_CLEAR_MOVE(ill); 1290 } else if (ill->ill_up_ipifs) { 1291 ill_group_cleanup(ill); 1292 } 1293 1294 ipif = ipsq->ipsq_pending_ipif; 1295 ipsq->ipsq_pending_ipif = NULL; 1296 ipsq->ipsq_waitfor = 0; 1297 ipsq->ipsq_current_ipif = NULL; 1298 ipsq->ipsq_current_ioctl = 0; 1299 ipsq->ipsq_current_done = B_TRUE; 1300 mutex_exit(&ipsq->ipsq_lock); 1301 1302 if (DB_TYPE(mp) == M_IOCTL || DB_TYPE(mp) == M_IOCDATA) { 1303 if (connp == NULL) { 1304 ip_ioctl_finish(q, mp, ENXIO, NO_COPYOUT, NULL); 1305 } else { 1306 ip_ioctl_finish(q, mp, ENXIO, CONN_CLOSE, NULL); 1307 mutex_enter(&ipif->ipif_ill->ill_lock); 1308 ipif->ipif_state_flags &= ~IPIF_CHANGING; 1309 mutex_exit(&ipif->ipif_ill->ill_lock); 1310 } 1311 } else { 1312 /* 1313 * IP-MT XXX In the case of TLI/XTI bind / optmgmt this can't 1314 * be just inet_freemsg. we have to restart it 1315 * otherwise the thread will be stuck. 1316 */ 1317 inet_freemsg(mp); 1318 } 1319 return (B_TRUE); 1320 } 1321 1322 /* 1323 * The ill is closing. Cleanup all the pending mps. Called exclusively 1324 * towards the end of ill_delete. The refcount has gone to 0. So nobody 1325 * knows this ill, and hence nobody can add an mp to this list 1326 */ 1327 static void 1328 ill_pending_mp_cleanup(ill_t *ill) 1329 { 1330 mblk_t *mp; 1331 queue_t *q; 1332 1333 ASSERT(IAM_WRITER_ILL(ill)); 1334 1335 mutex_enter(&ill->ill_lock); 1336 /* 1337 * Every mp on the pending mp list originating from an ioctl 1338 * added 1 to the conn refcnt, at the start of the ioctl. 1339 * So bump it down now. See comments in ip_wput_nondata() 1340 */ 1341 while (ill->ill_pending_mp != NULL) { 1342 mp = ill->ill_pending_mp; 1343 ill->ill_pending_mp = mp->b_next; 1344 mutex_exit(&ill->ill_lock); 1345 1346 q = mp->b_queue; 1347 ASSERT(CONN_Q(q)); 1348 mp->b_next = NULL; 1349 mp->b_prev = NULL; 1350 mp->b_queue = NULL; 1351 ip_ioctl_finish(q, mp, ENXIO, NO_COPYOUT, NULL); 1352 mutex_enter(&ill->ill_lock); 1353 } 1354 ill->ill_pending_ipif = NULL; 1355 1356 mutex_exit(&ill->ill_lock); 1357 } 1358 1359 /* 1360 * Called in the conn close path and ill delete path 1361 */ 1362 static void 1363 ipsq_xopq_mp_cleanup(ill_t *ill, conn_t *connp) 1364 { 1365 ipsq_t *ipsq; 1366 mblk_t *prev; 1367 mblk_t *curr; 1368 mblk_t *next; 1369 queue_t *q; 1370 mblk_t *tmp_list = NULL; 1371 1372 ASSERT(IAM_WRITER_ILL(ill)); 1373 if (connp != NULL) 1374 q = CONNP_TO_WQ(connp); 1375 else 1376 q = ill->ill_wq; 1377 1378 ipsq = ill->ill_phyint->phyint_ipsq; 1379 /* 1380 * Cleanup the ioctl mp's queued in ipsq_xopq_pending_mp if any. 1381 * In the case of ioctl from a conn, there can be only 1 mp 1382 * queued on the ipsq. If an ill is being unplumbed, only messages 1383 * related to this ill are flushed, like M_ERROR or M_HANGUP message. 1384 * ioctls meant for this ill form conn's are not flushed. They will 1385 * be processed during ipsq_exit and will not find the ill and will 1386 * return error. 1387 */ 1388 mutex_enter(&ipsq->ipsq_lock); 1389 for (prev = NULL, curr = ipsq->ipsq_xopq_mphead; curr != NULL; 1390 curr = next) { 1391 next = curr->b_next; 1392 if (curr->b_queue == q || curr->b_queue == RD(q)) { 1393 /* Unlink the mblk from the pending mp list */ 1394 if (prev != NULL) { 1395 prev->b_next = curr->b_next; 1396 } else { 1397 ASSERT(ipsq->ipsq_xopq_mphead == curr); 1398 ipsq->ipsq_xopq_mphead = curr->b_next; 1399 } 1400 if (ipsq->ipsq_xopq_mptail == curr) 1401 ipsq->ipsq_xopq_mptail = prev; 1402 /* 1403 * Create a temporary list and release the ipsq lock 1404 * New elements are added to the head of the tmp_list 1405 */ 1406 curr->b_next = tmp_list; 1407 tmp_list = curr; 1408 } else { 1409 prev = curr; 1410 } 1411 } 1412 mutex_exit(&ipsq->ipsq_lock); 1413 1414 while (tmp_list != NULL) { 1415 curr = tmp_list; 1416 tmp_list = curr->b_next; 1417 curr->b_next = NULL; 1418 curr->b_prev = NULL; 1419 curr->b_queue = NULL; 1420 if (DB_TYPE(curr) == M_IOCTL || DB_TYPE(curr) == M_IOCDATA) { 1421 ip_ioctl_finish(q, curr, ENXIO, connp != NULL ? 1422 CONN_CLOSE : NO_COPYOUT, NULL); 1423 } else { 1424 /* 1425 * IP-MT XXX In the case of TLI/XTI bind / optmgmt 1426 * this can't be just inet_freemsg. we have to 1427 * restart it otherwise the thread will be stuck. 1428 */ 1429 inet_freemsg(curr); 1430 } 1431 } 1432 } 1433 1434 /* 1435 * This conn has started closing. Cleanup any pending ioctl from this conn. 1436 * STREAMS ensures that there can be at most 1 ioctl pending on a stream. 1437 */ 1438 void 1439 conn_ioctl_cleanup(conn_t *connp) 1440 { 1441 mblk_t *curr; 1442 ipsq_t *ipsq; 1443 ill_t *ill; 1444 boolean_t refheld; 1445 1446 /* 1447 * Is any exclusive ioctl pending ? If so clean it up. If the 1448 * ioctl has not yet started, the mp is pending in the list headed by 1449 * ipsq_xopq_head. If the ioctl has started the mp could be present in 1450 * ipsq_pending_mp. If the ioctl timed out in the streamhead but 1451 * is currently executing now the mp is not queued anywhere but 1452 * conn_oper_pending_ill is null. The conn close will wait 1453 * till the conn_ref drops to zero. 1454 */ 1455 mutex_enter(&connp->conn_lock); 1456 ill = connp->conn_oper_pending_ill; 1457 if (ill == NULL) { 1458 mutex_exit(&connp->conn_lock); 1459 return; 1460 } 1461 1462 curr = ill_pending_mp_get(ill, &connp, 0); 1463 if (curr != NULL) { 1464 mutex_exit(&connp->conn_lock); 1465 CONN_DEC_REF(connp); 1466 inet_freemsg(curr); 1467 return; 1468 } 1469 /* 1470 * We may not be able to refhold the ill if the ill/ipif 1471 * is changing. But we need to make sure that the ill will 1472 * not vanish. So we just bump up the ill_waiter count. 1473 */ 1474 refheld = ill_waiter_inc(ill); 1475 mutex_exit(&connp->conn_lock); 1476 if (refheld) { 1477 if (ipsq_enter(ill, B_TRUE)) { 1478 ill_waiter_dcr(ill); 1479 /* 1480 * Check whether this ioctl has started and is 1481 * pending now in ipsq_pending_mp. If it is not 1482 * found there then check whether this ioctl has 1483 * not even started and is in the ipsq_xopq list. 1484 */ 1485 if (!ipsq_pending_mp_cleanup(ill, connp)) 1486 ipsq_xopq_mp_cleanup(ill, connp); 1487 ipsq = ill->ill_phyint->phyint_ipsq; 1488 ipsq_exit(ipsq); 1489 return; 1490 } 1491 } 1492 1493 /* 1494 * The ill is also closing and we could not bump up the 1495 * ill_waiter_count or we could not enter the ipsq. Leave 1496 * the cleanup to ill_delete 1497 */ 1498 mutex_enter(&connp->conn_lock); 1499 while (connp->conn_oper_pending_ill != NULL) 1500 cv_wait(&connp->conn_refcv, &connp->conn_lock); 1501 mutex_exit(&connp->conn_lock); 1502 if (refheld) 1503 ill_waiter_dcr(ill); 1504 } 1505 1506 /* 1507 * ipcl_walk function for cleaning up conn_*_ill fields. 1508 */ 1509 static void 1510 conn_cleanup_ill(conn_t *connp, caddr_t arg) 1511 { 1512 ill_t *ill = (ill_t *)arg; 1513 ire_t *ire; 1514 1515 mutex_enter(&connp->conn_lock); 1516 if (connp->conn_multicast_ill == ill) { 1517 /* Revert to late binding */ 1518 connp->conn_multicast_ill = NULL; 1519 connp->conn_orig_multicast_ifindex = 0; 1520 } 1521 if (connp->conn_incoming_ill == ill) 1522 connp->conn_incoming_ill = NULL; 1523 if (connp->conn_outgoing_ill == ill) 1524 connp->conn_outgoing_ill = NULL; 1525 if (connp->conn_outgoing_pill == ill) 1526 connp->conn_outgoing_pill = NULL; 1527 if (connp->conn_nofailover_ill == ill) 1528 connp->conn_nofailover_ill = NULL; 1529 if (connp->conn_dhcpinit_ill == ill) { 1530 connp->conn_dhcpinit_ill = NULL; 1531 ASSERT(ill->ill_dhcpinit != 0); 1532 atomic_dec_32(&ill->ill_dhcpinit); 1533 } 1534 if (connp->conn_ire_cache != NULL) { 1535 ire = connp->conn_ire_cache; 1536 /* 1537 * ip_newroute creates IRE_CACHE with ire_stq coming from 1538 * interface X and ipif coming from interface Y, if interface 1539 * X and Y are part of the same IPMPgroup. Thus whenever 1540 * interface X goes down, remove all references to it by 1541 * checking both on ire_ipif and ire_stq. 1542 */ 1543 if ((ire->ire_ipif != NULL && ire->ire_ipif->ipif_ill == ill) || 1544 (ire->ire_type == IRE_CACHE && 1545 ire->ire_stq == ill->ill_wq)) { 1546 connp->conn_ire_cache = NULL; 1547 mutex_exit(&connp->conn_lock); 1548 ire_refrele_notr(ire); 1549 return; 1550 } 1551 } 1552 mutex_exit(&connp->conn_lock); 1553 } 1554 1555 /* ARGSUSED */ 1556 void 1557 ipif_all_down_tail(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy_arg) 1558 { 1559 ill_t *ill = q->q_ptr; 1560 ipif_t *ipif; 1561 1562 ASSERT(IAM_WRITER_IPSQ(ipsq)); 1563 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 1564 ipif_non_duplicate(ipif); 1565 ipif_down_tail(ipif); 1566 } 1567 freemsg(mp); 1568 ipsq_current_finish(ipsq); 1569 } 1570 1571 /* 1572 * ill_down_start is called when we want to down this ill and bring it up again 1573 * It is called when we receive an M_ERROR / M_HANGUP. In this case we shut down 1574 * all interfaces, but don't tear down any plumbing. 1575 */ 1576 boolean_t 1577 ill_down_start(queue_t *q, mblk_t *mp) 1578 { 1579 ill_t *ill = q->q_ptr; 1580 ipif_t *ipif; 1581 1582 ASSERT(IAM_WRITER_ILL(ill)); 1583 1584 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) 1585 (void) ipif_down(ipif, NULL, NULL); 1586 1587 ill_down(ill); 1588 1589 (void) ipsq_pending_mp_cleanup(ill, NULL); 1590 1591 ipsq_current_start(ill->ill_phyint->phyint_ipsq, ill->ill_ipif, 0); 1592 1593 /* 1594 * Atomically test and add the pending mp if references are active. 1595 */ 1596 mutex_enter(&ill->ill_lock); 1597 if (!ill_is_quiescent(ill)) { 1598 /* call cannot fail since `conn_t *' argument is NULL */ 1599 (void) ipsq_pending_mp_add(NULL, ill->ill_ipif, ill->ill_rq, 1600 mp, ILL_DOWN); 1601 mutex_exit(&ill->ill_lock); 1602 return (B_FALSE); 1603 } 1604 mutex_exit(&ill->ill_lock); 1605 return (B_TRUE); 1606 } 1607 1608 static void 1609 ill_down(ill_t *ill) 1610 { 1611 ip_stack_t *ipst = ill->ill_ipst; 1612 1613 /* Blow off any IREs dependent on this ILL. */ 1614 ire_walk(ill_downi, (char *)ill, ipst); 1615 1616 /* Remove any conn_*_ill depending on this ill */ 1617 ipcl_walk(conn_cleanup_ill, (caddr_t)ill, ipst); 1618 1619 if (ill->ill_group != NULL) { 1620 illgrp_delete(ill); 1621 } 1622 } 1623 1624 /* 1625 * ire_walk routine used to delete every IRE that depends on queues 1626 * associated with 'ill'. (Always called as writer.) 1627 */ 1628 static void 1629 ill_downi(ire_t *ire, char *ill_arg) 1630 { 1631 ill_t *ill = (ill_t *)ill_arg; 1632 1633 /* 1634 * ip_newroute creates IRE_CACHE with ire_stq coming from 1635 * interface X and ipif coming from interface Y, if interface 1636 * X and Y are part of the same IPMP group. Thus whenever interface 1637 * X goes down, remove all references to it by checking both 1638 * on ire_ipif and ire_stq. 1639 */ 1640 if ((ire->ire_ipif != NULL && ire->ire_ipif->ipif_ill == ill) || 1641 (ire->ire_type == IRE_CACHE && ire->ire_stq == ill->ill_wq)) { 1642 ire_delete(ire); 1643 } 1644 } 1645 1646 /* 1647 * Remove ire/nce from the fastpath list. 1648 */ 1649 void 1650 ill_fastpath_nack(ill_t *ill) 1651 { 1652 nce_fastpath_list_dispatch(ill, NULL, NULL); 1653 } 1654 1655 /* Consume an M_IOCACK of the fastpath probe. */ 1656 void 1657 ill_fastpath_ack(ill_t *ill, mblk_t *mp) 1658 { 1659 mblk_t *mp1 = mp; 1660 1661 /* 1662 * If this was the first attempt turn on the fastpath probing. 1663 */ 1664 mutex_enter(&ill->ill_lock); 1665 if (ill->ill_dlpi_fastpath_state == IDS_INPROGRESS) 1666 ill->ill_dlpi_fastpath_state = IDS_OK; 1667 mutex_exit(&ill->ill_lock); 1668 1669 /* Free the M_IOCACK mblk, hold on to the data */ 1670 mp = mp->b_cont; 1671 freeb(mp1); 1672 if (mp == NULL) 1673 return; 1674 if (mp->b_cont != NULL) { 1675 /* 1676 * Update all IRE's or NCE's that are waiting for 1677 * fastpath update. 1678 */ 1679 nce_fastpath_list_dispatch(ill, ndp_fastpath_update, mp); 1680 mp1 = mp->b_cont; 1681 freeb(mp); 1682 mp = mp1; 1683 } else { 1684 ip0dbg(("ill_fastpath_ack: no b_cont\n")); 1685 } 1686 1687 freeb(mp); 1688 } 1689 1690 /* 1691 * Throw an M_IOCTL message downstream asking "do you know fastpath?" 1692 * The data portion of the request is a dl_unitdata_req_t template for 1693 * what we would send downstream in the absence of a fastpath confirmation. 1694 */ 1695 int 1696 ill_fastpath_probe(ill_t *ill, mblk_t *dlur_mp) 1697 { 1698 struct iocblk *ioc; 1699 mblk_t *mp; 1700 1701 if (dlur_mp == NULL) 1702 return (EINVAL); 1703 1704 mutex_enter(&ill->ill_lock); 1705 switch (ill->ill_dlpi_fastpath_state) { 1706 case IDS_FAILED: 1707 /* 1708 * Driver NAKed the first fastpath ioctl - assume it doesn't 1709 * support it. 1710 */ 1711 mutex_exit(&ill->ill_lock); 1712 return (ENOTSUP); 1713 case IDS_UNKNOWN: 1714 /* This is the first probe */ 1715 ill->ill_dlpi_fastpath_state = IDS_INPROGRESS; 1716 break; 1717 default: 1718 break; 1719 } 1720 mutex_exit(&ill->ill_lock); 1721 1722 if ((mp = mkiocb(DL_IOC_HDR_INFO)) == NULL) 1723 return (EAGAIN); 1724 1725 mp->b_cont = copyb(dlur_mp); 1726 if (mp->b_cont == NULL) { 1727 freeb(mp); 1728 return (EAGAIN); 1729 } 1730 1731 ioc = (struct iocblk *)mp->b_rptr; 1732 ioc->ioc_count = msgdsize(mp->b_cont); 1733 1734 putnext(ill->ill_wq, mp); 1735 return (0); 1736 } 1737 1738 void 1739 ill_capability_probe(ill_t *ill) 1740 { 1741 /* 1742 * Do so only if capabilities are still unknown. 1743 */ 1744 if (ill->ill_dlpi_capab_state != IDS_UNKNOWN) 1745 return; 1746 1747 ill->ill_dlpi_capab_state = IDS_INPROGRESS; 1748 ip1dbg(("ill_capability_probe: starting capability negotiation\n")); 1749 ill_capability_proto(ill, DL_CAPABILITY_REQ, NULL); 1750 } 1751 1752 void 1753 ill_capability_reset(ill_t *ill) 1754 { 1755 mblk_t *sc_mp = NULL; 1756 mblk_t *tmp; 1757 1758 /* 1759 * Note here that we reset the state to UNKNOWN, and later send 1760 * down the DL_CAPABILITY_REQ without first setting the state to 1761 * INPROGRESS. We do this in order to distinguish the 1762 * DL_CAPABILITY_ACK response which may come back in response to 1763 * a "reset" apart from the "probe" DL_CAPABILITY_REQ. This would 1764 * also handle the case where the driver doesn't send us back 1765 * a DL_CAPABILITY_ACK in response, since the "probe" routine 1766 * requires the state to be in UNKNOWN anyway. In any case, all 1767 * features are turned off until the state reaches IDS_OK. 1768 */ 1769 ill->ill_dlpi_capab_state = IDS_UNKNOWN; 1770 ill->ill_capab_reneg = B_FALSE; 1771 1772 /* 1773 * Disable sub-capabilities and request a list of sub-capability 1774 * messages which will be sent down to the driver. Each handler 1775 * allocates the corresponding dl_capability_sub_t inside an 1776 * mblk, and links it to the existing sc_mp mblk, or return it 1777 * as sc_mp if it's the first sub-capability (the passed in 1778 * sc_mp is NULL). Upon returning from all capability handlers, 1779 * sc_mp will be pulled-up, before passing it downstream. 1780 */ 1781 ill_capability_mdt_reset(ill, &sc_mp); 1782 ill_capability_hcksum_reset(ill, &sc_mp); 1783 ill_capability_zerocopy_reset(ill, &sc_mp); 1784 ill_capability_ipsec_reset(ill, &sc_mp); 1785 ill_capability_dls_reset(ill, &sc_mp); 1786 ill_capability_lso_reset(ill, &sc_mp); 1787 1788 /* Nothing to send down in order to disable the capabilities? */ 1789 if (sc_mp == NULL) 1790 return; 1791 1792 tmp = msgpullup(sc_mp, -1); 1793 freemsg(sc_mp); 1794 if ((sc_mp = tmp) == NULL) { 1795 cmn_err(CE_WARN, "ill_capability_reset: unable to send down " 1796 "DL_CAPABILITY_REQ (ENOMEM)\n"); 1797 return; 1798 } 1799 1800 ip1dbg(("ill_capability_reset: resetting negotiated capabilities\n")); 1801 ill_capability_proto(ill, DL_CAPABILITY_REQ, sc_mp); 1802 } 1803 1804 /* 1805 * Request or set new-style hardware capabilities supported by DLS provider. 1806 */ 1807 static void 1808 ill_capability_proto(ill_t *ill, int type, mblk_t *reqp) 1809 { 1810 mblk_t *mp; 1811 dl_capability_req_t *capb; 1812 size_t size = 0; 1813 uint8_t *ptr; 1814 1815 if (reqp != NULL) 1816 size = MBLKL(reqp); 1817 1818 mp = ip_dlpi_alloc(sizeof (dl_capability_req_t) + size, type); 1819 if (mp == NULL) { 1820 freemsg(reqp); 1821 return; 1822 } 1823 ptr = mp->b_rptr; 1824 1825 capb = (dl_capability_req_t *)ptr; 1826 ptr += sizeof (dl_capability_req_t); 1827 1828 if (reqp != NULL) { 1829 capb->dl_sub_offset = sizeof (dl_capability_req_t); 1830 capb->dl_sub_length = size; 1831 bcopy(reqp->b_rptr, ptr, size); 1832 ptr += size; 1833 mp->b_cont = reqp->b_cont; 1834 freeb(reqp); 1835 } 1836 ASSERT(ptr == mp->b_wptr); 1837 1838 ill_dlpi_send(ill, mp); 1839 } 1840 1841 static void 1842 ill_capability_id_ack(ill_t *ill, mblk_t *mp, dl_capability_sub_t *outers) 1843 { 1844 dl_capab_id_t *id_ic; 1845 uint_t sub_dl_cap = outers->dl_cap; 1846 dl_capability_sub_t *inners; 1847 uint8_t *capend; 1848 1849 ASSERT(sub_dl_cap == DL_CAPAB_ID_WRAPPER); 1850 1851 /* 1852 * Note: range checks here are not absolutely sufficient to 1853 * make us robust against malformed messages sent by drivers; 1854 * this is in keeping with the rest of IP's dlpi handling. 1855 * (Remember, it's coming from something else in the kernel 1856 * address space) 1857 */ 1858 1859 capend = (uint8_t *)(outers + 1) + outers->dl_length; 1860 if (capend > mp->b_wptr) { 1861 cmn_err(CE_WARN, "ill_capability_id_ack: " 1862 "malformed sub-capability too long for mblk"); 1863 return; 1864 } 1865 1866 id_ic = (dl_capab_id_t *)(outers + 1); 1867 1868 if (outers->dl_length < sizeof (*id_ic) || 1869 (inners = &id_ic->id_subcap, 1870 inners->dl_length > (outers->dl_length - sizeof (*inners)))) { 1871 cmn_err(CE_WARN, "ill_capability_id_ack: malformed " 1872 "encapsulated capab type %d too long for mblk", 1873 inners->dl_cap); 1874 return; 1875 } 1876 1877 if (!dlcapabcheckqid(&id_ic->id_mid, ill->ill_lmod_rq)) { 1878 ip1dbg(("ill_capability_id_ack: mid token for capab type %d " 1879 "isn't as expected; pass-thru module(s) detected, " 1880 "discarding capability\n", inners->dl_cap)); 1881 return; 1882 } 1883 1884 /* Process the encapsulated sub-capability */ 1885 ill_capability_dispatch(ill, mp, inners, B_TRUE); 1886 } 1887 1888 /* 1889 * Process Multidata Transmit capability negotiation ack received from a 1890 * DLS Provider. isub must point to the sub-capability (DL_CAPAB_MDT) of a 1891 * DL_CAPABILITY_ACK message. 1892 */ 1893 static void 1894 ill_capability_mdt_ack(ill_t *ill, mblk_t *mp, dl_capability_sub_t *isub) 1895 { 1896 mblk_t *nmp = NULL; 1897 dl_capability_req_t *oc; 1898 dl_capab_mdt_t *mdt_ic, *mdt_oc; 1899 ill_mdt_capab_t **ill_mdt_capab; 1900 uint_t sub_dl_cap = isub->dl_cap; 1901 uint8_t *capend; 1902 1903 ASSERT(sub_dl_cap == DL_CAPAB_MDT); 1904 1905 ill_mdt_capab = (ill_mdt_capab_t **)&ill->ill_mdt_capab; 1906 1907 /* 1908 * Note: range checks here are not absolutely sufficient to 1909 * make us robust against malformed messages sent by drivers; 1910 * this is in keeping with the rest of IP's dlpi handling. 1911 * (Remember, it's coming from something else in the kernel 1912 * address space) 1913 */ 1914 1915 capend = (uint8_t *)(isub + 1) + isub->dl_length; 1916 if (capend > mp->b_wptr) { 1917 cmn_err(CE_WARN, "ill_capability_mdt_ack: " 1918 "malformed sub-capability too long for mblk"); 1919 return; 1920 } 1921 1922 mdt_ic = (dl_capab_mdt_t *)(isub + 1); 1923 1924 if (mdt_ic->mdt_version != MDT_VERSION_2) { 1925 cmn_err(CE_CONT, "ill_capability_mdt_ack: " 1926 "unsupported MDT sub-capability (version %d, expected %d)", 1927 mdt_ic->mdt_version, MDT_VERSION_2); 1928 return; 1929 } 1930 1931 if (!dlcapabcheckqid(&mdt_ic->mdt_mid, ill->ill_lmod_rq)) { 1932 ip1dbg(("ill_capability_mdt_ack: mid token for MDT " 1933 "capability isn't as expected; pass-thru module(s) " 1934 "detected, discarding capability\n")); 1935 return; 1936 } 1937 1938 if (mdt_ic->mdt_flags & DL_CAPAB_MDT_ENABLE) { 1939 1940 if (*ill_mdt_capab == NULL) { 1941 *ill_mdt_capab = kmem_zalloc(sizeof (ill_mdt_capab_t), 1942 KM_NOSLEEP); 1943 1944 if (*ill_mdt_capab == NULL) { 1945 cmn_err(CE_WARN, "ill_capability_mdt_ack: " 1946 "could not enable MDT version %d " 1947 "for %s (ENOMEM)\n", MDT_VERSION_2, 1948 ill->ill_name); 1949 return; 1950 } 1951 } 1952 1953 ip1dbg(("ill_capability_mdt_ack: interface %s supports " 1954 "MDT version %d (%d bytes leading, %d bytes trailing " 1955 "header spaces, %d max pld bufs, %d span limit)\n", 1956 ill->ill_name, MDT_VERSION_2, 1957 mdt_ic->mdt_hdr_head, mdt_ic->mdt_hdr_tail, 1958 mdt_ic->mdt_max_pld, mdt_ic->mdt_span_limit)); 1959 1960 (*ill_mdt_capab)->ill_mdt_version = MDT_VERSION_2; 1961 (*ill_mdt_capab)->ill_mdt_on = 1; 1962 /* 1963 * Round the following values to the nearest 32-bit; ULP 1964 * may further adjust them to accomodate for additional 1965 * protocol headers. We pass these values to ULP during 1966 * bind time. 1967 */ 1968 (*ill_mdt_capab)->ill_mdt_hdr_head = 1969 roundup(mdt_ic->mdt_hdr_head, 4); 1970 (*ill_mdt_capab)->ill_mdt_hdr_tail = 1971 roundup(mdt_ic->mdt_hdr_tail, 4); 1972 (*ill_mdt_capab)->ill_mdt_max_pld = mdt_ic->mdt_max_pld; 1973 (*ill_mdt_capab)->ill_mdt_span_limit = mdt_ic->mdt_span_limit; 1974 1975 ill->ill_capabilities |= ILL_CAPAB_MDT; 1976 } else { 1977 uint_t size; 1978 uchar_t *rptr; 1979 1980 size = sizeof (dl_capability_req_t) + 1981 sizeof (dl_capability_sub_t) + sizeof (dl_capab_mdt_t); 1982 1983 if ((nmp = ip_dlpi_alloc(size, DL_CAPABILITY_REQ)) == NULL) { 1984 cmn_err(CE_WARN, "ill_capability_mdt_ack: " 1985 "could not enable MDT for %s (ENOMEM)\n", 1986 ill->ill_name); 1987 return; 1988 } 1989 1990 rptr = nmp->b_rptr; 1991 /* initialize dl_capability_req_t */ 1992 oc = (dl_capability_req_t *)nmp->b_rptr; 1993 oc->dl_sub_offset = sizeof (dl_capability_req_t); 1994 oc->dl_sub_length = sizeof (dl_capability_sub_t) + 1995 sizeof (dl_capab_mdt_t); 1996 nmp->b_rptr += sizeof (dl_capability_req_t); 1997 1998 /* initialize dl_capability_sub_t */ 1999 bcopy(isub, nmp->b_rptr, sizeof (*isub)); 2000 nmp->b_rptr += sizeof (*isub); 2001 2002 /* initialize dl_capab_mdt_t */ 2003 mdt_oc = (dl_capab_mdt_t *)nmp->b_rptr; 2004 bcopy(mdt_ic, mdt_oc, sizeof (*mdt_ic)); 2005 2006 nmp->b_rptr = rptr; 2007 2008 ip1dbg(("ill_capability_mdt_ack: asking interface %s " 2009 "to enable MDT version %d\n", ill->ill_name, 2010 MDT_VERSION_2)); 2011 2012 /* set ENABLE flag */ 2013 mdt_oc->mdt_flags |= DL_CAPAB_MDT_ENABLE; 2014 2015 /* nmp points to a DL_CAPABILITY_REQ message to enable MDT */ 2016 ill_dlpi_send(ill, nmp); 2017 } 2018 } 2019 2020 static void 2021 ill_capability_mdt_reset(ill_t *ill, mblk_t **sc_mp) 2022 { 2023 mblk_t *mp; 2024 dl_capab_mdt_t *mdt_subcap; 2025 dl_capability_sub_t *dl_subcap; 2026 int size; 2027 2028 if (!ILL_MDT_CAPABLE(ill)) 2029 return; 2030 2031 ASSERT(ill->ill_mdt_capab != NULL); 2032 /* 2033 * Clear the capability flag for MDT but retain the ill_mdt_capab 2034 * structure since it's possible that another thread is still 2035 * referring to it. The structure only gets deallocated when 2036 * we destroy the ill. 2037 */ 2038 ill->ill_capabilities &= ~ILL_CAPAB_MDT; 2039 2040 size = sizeof (*dl_subcap) + sizeof (*mdt_subcap); 2041 2042 mp = allocb(size, BPRI_HI); 2043 if (mp == NULL) { 2044 ip1dbg(("ill_capability_mdt_reset: unable to allocate " 2045 "request to disable MDT\n")); 2046 return; 2047 } 2048 2049 mp->b_wptr = mp->b_rptr + size; 2050 2051 dl_subcap = (dl_capability_sub_t *)mp->b_rptr; 2052 dl_subcap->dl_cap = DL_CAPAB_MDT; 2053 dl_subcap->dl_length = sizeof (*mdt_subcap); 2054 2055 mdt_subcap = (dl_capab_mdt_t *)(dl_subcap + 1); 2056 mdt_subcap->mdt_version = ill->ill_mdt_capab->ill_mdt_version; 2057 mdt_subcap->mdt_flags = 0; 2058 mdt_subcap->mdt_hdr_head = 0; 2059 mdt_subcap->mdt_hdr_tail = 0; 2060 2061 if (*sc_mp != NULL) 2062 linkb(*sc_mp, mp); 2063 else 2064 *sc_mp = mp; 2065 } 2066 2067 /* 2068 * Send a DL_NOTIFY_REQ to the specified ill to enable 2069 * DL_NOTE_PROMISC_ON/OFF_PHYS notifications. 2070 * Invoked by ill_capability_ipsec_ack() before enabling IPsec hardware 2071 * acceleration. 2072 * Returns B_TRUE on success, B_FALSE if the message could not be sent. 2073 */ 2074 static boolean_t 2075 ill_enable_promisc_notify(ill_t *ill) 2076 { 2077 mblk_t *mp; 2078 dl_notify_req_t *req; 2079 2080 IPSECHW_DEBUG(IPSECHW_PKT, ("ill_enable_promisc_notify:\n")); 2081 2082 mp = ip_dlpi_alloc(sizeof (dl_notify_req_t), DL_NOTIFY_REQ); 2083 if (mp == NULL) 2084 return (B_FALSE); 2085 2086 req = (dl_notify_req_t *)mp->b_rptr; 2087 req->dl_notifications = DL_NOTE_PROMISC_ON_PHYS | 2088 DL_NOTE_PROMISC_OFF_PHYS; 2089 2090 ill_dlpi_send(ill, mp); 2091 2092 return (B_TRUE); 2093 } 2094 2095 /* 2096 * Allocate an IPsec capability request which will be filled by our 2097 * caller to turn on support for one or more algorithms. 2098 */ 2099 static mblk_t * 2100 ill_alloc_ipsec_cap_req(ill_t *ill, dl_capability_sub_t *isub) 2101 { 2102 mblk_t *nmp; 2103 dl_capability_req_t *ocap; 2104 dl_capab_ipsec_t *ocip; 2105 dl_capab_ipsec_t *icip; 2106 uint8_t *ptr; 2107 icip = (dl_capab_ipsec_t *)(isub + 1); 2108 2109 /* 2110 * The first time around, we send a DL_NOTIFY_REQ to enable 2111 * PROMISC_ON/OFF notification from the provider. We need to 2112 * do this before enabling the algorithms to avoid leakage of 2113 * cleartext packets. 2114 */ 2115 2116 if (!ill_enable_promisc_notify(ill)) 2117 return (NULL); 2118 2119 /* 2120 * Allocate new mblk which will contain a new capability 2121 * request to enable the capabilities. 2122 */ 2123 2124 nmp = ip_dlpi_alloc(sizeof (dl_capability_req_t) + 2125 sizeof (dl_capability_sub_t) + isub->dl_length, DL_CAPABILITY_REQ); 2126 if (nmp == NULL) 2127 return (NULL); 2128 2129 ptr = nmp->b_rptr; 2130 2131 /* initialize dl_capability_req_t */ 2132 ocap = (dl_capability_req_t *)ptr; 2133 ocap->dl_sub_offset = sizeof (dl_capability_req_t); 2134 ocap->dl_sub_length = sizeof (dl_capability_sub_t) + isub->dl_length; 2135 ptr += sizeof (dl_capability_req_t); 2136 2137 /* initialize dl_capability_sub_t */ 2138 bcopy(isub, ptr, sizeof (*isub)); 2139 ptr += sizeof (*isub); 2140 2141 /* initialize dl_capab_ipsec_t */ 2142 ocip = (dl_capab_ipsec_t *)ptr; 2143 bcopy(icip, ocip, sizeof (*icip)); 2144 2145 nmp->b_wptr = (uchar_t *)(&ocip->cip_data[0]); 2146 return (nmp); 2147 } 2148 2149 /* 2150 * Process an IPsec capability negotiation ack received from a DLS Provider. 2151 * isub must point to the sub-capability (DL_CAPAB_IPSEC_AH or 2152 * DL_CAPAB_IPSEC_ESP) of a DL_CAPABILITY_ACK message. 2153 */ 2154 static void 2155 ill_capability_ipsec_ack(ill_t *ill, mblk_t *mp, dl_capability_sub_t *isub) 2156 { 2157 dl_capab_ipsec_t *icip; 2158 dl_capab_ipsec_alg_t *ialg; /* ptr to input alg spec. */ 2159 dl_capab_ipsec_alg_t *oalg; /* ptr to output alg spec. */ 2160 uint_t cipher, nciphers; 2161 mblk_t *nmp; 2162 uint_t alg_len; 2163 boolean_t need_sadb_dump; 2164 uint_t sub_dl_cap = isub->dl_cap; 2165 ill_ipsec_capab_t **ill_capab; 2166 uint64_t ill_capab_flag; 2167 uint8_t *capend, *ciphend; 2168 boolean_t sadb_resync; 2169 2170 ASSERT(sub_dl_cap == DL_CAPAB_IPSEC_AH || 2171 sub_dl_cap == DL_CAPAB_IPSEC_ESP); 2172 2173 if (sub_dl_cap == DL_CAPAB_IPSEC_AH) { 2174 ill_capab = (ill_ipsec_capab_t **)&ill->ill_ipsec_capab_ah; 2175 ill_capab_flag = ILL_CAPAB_AH; 2176 } else { 2177 ill_capab = (ill_ipsec_capab_t **)&ill->ill_ipsec_capab_esp; 2178 ill_capab_flag = ILL_CAPAB_ESP; 2179 } 2180 2181 /* 2182 * If the ill capability structure exists, then this incoming 2183 * DL_CAPABILITY_ACK is a response to a "renegotiation" cycle. 2184 * If this is so, then we'd need to resynchronize the SADB 2185 * after re-enabling the offloaded ciphers. 2186 */ 2187 sadb_resync = (*ill_capab != NULL); 2188 2189 /* 2190 * Note: range checks here are not absolutely sufficient to 2191 * make us robust against malformed messages sent by drivers; 2192 * this is in keeping with the rest of IP's dlpi handling. 2193 * (Remember, it's coming from something else in the kernel 2194 * address space) 2195 */ 2196 2197 capend = (uint8_t *)(isub + 1) + isub->dl_length; 2198 if (capend > mp->b_wptr) { 2199 cmn_err(CE_WARN, "ill_capability_ipsec_ack: " 2200 "malformed sub-capability too long for mblk"); 2201 return; 2202 } 2203 2204 /* 2205 * There are two types of acks we process here: 2206 * 1. acks in reply to a (first form) generic capability req 2207 * (no ENABLE flag set) 2208 * 2. acks in reply to a ENABLE capability req. 2209 * (ENABLE flag set) 2210 * 2211 * We process the subcapability passed as argument as follows: 2212 * 1 do initializations 2213 * 1.1 initialize nmp = NULL 2214 * 1.2 set need_sadb_dump to B_FALSE 2215 * 2 for each cipher in subcapability: 2216 * 2.1 if ENABLE flag is set: 2217 * 2.1.1 update per-ill ipsec capabilities info 2218 * 2.1.2 set need_sadb_dump to B_TRUE 2219 * 2.2 if ENABLE flag is not set: 2220 * 2.2.1 if nmp is NULL: 2221 * 2.2.1.1 allocate and initialize nmp 2222 * 2.2.1.2 init current pos in nmp 2223 * 2.2.2 copy current cipher to current pos in nmp 2224 * 2.2.3 set ENABLE flag in nmp 2225 * 2.2.4 update current pos 2226 * 3 if nmp is not equal to NULL, send enable request 2227 * 3.1 send capability request 2228 * 4 if need_sadb_dump is B_TRUE 2229 * 4.1 enable promiscuous on/off notifications 2230 * 4.2 call ill_dlpi_send(isub->dlcap) to send all 2231 * AH or ESP SA's to interface. 2232 */ 2233 2234 nmp = NULL; 2235 oalg = NULL; 2236 need_sadb_dump = B_FALSE; 2237 icip = (dl_capab_ipsec_t *)(isub + 1); 2238 ialg = (dl_capab_ipsec_alg_t *)(&icip->cip_data[0]); 2239 2240 nciphers = icip->cip_nciphers; 2241 ciphend = (uint8_t *)(ialg + icip->cip_nciphers); 2242 2243 if (ciphend > capend) { 2244 cmn_err(CE_WARN, "ill_capability_ipsec_ack: " 2245 "too many ciphers for sub-capability len"); 2246 return; 2247 } 2248 2249 for (cipher = 0; cipher < nciphers; cipher++) { 2250 alg_len = sizeof (dl_capab_ipsec_alg_t); 2251 2252 if (ialg->alg_flag & DL_CAPAB_ALG_ENABLE) { 2253 /* 2254 * TBD: when we provide a way to disable capabilities 2255 * from above, need to manage the request-pending state 2256 * and fail if we were not expecting this ACK. 2257 */ 2258 IPSECHW_DEBUG(IPSECHW_CAPAB, 2259 ("ill_capability_ipsec_ack: got ENABLE ACK\n")); 2260 2261 /* 2262 * Update IPsec capabilities for this ill 2263 */ 2264 2265 if (*ill_capab == NULL) { 2266 IPSECHW_DEBUG(IPSECHW_CAPAB, 2267 ("ill_capability_ipsec_ack: " 2268 "allocating ipsec_capab for ill\n")); 2269 *ill_capab = ill_ipsec_capab_alloc(); 2270 2271 if (*ill_capab == NULL) { 2272 cmn_err(CE_WARN, 2273 "ill_capability_ipsec_ack: " 2274 "could not enable IPsec Hardware " 2275 "acceleration for %s (ENOMEM)\n", 2276 ill->ill_name); 2277 return; 2278 } 2279 } 2280 2281 ASSERT(ialg->alg_type == DL_CAPAB_IPSEC_ALG_AUTH || 2282 ialg->alg_type == DL_CAPAB_IPSEC_ALG_ENCR); 2283 2284 if (ialg->alg_prim >= MAX_IPSEC_ALGS) { 2285 cmn_err(CE_WARN, 2286 "ill_capability_ipsec_ack: " 2287 "malformed IPsec algorithm id %d", 2288 ialg->alg_prim); 2289 continue; 2290 } 2291 2292 if (ialg->alg_type == DL_CAPAB_IPSEC_ALG_AUTH) { 2293 IPSEC_ALG_ENABLE((*ill_capab)->auth_hw_algs, 2294 ialg->alg_prim); 2295 } else { 2296 ipsec_capab_algparm_t *alp; 2297 2298 IPSEC_ALG_ENABLE((*ill_capab)->encr_hw_algs, 2299 ialg->alg_prim); 2300 if (!ill_ipsec_capab_resize_algparm(*ill_capab, 2301 ialg->alg_prim)) { 2302 cmn_err(CE_WARN, 2303 "ill_capability_ipsec_ack: " 2304 "no space for IPsec alg id %d", 2305 ialg->alg_prim); 2306 continue; 2307 } 2308 alp = &((*ill_capab)->encr_algparm[ 2309 ialg->alg_prim]); 2310 alp->minkeylen = ialg->alg_minbits; 2311 alp->maxkeylen = ialg->alg_maxbits; 2312 } 2313 ill->ill_capabilities |= ill_capab_flag; 2314 /* 2315 * indicate that a capability was enabled, which 2316 * will be used below to kick off a SADB dump 2317 * to the ill. 2318 */ 2319 need_sadb_dump = B_TRUE; 2320 } else { 2321 IPSECHW_DEBUG(IPSECHW_CAPAB, 2322 ("ill_capability_ipsec_ack: enabling alg 0x%x\n", 2323 ialg->alg_prim)); 2324 2325 if (nmp == NULL) { 2326 nmp = ill_alloc_ipsec_cap_req(ill, isub); 2327 if (nmp == NULL) { 2328 /* 2329 * Sending the PROMISC_ON/OFF 2330 * notification request failed. 2331 * We cannot enable the algorithms 2332 * since the Provider will not 2333 * notify IP of promiscous mode 2334 * changes, which could lead 2335 * to leakage of packets. 2336 */ 2337 cmn_err(CE_WARN, 2338 "ill_capability_ipsec_ack: " 2339 "could not enable IPsec Hardware " 2340 "acceleration for %s (ENOMEM)\n", 2341 ill->ill_name); 2342 return; 2343 } 2344 /* ptr to current output alg specifier */ 2345 oalg = (dl_capab_ipsec_alg_t *)nmp->b_wptr; 2346 } 2347 2348 /* 2349 * Copy current alg specifier, set ENABLE 2350 * flag, and advance to next output alg. 2351 * For now we enable all IPsec capabilities. 2352 */ 2353 ASSERT(oalg != NULL); 2354 bcopy(ialg, oalg, alg_len); 2355 oalg->alg_flag |= DL_CAPAB_ALG_ENABLE; 2356 nmp->b_wptr += alg_len; 2357 oalg = (dl_capab_ipsec_alg_t *)nmp->b_wptr; 2358 } 2359 2360 /* move to next input algorithm specifier */ 2361 ialg = (dl_capab_ipsec_alg_t *) 2362 ((char *)ialg + alg_len); 2363 } 2364 2365 if (nmp != NULL) 2366 /* 2367 * nmp points to a DL_CAPABILITY_REQ message to enable 2368 * IPsec hardware acceleration. 2369 */ 2370 ill_dlpi_send(ill, nmp); 2371 2372 if (need_sadb_dump) 2373 /* 2374 * An acknowledgement corresponding to a request to 2375 * enable acceleration was received, notify SADB. 2376 */ 2377 ill_ipsec_capab_add(ill, sub_dl_cap, sadb_resync); 2378 } 2379 2380 /* 2381 * Given an mblk with enough space in it, create sub-capability entries for 2382 * DL_CAPAB_IPSEC_{AH,ESP} types which consist of previously-advertised 2383 * offloaded ciphers (both AUTH and ENCR) with their enable flags cleared, 2384 * in preparation for the reset the DL_CAPABILITY_REQ message. 2385 */ 2386 static void 2387 ill_fill_ipsec_reset(uint_t nciphers, int stype, uint_t slen, 2388 ill_ipsec_capab_t *ill_cap, mblk_t *mp) 2389 { 2390 dl_capab_ipsec_t *oipsec; 2391 dl_capab_ipsec_alg_t *oalg; 2392 dl_capability_sub_t *dl_subcap; 2393 int i, k; 2394 2395 ASSERT(nciphers > 0); 2396 ASSERT(ill_cap != NULL); 2397 ASSERT(mp != NULL); 2398 ASSERT(MBLKTAIL(mp) >= sizeof (*dl_subcap) + sizeof (*oipsec) + slen); 2399 2400 /* dl_capability_sub_t for "stype" */ 2401 dl_subcap = (dl_capability_sub_t *)mp->b_wptr; 2402 dl_subcap->dl_cap = stype; 2403 dl_subcap->dl_length = sizeof (dl_capab_ipsec_t) + slen; 2404 mp->b_wptr += sizeof (dl_capability_sub_t); 2405 2406 /* dl_capab_ipsec_t for "stype" */ 2407 oipsec = (dl_capab_ipsec_t *)mp->b_wptr; 2408 oipsec->cip_version = 1; 2409 oipsec->cip_nciphers = nciphers; 2410 mp->b_wptr = (uchar_t *)&oipsec->cip_data[0]; 2411 2412 /* create entries for "stype" AUTH ciphers */ 2413 for (i = 0; i < ill_cap->algs_size; i++) { 2414 for (k = 0; k < BITSPERBYTE; k++) { 2415 if ((ill_cap->auth_hw_algs[i] & (1 << k)) == 0) 2416 continue; 2417 2418 oalg = (dl_capab_ipsec_alg_t *)mp->b_wptr; 2419 bzero((void *)oalg, sizeof (*oalg)); 2420 oalg->alg_type = DL_CAPAB_IPSEC_ALG_AUTH; 2421 oalg->alg_prim = k + (BITSPERBYTE * i); 2422 mp->b_wptr += sizeof (dl_capab_ipsec_alg_t); 2423 } 2424 } 2425 /* create entries for "stype" ENCR ciphers */ 2426 for (i = 0; i < ill_cap->algs_size; i++) { 2427 for (k = 0; k < BITSPERBYTE; k++) { 2428 if ((ill_cap->encr_hw_algs[i] & (1 << k)) == 0) 2429 continue; 2430 2431 oalg = (dl_capab_ipsec_alg_t *)mp->b_wptr; 2432 bzero((void *)oalg, sizeof (*oalg)); 2433 oalg->alg_type = DL_CAPAB_IPSEC_ALG_ENCR; 2434 oalg->alg_prim = k + (BITSPERBYTE * i); 2435 mp->b_wptr += sizeof (dl_capab_ipsec_alg_t); 2436 } 2437 } 2438 } 2439 2440 /* 2441 * Macro to count number of 1s in a byte (8-bit word). The total count is 2442 * accumulated into the passed-in argument (sum). We could use SPARCv9's 2443 * POPC instruction, but our macro is more flexible for an arbitrary length 2444 * of bytes, such as {auth,encr}_hw_algs. These variables are currently 2445 * 256-bits long (MAX_IPSEC_ALGS), so if we know for sure that the length 2446 * stays that way, we can reduce the number of iterations required. 2447 */ 2448 #define COUNT_1S(val, sum) { \ 2449 uint8_t x = val & 0xff; \ 2450 x = (x & 0x55) + ((x >> 1) & 0x55); \ 2451 x = (x & 0x33) + ((x >> 2) & 0x33); \ 2452 sum += (x & 0xf) + ((x >> 4) & 0xf); \ 2453 } 2454 2455 /* ARGSUSED */ 2456 static void 2457 ill_capability_ipsec_reset(ill_t *ill, mblk_t **sc_mp) 2458 { 2459 mblk_t *mp; 2460 ill_ipsec_capab_t *cap_ah = ill->ill_ipsec_capab_ah; 2461 ill_ipsec_capab_t *cap_esp = ill->ill_ipsec_capab_esp; 2462 uint64_t ill_capabilities = ill->ill_capabilities; 2463 int ah_cnt = 0, esp_cnt = 0; 2464 int ah_len = 0, esp_len = 0; 2465 int i, size = 0; 2466 2467 if (!(ill_capabilities & (ILL_CAPAB_AH | ILL_CAPAB_ESP))) 2468 return; 2469 2470 ASSERT(cap_ah != NULL || !(ill_capabilities & ILL_CAPAB_AH)); 2471 ASSERT(cap_esp != NULL || !(ill_capabilities & ILL_CAPAB_ESP)); 2472 2473 /* Find out the number of ciphers for AH */ 2474 if (cap_ah != NULL) { 2475 for (i = 0; i < cap_ah->algs_size; i++) { 2476 COUNT_1S(cap_ah->auth_hw_algs[i], ah_cnt); 2477 COUNT_1S(cap_ah->encr_hw_algs[i], ah_cnt); 2478 } 2479 if (ah_cnt > 0) { 2480 size += sizeof (dl_capability_sub_t) + 2481 sizeof (dl_capab_ipsec_t); 2482 /* dl_capab_ipsec_t contains one dl_capab_ipsec_alg_t */ 2483 ah_len = (ah_cnt - 1) * sizeof (dl_capab_ipsec_alg_t); 2484 size += ah_len; 2485 } 2486 } 2487 2488 /* Find out the number of ciphers for ESP */ 2489 if (cap_esp != NULL) { 2490 for (i = 0; i < cap_esp->algs_size; i++) { 2491 COUNT_1S(cap_esp->auth_hw_algs[i], esp_cnt); 2492 COUNT_1S(cap_esp->encr_hw_algs[i], esp_cnt); 2493 } 2494 if (esp_cnt > 0) { 2495 size += sizeof (dl_capability_sub_t) + 2496 sizeof (dl_capab_ipsec_t); 2497 /* dl_capab_ipsec_t contains one dl_capab_ipsec_alg_t */ 2498 esp_len = (esp_cnt - 1) * sizeof (dl_capab_ipsec_alg_t); 2499 size += esp_len; 2500 } 2501 } 2502 2503 if (size == 0) { 2504 ip1dbg(("ill_capability_ipsec_reset: capabilities exist but " 2505 "there's nothing to reset\n")); 2506 return; 2507 } 2508 2509 mp = allocb(size, BPRI_HI); 2510 if (mp == NULL) { 2511 ip1dbg(("ill_capability_ipsec_reset: unable to allocate " 2512 "request to disable IPSEC Hardware Acceleration\n")); 2513 return; 2514 } 2515 2516 /* 2517 * Clear the capability flags for IPsec HA but retain the ill 2518 * capability structures since it's possible that another thread 2519 * is still referring to them. The structures only get deallocated 2520 * when we destroy the ill. 2521 * 2522 * Various places check the flags to see if the ill is capable of 2523 * hardware acceleration, and by clearing them we ensure that new 2524 * outbound IPsec packets are sent down encrypted. 2525 */ 2526 ill->ill_capabilities &= ~(ILL_CAPAB_AH | ILL_CAPAB_ESP); 2527 2528 /* Fill in DL_CAPAB_IPSEC_AH sub-capability entries */ 2529 if (ah_cnt > 0) { 2530 ill_fill_ipsec_reset(ah_cnt, DL_CAPAB_IPSEC_AH, ah_len, 2531 cap_ah, mp); 2532 ASSERT(mp->b_rptr + size >= mp->b_wptr); 2533 } 2534 2535 /* Fill in DL_CAPAB_IPSEC_ESP sub-capability entries */ 2536 if (esp_cnt > 0) { 2537 ill_fill_ipsec_reset(esp_cnt, DL_CAPAB_IPSEC_ESP, esp_len, 2538 cap_esp, mp); 2539 ASSERT(mp->b_rptr + size >= mp->b_wptr); 2540 } 2541 2542 /* 2543 * At this point we've composed a bunch of sub-capabilities to be 2544 * encapsulated in a DL_CAPABILITY_REQ and later sent downstream 2545 * by the caller. Upon receiving this reset message, the driver 2546 * must stop inbound decryption (by destroying all inbound SAs) 2547 * and let the corresponding packets come in encrypted. 2548 */ 2549 2550 if (*sc_mp != NULL) 2551 linkb(*sc_mp, mp); 2552 else 2553 *sc_mp = mp; 2554 } 2555 2556 static void 2557 ill_capability_dispatch(ill_t *ill, mblk_t *mp, dl_capability_sub_t *subp, 2558 boolean_t encapsulated) 2559 { 2560 boolean_t legacy = B_FALSE; 2561 2562 /* 2563 * If this DL_CAPABILITY_ACK came in as a response to our "reset" 2564 * DL_CAPABILITY_REQ, ignore it during this cycle. We've just 2565 * instructed the driver to disable its advertised capabilities, 2566 * so there's no point in accepting any response at this moment. 2567 */ 2568 if (ill->ill_dlpi_capab_state == IDS_UNKNOWN) 2569 return; 2570 2571 /* 2572 * Note that only the following two sub-capabilities may be 2573 * considered as "legacy", since their original definitions 2574 * do not incorporate the dl_mid_t module ID token, and hence 2575 * may require the use of the wrapper sub-capability. 2576 */ 2577 switch (subp->dl_cap) { 2578 case DL_CAPAB_IPSEC_AH: 2579 case DL_CAPAB_IPSEC_ESP: 2580 legacy = B_TRUE; 2581 break; 2582 } 2583 2584 /* 2585 * For legacy sub-capabilities which don't incorporate a queue_t 2586 * pointer in their structures, discard them if we detect that 2587 * there are intermediate modules in between IP and the driver. 2588 */ 2589 if (!encapsulated && legacy && ill->ill_lmod_cnt > 1) { 2590 ip1dbg(("ill_capability_dispatch: unencapsulated capab type " 2591 "%d discarded; %d module(s) present below IP\n", 2592 subp->dl_cap, ill->ill_lmod_cnt)); 2593 return; 2594 } 2595 2596 switch (subp->dl_cap) { 2597 case DL_CAPAB_IPSEC_AH: 2598 case DL_CAPAB_IPSEC_ESP: 2599 ill_capability_ipsec_ack(ill, mp, subp); 2600 break; 2601 case DL_CAPAB_MDT: 2602 ill_capability_mdt_ack(ill, mp, subp); 2603 break; 2604 case DL_CAPAB_HCKSUM: 2605 ill_capability_hcksum_ack(ill, mp, subp); 2606 break; 2607 case DL_CAPAB_ZEROCOPY: 2608 ill_capability_zerocopy_ack(ill, mp, subp); 2609 break; 2610 case DL_CAPAB_POLL: 2611 if (!SOFT_RINGS_ENABLED()) 2612 ill_capability_dls_ack(ill, mp, subp); 2613 break; 2614 case DL_CAPAB_SOFT_RING: 2615 if (SOFT_RINGS_ENABLED()) 2616 ill_capability_dls_ack(ill, mp, subp); 2617 break; 2618 case DL_CAPAB_LSO: 2619 ill_capability_lso_ack(ill, mp, subp); 2620 break; 2621 default: 2622 ip1dbg(("ill_capability_dispatch: unknown capab type %d\n", 2623 subp->dl_cap)); 2624 } 2625 } 2626 2627 /* 2628 * As part of negotiating polling capability, the driver tells us 2629 * the default (or normal) blanking interval and packet threshold 2630 * (the receive timer fires if blanking interval is reached or 2631 * the packet threshold is reached). 2632 * 2633 * As part of manipulating the polling interval, we always use our 2634 * estimated interval (avg service time * number of packets queued 2635 * on the squeue) but we try to blank for a minimum of 2636 * rr_normal_blank_time * rr_max_blank_ratio. We disable the 2637 * packet threshold during this time. When we are not in polling mode 2638 * we set the blank interval typically lower, rr_normal_pkt_cnt * 2639 * rr_min_blank_ratio but up the packet cnt by a ratio of 2640 * rr_min_pkt_cnt_ratio so that we are still getting chains if 2641 * possible although for a shorter interval. 2642 */ 2643 #define RR_MAX_BLANK_RATIO 20 2644 #define RR_MIN_BLANK_RATIO 10 2645 #define RR_MAX_PKT_CNT_RATIO 3 2646 #define RR_MIN_PKT_CNT_RATIO 3 2647 2648 /* 2649 * These can be tuned via /etc/system. 2650 */ 2651 int rr_max_blank_ratio = RR_MAX_BLANK_RATIO; 2652 int rr_min_blank_ratio = RR_MIN_BLANK_RATIO; 2653 int rr_max_pkt_cnt_ratio = RR_MAX_PKT_CNT_RATIO; 2654 int rr_min_pkt_cnt_ratio = RR_MIN_PKT_CNT_RATIO; 2655 2656 static mac_resource_handle_t 2657 ill_ring_add(void *arg, mac_resource_t *mrp) 2658 { 2659 ill_t *ill = (ill_t *)arg; 2660 mac_rx_fifo_t *mrfp = (mac_rx_fifo_t *)mrp; 2661 ill_rx_ring_t *rx_ring; 2662 int ip_rx_index; 2663 2664 ASSERT(mrp != NULL); 2665 if (mrp->mr_type != MAC_RX_FIFO) { 2666 return (NULL); 2667 } 2668 ASSERT(ill != NULL); 2669 ASSERT(ill->ill_dls_capab != NULL); 2670 2671 mutex_enter(&ill->ill_lock); 2672 for (ip_rx_index = 0; ip_rx_index < ILL_MAX_RINGS; ip_rx_index++) { 2673 rx_ring = &ill->ill_dls_capab->ill_ring_tbl[ip_rx_index]; 2674 ASSERT(rx_ring != NULL); 2675 2676 if (rx_ring->rr_ring_state == ILL_RING_FREE) { 2677 time_t normal_blank_time = 2678 mrfp->mrf_normal_blank_time; 2679 uint_t normal_pkt_cnt = 2680 mrfp->mrf_normal_pkt_count; 2681 2682 bzero(rx_ring, sizeof (ill_rx_ring_t)); 2683 2684 rx_ring->rr_blank = mrfp->mrf_blank; 2685 rx_ring->rr_handle = mrfp->mrf_arg; 2686 rx_ring->rr_ill = ill; 2687 rx_ring->rr_normal_blank_time = normal_blank_time; 2688 rx_ring->rr_normal_pkt_cnt = normal_pkt_cnt; 2689 2690 rx_ring->rr_max_blank_time = 2691 normal_blank_time * rr_max_blank_ratio; 2692 rx_ring->rr_min_blank_time = 2693 normal_blank_time * rr_min_blank_ratio; 2694 rx_ring->rr_max_pkt_cnt = 2695 normal_pkt_cnt * rr_max_pkt_cnt_ratio; 2696 rx_ring->rr_min_pkt_cnt = 2697 normal_pkt_cnt * rr_min_pkt_cnt_ratio; 2698 2699 rx_ring->rr_ring_state = ILL_RING_INUSE; 2700 mutex_exit(&ill->ill_lock); 2701 2702 DTRACE_PROBE2(ill__ring__add, (void *), ill, 2703 (int), ip_rx_index); 2704 return ((mac_resource_handle_t)rx_ring); 2705 } 2706 } 2707 2708 /* 2709 * We ran out of ILL_MAX_RINGS worth rx_ring structures. If 2710 * we have devices which can overwhelm this limit, ILL_MAX_RING 2711 * should be made configurable. Meanwhile it cause no panic because 2712 * driver will pass ip_input a NULL handle which will make 2713 * IP allocate the default squeue and Polling mode will not 2714 * be used for this ring. 2715 */ 2716 cmn_err(CE_NOTE, "Reached maximum number of receiving rings (%d) " 2717 "for %s\n", ILL_MAX_RINGS, ill->ill_name); 2718 2719 mutex_exit(&ill->ill_lock); 2720 return (NULL); 2721 } 2722 2723 static boolean_t 2724 ill_capability_dls_init(ill_t *ill) 2725 { 2726 ill_dls_capab_t *ill_dls = ill->ill_dls_capab; 2727 conn_t *connp; 2728 size_t sz; 2729 ip_stack_t *ipst = ill->ill_ipst; 2730 2731 if (ill->ill_capabilities & ILL_CAPAB_SOFT_RING) { 2732 if (ill_dls == NULL) { 2733 cmn_err(CE_PANIC, "ill_capability_dls_init: " 2734 "soft_ring enabled for ill=%s (%p) but data " 2735 "structs uninitialized\n", ill->ill_name, 2736 (void *)ill); 2737 } 2738 return (B_TRUE); 2739 } else if (ill->ill_capabilities & ILL_CAPAB_POLL) { 2740 if (ill_dls == NULL) { 2741 cmn_err(CE_PANIC, "ill_capability_dls_init: " 2742 "polling enabled for ill=%s (%p) but data " 2743 "structs uninitialized\n", ill->ill_name, 2744 (void *)ill); 2745 } 2746 return (B_TRUE); 2747 } 2748 2749 if (ill_dls != NULL) { 2750 ill_rx_ring_t *rx_ring = ill_dls->ill_ring_tbl; 2751 /* Soft_Ring or polling is being re-enabled */ 2752 2753 connp = ill_dls->ill_unbind_conn; 2754 ASSERT(rx_ring != NULL); 2755 bzero((void *)ill_dls, sizeof (ill_dls_capab_t)); 2756 bzero((void *)rx_ring, 2757 sizeof (ill_rx_ring_t) * ILL_MAX_RINGS); 2758 ill_dls->ill_ring_tbl = rx_ring; 2759 ill_dls->ill_unbind_conn = connp; 2760 return (B_TRUE); 2761 } 2762 2763 if ((connp = ipcl_conn_create(IPCL_TCPCONN, KM_NOSLEEP, 2764 ipst->ips_netstack)) == NULL) 2765 return (B_FALSE); 2766 2767 sz = sizeof (ill_dls_capab_t); 2768 sz += sizeof (ill_rx_ring_t) * ILL_MAX_RINGS; 2769 2770 ill_dls = kmem_zalloc(sz, KM_NOSLEEP); 2771 if (ill_dls == NULL) { 2772 cmn_err(CE_WARN, "ill_capability_dls_init: could not " 2773 "allocate dls_capab for %s (%p)\n", ill->ill_name, 2774 (void *)ill); 2775 CONN_DEC_REF(connp); 2776 return (B_FALSE); 2777 } 2778 2779 /* Allocate space to hold ring table */ 2780 ill_dls->ill_ring_tbl = (ill_rx_ring_t *)&ill_dls[1]; 2781 ill->ill_dls_capab = ill_dls; 2782 ill_dls->ill_unbind_conn = connp; 2783 return (B_TRUE); 2784 } 2785 2786 /* 2787 * ill_capability_dls_disable: disable soft_ring and/or polling 2788 * capability. Since any of the rings might already be in use, need 2789 * to call ip_squeue_clean_all() which gets behind the squeue to disable 2790 * direct calls if necessary. 2791 */ 2792 static void 2793 ill_capability_dls_disable(ill_t *ill) 2794 { 2795 ill_dls_capab_t *ill_dls = ill->ill_dls_capab; 2796 2797 if (ill->ill_capabilities & ILL_CAPAB_DLS) { 2798 ip_squeue_clean_all(ill); 2799 ill_dls->ill_tx = NULL; 2800 ill_dls->ill_tx_handle = NULL; 2801 ill_dls->ill_dls_change_status = NULL; 2802 ill_dls->ill_dls_bind = NULL; 2803 ill_dls->ill_dls_unbind = NULL; 2804 } 2805 2806 ASSERT(!(ill->ill_capabilities & ILL_CAPAB_DLS)); 2807 } 2808 2809 static void 2810 ill_capability_dls_capable(ill_t *ill, dl_capab_dls_t *idls, 2811 dl_capability_sub_t *isub) 2812 { 2813 uint_t size; 2814 uchar_t *rptr; 2815 dl_capab_dls_t dls, *odls; 2816 ill_dls_capab_t *ill_dls; 2817 mblk_t *nmp = NULL; 2818 dl_capability_req_t *ocap; 2819 uint_t sub_dl_cap = isub->dl_cap; 2820 2821 if (!ill_capability_dls_init(ill)) 2822 return; 2823 ill_dls = ill->ill_dls_capab; 2824 2825 /* Copy locally to get the members aligned */ 2826 bcopy((void *)idls, (void *)&dls, 2827 sizeof (dl_capab_dls_t)); 2828 2829 /* Get the tx function and handle from dld */ 2830 ill_dls->ill_tx = (ip_dld_tx_t)dls.dls_tx; 2831 ill_dls->ill_tx_handle = (void *)dls.dls_tx_handle; 2832 2833 if (sub_dl_cap == DL_CAPAB_SOFT_RING) { 2834 ill_dls->ill_dls_change_status = 2835 (ip_dls_chg_soft_ring_t)dls.dls_ring_change_status; 2836 ill_dls->ill_dls_bind = (ip_dls_bind_t)dls.dls_ring_bind; 2837 ill_dls->ill_dls_unbind = 2838 (ip_dls_unbind_t)dls.dls_ring_unbind; 2839 ill_dls->ill_dls_soft_ring_cnt = ip_soft_rings_cnt; 2840 } 2841 2842 size = sizeof (dl_capability_req_t) + sizeof (dl_capability_sub_t) + 2843 isub->dl_length; 2844 2845 if ((nmp = ip_dlpi_alloc(size, DL_CAPABILITY_REQ)) == NULL) { 2846 cmn_err(CE_WARN, "ill_capability_dls_capable: could " 2847 "not allocate memory for CAPAB_REQ for %s (%p)\n", 2848 ill->ill_name, (void *)ill); 2849 return; 2850 } 2851 2852 /* initialize dl_capability_req_t */ 2853 rptr = nmp->b_rptr; 2854 ocap = (dl_capability_req_t *)rptr; 2855 ocap->dl_sub_offset = sizeof (dl_capability_req_t); 2856 ocap->dl_sub_length = sizeof (dl_capability_sub_t) + isub->dl_length; 2857 rptr += sizeof (dl_capability_req_t); 2858 2859 /* initialize dl_capability_sub_t */ 2860 bcopy(isub, rptr, sizeof (*isub)); 2861 rptr += sizeof (*isub); 2862 2863 odls = (dl_capab_dls_t *)rptr; 2864 rptr += sizeof (dl_capab_dls_t); 2865 2866 /* initialize dl_capab_dls_t to be sent down */ 2867 dls.dls_rx_handle = (uintptr_t)ill; 2868 dls.dls_rx = (uintptr_t)ip_input; 2869 dls.dls_ring_add = (uintptr_t)ill_ring_add; 2870 2871 if (sub_dl_cap == DL_CAPAB_SOFT_RING) { 2872 dls.dls_ring_cnt = ip_soft_rings_cnt; 2873 dls.dls_ring_assign = (uintptr_t)ip_soft_ring_assignment; 2874 dls.dls_flags = SOFT_RING_ENABLE; 2875 } else { 2876 dls.dls_flags = POLL_ENABLE; 2877 ip1dbg(("ill_capability_dls_capable: asking interface %s " 2878 "to enable polling\n", ill->ill_name)); 2879 } 2880 bcopy((void *)&dls, (void *)odls, 2881 sizeof (dl_capab_dls_t)); 2882 ASSERT(nmp->b_wptr == (nmp->b_rptr + size)); 2883 /* 2884 * nmp points to a DL_CAPABILITY_REQ message to 2885 * enable either soft_ring or polling 2886 */ 2887 ill_dlpi_send(ill, nmp); 2888 } 2889 2890 static void 2891 ill_capability_dls_reset(ill_t *ill, mblk_t **sc_mp) 2892 { 2893 mblk_t *mp; 2894 dl_capab_dls_t *idls; 2895 dl_capability_sub_t *dl_subcap; 2896 int size; 2897 2898 if (!(ill->ill_capabilities & ILL_CAPAB_DLS)) 2899 return; 2900 2901 ASSERT(ill->ill_dls_capab != NULL); 2902 2903 size = sizeof (*dl_subcap) + sizeof (*idls); 2904 2905 mp = allocb(size, BPRI_HI); 2906 if (mp == NULL) { 2907 ip1dbg(("ill_capability_dls_reset: unable to allocate " 2908 "request to disable soft_ring\n")); 2909 return; 2910 } 2911 2912 mp->b_wptr = mp->b_rptr + size; 2913 2914 dl_subcap = (dl_capability_sub_t *)mp->b_rptr; 2915 dl_subcap->dl_length = sizeof (*idls); 2916 if (ill->ill_capabilities & ILL_CAPAB_SOFT_RING) 2917 dl_subcap->dl_cap = DL_CAPAB_SOFT_RING; 2918 else 2919 dl_subcap->dl_cap = DL_CAPAB_POLL; 2920 2921 idls = (dl_capab_dls_t *)(dl_subcap + 1); 2922 if (ill->ill_capabilities & ILL_CAPAB_SOFT_RING) 2923 idls->dls_flags = SOFT_RING_DISABLE; 2924 else 2925 idls->dls_flags = POLL_DISABLE; 2926 2927 if (*sc_mp != NULL) 2928 linkb(*sc_mp, mp); 2929 else 2930 *sc_mp = mp; 2931 } 2932 2933 /* 2934 * Process a soft_ring/poll capability negotiation ack received 2935 * from a DLS Provider.isub must point to the sub-capability 2936 * (DL_CAPAB_SOFT_RING/DL_CAPAB_POLL) of a DL_CAPABILITY_ACK message. 2937 */ 2938 static void 2939 ill_capability_dls_ack(ill_t *ill, mblk_t *mp, dl_capability_sub_t *isub) 2940 { 2941 dl_capab_dls_t *idls; 2942 uint_t sub_dl_cap = isub->dl_cap; 2943 uint8_t *capend; 2944 2945 ASSERT(sub_dl_cap == DL_CAPAB_SOFT_RING || 2946 sub_dl_cap == DL_CAPAB_POLL); 2947 2948 if (ill->ill_isv6) 2949 return; 2950 2951 /* 2952 * Note: range checks here are not absolutely sufficient to 2953 * make us robust against malformed messages sent by drivers; 2954 * this is in keeping with the rest of IP's dlpi handling. 2955 * (Remember, it's coming from something else in the kernel 2956 * address space) 2957 */ 2958 capend = (uint8_t *)(isub + 1) + isub->dl_length; 2959 if (capend > mp->b_wptr) { 2960 cmn_err(CE_WARN, "ill_capability_dls_ack: " 2961 "malformed sub-capability too long for mblk"); 2962 return; 2963 } 2964 2965 /* 2966 * There are two types of acks we process here: 2967 * 1. acks in reply to a (first form) generic capability req 2968 * (dls_flag will be set to SOFT_RING_CAPABLE or POLL_CAPABLE) 2969 * 2. acks in reply to a SOFT_RING_ENABLE or POLL_ENABLE 2970 * capability req. 2971 */ 2972 idls = (dl_capab_dls_t *)(isub + 1); 2973 2974 if (!dlcapabcheckqid(&idls->dls_mid, ill->ill_lmod_rq)) { 2975 ip1dbg(("ill_capability_dls_ack: mid token for dls " 2976 "capability isn't as expected; pass-thru " 2977 "module(s) detected, discarding capability\n")); 2978 if (ill->ill_capabilities & ILL_CAPAB_DLS) { 2979 /* 2980 * This is a capability renegotitation case. 2981 * The interface better be unusable at this 2982 * point other wise bad things will happen 2983 * if we disable direct calls on a running 2984 * and up interface. 2985 */ 2986 ill_capability_dls_disable(ill); 2987 } 2988 return; 2989 } 2990 2991 switch (idls->dls_flags) { 2992 default: 2993 /* Disable if unknown flag */ 2994 case SOFT_RING_DISABLE: 2995 case POLL_DISABLE: 2996 ill_capability_dls_disable(ill); 2997 break; 2998 case SOFT_RING_CAPABLE: 2999 case POLL_CAPABLE: 3000 /* 3001 * If the capability was already enabled, its safe 3002 * to disable it first to get rid of stale information 3003 * and then start enabling it again. 3004 */ 3005 ill_capability_dls_disable(ill); 3006 ill_capability_dls_capable(ill, idls, isub); 3007 break; 3008 case SOFT_RING_ENABLE: 3009 case POLL_ENABLE: 3010 mutex_enter(&ill->ill_lock); 3011 if (sub_dl_cap == DL_CAPAB_SOFT_RING && 3012 !(ill->ill_capabilities & ILL_CAPAB_SOFT_RING)) { 3013 ASSERT(ill->ill_dls_capab != NULL); 3014 ill->ill_capabilities |= ILL_CAPAB_SOFT_RING; 3015 } 3016 if (sub_dl_cap == DL_CAPAB_POLL && 3017 !(ill->ill_capabilities & ILL_CAPAB_POLL)) { 3018 ASSERT(ill->ill_dls_capab != NULL); 3019 ill->ill_capabilities |= ILL_CAPAB_POLL; 3020 ip1dbg(("ill_capability_dls_ack: interface %s " 3021 "has enabled polling\n", ill->ill_name)); 3022 } 3023 mutex_exit(&ill->ill_lock); 3024 break; 3025 } 3026 } 3027 3028 /* 3029 * Process a hardware checksum offload capability negotiation ack received 3030 * from a DLS Provider.isub must point to the sub-capability (DL_CAPAB_HCKSUM) 3031 * of a DL_CAPABILITY_ACK message. 3032 */ 3033 static void 3034 ill_capability_hcksum_ack(ill_t *ill, mblk_t *mp, dl_capability_sub_t *isub) 3035 { 3036 dl_capability_req_t *ocap; 3037 dl_capab_hcksum_t *ihck, *ohck; 3038 ill_hcksum_capab_t **ill_hcksum; 3039 mblk_t *nmp = NULL; 3040 uint_t sub_dl_cap = isub->dl_cap; 3041 uint8_t *capend; 3042 3043 ASSERT(sub_dl_cap == DL_CAPAB_HCKSUM); 3044 3045 ill_hcksum = (ill_hcksum_capab_t **)&ill->ill_hcksum_capab; 3046 3047 /* 3048 * Note: range checks here are not absolutely sufficient to 3049 * make us robust against malformed messages sent by drivers; 3050 * this is in keeping with the rest of IP's dlpi handling. 3051 * (Remember, it's coming from something else in the kernel 3052 * address space) 3053 */ 3054 capend = (uint8_t *)(isub + 1) + isub->dl_length; 3055 if (capend > mp->b_wptr) { 3056 cmn_err(CE_WARN, "ill_capability_hcksum_ack: " 3057 "malformed sub-capability too long for mblk"); 3058 return; 3059 } 3060 3061 /* 3062 * There are two types of acks we process here: 3063 * 1. acks in reply to a (first form) generic capability req 3064 * (no ENABLE flag set) 3065 * 2. acks in reply to a ENABLE capability req. 3066 * (ENABLE flag set) 3067 */ 3068 ihck = (dl_capab_hcksum_t *)(isub + 1); 3069 3070 if (ihck->hcksum_version != HCKSUM_VERSION_1) { 3071 cmn_err(CE_CONT, "ill_capability_hcksum_ack: " 3072 "unsupported hardware checksum " 3073 "sub-capability (version %d, expected %d)", 3074 ihck->hcksum_version, HCKSUM_VERSION_1); 3075 return; 3076 } 3077 3078 if (!dlcapabcheckqid(&ihck->hcksum_mid, ill->ill_lmod_rq)) { 3079 ip1dbg(("ill_capability_hcksum_ack: mid token for hardware " 3080 "checksum capability isn't as expected; pass-thru " 3081 "module(s) detected, discarding capability\n")); 3082 return; 3083 } 3084 3085 #define CURR_HCKSUM_CAPAB \ 3086 (HCKSUM_INET_PARTIAL | HCKSUM_INET_FULL_V4 | \ 3087 HCKSUM_INET_FULL_V6 | HCKSUM_IPHDRCKSUM) 3088 3089 if ((ihck->hcksum_txflags & HCKSUM_ENABLE) && 3090 (ihck->hcksum_txflags & CURR_HCKSUM_CAPAB)) { 3091 /* do ENABLE processing */ 3092 if (*ill_hcksum == NULL) { 3093 *ill_hcksum = kmem_zalloc(sizeof (ill_hcksum_capab_t), 3094 KM_NOSLEEP); 3095 3096 if (*ill_hcksum == NULL) { 3097 cmn_err(CE_WARN, "ill_capability_hcksum_ack: " 3098 "could not enable hcksum version %d " 3099 "for %s (ENOMEM)\n", HCKSUM_CURRENT_VERSION, 3100 ill->ill_name); 3101 return; 3102 } 3103 } 3104 3105 (*ill_hcksum)->ill_hcksum_version = ihck->hcksum_version; 3106 (*ill_hcksum)->ill_hcksum_txflags = ihck->hcksum_txflags; 3107 ill->ill_capabilities |= ILL_CAPAB_HCKSUM; 3108 ip1dbg(("ill_capability_hcksum_ack: interface %s " 3109 "has enabled hardware checksumming\n ", 3110 ill->ill_name)); 3111 } else if (ihck->hcksum_txflags & CURR_HCKSUM_CAPAB) { 3112 /* 3113 * Enabling hardware checksum offload 3114 * Currently IP supports {TCP,UDP}/IPv4 3115 * partial and full cksum offload and 3116 * IPv4 header checksum offload. 3117 * Allocate new mblk which will 3118 * contain a new capability request 3119 * to enable hardware checksum offload. 3120 */ 3121 uint_t size; 3122 uchar_t *rptr; 3123 3124 size = sizeof (dl_capability_req_t) + 3125 sizeof (dl_capability_sub_t) + isub->dl_length; 3126 3127 if ((nmp = ip_dlpi_alloc(size, DL_CAPABILITY_REQ)) == NULL) { 3128 cmn_err(CE_WARN, "ill_capability_hcksum_ack: " 3129 "could not enable hardware cksum for %s (ENOMEM)\n", 3130 ill->ill_name); 3131 return; 3132 } 3133 3134 rptr = nmp->b_rptr; 3135 /* initialize dl_capability_req_t */ 3136 ocap = (dl_capability_req_t *)nmp->b_rptr; 3137 ocap->dl_sub_offset = 3138 sizeof (dl_capability_req_t); 3139 ocap->dl_sub_length = 3140 sizeof (dl_capability_sub_t) + 3141 isub->dl_length; 3142 nmp->b_rptr += sizeof (dl_capability_req_t); 3143 3144 /* initialize dl_capability_sub_t */ 3145 bcopy(isub, nmp->b_rptr, sizeof (*isub)); 3146 nmp->b_rptr += sizeof (*isub); 3147 3148 /* initialize dl_capab_hcksum_t */ 3149 ohck = (dl_capab_hcksum_t *)nmp->b_rptr; 3150 bcopy(ihck, ohck, sizeof (*ihck)); 3151 3152 nmp->b_rptr = rptr; 3153 ASSERT(nmp->b_wptr == (nmp->b_rptr + size)); 3154 3155 /* Set ENABLE flag */ 3156 ohck->hcksum_txflags &= CURR_HCKSUM_CAPAB; 3157 ohck->hcksum_txflags |= HCKSUM_ENABLE; 3158 3159 /* 3160 * nmp points to a DL_CAPABILITY_REQ message to enable 3161 * hardware checksum acceleration. 3162 */ 3163 ill_dlpi_send(ill, nmp); 3164 } else { 3165 ip1dbg(("ill_capability_hcksum_ack: interface %s has " 3166 "advertised %x hardware checksum capability flags\n", 3167 ill->ill_name, ihck->hcksum_txflags)); 3168 } 3169 } 3170 3171 static void 3172 ill_capability_hcksum_reset(ill_t *ill, mblk_t **sc_mp) 3173 { 3174 mblk_t *mp; 3175 dl_capab_hcksum_t *hck_subcap; 3176 dl_capability_sub_t *dl_subcap; 3177 int size; 3178 3179 if (!ILL_HCKSUM_CAPABLE(ill)) 3180 return; 3181 3182 ASSERT(ill->ill_hcksum_capab != NULL); 3183 /* 3184 * Clear the capability flag for hardware checksum offload but 3185 * retain the ill_hcksum_capab structure since it's possible that 3186 * another thread is still referring to it. The structure only 3187 * gets deallocated when we destroy the ill. 3188 */ 3189 ill->ill_capabilities &= ~ILL_CAPAB_HCKSUM; 3190 3191 size = sizeof (*dl_subcap) + sizeof (*hck_subcap); 3192 3193 mp = allocb(size, BPRI_HI); 3194 if (mp == NULL) { 3195 ip1dbg(("ill_capability_hcksum_reset: unable to allocate " 3196 "request to disable hardware checksum offload\n")); 3197 return; 3198 } 3199 3200 mp->b_wptr = mp->b_rptr + size; 3201 3202 dl_subcap = (dl_capability_sub_t *)mp->b_rptr; 3203 dl_subcap->dl_cap = DL_CAPAB_HCKSUM; 3204 dl_subcap->dl_length = sizeof (*hck_subcap); 3205 3206 hck_subcap = (dl_capab_hcksum_t *)(dl_subcap + 1); 3207 hck_subcap->hcksum_version = ill->ill_hcksum_capab->ill_hcksum_version; 3208 hck_subcap->hcksum_txflags = 0; 3209 3210 if (*sc_mp != NULL) 3211 linkb(*sc_mp, mp); 3212 else 3213 *sc_mp = mp; 3214 } 3215 3216 static void 3217 ill_capability_zerocopy_ack(ill_t *ill, mblk_t *mp, dl_capability_sub_t *isub) 3218 { 3219 mblk_t *nmp = NULL; 3220 dl_capability_req_t *oc; 3221 dl_capab_zerocopy_t *zc_ic, *zc_oc; 3222 ill_zerocopy_capab_t **ill_zerocopy_capab; 3223 uint_t sub_dl_cap = isub->dl_cap; 3224 uint8_t *capend; 3225 3226 ASSERT(sub_dl_cap == DL_CAPAB_ZEROCOPY); 3227 3228 ill_zerocopy_capab = (ill_zerocopy_capab_t **)&ill->ill_zerocopy_capab; 3229 3230 /* 3231 * Note: range checks here are not absolutely sufficient to 3232 * make us robust against malformed messages sent by drivers; 3233 * this is in keeping with the rest of IP's dlpi handling. 3234 * (Remember, it's coming from something else in the kernel 3235 * address space) 3236 */ 3237 capend = (uint8_t *)(isub + 1) + isub->dl_length; 3238 if (capend > mp->b_wptr) { 3239 cmn_err(CE_WARN, "ill_capability_zerocopy_ack: " 3240 "malformed sub-capability too long for mblk"); 3241 return; 3242 } 3243 3244 zc_ic = (dl_capab_zerocopy_t *)(isub + 1); 3245 if (zc_ic->zerocopy_version != ZEROCOPY_VERSION_1) { 3246 cmn_err(CE_CONT, "ill_capability_zerocopy_ack: " 3247 "unsupported ZEROCOPY sub-capability (version %d, " 3248 "expected %d)", zc_ic->zerocopy_version, 3249 ZEROCOPY_VERSION_1); 3250 return; 3251 } 3252 3253 if (!dlcapabcheckqid(&zc_ic->zerocopy_mid, ill->ill_lmod_rq)) { 3254 ip1dbg(("ill_capability_zerocopy_ack: mid token for zerocopy " 3255 "capability isn't as expected; pass-thru module(s) " 3256 "detected, discarding capability\n")); 3257 return; 3258 } 3259 3260 if ((zc_ic->zerocopy_flags & DL_CAPAB_VMSAFE_MEM) != 0) { 3261 if (*ill_zerocopy_capab == NULL) { 3262 *ill_zerocopy_capab = 3263 kmem_zalloc(sizeof (ill_zerocopy_capab_t), 3264 KM_NOSLEEP); 3265 3266 if (*ill_zerocopy_capab == NULL) { 3267 cmn_err(CE_WARN, "ill_capability_zerocopy_ack: " 3268 "could not enable Zero-copy version %d " 3269 "for %s (ENOMEM)\n", ZEROCOPY_VERSION_1, 3270 ill->ill_name); 3271 return; 3272 } 3273 } 3274 3275 ip1dbg(("ill_capability_zerocopy_ack: interface %s " 3276 "supports Zero-copy version %d\n", ill->ill_name, 3277 ZEROCOPY_VERSION_1)); 3278 3279 (*ill_zerocopy_capab)->ill_zerocopy_version = 3280 zc_ic->zerocopy_version; 3281 (*ill_zerocopy_capab)->ill_zerocopy_flags = 3282 zc_ic->zerocopy_flags; 3283 3284 ill->ill_capabilities |= ILL_CAPAB_ZEROCOPY; 3285 } else { 3286 uint_t size; 3287 uchar_t *rptr; 3288 3289 size = sizeof (dl_capability_req_t) + 3290 sizeof (dl_capability_sub_t) + 3291 sizeof (dl_capab_zerocopy_t); 3292 3293 if ((nmp = ip_dlpi_alloc(size, DL_CAPABILITY_REQ)) == NULL) { 3294 cmn_err(CE_WARN, "ill_capability_zerocopy_ack: " 3295 "could not enable zerocopy for %s (ENOMEM)\n", 3296 ill->ill_name); 3297 return; 3298 } 3299 3300 rptr = nmp->b_rptr; 3301 /* initialize dl_capability_req_t */ 3302 oc = (dl_capability_req_t *)rptr; 3303 oc->dl_sub_offset = sizeof (dl_capability_req_t); 3304 oc->dl_sub_length = sizeof (dl_capability_sub_t) + 3305 sizeof (dl_capab_zerocopy_t); 3306 rptr += sizeof (dl_capability_req_t); 3307 3308 /* initialize dl_capability_sub_t */ 3309 bcopy(isub, rptr, sizeof (*isub)); 3310 rptr += sizeof (*isub); 3311 3312 /* initialize dl_capab_zerocopy_t */ 3313 zc_oc = (dl_capab_zerocopy_t *)rptr; 3314 *zc_oc = *zc_ic; 3315 3316 ip1dbg(("ill_capability_zerocopy_ack: asking interface %s " 3317 "to enable zero-copy version %d\n", ill->ill_name, 3318 ZEROCOPY_VERSION_1)); 3319 3320 /* set VMSAFE_MEM flag */ 3321 zc_oc->zerocopy_flags |= DL_CAPAB_VMSAFE_MEM; 3322 3323 /* nmp points to a DL_CAPABILITY_REQ message to enable zcopy */ 3324 ill_dlpi_send(ill, nmp); 3325 } 3326 } 3327 3328 static void 3329 ill_capability_zerocopy_reset(ill_t *ill, mblk_t **sc_mp) 3330 { 3331 mblk_t *mp; 3332 dl_capab_zerocopy_t *zerocopy_subcap; 3333 dl_capability_sub_t *dl_subcap; 3334 int size; 3335 3336 if (!(ill->ill_capabilities & ILL_CAPAB_ZEROCOPY)) 3337 return; 3338 3339 ASSERT(ill->ill_zerocopy_capab != NULL); 3340 /* 3341 * Clear the capability flag for Zero-copy but retain the 3342 * ill_zerocopy_capab structure since it's possible that another 3343 * thread is still referring to it. The structure only gets 3344 * deallocated when we destroy the ill. 3345 */ 3346 ill->ill_capabilities &= ~ILL_CAPAB_ZEROCOPY; 3347 3348 size = sizeof (*dl_subcap) + sizeof (*zerocopy_subcap); 3349 3350 mp = allocb(size, BPRI_HI); 3351 if (mp == NULL) { 3352 ip1dbg(("ill_capability_zerocopy_reset: unable to allocate " 3353 "request to disable Zero-copy\n")); 3354 return; 3355 } 3356 3357 mp->b_wptr = mp->b_rptr + size; 3358 3359 dl_subcap = (dl_capability_sub_t *)mp->b_rptr; 3360 dl_subcap->dl_cap = DL_CAPAB_ZEROCOPY; 3361 dl_subcap->dl_length = sizeof (*zerocopy_subcap); 3362 3363 zerocopy_subcap = (dl_capab_zerocopy_t *)(dl_subcap + 1); 3364 zerocopy_subcap->zerocopy_version = 3365 ill->ill_zerocopy_capab->ill_zerocopy_version; 3366 zerocopy_subcap->zerocopy_flags = 0; 3367 3368 if (*sc_mp != NULL) 3369 linkb(*sc_mp, mp); 3370 else 3371 *sc_mp = mp; 3372 } 3373 3374 /* 3375 * Process Large Segment Offload capability negotiation ack received from a 3376 * DLS Provider. isub must point to the sub-capability (DL_CAPAB_LSO) of a 3377 * DL_CAPABILITY_ACK message. 3378 */ 3379 static void 3380 ill_capability_lso_ack(ill_t *ill, mblk_t *mp, dl_capability_sub_t *isub) 3381 { 3382 mblk_t *nmp = NULL; 3383 dl_capability_req_t *oc; 3384 dl_capab_lso_t *lso_ic, *lso_oc; 3385 ill_lso_capab_t **ill_lso_capab; 3386 uint_t sub_dl_cap = isub->dl_cap; 3387 uint8_t *capend; 3388 3389 ASSERT(sub_dl_cap == DL_CAPAB_LSO); 3390 3391 ill_lso_capab = (ill_lso_capab_t **)&ill->ill_lso_capab; 3392 3393 /* 3394 * Note: range checks here are not absolutely sufficient to 3395 * make us robust against malformed messages sent by drivers; 3396 * this is in keeping with the rest of IP's dlpi handling. 3397 * (Remember, it's coming from something else in the kernel 3398 * address space) 3399 */ 3400 capend = (uint8_t *)(isub + 1) + isub->dl_length; 3401 if (capend > mp->b_wptr) { 3402 cmn_err(CE_WARN, "ill_capability_lso_ack: " 3403 "malformed sub-capability too long for mblk"); 3404 return; 3405 } 3406 3407 lso_ic = (dl_capab_lso_t *)(isub + 1); 3408 3409 if (lso_ic->lso_version != LSO_VERSION_1) { 3410 cmn_err(CE_CONT, "ill_capability_lso_ack: " 3411 "unsupported LSO sub-capability (version %d, expected %d)", 3412 lso_ic->lso_version, LSO_VERSION_1); 3413 return; 3414 } 3415 3416 if (!dlcapabcheckqid(&lso_ic->lso_mid, ill->ill_lmod_rq)) { 3417 ip1dbg(("ill_capability_lso_ack: mid token for LSO " 3418 "capability isn't as expected; pass-thru module(s) " 3419 "detected, discarding capability\n")); 3420 return; 3421 } 3422 3423 if ((lso_ic->lso_flags & LSO_TX_ENABLE) && 3424 (lso_ic->lso_flags & LSO_TX_BASIC_TCP_IPV4)) { 3425 if (*ill_lso_capab == NULL) { 3426 *ill_lso_capab = kmem_zalloc(sizeof (ill_lso_capab_t), 3427 KM_NOSLEEP); 3428 3429 if (*ill_lso_capab == NULL) { 3430 cmn_err(CE_WARN, "ill_capability_lso_ack: " 3431 "could not enable LSO version %d " 3432 "for %s (ENOMEM)\n", LSO_VERSION_1, 3433 ill->ill_name); 3434 return; 3435 } 3436 } 3437 3438 (*ill_lso_capab)->ill_lso_version = lso_ic->lso_version; 3439 (*ill_lso_capab)->ill_lso_flags = lso_ic->lso_flags; 3440 (*ill_lso_capab)->ill_lso_max = lso_ic->lso_max; 3441 ill->ill_capabilities |= ILL_CAPAB_LSO; 3442 3443 ip1dbg(("ill_capability_lso_ack: interface %s " 3444 "has enabled LSO\n ", ill->ill_name)); 3445 } else if (lso_ic->lso_flags & LSO_TX_BASIC_TCP_IPV4) { 3446 uint_t size; 3447 uchar_t *rptr; 3448 3449 size = sizeof (dl_capability_req_t) + 3450 sizeof (dl_capability_sub_t) + sizeof (dl_capab_lso_t); 3451 3452 if ((nmp = ip_dlpi_alloc(size, DL_CAPABILITY_REQ)) == NULL) { 3453 cmn_err(CE_WARN, "ill_capability_lso_ack: " 3454 "could not enable LSO for %s (ENOMEM)\n", 3455 ill->ill_name); 3456 return; 3457 } 3458 3459 rptr = nmp->b_rptr; 3460 /* initialize dl_capability_req_t */ 3461 oc = (dl_capability_req_t *)nmp->b_rptr; 3462 oc->dl_sub_offset = sizeof (dl_capability_req_t); 3463 oc->dl_sub_length = sizeof (dl_capability_sub_t) + 3464 sizeof (dl_capab_lso_t); 3465 nmp->b_rptr += sizeof (dl_capability_req_t); 3466 3467 /* initialize dl_capability_sub_t */ 3468 bcopy(isub, nmp->b_rptr, sizeof (*isub)); 3469 nmp->b_rptr += sizeof (*isub); 3470 3471 /* initialize dl_capab_lso_t */ 3472 lso_oc = (dl_capab_lso_t *)nmp->b_rptr; 3473 bcopy(lso_ic, lso_oc, sizeof (*lso_ic)); 3474 3475 nmp->b_rptr = rptr; 3476 ASSERT(nmp->b_wptr == (nmp->b_rptr + size)); 3477 3478 /* set ENABLE flag */ 3479 lso_oc->lso_flags |= LSO_TX_ENABLE; 3480 3481 /* nmp points to a DL_CAPABILITY_REQ message to enable LSO */ 3482 ill_dlpi_send(ill, nmp); 3483 } else { 3484 ip1dbg(("ill_capability_lso_ack: interface %s has " 3485 "advertised %x LSO capability flags\n", 3486 ill->ill_name, lso_ic->lso_flags)); 3487 } 3488 } 3489 3490 static void 3491 ill_capability_lso_reset(ill_t *ill, mblk_t **sc_mp) 3492 { 3493 mblk_t *mp; 3494 dl_capab_lso_t *lso_subcap; 3495 dl_capability_sub_t *dl_subcap; 3496 int size; 3497 3498 if (!(ill->ill_capabilities & ILL_CAPAB_LSO)) 3499 return; 3500 3501 ASSERT(ill->ill_lso_capab != NULL); 3502 /* 3503 * Clear the capability flag for LSO but retain the 3504 * ill_lso_capab structure since it's possible that another 3505 * thread is still referring to it. The structure only gets 3506 * deallocated when we destroy the ill. 3507 */ 3508 ill->ill_capabilities &= ~ILL_CAPAB_LSO; 3509 3510 size = sizeof (*dl_subcap) + sizeof (*lso_subcap); 3511 3512 mp = allocb(size, BPRI_HI); 3513 if (mp == NULL) { 3514 ip1dbg(("ill_capability_lso_reset: unable to allocate " 3515 "request to disable LSO\n")); 3516 return; 3517 } 3518 3519 mp->b_wptr = mp->b_rptr + size; 3520 3521 dl_subcap = (dl_capability_sub_t *)mp->b_rptr; 3522 dl_subcap->dl_cap = DL_CAPAB_LSO; 3523 dl_subcap->dl_length = sizeof (*lso_subcap); 3524 3525 lso_subcap = (dl_capab_lso_t *)(dl_subcap + 1); 3526 lso_subcap->lso_version = ill->ill_lso_capab->ill_lso_version; 3527 lso_subcap->lso_flags = 0; 3528 3529 if (*sc_mp != NULL) 3530 linkb(*sc_mp, mp); 3531 else 3532 *sc_mp = mp; 3533 } 3534 3535 /* 3536 * Consume a new-style hardware capabilities negotiation ack. 3537 * Called from ip_rput_dlpi_writer(). 3538 */ 3539 void 3540 ill_capability_ack(ill_t *ill, mblk_t *mp) 3541 { 3542 dl_capability_ack_t *capp; 3543 dl_capability_sub_t *subp, *endp; 3544 3545 if (ill->ill_dlpi_capab_state == IDS_INPROGRESS) 3546 ill->ill_dlpi_capab_state = IDS_OK; 3547 3548 capp = (dl_capability_ack_t *)mp->b_rptr; 3549 3550 if (capp->dl_sub_length == 0) 3551 /* no new-style capabilities */ 3552 return; 3553 3554 /* make sure the driver supplied correct dl_sub_length */ 3555 if ((sizeof (*capp) + capp->dl_sub_length) > MBLKL(mp)) { 3556 ip0dbg(("ill_capability_ack: bad DL_CAPABILITY_ACK, " 3557 "invalid dl_sub_length (%d)\n", capp->dl_sub_length)); 3558 return; 3559 } 3560 3561 #define SC(base, offset) (dl_capability_sub_t *)(((uchar_t *)(base))+(offset)) 3562 /* 3563 * There are sub-capabilities. Process the ones we know about. 3564 * Loop until we don't have room for another sub-cap header.. 3565 */ 3566 for (subp = SC(capp, capp->dl_sub_offset), 3567 endp = SC(subp, capp->dl_sub_length - sizeof (*subp)); 3568 subp <= endp; 3569 subp = SC(subp, sizeof (dl_capability_sub_t) + subp->dl_length)) { 3570 3571 switch (subp->dl_cap) { 3572 case DL_CAPAB_ID_WRAPPER: 3573 ill_capability_id_ack(ill, mp, subp); 3574 break; 3575 default: 3576 ill_capability_dispatch(ill, mp, subp, B_FALSE); 3577 break; 3578 } 3579 } 3580 #undef SC 3581 } 3582 3583 /* 3584 * This routine is called to scan the fragmentation reassembly table for 3585 * the specified ILL for any packets that are starting to smell. 3586 * dead_interval is the maximum time in seconds that will be tolerated. It 3587 * will either be the value specified in ip_g_frag_timeout, or zero if the 3588 * ILL is shutting down and it is time to blow everything off. 3589 * 3590 * It returns the number of seconds (as a time_t) that the next frag timer 3591 * should be scheduled for, 0 meaning that the timer doesn't need to be 3592 * re-started. Note that the method of calculating next_timeout isn't 3593 * entirely accurate since time will flow between the time we grab 3594 * current_time and the time we schedule the next timeout. This isn't a 3595 * big problem since this is the timer for sending an ICMP reassembly time 3596 * exceeded messages, and it doesn't have to be exactly accurate. 3597 * 3598 * This function is 3599 * sometimes called as writer, although this is not required. 3600 */ 3601 time_t 3602 ill_frag_timeout(ill_t *ill, time_t dead_interval) 3603 { 3604 ipfb_t *ipfb; 3605 ipfb_t *endp; 3606 ipf_t *ipf; 3607 ipf_t *ipfnext; 3608 mblk_t *mp; 3609 time_t current_time = gethrestime_sec(); 3610 time_t next_timeout = 0; 3611 uint32_t hdr_length; 3612 mblk_t *send_icmp_head; 3613 mblk_t *send_icmp_head_v6; 3614 zoneid_t zoneid; 3615 ip_stack_t *ipst = ill->ill_ipst; 3616 3617 ipfb = ill->ill_frag_hash_tbl; 3618 if (ipfb == NULL) 3619 return (B_FALSE); 3620 endp = &ipfb[ILL_FRAG_HASH_TBL_COUNT]; 3621 /* Walk the frag hash table. */ 3622 for (; ipfb < endp; ipfb++) { 3623 send_icmp_head = NULL; 3624 send_icmp_head_v6 = NULL; 3625 mutex_enter(&ipfb->ipfb_lock); 3626 while ((ipf = ipfb->ipfb_ipf) != 0) { 3627 time_t frag_time = current_time - ipf->ipf_timestamp; 3628 time_t frag_timeout; 3629 3630 if (frag_time < dead_interval) { 3631 /* 3632 * There are some outstanding fragments 3633 * that will timeout later. Make note of 3634 * the time so that we can reschedule the 3635 * next timeout appropriately. 3636 */ 3637 frag_timeout = dead_interval - frag_time; 3638 if (next_timeout == 0 || 3639 frag_timeout < next_timeout) { 3640 next_timeout = frag_timeout; 3641 } 3642 break; 3643 } 3644 /* Time's up. Get it out of here. */ 3645 hdr_length = ipf->ipf_nf_hdr_len; 3646 ipfnext = ipf->ipf_hash_next; 3647 if (ipfnext) 3648 ipfnext->ipf_ptphn = ipf->ipf_ptphn; 3649 *ipf->ipf_ptphn = ipfnext; 3650 mp = ipf->ipf_mp->b_cont; 3651 for (; mp; mp = mp->b_cont) { 3652 /* Extra points for neatness. */ 3653 IP_REASS_SET_START(mp, 0); 3654 IP_REASS_SET_END(mp, 0); 3655 } 3656 mp = ipf->ipf_mp->b_cont; 3657 atomic_add_32(&ill->ill_frag_count, -ipf->ipf_count); 3658 ASSERT(ipfb->ipfb_count >= ipf->ipf_count); 3659 ipfb->ipfb_count -= ipf->ipf_count; 3660 ASSERT(ipfb->ipfb_frag_pkts > 0); 3661 ipfb->ipfb_frag_pkts--; 3662 /* 3663 * We do not send any icmp message from here because 3664 * we currently are holding the ipfb_lock for this 3665 * hash chain. If we try and send any icmp messages 3666 * from here we may end up via a put back into ip 3667 * trying to get the same lock, causing a recursive 3668 * mutex panic. Instead we build a list and send all 3669 * the icmp messages after we have dropped the lock. 3670 */ 3671 if (ill->ill_isv6) { 3672 if (hdr_length != 0) { 3673 mp->b_next = send_icmp_head_v6; 3674 send_icmp_head_v6 = mp; 3675 } else { 3676 freemsg(mp); 3677 } 3678 } else { 3679 if (hdr_length != 0) { 3680 mp->b_next = send_icmp_head; 3681 send_icmp_head = mp; 3682 } else { 3683 freemsg(mp); 3684 } 3685 } 3686 BUMP_MIB(ill->ill_ip_mib, ipIfStatsReasmFails); 3687 freeb(ipf->ipf_mp); 3688 } 3689 mutex_exit(&ipfb->ipfb_lock); 3690 /* 3691 * Now need to send any icmp messages that we delayed from 3692 * above. 3693 */ 3694 while (send_icmp_head_v6 != NULL) { 3695 ip6_t *ip6h; 3696 3697 mp = send_icmp_head_v6; 3698 send_icmp_head_v6 = send_icmp_head_v6->b_next; 3699 mp->b_next = NULL; 3700 if (mp->b_datap->db_type == M_CTL) 3701 ip6h = (ip6_t *)mp->b_cont->b_rptr; 3702 else 3703 ip6h = (ip6_t *)mp->b_rptr; 3704 zoneid = ipif_lookup_addr_zoneid_v6(&ip6h->ip6_dst, 3705 ill, ipst); 3706 if (zoneid == ALL_ZONES) { 3707 freemsg(mp); 3708 } else { 3709 icmp_time_exceeded_v6(ill->ill_wq, mp, 3710 ICMP_REASSEMBLY_TIME_EXCEEDED, B_FALSE, 3711 B_FALSE, zoneid, ipst); 3712 } 3713 } 3714 while (send_icmp_head != NULL) { 3715 ipaddr_t dst; 3716 3717 mp = send_icmp_head; 3718 send_icmp_head = send_icmp_head->b_next; 3719 mp->b_next = NULL; 3720 3721 if (mp->b_datap->db_type == M_CTL) 3722 dst = ((ipha_t *)mp->b_cont->b_rptr)->ipha_dst; 3723 else 3724 dst = ((ipha_t *)mp->b_rptr)->ipha_dst; 3725 3726 zoneid = ipif_lookup_addr_zoneid(dst, ill, ipst); 3727 if (zoneid == ALL_ZONES) { 3728 freemsg(mp); 3729 } else { 3730 icmp_time_exceeded(ill->ill_wq, mp, 3731 ICMP_REASSEMBLY_TIME_EXCEEDED, zoneid, 3732 ipst); 3733 } 3734 } 3735 } 3736 /* 3737 * A non-dying ILL will use the return value to decide whether to 3738 * restart the frag timer, and for how long. 3739 */ 3740 return (next_timeout); 3741 } 3742 3743 /* 3744 * This routine is called when the approximate count of mblk memory used 3745 * for the specified ILL has exceeded max_count. 3746 */ 3747 void 3748 ill_frag_prune(ill_t *ill, uint_t max_count) 3749 { 3750 ipfb_t *ipfb; 3751 ipf_t *ipf; 3752 size_t count; 3753 3754 /* 3755 * If we are here within ip_min_frag_prune_time msecs remove 3756 * ill_frag_free_num_pkts oldest packets from each bucket and increment 3757 * ill_frag_free_num_pkts. 3758 */ 3759 mutex_enter(&ill->ill_lock); 3760 if (TICK_TO_MSEC(lbolt - ill->ill_last_frag_clean_time) <= 3761 (ip_min_frag_prune_time != 0 ? 3762 ip_min_frag_prune_time : msec_per_tick)) { 3763 3764 ill->ill_frag_free_num_pkts++; 3765 3766 } else { 3767 ill->ill_frag_free_num_pkts = 0; 3768 } 3769 ill->ill_last_frag_clean_time = lbolt; 3770 mutex_exit(&ill->ill_lock); 3771 3772 /* 3773 * free ill_frag_free_num_pkts oldest packets from each bucket. 3774 */ 3775 if (ill->ill_frag_free_num_pkts != 0) { 3776 int ix; 3777 3778 for (ix = 0; ix < ILL_FRAG_HASH_TBL_COUNT; ix++) { 3779 ipfb = &ill->ill_frag_hash_tbl[ix]; 3780 mutex_enter(&ipfb->ipfb_lock); 3781 if (ipfb->ipfb_ipf != NULL) { 3782 ill_frag_free_pkts(ill, ipfb, ipfb->ipfb_ipf, 3783 ill->ill_frag_free_num_pkts); 3784 } 3785 mutex_exit(&ipfb->ipfb_lock); 3786 } 3787 } 3788 /* 3789 * While the reassembly list for this ILL is too big, prune a fragment 3790 * queue by age, oldest first. 3791 */ 3792 while (ill->ill_frag_count > max_count) { 3793 int ix; 3794 ipfb_t *oipfb = NULL; 3795 uint_t oldest = UINT_MAX; 3796 3797 count = 0; 3798 for (ix = 0; ix < ILL_FRAG_HASH_TBL_COUNT; ix++) { 3799 ipfb = &ill->ill_frag_hash_tbl[ix]; 3800 mutex_enter(&ipfb->ipfb_lock); 3801 ipf = ipfb->ipfb_ipf; 3802 if (ipf != NULL && ipf->ipf_gen < oldest) { 3803 oldest = ipf->ipf_gen; 3804 oipfb = ipfb; 3805 } 3806 count += ipfb->ipfb_count; 3807 mutex_exit(&ipfb->ipfb_lock); 3808 } 3809 if (oipfb == NULL) 3810 break; 3811 3812 if (count <= max_count) 3813 return; /* Somebody beat us to it, nothing to do */ 3814 mutex_enter(&oipfb->ipfb_lock); 3815 ipf = oipfb->ipfb_ipf; 3816 if (ipf != NULL) { 3817 ill_frag_free_pkts(ill, oipfb, ipf, 1); 3818 } 3819 mutex_exit(&oipfb->ipfb_lock); 3820 } 3821 } 3822 3823 /* 3824 * free 'free_cnt' fragmented packets starting at ipf. 3825 */ 3826 void 3827 ill_frag_free_pkts(ill_t *ill, ipfb_t *ipfb, ipf_t *ipf, int free_cnt) 3828 { 3829 size_t count; 3830 mblk_t *mp; 3831 mblk_t *tmp; 3832 ipf_t **ipfp = ipf->ipf_ptphn; 3833 3834 ASSERT(MUTEX_HELD(&ipfb->ipfb_lock)); 3835 ASSERT(ipfp != NULL); 3836 ASSERT(ipf != NULL); 3837 3838 while (ipf != NULL && free_cnt-- > 0) { 3839 count = ipf->ipf_count; 3840 mp = ipf->ipf_mp; 3841 ipf = ipf->ipf_hash_next; 3842 for (tmp = mp; tmp; tmp = tmp->b_cont) { 3843 IP_REASS_SET_START(tmp, 0); 3844 IP_REASS_SET_END(tmp, 0); 3845 } 3846 atomic_add_32(&ill->ill_frag_count, -count); 3847 ASSERT(ipfb->ipfb_count >= count); 3848 ipfb->ipfb_count -= count; 3849 ASSERT(ipfb->ipfb_frag_pkts > 0); 3850 ipfb->ipfb_frag_pkts--; 3851 freemsg(mp); 3852 BUMP_MIB(ill->ill_ip_mib, ipIfStatsReasmFails); 3853 } 3854 3855 if (ipf) 3856 ipf->ipf_ptphn = ipfp; 3857 ipfp[0] = ipf; 3858 } 3859 3860 #define ND_FORWARD_WARNING "The <if>:ip*_forwarding ndd variables are " \ 3861 "obsolete and may be removed in a future release of Solaris. Use " \ 3862 "ifconfig(1M) to manipulate the forwarding status of an interface." 3863 3864 /* 3865 * For obsolete per-interface forwarding configuration; 3866 * called in response to ND_GET. 3867 */ 3868 /* ARGSUSED */ 3869 static int 3870 nd_ill_forward_get(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *ioc_cr) 3871 { 3872 ill_t *ill = (ill_t *)cp; 3873 3874 cmn_err(CE_WARN, ND_FORWARD_WARNING); 3875 3876 (void) mi_mpprintf(mp, "%d", (ill->ill_flags & ILLF_ROUTER) != 0); 3877 return (0); 3878 } 3879 3880 /* 3881 * For obsolete per-interface forwarding configuration; 3882 * called in response to ND_SET. 3883 */ 3884 /* ARGSUSED */ 3885 static int 3886 nd_ill_forward_set(queue_t *q, mblk_t *mp, char *valuestr, caddr_t cp, 3887 cred_t *ioc_cr) 3888 { 3889 long value; 3890 int retval; 3891 ip_stack_t *ipst = CONNQ_TO_IPST(q); 3892 3893 cmn_err(CE_WARN, ND_FORWARD_WARNING); 3894 3895 if (ddi_strtol(valuestr, NULL, 10, &value) != 0 || 3896 value < 0 || value > 1) { 3897 return (EINVAL); 3898 } 3899 3900 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 3901 retval = ill_forward_set((ill_t *)cp, (value != 0)); 3902 rw_exit(&ipst->ips_ill_g_lock); 3903 return (retval); 3904 } 3905 3906 /* 3907 * Set an ill's ILLF_ROUTER flag appropriately. If the ill is part of an 3908 * IPMP group, make sure all ill's in the group adopt the new policy. Send 3909 * up RTS_IFINFO routing socket messages for each interface whose flags we 3910 * change. 3911 */ 3912 int 3913 ill_forward_set(ill_t *ill, boolean_t enable) 3914 { 3915 ill_group_t *illgrp; 3916 ip_stack_t *ipst = ill->ill_ipst; 3917 3918 ASSERT(IAM_WRITER_ILL(ill) || RW_READ_HELD(&ipst->ips_ill_g_lock)); 3919 3920 if ((enable && (ill->ill_flags & ILLF_ROUTER)) || 3921 (!enable && !(ill->ill_flags & ILLF_ROUTER))) 3922 return (0); 3923 3924 if (IS_LOOPBACK(ill)) 3925 return (EINVAL); 3926 3927 /* 3928 * If the ill is in an IPMP group, set the forwarding policy on all 3929 * members of the group to the same value. 3930 */ 3931 illgrp = ill->ill_group; 3932 if (illgrp != NULL) { 3933 ill_t *tmp_ill; 3934 3935 for (tmp_ill = illgrp->illgrp_ill; tmp_ill != NULL; 3936 tmp_ill = tmp_ill->ill_group_next) { 3937 ip1dbg(("ill_forward_set: %s %s forwarding on %s", 3938 (enable ? "Enabling" : "Disabling"), 3939 (tmp_ill->ill_isv6 ? "IPv6" : "IPv4"), 3940 tmp_ill->ill_name)); 3941 mutex_enter(&tmp_ill->ill_lock); 3942 if (enable) 3943 tmp_ill->ill_flags |= ILLF_ROUTER; 3944 else 3945 tmp_ill->ill_flags &= ~ILLF_ROUTER; 3946 mutex_exit(&tmp_ill->ill_lock); 3947 if (tmp_ill->ill_isv6) 3948 ill_set_nce_router_flags(tmp_ill, enable); 3949 /* Notify routing socket listeners of this change. */ 3950 ip_rts_ifmsg(tmp_ill->ill_ipif); 3951 } 3952 } else { 3953 ip1dbg(("ill_forward_set: %s %s forwarding on %s", 3954 (enable ? "Enabling" : "Disabling"), 3955 (ill->ill_isv6 ? "IPv6" : "IPv4"), ill->ill_name)); 3956 mutex_enter(&ill->ill_lock); 3957 if (enable) 3958 ill->ill_flags |= ILLF_ROUTER; 3959 else 3960 ill->ill_flags &= ~ILLF_ROUTER; 3961 mutex_exit(&ill->ill_lock); 3962 if (ill->ill_isv6) 3963 ill_set_nce_router_flags(ill, enable); 3964 /* Notify routing socket listeners of this change. */ 3965 ip_rts_ifmsg(ill->ill_ipif); 3966 } 3967 3968 return (0); 3969 } 3970 3971 /* 3972 * Based on the ILLF_ROUTER flag of an ill, make sure all local nce's for 3973 * addresses assigned to the ill have the NCE_F_ISROUTER flag appropriately 3974 * set or clear. 3975 */ 3976 static void 3977 ill_set_nce_router_flags(ill_t *ill, boolean_t enable) 3978 { 3979 ipif_t *ipif; 3980 nce_t *nce; 3981 3982 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 3983 nce = ndp_lookup_v6(ill, &ipif->ipif_v6lcl_addr, B_FALSE); 3984 if (nce != NULL) { 3985 mutex_enter(&nce->nce_lock); 3986 if (enable) 3987 nce->nce_flags |= NCE_F_ISROUTER; 3988 else 3989 nce->nce_flags &= ~NCE_F_ISROUTER; 3990 mutex_exit(&nce->nce_lock); 3991 NCE_REFRELE(nce); 3992 } 3993 } 3994 } 3995 3996 /* 3997 * Given an ill with a _valid_ name, add the ip_forwarding ndd variable 3998 * for this ill. Make sure the v6/v4 question has been answered about this 3999 * ill. The creation of this ndd variable is only for backwards compatibility. 4000 * The preferred way to control per-interface IP forwarding is through the 4001 * ILLF_ROUTER interface flag. 4002 */ 4003 static int 4004 ill_set_ndd_name(ill_t *ill) 4005 { 4006 char *suffix; 4007 ip_stack_t *ipst = ill->ill_ipst; 4008 4009 ASSERT(IAM_WRITER_ILL(ill)); 4010 4011 if (ill->ill_isv6) 4012 suffix = ipv6_forward_suffix; 4013 else 4014 suffix = ipv4_forward_suffix; 4015 4016 ill->ill_ndd_name = ill->ill_name + ill->ill_name_length; 4017 bcopy(ill->ill_name, ill->ill_ndd_name, ill->ill_name_length - 1); 4018 /* 4019 * Copies over the '\0'. 4020 * Note that strlen(suffix) is always bounded. 4021 */ 4022 bcopy(suffix, ill->ill_ndd_name + ill->ill_name_length - 1, 4023 strlen(suffix) + 1); 4024 4025 /* 4026 * Use of the nd table requires holding the reader lock. 4027 * Modifying the nd table thru nd_load/nd_unload requires 4028 * the writer lock. 4029 */ 4030 rw_enter(&ipst->ips_ip_g_nd_lock, RW_WRITER); 4031 if (!nd_load(&ipst->ips_ip_g_nd, ill->ill_ndd_name, nd_ill_forward_get, 4032 nd_ill_forward_set, (caddr_t)ill)) { 4033 /* 4034 * If the nd_load failed, it only meant that it could not 4035 * allocate a new bunch of room for further NDD expansion. 4036 * Because of that, the ill_ndd_name will be set to 0, and 4037 * this interface is at the mercy of the global ip_forwarding 4038 * variable. 4039 */ 4040 rw_exit(&ipst->ips_ip_g_nd_lock); 4041 ill->ill_ndd_name = NULL; 4042 return (ENOMEM); 4043 } 4044 rw_exit(&ipst->ips_ip_g_nd_lock); 4045 return (0); 4046 } 4047 4048 /* 4049 * Intializes the context structure and returns the first ill in the list 4050 * cuurently start_list and end_list can have values: 4051 * MAX_G_HEADS Traverse both IPV4 and IPV6 lists. 4052 * IP_V4_G_HEAD Traverse IPV4 list only. 4053 * IP_V6_G_HEAD Traverse IPV6 list only. 4054 */ 4055 4056 /* 4057 * We don't check for CONDEMNED ills here. Caller must do that if 4058 * necessary under the ill lock. 4059 */ 4060 ill_t * 4061 ill_first(int start_list, int end_list, ill_walk_context_t *ctx, 4062 ip_stack_t *ipst) 4063 { 4064 ill_if_t *ifp; 4065 ill_t *ill; 4066 avl_tree_t *avl_tree; 4067 4068 ASSERT(RW_LOCK_HELD(&ipst->ips_ill_g_lock)); 4069 ASSERT(end_list <= MAX_G_HEADS && start_list >= 0); 4070 4071 /* 4072 * setup the lists to search 4073 */ 4074 if (end_list != MAX_G_HEADS) { 4075 ctx->ctx_current_list = start_list; 4076 ctx->ctx_last_list = end_list; 4077 } else { 4078 ctx->ctx_last_list = MAX_G_HEADS - 1; 4079 ctx->ctx_current_list = 0; 4080 } 4081 4082 while (ctx->ctx_current_list <= ctx->ctx_last_list) { 4083 ifp = IP_VX_ILL_G_LIST(ctx->ctx_current_list, ipst); 4084 if (ifp != (ill_if_t *) 4085 &IP_VX_ILL_G_LIST(ctx->ctx_current_list, ipst)) { 4086 avl_tree = &ifp->illif_avl_by_ppa; 4087 ill = avl_first(avl_tree); 4088 /* 4089 * ill is guaranteed to be non NULL or ifp should have 4090 * not existed. 4091 */ 4092 ASSERT(ill != NULL); 4093 return (ill); 4094 } 4095 ctx->ctx_current_list++; 4096 } 4097 4098 return (NULL); 4099 } 4100 4101 /* 4102 * returns the next ill in the list. ill_first() must have been called 4103 * before calling ill_next() or bad things will happen. 4104 */ 4105 4106 /* 4107 * We don't check for CONDEMNED ills here. Caller must do that if 4108 * necessary under the ill lock. 4109 */ 4110 ill_t * 4111 ill_next(ill_walk_context_t *ctx, ill_t *lastill) 4112 { 4113 ill_if_t *ifp; 4114 ill_t *ill; 4115 ip_stack_t *ipst = lastill->ill_ipst; 4116 4117 ASSERT(lastill->ill_ifptr != (ill_if_t *) 4118 &IP_VX_ILL_G_LIST(ctx->ctx_current_list, ipst)); 4119 if ((ill = avl_walk(&lastill->ill_ifptr->illif_avl_by_ppa, lastill, 4120 AVL_AFTER)) != NULL) { 4121 return (ill); 4122 } 4123 4124 /* goto next ill_ifp in the list. */ 4125 ifp = lastill->ill_ifptr->illif_next; 4126 4127 /* make sure not at end of circular list */ 4128 while (ifp == 4129 (ill_if_t *)&IP_VX_ILL_G_LIST(ctx->ctx_current_list, ipst)) { 4130 if (++ctx->ctx_current_list > ctx->ctx_last_list) 4131 return (NULL); 4132 ifp = IP_VX_ILL_G_LIST(ctx->ctx_current_list, ipst); 4133 } 4134 4135 return (avl_first(&ifp->illif_avl_by_ppa)); 4136 } 4137 4138 /* 4139 * Check interface name for correct format which is name+ppa. 4140 * name can contain characters and digits, the right most digits 4141 * make up the ppa number. use of octal is not allowed, name must contain 4142 * a ppa, return pointer to the start of ppa. 4143 * In case of error return NULL. 4144 */ 4145 static char * 4146 ill_get_ppa_ptr(char *name) 4147 { 4148 int namelen = mi_strlen(name); 4149 4150 int len = namelen; 4151 4152 name += len; 4153 while (len > 0) { 4154 name--; 4155 if (*name < '0' || *name > '9') 4156 break; 4157 len--; 4158 } 4159 4160 /* empty string, all digits, or no trailing digits */ 4161 if (len == 0 || len == (int)namelen) 4162 return (NULL); 4163 4164 name++; 4165 /* check for attempted use of octal */ 4166 if (*name == '0' && len != (int)namelen - 1) 4167 return (NULL); 4168 return (name); 4169 } 4170 4171 /* 4172 * use avl tree to locate the ill. 4173 */ 4174 static ill_t * 4175 ill_find_by_name(char *name, boolean_t isv6, queue_t *q, mblk_t *mp, 4176 ipsq_func_t func, int *error, ip_stack_t *ipst) 4177 { 4178 char *ppa_ptr = NULL; 4179 int len; 4180 uint_t ppa; 4181 ill_t *ill = NULL; 4182 ill_if_t *ifp; 4183 int list; 4184 ipsq_t *ipsq; 4185 4186 if (error != NULL) 4187 *error = 0; 4188 4189 /* 4190 * get ppa ptr 4191 */ 4192 if (isv6) 4193 list = IP_V6_G_HEAD; 4194 else 4195 list = IP_V4_G_HEAD; 4196 4197 if ((ppa_ptr = ill_get_ppa_ptr(name)) == NULL) { 4198 if (error != NULL) 4199 *error = ENXIO; 4200 return (NULL); 4201 } 4202 4203 len = ppa_ptr - name + 1; 4204 4205 ppa = stoi(&ppa_ptr); 4206 4207 ifp = IP_VX_ILL_G_LIST(list, ipst); 4208 4209 while (ifp != (ill_if_t *)&IP_VX_ILL_G_LIST(list, ipst)) { 4210 /* 4211 * match is done on len - 1 as the name is not null 4212 * terminated it contains ppa in addition to the interface 4213 * name. 4214 */ 4215 if ((ifp->illif_name_len == len) && 4216 bcmp(ifp->illif_name, name, len - 1) == 0) { 4217 break; 4218 } else { 4219 ifp = ifp->illif_next; 4220 } 4221 } 4222 4223 if (ifp == (ill_if_t *)&IP_VX_ILL_G_LIST(list, ipst)) { 4224 /* 4225 * Even the interface type does not exist. 4226 */ 4227 if (error != NULL) 4228 *error = ENXIO; 4229 return (NULL); 4230 } 4231 4232 ill = avl_find(&ifp->illif_avl_by_ppa, (void *) &ppa, NULL); 4233 if (ill != NULL) { 4234 /* 4235 * The block comment at the start of ipif_down 4236 * explains the use of the macros used below 4237 */ 4238 GRAB_CONN_LOCK(q); 4239 mutex_enter(&ill->ill_lock); 4240 if (ILL_CAN_LOOKUP(ill)) { 4241 ill_refhold_locked(ill); 4242 mutex_exit(&ill->ill_lock); 4243 RELEASE_CONN_LOCK(q); 4244 return (ill); 4245 } else if (ILL_CAN_WAIT(ill, q)) { 4246 ipsq = ill->ill_phyint->phyint_ipsq; 4247 mutex_enter(&ipsq->ipsq_lock); 4248 mutex_exit(&ill->ill_lock); 4249 ipsq_enq(ipsq, q, mp, func, NEW_OP, ill); 4250 mutex_exit(&ipsq->ipsq_lock); 4251 RELEASE_CONN_LOCK(q); 4252 if (error != NULL) 4253 *error = EINPROGRESS; 4254 return (NULL); 4255 } 4256 mutex_exit(&ill->ill_lock); 4257 RELEASE_CONN_LOCK(q); 4258 } 4259 if (error != NULL) 4260 *error = ENXIO; 4261 return (NULL); 4262 } 4263 4264 /* 4265 * comparison function for use with avl. 4266 */ 4267 static int 4268 ill_compare_ppa(const void *ppa_ptr, const void *ill_ptr) 4269 { 4270 uint_t ppa; 4271 uint_t ill_ppa; 4272 4273 ASSERT(ppa_ptr != NULL && ill_ptr != NULL); 4274 4275 ppa = *((uint_t *)ppa_ptr); 4276 ill_ppa = ((const ill_t *)ill_ptr)->ill_ppa; 4277 /* 4278 * We want the ill with the lowest ppa to be on the 4279 * top. 4280 */ 4281 if (ill_ppa < ppa) 4282 return (1); 4283 if (ill_ppa > ppa) 4284 return (-1); 4285 return (0); 4286 } 4287 4288 /* 4289 * remove an interface type from the global list. 4290 */ 4291 static void 4292 ill_delete_interface_type(ill_if_t *interface) 4293 { 4294 ASSERT(interface != NULL); 4295 ASSERT(avl_numnodes(&interface->illif_avl_by_ppa) == 0); 4296 4297 avl_destroy(&interface->illif_avl_by_ppa); 4298 if (interface->illif_ppa_arena != NULL) 4299 vmem_destroy(interface->illif_ppa_arena); 4300 4301 remque(interface); 4302 4303 mi_free(interface); 4304 } 4305 4306 /* 4307 * remove ill from the global list. 4308 */ 4309 static void 4310 ill_glist_delete(ill_t *ill) 4311 { 4312 hook_nic_event_int_t *info; 4313 ip_stack_t *ipst; 4314 4315 if (ill == NULL) 4316 return; 4317 ipst = ill->ill_ipst; 4318 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 4319 4320 /* 4321 * If the ill was never inserted into the AVL tree 4322 * we skip the if branch. 4323 */ 4324 if (ill->ill_ifptr != NULL) { 4325 /* 4326 * remove from AVL tree and free ppa number 4327 */ 4328 avl_remove(&ill->ill_ifptr->illif_avl_by_ppa, ill); 4329 4330 if (ill->ill_ifptr->illif_ppa_arena != NULL) { 4331 vmem_free(ill->ill_ifptr->illif_ppa_arena, 4332 (void *)(uintptr_t)(ill->ill_ppa+1), 1); 4333 } 4334 if (avl_numnodes(&ill->ill_ifptr->illif_avl_by_ppa) == 0) { 4335 ill_delete_interface_type(ill->ill_ifptr); 4336 } 4337 4338 /* 4339 * Indicate ill is no longer in the list. 4340 */ 4341 ill->ill_ifptr = NULL; 4342 ill->ill_name_length = 0; 4343 ill->ill_name[0] = '\0'; 4344 ill->ill_ppa = UINT_MAX; 4345 } 4346 4347 /* 4348 * Run the unplumb hook after the NIC has disappeared from being 4349 * visible so that attempts to revalidate its existance will fail. 4350 * 4351 * This needs to be run inside the ill_g_lock perimeter to ensure 4352 * that the ordering of delivered events to listeners matches the 4353 * order of them in the kernel. 4354 */ 4355 info = ill->ill_nic_event_info; 4356 if (info != NULL && info->hnei_event.hne_event == NE_DOWN) { 4357 mutex_enter(&ill->ill_lock); 4358 ill_nic_info_dispatch(ill); 4359 mutex_exit(&ill->ill_lock); 4360 } 4361 4362 /* Generate NE_UNPLUMB event for ill_name. */ 4363 (void) ill_hook_event_create(ill, 0, NE_UNPLUMB, ill->ill_name, 4364 ill->ill_name_length); 4365 4366 ill_phyint_free(ill); 4367 rw_exit(&ipst->ips_ill_g_lock); 4368 } 4369 4370 /* 4371 * allocate a ppa, if the number of plumbed interfaces of this type are 4372 * less than ill_no_arena do a linear search to find a unused ppa. 4373 * When the number goes beyond ill_no_arena switch to using an arena. 4374 * Note: ppa value of zero cannot be allocated from vmem_arena as it 4375 * is the return value for an error condition, so allocation starts at one 4376 * and is decremented by one. 4377 */ 4378 static int 4379 ill_alloc_ppa(ill_if_t *ifp, ill_t *ill) 4380 { 4381 ill_t *tmp_ill; 4382 uint_t start, end; 4383 int ppa; 4384 4385 if (ifp->illif_ppa_arena == NULL && 4386 (avl_numnodes(&ifp->illif_avl_by_ppa) + 1 > ill_no_arena)) { 4387 /* 4388 * Create an arena. 4389 */ 4390 ifp->illif_ppa_arena = vmem_create(ifp->illif_name, 4391 (void *)1, UINT_MAX - 1, 1, NULL, NULL, 4392 NULL, 0, VM_SLEEP | VMC_IDENTIFIER); 4393 /* allocate what has already been assigned */ 4394 for (tmp_ill = avl_first(&ifp->illif_avl_by_ppa); 4395 tmp_ill != NULL; tmp_ill = avl_walk(&ifp->illif_avl_by_ppa, 4396 tmp_ill, AVL_AFTER)) { 4397 ppa = (int)(uintptr_t)vmem_xalloc(ifp->illif_ppa_arena, 4398 1, /* size */ 4399 1, /* align/quantum */ 4400 0, /* phase */ 4401 0, /* nocross */ 4402 /* minaddr */ 4403 (void *)((uintptr_t)tmp_ill->ill_ppa + 1), 4404 /* maxaddr */ 4405 (void *)((uintptr_t)tmp_ill->ill_ppa + 2), 4406 VM_NOSLEEP|VM_FIRSTFIT); 4407 if (ppa == 0) { 4408 ip1dbg(("ill_alloc_ppa: ppa allocation" 4409 " failed while switching")); 4410 vmem_destroy(ifp->illif_ppa_arena); 4411 ifp->illif_ppa_arena = NULL; 4412 break; 4413 } 4414 } 4415 } 4416 4417 if (ifp->illif_ppa_arena != NULL) { 4418 if (ill->ill_ppa == UINT_MAX) { 4419 ppa = (int)(uintptr_t)vmem_alloc(ifp->illif_ppa_arena, 4420 1, VM_NOSLEEP|VM_FIRSTFIT); 4421 if (ppa == 0) 4422 return (EAGAIN); 4423 ill->ill_ppa = --ppa; 4424 } else { 4425 ppa = (int)(uintptr_t)vmem_xalloc(ifp->illif_ppa_arena, 4426 1, /* size */ 4427 1, /* align/quantum */ 4428 0, /* phase */ 4429 0, /* nocross */ 4430 (void *)(uintptr_t)(ill->ill_ppa + 1), /* minaddr */ 4431 (void *)(uintptr_t)(ill->ill_ppa + 2), /* maxaddr */ 4432 VM_NOSLEEP|VM_FIRSTFIT); 4433 /* 4434 * Most likely the allocation failed because 4435 * the requested ppa was in use. 4436 */ 4437 if (ppa == 0) 4438 return (EEXIST); 4439 } 4440 return (0); 4441 } 4442 4443 /* 4444 * No arena is in use and not enough (>ill_no_arena) interfaces have 4445 * been plumbed to create one. Do a linear search to get a unused ppa. 4446 */ 4447 if (ill->ill_ppa == UINT_MAX) { 4448 end = UINT_MAX - 1; 4449 start = 0; 4450 } else { 4451 end = start = ill->ill_ppa; 4452 } 4453 4454 tmp_ill = avl_find(&ifp->illif_avl_by_ppa, (void *)&start, NULL); 4455 while (tmp_ill != NULL && tmp_ill->ill_ppa == start) { 4456 if (start++ >= end) { 4457 if (ill->ill_ppa == UINT_MAX) 4458 return (EAGAIN); 4459 else 4460 return (EEXIST); 4461 } 4462 tmp_ill = avl_walk(&ifp->illif_avl_by_ppa, tmp_ill, AVL_AFTER); 4463 } 4464 ill->ill_ppa = start; 4465 return (0); 4466 } 4467 4468 /* 4469 * Insert ill into the list of configured ill's. Once this function completes, 4470 * the ill is globally visible and is available through lookups. More precisely 4471 * this happens after the caller drops the ill_g_lock. 4472 */ 4473 static int 4474 ill_glist_insert(ill_t *ill, char *name, boolean_t isv6) 4475 { 4476 ill_if_t *ill_interface; 4477 avl_index_t where = 0; 4478 int error; 4479 int name_length; 4480 int index; 4481 boolean_t check_length = B_FALSE; 4482 ip_stack_t *ipst = ill->ill_ipst; 4483 4484 ASSERT(RW_WRITE_HELD(&ipst->ips_ill_g_lock)); 4485 4486 name_length = mi_strlen(name) + 1; 4487 4488 if (isv6) 4489 index = IP_V6_G_HEAD; 4490 else 4491 index = IP_V4_G_HEAD; 4492 4493 ill_interface = IP_VX_ILL_G_LIST(index, ipst); 4494 /* 4495 * Search for interface type based on name 4496 */ 4497 while (ill_interface != (ill_if_t *)&IP_VX_ILL_G_LIST(index, ipst)) { 4498 if ((ill_interface->illif_name_len == name_length) && 4499 (strcmp(ill_interface->illif_name, name) == 0)) { 4500 break; 4501 } 4502 ill_interface = ill_interface->illif_next; 4503 } 4504 4505 /* 4506 * Interface type not found, create one. 4507 */ 4508 if (ill_interface == (ill_if_t *)&IP_VX_ILL_G_LIST(index, ipst)) { 4509 4510 ill_g_head_t ghead; 4511 4512 /* 4513 * allocate ill_if_t structure 4514 */ 4515 4516 ill_interface = (ill_if_t *)mi_zalloc(sizeof (ill_if_t)); 4517 if (ill_interface == NULL) { 4518 return (ENOMEM); 4519 } 4520 4521 4522 4523 (void) strcpy(ill_interface->illif_name, name); 4524 ill_interface->illif_name_len = name_length; 4525 4526 avl_create(&ill_interface->illif_avl_by_ppa, 4527 ill_compare_ppa, sizeof (ill_t), 4528 offsetof(struct ill_s, ill_avl_byppa)); 4529 4530 /* 4531 * link the structure in the back to maintain order 4532 * of configuration for ifconfig output. 4533 */ 4534 ghead = ipst->ips_ill_g_heads[index]; 4535 insque(ill_interface, ghead.ill_g_list_tail); 4536 4537 } 4538 4539 if (ill->ill_ppa == UINT_MAX) 4540 check_length = B_TRUE; 4541 4542 error = ill_alloc_ppa(ill_interface, ill); 4543 if (error != 0) { 4544 if (avl_numnodes(&ill_interface->illif_avl_by_ppa) == 0) 4545 ill_delete_interface_type(ill->ill_ifptr); 4546 return (error); 4547 } 4548 4549 /* 4550 * When the ppa is choosen by the system, check that there is 4551 * enough space to insert ppa. if a specific ppa was passed in this 4552 * check is not required as the interface name passed in will have 4553 * the right ppa in it. 4554 */ 4555 if (check_length) { 4556 /* 4557 * UINT_MAX - 1 should fit in 10 chars, alloc 12 chars. 4558 */ 4559 char buf[sizeof (uint_t) * 3]; 4560 4561 /* 4562 * convert ppa to string to calculate the amount of space 4563 * required for it in the name. 4564 */ 4565 numtos(ill->ill_ppa, buf); 4566 4567 /* Do we have enough space to insert ppa ? */ 4568 4569 if ((mi_strlen(name) + mi_strlen(buf) + 1) > LIFNAMSIZ) { 4570 /* Free ppa and interface type struct */ 4571 if (ill_interface->illif_ppa_arena != NULL) { 4572 vmem_free(ill_interface->illif_ppa_arena, 4573 (void *)(uintptr_t)(ill->ill_ppa+1), 1); 4574 } 4575 if (avl_numnodes(&ill_interface->illif_avl_by_ppa) == 0) 4576 ill_delete_interface_type(ill->ill_ifptr); 4577 4578 return (EINVAL); 4579 } 4580 } 4581 4582 (void) sprintf(ill->ill_name, "%s%u", name, ill->ill_ppa); 4583 ill->ill_name_length = mi_strlen(ill->ill_name) + 1; 4584 4585 (void) avl_find(&ill_interface->illif_avl_by_ppa, &ill->ill_ppa, 4586 &where); 4587 ill->ill_ifptr = ill_interface; 4588 avl_insert(&ill_interface->illif_avl_by_ppa, ill, where); 4589 4590 ill_phyint_reinit(ill); 4591 return (0); 4592 } 4593 4594 /* Initialize the per phyint (per IPMP group) ipsq used for serialization */ 4595 static boolean_t 4596 ipsq_init(ill_t *ill) 4597 { 4598 ipsq_t *ipsq; 4599 4600 /* Init the ipsq and impicitly enter as writer */ 4601 ill->ill_phyint->phyint_ipsq = 4602 kmem_zalloc(sizeof (ipsq_t), KM_NOSLEEP); 4603 if (ill->ill_phyint->phyint_ipsq == NULL) 4604 return (B_FALSE); 4605 ipsq = ill->ill_phyint->phyint_ipsq; 4606 ipsq->ipsq_phyint_list = ill->ill_phyint; 4607 ill->ill_phyint->phyint_ipsq_next = NULL; 4608 mutex_init(&ipsq->ipsq_lock, NULL, MUTEX_DEFAULT, 0); 4609 ipsq->ipsq_refs = 1; 4610 ipsq->ipsq_writer = curthread; 4611 ipsq->ipsq_reentry_cnt = 1; 4612 ipsq->ipsq_ipst = ill->ill_ipst; /* No netstack_hold */ 4613 #ifdef DEBUG 4614 ipsq->ipsq_depth = getpcstack((pc_t *)ipsq->ipsq_stack, 4615 IPSQ_STACK_DEPTH); 4616 #endif 4617 (void) strcpy(ipsq->ipsq_name, ill->ill_name); 4618 return (B_TRUE); 4619 } 4620 4621 /* 4622 * ill_init is called by ip_open when a device control stream is opened. 4623 * It does a few initializations, and shoots a DL_INFO_REQ message down 4624 * to the driver. The response is later picked up in ip_rput_dlpi and 4625 * used to set up default mechanisms for talking to the driver. (Always 4626 * called as writer.) 4627 * 4628 * If this function returns error, ip_open will call ip_close which in 4629 * turn will call ill_delete to clean up any memory allocated here that 4630 * is not yet freed. 4631 */ 4632 int 4633 ill_init(queue_t *q, ill_t *ill) 4634 { 4635 int count; 4636 dl_info_req_t *dlir; 4637 mblk_t *info_mp; 4638 uchar_t *frag_ptr; 4639 4640 /* 4641 * The ill is initialized to zero by mi_alloc*(). In addition 4642 * some fields already contain valid values, initialized in 4643 * ip_open(), before we reach here. 4644 */ 4645 mutex_init(&ill->ill_lock, NULL, MUTEX_DEFAULT, 0); 4646 4647 ill->ill_rq = q; 4648 ill->ill_wq = WR(q); 4649 4650 info_mp = allocb(MAX(sizeof (dl_info_req_t), sizeof (dl_info_ack_t)), 4651 BPRI_HI); 4652 if (info_mp == NULL) 4653 return (ENOMEM); 4654 4655 /* 4656 * Allocate sufficient space to contain our fragment hash table and 4657 * the device name. 4658 */ 4659 frag_ptr = (uchar_t *)mi_zalloc(ILL_FRAG_HASH_TBL_SIZE + 4660 2 * LIFNAMSIZ + 5 + strlen(ipv6_forward_suffix)); 4661 if (frag_ptr == NULL) { 4662 freemsg(info_mp); 4663 return (ENOMEM); 4664 } 4665 ill->ill_frag_ptr = frag_ptr; 4666 ill->ill_frag_free_num_pkts = 0; 4667 ill->ill_last_frag_clean_time = 0; 4668 ill->ill_frag_hash_tbl = (ipfb_t *)frag_ptr; 4669 ill->ill_name = (char *)(frag_ptr + ILL_FRAG_HASH_TBL_SIZE); 4670 for (count = 0; count < ILL_FRAG_HASH_TBL_COUNT; count++) { 4671 mutex_init(&ill->ill_frag_hash_tbl[count].ipfb_lock, 4672 NULL, MUTEX_DEFAULT, NULL); 4673 } 4674 4675 ill->ill_phyint = (phyint_t *)mi_zalloc(sizeof (phyint_t)); 4676 if (ill->ill_phyint == NULL) { 4677 freemsg(info_mp); 4678 mi_free(frag_ptr); 4679 return (ENOMEM); 4680 } 4681 4682 mutex_init(&ill->ill_phyint->phyint_lock, NULL, MUTEX_DEFAULT, 0); 4683 /* 4684 * For now pretend this is a v4 ill. We need to set phyint_ill* 4685 * at this point because of the following reason. If we can't 4686 * enter the ipsq at some point and cv_wait, the writer that 4687 * wakes us up tries to locate us using the list of all phyints 4688 * in an ipsq and the ills from the phyint thru the phyint_ill*. 4689 * If we don't set it now, we risk a missed wakeup. 4690 */ 4691 ill->ill_phyint->phyint_illv4 = ill; 4692 ill->ill_ppa = UINT_MAX; 4693 ill->ill_fastpath_list = &ill->ill_fastpath_list; 4694 4695 if (!ipsq_init(ill)) { 4696 freemsg(info_mp); 4697 mi_free(frag_ptr); 4698 mi_free(ill->ill_phyint); 4699 return (ENOMEM); 4700 } 4701 4702 ill->ill_state_flags |= ILL_LL_SUBNET_PENDING; 4703 4704 /* Frag queue limit stuff */ 4705 ill->ill_frag_count = 0; 4706 ill->ill_ipf_gen = 0; 4707 4708 ill->ill_global_timer = INFINITY; 4709 ill->ill_mcast_v1_time = ill->ill_mcast_v2_time = 0; 4710 ill->ill_mcast_v1_tset = ill->ill_mcast_v2_tset = 0; 4711 ill->ill_mcast_rv = MCAST_DEF_ROBUSTNESS; 4712 ill->ill_mcast_qi = MCAST_DEF_QUERY_INTERVAL; 4713 4714 /* 4715 * Initialize IPv6 configuration variables. The IP module is always 4716 * opened as an IPv4 module. Instead tracking down the cases where 4717 * it switches to do ipv6, we'll just initialize the IPv6 configuration 4718 * here for convenience, this has no effect until the ill is set to do 4719 * IPv6. 4720 */ 4721 ill->ill_reachable_time = ND_REACHABLE_TIME; 4722 ill->ill_reachable_retrans_time = ND_RETRANS_TIMER; 4723 ill->ill_xmit_count = ND_MAX_MULTICAST_SOLICIT; 4724 ill->ill_max_buf = ND_MAX_Q; 4725 ill->ill_refcnt = 0; 4726 4727 /* Send down the Info Request to the driver. */ 4728 info_mp->b_datap->db_type = M_PCPROTO; 4729 dlir = (dl_info_req_t *)info_mp->b_rptr; 4730 info_mp->b_wptr = (uchar_t *)&dlir[1]; 4731 dlir->dl_primitive = DL_INFO_REQ; 4732 4733 ill->ill_dlpi_pending = DL_PRIM_INVAL; 4734 4735 qprocson(q); 4736 ill_dlpi_send(ill, info_mp); 4737 4738 return (0); 4739 } 4740 4741 /* 4742 * ill_dls_info 4743 * creates datalink socket info from the device. 4744 */ 4745 int 4746 ill_dls_info(struct sockaddr_dl *sdl, const ipif_t *ipif) 4747 { 4748 size_t len; 4749 ill_t *ill = ipif->ipif_ill; 4750 4751 sdl->sdl_family = AF_LINK; 4752 sdl->sdl_index = ill->ill_phyint->phyint_ifindex; 4753 sdl->sdl_type = ill->ill_type; 4754 ipif_get_name(ipif, sdl->sdl_data, sizeof (sdl->sdl_data)); 4755 len = strlen(sdl->sdl_data); 4756 ASSERT(len < 256); 4757 sdl->sdl_nlen = (uchar_t)len; 4758 sdl->sdl_alen = ill->ill_phys_addr_length; 4759 sdl->sdl_slen = 0; 4760 if (ill->ill_phys_addr_length != 0 && ill->ill_phys_addr != NULL) 4761 bcopy(ill->ill_phys_addr, &sdl->sdl_data[len], sdl->sdl_alen); 4762 4763 return (sizeof (struct sockaddr_dl)); 4764 } 4765 4766 /* 4767 * ill_xarp_info 4768 * creates xarp info from the device. 4769 */ 4770 static int 4771 ill_xarp_info(struct sockaddr_dl *sdl, ill_t *ill) 4772 { 4773 sdl->sdl_family = AF_LINK; 4774 sdl->sdl_index = ill->ill_phyint->phyint_ifindex; 4775 sdl->sdl_type = ill->ill_type; 4776 ipif_get_name(ill->ill_ipif, sdl->sdl_data, sizeof (sdl->sdl_data)); 4777 sdl->sdl_nlen = (uchar_t)mi_strlen(sdl->sdl_data); 4778 sdl->sdl_alen = ill->ill_phys_addr_length; 4779 sdl->sdl_slen = 0; 4780 return (sdl->sdl_nlen); 4781 } 4782 4783 static int 4784 loopback_kstat_update(kstat_t *ksp, int rw) 4785 { 4786 kstat_named_t *kn; 4787 netstackid_t stackid; 4788 netstack_t *ns; 4789 ip_stack_t *ipst; 4790 4791 if (ksp == NULL || ksp->ks_data == NULL) 4792 return (EIO); 4793 4794 if (rw == KSTAT_WRITE) 4795 return (EACCES); 4796 4797 kn = KSTAT_NAMED_PTR(ksp); 4798 stackid = (zoneid_t)(uintptr_t)ksp->ks_private; 4799 4800 ns = netstack_find_by_stackid(stackid); 4801 if (ns == NULL) 4802 return (-1); 4803 4804 ipst = ns->netstack_ip; 4805 if (ipst == NULL) { 4806 netstack_rele(ns); 4807 return (-1); 4808 } 4809 kn[0].value.ui32 = ipst->ips_loopback_packets; 4810 kn[1].value.ui32 = ipst->ips_loopback_packets; 4811 netstack_rele(ns); 4812 return (0); 4813 } 4814 4815 /* 4816 * Has ifindex been plumbed already. 4817 * Compares both phyint_ifindex and phyint_group_ifindex. 4818 */ 4819 static boolean_t 4820 phyint_exists(uint_t index, ip_stack_t *ipst) 4821 { 4822 phyint_t *phyi; 4823 4824 ASSERT(index != 0); 4825 ASSERT(RW_LOCK_HELD(&ipst->ips_ill_g_lock)); 4826 /* 4827 * Indexes are stored in the phyint - a common structure 4828 * to both IPv4 and IPv6. 4829 */ 4830 phyi = avl_first(&ipst->ips_phyint_g_list->phyint_list_avl_by_index); 4831 for (; phyi != NULL; 4832 phyi = avl_walk(&ipst->ips_phyint_g_list->phyint_list_avl_by_index, 4833 phyi, AVL_AFTER)) { 4834 if (phyi->phyint_ifindex == index || 4835 phyi->phyint_group_ifindex == index) 4836 return (B_TRUE); 4837 } 4838 return (B_FALSE); 4839 } 4840 4841 /* Pick a unique ifindex */ 4842 boolean_t 4843 ip_assign_ifindex(uint_t *indexp, ip_stack_t *ipst) 4844 { 4845 uint_t starting_index; 4846 4847 if (!ipst->ips_ill_index_wrap) { 4848 *indexp = ipst->ips_ill_index++; 4849 if (ipst->ips_ill_index == 0) { 4850 /* Reached the uint_t limit Next time wrap */ 4851 ipst->ips_ill_index_wrap = B_TRUE; 4852 } 4853 return (B_TRUE); 4854 } 4855 4856 /* 4857 * Start reusing unused indexes. Note that we hold the ill_g_lock 4858 * at this point and don't want to call any function that attempts 4859 * to get the lock again. 4860 */ 4861 starting_index = ipst->ips_ill_index++; 4862 for (; ipst->ips_ill_index != starting_index; ipst->ips_ill_index++) { 4863 if (ipst->ips_ill_index != 0 && 4864 !phyint_exists(ipst->ips_ill_index, ipst)) { 4865 /* found unused index - use it */ 4866 *indexp = ipst->ips_ill_index; 4867 return (B_TRUE); 4868 } 4869 } 4870 4871 /* 4872 * all interface indicies are inuse. 4873 */ 4874 return (B_FALSE); 4875 } 4876 4877 /* 4878 * Assign a unique interface index for the phyint. 4879 */ 4880 static boolean_t 4881 phyint_assign_ifindex(phyint_t *phyi, ip_stack_t *ipst) 4882 { 4883 ASSERT(phyi->phyint_ifindex == 0); 4884 return (ip_assign_ifindex(&phyi->phyint_ifindex, ipst)); 4885 } 4886 4887 /* 4888 * Return a pointer to the ill which matches the supplied name. Note that 4889 * the ill name length includes the null termination character. (May be 4890 * called as writer.) 4891 * If do_alloc and the interface is "lo0" it will be automatically created. 4892 * Cannot bump up reference on condemned ills. So dup detect can't be done 4893 * using this func. 4894 */ 4895 ill_t * 4896 ill_lookup_on_name(char *name, boolean_t do_alloc, boolean_t isv6, 4897 queue_t *q, mblk_t *mp, ipsq_func_t func, int *error, boolean_t *did_alloc, 4898 ip_stack_t *ipst) 4899 { 4900 ill_t *ill; 4901 ipif_t *ipif; 4902 kstat_named_t *kn; 4903 boolean_t isloopback; 4904 ipsq_t *old_ipsq; 4905 in6_addr_t ov6addr; 4906 4907 isloopback = mi_strcmp(name, ipif_loopback_name) == 0; 4908 4909 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 4910 ill = ill_find_by_name(name, isv6, q, mp, func, error, ipst); 4911 rw_exit(&ipst->ips_ill_g_lock); 4912 if (ill != NULL || (error != NULL && *error == EINPROGRESS)) 4913 return (ill); 4914 4915 /* 4916 * Couldn't find it. Does this happen to be a lookup for the 4917 * loopback device and are we allowed to allocate it? 4918 */ 4919 if (!isloopback || !do_alloc) 4920 return (NULL); 4921 4922 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 4923 4924 ill = ill_find_by_name(name, isv6, q, mp, func, error, ipst); 4925 if (ill != NULL || (error != NULL && *error == EINPROGRESS)) { 4926 rw_exit(&ipst->ips_ill_g_lock); 4927 return (ill); 4928 } 4929 4930 /* Create the loopback device on demand */ 4931 ill = (ill_t *)(mi_alloc(sizeof (ill_t) + 4932 sizeof (ipif_loopback_name), BPRI_MED)); 4933 if (ill == NULL) 4934 goto done; 4935 4936 *ill = ill_null; 4937 mutex_init(&ill->ill_lock, NULL, MUTEX_DEFAULT, NULL); 4938 ill->ill_ipst = ipst; 4939 netstack_hold(ipst->ips_netstack); 4940 /* 4941 * For exclusive stacks we set the zoneid to zero 4942 * to make IP operate as if in the global zone. 4943 */ 4944 ill->ill_zoneid = GLOBAL_ZONEID; 4945 4946 ill->ill_phyint = (phyint_t *)mi_zalloc(sizeof (phyint_t)); 4947 if (ill->ill_phyint == NULL) 4948 goto done; 4949 4950 if (isv6) 4951 ill->ill_phyint->phyint_illv6 = ill; 4952 else 4953 ill->ill_phyint->phyint_illv4 = ill; 4954 mutex_init(&ill->ill_phyint->phyint_lock, NULL, MUTEX_DEFAULT, 0); 4955 ill->ill_max_frag = IP_LOOPBACK_MTU; 4956 /* Add room for tcp+ip headers */ 4957 if (isv6) { 4958 ill->ill_isv6 = B_TRUE; 4959 ill->ill_max_frag += IPV6_HDR_LEN + 20; /* for TCP */ 4960 } else { 4961 ill->ill_max_frag += IP_SIMPLE_HDR_LENGTH + 20; 4962 } 4963 if (!ill_allocate_mibs(ill)) 4964 goto done; 4965 ill->ill_max_mtu = ill->ill_max_frag; 4966 /* 4967 * ipif_loopback_name can't be pointed at directly because its used 4968 * by both the ipv4 and ipv6 interfaces. When the ill is removed 4969 * from the glist, ill_glist_delete() sets the first character of 4970 * ill_name to '\0'. 4971 */ 4972 ill->ill_name = (char *)ill + sizeof (*ill); 4973 (void) strcpy(ill->ill_name, ipif_loopback_name); 4974 ill->ill_name_length = sizeof (ipif_loopback_name); 4975 /* Set ill_dlpi_pending for ipsq_current_finish() to work properly */ 4976 ill->ill_dlpi_pending = DL_PRIM_INVAL; 4977 4978 ill->ill_global_timer = INFINITY; 4979 ill->ill_mcast_v1_time = ill->ill_mcast_v2_time = 0; 4980 ill->ill_mcast_v1_tset = ill->ill_mcast_v2_tset = 0; 4981 ill->ill_mcast_rv = MCAST_DEF_ROBUSTNESS; 4982 ill->ill_mcast_qi = MCAST_DEF_QUERY_INTERVAL; 4983 4984 /* No resolver here. */ 4985 ill->ill_net_type = IRE_LOOPBACK; 4986 4987 /* Initialize the ipsq */ 4988 if (!ipsq_init(ill)) 4989 goto done; 4990 4991 ill->ill_phyint->phyint_ipsq->ipsq_writer = NULL; 4992 ill->ill_phyint->phyint_ipsq->ipsq_reentry_cnt--; 4993 ASSERT(ill->ill_phyint->phyint_ipsq->ipsq_reentry_cnt == 0); 4994 #ifdef DEBUG 4995 ill->ill_phyint->phyint_ipsq->ipsq_depth = 0; 4996 #endif 4997 ipif = ipif_allocate(ill, 0L, IRE_LOOPBACK, B_TRUE); 4998 if (ipif == NULL) 4999 goto done; 5000 5001 ill->ill_flags = ILLF_MULTICAST; 5002 5003 ov6addr = ipif->ipif_v6lcl_addr; 5004 /* Set up default loopback address and mask. */ 5005 if (!isv6) { 5006 ipaddr_t inaddr_loopback = htonl(INADDR_LOOPBACK); 5007 5008 IN6_IPADDR_TO_V4MAPPED(inaddr_loopback, &ipif->ipif_v6lcl_addr); 5009 ipif->ipif_v6src_addr = ipif->ipif_v6lcl_addr; 5010 V4MASK_TO_V6(htonl(IN_CLASSA_NET), ipif->ipif_v6net_mask); 5011 V6_MASK_COPY(ipif->ipif_v6lcl_addr, ipif->ipif_v6net_mask, 5012 ipif->ipif_v6subnet); 5013 ill->ill_flags |= ILLF_IPV4; 5014 } else { 5015 ipif->ipif_v6lcl_addr = ipv6_loopback; 5016 ipif->ipif_v6src_addr = ipif->ipif_v6lcl_addr; 5017 ipif->ipif_v6net_mask = ipv6_all_ones; 5018 V6_MASK_COPY(ipif->ipif_v6lcl_addr, ipif->ipif_v6net_mask, 5019 ipif->ipif_v6subnet); 5020 ill->ill_flags |= ILLF_IPV6; 5021 } 5022 5023 /* 5024 * Chain us in at the end of the ill list. hold the ill 5025 * before we make it globally visible. 1 for the lookup. 5026 */ 5027 ill->ill_refcnt = 0; 5028 ill_refhold(ill); 5029 5030 ill->ill_frag_count = 0; 5031 ill->ill_frag_free_num_pkts = 0; 5032 ill->ill_last_frag_clean_time = 0; 5033 5034 old_ipsq = ill->ill_phyint->phyint_ipsq; 5035 5036 if (ill_glist_insert(ill, "lo", isv6) != 0) 5037 cmn_err(CE_PANIC, "cannot insert loopback interface"); 5038 5039 /* Let SCTP know so that it can add this to its list */ 5040 sctp_update_ill(ill, SCTP_ILL_INSERT); 5041 5042 /* 5043 * We have already assigned ipif_v6lcl_addr above, but we need to 5044 * call sctp_update_ipif_addr() after SCTP_ILL_INSERT, which 5045 * requires to be after ill_glist_insert() since we need the 5046 * ill_index set. Pass on ipv6_loopback as the old address. 5047 */ 5048 sctp_update_ipif_addr(ipif, ov6addr); 5049 5050 /* 5051 * If the ipsq was changed in ill_phyint_reinit free the old ipsq. 5052 */ 5053 if (old_ipsq != ill->ill_phyint->phyint_ipsq) { 5054 /* Loopback ills aren't in any IPMP group */ 5055 ASSERT(!(old_ipsq->ipsq_flags & IPSQ_GROUP)); 5056 ipsq_delete(old_ipsq); 5057 } 5058 5059 /* 5060 * Delay this till the ipif is allocated as ipif_allocate 5061 * de-references ill_phyint for getting the ifindex. We 5062 * can't do this before ipif_allocate because ill_phyint_reinit 5063 * -> phyint_assign_ifindex expects ipif to be present. 5064 */ 5065 mutex_enter(&ill->ill_phyint->phyint_lock); 5066 ill->ill_phyint->phyint_flags |= PHYI_LOOPBACK | PHYI_VIRTUAL; 5067 mutex_exit(&ill->ill_phyint->phyint_lock); 5068 5069 if (ipst->ips_loopback_ksp == NULL) { 5070 /* Export loopback interface statistics */ 5071 ipst->ips_loopback_ksp = kstat_create_netstack("lo", 0, 5072 ipif_loopback_name, "net", 5073 KSTAT_TYPE_NAMED, 2, 0, 5074 ipst->ips_netstack->netstack_stackid); 5075 if (ipst->ips_loopback_ksp != NULL) { 5076 ipst->ips_loopback_ksp->ks_update = 5077 loopback_kstat_update; 5078 kn = KSTAT_NAMED_PTR(ipst->ips_loopback_ksp); 5079 kstat_named_init(&kn[0], "ipackets", KSTAT_DATA_UINT32); 5080 kstat_named_init(&kn[1], "opackets", KSTAT_DATA_UINT32); 5081 ipst->ips_loopback_ksp->ks_private = 5082 (void *)(uintptr_t)ipst->ips_netstack-> 5083 netstack_stackid; 5084 kstat_install(ipst->ips_loopback_ksp); 5085 } 5086 } 5087 5088 if (error != NULL) 5089 *error = 0; 5090 *did_alloc = B_TRUE; 5091 rw_exit(&ipst->ips_ill_g_lock); 5092 return (ill); 5093 done: 5094 if (ill != NULL) { 5095 if (ill->ill_phyint != NULL) { 5096 ipsq_t *ipsq; 5097 5098 ipsq = ill->ill_phyint->phyint_ipsq; 5099 if (ipsq != NULL) { 5100 ipsq->ipsq_ipst = NULL; 5101 kmem_free(ipsq, sizeof (ipsq_t)); 5102 } 5103 mi_free(ill->ill_phyint); 5104 } 5105 ill_free_mib(ill); 5106 if (ill->ill_ipst != NULL) 5107 netstack_rele(ill->ill_ipst->ips_netstack); 5108 mi_free(ill); 5109 } 5110 rw_exit(&ipst->ips_ill_g_lock); 5111 if (error != NULL) 5112 *error = ENOMEM; 5113 return (NULL); 5114 } 5115 5116 /* 5117 * For IPP calls - use the ip_stack_t for global stack. 5118 */ 5119 ill_t * 5120 ill_lookup_on_ifindex_global_instance(uint_t index, boolean_t isv6, 5121 queue_t *q, mblk_t *mp, ipsq_func_t func, int *err) 5122 { 5123 ip_stack_t *ipst; 5124 ill_t *ill; 5125 5126 ipst = netstack_find_by_stackid(GLOBAL_NETSTACKID)->netstack_ip; 5127 if (ipst == NULL) { 5128 cmn_err(CE_WARN, "No ip_stack_t for zoneid zero!\n"); 5129 return (NULL); 5130 } 5131 5132 ill = ill_lookup_on_ifindex(index, isv6, q, mp, func, err, ipst); 5133 netstack_rele(ipst->ips_netstack); 5134 return (ill); 5135 } 5136 5137 /* 5138 * Return a pointer to the ill which matches the index and IP version type. 5139 */ 5140 ill_t * 5141 ill_lookup_on_ifindex(uint_t index, boolean_t isv6, queue_t *q, mblk_t *mp, 5142 ipsq_func_t func, int *err, ip_stack_t *ipst) 5143 { 5144 ill_t *ill; 5145 ipsq_t *ipsq; 5146 phyint_t *phyi; 5147 5148 ASSERT((q == NULL && mp == NULL && func == NULL && err == NULL) || 5149 (q != NULL && mp != NULL && func != NULL && err != NULL)); 5150 5151 if (err != NULL) 5152 *err = 0; 5153 5154 /* 5155 * Indexes are stored in the phyint - a common structure 5156 * to both IPv4 and IPv6. 5157 */ 5158 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 5159 phyi = avl_find(&ipst->ips_phyint_g_list->phyint_list_avl_by_index, 5160 (void *) &index, NULL); 5161 if (phyi != NULL) { 5162 ill = isv6 ? phyi->phyint_illv6: phyi->phyint_illv4; 5163 if (ill != NULL) { 5164 /* 5165 * The block comment at the start of ipif_down 5166 * explains the use of the macros used below 5167 */ 5168 GRAB_CONN_LOCK(q); 5169 mutex_enter(&ill->ill_lock); 5170 if (ILL_CAN_LOOKUP(ill)) { 5171 ill_refhold_locked(ill); 5172 mutex_exit(&ill->ill_lock); 5173 RELEASE_CONN_LOCK(q); 5174 rw_exit(&ipst->ips_ill_g_lock); 5175 return (ill); 5176 } else if (ILL_CAN_WAIT(ill, q)) { 5177 ipsq = ill->ill_phyint->phyint_ipsq; 5178 mutex_enter(&ipsq->ipsq_lock); 5179 rw_exit(&ipst->ips_ill_g_lock); 5180 mutex_exit(&ill->ill_lock); 5181 ipsq_enq(ipsq, q, mp, func, NEW_OP, ill); 5182 mutex_exit(&ipsq->ipsq_lock); 5183 RELEASE_CONN_LOCK(q); 5184 if (err != NULL) 5185 *err = EINPROGRESS; 5186 return (NULL); 5187 } 5188 RELEASE_CONN_LOCK(q); 5189 mutex_exit(&ill->ill_lock); 5190 } 5191 } 5192 rw_exit(&ipst->ips_ill_g_lock); 5193 if (err != NULL) 5194 *err = ENXIO; 5195 return (NULL); 5196 } 5197 5198 /* 5199 * Return the ifindex next in sequence after the passed in ifindex. 5200 * If there is no next ifindex for the given protocol, return 0. 5201 */ 5202 uint_t 5203 ill_get_next_ifindex(uint_t index, boolean_t isv6, ip_stack_t *ipst) 5204 { 5205 phyint_t *phyi; 5206 phyint_t *phyi_initial; 5207 uint_t ifindex; 5208 5209 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 5210 5211 if (index == 0) { 5212 phyi = avl_first( 5213 &ipst->ips_phyint_g_list->phyint_list_avl_by_index); 5214 } else { 5215 phyi = phyi_initial = avl_find( 5216 &ipst->ips_phyint_g_list->phyint_list_avl_by_index, 5217 (void *) &index, NULL); 5218 } 5219 5220 for (; phyi != NULL; 5221 phyi = avl_walk(&ipst->ips_phyint_g_list->phyint_list_avl_by_index, 5222 phyi, AVL_AFTER)) { 5223 /* 5224 * If we're not returning the first interface in the tree 5225 * and we still haven't moved past the phyint_t that 5226 * corresponds to index, avl_walk needs to be called again 5227 */ 5228 if (!((index != 0) && (phyi == phyi_initial))) { 5229 if (isv6) { 5230 if ((phyi->phyint_illv6) && 5231 ILL_CAN_LOOKUP(phyi->phyint_illv6) && 5232 (phyi->phyint_illv6->ill_isv6 == 1)) 5233 break; 5234 } else { 5235 if ((phyi->phyint_illv4) && 5236 ILL_CAN_LOOKUP(phyi->phyint_illv4) && 5237 (phyi->phyint_illv4->ill_isv6 == 0)) 5238 break; 5239 } 5240 } 5241 } 5242 5243 rw_exit(&ipst->ips_ill_g_lock); 5244 5245 if (phyi != NULL) 5246 ifindex = phyi->phyint_ifindex; 5247 else 5248 ifindex = 0; 5249 5250 return (ifindex); 5251 } 5252 5253 /* 5254 * Return the ifindex for the named interface. 5255 * If there is no next ifindex for the interface, return 0. 5256 */ 5257 uint_t 5258 ill_get_ifindex_by_name(char *name, ip_stack_t *ipst) 5259 { 5260 phyint_t *phyi; 5261 avl_index_t where = 0; 5262 uint_t ifindex; 5263 5264 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 5265 5266 if ((phyi = avl_find(&ipst->ips_phyint_g_list->phyint_list_avl_by_name, 5267 name, &where)) == NULL) { 5268 rw_exit(&ipst->ips_ill_g_lock); 5269 return (0); 5270 } 5271 5272 ifindex = phyi->phyint_ifindex; 5273 5274 rw_exit(&ipst->ips_ill_g_lock); 5275 5276 return (ifindex); 5277 } 5278 5279 /* 5280 * Obtain a reference to the ill. The ill_refcnt is a dynamic refcnt 5281 * that gives a running thread a reference to the ill. This reference must be 5282 * released by the thread when it is done accessing the ill and related 5283 * objects. ill_refcnt can not be used to account for static references 5284 * such as other structures pointing to an ill. Callers must generally 5285 * check whether an ill can be refheld by using ILL_CAN_LOOKUP macros 5286 * or be sure that the ill is not being deleted or changing state before 5287 * calling the refhold functions. A non-zero ill_refcnt ensures that the 5288 * ill won't change any of its critical state such as address, netmask etc. 5289 */ 5290 void 5291 ill_refhold(ill_t *ill) 5292 { 5293 mutex_enter(&ill->ill_lock); 5294 ill->ill_refcnt++; 5295 ILL_TRACE_REF(ill); 5296 mutex_exit(&ill->ill_lock); 5297 } 5298 5299 void 5300 ill_refhold_locked(ill_t *ill) 5301 { 5302 ASSERT(MUTEX_HELD(&ill->ill_lock)); 5303 ill->ill_refcnt++; 5304 ILL_TRACE_REF(ill); 5305 } 5306 5307 int 5308 ill_check_and_refhold(ill_t *ill) 5309 { 5310 mutex_enter(&ill->ill_lock); 5311 if (ILL_CAN_LOOKUP(ill)) { 5312 ill_refhold_locked(ill); 5313 mutex_exit(&ill->ill_lock); 5314 return (0); 5315 } 5316 mutex_exit(&ill->ill_lock); 5317 return (ILL_LOOKUP_FAILED); 5318 } 5319 5320 /* 5321 * Must not be called while holding any locks. Otherwise if this is 5322 * the last reference to be released, there is a chance of recursive mutex 5323 * panic due to ill_refrele -> ipif_ill_refrele_tail -> qwriter_ip trying 5324 * to restart an ioctl. 5325 */ 5326 void 5327 ill_refrele(ill_t *ill) 5328 { 5329 mutex_enter(&ill->ill_lock); 5330 ASSERT(ill->ill_refcnt != 0); 5331 ill->ill_refcnt--; 5332 ILL_UNTRACE_REF(ill); 5333 if (ill->ill_refcnt != 0) { 5334 /* Every ire pointing to the ill adds 1 to ill_refcnt */ 5335 mutex_exit(&ill->ill_lock); 5336 return; 5337 } 5338 5339 /* Drops the ill_lock */ 5340 ipif_ill_refrele_tail(ill); 5341 } 5342 5343 /* 5344 * Obtain a weak reference count on the ill. This reference ensures the 5345 * ill won't be freed, but the ill may change any of its critical state 5346 * such as netmask, address etc. Returns an error if the ill has started 5347 * closing. 5348 */ 5349 boolean_t 5350 ill_waiter_inc(ill_t *ill) 5351 { 5352 mutex_enter(&ill->ill_lock); 5353 if (ill->ill_state_flags & ILL_CONDEMNED) { 5354 mutex_exit(&ill->ill_lock); 5355 return (B_FALSE); 5356 } 5357 ill->ill_waiters++; 5358 mutex_exit(&ill->ill_lock); 5359 return (B_TRUE); 5360 } 5361 5362 void 5363 ill_waiter_dcr(ill_t *ill) 5364 { 5365 mutex_enter(&ill->ill_lock); 5366 ill->ill_waiters--; 5367 if (ill->ill_waiters == 0) 5368 cv_broadcast(&ill->ill_cv); 5369 mutex_exit(&ill->ill_lock); 5370 } 5371 5372 /* 5373 * Named Dispatch routine to produce a formatted report on all ILLs. 5374 * This report is accessed by using the ndd utility to "get" ND variable 5375 * "ip_ill_status". 5376 */ 5377 /* ARGSUSED */ 5378 int 5379 ip_ill_report(queue_t *q, mblk_t *mp, caddr_t arg, cred_t *ioc_cr) 5380 { 5381 ill_t *ill; 5382 ill_walk_context_t ctx; 5383 ip_stack_t *ipst; 5384 5385 ipst = CONNQ_TO_IPST(q); 5386 5387 (void) mi_mpprintf(mp, 5388 "ILL " MI_COL_HDRPAD_STR 5389 /* 01234567[89ABCDEF] */ 5390 "rq " MI_COL_HDRPAD_STR 5391 /* 01234567[89ABCDEF] */ 5392 "wq " MI_COL_HDRPAD_STR 5393 /* 01234567[89ABCDEF] */ 5394 "upcnt mxfrg err name"); 5395 /* 12345 12345 123 xxxxxxxx */ 5396 5397 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 5398 ill = ILL_START_WALK_ALL(&ctx, ipst); 5399 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 5400 (void) mi_mpprintf(mp, 5401 MI_COL_PTRFMT_STR MI_COL_PTRFMT_STR MI_COL_PTRFMT_STR 5402 "%05u %05u %03d %s", 5403 (void *)ill, (void *)ill->ill_rq, (void *)ill->ill_wq, 5404 ill->ill_ipif_up_count, 5405 ill->ill_max_frag, ill->ill_error, ill->ill_name); 5406 } 5407 rw_exit(&ipst->ips_ill_g_lock); 5408 5409 return (0); 5410 } 5411 5412 /* 5413 * Named Dispatch routine to produce a formatted report on all IPIFs. 5414 * This report is accessed by using the ndd utility to "get" ND variable 5415 * "ip_ipif_status". 5416 */ 5417 /* ARGSUSED */ 5418 int 5419 ip_ipif_report(queue_t *q, mblk_t *mp, caddr_t arg, cred_t *ioc_cr) 5420 { 5421 char buf1[INET6_ADDRSTRLEN]; 5422 char buf2[INET6_ADDRSTRLEN]; 5423 char buf3[INET6_ADDRSTRLEN]; 5424 char buf4[INET6_ADDRSTRLEN]; 5425 char buf5[INET6_ADDRSTRLEN]; 5426 char buf6[INET6_ADDRSTRLEN]; 5427 char buf[LIFNAMSIZ]; 5428 ill_t *ill; 5429 ipif_t *ipif; 5430 nv_t *nvp; 5431 uint64_t flags; 5432 zoneid_t zoneid; 5433 ill_walk_context_t ctx; 5434 ip_stack_t *ipst = CONNQ_TO_IPST(q); 5435 5436 (void) mi_mpprintf(mp, 5437 "IPIF metric mtu in/out/forward name zone flags...\n" 5438 "\tlocal address\n" 5439 "\tsrc address\n" 5440 "\tsubnet\n" 5441 "\tmask\n" 5442 "\tbroadcast\n" 5443 "\tp-p-dst"); 5444 5445 ASSERT(q->q_next == NULL); 5446 zoneid = Q_TO_CONN(q)->conn_zoneid; /* IP is a driver */ 5447 5448 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 5449 ill = ILL_START_WALK_ALL(&ctx, ipst); 5450 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 5451 for (ipif = ill->ill_ipif; ipif != NULL; 5452 ipif = ipif->ipif_next) { 5453 if (zoneid != GLOBAL_ZONEID && 5454 zoneid != ipif->ipif_zoneid && 5455 ipif->ipif_zoneid != ALL_ZONES) 5456 continue; 5457 5458 ipif_get_name(ipif, buf, sizeof (buf)); 5459 (void) mi_mpprintf(mp, 5460 MI_COL_PTRFMT_STR 5461 "%04u %05u %u/%u/%u %s %d", 5462 (void *)ipif, 5463 ipif->ipif_metric, ipif->ipif_mtu, 5464 ipif->ipif_ib_pkt_count, 5465 ipif->ipif_ob_pkt_count, 5466 ipif->ipif_fo_pkt_count, 5467 buf, 5468 ipif->ipif_zoneid); 5469 5470 flags = ipif->ipif_flags | ipif->ipif_ill->ill_flags | 5471 ipif->ipif_ill->ill_phyint->phyint_flags; 5472 5473 /* Tack on text strings for any flags. */ 5474 nvp = ipif_nv_tbl; 5475 for (; nvp < A_END(ipif_nv_tbl); nvp++) { 5476 if (nvp->nv_value & flags) 5477 (void) mi_mpprintf_nr(mp, " %s", 5478 nvp->nv_name); 5479 } 5480 (void) mi_mpprintf(mp, 5481 "\t%s\n\t%s\n\t%s\n\t%s\n\t%s\n\t%s", 5482 inet_ntop(AF_INET6, 5483 &ipif->ipif_v6lcl_addr, buf1, sizeof (buf1)), 5484 inet_ntop(AF_INET6, 5485 &ipif->ipif_v6src_addr, buf2, sizeof (buf2)), 5486 inet_ntop(AF_INET6, 5487 &ipif->ipif_v6subnet, buf3, sizeof (buf3)), 5488 inet_ntop(AF_INET6, 5489 &ipif->ipif_v6net_mask, buf4, sizeof (buf4)), 5490 inet_ntop(AF_INET6, 5491 &ipif->ipif_v6brd_addr, buf5, sizeof (buf5)), 5492 inet_ntop(AF_INET6, 5493 &ipif->ipif_v6pp_dst_addr, buf6, sizeof (buf6))); 5494 } 5495 } 5496 rw_exit(&ipst->ips_ill_g_lock); 5497 return (0); 5498 } 5499 5500 /* 5501 * ip_ll_subnet_defaults is called when we get the DL_INFO_ACK back from the 5502 * driver. We construct best guess defaults for lower level information that 5503 * we need. If an interface is brought up without injection of any overriding 5504 * information from outside, we have to be ready to go with these defaults. 5505 * When we get the first DL_INFO_ACK (from ip_open() sending a DL_INFO_REQ) 5506 * we primarely want the dl_provider_style. 5507 * The subsequent DL_INFO_ACK is received after doing a DL_ATTACH and DL_BIND 5508 * at which point we assume the other part of the information is valid. 5509 */ 5510 void 5511 ip_ll_subnet_defaults(ill_t *ill, mblk_t *mp) 5512 { 5513 uchar_t *brdcst_addr; 5514 uint_t brdcst_addr_length, phys_addr_length; 5515 t_scalar_t sap_length; 5516 dl_info_ack_t *dlia; 5517 ip_m_t *ipm; 5518 dl_qos_cl_sel1_t *sel1; 5519 5520 ASSERT(IAM_WRITER_ILL(ill)); 5521 5522 /* 5523 * Till the ill is fully up ILL_CHANGING will be set and 5524 * the ill is not globally visible. So no need for a lock. 5525 */ 5526 dlia = (dl_info_ack_t *)mp->b_rptr; 5527 ill->ill_mactype = dlia->dl_mac_type; 5528 5529 ipm = ip_m_lookup(dlia->dl_mac_type); 5530 if (ipm == NULL) { 5531 ipm = ip_m_lookup(DL_OTHER); 5532 ASSERT(ipm != NULL); 5533 } 5534 ill->ill_media = ipm; 5535 5536 /* 5537 * When the new DLPI stuff is ready we'll pull lengths 5538 * from dlia. 5539 */ 5540 if (dlia->dl_version == DL_VERSION_2) { 5541 brdcst_addr_length = dlia->dl_brdcst_addr_length; 5542 brdcst_addr = mi_offset_param(mp, dlia->dl_brdcst_addr_offset, 5543 brdcst_addr_length); 5544 if (brdcst_addr == NULL) { 5545 brdcst_addr_length = 0; 5546 } 5547 sap_length = dlia->dl_sap_length; 5548 phys_addr_length = dlia->dl_addr_length - ABS(sap_length); 5549 ip1dbg(("ip: bcast_len %d, sap_len %d, phys_len %d\n", 5550 brdcst_addr_length, sap_length, phys_addr_length)); 5551 } else { 5552 brdcst_addr_length = 6; 5553 brdcst_addr = ip_six_byte_all_ones; 5554 sap_length = -2; 5555 phys_addr_length = brdcst_addr_length; 5556 } 5557 5558 ill->ill_bcast_addr_length = brdcst_addr_length; 5559 ill->ill_phys_addr_length = phys_addr_length; 5560 ill->ill_sap_length = sap_length; 5561 ill->ill_max_frag = dlia->dl_max_sdu; 5562 ill->ill_max_mtu = ill->ill_max_frag; 5563 5564 ill->ill_type = ipm->ip_m_type; 5565 5566 if (!ill->ill_dlpi_style_set) { 5567 if (dlia->dl_provider_style == DL_STYLE2) 5568 ill->ill_needs_attach = 1; 5569 5570 /* 5571 * Allocate the first ipif on this ill. We don't delay it 5572 * further as ioctl handling assumes atleast one ipif to 5573 * be present. 5574 * 5575 * At this point we don't know whether the ill is v4 or v6. 5576 * We will know this whan the SIOCSLIFNAME happens and 5577 * the correct value for ill_isv6 will be assigned in 5578 * ipif_set_values(). We need to hold the ill lock and 5579 * clear the ILL_LL_SUBNET_PENDING flag and atomically do 5580 * the wakeup. 5581 */ 5582 (void) ipif_allocate(ill, 0, IRE_LOCAL, 5583 dlia->dl_provider_style == DL_STYLE2 ? B_FALSE : B_TRUE); 5584 mutex_enter(&ill->ill_lock); 5585 ASSERT(ill->ill_dlpi_style_set == 0); 5586 ill->ill_dlpi_style_set = 1; 5587 ill->ill_state_flags &= ~ILL_LL_SUBNET_PENDING; 5588 cv_broadcast(&ill->ill_cv); 5589 mutex_exit(&ill->ill_lock); 5590 freemsg(mp); 5591 return; 5592 } 5593 ASSERT(ill->ill_ipif != NULL); 5594 /* 5595 * We know whether it is IPv4 or IPv6 now, as this is the 5596 * second DL_INFO_ACK we are recieving in response to the 5597 * DL_INFO_REQ sent in ipif_set_values. 5598 */ 5599 if (ill->ill_isv6) 5600 ill->ill_sap = IP6_DL_SAP; 5601 else 5602 ill->ill_sap = IP_DL_SAP; 5603 /* 5604 * Set ipif_mtu which is used to set the IRE's 5605 * ire_max_frag value. The driver could have sent 5606 * a different mtu from what it sent last time. No 5607 * need to call ipif_mtu_change because IREs have 5608 * not yet been created. 5609 */ 5610 ill->ill_ipif->ipif_mtu = ill->ill_max_mtu; 5611 /* 5612 * Clear all the flags that were set based on ill_bcast_addr_length 5613 * and ill_phys_addr_length (in ipif_set_values) as these could have 5614 * changed now and we need to re-evaluate. 5615 */ 5616 ill->ill_flags &= ~(ILLF_MULTICAST | ILLF_NONUD | ILLF_NOARP); 5617 ill->ill_ipif->ipif_flags &= ~(IPIF_BROADCAST | IPIF_POINTOPOINT); 5618 5619 /* 5620 * Free ill_resolver_mp and ill_bcast_mp as things could have 5621 * changed now. 5622 */ 5623 if (ill->ill_bcast_addr_length == 0) { 5624 if (ill->ill_resolver_mp != NULL) 5625 freemsg(ill->ill_resolver_mp); 5626 if (ill->ill_bcast_mp != NULL) 5627 freemsg(ill->ill_bcast_mp); 5628 if (ill->ill_flags & ILLF_XRESOLV) 5629 ill->ill_net_type = IRE_IF_RESOLVER; 5630 else 5631 ill->ill_net_type = IRE_IF_NORESOLVER; 5632 ill->ill_resolver_mp = ill_dlur_gen(NULL, 5633 ill->ill_phys_addr_length, 5634 ill->ill_sap, 5635 ill->ill_sap_length); 5636 ill->ill_bcast_mp = copymsg(ill->ill_resolver_mp); 5637 5638 if (ill->ill_isv6) 5639 /* 5640 * Note: xresolv interfaces will eventually need NOARP 5641 * set here as well, but that will require those 5642 * external resolvers to have some knowledge of 5643 * that flag and act appropriately. Not to be changed 5644 * at present. 5645 */ 5646 ill->ill_flags |= ILLF_NONUD; 5647 else 5648 ill->ill_flags |= ILLF_NOARP; 5649 5650 if (ill->ill_phys_addr_length == 0) { 5651 if (ill->ill_media->ip_m_mac_type == SUNW_DL_VNI) { 5652 ill->ill_ipif->ipif_flags |= IPIF_NOXMIT; 5653 ill->ill_phyint->phyint_flags |= PHYI_VIRTUAL; 5654 } else { 5655 /* pt-pt supports multicast. */ 5656 ill->ill_flags |= ILLF_MULTICAST; 5657 ill->ill_ipif->ipif_flags |= IPIF_POINTOPOINT; 5658 } 5659 } 5660 } else { 5661 ill->ill_net_type = IRE_IF_RESOLVER; 5662 if (ill->ill_bcast_mp != NULL) 5663 freemsg(ill->ill_bcast_mp); 5664 ill->ill_bcast_mp = ill_dlur_gen(brdcst_addr, 5665 ill->ill_bcast_addr_length, ill->ill_sap, 5666 ill->ill_sap_length); 5667 /* 5668 * Later detect lack of DLPI driver multicast 5669 * capability by catching DL_ENABMULTI errors in 5670 * ip_rput_dlpi. 5671 */ 5672 ill->ill_flags |= ILLF_MULTICAST; 5673 if (!ill->ill_isv6) 5674 ill->ill_ipif->ipif_flags |= IPIF_BROADCAST; 5675 } 5676 /* By default an interface does not support any CoS marking */ 5677 ill->ill_flags &= ~ILLF_COS_ENABLED; 5678 5679 /* 5680 * If we get QoS information in DL_INFO_ACK, the device supports 5681 * some form of CoS marking, set ILLF_COS_ENABLED. 5682 */ 5683 sel1 = (dl_qos_cl_sel1_t *)mi_offset_param(mp, dlia->dl_qos_offset, 5684 dlia->dl_qos_length); 5685 if ((sel1 != NULL) && (sel1->dl_qos_type == DL_QOS_CL_SEL1)) { 5686 ill->ill_flags |= ILLF_COS_ENABLED; 5687 } 5688 5689 /* Clear any previous error indication. */ 5690 ill->ill_error = 0; 5691 freemsg(mp); 5692 } 5693 5694 /* 5695 * Perform various checks to verify that an address would make sense as a 5696 * local, remote, or subnet interface address. 5697 */ 5698 static boolean_t 5699 ip_addr_ok_v4(ipaddr_t addr, ipaddr_t subnet_mask) 5700 { 5701 ipaddr_t net_mask; 5702 5703 /* 5704 * Don't allow all zeroes, or all ones, but allow 5705 * all ones netmask. 5706 */ 5707 if ((net_mask = ip_net_mask(addr)) == 0) 5708 return (B_FALSE); 5709 /* A given netmask overrides the "guess" netmask */ 5710 if (subnet_mask != 0) 5711 net_mask = subnet_mask; 5712 if ((net_mask != ~(ipaddr_t)0) && ((addr == (addr & net_mask)) || 5713 (addr == (addr | ~net_mask)))) { 5714 return (B_FALSE); 5715 } 5716 5717 /* 5718 * Even if the netmask is all ones, we do not allow address to be 5719 * 255.255.255.255 5720 */ 5721 if (addr == INADDR_BROADCAST) 5722 return (B_FALSE); 5723 5724 if (CLASSD(addr)) 5725 return (B_FALSE); 5726 5727 return (B_TRUE); 5728 } 5729 5730 #define V6_IPIF_LINKLOCAL(p) \ 5731 IN6_IS_ADDR_LINKLOCAL(&(p)->ipif_v6lcl_addr) 5732 5733 /* 5734 * Compare two given ipifs and check if the second one is better than 5735 * the first one using the order of preference (not taking deprecated 5736 * into acount) specified in ipif_lookup_multicast(). 5737 */ 5738 static boolean_t 5739 ipif_comp_multi(ipif_t *old_ipif, ipif_t *new_ipif, boolean_t isv6) 5740 { 5741 /* Check the least preferred first. */ 5742 if (IS_LOOPBACK(old_ipif->ipif_ill)) { 5743 /* If both ipifs are the same, use the first one. */ 5744 if (IS_LOOPBACK(new_ipif->ipif_ill)) 5745 return (B_FALSE); 5746 else 5747 return (B_TRUE); 5748 } 5749 5750 /* For IPv6, check for link local address. */ 5751 if (isv6 && V6_IPIF_LINKLOCAL(old_ipif)) { 5752 if (IS_LOOPBACK(new_ipif->ipif_ill) || 5753 V6_IPIF_LINKLOCAL(new_ipif)) { 5754 /* The second one is equal or less preferred. */ 5755 return (B_FALSE); 5756 } else { 5757 return (B_TRUE); 5758 } 5759 } 5760 5761 /* Then check for point to point interface. */ 5762 if (old_ipif->ipif_flags & IPIF_POINTOPOINT) { 5763 if (IS_LOOPBACK(new_ipif->ipif_ill) || 5764 (isv6 && V6_IPIF_LINKLOCAL(new_ipif)) || 5765 (new_ipif->ipif_flags & IPIF_POINTOPOINT)) { 5766 return (B_FALSE); 5767 } else { 5768 return (B_TRUE); 5769 } 5770 } 5771 5772 /* old_ipif is a normal interface, so no need to use the new one. */ 5773 return (B_FALSE); 5774 } 5775 5776 /* 5777 * Find any non-virtual, not condemned, and up multicast capable interface 5778 * given an IP instance and zoneid. Order of preference is: 5779 * 5780 * 1. normal 5781 * 1.1 normal, but deprecated 5782 * 2. point to point 5783 * 2.1 point to point, but deprecated 5784 * 3. link local 5785 * 3.1 link local, but deprecated 5786 * 4. loopback. 5787 */ 5788 ipif_t * 5789 ipif_lookup_multicast(ip_stack_t *ipst, zoneid_t zoneid, boolean_t isv6) 5790 { 5791 ill_t *ill; 5792 ill_walk_context_t ctx; 5793 ipif_t *ipif; 5794 ipif_t *saved_ipif = NULL; 5795 ipif_t *dep_ipif = NULL; 5796 5797 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 5798 if (isv6) 5799 ill = ILL_START_WALK_V6(&ctx, ipst); 5800 else 5801 ill = ILL_START_WALK_V4(&ctx, ipst); 5802 5803 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 5804 mutex_enter(&ill->ill_lock); 5805 if (IS_VNI(ill) || !ILL_CAN_LOOKUP(ill) || 5806 !(ill->ill_flags & ILLF_MULTICAST)) { 5807 mutex_exit(&ill->ill_lock); 5808 continue; 5809 } 5810 for (ipif = ill->ill_ipif; ipif != NULL; 5811 ipif = ipif->ipif_next) { 5812 if (zoneid != ipif->ipif_zoneid && 5813 zoneid != ALL_ZONES && 5814 ipif->ipif_zoneid != ALL_ZONES) { 5815 continue; 5816 } 5817 if (!(ipif->ipif_flags & IPIF_UP) || 5818 !IPIF_CAN_LOOKUP(ipif)) { 5819 continue; 5820 } 5821 5822 /* 5823 * Found one candidate. If it is deprecated, 5824 * remember it in dep_ipif. If it is not deprecated, 5825 * remember it in saved_ipif. 5826 */ 5827 if (ipif->ipif_flags & IPIF_DEPRECATED) { 5828 if (dep_ipif == NULL) { 5829 dep_ipif = ipif; 5830 } else if (ipif_comp_multi(dep_ipif, ipif, 5831 isv6)) { 5832 /* 5833 * If the previous dep_ipif does not 5834 * belong to the same ill, we've done 5835 * a ipif_refhold() on it. So we need 5836 * to release it. 5837 */ 5838 if (dep_ipif->ipif_ill != ill) 5839 ipif_refrele(dep_ipif); 5840 dep_ipif = ipif; 5841 } 5842 continue; 5843 } 5844 if (saved_ipif == NULL) { 5845 saved_ipif = ipif; 5846 } else { 5847 if (ipif_comp_multi(saved_ipif, ipif, isv6)) { 5848 if (saved_ipif->ipif_ill != ill) 5849 ipif_refrele(saved_ipif); 5850 saved_ipif = ipif; 5851 } 5852 } 5853 } 5854 /* 5855 * Before going to the next ill, do a ipif_refhold() on the 5856 * saved ones. 5857 */ 5858 if (saved_ipif != NULL && saved_ipif->ipif_ill == ill) 5859 ipif_refhold_locked(saved_ipif); 5860 if (dep_ipif != NULL && dep_ipif->ipif_ill == ill) 5861 ipif_refhold_locked(dep_ipif); 5862 mutex_exit(&ill->ill_lock); 5863 } 5864 rw_exit(&ipst->ips_ill_g_lock); 5865 5866 /* 5867 * If we have only the saved_ipif, return it. But if we have both 5868 * saved_ipif and dep_ipif, check to see which one is better. 5869 */ 5870 if (saved_ipif != NULL) { 5871 if (dep_ipif != NULL) { 5872 if (ipif_comp_multi(saved_ipif, dep_ipif, isv6)) { 5873 ipif_refrele(saved_ipif); 5874 return (dep_ipif); 5875 } else { 5876 ipif_refrele(dep_ipif); 5877 return (saved_ipif); 5878 } 5879 } 5880 return (saved_ipif); 5881 } else { 5882 return (dep_ipif); 5883 } 5884 } 5885 5886 /* 5887 * This function is called when an application does not specify an interface 5888 * to be used for multicast traffic (joining a group/sending data). It 5889 * calls ire_lookup_multi() to look for an interface route for the 5890 * specified multicast group. Doing this allows the administrator to add 5891 * prefix routes for multicast to indicate which interface to be used for 5892 * multicast traffic in the above scenario. The route could be for all 5893 * multicast (224.0/4), for a single multicast group (a /32 route) or 5894 * anything in between. If there is no such multicast route, we just find 5895 * any multicast capable interface and return it. The returned ipif 5896 * is refhold'ed. 5897 */ 5898 ipif_t * 5899 ipif_lookup_group(ipaddr_t group, zoneid_t zoneid, ip_stack_t *ipst) 5900 { 5901 ire_t *ire; 5902 ipif_t *ipif; 5903 5904 ire = ire_lookup_multi(group, zoneid, ipst); 5905 if (ire != NULL) { 5906 ipif = ire->ire_ipif; 5907 ipif_refhold(ipif); 5908 ire_refrele(ire); 5909 return (ipif); 5910 } 5911 5912 return (ipif_lookup_multicast(ipst, zoneid, B_FALSE)); 5913 } 5914 5915 /* 5916 * Look for an ipif with the specified interface address and destination. 5917 * The destination address is used only for matching point-to-point interfaces. 5918 */ 5919 ipif_t * 5920 ipif_lookup_interface(ipaddr_t if_addr, ipaddr_t dst, queue_t *q, mblk_t *mp, 5921 ipsq_func_t func, int *error, ip_stack_t *ipst) 5922 { 5923 ipif_t *ipif; 5924 ill_t *ill; 5925 ill_walk_context_t ctx; 5926 ipsq_t *ipsq; 5927 5928 if (error != NULL) 5929 *error = 0; 5930 5931 /* 5932 * First match all the point-to-point interfaces 5933 * before looking at non-point-to-point interfaces. 5934 * This is done to avoid returning non-point-to-point 5935 * ipif instead of unnumbered point-to-point ipif. 5936 */ 5937 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 5938 ill = ILL_START_WALK_V4(&ctx, ipst); 5939 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 5940 GRAB_CONN_LOCK(q); 5941 mutex_enter(&ill->ill_lock); 5942 for (ipif = ill->ill_ipif; ipif != NULL; 5943 ipif = ipif->ipif_next) { 5944 /* Allow the ipif to be down */ 5945 if ((ipif->ipif_flags & IPIF_POINTOPOINT) && 5946 (ipif->ipif_lcl_addr == if_addr) && 5947 (ipif->ipif_pp_dst_addr == dst)) { 5948 /* 5949 * The block comment at the start of ipif_down 5950 * explains the use of the macros used below 5951 */ 5952 if (IPIF_CAN_LOOKUP(ipif)) { 5953 ipif_refhold_locked(ipif); 5954 mutex_exit(&ill->ill_lock); 5955 RELEASE_CONN_LOCK(q); 5956 rw_exit(&ipst->ips_ill_g_lock); 5957 return (ipif); 5958 } else if (IPIF_CAN_WAIT(ipif, q)) { 5959 ipsq = ill->ill_phyint->phyint_ipsq; 5960 mutex_enter(&ipsq->ipsq_lock); 5961 mutex_exit(&ill->ill_lock); 5962 rw_exit(&ipst->ips_ill_g_lock); 5963 ipsq_enq(ipsq, q, mp, func, NEW_OP, 5964 ill); 5965 mutex_exit(&ipsq->ipsq_lock); 5966 RELEASE_CONN_LOCK(q); 5967 if (error != NULL) 5968 *error = EINPROGRESS; 5969 return (NULL); 5970 } 5971 } 5972 } 5973 mutex_exit(&ill->ill_lock); 5974 RELEASE_CONN_LOCK(q); 5975 } 5976 rw_exit(&ipst->ips_ill_g_lock); 5977 5978 /* lookup the ipif based on interface address */ 5979 ipif = ipif_lookup_addr(if_addr, NULL, ALL_ZONES, q, mp, func, error, 5980 ipst); 5981 ASSERT(ipif == NULL || !ipif->ipif_isv6); 5982 return (ipif); 5983 } 5984 5985 /* 5986 * Look for an ipif with the specified address. For point-point links 5987 * we look for matches on either the destination address and the local 5988 * address, but we ignore the check on the local address if IPIF_UNNUMBERED 5989 * is set. 5990 * Matches on a specific ill if match_ill is set. 5991 */ 5992 ipif_t * 5993 ipif_lookup_addr(ipaddr_t addr, ill_t *match_ill, zoneid_t zoneid, queue_t *q, 5994 mblk_t *mp, ipsq_func_t func, int *error, ip_stack_t *ipst) 5995 { 5996 ipif_t *ipif; 5997 ill_t *ill; 5998 boolean_t ptp = B_FALSE; 5999 ipsq_t *ipsq; 6000 ill_walk_context_t ctx; 6001 6002 if (error != NULL) 6003 *error = 0; 6004 6005 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 6006 /* 6007 * Repeat twice, first based on local addresses and 6008 * next time for pointopoint. 6009 */ 6010 repeat: 6011 ill = ILL_START_WALK_V4(&ctx, ipst); 6012 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 6013 if (match_ill != NULL && ill != match_ill) { 6014 continue; 6015 } 6016 GRAB_CONN_LOCK(q); 6017 mutex_enter(&ill->ill_lock); 6018 for (ipif = ill->ill_ipif; ipif != NULL; 6019 ipif = ipif->ipif_next) { 6020 if (zoneid != ALL_ZONES && 6021 zoneid != ipif->ipif_zoneid && 6022 ipif->ipif_zoneid != ALL_ZONES) 6023 continue; 6024 /* Allow the ipif to be down */ 6025 if ((!ptp && (ipif->ipif_lcl_addr == addr) && 6026 ((ipif->ipif_flags & IPIF_UNNUMBERED) == 0)) || 6027 (ptp && (ipif->ipif_flags & IPIF_POINTOPOINT) && 6028 (ipif->ipif_pp_dst_addr == addr))) { 6029 /* 6030 * The block comment at the start of ipif_down 6031 * explains the use of the macros used below 6032 */ 6033 if (IPIF_CAN_LOOKUP(ipif)) { 6034 ipif_refhold_locked(ipif); 6035 mutex_exit(&ill->ill_lock); 6036 RELEASE_CONN_LOCK(q); 6037 rw_exit(&ipst->ips_ill_g_lock); 6038 return (ipif); 6039 } else if (IPIF_CAN_WAIT(ipif, q)) { 6040 ipsq = ill->ill_phyint->phyint_ipsq; 6041 mutex_enter(&ipsq->ipsq_lock); 6042 mutex_exit(&ill->ill_lock); 6043 rw_exit(&ipst->ips_ill_g_lock); 6044 ipsq_enq(ipsq, q, mp, func, NEW_OP, 6045 ill); 6046 mutex_exit(&ipsq->ipsq_lock); 6047 RELEASE_CONN_LOCK(q); 6048 if (error != NULL) 6049 *error = EINPROGRESS; 6050 return (NULL); 6051 } 6052 } 6053 } 6054 mutex_exit(&ill->ill_lock); 6055 RELEASE_CONN_LOCK(q); 6056 } 6057 6058 /* If we already did the ptp case, then we are done */ 6059 if (ptp) { 6060 rw_exit(&ipst->ips_ill_g_lock); 6061 if (error != NULL) 6062 *error = ENXIO; 6063 return (NULL); 6064 } 6065 ptp = B_TRUE; 6066 goto repeat; 6067 } 6068 6069 /* 6070 * Look for an ipif with the specified address. For point-point links 6071 * we look for matches on either the destination address and the local 6072 * address, but we ignore the check on the local address if IPIF_UNNUMBERED 6073 * is set. 6074 * Matches on a specific ill if match_ill is set. 6075 * Return the zoneid for the ipif which matches. ALL_ZONES if no match. 6076 */ 6077 zoneid_t 6078 ipif_lookup_addr_zoneid(ipaddr_t addr, ill_t *match_ill, ip_stack_t *ipst) 6079 { 6080 zoneid_t zoneid; 6081 ipif_t *ipif; 6082 ill_t *ill; 6083 boolean_t ptp = B_FALSE; 6084 ill_walk_context_t ctx; 6085 6086 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 6087 /* 6088 * Repeat twice, first based on local addresses and 6089 * next time for pointopoint. 6090 */ 6091 repeat: 6092 ill = ILL_START_WALK_V4(&ctx, ipst); 6093 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 6094 if (match_ill != NULL && ill != match_ill) { 6095 continue; 6096 } 6097 mutex_enter(&ill->ill_lock); 6098 for (ipif = ill->ill_ipif; ipif != NULL; 6099 ipif = ipif->ipif_next) { 6100 /* Allow the ipif to be down */ 6101 if ((!ptp && (ipif->ipif_lcl_addr == addr) && 6102 ((ipif->ipif_flags & IPIF_UNNUMBERED) == 0)) || 6103 (ptp && (ipif->ipif_flags & IPIF_POINTOPOINT) && 6104 (ipif->ipif_pp_dst_addr == addr)) && 6105 !(ipif->ipif_state_flags & IPIF_CONDEMNED)) { 6106 zoneid = ipif->ipif_zoneid; 6107 mutex_exit(&ill->ill_lock); 6108 rw_exit(&ipst->ips_ill_g_lock); 6109 /* 6110 * If ipif_zoneid was ALL_ZONES then we have 6111 * a trusted extensions shared IP address. 6112 * In that case GLOBAL_ZONEID works to send. 6113 */ 6114 if (zoneid == ALL_ZONES) 6115 zoneid = GLOBAL_ZONEID; 6116 return (zoneid); 6117 } 6118 } 6119 mutex_exit(&ill->ill_lock); 6120 } 6121 6122 /* If we already did the ptp case, then we are done */ 6123 if (ptp) { 6124 rw_exit(&ipst->ips_ill_g_lock); 6125 return (ALL_ZONES); 6126 } 6127 ptp = B_TRUE; 6128 goto repeat; 6129 } 6130 6131 /* 6132 * Look for an ipif that matches the specified remote address i.e. the 6133 * ipif that would receive the specified packet. 6134 * First look for directly connected interfaces and then do a recursive 6135 * IRE lookup and pick the first ipif corresponding to the source address in the 6136 * ire. 6137 * Returns: held ipif 6138 */ 6139 ipif_t * 6140 ipif_lookup_remote(ill_t *ill, ipaddr_t addr, zoneid_t zoneid) 6141 { 6142 ipif_t *ipif; 6143 ire_t *ire; 6144 ip_stack_t *ipst = ill->ill_ipst; 6145 6146 ASSERT(!ill->ill_isv6); 6147 6148 /* 6149 * Someone could be changing this ipif currently or change it 6150 * after we return this. Thus a few packets could use the old 6151 * old values. However structure updates/creates (ire, ilg, ilm etc) 6152 * will atomically be updated or cleaned up with the new value 6153 * Thus we don't need a lock to check the flags or other attrs below. 6154 */ 6155 mutex_enter(&ill->ill_lock); 6156 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 6157 if (!IPIF_CAN_LOOKUP(ipif)) 6158 continue; 6159 if (zoneid != ALL_ZONES && zoneid != ipif->ipif_zoneid && 6160 ipif->ipif_zoneid != ALL_ZONES) 6161 continue; 6162 /* Allow the ipif to be down */ 6163 if (ipif->ipif_flags & IPIF_POINTOPOINT) { 6164 if ((ipif->ipif_pp_dst_addr == addr) || 6165 (!(ipif->ipif_flags & IPIF_UNNUMBERED) && 6166 ipif->ipif_lcl_addr == addr)) { 6167 ipif_refhold_locked(ipif); 6168 mutex_exit(&ill->ill_lock); 6169 return (ipif); 6170 } 6171 } else if (ipif->ipif_subnet == (addr & ipif->ipif_net_mask)) { 6172 ipif_refhold_locked(ipif); 6173 mutex_exit(&ill->ill_lock); 6174 return (ipif); 6175 } 6176 } 6177 mutex_exit(&ill->ill_lock); 6178 ire = ire_route_lookup(addr, 0, 0, 0, NULL, NULL, zoneid, 6179 NULL, MATCH_IRE_RECURSIVE, ipst); 6180 if (ire != NULL) { 6181 /* 6182 * The callers of this function wants to know the 6183 * interface on which they have to send the replies 6184 * back. For IRE_CACHES that have ire_stq and ire_ipif 6185 * derived from different ills, we really don't care 6186 * what we return here. 6187 */ 6188 ipif = ire->ire_ipif; 6189 if (ipif != NULL) { 6190 ipif_refhold(ipif); 6191 ire_refrele(ire); 6192 return (ipif); 6193 } 6194 ire_refrele(ire); 6195 } 6196 /* Pick the first interface */ 6197 ipif = ipif_get_next_ipif(NULL, ill); 6198 return (ipif); 6199 } 6200 6201 /* 6202 * This func does not prevent refcnt from increasing. But if 6203 * the caller has taken steps to that effect, then this func 6204 * can be used to determine whether the ill has become quiescent 6205 */ 6206 static boolean_t 6207 ill_is_quiescent(ill_t *ill) 6208 { 6209 ipif_t *ipif; 6210 6211 ASSERT(MUTEX_HELD(&ill->ill_lock)); 6212 6213 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 6214 if (ipif->ipif_refcnt != 0 || !IPIF_DOWN_OK(ipif)) { 6215 return (B_FALSE); 6216 } 6217 } 6218 if (!ILL_DOWN_OK(ill) || ill->ill_refcnt != 0) { 6219 return (B_FALSE); 6220 } 6221 return (B_TRUE); 6222 } 6223 6224 boolean_t 6225 ill_is_freeable(ill_t *ill) 6226 { 6227 ipif_t *ipif; 6228 6229 ASSERT(MUTEX_HELD(&ill->ill_lock)); 6230 6231 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 6232 if (ipif->ipif_refcnt != 0 || !IPIF_FREE_OK(ipif)) { 6233 return (B_FALSE); 6234 } 6235 } 6236 if (!ILL_FREE_OK(ill) || ill->ill_refcnt != 0) { 6237 return (B_FALSE); 6238 } 6239 return (B_TRUE); 6240 } 6241 6242 /* 6243 * This func does not prevent refcnt from increasing. But if 6244 * the caller has taken steps to that effect, then this func 6245 * can be used to determine whether the ipif has become quiescent 6246 */ 6247 static boolean_t 6248 ipif_is_quiescent(ipif_t *ipif) 6249 { 6250 ill_t *ill; 6251 6252 ASSERT(MUTEX_HELD(&ipif->ipif_ill->ill_lock)); 6253 6254 if (ipif->ipif_refcnt != 0 || !IPIF_DOWN_OK(ipif)) { 6255 return (B_FALSE); 6256 } 6257 6258 ill = ipif->ipif_ill; 6259 if (ill->ill_ipif_up_count != 0 || ill->ill_ipif_dup_count != 0 || 6260 ill->ill_logical_down) { 6261 return (B_TRUE); 6262 } 6263 6264 /* This is the last ipif going down or being deleted on this ill */ 6265 if (!ILL_DOWN_OK(ill) || ill->ill_refcnt != 0) { 6266 return (B_FALSE); 6267 } 6268 6269 return (B_TRUE); 6270 } 6271 6272 /* 6273 * return true if the ipif can be destroyed: the ipif has to be quiescent 6274 * with zero references from ire/nce/ilm to it. 6275 */ 6276 static boolean_t 6277 ipif_is_freeable(ipif_t *ipif) 6278 { 6279 6280 ill_t *ill; 6281 6282 ASSERT(MUTEX_HELD(&ipif->ipif_ill->ill_lock)); 6283 6284 if (ipif->ipif_refcnt != 0 || !IPIF_FREE_OK(ipif)) { 6285 return (B_FALSE); 6286 } 6287 6288 ill = ipif->ipif_ill; 6289 if (ill->ill_ipif_up_count != 0 || ill->ill_ipif_dup_count != 0 || 6290 ill->ill_logical_down) { 6291 return (B_TRUE); 6292 } 6293 6294 /* This is the last ipif going down or being deleted on this ill */ 6295 if (!ILL_FREE_OK(ill) || ill->ill_refcnt != 0) { 6296 return (B_FALSE); 6297 } 6298 6299 return (B_TRUE); 6300 } 6301 6302 /* 6303 * This func does not prevent refcnt from increasing. But if 6304 * the caller has taken steps to that effect, then this func 6305 * can be used to determine whether the ipifs marked with IPIF_MOVING 6306 * have become quiescent and can be moved in a failover/failback. 6307 */ 6308 static ipif_t * 6309 ill_quiescent_to_move(ill_t *ill) 6310 { 6311 ipif_t *ipif; 6312 6313 ASSERT(MUTEX_HELD(&ill->ill_lock)); 6314 6315 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 6316 if (ipif->ipif_state_flags & IPIF_MOVING) { 6317 if (ipif->ipif_refcnt != 0 || 6318 !IPIF_DOWN_OK(ipif)) { 6319 return (ipif); 6320 } 6321 } 6322 } 6323 return (NULL); 6324 } 6325 6326 /* 6327 * The ipif/ill/ire has been refreled. Do the tail processing. 6328 * Determine if the ipif or ill in question has become quiescent and if so 6329 * wakeup close and/or restart any queued pending ioctl that is waiting 6330 * for the ipif_down (or ill_down) 6331 */ 6332 void 6333 ipif_ill_refrele_tail(ill_t *ill) 6334 { 6335 mblk_t *mp; 6336 conn_t *connp; 6337 ipsq_t *ipsq; 6338 ipif_t *ipif; 6339 dl_notify_ind_t *dlindp; 6340 6341 ASSERT(MUTEX_HELD(&ill->ill_lock)); 6342 6343 if ((ill->ill_state_flags & ILL_CONDEMNED) && 6344 ill_is_freeable(ill)) { 6345 /* ill_close may be waiting */ 6346 cv_broadcast(&ill->ill_cv); 6347 } 6348 6349 /* ipsq can't change because ill_lock is held */ 6350 ipsq = ill->ill_phyint->phyint_ipsq; 6351 if (ipsq->ipsq_waitfor == 0) { 6352 /* Not waiting for anything, just return. */ 6353 mutex_exit(&ill->ill_lock); 6354 return; 6355 } 6356 ASSERT(ipsq->ipsq_pending_mp != NULL && 6357 ipsq->ipsq_pending_ipif != NULL); 6358 /* 6359 * ipif->ipif_refcnt must go down to zero for restarting REMOVEIF. 6360 * Last ipif going down needs to down the ill, so ill_ire_cnt must 6361 * be zero for restarting an ioctl that ends up downing the ill. 6362 */ 6363 ipif = ipsq->ipsq_pending_ipif; 6364 if (ipif->ipif_ill != ill) { 6365 /* The ioctl is pending on some other ill. */ 6366 mutex_exit(&ill->ill_lock); 6367 return; 6368 } 6369 6370 switch (ipsq->ipsq_waitfor) { 6371 case IPIF_DOWN: 6372 if (!ipif_is_quiescent(ipif)) { 6373 mutex_exit(&ill->ill_lock); 6374 return; 6375 } 6376 break; 6377 case IPIF_FREE: 6378 if (!ipif_is_freeable(ipif)) { 6379 mutex_exit(&ill->ill_lock); 6380 return; 6381 } 6382 break; 6383 6384 case ILL_DOWN: 6385 if (!ill_is_quiescent(ill)) { 6386 mutex_exit(&ill->ill_lock); 6387 return; 6388 } 6389 break; 6390 case ILL_FREE: 6391 /* 6392 * case ILL_FREE arises only for loopback. otherwise ill_delete 6393 * waits synchronously in ip_close, and no message is queued in 6394 * ipsq_pending_mp at all in this case 6395 */ 6396 if (!ill_is_freeable(ill)) { 6397 mutex_exit(&ill->ill_lock); 6398 return; 6399 } 6400 break; 6401 6402 case ILL_MOVE_OK: 6403 if (ill_quiescent_to_move(ill) != NULL) { 6404 mutex_exit(&ill->ill_lock); 6405 return; 6406 } 6407 break; 6408 default: 6409 cmn_err(CE_PANIC, "ipsq: %p unknown ipsq_waitfor %d\n", 6410 (void *)ipsq, ipsq->ipsq_waitfor); 6411 } 6412 6413 /* 6414 * Incr refcnt for the qwriter_ip call below which 6415 * does a refrele 6416 */ 6417 ill_refhold_locked(ill); 6418 mp = ipsq_pending_mp_get(ipsq, &connp); 6419 mutex_exit(&ill->ill_lock); 6420 6421 ASSERT(mp != NULL); 6422 /* 6423 * NOTE: all of the qwriter_ip() calls below use CUR_OP since 6424 * we can only get here when the current operation decides it 6425 * it needs to quiesce via ipsq_pending_mp_add(). 6426 */ 6427 switch (mp->b_datap->db_type) { 6428 case M_PCPROTO: 6429 case M_PROTO: 6430 /* 6431 * For now, only DL_NOTIFY_IND messages can use this facility. 6432 */ 6433 dlindp = (dl_notify_ind_t *)mp->b_rptr; 6434 ASSERT(dlindp->dl_primitive == DL_NOTIFY_IND); 6435 6436 switch (dlindp->dl_notification) { 6437 case DL_NOTE_PHYS_ADDR: 6438 qwriter_ip(ill, ill->ill_rq, mp, 6439 ill_set_phys_addr_tail, CUR_OP, B_TRUE); 6440 return; 6441 default: 6442 ASSERT(0); 6443 } 6444 break; 6445 6446 case M_ERROR: 6447 case M_HANGUP: 6448 qwriter_ip(ill, ill->ill_rq, mp, ipif_all_down_tail, CUR_OP, 6449 B_TRUE); 6450 return; 6451 6452 case M_IOCTL: 6453 case M_IOCDATA: 6454 qwriter_ip(ill, (connp != NULL ? CONNP_TO_WQ(connp) : 6455 ill->ill_wq), mp, ip_reprocess_ioctl, CUR_OP, B_TRUE); 6456 return; 6457 6458 default: 6459 cmn_err(CE_PANIC, "ipif_ill_refrele_tail mp %p " 6460 "db_type %d\n", (void *)mp, mp->b_datap->db_type); 6461 } 6462 } 6463 6464 #ifdef DEBUG 6465 /* Reuse trace buffer from beginning (if reached the end) and record trace */ 6466 static void 6467 th_trace_rrecord(th_trace_t *th_trace) 6468 { 6469 tr_buf_t *tr_buf; 6470 uint_t lastref; 6471 6472 lastref = th_trace->th_trace_lastref; 6473 lastref++; 6474 if (lastref == TR_BUF_MAX) 6475 lastref = 0; 6476 th_trace->th_trace_lastref = lastref; 6477 tr_buf = &th_trace->th_trbuf[lastref]; 6478 tr_buf->tr_time = lbolt; 6479 tr_buf->tr_depth = getpcstack(tr_buf->tr_stack, TR_STACK_DEPTH); 6480 } 6481 6482 static void 6483 th_trace_free(void *value) 6484 { 6485 th_trace_t *th_trace = value; 6486 6487 ASSERT(th_trace->th_refcnt == 0); 6488 kmem_free(th_trace, sizeof (*th_trace)); 6489 } 6490 6491 /* 6492 * Find or create the per-thread hash table used to track object references. 6493 * The ipst argument is NULL if we shouldn't allocate. 6494 * 6495 * Accesses per-thread data, so there's no need to lock here. 6496 */ 6497 static mod_hash_t * 6498 th_trace_gethash(ip_stack_t *ipst) 6499 { 6500 th_hash_t *thh; 6501 6502 if ((thh = tsd_get(ip_thread_data)) == NULL && ipst != NULL) { 6503 mod_hash_t *mh; 6504 char name[256]; 6505 size_t objsize, rshift; 6506 int retv; 6507 6508 if ((thh = kmem_alloc(sizeof (*thh), KM_NOSLEEP)) == NULL) 6509 return (NULL); 6510 (void) snprintf(name, sizeof (name), "th_trace_%p", curthread); 6511 6512 /* 6513 * We use mod_hash_create_extended here rather than the more 6514 * obvious mod_hash_create_ptrhash because the latter has a 6515 * hard-coded KM_SLEEP, and we'd prefer to fail rather than 6516 * block. 6517 */ 6518 objsize = MAX(MAX(sizeof (ill_t), sizeof (ipif_t)), 6519 MAX(sizeof (ire_t), sizeof (nce_t))); 6520 rshift = highbit(objsize); 6521 mh = mod_hash_create_extended(name, 64, mod_hash_null_keydtor, 6522 th_trace_free, mod_hash_byptr, (void *)rshift, 6523 mod_hash_ptrkey_cmp, KM_NOSLEEP); 6524 if (mh == NULL) { 6525 kmem_free(thh, sizeof (*thh)); 6526 return (NULL); 6527 } 6528 thh->thh_hash = mh; 6529 thh->thh_ipst = ipst; 6530 /* 6531 * We trace ills, ipifs, ires, and nces. All of these are 6532 * per-IP-stack, so the lock on the thread list is as well. 6533 */ 6534 rw_enter(&ip_thread_rwlock, RW_WRITER); 6535 list_insert_tail(&ip_thread_list, thh); 6536 rw_exit(&ip_thread_rwlock); 6537 retv = tsd_set(ip_thread_data, thh); 6538 ASSERT(retv == 0); 6539 } 6540 return (thh != NULL ? thh->thh_hash : NULL); 6541 } 6542 6543 boolean_t 6544 th_trace_ref(const void *obj, ip_stack_t *ipst) 6545 { 6546 th_trace_t *th_trace; 6547 mod_hash_t *mh; 6548 mod_hash_val_t val; 6549 6550 if ((mh = th_trace_gethash(ipst)) == NULL) 6551 return (B_FALSE); 6552 6553 /* 6554 * Attempt to locate the trace buffer for this obj and thread. 6555 * If it does not exist, then allocate a new trace buffer and 6556 * insert into the hash. 6557 */ 6558 if (mod_hash_find(mh, (mod_hash_key_t)obj, &val) == MH_ERR_NOTFOUND) { 6559 th_trace = kmem_zalloc(sizeof (th_trace_t), KM_NOSLEEP); 6560 if (th_trace == NULL) 6561 return (B_FALSE); 6562 6563 th_trace->th_id = curthread; 6564 if (mod_hash_insert(mh, (mod_hash_key_t)obj, 6565 (mod_hash_val_t)th_trace) != 0) { 6566 kmem_free(th_trace, sizeof (th_trace_t)); 6567 return (B_FALSE); 6568 } 6569 } else { 6570 th_trace = (th_trace_t *)val; 6571 } 6572 6573 ASSERT(th_trace->th_refcnt >= 0 && 6574 th_trace->th_refcnt < TR_BUF_MAX - 1); 6575 6576 th_trace->th_refcnt++; 6577 th_trace_rrecord(th_trace); 6578 return (B_TRUE); 6579 } 6580 6581 /* 6582 * For the purpose of tracing a reference release, we assume that global 6583 * tracing is always on and that the same thread initiated the reference hold 6584 * is releasing. 6585 */ 6586 void 6587 th_trace_unref(const void *obj) 6588 { 6589 int retv; 6590 mod_hash_t *mh; 6591 th_trace_t *th_trace; 6592 mod_hash_val_t val; 6593 6594 mh = th_trace_gethash(NULL); 6595 retv = mod_hash_find(mh, (mod_hash_key_t)obj, &val); 6596 ASSERT(retv == 0); 6597 th_trace = (th_trace_t *)val; 6598 6599 ASSERT(th_trace->th_refcnt > 0); 6600 th_trace->th_refcnt--; 6601 th_trace_rrecord(th_trace); 6602 } 6603 6604 /* 6605 * If tracing has been disabled, then we assume that the reference counts are 6606 * now useless, and we clear them out before destroying the entries. 6607 */ 6608 void 6609 th_trace_cleanup(const void *obj, boolean_t trace_disable) 6610 { 6611 th_hash_t *thh; 6612 mod_hash_t *mh; 6613 mod_hash_val_t val; 6614 th_trace_t *th_trace; 6615 int retv; 6616 6617 rw_enter(&ip_thread_rwlock, RW_READER); 6618 for (thh = list_head(&ip_thread_list); thh != NULL; 6619 thh = list_next(&ip_thread_list, thh)) { 6620 if (mod_hash_find(mh = thh->thh_hash, (mod_hash_key_t)obj, 6621 &val) == 0) { 6622 th_trace = (th_trace_t *)val; 6623 if (trace_disable) 6624 th_trace->th_refcnt = 0; 6625 retv = mod_hash_destroy(mh, (mod_hash_key_t)obj); 6626 ASSERT(retv == 0); 6627 } 6628 } 6629 rw_exit(&ip_thread_rwlock); 6630 } 6631 6632 void 6633 ipif_trace_ref(ipif_t *ipif) 6634 { 6635 ASSERT(MUTEX_HELD(&ipif->ipif_ill->ill_lock)); 6636 6637 if (ipif->ipif_trace_disable) 6638 return; 6639 6640 if (!th_trace_ref(ipif, ipif->ipif_ill->ill_ipst)) { 6641 ipif->ipif_trace_disable = B_TRUE; 6642 ipif_trace_cleanup(ipif); 6643 } 6644 } 6645 6646 void 6647 ipif_untrace_ref(ipif_t *ipif) 6648 { 6649 ASSERT(MUTEX_HELD(&ipif->ipif_ill->ill_lock)); 6650 6651 if (!ipif->ipif_trace_disable) 6652 th_trace_unref(ipif); 6653 } 6654 6655 void 6656 ill_trace_ref(ill_t *ill) 6657 { 6658 ASSERT(MUTEX_HELD(&ill->ill_lock)); 6659 6660 if (ill->ill_trace_disable) 6661 return; 6662 6663 if (!th_trace_ref(ill, ill->ill_ipst)) { 6664 ill->ill_trace_disable = B_TRUE; 6665 ill_trace_cleanup(ill); 6666 } 6667 } 6668 6669 void 6670 ill_untrace_ref(ill_t *ill) 6671 { 6672 ASSERT(MUTEX_HELD(&ill->ill_lock)); 6673 6674 if (!ill->ill_trace_disable) 6675 th_trace_unref(ill); 6676 } 6677 6678 /* 6679 * Called when ipif is unplumbed or when memory alloc fails. Note that on 6680 * failure, ipif_trace_disable is set. 6681 */ 6682 static void 6683 ipif_trace_cleanup(const ipif_t *ipif) 6684 { 6685 th_trace_cleanup(ipif, ipif->ipif_trace_disable); 6686 } 6687 6688 /* 6689 * Called when ill is unplumbed or when memory alloc fails. Note that on 6690 * failure, ill_trace_disable is set. 6691 */ 6692 static void 6693 ill_trace_cleanup(const ill_t *ill) 6694 { 6695 th_trace_cleanup(ill, ill->ill_trace_disable); 6696 } 6697 #endif /* DEBUG */ 6698 6699 void 6700 ipif_refhold_locked(ipif_t *ipif) 6701 { 6702 ASSERT(MUTEX_HELD(&ipif->ipif_ill->ill_lock)); 6703 ipif->ipif_refcnt++; 6704 IPIF_TRACE_REF(ipif); 6705 } 6706 6707 void 6708 ipif_refhold(ipif_t *ipif) 6709 { 6710 ill_t *ill; 6711 6712 ill = ipif->ipif_ill; 6713 mutex_enter(&ill->ill_lock); 6714 ipif->ipif_refcnt++; 6715 IPIF_TRACE_REF(ipif); 6716 mutex_exit(&ill->ill_lock); 6717 } 6718 6719 /* 6720 * Must not be called while holding any locks. Otherwise if this is 6721 * the last reference to be released there is a chance of recursive mutex 6722 * panic due to ipif_refrele -> ipif_ill_refrele_tail -> qwriter_ip trying 6723 * to restart an ioctl. 6724 */ 6725 void 6726 ipif_refrele(ipif_t *ipif) 6727 { 6728 ill_t *ill; 6729 6730 ill = ipif->ipif_ill; 6731 6732 mutex_enter(&ill->ill_lock); 6733 ASSERT(ipif->ipif_refcnt != 0); 6734 ipif->ipif_refcnt--; 6735 IPIF_UNTRACE_REF(ipif); 6736 if (ipif->ipif_refcnt != 0) { 6737 mutex_exit(&ill->ill_lock); 6738 return; 6739 } 6740 6741 /* Drops the ill_lock */ 6742 ipif_ill_refrele_tail(ill); 6743 } 6744 6745 ipif_t * 6746 ipif_get_next_ipif(ipif_t *curr, ill_t *ill) 6747 { 6748 ipif_t *ipif; 6749 6750 mutex_enter(&ill->ill_lock); 6751 for (ipif = (curr == NULL ? ill->ill_ipif : curr->ipif_next); 6752 ipif != NULL; ipif = ipif->ipif_next) { 6753 if (!IPIF_CAN_LOOKUP(ipif)) 6754 continue; 6755 ipif_refhold_locked(ipif); 6756 mutex_exit(&ill->ill_lock); 6757 return (ipif); 6758 } 6759 mutex_exit(&ill->ill_lock); 6760 return (NULL); 6761 } 6762 6763 /* 6764 * TODO: make this table extendible at run time 6765 * Return a pointer to the mac type info for 'mac_type' 6766 */ 6767 static ip_m_t * 6768 ip_m_lookup(t_uscalar_t mac_type) 6769 { 6770 ip_m_t *ipm; 6771 6772 for (ipm = ip_m_tbl; ipm < A_END(ip_m_tbl); ipm++) 6773 if (ipm->ip_m_mac_type == mac_type) 6774 return (ipm); 6775 return (NULL); 6776 } 6777 6778 /* 6779 * ip_rt_add is called to add an IPv4 route to the forwarding table. 6780 * ipif_arg is passed in to associate it with the correct interface. 6781 * We may need to restart this operation if the ipif cannot be looked up 6782 * due to an exclusive operation that is currently in progress. The restart 6783 * entry point is specified by 'func' 6784 */ 6785 int 6786 ip_rt_add(ipaddr_t dst_addr, ipaddr_t mask, ipaddr_t gw_addr, 6787 ipaddr_t src_addr, int flags, ipif_t *ipif_arg, ire_t **ire_arg, 6788 boolean_t ioctl_msg, queue_t *q, mblk_t *mp, ipsq_func_t func, 6789 struct rtsa_s *sp, ip_stack_t *ipst) 6790 { 6791 ire_t *ire; 6792 ire_t *gw_ire = NULL; 6793 ipif_t *ipif = NULL; 6794 boolean_t ipif_refheld = B_FALSE; 6795 uint_t type; 6796 int match_flags = MATCH_IRE_TYPE; 6797 int error; 6798 tsol_gc_t *gc = NULL; 6799 tsol_gcgrp_t *gcgrp = NULL; 6800 boolean_t gcgrp_xtraref = B_FALSE; 6801 6802 ip1dbg(("ip_rt_add:")); 6803 6804 if (ire_arg != NULL) 6805 *ire_arg = NULL; 6806 6807 /* 6808 * If this is the case of RTF_HOST being set, then we set the netmask 6809 * to all ones (regardless if one was supplied). 6810 */ 6811 if (flags & RTF_HOST) 6812 mask = IP_HOST_MASK; 6813 6814 /* 6815 * Prevent routes with a zero gateway from being created (since 6816 * interfaces can currently be plumbed and brought up no assigned 6817 * address). 6818 */ 6819 if (gw_addr == 0) 6820 return (ENETUNREACH); 6821 /* 6822 * Get the ipif, if any, corresponding to the gw_addr 6823 */ 6824 ipif = ipif_lookup_interface(gw_addr, dst_addr, q, mp, func, &error, 6825 ipst); 6826 if (ipif != NULL) { 6827 if (IS_VNI(ipif->ipif_ill)) { 6828 ipif_refrele(ipif); 6829 return (EINVAL); 6830 } 6831 ipif_refheld = B_TRUE; 6832 } else if (error == EINPROGRESS) { 6833 ip1dbg(("ip_rt_add: null and EINPROGRESS")); 6834 return (EINPROGRESS); 6835 } else { 6836 error = 0; 6837 } 6838 6839 if (ipif != NULL) { 6840 ip1dbg(("ip_rt_add: ipif_lookup_interface done ipif nonnull")); 6841 ASSERT(!MUTEX_HELD(&ipif->ipif_ill->ill_lock)); 6842 } else { 6843 ip1dbg(("ip_rt_add: ipif_lookup_interface done ipif is null")); 6844 } 6845 6846 /* 6847 * GateD will attempt to create routes with a loopback interface 6848 * address as the gateway and with RTF_GATEWAY set. We allow 6849 * these routes to be added, but create them as interface routes 6850 * since the gateway is an interface address. 6851 */ 6852 if ((ipif != NULL) && (ipif->ipif_ire_type == IRE_LOOPBACK)) { 6853 flags &= ~RTF_GATEWAY; 6854 if (gw_addr == INADDR_LOOPBACK && dst_addr == INADDR_LOOPBACK && 6855 mask == IP_HOST_MASK) { 6856 ire = ire_ctable_lookup(dst_addr, 0, IRE_LOOPBACK, ipif, 6857 ALL_ZONES, NULL, match_flags, ipst); 6858 if (ire != NULL) { 6859 ire_refrele(ire); 6860 if (ipif_refheld) 6861 ipif_refrele(ipif); 6862 return (EEXIST); 6863 } 6864 ip1dbg(("ipif_up_done: 0x%p creating IRE 0x%x" 6865 "for 0x%x\n", (void *)ipif, 6866 ipif->ipif_ire_type, 6867 ntohl(ipif->ipif_lcl_addr))); 6868 ire = ire_create( 6869 (uchar_t *)&dst_addr, /* dest address */ 6870 (uchar_t *)&mask, /* mask */ 6871 (uchar_t *)&ipif->ipif_src_addr, 6872 NULL, /* no gateway */ 6873 &ipif->ipif_mtu, 6874 NULL, 6875 ipif->ipif_rq, /* recv-from queue */ 6876 NULL, /* no send-to queue */ 6877 ipif->ipif_ire_type, /* LOOPBACK */ 6878 ipif, 6879 0, 6880 0, 6881 0, 6882 (ipif->ipif_flags & IPIF_PRIVATE) ? 6883 RTF_PRIVATE : 0, 6884 &ire_uinfo_null, 6885 NULL, 6886 NULL, 6887 ipst); 6888 6889 if (ire == NULL) { 6890 if (ipif_refheld) 6891 ipif_refrele(ipif); 6892 return (ENOMEM); 6893 } 6894 error = ire_add(&ire, q, mp, func, B_FALSE); 6895 if (error == 0) 6896 goto save_ire; 6897 if (ipif_refheld) 6898 ipif_refrele(ipif); 6899 return (error); 6900 6901 } 6902 } 6903 6904 /* 6905 * Traditionally, interface routes are ones where RTF_GATEWAY isn't set 6906 * and the gateway address provided is one of the system's interface 6907 * addresses. By using the routing socket interface and supplying an 6908 * RTA_IFP sockaddr with an interface index, an alternate method of 6909 * specifying an interface route to be created is available which uses 6910 * the interface index that specifies the outgoing interface rather than 6911 * the address of an outgoing interface (which may not be able to 6912 * uniquely identify an interface). When coupled with the RTF_GATEWAY 6913 * flag, routes can be specified which not only specify the next-hop to 6914 * be used when routing to a certain prefix, but also which outgoing 6915 * interface should be used. 6916 * 6917 * Previously, interfaces would have unique addresses assigned to them 6918 * and so the address assigned to a particular interface could be used 6919 * to identify a particular interface. One exception to this was the 6920 * case of an unnumbered interface (where IPIF_UNNUMBERED was set). 6921 * 6922 * With the advent of IPv6 and its link-local addresses, this 6923 * restriction was relaxed and interfaces could share addresses between 6924 * themselves. In fact, typically all of the link-local interfaces on 6925 * an IPv6 node or router will have the same link-local address. In 6926 * order to differentiate between these interfaces, the use of an 6927 * interface index is necessary and this index can be carried inside a 6928 * RTA_IFP sockaddr (which is actually a sockaddr_dl). One restriction 6929 * of using the interface index, however, is that all of the ipif's that 6930 * are part of an ill have the same index and so the RTA_IFP sockaddr 6931 * cannot be used to differentiate between ipif's (or logical 6932 * interfaces) that belong to the same ill (physical interface). 6933 * 6934 * For example, in the following case involving IPv4 interfaces and 6935 * logical interfaces 6936 * 6937 * 192.0.2.32 255.255.255.224 192.0.2.33 U if0 6938 * 192.0.2.32 255.255.255.224 192.0.2.34 U if0:1 6939 * 192.0.2.32 255.255.255.224 192.0.2.35 U if0:2 6940 * 6941 * the ipif's corresponding to each of these interface routes can be 6942 * uniquely identified by the "gateway" (actually interface address). 6943 * 6944 * In this case involving multiple IPv6 default routes to a particular 6945 * link-local gateway, the use of RTA_IFP is necessary to specify which 6946 * default route is of interest: 6947 * 6948 * default fe80::123:4567:89ab:cdef U if0 6949 * default fe80::123:4567:89ab:cdef U if1 6950 */ 6951 6952 /* RTF_GATEWAY not set */ 6953 if (!(flags & RTF_GATEWAY)) { 6954 queue_t *stq; 6955 6956 if (sp != NULL) { 6957 ip2dbg(("ip_rt_add: gateway security attributes " 6958 "cannot be set with interface route\n")); 6959 if (ipif_refheld) 6960 ipif_refrele(ipif); 6961 return (EINVAL); 6962 } 6963 6964 /* 6965 * As the interface index specified with the RTA_IFP sockaddr is 6966 * the same for all ipif's off of an ill, the matching logic 6967 * below uses MATCH_IRE_ILL if such an index was specified. 6968 * This means that routes sharing the same prefix when added 6969 * using a RTA_IFP sockaddr must have distinct interface 6970 * indices (namely, they must be on distinct ill's). 6971 * 6972 * On the other hand, since the gateway address will usually be 6973 * different for each ipif on the system, the matching logic 6974 * uses MATCH_IRE_IPIF in the case of a traditional interface 6975 * route. This means that interface routes for the same prefix 6976 * can be created if they belong to distinct ipif's and if a 6977 * RTA_IFP sockaddr is not present. 6978 */ 6979 if (ipif_arg != NULL) { 6980 if (ipif_refheld) { 6981 ipif_refrele(ipif); 6982 ipif_refheld = B_FALSE; 6983 } 6984 ipif = ipif_arg; 6985 match_flags |= MATCH_IRE_ILL; 6986 } else { 6987 /* 6988 * Check the ipif corresponding to the gw_addr 6989 */ 6990 if (ipif == NULL) 6991 return (ENETUNREACH); 6992 match_flags |= MATCH_IRE_IPIF; 6993 } 6994 ASSERT(ipif != NULL); 6995 6996 /* 6997 * We check for an existing entry at this point. 6998 * 6999 * Since a netmask isn't passed in via the ioctl interface 7000 * (SIOCADDRT), we don't check for a matching netmask in that 7001 * case. 7002 */ 7003 if (!ioctl_msg) 7004 match_flags |= MATCH_IRE_MASK; 7005 ire = ire_ftable_lookup(dst_addr, mask, 0, IRE_INTERFACE, ipif, 7006 NULL, ALL_ZONES, 0, NULL, match_flags, ipst); 7007 if (ire != NULL) { 7008 ire_refrele(ire); 7009 if (ipif_refheld) 7010 ipif_refrele(ipif); 7011 return (EEXIST); 7012 } 7013 7014 stq = (ipif->ipif_net_type == IRE_IF_RESOLVER) 7015 ? ipif->ipif_rq : ipif->ipif_wq; 7016 7017 /* 7018 * Create a copy of the IRE_LOOPBACK, 7019 * IRE_IF_NORESOLVER or IRE_IF_RESOLVER with 7020 * the modified address and netmask. 7021 */ 7022 ire = ire_create( 7023 (uchar_t *)&dst_addr, 7024 (uint8_t *)&mask, 7025 (uint8_t *)&ipif->ipif_src_addr, 7026 NULL, 7027 &ipif->ipif_mtu, 7028 NULL, 7029 NULL, 7030 stq, 7031 ipif->ipif_net_type, 7032 ipif, 7033 0, 7034 0, 7035 0, 7036 flags, 7037 &ire_uinfo_null, 7038 NULL, 7039 NULL, 7040 ipst); 7041 if (ire == NULL) { 7042 if (ipif_refheld) 7043 ipif_refrele(ipif); 7044 return (ENOMEM); 7045 } 7046 7047 /* 7048 * Some software (for example, GateD and Sun Cluster) attempts 7049 * to create (what amount to) IRE_PREFIX routes with the 7050 * loopback address as the gateway. This is primarily done to 7051 * set up prefixes with the RTF_REJECT flag set (for example, 7052 * when generating aggregate routes.) 7053 * 7054 * If the IRE type (as defined by ipif->ipif_net_type) is 7055 * IRE_LOOPBACK, then we map the request into a 7056 * IRE_IF_NORESOLVER. We also OR in the RTF_BLACKHOLE flag as 7057 * these interface routes, by definition, can only be that. 7058 * 7059 * Needless to say, the real IRE_LOOPBACK is NOT created by this 7060 * routine, but rather using ire_create() directly. 7061 * 7062 */ 7063 if (ipif->ipif_net_type == IRE_LOOPBACK) { 7064 ire->ire_type = IRE_IF_NORESOLVER; 7065 ire->ire_flags |= RTF_BLACKHOLE; 7066 } 7067 7068 error = ire_add(&ire, q, mp, func, B_FALSE); 7069 if (error == 0) 7070 goto save_ire; 7071 7072 /* 7073 * In the result of failure, ire_add() will have already 7074 * deleted the ire in question, so there is no need to 7075 * do that here. 7076 */ 7077 if (ipif_refheld) 7078 ipif_refrele(ipif); 7079 return (error); 7080 } 7081 if (ipif_refheld) { 7082 ipif_refrele(ipif); 7083 ipif_refheld = B_FALSE; 7084 } 7085 7086 /* 7087 * Get an interface IRE for the specified gateway. 7088 * If we don't have an IRE_IF_NORESOLVER or IRE_IF_RESOLVER for the 7089 * gateway, it is currently unreachable and we fail the request 7090 * accordingly. 7091 */ 7092 ipif = ipif_arg; 7093 if (ipif_arg != NULL) 7094 match_flags |= MATCH_IRE_ILL; 7095 gw_ire = ire_ftable_lookup(gw_addr, 0, 0, IRE_INTERFACE, ipif_arg, NULL, 7096 ALL_ZONES, 0, NULL, match_flags, ipst); 7097 if (gw_ire == NULL) 7098 return (ENETUNREACH); 7099 7100 /* 7101 * We create one of three types of IREs as a result of this request 7102 * based on the netmask. A netmask of all ones (which is automatically 7103 * assumed when RTF_HOST is set) results in an IRE_HOST being created. 7104 * An all zeroes netmask implies a default route so an IRE_DEFAULT is 7105 * created. Otherwise, an IRE_PREFIX route is created for the 7106 * destination prefix. 7107 */ 7108 if (mask == IP_HOST_MASK) 7109 type = IRE_HOST; 7110 else if (mask == 0) 7111 type = IRE_DEFAULT; 7112 else 7113 type = IRE_PREFIX; 7114 7115 /* check for a duplicate entry */ 7116 ire = ire_ftable_lookup(dst_addr, mask, gw_addr, type, ipif_arg, 7117 NULL, ALL_ZONES, 0, NULL, 7118 match_flags | MATCH_IRE_MASK | MATCH_IRE_GW, ipst); 7119 if (ire != NULL) { 7120 ire_refrele(gw_ire); 7121 ire_refrele(ire); 7122 return (EEXIST); 7123 } 7124 7125 /* Security attribute exists */ 7126 if (sp != NULL) { 7127 tsol_gcgrp_addr_t ga; 7128 7129 /* find or create the gateway credentials group */ 7130 ga.ga_af = AF_INET; 7131 IN6_IPADDR_TO_V4MAPPED(gw_addr, &ga.ga_addr); 7132 7133 /* we hold reference to it upon success */ 7134 gcgrp = gcgrp_lookup(&ga, B_TRUE); 7135 if (gcgrp == NULL) { 7136 ire_refrele(gw_ire); 7137 return (ENOMEM); 7138 } 7139 7140 /* 7141 * Create and add the security attribute to the group; a 7142 * reference to the group is made upon allocating a new 7143 * entry successfully. If it finds an already-existing 7144 * entry for the security attribute in the group, it simply 7145 * returns it and no new reference is made to the group. 7146 */ 7147 gc = gc_create(sp, gcgrp, &gcgrp_xtraref); 7148 if (gc == NULL) { 7149 /* release reference held by gcgrp_lookup */ 7150 GCGRP_REFRELE(gcgrp); 7151 ire_refrele(gw_ire); 7152 return (ENOMEM); 7153 } 7154 } 7155 7156 /* Create the IRE. */ 7157 ire = ire_create( 7158 (uchar_t *)&dst_addr, /* dest address */ 7159 (uchar_t *)&mask, /* mask */ 7160 /* src address assigned by the caller? */ 7161 (uchar_t *)(((src_addr != INADDR_ANY) && 7162 (flags & RTF_SETSRC)) ? &src_addr : NULL), 7163 (uchar_t *)&gw_addr, /* gateway address */ 7164 &gw_ire->ire_max_frag, 7165 NULL, /* no src nce */ 7166 NULL, /* no recv-from queue */ 7167 NULL, /* no send-to queue */ 7168 (ushort_t)type, /* IRE type */ 7169 ipif_arg, 7170 0, 7171 0, 7172 0, 7173 flags, 7174 &gw_ire->ire_uinfo, /* Inherit ULP info from gw */ 7175 gc, /* security attribute */ 7176 NULL, 7177 ipst); 7178 7179 /* 7180 * The ire holds a reference to the 'gc' and the 'gc' holds a 7181 * reference to the 'gcgrp'. We can now release the extra reference 7182 * the 'gcgrp' acquired in the gcgrp_lookup, if it was not used. 7183 */ 7184 if (gcgrp_xtraref) 7185 GCGRP_REFRELE(gcgrp); 7186 if (ire == NULL) { 7187 if (gc != NULL) 7188 GC_REFRELE(gc); 7189 ire_refrele(gw_ire); 7190 return (ENOMEM); 7191 } 7192 7193 /* 7194 * POLICY: should we allow an RTF_HOST with address INADDR_ANY? 7195 * SUN/OS socket stuff does but do we really want to allow 0.0.0.0? 7196 */ 7197 7198 /* Add the new IRE. */ 7199 error = ire_add(&ire, q, mp, func, B_FALSE); 7200 if (error != 0) { 7201 /* 7202 * In the result of failure, ire_add() will have already 7203 * deleted the ire in question, so there is no need to 7204 * do that here. 7205 */ 7206 ire_refrele(gw_ire); 7207 return (error); 7208 } 7209 7210 if (flags & RTF_MULTIRT) { 7211 /* 7212 * Invoke the CGTP (multirouting) filtering module 7213 * to add the dst address in the filtering database. 7214 * Replicated inbound packets coming from that address 7215 * will be filtered to discard the duplicates. 7216 * It is not necessary to call the CGTP filter hook 7217 * when the dst address is a broadcast or multicast, 7218 * because an IP source address cannot be a broadcast 7219 * or a multicast. 7220 */ 7221 ire_t *ire_dst = ire_ctable_lookup(ire->ire_addr, 0, 7222 IRE_BROADCAST, NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 7223 if (ire_dst != NULL) { 7224 ip_cgtp_bcast_add(ire, ire_dst, ipst); 7225 ire_refrele(ire_dst); 7226 goto save_ire; 7227 } 7228 if (ipst->ips_ip_cgtp_filter_ops != NULL && 7229 !CLASSD(ire->ire_addr)) { 7230 int res = ipst->ips_ip_cgtp_filter_ops->cfo_add_dest_v4( 7231 ipst->ips_netstack->netstack_stackid, 7232 ire->ire_addr, 7233 ire->ire_gateway_addr, 7234 ire->ire_src_addr, 7235 gw_ire->ire_src_addr); 7236 if (res != 0) { 7237 ire_refrele(gw_ire); 7238 ire_delete(ire); 7239 return (res); 7240 } 7241 } 7242 } 7243 7244 /* 7245 * Now that the prefix IRE entry has been created, delete any 7246 * existing gateway IRE cache entries as well as any IRE caches 7247 * using the gateway, and force them to be created through 7248 * ip_newroute. 7249 */ 7250 if (gc != NULL) { 7251 ASSERT(gcgrp != NULL); 7252 ire_clookup_delete_cache_gw(gw_addr, ALL_ZONES, ipst); 7253 } 7254 7255 save_ire: 7256 if (gw_ire != NULL) { 7257 ire_refrele(gw_ire); 7258 } 7259 if (ipif != NULL) { 7260 /* 7261 * Save enough information so that we can recreate the IRE if 7262 * the interface goes down and then up. The metrics associated 7263 * with the route will be saved as well when rts_setmetrics() is 7264 * called after the IRE has been created. In the case where 7265 * memory cannot be allocated, none of this information will be 7266 * saved. 7267 */ 7268 ipif_save_ire(ipif, ire); 7269 } 7270 if (ioctl_msg) 7271 ip_rts_rtmsg(RTM_OLDADD, ire, 0, ipst); 7272 if (ire_arg != NULL) { 7273 /* 7274 * Store the ire that was successfully added into where ire_arg 7275 * points to so that callers don't have to look it up 7276 * themselves (but they are responsible for ire_refrele()ing 7277 * the ire when they are finished with it). 7278 */ 7279 *ire_arg = ire; 7280 } else { 7281 ire_refrele(ire); /* Held in ire_add */ 7282 } 7283 if (ipif_refheld) 7284 ipif_refrele(ipif); 7285 return (0); 7286 } 7287 7288 /* 7289 * ip_rt_delete is called to delete an IPv4 route. 7290 * ipif_arg is passed in to associate it with the correct interface. 7291 * We may need to restart this operation if the ipif cannot be looked up 7292 * due to an exclusive operation that is currently in progress. The restart 7293 * entry point is specified by 'func' 7294 */ 7295 /* ARGSUSED4 */ 7296 int 7297 ip_rt_delete(ipaddr_t dst_addr, ipaddr_t mask, ipaddr_t gw_addr, 7298 uint_t rtm_addrs, int flags, ipif_t *ipif_arg, boolean_t ioctl_msg, 7299 queue_t *q, mblk_t *mp, ipsq_func_t func, ip_stack_t *ipst) 7300 { 7301 ire_t *ire = NULL; 7302 ipif_t *ipif; 7303 boolean_t ipif_refheld = B_FALSE; 7304 uint_t type; 7305 uint_t match_flags = MATCH_IRE_TYPE; 7306 int err = 0; 7307 7308 ip1dbg(("ip_rt_delete:")); 7309 /* 7310 * If this is the case of RTF_HOST being set, then we set the netmask 7311 * to all ones. Otherwise, we use the netmask if one was supplied. 7312 */ 7313 if (flags & RTF_HOST) { 7314 mask = IP_HOST_MASK; 7315 match_flags |= MATCH_IRE_MASK; 7316 } else if (rtm_addrs & RTA_NETMASK) { 7317 match_flags |= MATCH_IRE_MASK; 7318 } 7319 7320 /* 7321 * Note that RTF_GATEWAY is never set on a delete, therefore 7322 * we check if the gateway address is one of our interfaces first, 7323 * and fall back on RTF_GATEWAY routes. 7324 * 7325 * This makes it possible to delete an original 7326 * IRE_IF_NORESOLVER/IRE_IF_RESOLVER - consistent with SunOS 4.1. 7327 * 7328 * As the interface index specified with the RTA_IFP sockaddr is the 7329 * same for all ipif's off of an ill, the matching logic below uses 7330 * MATCH_IRE_ILL if such an index was specified. This means a route 7331 * sharing the same prefix and interface index as the the route 7332 * intended to be deleted might be deleted instead if a RTA_IFP sockaddr 7333 * is specified in the request. 7334 * 7335 * On the other hand, since the gateway address will usually be 7336 * different for each ipif on the system, the matching logic 7337 * uses MATCH_IRE_IPIF in the case of a traditional interface 7338 * route. This means that interface routes for the same prefix can be 7339 * uniquely identified if they belong to distinct ipif's and if a 7340 * RTA_IFP sockaddr is not present. 7341 * 7342 * For more detail on specifying routes by gateway address and by 7343 * interface index, see the comments in ip_rt_add(). 7344 */ 7345 ipif = ipif_lookup_interface(gw_addr, dst_addr, q, mp, func, &err, 7346 ipst); 7347 if (ipif != NULL) 7348 ipif_refheld = B_TRUE; 7349 else if (err == EINPROGRESS) 7350 return (err); 7351 else 7352 err = 0; 7353 if (ipif != NULL) { 7354 if (ipif_arg != NULL) { 7355 if (ipif_refheld) { 7356 ipif_refrele(ipif); 7357 ipif_refheld = B_FALSE; 7358 } 7359 ipif = ipif_arg; 7360 match_flags |= MATCH_IRE_ILL; 7361 } else { 7362 match_flags |= MATCH_IRE_IPIF; 7363 } 7364 if (ipif->ipif_ire_type == IRE_LOOPBACK) { 7365 ire = ire_ctable_lookup(dst_addr, 0, IRE_LOOPBACK, ipif, 7366 ALL_ZONES, NULL, match_flags, ipst); 7367 } 7368 if (ire == NULL) { 7369 ire = ire_ftable_lookup(dst_addr, mask, 0, 7370 IRE_INTERFACE, ipif, NULL, ALL_ZONES, 0, NULL, 7371 match_flags, ipst); 7372 } 7373 } 7374 7375 if (ire == NULL) { 7376 /* 7377 * At this point, the gateway address is not one of our own 7378 * addresses or a matching interface route was not found. We 7379 * set the IRE type to lookup based on whether 7380 * this is a host route, a default route or just a prefix. 7381 * 7382 * If an ipif_arg was passed in, then the lookup is based on an 7383 * interface index so MATCH_IRE_ILL is added to match_flags. 7384 * In any case, MATCH_IRE_IPIF is cleared and MATCH_IRE_GW is 7385 * set as the route being looked up is not a traditional 7386 * interface route. 7387 */ 7388 match_flags &= ~MATCH_IRE_IPIF; 7389 match_flags |= MATCH_IRE_GW; 7390 if (ipif_arg != NULL) 7391 match_flags |= MATCH_IRE_ILL; 7392 if (mask == IP_HOST_MASK) 7393 type = IRE_HOST; 7394 else if (mask == 0) 7395 type = IRE_DEFAULT; 7396 else 7397 type = IRE_PREFIX; 7398 ire = ire_ftable_lookup(dst_addr, mask, gw_addr, type, ipif_arg, 7399 NULL, ALL_ZONES, 0, NULL, match_flags, ipst); 7400 } 7401 7402 if (ipif_refheld) 7403 ipif_refrele(ipif); 7404 7405 /* ipif is not refheld anymore */ 7406 if (ire == NULL) 7407 return (ESRCH); 7408 7409 if (ire->ire_flags & RTF_MULTIRT) { 7410 /* 7411 * Invoke the CGTP (multirouting) filtering module 7412 * to remove the dst address from the filtering database. 7413 * Packets coming from that address will no longer be 7414 * filtered to remove duplicates. 7415 */ 7416 if (ipst->ips_ip_cgtp_filter_ops != NULL) { 7417 err = ipst->ips_ip_cgtp_filter_ops->cfo_del_dest_v4( 7418 ipst->ips_netstack->netstack_stackid, 7419 ire->ire_addr, ire->ire_gateway_addr); 7420 } 7421 ip_cgtp_bcast_delete(ire, ipst); 7422 } 7423 7424 ipif = ire->ire_ipif; 7425 if (ipif != NULL) 7426 ipif_remove_ire(ipif, ire); 7427 if (ioctl_msg) 7428 ip_rts_rtmsg(RTM_OLDDEL, ire, 0, ipst); 7429 ire_delete(ire); 7430 ire_refrele(ire); 7431 return (err); 7432 } 7433 7434 /* 7435 * ip_siocaddrt is called to complete processing of an SIOCADDRT IOCTL. 7436 */ 7437 /* ARGSUSED */ 7438 int 7439 ip_siocaddrt(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, 7440 ip_ioctl_cmd_t *ipip, void *dummy_if_req) 7441 { 7442 ipaddr_t dst_addr; 7443 ipaddr_t gw_addr; 7444 ipaddr_t mask; 7445 int error = 0; 7446 mblk_t *mp1; 7447 struct rtentry *rt; 7448 ipif_t *ipif = NULL; 7449 ip_stack_t *ipst; 7450 7451 ASSERT(q->q_next == NULL); 7452 ipst = CONNQ_TO_IPST(q); 7453 7454 ip1dbg(("ip_siocaddrt:")); 7455 /* Existence of mp1 verified in ip_wput_nondata */ 7456 mp1 = mp->b_cont->b_cont; 7457 rt = (struct rtentry *)mp1->b_rptr; 7458 7459 dst_addr = ((sin_t *)&rt->rt_dst)->sin_addr.s_addr; 7460 gw_addr = ((sin_t *)&rt->rt_gateway)->sin_addr.s_addr; 7461 7462 /* 7463 * If the RTF_HOST flag is on, this is a request to assign a gateway 7464 * to a particular host address. In this case, we set the netmask to 7465 * all ones for the particular destination address. Otherwise, 7466 * determine the netmask to be used based on dst_addr and the interfaces 7467 * in use. 7468 */ 7469 if (rt->rt_flags & RTF_HOST) { 7470 mask = IP_HOST_MASK; 7471 } else { 7472 /* 7473 * Note that ip_subnet_mask returns a zero mask in the case of 7474 * default (an all-zeroes address). 7475 */ 7476 mask = ip_subnet_mask(dst_addr, &ipif, ipst); 7477 } 7478 7479 error = ip_rt_add(dst_addr, mask, gw_addr, 0, rt->rt_flags, NULL, NULL, 7480 B_TRUE, q, mp, ip_process_ioctl, NULL, ipst); 7481 if (ipif != NULL) 7482 ipif_refrele(ipif); 7483 return (error); 7484 } 7485 7486 /* 7487 * ip_siocdelrt is called to complete processing of an SIOCDELRT IOCTL. 7488 */ 7489 /* ARGSUSED */ 7490 int 7491 ip_siocdelrt(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, 7492 ip_ioctl_cmd_t *ipip, void *dummy_if_req) 7493 { 7494 ipaddr_t dst_addr; 7495 ipaddr_t gw_addr; 7496 ipaddr_t mask; 7497 int error; 7498 mblk_t *mp1; 7499 struct rtentry *rt; 7500 ipif_t *ipif = NULL; 7501 ip_stack_t *ipst; 7502 7503 ASSERT(q->q_next == NULL); 7504 ipst = CONNQ_TO_IPST(q); 7505 7506 ip1dbg(("ip_siocdelrt:")); 7507 /* Existence of mp1 verified in ip_wput_nondata */ 7508 mp1 = mp->b_cont->b_cont; 7509 rt = (struct rtentry *)mp1->b_rptr; 7510 7511 dst_addr = ((sin_t *)&rt->rt_dst)->sin_addr.s_addr; 7512 gw_addr = ((sin_t *)&rt->rt_gateway)->sin_addr.s_addr; 7513 7514 /* 7515 * If the RTF_HOST flag is on, this is a request to delete a gateway 7516 * to a particular host address. In this case, we set the netmask to 7517 * all ones for the particular destination address. Otherwise, 7518 * determine the netmask to be used based on dst_addr and the interfaces 7519 * in use. 7520 */ 7521 if (rt->rt_flags & RTF_HOST) { 7522 mask = IP_HOST_MASK; 7523 } else { 7524 /* 7525 * Note that ip_subnet_mask returns a zero mask in the case of 7526 * default (an all-zeroes address). 7527 */ 7528 mask = ip_subnet_mask(dst_addr, &ipif, ipst); 7529 } 7530 7531 error = ip_rt_delete(dst_addr, mask, gw_addr, 7532 RTA_DST | RTA_GATEWAY | RTA_NETMASK, rt->rt_flags, NULL, B_TRUE, q, 7533 mp, ip_process_ioctl, ipst); 7534 if (ipif != NULL) 7535 ipif_refrele(ipif); 7536 return (error); 7537 } 7538 7539 /* 7540 * Enqueue the mp onto the ipsq, chained by b_next. 7541 * b_prev stores the function to be executed later, and b_queue the queue 7542 * where this mp originated. 7543 */ 7544 void 7545 ipsq_enq(ipsq_t *ipsq, queue_t *q, mblk_t *mp, ipsq_func_t func, int type, 7546 ill_t *pending_ill) 7547 { 7548 conn_t *connp = NULL; 7549 7550 ASSERT(MUTEX_HELD(&ipsq->ipsq_lock)); 7551 ASSERT(func != NULL); 7552 7553 mp->b_queue = q; 7554 mp->b_prev = (void *)func; 7555 mp->b_next = NULL; 7556 7557 switch (type) { 7558 case CUR_OP: 7559 if (ipsq->ipsq_mptail != NULL) { 7560 ASSERT(ipsq->ipsq_mphead != NULL); 7561 ipsq->ipsq_mptail->b_next = mp; 7562 } else { 7563 ASSERT(ipsq->ipsq_mphead == NULL); 7564 ipsq->ipsq_mphead = mp; 7565 } 7566 ipsq->ipsq_mptail = mp; 7567 break; 7568 7569 case NEW_OP: 7570 if (ipsq->ipsq_xopq_mptail != NULL) { 7571 ASSERT(ipsq->ipsq_xopq_mphead != NULL); 7572 ipsq->ipsq_xopq_mptail->b_next = mp; 7573 } else { 7574 ASSERT(ipsq->ipsq_xopq_mphead == NULL); 7575 ipsq->ipsq_xopq_mphead = mp; 7576 } 7577 ipsq->ipsq_xopq_mptail = mp; 7578 break; 7579 default: 7580 cmn_err(CE_PANIC, "ipsq_enq %d type \n", type); 7581 } 7582 7583 if (CONN_Q(q) && pending_ill != NULL) { 7584 connp = Q_TO_CONN(q); 7585 7586 ASSERT(MUTEX_HELD(&connp->conn_lock)); 7587 connp->conn_oper_pending_ill = pending_ill; 7588 } 7589 } 7590 7591 /* 7592 * Return the mp at the head of the ipsq. After emptying the ipsq 7593 * look at the next ioctl, if this ioctl is complete. Otherwise 7594 * return, we will resume when we complete the current ioctl. 7595 * The current ioctl will wait till it gets a response from the 7596 * driver below. 7597 */ 7598 static mblk_t * 7599 ipsq_dq(ipsq_t *ipsq) 7600 { 7601 mblk_t *mp; 7602 7603 ASSERT(MUTEX_HELD(&ipsq->ipsq_lock)); 7604 7605 mp = ipsq->ipsq_mphead; 7606 if (mp != NULL) { 7607 ipsq->ipsq_mphead = mp->b_next; 7608 if (ipsq->ipsq_mphead == NULL) 7609 ipsq->ipsq_mptail = NULL; 7610 mp->b_next = NULL; 7611 return (mp); 7612 } 7613 if (ipsq->ipsq_current_ipif != NULL) 7614 return (NULL); 7615 mp = ipsq->ipsq_xopq_mphead; 7616 if (mp != NULL) { 7617 ipsq->ipsq_xopq_mphead = mp->b_next; 7618 if (ipsq->ipsq_xopq_mphead == NULL) 7619 ipsq->ipsq_xopq_mptail = NULL; 7620 mp->b_next = NULL; 7621 return (mp); 7622 } 7623 return (NULL); 7624 } 7625 7626 /* 7627 * Enter the ipsq corresponding to ill, by waiting synchronously till 7628 * we can enter the ipsq exclusively. Unless 'force' is used, the ipsq 7629 * will have to drain completely before ipsq_enter returns success. 7630 * ipsq_current_ipif will be set if some exclusive ioctl is in progress, 7631 * and the ipsq_exit logic will start the next enqueued ioctl after 7632 * completion of the current ioctl. If 'force' is used, we don't wait 7633 * for the enqueued ioctls. This is needed when a conn_close wants to 7634 * enter the ipsq and abort an ioctl that is somehow stuck. Unplumb 7635 * of an ill can also use this option. But we dont' use it currently. 7636 */ 7637 #define ENTER_SQ_WAIT_TICKS 100 7638 boolean_t 7639 ipsq_enter(ill_t *ill, boolean_t force) 7640 { 7641 ipsq_t *ipsq; 7642 boolean_t waited_enough = B_FALSE; 7643 7644 /* 7645 * Holding the ill_lock prevents <ill-ipsq> assocs from changing. 7646 * Since the <ill-ipsq> assocs could change while we wait for the 7647 * writer, it is easier to wait on a fixed global rather than try to 7648 * cv_wait on a changing ipsq. 7649 */ 7650 mutex_enter(&ill->ill_lock); 7651 for (;;) { 7652 if (ill->ill_state_flags & ILL_CONDEMNED) { 7653 mutex_exit(&ill->ill_lock); 7654 return (B_FALSE); 7655 } 7656 7657 ipsq = ill->ill_phyint->phyint_ipsq; 7658 mutex_enter(&ipsq->ipsq_lock); 7659 if (ipsq->ipsq_writer == NULL && 7660 (ipsq->ipsq_current_ipif == NULL || waited_enough)) { 7661 break; 7662 } else if (ipsq->ipsq_writer != NULL) { 7663 mutex_exit(&ipsq->ipsq_lock); 7664 cv_wait(&ill->ill_cv, &ill->ill_lock); 7665 } else { 7666 mutex_exit(&ipsq->ipsq_lock); 7667 if (force) { 7668 (void) cv_timedwait(&ill->ill_cv, 7669 &ill->ill_lock, 7670 lbolt + ENTER_SQ_WAIT_TICKS); 7671 waited_enough = B_TRUE; 7672 continue; 7673 } else { 7674 cv_wait(&ill->ill_cv, &ill->ill_lock); 7675 } 7676 } 7677 } 7678 7679 ASSERT(ipsq->ipsq_mphead == NULL && ipsq->ipsq_mptail == NULL); 7680 ASSERT(ipsq->ipsq_reentry_cnt == 0); 7681 ipsq->ipsq_writer = curthread; 7682 ipsq->ipsq_reentry_cnt++; 7683 #ifdef DEBUG 7684 ipsq->ipsq_depth = getpcstack(ipsq->ipsq_stack, IPSQ_STACK_DEPTH); 7685 #endif 7686 mutex_exit(&ipsq->ipsq_lock); 7687 mutex_exit(&ill->ill_lock); 7688 return (B_TRUE); 7689 } 7690 7691 /* 7692 * The ipsq_t (ipsq) is the synchronization data structure used to serialize 7693 * certain critical operations like plumbing (i.e. most set ioctls), 7694 * multicast joins, igmp/mld timers, IPMP operations etc. On a non-IPMP 7695 * system there is 1 ipsq per phyint. On an IPMP system there is 1 ipsq per 7696 * IPMP group. The ipsq serializes exclusive ioctls issued by applications 7697 * on a per ipsq basis in ipsq_xopq_mphead. It also protects against multiple 7698 * threads executing in the ipsq. Responses from the driver pertain to the 7699 * current ioctl (say a DL_BIND_ACK in response to a DL_BIND_REQUEST initiated 7700 * as part of bringing up the interface) and are enqueued in ipsq_mphead. 7701 * 7702 * If a thread does not want to reenter the ipsq when it is already writer, 7703 * it must make sure that the specified reentry point to be called later 7704 * when the ipsq is empty, nor any code path starting from the specified reentry 7705 * point must never ever try to enter the ipsq again. Otherwise it can lead 7706 * to an infinite loop. The reentry point ip_rput_dlpi_writer is an example. 7707 * When the thread that is currently exclusive finishes, it (ipsq_exit) 7708 * dequeues the requests waiting to become exclusive in ipsq_mphead and calls 7709 * the reentry point. When the list at ipsq_mphead becomes empty ipsq_exit 7710 * proceeds to dequeue the next ioctl in ipsq_xopq_mphead and start the next 7711 * ioctl if the current ioctl has completed. If the current ioctl is still 7712 * in progress it simply returns. The current ioctl could be waiting for 7713 * a response from another module (arp_ or the driver or could be waiting for 7714 * the ipif/ill/ire refcnts to drop to zero. In such a case the ipsq_pending_mp 7715 * and ipsq_pending_ipif are set. ipsq_current_ipif is set throughout the 7716 * execution of the ioctl and ipsq_exit does not start the next ioctl unless 7717 * ipsq_current_ipif is clear which happens only on ioctl completion. 7718 */ 7719 7720 /* 7721 * Try to enter the ipsq exclusively, corresponding to ipif or ill. (only 1 of 7722 * ipif or ill can be specified). The caller ensures ipif or ill is valid by 7723 * ref-holding it if necessary. If the ipsq cannot be entered, the mp is queued 7724 * completion. 7725 */ 7726 ipsq_t * 7727 ipsq_try_enter(ipif_t *ipif, ill_t *ill, queue_t *q, mblk_t *mp, 7728 ipsq_func_t func, int type, boolean_t reentry_ok) 7729 { 7730 ipsq_t *ipsq; 7731 7732 /* Only 1 of ipif or ill can be specified */ 7733 ASSERT((ipif != NULL) ^ (ill != NULL)); 7734 if (ipif != NULL) 7735 ill = ipif->ipif_ill; 7736 7737 /* 7738 * lock ordering ill_g_lock -> conn_lock -> ill_lock -> ipsq_lock 7739 * ipsq of an ill can't change when ill_lock is held. 7740 */ 7741 GRAB_CONN_LOCK(q); 7742 mutex_enter(&ill->ill_lock); 7743 ipsq = ill->ill_phyint->phyint_ipsq; 7744 mutex_enter(&ipsq->ipsq_lock); 7745 7746 /* 7747 * 1. Enter the ipsq if we are already writer and reentry is ok. 7748 * (Note: If the caller does not specify reentry_ok then neither 7749 * 'func' nor any of its callees must ever attempt to enter the ipsq 7750 * again. Otherwise it can lead to an infinite loop 7751 * 2. Enter the ipsq if there is no current writer and this attempted 7752 * entry is part of the current ioctl or operation 7753 * 3. Enter the ipsq if there is no current writer and this is a new 7754 * ioctl (or operation) and the ioctl (or operation) queue is 7755 * empty and there is no ioctl (or operation) currently in progress 7756 */ 7757 if ((ipsq->ipsq_writer == NULL && ((type == CUR_OP) || 7758 (type == NEW_OP && ipsq->ipsq_xopq_mphead == NULL && 7759 ipsq->ipsq_current_ipif == NULL))) || 7760 (ipsq->ipsq_writer == curthread && reentry_ok)) { 7761 /* Success. */ 7762 ipsq->ipsq_reentry_cnt++; 7763 ipsq->ipsq_writer = curthread; 7764 mutex_exit(&ipsq->ipsq_lock); 7765 mutex_exit(&ill->ill_lock); 7766 RELEASE_CONN_LOCK(q); 7767 #ifdef DEBUG 7768 ipsq->ipsq_depth = getpcstack(ipsq->ipsq_stack, 7769 IPSQ_STACK_DEPTH); 7770 #endif 7771 return (ipsq); 7772 } 7773 7774 ipsq_enq(ipsq, q, mp, func, type, ill); 7775 7776 mutex_exit(&ipsq->ipsq_lock); 7777 mutex_exit(&ill->ill_lock); 7778 RELEASE_CONN_LOCK(q); 7779 return (NULL); 7780 } 7781 7782 /* 7783 * Try to enter the IPSQ corresponding to `ill' as writer. The caller ensures 7784 * ill is valid by refholding it if necessary; we will refrele. If the IPSQ 7785 * cannot be entered, the mp is queued for completion. 7786 */ 7787 void 7788 qwriter_ip(ill_t *ill, queue_t *q, mblk_t *mp, ipsq_func_t func, int type, 7789 boolean_t reentry_ok) 7790 { 7791 ipsq_t *ipsq; 7792 7793 ipsq = ipsq_try_enter(NULL, ill, q, mp, func, type, reentry_ok); 7794 7795 /* 7796 * Drop the caller's refhold on the ill. This is safe since we either 7797 * entered the IPSQ (and thus are exclusive), or failed to enter the 7798 * IPSQ, in which case we return without accessing ill anymore. This 7799 * is needed because func needs to see the correct refcount. 7800 * e.g. removeif can work only then. 7801 */ 7802 ill_refrele(ill); 7803 if (ipsq != NULL) { 7804 (*func)(ipsq, q, mp, NULL); 7805 ipsq_exit(ipsq); 7806 } 7807 } 7808 7809 /* 7810 * If there are more than ILL_GRP_CNT ills in a group, 7811 * we use kmem alloc'd buffers, else use the stack 7812 */ 7813 #define ILL_GRP_CNT 14 7814 /* 7815 * Drain the ipsq, if there are messages on it, and then leave the ipsq. 7816 * Called by a thread that is currently exclusive on this ipsq. 7817 */ 7818 void 7819 ipsq_exit(ipsq_t *ipsq) 7820 { 7821 queue_t *q; 7822 mblk_t *mp; 7823 ipsq_func_t func; 7824 int next; 7825 ill_t **ill_list = NULL; 7826 size_t ill_list_size = 0; 7827 int cnt = 0; 7828 boolean_t need_ipsq_free = B_FALSE; 7829 ip_stack_t *ipst = ipsq->ipsq_ipst; 7830 7831 ASSERT(IAM_WRITER_IPSQ(ipsq)); 7832 mutex_enter(&ipsq->ipsq_lock); 7833 ASSERT(ipsq->ipsq_reentry_cnt >= 1); 7834 if (ipsq->ipsq_reentry_cnt != 1) { 7835 ipsq->ipsq_reentry_cnt--; 7836 mutex_exit(&ipsq->ipsq_lock); 7837 return; 7838 } 7839 7840 mp = ipsq_dq(ipsq); 7841 while (mp != NULL) { 7842 again: 7843 mutex_exit(&ipsq->ipsq_lock); 7844 func = (ipsq_func_t)mp->b_prev; 7845 q = (queue_t *)mp->b_queue; 7846 mp->b_prev = NULL; 7847 mp->b_queue = NULL; 7848 7849 /* 7850 * If 'q' is an conn queue, it is valid, since we did a 7851 * a refhold on the connp, at the start of the ioctl. 7852 * If 'q' is an ill queue, it is valid, since close of an 7853 * ill will clean up the 'ipsq'. 7854 */ 7855 (*func)(ipsq, q, mp, NULL); 7856 7857 mutex_enter(&ipsq->ipsq_lock); 7858 mp = ipsq_dq(ipsq); 7859 } 7860 7861 mutex_exit(&ipsq->ipsq_lock); 7862 7863 /* 7864 * Need to grab the locks in the right order. Need to 7865 * atomically check (under ipsq_lock) that there are no 7866 * messages before relinquishing the ipsq. Also need to 7867 * atomically wakeup waiters on ill_cv while holding ill_lock. 7868 * Holding ill_g_lock ensures that ipsq list of ills is stable. 7869 * If we need to call ill_split_ipsq and change <ill-ipsq> we need 7870 * to grab ill_g_lock as writer. 7871 */ 7872 rw_enter(&ipst->ips_ill_g_lock, 7873 ipsq->ipsq_split ? RW_WRITER : RW_READER); 7874 7875 /* ipsq_refs can't change while ill_g_lock is held as reader */ 7876 if (ipsq->ipsq_refs != 0) { 7877 /* At most 2 ills v4/v6 per phyint */ 7878 cnt = ipsq->ipsq_refs << 1; 7879 ill_list_size = cnt * sizeof (ill_t *); 7880 /* 7881 * If memory allocation fails, we will do the split 7882 * the next time ipsq_exit is called for whatever reason. 7883 * As long as the ipsq_split flag is set the need to 7884 * split is remembered. 7885 */ 7886 ill_list = kmem_zalloc(ill_list_size, KM_NOSLEEP); 7887 if (ill_list != NULL) 7888 cnt = ill_lock_ipsq_ills(ipsq, ill_list, cnt); 7889 } 7890 mutex_enter(&ipsq->ipsq_lock); 7891 mp = ipsq_dq(ipsq); 7892 if (mp != NULL) { 7893 /* oops, some message has landed up, we can't get out */ 7894 if (ill_list != NULL) 7895 ill_unlock_ills(ill_list, cnt); 7896 rw_exit(&ipst->ips_ill_g_lock); 7897 if (ill_list != NULL) 7898 kmem_free(ill_list, ill_list_size); 7899 ill_list = NULL; 7900 ill_list_size = 0; 7901 cnt = 0; 7902 goto again; 7903 } 7904 7905 /* 7906 * Split only if no ioctl is pending and if memory alloc succeeded 7907 * above. 7908 */ 7909 if (ipsq->ipsq_split && ipsq->ipsq_current_ipif == NULL && 7910 ill_list != NULL) { 7911 /* 7912 * No new ill can join this ipsq since we are holding the 7913 * ill_g_lock. Hence ill_split_ipsq can safely traverse the 7914 * ipsq. ill_split_ipsq may fail due to memory shortage. 7915 * If so we will retry on the next ipsq_exit. 7916 */ 7917 ipsq->ipsq_split = ill_split_ipsq(ipsq); 7918 } 7919 7920 /* 7921 * We are holding the ipsq lock, hence no new messages can 7922 * land up on the ipsq, and there are no messages currently. 7923 * Now safe to get out. Wake up waiters and relinquish ipsq 7924 * atomically while holding ill locks. 7925 */ 7926 ipsq->ipsq_writer = NULL; 7927 ipsq->ipsq_reentry_cnt--; 7928 ASSERT(ipsq->ipsq_reentry_cnt == 0); 7929 #ifdef DEBUG 7930 ipsq->ipsq_depth = 0; 7931 #endif 7932 mutex_exit(&ipsq->ipsq_lock); 7933 /* 7934 * For IPMP this should wake up all ills in this ipsq. 7935 * We need to hold the ill_lock while waking up waiters to 7936 * avoid missed wakeups. But there is no need to acquire all 7937 * the ill locks and then wakeup. If we have not acquired all 7938 * the locks (due to memory failure above) ill_signal_ipsq_ills 7939 * wakes up ills one at a time after getting the right ill_lock 7940 */ 7941 ill_signal_ipsq_ills(ipsq, ill_list != NULL); 7942 if (ill_list != NULL) 7943 ill_unlock_ills(ill_list, cnt); 7944 if (ipsq->ipsq_refs == 0) 7945 need_ipsq_free = B_TRUE; 7946 rw_exit(&ipst->ips_ill_g_lock); 7947 if (ill_list != 0) 7948 kmem_free(ill_list, ill_list_size); 7949 7950 if (need_ipsq_free) { 7951 /* 7952 * Free the ipsq. ipsq_refs can't increase because ipsq can't be 7953 * looked up. ipsq can be looked up only thru ill or phyint 7954 * and there are no ills/phyint on this ipsq. 7955 */ 7956 ipsq_delete(ipsq); 7957 } 7958 7959 /* 7960 * Now that we're outside the IPSQ, start any IGMP/MLD timers. We 7961 * can't start these inside the IPSQ since e.g. igmp_start_timers() -> 7962 * untimeout() (inside the IPSQ, waiting for an executing timeout to 7963 * finish) could deadlock with igmp_timeout_handler() -> ipsq_enter() 7964 * (executing the timeout, waiting to get inside the IPSQ). 7965 * 7966 * However, there is one exception to the above: if this thread *is* 7967 * the IGMP/MLD timeout handler thread, then we must not start its 7968 * timer until the current handler is done. 7969 */ 7970 mutex_enter(&ipst->ips_igmp_timer_lock); 7971 if (curthread != ipst->ips_igmp_timer_thread) { 7972 next = ipst->ips_igmp_deferred_next; 7973 ipst->ips_igmp_deferred_next = INFINITY; 7974 mutex_exit(&ipst->ips_igmp_timer_lock); 7975 7976 if (next != INFINITY) 7977 igmp_start_timers(next, ipst); 7978 } else { 7979 mutex_exit(&ipst->ips_igmp_timer_lock); 7980 } 7981 7982 mutex_enter(&ipst->ips_mld_timer_lock); 7983 if (curthread != ipst->ips_mld_timer_thread) { 7984 next = ipst->ips_mld_deferred_next; 7985 ipst->ips_mld_deferred_next = INFINITY; 7986 mutex_exit(&ipst->ips_mld_timer_lock); 7987 7988 if (next != INFINITY) 7989 mld_start_timers(next, ipst); 7990 } else { 7991 mutex_exit(&ipst->ips_mld_timer_lock); 7992 } 7993 } 7994 7995 /* 7996 * Start the current exclusive operation on `ipsq'; associate it with `ipif' 7997 * and `ioccmd'. 7998 */ 7999 void 8000 ipsq_current_start(ipsq_t *ipsq, ipif_t *ipif, int ioccmd) 8001 { 8002 ASSERT(IAM_WRITER_IPSQ(ipsq)); 8003 8004 mutex_enter(&ipsq->ipsq_lock); 8005 ASSERT(ipsq->ipsq_current_ipif == NULL); 8006 ASSERT(ipsq->ipsq_current_ioctl == 0); 8007 ipsq->ipsq_current_done = B_FALSE; 8008 ipsq->ipsq_current_ipif = ipif; 8009 ipsq->ipsq_current_ioctl = ioccmd; 8010 mutex_exit(&ipsq->ipsq_lock); 8011 } 8012 8013 /* 8014 * Finish the current exclusive operation on `ipsq'. Usually, this will allow 8015 * the next exclusive operation to begin once we ipsq_exit(). However, if 8016 * pending DLPI operations remain, then we will wait for the queue to drain 8017 * before allowing the next exclusive operation to begin. This ensures that 8018 * DLPI operations from one exclusive operation are never improperly processed 8019 * as part of a subsequent exclusive operation. 8020 */ 8021 void 8022 ipsq_current_finish(ipsq_t *ipsq) 8023 { 8024 ipif_t *ipif = ipsq->ipsq_current_ipif; 8025 t_uscalar_t dlpi_pending = DL_PRIM_INVAL; 8026 8027 ASSERT(IAM_WRITER_IPSQ(ipsq)); 8028 8029 /* 8030 * For SIOCSLIFREMOVEIF, the ipif has been already been blown away 8031 * (but in that case, IPIF_CHANGING will already be clear and no 8032 * pending DLPI messages can remain). 8033 */ 8034 if (ipsq->ipsq_current_ioctl != SIOCLIFREMOVEIF) { 8035 ill_t *ill = ipif->ipif_ill; 8036 8037 mutex_enter(&ill->ill_lock); 8038 dlpi_pending = ill->ill_dlpi_pending; 8039 ipif->ipif_state_flags &= ~IPIF_CHANGING; 8040 /* Send any queued event */ 8041 ill_nic_info_dispatch(ill); 8042 mutex_exit(&ill->ill_lock); 8043 } 8044 8045 mutex_enter(&ipsq->ipsq_lock); 8046 ipsq->ipsq_current_ioctl = 0; 8047 ipsq->ipsq_current_done = B_TRUE; 8048 if (dlpi_pending == DL_PRIM_INVAL) 8049 ipsq->ipsq_current_ipif = NULL; 8050 mutex_exit(&ipsq->ipsq_lock); 8051 } 8052 8053 /* 8054 * The ill is closing. Flush all messages on the ipsq that originated 8055 * from this ill. Usually there wont' be any messages on the ipsq_xopq_mphead 8056 * for this ill since ipsq_enter could not have entered until then. 8057 * New messages can't be queued since the CONDEMNED flag is set. 8058 */ 8059 static void 8060 ipsq_flush(ill_t *ill) 8061 { 8062 queue_t *q; 8063 mblk_t *prev; 8064 mblk_t *mp; 8065 mblk_t *mp_next; 8066 ipsq_t *ipsq; 8067 8068 ASSERT(IAM_WRITER_ILL(ill)); 8069 ipsq = ill->ill_phyint->phyint_ipsq; 8070 /* 8071 * Flush any messages sent up by the driver. 8072 */ 8073 mutex_enter(&ipsq->ipsq_lock); 8074 for (prev = NULL, mp = ipsq->ipsq_mphead; mp != NULL; mp = mp_next) { 8075 mp_next = mp->b_next; 8076 q = mp->b_queue; 8077 if (q == ill->ill_rq || q == ill->ill_wq) { 8078 /* Remove the mp from the ipsq */ 8079 if (prev == NULL) 8080 ipsq->ipsq_mphead = mp->b_next; 8081 else 8082 prev->b_next = mp->b_next; 8083 if (ipsq->ipsq_mptail == mp) { 8084 ASSERT(mp_next == NULL); 8085 ipsq->ipsq_mptail = prev; 8086 } 8087 inet_freemsg(mp); 8088 } else { 8089 prev = mp; 8090 } 8091 } 8092 mutex_exit(&ipsq->ipsq_lock); 8093 (void) ipsq_pending_mp_cleanup(ill, NULL); 8094 ipsq_xopq_mp_cleanup(ill, NULL); 8095 ill_pending_mp_cleanup(ill); 8096 } 8097 8098 /* ARGSUSED */ 8099 int 8100 ip_sioctl_slifoindex(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 8101 ip_ioctl_cmd_t *ipip, void *ifreq) 8102 { 8103 ill_t *ill; 8104 struct lifreq *lifr = (struct lifreq *)ifreq; 8105 boolean_t isv6; 8106 conn_t *connp; 8107 ip_stack_t *ipst; 8108 8109 connp = Q_TO_CONN(q); 8110 ipst = connp->conn_netstack->netstack_ip; 8111 isv6 = connp->conn_af_isv6; 8112 /* 8113 * Set original index. 8114 * Failover and failback move logical interfaces 8115 * from one physical interface to another. The 8116 * original index indicates the parent of a logical 8117 * interface, in other words, the physical interface 8118 * the logical interface will be moved back to on 8119 * failback. 8120 */ 8121 8122 /* 8123 * Don't allow the original index to be changed 8124 * for non-failover addresses, autoconfigured 8125 * addresses, or IPv6 link local addresses. 8126 */ 8127 if (((ipif->ipif_flags & (IPIF_NOFAILOVER | IPIF_ADDRCONF)) != NULL) || 8128 (isv6 && IN6_IS_ADDR_LINKLOCAL(&ipif->ipif_v6lcl_addr))) { 8129 return (EINVAL); 8130 } 8131 /* 8132 * The new original index must be in use by some 8133 * physical interface. 8134 */ 8135 ill = ill_lookup_on_ifindex(lifr->lifr_index, isv6, NULL, NULL, 8136 NULL, NULL, ipst); 8137 if (ill == NULL) 8138 return (ENXIO); 8139 ill_refrele(ill); 8140 8141 ipif->ipif_orig_ifindex = lifr->lifr_index; 8142 /* 8143 * When this ipif gets failed back, don't 8144 * preserve the original id, as it is no 8145 * longer applicable. 8146 */ 8147 ipif->ipif_orig_ipifid = 0; 8148 /* 8149 * For IPv4, change the original index of any 8150 * multicast addresses associated with the 8151 * ipif to the new value. 8152 */ 8153 if (!isv6) { 8154 ilm_t *ilm; 8155 8156 mutex_enter(&ipif->ipif_ill->ill_lock); 8157 for (ilm = ipif->ipif_ill->ill_ilm; ilm != NULL; 8158 ilm = ilm->ilm_next) { 8159 if (ilm->ilm_ipif == ipif) { 8160 ilm->ilm_orig_ifindex = lifr->lifr_index; 8161 } 8162 } 8163 mutex_exit(&ipif->ipif_ill->ill_lock); 8164 } 8165 return (0); 8166 } 8167 8168 /* ARGSUSED */ 8169 int 8170 ip_sioctl_get_oindex(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 8171 ip_ioctl_cmd_t *ipip, void *ifreq) 8172 { 8173 struct lifreq *lifr = (struct lifreq *)ifreq; 8174 8175 /* 8176 * Get the original interface index i.e the one 8177 * before FAILOVER if it ever happened. 8178 */ 8179 lifr->lifr_index = ipif->ipif_orig_ifindex; 8180 return (0); 8181 } 8182 8183 /* 8184 * Parse an iftun_req structure coming down SIOC[GS]TUNPARAM ioctls, 8185 * refhold and return the associated ipif 8186 */ 8187 /* ARGSUSED */ 8188 int 8189 ip_extract_tunreq(queue_t *q, mblk_t *mp, const ip_ioctl_cmd_t *ipip, 8190 cmd_info_t *ci, ipsq_func_t func) 8191 { 8192 boolean_t exists; 8193 struct iftun_req *ta; 8194 ipif_t *ipif; 8195 ill_t *ill; 8196 boolean_t isv6; 8197 mblk_t *mp1; 8198 int error; 8199 conn_t *connp; 8200 ip_stack_t *ipst; 8201 8202 /* Existence verified in ip_wput_nondata */ 8203 mp1 = mp->b_cont->b_cont; 8204 ta = (struct iftun_req *)mp1->b_rptr; 8205 /* 8206 * Null terminate the string to protect against buffer 8207 * overrun. String was generated by user code and may not 8208 * be trusted. 8209 */ 8210 ta->ifta_lifr_name[LIFNAMSIZ - 1] = '\0'; 8211 8212 connp = Q_TO_CONN(q); 8213 isv6 = connp->conn_af_isv6; 8214 ipst = connp->conn_netstack->netstack_ip; 8215 8216 /* Disallows implicit create */ 8217 ipif = ipif_lookup_on_name(ta->ifta_lifr_name, 8218 mi_strlen(ta->ifta_lifr_name), B_FALSE, &exists, isv6, 8219 connp->conn_zoneid, CONNP_TO_WQ(connp), mp, func, &error, ipst); 8220 if (ipif == NULL) 8221 return (error); 8222 8223 if (ipif->ipif_id != 0) { 8224 /* 8225 * We really don't want to set/get tunnel parameters 8226 * on virtual tunnel interfaces. Only allow the 8227 * base tunnel to do these. 8228 */ 8229 ipif_refrele(ipif); 8230 return (EINVAL); 8231 } 8232 8233 /* 8234 * Send down to tunnel mod for ioctl processing. 8235 * Will finish ioctl in ip_rput_other(). 8236 */ 8237 ill = ipif->ipif_ill; 8238 if (ill->ill_net_type == IRE_LOOPBACK) { 8239 ipif_refrele(ipif); 8240 return (EOPNOTSUPP); 8241 } 8242 8243 if (ill->ill_wq == NULL) { 8244 ipif_refrele(ipif); 8245 return (ENXIO); 8246 } 8247 /* 8248 * Mark the ioctl as coming from an IPv6 interface for 8249 * tun's convenience. 8250 */ 8251 if (ill->ill_isv6) 8252 ta->ifta_flags |= 0x80000000; 8253 ci->ci_ipif = ipif; 8254 return (0); 8255 } 8256 8257 /* 8258 * Parse an ifreq or lifreq struct coming down ioctls and refhold 8259 * and return the associated ipif. 8260 * Return value: 8261 * Non zero: An error has occurred. ci may not be filled out. 8262 * zero : ci is filled out with the ioctl cmd in ci.ci_name, and 8263 * a held ipif in ci.ci_ipif. 8264 */ 8265 int 8266 ip_extract_lifreq(queue_t *q, mblk_t *mp, const ip_ioctl_cmd_t *ipip, 8267 cmd_info_t *ci, ipsq_func_t func) 8268 { 8269 sin_t *sin; 8270 sin6_t *sin6; 8271 char *name; 8272 struct ifreq *ifr; 8273 struct lifreq *lifr; 8274 ipif_t *ipif = NULL; 8275 ill_t *ill; 8276 conn_t *connp; 8277 boolean_t isv6; 8278 boolean_t exists; 8279 int err; 8280 mblk_t *mp1; 8281 zoneid_t zoneid; 8282 ip_stack_t *ipst; 8283 8284 if (q->q_next != NULL) { 8285 ill = (ill_t *)q->q_ptr; 8286 isv6 = ill->ill_isv6; 8287 connp = NULL; 8288 zoneid = ALL_ZONES; 8289 ipst = ill->ill_ipst; 8290 } else { 8291 ill = NULL; 8292 connp = Q_TO_CONN(q); 8293 isv6 = connp->conn_af_isv6; 8294 zoneid = connp->conn_zoneid; 8295 if (zoneid == GLOBAL_ZONEID) { 8296 /* global zone can access ipifs in all zones */ 8297 zoneid = ALL_ZONES; 8298 } 8299 ipst = connp->conn_netstack->netstack_ip; 8300 } 8301 8302 /* Has been checked in ip_wput_nondata */ 8303 mp1 = mp->b_cont->b_cont; 8304 8305 if (ipip->ipi_cmd_type == IF_CMD) { 8306 /* This a old style SIOC[GS]IF* command */ 8307 ifr = (struct ifreq *)mp1->b_rptr; 8308 /* 8309 * Null terminate the string to protect against buffer 8310 * overrun. String was generated by user code and may not 8311 * be trusted. 8312 */ 8313 ifr->ifr_name[IFNAMSIZ - 1] = '\0'; 8314 sin = (sin_t *)&ifr->ifr_addr; 8315 name = ifr->ifr_name; 8316 ci->ci_sin = sin; 8317 ci->ci_sin6 = NULL; 8318 ci->ci_lifr = (struct lifreq *)ifr; 8319 } else { 8320 /* This a new style SIOC[GS]LIF* command */ 8321 ASSERT(ipip->ipi_cmd_type == LIF_CMD); 8322 lifr = (struct lifreq *)mp1->b_rptr; 8323 /* 8324 * Null terminate the string to protect against buffer 8325 * overrun. String was generated by user code and may not 8326 * be trusted. 8327 */ 8328 lifr->lifr_name[LIFNAMSIZ - 1] = '\0'; 8329 name = lifr->lifr_name; 8330 sin = (sin_t *)&lifr->lifr_addr; 8331 sin6 = (sin6_t *)&lifr->lifr_addr; 8332 if (ipip->ipi_cmd == SIOCSLIFGROUPNAME) { 8333 (void) strncpy(ci->ci_groupname, lifr->lifr_groupname, 8334 LIFNAMSIZ); 8335 } 8336 ci->ci_sin = sin; 8337 ci->ci_sin6 = sin6; 8338 ci->ci_lifr = lifr; 8339 } 8340 8341 if (ipip->ipi_cmd == SIOCSLIFNAME) { 8342 /* 8343 * The ioctl will be failed if the ioctl comes down 8344 * an conn stream 8345 */ 8346 if (ill == NULL) { 8347 /* 8348 * Not an ill queue, return EINVAL same as the 8349 * old error code. 8350 */ 8351 return (ENXIO); 8352 } 8353 ipif = ill->ill_ipif; 8354 ipif_refhold(ipif); 8355 } else { 8356 ipif = ipif_lookup_on_name(name, mi_strlen(name), B_FALSE, 8357 &exists, isv6, zoneid, 8358 (connp == NULL) ? q : CONNP_TO_WQ(connp), mp, func, &err, 8359 ipst); 8360 if (ipif == NULL) { 8361 if (err == EINPROGRESS) 8362 return (err); 8363 if (ipip->ipi_cmd == SIOCLIFFAILOVER || 8364 ipip->ipi_cmd == SIOCLIFFAILBACK) { 8365 /* 8366 * Need to try both v4 and v6 since this 8367 * ioctl can come down either v4 or v6 8368 * socket. The lifreq.lifr_family passed 8369 * down by this ioctl is AF_UNSPEC. 8370 */ 8371 ipif = ipif_lookup_on_name(name, 8372 mi_strlen(name), B_FALSE, &exists, !isv6, 8373 zoneid, (connp == NULL) ? q : 8374 CONNP_TO_WQ(connp), mp, func, &err, ipst); 8375 if (err == EINPROGRESS) 8376 return (err); 8377 } 8378 err = 0; /* Ensure we don't use it below */ 8379 } 8380 } 8381 8382 /* 8383 * Old style [GS]IFCMD does not admit IPv6 ipif 8384 */ 8385 if (ipif != NULL && ipif->ipif_isv6 && ipip->ipi_cmd_type == IF_CMD) { 8386 ipif_refrele(ipif); 8387 return (ENXIO); 8388 } 8389 8390 if (ipif == NULL && ill != NULL && ill->ill_ipif != NULL && 8391 name[0] == '\0') { 8392 /* 8393 * Handle a or a SIOC?IF* with a null name 8394 * during plumb (on the ill queue before the I_PLINK). 8395 */ 8396 ipif = ill->ill_ipif; 8397 ipif_refhold(ipif); 8398 } 8399 8400 if (ipif == NULL) 8401 return (ENXIO); 8402 8403 /* 8404 * Allow only GET operations if this ipif has been created 8405 * temporarily due to a MOVE operation. 8406 */ 8407 if (ipif->ipif_replace_zero && !(ipip->ipi_flags & IPI_REPL)) { 8408 ipif_refrele(ipif); 8409 return (EINVAL); 8410 } 8411 8412 ci->ci_ipif = ipif; 8413 return (0); 8414 } 8415 8416 /* 8417 * Return the total number of ipifs. 8418 */ 8419 static uint_t 8420 ip_get_numifs(zoneid_t zoneid, ip_stack_t *ipst) 8421 { 8422 uint_t numifs = 0; 8423 ill_t *ill; 8424 ill_walk_context_t ctx; 8425 ipif_t *ipif; 8426 8427 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 8428 ill = ILL_START_WALK_V4(&ctx, ipst); 8429 8430 while (ill != NULL) { 8431 for (ipif = ill->ill_ipif; ipif != NULL; 8432 ipif = ipif->ipif_next) { 8433 if (ipif->ipif_zoneid == zoneid || 8434 ipif->ipif_zoneid == ALL_ZONES) 8435 numifs++; 8436 } 8437 ill = ill_next(&ctx, ill); 8438 } 8439 rw_exit(&ipst->ips_ill_g_lock); 8440 return (numifs); 8441 } 8442 8443 /* 8444 * Return the total number of ipifs. 8445 */ 8446 static uint_t 8447 ip_get_numlifs(int family, int lifn_flags, zoneid_t zoneid, ip_stack_t *ipst) 8448 { 8449 uint_t numifs = 0; 8450 ill_t *ill; 8451 ipif_t *ipif; 8452 ill_walk_context_t ctx; 8453 8454 ip1dbg(("ip_get_numlifs(%d %u %d)\n", family, lifn_flags, (int)zoneid)); 8455 8456 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 8457 if (family == AF_INET) 8458 ill = ILL_START_WALK_V4(&ctx, ipst); 8459 else if (family == AF_INET6) 8460 ill = ILL_START_WALK_V6(&ctx, ipst); 8461 else 8462 ill = ILL_START_WALK_ALL(&ctx, ipst); 8463 8464 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 8465 for (ipif = ill->ill_ipif; ipif != NULL; 8466 ipif = ipif->ipif_next) { 8467 if ((ipif->ipif_flags & IPIF_NOXMIT) && 8468 !(lifn_flags & LIFC_NOXMIT)) 8469 continue; 8470 if ((ipif->ipif_flags & IPIF_TEMPORARY) && 8471 !(lifn_flags & LIFC_TEMPORARY)) 8472 continue; 8473 if (((ipif->ipif_flags & 8474 (IPIF_NOXMIT|IPIF_NOLOCAL| 8475 IPIF_DEPRECATED)) || 8476 IS_LOOPBACK(ill) || 8477 !(ipif->ipif_flags & IPIF_UP)) && 8478 (lifn_flags & LIFC_EXTERNAL_SOURCE)) 8479 continue; 8480 8481 if (zoneid != ipif->ipif_zoneid && 8482 ipif->ipif_zoneid != ALL_ZONES && 8483 (zoneid != GLOBAL_ZONEID || 8484 !(lifn_flags & LIFC_ALLZONES))) 8485 continue; 8486 8487 numifs++; 8488 } 8489 } 8490 rw_exit(&ipst->ips_ill_g_lock); 8491 return (numifs); 8492 } 8493 8494 uint_t 8495 ip_get_lifsrcofnum(ill_t *ill) 8496 { 8497 uint_t numifs = 0; 8498 ill_t *ill_head = ill; 8499 ip_stack_t *ipst = ill->ill_ipst; 8500 8501 /* 8502 * ill_g_usesrc_lock protects ill_usesrc_grp_next, for example, some 8503 * other thread may be trying to relink the ILLs in this usesrc group 8504 * and adjusting the ill_usesrc_grp_next pointers 8505 */ 8506 rw_enter(&ipst->ips_ill_g_usesrc_lock, RW_READER); 8507 if ((ill->ill_usesrc_ifindex == 0) && 8508 (ill->ill_usesrc_grp_next != NULL)) { 8509 for (; (ill != NULL) && (ill->ill_usesrc_grp_next != ill_head); 8510 ill = ill->ill_usesrc_grp_next) 8511 numifs++; 8512 } 8513 rw_exit(&ipst->ips_ill_g_usesrc_lock); 8514 8515 return (numifs); 8516 } 8517 8518 /* Null values are passed in for ipif, sin, and ifreq */ 8519 /* ARGSUSED */ 8520 int 8521 ip_sioctl_get_ifnum(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, 8522 mblk_t *mp, ip_ioctl_cmd_t *ipip, void *ifreq) 8523 { 8524 int *nump; 8525 conn_t *connp = Q_TO_CONN(q); 8526 8527 ASSERT(q->q_next == NULL); /* not a valid ioctl for ip as a module */ 8528 8529 /* Existence of b_cont->b_cont checked in ip_wput_nondata */ 8530 nump = (int *)mp->b_cont->b_cont->b_rptr; 8531 8532 *nump = ip_get_numifs(connp->conn_zoneid, 8533 connp->conn_netstack->netstack_ip); 8534 ip1dbg(("ip_sioctl_get_ifnum numifs %d", *nump)); 8535 return (0); 8536 } 8537 8538 /* Null values are passed in for ipif, sin, and ifreq */ 8539 /* ARGSUSED */ 8540 int 8541 ip_sioctl_get_lifnum(ipif_t *dummy_ipif, sin_t *dummy_sin, 8542 queue_t *q, mblk_t *mp, ip_ioctl_cmd_t *ipip, void *ifreq) 8543 { 8544 struct lifnum *lifn; 8545 mblk_t *mp1; 8546 conn_t *connp = Q_TO_CONN(q); 8547 8548 ASSERT(q->q_next == NULL); /* not a valid ioctl for ip as a module */ 8549 8550 /* Existence checked in ip_wput_nondata */ 8551 mp1 = mp->b_cont->b_cont; 8552 8553 lifn = (struct lifnum *)mp1->b_rptr; 8554 switch (lifn->lifn_family) { 8555 case AF_UNSPEC: 8556 case AF_INET: 8557 case AF_INET6: 8558 break; 8559 default: 8560 return (EAFNOSUPPORT); 8561 } 8562 8563 lifn->lifn_count = ip_get_numlifs(lifn->lifn_family, lifn->lifn_flags, 8564 connp->conn_zoneid, connp->conn_netstack->netstack_ip); 8565 ip1dbg(("ip_sioctl_get_lifnum numifs %d", lifn->lifn_count)); 8566 return (0); 8567 } 8568 8569 /* ARGSUSED */ 8570 int 8571 ip_sioctl_get_ifconf(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, 8572 mblk_t *mp, ip_ioctl_cmd_t *ipip, void *ifreq) 8573 { 8574 STRUCT_HANDLE(ifconf, ifc); 8575 mblk_t *mp1; 8576 struct iocblk *iocp; 8577 struct ifreq *ifr; 8578 ill_walk_context_t ctx; 8579 ill_t *ill; 8580 ipif_t *ipif; 8581 struct sockaddr_in *sin; 8582 int32_t ifclen; 8583 zoneid_t zoneid; 8584 ip_stack_t *ipst = CONNQ_TO_IPST(q); 8585 8586 ASSERT(q->q_next == NULL); /* not valid ioctls for ip as a module */ 8587 8588 ip1dbg(("ip_sioctl_get_ifconf")); 8589 /* Existence verified in ip_wput_nondata */ 8590 mp1 = mp->b_cont->b_cont; 8591 iocp = (struct iocblk *)mp->b_rptr; 8592 zoneid = Q_TO_CONN(q)->conn_zoneid; 8593 8594 /* 8595 * The original SIOCGIFCONF passed in a struct ifconf which specified 8596 * the user buffer address and length into which the list of struct 8597 * ifreqs was to be copied. Since AT&T Streams does not seem to 8598 * allow M_COPYOUT to be used in conjunction with I_STR IOCTLS, 8599 * the SIOCGIFCONF operation was redefined to simply provide 8600 * a large output buffer into which we are supposed to jam the ifreq 8601 * array. The same ioctl command code was used, despite the fact that 8602 * both the applications and the kernel code had to change, thus making 8603 * it impossible to support both interfaces. 8604 * 8605 * For reasons not good enough to try to explain, the following 8606 * algorithm is used for deciding what to do with one of these: 8607 * If the IOCTL comes in as an I_STR, it is assumed to be of the new 8608 * form with the output buffer coming down as the continuation message. 8609 * If it arrives as a TRANSPARENT IOCTL, it is assumed to be old style, 8610 * and we have to copy in the ifconf structure to find out how big the 8611 * output buffer is and where to copy out to. Sure no problem... 8612 * 8613 */ 8614 STRUCT_SET_HANDLE(ifc, iocp->ioc_flag, NULL); 8615 if ((mp1->b_wptr - mp1->b_rptr) == STRUCT_SIZE(ifc)) { 8616 int numifs = 0; 8617 size_t ifc_bufsize; 8618 8619 /* 8620 * Must be (better be!) continuation of a TRANSPARENT 8621 * IOCTL. We just copied in the ifconf structure. 8622 */ 8623 STRUCT_SET_HANDLE(ifc, iocp->ioc_flag, 8624 (struct ifconf *)mp1->b_rptr); 8625 8626 /* 8627 * Allocate a buffer to hold requested information. 8628 * 8629 * If ifc_len is larger than what is needed, we only 8630 * allocate what we will use. 8631 * 8632 * If ifc_len is smaller than what is needed, return 8633 * EINVAL. 8634 * 8635 * XXX: the ill_t structure can hava 2 counters, for 8636 * v4 and v6 (not just ill_ipif_up_count) to store the 8637 * number of interfaces for a device, so we don't need 8638 * to count them here... 8639 */ 8640 numifs = ip_get_numifs(zoneid, ipst); 8641 8642 ifclen = STRUCT_FGET(ifc, ifc_len); 8643 ifc_bufsize = numifs * sizeof (struct ifreq); 8644 if (ifc_bufsize > ifclen) { 8645 if (iocp->ioc_cmd == O_SIOCGIFCONF) { 8646 /* old behaviour */ 8647 return (EINVAL); 8648 } else { 8649 ifc_bufsize = ifclen; 8650 } 8651 } 8652 8653 mp1 = mi_copyout_alloc(q, mp, 8654 STRUCT_FGETP(ifc, ifc_buf), ifc_bufsize, B_FALSE); 8655 if (mp1 == NULL) 8656 return (ENOMEM); 8657 8658 mp1->b_wptr = mp1->b_rptr + ifc_bufsize; 8659 } 8660 bzero(mp1->b_rptr, mp1->b_wptr - mp1->b_rptr); 8661 /* 8662 * the SIOCGIFCONF ioctl only knows about 8663 * IPv4 addresses, so don't try to tell 8664 * it about interfaces with IPv6-only 8665 * addresses. (Last parm 'isv6' is B_FALSE) 8666 */ 8667 8668 ifr = (struct ifreq *)mp1->b_rptr; 8669 8670 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 8671 ill = ILL_START_WALK_V4(&ctx, ipst); 8672 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 8673 for (ipif = ill->ill_ipif; ipif != NULL; 8674 ipif = ipif->ipif_next) { 8675 if (zoneid != ipif->ipif_zoneid && 8676 ipif->ipif_zoneid != ALL_ZONES) 8677 continue; 8678 if ((uchar_t *)&ifr[1] > mp1->b_wptr) { 8679 if (iocp->ioc_cmd == O_SIOCGIFCONF) { 8680 /* old behaviour */ 8681 rw_exit(&ipst->ips_ill_g_lock); 8682 return (EINVAL); 8683 } else { 8684 goto if_copydone; 8685 } 8686 } 8687 ipif_get_name(ipif, ifr->ifr_name, 8688 sizeof (ifr->ifr_name)); 8689 sin = (sin_t *)&ifr->ifr_addr; 8690 *sin = sin_null; 8691 sin->sin_family = AF_INET; 8692 sin->sin_addr.s_addr = ipif->ipif_lcl_addr; 8693 ifr++; 8694 } 8695 } 8696 if_copydone: 8697 rw_exit(&ipst->ips_ill_g_lock); 8698 mp1->b_wptr = (uchar_t *)ifr; 8699 8700 if (STRUCT_BUF(ifc) != NULL) { 8701 STRUCT_FSET(ifc, ifc_len, 8702 (int)((uchar_t *)ifr - mp1->b_rptr)); 8703 } 8704 return (0); 8705 } 8706 8707 /* 8708 * Get the interfaces using the address hosted on the interface passed in, 8709 * as a source adddress 8710 */ 8711 /* ARGSUSED */ 8712 int 8713 ip_sioctl_get_lifsrcof(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, 8714 mblk_t *mp, ip_ioctl_cmd_t *ipip, void *ifreq) 8715 { 8716 mblk_t *mp1; 8717 ill_t *ill, *ill_head; 8718 ipif_t *ipif, *orig_ipif; 8719 int numlifs = 0; 8720 size_t lifs_bufsize, lifsmaxlen; 8721 struct lifreq *lifr; 8722 struct iocblk *iocp = (struct iocblk *)mp->b_rptr; 8723 uint_t ifindex; 8724 zoneid_t zoneid; 8725 int err = 0; 8726 boolean_t isv6 = B_FALSE; 8727 struct sockaddr_in *sin; 8728 struct sockaddr_in6 *sin6; 8729 STRUCT_HANDLE(lifsrcof, lifs); 8730 ip_stack_t *ipst; 8731 8732 ipst = CONNQ_TO_IPST(q); 8733 8734 ASSERT(q->q_next == NULL); 8735 8736 zoneid = Q_TO_CONN(q)->conn_zoneid; 8737 8738 /* Existence verified in ip_wput_nondata */ 8739 mp1 = mp->b_cont->b_cont; 8740 8741 /* 8742 * Must be (better be!) continuation of a TRANSPARENT 8743 * IOCTL. We just copied in the lifsrcof structure. 8744 */ 8745 STRUCT_SET_HANDLE(lifs, iocp->ioc_flag, 8746 (struct lifsrcof *)mp1->b_rptr); 8747 8748 if (MBLKL(mp1) != STRUCT_SIZE(lifs)) 8749 return (EINVAL); 8750 8751 ifindex = STRUCT_FGET(lifs, lifs_ifindex); 8752 isv6 = (Q_TO_CONN(q))->conn_af_isv6; 8753 ipif = ipif_lookup_on_ifindex(ifindex, isv6, zoneid, q, mp, 8754 ip_process_ioctl, &err, ipst); 8755 if (ipif == NULL) { 8756 ip1dbg(("ip_sioctl_get_lifsrcof: no ipif for ifindex %d\n", 8757 ifindex)); 8758 return (err); 8759 } 8760 8761 /* Allocate a buffer to hold requested information */ 8762 numlifs = ip_get_lifsrcofnum(ipif->ipif_ill); 8763 lifs_bufsize = numlifs * sizeof (struct lifreq); 8764 lifsmaxlen = STRUCT_FGET(lifs, lifs_maxlen); 8765 /* The actual size needed is always returned in lifs_len */ 8766 STRUCT_FSET(lifs, lifs_len, lifs_bufsize); 8767 8768 /* If the amount we need is more than what is passed in, abort */ 8769 if (lifs_bufsize > lifsmaxlen || lifs_bufsize == 0) { 8770 ipif_refrele(ipif); 8771 return (0); 8772 } 8773 8774 mp1 = mi_copyout_alloc(q, mp, 8775 STRUCT_FGETP(lifs, lifs_buf), lifs_bufsize, B_FALSE); 8776 if (mp1 == NULL) { 8777 ipif_refrele(ipif); 8778 return (ENOMEM); 8779 } 8780 8781 mp1->b_wptr = mp1->b_rptr + lifs_bufsize; 8782 bzero(mp1->b_rptr, lifs_bufsize); 8783 8784 lifr = (struct lifreq *)mp1->b_rptr; 8785 8786 ill = ill_head = ipif->ipif_ill; 8787 orig_ipif = ipif; 8788 8789 /* ill_g_usesrc_lock protects ill_usesrc_grp_next */ 8790 rw_enter(&ipst->ips_ill_g_usesrc_lock, RW_READER); 8791 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 8792 8793 ill = ill->ill_usesrc_grp_next; /* start from next ill */ 8794 for (; (ill != NULL) && (ill != ill_head); 8795 ill = ill->ill_usesrc_grp_next) { 8796 8797 if ((uchar_t *)&lifr[1] > mp1->b_wptr) 8798 break; 8799 8800 ipif = ill->ill_ipif; 8801 ipif_get_name(ipif, lifr->lifr_name, sizeof (lifr->lifr_name)); 8802 if (ipif->ipif_isv6) { 8803 sin6 = (sin6_t *)&lifr->lifr_addr; 8804 *sin6 = sin6_null; 8805 sin6->sin6_family = AF_INET6; 8806 sin6->sin6_addr = ipif->ipif_v6lcl_addr; 8807 lifr->lifr_addrlen = ip_mask_to_plen_v6( 8808 &ipif->ipif_v6net_mask); 8809 } else { 8810 sin = (sin_t *)&lifr->lifr_addr; 8811 *sin = sin_null; 8812 sin->sin_family = AF_INET; 8813 sin->sin_addr.s_addr = ipif->ipif_lcl_addr; 8814 lifr->lifr_addrlen = ip_mask_to_plen( 8815 ipif->ipif_net_mask); 8816 } 8817 lifr++; 8818 } 8819 rw_exit(&ipst->ips_ill_g_usesrc_lock); 8820 rw_exit(&ipst->ips_ill_g_lock); 8821 ipif_refrele(orig_ipif); 8822 mp1->b_wptr = (uchar_t *)lifr; 8823 STRUCT_FSET(lifs, lifs_len, (int)((uchar_t *)lifr - mp1->b_rptr)); 8824 8825 return (0); 8826 } 8827 8828 /* ARGSUSED */ 8829 int 8830 ip_sioctl_get_lifconf(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, 8831 mblk_t *mp, ip_ioctl_cmd_t *ipip, void *ifreq) 8832 { 8833 mblk_t *mp1; 8834 int list; 8835 ill_t *ill; 8836 ipif_t *ipif; 8837 int flags; 8838 int numlifs = 0; 8839 size_t lifc_bufsize; 8840 struct lifreq *lifr; 8841 sa_family_t family; 8842 struct sockaddr_in *sin; 8843 struct sockaddr_in6 *sin6; 8844 ill_walk_context_t ctx; 8845 struct iocblk *iocp = (struct iocblk *)mp->b_rptr; 8846 int32_t lifclen; 8847 zoneid_t zoneid; 8848 STRUCT_HANDLE(lifconf, lifc); 8849 ip_stack_t *ipst = CONNQ_TO_IPST(q); 8850 8851 ip1dbg(("ip_sioctl_get_lifconf")); 8852 8853 ASSERT(q->q_next == NULL); 8854 8855 zoneid = Q_TO_CONN(q)->conn_zoneid; 8856 8857 /* Existence verified in ip_wput_nondata */ 8858 mp1 = mp->b_cont->b_cont; 8859 8860 /* 8861 * An extended version of SIOCGIFCONF that takes an 8862 * additional address family and flags field. 8863 * AF_UNSPEC retrieve both IPv4 and IPv6. 8864 * Unless LIFC_NOXMIT is specified the IPIF_NOXMIT 8865 * interfaces are omitted. 8866 * Similarly, IPIF_TEMPORARY interfaces are omitted 8867 * unless LIFC_TEMPORARY is specified. 8868 * If LIFC_EXTERNAL_SOURCE is specified, IPIF_NOXMIT, 8869 * IPIF_NOLOCAL, PHYI_LOOPBACK, IPIF_DEPRECATED and 8870 * not IPIF_UP interfaces are omitted. LIFC_EXTERNAL_SOURCE 8871 * has priority over LIFC_NOXMIT. 8872 */ 8873 STRUCT_SET_HANDLE(lifc, iocp->ioc_flag, NULL); 8874 8875 if ((mp1->b_wptr - mp1->b_rptr) != STRUCT_SIZE(lifc)) 8876 return (EINVAL); 8877 8878 /* 8879 * Must be (better be!) continuation of a TRANSPARENT 8880 * IOCTL. We just copied in the lifconf structure. 8881 */ 8882 STRUCT_SET_HANDLE(lifc, iocp->ioc_flag, (struct lifconf *)mp1->b_rptr); 8883 8884 family = STRUCT_FGET(lifc, lifc_family); 8885 flags = STRUCT_FGET(lifc, lifc_flags); 8886 8887 switch (family) { 8888 case AF_UNSPEC: 8889 /* 8890 * walk all ILL's. 8891 */ 8892 list = MAX_G_HEADS; 8893 break; 8894 case AF_INET: 8895 /* 8896 * walk only IPV4 ILL's. 8897 */ 8898 list = IP_V4_G_HEAD; 8899 break; 8900 case AF_INET6: 8901 /* 8902 * walk only IPV6 ILL's. 8903 */ 8904 list = IP_V6_G_HEAD; 8905 break; 8906 default: 8907 return (EAFNOSUPPORT); 8908 } 8909 8910 /* 8911 * Allocate a buffer to hold requested information. 8912 * 8913 * If lifc_len is larger than what is needed, we only 8914 * allocate what we will use. 8915 * 8916 * If lifc_len is smaller than what is needed, return 8917 * EINVAL. 8918 */ 8919 numlifs = ip_get_numlifs(family, flags, zoneid, ipst); 8920 lifc_bufsize = numlifs * sizeof (struct lifreq); 8921 lifclen = STRUCT_FGET(lifc, lifc_len); 8922 if (lifc_bufsize > lifclen) { 8923 if (iocp->ioc_cmd == O_SIOCGLIFCONF) 8924 return (EINVAL); 8925 else 8926 lifc_bufsize = lifclen; 8927 } 8928 8929 mp1 = mi_copyout_alloc(q, mp, 8930 STRUCT_FGETP(lifc, lifc_buf), lifc_bufsize, B_FALSE); 8931 if (mp1 == NULL) 8932 return (ENOMEM); 8933 8934 mp1->b_wptr = mp1->b_rptr + lifc_bufsize; 8935 bzero(mp1->b_rptr, mp1->b_wptr - mp1->b_rptr); 8936 8937 lifr = (struct lifreq *)mp1->b_rptr; 8938 8939 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 8940 ill = ill_first(list, list, &ctx, ipst); 8941 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 8942 for (ipif = ill->ill_ipif; ipif != NULL; 8943 ipif = ipif->ipif_next) { 8944 if ((ipif->ipif_flags & IPIF_NOXMIT) && 8945 !(flags & LIFC_NOXMIT)) 8946 continue; 8947 8948 if ((ipif->ipif_flags & IPIF_TEMPORARY) && 8949 !(flags & LIFC_TEMPORARY)) 8950 continue; 8951 8952 if (((ipif->ipif_flags & 8953 (IPIF_NOXMIT|IPIF_NOLOCAL| 8954 IPIF_DEPRECATED)) || 8955 IS_LOOPBACK(ill) || 8956 !(ipif->ipif_flags & IPIF_UP)) && 8957 (flags & LIFC_EXTERNAL_SOURCE)) 8958 continue; 8959 8960 if (zoneid != ipif->ipif_zoneid && 8961 ipif->ipif_zoneid != ALL_ZONES && 8962 (zoneid != GLOBAL_ZONEID || 8963 !(flags & LIFC_ALLZONES))) 8964 continue; 8965 8966 if ((uchar_t *)&lifr[1] > mp1->b_wptr) { 8967 if (iocp->ioc_cmd == O_SIOCGLIFCONF) { 8968 rw_exit(&ipst->ips_ill_g_lock); 8969 return (EINVAL); 8970 } else { 8971 goto lif_copydone; 8972 } 8973 } 8974 8975 ipif_get_name(ipif, lifr->lifr_name, 8976 sizeof (lifr->lifr_name)); 8977 if (ipif->ipif_isv6) { 8978 sin6 = (sin6_t *)&lifr->lifr_addr; 8979 *sin6 = sin6_null; 8980 sin6->sin6_family = AF_INET6; 8981 sin6->sin6_addr = 8982 ipif->ipif_v6lcl_addr; 8983 lifr->lifr_addrlen = 8984 ip_mask_to_plen_v6( 8985 &ipif->ipif_v6net_mask); 8986 } else { 8987 sin = (sin_t *)&lifr->lifr_addr; 8988 *sin = sin_null; 8989 sin->sin_family = AF_INET; 8990 sin->sin_addr.s_addr = 8991 ipif->ipif_lcl_addr; 8992 lifr->lifr_addrlen = 8993 ip_mask_to_plen( 8994 ipif->ipif_net_mask); 8995 } 8996 lifr++; 8997 } 8998 } 8999 lif_copydone: 9000 rw_exit(&ipst->ips_ill_g_lock); 9001 9002 mp1->b_wptr = (uchar_t *)lifr; 9003 if (STRUCT_BUF(lifc) != NULL) { 9004 STRUCT_FSET(lifc, lifc_len, 9005 (int)((uchar_t *)lifr - mp1->b_rptr)); 9006 } 9007 return (0); 9008 } 9009 9010 /* ARGSUSED */ 9011 int 9012 ip_sioctl_set_ipmpfailback(ipif_t *dummy_ipif, sin_t *dummy_sin, 9013 queue_t *q, mblk_t *mp, ip_ioctl_cmd_t *ipip, void *ifreq) 9014 { 9015 ip_stack_t *ipst; 9016 9017 if (q->q_next == NULL) 9018 ipst = CONNQ_TO_IPST(q); 9019 else 9020 ipst = ILLQ_TO_IPST(q); 9021 9022 /* Existence of b_cont->b_cont checked in ip_wput_nondata */ 9023 ipst->ips_ipmp_enable_failback = *(int *)mp->b_cont->b_cont->b_rptr; 9024 return (0); 9025 } 9026 9027 static void 9028 ip_sioctl_ip6addrpolicy(queue_t *q, mblk_t *mp) 9029 { 9030 ip6_asp_t *table; 9031 size_t table_size; 9032 mblk_t *data_mp; 9033 struct iocblk *iocp = (struct iocblk *)mp->b_rptr; 9034 ip_stack_t *ipst; 9035 9036 if (q->q_next == NULL) 9037 ipst = CONNQ_TO_IPST(q); 9038 else 9039 ipst = ILLQ_TO_IPST(q); 9040 9041 /* These two ioctls are I_STR only */ 9042 if (iocp->ioc_count == TRANSPARENT) { 9043 miocnak(q, mp, 0, EINVAL); 9044 return; 9045 } 9046 9047 data_mp = mp->b_cont; 9048 if (data_mp == NULL) { 9049 /* The user passed us a NULL argument */ 9050 table = NULL; 9051 table_size = iocp->ioc_count; 9052 } else { 9053 /* 9054 * The user provided a table. The stream head 9055 * may have copied in the user data in chunks, 9056 * so make sure everything is pulled up 9057 * properly. 9058 */ 9059 if (MBLKL(data_mp) < iocp->ioc_count) { 9060 mblk_t *new_data_mp; 9061 if ((new_data_mp = msgpullup(data_mp, -1)) == 9062 NULL) { 9063 miocnak(q, mp, 0, ENOMEM); 9064 return; 9065 } 9066 freemsg(data_mp); 9067 data_mp = new_data_mp; 9068 mp->b_cont = data_mp; 9069 } 9070 table = (ip6_asp_t *)data_mp->b_rptr; 9071 table_size = iocp->ioc_count; 9072 } 9073 9074 switch (iocp->ioc_cmd) { 9075 case SIOCGIP6ADDRPOLICY: 9076 iocp->ioc_rval = ip6_asp_get(table, table_size, ipst); 9077 if (iocp->ioc_rval == -1) 9078 iocp->ioc_error = EINVAL; 9079 #if defined(_SYSCALL32_IMPL) && _LONG_LONG_ALIGNMENT_32 == 4 9080 else if (table != NULL && 9081 (iocp->ioc_flag & IOC_MODELS) == IOC_ILP32) { 9082 ip6_asp_t *src = table; 9083 ip6_asp32_t *dst = (void *)table; 9084 int count = table_size / sizeof (ip6_asp_t); 9085 int i; 9086 9087 /* 9088 * We need to do an in-place shrink of the array 9089 * to match the alignment attributes of the 9090 * 32-bit ABI looking at it. 9091 */ 9092 /* LINTED: logical expression always true: op "||" */ 9093 ASSERT(sizeof (*src) > sizeof (*dst)); 9094 for (i = 1; i < count; i++) 9095 bcopy(src + i, dst + i, sizeof (*dst)); 9096 } 9097 #endif 9098 break; 9099 9100 case SIOCSIP6ADDRPOLICY: 9101 ASSERT(mp->b_prev == NULL); 9102 mp->b_prev = (void *)q; 9103 #if defined(_SYSCALL32_IMPL) && _LONG_LONG_ALIGNMENT_32 == 4 9104 /* 9105 * We pass in the datamodel here so that the ip6_asp_replace() 9106 * routine can handle converting from 32-bit to native formats 9107 * where necessary. 9108 * 9109 * A better way to handle this might be to convert the inbound 9110 * data structure here, and hang it off a new 'mp'; thus the 9111 * ip6_asp_replace() logic would always be dealing with native 9112 * format data structures.. 9113 * 9114 * (An even simpler way to handle these ioctls is to just 9115 * add a 32-bit trailing 'pad' field to the ip6_asp_t structure 9116 * and just recompile everything that depends on it.) 9117 */ 9118 #endif 9119 ip6_asp_replace(mp, table, table_size, B_FALSE, ipst, 9120 iocp->ioc_flag & IOC_MODELS); 9121 return; 9122 } 9123 9124 DB_TYPE(mp) = (iocp->ioc_error == 0) ? M_IOCACK : M_IOCNAK; 9125 qreply(q, mp); 9126 } 9127 9128 static void 9129 ip_sioctl_dstinfo(queue_t *q, mblk_t *mp) 9130 { 9131 mblk_t *data_mp; 9132 struct dstinforeq *dir; 9133 uint8_t *end, *cur; 9134 in6_addr_t *daddr, *saddr; 9135 ipaddr_t v4daddr; 9136 ire_t *ire; 9137 char *slabel, *dlabel; 9138 boolean_t isipv4; 9139 int match_ire; 9140 ill_t *dst_ill; 9141 ipif_t *src_ipif, *ire_ipif; 9142 struct iocblk *iocp = (struct iocblk *)mp->b_rptr; 9143 zoneid_t zoneid; 9144 ip_stack_t *ipst = CONNQ_TO_IPST(q); 9145 9146 ASSERT(q->q_next == NULL); /* this ioctl not allowed if ip is module */ 9147 zoneid = Q_TO_CONN(q)->conn_zoneid; 9148 9149 /* 9150 * This ioctl is I_STR only, and must have a 9151 * data mblk following the M_IOCTL mblk. 9152 */ 9153 data_mp = mp->b_cont; 9154 if (iocp->ioc_count == TRANSPARENT || data_mp == NULL) { 9155 miocnak(q, mp, 0, EINVAL); 9156 return; 9157 } 9158 9159 if (MBLKL(data_mp) < iocp->ioc_count) { 9160 mblk_t *new_data_mp; 9161 9162 if ((new_data_mp = msgpullup(data_mp, -1)) == NULL) { 9163 miocnak(q, mp, 0, ENOMEM); 9164 return; 9165 } 9166 freemsg(data_mp); 9167 data_mp = new_data_mp; 9168 mp->b_cont = data_mp; 9169 } 9170 match_ire = MATCH_IRE_RECURSIVE | MATCH_IRE_DEFAULT | MATCH_IRE_PARENT; 9171 9172 for (cur = data_mp->b_rptr, end = data_mp->b_wptr; 9173 end - cur >= sizeof (struct dstinforeq); 9174 cur += sizeof (struct dstinforeq)) { 9175 dir = (struct dstinforeq *)cur; 9176 daddr = &dir->dir_daddr; 9177 saddr = &dir->dir_saddr; 9178 9179 /* 9180 * ip_addr_scope_v6() and ip6_asp_lookup() handle 9181 * v4 mapped addresses; ire_ftable_lookup[_v6]() 9182 * and ipif_select_source[_v6]() do not. 9183 */ 9184 dir->dir_dscope = ip_addr_scope_v6(daddr); 9185 dlabel = ip6_asp_lookup(daddr, &dir->dir_precedence, ipst); 9186 9187 isipv4 = IN6_IS_ADDR_V4MAPPED(daddr); 9188 if (isipv4) { 9189 IN6_V4MAPPED_TO_IPADDR(daddr, v4daddr); 9190 ire = ire_ftable_lookup(v4daddr, NULL, NULL, 9191 0, NULL, NULL, zoneid, 0, NULL, match_ire, ipst); 9192 } else { 9193 ire = ire_ftable_lookup_v6(daddr, NULL, NULL, 9194 0, NULL, NULL, zoneid, 0, NULL, match_ire, ipst); 9195 } 9196 if (ire == NULL) { 9197 dir->dir_dreachable = 0; 9198 9199 /* move on to next dst addr */ 9200 continue; 9201 } 9202 dir->dir_dreachable = 1; 9203 9204 ire_ipif = ire->ire_ipif; 9205 if (ire_ipif == NULL) 9206 goto next_dst; 9207 9208 /* 9209 * We expect to get back an interface ire or a 9210 * gateway ire cache entry. For both types, the 9211 * output interface is ire_ipif->ipif_ill. 9212 */ 9213 dst_ill = ire_ipif->ipif_ill; 9214 dir->dir_dmactype = dst_ill->ill_mactype; 9215 9216 if (isipv4) { 9217 src_ipif = ipif_select_source(dst_ill, v4daddr, zoneid); 9218 } else { 9219 src_ipif = ipif_select_source_v6(dst_ill, 9220 daddr, RESTRICT_TO_NONE, IPV6_PREFER_SRC_DEFAULT, 9221 zoneid); 9222 } 9223 if (src_ipif == NULL) 9224 goto next_dst; 9225 9226 *saddr = src_ipif->ipif_v6lcl_addr; 9227 dir->dir_sscope = ip_addr_scope_v6(saddr); 9228 slabel = ip6_asp_lookup(saddr, NULL, ipst); 9229 dir->dir_labelmatch = ip6_asp_labelcmp(dlabel, slabel); 9230 dir->dir_sdeprecated = 9231 (src_ipif->ipif_flags & IPIF_DEPRECATED) ? 1 : 0; 9232 ipif_refrele(src_ipif); 9233 next_dst: 9234 ire_refrele(ire); 9235 } 9236 miocack(q, mp, iocp->ioc_count, 0); 9237 } 9238 9239 /* 9240 * Check if this is an address assigned to this machine. 9241 * Skips interfaces that are down by using ire checks. 9242 * Translates mapped addresses to v4 addresses and then 9243 * treats them as such, returning true if the v4 address 9244 * associated with this mapped address is configured. 9245 * Note: Applications will have to be careful what they do 9246 * with the response; use of mapped addresses limits 9247 * what can be done with the socket, especially with 9248 * respect to socket options and ioctls - neither IPv4 9249 * options nor IPv6 sticky options/ancillary data options 9250 * may be used. 9251 */ 9252 /* ARGSUSED */ 9253 int 9254 ip_sioctl_tmyaddr(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, 9255 ip_ioctl_cmd_t *ipip, void *dummy_ifreq) 9256 { 9257 struct sioc_addrreq *sia; 9258 sin_t *sin; 9259 ire_t *ire; 9260 mblk_t *mp1; 9261 zoneid_t zoneid; 9262 ip_stack_t *ipst; 9263 9264 ip1dbg(("ip_sioctl_tmyaddr")); 9265 9266 ASSERT(q->q_next == NULL); /* this ioctl not allowed if ip is module */ 9267 zoneid = Q_TO_CONN(q)->conn_zoneid; 9268 ipst = CONNQ_TO_IPST(q); 9269 9270 /* Existence verified in ip_wput_nondata */ 9271 mp1 = mp->b_cont->b_cont; 9272 sia = (struct sioc_addrreq *)mp1->b_rptr; 9273 sin = (sin_t *)&sia->sa_addr; 9274 switch (sin->sin_family) { 9275 case AF_INET6: { 9276 sin6_t *sin6 = (sin6_t *)sin; 9277 9278 if (IN6_IS_ADDR_V4MAPPED(&sin6->sin6_addr)) { 9279 ipaddr_t v4_addr; 9280 9281 IN6_V4MAPPED_TO_IPADDR(&sin6->sin6_addr, 9282 v4_addr); 9283 ire = ire_ctable_lookup(v4_addr, 0, 9284 IRE_LOCAL|IRE_LOOPBACK, NULL, zoneid, 9285 NULL, MATCH_IRE_TYPE | MATCH_IRE_ZONEONLY, ipst); 9286 } else { 9287 in6_addr_t v6addr; 9288 9289 v6addr = sin6->sin6_addr; 9290 ire = ire_ctable_lookup_v6(&v6addr, 0, 9291 IRE_LOCAL|IRE_LOOPBACK, NULL, zoneid, 9292 NULL, MATCH_IRE_TYPE | MATCH_IRE_ZONEONLY, ipst); 9293 } 9294 break; 9295 } 9296 case AF_INET: { 9297 ipaddr_t v4addr; 9298 9299 v4addr = sin->sin_addr.s_addr; 9300 ire = ire_ctable_lookup(v4addr, 0, 9301 IRE_LOCAL|IRE_LOOPBACK, NULL, zoneid, 9302 NULL, MATCH_IRE_TYPE | MATCH_IRE_ZONEONLY, ipst); 9303 break; 9304 } 9305 default: 9306 return (EAFNOSUPPORT); 9307 } 9308 if (ire != NULL) { 9309 sia->sa_res = 1; 9310 ire_refrele(ire); 9311 } else { 9312 sia->sa_res = 0; 9313 } 9314 return (0); 9315 } 9316 9317 /* 9318 * Check if this is an address assigned on-link i.e. neighbor, 9319 * and makes sure it's reachable from the current zone. 9320 * Returns true for my addresses as well. 9321 * Translates mapped addresses to v4 addresses and then 9322 * treats them as such, returning true if the v4 address 9323 * associated with this mapped address is configured. 9324 * Note: Applications will have to be careful what they do 9325 * with the response; use of mapped addresses limits 9326 * what can be done with the socket, especially with 9327 * respect to socket options and ioctls - neither IPv4 9328 * options nor IPv6 sticky options/ancillary data options 9329 * may be used. 9330 */ 9331 /* ARGSUSED */ 9332 int 9333 ip_sioctl_tonlink(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, 9334 ip_ioctl_cmd_t *ipip, void *duymmy_ifreq) 9335 { 9336 struct sioc_addrreq *sia; 9337 sin_t *sin; 9338 mblk_t *mp1; 9339 ire_t *ire = NULL; 9340 zoneid_t zoneid; 9341 ip_stack_t *ipst; 9342 9343 ip1dbg(("ip_sioctl_tonlink")); 9344 9345 ASSERT(q->q_next == NULL); /* this ioctl not allowed if ip is module */ 9346 zoneid = Q_TO_CONN(q)->conn_zoneid; 9347 ipst = CONNQ_TO_IPST(q); 9348 9349 /* Existence verified in ip_wput_nondata */ 9350 mp1 = mp->b_cont->b_cont; 9351 sia = (struct sioc_addrreq *)mp1->b_rptr; 9352 sin = (sin_t *)&sia->sa_addr; 9353 9354 /* 9355 * Match addresses with a zero gateway field to avoid 9356 * routes going through a router. 9357 * Exclude broadcast and multicast addresses. 9358 */ 9359 switch (sin->sin_family) { 9360 case AF_INET6: { 9361 sin6_t *sin6 = (sin6_t *)sin; 9362 9363 if (IN6_IS_ADDR_V4MAPPED(&sin6->sin6_addr)) { 9364 ipaddr_t v4_addr; 9365 9366 IN6_V4MAPPED_TO_IPADDR(&sin6->sin6_addr, 9367 v4_addr); 9368 if (!CLASSD(v4_addr)) { 9369 ire = ire_route_lookup(v4_addr, 0, 0, 0, 9370 NULL, NULL, zoneid, NULL, 9371 MATCH_IRE_GW, ipst); 9372 } 9373 } else { 9374 in6_addr_t v6addr; 9375 in6_addr_t v6gw; 9376 9377 v6addr = sin6->sin6_addr; 9378 v6gw = ipv6_all_zeros; 9379 if (!IN6_IS_ADDR_MULTICAST(&v6addr)) { 9380 ire = ire_route_lookup_v6(&v6addr, 0, 9381 &v6gw, 0, NULL, NULL, zoneid, 9382 NULL, MATCH_IRE_GW, ipst); 9383 } 9384 } 9385 break; 9386 } 9387 case AF_INET: { 9388 ipaddr_t v4addr; 9389 9390 v4addr = sin->sin_addr.s_addr; 9391 if (!CLASSD(v4addr)) { 9392 ire = ire_route_lookup(v4addr, 0, 0, 0, 9393 NULL, NULL, zoneid, NULL, 9394 MATCH_IRE_GW, ipst); 9395 } 9396 break; 9397 } 9398 default: 9399 return (EAFNOSUPPORT); 9400 } 9401 sia->sa_res = 0; 9402 if (ire != NULL) { 9403 if (ire->ire_type & (IRE_INTERFACE|IRE_CACHE| 9404 IRE_LOCAL|IRE_LOOPBACK)) { 9405 sia->sa_res = 1; 9406 } 9407 ire_refrele(ire); 9408 } 9409 return (0); 9410 } 9411 9412 /* 9413 * TBD: implement when kernel maintaines a list of site prefixes. 9414 */ 9415 /* ARGSUSED */ 9416 int 9417 ip_sioctl_tmysite(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 9418 ip_ioctl_cmd_t *ipip, void *ifreq) 9419 { 9420 return (ENXIO); 9421 } 9422 9423 /* ARGSUSED */ 9424 int 9425 ip_sioctl_tunparam(ipif_t *ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, 9426 ip_ioctl_cmd_t *ipip, void *dummy_ifreq) 9427 { 9428 ill_t *ill; 9429 mblk_t *mp1; 9430 conn_t *connp; 9431 boolean_t success; 9432 9433 ip1dbg(("ip_sioctl_tunparam(%s:%u %p)\n", 9434 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 9435 /* ioctl comes down on an conn */ 9436 ASSERT(!(q->q_flag & QREADR) && q->q_next == NULL); 9437 connp = Q_TO_CONN(q); 9438 9439 mp->b_datap->db_type = M_IOCTL; 9440 9441 /* 9442 * Send down a copy. (copymsg does not copy b_next/b_prev). 9443 * The original mp contains contaminated b_next values due to 'mi', 9444 * which is needed to do the mi_copy_done. Unfortunately if we 9445 * send down the original mblk itself and if we are popped due to an 9446 * an unplumb before the response comes back from tunnel, 9447 * the streamhead (which does a freemsg) will see this contaminated 9448 * message and the assertion in freemsg about non-null b_next/b_prev 9449 * will panic a DEBUG kernel. 9450 */ 9451 mp1 = copymsg(mp); 9452 if (mp1 == NULL) 9453 return (ENOMEM); 9454 9455 ill = ipif->ipif_ill; 9456 mutex_enter(&connp->conn_lock); 9457 mutex_enter(&ill->ill_lock); 9458 if (ipip->ipi_cmd == SIOCSTUNPARAM || ipip->ipi_cmd == OSIOCSTUNPARAM) { 9459 success = ipsq_pending_mp_add(connp, ipif, CONNP_TO_WQ(connp), 9460 mp, 0); 9461 } else { 9462 success = ill_pending_mp_add(ill, connp, mp); 9463 } 9464 mutex_exit(&ill->ill_lock); 9465 mutex_exit(&connp->conn_lock); 9466 9467 if (success) { 9468 ip1dbg(("sending down tunparam request ")); 9469 putnext(ill->ill_wq, mp1); 9470 return (EINPROGRESS); 9471 } else { 9472 /* The conn has started closing */ 9473 freemsg(mp1); 9474 return (EINTR); 9475 } 9476 } 9477 9478 /* 9479 * ARP IOCTLs. 9480 * How does IP get in the business of fronting ARP configuration/queries? 9481 * Well it's like this, the Berkeley ARP IOCTLs (SIOCGARP, SIOCDARP, SIOCSARP) 9482 * are by tradition passed in through a datagram socket. That lands in IP. 9483 * As it happens, this is just as well since the interface is quite crude in 9484 * that it passes in no information about protocol or hardware types, or 9485 * interface association. After making the protocol assumption, IP is in 9486 * the position to look up the name of the ILL, which ARP will need, and 9487 * format a request that can be handled by ARP. The request is passed up 9488 * stream to ARP, and the original IOCTL is completed by IP when ARP passes 9489 * back a response. ARP supports its own set of more general IOCTLs, in 9490 * case anyone is interested. 9491 */ 9492 /* ARGSUSED */ 9493 int 9494 ip_sioctl_arp(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 9495 ip_ioctl_cmd_t *ipip, void *dummy_ifreq) 9496 { 9497 mblk_t *mp1; 9498 mblk_t *mp2; 9499 mblk_t *pending_mp; 9500 ipaddr_t ipaddr; 9501 area_t *area; 9502 struct iocblk *iocp; 9503 conn_t *connp; 9504 struct arpreq *ar; 9505 struct xarpreq *xar; 9506 int flags, alength; 9507 char *lladdr; 9508 ip_stack_t *ipst; 9509 ill_t *ill = ipif->ipif_ill; 9510 boolean_t if_arp_ioctl = B_FALSE; 9511 9512 ASSERT(!(q->q_flag & QREADR) && q->q_next == NULL); 9513 connp = Q_TO_CONN(q); 9514 ipst = connp->conn_netstack->netstack_ip; 9515 9516 if (ipip->ipi_cmd_type == XARP_CMD) { 9517 /* We have a chain - M_IOCTL-->MI_COPY_MBLK-->XARPREQ_MBLK */ 9518 xar = (struct xarpreq *)mp->b_cont->b_cont->b_rptr; 9519 ar = NULL; 9520 9521 flags = xar->xarp_flags; 9522 lladdr = LLADDR(&xar->xarp_ha); 9523 if_arp_ioctl = (xar->xarp_ha.sdl_nlen != 0); 9524 /* 9525 * Validate against user's link layer address length 9526 * input and name and addr length limits. 9527 */ 9528 alength = ill->ill_phys_addr_length; 9529 if (ipip->ipi_cmd == SIOCSXARP) { 9530 if (alength != xar->xarp_ha.sdl_alen || 9531 (alength + xar->xarp_ha.sdl_nlen > 9532 sizeof (xar->xarp_ha.sdl_data))) 9533 return (EINVAL); 9534 } 9535 } else { 9536 /* We have a chain - M_IOCTL-->MI_COPY_MBLK-->ARPREQ_MBLK */ 9537 ar = (struct arpreq *)mp->b_cont->b_cont->b_rptr; 9538 xar = NULL; 9539 9540 flags = ar->arp_flags; 9541 lladdr = ar->arp_ha.sa_data; 9542 /* 9543 * Theoretically, the sa_family could tell us what link 9544 * layer type this operation is trying to deal with. By 9545 * common usage AF_UNSPEC means ethernet. We'll assume 9546 * any attempt to use the SIOC?ARP ioctls is for ethernet, 9547 * for now. Our new SIOC*XARP ioctls can be used more 9548 * generally. 9549 * 9550 * If the underlying media happens to have a non 6 byte 9551 * address, arp module will fail set/get, but the del 9552 * operation will succeed. 9553 */ 9554 alength = 6; 9555 if ((ipip->ipi_cmd != SIOCDARP) && 9556 (alength != ill->ill_phys_addr_length)) { 9557 return (EINVAL); 9558 } 9559 } 9560 9561 /* 9562 * We are going to pass up to ARP a packet chain that looks 9563 * like: 9564 * 9565 * M_IOCTL-->ARP_op_MBLK-->ORIG_M_IOCTL-->MI_COPY_MBLK-->[X]ARPREQ_MBLK 9566 * 9567 * Get a copy of the original IOCTL mblk to head the chain, 9568 * to be sent up (in mp1). Also get another copy to store 9569 * in the ill_pending_mp list, for matching the response 9570 * when it comes back from ARP. 9571 */ 9572 mp1 = copyb(mp); 9573 pending_mp = copymsg(mp); 9574 if (mp1 == NULL || pending_mp == NULL) { 9575 if (mp1 != NULL) 9576 freeb(mp1); 9577 if (pending_mp != NULL) 9578 inet_freemsg(pending_mp); 9579 return (ENOMEM); 9580 } 9581 9582 ipaddr = sin->sin_addr.s_addr; 9583 9584 mp2 = ill_arp_alloc(ill, (uchar_t *)&ip_area_template, 9585 (caddr_t)&ipaddr); 9586 if (mp2 == NULL) { 9587 freeb(mp1); 9588 inet_freemsg(pending_mp); 9589 return (ENOMEM); 9590 } 9591 /* Put together the chain. */ 9592 mp1->b_cont = mp2; 9593 mp1->b_datap->db_type = M_IOCTL; 9594 mp2->b_cont = mp; 9595 mp2->b_datap->db_type = M_DATA; 9596 9597 iocp = (struct iocblk *)mp1->b_rptr; 9598 9599 /* 9600 * An M_IOCDATA's payload (struct copyresp) is mostly the same as an 9601 * M_IOCTL's payload (struct iocblk), but 'struct copyresp' has a 9602 * cp_private field (or cp_rval on 32-bit systems) in place of the 9603 * ioc_count field; set ioc_count to be correct. 9604 */ 9605 iocp->ioc_count = MBLKL(mp1->b_cont); 9606 9607 /* 9608 * Set the proper command in the ARP message. 9609 * Convert the SIOC{G|S|D}ARP calls into our 9610 * AR_ENTRY_xxx calls. 9611 */ 9612 area = (area_t *)mp2->b_rptr; 9613 switch (iocp->ioc_cmd) { 9614 case SIOCDARP: 9615 case SIOCDXARP: 9616 /* 9617 * We defer deleting the corresponding IRE until 9618 * we return from arp. 9619 */ 9620 area->area_cmd = AR_ENTRY_DELETE; 9621 area->area_proto_mask_offset = 0; 9622 break; 9623 case SIOCGARP: 9624 case SIOCGXARP: 9625 area->area_cmd = AR_ENTRY_SQUERY; 9626 area->area_proto_mask_offset = 0; 9627 break; 9628 case SIOCSARP: 9629 case SIOCSXARP: 9630 /* 9631 * Delete the corresponding ire to make sure IP will 9632 * pick up any change from arp. 9633 */ 9634 if (!if_arp_ioctl) { 9635 (void) ip_ire_clookup_and_delete(ipaddr, NULL, ipst); 9636 } else { 9637 ipif_t *ipif = ipif_get_next_ipif(NULL, ill); 9638 if (ipif != NULL) { 9639 (void) ip_ire_clookup_and_delete(ipaddr, ipif, 9640 ipst); 9641 ipif_refrele(ipif); 9642 } 9643 } 9644 break; 9645 } 9646 iocp->ioc_cmd = area->area_cmd; 9647 9648 /* 9649 * Fill in the rest of the ARP operation fields. 9650 */ 9651 area->area_hw_addr_length = alength; 9652 bcopy(lladdr, (char *)area + area->area_hw_addr_offset, alength); 9653 9654 /* Translate the flags. */ 9655 if (flags & ATF_PERM) 9656 area->area_flags |= ACE_F_PERMANENT; 9657 if (flags & ATF_PUBL) 9658 area->area_flags |= ACE_F_PUBLISH; 9659 if (flags & ATF_AUTHORITY) 9660 area->area_flags |= ACE_F_AUTHORITY; 9661 9662 /* 9663 * Before sending 'mp' to ARP, we have to clear the b_next 9664 * and b_prev. Otherwise if STREAMS encounters such a message 9665 * in freemsg(), (because ARP can close any time) it can cause 9666 * a panic. But mi code needs the b_next and b_prev values of 9667 * mp->b_cont, to complete the ioctl. So we store it here 9668 * in pending_mp->bcont, and restore it in ip_sioctl_iocack() 9669 * when the response comes down from ARP. 9670 */ 9671 pending_mp->b_cont->b_next = mp->b_cont->b_next; 9672 pending_mp->b_cont->b_prev = mp->b_cont->b_prev; 9673 mp->b_cont->b_next = NULL; 9674 mp->b_cont->b_prev = NULL; 9675 9676 mutex_enter(&connp->conn_lock); 9677 mutex_enter(&ill->ill_lock); 9678 /* conn has not yet started closing, hence this can't fail */ 9679 VERIFY(ill_pending_mp_add(ill, connp, pending_mp) != 0); 9680 mutex_exit(&ill->ill_lock); 9681 mutex_exit(&connp->conn_lock); 9682 9683 /* 9684 * Up to ARP it goes. The response will come back in ip_wput() as an 9685 * M_IOCACK, and will be handed to ip_sioctl_iocack() for completion. 9686 */ 9687 putnext(ill->ill_rq, mp1); 9688 return (EINPROGRESS); 9689 } 9690 9691 /* 9692 * Parse an [x]arpreq structure coming down SIOC[GSD][X]ARP ioctls, identify 9693 * the associated sin and refhold and return the associated ipif via `ci'. 9694 */ 9695 int 9696 ip_extract_arpreq(queue_t *q, mblk_t *mp, const ip_ioctl_cmd_t *ipip, 9697 cmd_info_t *ci, ipsq_func_t func) 9698 { 9699 mblk_t *mp1; 9700 int err; 9701 sin_t *sin; 9702 conn_t *connp; 9703 ipif_t *ipif; 9704 ire_t *ire = NULL; 9705 ill_t *ill = NULL; 9706 boolean_t exists; 9707 ip_stack_t *ipst; 9708 struct arpreq *ar; 9709 struct xarpreq *xar; 9710 struct sockaddr_dl *sdl; 9711 9712 /* ioctl comes down on a conn */ 9713 ASSERT(!(q->q_flag & QREADR) && q->q_next == NULL); 9714 connp = Q_TO_CONN(q); 9715 if (connp->conn_af_isv6) 9716 return (ENXIO); 9717 9718 ipst = connp->conn_netstack->netstack_ip; 9719 9720 /* Verified in ip_wput_nondata */ 9721 mp1 = mp->b_cont->b_cont; 9722 9723 if (ipip->ipi_cmd_type == XARP_CMD) { 9724 ASSERT(MBLKL(mp1) >= sizeof (struct xarpreq)); 9725 xar = (struct xarpreq *)mp1->b_rptr; 9726 sin = (sin_t *)&xar->xarp_pa; 9727 sdl = &xar->xarp_ha; 9728 9729 if (sdl->sdl_family != AF_LINK || sin->sin_family != AF_INET) 9730 return (ENXIO); 9731 if (sdl->sdl_nlen >= LIFNAMSIZ) 9732 return (EINVAL); 9733 } else { 9734 ASSERT(ipip->ipi_cmd_type == ARP_CMD); 9735 ASSERT(MBLKL(mp1) >= sizeof (struct arpreq)); 9736 ar = (struct arpreq *)mp1->b_rptr; 9737 sin = (sin_t *)&ar->arp_pa; 9738 } 9739 9740 if (ipip->ipi_cmd_type == XARP_CMD && sdl->sdl_nlen != 0) { 9741 ipif = ipif_lookup_on_name(sdl->sdl_data, sdl->sdl_nlen, 9742 B_FALSE, &exists, B_FALSE, ALL_ZONES, CONNP_TO_WQ(connp), 9743 mp, func, &err, ipst); 9744 if (ipif == NULL) 9745 return (err); 9746 if (ipif->ipif_id != 0 || 9747 ipif->ipif_net_type != IRE_IF_RESOLVER) { 9748 ipif_refrele(ipif); 9749 return (ENXIO); 9750 } 9751 } else { 9752 /* 9753 * Either an SIOC[DGS]ARP or an SIOC[DGS]XARP with sdl_nlen == 9754 * 0: use the IP address to figure out the ill. In the IPMP 9755 * case, a simple forwarding table lookup will return the 9756 * IRE_IF_RESOLVER for the first interface in the group, which 9757 * might not be the interface on which the requested IP 9758 * address was resolved due to the ill selection algorithm 9759 * (see ip_newroute_get_dst_ill()). So we do a cache table 9760 * lookup first: if the IRE cache entry for the IP address is 9761 * still there, it will contain the ill pointer for the right 9762 * interface, so we use that. If the cache entry has been 9763 * flushed, we fall back to the forwarding table lookup. This 9764 * should be rare enough since IRE cache entries have a longer 9765 * life expectancy than ARP cache entries. 9766 */ 9767 ire = ire_cache_lookup(sin->sin_addr.s_addr, ALL_ZONES, NULL, 9768 ipst); 9769 if ((ire == NULL) || (ire->ire_type == IRE_LOOPBACK) || 9770 ((ill = ire_to_ill(ire)) == NULL) || 9771 (ill->ill_net_type != IRE_IF_RESOLVER)) { 9772 if (ire != NULL) 9773 ire_refrele(ire); 9774 ire = ire_ftable_lookup(sin->sin_addr.s_addr, 9775 0, 0, IRE_IF_RESOLVER, NULL, NULL, ALL_ZONES, 0, 9776 NULL, MATCH_IRE_TYPE, ipst); 9777 if (ire == NULL || ((ill = ire_to_ill(ire)) == NULL)) { 9778 9779 if (ire != NULL) 9780 ire_refrele(ire); 9781 return (ENXIO); 9782 } 9783 } 9784 ASSERT(ire != NULL && ill != NULL); 9785 ipif = ill->ill_ipif; 9786 ipif_refhold(ipif); 9787 ire_refrele(ire); 9788 } 9789 ci->ci_sin = sin; 9790 ci->ci_ipif = ipif; 9791 return (0); 9792 } 9793 9794 /* 9795 * Do I_PLINK/I_LINK or I_PUNLINK/I_UNLINK with consistency checks and also 9796 * atomically set/clear the muxids. Also complete the ioctl by acking or 9797 * naking it. Note that the code is structured such that the link type, 9798 * whether it's persistent or not, is treated equally. ifconfig(1M) and 9799 * its clones use the persistent link, while pppd(1M) and perhaps many 9800 * other daemons may use non-persistent link. When combined with some 9801 * ill_t states, linking and unlinking lower streams may be used as 9802 * indicators of dynamic re-plumbing events [see PSARC/1999/348]. 9803 */ 9804 /* ARGSUSED */ 9805 void 9806 ip_sioctl_plink(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy_arg) 9807 { 9808 mblk_t *mp1, *mp2; 9809 struct linkblk *li; 9810 struct ipmx_s *ipmxp; 9811 ill_t *ill; 9812 int ioccmd = ((struct iocblk *)mp->b_rptr)->ioc_cmd; 9813 int err = 0; 9814 boolean_t entered_ipsq = B_FALSE; 9815 boolean_t islink; 9816 ip_stack_t *ipst; 9817 9818 if (CONN_Q(q)) 9819 ipst = CONNQ_TO_IPST(q); 9820 else 9821 ipst = ILLQ_TO_IPST(q); 9822 9823 ASSERT(ioccmd == I_PLINK || ioccmd == I_PUNLINK || 9824 ioccmd == I_LINK || ioccmd == I_UNLINK); 9825 9826 islink = (ioccmd == I_PLINK || ioccmd == I_LINK); 9827 9828 mp1 = mp->b_cont; /* This is the linkblk info */ 9829 li = (struct linkblk *)mp1->b_rptr; 9830 9831 /* 9832 * ARP has added this special mblk, and the utility is asking us 9833 * to perform consistency checks, and also atomically set the 9834 * muxid. Ifconfig is an example. It achieves this by using 9835 * /dev/arp as the mux to plink the arp stream, and pushes arp on 9836 * to /dev/udp[6] stream for use as the mux when plinking the IP 9837 * stream. SIOCSLIFMUXID is not required. See ifconfig.c, arp.c 9838 * and other comments in this routine for more details. 9839 */ 9840 mp2 = mp1->b_cont; /* This is added by ARP */ 9841 9842 /* 9843 * If I_{P}LINK/I_{P}UNLINK is issued by a utility other than 9844 * ifconfig which didn't push ARP on top of the dummy mux, we won't 9845 * get the special mblk above. For backward compatibility, we 9846 * request ip_sioctl_plink_ipmod() to skip the consistency checks. 9847 * The utility will use SIOCSLIFMUXID to store the muxids. This is 9848 * not atomic, and can leave the streams unplumbable if the utility 9849 * is interrupted before it does the SIOCSLIFMUXID. 9850 */ 9851 if (mp2 == NULL) { 9852 err = ip_sioctl_plink_ipmod(ipsq, q, mp, ioccmd, li, B_FALSE); 9853 if (err == EINPROGRESS) 9854 return; 9855 goto done; 9856 } 9857 9858 /* 9859 * This is an I_{P}LINK sent down by ifconfig through the ARP module; 9860 * ARP has appended this last mblk to tell us whether the lower stream 9861 * is an arp-dev stream or an IP module stream. 9862 */ 9863 ipmxp = (struct ipmx_s *)mp2->b_rptr; 9864 if (ipmxp->ipmx_arpdev_stream) { 9865 /* 9866 * The lower stream is the arp-dev stream. 9867 */ 9868 ill = ill_lookup_on_name(ipmxp->ipmx_name, B_FALSE, B_FALSE, 9869 q, mp, ip_sioctl_plink, &err, NULL, ipst); 9870 if (ill == NULL) { 9871 if (err == EINPROGRESS) 9872 return; 9873 err = EINVAL; 9874 goto done; 9875 } 9876 9877 if (ipsq == NULL) { 9878 ipsq = ipsq_try_enter(NULL, ill, q, mp, ip_sioctl_plink, 9879 NEW_OP, B_TRUE); 9880 if (ipsq == NULL) { 9881 ill_refrele(ill); 9882 return; 9883 } 9884 entered_ipsq = B_TRUE; 9885 } 9886 ASSERT(IAM_WRITER_ILL(ill)); 9887 ill_refrele(ill); 9888 9889 /* 9890 * To ensure consistency between IP and ARP, the following 9891 * LIFO scheme is used in plink/punlink. (IP first, ARP last). 9892 * This is because the muxid's are stored in the IP stream on 9893 * the ill. 9894 * 9895 * I_{P}LINK: ifconfig plinks the IP stream before plinking 9896 * the ARP stream. On an arp-dev stream, IP checks that it is 9897 * not yet plinked, and it also checks that the corresponding 9898 * IP stream is already plinked. 9899 * 9900 * I_{P}UNLINK: ifconfig punlinks the ARP stream before 9901 * punlinking the IP stream. IP does not allow punlink of the 9902 * IP stream unless the arp stream has been punlinked. 9903 */ 9904 if ((islink && 9905 (ill->ill_arp_muxid != 0 || ill->ill_ip_muxid == 0)) || 9906 (!islink && ill->ill_arp_muxid != li->l_index)) { 9907 err = EINVAL; 9908 goto done; 9909 } 9910 ill->ill_arp_muxid = islink ? li->l_index : 0; 9911 } else { 9912 /* 9913 * The lower stream is probably an IP module stream. Do 9914 * consistency checking. 9915 */ 9916 err = ip_sioctl_plink_ipmod(ipsq, q, mp, ioccmd, li, B_TRUE); 9917 if (err == EINPROGRESS) 9918 return; 9919 } 9920 done: 9921 if (err == 0) 9922 miocack(q, mp, 0, 0); 9923 else 9924 miocnak(q, mp, 0, err); 9925 9926 /* Conn was refheld in ip_sioctl_copyin_setup */ 9927 if (CONN_Q(q)) 9928 CONN_OPER_PENDING_DONE(Q_TO_CONN(q)); 9929 if (entered_ipsq) 9930 ipsq_exit(ipsq); 9931 } 9932 9933 /* 9934 * Process I_{P}LINK and I_{P}UNLINK requests named by `ioccmd' and pointed to 9935 * by `mp' and `li' for the IP module stream (if li->q_bot is in fact an IP 9936 * module stream). If `doconsist' is set, then do the extended consistency 9937 * checks requested by ifconfig(1M) and (atomically) set ill_ip_muxid here. 9938 * Returns zero on success, EINPROGRESS if the operation is still pending, or 9939 * an error code on failure. 9940 */ 9941 static int 9942 ip_sioctl_plink_ipmod(ipsq_t *ipsq, queue_t *q, mblk_t *mp, int ioccmd, 9943 struct linkblk *li, boolean_t doconsist) 9944 { 9945 ill_t *ill; 9946 queue_t *ipwq, *dwq; 9947 const char *name; 9948 struct qinit *qinfo; 9949 boolean_t islink = (ioccmd == I_PLINK || ioccmd == I_LINK); 9950 boolean_t entered_ipsq = B_FALSE; 9951 9952 /* 9953 * Walk the lower stream to verify it's the IP module stream. 9954 * The IP module is identified by its name, wput function, 9955 * and non-NULL q_next. STREAMS ensures that the lower stream 9956 * (li->l_qbot) will not vanish until this ioctl completes. 9957 */ 9958 for (ipwq = li->l_qbot; ipwq != NULL; ipwq = ipwq->q_next) { 9959 qinfo = ipwq->q_qinfo; 9960 name = qinfo->qi_minfo->mi_idname; 9961 if (name != NULL && strcmp(name, ip_mod_info.mi_idname) == 0 && 9962 qinfo->qi_putp != (pfi_t)ip_lwput && ipwq->q_next != NULL) { 9963 break; 9964 } 9965 } 9966 9967 /* 9968 * If this isn't an IP module stream, bail. 9969 */ 9970 if (ipwq == NULL) 9971 return (0); 9972 9973 ill = ipwq->q_ptr; 9974 ASSERT(ill != NULL); 9975 9976 if (ipsq == NULL) { 9977 ipsq = ipsq_try_enter(NULL, ill, q, mp, ip_sioctl_plink, 9978 NEW_OP, B_TRUE); 9979 if (ipsq == NULL) 9980 return (EINPROGRESS); 9981 entered_ipsq = B_TRUE; 9982 } 9983 ASSERT(IAM_WRITER_ILL(ill)); 9984 9985 if (doconsist) { 9986 /* 9987 * Consistency checking requires that I_{P}LINK occurs 9988 * prior to setting ill_ip_muxid, and that I_{P}UNLINK 9989 * occurs prior to clearing ill_arp_muxid. 9990 */ 9991 if ((islink && ill->ill_ip_muxid != 0) || 9992 (!islink && ill->ill_arp_muxid != 0)) { 9993 if (entered_ipsq) 9994 ipsq_exit(ipsq); 9995 return (EINVAL); 9996 } 9997 } 9998 9999 /* 10000 * As part of I_{P}LINKing, stash the number of downstream modules and 10001 * the read queue of the module immediately below IP in the ill. 10002 * These are used during the capability negotiation below. 10003 */ 10004 ill->ill_lmod_rq = NULL; 10005 ill->ill_lmod_cnt = 0; 10006 if (islink && ((dwq = ipwq->q_next) != NULL)) { 10007 ill->ill_lmod_rq = RD(dwq); 10008 for (; dwq != NULL; dwq = dwq->q_next) 10009 ill->ill_lmod_cnt++; 10010 } 10011 10012 if (doconsist) 10013 ill->ill_ip_muxid = islink ? li->l_index : 0; 10014 10015 /* 10016 * If there's at least one up ipif on this ill, then we're bound to 10017 * the underlying driver via DLPI. In that case, renegotiate 10018 * capabilities to account for any possible change in modules 10019 * interposed between IP and the driver. 10020 */ 10021 if (ill->ill_ipif_up_count > 0) { 10022 if (islink) 10023 ill_capability_probe(ill); 10024 else 10025 ill_capability_reset(ill); 10026 } 10027 10028 if (entered_ipsq) 10029 ipsq_exit(ipsq); 10030 10031 return (0); 10032 } 10033 10034 /* 10035 * Search the ioctl command in the ioctl tables and return a pointer 10036 * to the ioctl command information. The ioctl command tables are 10037 * static and fully populated at compile time. 10038 */ 10039 ip_ioctl_cmd_t * 10040 ip_sioctl_lookup(int ioc_cmd) 10041 { 10042 int index; 10043 ip_ioctl_cmd_t *ipip; 10044 ip_ioctl_cmd_t *ipip_end; 10045 10046 if (ioc_cmd == IPI_DONTCARE) 10047 return (NULL); 10048 10049 /* 10050 * Do a 2 step search. First search the indexed table 10051 * based on the least significant byte of the ioctl cmd. 10052 * If we don't find a match, then search the misc table 10053 * serially. 10054 */ 10055 index = ioc_cmd & 0xFF; 10056 if (index < ip_ndx_ioctl_count) { 10057 ipip = &ip_ndx_ioctl_table[index]; 10058 if (ipip->ipi_cmd == ioc_cmd) { 10059 /* Found a match in the ndx table */ 10060 return (ipip); 10061 } 10062 } 10063 10064 /* Search the misc table */ 10065 ipip_end = &ip_misc_ioctl_table[ip_misc_ioctl_count]; 10066 for (ipip = ip_misc_ioctl_table; ipip < ipip_end; ipip++) { 10067 if (ipip->ipi_cmd == ioc_cmd) 10068 /* Found a match in the misc table */ 10069 return (ipip); 10070 } 10071 10072 return (NULL); 10073 } 10074 10075 /* 10076 * Wrapper function for resuming deferred ioctl processing 10077 * Used for SIOCGDSTINFO, SIOCGIP6ADDRPOLICY, SIOCGMSFILTER, 10078 * SIOCSMSFILTER, SIOCGIPMSFILTER, and SIOCSIPMSFILTER currently. 10079 */ 10080 /* ARGSUSED */ 10081 void 10082 ip_sioctl_copyin_resume(ipsq_t *dummy_ipsq, queue_t *q, mblk_t *mp, 10083 void *dummy_arg) 10084 { 10085 ip_sioctl_copyin_setup(q, mp); 10086 } 10087 10088 /* 10089 * ip_sioctl_copyin_setup is called by ip_wput with any M_IOCTL message 10090 * that arrives. Most of the IOCTLs are "socket" IOCTLs which we handle 10091 * in either I_STR or TRANSPARENT form, using the mi_copy facility. 10092 * We establish here the size of the block to be copied in. mi_copyin 10093 * arranges for this to happen, an processing continues in ip_wput with 10094 * an M_IOCDATA message. 10095 */ 10096 void 10097 ip_sioctl_copyin_setup(queue_t *q, mblk_t *mp) 10098 { 10099 int copyin_size; 10100 struct iocblk *iocp = (struct iocblk *)mp->b_rptr; 10101 ip_ioctl_cmd_t *ipip; 10102 cred_t *cr; 10103 ip_stack_t *ipst; 10104 10105 if (CONN_Q(q)) 10106 ipst = CONNQ_TO_IPST(q); 10107 else 10108 ipst = ILLQ_TO_IPST(q); 10109 10110 ipip = ip_sioctl_lookup(iocp->ioc_cmd); 10111 if (ipip == NULL) { 10112 /* 10113 * The ioctl is not one we understand or own. 10114 * Pass it along to be processed down stream, 10115 * if this is a module instance of IP, else nak 10116 * the ioctl. 10117 */ 10118 if (q->q_next == NULL) { 10119 goto nak; 10120 } else { 10121 putnext(q, mp); 10122 return; 10123 } 10124 } 10125 10126 /* 10127 * If this is deferred, then we will do all the checks when we 10128 * come back. 10129 */ 10130 if ((iocp->ioc_cmd == SIOCGDSTINFO || 10131 iocp->ioc_cmd == SIOCGIP6ADDRPOLICY) && !ip6_asp_can_lookup(ipst)) { 10132 ip6_asp_pending_op(q, mp, ip_sioctl_copyin_resume); 10133 return; 10134 } 10135 10136 /* 10137 * Only allow a very small subset of IP ioctls on this stream if 10138 * IP is a module and not a driver. Allowing ioctls to be processed 10139 * in this case may cause assert failures or data corruption. 10140 * Typically G[L]IFFLAGS, SLIFNAME/IF_UNITSEL are the only few 10141 * ioctls allowed on an IP module stream, after which this stream 10142 * normally becomes a multiplexor (at which time the stream head 10143 * will fail all ioctls). 10144 */ 10145 if ((q->q_next != NULL) && !(ipip->ipi_flags & IPI_MODOK)) { 10146 if (ipip->ipi_flags & IPI_PASS_DOWN) { 10147 /* 10148 * Pass common Streams ioctls which the IP 10149 * module does not own or consume along to 10150 * be processed down stream. 10151 */ 10152 putnext(q, mp); 10153 return; 10154 } else { 10155 goto nak; 10156 } 10157 } 10158 10159 /* Make sure we have ioctl data to process. */ 10160 if (mp->b_cont == NULL && !(ipip->ipi_flags & IPI_NULL_BCONT)) 10161 goto nak; 10162 10163 /* 10164 * Prefer dblk credential over ioctl credential; some synthesized 10165 * ioctls have kcred set because there's no way to crhold() 10166 * a credential in some contexts. (ioc_cr is not crfree() by 10167 * the framework; the caller of ioctl needs to hold the reference 10168 * for the duration of the call). 10169 */ 10170 cr = DB_CREDDEF(mp, iocp->ioc_cr); 10171 10172 /* Make sure normal users don't send down privileged ioctls */ 10173 if ((ipip->ipi_flags & IPI_PRIV) && 10174 (cr != NULL) && secpolicy_ip_config(cr, B_TRUE) != 0) { 10175 /* We checked the privilege earlier but log it here */ 10176 miocnak(q, mp, 0, secpolicy_ip_config(cr, B_FALSE)); 10177 return; 10178 } 10179 10180 /* 10181 * The ioctl command tables can only encode fixed length 10182 * ioctl data. If the length is variable, the table will 10183 * encode the length as zero. Such special cases are handled 10184 * below in the switch. 10185 */ 10186 if (ipip->ipi_copyin_size != 0) { 10187 mi_copyin(q, mp, NULL, ipip->ipi_copyin_size); 10188 return; 10189 } 10190 10191 switch (iocp->ioc_cmd) { 10192 case O_SIOCGIFCONF: 10193 case SIOCGIFCONF: 10194 /* 10195 * This IOCTL is hilarious. See comments in 10196 * ip_sioctl_get_ifconf for the story. 10197 */ 10198 if (iocp->ioc_count == TRANSPARENT) 10199 copyin_size = SIZEOF_STRUCT(ifconf, 10200 iocp->ioc_flag); 10201 else 10202 copyin_size = iocp->ioc_count; 10203 mi_copyin(q, mp, NULL, copyin_size); 10204 return; 10205 10206 case O_SIOCGLIFCONF: 10207 case SIOCGLIFCONF: 10208 copyin_size = SIZEOF_STRUCT(lifconf, iocp->ioc_flag); 10209 mi_copyin(q, mp, NULL, copyin_size); 10210 return; 10211 10212 case SIOCGLIFSRCOF: 10213 copyin_size = SIZEOF_STRUCT(lifsrcof, iocp->ioc_flag); 10214 mi_copyin(q, mp, NULL, copyin_size); 10215 return; 10216 case SIOCGIP6ADDRPOLICY: 10217 ip_sioctl_ip6addrpolicy(q, mp); 10218 ip6_asp_table_refrele(ipst); 10219 return; 10220 10221 case SIOCSIP6ADDRPOLICY: 10222 ip_sioctl_ip6addrpolicy(q, mp); 10223 return; 10224 10225 case SIOCGDSTINFO: 10226 ip_sioctl_dstinfo(q, mp); 10227 ip6_asp_table_refrele(ipst); 10228 return; 10229 10230 case I_PLINK: 10231 case I_PUNLINK: 10232 case I_LINK: 10233 case I_UNLINK: 10234 /* 10235 * We treat non-persistent link similarly as the persistent 10236 * link case, in terms of plumbing/unplumbing, as well as 10237 * dynamic re-plumbing events indicator. See comments 10238 * in ip_sioctl_plink() for more. 10239 * 10240 * Request can be enqueued in the 'ipsq' while waiting 10241 * to become exclusive. So bump up the conn ref. 10242 */ 10243 if (CONN_Q(q)) 10244 CONN_INC_REF(Q_TO_CONN(q)); 10245 ip_sioctl_plink(NULL, q, mp, NULL); 10246 return; 10247 10248 case ND_GET: 10249 case ND_SET: 10250 /* 10251 * Use of the nd table requires holding the reader lock. 10252 * Modifying the nd table thru nd_load/nd_unload requires 10253 * the writer lock. 10254 */ 10255 rw_enter(&ipst->ips_ip_g_nd_lock, RW_READER); 10256 if (nd_getset(q, ipst->ips_ip_g_nd, mp)) { 10257 rw_exit(&ipst->ips_ip_g_nd_lock); 10258 10259 if (iocp->ioc_error) 10260 iocp->ioc_count = 0; 10261 mp->b_datap->db_type = M_IOCACK; 10262 qreply(q, mp); 10263 return; 10264 } 10265 rw_exit(&ipst->ips_ip_g_nd_lock); 10266 /* 10267 * We don't understand this subioctl of ND_GET / ND_SET. 10268 * Maybe intended for some driver / module below us 10269 */ 10270 if (q->q_next) { 10271 putnext(q, mp); 10272 } else { 10273 iocp->ioc_error = ENOENT; 10274 mp->b_datap->db_type = M_IOCNAK; 10275 iocp->ioc_count = 0; 10276 qreply(q, mp); 10277 } 10278 return; 10279 10280 case IP_IOCTL: 10281 ip_wput_ioctl(q, mp); 10282 return; 10283 default: 10284 cmn_err(CE_PANIC, "should not happen "); 10285 } 10286 nak: 10287 if (mp->b_cont != NULL) { 10288 freemsg(mp->b_cont); 10289 mp->b_cont = NULL; 10290 } 10291 iocp->ioc_error = EINVAL; 10292 mp->b_datap->db_type = M_IOCNAK; 10293 iocp->ioc_count = 0; 10294 qreply(q, mp); 10295 } 10296 10297 /* ip_wput hands off ARP IOCTL responses to us */ 10298 void 10299 ip_sioctl_iocack(queue_t *q, mblk_t *mp) 10300 { 10301 struct arpreq *ar; 10302 struct xarpreq *xar; 10303 area_t *area; 10304 mblk_t *area_mp; 10305 struct iocblk *iocp; 10306 mblk_t *orig_ioc_mp, *tmp; 10307 struct iocblk *orig_iocp; 10308 ill_t *ill; 10309 conn_t *connp = NULL; 10310 uint_t ioc_id; 10311 mblk_t *pending_mp; 10312 int x_arp_ioctl = B_FALSE, ifx_arp_ioctl = B_FALSE; 10313 int *flagsp; 10314 char *storage = NULL; 10315 sin_t *sin; 10316 ipaddr_t addr; 10317 int err; 10318 ip_stack_t *ipst; 10319 10320 ill = q->q_ptr; 10321 ASSERT(ill != NULL); 10322 ipst = ill->ill_ipst; 10323 10324 /* 10325 * We should get back from ARP a packet chain that looks like: 10326 * M_IOCACK-->ARP_op_MBLK-->ORIG_M_IOCTL-->MI_COPY_MBLK-->[X]ARPREQ_MBLK 10327 */ 10328 if (!(area_mp = mp->b_cont) || 10329 (area_mp->b_wptr - area_mp->b_rptr) < sizeof (ip_sock_ar_t) || 10330 !(orig_ioc_mp = area_mp->b_cont) || 10331 !orig_ioc_mp->b_cont || !orig_ioc_mp->b_cont->b_cont) { 10332 freemsg(mp); 10333 return; 10334 } 10335 10336 orig_iocp = (struct iocblk *)orig_ioc_mp->b_rptr; 10337 10338 tmp = (orig_ioc_mp->b_cont)->b_cont; 10339 if ((orig_iocp->ioc_cmd == SIOCGXARP) || 10340 (orig_iocp->ioc_cmd == SIOCSXARP) || 10341 (orig_iocp->ioc_cmd == SIOCDXARP)) { 10342 x_arp_ioctl = B_TRUE; 10343 xar = (struct xarpreq *)tmp->b_rptr; 10344 sin = (sin_t *)&xar->xarp_pa; 10345 flagsp = &xar->xarp_flags; 10346 storage = xar->xarp_ha.sdl_data; 10347 if (xar->xarp_ha.sdl_nlen != 0) 10348 ifx_arp_ioctl = B_TRUE; 10349 } else { 10350 ar = (struct arpreq *)tmp->b_rptr; 10351 sin = (sin_t *)&ar->arp_pa; 10352 flagsp = &ar->arp_flags; 10353 storage = ar->arp_ha.sa_data; 10354 } 10355 10356 iocp = (struct iocblk *)mp->b_rptr; 10357 10358 /* 10359 * Pick out the originating queue based on the ioc_id. 10360 */ 10361 ioc_id = iocp->ioc_id; 10362 pending_mp = ill_pending_mp_get(ill, &connp, ioc_id); 10363 if (pending_mp == NULL) { 10364 ASSERT(connp == NULL); 10365 inet_freemsg(mp); 10366 return; 10367 } 10368 ASSERT(connp != NULL); 10369 q = CONNP_TO_WQ(connp); 10370 10371 /* Uncouple the internally generated IOCTL from the original one */ 10372 area = (area_t *)area_mp->b_rptr; 10373 area_mp->b_cont = NULL; 10374 10375 /* 10376 * Restore the b_next and b_prev used by mi code. This is needed 10377 * to complete the ioctl using mi* functions. We stored them in 10378 * the pending mp prior to sending the request to ARP. 10379 */ 10380 orig_ioc_mp->b_cont->b_next = pending_mp->b_cont->b_next; 10381 orig_ioc_mp->b_cont->b_prev = pending_mp->b_cont->b_prev; 10382 inet_freemsg(pending_mp); 10383 10384 /* 10385 * We're done if there was an error or if this is not an SIOCG{X}ARP 10386 * Catch the case where there is an IRE_CACHE by no entry in the 10387 * arp table. 10388 */ 10389 addr = sin->sin_addr.s_addr; 10390 if (iocp->ioc_error && iocp->ioc_cmd == AR_ENTRY_SQUERY) { 10391 ire_t *ire; 10392 dl_unitdata_req_t *dlup; 10393 mblk_t *llmp; 10394 int addr_len; 10395 ill_t *ipsqill = NULL; 10396 10397 if (ifx_arp_ioctl) { 10398 /* 10399 * There's no need to lookup the ill, since 10400 * we've already done that when we started 10401 * processing the ioctl and sent the message 10402 * to ARP on that ill. So use the ill that 10403 * is stored in q->q_ptr. 10404 */ 10405 ipsqill = ill; 10406 ire = ire_ctable_lookup(addr, 0, IRE_CACHE, 10407 ipsqill->ill_ipif, ALL_ZONES, 10408 NULL, MATCH_IRE_TYPE | MATCH_IRE_ILL, ipst); 10409 } else { 10410 ire = ire_ctable_lookup(addr, 0, IRE_CACHE, 10411 NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 10412 if (ire != NULL) 10413 ipsqill = ire_to_ill(ire); 10414 } 10415 10416 if ((x_arp_ioctl) && (ipsqill != NULL)) 10417 storage += ill_xarp_info(&xar->xarp_ha, ipsqill); 10418 10419 if (ire != NULL) { 10420 /* 10421 * Since the ire obtained from cachetable is used for 10422 * mac addr copying below, treat an incomplete ire as if 10423 * as if we never found it. 10424 */ 10425 if (ire->ire_nce != NULL && 10426 ire->ire_nce->nce_state != ND_REACHABLE) { 10427 ire_refrele(ire); 10428 ire = NULL; 10429 ipsqill = NULL; 10430 goto errack; 10431 } 10432 *flagsp = ATF_INUSE; 10433 llmp = (ire->ire_nce != NULL ? 10434 ire->ire_nce->nce_res_mp : NULL); 10435 if (llmp != NULL && ipsqill != NULL) { 10436 uchar_t *macaddr; 10437 10438 addr_len = ipsqill->ill_phys_addr_length; 10439 if (x_arp_ioctl && ((addr_len + 10440 ipsqill->ill_name_length) > 10441 sizeof (xar->xarp_ha.sdl_data))) { 10442 ire_refrele(ire); 10443 freemsg(mp); 10444 ip_ioctl_finish(q, orig_ioc_mp, 10445 EINVAL, NO_COPYOUT, NULL); 10446 return; 10447 } 10448 *flagsp |= ATF_COM; 10449 dlup = (dl_unitdata_req_t *)llmp->b_rptr; 10450 if (ipsqill->ill_sap_length < 0) 10451 macaddr = llmp->b_rptr + 10452 dlup->dl_dest_addr_offset; 10453 else 10454 macaddr = llmp->b_rptr + 10455 dlup->dl_dest_addr_offset + 10456 ipsqill->ill_sap_length; 10457 /* 10458 * For SIOCGARP, MAC address length 10459 * validation has already been done 10460 * before the ioctl was issued to ARP to 10461 * allow it to progress only on 6 byte 10462 * addressable (ethernet like) media. Thus 10463 * the mac address copying can not overwrite 10464 * the sa_data area below. 10465 */ 10466 bcopy(macaddr, storage, addr_len); 10467 } 10468 /* Ditch the internal IOCTL. */ 10469 freemsg(mp); 10470 ire_refrele(ire); 10471 ip_ioctl_finish(q, orig_ioc_mp, 0, COPYOUT, NULL); 10472 return; 10473 } 10474 } 10475 10476 /* 10477 * Delete the coresponding IRE_CACHE if any. 10478 * Reset the error if there was one (in case there was no entry 10479 * in arp.) 10480 */ 10481 if (iocp->ioc_cmd == AR_ENTRY_DELETE) { 10482 ipif_t *ipintf = NULL; 10483 10484 if (ifx_arp_ioctl) { 10485 /* 10486 * There's no need to lookup the ill, since 10487 * we've already done that when we started 10488 * processing the ioctl and sent the message 10489 * to ARP on that ill. So use the ill that 10490 * is stored in q->q_ptr. 10491 */ 10492 ipintf = ill->ill_ipif; 10493 } 10494 if (ip_ire_clookup_and_delete(addr, ipintf, ipst)) { 10495 /* 10496 * The address in "addr" may be an entry for a 10497 * router. If that's true, then any off-net 10498 * IRE_CACHE entries that go through the router 10499 * with address "addr" must be clobbered. Use 10500 * ire_walk to achieve this goal. 10501 */ 10502 if (ifx_arp_ioctl) 10503 ire_walk_ill_v4(MATCH_IRE_ILL, 0, 10504 ire_delete_cache_gw, (char *)&addr, ill); 10505 else 10506 ire_walk_v4(ire_delete_cache_gw, (char *)&addr, 10507 ALL_ZONES, ipst); 10508 iocp->ioc_error = 0; 10509 } 10510 } 10511 errack: 10512 if (iocp->ioc_error || iocp->ioc_cmd != AR_ENTRY_SQUERY) { 10513 err = iocp->ioc_error; 10514 freemsg(mp); 10515 ip_ioctl_finish(q, orig_ioc_mp, err, NO_COPYOUT, NULL); 10516 return; 10517 } 10518 10519 /* 10520 * Completion of an SIOCG{X}ARP. Translate the information from 10521 * the area_t into the struct {x}arpreq. 10522 */ 10523 if (x_arp_ioctl) { 10524 storage += ill_xarp_info(&xar->xarp_ha, ill); 10525 if ((ill->ill_phys_addr_length + ill->ill_name_length) > 10526 sizeof (xar->xarp_ha.sdl_data)) { 10527 freemsg(mp); 10528 ip_ioctl_finish(q, orig_ioc_mp, EINVAL, NO_COPYOUT, 10529 NULL); 10530 return; 10531 } 10532 } 10533 *flagsp = ATF_INUSE; 10534 if (area->area_flags & ACE_F_PERMANENT) 10535 *flagsp |= ATF_PERM; 10536 if (area->area_flags & ACE_F_PUBLISH) 10537 *flagsp |= ATF_PUBL; 10538 if (area->area_flags & ACE_F_AUTHORITY) 10539 *flagsp |= ATF_AUTHORITY; 10540 if (area->area_hw_addr_length != 0) { 10541 *flagsp |= ATF_COM; 10542 /* 10543 * For SIOCGARP, MAC address length validation has 10544 * already been done before the ioctl was issued to ARP 10545 * to allow it to progress only on 6 byte addressable 10546 * (ethernet like) media. Thus the mac address copying 10547 * can not overwrite the sa_data area below. 10548 */ 10549 bcopy((char *)area + area->area_hw_addr_offset, 10550 storage, area->area_hw_addr_length); 10551 } 10552 10553 /* Ditch the internal IOCTL. */ 10554 freemsg(mp); 10555 /* Complete the original. */ 10556 ip_ioctl_finish(q, orig_ioc_mp, 0, COPYOUT, NULL); 10557 } 10558 10559 /* 10560 * Create a new logical interface. If ipif_id is zero (i.e. not a logical 10561 * interface) create the next available logical interface for this 10562 * physical interface. 10563 * If ipif is NULL (i.e. the lookup didn't find one) attempt to create an 10564 * ipif with the specified name. 10565 * 10566 * If the address family is not AF_UNSPEC then set the address as well. 10567 * 10568 * If ip_sioctl_addr returns EINPROGRESS then the ioctl (the copyout) 10569 * is completed when the DL_BIND_ACK arrive in ip_rput_dlpi_writer. 10570 * 10571 * Executed as a writer on the ill or ill group. 10572 * So no lock is needed to traverse the ipif chain, or examine the 10573 * phyint flags. 10574 */ 10575 /* ARGSUSED */ 10576 int 10577 ip_sioctl_addif(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, 10578 ip_ioctl_cmd_t *dummy_ipip, void *dummy_ifreq) 10579 { 10580 mblk_t *mp1; 10581 struct lifreq *lifr; 10582 boolean_t isv6; 10583 boolean_t exists; 10584 char *name; 10585 char *endp; 10586 char *cp; 10587 int namelen; 10588 ipif_t *ipif; 10589 long id; 10590 ipsq_t *ipsq; 10591 ill_t *ill; 10592 sin_t *sin; 10593 int err = 0; 10594 boolean_t found_sep = B_FALSE; 10595 conn_t *connp; 10596 zoneid_t zoneid; 10597 int orig_ifindex = 0; 10598 ip_stack_t *ipst = CONNQ_TO_IPST(q); 10599 10600 ASSERT(q->q_next == NULL); 10601 ip1dbg(("ip_sioctl_addif\n")); 10602 /* Existence of mp1 has been checked in ip_wput_nondata */ 10603 mp1 = mp->b_cont->b_cont; 10604 /* 10605 * Null terminate the string to protect against buffer 10606 * overrun. String was generated by user code and may not 10607 * be trusted. 10608 */ 10609 lifr = (struct lifreq *)mp1->b_rptr; 10610 lifr->lifr_name[LIFNAMSIZ - 1] = '\0'; 10611 name = lifr->lifr_name; 10612 ASSERT(CONN_Q(q)); 10613 connp = Q_TO_CONN(q); 10614 isv6 = connp->conn_af_isv6; 10615 zoneid = connp->conn_zoneid; 10616 namelen = mi_strlen(name); 10617 if (namelen == 0) 10618 return (EINVAL); 10619 10620 exists = B_FALSE; 10621 if ((namelen + 1 == sizeof (ipif_loopback_name)) && 10622 (mi_strcmp(name, ipif_loopback_name) == 0)) { 10623 /* 10624 * Allow creating lo0 using SIOCLIFADDIF. 10625 * can't be any other writer thread. So can pass null below 10626 * for the last 4 args to ipif_lookup_name. 10627 */ 10628 ipif = ipif_lookup_on_name(lifr->lifr_name, namelen, B_TRUE, 10629 &exists, isv6, zoneid, NULL, NULL, NULL, NULL, ipst); 10630 /* Prevent any further action */ 10631 if (ipif == NULL) { 10632 return (ENOBUFS); 10633 } else if (!exists) { 10634 /* We created the ipif now and as writer */ 10635 ipif_refrele(ipif); 10636 return (0); 10637 } else { 10638 ill = ipif->ipif_ill; 10639 ill_refhold(ill); 10640 ipif_refrele(ipif); 10641 } 10642 } else { 10643 /* Look for a colon in the name. */ 10644 endp = &name[namelen]; 10645 for (cp = endp; --cp > name; ) { 10646 if (*cp == IPIF_SEPARATOR_CHAR) { 10647 found_sep = B_TRUE; 10648 /* 10649 * Reject any non-decimal aliases for plumbing 10650 * of logical interfaces. Aliases with leading 10651 * zeroes are also rejected as they introduce 10652 * ambiguity in the naming of the interfaces. 10653 * Comparing with "0" takes care of all such 10654 * cases. 10655 */ 10656 if ((strncmp("0", cp+1, 1)) == 0) 10657 return (EINVAL); 10658 10659 if (ddi_strtol(cp+1, &endp, 10, &id) != 0 || 10660 id <= 0 || *endp != '\0') { 10661 return (EINVAL); 10662 } 10663 *cp = '\0'; 10664 break; 10665 } 10666 } 10667 ill = ill_lookup_on_name(name, B_FALSE, isv6, 10668 CONNP_TO_WQ(connp), mp, ip_process_ioctl, &err, NULL, ipst); 10669 if (found_sep) 10670 *cp = IPIF_SEPARATOR_CHAR; 10671 if (ill == NULL) 10672 return (err); 10673 } 10674 10675 ipsq = ipsq_try_enter(NULL, ill, q, mp, ip_process_ioctl, NEW_OP, 10676 B_TRUE); 10677 10678 /* 10679 * Release the refhold due to the lookup, now that we are excl 10680 * or we are just returning 10681 */ 10682 ill_refrele(ill); 10683 10684 if (ipsq == NULL) 10685 return (EINPROGRESS); 10686 10687 /* 10688 * If the interface is failed, inactive or offlined, look for a working 10689 * interface in the ill group and create the ipif there. If we can't 10690 * find a good interface, create the ipif anyway so that in.mpathd can 10691 * move it to the first repaired interface. 10692 */ 10693 if ((ill->ill_phyint->phyint_flags & 10694 (PHYI_FAILED|PHYI_INACTIVE|PHYI_OFFLINE)) && 10695 ill->ill_phyint->phyint_groupname_len != 0) { 10696 phyint_t *phyi; 10697 char *groupname = ill->ill_phyint->phyint_groupname; 10698 10699 /* 10700 * We're looking for a working interface, but it doesn't matter 10701 * if it's up or down; so instead of following the group lists, 10702 * we look at each physical interface and compare the groupname. 10703 * We're only interested in interfaces with IPv4 (resp. IPv6) 10704 * plumbed when we're adding an IPv4 (resp. IPv6) ipif. 10705 * Otherwise we create the ipif on the failed interface. 10706 */ 10707 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 10708 phyi = avl_first(&ipst->ips_phyint_g_list-> 10709 phyint_list_avl_by_index); 10710 for (; phyi != NULL; 10711 phyi = avl_walk(&ipst->ips_phyint_g_list-> 10712 phyint_list_avl_by_index, 10713 phyi, AVL_AFTER)) { 10714 if (phyi->phyint_groupname_len == 0) 10715 continue; 10716 ASSERT(phyi->phyint_groupname != NULL); 10717 if (mi_strcmp(groupname, phyi->phyint_groupname) == 0 && 10718 !(phyi->phyint_flags & 10719 (PHYI_FAILED|PHYI_INACTIVE|PHYI_OFFLINE)) && 10720 (ill->ill_isv6 ? (phyi->phyint_illv6 != NULL) : 10721 (phyi->phyint_illv4 != NULL))) { 10722 break; 10723 } 10724 } 10725 rw_exit(&ipst->ips_ill_g_lock); 10726 10727 if (phyi != NULL) { 10728 orig_ifindex = ill->ill_phyint->phyint_ifindex; 10729 ill = (ill->ill_isv6 ? phyi->phyint_illv6 : 10730 phyi->phyint_illv4); 10731 } 10732 } 10733 10734 /* 10735 * We are now exclusive on the ipsq, so an ill move will be serialized 10736 * before or after us. 10737 */ 10738 ASSERT(IAM_WRITER_ILL(ill)); 10739 ASSERT(ill->ill_move_in_progress == B_FALSE); 10740 10741 if (found_sep && orig_ifindex == 0) { 10742 /* Now see if there is an IPIF with this unit number. */ 10743 for (ipif = ill->ill_ipif; ipif != NULL; 10744 ipif = ipif->ipif_next) { 10745 if (ipif->ipif_id == id) { 10746 err = EEXIST; 10747 goto done; 10748 } 10749 } 10750 } 10751 10752 /* 10753 * We use IRE_LOCAL for lo0:1 etc. for "receive only" use 10754 * of lo0. We never come here when we plumb lo0:0. It 10755 * happens in ipif_lookup_on_name. 10756 * The specified unit number is ignored when we create the ipif on a 10757 * different interface. However, we save it in ipif_orig_ipifid below so 10758 * that the ipif fails back to the right position. 10759 */ 10760 if ((ipif = ipif_allocate(ill, (found_sep && orig_ifindex == 0) ? 10761 id : -1, IRE_LOCAL, B_TRUE)) == NULL) { 10762 err = ENOBUFS; 10763 goto done; 10764 } 10765 10766 /* Return created name with ioctl */ 10767 (void) sprintf(lifr->lifr_name, "%s%c%d", ill->ill_name, 10768 IPIF_SEPARATOR_CHAR, ipif->ipif_id); 10769 ip1dbg(("created %s\n", lifr->lifr_name)); 10770 10771 /* Set address */ 10772 sin = (sin_t *)&lifr->lifr_addr; 10773 if (sin->sin_family != AF_UNSPEC) { 10774 err = ip_sioctl_addr(ipif, sin, q, mp, 10775 &ip_ndx_ioctl_table[SIOCLIFADDR_NDX], lifr); 10776 } 10777 10778 /* Set ifindex and unit number for failback */ 10779 if (err == 0 && orig_ifindex != 0) { 10780 ipif->ipif_orig_ifindex = orig_ifindex; 10781 if (found_sep) { 10782 ipif->ipif_orig_ipifid = id; 10783 } 10784 } 10785 10786 done: 10787 ipsq_exit(ipsq); 10788 return (err); 10789 } 10790 10791 /* 10792 * Remove an existing logical interface. If ipif_id is zero (i.e. not a logical 10793 * interface) delete it based on the IP address (on this physical interface). 10794 * Otherwise delete it based on the ipif_id. 10795 * Also, special handling to allow a removeif of lo0. 10796 */ 10797 /* ARGSUSED */ 10798 int 10799 ip_sioctl_removeif(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 10800 ip_ioctl_cmd_t *ipip, void *dummy_if_req) 10801 { 10802 conn_t *connp; 10803 ill_t *ill = ipif->ipif_ill; 10804 boolean_t success; 10805 ip_stack_t *ipst; 10806 10807 ipst = CONNQ_TO_IPST(q); 10808 10809 ASSERT(q->q_next == NULL); 10810 ip1dbg(("ip_sioctl_remove_if(%s:%u %p)\n", 10811 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 10812 ASSERT(IAM_WRITER_IPIF(ipif)); 10813 10814 connp = Q_TO_CONN(q); 10815 /* 10816 * Special case for unplumbing lo0 (the loopback physical interface). 10817 * If unplumbing lo0, the incoming address structure has been 10818 * initialized to all zeros. When unplumbing lo0, all its logical 10819 * interfaces must be removed too. 10820 * 10821 * Note that this interface may be called to remove a specific 10822 * loopback logical interface (eg, lo0:1). But in that case 10823 * ipif->ipif_id != 0 so that the code path for that case is the 10824 * same as any other interface (meaning it skips the code directly 10825 * below). 10826 */ 10827 if (ipif->ipif_id == 0 && ipif->ipif_net_type == IRE_LOOPBACK) { 10828 if (sin->sin_family == AF_UNSPEC && 10829 (IN6_IS_ADDR_UNSPECIFIED(&((sin6_t *)sin)->sin6_addr))) { 10830 /* 10831 * Mark it condemned. No new ref. will be made to ill. 10832 */ 10833 mutex_enter(&ill->ill_lock); 10834 ill->ill_state_flags |= ILL_CONDEMNED; 10835 for (ipif = ill->ill_ipif; ipif != NULL; 10836 ipif = ipif->ipif_next) { 10837 ipif->ipif_state_flags |= IPIF_CONDEMNED; 10838 } 10839 mutex_exit(&ill->ill_lock); 10840 10841 ipif = ill->ill_ipif; 10842 /* unplumb the loopback interface */ 10843 ill_delete(ill); 10844 mutex_enter(&connp->conn_lock); 10845 mutex_enter(&ill->ill_lock); 10846 ASSERT(ill->ill_group == NULL); 10847 10848 /* Are any references to this ill active */ 10849 if (ill_is_freeable(ill)) { 10850 mutex_exit(&ill->ill_lock); 10851 mutex_exit(&connp->conn_lock); 10852 ill_delete_tail(ill); 10853 mutex_enter(&ill->ill_lock); 10854 ill_nic_info_dispatch(ill); 10855 mutex_exit(&ill->ill_lock); 10856 mi_free(ill); 10857 return (0); 10858 } 10859 success = ipsq_pending_mp_add(connp, ipif, 10860 CONNP_TO_WQ(connp), mp, ILL_FREE); 10861 mutex_exit(&connp->conn_lock); 10862 mutex_exit(&ill->ill_lock); 10863 if (success) 10864 return (EINPROGRESS); 10865 else 10866 return (EINTR); 10867 } 10868 } 10869 10870 /* 10871 * We are exclusive on the ipsq, so an ill move will be serialized 10872 * before or after us. 10873 */ 10874 ASSERT(ill->ill_move_in_progress == B_FALSE); 10875 10876 if (ipif->ipif_id == 0) { 10877 10878 ipsq_t *ipsq; 10879 10880 /* Find based on address */ 10881 if (ipif->ipif_isv6) { 10882 sin6_t *sin6; 10883 10884 if (sin->sin_family != AF_INET6) 10885 return (EAFNOSUPPORT); 10886 10887 sin6 = (sin6_t *)sin; 10888 /* We are a writer, so we should be able to lookup */ 10889 ipif = ipif_lookup_addr_v6(&sin6->sin6_addr, 10890 ill, ALL_ZONES, NULL, NULL, NULL, NULL, ipst); 10891 if (ipif == NULL) { 10892 /* 10893 * Maybe the address in on another interface in 10894 * the same IPMP group? We check this below. 10895 */ 10896 ipif = ipif_lookup_addr_v6(&sin6->sin6_addr, 10897 NULL, ALL_ZONES, NULL, NULL, NULL, NULL, 10898 ipst); 10899 } 10900 } else { 10901 ipaddr_t addr; 10902 10903 if (sin->sin_family != AF_INET) 10904 return (EAFNOSUPPORT); 10905 10906 addr = sin->sin_addr.s_addr; 10907 /* We are a writer, so we should be able to lookup */ 10908 ipif = ipif_lookup_addr(addr, ill, ALL_ZONES, NULL, 10909 NULL, NULL, NULL, ipst); 10910 if (ipif == NULL) { 10911 /* 10912 * Maybe the address in on another interface in 10913 * the same IPMP group? We check this below. 10914 */ 10915 ipif = ipif_lookup_addr(addr, NULL, ALL_ZONES, 10916 NULL, NULL, NULL, NULL, ipst); 10917 } 10918 } 10919 if (ipif == NULL) { 10920 return (EADDRNOTAVAIL); 10921 } 10922 10923 /* 10924 * It is possible for a user to send an SIOCLIFREMOVEIF with 10925 * lifr_name of the physical interface but with an ip address 10926 * lifr_addr of a logical interface plumbed over it. 10927 * So update ipsq_current_ipif once ipif points to the 10928 * correct interface after doing ipif_lookup_addr(). 10929 */ 10930 ipsq = ipif->ipif_ill->ill_phyint->phyint_ipsq; 10931 ASSERT(ipsq != NULL); 10932 10933 mutex_enter(&ipsq->ipsq_lock); 10934 ipsq->ipsq_current_ipif = ipif; 10935 mutex_exit(&ipsq->ipsq_lock); 10936 10937 /* 10938 * When the address to be removed is hosted on a different 10939 * interface, we check if the interface is in the same IPMP 10940 * group as the specified one; if so we proceed with the 10941 * removal. 10942 * ill->ill_group is NULL when the ill is down, so we have to 10943 * compare the group names instead. 10944 */ 10945 if (ipif->ipif_ill != ill && 10946 (ipif->ipif_ill->ill_phyint->phyint_groupname_len == 0 || 10947 ill->ill_phyint->phyint_groupname_len == 0 || 10948 mi_strcmp(ipif->ipif_ill->ill_phyint->phyint_groupname, 10949 ill->ill_phyint->phyint_groupname) != 0)) { 10950 ipif_refrele(ipif); 10951 return (EADDRNOTAVAIL); 10952 } 10953 10954 /* This is a writer */ 10955 ipif_refrele(ipif); 10956 } 10957 10958 /* 10959 * Can not delete instance zero since it is tied to the ill. 10960 */ 10961 if (ipif->ipif_id == 0) 10962 return (EBUSY); 10963 10964 mutex_enter(&ill->ill_lock); 10965 ipif->ipif_state_flags |= IPIF_CONDEMNED; 10966 mutex_exit(&ill->ill_lock); 10967 10968 ipif_free(ipif); 10969 10970 mutex_enter(&connp->conn_lock); 10971 mutex_enter(&ill->ill_lock); 10972 10973 10974 /* Are any references to this ipif active */ 10975 if (ipif_is_freeable(ipif)) { 10976 mutex_exit(&ill->ill_lock); 10977 mutex_exit(&connp->conn_lock); 10978 ipif_non_duplicate(ipif); 10979 ipif_down_tail(ipif); 10980 ipif_free_tail(ipif); /* frees ipif */ 10981 return (0); 10982 } 10983 success = ipsq_pending_mp_add(connp, ipif, CONNP_TO_WQ(connp), mp, 10984 IPIF_FREE); 10985 mutex_exit(&ill->ill_lock); 10986 mutex_exit(&connp->conn_lock); 10987 if (success) 10988 return (EINPROGRESS); 10989 else 10990 return (EINTR); 10991 } 10992 10993 /* 10994 * Restart the removeif ioctl. The refcnt has gone down to 0. 10995 * The ipif is already condemned. So can't find it thru lookups. 10996 */ 10997 /* ARGSUSED */ 10998 int 10999 ip_sioctl_removeif_restart(ipif_t *ipif, sin_t *dummy_sin, queue_t *q, 11000 mblk_t *mp, ip_ioctl_cmd_t *ipip, void *dummy_if_req) 11001 { 11002 ill_t *ill = ipif->ipif_ill; 11003 11004 ASSERT(IAM_WRITER_IPIF(ipif)); 11005 ASSERT(ipif->ipif_state_flags & IPIF_CONDEMNED); 11006 11007 ip1dbg(("ip_sioctl_removeif_restart(%s:%u %p)\n", 11008 ill->ill_name, ipif->ipif_id, (void *)ipif)); 11009 11010 if (ipif->ipif_id == 0 && ipif->ipif_net_type == IRE_LOOPBACK) { 11011 ASSERT(ill->ill_state_flags & ILL_CONDEMNED); 11012 ill_delete_tail(ill); 11013 mutex_enter(&ill->ill_lock); 11014 ill_nic_info_dispatch(ill); 11015 mutex_exit(&ill->ill_lock); 11016 mi_free(ill); 11017 return (0); 11018 } 11019 11020 ipif_non_duplicate(ipif); 11021 ipif_down_tail(ipif); 11022 ipif_free_tail(ipif); 11023 11024 ILL_UNMARK_CHANGING(ill); 11025 return (0); 11026 } 11027 11028 /* 11029 * Set the local interface address. 11030 * Allow an address of all zero when the interface is down. 11031 */ 11032 /* ARGSUSED */ 11033 int 11034 ip_sioctl_addr(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11035 ip_ioctl_cmd_t *dummy_ipip, void *dummy_ifreq) 11036 { 11037 int err = 0; 11038 in6_addr_t v6addr; 11039 boolean_t need_up = B_FALSE; 11040 11041 ip1dbg(("ip_sioctl_addr(%s:%u %p)\n", 11042 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11043 11044 ASSERT(IAM_WRITER_IPIF(ipif)); 11045 11046 if (ipif->ipif_isv6) { 11047 sin6_t *sin6; 11048 ill_t *ill; 11049 phyint_t *phyi; 11050 11051 if (sin->sin_family != AF_INET6) 11052 return (EAFNOSUPPORT); 11053 11054 sin6 = (sin6_t *)sin; 11055 v6addr = sin6->sin6_addr; 11056 ill = ipif->ipif_ill; 11057 phyi = ill->ill_phyint; 11058 11059 /* 11060 * Enforce that true multicast interfaces have a link-local 11061 * address for logical unit 0. 11062 */ 11063 if (ipif->ipif_id == 0 && 11064 (ill->ill_flags & ILLF_MULTICAST) && 11065 !(ipif->ipif_flags & (IPIF_POINTOPOINT)) && 11066 !(phyi->phyint_flags & (PHYI_LOOPBACK)) && 11067 !IN6_IS_ADDR_LINKLOCAL(&v6addr)) { 11068 return (EADDRNOTAVAIL); 11069 } 11070 11071 /* 11072 * up interfaces shouldn't have the unspecified address 11073 * unless they also have the IPIF_NOLOCAL flags set and 11074 * have a subnet assigned. 11075 */ 11076 if ((ipif->ipif_flags & IPIF_UP) && 11077 IN6_IS_ADDR_UNSPECIFIED(&v6addr) && 11078 (!(ipif->ipif_flags & IPIF_NOLOCAL) || 11079 IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6subnet))) { 11080 return (EADDRNOTAVAIL); 11081 } 11082 11083 if (!ip_local_addr_ok_v6(&v6addr, &ipif->ipif_v6net_mask)) 11084 return (EADDRNOTAVAIL); 11085 } else { 11086 ipaddr_t addr; 11087 11088 if (sin->sin_family != AF_INET) 11089 return (EAFNOSUPPORT); 11090 11091 addr = sin->sin_addr.s_addr; 11092 11093 /* Allow 0 as the local address. */ 11094 if (addr != 0 && !ip_addr_ok_v4(addr, ipif->ipif_net_mask)) 11095 return (EADDRNOTAVAIL); 11096 11097 IN6_IPADDR_TO_V4MAPPED(addr, &v6addr); 11098 } 11099 11100 /* 11101 * Even if there is no change we redo things just to rerun 11102 * ipif_set_default. 11103 */ 11104 if (ipif->ipif_flags & IPIF_UP) { 11105 /* 11106 * Setting a new local address, make sure 11107 * we have net and subnet bcast ire's for 11108 * the old address if we need them. 11109 */ 11110 if (!ipif->ipif_isv6) 11111 ipif_check_bcast_ires(ipif); 11112 /* 11113 * If the interface is already marked up, 11114 * we call ipif_down which will take care 11115 * of ditching any IREs that have been set 11116 * up based on the old interface address. 11117 */ 11118 err = ipif_logical_down(ipif, q, mp); 11119 if (err == EINPROGRESS) 11120 return (err); 11121 ipif_down_tail(ipif); 11122 need_up = 1; 11123 } 11124 11125 err = ip_sioctl_addr_tail(ipif, sin, q, mp, need_up); 11126 return (err); 11127 } 11128 11129 int 11130 ip_sioctl_addr_tail(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11131 boolean_t need_up) 11132 { 11133 in6_addr_t v6addr; 11134 in6_addr_t ov6addr; 11135 ipaddr_t addr; 11136 sin6_t *sin6; 11137 int sinlen; 11138 int err = 0; 11139 ill_t *ill = ipif->ipif_ill; 11140 boolean_t need_dl_down; 11141 boolean_t need_arp_down; 11142 struct iocblk *iocp; 11143 11144 iocp = (mp != NULL) ? (struct iocblk *)mp->b_rptr : NULL; 11145 11146 ip1dbg(("ip_sioctl_addr_tail(%s:%u %p)\n", 11147 ill->ill_name, ipif->ipif_id, (void *)ipif)); 11148 ASSERT(IAM_WRITER_IPIF(ipif)); 11149 11150 /* Must cancel any pending timer before taking the ill_lock */ 11151 if (ipif->ipif_recovery_id != 0) 11152 (void) untimeout(ipif->ipif_recovery_id); 11153 ipif->ipif_recovery_id = 0; 11154 11155 if (ipif->ipif_isv6) { 11156 sin6 = (sin6_t *)sin; 11157 v6addr = sin6->sin6_addr; 11158 sinlen = sizeof (struct sockaddr_in6); 11159 } else { 11160 addr = sin->sin_addr.s_addr; 11161 IN6_IPADDR_TO_V4MAPPED(addr, &v6addr); 11162 sinlen = sizeof (struct sockaddr_in); 11163 } 11164 mutex_enter(&ill->ill_lock); 11165 ov6addr = ipif->ipif_v6lcl_addr; 11166 ipif->ipif_v6lcl_addr = v6addr; 11167 sctp_update_ipif_addr(ipif, ov6addr); 11168 if (ipif->ipif_flags & (IPIF_ANYCAST | IPIF_NOLOCAL)) { 11169 ipif->ipif_v6src_addr = ipv6_all_zeros; 11170 } else { 11171 ipif->ipif_v6src_addr = v6addr; 11172 } 11173 ipif->ipif_addr_ready = 0; 11174 11175 /* 11176 * If the interface was previously marked as a duplicate, then since 11177 * we've now got a "new" address, it should no longer be considered a 11178 * duplicate -- even if the "new" address is the same as the old one. 11179 * Note that if all ipifs are down, we may have a pending ARP down 11180 * event to handle. This is because we want to recover from duplicates 11181 * and thus delay tearing down ARP until the duplicates have been 11182 * removed or disabled. 11183 */ 11184 need_dl_down = need_arp_down = B_FALSE; 11185 if (ipif->ipif_flags & IPIF_DUPLICATE) { 11186 need_arp_down = !need_up; 11187 ipif->ipif_flags &= ~IPIF_DUPLICATE; 11188 if (--ill->ill_ipif_dup_count == 0 && !need_up && 11189 ill->ill_ipif_up_count == 0 && ill->ill_dl_up) { 11190 need_dl_down = B_TRUE; 11191 } 11192 } 11193 11194 if (ipif->ipif_isv6 && IN6_IS_ADDR_6TO4(&v6addr) && 11195 !ill->ill_is_6to4tun) { 11196 queue_t *wqp = ill->ill_wq; 11197 11198 /* 11199 * The local address of this interface is a 6to4 address, 11200 * check if this interface is in fact a 6to4 tunnel or just 11201 * an interface configured with a 6to4 address. We are only 11202 * interested in the former. 11203 */ 11204 if (wqp != NULL) { 11205 while ((wqp->q_next != NULL) && 11206 (wqp->q_next->q_qinfo != NULL) && 11207 (wqp->q_next->q_qinfo->qi_minfo != NULL)) { 11208 11209 if (wqp->q_next->q_qinfo->qi_minfo->mi_idnum 11210 == TUN6TO4_MODID) { 11211 /* set for use in IP */ 11212 ill->ill_is_6to4tun = 1; 11213 break; 11214 } 11215 wqp = wqp->q_next; 11216 } 11217 } 11218 } 11219 11220 ipif_set_default(ipif); 11221 11222 /* 11223 * When publishing an interface address change event, we only notify 11224 * the event listeners of the new address. It is assumed that if they 11225 * actively care about the addresses assigned that they will have 11226 * already discovered the previous address assigned (if there was one.) 11227 * 11228 * Don't attach nic event message for SIOCLIFADDIF ioctl. 11229 */ 11230 if (iocp != NULL && iocp->ioc_cmd != SIOCLIFADDIF) { 11231 (void) ill_hook_event_create(ill, MAP_IPIF_ID(ipif->ipif_id), 11232 NE_ADDRESS_CHANGE, sin, sinlen); 11233 } 11234 11235 mutex_exit(&ill->ill_lock); 11236 11237 if (need_up) { 11238 /* 11239 * Now bring the interface back up. If this 11240 * is the only IPIF for the ILL, ipif_up 11241 * will have to re-bind to the device, so 11242 * we may get back EINPROGRESS, in which 11243 * case, this IOCTL will get completed in 11244 * ip_rput_dlpi when we see the DL_BIND_ACK. 11245 */ 11246 err = ipif_up(ipif, q, mp); 11247 } 11248 11249 if (need_dl_down) 11250 ill_dl_down(ill); 11251 if (need_arp_down) 11252 ipif_arp_down(ipif); 11253 11254 return (err); 11255 } 11256 11257 11258 /* 11259 * Restart entry point to restart the address set operation after the 11260 * refcounts have dropped to zero. 11261 */ 11262 /* ARGSUSED */ 11263 int 11264 ip_sioctl_addr_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11265 ip_ioctl_cmd_t *ipip, void *ifreq) 11266 { 11267 ip1dbg(("ip_sioctl_addr_restart(%s:%u %p)\n", 11268 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11269 ASSERT(IAM_WRITER_IPIF(ipif)); 11270 ipif_down_tail(ipif); 11271 return (ip_sioctl_addr_tail(ipif, sin, q, mp, B_TRUE)); 11272 } 11273 11274 /* ARGSUSED */ 11275 int 11276 ip_sioctl_get_addr(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11277 ip_ioctl_cmd_t *ipip, void *if_req) 11278 { 11279 sin6_t *sin6 = (struct sockaddr_in6 *)sin; 11280 struct lifreq *lifr = (struct lifreq *)if_req; 11281 11282 ip1dbg(("ip_sioctl_get_addr(%s:%u %p)\n", 11283 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11284 /* 11285 * The net mask and address can't change since we have a 11286 * reference to the ipif. So no lock is necessary. 11287 */ 11288 if (ipif->ipif_isv6) { 11289 *sin6 = sin6_null; 11290 sin6->sin6_family = AF_INET6; 11291 sin6->sin6_addr = ipif->ipif_v6lcl_addr; 11292 ASSERT(ipip->ipi_cmd_type == LIF_CMD); 11293 lifr->lifr_addrlen = 11294 ip_mask_to_plen_v6(&ipif->ipif_v6net_mask); 11295 } else { 11296 *sin = sin_null; 11297 sin->sin_family = AF_INET; 11298 sin->sin_addr.s_addr = ipif->ipif_lcl_addr; 11299 if (ipip->ipi_cmd_type == LIF_CMD) { 11300 lifr->lifr_addrlen = 11301 ip_mask_to_plen(ipif->ipif_net_mask); 11302 } 11303 } 11304 return (0); 11305 } 11306 11307 /* 11308 * Set the destination address for a pt-pt interface. 11309 */ 11310 /* ARGSUSED */ 11311 int 11312 ip_sioctl_dstaddr(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11313 ip_ioctl_cmd_t *ipip, void *if_req) 11314 { 11315 int err = 0; 11316 in6_addr_t v6addr; 11317 boolean_t need_up = B_FALSE; 11318 11319 ip1dbg(("ip_sioctl_dstaddr(%s:%u %p)\n", 11320 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11321 ASSERT(IAM_WRITER_IPIF(ipif)); 11322 11323 if (ipif->ipif_isv6) { 11324 sin6_t *sin6; 11325 11326 if (sin->sin_family != AF_INET6) 11327 return (EAFNOSUPPORT); 11328 11329 sin6 = (sin6_t *)sin; 11330 v6addr = sin6->sin6_addr; 11331 11332 if (!ip_remote_addr_ok_v6(&v6addr, &ipif->ipif_v6net_mask)) 11333 return (EADDRNOTAVAIL); 11334 } else { 11335 ipaddr_t addr; 11336 11337 if (sin->sin_family != AF_INET) 11338 return (EAFNOSUPPORT); 11339 11340 addr = sin->sin_addr.s_addr; 11341 if (!ip_addr_ok_v4(addr, ipif->ipif_net_mask)) 11342 return (EADDRNOTAVAIL); 11343 11344 IN6_IPADDR_TO_V4MAPPED(addr, &v6addr); 11345 } 11346 11347 if (IN6_ARE_ADDR_EQUAL(&ipif->ipif_v6pp_dst_addr, &v6addr)) 11348 return (0); /* No change */ 11349 11350 if (ipif->ipif_flags & IPIF_UP) { 11351 /* 11352 * If the interface is already marked up, 11353 * we call ipif_down which will take care 11354 * of ditching any IREs that have been set 11355 * up based on the old pp dst address. 11356 */ 11357 err = ipif_logical_down(ipif, q, mp); 11358 if (err == EINPROGRESS) 11359 return (err); 11360 ipif_down_tail(ipif); 11361 need_up = B_TRUE; 11362 } 11363 /* 11364 * could return EINPROGRESS. If so ioctl will complete in 11365 * ip_rput_dlpi_writer 11366 */ 11367 err = ip_sioctl_dstaddr_tail(ipif, sin, q, mp, need_up); 11368 return (err); 11369 } 11370 11371 static int 11372 ip_sioctl_dstaddr_tail(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11373 boolean_t need_up) 11374 { 11375 in6_addr_t v6addr; 11376 ill_t *ill = ipif->ipif_ill; 11377 int err = 0; 11378 boolean_t need_dl_down; 11379 boolean_t need_arp_down; 11380 11381 ip1dbg(("ip_sioctl_dstaddr_tail(%s:%u %p)\n", ill->ill_name, 11382 ipif->ipif_id, (void *)ipif)); 11383 11384 /* Must cancel any pending timer before taking the ill_lock */ 11385 if (ipif->ipif_recovery_id != 0) 11386 (void) untimeout(ipif->ipif_recovery_id); 11387 ipif->ipif_recovery_id = 0; 11388 11389 if (ipif->ipif_isv6) { 11390 sin6_t *sin6; 11391 11392 sin6 = (sin6_t *)sin; 11393 v6addr = sin6->sin6_addr; 11394 } else { 11395 ipaddr_t addr; 11396 11397 addr = sin->sin_addr.s_addr; 11398 IN6_IPADDR_TO_V4MAPPED(addr, &v6addr); 11399 } 11400 mutex_enter(&ill->ill_lock); 11401 /* Set point to point destination address. */ 11402 if ((ipif->ipif_flags & IPIF_POINTOPOINT) == 0) { 11403 /* 11404 * Allow this as a means of creating logical 11405 * pt-pt interfaces on top of e.g. an Ethernet. 11406 * XXX Undocumented HACK for testing. 11407 * pt-pt interfaces are created with NUD disabled. 11408 */ 11409 ipif->ipif_flags |= IPIF_POINTOPOINT; 11410 ipif->ipif_flags &= ~IPIF_BROADCAST; 11411 if (ipif->ipif_isv6) 11412 ill->ill_flags |= ILLF_NONUD; 11413 } 11414 11415 /* 11416 * If the interface was previously marked as a duplicate, then since 11417 * we've now got a "new" address, it should no longer be considered a 11418 * duplicate -- even if the "new" address is the same as the old one. 11419 * Note that if all ipifs are down, we may have a pending ARP down 11420 * event to handle. 11421 */ 11422 need_dl_down = need_arp_down = B_FALSE; 11423 if (ipif->ipif_flags & IPIF_DUPLICATE) { 11424 need_arp_down = !need_up; 11425 ipif->ipif_flags &= ~IPIF_DUPLICATE; 11426 if (--ill->ill_ipif_dup_count == 0 && !need_up && 11427 ill->ill_ipif_up_count == 0 && ill->ill_dl_up) { 11428 need_dl_down = B_TRUE; 11429 } 11430 } 11431 11432 /* Set the new address. */ 11433 ipif->ipif_v6pp_dst_addr = v6addr; 11434 /* Make sure subnet tracks pp_dst */ 11435 ipif->ipif_v6subnet = ipif->ipif_v6pp_dst_addr; 11436 mutex_exit(&ill->ill_lock); 11437 11438 if (need_up) { 11439 /* 11440 * Now bring the interface back up. If this 11441 * is the only IPIF for the ILL, ipif_up 11442 * will have to re-bind to the device, so 11443 * we may get back EINPROGRESS, in which 11444 * case, this IOCTL will get completed in 11445 * ip_rput_dlpi when we see the DL_BIND_ACK. 11446 */ 11447 err = ipif_up(ipif, q, mp); 11448 } 11449 11450 if (need_dl_down) 11451 ill_dl_down(ill); 11452 11453 if (need_arp_down) 11454 ipif_arp_down(ipif); 11455 return (err); 11456 } 11457 11458 /* 11459 * Restart entry point to restart the dstaddress set operation after the 11460 * refcounts have dropped to zero. 11461 */ 11462 /* ARGSUSED */ 11463 int 11464 ip_sioctl_dstaddr_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11465 ip_ioctl_cmd_t *ipip, void *ifreq) 11466 { 11467 ip1dbg(("ip_sioctl_dstaddr_restart(%s:%u %p)\n", 11468 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11469 ipif_down_tail(ipif); 11470 return (ip_sioctl_dstaddr_tail(ipif, sin, q, mp, B_TRUE)); 11471 } 11472 11473 /* ARGSUSED */ 11474 int 11475 ip_sioctl_get_dstaddr(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11476 ip_ioctl_cmd_t *ipip, void *if_req) 11477 { 11478 sin6_t *sin6 = (struct sockaddr_in6 *)sin; 11479 11480 ip1dbg(("ip_sioctl_get_dstaddr(%s:%u %p)\n", 11481 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11482 /* 11483 * Get point to point destination address. The addresses can't 11484 * change since we hold a reference to the ipif. 11485 */ 11486 if ((ipif->ipif_flags & IPIF_POINTOPOINT) == 0) 11487 return (EADDRNOTAVAIL); 11488 11489 if (ipif->ipif_isv6) { 11490 ASSERT(ipip->ipi_cmd_type == LIF_CMD); 11491 *sin6 = sin6_null; 11492 sin6->sin6_family = AF_INET6; 11493 sin6->sin6_addr = ipif->ipif_v6pp_dst_addr; 11494 } else { 11495 *sin = sin_null; 11496 sin->sin_family = AF_INET; 11497 sin->sin_addr.s_addr = ipif->ipif_pp_dst_addr; 11498 } 11499 return (0); 11500 } 11501 11502 /* 11503 * part of ipmp, make this func return the active/inactive state and 11504 * caller can set once atomically instead of multiple mutex_enter/mutex_exit 11505 */ 11506 /* 11507 * This function either sets or clears the IFF_INACTIVE flag. 11508 * 11509 * As long as there are some addresses or multicast memberships on the 11510 * IPv4 or IPv6 interface of the "phyi" that does not belong in here, we 11511 * will consider it to be ACTIVE (clear IFF_INACTIVE) i.e the interface 11512 * will be used for outbound packets. 11513 * 11514 * Caller needs to verify the validity of setting IFF_INACTIVE. 11515 */ 11516 static void 11517 phyint_inactive(phyint_t *phyi) 11518 { 11519 ill_t *ill_v4; 11520 ill_t *ill_v6; 11521 ipif_t *ipif; 11522 ilm_t *ilm; 11523 11524 ill_v4 = phyi->phyint_illv4; 11525 ill_v6 = phyi->phyint_illv6; 11526 11527 /* 11528 * No need for a lock while traversing the list since iam 11529 * a writer 11530 */ 11531 if (ill_v4 != NULL) { 11532 ASSERT(IAM_WRITER_ILL(ill_v4)); 11533 for (ipif = ill_v4->ill_ipif; ipif != NULL; 11534 ipif = ipif->ipif_next) { 11535 if (ipif->ipif_orig_ifindex != phyi->phyint_ifindex) { 11536 mutex_enter(&phyi->phyint_lock); 11537 phyi->phyint_flags &= ~PHYI_INACTIVE; 11538 mutex_exit(&phyi->phyint_lock); 11539 return; 11540 } 11541 } 11542 for (ilm = ill_v4->ill_ilm; ilm != NULL; 11543 ilm = ilm->ilm_next) { 11544 if (ilm->ilm_orig_ifindex != phyi->phyint_ifindex) { 11545 mutex_enter(&phyi->phyint_lock); 11546 phyi->phyint_flags &= ~PHYI_INACTIVE; 11547 mutex_exit(&phyi->phyint_lock); 11548 return; 11549 } 11550 } 11551 } 11552 if (ill_v6 != NULL) { 11553 ill_v6 = phyi->phyint_illv6; 11554 for (ipif = ill_v6->ill_ipif; ipif != NULL; 11555 ipif = ipif->ipif_next) { 11556 if (ipif->ipif_orig_ifindex != phyi->phyint_ifindex) { 11557 mutex_enter(&phyi->phyint_lock); 11558 phyi->phyint_flags &= ~PHYI_INACTIVE; 11559 mutex_exit(&phyi->phyint_lock); 11560 return; 11561 } 11562 } 11563 for (ilm = ill_v6->ill_ilm; ilm != NULL; 11564 ilm = ilm->ilm_next) { 11565 if (ilm->ilm_orig_ifindex != phyi->phyint_ifindex) { 11566 mutex_enter(&phyi->phyint_lock); 11567 phyi->phyint_flags &= ~PHYI_INACTIVE; 11568 mutex_exit(&phyi->phyint_lock); 11569 return; 11570 } 11571 } 11572 } 11573 mutex_enter(&phyi->phyint_lock); 11574 phyi->phyint_flags |= PHYI_INACTIVE; 11575 mutex_exit(&phyi->phyint_lock); 11576 } 11577 11578 /* 11579 * This function is called only when the phyint flags change. Currently 11580 * called from ip_sioctl_flags. We re-do the broadcast nomination so 11581 * that we can select a good ill. 11582 */ 11583 static void 11584 ip_redo_nomination(phyint_t *phyi) 11585 { 11586 ill_t *ill_v4; 11587 11588 ill_v4 = phyi->phyint_illv4; 11589 11590 if (ill_v4 != NULL && ill_v4->ill_group != NULL) { 11591 ASSERT(IAM_WRITER_ILL(ill_v4)); 11592 if (ill_v4->ill_group->illgrp_ill_count > 1) 11593 ill_nominate_bcast_rcv(ill_v4->ill_group); 11594 } 11595 } 11596 11597 /* 11598 * Heuristic to check if ill is INACTIVE. 11599 * Checks if ill has an ipif with an usable ip address. 11600 * 11601 * Return values: 11602 * B_TRUE - ill is INACTIVE; has no usable ipif 11603 * B_FALSE - ill is not INACTIVE; ill has at least one usable ipif 11604 */ 11605 static boolean_t 11606 ill_is_inactive(ill_t *ill) 11607 { 11608 ipif_t *ipif; 11609 11610 /* Check whether it is in an IPMP group */ 11611 if (ill->ill_phyint->phyint_groupname == NULL) 11612 return (B_FALSE); 11613 11614 if (ill->ill_ipif_up_count == 0) 11615 return (B_TRUE); 11616 11617 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 11618 uint64_t flags = ipif->ipif_flags; 11619 11620 /* 11621 * This ipif is usable if it is IPIF_UP and not a 11622 * dedicated test address. A dedicated test address 11623 * is marked IPIF_NOFAILOVER *and* IPIF_DEPRECATED 11624 * (note in particular that V6 test addresses are 11625 * link-local data addresses and thus are marked 11626 * IPIF_NOFAILOVER but not IPIF_DEPRECATED). 11627 */ 11628 if ((flags & IPIF_UP) && 11629 ((flags & (IPIF_DEPRECATED|IPIF_NOFAILOVER)) != 11630 (IPIF_DEPRECATED|IPIF_NOFAILOVER))) 11631 return (B_FALSE); 11632 } 11633 return (B_TRUE); 11634 } 11635 11636 /* 11637 * Set interface flags. 11638 * Need to do special action for IPIF_UP, IPIF_DEPRECATED, IPIF_NOXMIT, 11639 * IPIF_NOLOCAL, ILLF_NONUD, ILLF_NOARP, IPIF_PRIVATE, IPIF_ANYCAST, 11640 * IPIF_PREFERRED, PHYI_STANDBY, PHYI_FAILED and PHYI_OFFLINE. 11641 * 11642 * NOTE : We really don't enforce that ipif_id zero should be used 11643 * for setting any flags other than IFF_LOGINT_FLAGS. This 11644 * is because applications generally does SICGLIFFLAGS and 11645 * ORs in the new flags (that affects the logical) and does a 11646 * SIOCSLIFFLAGS. Thus, "flags" below could contain bits other 11647 * than IFF_LOGINT_FLAGS. One could check whether "turn_on" - the 11648 * flags that will be turned on is correct with respect to 11649 * ipif_id 0. For backward compatibility reasons, it is not done. 11650 */ 11651 /* ARGSUSED */ 11652 int 11653 ip_sioctl_flags(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11654 ip_ioctl_cmd_t *ipip, void *if_req) 11655 { 11656 uint64_t turn_on; 11657 uint64_t turn_off; 11658 int err; 11659 phyint_t *phyi; 11660 ill_t *ill; 11661 uint64_t intf_flags; 11662 boolean_t phyint_flags_modified = B_FALSE; 11663 uint64_t flags; 11664 struct ifreq *ifr; 11665 struct lifreq *lifr; 11666 boolean_t set_linklocal = B_FALSE; 11667 boolean_t zero_source = B_FALSE; 11668 ip_stack_t *ipst; 11669 11670 ip1dbg(("ip_sioctl_flags(%s:%u %p)\n", 11671 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11672 11673 ASSERT(IAM_WRITER_IPIF(ipif)); 11674 11675 ill = ipif->ipif_ill; 11676 phyi = ill->ill_phyint; 11677 ipst = ill->ill_ipst; 11678 11679 if (ipip->ipi_cmd_type == IF_CMD) { 11680 ifr = (struct ifreq *)if_req; 11681 flags = (uint64_t)(ifr->ifr_flags & 0x0000ffff); 11682 } else { 11683 lifr = (struct lifreq *)if_req; 11684 flags = lifr->lifr_flags; 11685 } 11686 11687 intf_flags = ipif->ipif_flags | ill->ill_flags | phyi->phyint_flags; 11688 11689 /* 11690 * Have the flags been set correctly until now? 11691 */ 11692 ASSERT((phyi->phyint_flags & ~(IFF_PHYINT_FLAGS)) == 0); 11693 ASSERT((ill->ill_flags & ~(IFF_PHYINTINST_FLAGS)) == 0); 11694 ASSERT((ipif->ipif_flags & ~(IFF_LOGINT_FLAGS)) == 0); 11695 /* 11696 * Compare the new flags to the old, and partition 11697 * into those coming on and those going off. 11698 * For the 16 bit command keep the bits above bit 16 unchanged. 11699 */ 11700 if (ipip->ipi_cmd == SIOCSIFFLAGS) 11701 flags |= intf_flags & ~0xFFFF; 11702 11703 /* 11704 * First check which bits will change and then which will 11705 * go on and off 11706 */ 11707 turn_on = (flags ^ intf_flags) & ~IFF_CANTCHANGE; 11708 if (!turn_on) 11709 return (0); /* No change */ 11710 11711 turn_off = intf_flags & turn_on; 11712 turn_on ^= turn_off; 11713 err = 0; 11714 11715 /* 11716 * Don't allow any bits belonging to the logical interface 11717 * to be set or cleared on the replacement ipif that was 11718 * created temporarily during a MOVE. 11719 */ 11720 if (ipif->ipif_replace_zero && 11721 ((turn_on|turn_off) & IFF_LOGINT_FLAGS) != 0) { 11722 return (EINVAL); 11723 } 11724 11725 /* 11726 * Only allow the IFF_XRESOLV and IFF_TEMPORARY flags to be set on 11727 * IPv6 interfaces. 11728 */ 11729 if ((turn_on & (IFF_XRESOLV|IFF_TEMPORARY)) && !(ipif->ipif_isv6)) 11730 return (EINVAL); 11731 11732 /* 11733 * cannot turn off IFF_NOXMIT on VNI interfaces. 11734 */ 11735 if ((turn_off & IFF_NOXMIT) && IS_VNI(ipif->ipif_ill)) 11736 return (EINVAL); 11737 11738 /* 11739 * Don't allow the IFF_ROUTER flag to be turned on on loopback 11740 * interfaces. It makes no sense in that context. 11741 */ 11742 if ((turn_on & IFF_ROUTER) && (phyi->phyint_flags & PHYI_LOOPBACK)) 11743 return (EINVAL); 11744 11745 if (flags & (IFF_NOLOCAL|IFF_ANYCAST)) 11746 zero_source = B_TRUE; 11747 11748 /* 11749 * For IPv6 ipif_id 0, don't allow the interface to be up without 11750 * a link local address if IFF_NOLOCAL or IFF_ANYCAST are not set. 11751 * If the link local address isn't set, and can be set, it will get 11752 * set later on in this function. 11753 */ 11754 if (ipif->ipif_id == 0 && ipif->ipif_isv6 && 11755 (flags & IFF_UP) && !zero_source && 11756 IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6lcl_addr)) { 11757 if (ipif_cant_setlinklocal(ipif)) 11758 return (EINVAL); 11759 set_linklocal = B_TRUE; 11760 } 11761 11762 /* 11763 * ILL cannot be part of a usesrc group and and IPMP group at the 11764 * same time. No need to grab ill_g_usesrc_lock here, see 11765 * synchronization notes in ip.c 11766 */ 11767 if (turn_on & PHYI_STANDBY && 11768 ipif->ipif_ill->ill_usesrc_grp_next != NULL) { 11769 return (EINVAL); 11770 } 11771 11772 /* 11773 * If we modify physical interface flags, we'll potentially need to 11774 * send up two routing socket messages for the changes (one for the 11775 * IPv4 ill, and another for the IPv6 ill). Note that here. 11776 */ 11777 if ((turn_on|turn_off) & IFF_PHYINT_FLAGS) 11778 phyint_flags_modified = B_TRUE; 11779 11780 /* 11781 * If we are setting or clearing FAILED or STANDBY or OFFLINE, 11782 * we need to flush the IRE_CACHES belonging to this ill. 11783 * We handle this case here without doing the DOWN/UP dance 11784 * like it is done for other flags. If some other flags are 11785 * being turned on/off with FAILED/STANDBY/OFFLINE, the code 11786 * below will handle it by bringing it down and then 11787 * bringing it UP. 11788 */ 11789 if ((turn_on|turn_off) & (PHYI_FAILED|PHYI_STANDBY|PHYI_OFFLINE)) { 11790 ill_t *ill_v4, *ill_v6; 11791 11792 ill_v4 = phyi->phyint_illv4; 11793 ill_v6 = phyi->phyint_illv6; 11794 11795 /* 11796 * First set the INACTIVE flag if needed. Then delete the ires. 11797 * ire_add will atomically prevent creating new IRE_CACHEs 11798 * unless hidden flag is set. 11799 * PHYI_FAILED and PHYI_INACTIVE are exclusive 11800 */ 11801 if ((turn_on & PHYI_FAILED) && 11802 ((intf_flags & PHYI_STANDBY) || 11803 !ipst->ips_ipmp_enable_failback)) { 11804 /* Reset PHYI_INACTIVE when PHYI_FAILED is being set */ 11805 phyi->phyint_flags &= ~PHYI_INACTIVE; 11806 } 11807 if ((turn_off & PHYI_FAILED) && 11808 ((intf_flags & PHYI_STANDBY) || 11809 (!ipst->ips_ipmp_enable_failback && 11810 ill_is_inactive(ill)))) { 11811 phyint_inactive(phyi); 11812 } 11813 11814 if (turn_on & PHYI_STANDBY) { 11815 /* 11816 * We implicitly set INACTIVE only when STANDBY is set. 11817 * INACTIVE is also set on non-STANDBY phyint when user 11818 * disables FAILBACK using configuration file. 11819 * Do not allow STANDBY to be set on such INACTIVE 11820 * phyint 11821 */ 11822 if (phyi->phyint_flags & PHYI_INACTIVE) 11823 return (EINVAL); 11824 if (!(phyi->phyint_flags & PHYI_FAILED)) 11825 phyint_inactive(phyi); 11826 } 11827 if (turn_off & PHYI_STANDBY) { 11828 if (ipst->ips_ipmp_enable_failback) { 11829 /* 11830 * Reset PHYI_INACTIVE. 11831 */ 11832 phyi->phyint_flags &= ~PHYI_INACTIVE; 11833 } else if (ill_is_inactive(ill) && 11834 !(phyi->phyint_flags & PHYI_FAILED)) { 11835 /* 11836 * Need to set INACTIVE, when user sets 11837 * STANDBY on a non-STANDBY phyint and 11838 * later resets STANDBY 11839 */ 11840 phyint_inactive(phyi); 11841 } 11842 } 11843 /* 11844 * We should always send up a message so that the 11845 * daemons come to know of it. Note that the zeroth 11846 * interface can be down and the check below for IPIF_UP 11847 * will not make sense as we are actually setting 11848 * a phyint flag here. We assume that the ipif used 11849 * is always the zeroth ipif. (ip_rts_ifmsg does not 11850 * send up any message for non-zero ipifs). 11851 */ 11852 phyint_flags_modified = B_TRUE; 11853 11854 if (ill_v4 != NULL) { 11855 ire_walk_ill_v4(MATCH_IRE_ILL | MATCH_IRE_TYPE, 11856 IRE_CACHE, ill_stq_cache_delete, 11857 (char *)ill_v4, ill_v4); 11858 illgrp_reset_schednext(ill_v4); 11859 } 11860 if (ill_v6 != NULL) { 11861 ire_walk_ill_v6(MATCH_IRE_ILL | MATCH_IRE_TYPE, 11862 IRE_CACHE, ill_stq_cache_delete, 11863 (char *)ill_v6, ill_v6); 11864 illgrp_reset_schednext(ill_v6); 11865 } 11866 } 11867 11868 /* 11869 * If ILLF_ROUTER changes, we need to change the ip forwarding 11870 * status of the interface and, if the interface is part of an IPMP 11871 * group, all other interfaces that are part of the same IPMP 11872 * group. 11873 */ 11874 if ((turn_on | turn_off) & ILLF_ROUTER) 11875 (void) ill_forward_set(ill, ((turn_on & ILLF_ROUTER) != 0)); 11876 11877 /* 11878 * If the interface is not UP and we are not going to 11879 * bring it UP, record the flags and return. When the 11880 * interface comes UP later, the right actions will be 11881 * taken. 11882 */ 11883 if (!(ipif->ipif_flags & IPIF_UP) && 11884 !(turn_on & IPIF_UP)) { 11885 /* Record new flags in their respective places. */ 11886 mutex_enter(&ill->ill_lock); 11887 mutex_enter(&ill->ill_phyint->phyint_lock); 11888 ipif->ipif_flags |= (turn_on & IFF_LOGINT_FLAGS); 11889 ipif->ipif_flags &= (~turn_off & IFF_LOGINT_FLAGS); 11890 ill->ill_flags |= (turn_on & IFF_PHYINTINST_FLAGS); 11891 ill->ill_flags &= (~turn_off & IFF_PHYINTINST_FLAGS); 11892 phyi->phyint_flags |= (turn_on & IFF_PHYINT_FLAGS); 11893 phyi->phyint_flags &= (~turn_off & IFF_PHYINT_FLAGS); 11894 mutex_exit(&ill->ill_lock); 11895 mutex_exit(&ill->ill_phyint->phyint_lock); 11896 11897 /* 11898 * We do the broadcast and nomination here rather 11899 * than waiting for a FAILOVER/FAILBACK to happen. In 11900 * the case of FAILBACK from INACTIVE standby to the 11901 * interface that has been repaired, PHYI_FAILED has not 11902 * been cleared yet. If there are only two interfaces in 11903 * that group, all we have is a FAILED and INACTIVE 11904 * interface. If we do the nomination soon after a failback, 11905 * the broadcast nomination code would select the 11906 * INACTIVE interface for receiving broadcasts as FAILED is 11907 * not yet cleared. As we don't want STANDBY/INACTIVE to 11908 * receive broadcast packets, we need to redo nomination 11909 * when the FAILED is cleared here. Thus, in general we 11910 * always do the nomination here for FAILED, STANDBY 11911 * and OFFLINE. 11912 */ 11913 if (((turn_on | turn_off) & 11914 (PHYI_FAILED|PHYI_STANDBY|PHYI_OFFLINE))) { 11915 ip_redo_nomination(phyi); 11916 } 11917 if (phyint_flags_modified) { 11918 if (phyi->phyint_illv4 != NULL) { 11919 ip_rts_ifmsg(phyi->phyint_illv4-> 11920 ill_ipif); 11921 } 11922 if (phyi->phyint_illv6 != NULL) { 11923 ip_rts_ifmsg(phyi->phyint_illv6-> 11924 ill_ipif); 11925 } 11926 } 11927 return (0); 11928 } else if (set_linklocal || zero_source) { 11929 mutex_enter(&ill->ill_lock); 11930 if (set_linklocal) 11931 ipif->ipif_state_flags |= IPIF_SET_LINKLOCAL; 11932 if (zero_source) 11933 ipif->ipif_state_flags |= IPIF_ZERO_SOURCE; 11934 mutex_exit(&ill->ill_lock); 11935 } 11936 11937 /* 11938 * Disallow IPv6 interfaces coming up that have the unspecified address, 11939 * or point-to-point interfaces with an unspecified destination. We do 11940 * allow the address to be unspecified for IPIF_NOLOCAL interfaces that 11941 * have a subnet assigned, which is how in.ndpd currently manages its 11942 * onlink prefix list when no addresses are configured with those 11943 * prefixes. 11944 */ 11945 if (ipif->ipif_isv6 && 11946 ((IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6lcl_addr) && 11947 (!(ipif->ipif_flags & IPIF_NOLOCAL) && !(turn_on & IPIF_NOLOCAL) || 11948 IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6subnet))) || 11949 ((ipif->ipif_flags & IPIF_POINTOPOINT) && 11950 IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6pp_dst_addr)))) { 11951 return (EINVAL); 11952 } 11953 11954 /* 11955 * Prevent IPv4 point-to-point interfaces with a 0.0.0.0 destination 11956 * from being brought up. 11957 */ 11958 if (!ipif->ipif_isv6 && 11959 ((ipif->ipif_flags & IPIF_POINTOPOINT) && 11960 ipif->ipif_pp_dst_addr == INADDR_ANY)) { 11961 return (EINVAL); 11962 } 11963 11964 /* 11965 * The only flag changes that we currently take specific action on 11966 * is IPIF_UP, IPIF_DEPRECATED, IPIF_NOXMIT, IPIF_NOLOCAL, 11967 * ILLF_NOARP, ILLF_NONUD, IPIF_PRIVATE, IPIF_ANYCAST, and 11968 * IPIF_PREFERRED. This is done by bring the ipif down, changing 11969 * the flags and bringing it back up again. 11970 */ 11971 if ((turn_on|turn_off) & 11972 (IPIF_UP|IPIF_DEPRECATED|IPIF_NOXMIT|IPIF_NOLOCAL|ILLF_NOARP| 11973 ILLF_NONUD|IPIF_PRIVATE|IPIF_ANYCAST|IPIF_PREFERRED)) { 11974 /* 11975 * Taking this ipif down, make sure we have 11976 * valid net and subnet bcast ire's for other 11977 * logical interfaces, if we need them. 11978 */ 11979 if (!ipif->ipif_isv6) 11980 ipif_check_bcast_ires(ipif); 11981 11982 if (((ipif->ipif_flags | turn_on) & IPIF_UP) && 11983 !(turn_off & IPIF_UP)) { 11984 if (ipif->ipif_flags & IPIF_UP) 11985 ill->ill_logical_down = 1; 11986 turn_on &= ~IPIF_UP; 11987 } 11988 err = ipif_down(ipif, q, mp); 11989 ip1dbg(("ipif_down returns %d err ", err)); 11990 if (err == EINPROGRESS) 11991 return (err); 11992 ipif_down_tail(ipif); 11993 } 11994 return (ip_sioctl_flags_tail(ipif, flags, q, mp)); 11995 } 11996 11997 static int 11998 ip_sioctl_flags_tail(ipif_t *ipif, uint64_t flags, queue_t *q, mblk_t *mp) 11999 { 12000 ill_t *ill; 12001 phyint_t *phyi; 12002 uint64_t turn_on; 12003 uint64_t turn_off; 12004 uint64_t intf_flags; 12005 boolean_t phyint_flags_modified = B_FALSE; 12006 int err = 0; 12007 boolean_t set_linklocal = B_FALSE; 12008 boolean_t zero_source = B_FALSE; 12009 12010 ip1dbg(("ip_sioctl_flags_tail(%s:%u)\n", 12011 ipif->ipif_ill->ill_name, ipif->ipif_id)); 12012 12013 ASSERT(IAM_WRITER_IPIF(ipif)); 12014 12015 ill = ipif->ipif_ill; 12016 phyi = ill->ill_phyint; 12017 12018 intf_flags = ipif->ipif_flags | ill->ill_flags | phyi->phyint_flags; 12019 turn_on = (flags ^ intf_flags) & ~(IFF_CANTCHANGE | IFF_UP); 12020 12021 turn_off = intf_flags & turn_on; 12022 turn_on ^= turn_off; 12023 12024 if ((turn_on|turn_off) & (PHYI_FAILED|PHYI_STANDBY|PHYI_OFFLINE)) 12025 phyint_flags_modified = B_TRUE; 12026 12027 /* 12028 * Now we change the flags. Track current value of 12029 * other flags in their respective places. 12030 */ 12031 mutex_enter(&ill->ill_lock); 12032 mutex_enter(&phyi->phyint_lock); 12033 ipif->ipif_flags |= (turn_on & IFF_LOGINT_FLAGS); 12034 ipif->ipif_flags &= (~turn_off & IFF_LOGINT_FLAGS); 12035 ill->ill_flags |= (turn_on & IFF_PHYINTINST_FLAGS); 12036 ill->ill_flags &= (~turn_off & IFF_PHYINTINST_FLAGS); 12037 phyi->phyint_flags |= (turn_on & IFF_PHYINT_FLAGS); 12038 phyi->phyint_flags &= (~turn_off & IFF_PHYINT_FLAGS); 12039 if (ipif->ipif_state_flags & IPIF_SET_LINKLOCAL) { 12040 set_linklocal = B_TRUE; 12041 ipif->ipif_state_flags &= ~IPIF_SET_LINKLOCAL; 12042 } 12043 if (ipif->ipif_state_flags & IPIF_ZERO_SOURCE) { 12044 zero_source = B_TRUE; 12045 ipif->ipif_state_flags &= ~IPIF_ZERO_SOURCE; 12046 } 12047 mutex_exit(&ill->ill_lock); 12048 mutex_exit(&phyi->phyint_lock); 12049 12050 if (((turn_on | turn_off) & (PHYI_FAILED|PHYI_STANDBY|PHYI_OFFLINE))) 12051 ip_redo_nomination(phyi); 12052 12053 if (set_linklocal) 12054 (void) ipif_setlinklocal(ipif); 12055 12056 if (zero_source) 12057 ipif->ipif_v6src_addr = ipv6_all_zeros; 12058 else 12059 ipif->ipif_v6src_addr = ipif->ipif_v6lcl_addr; 12060 12061 if ((flags & IFF_UP) && !(ipif->ipif_flags & IPIF_UP)) { 12062 /* 12063 * XXX ipif_up really does not know whether a phyint flags 12064 * was modified or not. So, it sends up information on 12065 * only one routing sockets message. As we don't bring up 12066 * the interface and also set STANDBY/FAILED simultaneously 12067 * it should be okay. 12068 */ 12069 err = ipif_up(ipif, q, mp); 12070 } else { 12071 /* 12072 * Make sure routing socket sees all changes to the flags. 12073 * ipif_up_done* handles this when we use ipif_up. 12074 */ 12075 if (phyint_flags_modified) { 12076 if (phyi->phyint_illv4 != NULL) { 12077 ip_rts_ifmsg(phyi->phyint_illv4-> 12078 ill_ipif); 12079 } 12080 if (phyi->phyint_illv6 != NULL) { 12081 ip_rts_ifmsg(phyi->phyint_illv6-> 12082 ill_ipif); 12083 } 12084 } else { 12085 ip_rts_ifmsg(ipif); 12086 } 12087 /* 12088 * Update the flags in SCTP's IPIF list, ipif_up() will do 12089 * this in need_up case. 12090 */ 12091 sctp_update_ipif(ipif, SCTP_IPIF_UPDATE); 12092 } 12093 return (err); 12094 } 12095 12096 /* 12097 * Restart the flags operation now that the refcounts have dropped to zero. 12098 */ 12099 /* ARGSUSED */ 12100 int 12101 ip_sioctl_flags_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12102 ip_ioctl_cmd_t *ipip, void *if_req) 12103 { 12104 uint64_t flags; 12105 struct ifreq *ifr = if_req; 12106 struct lifreq *lifr = if_req; 12107 12108 ip1dbg(("ip_sioctl_flags_restart(%s:%u %p)\n", 12109 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12110 12111 ipif_down_tail(ipif); 12112 if (ipip->ipi_cmd_type == IF_CMD) { 12113 /* cast to uint16_t prevents unwanted sign extension */ 12114 flags = (uint16_t)ifr->ifr_flags; 12115 } else { 12116 flags = lifr->lifr_flags; 12117 } 12118 return (ip_sioctl_flags_tail(ipif, flags, q, mp)); 12119 } 12120 12121 /* 12122 * Can operate on either a module or a driver queue. 12123 */ 12124 /* ARGSUSED */ 12125 int 12126 ip_sioctl_get_flags(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12127 ip_ioctl_cmd_t *ipip, void *if_req) 12128 { 12129 /* 12130 * Has the flags been set correctly till now ? 12131 */ 12132 ill_t *ill = ipif->ipif_ill; 12133 phyint_t *phyi = ill->ill_phyint; 12134 12135 ip1dbg(("ip_sioctl_get_flags(%s:%u %p)\n", 12136 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12137 ASSERT((phyi->phyint_flags & ~(IFF_PHYINT_FLAGS)) == 0); 12138 ASSERT((ill->ill_flags & ~(IFF_PHYINTINST_FLAGS)) == 0); 12139 ASSERT((ipif->ipif_flags & ~(IFF_LOGINT_FLAGS)) == 0); 12140 12141 /* 12142 * Need a lock since some flags can be set even when there are 12143 * references to the ipif. 12144 */ 12145 mutex_enter(&ill->ill_lock); 12146 if (ipip->ipi_cmd_type == IF_CMD) { 12147 struct ifreq *ifr = (struct ifreq *)if_req; 12148 12149 /* Get interface flags (low 16 only). */ 12150 ifr->ifr_flags = ((ipif->ipif_flags | 12151 ill->ill_flags | phyi->phyint_flags) & 0xffff); 12152 } else { 12153 struct lifreq *lifr = (struct lifreq *)if_req; 12154 12155 /* Get interface flags. */ 12156 lifr->lifr_flags = ipif->ipif_flags | 12157 ill->ill_flags | phyi->phyint_flags; 12158 } 12159 mutex_exit(&ill->ill_lock); 12160 return (0); 12161 } 12162 12163 /* ARGSUSED */ 12164 int 12165 ip_sioctl_mtu(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12166 ip_ioctl_cmd_t *ipip, void *if_req) 12167 { 12168 int mtu; 12169 int ip_min_mtu; 12170 struct ifreq *ifr; 12171 struct lifreq *lifr; 12172 ire_t *ire; 12173 ip_stack_t *ipst; 12174 12175 ip1dbg(("ip_sioctl_mtu(%s:%u %p)\n", ipif->ipif_ill->ill_name, 12176 ipif->ipif_id, (void *)ipif)); 12177 if (ipip->ipi_cmd_type == IF_CMD) { 12178 ifr = (struct ifreq *)if_req; 12179 mtu = ifr->ifr_metric; 12180 } else { 12181 lifr = (struct lifreq *)if_req; 12182 mtu = lifr->lifr_mtu; 12183 } 12184 12185 if (ipif->ipif_isv6) 12186 ip_min_mtu = IPV6_MIN_MTU; 12187 else 12188 ip_min_mtu = IP_MIN_MTU; 12189 12190 if (mtu > ipif->ipif_ill->ill_max_frag || mtu < ip_min_mtu) 12191 return (EINVAL); 12192 12193 /* 12194 * Change the MTU size in all relevant ire's. 12195 * Mtu change Vs. new ire creation - protocol below. 12196 * First change ipif_mtu and the ire_max_frag of the 12197 * interface ire. Then do an ire walk and change the 12198 * ire_max_frag of all affected ires. During ire_add 12199 * under the bucket lock, set the ire_max_frag of the 12200 * new ire being created from the ipif/ire from which 12201 * it is being derived. If an mtu change happens after 12202 * the ire is added, the new ire will be cleaned up. 12203 * Conversely if the mtu change happens before the ire 12204 * is added, ire_add will see the new value of the mtu. 12205 */ 12206 ipif->ipif_mtu = mtu; 12207 ipif->ipif_flags |= IPIF_FIXEDMTU; 12208 12209 if (ipif->ipif_isv6) 12210 ire = ipif_to_ire_v6(ipif); 12211 else 12212 ire = ipif_to_ire(ipif); 12213 if (ire != NULL) { 12214 ire->ire_max_frag = ipif->ipif_mtu; 12215 ire_refrele(ire); 12216 } 12217 ipst = ipif->ipif_ill->ill_ipst; 12218 if (ipif->ipif_flags & IPIF_UP) { 12219 if (ipif->ipif_isv6) 12220 ire_walk_v6(ipif_mtu_change, (char *)ipif, ALL_ZONES, 12221 ipst); 12222 else 12223 ire_walk_v4(ipif_mtu_change, (char *)ipif, ALL_ZONES, 12224 ipst); 12225 } 12226 /* Update the MTU in SCTP's list */ 12227 sctp_update_ipif(ipif, SCTP_IPIF_UPDATE); 12228 return (0); 12229 } 12230 12231 /* Get interface MTU. */ 12232 /* ARGSUSED */ 12233 int 12234 ip_sioctl_get_mtu(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12235 ip_ioctl_cmd_t *ipip, void *if_req) 12236 { 12237 struct ifreq *ifr; 12238 struct lifreq *lifr; 12239 12240 ip1dbg(("ip_sioctl_get_mtu(%s:%u %p)\n", 12241 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12242 if (ipip->ipi_cmd_type == IF_CMD) { 12243 ifr = (struct ifreq *)if_req; 12244 ifr->ifr_metric = ipif->ipif_mtu; 12245 } else { 12246 lifr = (struct lifreq *)if_req; 12247 lifr->lifr_mtu = ipif->ipif_mtu; 12248 } 12249 return (0); 12250 } 12251 12252 /* Set interface broadcast address. */ 12253 /* ARGSUSED2 */ 12254 int 12255 ip_sioctl_brdaddr(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12256 ip_ioctl_cmd_t *ipip, void *if_req) 12257 { 12258 ipaddr_t addr; 12259 ire_t *ire; 12260 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; 12261 12262 ip1dbg(("ip_sioctl_brdaddr(%s:%u)\n", ipif->ipif_ill->ill_name, 12263 ipif->ipif_id)); 12264 12265 ASSERT(IAM_WRITER_IPIF(ipif)); 12266 if (!(ipif->ipif_flags & IPIF_BROADCAST)) 12267 return (EADDRNOTAVAIL); 12268 12269 ASSERT(!(ipif->ipif_isv6)); /* No IPv6 broadcast */ 12270 12271 if (sin->sin_family != AF_INET) 12272 return (EAFNOSUPPORT); 12273 12274 addr = sin->sin_addr.s_addr; 12275 if (ipif->ipif_flags & IPIF_UP) { 12276 /* 12277 * If we are already up, make sure the new 12278 * broadcast address makes sense. If it does, 12279 * there should be an IRE for it already. 12280 * Don't match on ipif, only on the ill 12281 * since we are sharing these now. Don't use 12282 * MATCH_IRE_ILL_GROUP as we are looking for 12283 * the broadcast ire on this ill and each ill 12284 * in the group has its own broadcast ire. 12285 */ 12286 ire = ire_ctable_lookup(addr, 0, IRE_BROADCAST, 12287 ipif, ALL_ZONES, NULL, 12288 (MATCH_IRE_ILL | MATCH_IRE_TYPE), ipst); 12289 if (ire == NULL) { 12290 return (EINVAL); 12291 } else { 12292 ire_refrele(ire); 12293 } 12294 } 12295 /* 12296 * Changing the broadcast addr for this ipif. 12297 * Make sure we have valid net and subnet bcast 12298 * ire's for other logical interfaces, if needed. 12299 */ 12300 if (addr != ipif->ipif_brd_addr) 12301 ipif_check_bcast_ires(ipif); 12302 IN6_IPADDR_TO_V4MAPPED(addr, &ipif->ipif_v6brd_addr); 12303 return (0); 12304 } 12305 12306 /* Get interface broadcast address. */ 12307 /* ARGSUSED */ 12308 int 12309 ip_sioctl_get_brdaddr(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12310 ip_ioctl_cmd_t *ipip, void *if_req) 12311 { 12312 ip1dbg(("ip_sioctl_get_brdaddr(%s:%u %p)\n", 12313 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12314 if (!(ipif->ipif_flags & IPIF_BROADCAST)) 12315 return (EADDRNOTAVAIL); 12316 12317 /* IPIF_BROADCAST not possible with IPv6 */ 12318 ASSERT(!ipif->ipif_isv6); 12319 *sin = sin_null; 12320 sin->sin_family = AF_INET; 12321 sin->sin_addr.s_addr = ipif->ipif_brd_addr; 12322 return (0); 12323 } 12324 12325 /* 12326 * This routine is called to handle the SIOCS*IFNETMASK IOCTL. 12327 */ 12328 /* ARGSUSED */ 12329 int 12330 ip_sioctl_netmask(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12331 ip_ioctl_cmd_t *ipip, void *if_req) 12332 { 12333 int err = 0; 12334 in6_addr_t v6mask; 12335 12336 ip1dbg(("ip_sioctl_netmask(%s:%u %p)\n", 12337 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12338 12339 ASSERT(IAM_WRITER_IPIF(ipif)); 12340 12341 if (ipif->ipif_isv6) { 12342 sin6_t *sin6; 12343 12344 if (sin->sin_family != AF_INET6) 12345 return (EAFNOSUPPORT); 12346 12347 sin6 = (sin6_t *)sin; 12348 v6mask = sin6->sin6_addr; 12349 } else { 12350 ipaddr_t mask; 12351 12352 if (sin->sin_family != AF_INET) 12353 return (EAFNOSUPPORT); 12354 12355 mask = sin->sin_addr.s_addr; 12356 V4MASK_TO_V6(mask, v6mask); 12357 } 12358 12359 /* 12360 * No big deal if the interface isn't already up, or the mask 12361 * isn't really changing, or this is pt-pt. 12362 */ 12363 if (!(ipif->ipif_flags & IPIF_UP) || 12364 IN6_ARE_ADDR_EQUAL(&v6mask, &ipif->ipif_v6net_mask) || 12365 (ipif->ipif_flags & IPIF_POINTOPOINT)) { 12366 ipif->ipif_v6net_mask = v6mask; 12367 if ((ipif->ipif_flags & IPIF_POINTOPOINT) == 0) { 12368 V6_MASK_COPY(ipif->ipif_v6lcl_addr, 12369 ipif->ipif_v6net_mask, 12370 ipif->ipif_v6subnet); 12371 } 12372 return (0); 12373 } 12374 /* 12375 * Make sure we have valid net and subnet broadcast ire's 12376 * for the old netmask, if needed by other logical interfaces. 12377 */ 12378 if (!ipif->ipif_isv6) 12379 ipif_check_bcast_ires(ipif); 12380 12381 err = ipif_logical_down(ipif, q, mp); 12382 if (err == EINPROGRESS) 12383 return (err); 12384 ipif_down_tail(ipif); 12385 err = ip_sioctl_netmask_tail(ipif, sin, q, mp); 12386 return (err); 12387 } 12388 12389 static int 12390 ip_sioctl_netmask_tail(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp) 12391 { 12392 in6_addr_t v6mask; 12393 int err = 0; 12394 12395 ip1dbg(("ip_sioctl_netmask_tail(%s:%u %p)\n", 12396 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12397 12398 if (ipif->ipif_isv6) { 12399 sin6_t *sin6; 12400 12401 sin6 = (sin6_t *)sin; 12402 v6mask = sin6->sin6_addr; 12403 } else { 12404 ipaddr_t mask; 12405 12406 mask = sin->sin_addr.s_addr; 12407 V4MASK_TO_V6(mask, v6mask); 12408 } 12409 12410 ipif->ipif_v6net_mask = v6mask; 12411 if ((ipif->ipif_flags & IPIF_POINTOPOINT) == 0) { 12412 V6_MASK_COPY(ipif->ipif_v6lcl_addr, ipif->ipif_v6net_mask, 12413 ipif->ipif_v6subnet); 12414 } 12415 err = ipif_up(ipif, q, mp); 12416 12417 if (err == 0 || err == EINPROGRESS) { 12418 /* 12419 * The interface must be DL_BOUND if this packet has to 12420 * go out on the wire. Since we only go through a logical 12421 * down and are bound with the driver during an internal 12422 * down/up that is satisfied. 12423 */ 12424 if (!ipif->ipif_isv6 && ipif->ipif_ill->ill_wq != NULL) { 12425 /* Potentially broadcast an address mask reply. */ 12426 ipif_mask_reply(ipif); 12427 } 12428 } 12429 return (err); 12430 } 12431 12432 /* ARGSUSED */ 12433 int 12434 ip_sioctl_netmask_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12435 ip_ioctl_cmd_t *ipip, void *if_req) 12436 { 12437 ip1dbg(("ip_sioctl_netmask_restart(%s:%u %p)\n", 12438 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12439 ipif_down_tail(ipif); 12440 return (ip_sioctl_netmask_tail(ipif, sin, q, mp)); 12441 } 12442 12443 /* Get interface net mask. */ 12444 /* ARGSUSED */ 12445 int 12446 ip_sioctl_get_netmask(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12447 ip_ioctl_cmd_t *ipip, void *if_req) 12448 { 12449 struct lifreq *lifr = (struct lifreq *)if_req; 12450 struct sockaddr_in6 *sin6 = (sin6_t *)sin; 12451 12452 ip1dbg(("ip_sioctl_get_netmask(%s:%u %p)\n", 12453 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12454 12455 /* 12456 * net mask can't change since we have a reference to the ipif. 12457 */ 12458 if (ipif->ipif_isv6) { 12459 ASSERT(ipip->ipi_cmd_type == LIF_CMD); 12460 *sin6 = sin6_null; 12461 sin6->sin6_family = AF_INET6; 12462 sin6->sin6_addr = ipif->ipif_v6net_mask; 12463 lifr->lifr_addrlen = 12464 ip_mask_to_plen_v6(&ipif->ipif_v6net_mask); 12465 } else { 12466 *sin = sin_null; 12467 sin->sin_family = AF_INET; 12468 sin->sin_addr.s_addr = ipif->ipif_net_mask; 12469 if (ipip->ipi_cmd_type == LIF_CMD) { 12470 lifr->lifr_addrlen = 12471 ip_mask_to_plen(ipif->ipif_net_mask); 12472 } 12473 } 12474 return (0); 12475 } 12476 12477 /* ARGSUSED */ 12478 int 12479 ip_sioctl_metric(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12480 ip_ioctl_cmd_t *ipip, void *if_req) 12481 { 12482 12483 ip1dbg(("ip_sioctl_metric(%s:%u %p)\n", 12484 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12485 /* 12486 * Set interface metric. We don't use this for 12487 * anything but we keep track of it in case it is 12488 * important to routing applications or such. 12489 */ 12490 if (ipip->ipi_cmd_type == IF_CMD) { 12491 struct ifreq *ifr; 12492 12493 ifr = (struct ifreq *)if_req; 12494 ipif->ipif_metric = ifr->ifr_metric; 12495 } else { 12496 struct lifreq *lifr; 12497 12498 lifr = (struct lifreq *)if_req; 12499 ipif->ipif_metric = lifr->lifr_metric; 12500 } 12501 return (0); 12502 } 12503 12504 /* ARGSUSED */ 12505 int 12506 ip_sioctl_get_metric(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12507 ip_ioctl_cmd_t *ipip, void *if_req) 12508 { 12509 /* Get interface metric. */ 12510 ip1dbg(("ip_sioctl_get_metric(%s:%u %p)\n", 12511 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12512 if (ipip->ipi_cmd_type == IF_CMD) { 12513 struct ifreq *ifr; 12514 12515 ifr = (struct ifreq *)if_req; 12516 ifr->ifr_metric = ipif->ipif_metric; 12517 } else { 12518 struct lifreq *lifr; 12519 12520 lifr = (struct lifreq *)if_req; 12521 lifr->lifr_metric = ipif->ipif_metric; 12522 } 12523 12524 return (0); 12525 } 12526 12527 /* ARGSUSED */ 12528 int 12529 ip_sioctl_muxid(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12530 ip_ioctl_cmd_t *ipip, void *if_req) 12531 { 12532 12533 ip1dbg(("ip_sioctl_muxid(%s:%u %p)\n", 12534 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12535 /* 12536 * Set the muxid returned from I_PLINK. 12537 */ 12538 if (ipip->ipi_cmd_type == IF_CMD) { 12539 struct ifreq *ifr = (struct ifreq *)if_req; 12540 12541 ipif->ipif_ill->ill_ip_muxid = ifr->ifr_ip_muxid; 12542 ipif->ipif_ill->ill_arp_muxid = ifr->ifr_arp_muxid; 12543 } else { 12544 struct lifreq *lifr = (struct lifreq *)if_req; 12545 12546 ipif->ipif_ill->ill_ip_muxid = lifr->lifr_ip_muxid; 12547 ipif->ipif_ill->ill_arp_muxid = lifr->lifr_arp_muxid; 12548 } 12549 return (0); 12550 } 12551 12552 /* ARGSUSED */ 12553 int 12554 ip_sioctl_get_muxid(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12555 ip_ioctl_cmd_t *ipip, void *if_req) 12556 { 12557 12558 ip1dbg(("ip_sioctl_get_muxid(%s:%u %p)\n", 12559 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12560 /* 12561 * Get the muxid saved in ill for I_PUNLINK. 12562 */ 12563 if (ipip->ipi_cmd_type == IF_CMD) { 12564 struct ifreq *ifr = (struct ifreq *)if_req; 12565 12566 ifr->ifr_ip_muxid = ipif->ipif_ill->ill_ip_muxid; 12567 ifr->ifr_arp_muxid = ipif->ipif_ill->ill_arp_muxid; 12568 } else { 12569 struct lifreq *lifr = (struct lifreq *)if_req; 12570 12571 lifr->lifr_ip_muxid = ipif->ipif_ill->ill_ip_muxid; 12572 lifr->lifr_arp_muxid = ipif->ipif_ill->ill_arp_muxid; 12573 } 12574 return (0); 12575 } 12576 12577 /* 12578 * Set the subnet prefix. Does not modify the broadcast address. 12579 */ 12580 /* ARGSUSED */ 12581 int 12582 ip_sioctl_subnet(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12583 ip_ioctl_cmd_t *ipip, void *if_req) 12584 { 12585 int err = 0; 12586 in6_addr_t v6addr; 12587 in6_addr_t v6mask; 12588 boolean_t need_up = B_FALSE; 12589 int addrlen; 12590 12591 ip1dbg(("ip_sioctl_subnet(%s:%u %p)\n", 12592 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12593 12594 ASSERT(IAM_WRITER_IPIF(ipif)); 12595 addrlen = ((struct lifreq *)if_req)->lifr_addrlen; 12596 12597 if (ipif->ipif_isv6) { 12598 sin6_t *sin6; 12599 12600 if (sin->sin_family != AF_INET6) 12601 return (EAFNOSUPPORT); 12602 12603 sin6 = (sin6_t *)sin; 12604 v6addr = sin6->sin6_addr; 12605 if (!ip_remote_addr_ok_v6(&v6addr, &ipv6_all_ones)) 12606 return (EADDRNOTAVAIL); 12607 } else { 12608 ipaddr_t addr; 12609 12610 if (sin->sin_family != AF_INET) 12611 return (EAFNOSUPPORT); 12612 12613 addr = sin->sin_addr.s_addr; 12614 if (!ip_addr_ok_v4(addr, 0xFFFFFFFF)) 12615 return (EADDRNOTAVAIL); 12616 IN6_IPADDR_TO_V4MAPPED(addr, &v6addr); 12617 /* Add 96 bits */ 12618 addrlen += IPV6_ABITS - IP_ABITS; 12619 } 12620 12621 if (ip_plen_to_mask_v6(addrlen, &v6mask) == NULL) 12622 return (EINVAL); 12623 12624 /* Check if bits in the address is set past the mask */ 12625 if (!V6_MASK_EQ(v6addr, v6mask, v6addr)) 12626 return (EINVAL); 12627 12628 if (IN6_ARE_ADDR_EQUAL(&ipif->ipif_v6subnet, &v6addr) && 12629 IN6_ARE_ADDR_EQUAL(&ipif->ipif_v6net_mask, &v6mask)) 12630 return (0); /* No change */ 12631 12632 if (ipif->ipif_flags & IPIF_UP) { 12633 /* 12634 * If the interface is already marked up, 12635 * we call ipif_down which will take care 12636 * of ditching any IREs that have been set 12637 * up based on the old interface address. 12638 */ 12639 err = ipif_logical_down(ipif, q, mp); 12640 if (err == EINPROGRESS) 12641 return (err); 12642 ipif_down_tail(ipif); 12643 need_up = B_TRUE; 12644 } 12645 12646 err = ip_sioctl_subnet_tail(ipif, v6addr, v6mask, q, mp, need_up); 12647 return (err); 12648 } 12649 12650 static int 12651 ip_sioctl_subnet_tail(ipif_t *ipif, in6_addr_t v6addr, in6_addr_t v6mask, 12652 queue_t *q, mblk_t *mp, boolean_t need_up) 12653 { 12654 ill_t *ill = ipif->ipif_ill; 12655 int err = 0; 12656 12657 ip1dbg(("ip_sioctl_subnet_tail(%s:%u %p)\n", 12658 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12659 12660 /* Set the new address. */ 12661 mutex_enter(&ill->ill_lock); 12662 ipif->ipif_v6net_mask = v6mask; 12663 if ((ipif->ipif_flags & IPIF_POINTOPOINT) == 0) { 12664 V6_MASK_COPY(v6addr, ipif->ipif_v6net_mask, 12665 ipif->ipif_v6subnet); 12666 } 12667 mutex_exit(&ill->ill_lock); 12668 12669 if (need_up) { 12670 /* 12671 * Now bring the interface back up. If this 12672 * is the only IPIF for the ILL, ipif_up 12673 * will have to re-bind to the device, so 12674 * we may get back EINPROGRESS, in which 12675 * case, this IOCTL will get completed in 12676 * ip_rput_dlpi when we see the DL_BIND_ACK. 12677 */ 12678 err = ipif_up(ipif, q, mp); 12679 if (err == EINPROGRESS) 12680 return (err); 12681 } 12682 return (err); 12683 } 12684 12685 /* ARGSUSED */ 12686 int 12687 ip_sioctl_subnet_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12688 ip_ioctl_cmd_t *ipip, void *if_req) 12689 { 12690 int addrlen; 12691 in6_addr_t v6addr; 12692 in6_addr_t v6mask; 12693 struct lifreq *lifr = (struct lifreq *)if_req; 12694 12695 ip1dbg(("ip_sioctl_subnet_restart(%s:%u %p)\n", 12696 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12697 ipif_down_tail(ipif); 12698 12699 addrlen = lifr->lifr_addrlen; 12700 if (ipif->ipif_isv6) { 12701 sin6_t *sin6; 12702 12703 sin6 = (sin6_t *)sin; 12704 v6addr = sin6->sin6_addr; 12705 } else { 12706 ipaddr_t addr; 12707 12708 addr = sin->sin_addr.s_addr; 12709 IN6_IPADDR_TO_V4MAPPED(addr, &v6addr); 12710 addrlen += IPV6_ABITS - IP_ABITS; 12711 } 12712 (void) ip_plen_to_mask_v6(addrlen, &v6mask); 12713 12714 return (ip_sioctl_subnet_tail(ipif, v6addr, v6mask, q, mp, B_TRUE)); 12715 } 12716 12717 /* ARGSUSED */ 12718 int 12719 ip_sioctl_get_subnet(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12720 ip_ioctl_cmd_t *ipip, void *if_req) 12721 { 12722 struct lifreq *lifr = (struct lifreq *)if_req; 12723 struct sockaddr_in6 *sin6 = (struct sockaddr_in6 *)sin; 12724 12725 ip1dbg(("ip_sioctl_get_subnet(%s:%u %p)\n", 12726 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12727 ASSERT(ipip->ipi_cmd_type == LIF_CMD); 12728 12729 if (ipif->ipif_isv6) { 12730 *sin6 = sin6_null; 12731 sin6->sin6_family = AF_INET6; 12732 sin6->sin6_addr = ipif->ipif_v6subnet; 12733 lifr->lifr_addrlen = 12734 ip_mask_to_plen_v6(&ipif->ipif_v6net_mask); 12735 } else { 12736 *sin = sin_null; 12737 sin->sin_family = AF_INET; 12738 sin->sin_addr.s_addr = ipif->ipif_subnet; 12739 lifr->lifr_addrlen = ip_mask_to_plen(ipif->ipif_net_mask); 12740 } 12741 return (0); 12742 } 12743 12744 /* 12745 * Set the IPv6 address token. 12746 */ 12747 /* ARGSUSED */ 12748 int 12749 ip_sioctl_token(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12750 ip_ioctl_cmd_t *ipi, void *if_req) 12751 { 12752 ill_t *ill = ipif->ipif_ill; 12753 int err; 12754 in6_addr_t v6addr; 12755 in6_addr_t v6mask; 12756 boolean_t need_up = B_FALSE; 12757 int i; 12758 sin6_t *sin6 = (sin6_t *)sin; 12759 struct lifreq *lifr = (struct lifreq *)if_req; 12760 int addrlen; 12761 12762 ip1dbg(("ip_sioctl_token(%s:%u %p)\n", 12763 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12764 ASSERT(IAM_WRITER_IPIF(ipif)); 12765 12766 addrlen = lifr->lifr_addrlen; 12767 /* Only allow for logical unit zero i.e. not on "le0:17" */ 12768 if (ipif->ipif_id != 0) 12769 return (EINVAL); 12770 12771 if (!ipif->ipif_isv6) 12772 return (EINVAL); 12773 12774 if (addrlen > IPV6_ABITS) 12775 return (EINVAL); 12776 12777 v6addr = sin6->sin6_addr; 12778 12779 /* 12780 * The length of the token is the length from the end. To get 12781 * the proper mask for this, compute the mask of the bits not 12782 * in the token; ie. the prefix, and then xor to get the mask. 12783 */ 12784 if (ip_plen_to_mask_v6(IPV6_ABITS - addrlen, &v6mask) == NULL) 12785 return (EINVAL); 12786 for (i = 0; i < 4; i++) { 12787 v6mask.s6_addr32[i] ^= (uint32_t)0xffffffff; 12788 } 12789 12790 if (V6_MASK_EQ(v6addr, v6mask, ill->ill_token) && 12791 ill->ill_token_length == addrlen) 12792 return (0); /* No change */ 12793 12794 if (ipif->ipif_flags & IPIF_UP) { 12795 err = ipif_logical_down(ipif, q, mp); 12796 if (err == EINPROGRESS) 12797 return (err); 12798 ipif_down_tail(ipif); 12799 need_up = B_TRUE; 12800 } 12801 err = ip_sioctl_token_tail(ipif, sin6, addrlen, q, mp, need_up); 12802 return (err); 12803 } 12804 12805 static int 12806 ip_sioctl_token_tail(ipif_t *ipif, sin6_t *sin6, int addrlen, queue_t *q, 12807 mblk_t *mp, boolean_t need_up) 12808 { 12809 in6_addr_t v6addr; 12810 in6_addr_t v6mask; 12811 ill_t *ill = ipif->ipif_ill; 12812 int i; 12813 int err = 0; 12814 12815 ip1dbg(("ip_sioctl_token_tail(%s:%u %p)\n", 12816 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12817 v6addr = sin6->sin6_addr; 12818 /* 12819 * The length of the token is the length from the end. To get 12820 * the proper mask for this, compute the mask of the bits not 12821 * in the token; ie. the prefix, and then xor to get the mask. 12822 */ 12823 (void) ip_plen_to_mask_v6(IPV6_ABITS - addrlen, &v6mask); 12824 for (i = 0; i < 4; i++) 12825 v6mask.s6_addr32[i] ^= (uint32_t)0xffffffff; 12826 12827 mutex_enter(&ill->ill_lock); 12828 V6_MASK_COPY(v6addr, v6mask, ill->ill_token); 12829 ill->ill_token_length = addrlen; 12830 mutex_exit(&ill->ill_lock); 12831 12832 if (need_up) { 12833 /* 12834 * Now bring the interface back up. If this 12835 * is the only IPIF for the ILL, ipif_up 12836 * will have to re-bind to the device, so 12837 * we may get back EINPROGRESS, in which 12838 * case, this IOCTL will get completed in 12839 * ip_rput_dlpi when we see the DL_BIND_ACK. 12840 */ 12841 err = ipif_up(ipif, q, mp); 12842 if (err == EINPROGRESS) 12843 return (err); 12844 } 12845 return (err); 12846 } 12847 12848 /* ARGSUSED */ 12849 int 12850 ip_sioctl_get_token(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12851 ip_ioctl_cmd_t *ipi, void *if_req) 12852 { 12853 ill_t *ill; 12854 sin6_t *sin6 = (sin6_t *)sin; 12855 struct lifreq *lifr = (struct lifreq *)if_req; 12856 12857 ip1dbg(("ip_sioctl_get_token(%s:%u %p)\n", 12858 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12859 if (ipif->ipif_id != 0) 12860 return (EINVAL); 12861 12862 ill = ipif->ipif_ill; 12863 if (!ill->ill_isv6) 12864 return (ENXIO); 12865 12866 *sin6 = sin6_null; 12867 sin6->sin6_family = AF_INET6; 12868 ASSERT(!IN6_IS_ADDR_V4MAPPED(&ill->ill_token)); 12869 sin6->sin6_addr = ill->ill_token; 12870 lifr->lifr_addrlen = ill->ill_token_length; 12871 return (0); 12872 } 12873 12874 /* 12875 * Set (hardware) link specific information that might override 12876 * what was acquired through the DL_INFO_ACK. 12877 * The logic is as follows. 12878 * 12879 * become exclusive 12880 * set CHANGING flag 12881 * change mtu on affected IREs 12882 * clear CHANGING flag 12883 * 12884 * An ire add that occurs before the CHANGING flag is set will have its mtu 12885 * changed by the ip_sioctl_lnkinfo. 12886 * 12887 * During the time the CHANGING flag is set, no new ires will be added to the 12888 * bucket, and ire add will fail (due the CHANGING flag). 12889 * 12890 * An ire add that occurs after the CHANGING flag is set will have the right mtu 12891 * before it is added to the bucket. 12892 * 12893 * Obviously only 1 thread can set the CHANGING flag and we need to become 12894 * exclusive to set the flag. 12895 */ 12896 /* ARGSUSED */ 12897 int 12898 ip_sioctl_lnkinfo(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12899 ip_ioctl_cmd_t *ipi, void *if_req) 12900 { 12901 ill_t *ill = ipif->ipif_ill; 12902 ipif_t *nipif; 12903 int ip_min_mtu; 12904 boolean_t mtu_walk = B_FALSE; 12905 struct lifreq *lifr = (struct lifreq *)if_req; 12906 lif_ifinfo_req_t *lir; 12907 ire_t *ire; 12908 12909 ip1dbg(("ip_sioctl_lnkinfo(%s:%u %p)\n", 12910 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12911 lir = &lifr->lifr_ifinfo; 12912 ASSERT(IAM_WRITER_IPIF(ipif)); 12913 12914 /* Only allow for logical unit zero i.e. not on "le0:17" */ 12915 if (ipif->ipif_id != 0) 12916 return (EINVAL); 12917 12918 /* Set interface MTU. */ 12919 if (ipif->ipif_isv6) 12920 ip_min_mtu = IPV6_MIN_MTU; 12921 else 12922 ip_min_mtu = IP_MIN_MTU; 12923 12924 /* 12925 * Verify values before we set anything. Allow zero to 12926 * mean unspecified. 12927 */ 12928 if (lir->lir_maxmtu != 0 && 12929 (lir->lir_maxmtu > ill->ill_max_frag || 12930 lir->lir_maxmtu < ip_min_mtu)) 12931 return (EINVAL); 12932 if (lir->lir_reachtime != 0 && 12933 lir->lir_reachtime > ND_MAX_REACHTIME) 12934 return (EINVAL); 12935 if (lir->lir_reachretrans != 0 && 12936 lir->lir_reachretrans > ND_MAX_REACHRETRANSTIME) 12937 return (EINVAL); 12938 12939 mutex_enter(&ill->ill_lock); 12940 ill->ill_state_flags |= ILL_CHANGING; 12941 for (nipif = ill->ill_ipif; nipif != NULL; 12942 nipif = nipif->ipif_next) { 12943 nipif->ipif_state_flags |= IPIF_CHANGING; 12944 } 12945 12946 mutex_exit(&ill->ill_lock); 12947 12948 if (lir->lir_maxmtu != 0) { 12949 ill->ill_max_mtu = lir->lir_maxmtu; 12950 ill->ill_mtu_userspecified = 1; 12951 mtu_walk = B_TRUE; 12952 } 12953 12954 if (lir->lir_reachtime != 0) 12955 ill->ill_reachable_time = lir->lir_reachtime; 12956 12957 if (lir->lir_reachretrans != 0) 12958 ill->ill_reachable_retrans_time = lir->lir_reachretrans; 12959 12960 ill->ill_max_hops = lir->lir_maxhops; 12961 12962 ill->ill_max_buf = ND_MAX_Q; 12963 12964 if (mtu_walk) { 12965 /* 12966 * Set the MTU on all ipifs associated with this ill except 12967 * for those whose MTU was fixed via SIOCSLIFMTU. 12968 */ 12969 for (nipif = ill->ill_ipif; nipif != NULL; 12970 nipif = nipif->ipif_next) { 12971 if (nipif->ipif_flags & IPIF_FIXEDMTU) 12972 continue; 12973 12974 nipif->ipif_mtu = ill->ill_max_mtu; 12975 12976 if (!(nipif->ipif_flags & IPIF_UP)) 12977 continue; 12978 12979 if (nipif->ipif_isv6) 12980 ire = ipif_to_ire_v6(nipif); 12981 else 12982 ire = ipif_to_ire(nipif); 12983 if (ire != NULL) { 12984 ire->ire_max_frag = ipif->ipif_mtu; 12985 ire_refrele(ire); 12986 } 12987 12988 ire_walk_ill(MATCH_IRE_ILL, 0, ipif_mtu_change, 12989 nipif, ill); 12990 } 12991 } 12992 12993 mutex_enter(&ill->ill_lock); 12994 for (nipif = ill->ill_ipif; nipif != NULL; 12995 nipif = nipif->ipif_next) { 12996 nipif->ipif_state_flags &= ~IPIF_CHANGING; 12997 } 12998 ILL_UNMARK_CHANGING(ill); 12999 mutex_exit(&ill->ill_lock); 13000 13001 return (0); 13002 } 13003 13004 /* ARGSUSED */ 13005 int 13006 ip_sioctl_get_lnkinfo(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 13007 ip_ioctl_cmd_t *ipi, void *if_req) 13008 { 13009 struct lif_ifinfo_req *lir; 13010 ill_t *ill = ipif->ipif_ill; 13011 13012 ip1dbg(("ip_sioctl_get_lnkinfo(%s:%u %p)\n", 13013 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 13014 if (ipif->ipif_id != 0) 13015 return (EINVAL); 13016 13017 lir = &((struct lifreq *)if_req)->lifr_ifinfo; 13018 lir->lir_maxhops = ill->ill_max_hops; 13019 lir->lir_reachtime = ill->ill_reachable_time; 13020 lir->lir_reachretrans = ill->ill_reachable_retrans_time; 13021 lir->lir_maxmtu = ill->ill_max_mtu; 13022 13023 return (0); 13024 } 13025 13026 /* 13027 * Return best guess as to the subnet mask for the specified address. 13028 * Based on the subnet masks for all the configured interfaces. 13029 * 13030 * We end up returning a zero mask in the case of default, multicast or 13031 * experimental. 13032 */ 13033 static ipaddr_t 13034 ip_subnet_mask(ipaddr_t addr, ipif_t **ipifp, ip_stack_t *ipst) 13035 { 13036 ipaddr_t net_mask; 13037 ill_t *ill; 13038 ipif_t *ipif; 13039 ill_walk_context_t ctx; 13040 ipif_t *fallback_ipif = NULL; 13041 13042 net_mask = ip_net_mask(addr); 13043 if (net_mask == 0) { 13044 *ipifp = NULL; 13045 return (0); 13046 } 13047 13048 /* Let's check to see if this is maybe a local subnet route. */ 13049 /* this function only applies to IPv4 interfaces */ 13050 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 13051 ill = ILL_START_WALK_V4(&ctx, ipst); 13052 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 13053 mutex_enter(&ill->ill_lock); 13054 for (ipif = ill->ill_ipif; ipif != NULL; 13055 ipif = ipif->ipif_next) { 13056 if (!IPIF_CAN_LOOKUP(ipif)) 13057 continue; 13058 if (!(ipif->ipif_flags & IPIF_UP)) 13059 continue; 13060 if ((ipif->ipif_subnet & net_mask) == 13061 (addr & net_mask)) { 13062 /* 13063 * Don't trust pt-pt interfaces if there are 13064 * other interfaces. 13065 */ 13066 if (ipif->ipif_flags & IPIF_POINTOPOINT) { 13067 if (fallback_ipif == NULL) { 13068 ipif_refhold_locked(ipif); 13069 fallback_ipif = ipif; 13070 } 13071 continue; 13072 } 13073 13074 /* 13075 * Fine. Just assume the same net mask as the 13076 * directly attached subnet interface is using. 13077 */ 13078 ipif_refhold_locked(ipif); 13079 mutex_exit(&ill->ill_lock); 13080 rw_exit(&ipst->ips_ill_g_lock); 13081 if (fallback_ipif != NULL) 13082 ipif_refrele(fallback_ipif); 13083 *ipifp = ipif; 13084 return (ipif->ipif_net_mask); 13085 } 13086 } 13087 mutex_exit(&ill->ill_lock); 13088 } 13089 rw_exit(&ipst->ips_ill_g_lock); 13090 13091 *ipifp = fallback_ipif; 13092 return ((fallback_ipif != NULL) ? 13093 fallback_ipif->ipif_net_mask : net_mask); 13094 } 13095 13096 /* 13097 * ip_sioctl_copyin_setup calls ip_wput_ioctl to process the IP_IOCTL ioctl. 13098 */ 13099 static void 13100 ip_wput_ioctl(queue_t *q, mblk_t *mp) 13101 { 13102 IOCP iocp; 13103 ipft_t *ipft; 13104 ipllc_t *ipllc; 13105 mblk_t *mp1; 13106 cred_t *cr; 13107 int error = 0; 13108 conn_t *connp; 13109 13110 ip1dbg(("ip_wput_ioctl")); 13111 iocp = (IOCP)mp->b_rptr; 13112 mp1 = mp->b_cont; 13113 if (mp1 == NULL) { 13114 iocp->ioc_error = EINVAL; 13115 mp->b_datap->db_type = M_IOCNAK; 13116 iocp->ioc_count = 0; 13117 qreply(q, mp); 13118 return; 13119 } 13120 13121 /* 13122 * These IOCTLs provide various control capabilities to 13123 * upstream agents such as ULPs and processes. There 13124 * are currently two such IOCTLs implemented. They 13125 * are used by TCP to provide update information for 13126 * existing IREs and to forcibly delete an IRE for a 13127 * host that is not responding, thereby forcing an 13128 * attempt at a new route. 13129 */ 13130 iocp->ioc_error = EINVAL; 13131 if (!pullupmsg(mp1, sizeof (ipllc->ipllc_cmd))) 13132 goto done; 13133 13134 ipllc = (ipllc_t *)mp1->b_rptr; 13135 for (ipft = ip_ioctl_ftbl; ipft->ipft_pfi; ipft++) { 13136 if (ipllc->ipllc_cmd == ipft->ipft_cmd) 13137 break; 13138 } 13139 /* 13140 * prefer credential from mblk over ioctl; 13141 * see ip_sioctl_copyin_setup 13142 */ 13143 cr = DB_CREDDEF(mp, iocp->ioc_cr); 13144 13145 /* 13146 * Refhold the conn in case the request gets queued up in some lookup 13147 */ 13148 ASSERT(CONN_Q(q)); 13149 connp = Q_TO_CONN(q); 13150 CONN_INC_REF(connp); 13151 if (ipft->ipft_pfi && 13152 ((mp1->b_wptr - mp1->b_rptr) >= ipft->ipft_min_size || 13153 pullupmsg(mp1, ipft->ipft_min_size))) { 13154 error = (*ipft->ipft_pfi)(q, 13155 (ipft->ipft_flags & IPFT_F_SELF_REPLY) ? mp : mp1, cr); 13156 } 13157 if (ipft->ipft_flags & IPFT_F_SELF_REPLY) { 13158 /* 13159 * CONN_OPER_PENDING_DONE happens in the function called 13160 * through ipft_pfi above. 13161 */ 13162 return; 13163 } 13164 13165 CONN_OPER_PENDING_DONE(connp); 13166 if (ipft->ipft_flags & IPFT_F_NO_REPLY) { 13167 freemsg(mp); 13168 return; 13169 } 13170 iocp->ioc_error = error; 13171 13172 done: 13173 mp->b_datap->db_type = M_IOCACK; 13174 if (iocp->ioc_error) 13175 iocp->ioc_count = 0; 13176 qreply(q, mp); 13177 } 13178 13179 /* 13180 * Lookup an ipif using the sequence id (ipif_seqid) 13181 */ 13182 ipif_t * 13183 ipif_lookup_seqid(ill_t *ill, uint_t seqid) 13184 { 13185 ipif_t *ipif; 13186 13187 ASSERT(MUTEX_HELD(&ill->ill_lock)); 13188 13189 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 13190 if (ipif->ipif_seqid == seqid && IPIF_CAN_LOOKUP(ipif)) 13191 return (ipif); 13192 } 13193 return (NULL); 13194 } 13195 13196 /* 13197 * Assign a unique id for the ipif. This is used later when we send 13198 * IRES to ARP for resolution where we initialize ire_ipif_seqid 13199 * to the value pointed by ire_ipif->ipif_seqid. Later when the 13200 * IRE is added, we verify that ipif has not disappeared. 13201 */ 13202 13203 static void 13204 ipif_assign_seqid(ipif_t *ipif) 13205 { 13206 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; 13207 13208 ipif->ipif_seqid = atomic_add_64_nv(&ipst->ips_ipif_g_seqid, 1); 13209 } 13210 13211 /* 13212 * Insert the ipif, so that the list of ipifs on the ill will be sorted 13213 * with respect to ipif_id. Note that an ipif with an ipif_id of -1 will 13214 * be inserted into the first space available in the list. The value of 13215 * ipif_id will then be set to the appropriate value for its position. 13216 */ 13217 static int 13218 ipif_insert(ipif_t *ipif, boolean_t acquire_g_lock, boolean_t acquire_ill_lock) 13219 { 13220 ill_t *ill; 13221 ipif_t *tipif; 13222 ipif_t **tipifp; 13223 int id; 13224 ip_stack_t *ipst; 13225 13226 ASSERT(ipif->ipif_ill->ill_net_type == IRE_LOOPBACK || 13227 IAM_WRITER_IPIF(ipif)); 13228 13229 ill = ipif->ipif_ill; 13230 ASSERT(ill != NULL); 13231 ipst = ill->ill_ipst; 13232 13233 /* 13234 * In the case of lo0:0 we already hold the ill_g_lock. 13235 * ill_lookup_on_name (acquires ill_g_lock) -> ipif_allocate -> 13236 * ipif_insert. Another such caller is ipif_move. 13237 */ 13238 if (acquire_g_lock) 13239 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 13240 if (acquire_ill_lock) 13241 mutex_enter(&ill->ill_lock); 13242 id = ipif->ipif_id; 13243 tipifp = &(ill->ill_ipif); 13244 if (id == -1) { /* need to find a real id */ 13245 id = 0; 13246 while ((tipif = *tipifp) != NULL) { 13247 ASSERT(tipif->ipif_id >= id); 13248 if (tipif->ipif_id != id) 13249 break; /* non-consecutive id */ 13250 id++; 13251 tipifp = &(tipif->ipif_next); 13252 } 13253 /* limit number of logical interfaces */ 13254 if (id >= ipst->ips_ip_addrs_per_if) { 13255 if (acquire_ill_lock) 13256 mutex_exit(&ill->ill_lock); 13257 if (acquire_g_lock) 13258 rw_exit(&ipst->ips_ill_g_lock); 13259 return (-1); 13260 } 13261 ipif->ipif_id = id; /* assign new id */ 13262 } else if (id < ipst->ips_ip_addrs_per_if) { 13263 /* we have a real id; insert ipif in the right place */ 13264 while ((tipif = *tipifp) != NULL) { 13265 ASSERT(tipif->ipif_id != id); 13266 if (tipif->ipif_id > id) 13267 break; /* found correct location */ 13268 tipifp = &(tipif->ipif_next); 13269 } 13270 } else { 13271 if (acquire_ill_lock) 13272 mutex_exit(&ill->ill_lock); 13273 if (acquire_g_lock) 13274 rw_exit(&ipst->ips_ill_g_lock); 13275 return (-1); 13276 } 13277 13278 ASSERT(tipifp != &(ill->ill_ipif) || id == 0); 13279 13280 ipif->ipif_next = tipif; 13281 *tipifp = ipif; 13282 if (acquire_ill_lock) 13283 mutex_exit(&ill->ill_lock); 13284 if (acquire_g_lock) 13285 rw_exit(&ipst->ips_ill_g_lock); 13286 return (0); 13287 } 13288 13289 static void 13290 ipif_remove(ipif_t *ipif, boolean_t acquire_ill_lock) 13291 { 13292 ipif_t **ipifp; 13293 ill_t *ill = ipif->ipif_ill; 13294 13295 ASSERT(RW_WRITE_HELD(&ill->ill_ipst->ips_ill_g_lock)); 13296 if (acquire_ill_lock) 13297 mutex_enter(&ill->ill_lock); 13298 else 13299 ASSERT(MUTEX_HELD(&ill->ill_lock)); 13300 13301 ipifp = &ill->ill_ipif; 13302 for (; *ipifp != NULL; ipifp = &ipifp[0]->ipif_next) { 13303 if (*ipifp == ipif) { 13304 *ipifp = ipif->ipif_next; 13305 break; 13306 } 13307 } 13308 13309 if (acquire_ill_lock) 13310 mutex_exit(&ill->ill_lock); 13311 } 13312 13313 /* 13314 * Allocate and initialize a new interface control structure. (Always 13315 * called as writer.) 13316 * When ipif_allocate() is called from ip_ll_subnet_defaults, the ill 13317 * is not part of the global linked list of ills. ipif_seqid is unique 13318 * in the system and to preserve the uniqueness, it is assigned only 13319 * when ill becomes part of the global list. At that point ill will 13320 * have a name. If it doesn't get assigned here, it will get assigned 13321 * in ipif_set_values() as part of SIOCSLIFNAME processing. 13322 * Aditionally, if we come here from ip_ll_subnet_defaults, we don't set 13323 * the interface flags or any other information from the DL_INFO_ACK for 13324 * DL_STYLE2 drivers (initialize == B_FALSE), since we won't have them at 13325 * this point. The flags etc. will be set in ip_ll_subnet_defaults when the 13326 * second DL_INFO_ACK comes in from the driver. 13327 */ 13328 static ipif_t * 13329 ipif_allocate(ill_t *ill, int id, uint_t ire_type, boolean_t initialize) 13330 { 13331 ipif_t *ipif; 13332 phyint_t *phyi; 13333 13334 ip1dbg(("ipif_allocate(%s:%d ill %p)\n", 13335 ill->ill_name, id, (void *)ill)); 13336 ASSERT(ire_type == IRE_LOOPBACK || IAM_WRITER_ILL(ill)); 13337 13338 if ((ipif = (ipif_t *)mi_alloc(sizeof (ipif_t), BPRI_MED)) == NULL) 13339 return (NULL); 13340 *ipif = ipif_zero; /* start clean */ 13341 13342 ipif->ipif_ill = ill; 13343 ipif->ipif_id = id; /* could be -1 */ 13344 /* 13345 * Inherit the zoneid from the ill; for the shared stack instance 13346 * this is always the global zone 13347 */ 13348 ipif->ipif_zoneid = ill->ill_zoneid; 13349 13350 mutex_init(&ipif->ipif_saved_ire_lock, NULL, MUTEX_DEFAULT, NULL); 13351 13352 ipif->ipif_refcnt = 0; 13353 ipif->ipif_saved_ire_cnt = 0; 13354 13355 if (ipif_insert(ipif, ire_type != IRE_LOOPBACK, B_TRUE)) { 13356 mi_free(ipif); 13357 return (NULL); 13358 } 13359 /* -1 id should have been replaced by real id */ 13360 id = ipif->ipif_id; 13361 ASSERT(id >= 0); 13362 13363 if (ill->ill_name[0] != '\0') 13364 ipif_assign_seqid(ipif); 13365 13366 /* 13367 * Keep a copy of original id in ipif_orig_ipifid. Failback 13368 * will attempt to restore the original id. The SIOCSLIFOINDEX 13369 * ioctl sets ipif_orig_ipifid to zero. 13370 */ 13371 ipif->ipif_orig_ipifid = id; 13372 13373 /* 13374 * We grab the ill_lock and phyint_lock to protect the flag changes. 13375 * The ipif is still not up and can't be looked up until the 13376 * ioctl completes and the IPIF_CHANGING flag is cleared. 13377 */ 13378 mutex_enter(&ill->ill_lock); 13379 mutex_enter(&ill->ill_phyint->phyint_lock); 13380 /* 13381 * Set the running flag when logical interface zero is created. 13382 * For subsequent logical interfaces, a DLPI link down 13383 * notification message may have cleared the running flag to 13384 * indicate the link is down, so we shouldn't just blindly set it. 13385 */ 13386 if (id == 0) 13387 ill->ill_phyint->phyint_flags |= PHYI_RUNNING; 13388 ipif->ipif_ire_type = ire_type; 13389 phyi = ill->ill_phyint; 13390 ipif->ipif_orig_ifindex = phyi->phyint_ifindex; 13391 13392 if (ipif->ipif_isv6) { 13393 ill->ill_flags |= ILLF_IPV6; 13394 } else { 13395 ipaddr_t inaddr_any = INADDR_ANY; 13396 13397 ill->ill_flags |= ILLF_IPV4; 13398 13399 /* Keep the IN6_IS_ADDR_V4MAPPED assertions happy */ 13400 IN6_IPADDR_TO_V4MAPPED(inaddr_any, 13401 &ipif->ipif_v6lcl_addr); 13402 IN6_IPADDR_TO_V4MAPPED(inaddr_any, 13403 &ipif->ipif_v6src_addr); 13404 IN6_IPADDR_TO_V4MAPPED(inaddr_any, 13405 &ipif->ipif_v6subnet); 13406 IN6_IPADDR_TO_V4MAPPED(inaddr_any, 13407 &ipif->ipif_v6net_mask); 13408 IN6_IPADDR_TO_V4MAPPED(inaddr_any, 13409 &ipif->ipif_v6brd_addr); 13410 IN6_IPADDR_TO_V4MAPPED(inaddr_any, 13411 &ipif->ipif_v6pp_dst_addr); 13412 } 13413 13414 /* 13415 * Don't set the interface flags etc. now, will do it in 13416 * ip_ll_subnet_defaults. 13417 */ 13418 if (!initialize) { 13419 mutex_exit(&ill->ill_lock); 13420 mutex_exit(&ill->ill_phyint->phyint_lock); 13421 return (ipif); 13422 } 13423 ipif->ipif_mtu = ill->ill_max_mtu; 13424 13425 if (ill->ill_bcast_addr_length != 0) { 13426 /* 13427 * Later detect lack of DLPI driver multicast 13428 * capability by catching DL_ENABMULTI errors in 13429 * ip_rput_dlpi. 13430 */ 13431 ill->ill_flags |= ILLF_MULTICAST; 13432 if (!ipif->ipif_isv6) 13433 ipif->ipif_flags |= IPIF_BROADCAST; 13434 } else { 13435 if (ill->ill_net_type != IRE_LOOPBACK) { 13436 if (ipif->ipif_isv6) 13437 /* 13438 * Note: xresolv interfaces will eventually need 13439 * NOARP set here as well, but that will require 13440 * those external resolvers to have some 13441 * knowledge of that flag and act appropriately. 13442 * Not to be changed at present. 13443 */ 13444 ill->ill_flags |= ILLF_NONUD; 13445 else 13446 ill->ill_flags |= ILLF_NOARP; 13447 } 13448 if (ill->ill_phys_addr_length == 0) { 13449 if (ill->ill_media && 13450 ill->ill_media->ip_m_mac_type == SUNW_DL_VNI) { 13451 ipif->ipif_flags |= IPIF_NOXMIT; 13452 phyi->phyint_flags |= PHYI_VIRTUAL; 13453 } else { 13454 /* pt-pt supports multicast. */ 13455 ill->ill_flags |= ILLF_MULTICAST; 13456 if (ill->ill_net_type == IRE_LOOPBACK) { 13457 phyi->phyint_flags |= 13458 (PHYI_LOOPBACK | PHYI_VIRTUAL); 13459 } else { 13460 ipif->ipif_flags |= IPIF_POINTOPOINT; 13461 } 13462 } 13463 } 13464 } 13465 mutex_exit(&ill->ill_lock); 13466 mutex_exit(&ill->ill_phyint->phyint_lock); 13467 return (ipif); 13468 } 13469 13470 /* 13471 * If appropriate, send a message up to the resolver delete the entry 13472 * for the address of this interface which is going out of business. 13473 * (Always called as writer). 13474 * 13475 * NOTE : We need to check for NULL mps as some of the fields are 13476 * initialized only for some interface types. See ipif_resolver_up() 13477 * for details. 13478 */ 13479 void 13480 ipif_arp_down(ipif_t *ipif) 13481 { 13482 mblk_t *mp; 13483 ill_t *ill = ipif->ipif_ill; 13484 13485 ip1dbg(("ipif_arp_down(%s:%u)\n", ill->ill_name, ipif->ipif_id)); 13486 ASSERT(IAM_WRITER_IPIF(ipif)); 13487 13488 /* Delete the mapping for the local address */ 13489 mp = ipif->ipif_arp_del_mp; 13490 if (mp != NULL) { 13491 ip1dbg(("ipif_arp_down: arp cmd %x for %s:%u\n", 13492 *(unsigned *)mp->b_rptr, ill->ill_name, ipif->ipif_id)); 13493 putnext(ill->ill_rq, mp); 13494 ipif->ipif_arp_del_mp = NULL; 13495 } 13496 13497 /* 13498 * If this is the last ipif that is going down and there are no 13499 * duplicate addresses we may yet attempt to re-probe, then we need to 13500 * clean up ARP completely. 13501 */ 13502 if (ill->ill_ipif_up_count == 0 && ill->ill_ipif_dup_count == 0) { 13503 13504 /* Send up AR_INTERFACE_DOWN message */ 13505 mp = ill->ill_arp_down_mp; 13506 if (mp != NULL) { 13507 ip1dbg(("ipif_arp_down: arp cmd %x for %s:%u\n", 13508 *(unsigned *)mp->b_rptr, ill->ill_name, 13509 ipif->ipif_id)); 13510 putnext(ill->ill_rq, mp); 13511 ill->ill_arp_down_mp = NULL; 13512 } 13513 13514 /* Tell ARP to delete the multicast mappings */ 13515 mp = ill->ill_arp_del_mapping_mp; 13516 if (mp != NULL) { 13517 ip1dbg(("ipif_arp_down: arp cmd %x for %s:%u\n", 13518 *(unsigned *)mp->b_rptr, ill->ill_name, 13519 ipif->ipif_id)); 13520 putnext(ill->ill_rq, mp); 13521 ill->ill_arp_del_mapping_mp = NULL; 13522 } 13523 } 13524 } 13525 13526 /* 13527 * This function sets up the multicast mappings in ARP. When ipif_resolver_up 13528 * calls this function, it passes a non-NULL arp_add_mapping_mp indicating 13529 * that it wants the add_mp allocated in this function to be returned 13530 * wihtout sending it to arp. When ip_rput_dlpi_writer calls this to 13531 * just re-do the multicast, it wants us to send the add_mp to ARP also. 13532 * ipif_resolver_up does not want us to do the "add" i.e sending to ARP, 13533 * as it does a ipif_arp_down after calling this function - which will 13534 * remove what we add here. 13535 * 13536 * Returns -1 on failures and 0 on success. 13537 */ 13538 int 13539 ipif_arp_setup_multicast(ipif_t *ipif, mblk_t **arp_add_mapping_mp) 13540 { 13541 mblk_t *del_mp = NULL; 13542 mblk_t *add_mp = NULL; 13543 mblk_t *mp; 13544 ill_t *ill = ipif->ipif_ill; 13545 phyint_t *phyi = ill->ill_phyint; 13546 ipaddr_t addr, mask, extract_mask = 0; 13547 arma_t *arma; 13548 uint8_t *maddr, *bphys_addr; 13549 uint32_t hw_start; 13550 dl_unitdata_req_t *dlur; 13551 13552 ASSERT(IAM_WRITER_IPIF(ipif)); 13553 if (ipif->ipif_flags & IPIF_POINTOPOINT) 13554 return (0); 13555 13556 /* 13557 * Delete the existing mapping from ARP. Normally ipif_down 13558 * -> ipif_arp_down should send this up to ARP. The only 13559 * reason we would find this when we are switching from 13560 * Multicast to Broadcast where we did not do a down. 13561 */ 13562 mp = ill->ill_arp_del_mapping_mp; 13563 if (mp != NULL) { 13564 ip1dbg(("ipif_arp_down: arp cmd %x for %s:%u\n", 13565 *(unsigned *)mp->b_rptr, ill->ill_name, ipif->ipif_id)); 13566 putnext(ill->ill_rq, mp); 13567 ill->ill_arp_del_mapping_mp = NULL; 13568 } 13569 13570 if (arp_add_mapping_mp != NULL) 13571 *arp_add_mapping_mp = NULL; 13572 13573 /* 13574 * Check that the address is not to long for the constant 13575 * length reserved in the template arma_t. 13576 */ 13577 if (ill->ill_phys_addr_length > IP_MAX_HW_LEN) 13578 return (-1); 13579 13580 /* Add mapping mblk */ 13581 addr = (ipaddr_t)htonl(INADDR_UNSPEC_GROUP); 13582 mask = (ipaddr_t)htonl(IN_CLASSD_NET); 13583 add_mp = ill_arp_alloc(ill, (uchar_t *)&ip_arma_multi_template, 13584 (caddr_t)&addr); 13585 if (add_mp == NULL) 13586 return (-1); 13587 arma = (arma_t *)add_mp->b_rptr; 13588 maddr = (uint8_t *)arma + arma->arma_hw_addr_offset; 13589 bcopy(&mask, (char *)arma + arma->arma_proto_mask_offset, IP_ADDR_LEN); 13590 arma->arma_hw_addr_length = ill->ill_phys_addr_length; 13591 13592 /* 13593 * Determine the broadcast address. 13594 */ 13595 dlur = (dl_unitdata_req_t *)ill->ill_bcast_mp->b_rptr; 13596 if (ill->ill_sap_length < 0) 13597 bphys_addr = (uchar_t *)dlur + dlur->dl_dest_addr_offset; 13598 else 13599 bphys_addr = (uchar_t *)dlur + 13600 dlur->dl_dest_addr_offset + ill->ill_sap_length; 13601 /* 13602 * Check PHYI_MULTI_BCAST and length of physical 13603 * address to determine if we use the mapping or the 13604 * broadcast address. 13605 */ 13606 if (!(phyi->phyint_flags & PHYI_MULTI_BCAST)) 13607 if (!MEDIA_V4MINFO(ill->ill_media, ill->ill_phys_addr_length, 13608 bphys_addr, maddr, &hw_start, &extract_mask)) 13609 phyi->phyint_flags |= PHYI_MULTI_BCAST; 13610 13611 if ((phyi->phyint_flags & PHYI_MULTI_BCAST) || 13612 (ill->ill_flags & ILLF_MULTICAST)) { 13613 /* Make sure this will not match the "exact" entry. */ 13614 addr = (ipaddr_t)htonl(INADDR_ALLHOSTS_GROUP); 13615 del_mp = ill_arp_alloc(ill, (uchar_t *)&ip_ared_template, 13616 (caddr_t)&addr); 13617 if (del_mp == NULL) { 13618 freemsg(add_mp); 13619 return (-1); 13620 } 13621 bcopy(&extract_mask, (char *)arma + 13622 arma->arma_proto_extract_mask_offset, IP_ADDR_LEN); 13623 if (phyi->phyint_flags & PHYI_MULTI_BCAST) { 13624 /* Use link-layer broadcast address for MULTI_BCAST */ 13625 bcopy(bphys_addr, maddr, ill->ill_phys_addr_length); 13626 ip2dbg(("ipif_arp_setup_multicast: adding" 13627 " MULTI_BCAST ARP setup for %s\n", ill->ill_name)); 13628 } else { 13629 arma->arma_hw_mapping_start = hw_start; 13630 ip2dbg(("ipif_arp_setup_multicast: adding multicast" 13631 " ARP setup for %s\n", ill->ill_name)); 13632 } 13633 } else { 13634 freemsg(add_mp); 13635 ASSERT(del_mp == NULL); 13636 /* It is neither MULTICAST nor MULTI_BCAST */ 13637 return (0); 13638 } 13639 ASSERT(add_mp != NULL && del_mp != NULL); 13640 ASSERT(ill->ill_arp_del_mapping_mp == NULL); 13641 ill->ill_arp_del_mapping_mp = del_mp; 13642 if (arp_add_mapping_mp != NULL) { 13643 /* The caller just wants the mblks allocated */ 13644 *arp_add_mapping_mp = add_mp; 13645 } else { 13646 /* The caller wants us to send it to arp */ 13647 putnext(ill->ill_rq, add_mp); 13648 } 13649 return (0); 13650 } 13651 13652 /* 13653 * Get the resolver set up for a new interface address. 13654 * (Always called as writer.) 13655 * Called both for IPv4 and IPv6 interfaces, 13656 * though it only sets up the resolver for v6 13657 * if it's an xresolv interface (one using an external resolver). 13658 * Honors ILLF_NOARP. 13659 * The enumerated value res_act is used to tune the behavior. 13660 * If set to Res_act_initial, then we set up all the resolver 13661 * structures for a new interface. If set to Res_act_move, then 13662 * we just send an AR_ENTRY_ADD message up to ARP for IPv4 13663 * interfaces; this is called by ip_rput_dlpi_writer() to handle 13664 * asynchronous hardware address change notification. If set to 13665 * Res_act_defend, then we tell ARP that it needs to send a single 13666 * gratuitous message in defense of the address. 13667 * Returns error on failure. 13668 */ 13669 int 13670 ipif_resolver_up(ipif_t *ipif, enum ip_resolver_action res_act) 13671 { 13672 caddr_t addr; 13673 mblk_t *arp_up_mp = NULL; 13674 mblk_t *arp_down_mp = NULL; 13675 mblk_t *arp_add_mp = NULL; 13676 mblk_t *arp_del_mp = NULL; 13677 mblk_t *arp_add_mapping_mp = NULL; 13678 mblk_t *arp_del_mapping_mp = NULL; 13679 ill_t *ill = ipif->ipif_ill; 13680 uchar_t *area_p = NULL; 13681 uchar_t *ared_p = NULL; 13682 int err = ENOMEM; 13683 boolean_t was_dup; 13684 13685 ip1dbg(("ipif_resolver_up(%s:%u) flags 0x%x\n", 13686 ill->ill_name, ipif->ipif_id, (uint_t)ipif->ipif_flags)); 13687 ASSERT(IAM_WRITER_IPIF(ipif)); 13688 13689 was_dup = B_FALSE; 13690 if (res_act == Res_act_initial) { 13691 ipif->ipif_addr_ready = 0; 13692 /* 13693 * We're bringing an interface up here. There's no way that we 13694 * should need to shut down ARP now. 13695 */ 13696 mutex_enter(&ill->ill_lock); 13697 if (ipif->ipif_flags & IPIF_DUPLICATE) { 13698 ipif->ipif_flags &= ~IPIF_DUPLICATE; 13699 ill->ill_ipif_dup_count--; 13700 was_dup = B_TRUE; 13701 } 13702 mutex_exit(&ill->ill_lock); 13703 } 13704 if (ipif->ipif_recovery_id != 0) 13705 (void) untimeout(ipif->ipif_recovery_id); 13706 ipif->ipif_recovery_id = 0; 13707 if (ill->ill_net_type != IRE_IF_RESOLVER) { 13708 ipif->ipif_addr_ready = 1; 13709 return (0); 13710 } 13711 /* NDP will set the ipif_addr_ready flag when it's ready */ 13712 if (ill->ill_isv6 && !(ill->ill_flags & ILLF_XRESOLV)) 13713 return (0); 13714 13715 if (ill->ill_isv6) { 13716 /* 13717 * External resolver for IPv6 13718 */ 13719 ASSERT(res_act == Res_act_initial); 13720 if (!IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6lcl_addr)) { 13721 addr = (caddr_t)&ipif->ipif_v6lcl_addr; 13722 area_p = (uchar_t *)&ip6_area_template; 13723 ared_p = (uchar_t *)&ip6_ared_template; 13724 } 13725 } else { 13726 /* 13727 * IPv4 arp case. If the ARP stream has already started 13728 * closing, fail this request for ARP bringup. Else 13729 * record the fact that an ARP bringup is pending. 13730 */ 13731 mutex_enter(&ill->ill_lock); 13732 if (ill->ill_arp_closing) { 13733 mutex_exit(&ill->ill_lock); 13734 err = EINVAL; 13735 goto failed; 13736 } else { 13737 if (ill->ill_ipif_up_count == 0 && 13738 ill->ill_ipif_dup_count == 0 && !was_dup) 13739 ill->ill_arp_bringup_pending = 1; 13740 mutex_exit(&ill->ill_lock); 13741 } 13742 if (ipif->ipif_lcl_addr != INADDR_ANY) { 13743 addr = (caddr_t)&ipif->ipif_lcl_addr; 13744 area_p = (uchar_t *)&ip_area_template; 13745 ared_p = (uchar_t *)&ip_ared_template; 13746 } 13747 } 13748 13749 /* 13750 * Add an entry for the local address in ARP only if it 13751 * is not UNNUMBERED and the address is not INADDR_ANY. 13752 */ 13753 if (!(ipif->ipif_flags & IPIF_UNNUMBERED) && area_p != NULL) { 13754 area_t *area; 13755 13756 /* Now ask ARP to publish our address. */ 13757 arp_add_mp = ill_arp_alloc(ill, area_p, addr); 13758 if (arp_add_mp == NULL) 13759 goto failed; 13760 area = (area_t *)arp_add_mp->b_rptr; 13761 if (res_act != Res_act_initial) { 13762 /* 13763 * Copy the new hardware address and length into 13764 * arp_add_mp to be sent to ARP. 13765 */ 13766 area->area_hw_addr_length = ill->ill_phys_addr_length; 13767 bcopy(ill->ill_phys_addr, 13768 ((char *)area + area->area_hw_addr_offset), 13769 area->area_hw_addr_length); 13770 } 13771 13772 area->area_flags = ACE_F_PERMANENT | ACE_F_PUBLISH | 13773 ACE_F_MYADDR; 13774 13775 if (res_act == Res_act_defend) { 13776 area->area_flags |= ACE_F_DEFEND; 13777 /* 13778 * If we're just defending our address now, then 13779 * there's no need to set up ARP multicast mappings. 13780 * The publish command is enough. 13781 */ 13782 goto done; 13783 } 13784 13785 if (res_act != Res_act_initial) 13786 goto arp_setup_multicast; 13787 13788 /* 13789 * Allocate an ARP deletion message so we know we can tell ARP 13790 * when the interface goes down. 13791 */ 13792 arp_del_mp = ill_arp_alloc(ill, ared_p, addr); 13793 if (arp_del_mp == NULL) 13794 goto failed; 13795 13796 } else { 13797 if (res_act != Res_act_initial) 13798 goto done; 13799 } 13800 /* 13801 * Need to bring up ARP or setup multicast mapping only 13802 * when the first interface is coming UP. 13803 */ 13804 if (ill->ill_ipif_up_count != 0 || ill->ill_ipif_dup_count != 0 || 13805 was_dup) { 13806 goto done; 13807 } 13808 13809 /* 13810 * Allocate an ARP down message (to be saved) and an ARP up 13811 * message. 13812 */ 13813 arp_down_mp = ill_arp_alloc(ill, (uchar_t *)&ip_ard_template, 0); 13814 if (arp_down_mp == NULL) 13815 goto failed; 13816 13817 arp_up_mp = ill_arp_alloc(ill, (uchar_t *)&ip_aru_template, 0); 13818 if (arp_up_mp == NULL) 13819 goto failed; 13820 13821 if (ipif->ipif_flags & IPIF_POINTOPOINT) 13822 goto done; 13823 13824 arp_setup_multicast: 13825 /* 13826 * Setup the multicast mappings. This function initializes 13827 * ill_arp_del_mapping_mp also. This does not need to be done for 13828 * IPv6. 13829 */ 13830 if (!ill->ill_isv6) { 13831 err = ipif_arp_setup_multicast(ipif, &arp_add_mapping_mp); 13832 if (err != 0) 13833 goto failed; 13834 ASSERT(ill->ill_arp_del_mapping_mp != NULL); 13835 ASSERT(arp_add_mapping_mp != NULL); 13836 } 13837 13838 done: 13839 if (arp_del_mp != NULL) { 13840 ASSERT(ipif->ipif_arp_del_mp == NULL); 13841 ipif->ipif_arp_del_mp = arp_del_mp; 13842 } 13843 if (arp_down_mp != NULL) { 13844 ASSERT(ill->ill_arp_down_mp == NULL); 13845 ill->ill_arp_down_mp = arp_down_mp; 13846 } 13847 if (arp_del_mapping_mp != NULL) { 13848 ASSERT(ill->ill_arp_del_mapping_mp == NULL); 13849 ill->ill_arp_del_mapping_mp = arp_del_mapping_mp; 13850 } 13851 if (arp_up_mp != NULL) { 13852 ip1dbg(("ipif_resolver_up: ARP_UP for %s:%u\n", 13853 ill->ill_name, ipif->ipif_id)); 13854 putnext(ill->ill_rq, arp_up_mp); 13855 } 13856 if (arp_add_mp != NULL) { 13857 ip1dbg(("ipif_resolver_up: ARP_ADD for %s:%u\n", 13858 ill->ill_name, ipif->ipif_id)); 13859 /* 13860 * If it's an extended ARP implementation, then we'll wait to 13861 * hear that DAD has finished before using the interface. 13862 */ 13863 if (!ill->ill_arp_extend) 13864 ipif->ipif_addr_ready = 1; 13865 putnext(ill->ill_rq, arp_add_mp); 13866 } else { 13867 ipif->ipif_addr_ready = 1; 13868 } 13869 if (arp_add_mapping_mp != NULL) { 13870 ip1dbg(("ipif_resolver_up: MAPPING_ADD for %s:%u\n", 13871 ill->ill_name, ipif->ipif_id)); 13872 putnext(ill->ill_rq, arp_add_mapping_mp); 13873 } 13874 if (res_act != Res_act_initial) 13875 return (0); 13876 13877 if (ill->ill_flags & ILLF_NOARP) 13878 err = ill_arp_off(ill); 13879 else 13880 err = ill_arp_on(ill); 13881 if (err != 0) { 13882 ip0dbg(("ipif_resolver_up: arp_on/off failed %d\n", err)); 13883 freemsg(ipif->ipif_arp_del_mp); 13884 freemsg(ill->ill_arp_down_mp); 13885 freemsg(ill->ill_arp_del_mapping_mp); 13886 ipif->ipif_arp_del_mp = NULL; 13887 ill->ill_arp_down_mp = NULL; 13888 ill->ill_arp_del_mapping_mp = NULL; 13889 return (err); 13890 } 13891 return ((ill->ill_ipif_up_count != 0 || was_dup || 13892 ill->ill_ipif_dup_count != 0) ? 0 : EINPROGRESS); 13893 13894 failed: 13895 ip1dbg(("ipif_resolver_up: FAILED\n")); 13896 freemsg(arp_add_mp); 13897 freemsg(arp_del_mp); 13898 freemsg(arp_add_mapping_mp); 13899 freemsg(arp_up_mp); 13900 freemsg(arp_down_mp); 13901 ill->ill_arp_bringup_pending = 0; 13902 return (err); 13903 } 13904 13905 /* 13906 * This routine restarts IPv4 duplicate address detection (DAD) when a link has 13907 * just gone back up. 13908 */ 13909 static void 13910 ipif_arp_start_dad(ipif_t *ipif) 13911 { 13912 ill_t *ill = ipif->ipif_ill; 13913 mblk_t *arp_add_mp; 13914 area_t *area; 13915 13916 if (ill->ill_net_type != IRE_IF_RESOLVER || ill->ill_arp_closing || 13917 (ipif->ipif_flags & IPIF_UNNUMBERED) || 13918 ipif->ipif_lcl_addr == INADDR_ANY || 13919 (arp_add_mp = ill_arp_alloc(ill, (uchar_t *)&ip_area_template, 13920 (char *)&ipif->ipif_lcl_addr)) == NULL) { 13921 /* 13922 * If we can't contact ARP for some reason, that's not really a 13923 * problem. Just send out the routing socket notification that 13924 * DAD completion would have done, and continue. 13925 */ 13926 ipif_mask_reply(ipif); 13927 ip_rts_ifmsg(ipif); 13928 ip_rts_newaddrmsg(RTM_ADD, 0, ipif); 13929 sctp_update_ipif(ipif, SCTP_IPIF_UP); 13930 ipif->ipif_addr_ready = 1; 13931 return; 13932 } 13933 13934 /* Setting the 'unverified' flag restarts DAD */ 13935 area = (area_t *)arp_add_mp->b_rptr; 13936 area->area_flags = ACE_F_PERMANENT | ACE_F_PUBLISH | ACE_F_MYADDR | 13937 ACE_F_UNVERIFIED; 13938 putnext(ill->ill_rq, arp_add_mp); 13939 } 13940 13941 static void 13942 ipif_ndp_start_dad(ipif_t *ipif) 13943 { 13944 nce_t *nce; 13945 13946 nce = ndp_lookup_v6(ipif->ipif_ill, &ipif->ipif_v6lcl_addr, B_FALSE); 13947 if (nce == NULL) 13948 return; 13949 13950 if (!ndp_restart_dad(nce)) { 13951 /* 13952 * If we can't restart DAD for some reason, that's not really a 13953 * problem. Just send out the routing socket notification that 13954 * DAD completion would have done, and continue. 13955 */ 13956 ip_rts_ifmsg(ipif); 13957 ip_rts_newaddrmsg(RTM_ADD, 0, ipif); 13958 sctp_update_ipif(ipif, SCTP_IPIF_UP); 13959 ipif->ipif_addr_ready = 1; 13960 } 13961 NCE_REFRELE(nce); 13962 } 13963 13964 /* 13965 * Restart duplicate address detection on all interfaces on the given ill. 13966 * 13967 * This is called when an interface transitions from down to up 13968 * (DL_NOTE_LINK_UP) or up to down (DL_NOTE_LINK_DOWN). 13969 * 13970 * Note that since the underlying physical link has transitioned, we must cause 13971 * at least one routing socket message to be sent here, either via DAD 13972 * completion or just by default on the first ipif. (If we don't do this, then 13973 * in.mpathd will see long delays when doing link-based failure recovery.) 13974 */ 13975 void 13976 ill_restart_dad(ill_t *ill, boolean_t went_up) 13977 { 13978 ipif_t *ipif; 13979 13980 if (ill == NULL) 13981 return; 13982 13983 /* 13984 * If layer two doesn't support duplicate address detection, then just 13985 * send the routing socket message now and be done with it. 13986 */ 13987 if ((ill->ill_isv6 && (ill->ill_flags & ILLF_XRESOLV)) || 13988 (!ill->ill_isv6 && !ill->ill_arp_extend)) { 13989 ip_rts_ifmsg(ill->ill_ipif); 13990 return; 13991 } 13992 13993 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 13994 if (went_up) { 13995 if (ipif->ipif_flags & IPIF_UP) { 13996 if (ill->ill_isv6) 13997 ipif_ndp_start_dad(ipif); 13998 else 13999 ipif_arp_start_dad(ipif); 14000 } else if (ill->ill_isv6 && 14001 (ipif->ipif_flags & IPIF_DUPLICATE)) { 14002 /* 14003 * For IPv4, the ARP module itself will 14004 * automatically start the DAD process when it 14005 * sees DL_NOTE_LINK_UP. We respond to the 14006 * AR_CN_READY at the completion of that task. 14007 * For IPv6, we must kick off the bring-up 14008 * process now. 14009 */ 14010 ndp_do_recovery(ipif); 14011 } else { 14012 /* 14013 * Unfortunately, the first ipif is "special" 14014 * and represents the underlying ill in the 14015 * routing socket messages. Thus, when this 14016 * one ipif is down, we must still notify so 14017 * that the user knows the IFF_RUNNING status 14018 * change. (If the first ipif is up, then 14019 * we'll handle eventual routing socket 14020 * notification via DAD completion.) 14021 */ 14022 if (ipif == ill->ill_ipif) 14023 ip_rts_ifmsg(ill->ill_ipif); 14024 } 14025 } else { 14026 /* 14027 * After link down, we'll need to send a new routing 14028 * message when the link comes back, so clear 14029 * ipif_addr_ready. 14030 */ 14031 ipif->ipif_addr_ready = 0; 14032 } 14033 } 14034 14035 /* 14036 * If we've torn down links, then notify the user right away. 14037 */ 14038 if (!went_up) 14039 ip_rts_ifmsg(ill->ill_ipif); 14040 } 14041 14042 /* 14043 * Wakeup all threads waiting to enter the ipsq, and sleeping 14044 * on any of the ills in this ipsq. The ill_lock of the ill 14045 * must be held so that waiters don't miss wakeups 14046 */ 14047 static void 14048 ill_signal_ipsq_ills(ipsq_t *ipsq, boolean_t caller_holds_lock) 14049 { 14050 phyint_t *phyint; 14051 14052 phyint = ipsq->ipsq_phyint_list; 14053 while (phyint != NULL) { 14054 if (phyint->phyint_illv4) { 14055 if (!caller_holds_lock) 14056 mutex_enter(&phyint->phyint_illv4->ill_lock); 14057 ASSERT(MUTEX_HELD(&phyint->phyint_illv4->ill_lock)); 14058 cv_broadcast(&phyint->phyint_illv4->ill_cv); 14059 if (!caller_holds_lock) 14060 mutex_exit(&phyint->phyint_illv4->ill_lock); 14061 } 14062 if (phyint->phyint_illv6) { 14063 if (!caller_holds_lock) 14064 mutex_enter(&phyint->phyint_illv6->ill_lock); 14065 ASSERT(MUTEX_HELD(&phyint->phyint_illv6->ill_lock)); 14066 cv_broadcast(&phyint->phyint_illv6->ill_cv); 14067 if (!caller_holds_lock) 14068 mutex_exit(&phyint->phyint_illv6->ill_lock); 14069 } 14070 phyint = phyint->phyint_ipsq_next; 14071 } 14072 } 14073 14074 static ipsq_t * 14075 ipsq_create(char *groupname, ip_stack_t *ipst) 14076 { 14077 ipsq_t *ipsq; 14078 14079 ASSERT(RW_WRITE_HELD(&ipst->ips_ill_g_lock)); 14080 ipsq = kmem_zalloc(sizeof (ipsq_t), KM_NOSLEEP); 14081 if (ipsq == NULL) { 14082 return (NULL); 14083 } 14084 14085 if (groupname != NULL) 14086 (void) strcpy(ipsq->ipsq_name, groupname); 14087 else 14088 ipsq->ipsq_name[0] = '\0'; 14089 14090 mutex_init(&ipsq->ipsq_lock, NULL, MUTEX_DEFAULT, NULL); 14091 ipsq->ipsq_flags |= IPSQ_GROUP; 14092 ipsq->ipsq_next = ipst->ips_ipsq_g_head; 14093 ipst->ips_ipsq_g_head = ipsq; 14094 ipsq->ipsq_ipst = ipst; /* No netstack_hold */ 14095 return (ipsq); 14096 } 14097 14098 /* 14099 * Return an ipsq correspoding to the groupname. If 'create' is true 14100 * allocate a new ipsq if one does not exist. Usually an ipsq is associated 14101 * uniquely with an IPMP group. However during IPMP groupname operations, 14102 * multiple IPMP groups may be associated with a single ipsq. But no 14103 * IPMP group can be associated with more than 1 ipsq at any time. 14104 * For example 14105 * Interfaces IPMP grpname ipsq ipsq_name ipsq_refs 14106 * hme1, hme2 mpk17-84 ipsq1 mpk17-84 2 14107 * hme3, hme4 mpk17-85 ipsq2 mpk17-85 2 14108 * 14109 * Now the command ifconfig hme3 group mpk17-84 results in the temporary 14110 * status shown below during the execution of the above command. 14111 * hme1, hme2, hme3, hme4 mpk17-84, mpk17-85 ipsq1 mpk17-84 4 14112 * 14113 * After the completion of the above groupname command we return to the stable 14114 * state shown below. 14115 * hme1, hme2, hme3 mpk17-84 ipsq1 mpk17-84 3 14116 * hme4 mpk17-85 ipsq2 mpk17-85 1 14117 * 14118 * Because of the above, we don't search based on the ipsq_name since that 14119 * would miss the correct ipsq during certain windows as shown above. 14120 * The ipsq_name is only used during split of an ipsq to return the ipsq to its 14121 * natural state. 14122 */ 14123 static ipsq_t * 14124 ip_ipsq_lookup(char *groupname, boolean_t create, ipsq_t *exclude_ipsq, 14125 ip_stack_t *ipst) 14126 { 14127 ipsq_t *ipsq; 14128 int group_len; 14129 phyint_t *phyint; 14130 14131 ASSERT(RW_LOCK_HELD(&ipst->ips_ill_g_lock)); 14132 14133 group_len = strlen(groupname); 14134 ASSERT(group_len != 0); 14135 group_len++; 14136 14137 for (ipsq = ipst->ips_ipsq_g_head; 14138 ipsq != NULL; 14139 ipsq = ipsq->ipsq_next) { 14140 /* 14141 * When an ipsq is being split, and ill_split_ipsq 14142 * calls this function, we exclude it from being considered. 14143 */ 14144 if (ipsq == exclude_ipsq) 14145 continue; 14146 14147 /* 14148 * Compare against the ipsq_name. The groupname change happens 14149 * in 2 phases. The 1st phase merges the from group into 14150 * the to group's ipsq, by calling ill_merge_groups and restarts 14151 * the ioctl. The 2nd phase then locates the ipsq again thru 14152 * ipsq_name. At this point the phyint_groupname has not been 14153 * updated. 14154 */ 14155 if ((group_len == strlen(ipsq->ipsq_name) + 1) && 14156 (bcmp(ipsq->ipsq_name, groupname, group_len) == 0)) { 14157 /* 14158 * Verify that an ipmp groupname is exactly 14159 * part of 1 ipsq and is not found in any other 14160 * ipsq. 14161 */ 14162 ASSERT(ip_ipsq_lookup(groupname, B_FALSE, ipsq, ipst) == 14163 NULL); 14164 return (ipsq); 14165 } 14166 14167 /* 14168 * Comparison against ipsq_name alone is not sufficient. 14169 * In the case when groups are currently being 14170 * merged, the ipsq could hold other IPMP groups temporarily. 14171 * so we walk the phyint list and compare against the 14172 * phyint_groupname as well. 14173 */ 14174 phyint = ipsq->ipsq_phyint_list; 14175 while (phyint != NULL) { 14176 if ((group_len == phyint->phyint_groupname_len) && 14177 (bcmp(phyint->phyint_groupname, groupname, 14178 group_len) == 0)) { 14179 /* 14180 * Verify that an ipmp groupname is exactly 14181 * part of 1 ipsq and is not found in any other 14182 * ipsq. 14183 */ 14184 ASSERT(ip_ipsq_lookup(groupname, B_FALSE, ipsq, 14185 ipst) == NULL); 14186 return (ipsq); 14187 } 14188 phyint = phyint->phyint_ipsq_next; 14189 } 14190 } 14191 if (create) 14192 ipsq = ipsq_create(groupname, ipst); 14193 return (ipsq); 14194 } 14195 14196 static void 14197 ipsq_delete(ipsq_t *ipsq) 14198 { 14199 ipsq_t *nipsq; 14200 ipsq_t *pipsq = NULL; 14201 ip_stack_t *ipst = ipsq->ipsq_ipst; 14202 14203 /* 14204 * We don't hold the ipsq lock, but we are sure no new 14205 * messages can land up, since the ipsq_refs is zero. 14206 * i.e. this ipsq is unnamed and no phyint or phyint group 14207 * is associated with this ipsq. (Lookups are based on ill_name 14208 * or phyint_groupname) 14209 */ 14210 ASSERT(ipsq->ipsq_refs == 0); 14211 ASSERT(ipsq->ipsq_xopq_mphead == NULL && ipsq->ipsq_mphead == NULL); 14212 ASSERT(ipsq->ipsq_pending_mp == NULL); 14213 if (!(ipsq->ipsq_flags & IPSQ_GROUP)) { 14214 /* 14215 * This is not the ipsq of an IPMP group. 14216 */ 14217 ipsq->ipsq_ipst = NULL; 14218 kmem_free(ipsq, sizeof (ipsq_t)); 14219 return; 14220 } 14221 14222 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 14223 14224 /* 14225 * Locate the ipsq before we can remove it from 14226 * the singly linked list of ipsq's. 14227 */ 14228 for (nipsq = ipst->ips_ipsq_g_head; nipsq != NULL; 14229 nipsq = nipsq->ipsq_next) { 14230 if (nipsq == ipsq) { 14231 break; 14232 } 14233 pipsq = nipsq; 14234 } 14235 14236 ASSERT(nipsq == ipsq); 14237 14238 /* unlink ipsq from the list */ 14239 if (pipsq != NULL) 14240 pipsq->ipsq_next = ipsq->ipsq_next; 14241 else 14242 ipst->ips_ipsq_g_head = ipsq->ipsq_next; 14243 ipsq->ipsq_ipst = NULL; 14244 kmem_free(ipsq, sizeof (ipsq_t)); 14245 rw_exit(&ipst->ips_ill_g_lock); 14246 } 14247 14248 static void 14249 ill_move_to_new_ipsq(ipsq_t *old_ipsq, ipsq_t *new_ipsq, mblk_t *current_mp, 14250 queue_t *q) 14251 { 14252 ASSERT(MUTEX_HELD(&new_ipsq->ipsq_lock)); 14253 ASSERT(old_ipsq->ipsq_mphead == NULL && old_ipsq->ipsq_mptail == NULL); 14254 ASSERT(old_ipsq->ipsq_pending_ipif == NULL); 14255 ASSERT(old_ipsq->ipsq_pending_mp == NULL); 14256 ASSERT(current_mp != NULL); 14257 14258 ipsq_enq(new_ipsq, q, current_mp, (ipsq_func_t)ip_process_ioctl, 14259 NEW_OP, NULL); 14260 14261 ASSERT(new_ipsq->ipsq_xopq_mptail != NULL && 14262 new_ipsq->ipsq_xopq_mphead != NULL); 14263 14264 /* 14265 * move from old ipsq to the new ipsq. 14266 */ 14267 new_ipsq->ipsq_xopq_mptail->b_next = old_ipsq->ipsq_xopq_mphead; 14268 if (old_ipsq->ipsq_xopq_mphead != NULL) 14269 new_ipsq->ipsq_xopq_mptail = old_ipsq->ipsq_xopq_mptail; 14270 14271 old_ipsq->ipsq_xopq_mphead = old_ipsq->ipsq_xopq_mptail = NULL; 14272 } 14273 14274 void 14275 ill_group_cleanup(ill_t *ill) 14276 { 14277 ill_t *ill_v4; 14278 ill_t *ill_v6; 14279 ipif_t *ipif; 14280 14281 ill_v4 = ill->ill_phyint->phyint_illv4; 14282 ill_v6 = ill->ill_phyint->phyint_illv6; 14283 14284 if (ill_v4 != NULL) { 14285 mutex_enter(&ill_v4->ill_lock); 14286 for (ipif = ill_v4->ill_ipif; ipif != NULL; 14287 ipif = ipif->ipif_next) { 14288 IPIF_UNMARK_MOVING(ipif); 14289 } 14290 ill_v4->ill_up_ipifs = B_FALSE; 14291 mutex_exit(&ill_v4->ill_lock); 14292 } 14293 14294 if (ill_v6 != NULL) { 14295 mutex_enter(&ill_v6->ill_lock); 14296 for (ipif = ill_v6->ill_ipif; ipif != NULL; 14297 ipif = ipif->ipif_next) { 14298 IPIF_UNMARK_MOVING(ipif); 14299 } 14300 ill_v6->ill_up_ipifs = B_FALSE; 14301 mutex_exit(&ill_v6->ill_lock); 14302 } 14303 } 14304 /* 14305 * This function is called when an ill has had a change in its group status 14306 * to bring up all the ipifs that were up before the change. 14307 */ 14308 int 14309 ill_up_ipifs(ill_t *ill, queue_t *q, mblk_t *mp) 14310 { 14311 ipif_t *ipif; 14312 ill_t *ill_v4; 14313 ill_t *ill_v6; 14314 ill_t *from_ill; 14315 int err = 0; 14316 14317 ASSERT(IAM_WRITER_ILL(ill)); 14318 14319 /* 14320 * Except for ipif_state_flags and ill_state_flags the other 14321 * fields of the ipif/ill that are modified below are protected 14322 * implicitly since we are a writer. We would have tried to down 14323 * even an ipif that was already down, in ill_down_ipifs. So we 14324 * just blindly clear the IPIF_CHANGING flag here on all ipifs. 14325 */ 14326 ill_v4 = ill->ill_phyint->phyint_illv4; 14327 ill_v6 = ill->ill_phyint->phyint_illv6; 14328 if (ill_v4 != NULL) { 14329 ill_v4->ill_up_ipifs = B_TRUE; 14330 for (ipif = ill_v4->ill_ipif; ipif != NULL; 14331 ipif = ipif->ipif_next) { 14332 mutex_enter(&ill_v4->ill_lock); 14333 ipif->ipif_state_flags &= ~IPIF_CHANGING; 14334 IPIF_UNMARK_MOVING(ipif); 14335 mutex_exit(&ill_v4->ill_lock); 14336 if (ipif->ipif_was_up) { 14337 if (!(ipif->ipif_flags & IPIF_UP)) 14338 err = ipif_up(ipif, q, mp); 14339 ipif->ipif_was_up = B_FALSE; 14340 if (err != 0) { 14341 /* 14342 * Can there be any other error ? 14343 */ 14344 ASSERT(err == EINPROGRESS); 14345 return (err); 14346 } 14347 } 14348 } 14349 mutex_enter(&ill_v4->ill_lock); 14350 ill_v4->ill_state_flags &= ~ILL_CHANGING; 14351 mutex_exit(&ill_v4->ill_lock); 14352 ill_v4->ill_up_ipifs = B_FALSE; 14353 if (ill_v4->ill_move_in_progress) { 14354 ASSERT(ill_v4->ill_move_peer != NULL); 14355 ill_v4->ill_move_in_progress = B_FALSE; 14356 from_ill = ill_v4->ill_move_peer; 14357 from_ill->ill_move_in_progress = B_FALSE; 14358 from_ill->ill_move_peer = NULL; 14359 mutex_enter(&from_ill->ill_lock); 14360 from_ill->ill_state_flags &= ~ILL_CHANGING; 14361 mutex_exit(&from_ill->ill_lock); 14362 if (ill_v6 == NULL) { 14363 if (from_ill->ill_phyint->phyint_flags & 14364 PHYI_STANDBY) { 14365 phyint_inactive(from_ill->ill_phyint); 14366 } 14367 if (ill_v4->ill_phyint->phyint_flags & 14368 PHYI_STANDBY) { 14369 phyint_inactive(ill_v4->ill_phyint); 14370 } 14371 } 14372 ill_v4->ill_move_peer = NULL; 14373 } 14374 } 14375 14376 if (ill_v6 != NULL) { 14377 ill_v6->ill_up_ipifs = B_TRUE; 14378 for (ipif = ill_v6->ill_ipif; ipif != NULL; 14379 ipif = ipif->ipif_next) { 14380 mutex_enter(&ill_v6->ill_lock); 14381 ipif->ipif_state_flags &= ~IPIF_CHANGING; 14382 IPIF_UNMARK_MOVING(ipif); 14383 mutex_exit(&ill_v6->ill_lock); 14384 if (ipif->ipif_was_up) { 14385 if (!(ipif->ipif_flags & IPIF_UP)) 14386 err = ipif_up(ipif, q, mp); 14387 ipif->ipif_was_up = B_FALSE; 14388 if (err != 0) { 14389 /* 14390 * Can there be any other error ? 14391 */ 14392 ASSERT(err == EINPROGRESS); 14393 return (err); 14394 } 14395 } 14396 } 14397 mutex_enter(&ill_v6->ill_lock); 14398 ill_v6->ill_state_flags &= ~ILL_CHANGING; 14399 mutex_exit(&ill_v6->ill_lock); 14400 ill_v6->ill_up_ipifs = B_FALSE; 14401 if (ill_v6->ill_move_in_progress) { 14402 ASSERT(ill_v6->ill_move_peer != NULL); 14403 ill_v6->ill_move_in_progress = B_FALSE; 14404 from_ill = ill_v6->ill_move_peer; 14405 from_ill->ill_move_in_progress = B_FALSE; 14406 from_ill->ill_move_peer = NULL; 14407 mutex_enter(&from_ill->ill_lock); 14408 from_ill->ill_state_flags &= ~ILL_CHANGING; 14409 mutex_exit(&from_ill->ill_lock); 14410 if (from_ill->ill_phyint->phyint_flags & PHYI_STANDBY) { 14411 phyint_inactive(from_ill->ill_phyint); 14412 } 14413 if (ill_v6->ill_phyint->phyint_flags & PHYI_STANDBY) { 14414 phyint_inactive(ill_v6->ill_phyint); 14415 } 14416 ill_v6->ill_move_peer = NULL; 14417 } 14418 } 14419 return (0); 14420 } 14421 14422 /* 14423 * bring down all the approriate ipifs. 14424 */ 14425 /* ARGSUSED */ 14426 static void 14427 ill_down_ipifs(ill_t *ill, mblk_t *mp, int index, boolean_t chk_nofailover) 14428 { 14429 ipif_t *ipif; 14430 14431 ASSERT(IAM_WRITER_ILL(ill)); 14432 14433 /* 14434 * Except for ipif_state_flags the other fields of the ipif/ill that 14435 * are modified below are protected implicitly since we are a writer 14436 */ 14437 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 14438 if (chk_nofailover && (ipif->ipif_flags & IPIF_NOFAILOVER)) 14439 continue; 14440 if (index == 0 || index == ipif->ipif_orig_ifindex) { 14441 /* 14442 * We go through the ipif_down logic even if the ipif 14443 * is already down, since routes can be added based 14444 * on down ipifs. Going through ipif_down once again 14445 * will delete any IREs created based on these routes. 14446 */ 14447 if (ipif->ipif_flags & IPIF_UP) 14448 ipif->ipif_was_up = B_TRUE; 14449 /* 14450 * If called with chk_nofailover true ipif is moving. 14451 */ 14452 mutex_enter(&ill->ill_lock); 14453 if (chk_nofailover) { 14454 ipif->ipif_state_flags |= 14455 IPIF_MOVING | IPIF_CHANGING; 14456 } else { 14457 ipif->ipif_state_flags |= IPIF_CHANGING; 14458 } 14459 mutex_exit(&ill->ill_lock); 14460 /* 14461 * Need to re-create net/subnet bcast ires if 14462 * they are dependent on ipif. 14463 */ 14464 if (!ipif->ipif_isv6) 14465 ipif_check_bcast_ires(ipif); 14466 (void) ipif_logical_down(ipif, NULL, NULL); 14467 ipif_non_duplicate(ipif); 14468 ipif_down_tail(ipif); 14469 } 14470 } 14471 } 14472 14473 #define IPSQ_INC_REF(ipsq, ipst) { \ 14474 ASSERT(RW_WRITE_HELD(&ipst->ips_ill_g_lock)); \ 14475 (ipsq)->ipsq_refs++; \ 14476 } 14477 14478 #define IPSQ_DEC_REF(ipsq, ipst) { \ 14479 ASSERT(RW_WRITE_HELD(&ipst->ips_ill_g_lock)); \ 14480 (ipsq)->ipsq_refs--; \ 14481 if ((ipsq)->ipsq_refs == 0) \ 14482 (ipsq)->ipsq_name[0] = '\0'; \ 14483 } 14484 14485 /* 14486 * Change the ipsq of all the ill's whose current ipsq is 'cur_ipsq' to 14487 * new_ipsq. 14488 */ 14489 static void 14490 ill_merge_ipsq(ipsq_t *cur_ipsq, ipsq_t *new_ipsq, ip_stack_t *ipst) 14491 { 14492 phyint_t *phyint; 14493 phyint_t *next_phyint; 14494 14495 /* 14496 * To change the ipsq of an ill, we need to hold the ill_g_lock as 14497 * writer and the ill_lock of the ill in question. Also the dest 14498 * ipsq can't vanish while we hold the ill_g_lock as writer. 14499 */ 14500 ASSERT(RW_WRITE_HELD(&ipst->ips_ill_g_lock)); 14501 14502 phyint = cur_ipsq->ipsq_phyint_list; 14503 cur_ipsq->ipsq_phyint_list = NULL; 14504 while (phyint != NULL) { 14505 next_phyint = phyint->phyint_ipsq_next; 14506 IPSQ_DEC_REF(cur_ipsq, ipst); 14507 phyint->phyint_ipsq_next = new_ipsq->ipsq_phyint_list; 14508 new_ipsq->ipsq_phyint_list = phyint; 14509 IPSQ_INC_REF(new_ipsq, ipst); 14510 phyint->phyint_ipsq = new_ipsq; 14511 phyint = next_phyint; 14512 } 14513 } 14514 14515 #define SPLIT_SUCCESS 0 14516 #define SPLIT_NOT_NEEDED 1 14517 #define SPLIT_FAILED 2 14518 14519 int 14520 ill_split_to_grp_ipsq(phyint_t *phyint, ipsq_t *cur_ipsq, boolean_t need_retry, 14521 ip_stack_t *ipst) 14522 { 14523 ipsq_t *newipsq = NULL; 14524 14525 /* 14526 * Assertions denote pre-requisites for changing the ipsq of 14527 * a phyint 14528 */ 14529 ASSERT(RW_WRITE_HELD(&ipst->ips_ill_g_lock)); 14530 /* 14531 * <ill-phyint> assocs can't change while ill_g_lock 14532 * is held as writer. See ill_phyint_reinit() 14533 */ 14534 ASSERT(phyint->phyint_illv4 == NULL || 14535 MUTEX_HELD(&phyint->phyint_illv4->ill_lock)); 14536 ASSERT(phyint->phyint_illv6 == NULL || 14537 MUTEX_HELD(&phyint->phyint_illv6->ill_lock)); 14538 14539 if ((phyint->phyint_groupname_len != 14540 (strlen(cur_ipsq->ipsq_name) + 1) || 14541 bcmp(phyint->phyint_groupname, cur_ipsq->ipsq_name, 14542 phyint->phyint_groupname_len) != 0)) { 14543 /* 14544 * Once we fail in creating a new ipsq due to memory shortage, 14545 * don't attempt to create new ipsq again, based on another 14546 * phyint, since we want all phyints belonging to an IPMP group 14547 * to be in the same ipsq even in the event of mem alloc fails. 14548 */ 14549 newipsq = ip_ipsq_lookup(phyint->phyint_groupname, !need_retry, 14550 cur_ipsq, ipst); 14551 if (newipsq == NULL) { 14552 /* Memory allocation failure */ 14553 return (SPLIT_FAILED); 14554 } else { 14555 /* ipsq_refs protected by ill_g_lock (writer) */ 14556 IPSQ_DEC_REF(cur_ipsq, ipst); 14557 phyint->phyint_ipsq = newipsq; 14558 phyint->phyint_ipsq_next = newipsq->ipsq_phyint_list; 14559 newipsq->ipsq_phyint_list = phyint; 14560 IPSQ_INC_REF(newipsq, ipst); 14561 return (SPLIT_SUCCESS); 14562 } 14563 } 14564 return (SPLIT_NOT_NEEDED); 14565 } 14566 14567 /* 14568 * The ill locks of the phyint and the ill_g_lock (writer) must be held 14569 * to do this split 14570 */ 14571 static int 14572 ill_split_to_own_ipsq(phyint_t *phyint, ipsq_t *cur_ipsq, ip_stack_t *ipst) 14573 { 14574 ipsq_t *newipsq; 14575 14576 ASSERT(RW_WRITE_HELD(&ipst->ips_ill_g_lock)); 14577 /* 14578 * <ill-phyint> assocs can't change while ill_g_lock 14579 * is held as writer. See ill_phyint_reinit() 14580 */ 14581 14582 ASSERT(phyint->phyint_illv4 == NULL || 14583 MUTEX_HELD(&phyint->phyint_illv4->ill_lock)); 14584 ASSERT(phyint->phyint_illv6 == NULL || 14585 MUTEX_HELD(&phyint->phyint_illv6->ill_lock)); 14586 14587 if (!ipsq_init((phyint->phyint_illv4 != NULL) ? 14588 phyint->phyint_illv4: phyint->phyint_illv6)) { 14589 /* 14590 * ipsq_init failed due to no memory 14591 * caller will use the same ipsq 14592 */ 14593 return (SPLIT_FAILED); 14594 } 14595 14596 /* ipsq_ref is protected by ill_g_lock (writer) */ 14597 IPSQ_DEC_REF(cur_ipsq, ipst); 14598 14599 /* 14600 * This is a new ipsq that is unknown to the world. 14601 * So we don't need to hold ipsq_lock, 14602 */ 14603 newipsq = phyint->phyint_ipsq; 14604 newipsq->ipsq_writer = NULL; 14605 newipsq->ipsq_reentry_cnt--; 14606 ASSERT(newipsq->ipsq_reentry_cnt == 0); 14607 #ifdef DEBUG 14608 newipsq->ipsq_depth = 0; 14609 #endif 14610 14611 return (SPLIT_SUCCESS); 14612 } 14613 14614 /* 14615 * Change the ipsq of all the ill's whose current ipsq is 'cur_ipsq' to 14616 * ipsq's representing their individual groups or themselves. Return 14617 * whether split needs to be retried again later. 14618 */ 14619 static boolean_t 14620 ill_split_ipsq(ipsq_t *cur_ipsq) 14621 { 14622 phyint_t *phyint; 14623 phyint_t *next_phyint; 14624 int error; 14625 boolean_t need_retry = B_FALSE; 14626 ip_stack_t *ipst = cur_ipsq->ipsq_ipst; 14627 14628 phyint = cur_ipsq->ipsq_phyint_list; 14629 cur_ipsq->ipsq_phyint_list = NULL; 14630 while (phyint != NULL) { 14631 next_phyint = phyint->phyint_ipsq_next; 14632 /* 14633 * 'created' will tell us whether the callee actually 14634 * created an ipsq. Lack of memory may force the callee 14635 * to return without creating an ipsq. 14636 */ 14637 if (phyint->phyint_groupname == NULL) { 14638 error = ill_split_to_own_ipsq(phyint, cur_ipsq, ipst); 14639 } else { 14640 error = ill_split_to_grp_ipsq(phyint, cur_ipsq, 14641 need_retry, ipst); 14642 } 14643 14644 switch (error) { 14645 case SPLIT_FAILED: 14646 need_retry = B_TRUE; 14647 /* FALLTHRU */ 14648 case SPLIT_NOT_NEEDED: 14649 /* 14650 * Keep it on the list. 14651 */ 14652 phyint->phyint_ipsq_next = cur_ipsq->ipsq_phyint_list; 14653 cur_ipsq->ipsq_phyint_list = phyint; 14654 break; 14655 case SPLIT_SUCCESS: 14656 break; 14657 default: 14658 ASSERT(0); 14659 } 14660 14661 phyint = next_phyint; 14662 } 14663 return (need_retry); 14664 } 14665 14666 /* 14667 * given an ipsq 'ipsq' lock all ills associated with this ipsq. 14668 * and return the ills in the list. This list will be 14669 * needed to unlock all the ills later on by the caller. 14670 * The <ill-ipsq> associations could change between the 14671 * lock and unlock. Hence the unlock can't traverse the 14672 * ipsq to get the list of ills. 14673 */ 14674 static int 14675 ill_lock_ipsq_ills(ipsq_t *ipsq, ill_t **list, int list_max) 14676 { 14677 int cnt = 0; 14678 phyint_t *phyint; 14679 ip_stack_t *ipst = ipsq->ipsq_ipst; 14680 14681 /* 14682 * The caller holds ill_g_lock to ensure that the ill memberships 14683 * of the ipsq don't change 14684 */ 14685 ASSERT(RW_LOCK_HELD(&ipst->ips_ill_g_lock)); 14686 14687 phyint = ipsq->ipsq_phyint_list; 14688 while (phyint != NULL) { 14689 if (phyint->phyint_illv4 != NULL) { 14690 ASSERT(cnt < list_max); 14691 list[cnt++] = phyint->phyint_illv4; 14692 } 14693 if (phyint->phyint_illv6 != NULL) { 14694 ASSERT(cnt < list_max); 14695 list[cnt++] = phyint->phyint_illv6; 14696 } 14697 phyint = phyint->phyint_ipsq_next; 14698 } 14699 ill_lock_ills(list, cnt); 14700 return (cnt); 14701 } 14702 14703 void 14704 ill_lock_ills(ill_t **list, int cnt) 14705 { 14706 int i; 14707 14708 if (cnt > 1) { 14709 boolean_t try_again; 14710 do { 14711 try_again = B_FALSE; 14712 for (i = 0; i < cnt - 1; i++) { 14713 if (list[i] < list[i + 1]) { 14714 ill_t *tmp; 14715 14716 /* swap the elements */ 14717 tmp = list[i]; 14718 list[i] = list[i + 1]; 14719 list[i + 1] = tmp; 14720 try_again = B_TRUE; 14721 } 14722 } 14723 } while (try_again); 14724 } 14725 14726 for (i = 0; i < cnt; i++) { 14727 if (i == 0) { 14728 if (list[i] != NULL) 14729 mutex_enter(&list[i]->ill_lock); 14730 else 14731 return; 14732 } else if ((list[i-1] != list[i]) && (list[i] != NULL)) { 14733 mutex_enter(&list[i]->ill_lock); 14734 } 14735 } 14736 } 14737 14738 void 14739 ill_unlock_ills(ill_t **list, int cnt) 14740 { 14741 int i; 14742 14743 for (i = 0; i < cnt; i++) { 14744 if ((i == 0) && (list[i] != NULL)) { 14745 mutex_exit(&list[i]->ill_lock); 14746 } else if ((list[i-1] != list[i]) && (list[i] != NULL)) { 14747 mutex_exit(&list[i]->ill_lock); 14748 } 14749 } 14750 } 14751 14752 /* 14753 * Merge all the ills from 1 ipsq group into another ipsq group. 14754 * The source ipsq group is specified by the ipsq associated with 14755 * 'from_ill'. The destination ipsq group is specified by the ipsq 14756 * associated with 'to_ill' or 'groupname' respectively. 14757 * Note that ipsq itself does not have a reference count mechanism 14758 * and functions don't look up an ipsq and pass it around. Instead 14759 * functions pass around an ill or groupname, and the ipsq is looked 14760 * up from the ill or groupname and the required operation performed 14761 * atomically with the lookup on the ipsq. 14762 */ 14763 static int 14764 ill_merge_groups(ill_t *from_ill, ill_t *to_ill, char *groupname, mblk_t *mp, 14765 queue_t *q) 14766 { 14767 ipsq_t *old_ipsq; 14768 ipsq_t *new_ipsq; 14769 ill_t **ill_list; 14770 int cnt; 14771 size_t ill_list_size; 14772 boolean_t became_writer_on_new_sq = B_FALSE; 14773 ip_stack_t *ipst = from_ill->ill_ipst; 14774 14775 ASSERT(to_ill == NULL || ipst == to_ill->ill_ipst); 14776 /* Exactly 1 of 'to_ill' and groupname can be specified. */ 14777 ASSERT((to_ill != NULL) ^ (groupname != NULL)); 14778 14779 /* 14780 * Need to hold ill_g_lock as writer and also the ill_lock to 14781 * change the <ill-ipsq> assoc of an ill. Need to hold the 14782 * ipsq_lock to prevent new messages from landing on an ipsq. 14783 */ 14784 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 14785 14786 old_ipsq = from_ill->ill_phyint->phyint_ipsq; 14787 if (groupname != NULL) 14788 new_ipsq = ip_ipsq_lookup(groupname, B_TRUE, NULL, ipst); 14789 else { 14790 new_ipsq = to_ill->ill_phyint->phyint_ipsq; 14791 } 14792 14793 ASSERT(old_ipsq != NULL && new_ipsq != NULL); 14794 14795 /* 14796 * both groups are on the same ipsq. 14797 */ 14798 if (old_ipsq == new_ipsq) { 14799 rw_exit(&ipst->ips_ill_g_lock); 14800 return (0); 14801 } 14802 14803 cnt = old_ipsq->ipsq_refs << 1; 14804 ill_list_size = cnt * sizeof (ill_t *); 14805 ill_list = kmem_zalloc(ill_list_size, KM_NOSLEEP); 14806 if (ill_list == NULL) { 14807 rw_exit(&ipst->ips_ill_g_lock); 14808 return (ENOMEM); 14809 } 14810 cnt = ill_lock_ipsq_ills(old_ipsq, ill_list, cnt); 14811 14812 /* Need ipsq lock to enque messages on new ipsq or to become writer */ 14813 mutex_enter(&new_ipsq->ipsq_lock); 14814 if ((new_ipsq->ipsq_writer == NULL && 14815 new_ipsq->ipsq_current_ipif == NULL) || 14816 (new_ipsq->ipsq_writer == curthread)) { 14817 new_ipsq->ipsq_writer = curthread; 14818 new_ipsq->ipsq_reentry_cnt++; 14819 became_writer_on_new_sq = B_TRUE; 14820 } 14821 14822 /* 14823 * We are holding ill_g_lock as writer and all the ill locks of 14824 * the old ipsq. So the old_ipsq can't be looked up, and hence no new 14825 * message can land up on the old ipsq even though we don't hold the 14826 * ipsq_lock of the old_ipsq. Now move all messages to the newipsq. 14827 */ 14828 ill_move_to_new_ipsq(old_ipsq, new_ipsq, mp, q); 14829 14830 /* 14831 * now change the ipsq of all ills in the 'old_ipsq' to 'new_ipsq'. 14832 * 'new_ipsq' has been looked up, and it can't change its <ill-ipsq> 14833 * assocs. till we release the ill_g_lock, and hence it can't vanish. 14834 */ 14835 ill_merge_ipsq(old_ipsq, new_ipsq, ipst); 14836 14837 /* 14838 * Mark the new ipsq as needing a split since it is currently 14839 * being shared by more than 1 IPMP group. The split will 14840 * occur at the end of ipsq_exit 14841 */ 14842 new_ipsq->ipsq_split = B_TRUE; 14843 14844 /* Now release all the locks */ 14845 mutex_exit(&new_ipsq->ipsq_lock); 14846 ill_unlock_ills(ill_list, cnt); 14847 rw_exit(&ipst->ips_ill_g_lock); 14848 14849 kmem_free(ill_list, ill_list_size); 14850 14851 /* 14852 * If we succeeded in becoming writer on the new ipsq, then 14853 * drain the new ipsq and start processing all enqueued messages 14854 * including the current ioctl we are processing which is either 14855 * a set groupname or failover/failback. 14856 */ 14857 if (became_writer_on_new_sq) 14858 ipsq_exit(new_ipsq); 14859 14860 /* 14861 * syncq has been changed and all the messages have been moved. 14862 */ 14863 mutex_enter(&old_ipsq->ipsq_lock); 14864 old_ipsq->ipsq_current_ipif = NULL; 14865 old_ipsq->ipsq_current_ioctl = 0; 14866 old_ipsq->ipsq_current_done = B_TRUE; 14867 mutex_exit(&old_ipsq->ipsq_lock); 14868 return (EINPROGRESS); 14869 } 14870 14871 /* 14872 * Delete and add the loopback copy and non-loopback copy of 14873 * the BROADCAST ire corresponding to ill and addr. Used to 14874 * group broadcast ires together when ill becomes part of 14875 * a group. 14876 * 14877 * This function is also called when ill is leaving the group 14878 * so that the ires belonging to the group gets re-grouped. 14879 */ 14880 static void 14881 ill_bcast_delete_and_add(ill_t *ill, ipaddr_t addr) 14882 { 14883 ire_t *ire, *nire, *nire_next, *ire_head = NULL; 14884 ire_t **ire_ptpn = &ire_head; 14885 ip_stack_t *ipst = ill->ill_ipst; 14886 14887 /* 14888 * The loopback and non-loopback IREs are inserted in the order in which 14889 * they're found, on the basis that they are correctly ordered (loopback 14890 * first). 14891 */ 14892 for (;;) { 14893 ire = ire_ctable_lookup(addr, 0, IRE_BROADCAST, ill->ill_ipif, 14894 ALL_ZONES, NULL, MATCH_IRE_TYPE | MATCH_IRE_ILL, ipst); 14895 if (ire == NULL) 14896 break; 14897 14898 /* 14899 * we are passing in KM_SLEEP because it is not easy to 14900 * go back to a sane state in case of memory failure. 14901 */ 14902 nire = kmem_cache_alloc(ire_cache, KM_SLEEP); 14903 ASSERT(nire != NULL); 14904 bzero(nire, sizeof (ire_t)); 14905 /* 14906 * Don't use ire_max_frag directly since we don't 14907 * hold on to 'ire' until we add the new ire 'nire' and 14908 * we don't want the new ire to have a dangling reference 14909 * to 'ire'. The ire_max_frag of a broadcast ire must 14910 * be in sync with the ipif_mtu of the associate ipif. 14911 * For eg. this happens as a result of SIOCSLIFNAME, 14912 * SIOCSLIFLNKINFO or a DL_NOTE_SDU_SIZE inititated by 14913 * the driver. A change in ire_max_frag triggered as 14914 * as a result of path mtu discovery, or due to an 14915 * IP_IOC_IRE_ADVISE_NOREPLY from the transport or due a 14916 * route change -mtu command does not apply to broadcast ires. 14917 * 14918 * XXX We need a recovery strategy here if ire_init fails 14919 */ 14920 if (ire_init(nire, 14921 (uchar_t *)&ire->ire_addr, 14922 (uchar_t *)&ire->ire_mask, 14923 (uchar_t *)&ire->ire_src_addr, 14924 (uchar_t *)&ire->ire_gateway_addr, 14925 ire->ire_stq == NULL ? &ip_loopback_mtu : 14926 &ire->ire_ipif->ipif_mtu, 14927 ire->ire_nce, 14928 ire->ire_rfq, 14929 ire->ire_stq, 14930 ire->ire_type, 14931 ire->ire_ipif, 14932 ire->ire_cmask, 14933 ire->ire_phandle, 14934 ire->ire_ihandle, 14935 ire->ire_flags, 14936 &ire->ire_uinfo, 14937 NULL, 14938 NULL, 14939 ipst) == NULL) { 14940 cmn_err(CE_PANIC, "ire_init() failed"); 14941 } 14942 ire_delete(ire); 14943 ire_refrele(ire); 14944 14945 /* 14946 * The newly created IREs are inserted at the tail of the list 14947 * starting with ire_head. As we've just allocated them no one 14948 * knows about them so it's safe. 14949 */ 14950 *ire_ptpn = nire; 14951 ire_ptpn = &nire->ire_next; 14952 } 14953 14954 for (nire = ire_head; nire != NULL; nire = nire_next) { 14955 int error; 14956 ire_t *oire; 14957 /* unlink the IRE from our list before calling ire_add() */ 14958 nire_next = nire->ire_next; 14959 nire->ire_next = NULL; 14960 14961 /* ire_add adds the ire at the right place in the list */ 14962 oire = nire; 14963 error = ire_add(&nire, NULL, NULL, NULL, B_FALSE); 14964 ASSERT(error == 0); 14965 ASSERT(oire == nire); 14966 ire_refrele(nire); /* Held in ire_add */ 14967 } 14968 } 14969 14970 /* 14971 * This function is usually called when an ill is inserted in 14972 * a group and all the ipifs are already UP. As all the ipifs 14973 * are already UP, the broadcast ires have already been created 14974 * and been inserted. But, ire_add_v4 would not have grouped properly. 14975 * We need to re-group for the benefit of ip_wput_ire which 14976 * expects BROADCAST ires to be grouped properly to avoid sending 14977 * more than one copy of the broadcast packet per group. 14978 * 14979 * NOTE : We don't check for ill_ipif_up_count to be non-zero here 14980 * because when ipif_up_done ends up calling this, ires have 14981 * already been added before illgrp_insert i.e before ill_group 14982 * has been initialized. 14983 */ 14984 static void 14985 ill_group_bcast_for_xmit(ill_t *ill) 14986 { 14987 ill_group_t *illgrp; 14988 ipif_t *ipif; 14989 ipaddr_t addr; 14990 ipaddr_t net_mask; 14991 ipaddr_t subnet_netmask; 14992 14993 illgrp = ill->ill_group; 14994 14995 /* 14996 * This function is called even when an ill is deleted from 14997 * the group. Hence, illgrp could be null. 14998 */ 14999 if (illgrp != NULL && illgrp->illgrp_ill_count == 1) 15000 return; 15001 15002 /* 15003 * Delete all the BROADCAST ires matching this ill and add 15004 * them back. This time, ire_add_v4 should take care of 15005 * grouping them with others because ill is part of the 15006 * group. 15007 */ 15008 ill_bcast_delete_and_add(ill, 0); 15009 ill_bcast_delete_and_add(ill, INADDR_BROADCAST); 15010 15011 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 15012 15013 if ((ipif->ipif_lcl_addr != INADDR_ANY) && 15014 !(ipif->ipif_flags & IPIF_NOLOCAL)) { 15015 net_mask = ip_net_mask(ipif->ipif_lcl_addr); 15016 } else { 15017 net_mask = htonl(IN_CLASSA_NET); 15018 } 15019 addr = net_mask & ipif->ipif_subnet; 15020 ill_bcast_delete_and_add(ill, addr); 15021 ill_bcast_delete_and_add(ill, ~net_mask | addr); 15022 15023 subnet_netmask = ipif->ipif_net_mask; 15024 addr = ipif->ipif_subnet; 15025 ill_bcast_delete_and_add(ill, addr); 15026 ill_bcast_delete_and_add(ill, ~subnet_netmask | addr); 15027 } 15028 } 15029 15030 /* 15031 * This function is called from illgrp_delete when ill is being deleted 15032 * from the group. 15033 * 15034 * As ill is not there in the group anymore, any address belonging 15035 * to this ill should be cleared of IRE_MARK_NORECV. 15036 */ 15037 static void 15038 ill_clear_bcast_mark(ill_t *ill, ipaddr_t addr) 15039 { 15040 ire_t *ire; 15041 irb_t *irb; 15042 ip_stack_t *ipst = ill->ill_ipst; 15043 15044 ASSERT(ill->ill_group == NULL); 15045 15046 ire = ire_ctable_lookup(addr, 0, IRE_BROADCAST, ill->ill_ipif, 15047 ALL_ZONES, NULL, MATCH_IRE_TYPE | MATCH_IRE_ILL, ipst); 15048 15049 if (ire != NULL) { 15050 /* 15051 * IPMP and plumbing operations are serialized on the ipsq, so 15052 * no one will insert or delete a broadcast ire under our feet. 15053 */ 15054 irb = ire->ire_bucket; 15055 rw_enter(&irb->irb_lock, RW_READER); 15056 ire_refrele(ire); 15057 15058 for (; ire != NULL; ire = ire->ire_next) { 15059 if (ire->ire_addr != addr) 15060 break; 15061 if (ire_to_ill(ire) != ill) 15062 continue; 15063 15064 ASSERT(!(ire->ire_marks & IRE_MARK_CONDEMNED)); 15065 ire->ire_marks &= ~IRE_MARK_NORECV; 15066 } 15067 rw_exit(&irb->irb_lock); 15068 } 15069 } 15070 15071 /* 15072 * This function must be called only after the broadcast ires 15073 * have been grouped together. For a given address addr, nominate 15074 * only one of the ires whose interface is not FAILED or OFFLINE. 15075 * 15076 * This is also called when an ipif goes down, so that we can nominate 15077 * a different ire with the same address for receiving. 15078 */ 15079 static void 15080 ill_mark_bcast(ill_group_t *illgrp, ipaddr_t addr, ip_stack_t *ipst) 15081 { 15082 irb_t *irb; 15083 ire_t *ire; 15084 ire_t *ire1; 15085 ire_t *save_ire; 15086 ire_t **irep = NULL; 15087 boolean_t first = B_TRUE; 15088 ire_t *clear_ire = NULL; 15089 ire_t *start_ire = NULL; 15090 ire_t *new_lb_ire; 15091 ire_t *new_nlb_ire; 15092 boolean_t new_lb_ire_used = B_FALSE; 15093 boolean_t new_nlb_ire_used = B_FALSE; 15094 uint64_t match_flags; 15095 uint64_t phyi_flags; 15096 boolean_t fallback = B_FALSE; 15097 uint_t max_frag; 15098 15099 ire = ire_ctable_lookup(addr, 0, IRE_BROADCAST, NULL, ALL_ZONES, 15100 NULL, MATCH_IRE_TYPE, ipst); 15101 /* 15102 * We may not be able to find some ires if a previous 15103 * ire_create failed. This happens when an ipif goes 15104 * down and we are unable to create BROADCAST ires due 15105 * to memory failure. Thus, we have to check for NULL 15106 * below. This should handle the case for LOOPBACK, 15107 * POINTOPOINT and interfaces with some POINTOPOINT 15108 * logicals for which there are no BROADCAST ires. 15109 */ 15110 if (ire == NULL) 15111 return; 15112 /* 15113 * Currently IRE_BROADCASTS are deleted when an ipif 15114 * goes down which runs exclusively. Thus, setting 15115 * IRE_MARK_RCVD should not race with ire_delete marking 15116 * IRE_MARK_CONDEMNED. We grab the lock below just to 15117 * be consistent with other parts of the code that walks 15118 * a given bucket. 15119 */ 15120 save_ire = ire; 15121 irb = ire->ire_bucket; 15122 new_lb_ire = kmem_cache_alloc(ire_cache, KM_NOSLEEP); 15123 if (new_lb_ire == NULL) { 15124 ire_refrele(ire); 15125 return; 15126 } 15127 new_nlb_ire = kmem_cache_alloc(ire_cache, KM_NOSLEEP); 15128 if (new_nlb_ire == NULL) { 15129 ire_refrele(ire); 15130 kmem_cache_free(ire_cache, new_lb_ire); 15131 return; 15132 } 15133 IRB_REFHOLD(irb); 15134 rw_enter(&irb->irb_lock, RW_WRITER); 15135 /* 15136 * Get to the first ire matching the address and the 15137 * group. If the address does not match we are done 15138 * as we could not find the IRE. If the address matches 15139 * we should get to the first one matching the group. 15140 */ 15141 while (ire != NULL) { 15142 if (ire->ire_addr != addr || 15143 ire->ire_ipif->ipif_ill->ill_group == illgrp) { 15144 break; 15145 } 15146 ire = ire->ire_next; 15147 } 15148 match_flags = PHYI_FAILED | PHYI_INACTIVE; 15149 start_ire = ire; 15150 redo: 15151 while (ire != NULL && ire->ire_addr == addr && 15152 ire->ire_ipif->ipif_ill->ill_group == illgrp) { 15153 /* 15154 * The first ire for any address within a group 15155 * should always be the one with IRE_MARK_NORECV cleared 15156 * so that ip_wput_ire can avoid searching for one. 15157 * Note down the insertion point which will be used 15158 * later. 15159 */ 15160 if (first && (irep == NULL)) 15161 irep = ire->ire_ptpn; 15162 /* 15163 * PHYI_FAILED is set when the interface fails. 15164 * This interface might have become good, but the 15165 * daemon has not yet detected. We should still 15166 * not receive on this. PHYI_OFFLINE should never 15167 * be picked as this has been offlined and soon 15168 * be removed. 15169 */ 15170 phyi_flags = ire->ire_ipif->ipif_ill->ill_phyint->phyint_flags; 15171 if (phyi_flags & PHYI_OFFLINE) { 15172 ire->ire_marks |= IRE_MARK_NORECV; 15173 ire = ire->ire_next; 15174 continue; 15175 } 15176 if (phyi_flags & match_flags) { 15177 ire->ire_marks |= IRE_MARK_NORECV; 15178 ire = ire->ire_next; 15179 if ((phyi_flags & (PHYI_FAILED | PHYI_INACTIVE)) == 15180 PHYI_INACTIVE) { 15181 fallback = B_TRUE; 15182 } 15183 continue; 15184 } 15185 if (first) { 15186 /* 15187 * We will move this to the front of the list later 15188 * on. 15189 */ 15190 clear_ire = ire; 15191 ire->ire_marks &= ~IRE_MARK_NORECV; 15192 } else { 15193 ire->ire_marks |= IRE_MARK_NORECV; 15194 } 15195 first = B_FALSE; 15196 ire = ire->ire_next; 15197 } 15198 /* 15199 * If we never nominated anybody, try nominating at least 15200 * an INACTIVE, if we found one. Do it only once though. 15201 */ 15202 if (first && (match_flags == (PHYI_FAILED | PHYI_INACTIVE)) && 15203 fallback) { 15204 match_flags = PHYI_FAILED; 15205 ire = start_ire; 15206 irep = NULL; 15207 goto redo; 15208 } 15209 ire_refrele(save_ire); 15210 15211 /* 15212 * irep non-NULL indicates that we entered the while loop 15213 * above. If clear_ire is at the insertion point, we don't 15214 * have to do anything. clear_ire will be NULL if all the 15215 * interfaces are failed. 15216 * 15217 * We cannot unlink and reinsert the ire at the right place 15218 * in the list since there can be other walkers of this bucket. 15219 * Instead we delete and recreate the ire 15220 */ 15221 if (clear_ire != NULL && irep != NULL && *irep != clear_ire) { 15222 ire_t *clear_ire_stq = NULL; 15223 15224 bzero(new_lb_ire, sizeof (ire_t)); 15225 /* XXX We need a recovery strategy here. */ 15226 if (ire_init(new_lb_ire, 15227 (uchar_t *)&clear_ire->ire_addr, 15228 (uchar_t *)&clear_ire->ire_mask, 15229 (uchar_t *)&clear_ire->ire_src_addr, 15230 (uchar_t *)&clear_ire->ire_gateway_addr, 15231 &clear_ire->ire_max_frag, 15232 NULL, /* let ire_nce_init derive the resolver info */ 15233 clear_ire->ire_rfq, 15234 clear_ire->ire_stq, 15235 clear_ire->ire_type, 15236 clear_ire->ire_ipif, 15237 clear_ire->ire_cmask, 15238 clear_ire->ire_phandle, 15239 clear_ire->ire_ihandle, 15240 clear_ire->ire_flags, 15241 &clear_ire->ire_uinfo, 15242 NULL, 15243 NULL, 15244 ipst) == NULL) 15245 cmn_err(CE_PANIC, "ire_init() failed"); 15246 if (clear_ire->ire_stq == NULL) { 15247 ire_t *ire_next = clear_ire->ire_next; 15248 if (ire_next != NULL && 15249 ire_next->ire_stq != NULL && 15250 ire_next->ire_addr == clear_ire->ire_addr && 15251 ire_next->ire_ipif->ipif_ill == 15252 clear_ire->ire_ipif->ipif_ill) { 15253 clear_ire_stq = ire_next; 15254 15255 bzero(new_nlb_ire, sizeof (ire_t)); 15256 /* XXX We need a recovery strategy here. */ 15257 if (ire_init(new_nlb_ire, 15258 (uchar_t *)&clear_ire_stq->ire_addr, 15259 (uchar_t *)&clear_ire_stq->ire_mask, 15260 (uchar_t *)&clear_ire_stq->ire_src_addr, 15261 (uchar_t *)&clear_ire_stq->ire_gateway_addr, 15262 &clear_ire_stq->ire_max_frag, 15263 NULL, 15264 clear_ire_stq->ire_rfq, 15265 clear_ire_stq->ire_stq, 15266 clear_ire_stq->ire_type, 15267 clear_ire_stq->ire_ipif, 15268 clear_ire_stq->ire_cmask, 15269 clear_ire_stq->ire_phandle, 15270 clear_ire_stq->ire_ihandle, 15271 clear_ire_stq->ire_flags, 15272 &clear_ire_stq->ire_uinfo, 15273 NULL, 15274 NULL, 15275 ipst) == NULL) 15276 cmn_err(CE_PANIC, "ire_init() failed"); 15277 } 15278 } 15279 15280 /* 15281 * Delete the ire. We can't call ire_delete() since 15282 * we are holding the bucket lock. We can't release the 15283 * bucket lock since we can't allow irep to change. So just 15284 * mark it CONDEMNED. The IRB_REFRELE will delete the 15285 * ire from the list and do the refrele. 15286 */ 15287 clear_ire->ire_marks |= IRE_MARK_CONDEMNED; 15288 irb->irb_marks |= IRB_MARK_CONDEMNED; 15289 15290 if (clear_ire_stq != NULL && clear_ire_stq->ire_nce != NULL) { 15291 nce_fastpath_list_delete(clear_ire_stq->ire_nce); 15292 clear_ire_stq->ire_marks |= IRE_MARK_CONDEMNED; 15293 } 15294 15295 /* 15296 * Also take care of otherfields like ib/ob pkt count 15297 * etc. Need to dup them. ditto in ill_bcast_delete_and_add 15298 */ 15299 15300 /* Set the max_frag before adding the ire */ 15301 max_frag = *new_lb_ire->ire_max_fragp; 15302 new_lb_ire->ire_max_fragp = NULL; 15303 new_lb_ire->ire_max_frag = max_frag; 15304 15305 /* Add the new ire's. Insert at *irep */ 15306 new_lb_ire->ire_bucket = clear_ire->ire_bucket; 15307 ire1 = *irep; 15308 if (ire1 != NULL) 15309 ire1->ire_ptpn = &new_lb_ire->ire_next; 15310 new_lb_ire->ire_next = ire1; 15311 /* Link the new one in. */ 15312 new_lb_ire->ire_ptpn = irep; 15313 membar_producer(); 15314 *irep = new_lb_ire; 15315 new_lb_ire_used = B_TRUE; 15316 BUMP_IRE_STATS(ipst->ips_ire_stats_v4, ire_stats_inserted); 15317 new_lb_ire->ire_bucket->irb_ire_cnt++; 15318 DTRACE_PROBE3(ipif__incr__cnt, (ipif_t *), new_lb_ire->ire_ipif, 15319 (char *), "ire", (void *), new_lb_ire); 15320 new_lb_ire->ire_ipif->ipif_ire_cnt++; 15321 15322 if (clear_ire_stq != NULL) { 15323 /* Set the max_frag before adding the ire */ 15324 max_frag = *new_nlb_ire->ire_max_fragp; 15325 new_nlb_ire->ire_max_fragp = NULL; 15326 new_nlb_ire->ire_max_frag = max_frag; 15327 15328 new_nlb_ire->ire_bucket = clear_ire->ire_bucket; 15329 irep = &new_lb_ire->ire_next; 15330 /* Add the new ire. Insert at *irep */ 15331 ire1 = *irep; 15332 if (ire1 != NULL) 15333 ire1->ire_ptpn = &new_nlb_ire->ire_next; 15334 new_nlb_ire->ire_next = ire1; 15335 /* Link the new one in. */ 15336 new_nlb_ire->ire_ptpn = irep; 15337 membar_producer(); 15338 *irep = new_nlb_ire; 15339 new_nlb_ire_used = B_TRUE; 15340 BUMP_IRE_STATS(ipst->ips_ire_stats_v4, 15341 ire_stats_inserted); 15342 new_nlb_ire->ire_bucket->irb_ire_cnt++; 15343 DTRACE_PROBE3(ipif__incr__cnt, 15344 (ipif_t *), new_nlb_ire->ire_ipif, 15345 (char *), "ire", (void *), new_nlb_ire); 15346 new_nlb_ire->ire_ipif->ipif_ire_cnt++; 15347 DTRACE_PROBE3(ill__incr__cnt, 15348 (ill_t *), new_nlb_ire->ire_stq->q_ptr, 15349 (char *), "ire", (void *), new_nlb_ire); 15350 ((ill_t *)(new_nlb_ire->ire_stq->q_ptr))->ill_ire_cnt++; 15351 } 15352 } 15353 rw_exit(&irb->irb_lock); 15354 if (!new_lb_ire_used) 15355 kmem_cache_free(ire_cache, new_lb_ire); 15356 if (!new_nlb_ire_used) 15357 kmem_cache_free(ire_cache, new_nlb_ire); 15358 IRB_REFRELE(irb); 15359 } 15360 15361 /* 15362 * Whenever an ipif goes down we have to renominate a different 15363 * broadcast ire to receive. Whenever an ipif comes up, we need 15364 * to make sure that we have only one nominated to receive. 15365 */ 15366 static void 15367 ipif_renominate_bcast(ipif_t *ipif) 15368 { 15369 ill_t *ill = ipif->ipif_ill; 15370 ipaddr_t subnet_addr; 15371 ipaddr_t net_addr; 15372 ipaddr_t net_mask = 0; 15373 ipaddr_t subnet_netmask; 15374 ipaddr_t addr; 15375 ill_group_t *illgrp; 15376 ip_stack_t *ipst = ill->ill_ipst; 15377 15378 illgrp = ill->ill_group; 15379 /* 15380 * If this is the last ipif going down, it might take 15381 * the ill out of the group. In that case ipif_down -> 15382 * illgrp_delete takes care of doing the nomination. 15383 * ipif_down does not call for this case. 15384 */ 15385 ASSERT(illgrp != NULL); 15386 15387 /* There could not have been any ires associated with this */ 15388 if (ipif->ipif_subnet == 0) 15389 return; 15390 15391 ill_mark_bcast(illgrp, 0, ipst); 15392 ill_mark_bcast(illgrp, INADDR_BROADCAST, ipst); 15393 15394 if ((ipif->ipif_lcl_addr != INADDR_ANY) && 15395 !(ipif->ipif_flags & IPIF_NOLOCAL)) { 15396 net_mask = ip_net_mask(ipif->ipif_lcl_addr); 15397 } else { 15398 net_mask = htonl(IN_CLASSA_NET); 15399 } 15400 addr = net_mask & ipif->ipif_subnet; 15401 ill_mark_bcast(illgrp, addr, ipst); 15402 15403 net_addr = ~net_mask | addr; 15404 ill_mark_bcast(illgrp, net_addr, ipst); 15405 15406 subnet_netmask = ipif->ipif_net_mask; 15407 addr = ipif->ipif_subnet; 15408 ill_mark_bcast(illgrp, addr, ipst); 15409 15410 subnet_addr = ~subnet_netmask | addr; 15411 ill_mark_bcast(illgrp, subnet_addr, ipst); 15412 } 15413 15414 /* 15415 * Whenever we form or delete ill groups, we need to nominate one set of 15416 * BROADCAST ires for receiving in the group. 15417 * 15418 * 1) When ipif_up_done -> ilgrp_insert calls this function, BROADCAST ires 15419 * have been added, but ill_ipif_up_count is 0. Thus, we don't assert 15420 * for ill_ipif_up_count to be non-zero. This is the only case where 15421 * ill_ipif_up_count is zero and we would still find the ires. 15422 * 15423 * 2) ip_sioctl_group_name/ifgrp_insert calls this function, at least one 15424 * ipif is UP and we just have to do the nomination. 15425 * 15426 * 3) When ill_handoff_responsibility calls us, some ill has been removed 15427 * from the group. So, we have to do the nomination. 15428 * 15429 * Because of (3), there could be just one ill in the group. But we have 15430 * to nominate still as IRE_MARK_NORCV may have been marked on this. 15431 * Thus, this function does not optimize when there is only one ill as 15432 * it is not correct for (3). 15433 */ 15434 static void 15435 ill_nominate_bcast_rcv(ill_group_t *illgrp) 15436 { 15437 ill_t *ill; 15438 ipif_t *ipif; 15439 ipaddr_t subnet_addr; 15440 ipaddr_t prev_subnet_addr = 0; 15441 ipaddr_t net_addr; 15442 ipaddr_t prev_net_addr = 0; 15443 ipaddr_t net_mask = 0; 15444 ipaddr_t subnet_netmask; 15445 ipaddr_t addr; 15446 ip_stack_t *ipst; 15447 15448 /* 15449 * When the last memeber is leaving, there is nothing to 15450 * nominate. 15451 */ 15452 if (illgrp->illgrp_ill_count == 0) { 15453 ASSERT(illgrp->illgrp_ill == NULL); 15454 return; 15455 } 15456 15457 ill = illgrp->illgrp_ill; 15458 ASSERT(!ill->ill_isv6); 15459 ipst = ill->ill_ipst; 15460 /* 15461 * We assume that ires with same address and belonging to the 15462 * same group, has been grouped together. Nominating a *single* 15463 * ill in the group for sending and receiving broadcast is done 15464 * by making sure that the first BROADCAST ire (which will be 15465 * the one returned by ire_ctable_lookup for ip_rput and the 15466 * one that will be used in ip_wput_ire) will be the one that 15467 * will not have IRE_MARK_NORECV set. 15468 * 15469 * 1) ip_rput checks and discards packets received on ires marked 15470 * with IRE_MARK_NORECV. Thus, we don't send up duplicate 15471 * broadcast packets. We need to clear IRE_MARK_NORECV on the 15472 * first ire in the group for every broadcast address in the group. 15473 * ip_rput will accept packets only on the first ire i.e only 15474 * one copy of the ill. 15475 * 15476 * 2) ip_wput_ire needs to send out just one copy of the broadcast 15477 * packet for the whole group. It needs to send out on the ill 15478 * whose ire has not been marked with IRE_MARK_NORECV. If it sends 15479 * on the one marked with IRE_MARK_NORECV, ip_rput will accept 15480 * the copy echoed back on other port where the ire is not marked 15481 * with IRE_MARK_NORECV. 15482 * 15483 * Note that we just need to have the first IRE either loopback or 15484 * non-loopback (either of them may not exist if ire_create failed 15485 * during ipif_down) with IRE_MARK_NORECV not set. ip_rput will 15486 * always hit the first one and hence will always accept one copy. 15487 * 15488 * We have a broadcast ire per ill for all the unique prefixes 15489 * hosted on that ill. As we don't have a way of knowing the 15490 * unique prefixes on a given ill and hence in the whole group, 15491 * we just call ill_mark_bcast on all the prefixes that exist 15492 * in the group. For the common case of one prefix, the code 15493 * below optimizes by remebering the last address used for 15494 * markng. In the case of multiple prefixes, this will still 15495 * optimize depending the order of prefixes. 15496 * 15497 * The only unique address across the whole group is 0.0.0.0 and 15498 * 255.255.255.255 and thus we call only once. ill_mark_bcast enables 15499 * the first ire in the bucket for receiving and disables the 15500 * others. 15501 */ 15502 ill_mark_bcast(illgrp, 0, ipst); 15503 ill_mark_bcast(illgrp, INADDR_BROADCAST, ipst); 15504 for (; ill != NULL; ill = ill->ill_group_next) { 15505 15506 for (ipif = ill->ill_ipif; ipif != NULL; 15507 ipif = ipif->ipif_next) { 15508 15509 if (!(ipif->ipif_flags & IPIF_UP) || 15510 ipif->ipif_subnet == 0) { 15511 continue; 15512 } 15513 if ((ipif->ipif_lcl_addr != INADDR_ANY) && 15514 !(ipif->ipif_flags & IPIF_NOLOCAL)) { 15515 net_mask = ip_net_mask(ipif->ipif_lcl_addr); 15516 } else { 15517 net_mask = htonl(IN_CLASSA_NET); 15518 } 15519 addr = net_mask & ipif->ipif_subnet; 15520 if (prev_net_addr == 0 || prev_net_addr != addr) { 15521 ill_mark_bcast(illgrp, addr, ipst); 15522 net_addr = ~net_mask | addr; 15523 ill_mark_bcast(illgrp, net_addr, ipst); 15524 } 15525 prev_net_addr = addr; 15526 15527 subnet_netmask = ipif->ipif_net_mask; 15528 addr = ipif->ipif_subnet; 15529 if (prev_subnet_addr == 0 || 15530 prev_subnet_addr != addr) { 15531 ill_mark_bcast(illgrp, addr, ipst); 15532 subnet_addr = ~subnet_netmask | addr; 15533 ill_mark_bcast(illgrp, subnet_addr, ipst); 15534 } 15535 prev_subnet_addr = addr; 15536 } 15537 } 15538 } 15539 15540 /* 15541 * This function is called while forming ill groups. 15542 * 15543 * Currently, we handle only allmulti groups. We want to join 15544 * allmulti on only one of the ills in the groups. In future, 15545 * when we have link aggregation, we may have to join normal 15546 * multicast groups on multiple ills as switch does inbound load 15547 * balancing. Following are the functions that calls this 15548 * function : 15549 * 15550 * 1) ill_recover_multicast : Interface is coming back UP. 15551 * When the first ipif comes back UP, ipif_up_done/ipif_up_done_v6 15552 * will call ill_recover_multicast to recover all the multicast 15553 * groups. We need to make sure that only one member is joined 15554 * in the ill group. 15555 * 15556 * 2) ip_addmulti/ip_addmulti_v6 : ill groups has already been formed. 15557 * Somebody is joining allmulti. We need to make sure that only one 15558 * member is joined in the group. 15559 * 15560 * 3) illgrp_insert : If allmulti has already joined, we need to make 15561 * sure that only one member is joined in the group. 15562 * 15563 * 4) ip_delmulti/ip_delmulti_v6 : Somebody in the group is leaving 15564 * allmulti who we have nominated. We need to pick someother ill. 15565 * 15566 * 5) illgrp_delete : The ill we nominated is leaving the group, 15567 * we need to pick a new ill to join the group. 15568 * 15569 * For (1), (2), (5) - we just have to check whether there is 15570 * a good ill joined in the group. If we could not find any ills 15571 * joined the group, we should join. 15572 * 15573 * For (4), the one that was nominated to receive, left the group. 15574 * There could be nobody joined in the group when this function is 15575 * called. 15576 * 15577 * For (3) - we need to explicitly check whether there are multiple 15578 * ills joined in the group. 15579 * 15580 * For simplicity, we don't differentiate any of the above cases. We 15581 * just leave the group if it is joined on any of them and join on 15582 * the first good ill. 15583 */ 15584 int 15585 ill_nominate_mcast_rcv(ill_group_t *illgrp) 15586 { 15587 ilm_t *ilm; 15588 ill_t *ill; 15589 ill_t *fallback_inactive_ill = NULL; 15590 ill_t *fallback_failed_ill = NULL; 15591 int ret = 0; 15592 15593 /* 15594 * Leave the allmulti on all the ills and start fresh. 15595 */ 15596 for (ill = illgrp->illgrp_ill; ill != NULL; 15597 ill = ill->ill_group_next) { 15598 if (ill->ill_join_allmulti) 15599 (void) ip_leave_allmulti(ill->ill_ipif); 15600 } 15601 15602 /* 15603 * Choose a good ill. Fallback to inactive or failed if 15604 * none available. We need to fallback to FAILED in the 15605 * case where we have 2 interfaces in a group - where 15606 * one of them is failed and another is a good one and 15607 * the good one (not marked inactive) is leaving the group. 15608 */ 15609 ret = 0; 15610 for (ill = illgrp->illgrp_ill; ill != NULL; 15611 ill = ill->ill_group_next) { 15612 /* Never pick an offline interface */ 15613 if (ill->ill_phyint->phyint_flags & PHYI_OFFLINE) 15614 continue; 15615 15616 if (ill->ill_phyint->phyint_flags & PHYI_FAILED) { 15617 fallback_failed_ill = ill; 15618 continue; 15619 } 15620 if (ill->ill_phyint->phyint_flags & PHYI_INACTIVE) { 15621 fallback_inactive_ill = ill; 15622 continue; 15623 } 15624 for (ilm = ill->ill_ilm; ilm != NULL; ilm = ilm->ilm_next) { 15625 if (IN6_IS_ADDR_UNSPECIFIED(&ilm->ilm_v6addr)) { 15626 ret = ip_join_allmulti(ill->ill_ipif); 15627 /* 15628 * ip_join_allmulti can fail because of memory 15629 * failures. So, make sure we join at least 15630 * on one ill. 15631 */ 15632 if (ill->ill_join_allmulti) 15633 return (0); 15634 } 15635 } 15636 } 15637 if (ret != 0) { 15638 /* 15639 * If we tried nominating above and failed to do so, 15640 * return error. We might have tried multiple times. 15641 * But, return the latest error. 15642 */ 15643 return (ret); 15644 } 15645 if ((ill = fallback_inactive_ill) != NULL) { 15646 for (ilm = ill->ill_ilm; ilm != NULL; ilm = ilm->ilm_next) { 15647 if (IN6_IS_ADDR_UNSPECIFIED(&ilm->ilm_v6addr)) { 15648 ret = ip_join_allmulti(ill->ill_ipif); 15649 return (ret); 15650 } 15651 } 15652 } else if ((ill = fallback_failed_ill) != NULL) { 15653 for (ilm = ill->ill_ilm; ilm != NULL; ilm = ilm->ilm_next) { 15654 if (IN6_IS_ADDR_UNSPECIFIED(&ilm->ilm_v6addr)) { 15655 ret = ip_join_allmulti(ill->ill_ipif); 15656 return (ret); 15657 } 15658 } 15659 } 15660 return (0); 15661 } 15662 15663 /* 15664 * This function is called from illgrp_delete after it is 15665 * deleted from the group to reschedule responsibilities 15666 * to a different ill. 15667 */ 15668 static void 15669 ill_handoff_responsibility(ill_t *ill, ill_group_t *illgrp) 15670 { 15671 ilm_t *ilm; 15672 ipif_t *ipif; 15673 ipaddr_t subnet_addr; 15674 ipaddr_t net_addr; 15675 ipaddr_t net_mask = 0; 15676 ipaddr_t subnet_netmask; 15677 ipaddr_t addr; 15678 ip_stack_t *ipst = ill->ill_ipst; 15679 15680 ASSERT(ill->ill_group == NULL); 15681 /* 15682 * Broadcast Responsibility: 15683 * 15684 * 1. If this ill has been nominated for receiving broadcast 15685 * packets, we need to find a new one. Before we find a new 15686 * one, we need to re-group the ires that are part of this new 15687 * group (assumed by ill_nominate_bcast_rcv). We do this by 15688 * calling ill_group_bcast_for_xmit(ill) which will do the right 15689 * thing for us. 15690 * 15691 * 2. If this ill was not nominated for receiving broadcast 15692 * packets, we need to clear the IRE_MARK_NORECV flag 15693 * so that we continue to send up broadcast packets. 15694 */ 15695 if (!ill->ill_isv6) { 15696 /* 15697 * Case 1 above : No optimization here. Just redo the 15698 * nomination. 15699 */ 15700 ill_group_bcast_for_xmit(ill); 15701 ill_nominate_bcast_rcv(illgrp); 15702 15703 /* 15704 * Case 2 above : Lookup and clear IRE_MARK_NORECV. 15705 */ 15706 ill_clear_bcast_mark(ill, 0); 15707 ill_clear_bcast_mark(ill, INADDR_BROADCAST); 15708 15709 for (ipif = ill->ill_ipif; ipif != NULL; 15710 ipif = ipif->ipif_next) { 15711 15712 if (!(ipif->ipif_flags & IPIF_UP) || 15713 ipif->ipif_subnet == 0) { 15714 continue; 15715 } 15716 if ((ipif->ipif_lcl_addr != INADDR_ANY) && 15717 !(ipif->ipif_flags & IPIF_NOLOCAL)) { 15718 net_mask = ip_net_mask(ipif->ipif_lcl_addr); 15719 } else { 15720 net_mask = htonl(IN_CLASSA_NET); 15721 } 15722 addr = net_mask & ipif->ipif_subnet; 15723 ill_clear_bcast_mark(ill, addr); 15724 15725 net_addr = ~net_mask | addr; 15726 ill_clear_bcast_mark(ill, net_addr); 15727 15728 subnet_netmask = ipif->ipif_net_mask; 15729 addr = ipif->ipif_subnet; 15730 ill_clear_bcast_mark(ill, addr); 15731 15732 subnet_addr = ~subnet_netmask | addr; 15733 ill_clear_bcast_mark(ill, subnet_addr); 15734 } 15735 } 15736 15737 /* 15738 * Multicast Responsibility. 15739 * 15740 * If we have joined allmulti on this one, find a new member 15741 * in the group to join allmulti. As this ill is already part 15742 * of allmulti, we don't have to join on this one. 15743 * 15744 * If we have not joined allmulti on this one, there is no 15745 * responsibility to handoff. But we need to take new 15746 * responsibility i.e, join allmulti on this one if we need 15747 * to. 15748 */ 15749 if (ill->ill_join_allmulti) { 15750 (void) ill_nominate_mcast_rcv(illgrp); 15751 } else { 15752 for (ilm = ill->ill_ilm; ilm != NULL; ilm = ilm->ilm_next) { 15753 if (IN6_IS_ADDR_UNSPECIFIED(&ilm->ilm_v6addr)) { 15754 (void) ip_join_allmulti(ill->ill_ipif); 15755 break; 15756 } 15757 } 15758 } 15759 15760 /* 15761 * We intentionally do the flushing of IRE_CACHES only matching 15762 * on the ill and not on groups. Note that we are already deleted 15763 * from the group. 15764 * 15765 * This will make sure that all IRE_CACHES whose stq is pointing 15766 * at ill_wq or ire_ipif->ipif_ill pointing at this ill will get 15767 * deleted and IRE_CACHES that are not pointing at this ill will 15768 * be left alone. 15769 */ 15770 ire_walk_ill(MATCH_IRE_ILL | MATCH_IRE_TYPE, IRE_CACHE, 15771 illgrp_cache_delete, ill, ill); 15772 15773 /* 15774 * Some conn may have cached one of the IREs deleted above. By removing 15775 * the ire reference, we clean up the extra reference to the ill held in 15776 * ire->ire_stq. 15777 */ 15778 ipcl_walk(conn_cleanup_stale_ire, NULL, ipst); 15779 15780 /* 15781 * Re-do source address selection for all the members in the 15782 * group, if they borrowed source address from one of the ipifs 15783 * in this ill. 15784 */ 15785 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 15786 if (ill->ill_isv6) { 15787 ipif_update_other_ipifs_v6(ipif, illgrp); 15788 } else { 15789 ipif_update_other_ipifs(ipif, illgrp); 15790 } 15791 } 15792 } 15793 15794 /* 15795 * Delete the ill from the group. The caller makes sure that it is 15796 * in a group and it okay to delete from the group. So, we always 15797 * delete here. 15798 */ 15799 static void 15800 illgrp_delete(ill_t *ill) 15801 { 15802 ill_group_t *illgrp; 15803 ill_group_t *tmpg; 15804 ill_t *tmp_ill; 15805 ip_stack_t *ipst = ill->ill_ipst; 15806 15807 /* 15808 * Reset illgrp_ill_schednext if it was pointing at us. 15809 * We need to do this before we set ill_group to NULL. 15810 */ 15811 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 15812 mutex_enter(&ill->ill_lock); 15813 15814 illgrp_reset_schednext(ill); 15815 15816 illgrp = ill->ill_group; 15817 15818 /* Delete the ill from illgrp. */ 15819 if (illgrp->illgrp_ill == ill) { 15820 illgrp->illgrp_ill = ill->ill_group_next; 15821 } else { 15822 tmp_ill = illgrp->illgrp_ill; 15823 while (tmp_ill->ill_group_next != ill) { 15824 tmp_ill = tmp_ill->ill_group_next; 15825 ASSERT(tmp_ill != NULL); 15826 } 15827 tmp_ill->ill_group_next = ill->ill_group_next; 15828 } 15829 ill->ill_group = NULL; 15830 ill->ill_group_next = NULL; 15831 15832 illgrp->illgrp_ill_count--; 15833 mutex_exit(&ill->ill_lock); 15834 rw_exit(&ipst->ips_ill_g_lock); 15835 15836 /* 15837 * As this ill is leaving the group, we need to hand off 15838 * the responsibilities to the other ills in the group, if 15839 * this ill had some responsibilities. 15840 */ 15841 15842 ill_handoff_responsibility(ill, illgrp); 15843 15844 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 15845 15846 if (illgrp->illgrp_ill_count == 0) { 15847 15848 ASSERT(illgrp->illgrp_ill == NULL); 15849 if (ill->ill_isv6) { 15850 if (illgrp == ipst->ips_illgrp_head_v6) { 15851 ipst->ips_illgrp_head_v6 = illgrp->illgrp_next; 15852 } else { 15853 tmpg = ipst->ips_illgrp_head_v6; 15854 while (tmpg->illgrp_next != illgrp) { 15855 tmpg = tmpg->illgrp_next; 15856 ASSERT(tmpg != NULL); 15857 } 15858 tmpg->illgrp_next = illgrp->illgrp_next; 15859 } 15860 } else { 15861 if (illgrp == ipst->ips_illgrp_head_v4) { 15862 ipst->ips_illgrp_head_v4 = illgrp->illgrp_next; 15863 } else { 15864 tmpg = ipst->ips_illgrp_head_v4; 15865 while (tmpg->illgrp_next != illgrp) { 15866 tmpg = tmpg->illgrp_next; 15867 ASSERT(tmpg != NULL); 15868 } 15869 tmpg->illgrp_next = illgrp->illgrp_next; 15870 } 15871 } 15872 mutex_destroy(&illgrp->illgrp_lock); 15873 mi_free(illgrp); 15874 } 15875 rw_exit(&ipst->ips_ill_g_lock); 15876 15877 /* 15878 * Even though the ill is out of the group its not necessary 15879 * to set ipsq_split as TRUE as the ipifs could be down temporarily 15880 * We will split the ipsq when phyint_groupname is set to NULL. 15881 */ 15882 15883 /* 15884 * Send a routing sockets message if we are deleting from 15885 * groups with names. 15886 */ 15887 if (ill->ill_phyint->phyint_groupname_len != 0) 15888 ip_rts_ifmsg(ill->ill_ipif); 15889 } 15890 15891 /* 15892 * Re-do source address selection. This is normally called when 15893 * an ill joins the group or when a non-NOLOCAL/DEPRECATED/ANYCAST 15894 * ipif comes up. 15895 */ 15896 void 15897 ill_update_source_selection(ill_t *ill) 15898 { 15899 ipif_t *ipif; 15900 15901 ASSERT(IAM_WRITER_ILL(ill)); 15902 15903 if (ill->ill_group != NULL) 15904 ill = ill->ill_group->illgrp_ill; 15905 15906 for (; ill != NULL; ill = ill->ill_group_next) { 15907 for (ipif = ill->ill_ipif; ipif != NULL; 15908 ipif = ipif->ipif_next) { 15909 if (ill->ill_isv6) 15910 ipif_recreate_interface_routes_v6(NULL, ipif); 15911 else 15912 ipif_recreate_interface_routes(NULL, ipif); 15913 } 15914 } 15915 } 15916 15917 /* 15918 * Insert ill in a group headed by illgrp_head. The caller can either 15919 * pass a groupname in which case we search for a group with the 15920 * same name to insert in or pass a group to insert in. This function 15921 * would only search groups with names. 15922 * 15923 * NOTE : The caller should make sure that there is at least one ipif 15924 * UP on this ill so that illgrp_scheduler can pick this ill 15925 * for outbound packets. If ill_ipif_up_count is zero, we have 15926 * already sent a DL_UNBIND to the driver and we don't want to 15927 * send anymore packets. We don't assert for ipif_up_count 15928 * to be greater than zero, because ipif_up_done wants to call 15929 * this function before bumping up the ipif_up_count. See 15930 * ipif_up_done() for details. 15931 */ 15932 int 15933 illgrp_insert(ill_group_t **illgrp_head, ill_t *ill, char *groupname, 15934 ill_group_t *grp_to_insert, boolean_t ipif_is_coming_up) 15935 { 15936 ill_group_t *illgrp; 15937 ill_t *prev_ill; 15938 phyint_t *phyi; 15939 ip_stack_t *ipst = ill->ill_ipst; 15940 15941 ASSERT(ill->ill_group == NULL); 15942 15943 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 15944 mutex_enter(&ill->ill_lock); 15945 15946 if (groupname != NULL) { 15947 /* 15948 * Look for a group with a matching groupname to insert. 15949 */ 15950 for (illgrp = *illgrp_head; illgrp != NULL; 15951 illgrp = illgrp->illgrp_next) { 15952 15953 ill_t *tmp_ill; 15954 15955 /* 15956 * If we have an ill_group_t in the list which has 15957 * no ill_t assigned then we must be in the process of 15958 * removing this group. We skip this as illgrp_delete() 15959 * will remove it from the list. 15960 */ 15961 if ((tmp_ill = illgrp->illgrp_ill) == NULL) { 15962 ASSERT(illgrp->illgrp_ill_count == 0); 15963 continue; 15964 } 15965 15966 ASSERT(tmp_ill->ill_phyint != NULL); 15967 phyi = tmp_ill->ill_phyint; 15968 /* 15969 * Look at groups which has names only. 15970 */ 15971 if (phyi->phyint_groupname_len == 0) 15972 continue; 15973 /* 15974 * Names are stored in the phyint common to both 15975 * IPv4 and IPv6. 15976 */ 15977 if (mi_strcmp(phyi->phyint_groupname, 15978 groupname) == 0) { 15979 break; 15980 } 15981 } 15982 } else { 15983 /* 15984 * If the caller passes in a NULL "grp_to_insert", we 15985 * allocate one below and insert this singleton. 15986 */ 15987 illgrp = grp_to_insert; 15988 } 15989 15990 ill->ill_group_next = NULL; 15991 15992 if (illgrp == NULL) { 15993 illgrp = (ill_group_t *)mi_zalloc(sizeof (ill_group_t)); 15994 if (illgrp == NULL) { 15995 return (ENOMEM); 15996 } 15997 illgrp->illgrp_next = *illgrp_head; 15998 *illgrp_head = illgrp; 15999 illgrp->illgrp_ill = ill; 16000 illgrp->illgrp_ill_count = 1; 16001 ill->ill_group = illgrp; 16002 /* 16003 * Used in illgrp_scheduler to protect multiple threads 16004 * from traversing the list. 16005 */ 16006 mutex_init(&illgrp->illgrp_lock, NULL, MUTEX_DEFAULT, 0); 16007 } else { 16008 ASSERT(ill->ill_net_type == 16009 illgrp->illgrp_ill->ill_net_type); 16010 ASSERT(ill->ill_type == illgrp->illgrp_ill->ill_type); 16011 16012 /* Insert ill at tail of this group */ 16013 prev_ill = illgrp->illgrp_ill; 16014 while (prev_ill->ill_group_next != NULL) 16015 prev_ill = prev_ill->ill_group_next; 16016 prev_ill->ill_group_next = ill; 16017 ill->ill_group = illgrp; 16018 illgrp->illgrp_ill_count++; 16019 /* 16020 * Inherit group properties. Currently only forwarding 16021 * is the property we try to keep the same with all the 16022 * ills. When there are more, we will abstract this into 16023 * a function. 16024 */ 16025 ill->ill_flags &= ~ILLF_ROUTER; 16026 ill->ill_flags |= (illgrp->illgrp_ill->ill_flags & ILLF_ROUTER); 16027 } 16028 mutex_exit(&ill->ill_lock); 16029 rw_exit(&ipst->ips_ill_g_lock); 16030 16031 /* 16032 * 1) When ipif_up_done() calls this function, ipif_up_count 16033 * may be zero as it has not yet been bumped. But the ires 16034 * have already been added. So, we do the nomination here 16035 * itself. But, when ip_sioctl_groupname calls this, it checks 16036 * for ill_ipif_up_count != 0. Thus we don't check for 16037 * ill_ipif_up_count here while nominating broadcast ires for 16038 * receive. 16039 * 16040 * 2) Similarly, we need to call ill_group_bcast_for_xmit here 16041 * to group them properly as ire_add() has already happened 16042 * in the ipif_up_done() case. For ip_sioctl_groupname/ifgrp_insert 16043 * case, we need to do it here anyway. 16044 */ 16045 if (!ill->ill_isv6) { 16046 ill_group_bcast_for_xmit(ill); 16047 ill_nominate_bcast_rcv(illgrp); 16048 } 16049 16050 if (!ipif_is_coming_up) { 16051 /* 16052 * When ipif_up_done() calls this function, the multicast 16053 * groups have not been joined yet. So, there is no point in 16054 * nomination. ip_join_allmulti will handle groups when 16055 * ill_recover_multicast is called from ipif_up_done() later. 16056 */ 16057 (void) ill_nominate_mcast_rcv(illgrp); 16058 /* 16059 * ipif_up_done calls ill_update_source_selection 16060 * anyway. Moreover, we don't want to re-create 16061 * interface routes while ipif_up_done() still has reference 16062 * to them. Refer to ipif_up_done() for more details. 16063 */ 16064 ill_update_source_selection(ill); 16065 } 16066 16067 /* 16068 * Send a routing sockets message if we are inserting into 16069 * groups with names. 16070 */ 16071 if (groupname != NULL) 16072 ip_rts_ifmsg(ill->ill_ipif); 16073 return (0); 16074 } 16075 16076 /* 16077 * Return the first phyint matching the groupname. There could 16078 * be more than one when there are ill groups. 16079 * 16080 * If 'usable' is set, then we exclude ones that are marked with any of 16081 * (PHYI_FAILED|PHYI_OFFLINE|PHYI_INACTIVE). 16082 * Needs work: called only from ip_sioctl_groupname and from the ipmp/netinfo 16083 * emulation of ipmp. 16084 */ 16085 phyint_t * 16086 phyint_lookup_group(char *groupname, boolean_t usable, ip_stack_t *ipst) 16087 { 16088 phyint_t *phyi; 16089 16090 ASSERT(RW_LOCK_HELD(&ipst->ips_ill_g_lock)); 16091 /* 16092 * Group names are stored in the phyint - a common structure 16093 * to both IPv4 and IPv6. 16094 */ 16095 phyi = avl_first(&ipst->ips_phyint_g_list->phyint_list_avl_by_index); 16096 for (; phyi != NULL; 16097 phyi = avl_walk(&ipst->ips_phyint_g_list->phyint_list_avl_by_index, 16098 phyi, AVL_AFTER)) { 16099 if (phyi->phyint_groupname_len == 0) 16100 continue; 16101 /* 16102 * Skip the ones that should not be used since the callers 16103 * sometime use this for sending packets. 16104 */ 16105 if (usable && (phyi->phyint_flags & 16106 (PHYI_FAILED|PHYI_OFFLINE|PHYI_INACTIVE))) 16107 continue; 16108 16109 ASSERT(phyi->phyint_groupname != NULL); 16110 if (mi_strcmp(groupname, phyi->phyint_groupname) == 0) 16111 return (phyi); 16112 } 16113 return (NULL); 16114 } 16115 16116 16117 /* 16118 * Return the first usable phyint matching the group index. By 'usable' 16119 * we exclude ones that are marked ununsable with any of 16120 * (PHYI_FAILED|PHYI_OFFLINE|PHYI_INACTIVE). 16121 * 16122 * Used only for the ipmp/netinfo emulation of ipmp. 16123 */ 16124 phyint_t * 16125 phyint_lookup_group_ifindex(uint_t group_ifindex, ip_stack_t *ipst) 16126 { 16127 phyint_t *phyi; 16128 16129 ASSERT(RW_LOCK_HELD(&ipst->ips_ill_g_lock)); 16130 16131 if (!ipst->ips_ipmp_hook_emulation) 16132 return (NULL); 16133 16134 /* 16135 * Group indicies are stored in the phyint - a common structure 16136 * to both IPv4 and IPv6. 16137 */ 16138 phyi = avl_first(&ipst->ips_phyint_g_list->phyint_list_avl_by_index); 16139 for (; phyi != NULL; 16140 phyi = avl_walk(&ipst->ips_phyint_g_list->phyint_list_avl_by_index, 16141 phyi, AVL_AFTER)) { 16142 /* Ignore the ones that do not have a group */ 16143 if (phyi->phyint_groupname_len == 0) 16144 continue; 16145 16146 ASSERT(phyi->phyint_group_ifindex != 0); 16147 /* 16148 * Skip the ones that should not be used since the callers 16149 * sometime use this for sending packets. 16150 */ 16151 if (phyi->phyint_flags & 16152 (PHYI_FAILED|PHYI_OFFLINE|PHYI_INACTIVE)) 16153 continue; 16154 if (phyi->phyint_group_ifindex == group_ifindex) 16155 return (phyi); 16156 } 16157 return (NULL); 16158 } 16159 16160 /* 16161 * MT notes on creation and deletion of IPMP groups 16162 * 16163 * Creation and deletion of IPMP groups introduce the need to merge or 16164 * split the associated serialization objects i.e the ipsq's. Normally all 16165 * the ills in an IPMP group would map to a single ipsq. If IPMP is not enabled 16166 * an ill-pair(v4, v6) i.e. phyint would map to a single ipsq. However during 16167 * the execution of the SIOCSLIFGROUPNAME command the picture changes. There 16168 * is a need to change the <ill-ipsq> association and we have to operate on both 16169 * the source and destination IPMP groups. For eg. attempting to set the 16170 * groupname of hme0 to mpk17-85 when it already belongs to mpk17-84 has to 16171 * handle 2 IPMP groups and 2 ipsqs. All the ills belonging to either of the 16172 * source or destination IPMP group are mapped to a single ipsq for executing 16173 * the SIOCSLIFGROUPNAME command. This is termed as a merge of the ipsq's. 16174 * The <ill-ipsq> mapping is restored back to normal at a later point. This is 16175 * termed as a split of the ipsq. The converse of the merge i.e. a split of the 16176 * ipsq happens while unwinding from ipsq_exit. If at least 1 set groupname 16177 * occurred on the ipsq, then the ipsq_split flag is set. This indicates the 16178 * ipsq has to be examined for redoing the <ill-ipsq> associations. 16179 * 16180 * In the above example the ioctl handling code locates the current ipsq of hme0 16181 * which is ipsq(mpk17-84). It then enters the above ipsq immediately or 16182 * eventually (after queueing the ioctl in ipsq(mpk17-84)). Then it locates 16183 * the destination ipsq which is ipsq(mpk17-85) and merges the source ipsq into 16184 * the destination ipsq. If the destination ipsq is not busy, it also enters 16185 * the destination ipsq exclusively. Now the actual groupname setting operation 16186 * can proceed. If the destination ipsq is busy, the operation is enqueued 16187 * on the destination (merged) ipsq and will be handled in the unwind from 16188 * ipsq_exit. 16189 * 16190 * To prevent other threads accessing the ill while the group name change is 16191 * in progres, we bring down the ipifs which also removes the ill from the 16192 * group. The group is changed in phyint and when the first ipif on the ill 16193 * is brought up, the ill is inserted into the right IPMP group by 16194 * illgrp_insert. 16195 */ 16196 /* ARGSUSED */ 16197 int 16198 ip_sioctl_groupname(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 16199 ip_ioctl_cmd_t *ipip, void *ifreq) 16200 { 16201 int i; 16202 char *tmp; 16203 int namelen; 16204 ill_t *ill = ipif->ipif_ill; 16205 ill_t *ill_v4, *ill_v6; 16206 int err = 0; 16207 phyint_t *phyi; 16208 phyint_t *phyi_tmp; 16209 struct lifreq *lifr; 16210 mblk_t *mp1; 16211 char *groupname; 16212 ipsq_t *ipsq; 16213 ip_stack_t *ipst = ill->ill_ipst; 16214 16215 ASSERT(IAM_WRITER_IPIF(ipif)); 16216 16217 /* Existance verified in ip_wput_nondata */ 16218 mp1 = mp->b_cont->b_cont; 16219 lifr = (struct lifreq *)mp1->b_rptr; 16220 groupname = lifr->lifr_groupname; 16221 16222 if (ipif->ipif_id != 0) 16223 return (EINVAL); 16224 16225 phyi = ill->ill_phyint; 16226 ASSERT(phyi != NULL); 16227 16228 if (phyi->phyint_flags & PHYI_VIRTUAL) 16229 return (EINVAL); 16230 16231 tmp = groupname; 16232 for (i = 0; i < LIFNAMSIZ && *tmp != '\0'; tmp++, i++) 16233 ; 16234 16235 if (i == LIFNAMSIZ) { 16236 /* no null termination */ 16237 return (EINVAL); 16238 } 16239 16240 /* 16241 * Calculate the namelen exclusive of the null 16242 * termination character. 16243 */ 16244 namelen = tmp - groupname; 16245 16246 ill_v4 = phyi->phyint_illv4; 16247 ill_v6 = phyi->phyint_illv6; 16248 16249 /* 16250 * ILL cannot be part of a usesrc group and and IPMP group at the 16251 * same time. No need to grab the ill_g_usesrc_lock here, see 16252 * synchronization notes in ip.c 16253 */ 16254 if (ipif->ipif_ill->ill_usesrc_grp_next != NULL) { 16255 return (EINVAL); 16256 } 16257 16258 /* 16259 * mark the ill as changing. 16260 * this should queue all new requests on the syncq. 16261 */ 16262 GRAB_ILL_LOCKS(ill_v4, ill_v6); 16263 16264 if (ill_v4 != NULL) 16265 ill_v4->ill_state_flags |= ILL_CHANGING; 16266 if (ill_v6 != NULL) 16267 ill_v6->ill_state_flags |= ILL_CHANGING; 16268 RELEASE_ILL_LOCKS(ill_v4, ill_v6); 16269 16270 if (namelen == 0) { 16271 /* 16272 * Null string means remove this interface from the 16273 * existing group. 16274 */ 16275 if (phyi->phyint_groupname_len == 0) { 16276 /* 16277 * Never was in a group. 16278 */ 16279 err = 0; 16280 goto done; 16281 } 16282 16283 /* 16284 * IPv4 or IPv6 may be temporarily out of the group when all 16285 * the ipifs are down. Thus, we need to check for ill_group to 16286 * be non-NULL. 16287 */ 16288 if (ill_v4 != NULL && ill_v4->ill_group != NULL) { 16289 ill_down_ipifs(ill_v4, mp, 0, B_FALSE); 16290 mutex_enter(&ill_v4->ill_lock); 16291 if (!ill_is_quiescent(ill_v4)) { 16292 /* 16293 * ipsq_pending_mp_add will not fail since 16294 * connp is NULL 16295 */ 16296 (void) ipsq_pending_mp_add(NULL, 16297 ill_v4->ill_ipif, q, mp, ILL_DOWN); 16298 mutex_exit(&ill_v4->ill_lock); 16299 err = EINPROGRESS; 16300 goto done; 16301 } 16302 mutex_exit(&ill_v4->ill_lock); 16303 } 16304 16305 if (ill_v6 != NULL && ill_v6->ill_group != NULL) { 16306 ill_down_ipifs(ill_v6, mp, 0, B_FALSE); 16307 mutex_enter(&ill_v6->ill_lock); 16308 if (!ill_is_quiescent(ill_v6)) { 16309 (void) ipsq_pending_mp_add(NULL, 16310 ill_v6->ill_ipif, q, mp, ILL_DOWN); 16311 mutex_exit(&ill_v6->ill_lock); 16312 err = EINPROGRESS; 16313 goto done; 16314 } 16315 mutex_exit(&ill_v6->ill_lock); 16316 } 16317 16318 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 16319 GRAB_ILL_LOCKS(ill_v4, ill_v6); 16320 mutex_enter(&phyi->phyint_lock); 16321 ASSERT(phyi->phyint_groupname != NULL); 16322 mi_free(phyi->phyint_groupname); 16323 phyi->phyint_groupname = NULL; 16324 phyi->phyint_groupname_len = 0; 16325 16326 /* Restore the ifindex used to be the per interface one */ 16327 phyi->phyint_group_ifindex = 0; 16328 phyi->phyint_hook_ifindex = phyi->phyint_ifindex; 16329 mutex_exit(&phyi->phyint_lock); 16330 RELEASE_ILL_LOCKS(ill_v4, ill_v6); 16331 rw_exit(&ipst->ips_ill_g_lock); 16332 err = ill_up_ipifs(ill, q, mp); 16333 16334 /* 16335 * set the split flag so that the ipsq can be split 16336 */ 16337 mutex_enter(&phyi->phyint_ipsq->ipsq_lock); 16338 phyi->phyint_ipsq->ipsq_split = B_TRUE; 16339 mutex_exit(&phyi->phyint_ipsq->ipsq_lock); 16340 16341 } else { 16342 if (phyi->phyint_groupname_len != 0) { 16343 ASSERT(phyi->phyint_groupname != NULL); 16344 /* Are we inserting in the same group ? */ 16345 if (mi_strcmp(groupname, 16346 phyi->phyint_groupname) == 0) { 16347 err = 0; 16348 goto done; 16349 } 16350 } 16351 16352 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 16353 /* 16354 * Merge ipsq for the group's. 16355 * This check is here as multiple groups/ills might be 16356 * sharing the same ipsq. 16357 * If we have to merege than the operation is restarted 16358 * on the new ipsq. 16359 */ 16360 ipsq = ip_ipsq_lookup(groupname, B_FALSE, NULL, ipst); 16361 if (phyi->phyint_ipsq != ipsq) { 16362 rw_exit(&ipst->ips_ill_g_lock); 16363 err = ill_merge_groups(ill, NULL, groupname, mp, q); 16364 goto done; 16365 } 16366 /* 16367 * Running exclusive on new ipsq. 16368 */ 16369 16370 ASSERT(ipsq != NULL); 16371 ASSERT(ipsq->ipsq_writer == curthread); 16372 16373 /* 16374 * Check whether the ill_type and ill_net_type matches before 16375 * we allocate any memory so that the cleanup is easier. 16376 * 16377 * We can't group dissimilar ones as we can't load spread 16378 * packets across the group because of potential link-level 16379 * header differences. 16380 */ 16381 phyi_tmp = phyint_lookup_group(groupname, B_FALSE, ipst); 16382 if (phyi_tmp != NULL) { 16383 if ((ill_v4 != NULL && 16384 phyi_tmp->phyint_illv4 != NULL) && 16385 ((ill_v4->ill_net_type != 16386 phyi_tmp->phyint_illv4->ill_net_type) || 16387 (ill_v4->ill_type != 16388 phyi_tmp->phyint_illv4->ill_type))) { 16389 mutex_enter(&phyi->phyint_ipsq->ipsq_lock); 16390 phyi->phyint_ipsq->ipsq_split = B_TRUE; 16391 mutex_exit(&phyi->phyint_ipsq->ipsq_lock); 16392 rw_exit(&ipst->ips_ill_g_lock); 16393 return (EINVAL); 16394 } 16395 if ((ill_v6 != NULL && 16396 phyi_tmp->phyint_illv6 != NULL) && 16397 ((ill_v6->ill_net_type != 16398 phyi_tmp->phyint_illv6->ill_net_type) || 16399 (ill_v6->ill_type != 16400 phyi_tmp->phyint_illv6->ill_type))) { 16401 mutex_enter(&phyi->phyint_ipsq->ipsq_lock); 16402 phyi->phyint_ipsq->ipsq_split = B_TRUE; 16403 mutex_exit(&phyi->phyint_ipsq->ipsq_lock); 16404 rw_exit(&ipst->ips_ill_g_lock); 16405 return (EINVAL); 16406 } 16407 } 16408 16409 rw_exit(&ipst->ips_ill_g_lock); 16410 16411 /* 16412 * bring down all v4 ipifs. 16413 */ 16414 if (ill_v4 != NULL) { 16415 ill_down_ipifs(ill_v4, mp, 0, B_FALSE); 16416 } 16417 16418 /* 16419 * bring down all v6 ipifs. 16420 */ 16421 if (ill_v6 != NULL) { 16422 ill_down_ipifs(ill_v6, mp, 0, B_FALSE); 16423 } 16424 16425 /* 16426 * make sure all ipifs are down and there are no active 16427 * references. Call to ipsq_pending_mp_add will not fail 16428 * since connp is NULL. 16429 */ 16430 if (ill_v4 != NULL) { 16431 mutex_enter(&ill_v4->ill_lock); 16432 if (!ill_is_quiescent(ill_v4)) { 16433 (void) ipsq_pending_mp_add(NULL, 16434 ill_v4->ill_ipif, q, mp, ILL_DOWN); 16435 mutex_exit(&ill_v4->ill_lock); 16436 err = EINPROGRESS; 16437 goto done; 16438 } 16439 mutex_exit(&ill_v4->ill_lock); 16440 } 16441 16442 if (ill_v6 != NULL) { 16443 mutex_enter(&ill_v6->ill_lock); 16444 if (!ill_is_quiescent(ill_v6)) { 16445 (void) ipsq_pending_mp_add(NULL, 16446 ill_v6->ill_ipif, q, mp, ILL_DOWN); 16447 mutex_exit(&ill_v6->ill_lock); 16448 err = EINPROGRESS; 16449 goto done; 16450 } 16451 mutex_exit(&ill_v6->ill_lock); 16452 } 16453 16454 /* 16455 * allocate including space for null terminator 16456 * before we insert. 16457 */ 16458 tmp = (char *)mi_alloc(namelen + 1, BPRI_MED); 16459 if (tmp == NULL) 16460 return (ENOMEM); 16461 16462 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 16463 GRAB_ILL_LOCKS(ill_v4, ill_v6); 16464 mutex_enter(&phyi->phyint_lock); 16465 if (phyi->phyint_groupname_len != 0) { 16466 ASSERT(phyi->phyint_groupname != NULL); 16467 mi_free(phyi->phyint_groupname); 16468 } 16469 16470 /* 16471 * setup the new group name. 16472 */ 16473 phyi->phyint_groupname = tmp; 16474 bcopy(groupname, phyi->phyint_groupname, namelen + 1); 16475 phyi->phyint_groupname_len = namelen + 1; 16476 16477 if (ipst->ips_ipmp_hook_emulation) { 16478 /* 16479 * If the group already exists we use the existing 16480 * group_ifindex, otherwise we pick a new index here. 16481 */ 16482 if (phyi_tmp != NULL) { 16483 phyi->phyint_group_ifindex = 16484 phyi_tmp->phyint_group_ifindex; 16485 } else { 16486 /* XXX We need a recovery strategy here. */ 16487 if (!ip_assign_ifindex( 16488 &phyi->phyint_group_ifindex, ipst)) 16489 cmn_err(CE_PANIC, 16490 "ip_assign_ifindex() failed"); 16491 } 16492 } 16493 /* 16494 * Select whether the netinfo and hook use the per-interface 16495 * or per-group ifindex. 16496 */ 16497 if (ipst->ips_ipmp_hook_emulation) 16498 phyi->phyint_hook_ifindex = phyi->phyint_group_ifindex; 16499 else 16500 phyi->phyint_hook_ifindex = phyi->phyint_ifindex; 16501 16502 if (ipst->ips_ipmp_hook_emulation && 16503 phyi_tmp != NULL) { 16504 /* First phyint in group - group PLUMB event */ 16505 ill_nic_info_plumb(ill, B_TRUE); 16506 } 16507 mutex_exit(&phyi->phyint_lock); 16508 RELEASE_ILL_LOCKS(ill_v4, ill_v6); 16509 rw_exit(&ipst->ips_ill_g_lock); 16510 16511 err = ill_up_ipifs(ill, q, mp); 16512 } 16513 16514 done: 16515 /* 16516 * normally ILL_CHANGING is cleared in ill_up_ipifs. 16517 */ 16518 if (err != EINPROGRESS) { 16519 GRAB_ILL_LOCKS(ill_v4, ill_v6); 16520 if (ill_v4 != NULL) 16521 ill_v4->ill_state_flags &= ~ILL_CHANGING; 16522 if (ill_v6 != NULL) 16523 ill_v6->ill_state_flags &= ~ILL_CHANGING; 16524 RELEASE_ILL_LOCKS(ill_v4, ill_v6); 16525 } 16526 return (err); 16527 } 16528 16529 /* ARGSUSED */ 16530 int 16531 ip_sioctl_get_groupname(ipif_t *ipif, sin_t *dummy_sin, queue_t *q, 16532 mblk_t *mp, ip_ioctl_cmd_t *ipip, void *dummy_ifreq) 16533 { 16534 ill_t *ill; 16535 phyint_t *phyi; 16536 struct lifreq *lifr; 16537 mblk_t *mp1; 16538 16539 /* Existence verified in ip_wput_nondata */ 16540 mp1 = mp->b_cont->b_cont; 16541 lifr = (struct lifreq *)mp1->b_rptr; 16542 ill = ipif->ipif_ill; 16543 phyi = ill->ill_phyint; 16544 16545 lifr->lifr_groupname[0] = '\0'; 16546 /* 16547 * ill_group may be null if all the interfaces 16548 * are down. But still, the phyint should always 16549 * hold the name. 16550 */ 16551 if (phyi->phyint_groupname_len != 0) { 16552 bcopy(phyi->phyint_groupname, lifr->lifr_groupname, 16553 phyi->phyint_groupname_len); 16554 } 16555 16556 return (0); 16557 } 16558 16559 16560 typedef struct conn_move_s { 16561 ill_t *cm_from_ill; 16562 ill_t *cm_to_ill; 16563 int cm_ifindex; 16564 } conn_move_t; 16565 16566 /* 16567 * ipcl_walk function for moving conn_multicast_ill for a given ill. 16568 */ 16569 static void 16570 conn_move(conn_t *connp, caddr_t arg) 16571 { 16572 conn_move_t *connm; 16573 int ifindex; 16574 int i; 16575 ill_t *from_ill; 16576 ill_t *to_ill; 16577 ilg_t *ilg; 16578 ilm_t *ret_ilm; 16579 16580 connm = (conn_move_t *)arg; 16581 ifindex = connm->cm_ifindex; 16582 from_ill = connm->cm_from_ill; 16583 to_ill = connm->cm_to_ill; 16584 16585 /* Change IP_BOUND_IF/IPV6_BOUND_IF associations. */ 16586 16587 /* All multicast fields protected by conn_lock */ 16588 mutex_enter(&connp->conn_lock); 16589 ASSERT(connp->conn_outgoing_ill == connp->conn_incoming_ill); 16590 if ((connp->conn_outgoing_ill == from_ill) && 16591 (ifindex == 0 || connp->conn_orig_bound_ifindex == ifindex)) { 16592 connp->conn_outgoing_ill = to_ill; 16593 connp->conn_incoming_ill = to_ill; 16594 } 16595 16596 /* Change IP_MULTICAST_IF/IPV6_MULTICAST_IF associations */ 16597 16598 if ((connp->conn_multicast_ill == from_ill) && 16599 (ifindex == 0 || connp->conn_orig_multicast_ifindex == ifindex)) { 16600 connp->conn_multicast_ill = connm->cm_to_ill; 16601 } 16602 16603 /* 16604 * Change the ilg_ill to point to the new one. This assumes 16605 * ilm_move_v6 has moved the ilms to new_ill and the driver 16606 * has been told to receive packets on this interface. 16607 * ilm_move_v6 FAILBACKS all the ilms successfully always. 16608 * But when doing a FAILOVER, it might fail with ENOMEM and so 16609 * some ilms may not have moved. We check to see whether 16610 * the ilms have moved to to_ill. We can't check on from_ill 16611 * as in the process of moving, we could have split an ilm 16612 * in to two - which has the same orig_ifindex and v6group. 16613 * 16614 * For IPv4, ilg_ipif moves implicitly. The code below really 16615 * does not do anything for IPv4 as ilg_ill is NULL for IPv4. 16616 */ 16617 for (i = connp->conn_ilg_inuse - 1; i >= 0; i--) { 16618 ilg = &connp->conn_ilg[i]; 16619 if ((ilg->ilg_ill == from_ill) && 16620 (ifindex == 0 || ilg->ilg_orig_ifindex == ifindex)) { 16621 /* ifindex != 0 indicates failback */ 16622 if (ifindex != 0) { 16623 connp->conn_ilg[i].ilg_ill = to_ill; 16624 continue; 16625 } 16626 16627 mutex_enter(&to_ill->ill_lock); 16628 ret_ilm = ilm_lookup_ill_index_v6(to_ill, 16629 &ilg->ilg_v6group, ilg->ilg_orig_ifindex, 16630 connp->conn_zoneid); 16631 mutex_exit(&to_ill->ill_lock); 16632 16633 if (ret_ilm != NULL) 16634 connp->conn_ilg[i].ilg_ill = to_ill; 16635 } 16636 } 16637 mutex_exit(&connp->conn_lock); 16638 } 16639 16640 static void 16641 conn_move_ill(ill_t *from_ill, ill_t *to_ill, int ifindex) 16642 { 16643 conn_move_t connm; 16644 ip_stack_t *ipst = from_ill->ill_ipst; 16645 16646 connm.cm_from_ill = from_ill; 16647 connm.cm_to_ill = to_ill; 16648 connm.cm_ifindex = ifindex; 16649 16650 ipcl_walk(conn_move, (caddr_t)&connm, ipst); 16651 } 16652 16653 /* 16654 * ilm has been moved from from_ill to to_ill. 16655 * Send DL_DISABMULTI_REQ to ill and DL_ENABMULTI_REQ on to_ill. 16656 * appropriately. 16657 * 16658 * NOTE : We can't reuse the code in ip_ll_addmulti/delmulti because 16659 * the code there de-references ipif_ill to get the ill to 16660 * send multicast requests. It does not work as ipif is on its 16661 * move and already moved when this function is called. 16662 * Thus, we need to use from_ill and to_ill send down multicast 16663 * requests. 16664 */ 16665 static void 16666 ilm_send_multicast_reqs(ill_t *from_ill, ill_t *to_ill) 16667 { 16668 ipif_t *ipif; 16669 ilm_t *ilm; 16670 16671 /* 16672 * See whether we need to send down DL_ENABMULTI_REQ on 16673 * to_ill as ilm has just been added. 16674 */ 16675 ASSERT(IAM_WRITER_ILL(to_ill)); 16676 ASSERT(IAM_WRITER_ILL(from_ill)); 16677 16678 ILM_WALKER_HOLD(to_ill); 16679 for (ilm = to_ill->ill_ilm; ilm != NULL; ilm = ilm->ilm_next) { 16680 16681 if (!ilm->ilm_is_new || (ilm->ilm_flags & ILM_DELETED)) 16682 continue; 16683 /* 16684 * no locks held, ill/ipif cannot dissappear as long 16685 * as we are writer. 16686 */ 16687 ipif = to_ill->ill_ipif; 16688 /* 16689 * No need to hold any lock as we are the writer and this 16690 * can only be changed by a writer. 16691 */ 16692 ilm->ilm_is_new = B_FALSE; 16693 16694 if (to_ill->ill_net_type != IRE_IF_RESOLVER || 16695 ipif->ipif_flags & IPIF_POINTOPOINT) { 16696 ip1dbg(("ilm_send_multicast_reqs: to_ill not " 16697 "resolver\n")); 16698 continue; /* Must be IRE_IF_NORESOLVER */ 16699 } 16700 16701 if (to_ill->ill_phyint->phyint_flags & PHYI_MULTI_BCAST) { 16702 ip1dbg(("ilm_send_multicast_reqs: " 16703 "to_ill MULTI_BCAST\n")); 16704 goto from; 16705 } 16706 16707 if (to_ill->ill_isv6) 16708 mld_joingroup(ilm); 16709 else 16710 igmp_joingroup(ilm); 16711 16712 if (to_ill->ill_ipif_up_count == 0) { 16713 /* 16714 * Nobody there. All multicast addresses will be 16715 * re-joined when we get the DL_BIND_ACK bringing the 16716 * interface up. 16717 */ 16718 ilm->ilm_notify_driver = B_FALSE; 16719 ip1dbg(("ilm_send_multicast_reqs: to_ill nobody up\n")); 16720 goto from; 16721 } 16722 16723 /* 16724 * For allmulti address, we want to join on only one interface. 16725 * Checking for ilm_numentries_v6 is not correct as you may 16726 * find an ilm with zero address on to_ill, but we may not 16727 * have nominated to_ill for receiving. Thus, if we have 16728 * nominated from_ill (ill_join_allmulti is set), nominate 16729 * only if to_ill is not already nominated (to_ill normally 16730 * should not have been nominated if "from_ill" has already 16731 * been nominated. As we don't prevent failovers from happening 16732 * across groups, we don't assert). 16733 */ 16734 if (IN6_IS_ADDR_UNSPECIFIED(&ilm->ilm_v6addr)) { 16735 /* 16736 * There is no need to hold ill locks as we are 16737 * writer on both ills and when ill_join_allmulti 16738 * is changed the thread is always a writer. 16739 */ 16740 if (from_ill->ill_join_allmulti && 16741 !to_ill->ill_join_allmulti) { 16742 (void) ip_join_allmulti(to_ill->ill_ipif); 16743 } 16744 } else if (ilm->ilm_notify_driver) { 16745 16746 /* 16747 * This is a newly moved ilm so we need to tell the 16748 * driver about the new group. There can be more than 16749 * one ilm's for the same group in the list each with a 16750 * different orig_ifindex. We have to inform the driver 16751 * once. In ilm_move_v[4,6] we only set the flag 16752 * ilm_notify_driver for the first ilm. 16753 */ 16754 16755 (void) ip_ll_send_enabmulti_req(to_ill, 16756 &ilm->ilm_v6addr); 16757 } 16758 16759 ilm->ilm_notify_driver = B_FALSE; 16760 16761 /* 16762 * See whether we need to send down DL_DISABMULTI_REQ on 16763 * from_ill as ilm has just been removed. 16764 */ 16765 from: 16766 ipif = from_ill->ill_ipif; 16767 if (from_ill->ill_net_type != IRE_IF_RESOLVER || 16768 ipif->ipif_flags & IPIF_POINTOPOINT) { 16769 ip1dbg(("ilm_send_multicast_reqs: " 16770 "from_ill not resolver\n")); 16771 continue; /* Must be IRE_IF_NORESOLVER */ 16772 } 16773 16774 if (from_ill->ill_phyint->phyint_flags & PHYI_MULTI_BCAST) { 16775 ip1dbg(("ilm_send_multicast_reqs: " 16776 "from_ill MULTI_BCAST\n")); 16777 continue; 16778 } 16779 16780 if (IN6_IS_ADDR_UNSPECIFIED(&ilm->ilm_v6addr)) { 16781 if (from_ill->ill_join_allmulti) 16782 (void) ip_leave_allmulti(from_ill->ill_ipif); 16783 } else if (ilm_numentries_v6(from_ill, &ilm->ilm_v6addr) == 0) { 16784 (void) ip_ll_send_disabmulti_req(from_ill, 16785 &ilm->ilm_v6addr); 16786 } 16787 } 16788 ILM_WALKER_RELE(to_ill); 16789 } 16790 16791 /* 16792 * This function is called when all multicast memberships needs 16793 * to be moved from "from_ill" to "to_ill" for IPv6. This function is 16794 * called only once unlike the IPv4 counterpart where it is called after 16795 * every logical interface is moved. The reason is due to multicast 16796 * memberships are joined using an interface address in IPv4 while in 16797 * IPv6, interface index is used. 16798 */ 16799 static void 16800 ilm_move_v6(ill_t *from_ill, ill_t *to_ill, int ifindex) 16801 { 16802 ilm_t *ilm; 16803 ilm_t *ilm_next; 16804 ilm_t *new_ilm; 16805 ilm_t **ilmp; 16806 int count; 16807 char buf[INET6_ADDRSTRLEN]; 16808 in6_addr_t ipv6_snm = ipv6_solicited_node_mcast; 16809 ip_stack_t *ipst = from_ill->ill_ipst; 16810 16811 ASSERT(MUTEX_HELD(&to_ill->ill_lock)); 16812 ASSERT(MUTEX_HELD(&from_ill->ill_lock)); 16813 ASSERT(RW_WRITE_HELD(&ipst->ips_ill_g_lock)); 16814 16815 if (ifindex == 0) { 16816 /* 16817 * Form the solicited node mcast address which is used later. 16818 */ 16819 ipif_t *ipif; 16820 16821 ipif = from_ill->ill_ipif; 16822 ASSERT(ipif->ipif_id == 0); 16823 16824 ipv6_snm.s6_addr32[3] |= ipif->ipif_v6lcl_addr.s6_addr32[3]; 16825 } 16826 16827 ilmp = &from_ill->ill_ilm; 16828 for (ilm = from_ill->ill_ilm; ilm != NULL; ilm = ilm_next) { 16829 ilm_next = ilm->ilm_next; 16830 16831 if (ilm->ilm_flags & ILM_DELETED) { 16832 ilmp = &ilm->ilm_next; 16833 continue; 16834 } 16835 16836 new_ilm = ilm_lookup_ill_index_v6(to_ill, &ilm->ilm_v6addr, 16837 ilm->ilm_orig_ifindex, ilm->ilm_zoneid); 16838 ASSERT(ilm->ilm_orig_ifindex != 0); 16839 if (ilm->ilm_orig_ifindex == ifindex) { 16840 /* 16841 * We are failing back multicast memberships. 16842 * If the same ilm exists in to_ill, it means somebody 16843 * has joined the same group there e.g. ff02::1 16844 * is joined within the kernel when the interfaces 16845 * came UP. 16846 */ 16847 ASSERT(ilm->ilm_ipif == NULL); 16848 if (new_ilm != NULL) { 16849 new_ilm->ilm_refcnt += ilm->ilm_refcnt; 16850 if (new_ilm->ilm_fmode != MODE_IS_EXCLUDE || 16851 !SLIST_IS_EMPTY(new_ilm->ilm_filter)) { 16852 new_ilm->ilm_is_new = B_TRUE; 16853 } 16854 } else { 16855 /* 16856 * check if we can just move the ilm 16857 */ 16858 if (from_ill->ill_ilm_walker_cnt != 0) { 16859 /* 16860 * We have walkers we cannot move 16861 * the ilm, so allocate a new ilm, 16862 * this (old) ilm will be marked 16863 * ILM_DELETED at the end of the loop 16864 * and will be freed when the 16865 * last walker exits. 16866 */ 16867 new_ilm = (ilm_t *)mi_zalloc 16868 (sizeof (ilm_t)); 16869 if (new_ilm == NULL) { 16870 ip0dbg(("ilm_move_v6: " 16871 "FAILBACK of IPv6" 16872 " multicast address %s : " 16873 "from %s to" 16874 " %s failed : ENOMEM \n", 16875 inet_ntop(AF_INET6, 16876 &ilm->ilm_v6addr, buf, 16877 sizeof (buf)), 16878 from_ill->ill_name, 16879 to_ill->ill_name)); 16880 16881 ilmp = &ilm->ilm_next; 16882 continue; 16883 } 16884 *new_ilm = *ilm; 16885 /* 16886 * we don't want new_ilm linked to 16887 * ilm's filter list. 16888 */ 16889 new_ilm->ilm_filter = NULL; 16890 } else { 16891 /* 16892 * No walkers we can move the ilm. 16893 * lets take it out of the list. 16894 */ 16895 *ilmp = ilm->ilm_next; 16896 ilm->ilm_next = NULL; 16897 DTRACE_PROBE3(ill__decr__cnt, 16898 (ill_t *), from_ill, 16899 (char *), "ilm", (void *), ilm); 16900 ASSERT(from_ill->ill_ilm_cnt > 0); 16901 from_ill->ill_ilm_cnt--; 16902 16903 new_ilm = ilm; 16904 } 16905 16906 /* 16907 * if this is the first ilm for the group 16908 * set ilm_notify_driver so that we notify the 16909 * driver in ilm_send_multicast_reqs. 16910 */ 16911 if (ilm_lookup_ill_v6(to_ill, 16912 &new_ilm->ilm_v6addr, ALL_ZONES) == NULL) 16913 new_ilm->ilm_notify_driver = B_TRUE; 16914 16915 DTRACE_PROBE3(ill__incr__cnt, (ill_t *), to_ill, 16916 (char *), "ilm", (void *), new_ilm); 16917 new_ilm->ilm_ill = to_ill; 16918 to_ill->ill_ilm_cnt++; 16919 16920 /* Add to the to_ill's list */ 16921 new_ilm->ilm_next = to_ill->ill_ilm; 16922 to_ill->ill_ilm = new_ilm; 16923 /* 16924 * set the flag so that mld_joingroup is 16925 * called in ilm_send_multicast_reqs(). 16926 */ 16927 new_ilm->ilm_is_new = B_TRUE; 16928 } 16929 goto bottom; 16930 } else if (ifindex != 0) { 16931 /* 16932 * If this is FAILBACK (ifindex != 0) and the ifindex 16933 * has not matched above, look at the next ilm. 16934 */ 16935 ilmp = &ilm->ilm_next; 16936 continue; 16937 } 16938 /* 16939 * If we are here, it means ifindex is 0. Failover 16940 * everything. 16941 * 16942 * We need to handle solicited node mcast address 16943 * and all_nodes mcast address differently as they 16944 * are joined witin the kenrel (ipif_multicast_up) 16945 * and potentially from the userland. We are called 16946 * after the ipifs of from_ill has been moved. 16947 * If we still find ilms on ill with solicited node 16948 * mcast address or all_nodes mcast address, it must 16949 * belong to the UP interface that has not moved e.g. 16950 * ipif_id 0 with the link local prefix does not move. 16951 * We join this on the new ill accounting for all the 16952 * userland memberships so that applications don't 16953 * see any failure. 16954 * 16955 * We need to make sure that we account only for the 16956 * solicited node and all node multicast addresses 16957 * that was brought UP on these. In the case of 16958 * a failover from A to B, we might have ilms belonging 16959 * to A (ilm_orig_ifindex pointing at A) on B accounting 16960 * for the membership from the userland. If we are failing 16961 * over from B to C now, we will find the ones belonging 16962 * to A on B. These don't account for the ill_ipif_up_count. 16963 * They just move from B to C. The check below on 16964 * ilm_orig_ifindex ensures that. 16965 */ 16966 if ((ilm->ilm_orig_ifindex == 16967 from_ill->ill_phyint->phyint_ifindex) && 16968 (IN6_ARE_ADDR_EQUAL(&ipv6_snm, &ilm->ilm_v6addr) || 16969 IN6_ARE_ADDR_EQUAL(&ipv6_all_hosts_mcast, 16970 &ilm->ilm_v6addr))) { 16971 ASSERT(ilm->ilm_refcnt > 0); 16972 count = ilm->ilm_refcnt - from_ill->ill_ipif_up_count; 16973 /* 16974 * For indentation reasons, we are not using a 16975 * "else" here. 16976 */ 16977 if (count == 0) { 16978 ilmp = &ilm->ilm_next; 16979 continue; 16980 } 16981 ilm->ilm_refcnt -= count; 16982 if (new_ilm != NULL) { 16983 /* 16984 * Can find one with the same 16985 * ilm_orig_ifindex, if we are failing 16986 * over to a STANDBY. This happens 16987 * when somebody wants to join a group 16988 * on a STANDBY interface and we 16989 * internally join on a different one. 16990 * If we had joined on from_ill then, a 16991 * failover now will find a new ilm 16992 * with this index. 16993 */ 16994 ip1dbg(("ilm_move_v6: FAILOVER, found" 16995 " new ilm on %s, group address %s\n", 16996 to_ill->ill_name, 16997 inet_ntop(AF_INET6, 16998 &ilm->ilm_v6addr, buf, 16999 sizeof (buf)))); 17000 new_ilm->ilm_refcnt += count; 17001 if (new_ilm->ilm_fmode != MODE_IS_EXCLUDE || 17002 !SLIST_IS_EMPTY(new_ilm->ilm_filter)) { 17003 new_ilm->ilm_is_new = B_TRUE; 17004 } 17005 } else { 17006 new_ilm = (ilm_t *)mi_zalloc(sizeof (ilm_t)); 17007 if (new_ilm == NULL) { 17008 ip0dbg(("ilm_move_v6: FAILOVER of IPv6" 17009 " multicast address %s : from %s to" 17010 " %s failed : ENOMEM \n", 17011 inet_ntop(AF_INET6, 17012 &ilm->ilm_v6addr, buf, 17013 sizeof (buf)), from_ill->ill_name, 17014 to_ill->ill_name)); 17015 ilmp = &ilm->ilm_next; 17016 continue; 17017 } 17018 *new_ilm = *ilm; 17019 new_ilm->ilm_filter = NULL; 17020 new_ilm->ilm_refcnt = count; 17021 new_ilm->ilm_timer = INFINITY; 17022 new_ilm->ilm_rtx.rtx_timer = INFINITY; 17023 new_ilm->ilm_is_new = B_TRUE; 17024 /* 17025 * If the to_ill has not joined this 17026 * group we need to tell the driver in 17027 * ill_send_multicast_reqs. 17028 */ 17029 if (ilm_lookup_ill_v6(to_ill, 17030 &new_ilm->ilm_v6addr, ALL_ZONES) == NULL) 17031 new_ilm->ilm_notify_driver = B_TRUE; 17032 17033 new_ilm->ilm_ill = to_ill; 17034 DTRACE_PROBE3(ill__incr__cnt, (ill_t *), to_ill, 17035 (char *), "ilm", (void *), new_ilm); 17036 to_ill->ill_ilm_cnt++; 17037 17038 /* Add to the to_ill's list */ 17039 new_ilm->ilm_next = to_ill->ill_ilm; 17040 to_ill->ill_ilm = new_ilm; 17041 ASSERT(new_ilm->ilm_ipif == NULL); 17042 } 17043 if (ilm->ilm_refcnt == 0) { 17044 goto bottom; 17045 } else { 17046 new_ilm->ilm_fmode = MODE_IS_EXCLUDE; 17047 CLEAR_SLIST(new_ilm->ilm_filter); 17048 ilmp = &ilm->ilm_next; 17049 } 17050 continue; 17051 } else { 17052 /* 17053 * ifindex = 0 means, move everything pointing at 17054 * from_ill. We are doing this becuase ill has 17055 * either FAILED or became INACTIVE. 17056 * 17057 * As we would like to move things later back to 17058 * from_ill, we want to retain the identity of this 17059 * ilm. Thus, we don't blindly increment the reference 17060 * count on the ilms matching the address alone. We 17061 * need to match on the ilm_orig_index also. new_ilm 17062 * was obtained by matching ilm_orig_index also. 17063 */ 17064 if (new_ilm != NULL) { 17065 /* 17066 * This is possible only if a previous restore 17067 * was incomplete i.e restore to 17068 * ilm_orig_ifindex left some ilms because 17069 * of some failures. Thus when we are failing 17070 * again, we might find our old friends there. 17071 */ 17072 ip1dbg(("ilm_move_v6: FAILOVER, found new ilm" 17073 " on %s, group address %s\n", 17074 to_ill->ill_name, 17075 inet_ntop(AF_INET6, 17076 &ilm->ilm_v6addr, buf, 17077 sizeof (buf)))); 17078 new_ilm->ilm_refcnt += ilm->ilm_refcnt; 17079 if (new_ilm->ilm_fmode != MODE_IS_EXCLUDE || 17080 !SLIST_IS_EMPTY(new_ilm->ilm_filter)) { 17081 new_ilm->ilm_is_new = B_TRUE; 17082 } 17083 } else { 17084 if (from_ill->ill_ilm_walker_cnt != 0) { 17085 new_ilm = (ilm_t *) 17086 mi_zalloc(sizeof (ilm_t)); 17087 if (new_ilm == NULL) { 17088 ip0dbg(("ilm_move_v6: " 17089 "FAILOVER of IPv6" 17090 " multicast address %s : " 17091 "from %s to" 17092 " %s failed : ENOMEM \n", 17093 inet_ntop(AF_INET6, 17094 &ilm->ilm_v6addr, buf, 17095 sizeof (buf)), 17096 from_ill->ill_name, 17097 to_ill->ill_name)); 17098 17099 ilmp = &ilm->ilm_next; 17100 continue; 17101 } 17102 *new_ilm = *ilm; 17103 new_ilm->ilm_filter = NULL; 17104 } else { 17105 *ilmp = ilm->ilm_next; 17106 DTRACE_PROBE3(ill__decr__cnt, 17107 (ill_t *), from_ill, 17108 (char *), "ilm", (void *), ilm); 17109 ASSERT(from_ill->ill_ilm_cnt > 0); 17110 from_ill->ill_ilm_cnt--; 17111 17112 new_ilm = ilm; 17113 } 17114 /* 17115 * If the to_ill has not joined this 17116 * group we need to tell the driver in 17117 * ill_send_multicast_reqs. 17118 */ 17119 if (ilm_lookup_ill_v6(to_ill, 17120 &new_ilm->ilm_v6addr, ALL_ZONES) == NULL) 17121 new_ilm->ilm_notify_driver = B_TRUE; 17122 17123 /* Add to the to_ill's list */ 17124 new_ilm->ilm_next = to_ill->ill_ilm; 17125 to_ill->ill_ilm = new_ilm; 17126 ASSERT(ilm->ilm_ipif == NULL); 17127 new_ilm->ilm_ill = to_ill; 17128 DTRACE_PROBE3(ill__incr__cnt, (ill_t *), to_ill, 17129 (char *), "ilm", (void *), new_ilm); 17130 to_ill->ill_ilm_cnt++; 17131 new_ilm->ilm_is_new = B_TRUE; 17132 } 17133 17134 } 17135 17136 bottom: 17137 /* 17138 * Revert multicast filter state to (EXCLUDE, NULL). 17139 * new_ilm->ilm_is_new should already be set if needed. 17140 */ 17141 new_ilm->ilm_fmode = MODE_IS_EXCLUDE; 17142 CLEAR_SLIST(new_ilm->ilm_filter); 17143 /* 17144 * We allocated/got a new ilm, free the old one. 17145 */ 17146 if (new_ilm != ilm) { 17147 if (from_ill->ill_ilm_walker_cnt == 0) { 17148 *ilmp = ilm->ilm_next; 17149 17150 ASSERT(ilm->ilm_ipif == NULL); /* ipv6 */ 17151 DTRACE_PROBE3(ill__decr__cnt, (ill_t *), 17152 from_ill, (char *), "ilm", (void *), ilm); 17153 ASSERT(from_ill->ill_ilm_cnt > 0); 17154 from_ill->ill_ilm_cnt--; 17155 17156 ilm_inactive(ilm); /* frees this ilm */ 17157 17158 } else { 17159 ilm->ilm_flags |= ILM_DELETED; 17160 from_ill->ill_ilm_cleanup_reqd = 1; 17161 ilmp = &ilm->ilm_next; 17162 } 17163 } 17164 } 17165 } 17166 17167 /* 17168 * Move all the multicast memberships to to_ill. Called when 17169 * an ipif moves from "from_ill" to "to_ill". This function is slightly 17170 * different from IPv6 counterpart as multicast memberships are associated 17171 * with ills in IPv6. This function is called after every ipif is moved 17172 * unlike IPv6, where it is moved only once. 17173 */ 17174 static void 17175 ilm_move_v4(ill_t *from_ill, ill_t *to_ill, ipif_t *ipif) 17176 { 17177 ilm_t *ilm; 17178 ilm_t *ilm_next; 17179 ilm_t *new_ilm; 17180 ilm_t **ilmp; 17181 ip_stack_t *ipst = from_ill->ill_ipst; 17182 17183 ASSERT(MUTEX_HELD(&to_ill->ill_lock)); 17184 ASSERT(MUTEX_HELD(&from_ill->ill_lock)); 17185 ASSERT(RW_WRITE_HELD(&ipst->ips_ill_g_lock)); 17186 17187 ilmp = &from_ill->ill_ilm; 17188 for (ilm = from_ill->ill_ilm; ilm != NULL; ilm = ilm_next) { 17189 ilm_next = ilm->ilm_next; 17190 17191 if (ilm->ilm_flags & ILM_DELETED) { 17192 ilmp = &ilm->ilm_next; 17193 continue; 17194 } 17195 17196 ASSERT(ilm->ilm_ipif != NULL); 17197 17198 if (ilm->ilm_ipif != ipif) { 17199 ilmp = &ilm->ilm_next; 17200 continue; 17201 } 17202 17203 if (V4_PART_OF_V6(ilm->ilm_v6addr) == 17204 htonl(INADDR_ALLHOSTS_GROUP)) { 17205 new_ilm = ilm_lookup_ipif(ipif, 17206 V4_PART_OF_V6(ilm->ilm_v6addr)); 17207 if (new_ilm != NULL) { 17208 new_ilm->ilm_refcnt += ilm->ilm_refcnt; 17209 /* 17210 * We still need to deal with the from_ill. 17211 */ 17212 new_ilm->ilm_is_new = B_TRUE; 17213 new_ilm->ilm_fmode = MODE_IS_EXCLUDE; 17214 CLEAR_SLIST(new_ilm->ilm_filter); 17215 ASSERT(ilm->ilm_ipif == ipif); 17216 ASSERT(ilm->ilm_ipif->ipif_ilm_cnt > 0); 17217 if (from_ill->ill_ilm_walker_cnt == 0) { 17218 DTRACE_PROBE3(ill__decr__cnt, 17219 (ill_t *), from_ill, 17220 (char *), "ilm", (void *), ilm); 17221 ASSERT(ilm->ilm_ipif->ipif_ilm_cnt > 0); 17222 } 17223 goto delete_ilm; 17224 } 17225 /* 17226 * If we could not find one e.g. ipif is 17227 * still down on to_ill, we add this ilm 17228 * on ill_new to preserve the reference 17229 * count. 17230 */ 17231 } 17232 /* 17233 * When ipifs move, ilms always move with it 17234 * to the NEW ill. Thus we should never be 17235 * able to find ilm till we really move it here. 17236 */ 17237 ASSERT(ilm_lookup_ipif(ipif, 17238 V4_PART_OF_V6(ilm->ilm_v6addr)) == NULL); 17239 17240 if (from_ill->ill_ilm_walker_cnt != 0) { 17241 new_ilm = (ilm_t *)mi_zalloc(sizeof (ilm_t)); 17242 if (new_ilm == NULL) { 17243 char buf[INET6_ADDRSTRLEN]; 17244 ip0dbg(("ilm_move_v4: FAILBACK of IPv4" 17245 " multicast address %s : " 17246 "from %s to" 17247 " %s failed : ENOMEM \n", 17248 inet_ntop(AF_INET, 17249 &ilm->ilm_v6addr, buf, 17250 sizeof (buf)), 17251 from_ill->ill_name, 17252 to_ill->ill_name)); 17253 17254 ilmp = &ilm->ilm_next; 17255 continue; 17256 } 17257 *new_ilm = *ilm; 17258 DTRACE_PROBE3(ipif__incr__cnt, (ipif_t *), ipif, 17259 (char *), "ilm", (void *), ilm); 17260 new_ilm->ilm_ipif->ipif_ilm_cnt++; 17261 /* We don't want new_ilm linked to ilm's filter list */ 17262 new_ilm->ilm_filter = NULL; 17263 } else { 17264 /* Remove from the list */ 17265 *ilmp = ilm->ilm_next; 17266 new_ilm = ilm; 17267 } 17268 17269 /* 17270 * If we have never joined this group on the to_ill 17271 * make sure we tell the driver. 17272 */ 17273 if (ilm_lookup_ill_v6(to_ill, &new_ilm->ilm_v6addr, 17274 ALL_ZONES) == NULL) 17275 new_ilm->ilm_notify_driver = B_TRUE; 17276 17277 /* Add to the to_ill's list */ 17278 new_ilm->ilm_next = to_ill->ill_ilm; 17279 to_ill->ill_ilm = new_ilm; 17280 new_ilm->ilm_is_new = B_TRUE; 17281 17282 /* 17283 * Revert multicast filter state to (EXCLUDE, NULL) 17284 */ 17285 new_ilm->ilm_fmode = MODE_IS_EXCLUDE; 17286 CLEAR_SLIST(new_ilm->ilm_filter); 17287 17288 /* 17289 * Delete only if we have allocated a new ilm. 17290 */ 17291 if (new_ilm != ilm) { 17292 delete_ilm: 17293 if (from_ill->ill_ilm_walker_cnt == 0) { 17294 /* Remove from the list */ 17295 *ilmp = ilm->ilm_next; 17296 ilm->ilm_next = NULL; 17297 DTRACE_PROBE3(ipif__decr__cnt, 17298 (ipif_t *), ilm->ilm_ipif, 17299 (char *), "ilm", (void *), ilm); 17300 ASSERT(ilm->ilm_ipif->ipif_ilm_cnt > 0); 17301 ilm->ilm_ipif->ipif_ilm_cnt--; 17302 ilm_inactive(ilm); 17303 } else { 17304 ilm->ilm_flags |= ILM_DELETED; 17305 from_ill->ill_ilm_cleanup_reqd = 1; 17306 ilmp = &ilm->ilm_next; 17307 } 17308 } 17309 } 17310 } 17311 17312 static uint_t 17313 ipif_get_id(ill_t *ill, uint_t id) 17314 { 17315 uint_t unit; 17316 ipif_t *tipif; 17317 boolean_t found = B_FALSE; 17318 ip_stack_t *ipst = ill->ill_ipst; 17319 17320 /* 17321 * During failback, we want to go back to the same id 17322 * instead of the smallest id so that the original 17323 * configuration is maintained. id is non-zero in that 17324 * case. 17325 */ 17326 if (id != 0) { 17327 /* 17328 * While failing back, if we still have an ipif with 17329 * MAX_ADDRS_PER_IF, it means this will be replaced 17330 * as soon as we return from this function. It was 17331 * to set to MAX_ADDRS_PER_IF by the caller so that 17332 * we can choose the smallest id. Thus we return zero 17333 * in that case ignoring the hint. 17334 */ 17335 if (ill->ill_ipif->ipif_id == MAX_ADDRS_PER_IF) 17336 return (0); 17337 for (tipif = ill->ill_ipif; tipif != NULL; 17338 tipif = tipif->ipif_next) { 17339 if (tipif->ipif_id == id) { 17340 found = B_TRUE; 17341 break; 17342 } 17343 } 17344 /* 17345 * If somebody already plumbed another logical 17346 * with the same id, we won't be able to find it. 17347 */ 17348 if (!found) 17349 return (id); 17350 } 17351 for (unit = 0; unit <= ipst->ips_ip_addrs_per_if; unit++) { 17352 found = B_FALSE; 17353 for (tipif = ill->ill_ipif; tipif != NULL; 17354 tipif = tipif->ipif_next) { 17355 if (tipif->ipif_id == unit) { 17356 found = B_TRUE; 17357 break; 17358 } 17359 } 17360 if (!found) 17361 break; 17362 } 17363 return (unit); 17364 } 17365 17366 /* ARGSUSED */ 17367 static int 17368 ipif_move(ipif_t *ipif, ill_t *to_ill, queue_t *q, mblk_t *mp, 17369 ipif_t **rep_ipif_ptr) 17370 { 17371 ill_t *from_ill; 17372 ipif_t *rep_ipif; 17373 uint_t unit; 17374 int err = 0; 17375 ipif_t *to_ipif; 17376 struct iocblk *iocp; 17377 boolean_t failback_cmd; 17378 boolean_t remove_ipif; 17379 int rc; 17380 ip_stack_t *ipst; 17381 17382 ASSERT(IAM_WRITER_ILL(to_ill)); 17383 ASSERT(IAM_WRITER_IPIF(ipif)); 17384 17385 iocp = (struct iocblk *)mp->b_rptr; 17386 failback_cmd = (iocp->ioc_cmd == SIOCLIFFAILBACK); 17387 remove_ipif = B_FALSE; 17388 17389 from_ill = ipif->ipif_ill; 17390 ipst = from_ill->ill_ipst; 17391 17392 ASSERT(MUTEX_HELD(&to_ill->ill_lock)); 17393 ASSERT(MUTEX_HELD(&from_ill->ill_lock)); 17394 ASSERT(RW_WRITE_HELD(&ipst->ips_ill_g_lock)); 17395 17396 /* 17397 * Don't move LINK LOCAL addresses as they are tied to 17398 * physical interface. 17399 */ 17400 if (from_ill->ill_isv6 && 17401 IN6_IS_ADDR_LINKLOCAL(&ipif->ipif_v6lcl_addr)) { 17402 ipif->ipif_was_up = B_FALSE; 17403 IPIF_UNMARK_MOVING(ipif); 17404 return (0); 17405 } 17406 17407 /* 17408 * We set the ipif_id to maximum so that the search for 17409 * ipif_id will pick the lowest number i.e 0 in the 17410 * following 2 cases : 17411 * 17412 * 1) We have a replacement ipif at the head of to_ill. 17413 * We can't remove it yet as we can exceed ip_addrs_per_if 17414 * on to_ill and hence the MOVE might fail. We want to 17415 * remove it only if we could move the ipif. Thus, by 17416 * setting it to the MAX value, we make the search in 17417 * ipif_get_id return the zeroth id. 17418 * 17419 * 2) When DR pulls out the NIC and re-plumbs the interface, 17420 * we might just have a zero address plumbed on the ipif 17421 * with zero id in the case of IPv4. We remove that while 17422 * doing the failback. We want to remove it only if we 17423 * could move the ipif. Thus, by setting it to the MAX 17424 * value, we make the search in ipif_get_id return the 17425 * zeroth id. 17426 * 17427 * Both (1) and (2) are done only when when we are moving 17428 * an ipif (either due to failover/failback) which originally 17429 * belonged to this interface i.e the ipif_orig_ifindex is 17430 * the same as to_ill's ifindex. This is needed so that 17431 * FAILOVER from A -> B ( A failed) followed by FAILOVER 17432 * from B -> A (B is being removed from the group) and 17433 * FAILBACK from A -> B restores the original configuration. 17434 * Without the check for orig_ifindex, the second FAILOVER 17435 * could make the ipif belonging to B replace the A's zeroth 17436 * ipif and the subsequent failback re-creating the replacement 17437 * ipif again. 17438 * 17439 * NOTE : We created the replacement ipif when we did a 17440 * FAILOVER (See below). We could check for FAILBACK and 17441 * then look for replacement ipif to be removed. But we don't 17442 * want to do that because we wan't to allow the possibility 17443 * of a FAILOVER from A -> B (which creates the replacement ipif), 17444 * followed by a *FAILOVER* from B -> A instead of a FAILBACK 17445 * from B -> A. 17446 */ 17447 to_ipif = to_ill->ill_ipif; 17448 if ((to_ill->ill_phyint->phyint_ifindex == 17449 ipif->ipif_orig_ifindex) && 17450 to_ipif->ipif_replace_zero) { 17451 ASSERT(to_ipif->ipif_id == 0); 17452 remove_ipif = B_TRUE; 17453 to_ipif->ipif_id = MAX_ADDRS_PER_IF; 17454 } 17455 /* 17456 * Find the lowest logical unit number on the to_ill. 17457 * If we are failing back, try to get the original id 17458 * rather than the lowest one so that the original 17459 * configuration is maintained. 17460 * 17461 * XXX need a better scheme for this. 17462 */ 17463 if (failback_cmd) { 17464 unit = ipif_get_id(to_ill, ipif->ipif_orig_ipifid); 17465 } else { 17466 unit = ipif_get_id(to_ill, 0); 17467 } 17468 17469 /* Reset back to zero in case we fail below */ 17470 if (to_ipif->ipif_id == MAX_ADDRS_PER_IF) 17471 to_ipif->ipif_id = 0; 17472 17473 if (unit == ipst->ips_ip_addrs_per_if) { 17474 ipif->ipif_was_up = B_FALSE; 17475 IPIF_UNMARK_MOVING(ipif); 17476 return (EINVAL); 17477 } 17478 17479 /* 17480 * ipif is ready to move from "from_ill" to "to_ill". 17481 * 17482 * 1) If we are moving ipif with id zero, create a 17483 * replacement ipif for this ipif on from_ill. If this fails 17484 * fail the MOVE operation. 17485 * 17486 * 2) Remove the replacement ipif on to_ill if any. 17487 * We could remove the replacement ipif when we are moving 17488 * the ipif with id zero. But what if somebody already 17489 * unplumbed it ? Thus we always remove it if it is present. 17490 * We want to do it only if we are sure we are going to 17491 * move the ipif to to_ill which is why there are no 17492 * returns due to error till ipif is linked to to_ill. 17493 * Note that the first ipif that we failback will always 17494 * be zero if it is present. 17495 */ 17496 if (ipif->ipif_id == 0) { 17497 ipaddr_t inaddr_any = INADDR_ANY; 17498 17499 rep_ipif = (ipif_t *)mi_alloc(sizeof (ipif_t), BPRI_MED); 17500 if (rep_ipif == NULL) { 17501 ipif->ipif_was_up = B_FALSE; 17502 IPIF_UNMARK_MOVING(ipif); 17503 return (ENOMEM); 17504 } 17505 *rep_ipif = ipif_zero; 17506 /* 17507 * Before we put the ipif on the list, store the addresses 17508 * as mapped addresses as some of the ioctls e.g SIOCGIFADDR 17509 * assumes so. This logic is not any different from what 17510 * ipif_allocate does. 17511 */ 17512 IN6_IPADDR_TO_V4MAPPED(inaddr_any, 17513 &rep_ipif->ipif_v6lcl_addr); 17514 IN6_IPADDR_TO_V4MAPPED(inaddr_any, 17515 &rep_ipif->ipif_v6src_addr); 17516 IN6_IPADDR_TO_V4MAPPED(inaddr_any, 17517 &rep_ipif->ipif_v6subnet); 17518 IN6_IPADDR_TO_V4MAPPED(inaddr_any, 17519 &rep_ipif->ipif_v6net_mask); 17520 IN6_IPADDR_TO_V4MAPPED(inaddr_any, 17521 &rep_ipif->ipif_v6brd_addr); 17522 IN6_IPADDR_TO_V4MAPPED(inaddr_any, 17523 &rep_ipif->ipif_v6pp_dst_addr); 17524 /* 17525 * We mark IPIF_NOFAILOVER so that this can never 17526 * move. 17527 */ 17528 rep_ipif->ipif_flags = ipif->ipif_flags | IPIF_NOFAILOVER; 17529 rep_ipif->ipif_flags &= ~IPIF_UP & ~IPIF_DUPLICATE; 17530 rep_ipif->ipif_replace_zero = B_TRUE; 17531 mutex_init(&rep_ipif->ipif_saved_ire_lock, NULL, 17532 MUTEX_DEFAULT, NULL); 17533 rep_ipif->ipif_id = 0; 17534 rep_ipif->ipif_ire_type = ipif->ipif_ire_type; 17535 rep_ipif->ipif_ill = from_ill; 17536 rep_ipif->ipif_orig_ifindex = 17537 from_ill->ill_phyint->phyint_ifindex; 17538 /* Insert at head */ 17539 rep_ipif->ipif_next = from_ill->ill_ipif; 17540 from_ill->ill_ipif = rep_ipif; 17541 /* 17542 * We don't really care to let apps know about 17543 * this interface. 17544 */ 17545 } 17546 17547 if (remove_ipif) { 17548 /* 17549 * We set to a max value above for this case to get 17550 * id zero. ASSERT that we did get one. 17551 */ 17552 ASSERT((to_ipif->ipif_id == 0) && (unit == 0)); 17553 rep_ipif = to_ipif; 17554 to_ill->ill_ipif = rep_ipif->ipif_next; 17555 rep_ipif->ipif_next = NULL; 17556 /* 17557 * If some apps scanned and find this interface, 17558 * it is time to let them know, so that they can 17559 * delete it. 17560 */ 17561 17562 *rep_ipif_ptr = rep_ipif; 17563 } 17564 17565 /* Get it out of the ILL interface list. */ 17566 ipif_remove(ipif, B_FALSE); 17567 17568 /* Assign the new ill */ 17569 ipif->ipif_ill = to_ill; 17570 ipif->ipif_id = unit; 17571 /* id has already been checked */ 17572 rc = ipif_insert(ipif, B_FALSE, B_FALSE); 17573 ASSERT(rc == 0); 17574 /* Let SCTP update its list */ 17575 sctp_move_ipif(ipif, from_ill, to_ill); 17576 /* 17577 * Handle the failover and failback of ipif_t between 17578 * ill_t that have differing maximum mtu values. 17579 */ 17580 if (ipif->ipif_mtu > to_ill->ill_max_mtu) { 17581 if (ipif->ipif_saved_mtu == 0) { 17582 /* 17583 * As this ipif_t is moving to an ill_t 17584 * that has a lower ill_max_mtu, its 17585 * ipif_mtu needs to be saved so it can 17586 * be restored during failback or during 17587 * failover to an ill_t which has a 17588 * higher ill_max_mtu. 17589 */ 17590 ipif->ipif_saved_mtu = ipif->ipif_mtu; 17591 ipif->ipif_mtu = to_ill->ill_max_mtu; 17592 } else { 17593 /* 17594 * The ipif_t is, once again, moving to 17595 * an ill_t that has a lower maximum mtu 17596 * value. 17597 */ 17598 ipif->ipif_mtu = to_ill->ill_max_mtu; 17599 } 17600 } else if (ipif->ipif_mtu < to_ill->ill_max_mtu && 17601 ipif->ipif_saved_mtu != 0) { 17602 /* 17603 * The mtu of this ipif_t had to be reduced 17604 * during an earlier failover; this is an 17605 * opportunity for it to be increased (either as 17606 * part of another failover or a failback). 17607 */ 17608 if (ipif->ipif_saved_mtu <= to_ill->ill_max_mtu) { 17609 ipif->ipif_mtu = ipif->ipif_saved_mtu; 17610 ipif->ipif_saved_mtu = 0; 17611 } else { 17612 ipif->ipif_mtu = to_ill->ill_max_mtu; 17613 } 17614 } 17615 17616 /* 17617 * We preserve all the other fields of the ipif including 17618 * ipif_saved_ire_mp. The routes that are saved here will 17619 * be recreated on the new interface and back on the old 17620 * interface when we move back. 17621 */ 17622 ASSERT(ipif->ipif_arp_del_mp == NULL); 17623 17624 return (err); 17625 } 17626 17627 static int 17628 ipif_move_all(ill_t *from_ill, ill_t *to_ill, queue_t *q, mblk_t *mp, 17629 int ifindex, ipif_t **rep_ipif_ptr) 17630 { 17631 ipif_t *mipif; 17632 ipif_t *ipif_next; 17633 int err; 17634 17635 /* 17636 * We don't really try to MOVE back things if some of the 17637 * operations fail. The daemon will take care of moving again 17638 * later on. 17639 */ 17640 for (mipif = from_ill->ill_ipif; mipif != NULL; mipif = ipif_next) { 17641 ipif_next = mipif->ipif_next; 17642 if (!(mipif->ipif_flags & IPIF_NOFAILOVER) && 17643 (ifindex == 0 || ifindex == mipif->ipif_orig_ifindex)) { 17644 17645 err = ipif_move(mipif, to_ill, q, mp, rep_ipif_ptr); 17646 17647 /* 17648 * When the MOVE fails, it is the job of the 17649 * application to take care of this properly 17650 * i.e try again if it is ENOMEM. 17651 */ 17652 if (mipif->ipif_ill != from_ill) { 17653 /* 17654 * ipif has moved. 17655 * 17656 * Move the multicast memberships associated 17657 * with this ipif to the new ill. For IPv6, we 17658 * do it once after all the ipifs are moved 17659 * (in ill_move) as they are not associated 17660 * with ipifs. 17661 * 17662 * We need to move the ilms as the ipif has 17663 * already been moved to a new ill even 17664 * in the case of errors. Neither 17665 * ilm_free(ipif) will find the ilm 17666 * when somebody unplumbs this ipif nor 17667 * ilm_delete(ilm) will be able to find the 17668 * ilm, if we don't move now. 17669 */ 17670 if (!from_ill->ill_isv6) 17671 ilm_move_v4(from_ill, to_ill, mipif); 17672 } 17673 17674 if (err != 0) 17675 return (err); 17676 } 17677 } 17678 return (0); 17679 } 17680 17681 static int 17682 ill_move(ill_t *from_ill, ill_t *to_ill, queue_t *q, mblk_t *mp) 17683 { 17684 int ifindex; 17685 int err; 17686 struct iocblk *iocp; 17687 ipif_t *ipif; 17688 ipif_t *rep_ipif_ptr = NULL; 17689 ipif_t *from_ipif = NULL; 17690 boolean_t check_rep_if = B_FALSE; 17691 ip_stack_t *ipst = from_ill->ill_ipst; 17692 17693 iocp = (struct iocblk *)mp->b_rptr; 17694 if (iocp->ioc_cmd == SIOCLIFFAILOVER) { 17695 /* 17696 * Move everything pointing at from_ill to to_ill. 17697 * We acheive this by passing in 0 as ifindex. 17698 */ 17699 ifindex = 0; 17700 } else { 17701 /* 17702 * Move everything pointing at from_ill whose original 17703 * ifindex of connp, ipif, ilm points at to_ill->ill_index. 17704 * We acheive this by passing in ifindex rather than 0. 17705 * Multicast vifs, ilgs move implicitly because ipifs move. 17706 */ 17707 ASSERT(iocp->ioc_cmd == SIOCLIFFAILBACK); 17708 ifindex = to_ill->ill_phyint->phyint_ifindex; 17709 } 17710 17711 /* 17712 * Determine if there is at least one ipif that would move from 17713 * 'from_ill' to 'to_ill'. If so, it is possible that the replacement 17714 * ipif (if it exists) on the to_ill would be consumed as a result of 17715 * the move, in which case we need to quiesce the replacement ipif also. 17716 */ 17717 for (from_ipif = from_ill->ill_ipif; from_ipif != NULL; 17718 from_ipif = from_ipif->ipif_next) { 17719 if (((ifindex == 0) || 17720 (ifindex == from_ipif->ipif_orig_ifindex)) && 17721 !(from_ipif->ipif_flags & IPIF_NOFAILOVER)) { 17722 check_rep_if = B_TRUE; 17723 break; 17724 } 17725 } 17726 17727 ill_down_ipifs(from_ill, mp, ifindex, B_TRUE); 17728 17729 GRAB_ILL_LOCKS(from_ill, to_ill); 17730 if ((ipif = ill_quiescent_to_move(from_ill)) != NULL) { 17731 (void) ipsq_pending_mp_add(NULL, ipif, q, 17732 mp, ILL_MOVE_OK); 17733 RELEASE_ILL_LOCKS(from_ill, to_ill); 17734 return (EINPROGRESS); 17735 } 17736 17737 /* Check if the replacement ipif is quiescent to delete */ 17738 if (check_rep_if && IPIF_REPL_CHECK(to_ill->ill_ipif, 17739 (iocp->ioc_cmd == SIOCLIFFAILBACK))) { 17740 to_ill->ill_ipif->ipif_state_flags |= 17741 IPIF_MOVING | IPIF_CHANGING; 17742 if ((ipif = ill_quiescent_to_move(to_ill)) != NULL) { 17743 (void) ipsq_pending_mp_add(NULL, ipif, q, 17744 mp, ILL_MOVE_OK); 17745 RELEASE_ILL_LOCKS(from_ill, to_ill); 17746 return (EINPROGRESS); 17747 } 17748 } 17749 RELEASE_ILL_LOCKS(from_ill, to_ill); 17750 17751 ASSERT(!MUTEX_HELD(&to_ill->ill_lock)); 17752 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 17753 GRAB_ILL_LOCKS(from_ill, to_ill); 17754 err = ipif_move_all(from_ill, to_ill, q, mp, ifindex, &rep_ipif_ptr); 17755 17756 /* ilm_move is done inside ipif_move for IPv4 */ 17757 if (err == 0 && from_ill->ill_isv6) 17758 ilm_move_v6(from_ill, to_ill, ifindex); 17759 17760 RELEASE_ILL_LOCKS(from_ill, to_ill); 17761 rw_exit(&ipst->ips_ill_g_lock); 17762 17763 /* 17764 * send rts messages and multicast messages. 17765 */ 17766 if (rep_ipif_ptr != NULL) { 17767 if (rep_ipif_ptr->ipif_recovery_id != 0) { 17768 (void) untimeout(rep_ipif_ptr->ipif_recovery_id); 17769 rep_ipif_ptr->ipif_recovery_id = 0; 17770 } 17771 ip_rts_ifmsg(rep_ipif_ptr); 17772 ip_rts_newaddrmsg(RTM_DELETE, 0, rep_ipif_ptr); 17773 #ifdef DEBUG 17774 ipif_trace_cleanup(rep_ipif_ptr); 17775 #endif 17776 mi_free(rep_ipif_ptr); 17777 } 17778 17779 conn_move_ill(from_ill, to_ill, ifindex); 17780 17781 return (err); 17782 } 17783 17784 /* 17785 * Used to extract arguments for FAILOVER/FAILBACK ioctls. 17786 * Also checks for the validity of the arguments. 17787 * Note: We are already exclusive inside the from group. 17788 * It is upto the caller to release refcnt on the to_ill's. 17789 */ 17790 static int 17791 ip_extract_move_args(queue_t *q, mblk_t *mp, ill_t **ill_from_v4, 17792 ill_t **ill_from_v6, ill_t **ill_to_v4, ill_t **ill_to_v6) 17793 { 17794 int dst_index; 17795 ipif_t *ipif_v4, *ipif_v6; 17796 struct lifreq *lifr; 17797 mblk_t *mp1; 17798 boolean_t exists; 17799 sin_t *sin; 17800 int err = 0; 17801 ip_stack_t *ipst; 17802 17803 if (CONN_Q(q)) 17804 ipst = CONNQ_TO_IPST(q); 17805 else 17806 ipst = ILLQ_TO_IPST(q); 17807 17808 if ((mp1 = mp->b_cont) == NULL) 17809 return (EPROTO); 17810 17811 if ((mp1 = mp1->b_cont) == NULL) 17812 return (EPROTO); 17813 17814 lifr = (struct lifreq *)mp1->b_rptr; 17815 sin = (sin_t *)&lifr->lifr_addr; 17816 17817 /* 17818 * We operate on both IPv4 and IPv6. Thus, we don't allow IPv4/IPv6 17819 * specific operations. 17820 */ 17821 if (sin->sin_family != AF_UNSPEC) 17822 return (EINVAL); 17823 17824 /* 17825 * Get ipif with id 0. We are writer on the from ill. So we can pass 17826 * NULLs for the last 4 args and we know the lookup won't fail 17827 * with EINPROGRESS. 17828 */ 17829 ipif_v4 = ipif_lookup_on_name(lifr->lifr_name, 17830 mi_strlen(lifr->lifr_name), B_FALSE, &exists, B_FALSE, 17831 ALL_ZONES, NULL, NULL, NULL, NULL, ipst); 17832 ipif_v6 = ipif_lookup_on_name(lifr->lifr_name, 17833 mi_strlen(lifr->lifr_name), B_FALSE, &exists, B_TRUE, 17834 ALL_ZONES, NULL, NULL, NULL, NULL, ipst); 17835 17836 if (ipif_v4 == NULL && ipif_v6 == NULL) 17837 return (ENXIO); 17838 17839 if (ipif_v4 != NULL) { 17840 ASSERT(ipif_v4->ipif_refcnt != 0); 17841 if (ipif_v4->ipif_id != 0) { 17842 err = EINVAL; 17843 goto done; 17844 } 17845 17846 ASSERT(IAM_WRITER_IPIF(ipif_v4)); 17847 *ill_from_v4 = ipif_v4->ipif_ill; 17848 } 17849 17850 if (ipif_v6 != NULL) { 17851 ASSERT(ipif_v6->ipif_refcnt != 0); 17852 if (ipif_v6->ipif_id != 0) { 17853 err = EINVAL; 17854 goto done; 17855 } 17856 17857 ASSERT(IAM_WRITER_IPIF(ipif_v6)); 17858 *ill_from_v6 = ipif_v6->ipif_ill; 17859 } 17860 17861 err = 0; 17862 dst_index = lifr->lifr_movetoindex; 17863 *ill_to_v4 = ill_lookup_on_ifindex(dst_index, B_FALSE, 17864 q, mp, ip_process_ioctl, &err, ipst); 17865 if (err != 0) { 17866 /* 17867 * A move may be in progress, EINPROGRESS looking up the "to" 17868 * ill means changes already done to the "from" ipsq need to 17869 * be undone to avoid potential deadlocks. 17870 * 17871 * ENXIO will usually be because there is only v6 on the ill, 17872 * that's not treated as an error unless an ENXIO is also 17873 * seen when looking up the v6 "to" ill. 17874 * 17875 * If EINPROGRESS, the mp has been enqueued and can not be 17876 * used to look up the v6 "to" ill, but a preemptive clean 17877 * up of changes to the v6 "from" ipsq is done. 17878 */ 17879 if (err == EINPROGRESS) { 17880 if (*ill_from_v4 != NULL) { 17881 ill_t *from_ill; 17882 ipsq_t *from_ipsq; 17883 17884 from_ill = ipif_v4->ipif_ill; 17885 from_ipsq = from_ill->ill_phyint->phyint_ipsq; 17886 17887 mutex_enter(&from_ipsq->ipsq_lock); 17888 from_ipsq->ipsq_current_ipif = NULL; 17889 mutex_exit(&from_ipsq->ipsq_lock); 17890 } 17891 if (*ill_from_v6 != NULL) { 17892 ill_t *from_ill; 17893 ipsq_t *from_ipsq; 17894 17895 from_ill = ipif_v6->ipif_ill; 17896 from_ipsq = from_ill->ill_phyint->phyint_ipsq; 17897 17898 mutex_enter(&from_ipsq->ipsq_lock); 17899 from_ipsq->ipsq_current_ipif = NULL; 17900 mutex_exit(&from_ipsq->ipsq_lock); 17901 } 17902 goto done; 17903 } 17904 ASSERT(err == ENXIO); 17905 err = 0; 17906 } 17907 17908 *ill_to_v6 = ill_lookup_on_ifindex(dst_index, B_TRUE, 17909 q, mp, ip_process_ioctl, &err, ipst); 17910 if (err != 0) { 17911 /* 17912 * A move may be in progress, EINPROGRESS looking up the "to" 17913 * ill means changes already done to the "from" ipsq need to 17914 * be undone to avoid potential deadlocks. 17915 */ 17916 if (err == EINPROGRESS) { 17917 if (*ill_from_v6 != NULL) { 17918 ill_t *from_ill; 17919 ipsq_t *from_ipsq; 17920 17921 from_ill = ipif_v6->ipif_ill; 17922 from_ipsq = from_ill->ill_phyint->phyint_ipsq; 17923 17924 mutex_enter(&from_ipsq->ipsq_lock); 17925 from_ipsq->ipsq_current_ipif = NULL; 17926 mutex_exit(&from_ipsq->ipsq_lock); 17927 } 17928 goto done; 17929 } 17930 ASSERT(err == ENXIO); 17931 17932 /* Both v4 and v6 lookup failed */ 17933 if (*ill_to_v4 == NULL) { 17934 err = ENXIO; 17935 goto done; 17936 } 17937 err = 0; 17938 } 17939 17940 /* 17941 * If we have something to MOVE i.e "from" not NULL, 17942 * "to" should be non-NULL. 17943 */ 17944 if ((*ill_from_v4 != NULL && *ill_to_v4 == NULL) || 17945 (*ill_from_v6 != NULL && *ill_to_v6 == NULL)) { 17946 err = EINVAL; 17947 } 17948 17949 done: 17950 if (ipif_v4 != NULL) 17951 ipif_refrele(ipif_v4); 17952 if (ipif_v6 != NULL) 17953 ipif_refrele(ipif_v6); 17954 return (err); 17955 } 17956 17957 /* 17958 * FAILOVER and FAILBACK are modelled as MOVE operations. 17959 * 17960 * We don't check whether the MOVE is within the same group or 17961 * not, because this ioctl can be used as a generic mechanism 17962 * to failover from interface A to B, though things will function 17963 * only if they are really part of the same group. Moreover, 17964 * all ipifs may be down and hence temporarily out of the group. 17965 * 17966 * ipif's that need to be moved are first brought down; V4 ipifs are brought 17967 * down first and then V6. For each we wait for the ipif's to become quiescent. 17968 * Bringing down the ipifs ensures that all ires pointing to these ipifs's 17969 * have been deleted and there are no active references. Once quiescent the 17970 * ipif's are moved and brought up on the new ill. 17971 * 17972 * Normally the source ill and destination ill belong to the same IPMP group 17973 * and hence the same ipsq_t. In the event they don't belong to the same 17974 * same group the two ipsq's are first merged into one ipsq - that of the 17975 * to_ill. The multicast memberships on the source and destination ill cannot 17976 * change during the move operation since multicast joins/leaves also have to 17977 * execute on the same ipsq and are hence serialized. 17978 */ 17979 /* ARGSUSED */ 17980 int 17981 ip_sioctl_move(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 17982 ip_ioctl_cmd_t *ipip, void *ifreq) 17983 { 17984 ill_t *ill_to_v4 = NULL; 17985 ill_t *ill_to_v6 = NULL; 17986 ill_t *ill_from_v4 = NULL; 17987 ill_t *ill_from_v6 = NULL; 17988 int err = 0; 17989 17990 /* 17991 * setup from and to ill's, we can get EINPROGRESS only for 17992 * to_ill's. 17993 */ 17994 err = ip_extract_move_args(q, mp, &ill_from_v4, &ill_from_v6, 17995 &ill_to_v4, &ill_to_v6); 17996 17997 if (err != 0) { 17998 ip0dbg(("ip_sioctl_move: extract args failed\n")); 17999 goto done; 18000 } 18001 18002 /* 18003 * nothing to do. 18004 */ 18005 if ((ill_from_v4 != NULL) && (ill_from_v4 == ill_to_v4)) { 18006 goto done; 18007 } 18008 18009 /* 18010 * nothing to do. 18011 */ 18012 if ((ill_from_v6 != NULL) && (ill_from_v6 == ill_to_v6)) { 18013 goto done; 18014 } 18015 18016 /* 18017 * Mark the ill as changing. 18018 * ILL_CHANGING flag is cleared when the ipif's are brought up 18019 * in ill_up_ipifs in case of error they are cleared below. 18020 */ 18021 18022 GRAB_ILL_LOCKS(ill_from_v4, ill_from_v6); 18023 if (ill_from_v4 != NULL) 18024 ill_from_v4->ill_state_flags |= ILL_CHANGING; 18025 if (ill_from_v6 != NULL) 18026 ill_from_v6->ill_state_flags |= ILL_CHANGING; 18027 RELEASE_ILL_LOCKS(ill_from_v4, ill_from_v6); 18028 18029 /* 18030 * Make sure that both src and dst are 18031 * in the same syncq group. If not make it happen. 18032 * We are not holding any locks because we are the writer 18033 * on the from_ipsq and we will hold locks in ill_merge_groups 18034 * to protect to_ipsq against changing. 18035 */ 18036 if (ill_from_v4 != NULL) { 18037 if (ill_from_v4->ill_phyint->phyint_ipsq != 18038 ill_to_v4->ill_phyint->phyint_ipsq) { 18039 err = ill_merge_groups(ill_from_v4, ill_to_v4, 18040 NULL, mp, q); 18041 goto err_ret; 18042 18043 } 18044 ASSERT(!MUTEX_HELD(&ill_to_v4->ill_lock)); 18045 } else { 18046 18047 if (ill_from_v6->ill_phyint->phyint_ipsq != 18048 ill_to_v6->ill_phyint->phyint_ipsq) { 18049 err = ill_merge_groups(ill_from_v6, ill_to_v6, 18050 NULL, mp, q); 18051 goto err_ret; 18052 18053 } 18054 ASSERT(!MUTEX_HELD(&ill_to_v6->ill_lock)); 18055 } 18056 18057 /* 18058 * Now that the ipsq's have been merged and we are the writer 18059 * lets mark to_ill as changing as well. 18060 */ 18061 18062 GRAB_ILL_LOCKS(ill_to_v4, ill_to_v6); 18063 if (ill_to_v4 != NULL) 18064 ill_to_v4->ill_state_flags |= ILL_CHANGING; 18065 if (ill_to_v6 != NULL) 18066 ill_to_v6->ill_state_flags |= ILL_CHANGING; 18067 RELEASE_ILL_LOCKS(ill_to_v4, ill_to_v6); 18068 18069 /* 18070 * Its ok for us to proceed with the move even if 18071 * ill_pending_mp is non null on one of the from ill's as the reply 18072 * should not be looking at the ipif, it should only care about the 18073 * ill itself. 18074 */ 18075 18076 /* 18077 * lets move ipv4 first. 18078 */ 18079 if (ill_from_v4 != NULL) { 18080 ASSERT(IAM_WRITER_ILL(ill_to_v4)); 18081 ill_from_v4->ill_move_in_progress = B_TRUE; 18082 ill_to_v4->ill_move_in_progress = B_TRUE; 18083 ill_to_v4->ill_move_peer = ill_from_v4; 18084 ill_from_v4->ill_move_peer = ill_to_v4; 18085 err = ill_move(ill_from_v4, ill_to_v4, q, mp); 18086 } 18087 18088 /* 18089 * Now lets move ipv6. 18090 */ 18091 if (err == 0 && ill_from_v6 != NULL) { 18092 ASSERT(IAM_WRITER_ILL(ill_to_v6)); 18093 ill_from_v6->ill_move_in_progress = B_TRUE; 18094 ill_to_v6->ill_move_in_progress = B_TRUE; 18095 ill_to_v6->ill_move_peer = ill_from_v6; 18096 ill_from_v6->ill_move_peer = ill_to_v6; 18097 err = ill_move(ill_from_v6, ill_to_v6, q, mp); 18098 } 18099 18100 err_ret: 18101 /* 18102 * EINPROGRESS means we are waiting for the ipif's that need to be 18103 * moved to become quiescent. 18104 */ 18105 if (err == EINPROGRESS) { 18106 goto done; 18107 } 18108 18109 /* 18110 * if err is set ill_up_ipifs will not be called 18111 * lets clear the flags. 18112 */ 18113 18114 GRAB_ILL_LOCKS(ill_to_v4, ill_to_v6); 18115 GRAB_ILL_LOCKS(ill_from_v4, ill_from_v6); 18116 /* 18117 * Some of the clearing may be redundant. But it is simple 18118 * not making any extra checks. 18119 */ 18120 if (ill_from_v6 != NULL) { 18121 ill_from_v6->ill_move_in_progress = B_FALSE; 18122 ill_from_v6->ill_move_peer = NULL; 18123 ill_from_v6->ill_state_flags &= ~ILL_CHANGING; 18124 } 18125 if (ill_from_v4 != NULL) { 18126 ill_from_v4->ill_move_in_progress = B_FALSE; 18127 ill_from_v4->ill_move_peer = NULL; 18128 ill_from_v4->ill_state_flags &= ~ILL_CHANGING; 18129 } 18130 if (ill_to_v6 != NULL) { 18131 ill_to_v6->ill_move_in_progress = B_FALSE; 18132 ill_to_v6->ill_move_peer = NULL; 18133 ill_to_v6->ill_state_flags &= ~ILL_CHANGING; 18134 } 18135 if (ill_to_v4 != NULL) { 18136 ill_to_v4->ill_move_in_progress = B_FALSE; 18137 ill_to_v4->ill_move_peer = NULL; 18138 ill_to_v4->ill_state_flags &= ~ILL_CHANGING; 18139 } 18140 18141 /* 18142 * Check for setting INACTIVE, if STANDBY is set and FAILED is not set. 18143 * Do this always to maintain proper state i.e even in case of errors. 18144 * As phyint_inactive looks at both v4 and v6 interfaces, 18145 * we need not call on both v4 and v6 interfaces. 18146 */ 18147 if (ill_from_v4 != NULL) { 18148 if ((ill_from_v4->ill_phyint->phyint_flags & 18149 (PHYI_STANDBY | PHYI_FAILED)) == PHYI_STANDBY) { 18150 phyint_inactive(ill_from_v4->ill_phyint); 18151 } 18152 } else if (ill_from_v6 != NULL) { 18153 if ((ill_from_v6->ill_phyint->phyint_flags & 18154 (PHYI_STANDBY | PHYI_FAILED)) == PHYI_STANDBY) { 18155 phyint_inactive(ill_from_v6->ill_phyint); 18156 } 18157 } 18158 18159 if (ill_to_v4 != NULL) { 18160 if (ill_to_v4->ill_phyint->phyint_flags & PHYI_INACTIVE) { 18161 ill_to_v4->ill_phyint->phyint_flags &= ~PHYI_INACTIVE; 18162 } 18163 } else if (ill_to_v6 != NULL) { 18164 if (ill_to_v6->ill_phyint->phyint_flags & PHYI_INACTIVE) { 18165 ill_to_v6->ill_phyint->phyint_flags &= ~PHYI_INACTIVE; 18166 } 18167 } 18168 18169 RELEASE_ILL_LOCKS(ill_to_v4, ill_to_v6); 18170 RELEASE_ILL_LOCKS(ill_from_v4, ill_from_v6); 18171 18172 no_err: 18173 /* 18174 * lets bring the interfaces up on the to_ill. 18175 */ 18176 if (err == 0) { 18177 err = ill_up_ipifs(ill_to_v4 == NULL ? ill_to_v6:ill_to_v4, 18178 q, mp); 18179 } 18180 18181 if (err == 0) { 18182 if (ill_from_v4 != NULL && ill_to_v4 != NULL) 18183 ilm_send_multicast_reqs(ill_from_v4, ill_to_v4); 18184 18185 if (ill_from_v6 != NULL && ill_to_v6 != NULL) 18186 ilm_send_multicast_reqs(ill_from_v6, ill_to_v6); 18187 } 18188 done: 18189 18190 if (ill_to_v4 != NULL) { 18191 ill_refrele(ill_to_v4); 18192 } 18193 if (ill_to_v6 != NULL) { 18194 ill_refrele(ill_to_v6); 18195 } 18196 18197 return (err); 18198 } 18199 18200 static void 18201 ill_dl_down(ill_t *ill) 18202 { 18203 /* 18204 * The ill is down; unbind but stay attached since we're still 18205 * associated with a PPA. If we have negotiated DLPI capabilites 18206 * with the data link service provider (IDS_OK) then reset them. 18207 * The interval between unbinding and rebinding is potentially 18208 * unbounded hence we cannot assume things will be the same. 18209 * The DLPI capabilities will be probed again when the data link 18210 * is brought up. 18211 */ 18212 mblk_t *mp = ill->ill_unbind_mp; 18213 18214 ip1dbg(("ill_dl_down(%s)\n", ill->ill_name)); 18215 18216 ill->ill_unbind_mp = NULL; 18217 if (mp != NULL) { 18218 ip1dbg(("ill_dl_down: %s (%u) for %s\n", 18219 dl_primstr(*(int *)mp->b_rptr), *(int *)mp->b_rptr, 18220 ill->ill_name)); 18221 mutex_enter(&ill->ill_lock); 18222 ill->ill_state_flags |= ILL_DL_UNBIND_IN_PROGRESS; 18223 mutex_exit(&ill->ill_lock); 18224 /* 18225 * Reset the capabilities if the negotiation is done or is 18226 * still in progress. Note that ill_capability_reset() will 18227 * set ill_dlpi_capab_state to IDS_UNKNOWN, so the subsequent 18228 * DL_CAPABILITY_ACK and DL_NOTE_CAPAB_RENEG will be ignored. 18229 * 18230 * Further, reset ill_capab_reneg to be B_FALSE so that the 18231 * subsequent DL_CAPABILITY_ACK can be ignored, to prevent 18232 * the capabilities renegotiation from happening. 18233 */ 18234 if (ill->ill_dlpi_capab_state != IDS_UNKNOWN) 18235 ill_capability_reset(ill); 18236 ill->ill_capab_reneg = B_FALSE; 18237 18238 ill_dlpi_send(ill, mp); 18239 } 18240 18241 /* 18242 * Toss all of our multicast memberships. We could keep them, but 18243 * then we'd have to do bookkeeping of any joins and leaves performed 18244 * by the application while the the interface is down (we can't just 18245 * issue them because arp cannot currently process AR_ENTRY_SQUERY's 18246 * on a downed interface). 18247 */ 18248 ill_leave_multicast(ill); 18249 18250 mutex_enter(&ill->ill_lock); 18251 ill->ill_dl_up = 0; 18252 (void) ill_hook_event_create(ill, 0, NE_DOWN, NULL, 0); 18253 mutex_exit(&ill->ill_lock); 18254 } 18255 18256 static void 18257 ill_dlpi_dispatch(ill_t *ill, mblk_t *mp) 18258 { 18259 union DL_primitives *dlp; 18260 t_uscalar_t prim; 18261 18262 ASSERT(DB_TYPE(mp) == M_PROTO || DB_TYPE(mp) == M_PCPROTO); 18263 18264 dlp = (union DL_primitives *)mp->b_rptr; 18265 prim = dlp->dl_primitive; 18266 18267 ip1dbg(("ill_dlpi_dispatch: sending %s (%u) to %s\n", 18268 dl_primstr(prim), prim, ill->ill_name)); 18269 18270 switch (prim) { 18271 case DL_PHYS_ADDR_REQ: 18272 { 18273 dl_phys_addr_req_t *dlpap = (dl_phys_addr_req_t *)mp->b_rptr; 18274 ill->ill_phys_addr_pend = dlpap->dl_addr_type; 18275 break; 18276 } 18277 case DL_BIND_REQ: 18278 mutex_enter(&ill->ill_lock); 18279 ill->ill_state_flags &= ~ILL_DL_UNBIND_IN_PROGRESS; 18280 mutex_exit(&ill->ill_lock); 18281 break; 18282 } 18283 18284 /* 18285 * Except for the ACKs for the M_PCPROTO messages, all other ACKs 18286 * are dropped by ip_rput() if ILL_CONDEMNED is set. Therefore 18287 * we only wait for the ACK of the DL_UNBIND_REQ. 18288 */ 18289 mutex_enter(&ill->ill_lock); 18290 if (!(ill->ill_state_flags & ILL_CONDEMNED) || 18291 (prim == DL_UNBIND_REQ)) { 18292 ill->ill_dlpi_pending = prim; 18293 } 18294 mutex_exit(&ill->ill_lock); 18295 18296 putnext(ill->ill_wq, mp); 18297 } 18298 18299 /* 18300 * Helper function for ill_dlpi_send(). 18301 */ 18302 /* ARGSUSED */ 18303 static void 18304 ill_dlpi_send_writer(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *arg) 18305 { 18306 ill_dlpi_send(q->q_ptr, mp); 18307 } 18308 18309 /* 18310 * Send a DLPI control message to the driver but make sure there 18311 * is only one outstanding message. Uses ill_dlpi_pending to tell 18312 * when it must queue. ip_rput_dlpi_writer calls ill_dlpi_done() 18313 * when an ACK or a NAK is received to process the next queued message. 18314 */ 18315 void 18316 ill_dlpi_send(ill_t *ill, mblk_t *mp) 18317 { 18318 mblk_t **mpp; 18319 18320 ASSERT(DB_TYPE(mp) == M_PROTO || DB_TYPE(mp) == M_PCPROTO); 18321 18322 /* 18323 * To ensure that any DLPI requests for current exclusive operation 18324 * are always completely sent before any DLPI messages for other 18325 * operations, require writer access before enqueuing. 18326 */ 18327 if (!IAM_WRITER_ILL(ill)) { 18328 ill_refhold(ill); 18329 /* qwriter_ip() does the ill_refrele() */ 18330 qwriter_ip(ill, ill->ill_wq, mp, ill_dlpi_send_writer, 18331 NEW_OP, B_TRUE); 18332 return; 18333 } 18334 18335 mutex_enter(&ill->ill_lock); 18336 if (ill->ill_dlpi_pending != DL_PRIM_INVAL) { 18337 /* Must queue message. Tail insertion */ 18338 mpp = &ill->ill_dlpi_deferred; 18339 while (*mpp != NULL) 18340 mpp = &((*mpp)->b_next); 18341 18342 ip1dbg(("ill_dlpi_send: deferring request for %s\n", 18343 ill->ill_name)); 18344 18345 *mpp = mp; 18346 mutex_exit(&ill->ill_lock); 18347 return; 18348 } 18349 mutex_exit(&ill->ill_lock); 18350 ill_dlpi_dispatch(ill, mp); 18351 } 18352 18353 /* 18354 * Send all deferred DLPI messages without waiting for their ACKs. 18355 */ 18356 void 18357 ill_dlpi_send_deferred(ill_t *ill) 18358 { 18359 mblk_t *mp, *nextmp; 18360 18361 /* 18362 * Clear ill_dlpi_pending so that the message is not queued in 18363 * ill_dlpi_send(). 18364 */ 18365 mutex_enter(&ill->ill_lock); 18366 ill->ill_dlpi_pending = DL_PRIM_INVAL; 18367 mp = ill->ill_dlpi_deferred; 18368 ill->ill_dlpi_deferred = NULL; 18369 mutex_exit(&ill->ill_lock); 18370 18371 for (; mp != NULL; mp = nextmp) { 18372 nextmp = mp->b_next; 18373 mp->b_next = NULL; 18374 ill_dlpi_send(ill, mp); 18375 } 18376 } 18377 18378 /* 18379 * Check if the DLPI primitive `prim' is pending; print a warning if not. 18380 */ 18381 boolean_t 18382 ill_dlpi_pending(ill_t *ill, t_uscalar_t prim) 18383 { 18384 t_uscalar_t pending; 18385 18386 mutex_enter(&ill->ill_lock); 18387 if (ill->ill_dlpi_pending == prim) { 18388 mutex_exit(&ill->ill_lock); 18389 return (B_TRUE); 18390 } 18391 18392 /* 18393 * During teardown, ill_dlpi_dispatch() will send DLPI requests 18394 * without waiting, so don't print any warnings in that case. 18395 */ 18396 if (ill->ill_state_flags & ILL_CONDEMNED) { 18397 mutex_exit(&ill->ill_lock); 18398 return (B_FALSE); 18399 } 18400 pending = ill->ill_dlpi_pending; 18401 mutex_exit(&ill->ill_lock); 18402 18403 if (pending == DL_PRIM_INVAL) { 18404 (void) mi_strlog(ill->ill_rq, 1, SL_CONSOLE|SL_ERROR|SL_TRACE, 18405 "received unsolicited ack for %s on %s\n", 18406 dl_primstr(prim), ill->ill_name); 18407 } else { 18408 (void) mi_strlog(ill->ill_rq, 1, SL_CONSOLE|SL_ERROR|SL_TRACE, 18409 "received unexpected ack for %s on %s (expecting %s)\n", 18410 dl_primstr(prim), ill->ill_name, dl_primstr(pending)); 18411 } 18412 return (B_FALSE); 18413 } 18414 18415 /* 18416 * Complete the current DLPI operation associated with `prim' on `ill' and 18417 * start the next queued DLPI operation (if any). If there are no queued DLPI 18418 * operations and the ill's current exclusive IPSQ operation has finished 18419 * (i.e., ipsq_current_finish() was called), then clear ipsq_current_ipif to 18420 * allow the next exclusive IPSQ operation to begin upon ipsq_exit(). See 18421 * the comments above ipsq_current_finish() for details. 18422 */ 18423 void 18424 ill_dlpi_done(ill_t *ill, t_uscalar_t prim) 18425 { 18426 mblk_t *mp; 18427 ipsq_t *ipsq = ill->ill_phyint->phyint_ipsq; 18428 18429 ASSERT(IAM_WRITER_IPSQ(ipsq)); 18430 mutex_enter(&ill->ill_lock); 18431 18432 ASSERT(prim != DL_PRIM_INVAL); 18433 ASSERT(ill->ill_dlpi_pending == prim); 18434 18435 ip1dbg(("ill_dlpi_done: %s has completed %s (%u)\n", ill->ill_name, 18436 dl_primstr(ill->ill_dlpi_pending), ill->ill_dlpi_pending)); 18437 18438 if ((mp = ill->ill_dlpi_deferred) == NULL) { 18439 ill->ill_dlpi_pending = DL_PRIM_INVAL; 18440 18441 mutex_enter(&ipsq->ipsq_lock); 18442 if (ipsq->ipsq_current_done) 18443 ipsq->ipsq_current_ipif = NULL; 18444 mutex_exit(&ipsq->ipsq_lock); 18445 18446 cv_signal(&ill->ill_cv); 18447 mutex_exit(&ill->ill_lock); 18448 return; 18449 } 18450 18451 ill->ill_dlpi_deferred = mp->b_next; 18452 mp->b_next = NULL; 18453 mutex_exit(&ill->ill_lock); 18454 18455 ill_dlpi_dispatch(ill, mp); 18456 } 18457 18458 void 18459 conn_delete_ire(conn_t *connp, caddr_t arg) 18460 { 18461 ipif_t *ipif = (ipif_t *)arg; 18462 ire_t *ire; 18463 18464 /* 18465 * Look at the cached ires on conns which has pointers to ipifs. 18466 * We just call ire_refrele which clears up the reference 18467 * to ire. Called when a conn closes. Also called from ipif_free 18468 * to cleanup indirect references to the stale ipif via the cached ire. 18469 */ 18470 mutex_enter(&connp->conn_lock); 18471 ire = connp->conn_ire_cache; 18472 if (ire != NULL && (ipif == NULL || ire->ire_ipif == ipif)) { 18473 connp->conn_ire_cache = NULL; 18474 mutex_exit(&connp->conn_lock); 18475 IRE_REFRELE_NOTR(ire); 18476 return; 18477 } 18478 mutex_exit(&connp->conn_lock); 18479 18480 } 18481 18482 /* 18483 * Some operations (illgrp_delete(), ipif_down()) conditionally delete a number 18484 * of IREs. Those IREs may have been previously cached in the conn structure. 18485 * This ipcl_walk() walker function releases all references to such IREs based 18486 * on the condemned flag. 18487 */ 18488 /* ARGSUSED */ 18489 void 18490 conn_cleanup_stale_ire(conn_t *connp, caddr_t arg) 18491 { 18492 ire_t *ire; 18493 18494 mutex_enter(&connp->conn_lock); 18495 ire = connp->conn_ire_cache; 18496 if (ire != NULL && (ire->ire_marks & IRE_MARK_CONDEMNED)) { 18497 connp->conn_ire_cache = NULL; 18498 mutex_exit(&connp->conn_lock); 18499 IRE_REFRELE_NOTR(ire); 18500 return; 18501 } 18502 mutex_exit(&connp->conn_lock); 18503 } 18504 18505 /* 18506 * Take down a specific interface, but don't lose any information about it. 18507 * Also delete interface from its interface group (ifgrp). 18508 * (Always called as writer.) 18509 * This function goes through the down sequence even if the interface is 18510 * already down. There are 2 reasons. 18511 * a. Currently we permit interface routes that depend on down interfaces 18512 * to be added. This behaviour itself is questionable. However it appears 18513 * that both Solaris and 4.3 BSD have exhibited this behaviour for a long 18514 * time. We go thru the cleanup in order to remove these routes. 18515 * b. The bringup of the interface could fail in ill_dl_up i.e. we get 18516 * DL_ERROR_ACK in response to the the DL_BIND request. The interface is 18517 * down, but we need to cleanup i.e. do ill_dl_down and 18518 * ip_rput_dlpi_writer (DL_ERROR_ACK) -> ipif_down. 18519 * 18520 * IP-MT notes: 18521 * 18522 * Model of reference to interfaces. 18523 * 18524 * The following members in ipif_t track references to the ipif. 18525 * int ipif_refcnt; Active reference count 18526 * uint_t ipif_ire_cnt; Number of ire's referencing this ipif 18527 * uint_t ipif_ilm_cnt; Number of ilms's references this ipif. 18528 * 18529 * The following members in ill_t track references to the ill. 18530 * int ill_refcnt; active refcnt 18531 * uint_t ill_ire_cnt; Number of ires referencing ill 18532 * uint_t ill_nce_cnt; Number of nces referencing ill 18533 * uint_t ill_ilm_cnt; Number of ilms referencing ill 18534 * 18535 * Reference to an ipif or ill can be obtained in any of the following ways. 18536 * 18537 * Through the lookup functions ipif_lookup_* / ill_lookup_* functions 18538 * Pointers to ipif / ill from other data structures viz ire and conn. 18539 * Implicit reference to the ipif / ill by holding a reference to the ire. 18540 * 18541 * The ipif/ill lookup functions return a reference held ipif / ill. 18542 * ipif_refcnt and ill_refcnt track the reference counts respectively. 18543 * This is a purely dynamic reference count associated with threads holding 18544 * references to the ipif / ill. Pointers from other structures do not 18545 * count towards this reference count. 18546 * 18547 * ipif_ire_cnt/ill_ire_cnt is the number of ire's 18548 * associated with the ipif/ill. This is incremented whenever a new 18549 * ire is created referencing the ipif/ill. This is done atomically inside 18550 * ire_add_v[46] where the ire is actually added to the ire hash table. 18551 * The count is decremented in ire_inactive where the ire is destroyed. 18552 * 18553 * nce's reference ill's thru nce_ill and the count of nce's associated with 18554 * an ill is recorded in ill_nce_cnt. This is incremented atomically in 18555 * ndp_add_v4()/ndp_add_v6() where the nce is actually added to the 18556 * table. Similarly it is decremented in ndp_inactive() where the nce 18557 * is destroyed. 18558 * 18559 * ilm's reference to the ipif (for IPv4 ilm's) or the ill (for IPv6 ilm's) 18560 * is incremented in ilm_add_v6() and decremented before the ilm is freed 18561 * in ilm_walker_cleanup() or ilm_delete(). 18562 * 18563 * Flow of ioctls involving interface down/up 18564 * 18565 * The following is the sequence of an attempt to set some critical flags on an 18566 * up interface. 18567 * ip_sioctl_flags 18568 * ipif_down 18569 * wait for ipif to be quiescent 18570 * ipif_down_tail 18571 * ip_sioctl_flags_tail 18572 * 18573 * All set ioctls that involve down/up sequence would have a skeleton similar 18574 * to the above. All the *tail functions are called after the refcounts have 18575 * dropped to the appropriate values. 18576 * 18577 * The mechanism to quiesce an ipif is as follows. 18578 * 18579 * Mark the ipif as IPIF_CHANGING. No more lookups will be allowed 18580 * on the ipif. Callers either pass a flag requesting wait or the lookup 18581 * functions will return NULL. 18582 * 18583 * Delete all ires referencing this ipif 18584 * 18585 * Any thread attempting to do an ipif_refhold on an ipif that has been 18586 * obtained thru a cached pointer will first make sure that 18587 * the ipif can be refheld using the macro IPIF_CAN_LOOKUP and only then 18588 * increment the refcount. 18589 * 18590 * The above guarantees that the ipif refcount will eventually come down to 18591 * zero and the ipif will quiesce, once all threads that currently hold a 18592 * reference to the ipif refrelease the ipif. The ipif is quiescent after the 18593 * ipif_refcount has dropped to zero and all ire's associated with this ipif 18594 * have also been ire_inactive'd. i.e. when ipif_{ire, ill}_cnt and 18595 * ipif_refcnt both drop to zero. See also: comments above IPIF_DOWN_OK() 18596 * in ip.h 18597 * 18598 * Lookups during the IPIF_CHANGING/ILL_CHANGING interval. 18599 * 18600 * Threads trying to lookup an ipif or ill can pass a flag requesting 18601 * wait and restart if the ipif / ill cannot be looked up currently. 18602 * For eg. bind, and route operations (Eg. route add / delete) cannot return 18603 * failure if the ipif is currently undergoing an exclusive operation, and 18604 * hence pass the flag. The mblk is then enqueued in the ipsq and the operation 18605 * is restarted by ipsq_exit() when the currently exclusive ioctl completes. 18606 * The lookup and enqueue is atomic using the ill_lock and ipsq_lock. The 18607 * lookup is done holding the ill_lock. Hence the ill/ipif state flags can't 18608 * change while the ill_lock is held. Before dropping the ill_lock we acquire 18609 * the ipsq_lock and call ipsq_enq. This ensures that ipsq_exit can't finish 18610 * until we release the ipsq_lock, even though the the ill/ipif state flags 18611 * can change after we drop the ill_lock. 18612 * 18613 * An attempt to send out a packet using an ipif that is currently 18614 * IPIF_CHANGING will fail. No attempt is made in this case to enqueue this 18615 * operation and restart it later when the exclusive condition on the ipif ends. 18616 * This is an example of not passing the wait flag to the lookup functions. For 18617 * example an attempt to refhold and use conn->conn_multicast_ipif and send 18618 * out a multicast packet on that ipif will fail while the ipif is 18619 * IPIF_CHANGING. An attempt to create an IRE_CACHE using an ipif that is 18620 * currently IPIF_CHANGING will also fail. 18621 */ 18622 int 18623 ipif_down(ipif_t *ipif, queue_t *q, mblk_t *mp) 18624 { 18625 ill_t *ill = ipif->ipif_ill; 18626 phyint_t *phyi; 18627 conn_t *connp; 18628 boolean_t success; 18629 boolean_t ipif_was_up = B_FALSE; 18630 ip_stack_t *ipst = ill->ill_ipst; 18631 18632 ASSERT(IAM_WRITER_IPIF(ipif)); 18633 18634 ip1dbg(("ipif_down(%s:%u)\n", ill->ill_name, ipif->ipif_id)); 18635 18636 if (ipif->ipif_flags & IPIF_UP) { 18637 mutex_enter(&ill->ill_lock); 18638 ipif->ipif_flags &= ~IPIF_UP; 18639 ASSERT(ill->ill_ipif_up_count > 0); 18640 --ill->ill_ipif_up_count; 18641 mutex_exit(&ill->ill_lock); 18642 ipif_was_up = B_TRUE; 18643 /* Update status in SCTP's list */ 18644 sctp_update_ipif(ipif, SCTP_IPIF_DOWN); 18645 } 18646 18647 /* 18648 * Blow away memberships we established in ipif_multicast_up(). 18649 */ 18650 ipif_multicast_down(ipif); 18651 18652 /* 18653 * Remove from the mapping for __sin6_src_id. We insert only 18654 * when the address is not INADDR_ANY. As IPv4 addresses are 18655 * stored as mapped addresses, we need to check for mapped 18656 * INADDR_ANY also. 18657 */ 18658 if (ipif_was_up && !IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6lcl_addr) && 18659 !IN6_IS_ADDR_V4MAPPED_ANY(&ipif->ipif_v6lcl_addr) && 18660 !(ipif->ipif_flags & IPIF_NOLOCAL)) { 18661 int err; 18662 18663 err = ip_srcid_remove(&ipif->ipif_v6lcl_addr, 18664 ipif->ipif_zoneid, ipst); 18665 if (err != 0) { 18666 ip0dbg(("ipif_down: srcid_remove %d\n", err)); 18667 } 18668 } 18669 18670 /* 18671 * Before we delete the ill from the group (if any), we need 18672 * to make sure that we delete all the routes dependent on 18673 * this and also any ipifs dependent on this ipif for 18674 * source address. We need to do before we delete from 18675 * the group because 18676 * 18677 * 1) ipif_down_delete_ire de-references ill->ill_group. 18678 * 18679 * 2) ipif_update_other_ipifs needs to walk the whole group 18680 * for re-doing source address selection. Note that 18681 * ipif_select_source[_v6] called from 18682 * ipif_update_other_ipifs[_v6] will not pick this ipif 18683 * because we have already marked down here i.e cleared 18684 * IPIF_UP. 18685 */ 18686 if (ipif->ipif_isv6) { 18687 ire_walk_v6(ipif_down_delete_ire, (char *)ipif, ALL_ZONES, 18688 ipst); 18689 } else { 18690 ire_walk_v4(ipif_down_delete_ire, (char *)ipif, ALL_ZONES, 18691 ipst); 18692 } 18693 18694 /* 18695 * Cleaning up the conn_ire_cache or conns must be done only after the 18696 * ires have been deleted above. Otherwise a thread could end up 18697 * caching an ire in a conn after we have finished the cleanup of the 18698 * conn. The caching is done after making sure that the ire is not yet 18699 * condemned. Also documented in the block comment above ip_output 18700 */ 18701 ipcl_walk(conn_cleanup_stale_ire, NULL, ipst); 18702 /* Also, delete the ires cached in SCTP */ 18703 sctp_ire_cache_flush(ipif); 18704 18705 /* 18706 * Update any other ipifs which have used "our" local address as 18707 * a source address. This entails removing and recreating IRE_INTERFACE 18708 * entries for such ipifs. 18709 */ 18710 if (ipif->ipif_isv6) 18711 ipif_update_other_ipifs_v6(ipif, ill->ill_group); 18712 else 18713 ipif_update_other_ipifs(ipif, ill->ill_group); 18714 18715 if (ipif_was_up) { 18716 /* 18717 * Check whether it is last ipif to leave this group. 18718 * If this is the last ipif to leave, we should remove 18719 * this ill from the group as ipif_select_source will not 18720 * be able to find any useful ipifs if this ill is selected 18721 * for load balancing. 18722 * 18723 * For nameless groups, we should call ifgrp_delete if this 18724 * belongs to some group. As this ipif is going down, we may 18725 * need to reconstruct groups. 18726 */ 18727 phyi = ill->ill_phyint; 18728 /* 18729 * If the phyint_groupname_len is 0, it may or may not 18730 * be in the nameless group. If the phyint_groupname_len is 18731 * not 0, then this ill should be part of some group. 18732 * As we always insert this ill in the group if 18733 * phyint_groupname_len is not zero when the first ipif 18734 * comes up (in ipif_up_done), it should be in a group 18735 * when the namelen is not 0. 18736 * 18737 * NOTE : When we delete the ill from the group,it will 18738 * blow away all the IRE_CACHES pointing either at this ipif or 18739 * ill_wq (illgrp_cache_delete does this). Thus, no IRES 18740 * should be pointing at this ill. 18741 */ 18742 ASSERT(phyi->phyint_groupname_len == 0 || 18743 (phyi->phyint_groupname != NULL && ill->ill_group != NULL)); 18744 18745 if (phyi->phyint_groupname_len != 0) { 18746 if (ill->ill_ipif_up_count == 0) 18747 illgrp_delete(ill); 18748 } 18749 18750 /* 18751 * If we have deleted some of the broadcast ires associated 18752 * with this ipif, we need to re-nominate somebody else if 18753 * the ires that we deleted were the nominated ones. 18754 */ 18755 if (ill->ill_group != NULL && !ill->ill_isv6) 18756 ipif_renominate_bcast(ipif); 18757 } 18758 18759 /* 18760 * neighbor-discovery or arp entries for this interface. 18761 */ 18762 ipif_ndp_down(ipif); 18763 18764 /* 18765 * If mp is NULL the caller will wait for the appropriate refcnt. 18766 * Eg. ip_sioctl_removeif -> ipif_free -> ipif_down 18767 * and ill_delete -> ipif_free -> ipif_down 18768 */ 18769 if (mp == NULL) { 18770 ASSERT(q == NULL); 18771 return (0); 18772 } 18773 18774 if (CONN_Q(q)) { 18775 connp = Q_TO_CONN(q); 18776 mutex_enter(&connp->conn_lock); 18777 } else { 18778 connp = NULL; 18779 } 18780 mutex_enter(&ill->ill_lock); 18781 /* 18782 * Are there any ire's pointing to this ipif that are still active ? 18783 * If this is the last ipif going down, are there any ire's pointing 18784 * to this ill that are still active ? 18785 */ 18786 if (ipif_is_quiescent(ipif)) { 18787 mutex_exit(&ill->ill_lock); 18788 if (connp != NULL) 18789 mutex_exit(&connp->conn_lock); 18790 return (0); 18791 } 18792 18793 ip1dbg(("ipif_down: need to wait, adding pending mp %s ill %p", 18794 ill->ill_name, (void *)ill)); 18795 /* 18796 * Enqueue the mp atomically in ipsq_pending_mp. When the refcount 18797 * drops down, the operation will be restarted by ipif_ill_refrele_tail 18798 * which in turn is called by the last refrele on the ipif/ill/ire. 18799 */ 18800 success = ipsq_pending_mp_add(connp, ipif, q, mp, IPIF_DOWN); 18801 if (!success) { 18802 /* The conn is closing. So just return */ 18803 ASSERT(connp != NULL); 18804 mutex_exit(&ill->ill_lock); 18805 mutex_exit(&connp->conn_lock); 18806 return (EINTR); 18807 } 18808 18809 mutex_exit(&ill->ill_lock); 18810 if (connp != NULL) 18811 mutex_exit(&connp->conn_lock); 18812 return (EINPROGRESS); 18813 } 18814 18815 void 18816 ipif_down_tail(ipif_t *ipif) 18817 { 18818 ill_t *ill = ipif->ipif_ill; 18819 18820 /* 18821 * Skip any loopback interface (null wq). 18822 * If this is the last logical interface on the ill 18823 * have ill_dl_down tell the driver we are gone (unbind) 18824 * Note that lun 0 can ipif_down even though 18825 * there are other logical units that are up. 18826 * This occurs e.g. when we change a "significant" IFF_ flag. 18827 */ 18828 if (ill->ill_wq != NULL && !ill->ill_logical_down && 18829 ill->ill_ipif_up_count == 0 && ill->ill_ipif_dup_count == 0 && 18830 ill->ill_dl_up) { 18831 ill_dl_down(ill); 18832 } 18833 ill->ill_logical_down = 0; 18834 18835 /* 18836 * Have to be after removing the routes in ipif_down_delete_ire. 18837 */ 18838 if (ipif->ipif_isv6) { 18839 if (ill->ill_flags & ILLF_XRESOLV) 18840 ipif_arp_down(ipif); 18841 } else { 18842 ipif_arp_down(ipif); 18843 } 18844 18845 ip_rts_ifmsg(ipif); 18846 ip_rts_newaddrmsg(RTM_DELETE, 0, ipif); 18847 } 18848 18849 /* 18850 * Bring interface logically down without bringing the physical interface 18851 * down e.g. when the netmask is changed. This avoids long lasting link 18852 * negotiations between an ethernet interface and a certain switches. 18853 */ 18854 static int 18855 ipif_logical_down(ipif_t *ipif, queue_t *q, mblk_t *mp) 18856 { 18857 /* 18858 * The ill_logical_down flag is a transient flag. It is set here 18859 * and is cleared once the down has completed in ipif_down_tail. 18860 * This flag does not indicate whether the ill stream is in the 18861 * DL_BOUND state with the driver. Instead this flag is used by 18862 * ipif_down_tail to determine whether to DL_UNBIND the stream with 18863 * the driver. The state of the ill stream i.e. whether it is 18864 * DL_BOUND with the driver or not is indicated by the ill_dl_up flag. 18865 */ 18866 ipif->ipif_ill->ill_logical_down = 1; 18867 return (ipif_down(ipif, q, mp)); 18868 } 18869 18870 /* 18871 * This is called when the SIOCSLIFUSESRC ioctl is processed in IP. 18872 * If the usesrc client ILL is already part of a usesrc group or not, 18873 * in either case a ire_stq with the matching usesrc client ILL will 18874 * locate the IRE's that need to be deleted. We want IREs to be created 18875 * with the new source address. 18876 */ 18877 static void 18878 ipif_delete_cache_ire(ire_t *ire, char *ill_arg) 18879 { 18880 ill_t *ucill = (ill_t *)ill_arg; 18881 18882 ASSERT(IAM_WRITER_ILL(ucill)); 18883 18884 if (ire->ire_stq == NULL) 18885 return; 18886 18887 if ((ire->ire_type == IRE_CACHE) && 18888 ((ill_t *)ire->ire_stq->q_ptr == ucill)) 18889 ire_delete(ire); 18890 } 18891 18892 /* 18893 * ire_walk routine to delete every IRE dependent on the interface 18894 * address that is going down. (Always called as writer.) 18895 * Works for both v4 and v6. 18896 * In addition for checking for ire_ipif matches it also checks for 18897 * IRE_CACHE entries which have the same source address as the 18898 * disappearing ipif since ipif_select_source might have picked 18899 * that source. Note that ipif_down/ipif_update_other_ipifs takes 18900 * care of any IRE_INTERFACE with the disappearing source address. 18901 */ 18902 static void 18903 ipif_down_delete_ire(ire_t *ire, char *ipif_arg) 18904 { 18905 ipif_t *ipif = (ipif_t *)ipif_arg; 18906 ill_t *ire_ill; 18907 ill_t *ipif_ill; 18908 18909 ASSERT(IAM_WRITER_IPIF(ipif)); 18910 if (ire->ire_ipif == NULL) 18911 return; 18912 18913 /* 18914 * For IPv4, we derive source addresses for an IRE from ipif's 18915 * belonging to the same IPMP group as the IRE's outgoing 18916 * interface. If an IRE's outgoing interface isn't in the 18917 * same IPMP group as a particular ipif, then that ipif 18918 * couldn't have been used as a source address for this IRE. 18919 * 18920 * For IPv6, source addresses are only restricted to the IPMP group 18921 * if the IRE is for a link-local address or a multicast address. 18922 * Otherwise, source addresses for an IRE can be chosen from 18923 * interfaces other than the the outgoing interface for that IRE. 18924 * 18925 * For source address selection details, see ipif_select_source() 18926 * and ipif_select_source_v6(). 18927 */ 18928 if (ire->ire_ipversion == IPV4_VERSION || 18929 IN6_IS_ADDR_LINKLOCAL(&ire->ire_addr_v6) || 18930 IN6_IS_ADDR_MULTICAST(&ire->ire_addr_v6)) { 18931 ire_ill = ire->ire_ipif->ipif_ill; 18932 ipif_ill = ipif->ipif_ill; 18933 18934 if (ire_ill->ill_group != ipif_ill->ill_group) { 18935 return; 18936 } 18937 } 18938 18939 if (ire->ire_ipif != ipif) { 18940 /* 18941 * Look for a matching source address. 18942 */ 18943 if (ire->ire_type != IRE_CACHE) 18944 return; 18945 if (ipif->ipif_flags & IPIF_NOLOCAL) 18946 return; 18947 18948 if (ire->ire_ipversion == IPV4_VERSION) { 18949 if (ire->ire_src_addr != ipif->ipif_src_addr) 18950 return; 18951 } else { 18952 if (!IN6_ARE_ADDR_EQUAL(&ire->ire_src_addr_v6, 18953 &ipif->ipif_v6lcl_addr)) 18954 return; 18955 } 18956 ire_delete(ire); 18957 return; 18958 } 18959 /* 18960 * ire_delete() will do an ire_flush_cache which will delete 18961 * all ire_ipif matches 18962 */ 18963 ire_delete(ire); 18964 } 18965 18966 /* 18967 * ire_walk_ill function for deleting all IRE_CACHE entries for an ill when 18968 * 1) an ipif (on that ill) changes the IPIF_DEPRECATED flags, or 18969 * 2) when an interface is brought up or down (on that ill). 18970 * This ensures that the IRE_CACHE entries don't retain stale source 18971 * address selection results. 18972 */ 18973 void 18974 ill_ipif_cache_delete(ire_t *ire, char *ill_arg) 18975 { 18976 ill_t *ill = (ill_t *)ill_arg; 18977 ill_t *ipif_ill; 18978 18979 ASSERT(IAM_WRITER_ILL(ill)); 18980 /* 18981 * We use MATCH_IRE_TYPE/IRE_CACHE while calling ire_walk_ill_v4. 18982 * Hence this should be IRE_CACHE. 18983 */ 18984 ASSERT(ire->ire_type == IRE_CACHE); 18985 18986 /* 18987 * We are called for IRE_CACHES whose ire_ipif matches ill. 18988 * We are only interested in IRE_CACHES that has borrowed 18989 * the source address from ill_arg e.g. ipif_up_done[_v6] 18990 * for which we need to look at ire_ipif->ipif_ill match 18991 * with ill. 18992 */ 18993 ASSERT(ire->ire_ipif != NULL); 18994 ipif_ill = ire->ire_ipif->ipif_ill; 18995 if (ipif_ill == ill || (ill->ill_group != NULL && 18996 ipif_ill->ill_group == ill->ill_group)) { 18997 ire_delete(ire); 18998 } 18999 } 19000 19001 /* 19002 * Delete all the ire whose stq references ill_arg. 19003 */ 19004 static void 19005 ill_stq_cache_delete(ire_t *ire, char *ill_arg) 19006 { 19007 ill_t *ill = (ill_t *)ill_arg; 19008 ill_t *ire_ill; 19009 19010 ASSERT(IAM_WRITER_ILL(ill)); 19011 /* 19012 * We use MATCH_IRE_TYPE/IRE_CACHE while calling ire_walk_ill_v4. 19013 * Hence this should be IRE_CACHE. 19014 */ 19015 ASSERT(ire->ire_type == IRE_CACHE); 19016 19017 /* 19018 * We are called for IRE_CACHES whose ire_stq and ire_ipif 19019 * matches ill. We are only interested in IRE_CACHES that 19020 * has ire_stq->q_ptr pointing at ill_arg. Thus we do the 19021 * filtering here. 19022 */ 19023 ire_ill = (ill_t *)ire->ire_stq->q_ptr; 19024 19025 if (ire_ill == ill) 19026 ire_delete(ire); 19027 } 19028 19029 /* 19030 * This is called when an ill leaves the group. We want to delete 19031 * all IRE_CACHES whose stq is pointing at ill_wq or ire_ipif is 19032 * pointing at ill. 19033 */ 19034 static void 19035 illgrp_cache_delete(ire_t *ire, char *ill_arg) 19036 { 19037 ill_t *ill = (ill_t *)ill_arg; 19038 19039 ASSERT(IAM_WRITER_ILL(ill)); 19040 ASSERT(ill->ill_group == NULL); 19041 /* 19042 * We use MATCH_IRE_TYPE/IRE_CACHE while calling ire_walk_ill_v4. 19043 * Hence this should be IRE_CACHE. 19044 */ 19045 ASSERT(ire->ire_type == IRE_CACHE); 19046 /* 19047 * We are called for IRE_CACHES whose ire_stq and ire_ipif 19048 * matches ill. We are interested in both. 19049 */ 19050 ASSERT((ill == (ill_t *)ire->ire_stq->q_ptr) || 19051 (ire->ire_ipif->ipif_ill == ill)); 19052 19053 ire_delete(ire); 19054 } 19055 19056 /* 19057 * Initiate deallocate of an IPIF. Always called as writer. Called by 19058 * ill_delete or ip_sioctl_removeif. 19059 */ 19060 static void 19061 ipif_free(ipif_t *ipif) 19062 { 19063 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; 19064 19065 ASSERT(IAM_WRITER_IPIF(ipif)); 19066 19067 if (ipif->ipif_recovery_id != 0) 19068 (void) untimeout(ipif->ipif_recovery_id); 19069 ipif->ipif_recovery_id = 0; 19070 19071 /* Remove conn references */ 19072 reset_conn_ipif(ipif); 19073 19074 /* 19075 * Make sure we have valid net and subnet broadcast ire's for the 19076 * other ipif's which share them with this ipif. 19077 */ 19078 if (!ipif->ipif_isv6) 19079 ipif_check_bcast_ires(ipif); 19080 19081 /* 19082 * Take down the interface. We can be called either from ill_delete 19083 * or from ip_sioctl_removeif. 19084 */ 19085 (void) ipif_down(ipif, NULL, NULL); 19086 19087 /* 19088 * Now that the interface is down, there's no chance it can still 19089 * become a duplicate. Cancel any timer that may have been set while 19090 * tearing down. 19091 */ 19092 if (ipif->ipif_recovery_id != 0) 19093 (void) untimeout(ipif->ipif_recovery_id); 19094 ipif->ipif_recovery_id = 0; 19095 19096 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 19097 /* Remove pointers to this ill in the multicast routing tables */ 19098 reset_mrt_vif_ipif(ipif); 19099 rw_exit(&ipst->ips_ill_g_lock); 19100 } 19101 19102 /* 19103 * Warning: this is not the only function that calls mi_free on an ipif_t. See 19104 * also ill_move(). 19105 */ 19106 static void 19107 ipif_free_tail(ipif_t *ipif) 19108 { 19109 mblk_t *mp; 19110 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; 19111 19112 /* 19113 * Free state for addition IRE_IF_[NO]RESOLVER ire's. 19114 */ 19115 mutex_enter(&ipif->ipif_saved_ire_lock); 19116 mp = ipif->ipif_saved_ire_mp; 19117 ipif->ipif_saved_ire_mp = NULL; 19118 mutex_exit(&ipif->ipif_saved_ire_lock); 19119 freemsg(mp); 19120 19121 /* 19122 * Need to hold both ill_g_lock and ill_lock while 19123 * inserting or removing an ipif from the linked list 19124 * of ipifs hanging off the ill. 19125 */ 19126 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 19127 19128 ASSERT(ilm_walk_ipif(ipif) == 0); 19129 19130 #ifdef DEBUG 19131 ipif_trace_cleanup(ipif); 19132 #endif 19133 19134 /* Ask SCTP to take it out of it list */ 19135 sctp_update_ipif(ipif, SCTP_IPIF_REMOVE); 19136 19137 /* Get it out of the ILL interface list. */ 19138 ipif_remove(ipif, B_TRUE); 19139 rw_exit(&ipst->ips_ill_g_lock); 19140 19141 mutex_destroy(&ipif->ipif_saved_ire_lock); 19142 19143 ASSERT(!(ipif->ipif_flags & (IPIF_UP | IPIF_DUPLICATE))); 19144 ASSERT(ipif->ipif_recovery_id == 0); 19145 19146 /* Free the memory. */ 19147 mi_free(ipif); 19148 } 19149 19150 /* 19151 * Sets `buf' to an ipif name of the form "ill_name:id", or "ill_name" if "id" 19152 * is zero. 19153 */ 19154 void 19155 ipif_get_name(const ipif_t *ipif, char *buf, int len) 19156 { 19157 char lbuf[LIFNAMSIZ]; 19158 char *name; 19159 size_t name_len; 19160 19161 buf[0] = '\0'; 19162 name = ipif->ipif_ill->ill_name; 19163 name_len = ipif->ipif_ill->ill_name_length; 19164 if (ipif->ipif_id != 0) { 19165 (void) sprintf(lbuf, "%s%c%d", name, IPIF_SEPARATOR_CHAR, 19166 ipif->ipif_id); 19167 name = lbuf; 19168 name_len = mi_strlen(name) + 1; 19169 } 19170 len -= 1; 19171 buf[len] = '\0'; 19172 len = MIN(len, name_len); 19173 bcopy(name, buf, len); 19174 } 19175 19176 /* 19177 * Find an IPIF based on the name passed in. Names can be of the 19178 * form <phys> (e.g., le0), <phys>:<#> (e.g., le0:1), 19179 * The <phys> string can have forms like <dev><#> (e.g., le0), 19180 * <dev><#>.<module> (e.g. le0.foo), or <dev>.<module><#> (e.g. ip.tun3). 19181 * When there is no colon, the implied unit id is zero. <phys> must 19182 * correspond to the name of an ILL. (May be called as writer.) 19183 */ 19184 static ipif_t * 19185 ipif_lookup_on_name(char *name, size_t namelen, boolean_t do_alloc, 19186 boolean_t *exists, boolean_t isv6, zoneid_t zoneid, queue_t *q, 19187 mblk_t *mp, ipsq_func_t func, int *error, ip_stack_t *ipst) 19188 { 19189 char *cp; 19190 char *endp; 19191 long id; 19192 ill_t *ill; 19193 ipif_t *ipif; 19194 uint_t ire_type; 19195 boolean_t did_alloc = B_FALSE; 19196 ipsq_t *ipsq; 19197 19198 if (error != NULL) 19199 *error = 0; 19200 19201 /* 19202 * If the caller wants to us to create the ipif, make sure we have a 19203 * valid zoneid 19204 */ 19205 ASSERT(!do_alloc || zoneid != ALL_ZONES); 19206 19207 if (namelen == 0) { 19208 if (error != NULL) 19209 *error = ENXIO; 19210 return (NULL); 19211 } 19212 19213 *exists = B_FALSE; 19214 /* Look for a colon in the name. */ 19215 endp = &name[namelen]; 19216 for (cp = endp; --cp > name; ) { 19217 if (*cp == IPIF_SEPARATOR_CHAR) 19218 break; 19219 } 19220 19221 if (*cp == IPIF_SEPARATOR_CHAR) { 19222 /* 19223 * Reject any non-decimal aliases for logical 19224 * interfaces. Aliases with leading zeroes 19225 * are also rejected as they introduce ambiguity 19226 * in the naming of the interfaces. 19227 * In order to confirm with existing semantics, 19228 * and to not break any programs/script relying 19229 * on that behaviour, if<0>:0 is considered to be 19230 * a valid interface. 19231 * 19232 * If alias has two or more digits and the first 19233 * is zero, fail. 19234 */ 19235 if (&cp[2] < endp && cp[1] == '0') { 19236 if (error != NULL) 19237 *error = EINVAL; 19238 return (NULL); 19239 } 19240 } 19241 19242 if (cp <= name) { 19243 cp = endp; 19244 } else { 19245 *cp = '\0'; 19246 } 19247 19248 /* 19249 * Look up the ILL, based on the portion of the name 19250 * before the slash. ill_lookup_on_name returns a held ill. 19251 * Temporary to check whether ill exists already. If so 19252 * ill_lookup_on_name will clear it. 19253 */ 19254 ill = ill_lookup_on_name(name, do_alloc, isv6, 19255 q, mp, func, error, &did_alloc, ipst); 19256 if (cp != endp) 19257 *cp = IPIF_SEPARATOR_CHAR; 19258 if (ill == NULL) 19259 return (NULL); 19260 19261 /* Establish the unit number in the name. */ 19262 id = 0; 19263 if (cp < endp && *endp == '\0') { 19264 /* If there was a colon, the unit number follows. */ 19265 cp++; 19266 if (ddi_strtol(cp, NULL, 0, &id) != 0) { 19267 ill_refrele(ill); 19268 if (error != NULL) 19269 *error = ENXIO; 19270 return (NULL); 19271 } 19272 } 19273 19274 GRAB_CONN_LOCK(q); 19275 mutex_enter(&ill->ill_lock); 19276 /* Now see if there is an IPIF with this unit number. */ 19277 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 19278 if (ipif->ipif_id == id) { 19279 if (zoneid != ALL_ZONES && 19280 zoneid != ipif->ipif_zoneid && 19281 ipif->ipif_zoneid != ALL_ZONES) { 19282 mutex_exit(&ill->ill_lock); 19283 RELEASE_CONN_LOCK(q); 19284 ill_refrele(ill); 19285 if (error != NULL) 19286 *error = ENXIO; 19287 return (NULL); 19288 } 19289 /* 19290 * The block comment at the start of ipif_down 19291 * explains the use of the macros used below 19292 */ 19293 if (IPIF_CAN_LOOKUP(ipif)) { 19294 ipif_refhold_locked(ipif); 19295 mutex_exit(&ill->ill_lock); 19296 if (!did_alloc) 19297 *exists = B_TRUE; 19298 /* 19299 * Drop locks before calling ill_refrele 19300 * since it can potentially call into 19301 * ipif_ill_refrele_tail which can end up 19302 * in trying to acquire any lock. 19303 */ 19304 RELEASE_CONN_LOCK(q); 19305 ill_refrele(ill); 19306 return (ipif); 19307 } else if (IPIF_CAN_WAIT(ipif, q)) { 19308 ipsq = ill->ill_phyint->phyint_ipsq; 19309 mutex_enter(&ipsq->ipsq_lock); 19310 mutex_exit(&ill->ill_lock); 19311 ipsq_enq(ipsq, q, mp, func, NEW_OP, ill); 19312 mutex_exit(&ipsq->ipsq_lock); 19313 RELEASE_CONN_LOCK(q); 19314 ill_refrele(ill); 19315 if (error != NULL) 19316 *error = EINPROGRESS; 19317 return (NULL); 19318 } 19319 } 19320 } 19321 RELEASE_CONN_LOCK(q); 19322 19323 if (!do_alloc) { 19324 mutex_exit(&ill->ill_lock); 19325 ill_refrele(ill); 19326 if (error != NULL) 19327 *error = ENXIO; 19328 return (NULL); 19329 } 19330 19331 /* 19332 * If none found, atomically allocate and return a new one. 19333 * Historically, we used IRE_LOOPBACK only for lun 0, and IRE_LOCAL 19334 * to support "receive only" use of lo0:1 etc. as is still done 19335 * below as an initial guess. 19336 * However, this is now likely to be overriden later in ipif_up_done() 19337 * when we know for sure what address has been configured on the 19338 * interface, since we might have more than one loopback interface 19339 * with a loopback address, e.g. in the case of zones, and all the 19340 * interfaces with loopback addresses need to be marked IRE_LOOPBACK. 19341 */ 19342 if (ill->ill_net_type == IRE_LOOPBACK && id == 0) 19343 ire_type = IRE_LOOPBACK; 19344 else 19345 ire_type = IRE_LOCAL; 19346 ipif = ipif_allocate(ill, id, ire_type, B_TRUE); 19347 if (ipif != NULL) 19348 ipif_refhold_locked(ipif); 19349 else if (error != NULL) 19350 *error = ENOMEM; 19351 mutex_exit(&ill->ill_lock); 19352 ill_refrele(ill); 19353 return (ipif); 19354 } 19355 19356 /* 19357 * This routine is called whenever a new address comes up on an ipif. If 19358 * we are configured to respond to address mask requests, then we are supposed 19359 * to broadcast an address mask reply at this time. This routine is also 19360 * called if we are already up, but a netmask change is made. This is legal 19361 * but might not make the system manager very popular. (May be called 19362 * as writer.) 19363 */ 19364 void 19365 ipif_mask_reply(ipif_t *ipif) 19366 { 19367 icmph_t *icmph; 19368 ipha_t *ipha; 19369 mblk_t *mp; 19370 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; 19371 19372 #define REPLY_LEN (sizeof (icmp_ipha) + sizeof (icmph_t) + IP_ADDR_LEN) 19373 19374 if (!ipst->ips_ip_respond_to_address_mask_broadcast) 19375 return; 19376 19377 /* ICMP mask reply is IPv4 only */ 19378 ASSERT(!ipif->ipif_isv6); 19379 /* ICMP mask reply is not for a loopback interface */ 19380 ASSERT(ipif->ipif_ill->ill_wq != NULL); 19381 19382 mp = allocb(REPLY_LEN, BPRI_HI); 19383 if (mp == NULL) 19384 return; 19385 mp->b_wptr = mp->b_rptr + REPLY_LEN; 19386 19387 ipha = (ipha_t *)mp->b_rptr; 19388 bzero(ipha, REPLY_LEN); 19389 *ipha = icmp_ipha; 19390 ipha->ipha_ttl = ipst->ips_ip_broadcast_ttl; 19391 ipha->ipha_src = ipif->ipif_src_addr; 19392 ipha->ipha_dst = ipif->ipif_brd_addr; 19393 ipha->ipha_length = htons(REPLY_LEN); 19394 ipha->ipha_ident = 0; 19395 19396 icmph = (icmph_t *)&ipha[1]; 19397 icmph->icmph_type = ICMP_ADDRESS_MASK_REPLY; 19398 bcopy(&ipif->ipif_net_mask, &icmph[1], IP_ADDR_LEN); 19399 icmph->icmph_checksum = IP_CSUM(mp, sizeof (ipha_t), 0); 19400 19401 put(ipif->ipif_wq, mp); 19402 19403 #undef REPLY_LEN 19404 } 19405 19406 /* 19407 * When the mtu in the ipif changes, we call this routine through ire_walk 19408 * to update all the relevant IREs. 19409 * Skip IRE_LOCAL and "loopback" IRE_BROADCAST by checking ire_stq. 19410 */ 19411 static void 19412 ipif_mtu_change(ire_t *ire, char *ipif_arg) 19413 { 19414 ipif_t *ipif = (ipif_t *)ipif_arg; 19415 19416 if (ire->ire_stq == NULL || ire->ire_ipif != ipif) 19417 return; 19418 ire->ire_max_frag = MIN(ipif->ipif_mtu, IP_MAXPACKET); 19419 } 19420 19421 /* 19422 * When the mtu in the ill changes, we call this routine through ire_walk 19423 * to update all the relevant IREs. 19424 * Skip IRE_LOCAL and "loopback" IRE_BROADCAST by checking ire_stq. 19425 */ 19426 void 19427 ill_mtu_change(ire_t *ire, char *ill_arg) 19428 { 19429 ill_t *ill = (ill_t *)ill_arg; 19430 19431 if (ire->ire_stq == NULL || ire->ire_ipif->ipif_ill != ill) 19432 return; 19433 ire->ire_max_frag = ire->ire_ipif->ipif_mtu; 19434 } 19435 19436 /* 19437 * Join the ipif specific multicast groups. 19438 * Must be called after a mapping has been set up in the resolver. (Always 19439 * called as writer.) 19440 */ 19441 void 19442 ipif_multicast_up(ipif_t *ipif) 19443 { 19444 int err, index; 19445 ill_t *ill; 19446 19447 ASSERT(IAM_WRITER_IPIF(ipif)); 19448 19449 ill = ipif->ipif_ill; 19450 index = ill->ill_phyint->phyint_ifindex; 19451 19452 ip1dbg(("ipif_multicast_up\n")); 19453 if (!(ill->ill_flags & ILLF_MULTICAST) || ipif->ipif_multicast_up) 19454 return; 19455 19456 if (ipif->ipif_isv6) { 19457 if (IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6lcl_addr)) 19458 return; 19459 19460 /* Join the all hosts multicast address */ 19461 ip1dbg(("ipif_multicast_up - addmulti\n")); 19462 /* 19463 * Passing B_TRUE means we have to join the multicast 19464 * membership on this interface even though this is 19465 * FAILED. If we join on a different one in the group, 19466 * we will not be able to delete the membership later 19467 * as we currently don't track where we join when we 19468 * join within the kernel unlike applications where 19469 * we have ilg/ilg_orig_index. See ip_addmulti_v6 19470 * for more on this. 19471 */ 19472 err = ip_addmulti_v6(&ipv6_all_hosts_mcast, ill, index, 19473 ipif->ipif_zoneid, ILGSTAT_NONE, MODE_IS_EXCLUDE, NULL); 19474 if (err != 0) { 19475 ip0dbg(("ipif_multicast_up: " 19476 "all_hosts_mcast failed %d\n", 19477 err)); 19478 return; 19479 } 19480 /* 19481 * Enable multicast for the solicited node multicast address 19482 */ 19483 if (!(ipif->ipif_flags & IPIF_NOLOCAL)) { 19484 in6_addr_t ipv6_multi = ipv6_solicited_node_mcast; 19485 19486 ipv6_multi.s6_addr32[3] |= 19487 ipif->ipif_v6lcl_addr.s6_addr32[3]; 19488 19489 err = ip_addmulti_v6(&ipv6_multi, ill, index, 19490 ipif->ipif_zoneid, ILGSTAT_NONE, MODE_IS_EXCLUDE, 19491 NULL); 19492 if (err != 0) { 19493 ip0dbg(("ipif_multicast_up: solicited MC" 19494 " failed %d\n", err)); 19495 (void) ip_delmulti_v6(&ipv6_all_hosts_mcast, 19496 ill, ill->ill_phyint->phyint_ifindex, 19497 ipif->ipif_zoneid, B_TRUE, B_TRUE); 19498 return; 19499 } 19500 } 19501 } else { 19502 if (ipif->ipif_lcl_addr == INADDR_ANY) 19503 return; 19504 19505 /* Join the all hosts multicast address */ 19506 ip1dbg(("ipif_multicast_up - addmulti\n")); 19507 err = ip_addmulti(htonl(INADDR_ALLHOSTS_GROUP), ipif, 19508 ILGSTAT_NONE, MODE_IS_EXCLUDE, NULL); 19509 if (err) { 19510 ip0dbg(("ipif_multicast_up: failed %d\n", err)); 19511 return; 19512 } 19513 } 19514 ipif->ipif_multicast_up = 1; 19515 } 19516 19517 /* 19518 * Blow away any multicast groups that we joined in ipif_multicast_up(). 19519 * (Explicit memberships are blown away in ill_leave_multicast() when the 19520 * ill is brought down.) 19521 */ 19522 static void 19523 ipif_multicast_down(ipif_t *ipif) 19524 { 19525 int err; 19526 19527 ASSERT(IAM_WRITER_IPIF(ipif)); 19528 19529 ip1dbg(("ipif_multicast_down\n")); 19530 if (!ipif->ipif_multicast_up) 19531 return; 19532 19533 ip1dbg(("ipif_multicast_down - delmulti\n")); 19534 19535 if (!ipif->ipif_isv6) { 19536 err = ip_delmulti(htonl(INADDR_ALLHOSTS_GROUP), ipif, B_TRUE, 19537 B_TRUE); 19538 if (err != 0) 19539 ip0dbg(("ipif_multicast_down: failed %d\n", err)); 19540 19541 ipif->ipif_multicast_up = 0; 19542 return; 19543 } 19544 19545 /* 19546 * Leave the all hosts multicast address. Similar to ip_addmulti_v6, 19547 * we should look for ilms on this ill rather than the ones that have 19548 * been failed over here. They are here temporarily. As 19549 * ipif_multicast_up has joined on this ill, we should delete only 19550 * from this ill. 19551 */ 19552 err = ip_delmulti_v6(&ipv6_all_hosts_mcast, ipif->ipif_ill, 19553 ipif->ipif_ill->ill_phyint->phyint_ifindex, ipif->ipif_zoneid, 19554 B_TRUE, B_TRUE); 19555 if (err != 0) { 19556 ip0dbg(("ipif_multicast_down: all_hosts_mcast failed %d\n", 19557 err)); 19558 } 19559 /* 19560 * Disable multicast for the solicited node multicast address 19561 */ 19562 if (!(ipif->ipif_flags & IPIF_NOLOCAL)) { 19563 in6_addr_t ipv6_multi = ipv6_solicited_node_mcast; 19564 19565 ipv6_multi.s6_addr32[3] |= 19566 ipif->ipif_v6lcl_addr.s6_addr32[3]; 19567 19568 err = ip_delmulti_v6(&ipv6_multi, ipif->ipif_ill, 19569 ipif->ipif_ill->ill_phyint->phyint_ifindex, 19570 ipif->ipif_zoneid, B_TRUE, B_TRUE); 19571 19572 if (err != 0) { 19573 ip0dbg(("ipif_multicast_down: sol MC failed %d\n", 19574 err)); 19575 } 19576 } 19577 19578 ipif->ipif_multicast_up = 0; 19579 } 19580 19581 /* 19582 * Used when an interface comes up to recreate any extra routes on this 19583 * interface. 19584 */ 19585 static ire_t ** 19586 ipif_recover_ire(ipif_t *ipif) 19587 { 19588 mblk_t *mp; 19589 ire_t **ipif_saved_irep; 19590 ire_t **irep; 19591 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; 19592 19593 ip1dbg(("ipif_recover_ire(%s:%u)", ipif->ipif_ill->ill_name, 19594 ipif->ipif_id)); 19595 19596 mutex_enter(&ipif->ipif_saved_ire_lock); 19597 ipif_saved_irep = (ire_t **)kmem_zalloc(sizeof (ire_t *) * 19598 ipif->ipif_saved_ire_cnt, KM_NOSLEEP); 19599 if (ipif_saved_irep == NULL) { 19600 mutex_exit(&ipif->ipif_saved_ire_lock); 19601 return (NULL); 19602 } 19603 19604 irep = ipif_saved_irep; 19605 for (mp = ipif->ipif_saved_ire_mp; mp != NULL; mp = mp->b_cont) { 19606 ire_t *ire; 19607 queue_t *rfq; 19608 queue_t *stq; 19609 ifrt_t *ifrt; 19610 uchar_t *src_addr; 19611 uchar_t *gateway_addr; 19612 ushort_t type; 19613 19614 /* 19615 * When the ire was initially created and then added in 19616 * ip_rt_add(), it was created either using ipif->ipif_net_type 19617 * in the case of a traditional interface route, or as one of 19618 * the IRE_OFFSUBNET types (with the exception of 19619 * IRE_HOST types ire which is created by icmp_redirect() and 19620 * which we don't need to save or recover). In the case where 19621 * ipif->ipif_net_type was IRE_LOOPBACK, ip_rt_add() will update 19622 * the ire_type to IRE_IF_NORESOLVER before calling ire_add() 19623 * to satisfy software like GateD and Sun Cluster which creates 19624 * routes using the the loopback interface's address as a 19625 * gateway. 19626 * 19627 * As ifrt->ifrt_type reflects the already updated ire_type, 19628 * ire_create() will be called in the same way here as 19629 * in ip_rt_add(), namely using ipif->ipif_net_type when 19630 * the route looks like a traditional interface route (where 19631 * ifrt->ifrt_type & IRE_INTERFACE is true) and otherwise using 19632 * the saved ifrt->ifrt_type. This means that in the case where 19633 * ipif->ipif_net_type is IRE_LOOPBACK, the ire created by 19634 * ire_create() will be an IRE_LOOPBACK, it will then be turned 19635 * into an IRE_IF_NORESOLVER and then added by ire_add(). 19636 */ 19637 ifrt = (ifrt_t *)mp->b_rptr; 19638 ASSERT(ifrt->ifrt_type != IRE_CACHE); 19639 if (ifrt->ifrt_type & IRE_INTERFACE) { 19640 rfq = NULL; 19641 stq = (ipif->ipif_net_type == IRE_IF_RESOLVER) 19642 ? ipif->ipif_rq : ipif->ipif_wq; 19643 src_addr = (ifrt->ifrt_flags & RTF_SETSRC) 19644 ? (uint8_t *)&ifrt->ifrt_src_addr 19645 : (uint8_t *)&ipif->ipif_src_addr; 19646 gateway_addr = NULL; 19647 type = ipif->ipif_net_type; 19648 } else if (ifrt->ifrt_type & IRE_BROADCAST) { 19649 /* Recover multiroute broadcast IRE. */ 19650 rfq = ipif->ipif_rq; 19651 stq = ipif->ipif_wq; 19652 src_addr = (ifrt->ifrt_flags & RTF_SETSRC) 19653 ? (uint8_t *)&ifrt->ifrt_src_addr 19654 : (uint8_t *)&ipif->ipif_src_addr; 19655 gateway_addr = (uint8_t *)&ifrt->ifrt_gateway_addr; 19656 type = ifrt->ifrt_type; 19657 } else { 19658 rfq = NULL; 19659 stq = NULL; 19660 src_addr = (ifrt->ifrt_flags & RTF_SETSRC) 19661 ? (uint8_t *)&ifrt->ifrt_src_addr : NULL; 19662 gateway_addr = (uint8_t *)&ifrt->ifrt_gateway_addr; 19663 type = ifrt->ifrt_type; 19664 } 19665 19666 /* 19667 * Create a copy of the IRE with the saved address and netmask. 19668 */ 19669 ip1dbg(("ipif_recover_ire: creating IRE %s (%d) for " 19670 "0x%x/0x%x\n", 19671 ip_nv_lookup(ire_nv_tbl, ifrt->ifrt_type), ifrt->ifrt_type, 19672 ntohl(ifrt->ifrt_addr), 19673 ntohl(ifrt->ifrt_mask))); 19674 ire = ire_create( 19675 (uint8_t *)&ifrt->ifrt_addr, 19676 (uint8_t *)&ifrt->ifrt_mask, 19677 src_addr, 19678 gateway_addr, 19679 &ifrt->ifrt_max_frag, 19680 NULL, 19681 rfq, 19682 stq, 19683 type, 19684 ipif, 19685 0, 19686 0, 19687 0, 19688 ifrt->ifrt_flags, 19689 &ifrt->ifrt_iulp_info, 19690 NULL, 19691 NULL, 19692 ipst); 19693 19694 if (ire == NULL) { 19695 mutex_exit(&ipif->ipif_saved_ire_lock); 19696 kmem_free(ipif_saved_irep, 19697 ipif->ipif_saved_ire_cnt * sizeof (ire_t *)); 19698 return (NULL); 19699 } 19700 19701 /* 19702 * Some software (for example, GateD and Sun Cluster) attempts 19703 * to create (what amount to) IRE_PREFIX routes with the 19704 * loopback address as the gateway. This is primarily done to 19705 * set up prefixes with the RTF_REJECT flag set (for example, 19706 * when generating aggregate routes.) 19707 * 19708 * If the IRE type (as defined by ipif->ipif_net_type) is 19709 * IRE_LOOPBACK, then we map the request into a 19710 * IRE_IF_NORESOLVER. 19711 */ 19712 if (ipif->ipif_net_type == IRE_LOOPBACK) 19713 ire->ire_type = IRE_IF_NORESOLVER; 19714 /* 19715 * ire held by ire_add, will be refreled' towards the 19716 * the end of ipif_up_done 19717 */ 19718 (void) ire_add(&ire, NULL, NULL, NULL, B_FALSE); 19719 *irep = ire; 19720 irep++; 19721 ip1dbg(("ipif_recover_ire: added ire %p\n", (void *)ire)); 19722 } 19723 mutex_exit(&ipif->ipif_saved_ire_lock); 19724 return (ipif_saved_irep); 19725 } 19726 19727 /* 19728 * Used to set the netmask and broadcast address to default values when the 19729 * interface is brought up. (Always called as writer.) 19730 */ 19731 static void 19732 ipif_set_default(ipif_t *ipif) 19733 { 19734 ASSERT(MUTEX_HELD(&ipif->ipif_ill->ill_lock)); 19735 19736 if (!ipif->ipif_isv6) { 19737 /* 19738 * Interface holds an IPv4 address. Default 19739 * mask is the natural netmask. 19740 */ 19741 if (!ipif->ipif_net_mask) { 19742 ipaddr_t v4mask; 19743 19744 v4mask = ip_net_mask(ipif->ipif_lcl_addr); 19745 V4MASK_TO_V6(v4mask, ipif->ipif_v6net_mask); 19746 } 19747 if (ipif->ipif_flags & IPIF_POINTOPOINT) { 19748 /* ipif_subnet is ipif_pp_dst_addr for pt-pt */ 19749 ipif->ipif_v6subnet = ipif->ipif_v6pp_dst_addr; 19750 } else { 19751 V6_MASK_COPY(ipif->ipif_v6lcl_addr, 19752 ipif->ipif_v6net_mask, ipif->ipif_v6subnet); 19753 } 19754 /* 19755 * NOTE: SunOS 4.X does this even if the broadcast address 19756 * has been already set thus we do the same here. 19757 */ 19758 if (ipif->ipif_flags & IPIF_BROADCAST) { 19759 ipaddr_t v4addr; 19760 19761 v4addr = ipif->ipif_subnet | ~ipif->ipif_net_mask; 19762 IN6_IPADDR_TO_V4MAPPED(v4addr, &ipif->ipif_v6brd_addr); 19763 } 19764 } else { 19765 /* 19766 * Interface holds an IPv6-only address. Default 19767 * mask is all-ones. 19768 */ 19769 if (IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6net_mask)) 19770 ipif->ipif_v6net_mask = ipv6_all_ones; 19771 if (ipif->ipif_flags & IPIF_POINTOPOINT) { 19772 /* ipif_subnet is ipif_pp_dst_addr for pt-pt */ 19773 ipif->ipif_v6subnet = ipif->ipif_v6pp_dst_addr; 19774 } else { 19775 V6_MASK_COPY(ipif->ipif_v6lcl_addr, 19776 ipif->ipif_v6net_mask, ipif->ipif_v6subnet); 19777 } 19778 } 19779 } 19780 19781 /* 19782 * Return 0 if this address can be used as local address without causing 19783 * duplicate address problems. Otherwise, return EADDRNOTAVAIL if the address 19784 * is already up on a different ill, and EADDRINUSE if it's up on the same ill. 19785 * Special checks are needed to allow the same IPv6 link-local address 19786 * on different ills. 19787 * TODO: allowing the same site-local address on different ill's. 19788 */ 19789 int 19790 ip_addr_availability_check(ipif_t *new_ipif) 19791 { 19792 in6_addr_t our_v6addr; 19793 ill_t *ill; 19794 ipif_t *ipif; 19795 ill_walk_context_t ctx; 19796 ip_stack_t *ipst = new_ipif->ipif_ill->ill_ipst; 19797 19798 ASSERT(IAM_WRITER_IPIF(new_ipif)); 19799 ASSERT(MUTEX_HELD(&ipst->ips_ip_addr_avail_lock)); 19800 ASSERT(RW_READ_HELD(&ipst->ips_ill_g_lock)); 19801 19802 new_ipif->ipif_flags &= ~IPIF_UNNUMBERED; 19803 if (IN6_IS_ADDR_UNSPECIFIED(&new_ipif->ipif_v6lcl_addr) || 19804 IN6_IS_ADDR_V4MAPPED_ANY(&new_ipif->ipif_v6lcl_addr)) 19805 return (0); 19806 19807 our_v6addr = new_ipif->ipif_v6lcl_addr; 19808 19809 if (new_ipif->ipif_isv6) 19810 ill = ILL_START_WALK_V6(&ctx, ipst); 19811 else 19812 ill = ILL_START_WALK_V4(&ctx, ipst); 19813 19814 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 19815 for (ipif = ill->ill_ipif; ipif != NULL; 19816 ipif = ipif->ipif_next) { 19817 if ((ipif == new_ipif) || 19818 !(ipif->ipif_flags & IPIF_UP) || 19819 (ipif->ipif_flags & IPIF_UNNUMBERED)) 19820 continue; 19821 if (IN6_ARE_ADDR_EQUAL(&ipif->ipif_v6lcl_addr, 19822 &our_v6addr)) { 19823 if (new_ipif->ipif_flags & IPIF_POINTOPOINT) 19824 new_ipif->ipif_flags |= IPIF_UNNUMBERED; 19825 else if (ipif->ipif_flags & IPIF_POINTOPOINT) 19826 ipif->ipif_flags |= IPIF_UNNUMBERED; 19827 else if (IN6_IS_ADDR_LINKLOCAL(&our_v6addr) && 19828 new_ipif->ipif_ill != ill) 19829 continue; 19830 else if (IN6_IS_ADDR_SITELOCAL(&our_v6addr) && 19831 new_ipif->ipif_ill != ill) 19832 continue; 19833 else if (new_ipif->ipif_zoneid != 19834 ipif->ipif_zoneid && 19835 ipif->ipif_zoneid != ALL_ZONES && 19836 IS_LOOPBACK(ill)) 19837 continue; 19838 else if (new_ipif->ipif_ill == ill) 19839 return (EADDRINUSE); 19840 else 19841 return (EADDRNOTAVAIL); 19842 } 19843 } 19844 } 19845 19846 return (0); 19847 } 19848 19849 /* 19850 * Bring up an ipif: bring up arp/ndp, bring up the DLPI stream, and add 19851 * IREs for the ipif. 19852 * When the routine returns EINPROGRESS then mp has been consumed and 19853 * the ioctl will be acked from ip_rput_dlpi. 19854 */ 19855 static int 19856 ipif_up(ipif_t *ipif, queue_t *q, mblk_t *mp) 19857 { 19858 ill_t *ill = ipif->ipif_ill; 19859 boolean_t isv6 = ipif->ipif_isv6; 19860 int err = 0; 19861 boolean_t success; 19862 19863 ASSERT(IAM_WRITER_IPIF(ipif)); 19864 19865 ip1dbg(("ipif_up(%s:%u)\n", ill->ill_name, ipif->ipif_id)); 19866 19867 /* Shouldn't get here if it is already up. */ 19868 if (ipif->ipif_flags & IPIF_UP) 19869 return (EALREADY); 19870 19871 /* Skip arp/ndp for any loopback interface. */ 19872 if (ill->ill_wq != NULL) { 19873 conn_t *connp = CONN_Q(q) ? Q_TO_CONN(q) : NULL; 19874 ipsq_t *ipsq = ill->ill_phyint->phyint_ipsq; 19875 19876 if (!ill->ill_dl_up) { 19877 /* 19878 * ill_dl_up is not yet set. i.e. we are yet to 19879 * DL_BIND with the driver and this is the first 19880 * logical interface on the ill to become "up". 19881 * Tell the driver to get going (via DL_BIND_REQ). 19882 * Note that changing "significant" IFF_ flags 19883 * address/netmask etc cause a down/up dance, but 19884 * does not cause an unbind (DL_UNBIND) with the driver 19885 */ 19886 return (ill_dl_up(ill, ipif, mp, q)); 19887 } 19888 19889 /* 19890 * ipif_resolver_up may end up sending an 19891 * AR_INTERFACE_UP message to ARP, which would, in 19892 * turn send a DLPI message to the driver. ioctls are 19893 * serialized and so we cannot send more than one 19894 * interface up message at a time. If ipif_resolver_up 19895 * does send an interface up message to ARP, we get 19896 * EINPROGRESS and we will complete in ip_arp_done. 19897 */ 19898 19899 ASSERT(connp != NULL || !CONN_Q(q)); 19900 ASSERT(ipsq->ipsq_pending_mp == NULL); 19901 if (connp != NULL) 19902 mutex_enter(&connp->conn_lock); 19903 mutex_enter(&ill->ill_lock); 19904 success = ipsq_pending_mp_add(connp, ipif, q, mp, 0); 19905 mutex_exit(&ill->ill_lock); 19906 if (connp != NULL) 19907 mutex_exit(&connp->conn_lock); 19908 if (!success) 19909 return (EINTR); 19910 19911 /* 19912 * Crank up IPv6 neighbor discovery 19913 * Unlike ARP, this should complete when 19914 * ipif_ndp_up returns. However, for 19915 * ILLF_XRESOLV interfaces we also send a 19916 * AR_INTERFACE_UP to the external resolver. 19917 * That ioctl will complete in ip_rput. 19918 */ 19919 if (isv6) { 19920 err = ipif_ndp_up(ipif); 19921 if (err != 0) { 19922 if (err != EINPROGRESS) 19923 mp = ipsq_pending_mp_get(ipsq, &connp); 19924 return (err); 19925 } 19926 } 19927 /* Now, ARP */ 19928 err = ipif_resolver_up(ipif, Res_act_initial); 19929 if (err == EINPROGRESS) { 19930 /* We will complete it in ip_arp_done */ 19931 return (err); 19932 } 19933 mp = ipsq_pending_mp_get(ipsq, &connp); 19934 ASSERT(mp != NULL); 19935 if (err != 0) 19936 return (err); 19937 } else { 19938 /* 19939 * Interfaces without underlying hardware don't do duplicate 19940 * address detection. 19941 */ 19942 ASSERT(!(ipif->ipif_flags & IPIF_DUPLICATE)); 19943 ipif->ipif_addr_ready = 1; 19944 } 19945 return (isv6 ? ipif_up_done_v6(ipif) : ipif_up_done(ipif)); 19946 } 19947 19948 /* 19949 * Perform a bind for the physical device. 19950 * When the routine returns EINPROGRESS then mp has been consumed and 19951 * the ioctl will be acked from ip_rput_dlpi. 19952 * Allocate an unbind message and save it until ipif_down. 19953 */ 19954 static int 19955 ill_dl_up(ill_t *ill, ipif_t *ipif, mblk_t *mp, queue_t *q) 19956 { 19957 areq_t *areq; 19958 mblk_t *areq_mp = NULL; 19959 mblk_t *bind_mp = NULL; 19960 mblk_t *unbind_mp = NULL; 19961 conn_t *connp; 19962 boolean_t success; 19963 uint16_t sap_addr; 19964 19965 ip1dbg(("ill_dl_up(%s)\n", ill->ill_name)); 19966 ASSERT(IAM_WRITER_ILL(ill)); 19967 ASSERT(mp != NULL); 19968 19969 /* Create a resolver cookie for ARP */ 19970 if (!ill->ill_isv6 && ill->ill_net_type == IRE_IF_RESOLVER) { 19971 areq_mp = ill_arp_alloc(ill, (uchar_t *)&ip_areq_template, 0); 19972 if (areq_mp == NULL) 19973 return (ENOMEM); 19974 19975 freemsg(ill->ill_resolver_mp); 19976 ill->ill_resolver_mp = areq_mp; 19977 areq = (areq_t *)areq_mp->b_rptr; 19978 sap_addr = ill->ill_sap; 19979 bcopy(&sap_addr, areq->areq_sap, sizeof (sap_addr)); 19980 } 19981 bind_mp = ip_dlpi_alloc(sizeof (dl_bind_req_t) + sizeof (long), 19982 DL_BIND_REQ); 19983 if (bind_mp == NULL) 19984 goto bad; 19985 ((dl_bind_req_t *)bind_mp->b_rptr)->dl_sap = ill->ill_sap; 19986 ((dl_bind_req_t *)bind_mp->b_rptr)->dl_service_mode = DL_CLDLS; 19987 19988 unbind_mp = ip_dlpi_alloc(sizeof (dl_unbind_req_t), DL_UNBIND_REQ); 19989 if (unbind_mp == NULL) 19990 goto bad; 19991 19992 /* 19993 * Record state needed to complete this operation when the 19994 * DL_BIND_ACK shows up. Also remember the pre-allocated mblks. 19995 */ 19996 ASSERT(WR(q)->q_next == NULL); 19997 connp = Q_TO_CONN(q); 19998 19999 mutex_enter(&connp->conn_lock); 20000 mutex_enter(&ipif->ipif_ill->ill_lock); 20001 success = ipsq_pending_mp_add(connp, ipif, q, mp, 0); 20002 mutex_exit(&ipif->ipif_ill->ill_lock); 20003 mutex_exit(&connp->conn_lock); 20004 if (!success) 20005 goto bad; 20006 20007 /* 20008 * Save the unbind message for ill_dl_down(); it will be consumed when 20009 * the interface goes down. 20010 */ 20011 ASSERT(ill->ill_unbind_mp == NULL); 20012 ill->ill_unbind_mp = unbind_mp; 20013 20014 ill_dlpi_send(ill, bind_mp); 20015 /* Send down link-layer capabilities probe if not already done. */ 20016 ill_capability_probe(ill); 20017 20018 /* 20019 * Sysid used to rely on the fact that netboots set domainname 20020 * and the like. Now that miniroot boots aren't strictly netboots 20021 * and miniroot network configuration is driven from userland 20022 * these things still need to be set. This situation can be detected 20023 * by comparing the interface being configured here to the one 20024 * dhcifname was set to reference by the boot loader. Once sysid is 20025 * converted to use dhcp_ipc_getinfo() this call can go away. 20026 */ 20027 if ((ipif->ipif_flags & IPIF_DHCPRUNNING) && 20028 (strcmp(ill->ill_name, dhcifname) == 0) && 20029 (strlen(srpc_domain) == 0)) { 20030 if (dhcpinit() != 0) 20031 cmn_err(CE_WARN, "no cached dhcp response"); 20032 } 20033 20034 /* 20035 * This operation will complete in ip_rput_dlpi with either 20036 * a DL_BIND_ACK or DL_ERROR_ACK. 20037 */ 20038 return (EINPROGRESS); 20039 bad: 20040 ip1dbg(("ill_dl_up(%s) FAILED\n", ill->ill_name)); 20041 /* 20042 * We don't have to check for possible removal from illgrp 20043 * as we have not yet inserted in illgrp. For groups 20044 * without names, this ipif is still not UP and hence 20045 * this could not have possibly had any influence in forming 20046 * groups. 20047 */ 20048 20049 freemsg(bind_mp); 20050 freemsg(unbind_mp); 20051 return (ENOMEM); 20052 } 20053 20054 uint_t ip_loopback_mtuplus = IP_LOOPBACK_MTU + IP_SIMPLE_HDR_LENGTH + 20; 20055 20056 /* 20057 * DLPI and ARP is up. 20058 * Create all the IREs associated with an interface bring up multicast. 20059 * Set the interface flag and finish other initialization 20060 * that potentially had to be differed to after DL_BIND_ACK. 20061 */ 20062 int 20063 ipif_up_done(ipif_t *ipif) 20064 { 20065 ire_t *ire_array[20]; 20066 ire_t **irep = ire_array; 20067 ire_t **irep1; 20068 ipaddr_t net_mask = 0; 20069 ipaddr_t subnet_mask, route_mask; 20070 ill_t *ill = ipif->ipif_ill; 20071 queue_t *stq; 20072 ipif_t *src_ipif; 20073 ipif_t *tmp_ipif; 20074 boolean_t flush_ire_cache = B_TRUE; 20075 int err = 0; 20076 phyint_t *phyi; 20077 ire_t **ipif_saved_irep = NULL; 20078 int ipif_saved_ire_cnt; 20079 int cnt; 20080 boolean_t src_ipif_held = B_FALSE; 20081 boolean_t ire_added = B_FALSE; 20082 boolean_t loopback = B_FALSE; 20083 ip_stack_t *ipst = ill->ill_ipst; 20084 20085 ip1dbg(("ipif_up_done(%s:%u)\n", 20086 ipif->ipif_ill->ill_name, ipif->ipif_id)); 20087 /* Check if this is a loopback interface */ 20088 if (ipif->ipif_ill->ill_wq == NULL) 20089 loopback = B_TRUE; 20090 20091 ASSERT(!MUTEX_HELD(&ipif->ipif_ill->ill_lock)); 20092 /* 20093 * If all other interfaces for this ill are down or DEPRECATED, 20094 * or otherwise unsuitable for source address selection, remove 20095 * any IRE_CACHE entries for this ill to make sure source 20096 * address selection gets to take this new ipif into account. 20097 * No need to hold ill_lock while traversing the ipif list since 20098 * we are writer 20099 */ 20100 for (tmp_ipif = ill->ill_ipif; tmp_ipif; 20101 tmp_ipif = tmp_ipif->ipif_next) { 20102 if (((tmp_ipif->ipif_flags & 20103 (IPIF_NOXMIT|IPIF_ANYCAST|IPIF_NOLOCAL|IPIF_DEPRECATED)) || 20104 !(tmp_ipif->ipif_flags & IPIF_UP)) || 20105 (tmp_ipif == ipif)) 20106 continue; 20107 /* first useable pre-existing interface */ 20108 flush_ire_cache = B_FALSE; 20109 break; 20110 } 20111 if (flush_ire_cache) 20112 ire_walk_ill_v4(MATCH_IRE_ILL_GROUP | MATCH_IRE_TYPE, 20113 IRE_CACHE, ill_ipif_cache_delete, (char *)ill, ill); 20114 20115 /* 20116 * Figure out which way the send-to queue should go. Only 20117 * IRE_IF_RESOLVER or IRE_IF_NORESOLVER or IRE_LOOPBACK 20118 * should show up here. 20119 */ 20120 switch (ill->ill_net_type) { 20121 case IRE_IF_RESOLVER: 20122 stq = ill->ill_rq; 20123 break; 20124 case IRE_IF_NORESOLVER: 20125 case IRE_LOOPBACK: 20126 stq = ill->ill_wq; 20127 break; 20128 default: 20129 return (EINVAL); 20130 } 20131 20132 if (IS_LOOPBACK(ill)) { 20133 /* 20134 * lo0:1 and subsequent ipifs were marked IRE_LOCAL in 20135 * ipif_lookup_on_name(), but in the case of zones we can have 20136 * several loopback addresses on lo0. So all the interfaces with 20137 * loopback addresses need to be marked IRE_LOOPBACK. 20138 */ 20139 if (V4_PART_OF_V6(ipif->ipif_v6lcl_addr) == 20140 htonl(INADDR_LOOPBACK)) 20141 ipif->ipif_ire_type = IRE_LOOPBACK; 20142 else 20143 ipif->ipif_ire_type = IRE_LOCAL; 20144 } 20145 20146 if (ipif->ipif_flags & (IPIF_NOLOCAL|IPIF_ANYCAST|IPIF_DEPRECATED)) { 20147 /* 20148 * Can't use our source address. Select a different 20149 * source address for the IRE_INTERFACE and IRE_LOCAL 20150 */ 20151 src_ipif = ipif_select_source(ipif->ipif_ill, 20152 ipif->ipif_subnet, ipif->ipif_zoneid); 20153 if (src_ipif == NULL) 20154 src_ipif = ipif; /* Last resort */ 20155 else 20156 src_ipif_held = B_TRUE; 20157 } else { 20158 src_ipif = ipif; 20159 } 20160 20161 /* Create all the IREs associated with this interface */ 20162 if ((ipif->ipif_lcl_addr != INADDR_ANY) && 20163 !(ipif->ipif_flags & IPIF_NOLOCAL)) { 20164 20165 /* 20166 * If we're on a labeled system then make sure that zone- 20167 * private addresses have proper remote host database entries. 20168 */ 20169 if (is_system_labeled() && 20170 ipif->ipif_ire_type != IRE_LOOPBACK && 20171 !tsol_check_interface_address(ipif)) 20172 return (EINVAL); 20173 20174 /* Register the source address for __sin6_src_id */ 20175 err = ip_srcid_insert(&ipif->ipif_v6lcl_addr, 20176 ipif->ipif_zoneid, ipst); 20177 if (err != 0) { 20178 ip0dbg(("ipif_up_done: srcid_insert %d\n", err)); 20179 return (err); 20180 } 20181 20182 /* If the interface address is set, create the local IRE. */ 20183 ip1dbg(("ipif_up_done: 0x%p creating IRE 0x%x for 0x%x\n", 20184 (void *)ipif, 20185 ipif->ipif_ire_type, 20186 ntohl(ipif->ipif_lcl_addr))); 20187 *irep++ = ire_create( 20188 (uchar_t *)&ipif->ipif_lcl_addr, /* dest address */ 20189 (uchar_t *)&ip_g_all_ones, /* mask */ 20190 (uchar_t *)&src_ipif->ipif_src_addr, /* source address */ 20191 NULL, /* no gateway */ 20192 &ip_loopback_mtuplus, /* max frag size */ 20193 NULL, 20194 ipif->ipif_rq, /* recv-from queue */ 20195 NULL, /* no send-to queue */ 20196 ipif->ipif_ire_type, /* LOCAL or LOOPBACK */ 20197 ipif, 20198 0, 20199 0, 20200 0, 20201 (ipif->ipif_flags & IPIF_PRIVATE) ? 20202 RTF_PRIVATE : 0, 20203 &ire_uinfo_null, 20204 NULL, 20205 NULL, 20206 ipst); 20207 } else { 20208 ip1dbg(( 20209 "ipif_up_done: not creating IRE %d for 0x%x: flags 0x%x\n", 20210 ipif->ipif_ire_type, 20211 ntohl(ipif->ipif_lcl_addr), 20212 (uint_t)ipif->ipif_flags)); 20213 } 20214 if ((ipif->ipif_lcl_addr != INADDR_ANY) && 20215 !(ipif->ipif_flags & IPIF_NOLOCAL)) { 20216 net_mask = ip_net_mask(ipif->ipif_lcl_addr); 20217 } else { 20218 net_mask = htonl(IN_CLASSA_NET); /* fallback */ 20219 } 20220 20221 subnet_mask = ipif->ipif_net_mask; 20222 20223 /* 20224 * If mask was not specified, use natural netmask of 20225 * interface address. Also, store this mask back into the 20226 * ipif struct. 20227 */ 20228 if (subnet_mask == 0) { 20229 subnet_mask = net_mask; 20230 V4MASK_TO_V6(subnet_mask, ipif->ipif_v6net_mask); 20231 V6_MASK_COPY(ipif->ipif_v6lcl_addr, ipif->ipif_v6net_mask, 20232 ipif->ipif_v6subnet); 20233 } 20234 20235 /* Set up the IRE_IF_RESOLVER or IRE_IF_NORESOLVER, as appropriate. */ 20236 if (stq != NULL && !(ipif->ipif_flags & IPIF_NOXMIT) && 20237 ipif->ipif_subnet != INADDR_ANY) { 20238 /* ipif_subnet is ipif_pp_dst_addr for pt-pt */ 20239 20240 if (ipif->ipif_flags & IPIF_POINTOPOINT) { 20241 route_mask = IP_HOST_MASK; 20242 } else { 20243 route_mask = subnet_mask; 20244 } 20245 20246 ip1dbg(("ipif_up_done: ipif 0x%p ill 0x%p " 20247 "creating if IRE ill_net_type 0x%x for 0x%x\n", 20248 (void *)ipif, (void *)ill, 20249 ill->ill_net_type, 20250 ntohl(ipif->ipif_subnet))); 20251 *irep++ = ire_create( 20252 (uchar_t *)&ipif->ipif_subnet, /* dest address */ 20253 (uchar_t *)&route_mask, /* mask */ 20254 (uchar_t *)&src_ipif->ipif_src_addr, /* src addr */ 20255 NULL, /* no gateway */ 20256 &ipif->ipif_mtu, /* max frag */ 20257 NULL, 20258 NULL, /* no recv queue */ 20259 stq, /* send-to queue */ 20260 ill->ill_net_type, /* IF_[NO]RESOLVER */ 20261 ipif, 20262 0, 20263 0, 20264 0, 20265 (ipif->ipif_flags & IPIF_PRIVATE) ? RTF_PRIVATE: 0, 20266 &ire_uinfo_null, 20267 NULL, 20268 NULL, 20269 ipst); 20270 } 20271 20272 /* 20273 * Create any necessary broadcast IREs. 20274 */ 20275 if (ipif->ipif_flags & IPIF_BROADCAST) 20276 irep = ipif_create_bcast_ires(ipif, irep); 20277 20278 ASSERT(!MUTEX_HELD(&ipif->ipif_ill->ill_lock)); 20279 20280 /* If an earlier ire_create failed, get out now */ 20281 for (irep1 = irep; irep1 > ire_array; ) { 20282 irep1--; 20283 if (*irep1 == NULL) { 20284 ip1dbg(("ipif_up_done: NULL ire found in ire_array\n")); 20285 err = ENOMEM; 20286 goto bad; 20287 } 20288 } 20289 20290 /* 20291 * Need to atomically check for ip_addr_availablity_check 20292 * under ip_addr_avail_lock, and if it fails got bad, and remove 20293 * from group also.The ill_g_lock is grabbed as reader 20294 * just to make sure no new ills or new ipifs are being added 20295 * to the system while we are checking the uniqueness of addresses. 20296 */ 20297 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 20298 mutex_enter(&ipst->ips_ip_addr_avail_lock); 20299 /* Mark it up, and increment counters. */ 20300 ipif->ipif_flags |= IPIF_UP; 20301 ill->ill_ipif_up_count++; 20302 err = ip_addr_availability_check(ipif); 20303 mutex_exit(&ipst->ips_ip_addr_avail_lock); 20304 rw_exit(&ipst->ips_ill_g_lock); 20305 20306 if (err != 0) { 20307 /* 20308 * Our address may already be up on the same ill. In this case, 20309 * the ARP entry for our ipif replaced the one for the other 20310 * ipif. So we don't want to delete it (otherwise the other ipif 20311 * would be unable to send packets). 20312 * ip_addr_availability_check() identifies this case for us and 20313 * returns EADDRINUSE; we need to turn it into EADDRNOTAVAIL 20314 * which is the expected error code. 20315 */ 20316 if (err == EADDRINUSE) { 20317 freemsg(ipif->ipif_arp_del_mp); 20318 ipif->ipif_arp_del_mp = NULL; 20319 err = EADDRNOTAVAIL; 20320 } 20321 ill->ill_ipif_up_count--; 20322 ipif->ipif_flags &= ~IPIF_UP; 20323 goto bad; 20324 } 20325 20326 /* 20327 * Add in all newly created IREs. ire_create_bcast() has 20328 * already checked for duplicates of the IRE_BROADCAST type. 20329 * We want to add before we call ifgrp_insert which wants 20330 * to know whether IRE_IF_RESOLVER exists or not. 20331 * 20332 * NOTE : We refrele the ire though we may branch to "bad" 20333 * later on where we do ire_delete. This is okay 20334 * because nobody can delete it as we are running 20335 * exclusively. 20336 */ 20337 for (irep1 = irep; irep1 > ire_array; ) { 20338 irep1--; 20339 ASSERT(!MUTEX_HELD(&((*irep1)->ire_ipif->ipif_ill->ill_lock))); 20340 /* 20341 * refheld by ire_add. refele towards the end of the func 20342 */ 20343 (void) ire_add(irep1, NULL, NULL, NULL, B_FALSE); 20344 } 20345 ire_added = B_TRUE; 20346 /* 20347 * Form groups if possible. 20348 * 20349 * If we are supposed to be in a ill_group with a name, insert it 20350 * now as we know that at least one ipif is UP. Otherwise form 20351 * nameless groups. 20352 * 20353 * If ip_enable_group_ifs is set and ipif address is not 0, insert 20354 * this ipif into the appropriate interface group, or create a 20355 * new one. If this is already in a nameless group, we try to form 20356 * a bigger group looking at other ills potentially sharing this 20357 * ipif's prefix. 20358 */ 20359 phyi = ill->ill_phyint; 20360 if (phyi->phyint_groupname_len != 0) { 20361 ASSERT(phyi->phyint_groupname != NULL); 20362 if (ill->ill_ipif_up_count == 1) { 20363 ASSERT(ill->ill_group == NULL); 20364 err = illgrp_insert(&ipst->ips_illgrp_head_v4, ill, 20365 phyi->phyint_groupname, NULL, B_TRUE); 20366 if (err != 0) { 20367 ip1dbg(("ipif_up_done: illgrp allocation " 20368 "failed, error %d\n", err)); 20369 goto bad; 20370 } 20371 } 20372 ASSERT(ill->ill_group != NULL); 20373 } 20374 20375 /* 20376 * When this is part of group, we need to make sure that 20377 * any broadcast ires created because of this ipif coming 20378 * UP gets marked/cleared with IRE_MARK_NORECV appropriately 20379 * so that we don't receive duplicate broadcast packets. 20380 */ 20381 if (ill->ill_group != NULL && ill->ill_ipif_up_count != 0) 20382 ipif_renominate_bcast(ipif); 20383 20384 /* Recover any additional IRE_IF_[NO]RESOLVER entries for this ipif */ 20385 ipif_saved_ire_cnt = ipif->ipif_saved_ire_cnt; 20386 ipif_saved_irep = ipif_recover_ire(ipif); 20387 20388 if (!loopback) { 20389 /* 20390 * If the broadcast address has been set, make sure it makes 20391 * sense based on the interface address. 20392 * Only match on ill since we are sharing broadcast addresses. 20393 */ 20394 if ((ipif->ipif_brd_addr != INADDR_ANY) && 20395 (ipif->ipif_flags & IPIF_BROADCAST)) { 20396 ire_t *ire; 20397 20398 ire = ire_ctable_lookup(ipif->ipif_brd_addr, 0, 20399 IRE_BROADCAST, ipif, ALL_ZONES, 20400 NULL, (MATCH_IRE_TYPE | MATCH_IRE_ILL), ipst); 20401 20402 if (ire == NULL) { 20403 /* 20404 * If there isn't a matching broadcast IRE, 20405 * revert to the default for this netmask. 20406 */ 20407 ipif->ipif_v6brd_addr = ipv6_all_zeros; 20408 mutex_enter(&ipif->ipif_ill->ill_lock); 20409 ipif_set_default(ipif); 20410 mutex_exit(&ipif->ipif_ill->ill_lock); 20411 } else { 20412 ire_refrele(ire); 20413 } 20414 } 20415 20416 } 20417 20418 /* This is the first interface on this ill */ 20419 if (ipif->ipif_ipif_up_count == 1 && !loopback) { 20420 /* 20421 * Need to recover all multicast memberships in the driver. 20422 * This had to be deferred until we had attached. 20423 */ 20424 ill_recover_multicast(ill); 20425 } 20426 /* Join the allhosts multicast address */ 20427 ipif_multicast_up(ipif); 20428 20429 if (!loopback) { 20430 /* 20431 * See whether anybody else would benefit from the 20432 * new ipif that we added. We call this always rather 20433 * than while adding a non-IPIF_NOLOCAL/DEPRECATED/ANYCAST 20434 * ipif is for the benefit of illgrp_insert (done above) 20435 * which does not do source address selection as it does 20436 * not want to re-create interface routes that we are 20437 * having reference to it here. 20438 */ 20439 ill_update_source_selection(ill); 20440 } 20441 20442 for (irep1 = irep; irep1 > ire_array; ) { 20443 irep1--; 20444 if (*irep1 != NULL) { 20445 /* was held in ire_add */ 20446 ire_refrele(*irep1); 20447 } 20448 } 20449 20450 cnt = ipif_saved_ire_cnt; 20451 for (irep1 = ipif_saved_irep; cnt > 0; irep1++, cnt--) { 20452 if (*irep1 != NULL) { 20453 /* was held in ire_add */ 20454 ire_refrele(*irep1); 20455 } 20456 } 20457 20458 if (!loopback && ipif->ipif_addr_ready) { 20459 /* Broadcast an address mask reply. */ 20460 ipif_mask_reply(ipif); 20461 } 20462 if (ipif_saved_irep != NULL) { 20463 kmem_free(ipif_saved_irep, 20464 ipif_saved_ire_cnt * sizeof (ire_t *)); 20465 } 20466 if (src_ipif_held) 20467 ipif_refrele(src_ipif); 20468 20469 /* 20470 * This had to be deferred until we had bound. Tell routing sockets and 20471 * others that this interface is up if it looks like the address has 20472 * been validated. Otherwise, if it isn't ready yet, wait for 20473 * duplicate address detection to do its thing. 20474 */ 20475 if (ipif->ipif_addr_ready) { 20476 ip_rts_ifmsg(ipif); 20477 ip_rts_newaddrmsg(RTM_ADD, 0, ipif); 20478 /* Let SCTP update the status for this ipif */ 20479 sctp_update_ipif(ipif, SCTP_IPIF_UP); 20480 } 20481 return (0); 20482 20483 bad: 20484 ip1dbg(("ipif_up_done: FAILED \n")); 20485 /* 20486 * We don't have to bother removing from ill groups because 20487 * 20488 * 1) For groups with names, we insert only when the first ipif 20489 * comes up. In that case if it fails, it will not be in any 20490 * group. So, we need not try to remove for that case. 20491 * 20492 * 2) For groups without names, either we tried to insert ipif_ill 20493 * in a group as singleton or found some other group to become 20494 * a bigger group. For the former, if it fails we don't have 20495 * anything to do as ipif_ill is not in the group and for the 20496 * latter, there are no failures in illgrp_insert/illgrp_delete 20497 * (ENOMEM can't occur for this. Check ifgrp_insert). 20498 */ 20499 while (irep > ire_array) { 20500 irep--; 20501 if (*irep != NULL) { 20502 ire_delete(*irep); 20503 if (ire_added) 20504 ire_refrele(*irep); 20505 } 20506 } 20507 (void) ip_srcid_remove(&ipif->ipif_v6lcl_addr, ipif->ipif_zoneid, ipst); 20508 20509 if (ipif_saved_irep != NULL) { 20510 kmem_free(ipif_saved_irep, 20511 ipif_saved_ire_cnt * sizeof (ire_t *)); 20512 } 20513 if (src_ipif_held) 20514 ipif_refrele(src_ipif); 20515 20516 ipif_arp_down(ipif); 20517 return (err); 20518 } 20519 20520 /* 20521 * Turn off the ARP with the ILLF_NOARP flag. 20522 */ 20523 static int 20524 ill_arp_off(ill_t *ill) 20525 { 20526 mblk_t *arp_off_mp = NULL; 20527 mblk_t *arp_on_mp = NULL; 20528 20529 ip1dbg(("ill_arp_off(%s)\n", ill->ill_name)); 20530 20531 ASSERT(IAM_WRITER_ILL(ill)); 20532 ASSERT(ill->ill_net_type == IRE_IF_RESOLVER); 20533 20534 /* 20535 * If the on message is still around we've already done 20536 * an arp_off without doing an arp_on thus there is no 20537 * work needed. 20538 */ 20539 if (ill->ill_arp_on_mp != NULL) 20540 return (0); 20541 20542 /* 20543 * Allocate an ARP on message (to be saved) and an ARP off message 20544 */ 20545 arp_off_mp = ill_arp_alloc(ill, (uchar_t *)&ip_aroff_template, 0); 20546 if (!arp_off_mp) 20547 return (ENOMEM); 20548 20549 arp_on_mp = ill_arp_alloc(ill, (uchar_t *)&ip_aron_template, 0); 20550 if (!arp_on_mp) 20551 goto failed; 20552 20553 ASSERT(ill->ill_arp_on_mp == NULL); 20554 ill->ill_arp_on_mp = arp_on_mp; 20555 20556 /* Send an AR_INTERFACE_OFF request */ 20557 putnext(ill->ill_rq, arp_off_mp); 20558 return (0); 20559 failed: 20560 20561 if (arp_off_mp) 20562 freemsg(arp_off_mp); 20563 return (ENOMEM); 20564 } 20565 20566 /* 20567 * Turn on ARP by turning off the ILLF_NOARP flag. 20568 */ 20569 static int 20570 ill_arp_on(ill_t *ill) 20571 { 20572 mblk_t *mp; 20573 20574 ip1dbg(("ipif_arp_on(%s)\n", ill->ill_name)); 20575 20576 ASSERT(ill->ill_net_type == IRE_IF_RESOLVER); 20577 20578 ASSERT(IAM_WRITER_ILL(ill)); 20579 /* 20580 * Send an AR_INTERFACE_ON request if we have already done 20581 * an arp_off (which allocated the message). 20582 */ 20583 if (ill->ill_arp_on_mp != NULL) { 20584 mp = ill->ill_arp_on_mp; 20585 ill->ill_arp_on_mp = NULL; 20586 putnext(ill->ill_rq, mp); 20587 } 20588 return (0); 20589 } 20590 20591 /* 20592 * Called after either deleting ill from the group or when setting 20593 * FAILED or STANDBY on the interface. 20594 */ 20595 static void 20596 illgrp_reset_schednext(ill_t *ill) 20597 { 20598 ill_group_t *illgrp; 20599 ill_t *save_ill; 20600 20601 ASSERT(IAM_WRITER_ILL(ill)); 20602 /* 20603 * When called from illgrp_delete, ill_group will be non-NULL. 20604 * But when called from ip_sioctl_flags, it could be NULL if 20605 * somebody is setting FAILED/INACTIVE on some interface which 20606 * is not part of a group. 20607 */ 20608 illgrp = ill->ill_group; 20609 if (illgrp == NULL) 20610 return; 20611 if (illgrp->illgrp_ill_schednext != ill) 20612 return; 20613 20614 illgrp->illgrp_ill_schednext = NULL; 20615 save_ill = ill; 20616 /* 20617 * Choose a good ill to be the next one for 20618 * outbound traffic. As the flags FAILED/STANDBY is 20619 * not yet marked when called from ip_sioctl_flags, 20620 * we check for ill separately. 20621 */ 20622 for (ill = illgrp->illgrp_ill; ill != NULL; 20623 ill = ill->ill_group_next) { 20624 if ((ill != save_ill) && 20625 !(ill->ill_phyint->phyint_flags & 20626 (PHYI_FAILED|PHYI_INACTIVE|PHYI_OFFLINE))) { 20627 illgrp->illgrp_ill_schednext = ill; 20628 return; 20629 } 20630 } 20631 } 20632 20633 /* 20634 * Given an ill, find the next ill in the group to be scheduled. 20635 * (This should be called by ip_newroute() before ire_create().) 20636 * The passed in ill may be pulled out of the group, after we have picked 20637 * up a different outgoing ill from the same group. However ire add will 20638 * atomically check this. 20639 */ 20640 ill_t * 20641 illgrp_scheduler(ill_t *ill) 20642 { 20643 ill_t *retill; 20644 ill_group_t *illgrp; 20645 int illcnt; 20646 int i; 20647 uint64_t flags; 20648 ip_stack_t *ipst = ill->ill_ipst; 20649 20650 /* 20651 * We don't use a lock to check for the ill_group. If this ill 20652 * is currently being inserted we may end up just returning this 20653 * ill itself. That is ok. 20654 */ 20655 if (ill->ill_group == NULL) { 20656 ill_refhold(ill); 20657 return (ill); 20658 } 20659 20660 /* 20661 * Grab the ill_g_lock as reader to make sure we are dealing with 20662 * a set of stable ills. No ill can be added or deleted or change 20663 * group while we hold the reader lock. 20664 */ 20665 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 20666 if ((illgrp = ill->ill_group) == NULL) { 20667 rw_exit(&ipst->ips_ill_g_lock); 20668 ill_refhold(ill); 20669 return (ill); 20670 } 20671 20672 illcnt = illgrp->illgrp_ill_count; 20673 mutex_enter(&illgrp->illgrp_lock); 20674 retill = illgrp->illgrp_ill_schednext; 20675 20676 if (retill == NULL) 20677 retill = illgrp->illgrp_ill; 20678 20679 /* 20680 * We do a circular search beginning at illgrp_ill_schednext 20681 * or illgrp_ill. We don't check the flags against the ill lock 20682 * since it can change anytime. The ire creation will be atomic 20683 * and will fail if the ill is FAILED or OFFLINE. 20684 */ 20685 for (i = 0; i < illcnt; i++) { 20686 flags = retill->ill_phyint->phyint_flags; 20687 20688 if (!(flags & (PHYI_FAILED|PHYI_INACTIVE|PHYI_OFFLINE)) && 20689 ILL_CAN_LOOKUP(retill)) { 20690 illgrp->illgrp_ill_schednext = retill->ill_group_next; 20691 ill_refhold(retill); 20692 break; 20693 } 20694 retill = retill->ill_group_next; 20695 if (retill == NULL) 20696 retill = illgrp->illgrp_ill; 20697 } 20698 mutex_exit(&illgrp->illgrp_lock); 20699 rw_exit(&ipst->ips_ill_g_lock); 20700 20701 return (i == illcnt ? NULL : retill); 20702 } 20703 20704 /* 20705 * Checks for availbility of a usable source address (if there is one) when the 20706 * destination ILL has the ill_usesrc_ifindex pointing to another ILL. Note 20707 * this selection is done regardless of the destination. 20708 */ 20709 boolean_t 20710 ipif_usesrc_avail(ill_t *ill, zoneid_t zoneid) 20711 { 20712 uint_t ifindex; 20713 ipif_t *ipif = NULL; 20714 ill_t *uill; 20715 boolean_t isv6; 20716 ip_stack_t *ipst = ill->ill_ipst; 20717 20718 ASSERT(ill != NULL); 20719 20720 isv6 = ill->ill_isv6; 20721 ifindex = ill->ill_usesrc_ifindex; 20722 if (ifindex != 0) { 20723 uill = ill_lookup_on_ifindex(ifindex, isv6, NULL, NULL, NULL, 20724 NULL, ipst); 20725 if (uill == NULL) 20726 return (NULL); 20727 mutex_enter(&uill->ill_lock); 20728 for (ipif = uill->ill_ipif; ipif != NULL; 20729 ipif = ipif->ipif_next) { 20730 if (!IPIF_CAN_LOOKUP(ipif)) 20731 continue; 20732 if (ipif->ipif_flags & (IPIF_NOLOCAL|IPIF_ANYCAST)) 20733 continue; 20734 if (!(ipif->ipif_flags & IPIF_UP)) 20735 continue; 20736 if (ipif->ipif_zoneid != zoneid) 20737 continue; 20738 if ((isv6 && 20739 IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6lcl_addr)) || 20740 (ipif->ipif_lcl_addr == INADDR_ANY)) 20741 continue; 20742 mutex_exit(&uill->ill_lock); 20743 ill_refrele(uill); 20744 return (B_TRUE); 20745 } 20746 mutex_exit(&uill->ill_lock); 20747 ill_refrele(uill); 20748 } 20749 return (B_FALSE); 20750 } 20751 20752 /* 20753 * Determine the best source address given a destination address and an ill. 20754 * Prefers non-deprecated over deprecated but will return a deprecated 20755 * address if there is no other choice. If there is a usable source address 20756 * on the interface pointed to by ill_usesrc_ifindex then that is given 20757 * first preference. 20758 * 20759 * Returns NULL if there is no suitable source address for the ill. 20760 * This only occurs when there is no valid source address for the ill. 20761 */ 20762 ipif_t * 20763 ipif_select_source(ill_t *ill, ipaddr_t dst, zoneid_t zoneid) 20764 { 20765 ipif_t *ipif; 20766 ipif_t *ipif_dep = NULL; /* Fallback to deprecated */ 20767 ipif_t *ipif_arr[MAX_IPIF_SELECT_SOURCE]; 20768 int index = 0; 20769 boolean_t wrapped = B_FALSE; 20770 boolean_t same_subnet_only = B_FALSE; 20771 boolean_t ipif_same_found, ipif_other_found; 20772 boolean_t specific_found; 20773 ill_t *till, *usill = NULL; 20774 tsol_tpc_t *src_rhtp, *dst_rhtp; 20775 ip_stack_t *ipst = ill->ill_ipst; 20776 20777 if (ill->ill_usesrc_ifindex != 0) { 20778 usill = ill_lookup_on_ifindex(ill->ill_usesrc_ifindex, 20779 B_FALSE, NULL, NULL, NULL, NULL, ipst); 20780 if (usill != NULL) 20781 ill = usill; /* Select source from usesrc ILL */ 20782 else 20783 return (NULL); 20784 } 20785 20786 /* 20787 * If we're dealing with an unlabeled destination on a labeled system, 20788 * make sure that we ignore source addresses that are incompatible with 20789 * the destination's default label. That destination's default label 20790 * must dominate the minimum label on the source address. 20791 */ 20792 dst_rhtp = NULL; 20793 if (is_system_labeled()) { 20794 dst_rhtp = find_tpc(&dst, IPV4_VERSION, B_FALSE); 20795 if (dst_rhtp == NULL) 20796 return (NULL); 20797 if (dst_rhtp->tpc_tp.host_type != UNLABELED) { 20798 TPC_RELE(dst_rhtp); 20799 dst_rhtp = NULL; 20800 } 20801 } 20802 20803 /* 20804 * Holds the ill_g_lock as reader. This makes sure that no ipif/ill 20805 * can be deleted. But an ipif/ill can get CONDEMNED any time. 20806 * After selecting the right ipif, under ill_lock make sure ipif is 20807 * not condemned, and increment refcnt. If ipif is CONDEMNED, 20808 * we retry. Inside the loop we still need to check for CONDEMNED, 20809 * but not under a lock. 20810 */ 20811 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 20812 20813 retry: 20814 till = ill; 20815 ipif_arr[0] = NULL; 20816 20817 if (till->ill_group != NULL) 20818 till = till->ill_group->illgrp_ill; 20819 20820 /* 20821 * Choose one good source address from each ill across the group. 20822 * If possible choose a source address in the same subnet as 20823 * the destination address. 20824 * 20825 * We don't check for PHYI_FAILED or PHYI_INACTIVE or PHYI_OFFLINE 20826 * This is okay because of the following. 20827 * 20828 * If PHYI_FAILED is set and we still have non-deprecated 20829 * addresses, it means the addresses have not yet been 20830 * failed over to a different interface. We potentially 20831 * select them to create IRE_CACHES, which will be later 20832 * flushed when the addresses move over. 20833 * 20834 * If PHYI_INACTIVE is set and we still have non-deprecated 20835 * addresses, it means either the user has configured them 20836 * or PHYI_INACTIVE has not been cleared after the addresses 20837 * been moved over. For the former, in.mpathd does a failover 20838 * when the interface becomes INACTIVE and hence we should 20839 * not find them. Once INACTIVE is set, we don't allow them 20840 * to create logical interfaces anymore. For the latter, a 20841 * flush will happen when INACTIVE is cleared which will 20842 * flush the IRE_CACHES. 20843 * 20844 * If PHYI_OFFLINE is set, all the addresses will be failed 20845 * over soon. We potentially select them to create IRE_CACHEs, 20846 * which will be later flushed when the addresses move over. 20847 * 20848 * NOTE : As ipif_select_source is called to borrow source address 20849 * for an ipif that is part of a group, source address selection 20850 * will be re-done whenever the group changes i.e either an 20851 * insertion/deletion in the group. 20852 * 20853 * Fill ipif_arr[] with source addresses, using these rules: 20854 * 20855 * 1. At most one source address from a given ill ends up 20856 * in ipif_arr[] -- that is, at most one of the ipif's 20857 * associated with a given ill ends up in ipif_arr[]. 20858 * 20859 * 2. If there is at least one non-deprecated ipif in the 20860 * IPMP group with a source address on the same subnet as 20861 * our destination, then fill ipif_arr[] only with 20862 * source addresses on the same subnet as our destination. 20863 * Note that because of (1), only the first 20864 * non-deprecated ipif found with a source address 20865 * matching the destination ends up in ipif_arr[]. 20866 * 20867 * 3. Otherwise, fill ipif_arr[] with non-deprecated source 20868 * addresses not in the same subnet as our destination. 20869 * Again, because of (1), only the first off-subnet source 20870 * address will be chosen. 20871 * 20872 * 4. If there are no non-deprecated ipifs, then just use 20873 * the source address associated with the last deprecated 20874 * one we find that happens to be on the same subnet, 20875 * otherwise the first one not in the same subnet. 20876 */ 20877 specific_found = B_FALSE; 20878 for (; till != NULL; till = till->ill_group_next) { 20879 ipif_same_found = B_FALSE; 20880 ipif_other_found = B_FALSE; 20881 for (ipif = till->ill_ipif; ipif != NULL; 20882 ipif = ipif->ipif_next) { 20883 if (!IPIF_CAN_LOOKUP(ipif)) 20884 continue; 20885 /* Always skip NOLOCAL and ANYCAST interfaces */ 20886 if (ipif->ipif_flags & (IPIF_NOLOCAL|IPIF_ANYCAST)) 20887 continue; 20888 if (!(ipif->ipif_flags & IPIF_UP) || 20889 !ipif->ipif_addr_ready) 20890 continue; 20891 if (ipif->ipif_zoneid != zoneid && 20892 ipif->ipif_zoneid != ALL_ZONES) 20893 continue; 20894 /* 20895 * Interfaces with 0.0.0.0 address are allowed to be UP, 20896 * but are not valid as source addresses. 20897 */ 20898 if (ipif->ipif_lcl_addr == INADDR_ANY) 20899 continue; 20900 20901 /* 20902 * Check compatibility of local address for 20903 * destination's default label if we're on a labeled 20904 * system. Incompatible addresses can't be used at 20905 * all. 20906 */ 20907 if (dst_rhtp != NULL) { 20908 boolean_t incompat; 20909 20910 src_rhtp = find_tpc(&ipif->ipif_lcl_addr, 20911 IPV4_VERSION, B_FALSE); 20912 if (src_rhtp == NULL) 20913 continue; 20914 incompat = 20915 src_rhtp->tpc_tp.host_type != SUN_CIPSO || 20916 src_rhtp->tpc_tp.tp_doi != 20917 dst_rhtp->tpc_tp.tp_doi || 20918 (!_blinrange(&dst_rhtp->tpc_tp.tp_def_label, 20919 &src_rhtp->tpc_tp.tp_sl_range_cipso) && 20920 !blinlset(&dst_rhtp->tpc_tp.tp_def_label, 20921 src_rhtp->tpc_tp.tp_sl_set_cipso)); 20922 TPC_RELE(src_rhtp); 20923 if (incompat) 20924 continue; 20925 } 20926 20927 /* 20928 * We prefer not to use all all-zones addresses, if we 20929 * can avoid it, as they pose problems with unlabeled 20930 * destinations. 20931 */ 20932 if (ipif->ipif_zoneid != ALL_ZONES) { 20933 if (!specific_found && 20934 (!same_subnet_only || 20935 (ipif->ipif_net_mask & dst) == 20936 ipif->ipif_subnet)) { 20937 index = 0; 20938 specific_found = B_TRUE; 20939 ipif_other_found = B_FALSE; 20940 } 20941 } else { 20942 if (specific_found) 20943 continue; 20944 } 20945 if (ipif->ipif_flags & IPIF_DEPRECATED) { 20946 if (ipif_dep == NULL || 20947 (ipif->ipif_net_mask & dst) == 20948 ipif->ipif_subnet) 20949 ipif_dep = ipif; 20950 continue; 20951 } 20952 if ((ipif->ipif_net_mask & dst) == ipif->ipif_subnet) { 20953 /* found a source address in the same subnet */ 20954 if (!same_subnet_only) { 20955 same_subnet_only = B_TRUE; 20956 index = 0; 20957 } 20958 ipif_same_found = B_TRUE; 20959 } else { 20960 if (same_subnet_only || ipif_other_found) 20961 continue; 20962 ipif_other_found = B_TRUE; 20963 } 20964 ipif_arr[index++] = ipif; 20965 if (index == MAX_IPIF_SELECT_SOURCE) { 20966 wrapped = B_TRUE; 20967 index = 0; 20968 } 20969 if (ipif_same_found) 20970 break; 20971 } 20972 } 20973 20974 if (ipif_arr[0] == NULL) { 20975 ipif = ipif_dep; 20976 } else { 20977 if (wrapped) 20978 index = MAX_IPIF_SELECT_SOURCE; 20979 ipif = ipif_arr[ipif_rand(ipst) % index]; 20980 ASSERT(ipif != NULL); 20981 } 20982 20983 if (ipif != NULL) { 20984 mutex_enter(&ipif->ipif_ill->ill_lock); 20985 if (!IPIF_CAN_LOOKUP(ipif)) { 20986 mutex_exit(&ipif->ipif_ill->ill_lock); 20987 goto retry; 20988 } 20989 ipif_refhold_locked(ipif); 20990 mutex_exit(&ipif->ipif_ill->ill_lock); 20991 } 20992 20993 rw_exit(&ipst->ips_ill_g_lock); 20994 if (usill != NULL) 20995 ill_refrele(usill); 20996 if (dst_rhtp != NULL) 20997 TPC_RELE(dst_rhtp); 20998 20999 #ifdef DEBUG 21000 if (ipif == NULL) { 21001 char buf1[INET6_ADDRSTRLEN]; 21002 21003 ip1dbg(("ipif_select_source(%s, %s) -> NULL\n", 21004 ill->ill_name, 21005 inet_ntop(AF_INET, &dst, buf1, sizeof (buf1)))); 21006 } else { 21007 char buf1[INET6_ADDRSTRLEN]; 21008 char buf2[INET6_ADDRSTRLEN]; 21009 21010 ip1dbg(("ipif_select_source(%s, %s) -> %s\n", 21011 ipif->ipif_ill->ill_name, 21012 inet_ntop(AF_INET, &dst, buf1, sizeof (buf1)), 21013 inet_ntop(AF_INET, &ipif->ipif_lcl_addr, 21014 buf2, sizeof (buf2)))); 21015 } 21016 #endif /* DEBUG */ 21017 return (ipif); 21018 } 21019 21020 21021 /* 21022 * If old_ipif is not NULL, see if ipif was derived from old 21023 * ipif and if so, recreate the interface route by re-doing 21024 * source address selection. This happens when ipif_down -> 21025 * ipif_update_other_ipifs calls us. 21026 * 21027 * If old_ipif is NULL, just redo the source address selection 21028 * if needed. This happens when illgrp_insert or ipif_up_done 21029 * calls us. 21030 */ 21031 static void 21032 ipif_recreate_interface_routes(ipif_t *old_ipif, ipif_t *ipif) 21033 { 21034 ire_t *ire; 21035 ire_t *ipif_ire; 21036 queue_t *stq; 21037 ipif_t *nipif; 21038 ill_t *ill; 21039 boolean_t need_rele = B_FALSE; 21040 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; 21041 21042 ASSERT(old_ipif == NULL || IAM_WRITER_IPIF(old_ipif)); 21043 ASSERT(IAM_WRITER_IPIF(ipif)); 21044 21045 ill = ipif->ipif_ill; 21046 if (!(ipif->ipif_flags & 21047 (IPIF_NOLOCAL|IPIF_ANYCAST|IPIF_DEPRECATED))) { 21048 /* 21049 * Can't possibly have borrowed the source 21050 * from old_ipif. 21051 */ 21052 return; 21053 } 21054 21055 /* 21056 * Is there any work to be done? No work if the address 21057 * is INADDR_ANY, loopback or NOLOCAL or ANYCAST ( 21058 * ipif_select_source() does not borrow addresses from 21059 * NOLOCAL and ANYCAST interfaces). 21060 */ 21061 if ((old_ipif != NULL) && 21062 ((old_ipif->ipif_lcl_addr == INADDR_ANY) || 21063 (old_ipif->ipif_ill->ill_wq == NULL) || 21064 (old_ipif->ipif_flags & 21065 (IPIF_NOLOCAL|IPIF_ANYCAST)))) { 21066 return; 21067 } 21068 21069 /* 21070 * Perform the same checks as when creating the 21071 * IRE_INTERFACE in ipif_up_done. 21072 */ 21073 if (!(ipif->ipif_flags & IPIF_UP)) 21074 return; 21075 21076 if ((ipif->ipif_flags & IPIF_NOXMIT) || 21077 (ipif->ipif_subnet == INADDR_ANY)) 21078 return; 21079 21080 ipif_ire = ipif_to_ire(ipif); 21081 if (ipif_ire == NULL) 21082 return; 21083 21084 /* 21085 * We know that ipif uses some other source for its 21086 * IRE_INTERFACE. Is it using the source of this 21087 * old_ipif? 21088 */ 21089 if (old_ipif != NULL && 21090 old_ipif->ipif_lcl_addr != ipif_ire->ire_src_addr) { 21091 ire_refrele(ipif_ire); 21092 return; 21093 } 21094 if (ip_debug > 2) { 21095 /* ip1dbg */ 21096 pr_addr_dbg("ipif_recreate_interface_routes: deleting IRE for" 21097 " src %s\n", AF_INET, &ipif_ire->ire_src_addr); 21098 } 21099 21100 stq = ipif_ire->ire_stq; 21101 21102 /* 21103 * Can't use our source address. Select a different 21104 * source address for the IRE_INTERFACE. 21105 */ 21106 nipif = ipif_select_source(ill, ipif->ipif_subnet, ipif->ipif_zoneid); 21107 if (nipif == NULL) { 21108 /* Last resort - all ipif's have IPIF_NOLOCAL */ 21109 nipif = ipif; 21110 } else { 21111 need_rele = B_TRUE; 21112 } 21113 21114 ire = ire_create( 21115 (uchar_t *)&ipif->ipif_subnet, /* dest pref */ 21116 (uchar_t *)&ipif->ipif_net_mask, /* mask */ 21117 (uchar_t *)&nipif->ipif_src_addr, /* src addr */ 21118 NULL, /* no gateway */ 21119 &ipif->ipif_mtu, /* max frag */ 21120 NULL, /* no src nce */ 21121 NULL, /* no recv from queue */ 21122 stq, /* send-to queue */ 21123 ill->ill_net_type, /* IF_[NO]RESOLVER */ 21124 ipif, 21125 0, 21126 0, 21127 0, 21128 0, 21129 &ire_uinfo_null, 21130 NULL, 21131 NULL, 21132 ipst); 21133 21134 if (ire != NULL) { 21135 ire_t *ret_ire; 21136 int error; 21137 21138 /* 21139 * We don't need ipif_ire anymore. We need to delete 21140 * before we add so that ire_add does not detect 21141 * duplicates. 21142 */ 21143 ire_delete(ipif_ire); 21144 ret_ire = ire; 21145 error = ire_add(&ret_ire, NULL, NULL, NULL, B_FALSE); 21146 ASSERT(error == 0); 21147 ASSERT(ire == ret_ire); 21148 /* Held in ire_add */ 21149 ire_refrele(ret_ire); 21150 } 21151 /* 21152 * Either we are falling through from above or could not 21153 * allocate a replacement. 21154 */ 21155 ire_refrele(ipif_ire); 21156 if (need_rele) 21157 ipif_refrele(nipif); 21158 } 21159 21160 /* 21161 * This old_ipif is going away. 21162 * 21163 * Determine if any other ipif's is using our address as 21164 * ipif_lcl_addr (due to those being IPIF_NOLOCAL, IPIF_ANYCAST, or 21165 * IPIF_DEPRECATED). 21166 * Find the IRE_INTERFACE for such ipifs and recreate them 21167 * to use an different source address following the rules in 21168 * ipif_up_done. 21169 * 21170 * This function takes an illgrp as an argument so that illgrp_delete 21171 * can call this to update source address even after deleting the 21172 * old_ipif->ipif_ill from the ill group. 21173 */ 21174 static void 21175 ipif_update_other_ipifs(ipif_t *old_ipif, ill_group_t *illgrp) 21176 { 21177 ipif_t *ipif; 21178 ill_t *ill; 21179 char buf[INET6_ADDRSTRLEN]; 21180 21181 ASSERT(IAM_WRITER_IPIF(old_ipif)); 21182 ASSERT(illgrp == NULL || IAM_WRITER_IPIF(old_ipif)); 21183 21184 ill = old_ipif->ipif_ill; 21185 21186 ip1dbg(("ipif_update_other_ipifs(%s, %s)\n", 21187 ill->ill_name, 21188 inet_ntop(AF_INET, &old_ipif->ipif_lcl_addr, 21189 buf, sizeof (buf)))); 21190 /* 21191 * If this part of a group, look at all ills as ipif_select_source 21192 * borrows source address across all the ills in the group. 21193 */ 21194 if (illgrp != NULL) 21195 ill = illgrp->illgrp_ill; 21196 21197 for (; ill != NULL; ill = ill->ill_group_next) { 21198 for (ipif = ill->ill_ipif; ipif != NULL; 21199 ipif = ipif->ipif_next) { 21200 21201 if (ipif == old_ipif) 21202 continue; 21203 21204 ipif_recreate_interface_routes(old_ipif, ipif); 21205 } 21206 } 21207 } 21208 21209 /* ARGSUSED */ 21210 int 21211 if_unitsel_restart(ipif_t *ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, 21212 ip_ioctl_cmd_t *ipip, void *dummy_ifreq) 21213 { 21214 /* 21215 * ill_phyint_reinit merged the v4 and v6 into a single 21216 * ipsq. Could also have become part of a ipmp group in the 21217 * process, and we might not have been able to complete the 21218 * operation in ipif_set_values, if we could not become 21219 * exclusive. If so restart it here. 21220 */ 21221 return (ipif_set_values_tail(ipif->ipif_ill, ipif, mp, q)); 21222 } 21223 21224 /* 21225 * Can operate on either a module or a driver queue. 21226 * Returns an error if not a module queue. 21227 */ 21228 /* ARGSUSED */ 21229 int 21230 if_unitsel(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, 21231 ip_ioctl_cmd_t *ipip, void *dummy_ifreq) 21232 { 21233 queue_t *q1 = q; 21234 char *cp; 21235 char interf_name[LIFNAMSIZ]; 21236 uint_t ppa = *(uint_t *)mp->b_cont->b_cont->b_rptr; 21237 21238 if (q->q_next == NULL) { 21239 ip1dbg(( 21240 "if_unitsel: IF_UNITSEL: no q_next\n")); 21241 return (EINVAL); 21242 } 21243 21244 if (((ill_t *)(q->q_ptr))->ill_name[0] != '\0') 21245 return (EALREADY); 21246 21247 do { 21248 q1 = q1->q_next; 21249 } while (q1->q_next); 21250 cp = q1->q_qinfo->qi_minfo->mi_idname; 21251 (void) sprintf(interf_name, "%s%d", cp, ppa); 21252 21253 /* 21254 * Here we are not going to delay the ioack until after 21255 * ACKs from DL_ATTACH_REQ/DL_BIND_REQ. So no need to save the 21256 * original ioctl message before sending the requests. 21257 */ 21258 return (ipif_set_values(q, mp, interf_name, &ppa)); 21259 } 21260 21261 /* ARGSUSED */ 21262 int 21263 ip_sioctl_sifname(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, 21264 ip_ioctl_cmd_t *ipip, void *dummy_ifreq) 21265 { 21266 return (ENXIO); 21267 } 21268 21269 /* 21270 * Create any IRE_BROADCAST entries for `ipif', and store those entries in 21271 * `irep'. Returns a pointer to the next free `irep' entry (just like 21272 * ire_check_and_create_bcast()). 21273 */ 21274 static ire_t ** 21275 ipif_create_bcast_ires(ipif_t *ipif, ire_t **irep) 21276 { 21277 ipaddr_t addr; 21278 ipaddr_t netmask = ip_net_mask(ipif->ipif_lcl_addr); 21279 ipaddr_t subnetmask = ipif->ipif_net_mask; 21280 int flags = MATCH_IRE_TYPE | MATCH_IRE_ILL; 21281 21282 ip1dbg(("ipif_create_bcast_ires: creating broadcast IREs\n")); 21283 21284 ASSERT(ipif->ipif_flags & IPIF_BROADCAST); 21285 21286 if (ipif->ipif_lcl_addr == INADDR_ANY || 21287 (ipif->ipif_flags & IPIF_NOLOCAL)) 21288 netmask = htonl(IN_CLASSA_NET); /* fallback */ 21289 21290 irep = ire_check_and_create_bcast(ipif, 0, irep, flags); 21291 irep = ire_check_and_create_bcast(ipif, INADDR_BROADCAST, irep, flags); 21292 21293 /* 21294 * For backward compatibility, we create net broadcast IREs based on 21295 * the old "IP address class system", since some old machines only 21296 * respond to these class derived net broadcast. However, we must not 21297 * create these net broadcast IREs if the subnetmask is shorter than 21298 * the IP address class based derived netmask. Otherwise, we may 21299 * create a net broadcast address which is the same as an IP address 21300 * on the subnet -- and then TCP will refuse to talk to that address. 21301 */ 21302 if (netmask < subnetmask) { 21303 addr = netmask & ipif->ipif_subnet; 21304 irep = ire_check_and_create_bcast(ipif, addr, irep, flags); 21305 irep = ire_check_and_create_bcast(ipif, ~netmask | addr, irep, 21306 flags); 21307 } 21308 21309 /* 21310 * Don't create IRE_BROADCAST IREs for the interface if the subnetmask 21311 * is 0xFFFFFFFF, as an IRE_LOCAL for that interface is already 21312 * created. Creating these broadcast IREs will only create confusion 21313 * as `addr' will be the same as the IP address. 21314 */ 21315 if (subnetmask != 0xFFFFFFFF) { 21316 addr = ipif->ipif_subnet; 21317 irep = ire_check_and_create_bcast(ipif, addr, irep, flags); 21318 irep = ire_check_and_create_bcast(ipif, ~subnetmask | addr, 21319 irep, flags); 21320 } 21321 21322 return (irep); 21323 } 21324 21325 /* 21326 * Broadcast IRE info structure used in the functions below. Since we 21327 * allocate BCAST_COUNT of them on the stack, keep the bit layout compact. 21328 */ 21329 typedef struct bcast_ireinfo { 21330 uchar_t bi_type; /* BCAST_* value from below */ 21331 uchar_t bi_willdie:1, /* will this IRE be going away? */ 21332 bi_needrep:1, /* do we need to replace it? */ 21333 bi_haverep:1, /* have we replaced it? */ 21334 bi_pad:5; 21335 ipaddr_t bi_addr; /* IRE address */ 21336 ipif_t *bi_backup; /* last-ditch ipif to replace it on */ 21337 } bcast_ireinfo_t; 21338 21339 enum { BCAST_ALLONES, BCAST_ALLZEROES, BCAST_NET, BCAST_SUBNET, BCAST_COUNT }; 21340 21341 /* 21342 * Check if `ipif' needs the dying broadcast IRE described by `bireinfop', and 21343 * return B_TRUE if it should immediately be used to recreate the IRE. 21344 */ 21345 static boolean_t 21346 ipif_consider_bcast(ipif_t *ipif, bcast_ireinfo_t *bireinfop) 21347 { 21348 ipaddr_t addr; 21349 21350 ASSERT(!bireinfop->bi_haverep && bireinfop->bi_willdie); 21351 21352 switch (bireinfop->bi_type) { 21353 case BCAST_NET: 21354 addr = ipif->ipif_subnet & ip_net_mask(ipif->ipif_subnet); 21355 if (addr != bireinfop->bi_addr) 21356 return (B_FALSE); 21357 break; 21358 case BCAST_SUBNET: 21359 if (ipif->ipif_subnet != bireinfop->bi_addr) 21360 return (B_FALSE); 21361 break; 21362 } 21363 21364 bireinfop->bi_needrep = 1; 21365 if (ipif->ipif_flags & (IPIF_DEPRECATED|IPIF_NOLOCAL|IPIF_ANYCAST)) { 21366 if (bireinfop->bi_backup == NULL) 21367 bireinfop->bi_backup = ipif; 21368 return (B_FALSE); 21369 } 21370 return (B_TRUE); 21371 } 21372 21373 /* 21374 * Create the broadcast IREs described by `bireinfop' on `ipif', and return 21375 * them ala ire_check_and_create_bcast(). 21376 */ 21377 static ire_t ** 21378 ipif_create_bcast(ipif_t *ipif, bcast_ireinfo_t *bireinfop, ire_t **irep) 21379 { 21380 ipaddr_t mask, addr; 21381 21382 ASSERT(!bireinfop->bi_haverep && bireinfop->bi_needrep); 21383 21384 addr = bireinfop->bi_addr; 21385 irep = ire_create_bcast(ipif, addr, irep); 21386 21387 switch (bireinfop->bi_type) { 21388 case BCAST_NET: 21389 mask = ip_net_mask(ipif->ipif_subnet); 21390 irep = ire_create_bcast(ipif, addr | ~mask, irep); 21391 break; 21392 case BCAST_SUBNET: 21393 mask = ipif->ipif_net_mask; 21394 irep = ire_create_bcast(ipif, addr | ~mask, irep); 21395 break; 21396 } 21397 21398 bireinfop->bi_haverep = 1; 21399 return (irep); 21400 } 21401 21402 /* 21403 * Walk through all of the ipifs on `ill' that will be affected by `test_ipif' 21404 * going away, and determine if any of the broadcast IREs (named by `bireinfop') 21405 * that are going away are still needed. If so, have ipif_create_bcast() 21406 * recreate them (except for the deprecated case, as explained below). 21407 */ 21408 static ire_t ** 21409 ill_create_bcast(ill_t *ill, ipif_t *test_ipif, bcast_ireinfo_t *bireinfo, 21410 ire_t **irep) 21411 { 21412 int i; 21413 ipif_t *ipif; 21414 21415 ASSERT(!ill->ill_isv6); 21416 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 21417 /* 21418 * Skip this ipif if it's (a) the one being taken down, (b) 21419 * not in the same zone, or (c) has no valid local address. 21420 */ 21421 if (ipif == test_ipif || 21422 ipif->ipif_zoneid != test_ipif->ipif_zoneid || 21423 ipif->ipif_subnet == 0 || 21424 (ipif->ipif_flags & (IPIF_UP|IPIF_BROADCAST|IPIF_NOXMIT)) != 21425 (IPIF_UP|IPIF_BROADCAST)) 21426 continue; 21427 21428 /* 21429 * For each dying IRE that hasn't yet been replaced, see if 21430 * `ipif' needs it and whether the IRE should be recreated on 21431 * `ipif'. If `ipif' is deprecated, ipif_consider_bcast() 21432 * will return B_FALSE even if `ipif' needs the IRE on the 21433 * hopes that we'll later find a needy non-deprecated ipif. 21434 * However, the ipif is recorded in bi_backup for possible 21435 * subsequent use by ipif_check_bcast_ires(). 21436 */ 21437 for (i = 0; i < BCAST_COUNT; i++) { 21438 if (!bireinfo[i].bi_willdie || bireinfo[i].bi_haverep) 21439 continue; 21440 if (!ipif_consider_bcast(ipif, &bireinfo[i])) 21441 continue; 21442 irep = ipif_create_bcast(ipif, &bireinfo[i], irep); 21443 } 21444 21445 /* 21446 * If we've replaced all of the broadcast IREs that are going 21447 * to be taken down, we know we're done. 21448 */ 21449 for (i = 0; i < BCAST_COUNT; i++) { 21450 if (bireinfo[i].bi_willdie && !bireinfo[i].bi_haverep) 21451 break; 21452 } 21453 if (i == BCAST_COUNT) 21454 break; 21455 } 21456 return (irep); 21457 } 21458 21459 /* 21460 * Check if `test_ipif' (which is going away) is associated with any existing 21461 * broadcast IREs, and whether any other ipifs (e.g., on the same ill) were 21462 * using those broadcast IREs. If so, recreate the broadcast IREs on one or 21463 * more of those other ipifs. (The old IREs will be deleted in ipif_down().) 21464 * 21465 * This is necessary because broadcast IREs are shared. In particular, a 21466 * given ill has one set of all-zeroes and all-ones broadcast IREs (for every 21467 * zone), plus one set of all-subnet-ones, all-subnet-zeroes, all-net-ones, 21468 * and all-net-zeroes for every net/subnet (and every zone) it has IPIF_UP 21469 * ipifs on. Thus, if there are two IPIF_UP ipifs on the same subnet with the 21470 * same zone, they will share the same set of broadcast IREs. 21471 * 21472 * Note: the upper bound of 12 IREs comes from the worst case of replacing all 21473 * six pairs (loopback and non-loopback) of broadcast IREs (all-zeroes, 21474 * all-ones, subnet-zeroes, subnet-ones, net-zeroes, and net-ones). 21475 */ 21476 static void 21477 ipif_check_bcast_ires(ipif_t *test_ipif) 21478 { 21479 ill_t *ill = test_ipif->ipif_ill; 21480 ire_t *ire, *ire_array[12]; /* see note above */ 21481 ire_t **irep1, **irep = &ire_array[0]; 21482 uint_t i, willdie; 21483 ipaddr_t mask = ip_net_mask(test_ipif->ipif_subnet); 21484 bcast_ireinfo_t bireinfo[BCAST_COUNT]; 21485 21486 ASSERT(!test_ipif->ipif_isv6); 21487 ASSERT(IAM_WRITER_IPIF(test_ipif)); 21488 21489 /* 21490 * No broadcast IREs for the LOOPBACK interface 21491 * or others such as point to point and IPIF_NOXMIT. 21492 */ 21493 if (!(test_ipif->ipif_flags & IPIF_BROADCAST) || 21494 (test_ipif->ipif_flags & IPIF_NOXMIT)) 21495 return; 21496 21497 bzero(bireinfo, sizeof (bireinfo)); 21498 bireinfo[0].bi_type = BCAST_ALLZEROES; 21499 bireinfo[0].bi_addr = 0; 21500 21501 bireinfo[1].bi_type = BCAST_ALLONES; 21502 bireinfo[1].bi_addr = INADDR_BROADCAST; 21503 21504 bireinfo[2].bi_type = BCAST_NET; 21505 bireinfo[2].bi_addr = test_ipif->ipif_subnet & mask; 21506 21507 if (test_ipif->ipif_net_mask != 0) 21508 mask = test_ipif->ipif_net_mask; 21509 bireinfo[3].bi_type = BCAST_SUBNET; 21510 bireinfo[3].bi_addr = test_ipif->ipif_subnet & mask; 21511 21512 /* 21513 * Figure out what (if any) broadcast IREs will die as a result of 21514 * `test_ipif' going away. If none will die, we're done. 21515 */ 21516 for (i = 0, willdie = 0; i < BCAST_COUNT; i++) { 21517 ire = ire_ctable_lookup(bireinfo[i].bi_addr, 0, IRE_BROADCAST, 21518 test_ipif, ALL_ZONES, NULL, 21519 (MATCH_IRE_TYPE | MATCH_IRE_IPIF), ill->ill_ipst); 21520 if (ire != NULL) { 21521 willdie++; 21522 bireinfo[i].bi_willdie = 1; 21523 ire_refrele(ire); 21524 } 21525 } 21526 21527 if (willdie == 0) 21528 return; 21529 21530 /* 21531 * Walk through all the ipifs that will be affected by the dying IREs, 21532 * and recreate the IREs as necessary. 21533 */ 21534 irep = ill_create_bcast(ill, test_ipif, bireinfo, irep); 21535 21536 /* 21537 * Scan through the set of broadcast IREs and see if there are any 21538 * that we need to replace that have not yet been replaced. If so, 21539 * replace them using the appropriate backup ipif. 21540 */ 21541 for (i = 0; i < BCAST_COUNT; i++) { 21542 if (bireinfo[i].bi_needrep && !bireinfo[i].bi_haverep) 21543 irep = ipif_create_bcast(bireinfo[i].bi_backup, 21544 &bireinfo[i], irep); 21545 } 21546 21547 /* 21548 * If we can't create all of them, don't add any of them. (Code in 21549 * ip_wput_ire() and ire_to_ill() assumes that we always have a 21550 * non-loopback copy and loopback copy for a given address.) 21551 */ 21552 for (irep1 = irep; irep1 > ire_array; ) { 21553 irep1--; 21554 if (*irep1 == NULL) { 21555 ip0dbg(("ipif_check_bcast_ires: can't create " 21556 "IRE_BROADCAST, memory allocation failure\n")); 21557 while (irep > ire_array) { 21558 irep--; 21559 if (*irep != NULL) 21560 ire_delete(*irep); 21561 } 21562 return; 21563 } 21564 } 21565 21566 for (irep1 = irep; irep1 > ire_array; ) { 21567 irep1--; 21568 if (ire_add(irep1, NULL, NULL, NULL, B_FALSE) == 0) 21569 ire_refrele(*irep1); /* Held in ire_add */ 21570 } 21571 } 21572 21573 /* 21574 * Extract both the flags (including IFF_CANTCHANGE) such as IFF_IPV* 21575 * from lifr_flags and the name from lifr_name. 21576 * Set IFF_IPV* and ill_isv6 prior to doing the lookup 21577 * since ipif_lookup_on_name uses the _isv6 flags when matching. 21578 * Returns EINPROGRESS when mp has been consumed by queueing it on 21579 * ill_pending_mp and the ioctl will complete in ip_rput. 21580 * 21581 * Can operate on either a module or a driver queue. 21582 * Returns an error if not a module queue. 21583 */ 21584 /* ARGSUSED */ 21585 int 21586 ip_sioctl_slifname(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 21587 ip_ioctl_cmd_t *ipip, void *if_req) 21588 { 21589 ill_t *ill = q->q_ptr; 21590 phyint_t *phyi; 21591 ip_stack_t *ipst; 21592 struct lifreq *lifr = if_req; 21593 21594 ASSERT(ipif != NULL); 21595 ip1dbg(("ip_sioctl_slifname %s\n", lifr->lifr_name)); 21596 21597 if (q->q_next == NULL) { 21598 ip1dbg(("if_sioctl_slifname: SIOCSLIFNAME: no q_next\n")); 21599 return (EINVAL); 21600 } 21601 21602 /* 21603 * If we are not writer on 'q' then this interface exists already 21604 * and previous lookups (ip_extract_lifreq()) found this ipif -- 21605 * so return EALREADY. 21606 */ 21607 if (ill != ipif->ipif_ill) 21608 return (EALREADY); 21609 21610 if (ill->ill_name[0] != '\0') 21611 return (EALREADY); 21612 21613 /* 21614 * Set all the flags. Allows all kinds of override. Provide some 21615 * sanity checking by not allowing IFF_BROADCAST and IFF_MULTICAST 21616 * unless there is either multicast/broadcast support in the driver 21617 * or it is a pt-pt link. 21618 */ 21619 if (lifr->lifr_flags & (IFF_PROMISC|IFF_ALLMULTI)) { 21620 /* Meaningless to IP thus don't allow them to be set. */ 21621 ip1dbg(("ip_setname: EINVAL 1\n")); 21622 return (EINVAL); 21623 } 21624 21625 /* 21626 * If there's another ill already with the requested name, ensure 21627 * that it's of the same type. Otherwise, ill_phyint_reinit() will 21628 * fuse together two unrelated ills, which will cause chaos. 21629 */ 21630 ipst = ill->ill_ipst; 21631 phyi = avl_find(&ipst->ips_phyint_g_list->phyint_list_avl_by_name, 21632 lifr->lifr_name, NULL); 21633 if (phyi != NULL) { 21634 ill_t *ill_mate = phyi->phyint_illv4; 21635 21636 if (ill_mate == NULL) 21637 ill_mate = phyi->phyint_illv6; 21638 ASSERT(ill_mate != NULL); 21639 21640 if (ill_mate->ill_media->ip_m_mac_type != 21641 ill->ill_media->ip_m_mac_type) { 21642 ip1dbg(("if_sioctl_slifname: SIOCSLIFNAME: attempt to " 21643 "use the same ill name on differing media\n")); 21644 return (EINVAL); 21645 } 21646 } 21647 21648 /* 21649 * For a DL_STYLE2 driver (ill_needs_attach), we would not have the 21650 * ill_bcast_addr_length info. 21651 */ 21652 if (!ill->ill_needs_attach && 21653 ((lifr->lifr_flags & IFF_MULTICAST) && 21654 !(lifr->lifr_flags & IFF_POINTOPOINT) && 21655 ill->ill_bcast_addr_length == 0)) { 21656 /* Link not broadcast/pt-pt capable i.e. no multicast */ 21657 ip1dbg(("ip_setname: EINVAL 2\n")); 21658 return (EINVAL); 21659 } 21660 if ((lifr->lifr_flags & IFF_BROADCAST) && 21661 ((lifr->lifr_flags & IFF_IPV6) || 21662 (!ill->ill_needs_attach && ill->ill_bcast_addr_length == 0))) { 21663 /* Link not broadcast capable or IPv6 i.e. no broadcast */ 21664 ip1dbg(("ip_setname: EINVAL 3\n")); 21665 return (EINVAL); 21666 } 21667 if (lifr->lifr_flags & IFF_UP) { 21668 /* Can only be set with SIOCSLIFFLAGS */ 21669 ip1dbg(("ip_setname: EINVAL 4\n")); 21670 return (EINVAL); 21671 } 21672 if ((lifr->lifr_flags & (IFF_IPV6|IFF_IPV4)) != IFF_IPV6 && 21673 (lifr->lifr_flags & (IFF_IPV6|IFF_IPV4)) != IFF_IPV4) { 21674 ip1dbg(("ip_setname: EINVAL 5\n")); 21675 return (EINVAL); 21676 } 21677 /* 21678 * Only allow the IFF_XRESOLV flag to be set on IPv6 interfaces. 21679 */ 21680 if ((lifr->lifr_flags & IFF_XRESOLV) && 21681 !(lifr->lifr_flags & IFF_IPV6) && 21682 !(ipif->ipif_isv6)) { 21683 ip1dbg(("ip_setname: EINVAL 6\n")); 21684 return (EINVAL); 21685 } 21686 21687 /* 21688 * The user has done SIOCGLIFFLAGS prior to this ioctl and hence 21689 * we have all the flags here. So, we assign rather than we OR. 21690 * We can't OR the flags here because we don't want to set 21691 * both IFF_IPV4 and IFF_IPV6. We start off as IFF_IPV4 in 21692 * ipif_allocate and become IFF_IPV4 or IFF_IPV6 here depending 21693 * on lifr_flags value here. 21694 */ 21695 /* 21696 * This ill has not been inserted into the global list. 21697 * So we are still single threaded and don't need any lock 21698 */ 21699 ipif->ipif_flags = lifr->lifr_flags & IFF_LOGINT_FLAGS & ~IFF_DUPLICATE; 21700 ill->ill_flags = lifr->lifr_flags & IFF_PHYINTINST_FLAGS; 21701 ill->ill_phyint->phyint_flags = lifr->lifr_flags & IFF_PHYINT_FLAGS; 21702 21703 /* We started off as V4. */ 21704 if (ill->ill_flags & ILLF_IPV6) { 21705 ill->ill_phyint->phyint_illv6 = ill; 21706 ill->ill_phyint->phyint_illv4 = NULL; 21707 } 21708 21709 return (ipif_set_values(q, mp, lifr->lifr_name, &lifr->lifr_ppa)); 21710 } 21711 21712 /* ARGSUSED */ 21713 int 21714 ip_sioctl_slifname_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 21715 ip_ioctl_cmd_t *ipip, void *if_req) 21716 { 21717 /* 21718 * ill_phyint_reinit merged the v4 and v6 into a single 21719 * ipsq. Could also have become part of a ipmp group in the 21720 * process, and we might not have been able to complete the 21721 * slifname in ipif_set_values, if we could not become 21722 * exclusive. If so restart it here 21723 */ 21724 return (ipif_set_values_tail(ipif->ipif_ill, ipif, mp, q)); 21725 } 21726 21727 /* 21728 * Return a pointer to the ipif which matches the index, IP version type and 21729 * zoneid. 21730 */ 21731 ipif_t * 21732 ipif_lookup_on_ifindex(uint_t index, boolean_t isv6, zoneid_t zoneid, 21733 queue_t *q, mblk_t *mp, ipsq_func_t func, int *err, ip_stack_t *ipst) 21734 { 21735 ill_t *ill; 21736 ipif_t *ipif = NULL; 21737 21738 ASSERT((q == NULL && mp == NULL && func == NULL && err == NULL) || 21739 (q != NULL && mp != NULL && func != NULL && err != NULL)); 21740 21741 if (err != NULL) 21742 *err = 0; 21743 21744 ill = ill_lookup_on_ifindex(index, isv6, q, mp, func, err, ipst); 21745 if (ill != NULL) { 21746 mutex_enter(&ill->ill_lock); 21747 for (ipif = ill->ill_ipif; ipif != NULL; 21748 ipif = ipif->ipif_next) { 21749 if (IPIF_CAN_LOOKUP(ipif) && (zoneid == ALL_ZONES || 21750 zoneid == ipif->ipif_zoneid || 21751 ipif->ipif_zoneid == ALL_ZONES)) { 21752 ipif_refhold_locked(ipif); 21753 break; 21754 } 21755 } 21756 mutex_exit(&ill->ill_lock); 21757 ill_refrele(ill); 21758 if (ipif == NULL && err != NULL) 21759 *err = ENXIO; 21760 } 21761 return (ipif); 21762 } 21763 21764 typedef struct conn_change_s { 21765 uint_t cc_old_ifindex; 21766 uint_t cc_new_ifindex; 21767 } conn_change_t; 21768 21769 /* 21770 * ipcl_walk function for changing interface index. 21771 */ 21772 static void 21773 conn_change_ifindex(conn_t *connp, caddr_t arg) 21774 { 21775 conn_change_t *connc; 21776 uint_t old_ifindex; 21777 uint_t new_ifindex; 21778 int i; 21779 ilg_t *ilg; 21780 21781 connc = (conn_change_t *)arg; 21782 old_ifindex = connc->cc_old_ifindex; 21783 new_ifindex = connc->cc_new_ifindex; 21784 21785 if (connp->conn_orig_bound_ifindex == old_ifindex) 21786 connp->conn_orig_bound_ifindex = new_ifindex; 21787 21788 if (connp->conn_orig_multicast_ifindex == old_ifindex) 21789 connp->conn_orig_multicast_ifindex = new_ifindex; 21790 21791 for (i = connp->conn_ilg_inuse - 1; i >= 0; i--) { 21792 ilg = &connp->conn_ilg[i]; 21793 if (ilg->ilg_orig_ifindex == old_ifindex) 21794 ilg->ilg_orig_ifindex = new_ifindex; 21795 } 21796 } 21797 21798 /* 21799 * Walk all the ipifs and ilms on this ill and change the orig_ifindex 21800 * to new_index if it matches the old_index. 21801 * 21802 * Failovers typically happen within a group of ills. But somebody 21803 * can remove an ill from the group after a failover happened. If 21804 * we are setting the ifindex after this, we potentially need to 21805 * look at all the ills rather than just the ones in the group. 21806 * We cut down the work by looking at matching ill_net_types 21807 * and ill_types as we could not possibly grouped them together. 21808 */ 21809 static void 21810 ip_change_ifindex(ill_t *ill_orig, conn_change_t *connc) 21811 { 21812 ill_t *ill; 21813 ipif_t *ipif; 21814 uint_t old_ifindex; 21815 uint_t new_ifindex; 21816 ilm_t *ilm; 21817 ill_walk_context_t ctx; 21818 ip_stack_t *ipst = ill_orig->ill_ipst; 21819 21820 old_ifindex = connc->cc_old_ifindex; 21821 new_ifindex = connc->cc_new_ifindex; 21822 21823 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 21824 ill = ILL_START_WALK_ALL(&ctx, ipst); 21825 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 21826 if ((ill_orig->ill_net_type != ill->ill_net_type) || 21827 (ill_orig->ill_type != ill->ill_type)) { 21828 continue; 21829 } 21830 for (ipif = ill->ill_ipif; ipif != NULL; 21831 ipif = ipif->ipif_next) { 21832 if (ipif->ipif_orig_ifindex == old_ifindex) 21833 ipif->ipif_orig_ifindex = new_ifindex; 21834 } 21835 for (ilm = ill->ill_ilm; ilm != NULL; ilm = ilm->ilm_next) { 21836 if (ilm->ilm_orig_ifindex == old_ifindex) 21837 ilm->ilm_orig_ifindex = new_ifindex; 21838 } 21839 } 21840 rw_exit(&ipst->ips_ill_g_lock); 21841 } 21842 21843 /* 21844 * We first need to ensure that the new index is unique, and 21845 * then carry the change across both v4 and v6 ill representation 21846 * of the physical interface. 21847 */ 21848 /* ARGSUSED */ 21849 int 21850 ip_sioctl_slifindex(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 21851 ip_ioctl_cmd_t *ipip, void *ifreq) 21852 { 21853 ill_t *ill; 21854 ill_t *ill_other; 21855 phyint_t *phyi; 21856 int old_index; 21857 conn_change_t connc; 21858 struct ifreq *ifr = (struct ifreq *)ifreq; 21859 struct lifreq *lifr = (struct lifreq *)ifreq; 21860 uint_t index; 21861 ill_t *ill_v4; 21862 ill_t *ill_v6; 21863 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; 21864 21865 if (ipip->ipi_cmd_type == IF_CMD) 21866 index = ifr->ifr_index; 21867 else 21868 index = lifr->lifr_index; 21869 21870 /* 21871 * Only allow on physical interface. Also, index zero is illegal. 21872 * 21873 * Need to check for PHYI_FAILED and PHYI_INACTIVE 21874 * 21875 * 1) If PHYI_FAILED is set, a failover could have happened which 21876 * implies a possible failback might have to happen. As failback 21877 * depends on the old index, we should fail setting the index. 21878 * 21879 * 2) If PHYI_INACTIVE is set, in.mpathd does a failover so that 21880 * any addresses or multicast memberships are failed over to 21881 * a non-STANDBY interface. As failback depends on the old 21882 * index, we should fail setting the index for this case also. 21883 * 21884 * 3) If PHYI_OFFLINE is set, a possible failover has happened. 21885 * Be consistent with PHYI_FAILED and fail the ioctl. 21886 */ 21887 ill = ipif->ipif_ill; 21888 phyi = ill->ill_phyint; 21889 if ((phyi->phyint_flags & (PHYI_FAILED|PHYI_INACTIVE|PHYI_OFFLINE)) || 21890 ipif->ipif_id != 0 || index == 0) { 21891 return (EINVAL); 21892 } 21893 old_index = phyi->phyint_ifindex; 21894 21895 /* If the index is not changing, no work to do */ 21896 if (old_index == index) 21897 return (0); 21898 21899 /* 21900 * Use ill_lookup_on_ifindex to determine if the 21901 * new index is unused and if so allow the change. 21902 */ 21903 ill_v6 = ill_lookup_on_ifindex(index, B_TRUE, NULL, NULL, NULL, NULL, 21904 ipst); 21905 ill_v4 = ill_lookup_on_ifindex(index, B_FALSE, NULL, NULL, NULL, NULL, 21906 ipst); 21907 if (ill_v6 != NULL || ill_v4 != NULL) { 21908 if (ill_v4 != NULL) 21909 ill_refrele(ill_v4); 21910 if (ill_v6 != NULL) 21911 ill_refrele(ill_v6); 21912 return (EBUSY); 21913 } 21914 21915 /* 21916 * The new index is unused. Set it in the phyint. 21917 * Locate the other ill so that we can send a routing 21918 * sockets message. 21919 */ 21920 if (ill->ill_isv6) { 21921 ill_other = phyi->phyint_illv4; 21922 } else { 21923 ill_other = phyi->phyint_illv6; 21924 } 21925 21926 phyi->phyint_ifindex = index; 21927 21928 /* Update SCTP's ILL list */ 21929 sctp_ill_reindex(ill, old_index); 21930 21931 connc.cc_old_ifindex = old_index; 21932 connc.cc_new_ifindex = index; 21933 ip_change_ifindex(ill, &connc); 21934 ipcl_walk(conn_change_ifindex, (caddr_t)&connc, ipst); 21935 21936 /* Send the routing sockets message */ 21937 ip_rts_ifmsg(ipif); 21938 if (ill_other != NULL) 21939 ip_rts_ifmsg(ill_other->ill_ipif); 21940 21941 return (0); 21942 } 21943 21944 /* ARGSUSED */ 21945 int 21946 ip_sioctl_get_lifindex(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 21947 ip_ioctl_cmd_t *ipip, void *ifreq) 21948 { 21949 struct ifreq *ifr = (struct ifreq *)ifreq; 21950 struct lifreq *lifr = (struct lifreq *)ifreq; 21951 21952 ip1dbg(("ip_sioctl_get_lifindex(%s:%u %p)\n", 21953 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 21954 /* Get the interface index */ 21955 if (ipip->ipi_cmd_type == IF_CMD) { 21956 ifr->ifr_index = ipif->ipif_ill->ill_phyint->phyint_ifindex; 21957 } else { 21958 lifr->lifr_index = ipif->ipif_ill->ill_phyint->phyint_ifindex; 21959 } 21960 return (0); 21961 } 21962 21963 /* ARGSUSED */ 21964 int 21965 ip_sioctl_get_lifzone(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 21966 ip_ioctl_cmd_t *ipip, void *ifreq) 21967 { 21968 struct lifreq *lifr = (struct lifreq *)ifreq; 21969 21970 ip1dbg(("ip_sioctl_get_lifzone(%s:%u %p)\n", 21971 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 21972 /* Get the interface zone */ 21973 ASSERT(ipip->ipi_cmd_type == LIF_CMD); 21974 lifr->lifr_zoneid = ipif->ipif_zoneid; 21975 return (0); 21976 } 21977 21978 /* 21979 * Set the zoneid of an interface. 21980 */ 21981 /* ARGSUSED */ 21982 int 21983 ip_sioctl_slifzone(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 21984 ip_ioctl_cmd_t *ipip, void *ifreq) 21985 { 21986 struct lifreq *lifr = (struct lifreq *)ifreq; 21987 int err = 0; 21988 boolean_t need_up = B_FALSE; 21989 zone_t *zptr; 21990 zone_status_t status; 21991 zoneid_t zoneid; 21992 21993 ASSERT(ipip->ipi_cmd_type == LIF_CMD); 21994 if ((zoneid = lifr->lifr_zoneid) == ALL_ZONES) { 21995 if (!is_system_labeled()) 21996 return (ENOTSUP); 21997 zoneid = GLOBAL_ZONEID; 21998 } 21999 22000 /* cannot assign instance zero to a non-global zone */ 22001 if (ipif->ipif_id == 0 && zoneid != GLOBAL_ZONEID) 22002 return (ENOTSUP); 22003 22004 /* 22005 * Cannot assign to a zone that doesn't exist or is shutting down. In 22006 * the event of a race with the zone shutdown processing, since IP 22007 * serializes this ioctl and SIOCGLIFCONF/SIOCLIFREMOVEIF, we know the 22008 * interface will be cleaned up even if the zone is shut down 22009 * immediately after the status check. If the interface can't be brought 22010 * down right away, and the zone is shut down before the restart 22011 * function is called, we resolve the possible races by rechecking the 22012 * zone status in the restart function. 22013 */ 22014 if ((zptr = zone_find_by_id(zoneid)) == NULL) 22015 return (EINVAL); 22016 status = zone_status_get(zptr); 22017 zone_rele(zptr); 22018 22019 if (status != ZONE_IS_READY && status != ZONE_IS_RUNNING) 22020 return (EINVAL); 22021 22022 if (ipif->ipif_flags & IPIF_UP) { 22023 /* 22024 * If the interface is already marked up, 22025 * we call ipif_down which will take care 22026 * of ditching any IREs that have been set 22027 * up based on the old interface address. 22028 */ 22029 err = ipif_logical_down(ipif, q, mp); 22030 if (err == EINPROGRESS) 22031 return (err); 22032 ipif_down_tail(ipif); 22033 need_up = B_TRUE; 22034 } 22035 22036 err = ip_sioctl_slifzone_tail(ipif, lifr->lifr_zoneid, q, mp, need_up); 22037 return (err); 22038 } 22039 22040 static int 22041 ip_sioctl_slifzone_tail(ipif_t *ipif, zoneid_t zoneid, 22042 queue_t *q, mblk_t *mp, boolean_t need_up) 22043 { 22044 int err = 0; 22045 ip_stack_t *ipst; 22046 22047 ip1dbg(("ip_sioctl_zoneid_tail(%s:%u %p)\n", 22048 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 22049 22050 if (CONN_Q(q)) 22051 ipst = CONNQ_TO_IPST(q); 22052 else 22053 ipst = ILLQ_TO_IPST(q); 22054 22055 /* 22056 * For exclusive stacks we don't allow a different zoneid than 22057 * global. 22058 */ 22059 if (ipst->ips_netstack->netstack_stackid != GLOBAL_NETSTACKID && 22060 zoneid != GLOBAL_ZONEID) 22061 return (EINVAL); 22062 22063 /* Set the new zone id. */ 22064 ipif->ipif_zoneid = zoneid; 22065 22066 /* Update sctp list */ 22067 sctp_update_ipif(ipif, SCTP_IPIF_UPDATE); 22068 22069 if (need_up) { 22070 /* 22071 * Now bring the interface back up. If this 22072 * is the only IPIF for the ILL, ipif_up 22073 * will have to re-bind to the device, so 22074 * we may get back EINPROGRESS, in which 22075 * case, this IOCTL will get completed in 22076 * ip_rput_dlpi when we see the DL_BIND_ACK. 22077 */ 22078 err = ipif_up(ipif, q, mp); 22079 } 22080 return (err); 22081 } 22082 22083 /* ARGSUSED */ 22084 int 22085 ip_sioctl_slifzone_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 22086 ip_ioctl_cmd_t *ipip, void *if_req) 22087 { 22088 struct lifreq *lifr = (struct lifreq *)if_req; 22089 zoneid_t zoneid; 22090 zone_t *zptr; 22091 zone_status_t status; 22092 22093 ASSERT(ipif->ipif_id != 0); 22094 ASSERT(ipip->ipi_cmd_type == LIF_CMD); 22095 if ((zoneid = lifr->lifr_zoneid) == ALL_ZONES) 22096 zoneid = GLOBAL_ZONEID; 22097 22098 ip1dbg(("ip_sioctl_slifzone_restart(%s:%u %p)\n", 22099 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 22100 22101 /* 22102 * We recheck the zone status to resolve the following race condition: 22103 * 1) process sends SIOCSLIFZONE to put hme0:1 in zone "myzone"; 22104 * 2) hme0:1 is up and can't be brought down right away; 22105 * ip_sioctl_slifzone() returns EINPROGRESS and the request is queued; 22106 * 3) zone "myzone" is halted; the zone status switches to 22107 * 'shutting_down' and the zones framework sends SIOCGLIFCONF to list 22108 * the interfaces to remove - hme0:1 is not returned because it's not 22109 * yet in "myzone", so it won't be removed; 22110 * 4) the restart function for SIOCSLIFZONE is called; without the 22111 * status check here, we would have hme0:1 in "myzone" after it's been 22112 * destroyed. 22113 * Note that if the status check fails, we need to bring the interface 22114 * back to its state prior to ip_sioctl_slifzone(), hence the call to 22115 * ipif_up_done[_v6](). 22116 */ 22117 status = ZONE_IS_UNINITIALIZED; 22118 if ((zptr = zone_find_by_id(zoneid)) != NULL) { 22119 status = zone_status_get(zptr); 22120 zone_rele(zptr); 22121 } 22122 if (status != ZONE_IS_READY && status != ZONE_IS_RUNNING) { 22123 if (ipif->ipif_isv6) { 22124 (void) ipif_up_done_v6(ipif); 22125 } else { 22126 (void) ipif_up_done(ipif); 22127 } 22128 return (EINVAL); 22129 } 22130 22131 ipif_down_tail(ipif); 22132 22133 return (ip_sioctl_slifzone_tail(ipif, lifr->lifr_zoneid, q, mp, 22134 B_TRUE)); 22135 } 22136 22137 /* ARGSUSED */ 22138 int 22139 ip_sioctl_get_lifusesrc(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 22140 ip_ioctl_cmd_t *ipip, void *ifreq) 22141 { 22142 struct lifreq *lifr = ifreq; 22143 22144 ASSERT(q->q_next == NULL); 22145 ASSERT(CONN_Q(q)); 22146 22147 ip1dbg(("ip_sioctl_get_lifusesrc(%s:%u %p)\n", 22148 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 22149 lifr->lifr_index = ipif->ipif_ill->ill_usesrc_ifindex; 22150 ip1dbg(("ip_sioctl_get_lifusesrc:lifr_index = %d\n", lifr->lifr_index)); 22151 22152 return (0); 22153 } 22154 22155 /* Find the previous ILL in this usesrc group */ 22156 static ill_t * 22157 ill_prev_usesrc(ill_t *uill) 22158 { 22159 ill_t *ill; 22160 22161 for (ill = uill->ill_usesrc_grp_next; 22162 ASSERT(ill), ill->ill_usesrc_grp_next != uill; 22163 ill = ill->ill_usesrc_grp_next) 22164 /* do nothing */; 22165 return (ill); 22166 } 22167 22168 /* 22169 * Release all members of the usesrc group. This routine is called 22170 * from ill_delete when the interface being unplumbed is the 22171 * group head. 22172 */ 22173 static void 22174 ill_disband_usesrc_group(ill_t *uill) 22175 { 22176 ill_t *next_ill, *tmp_ill; 22177 ip_stack_t *ipst = uill->ill_ipst; 22178 22179 ASSERT(RW_WRITE_HELD(&ipst->ips_ill_g_usesrc_lock)); 22180 next_ill = uill->ill_usesrc_grp_next; 22181 22182 do { 22183 ASSERT(next_ill != NULL); 22184 tmp_ill = next_ill->ill_usesrc_grp_next; 22185 ASSERT(tmp_ill != NULL); 22186 next_ill->ill_usesrc_grp_next = NULL; 22187 next_ill->ill_usesrc_ifindex = 0; 22188 next_ill = tmp_ill; 22189 } while (next_ill->ill_usesrc_ifindex != 0); 22190 uill->ill_usesrc_grp_next = NULL; 22191 } 22192 22193 /* 22194 * Remove the client usesrc ILL from the list and relink to a new list 22195 */ 22196 int 22197 ill_relink_usesrc_ills(ill_t *ucill, ill_t *uill, uint_t ifindex) 22198 { 22199 ill_t *ill, *tmp_ill; 22200 ip_stack_t *ipst = ucill->ill_ipst; 22201 22202 ASSERT((ucill != NULL) && (ucill->ill_usesrc_grp_next != NULL) && 22203 (uill != NULL) && RW_WRITE_HELD(&ipst->ips_ill_g_usesrc_lock)); 22204 22205 /* 22206 * Check if the usesrc client ILL passed in is not already 22207 * in use as a usesrc ILL i.e one whose source address is 22208 * in use OR a usesrc ILL is not already in use as a usesrc 22209 * client ILL 22210 */ 22211 if ((ucill->ill_usesrc_ifindex == 0) || 22212 (uill->ill_usesrc_ifindex != 0)) { 22213 return (-1); 22214 } 22215 22216 ill = ill_prev_usesrc(ucill); 22217 ASSERT(ill->ill_usesrc_grp_next != NULL); 22218 22219 /* Remove from the current list */ 22220 if (ill->ill_usesrc_grp_next->ill_usesrc_grp_next == ill) { 22221 /* Only two elements in the list */ 22222 ASSERT(ill->ill_usesrc_ifindex == 0); 22223 ill->ill_usesrc_grp_next = NULL; 22224 } else { 22225 ill->ill_usesrc_grp_next = ucill->ill_usesrc_grp_next; 22226 } 22227 22228 if (ifindex == 0) { 22229 ucill->ill_usesrc_ifindex = 0; 22230 ucill->ill_usesrc_grp_next = NULL; 22231 return (0); 22232 } 22233 22234 ucill->ill_usesrc_ifindex = ifindex; 22235 tmp_ill = uill->ill_usesrc_grp_next; 22236 uill->ill_usesrc_grp_next = ucill; 22237 ucill->ill_usesrc_grp_next = 22238 (tmp_ill != NULL) ? tmp_ill : uill; 22239 return (0); 22240 } 22241 22242 /* 22243 * Set the ill_usesrc and ill_usesrc_head fields. See synchronization notes in 22244 * ip.c for locking details. 22245 */ 22246 /* ARGSUSED */ 22247 int 22248 ip_sioctl_slifusesrc(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 22249 ip_ioctl_cmd_t *ipip, void *ifreq) 22250 { 22251 struct lifreq *lifr = (struct lifreq *)ifreq; 22252 boolean_t isv6 = B_FALSE, reset_flg = B_FALSE, 22253 ill_flag_changed = B_FALSE; 22254 ill_t *usesrc_ill, *usesrc_cli_ill = ipif->ipif_ill; 22255 int err = 0, ret; 22256 uint_t ifindex; 22257 phyint_t *us_phyint, *us_cli_phyint; 22258 ipsq_t *ipsq = NULL; 22259 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; 22260 22261 ASSERT(IAM_WRITER_IPIF(ipif)); 22262 ASSERT(q->q_next == NULL); 22263 ASSERT(CONN_Q(q)); 22264 22265 isv6 = (Q_TO_CONN(q))->conn_af_isv6; 22266 us_cli_phyint = usesrc_cli_ill->ill_phyint; 22267 22268 ASSERT(us_cli_phyint != NULL); 22269 22270 /* 22271 * If the client ILL is being used for IPMP, abort. 22272 * Note, this can be done before ipsq_try_enter since we are already 22273 * exclusive on this ILL 22274 */ 22275 if ((us_cli_phyint->phyint_groupname != NULL) || 22276 (us_cli_phyint->phyint_flags & PHYI_STANDBY)) { 22277 return (EINVAL); 22278 } 22279 22280 ifindex = lifr->lifr_index; 22281 if (ifindex == 0) { 22282 if (usesrc_cli_ill->ill_usesrc_grp_next == NULL) { 22283 /* non usesrc group interface, nothing to reset */ 22284 return (0); 22285 } 22286 ifindex = usesrc_cli_ill->ill_usesrc_ifindex; 22287 /* valid reset request */ 22288 reset_flg = B_TRUE; 22289 } 22290 22291 usesrc_ill = ill_lookup_on_ifindex(ifindex, isv6, q, mp, 22292 ip_process_ioctl, &err, ipst); 22293 22294 if (usesrc_ill == NULL) { 22295 return (err); 22296 } 22297 22298 /* 22299 * The usesrc_cli_ill or the usesrc_ill cannot be part of an IPMP 22300 * group nor can either of the interfaces be used for standy. So 22301 * to guarantee mutual exclusion with ip_sioctl_flags (which sets 22302 * PHYI_STANDBY) and ip_sioctl_groupname (which sets the groupname) 22303 * we need to be exclusive on the ipsq belonging to the usesrc_ill. 22304 * We are already exlusive on this ipsq i.e ipsq corresponding to 22305 * the usesrc_cli_ill 22306 */ 22307 ipsq = ipsq_try_enter(NULL, usesrc_ill, q, mp, ip_process_ioctl, 22308 NEW_OP, B_TRUE); 22309 if (ipsq == NULL) { 22310 err = EINPROGRESS; 22311 /* Operation enqueued on the ipsq of the usesrc ILL */ 22312 goto done; 22313 } 22314 22315 /* Check if the usesrc_ill is used for IPMP */ 22316 us_phyint = usesrc_ill->ill_phyint; 22317 if ((us_phyint->phyint_groupname != NULL) || 22318 (us_phyint->phyint_flags & PHYI_STANDBY)) { 22319 err = EINVAL; 22320 goto done; 22321 } 22322 22323 /* 22324 * If the client is already in use as a usesrc_ill or a usesrc_ill is 22325 * already a client then return EINVAL 22326 */ 22327 if (IS_USESRC_ILL(usesrc_cli_ill) || IS_USESRC_CLI_ILL(usesrc_ill)) { 22328 err = EINVAL; 22329 goto done; 22330 } 22331 22332 /* 22333 * If the ill_usesrc_ifindex field is already set to what it needs to 22334 * be then this is a duplicate operation. 22335 */ 22336 if (!reset_flg && usesrc_cli_ill->ill_usesrc_ifindex == ifindex) { 22337 err = 0; 22338 goto done; 22339 } 22340 22341 ip1dbg(("ip_sioctl_slifusesrc: usesrc_cli_ill %s, usesrc_ill %s," 22342 " v6 = %d", usesrc_cli_ill->ill_name, usesrc_ill->ill_name, 22343 usesrc_ill->ill_isv6)); 22344 22345 /* 22346 * The next step ensures that no new ires will be created referencing 22347 * the client ill, until the ILL_CHANGING flag is cleared. Then 22348 * we go through an ire walk deleting all ire caches that reference 22349 * the client ill. New ires referencing the client ill that are added 22350 * to the ire table before the ILL_CHANGING flag is set, will be 22351 * cleaned up by the ire walk below. Attempt to add new ires referencing 22352 * the client ill while the ILL_CHANGING flag is set will be failed 22353 * during the ire_add in ire_atomic_start. ire_atomic_start atomically 22354 * checks (under the ill_g_usesrc_lock) that the ire being added 22355 * is not stale, i.e the ire_stq and ire_ipif are consistent and 22356 * belong to the same usesrc group. 22357 */ 22358 mutex_enter(&usesrc_cli_ill->ill_lock); 22359 usesrc_cli_ill->ill_state_flags |= ILL_CHANGING; 22360 mutex_exit(&usesrc_cli_ill->ill_lock); 22361 ill_flag_changed = B_TRUE; 22362 22363 if (ipif->ipif_isv6) 22364 ire_walk_v6(ipif_delete_cache_ire, (char *)usesrc_cli_ill, 22365 ALL_ZONES, ipst); 22366 else 22367 ire_walk_v4(ipif_delete_cache_ire, (char *)usesrc_cli_ill, 22368 ALL_ZONES, ipst); 22369 22370 /* 22371 * ill_g_usesrc_lock global lock protects the ill_usesrc_grp_next 22372 * and the ill_usesrc_ifindex fields 22373 */ 22374 rw_enter(&ipst->ips_ill_g_usesrc_lock, RW_WRITER); 22375 22376 if (reset_flg) { 22377 ret = ill_relink_usesrc_ills(usesrc_cli_ill, usesrc_ill, 0); 22378 if (ret != 0) { 22379 err = EINVAL; 22380 } 22381 rw_exit(&ipst->ips_ill_g_usesrc_lock); 22382 goto done; 22383 } 22384 22385 /* 22386 * Four possibilities to consider: 22387 * 1. Both usesrc_ill and usesrc_cli_ill are not part of any usesrc grp 22388 * 2. usesrc_ill is part of a group but usesrc_cli_ill isn't 22389 * 3. usesrc_cli_ill is part of a group but usesrc_ill isn't 22390 * 4. Both are part of their respective usesrc groups 22391 */ 22392 if ((usesrc_ill->ill_usesrc_grp_next == NULL) && 22393 (usesrc_cli_ill->ill_usesrc_grp_next == NULL)) { 22394 ASSERT(usesrc_ill->ill_usesrc_ifindex == 0); 22395 usesrc_cli_ill->ill_usesrc_ifindex = ifindex; 22396 usesrc_ill->ill_usesrc_grp_next = usesrc_cli_ill; 22397 usesrc_cli_ill->ill_usesrc_grp_next = usesrc_ill; 22398 } else if ((usesrc_ill->ill_usesrc_grp_next != NULL) && 22399 (usesrc_cli_ill->ill_usesrc_grp_next == NULL)) { 22400 usesrc_cli_ill->ill_usesrc_ifindex = ifindex; 22401 /* Insert at head of list */ 22402 usesrc_cli_ill->ill_usesrc_grp_next = 22403 usesrc_ill->ill_usesrc_grp_next; 22404 usesrc_ill->ill_usesrc_grp_next = usesrc_cli_ill; 22405 } else { 22406 ret = ill_relink_usesrc_ills(usesrc_cli_ill, usesrc_ill, 22407 ifindex); 22408 if (ret != 0) 22409 err = EINVAL; 22410 } 22411 rw_exit(&ipst->ips_ill_g_usesrc_lock); 22412 22413 done: 22414 if (ill_flag_changed) { 22415 mutex_enter(&usesrc_cli_ill->ill_lock); 22416 usesrc_cli_ill->ill_state_flags &= ~ILL_CHANGING; 22417 mutex_exit(&usesrc_cli_ill->ill_lock); 22418 } 22419 if (ipsq != NULL) 22420 ipsq_exit(ipsq); 22421 /* The refrele on the lifr_name ipif is done by ip_process_ioctl */ 22422 ill_refrele(usesrc_ill); 22423 return (err); 22424 } 22425 22426 /* 22427 * comparison function used by avl. 22428 */ 22429 static int 22430 ill_phyint_compare_index(const void *index_ptr, const void *phyip) 22431 { 22432 22433 uint_t index; 22434 22435 ASSERT(phyip != NULL && index_ptr != NULL); 22436 22437 index = *((uint_t *)index_ptr); 22438 /* 22439 * let the phyint with the lowest index be on top. 22440 */ 22441 if (((phyint_t *)phyip)->phyint_ifindex < index) 22442 return (1); 22443 if (((phyint_t *)phyip)->phyint_ifindex > index) 22444 return (-1); 22445 return (0); 22446 } 22447 22448 /* 22449 * comparison function used by avl. 22450 */ 22451 static int 22452 ill_phyint_compare_name(const void *name_ptr, const void *phyip) 22453 { 22454 ill_t *ill; 22455 int res = 0; 22456 22457 ASSERT(phyip != NULL && name_ptr != NULL); 22458 22459 if (((phyint_t *)phyip)->phyint_illv4) 22460 ill = ((phyint_t *)phyip)->phyint_illv4; 22461 else 22462 ill = ((phyint_t *)phyip)->phyint_illv6; 22463 ASSERT(ill != NULL); 22464 22465 res = strcmp(ill->ill_name, (char *)name_ptr); 22466 if (res > 0) 22467 return (1); 22468 else if (res < 0) 22469 return (-1); 22470 return (0); 22471 } 22472 /* 22473 * This function is called from ill_delete when the ill is being 22474 * unplumbed. We remove the reference from the phyint and we also 22475 * free the phyint when there are no more references to it. 22476 */ 22477 static void 22478 ill_phyint_free(ill_t *ill) 22479 { 22480 phyint_t *phyi; 22481 phyint_t *next_phyint; 22482 ipsq_t *cur_ipsq; 22483 ip_stack_t *ipst = ill->ill_ipst; 22484 22485 ASSERT(ill->ill_phyint != NULL); 22486 22487 ASSERT(RW_WRITE_HELD(&ipst->ips_ill_g_lock)); 22488 phyi = ill->ill_phyint; 22489 ill->ill_phyint = NULL; 22490 /* 22491 * ill_init allocates a phyint always to store the copy 22492 * of flags relevant to phyint. At that point in time, we could 22493 * not assign the name and hence phyint_illv4/v6 could not be 22494 * initialized. Later in ipif_set_values, we assign the name to 22495 * the ill, at which point in time we assign phyint_illv4/v6. 22496 * Thus we don't rely on phyint_illv6 to be initialized always. 22497 */ 22498 if (ill->ill_flags & ILLF_IPV6) { 22499 phyi->phyint_illv6 = NULL; 22500 } else { 22501 phyi->phyint_illv4 = NULL; 22502 } 22503 /* 22504 * ipif_down removes it from the group when the last ipif goes 22505 * down. 22506 */ 22507 ASSERT(ill->ill_group == NULL); 22508 22509 if (phyi->phyint_illv4 != NULL || phyi->phyint_illv6 != NULL) 22510 return; 22511 22512 /* 22513 * Make sure this phyint was put in the list. 22514 */ 22515 if (phyi->phyint_ifindex > 0) { 22516 avl_remove(&ipst->ips_phyint_g_list->phyint_list_avl_by_index, 22517 phyi); 22518 avl_remove(&ipst->ips_phyint_g_list->phyint_list_avl_by_name, 22519 phyi); 22520 } 22521 /* 22522 * remove phyint from the ipsq list. 22523 */ 22524 cur_ipsq = phyi->phyint_ipsq; 22525 if (phyi == cur_ipsq->ipsq_phyint_list) { 22526 cur_ipsq->ipsq_phyint_list = phyi->phyint_ipsq_next; 22527 } else { 22528 next_phyint = cur_ipsq->ipsq_phyint_list; 22529 while (next_phyint != NULL) { 22530 if (next_phyint->phyint_ipsq_next == phyi) { 22531 next_phyint->phyint_ipsq_next = 22532 phyi->phyint_ipsq_next; 22533 break; 22534 } 22535 next_phyint = next_phyint->phyint_ipsq_next; 22536 } 22537 ASSERT(next_phyint != NULL); 22538 } 22539 IPSQ_DEC_REF(cur_ipsq, ipst); 22540 22541 if (phyi->phyint_groupname_len != 0) { 22542 ASSERT(phyi->phyint_groupname != NULL); 22543 mi_free(phyi->phyint_groupname); 22544 } 22545 mi_free(phyi); 22546 } 22547 22548 /* 22549 * Attach the ill to the phyint structure which can be shared by both 22550 * IPv4 and IPv6 ill. ill_init allocates a phyint to just hold flags. This 22551 * function is called from ipif_set_values and ill_lookup_on_name (for 22552 * loopback) where we know the name of the ill. We lookup the ill and if 22553 * there is one present already with the name use that phyint. Otherwise 22554 * reuse the one allocated by ill_init. 22555 */ 22556 static void 22557 ill_phyint_reinit(ill_t *ill) 22558 { 22559 boolean_t isv6 = ill->ill_isv6; 22560 phyint_t *phyi_old; 22561 phyint_t *phyi; 22562 avl_index_t where = 0; 22563 ill_t *ill_other = NULL; 22564 ipsq_t *ipsq; 22565 ip_stack_t *ipst = ill->ill_ipst; 22566 22567 ASSERT(RW_WRITE_HELD(&ipst->ips_ill_g_lock)); 22568 22569 phyi_old = ill->ill_phyint; 22570 ASSERT(isv6 || (phyi_old->phyint_illv4 == ill && 22571 phyi_old->phyint_illv6 == NULL)); 22572 ASSERT(!isv6 || (phyi_old->phyint_illv6 == ill && 22573 phyi_old->phyint_illv4 == NULL)); 22574 ASSERT(phyi_old->phyint_ifindex == 0); 22575 22576 phyi = avl_find(&ipst->ips_phyint_g_list->phyint_list_avl_by_name, 22577 ill->ill_name, &where); 22578 22579 /* 22580 * 1. We grabbed the ill_g_lock before inserting this ill into 22581 * the global list of ills. So no other thread could have located 22582 * this ill and hence the ipsq of this ill is guaranteed to be empty. 22583 * 2. Now locate the other protocol instance of this ill. 22584 * 3. Now grab both ill locks in the right order, and the phyint lock of 22585 * the new ipsq. Holding ill locks + ill_g_lock ensures that the ipsq 22586 * of neither ill can change. 22587 * 4. Merge the phyint and thus the ipsq as well of this ill onto the 22588 * other ill. 22589 * 5. Release all locks. 22590 */ 22591 22592 /* 22593 * Look for IPv4 if we are initializing IPv6 or look for IPv6 if 22594 * we are initializing IPv4. 22595 */ 22596 if (phyi != NULL) { 22597 ill_other = (isv6) ? phyi->phyint_illv4 : 22598 phyi->phyint_illv6; 22599 ASSERT(ill_other->ill_phyint != NULL); 22600 ASSERT((isv6 && !ill_other->ill_isv6) || 22601 (!isv6 && ill_other->ill_isv6)); 22602 GRAB_ILL_LOCKS(ill, ill_other); 22603 /* 22604 * We are potentially throwing away phyint_flags which 22605 * could be different from the one that we obtain from 22606 * ill_other->ill_phyint. But it is okay as we are assuming 22607 * that the state maintained within IP is correct. 22608 */ 22609 mutex_enter(&phyi->phyint_lock); 22610 if (isv6) { 22611 ASSERT(phyi->phyint_illv6 == NULL); 22612 phyi->phyint_illv6 = ill; 22613 } else { 22614 ASSERT(phyi->phyint_illv4 == NULL); 22615 phyi->phyint_illv4 = ill; 22616 } 22617 /* 22618 * This is a new ill, currently undergoing SLIFNAME 22619 * So we could not have joined an IPMP group until now. 22620 */ 22621 ASSERT(phyi_old->phyint_ipsq_next == NULL && 22622 phyi_old->phyint_groupname == NULL); 22623 22624 /* 22625 * This phyi_old is going away. Decref ipsq_refs and 22626 * assert it is zero. The ipsq itself will be freed in 22627 * ipsq_exit 22628 */ 22629 ipsq = phyi_old->phyint_ipsq; 22630 IPSQ_DEC_REF(ipsq, ipst); 22631 ASSERT(ipsq->ipsq_refs == 0); 22632 /* Get the singleton phyint out of the ipsq list */ 22633 ASSERT(phyi_old->phyint_ipsq_next == NULL); 22634 ipsq->ipsq_phyint_list = NULL; 22635 phyi_old->phyint_illv4 = NULL; 22636 phyi_old->phyint_illv6 = NULL; 22637 mi_free(phyi_old); 22638 } else { 22639 mutex_enter(&ill->ill_lock); 22640 /* 22641 * We don't need to acquire any lock, since 22642 * the ill is not yet visible globally and we 22643 * have not yet released the ill_g_lock. 22644 */ 22645 phyi = phyi_old; 22646 mutex_enter(&phyi->phyint_lock); 22647 /* XXX We need a recovery strategy here. */ 22648 if (!phyint_assign_ifindex(phyi, ipst)) 22649 cmn_err(CE_PANIC, "phyint_assign_ifindex() failed"); 22650 22651 /* No IPMP group yet, thus the hook uses the ifindex */ 22652 phyi->phyint_hook_ifindex = phyi->phyint_ifindex; 22653 22654 avl_insert(&ipst->ips_phyint_g_list->phyint_list_avl_by_name, 22655 (void *)phyi, where); 22656 22657 (void) avl_find(&ipst->ips_phyint_g_list-> 22658 phyint_list_avl_by_index, 22659 &phyi->phyint_ifindex, &where); 22660 avl_insert(&ipst->ips_phyint_g_list->phyint_list_avl_by_index, 22661 (void *)phyi, where); 22662 } 22663 22664 /* 22665 * Reassigning ill_phyint automatically reassigns the ipsq also. 22666 * pending mp is not affected because that is per ill basis. 22667 */ 22668 ill->ill_phyint = phyi; 22669 22670 /* 22671 * Keep the index on ipif_orig_index to be used by FAILOVER. 22672 * We do this here as when the first ipif was allocated, 22673 * ipif_allocate does not know the right interface index. 22674 */ 22675 22676 ill->ill_ipif->ipif_orig_ifindex = ill->ill_phyint->phyint_ifindex; 22677 /* 22678 * Now that the phyint's ifindex has been assigned, complete the 22679 * remaining 22680 */ 22681 22682 ill->ill_ip_mib->ipIfStatsIfIndex = ill->ill_phyint->phyint_ifindex; 22683 if (ill->ill_isv6) { 22684 ill->ill_icmp6_mib->ipv6IfIcmpIfIndex = 22685 ill->ill_phyint->phyint_ifindex; 22686 ill->ill_mcast_type = ipst->ips_mld_max_version; 22687 } else { 22688 ill->ill_mcast_type = ipst->ips_igmp_max_version; 22689 } 22690 22691 /* 22692 * Generate an event within the hooks framework to indicate that 22693 * a new interface has just been added to IP. For this event to 22694 * be generated, the network interface must, at least, have an 22695 * ifindex assigned to it. 22696 * 22697 * This needs to be run inside the ill_g_lock perimeter to ensure 22698 * that the ordering of delivered events to listeners matches the 22699 * order of them in the kernel. 22700 * 22701 * This function could be called from ill_lookup_on_name. In that case 22702 * the interface is loopback "lo", which will not generate a NIC event. 22703 */ 22704 if (ill->ill_name_length <= 2 || 22705 ill->ill_name[0] != 'l' || ill->ill_name[1] != 'o') { 22706 /* 22707 * Generate nic plumb event for ill_name even if 22708 * ipmp_hook_emulation is set. That avoids generating events 22709 * for the ill_names should ipmp_hook_emulation be turned on 22710 * later. 22711 */ 22712 ill_nic_info_plumb(ill, B_FALSE); 22713 } 22714 RELEASE_ILL_LOCKS(ill, ill_other); 22715 mutex_exit(&phyi->phyint_lock); 22716 } 22717 22718 /* 22719 * Allocate a NE_PLUMB nic info event and store in the ill. 22720 * If 'group' is set we do it for the group name, otherwise the ill name. 22721 * It will be sent when we leave the ipsq. 22722 */ 22723 void 22724 ill_nic_info_plumb(ill_t *ill, boolean_t group) 22725 { 22726 phyint_t *phyi = ill->ill_phyint; 22727 char *name; 22728 int namelen; 22729 22730 ASSERT(MUTEX_HELD(&ill->ill_lock)); 22731 22732 if (group) { 22733 ASSERT(phyi->phyint_groupname_len != 0); 22734 namelen = phyi->phyint_groupname_len; 22735 name = phyi->phyint_groupname; 22736 } else { 22737 namelen = ill->ill_name_length; 22738 name = ill->ill_name; 22739 } 22740 22741 (void) ill_hook_event_create(ill, 0, NE_PLUMB, name, namelen); 22742 } 22743 22744 /* 22745 * Unhook the nic event message from the ill and enqueue it 22746 * into the nic event taskq. 22747 */ 22748 void 22749 ill_nic_info_dispatch(ill_t *ill) 22750 { 22751 hook_nic_event_int_t *info; 22752 22753 ASSERT(MUTEX_HELD(&ill->ill_lock)); 22754 22755 if ((info = ill->ill_nic_event_info) != NULL) { 22756 if (ddi_taskq_dispatch(eventq_queue_nic, 22757 ip_ne_queue_func, info, DDI_SLEEP) == DDI_FAILURE) { 22758 ip2dbg(("ill_nic_info_dispatch: " 22759 "ddi_taskq_dispatch failed\n")); 22760 if (info->hnei_event.hne_data != NULL) { 22761 kmem_free(info->hnei_event.hne_data, 22762 info->hnei_event.hne_datalen); 22763 } 22764 kmem_free(info, sizeof (*info)); 22765 } 22766 ill->ill_nic_event_info = NULL; 22767 } 22768 } 22769 22770 /* 22771 * Notify any downstream modules of the name of this interface. 22772 * An M_IOCTL is used even though we don't expect a successful reply. 22773 * Any reply message from the driver (presumably an M_IOCNAK) will 22774 * eventually get discarded somewhere upstream. The message format is 22775 * simply an SIOCSLIFNAME ioctl just as might be sent from ifconfig 22776 * to IP. 22777 */ 22778 static void 22779 ip_ifname_notify(ill_t *ill, queue_t *q) 22780 { 22781 mblk_t *mp1, *mp2; 22782 struct iocblk *iocp; 22783 struct lifreq *lifr; 22784 22785 mp1 = mkiocb(SIOCSLIFNAME); 22786 if (mp1 == NULL) 22787 return; 22788 mp2 = allocb(sizeof (struct lifreq), BPRI_HI); 22789 if (mp2 == NULL) { 22790 freeb(mp1); 22791 return; 22792 } 22793 22794 mp1->b_cont = mp2; 22795 iocp = (struct iocblk *)mp1->b_rptr; 22796 iocp->ioc_count = sizeof (struct lifreq); 22797 22798 lifr = (struct lifreq *)mp2->b_rptr; 22799 mp2->b_wptr += sizeof (struct lifreq); 22800 bzero(lifr, sizeof (struct lifreq)); 22801 22802 (void) strncpy(lifr->lifr_name, ill->ill_name, LIFNAMSIZ); 22803 lifr->lifr_ppa = ill->ill_ppa; 22804 lifr->lifr_flags = (ill->ill_flags & (ILLF_IPV4|ILLF_IPV6)); 22805 22806 putnext(q, mp1); 22807 } 22808 22809 static int 22810 ipif_set_values_tail(ill_t *ill, ipif_t *ipif, mblk_t *mp, queue_t *q) 22811 { 22812 int err; 22813 ip_stack_t *ipst = ill->ill_ipst; 22814 22815 /* Set the obsolete NDD per-interface forwarding name. */ 22816 err = ill_set_ndd_name(ill); 22817 if (err != 0) { 22818 cmn_err(CE_WARN, "ipif_set_values: ill_set_ndd_name (%d)\n", 22819 err); 22820 } 22821 22822 /* Tell downstream modules where they are. */ 22823 ip_ifname_notify(ill, q); 22824 22825 /* 22826 * ill_dl_phys returns EINPROGRESS in the usual case. 22827 * Error cases are ENOMEM ... 22828 */ 22829 err = ill_dl_phys(ill, ipif, mp, q); 22830 22831 /* 22832 * If there is no IRE expiration timer running, get one started. 22833 * igmp and mld timers will be triggered by the first multicast 22834 */ 22835 if (ipst->ips_ip_ire_expire_id == 0) { 22836 /* 22837 * acquire the lock and check again. 22838 */ 22839 mutex_enter(&ipst->ips_ip_trash_timer_lock); 22840 if (ipst->ips_ip_ire_expire_id == 0) { 22841 ipst->ips_ip_ire_expire_id = timeout( 22842 ip_trash_timer_expire, ipst, 22843 MSEC_TO_TICK(ipst->ips_ip_timer_interval)); 22844 } 22845 mutex_exit(&ipst->ips_ip_trash_timer_lock); 22846 } 22847 22848 if (ill->ill_isv6) { 22849 mutex_enter(&ipst->ips_mld_slowtimeout_lock); 22850 if (ipst->ips_mld_slowtimeout_id == 0) { 22851 ipst->ips_mld_slowtimeout_id = timeout(mld_slowtimo, 22852 (void *)ipst, 22853 MSEC_TO_TICK(MCAST_SLOWTIMO_INTERVAL)); 22854 } 22855 mutex_exit(&ipst->ips_mld_slowtimeout_lock); 22856 } else { 22857 mutex_enter(&ipst->ips_igmp_slowtimeout_lock); 22858 if (ipst->ips_igmp_slowtimeout_id == 0) { 22859 ipst->ips_igmp_slowtimeout_id = timeout(igmp_slowtimo, 22860 (void *)ipst, 22861 MSEC_TO_TICK(MCAST_SLOWTIMO_INTERVAL)); 22862 } 22863 mutex_exit(&ipst->ips_igmp_slowtimeout_lock); 22864 } 22865 22866 return (err); 22867 } 22868 22869 /* 22870 * Common routine for ppa and ifname setting. Should be called exclusive. 22871 * 22872 * Returns EINPROGRESS when mp has been consumed by queueing it on 22873 * ill_pending_mp and the ioctl will complete in ip_rput. 22874 * 22875 * NOTE : If ppa is UNIT_MAX, we assign the next valid ppa and return 22876 * the new name and new ppa in lifr_name and lifr_ppa respectively. 22877 * For SLIFNAME, we pass these values back to the userland. 22878 */ 22879 static int 22880 ipif_set_values(queue_t *q, mblk_t *mp, char *interf_name, uint_t *new_ppa_ptr) 22881 { 22882 ill_t *ill; 22883 ipif_t *ipif; 22884 ipsq_t *ipsq; 22885 char *ppa_ptr; 22886 char *old_ptr; 22887 char old_char; 22888 int error; 22889 ip_stack_t *ipst; 22890 22891 ip1dbg(("ipif_set_values: interface %s\n", interf_name)); 22892 ASSERT(q->q_next != NULL); 22893 ASSERT(interf_name != NULL); 22894 22895 ill = (ill_t *)q->q_ptr; 22896 ipst = ill->ill_ipst; 22897 22898 ASSERT(ill->ill_ipst != NULL); 22899 ASSERT(ill->ill_name[0] == '\0'); 22900 ASSERT(IAM_WRITER_ILL(ill)); 22901 ASSERT((mi_strlen(interf_name) + 1) <= LIFNAMSIZ); 22902 ASSERT(ill->ill_ppa == UINT_MAX); 22903 22904 /* The ppa is sent down by ifconfig or is chosen */ 22905 if ((ppa_ptr = ill_get_ppa_ptr(interf_name)) == NULL) { 22906 return (EINVAL); 22907 } 22908 22909 /* 22910 * make sure ppa passed in is same as ppa in the name. 22911 * This check is not made when ppa == UINT_MAX in that case ppa 22912 * in the name could be anything. System will choose a ppa and 22913 * update new_ppa_ptr and inter_name to contain the choosen ppa. 22914 */ 22915 if (*new_ppa_ptr != UINT_MAX) { 22916 /* stoi changes the pointer */ 22917 old_ptr = ppa_ptr; 22918 /* 22919 * ifconfig passed in 0 for the ppa for DLPI 1 style devices 22920 * (they don't have an externally visible ppa). We assign one 22921 * here so that we can manage the interface. Note that in 22922 * the past this value was always 0 for DLPI 1 drivers. 22923 */ 22924 if (*new_ppa_ptr == 0) 22925 *new_ppa_ptr = stoi(&old_ptr); 22926 else if (*new_ppa_ptr != (uint_t)stoi(&old_ptr)) 22927 return (EINVAL); 22928 } 22929 /* 22930 * terminate string before ppa 22931 * save char at that location. 22932 */ 22933 old_char = ppa_ptr[0]; 22934 ppa_ptr[0] = '\0'; 22935 22936 ill->ill_ppa = *new_ppa_ptr; 22937 /* 22938 * Finish as much work now as possible before calling ill_glist_insert 22939 * which makes the ill globally visible and also merges it with the 22940 * other protocol instance of this phyint. The remaining work is 22941 * done after entering the ipsq which may happen sometime later. 22942 * ill_set_ndd_name occurs after the ill has been made globally visible. 22943 */ 22944 ipif = ill->ill_ipif; 22945 22946 /* We didn't do this when we allocated ipif in ip_ll_subnet_defaults */ 22947 ipif_assign_seqid(ipif); 22948 22949 if (!(ill->ill_flags & (ILLF_IPV4|ILLF_IPV6))) 22950 ill->ill_flags |= ILLF_IPV4; 22951 22952 ASSERT(ipif->ipif_next == NULL); /* Only one ipif on ill */ 22953 ASSERT((ipif->ipif_flags & IPIF_UP) == 0); 22954 22955 if (ill->ill_flags & ILLF_IPV6) { 22956 22957 ill->ill_isv6 = B_TRUE; 22958 if (ill->ill_rq != NULL) { 22959 ill->ill_rq->q_qinfo = &iprinitv6; 22960 ill->ill_wq->q_qinfo = &ipwinitv6; 22961 } 22962 22963 /* Keep the !IN6_IS_ADDR_V4MAPPED assertions happy */ 22964 ipif->ipif_v6lcl_addr = ipv6_all_zeros; 22965 ipif->ipif_v6src_addr = ipv6_all_zeros; 22966 ipif->ipif_v6subnet = ipv6_all_zeros; 22967 ipif->ipif_v6net_mask = ipv6_all_zeros; 22968 ipif->ipif_v6brd_addr = ipv6_all_zeros; 22969 ipif->ipif_v6pp_dst_addr = ipv6_all_zeros; 22970 /* 22971 * point-to-point or Non-mulicast capable 22972 * interfaces won't do NUD unless explicitly 22973 * configured to do so. 22974 */ 22975 if (ipif->ipif_flags & IPIF_POINTOPOINT || 22976 !(ill->ill_flags & ILLF_MULTICAST)) { 22977 ill->ill_flags |= ILLF_NONUD; 22978 } 22979 /* Make sure IPv4 specific flag is not set on IPv6 if */ 22980 if (ill->ill_flags & ILLF_NOARP) { 22981 /* 22982 * Note: xresolv interfaces will eventually need 22983 * NOARP set here as well, but that will require 22984 * those external resolvers to have some 22985 * knowledge of that flag and act appropriately. 22986 * Not to be changed at present. 22987 */ 22988 ill->ill_flags &= ~ILLF_NOARP; 22989 } 22990 /* 22991 * Set the ILLF_ROUTER flag according to the global 22992 * IPv6 forwarding policy. 22993 */ 22994 if (ipst->ips_ipv6_forward != 0) 22995 ill->ill_flags |= ILLF_ROUTER; 22996 } else if (ill->ill_flags & ILLF_IPV4) { 22997 ill->ill_isv6 = B_FALSE; 22998 IN6_IPADDR_TO_V4MAPPED(INADDR_ANY, &ipif->ipif_v6lcl_addr); 22999 IN6_IPADDR_TO_V4MAPPED(INADDR_ANY, &ipif->ipif_v6src_addr); 23000 IN6_IPADDR_TO_V4MAPPED(INADDR_ANY, &ipif->ipif_v6subnet); 23001 IN6_IPADDR_TO_V4MAPPED(INADDR_ANY, &ipif->ipif_v6net_mask); 23002 IN6_IPADDR_TO_V4MAPPED(INADDR_ANY, &ipif->ipif_v6brd_addr); 23003 IN6_IPADDR_TO_V4MAPPED(INADDR_ANY, &ipif->ipif_v6pp_dst_addr); 23004 /* 23005 * Set the ILLF_ROUTER flag according to the global 23006 * IPv4 forwarding policy. 23007 */ 23008 if (ipst->ips_ip_g_forward != 0) 23009 ill->ill_flags |= ILLF_ROUTER; 23010 } 23011 23012 ASSERT(ill->ill_phyint != NULL); 23013 23014 /* 23015 * The ipIfStatsIfindex and ipv6IfIcmpIfIndex assignments will 23016 * be completed in ill_glist_insert -> ill_phyint_reinit 23017 */ 23018 if (!ill_allocate_mibs(ill)) 23019 return (ENOMEM); 23020 23021 /* 23022 * Pick a default sap until we get the DL_INFO_ACK back from 23023 * the driver. 23024 */ 23025 if (ill->ill_sap == 0) { 23026 if (ill->ill_isv6) 23027 ill->ill_sap = IP6_DL_SAP; 23028 else 23029 ill->ill_sap = IP_DL_SAP; 23030 } 23031 23032 ill->ill_ifname_pending = 1; 23033 ill->ill_ifname_pending_err = 0; 23034 23035 ill_refhold(ill); 23036 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 23037 if ((error = ill_glist_insert(ill, interf_name, 23038 (ill->ill_flags & ILLF_IPV6) == ILLF_IPV6)) > 0) { 23039 ill->ill_ppa = UINT_MAX; 23040 ill->ill_name[0] = '\0'; 23041 /* 23042 * undo null termination done above. 23043 */ 23044 ppa_ptr[0] = old_char; 23045 rw_exit(&ipst->ips_ill_g_lock); 23046 ill_refrele(ill); 23047 return (error); 23048 } 23049 23050 ASSERT(ill->ill_name_length <= LIFNAMSIZ); 23051 23052 /* 23053 * When we return the buffer pointed to by interf_name should contain 23054 * the same name as in ill_name. 23055 * If a ppa was choosen by the system (ppa passed in was UINT_MAX) 23056 * the buffer pointed to by new_ppa_ptr would not contain the right ppa 23057 * so copy full name and update the ppa ptr. 23058 * When ppa passed in != UINT_MAX all values are correct just undo 23059 * null termination, this saves a bcopy. 23060 */ 23061 if (*new_ppa_ptr == UINT_MAX) { 23062 bcopy(ill->ill_name, interf_name, ill->ill_name_length); 23063 *new_ppa_ptr = ill->ill_ppa; 23064 } else { 23065 /* 23066 * undo null termination done above. 23067 */ 23068 ppa_ptr[0] = old_char; 23069 } 23070 23071 /* Let SCTP know about this ILL */ 23072 sctp_update_ill(ill, SCTP_ILL_INSERT); 23073 23074 ipsq = ipsq_try_enter(NULL, ill, q, mp, ip_reprocess_ioctl, NEW_OP, 23075 B_TRUE); 23076 23077 rw_exit(&ipst->ips_ill_g_lock); 23078 ill_refrele(ill); 23079 if (ipsq == NULL) 23080 return (EINPROGRESS); 23081 23082 /* 23083 * If ill_phyint_reinit() changed our ipsq, then start on the new ipsq. 23084 */ 23085 if (ipsq->ipsq_current_ipif == NULL) 23086 ipsq_current_start(ipsq, ipif, SIOCSLIFNAME); 23087 else 23088 ASSERT(ipsq->ipsq_current_ipif == ipif); 23089 23090 error = ipif_set_values_tail(ill, ipif, mp, q); 23091 ipsq_exit(ipsq); 23092 if (error != 0 && error != EINPROGRESS) { 23093 /* 23094 * restore previous values 23095 */ 23096 ill->ill_isv6 = B_FALSE; 23097 } 23098 return (error); 23099 } 23100 23101 23102 void 23103 ipif_init(ip_stack_t *ipst) 23104 { 23105 hrtime_t hrt; 23106 int i; 23107 23108 /* 23109 * Can't call drv_getparm here as it is too early in the boot. 23110 * As we use ipif_src_random just for picking a different 23111 * source address everytime, this need not be really random. 23112 */ 23113 hrt = gethrtime(); 23114 ipst->ips_ipif_src_random = 23115 ((hrt >> 32) & 0xffffffff) * (hrt & 0xffffffff); 23116 23117 for (i = 0; i < MAX_G_HEADS; i++) { 23118 ipst->ips_ill_g_heads[i].ill_g_list_head = 23119 (ill_if_t *)&ipst->ips_ill_g_heads[i]; 23120 ipst->ips_ill_g_heads[i].ill_g_list_tail = 23121 (ill_if_t *)&ipst->ips_ill_g_heads[i]; 23122 } 23123 23124 avl_create(&ipst->ips_phyint_g_list->phyint_list_avl_by_index, 23125 ill_phyint_compare_index, 23126 sizeof (phyint_t), 23127 offsetof(struct phyint, phyint_avl_by_index)); 23128 avl_create(&ipst->ips_phyint_g_list->phyint_list_avl_by_name, 23129 ill_phyint_compare_name, 23130 sizeof (phyint_t), 23131 offsetof(struct phyint, phyint_avl_by_name)); 23132 } 23133 23134 /* 23135 * Lookup the ipif corresponding to the onlink destination address. For 23136 * point-to-point interfaces, it matches with remote endpoint destination 23137 * address. For point-to-multipoint interfaces it only tries to match the 23138 * destination with the interface's subnet address. The longest, most specific 23139 * match is found to take care of such rare network configurations like - 23140 * le0: 129.146.1.1/16 23141 * le1: 129.146.2.2/24 23142 * It is used only by SO_DONTROUTE at the moment. 23143 */ 23144 ipif_t * 23145 ipif_lookup_onlink_addr(ipaddr_t addr, zoneid_t zoneid, ip_stack_t *ipst) 23146 { 23147 ipif_t *ipif, *best_ipif; 23148 ill_t *ill; 23149 ill_walk_context_t ctx; 23150 23151 ASSERT(zoneid != ALL_ZONES); 23152 best_ipif = NULL; 23153 23154 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 23155 ill = ILL_START_WALK_V4(&ctx, ipst); 23156 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 23157 mutex_enter(&ill->ill_lock); 23158 for (ipif = ill->ill_ipif; ipif != NULL; 23159 ipif = ipif->ipif_next) { 23160 if (!IPIF_CAN_LOOKUP(ipif)) 23161 continue; 23162 if (ipif->ipif_zoneid != zoneid && 23163 ipif->ipif_zoneid != ALL_ZONES) 23164 continue; 23165 /* 23166 * Point-to-point case. Look for exact match with 23167 * destination address. 23168 */ 23169 if (ipif->ipif_flags & IPIF_POINTOPOINT) { 23170 if (ipif->ipif_pp_dst_addr == addr) { 23171 ipif_refhold_locked(ipif); 23172 mutex_exit(&ill->ill_lock); 23173 rw_exit(&ipst->ips_ill_g_lock); 23174 if (best_ipif != NULL) 23175 ipif_refrele(best_ipif); 23176 return (ipif); 23177 } 23178 } else if (ipif->ipif_subnet == (addr & 23179 ipif->ipif_net_mask)) { 23180 /* 23181 * Point-to-multipoint case. Looping through to 23182 * find the most specific match. If there are 23183 * multiple best match ipif's then prefer ipif's 23184 * that are UP. If there is only one best match 23185 * ipif and it is DOWN we must still return it. 23186 */ 23187 if ((best_ipif == NULL) || 23188 (ipif->ipif_net_mask > 23189 best_ipif->ipif_net_mask) || 23190 ((ipif->ipif_net_mask == 23191 best_ipif->ipif_net_mask) && 23192 ((ipif->ipif_flags & IPIF_UP) && 23193 (!(best_ipif->ipif_flags & IPIF_UP))))) { 23194 ipif_refhold_locked(ipif); 23195 mutex_exit(&ill->ill_lock); 23196 rw_exit(&ipst->ips_ill_g_lock); 23197 if (best_ipif != NULL) 23198 ipif_refrele(best_ipif); 23199 best_ipif = ipif; 23200 rw_enter(&ipst->ips_ill_g_lock, 23201 RW_READER); 23202 mutex_enter(&ill->ill_lock); 23203 } 23204 } 23205 } 23206 mutex_exit(&ill->ill_lock); 23207 } 23208 rw_exit(&ipst->ips_ill_g_lock); 23209 return (best_ipif); 23210 } 23211 23212 /* 23213 * Save enough information so that we can recreate the IRE if 23214 * the interface goes down and then up. 23215 */ 23216 static void 23217 ipif_save_ire(ipif_t *ipif, ire_t *ire) 23218 { 23219 mblk_t *save_mp; 23220 23221 save_mp = allocb(sizeof (ifrt_t), BPRI_MED); 23222 if (save_mp != NULL) { 23223 ifrt_t *ifrt; 23224 23225 save_mp->b_wptr += sizeof (ifrt_t); 23226 ifrt = (ifrt_t *)save_mp->b_rptr; 23227 bzero(ifrt, sizeof (ifrt_t)); 23228 ifrt->ifrt_type = ire->ire_type; 23229 ifrt->ifrt_addr = ire->ire_addr; 23230 ifrt->ifrt_gateway_addr = ire->ire_gateway_addr; 23231 ifrt->ifrt_src_addr = ire->ire_src_addr; 23232 ifrt->ifrt_mask = ire->ire_mask; 23233 ifrt->ifrt_flags = ire->ire_flags; 23234 ifrt->ifrt_max_frag = ire->ire_max_frag; 23235 mutex_enter(&ipif->ipif_saved_ire_lock); 23236 save_mp->b_cont = ipif->ipif_saved_ire_mp; 23237 ipif->ipif_saved_ire_mp = save_mp; 23238 ipif->ipif_saved_ire_cnt++; 23239 mutex_exit(&ipif->ipif_saved_ire_lock); 23240 } 23241 } 23242 23243 static void 23244 ipif_remove_ire(ipif_t *ipif, ire_t *ire) 23245 { 23246 mblk_t **mpp; 23247 mblk_t *mp; 23248 ifrt_t *ifrt; 23249 23250 /* Remove from ipif_saved_ire_mp list if it is there */ 23251 mutex_enter(&ipif->ipif_saved_ire_lock); 23252 for (mpp = &ipif->ipif_saved_ire_mp; *mpp != NULL; 23253 mpp = &(*mpp)->b_cont) { 23254 /* 23255 * On a given ipif, the triple of address, gateway and 23256 * mask is unique for each saved IRE (in the case of 23257 * ordinary interface routes, the gateway address is 23258 * all-zeroes). 23259 */ 23260 mp = *mpp; 23261 ifrt = (ifrt_t *)mp->b_rptr; 23262 if (ifrt->ifrt_addr == ire->ire_addr && 23263 ifrt->ifrt_gateway_addr == ire->ire_gateway_addr && 23264 ifrt->ifrt_mask == ire->ire_mask) { 23265 *mpp = mp->b_cont; 23266 ipif->ipif_saved_ire_cnt--; 23267 freeb(mp); 23268 break; 23269 } 23270 } 23271 mutex_exit(&ipif->ipif_saved_ire_lock); 23272 } 23273 23274 /* 23275 * IP multirouting broadcast routes handling 23276 * Append CGTP broadcast IREs to regular ones created 23277 * at ifconfig time. 23278 */ 23279 static void 23280 ip_cgtp_bcast_add(ire_t *ire, ire_t *ire_dst, ip_stack_t *ipst) 23281 { 23282 ire_t *ire_prim; 23283 23284 ASSERT(ire != NULL); 23285 ASSERT(ire_dst != NULL); 23286 23287 ire_prim = ire_ctable_lookup(ire->ire_gateway_addr, 0, 23288 IRE_BROADCAST, NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 23289 if (ire_prim != NULL) { 23290 /* 23291 * We are in the special case of broadcasts for 23292 * CGTP. We add an IRE_BROADCAST that holds 23293 * the RTF_MULTIRT flag, the destination 23294 * address of ire_dst and the low level 23295 * info of ire_prim. In other words, CGTP 23296 * broadcast is added to the redundant ipif. 23297 */ 23298 ipif_t *ipif_prim; 23299 ire_t *bcast_ire; 23300 23301 ipif_prim = ire_prim->ire_ipif; 23302 23303 ip2dbg(("ip_cgtp_filter_bcast_add: " 23304 "ire_dst %p, ire_prim %p, ipif_prim %p\n", 23305 (void *)ire_dst, (void *)ire_prim, 23306 (void *)ipif_prim)); 23307 23308 bcast_ire = ire_create( 23309 (uchar_t *)&ire->ire_addr, 23310 (uchar_t *)&ip_g_all_ones, 23311 (uchar_t *)&ire_dst->ire_src_addr, 23312 (uchar_t *)&ire->ire_gateway_addr, 23313 &ipif_prim->ipif_mtu, 23314 NULL, 23315 ipif_prim->ipif_rq, 23316 ipif_prim->ipif_wq, 23317 IRE_BROADCAST, 23318 ipif_prim, 23319 0, 23320 0, 23321 0, 23322 ire->ire_flags, 23323 &ire_uinfo_null, 23324 NULL, 23325 NULL, 23326 ipst); 23327 23328 if (bcast_ire != NULL) { 23329 23330 if (ire_add(&bcast_ire, NULL, NULL, NULL, 23331 B_FALSE) == 0) { 23332 ip2dbg(("ip_cgtp_filter_bcast_add: " 23333 "added bcast_ire %p\n", 23334 (void *)bcast_ire)); 23335 23336 ipif_save_ire(bcast_ire->ire_ipif, 23337 bcast_ire); 23338 ire_refrele(bcast_ire); 23339 } 23340 } 23341 ire_refrele(ire_prim); 23342 } 23343 } 23344 23345 23346 /* 23347 * IP multirouting broadcast routes handling 23348 * Remove the broadcast ire 23349 */ 23350 static void 23351 ip_cgtp_bcast_delete(ire_t *ire, ip_stack_t *ipst) 23352 { 23353 ire_t *ire_dst; 23354 23355 ASSERT(ire != NULL); 23356 ire_dst = ire_ctable_lookup(ire->ire_addr, 0, IRE_BROADCAST, 23357 NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 23358 if (ire_dst != NULL) { 23359 ire_t *ire_prim; 23360 23361 ire_prim = ire_ctable_lookup(ire->ire_gateway_addr, 0, 23362 IRE_BROADCAST, NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 23363 if (ire_prim != NULL) { 23364 ipif_t *ipif_prim; 23365 ire_t *bcast_ire; 23366 23367 ipif_prim = ire_prim->ire_ipif; 23368 23369 ip2dbg(("ip_cgtp_filter_bcast_delete: " 23370 "ire_dst %p, ire_prim %p, ipif_prim %p\n", 23371 (void *)ire_dst, (void *)ire_prim, 23372 (void *)ipif_prim)); 23373 23374 bcast_ire = ire_ctable_lookup(ire->ire_addr, 23375 ire->ire_gateway_addr, 23376 IRE_BROADCAST, 23377 ipif_prim, ALL_ZONES, 23378 NULL, 23379 MATCH_IRE_TYPE | MATCH_IRE_GW | MATCH_IRE_IPIF | 23380 MATCH_IRE_MASK, ipst); 23381 23382 if (bcast_ire != NULL) { 23383 ip2dbg(("ip_cgtp_filter_bcast_delete: " 23384 "looked up bcast_ire %p\n", 23385 (void *)bcast_ire)); 23386 ipif_remove_ire(bcast_ire->ire_ipif, 23387 bcast_ire); 23388 ire_delete(bcast_ire); 23389 ire_refrele(bcast_ire); 23390 } 23391 ire_refrele(ire_prim); 23392 } 23393 ire_refrele(ire_dst); 23394 } 23395 } 23396 23397 /* 23398 * IPsec hardware acceleration capabilities related functions. 23399 */ 23400 23401 /* 23402 * Free a per-ill IPsec capabilities structure. 23403 */ 23404 static void 23405 ill_ipsec_capab_free(ill_ipsec_capab_t *capab) 23406 { 23407 if (capab->auth_hw_algs != NULL) 23408 kmem_free(capab->auth_hw_algs, capab->algs_size); 23409 if (capab->encr_hw_algs != NULL) 23410 kmem_free(capab->encr_hw_algs, capab->algs_size); 23411 if (capab->encr_algparm != NULL) 23412 kmem_free(capab->encr_algparm, capab->encr_algparm_size); 23413 kmem_free(capab, sizeof (ill_ipsec_capab_t)); 23414 } 23415 23416 /* 23417 * Allocate a new per-ill IPsec capabilities structure. This structure 23418 * is specific to an IPsec protocol (AH or ESP). It is implemented as 23419 * an array which specifies, for each algorithm, whether this algorithm 23420 * is supported by the ill or not. 23421 */ 23422 static ill_ipsec_capab_t * 23423 ill_ipsec_capab_alloc(void) 23424 { 23425 ill_ipsec_capab_t *capab; 23426 uint_t nelems; 23427 23428 capab = kmem_zalloc(sizeof (ill_ipsec_capab_t), KM_NOSLEEP); 23429 if (capab == NULL) 23430 return (NULL); 23431 23432 /* we need one bit per algorithm */ 23433 nelems = MAX_IPSEC_ALGS / BITS(ipsec_capab_elem_t); 23434 capab->algs_size = nelems * sizeof (ipsec_capab_elem_t); 23435 23436 /* allocate memory to store algorithm flags */ 23437 capab->encr_hw_algs = kmem_zalloc(capab->algs_size, KM_NOSLEEP); 23438 if (capab->encr_hw_algs == NULL) 23439 goto nomem; 23440 capab->auth_hw_algs = kmem_zalloc(capab->algs_size, KM_NOSLEEP); 23441 if (capab->auth_hw_algs == NULL) 23442 goto nomem; 23443 /* 23444 * Leave encr_algparm NULL for now since we won't need it half 23445 * the time 23446 */ 23447 return (capab); 23448 23449 nomem: 23450 ill_ipsec_capab_free(capab); 23451 return (NULL); 23452 } 23453 23454 /* 23455 * Resize capability array. Since we're exclusive, this is OK. 23456 */ 23457 static boolean_t 23458 ill_ipsec_capab_resize_algparm(ill_ipsec_capab_t *capab, int algid) 23459 { 23460 ipsec_capab_algparm_t *nalp, *oalp; 23461 uint32_t olen, nlen; 23462 23463 oalp = capab->encr_algparm; 23464 olen = capab->encr_algparm_size; 23465 23466 if (oalp != NULL) { 23467 if (algid < capab->encr_algparm_end) 23468 return (B_TRUE); 23469 } 23470 23471 nlen = (algid + 1) * sizeof (*nalp); 23472 nalp = kmem_zalloc(nlen, KM_NOSLEEP); 23473 if (nalp == NULL) 23474 return (B_FALSE); 23475 23476 if (oalp != NULL) { 23477 bcopy(oalp, nalp, olen); 23478 kmem_free(oalp, olen); 23479 } 23480 capab->encr_algparm = nalp; 23481 capab->encr_algparm_size = nlen; 23482 capab->encr_algparm_end = algid + 1; 23483 23484 return (B_TRUE); 23485 } 23486 23487 /* 23488 * Compare the capabilities of the specified ill with the protocol 23489 * and algorithms specified by the SA passed as argument. 23490 * If they match, returns B_TRUE, B_FALSE if they do not match. 23491 * 23492 * The ill can be passed as a pointer to it, or by specifying its index 23493 * and whether it is an IPv6 ill (ill_index and ill_isv6 arguments). 23494 * 23495 * Called by ipsec_out_is_accelerated() do decide whether an outbound 23496 * packet is eligible for hardware acceleration, and by 23497 * ill_ipsec_capab_send_all() to decide whether a SA must be sent down 23498 * to a particular ill. 23499 */ 23500 boolean_t 23501 ipsec_capab_match(ill_t *ill, uint_t ill_index, boolean_t ill_isv6, 23502 ipsa_t *sa, netstack_t *ns) 23503 { 23504 boolean_t sa_isv6; 23505 uint_t algid; 23506 struct ill_ipsec_capab_s *cpp; 23507 boolean_t need_refrele = B_FALSE; 23508 ip_stack_t *ipst = ns->netstack_ip; 23509 23510 if (ill == NULL) { 23511 ill = ill_lookup_on_ifindex(ill_index, ill_isv6, NULL, 23512 NULL, NULL, NULL, ipst); 23513 if (ill == NULL) { 23514 ip0dbg(("ipsec_capab_match: ill doesn't exist\n")); 23515 return (B_FALSE); 23516 } 23517 need_refrele = B_TRUE; 23518 } 23519 23520 /* 23521 * Use the address length specified by the SA to determine 23522 * if it corresponds to a IPv6 address, and fail the matching 23523 * if the isv6 flag passed as argument does not match. 23524 * Note: this check is used for SADB capability checking before 23525 * sending SA information to an ill. 23526 */ 23527 sa_isv6 = (sa->ipsa_addrfam == AF_INET6); 23528 if (sa_isv6 != ill_isv6) 23529 /* protocol mismatch */ 23530 goto done; 23531 23532 /* 23533 * Check if the ill supports the protocol, algorithm(s) and 23534 * key size(s) specified by the SA, and get the pointers to 23535 * the algorithms supported by the ill. 23536 */ 23537 switch (sa->ipsa_type) { 23538 23539 case SADB_SATYPE_ESP: 23540 if (!(ill->ill_capabilities & ILL_CAPAB_ESP)) 23541 /* ill does not support ESP acceleration */ 23542 goto done; 23543 cpp = ill->ill_ipsec_capab_esp; 23544 algid = sa->ipsa_auth_alg; 23545 if (!IPSEC_ALG_IS_ENABLED(algid, cpp->auth_hw_algs)) 23546 goto done; 23547 algid = sa->ipsa_encr_alg; 23548 if (!IPSEC_ALG_IS_ENABLED(algid, cpp->encr_hw_algs)) 23549 goto done; 23550 if (algid < cpp->encr_algparm_end) { 23551 ipsec_capab_algparm_t *alp = &cpp->encr_algparm[algid]; 23552 if (sa->ipsa_encrkeybits < alp->minkeylen) 23553 goto done; 23554 if (sa->ipsa_encrkeybits > alp->maxkeylen) 23555 goto done; 23556 } 23557 break; 23558 23559 case SADB_SATYPE_AH: 23560 if (!(ill->ill_capabilities & ILL_CAPAB_AH)) 23561 /* ill does not support AH acceleration */ 23562 goto done; 23563 if (!IPSEC_ALG_IS_ENABLED(sa->ipsa_auth_alg, 23564 ill->ill_ipsec_capab_ah->auth_hw_algs)) 23565 goto done; 23566 break; 23567 } 23568 23569 if (need_refrele) 23570 ill_refrele(ill); 23571 return (B_TRUE); 23572 done: 23573 if (need_refrele) 23574 ill_refrele(ill); 23575 return (B_FALSE); 23576 } 23577 23578 /* 23579 * Add a new ill to the list of IPsec capable ills. 23580 * Called from ill_capability_ipsec_ack() when an ACK was received 23581 * indicating that IPsec hardware processing was enabled for an ill. 23582 * 23583 * ill must point to the ill for which acceleration was enabled. 23584 * dl_cap must be set to DL_CAPAB_IPSEC_AH or DL_CAPAB_IPSEC_ESP. 23585 */ 23586 static void 23587 ill_ipsec_capab_add(ill_t *ill, uint_t dl_cap, boolean_t sadb_resync) 23588 { 23589 ipsec_capab_ill_t **ills, *cur_ill, *new_ill; 23590 uint_t sa_type; 23591 uint_t ipproto; 23592 ip_stack_t *ipst = ill->ill_ipst; 23593 23594 ASSERT((dl_cap == DL_CAPAB_IPSEC_AH) || 23595 (dl_cap == DL_CAPAB_IPSEC_ESP)); 23596 23597 switch (dl_cap) { 23598 case DL_CAPAB_IPSEC_AH: 23599 sa_type = SADB_SATYPE_AH; 23600 ills = &ipst->ips_ipsec_capab_ills_ah; 23601 ipproto = IPPROTO_AH; 23602 break; 23603 case DL_CAPAB_IPSEC_ESP: 23604 sa_type = SADB_SATYPE_ESP; 23605 ills = &ipst->ips_ipsec_capab_ills_esp; 23606 ipproto = IPPROTO_ESP; 23607 break; 23608 } 23609 23610 rw_enter(&ipst->ips_ipsec_capab_ills_lock, RW_WRITER); 23611 23612 /* 23613 * Add ill index to list of hardware accelerators. If 23614 * already in list, do nothing. 23615 */ 23616 for (cur_ill = *ills; cur_ill != NULL && 23617 (cur_ill->ill_index != ill->ill_phyint->phyint_ifindex || 23618 cur_ill->ill_isv6 != ill->ill_isv6); cur_ill = cur_ill->next) 23619 ; 23620 23621 if (cur_ill == NULL) { 23622 /* if this is a new entry for this ill */ 23623 new_ill = kmem_zalloc(sizeof (ipsec_capab_ill_t), KM_NOSLEEP); 23624 if (new_ill == NULL) { 23625 rw_exit(&ipst->ips_ipsec_capab_ills_lock); 23626 return; 23627 } 23628 23629 new_ill->ill_index = ill->ill_phyint->phyint_ifindex; 23630 new_ill->ill_isv6 = ill->ill_isv6; 23631 new_ill->next = *ills; 23632 *ills = new_ill; 23633 } else if (!sadb_resync) { 23634 /* not resync'ing SADB and an entry exists for this ill */ 23635 rw_exit(&ipst->ips_ipsec_capab_ills_lock); 23636 return; 23637 } 23638 23639 rw_exit(&ipst->ips_ipsec_capab_ills_lock); 23640 23641 if (ipst->ips_ipcl_proto_fanout_v6[ipproto].connf_head != NULL) 23642 /* 23643 * IPsec module for protocol loaded, initiate dump 23644 * of the SADB to this ill. 23645 */ 23646 sadb_ill_download(ill, sa_type); 23647 } 23648 23649 /* 23650 * Remove an ill from the list of IPsec capable ills. 23651 */ 23652 static void 23653 ill_ipsec_capab_delete(ill_t *ill, uint_t dl_cap) 23654 { 23655 ipsec_capab_ill_t **ills, *cur_ill, *prev_ill; 23656 ip_stack_t *ipst = ill->ill_ipst; 23657 23658 ASSERT(dl_cap == DL_CAPAB_IPSEC_AH || 23659 dl_cap == DL_CAPAB_IPSEC_ESP); 23660 23661 ills = (dl_cap == DL_CAPAB_IPSEC_AH) ? &ipst->ips_ipsec_capab_ills_ah : 23662 &ipst->ips_ipsec_capab_ills_esp; 23663 23664 rw_enter(&ipst->ips_ipsec_capab_ills_lock, RW_WRITER); 23665 23666 prev_ill = NULL; 23667 for (cur_ill = *ills; cur_ill != NULL && (cur_ill->ill_index != 23668 ill->ill_phyint->phyint_ifindex || cur_ill->ill_isv6 != 23669 ill->ill_isv6); prev_ill = cur_ill, cur_ill = cur_ill->next) 23670 ; 23671 if (cur_ill == NULL) { 23672 /* entry not found */ 23673 rw_exit(&ipst->ips_ipsec_capab_ills_lock); 23674 return; 23675 } 23676 if (prev_ill == NULL) { 23677 /* entry at front of list */ 23678 *ills = NULL; 23679 } else { 23680 prev_ill->next = cur_ill->next; 23681 } 23682 kmem_free(cur_ill, sizeof (ipsec_capab_ill_t)); 23683 rw_exit(&ipst->ips_ipsec_capab_ills_lock); 23684 } 23685 23686 /* 23687 * Called by SADB to send a DL_CONTROL_REQ message to every ill 23688 * supporting the specified IPsec protocol acceleration. 23689 * sa_type must be SADB_SATYPE_AH or SADB_SATYPE_ESP. 23690 * We free the mblk and, if sa is non-null, release the held referece. 23691 */ 23692 void 23693 ill_ipsec_capab_send_all(uint_t sa_type, mblk_t *mp, ipsa_t *sa, 23694 netstack_t *ns) 23695 { 23696 ipsec_capab_ill_t *ici, *cur_ici; 23697 ill_t *ill; 23698 mblk_t *nmp, *mp_ship_list = NULL, *next_mp; 23699 ip_stack_t *ipst = ns->netstack_ip; 23700 23701 ici = (sa_type == SADB_SATYPE_AH) ? ipst->ips_ipsec_capab_ills_ah : 23702 ipst->ips_ipsec_capab_ills_esp; 23703 23704 rw_enter(&ipst->ips_ipsec_capab_ills_lock, RW_READER); 23705 23706 for (cur_ici = ici; cur_ici != NULL; cur_ici = cur_ici->next) { 23707 ill = ill_lookup_on_ifindex(cur_ici->ill_index, 23708 cur_ici->ill_isv6, NULL, NULL, NULL, NULL, ipst); 23709 23710 /* 23711 * Handle the case where the ill goes away while the SADB is 23712 * attempting to send messages. If it's going away, it's 23713 * nuking its shadow SADB, so we don't care.. 23714 */ 23715 23716 if (ill == NULL) 23717 continue; 23718 23719 if (sa != NULL) { 23720 /* 23721 * Make sure capabilities match before 23722 * sending SA to ill. 23723 */ 23724 if (!ipsec_capab_match(ill, cur_ici->ill_index, 23725 cur_ici->ill_isv6, sa, ipst->ips_netstack)) { 23726 ill_refrele(ill); 23727 continue; 23728 } 23729 23730 mutex_enter(&sa->ipsa_lock); 23731 sa->ipsa_flags |= IPSA_F_HW; 23732 mutex_exit(&sa->ipsa_lock); 23733 } 23734 23735 /* 23736 * Copy template message, and add it to the front 23737 * of the mblk ship list. We want to avoid holding 23738 * the ipsec_capab_ills_lock while sending the 23739 * message to the ills. 23740 * 23741 * The b_next and b_prev are temporarily used 23742 * to build a list of mblks to be sent down, and to 23743 * save the ill to which they must be sent. 23744 */ 23745 nmp = copymsg(mp); 23746 if (nmp == NULL) { 23747 ill_refrele(ill); 23748 continue; 23749 } 23750 ASSERT(nmp->b_next == NULL && nmp->b_prev == NULL); 23751 nmp->b_next = mp_ship_list; 23752 mp_ship_list = nmp; 23753 nmp->b_prev = (mblk_t *)ill; 23754 } 23755 23756 rw_exit(&ipst->ips_ipsec_capab_ills_lock); 23757 23758 for (nmp = mp_ship_list; nmp != NULL; nmp = next_mp) { 23759 /* restore the mblk to a sane state */ 23760 next_mp = nmp->b_next; 23761 nmp->b_next = NULL; 23762 ill = (ill_t *)nmp->b_prev; 23763 nmp->b_prev = NULL; 23764 23765 ill_dlpi_send(ill, nmp); 23766 ill_refrele(ill); 23767 } 23768 23769 if (sa != NULL) 23770 IPSA_REFRELE(sa); 23771 freemsg(mp); 23772 } 23773 23774 /* 23775 * Derive an interface id from the link layer address. 23776 * Knows about IEEE 802 and IEEE EUI-64 mappings. 23777 */ 23778 static boolean_t 23779 ip_ether_v6intfid(uint_t phys_length, uint8_t *phys_addr, in6_addr_t *v6addr) 23780 { 23781 char *addr; 23782 23783 if (phys_length != ETHERADDRL) 23784 return (B_FALSE); 23785 23786 /* Form EUI-64 like address */ 23787 addr = (char *)&v6addr->s6_addr32[2]; 23788 bcopy((char *)phys_addr, addr, 3); 23789 addr[0] ^= 0x2; /* Toggle Universal/Local bit */ 23790 addr[3] = (char)0xff; 23791 addr[4] = (char)0xfe; 23792 bcopy((char *)phys_addr + 3, addr + 5, 3); 23793 return (B_TRUE); 23794 } 23795 23796 /* ARGSUSED */ 23797 static boolean_t 23798 ip_nodef_v6intfid(uint_t phys_length, uint8_t *phys_addr, in6_addr_t *v6addr) 23799 { 23800 return (B_FALSE); 23801 } 23802 23803 /* ARGSUSED */ 23804 static boolean_t 23805 ip_ether_v6mapinfo(uint_t lla_length, uint8_t *bphys_addr, uint8_t *maddr, 23806 uint32_t *hw_start, in6_addr_t *v6_extract_mask) 23807 { 23808 /* 23809 * Multicast address mappings used over Ethernet/802.X. 23810 * This address is used as a base for mappings. 23811 */ 23812 static uint8_t ipv6_g_phys_multi_addr[] = {0x33, 0x33, 0x00, 23813 0x00, 0x00, 0x00}; 23814 23815 /* 23816 * Extract low order 32 bits from IPv6 multicast address. 23817 * Or that into the link layer address, starting from the 23818 * second byte. 23819 */ 23820 *hw_start = 2; 23821 v6_extract_mask->s6_addr32[0] = 0; 23822 v6_extract_mask->s6_addr32[1] = 0; 23823 v6_extract_mask->s6_addr32[2] = 0; 23824 v6_extract_mask->s6_addr32[3] = 0xffffffffU; 23825 bcopy(ipv6_g_phys_multi_addr, maddr, lla_length); 23826 return (B_TRUE); 23827 } 23828 23829 /* 23830 * Indicate by return value whether multicast is supported. If not, 23831 * this code should not touch/change any parameters. 23832 */ 23833 /* ARGSUSED */ 23834 static boolean_t 23835 ip_ether_v4mapinfo(uint_t phys_length, uint8_t *bphys_addr, uint8_t *maddr, 23836 uint32_t *hw_start, ipaddr_t *extract_mask) 23837 { 23838 /* 23839 * Multicast address mappings used over Ethernet/802.X. 23840 * This address is used as a base for mappings. 23841 */ 23842 static uint8_t ip_g_phys_multi_addr[] = { 0x01, 0x00, 0x5e, 23843 0x00, 0x00, 0x00 }; 23844 23845 if (phys_length != ETHERADDRL) 23846 return (B_FALSE); 23847 23848 *extract_mask = htonl(0x007fffff); 23849 *hw_start = 2; 23850 bcopy(ip_g_phys_multi_addr, maddr, ETHERADDRL); 23851 return (B_TRUE); 23852 } 23853 23854 /* 23855 * Derive IPoIB interface id from the link layer address. 23856 */ 23857 static boolean_t 23858 ip_ib_v6intfid(uint_t phys_length, uint8_t *phys_addr, in6_addr_t *v6addr) 23859 { 23860 char *addr; 23861 23862 if (phys_length != 20) 23863 return (B_FALSE); 23864 addr = (char *)&v6addr->s6_addr32[2]; 23865 bcopy(phys_addr + 12, addr, 8); 23866 /* 23867 * In IBA 1.1 timeframe, some vendors erroneously set the u/l bit 23868 * in the globally assigned EUI-64 GUID to 1, in violation of IEEE 23869 * rules. In these cases, the IBA considers these GUIDs to be in 23870 * "Modified EUI-64" format, and thus toggling the u/l bit is not 23871 * required; vendors are required not to assign global EUI-64's 23872 * that differ only in u/l bit values, thus guaranteeing uniqueness 23873 * of the interface identifier. Whether the GUID is in modified 23874 * or proper EUI-64 format, the ipv6 identifier must have the u/l 23875 * bit set to 1. 23876 */ 23877 addr[0] |= 2; /* Set Universal/Local bit to 1 */ 23878 return (B_TRUE); 23879 } 23880 23881 /* 23882 * Note on mapping from multicast IP addresses to IPoIB multicast link 23883 * addresses. IPoIB multicast link addresses are based on IBA link addresses. 23884 * The format of an IPoIB multicast address is: 23885 * 23886 * 4 byte QPN Scope Sign. Pkey 23887 * +--------------------------------------------+ 23888 * | 00FFFFFF | FF | 1X | X01B | Pkey | GroupID | 23889 * +--------------------------------------------+ 23890 * 23891 * The Scope and Pkey components are properties of the IBA port and 23892 * network interface. They can be ascertained from the broadcast address. 23893 * The Sign. part is the signature, and is 401B for IPv4 and 601B for IPv6. 23894 */ 23895 23896 static boolean_t 23897 ip_ib_v6mapinfo(uint_t lla_length, uint8_t *bphys_addr, uint8_t *maddr, 23898 uint32_t *hw_start, in6_addr_t *v6_extract_mask) 23899 { 23900 /* 23901 * Base IPoIB IPv6 multicast address used for mappings. 23902 * Does not contain the IBA scope/Pkey values. 23903 */ 23904 static uint8_t ipv6_g_phys_ibmulti_addr[] = { 0x00, 0xff, 0xff, 0xff, 23905 0xff, 0x10, 0x60, 0x1b, 0x00, 0x00, 0x00, 0x00, 23906 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 }; 23907 23908 /* 23909 * Extract low order 80 bits from IPv6 multicast address. 23910 * Or that into the link layer address, starting from the 23911 * sixth byte. 23912 */ 23913 *hw_start = 6; 23914 bcopy(ipv6_g_phys_ibmulti_addr, maddr, lla_length); 23915 23916 /* 23917 * Now fill in the IBA scope/Pkey values from the broadcast address. 23918 */ 23919 *(maddr + 5) = *(bphys_addr + 5); 23920 *(maddr + 8) = *(bphys_addr + 8); 23921 *(maddr + 9) = *(bphys_addr + 9); 23922 23923 v6_extract_mask->s6_addr32[0] = 0; 23924 v6_extract_mask->s6_addr32[1] = htonl(0x0000ffff); 23925 v6_extract_mask->s6_addr32[2] = 0xffffffffU; 23926 v6_extract_mask->s6_addr32[3] = 0xffffffffU; 23927 return (B_TRUE); 23928 } 23929 23930 static boolean_t 23931 ip_ib_v4mapinfo(uint_t phys_length, uint8_t *bphys_addr, uint8_t *maddr, 23932 uint32_t *hw_start, ipaddr_t *extract_mask) 23933 { 23934 /* 23935 * Base IPoIB IPv4 multicast address used for mappings. 23936 * Does not contain the IBA scope/Pkey values. 23937 */ 23938 static uint8_t ipv4_g_phys_ibmulti_addr[] = { 0x00, 0xff, 0xff, 0xff, 23939 0xff, 0x10, 0x40, 0x1b, 0x00, 0x00, 0x00, 0x00, 23940 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 }; 23941 23942 if (phys_length != sizeof (ipv4_g_phys_ibmulti_addr)) 23943 return (B_FALSE); 23944 23945 /* 23946 * Extract low order 28 bits from IPv4 multicast address. 23947 * Or that into the link layer address, starting from the 23948 * sixteenth byte. 23949 */ 23950 *extract_mask = htonl(0x0fffffff); 23951 *hw_start = 16; 23952 bcopy(ipv4_g_phys_ibmulti_addr, maddr, phys_length); 23953 23954 /* 23955 * Now fill in the IBA scope/Pkey values from the broadcast address. 23956 */ 23957 *(maddr + 5) = *(bphys_addr + 5); 23958 *(maddr + 8) = *(bphys_addr + 8); 23959 *(maddr + 9) = *(bphys_addr + 9); 23960 return (B_TRUE); 23961 } 23962 23963 /* 23964 * Returns B_TRUE if an ipif is present in the given zone, matching some flags 23965 * (typically IPIF_UP). If ipifp is non-null, the held ipif is returned there. 23966 * This works for both IPv4 and IPv6; if the passed-in ill is v6, the ipif with 23967 * the link-local address is preferred. 23968 */ 23969 boolean_t 23970 ipif_lookup_zoneid(ill_t *ill, zoneid_t zoneid, int flags, ipif_t **ipifp) 23971 { 23972 ipif_t *ipif; 23973 ipif_t *maybe_ipif = NULL; 23974 23975 mutex_enter(&ill->ill_lock); 23976 if (ill->ill_state_flags & ILL_CONDEMNED) { 23977 mutex_exit(&ill->ill_lock); 23978 if (ipifp != NULL) 23979 *ipifp = NULL; 23980 return (B_FALSE); 23981 } 23982 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 23983 if (!IPIF_CAN_LOOKUP(ipif)) 23984 continue; 23985 if (zoneid != ALL_ZONES && ipif->ipif_zoneid != zoneid && 23986 ipif->ipif_zoneid != ALL_ZONES) 23987 continue; 23988 if ((ipif->ipif_flags & flags) != flags) 23989 continue; 23990 23991 if (ipifp == NULL) { 23992 mutex_exit(&ill->ill_lock); 23993 ASSERT(maybe_ipif == NULL); 23994 return (B_TRUE); 23995 } 23996 if (!ill->ill_isv6 || 23997 IN6_IS_ADDR_LINKLOCAL(&ipif->ipif_v6src_addr)) { 23998 ipif_refhold_locked(ipif); 23999 mutex_exit(&ill->ill_lock); 24000 *ipifp = ipif; 24001 return (B_TRUE); 24002 } 24003 if (maybe_ipif == NULL) 24004 maybe_ipif = ipif; 24005 } 24006 if (ipifp != NULL) { 24007 if (maybe_ipif != NULL) 24008 ipif_refhold_locked(maybe_ipif); 24009 *ipifp = maybe_ipif; 24010 } 24011 mutex_exit(&ill->ill_lock); 24012 return (maybe_ipif != NULL); 24013 } 24014 24015 /* 24016 * Same as ipif_lookup_zoneid() but looks at all the ills in the same group. 24017 */ 24018 boolean_t 24019 ipif_lookup_zoneid_group(ill_t *ill, zoneid_t zoneid, int flags, ipif_t **ipifp) 24020 { 24021 ill_t *illg; 24022 ip_stack_t *ipst = ill->ill_ipst; 24023 24024 /* 24025 * We look at the passed-in ill first without grabbing ill_g_lock. 24026 */ 24027 if (ipif_lookup_zoneid(ill, zoneid, flags, ipifp)) { 24028 return (B_TRUE); 24029 } 24030 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 24031 if (ill->ill_group == NULL) { 24032 /* ill not in a group */ 24033 rw_exit(&ipst->ips_ill_g_lock); 24034 return (B_FALSE); 24035 } 24036 24037 /* 24038 * There's no ipif in the zone on ill, however ill is part of an IPMP 24039 * group. We need to look for an ipif in the zone on all the ills in the 24040 * group. 24041 */ 24042 illg = ill->ill_group->illgrp_ill; 24043 do { 24044 /* 24045 * We don't call ipif_lookup_zoneid() on ill as we already know 24046 * that it's not there. 24047 */ 24048 if (illg != ill && 24049 ipif_lookup_zoneid(illg, zoneid, flags, ipifp)) { 24050 break; 24051 } 24052 } while ((illg = illg->ill_group_next) != NULL); 24053 rw_exit(&ipst->ips_ill_g_lock); 24054 return (illg != NULL); 24055 } 24056 24057 /* 24058 * Check if this ill is only being used to send ICMP probes for IPMP 24059 */ 24060 boolean_t 24061 ill_is_probeonly(ill_t *ill) 24062 { 24063 /* 24064 * Check if the interface is FAILED, or INACTIVE 24065 */ 24066 if (ill->ill_phyint->phyint_flags & (PHYI_FAILED|PHYI_INACTIVE)) 24067 return (B_TRUE); 24068 24069 return (B_FALSE); 24070 } 24071 24072 /* 24073 * Return a pointer to an ipif_t given a combination of (ill_idx,ipif_id) 24074 * If a pointer to an ipif_t is returned then the caller will need to do 24075 * an ill_refrele(). 24076 * 24077 * If there is no real interface which matches the ifindex, then it looks 24078 * for a group that has a matching index. In the case of a group match the 24079 * lifidx must be zero. We don't need emulate the logical interfaces 24080 * since IP Filter's use of netinfo doesn't use that. 24081 */ 24082 ipif_t * 24083 ipif_getby_indexes(uint_t ifindex, uint_t lifidx, boolean_t isv6, 24084 ip_stack_t *ipst) 24085 { 24086 ipif_t *ipif; 24087 ill_t *ill; 24088 24089 ill = ill_lookup_on_ifindex(ifindex, isv6, NULL, NULL, NULL, NULL, 24090 ipst); 24091 24092 if (ill == NULL) { 24093 /* Fallback to group names only if hook_emulation set */ 24094 if (!ipst->ips_ipmp_hook_emulation) 24095 return (NULL); 24096 24097 if (lifidx != 0) 24098 return (NULL); 24099 ill = ill_group_lookup_on_ifindex(ifindex, isv6, ipst); 24100 if (ill == NULL) 24101 return (NULL); 24102 } 24103 24104 mutex_enter(&ill->ill_lock); 24105 if (ill->ill_state_flags & ILL_CONDEMNED) { 24106 mutex_exit(&ill->ill_lock); 24107 ill_refrele(ill); 24108 return (NULL); 24109 } 24110 24111 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 24112 if (!IPIF_CAN_LOOKUP(ipif)) 24113 continue; 24114 if (lifidx == ipif->ipif_id) { 24115 ipif_refhold_locked(ipif); 24116 break; 24117 } 24118 } 24119 24120 mutex_exit(&ill->ill_lock); 24121 ill_refrele(ill); 24122 return (ipif); 24123 } 24124 24125 /* 24126 * Flush the fastpath by deleting any nce's that are waiting for the fastpath, 24127 * There is one exceptions IRE_BROADCAST are difficult to recreate, 24128 * so instead we just nuke their nce_fp_mp's; see ndp_fastpath_flush() 24129 * for details. 24130 */ 24131 void 24132 ill_fastpath_flush(ill_t *ill) 24133 { 24134 ip_stack_t *ipst = ill->ill_ipst; 24135 24136 nce_fastpath_list_dispatch(ill, NULL, NULL); 24137 ndp_walk_common((ill->ill_isv6 ? ipst->ips_ndp6 : ipst->ips_ndp4), 24138 ill, (pfi_t)ndp_fastpath_flush, NULL, B_TRUE); 24139 } 24140 24141 /* 24142 * Set the physical address information for `ill' to the contents of the 24143 * dl_notify_ind_t pointed to by `mp'. Must be called as writer, and will be 24144 * asynchronous if `ill' cannot immediately be quiesced -- in which case 24145 * EINPROGRESS will be returned. 24146 */ 24147 int 24148 ill_set_phys_addr(ill_t *ill, mblk_t *mp) 24149 { 24150 ipsq_t *ipsq = ill->ill_phyint->phyint_ipsq; 24151 dl_notify_ind_t *dlindp = (dl_notify_ind_t *)mp->b_rptr; 24152 24153 ASSERT(IAM_WRITER_IPSQ(ipsq)); 24154 24155 if (dlindp->dl_data != DL_IPV6_LINK_LAYER_ADDR && 24156 dlindp->dl_data != DL_CURR_PHYS_ADDR) { 24157 /* Changing DL_IPV6_TOKEN is not yet supported */ 24158 return (0); 24159 } 24160 24161 /* 24162 * We need to store up to two copies of `mp' in `ill'. Due to the 24163 * design of ipsq_pending_mp_add(), we can't pass them as separate 24164 * arguments to ill_set_phys_addr_tail(). Instead, chain them 24165 * together here, then pull 'em apart in ill_set_phys_addr_tail(). 24166 */ 24167 if ((mp = copyb(mp)) == NULL || (mp->b_cont = copyb(mp)) == NULL) { 24168 freemsg(mp); 24169 return (ENOMEM); 24170 } 24171 24172 ipsq_current_start(ipsq, ill->ill_ipif, 0); 24173 24174 /* 24175 * If we can quiesce the ill, then set the address. If not, then 24176 * ill_set_phys_addr_tail() will be called from ipif_ill_refrele_tail(). 24177 */ 24178 ill_down_ipifs(ill, NULL, 0, B_FALSE); 24179 mutex_enter(&ill->ill_lock); 24180 if (!ill_is_quiescent(ill)) { 24181 /* call cannot fail since `conn_t *' argument is NULL */ 24182 (void) ipsq_pending_mp_add(NULL, ill->ill_ipif, ill->ill_rq, 24183 mp, ILL_DOWN); 24184 mutex_exit(&ill->ill_lock); 24185 return (EINPROGRESS); 24186 } 24187 mutex_exit(&ill->ill_lock); 24188 24189 ill_set_phys_addr_tail(ipsq, ill->ill_rq, mp, NULL); 24190 return (0); 24191 } 24192 24193 /* 24194 * Once the ill associated with `q' has quiesced, set its physical address 24195 * information to the values in `addrmp'. Note that two copies of `addrmp' 24196 * are passed (linked by b_cont), since we sometimes need to save two distinct 24197 * copies in the ill_t, and our context doesn't permit sleeping or allocation 24198 * failure (we'll free the other copy if it's not needed). Since the ill_t 24199 * is quiesced, we know any stale IREs with the old address information have 24200 * already been removed, so we don't need to call ill_fastpath_flush(). 24201 */ 24202 /* ARGSUSED */ 24203 static void 24204 ill_set_phys_addr_tail(ipsq_t *ipsq, queue_t *q, mblk_t *addrmp, void *dummy) 24205 { 24206 ill_t *ill = q->q_ptr; 24207 mblk_t *addrmp2 = unlinkb(addrmp); 24208 dl_notify_ind_t *dlindp = (dl_notify_ind_t *)addrmp->b_rptr; 24209 uint_t addrlen, addroff; 24210 24211 ASSERT(IAM_WRITER_IPSQ(ipsq)); 24212 24213 addroff = dlindp->dl_addr_offset; 24214 addrlen = dlindp->dl_addr_length - ABS(ill->ill_sap_length); 24215 24216 switch (dlindp->dl_data) { 24217 case DL_IPV6_LINK_LAYER_ADDR: 24218 ill_set_ndmp(ill, addrmp, addroff, addrlen); 24219 freemsg(addrmp2); 24220 break; 24221 24222 case DL_CURR_PHYS_ADDR: 24223 freemsg(ill->ill_phys_addr_mp); 24224 ill->ill_phys_addr = addrmp->b_rptr + addroff; 24225 ill->ill_phys_addr_mp = addrmp; 24226 ill->ill_phys_addr_length = addrlen; 24227 24228 if (ill->ill_isv6 && !(ill->ill_flags & ILLF_XRESOLV)) 24229 ill_set_ndmp(ill, addrmp2, addroff, addrlen); 24230 else 24231 freemsg(addrmp2); 24232 break; 24233 default: 24234 ASSERT(0); 24235 } 24236 24237 /* 24238 * If there are ipifs to bring up, ill_up_ipifs() will return 24239 * EINPROGRESS, and ipsq_current_finish() will be called by 24240 * ip_rput_dlpi_writer() or ip_arp_done() when the last ipif is 24241 * brought up. 24242 */ 24243 if (ill_up_ipifs(ill, q, addrmp) != EINPROGRESS) 24244 ipsq_current_finish(ipsq); 24245 } 24246 24247 /* 24248 * Helper routine for setting the ill_nd_lla fields. 24249 */ 24250 void 24251 ill_set_ndmp(ill_t *ill, mblk_t *ndmp, uint_t addroff, uint_t addrlen) 24252 { 24253 freemsg(ill->ill_nd_lla_mp); 24254 ill->ill_nd_lla = ndmp->b_rptr + addroff; 24255 ill->ill_nd_lla_mp = ndmp; 24256 ill->ill_nd_lla_len = addrlen; 24257 } 24258 24259 major_t IP_MAJ; 24260 #define IP "ip" 24261 24262 #define UDP6DEV "/devices/pseudo/udp6@0:udp6" 24263 #define UDPDEV "/devices/pseudo/udp@0:udp" 24264 24265 /* 24266 * Issue REMOVEIF ioctls to have the loopback interfaces 24267 * go away. Other interfaces are either I_LINKed or I_PLINKed; 24268 * the former going away when the user-level processes in the zone 24269 * are killed * and the latter are cleaned up by the stream head 24270 * str_stack_shutdown callback that undoes all I_PLINKs. 24271 */ 24272 void 24273 ip_loopback_cleanup(ip_stack_t *ipst) 24274 { 24275 int error; 24276 ldi_handle_t lh = NULL; 24277 ldi_ident_t li = NULL; 24278 int rval; 24279 cred_t *cr; 24280 struct strioctl iocb; 24281 struct lifreq lifreq; 24282 24283 IP_MAJ = ddi_name_to_major(IP); 24284 24285 #ifdef NS_DEBUG 24286 (void) printf("ip_loopback_cleanup() stackid %d\n", 24287 ipst->ips_netstack->netstack_stackid); 24288 #endif 24289 24290 bzero(&lifreq, sizeof (lifreq)); 24291 (void) strcpy(lifreq.lifr_name, ipif_loopback_name); 24292 24293 error = ldi_ident_from_major(IP_MAJ, &li); 24294 if (error) { 24295 #ifdef DEBUG 24296 printf("ip_loopback_cleanup: lyr ident get failed error %d\n", 24297 error); 24298 #endif 24299 return; 24300 } 24301 24302 cr = zone_get_kcred(netstackid_to_zoneid( 24303 ipst->ips_netstack->netstack_stackid)); 24304 ASSERT(cr != NULL); 24305 error = ldi_open_by_name(UDP6DEV, FREAD|FWRITE, cr, &lh, li); 24306 if (error) { 24307 #ifdef DEBUG 24308 printf("ip_loopback_cleanup: open of UDP6DEV failed error %d\n", 24309 error); 24310 #endif 24311 goto out; 24312 } 24313 iocb.ic_cmd = SIOCLIFREMOVEIF; 24314 iocb.ic_timout = 15; 24315 iocb.ic_len = sizeof (lifreq); 24316 iocb.ic_dp = (char *)&lifreq; 24317 24318 error = ldi_ioctl(lh, I_STR, (intptr_t)&iocb, FKIOCTL, cr, &rval); 24319 /* LINTED - statement has no consequent */ 24320 if (error) { 24321 #ifdef NS_DEBUG 24322 printf("ip_loopback_cleanup: ioctl SIOCLIFREMOVEIF failed on " 24323 "UDP6 error %d\n", error); 24324 #endif 24325 } 24326 (void) ldi_close(lh, FREAD|FWRITE, cr); 24327 lh = NULL; 24328 24329 error = ldi_open_by_name(UDPDEV, FREAD|FWRITE, cr, &lh, li); 24330 if (error) { 24331 #ifdef NS_DEBUG 24332 printf("ip_loopback_cleanup: open of UDPDEV failed error %d\n", 24333 error); 24334 #endif 24335 goto out; 24336 } 24337 24338 iocb.ic_cmd = SIOCLIFREMOVEIF; 24339 iocb.ic_timout = 15; 24340 iocb.ic_len = sizeof (lifreq); 24341 iocb.ic_dp = (char *)&lifreq; 24342 24343 error = ldi_ioctl(lh, I_STR, (intptr_t)&iocb, FKIOCTL, cr, &rval); 24344 /* LINTED - statement has no consequent */ 24345 if (error) { 24346 #ifdef NS_DEBUG 24347 printf("ip_loopback_cleanup: ioctl SIOCLIFREMOVEIF failed on " 24348 "UDP error %d\n", error); 24349 #endif 24350 } 24351 (void) ldi_close(lh, FREAD|FWRITE, cr); 24352 lh = NULL; 24353 24354 out: 24355 /* Close layered handles */ 24356 if (lh) 24357 (void) ldi_close(lh, FREAD|FWRITE, cr); 24358 if (li) 24359 ldi_ident_release(li); 24360 24361 crfree(cr); 24362 } 24363 24364 /* 24365 * This needs to be in-sync with nic_event_t definition 24366 */ 24367 static const char * 24368 ill_hook_event2str(nic_event_t event) 24369 { 24370 switch (event) { 24371 case NE_PLUMB: 24372 return ("PLUMB"); 24373 case NE_UNPLUMB: 24374 return ("UNPLUMB"); 24375 case NE_UP: 24376 return ("UP"); 24377 case NE_DOWN: 24378 return ("DOWN"); 24379 case NE_ADDRESS_CHANGE: 24380 return ("ADDRESS_CHANGE"); 24381 default: 24382 return ("UNKNOWN"); 24383 } 24384 } 24385 24386 static void 24387 ill_hook_event_destroy(ill_t *ill) 24388 { 24389 hook_nic_event_int_t *info; 24390 24391 if ((info = ill->ill_nic_event_info) != NULL) { 24392 if (info->hnei_event.hne_data != NULL) { 24393 kmem_free(info->hnei_event.hne_data, 24394 info->hnei_event.hne_datalen); 24395 } 24396 kmem_free(info, sizeof (*info)); 24397 24398 ill->ill_nic_event_info = NULL; 24399 } 24400 24401 } 24402 24403 boolean_t 24404 ill_hook_event_create(ill_t *ill, lif_if_t lif, nic_event_t event, 24405 nic_event_data_t data, size_t datalen) 24406 { 24407 ip_stack_t *ipst = ill->ill_ipst; 24408 hook_nic_event_int_t *info; 24409 const char *str = NULL; 24410 24411 /* destroy nic event info if it exists */ 24412 if ((info = ill->ill_nic_event_info) != NULL) { 24413 str = ill_hook_event2str(info->hnei_event.hne_event); 24414 ip2dbg(("ill_hook_event_create: unexpected nic event %s " 24415 "attached for %s\n", str, ill->ill_name)); 24416 ill_hook_event_destroy(ill); 24417 } 24418 24419 /* create a new nic event info */ 24420 info = kmem_alloc(sizeof (*info), KM_NOSLEEP); 24421 if (info == NULL) 24422 goto fail; 24423 24424 ill->ill_nic_event_info = info; 24425 24426 if (event == NE_UNPLUMB) 24427 info->hnei_event.hne_nic = ill->ill_phyint->phyint_ifindex; 24428 else 24429 info->hnei_event.hne_nic = ill->ill_phyint->phyint_hook_ifindex; 24430 info->hnei_event.hne_lif = lif; 24431 info->hnei_event.hne_event = event; 24432 info->hnei_event.hne_protocol = ill->ill_isv6 ? 24433 ipst->ips_ipv6_net_data : ipst->ips_ipv4_net_data; 24434 info->hnei_event.hne_data = NULL; 24435 info->hnei_event.hne_datalen = 0; 24436 info->hnei_stackid = ipst->ips_netstack->netstack_stackid; 24437 24438 if (data != NULL && datalen != 0) { 24439 info->hnei_event.hne_data = kmem_alloc(datalen, KM_NOSLEEP); 24440 if (info->hnei_event.hne_data != NULL) { 24441 bcopy(data, info->hnei_event.hne_data, datalen); 24442 info->hnei_event.hne_datalen = datalen; 24443 } else { 24444 ill_hook_event_destroy(ill); 24445 goto fail; 24446 } 24447 } 24448 24449 return (B_TRUE); 24450 fail: 24451 str = ill_hook_event2str(event); 24452 ip2dbg(("ill_hook_event_create: could not attach %s nic event " 24453 "information for %s (ENOMEM)\n", str, ill->ill_name)); 24454 return (B_FALSE); 24455 } 24456