1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright (c) 1991, 2010, Oracle and/or its affiliates. All rights reserved. 23 * Copyright (c) 1990 Mentat Inc. 24 */ 25 26 /* 27 * This file contains the interface control functions for IP. 28 */ 29 30 #include <sys/types.h> 31 #include <sys/stream.h> 32 #include <sys/dlpi.h> 33 #include <sys/stropts.h> 34 #include <sys/strsun.h> 35 #include <sys/sysmacros.h> 36 #include <sys/strsubr.h> 37 #include <sys/strlog.h> 38 #include <sys/ddi.h> 39 #include <sys/sunddi.h> 40 #include <sys/cmn_err.h> 41 #include <sys/kstat.h> 42 #include <sys/debug.h> 43 #include <sys/zone.h> 44 #include <sys/sunldi.h> 45 #include <sys/file.h> 46 #include <sys/bitmap.h> 47 #include <sys/cpuvar.h> 48 #include <sys/time.h> 49 #include <sys/ctype.h> 50 #include <sys/kmem.h> 51 #include <sys/systm.h> 52 #include <sys/param.h> 53 #include <sys/socket.h> 54 #include <sys/isa_defs.h> 55 #include <net/if.h> 56 #include <net/if_arp.h> 57 #include <net/if_types.h> 58 #include <net/if_dl.h> 59 #include <net/route.h> 60 #include <sys/sockio.h> 61 #include <netinet/in.h> 62 #include <netinet/ip6.h> 63 #include <netinet/icmp6.h> 64 #include <netinet/igmp_var.h> 65 #include <sys/policy.h> 66 #include <sys/ethernet.h> 67 #include <sys/callb.h> 68 #include <sys/md5.h> 69 70 #include <inet/common.h> /* for various inet/mi.h and inet/nd.h needs */ 71 #include <inet/mi.h> 72 #include <inet/nd.h> 73 #include <inet/tunables.h> 74 #include <inet/arp.h> 75 #include <inet/ip_arp.h> 76 #include <inet/mib2.h> 77 #include <inet/ip.h> 78 #include <inet/ip6.h> 79 #include <inet/ip6_asp.h> 80 #include <inet/tcp.h> 81 #include <inet/ip_multi.h> 82 #include <inet/ip_ire.h> 83 #include <inet/ip_ftable.h> 84 #include <inet/ip_rts.h> 85 #include <inet/ip_ndp.h> 86 #include <inet/ip_if.h> 87 #include <inet/ip_impl.h> 88 #include <inet/sctp_ip.h> 89 #include <inet/ip_netinfo.h> 90 #include <inet/ilb_ip.h> 91 92 #include <netinet/igmp.h> 93 #include <inet/ip_listutils.h> 94 #include <inet/ipclassifier.h> 95 #include <sys/mac_client.h> 96 #include <sys/dld.h> 97 #include <sys/mac_flow.h> 98 99 #include <sys/systeminfo.h> 100 #include <sys/bootconf.h> 101 102 #include <sys/tsol/tndb.h> 103 #include <sys/tsol/tnet.h> 104 105 #include <inet/rawip_impl.h> /* needed for icmp_stack_t */ 106 #include <inet/udp_impl.h> /* needed for udp_stack_t */ 107 108 /* The character which tells where the ill_name ends */ 109 #define IPIF_SEPARATOR_CHAR ':' 110 111 /* IP ioctl function table entry */ 112 typedef struct ipft_s { 113 int ipft_cmd; 114 pfi_t ipft_pfi; 115 int ipft_min_size; 116 int ipft_flags; 117 } ipft_t; 118 #define IPFT_F_NO_REPLY 0x1 /* IP ioctl does not expect any reply */ 119 #define IPFT_F_SELF_REPLY 0x2 /* ioctl callee does the ioctl reply */ 120 121 static int nd_ill_forward_get(queue_t *, mblk_t *, caddr_t, cred_t *); 122 static int nd_ill_forward_set(queue_t *q, mblk_t *mp, 123 char *value, caddr_t cp, cred_t *ioc_cr); 124 125 static boolean_t ill_is_quiescent(ill_t *); 126 static boolean_t ip_addr_ok_v4(ipaddr_t addr, ipaddr_t subnet_mask); 127 static ip_m_t *ip_m_lookup(t_uscalar_t mac_type); 128 static int ip_sioctl_addr_tail(ipif_t *ipif, sin_t *sin, queue_t *q, 129 mblk_t *mp, boolean_t need_up); 130 static int ip_sioctl_dstaddr_tail(ipif_t *ipif, sin_t *sin, queue_t *q, 131 mblk_t *mp, boolean_t need_up); 132 static int ip_sioctl_slifzone_tail(ipif_t *ipif, zoneid_t zoneid, 133 queue_t *q, mblk_t *mp, boolean_t need_up); 134 static int ip_sioctl_flags_tail(ipif_t *ipif, uint64_t flags, queue_t *q, 135 mblk_t *mp); 136 static int ip_sioctl_netmask_tail(ipif_t *ipif, sin_t *sin, queue_t *q, 137 mblk_t *mp); 138 static int ip_sioctl_subnet_tail(ipif_t *ipif, in6_addr_t, in6_addr_t, 139 queue_t *q, mblk_t *mp, boolean_t need_up); 140 static int ip_sioctl_plink_ipmod(ipsq_t *ipsq, queue_t *q, mblk_t *mp, 141 int ioccmd, struct linkblk *li); 142 static ipaddr_t ip_subnet_mask(ipaddr_t addr, ipif_t **, ip_stack_t *); 143 static void ip_wput_ioctl(queue_t *q, mblk_t *mp); 144 static void ipsq_flush(ill_t *ill); 145 146 static int ip_sioctl_token_tail(ipif_t *ipif, sin6_t *sin6, int addrlen, 147 queue_t *q, mblk_t *mp, boolean_t need_up); 148 static void ipsq_delete(ipsq_t *); 149 150 static ipif_t *ipif_allocate(ill_t *ill, int id, uint_t ire_type, 151 boolean_t initialize, boolean_t insert, int *errorp); 152 static ire_t **ipif_create_bcast_ires(ipif_t *ipif, ire_t **irep); 153 static void ipif_delete_bcast_ires(ipif_t *ipif); 154 static int ipif_add_ires_v4(ipif_t *, boolean_t); 155 static boolean_t ipif_comp_multi(ipif_t *old_ipif, ipif_t *new_ipif, 156 boolean_t isv6); 157 static int ipif_logical_down(ipif_t *ipif, queue_t *q, mblk_t *mp); 158 static void ipif_free(ipif_t *ipif); 159 static void ipif_free_tail(ipif_t *ipif); 160 static void ipif_set_default(ipif_t *ipif); 161 static int ipif_set_values(queue_t *q, mblk_t *mp, 162 char *interf_name, uint_t *ppa); 163 static int ipif_set_values_tail(ill_t *ill, ipif_t *ipif, mblk_t *mp, 164 queue_t *q); 165 static ipif_t *ipif_lookup_on_name(char *name, size_t namelen, 166 boolean_t do_alloc, boolean_t *exists, boolean_t isv6, zoneid_t zoneid, 167 ip_stack_t *); 168 static ipif_t *ipif_lookup_on_name_async(char *name, size_t namelen, 169 boolean_t isv6, zoneid_t zoneid, queue_t *q, mblk_t *mp, ipsq_func_t func, 170 int *error, ip_stack_t *); 171 172 static int ill_alloc_ppa(ill_if_t *, ill_t *); 173 static void ill_delete_interface_type(ill_if_t *); 174 static int ill_dl_up(ill_t *ill, ipif_t *ipif, mblk_t *mp, queue_t *q); 175 static void ill_dl_down(ill_t *ill); 176 static void ill_down(ill_t *ill); 177 static void ill_down_ipifs(ill_t *, boolean_t); 178 static void ill_free_mib(ill_t *ill); 179 static void ill_glist_delete(ill_t *); 180 static void ill_phyint_reinit(ill_t *ill); 181 static void ill_set_nce_router_flags(ill_t *, boolean_t); 182 static void ill_set_phys_addr_tail(ipsq_t *, queue_t *, mblk_t *, void *); 183 static void ill_replumb_tail(ipsq_t *, queue_t *, mblk_t *, void *); 184 185 static ip_v6intfid_func_t ip_ether_v6intfid, ip_ib_v6intfid; 186 static ip_v6intfid_func_t ip_ipv4_v6intfid, ip_ipv6_v6intfid; 187 static ip_v6intfid_func_t ip_ipmp_v6intfid, ip_nodef_v6intfid; 188 static ip_v6intfid_func_t ip_ipv4_v6destintfid, ip_ipv6_v6destintfid; 189 static ip_v4mapinfo_func_t ip_ether_v4_mapping; 190 static ip_v6mapinfo_func_t ip_ether_v6_mapping; 191 static ip_v4mapinfo_func_t ip_ib_v4_mapping; 192 static ip_v6mapinfo_func_t ip_ib_v6_mapping; 193 static ip_v4mapinfo_func_t ip_mbcast_mapping; 194 static void ip_cgtp_bcast_add(ire_t *, ip_stack_t *); 195 static void ip_cgtp_bcast_delete(ire_t *, ip_stack_t *); 196 static void phyint_free(phyint_t *); 197 198 static void ill_capability_dispatch(ill_t *, mblk_t *, dl_capability_sub_t *); 199 static void ill_capability_id_ack(ill_t *, mblk_t *, dl_capability_sub_t *); 200 static void ill_capability_vrrp_ack(ill_t *, mblk_t *, dl_capability_sub_t *); 201 static void ill_capability_hcksum_ack(ill_t *, mblk_t *, dl_capability_sub_t *); 202 static void ill_capability_hcksum_reset_fill(ill_t *, mblk_t *); 203 static void ill_capability_zerocopy_ack(ill_t *, mblk_t *, 204 dl_capability_sub_t *); 205 static void ill_capability_zerocopy_reset_fill(ill_t *, mblk_t *); 206 static void ill_capability_dld_reset_fill(ill_t *, mblk_t *); 207 static void ill_capability_dld_ack(ill_t *, mblk_t *, 208 dl_capability_sub_t *); 209 static void ill_capability_dld_enable(ill_t *); 210 static void ill_capability_ack_thr(void *); 211 static void ill_capability_lso_enable(ill_t *); 212 213 static ill_t *ill_prev_usesrc(ill_t *); 214 static int ill_relink_usesrc_ills(ill_t *, ill_t *, uint_t); 215 static void ill_disband_usesrc_group(ill_t *); 216 static void ip_sioctl_garp_reply(mblk_t *, ill_t *, void *, int); 217 218 #ifdef DEBUG 219 static void ill_trace_cleanup(const ill_t *); 220 static void ipif_trace_cleanup(const ipif_t *); 221 #endif 222 223 static void ill_dlpi_clear_deferred(ill_t *ill); 224 225 /* 226 * if we go over the memory footprint limit more than once in this msec 227 * interval, we'll start pruning aggressively. 228 */ 229 int ip_min_frag_prune_time = 0; 230 231 static ipft_t ip_ioctl_ftbl[] = { 232 { IP_IOC_IRE_DELETE, ip_ire_delete, sizeof (ipid_t), 0 }, 233 { IP_IOC_IRE_DELETE_NO_REPLY, ip_ire_delete, sizeof (ipid_t), 234 IPFT_F_NO_REPLY }, 235 { IP_IOC_RTS_REQUEST, ip_rts_request, 0, IPFT_F_SELF_REPLY }, 236 { 0 } 237 }; 238 239 /* Simple ICMP IP Header Template */ 240 static ipha_t icmp_ipha = { 241 IP_SIMPLE_HDR_VERSION, 0, 0, 0, 0, 0, IPPROTO_ICMP 242 }; 243 244 static uchar_t ip_six_byte_all_ones[] = { 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF }; 245 246 static ip_m_t ip_m_tbl[] = { 247 { DL_ETHER, IFT_ETHER, ETHERTYPE_IP, ETHERTYPE_IPV6, 248 ip_ether_v4_mapping, ip_ether_v6_mapping, ip_ether_v6intfid, 249 ip_nodef_v6intfid }, 250 { DL_CSMACD, IFT_ISO88023, ETHERTYPE_IP, ETHERTYPE_IPV6, 251 ip_ether_v4_mapping, ip_ether_v6_mapping, ip_nodef_v6intfid, 252 ip_nodef_v6intfid }, 253 { DL_TPB, IFT_ISO88024, ETHERTYPE_IP, ETHERTYPE_IPV6, 254 ip_ether_v4_mapping, ip_ether_v6_mapping, ip_nodef_v6intfid, 255 ip_nodef_v6intfid }, 256 { DL_TPR, IFT_ISO88025, ETHERTYPE_IP, ETHERTYPE_IPV6, 257 ip_ether_v4_mapping, ip_ether_v6_mapping, ip_nodef_v6intfid, 258 ip_nodef_v6intfid }, 259 { DL_FDDI, IFT_FDDI, ETHERTYPE_IP, ETHERTYPE_IPV6, 260 ip_ether_v4_mapping, ip_ether_v6_mapping, ip_ether_v6intfid, 261 ip_nodef_v6intfid }, 262 { DL_IB, IFT_IB, ETHERTYPE_IP, ETHERTYPE_IPV6, 263 ip_ib_v4_mapping, ip_ib_v6_mapping, ip_ib_v6intfid, 264 ip_nodef_v6intfid }, 265 { DL_IPV4, IFT_IPV4, IPPROTO_ENCAP, IPPROTO_IPV6, 266 ip_mbcast_mapping, ip_mbcast_mapping, ip_ipv4_v6intfid, 267 ip_ipv4_v6destintfid }, 268 { DL_IPV6, IFT_IPV6, IPPROTO_ENCAP, IPPROTO_IPV6, 269 ip_mbcast_mapping, ip_mbcast_mapping, ip_ipv6_v6intfid, 270 ip_ipv6_v6destintfid }, 271 { DL_6TO4, IFT_6TO4, IPPROTO_ENCAP, IPPROTO_IPV6, 272 ip_mbcast_mapping, ip_mbcast_mapping, ip_ipv4_v6intfid, 273 ip_nodef_v6intfid }, 274 { SUNW_DL_VNI, IFT_OTHER, ETHERTYPE_IP, ETHERTYPE_IPV6, 275 NULL, NULL, ip_nodef_v6intfid, ip_nodef_v6intfid }, 276 { SUNW_DL_IPMP, IFT_OTHER, ETHERTYPE_IP, ETHERTYPE_IPV6, 277 NULL, NULL, ip_ipmp_v6intfid, ip_nodef_v6intfid }, 278 { DL_OTHER, IFT_OTHER, ETHERTYPE_IP, ETHERTYPE_IPV6, 279 ip_ether_v4_mapping, ip_ether_v6_mapping, ip_nodef_v6intfid, 280 ip_nodef_v6intfid } 281 }; 282 283 static ill_t ill_null; /* Empty ILL for init. */ 284 char ipif_loopback_name[] = "lo0"; 285 286 /* These are used by all IP network modules. */ 287 sin6_t sin6_null; /* Zero address for quick clears */ 288 sin_t sin_null; /* Zero address for quick clears */ 289 290 /* When set search for unused ipif_seqid */ 291 static ipif_t ipif_zero; 292 293 /* 294 * ppa arena is created after these many 295 * interfaces have been plumbed. 296 */ 297 uint_t ill_no_arena = 12; /* Setable in /etc/system */ 298 299 /* 300 * Allocate per-interface mibs. 301 * Returns true if ok. False otherwise. 302 * ipsq may not yet be allocated (loopback case ). 303 */ 304 static boolean_t 305 ill_allocate_mibs(ill_t *ill) 306 { 307 /* Already allocated? */ 308 if (ill->ill_ip_mib != NULL) { 309 if (ill->ill_isv6) 310 ASSERT(ill->ill_icmp6_mib != NULL); 311 return (B_TRUE); 312 } 313 314 ill->ill_ip_mib = kmem_zalloc(sizeof (*ill->ill_ip_mib), 315 KM_NOSLEEP); 316 if (ill->ill_ip_mib == NULL) { 317 return (B_FALSE); 318 } 319 320 /* Setup static information */ 321 SET_MIB(ill->ill_ip_mib->ipIfStatsEntrySize, 322 sizeof (mib2_ipIfStatsEntry_t)); 323 if (ill->ill_isv6) { 324 ill->ill_ip_mib->ipIfStatsIPVersion = MIB2_INETADDRESSTYPE_ipv6; 325 SET_MIB(ill->ill_ip_mib->ipIfStatsAddrEntrySize, 326 sizeof (mib2_ipv6AddrEntry_t)); 327 SET_MIB(ill->ill_ip_mib->ipIfStatsRouteEntrySize, 328 sizeof (mib2_ipv6RouteEntry_t)); 329 SET_MIB(ill->ill_ip_mib->ipIfStatsNetToMediaEntrySize, 330 sizeof (mib2_ipv6NetToMediaEntry_t)); 331 SET_MIB(ill->ill_ip_mib->ipIfStatsMemberEntrySize, 332 sizeof (ipv6_member_t)); 333 SET_MIB(ill->ill_ip_mib->ipIfStatsGroupSourceEntrySize, 334 sizeof (ipv6_grpsrc_t)); 335 } else { 336 ill->ill_ip_mib->ipIfStatsIPVersion = MIB2_INETADDRESSTYPE_ipv4; 337 SET_MIB(ill->ill_ip_mib->ipIfStatsAddrEntrySize, 338 sizeof (mib2_ipAddrEntry_t)); 339 SET_MIB(ill->ill_ip_mib->ipIfStatsRouteEntrySize, 340 sizeof (mib2_ipRouteEntry_t)); 341 SET_MIB(ill->ill_ip_mib->ipIfStatsNetToMediaEntrySize, 342 sizeof (mib2_ipNetToMediaEntry_t)); 343 SET_MIB(ill->ill_ip_mib->ipIfStatsMemberEntrySize, 344 sizeof (ip_member_t)); 345 SET_MIB(ill->ill_ip_mib->ipIfStatsGroupSourceEntrySize, 346 sizeof (ip_grpsrc_t)); 347 348 /* 349 * For a v4 ill, we are done at this point, because per ill 350 * icmp mibs are only used for v6. 351 */ 352 return (B_TRUE); 353 } 354 355 ill->ill_icmp6_mib = kmem_zalloc(sizeof (*ill->ill_icmp6_mib), 356 KM_NOSLEEP); 357 if (ill->ill_icmp6_mib == NULL) { 358 kmem_free(ill->ill_ip_mib, sizeof (*ill->ill_ip_mib)); 359 ill->ill_ip_mib = NULL; 360 return (B_FALSE); 361 } 362 /* static icmp info */ 363 ill->ill_icmp6_mib->ipv6IfIcmpEntrySize = 364 sizeof (mib2_ipv6IfIcmpEntry_t); 365 /* 366 * The ipIfStatsIfindex and ipv6IfIcmpIndex will be assigned later 367 * after the phyint merge occurs in ipif_set_values -> ill_glist_insert 368 * -> ill_phyint_reinit 369 */ 370 return (B_TRUE); 371 } 372 373 /* 374 * Completely vaporize a lower level tap and all associated interfaces. 375 * ill_delete is called only out of ip_close when the device control 376 * stream is being closed. 377 */ 378 void 379 ill_delete(ill_t *ill) 380 { 381 ipif_t *ipif; 382 ill_t *prev_ill; 383 ip_stack_t *ipst = ill->ill_ipst; 384 385 /* 386 * ill_delete may be forcibly entering the ipsq. The previous 387 * ioctl may not have completed and may need to be aborted. 388 * ipsq_flush takes care of it. If we don't need to enter the 389 * the ipsq forcibly, the 2nd invocation of ipsq_flush in 390 * ill_delete_tail is sufficient. 391 */ 392 ipsq_flush(ill); 393 394 /* 395 * Nuke all interfaces. ipif_free will take down the interface, 396 * remove it from the list, and free the data structure. 397 * Walk down the ipif list and remove the logical interfaces 398 * first before removing the main ipif. We can't unplumb 399 * zeroth interface first in the case of IPv6 as update_conn_ill 400 * -> ip_ll_multireq de-references ill_ipif for checking 401 * POINTOPOINT. 402 * 403 * If ill_ipif was not properly initialized (i.e low on memory), 404 * then no interfaces to clean up. In this case just clean up the 405 * ill. 406 */ 407 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) 408 ipif_free(ipif); 409 410 /* 411 * clean out all the nce_t entries that depend on this 412 * ill for the ill_phys_addr. 413 */ 414 nce_flush(ill, B_TRUE); 415 416 /* Clean up msgs on pending upcalls for mrouted */ 417 reset_mrt_ill(ill); 418 419 update_conn_ill(ill, ipst); 420 421 /* 422 * Remove multicast references added as a result of calls to 423 * ip_join_allmulti(). 424 */ 425 ip_purge_allmulti(ill); 426 427 /* 428 * If the ill being deleted is under IPMP, boot it out of the illgrp. 429 */ 430 if (IS_UNDER_IPMP(ill)) 431 ipmp_ill_leave_illgrp(ill); 432 433 /* 434 * ill_down will arrange to blow off any IRE's dependent on this 435 * ILL, and shut down fragmentation reassembly. 436 */ 437 ill_down(ill); 438 439 /* Let SCTP know, so that it can remove this from its list. */ 440 sctp_update_ill(ill, SCTP_ILL_REMOVE); 441 442 /* 443 * Walk all CONNs that can have a reference on an ire or nce for this 444 * ill (we actually walk all that now have stale references). 445 */ 446 ipcl_walk(conn_ixa_cleanup, (void *)B_TRUE, ipst); 447 448 /* With IPv6 we have dce_ifindex. Cleanup for neatness */ 449 if (ill->ill_isv6) 450 dce_cleanup(ill->ill_phyint->phyint_ifindex, ipst); 451 452 /* 453 * If an address on this ILL is being used as a source address then 454 * clear out the pointers in other ILLs that point to this ILL. 455 */ 456 rw_enter(&ipst->ips_ill_g_usesrc_lock, RW_WRITER); 457 if (ill->ill_usesrc_grp_next != NULL) { 458 if (ill->ill_usesrc_ifindex == 0) { /* usesrc ILL ? */ 459 ill_disband_usesrc_group(ill); 460 } else { /* consumer of the usesrc ILL */ 461 prev_ill = ill_prev_usesrc(ill); 462 prev_ill->ill_usesrc_grp_next = 463 ill->ill_usesrc_grp_next; 464 } 465 } 466 rw_exit(&ipst->ips_ill_g_usesrc_lock); 467 } 468 469 static void 470 ipif_non_duplicate(ipif_t *ipif) 471 { 472 ill_t *ill = ipif->ipif_ill; 473 mutex_enter(&ill->ill_lock); 474 if (ipif->ipif_flags & IPIF_DUPLICATE) { 475 ipif->ipif_flags &= ~IPIF_DUPLICATE; 476 ASSERT(ill->ill_ipif_dup_count > 0); 477 ill->ill_ipif_dup_count--; 478 } 479 mutex_exit(&ill->ill_lock); 480 } 481 482 /* 483 * ill_delete_tail is called from ip_modclose after all references 484 * to the closing ill are gone. The wait is done in ip_modclose 485 */ 486 void 487 ill_delete_tail(ill_t *ill) 488 { 489 mblk_t **mpp; 490 ipif_t *ipif; 491 ip_stack_t *ipst = ill->ill_ipst; 492 493 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 494 ipif_non_duplicate(ipif); 495 (void) ipif_down_tail(ipif); 496 } 497 498 ASSERT(ill->ill_ipif_dup_count == 0); 499 500 /* 501 * If polling capability is enabled (which signifies direct 502 * upcall into IP and driver has ill saved as a handle), 503 * we need to make sure that unbind has completed before we 504 * let the ill disappear and driver no longer has any reference 505 * to this ill. 506 */ 507 mutex_enter(&ill->ill_lock); 508 while (ill->ill_state_flags & ILL_DL_UNBIND_IN_PROGRESS) 509 cv_wait(&ill->ill_cv, &ill->ill_lock); 510 mutex_exit(&ill->ill_lock); 511 ASSERT(!(ill->ill_capabilities & 512 (ILL_CAPAB_DLD | ILL_CAPAB_DLD_POLL | ILL_CAPAB_DLD_DIRECT))); 513 514 if (ill->ill_net_type != IRE_LOOPBACK) 515 qprocsoff(ill->ill_rq); 516 517 /* 518 * We do an ipsq_flush once again now. New messages could have 519 * landed up from below (M_ERROR or M_HANGUP). Similarly ioctls 520 * could also have landed up if an ioctl thread had looked up 521 * the ill before we set the ILL_CONDEMNED flag, but not yet 522 * enqueued the ioctl when we did the ipsq_flush last time. 523 */ 524 ipsq_flush(ill); 525 526 /* 527 * Free capabilities. 528 */ 529 if (ill->ill_hcksum_capab != NULL) { 530 kmem_free(ill->ill_hcksum_capab, sizeof (ill_hcksum_capab_t)); 531 ill->ill_hcksum_capab = NULL; 532 } 533 534 if (ill->ill_zerocopy_capab != NULL) { 535 kmem_free(ill->ill_zerocopy_capab, 536 sizeof (ill_zerocopy_capab_t)); 537 ill->ill_zerocopy_capab = NULL; 538 } 539 540 if (ill->ill_lso_capab != NULL) { 541 kmem_free(ill->ill_lso_capab, sizeof (ill_lso_capab_t)); 542 ill->ill_lso_capab = NULL; 543 } 544 545 if (ill->ill_dld_capab != NULL) { 546 kmem_free(ill->ill_dld_capab, sizeof (ill_dld_capab_t)); 547 ill->ill_dld_capab = NULL; 548 } 549 550 /* Clean up ill_allowed_ips* related state */ 551 if (ill->ill_allowed_ips != NULL) { 552 ASSERT(ill->ill_allowed_ips_cnt > 0); 553 kmem_free(ill->ill_allowed_ips, 554 ill->ill_allowed_ips_cnt * sizeof (in6_addr_t)); 555 ill->ill_allowed_ips = NULL; 556 ill->ill_allowed_ips_cnt = 0; 557 } 558 559 while (ill->ill_ipif != NULL) 560 ipif_free_tail(ill->ill_ipif); 561 562 /* 563 * We have removed all references to ilm from conn and the ones joined 564 * within the kernel. 565 * 566 * We don't walk conns, mrts and ires because 567 * 568 * 1) update_conn_ill and reset_mrt_ill cleans up conns and mrts. 569 * 2) ill_down ->ill_downi walks all the ires and cleans up 570 * ill references. 571 */ 572 573 /* 574 * If this ill is an IPMP meta-interface, blow away the illgrp. This 575 * is safe to do because the illgrp has already been unlinked from the 576 * group by I_PUNLINK, and thus SIOCSLIFGROUPNAME cannot find it. 577 */ 578 if (IS_IPMP(ill)) { 579 ipmp_illgrp_destroy(ill->ill_grp); 580 ill->ill_grp = NULL; 581 } 582 583 if (ill->ill_mphysaddr_list != NULL) { 584 multiphysaddr_t *mpa, *tmpa; 585 586 mpa = ill->ill_mphysaddr_list; 587 ill->ill_mphysaddr_list = NULL; 588 while (mpa) { 589 tmpa = mpa->mpa_next; 590 kmem_free(mpa, sizeof (*mpa)); 591 mpa = tmpa; 592 } 593 } 594 /* 595 * Take us out of the list of ILLs. ill_glist_delete -> phyint_free 596 * could free the phyint. No more reference to the phyint after this 597 * point. 598 */ 599 (void) ill_glist_delete(ill); 600 601 if (ill->ill_frag_ptr != NULL) { 602 uint_t count; 603 604 for (count = 0; count < ILL_FRAG_HASH_TBL_COUNT; count++) { 605 mutex_destroy(&ill->ill_frag_hash_tbl[count].ipfb_lock); 606 } 607 mi_free(ill->ill_frag_ptr); 608 ill->ill_frag_ptr = NULL; 609 ill->ill_frag_hash_tbl = NULL; 610 } 611 612 freemsg(ill->ill_nd_lla_mp); 613 /* Free all retained control messages. */ 614 mpp = &ill->ill_first_mp_to_free; 615 do { 616 while (mpp[0]) { 617 mblk_t *mp; 618 mblk_t *mp1; 619 620 mp = mpp[0]; 621 mpp[0] = mp->b_next; 622 for (mp1 = mp; mp1 != NULL; mp1 = mp1->b_cont) { 623 mp1->b_next = NULL; 624 mp1->b_prev = NULL; 625 } 626 freemsg(mp); 627 } 628 } while (mpp++ != &ill->ill_last_mp_to_free); 629 630 ill_free_mib(ill); 631 632 #ifdef DEBUG 633 ill_trace_cleanup(ill); 634 #endif 635 636 /* The default multicast interface might have changed */ 637 ire_increment_multicast_generation(ipst, ill->ill_isv6); 638 639 /* Drop refcnt here */ 640 netstack_rele(ill->ill_ipst->ips_netstack); 641 ill->ill_ipst = NULL; 642 } 643 644 static void 645 ill_free_mib(ill_t *ill) 646 { 647 ip_stack_t *ipst = ill->ill_ipst; 648 649 /* 650 * MIB statistics must not be lost, so when an interface 651 * goes away the counter values will be added to the global 652 * MIBs. 653 */ 654 if (ill->ill_ip_mib != NULL) { 655 if (ill->ill_isv6) { 656 ip_mib2_add_ip_stats(&ipst->ips_ip6_mib, 657 ill->ill_ip_mib); 658 } else { 659 ip_mib2_add_ip_stats(&ipst->ips_ip_mib, 660 ill->ill_ip_mib); 661 } 662 663 kmem_free(ill->ill_ip_mib, sizeof (*ill->ill_ip_mib)); 664 ill->ill_ip_mib = NULL; 665 } 666 if (ill->ill_icmp6_mib != NULL) { 667 ip_mib2_add_icmp6_stats(&ipst->ips_icmp6_mib, 668 ill->ill_icmp6_mib); 669 kmem_free(ill->ill_icmp6_mib, sizeof (*ill->ill_icmp6_mib)); 670 ill->ill_icmp6_mib = NULL; 671 } 672 } 673 674 /* 675 * Concatenate together a physical address and a sap. 676 * 677 * Sap_lengths are interpreted as follows: 678 * sap_length == 0 ==> no sap 679 * sap_length > 0 ==> sap is at the head of the dlpi address 680 * sap_length < 0 ==> sap is at the tail of the dlpi address 681 */ 682 static void 683 ill_dlur_copy_address(uchar_t *phys_src, uint_t phys_length, 684 t_scalar_t sap_src, t_scalar_t sap_length, uchar_t *dst) 685 { 686 uint16_t sap_addr = (uint16_t)sap_src; 687 688 if (sap_length == 0) { 689 if (phys_src == NULL) 690 bzero(dst, phys_length); 691 else 692 bcopy(phys_src, dst, phys_length); 693 } else if (sap_length < 0) { 694 if (phys_src == NULL) 695 bzero(dst, phys_length); 696 else 697 bcopy(phys_src, dst, phys_length); 698 bcopy(&sap_addr, (char *)dst + phys_length, sizeof (sap_addr)); 699 } else { 700 bcopy(&sap_addr, dst, sizeof (sap_addr)); 701 if (phys_src == NULL) 702 bzero((char *)dst + sap_length, phys_length); 703 else 704 bcopy(phys_src, (char *)dst + sap_length, phys_length); 705 } 706 } 707 708 /* 709 * Generate a dl_unitdata_req mblk for the device and address given. 710 * addr_length is the length of the physical portion of the address. 711 * If addr is NULL include an all zero address of the specified length. 712 * TRUE? In any case, addr_length is taken to be the entire length of the 713 * dlpi address, including the absolute value of sap_length. 714 */ 715 mblk_t * 716 ill_dlur_gen(uchar_t *addr, uint_t addr_length, t_uscalar_t sap, 717 t_scalar_t sap_length) 718 { 719 dl_unitdata_req_t *dlur; 720 mblk_t *mp; 721 t_scalar_t abs_sap_length; /* absolute value */ 722 723 abs_sap_length = ABS(sap_length); 724 mp = ip_dlpi_alloc(sizeof (*dlur) + addr_length + abs_sap_length, 725 DL_UNITDATA_REQ); 726 if (mp == NULL) 727 return (NULL); 728 dlur = (dl_unitdata_req_t *)mp->b_rptr; 729 /* HACK: accomodate incompatible DLPI drivers */ 730 if (addr_length == 8) 731 addr_length = 6; 732 dlur->dl_dest_addr_length = addr_length + abs_sap_length; 733 dlur->dl_dest_addr_offset = sizeof (*dlur); 734 dlur->dl_priority.dl_min = 0; 735 dlur->dl_priority.dl_max = 0; 736 ill_dlur_copy_address(addr, addr_length, sap, sap_length, 737 (uchar_t *)&dlur[1]); 738 return (mp); 739 } 740 741 /* 742 * Add the pending mp to the list. There can be only 1 pending mp 743 * in the list. Any exclusive ioctl that needs to wait for a response 744 * from another module or driver needs to use this function to set 745 * the ipx_pending_mp to the ioctl mblk and wait for the response from 746 * the other module/driver. This is also used while waiting for the 747 * ipif/ill/ire refcnts to drop to zero in bringing down an ipif. 748 */ 749 boolean_t 750 ipsq_pending_mp_add(conn_t *connp, ipif_t *ipif, queue_t *q, mblk_t *add_mp, 751 int waitfor) 752 { 753 ipxop_t *ipx = ipif->ipif_ill->ill_phyint->phyint_ipsq->ipsq_xop; 754 755 ASSERT(IAM_WRITER_IPIF(ipif)); 756 ASSERT(MUTEX_HELD(&ipif->ipif_ill->ill_lock)); 757 ASSERT((add_mp->b_next == NULL) && (add_mp->b_prev == NULL)); 758 ASSERT(ipx->ipx_pending_mp == NULL); 759 /* 760 * The caller may be using a different ipif than the one passed into 761 * ipsq_current_start() (e.g., suppose an ioctl that came in on the V4 762 * ill needs to wait for the V6 ill to quiesce). So we can't ASSERT 763 * that `ipx_current_ipif == ipif'. 764 */ 765 ASSERT(ipx->ipx_current_ipif != NULL); 766 767 /* 768 * M_IOCDATA from ioctls, M_ERROR/M_HANGUP/M_PROTO/M_PCPROTO from the 769 * driver. 770 */ 771 ASSERT((DB_TYPE(add_mp) == M_IOCDATA) || (DB_TYPE(add_mp) == M_ERROR) || 772 (DB_TYPE(add_mp) == M_HANGUP) || (DB_TYPE(add_mp) == M_PROTO) || 773 (DB_TYPE(add_mp) == M_PCPROTO)); 774 775 if (connp != NULL) { 776 ASSERT(MUTEX_HELD(&connp->conn_lock)); 777 /* 778 * Return error if the conn has started closing. The conn 779 * could have finished cleaning up the pending mp list, 780 * If so we should not add another mp to the list negating 781 * the cleanup. 782 */ 783 if (connp->conn_state_flags & CONN_CLOSING) 784 return (B_FALSE); 785 } 786 mutex_enter(&ipx->ipx_lock); 787 ipx->ipx_pending_ipif = ipif; 788 /* 789 * Note down the queue in b_queue. This will be returned by 790 * ipsq_pending_mp_get. Caller will then use these values to restart 791 * the processing 792 */ 793 add_mp->b_next = NULL; 794 add_mp->b_queue = q; 795 ipx->ipx_pending_mp = add_mp; 796 ipx->ipx_waitfor = waitfor; 797 mutex_exit(&ipx->ipx_lock); 798 799 if (connp != NULL) 800 connp->conn_oper_pending_ill = ipif->ipif_ill; 801 802 return (B_TRUE); 803 } 804 805 /* 806 * Retrieve the ipx_pending_mp and return it. There can be only 1 mp 807 * queued in the list. 808 */ 809 mblk_t * 810 ipsq_pending_mp_get(ipsq_t *ipsq, conn_t **connpp) 811 { 812 mblk_t *curr = NULL; 813 ipxop_t *ipx = ipsq->ipsq_xop; 814 815 *connpp = NULL; 816 mutex_enter(&ipx->ipx_lock); 817 if (ipx->ipx_pending_mp == NULL) { 818 mutex_exit(&ipx->ipx_lock); 819 return (NULL); 820 } 821 822 /* There can be only 1 such excl message */ 823 curr = ipx->ipx_pending_mp; 824 ASSERT(curr->b_next == NULL); 825 ipx->ipx_pending_ipif = NULL; 826 ipx->ipx_pending_mp = NULL; 827 ipx->ipx_waitfor = 0; 828 mutex_exit(&ipx->ipx_lock); 829 830 if (CONN_Q(curr->b_queue)) { 831 /* 832 * This mp did a refhold on the conn, at the start of the ioctl. 833 * So we can safely return a pointer to the conn to the caller. 834 */ 835 *connpp = Q_TO_CONN(curr->b_queue); 836 } else { 837 *connpp = NULL; 838 } 839 curr->b_next = NULL; 840 curr->b_prev = NULL; 841 return (curr); 842 } 843 844 /* 845 * Cleanup the ioctl mp queued in ipx_pending_mp 846 * - Called in the ill_delete path 847 * - Called in the M_ERROR or M_HANGUP path on the ill. 848 * - Called in the conn close path. 849 * 850 * Returns success on finding the pending mblk associated with the ioctl or 851 * exclusive operation in progress, failure otherwise. 852 */ 853 boolean_t 854 ipsq_pending_mp_cleanup(ill_t *ill, conn_t *connp) 855 { 856 mblk_t *mp; 857 ipxop_t *ipx; 858 queue_t *q; 859 ipif_t *ipif; 860 int cmd; 861 862 ASSERT(IAM_WRITER_ILL(ill)); 863 ipx = ill->ill_phyint->phyint_ipsq->ipsq_xop; 864 865 mutex_enter(&ipx->ipx_lock); 866 mp = ipx->ipx_pending_mp; 867 if (connp != NULL) { 868 if (mp == NULL || mp->b_queue != CONNP_TO_WQ(connp)) { 869 /* 870 * Nothing to clean since the conn that is closing 871 * does not have a matching pending mblk in 872 * ipx_pending_mp. 873 */ 874 mutex_exit(&ipx->ipx_lock); 875 return (B_FALSE); 876 } 877 } else { 878 /* 879 * A non-zero ill_error signifies we are called in the 880 * M_ERROR or M_HANGUP path and we need to unconditionally 881 * abort any current ioctl and do the corresponding cleanup. 882 * A zero ill_error means we are in the ill_delete path and 883 * we do the cleanup only if there is a pending mp. 884 */ 885 if (mp == NULL && ill->ill_error == 0) { 886 mutex_exit(&ipx->ipx_lock); 887 return (B_FALSE); 888 } 889 } 890 891 /* Now remove from the ipx_pending_mp */ 892 ipx->ipx_pending_mp = NULL; 893 ipif = ipx->ipx_pending_ipif; 894 ipx->ipx_pending_ipif = NULL; 895 ipx->ipx_waitfor = 0; 896 ipx->ipx_current_ipif = NULL; 897 cmd = ipx->ipx_current_ioctl; 898 ipx->ipx_current_ioctl = 0; 899 ipx->ipx_current_done = B_TRUE; 900 mutex_exit(&ipx->ipx_lock); 901 902 if (mp == NULL) 903 return (B_FALSE); 904 905 q = mp->b_queue; 906 mp->b_next = NULL; 907 mp->b_prev = NULL; 908 mp->b_queue = NULL; 909 910 if (DB_TYPE(mp) == M_IOCTL || DB_TYPE(mp) == M_IOCDATA) { 911 DTRACE_PROBE4(ipif__ioctl, 912 char *, "ipsq_pending_mp_cleanup", 913 int, cmd, ill_t *, ipif == NULL ? NULL : ipif->ipif_ill, 914 ipif_t *, ipif); 915 if (connp == NULL) { 916 ip_ioctl_finish(q, mp, ENXIO, NO_COPYOUT, NULL); 917 } else { 918 ip_ioctl_finish(q, mp, ENXIO, CONN_CLOSE, NULL); 919 mutex_enter(&ipif->ipif_ill->ill_lock); 920 ipif->ipif_state_flags &= ~IPIF_CHANGING; 921 mutex_exit(&ipif->ipif_ill->ill_lock); 922 } 923 } else { 924 inet_freemsg(mp); 925 } 926 return (B_TRUE); 927 } 928 929 /* 930 * Called in the conn close path and ill delete path 931 */ 932 static void 933 ipsq_xopq_mp_cleanup(ill_t *ill, conn_t *connp) 934 { 935 ipsq_t *ipsq; 936 mblk_t *prev; 937 mblk_t *curr; 938 mblk_t *next; 939 queue_t *wq, *rq = NULL; 940 mblk_t *tmp_list = NULL; 941 942 ASSERT(IAM_WRITER_ILL(ill)); 943 if (connp != NULL) 944 wq = CONNP_TO_WQ(connp); 945 else 946 wq = ill->ill_wq; 947 948 /* 949 * In the case of lo0 being unplumbed, ill_wq will be NULL. Guard 950 * against this here. 951 */ 952 if (wq != NULL) 953 rq = RD(wq); 954 955 ipsq = ill->ill_phyint->phyint_ipsq; 956 /* 957 * Cleanup the ioctl mp's queued in ipsq_xopq_pending_mp if any. 958 * In the case of ioctl from a conn, there can be only 1 mp 959 * queued on the ipsq. If an ill is being unplumbed flush all 960 * the messages. 961 */ 962 mutex_enter(&ipsq->ipsq_lock); 963 for (prev = NULL, curr = ipsq->ipsq_xopq_mphead; curr != NULL; 964 curr = next) { 965 next = curr->b_next; 966 if (connp == NULL || 967 (curr->b_queue == wq || curr->b_queue == rq)) { 968 /* Unlink the mblk from the pending mp list */ 969 if (prev != NULL) { 970 prev->b_next = curr->b_next; 971 } else { 972 ASSERT(ipsq->ipsq_xopq_mphead == curr); 973 ipsq->ipsq_xopq_mphead = curr->b_next; 974 } 975 if (ipsq->ipsq_xopq_mptail == curr) 976 ipsq->ipsq_xopq_mptail = prev; 977 /* 978 * Create a temporary list and release the ipsq lock 979 * New elements are added to the head of the tmp_list 980 */ 981 curr->b_next = tmp_list; 982 tmp_list = curr; 983 } else { 984 prev = curr; 985 } 986 } 987 mutex_exit(&ipsq->ipsq_lock); 988 989 while (tmp_list != NULL) { 990 curr = tmp_list; 991 tmp_list = curr->b_next; 992 curr->b_next = NULL; 993 curr->b_prev = NULL; 994 wq = curr->b_queue; 995 curr->b_queue = NULL; 996 if (DB_TYPE(curr) == M_IOCTL || DB_TYPE(curr) == M_IOCDATA) { 997 DTRACE_PROBE4(ipif__ioctl, 998 char *, "ipsq_xopq_mp_cleanup", 999 int, 0, ill_t *, NULL, ipif_t *, NULL); 1000 ip_ioctl_finish(wq, curr, ENXIO, connp != NULL ? 1001 CONN_CLOSE : NO_COPYOUT, NULL); 1002 } else { 1003 /* 1004 * IP-MT XXX In the case of TLI/XTI bind / optmgmt 1005 * this can't be just inet_freemsg. we have to 1006 * restart it otherwise the thread will be stuck. 1007 */ 1008 inet_freemsg(curr); 1009 } 1010 } 1011 } 1012 1013 /* 1014 * This conn has started closing. Cleanup any pending ioctl from this conn. 1015 * STREAMS ensures that there can be at most 1 active ioctl on a stream. 1016 */ 1017 void 1018 conn_ioctl_cleanup(conn_t *connp) 1019 { 1020 ipsq_t *ipsq; 1021 ill_t *ill; 1022 boolean_t refheld; 1023 1024 /* 1025 * Check for a queued ioctl. If the ioctl has not yet started, the mp 1026 * is pending in the list headed by ipsq_xopq_head. If the ioctl has 1027 * started the mp could be present in ipx_pending_mp. Note that if 1028 * conn_oper_pending_ill is NULL, the ioctl may still be in flight and 1029 * not yet queued anywhere. In this case, the conn close code will wait 1030 * until the conn_ref is dropped. If the stream was a tcp stream, then 1031 * tcp_close will wait first until all ioctls have completed for this 1032 * conn. 1033 */ 1034 mutex_enter(&connp->conn_lock); 1035 ill = connp->conn_oper_pending_ill; 1036 if (ill == NULL) { 1037 mutex_exit(&connp->conn_lock); 1038 return; 1039 } 1040 1041 /* 1042 * We may not be able to refhold the ill if the ill/ipif 1043 * is changing. But we need to make sure that the ill will 1044 * not vanish. So we just bump up the ill_waiter count. 1045 */ 1046 refheld = ill_waiter_inc(ill); 1047 mutex_exit(&connp->conn_lock); 1048 if (refheld) { 1049 if (ipsq_enter(ill, B_TRUE, NEW_OP)) { 1050 ill_waiter_dcr(ill); 1051 /* 1052 * Check whether this ioctl has started and is 1053 * pending. If it is not found there then check 1054 * whether this ioctl has not even started and is in 1055 * the ipsq_xopq list. 1056 */ 1057 if (!ipsq_pending_mp_cleanup(ill, connp)) 1058 ipsq_xopq_mp_cleanup(ill, connp); 1059 ipsq = ill->ill_phyint->phyint_ipsq; 1060 ipsq_exit(ipsq); 1061 return; 1062 } 1063 } 1064 1065 /* 1066 * The ill is also closing and we could not bump up the 1067 * ill_waiter_count or we could not enter the ipsq. Leave 1068 * the cleanup to ill_delete 1069 */ 1070 mutex_enter(&connp->conn_lock); 1071 while (connp->conn_oper_pending_ill != NULL) 1072 cv_wait(&connp->conn_refcv, &connp->conn_lock); 1073 mutex_exit(&connp->conn_lock); 1074 if (refheld) 1075 ill_waiter_dcr(ill); 1076 } 1077 1078 /* 1079 * ipcl_walk function for cleaning up conn_*_ill fields. 1080 * Note that we leave ixa_multicast_ifindex, conn_incoming_ifindex, and 1081 * conn_bound_if in place. We prefer dropping 1082 * packets instead of sending them out the wrong interface, or accepting 1083 * packets from the wrong ifindex. 1084 */ 1085 static void 1086 conn_cleanup_ill(conn_t *connp, caddr_t arg) 1087 { 1088 ill_t *ill = (ill_t *)arg; 1089 1090 mutex_enter(&connp->conn_lock); 1091 if (connp->conn_dhcpinit_ill == ill) { 1092 connp->conn_dhcpinit_ill = NULL; 1093 ASSERT(ill->ill_dhcpinit != 0); 1094 atomic_dec_32(&ill->ill_dhcpinit); 1095 ill_set_inputfn(ill); 1096 } 1097 mutex_exit(&connp->conn_lock); 1098 } 1099 1100 static int 1101 ill_down_ipifs_tail(ill_t *ill) 1102 { 1103 ipif_t *ipif; 1104 int err; 1105 1106 ASSERT(IAM_WRITER_ILL(ill)); 1107 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 1108 ipif_non_duplicate(ipif); 1109 /* 1110 * ipif_down_tail will call arp_ll_down on the last ipif 1111 * and typically return EINPROGRESS when the DL_UNBIND is sent. 1112 */ 1113 if ((err = ipif_down_tail(ipif)) != 0) 1114 return (err); 1115 } 1116 return (0); 1117 } 1118 1119 /* ARGSUSED */ 1120 void 1121 ipif_all_down_tail(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy_arg) 1122 { 1123 ASSERT(IAM_WRITER_IPSQ(ipsq)); 1124 (void) ill_down_ipifs_tail(q->q_ptr); 1125 freemsg(mp); 1126 ipsq_current_finish(ipsq); 1127 } 1128 1129 /* 1130 * ill_down_start is called when we want to down this ill and bring it up again 1131 * It is called when we receive an M_ERROR / M_HANGUP. In this case we shut down 1132 * all interfaces, but don't tear down any plumbing. 1133 */ 1134 boolean_t 1135 ill_down_start(queue_t *q, mblk_t *mp) 1136 { 1137 ill_t *ill = q->q_ptr; 1138 ipif_t *ipif; 1139 1140 ASSERT(IAM_WRITER_ILL(ill)); 1141 /* 1142 * It is possible that some ioctl is already in progress while we 1143 * received the M_ERROR / M_HANGUP in which case, we need to abort 1144 * the ioctl. ill_down_start() is being processed as CUR_OP rather 1145 * than as NEW_OP since the cause of the M_ERROR / M_HANGUP may prevent 1146 * the in progress ioctl from ever completing. 1147 * 1148 * The thread that started the ioctl (if any) must have returned, 1149 * since we are now executing as writer. After the 2 calls below, 1150 * the state of the ipsq and the ill would reflect no trace of any 1151 * pending operation. Subsequently if there is any response to the 1152 * original ioctl from the driver, it would be discarded as an 1153 * unsolicited message from the driver. 1154 */ 1155 (void) ipsq_pending_mp_cleanup(ill, NULL); 1156 ill_dlpi_clear_deferred(ill); 1157 1158 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) 1159 (void) ipif_down(ipif, NULL, NULL); 1160 1161 ill_down(ill); 1162 1163 /* 1164 * Walk all CONNs that can have a reference on an ire or nce for this 1165 * ill (we actually walk all that now have stale references). 1166 */ 1167 ipcl_walk(conn_ixa_cleanup, (void *)B_TRUE, ill->ill_ipst); 1168 1169 /* With IPv6 we have dce_ifindex. Cleanup for neatness */ 1170 if (ill->ill_isv6) 1171 dce_cleanup(ill->ill_phyint->phyint_ifindex, ill->ill_ipst); 1172 1173 ipsq_current_start(ill->ill_phyint->phyint_ipsq, ill->ill_ipif, 0); 1174 1175 /* 1176 * Atomically test and add the pending mp if references are active. 1177 */ 1178 mutex_enter(&ill->ill_lock); 1179 if (!ill_is_quiescent(ill)) { 1180 /* call cannot fail since `conn_t *' argument is NULL */ 1181 (void) ipsq_pending_mp_add(NULL, ill->ill_ipif, ill->ill_rq, 1182 mp, ILL_DOWN); 1183 mutex_exit(&ill->ill_lock); 1184 return (B_FALSE); 1185 } 1186 mutex_exit(&ill->ill_lock); 1187 return (B_TRUE); 1188 } 1189 1190 static void 1191 ill_down(ill_t *ill) 1192 { 1193 mblk_t *mp; 1194 ip_stack_t *ipst = ill->ill_ipst; 1195 1196 /* 1197 * Blow off any IREs dependent on this ILL. 1198 * The caller needs to handle conn_ixa_cleanup 1199 */ 1200 ill_delete_ires(ill); 1201 1202 ire_walk_ill(0, 0, ill_downi, ill, ill); 1203 1204 /* Remove any conn_*_ill depending on this ill */ 1205 ipcl_walk(conn_cleanup_ill, (caddr_t)ill, ipst); 1206 1207 /* 1208 * Free state for additional IREs. 1209 */ 1210 mutex_enter(&ill->ill_saved_ire_lock); 1211 mp = ill->ill_saved_ire_mp; 1212 ill->ill_saved_ire_mp = NULL; 1213 ill->ill_saved_ire_cnt = 0; 1214 mutex_exit(&ill->ill_saved_ire_lock); 1215 freemsg(mp); 1216 } 1217 1218 /* 1219 * ire_walk routine used to delete every IRE that depends on 1220 * 'ill'. (Always called as writer, and may only be called from ire_walk.) 1221 * 1222 * Note: since the routes added by the kernel are deleted separately, 1223 * this will only be 1) IRE_IF_CLONE and 2) manually added IRE_INTERFACE. 1224 * 1225 * We also remove references on ire_nce_cache entries that refer to the ill. 1226 */ 1227 void 1228 ill_downi(ire_t *ire, char *ill_arg) 1229 { 1230 ill_t *ill = (ill_t *)ill_arg; 1231 nce_t *nce; 1232 1233 mutex_enter(&ire->ire_lock); 1234 nce = ire->ire_nce_cache; 1235 if (nce != NULL && nce->nce_ill == ill) 1236 ire->ire_nce_cache = NULL; 1237 else 1238 nce = NULL; 1239 mutex_exit(&ire->ire_lock); 1240 if (nce != NULL) 1241 nce_refrele(nce); 1242 if (ire->ire_ill == ill) { 1243 /* 1244 * The existing interface binding for ire must be 1245 * deleted before trying to bind the route to another 1246 * interface. However, since we are using the contents of the 1247 * ire after ire_delete, the caller has to ensure that 1248 * CONDEMNED (deleted) ire's are not removed from the list 1249 * when ire_delete() returns. Currently ill_downi() is 1250 * only called as part of ire_walk*() routines, so that 1251 * the irb_refhold() done by ire_walk*() will ensure that 1252 * ire_delete() does not lead to ire_inactive(). 1253 */ 1254 ASSERT(ire->ire_bucket->irb_refcnt > 0); 1255 ire_delete(ire); 1256 if (ire->ire_unbound) 1257 ire_rebind(ire); 1258 } 1259 } 1260 1261 /* Remove IRE_IF_CLONE on this ill */ 1262 void 1263 ill_downi_if_clone(ire_t *ire, char *ill_arg) 1264 { 1265 ill_t *ill = (ill_t *)ill_arg; 1266 1267 ASSERT(ire->ire_type & IRE_IF_CLONE); 1268 if (ire->ire_ill == ill) 1269 ire_delete(ire); 1270 } 1271 1272 /* Consume an M_IOCACK of the fastpath probe. */ 1273 void 1274 ill_fastpath_ack(ill_t *ill, mblk_t *mp) 1275 { 1276 mblk_t *mp1 = mp; 1277 1278 /* 1279 * If this was the first attempt turn on the fastpath probing. 1280 */ 1281 mutex_enter(&ill->ill_lock); 1282 if (ill->ill_dlpi_fastpath_state == IDS_INPROGRESS) 1283 ill->ill_dlpi_fastpath_state = IDS_OK; 1284 mutex_exit(&ill->ill_lock); 1285 1286 /* Free the M_IOCACK mblk, hold on to the data */ 1287 mp = mp->b_cont; 1288 freeb(mp1); 1289 if (mp == NULL) 1290 return; 1291 if (mp->b_cont != NULL) 1292 nce_fastpath_update(ill, mp); 1293 else 1294 ip0dbg(("ill_fastpath_ack: no b_cont\n")); 1295 freemsg(mp); 1296 } 1297 1298 /* 1299 * Throw an M_IOCTL message downstream asking "do you know fastpath?" 1300 * The data portion of the request is a dl_unitdata_req_t template for 1301 * what we would send downstream in the absence of a fastpath confirmation. 1302 */ 1303 int 1304 ill_fastpath_probe(ill_t *ill, mblk_t *dlur_mp) 1305 { 1306 struct iocblk *ioc; 1307 mblk_t *mp; 1308 1309 if (dlur_mp == NULL) 1310 return (EINVAL); 1311 1312 mutex_enter(&ill->ill_lock); 1313 switch (ill->ill_dlpi_fastpath_state) { 1314 case IDS_FAILED: 1315 /* 1316 * Driver NAKed the first fastpath ioctl - assume it doesn't 1317 * support it. 1318 */ 1319 mutex_exit(&ill->ill_lock); 1320 return (ENOTSUP); 1321 case IDS_UNKNOWN: 1322 /* This is the first probe */ 1323 ill->ill_dlpi_fastpath_state = IDS_INPROGRESS; 1324 break; 1325 default: 1326 break; 1327 } 1328 mutex_exit(&ill->ill_lock); 1329 1330 if ((mp = mkiocb(DL_IOC_HDR_INFO)) == NULL) 1331 return (EAGAIN); 1332 1333 mp->b_cont = copyb(dlur_mp); 1334 if (mp->b_cont == NULL) { 1335 freeb(mp); 1336 return (EAGAIN); 1337 } 1338 1339 ioc = (struct iocblk *)mp->b_rptr; 1340 ioc->ioc_count = msgdsize(mp->b_cont); 1341 1342 DTRACE_PROBE3(ill__dlpi, char *, "ill_fastpath_probe", 1343 char *, "DL_IOC_HDR_INFO", ill_t *, ill); 1344 putnext(ill->ill_wq, mp); 1345 return (0); 1346 } 1347 1348 void 1349 ill_capability_probe(ill_t *ill) 1350 { 1351 mblk_t *mp; 1352 1353 ASSERT(IAM_WRITER_ILL(ill)); 1354 1355 if (ill->ill_dlpi_capab_state != IDCS_UNKNOWN && 1356 ill->ill_dlpi_capab_state != IDCS_FAILED) 1357 return; 1358 1359 /* 1360 * We are starting a new cycle of capability negotiation. 1361 * Free up the capab reset messages of any previous incarnation. 1362 * We will do a fresh allocation when we get the response to our probe 1363 */ 1364 if (ill->ill_capab_reset_mp != NULL) { 1365 freemsg(ill->ill_capab_reset_mp); 1366 ill->ill_capab_reset_mp = NULL; 1367 } 1368 1369 ip1dbg(("ill_capability_probe: starting capability negotiation\n")); 1370 1371 mp = ip_dlpi_alloc(sizeof (dl_capability_req_t), DL_CAPABILITY_REQ); 1372 if (mp == NULL) 1373 return; 1374 1375 ill_capability_send(ill, mp); 1376 ill->ill_dlpi_capab_state = IDCS_PROBE_SENT; 1377 } 1378 1379 void 1380 ill_capability_reset(ill_t *ill, boolean_t reneg) 1381 { 1382 ASSERT(IAM_WRITER_ILL(ill)); 1383 1384 if (ill->ill_dlpi_capab_state != IDCS_OK) 1385 return; 1386 1387 ill->ill_dlpi_capab_state = reneg ? IDCS_RENEG : IDCS_RESET_SENT; 1388 1389 ill_capability_send(ill, ill->ill_capab_reset_mp); 1390 ill->ill_capab_reset_mp = NULL; 1391 /* 1392 * We turn off all capabilities except those pertaining to 1393 * direct function call capabilities viz. ILL_CAPAB_DLD* 1394 * which will be turned off by the corresponding reset functions. 1395 */ 1396 ill->ill_capabilities &= ~(ILL_CAPAB_HCKSUM | ILL_CAPAB_ZEROCOPY); 1397 } 1398 1399 static void 1400 ill_capability_reset_alloc(ill_t *ill) 1401 { 1402 mblk_t *mp; 1403 size_t size = 0; 1404 int err; 1405 dl_capability_req_t *capb; 1406 1407 ASSERT(IAM_WRITER_ILL(ill)); 1408 ASSERT(ill->ill_capab_reset_mp == NULL); 1409 1410 if (ILL_HCKSUM_CAPABLE(ill)) { 1411 size += sizeof (dl_capability_sub_t) + 1412 sizeof (dl_capab_hcksum_t); 1413 } 1414 1415 if (ill->ill_capabilities & ILL_CAPAB_ZEROCOPY) { 1416 size += sizeof (dl_capability_sub_t) + 1417 sizeof (dl_capab_zerocopy_t); 1418 } 1419 1420 if (ill->ill_capabilities & ILL_CAPAB_DLD) { 1421 size += sizeof (dl_capability_sub_t) + 1422 sizeof (dl_capab_dld_t); 1423 } 1424 1425 mp = allocb_wait(size + sizeof (dl_capability_req_t), BPRI_MED, 1426 STR_NOSIG, &err); 1427 1428 mp->b_datap->db_type = M_PROTO; 1429 bzero(mp->b_rptr, size + sizeof (dl_capability_req_t)); 1430 1431 capb = (dl_capability_req_t *)mp->b_rptr; 1432 capb->dl_primitive = DL_CAPABILITY_REQ; 1433 capb->dl_sub_offset = sizeof (dl_capability_req_t); 1434 capb->dl_sub_length = size; 1435 1436 mp->b_wptr += sizeof (dl_capability_req_t); 1437 1438 /* 1439 * Each handler fills in the corresponding dl_capability_sub_t 1440 * inside the mblk, 1441 */ 1442 ill_capability_hcksum_reset_fill(ill, mp); 1443 ill_capability_zerocopy_reset_fill(ill, mp); 1444 ill_capability_dld_reset_fill(ill, mp); 1445 1446 ill->ill_capab_reset_mp = mp; 1447 } 1448 1449 static void 1450 ill_capability_id_ack(ill_t *ill, mblk_t *mp, dl_capability_sub_t *outers) 1451 { 1452 dl_capab_id_t *id_ic; 1453 uint_t sub_dl_cap = outers->dl_cap; 1454 dl_capability_sub_t *inners; 1455 uint8_t *capend; 1456 1457 ASSERT(sub_dl_cap == DL_CAPAB_ID_WRAPPER); 1458 1459 /* 1460 * Note: range checks here are not absolutely sufficient to 1461 * make us robust against malformed messages sent by drivers; 1462 * this is in keeping with the rest of IP's dlpi handling. 1463 * (Remember, it's coming from something else in the kernel 1464 * address space) 1465 */ 1466 1467 capend = (uint8_t *)(outers + 1) + outers->dl_length; 1468 if (capend > mp->b_wptr) { 1469 cmn_err(CE_WARN, "ill_capability_id_ack: " 1470 "malformed sub-capability too long for mblk"); 1471 return; 1472 } 1473 1474 id_ic = (dl_capab_id_t *)(outers + 1); 1475 1476 if (outers->dl_length < sizeof (*id_ic) || 1477 (inners = &id_ic->id_subcap, 1478 inners->dl_length > (outers->dl_length - sizeof (*inners)))) { 1479 cmn_err(CE_WARN, "ill_capability_id_ack: malformed " 1480 "encapsulated capab type %d too long for mblk", 1481 inners->dl_cap); 1482 return; 1483 } 1484 1485 if (!dlcapabcheckqid(&id_ic->id_mid, ill->ill_lmod_rq)) { 1486 ip1dbg(("ill_capability_id_ack: mid token for capab type %d " 1487 "isn't as expected; pass-thru module(s) detected, " 1488 "discarding capability\n", inners->dl_cap)); 1489 return; 1490 } 1491 1492 /* Process the encapsulated sub-capability */ 1493 ill_capability_dispatch(ill, mp, inners); 1494 } 1495 1496 static void 1497 ill_capability_dld_reset_fill(ill_t *ill, mblk_t *mp) 1498 { 1499 dl_capability_sub_t *dl_subcap; 1500 1501 if (!(ill->ill_capabilities & ILL_CAPAB_DLD)) 1502 return; 1503 1504 /* 1505 * The dl_capab_dld_t that follows the dl_capability_sub_t is not 1506 * initialized below since it is not used by DLD. 1507 */ 1508 dl_subcap = (dl_capability_sub_t *)mp->b_wptr; 1509 dl_subcap->dl_cap = DL_CAPAB_DLD; 1510 dl_subcap->dl_length = sizeof (dl_capab_dld_t); 1511 1512 mp->b_wptr += sizeof (dl_capability_sub_t) + sizeof (dl_capab_dld_t); 1513 } 1514 1515 static void 1516 ill_capability_dispatch(ill_t *ill, mblk_t *mp, dl_capability_sub_t *subp) 1517 { 1518 /* 1519 * If no ipif was brought up over this ill, this DL_CAPABILITY_REQ/ACK 1520 * is only to get the VRRP capability. 1521 * 1522 * Note that we cannot check ill_ipif_up_count here since 1523 * ill_ipif_up_count is only incremented when the resolver is setup. 1524 * That is done asynchronously, and can race with this function. 1525 */ 1526 if (!ill->ill_dl_up) { 1527 if (subp->dl_cap == DL_CAPAB_VRRP) 1528 ill_capability_vrrp_ack(ill, mp, subp); 1529 return; 1530 } 1531 1532 switch (subp->dl_cap) { 1533 case DL_CAPAB_HCKSUM: 1534 ill_capability_hcksum_ack(ill, mp, subp); 1535 break; 1536 case DL_CAPAB_ZEROCOPY: 1537 ill_capability_zerocopy_ack(ill, mp, subp); 1538 break; 1539 case DL_CAPAB_DLD: 1540 ill_capability_dld_ack(ill, mp, subp); 1541 break; 1542 case DL_CAPAB_VRRP: 1543 break; 1544 default: 1545 ip1dbg(("ill_capability_dispatch: unknown capab type %d\n", 1546 subp->dl_cap)); 1547 } 1548 } 1549 1550 /* 1551 * Process the vrrp capability received from a DLS Provider. isub must point 1552 * to the sub-capability (DL_CAPAB_VRRP) of a DL_CAPABILITY_ACK message. 1553 */ 1554 static void 1555 ill_capability_vrrp_ack(ill_t *ill, mblk_t *mp, dl_capability_sub_t *isub) 1556 { 1557 dl_capab_vrrp_t *vrrp; 1558 uint_t sub_dl_cap = isub->dl_cap; 1559 uint8_t *capend; 1560 1561 ASSERT(IAM_WRITER_ILL(ill)); 1562 ASSERT(sub_dl_cap == DL_CAPAB_VRRP); 1563 1564 /* 1565 * Note: range checks here are not absolutely sufficient to 1566 * make us robust against malformed messages sent by drivers; 1567 * this is in keeping with the rest of IP's dlpi handling. 1568 * (Remember, it's coming from something else in the kernel 1569 * address space) 1570 */ 1571 capend = (uint8_t *)(isub + 1) + isub->dl_length; 1572 if (capend > mp->b_wptr) { 1573 cmn_err(CE_WARN, "ill_capability_vrrp_ack: " 1574 "malformed sub-capability too long for mblk"); 1575 return; 1576 } 1577 vrrp = (dl_capab_vrrp_t *)(isub + 1); 1578 1579 /* 1580 * Compare the IP address family and set ILLF_VRRP for the right ill. 1581 */ 1582 if ((vrrp->vrrp_af == AF_INET6 && ill->ill_isv6) || 1583 (vrrp->vrrp_af == AF_INET && !ill->ill_isv6)) { 1584 ill->ill_flags |= ILLF_VRRP; 1585 } 1586 } 1587 1588 /* 1589 * Process a hardware checksum offload capability negotiation ack received 1590 * from a DLS Provider.isub must point to the sub-capability (DL_CAPAB_HCKSUM) 1591 * of a DL_CAPABILITY_ACK message. 1592 */ 1593 static void 1594 ill_capability_hcksum_ack(ill_t *ill, mblk_t *mp, dl_capability_sub_t *isub) 1595 { 1596 dl_capability_req_t *ocap; 1597 dl_capab_hcksum_t *ihck, *ohck; 1598 ill_hcksum_capab_t **ill_hcksum; 1599 mblk_t *nmp = NULL; 1600 uint_t sub_dl_cap = isub->dl_cap; 1601 uint8_t *capend; 1602 1603 ASSERT(sub_dl_cap == DL_CAPAB_HCKSUM); 1604 1605 ill_hcksum = (ill_hcksum_capab_t **)&ill->ill_hcksum_capab; 1606 1607 /* 1608 * Note: range checks here are not absolutely sufficient to 1609 * make us robust against malformed messages sent by drivers; 1610 * this is in keeping with the rest of IP's dlpi handling. 1611 * (Remember, it's coming from something else in the kernel 1612 * address space) 1613 */ 1614 capend = (uint8_t *)(isub + 1) + isub->dl_length; 1615 if (capend > mp->b_wptr) { 1616 cmn_err(CE_WARN, "ill_capability_hcksum_ack: " 1617 "malformed sub-capability too long for mblk"); 1618 return; 1619 } 1620 1621 /* 1622 * There are two types of acks we process here: 1623 * 1. acks in reply to a (first form) generic capability req 1624 * (no ENABLE flag set) 1625 * 2. acks in reply to a ENABLE capability req. 1626 * (ENABLE flag set) 1627 */ 1628 ihck = (dl_capab_hcksum_t *)(isub + 1); 1629 1630 if (ihck->hcksum_version != HCKSUM_VERSION_1) { 1631 cmn_err(CE_CONT, "ill_capability_hcksum_ack: " 1632 "unsupported hardware checksum " 1633 "sub-capability (version %d, expected %d)", 1634 ihck->hcksum_version, HCKSUM_VERSION_1); 1635 return; 1636 } 1637 1638 if (!dlcapabcheckqid(&ihck->hcksum_mid, ill->ill_lmod_rq)) { 1639 ip1dbg(("ill_capability_hcksum_ack: mid token for hardware " 1640 "checksum capability isn't as expected; pass-thru " 1641 "module(s) detected, discarding capability\n")); 1642 return; 1643 } 1644 1645 #define CURR_HCKSUM_CAPAB \ 1646 (HCKSUM_INET_PARTIAL | HCKSUM_INET_FULL_V4 | \ 1647 HCKSUM_INET_FULL_V6 | HCKSUM_IPHDRCKSUM) 1648 1649 if ((ihck->hcksum_txflags & HCKSUM_ENABLE) && 1650 (ihck->hcksum_txflags & CURR_HCKSUM_CAPAB)) { 1651 /* do ENABLE processing */ 1652 if (*ill_hcksum == NULL) { 1653 *ill_hcksum = kmem_zalloc(sizeof (ill_hcksum_capab_t), 1654 KM_NOSLEEP); 1655 1656 if (*ill_hcksum == NULL) { 1657 cmn_err(CE_WARN, "ill_capability_hcksum_ack: " 1658 "could not enable hcksum version %d " 1659 "for %s (ENOMEM)\n", HCKSUM_CURRENT_VERSION, 1660 ill->ill_name); 1661 return; 1662 } 1663 } 1664 1665 (*ill_hcksum)->ill_hcksum_version = ihck->hcksum_version; 1666 (*ill_hcksum)->ill_hcksum_txflags = ihck->hcksum_txflags; 1667 ill->ill_capabilities |= ILL_CAPAB_HCKSUM; 1668 ip1dbg(("ill_capability_hcksum_ack: interface %s " 1669 "has enabled hardware checksumming\n ", 1670 ill->ill_name)); 1671 } else if (ihck->hcksum_txflags & CURR_HCKSUM_CAPAB) { 1672 /* 1673 * Enabling hardware checksum offload 1674 * Currently IP supports {TCP,UDP}/IPv4 1675 * partial and full cksum offload and 1676 * IPv4 header checksum offload. 1677 * Allocate new mblk which will 1678 * contain a new capability request 1679 * to enable hardware checksum offload. 1680 */ 1681 uint_t size; 1682 uchar_t *rptr; 1683 1684 size = sizeof (dl_capability_req_t) + 1685 sizeof (dl_capability_sub_t) + isub->dl_length; 1686 1687 if ((nmp = ip_dlpi_alloc(size, DL_CAPABILITY_REQ)) == NULL) { 1688 cmn_err(CE_WARN, "ill_capability_hcksum_ack: " 1689 "could not enable hardware cksum for %s (ENOMEM)\n", 1690 ill->ill_name); 1691 return; 1692 } 1693 1694 rptr = nmp->b_rptr; 1695 /* initialize dl_capability_req_t */ 1696 ocap = (dl_capability_req_t *)nmp->b_rptr; 1697 ocap->dl_sub_offset = 1698 sizeof (dl_capability_req_t); 1699 ocap->dl_sub_length = 1700 sizeof (dl_capability_sub_t) + 1701 isub->dl_length; 1702 nmp->b_rptr += sizeof (dl_capability_req_t); 1703 1704 /* initialize dl_capability_sub_t */ 1705 bcopy(isub, nmp->b_rptr, sizeof (*isub)); 1706 nmp->b_rptr += sizeof (*isub); 1707 1708 /* initialize dl_capab_hcksum_t */ 1709 ohck = (dl_capab_hcksum_t *)nmp->b_rptr; 1710 bcopy(ihck, ohck, sizeof (*ihck)); 1711 1712 nmp->b_rptr = rptr; 1713 ASSERT(nmp->b_wptr == (nmp->b_rptr + size)); 1714 1715 /* Set ENABLE flag */ 1716 ohck->hcksum_txflags &= CURR_HCKSUM_CAPAB; 1717 ohck->hcksum_txflags |= HCKSUM_ENABLE; 1718 1719 /* 1720 * nmp points to a DL_CAPABILITY_REQ message to enable 1721 * hardware checksum acceleration. 1722 */ 1723 ill_capability_send(ill, nmp); 1724 } else { 1725 ip1dbg(("ill_capability_hcksum_ack: interface %s has " 1726 "advertised %x hardware checksum capability flags\n", 1727 ill->ill_name, ihck->hcksum_txflags)); 1728 } 1729 } 1730 1731 static void 1732 ill_capability_hcksum_reset_fill(ill_t *ill, mblk_t *mp) 1733 { 1734 dl_capab_hcksum_t *hck_subcap; 1735 dl_capability_sub_t *dl_subcap; 1736 1737 if (!ILL_HCKSUM_CAPABLE(ill)) 1738 return; 1739 1740 ASSERT(ill->ill_hcksum_capab != NULL); 1741 1742 dl_subcap = (dl_capability_sub_t *)mp->b_wptr; 1743 dl_subcap->dl_cap = DL_CAPAB_HCKSUM; 1744 dl_subcap->dl_length = sizeof (*hck_subcap); 1745 1746 hck_subcap = (dl_capab_hcksum_t *)(dl_subcap + 1); 1747 hck_subcap->hcksum_version = ill->ill_hcksum_capab->ill_hcksum_version; 1748 hck_subcap->hcksum_txflags = 0; 1749 1750 mp->b_wptr += sizeof (*dl_subcap) + sizeof (*hck_subcap); 1751 } 1752 1753 static void 1754 ill_capability_zerocopy_ack(ill_t *ill, mblk_t *mp, dl_capability_sub_t *isub) 1755 { 1756 mblk_t *nmp = NULL; 1757 dl_capability_req_t *oc; 1758 dl_capab_zerocopy_t *zc_ic, *zc_oc; 1759 ill_zerocopy_capab_t **ill_zerocopy_capab; 1760 uint_t sub_dl_cap = isub->dl_cap; 1761 uint8_t *capend; 1762 1763 ASSERT(sub_dl_cap == DL_CAPAB_ZEROCOPY); 1764 1765 ill_zerocopy_capab = (ill_zerocopy_capab_t **)&ill->ill_zerocopy_capab; 1766 1767 /* 1768 * Note: range checks here are not absolutely sufficient to 1769 * make us robust against malformed messages sent by drivers; 1770 * this is in keeping with the rest of IP's dlpi handling. 1771 * (Remember, it's coming from something else in the kernel 1772 * address space) 1773 */ 1774 capend = (uint8_t *)(isub + 1) + isub->dl_length; 1775 if (capend > mp->b_wptr) { 1776 cmn_err(CE_WARN, "ill_capability_zerocopy_ack: " 1777 "malformed sub-capability too long for mblk"); 1778 return; 1779 } 1780 1781 zc_ic = (dl_capab_zerocopy_t *)(isub + 1); 1782 if (zc_ic->zerocopy_version != ZEROCOPY_VERSION_1) { 1783 cmn_err(CE_CONT, "ill_capability_zerocopy_ack: " 1784 "unsupported ZEROCOPY sub-capability (version %d, " 1785 "expected %d)", zc_ic->zerocopy_version, 1786 ZEROCOPY_VERSION_1); 1787 return; 1788 } 1789 1790 if (!dlcapabcheckqid(&zc_ic->zerocopy_mid, ill->ill_lmod_rq)) { 1791 ip1dbg(("ill_capability_zerocopy_ack: mid token for zerocopy " 1792 "capability isn't as expected; pass-thru module(s) " 1793 "detected, discarding capability\n")); 1794 return; 1795 } 1796 1797 if ((zc_ic->zerocopy_flags & DL_CAPAB_VMSAFE_MEM) != 0) { 1798 if (*ill_zerocopy_capab == NULL) { 1799 *ill_zerocopy_capab = 1800 kmem_zalloc(sizeof (ill_zerocopy_capab_t), 1801 KM_NOSLEEP); 1802 1803 if (*ill_zerocopy_capab == NULL) { 1804 cmn_err(CE_WARN, "ill_capability_zerocopy_ack: " 1805 "could not enable Zero-copy version %d " 1806 "for %s (ENOMEM)\n", ZEROCOPY_VERSION_1, 1807 ill->ill_name); 1808 return; 1809 } 1810 } 1811 1812 ip1dbg(("ill_capability_zerocopy_ack: interface %s " 1813 "supports Zero-copy version %d\n", ill->ill_name, 1814 ZEROCOPY_VERSION_1)); 1815 1816 (*ill_zerocopy_capab)->ill_zerocopy_version = 1817 zc_ic->zerocopy_version; 1818 (*ill_zerocopy_capab)->ill_zerocopy_flags = 1819 zc_ic->zerocopy_flags; 1820 1821 ill->ill_capabilities |= ILL_CAPAB_ZEROCOPY; 1822 } else { 1823 uint_t size; 1824 uchar_t *rptr; 1825 1826 size = sizeof (dl_capability_req_t) + 1827 sizeof (dl_capability_sub_t) + 1828 sizeof (dl_capab_zerocopy_t); 1829 1830 if ((nmp = ip_dlpi_alloc(size, DL_CAPABILITY_REQ)) == NULL) { 1831 cmn_err(CE_WARN, "ill_capability_zerocopy_ack: " 1832 "could not enable zerocopy for %s (ENOMEM)\n", 1833 ill->ill_name); 1834 return; 1835 } 1836 1837 rptr = nmp->b_rptr; 1838 /* initialize dl_capability_req_t */ 1839 oc = (dl_capability_req_t *)rptr; 1840 oc->dl_sub_offset = sizeof (dl_capability_req_t); 1841 oc->dl_sub_length = sizeof (dl_capability_sub_t) + 1842 sizeof (dl_capab_zerocopy_t); 1843 rptr += sizeof (dl_capability_req_t); 1844 1845 /* initialize dl_capability_sub_t */ 1846 bcopy(isub, rptr, sizeof (*isub)); 1847 rptr += sizeof (*isub); 1848 1849 /* initialize dl_capab_zerocopy_t */ 1850 zc_oc = (dl_capab_zerocopy_t *)rptr; 1851 *zc_oc = *zc_ic; 1852 1853 ip1dbg(("ill_capability_zerocopy_ack: asking interface %s " 1854 "to enable zero-copy version %d\n", ill->ill_name, 1855 ZEROCOPY_VERSION_1)); 1856 1857 /* set VMSAFE_MEM flag */ 1858 zc_oc->zerocopy_flags |= DL_CAPAB_VMSAFE_MEM; 1859 1860 /* nmp points to a DL_CAPABILITY_REQ message to enable zcopy */ 1861 ill_capability_send(ill, nmp); 1862 } 1863 } 1864 1865 static void 1866 ill_capability_zerocopy_reset_fill(ill_t *ill, mblk_t *mp) 1867 { 1868 dl_capab_zerocopy_t *zerocopy_subcap; 1869 dl_capability_sub_t *dl_subcap; 1870 1871 if (!(ill->ill_capabilities & ILL_CAPAB_ZEROCOPY)) 1872 return; 1873 1874 ASSERT(ill->ill_zerocopy_capab != NULL); 1875 1876 dl_subcap = (dl_capability_sub_t *)mp->b_wptr; 1877 dl_subcap->dl_cap = DL_CAPAB_ZEROCOPY; 1878 dl_subcap->dl_length = sizeof (*zerocopy_subcap); 1879 1880 zerocopy_subcap = (dl_capab_zerocopy_t *)(dl_subcap + 1); 1881 zerocopy_subcap->zerocopy_version = 1882 ill->ill_zerocopy_capab->ill_zerocopy_version; 1883 zerocopy_subcap->zerocopy_flags = 0; 1884 1885 mp->b_wptr += sizeof (*dl_subcap) + sizeof (*zerocopy_subcap); 1886 } 1887 1888 /* 1889 * DLD capability 1890 * Refer to dld.h for more information regarding the purpose and usage 1891 * of this capability. 1892 */ 1893 static void 1894 ill_capability_dld_ack(ill_t *ill, mblk_t *mp, dl_capability_sub_t *isub) 1895 { 1896 dl_capab_dld_t *dld_ic, dld; 1897 uint_t sub_dl_cap = isub->dl_cap; 1898 uint8_t *capend; 1899 ill_dld_capab_t *idc; 1900 1901 ASSERT(IAM_WRITER_ILL(ill)); 1902 ASSERT(sub_dl_cap == DL_CAPAB_DLD); 1903 1904 /* 1905 * Note: range checks here are not absolutely sufficient to 1906 * make us robust against malformed messages sent by drivers; 1907 * this is in keeping with the rest of IP's dlpi handling. 1908 * (Remember, it's coming from something else in the kernel 1909 * address space) 1910 */ 1911 capend = (uint8_t *)(isub + 1) + isub->dl_length; 1912 if (capend > mp->b_wptr) { 1913 cmn_err(CE_WARN, "ill_capability_dld_ack: " 1914 "malformed sub-capability too long for mblk"); 1915 return; 1916 } 1917 dld_ic = (dl_capab_dld_t *)(isub + 1); 1918 if (dld_ic->dld_version != DLD_CURRENT_VERSION) { 1919 cmn_err(CE_CONT, "ill_capability_dld_ack: " 1920 "unsupported DLD sub-capability (version %d, " 1921 "expected %d)", dld_ic->dld_version, 1922 DLD_CURRENT_VERSION); 1923 return; 1924 } 1925 if (!dlcapabcheckqid(&dld_ic->dld_mid, ill->ill_lmod_rq)) { 1926 ip1dbg(("ill_capability_dld_ack: mid token for dld " 1927 "capability isn't as expected; pass-thru module(s) " 1928 "detected, discarding capability\n")); 1929 return; 1930 } 1931 1932 /* 1933 * Copy locally to ensure alignment. 1934 */ 1935 bcopy(dld_ic, &dld, sizeof (dl_capab_dld_t)); 1936 1937 if ((idc = ill->ill_dld_capab) == NULL) { 1938 idc = kmem_zalloc(sizeof (ill_dld_capab_t), KM_NOSLEEP); 1939 if (idc == NULL) { 1940 cmn_err(CE_WARN, "ill_capability_dld_ack: " 1941 "could not enable DLD version %d " 1942 "for %s (ENOMEM)\n", DLD_CURRENT_VERSION, 1943 ill->ill_name); 1944 return; 1945 } 1946 ill->ill_dld_capab = idc; 1947 } 1948 idc->idc_capab_df = (ip_capab_func_t)dld.dld_capab; 1949 idc->idc_capab_dh = (void *)dld.dld_capab_handle; 1950 ip1dbg(("ill_capability_dld_ack: interface %s " 1951 "supports DLD version %d\n", ill->ill_name, DLD_CURRENT_VERSION)); 1952 1953 ill_capability_dld_enable(ill); 1954 } 1955 1956 /* 1957 * Typically capability negotiation between IP and the driver happens via 1958 * DLPI message exchange. However GLD also offers a direct function call 1959 * mechanism to exchange the DLD_DIRECT_CAPAB and DLD_POLL_CAPAB capabilities, 1960 * But arbitrary function calls into IP or GLD are not permitted, since both 1961 * of them are protected by their own perimeter mechanism. The perimeter can 1962 * be viewed as a coarse lock or serialization mechanism. The hierarchy of 1963 * these perimeters is IP -> MAC. Thus for example to enable the squeue 1964 * polling, IP needs to enter its perimeter, then call ill_mac_perim_enter 1965 * to enter the mac perimeter and then do the direct function calls into 1966 * GLD to enable squeue polling. The ring related callbacks from the mac into 1967 * the stack to add, bind, quiesce, restart or cleanup a ring are all 1968 * protected by the mac perimeter. 1969 */ 1970 static void 1971 ill_mac_perim_enter(ill_t *ill, mac_perim_handle_t *mphp) 1972 { 1973 ill_dld_capab_t *idc = ill->ill_dld_capab; 1974 int err; 1975 1976 err = idc->idc_capab_df(idc->idc_capab_dh, DLD_CAPAB_PERIM, mphp, 1977 DLD_ENABLE); 1978 ASSERT(err == 0); 1979 } 1980 1981 static void 1982 ill_mac_perim_exit(ill_t *ill, mac_perim_handle_t mph) 1983 { 1984 ill_dld_capab_t *idc = ill->ill_dld_capab; 1985 int err; 1986 1987 err = idc->idc_capab_df(idc->idc_capab_dh, DLD_CAPAB_PERIM, mph, 1988 DLD_DISABLE); 1989 ASSERT(err == 0); 1990 } 1991 1992 boolean_t 1993 ill_mac_perim_held(ill_t *ill) 1994 { 1995 ill_dld_capab_t *idc = ill->ill_dld_capab; 1996 1997 return (idc->idc_capab_df(idc->idc_capab_dh, DLD_CAPAB_PERIM, NULL, 1998 DLD_QUERY)); 1999 } 2000 2001 static void 2002 ill_capability_direct_enable(ill_t *ill) 2003 { 2004 ill_dld_capab_t *idc = ill->ill_dld_capab; 2005 ill_dld_direct_t *idd = &idc->idc_direct; 2006 dld_capab_direct_t direct; 2007 int rc; 2008 2009 ASSERT(!ill->ill_isv6 && IAM_WRITER_ILL(ill)); 2010 2011 bzero(&direct, sizeof (direct)); 2012 direct.di_rx_cf = (uintptr_t)ip_input; 2013 direct.di_rx_ch = ill; 2014 2015 rc = idc->idc_capab_df(idc->idc_capab_dh, DLD_CAPAB_DIRECT, &direct, 2016 DLD_ENABLE); 2017 if (rc == 0) { 2018 idd->idd_tx_df = (ip_dld_tx_t)direct.di_tx_df; 2019 idd->idd_tx_dh = direct.di_tx_dh; 2020 idd->idd_tx_cb_df = (ip_dld_callb_t)direct.di_tx_cb_df; 2021 idd->idd_tx_cb_dh = direct.di_tx_cb_dh; 2022 idd->idd_tx_fctl_df = (ip_dld_fctl_t)direct.di_tx_fctl_df; 2023 idd->idd_tx_fctl_dh = direct.di_tx_fctl_dh; 2024 ASSERT(idd->idd_tx_cb_df != NULL); 2025 ASSERT(idd->idd_tx_fctl_df != NULL); 2026 ASSERT(idd->idd_tx_df != NULL); 2027 /* 2028 * One time registration of flow enable callback function 2029 */ 2030 ill->ill_flownotify_mh = idd->idd_tx_cb_df(idd->idd_tx_cb_dh, 2031 ill_flow_enable, ill); 2032 ill->ill_capabilities |= ILL_CAPAB_DLD_DIRECT; 2033 DTRACE_PROBE1(direct_on, (ill_t *), ill); 2034 } else { 2035 cmn_err(CE_WARN, "warning: could not enable DIRECT " 2036 "capability, rc = %d\n", rc); 2037 DTRACE_PROBE2(direct_off, (ill_t *), ill, (int), rc); 2038 } 2039 } 2040 2041 static void 2042 ill_capability_poll_enable(ill_t *ill) 2043 { 2044 ill_dld_capab_t *idc = ill->ill_dld_capab; 2045 dld_capab_poll_t poll; 2046 int rc; 2047 2048 ASSERT(!ill->ill_isv6 && IAM_WRITER_ILL(ill)); 2049 2050 bzero(&poll, sizeof (poll)); 2051 poll.poll_ring_add_cf = (uintptr_t)ip_squeue_add_ring; 2052 poll.poll_ring_remove_cf = (uintptr_t)ip_squeue_clean_ring; 2053 poll.poll_ring_quiesce_cf = (uintptr_t)ip_squeue_quiesce_ring; 2054 poll.poll_ring_restart_cf = (uintptr_t)ip_squeue_restart_ring; 2055 poll.poll_ring_bind_cf = (uintptr_t)ip_squeue_bind_ring; 2056 poll.poll_ring_ch = ill; 2057 rc = idc->idc_capab_df(idc->idc_capab_dh, DLD_CAPAB_POLL, &poll, 2058 DLD_ENABLE); 2059 if (rc == 0) { 2060 ill->ill_capabilities |= ILL_CAPAB_DLD_POLL; 2061 DTRACE_PROBE1(poll_on, (ill_t *), ill); 2062 } else { 2063 ip1dbg(("warning: could not enable POLL " 2064 "capability, rc = %d\n", rc)); 2065 DTRACE_PROBE2(poll_off, (ill_t *), ill, (int), rc); 2066 } 2067 } 2068 2069 /* 2070 * Enable the LSO capability. 2071 */ 2072 static void 2073 ill_capability_lso_enable(ill_t *ill) 2074 { 2075 ill_dld_capab_t *idc = ill->ill_dld_capab; 2076 dld_capab_lso_t lso; 2077 int rc; 2078 2079 ASSERT(!ill->ill_isv6 && IAM_WRITER_ILL(ill)); 2080 2081 if (ill->ill_lso_capab == NULL) { 2082 ill->ill_lso_capab = kmem_zalloc(sizeof (ill_lso_capab_t), 2083 KM_NOSLEEP); 2084 if (ill->ill_lso_capab == NULL) { 2085 cmn_err(CE_WARN, "ill_capability_lso_enable: " 2086 "could not enable LSO for %s (ENOMEM)\n", 2087 ill->ill_name); 2088 return; 2089 } 2090 } 2091 2092 bzero(&lso, sizeof (lso)); 2093 if ((rc = idc->idc_capab_df(idc->idc_capab_dh, DLD_CAPAB_LSO, &lso, 2094 DLD_ENABLE)) == 0) { 2095 ill->ill_lso_capab->ill_lso_flags = lso.lso_flags; 2096 ill->ill_lso_capab->ill_lso_max = lso.lso_max; 2097 ill->ill_capabilities |= ILL_CAPAB_LSO; 2098 ip1dbg(("ill_capability_lso_enable: interface %s " 2099 "has enabled LSO\n ", ill->ill_name)); 2100 } else { 2101 kmem_free(ill->ill_lso_capab, sizeof (ill_lso_capab_t)); 2102 ill->ill_lso_capab = NULL; 2103 DTRACE_PROBE2(lso_off, (ill_t *), ill, (int), rc); 2104 } 2105 } 2106 2107 static void 2108 ill_capability_dld_enable(ill_t *ill) 2109 { 2110 mac_perim_handle_t mph; 2111 2112 ASSERT(IAM_WRITER_ILL(ill)); 2113 2114 if (ill->ill_isv6) 2115 return; 2116 2117 ill_mac_perim_enter(ill, &mph); 2118 if (!ill->ill_isv6) { 2119 ill_capability_direct_enable(ill); 2120 ill_capability_poll_enable(ill); 2121 ill_capability_lso_enable(ill); 2122 } 2123 ill->ill_capabilities |= ILL_CAPAB_DLD; 2124 ill_mac_perim_exit(ill, mph); 2125 } 2126 2127 static void 2128 ill_capability_dld_disable(ill_t *ill) 2129 { 2130 ill_dld_capab_t *idc; 2131 ill_dld_direct_t *idd; 2132 mac_perim_handle_t mph; 2133 2134 ASSERT(IAM_WRITER_ILL(ill)); 2135 2136 if (!(ill->ill_capabilities & ILL_CAPAB_DLD)) 2137 return; 2138 2139 ill_mac_perim_enter(ill, &mph); 2140 2141 idc = ill->ill_dld_capab; 2142 if ((ill->ill_capabilities & ILL_CAPAB_DLD_DIRECT) != 0) { 2143 /* 2144 * For performance we avoid locks in the transmit data path 2145 * and don't maintain a count of the number of threads using 2146 * direct calls. Thus some threads could be using direct 2147 * transmit calls to GLD, even after the capability mechanism 2148 * turns it off. This is still safe since the handles used in 2149 * the direct calls continue to be valid until the unplumb is 2150 * completed. Remove the callback that was added (1-time) at 2151 * capab enable time. 2152 */ 2153 mutex_enter(&ill->ill_lock); 2154 ill->ill_capabilities &= ~ILL_CAPAB_DLD_DIRECT; 2155 mutex_exit(&ill->ill_lock); 2156 if (ill->ill_flownotify_mh != NULL) { 2157 idd = &idc->idc_direct; 2158 idd->idd_tx_cb_df(idd->idd_tx_cb_dh, NULL, 2159 ill->ill_flownotify_mh); 2160 ill->ill_flownotify_mh = NULL; 2161 } 2162 (void) idc->idc_capab_df(idc->idc_capab_dh, DLD_CAPAB_DIRECT, 2163 NULL, DLD_DISABLE); 2164 } 2165 2166 if ((ill->ill_capabilities & ILL_CAPAB_DLD_POLL) != 0) { 2167 ill->ill_capabilities &= ~ILL_CAPAB_DLD_POLL; 2168 ip_squeue_clean_all(ill); 2169 (void) idc->idc_capab_df(idc->idc_capab_dh, DLD_CAPAB_POLL, 2170 NULL, DLD_DISABLE); 2171 } 2172 2173 if ((ill->ill_capabilities & ILL_CAPAB_LSO) != 0) { 2174 ASSERT(ill->ill_lso_capab != NULL); 2175 /* 2176 * Clear the capability flag for LSO but retain the 2177 * ill_lso_capab structure since it's possible that another 2178 * thread is still referring to it. The structure only gets 2179 * deallocated when we destroy the ill. 2180 */ 2181 2182 ill->ill_capabilities &= ~ILL_CAPAB_LSO; 2183 (void) idc->idc_capab_df(idc->idc_capab_dh, DLD_CAPAB_LSO, 2184 NULL, DLD_DISABLE); 2185 } 2186 2187 ill->ill_capabilities &= ~ILL_CAPAB_DLD; 2188 ill_mac_perim_exit(ill, mph); 2189 } 2190 2191 /* 2192 * Capability Negotiation protocol 2193 * 2194 * We don't wait for DLPI capability operations to finish during interface 2195 * bringup or teardown. Doing so would introduce more asynchrony and the 2196 * interface up/down operations will need multiple return and restarts. 2197 * Instead the 'ipsq_current_ipif' of the ipsq is not cleared as long as 2198 * the 'ill_dlpi_deferred' chain is non-empty. This ensures that the next 2199 * exclusive operation won't start until the DLPI operations of the previous 2200 * exclusive operation complete. 2201 * 2202 * The capability state machine is shown below. 2203 * 2204 * state next state event, action 2205 * 2206 * IDCS_UNKNOWN IDCS_PROBE_SENT ill_capability_probe 2207 * IDCS_PROBE_SENT IDCS_OK ill_capability_ack 2208 * IDCS_PROBE_SENT IDCS_FAILED ip_rput_dlpi_writer (nack) 2209 * IDCS_OK IDCS_RENEG Receipt of DL_NOTE_CAPAB_RENEG 2210 * IDCS_OK IDCS_RESET_SENT ill_capability_reset 2211 * IDCS_RESET_SENT IDCS_UNKNOWN ill_capability_ack_thr 2212 * IDCS_RENEG IDCS_PROBE_SENT ill_capability_ack_thr -> 2213 * ill_capability_probe. 2214 */ 2215 2216 /* 2217 * Dedicated thread started from ip_stack_init that handles capability 2218 * disable. This thread ensures the taskq dispatch does not fail by waiting 2219 * for resources using TQ_SLEEP. The taskq mechanism is used to ensure 2220 * that direct calls to DLD are done in a cv_waitable context. 2221 */ 2222 void 2223 ill_taskq_dispatch(ip_stack_t *ipst) 2224 { 2225 callb_cpr_t cprinfo; 2226 char name[64]; 2227 mblk_t *mp; 2228 2229 (void) snprintf(name, sizeof (name), "ill_taskq_dispatch_%d", 2230 ipst->ips_netstack->netstack_stackid); 2231 CALLB_CPR_INIT(&cprinfo, &ipst->ips_capab_taskq_lock, callb_generic_cpr, 2232 name); 2233 mutex_enter(&ipst->ips_capab_taskq_lock); 2234 2235 for (;;) { 2236 mp = ipst->ips_capab_taskq_head; 2237 while (mp != NULL) { 2238 ipst->ips_capab_taskq_head = mp->b_next; 2239 if (ipst->ips_capab_taskq_head == NULL) 2240 ipst->ips_capab_taskq_tail = NULL; 2241 mutex_exit(&ipst->ips_capab_taskq_lock); 2242 mp->b_next = NULL; 2243 2244 VERIFY(taskq_dispatch(system_taskq, 2245 ill_capability_ack_thr, mp, TQ_SLEEP) != 0); 2246 mutex_enter(&ipst->ips_capab_taskq_lock); 2247 mp = ipst->ips_capab_taskq_head; 2248 } 2249 2250 if (ipst->ips_capab_taskq_quit) 2251 break; 2252 CALLB_CPR_SAFE_BEGIN(&cprinfo); 2253 cv_wait(&ipst->ips_capab_taskq_cv, &ipst->ips_capab_taskq_lock); 2254 CALLB_CPR_SAFE_END(&cprinfo, &ipst->ips_capab_taskq_lock); 2255 } 2256 VERIFY(ipst->ips_capab_taskq_head == NULL); 2257 VERIFY(ipst->ips_capab_taskq_tail == NULL); 2258 CALLB_CPR_EXIT(&cprinfo); 2259 thread_exit(); 2260 } 2261 2262 /* 2263 * Consume a new-style hardware capabilities negotiation ack. 2264 * Called via taskq on receipt of DL_CAPABILITY_ACK. 2265 */ 2266 static void 2267 ill_capability_ack_thr(void *arg) 2268 { 2269 mblk_t *mp = arg; 2270 dl_capability_ack_t *capp; 2271 dl_capability_sub_t *subp, *endp; 2272 ill_t *ill; 2273 boolean_t reneg; 2274 2275 ill = (ill_t *)mp->b_prev; 2276 mp->b_prev = NULL; 2277 2278 VERIFY(ipsq_enter(ill, B_FALSE, CUR_OP) == B_TRUE); 2279 2280 if (ill->ill_dlpi_capab_state == IDCS_RESET_SENT || 2281 ill->ill_dlpi_capab_state == IDCS_RENEG) { 2282 /* 2283 * We have received the ack for our DL_CAPAB reset request. 2284 * There isnt' anything in the message that needs processing. 2285 * All message based capabilities have been disabled, now 2286 * do the function call based capability disable. 2287 */ 2288 reneg = ill->ill_dlpi_capab_state == IDCS_RENEG; 2289 ill_capability_dld_disable(ill); 2290 ill->ill_dlpi_capab_state = IDCS_UNKNOWN; 2291 if (reneg) 2292 ill_capability_probe(ill); 2293 goto done; 2294 } 2295 2296 if (ill->ill_dlpi_capab_state == IDCS_PROBE_SENT) 2297 ill->ill_dlpi_capab_state = IDCS_OK; 2298 2299 capp = (dl_capability_ack_t *)mp->b_rptr; 2300 2301 if (capp->dl_sub_length == 0) { 2302 /* no new-style capabilities */ 2303 goto done; 2304 } 2305 2306 /* make sure the driver supplied correct dl_sub_length */ 2307 if ((sizeof (*capp) + capp->dl_sub_length) > MBLKL(mp)) { 2308 ip0dbg(("ill_capability_ack: bad DL_CAPABILITY_ACK, " 2309 "invalid dl_sub_length (%d)\n", capp->dl_sub_length)); 2310 goto done; 2311 } 2312 2313 #define SC(base, offset) (dl_capability_sub_t *)(((uchar_t *)(base))+(offset)) 2314 /* 2315 * There are sub-capabilities. Process the ones we know about. 2316 * Loop until we don't have room for another sub-cap header.. 2317 */ 2318 for (subp = SC(capp, capp->dl_sub_offset), 2319 endp = SC(subp, capp->dl_sub_length - sizeof (*subp)); 2320 subp <= endp; 2321 subp = SC(subp, sizeof (dl_capability_sub_t) + subp->dl_length)) { 2322 2323 switch (subp->dl_cap) { 2324 case DL_CAPAB_ID_WRAPPER: 2325 ill_capability_id_ack(ill, mp, subp); 2326 break; 2327 default: 2328 ill_capability_dispatch(ill, mp, subp); 2329 break; 2330 } 2331 } 2332 #undef SC 2333 done: 2334 inet_freemsg(mp); 2335 ill_capability_done(ill); 2336 ipsq_exit(ill->ill_phyint->phyint_ipsq); 2337 } 2338 2339 /* 2340 * This needs to be started in a taskq thread to provide a cv_waitable 2341 * context. 2342 */ 2343 void 2344 ill_capability_ack(ill_t *ill, mblk_t *mp) 2345 { 2346 ip_stack_t *ipst = ill->ill_ipst; 2347 2348 mp->b_prev = (mblk_t *)ill; 2349 ASSERT(mp->b_next == NULL); 2350 2351 if (taskq_dispatch(system_taskq, ill_capability_ack_thr, mp, 2352 TQ_NOSLEEP) != 0) 2353 return; 2354 2355 /* 2356 * The taskq dispatch failed. Signal the ill_taskq_dispatch thread 2357 * which will do the dispatch using TQ_SLEEP to guarantee success. 2358 */ 2359 mutex_enter(&ipst->ips_capab_taskq_lock); 2360 if (ipst->ips_capab_taskq_head == NULL) { 2361 ASSERT(ipst->ips_capab_taskq_tail == NULL); 2362 ipst->ips_capab_taskq_head = mp; 2363 } else { 2364 ipst->ips_capab_taskq_tail->b_next = mp; 2365 } 2366 ipst->ips_capab_taskq_tail = mp; 2367 2368 cv_signal(&ipst->ips_capab_taskq_cv); 2369 mutex_exit(&ipst->ips_capab_taskq_lock); 2370 } 2371 2372 /* 2373 * This routine is called to scan the fragmentation reassembly table for 2374 * the specified ILL for any packets that are starting to smell. 2375 * dead_interval is the maximum time in seconds that will be tolerated. It 2376 * will either be the value specified in ip_g_frag_timeout, or zero if the 2377 * ILL is shutting down and it is time to blow everything off. 2378 * 2379 * It returns the number of seconds (as a time_t) that the next frag timer 2380 * should be scheduled for, 0 meaning that the timer doesn't need to be 2381 * re-started. Note that the method of calculating next_timeout isn't 2382 * entirely accurate since time will flow between the time we grab 2383 * current_time and the time we schedule the next timeout. This isn't a 2384 * big problem since this is the timer for sending an ICMP reassembly time 2385 * exceeded messages, and it doesn't have to be exactly accurate. 2386 * 2387 * This function is 2388 * sometimes called as writer, although this is not required. 2389 */ 2390 time_t 2391 ill_frag_timeout(ill_t *ill, time_t dead_interval) 2392 { 2393 ipfb_t *ipfb; 2394 ipfb_t *endp; 2395 ipf_t *ipf; 2396 ipf_t *ipfnext; 2397 mblk_t *mp; 2398 time_t current_time = gethrestime_sec(); 2399 time_t next_timeout = 0; 2400 uint32_t hdr_length; 2401 mblk_t *send_icmp_head; 2402 mblk_t *send_icmp_head_v6; 2403 ip_stack_t *ipst = ill->ill_ipst; 2404 ip_recv_attr_t iras; 2405 2406 bzero(&iras, sizeof (iras)); 2407 iras.ira_flags = 0; 2408 iras.ira_ill = iras.ira_rill = ill; 2409 iras.ira_ruifindex = ill->ill_phyint->phyint_ifindex; 2410 iras.ira_rifindex = iras.ira_ruifindex; 2411 2412 ipfb = ill->ill_frag_hash_tbl; 2413 if (ipfb == NULL) 2414 return (B_FALSE); 2415 endp = &ipfb[ILL_FRAG_HASH_TBL_COUNT]; 2416 /* Walk the frag hash table. */ 2417 for (; ipfb < endp; ipfb++) { 2418 send_icmp_head = NULL; 2419 send_icmp_head_v6 = NULL; 2420 mutex_enter(&ipfb->ipfb_lock); 2421 while ((ipf = ipfb->ipfb_ipf) != 0) { 2422 time_t frag_time = current_time - ipf->ipf_timestamp; 2423 time_t frag_timeout; 2424 2425 if (frag_time < dead_interval) { 2426 /* 2427 * There are some outstanding fragments 2428 * that will timeout later. Make note of 2429 * the time so that we can reschedule the 2430 * next timeout appropriately. 2431 */ 2432 frag_timeout = dead_interval - frag_time; 2433 if (next_timeout == 0 || 2434 frag_timeout < next_timeout) { 2435 next_timeout = frag_timeout; 2436 } 2437 break; 2438 } 2439 /* Time's up. Get it out of here. */ 2440 hdr_length = ipf->ipf_nf_hdr_len; 2441 ipfnext = ipf->ipf_hash_next; 2442 if (ipfnext) 2443 ipfnext->ipf_ptphn = ipf->ipf_ptphn; 2444 *ipf->ipf_ptphn = ipfnext; 2445 mp = ipf->ipf_mp->b_cont; 2446 for (; mp; mp = mp->b_cont) { 2447 /* Extra points for neatness. */ 2448 IP_REASS_SET_START(mp, 0); 2449 IP_REASS_SET_END(mp, 0); 2450 } 2451 mp = ipf->ipf_mp->b_cont; 2452 atomic_add_32(&ill->ill_frag_count, -ipf->ipf_count); 2453 ASSERT(ipfb->ipfb_count >= ipf->ipf_count); 2454 ipfb->ipfb_count -= ipf->ipf_count; 2455 ASSERT(ipfb->ipfb_frag_pkts > 0); 2456 ipfb->ipfb_frag_pkts--; 2457 /* 2458 * We do not send any icmp message from here because 2459 * we currently are holding the ipfb_lock for this 2460 * hash chain. If we try and send any icmp messages 2461 * from here we may end up via a put back into ip 2462 * trying to get the same lock, causing a recursive 2463 * mutex panic. Instead we build a list and send all 2464 * the icmp messages after we have dropped the lock. 2465 */ 2466 if (ill->ill_isv6) { 2467 if (hdr_length != 0) { 2468 mp->b_next = send_icmp_head_v6; 2469 send_icmp_head_v6 = mp; 2470 } else { 2471 freemsg(mp); 2472 } 2473 } else { 2474 if (hdr_length != 0) { 2475 mp->b_next = send_icmp_head; 2476 send_icmp_head = mp; 2477 } else { 2478 freemsg(mp); 2479 } 2480 } 2481 BUMP_MIB(ill->ill_ip_mib, ipIfStatsReasmFails); 2482 ip_drop_input("ipIfStatsReasmFails", ipf->ipf_mp, ill); 2483 freeb(ipf->ipf_mp); 2484 } 2485 mutex_exit(&ipfb->ipfb_lock); 2486 /* 2487 * Now need to send any icmp messages that we delayed from 2488 * above. 2489 */ 2490 while (send_icmp_head_v6 != NULL) { 2491 ip6_t *ip6h; 2492 2493 mp = send_icmp_head_v6; 2494 send_icmp_head_v6 = send_icmp_head_v6->b_next; 2495 mp->b_next = NULL; 2496 ip6h = (ip6_t *)mp->b_rptr; 2497 iras.ira_flags = 0; 2498 /* 2499 * This will result in an incorrect ALL_ZONES zoneid 2500 * for multicast packets, but we 2501 * don't send ICMP errors for those in any case. 2502 */ 2503 iras.ira_zoneid = 2504 ipif_lookup_addr_zoneid_v6(&ip6h->ip6_dst, 2505 ill, ipst); 2506 ip_drop_input("ICMP_TIME_EXCEEDED reass", mp, ill); 2507 icmp_time_exceeded_v6(mp, 2508 ICMP_REASSEMBLY_TIME_EXCEEDED, B_FALSE, 2509 &iras); 2510 ASSERT(!(iras.ira_flags & IRAF_IPSEC_SECURE)); 2511 } 2512 while (send_icmp_head != NULL) { 2513 ipaddr_t dst; 2514 2515 mp = send_icmp_head; 2516 send_icmp_head = send_icmp_head->b_next; 2517 mp->b_next = NULL; 2518 2519 dst = ((ipha_t *)mp->b_rptr)->ipha_dst; 2520 2521 iras.ira_flags = IRAF_IS_IPV4; 2522 /* 2523 * This will result in an incorrect ALL_ZONES zoneid 2524 * for broadcast and multicast packets, but we 2525 * don't send ICMP errors for those in any case. 2526 */ 2527 iras.ira_zoneid = ipif_lookup_addr_zoneid(dst, 2528 ill, ipst); 2529 ip_drop_input("ICMP_TIME_EXCEEDED reass", mp, ill); 2530 icmp_time_exceeded(mp, 2531 ICMP_REASSEMBLY_TIME_EXCEEDED, &iras); 2532 ASSERT(!(iras.ira_flags & IRAF_IPSEC_SECURE)); 2533 } 2534 } 2535 /* 2536 * A non-dying ILL will use the return value to decide whether to 2537 * restart the frag timer, and for how long. 2538 */ 2539 return (next_timeout); 2540 } 2541 2542 /* 2543 * This routine is called when the approximate count of mblk memory used 2544 * for the specified ILL has exceeded max_count. 2545 */ 2546 void 2547 ill_frag_prune(ill_t *ill, uint_t max_count) 2548 { 2549 ipfb_t *ipfb; 2550 ipf_t *ipf; 2551 size_t count; 2552 clock_t now; 2553 2554 /* 2555 * If we are here within ip_min_frag_prune_time msecs remove 2556 * ill_frag_free_num_pkts oldest packets from each bucket and increment 2557 * ill_frag_free_num_pkts. 2558 */ 2559 mutex_enter(&ill->ill_lock); 2560 now = ddi_get_lbolt(); 2561 if (TICK_TO_MSEC(now - ill->ill_last_frag_clean_time) <= 2562 (ip_min_frag_prune_time != 0 ? 2563 ip_min_frag_prune_time : msec_per_tick)) { 2564 2565 ill->ill_frag_free_num_pkts++; 2566 2567 } else { 2568 ill->ill_frag_free_num_pkts = 0; 2569 } 2570 ill->ill_last_frag_clean_time = now; 2571 mutex_exit(&ill->ill_lock); 2572 2573 /* 2574 * free ill_frag_free_num_pkts oldest packets from each bucket. 2575 */ 2576 if (ill->ill_frag_free_num_pkts != 0) { 2577 int ix; 2578 2579 for (ix = 0; ix < ILL_FRAG_HASH_TBL_COUNT; ix++) { 2580 ipfb = &ill->ill_frag_hash_tbl[ix]; 2581 mutex_enter(&ipfb->ipfb_lock); 2582 if (ipfb->ipfb_ipf != NULL) { 2583 ill_frag_free_pkts(ill, ipfb, ipfb->ipfb_ipf, 2584 ill->ill_frag_free_num_pkts); 2585 } 2586 mutex_exit(&ipfb->ipfb_lock); 2587 } 2588 } 2589 /* 2590 * While the reassembly list for this ILL is too big, prune a fragment 2591 * queue by age, oldest first. 2592 */ 2593 while (ill->ill_frag_count > max_count) { 2594 int ix; 2595 ipfb_t *oipfb = NULL; 2596 uint_t oldest = UINT_MAX; 2597 2598 count = 0; 2599 for (ix = 0; ix < ILL_FRAG_HASH_TBL_COUNT; ix++) { 2600 ipfb = &ill->ill_frag_hash_tbl[ix]; 2601 mutex_enter(&ipfb->ipfb_lock); 2602 ipf = ipfb->ipfb_ipf; 2603 if (ipf != NULL && ipf->ipf_gen < oldest) { 2604 oldest = ipf->ipf_gen; 2605 oipfb = ipfb; 2606 } 2607 count += ipfb->ipfb_count; 2608 mutex_exit(&ipfb->ipfb_lock); 2609 } 2610 if (oipfb == NULL) 2611 break; 2612 2613 if (count <= max_count) 2614 return; /* Somebody beat us to it, nothing to do */ 2615 mutex_enter(&oipfb->ipfb_lock); 2616 ipf = oipfb->ipfb_ipf; 2617 if (ipf != NULL) { 2618 ill_frag_free_pkts(ill, oipfb, ipf, 1); 2619 } 2620 mutex_exit(&oipfb->ipfb_lock); 2621 } 2622 } 2623 2624 /* 2625 * free 'free_cnt' fragmented packets starting at ipf. 2626 */ 2627 void 2628 ill_frag_free_pkts(ill_t *ill, ipfb_t *ipfb, ipf_t *ipf, int free_cnt) 2629 { 2630 size_t count; 2631 mblk_t *mp; 2632 mblk_t *tmp; 2633 ipf_t **ipfp = ipf->ipf_ptphn; 2634 2635 ASSERT(MUTEX_HELD(&ipfb->ipfb_lock)); 2636 ASSERT(ipfp != NULL); 2637 ASSERT(ipf != NULL); 2638 2639 while (ipf != NULL && free_cnt-- > 0) { 2640 count = ipf->ipf_count; 2641 mp = ipf->ipf_mp; 2642 ipf = ipf->ipf_hash_next; 2643 for (tmp = mp; tmp; tmp = tmp->b_cont) { 2644 IP_REASS_SET_START(tmp, 0); 2645 IP_REASS_SET_END(tmp, 0); 2646 } 2647 atomic_add_32(&ill->ill_frag_count, -count); 2648 ASSERT(ipfb->ipfb_count >= count); 2649 ipfb->ipfb_count -= count; 2650 ASSERT(ipfb->ipfb_frag_pkts > 0); 2651 ipfb->ipfb_frag_pkts--; 2652 BUMP_MIB(ill->ill_ip_mib, ipIfStatsReasmFails); 2653 ip_drop_input("ipIfStatsReasmFails", mp, ill); 2654 freemsg(mp); 2655 } 2656 2657 if (ipf) 2658 ipf->ipf_ptphn = ipfp; 2659 ipfp[0] = ipf; 2660 } 2661 2662 /* 2663 * Helper function for ill_forward_set(). 2664 */ 2665 static void 2666 ill_forward_set_on_ill(ill_t *ill, boolean_t enable) 2667 { 2668 ip_stack_t *ipst = ill->ill_ipst; 2669 2670 ASSERT(IAM_WRITER_ILL(ill) || RW_READ_HELD(&ipst->ips_ill_g_lock)); 2671 2672 ip1dbg(("ill_forward_set: %s %s forwarding on %s", 2673 (enable ? "Enabling" : "Disabling"), 2674 (ill->ill_isv6 ? "IPv6" : "IPv4"), ill->ill_name)); 2675 mutex_enter(&ill->ill_lock); 2676 if (enable) 2677 ill->ill_flags |= ILLF_ROUTER; 2678 else 2679 ill->ill_flags &= ~ILLF_ROUTER; 2680 mutex_exit(&ill->ill_lock); 2681 if (ill->ill_isv6) 2682 ill_set_nce_router_flags(ill, enable); 2683 /* Notify routing socket listeners of this change. */ 2684 if (ill->ill_ipif != NULL) 2685 ip_rts_ifmsg(ill->ill_ipif, RTSQ_DEFAULT); 2686 } 2687 2688 /* 2689 * Set an ill's ILLF_ROUTER flag appropriately. Send up RTS_IFINFO routing 2690 * socket messages for each interface whose flags we change. 2691 */ 2692 int 2693 ill_forward_set(ill_t *ill, boolean_t enable) 2694 { 2695 ipmp_illgrp_t *illg; 2696 ip_stack_t *ipst = ill->ill_ipst; 2697 2698 ASSERT(IAM_WRITER_ILL(ill) || RW_READ_HELD(&ipst->ips_ill_g_lock)); 2699 2700 if ((enable && (ill->ill_flags & ILLF_ROUTER)) || 2701 (!enable && !(ill->ill_flags & ILLF_ROUTER))) 2702 return (0); 2703 2704 if (IS_LOOPBACK(ill)) 2705 return (EINVAL); 2706 2707 if (enable && ill->ill_allowed_ips_cnt > 0) 2708 return (EPERM); 2709 2710 if (IS_IPMP(ill) || IS_UNDER_IPMP(ill)) { 2711 /* 2712 * Update all of the interfaces in the group. 2713 */ 2714 illg = ill->ill_grp; 2715 ill = list_head(&illg->ig_if); 2716 for (; ill != NULL; ill = list_next(&illg->ig_if, ill)) 2717 ill_forward_set_on_ill(ill, enable); 2718 2719 /* 2720 * Update the IPMP meta-interface. 2721 */ 2722 ill_forward_set_on_ill(ipmp_illgrp_ipmp_ill(illg), enable); 2723 return (0); 2724 } 2725 2726 ill_forward_set_on_ill(ill, enable); 2727 return (0); 2728 } 2729 2730 /* 2731 * Based on the ILLF_ROUTER flag of an ill, make sure all local nce's for 2732 * addresses assigned to the ill have the NCE_F_ISROUTER flag appropriately 2733 * set or clear. 2734 */ 2735 static void 2736 ill_set_nce_router_flags(ill_t *ill, boolean_t enable) 2737 { 2738 ipif_t *ipif; 2739 ncec_t *ncec; 2740 nce_t *nce; 2741 2742 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 2743 /* 2744 * NOTE: we match across the illgrp because nce's for 2745 * addresses on IPMP interfaces have an nce_ill that points to 2746 * the bound underlying ill. 2747 */ 2748 nce = nce_lookup_v6(ill, &ipif->ipif_v6lcl_addr); 2749 if (nce != NULL) { 2750 ncec = nce->nce_common; 2751 mutex_enter(&ncec->ncec_lock); 2752 if (enable) 2753 ncec->ncec_flags |= NCE_F_ISROUTER; 2754 else 2755 ncec->ncec_flags &= ~NCE_F_ISROUTER; 2756 mutex_exit(&ncec->ncec_lock); 2757 nce_refrele(nce); 2758 } 2759 } 2760 } 2761 2762 /* 2763 * Intializes the context structure and returns the first ill in the list 2764 * cuurently start_list and end_list can have values: 2765 * MAX_G_HEADS Traverse both IPV4 and IPV6 lists. 2766 * IP_V4_G_HEAD Traverse IPV4 list only. 2767 * IP_V6_G_HEAD Traverse IPV6 list only. 2768 */ 2769 2770 /* 2771 * We don't check for CONDEMNED ills here. Caller must do that if 2772 * necessary under the ill lock. 2773 */ 2774 ill_t * 2775 ill_first(int start_list, int end_list, ill_walk_context_t *ctx, 2776 ip_stack_t *ipst) 2777 { 2778 ill_if_t *ifp; 2779 ill_t *ill; 2780 avl_tree_t *avl_tree; 2781 2782 ASSERT(RW_LOCK_HELD(&ipst->ips_ill_g_lock)); 2783 ASSERT(end_list <= MAX_G_HEADS && start_list >= 0); 2784 2785 /* 2786 * setup the lists to search 2787 */ 2788 if (end_list != MAX_G_HEADS) { 2789 ctx->ctx_current_list = start_list; 2790 ctx->ctx_last_list = end_list; 2791 } else { 2792 ctx->ctx_last_list = MAX_G_HEADS - 1; 2793 ctx->ctx_current_list = 0; 2794 } 2795 2796 while (ctx->ctx_current_list <= ctx->ctx_last_list) { 2797 ifp = IP_VX_ILL_G_LIST(ctx->ctx_current_list, ipst); 2798 if (ifp != (ill_if_t *) 2799 &IP_VX_ILL_G_LIST(ctx->ctx_current_list, ipst)) { 2800 avl_tree = &ifp->illif_avl_by_ppa; 2801 ill = avl_first(avl_tree); 2802 /* 2803 * ill is guaranteed to be non NULL or ifp should have 2804 * not existed. 2805 */ 2806 ASSERT(ill != NULL); 2807 return (ill); 2808 } 2809 ctx->ctx_current_list++; 2810 } 2811 2812 return (NULL); 2813 } 2814 2815 /* 2816 * returns the next ill in the list. ill_first() must have been called 2817 * before calling ill_next() or bad things will happen. 2818 */ 2819 2820 /* 2821 * We don't check for CONDEMNED ills here. Caller must do that if 2822 * necessary under the ill lock. 2823 */ 2824 ill_t * 2825 ill_next(ill_walk_context_t *ctx, ill_t *lastill) 2826 { 2827 ill_if_t *ifp; 2828 ill_t *ill; 2829 ip_stack_t *ipst = lastill->ill_ipst; 2830 2831 ASSERT(lastill->ill_ifptr != (ill_if_t *) 2832 &IP_VX_ILL_G_LIST(ctx->ctx_current_list, ipst)); 2833 if ((ill = avl_walk(&lastill->ill_ifptr->illif_avl_by_ppa, lastill, 2834 AVL_AFTER)) != NULL) { 2835 return (ill); 2836 } 2837 2838 /* goto next ill_ifp in the list. */ 2839 ifp = lastill->ill_ifptr->illif_next; 2840 2841 /* make sure not at end of circular list */ 2842 while (ifp == 2843 (ill_if_t *)&IP_VX_ILL_G_LIST(ctx->ctx_current_list, ipst)) { 2844 if (++ctx->ctx_current_list > ctx->ctx_last_list) 2845 return (NULL); 2846 ifp = IP_VX_ILL_G_LIST(ctx->ctx_current_list, ipst); 2847 } 2848 2849 return (avl_first(&ifp->illif_avl_by_ppa)); 2850 } 2851 2852 /* 2853 * Check interface name for correct format: [a-zA-Z]+[a-zA-Z0-9._]*[0-9]+ 2854 * The final number (PPA) must not have any leading zeros. Upon success, a 2855 * pointer to the start of the PPA is returned; otherwise NULL is returned. 2856 */ 2857 static char * 2858 ill_get_ppa_ptr(char *name) 2859 { 2860 int namelen = strlen(name); 2861 int end_ndx = namelen - 1; 2862 int ppa_ndx, i; 2863 2864 /* 2865 * Check that the first character is [a-zA-Z], and that the last 2866 * character is [0-9]. 2867 */ 2868 if (namelen == 0 || !isalpha(name[0]) || !isdigit(name[end_ndx])) 2869 return (NULL); 2870 2871 /* 2872 * Set `ppa_ndx' to the PPA start, and check for leading zeroes. 2873 */ 2874 for (ppa_ndx = end_ndx; ppa_ndx > 0; ppa_ndx--) 2875 if (!isdigit(name[ppa_ndx - 1])) 2876 break; 2877 2878 if (name[ppa_ndx] == '0' && ppa_ndx < end_ndx) 2879 return (NULL); 2880 2881 /* 2882 * Check that the intermediate characters are [a-z0-9.] 2883 */ 2884 for (i = 1; i < ppa_ndx; i++) { 2885 if (!isalpha(name[i]) && !isdigit(name[i]) && 2886 name[i] != '.' && name[i] != '_') { 2887 return (NULL); 2888 } 2889 } 2890 2891 return (name + ppa_ndx); 2892 } 2893 2894 /* 2895 * use avl tree to locate the ill. 2896 */ 2897 static ill_t * 2898 ill_find_by_name(char *name, boolean_t isv6, ip_stack_t *ipst) 2899 { 2900 char *ppa_ptr = NULL; 2901 int len; 2902 uint_t ppa; 2903 ill_t *ill = NULL; 2904 ill_if_t *ifp; 2905 int list; 2906 2907 /* 2908 * get ppa ptr 2909 */ 2910 if (isv6) 2911 list = IP_V6_G_HEAD; 2912 else 2913 list = IP_V4_G_HEAD; 2914 2915 if ((ppa_ptr = ill_get_ppa_ptr(name)) == NULL) { 2916 return (NULL); 2917 } 2918 2919 len = ppa_ptr - name + 1; 2920 2921 ppa = stoi(&ppa_ptr); 2922 2923 ifp = IP_VX_ILL_G_LIST(list, ipst); 2924 2925 while (ifp != (ill_if_t *)&IP_VX_ILL_G_LIST(list, ipst)) { 2926 /* 2927 * match is done on len - 1 as the name is not null 2928 * terminated it contains ppa in addition to the interface 2929 * name. 2930 */ 2931 if ((ifp->illif_name_len == len) && 2932 bcmp(ifp->illif_name, name, len - 1) == 0) { 2933 break; 2934 } else { 2935 ifp = ifp->illif_next; 2936 } 2937 } 2938 2939 if (ifp == (ill_if_t *)&IP_VX_ILL_G_LIST(list, ipst)) { 2940 /* 2941 * Even the interface type does not exist. 2942 */ 2943 return (NULL); 2944 } 2945 2946 ill = avl_find(&ifp->illif_avl_by_ppa, (void *) &ppa, NULL); 2947 if (ill != NULL) { 2948 mutex_enter(&ill->ill_lock); 2949 if (ILL_CAN_LOOKUP(ill)) { 2950 ill_refhold_locked(ill); 2951 mutex_exit(&ill->ill_lock); 2952 return (ill); 2953 } 2954 mutex_exit(&ill->ill_lock); 2955 } 2956 return (NULL); 2957 } 2958 2959 /* 2960 * comparison function for use with avl. 2961 */ 2962 static int 2963 ill_compare_ppa(const void *ppa_ptr, const void *ill_ptr) 2964 { 2965 uint_t ppa; 2966 uint_t ill_ppa; 2967 2968 ASSERT(ppa_ptr != NULL && ill_ptr != NULL); 2969 2970 ppa = *((uint_t *)ppa_ptr); 2971 ill_ppa = ((const ill_t *)ill_ptr)->ill_ppa; 2972 /* 2973 * We want the ill with the lowest ppa to be on the 2974 * top. 2975 */ 2976 if (ill_ppa < ppa) 2977 return (1); 2978 if (ill_ppa > ppa) 2979 return (-1); 2980 return (0); 2981 } 2982 2983 /* 2984 * remove an interface type from the global list. 2985 */ 2986 static void 2987 ill_delete_interface_type(ill_if_t *interface) 2988 { 2989 ASSERT(interface != NULL); 2990 ASSERT(avl_numnodes(&interface->illif_avl_by_ppa) == 0); 2991 2992 avl_destroy(&interface->illif_avl_by_ppa); 2993 if (interface->illif_ppa_arena != NULL) 2994 vmem_destroy(interface->illif_ppa_arena); 2995 2996 remque(interface); 2997 2998 mi_free(interface); 2999 } 3000 3001 /* 3002 * remove ill from the global list. 3003 */ 3004 static void 3005 ill_glist_delete(ill_t *ill) 3006 { 3007 ip_stack_t *ipst; 3008 phyint_t *phyi; 3009 3010 if (ill == NULL) 3011 return; 3012 ipst = ill->ill_ipst; 3013 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 3014 3015 /* 3016 * If the ill was never inserted into the AVL tree 3017 * we skip the if branch. 3018 */ 3019 if (ill->ill_ifptr != NULL) { 3020 /* 3021 * remove from AVL tree and free ppa number 3022 */ 3023 avl_remove(&ill->ill_ifptr->illif_avl_by_ppa, ill); 3024 3025 if (ill->ill_ifptr->illif_ppa_arena != NULL) { 3026 vmem_free(ill->ill_ifptr->illif_ppa_arena, 3027 (void *)(uintptr_t)(ill->ill_ppa+1), 1); 3028 } 3029 if (avl_numnodes(&ill->ill_ifptr->illif_avl_by_ppa) == 0) { 3030 ill_delete_interface_type(ill->ill_ifptr); 3031 } 3032 3033 /* 3034 * Indicate ill is no longer in the list. 3035 */ 3036 ill->ill_ifptr = NULL; 3037 ill->ill_name_length = 0; 3038 ill->ill_name[0] = '\0'; 3039 ill->ill_ppa = UINT_MAX; 3040 } 3041 3042 /* Generate one last event for this ill. */ 3043 ill_nic_event_dispatch(ill, 0, NE_UNPLUMB, ill->ill_name, 3044 ill->ill_name_length); 3045 3046 ASSERT(ill->ill_phyint != NULL); 3047 phyi = ill->ill_phyint; 3048 ill->ill_phyint = NULL; 3049 3050 /* 3051 * ill_init allocates a phyint always to store the copy 3052 * of flags relevant to phyint. At that point in time, we could 3053 * not assign the name and hence phyint_illv4/v6 could not be 3054 * initialized. Later in ipif_set_values, we assign the name to 3055 * the ill, at which point in time we assign phyint_illv4/v6. 3056 * Thus we don't rely on phyint_illv6 to be initialized always. 3057 */ 3058 if (ill->ill_flags & ILLF_IPV6) 3059 phyi->phyint_illv6 = NULL; 3060 else 3061 phyi->phyint_illv4 = NULL; 3062 3063 if (phyi->phyint_illv4 != NULL || phyi->phyint_illv6 != NULL) { 3064 rw_exit(&ipst->ips_ill_g_lock); 3065 return; 3066 } 3067 3068 /* 3069 * There are no ills left on this phyint; pull it out of the phyint 3070 * avl trees, and free it. 3071 */ 3072 if (phyi->phyint_ifindex > 0) { 3073 avl_remove(&ipst->ips_phyint_g_list->phyint_list_avl_by_index, 3074 phyi); 3075 avl_remove(&ipst->ips_phyint_g_list->phyint_list_avl_by_name, 3076 phyi); 3077 } 3078 rw_exit(&ipst->ips_ill_g_lock); 3079 3080 phyint_free(phyi); 3081 } 3082 3083 /* 3084 * allocate a ppa, if the number of plumbed interfaces of this type are 3085 * less than ill_no_arena do a linear search to find a unused ppa. 3086 * When the number goes beyond ill_no_arena switch to using an arena. 3087 * Note: ppa value of zero cannot be allocated from vmem_arena as it 3088 * is the return value for an error condition, so allocation starts at one 3089 * and is decremented by one. 3090 */ 3091 static int 3092 ill_alloc_ppa(ill_if_t *ifp, ill_t *ill) 3093 { 3094 ill_t *tmp_ill; 3095 uint_t start, end; 3096 int ppa; 3097 3098 if (ifp->illif_ppa_arena == NULL && 3099 (avl_numnodes(&ifp->illif_avl_by_ppa) + 1 > ill_no_arena)) { 3100 /* 3101 * Create an arena. 3102 */ 3103 ifp->illif_ppa_arena = vmem_create(ifp->illif_name, 3104 (void *)1, UINT_MAX - 1, 1, NULL, NULL, 3105 NULL, 0, VM_SLEEP | VMC_IDENTIFIER); 3106 /* allocate what has already been assigned */ 3107 for (tmp_ill = avl_first(&ifp->illif_avl_by_ppa); 3108 tmp_ill != NULL; tmp_ill = avl_walk(&ifp->illif_avl_by_ppa, 3109 tmp_ill, AVL_AFTER)) { 3110 ppa = (int)(uintptr_t)vmem_xalloc(ifp->illif_ppa_arena, 3111 1, /* size */ 3112 1, /* align/quantum */ 3113 0, /* phase */ 3114 0, /* nocross */ 3115 /* minaddr */ 3116 (void *)((uintptr_t)tmp_ill->ill_ppa + 1), 3117 /* maxaddr */ 3118 (void *)((uintptr_t)tmp_ill->ill_ppa + 2), 3119 VM_NOSLEEP|VM_FIRSTFIT); 3120 if (ppa == 0) { 3121 ip1dbg(("ill_alloc_ppa: ppa allocation" 3122 " failed while switching")); 3123 vmem_destroy(ifp->illif_ppa_arena); 3124 ifp->illif_ppa_arena = NULL; 3125 break; 3126 } 3127 } 3128 } 3129 3130 if (ifp->illif_ppa_arena != NULL) { 3131 if (ill->ill_ppa == UINT_MAX) { 3132 ppa = (int)(uintptr_t)vmem_alloc(ifp->illif_ppa_arena, 3133 1, VM_NOSLEEP|VM_FIRSTFIT); 3134 if (ppa == 0) 3135 return (EAGAIN); 3136 ill->ill_ppa = --ppa; 3137 } else { 3138 ppa = (int)(uintptr_t)vmem_xalloc(ifp->illif_ppa_arena, 3139 1, /* size */ 3140 1, /* align/quantum */ 3141 0, /* phase */ 3142 0, /* nocross */ 3143 (void *)(uintptr_t)(ill->ill_ppa + 1), /* minaddr */ 3144 (void *)(uintptr_t)(ill->ill_ppa + 2), /* maxaddr */ 3145 VM_NOSLEEP|VM_FIRSTFIT); 3146 /* 3147 * Most likely the allocation failed because 3148 * the requested ppa was in use. 3149 */ 3150 if (ppa == 0) 3151 return (EEXIST); 3152 } 3153 return (0); 3154 } 3155 3156 /* 3157 * No arena is in use and not enough (>ill_no_arena) interfaces have 3158 * been plumbed to create one. Do a linear search to get a unused ppa. 3159 */ 3160 if (ill->ill_ppa == UINT_MAX) { 3161 end = UINT_MAX - 1; 3162 start = 0; 3163 } else { 3164 end = start = ill->ill_ppa; 3165 } 3166 3167 tmp_ill = avl_find(&ifp->illif_avl_by_ppa, (void *)&start, NULL); 3168 while (tmp_ill != NULL && tmp_ill->ill_ppa == start) { 3169 if (start++ >= end) { 3170 if (ill->ill_ppa == UINT_MAX) 3171 return (EAGAIN); 3172 else 3173 return (EEXIST); 3174 } 3175 tmp_ill = avl_walk(&ifp->illif_avl_by_ppa, tmp_ill, AVL_AFTER); 3176 } 3177 ill->ill_ppa = start; 3178 return (0); 3179 } 3180 3181 /* 3182 * Insert ill into the list of configured ill's. Once this function completes, 3183 * the ill is globally visible and is available through lookups. More precisely 3184 * this happens after the caller drops the ill_g_lock. 3185 */ 3186 static int 3187 ill_glist_insert(ill_t *ill, char *name, boolean_t isv6) 3188 { 3189 ill_if_t *ill_interface; 3190 avl_index_t where = 0; 3191 int error; 3192 int name_length; 3193 int index; 3194 boolean_t check_length = B_FALSE; 3195 ip_stack_t *ipst = ill->ill_ipst; 3196 3197 ASSERT(RW_WRITE_HELD(&ipst->ips_ill_g_lock)); 3198 3199 name_length = mi_strlen(name) + 1; 3200 3201 if (isv6) 3202 index = IP_V6_G_HEAD; 3203 else 3204 index = IP_V4_G_HEAD; 3205 3206 ill_interface = IP_VX_ILL_G_LIST(index, ipst); 3207 /* 3208 * Search for interface type based on name 3209 */ 3210 while (ill_interface != (ill_if_t *)&IP_VX_ILL_G_LIST(index, ipst)) { 3211 if ((ill_interface->illif_name_len == name_length) && 3212 (strcmp(ill_interface->illif_name, name) == 0)) { 3213 break; 3214 } 3215 ill_interface = ill_interface->illif_next; 3216 } 3217 3218 /* 3219 * Interface type not found, create one. 3220 */ 3221 if (ill_interface == (ill_if_t *)&IP_VX_ILL_G_LIST(index, ipst)) { 3222 ill_g_head_t ghead; 3223 3224 /* 3225 * allocate ill_if_t structure 3226 */ 3227 ill_interface = (ill_if_t *)mi_zalloc(sizeof (ill_if_t)); 3228 if (ill_interface == NULL) { 3229 return (ENOMEM); 3230 } 3231 3232 (void) strcpy(ill_interface->illif_name, name); 3233 ill_interface->illif_name_len = name_length; 3234 3235 avl_create(&ill_interface->illif_avl_by_ppa, 3236 ill_compare_ppa, sizeof (ill_t), 3237 offsetof(struct ill_s, ill_avl_byppa)); 3238 3239 /* 3240 * link the structure in the back to maintain order 3241 * of configuration for ifconfig output. 3242 */ 3243 ghead = ipst->ips_ill_g_heads[index]; 3244 insque(ill_interface, ghead.ill_g_list_tail); 3245 } 3246 3247 if (ill->ill_ppa == UINT_MAX) 3248 check_length = B_TRUE; 3249 3250 error = ill_alloc_ppa(ill_interface, ill); 3251 if (error != 0) { 3252 if (avl_numnodes(&ill_interface->illif_avl_by_ppa) == 0) 3253 ill_delete_interface_type(ill->ill_ifptr); 3254 return (error); 3255 } 3256 3257 /* 3258 * When the ppa is choosen by the system, check that there is 3259 * enough space to insert ppa. if a specific ppa was passed in this 3260 * check is not required as the interface name passed in will have 3261 * the right ppa in it. 3262 */ 3263 if (check_length) { 3264 /* 3265 * UINT_MAX - 1 should fit in 10 chars, alloc 12 chars. 3266 */ 3267 char buf[sizeof (uint_t) * 3]; 3268 3269 /* 3270 * convert ppa to string to calculate the amount of space 3271 * required for it in the name. 3272 */ 3273 numtos(ill->ill_ppa, buf); 3274 3275 /* Do we have enough space to insert ppa ? */ 3276 3277 if ((mi_strlen(name) + mi_strlen(buf) + 1) > LIFNAMSIZ) { 3278 /* Free ppa and interface type struct */ 3279 if (ill_interface->illif_ppa_arena != NULL) { 3280 vmem_free(ill_interface->illif_ppa_arena, 3281 (void *)(uintptr_t)(ill->ill_ppa+1), 1); 3282 } 3283 if (avl_numnodes(&ill_interface->illif_avl_by_ppa) == 0) 3284 ill_delete_interface_type(ill->ill_ifptr); 3285 3286 return (EINVAL); 3287 } 3288 } 3289 3290 (void) sprintf(ill->ill_name, "%s%u", name, ill->ill_ppa); 3291 ill->ill_name_length = mi_strlen(ill->ill_name) + 1; 3292 3293 (void) avl_find(&ill_interface->illif_avl_by_ppa, &ill->ill_ppa, 3294 &where); 3295 ill->ill_ifptr = ill_interface; 3296 avl_insert(&ill_interface->illif_avl_by_ppa, ill, where); 3297 3298 ill_phyint_reinit(ill); 3299 return (0); 3300 } 3301 3302 /* Initialize the per phyint ipsq used for serialization */ 3303 static boolean_t 3304 ipsq_init(ill_t *ill, boolean_t enter) 3305 { 3306 ipsq_t *ipsq; 3307 ipxop_t *ipx; 3308 3309 if ((ipsq = kmem_zalloc(sizeof (ipsq_t), KM_NOSLEEP)) == NULL) 3310 return (B_FALSE); 3311 3312 ill->ill_phyint->phyint_ipsq = ipsq; 3313 ipx = ipsq->ipsq_xop = &ipsq->ipsq_ownxop; 3314 ipx->ipx_ipsq = ipsq; 3315 ipsq->ipsq_next = ipsq; 3316 ipsq->ipsq_phyint = ill->ill_phyint; 3317 mutex_init(&ipsq->ipsq_lock, NULL, MUTEX_DEFAULT, 0); 3318 mutex_init(&ipx->ipx_lock, NULL, MUTEX_DEFAULT, 0); 3319 ipsq->ipsq_ipst = ill->ill_ipst; /* No netstack_hold */ 3320 if (enter) { 3321 ipx->ipx_writer = curthread; 3322 ipx->ipx_forced = B_FALSE; 3323 ipx->ipx_reentry_cnt = 1; 3324 #ifdef DEBUG 3325 ipx->ipx_depth = getpcstack(ipx->ipx_stack, IPX_STACK_DEPTH); 3326 #endif 3327 } 3328 return (B_TRUE); 3329 } 3330 3331 /* 3332 * ill_init is called by ip_open when a device control stream is opened. 3333 * It does a few initializations, and shoots a DL_INFO_REQ message down 3334 * to the driver. The response is later picked up in ip_rput_dlpi and 3335 * used to set up default mechanisms for talking to the driver. (Always 3336 * called as writer.) 3337 * 3338 * If this function returns error, ip_open will call ip_close which in 3339 * turn will call ill_delete to clean up any memory allocated here that 3340 * is not yet freed. 3341 */ 3342 int 3343 ill_init(queue_t *q, ill_t *ill) 3344 { 3345 int count; 3346 dl_info_req_t *dlir; 3347 mblk_t *info_mp; 3348 uchar_t *frag_ptr; 3349 3350 /* 3351 * The ill is initialized to zero by mi_alloc*(). In addition 3352 * some fields already contain valid values, initialized in 3353 * ip_open(), before we reach here. 3354 */ 3355 mutex_init(&ill->ill_lock, NULL, MUTEX_DEFAULT, 0); 3356 mutex_init(&ill->ill_saved_ire_lock, NULL, MUTEX_DEFAULT, NULL); 3357 ill->ill_saved_ire_cnt = 0; 3358 3359 ill->ill_rq = q; 3360 ill->ill_wq = WR(q); 3361 3362 info_mp = allocb(MAX(sizeof (dl_info_req_t), sizeof (dl_info_ack_t)), 3363 BPRI_HI); 3364 if (info_mp == NULL) 3365 return (ENOMEM); 3366 3367 /* 3368 * Allocate sufficient space to contain our fragment hash table and 3369 * the device name. 3370 */ 3371 frag_ptr = (uchar_t *)mi_zalloc(ILL_FRAG_HASH_TBL_SIZE + 2 * LIFNAMSIZ); 3372 if (frag_ptr == NULL) { 3373 freemsg(info_mp); 3374 return (ENOMEM); 3375 } 3376 ill->ill_frag_ptr = frag_ptr; 3377 ill->ill_frag_free_num_pkts = 0; 3378 ill->ill_last_frag_clean_time = 0; 3379 ill->ill_frag_hash_tbl = (ipfb_t *)frag_ptr; 3380 ill->ill_name = (char *)(frag_ptr + ILL_FRAG_HASH_TBL_SIZE); 3381 for (count = 0; count < ILL_FRAG_HASH_TBL_COUNT; count++) { 3382 mutex_init(&ill->ill_frag_hash_tbl[count].ipfb_lock, 3383 NULL, MUTEX_DEFAULT, NULL); 3384 } 3385 3386 ill->ill_phyint = (phyint_t *)mi_zalloc(sizeof (phyint_t)); 3387 if (ill->ill_phyint == NULL) { 3388 freemsg(info_mp); 3389 mi_free(frag_ptr); 3390 return (ENOMEM); 3391 } 3392 3393 mutex_init(&ill->ill_phyint->phyint_lock, NULL, MUTEX_DEFAULT, 0); 3394 /* 3395 * For now pretend this is a v4 ill. We need to set phyint_ill* 3396 * at this point because of the following reason. If we can't 3397 * enter the ipsq at some point and cv_wait, the writer that 3398 * wakes us up tries to locate us using the list of all phyints 3399 * in an ipsq and the ills from the phyint thru the phyint_ill*. 3400 * If we don't set it now, we risk a missed wakeup. 3401 */ 3402 ill->ill_phyint->phyint_illv4 = ill; 3403 ill->ill_ppa = UINT_MAX; 3404 list_create(&ill->ill_nce, sizeof (nce_t), offsetof(nce_t, nce_node)); 3405 3406 ill_set_inputfn(ill); 3407 3408 if (!ipsq_init(ill, B_TRUE)) { 3409 freemsg(info_mp); 3410 mi_free(frag_ptr); 3411 mi_free(ill->ill_phyint); 3412 return (ENOMEM); 3413 } 3414 3415 ill->ill_state_flags |= ILL_LL_SUBNET_PENDING; 3416 3417 /* Frag queue limit stuff */ 3418 ill->ill_frag_count = 0; 3419 ill->ill_ipf_gen = 0; 3420 3421 rw_init(&ill->ill_mcast_lock, NULL, RW_DEFAULT, NULL); 3422 mutex_init(&ill->ill_mcast_serializer, NULL, MUTEX_DEFAULT, NULL); 3423 ill->ill_global_timer = INFINITY; 3424 ill->ill_mcast_v1_time = ill->ill_mcast_v2_time = 0; 3425 ill->ill_mcast_v1_tset = ill->ill_mcast_v2_tset = 0; 3426 ill->ill_mcast_rv = MCAST_DEF_ROBUSTNESS; 3427 ill->ill_mcast_qi = MCAST_DEF_QUERY_INTERVAL; 3428 3429 /* 3430 * Initialize IPv6 configuration variables. The IP module is always 3431 * opened as an IPv4 module. Instead tracking down the cases where 3432 * it switches to do ipv6, we'll just initialize the IPv6 configuration 3433 * here for convenience, this has no effect until the ill is set to do 3434 * IPv6. 3435 */ 3436 ill->ill_reachable_time = ND_REACHABLE_TIME; 3437 ill->ill_xmit_count = ND_MAX_MULTICAST_SOLICIT; 3438 ill->ill_max_buf = ND_MAX_Q; 3439 ill->ill_refcnt = 0; 3440 3441 /* Send down the Info Request to the driver. */ 3442 info_mp->b_datap->db_type = M_PCPROTO; 3443 dlir = (dl_info_req_t *)info_mp->b_rptr; 3444 info_mp->b_wptr = (uchar_t *)&dlir[1]; 3445 dlir->dl_primitive = DL_INFO_REQ; 3446 3447 ill->ill_dlpi_pending = DL_PRIM_INVAL; 3448 3449 qprocson(q); 3450 ill_dlpi_send(ill, info_mp); 3451 3452 return (0); 3453 } 3454 3455 /* 3456 * ill_dls_info 3457 * creates datalink socket info from the device. 3458 */ 3459 int 3460 ill_dls_info(struct sockaddr_dl *sdl, const ill_t *ill) 3461 { 3462 size_t len; 3463 3464 sdl->sdl_family = AF_LINK; 3465 sdl->sdl_index = ill_get_upper_ifindex(ill); 3466 sdl->sdl_type = ill->ill_type; 3467 ill_get_name(ill, sdl->sdl_data, sizeof (sdl->sdl_data)); 3468 len = strlen(sdl->sdl_data); 3469 ASSERT(len < 256); 3470 sdl->sdl_nlen = (uchar_t)len; 3471 sdl->sdl_alen = ill->ill_phys_addr_length; 3472 sdl->sdl_slen = 0; 3473 if (ill->ill_phys_addr_length != 0 && ill->ill_phys_addr != NULL) 3474 bcopy(ill->ill_phys_addr, &sdl->sdl_data[len], sdl->sdl_alen); 3475 3476 return (sizeof (struct sockaddr_dl)); 3477 } 3478 3479 /* 3480 * ill_xarp_info 3481 * creates xarp info from the device. 3482 */ 3483 static int 3484 ill_xarp_info(struct sockaddr_dl *sdl, ill_t *ill) 3485 { 3486 sdl->sdl_family = AF_LINK; 3487 sdl->sdl_index = ill->ill_phyint->phyint_ifindex; 3488 sdl->sdl_type = ill->ill_type; 3489 ill_get_name(ill, sdl->sdl_data, sizeof (sdl->sdl_data)); 3490 sdl->sdl_nlen = (uchar_t)mi_strlen(sdl->sdl_data); 3491 sdl->sdl_alen = ill->ill_phys_addr_length; 3492 sdl->sdl_slen = 0; 3493 return (sdl->sdl_nlen); 3494 } 3495 3496 static int 3497 loopback_kstat_update(kstat_t *ksp, int rw) 3498 { 3499 kstat_named_t *kn; 3500 netstackid_t stackid; 3501 netstack_t *ns; 3502 ip_stack_t *ipst; 3503 3504 if (ksp == NULL || ksp->ks_data == NULL) 3505 return (EIO); 3506 3507 if (rw == KSTAT_WRITE) 3508 return (EACCES); 3509 3510 kn = KSTAT_NAMED_PTR(ksp); 3511 stackid = (zoneid_t)(uintptr_t)ksp->ks_private; 3512 3513 ns = netstack_find_by_stackid(stackid); 3514 if (ns == NULL) 3515 return (-1); 3516 3517 ipst = ns->netstack_ip; 3518 if (ipst == NULL) { 3519 netstack_rele(ns); 3520 return (-1); 3521 } 3522 kn[0].value.ui32 = ipst->ips_loopback_packets; 3523 kn[1].value.ui32 = ipst->ips_loopback_packets; 3524 netstack_rele(ns); 3525 return (0); 3526 } 3527 3528 /* 3529 * Has ifindex been plumbed already? 3530 */ 3531 static boolean_t 3532 phyint_exists(uint_t index, ip_stack_t *ipst) 3533 { 3534 ASSERT(index != 0); 3535 ASSERT(RW_LOCK_HELD(&ipst->ips_ill_g_lock)); 3536 3537 return (avl_find(&ipst->ips_phyint_g_list->phyint_list_avl_by_index, 3538 &index, NULL) != NULL); 3539 } 3540 3541 /* 3542 * Pick a unique ifindex. 3543 * When the index counter passes IF_INDEX_MAX for the first time, the wrap 3544 * flag is set so that next time time ip_assign_ifindex() is called, it 3545 * falls through and resets the index counter back to 1, the minimum value 3546 * for the interface index. The logic below assumes that ips_ill_index 3547 * can hold a value of IF_INDEX_MAX+1 without there being any loss 3548 * (i.e. reset back to 0.) 3549 */ 3550 boolean_t 3551 ip_assign_ifindex(uint_t *indexp, ip_stack_t *ipst) 3552 { 3553 uint_t loops; 3554 3555 if (!ipst->ips_ill_index_wrap) { 3556 *indexp = ipst->ips_ill_index++; 3557 if (ipst->ips_ill_index > IF_INDEX_MAX) { 3558 /* 3559 * Reached the maximum ifindex value, set the wrap 3560 * flag to indicate that it is no longer possible 3561 * to assume that a given index is unallocated. 3562 */ 3563 ipst->ips_ill_index_wrap = B_TRUE; 3564 } 3565 return (B_TRUE); 3566 } 3567 3568 if (ipst->ips_ill_index > IF_INDEX_MAX) 3569 ipst->ips_ill_index = 1; 3570 3571 /* 3572 * Start reusing unused indexes. Note that we hold the ill_g_lock 3573 * at this point and don't want to call any function that attempts 3574 * to get the lock again. 3575 */ 3576 for (loops = IF_INDEX_MAX; loops > 0; loops--) { 3577 if (!phyint_exists(ipst->ips_ill_index, ipst)) { 3578 /* found unused index - use it */ 3579 *indexp = ipst->ips_ill_index; 3580 return (B_TRUE); 3581 } 3582 3583 ipst->ips_ill_index++; 3584 if (ipst->ips_ill_index > IF_INDEX_MAX) 3585 ipst->ips_ill_index = 1; 3586 } 3587 3588 /* 3589 * all interface indicies are inuse. 3590 */ 3591 return (B_FALSE); 3592 } 3593 3594 /* 3595 * Assign a unique interface index for the phyint. 3596 */ 3597 static boolean_t 3598 phyint_assign_ifindex(phyint_t *phyi, ip_stack_t *ipst) 3599 { 3600 ASSERT(phyi->phyint_ifindex == 0); 3601 return (ip_assign_ifindex(&phyi->phyint_ifindex, ipst)); 3602 } 3603 3604 /* 3605 * Initialize the flags on `phyi' as per the provided mactype. 3606 */ 3607 static void 3608 phyint_flags_init(phyint_t *phyi, t_uscalar_t mactype) 3609 { 3610 uint64_t flags = 0; 3611 3612 /* 3613 * Initialize PHYI_RUNNING and PHYI_FAILED. For non-IPMP interfaces, 3614 * we always presume the underlying hardware is working and set 3615 * PHYI_RUNNING (if it's not, the driver will subsequently send a 3616 * DL_NOTE_LINK_DOWN message). For IPMP interfaces, at initialization 3617 * there are no active interfaces in the group so we set PHYI_FAILED. 3618 */ 3619 if (mactype == SUNW_DL_IPMP) 3620 flags |= PHYI_FAILED; 3621 else 3622 flags |= PHYI_RUNNING; 3623 3624 switch (mactype) { 3625 case SUNW_DL_VNI: 3626 flags |= PHYI_VIRTUAL; 3627 break; 3628 case SUNW_DL_IPMP: 3629 flags |= PHYI_IPMP; 3630 break; 3631 case DL_LOOP: 3632 flags |= (PHYI_LOOPBACK | PHYI_VIRTUAL); 3633 break; 3634 } 3635 3636 mutex_enter(&phyi->phyint_lock); 3637 phyi->phyint_flags |= flags; 3638 mutex_exit(&phyi->phyint_lock); 3639 } 3640 3641 /* 3642 * Return a pointer to the ill which matches the supplied name. Note that 3643 * the ill name length includes the null termination character. (May be 3644 * called as writer.) 3645 * If do_alloc and the interface is "lo0" it will be automatically created. 3646 * Cannot bump up reference on condemned ills. So dup detect can't be done 3647 * using this func. 3648 */ 3649 ill_t * 3650 ill_lookup_on_name(char *name, boolean_t do_alloc, boolean_t isv6, 3651 boolean_t *did_alloc, ip_stack_t *ipst) 3652 { 3653 ill_t *ill; 3654 ipif_t *ipif; 3655 ipsq_t *ipsq; 3656 kstat_named_t *kn; 3657 boolean_t isloopback; 3658 in6_addr_t ov6addr; 3659 3660 isloopback = mi_strcmp(name, ipif_loopback_name) == 0; 3661 3662 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 3663 ill = ill_find_by_name(name, isv6, ipst); 3664 rw_exit(&ipst->ips_ill_g_lock); 3665 if (ill != NULL) 3666 return (ill); 3667 3668 /* 3669 * Couldn't find it. Does this happen to be a lookup for the 3670 * loopback device and are we allowed to allocate it? 3671 */ 3672 if (!isloopback || !do_alloc) 3673 return (NULL); 3674 3675 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 3676 ill = ill_find_by_name(name, isv6, ipst); 3677 if (ill != NULL) { 3678 rw_exit(&ipst->ips_ill_g_lock); 3679 return (ill); 3680 } 3681 3682 /* Create the loopback device on demand */ 3683 ill = (ill_t *)(mi_alloc(sizeof (ill_t) + 3684 sizeof (ipif_loopback_name), BPRI_MED)); 3685 if (ill == NULL) 3686 goto done; 3687 3688 *ill = ill_null; 3689 mutex_init(&ill->ill_lock, NULL, MUTEX_DEFAULT, NULL); 3690 ill->ill_ipst = ipst; 3691 list_create(&ill->ill_nce, sizeof (nce_t), offsetof(nce_t, nce_node)); 3692 netstack_hold(ipst->ips_netstack); 3693 /* 3694 * For exclusive stacks we set the zoneid to zero 3695 * to make IP operate as if in the global zone. 3696 */ 3697 ill->ill_zoneid = GLOBAL_ZONEID; 3698 3699 ill->ill_phyint = (phyint_t *)mi_zalloc(sizeof (phyint_t)); 3700 if (ill->ill_phyint == NULL) 3701 goto done; 3702 3703 if (isv6) 3704 ill->ill_phyint->phyint_illv6 = ill; 3705 else 3706 ill->ill_phyint->phyint_illv4 = ill; 3707 mutex_init(&ill->ill_phyint->phyint_lock, NULL, MUTEX_DEFAULT, 0); 3708 phyint_flags_init(ill->ill_phyint, DL_LOOP); 3709 3710 if (isv6) { 3711 ill->ill_isv6 = B_TRUE; 3712 ill->ill_max_frag = ip_loopback_mtu_v6plus; 3713 } else { 3714 ill->ill_max_frag = ip_loopback_mtuplus; 3715 } 3716 if (!ill_allocate_mibs(ill)) 3717 goto done; 3718 ill->ill_current_frag = ill->ill_max_frag; 3719 ill->ill_mtu = ill->ill_max_frag; /* Initial value */ 3720 /* 3721 * ipif_loopback_name can't be pointed at directly because its used 3722 * by both the ipv4 and ipv6 interfaces. When the ill is removed 3723 * from the glist, ill_glist_delete() sets the first character of 3724 * ill_name to '\0'. 3725 */ 3726 ill->ill_name = (char *)ill + sizeof (*ill); 3727 (void) strcpy(ill->ill_name, ipif_loopback_name); 3728 ill->ill_name_length = sizeof (ipif_loopback_name); 3729 /* Set ill_dlpi_pending for ipsq_current_finish() to work properly */ 3730 ill->ill_dlpi_pending = DL_PRIM_INVAL; 3731 3732 rw_init(&ill->ill_mcast_lock, NULL, RW_DEFAULT, NULL); 3733 mutex_init(&ill->ill_mcast_serializer, NULL, MUTEX_DEFAULT, NULL); 3734 ill->ill_global_timer = INFINITY; 3735 ill->ill_mcast_v1_time = ill->ill_mcast_v2_time = 0; 3736 ill->ill_mcast_v1_tset = ill->ill_mcast_v2_tset = 0; 3737 ill->ill_mcast_rv = MCAST_DEF_ROBUSTNESS; 3738 ill->ill_mcast_qi = MCAST_DEF_QUERY_INTERVAL; 3739 3740 /* No resolver here. */ 3741 ill->ill_net_type = IRE_LOOPBACK; 3742 3743 /* Initialize the ipsq */ 3744 if (!ipsq_init(ill, B_FALSE)) 3745 goto done; 3746 3747 ipif = ipif_allocate(ill, 0L, IRE_LOOPBACK, B_TRUE, B_TRUE, NULL); 3748 if (ipif == NULL) 3749 goto done; 3750 3751 ill->ill_flags = ILLF_MULTICAST; 3752 3753 ov6addr = ipif->ipif_v6lcl_addr; 3754 /* Set up default loopback address and mask. */ 3755 if (!isv6) { 3756 ipaddr_t inaddr_loopback = htonl(INADDR_LOOPBACK); 3757 3758 IN6_IPADDR_TO_V4MAPPED(inaddr_loopback, &ipif->ipif_v6lcl_addr); 3759 V4MASK_TO_V6(htonl(IN_CLASSA_NET), ipif->ipif_v6net_mask); 3760 V6_MASK_COPY(ipif->ipif_v6lcl_addr, ipif->ipif_v6net_mask, 3761 ipif->ipif_v6subnet); 3762 ill->ill_flags |= ILLF_IPV4; 3763 } else { 3764 ipif->ipif_v6lcl_addr = ipv6_loopback; 3765 ipif->ipif_v6net_mask = ipv6_all_ones; 3766 V6_MASK_COPY(ipif->ipif_v6lcl_addr, ipif->ipif_v6net_mask, 3767 ipif->ipif_v6subnet); 3768 ill->ill_flags |= ILLF_IPV6; 3769 } 3770 3771 /* 3772 * Chain us in at the end of the ill list. hold the ill 3773 * before we make it globally visible. 1 for the lookup. 3774 */ 3775 ill->ill_refcnt = 0; 3776 ill_refhold(ill); 3777 3778 ill->ill_frag_count = 0; 3779 ill->ill_frag_free_num_pkts = 0; 3780 ill->ill_last_frag_clean_time = 0; 3781 3782 ipsq = ill->ill_phyint->phyint_ipsq; 3783 3784 ill_set_inputfn(ill); 3785 3786 if (ill_glist_insert(ill, "lo", isv6) != 0) 3787 cmn_err(CE_PANIC, "cannot insert loopback interface"); 3788 3789 /* Let SCTP know so that it can add this to its list */ 3790 sctp_update_ill(ill, SCTP_ILL_INSERT); 3791 3792 /* 3793 * We have already assigned ipif_v6lcl_addr above, but we need to 3794 * call sctp_update_ipif_addr() after SCTP_ILL_INSERT, which 3795 * requires to be after ill_glist_insert() since we need the 3796 * ill_index set. Pass on ipv6_loopback as the old address. 3797 */ 3798 sctp_update_ipif_addr(ipif, ov6addr); 3799 3800 ip_rts_newaddrmsg(RTM_CHGADDR, 0, ipif, RTSQ_DEFAULT); 3801 3802 /* 3803 * ill_glist_insert() -> ill_phyint_reinit() may have merged IPSQs. 3804 * If so, free our original one. 3805 */ 3806 if (ipsq != ill->ill_phyint->phyint_ipsq) 3807 ipsq_delete(ipsq); 3808 3809 if (ipst->ips_loopback_ksp == NULL) { 3810 /* Export loopback interface statistics */ 3811 ipst->ips_loopback_ksp = kstat_create_netstack("lo", 0, 3812 ipif_loopback_name, "net", 3813 KSTAT_TYPE_NAMED, 2, 0, 3814 ipst->ips_netstack->netstack_stackid); 3815 if (ipst->ips_loopback_ksp != NULL) { 3816 ipst->ips_loopback_ksp->ks_update = 3817 loopback_kstat_update; 3818 kn = KSTAT_NAMED_PTR(ipst->ips_loopback_ksp); 3819 kstat_named_init(&kn[0], "ipackets", KSTAT_DATA_UINT32); 3820 kstat_named_init(&kn[1], "opackets", KSTAT_DATA_UINT32); 3821 ipst->ips_loopback_ksp->ks_private = 3822 (void *)(uintptr_t)ipst->ips_netstack-> 3823 netstack_stackid; 3824 kstat_install(ipst->ips_loopback_ksp); 3825 } 3826 } 3827 3828 *did_alloc = B_TRUE; 3829 rw_exit(&ipst->ips_ill_g_lock); 3830 ill_nic_event_dispatch(ill, MAP_IPIF_ID(ill->ill_ipif->ipif_id), 3831 NE_PLUMB, ill->ill_name, ill->ill_name_length); 3832 return (ill); 3833 done: 3834 if (ill != NULL) { 3835 if (ill->ill_phyint != NULL) { 3836 ipsq = ill->ill_phyint->phyint_ipsq; 3837 if (ipsq != NULL) { 3838 ipsq->ipsq_phyint = NULL; 3839 ipsq_delete(ipsq); 3840 } 3841 mi_free(ill->ill_phyint); 3842 } 3843 ill_free_mib(ill); 3844 if (ill->ill_ipst != NULL) 3845 netstack_rele(ill->ill_ipst->ips_netstack); 3846 mi_free(ill); 3847 } 3848 rw_exit(&ipst->ips_ill_g_lock); 3849 return (NULL); 3850 } 3851 3852 /* 3853 * For IPP calls - use the ip_stack_t for global stack. 3854 */ 3855 ill_t * 3856 ill_lookup_on_ifindex_global_instance(uint_t index, boolean_t isv6) 3857 { 3858 ip_stack_t *ipst; 3859 ill_t *ill; 3860 3861 ipst = netstack_find_by_stackid(GLOBAL_NETSTACKID)->netstack_ip; 3862 if (ipst == NULL) { 3863 cmn_err(CE_WARN, "No ip_stack_t for zoneid zero!\n"); 3864 return (NULL); 3865 } 3866 3867 ill = ill_lookup_on_ifindex(index, isv6, ipst); 3868 netstack_rele(ipst->ips_netstack); 3869 return (ill); 3870 } 3871 3872 /* 3873 * Return a pointer to the ill which matches the index and IP version type. 3874 */ 3875 ill_t * 3876 ill_lookup_on_ifindex(uint_t index, boolean_t isv6, ip_stack_t *ipst) 3877 { 3878 ill_t *ill; 3879 phyint_t *phyi; 3880 3881 /* 3882 * Indexes are stored in the phyint - a common structure 3883 * to both IPv4 and IPv6. 3884 */ 3885 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 3886 phyi = avl_find(&ipst->ips_phyint_g_list->phyint_list_avl_by_index, 3887 (void *) &index, NULL); 3888 if (phyi != NULL) { 3889 ill = isv6 ? phyi->phyint_illv6: phyi->phyint_illv4; 3890 if (ill != NULL) { 3891 mutex_enter(&ill->ill_lock); 3892 if (!ILL_IS_CONDEMNED(ill)) { 3893 ill_refhold_locked(ill); 3894 mutex_exit(&ill->ill_lock); 3895 rw_exit(&ipst->ips_ill_g_lock); 3896 return (ill); 3897 } 3898 mutex_exit(&ill->ill_lock); 3899 } 3900 } 3901 rw_exit(&ipst->ips_ill_g_lock); 3902 return (NULL); 3903 } 3904 3905 /* 3906 * Verify whether or not an interface index is valid for the specified zoneid 3907 * to transmit packets. 3908 * It can be zero (meaning "reset") or an interface index assigned 3909 * to a non-VNI interface. (We don't use VNI interface to send packets.) 3910 */ 3911 boolean_t 3912 ip_xmit_ifindex_valid(uint_t ifindex, zoneid_t zoneid, boolean_t isv6, 3913 ip_stack_t *ipst) 3914 { 3915 ill_t *ill; 3916 3917 if (ifindex == 0) 3918 return (B_TRUE); 3919 3920 ill = ill_lookup_on_ifindex_zoneid(ifindex, zoneid, isv6, ipst); 3921 if (ill == NULL) 3922 return (B_FALSE); 3923 if (IS_VNI(ill)) { 3924 ill_refrele(ill); 3925 return (B_FALSE); 3926 } 3927 ill_refrele(ill); 3928 return (B_TRUE); 3929 } 3930 3931 /* 3932 * Return the ifindex next in sequence after the passed in ifindex. 3933 * If there is no next ifindex for the given protocol, return 0. 3934 */ 3935 uint_t 3936 ill_get_next_ifindex(uint_t index, boolean_t isv6, ip_stack_t *ipst) 3937 { 3938 phyint_t *phyi; 3939 phyint_t *phyi_initial; 3940 uint_t ifindex; 3941 3942 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 3943 3944 if (index == 0) { 3945 phyi = avl_first( 3946 &ipst->ips_phyint_g_list->phyint_list_avl_by_index); 3947 } else { 3948 phyi = phyi_initial = avl_find( 3949 &ipst->ips_phyint_g_list->phyint_list_avl_by_index, 3950 (void *) &index, NULL); 3951 } 3952 3953 for (; phyi != NULL; 3954 phyi = avl_walk(&ipst->ips_phyint_g_list->phyint_list_avl_by_index, 3955 phyi, AVL_AFTER)) { 3956 /* 3957 * If we're not returning the first interface in the tree 3958 * and we still haven't moved past the phyint_t that 3959 * corresponds to index, avl_walk needs to be called again 3960 */ 3961 if (!((index != 0) && (phyi == phyi_initial))) { 3962 if (isv6) { 3963 if ((phyi->phyint_illv6) && 3964 ILL_CAN_LOOKUP(phyi->phyint_illv6) && 3965 (phyi->phyint_illv6->ill_isv6 == 1)) 3966 break; 3967 } else { 3968 if ((phyi->phyint_illv4) && 3969 ILL_CAN_LOOKUP(phyi->phyint_illv4) && 3970 (phyi->phyint_illv4->ill_isv6 == 0)) 3971 break; 3972 } 3973 } 3974 } 3975 3976 rw_exit(&ipst->ips_ill_g_lock); 3977 3978 if (phyi != NULL) 3979 ifindex = phyi->phyint_ifindex; 3980 else 3981 ifindex = 0; 3982 3983 return (ifindex); 3984 } 3985 3986 /* 3987 * Return the ifindex for the named interface. 3988 * If there is no next ifindex for the interface, return 0. 3989 */ 3990 uint_t 3991 ill_get_ifindex_by_name(char *name, ip_stack_t *ipst) 3992 { 3993 phyint_t *phyi; 3994 avl_index_t where = 0; 3995 uint_t ifindex; 3996 3997 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 3998 3999 if ((phyi = avl_find(&ipst->ips_phyint_g_list->phyint_list_avl_by_name, 4000 name, &where)) == NULL) { 4001 rw_exit(&ipst->ips_ill_g_lock); 4002 return (0); 4003 } 4004 4005 ifindex = phyi->phyint_ifindex; 4006 4007 rw_exit(&ipst->ips_ill_g_lock); 4008 4009 return (ifindex); 4010 } 4011 4012 /* 4013 * Return the ifindex to be used by upper layer protocols for instance 4014 * for IPV6_RECVPKTINFO. If IPMP this is the one for the upper ill. 4015 */ 4016 uint_t 4017 ill_get_upper_ifindex(const ill_t *ill) 4018 { 4019 if (IS_UNDER_IPMP(ill)) 4020 return (ipmp_ill_get_ipmp_ifindex(ill)); 4021 else 4022 return (ill->ill_phyint->phyint_ifindex); 4023 } 4024 4025 4026 /* 4027 * Obtain a reference to the ill. The ill_refcnt is a dynamic refcnt 4028 * that gives a running thread a reference to the ill. This reference must be 4029 * released by the thread when it is done accessing the ill and related 4030 * objects. ill_refcnt can not be used to account for static references 4031 * such as other structures pointing to an ill. Callers must generally 4032 * check whether an ill can be refheld by using ILL_CAN_LOOKUP macros 4033 * or be sure that the ill is not being deleted or changing state before 4034 * calling the refhold functions. A non-zero ill_refcnt ensures that the 4035 * ill won't change any of its critical state such as address, netmask etc. 4036 */ 4037 void 4038 ill_refhold(ill_t *ill) 4039 { 4040 mutex_enter(&ill->ill_lock); 4041 ill->ill_refcnt++; 4042 ILL_TRACE_REF(ill); 4043 mutex_exit(&ill->ill_lock); 4044 } 4045 4046 void 4047 ill_refhold_locked(ill_t *ill) 4048 { 4049 ASSERT(MUTEX_HELD(&ill->ill_lock)); 4050 ill->ill_refcnt++; 4051 ILL_TRACE_REF(ill); 4052 } 4053 4054 /* Returns true if we managed to get a refhold */ 4055 boolean_t 4056 ill_check_and_refhold(ill_t *ill) 4057 { 4058 mutex_enter(&ill->ill_lock); 4059 if (!ILL_IS_CONDEMNED(ill)) { 4060 ill_refhold_locked(ill); 4061 mutex_exit(&ill->ill_lock); 4062 return (B_TRUE); 4063 } 4064 mutex_exit(&ill->ill_lock); 4065 return (B_FALSE); 4066 } 4067 4068 /* 4069 * Must not be called while holding any locks. Otherwise if this is 4070 * the last reference to be released, there is a chance of recursive mutex 4071 * panic due to ill_refrele -> ipif_ill_refrele_tail -> qwriter_ip trying 4072 * to restart an ioctl. 4073 */ 4074 void 4075 ill_refrele(ill_t *ill) 4076 { 4077 mutex_enter(&ill->ill_lock); 4078 ASSERT(ill->ill_refcnt != 0); 4079 ill->ill_refcnt--; 4080 ILL_UNTRACE_REF(ill); 4081 if (ill->ill_refcnt != 0) { 4082 /* Every ire pointing to the ill adds 1 to ill_refcnt */ 4083 mutex_exit(&ill->ill_lock); 4084 return; 4085 } 4086 4087 /* Drops the ill_lock */ 4088 ipif_ill_refrele_tail(ill); 4089 } 4090 4091 /* 4092 * Obtain a weak reference count on the ill. This reference ensures the 4093 * ill won't be freed, but the ill may change any of its critical state 4094 * such as netmask, address etc. Returns an error if the ill has started 4095 * closing. 4096 */ 4097 boolean_t 4098 ill_waiter_inc(ill_t *ill) 4099 { 4100 mutex_enter(&ill->ill_lock); 4101 if (ill->ill_state_flags & ILL_CONDEMNED) { 4102 mutex_exit(&ill->ill_lock); 4103 return (B_FALSE); 4104 } 4105 ill->ill_waiters++; 4106 mutex_exit(&ill->ill_lock); 4107 return (B_TRUE); 4108 } 4109 4110 void 4111 ill_waiter_dcr(ill_t *ill) 4112 { 4113 mutex_enter(&ill->ill_lock); 4114 ill->ill_waiters--; 4115 if (ill->ill_waiters == 0) 4116 cv_broadcast(&ill->ill_cv); 4117 mutex_exit(&ill->ill_lock); 4118 } 4119 4120 /* 4121 * ip_ll_subnet_defaults is called when we get the DL_INFO_ACK back from the 4122 * driver. We construct best guess defaults for lower level information that 4123 * we need. If an interface is brought up without injection of any overriding 4124 * information from outside, we have to be ready to go with these defaults. 4125 * When we get the first DL_INFO_ACK (from ip_open() sending a DL_INFO_REQ) 4126 * we primarely want the dl_provider_style. 4127 * The subsequent DL_INFO_ACK is received after doing a DL_ATTACH and DL_BIND 4128 * at which point we assume the other part of the information is valid. 4129 */ 4130 void 4131 ip_ll_subnet_defaults(ill_t *ill, mblk_t *mp) 4132 { 4133 uchar_t *brdcst_addr; 4134 uint_t brdcst_addr_length, phys_addr_length; 4135 t_scalar_t sap_length; 4136 dl_info_ack_t *dlia; 4137 ip_m_t *ipm; 4138 dl_qos_cl_sel1_t *sel1; 4139 int min_mtu; 4140 4141 ASSERT(IAM_WRITER_ILL(ill)); 4142 4143 /* 4144 * Till the ill is fully up the ill is not globally visible. 4145 * So no need for a lock. 4146 */ 4147 dlia = (dl_info_ack_t *)mp->b_rptr; 4148 ill->ill_mactype = dlia->dl_mac_type; 4149 4150 ipm = ip_m_lookup(dlia->dl_mac_type); 4151 if (ipm == NULL) { 4152 ipm = ip_m_lookup(DL_OTHER); 4153 ASSERT(ipm != NULL); 4154 } 4155 ill->ill_media = ipm; 4156 4157 /* 4158 * When the new DLPI stuff is ready we'll pull lengths 4159 * from dlia. 4160 */ 4161 if (dlia->dl_version == DL_VERSION_2) { 4162 brdcst_addr_length = dlia->dl_brdcst_addr_length; 4163 brdcst_addr = mi_offset_param(mp, dlia->dl_brdcst_addr_offset, 4164 brdcst_addr_length); 4165 if (brdcst_addr == NULL) { 4166 brdcst_addr_length = 0; 4167 } 4168 sap_length = dlia->dl_sap_length; 4169 phys_addr_length = dlia->dl_addr_length - ABS(sap_length); 4170 ip1dbg(("ip: bcast_len %d, sap_len %d, phys_len %d\n", 4171 brdcst_addr_length, sap_length, phys_addr_length)); 4172 } else { 4173 brdcst_addr_length = 6; 4174 brdcst_addr = ip_six_byte_all_ones; 4175 sap_length = -2; 4176 phys_addr_length = brdcst_addr_length; 4177 } 4178 4179 ill->ill_bcast_addr_length = brdcst_addr_length; 4180 ill->ill_phys_addr_length = phys_addr_length; 4181 ill->ill_sap_length = sap_length; 4182 4183 /* 4184 * Synthetic DLPI types such as SUNW_DL_IPMP specify a zero SDU, 4185 * but we must ensure a minimum IP MTU is used since other bits of 4186 * IP will fly apart otherwise. 4187 */ 4188 min_mtu = ill->ill_isv6 ? IPV6_MIN_MTU : IP_MIN_MTU; 4189 ill->ill_max_frag = MAX(min_mtu, dlia->dl_max_sdu); 4190 ill->ill_current_frag = ill->ill_max_frag; 4191 ill->ill_mtu = ill->ill_max_frag; 4192 4193 ill->ill_type = ipm->ip_m_type; 4194 4195 if (!ill->ill_dlpi_style_set) { 4196 if (dlia->dl_provider_style == DL_STYLE2) 4197 ill->ill_needs_attach = 1; 4198 4199 phyint_flags_init(ill->ill_phyint, ill->ill_mactype); 4200 4201 /* 4202 * Allocate the first ipif on this ill. We don't delay it 4203 * further as ioctl handling assumes at least one ipif exists. 4204 * 4205 * At this point we don't know whether the ill is v4 or v6. 4206 * We will know this whan the SIOCSLIFNAME happens and 4207 * the correct value for ill_isv6 will be assigned in 4208 * ipif_set_values(). We need to hold the ill lock and 4209 * clear the ILL_LL_SUBNET_PENDING flag and atomically do 4210 * the wakeup. 4211 */ 4212 (void) ipif_allocate(ill, 0, IRE_LOCAL, 4213 dlia->dl_provider_style != DL_STYLE2, B_TRUE, NULL); 4214 mutex_enter(&ill->ill_lock); 4215 ASSERT(ill->ill_dlpi_style_set == 0); 4216 ill->ill_dlpi_style_set = 1; 4217 ill->ill_state_flags &= ~ILL_LL_SUBNET_PENDING; 4218 cv_broadcast(&ill->ill_cv); 4219 mutex_exit(&ill->ill_lock); 4220 freemsg(mp); 4221 return; 4222 } 4223 ASSERT(ill->ill_ipif != NULL); 4224 /* 4225 * We know whether it is IPv4 or IPv6 now, as this is the 4226 * second DL_INFO_ACK we are recieving in response to the 4227 * DL_INFO_REQ sent in ipif_set_values. 4228 */ 4229 ill->ill_sap = (ill->ill_isv6) ? ipm->ip_m_ipv6sap : ipm->ip_m_ipv4sap; 4230 /* 4231 * Clear all the flags that were set based on ill_bcast_addr_length 4232 * and ill_phys_addr_length (in ipif_set_values) as these could have 4233 * changed now and we need to re-evaluate. 4234 */ 4235 ill->ill_flags &= ~(ILLF_MULTICAST | ILLF_NONUD | ILLF_NOARP); 4236 ill->ill_ipif->ipif_flags &= ~(IPIF_BROADCAST | IPIF_POINTOPOINT); 4237 4238 /* 4239 * Free ill_bcast_mp as things could have changed now. 4240 * 4241 * NOTE: The IPMP meta-interface is special-cased because it starts 4242 * with no underlying interfaces (and thus an unknown broadcast 4243 * address length), but we enforce that an interface is broadcast- 4244 * capable as part of allowing it to join a group. 4245 */ 4246 if (ill->ill_bcast_addr_length == 0 && !IS_IPMP(ill)) { 4247 if (ill->ill_bcast_mp != NULL) 4248 freemsg(ill->ill_bcast_mp); 4249 ill->ill_net_type = IRE_IF_NORESOLVER; 4250 4251 ill->ill_bcast_mp = ill_dlur_gen(NULL, 4252 ill->ill_phys_addr_length, 4253 ill->ill_sap, 4254 ill->ill_sap_length); 4255 4256 if (ill->ill_isv6) 4257 /* 4258 * Note: xresolv interfaces will eventually need NOARP 4259 * set here as well, but that will require those 4260 * external resolvers to have some knowledge of 4261 * that flag and act appropriately. Not to be changed 4262 * at present. 4263 */ 4264 ill->ill_flags |= ILLF_NONUD; 4265 else 4266 ill->ill_flags |= ILLF_NOARP; 4267 4268 if (ill->ill_mactype == SUNW_DL_VNI) { 4269 ill->ill_ipif->ipif_flags |= IPIF_NOXMIT; 4270 } else if (ill->ill_phys_addr_length == 0 || 4271 ill->ill_mactype == DL_IPV4 || 4272 ill->ill_mactype == DL_IPV6) { 4273 /* 4274 * The underying link is point-to-point, so mark the 4275 * interface as such. We can do IP multicast over 4276 * such a link since it transmits all network-layer 4277 * packets to the remote side the same way. 4278 */ 4279 ill->ill_flags |= ILLF_MULTICAST; 4280 ill->ill_ipif->ipif_flags |= IPIF_POINTOPOINT; 4281 } 4282 } else { 4283 ill->ill_net_type = IRE_IF_RESOLVER; 4284 if (ill->ill_bcast_mp != NULL) 4285 freemsg(ill->ill_bcast_mp); 4286 ill->ill_bcast_mp = ill_dlur_gen(brdcst_addr, 4287 ill->ill_bcast_addr_length, ill->ill_sap, 4288 ill->ill_sap_length); 4289 /* 4290 * Later detect lack of DLPI driver multicast 4291 * capability by catching DL_ENABMULTI errors in 4292 * ip_rput_dlpi. 4293 */ 4294 ill->ill_flags |= ILLF_MULTICAST; 4295 if (!ill->ill_isv6) 4296 ill->ill_ipif->ipif_flags |= IPIF_BROADCAST; 4297 } 4298 4299 /* For IPMP, PHYI_IPMP should already be set by phyint_flags_init() */ 4300 if (ill->ill_mactype == SUNW_DL_IPMP) 4301 ASSERT(ill->ill_phyint->phyint_flags & PHYI_IPMP); 4302 4303 /* By default an interface does not support any CoS marking */ 4304 ill->ill_flags &= ~ILLF_COS_ENABLED; 4305 4306 /* 4307 * If we get QoS information in DL_INFO_ACK, the device supports 4308 * some form of CoS marking, set ILLF_COS_ENABLED. 4309 */ 4310 sel1 = (dl_qos_cl_sel1_t *)mi_offset_param(mp, dlia->dl_qos_offset, 4311 dlia->dl_qos_length); 4312 if ((sel1 != NULL) && (sel1->dl_qos_type == DL_QOS_CL_SEL1)) { 4313 ill->ill_flags |= ILLF_COS_ENABLED; 4314 } 4315 4316 /* Clear any previous error indication. */ 4317 ill->ill_error = 0; 4318 freemsg(mp); 4319 } 4320 4321 /* 4322 * Perform various checks to verify that an address would make sense as a 4323 * local, remote, or subnet interface address. 4324 */ 4325 static boolean_t 4326 ip_addr_ok_v4(ipaddr_t addr, ipaddr_t subnet_mask) 4327 { 4328 ipaddr_t net_mask; 4329 4330 /* 4331 * Don't allow all zeroes, or all ones, but allow 4332 * all ones netmask. 4333 */ 4334 if ((net_mask = ip_net_mask(addr)) == 0) 4335 return (B_FALSE); 4336 /* A given netmask overrides the "guess" netmask */ 4337 if (subnet_mask != 0) 4338 net_mask = subnet_mask; 4339 if ((net_mask != ~(ipaddr_t)0) && ((addr == (addr & net_mask)) || 4340 (addr == (addr | ~net_mask)))) { 4341 return (B_FALSE); 4342 } 4343 4344 /* 4345 * Even if the netmask is all ones, we do not allow address to be 4346 * 255.255.255.255 4347 */ 4348 if (addr == INADDR_BROADCAST) 4349 return (B_FALSE); 4350 4351 if (CLASSD(addr)) 4352 return (B_FALSE); 4353 4354 return (B_TRUE); 4355 } 4356 4357 #define V6_IPIF_LINKLOCAL(p) \ 4358 IN6_IS_ADDR_LINKLOCAL(&(p)->ipif_v6lcl_addr) 4359 4360 /* 4361 * Compare two given ipifs and check if the second one is better than 4362 * the first one using the order of preference (not taking deprecated 4363 * into acount) specified in ipif_lookup_multicast(). 4364 */ 4365 static boolean_t 4366 ipif_comp_multi(ipif_t *old_ipif, ipif_t *new_ipif, boolean_t isv6) 4367 { 4368 /* Check the least preferred first. */ 4369 if (IS_LOOPBACK(old_ipif->ipif_ill)) { 4370 /* If both ipifs are the same, use the first one. */ 4371 if (IS_LOOPBACK(new_ipif->ipif_ill)) 4372 return (B_FALSE); 4373 else 4374 return (B_TRUE); 4375 } 4376 4377 /* For IPv6, check for link local address. */ 4378 if (isv6 && V6_IPIF_LINKLOCAL(old_ipif)) { 4379 if (IS_LOOPBACK(new_ipif->ipif_ill) || 4380 V6_IPIF_LINKLOCAL(new_ipif)) { 4381 /* The second one is equal or less preferred. */ 4382 return (B_FALSE); 4383 } else { 4384 return (B_TRUE); 4385 } 4386 } 4387 4388 /* Then check for point to point interface. */ 4389 if (old_ipif->ipif_flags & IPIF_POINTOPOINT) { 4390 if (IS_LOOPBACK(new_ipif->ipif_ill) || 4391 (isv6 && V6_IPIF_LINKLOCAL(new_ipif)) || 4392 (new_ipif->ipif_flags & IPIF_POINTOPOINT)) { 4393 return (B_FALSE); 4394 } else { 4395 return (B_TRUE); 4396 } 4397 } 4398 4399 /* old_ipif is a normal interface, so no need to use the new one. */ 4400 return (B_FALSE); 4401 } 4402 4403 /* 4404 * Find a mulitcast-capable ipif given an IP instance and zoneid. 4405 * The ipif must be up, and its ill must multicast-capable, not 4406 * condemned, not an underlying interface in an IPMP group, and 4407 * not a VNI interface. Order of preference: 4408 * 4409 * 1a. normal 4410 * 1b. normal, but deprecated 4411 * 2a. point to point 4412 * 2b. point to point, but deprecated 4413 * 3a. link local 4414 * 3b. link local, but deprecated 4415 * 4. loopback. 4416 */ 4417 static ipif_t * 4418 ipif_lookup_multicast(ip_stack_t *ipst, zoneid_t zoneid, boolean_t isv6) 4419 { 4420 ill_t *ill; 4421 ill_walk_context_t ctx; 4422 ipif_t *ipif; 4423 ipif_t *saved_ipif = NULL; 4424 ipif_t *dep_ipif = NULL; 4425 4426 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 4427 if (isv6) 4428 ill = ILL_START_WALK_V6(&ctx, ipst); 4429 else 4430 ill = ILL_START_WALK_V4(&ctx, ipst); 4431 4432 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 4433 mutex_enter(&ill->ill_lock); 4434 if (IS_VNI(ill) || IS_UNDER_IPMP(ill) || 4435 ILL_IS_CONDEMNED(ill) || 4436 !(ill->ill_flags & ILLF_MULTICAST)) { 4437 mutex_exit(&ill->ill_lock); 4438 continue; 4439 } 4440 for (ipif = ill->ill_ipif; ipif != NULL; 4441 ipif = ipif->ipif_next) { 4442 if (zoneid != ipif->ipif_zoneid && 4443 zoneid != ALL_ZONES && 4444 ipif->ipif_zoneid != ALL_ZONES) { 4445 continue; 4446 } 4447 if (!(ipif->ipif_flags & IPIF_UP) || 4448 IPIF_IS_CONDEMNED(ipif)) { 4449 continue; 4450 } 4451 4452 /* 4453 * Found one candidate. If it is deprecated, 4454 * remember it in dep_ipif. If it is not deprecated, 4455 * remember it in saved_ipif. 4456 */ 4457 if (ipif->ipif_flags & IPIF_DEPRECATED) { 4458 if (dep_ipif == NULL) { 4459 dep_ipif = ipif; 4460 } else if (ipif_comp_multi(dep_ipif, ipif, 4461 isv6)) { 4462 /* 4463 * If the previous dep_ipif does not 4464 * belong to the same ill, we've done 4465 * a ipif_refhold() on it. So we need 4466 * to release it. 4467 */ 4468 if (dep_ipif->ipif_ill != ill) 4469 ipif_refrele(dep_ipif); 4470 dep_ipif = ipif; 4471 } 4472 continue; 4473 } 4474 if (saved_ipif == NULL) { 4475 saved_ipif = ipif; 4476 } else { 4477 if (ipif_comp_multi(saved_ipif, ipif, isv6)) { 4478 if (saved_ipif->ipif_ill != ill) 4479 ipif_refrele(saved_ipif); 4480 saved_ipif = ipif; 4481 } 4482 } 4483 } 4484 /* 4485 * Before going to the next ill, do a ipif_refhold() on the 4486 * saved ones. 4487 */ 4488 if (saved_ipif != NULL && saved_ipif->ipif_ill == ill) 4489 ipif_refhold_locked(saved_ipif); 4490 if (dep_ipif != NULL && dep_ipif->ipif_ill == ill) 4491 ipif_refhold_locked(dep_ipif); 4492 mutex_exit(&ill->ill_lock); 4493 } 4494 rw_exit(&ipst->ips_ill_g_lock); 4495 4496 /* 4497 * If we have only the saved_ipif, return it. But if we have both 4498 * saved_ipif and dep_ipif, check to see which one is better. 4499 */ 4500 if (saved_ipif != NULL) { 4501 if (dep_ipif != NULL) { 4502 if (ipif_comp_multi(saved_ipif, dep_ipif, isv6)) { 4503 ipif_refrele(saved_ipif); 4504 return (dep_ipif); 4505 } else { 4506 ipif_refrele(dep_ipif); 4507 return (saved_ipif); 4508 } 4509 } 4510 return (saved_ipif); 4511 } else { 4512 return (dep_ipif); 4513 } 4514 } 4515 4516 ill_t * 4517 ill_lookup_multicast(ip_stack_t *ipst, zoneid_t zoneid, boolean_t isv6) 4518 { 4519 ipif_t *ipif; 4520 ill_t *ill; 4521 4522 ipif = ipif_lookup_multicast(ipst, zoneid, isv6); 4523 if (ipif == NULL) 4524 return (NULL); 4525 4526 ill = ipif->ipif_ill; 4527 ill_refhold(ill); 4528 ipif_refrele(ipif); 4529 return (ill); 4530 } 4531 4532 /* 4533 * This function is called when an application does not specify an interface 4534 * to be used for multicast traffic (joining a group/sending data). It 4535 * calls ire_lookup_multi() to look for an interface route for the 4536 * specified multicast group. Doing this allows the administrator to add 4537 * prefix routes for multicast to indicate which interface to be used for 4538 * multicast traffic in the above scenario. The route could be for all 4539 * multicast (224.0/4), for a single multicast group (a /32 route) or 4540 * anything in between. If there is no such multicast route, we just find 4541 * any multicast capable interface and return it. The returned ipif 4542 * is refhold'ed. 4543 * 4544 * We support MULTIRT and RTF_SETSRC on the multicast routes added to the 4545 * unicast table. This is used by CGTP. 4546 */ 4547 ill_t * 4548 ill_lookup_group_v4(ipaddr_t group, zoneid_t zoneid, ip_stack_t *ipst, 4549 boolean_t *multirtp, ipaddr_t *setsrcp) 4550 { 4551 ill_t *ill; 4552 4553 ill = ire_lookup_multi_ill_v4(group, zoneid, ipst, multirtp, setsrcp); 4554 if (ill != NULL) 4555 return (ill); 4556 4557 return (ill_lookup_multicast(ipst, zoneid, B_FALSE)); 4558 } 4559 4560 /* 4561 * Look for an ipif with the specified interface address and destination. 4562 * The destination address is used only for matching point-to-point interfaces. 4563 */ 4564 ipif_t * 4565 ipif_lookup_interface(ipaddr_t if_addr, ipaddr_t dst, ip_stack_t *ipst) 4566 { 4567 ipif_t *ipif; 4568 ill_t *ill; 4569 ill_walk_context_t ctx; 4570 4571 /* 4572 * First match all the point-to-point interfaces 4573 * before looking at non-point-to-point interfaces. 4574 * This is done to avoid returning non-point-to-point 4575 * ipif instead of unnumbered point-to-point ipif. 4576 */ 4577 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 4578 ill = ILL_START_WALK_V4(&ctx, ipst); 4579 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 4580 mutex_enter(&ill->ill_lock); 4581 for (ipif = ill->ill_ipif; ipif != NULL; 4582 ipif = ipif->ipif_next) { 4583 /* Allow the ipif to be down */ 4584 if ((ipif->ipif_flags & IPIF_POINTOPOINT) && 4585 (ipif->ipif_lcl_addr == if_addr) && 4586 (ipif->ipif_pp_dst_addr == dst)) { 4587 if (!IPIF_IS_CONDEMNED(ipif)) { 4588 ipif_refhold_locked(ipif); 4589 mutex_exit(&ill->ill_lock); 4590 rw_exit(&ipst->ips_ill_g_lock); 4591 return (ipif); 4592 } 4593 } 4594 } 4595 mutex_exit(&ill->ill_lock); 4596 } 4597 rw_exit(&ipst->ips_ill_g_lock); 4598 4599 /* lookup the ipif based on interface address */ 4600 ipif = ipif_lookup_addr(if_addr, NULL, ALL_ZONES, ipst); 4601 ASSERT(ipif == NULL || !ipif->ipif_isv6); 4602 return (ipif); 4603 } 4604 4605 /* 4606 * Common function for ipif_lookup_addr() and ipif_lookup_addr_exact(). 4607 */ 4608 static ipif_t * 4609 ipif_lookup_addr_common(ipaddr_t addr, ill_t *match_ill, uint32_t match_flags, 4610 zoneid_t zoneid, ip_stack_t *ipst) 4611 { 4612 ipif_t *ipif; 4613 ill_t *ill; 4614 boolean_t ptp = B_FALSE; 4615 ill_walk_context_t ctx; 4616 boolean_t match_illgrp = (match_flags & IPIF_MATCH_ILLGRP); 4617 boolean_t no_duplicate = (match_flags & IPIF_MATCH_NONDUP); 4618 4619 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 4620 /* 4621 * Repeat twice, first based on local addresses and 4622 * next time for pointopoint. 4623 */ 4624 repeat: 4625 ill = ILL_START_WALK_V4(&ctx, ipst); 4626 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 4627 if (match_ill != NULL && ill != match_ill && 4628 (!match_illgrp || !IS_IN_SAME_ILLGRP(ill, match_ill))) { 4629 continue; 4630 } 4631 mutex_enter(&ill->ill_lock); 4632 for (ipif = ill->ill_ipif; ipif != NULL; 4633 ipif = ipif->ipif_next) { 4634 if (zoneid != ALL_ZONES && 4635 zoneid != ipif->ipif_zoneid && 4636 ipif->ipif_zoneid != ALL_ZONES) 4637 continue; 4638 4639 if (no_duplicate && !(ipif->ipif_flags & IPIF_UP)) 4640 continue; 4641 4642 /* Allow the ipif to be down */ 4643 if ((!ptp && (ipif->ipif_lcl_addr == addr) && 4644 ((ipif->ipif_flags & IPIF_UNNUMBERED) == 0)) || 4645 (ptp && (ipif->ipif_flags & IPIF_POINTOPOINT) && 4646 (ipif->ipif_pp_dst_addr == addr))) { 4647 if (!IPIF_IS_CONDEMNED(ipif)) { 4648 ipif_refhold_locked(ipif); 4649 mutex_exit(&ill->ill_lock); 4650 rw_exit(&ipst->ips_ill_g_lock); 4651 return (ipif); 4652 } 4653 } 4654 } 4655 mutex_exit(&ill->ill_lock); 4656 } 4657 4658 /* If we already did the ptp case, then we are done */ 4659 if (ptp) { 4660 rw_exit(&ipst->ips_ill_g_lock); 4661 return (NULL); 4662 } 4663 ptp = B_TRUE; 4664 goto repeat; 4665 } 4666 4667 /* 4668 * Lookup an ipif with the specified address. For point-to-point links we 4669 * look for matches on either the destination address or the local address, 4670 * but we skip the local address check if IPIF_UNNUMBERED is set. If the 4671 * `match_ill' argument is non-NULL, the lookup is restricted to that ill 4672 * (or illgrp if `match_ill' is in an IPMP group). 4673 */ 4674 ipif_t * 4675 ipif_lookup_addr(ipaddr_t addr, ill_t *match_ill, zoneid_t zoneid, 4676 ip_stack_t *ipst) 4677 { 4678 return (ipif_lookup_addr_common(addr, match_ill, IPIF_MATCH_ILLGRP, 4679 zoneid, ipst)); 4680 } 4681 4682 /* 4683 * Lookup an ipif with the specified address. Similar to ipif_lookup_addr, 4684 * except that we will only return an address if it is not marked as 4685 * IPIF_DUPLICATE 4686 */ 4687 ipif_t * 4688 ipif_lookup_addr_nondup(ipaddr_t addr, ill_t *match_ill, zoneid_t zoneid, 4689 ip_stack_t *ipst) 4690 { 4691 return (ipif_lookup_addr_common(addr, match_ill, 4692 (IPIF_MATCH_ILLGRP | IPIF_MATCH_NONDUP), 4693 zoneid, ipst)); 4694 } 4695 4696 /* 4697 * Special abbreviated version of ipif_lookup_addr() that doesn't match 4698 * `match_ill' across the IPMP group. This function is only needed in some 4699 * corner-cases; almost everything should use ipif_lookup_addr(). 4700 */ 4701 ipif_t * 4702 ipif_lookup_addr_exact(ipaddr_t addr, ill_t *match_ill, ip_stack_t *ipst) 4703 { 4704 ASSERT(match_ill != NULL); 4705 return (ipif_lookup_addr_common(addr, match_ill, 0, ALL_ZONES, 4706 ipst)); 4707 } 4708 4709 /* 4710 * Look for an ipif with the specified address. For point-point links 4711 * we look for matches on either the destination address and the local 4712 * address, but we ignore the check on the local address if IPIF_UNNUMBERED 4713 * is set. 4714 * If the `match_ill' argument is non-NULL, the lookup is restricted to that 4715 * ill (or illgrp if `match_ill' is in an IPMP group). 4716 * Return the zoneid for the ipif which matches. ALL_ZONES if no match. 4717 */ 4718 zoneid_t 4719 ipif_lookup_addr_zoneid(ipaddr_t addr, ill_t *match_ill, ip_stack_t *ipst) 4720 { 4721 zoneid_t zoneid; 4722 ipif_t *ipif; 4723 ill_t *ill; 4724 boolean_t ptp = B_FALSE; 4725 ill_walk_context_t ctx; 4726 4727 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 4728 /* 4729 * Repeat twice, first based on local addresses and 4730 * next time for pointopoint. 4731 */ 4732 repeat: 4733 ill = ILL_START_WALK_V4(&ctx, ipst); 4734 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 4735 if (match_ill != NULL && ill != match_ill && 4736 !IS_IN_SAME_ILLGRP(ill, match_ill)) { 4737 continue; 4738 } 4739 mutex_enter(&ill->ill_lock); 4740 for (ipif = ill->ill_ipif; ipif != NULL; 4741 ipif = ipif->ipif_next) { 4742 /* Allow the ipif to be down */ 4743 if ((!ptp && (ipif->ipif_lcl_addr == addr) && 4744 ((ipif->ipif_flags & IPIF_UNNUMBERED) == 0)) || 4745 (ptp && (ipif->ipif_flags & IPIF_POINTOPOINT) && 4746 (ipif->ipif_pp_dst_addr == addr)) && 4747 !(ipif->ipif_state_flags & IPIF_CONDEMNED)) { 4748 zoneid = ipif->ipif_zoneid; 4749 mutex_exit(&ill->ill_lock); 4750 rw_exit(&ipst->ips_ill_g_lock); 4751 /* 4752 * If ipif_zoneid was ALL_ZONES then we have 4753 * a trusted extensions shared IP address. 4754 * In that case GLOBAL_ZONEID works to send. 4755 */ 4756 if (zoneid == ALL_ZONES) 4757 zoneid = GLOBAL_ZONEID; 4758 return (zoneid); 4759 } 4760 } 4761 mutex_exit(&ill->ill_lock); 4762 } 4763 4764 /* If we already did the ptp case, then we are done */ 4765 if (ptp) { 4766 rw_exit(&ipst->ips_ill_g_lock); 4767 return (ALL_ZONES); 4768 } 4769 ptp = B_TRUE; 4770 goto repeat; 4771 } 4772 4773 /* 4774 * Look for an ipif that matches the specified remote address i.e. the 4775 * ipif that would receive the specified packet. 4776 * First look for directly connected interfaces and then do a recursive 4777 * IRE lookup and pick the first ipif corresponding to the source address in the 4778 * ire. 4779 * Returns: held ipif 4780 * 4781 * This is only used for ICMP_ADDRESS_MASK_REQUESTs 4782 */ 4783 ipif_t * 4784 ipif_lookup_remote(ill_t *ill, ipaddr_t addr, zoneid_t zoneid) 4785 { 4786 ipif_t *ipif; 4787 4788 ASSERT(!ill->ill_isv6); 4789 4790 /* 4791 * Someone could be changing this ipif currently or change it 4792 * after we return this. Thus a few packets could use the old 4793 * old values. However structure updates/creates (ire, ilg, ilm etc) 4794 * will atomically be updated or cleaned up with the new value 4795 * Thus we don't need a lock to check the flags or other attrs below. 4796 */ 4797 mutex_enter(&ill->ill_lock); 4798 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 4799 if (IPIF_IS_CONDEMNED(ipif)) 4800 continue; 4801 if (zoneid != ALL_ZONES && zoneid != ipif->ipif_zoneid && 4802 ipif->ipif_zoneid != ALL_ZONES) 4803 continue; 4804 /* Allow the ipif to be down */ 4805 if (ipif->ipif_flags & IPIF_POINTOPOINT) { 4806 if ((ipif->ipif_pp_dst_addr == addr) || 4807 (!(ipif->ipif_flags & IPIF_UNNUMBERED) && 4808 ipif->ipif_lcl_addr == addr)) { 4809 ipif_refhold_locked(ipif); 4810 mutex_exit(&ill->ill_lock); 4811 return (ipif); 4812 } 4813 } else if (ipif->ipif_subnet == (addr & ipif->ipif_net_mask)) { 4814 ipif_refhold_locked(ipif); 4815 mutex_exit(&ill->ill_lock); 4816 return (ipif); 4817 } 4818 } 4819 mutex_exit(&ill->ill_lock); 4820 /* 4821 * For a remote destination it isn't possible to nail down a particular 4822 * ipif. 4823 */ 4824 4825 /* Pick the first interface */ 4826 ipif = ipif_get_next_ipif(NULL, ill); 4827 return (ipif); 4828 } 4829 4830 /* 4831 * This func does not prevent refcnt from increasing. But if 4832 * the caller has taken steps to that effect, then this func 4833 * can be used to determine whether the ill has become quiescent 4834 */ 4835 static boolean_t 4836 ill_is_quiescent(ill_t *ill) 4837 { 4838 ipif_t *ipif; 4839 4840 ASSERT(MUTEX_HELD(&ill->ill_lock)); 4841 4842 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 4843 if (ipif->ipif_refcnt != 0) 4844 return (B_FALSE); 4845 } 4846 if (!ILL_DOWN_OK(ill) || ill->ill_refcnt != 0) { 4847 return (B_FALSE); 4848 } 4849 return (B_TRUE); 4850 } 4851 4852 boolean_t 4853 ill_is_freeable(ill_t *ill) 4854 { 4855 ipif_t *ipif; 4856 4857 ASSERT(MUTEX_HELD(&ill->ill_lock)); 4858 4859 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 4860 if (ipif->ipif_refcnt != 0) { 4861 return (B_FALSE); 4862 } 4863 } 4864 if (!ILL_FREE_OK(ill) || ill->ill_refcnt != 0) { 4865 return (B_FALSE); 4866 } 4867 return (B_TRUE); 4868 } 4869 4870 /* 4871 * This func does not prevent refcnt from increasing. But if 4872 * the caller has taken steps to that effect, then this func 4873 * can be used to determine whether the ipif has become quiescent 4874 */ 4875 static boolean_t 4876 ipif_is_quiescent(ipif_t *ipif) 4877 { 4878 ill_t *ill; 4879 4880 ASSERT(MUTEX_HELD(&ipif->ipif_ill->ill_lock)); 4881 4882 if (ipif->ipif_refcnt != 0) 4883 return (B_FALSE); 4884 4885 ill = ipif->ipif_ill; 4886 if (ill->ill_ipif_up_count != 0 || ill->ill_ipif_dup_count != 0 || 4887 ill->ill_logical_down) { 4888 return (B_TRUE); 4889 } 4890 4891 /* This is the last ipif going down or being deleted on this ill */ 4892 if (ill->ill_ire_cnt != 0 || ill->ill_refcnt != 0) { 4893 return (B_FALSE); 4894 } 4895 4896 return (B_TRUE); 4897 } 4898 4899 /* 4900 * return true if the ipif can be destroyed: the ipif has to be quiescent 4901 * with zero references from ire/ilm to it. 4902 */ 4903 static boolean_t 4904 ipif_is_freeable(ipif_t *ipif) 4905 { 4906 ASSERT(MUTEX_HELD(&ipif->ipif_ill->ill_lock)); 4907 ASSERT(ipif->ipif_id != 0); 4908 return (ipif->ipif_refcnt == 0); 4909 } 4910 4911 /* 4912 * The ipif/ill/ire has been refreled. Do the tail processing. 4913 * Determine if the ipif or ill in question has become quiescent and if so 4914 * wakeup close and/or restart any queued pending ioctl that is waiting 4915 * for the ipif_down (or ill_down) 4916 */ 4917 void 4918 ipif_ill_refrele_tail(ill_t *ill) 4919 { 4920 mblk_t *mp; 4921 conn_t *connp; 4922 ipsq_t *ipsq; 4923 ipxop_t *ipx; 4924 ipif_t *ipif; 4925 dl_notify_ind_t *dlindp; 4926 4927 ASSERT(MUTEX_HELD(&ill->ill_lock)); 4928 4929 if ((ill->ill_state_flags & ILL_CONDEMNED) && ill_is_freeable(ill)) { 4930 /* ip_modclose() may be waiting */ 4931 cv_broadcast(&ill->ill_cv); 4932 } 4933 4934 ipsq = ill->ill_phyint->phyint_ipsq; 4935 mutex_enter(&ipsq->ipsq_lock); 4936 ipx = ipsq->ipsq_xop; 4937 mutex_enter(&ipx->ipx_lock); 4938 if (ipx->ipx_waitfor == 0) /* no one's waiting; bail */ 4939 goto unlock; 4940 4941 ASSERT(ipx->ipx_pending_mp != NULL && ipx->ipx_pending_ipif != NULL); 4942 4943 ipif = ipx->ipx_pending_ipif; 4944 if (ipif->ipif_ill != ill) /* wait is for another ill; bail */ 4945 goto unlock; 4946 4947 switch (ipx->ipx_waitfor) { 4948 case IPIF_DOWN: 4949 if (!ipif_is_quiescent(ipif)) 4950 goto unlock; 4951 break; 4952 case IPIF_FREE: 4953 if (!ipif_is_freeable(ipif)) 4954 goto unlock; 4955 break; 4956 case ILL_DOWN: 4957 if (!ill_is_quiescent(ill)) 4958 goto unlock; 4959 break; 4960 case ILL_FREE: 4961 /* 4962 * ILL_FREE is only for loopback; normal ill teardown waits 4963 * synchronously in ip_modclose() without using ipx_waitfor, 4964 * handled by the cv_broadcast() at the top of this function. 4965 */ 4966 if (!ill_is_freeable(ill)) 4967 goto unlock; 4968 break; 4969 default: 4970 cmn_err(CE_PANIC, "ipsq: %p unknown ipx_waitfor %d\n", 4971 (void *)ipsq, ipx->ipx_waitfor); 4972 } 4973 4974 ill_refhold_locked(ill); /* for qwriter_ip() call below */ 4975 mutex_exit(&ipx->ipx_lock); 4976 mp = ipsq_pending_mp_get(ipsq, &connp); 4977 mutex_exit(&ipsq->ipsq_lock); 4978 mutex_exit(&ill->ill_lock); 4979 4980 ASSERT(mp != NULL); 4981 /* 4982 * NOTE: all of the qwriter_ip() calls below use CUR_OP since 4983 * we can only get here when the current operation decides it 4984 * it needs to quiesce via ipsq_pending_mp_add(). 4985 */ 4986 switch (mp->b_datap->db_type) { 4987 case M_PCPROTO: 4988 case M_PROTO: 4989 /* 4990 * For now, only DL_NOTIFY_IND messages can use this facility. 4991 */ 4992 dlindp = (dl_notify_ind_t *)mp->b_rptr; 4993 ASSERT(dlindp->dl_primitive == DL_NOTIFY_IND); 4994 4995 switch (dlindp->dl_notification) { 4996 case DL_NOTE_PHYS_ADDR: 4997 qwriter_ip(ill, ill->ill_rq, mp, 4998 ill_set_phys_addr_tail, CUR_OP, B_TRUE); 4999 return; 5000 case DL_NOTE_REPLUMB: 5001 qwriter_ip(ill, ill->ill_rq, mp, 5002 ill_replumb_tail, CUR_OP, B_TRUE); 5003 return; 5004 default: 5005 ASSERT(0); 5006 ill_refrele(ill); 5007 } 5008 break; 5009 5010 case M_ERROR: 5011 case M_HANGUP: 5012 qwriter_ip(ill, ill->ill_rq, mp, ipif_all_down_tail, CUR_OP, 5013 B_TRUE); 5014 return; 5015 5016 case M_IOCTL: 5017 case M_IOCDATA: 5018 qwriter_ip(ill, (connp != NULL ? CONNP_TO_WQ(connp) : 5019 ill->ill_wq), mp, ip_reprocess_ioctl, CUR_OP, B_TRUE); 5020 return; 5021 5022 default: 5023 cmn_err(CE_PANIC, "ipif_ill_refrele_tail mp %p " 5024 "db_type %d\n", (void *)mp, mp->b_datap->db_type); 5025 } 5026 return; 5027 unlock: 5028 mutex_exit(&ipsq->ipsq_lock); 5029 mutex_exit(&ipx->ipx_lock); 5030 mutex_exit(&ill->ill_lock); 5031 } 5032 5033 #ifdef DEBUG 5034 /* Reuse trace buffer from beginning (if reached the end) and record trace */ 5035 static void 5036 th_trace_rrecord(th_trace_t *th_trace) 5037 { 5038 tr_buf_t *tr_buf; 5039 uint_t lastref; 5040 5041 lastref = th_trace->th_trace_lastref; 5042 lastref++; 5043 if (lastref == TR_BUF_MAX) 5044 lastref = 0; 5045 th_trace->th_trace_lastref = lastref; 5046 tr_buf = &th_trace->th_trbuf[lastref]; 5047 tr_buf->tr_time = ddi_get_lbolt(); 5048 tr_buf->tr_depth = getpcstack(tr_buf->tr_stack, TR_STACK_DEPTH); 5049 } 5050 5051 static void 5052 th_trace_free(void *value) 5053 { 5054 th_trace_t *th_trace = value; 5055 5056 ASSERT(th_trace->th_refcnt == 0); 5057 kmem_free(th_trace, sizeof (*th_trace)); 5058 } 5059 5060 /* 5061 * Find or create the per-thread hash table used to track object references. 5062 * The ipst argument is NULL if we shouldn't allocate. 5063 * 5064 * Accesses per-thread data, so there's no need to lock here. 5065 */ 5066 static mod_hash_t * 5067 th_trace_gethash(ip_stack_t *ipst) 5068 { 5069 th_hash_t *thh; 5070 5071 if ((thh = tsd_get(ip_thread_data)) == NULL && ipst != NULL) { 5072 mod_hash_t *mh; 5073 char name[256]; 5074 size_t objsize, rshift; 5075 int retv; 5076 5077 if ((thh = kmem_alloc(sizeof (*thh), KM_NOSLEEP)) == NULL) 5078 return (NULL); 5079 (void) snprintf(name, sizeof (name), "th_trace_%p", 5080 (void *)curthread); 5081 5082 /* 5083 * We use mod_hash_create_extended here rather than the more 5084 * obvious mod_hash_create_ptrhash because the latter has a 5085 * hard-coded KM_SLEEP, and we'd prefer to fail rather than 5086 * block. 5087 */ 5088 objsize = MAX(MAX(sizeof (ill_t), sizeof (ipif_t)), 5089 MAX(sizeof (ire_t), sizeof (ncec_t))); 5090 rshift = highbit(objsize); 5091 mh = mod_hash_create_extended(name, 64, mod_hash_null_keydtor, 5092 th_trace_free, mod_hash_byptr, (void *)rshift, 5093 mod_hash_ptrkey_cmp, KM_NOSLEEP); 5094 if (mh == NULL) { 5095 kmem_free(thh, sizeof (*thh)); 5096 return (NULL); 5097 } 5098 thh->thh_hash = mh; 5099 thh->thh_ipst = ipst; 5100 /* 5101 * We trace ills, ipifs, ires, and nces. All of these are 5102 * per-IP-stack, so the lock on the thread list is as well. 5103 */ 5104 rw_enter(&ip_thread_rwlock, RW_WRITER); 5105 list_insert_tail(&ip_thread_list, thh); 5106 rw_exit(&ip_thread_rwlock); 5107 retv = tsd_set(ip_thread_data, thh); 5108 ASSERT(retv == 0); 5109 } 5110 return (thh != NULL ? thh->thh_hash : NULL); 5111 } 5112 5113 boolean_t 5114 th_trace_ref(const void *obj, ip_stack_t *ipst) 5115 { 5116 th_trace_t *th_trace; 5117 mod_hash_t *mh; 5118 mod_hash_val_t val; 5119 5120 if ((mh = th_trace_gethash(ipst)) == NULL) 5121 return (B_FALSE); 5122 5123 /* 5124 * Attempt to locate the trace buffer for this obj and thread. 5125 * If it does not exist, then allocate a new trace buffer and 5126 * insert into the hash. 5127 */ 5128 if (mod_hash_find(mh, (mod_hash_key_t)obj, &val) == MH_ERR_NOTFOUND) { 5129 th_trace = kmem_zalloc(sizeof (th_trace_t), KM_NOSLEEP); 5130 if (th_trace == NULL) 5131 return (B_FALSE); 5132 5133 th_trace->th_id = curthread; 5134 if (mod_hash_insert(mh, (mod_hash_key_t)obj, 5135 (mod_hash_val_t)th_trace) != 0) { 5136 kmem_free(th_trace, sizeof (th_trace_t)); 5137 return (B_FALSE); 5138 } 5139 } else { 5140 th_trace = (th_trace_t *)val; 5141 } 5142 5143 ASSERT(th_trace->th_refcnt >= 0 && 5144 th_trace->th_refcnt < TR_BUF_MAX - 1); 5145 5146 th_trace->th_refcnt++; 5147 th_trace_rrecord(th_trace); 5148 return (B_TRUE); 5149 } 5150 5151 /* 5152 * For the purpose of tracing a reference release, we assume that global 5153 * tracing is always on and that the same thread initiated the reference hold 5154 * is releasing. 5155 */ 5156 void 5157 th_trace_unref(const void *obj) 5158 { 5159 int retv; 5160 mod_hash_t *mh; 5161 th_trace_t *th_trace; 5162 mod_hash_val_t val; 5163 5164 mh = th_trace_gethash(NULL); 5165 retv = mod_hash_find(mh, (mod_hash_key_t)obj, &val); 5166 ASSERT(retv == 0); 5167 th_trace = (th_trace_t *)val; 5168 5169 ASSERT(th_trace->th_refcnt > 0); 5170 th_trace->th_refcnt--; 5171 th_trace_rrecord(th_trace); 5172 } 5173 5174 /* 5175 * If tracing has been disabled, then we assume that the reference counts are 5176 * now useless, and we clear them out before destroying the entries. 5177 */ 5178 void 5179 th_trace_cleanup(const void *obj, boolean_t trace_disable) 5180 { 5181 th_hash_t *thh; 5182 mod_hash_t *mh; 5183 mod_hash_val_t val; 5184 th_trace_t *th_trace; 5185 int retv; 5186 5187 rw_enter(&ip_thread_rwlock, RW_READER); 5188 for (thh = list_head(&ip_thread_list); thh != NULL; 5189 thh = list_next(&ip_thread_list, thh)) { 5190 if (mod_hash_find(mh = thh->thh_hash, (mod_hash_key_t)obj, 5191 &val) == 0) { 5192 th_trace = (th_trace_t *)val; 5193 if (trace_disable) 5194 th_trace->th_refcnt = 0; 5195 retv = mod_hash_destroy(mh, (mod_hash_key_t)obj); 5196 ASSERT(retv == 0); 5197 } 5198 } 5199 rw_exit(&ip_thread_rwlock); 5200 } 5201 5202 void 5203 ipif_trace_ref(ipif_t *ipif) 5204 { 5205 ASSERT(MUTEX_HELD(&ipif->ipif_ill->ill_lock)); 5206 5207 if (ipif->ipif_trace_disable) 5208 return; 5209 5210 if (!th_trace_ref(ipif, ipif->ipif_ill->ill_ipst)) { 5211 ipif->ipif_trace_disable = B_TRUE; 5212 ipif_trace_cleanup(ipif); 5213 } 5214 } 5215 5216 void 5217 ipif_untrace_ref(ipif_t *ipif) 5218 { 5219 ASSERT(MUTEX_HELD(&ipif->ipif_ill->ill_lock)); 5220 5221 if (!ipif->ipif_trace_disable) 5222 th_trace_unref(ipif); 5223 } 5224 5225 void 5226 ill_trace_ref(ill_t *ill) 5227 { 5228 ASSERT(MUTEX_HELD(&ill->ill_lock)); 5229 5230 if (ill->ill_trace_disable) 5231 return; 5232 5233 if (!th_trace_ref(ill, ill->ill_ipst)) { 5234 ill->ill_trace_disable = B_TRUE; 5235 ill_trace_cleanup(ill); 5236 } 5237 } 5238 5239 void 5240 ill_untrace_ref(ill_t *ill) 5241 { 5242 ASSERT(MUTEX_HELD(&ill->ill_lock)); 5243 5244 if (!ill->ill_trace_disable) 5245 th_trace_unref(ill); 5246 } 5247 5248 /* 5249 * Called when ipif is unplumbed or when memory alloc fails. Note that on 5250 * failure, ipif_trace_disable is set. 5251 */ 5252 static void 5253 ipif_trace_cleanup(const ipif_t *ipif) 5254 { 5255 th_trace_cleanup(ipif, ipif->ipif_trace_disable); 5256 } 5257 5258 /* 5259 * Called when ill is unplumbed or when memory alloc fails. Note that on 5260 * failure, ill_trace_disable is set. 5261 */ 5262 static void 5263 ill_trace_cleanup(const ill_t *ill) 5264 { 5265 th_trace_cleanup(ill, ill->ill_trace_disable); 5266 } 5267 #endif /* DEBUG */ 5268 5269 void 5270 ipif_refhold_locked(ipif_t *ipif) 5271 { 5272 ASSERT(MUTEX_HELD(&ipif->ipif_ill->ill_lock)); 5273 ipif->ipif_refcnt++; 5274 IPIF_TRACE_REF(ipif); 5275 } 5276 5277 void 5278 ipif_refhold(ipif_t *ipif) 5279 { 5280 ill_t *ill; 5281 5282 ill = ipif->ipif_ill; 5283 mutex_enter(&ill->ill_lock); 5284 ipif->ipif_refcnt++; 5285 IPIF_TRACE_REF(ipif); 5286 mutex_exit(&ill->ill_lock); 5287 } 5288 5289 /* 5290 * Must not be called while holding any locks. Otherwise if this is 5291 * the last reference to be released there is a chance of recursive mutex 5292 * panic due to ipif_refrele -> ipif_ill_refrele_tail -> qwriter_ip trying 5293 * to restart an ioctl. 5294 */ 5295 void 5296 ipif_refrele(ipif_t *ipif) 5297 { 5298 ill_t *ill; 5299 5300 ill = ipif->ipif_ill; 5301 5302 mutex_enter(&ill->ill_lock); 5303 ASSERT(ipif->ipif_refcnt != 0); 5304 ipif->ipif_refcnt--; 5305 IPIF_UNTRACE_REF(ipif); 5306 if (ipif->ipif_refcnt != 0) { 5307 mutex_exit(&ill->ill_lock); 5308 return; 5309 } 5310 5311 /* Drops the ill_lock */ 5312 ipif_ill_refrele_tail(ill); 5313 } 5314 5315 ipif_t * 5316 ipif_get_next_ipif(ipif_t *curr, ill_t *ill) 5317 { 5318 ipif_t *ipif; 5319 5320 mutex_enter(&ill->ill_lock); 5321 for (ipif = (curr == NULL ? ill->ill_ipif : curr->ipif_next); 5322 ipif != NULL; ipif = ipif->ipif_next) { 5323 if (IPIF_IS_CONDEMNED(ipif)) 5324 continue; 5325 ipif_refhold_locked(ipif); 5326 mutex_exit(&ill->ill_lock); 5327 return (ipif); 5328 } 5329 mutex_exit(&ill->ill_lock); 5330 return (NULL); 5331 } 5332 5333 /* 5334 * TODO: make this table extendible at run time 5335 * Return a pointer to the mac type info for 'mac_type' 5336 */ 5337 static ip_m_t * 5338 ip_m_lookup(t_uscalar_t mac_type) 5339 { 5340 ip_m_t *ipm; 5341 5342 for (ipm = ip_m_tbl; ipm < A_END(ip_m_tbl); ipm++) 5343 if (ipm->ip_m_mac_type == mac_type) 5344 return (ipm); 5345 return (NULL); 5346 } 5347 5348 /* 5349 * Make a link layer address from the multicast IP address *addr. 5350 * To form the link layer address, invoke the ip_m_v*mapping function 5351 * associated with the link-layer type. 5352 */ 5353 void 5354 ip_mcast_mapping(ill_t *ill, uchar_t *addr, uchar_t *hwaddr) 5355 { 5356 ip_m_t *ipm; 5357 5358 if (ill->ill_net_type == IRE_IF_NORESOLVER) 5359 return; 5360 5361 ASSERT(addr != NULL); 5362 5363 ipm = ip_m_lookup(ill->ill_mactype); 5364 if (ipm == NULL || 5365 (ill->ill_isv6 && ipm->ip_m_v6mapping == NULL) || 5366 (!ill->ill_isv6 && ipm->ip_m_v4mapping == NULL)) { 5367 ip0dbg(("no mapping for ill %s mactype 0x%x\n", 5368 ill->ill_name, ill->ill_mactype)); 5369 return; 5370 } 5371 if (ill->ill_isv6) 5372 (*ipm->ip_m_v6mapping)(ill, addr, hwaddr); 5373 else 5374 (*ipm->ip_m_v4mapping)(ill, addr, hwaddr); 5375 } 5376 5377 /* 5378 * Returns B_FALSE if the IPv4 netmask pointed by `mask' is non-contiguous. 5379 * Otherwise returns B_TRUE. 5380 * 5381 * The netmask can be verified to be contiguous with 32 shifts and or 5382 * operations. Take the contiguous mask (in host byte order) and compute 5383 * mask | mask << 1 | mask << 2 | ... | mask << 31 5384 * the result will be the same as the 'mask' for contiguous mask. 5385 */ 5386 static boolean_t 5387 ip_contiguous_mask(uint32_t mask) 5388 { 5389 uint32_t m = mask; 5390 int i; 5391 5392 for (i = 1; i < 32; i++) 5393 m |= (mask << i); 5394 5395 return (m == mask); 5396 } 5397 5398 /* 5399 * ip_rt_add is called to add an IPv4 route to the forwarding table. 5400 * ill is passed in to associate it with the correct interface. 5401 * If ire_arg is set, then we return the held IRE in that location. 5402 */ 5403 int 5404 ip_rt_add(ipaddr_t dst_addr, ipaddr_t mask, ipaddr_t gw_addr, 5405 ipaddr_t src_addr, int flags, ill_t *ill, ire_t **ire_arg, 5406 boolean_t ioctl_msg, struct rtsa_s *sp, ip_stack_t *ipst, zoneid_t zoneid) 5407 { 5408 ire_t *ire, *nire; 5409 ire_t *gw_ire = NULL; 5410 ipif_t *ipif = NULL; 5411 uint_t type; 5412 int match_flags = MATCH_IRE_TYPE; 5413 tsol_gc_t *gc = NULL; 5414 tsol_gcgrp_t *gcgrp = NULL; 5415 boolean_t gcgrp_xtraref = B_FALSE; 5416 boolean_t cgtp_broadcast; 5417 boolean_t unbound = B_FALSE; 5418 5419 ip1dbg(("ip_rt_add:")); 5420 5421 if (ire_arg != NULL) 5422 *ire_arg = NULL; 5423 5424 /* disallow non-contiguous netmasks */ 5425 if (!ip_contiguous_mask(ntohl(mask))) 5426 return (ENOTSUP); 5427 5428 /* 5429 * If this is the case of RTF_HOST being set, then we set the netmask 5430 * to all ones (regardless if one was supplied). 5431 */ 5432 if (flags & RTF_HOST) 5433 mask = IP_HOST_MASK; 5434 5435 /* 5436 * Prevent routes with a zero gateway from being created (since 5437 * interfaces can currently be plumbed and brought up no assigned 5438 * address). 5439 */ 5440 if (gw_addr == 0) 5441 return (ENETUNREACH); 5442 /* 5443 * Get the ipif, if any, corresponding to the gw_addr 5444 * If -ifp was specified we restrict ourselves to the ill, otherwise 5445 * we match on the gatway and destination to handle unnumbered pt-pt 5446 * interfaces. 5447 */ 5448 if (ill != NULL) 5449 ipif = ipif_lookup_addr(gw_addr, ill, ALL_ZONES, ipst); 5450 else 5451 ipif = ipif_lookup_interface(gw_addr, dst_addr, ipst); 5452 if (ipif != NULL) { 5453 if (IS_VNI(ipif->ipif_ill)) { 5454 ipif_refrele(ipif); 5455 return (EINVAL); 5456 } 5457 } 5458 5459 /* 5460 * GateD will attempt to create routes with a loopback interface 5461 * address as the gateway and with RTF_GATEWAY set. We allow 5462 * these routes to be added, but create them as interface routes 5463 * since the gateway is an interface address. 5464 */ 5465 if ((ipif != NULL) && (ipif->ipif_ire_type == IRE_LOOPBACK)) { 5466 flags &= ~RTF_GATEWAY; 5467 if (gw_addr == INADDR_LOOPBACK && dst_addr == INADDR_LOOPBACK && 5468 mask == IP_HOST_MASK) { 5469 ire = ire_ftable_lookup_v4(dst_addr, 0, 0, IRE_LOOPBACK, 5470 NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, 0, ipst, 5471 NULL); 5472 if (ire != NULL) { 5473 ire_refrele(ire); 5474 ipif_refrele(ipif); 5475 return (EEXIST); 5476 } 5477 ip1dbg(("ip_rt_add: 0x%p creating IRE 0x%x" 5478 "for 0x%x\n", (void *)ipif, 5479 ipif->ipif_ire_type, 5480 ntohl(ipif->ipif_lcl_addr))); 5481 ire = ire_create( 5482 (uchar_t *)&dst_addr, /* dest address */ 5483 (uchar_t *)&mask, /* mask */ 5484 NULL, /* no gateway */ 5485 ipif->ipif_ire_type, /* LOOPBACK */ 5486 ipif->ipif_ill, 5487 zoneid, 5488 (ipif->ipif_flags & IPIF_PRIVATE) ? RTF_PRIVATE : 0, 5489 NULL, 5490 ipst); 5491 5492 if (ire == NULL) { 5493 ipif_refrele(ipif); 5494 return (ENOMEM); 5495 } 5496 /* src address assigned by the caller? */ 5497 if ((src_addr != INADDR_ANY) && (flags & RTF_SETSRC)) 5498 ire->ire_setsrc_addr = src_addr; 5499 5500 nire = ire_add(ire); 5501 if (nire == NULL) { 5502 /* 5503 * In the result of failure, ire_add() will have 5504 * already deleted the ire in question, so there 5505 * is no need to do that here. 5506 */ 5507 ipif_refrele(ipif); 5508 return (ENOMEM); 5509 } 5510 /* 5511 * Check if it was a duplicate entry. This handles 5512 * the case of two racing route adds for the same route 5513 */ 5514 if (nire != ire) { 5515 ASSERT(nire->ire_identical_ref > 1); 5516 ire_delete(nire); 5517 ire_refrele(nire); 5518 ipif_refrele(ipif); 5519 return (EEXIST); 5520 } 5521 ire = nire; 5522 goto save_ire; 5523 } 5524 } 5525 5526 /* 5527 * The routes for multicast with CGTP are quite special in that 5528 * the gateway is the local interface address, yet RTF_GATEWAY 5529 * is set. We turn off RTF_GATEWAY to provide compatibility with 5530 * this undocumented and unusual use of multicast routes. 5531 */ 5532 if ((flags & RTF_MULTIRT) && ipif != NULL) 5533 flags &= ~RTF_GATEWAY; 5534 5535 /* 5536 * Traditionally, interface routes are ones where RTF_GATEWAY isn't set 5537 * and the gateway address provided is one of the system's interface 5538 * addresses. By using the routing socket interface and supplying an 5539 * RTA_IFP sockaddr with an interface index, an alternate method of 5540 * specifying an interface route to be created is available which uses 5541 * the interface index that specifies the outgoing interface rather than 5542 * the address of an outgoing interface (which may not be able to 5543 * uniquely identify an interface). When coupled with the RTF_GATEWAY 5544 * flag, routes can be specified which not only specify the next-hop to 5545 * be used when routing to a certain prefix, but also which outgoing 5546 * interface should be used. 5547 * 5548 * Previously, interfaces would have unique addresses assigned to them 5549 * and so the address assigned to a particular interface could be used 5550 * to identify a particular interface. One exception to this was the 5551 * case of an unnumbered interface (where IPIF_UNNUMBERED was set). 5552 * 5553 * With the advent of IPv6 and its link-local addresses, this 5554 * restriction was relaxed and interfaces could share addresses between 5555 * themselves. In fact, typically all of the link-local interfaces on 5556 * an IPv6 node or router will have the same link-local address. In 5557 * order to differentiate between these interfaces, the use of an 5558 * interface index is necessary and this index can be carried inside a 5559 * RTA_IFP sockaddr (which is actually a sockaddr_dl). One restriction 5560 * of using the interface index, however, is that all of the ipif's that 5561 * are part of an ill have the same index and so the RTA_IFP sockaddr 5562 * cannot be used to differentiate between ipif's (or logical 5563 * interfaces) that belong to the same ill (physical interface). 5564 * 5565 * For example, in the following case involving IPv4 interfaces and 5566 * logical interfaces 5567 * 5568 * 192.0.2.32 255.255.255.224 192.0.2.33 U if0 5569 * 192.0.2.32 255.255.255.224 192.0.2.34 U if0 5570 * 192.0.2.32 255.255.255.224 192.0.2.35 U if0 5571 * 5572 * the ipif's corresponding to each of these interface routes can be 5573 * uniquely identified by the "gateway" (actually interface address). 5574 * 5575 * In this case involving multiple IPv6 default routes to a particular 5576 * link-local gateway, the use of RTA_IFP is necessary to specify which 5577 * default route is of interest: 5578 * 5579 * default fe80::123:4567:89ab:cdef U if0 5580 * default fe80::123:4567:89ab:cdef U if1 5581 */ 5582 5583 /* RTF_GATEWAY not set */ 5584 if (!(flags & RTF_GATEWAY)) { 5585 if (sp != NULL) { 5586 ip2dbg(("ip_rt_add: gateway security attributes " 5587 "cannot be set with interface route\n")); 5588 if (ipif != NULL) 5589 ipif_refrele(ipif); 5590 return (EINVAL); 5591 } 5592 5593 /* 5594 * Whether or not ill (RTA_IFP) is set, we require that 5595 * the gateway is one of our local addresses. 5596 */ 5597 if (ipif == NULL) 5598 return (ENETUNREACH); 5599 5600 /* 5601 * We use MATCH_IRE_ILL here. If the caller specified an 5602 * interface (from the RTA_IFP sockaddr) we use it, otherwise 5603 * we use the ill derived from the gateway address. 5604 * We can always match the gateway address since we record it 5605 * in ire_gateway_addr. 5606 * We don't allow RTA_IFP to specify a different ill than the 5607 * one matching the ipif to make sure we can delete the route. 5608 */ 5609 match_flags |= MATCH_IRE_GW | MATCH_IRE_ILL; 5610 if (ill == NULL) { 5611 ill = ipif->ipif_ill; 5612 } else if (ill != ipif->ipif_ill) { 5613 ipif_refrele(ipif); 5614 return (EINVAL); 5615 } 5616 5617 /* 5618 * We check for an existing entry at this point. 5619 * 5620 * Since a netmask isn't passed in via the ioctl interface 5621 * (SIOCADDRT), we don't check for a matching netmask in that 5622 * case. 5623 */ 5624 if (!ioctl_msg) 5625 match_flags |= MATCH_IRE_MASK; 5626 ire = ire_ftable_lookup_v4(dst_addr, mask, gw_addr, 5627 IRE_INTERFACE, ill, ALL_ZONES, NULL, match_flags, 0, ipst, 5628 NULL); 5629 if (ire != NULL) { 5630 ire_refrele(ire); 5631 ipif_refrele(ipif); 5632 return (EEXIST); 5633 } 5634 5635 /* 5636 * Some software (for example, GateD and Sun Cluster) attempts 5637 * to create (what amount to) IRE_PREFIX routes with the 5638 * loopback address as the gateway. This is primarily done to 5639 * set up prefixes with the RTF_REJECT flag set (for example, 5640 * when generating aggregate routes.) 5641 * 5642 * If the IRE type (as defined by ill->ill_net_type) would be 5643 * IRE_LOOPBACK, then we map the request into a 5644 * IRE_IF_NORESOLVER. We also OR in the RTF_BLACKHOLE flag as 5645 * these interface routes, by definition, can only be that. 5646 * 5647 * Needless to say, the real IRE_LOOPBACK is NOT created by this 5648 * routine, but rather using ire_create() directly. 5649 * 5650 */ 5651 type = ill->ill_net_type; 5652 if (type == IRE_LOOPBACK) { 5653 type = IRE_IF_NORESOLVER; 5654 flags |= RTF_BLACKHOLE; 5655 } 5656 5657 /* 5658 * Create a copy of the IRE_IF_NORESOLVER or 5659 * IRE_IF_RESOLVER with the modified address, netmask, and 5660 * gateway. 5661 */ 5662 ire = ire_create( 5663 (uchar_t *)&dst_addr, 5664 (uint8_t *)&mask, 5665 (uint8_t *)&gw_addr, 5666 type, 5667 ill, 5668 zoneid, 5669 flags, 5670 NULL, 5671 ipst); 5672 if (ire == NULL) { 5673 ipif_refrele(ipif); 5674 return (ENOMEM); 5675 } 5676 5677 /* src address assigned by the caller? */ 5678 if ((src_addr != INADDR_ANY) && (flags & RTF_SETSRC)) 5679 ire->ire_setsrc_addr = src_addr; 5680 5681 nire = ire_add(ire); 5682 if (nire == NULL) { 5683 /* 5684 * In the result of failure, ire_add() will have 5685 * already deleted the ire in question, so there 5686 * is no need to do that here. 5687 */ 5688 ipif_refrele(ipif); 5689 return (ENOMEM); 5690 } 5691 /* 5692 * Check if it was a duplicate entry. This handles 5693 * the case of two racing route adds for the same route 5694 */ 5695 if (nire != ire) { 5696 ire_delete(nire); 5697 ire_refrele(nire); 5698 ipif_refrele(ipif); 5699 return (EEXIST); 5700 } 5701 ire = nire; 5702 goto save_ire; 5703 } 5704 5705 /* 5706 * Get an interface IRE for the specified gateway. 5707 * If we don't have an IRE_IF_NORESOLVER or IRE_IF_RESOLVER for the 5708 * gateway, it is currently unreachable and we fail the request 5709 * accordingly. We reject any RTF_GATEWAY routes where the gateway 5710 * is an IRE_LOCAL or IRE_LOOPBACK. 5711 * If RTA_IFP was specified we look on that particular ill. 5712 */ 5713 if (ill != NULL) 5714 match_flags |= MATCH_IRE_ILL; 5715 5716 /* Check whether the gateway is reachable. */ 5717 again: 5718 type = IRE_INTERFACE | IRE_LOCAL | IRE_LOOPBACK; 5719 if (flags & RTF_INDIRECT) 5720 type |= IRE_OFFLINK; 5721 5722 gw_ire = ire_ftable_lookup_v4(gw_addr, 0, 0, type, ill, 5723 ALL_ZONES, NULL, match_flags, 0, ipst, NULL); 5724 if (gw_ire == NULL) { 5725 /* 5726 * With IPMP, we allow host routes to influence in.mpathd's 5727 * target selection. However, if the test addresses are on 5728 * their own network, the above lookup will fail since the 5729 * underlying IRE_INTERFACEs are marked hidden. So allow 5730 * hidden test IREs to be found and try again. 5731 */ 5732 if (!(match_flags & MATCH_IRE_TESTHIDDEN)) { 5733 match_flags |= MATCH_IRE_TESTHIDDEN; 5734 goto again; 5735 } 5736 if (ipif != NULL) 5737 ipif_refrele(ipif); 5738 return (ENETUNREACH); 5739 } 5740 if (gw_ire->ire_type & (IRE_LOCAL|IRE_LOOPBACK)) { 5741 ire_refrele(gw_ire); 5742 if (ipif != NULL) 5743 ipif_refrele(ipif); 5744 return (ENETUNREACH); 5745 } 5746 5747 if (ill == NULL && !(flags & RTF_INDIRECT)) { 5748 unbound = B_TRUE; 5749 if (ipst->ips_ip_strict_src_multihoming > 0) 5750 ill = gw_ire->ire_ill; 5751 } 5752 5753 /* 5754 * We create one of three types of IREs as a result of this request 5755 * based on the netmask. A netmask of all ones (which is automatically 5756 * assumed when RTF_HOST is set) results in an IRE_HOST being created. 5757 * An all zeroes netmask implies a default route so an IRE_DEFAULT is 5758 * created. Otherwise, an IRE_PREFIX route is created for the 5759 * destination prefix. 5760 */ 5761 if (mask == IP_HOST_MASK) 5762 type = IRE_HOST; 5763 else if (mask == 0) 5764 type = IRE_DEFAULT; 5765 else 5766 type = IRE_PREFIX; 5767 5768 /* check for a duplicate entry */ 5769 ire = ire_ftable_lookup_v4(dst_addr, mask, gw_addr, type, ill, 5770 ALL_ZONES, NULL, match_flags | MATCH_IRE_MASK | MATCH_IRE_GW, 5771 0, ipst, NULL); 5772 if (ire != NULL) { 5773 if (ipif != NULL) 5774 ipif_refrele(ipif); 5775 ire_refrele(gw_ire); 5776 ire_refrele(ire); 5777 return (EEXIST); 5778 } 5779 5780 /* Security attribute exists */ 5781 if (sp != NULL) { 5782 tsol_gcgrp_addr_t ga; 5783 5784 /* find or create the gateway credentials group */ 5785 ga.ga_af = AF_INET; 5786 IN6_IPADDR_TO_V4MAPPED(gw_addr, &ga.ga_addr); 5787 5788 /* we hold reference to it upon success */ 5789 gcgrp = gcgrp_lookup(&ga, B_TRUE); 5790 if (gcgrp == NULL) { 5791 if (ipif != NULL) 5792 ipif_refrele(ipif); 5793 ire_refrele(gw_ire); 5794 return (ENOMEM); 5795 } 5796 5797 /* 5798 * Create and add the security attribute to the group; a 5799 * reference to the group is made upon allocating a new 5800 * entry successfully. If it finds an already-existing 5801 * entry for the security attribute in the group, it simply 5802 * returns it and no new reference is made to the group. 5803 */ 5804 gc = gc_create(sp, gcgrp, &gcgrp_xtraref); 5805 if (gc == NULL) { 5806 if (ipif != NULL) 5807 ipif_refrele(ipif); 5808 /* release reference held by gcgrp_lookup */ 5809 GCGRP_REFRELE(gcgrp); 5810 ire_refrele(gw_ire); 5811 return (ENOMEM); 5812 } 5813 } 5814 5815 /* Create the IRE. */ 5816 ire = ire_create( 5817 (uchar_t *)&dst_addr, /* dest address */ 5818 (uchar_t *)&mask, /* mask */ 5819 (uchar_t *)&gw_addr, /* gateway address */ 5820 (ushort_t)type, /* IRE type */ 5821 ill, 5822 zoneid, 5823 flags, 5824 gc, /* security attribute */ 5825 ipst); 5826 5827 /* 5828 * The ire holds a reference to the 'gc' and the 'gc' holds a 5829 * reference to the 'gcgrp'. We can now release the extra reference 5830 * the 'gcgrp' acquired in the gcgrp_lookup, if it was not used. 5831 */ 5832 if (gcgrp_xtraref) 5833 GCGRP_REFRELE(gcgrp); 5834 if (ire == NULL) { 5835 if (gc != NULL) 5836 GC_REFRELE(gc); 5837 if (ipif != NULL) 5838 ipif_refrele(ipif); 5839 ire_refrele(gw_ire); 5840 return (ENOMEM); 5841 } 5842 5843 /* Before we add, check if an extra CGTP broadcast is needed */ 5844 cgtp_broadcast = ((flags & RTF_MULTIRT) && 5845 ip_type_v4(ire->ire_addr, ipst) == IRE_BROADCAST); 5846 5847 /* src address assigned by the caller? */ 5848 if ((src_addr != INADDR_ANY) && (flags & RTF_SETSRC)) 5849 ire->ire_setsrc_addr = src_addr; 5850 5851 ire->ire_unbound = unbound; 5852 5853 /* 5854 * POLICY: should we allow an RTF_HOST with address INADDR_ANY? 5855 * SUN/OS socket stuff does but do we really want to allow 0.0.0.0? 5856 */ 5857 5858 /* Add the new IRE. */ 5859 nire = ire_add(ire); 5860 if (nire == NULL) { 5861 /* 5862 * In the result of failure, ire_add() will have 5863 * already deleted the ire in question, so there 5864 * is no need to do that here. 5865 */ 5866 if (ipif != NULL) 5867 ipif_refrele(ipif); 5868 ire_refrele(gw_ire); 5869 return (ENOMEM); 5870 } 5871 /* 5872 * Check if it was a duplicate entry. This handles 5873 * the case of two racing route adds for the same route 5874 */ 5875 if (nire != ire) { 5876 ire_delete(nire); 5877 ire_refrele(nire); 5878 if (ipif != NULL) 5879 ipif_refrele(ipif); 5880 ire_refrele(gw_ire); 5881 return (EEXIST); 5882 } 5883 ire = nire; 5884 5885 if (flags & RTF_MULTIRT) { 5886 /* 5887 * Invoke the CGTP (multirouting) filtering module 5888 * to add the dst address in the filtering database. 5889 * Replicated inbound packets coming from that address 5890 * will be filtered to discard the duplicates. 5891 * It is not necessary to call the CGTP filter hook 5892 * when the dst address is a broadcast or multicast, 5893 * because an IP source address cannot be a broadcast 5894 * or a multicast. 5895 */ 5896 if (cgtp_broadcast) { 5897 ip_cgtp_bcast_add(ire, ipst); 5898 goto save_ire; 5899 } 5900 if (ipst->ips_ip_cgtp_filter_ops != NULL && 5901 !CLASSD(ire->ire_addr)) { 5902 int res; 5903 ipif_t *src_ipif; 5904 5905 /* Find the source address corresponding to gw_ire */ 5906 src_ipif = ipif_lookup_addr(gw_ire->ire_gateway_addr, 5907 NULL, zoneid, ipst); 5908 if (src_ipif != NULL) { 5909 res = ipst->ips_ip_cgtp_filter_ops-> 5910 cfo_add_dest_v4( 5911 ipst->ips_netstack->netstack_stackid, 5912 ire->ire_addr, 5913 ire->ire_gateway_addr, 5914 ire->ire_setsrc_addr, 5915 src_ipif->ipif_lcl_addr); 5916 ipif_refrele(src_ipif); 5917 } else { 5918 res = EADDRNOTAVAIL; 5919 } 5920 if (res != 0) { 5921 if (ipif != NULL) 5922 ipif_refrele(ipif); 5923 ire_refrele(gw_ire); 5924 ire_delete(ire); 5925 ire_refrele(ire); /* Held in ire_add */ 5926 return (res); 5927 } 5928 } 5929 } 5930 5931 save_ire: 5932 if (gw_ire != NULL) { 5933 ire_refrele(gw_ire); 5934 gw_ire = NULL; 5935 } 5936 if (ill != NULL) { 5937 /* 5938 * Save enough information so that we can recreate the IRE if 5939 * the interface goes down and then up. The metrics associated 5940 * with the route will be saved as well when rts_setmetrics() is 5941 * called after the IRE has been created. In the case where 5942 * memory cannot be allocated, none of this information will be 5943 * saved. 5944 */ 5945 ill_save_ire(ill, ire); 5946 } 5947 if (ioctl_msg) 5948 ip_rts_rtmsg(RTM_OLDADD, ire, 0, ipst); 5949 if (ire_arg != NULL) { 5950 /* 5951 * Store the ire that was successfully added into where ire_arg 5952 * points to so that callers don't have to look it up 5953 * themselves (but they are responsible for ire_refrele()ing 5954 * the ire when they are finished with it). 5955 */ 5956 *ire_arg = ire; 5957 } else { 5958 ire_refrele(ire); /* Held in ire_add */ 5959 } 5960 if (ipif != NULL) 5961 ipif_refrele(ipif); 5962 return (0); 5963 } 5964 5965 /* 5966 * ip_rt_delete is called to delete an IPv4 route. 5967 * ill is passed in to associate it with the correct interface. 5968 */ 5969 /* ARGSUSED4 */ 5970 int 5971 ip_rt_delete(ipaddr_t dst_addr, ipaddr_t mask, ipaddr_t gw_addr, 5972 uint_t rtm_addrs, int flags, ill_t *ill, boolean_t ioctl_msg, 5973 ip_stack_t *ipst, zoneid_t zoneid) 5974 { 5975 ire_t *ire = NULL; 5976 ipif_t *ipif; 5977 uint_t type; 5978 uint_t match_flags = MATCH_IRE_TYPE; 5979 int err = 0; 5980 5981 ip1dbg(("ip_rt_delete:")); 5982 /* 5983 * If this is the case of RTF_HOST being set, then we set the netmask 5984 * to all ones. Otherwise, we use the netmask if one was supplied. 5985 */ 5986 if (flags & RTF_HOST) { 5987 mask = IP_HOST_MASK; 5988 match_flags |= MATCH_IRE_MASK; 5989 } else if (rtm_addrs & RTA_NETMASK) { 5990 match_flags |= MATCH_IRE_MASK; 5991 } 5992 5993 /* 5994 * Note that RTF_GATEWAY is never set on a delete, therefore 5995 * we check if the gateway address is one of our interfaces first, 5996 * and fall back on RTF_GATEWAY routes. 5997 * 5998 * This makes it possible to delete an original 5999 * IRE_IF_NORESOLVER/IRE_IF_RESOLVER - consistent with SunOS 4.1. 6000 * However, we have RTF_KERNEL set on the ones created by ipif_up 6001 * and those can not be deleted here. 6002 * 6003 * We use MATCH_IRE_ILL if we know the interface. If the caller 6004 * specified an interface (from the RTA_IFP sockaddr) we use it, 6005 * otherwise we use the ill derived from the gateway address. 6006 * We can always match the gateway address since we record it 6007 * in ire_gateway_addr. 6008 * 6009 * For more detail on specifying routes by gateway address and by 6010 * interface index, see the comments in ip_rt_add(). 6011 */ 6012 ipif = ipif_lookup_interface(gw_addr, dst_addr, ipst); 6013 if (ipif != NULL) { 6014 ill_t *ill_match; 6015 6016 if (ill != NULL) 6017 ill_match = ill; 6018 else 6019 ill_match = ipif->ipif_ill; 6020 6021 match_flags |= MATCH_IRE_ILL; 6022 if (ipif->ipif_ire_type == IRE_LOOPBACK) { 6023 ire = ire_ftable_lookup_v4(dst_addr, mask, 0, 6024 IRE_LOOPBACK, ill_match, ALL_ZONES, NULL, 6025 match_flags, 0, ipst, NULL); 6026 } 6027 if (ire == NULL) { 6028 match_flags |= MATCH_IRE_GW; 6029 ire = ire_ftable_lookup_v4(dst_addr, mask, gw_addr, 6030 IRE_INTERFACE, ill_match, ALL_ZONES, NULL, 6031 match_flags, 0, ipst, NULL); 6032 } 6033 /* Avoid deleting routes created by kernel from an ipif */ 6034 if (ire != NULL && (ire->ire_flags & RTF_KERNEL)) { 6035 ire_refrele(ire); 6036 ire = NULL; 6037 } 6038 6039 /* Restore in case we didn't find a match */ 6040 match_flags &= ~(MATCH_IRE_GW|MATCH_IRE_ILL); 6041 } 6042 6043 if (ire == NULL) { 6044 /* 6045 * At this point, the gateway address is not one of our own 6046 * addresses or a matching interface route was not found. We 6047 * set the IRE type to lookup based on whether 6048 * this is a host route, a default route or just a prefix. 6049 * 6050 * If an ill was passed in, then the lookup is based on an 6051 * interface index so MATCH_IRE_ILL is added to match_flags. 6052 */ 6053 match_flags |= MATCH_IRE_GW; 6054 if (ill != NULL) 6055 match_flags |= MATCH_IRE_ILL; 6056 if (mask == IP_HOST_MASK) 6057 type = IRE_HOST; 6058 else if (mask == 0) 6059 type = IRE_DEFAULT; 6060 else 6061 type = IRE_PREFIX; 6062 ire = ire_ftable_lookup_v4(dst_addr, mask, gw_addr, type, ill, 6063 ALL_ZONES, NULL, match_flags, 0, ipst, NULL); 6064 } 6065 6066 if (ipif != NULL) { 6067 ipif_refrele(ipif); 6068 ipif = NULL; 6069 } 6070 6071 if (ire == NULL) 6072 return (ESRCH); 6073 6074 if (ire->ire_flags & RTF_MULTIRT) { 6075 /* 6076 * Invoke the CGTP (multirouting) filtering module 6077 * to remove the dst address from the filtering database. 6078 * Packets coming from that address will no longer be 6079 * filtered to remove duplicates. 6080 */ 6081 if (ipst->ips_ip_cgtp_filter_ops != NULL) { 6082 err = ipst->ips_ip_cgtp_filter_ops->cfo_del_dest_v4( 6083 ipst->ips_netstack->netstack_stackid, 6084 ire->ire_addr, ire->ire_gateway_addr); 6085 } 6086 ip_cgtp_bcast_delete(ire, ipst); 6087 } 6088 6089 ill = ire->ire_ill; 6090 if (ill != NULL) 6091 ill_remove_saved_ire(ill, ire); 6092 if (ioctl_msg) 6093 ip_rts_rtmsg(RTM_OLDDEL, ire, 0, ipst); 6094 ire_delete(ire); 6095 ire_refrele(ire); 6096 return (err); 6097 } 6098 6099 /* 6100 * ip_siocaddrt is called to complete processing of an SIOCADDRT IOCTL. 6101 */ 6102 /* ARGSUSED */ 6103 int 6104 ip_siocaddrt(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, 6105 ip_ioctl_cmd_t *ipip, void *dummy_if_req) 6106 { 6107 ipaddr_t dst_addr; 6108 ipaddr_t gw_addr; 6109 ipaddr_t mask; 6110 int error = 0; 6111 mblk_t *mp1; 6112 struct rtentry *rt; 6113 ipif_t *ipif = NULL; 6114 ip_stack_t *ipst; 6115 6116 ASSERT(q->q_next == NULL); 6117 ipst = CONNQ_TO_IPST(q); 6118 6119 ip1dbg(("ip_siocaddrt:")); 6120 /* Existence of mp1 verified in ip_wput_nondata */ 6121 mp1 = mp->b_cont->b_cont; 6122 rt = (struct rtentry *)mp1->b_rptr; 6123 6124 dst_addr = ((sin_t *)&rt->rt_dst)->sin_addr.s_addr; 6125 gw_addr = ((sin_t *)&rt->rt_gateway)->sin_addr.s_addr; 6126 6127 /* 6128 * If the RTF_HOST flag is on, this is a request to assign a gateway 6129 * to a particular host address. In this case, we set the netmask to 6130 * all ones for the particular destination address. Otherwise, 6131 * determine the netmask to be used based on dst_addr and the interfaces 6132 * in use. 6133 */ 6134 if (rt->rt_flags & RTF_HOST) { 6135 mask = IP_HOST_MASK; 6136 } else { 6137 /* 6138 * Note that ip_subnet_mask returns a zero mask in the case of 6139 * default (an all-zeroes address). 6140 */ 6141 mask = ip_subnet_mask(dst_addr, &ipif, ipst); 6142 } 6143 6144 error = ip_rt_add(dst_addr, mask, gw_addr, 0, rt->rt_flags, NULL, NULL, 6145 B_TRUE, NULL, ipst, ALL_ZONES); 6146 if (ipif != NULL) 6147 ipif_refrele(ipif); 6148 return (error); 6149 } 6150 6151 /* 6152 * ip_siocdelrt is called to complete processing of an SIOCDELRT IOCTL. 6153 */ 6154 /* ARGSUSED */ 6155 int 6156 ip_siocdelrt(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, 6157 ip_ioctl_cmd_t *ipip, void *dummy_if_req) 6158 { 6159 ipaddr_t dst_addr; 6160 ipaddr_t gw_addr; 6161 ipaddr_t mask; 6162 int error; 6163 mblk_t *mp1; 6164 struct rtentry *rt; 6165 ipif_t *ipif = NULL; 6166 ip_stack_t *ipst; 6167 6168 ASSERT(q->q_next == NULL); 6169 ipst = CONNQ_TO_IPST(q); 6170 6171 ip1dbg(("ip_siocdelrt:")); 6172 /* Existence of mp1 verified in ip_wput_nondata */ 6173 mp1 = mp->b_cont->b_cont; 6174 rt = (struct rtentry *)mp1->b_rptr; 6175 6176 dst_addr = ((sin_t *)&rt->rt_dst)->sin_addr.s_addr; 6177 gw_addr = ((sin_t *)&rt->rt_gateway)->sin_addr.s_addr; 6178 6179 /* 6180 * If the RTF_HOST flag is on, this is a request to delete a gateway 6181 * to a particular host address. In this case, we set the netmask to 6182 * all ones for the particular destination address. Otherwise, 6183 * determine the netmask to be used based on dst_addr and the interfaces 6184 * in use. 6185 */ 6186 if (rt->rt_flags & RTF_HOST) { 6187 mask = IP_HOST_MASK; 6188 } else { 6189 /* 6190 * Note that ip_subnet_mask returns a zero mask in the case of 6191 * default (an all-zeroes address). 6192 */ 6193 mask = ip_subnet_mask(dst_addr, &ipif, ipst); 6194 } 6195 6196 error = ip_rt_delete(dst_addr, mask, gw_addr, 6197 RTA_DST | RTA_GATEWAY | RTA_NETMASK, rt->rt_flags, NULL, B_TRUE, 6198 ipst, ALL_ZONES); 6199 if (ipif != NULL) 6200 ipif_refrele(ipif); 6201 return (error); 6202 } 6203 6204 /* 6205 * Enqueue the mp onto the ipsq, chained by b_next. 6206 * b_prev stores the function to be executed later, and b_queue the queue 6207 * where this mp originated. 6208 */ 6209 void 6210 ipsq_enq(ipsq_t *ipsq, queue_t *q, mblk_t *mp, ipsq_func_t func, int type, 6211 ill_t *pending_ill) 6212 { 6213 conn_t *connp; 6214 ipxop_t *ipx = ipsq->ipsq_xop; 6215 6216 ASSERT(MUTEX_HELD(&ipsq->ipsq_lock)); 6217 ASSERT(MUTEX_HELD(&ipx->ipx_lock)); 6218 ASSERT(func != NULL); 6219 6220 mp->b_queue = q; 6221 mp->b_prev = (void *)func; 6222 mp->b_next = NULL; 6223 6224 switch (type) { 6225 case CUR_OP: 6226 if (ipx->ipx_mptail != NULL) { 6227 ASSERT(ipx->ipx_mphead != NULL); 6228 ipx->ipx_mptail->b_next = mp; 6229 } else { 6230 ASSERT(ipx->ipx_mphead == NULL); 6231 ipx->ipx_mphead = mp; 6232 } 6233 ipx->ipx_mptail = mp; 6234 break; 6235 6236 case NEW_OP: 6237 if (ipsq->ipsq_xopq_mptail != NULL) { 6238 ASSERT(ipsq->ipsq_xopq_mphead != NULL); 6239 ipsq->ipsq_xopq_mptail->b_next = mp; 6240 } else { 6241 ASSERT(ipsq->ipsq_xopq_mphead == NULL); 6242 ipsq->ipsq_xopq_mphead = mp; 6243 } 6244 ipsq->ipsq_xopq_mptail = mp; 6245 ipx->ipx_ipsq_queued = B_TRUE; 6246 break; 6247 6248 case SWITCH_OP: 6249 ASSERT(ipsq->ipsq_swxop != NULL); 6250 /* only one switch operation is currently allowed */ 6251 ASSERT(ipsq->ipsq_switch_mp == NULL); 6252 ipsq->ipsq_switch_mp = mp; 6253 ipx->ipx_ipsq_queued = B_TRUE; 6254 break; 6255 default: 6256 cmn_err(CE_PANIC, "ipsq_enq %d type \n", type); 6257 } 6258 6259 if (CONN_Q(q) && pending_ill != NULL) { 6260 connp = Q_TO_CONN(q); 6261 ASSERT(MUTEX_HELD(&connp->conn_lock)); 6262 connp->conn_oper_pending_ill = pending_ill; 6263 } 6264 } 6265 6266 /* 6267 * Dequeue the next message that requested exclusive access to this IPSQ's 6268 * xop. Specifically: 6269 * 6270 * 1. If we're still processing the current operation on `ipsq', then 6271 * dequeue the next message for the operation (from ipx_mphead), or 6272 * return NULL if there are no queued messages for the operation. 6273 * These messages are queued via CUR_OP to qwriter_ip() and friends. 6274 * 6275 * 2. If the current operation on `ipsq' has completed (ipx_current_ipif is 6276 * not set) see if the ipsq has requested an xop switch. If so, switch 6277 * `ipsq' to a different xop. Xop switches only happen when joining or 6278 * leaving IPMP groups and require a careful dance -- see the comments 6279 * in-line below for details. If we're leaving a group xop or if we're 6280 * joining a group xop and become writer on it, then we proceed to (3). 6281 * Otherwise, we return NULL and exit the xop. 6282 * 6283 * 3. For each IPSQ in the xop, return any switch operation stored on 6284 * ipsq_switch_mp (set via SWITCH_OP); these must be processed before 6285 * any other messages queued on the IPSQ. Otherwise, dequeue the next 6286 * exclusive operation (queued via NEW_OP) stored on ipsq_xopq_mphead. 6287 * Note that if the phyint tied to `ipsq' is not using IPMP there will 6288 * only be one IPSQ in the xop. Otherwise, there will be one IPSQ for 6289 * each phyint in the group, including the IPMP meta-interface phyint. 6290 */ 6291 static mblk_t * 6292 ipsq_dq(ipsq_t *ipsq) 6293 { 6294 ill_t *illv4, *illv6; 6295 mblk_t *mp; 6296 ipsq_t *xopipsq; 6297 ipsq_t *leftipsq = NULL; 6298 ipxop_t *ipx; 6299 phyint_t *phyi = ipsq->ipsq_phyint; 6300 ip_stack_t *ipst = ipsq->ipsq_ipst; 6301 boolean_t emptied = B_FALSE; 6302 6303 /* 6304 * Grab all the locks we need in the defined order (ill_g_lock -> 6305 * ipsq_lock -> ipx_lock); ill_g_lock is needed to use ipsq_next. 6306 */ 6307 rw_enter(&ipst->ips_ill_g_lock, 6308 ipsq->ipsq_swxop != NULL ? RW_WRITER : RW_READER); 6309 mutex_enter(&ipsq->ipsq_lock); 6310 ipx = ipsq->ipsq_xop; 6311 mutex_enter(&ipx->ipx_lock); 6312 6313 /* 6314 * Dequeue the next message associated with the current exclusive 6315 * operation, if any. 6316 */ 6317 if ((mp = ipx->ipx_mphead) != NULL) { 6318 ipx->ipx_mphead = mp->b_next; 6319 if (ipx->ipx_mphead == NULL) 6320 ipx->ipx_mptail = NULL; 6321 mp->b_next = (void *)ipsq; 6322 goto out; 6323 } 6324 6325 if (ipx->ipx_current_ipif != NULL) 6326 goto empty; 6327 6328 if (ipsq->ipsq_swxop != NULL) { 6329 /* 6330 * The exclusive operation that is now being completed has 6331 * requested a switch to a different xop. This happens 6332 * when an interface joins or leaves an IPMP group. Joins 6333 * happen through SIOCSLIFGROUPNAME (ip_sioctl_groupname()). 6334 * Leaves happen via SIOCSLIFGROUPNAME, interface unplumb 6335 * (phyint_free()), or interface plumb for an ill type 6336 * not in the IPMP group (ip_rput_dlpi_writer()). 6337 * 6338 * Xop switches are not allowed on the IPMP meta-interface. 6339 */ 6340 ASSERT(phyi == NULL || !(phyi->phyint_flags & PHYI_IPMP)); 6341 ASSERT(RW_WRITE_HELD(&ipst->ips_ill_g_lock)); 6342 DTRACE_PROBE1(ipsq__switch, (ipsq_t *), ipsq); 6343 6344 if (ipsq->ipsq_swxop == &ipsq->ipsq_ownxop) { 6345 /* 6346 * We're switching back to our own xop, so we have two 6347 * xop's to drain/exit: our own, and the group xop 6348 * that we are leaving. 6349 * 6350 * First, pull ourselves out of the group ipsq list. 6351 * This is safe since we're writer on ill_g_lock. 6352 */ 6353 ASSERT(ipsq->ipsq_xop != &ipsq->ipsq_ownxop); 6354 6355 xopipsq = ipx->ipx_ipsq; 6356 while (xopipsq->ipsq_next != ipsq) 6357 xopipsq = xopipsq->ipsq_next; 6358 6359 xopipsq->ipsq_next = ipsq->ipsq_next; 6360 ipsq->ipsq_next = ipsq; 6361 ipsq->ipsq_xop = ipsq->ipsq_swxop; 6362 ipsq->ipsq_swxop = NULL; 6363 6364 /* 6365 * Second, prepare to exit the group xop. The actual 6366 * ipsq_exit() is done at the end of this function 6367 * since we cannot hold any locks across ipsq_exit(). 6368 * Note that although we drop the group's ipx_lock, no 6369 * threads can proceed since we're still ipx_writer. 6370 */ 6371 leftipsq = xopipsq; 6372 mutex_exit(&ipx->ipx_lock); 6373 6374 /* 6375 * Third, set ipx to point to our own xop (which was 6376 * inactive and therefore can be entered). 6377 */ 6378 ipx = ipsq->ipsq_xop; 6379 mutex_enter(&ipx->ipx_lock); 6380 ASSERT(ipx->ipx_writer == NULL); 6381 ASSERT(ipx->ipx_current_ipif == NULL); 6382 } else { 6383 /* 6384 * We're switching from our own xop to a group xop. 6385 * The requestor of the switch must ensure that the 6386 * group xop cannot go away (e.g. by ensuring the 6387 * phyint associated with the xop cannot go away). 6388 * 6389 * If we can become writer on our new xop, then we'll 6390 * do the drain. Otherwise, the current writer of our 6391 * new xop will do the drain when it exits. 6392 * 6393 * First, splice ourselves into the group IPSQ list. 6394 * This is safe since we're writer on ill_g_lock. 6395 */ 6396 ASSERT(ipsq->ipsq_xop == &ipsq->ipsq_ownxop); 6397 6398 xopipsq = ipsq->ipsq_swxop->ipx_ipsq; 6399 while (xopipsq->ipsq_next != ipsq->ipsq_swxop->ipx_ipsq) 6400 xopipsq = xopipsq->ipsq_next; 6401 6402 xopipsq->ipsq_next = ipsq; 6403 ipsq->ipsq_next = ipsq->ipsq_swxop->ipx_ipsq; 6404 ipsq->ipsq_xop = ipsq->ipsq_swxop; 6405 ipsq->ipsq_swxop = NULL; 6406 6407 /* 6408 * Second, exit our own xop, since it's now unused. 6409 * This is safe since we've got the only reference. 6410 */ 6411 ASSERT(ipx->ipx_writer == curthread); 6412 ipx->ipx_writer = NULL; 6413 VERIFY(--ipx->ipx_reentry_cnt == 0); 6414 ipx->ipx_ipsq_queued = B_FALSE; 6415 mutex_exit(&ipx->ipx_lock); 6416 6417 /* 6418 * Third, set ipx to point to our new xop, and check 6419 * if we can become writer on it. If we cannot, then 6420 * the current writer will drain the IPSQ group when 6421 * it exits. Our ipsq_xop is guaranteed to be stable 6422 * because we're still holding ipsq_lock. 6423 */ 6424 ipx = ipsq->ipsq_xop; 6425 mutex_enter(&ipx->ipx_lock); 6426 if (ipx->ipx_writer != NULL || 6427 ipx->ipx_current_ipif != NULL) { 6428 goto out; 6429 } 6430 } 6431 6432 /* 6433 * Fourth, become writer on our new ipx before we continue 6434 * with the drain. Note that we never dropped ipsq_lock 6435 * above, so no other thread could've raced with us to 6436 * become writer first. Also, we're holding ipx_lock, so 6437 * no other thread can examine the ipx right now. 6438 */ 6439 ASSERT(ipx->ipx_current_ipif == NULL); 6440 ASSERT(ipx->ipx_mphead == NULL && ipx->ipx_mptail == NULL); 6441 VERIFY(ipx->ipx_reentry_cnt++ == 0); 6442 ipx->ipx_writer = curthread; 6443 ipx->ipx_forced = B_FALSE; 6444 #ifdef DEBUG 6445 ipx->ipx_depth = getpcstack(ipx->ipx_stack, IPX_STACK_DEPTH); 6446 #endif 6447 } 6448 6449 xopipsq = ipsq; 6450 do { 6451 /* 6452 * So that other operations operate on a consistent and 6453 * complete phyint, a switch message on an IPSQ must be 6454 * handled prior to any other operations on that IPSQ. 6455 */ 6456 if ((mp = xopipsq->ipsq_switch_mp) != NULL) { 6457 xopipsq->ipsq_switch_mp = NULL; 6458 ASSERT(mp->b_next == NULL); 6459 mp->b_next = (void *)xopipsq; 6460 goto out; 6461 } 6462 6463 if ((mp = xopipsq->ipsq_xopq_mphead) != NULL) { 6464 xopipsq->ipsq_xopq_mphead = mp->b_next; 6465 if (xopipsq->ipsq_xopq_mphead == NULL) 6466 xopipsq->ipsq_xopq_mptail = NULL; 6467 mp->b_next = (void *)xopipsq; 6468 goto out; 6469 } 6470 } while ((xopipsq = xopipsq->ipsq_next) != ipsq); 6471 empty: 6472 /* 6473 * There are no messages. Further, we are holding ipx_lock, hence no 6474 * new messages can end up on any IPSQ in the xop. 6475 */ 6476 ipx->ipx_writer = NULL; 6477 ipx->ipx_forced = B_FALSE; 6478 VERIFY(--ipx->ipx_reentry_cnt == 0); 6479 ipx->ipx_ipsq_queued = B_FALSE; 6480 emptied = B_TRUE; 6481 #ifdef DEBUG 6482 ipx->ipx_depth = 0; 6483 #endif 6484 out: 6485 mutex_exit(&ipx->ipx_lock); 6486 mutex_exit(&ipsq->ipsq_lock); 6487 6488 /* 6489 * If we completely emptied the xop, then wake up any threads waiting 6490 * to enter any of the IPSQ's associated with it. 6491 */ 6492 if (emptied) { 6493 xopipsq = ipsq; 6494 do { 6495 if ((phyi = xopipsq->ipsq_phyint) == NULL) 6496 continue; 6497 6498 illv4 = phyi->phyint_illv4; 6499 illv6 = phyi->phyint_illv6; 6500 6501 GRAB_ILL_LOCKS(illv4, illv6); 6502 if (illv4 != NULL) 6503 cv_broadcast(&illv4->ill_cv); 6504 if (illv6 != NULL) 6505 cv_broadcast(&illv6->ill_cv); 6506 RELEASE_ILL_LOCKS(illv4, illv6); 6507 } while ((xopipsq = xopipsq->ipsq_next) != ipsq); 6508 } 6509 rw_exit(&ipst->ips_ill_g_lock); 6510 6511 /* 6512 * Now that all locks are dropped, exit the IPSQ we left. 6513 */ 6514 if (leftipsq != NULL) 6515 ipsq_exit(leftipsq); 6516 6517 return (mp); 6518 } 6519 6520 /* 6521 * Return completion status of previously initiated DLPI operations on 6522 * ills in the purview of an ipsq. 6523 */ 6524 static boolean_t 6525 ipsq_dlpi_done(ipsq_t *ipsq) 6526 { 6527 ipsq_t *ipsq_start; 6528 phyint_t *phyi; 6529 ill_t *ill; 6530 6531 ASSERT(RW_LOCK_HELD(&ipsq->ipsq_ipst->ips_ill_g_lock)); 6532 ipsq_start = ipsq; 6533 6534 do { 6535 /* 6536 * The only current users of this function are ipsq_try_enter 6537 * and ipsq_enter which have made sure that ipsq_writer is 6538 * NULL before we reach here. ill_dlpi_pending is modified 6539 * only by an ipsq writer 6540 */ 6541 ASSERT(ipsq->ipsq_xop->ipx_writer == NULL); 6542 phyi = ipsq->ipsq_phyint; 6543 /* 6544 * phyi could be NULL if a phyint that is part of an 6545 * IPMP group is being unplumbed. A more detailed 6546 * comment is in ipmp_grp_update_kstats() 6547 */ 6548 if (phyi != NULL) { 6549 ill = phyi->phyint_illv4; 6550 if (ill != NULL && 6551 (ill->ill_dlpi_pending != DL_PRIM_INVAL || 6552 ill->ill_arl_dlpi_pending)) 6553 return (B_FALSE); 6554 6555 ill = phyi->phyint_illv6; 6556 if (ill != NULL && 6557 ill->ill_dlpi_pending != DL_PRIM_INVAL) 6558 return (B_FALSE); 6559 } 6560 6561 } while ((ipsq = ipsq->ipsq_next) != ipsq_start); 6562 6563 return (B_TRUE); 6564 } 6565 6566 /* 6567 * Enter the ipsq corresponding to ill, by waiting synchronously till 6568 * we can enter the ipsq exclusively. Unless 'force' is used, the ipsq 6569 * will have to drain completely before ipsq_enter returns success. 6570 * ipx_current_ipif will be set if some exclusive op is in progress, 6571 * and the ipsq_exit logic will start the next enqueued op after 6572 * completion of the current op. If 'force' is used, we don't wait 6573 * for the enqueued ops. This is needed when a conn_close wants to 6574 * enter the ipsq and abort an ioctl that is somehow stuck. Unplumb 6575 * of an ill can also use this option. But we dont' use it currently. 6576 */ 6577 #define ENTER_SQ_WAIT_TICKS 100 6578 boolean_t 6579 ipsq_enter(ill_t *ill, boolean_t force, int type) 6580 { 6581 ipsq_t *ipsq; 6582 ipxop_t *ipx; 6583 boolean_t waited_enough = B_FALSE; 6584 ip_stack_t *ipst = ill->ill_ipst; 6585 6586 /* 6587 * Note that the relationship between ill and ipsq is fixed as long as 6588 * the ill is not ILL_CONDEMNED. Holding ipsq_lock ensures the 6589 * relationship between the IPSQ and xop cannot change. However, 6590 * since we cannot hold ipsq_lock across the cv_wait(), it may change 6591 * while we're waiting. We wait on ill_cv and rely on ipsq_exit() 6592 * waking up all ills in the xop when it becomes available. 6593 */ 6594 for (;;) { 6595 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 6596 mutex_enter(&ill->ill_lock); 6597 if (ill->ill_state_flags & ILL_CONDEMNED) { 6598 mutex_exit(&ill->ill_lock); 6599 rw_exit(&ipst->ips_ill_g_lock); 6600 return (B_FALSE); 6601 } 6602 6603 ipsq = ill->ill_phyint->phyint_ipsq; 6604 mutex_enter(&ipsq->ipsq_lock); 6605 ipx = ipsq->ipsq_xop; 6606 mutex_enter(&ipx->ipx_lock); 6607 6608 if (ipx->ipx_writer == NULL && (type == CUR_OP || 6609 (ipx->ipx_current_ipif == NULL && ipsq_dlpi_done(ipsq)) || 6610 waited_enough)) 6611 break; 6612 6613 rw_exit(&ipst->ips_ill_g_lock); 6614 6615 if (!force || ipx->ipx_writer != NULL) { 6616 mutex_exit(&ipx->ipx_lock); 6617 mutex_exit(&ipsq->ipsq_lock); 6618 cv_wait(&ill->ill_cv, &ill->ill_lock); 6619 } else { 6620 mutex_exit(&ipx->ipx_lock); 6621 mutex_exit(&ipsq->ipsq_lock); 6622 (void) cv_reltimedwait(&ill->ill_cv, 6623 &ill->ill_lock, ENTER_SQ_WAIT_TICKS, TR_CLOCK_TICK); 6624 waited_enough = B_TRUE; 6625 } 6626 mutex_exit(&ill->ill_lock); 6627 } 6628 6629 ASSERT(ipx->ipx_mphead == NULL && ipx->ipx_mptail == NULL); 6630 ASSERT(ipx->ipx_reentry_cnt == 0); 6631 ipx->ipx_writer = curthread; 6632 ipx->ipx_forced = (ipx->ipx_current_ipif != NULL); 6633 ipx->ipx_reentry_cnt++; 6634 #ifdef DEBUG 6635 ipx->ipx_depth = getpcstack(ipx->ipx_stack, IPX_STACK_DEPTH); 6636 #endif 6637 mutex_exit(&ipx->ipx_lock); 6638 mutex_exit(&ipsq->ipsq_lock); 6639 mutex_exit(&ill->ill_lock); 6640 rw_exit(&ipst->ips_ill_g_lock); 6641 6642 return (B_TRUE); 6643 } 6644 6645 /* 6646 * ipif_set_values() has a constraint that it cannot drop the ips_ill_g_lock 6647 * across the call to the core interface ipsq_try_enter() and hence calls this 6648 * function directly. This is explained more fully in ipif_set_values(). 6649 * In order to support the above constraint, ipsq_try_enter is implemented as 6650 * a wrapper that grabs the ips_ill_g_lock and calls this function subsequently 6651 */ 6652 static ipsq_t * 6653 ipsq_try_enter_internal(ill_t *ill, queue_t *q, mblk_t *mp, ipsq_func_t func, 6654 int type, boolean_t reentry_ok) 6655 { 6656 ipsq_t *ipsq; 6657 ipxop_t *ipx; 6658 ip_stack_t *ipst = ill->ill_ipst; 6659 6660 /* 6661 * lock ordering: 6662 * ill_g_lock -> conn_lock -> ill_lock -> ipsq_lock -> ipx_lock. 6663 * 6664 * ipx of an ipsq can't change when ipsq_lock is held. 6665 */ 6666 ASSERT(RW_LOCK_HELD(&ipst->ips_ill_g_lock)); 6667 GRAB_CONN_LOCK(q); 6668 mutex_enter(&ill->ill_lock); 6669 ipsq = ill->ill_phyint->phyint_ipsq; 6670 mutex_enter(&ipsq->ipsq_lock); 6671 ipx = ipsq->ipsq_xop; 6672 mutex_enter(&ipx->ipx_lock); 6673 6674 /* 6675 * 1. Enter the ipsq if we are already writer and reentry is ok. 6676 * (Note: If the caller does not specify reentry_ok then neither 6677 * 'func' nor any of its callees must ever attempt to enter the ipsq 6678 * again. Otherwise it can lead to an infinite loop 6679 * 2. Enter the ipsq if there is no current writer and this attempted 6680 * entry is part of the current operation 6681 * 3. Enter the ipsq if there is no current writer and this is a new 6682 * operation and the operation queue is empty and there is no 6683 * operation currently in progress and if all previously initiated 6684 * DLPI operations have completed. 6685 */ 6686 if ((ipx->ipx_writer == curthread && reentry_ok) || 6687 (ipx->ipx_writer == NULL && (type == CUR_OP || (type == NEW_OP && 6688 !ipx->ipx_ipsq_queued && ipx->ipx_current_ipif == NULL && 6689 ipsq_dlpi_done(ipsq))))) { 6690 /* Success. */ 6691 ipx->ipx_reentry_cnt++; 6692 ipx->ipx_writer = curthread; 6693 ipx->ipx_forced = B_FALSE; 6694 mutex_exit(&ipx->ipx_lock); 6695 mutex_exit(&ipsq->ipsq_lock); 6696 mutex_exit(&ill->ill_lock); 6697 RELEASE_CONN_LOCK(q); 6698 #ifdef DEBUG 6699 ipx->ipx_depth = getpcstack(ipx->ipx_stack, IPX_STACK_DEPTH); 6700 #endif 6701 return (ipsq); 6702 } 6703 6704 if (func != NULL) 6705 ipsq_enq(ipsq, q, mp, func, type, ill); 6706 6707 mutex_exit(&ipx->ipx_lock); 6708 mutex_exit(&ipsq->ipsq_lock); 6709 mutex_exit(&ill->ill_lock); 6710 RELEASE_CONN_LOCK(q); 6711 return (NULL); 6712 } 6713 6714 /* 6715 * The ipsq_t (ipsq) is the synchronization data structure used to serialize 6716 * certain critical operations like plumbing (i.e. most set ioctls), etc. 6717 * There is one ipsq per phyint. The ipsq 6718 * serializes exclusive ioctls issued by applications on a per ipsq basis in 6719 * ipsq_xopq_mphead. It also protects against multiple threads executing in 6720 * the ipsq. Responses from the driver pertain to the current ioctl (say a 6721 * DL_BIND_ACK in response to a DL_BIND_REQ initiated as part of bringing 6722 * up the interface) and are enqueued in ipx_mphead. 6723 * 6724 * If a thread does not want to reenter the ipsq when it is already writer, 6725 * it must make sure that the specified reentry point to be called later 6726 * when the ipsq is empty, nor any code path starting from the specified reentry 6727 * point must never ever try to enter the ipsq again. Otherwise it can lead 6728 * to an infinite loop. The reentry point ip_rput_dlpi_writer is an example. 6729 * When the thread that is currently exclusive finishes, it (ipsq_exit) 6730 * dequeues the requests waiting to become exclusive in ipx_mphead and calls 6731 * the reentry point. When the list at ipx_mphead becomes empty ipsq_exit 6732 * proceeds to dequeue the next ioctl in ipsq_xopq_mphead and start the next 6733 * ioctl if the current ioctl has completed. If the current ioctl is still 6734 * in progress it simply returns. The current ioctl could be waiting for 6735 * a response from another module (the driver or could be waiting for 6736 * the ipif/ill/ire refcnts to drop to zero. In such a case the ipx_pending_mp 6737 * and ipx_pending_ipif are set. ipx_current_ipif is set throughout the 6738 * execution of the ioctl and ipsq_exit does not start the next ioctl unless 6739 * ipx_current_ipif is NULL which happens only once the ioctl is complete and 6740 * all associated DLPI operations have completed. 6741 */ 6742 6743 /* 6744 * Try to enter the IPSQ corresponding to `ipif' or `ill' exclusively (`ipif' 6745 * and `ill' cannot both be specified). Returns a pointer to the entered IPSQ 6746 * on success, or NULL on failure. The caller ensures ipif/ill is valid by 6747 * refholding it as necessary. If the IPSQ cannot be entered and `func' is 6748 * non-NULL, then `func' will be called back with `q' and `mp' once the IPSQ 6749 * can be entered. If `func' is NULL, then `q' and `mp' are ignored. 6750 */ 6751 ipsq_t * 6752 ipsq_try_enter(ipif_t *ipif, ill_t *ill, queue_t *q, mblk_t *mp, 6753 ipsq_func_t func, int type, boolean_t reentry_ok) 6754 { 6755 ip_stack_t *ipst; 6756 ipsq_t *ipsq; 6757 6758 /* Only 1 of ipif or ill can be specified */ 6759 ASSERT((ipif != NULL) ^ (ill != NULL)); 6760 6761 if (ipif != NULL) 6762 ill = ipif->ipif_ill; 6763 ipst = ill->ill_ipst; 6764 6765 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 6766 ipsq = ipsq_try_enter_internal(ill, q, mp, func, type, reentry_ok); 6767 rw_exit(&ipst->ips_ill_g_lock); 6768 6769 return (ipsq); 6770 } 6771 6772 /* 6773 * Try to enter the IPSQ corresponding to `ill' as writer. The caller ensures 6774 * ill is valid by refholding it if necessary; we will refrele. If the IPSQ 6775 * cannot be entered, the mp is queued for completion. 6776 */ 6777 void 6778 qwriter_ip(ill_t *ill, queue_t *q, mblk_t *mp, ipsq_func_t func, int type, 6779 boolean_t reentry_ok) 6780 { 6781 ipsq_t *ipsq; 6782 6783 ipsq = ipsq_try_enter(NULL, ill, q, mp, func, type, reentry_ok); 6784 6785 /* 6786 * Drop the caller's refhold on the ill. This is safe since we either 6787 * entered the IPSQ (and thus are exclusive), or failed to enter the 6788 * IPSQ, in which case we return without accessing ill anymore. This 6789 * is needed because func needs to see the correct refcount. 6790 * e.g. removeif can work only then. 6791 */ 6792 ill_refrele(ill); 6793 if (ipsq != NULL) { 6794 (*func)(ipsq, q, mp, NULL); 6795 ipsq_exit(ipsq); 6796 } 6797 } 6798 6799 /* 6800 * Exit the specified IPSQ. If this is the final exit on it then drain it 6801 * prior to exiting. Caller must be writer on the specified IPSQ. 6802 */ 6803 void 6804 ipsq_exit(ipsq_t *ipsq) 6805 { 6806 mblk_t *mp; 6807 ipsq_t *mp_ipsq; 6808 queue_t *q; 6809 phyint_t *phyi; 6810 ipsq_func_t func; 6811 6812 ASSERT(IAM_WRITER_IPSQ(ipsq)); 6813 6814 ASSERT(ipsq->ipsq_xop->ipx_reentry_cnt >= 1); 6815 if (ipsq->ipsq_xop->ipx_reentry_cnt != 1) { 6816 ipsq->ipsq_xop->ipx_reentry_cnt--; 6817 return; 6818 } 6819 6820 for (;;) { 6821 phyi = ipsq->ipsq_phyint; 6822 mp = ipsq_dq(ipsq); 6823 mp_ipsq = (mp == NULL) ? NULL : (ipsq_t *)mp->b_next; 6824 6825 /* 6826 * If we've changed to a new IPSQ, and the phyint associated 6827 * with the old one has gone away, free the old IPSQ. Note 6828 * that this cannot happen while the IPSQ is in a group. 6829 */ 6830 if (mp_ipsq != ipsq && phyi == NULL) { 6831 ASSERT(ipsq->ipsq_next == ipsq); 6832 ASSERT(ipsq->ipsq_xop == &ipsq->ipsq_ownxop); 6833 ipsq_delete(ipsq); 6834 } 6835 6836 if (mp == NULL) 6837 break; 6838 6839 q = mp->b_queue; 6840 func = (ipsq_func_t)mp->b_prev; 6841 ipsq = mp_ipsq; 6842 mp->b_next = mp->b_prev = NULL; 6843 mp->b_queue = NULL; 6844 6845 /* 6846 * If 'q' is an conn queue, it is valid, since we did a 6847 * a refhold on the conn at the start of the ioctl. 6848 * If 'q' is an ill queue, it is valid, since close of an 6849 * ill will clean up its IPSQ. 6850 */ 6851 (*func)(ipsq, q, mp, NULL); 6852 } 6853 } 6854 6855 /* 6856 * Used to start any igmp or mld timers that could not be started 6857 * while holding ill_mcast_lock. The timers can't be started while holding 6858 * the lock, since mld/igmp_start_timers may need to call untimeout() 6859 * which can't be done while holding the lock which the timeout handler 6860 * acquires. Otherwise 6861 * there could be a deadlock since the timeout handlers 6862 * mld_timeout_handler_per_ill/igmp_timeout_handler_per_ill also acquire 6863 * ill_mcast_lock. 6864 */ 6865 void 6866 ill_mcast_timer_start(ip_stack_t *ipst) 6867 { 6868 int next; 6869 6870 mutex_enter(&ipst->ips_igmp_timer_lock); 6871 next = ipst->ips_igmp_deferred_next; 6872 ipst->ips_igmp_deferred_next = INFINITY; 6873 mutex_exit(&ipst->ips_igmp_timer_lock); 6874 6875 if (next != INFINITY) 6876 igmp_start_timers(next, ipst); 6877 6878 mutex_enter(&ipst->ips_mld_timer_lock); 6879 next = ipst->ips_mld_deferred_next; 6880 ipst->ips_mld_deferred_next = INFINITY; 6881 mutex_exit(&ipst->ips_mld_timer_lock); 6882 6883 if (next != INFINITY) 6884 mld_start_timers(next, ipst); 6885 } 6886 6887 /* 6888 * Start the current exclusive operation on `ipsq'; associate it with `ipif' 6889 * and `ioccmd'. 6890 */ 6891 void 6892 ipsq_current_start(ipsq_t *ipsq, ipif_t *ipif, int ioccmd) 6893 { 6894 ill_t *ill = ipif->ipif_ill; 6895 ipxop_t *ipx = ipsq->ipsq_xop; 6896 6897 ASSERT(IAM_WRITER_IPSQ(ipsq)); 6898 ASSERT(ipx->ipx_current_ipif == NULL); 6899 ASSERT(ipx->ipx_current_ioctl == 0); 6900 6901 ipx->ipx_current_done = B_FALSE; 6902 ipx->ipx_current_ioctl = ioccmd; 6903 mutex_enter(&ipx->ipx_lock); 6904 ipx->ipx_current_ipif = ipif; 6905 mutex_exit(&ipx->ipx_lock); 6906 6907 /* 6908 * Set IPIF_CHANGING on one or more ipifs associated with the 6909 * current exclusive operation. IPIF_CHANGING prevents any new 6910 * references to the ipif (so that the references will eventually 6911 * drop to zero) and also prevents any "get" operations (e.g., 6912 * SIOCGLIFFLAGS) from being able to access the ipif until the 6913 * operation has completed and the ipif is again in a stable state. 6914 * 6915 * For ioctls, IPIF_CHANGING is set on the ipif associated with the 6916 * ioctl. For internal operations (where ioccmd is zero), all ipifs 6917 * on the ill are marked with IPIF_CHANGING since it's unclear which 6918 * ipifs will be affected. 6919 * 6920 * Note that SIOCLIFREMOVEIF is a special case as it sets 6921 * IPIF_CONDEMNED internally after identifying the right ipif to 6922 * operate on. 6923 */ 6924 switch (ioccmd) { 6925 case SIOCLIFREMOVEIF: 6926 break; 6927 case 0: 6928 mutex_enter(&ill->ill_lock); 6929 ipif = ipif->ipif_ill->ill_ipif; 6930 for (; ipif != NULL; ipif = ipif->ipif_next) 6931 ipif->ipif_state_flags |= IPIF_CHANGING; 6932 mutex_exit(&ill->ill_lock); 6933 break; 6934 default: 6935 mutex_enter(&ill->ill_lock); 6936 ipif->ipif_state_flags |= IPIF_CHANGING; 6937 mutex_exit(&ill->ill_lock); 6938 } 6939 } 6940 6941 /* 6942 * Finish the current exclusive operation on `ipsq'. Usually, this will allow 6943 * the next exclusive operation to begin once we ipsq_exit(). However, if 6944 * pending DLPI operations remain, then we will wait for the queue to drain 6945 * before allowing the next exclusive operation to begin. This ensures that 6946 * DLPI operations from one exclusive operation are never improperly processed 6947 * as part of a subsequent exclusive operation. 6948 */ 6949 void 6950 ipsq_current_finish(ipsq_t *ipsq) 6951 { 6952 ipxop_t *ipx = ipsq->ipsq_xop; 6953 t_uscalar_t dlpi_pending = DL_PRIM_INVAL; 6954 ipif_t *ipif = ipx->ipx_current_ipif; 6955 6956 ASSERT(IAM_WRITER_IPSQ(ipsq)); 6957 6958 /* 6959 * For SIOCLIFREMOVEIF, the ipif has been already been blown away 6960 * (but in that case, IPIF_CHANGING will already be clear and no 6961 * pending DLPI messages can remain). 6962 */ 6963 if (ipx->ipx_current_ioctl != SIOCLIFREMOVEIF) { 6964 ill_t *ill = ipif->ipif_ill; 6965 6966 mutex_enter(&ill->ill_lock); 6967 dlpi_pending = ill->ill_dlpi_pending; 6968 if (ipx->ipx_current_ioctl == 0) { 6969 ipif = ill->ill_ipif; 6970 for (; ipif != NULL; ipif = ipif->ipif_next) 6971 ipif->ipif_state_flags &= ~IPIF_CHANGING; 6972 } else { 6973 ipif->ipif_state_flags &= ~IPIF_CHANGING; 6974 } 6975 mutex_exit(&ill->ill_lock); 6976 } 6977 6978 ASSERT(!ipx->ipx_current_done); 6979 ipx->ipx_current_done = B_TRUE; 6980 ipx->ipx_current_ioctl = 0; 6981 if (dlpi_pending == DL_PRIM_INVAL) { 6982 mutex_enter(&ipx->ipx_lock); 6983 ipx->ipx_current_ipif = NULL; 6984 mutex_exit(&ipx->ipx_lock); 6985 } 6986 } 6987 6988 /* 6989 * The ill is closing. Flush all messages on the ipsq that originated 6990 * from this ill. Usually there wont' be any messages on the ipsq_xopq_mphead 6991 * for this ill since ipsq_enter could not have entered until then. 6992 * New messages can't be queued since the CONDEMNED flag is set. 6993 */ 6994 static void 6995 ipsq_flush(ill_t *ill) 6996 { 6997 queue_t *q; 6998 mblk_t *prev; 6999 mblk_t *mp; 7000 mblk_t *mp_next; 7001 ipxop_t *ipx = ill->ill_phyint->phyint_ipsq->ipsq_xop; 7002 7003 ASSERT(IAM_WRITER_ILL(ill)); 7004 7005 /* 7006 * Flush any messages sent up by the driver. 7007 */ 7008 mutex_enter(&ipx->ipx_lock); 7009 for (prev = NULL, mp = ipx->ipx_mphead; mp != NULL; mp = mp_next) { 7010 mp_next = mp->b_next; 7011 q = mp->b_queue; 7012 if (q == ill->ill_rq || q == ill->ill_wq) { 7013 /* dequeue mp */ 7014 if (prev == NULL) 7015 ipx->ipx_mphead = mp->b_next; 7016 else 7017 prev->b_next = mp->b_next; 7018 if (ipx->ipx_mptail == mp) { 7019 ASSERT(mp_next == NULL); 7020 ipx->ipx_mptail = prev; 7021 } 7022 inet_freemsg(mp); 7023 } else { 7024 prev = mp; 7025 } 7026 } 7027 mutex_exit(&ipx->ipx_lock); 7028 (void) ipsq_pending_mp_cleanup(ill, NULL); 7029 ipsq_xopq_mp_cleanup(ill, NULL); 7030 } 7031 7032 /* 7033 * Parse an ifreq or lifreq struct coming down ioctls and refhold 7034 * and return the associated ipif. 7035 * Return value: 7036 * Non zero: An error has occurred. ci may not be filled out. 7037 * zero : ci is filled out with the ioctl cmd in ci.ci_name, and 7038 * a held ipif in ci.ci_ipif. 7039 */ 7040 int 7041 ip_extract_lifreq(queue_t *q, mblk_t *mp, const ip_ioctl_cmd_t *ipip, 7042 cmd_info_t *ci) 7043 { 7044 char *name; 7045 struct ifreq *ifr; 7046 struct lifreq *lifr; 7047 ipif_t *ipif = NULL; 7048 ill_t *ill; 7049 conn_t *connp; 7050 boolean_t isv6; 7051 int err; 7052 mblk_t *mp1; 7053 zoneid_t zoneid; 7054 ip_stack_t *ipst; 7055 7056 if (q->q_next != NULL) { 7057 ill = (ill_t *)q->q_ptr; 7058 isv6 = ill->ill_isv6; 7059 connp = NULL; 7060 zoneid = ALL_ZONES; 7061 ipst = ill->ill_ipst; 7062 } else { 7063 ill = NULL; 7064 connp = Q_TO_CONN(q); 7065 isv6 = (connp->conn_family == AF_INET6); 7066 zoneid = connp->conn_zoneid; 7067 if (zoneid == GLOBAL_ZONEID) { 7068 /* global zone can access ipifs in all zones */ 7069 zoneid = ALL_ZONES; 7070 } 7071 ipst = connp->conn_netstack->netstack_ip; 7072 } 7073 7074 /* Has been checked in ip_wput_nondata */ 7075 mp1 = mp->b_cont->b_cont; 7076 7077 if (ipip->ipi_cmd_type == IF_CMD) { 7078 /* This a old style SIOC[GS]IF* command */ 7079 ifr = (struct ifreq *)mp1->b_rptr; 7080 /* 7081 * Null terminate the string to protect against buffer 7082 * overrun. String was generated by user code and may not 7083 * be trusted. 7084 */ 7085 ifr->ifr_name[IFNAMSIZ - 1] = '\0'; 7086 name = ifr->ifr_name; 7087 ci->ci_sin = (sin_t *)&ifr->ifr_addr; 7088 ci->ci_sin6 = NULL; 7089 ci->ci_lifr = (struct lifreq *)ifr; 7090 } else { 7091 /* This a new style SIOC[GS]LIF* command */ 7092 ASSERT(ipip->ipi_cmd_type == LIF_CMD); 7093 lifr = (struct lifreq *)mp1->b_rptr; 7094 /* 7095 * Null terminate the string to protect against buffer 7096 * overrun. String was generated by user code and may not 7097 * be trusted. 7098 */ 7099 lifr->lifr_name[LIFNAMSIZ - 1] = '\0'; 7100 name = lifr->lifr_name; 7101 ci->ci_sin = (sin_t *)&lifr->lifr_addr; 7102 ci->ci_sin6 = (sin6_t *)&lifr->lifr_addr; 7103 ci->ci_lifr = lifr; 7104 } 7105 7106 if (ipip->ipi_cmd == SIOCSLIFNAME) { 7107 /* 7108 * The ioctl will be failed if the ioctl comes down 7109 * an conn stream 7110 */ 7111 if (ill == NULL) { 7112 /* 7113 * Not an ill queue, return EINVAL same as the 7114 * old error code. 7115 */ 7116 return (ENXIO); 7117 } 7118 ipif = ill->ill_ipif; 7119 ipif_refhold(ipif); 7120 } else { 7121 /* 7122 * Ensure that ioctls don't see any internal state changes 7123 * caused by set ioctls by deferring them if IPIF_CHANGING is 7124 * set. 7125 */ 7126 ipif = ipif_lookup_on_name_async(name, mi_strlen(name), 7127 isv6, zoneid, q, mp, ip_process_ioctl, &err, ipst); 7128 if (ipif == NULL) { 7129 if (err == EINPROGRESS) 7130 return (err); 7131 err = 0; /* Ensure we don't use it below */ 7132 } 7133 } 7134 7135 /* 7136 * Old style [GS]IFCMD does not admit IPv6 ipif 7137 */ 7138 if (ipif != NULL && ipif->ipif_isv6 && ipip->ipi_cmd_type == IF_CMD) { 7139 ipif_refrele(ipif); 7140 return (ENXIO); 7141 } 7142 7143 if (ipif == NULL && ill != NULL && ill->ill_ipif != NULL && 7144 name[0] == '\0') { 7145 /* 7146 * Handle a or a SIOC?IF* with a null name 7147 * during plumb (on the ill queue before the I_PLINK). 7148 */ 7149 ipif = ill->ill_ipif; 7150 ipif_refhold(ipif); 7151 } 7152 7153 if (ipif == NULL) 7154 return (ENXIO); 7155 7156 DTRACE_PROBE4(ipif__ioctl, char *, "ip_extract_lifreq", 7157 int, ipip->ipi_cmd, ill_t *, ipif->ipif_ill, ipif_t *, ipif); 7158 7159 ci->ci_ipif = ipif; 7160 return (0); 7161 } 7162 7163 /* 7164 * Return the total number of ipifs. 7165 */ 7166 static uint_t 7167 ip_get_numifs(zoneid_t zoneid, ip_stack_t *ipst) 7168 { 7169 uint_t numifs = 0; 7170 ill_t *ill; 7171 ill_walk_context_t ctx; 7172 ipif_t *ipif; 7173 7174 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 7175 ill = ILL_START_WALK_V4(&ctx, ipst); 7176 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 7177 if (IS_UNDER_IPMP(ill)) 7178 continue; 7179 for (ipif = ill->ill_ipif; ipif != NULL; 7180 ipif = ipif->ipif_next) { 7181 if (ipif->ipif_zoneid == zoneid || 7182 ipif->ipif_zoneid == ALL_ZONES) 7183 numifs++; 7184 } 7185 } 7186 rw_exit(&ipst->ips_ill_g_lock); 7187 return (numifs); 7188 } 7189 7190 /* 7191 * Return the total number of ipifs. 7192 */ 7193 static uint_t 7194 ip_get_numlifs(int family, int lifn_flags, zoneid_t zoneid, ip_stack_t *ipst) 7195 { 7196 uint_t numifs = 0; 7197 ill_t *ill; 7198 ipif_t *ipif; 7199 ill_walk_context_t ctx; 7200 7201 ip1dbg(("ip_get_numlifs(%d %u %d)\n", family, lifn_flags, (int)zoneid)); 7202 7203 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 7204 if (family == AF_INET) 7205 ill = ILL_START_WALK_V4(&ctx, ipst); 7206 else if (family == AF_INET6) 7207 ill = ILL_START_WALK_V6(&ctx, ipst); 7208 else 7209 ill = ILL_START_WALK_ALL(&ctx, ipst); 7210 7211 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 7212 if (IS_UNDER_IPMP(ill) && !(lifn_flags & LIFC_UNDER_IPMP)) 7213 continue; 7214 7215 for (ipif = ill->ill_ipif; ipif != NULL; 7216 ipif = ipif->ipif_next) { 7217 if ((ipif->ipif_flags & IPIF_NOXMIT) && 7218 !(lifn_flags & LIFC_NOXMIT)) 7219 continue; 7220 if ((ipif->ipif_flags & IPIF_TEMPORARY) && 7221 !(lifn_flags & LIFC_TEMPORARY)) 7222 continue; 7223 if (((ipif->ipif_flags & 7224 (IPIF_NOXMIT|IPIF_NOLOCAL| 7225 IPIF_DEPRECATED)) || 7226 IS_LOOPBACK(ill) || 7227 !(ipif->ipif_flags & IPIF_UP)) && 7228 (lifn_flags & LIFC_EXTERNAL_SOURCE)) 7229 continue; 7230 7231 if (zoneid != ipif->ipif_zoneid && 7232 ipif->ipif_zoneid != ALL_ZONES && 7233 (zoneid != GLOBAL_ZONEID || 7234 !(lifn_flags & LIFC_ALLZONES))) 7235 continue; 7236 7237 numifs++; 7238 } 7239 } 7240 rw_exit(&ipst->ips_ill_g_lock); 7241 return (numifs); 7242 } 7243 7244 uint_t 7245 ip_get_lifsrcofnum(ill_t *ill) 7246 { 7247 uint_t numifs = 0; 7248 ill_t *ill_head = ill; 7249 ip_stack_t *ipst = ill->ill_ipst; 7250 7251 /* 7252 * ill_g_usesrc_lock protects ill_usesrc_grp_next, for example, some 7253 * other thread may be trying to relink the ILLs in this usesrc group 7254 * and adjusting the ill_usesrc_grp_next pointers 7255 */ 7256 rw_enter(&ipst->ips_ill_g_usesrc_lock, RW_READER); 7257 if ((ill->ill_usesrc_ifindex == 0) && 7258 (ill->ill_usesrc_grp_next != NULL)) { 7259 for (; (ill != NULL) && (ill->ill_usesrc_grp_next != ill_head); 7260 ill = ill->ill_usesrc_grp_next) 7261 numifs++; 7262 } 7263 rw_exit(&ipst->ips_ill_g_usesrc_lock); 7264 7265 return (numifs); 7266 } 7267 7268 /* Null values are passed in for ipif, sin, and ifreq */ 7269 /* ARGSUSED */ 7270 int 7271 ip_sioctl_get_ifnum(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, 7272 mblk_t *mp, ip_ioctl_cmd_t *ipip, void *ifreq) 7273 { 7274 int *nump; 7275 conn_t *connp = Q_TO_CONN(q); 7276 7277 ASSERT(q->q_next == NULL); /* not a valid ioctl for ip as a module */ 7278 7279 /* Existence of b_cont->b_cont checked in ip_wput_nondata */ 7280 nump = (int *)mp->b_cont->b_cont->b_rptr; 7281 7282 *nump = ip_get_numifs(connp->conn_zoneid, 7283 connp->conn_netstack->netstack_ip); 7284 ip1dbg(("ip_sioctl_get_ifnum numifs %d", *nump)); 7285 return (0); 7286 } 7287 7288 /* Null values are passed in for ipif, sin, and ifreq */ 7289 /* ARGSUSED */ 7290 int 7291 ip_sioctl_get_lifnum(ipif_t *dummy_ipif, sin_t *dummy_sin, 7292 queue_t *q, mblk_t *mp, ip_ioctl_cmd_t *ipip, void *ifreq) 7293 { 7294 struct lifnum *lifn; 7295 mblk_t *mp1; 7296 conn_t *connp = Q_TO_CONN(q); 7297 7298 ASSERT(q->q_next == NULL); /* not a valid ioctl for ip as a module */ 7299 7300 /* Existence checked in ip_wput_nondata */ 7301 mp1 = mp->b_cont->b_cont; 7302 7303 lifn = (struct lifnum *)mp1->b_rptr; 7304 switch (lifn->lifn_family) { 7305 case AF_UNSPEC: 7306 case AF_INET: 7307 case AF_INET6: 7308 break; 7309 default: 7310 return (EAFNOSUPPORT); 7311 } 7312 7313 lifn->lifn_count = ip_get_numlifs(lifn->lifn_family, lifn->lifn_flags, 7314 connp->conn_zoneid, connp->conn_netstack->netstack_ip); 7315 ip1dbg(("ip_sioctl_get_lifnum numifs %d", lifn->lifn_count)); 7316 return (0); 7317 } 7318 7319 /* ARGSUSED */ 7320 int 7321 ip_sioctl_get_ifconf(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, 7322 mblk_t *mp, ip_ioctl_cmd_t *ipip, void *ifreq) 7323 { 7324 STRUCT_HANDLE(ifconf, ifc); 7325 mblk_t *mp1; 7326 struct iocblk *iocp; 7327 struct ifreq *ifr; 7328 ill_walk_context_t ctx; 7329 ill_t *ill; 7330 ipif_t *ipif; 7331 struct sockaddr_in *sin; 7332 int32_t ifclen; 7333 zoneid_t zoneid; 7334 ip_stack_t *ipst = CONNQ_TO_IPST(q); 7335 7336 ASSERT(q->q_next == NULL); /* not valid ioctls for ip as a module */ 7337 7338 ip1dbg(("ip_sioctl_get_ifconf")); 7339 /* Existence verified in ip_wput_nondata */ 7340 mp1 = mp->b_cont->b_cont; 7341 iocp = (struct iocblk *)mp->b_rptr; 7342 zoneid = Q_TO_CONN(q)->conn_zoneid; 7343 7344 /* 7345 * The original SIOCGIFCONF passed in a struct ifconf which specified 7346 * the user buffer address and length into which the list of struct 7347 * ifreqs was to be copied. Since AT&T Streams does not seem to 7348 * allow M_COPYOUT to be used in conjunction with I_STR IOCTLS, 7349 * the SIOCGIFCONF operation was redefined to simply provide 7350 * a large output buffer into which we are supposed to jam the ifreq 7351 * array. The same ioctl command code was used, despite the fact that 7352 * both the applications and the kernel code had to change, thus making 7353 * it impossible to support both interfaces. 7354 * 7355 * For reasons not good enough to try to explain, the following 7356 * algorithm is used for deciding what to do with one of these: 7357 * If the IOCTL comes in as an I_STR, it is assumed to be of the new 7358 * form with the output buffer coming down as the continuation message. 7359 * If it arrives as a TRANSPARENT IOCTL, it is assumed to be old style, 7360 * and we have to copy in the ifconf structure to find out how big the 7361 * output buffer is and where to copy out to. Sure no problem... 7362 * 7363 */ 7364 STRUCT_SET_HANDLE(ifc, iocp->ioc_flag, NULL); 7365 if ((mp1->b_wptr - mp1->b_rptr) == STRUCT_SIZE(ifc)) { 7366 int numifs = 0; 7367 size_t ifc_bufsize; 7368 7369 /* 7370 * Must be (better be!) continuation of a TRANSPARENT 7371 * IOCTL. We just copied in the ifconf structure. 7372 */ 7373 STRUCT_SET_HANDLE(ifc, iocp->ioc_flag, 7374 (struct ifconf *)mp1->b_rptr); 7375 7376 /* 7377 * Allocate a buffer to hold requested information. 7378 * 7379 * If ifc_len is larger than what is needed, we only 7380 * allocate what we will use. 7381 * 7382 * If ifc_len is smaller than what is needed, return 7383 * EINVAL. 7384 * 7385 * XXX: the ill_t structure can hava 2 counters, for 7386 * v4 and v6 (not just ill_ipif_up_count) to store the 7387 * number of interfaces for a device, so we don't need 7388 * to count them here... 7389 */ 7390 numifs = ip_get_numifs(zoneid, ipst); 7391 7392 ifclen = STRUCT_FGET(ifc, ifc_len); 7393 ifc_bufsize = numifs * sizeof (struct ifreq); 7394 if (ifc_bufsize > ifclen) { 7395 if (iocp->ioc_cmd == O_SIOCGIFCONF) { 7396 /* old behaviour */ 7397 return (EINVAL); 7398 } else { 7399 ifc_bufsize = ifclen; 7400 } 7401 } 7402 7403 mp1 = mi_copyout_alloc(q, mp, 7404 STRUCT_FGETP(ifc, ifc_buf), ifc_bufsize, B_FALSE); 7405 if (mp1 == NULL) 7406 return (ENOMEM); 7407 7408 mp1->b_wptr = mp1->b_rptr + ifc_bufsize; 7409 } 7410 bzero(mp1->b_rptr, mp1->b_wptr - mp1->b_rptr); 7411 /* 7412 * the SIOCGIFCONF ioctl only knows about 7413 * IPv4 addresses, so don't try to tell 7414 * it about interfaces with IPv6-only 7415 * addresses. (Last parm 'isv6' is B_FALSE) 7416 */ 7417 7418 ifr = (struct ifreq *)mp1->b_rptr; 7419 7420 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 7421 ill = ILL_START_WALK_V4(&ctx, ipst); 7422 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 7423 if (IS_UNDER_IPMP(ill)) 7424 continue; 7425 for (ipif = ill->ill_ipif; ipif != NULL; 7426 ipif = ipif->ipif_next) { 7427 if (zoneid != ipif->ipif_zoneid && 7428 ipif->ipif_zoneid != ALL_ZONES) 7429 continue; 7430 if ((uchar_t *)&ifr[1] > mp1->b_wptr) { 7431 if (iocp->ioc_cmd == O_SIOCGIFCONF) { 7432 /* old behaviour */ 7433 rw_exit(&ipst->ips_ill_g_lock); 7434 return (EINVAL); 7435 } else { 7436 goto if_copydone; 7437 } 7438 } 7439 ipif_get_name(ipif, ifr->ifr_name, 7440 sizeof (ifr->ifr_name)); 7441 sin = (sin_t *)&ifr->ifr_addr; 7442 *sin = sin_null; 7443 sin->sin_family = AF_INET; 7444 sin->sin_addr.s_addr = ipif->ipif_lcl_addr; 7445 ifr++; 7446 } 7447 } 7448 if_copydone: 7449 rw_exit(&ipst->ips_ill_g_lock); 7450 mp1->b_wptr = (uchar_t *)ifr; 7451 7452 if (STRUCT_BUF(ifc) != NULL) { 7453 STRUCT_FSET(ifc, ifc_len, 7454 (int)((uchar_t *)ifr - mp1->b_rptr)); 7455 } 7456 return (0); 7457 } 7458 7459 /* 7460 * Get the interfaces using the address hosted on the interface passed in, 7461 * as a source adddress 7462 */ 7463 /* ARGSUSED */ 7464 int 7465 ip_sioctl_get_lifsrcof(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, 7466 mblk_t *mp, ip_ioctl_cmd_t *ipip, void *ifreq) 7467 { 7468 mblk_t *mp1; 7469 ill_t *ill, *ill_head; 7470 ipif_t *ipif, *orig_ipif; 7471 int numlifs = 0; 7472 size_t lifs_bufsize, lifsmaxlen; 7473 struct lifreq *lifr; 7474 struct iocblk *iocp = (struct iocblk *)mp->b_rptr; 7475 uint_t ifindex; 7476 zoneid_t zoneid; 7477 boolean_t isv6 = B_FALSE; 7478 struct sockaddr_in *sin; 7479 struct sockaddr_in6 *sin6; 7480 STRUCT_HANDLE(lifsrcof, lifs); 7481 ip_stack_t *ipst; 7482 7483 ipst = CONNQ_TO_IPST(q); 7484 7485 ASSERT(q->q_next == NULL); 7486 7487 zoneid = Q_TO_CONN(q)->conn_zoneid; 7488 7489 /* Existence verified in ip_wput_nondata */ 7490 mp1 = mp->b_cont->b_cont; 7491 7492 /* 7493 * Must be (better be!) continuation of a TRANSPARENT 7494 * IOCTL. We just copied in the lifsrcof structure. 7495 */ 7496 STRUCT_SET_HANDLE(lifs, iocp->ioc_flag, 7497 (struct lifsrcof *)mp1->b_rptr); 7498 7499 if (MBLKL(mp1) != STRUCT_SIZE(lifs)) 7500 return (EINVAL); 7501 7502 ifindex = STRUCT_FGET(lifs, lifs_ifindex); 7503 isv6 = (Q_TO_CONN(q))->conn_family == AF_INET6; 7504 ipif = ipif_lookup_on_ifindex(ifindex, isv6, zoneid, ipst); 7505 if (ipif == NULL) { 7506 ip1dbg(("ip_sioctl_get_lifsrcof: no ipif for ifindex %d\n", 7507 ifindex)); 7508 return (ENXIO); 7509 } 7510 7511 /* Allocate a buffer to hold requested information */ 7512 numlifs = ip_get_lifsrcofnum(ipif->ipif_ill); 7513 lifs_bufsize = numlifs * sizeof (struct lifreq); 7514 lifsmaxlen = STRUCT_FGET(lifs, lifs_maxlen); 7515 /* The actual size needed is always returned in lifs_len */ 7516 STRUCT_FSET(lifs, lifs_len, lifs_bufsize); 7517 7518 /* If the amount we need is more than what is passed in, abort */ 7519 if (lifs_bufsize > lifsmaxlen || lifs_bufsize == 0) { 7520 ipif_refrele(ipif); 7521 return (0); 7522 } 7523 7524 mp1 = mi_copyout_alloc(q, mp, 7525 STRUCT_FGETP(lifs, lifs_buf), lifs_bufsize, B_FALSE); 7526 if (mp1 == NULL) { 7527 ipif_refrele(ipif); 7528 return (ENOMEM); 7529 } 7530 7531 mp1->b_wptr = mp1->b_rptr + lifs_bufsize; 7532 bzero(mp1->b_rptr, lifs_bufsize); 7533 7534 lifr = (struct lifreq *)mp1->b_rptr; 7535 7536 ill = ill_head = ipif->ipif_ill; 7537 orig_ipif = ipif; 7538 7539 /* ill_g_usesrc_lock protects ill_usesrc_grp_next */ 7540 rw_enter(&ipst->ips_ill_g_usesrc_lock, RW_READER); 7541 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 7542 7543 ill = ill->ill_usesrc_grp_next; /* start from next ill */ 7544 for (; (ill != NULL) && (ill != ill_head); 7545 ill = ill->ill_usesrc_grp_next) { 7546 7547 if ((uchar_t *)&lifr[1] > mp1->b_wptr) 7548 break; 7549 7550 ipif = ill->ill_ipif; 7551 ipif_get_name(ipif, lifr->lifr_name, sizeof (lifr->lifr_name)); 7552 if (ipif->ipif_isv6) { 7553 sin6 = (sin6_t *)&lifr->lifr_addr; 7554 *sin6 = sin6_null; 7555 sin6->sin6_family = AF_INET6; 7556 sin6->sin6_addr = ipif->ipif_v6lcl_addr; 7557 lifr->lifr_addrlen = ip_mask_to_plen_v6( 7558 &ipif->ipif_v6net_mask); 7559 } else { 7560 sin = (sin_t *)&lifr->lifr_addr; 7561 *sin = sin_null; 7562 sin->sin_family = AF_INET; 7563 sin->sin_addr.s_addr = ipif->ipif_lcl_addr; 7564 lifr->lifr_addrlen = ip_mask_to_plen( 7565 ipif->ipif_net_mask); 7566 } 7567 lifr++; 7568 } 7569 rw_exit(&ipst->ips_ill_g_lock); 7570 rw_exit(&ipst->ips_ill_g_usesrc_lock); 7571 ipif_refrele(orig_ipif); 7572 mp1->b_wptr = (uchar_t *)lifr; 7573 STRUCT_FSET(lifs, lifs_len, (int)((uchar_t *)lifr - mp1->b_rptr)); 7574 7575 return (0); 7576 } 7577 7578 /* ARGSUSED */ 7579 int 7580 ip_sioctl_get_lifconf(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, 7581 mblk_t *mp, ip_ioctl_cmd_t *ipip, void *ifreq) 7582 { 7583 mblk_t *mp1; 7584 int list; 7585 ill_t *ill; 7586 ipif_t *ipif; 7587 int flags; 7588 int numlifs = 0; 7589 size_t lifc_bufsize; 7590 struct lifreq *lifr; 7591 sa_family_t family; 7592 struct sockaddr_in *sin; 7593 struct sockaddr_in6 *sin6; 7594 ill_walk_context_t ctx; 7595 struct iocblk *iocp = (struct iocblk *)mp->b_rptr; 7596 int32_t lifclen; 7597 zoneid_t zoneid; 7598 STRUCT_HANDLE(lifconf, lifc); 7599 ip_stack_t *ipst = CONNQ_TO_IPST(q); 7600 7601 ip1dbg(("ip_sioctl_get_lifconf")); 7602 7603 ASSERT(q->q_next == NULL); 7604 7605 zoneid = Q_TO_CONN(q)->conn_zoneid; 7606 7607 /* Existence verified in ip_wput_nondata */ 7608 mp1 = mp->b_cont->b_cont; 7609 7610 /* 7611 * An extended version of SIOCGIFCONF that takes an 7612 * additional address family and flags field. 7613 * AF_UNSPEC retrieve both IPv4 and IPv6. 7614 * Unless LIFC_NOXMIT is specified the IPIF_NOXMIT 7615 * interfaces are omitted. 7616 * Similarly, IPIF_TEMPORARY interfaces are omitted 7617 * unless LIFC_TEMPORARY is specified. 7618 * If LIFC_EXTERNAL_SOURCE is specified, IPIF_NOXMIT, 7619 * IPIF_NOLOCAL, PHYI_LOOPBACK, IPIF_DEPRECATED and 7620 * not IPIF_UP interfaces are omitted. LIFC_EXTERNAL_SOURCE 7621 * has priority over LIFC_NOXMIT. 7622 */ 7623 STRUCT_SET_HANDLE(lifc, iocp->ioc_flag, NULL); 7624 7625 if ((mp1->b_wptr - mp1->b_rptr) != STRUCT_SIZE(lifc)) 7626 return (EINVAL); 7627 7628 /* 7629 * Must be (better be!) continuation of a TRANSPARENT 7630 * IOCTL. We just copied in the lifconf structure. 7631 */ 7632 STRUCT_SET_HANDLE(lifc, iocp->ioc_flag, (struct lifconf *)mp1->b_rptr); 7633 7634 family = STRUCT_FGET(lifc, lifc_family); 7635 flags = STRUCT_FGET(lifc, lifc_flags); 7636 7637 switch (family) { 7638 case AF_UNSPEC: 7639 /* 7640 * walk all ILL's. 7641 */ 7642 list = MAX_G_HEADS; 7643 break; 7644 case AF_INET: 7645 /* 7646 * walk only IPV4 ILL's. 7647 */ 7648 list = IP_V4_G_HEAD; 7649 break; 7650 case AF_INET6: 7651 /* 7652 * walk only IPV6 ILL's. 7653 */ 7654 list = IP_V6_G_HEAD; 7655 break; 7656 default: 7657 return (EAFNOSUPPORT); 7658 } 7659 7660 /* 7661 * Allocate a buffer to hold requested information. 7662 * 7663 * If lifc_len is larger than what is needed, we only 7664 * allocate what we will use. 7665 * 7666 * If lifc_len is smaller than what is needed, return 7667 * EINVAL. 7668 */ 7669 numlifs = ip_get_numlifs(family, flags, zoneid, ipst); 7670 lifc_bufsize = numlifs * sizeof (struct lifreq); 7671 lifclen = STRUCT_FGET(lifc, lifc_len); 7672 if (lifc_bufsize > lifclen) { 7673 if (iocp->ioc_cmd == O_SIOCGLIFCONF) 7674 return (EINVAL); 7675 else 7676 lifc_bufsize = lifclen; 7677 } 7678 7679 mp1 = mi_copyout_alloc(q, mp, 7680 STRUCT_FGETP(lifc, lifc_buf), lifc_bufsize, B_FALSE); 7681 if (mp1 == NULL) 7682 return (ENOMEM); 7683 7684 mp1->b_wptr = mp1->b_rptr + lifc_bufsize; 7685 bzero(mp1->b_rptr, mp1->b_wptr - mp1->b_rptr); 7686 7687 lifr = (struct lifreq *)mp1->b_rptr; 7688 7689 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 7690 ill = ill_first(list, list, &ctx, ipst); 7691 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 7692 if (IS_UNDER_IPMP(ill) && !(flags & LIFC_UNDER_IPMP)) 7693 continue; 7694 7695 for (ipif = ill->ill_ipif; ipif != NULL; 7696 ipif = ipif->ipif_next) { 7697 if ((ipif->ipif_flags & IPIF_NOXMIT) && 7698 !(flags & LIFC_NOXMIT)) 7699 continue; 7700 7701 if ((ipif->ipif_flags & IPIF_TEMPORARY) && 7702 !(flags & LIFC_TEMPORARY)) 7703 continue; 7704 7705 if (((ipif->ipif_flags & 7706 (IPIF_NOXMIT|IPIF_NOLOCAL| 7707 IPIF_DEPRECATED)) || 7708 IS_LOOPBACK(ill) || 7709 !(ipif->ipif_flags & IPIF_UP)) && 7710 (flags & LIFC_EXTERNAL_SOURCE)) 7711 continue; 7712 7713 if (zoneid != ipif->ipif_zoneid && 7714 ipif->ipif_zoneid != ALL_ZONES && 7715 (zoneid != GLOBAL_ZONEID || 7716 !(flags & LIFC_ALLZONES))) 7717 continue; 7718 7719 if ((uchar_t *)&lifr[1] > mp1->b_wptr) { 7720 if (iocp->ioc_cmd == O_SIOCGLIFCONF) { 7721 rw_exit(&ipst->ips_ill_g_lock); 7722 return (EINVAL); 7723 } else { 7724 goto lif_copydone; 7725 } 7726 } 7727 7728 ipif_get_name(ipif, lifr->lifr_name, 7729 sizeof (lifr->lifr_name)); 7730 lifr->lifr_type = ill->ill_type; 7731 if (ipif->ipif_isv6) { 7732 sin6 = (sin6_t *)&lifr->lifr_addr; 7733 *sin6 = sin6_null; 7734 sin6->sin6_family = AF_INET6; 7735 sin6->sin6_addr = 7736 ipif->ipif_v6lcl_addr; 7737 lifr->lifr_addrlen = 7738 ip_mask_to_plen_v6( 7739 &ipif->ipif_v6net_mask); 7740 } else { 7741 sin = (sin_t *)&lifr->lifr_addr; 7742 *sin = sin_null; 7743 sin->sin_family = AF_INET; 7744 sin->sin_addr.s_addr = 7745 ipif->ipif_lcl_addr; 7746 lifr->lifr_addrlen = 7747 ip_mask_to_plen( 7748 ipif->ipif_net_mask); 7749 } 7750 lifr++; 7751 } 7752 } 7753 lif_copydone: 7754 rw_exit(&ipst->ips_ill_g_lock); 7755 7756 mp1->b_wptr = (uchar_t *)lifr; 7757 if (STRUCT_BUF(lifc) != NULL) { 7758 STRUCT_FSET(lifc, lifc_len, 7759 (int)((uchar_t *)lifr - mp1->b_rptr)); 7760 } 7761 return (0); 7762 } 7763 7764 static void 7765 ip_sioctl_ip6addrpolicy(queue_t *q, mblk_t *mp) 7766 { 7767 ip6_asp_t *table; 7768 size_t table_size; 7769 mblk_t *data_mp; 7770 struct iocblk *iocp = (struct iocblk *)mp->b_rptr; 7771 ip_stack_t *ipst; 7772 7773 if (q->q_next == NULL) 7774 ipst = CONNQ_TO_IPST(q); 7775 else 7776 ipst = ILLQ_TO_IPST(q); 7777 7778 /* These two ioctls are I_STR only */ 7779 if (iocp->ioc_count == TRANSPARENT) { 7780 miocnak(q, mp, 0, EINVAL); 7781 return; 7782 } 7783 7784 data_mp = mp->b_cont; 7785 if (data_mp == NULL) { 7786 /* The user passed us a NULL argument */ 7787 table = NULL; 7788 table_size = iocp->ioc_count; 7789 } else { 7790 /* 7791 * The user provided a table. The stream head 7792 * may have copied in the user data in chunks, 7793 * so make sure everything is pulled up 7794 * properly. 7795 */ 7796 if (MBLKL(data_mp) < iocp->ioc_count) { 7797 mblk_t *new_data_mp; 7798 if ((new_data_mp = msgpullup(data_mp, -1)) == 7799 NULL) { 7800 miocnak(q, mp, 0, ENOMEM); 7801 return; 7802 } 7803 freemsg(data_mp); 7804 data_mp = new_data_mp; 7805 mp->b_cont = data_mp; 7806 } 7807 table = (ip6_asp_t *)data_mp->b_rptr; 7808 table_size = iocp->ioc_count; 7809 } 7810 7811 switch (iocp->ioc_cmd) { 7812 case SIOCGIP6ADDRPOLICY: 7813 iocp->ioc_rval = ip6_asp_get(table, table_size, ipst); 7814 if (iocp->ioc_rval == -1) 7815 iocp->ioc_error = EINVAL; 7816 #if defined(_SYSCALL32_IMPL) && _LONG_LONG_ALIGNMENT_32 == 4 7817 else if (table != NULL && 7818 (iocp->ioc_flag & IOC_MODELS) == IOC_ILP32) { 7819 ip6_asp_t *src = table; 7820 ip6_asp32_t *dst = (void *)table; 7821 int count = table_size / sizeof (ip6_asp_t); 7822 int i; 7823 7824 /* 7825 * We need to do an in-place shrink of the array 7826 * to match the alignment attributes of the 7827 * 32-bit ABI looking at it. 7828 */ 7829 /* LINTED: logical expression always true: op "||" */ 7830 ASSERT(sizeof (*src) > sizeof (*dst)); 7831 for (i = 1; i < count; i++) 7832 bcopy(src + i, dst + i, sizeof (*dst)); 7833 } 7834 #endif 7835 break; 7836 7837 case SIOCSIP6ADDRPOLICY: 7838 ASSERT(mp->b_prev == NULL); 7839 mp->b_prev = (void *)q; 7840 #if defined(_SYSCALL32_IMPL) && _LONG_LONG_ALIGNMENT_32 == 4 7841 /* 7842 * We pass in the datamodel here so that the ip6_asp_replace() 7843 * routine can handle converting from 32-bit to native formats 7844 * where necessary. 7845 * 7846 * A better way to handle this might be to convert the inbound 7847 * data structure here, and hang it off a new 'mp'; thus the 7848 * ip6_asp_replace() logic would always be dealing with native 7849 * format data structures.. 7850 * 7851 * (An even simpler way to handle these ioctls is to just 7852 * add a 32-bit trailing 'pad' field to the ip6_asp_t structure 7853 * and just recompile everything that depends on it.) 7854 */ 7855 #endif 7856 ip6_asp_replace(mp, table, table_size, B_FALSE, ipst, 7857 iocp->ioc_flag & IOC_MODELS); 7858 return; 7859 } 7860 7861 DB_TYPE(mp) = (iocp->ioc_error == 0) ? M_IOCACK : M_IOCNAK; 7862 qreply(q, mp); 7863 } 7864 7865 static void 7866 ip_sioctl_dstinfo(queue_t *q, mblk_t *mp) 7867 { 7868 mblk_t *data_mp; 7869 struct dstinforeq *dir; 7870 uint8_t *end, *cur; 7871 in6_addr_t *daddr, *saddr; 7872 ipaddr_t v4daddr; 7873 ire_t *ire; 7874 ipaddr_t v4setsrc; 7875 in6_addr_t v6setsrc; 7876 char *slabel, *dlabel; 7877 boolean_t isipv4; 7878 int match_ire; 7879 ill_t *dst_ill; 7880 struct iocblk *iocp = (struct iocblk *)mp->b_rptr; 7881 conn_t *connp = Q_TO_CONN(q); 7882 zoneid_t zoneid = IPCL_ZONEID(connp); 7883 ip_stack_t *ipst = connp->conn_netstack->netstack_ip; 7884 uint64_t ipif_flags; 7885 7886 ASSERT(q->q_next == NULL); /* this ioctl not allowed if ip is module */ 7887 7888 /* 7889 * This ioctl is I_STR only, and must have a 7890 * data mblk following the M_IOCTL mblk. 7891 */ 7892 data_mp = mp->b_cont; 7893 if (iocp->ioc_count == TRANSPARENT || data_mp == NULL) { 7894 miocnak(q, mp, 0, EINVAL); 7895 return; 7896 } 7897 7898 if (MBLKL(data_mp) < iocp->ioc_count) { 7899 mblk_t *new_data_mp; 7900 7901 if ((new_data_mp = msgpullup(data_mp, -1)) == NULL) { 7902 miocnak(q, mp, 0, ENOMEM); 7903 return; 7904 } 7905 freemsg(data_mp); 7906 data_mp = new_data_mp; 7907 mp->b_cont = data_mp; 7908 } 7909 match_ire = MATCH_IRE_DSTONLY; 7910 7911 for (cur = data_mp->b_rptr, end = data_mp->b_wptr; 7912 end - cur >= sizeof (struct dstinforeq); 7913 cur += sizeof (struct dstinforeq)) { 7914 dir = (struct dstinforeq *)cur; 7915 daddr = &dir->dir_daddr; 7916 saddr = &dir->dir_saddr; 7917 7918 /* 7919 * ip_addr_scope_v6() and ip6_asp_lookup() handle 7920 * v4 mapped addresses; ire_ftable_lookup_v6() 7921 * and ip_select_source_v6() do not. 7922 */ 7923 dir->dir_dscope = ip_addr_scope_v6(daddr); 7924 dlabel = ip6_asp_lookup(daddr, &dir->dir_precedence, ipst); 7925 7926 isipv4 = IN6_IS_ADDR_V4MAPPED(daddr); 7927 if (isipv4) { 7928 IN6_V4MAPPED_TO_IPADDR(daddr, v4daddr); 7929 v4setsrc = INADDR_ANY; 7930 ire = ire_route_recursive_v4(v4daddr, 0, NULL, zoneid, 7931 NULL, match_ire, IRR_ALLOCATE, 0, ipst, &v4setsrc, 7932 NULL, NULL); 7933 } else { 7934 v6setsrc = ipv6_all_zeros; 7935 ire = ire_route_recursive_v6(daddr, 0, NULL, zoneid, 7936 NULL, match_ire, IRR_ALLOCATE, 0, ipst, &v6setsrc, 7937 NULL, NULL); 7938 } 7939 ASSERT(ire != NULL); 7940 if (ire->ire_flags & (RTF_REJECT|RTF_BLACKHOLE)) { 7941 ire_refrele(ire); 7942 dir->dir_dreachable = 0; 7943 7944 /* move on to next dst addr */ 7945 continue; 7946 } 7947 dir->dir_dreachable = 1; 7948 7949 dst_ill = ire_nexthop_ill(ire); 7950 if (dst_ill == NULL) { 7951 ire_refrele(ire); 7952 continue; 7953 } 7954 7955 /* With ipmp we most likely look at the ipmp ill here */ 7956 dir->dir_dmactype = dst_ill->ill_mactype; 7957 7958 if (isipv4) { 7959 ipaddr_t v4saddr; 7960 7961 if (ip_select_source_v4(dst_ill, v4setsrc, v4daddr, 7962 connp->conn_ixa->ixa_multicast_ifaddr, zoneid, ipst, 7963 &v4saddr, NULL, &ipif_flags) != 0) { 7964 v4saddr = INADDR_ANY; 7965 ipif_flags = 0; 7966 } 7967 IN6_IPADDR_TO_V4MAPPED(v4saddr, saddr); 7968 } else { 7969 if (ip_select_source_v6(dst_ill, &v6setsrc, daddr, 7970 zoneid, ipst, B_FALSE, IPV6_PREFER_SRC_DEFAULT, 7971 saddr, NULL, &ipif_flags) != 0) { 7972 *saddr = ipv6_all_zeros; 7973 ipif_flags = 0; 7974 } 7975 } 7976 7977 dir->dir_sscope = ip_addr_scope_v6(saddr); 7978 slabel = ip6_asp_lookup(saddr, NULL, ipst); 7979 dir->dir_labelmatch = ip6_asp_labelcmp(dlabel, slabel); 7980 dir->dir_sdeprecated = (ipif_flags & IPIF_DEPRECATED) ? 1 : 0; 7981 ire_refrele(ire); 7982 ill_refrele(dst_ill); 7983 } 7984 miocack(q, mp, iocp->ioc_count, 0); 7985 } 7986 7987 /* 7988 * Check if this is an address assigned to this machine. 7989 * Skips interfaces that are down by using ire checks. 7990 * Translates mapped addresses to v4 addresses and then 7991 * treats them as such, returning true if the v4 address 7992 * associated with this mapped address is configured. 7993 * Note: Applications will have to be careful what they do 7994 * with the response; use of mapped addresses limits 7995 * what can be done with the socket, especially with 7996 * respect to socket options and ioctls - neither IPv4 7997 * options nor IPv6 sticky options/ancillary data options 7998 * may be used. 7999 */ 8000 /* ARGSUSED */ 8001 int 8002 ip_sioctl_tmyaddr(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, 8003 ip_ioctl_cmd_t *ipip, void *dummy_ifreq) 8004 { 8005 struct sioc_addrreq *sia; 8006 sin_t *sin; 8007 ire_t *ire; 8008 mblk_t *mp1; 8009 zoneid_t zoneid; 8010 ip_stack_t *ipst; 8011 8012 ip1dbg(("ip_sioctl_tmyaddr")); 8013 8014 ASSERT(q->q_next == NULL); /* this ioctl not allowed if ip is module */ 8015 zoneid = Q_TO_CONN(q)->conn_zoneid; 8016 ipst = CONNQ_TO_IPST(q); 8017 8018 /* Existence verified in ip_wput_nondata */ 8019 mp1 = mp->b_cont->b_cont; 8020 sia = (struct sioc_addrreq *)mp1->b_rptr; 8021 sin = (sin_t *)&sia->sa_addr; 8022 switch (sin->sin_family) { 8023 case AF_INET6: { 8024 sin6_t *sin6 = (sin6_t *)sin; 8025 8026 if (IN6_IS_ADDR_V4MAPPED(&sin6->sin6_addr)) { 8027 ipaddr_t v4_addr; 8028 8029 IN6_V4MAPPED_TO_IPADDR(&sin6->sin6_addr, 8030 v4_addr); 8031 ire = ire_ftable_lookup_v4(v4_addr, 0, 0, 8032 IRE_LOCAL|IRE_LOOPBACK, NULL, zoneid, NULL, 8033 MATCH_IRE_TYPE | MATCH_IRE_ZONEONLY, 0, ipst, NULL); 8034 } else { 8035 in6_addr_t v6addr; 8036 8037 v6addr = sin6->sin6_addr; 8038 ire = ire_ftable_lookup_v6(&v6addr, 0, 0, 8039 IRE_LOCAL|IRE_LOOPBACK, NULL, zoneid, NULL, 8040 MATCH_IRE_TYPE | MATCH_IRE_ZONEONLY, 0, ipst, NULL); 8041 } 8042 break; 8043 } 8044 case AF_INET: { 8045 ipaddr_t v4addr; 8046 8047 v4addr = sin->sin_addr.s_addr; 8048 ire = ire_ftable_lookup_v4(v4addr, 0, 0, 8049 IRE_LOCAL|IRE_LOOPBACK, NULL, zoneid, 8050 NULL, MATCH_IRE_TYPE | MATCH_IRE_ZONEONLY, 0, ipst, NULL); 8051 break; 8052 } 8053 default: 8054 return (EAFNOSUPPORT); 8055 } 8056 if (ire != NULL) { 8057 sia->sa_res = 1; 8058 ire_refrele(ire); 8059 } else { 8060 sia->sa_res = 0; 8061 } 8062 return (0); 8063 } 8064 8065 /* 8066 * Check if this is an address assigned on-link i.e. neighbor, 8067 * and makes sure it's reachable from the current zone. 8068 * Returns true for my addresses as well. 8069 * Translates mapped addresses to v4 addresses and then 8070 * treats them as such, returning true if the v4 address 8071 * associated with this mapped address is configured. 8072 * Note: Applications will have to be careful what they do 8073 * with the response; use of mapped addresses limits 8074 * what can be done with the socket, especially with 8075 * respect to socket options and ioctls - neither IPv4 8076 * options nor IPv6 sticky options/ancillary data options 8077 * may be used. 8078 */ 8079 /* ARGSUSED */ 8080 int 8081 ip_sioctl_tonlink(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, 8082 ip_ioctl_cmd_t *ipip, void *duymmy_ifreq) 8083 { 8084 struct sioc_addrreq *sia; 8085 sin_t *sin; 8086 mblk_t *mp1; 8087 ire_t *ire = NULL; 8088 zoneid_t zoneid; 8089 ip_stack_t *ipst; 8090 8091 ip1dbg(("ip_sioctl_tonlink")); 8092 8093 ASSERT(q->q_next == NULL); /* this ioctl not allowed if ip is module */ 8094 zoneid = Q_TO_CONN(q)->conn_zoneid; 8095 ipst = CONNQ_TO_IPST(q); 8096 8097 /* Existence verified in ip_wput_nondata */ 8098 mp1 = mp->b_cont->b_cont; 8099 sia = (struct sioc_addrreq *)mp1->b_rptr; 8100 sin = (sin_t *)&sia->sa_addr; 8101 8102 /* 8103 * We check for IRE_ONLINK and exclude IRE_BROADCAST|IRE_MULTICAST 8104 * to make sure we only look at on-link unicast address. 8105 */ 8106 switch (sin->sin_family) { 8107 case AF_INET6: { 8108 sin6_t *sin6 = (sin6_t *)sin; 8109 8110 if (IN6_IS_ADDR_V4MAPPED(&sin6->sin6_addr)) { 8111 ipaddr_t v4_addr; 8112 8113 IN6_V4MAPPED_TO_IPADDR(&sin6->sin6_addr, 8114 v4_addr); 8115 if (!CLASSD(v4_addr)) { 8116 ire = ire_ftable_lookup_v4(v4_addr, 0, 0, 0, 8117 NULL, zoneid, NULL, MATCH_IRE_DSTONLY, 8118 0, ipst, NULL); 8119 } 8120 } else { 8121 in6_addr_t v6addr; 8122 8123 v6addr = sin6->sin6_addr; 8124 if (!IN6_IS_ADDR_MULTICAST(&v6addr)) { 8125 ire = ire_ftable_lookup_v6(&v6addr, 0, 0, 0, 8126 NULL, zoneid, NULL, MATCH_IRE_DSTONLY, 0, 8127 ipst, NULL); 8128 } 8129 } 8130 break; 8131 } 8132 case AF_INET: { 8133 ipaddr_t v4addr; 8134 8135 v4addr = sin->sin_addr.s_addr; 8136 if (!CLASSD(v4addr)) { 8137 ire = ire_ftable_lookup_v4(v4addr, 0, 0, 0, NULL, 8138 zoneid, NULL, MATCH_IRE_DSTONLY, 0, ipst, NULL); 8139 } 8140 break; 8141 } 8142 default: 8143 return (EAFNOSUPPORT); 8144 } 8145 sia->sa_res = 0; 8146 if (ire != NULL) { 8147 ASSERT(!(ire->ire_type & IRE_MULTICAST)); 8148 8149 if ((ire->ire_type & IRE_ONLINK) && 8150 !(ire->ire_type & IRE_BROADCAST)) 8151 sia->sa_res = 1; 8152 ire_refrele(ire); 8153 } 8154 return (0); 8155 } 8156 8157 /* 8158 * TBD: implement when kernel maintaines a list of site prefixes. 8159 */ 8160 /* ARGSUSED */ 8161 int 8162 ip_sioctl_tmysite(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 8163 ip_ioctl_cmd_t *ipip, void *ifreq) 8164 { 8165 return (ENXIO); 8166 } 8167 8168 /* ARP IOCTLs. */ 8169 /* ARGSUSED */ 8170 int 8171 ip_sioctl_arp(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 8172 ip_ioctl_cmd_t *ipip, void *dummy_ifreq) 8173 { 8174 int err; 8175 ipaddr_t ipaddr; 8176 struct iocblk *iocp; 8177 conn_t *connp; 8178 struct arpreq *ar; 8179 struct xarpreq *xar; 8180 int arp_flags, flags, alength; 8181 uchar_t *lladdr; 8182 ip_stack_t *ipst; 8183 ill_t *ill = ipif->ipif_ill; 8184 ill_t *proxy_ill = NULL; 8185 ipmp_arpent_t *entp = NULL; 8186 boolean_t proxyarp = B_FALSE; 8187 boolean_t if_arp_ioctl = B_FALSE; 8188 ncec_t *ncec = NULL; 8189 nce_t *nce; 8190 8191 ASSERT(!(q->q_flag & QREADR) && q->q_next == NULL); 8192 connp = Q_TO_CONN(q); 8193 ipst = connp->conn_netstack->netstack_ip; 8194 iocp = (struct iocblk *)mp->b_rptr; 8195 8196 if (ipip->ipi_cmd_type == XARP_CMD) { 8197 /* We have a chain - M_IOCTL-->MI_COPY_MBLK-->XARPREQ_MBLK */ 8198 xar = (struct xarpreq *)mp->b_cont->b_cont->b_rptr; 8199 ar = NULL; 8200 8201 arp_flags = xar->xarp_flags; 8202 lladdr = (uchar_t *)LLADDR(&xar->xarp_ha); 8203 if_arp_ioctl = (xar->xarp_ha.sdl_nlen != 0); 8204 /* 8205 * Validate against user's link layer address length 8206 * input and name and addr length limits. 8207 */ 8208 alength = ill->ill_phys_addr_length; 8209 if (ipip->ipi_cmd == SIOCSXARP) { 8210 if (alength != xar->xarp_ha.sdl_alen || 8211 (alength + xar->xarp_ha.sdl_nlen > 8212 sizeof (xar->xarp_ha.sdl_data))) 8213 return (EINVAL); 8214 } 8215 } else { 8216 /* We have a chain - M_IOCTL-->MI_COPY_MBLK-->ARPREQ_MBLK */ 8217 ar = (struct arpreq *)mp->b_cont->b_cont->b_rptr; 8218 xar = NULL; 8219 8220 arp_flags = ar->arp_flags; 8221 lladdr = (uchar_t *)ar->arp_ha.sa_data; 8222 /* 8223 * Theoretically, the sa_family could tell us what link 8224 * layer type this operation is trying to deal with. By 8225 * common usage AF_UNSPEC means ethernet. We'll assume 8226 * any attempt to use the SIOC?ARP ioctls is for ethernet, 8227 * for now. Our new SIOC*XARP ioctls can be used more 8228 * generally. 8229 * 8230 * If the underlying media happens to have a non 6 byte 8231 * address, arp module will fail set/get, but the del 8232 * operation will succeed. 8233 */ 8234 alength = 6; 8235 if ((ipip->ipi_cmd != SIOCDARP) && 8236 (alength != ill->ill_phys_addr_length)) { 8237 return (EINVAL); 8238 } 8239 } 8240 8241 /* Translate ATF* flags to NCE* flags */ 8242 flags = 0; 8243 if (arp_flags & ATF_AUTHORITY) 8244 flags |= NCE_F_AUTHORITY; 8245 if (arp_flags & ATF_PERM) 8246 flags |= NCE_F_NONUD; /* not subject to aging */ 8247 if (arp_flags & ATF_PUBL) 8248 flags |= NCE_F_PUBLISH; 8249 8250 /* 8251 * IPMP ARP special handling: 8252 * 8253 * 1. Since ARP mappings must appear consistent across the group, 8254 * prohibit changing ARP mappings on the underlying interfaces. 8255 * 8256 * 2. Since ARP mappings for IPMP data addresses are maintained by 8257 * IP itself, prohibit changing them. 8258 * 8259 * 3. For proxy ARP, use a functioning hardware address in the group, 8260 * provided one exists. If one doesn't, just add the entry as-is; 8261 * ipmp_illgrp_refresh_arpent() will refresh it if things change. 8262 */ 8263 if (IS_UNDER_IPMP(ill)) { 8264 if (ipip->ipi_cmd != SIOCGARP && ipip->ipi_cmd != SIOCGXARP) 8265 return (EPERM); 8266 } 8267 if (IS_IPMP(ill)) { 8268 ipmp_illgrp_t *illg = ill->ill_grp; 8269 8270 switch (ipip->ipi_cmd) { 8271 case SIOCSARP: 8272 case SIOCSXARP: 8273 proxy_ill = ipmp_illgrp_find_ill(illg, lladdr, alength); 8274 if (proxy_ill != NULL) { 8275 proxyarp = B_TRUE; 8276 if (!ipmp_ill_is_active(proxy_ill)) 8277 proxy_ill = ipmp_illgrp_next_ill(illg); 8278 if (proxy_ill != NULL) 8279 lladdr = proxy_ill->ill_phys_addr; 8280 } 8281 /* FALLTHRU */ 8282 } 8283 } 8284 8285 ipaddr = sin->sin_addr.s_addr; 8286 /* 8287 * don't match across illgrp per case (1) and (2). 8288 * XXX use IS_IPMP(ill) like ndp_sioc_update? 8289 */ 8290 nce = nce_lookup_v4(ill, &ipaddr); 8291 if (nce != NULL) 8292 ncec = nce->nce_common; 8293 8294 switch (iocp->ioc_cmd) { 8295 case SIOCDARP: 8296 case SIOCDXARP: { 8297 /* 8298 * Delete the NCE if any. 8299 */ 8300 if (ncec == NULL) { 8301 iocp->ioc_error = ENXIO; 8302 break; 8303 } 8304 /* Don't allow changes to arp mappings of local addresses. */ 8305 if (NCE_MYADDR(ncec)) { 8306 nce_refrele(nce); 8307 return (ENOTSUP); 8308 } 8309 iocp->ioc_error = 0; 8310 8311 /* 8312 * Delete the nce_common which has ncec_ill set to ipmp_ill. 8313 * This will delete all the nce entries on the under_ills. 8314 */ 8315 ncec_delete(ncec); 8316 /* 8317 * Once the NCE has been deleted, then the ire_dep* consistency 8318 * mechanism will find any IRE which depended on the now 8319 * condemned NCE (as part of sending packets). 8320 * That mechanism handles redirects by deleting redirects 8321 * that refer to UNREACHABLE nces. 8322 */ 8323 break; 8324 } 8325 case SIOCGARP: 8326 case SIOCGXARP: 8327 if (ncec != NULL) { 8328 lladdr = ncec->ncec_lladdr; 8329 flags = ncec->ncec_flags; 8330 iocp->ioc_error = 0; 8331 ip_sioctl_garp_reply(mp, ncec->ncec_ill, lladdr, flags); 8332 } else { 8333 iocp->ioc_error = ENXIO; 8334 } 8335 break; 8336 case SIOCSARP: 8337 case SIOCSXARP: 8338 /* Don't allow changes to arp mappings of local addresses. */ 8339 if (ncec != NULL && NCE_MYADDR(ncec)) { 8340 nce_refrele(nce); 8341 return (ENOTSUP); 8342 } 8343 8344 /* static arp entries will undergo NUD if ATF_PERM is not set */ 8345 flags |= NCE_F_STATIC; 8346 if (!if_arp_ioctl) { 8347 ip_nce_lookup_and_update(&ipaddr, NULL, ipst, 8348 lladdr, alength, flags); 8349 } else { 8350 ipif_t *ipif = ipif_get_next_ipif(NULL, ill); 8351 if (ipif != NULL) { 8352 ip_nce_lookup_and_update(&ipaddr, ipif, ipst, 8353 lladdr, alength, flags); 8354 ipif_refrele(ipif); 8355 } 8356 } 8357 if (nce != NULL) { 8358 nce_refrele(nce); 8359 nce = NULL; 8360 } 8361 /* 8362 * NCE_F_STATIC entries will be added in state ND_REACHABLE 8363 * by nce_add_common() 8364 */ 8365 err = nce_lookup_then_add_v4(ill, lladdr, 8366 ill->ill_phys_addr_length, &ipaddr, flags, ND_UNCHANGED, 8367 &nce); 8368 if (err == EEXIST) { 8369 ncec = nce->nce_common; 8370 mutex_enter(&ncec->ncec_lock); 8371 ncec->ncec_state = ND_REACHABLE; 8372 ncec->ncec_flags = flags; 8373 nce_update(ncec, ND_UNCHANGED, lladdr); 8374 mutex_exit(&ncec->ncec_lock); 8375 err = 0; 8376 } 8377 if (nce != NULL) { 8378 nce_refrele(nce); 8379 nce = NULL; 8380 } 8381 if (IS_IPMP(ill) && err == 0) { 8382 entp = ipmp_illgrp_create_arpent(ill->ill_grp, 8383 proxyarp, ipaddr, lladdr, ill->ill_phys_addr_length, 8384 flags); 8385 if (entp == NULL || (proxyarp && proxy_ill == NULL)) { 8386 iocp->ioc_error = (entp == NULL ? ENOMEM : 0); 8387 break; 8388 } 8389 } 8390 iocp->ioc_error = err; 8391 } 8392 8393 if (nce != NULL) { 8394 nce_refrele(nce); 8395 } 8396 8397 /* 8398 * If we created an IPMP ARP entry, mark that we've notified ARP. 8399 */ 8400 if (entp != NULL) 8401 ipmp_illgrp_mark_arpent(ill->ill_grp, entp); 8402 8403 return (iocp->ioc_error); 8404 } 8405 8406 /* 8407 * Parse an [x]arpreq structure coming down SIOC[GSD][X]ARP ioctls, identify 8408 * the associated sin and refhold and return the associated ipif via `ci'. 8409 */ 8410 int 8411 ip_extract_arpreq(queue_t *q, mblk_t *mp, const ip_ioctl_cmd_t *ipip, 8412 cmd_info_t *ci) 8413 { 8414 mblk_t *mp1; 8415 sin_t *sin; 8416 conn_t *connp; 8417 ipif_t *ipif; 8418 ire_t *ire = NULL; 8419 ill_t *ill = NULL; 8420 boolean_t exists; 8421 ip_stack_t *ipst; 8422 struct arpreq *ar; 8423 struct xarpreq *xar; 8424 struct sockaddr_dl *sdl; 8425 8426 /* ioctl comes down on a conn */ 8427 ASSERT(!(q->q_flag & QREADR) && q->q_next == NULL); 8428 connp = Q_TO_CONN(q); 8429 if (connp->conn_family == AF_INET6) 8430 return (ENXIO); 8431 8432 ipst = connp->conn_netstack->netstack_ip; 8433 8434 /* Verified in ip_wput_nondata */ 8435 mp1 = mp->b_cont->b_cont; 8436 8437 if (ipip->ipi_cmd_type == XARP_CMD) { 8438 ASSERT(MBLKL(mp1) >= sizeof (struct xarpreq)); 8439 xar = (struct xarpreq *)mp1->b_rptr; 8440 sin = (sin_t *)&xar->xarp_pa; 8441 sdl = &xar->xarp_ha; 8442 8443 if (sdl->sdl_family != AF_LINK || sin->sin_family != AF_INET) 8444 return (ENXIO); 8445 if (sdl->sdl_nlen >= LIFNAMSIZ) 8446 return (EINVAL); 8447 } else { 8448 ASSERT(ipip->ipi_cmd_type == ARP_CMD); 8449 ASSERT(MBLKL(mp1) >= sizeof (struct arpreq)); 8450 ar = (struct arpreq *)mp1->b_rptr; 8451 sin = (sin_t *)&ar->arp_pa; 8452 } 8453 8454 if (ipip->ipi_cmd_type == XARP_CMD && sdl->sdl_nlen != 0) { 8455 ipif = ipif_lookup_on_name(sdl->sdl_data, sdl->sdl_nlen, 8456 B_FALSE, &exists, B_FALSE, ALL_ZONES, ipst); 8457 if (ipif == NULL) 8458 return (ENXIO); 8459 if (ipif->ipif_id != 0) { 8460 ipif_refrele(ipif); 8461 return (ENXIO); 8462 } 8463 } else { 8464 /* 8465 * Either an SIOC[DGS]ARP or an SIOC[DGS]XARP with an sdl_nlen 8466 * of 0: use the IP address to find the ipif. If the IP 8467 * address is an IPMP test address, ire_ftable_lookup() will 8468 * find the wrong ill, so we first do an ipif_lookup_addr(). 8469 */ 8470 ipif = ipif_lookup_addr(sin->sin_addr.s_addr, NULL, ALL_ZONES, 8471 ipst); 8472 if (ipif == NULL) { 8473 ire = ire_ftable_lookup_v4(sin->sin_addr.s_addr, 8474 0, 0, IRE_IF_RESOLVER, NULL, ALL_ZONES, 8475 NULL, MATCH_IRE_TYPE, 0, ipst, NULL); 8476 if (ire == NULL || ((ill = ire->ire_ill) == NULL)) { 8477 if (ire != NULL) 8478 ire_refrele(ire); 8479 return (ENXIO); 8480 } 8481 ASSERT(ire != NULL && ill != NULL); 8482 ipif = ill->ill_ipif; 8483 ipif_refhold(ipif); 8484 ire_refrele(ire); 8485 } 8486 } 8487 8488 if (ipif->ipif_ill->ill_net_type != IRE_IF_RESOLVER) { 8489 ipif_refrele(ipif); 8490 return (ENXIO); 8491 } 8492 8493 ci->ci_sin = sin; 8494 ci->ci_ipif = ipif; 8495 return (0); 8496 } 8497 8498 /* 8499 * Link or unlink the illgrp on IPMP meta-interface `ill' depending on the 8500 * value of `ioccmd'. While an illgrp is linked to an ipmp_grp_t, it is 8501 * accessible from that ipmp_grp_t, which means SIOCSLIFGROUPNAME can look it 8502 * up and thus an ill can join that illgrp. 8503 * 8504 * We use I_PLINK/I_PUNLINK to do the link/unlink operations rather than 8505 * open()/close() primarily because close() is not allowed to fail or block 8506 * forever. On the other hand, I_PUNLINK *can* fail, and there's no reason 8507 * why anyone should ever need to I_PUNLINK an in-use IPMP stream. To ensure 8508 * symmetric behavior (e.g., doing an I_PLINK after and I_PUNLINK undoes the 8509 * I_PUNLINK) we defer linking to I_PLINK. Separately, we also fail attempts 8510 * to I_LINK since I_UNLINK is optional and we'd end up in an inconsistent 8511 * state if I_UNLINK didn't occur. 8512 * 8513 * Note that for each plumb/unplumb operation, we may end up here more than 8514 * once because of the way ifconfig works. However, it's OK to link the same 8515 * illgrp more than once, or unlink an illgrp that's already unlinked. 8516 */ 8517 static int 8518 ip_sioctl_plink_ipmp(ill_t *ill, int ioccmd) 8519 { 8520 int err; 8521 ip_stack_t *ipst = ill->ill_ipst; 8522 8523 ASSERT(IS_IPMP(ill)); 8524 ASSERT(IAM_WRITER_ILL(ill)); 8525 8526 switch (ioccmd) { 8527 case I_LINK: 8528 return (ENOTSUP); 8529 8530 case I_PLINK: 8531 rw_enter(&ipst->ips_ipmp_lock, RW_WRITER); 8532 ipmp_illgrp_link_grp(ill->ill_grp, ill->ill_phyint->phyint_grp); 8533 rw_exit(&ipst->ips_ipmp_lock); 8534 break; 8535 8536 case I_PUNLINK: 8537 /* 8538 * Require all UP ipifs be brought down prior to unlinking the 8539 * illgrp so any associated IREs (and other state) is torched. 8540 */ 8541 if (ill->ill_ipif_up_count + ill->ill_ipif_dup_count > 0) 8542 return (EBUSY); 8543 8544 /* 8545 * NOTE: We hold ipmp_lock across the unlink to prevent a race 8546 * with an SIOCSLIFGROUPNAME request from an ill trying to 8547 * join this group. Specifically: ills trying to join grab 8548 * ipmp_lock and bump a "pending join" counter checked by 8549 * ipmp_illgrp_unlink_grp(). During the unlink no new pending 8550 * joins can occur (since we have ipmp_lock). Once we drop 8551 * ipmp_lock, subsequent SIOCSLIFGROUPNAME requests will not 8552 * find the illgrp (since we unlinked it) and will return 8553 * EAFNOSUPPORT. This will then take them back through the 8554 * IPMP meta-interface plumbing logic in ifconfig, and thus 8555 * back through I_PLINK above. 8556 */ 8557 rw_enter(&ipst->ips_ipmp_lock, RW_WRITER); 8558 err = ipmp_illgrp_unlink_grp(ill->ill_grp); 8559 rw_exit(&ipst->ips_ipmp_lock); 8560 return (err); 8561 default: 8562 break; 8563 } 8564 return (0); 8565 } 8566 8567 /* 8568 * Do I_PLINK/I_LINK or I_PUNLINK/I_UNLINK with consistency checks and also 8569 * atomically set/clear the muxids. Also complete the ioctl by acking or 8570 * naking it. Note that the code is structured such that the link type, 8571 * whether it's persistent or not, is treated equally. ifconfig(1M) and 8572 * its clones use the persistent link, while pppd(1M) and perhaps many 8573 * other daemons may use non-persistent link. When combined with some 8574 * ill_t states, linking and unlinking lower streams may be used as 8575 * indicators of dynamic re-plumbing events [see PSARC/1999/348]. 8576 */ 8577 /* ARGSUSED */ 8578 void 8579 ip_sioctl_plink(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy_arg) 8580 { 8581 mblk_t *mp1; 8582 struct linkblk *li; 8583 int ioccmd = ((struct iocblk *)mp->b_rptr)->ioc_cmd; 8584 int err = 0; 8585 8586 ASSERT(ioccmd == I_PLINK || ioccmd == I_PUNLINK || 8587 ioccmd == I_LINK || ioccmd == I_UNLINK); 8588 8589 mp1 = mp->b_cont; /* This is the linkblk info */ 8590 li = (struct linkblk *)mp1->b_rptr; 8591 8592 err = ip_sioctl_plink_ipmod(ipsq, q, mp, ioccmd, li); 8593 if (err == EINPROGRESS) 8594 return; 8595 if (err == 0) 8596 miocack(q, mp, 0, 0); 8597 else 8598 miocnak(q, mp, 0, err); 8599 8600 /* Conn was refheld in ip_sioctl_copyin_setup */ 8601 if (CONN_Q(q)) { 8602 CONN_DEC_IOCTLREF(Q_TO_CONN(q)); 8603 CONN_OPER_PENDING_DONE(Q_TO_CONN(q)); 8604 } 8605 } 8606 8607 /* 8608 * Process I_{P}LINK and I_{P}UNLINK requests named by `ioccmd' and pointed to 8609 * by `mp' and `li' for the IP module stream (if li->q_bot is in fact an IP 8610 * module stream). 8611 * Returns zero on success, EINPROGRESS if the operation is still pending, or 8612 * an error code on failure. 8613 */ 8614 static int 8615 ip_sioctl_plink_ipmod(ipsq_t *ipsq, queue_t *q, mblk_t *mp, int ioccmd, 8616 struct linkblk *li) 8617 { 8618 int err = 0; 8619 ill_t *ill; 8620 queue_t *ipwq, *dwq; 8621 const char *name; 8622 struct qinit *qinfo; 8623 boolean_t islink = (ioccmd == I_PLINK || ioccmd == I_LINK); 8624 boolean_t entered_ipsq = B_FALSE; 8625 boolean_t is_ip = B_FALSE; 8626 arl_t *arl; 8627 8628 /* 8629 * Walk the lower stream to verify it's the IP module stream. 8630 * The IP module is identified by its name, wput function, 8631 * and non-NULL q_next. STREAMS ensures that the lower stream 8632 * (li->l_qbot) will not vanish until this ioctl completes. 8633 */ 8634 for (ipwq = li->l_qbot; ipwq != NULL; ipwq = ipwq->q_next) { 8635 qinfo = ipwq->q_qinfo; 8636 name = qinfo->qi_minfo->mi_idname; 8637 if (name != NULL && strcmp(name, ip_mod_info.mi_idname) == 0 && 8638 qinfo->qi_putp != (pfi_t)ip_lwput && ipwq->q_next != NULL) { 8639 is_ip = B_TRUE; 8640 break; 8641 } 8642 if (name != NULL && strcmp(name, arp_mod_info.mi_idname) == 0 && 8643 qinfo->qi_putp != (pfi_t)ip_lwput && ipwq->q_next != NULL) { 8644 break; 8645 } 8646 } 8647 8648 /* 8649 * If this isn't an IP module stream, bail. 8650 */ 8651 if (ipwq == NULL) 8652 return (0); 8653 8654 if (!is_ip) { 8655 arl = (arl_t *)ipwq->q_ptr; 8656 ill = arl_to_ill(arl); 8657 if (ill == NULL) 8658 return (0); 8659 } else { 8660 ill = ipwq->q_ptr; 8661 } 8662 ASSERT(ill != NULL); 8663 8664 if (ipsq == NULL) { 8665 ipsq = ipsq_try_enter(NULL, ill, q, mp, ip_sioctl_plink, 8666 NEW_OP, B_FALSE); 8667 if (ipsq == NULL) { 8668 if (!is_ip) 8669 ill_refrele(ill); 8670 return (EINPROGRESS); 8671 } 8672 entered_ipsq = B_TRUE; 8673 } 8674 ASSERT(IAM_WRITER_ILL(ill)); 8675 mutex_enter(&ill->ill_lock); 8676 if (!is_ip) { 8677 if (islink && ill->ill_muxid == 0) { 8678 /* 8679 * Plumbing has to be done with IP plumbed first, arp 8680 * second, but here we have arp being plumbed first. 8681 */ 8682 mutex_exit(&ill->ill_lock); 8683 if (entered_ipsq) 8684 ipsq_exit(ipsq); 8685 ill_refrele(ill); 8686 return (EINVAL); 8687 } 8688 } 8689 mutex_exit(&ill->ill_lock); 8690 if (!is_ip) { 8691 arl->arl_muxid = islink ? li->l_index : 0; 8692 ill_refrele(ill); 8693 goto done; 8694 } 8695 8696 if (IS_IPMP(ill) && (err = ip_sioctl_plink_ipmp(ill, ioccmd)) != 0) 8697 goto done; 8698 8699 /* 8700 * As part of I_{P}LINKing, stash the number of downstream modules and 8701 * the read queue of the module immediately below IP in the ill. 8702 * These are used during the capability negotiation below. 8703 */ 8704 ill->ill_lmod_rq = NULL; 8705 ill->ill_lmod_cnt = 0; 8706 if (islink && ((dwq = ipwq->q_next) != NULL)) { 8707 ill->ill_lmod_rq = RD(dwq); 8708 for (; dwq != NULL; dwq = dwq->q_next) 8709 ill->ill_lmod_cnt++; 8710 } 8711 8712 ill->ill_muxid = islink ? li->l_index : 0; 8713 8714 /* 8715 * Mark the ipsq busy until the capability operations initiated below 8716 * complete. The PLINK/UNLINK ioctl itself completes when our caller 8717 * returns, but the capability operation may complete asynchronously 8718 * much later. 8719 */ 8720 ipsq_current_start(ipsq, ill->ill_ipif, ioccmd); 8721 /* 8722 * If there's at least one up ipif on this ill, then we're bound to 8723 * the underlying driver via DLPI. In that case, renegotiate 8724 * capabilities to account for any possible change in modules 8725 * interposed between IP and the driver. 8726 */ 8727 if (ill->ill_ipif_up_count > 0) { 8728 if (islink) 8729 ill_capability_probe(ill); 8730 else 8731 ill_capability_reset(ill, B_FALSE); 8732 } 8733 ipsq_current_finish(ipsq); 8734 done: 8735 if (entered_ipsq) 8736 ipsq_exit(ipsq); 8737 8738 return (err); 8739 } 8740 8741 /* 8742 * Search the ioctl command in the ioctl tables and return a pointer 8743 * to the ioctl command information. The ioctl command tables are 8744 * static and fully populated at compile time. 8745 */ 8746 ip_ioctl_cmd_t * 8747 ip_sioctl_lookup(int ioc_cmd) 8748 { 8749 int index; 8750 ip_ioctl_cmd_t *ipip; 8751 ip_ioctl_cmd_t *ipip_end; 8752 8753 if (ioc_cmd == IPI_DONTCARE) 8754 return (NULL); 8755 8756 /* 8757 * Do a 2 step search. First search the indexed table 8758 * based on the least significant byte of the ioctl cmd. 8759 * If we don't find a match, then search the misc table 8760 * serially. 8761 */ 8762 index = ioc_cmd & 0xFF; 8763 if (index < ip_ndx_ioctl_count) { 8764 ipip = &ip_ndx_ioctl_table[index]; 8765 if (ipip->ipi_cmd == ioc_cmd) { 8766 /* Found a match in the ndx table */ 8767 return (ipip); 8768 } 8769 } 8770 8771 /* Search the misc table */ 8772 ipip_end = &ip_misc_ioctl_table[ip_misc_ioctl_count]; 8773 for (ipip = ip_misc_ioctl_table; ipip < ipip_end; ipip++) { 8774 if (ipip->ipi_cmd == ioc_cmd) 8775 /* Found a match in the misc table */ 8776 return (ipip); 8777 } 8778 8779 return (NULL); 8780 } 8781 8782 /* 8783 * helper function for ip_sioctl_getsetprop(), which does some sanity checks 8784 */ 8785 static boolean_t 8786 getset_ioctl_checks(mblk_t *mp) 8787 { 8788 struct iocblk *iocp = (struct iocblk *)mp->b_rptr; 8789 mblk_t *mp1 = mp->b_cont; 8790 mod_ioc_prop_t *pioc; 8791 uint_t flags; 8792 uint_t pioc_size; 8793 8794 /* do sanity checks on various arguments */ 8795 if (mp1 == NULL || iocp->ioc_count == 0 || 8796 iocp->ioc_count == TRANSPARENT) { 8797 return (B_FALSE); 8798 } 8799 if (msgdsize(mp1) < iocp->ioc_count) { 8800 if (!pullupmsg(mp1, iocp->ioc_count)) 8801 return (B_FALSE); 8802 } 8803 8804 pioc = (mod_ioc_prop_t *)mp1->b_rptr; 8805 8806 /* sanity checks on mpr_valsize */ 8807 pioc_size = sizeof (mod_ioc_prop_t); 8808 if (pioc->mpr_valsize != 0) 8809 pioc_size += pioc->mpr_valsize - 1; 8810 8811 if (iocp->ioc_count != pioc_size) 8812 return (B_FALSE); 8813 8814 flags = pioc->mpr_flags; 8815 if (iocp->ioc_cmd == SIOCSETPROP) { 8816 /* 8817 * One can either reset the value to it's default value or 8818 * change the current value or append/remove the value from 8819 * a multi-valued properties. 8820 */ 8821 if ((flags & MOD_PROP_DEFAULT) != MOD_PROP_DEFAULT && 8822 flags != MOD_PROP_ACTIVE && 8823 flags != (MOD_PROP_ACTIVE|MOD_PROP_APPEND) && 8824 flags != (MOD_PROP_ACTIVE|MOD_PROP_REMOVE)) 8825 return (B_FALSE); 8826 } else { 8827 ASSERT(iocp->ioc_cmd == SIOCGETPROP); 8828 8829 /* 8830 * One can retrieve only one kind of property information 8831 * at a time. 8832 */ 8833 if ((flags & MOD_PROP_ACTIVE) != MOD_PROP_ACTIVE && 8834 (flags & MOD_PROP_DEFAULT) != MOD_PROP_DEFAULT && 8835 (flags & MOD_PROP_POSSIBLE) != MOD_PROP_POSSIBLE && 8836 (flags & MOD_PROP_PERM) != MOD_PROP_PERM) 8837 return (B_FALSE); 8838 } 8839 8840 return (B_TRUE); 8841 } 8842 8843 /* 8844 * process the SIOC{SET|GET}PROP ioctl's 8845 */ 8846 /* ARGSUSED */ 8847 static void 8848 ip_sioctl_getsetprop(queue_t *q, mblk_t *mp) 8849 { 8850 struct iocblk *iocp = (struct iocblk *)mp->b_rptr; 8851 mblk_t *mp1 = mp->b_cont; 8852 mod_ioc_prop_t *pioc; 8853 mod_prop_info_t *ptbl = NULL, *pinfo = NULL; 8854 ip_stack_t *ipst; 8855 icmp_stack_t *is; 8856 tcp_stack_t *tcps; 8857 sctp_stack_t *sctps; 8858 udp_stack_t *us; 8859 netstack_t *stack; 8860 void *cbarg; 8861 cred_t *cr; 8862 boolean_t set; 8863 int err; 8864 8865 ASSERT(q->q_next == NULL); 8866 ASSERT(CONN_Q(q)); 8867 8868 if (!getset_ioctl_checks(mp)) { 8869 miocnak(q, mp, 0, EINVAL); 8870 return; 8871 } 8872 ipst = CONNQ_TO_IPST(q); 8873 stack = ipst->ips_netstack; 8874 pioc = (mod_ioc_prop_t *)mp1->b_rptr; 8875 8876 switch (pioc->mpr_proto) { 8877 case MOD_PROTO_IP: 8878 case MOD_PROTO_IPV4: 8879 case MOD_PROTO_IPV6: 8880 ptbl = ipst->ips_propinfo_tbl; 8881 cbarg = ipst; 8882 break; 8883 case MOD_PROTO_RAWIP: 8884 is = stack->netstack_icmp; 8885 ptbl = is->is_propinfo_tbl; 8886 cbarg = is; 8887 break; 8888 case MOD_PROTO_TCP: 8889 tcps = stack->netstack_tcp; 8890 ptbl = tcps->tcps_propinfo_tbl; 8891 cbarg = tcps; 8892 break; 8893 case MOD_PROTO_UDP: 8894 us = stack->netstack_udp; 8895 ptbl = us->us_propinfo_tbl; 8896 cbarg = us; 8897 break; 8898 case MOD_PROTO_SCTP: 8899 sctps = stack->netstack_sctp; 8900 ptbl = sctps->sctps_propinfo_tbl; 8901 cbarg = sctps; 8902 break; 8903 default: 8904 miocnak(q, mp, 0, EINVAL); 8905 return; 8906 } 8907 8908 /* search for given property in respective protocol propinfo table */ 8909 for (pinfo = ptbl; pinfo->mpi_name != NULL; pinfo++) { 8910 if (strcmp(pinfo->mpi_name, pioc->mpr_name) == 0 && 8911 pinfo->mpi_proto == pioc->mpr_proto) 8912 break; 8913 } 8914 if (pinfo->mpi_name == NULL) { 8915 miocnak(q, mp, 0, ENOENT); 8916 return; 8917 } 8918 8919 set = (iocp->ioc_cmd == SIOCSETPROP) ? B_TRUE : B_FALSE; 8920 if (set && pinfo->mpi_setf != NULL) { 8921 cr = msg_getcred(mp, NULL); 8922 if (cr == NULL) 8923 cr = iocp->ioc_cr; 8924 err = pinfo->mpi_setf(cbarg, cr, pinfo, pioc->mpr_ifname, 8925 pioc->mpr_val, pioc->mpr_flags); 8926 } else if (!set && pinfo->mpi_getf != NULL) { 8927 err = pinfo->mpi_getf(cbarg, pinfo, pioc->mpr_ifname, 8928 pioc->mpr_val, pioc->mpr_valsize, pioc->mpr_flags); 8929 } else { 8930 err = EPERM; 8931 } 8932 8933 if (err != 0) { 8934 miocnak(q, mp, 0, err); 8935 } else { 8936 if (set) 8937 miocack(q, mp, 0, 0); 8938 else /* For get, we need to return back the data */ 8939 miocack(q, mp, iocp->ioc_count, 0); 8940 } 8941 } 8942 8943 /* 8944 * process the legacy ND_GET, ND_SET ioctl just for {ip|ip6}_forwarding 8945 * as several routing daemons have unfortunately used this 'unpublished' 8946 * but well-known ioctls. 8947 */ 8948 /* ARGSUSED */ 8949 static void 8950 ip_process_legacy_nddprop(queue_t *q, mblk_t *mp) 8951 { 8952 struct iocblk *iocp = (struct iocblk *)mp->b_rptr; 8953 mblk_t *mp1 = mp->b_cont; 8954 char *pname, *pval, *buf; 8955 uint_t bufsize, proto; 8956 mod_prop_info_t *ptbl = NULL, *pinfo = NULL; 8957 ip_stack_t *ipst; 8958 int err = 0; 8959 8960 ASSERT(CONN_Q(q)); 8961 ipst = CONNQ_TO_IPST(q); 8962 8963 if (iocp->ioc_count == 0 || mp1 == NULL) { 8964 miocnak(q, mp, 0, EINVAL); 8965 return; 8966 } 8967 8968 mp1->b_datap->db_lim[-1] = '\0'; /* Force null termination */ 8969 pval = buf = pname = (char *)mp1->b_rptr; 8970 bufsize = MBLKL(mp1); 8971 8972 if (strcmp(pname, "ip_forwarding") == 0) { 8973 pname = "forwarding"; 8974 proto = MOD_PROTO_IPV4; 8975 } else if (strcmp(pname, "ip6_forwarding") == 0) { 8976 pname = "forwarding"; 8977 proto = MOD_PROTO_IPV6; 8978 } else { 8979 miocnak(q, mp, 0, EINVAL); 8980 return; 8981 } 8982 8983 ptbl = ipst->ips_propinfo_tbl; 8984 for (pinfo = ptbl; pinfo->mpi_name != NULL; pinfo++) { 8985 if (strcmp(pinfo->mpi_name, pname) == 0 && 8986 pinfo->mpi_proto == proto) 8987 break; 8988 } 8989 8990 ASSERT(pinfo->mpi_name != NULL); 8991 8992 switch (iocp->ioc_cmd) { 8993 case ND_GET: 8994 if ((err = pinfo->mpi_getf(ipst, pinfo, NULL, buf, bufsize, 8995 0)) == 0) { 8996 miocack(q, mp, iocp->ioc_count, 0); 8997 return; 8998 } 8999 break; 9000 case ND_SET: 9001 /* 9002 * buffer will have property name and value in the following 9003 * format, 9004 * <property name>'\0'<property value>'\0', extract them; 9005 */ 9006 while (*pval++) 9007 noop; 9008 9009 if (!*pval || pval >= (char *)mp1->b_wptr) { 9010 err = EINVAL; 9011 } else if ((err = pinfo->mpi_setf(ipst, NULL, pinfo, NULL, 9012 pval, 0)) == 0) { 9013 miocack(q, mp, 0, 0); 9014 return; 9015 } 9016 break; 9017 default: 9018 err = EINVAL; 9019 break; 9020 } 9021 miocnak(q, mp, 0, err); 9022 } 9023 9024 /* 9025 * Wrapper function for resuming deferred ioctl processing 9026 * Used for SIOCGDSTINFO, SIOCGIP6ADDRPOLICY, SIOCGMSFILTER, 9027 * SIOCSMSFILTER, SIOCGIPMSFILTER, and SIOCSIPMSFILTER currently. 9028 */ 9029 /* ARGSUSED */ 9030 void 9031 ip_sioctl_copyin_resume(ipsq_t *dummy_ipsq, queue_t *q, mblk_t *mp, 9032 void *dummy_arg) 9033 { 9034 ip_sioctl_copyin_setup(q, mp); 9035 } 9036 9037 /* 9038 * ip_sioctl_copyin_setup is called by ip_wput_nondata with any M_IOCTL message 9039 * that arrives. Most of the IOCTLs are "socket" IOCTLs which we handle 9040 * in either I_STR or TRANSPARENT form, using the mi_copy facility. 9041 * We establish here the size of the block to be copied in. mi_copyin 9042 * arranges for this to happen, an processing continues in ip_wput_nondata with 9043 * an M_IOCDATA message. 9044 */ 9045 void 9046 ip_sioctl_copyin_setup(queue_t *q, mblk_t *mp) 9047 { 9048 int copyin_size; 9049 struct iocblk *iocp = (struct iocblk *)mp->b_rptr; 9050 ip_ioctl_cmd_t *ipip; 9051 cred_t *cr; 9052 ip_stack_t *ipst; 9053 9054 if (CONN_Q(q)) 9055 ipst = CONNQ_TO_IPST(q); 9056 else 9057 ipst = ILLQ_TO_IPST(q); 9058 9059 ipip = ip_sioctl_lookup(iocp->ioc_cmd); 9060 if (ipip == NULL) { 9061 /* 9062 * The ioctl is not one we understand or own. 9063 * Pass it along to be processed down stream, 9064 * if this is a module instance of IP, else nak 9065 * the ioctl. 9066 */ 9067 if (q->q_next == NULL) { 9068 goto nak; 9069 } else { 9070 putnext(q, mp); 9071 return; 9072 } 9073 } 9074 9075 /* 9076 * If this is deferred, then we will do all the checks when we 9077 * come back. 9078 */ 9079 if ((iocp->ioc_cmd == SIOCGDSTINFO || 9080 iocp->ioc_cmd == SIOCGIP6ADDRPOLICY) && !ip6_asp_can_lookup(ipst)) { 9081 ip6_asp_pending_op(q, mp, ip_sioctl_copyin_resume); 9082 return; 9083 } 9084 9085 /* 9086 * Only allow a very small subset of IP ioctls on this stream if 9087 * IP is a module and not a driver. Allowing ioctls to be processed 9088 * in this case may cause assert failures or data corruption. 9089 * Typically G[L]IFFLAGS, SLIFNAME/IF_UNITSEL are the only few 9090 * ioctls allowed on an IP module stream, after which this stream 9091 * normally becomes a multiplexor (at which time the stream head 9092 * will fail all ioctls). 9093 */ 9094 if ((q->q_next != NULL) && !(ipip->ipi_flags & IPI_MODOK)) { 9095 goto nak; 9096 } 9097 9098 /* Make sure we have ioctl data to process. */ 9099 if (mp->b_cont == NULL && !(ipip->ipi_flags & IPI_NULL_BCONT)) 9100 goto nak; 9101 9102 /* 9103 * Prefer dblk credential over ioctl credential; some synthesized 9104 * ioctls have kcred set because there's no way to crhold() 9105 * a credential in some contexts. (ioc_cr is not crfree() by 9106 * the framework; the caller of ioctl needs to hold the reference 9107 * for the duration of the call). 9108 */ 9109 cr = msg_getcred(mp, NULL); 9110 if (cr == NULL) 9111 cr = iocp->ioc_cr; 9112 9113 /* Make sure normal users don't send down privileged ioctls */ 9114 if ((ipip->ipi_flags & IPI_PRIV) && 9115 (cr != NULL) && secpolicy_ip_config(cr, B_TRUE) != 0) { 9116 /* We checked the privilege earlier but log it here */ 9117 miocnak(q, mp, 0, secpolicy_ip_config(cr, B_FALSE)); 9118 return; 9119 } 9120 9121 /* 9122 * The ioctl command tables can only encode fixed length 9123 * ioctl data. If the length is variable, the table will 9124 * encode the length as zero. Such special cases are handled 9125 * below in the switch. 9126 */ 9127 if (ipip->ipi_copyin_size != 0) { 9128 mi_copyin(q, mp, NULL, ipip->ipi_copyin_size); 9129 return; 9130 } 9131 9132 switch (iocp->ioc_cmd) { 9133 case O_SIOCGIFCONF: 9134 case SIOCGIFCONF: 9135 /* 9136 * This IOCTL is hilarious. See comments in 9137 * ip_sioctl_get_ifconf for the story. 9138 */ 9139 if (iocp->ioc_count == TRANSPARENT) 9140 copyin_size = SIZEOF_STRUCT(ifconf, 9141 iocp->ioc_flag); 9142 else 9143 copyin_size = iocp->ioc_count; 9144 mi_copyin(q, mp, NULL, copyin_size); 9145 return; 9146 9147 case O_SIOCGLIFCONF: 9148 case SIOCGLIFCONF: 9149 copyin_size = SIZEOF_STRUCT(lifconf, iocp->ioc_flag); 9150 mi_copyin(q, mp, NULL, copyin_size); 9151 return; 9152 9153 case SIOCGLIFSRCOF: 9154 copyin_size = SIZEOF_STRUCT(lifsrcof, iocp->ioc_flag); 9155 mi_copyin(q, mp, NULL, copyin_size); 9156 return; 9157 9158 case SIOCGIP6ADDRPOLICY: 9159 ip_sioctl_ip6addrpolicy(q, mp); 9160 ip6_asp_table_refrele(ipst); 9161 return; 9162 9163 case SIOCSIP6ADDRPOLICY: 9164 ip_sioctl_ip6addrpolicy(q, mp); 9165 return; 9166 9167 case SIOCGDSTINFO: 9168 ip_sioctl_dstinfo(q, mp); 9169 ip6_asp_table_refrele(ipst); 9170 return; 9171 9172 case ND_SET: 9173 case ND_GET: 9174 ip_process_legacy_nddprop(q, mp); 9175 return; 9176 9177 case SIOCSETPROP: 9178 case SIOCGETPROP: 9179 ip_sioctl_getsetprop(q, mp); 9180 return; 9181 9182 case I_PLINK: 9183 case I_PUNLINK: 9184 case I_LINK: 9185 case I_UNLINK: 9186 /* 9187 * We treat non-persistent link similarly as the persistent 9188 * link case, in terms of plumbing/unplumbing, as well as 9189 * dynamic re-plumbing events indicator. See comments 9190 * in ip_sioctl_plink() for more. 9191 * 9192 * Request can be enqueued in the 'ipsq' while waiting 9193 * to become exclusive. So bump up the conn ref. 9194 */ 9195 if (CONN_Q(q)) { 9196 CONN_INC_REF(Q_TO_CONN(q)); 9197 CONN_INC_IOCTLREF(Q_TO_CONN(q)) 9198 } 9199 ip_sioctl_plink(NULL, q, mp, NULL); 9200 return; 9201 9202 case IP_IOCTL: 9203 ip_wput_ioctl(q, mp); 9204 return; 9205 9206 case SIOCILB: 9207 /* The ioctl length varies depending on the ILB command. */ 9208 copyin_size = iocp->ioc_count; 9209 if (copyin_size < sizeof (ilb_cmd_t)) 9210 goto nak; 9211 mi_copyin(q, mp, NULL, copyin_size); 9212 return; 9213 9214 default: 9215 cmn_err(CE_PANIC, "should not happen "); 9216 } 9217 nak: 9218 if (mp->b_cont != NULL) { 9219 freemsg(mp->b_cont); 9220 mp->b_cont = NULL; 9221 } 9222 iocp->ioc_error = EINVAL; 9223 mp->b_datap->db_type = M_IOCNAK; 9224 iocp->ioc_count = 0; 9225 qreply(q, mp); 9226 } 9227 9228 static void 9229 ip_sioctl_garp_reply(mblk_t *mp, ill_t *ill, void *hwaddr, int flags) 9230 { 9231 struct arpreq *ar; 9232 struct xarpreq *xar; 9233 mblk_t *tmp; 9234 struct iocblk *iocp; 9235 int x_arp_ioctl = B_FALSE; 9236 int *flagsp; 9237 char *storage = NULL; 9238 9239 ASSERT(ill != NULL); 9240 9241 iocp = (struct iocblk *)mp->b_rptr; 9242 ASSERT(iocp->ioc_cmd == SIOCGXARP || iocp->ioc_cmd == SIOCGARP); 9243 9244 tmp = (mp->b_cont)->b_cont; /* xarpreq/arpreq */ 9245 if ((iocp->ioc_cmd == SIOCGXARP) || 9246 (iocp->ioc_cmd == SIOCSXARP)) { 9247 x_arp_ioctl = B_TRUE; 9248 xar = (struct xarpreq *)tmp->b_rptr; 9249 flagsp = &xar->xarp_flags; 9250 storage = xar->xarp_ha.sdl_data; 9251 } else { 9252 ar = (struct arpreq *)tmp->b_rptr; 9253 flagsp = &ar->arp_flags; 9254 storage = ar->arp_ha.sa_data; 9255 } 9256 9257 /* 9258 * We're done if this is not an SIOCG{X}ARP 9259 */ 9260 if (x_arp_ioctl) { 9261 storage += ill_xarp_info(&xar->xarp_ha, ill); 9262 if ((ill->ill_phys_addr_length + ill->ill_name_length) > 9263 sizeof (xar->xarp_ha.sdl_data)) { 9264 iocp->ioc_error = EINVAL; 9265 return; 9266 } 9267 } 9268 *flagsp = ATF_INUSE; 9269 /* 9270 * If /sbin/arp told us we are the authority using the "permanent" 9271 * flag, or if this is one of my addresses print "permanent" 9272 * in the /sbin/arp output. 9273 */ 9274 if ((flags & NCE_F_MYADDR) || (flags & NCE_F_AUTHORITY)) 9275 *flagsp |= ATF_AUTHORITY; 9276 if (flags & NCE_F_NONUD) 9277 *flagsp |= ATF_PERM; /* not subject to aging */ 9278 if (flags & NCE_F_PUBLISH) 9279 *flagsp |= ATF_PUBL; 9280 if (hwaddr != NULL) { 9281 *flagsp |= ATF_COM; 9282 bcopy((char *)hwaddr, storage, ill->ill_phys_addr_length); 9283 } 9284 } 9285 9286 /* 9287 * Create a new logical interface. If ipif_id is zero (i.e. not a logical 9288 * interface) create the next available logical interface for this 9289 * physical interface. 9290 * If ipif is NULL (i.e. the lookup didn't find one) attempt to create an 9291 * ipif with the specified name. 9292 * 9293 * If the address family is not AF_UNSPEC then set the address as well. 9294 * 9295 * If ip_sioctl_addr returns EINPROGRESS then the ioctl (the copyout) 9296 * is completed when the DL_BIND_ACK arrive in ip_rput_dlpi_writer. 9297 * 9298 * Executed as a writer on the ill. 9299 * So no lock is needed to traverse the ipif chain, or examine the 9300 * phyint flags. 9301 */ 9302 /* ARGSUSED */ 9303 int 9304 ip_sioctl_addif(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, 9305 ip_ioctl_cmd_t *dummy_ipip, void *dummy_ifreq) 9306 { 9307 mblk_t *mp1; 9308 struct lifreq *lifr; 9309 boolean_t isv6; 9310 boolean_t exists; 9311 char *name; 9312 char *endp; 9313 char *cp; 9314 int namelen; 9315 ipif_t *ipif; 9316 long id; 9317 ipsq_t *ipsq; 9318 ill_t *ill; 9319 sin_t *sin; 9320 int err = 0; 9321 boolean_t found_sep = B_FALSE; 9322 conn_t *connp; 9323 zoneid_t zoneid; 9324 ip_stack_t *ipst = CONNQ_TO_IPST(q); 9325 9326 ASSERT(q->q_next == NULL); 9327 ip1dbg(("ip_sioctl_addif\n")); 9328 /* Existence of mp1 has been checked in ip_wput_nondata */ 9329 mp1 = mp->b_cont->b_cont; 9330 /* 9331 * Null terminate the string to protect against buffer 9332 * overrun. String was generated by user code and may not 9333 * be trusted. 9334 */ 9335 lifr = (struct lifreq *)mp1->b_rptr; 9336 lifr->lifr_name[LIFNAMSIZ - 1] = '\0'; 9337 name = lifr->lifr_name; 9338 ASSERT(CONN_Q(q)); 9339 connp = Q_TO_CONN(q); 9340 isv6 = (connp->conn_family == AF_INET6); 9341 zoneid = connp->conn_zoneid; 9342 namelen = mi_strlen(name); 9343 if (namelen == 0) 9344 return (EINVAL); 9345 9346 exists = B_FALSE; 9347 if ((namelen + 1 == sizeof (ipif_loopback_name)) && 9348 (mi_strcmp(name, ipif_loopback_name) == 0)) { 9349 /* 9350 * Allow creating lo0 using SIOCLIFADDIF. 9351 * can't be any other writer thread. So can pass null below 9352 * for the last 4 args to ipif_lookup_name. 9353 */ 9354 ipif = ipif_lookup_on_name(lifr->lifr_name, namelen, B_TRUE, 9355 &exists, isv6, zoneid, ipst); 9356 /* Prevent any further action */ 9357 if (ipif == NULL) { 9358 return (ENOBUFS); 9359 } else if (!exists) { 9360 /* We created the ipif now and as writer */ 9361 ipif_refrele(ipif); 9362 return (0); 9363 } else { 9364 ill = ipif->ipif_ill; 9365 ill_refhold(ill); 9366 ipif_refrele(ipif); 9367 } 9368 } else { 9369 /* Look for a colon in the name. */ 9370 endp = &name[namelen]; 9371 for (cp = endp; --cp > name; ) { 9372 if (*cp == IPIF_SEPARATOR_CHAR) { 9373 found_sep = B_TRUE; 9374 /* 9375 * Reject any non-decimal aliases for plumbing 9376 * of logical interfaces. Aliases with leading 9377 * zeroes are also rejected as they introduce 9378 * ambiguity in the naming of the interfaces. 9379 * Comparing with "0" takes care of all such 9380 * cases. 9381 */ 9382 if ((strncmp("0", cp+1, 1)) == 0) 9383 return (EINVAL); 9384 9385 if (ddi_strtol(cp+1, &endp, 10, &id) != 0 || 9386 id <= 0 || *endp != '\0') { 9387 return (EINVAL); 9388 } 9389 *cp = '\0'; 9390 break; 9391 } 9392 } 9393 ill = ill_lookup_on_name(name, B_FALSE, isv6, NULL, ipst); 9394 if (found_sep) 9395 *cp = IPIF_SEPARATOR_CHAR; 9396 if (ill == NULL) 9397 return (ENXIO); 9398 } 9399 9400 ipsq = ipsq_try_enter(NULL, ill, q, mp, ip_process_ioctl, NEW_OP, 9401 B_TRUE); 9402 9403 /* 9404 * Release the refhold due to the lookup, now that we are excl 9405 * or we are just returning 9406 */ 9407 ill_refrele(ill); 9408 9409 if (ipsq == NULL) 9410 return (EINPROGRESS); 9411 9412 /* We are now exclusive on the IPSQ */ 9413 ASSERT(IAM_WRITER_ILL(ill)); 9414 9415 if (found_sep) { 9416 /* Now see if there is an IPIF with this unit number. */ 9417 for (ipif = ill->ill_ipif; ipif != NULL; 9418 ipif = ipif->ipif_next) { 9419 if (ipif->ipif_id == id) { 9420 err = EEXIST; 9421 goto done; 9422 } 9423 } 9424 } 9425 9426 /* 9427 * We use IRE_LOCAL for lo0:1 etc. for "receive only" use 9428 * of lo0. Plumbing for lo0:0 happens in ipif_lookup_on_name() 9429 * instead. 9430 */ 9431 if ((ipif = ipif_allocate(ill, found_sep ? id : -1, IRE_LOCAL, 9432 B_TRUE, B_TRUE, &err)) == NULL) { 9433 goto done; 9434 } 9435 9436 /* Return created name with ioctl */ 9437 (void) sprintf(lifr->lifr_name, "%s%c%d", ill->ill_name, 9438 IPIF_SEPARATOR_CHAR, ipif->ipif_id); 9439 ip1dbg(("created %s\n", lifr->lifr_name)); 9440 9441 /* Set address */ 9442 sin = (sin_t *)&lifr->lifr_addr; 9443 if (sin->sin_family != AF_UNSPEC) { 9444 err = ip_sioctl_addr(ipif, sin, q, mp, 9445 &ip_ndx_ioctl_table[SIOCLIFADDR_NDX], lifr); 9446 } 9447 9448 done: 9449 ipsq_exit(ipsq); 9450 return (err); 9451 } 9452 9453 /* 9454 * Remove an existing logical interface. If ipif_id is zero (i.e. not a logical 9455 * interface) delete it based on the IP address (on this physical interface). 9456 * Otherwise delete it based on the ipif_id. 9457 * Also, special handling to allow a removeif of lo0. 9458 */ 9459 /* ARGSUSED */ 9460 int 9461 ip_sioctl_removeif(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 9462 ip_ioctl_cmd_t *ipip, void *dummy_if_req) 9463 { 9464 conn_t *connp; 9465 ill_t *ill = ipif->ipif_ill; 9466 boolean_t success; 9467 ip_stack_t *ipst; 9468 9469 ipst = CONNQ_TO_IPST(q); 9470 9471 ASSERT(q->q_next == NULL); 9472 ip1dbg(("ip_sioctl_remove_if(%s:%u %p)\n", 9473 ill->ill_name, ipif->ipif_id, (void *)ipif)); 9474 ASSERT(IAM_WRITER_IPIF(ipif)); 9475 9476 connp = Q_TO_CONN(q); 9477 /* 9478 * Special case for unplumbing lo0 (the loopback physical interface). 9479 * If unplumbing lo0, the incoming address structure has been 9480 * initialized to all zeros. When unplumbing lo0, all its logical 9481 * interfaces must be removed too. 9482 * 9483 * Note that this interface may be called to remove a specific 9484 * loopback logical interface (eg, lo0:1). But in that case 9485 * ipif->ipif_id != 0 so that the code path for that case is the 9486 * same as any other interface (meaning it skips the code directly 9487 * below). 9488 */ 9489 if (ipif->ipif_id == 0 && ill->ill_net_type == IRE_LOOPBACK) { 9490 if (sin->sin_family == AF_UNSPEC && 9491 (IN6_IS_ADDR_UNSPECIFIED(&((sin6_t *)sin)->sin6_addr))) { 9492 /* 9493 * Mark it condemned. No new ref. will be made to ill. 9494 */ 9495 mutex_enter(&ill->ill_lock); 9496 ill->ill_state_flags |= ILL_CONDEMNED; 9497 for (ipif = ill->ill_ipif; ipif != NULL; 9498 ipif = ipif->ipif_next) { 9499 ipif->ipif_state_flags |= IPIF_CONDEMNED; 9500 } 9501 mutex_exit(&ill->ill_lock); 9502 9503 ipif = ill->ill_ipif; 9504 /* unplumb the loopback interface */ 9505 ill_delete(ill); 9506 mutex_enter(&connp->conn_lock); 9507 mutex_enter(&ill->ill_lock); 9508 9509 /* Are any references to this ill active */ 9510 if (ill_is_freeable(ill)) { 9511 mutex_exit(&ill->ill_lock); 9512 mutex_exit(&connp->conn_lock); 9513 ill_delete_tail(ill); 9514 mi_free(ill); 9515 return (0); 9516 } 9517 success = ipsq_pending_mp_add(connp, ipif, 9518 CONNP_TO_WQ(connp), mp, ILL_FREE); 9519 mutex_exit(&connp->conn_lock); 9520 mutex_exit(&ill->ill_lock); 9521 if (success) 9522 return (EINPROGRESS); 9523 else 9524 return (EINTR); 9525 } 9526 } 9527 9528 if (ipif->ipif_id == 0) { 9529 ipsq_t *ipsq; 9530 9531 /* Find based on address */ 9532 if (ipif->ipif_isv6) { 9533 sin6_t *sin6; 9534 9535 if (sin->sin_family != AF_INET6) 9536 return (EAFNOSUPPORT); 9537 9538 sin6 = (sin6_t *)sin; 9539 /* We are a writer, so we should be able to lookup */ 9540 ipif = ipif_lookup_addr_exact_v6(&sin6->sin6_addr, ill, 9541 ipst); 9542 } else { 9543 if (sin->sin_family != AF_INET) 9544 return (EAFNOSUPPORT); 9545 9546 /* We are a writer, so we should be able to lookup */ 9547 ipif = ipif_lookup_addr_exact(sin->sin_addr.s_addr, ill, 9548 ipst); 9549 } 9550 if (ipif == NULL) { 9551 return (EADDRNOTAVAIL); 9552 } 9553 9554 /* 9555 * It is possible for a user to send an SIOCLIFREMOVEIF with 9556 * lifr_name of the physical interface but with an ip address 9557 * lifr_addr of a logical interface plumbed over it. 9558 * So update ipx_current_ipif now that ipif points to the 9559 * correct one. 9560 */ 9561 ipsq = ipif->ipif_ill->ill_phyint->phyint_ipsq; 9562 ipsq->ipsq_xop->ipx_current_ipif = ipif; 9563 9564 /* This is a writer */ 9565 ipif_refrele(ipif); 9566 } 9567 9568 /* 9569 * Can not delete instance zero since it is tied to the ill. 9570 */ 9571 if (ipif->ipif_id == 0) 9572 return (EBUSY); 9573 9574 mutex_enter(&ill->ill_lock); 9575 ipif->ipif_state_flags |= IPIF_CONDEMNED; 9576 mutex_exit(&ill->ill_lock); 9577 9578 ipif_free(ipif); 9579 9580 mutex_enter(&connp->conn_lock); 9581 mutex_enter(&ill->ill_lock); 9582 9583 /* Are any references to this ipif active */ 9584 if (ipif_is_freeable(ipif)) { 9585 mutex_exit(&ill->ill_lock); 9586 mutex_exit(&connp->conn_lock); 9587 ipif_non_duplicate(ipif); 9588 (void) ipif_down_tail(ipif); 9589 ipif_free_tail(ipif); /* frees ipif */ 9590 return (0); 9591 } 9592 success = ipsq_pending_mp_add(connp, ipif, CONNP_TO_WQ(connp), mp, 9593 IPIF_FREE); 9594 mutex_exit(&ill->ill_lock); 9595 mutex_exit(&connp->conn_lock); 9596 if (success) 9597 return (EINPROGRESS); 9598 else 9599 return (EINTR); 9600 } 9601 9602 /* 9603 * Restart the removeif ioctl. The refcnt has gone down to 0. 9604 * The ipif is already condemned. So can't find it thru lookups. 9605 */ 9606 /* ARGSUSED */ 9607 int 9608 ip_sioctl_removeif_restart(ipif_t *ipif, sin_t *dummy_sin, queue_t *q, 9609 mblk_t *mp, ip_ioctl_cmd_t *ipip, void *dummy_if_req) 9610 { 9611 ill_t *ill = ipif->ipif_ill; 9612 9613 ASSERT(IAM_WRITER_IPIF(ipif)); 9614 ASSERT(ipif->ipif_state_flags & IPIF_CONDEMNED); 9615 9616 ip1dbg(("ip_sioctl_removeif_restart(%s:%u %p)\n", 9617 ill->ill_name, ipif->ipif_id, (void *)ipif)); 9618 9619 if (ipif->ipif_id == 0 && ill->ill_net_type == IRE_LOOPBACK) { 9620 ASSERT(ill->ill_state_flags & ILL_CONDEMNED); 9621 ill_delete_tail(ill); 9622 mi_free(ill); 9623 return (0); 9624 } 9625 9626 ipif_non_duplicate(ipif); 9627 (void) ipif_down_tail(ipif); 9628 ipif_free_tail(ipif); 9629 9630 return (0); 9631 } 9632 9633 /* 9634 * Set the local interface address using the given prefix and ill_token. 9635 */ 9636 /* ARGSUSED */ 9637 int 9638 ip_sioctl_prefix(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 9639 ip_ioctl_cmd_t *dummy_ipip, void *dummy_ifreq) 9640 { 9641 int err; 9642 in6_addr_t v6addr; 9643 sin6_t *sin6; 9644 ill_t *ill; 9645 int i; 9646 9647 ip1dbg(("ip_sioctl_prefix(%s:%u %p)\n", 9648 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 9649 9650 ASSERT(IAM_WRITER_IPIF(ipif)); 9651 9652 if (!ipif->ipif_isv6) 9653 return (EINVAL); 9654 9655 if (sin->sin_family != AF_INET6) 9656 return (EAFNOSUPPORT); 9657 9658 sin6 = (sin6_t *)sin; 9659 v6addr = sin6->sin6_addr; 9660 ill = ipif->ipif_ill; 9661 9662 if (IN6_IS_ADDR_UNSPECIFIED(&v6addr) || 9663 IN6_IS_ADDR_UNSPECIFIED(&ill->ill_token)) 9664 return (EADDRNOTAVAIL); 9665 9666 for (i = 0; i < 4; i++) 9667 sin6->sin6_addr.s6_addr32[i] |= ill->ill_token.s6_addr32[i]; 9668 9669 err = ip_sioctl_addr(ipif, sin, q, mp, 9670 &ip_ndx_ioctl_table[SIOCLIFADDR_NDX], dummy_ifreq); 9671 return (err); 9672 } 9673 9674 /* 9675 * Restart entry point to restart the address set operation after the 9676 * refcounts have dropped to zero. 9677 */ 9678 /* ARGSUSED */ 9679 int 9680 ip_sioctl_prefix_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 9681 ip_ioctl_cmd_t *ipip, void *ifreq) 9682 { 9683 ip1dbg(("ip_sioctl_prefix_restart(%s:%u %p)\n", 9684 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 9685 return (ip_sioctl_addr_restart(ipif, sin, q, mp, ipip, ifreq)); 9686 } 9687 9688 /* 9689 * Set the local interface address. 9690 * Allow an address of all zero when the interface is down. 9691 */ 9692 /* ARGSUSED */ 9693 int 9694 ip_sioctl_addr(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 9695 ip_ioctl_cmd_t *dummy_ipip, void *dummy_ifreq) 9696 { 9697 int err = 0; 9698 in6_addr_t v6addr; 9699 boolean_t need_up = B_FALSE; 9700 ill_t *ill; 9701 int i; 9702 9703 ip1dbg(("ip_sioctl_addr(%s:%u %p)\n", 9704 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 9705 9706 ASSERT(IAM_WRITER_IPIF(ipif)); 9707 9708 ill = ipif->ipif_ill; 9709 if (ipif->ipif_isv6) { 9710 sin6_t *sin6; 9711 phyint_t *phyi; 9712 9713 if (sin->sin_family != AF_INET6) 9714 return (EAFNOSUPPORT); 9715 9716 sin6 = (sin6_t *)sin; 9717 v6addr = sin6->sin6_addr; 9718 phyi = ill->ill_phyint; 9719 9720 /* 9721 * Enforce that true multicast interfaces have a link-local 9722 * address for logical unit 0. 9723 * 9724 * However for those ipif's for which link-local address was 9725 * not created by default, also allow setting :: as the address. 9726 * This scenario would arise, when we delete an address on ipif 9727 * with logical unit 0, we would want to set :: as the address. 9728 */ 9729 if (ipif->ipif_id == 0 && 9730 (ill->ill_flags & ILLF_MULTICAST) && 9731 !(ipif->ipif_flags & (IPIF_POINTOPOINT)) && 9732 !(phyi->phyint_flags & (PHYI_LOOPBACK)) && 9733 !IN6_IS_ADDR_LINKLOCAL(&v6addr)) { 9734 9735 /* 9736 * if default link-local was not created by kernel for 9737 * this ill, allow setting :: as the address on ipif:0. 9738 */ 9739 if (ill->ill_flags & ILLF_NOLINKLOCAL) { 9740 if (!IN6_IS_ADDR_UNSPECIFIED(&v6addr)) 9741 return (EADDRNOTAVAIL); 9742 } else { 9743 return (EADDRNOTAVAIL); 9744 } 9745 } 9746 9747 /* 9748 * up interfaces shouldn't have the unspecified address 9749 * unless they also have the IPIF_NOLOCAL flags set and 9750 * have a subnet assigned. 9751 */ 9752 if ((ipif->ipif_flags & IPIF_UP) && 9753 IN6_IS_ADDR_UNSPECIFIED(&v6addr) && 9754 (!(ipif->ipif_flags & IPIF_NOLOCAL) || 9755 IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6subnet))) { 9756 return (EADDRNOTAVAIL); 9757 } 9758 9759 if (!ip_local_addr_ok_v6(&v6addr, &ipif->ipif_v6net_mask)) 9760 return (EADDRNOTAVAIL); 9761 } else { 9762 ipaddr_t addr; 9763 9764 if (sin->sin_family != AF_INET) 9765 return (EAFNOSUPPORT); 9766 9767 addr = sin->sin_addr.s_addr; 9768 9769 /* Allow INADDR_ANY as the local address. */ 9770 if (addr != INADDR_ANY && 9771 !ip_addr_ok_v4(addr, ipif->ipif_net_mask)) 9772 return (EADDRNOTAVAIL); 9773 9774 IN6_IPADDR_TO_V4MAPPED(addr, &v6addr); 9775 } 9776 /* 9777 * verify that the address being configured is permitted by the 9778 * ill_allowed_ips[] for the interface. 9779 */ 9780 if (ill->ill_allowed_ips_cnt > 0) { 9781 for (i = 0; i < ill->ill_allowed_ips_cnt; i++) { 9782 if (IN6_ARE_ADDR_EQUAL(&ill->ill_allowed_ips[i], 9783 &v6addr)) 9784 break; 9785 } 9786 if (i == ill->ill_allowed_ips_cnt) { 9787 pr_addr_dbg("!allowed addr %s\n", AF_INET6, &v6addr); 9788 return (EPERM); 9789 } 9790 } 9791 /* 9792 * Even if there is no change we redo things just to rerun 9793 * ipif_set_default. 9794 */ 9795 if (ipif->ipif_flags & IPIF_UP) { 9796 /* 9797 * Setting a new local address, make sure 9798 * we have net and subnet bcast ire's for 9799 * the old address if we need them. 9800 */ 9801 /* 9802 * If the interface is already marked up, 9803 * we call ipif_down which will take care 9804 * of ditching any IREs that have been set 9805 * up based on the old interface address. 9806 */ 9807 err = ipif_logical_down(ipif, q, mp); 9808 if (err == EINPROGRESS) 9809 return (err); 9810 (void) ipif_down_tail(ipif); 9811 need_up = 1; 9812 } 9813 9814 err = ip_sioctl_addr_tail(ipif, sin, q, mp, need_up); 9815 return (err); 9816 } 9817 9818 int 9819 ip_sioctl_addr_tail(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 9820 boolean_t need_up) 9821 { 9822 in6_addr_t v6addr; 9823 in6_addr_t ov6addr; 9824 ipaddr_t addr; 9825 sin6_t *sin6; 9826 int sinlen; 9827 int err = 0; 9828 ill_t *ill = ipif->ipif_ill; 9829 boolean_t need_dl_down; 9830 boolean_t need_arp_down; 9831 struct iocblk *iocp; 9832 9833 iocp = (mp != NULL) ? (struct iocblk *)mp->b_rptr : NULL; 9834 9835 ip1dbg(("ip_sioctl_addr_tail(%s:%u %p)\n", 9836 ill->ill_name, ipif->ipif_id, (void *)ipif)); 9837 ASSERT(IAM_WRITER_IPIF(ipif)); 9838 9839 /* Must cancel any pending timer before taking the ill_lock */ 9840 if (ipif->ipif_recovery_id != 0) 9841 (void) untimeout(ipif->ipif_recovery_id); 9842 ipif->ipif_recovery_id = 0; 9843 9844 if (ipif->ipif_isv6) { 9845 sin6 = (sin6_t *)sin; 9846 v6addr = sin6->sin6_addr; 9847 sinlen = sizeof (struct sockaddr_in6); 9848 } else { 9849 addr = sin->sin_addr.s_addr; 9850 IN6_IPADDR_TO_V4MAPPED(addr, &v6addr); 9851 sinlen = sizeof (struct sockaddr_in); 9852 } 9853 mutex_enter(&ill->ill_lock); 9854 ov6addr = ipif->ipif_v6lcl_addr; 9855 ipif->ipif_v6lcl_addr = v6addr; 9856 sctp_update_ipif_addr(ipif, ov6addr); 9857 ipif->ipif_addr_ready = 0; 9858 9859 ip_rts_newaddrmsg(RTM_CHGADDR, 0, ipif, RTSQ_DEFAULT); 9860 9861 /* 9862 * If the interface was previously marked as a duplicate, then since 9863 * we've now got a "new" address, it should no longer be considered a 9864 * duplicate -- even if the "new" address is the same as the old one. 9865 * Note that if all ipifs are down, we may have a pending ARP down 9866 * event to handle. This is because we want to recover from duplicates 9867 * and thus delay tearing down ARP until the duplicates have been 9868 * removed or disabled. 9869 */ 9870 need_dl_down = need_arp_down = B_FALSE; 9871 if (ipif->ipif_flags & IPIF_DUPLICATE) { 9872 need_arp_down = !need_up; 9873 ipif->ipif_flags &= ~IPIF_DUPLICATE; 9874 if (--ill->ill_ipif_dup_count == 0 && !need_up && 9875 ill->ill_ipif_up_count == 0 && ill->ill_dl_up) { 9876 need_dl_down = B_TRUE; 9877 } 9878 } 9879 9880 ipif_set_default(ipif); 9881 9882 /* 9883 * If we've just manually set the IPv6 link-local address (0th ipif), 9884 * tag the ill so that future updates to the interface ID don't result 9885 * in this address getting automatically reconfigured from under the 9886 * administrator. 9887 */ 9888 if (ipif->ipif_isv6 && ipif->ipif_id == 0) { 9889 if (iocp == NULL || (iocp->ioc_cmd == SIOCSLIFADDR && 9890 !IN6_IS_ADDR_UNSPECIFIED(&v6addr))) 9891 ill->ill_manual_linklocal = 1; 9892 } 9893 9894 /* 9895 * When publishing an interface address change event, we only notify 9896 * the event listeners of the new address. It is assumed that if they 9897 * actively care about the addresses assigned that they will have 9898 * already discovered the previous address assigned (if there was one.) 9899 * 9900 * Don't attach nic event message for SIOCLIFADDIF ioctl. 9901 */ 9902 if (iocp != NULL && iocp->ioc_cmd != SIOCLIFADDIF) { 9903 ill_nic_event_dispatch(ill, MAP_IPIF_ID(ipif->ipif_id), 9904 NE_ADDRESS_CHANGE, sin, sinlen); 9905 } 9906 9907 mutex_exit(&ill->ill_lock); 9908 9909 if (need_up) { 9910 /* 9911 * Now bring the interface back up. If this 9912 * is the only IPIF for the ILL, ipif_up 9913 * will have to re-bind to the device, so 9914 * we may get back EINPROGRESS, in which 9915 * case, this IOCTL will get completed in 9916 * ip_rput_dlpi when we see the DL_BIND_ACK. 9917 */ 9918 err = ipif_up(ipif, q, mp); 9919 } else { 9920 /* Perhaps ilgs should use this ill */ 9921 update_conn_ill(NULL, ill->ill_ipst); 9922 } 9923 9924 if (need_dl_down) 9925 ill_dl_down(ill); 9926 9927 if (need_arp_down && !ill->ill_isv6) 9928 (void) ipif_arp_down(ipif); 9929 9930 /* 9931 * The default multicast interface might have changed (for 9932 * instance if the IPv6 scope of the address changed) 9933 */ 9934 ire_increment_multicast_generation(ill->ill_ipst, ill->ill_isv6); 9935 9936 return (err); 9937 } 9938 9939 /* 9940 * Restart entry point to restart the address set operation after the 9941 * refcounts have dropped to zero. 9942 */ 9943 /* ARGSUSED */ 9944 int 9945 ip_sioctl_addr_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 9946 ip_ioctl_cmd_t *ipip, void *ifreq) 9947 { 9948 ip1dbg(("ip_sioctl_addr_restart(%s:%u %p)\n", 9949 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 9950 ASSERT(IAM_WRITER_IPIF(ipif)); 9951 (void) ipif_down_tail(ipif); 9952 return (ip_sioctl_addr_tail(ipif, sin, q, mp, B_TRUE)); 9953 } 9954 9955 /* ARGSUSED */ 9956 int 9957 ip_sioctl_get_addr(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 9958 ip_ioctl_cmd_t *ipip, void *if_req) 9959 { 9960 sin6_t *sin6 = (struct sockaddr_in6 *)sin; 9961 struct lifreq *lifr = (struct lifreq *)if_req; 9962 9963 ip1dbg(("ip_sioctl_get_addr(%s:%u %p)\n", 9964 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 9965 /* 9966 * The net mask and address can't change since we have a 9967 * reference to the ipif. So no lock is necessary. 9968 */ 9969 if (ipif->ipif_isv6) { 9970 *sin6 = sin6_null; 9971 sin6->sin6_family = AF_INET6; 9972 sin6->sin6_addr = ipif->ipif_v6lcl_addr; 9973 ASSERT(ipip->ipi_cmd_type == LIF_CMD); 9974 lifr->lifr_addrlen = 9975 ip_mask_to_plen_v6(&ipif->ipif_v6net_mask); 9976 } else { 9977 *sin = sin_null; 9978 sin->sin_family = AF_INET; 9979 sin->sin_addr.s_addr = ipif->ipif_lcl_addr; 9980 if (ipip->ipi_cmd_type == LIF_CMD) { 9981 lifr->lifr_addrlen = 9982 ip_mask_to_plen(ipif->ipif_net_mask); 9983 } 9984 } 9985 return (0); 9986 } 9987 9988 /* 9989 * Set the destination address for a pt-pt interface. 9990 */ 9991 /* ARGSUSED */ 9992 int 9993 ip_sioctl_dstaddr(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 9994 ip_ioctl_cmd_t *ipip, void *if_req) 9995 { 9996 int err = 0; 9997 in6_addr_t v6addr; 9998 boolean_t need_up = B_FALSE; 9999 10000 ip1dbg(("ip_sioctl_dstaddr(%s:%u %p)\n", 10001 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 10002 ASSERT(IAM_WRITER_IPIF(ipif)); 10003 10004 if (ipif->ipif_isv6) { 10005 sin6_t *sin6; 10006 10007 if (sin->sin_family != AF_INET6) 10008 return (EAFNOSUPPORT); 10009 10010 sin6 = (sin6_t *)sin; 10011 v6addr = sin6->sin6_addr; 10012 10013 if (!ip_remote_addr_ok_v6(&v6addr, &ipif->ipif_v6net_mask)) 10014 return (EADDRNOTAVAIL); 10015 } else { 10016 ipaddr_t addr; 10017 10018 if (sin->sin_family != AF_INET) 10019 return (EAFNOSUPPORT); 10020 10021 addr = sin->sin_addr.s_addr; 10022 if (addr != INADDR_ANY && 10023 !ip_addr_ok_v4(addr, ipif->ipif_net_mask)) { 10024 return (EADDRNOTAVAIL); 10025 } 10026 10027 IN6_IPADDR_TO_V4MAPPED(addr, &v6addr); 10028 } 10029 10030 if (IN6_ARE_ADDR_EQUAL(&ipif->ipif_v6pp_dst_addr, &v6addr)) 10031 return (0); /* No change */ 10032 10033 if (ipif->ipif_flags & IPIF_UP) { 10034 /* 10035 * If the interface is already marked up, 10036 * we call ipif_down which will take care 10037 * of ditching any IREs that have been set 10038 * up based on the old pp dst address. 10039 */ 10040 err = ipif_logical_down(ipif, q, mp); 10041 if (err == EINPROGRESS) 10042 return (err); 10043 (void) ipif_down_tail(ipif); 10044 need_up = B_TRUE; 10045 } 10046 /* 10047 * could return EINPROGRESS. If so ioctl will complete in 10048 * ip_rput_dlpi_writer 10049 */ 10050 err = ip_sioctl_dstaddr_tail(ipif, sin, q, mp, need_up); 10051 return (err); 10052 } 10053 10054 static int 10055 ip_sioctl_dstaddr_tail(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 10056 boolean_t need_up) 10057 { 10058 in6_addr_t v6addr; 10059 ill_t *ill = ipif->ipif_ill; 10060 int err = 0; 10061 boolean_t need_dl_down; 10062 boolean_t need_arp_down; 10063 10064 ip1dbg(("ip_sioctl_dstaddr_tail(%s:%u %p)\n", ill->ill_name, 10065 ipif->ipif_id, (void *)ipif)); 10066 10067 /* Must cancel any pending timer before taking the ill_lock */ 10068 if (ipif->ipif_recovery_id != 0) 10069 (void) untimeout(ipif->ipif_recovery_id); 10070 ipif->ipif_recovery_id = 0; 10071 10072 if (ipif->ipif_isv6) { 10073 sin6_t *sin6; 10074 10075 sin6 = (sin6_t *)sin; 10076 v6addr = sin6->sin6_addr; 10077 } else { 10078 ipaddr_t addr; 10079 10080 addr = sin->sin_addr.s_addr; 10081 IN6_IPADDR_TO_V4MAPPED(addr, &v6addr); 10082 } 10083 mutex_enter(&ill->ill_lock); 10084 /* Set point to point destination address. */ 10085 if ((ipif->ipif_flags & IPIF_POINTOPOINT) == 0) { 10086 /* 10087 * Allow this as a means of creating logical 10088 * pt-pt interfaces on top of e.g. an Ethernet. 10089 * XXX Undocumented HACK for testing. 10090 * pt-pt interfaces are created with NUD disabled. 10091 */ 10092 ipif->ipif_flags |= IPIF_POINTOPOINT; 10093 ipif->ipif_flags &= ~IPIF_BROADCAST; 10094 if (ipif->ipif_isv6) 10095 ill->ill_flags |= ILLF_NONUD; 10096 } 10097 10098 /* 10099 * If the interface was previously marked as a duplicate, then since 10100 * we've now got a "new" address, it should no longer be considered a 10101 * duplicate -- even if the "new" address is the same as the old one. 10102 * Note that if all ipifs are down, we may have a pending ARP down 10103 * event to handle. 10104 */ 10105 need_dl_down = need_arp_down = B_FALSE; 10106 if (ipif->ipif_flags & IPIF_DUPLICATE) { 10107 need_arp_down = !need_up; 10108 ipif->ipif_flags &= ~IPIF_DUPLICATE; 10109 if (--ill->ill_ipif_dup_count == 0 && !need_up && 10110 ill->ill_ipif_up_count == 0 && ill->ill_dl_up) { 10111 need_dl_down = B_TRUE; 10112 } 10113 } 10114 10115 /* 10116 * If we've just manually set the IPv6 destination link-local address 10117 * (0th ipif), tag the ill so that future updates to the destination 10118 * interface ID (as can happen with interfaces over IP tunnels) don't 10119 * result in this address getting automatically reconfigured from 10120 * under the administrator. 10121 */ 10122 if (ipif->ipif_isv6 && ipif->ipif_id == 0) 10123 ill->ill_manual_dst_linklocal = 1; 10124 10125 /* Set the new address. */ 10126 ipif->ipif_v6pp_dst_addr = v6addr; 10127 /* Make sure subnet tracks pp_dst */ 10128 ipif->ipif_v6subnet = ipif->ipif_v6pp_dst_addr; 10129 mutex_exit(&ill->ill_lock); 10130 10131 if (need_up) { 10132 /* 10133 * Now bring the interface back up. If this 10134 * is the only IPIF for the ILL, ipif_up 10135 * will have to re-bind to the device, so 10136 * we may get back EINPROGRESS, in which 10137 * case, this IOCTL will get completed in 10138 * ip_rput_dlpi when we see the DL_BIND_ACK. 10139 */ 10140 err = ipif_up(ipif, q, mp); 10141 } 10142 10143 if (need_dl_down) 10144 ill_dl_down(ill); 10145 if (need_arp_down && !ipif->ipif_isv6) 10146 (void) ipif_arp_down(ipif); 10147 10148 return (err); 10149 } 10150 10151 /* 10152 * Restart entry point to restart the dstaddress set operation after the 10153 * refcounts have dropped to zero. 10154 */ 10155 /* ARGSUSED */ 10156 int 10157 ip_sioctl_dstaddr_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 10158 ip_ioctl_cmd_t *ipip, void *ifreq) 10159 { 10160 ip1dbg(("ip_sioctl_dstaddr_restart(%s:%u %p)\n", 10161 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 10162 (void) ipif_down_tail(ipif); 10163 return (ip_sioctl_dstaddr_tail(ipif, sin, q, mp, B_TRUE)); 10164 } 10165 10166 /* ARGSUSED */ 10167 int 10168 ip_sioctl_get_dstaddr(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 10169 ip_ioctl_cmd_t *ipip, void *if_req) 10170 { 10171 sin6_t *sin6 = (struct sockaddr_in6 *)sin; 10172 10173 ip1dbg(("ip_sioctl_get_dstaddr(%s:%u %p)\n", 10174 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 10175 /* 10176 * Get point to point destination address. The addresses can't 10177 * change since we hold a reference to the ipif. 10178 */ 10179 if ((ipif->ipif_flags & IPIF_POINTOPOINT) == 0) 10180 return (EADDRNOTAVAIL); 10181 10182 if (ipif->ipif_isv6) { 10183 ASSERT(ipip->ipi_cmd_type == LIF_CMD); 10184 *sin6 = sin6_null; 10185 sin6->sin6_family = AF_INET6; 10186 sin6->sin6_addr = ipif->ipif_v6pp_dst_addr; 10187 } else { 10188 *sin = sin_null; 10189 sin->sin_family = AF_INET; 10190 sin->sin_addr.s_addr = ipif->ipif_pp_dst_addr; 10191 } 10192 return (0); 10193 } 10194 10195 /* 10196 * Check which flags will change by the given flags being set 10197 * silently ignore flags which userland is not allowed to control. 10198 * (Because these flags may change between SIOCGLIFFLAGS and 10199 * SIOCSLIFFLAGS, and that's outside of userland's control, 10200 * we need to silently ignore them rather than fail.) 10201 */ 10202 static void 10203 ip_sioctl_flags_onoff(ipif_t *ipif, uint64_t flags, uint64_t *onp, 10204 uint64_t *offp) 10205 { 10206 ill_t *ill = ipif->ipif_ill; 10207 phyint_t *phyi = ill->ill_phyint; 10208 uint64_t cantchange_flags, intf_flags; 10209 uint64_t turn_on, turn_off; 10210 10211 intf_flags = ipif->ipif_flags | ill->ill_flags | phyi->phyint_flags; 10212 cantchange_flags = IFF_CANTCHANGE; 10213 if (IS_IPMP(ill)) 10214 cantchange_flags |= IFF_IPMP_CANTCHANGE; 10215 turn_on = (flags ^ intf_flags) & ~cantchange_flags; 10216 turn_off = intf_flags & turn_on; 10217 turn_on ^= turn_off; 10218 *onp = turn_on; 10219 *offp = turn_off; 10220 } 10221 10222 /* 10223 * Set interface flags. Many flags require special handling (e.g., 10224 * bringing the interface down); see below for details. 10225 * 10226 * NOTE : We really don't enforce that ipif_id zero should be used 10227 * for setting any flags other than IFF_LOGINT_FLAGS. This 10228 * is because applications generally does SICGLIFFLAGS and 10229 * ORs in the new flags (that affects the logical) and does a 10230 * SIOCSLIFFLAGS. Thus, "flags" below could contain bits other 10231 * than IFF_LOGINT_FLAGS. One could check whether "turn_on" - the 10232 * flags that will be turned on is correct with respect to 10233 * ipif_id 0. For backward compatibility reasons, it is not done. 10234 */ 10235 /* ARGSUSED */ 10236 int 10237 ip_sioctl_flags(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 10238 ip_ioctl_cmd_t *ipip, void *if_req) 10239 { 10240 uint64_t turn_on; 10241 uint64_t turn_off; 10242 int err = 0; 10243 phyint_t *phyi; 10244 ill_t *ill; 10245 conn_t *connp; 10246 uint64_t intf_flags; 10247 boolean_t phyint_flags_modified = B_FALSE; 10248 uint64_t flags; 10249 struct ifreq *ifr; 10250 struct lifreq *lifr; 10251 boolean_t set_linklocal = B_FALSE; 10252 10253 ip1dbg(("ip_sioctl_flags(%s:%u %p)\n", 10254 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 10255 10256 ASSERT(IAM_WRITER_IPIF(ipif)); 10257 10258 ill = ipif->ipif_ill; 10259 phyi = ill->ill_phyint; 10260 10261 if (ipip->ipi_cmd_type == IF_CMD) { 10262 ifr = (struct ifreq *)if_req; 10263 flags = (uint64_t)(ifr->ifr_flags & 0x0000ffff); 10264 } else { 10265 lifr = (struct lifreq *)if_req; 10266 flags = lifr->lifr_flags; 10267 } 10268 10269 intf_flags = ipif->ipif_flags | ill->ill_flags | phyi->phyint_flags; 10270 10271 /* 10272 * Have the flags been set correctly until now? 10273 */ 10274 ASSERT((phyi->phyint_flags & ~(IFF_PHYINT_FLAGS)) == 0); 10275 ASSERT((ill->ill_flags & ~(IFF_PHYINTINST_FLAGS)) == 0); 10276 ASSERT((ipif->ipif_flags & ~(IFF_LOGINT_FLAGS)) == 0); 10277 /* 10278 * Compare the new flags to the old, and partition 10279 * into those coming on and those going off. 10280 * For the 16 bit command keep the bits above bit 16 unchanged. 10281 */ 10282 if (ipip->ipi_cmd == SIOCSIFFLAGS) 10283 flags |= intf_flags & ~0xFFFF; 10284 10285 /* 10286 * Explicitly fail attempts to change flags that are always invalid on 10287 * an IPMP meta-interface. 10288 */ 10289 if (IS_IPMP(ill) && ((flags ^ intf_flags) & IFF_IPMP_INVALID)) 10290 return (EINVAL); 10291 10292 ip_sioctl_flags_onoff(ipif, flags, &turn_on, &turn_off); 10293 if ((turn_on|turn_off) == 0) 10294 return (0); /* No change */ 10295 10296 /* 10297 * All test addresses must be IFF_DEPRECATED (to ensure source address 10298 * selection avoids them) -- so force IFF_DEPRECATED on, and do not 10299 * allow it to be turned off. 10300 */ 10301 if ((turn_off & (IFF_DEPRECATED|IFF_NOFAILOVER)) == IFF_DEPRECATED && 10302 (turn_on|intf_flags) & IFF_NOFAILOVER) 10303 return (EINVAL); 10304 10305 if ((connp = Q_TO_CONN(q)) == NULL) 10306 return (EINVAL); 10307 10308 /* 10309 * Only vrrp control socket is allowed to change IFF_UP and 10310 * IFF_NOACCEPT flags when IFF_VRRP is set. 10311 */ 10312 if ((intf_flags & IFF_VRRP) && ((turn_off | turn_on) & IFF_UP)) { 10313 if (!connp->conn_isvrrp) 10314 return (EINVAL); 10315 } 10316 10317 /* 10318 * The IFF_NOACCEPT flag can only be set on an IFF_VRRP IP address by 10319 * VRRP control socket. 10320 */ 10321 if ((turn_off | turn_on) & IFF_NOACCEPT) { 10322 if (!connp->conn_isvrrp || !(intf_flags & IFF_VRRP)) 10323 return (EINVAL); 10324 } 10325 10326 if (turn_on & IFF_NOFAILOVER) { 10327 turn_on |= IFF_DEPRECATED; 10328 flags |= IFF_DEPRECATED; 10329 } 10330 10331 /* 10332 * On underlying interfaces, only allow applications to manage test 10333 * addresses -- otherwise, they may get confused when the address 10334 * moves as part of being brought up. Likewise, prevent an 10335 * application-managed test address from being converted to a data 10336 * address. To prevent migration of administratively up addresses in 10337 * the kernel, we don't allow them to be converted either. 10338 */ 10339 if (IS_UNDER_IPMP(ill)) { 10340 const uint64_t appflags = IFF_DHCPRUNNING | IFF_ADDRCONF; 10341 10342 if ((turn_on & appflags) && !(flags & IFF_NOFAILOVER)) 10343 return (EINVAL); 10344 10345 if ((turn_off & IFF_NOFAILOVER) && 10346 (flags & (appflags | IFF_UP | IFF_DUPLICATE))) 10347 return (EINVAL); 10348 } 10349 10350 /* 10351 * Only allow IFF_TEMPORARY flag to be set on 10352 * IPv6 interfaces. 10353 */ 10354 if ((turn_on & IFF_TEMPORARY) && !(ipif->ipif_isv6)) 10355 return (EINVAL); 10356 10357 /* 10358 * cannot turn off IFF_NOXMIT on VNI interfaces. 10359 */ 10360 if ((turn_off & IFF_NOXMIT) && IS_VNI(ipif->ipif_ill)) 10361 return (EINVAL); 10362 10363 /* 10364 * Don't allow the IFF_ROUTER flag to be turned on on loopback 10365 * interfaces. It makes no sense in that context. 10366 */ 10367 if ((turn_on & IFF_ROUTER) && (phyi->phyint_flags & PHYI_LOOPBACK)) 10368 return (EINVAL); 10369 10370 /* 10371 * For IPv6 ipif_id 0, don't allow the interface to be up without 10372 * a link local address if IFF_NOLOCAL or IFF_ANYCAST are not set. 10373 * If the link local address isn't set, and can be set, it will get 10374 * set later on in this function. 10375 */ 10376 if (ipif->ipif_id == 0 && ipif->ipif_isv6 && 10377 (flags & IFF_UP) && !(flags & (IFF_NOLOCAL|IFF_ANYCAST)) && 10378 IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6lcl_addr)) { 10379 if (ipif_cant_setlinklocal(ipif)) 10380 return (EINVAL); 10381 set_linklocal = B_TRUE; 10382 } 10383 10384 /* 10385 * If we modify physical interface flags, we'll potentially need to 10386 * send up two routing socket messages for the changes (one for the 10387 * IPv4 ill, and another for the IPv6 ill). Note that here. 10388 */ 10389 if ((turn_on|turn_off) & IFF_PHYINT_FLAGS) 10390 phyint_flags_modified = B_TRUE; 10391 10392 /* 10393 * All functioning PHYI_STANDBY interfaces start life PHYI_INACTIVE 10394 * (otherwise, we'd immediately use them, defeating standby). Also, 10395 * since PHYI_INACTIVE has a separate meaning when PHYI_STANDBY is not 10396 * set, don't allow PHYI_STANDBY to be set if PHYI_INACTIVE is already 10397 * set, and clear PHYI_INACTIVE if PHYI_STANDBY is being cleared. We 10398 * also don't allow PHYI_STANDBY if VNI is enabled since its semantics 10399 * will not be honored. 10400 */ 10401 if (turn_on & PHYI_STANDBY) { 10402 /* 10403 * No need to grab ill_g_usesrc_lock here; see the 10404 * synchronization notes in ip.c. 10405 */ 10406 if (ill->ill_usesrc_grp_next != NULL || 10407 intf_flags & PHYI_INACTIVE) 10408 return (EINVAL); 10409 if (!(flags & PHYI_FAILED)) { 10410 flags |= PHYI_INACTIVE; 10411 turn_on |= PHYI_INACTIVE; 10412 } 10413 } 10414 10415 if (turn_off & PHYI_STANDBY) { 10416 flags &= ~PHYI_INACTIVE; 10417 turn_off |= PHYI_INACTIVE; 10418 } 10419 10420 /* 10421 * PHYI_FAILED and PHYI_INACTIVE are mutually exclusive; fail if both 10422 * would end up on. 10423 */ 10424 if ((flags & (PHYI_FAILED | PHYI_INACTIVE)) == 10425 (PHYI_FAILED | PHYI_INACTIVE)) 10426 return (EINVAL); 10427 10428 /* 10429 * If ILLF_ROUTER changes, we need to change the ip forwarding 10430 * status of the interface. 10431 */ 10432 if ((turn_on | turn_off) & ILLF_ROUTER) { 10433 err = ill_forward_set(ill, ((turn_on & ILLF_ROUTER) != 0)); 10434 if (err != 0) 10435 return (err); 10436 } 10437 10438 /* 10439 * If the interface is not UP and we are not going to 10440 * bring it UP, record the flags and return. When the 10441 * interface comes UP later, the right actions will be 10442 * taken. 10443 */ 10444 if (!(ipif->ipif_flags & IPIF_UP) && 10445 !(turn_on & IPIF_UP)) { 10446 /* Record new flags in their respective places. */ 10447 mutex_enter(&ill->ill_lock); 10448 mutex_enter(&ill->ill_phyint->phyint_lock); 10449 ipif->ipif_flags |= (turn_on & IFF_LOGINT_FLAGS); 10450 ipif->ipif_flags &= (~turn_off & IFF_LOGINT_FLAGS); 10451 ill->ill_flags |= (turn_on & IFF_PHYINTINST_FLAGS); 10452 ill->ill_flags &= (~turn_off & IFF_PHYINTINST_FLAGS); 10453 phyi->phyint_flags |= (turn_on & IFF_PHYINT_FLAGS); 10454 phyi->phyint_flags &= (~turn_off & IFF_PHYINT_FLAGS); 10455 mutex_exit(&ill->ill_lock); 10456 mutex_exit(&ill->ill_phyint->phyint_lock); 10457 10458 /* 10459 * PHYI_FAILED, PHYI_INACTIVE, and PHYI_OFFLINE are all the 10460 * same to the kernel: if any of them has been set by 10461 * userland, the interface cannot be used for data traffic. 10462 */ 10463 if ((turn_on|turn_off) & 10464 (PHYI_FAILED | PHYI_INACTIVE | PHYI_OFFLINE)) { 10465 ASSERT(!IS_IPMP(ill)); 10466 /* 10467 * It's possible the ill is part of an "anonymous" 10468 * IPMP group rather than a real group. In that case, 10469 * there are no other interfaces in the group and thus 10470 * no need to call ipmp_phyint_refresh_active(). 10471 */ 10472 if (IS_UNDER_IPMP(ill)) 10473 ipmp_phyint_refresh_active(phyi); 10474 } 10475 10476 if (phyint_flags_modified) { 10477 if (phyi->phyint_illv4 != NULL) { 10478 ip_rts_ifmsg(phyi->phyint_illv4-> 10479 ill_ipif, RTSQ_DEFAULT); 10480 } 10481 if (phyi->phyint_illv6 != NULL) { 10482 ip_rts_ifmsg(phyi->phyint_illv6-> 10483 ill_ipif, RTSQ_DEFAULT); 10484 } 10485 } 10486 /* The default multicast interface might have changed */ 10487 ire_increment_multicast_generation(ill->ill_ipst, 10488 ill->ill_isv6); 10489 10490 return (0); 10491 } else if (set_linklocal) { 10492 mutex_enter(&ill->ill_lock); 10493 if (set_linklocal) 10494 ipif->ipif_state_flags |= IPIF_SET_LINKLOCAL; 10495 mutex_exit(&ill->ill_lock); 10496 } 10497 10498 /* 10499 * Disallow IPv6 interfaces coming up that have the unspecified address, 10500 * or point-to-point interfaces with an unspecified destination. We do 10501 * allow the address to be unspecified for IPIF_NOLOCAL interfaces that 10502 * have a subnet assigned, which is how in.ndpd currently manages its 10503 * onlink prefix list when no addresses are configured with those 10504 * prefixes. 10505 */ 10506 if (ipif->ipif_isv6 && 10507 ((IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6lcl_addr) && 10508 (!(ipif->ipif_flags & IPIF_NOLOCAL) && !(turn_on & IPIF_NOLOCAL) || 10509 IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6subnet))) || 10510 ((ipif->ipif_flags & IPIF_POINTOPOINT) && 10511 IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6pp_dst_addr)))) { 10512 return (EINVAL); 10513 } 10514 10515 /* 10516 * Prevent IPv4 point-to-point interfaces with a 0.0.0.0 destination 10517 * from being brought up. 10518 */ 10519 if (!ipif->ipif_isv6 && 10520 ((ipif->ipif_flags & IPIF_POINTOPOINT) && 10521 ipif->ipif_pp_dst_addr == INADDR_ANY)) { 10522 return (EINVAL); 10523 } 10524 10525 /* 10526 * If we are going to change one or more of the flags that are 10527 * IPIF_UP, IPIF_DEPRECATED, IPIF_NOXMIT, IPIF_NOLOCAL, ILLF_NOARP, 10528 * ILLF_NONUD, IPIF_PRIVATE, IPIF_ANYCAST, IPIF_PREFERRED, and 10529 * IPIF_NOFAILOVER, we will take special action. This is 10530 * done by bring the ipif down, changing the flags and bringing 10531 * it back up again. For IPIF_NOFAILOVER, the act of bringing it 10532 * back up will trigger the address to be moved. 10533 * 10534 * If we are going to change IFF_NOACCEPT, we need to bring 10535 * all the ipifs down then bring them up again. The act of 10536 * bringing all the ipifs back up will trigger the local 10537 * ires being recreated with "no_accept" set/cleared. 10538 * 10539 * Note that ILLF_NOACCEPT is always set separately from the 10540 * other flags. 10541 */ 10542 if ((turn_on|turn_off) & 10543 (IPIF_UP|IPIF_DEPRECATED|IPIF_NOXMIT|IPIF_NOLOCAL|ILLF_NOARP| 10544 ILLF_NONUD|IPIF_PRIVATE|IPIF_ANYCAST|IPIF_PREFERRED| 10545 IPIF_NOFAILOVER)) { 10546 /* 10547 * ipif_down() will ire_delete bcast ire's for the subnet, 10548 * while the ire_identical_ref tracks the case of IRE_BROADCAST 10549 * entries shared between multiple ipifs on the same subnet. 10550 */ 10551 if (((ipif->ipif_flags | turn_on) & IPIF_UP) && 10552 !(turn_off & IPIF_UP)) { 10553 if (ipif->ipif_flags & IPIF_UP) 10554 ill->ill_logical_down = 1; 10555 turn_on &= ~IPIF_UP; 10556 } 10557 err = ipif_down(ipif, q, mp); 10558 ip1dbg(("ipif_down returns %d err ", err)); 10559 if (err == EINPROGRESS) 10560 return (err); 10561 (void) ipif_down_tail(ipif); 10562 } else if ((turn_on|turn_off) & ILLF_NOACCEPT) { 10563 /* 10564 * If we can quiesce the ill, then continue. If not, then 10565 * ip_sioctl_flags_tail() will be called from 10566 * ipif_ill_refrele_tail(). 10567 */ 10568 ill_down_ipifs(ill, B_TRUE); 10569 10570 mutex_enter(&connp->conn_lock); 10571 mutex_enter(&ill->ill_lock); 10572 if (!ill_is_quiescent(ill)) { 10573 boolean_t success; 10574 10575 success = ipsq_pending_mp_add(connp, ill->ill_ipif, 10576 q, mp, ILL_DOWN); 10577 mutex_exit(&ill->ill_lock); 10578 mutex_exit(&connp->conn_lock); 10579 return (success ? EINPROGRESS : EINTR); 10580 } 10581 mutex_exit(&ill->ill_lock); 10582 mutex_exit(&connp->conn_lock); 10583 } 10584 return (ip_sioctl_flags_tail(ipif, flags, q, mp)); 10585 } 10586 10587 static int 10588 ip_sioctl_flags_tail(ipif_t *ipif, uint64_t flags, queue_t *q, mblk_t *mp) 10589 { 10590 ill_t *ill; 10591 phyint_t *phyi; 10592 uint64_t turn_on, turn_off; 10593 boolean_t phyint_flags_modified = B_FALSE; 10594 int err = 0; 10595 boolean_t set_linklocal = B_FALSE; 10596 10597 ip1dbg(("ip_sioctl_flags_tail(%s:%u)\n", 10598 ipif->ipif_ill->ill_name, ipif->ipif_id)); 10599 10600 ASSERT(IAM_WRITER_IPIF(ipif)); 10601 10602 ill = ipif->ipif_ill; 10603 phyi = ill->ill_phyint; 10604 10605 ip_sioctl_flags_onoff(ipif, flags, &turn_on, &turn_off); 10606 10607 /* 10608 * IFF_UP is handled separately. 10609 */ 10610 turn_on &= ~IFF_UP; 10611 turn_off &= ~IFF_UP; 10612 10613 if ((turn_on|turn_off) & IFF_PHYINT_FLAGS) 10614 phyint_flags_modified = B_TRUE; 10615 10616 /* 10617 * Now we change the flags. Track current value of 10618 * other flags in their respective places. 10619 */ 10620 mutex_enter(&ill->ill_lock); 10621 mutex_enter(&phyi->phyint_lock); 10622 ipif->ipif_flags |= (turn_on & IFF_LOGINT_FLAGS); 10623 ipif->ipif_flags &= (~turn_off & IFF_LOGINT_FLAGS); 10624 ill->ill_flags |= (turn_on & IFF_PHYINTINST_FLAGS); 10625 ill->ill_flags &= (~turn_off & IFF_PHYINTINST_FLAGS); 10626 phyi->phyint_flags |= (turn_on & IFF_PHYINT_FLAGS); 10627 phyi->phyint_flags &= (~turn_off & IFF_PHYINT_FLAGS); 10628 if (ipif->ipif_state_flags & IPIF_SET_LINKLOCAL) { 10629 set_linklocal = B_TRUE; 10630 ipif->ipif_state_flags &= ~IPIF_SET_LINKLOCAL; 10631 } 10632 10633 mutex_exit(&ill->ill_lock); 10634 mutex_exit(&phyi->phyint_lock); 10635 10636 if (set_linklocal) 10637 (void) ipif_setlinklocal(ipif); 10638 10639 /* 10640 * PHYI_FAILED, PHYI_INACTIVE, and PHYI_OFFLINE are all the same to 10641 * the kernel: if any of them has been set by userland, the interface 10642 * cannot be used for data traffic. 10643 */ 10644 if ((turn_on|turn_off) & (PHYI_FAILED | PHYI_INACTIVE | PHYI_OFFLINE)) { 10645 ASSERT(!IS_IPMP(ill)); 10646 /* 10647 * It's possible the ill is part of an "anonymous" IPMP group 10648 * rather than a real group. In that case, there are no other 10649 * interfaces in the group and thus no need for us to call 10650 * ipmp_phyint_refresh_active(). 10651 */ 10652 if (IS_UNDER_IPMP(ill)) 10653 ipmp_phyint_refresh_active(phyi); 10654 } 10655 10656 if ((turn_on|turn_off) & ILLF_NOACCEPT) { 10657 /* 10658 * If the ILLF_NOACCEPT flag is changed, bring up all the 10659 * ipifs that were brought down. 10660 * 10661 * The routing sockets messages are sent as the result 10662 * of ill_up_ipifs(), further, SCTP's IPIF list was updated 10663 * as well. 10664 */ 10665 err = ill_up_ipifs(ill, q, mp); 10666 } else if ((flags & IFF_UP) && !(ipif->ipif_flags & IPIF_UP)) { 10667 /* 10668 * XXX ipif_up really does not know whether a phyint flags 10669 * was modified or not. So, it sends up information on 10670 * only one routing sockets message. As we don't bring up 10671 * the interface and also set PHYI_ flags simultaneously 10672 * it should be okay. 10673 */ 10674 err = ipif_up(ipif, q, mp); 10675 } else { 10676 /* 10677 * Make sure routing socket sees all changes to the flags. 10678 * ipif_up_done* handles this when we use ipif_up. 10679 */ 10680 if (phyint_flags_modified) { 10681 if (phyi->phyint_illv4 != NULL) { 10682 ip_rts_ifmsg(phyi->phyint_illv4-> 10683 ill_ipif, RTSQ_DEFAULT); 10684 } 10685 if (phyi->phyint_illv6 != NULL) { 10686 ip_rts_ifmsg(phyi->phyint_illv6-> 10687 ill_ipif, RTSQ_DEFAULT); 10688 } 10689 } else { 10690 ip_rts_ifmsg(ipif, RTSQ_DEFAULT); 10691 } 10692 /* 10693 * Update the flags in SCTP's IPIF list, ipif_up() will do 10694 * this in need_up case. 10695 */ 10696 sctp_update_ipif(ipif, SCTP_IPIF_UPDATE); 10697 } 10698 10699 /* The default multicast interface might have changed */ 10700 ire_increment_multicast_generation(ill->ill_ipst, ill->ill_isv6); 10701 return (err); 10702 } 10703 10704 /* 10705 * Restart the flags operation now that the refcounts have dropped to zero. 10706 */ 10707 /* ARGSUSED */ 10708 int 10709 ip_sioctl_flags_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 10710 ip_ioctl_cmd_t *ipip, void *if_req) 10711 { 10712 uint64_t flags; 10713 struct ifreq *ifr = if_req; 10714 struct lifreq *lifr = if_req; 10715 uint64_t turn_on, turn_off; 10716 10717 ip1dbg(("ip_sioctl_flags_restart(%s:%u %p)\n", 10718 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 10719 10720 if (ipip->ipi_cmd_type == IF_CMD) { 10721 /* cast to uint16_t prevents unwanted sign extension */ 10722 flags = (uint16_t)ifr->ifr_flags; 10723 } else { 10724 flags = lifr->lifr_flags; 10725 } 10726 10727 /* 10728 * If this function call is a result of the ILLF_NOACCEPT flag 10729 * change, do not call ipif_down_tail(). See ip_sioctl_flags(). 10730 */ 10731 ip_sioctl_flags_onoff(ipif, flags, &turn_on, &turn_off); 10732 if (!((turn_on|turn_off) & ILLF_NOACCEPT)) 10733 (void) ipif_down_tail(ipif); 10734 10735 return (ip_sioctl_flags_tail(ipif, flags, q, mp)); 10736 } 10737 10738 /* 10739 * Can operate on either a module or a driver queue. 10740 */ 10741 /* ARGSUSED */ 10742 int 10743 ip_sioctl_get_flags(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 10744 ip_ioctl_cmd_t *ipip, void *if_req) 10745 { 10746 /* 10747 * Has the flags been set correctly till now ? 10748 */ 10749 ill_t *ill = ipif->ipif_ill; 10750 phyint_t *phyi = ill->ill_phyint; 10751 10752 ip1dbg(("ip_sioctl_get_flags(%s:%u %p)\n", 10753 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 10754 ASSERT((phyi->phyint_flags & ~(IFF_PHYINT_FLAGS)) == 0); 10755 ASSERT((ill->ill_flags & ~(IFF_PHYINTINST_FLAGS)) == 0); 10756 ASSERT((ipif->ipif_flags & ~(IFF_LOGINT_FLAGS)) == 0); 10757 10758 /* 10759 * Need a lock since some flags can be set even when there are 10760 * references to the ipif. 10761 */ 10762 mutex_enter(&ill->ill_lock); 10763 if (ipip->ipi_cmd_type == IF_CMD) { 10764 struct ifreq *ifr = (struct ifreq *)if_req; 10765 10766 /* Get interface flags (low 16 only). */ 10767 ifr->ifr_flags = ((ipif->ipif_flags | 10768 ill->ill_flags | phyi->phyint_flags) & 0xffff); 10769 } else { 10770 struct lifreq *lifr = (struct lifreq *)if_req; 10771 10772 /* Get interface flags. */ 10773 lifr->lifr_flags = ipif->ipif_flags | 10774 ill->ill_flags | phyi->phyint_flags; 10775 } 10776 mutex_exit(&ill->ill_lock); 10777 return (0); 10778 } 10779 10780 /* 10781 * We allow the MTU to be set on an ILL, but not have it be different 10782 * for different IPIFs since we don't actually send packets on IPIFs. 10783 */ 10784 /* ARGSUSED */ 10785 int 10786 ip_sioctl_mtu(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 10787 ip_ioctl_cmd_t *ipip, void *if_req) 10788 { 10789 int mtu; 10790 int ip_min_mtu; 10791 struct ifreq *ifr; 10792 struct lifreq *lifr; 10793 ill_t *ill; 10794 10795 ip1dbg(("ip_sioctl_mtu(%s:%u %p)\n", ipif->ipif_ill->ill_name, 10796 ipif->ipif_id, (void *)ipif)); 10797 if (ipip->ipi_cmd_type == IF_CMD) { 10798 ifr = (struct ifreq *)if_req; 10799 mtu = ifr->ifr_metric; 10800 } else { 10801 lifr = (struct lifreq *)if_req; 10802 mtu = lifr->lifr_mtu; 10803 } 10804 /* Only allow for logical unit zero i.e. not on "bge0:17" */ 10805 if (ipif->ipif_id != 0) 10806 return (EINVAL); 10807 10808 ill = ipif->ipif_ill; 10809 if (ipif->ipif_isv6) 10810 ip_min_mtu = IPV6_MIN_MTU; 10811 else 10812 ip_min_mtu = IP_MIN_MTU; 10813 10814 mutex_enter(&ill->ill_lock); 10815 if (mtu > ill->ill_max_frag || mtu < ip_min_mtu) { 10816 mutex_exit(&ill->ill_lock); 10817 return (EINVAL); 10818 } 10819 /* 10820 * The dce and fragmentation code can handle changes to ill_mtu 10821 * concurrent with sending/fragmenting packets. 10822 */ 10823 ill->ill_mtu = mtu; 10824 ill->ill_flags |= ILLF_FIXEDMTU; 10825 mutex_exit(&ill->ill_lock); 10826 10827 /* 10828 * Make sure all dce_generation checks find out 10829 * that ill_mtu has changed. 10830 */ 10831 dce_increment_all_generations(ill->ill_isv6, ill->ill_ipst); 10832 10833 /* 10834 * Refresh IPMP meta-interface MTU if necessary. 10835 */ 10836 if (IS_UNDER_IPMP(ill)) 10837 ipmp_illgrp_refresh_mtu(ill->ill_grp); 10838 10839 /* Update the MTU in SCTP's list */ 10840 sctp_update_ipif(ipif, SCTP_IPIF_UPDATE); 10841 return (0); 10842 } 10843 10844 /* Get interface MTU. */ 10845 /* ARGSUSED */ 10846 int 10847 ip_sioctl_get_mtu(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 10848 ip_ioctl_cmd_t *ipip, void *if_req) 10849 { 10850 struct ifreq *ifr; 10851 struct lifreq *lifr; 10852 10853 ip1dbg(("ip_sioctl_get_mtu(%s:%u %p)\n", 10854 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 10855 10856 /* 10857 * We allow a get on any logical interface even though the set 10858 * can only be done on logical unit 0. 10859 */ 10860 if (ipip->ipi_cmd_type == IF_CMD) { 10861 ifr = (struct ifreq *)if_req; 10862 ifr->ifr_metric = ipif->ipif_ill->ill_mtu; 10863 } else { 10864 lifr = (struct lifreq *)if_req; 10865 lifr->lifr_mtu = ipif->ipif_ill->ill_mtu; 10866 } 10867 return (0); 10868 } 10869 10870 /* Set interface broadcast address. */ 10871 /* ARGSUSED2 */ 10872 int 10873 ip_sioctl_brdaddr(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 10874 ip_ioctl_cmd_t *ipip, void *if_req) 10875 { 10876 ipaddr_t addr; 10877 ire_t *ire; 10878 ill_t *ill = ipif->ipif_ill; 10879 ip_stack_t *ipst = ill->ill_ipst; 10880 10881 ip1dbg(("ip_sioctl_brdaddr(%s:%u)\n", ill->ill_name, 10882 ipif->ipif_id)); 10883 10884 ASSERT(IAM_WRITER_IPIF(ipif)); 10885 if (!(ipif->ipif_flags & IPIF_BROADCAST)) 10886 return (EADDRNOTAVAIL); 10887 10888 ASSERT(!(ipif->ipif_isv6)); /* No IPv6 broadcast */ 10889 10890 if (sin->sin_family != AF_INET) 10891 return (EAFNOSUPPORT); 10892 10893 addr = sin->sin_addr.s_addr; 10894 10895 if (ipif->ipif_flags & IPIF_UP) { 10896 /* 10897 * If we are already up, make sure the new 10898 * broadcast address makes sense. If it does, 10899 * there should be an IRE for it already. 10900 */ 10901 ire = ire_ftable_lookup_v4(addr, 0, 0, IRE_BROADCAST, 10902 ill, ipif->ipif_zoneid, NULL, 10903 (MATCH_IRE_ILL | MATCH_IRE_TYPE), 0, ipst, NULL); 10904 if (ire == NULL) { 10905 return (EINVAL); 10906 } else { 10907 ire_refrele(ire); 10908 } 10909 } 10910 /* 10911 * Changing the broadcast addr for this ipif. Since the IRE_BROADCAST 10912 * needs to already exist we never need to change the set of 10913 * IRE_BROADCASTs when we are UP. 10914 */ 10915 if (addr != ipif->ipif_brd_addr) 10916 IN6_IPADDR_TO_V4MAPPED(addr, &ipif->ipif_v6brd_addr); 10917 10918 return (0); 10919 } 10920 10921 /* Get interface broadcast address. */ 10922 /* ARGSUSED */ 10923 int 10924 ip_sioctl_get_brdaddr(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 10925 ip_ioctl_cmd_t *ipip, void *if_req) 10926 { 10927 ip1dbg(("ip_sioctl_get_brdaddr(%s:%u %p)\n", 10928 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 10929 if (!(ipif->ipif_flags & IPIF_BROADCAST)) 10930 return (EADDRNOTAVAIL); 10931 10932 /* IPIF_BROADCAST not possible with IPv6 */ 10933 ASSERT(!ipif->ipif_isv6); 10934 *sin = sin_null; 10935 sin->sin_family = AF_INET; 10936 sin->sin_addr.s_addr = ipif->ipif_brd_addr; 10937 return (0); 10938 } 10939 10940 /* 10941 * This routine is called to handle the SIOCS*IFNETMASK IOCTL. 10942 */ 10943 /* ARGSUSED */ 10944 int 10945 ip_sioctl_netmask(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 10946 ip_ioctl_cmd_t *ipip, void *if_req) 10947 { 10948 int err = 0; 10949 in6_addr_t v6mask; 10950 10951 ip1dbg(("ip_sioctl_netmask(%s:%u %p)\n", 10952 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 10953 10954 ASSERT(IAM_WRITER_IPIF(ipif)); 10955 10956 if (ipif->ipif_isv6) { 10957 sin6_t *sin6; 10958 10959 if (sin->sin_family != AF_INET6) 10960 return (EAFNOSUPPORT); 10961 10962 sin6 = (sin6_t *)sin; 10963 v6mask = sin6->sin6_addr; 10964 } else { 10965 ipaddr_t mask; 10966 10967 if (sin->sin_family != AF_INET) 10968 return (EAFNOSUPPORT); 10969 10970 mask = sin->sin_addr.s_addr; 10971 if (!ip_contiguous_mask(ntohl(mask))) 10972 return (ENOTSUP); 10973 V4MASK_TO_V6(mask, v6mask); 10974 } 10975 10976 /* 10977 * No big deal if the interface isn't already up, or the mask 10978 * isn't really changing, or this is pt-pt. 10979 */ 10980 if (!(ipif->ipif_flags & IPIF_UP) || 10981 IN6_ARE_ADDR_EQUAL(&v6mask, &ipif->ipif_v6net_mask) || 10982 (ipif->ipif_flags & IPIF_POINTOPOINT)) { 10983 ipif->ipif_v6net_mask = v6mask; 10984 if ((ipif->ipif_flags & IPIF_POINTOPOINT) == 0) { 10985 V6_MASK_COPY(ipif->ipif_v6lcl_addr, 10986 ipif->ipif_v6net_mask, 10987 ipif->ipif_v6subnet); 10988 } 10989 return (0); 10990 } 10991 /* 10992 * Make sure we have valid net and subnet broadcast ire's 10993 * for the old netmask, if needed by other logical interfaces. 10994 */ 10995 err = ipif_logical_down(ipif, q, mp); 10996 if (err == EINPROGRESS) 10997 return (err); 10998 (void) ipif_down_tail(ipif); 10999 err = ip_sioctl_netmask_tail(ipif, sin, q, mp); 11000 return (err); 11001 } 11002 11003 static int 11004 ip_sioctl_netmask_tail(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp) 11005 { 11006 in6_addr_t v6mask; 11007 int err = 0; 11008 11009 ip1dbg(("ip_sioctl_netmask_tail(%s:%u %p)\n", 11010 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11011 11012 if (ipif->ipif_isv6) { 11013 sin6_t *sin6; 11014 11015 sin6 = (sin6_t *)sin; 11016 v6mask = sin6->sin6_addr; 11017 } else { 11018 ipaddr_t mask; 11019 11020 mask = sin->sin_addr.s_addr; 11021 V4MASK_TO_V6(mask, v6mask); 11022 } 11023 11024 ipif->ipif_v6net_mask = v6mask; 11025 if ((ipif->ipif_flags & IPIF_POINTOPOINT) == 0) { 11026 V6_MASK_COPY(ipif->ipif_v6lcl_addr, ipif->ipif_v6net_mask, 11027 ipif->ipif_v6subnet); 11028 } 11029 err = ipif_up(ipif, q, mp); 11030 11031 if (err == 0 || err == EINPROGRESS) { 11032 /* 11033 * The interface must be DL_BOUND if this packet has to 11034 * go out on the wire. Since we only go through a logical 11035 * down and are bound with the driver during an internal 11036 * down/up that is satisfied. 11037 */ 11038 if (!ipif->ipif_isv6 && ipif->ipif_ill->ill_wq != NULL) { 11039 /* Potentially broadcast an address mask reply. */ 11040 ipif_mask_reply(ipif); 11041 } 11042 } 11043 return (err); 11044 } 11045 11046 /* ARGSUSED */ 11047 int 11048 ip_sioctl_netmask_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11049 ip_ioctl_cmd_t *ipip, void *if_req) 11050 { 11051 ip1dbg(("ip_sioctl_netmask_restart(%s:%u %p)\n", 11052 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11053 (void) ipif_down_tail(ipif); 11054 return (ip_sioctl_netmask_tail(ipif, sin, q, mp)); 11055 } 11056 11057 /* Get interface net mask. */ 11058 /* ARGSUSED */ 11059 int 11060 ip_sioctl_get_netmask(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11061 ip_ioctl_cmd_t *ipip, void *if_req) 11062 { 11063 struct lifreq *lifr = (struct lifreq *)if_req; 11064 struct sockaddr_in6 *sin6 = (sin6_t *)sin; 11065 11066 ip1dbg(("ip_sioctl_get_netmask(%s:%u %p)\n", 11067 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11068 11069 /* 11070 * net mask can't change since we have a reference to the ipif. 11071 */ 11072 if (ipif->ipif_isv6) { 11073 ASSERT(ipip->ipi_cmd_type == LIF_CMD); 11074 *sin6 = sin6_null; 11075 sin6->sin6_family = AF_INET6; 11076 sin6->sin6_addr = ipif->ipif_v6net_mask; 11077 lifr->lifr_addrlen = 11078 ip_mask_to_plen_v6(&ipif->ipif_v6net_mask); 11079 } else { 11080 *sin = sin_null; 11081 sin->sin_family = AF_INET; 11082 sin->sin_addr.s_addr = ipif->ipif_net_mask; 11083 if (ipip->ipi_cmd_type == LIF_CMD) { 11084 lifr->lifr_addrlen = 11085 ip_mask_to_plen(ipif->ipif_net_mask); 11086 } 11087 } 11088 return (0); 11089 } 11090 11091 /* ARGSUSED */ 11092 int 11093 ip_sioctl_metric(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11094 ip_ioctl_cmd_t *ipip, void *if_req) 11095 { 11096 ip1dbg(("ip_sioctl_metric(%s:%u %p)\n", 11097 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11098 11099 /* 11100 * Since no applications should ever be setting metrics on underlying 11101 * interfaces, we explicitly fail to smoke 'em out. 11102 */ 11103 if (IS_UNDER_IPMP(ipif->ipif_ill)) 11104 return (EINVAL); 11105 11106 /* 11107 * Set interface metric. We don't use this for 11108 * anything but we keep track of it in case it is 11109 * important to routing applications or such. 11110 */ 11111 if (ipip->ipi_cmd_type == IF_CMD) { 11112 struct ifreq *ifr; 11113 11114 ifr = (struct ifreq *)if_req; 11115 ipif->ipif_ill->ill_metric = ifr->ifr_metric; 11116 } else { 11117 struct lifreq *lifr; 11118 11119 lifr = (struct lifreq *)if_req; 11120 ipif->ipif_ill->ill_metric = lifr->lifr_metric; 11121 } 11122 return (0); 11123 } 11124 11125 /* ARGSUSED */ 11126 int 11127 ip_sioctl_get_metric(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11128 ip_ioctl_cmd_t *ipip, void *if_req) 11129 { 11130 /* Get interface metric. */ 11131 ip1dbg(("ip_sioctl_get_metric(%s:%u %p)\n", 11132 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11133 11134 if (ipip->ipi_cmd_type == IF_CMD) { 11135 struct ifreq *ifr; 11136 11137 ifr = (struct ifreq *)if_req; 11138 ifr->ifr_metric = ipif->ipif_ill->ill_metric; 11139 } else { 11140 struct lifreq *lifr; 11141 11142 lifr = (struct lifreq *)if_req; 11143 lifr->lifr_metric = ipif->ipif_ill->ill_metric; 11144 } 11145 11146 return (0); 11147 } 11148 11149 /* ARGSUSED */ 11150 int 11151 ip_sioctl_muxid(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11152 ip_ioctl_cmd_t *ipip, void *if_req) 11153 { 11154 int arp_muxid; 11155 11156 ip1dbg(("ip_sioctl_muxid(%s:%u %p)\n", 11157 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11158 /* 11159 * Set the muxid returned from I_PLINK. 11160 */ 11161 if (ipip->ipi_cmd_type == IF_CMD) { 11162 struct ifreq *ifr = (struct ifreq *)if_req; 11163 11164 ipif->ipif_ill->ill_muxid = ifr->ifr_ip_muxid; 11165 arp_muxid = ifr->ifr_arp_muxid; 11166 } else { 11167 struct lifreq *lifr = (struct lifreq *)if_req; 11168 11169 ipif->ipif_ill->ill_muxid = lifr->lifr_ip_muxid; 11170 arp_muxid = lifr->lifr_arp_muxid; 11171 } 11172 arl_set_muxid(ipif->ipif_ill, arp_muxid); 11173 return (0); 11174 } 11175 11176 /* ARGSUSED */ 11177 int 11178 ip_sioctl_get_muxid(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11179 ip_ioctl_cmd_t *ipip, void *if_req) 11180 { 11181 int arp_muxid = 0; 11182 11183 ip1dbg(("ip_sioctl_get_muxid(%s:%u %p)\n", 11184 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11185 /* 11186 * Get the muxid saved in ill for I_PUNLINK. 11187 */ 11188 arp_muxid = arl_get_muxid(ipif->ipif_ill); 11189 if (ipip->ipi_cmd_type == IF_CMD) { 11190 struct ifreq *ifr = (struct ifreq *)if_req; 11191 11192 ifr->ifr_ip_muxid = ipif->ipif_ill->ill_muxid; 11193 ifr->ifr_arp_muxid = arp_muxid; 11194 } else { 11195 struct lifreq *lifr = (struct lifreq *)if_req; 11196 11197 lifr->lifr_ip_muxid = ipif->ipif_ill->ill_muxid; 11198 lifr->lifr_arp_muxid = arp_muxid; 11199 } 11200 return (0); 11201 } 11202 11203 /* 11204 * Set the subnet prefix. Does not modify the broadcast address. 11205 */ 11206 /* ARGSUSED */ 11207 int 11208 ip_sioctl_subnet(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11209 ip_ioctl_cmd_t *ipip, void *if_req) 11210 { 11211 int err = 0; 11212 in6_addr_t v6addr; 11213 in6_addr_t v6mask; 11214 boolean_t need_up = B_FALSE; 11215 int addrlen; 11216 11217 ip1dbg(("ip_sioctl_subnet(%s:%u %p)\n", 11218 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11219 11220 ASSERT(IAM_WRITER_IPIF(ipif)); 11221 addrlen = ((struct lifreq *)if_req)->lifr_addrlen; 11222 11223 if (ipif->ipif_isv6) { 11224 sin6_t *sin6; 11225 11226 if (sin->sin_family != AF_INET6) 11227 return (EAFNOSUPPORT); 11228 11229 sin6 = (sin6_t *)sin; 11230 v6addr = sin6->sin6_addr; 11231 if (!ip_remote_addr_ok_v6(&v6addr, &ipv6_all_ones)) 11232 return (EADDRNOTAVAIL); 11233 } else { 11234 ipaddr_t addr; 11235 11236 if (sin->sin_family != AF_INET) 11237 return (EAFNOSUPPORT); 11238 11239 addr = sin->sin_addr.s_addr; 11240 if (!ip_addr_ok_v4(addr, 0xFFFFFFFF)) 11241 return (EADDRNOTAVAIL); 11242 IN6_IPADDR_TO_V4MAPPED(addr, &v6addr); 11243 /* Add 96 bits */ 11244 addrlen += IPV6_ABITS - IP_ABITS; 11245 } 11246 11247 if (ip_plen_to_mask_v6(addrlen, &v6mask) == NULL) 11248 return (EINVAL); 11249 11250 /* Check if bits in the address is set past the mask */ 11251 if (!V6_MASK_EQ(v6addr, v6mask, v6addr)) 11252 return (EINVAL); 11253 11254 if (IN6_ARE_ADDR_EQUAL(&ipif->ipif_v6subnet, &v6addr) && 11255 IN6_ARE_ADDR_EQUAL(&ipif->ipif_v6net_mask, &v6mask)) 11256 return (0); /* No change */ 11257 11258 if (ipif->ipif_flags & IPIF_UP) { 11259 /* 11260 * If the interface is already marked up, 11261 * we call ipif_down which will take care 11262 * of ditching any IREs that have been set 11263 * up based on the old interface address. 11264 */ 11265 err = ipif_logical_down(ipif, q, mp); 11266 if (err == EINPROGRESS) 11267 return (err); 11268 (void) ipif_down_tail(ipif); 11269 need_up = B_TRUE; 11270 } 11271 11272 err = ip_sioctl_subnet_tail(ipif, v6addr, v6mask, q, mp, need_up); 11273 return (err); 11274 } 11275 11276 static int 11277 ip_sioctl_subnet_tail(ipif_t *ipif, in6_addr_t v6addr, in6_addr_t v6mask, 11278 queue_t *q, mblk_t *mp, boolean_t need_up) 11279 { 11280 ill_t *ill = ipif->ipif_ill; 11281 int err = 0; 11282 11283 ip1dbg(("ip_sioctl_subnet_tail(%s:%u %p)\n", 11284 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11285 11286 /* Set the new address. */ 11287 mutex_enter(&ill->ill_lock); 11288 ipif->ipif_v6net_mask = v6mask; 11289 if ((ipif->ipif_flags & IPIF_POINTOPOINT) == 0) { 11290 V6_MASK_COPY(v6addr, ipif->ipif_v6net_mask, 11291 ipif->ipif_v6subnet); 11292 } 11293 mutex_exit(&ill->ill_lock); 11294 11295 if (need_up) { 11296 /* 11297 * Now bring the interface back up. If this 11298 * is the only IPIF for the ILL, ipif_up 11299 * will have to re-bind to the device, so 11300 * we may get back EINPROGRESS, in which 11301 * case, this IOCTL will get completed in 11302 * ip_rput_dlpi when we see the DL_BIND_ACK. 11303 */ 11304 err = ipif_up(ipif, q, mp); 11305 if (err == EINPROGRESS) 11306 return (err); 11307 } 11308 return (err); 11309 } 11310 11311 /* ARGSUSED */ 11312 int 11313 ip_sioctl_subnet_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11314 ip_ioctl_cmd_t *ipip, void *if_req) 11315 { 11316 int addrlen; 11317 in6_addr_t v6addr; 11318 in6_addr_t v6mask; 11319 struct lifreq *lifr = (struct lifreq *)if_req; 11320 11321 ip1dbg(("ip_sioctl_subnet_restart(%s:%u %p)\n", 11322 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11323 (void) ipif_down_tail(ipif); 11324 11325 addrlen = lifr->lifr_addrlen; 11326 if (ipif->ipif_isv6) { 11327 sin6_t *sin6; 11328 11329 sin6 = (sin6_t *)sin; 11330 v6addr = sin6->sin6_addr; 11331 } else { 11332 ipaddr_t addr; 11333 11334 addr = sin->sin_addr.s_addr; 11335 IN6_IPADDR_TO_V4MAPPED(addr, &v6addr); 11336 addrlen += IPV6_ABITS - IP_ABITS; 11337 } 11338 (void) ip_plen_to_mask_v6(addrlen, &v6mask); 11339 11340 return (ip_sioctl_subnet_tail(ipif, v6addr, v6mask, q, mp, B_TRUE)); 11341 } 11342 11343 /* ARGSUSED */ 11344 int 11345 ip_sioctl_get_subnet(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11346 ip_ioctl_cmd_t *ipip, void *if_req) 11347 { 11348 struct lifreq *lifr = (struct lifreq *)if_req; 11349 struct sockaddr_in6 *sin6 = (struct sockaddr_in6 *)sin; 11350 11351 ip1dbg(("ip_sioctl_get_subnet(%s:%u %p)\n", 11352 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11353 ASSERT(ipip->ipi_cmd_type == LIF_CMD); 11354 11355 if (ipif->ipif_isv6) { 11356 *sin6 = sin6_null; 11357 sin6->sin6_family = AF_INET6; 11358 sin6->sin6_addr = ipif->ipif_v6subnet; 11359 lifr->lifr_addrlen = 11360 ip_mask_to_plen_v6(&ipif->ipif_v6net_mask); 11361 } else { 11362 *sin = sin_null; 11363 sin->sin_family = AF_INET; 11364 sin->sin_addr.s_addr = ipif->ipif_subnet; 11365 lifr->lifr_addrlen = ip_mask_to_plen(ipif->ipif_net_mask); 11366 } 11367 return (0); 11368 } 11369 11370 /* 11371 * Set the IPv6 address token. 11372 */ 11373 /* ARGSUSED */ 11374 int 11375 ip_sioctl_token(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11376 ip_ioctl_cmd_t *ipi, void *if_req) 11377 { 11378 ill_t *ill = ipif->ipif_ill; 11379 int err; 11380 in6_addr_t v6addr; 11381 in6_addr_t v6mask; 11382 boolean_t need_up = B_FALSE; 11383 int i; 11384 sin6_t *sin6 = (sin6_t *)sin; 11385 struct lifreq *lifr = (struct lifreq *)if_req; 11386 int addrlen; 11387 11388 ip1dbg(("ip_sioctl_token(%s:%u %p)\n", 11389 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11390 ASSERT(IAM_WRITER_IPIF(ipif)); 11391 11392 addrlen = lifr->lifr_addrlen; 11393 /* Only allow for logical unit zero i.e. not on "le0:17" */ 11394 if (ipif->ipif_id != 0) 11395 return (EINVAL); 11396 11397 if (!ipif->ipif_isv6) 11398 return (EINVAL); 11399 11400 if (addrlen > IPV6_ABITS) 11401 return (EINVAL); 11402 11403 v6addr = sin6->sin6_addr; 11404 11405 /* 11406 * The length of the token is the length from the end. To get 11407 * the proper mask for this, compute the mask of the bits not 11408 * in the token; ie. the prefix, and then xor to get the mask. 11409 */ 11410 if (ip_plen_to_mask_v6(IPV6_ABITS - addrlen, &v6mask) == NULL) 11411 return (EINVAL); 11412 for (i = 0; i < 4; i++) { 11413 v6mask.s6_addr32[i] ^= (uint32_t)0xffffffff; 11414 } 11415 11416 if (V6_MASK_EQ(v6addr, v6mask, ill->ill_token) && 11417 ill->ill_token_length == addrlen) 11418 return (0); /* No change */ 11419 11420 if (ipif->ipif_flags & IPIF_UP) { 11421 err = ipif_logical_down(ipif, q, mp); 11422 if (err == EINPROGRESS) 11423 return (err); 11424 (void) ipif_down_tail(ipif); 11425 need_up = B_TRUE; 11426 } 11427 err = ip_sioctl_token_tail(ipif, sin6, addrlen, q, mp, need_up); 11428 return (err); 11429 } 11430 11431 static int 11432 ip_sioctl_token_tail(ipif_t *ipif, sin6_t *sin6, int addrlen, queue_t *q, 11433 mblk_t *mp, boolean_t need_up) 11434 { 11435 in6_addr_t v6addr; 11436 in6_addr_t v6mask; 11437 ill_t *ill = ipif->ipif_ill; 11438 int i; 11439 int err = 0; 11440 11441 ip1dbg(("ip_sioctl_token_tail(%s:%u %p)\n", 11442 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11443 v6addr = sin6->sin6_addr; 11444 /* 11445 * The length of the token is the length from the end. To get 11446 * the proper mask for this, compute the mask of the bits not 11447 * in the token; ie. the prefix, and then xor to get the mask. 11448 */ 11449 (void) ip_plen_to_mask_v6(IPV6_ABITS - addrlen, &v6mask); 11450 for (i = 0; i < 4; i++) 11451 v6mask.s6_addr32[i] ^= (uint32_t)0xffffffff; 11452 11453 mutex_enter(&ill->ill_lock); 11454 V6_MASK_COPY(v6addr, v6mask, ill->ill_token); 11455 ill->ill_token_length = addrlen; 11456 ill->ill_manual_token = 1; 11457 11458 /* Reconfigure the link-local address based on this new token */ 11459 ipif_setlinklocal(ill->ill_ipif); 11460 11461 mutex_exit(&ill->ill_lock); 11462 11463 if (need_up) { 11464 /* 11465 * Now bring the interface back up. If this 11466 * is the only IPIF for the ILL, ipif_up 11467 * will have to re-bind to the device, so 11468 * we may get back EINPROGRESS, in which 11469 * case, this IOCTL will get completed in 11470 * ip_rput_dlpi when we see the DL_BIND_ACK. 11471 */ 11472 err = ipif_up(ipif, q, mp); 11473 if (err == EINPROGRESS) 11474 return (err); 11475 } 11476 return (err); 11477 } 11478 11479 /* ARGSUSED */ 11480 int 11481 ip_sioctl_get_token(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11482 ip_ioctl_cmd_t *ipi, void *if_req) 11483 { 11484 ill_t *ill; 11485 sin6_t *sin6 = (sin6_t *)sin; 11486 struct lifreq *lifr = (struct lifreq *)if_req; 11487 11488 ip1dbg(("ip_sioctl_get_token(%s:%u %p)\n", 11489 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11490 if (ipif->ipif_id != 0) 11491 return (EINVAL); 11492 11493 ill = ipif->ipif_ill; 11494 if (!ill->ill_isv6) 11495 return (ENXIO); 11496 11497 *sin6 = sin6_null; 11498 sin6->sin6_family = AF_INET6; 11499 ASSERT(!IN6_IS_ADDR_V4MAPPED(&ill->ill_token)); 11500 sin6->sin6_addr = ill->ill_token; 11501 lifr->lifr_addrlen = ill->ill_token_length; 11502 return (0); 11503 } 11504 11505 /* 11506 * Set (hardware) link specific information that might override 11507 * what was acquired through the DL_INFO_ACK. 11508 */ 11509 /* ARGSUSED */ 11510 int 11511 ip_sioctl_lnkinfo(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11512 ip_ioctl_cmd_t *ipi, void *if_req) 11513 { 11514 ill_t *ill = ipif->ipif_ill; 11515 int ip_min_mtu; 11516 struct lifreq *lifr = (struct lifreq *)if_req; 11517 lif_ifinfo_req_t *lir; 11518 11519 ip1dbg(("ip_sioctl_lnkinfo(%s:%u %p)\n", 11520 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11521 lir = &lifr->lifr_ifinfo; 11522 ASSERT(IAM_WRITER_IPIF(ipif)); 11523 11524 /* Only allow for logical unit zero i.e. not on "bge0:17" */ 11525 if (ipif->ipif_id != 0) 11526 return (EINVAL); 11527 11528 /* Set interface MTU. */ 11529 if (ipif->ipif_isv6) 11530 ip_min_mtu = IPV6_MIN_MTU; 11531 else 11532 ip_min_mtu = IP_MIN_MTU; 11533 11534 /* 11535 * Verify values before we set anything. Allow zero to 11536 * mean unspecified. 11537 * 11538 * XXX We should be able to set the user-defined lir_mtu to some value 11539 * that is greater than ill_current_frag but less than ill_max_frag- the 11540 * ill_max_frag value tells us the max MTU that can be handled by the 11541 * datalink, whereas the ill_current_frag is dynamically computed for 11542 * some link-types like tunnels, based on the tunnel PMTU. However, 11543 * since there is currently no way of distinguishing between 11544 * administratively fixed link mtu values (e.g., those set via 11545 * /sbin/dladm) and dynamically discovered MTUs (e.g., those discovered 11546 * for tunnels) we conservatively choose the ill_current_frag as the 11547 * upper-bound. 11548 */ 11549 if (lir->lir_maxmtu != 0 && 11550 (lir->lir_maxmtu > ill->ill_current_frag || 11551 lir->lir_maxmtu < ip_min_mtu)) 11552 return (EINVAL); 11553 if (lir->lir_reachtime != 0 && 11554 lir->lir_reachtime > ND_MAX_REACHTIME) 11555 return (EINVAL); 11556 if (lir->lir_reachretrans != 0 && 11557 lir->lir_reachretrans > ND_MAX_REACHRETRANSTIME) 11558 return (EINVAL); 11559 11560 mutex_enter(&ill->ill_lock); 11561 /* 11562 * The dce and fragmentation code can handle changes to ill_mtu 11563 * concurrent with sending/fragmenting packets. 11564 */ 11565 if (lir->lir_maxmtu != 0) 11566 ill->ill_user_mtu = lir->lir_maxmtu; 11567 11568 if (lir->lir_reachtime != 0) 11569 ill->ill_reachable_time = lir->lir_reachtime; 11570 11571 if (lir->lir_reachretrans != 0) 11572 ill->ill_reachable_retrans_time = lir->lir_reachretrans; 11573 11574 ill->ill_max_hops = lir->lir_maxhops; 11575 ill->ill_max_buf = ND_MAX_Q; 11576 if (!(ill->ill_flags & ILLF_FIXEDMTU) && ill->ill_user_mtu != 0) { 11577 /* 11578 * ill_mtu is the actual interface MTU, obtained as the min 11579 * of user-configured mtu and the value announced by the 11580 * driver (via DL_NOTE_SDU_SIZE/DL_INFO_ACK). Note that since 11581 * we have already made the choice of requiring 11582 * ill_user_mtu < ill_current_frag by the time we get here, 11583 * the ill_mtu effectively gets assigned to the ill_user_mtu 11584 * here. 11585 */ 11586 ill->ill_mtu = MIN(ill->ill_current_frag, ill->ill_user_mtu); 11587 } 11588 mutex_exit(&ill->ill_lock); 11589 11590 /* 11591 * Make sure all dce_generation checks find out 11592 * that ill_mtu has changed. 11593 */ 11594 if (!(ill->ill_flags & ILLF_FIXEDMTU) && (lir->lir_maxmtu != 0)) 11595 dce_increment_all_generations(ill->ill_isv6, ill->ill_ipst); 11596 11597 /* 11598 * Refresh IPMP meta-interface MTU if necessary. 11599 */ 11600 if (IS_UNDER_IPMP(ill)) 11601 ipmp_illgrp_refresh_mtu(ill->ill_grp); 11602 11603 return (0); 11604 } 11605 11606 /* ARGSUSED */ 11607 int 11608 ip_sioctl_get_lnkinfo(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11609 ip_ioctl_cmd_t *ipi, void *if_req) 11610 { 11611 struct lif_ifinfo_req *lir; 11612 ill_t *ill = ipif->ipif_ill; 11613 11614 ip1dbg(("ip_sioctl_get_lnkinfo(%s:%u %p)\n", 11615 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11616 if (ipif->ipif_id != 0) 11617 return (EINVAL); 11618 11619 lir = &((struct lifreq *)if_req)->lifr_ifinfo; 11620 lir->lir_maxhops = ill->ill_max_hops; 11621 lir->lir_reachtime = ill->ill_reachable_time; 11622 lir->lir_reachretrans = ill->ill_reachable_retrans_time; 11623 lir->lir_maxmtu = ill->ill_mtu; 11624 11625 return (0); 11626 } 11627 11628 /* 11629 * Return best guess as to the subnet mask for the specified address. 11630 * Based on the subnet masks for all the configured interfaces. 11631 * 11632 * We end up returning a zero mask in the case of default, multicast or 11633 * experimental. 11634 */ 11635 static ipaddr_t 11636 ip_subnet_mask(ipaddr_t addr, ipif_t **ipifp, ip_stack_t *ipst) 11637 { 11638 ipaddr_t net_mask; 11639 ill_t *ill; 11640 ipif_t *ipif; 11641 ill_walk_context_t ctx; 11642 ipif_t *fallback_ipif = NULL; 11643 11644 net_mask = ip_net_mask(addr); 11645 if (net_mask == 0) { 11646 *ipifp = NULL; 11647 return (0); 11648 } 11649 11650 /* Let's check to see if this is maybe a local subnet route. */ 11651 /* this function only applies to IPv4 interfaces */ 11652 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 11653 ill = ILL_START_WALK_V4(&ctx, ipst); 11654 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 11655 mutex_enter(&ill->ill_lock); 11656 for (ipif = ill->ill_ipif; ipif != NULL; 11657 ipif = ipif->ipif_next) { 11658 if (IPIF_IS_CONDEMNED(ipif)) 11659 continue; 11660 if (!(ipif->ipif_flags & IPIF_UP)) 11661 continue; 11662 if ((ipif->ipif_subnet & net_mask) == 11663 (addr & net_mask)) { 11664 /* 11665 * Don't trust pt-pt interfaces if there are 11666 * other interfaces. 11667 */ 11668 if (ipif->ipif_flags & IPIF_POINTOPOINT) { 11669 if (fallback_ipif == NULL) { 11670 ipif_refhold_locked(ipif); 11671 fallback_ipif = ipif; 11672 } 11673 continue; 11674 } 11675 11676 /* 11677 * Fine. Just assume the same net mask as the 11678 * directly attached subnet interface is using. 11679 */ 11680 ipif_refhold_locked(ipif); 11681 mutex_exit(&ill->ill_lock); 11682 rw_exit(&ipst->ips_ill_g_lock); 11683 if (fallback_ipif != NULL) 11684 ipif_refrele(fallback_ipif); 11685 *ipifp = ipif; 11686 return (ipif->ipif_net_mask); 11687 } 11688 } 11689 mutex_exit(&ill->ill_lock); 11690 } 11691 rw_exit(&ipst->ips_ill_g_lock); 11692 11693 *ipifp = fallback_ipif; 11694 return ((fallback_ipif != NULL) ? 11695 fallback_ipif->ipif_net_mask : net_mask); 11696 } 11697 11698 /* 11699 * ip_sioctl_copyin_setup calls ip_wput_ioctl to process the IP_IOCTL ioctl. 11700 */ 11701 static void 11702 ip_wput_ioctl(queue_t *q, mblk_t *mp) 11703 { 11704 IOCP iocp; 11705 ipft_t *ipft; 11706 ipllc_t *ipllc; 11707 mblk_t *mp1; 11708 cred_t *cr; 11709 int error = 0; 11710 conn_t *connp; 11711 11712 ip1dbg(("ip_wput_ioctl")); 11713 iocp = (IOCP)mp->b_rptr; 11714 mp1 = mp->b_cont; 11715 if (mp1 == NULL) { 11716 iocp->ioc_error = EINVAL; 11717 mp->b_datap->db_type = M_IOCNAK; 11718 iocp->ioc_count = 0; 11719 qreply(q, mp); 11720 return; 11721 } 11722 11723 /* 11724 * These IOCTLs provide various control capabilities to 11725 * upstream agents such as ULPs and processes. There 11726 * are currently two such IOCTLs implemented. They 11727 * are used by TCP to provide update information for 11728 * existing IREs and to forcibly delete an IRE for a 11729 * host that is not responding, thereby forcing an 11730 * attempt at a new route. 11731 */ 11732 iocp->ioc_error = EINVAL; 11733 if (!pullupmsg(mp1, sizeof (ipllc->ipllc_cmd))) 11734 goto done; 11735 11736 ipllc = (ipllc_t *)mp1->b_rptr; 11737 for (ipft = ip_ioctl_ftbl; ipft->ipft_pfi; ipft++) { 11738 if (ipllc->ipllc_cmd == ipft->ipft_cmd) 11739 break; 11740 } 11741 /* 11742 * prefer credential from mblk over ioctl; 11743 * see ip_sioctl_copyin_setup 11744 */ 11745 cr = msg_getcred(mp, NULL); 11746 if (cr == NULL) 11747 cr = iocp->ioc_cr; 11748 11749 /* 11750 * Refhold the conn in case the request gets queued up in some lookup 11751 */ 11752 ASSERT(CONN_Q(q)); 11753 connp = Q_TO_CONN(q); 11754 CONN_INC_REF(connp); 11755 CONN_INC_IOCTLREF(connp); 11756 if (ipft->ipft_pfi && 11757 ((mp1->b_wptr - mp1->b_rptr) >= ipft->ipft_min_size || 11758 pullupmsg(mp1, ipft->ipft_min_size))) { 11759 error = (*ipft->ipft_pfi)(q, 11760 (ipft->ipft_flags & IPFT_F_SELF_REPLY) ? mp : mp1, cr); 11761 } 11762 if (ipft->ipft_flags & IPFT_F_SELF_REPLY) { 11763 /* 11764 * CONN_OPER_PENDING_DONE happens in the function called 11765 * through ipft_pfi above. 11766 */ 11767 return; 11768 } 11769 11770 CONN_DEC_IOCTLREF(connp); 11771 CONN_OPER_PENDING_DONE(connp); 11772 if (ipft->ipft_flags & IPFT_F_NO_REPLY) { 11773 freemsg(mp); 11774 return; 11775 } 11776 iocp->ioc_error = error; 11777 11778 done: 11779 mp->b_datap->db_type = M_IOCACK; 11780 if (iocp->ioc_error) 11781 iocp->ioc_count = 0; 11782 qreply(q, mp); 11783 } 11784 11785 /* 11786 * Assign a unique id for the ipif. This is used by sctp_addr.c 11787 * Note: remove if sctp_addr.c is redone to not shadow ill/ipif data structures. 11788 */ 11789 static void 11790 ipif_assign_seqid(ipif_t *ipif) 11791 { 11792 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; 11793 11794 ipif->ipif_seqid = atomic_add_64_nv(&ipst->ips_ipif_g_seqid, 1); 11795 } 11796 11797 /* 11798 * Clone the contents of `sipif' to `dipif'. Requires that both ipifs are 11799 * administratively down (i.e., no DAD), of the same type, and locked. Note 11800 * that the clone is complete -- including the seqid -- and the expectation is 11801 * that the caller will either free or overwrite `sipif' before it's unlocked. 11802 */ 11803 static void 11804 ipif_clone(const ipif_t *sipif, ipif_t *dipif) 11805 { 11806 ASSERT(MUTEX_HELD(&sipif->ipif_ill->ill_lock)); 11807 ASSERT(MUTEX_HELD(&dipif->ipif_ill->ill_lock)); 11808 ASSERT(!(sipif->ipif_flags & (IPIF_UP|IPIF_DUPLICATE))); 11809 ASSERT(!(dipif->ipif_flags & (IPIF_UP|IPIF_DUPLICATE))); 11810 ASSERT(sipif->ipif_ire_type == dipif->ipif_ire_type); 11811 11812 dipif->ipif_flags = sipif->ipif_flags; 11813 dipif->ipif_zoneid = sipif->ipif_zoneid; 11814 dipif->ipif_v6subnet = sipif->ipif_v6subnet; 11815 dipif->ipif_v6lcl_addr = sipif->ipif_v6lcl_addr; 11816 dipif->ipif_v6net_mask = sipif->ipif_v6net_mask; 11817 dipif->ipif_v6brd_addr = sipif->ipif_v6brd_addr; 11818 dipif->ipif_v6pp_dst_addr = sipif->ipif_v6pp_dst_addr; 11819 11820 /* 11821 * As per the comment atop the function, we assume that these sipif 11822 * fields will be changed before sipif is unlocked. 11823 */ 11824 dipif->ipif_seqid = sipif->ipif_seqid; 11825 dipif->ipif_state_flags = sipif->ipif_state_flags; 11826 } 11827 11828 /* 11829 * Transfer the contents of `sipif' to `dipif', and then free (if `virgipif' 11830 * is NULL) or overwrite `sipif' with `virgipif', which must be a virgin 11831 * (unreferenced) ipif. Also, if `sipif' is used by the current xop, then 11832 * transfer the xop to `dipif'. Requires that all ipifs are administratively 11833 * down (i.e., no DAD), of the same type, and unlocked. 11834 */ 11835 static void 11836 ipif_transfer(ipif_t *sipif, ipif_t *dipif, ipif_t *virgipif) 11837 { 11838 ipsq_t *ipsq = sipif->ipif_ill->ill_phyint->phyint_ipsq; 11839 ipxop_t *ipx = ipsq->ipsq_xop; 11840 11841 ASSERT(sipif != dipif); 11842 ASSERT(sipif != virgipif); 11843 11844 /* 11845 * Grab all of the locks that protect the ipif in a defined order. 11846 */ 11847 GRAB_ILL_LOCKS(sipif->ipif_ill, dipif->ipif_ill); 11848 11849 ipif_clone(sipif, dipif); 11850 if (virgipif != NULL) { 11851 ipif_clone(virgipif, sipif); 11852 mi_free(virgipif); 11853 } 11854 11855 RELEASE_ILL_LOCKS(sipif->ipif_ill, dipif->ipif_ill); 11856 11857 /* 11858 * Transfer ownership of the current xop, if necessary. 11859 */ 11860 if (ipx->ipx_current_ipif == sipif) { 11861 ASSERT(ipx->ipx_pending_ipif == NULL); 11862 mutex_enter(&ipx->ipx_lock); 11863 ipx->ipx_current_ipif = dipif; 11864 mutex_exit(&ipx->ipx_lock); 11865 } 11866 11867 if (virgipif == NULL) 11868 mi_free(sipif); 11869 } 11870 11871 /* 11872 * checks if: 11873 * - <ill_name>:<ipif_id> is at most LIFNAMSIZ - 1 and 11874 * - logical interface is within the allowed range 11875 */ 11876 static int 11877 is_lifname_valid(ill_t *ill, unsigned int ipif_id) 11878 { 11879 if (snprintf(NULL, 0, "%s:%d", ill->ill_name, ipif_id) >= LIFNAMSIZ) 11880 return (ENAMETOOLONG); 11881 11882 if (ipif_id >= ill->ill_ipst->ips_ip_addrs_per_if) 11883 return (ERANGE); 11884 return (0); 11885 } 11886 11887 /* 11888 * Insert the ipif, so that the list of ipifs on the ill will be sorted 11889 * with respect to ipif_id. Note that an ipif with an ipif_id of -1 will 11890 * be inserted into the first space available in the list. The value of 11891 * ipif_id will then be set to the appropriate value for its position. 11892 */ 11893 static int 11894 ipif_insert(ipif_t *ipif, boolean_t acquire_g_lock) 11895 { 11896 ill_t *ill; 11897 ipif_t *tipif; 11898 ipif_t **tipifp; 11899 int id, err; 11900 ip_stack_t *ipst; 11901 11902 ASSERT(ipif->ipif_ill->ill_net_type == IRE_LOOPBACK || 11903 IAM_WRITER_IPIF(ipif)); 11904 11905 ill = ipif->ipif_ill; 11906 ASSERT(ill != NULL); 11907 ipst = ill->ill_ipst; 11908 11909 /* 11910 * In the case of lo0:0 we already hold the ill_g_lock. 11911 * ill_lookup_on_name (acquires ill_g_lock) -> ipif_allocate -> 11912 * ipif_insert. 11913 */ 11914 if (acquire_g_lock) 11915 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 11916 mutex_enter(&ill->ill_lock); 11917 id = ipif->ipif_id; 11918 tipifp = &(ill->ill_ipif); 11919 if (id == -1) { /* need to find a real id */ 11920 id = 0; 11921 while ((tipif = *tipifp) != NULL) { 11922 ASSERT(tipif->ipif_id >= id); 11923 if (tipif->ipif_id != id) 11924 break; /* non-consecutive id */ 11925 id++; 11926 tipifp = &(tipif->ipif_next); 11927 } 11928 if ((err = is_lifname_valid(ill, id)) != 0) { 11929 mutex_exit(&ill->ill_lock); 11930 if (acquire_g_lock) 11931 rw_exit(&ipst->ips_ill_g_lock); 11932 return (err); 11933 } 11934 ipif->ipif_id = id; /* assign new id */ 11935 } else if ((err = is_lifname_valid(ill, id)) == 0) { 11936 /* we have a real id; insert ipif in the right place */ 11937 while ((tipif = *tipifp) != NULL) { 11938 ASSERT(tipif->ipif_id != id); 11939 if (tipif->ipif_id > id) 11940 break; /* found correct location */ 11941 tipifp = &(tipif->ipif_next); 11942 } 11943 } else { 11944 mutex_exit(&ill->ill_lock); 11945 if (acquire_g_lock) 11946 rw_exit(&ipst->ips_ill_g_lock); 11947 return (err); 11948 } 11949 11950 ASSERT(tipifp != &(ill->ill_ipif) || id == 0); 11951 11952 ipif->ipif_next = tipif; 11953 *tipifp = ipif; 11954 mutex_exit(&ill->ill_lock); 11955 if (acquire_g_lock) 11956 rw_exit(&ipst->ips_ill_g_lock); 11957 11958 return (0); 11959 } 11960 11961 static void 11962 ipif_remove(ipif_t *ipif) 11963 { 11964 ipif_t **ipifp; 11965 ill_t *ill = ipif->ipif_ill; 11966 11967 ASSERT(RW_WRITE_HELD(&ill->ill_ipst->ips_ill_g_lock)); 11968 11969 mutex_enter(&ill->ill_lock); 11970 ipifp = &ill->ill_ipif; 11971 for (; *ipifp != NULL; ipifp = &ipifp[0]->ipif_next) { 11972 if (*ipifp == ipif) { 11973 *ipifp = ipif->ipif_next; 11974 break; 11975 } 11976 } 11977 mutex_exit(&ill->ill_lock); 11978 } 11979 11980 /* 11981 * Allocate and initialize a new interface control structure. (Always 11982 * called as writer.) 11983 * When ipif_allocate() is called from ip_ll_subnet_defaults, the ill 11984 * is not part of the global linked list of ills. ipif_seqid is unique 11985 * in the system and to preserve the uniqueness, it is assigned only 11986 * when ill becomes part of the global list. At that point ill will 11987 * have a name. If it doesn't get assigned here, it will get assigned 11988 * in ipif_set_values() as part of SIOCSLIFNAME processing. 11989 * Aditionally, if we come here from ip_ll_subnet_defaults, we don't set 11990 * the interface flags or any other information from the DL_INFO_ACK for 11991 * DL_STYLE2 drivers (initialize == B_FALSE), since we won't have them at 11992 * this point. The flags etc. will be set in ip_ll_subnet_defaults when the 11993 * second DL_INFO_ACK comes in from the driver. 11994 */ 11995 static ipif_t * 11996 ipif_allocate(ill_t *ill, int id, uint_t ire_type, boolean_t initialize, 11997 boolean_t insert, int *errorp) 11998 { 11999 int err; 12000 ipif_t *ipif; 12001 ip_stack_t *ipst = ill->ill_ipst; 12002 12003 ip1dbg(("ipif_allocate(%s:%d ill %p)\n", 12004 ill->ill_name, id, (void *)ill)); 12005 ASSERT(ire_type == IRE_LOOPBACK || IAM_WRITER_ILL(ill)); 12006 12007 if (errorp != NULL) 12008 *errorp = 0; 12009 12010 if ((ipif = mi_alloc(sizeof (ipif_t), BPRI_MED)) == NULL) { 12011 if (errorp != NULL) 12012 *errorp = ENOMEM; 12013 return (NULL); 12014 } 12015 *ipif = ipif_zero; /* start clean */ 12016 12017 ipif->ipif_ill = ill; 12018 ipif->ipif_id = id; /* could be -1 */ 12019 /* 12020 * Inherit the zoneid from the ill; for the shared stack instance 12021 * this is always the global zone 12022 */ 12023 ipif->ipif_zoneid = ill->ill_zoneid; 12024 12025 ipif->ipif_refcnt = 0; 12026 12027 if (insert) { 12028 if ((err = ipif_insert(ipif, ire_type != IRE_LOOPBACK)) != 0) { 12029 mi_free(ipif); 12030 if (errorp != NULL) 12031 *errorp = err; 12032 return (NULL); 12033 } 12034 /* -1 id should have been replaced by real id */ 12035 id = ipif->ipif_id; 12036 ASSERT(id >= 0); 12037 } 12038 12039 if (ill->ill_name[0] != '\0') 12040 ipif_assign_seqid(ipif); 12041 12042 /* 12043 * If this is the zeroth ipif on the IPMP ill, create the illgrp 12044 * (which must not exist yet because the zeroth ipif is created once 12045 * per ill). However, do not not link it to the ipmp_grp_t until 12046 * I_PLINK is called; see ip_sioctl_plink_ipmp() for details. 12047 */ 12048 if (id == 0 && IS_IPMP(ill)) { 12049 if (ipmp_illgrp_create(ill) == NULL) { 12050 if (insert) { 12051 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 12052 ipif_remove(ipif); 12053 rw_exit(&ipst->ips_ill_g_lock); 12054 } 12055 mi_free(ipif); 12056 if (errorp != NULL) 12057 *errorp = ENOMEM; 12058 return (NULL); 12059 } 12060 } 12061 12062 /* 12063 * We grab ill_lock to protect the flag changes. The ipif is still 12064 * not up and can't be looked up until the ioctl completes and the 12065 * IPIF_CHANGING flag is cleared. 12066 */ 12067 mutex_enter(&ill->ill_lock); 12068 12069 ipif->ipif_ire_type = ire_type; 12070 12071 if (ipif->ipif_isv6) { 12072 ill->ill_flags |= ILLF_IPV6; 12073 } else { 12074 ipaddr_t inaddr_any = INADDR_ANY; 12075 12076 ill->ill_flags |= ILLF_IPV4; 12077 12078 /* Keep the IN6_IS_ADDR_V4MAPPED assertions happy */ 12079 IN6_IPADDR_TO_V4MAPPED(inaddr_any, 12080 &ipif->ipif_v6lcl_addr); 12081 IN6_IPADDR_TO_V4MAPPED(inaddr_any, 12082 &ipif->ipif_v6subnet); 12083 IN6_IPADDR_TO_V4MAPPED(inaddr_any, 12084 &ipif->ipif_v6net_mask); 12085 IN6_IPADDR_TO_V4MAPPED(inaddr_any, 12086 &ipif->ipif_v6brd_addr); 12087 IN6_IPADDR_TO_V4MAPPED(inaddr_any, 12088 &ipif->ipif_v6pp_dst_addr); 12089 } 12090 12091 /* 12092 * Don't set the interface flags etc. now, will do it in 12093 * ip_ll_subnet_defaults. 12094 */ 12095 if (!initialize) 12096 goto out; 12097 12098 /* 12099 * NOTE: The IPMP meta-interface is special-cased because it starts 12100 * with no underlying interfaces (and thus an unknown broadcast 12101 * address length), but all interfaces that can be placed into an IPMP 12102 * group are required to be broadcast-capable. 12103 */ 12104 if (ill->ill_bcast_addr_length != 0 || IS_IPMP(ill)) { 12105 /* 12106 * Later detect lack of DLPI driver multicast capability by 12107 * catching DL_ENABMULTI_REQ errors in ip_rput_dlpi(). 12108 */ 12109 ill->ill_flags |= ILLF_MULTICAST; 12110 if (!ipif->ipif_isv6) 12111 ipif->ipif_flags |= IPIF_BROADCAST; 12112 } else { 12113 if (ill->ill_net_type != IRE_LOOPBACK) { 12114 if (ipif->ipif_isv6) 12115 /* 12116 * Note: xresolv interfaces will eventually need 12117 * NOARP set here as well, but that will require 12118 * those external resolvers to have some 12119 * knowledge of that flag and act appropriately. 12120 * Not to be changed at present. 12121 */ 12122 ill->ill_flags |= ILLF_NONUD; 12123 else 12124 ill->ill_flags |= ILLF_NOARP; 12125 } 12126 if (ill->ill_phys_addr_length == 0) { 12127 if (IS_VNI(ill)) { 12128 ipif->ipif_flags |= IPIF_NOXMIT; 12129 } else { 12130 /* pt-pt supports multicast. */ 12131 ill->ill_flags |= ILLF_MULTICAST; 12132 if (ill->ill_net_type != IRE_LOOPBACK) 12133 ipif->ipif_flags |= IPIF_POINTOPOINT; 12134 } 12135 } 12136 } 12137 out: 12138 mutex_exit(&ill->ill_lock); 12139 return (ipif); 12140 } 12141 12142 /* 12143 * Remove the neighbor cache entries associated with this logical 12144 * interface. 12145 */ 12146 int 12147 ipif_arp_down(ipif_t *ipif) 12148 { 12149 ill_t *ill = ipif->ipif_ill; 12150 int err = 0; 12151 12152 ip1dbg(("ipif_arp_down(%s:%u)\n", ill->ill_name, ipif->ipif_id)); 12153 ASSERT(IAM_WRITER_IPIF(ipif)); 12154 12155 DTRACE_PROBE3(ipif__downup, char *, "ipif_arp_down", 12156 ill_t *, ill, ipif_t *, ipif); 12157 ipif_nce_down(ipif); 12158 12159 /* 12160 * If this is the last ipif that is going down and there are no 12161 * duplicate addresses we may yet attempt to re-probe, then we need to 12162 * clean up ARP completely. 12163 */ 12164 if (ill->ill_ipif_up_count == 0 && ill->ill_ipif_dup_count == 0 && 12165 !ill->ill_logical_down && ill->ill_net_type == IRE_IF_RESOLVER) { 12166 /* 12167 * If this was the last ipif on an IPMP interface, purge any 12168 * static ARP entries associated with it. 12169 */ 12170 if (IS_IPMP(ill)) 12171 ipmp_illgrp_refresh_arpent(ill->ill_grp); 12172 12173 /* UNBIND, DETACH */ 12174 err = arp_ll_down(ill); 12175 } 12176 12177 return (err); 12178 } 12179 12180 /* 12181 * Get the resolver set up for a new IP address. (Always called as writer.) 12182 * Called both for IPv4 and IPv6 interfaces, though it only does some 12183 * basic DAD related initialization for IPv6. Honors ILLF_NOARP. 12184 * 12185 * The enumerated value res_act tunes the behavior: 12186 * * Res_act_initial: set up all the resolver structures for a new 12187 * IP address. 12188 * * Res_act_defend: tell ARP that it needs to send a single gratuitous 12189 * ARP message in defense of the address. 12190 * * Res_act_rebind: tell ARP to change the hardware address for an IP 12191 * address (and issue gratuitous ARPs). Used by ipmp_ill_bind_ipif(). 12192 * 12193 * Returns zero on success, or an errno upon failure. 12194 */ 12195 int 12196 ipif_resolver_up(ipif_t *ipif, enum ip_resolver_action res_act) 12197 { 12198 ill_t *ill = ipif->ipif_ill; 12199 int err; 12200 boolean_t was_dup; 12201 12202 ip1dbg(("ipif_resolver_up(%s:%u) flags 0x%x\n", 12203 ill->ill_name, ipif->ipif_id, (uint_t)ipif->ipif_flags)); 12204 ASSERT(IAM_WRITER_IPIF(ipif)); 12205 12206 was_dup = B_FALSE; 12207 if (res_act == Res_act_initial) { 12208 ipif->ipif_addr_ready = 0; 12209 /* 12210 * We're bringing an interface up here. There's no way that we 12211 * should need to shut down ARP now. 12212 */ 12213 mutex_enter(&ill->ill_lock); 12214 if (ipif->ipif_flags & IPIF_DUPLICATE) { 12215 ipif->ipif_flags &= ~IPIF_DUPLICATE; 12216 ill->ill_ipif_dup_count--; 12217 was_dup = B_TRUE; 12218 } 12219 mutex_exit(&ill->ill_lock); 12220 } 12221 if (ipif->ipif_recovery_id != 0) 12222 (void) untimeout(ipif->ipif_recovery_id); 12223 ipif->ipif_recovery_id = 0; 12224 if (ill->ill_net_type != IRE_IF_RESOLVER) { 12225 ipif->ipif_addr_ready = 1; 12226 return (0); 12227 } 12228 /* NDP will set the ipif_addr_ready flag when it's ready */ 12229 if (ill->ill_isv6) 12230 return (0); 12231 12232 err = ipif_arp_up(ipif, res_act, was_dup); 12233 return (err); 12234 } 12235 12236 /* 12237 * This routine restarts IPv4/IPv6 duplicate address detection (DAD) 12238 * when a link has just gone back up. 12239 */ 12240 static void 12241 ipif_nce_start_dad(ipif_t *ipif) 12242 { 12243 ncec_t *ncec; 12244 ill_t *ill = ipif->ipif_ill; 12245 boolean_t isv6 = ill->ill_isv6; 12246 12247 if (isv6) { 12248 ncec = ncec_lookup_illgrp_v6(ipif->ipif_ill, 12249 &ipif->ipif_v6lcl_addr); 12250 } else { 12251 ipaddr_t v4addr; 12252 12253 if (ill->ill_net_type != IRE_IF_RESOLVER || 12254 (ipif->ipif_flags & IPIF_UNNUMBERED) || 12255 ipif->ipif_lcl_addr == INADDR_ANY) { 12256 /* 12257 * If we can't contact ARP for some reason, 12258 * that's not really a problem. Just send 12259 * out the routing socket notification that 12260 * DAD completion would have done, and continue. 12261 */ 12262 ipif_mask_reply(ipif); 12263 ipif_up_notify(ipif); 12264 ipif->ipif_addr_ready = 1; 12265 return; 12266 } 12267 12268 IN6_V4MAPPED_TO_IPADDR(&ipif->ipif_v6lcl_addr, v4addr); 12269 ncec = ncec_lookup_illgrp_v4(ipif->ipif_ill, &v4addr); 12270 } 12271 12272 if (ncec == NULL) { 12273 ip1dbg(("couldn't find ncec for ipif %p leaving !ready\n", 12274 (void *)ipif)); 12275 return; 12276 } 12277 if (!nce_restart_dad(ncec)) { 12278 /* 12279 * If we can't restart DAD for some reason, that's not really a 12280 * problem. Just send out the routing socket notification that 12281 * DAD completion would have done, and continue. 12282 */ 12283 ipif_up_notify(ipif); 12284 ipif->ipif_addr_ready = 1; 12285 } 12286 ncec_refrele(ncec); 12287 } 12288 12289 /* 12290 * Restart duplicate address detection on all interfaces on the given ill. 12291 * 12292 * This is called when an interface transitions from down to up 12293 * (DL_NOTE_LINK_UP) or up to down (DL_NOTE_LINK_DOWN). 12294 * 12295 * Note that since the underlying physical link has transitioned, we must cause 12296 * at least one routing socket message to be sent here, either via DAD 12297 * completion or just by default on the first ipif. (If we don't do this, then 12298 * in.mpathd will see long delays when doing link-based failure recovery.) 12299 */ 12300 void 12301 ill_restart_dad(ill_t *ill, boolean_t went_up) 12302 { 12303 ipif_t *ipif; 12304 12305 if (ill == NULL) 12306 return; 12307 12308 /* 12309 * If layer two doesn't support duplicate address detection, then just 12310 * send the routing socket message now and be done with it. 12311 */ 12312 if (!ill->ill_isv6 && arp_no_defense) { 12313 ip_rts_ifmsg(ill->ill_ipif, RTSQ_DEFAULT); 12314 return; 12315 } 12316 12317 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 12318 if (went_up) { 12319 12320 if (ipif->ipif_flags & IPIF_UP) { 12321 ipif_nce_start_dad(ipif); 12322 } else if (ipif->ipif_flags & IPIF_DUPLICATE) { 12323 /* 12324 * kick off the bring-up process now. 12325 */ 12326 ipif_do_recovery(ipif); 12327 } else { 12328 /* 12329 * Unfortunately, the first ipif is "special" 12330 * and represents the underlying ill in the 12331 * routing socket messages. Thus, when this 12332 * one ipif is down, we must still notify so 12333 * that the user knows the IFF_RUNNING status 12334 * change. (If the first ipif is up, then 12335 * we'll handle eventual routing socket 12336 * notification via DAD completion.) 12337 */ 12338 if (ipif == ill->ill_ipif) { 12339 ip_rts_ifmsg(ill->ill_ipif, 12340 RTSQ_DEFAULT); 12341 } 12342 } 12343 } else { 12344 /* 12345 * After link down, we'll need to send a new routing 12346 * message when the link comes back, so clear 12347 * ipif_addr_ready. 12348 */ 12349 ipif->ipif_addr_ready = 0; 12350 } 12351 } 12352 12353 /* 12354 * If we've torn down links, then notify the user right away. 12355 */ 12356 if (!went_up) 12357 ip_rts_ifmsg(ill->ill_ipif, RTSQ_DEFAULT); 12358 } 12359 12360 static void 12361 ipsq_delete(ipsq_t *ipsq) 12362 { 12363 ipxop_t *ipx = ipsq->ipsq_xop; 12364 12365 ipsq->ipsq_ipst = NULL; 12366 ASSERT(ipsq->ipsq_phyint == NULL); 12367 ASSERT(ipsq->ipsq_xop != NULL); 12368 ASSERT(ipsq->ipsq_xopq_mphead == NULL && ipx->ipx_mphead == NULL); 12369 ASSERT(ipx->ipx_pending_mp == NULL); 12370 kmem_free(ipsq, sizeof (ipsq_t)); 12371 } 12372 12373 static int 12374 ill_up_ipifs_on_ill(ill_t *ill, queue_t *q, mblk_t *mp) 12375 { 12376 int err = 0; 12377 ipif_t *ipif; 12378 12379 if (ill == NULL) 12380 return (0); 12381 12382 ASSERT(IAM_WRITER_ILL(ill)); 12383 ill->ill_up_ipifs = B_TRUE; 12384 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 12385 if (ipif->ipif_was_up) { 12386 if (!(ipif->ipif_flags & IPIF_UP)) 12387 err = ipif_up(ipif, q, mp); 12388 ipif->ipif_was_up = B_FALSE; 12389 if (err != 0) { 12390 ASSERT(err == EINPROGRESS); 12391 return (err); 12392 } 12393 } 12394 } 12395 ill->ill_up_ipifs = B_FALSE; 12396 return (0); 12397 } 12398 12399 /* 12400 * This function is called to bring up all the ipifs that were up before 12401 * bringing the ill down via ill_down_ipifs(). 12402 */ 12403 int 12404 ill_up_ipifs(ill_t *ill, queue_t *q, mblk_t *mp) 12405 { 12406 int err; 12407 12408 ASSERT(IAM_WRITER_ILL(ill)); 12409 12410 if (ill->ill_replumbing) { 12411 ill->ill_replumbing = 0; 12412 /* 12413 * Send down REPLUMB_DONE notification followed by the 12414 * BIND_REQ on the arp stream. 12415 */ 12416 if (!ill->ill_isv6) 12417 arp_send_replumb_conf(ill); 12418 } 12419 err = ill_up_ipifs_on_ill(ill->ill_phyint->phyint_illv4, q, mp); 12420 if (err != 0) 12421 return (err); 12422 12423 return (ill_up_ipifs_on_ill(ill->ill_phyint->phyint_illv6, q, mp)); 12424 } 12425 12426 /* 12427 * Bring down any IPIF_UP ipifs on ill. If "logical" is B_TRUE, we bring 12428 * down the ipifs without sending DL_UNBIND_REQ to the driver. 12429 */ 12430 static void 12431 ill_down_ipifs(ill_t *ill, boolean_t logical) 12432 { 12433 ipif_t *ipif; 12434 12435 ASSERT(IAM_WRITER_ILL(ill)); 12436 12437 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 12438 /* 12439 * We go through the ipif_down logic even if the ipif 12440 * is already down, since routes can be added based 12441 * on down ipifs. Going through ipif_down once again 12442 * will delete any IREs created based on these routes. 12443 */ 12444 if (ipif->ipif_flags & IPIF_UP) 12445 ipif->ipif_was_up = B_TRUE; 12446 12447 if (logical) { 12448 (void) ipif_logical_down(ipif, NULL, NULL); 12449 ipif_non_duplicate(ipif); 12450 (void) ipif_down_tail(ipif); 12451 } else { 12452 (void) ipif_down(ipif, NULL, NULL); 12453 } 12454 } 12455 } 12456 12457 /* 12458 * Redo source address selection. This makes IXAF_VERIFY_SOURCE take 12459 * a look again at valid source addresses. 12460 * This should be called each time after the set of source addresses has been 12461 * changed. 12462 */ 12463 void 12464 ip_update_source_selection(ip_stack_t *ipst) 12465 { 12466 /* We skip past SRC_GENERATION_VERIFY */ 12467 if (atomic_add_32_nv(&ipst->ips_src_generation, 1) == 12468 SRC_GENERATION_VERIFY) 12469 atomic_add_32(&ipst->ips_src_generation, 1); 12470 } 12471 12472 /* 12473 * Finish the group join started in ip_sioctl_groupname(). 12474 */ 12475 /* ARGSUSED */ 12476 static void 12477 ip_join_illgrps(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy) 12478 { 12479 ill_t *ill = q->q_ptr; 12480 phyint_t *phyi = ill->ill_phyint; 12481 ipmp_grp_t *grp = phyi->phyint_grp; 12482 ip_stack_t *ipst = ill->ill_ipst; 12483 12484 /* IS_UNDER_IPMP() won't work until ipmp_ill_join_illgrp() is called */ 12485 ASSERT(!IS_IPMP(ill) && grp != NULL); 12486 ASSERT(IAM_WRITER_IPSQ(ipsq)); 12487 12488 if (phyi->phyint_illv4 != NULL) { 12489 rw_enter(&ipst->ips_ipmp_lock, RW_WRITER); 12490 VERIFY(grp->gr_pendv4-- > 0); 12491 rw_exit(&ipst->ips_ipmp_lock); 12492 ipmp_ill_join_illgrp(phyi->phyint_illv4, grp->gr_v4); 12493 } 12494 if (phyi->phyint_illv6 != NULL) { 12495 rw_enter(&ipst->ips_ipmp_lock, RW_WRITER); 12496 VERIFY(grp->gr_pendv6-- > 0); 12497 rw_exit(&ipst->ips_ipmp_lock); 12498 ipmp_ill_join_illgrp(phyi->phyint_illv6, grp->gr_v6); 12499 } 12500 freemsg(mp); 12501 } 12502 12503 /* 12504 * Process an SIOCSLIFGROUPNAME request. 12505 */ 12506 /* ARGSUSED */ 12507 int 12508 ip_sioctl_groupname(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12509 ip_ioctl_cmd_t *ipip, void *ifreq) 12510 { 12511 struct lifreq *lifr = ifreq; 12512 ill_t *ill = ipif->ipif_ill; 12513 ip_stack_t *ipst = ill->ill_ipst; 12514 phyint_t *phyi = ill->ill_phyint; 12515 ipmp_grp_t *grp = phyi->phyint_grp; 12516 mblk_t *ipsq_mp; 12517 int err = 0; 12518 12519 /* 12520 * Note that phyint_grp can only change here, where we're exclusive. 12521 */ 12522 ASSERT(IAM_WRITER_ILL(ill)); 12523 12524 if (ipif->ipif_id != 0 || ill->ill_usesrc_grp_next != NULL || 12525 (phyi->phyint_flags & PHYI_VIRTUAL)) 12526 return (EINVAL); 12527 12528 lifr->lifr_groupname[LIFGRNAMSIZ - 1] = '\0'; 12529 12530 rw_enter(&ipst->ips_ipmp_lock, RW_WRITER); 12531 12532 /* 12533 * If the name hasn't changed, there's nothing to do. 12534 */ 12535 if (grp != NULL && strcmp(grp->gr_name, lifr->lifr_groupname) == 0) 12536 goto unlock; 12537 12538 /* 12539 * Handle requests to rename an IPMP meta-interface. 12540 * 12541 * Note that creation of the IPMP meta-interface is handled in 12542 * userland through the standard plumbing sequence. As part of the 12543 * plumbing the IPMP meta-interface, its initial groupname is set to 12544 * the name of the interface (see ipif_set_values_tail()). 12545 */ 12546 if (IS_IPMP(ill)) { 12547 err = ipmp_grp_rename(grp, lifr->lifr_groupname); 12548 goto unlock; 12549 } 12550 12551 /* 12552 * Handle requests to add or remove an IP interface from a group. 12553 */ 12554 if (lifr->lifr_groupname[0] != '\0') { /* add */ 12555 /* 12556 * Moves are handled by first removing the interface from 12557 * its existing group, and then adding it to another group. 12558 * So, fail if it's already in a group. 12559 */ 12560 if (IS_UNDER_IPMP(ill)) { 12561 err = EALREADY; 12562 goto unlock; 12563 } 12564 12565 grp = ipmp_grp_lookup(lifr->lifr_groupname, ipst); 12566 if (grp == NULL) { 12567 err = ENOENT; 12568 goto unlock; 12569 } 12570 12571 /* 12572 * Check if the phyint and its ills are suitable for 12573 * inclusion into the group. 12574 */ 12575 if ((err = ipmp_grp_vet_phyint(grp, phyi)) != 0) 12576 goto unlock; 12577 12578 /* 12579 * Checks pass; join the group, and enqueue the remaining 12580 * illgrp joins for when we've become part of the group xop 12581 * and are exclusive across its IPSQs. Since qwriter_ip() 12582 * requires an mblk_t to scribble on, and since `mp' will be 12583 * freed as part of completing the ioctl, allocate another. 12584 */ 12585 if ((ipsq_mp = allocb(0, BPRI_MED)) == NULL) { 12586 err = ENOMEM; 12587 goto unlock; 12588 } 12589 12590 /* 12591 * Before we drop ipmp_lock, bump gr_pend* to ensure that the 12592 * IPMP meta-interface ills needed by `phyi' cannot go away 12593 * before ip_join_illgrps() is called back. See the comments 12594 * in ip_sioctl_plink_ipmp() for more. 12595 */ 12596 if (phyi->phyint_illv4 != NULL) 12597 grp->gr_pendv4++; 12598 if (phyi->phyint_illv6 != NULL) 12599 grp->gr_pendv6++; 12600 12601 rw_exit(&ipst->ips_ipmp_lock); 12602 12603 ipmp_phyint_join_grp(phyi, grp); 12604 ill_refhold(ill); 12605 qwriter_ip(ill, ill->ill_rq, ipsq_mp, ip_join_illgrps, 12606 SWITCH_OP, B_FALSE); 12607 return (0); 12608 } else { 12609 /* 12610 * Request to remove the interface from a group. If the 12611 * interface is not in a group, this trivially succeeds. 12612 */ 12613 rw_exit(&ipst->ips_ipmp_lock); 12614 if (IS_UNDER_IPMP(ill)) 12615 ipmp_phyint_leave_grp(phyi); 12616 return (0); 12617 } 12618 unlock: 12619 rw_exit(&ipst->ips_ipmp_lock); 12620 return (err); 12621 } 12622 12623 /* 12624 * Process an SIOCGLIFBINDING request. 12625 */ 12626 /* ARGSUSED */ 12627 int 12628 ip_sioctl_get_binding(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12629 ip_ioctl_cmd_t *ipip, void *ifreq) 12630 { 12631 ill_t *ill; 12632 struct lifreq *lifr = ifreq; 12633 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; 12634 12635 if (!IS_IPMP(ipif->ipif_ill)) 12636 return (EINVAL); 12637 12638 rw_enter(&ipst->ips_ipmp_lock, RW_READER); 12639 if ((ill = ipif->ipif_bound_ill) == NULL) 12640 lifr->lifr_binding[0] = '\0'; 12641 else 12642 (void) strlcpy(lifr->lifr_binding, ill->ill_name, LIFNAMSIZ); 12643 rw_exit(&ipst->ips_ipmp_lock); 12644 return (0); 12645 } 12646 12647 /* 12648 * Process an SIOCGLIFGROUPNAME request. 12649 */ 12650 /* ARGSUSED */ 12651 int 12652 ip_sioctl_get_groupname(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12653 ip_ioctl_cmd_t *ipip, void *ifreq) 12654 { 12655 ipmp_grp_t *grp; 12656 struct lifreq *lifr = ifreq; 12657 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; 12658 12659 rw_enter(&ipst->ips_ipmp_lock, RW_READER); 12660 if ((grp = ipif->ipif_ill->ill_phyint->phyint_grp) == NULL) 12661 lifr->lifr_groupname[0] = '\0'; 12662 else 12663 (void) strlcpy(lifr->lifr_groupname, grp->gr_name, LIFGRNAMSIZ); 12664 rw_exit(&ipst->ips_ipmp_lock); 12665 return (0); 12666 } 12667 12668 /* 12669 * Process an SIOCGLIFGROUPINFO request. 12670 */ 12671 /* ARGSUSED */ 12672 int 12673 ip_sioctl_groupinfo(ipif_t *dummy_ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12674 ip_ioctl_cmd_t *ipip, void *dummy) 12675 { 12676 ipmp_grp_t *grp; 12677 lifgroupinfo_t *lifgr; 12678 ip_stack_t *ipst = CONNQ_TO_IPST(q); 12679 12680 /* ip_wput_nondata() verified mp->b_cont->b_cont */ 12681 lifgr = (lifgroupinfo_t *)mp->b_cont->b_cont->b_rptr; 12682 lifgr->gi_grname[LIFGRNAMSIZ - 1] = '\0'; 12683 12684 rw_enter(&ipst->ips_ipmp_lock, RW_READER); 12685 if ((grp = ipmp_grp_lookup(lifgr->gi_grname, ipst)) == NULL) { 12686 rw_exit(&ipst->ips_ipmp_lock); 12687 return (ENOENT); 12688 } 12689 ipmp_grp_info(grp, lifgr); 12690 rw_exit(&ipst->ips_ipmp_lock); 12691 return (0); 12692 } 12693 12694 static void 12695 ill_dl_down(ill_t *ill) 12696 { 12697 DTRACE_PROBE2(ill__downup, char *, "ill_dl_down", ill_t *, ill); 12698 12699 /* 12700 * The ill is down; unbind but stay attached since we're still 12701 * associated with a PPA. If we have negotiated DLPI capabilites 12702 * with the data link service provider (IDS_OK) then reset them. 12703 * The interval between unbinding and rebinding is potentially 12704 * unbounded hence we cannot assume things will be the same. 12705 * The DLPI capabilities will be probed again when the data link 12706 * is brought up. 12707 */ 12708 mblk_t *mp = ill->ill_unbind_mp; 12709 12710 ip1dbg(("ill_dl_down(%s)\n", ill->ill_name)); 12711 12712 if (!ill->ill_replumbing) { 12713 /* Free all ilms for this ill */ 12714 update_conn_ill(ill, ill->ill_ipst); 12715 } else { 12716 ill_leave_multicast(ill); 12717 } 12718 12719 ill->ill_unbind_mp = NULL; 12720 if (mp != NULL) { 12721 ip1dbg(("ill_dl_down: %s (%u) for %s\n", 12722 dl_primstr(*(int *)mp->b_rptr), *(int *)mp->b_rptr, 12723 ill->ill_name)); 12724 mutex_enter(&ill->ill_lock); 12725 ill->ill_state_flags |= ILL_DL_UNBIND_IN_PROGRESS; 12726 mutex_exit(&ill->ill_lock); 12727 /* 12728 * ip_rput does not pass up normal (M_PROTO) DLPI messages 12729 * after ILL_CONDEMNED is set. So in the unplumb case, we call 12730 * ill_capability_dld_disable disable rightaway. If this is not 12731 * an unplumb operation then the disable happens on receipt of 12732 * the capab ack via ip_rput_dlpi_writer -> 12733 * ill_capability_ack_thr. In both cases the order of 12734 * the operations seen by DLD is capability disable followed 12735 * by DL_UNBIND. Also the DLD capability disable needs a 12736 * cv_wait'able context. 12737 */ 12738 if (ill->ill_state_flags & ILL_CONDEMNED) 12739 ill_capability_dld_disable(ill); 12740 ill_capability_reset(ill, B_FALSE); 12741 ill_dlpi_send(ill, mp); 12742 } 12743 mutex_enter(&ill->ill_lock); 12744 ill->ill_dl_up = 0; 12745 ill_nic_event_dispatch(ill, 0, NE_DOWN, NULL, 0); 12746 mutex_exit(&ill->ill_lock); 12747 } 12748 12749 void 12750 ill_dlpi_dispatch(ill_t *ill, mblk_t *mp) 12751 { 12752 union DL_primitives *dlp; 12753 t_uscalar_t prim; 12754 boolean_t waitack = B_FALSE; 12755 12756 ASSERT(DB_TYPE(mp) == M_PROTO || DB_TYPE(mp) == M_PCPROTO); 12757 12758 dlp = (union DL_primitives *)mp->b_rptr; 12759 prim = dlp->dl_primitive; 12760 12761 ip1dbg(("ill_dlpi_dispatch: sending %s (%u) to %s\n", 12762 dl_primstr(prim), prim, ill->ill_name)); 12763 12764 switch (prim) { 12765 case DL_PHYS_ADDR_REQ: 12766 { 12767 dl_phys_addr_req_t *dlpap = (dl_phys_addr_req_t *)mp->b_rptr; 12768 ill->ill_phys_addr_pend = dlpap->dl_addr_type; 12769 break; 12770 } 12771 case DL_BIND_REQ: 12772 mutex_enter(&ill->ill_lock); 12773 ill->ill_state_flags &= ~ILL_DL_UNBIND_IN_PROGRESS; 12774 mutex_exit(&ill->ill_lock); 12775 break; 12776 } 12777 12778 /* 12779 * Except for the ACKs for the M_PCPROTO messages, all other ACKs 12780 * are dropped by ip_rput() if ILL_CONDEMNED is set. Therefore 12781 * we only wait for the ACK of the DL_UNBIND_REQ. 12782 */ 12783 mutex_enter(&ill->ill_lock); 12784 if (!(ill->ill_state_flags & ILL_CONDEMNED) || 12785 (prim == DL_UNBIND_REQ)) { 12786 ill->ill_dlpi_pending = prim; 12787 waitack = B_TRUE; 12788 } 12789 12790 mutex_exit(&ill->ill_lock); 12791 DTRACE_PROBE3(ill__dlpi, char *, "ill_dlpi_dispatch", 12792 char *, dl_primstr(prim), ill_t *, ill); 12793 putnext(ill->ill_wq, mp); 12794 12795 /* 12796 * There is no ack for DL_NOTIFY_CONF messages 12797 */ 12798 if (waitack && prim == DL_NOTIFY_CONF) 12799 ill_dlpi_done(ill, prim); 12800 } 12801 12802 /* 12803 * Helper function for ill_dlpi_send(). 12804 */ 12805 /* ARGSUSED */ 12806 static void 12807 ill_dlpi_send_writer(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *arg) 12808 { 12809 ill_dlpi_send(q->q_ptr, mp); 12810 } 12811 12812 /* 12813 * Send a DLPI control message to the driver but make sure there 12814 * is only one outstanding message. Uses ill_dlpi_pending to tell 12815 * when it must queue. ip_rput_dlpi_writer calls ill_dlpi_done() 12816 * when an ACK or a NAK is received to process the next queued message. 12817 */ 12818 void 12819 ill_dlpi_send(ill_t *ill, mblk_t *mp) 12820 { 12821 mblk_t **mpp; 12822 12823 ASSERT(DB_TYPE(mp) == M_PROTO || DB_TYPE(mp) == M_PCPROTO); 12824 12825 /* 12826 * To ensure that any DLPI requests for current exclusive operation 12827 * are always completely sent before any DLPI messages for other 12828 * operations, require writer access before enqueuing. 12829 */ 12830 if (!IAM_WRITER_ILL(ill)) { 12831 ill_refhold(ill); 12832 /* qwriter_ip() does the ill_refrele() */ 12833 qwriter_ip(ill, ill->ill_wq, mp, ill_dlpi_send_writer, 12834 NEW_OP, B_TRUE); 12835 return; 12836 } 12837 12838 mutex_enter(&ill->ill_lock); 12839 if (ill->ill_dlpi_pending != DL_PRIM_INVAL) { 12840 /* Must queue message. Tail insertion */ 12841 mpp = &ill->ill_dlpi_deferred; 12842 while (*mpp != NULL) 12843 mpp = &((*mpp)->b_next); 12844 12845 ip1dbg(("ill_dlpi_send: deferring request for %s " 12846 "while %s pending\n", ill->ill_name, 12847 dl_primstr(ill->ill_dlpi_pending))); 12848 12849 *mpp = mp; 12850 mutex_exit(&ill->ill_lock); 12851 return; 12852 } 12853 mutex_exit(&ill->ill_lock); 12854 ill_dlpi_dispatch(ill, mp); 12855 } 12856 12857 void 12858 ill_capability_send(ill_t *ill, mblk_t *mp) 12859 { 12860 ill->ill_capab_pending_cnt++; 12861 ill_dlpi_send(ill, mp); 12862 } 12863 12864 void 12865 ill_capability_done(ill_t *ill) 12866 { 12867 ASSERT(ill->ill_capab_pending_cnt != 0); 12868 12869 ill_dlpi_done(ill, DL_CAPABILITY_REQ); 12870 12871 ill->ill_capab_pending_cnt--; 12872 if (ill->ill_capab_pending_cnt == 0 && 12873 ill->ill_dlpi_capab_state == IDCS_OK) 12874 ill_capability_reset_alloc(ill); 12875 } 12876 12877 /* 12878 * Send all deferred DLPI messages without waiting for their ACKs. 12879 */ 12880 void 12881 ill_dlpi_send_deferred(ill_t *ill) 12882 { 12883 mblk_t *mp, *nextmp; 12884 12885 /* 12886 * Clear ill_dlpi_pending so that the message is not queued in 12887 * ill_dlpi_send(). 12888 */ 12889 mutex_enter(&ill->ill_lock); 12890 ill->ill_dlpi_pending = DL_PRIM_INVAL; 12891 mp = ill->ill_dlpi_deferred; 12892 ill->ill_dlpi_deferred = NULL; 12893 mutex_exit(&ill->ill_lock); 12894 12895 for (; mp != NULL; mp = nextmp) { 12896 nextmp = mp->b_next; 12897 mp->b_next = NULL; 12898 ill_dlpi_send(ill, mp); 12899 } 12900 } 12901 12902 /* 12903 * Clear all the deferred DLPI messages. Called on receiving an M_ERROR 12904 * or M_HANGUP 12905 */ 12906 static void 12907 ill_dlpi_clear_deferred(ill_t *ill) 12908 { 12909 mblk_t *mp, *nextmp; 12910 12911 mutex_enter(&ill->ill_lock); 12912 ill->ill_dlpi_pending = DL_PRIM_INVAL; 12913 mp = ill->ill_dlpi_deferred; 12914 ill->ill_dlpi_deferred = NULL; 12915 mutex_exit(&ill->ill_lock); 12916 12917 for (; mp != NULL; mp = nextmp) { 12918 nextmp = mp->b_next; 12919 inet_freemsg(mp); 12920 } 12921 } 12922 12923 /* 12924 * Check if the DLPI primitive `prim' is pending; print a warning if not. 12925 */ 12926 boolean_t 12927 ill_dlpi_pending(ill_t *ill, t_uscalar_t prim) 12928 { 12929 t_uscalar_t pending; 12930 12931 mutex_enter(&ill->ill_lock); 12932 if (ill->ill_dlpi_pending == prim) { 12933 mutex_exit(&ill->ill_lock); 12934 return (B_TRUE); 12935 } 12936 12937 /* 12938 * During teardown, ill_dlpi_dispatch() will send DLPI requests 12939 * without waiting, so don't print any warnings in that case. 12940 */ 12941 if (ill->ill_state_flags & ILL_CONDEMNED) { 12942 mutex_exit(&ill->ill_lock); 12943 return (B_FALSE); 12944 } 12945 pending = ill->ill_dlpi_pending; 12946 mutex_exit(&ill->ill_lock); 12947 12948 if (pending == DL_PRIM_INVAL) { 12949 (void) mi_strlog(ill->ill_rq, 1, SL_CONSOLE|SL_ERROR|SL_TRACE, 12950 "received unsolicited ack for %s on %s\n", 12951 dl_primstr(prim), ill->ill_name); 12952 } else { 12953 (void) mi_strlog(ill->ill_rq, 1, SL_CONSOLE|SL_ERROR|SL_TRACE, 12954 "received unexpected ack for %s on %s (expecting %s)\n", 12955 dl_primstr(prim), ill->ill_name, dl_primstr(pending)); 12956 } 12957 return (B_FALSE); 12958 } 12959 12960 /* 12961 * Complete the current DLPI operation associated with `prim' on `ill' and 12962 * start the next queued DLPI operation (if any). If there are no queued DLPI 12963 * operations and the ill's current exclusive IPSQ operation has finished 12964 * (i.e., ipsq_current_finish() was called), then clear ipsq_current_ipif to 12965 * allow the next exclusive IPSQ operation to begin upon ipsq_exit(). See 12966 * the comments above ipsq_current_finish() for details. 12967 */ 12968 void 12969 ill_dlpi_done(ill_t *ill, t_uscalar_t prim) 12970 { 12971 mblk_t *mp; 12972 ipsq_t *ipsq = ill->ill_phyint->phyint_ipsq; 12973 ipxop_t *ipx = ipsq->ipsq_xop; 12974 12975 ASSERT(IAM_WRITER_IPSQ(ipsq)); 12976 mutex_enter(&ill->ill_lock); 12977 12978 ASSERT(prim != DL_PRIM_INVAL); 12979 ASSERT(ill->ill_dlpi_pending == prim); 12980 12981 ip1dbg(("ill_dlpi_done: %s has completed %s (%u)\n", ill->ill_name, 12982 dl_primstr(ill->ill_dlpi_pending), ill->ill_dlpi_pending)); 12983 12984 if ((mp = ill->ill_dlpi_deferred) == NULL) { 12985 ill->ill_dlpi_pending = DL_PRIM_INVAL; 12986 if (ipx->ipx_current_done) { 12987 mutex_enter(&ipx->ipx_lock); 12988 ipx->ipx_current_ipif = NULL; 12989 mutex_exit(&ipx->ipx_lock); 12990 } 12991 cv_signal(&ill->ill_cv); 12992 mutex_exit(&ill->ill_lock); 12993 return; 12994 } 12995 12996 ill->ill_dlpi_deferred = mp->b_next; 12997 mp->b_next = NULL; 12998 mutex_exit(&ill->ill_lock); 12999 13000 ill_dlpi_dispatch(ill, mp); 13001 } 13002 13003 /* 13004 * Queue a (multicast) DLPI control message to be sent to the driver by 13005 * later calling ill_dlpi_send_queued. 13006 * We queue them while holding a lock (ill_mcast_lock) to ensure that they 13007 * are sent in order i.e., prevent a DL_DISABMULTI_REQ and DL_ENABMULTI_REQ 13008 * for the same group to race. 13009 * We send DLPI control messages in order using ill_lock. 13010 * For IPMP we should be called on the cast_ill. 13011 */ 13012 void 13013 ill_dlpi_queue(ill_t *ill, mblk_t *mp) 13014 { 13015 mblk_t **mpp; 13016 13017 ASSERT(DB_TYPE(mp) == M_PROTO || DB_TYPE(mp) == M_PCPROTO); 13018 13019 mutex_enter(&ill->ill_lock); 13020 /* Must queue message. Tail insertion */ 13021 mpp = &ill->ill_dlpi_deferred; 13022 while (*mpp != NULL) 13023 mpp = &((*mpp)->b_next); 13024 13025 *mpp = mp; 13026 mutex_exit(&ill->ill_lock); 13027 } 13028 13029 /* 13030 * Send the messages that were queued. Make sure there is only 13031 * one outstanding message. ip_rput_dlpi_writer calls ill_dlpi_done() 13032 * when an ACK or a NAK is received to process the next queued message. 13033 * For IPMP we are called on the upper ill, but when send what is queued 13034 * on the cast_ill. 13035 */ 13036 void 13037 ill_dlpi_send_queued(ill_t *ill) 13038 { 13039 mblk_t *mp; 13040 union DL_primitives *dlp; 13041 t_uscalar_t prim; 13042 ill_t *release_ill = NULL; 13043 13044 if (IS_IPMP(ill)) { 13045 /* On the upper IPMP ill. */ 13046 release_ill = ipmp_illgrp_hold_cast_ill(ill->ill_grp); 13047 if (release_ill == NULL) { 13048 /* Avoid ever sending anything down to the ipmpstub */ 13049 return; 13050 } 13051 ill = release_ill; 13052 } 13053 mutex_enter(&ill->ill_lock); 13054 while ((mp = ill->ill_dlpi_deferred) != NULL) { 13055 if (ill->ill_dlpi_pending != DL_PRIM_INVAL) { 13056 /* Can't send. Somebody else will send it */ 13057 mutex_exit(&ill->ill_lock); 13058 goto done; 13059 } 13060 ill->ill_dlpi_deferred = mp->b_next; 13061 mp->b_next = NULL; 13062 if (!ill->ill_dl_up) { 13063 /* 13064 * Nobody there. All multicast addresses will be 13065 * re-joined when we get the DL_BIND_ACK bringing the 13066 * interface up. 13067 */ 13068 freemsg(mp); 13069 continue; 13070 } 13071 dlp = (union DL_primitives *)mp->b_rptr; 13072 prim = dlp->dl_primitive; 13073 13074 if (!(ill->ill_state_flags & ILL_CONDEMNED) || 13075 (prim == DL_UNBIND_REQ)) { 13076 ill->ill_dlpi_pending = prim; 13077 } 13078 mutex_exit(&ill->ill_lock); 13079 13080 DTRACE_PROBE3(ill__dlpi, char *, "ill_dlpi_send_queued", 13081 char *, dl_primstr(prim), ill_t *, ill); 13082 putnext(ill->ill_wq, mp); 13083 mutex_enter(&ill->ill_lock); 13084 } 13085 mutex_exit(&ill->ill_lock); 13086 done: 13087 if (release_ill != NULL) 13088 ill_refrele(release_ill); 13089 } 13090 13091 /* 13092 * Queue an IP (IGMP/MLD) message to be sent by IP from 13093 * ill_mcast_send_queued 13094 * We queue them while holding a lock (ill_mcast_lock) to ensure that they 13095 * are sent in order i.e., prevent a IGMP leave and IGMP join for the same 13096 * group to race. 13097 * We send them in order using ill_lock. 13098 * For IPMP we are called on the upper ill, but we queue on the cast_ill. 13099 */ 13100 void 13101 ill_mcast_queue(ill_t *ill, mblk_t *mp) 13102 { 13103 mblk_t **mpp; 13104 ill_t *release_ill = NULL; 13105 13106 ASSERT(RW_LOCK_HELD(&ill->ill_mcast_lock)); 13107 13108 if (IS_IPMP(ill)) { 13109 /* On the upper IPMP ill. */ 13110 release_ill = ipmp_illgrp_hold_cast_ill(ill->ill_grp); 13111 if (release_ill == NULL) { 13112 /* Discard instead of queuing for the ipmp interface */ 13113 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutDiscards); 13114 ip_drop_output("ipIfStatsOutDiscards - no cast_ill", 13115 mp, ill); 13116 freemsg(mp); 13117 return; 13118 } 13119 ill = release_ill; 13120 } 13121 13122 mutex_enter(&ill->ill_lock); 13123 /* Must queue message. Tail insertion */ 13124 mpp = &ill->ill_mcast_deferred; 13125 while (*mpp != NULL) 13126 mpp = &((*mpp)->b_next); 13127 13128 *mpp = mp; 13129 mutex_exit(&ill->ill_lock); 13130 if (release_ill != NULL) 13131 ill_refrele(release_ill); 13132 } 13133 13134 /* 13135 * Send the IP packets that were queued by ill_mcast_queue. 13136 * These are IGMP/MLD packets. 13137 * 13138 * For IPMP we are called on the upper ill, but when send what is queued 13139 * on the cast_ill. 13140 * 13141 * Request loopback of the report if we are acting as a multicast 13142 * router, so that the process-level routing demon can hear it. 13143 * This will run multiple times for the same group if there are members 13144 * on the same group for multiple ipif's on the same ill. The 13145 * igmp_input/mld_input code will suppress this due to the loopback thus we 13146 * always loopback membership report. 13147 * 13148 * We also need to make sure that this does not get load balanced 13149 * by IPMP. We do this by passing an ill to ip_output_simple. 13150 */ 13151 void 13152 ill_mcast_send_queued(ill_t *ill) 13153 { 13154 mblk_t *mp; 13155 ip_xmit_attr_t ixas; 13156 ill_t *release_ill = NULL; 13157 13158 if (IS_IPMP(ill)) { 13159 /* On the upper IPMP ill. */ 13160 release_ill = ipmp_illgrp_hold_cast_ill(ill->ill_grp); 13161 if (release_ill == NULL) { 13162 /* 13163 * We should have no messages on the ipmp interface 13164 * but no point in trying to send them. 13165 */ 13166 return; 13167 } 13168 ill = release_ill; 13169 } 13170 bzero(&ixas, sizeof (ixas)); 13171 ixas.ixa_zoneid = ALL_ZONES; 13172 ixas.ixa_cred = kcred; 13173 ixas.ixa_cpid = NOPID; 13174 ixas.ixa_tsl = NULL; 13175 /* 13176 * Here we set ixa_ifindex. If IPMP it will be the lower ill which 13177 * makes ip_select_route pick the IRE_MULTICAST for the cast_ill. 13178 * That is necessary to handle IGMP/MLD snooping switches. 13179 */ 13180 ixas.ixa_ifindex = ill->ill_phyint->phyint_ifindex; 13181 ixas.ixa_ipst = ill->ill_ipst; 13182 13183 mutex_enter(&ill->ill_lock); 13184 while ((mp = ill->ill_mcast_deferred) != NULL) { 13185 ill->ill_mcast_deferred = mp->b_next; 13186 mp->b_next = NULL; 13187 if (!ill->ill_dl_up) { 13188 /* 13189 * Nobody there. Just drop the ip packets. 13190 * IGMP/MLD will resend later, if this is a replumb. 13191 */ 13192 freemsg(mp); 13193 continue; 13194 } 13195 mutex_enter(&ill->ill_phyint->phyint_lock); 13196 if (IS_UNDER_IPMP(ill) && !ipmp_ill_is_active(ill)) { 13197 /* 13198 * When the ill is getting deactivated, we only want to 13199 * send the DLPI messages, so drop IGMP/MLD packets. 13200 * DLPI messages are handled by ill_dlpi_send_queued() 13201 */ 13202 mutex_exit(&ill->ill_phyint->phyint_lock); 13203 freemsg(mp); 13204 continue; 13205 } 13206 mutex_exit(&ill->ill_phyint->phyint_lock); 13207 mutex_exit(&ill->ill_lock); 13208 13209 /* Check whether we are sending IPv4 or IPv6. */ 13210 if (ill->ill_isv6) { 13211 ip6_t *ip6h = (ip6_t *)mp->b_rptr; 13212 13213 ixas.ixa_multicast_ttl = ip6h->ip6_hops; 13214 ixas.ixa_flags = IXAF_BASIC_SIMPLE_V6; 13215 } else { 13216 ipha_t *ipha = (ipha_t *)mp->b_rptr; 13217 13218 ixas.ixa_multicast_ttl = ipha->ipha_ttl; 13219 ixas.ixa_flags = IXAF_BASIC_SIMPLE_V4; 13220 ixas.ixa_flags &= ~IXAF_SET_ULP_CKSUM; 13221 } 13222 ixas.ixa_flags &= ~IXAF_VERIFY_SOURCE; 13223 ixas.ixa_flags |= IXAF_MULTICAST_LOOP | IXAF_SET_SOURCE; 13224 (void) ip_output_simple(mp, &ixas); 13225 ixa_cleanup(&ixas); 13226 13227 mutex_enter(&ill->ill_lock); 13228 } 13229 mutex_exit(&ill->ill_lock); 13230 13231 done: 13232 if (release_ill != NULL) 13233 ill_refrele(release_ill); 13234 } 13235 13236 /* 13237 * Take down a specific interface, but don't lose any information about it. 13238 * (Always called as writer.) 13239 * This function goes through the down sequence even if the interface is 13240 * already down. There are 2 reasons. 13241 * a. Currently we permit interface routes that depend on down interfaces 13242 * to be added. This behaviour itself is questionable. However it appears 13243 * that both Solaris and 4.3 BSD have exhibited this behaviour for a long 13244 * time. We go thru the cleanup in order to remove these routes. 13245 * b. The bringup of the interface could fail in ill_dl_up i.e. we get 13246 * DL_ERROR_ACK in response to the DL_BIND request. The interface is 13247 * down, but we need to cleanup i.e. do ill_dl_down and 13248 * ip_rput_dlpi_writer (DL_ERROR_ACK) -> ipif_down. 13249 * 13250 * IP-MT notes: 13251 * 13252 * Model of reference to interfaces. 13253 * 13254 * The following members in ipif_t track references to the ipif. 13255 * int ipif_refcnt; Active reference count 13256 * 13257 * The following members in ill_t track references to the ill. 13258 * int ill_refcnt; active refcnt 13259 * uint_t ill_ire_cnt; Number of ires referencing ill 13260 * uint_t ill_ncec_cnt; Number of ncecs referencing ill 13261 * uint_t ill_nce_cnt; Number of nces referencing ill 13262 * uint_t ill_ilm_cnt; Number of ilms referencing ill 13263 * 13264 * Reference to an ipif or ill can be obtained in any of the following ways. 13265 * 13266 * Through the lookup functions ipif_lookup_* / ill_lookup_* functions 13267 * Pointers to ipif / ill from other data structures viz ire and conn. 13268 * Implicit reference to the ipif / ill by holding a reference to the ire. 13269 * 13270 * The ipif/ill lookup functions return a reference held ipif / ill. 13271 * ipif_refcnt and ill_refcnt track the reference counts respectively. 13272 * This is a purely dynamic reference count associated with threads holding 13273 * references to the ipif / ill. Pointers from other structures do not 13274 * count towards this reference count. 13275 * 13276 * ill_ire_cnt is the number of ire's associated with the 13277 * ill. This is incremented whenever a new ire is created referencing the 13278 * ill. This is done atomically inside ire_add_v[46] where the ire is 13279 * actually added to the ire hash table. The count is decremented in 13280 * ire_inactive where the ire is destroyed. 13281 * 13282 * ill_ncec_cnt is the number of ncec's referencing the ill thru ncec_ill. 13283 * This is incremented atomically in 13284 * ndp_add_v4()/ndp_add_v6() where the nce is actually added to the 13285 * table. Similarly it is decremented in ncec_inactive() where the ncec 13286 * is destroyed. 13287 * 13288 * ill_nce_cnt is the number of nce's referencing the ill thru nce_ill. This is 13289 * incremented atomically in nce_add() where the nce is actually added to the 13290 * ill_nce. Similarly it is decremented in nce_inactive() where the nce 13291 * is destroyed. 13292 * 13293 * ill_ilm_cnt is the ilm's reference to the ill. It is incremented in 13294 * ilm_add() and decremented before the ilm is freed in ilm_delete(). 13295 * 13296 * Flow of ioctls involving interface down/up 13297 * 13298 * The following is the sequence of an attempt to set some critical flags on an 13299 * up interface. 13300 * ip_sioctl_flags 13301 * ipif_down 13302 * wait for ipif to be quiescent 13303 * ipif_down_tail 13304 * ip_sioctl_flags_tail 13305 * 13306 * All set ioctls that involve down/up sequence would have a skeleton similar 13307 * to the above. All the *tail functions are called after the refcounts have 13308 * dropped to the appropriate values. 13309 * 13310 * SIOC ioctls during the IPIF_CHANGING interval. 13311 * 13312 * Threads handling SIOC set ioctls serialize on the squeue, but this 13313 * is not done for SIOC get ioctls. Since a set ioctl can cause several 13314 * steps of internal changes to the state, some of which are visible in 13315 * ipif_flags (such as IFF_UP being cleared and later set), and we want 13316 * the set ioctl to be atomic related to the get ioctls, the SIOC get code 13317 * will wait and restart ioctls if IPIF_CHANGING is set. The mblk is then 13318 * enqueued in the ipsq and the operation is restarted by ipsq_exit() when 13319 * the current exclusive operation completes. The IPIF_CHANGING check 13320 * and enqueue is atomic using the ill_lock and ipsq_lock. The 13321 * lookup is done holding the ill_lock. Hence the ill/ipif state flags can't 13322 * change while the ill_lock is held. Before dropping the ill_lock we acquire 13323 * the ipsq_lock and call ipsq_enq. This ensures that ipsq_exit can't finish 13324 * until we release the ipsq_lock, even though the ill/ipif state flags 13325 * can change after we drop the ill_lock. 13326 */ 13327 int 13328 ipif_down(ipif_t *ipif, queue_t *q, mblk_t *mp) 13329 { 13330 ill_t *ill = ipif->ipif_ill; 13331 conn_t *connp; 13332 boolean_t success; 13333 boolean_t ipif_was_up = B_FALSE; 13334 ip_stack_t *ipst = ill->ill_ipst; 13335 13336 ASSERT(IAM_WRITER_IPIF(ipif)); 13337 13338 ip1dbg(("ipif_down(%s:%u)\n", ill->ill_name, ipif->ipif_id)); 13339 13340 DTRACE_PROBE3(ipif__downup, char *, "ipif_down", 13341 ill_t *, ill, ipif_t *, ipif); 13342 13343 if (ipif->ipif_flags & IPIF_UP) { 13344 mutex_enter(&ill->ill_lock); 13345 ipif->ipif_flags &= ~IPIF_UP; 13346 ASSERT(ill->ill_ipif_up_count > 0); 13347 --ill->ill_ipif_up_count; 13348 mutex_exit(&ill->ill_lock); 13349 ipif_was_up = B_TRUE; 13350 /* Update status in SCTP's list */ 13351 sctp_update_ipif(ipif, SCTP_IPIF_DOWN); 13352 ill_nic_event_dispatch(ipif->ipif_ill, 13353 MAP_IPIF_ID(ipif->ipif_id), NE_LIF_DOWN, NULL, 0); 13354 } 13355 13356 /* 13357 * Removal of the last ipif from an ill may result in a DL_UNBIND 13358 * being sent to the driver, and we must not send any data packets to 13359 * the driver after the DL_UNBIND_REQ. To ensure this, all the 13360 * ire and nce entries used in the data path will be cleaned 13361 * up, and we also set the ILL_DOWN_IN_PROGRESS bit to make 13362 * sure on new entries will be added until the ill is bound 13363 * again. The ILL_DOWN_IN_PROGRESS bit is turned off upon 13364 * receipt of a DL_BIND_ACK. 13365 */ 13366 if (ill->ill_wq != NULL && !ill->ill_logical_down && 13367 ill->ill_ipif_up_count == 0 && ill->ill_ipif_dup_count == 0 && 13368 ill->ill_dl_up) { 13369 ill->ill_state_flags |= ILL_DOWN_IN_PROGRESS; 13370 } 13371 13372 /* 13373 * Blow away memberships we established in ipif_multicast_up(). 13374 */ 13375 ipif_multicast_down(ipif); 13376 13377 /* 13378 * Remove from the mapping for __sin6_src_id. We insert only 13379 * when the address is not INADDR_ANY. As IPv4 addresses are 13380 * stored as mapped addresses, we need to check for mapped 13381 * INADDR_ANY also. 13382 */ 13383 if (ipif_was_up && !IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6lcl_addr) && 13384 !IN6_IS_ADDR_V4MAPPED_ANY(&ipif->ipif_v6lcl_addr) && 13385 !(ipif->ipif_flags & IPIF_NOLOCAL)) { 13386 int err; 13387 13388 err = ip_srcid_remove(&ipif->ipif_v6lcl_addr, 13389 ipif->ipif_zoneid, ipst); 13390 if (err != 0) { 13391 ip0dbg(("ipif_down: srcid_remove %d\n", err)); 13392 } 13393 } 13394 13395 if (ipif_was_up) { 13396 /* only delete if we'd added ire's before */ 13397 if (ipif->ipif_isv6) 13398 ipif_delete_ires_v6(ipif); 13399 else 13400 ipif_delete_ires_v4(ipif); 13401 } 13402 13403 if (ipif_was_up && ill->ill_ipif_up_count == 0) { 13404 /* 13405 * Since the interface is now down, it may have just become 13406 * inactive. Note that this needs to be done even for a 13407 * lll_logical_down(), or ARP entries will not get correctly 13408 * restored when the interface comes back up. 13409 */ 13410 if (IS_UNDER_IPMP(ill)) 13411 ipmp_ill_refresh_active(ill); 13412 } 13413 13414 /* 13415 * neighbor-discovery or arp entries for this interface. The ipif 13416 * has to be quiesced, so we walk all the nce's and delete those 13417 * that point at the ipif->ipif_ill. At the same time, we also 13418 * update IPMP so that ipifs for data addresses are unbound. We dont 13419 * call ipif_arp_down to DL_UNBIND the arp stream itself here, but defer 13420 * that for ipif_down_tail() 13421 */ 13422 ipif_nce_down(ipif); 13423 13424 /* 13425 * If this is the last ipif on the ill, we also need to remove 13426 * any IREs with ire_ill set. Otherwise ipif_is_quiescent() will 13427 * never succeed. 13428 */ 13429 if (ill->ill_ipif_up_count == 0 && ill->ill_ipif_dup_count == 0) 13430 ire_walk_ill(0, 0, ill_downi, ill, ill); 13431 13432 /* 13433 * Walk all CONNs that can have a reference on an ire for this 13434 * ipif (we actually walk all that now have stale references). 13435 */ 13436 ipcl_walk(conn_ixa_cleanup, (void *)B_TRUE, ipst); 13437 13438 /* 13439 * If mp is NULL the caller will wait for the appropriate refcnt. 13440 * Eg. ip_sioctl_removeif -> ipif_free -> ipif_down 13441 * and ill_delete -> ipif_free -> ipif_down 13442 */ 13443 if (mp == NULL) { 13444 ASSERT(q == NULL); 13445 return (0); 13446 } 13447 13448 if (CONN_Q(q)) { 13449 connp = Q_TO_CONN(q); 13450 mutex_enter(&connp->conn_lock); 13451 } else { 13452 connp = NULL; 13453 } 13454 mutex_enter(&ill->ill_lock); 13455 /* 13456 * Are there any ire's pointing to this ipif that are still active ? 13457 * If this is the last ipif going down, are there any ire's pointing 13458 * to this ill that are still active ? 13459 */ 13460 if (ipif_is_quiescent(ipif)) { 13461 mutex_exit(&ill->ill_lock); 13462 if (connp != NULL) 13463 mutex_exit(&connp->conn_lock); 13464 return (0); 13465 } 13466 13467 ip1dbg(("ipif_down: need to wait, adding pending mp %s ill %p", 13468 ill->ill_name, (void *)ill)); 13469 /* 13470 * Enqueue the mp atomically in ipsq_pending_mp. When the refcount 13471 * drops down, the operation will be restarted by ipif_ill_refrele_tail 13472 * which in turn is called by the last refrele on the ipif/ill/ire. 13473 */ 13474 success = ipsq_pending_mp_add(connp, ipif, q, mp, IPIF_DOWN); 13475 if (!success) { 13476 /* The conn is closing. So just return */ 13477 ASSERT(connp != NULL); 13478 mutex_exit(&ill->ill_lock); 13479 mutex_exit(&connp->conn_lock); 13480 return (EINTR); 13481 } 13482 13483 mutex_exit(&ill->ill_lock); 13484 if (connp != NULL) 13485 mutex_exit(&connp->conn_lock); 13486 return (EINPROGRESS); 13487 } 13488 13489 int 13490 ipif_down_tail(ipif_t *ipif) 13491 { 13492 ill_t *ill = ipif->ipif_ill; 13493 int err = 0; 13494 13495 DTRACE_PROBE3(ipif__downup, char *, "ipif_down_tail", 13496 ill_t *, ill, ipif_t *, ipif); 13497 13498 /* 13499 * Skip any loopback interface (null wq). 13500 * If this is the last logical interface on the ill 13501 * have ill_dl_down tell the driver we are gone (unbind) 13502 * Note that lun 0 can ipif_down even though 13503 * there are other logical units that are up. 13504 * This occurs e.g. when we change a "significant" IFF_ flag. 13505 */ 13506 if (ill->ill_wq != NULL && !ill->ill_logical_down && 13507 ill->ill_ipif_up_count == 0 && ill->ill_ipif_dup_count == 0 && 13508 ill->ill_dl_up) { 13509 ill_dl_down(ill); 13510 } 13511 if (!ipif->ipif_isv6) 13512 err = ipif_arp_down(ipif); 13513 13514 ill->ill_logical_down = 0; 13515 13516 ip_rts_ifmsg(ipif, RTSQ_DEFAULT); 13517 ip_rts_newaddrmsg(RTM_DELETE, 0, ipif, RTSQ_DEFAULT); 13518 return (err); 13519 } 13520 13521 /* 13522 * Bring interface logically down without bringing the physical interface 13523 * down e.g. when the netmask is changed. This avoids long lasting link 13524 * negotiations between an ethernet interface and a certain switches. 13525 */ 13526 static int 13527 ipif_logical_down(ipif_t *ipif, queue_t *q, mblk_t *mp) 13528 { 13529 DTRACE_PROBE3(ipif__downup, char *, "ipif_logical_down", 13530 ill_t *, ipif->ipif_ill, ipif_t *, ipif); 13531 13532 /* 13533 * The ill_logical_down flag is a transient flag. It is set here 13534 * and is cleared once the down has completed in ipif_down_tail. 13535 * This flag does not indicate whether the ill stream is in the 13536 * DL_BOUND state with the driver. Instead this flag is used by 13537 * ipif_down_tail to determine whether to DL_UNBIND the stream with 13538 * the driver. The state of the ill stream i.e. whether it is 13539 * DL_BOUND with the driver or not is indicated by the ill_dl_up flag. 13540 */ 13541 ipif->ipif_ill->ill_logical_down = 1; 13542 return (ipif_down(ipif, q, mp)); 13543 } 13544 13545 /* 13546 * Initiate deallocate of an IPIF. Always called as writer. Called by 13547 * ill_delete or ip_sioctl_removeif. 13548 */ 13549 static void 13550 ipif_free(ipif_t *ipif) 13551 { 13552 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; 13553 13554 ASSERT(IAM_WRITER_IPIF(ipif)); 13555 13556 if (ipif->ipif_recovery_id != 0) 13557 (void) untimeout(ipif->ipif_recovery_id); 13558 ipif->ipif_recovery_id = 0; 13559 13560 /* 13561 * Take down the interface. We can be called either from ill_delete 13562 * or from ip_sioctl_removeif. 13563 */ 13564 (void) ipif_down(ipif, NULL, NULL); 13565 13566 /* 13567 * Now that the interface is down, there's no chance it can still 13568 * become a duplicate. Cancel any timer that may have been set while 13569 * tearing down. 13570 */ 13571 if (ipif->ipif_recovery_id != 0) 13572 (void) untimeout(ipif->ipif_recovery_id); 13573 ipif->ipif_recovery_id = 0; 13574 13575 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 13576 /* Remove pointers to this ill in the multicast routing tables */ 13577 reset_mrt_vif_ipif(ipif); 13578 /* If necessary, clear the cached source ipif rotor. */ 13579 if (ipif->ipif_ill->ill_src_ipif == ipif) 13580 ipif->ipif_ill->ill_src_ipif = NULL; 13581 rw_exit(&ipst->ips_ill_g_lock); 13582 } 13583 13584 static void 13585 ipif_free_tail(ipif_t *ipif) 13586 { 13587 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; 13588 13589 /* 13590 * Need to hold both ill_g_lock and ill_lock while 13591 * inserting or removing an ipif from the linked list 13592 * of ipifs hanging off the ill. 13593 */ 13594 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 13595 13596 #ifdef DEBUG 13597 ipif_trace_cleanup(ipif); 13598 #endif 13599 13600 /* Ask SCTP to take it out of it list */ 13601 sctp_update_ipif(ipif, SCTP_IPIF_REMOVE); 13602 ip_rts_newaddrmsg(RTM_FREEADDR, 0, ipif, RTSQ_DEFAULT); 13603 13604 /* Get it out of the ILL interface list. */ 13605 ipif_remove(ipif); 13606 rw_exit(&ipst->ips_ill_g_lock); 13607 13608 ASSERT(!(ipif->ipif_flags & (IPIF_UP | IPIF_DUPLICATE))); 13609 ASSERT(ipif->ipif_recovery_id == 0); 13610 ASSERT(ipif->ipif_ire_local == NULL); 13611 ASSERT(ipif->ipif_ire_if == NULL); 13612 13613 /* Free the memory. */ 13614 mi_free(ipif); 13615 } 13616 13617 /* 13618 * Sets `buf' to an ipif name of the form "ill_name:id", or "ill_name" if "id" 13619 * is zero. 13620 */ 13621 void 13622 ipif_get_name(const ipif_t *ipif, char *buf, int len) 13623 { 13624 char lbuf[LIFNAMSIZ]; 13625 char *name; 13626 size_t name_len; 13627 13628 buf[0] = '\0'; 13629 name = ipif->ipif_ill->ill_name; 13630 name_len = ipif->ipif_ill->ill_name_length; 13631 if (ipif->ipif_id != 0) { 13632 (void) sprintf(lbuf, "%s%c%d", name, IPIF_SEPARATOR_CHAR, 13633 ipif->ipif_id); 13634 name = lbuf; 13635 name_len = mi_strlen(name) + 1; 13636 } 13637 len -= 1; 13638 buf[len] = '\0'; 13639 len = MIN(len, name_len); 13640 bcopy(name, buf, len); 13641 } 13642 13643 /* 13644 * Sets `buf' to an ill name. 13645 */ 13646 void 13647 ill_get_name(const ill_t *ill, char *buf, int len) 13648 { 13649 char *name; 13650 size_t name_len; 13651 13652 name = ill->ill_name; 13653 name_len = ill->ill_name_length; 13654 len -= 1; 13655 buf[len] = '\0'; 13656 len = MIN(len, name_len); 13657 bcopy(name, buf, len); 13658 } 13659 13660 /* 13661 * Find an IPIF based on the name passed in. Names can be of the form <phys> 13662 * (e.g., le0) or <phys>:<#> (e.g., le0:1). When there is no colon, the 13663 * implied unit id is zero. <phys> must correspond to the name of an ILL. 13664 * (May be called as writer.) 13665 */ 13666 static ipif_t * 13667 ipif_lookup_on_name(char *name, size_t namelen, boolean_t do_alloc, 13668 boolean_t *exists, boolean_t isv6, zoneid_t zoneid, ip_stack_t *ipst) 13669 { 13670 char *cp; 13671 char *endp; 13672 long id; 13673 ill_t *ill; 13674 ipif_t *ipif; 13675 uint_t ire_type; 13676 boolean_t did_alloc = B_FALSE; 13677 char last; 13678 13679 /* 13680 * If the caller wants to us to create the ipif, make sure we have a 13681 * valid zoneid 13682 */ 13683 ASSERT(!do_alloc || zoneid != ALL_ZONES); 13684 13685 if (namelen == 0) { 13686 return (NULL); 13687 } 13688 13689 *exists = B_FALSE; 13690 /* Look for a colon in the name. */ 13691 endp = &name[namelen]; 13692 for (cp = endp; --cp > name; ) { 13693 if (*cp == IPIF_SEPARATOR_CHAR) 13694 break; 13695 } 13696 13697 if (*cp == IPIF_SEPARATOR_CHAR) { 13698 /* 13699 * Reject any non-decimal aliases for logical 13700 * interfaces. Aliases with leading zeroes 13701 * are also rejected as they introduce ambiguity 13702 * in the naming of the interfaces. 13703 * In order to confirm with existing semantics, 13704 * and to not break any programs/script relying 13705 * on that behaviour, if<0>:0 is considered to be 13706 * a valid interface. 13707 * 13708 * If alias has two or more digits and the first 13709 * is zero, fail. 13710 */ 13711 if (&cp[2] < endp && cp[1] == '0') { 13712 return (NULL); 13713 } 13714 } 13715 13716 if (cp <= name) { 13717 cp = endp; 13718 } 13719 last = *cp; 13720 *cp = '\0'; 13721 13722 /* 13723 * Look up the ILL, based on the portion of the name 13724 * before the slash. ill_lookup_on_name returns a held ill. 13725 * Temporary to check whether ill exists already. If so 13726 * ill_lookup_on_name will clear it. 13727 */ 13728 ill = ill_lookup_on_name(name, do_alloc, isv6, 13729 &did_alloc, ipst); 13730 *cp = last; 13731 if (ill == NULL) 13732 return (NULL); 13733 13734 /* Establish the unit number in the name. */ 13735 id = 0; 13736 if (cp < endp && *endp == '\0') { 13737 /* If there was a colon, the unit number follows. */ 13738 cp++; 13739 if (ddi_strtol(cp, NULL, 0, &id) != 0) { 13740 ill_refrele(ill); 13741 return (NULL); 13742 } 13743 } 13744 13745 mutex_enter(&ill->ill_lock); 13746 /* Now see if there is an IPIF with this unit number. */ 13747 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 13748 if (ipif->ipif_id == id) { 13749 if (zoneid != ALL_ZONES && 13750 zoneid != ipif->ipif_zoneid && 13751 ipif->ipif_zoneid != ALL_ZONES) { 13752 mutex_exit(&ill->ill_lock); 13753 ill_refrele(ill); 13754 return (NULL); 13755 } 13756 if (IPIF_CAN_LOOKUP(ipif)) { 13757 ipif_refhold_locked(ipif); 13758 mutex_exit(&ill->ill_lock); 13759 if (!did_alloc) 13760 *exists = B_TRUE; 13761 /* 13762 * Drop locks before calling ill_refrele 13763 * since it can potentially call into 13764 * ipif_ill_refrele_tail which can end up 13765 * in trying to acquire any lock. 13766 */ 13767 ill_refrele(ill); 13768 return (ipif); 13769 } 13770 } 13771 } 13772 13773 if (!do_alloc) { 13774 mutex_exit(&ill->ill_lock); 13775 ill_refrele(ill); 13776 return (NULL); 13777 } 13778 13779 /* 13780 * If none found, atomically allocate and return a new one. 13781 * Historically, we used IRE_LOOPBACK only for lun 0, and IRE_LOCAL 13782 * to support "receive only" use of lo0:1 etc. as is still done 13783 * below as an initial guess. 13784 * However, this is now likely to be overriden later in ipif_up_done() 13785 * when we know for sure what address has been configured on the 13786 * interface, since we might have more than one loopback interface 13787 * with a loopback address, e.g. in the case of zones, and all the 13788 * interfaces with loopback addresses need to be marked IRE_LOOPBACK. 13789 */ 13790 if (ill->ill_net_type == IRE_LOOPBACK && id == 0) 13791 ire_type = IRE_LOOPBACK; 13792 else 13793 ire_type = IRE_LOCAL; 13794 ipif = ipif_allocate(ill, id, ire_type, B_TRUE, B_TRUE, NULL); 13795 if (ipif != NULL) 13796 ipif_refhold_locked(ipif); 13797 mutex_exit(&ill->ill_lock); 13798 ill_refrele(ill); 13799 return (ipif); 13800 } 13801 13802 /* 13803 * Variant of the above that queues the request on the ipsq when 13804 * IPIF_CHANGING is set. 13805 */ 13806 static ipif_t * 13807 ipif_lookup_on_name_async(char *name, size_t namelen, boolean_t isv6, 13808 zoneid_t zoneid, queue_t *q, mblk_t *mp, ipsq_func_t func, int *error, 13809 ip_stack_t *ipst) 13810 { 13811 char *cp; 13812 char *endp; 13813 long id; 13814 ill_t *ill; 13815 ipif_t *ipif; 13816 boolean_t did_alloc = B_FALSE; 13817 ipsq_t *ipsq; 13818 13819 if (error != NULL) 13820 *error = 0; 13821 13822 if (namelen == 0) { 13823 if (error != NULL) 13824 *error = ENXIO; 13825 return (NULL); 13826 } 13827 13828 /* Look for a colon in the name. */ 13829 endp = &name[namelen]; 13830 for (cp = endp; --cp > name; ) { 13831 if (*cp == IPIF_SEPARATOR_CHAR) 13832 break; 13833 } 13834 13835 if (*cp == IPIF_SEPARATOR_CHAR) { 13836 /* 13837 * Reject any non-decimal aliases for logical 13838 * interfaces. Aliases with leading zeroes 13839 * are also rejected as they introduce ambiguity 13840 * in the naming of the interfaces. 13841 * In order to confirm with existing semantics, 13842 * and to not break any programs/script relying 13843 * on that behaviour, if<0>:0 is considered to be 13844 * a valid interface. 13845 * 13846 * If alias has two or more digits and the first 13847 * is zero, fail. 13848 */ 13849 if (&cp[2] < endp && cp[1] == '0') { 13850 if (error != NULL) 13851 *error = EINVAL; 13852 return (NULL); 13853 } 13854 } 13855 13856 if (cp <= name) { 13857 cp = endp; 13858 } else { 13859 *cp = '\0'; 13860 } 13861 13862 /* 13863 * Look up the ILL, based on the portion of the name 13864 * before the slash. ill_lookup_on_name returns a held ill. 13865 * Temporary to check whether ill exists already. If so 13866 * ill_lookup_on_name will clear it. 13867 */ 13868 ill = ill_lookup_on_name(name, B_FALSE, isv6, &did_alloc, ipst); 13869 if (cp != endp) 13870 *cp = IPIF_SEPARATOR_CHAR; 13871 if (ill == NULL) 13872 return (NULL); 13873 13874 /* Establish the unit number in the name. */ 13875 id = 0; 13876 if (cp < endp && *endp == '\0') { 13877 /* If there was a colon, the unit number follows. */ 13878 cp++; 13879 if (ddi_strtol(cp, NULL, 0, &id) != 0) { 13880 ill_refrele(ill); 13881 if (error != NULL) 13882 *error = ENXIO; 13883 return (NULL); 13884 } 13885 } 13886 13887 GRAB_CONN_LOCK(q); 13888 mutex_enter(&ill->ill_lock); 13889 /* Now see if there is an IPIF with this unit number. */ 13890 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 13891 if (ipif->ipif_id == id) { 13892 if (zoneid != ALL_ZONES && 13893 zoneid != ipif->ipif_zoneid && 13894 ipif->ipif_zoneid != ALL_ZONES) { 13895 mutex_exit(&ill->ill_lock); 13896 RELEASE_CONN_LOCK(q); 13897 ill_refrele(ill); 13898 if (error != NULL) 13899 *error = ENXIO; 13900 return (NULL); 13901 } 13902 13903 if (!(IPIF_IS_CHANGING(ipif) || 13904 IPIF_IS_CONDEMNED(ipif)) || 13905 IAM_WRITER_IPIF(ipif)) { 13906 ipif_refhold_locked(ipif); 13907 mutex_exit(&ill->ill_lock); 13908 /* 13909 * Drop locks before calling ill_refrele 13910 * since it can potentially call into 13911 * ipif_ill_refrele_tail which can end up 13912 * in trying to acquire any lock. 13913 */ 13914 RELEASE_CONN_LOCK(q); 13915 ill_refrele(ill); 13916 return (ipif); 13917 } else if (q != NULL && !IPIF_IS_CONDEMNED(ipif)) { 13918 ipsq = ill->ill_phyint->phyint_ipsq; 13919 mutex_enter(&ipsq->ipsq_lock); 13920 mutex_enter(&ipsq->ipsq_xop->ipx_lock); 13921 mutex_exit(&ill->ill_lock); 13922 ipsq_enq(ipsq, q, mp, func, NEW_OP, ill); 13923 mutex_exit(&ipsq->ipsq_xop->ipx_lock); 13924 mutex_exit(&ipsq->ipsq_lock); 13925 RELEASE_CONN_LOCK(q); 13926 ill_refrele(ill); 13927 if (error != NULL) 13928 *error = EINPROGRESS; 13929 return (NULL); 13930 } 13931 } 13932 } 13933 RELEASE_CONN_LOCK(q); 13934 mutex_exit(&ill->ill_lock); 13935 ill_refrele(ill); 13936 if (error != NULL) 13937 *error = ENXIO; 13938 return (NULL); 13939 } 13940 13941 /* 13942 * This routine is called whenever a new address comes up on an ipif. If 13943 * we are configured to respond to address mask requests, then we are supposed 13944 * to broadcast an address mask reply at this time. This routine is also 13945 * called if we are already up, but a netmask change is made. This is legal 13946 * but might not make the system manager very popular. (May be called 13947 * as writer.) 13948 */ 13949 void 13950 ipif_mask_reply(ipif_t *ipif) 13951 { 13952 icmph_t *icmph; 13953 ipha_t *ipha; 13954 mblk_t *mp; 13955 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; 13956 ip_xmit_attr_t ixas; 13957 13958 #define REPLY_LEN (sizeof (icmp_ipha) + sizeof (icmph_t) + IP_ADDR_LEN) 13959 13960 if (!ipst->ips_ip_respond_to_address_mask_broadcast) 13961 return; 13962 13963 /* ICMP mask reply is IPv4 only */ 13964 ASSERT(!ipif->ipif_isv6); 13965 /* ICMP mask reply is not for a loopback interface */ 13966 ASSERT(ipif->ipif_ill->ill_wq != NULL); 13967 13968 if (ipif->ipif_lcl_addr == INADDR_ANY) 13969 return; 13970 13971 mp = allocb(REPLY_LEN, BPRI_HI); 13972 if (mp == NULL) 13973 return; 13974 mp->b_wptr = mp->b_rptr + REPLY_LEN; 13975 13976 ipha = (ipha_t *)mp->b_rptr; 13977 bzero(ipha, REPLY_LEN); 13978 *ipha = icmp_ipha; 13979 ipha->ipha_ttl = ipst->ips_ip_broadcast_ttl; 13980 ipha->ipha_src = ipif->ipif_lcl_addr; 13981 ipha->ipha_dst = ipif->ipif_brd_addr; 13982 ipha->ipha_length = htons(REPLY_LEN); 13983 ipha->ipha_ident = 0; 13984 13985 icmph = (icmph_t *)&ipha[1]; 13986 icmph->icmph_type = ICMP_ADDRESS_MASK_REPLY; 13987 bcopy(&ipif->ipif_net_mask, &icmph[1], IP_ADDR_LEN); 13988 icmph->icmph_checksum = IP_CSUM(mp, sizeof (ipha_t), 0); 13989 13990 bzero(&ixas, sizeof (ixas)); 13991 ixas.ixa_flags = IXAF_BASIC_SIMPLE_V4; 13992 ixas.ixa_zoneid = ALL_ZONES; 13993 ixas.ixa_ifindex = 0; 13994 ixas.ixa_ipst = ipst; 13995 ixas.ixa_multicast_ttl = IP_DEFAULT_MULTICAST_TTL; 13996 (void) ip_output_simple(mp, &ixas); 13997 ixa_cleanup(&ixas); 13998 #undef REPLY_LEN 13999 } 14000 14001 /* 14002 * Join the ipif specific multicast groups. 14003 * Must be called after a mapping has been set up in the resolver. (Always 14004 * called as writer.) 14005 */ 14006 void 14007 ipif_multicast_up(ipif_t *ipif) 14008 { 14009 int err; 14010 ill_t *ill; 14011 ilm_t *ilm; 14012 14013 ASSERT(IAM_WRITER_IPIF(ipif)); 14014 14015 ill = ipif->ipif_ill; 14016 14017 ip1dbg(("ipif_multicast_up\n")); 14018 if (!(ill->ill_flags & ILLF_MULTICAST) || 14019 ipif->ipif_allhosts_ilm != NULL) 14020 return; 14021 14022 if (ipif->ipif_isv6) { 14023 in6_addr_t v6allmc = ipv6_all_hosts_mcast; 14024 in6_addr_t v6solmc = ipv6_solicited_node_mcast; 14025 14026 v6solmc.s6_addr32[3] |= ipif->ipif_v6lcl_addr.s6_addr32[3]; 14027 14028 if (IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6lcl_addr)) 14029 return; 14030 14031 ip1dbg(("ipif_multicast_up - addmulti\n")); 14032 14033 /* 14034 * Join the all hosts multicast address. We skip this for 14035 * underlying IPMP interfaces since they should be invisible. 14036 */ 14037 if (!IS_UNDER_IPMP(ill)) { 14038 ilm = ip_addmulti(&v6allmc, ill, ipif->ipif_zoneid, 14039 &err); 14040 if (ilm == NULL) { 14041 ASSERT(err != 0); 14042 ip0dbg(("ipif_multicast_up: " 14043 "all_hosts_mcast failed %d\n", err)); 14044 return; 14045 } 14046 ipif->ipif_allhosts_ilm = ilm; 14047 } 14048 14049 /* 14050 * Enable multicast for the solicited node multicast address. 14051 * If IPMP we need to put the membership on the upper ill. 14052 */ 14053 if (!(ipif->ipif_flags & IPIF_NOLOCAL)) { 14054 ill_t *mcast_ill = NULL; 14055 boolean_t need_refrele; 14056 14057 if (IS_UNDER_IPMP(ill) && 14058 (mcast_ill = ipmp_ill_hold_ipmp_ill(ill)) != NULL) { 14059 need_refrele = B_TRUE; 14060 } else { 14061 mcast_ill = ill; 14062 need_refrele = B_FALSE; 14063 } 14064 14065 ilm = ip_addmulti(&v6solmc, mcast_ill, 14066 ipif->ipif_zoneid, &err); 14067 if (need_refrele) 14068 ill_refrele(mcast_ill); 14069 14070 if (ilm == NULL) { 14071 ASSERT(err != 0); 14072 ip0dbg(("ipif_multicast_up: solicited MC" 14073 " failed %d\n", err)); 14074 if ((ilm = ipif->ipif_allhosts_ilm) != NULL) { 14075 ipif->ipif_allhosts_ilm = NULL; 14076 (void) ip_delmulti(ilm); 14077 } 14078 return; 14079 } 14080 ipif->ipif_solmulti_ilm = ilm; 14081 } 14082 } else { 14083 in6_addr_t v6group; 14084 14085 if (ipif->ipif_lcl_addr == INADDR_ANY || IS_UNDER_IPMP(ill)) 14086 return; 14087 14088 /* Join the all hosts multicast address */ 14089 ip1dbg(("ipif_multicast_up - addmulti\n")); 14090 IN6_IPADDR_TO_V4MAPPED(htonl(INADDR_ALLHOSTS_GROUP), &v6group); 14091 14092 ilm = ip_addmulti(&v6group, ill, ipif->ipif_zoneid, &err); 14093 if (ilm == NULL) { 14094 ASSERT(err != 0); 14095 ip0dbg(("ipif_multicast_up: failed %d\n", err)); 14096 return; 14097 } 14098 ipif->ipif_allhosts_ilm = ilm; 14099 } 14100 } 14101 14102 /* 14103 * Blow away any multicast groups that we joined in ipif_multicast_up(). 14104 * (ilms from explicit memberships are handled in conn_update_ill.) 14105 */ 14106 void 14107 ipif_multicast_down(ipif_t *ipif) 14108 { 14109 ASSERT(IAM_WRITER_IPIF(ipif)); 14110 14111 ip1dbg(("ipif_multicast_down\n")); 14112 14113 if (ipif->ipif_allhosts_ilm != NULL) { 14114 (void) ip_delmulti(ipif->ipif_allhosts_ilm); 14115 ipif->ipif_allhosts_ilm = NULL; 14116 } 14117 if (ipif->ipif_solmulti_ilm != NULL) { 14118 (void) ip_delmulti(ipif->ipif_solmulti_ilm); 14119 ipif->ipif_solmulti_ilm = NULL; 14120 } 14121 } 14122 14123 /* 14124 * Used when an interface comes up to recreate any extra routes on this 14125 * interface. 14126 */ 14127 int 14128 ill_recover_saved_ire(ill_t *ill) 14129 { 14130 mblk_t *mp; 14131 ip_stack_t *ipst = ill->ill_ipst; 14132 14133 ip1dbg(("ill_recover_saved_ire(%s)", ill->ill_name)); 14134 14135 mutex_enter(&ill->ill_saved_ire_lock); 14136 for (mp = ill->ill_saved_ire_mp; mp != NULL; mp = mp->b_cont) { 14137 ire_t *ire, *nire; 14138 ifrt_t *ifrt; 14139 14140 ifrt = (ifrt_t *)mp->b_rptr; 14141 /* 14142 * Create a copy of the IRE with the saved address and netmask. 14143 */ 14144 if (ill->ill_isv6) { 14145 ire = ire_create_v6( 14146 &ifrt->ifrt_v6addr, 14147 &ifrt->ifrt_v6mask, 14148 &ifrt->ifrt_v6gateway_addr, 14149 ifrt->ifrt_type, 14150 ill, 14151 ifrt->ifrt_zoneid, 14152 ifrt->ifrt_flags, 14153 NULL, 14154 ipst); 14155 } else { 14156 ire = ire_create( 14157 (uint8_t *)&ifrt->ifrt_addr, 14158 (uint8_t *)&ifrt->ifrt_mask, 14159 (uint8_t *)&ifrt->ifrt_gateway_addr, 14160 ifrt->ifrt_type, 14161 ill, 14162 ifrt->ifrt_zoneid, 14163 ifrt->ifrt_flags, 14164 NULL, 14165 ipst); 14166 } 14167 if (ire == NULL) { 14168 mutex_exit(&ill->ill_saved_ire_lock); 14169 return (ENOMEM); 14170 } 14171 14172 if (ifrt->ifrt_flags & RTF_SETSRC) { 14173 if (ill->ill_isv6) { 14174 ire->ire_setsrc_addr_v6 = 14175 ifrt->ifrt_v6setsrc_addr; 14176 } else { 14177 ire->ire_setsrc_addr = ifrt->ifrt_setsrc_addr; 14178 } 14179 } 14180 14181 /* 14182 * Some software (for example, GateD and Sun Cluster) attempts 14183 * to create (what amount to) IRE_PREFIX routes with the 14184 * loopback address as the gateway. This is primarily done to 14185 * set up prefixes with the RTF_REJECT flag set (for example, 14186 * when generating aggregate routes.) 14187 * 14188 * If the IRE type (as defined by ill->ill_net_type) is 14189 * IRE_LOOPBACK, then we map the request into a 14190 * IRE_IF_NORESOLVER. 14191 */ 14192 if (ill->ill_net_type == IRE_LOOPBACK) 14193 ire->ire_type = IRE_IF_NORESOLVER; 14194 14195 /* 14196 * ire held by ire_add, will be refreled' towards the 14197 * the end of ipif_up_done 14198 */ 14199 nire = ire_add(ire); 14200 /* 14201 * Check if it was a duplicate entry. This handles 14202 * the case of two racing route adds for the same route 14203 */ 14204 if (nire == NULL) { 14205 ip1dbg(("ill_recover_saved_ire: FAILED\n")); 14206 } else if (nire != ire) { 14207 ip1dbg(("ill_recover_saved_ire: duplicate ire %p\n", 14208 (void *)nire)); 14209 ire_delete(nire); 14210 } else { 14211 ip1dbg(("ill_recover_saved_ire: added ire %p\n", 14212 (void *)nire)); 14213 } 14214 if (nire != NULL) 14215 ire_refrele(nire); 14216 } 14217 mutex_exit(&ill->ill_saved_ire_lock); 14218 return (0); 14219 } 14220 14221 /* 14222 * Used to set the netmask and broadcast address to default values when the 14223 * interface is brought up. (Always called as writer.) 14224 */ 14225 static void 14226 ipif_set_default(ipif_t *ipif) 14227 { 14228 ASSERT(MUTEX_HELD(&ipif->ipif_ill->ill_lock)); 14229 14230 if (!ipif->ipif_isv6) { 14231 /* 14232 * Interface holds an IPv4 address. Default 14233 * mask is the natural netmask. 14234 */ 14235 if (!ipif->ipif_net_mask) { 14236 ipaddr_t v4mask; 14237 14238 v4mask = ip_net_mask(ipif->ipif_lcl_addr); 14239 V4MASK_TO_V6(v4mask, ipif->ipif_v6net_mask); 14240 } 14241 if (ipif->ipif_flags & IPIF_POINTOPOINT) { 14242 /* ipif_subnet is ipif_pp_dst_addr for pt-pt */ 14243 ipif->ipif_v6subnet = ipif->ipif_v6pp_dst_addr; 14244 } else { 14245 V6_MASK_COPY(ipif->ipif_v6lcl_addr, 14246 ipif->ipif_v6net_mask, ipif->ipif_v6subnet); 14247 } 14248 /* 14249 * NOTE: SunOS 4.X does this even if the broadcast address 14250 * has been already set thus we do the same here. 14251 */ 14252 if (ipif->ipif_flags & IPIF_BROADCAST) { 14253 ipaddr_t v4addr; 14254 14255 v4addr = ipif->ipif_subnet | ~ipif->ipif_net_mask; 14256 IN6_IPADDR_TO_V4MAPPED(v4addr, &ipif->ipif_v6brd_addr); 14257 } 14258 } else { 14259 /* 14260 * Interface holds an IPv6-only address. Default 14261 * mask is all-ones. 14262 */ 14263 if (IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6net_mask)) 14264 ipif->ipif_v6net_mask = ipv6_all_ones; 14265 if (ipif->ipif_flags & IPIF_POINTOPOINT) { 14266 /* ipif_subnet is ipif_pp_dst_addr for pt-pt */ 14267 ipif->ipif_v6subnet = ipif->ipif_v6pp_dst_addr; 14268 } else { 14269 V6_MASK_COPY(ipif->ipif_v6lcl_addr, 14270 ipif->ipif_v6net_mask, ipif->ipif_v6subnet); 14271 } 14272 } 14273 } 14274 14275 /* 14276 * Return 0 if this address can be used as local address without causing 14277 * duplicate address problems. Otherwise, return EADDRNOTAVAIL if the address 14278 * is already up on a different ill, and EADDRINUSE if it's up on the same ill. 14279 * Note that the same IPv6 link-local address is allowed as long as the ills 14280 * are not on the same link. 14281 */ 14282 int 14283 ip_addr_availability_check(ipif_t *new_ipif) 14284 { 14285 in6_addr_t our_v6addr; 14286 ill_t *ill; 14287 ipif_t *ipif; 14288 ill_walk_context_t ctx; 14289 ip_stack_t *ipst = new_ipif->ipif_ill->ill_ipst; 14290 14291 ASSERT(IAM_WRITER_IPIF(new_ipif)); 14292 ASSERT(MUTEX_HELD(&ipst->ips_ip_addr_avail_lock)); 14293 ASSERT(RW_READ_HELD(&ipst->ips_ill_g_lock)); 14294 14295 new_ipif->ipif_flags &= ~IPIF_UNNUMBERED; 14296 if (IN6_IS_ADDR_UNSPECIFIED(&new_ipif->ipif_v6lcl_addr) || 14297 IN6_IS_ADDR_V4MAPPED_ANY(&new_ipif->ipif_v6lcl_addr)) 14298 return (0); 14299 14300 our_v6addr = new_ipif->ipif_v6lcl_addr; 14301 14302 if (new_ipif->ipif_isv6) 14303 ill = ILL_START_WALK_V6(&ctx, ipst); 14304 else 14305 ill = ILL_START_WALK_V4(&ctx, ipst); 14306 14307 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 14308 for (ipif = ill->ill_ipif; ipif != NULL; 14309 ipif = ipif->ipif_next) { 14310 if ((ipif == new_ipif) || 14311 !(ipif->ipif_flags & IPIF_UP) || 14312 (ipif->ipif_flags & IPIF_UNNUMBERED) || 14313 !IN6_ARE_ADDR_EQUAL(&ipif->ipif_v6lcl_addr, 14314 &our_v6addr)) 14315 continue; 14316 14317 if (new_ipif->ipif_flags & IPIF_POINTOPOINT) 14318 new_ipif->ipif_flags |= IPIF_UNNUMBERED; 14319 else if (ipif->ipif_flags & IPIF_POINTOPOINT) 14320 ipif->ipif_flags |= IPIF_UNNUMBERED; 14321 else if ((IN6_IS_ADDR_LINKLOCAL(&our_v6addr) || 14322 IN6_IS_ADDR_SITELOCAL(&our_v6addr)) && 14323 !IS_ON_SAME_LAN(ill, new_ipif->ipif_ill)) 14324 continue; 14325 else if (new_ipif->ipif_zoneid != ipif->ipif_zoneid && 14326 ipif->ipif_zoneid != ALL_ZONES && IS_LOOPBACK(ill)) 14327 continue; 14328 else if (new_ipif->ipif_ill == ill) 14329 return (EADDRINUSE); 14330 else 14331 return (EADDRNOTAVAIL); 14332 } 14333 } 14334 14335 return (0); 14336 } 14337 14338 /* 14339 * Bring up an ipif: bring up arp/ndp, bring up the DLPI stream, and add 14340 * IREs for the ipif. 14341 * When the routine returns EINPROGRESS then mp has been consumed and 14342 * the ioctl will be acked from ip_rput_dlpi. 14343 */ 14344 int 14345 ipif_up(ipif_t *ipif, queue_t *q, mblk_t *mp) 14346 { 14347 ill_t *ill = ipif->ipif_ill; 14348 boolean_t isv6 = ipif->ipif_isv6; 14349 int err = 0; 14350 boolean_t success; 14351 uint_t ipif_orig_id; 14352 ip_stack_t *ipst = ill->ill_ipst; 14353 14354 ASSERT(IAM_WRITER_IPIF(ipif)); 14355 14356 ip1dbg(("ipif_up(%s:%u)\n", ill->ill_name, ipif->ipif_id)); 14357 DTRACE_PROBE3(ipif__downup, char *, "ipif_up", 14358 ill_t *, ill, ipif_t *, ipif); 14359 14360 /* Shouldn't get here if it is already up. */ 14361 if (ipif->ipif_flags & IPIF_UP) 14362 return (EALREADY); 14363 14364 /* 14365 * If this is a request to bring up a data address on an interface 14366 * under IPMP, then move the address to its IPMP meta-interface and 14367 * try to bring it up. One complication is that the zeroth ipif for 14368 * an ill is special, in that every ill always has one, and that code 14369 * throughout IP deferences ill->ill_ipif without holding any locks. 14370 */ 14371 if (IS_UNDER_IPMP(ill) && ipmp_ipif_is_dataaddr(ipif) && 14372 (!ipif->ipif_isv6 || !V6_IPIF_LINKLOCAL(ipif))) { 14373 ipif_t *stubipif = NULL, *moveipif = NULL; 14374 ill_t *ipmp_ill = ipmp_illgrp_ipmp_ill(ill->ill_grp); 14375 14376 /* 14377 * The ipif being brought up should be quiesced. If it's not, 14378 * something has gone amiss and we need to bail out. (If it's 14379 * quiesced, we know it will remain so via IPIF_CONDEMNED.) 14380 */ 14381 mutex_enter(&ill->ill_lock); 14382 if (!ipif_is_quiescent(ipif)) { 14383 mutex_exit(&ill->ill_lock); 14384 return (EINVAL); 14385 } 14386 mutex_exit(&ill->ill_lock); 14387 14388 /* 14389 * If we're going to need to allocate ipifs, do it prior 14390 * to starting the move (and grabbing locks). 14391 */ 14392 if (ipif->ipif_id == 0) { 14393 if ((moveipif = ipif_allocate(ill, 0, IRE_LOCAL, B_TRUE, 14394 B_FALSE, &err)) == NULL) { 14395 return (err); 14396 } 14397 if ((stubipif = ipif_allocate(ill, 0, IRE_LOCAL, B_TRUE, 14398 B_FALSE, &err)) == NULL) { 14399 mi_free(moveipif); 14400 return (err); 14401 } 14402 } 14403 14404 /* 14405 * Grab or transfer the ipif to move. During the move, keep 14406 * ill_g_lock held to prevent any ill walker threads from 14407 * seeing things in an inconsistent state. 14408 */ 14409 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 14410 if (ipif->ipif_id != 0) { 14411 ipif_remove(ipif); 14412 } else { 14413 ipif_transfer(ipif, moveipif, stubipif); 14414 ipif = moveipif; 14415 } 14416 14417 /* 14418 * Place the ipif on the IPMP ill. If the zeroth ipif on 14419 * the IPMP ill is a stub (0.0.0.0 down address) then we 14420 * replace that one. Otherwise, pick the next available slot. 14421 */ 14422 ipif->ipif_ill = ipmp_ill; 14423 ipif_orig_id = ipif->ipif_id; 14424 14425 if (ipmp_ipif_is_stubaddr(ipmp_ill->ill_ipif)) { 14426 ipif_transfer(ipif, ipmp_ill->ill_ipif, NULL); 14427 ipif = ipmp_ill->ill_ipif; 14428 } else { 14429 ipif->ipif_id = -1; 14430 if ((err = ipif_insert(ipif, B_FALSE)) != 0) { 14431 /* 14432 * No more available ipif_id's -- put it back 14433 * on the original ill and fail the operation. 14434 * Since we're writer on the ill, we can be 14435 * sure our old slot is still available. 14436 */ 14437 ipif->ipif_id = ipif_orig_id; 14438 ipif->ipif_ill = ill; 14439 if (ipif_orig_id == 0) { 14440 ipif_transfer(ipif, ill->ill_ipif, 14441 NULL); 14442 } else { 14443 VERIFY(ipif_insert(ipif, B_FALSE) == 0); 14444 } 14445 rw_exit(&ipst->ips_ill_g_lock); 14446 return (err); 14447 } 14448 } 14449 rw_exit(&ipst->ips_ill_g_lock); 14450 14451 /* 14452 * Tell SCTP that the ipif has moved. Note that even if we 14453 * had to allocate a new ipif, the original sequence id was 14454 * preserved and therefore SCTP won't know. 14455 */ 14456 sctp_move_ipif(ipif, ill, ipmp_ill); 14457 14458 /* 14459 * If the ipif being brought up was on slot zero, then we 14460 * first need to bring up the placeholder we stuck there. In 14461 * ip_rput_dlpi_writer(), arp_bringup_done(), or the recursive 14462 * call to ipif_up() itself, if we successfully bring up the 14463 * placeholder, we'll check ill_move_ipif and bring it up too. 14464 */ 14465 if (ipif_orig_id == 0) { 14466 ASSERT(ill->ill_move_ipif == NULL); 14467 ill->ill_move_ipif = ipif; 14468 if ((err = ipif_up(ill->ill_ipif, q, mp)) == 0) 14469 ASSERT(ill->ill_move_ipif == NULL); 14470 if (err != EINPROGRESS) 14471 ill->ill_move_ipif = NULL; 14472 return (err); 14473 } 14474 14475 /* 14476 * Bring it up on the IPMP ill. 14477 */ 14478 return (ipif_up(ipif, q, mp)); 14479 } 14480 14481 /* Skip arp/ndp for any loopback interface. */ 14482 if (ill->ill_wq != NULL) { 14483 conn_t *connp = CONN_Q(q) ? Q_TO_CONN(q) : NULL; 14484 ipsq_t *ipsq = ill->ill_phyint->phyint_ipsq; 14485 14486 if (!ill->ill_dl_up) { 14487 /* 14488 * ill_dl_up is not yet set. i.e. we are yet to 14489 * DL_BIND with the driver and this is the first 14490 * logical interface on the ill to become "up". 14491 * Tell the driver to get going (via DL_BIND_REQ). 14492 * Note that changing "significant" IFF_ flags 14493 * address/netmask etc cause a down/up dance, but 14494 * does not cause an unbind (DL_UNBIND) with the driver 14495 */ 14496 return (ill_dl_up(ill, ipif, mp, q)); 14497 } 14498 14499 /* 14500 * ipif_resolver_up may end up needeing to bind/attach 14501 * the ARP stream, which in turn necessitates a 14502 * DLPI message exchange with the driver. ioctls are 14503 * serialized and so we cannot send more than one 14504 * interface up message at a time. If ipif_resolver_up 14505 * does need to wait for the DLPI handshake for the ARP stream, 14506 * we get EINPROGRESS and we will complete in arp_bringup_done. 14507 */ 14508 14509 ASSERT(connp != NULL || !CONN_Q(q)); 14510 if (connp != NULL) 14511 mutex_enter(&connp->conn_lock); 14512 mutex_enter(&ill->ill_lock); 14513 success = ipsq_pending_mp_add(connp, ipif, q, mp, 0); 14514 mutex_exit(&ill->ill_lock); 14515 if (connp != NULL) 14516 mutex_exit(&connp->conn_lock); 14517 if (!success) 14518 return (EINTR); 14519 14520 /* 14521 * Crank up IPv6 neighbor discovery. Unlike ARP, this should 14522 * complete when ipif_ndp_up returns. 14523 */ 14524 err = ipif_resolver_up(ipif, Res_act_initial); 14525 if (err == EINPROGRESS) { 14526 /* We will complete it in arp_bringup_done() */ 14527 return (err); 14528 } 14529 14530 if (isv6 && err == 0) 14531 err = ipif_ndp_up(ipif, B_TRUE); 14532 14533 ASSERT(err != EINPROGRESS); 14534 mp = ipsq_pending_mp_get(ipsq, &connp); 14535 ASSERT(mp != NULL); 14536 if (err != 0) 14537 return (err); 14538 } else { 14539 /* 14540 * Interfaces without underlying hardware don't do duplicate 14541 * address detection. 14542 */ 14543 ASSERT(!(ipif->ipif_flags & IPIF_DUPLICATE)); 14544 ipif->ipif_addr_ready = 1; 14545 err = ill_add_ires(ill); 14546 /* allocation failure? */ 14547 if (err != 0) 14548 return (err); 14549 } 14550 14551 err = (isv6 ? ipif_up_done_v6(ipif) : ipif_up_done(ipif)); 14552 if (err == 0 && ill->ill_move_ipif != NULL) { 14553 ipif = ill->ill_move_ipif; 14554 ill->ill_move_ipif = NULL; 14555 return (ipif_up(ipif, q, mp)); 14556 } 14557 return (err); 14558 } 14559 14560 /* 14561 * Add any IREs tied to the ill. For now this is just an IRE_MULTICAST. 14562 * The identical set of IREs need to be removed in ill_delete_ires(). 14563 */ 14564 int 14565 ill_add_ires(ill_t *ill) 14566 { 14567 ire_t *ire; 14568 in6_addr_t dummy6 = {(uint32_t)V6_MCAST, 0, 0, 1}; 14569 in_addr_t dummy4 = htonl(INADDR_ALLHOSTS_GROUP); 14570 14571 if (ill->ill_ire_multicast != NULL) 14572 return (0); 14573 14574 /* 14575 * provide some dummy ire_addr for creating the ire. 14576 */ 14577 if (ill->ill_isv6) { 14578 ire = ire_create_v6(&dummy6, 0, 0, IRE_MULTICAST, ill, 14579 ALL_ZONES, RTF_UP, NULL, ill->ill_ipst); 14580 } else { 14581 ire = ire_create((uchar_t *)&dummy4, 0, 0, IRE_MULTICAST, ill, 14582 ALL_ZONES, RTF_UP, NULL, ill->ill_ipst); 14583 } 14584 if (ire == NULL) 14585 return (ENOMEM); 14586 14587 ill->ill_ire_multicast = ire; 14588 return (0); 14589 } 14590 14591 void 14592 ill_delete_ires(ill_t *ill) 14593 { 14594 if (ill->ill_ire_multicast != NULL) { 14595 /* 14596 * BIND/ATTACH completed; Release the ref for ill_ire_multicast 14597 * which was taken without any th_tracing enabled. 14598 * We also mark it as condemned (note that it was never added) 14599 * so that caching conn's can move off of it. 14600 */ 14601 ire_make_condemned(ill->ill_ire_multicast); 14602 ire_refrele_notr(ill->ill_ire_multicast); 14603 ill->ill_ire_multicast = NULL; 14604 } 14605 } 14606 14607 /* 14608 * Perform a bind for the physical device. 14609 * When the routine returns EINPROGRESS then mp has been consumed and 14610 * the ioctl will be acked from ip_rput_dlpi. 14611 * Allocate an unbind message and save it until ipif_down. 14612 */ 14613 static int 14614 ill_dl_up(ill_t *ill, ipif_t *ipif, mblk_t *mp, queue_t *q) 14615 { 14616 mblk_t *bind_mp = NULL; 14617 mblk_t *unbind_mp = NULL; 14618 conn_t *connp; 14619 boolean_t success; 14620 int err; 14621 14622 DTRACE_PROBE2(ill__downup, char *, "ill_dl_up", ill_t *, ill); 14623 14624 ip1dbg(("ill_dl_up(%s)\n", ill->ill_name)); 14625 ASSERT(IAM_WRITER_ILL(ill)); 14626 ASSERT(mp != NULL); 14627 14628 /* 14629 * Make sure we have an IRE_MULTICAST in case we immediately 14630 * start receiving packets. 14631 */ 14632 err = ill_add_ires(ill); 14633 if (err != 0) 14634 goto bad; 14635 14636 bind_mp = ip_dlpi_alloc(sizeof (dl_bind_req_t) + sizeof (long), 14637 DL_BIND_REQ); 14638 if (bind_mp == NULL) 14639 goto bad; 14640 ((dl_bind_req_t *)bind_mp->b_rptr)->dl_sap = ill->ill_sap; 14641 ((dl_bind_req_t *)bind_mp->b_rptr)->dl_service_mode = DL_CLDLS; 14642 14643 /* 14644 * ill_unbind_mp would be non-null if the following sequence had 14645 * happened: 14646 * - send DL_BIND_REQ to driver, wait for response 14647 * - multiple ioctls that need to bring the ipif up are encountered, 14648 * but they cannot enter the ipsq due to the outstanding DL_BIND_REQ. 14649 * These ioctls will then be enqueued on the ipsq 14650 * - a DL_ERROR_ACK is returned for the DL_BIND_REQ 14651 * At this point, the pending ioctls in the ipsq will be drained, and 14652 * since ill->ill_dl_up was not set, ill_dl_up would be invoked with 14653 * a non-null ill->ill_unbind_mp 14654 */ 14655 if (ill->ill_unbind_mp == NULL) { 14656 unbind_mp = ip_dlpi_alloc(sizeof (dl_unbind_req_t), 14657 DL_UNBIND_REQ); 14658 if (unbind_mp == NULL) 14659 goto bad; 14660 } 14661 /* 14662 * Record state needed to complete this operation when the 14663 * DL_BIND_ACK shows up. Also remember the pre-allocated mblks. 14664 */ 14665 connp = CONN_Q(q) ? Q_TO_CONN(q) : NULL; 14666 ASSERT(connp != NULL || !CONN_Q(q)); 14667 GRAB_CONN_LOCK(q); 14668 mutex_enter(&ipif->ipif_ill->ill_lock); 14669 success = ipsq_pending_mp_add(connp, ipif, q, mp, 0); 14670 mutex_exit(&ipif->ipif_ill->ill_lock); 14671 RELEASE_CONN_LOCK(q); 14672 if (!success) 14673 goto bad; 14674 14675 /* 14676 * Save the unbind message for ill_dl_down(); it will be consumed when 14677 * the interface goes down. 14678 */ 14679 if (ill->ill_unbind_mp == NULL) 14680 ill->ill_unbind_mp = unbind_mp; 14681 14682 ill_dlpi_send(ill, bind_mp); 14683 /* Send down link-layer capabilities probe if not already done. */ 14684 ill_capability_probe(ill); 14685 14686 /* 14687 * Sysid used to rely on the fact that netboots set domainname 14688 * and the like. Now that miniroot boots aren't strictly netboots 14689 * and miniroot network configuration is driven from userland 14690 * these things still need to be set. This situation can be detected 14691 * by comparing the interface being configured here to the one 14692 * dhcifname was set to reference by the boot loader. Once sysid is 14693 * converted to use dhcp_ipc_getinfo() this call can go away. 14694 */ 14695 if ((ipif->ipif_flags & IPIF_DHCPRUNNING) && 14696 (strcmp(ill->ill_name, dhcifname) == 0) && 14697 (strlen(srpc_domain) == 0)) { 14698 if (dhcpinit() != 0) 14699 cmn_err(CE_WARN, "no cached dhcp response"); 14700 } 14701 14702 /* 14703 * This operation will complete in ip_rput_dlpi with either 14704 * a DL_BIND_ACK or DL_ERROR_ACK. 14705 */ 14706 return (EINPROGRESS); 14707 bad: 14708 ip1dbg(("ill_dl_up(%s) FAILED\n", ill->ill_name)); 14709 14710 freemsg(bind_mp); 14711 freemsg(unbind_mp); 14712 return (ENOMEM); 14713 } 14714 14715 /* Add room for tcp+ip headers */ 14716 uint_t ip_loopback_mtuplus = IP_LOOPBACK_MTU + IP_SIMPLE_HDR_LENGTH + 20; 14717 14718 /* 14719 * DLPI and ARP is up. 14720 * Create all the IREs associated with an interface. Bring up multicast. 14721 * Set the interface flag and finish other initialization 14722 * that potentially had to be deferred to after DL_BIND_ACK. 14723 */ 14724 int 14725 ipif_up_done(ipif_t *ipif) 14726 { 14727 ill_t *ill = ipif->ipif_ill; 14728 int err = 0; 14729 boolean_t loopback = B_FALSE; 14730 boolean_t update_src_selection = B_TRUE; 14731 ipif_t *tmp_ipif; 14732 14733 ip1dbg(("ipif_up_done(%s:%u)\n", 14734 ipif->ipif_ill->ill_name, ipif->ipif_id)); 14735 DTRACE_PROBE3(ipif__downup, char *, "ipif_up_done", 14736 ill_t *, ill, ipif_t *, ipif); 14737 14738 /* Check if this is a loopback interface */ 14739 if (ipif->ipif_ill->ill_wq == NULL) 14740 loopback = B_TRUE; 14741 14742 ASSERT(!MUTEX_HELD(&ipif->ipif_ill->ill_lock)); 14743 14744 /* 14745 * If all other interfaces for this ill are down or DEPRECATED, 14746 * or otherwise unsuitable for source address selection, 14747 * reset the src generation numbers to make sure source 14748 * address selection gets to take this new ipif into account. 14749 * No need to hold ill_lock while traversing the ipif list since 14750 * we are writer 14751 */ 14752 for (tmp_ipif = ill->ill_ipif; tmp_ipif; 14753 tmp_ipif = tmp_ipif->ipif_next) { 14754 if (((tmp_ipif->ipif_flags & 14755 (IPIF_NOXMIT|IPIF_ANYCAST|IPIF_NOLOCAL|IPIF_DEPRECATED)) || 14756 !(tmp_ipif->ipif_flags & IPIF_UP)) || 14757 (tmp_ipif == ipif)) 14758 continue; 14759 /* first useable pre-existing interface */ 14760 update_src_selection = B_FALSE; 14761 break; 14762 } 14763 if (update_src_selection) 14764 ip_update_source_selection(ill->ill_ipst); 14765 14766 if (IS_LOOPBACK(ill) || ill->ill_net_type == IRE_IF_NORESOLVER) { 14767 nce_t *loop_nce = NULL; 14768 uint16_t flags = (NCE_F_MYADDR | NCE_F_AUTHORITY | NCE_F_NONUD); 14769 14770 /* 14771 * lo0:1 and subsequent ipifs were marked IRE_LOCAL in 14772 * ipif_lookup_on_name(), but in the case of zones we can have 14773 * several loopback addresses on lo0. So all the interfaces with 14774 * loopback addresses need to be marked IRE_LOOPBACK. 14775 */ 14776 if (V4_PART_OF_V6(ipif->ipif_v6lcl_addr) == 14777 htonl(INADDR_LOOPBACK)) 14778 ipif->ipif_ire_type = IRE_LOOPBACK; 14779 else 14780 ipif->ipif_ire_type = IRE_LOCAL; 14781 if (ill->ill_net_type != IRE_LOOPBACK) 14782 flags |= NCE_F_PUBLISH; 14783 14784 /* add unicast nce for the local addr */ 14785 err = nce_lookup_then_add_v4(ill, NULL, 14786 ill->ill_phys_addr_length, &ipif->ipif_lcl_addr, flags, 14787 ND_REACHABLE, &loop_nce); 14788 /* A shared-IP zone sees EEXIST for lo0:N */ 14789 if (err == 0 || err == EEXIST) { 14790 ipif->ipif_added_nce = 1; 14791 loop_nce->nce_ipif_cnt++; 14792 nce_refrele(loop_nce); 14793 err = 0; 14794 } else { 14795 ASSERT(loop_nce == NULL); 14796 return (err); 14797 } 14798 } 14799 14800 /* Create all the IREs associated with this interface */ 14801 err = ipif_add_ires_v4(ipif, loopback); 14802 if (err != 0) { 14803 /* 14804 * see comments about return value from 14805 * ip_addr_availability_check() in ipif_add_ires_v4(). 14806 */ 14807 if (err != EADDRINUSE) { 14808 (void) ipif_arp_down(ipif); 14809 } else { 14810 /* 14811 * Make IPMP aware of the deleted ipif so that 14812 * the needed ipmp cleanup (e.g., of ipif_bound_ill) 14813 * can be completed. Note that we do not want to 14814 * destroy the nce that was created on the ipmp_ill 14815 * for the active copy of the duplicate address in 14816 * use. 14817 */ 14818 if (IS_IPMP(ill)) 14819 ipmp_illgrp_del_ipif(ill->ill_grp, ipif); 14820 err = EADDRNOTAVAIL; 14821 } 14822 return (err); 14823 } 14824 14825 if (ill->ill_ipif_up_count == 1 && !loopback) { 14826 /* Recover any additional IREs entries for this ill */ 14827 (void) ill_recover_saved_ire(ill); 14828 } 14829 14830 if (ill->ill_need_recover_multicast) { 14831 /* 14832 * Need to recover all multicast memberships in the driver. 14833 * This had to be deferred until we had attached. The same 14834 * code exists in ipif_up_done_v6() to recover IPv6 14835 * memberships. 14836 * 14837 * Note that it would be preferable to unconditionally do the 14838 * ill_recover_multicast() in ill_dl_up(), but we cannot do 14839 * that since ill_join_allmulti() depends on ill_dl_up being 14840 * set, and it is not set until we receive a DL_BIND_ACK after 14841 * having called ill_dl_up(). 14842 */ 14843 ill_recover_multicast(ill); 14844 } 14845 14846 if (ill->ill_ipif_up_count == 1) { 14847 /* 14848 * Since the interface is now up, it may now be active. 14849 */ 14850 if (IS_UNDER_IPMP(ill)) 14851 ipmp_ill_refresh_active(ill); 14852 14853 /* 14854 * If this is an IPMP interface, we may now be able to 14855 * establish ARP entries. 14856 */ 14857 if (IS_IPMP(ill)) 14858 ipmp_illgrp_refresh_arpent(ill->ill_grp); 14859 } 14860 14861 /* Join the allhosts multicast address */ 14862 ipif_multicast_up(ipif); 14863 14864 if (!loopback && !update_src_selection && 14865 !(ipif->ipif_flags & (IPIF_NOLOCAL|IPIF_ANYCAST|IPIF_DEPRECATED))) 14866 ip_update_source_selection(ill->ill_ipst); 14867 14868 if (!loopback && ipif->ipif_addr_ready) { 14869 /* Broadcast an address mask reply. */ 14870 ipif_mask_reply(ipif); 14871 } 14872 /* Perhaps ilgs should use this ill */ 14873 update_conn_ill(NULL, ill->ill_ipst); 14874 14875 /* 14876 * This had to be deferred until we had bound. Tell routing sockets and 14877 * others that this interface is up if it looks like the address has 14878 * been validated. Otherwise, if it isn't ready yet, wait for 14879 * duplicate address detection to do its thing. 14880 */ 14881 if (ipif->ipif_addr_ready) 14882 ipif_up_notify(ipif); 14883 return (0); 14884 } 14885 14886 /* 14887 * Add the IREs associated with the ipif. 14888 * Those MUST be explicitly removed in ipif_delete_ires_v4. 14889 */ 14890 static int 14891 ipif_add_ires_v4(ipif_t *ipif, boolean_t loopback) 14892 { 14893 ill_t *ill = ipif->ipif_ill; 14894 ip_stack_t *ipst = ill->ill_ipst; 14895 ire_t *ire_array[20]; 14896 ire_t **irep = ire_array; 14897 ire_t **irep1; 14898 ipaddr_t net_mask = 0; 14899 ipaddr_t subnet_mask, route_mask; 14900 int err; 14901 ire_t *ire_local = NULL; /* LOCAL or LOOPBACK */ 14902 ire_t *ire_if = NULL; 14903 uchar_t *gw; 14904 14905 if ((ipif->ipif_lcl_addr != INADDR_ANY) && 14906 !(ipif->ipif_flags & IPIF_NOLOCAL)) { 14907 /* 14908 * If we're on a labeled system then make sure that zone- 14909 * private addresses have proper remote host database entries. 14910 */ 14911 if (is_system_labeled() && 14912 ipif->ipif_ire_type != IRE_LOOPBACK && 14913 !tsol_check_interface_address(ipif)) 14914 return (EINVAL); 14915 14916 /* Register the source address for __sin6_src_id */ 14917 err = ip_srcid_insert(&ipif->ipif_v6lcl_addr, 14918 ipif->ipif_zoneid, ipst); 14919 if (err != 0) { 14920 ip0dbg(("ipif_add_ires: srcid_insert %d\n", err)); 14921 return (err); 14922 } 14923 14924 if (loopback) 14925 gw = (uchar_t *)&ipif->ipif_lcl_addr; 14926 else 14927 gw = NULL; 14928 14929 /* If the interface address is set, create the local IRE. */ 14930 ire_local = ire_create( 14931 (uchar_t *)&ipif->ipif_lcl_addr, /* dest address */ 14932 (uchar_t *)&ip_g_all_ones, /* mask */ 14933 gw, /* gateway */ 14934 ipif->ipif_ire_type, /* LOCAL or LOOPBACK */ 14935 ipif->ipif_ill, 14936 ipif->ipif_zoneid, 14937 ((ipif->ipif_flags & IPIF_PRIVATE) ? 14938 RTF_PRIVATE : 0) | RTF_KERNEL, 14939 NULL, 14940 ipst); 14941 ip1dbg(("ipif_add_ires: 0x%p creating IRE %p type 0x%x" 14942 " for 0x%x\n", (void *)ipif, (void *)ire_local, 14943 ipif->ipif_ire_type, 14944 ntohl(ipif->ipif_lcl_addr))); 14945 if (ire_local == NULL) { 14946 ip1dbg(("ipif_up_done: NULL ire_local\n")); 14947 err = ENOMEM; 14948 goto bad; 14949 } 14950 } else { 14951 ip1dbg(( 14952 "ipif_add_ires: not creating IRE %d for 0x%x: flags 0x%x\n", 14953 ipif->ipif_ire_type, 14954 ntohl(ipif->ipif_lcl_addr), 14955 (uint_t)ipif->ipif_flags)); 14956 } 14957 if ((ipif->ipif_lcl_addr != INADDR_ANY) && 14958 !(ipif->ipif_flags & IPIF_NOLOCAL)) { 14959 net_mask = ip_net_mask(ipif->ipif_lcl_addr); 14960 } else { 14961 net_mask = htonl(IN_CLASSA_NET); /* fallback */ 14962 } 14963 14964 subnet_mask = ipif->ipif_net_mask; 14965 14966 /* 14967 * If mask was not specified, use natural netmask of 14968 * interface address. Also, store this mask back into the 14969 * ipif struct. 14970 */ 14971 if (subnet_mask == 0) { 14972 subnet_mask = net_mask; 14973 V4MASK_TO_V6(subnet_mask, ipif->ipif_v6net_mask); 14974 V6_MASK_COPY(ipif->ipif_v6lcl_addr, ipif->ipif_v6net_mask, 14975 ipif->ipif_v6subnet); 14976 } 14977 14978 /* Set up the IRE_IF_RESOLVER or IRE_IF_NORESOLVER, as appropriate. */ 14979 if (!loopback && !(ipif->ipif_flags & IPIF_NOXMIT) && 14980 ipif->ipif_subnet != INADDR_ANY) { 14981 /* ipif_subnet is ipif_pp_dst_addr for pt-pt */ 14982 14983 if (ipif->ipif_flags & IPIF_POINTOPOINT) { 14984 route_mask = IP_HOST_MASK; 14985 } else { 14986 route_mask = subnet_mask; 14987 } 14988 14989 ip1dbg(("ipif_add_ires: ipif 0x%p ill 0x%p " 14990 "creating if IRE ill_net_type 0x%x for 0x%x\n", 14991 (void *)ipif, (void *)ill, ill->ill_net_type, 14992 ntohl(ipif->ipif_subnet))); 14993 ire_if = ire_create( 14994 (uchar_t *)&ipif->ipif_subnet, 14995 (uchar_t *)&route_mask, 14996 (uchar_t *)&ipif->ipif_lcl_addr, 14997 ill->ill_net_type, 14998 ill, 14999 ipif->ipif_zoneid, 15000 ((ipif->ipif_flags & IPIF_PRIVATE) ? 15001 RTF_PRIVATE: 0) | RTF_KERNEL, 15002 NULL, 15003 ipst); 15004 if (ire_if == NULL) { 15005 ip1dbg(("ipif_up_done: NULL ire_if\n")); 15006 err = ENOMEM; 15007 goto bad; 15008 } 15009 } 15010 15011 /* 15012 * Create any necessary broadcast IREs. 15013 */ 15014 if ((ipif->ipif_flags & IPIF_BROADCAST) && 15015 !(ipif->ipif_flags & IPIF_NOXMIT)) 15016 irep = ipif_create_bcast_ires(ipif, irep); 15017 15018 /* If an earlier ire_create failed, get out now */ 15019 for (irep1 = irep; irep1 > ire_array; ) { 15020 irep1--; 15021 if (*irep1 == NULL) { 15022 ip1dbg(("ipif_up_done: NULL ire found in ire_array\n")); 15023 err = ENOMEM; 15024 goto bad; 15025 } 15026 } 15027 15028 /* 15029 * Need to atomically check for IP address availability under 15030 * ip_addr_avail_lock. ill_g_lock is held as reader to ensure no new 15031 * ills or new ipifs can be added while we are checking availability. 15032 */ 15033 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 15034 mutex_enter(&ipst->ips_ip_addr_avail_lock); 15035 /* Mark it up, and increment counters. */ 15036 ipif->ipif_flags |= IPIF_UP; 15037 ill->ill_ipif_up_count++; 15038 err = ip_addr_availability_check(ipif); 15039 mutex_exit(&ipst->ips_ip_addr_avail_lock); 15040 rw_exit(&ipst->ips_ill_g_lock); 15041 15042 if (err != 0) { 15043 /* 15044 * Our address may already be up on the same ill. In this case, 15045 * the ARP entry for our ipif replaced the one for the other 15046 * ipif. So we don't want to delete it (otherwise the other ipif 15047 * would be unable to send packets). 15048 * ip_addr_availability_check() identifies this case for us and 15049 * returns EADDRINUSE; Caller should turn it into EADDRNOTAVAIL 15050 * which is the expected error code. 15051 */ 15052 ill->ill_ipif_up_count--; 15053 ipif->ipif_flags &= ~IPIF_UP; 15054 goto bad; 15055 } 15056 15057 /* 15058 * Add in all newly created IREs. ire_create_bcast() has 15059 * already checked for duplicates of the IRE_BROADCAST type. 15060 * We add the IRE_INTERFACE before the IRE_LOCAL to ensure 15061 * that lookups find the IRE_LOCAL even if the IRE_INTERFACE is 15062 * a /32 route. 15063 */ 15064 if (ire_if != NULL) { 15065 ire_if = ire_add(ire_if); 15066 if (ire_if == NULL) { 15067 err = ENOMEM; 15068 goto bad2; 15069 } 15070 #ifdef DEBUG 15071 ire_refhold_notr(ire_if); 15072 ire_refrele(ire_if); 15073 #endif 15074 } 15075 if (ire_local != NULL) { 15076 ire_local = ire_add(ire_local); 15077 if (ire_local == NULL) { 15078 err = ENOMEM; 15079 goto bad2; 15080 } 15081 #ifdef DEBUG 15082 ire_refhold_notr(ire_local); 15083 ire_refrele(ire_local); 15084 #endif 15085 } 15086 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 15087 if (ire_local != NULL) 15088 ipif->ipif_ire_local = ire_local; 15089 if (ire_if != NULL) 15090 ipif->ipif_ire_if = ire_if; 15091 rw_exit(&ipst->ips_ill_g_lock); 15092 ire_local = NULL; 15093 ire_if = NULL; 15094 15095 /* 15096 * We first add all of them, and if that succeeds we refrele the 15097 * bunch. That enables us to delete all of them should any of the 15098 * ire_adds fail. 15099 */ 15100 for (irep1 = irep; irep1 > ire_array; ) { 15101 irep1--; 15102 ASSERT(!MUTEX_HELD(&((*irep1)->ire_ill->ill_lock))); 15103 *irep1 = ire_add(*irep1); 15104 if (*irep1 == NULL) { 15105 err = ENOMEM; 15106 goto bad2; 15107 } 15108 } 15109 15110 for (irep1 = irep; irep1 > ire_array; ) { 15111 irep1--; 15112 /* refheld by ire_add. */ 15113 if (*irep1 != NULL) { 15114 ire_refrele(*irep1); 15115 *irep1 = NULL; 15116 } 15117 } 15118 15119 if (!loopback) { 15120 /* 15121 * If the broadcast address has been set, make sure it makes 15122 * sense based on the interface address. 15123 * Only match on ill since we are sharing broadcast addresses. 15124 */ 15125 if ((ipif->ipif_brd_addr != INADDR_ANY) && 15126 (ipif->ipif_flags & IPIF_BROADCAST)) { 15127 ire_t *ire; 15128 15129 ire = ire_ftable_lookup_v4(ipif->ipif_brd_addr, 0, 0, 15130 IRE_BROADCAST, ipif->ipif_ill, ALL_ZONES, NULL, 15131 (MATCH_IRE_TYPE | MATCH_IRE_ILL), 0, ipst, NULL); 15132 15133 if (ire == NULL) { 15134 /* 15135 * If there isn't a matching broadcast IRE, 15136 * revert to the default for this netmask. 15137 */ 15138 ipif->ipif_v6brd_addr = ipv6_all_zeros; 15139 mutex_enter(&ipif->ipif_ill->ill_lock); 15140 ipif_set_default(ipif); 15141 mutex_exit(&ipif->ipif_ill->ill_lock); 15142 } else { 15143 ire_refrele(ire); 15144 } 15145 } 15146 15147 } 15148 return (0); 15149 15150 bad2: 15151 ill->ill_ipif_up_count--; 15152 ipif->ipif_flags &= ~IPIF_UP; 15153 15154 bad: 15155 ip1dbg(("ipif_add_ires: FAILED \n")); 15156 if (ire_local != NULL) 15157 ire_delete(ire_local); 15158 if (ire_if != NULL) 15159 ire_delete(ire_if); 15160 15161 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 15162 ire_local = ipif->ipif_ire_local; 15163 ipif->ipif_ire_local = NULL; 15164 ire_if = ipif->ipif_ire_if; 15165 ipif->ipif_ire_if = NULL; 15166 rw_exit(&ipst->ips_ill_g_lock); 15167 if (ire_local != NULL) { 15168 ire_delete(ire_local); 15169 ire_refrele_notr(ire_local); 15170 } 15171 if (ire_if != NULL) { 15172 ire_delete(ire_if); 15173 ire_refrele_notr(ire_if); 15174 } 15175 15176 while (irep > ire_array) { 15177 irep--; 15178 if (*irep != NULL) { 15179 ire_delete(*irep); 15180 } 15181 } 15182 (void) ip_srcid_remove(&ipif->ipif_v6lcl_addr, ipif->ipif_zoneid, ipst); 15183 15184 return (err); 15185 } 15186 15187 /* Remove all the IREs created by ipif_add_ires_v4 */ 15188 void 15189 ipif_delete_ires_v4(ipif_t *ipif) 15190 { 15191 ill_t *ill = ipif->ipif_ill; 15192 ip_stack_t *ipst = ill->ill_ipst; 15193 ire_t *ire; 15194 15195 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 15196 ire = ipif->ipif_ire_local; 15197 ipif->ipif_ire_local = NULL; 15198 rw_exit(&ipst->ips_ill_g_lock); 15199 if (ire != NULL) { 15200 /* 15201 * Move count to ipif so we don't loose the count due to 15202 * a down/up dance. 15203 */ 15204 atomic_add_32(&ipif->ipif_ib_pkt_count, ire->ire_ib_pkt_count); 15205 15206 ire_delete(ire); 15207 ire_refrele_notr(ire); 15208 } 15209 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 15210 ire = ipif->ipif_ire_if; 15211 ipif->ipif_ire_if = NULL; 15212 rw_exit(&ipst->ips_ill_g_lock); 15213 if (ire != NULL) { 15214 ire_delete(ire); 15215 ire_refrele_notr(ire); 15216 } 15217 15218 /* 15219 * Delete the broadcast IREs. 15220 */ 15221 if ((ipif->ipif_flags & IPIF_BROADCAST) && 15222 !(ipif->ipif_flags & IPIF_NOXMIT)) 15223 ipif_delete_bcast_ires(ipif); 15224 } 15225 15226 /* 15227 * Checks for availbility of a usable source address (if there is one) when the 15228 * destination ILL has the ill_usesrc_ifindex pointing to another ILL. Note 15229 * this selection is done regardless of the destination. 15230 */ 15231 boolean_t 15232 ipif_zone_avail(uint_t ifindex, boolean_t isv6, zoneid_t zoneid, 15233 ip_stack_t *ipst) 15234 { 15235 ipif_t *ipif = NULL; 15236 ill_t *uill; 15237 15238 ASSERT(ifindex != 0); 15239 15240 uill = ill_lookup_on_ifindex(ifindex, isv6, ipst); 15241 if (uill == NULL) 15242 return (B_FALSE); 15243 15244 mutex_enter(&uill->ill_lock); 15245 for (ipif = uill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 15246 if (IPIF_IS_CONDEMNED(ipif)) 15247 continue; 15248 if (ipif->ipif_flags & (IPIF_NOLOCAL|IPIF_ANYCAST)) 15249 continue; 15250 if (!(ipif->ipif_flags & IPIF_UP)) 15251 continue; 15252 if (ipif->ipif_zoneid != zoneid) 15253 continue; 15254 if (isv6 ? IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6lcl_addr) : 15255 ipif->ipif_lcl_addr == INADDR_ANY) 15256 continue; 15257 mutex_exit(&uill->ill_lock); 15258 ill_refrele(uill); 15259 return (B_TRUE); 15260 } 15261 mutex_exit(&uill->ill_lock); 15262 ill_refrele(uill); 15263 return (B_FALSE); 15264 } 15265 15266 /* 15267 * Find an ipif with a good local address on the ill+zoneid. 15268 */ 15269 ipif_t * 15270 ipif_good_addr(ill_t *ill, zoneid_t zoneid) 15271 { 15272 ipif_t *ipif; 15273 15274 mutex_enter(&ill->ill_lock); 15275 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 15276 if (IPIF_IS_CONDEMNED(ipif)) 15277 continue; 15278 if (ipif->ipif_flags & (IPIF_NOLOCAL|IPIF_ANYCAST)) 15279 continue; 15280 if (!(ipif->ipif_flags & IPIF_UP)) 15281 continue; 15282 if (ipif->ipif_zoneid != zoneid && 15283 ipif->ipif_zoneid != ALL_ZONES && zoneid != ALL_ZONES) 15284 continue; 15285 if (ill->ill_isv6 ? 15286 IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6lcl_addr) : 15287 ipif->ipif_lcl_addr == INADDR_ANY) 15288 continue; 15289 ipif_refhold_locked(ipif); 15290 mutex_exit(&ill->ill_lock); 15291 return (ipif); 15292 } 15293 mutex_exit(&ill->ill_lock); 15294 return (NULL); 15295 } 15296 15297 /* 15298 * IP source address type, sorted from worst to best. For a given type, 15299 * always prefer IP addresses on the same subnet. All-zones addresses are 15300 * suboptimal because they pose problems with unlabeled destinations. 15301 */ 15302 typedef enum { 15303 IPIF_NONE, 15304 IPIF_DIFFNET_DEPRECATED, /* deprecated and different subnet */ 15305 IPIF_SAMENET_DEPRECATED, /* deprecated and same subnet */ 15306 IPIF_DIFFNET_ALLZONES, /* allzones and different subnet */ 15307 IPIF_SAMENET_ALLZONES, /* allzones and same subnet */ 15308 IPIF_DIFFNET, /* normal and different subnet */ 15309 IPIF_SAMENET, /* normal and same subnet */ 15310 IPIF_LOCALADDR /* local loopback */ 15311 } ipif_type_t; 15312 15313 /* 15314 * Pick the optimal ipif on `ill' for sending to destination `dst' from zone 15315 * `zoneid'. We rate usable ipifs from low -> high as per the ipif_type_t 15316 * enumeration, and return the highest-rated ipif. If there's a tie, we pick 15317 * the first one, unless IPMP is used in which case we round-robin among them; 15318 * see below for more. 15319 * 15320 * Returns NULL if there is no suitable source address for the ill. 15321 * This only occurs when there is no valid source address for the ill. 15322 */ 15323 ipif_t * 15324 ipif_select_source_v4(ill_t *ill, ipaddr_t dst, zoneid_t zoneid, 15325 boolean_t allow_usesrc, boolean_t *notreadyp) 15326 { 15327 ill_t *usill = NULL; 15328 ill_t *ipmp_ill = NULL; 15329 ipif_t *start_ipif, *next_ipif, *ipif, *best_ipif; 15330 ipif_type_t type, best_type; 15331 tsol_tpc_t *src_rhtp, *dst_rhtp; 15332 ip_stack_t *ipst = ill->ill_ipst; 15333 boolean_t samenet; 15334 15335 if (ill->ill_usesrc_ifindex != 0 && allow_usesrc) { 15336 usill = ill_lookup_on_ifindex(ill->ill_usesrc_ifindex, 15337 B_FALSE, ipst); 15338 if (usill != NULL) 15339 ill = usill; /* Select source from usesrc ILL */ 15340 else 15341 return (NULL); 15342 } 15343 15344 /* 15345 * Test addresses should never be used for source address selection, 15346 * so if we were passed one, switch to the IPMP meta-interface. 15347 */ 15348 if (IS_UNDER_IPMP(ill)) { 15349 if ((ipmp_ill = ipmp_ill_hold_ipmp_ill(ill)) != NULL) 15350 ill = ipmp_ill; /* Select source from IPMP ill */ 15351 else 15352 return (NULL); 15353 } 15354 15355 /* 15356 * If we're dealing with an unlabeled destination on a labeled system, 15357 * make sure that we ignore source addresses that are incompatible with 15358 * the destination's default label. That destination's default label 15359 * must dominate the minimum label on the source address. 15360 */ 15361 dst_rhtp = NULL; 15362 if (is_system_labeled()) { 15363 dst_rhtp = find_tpc(&dst, IPV4_VERSION, B_FALSE); 15364 if (dst_rhtp == NULL) 15365 return (NULL); 15366 if (dst_rhtp->tpc_tp.host_type != UNLABELED) { 15367 TPC_RELE(dst_rhtp); 15368 dst_rhtp = NULL; 15369 } 15370 } 15371 15372 /* 15373 * Hold the ill_g_lock as reader. This makes sure that no ipif/ill 15374 * can be deleted. But an ipif/ill can get CONDEMNED any time. 15375 * After selecting the right ipif, under ill_lock make sure ipif is 15376 * not condemned, and increment refcnt. If ipif is CONDEMNED, 15377 * we retry. Inside the loop we still need to check for CONDEMNED, 15378 * but not under a lock. 15379 */ 15380 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 15381 retry: 15382 /* 15383 * For source address selection, we treat the ipif list as circular 15384 * and continue until we get back to where we started. This allows 15385 * IPMP to vary source address selection (which improves inbound load 15386 * spreading) by caching its last ending point and starting from 15387 * there. NOTE: we don't have to worry about ill_src_ipif changing 15388 * ills since that can't happen on the IPMP ill. 15389 */ 15390 start_ipif = ill->ill_ipif; 15391 if (IS_IPMP(ill) && ill->ill_src_ipif != NULL) 15392 start_ipif = ill->ill_src_ipif; 15393 15394 ipif = start_ipif; 15395 best_ipif = NULL; 15396 best_type = IPIF_NONE; 15397 do { 15398 if ((next_ipif = ipif->ipif_next) == NULL) 15399 next_ipif = ill->ill_ipif; 15400 15401 if (IPIF_IS_CONDEMNED(ipif)) 15402 continue; 15403 /* Always skip NOLOCAL and ANYCAST interfaces */ 15404 if (ipif->ipif_flags & (IPIF_NOLOCAL|IPIF_ANYCAST)) 15405 continue; 15406 /* Always skip NOACCEPT interfaces */ 15407 if (ipif->ipif_ill->ill_flags & ILLF_NOACCEPT) 15408 continue; 15409 if (!(ipif->ipif_flags & IPIF_UP)) 15410 continue; 15411 15412 if (!ipif->ipif_addr_ready) { 15413 if (notreadyp != NULL) 15414 *notreadyp = B_TRUE; 15415 continue; 15416 } 15417 15418 if (zoneid != ALL_ZONES && 15419 ipif->ipif_zoneid != zoneid && 15420 ipif->ipif_zoneid != ALL_ZONES) 15421 continue; 15422 15423 /* 15424 * Interfaces with 0.0.0.0 address are allowed to be UP, but 15425 * are not valid as source addresses. 15426 */ 15427 if (ipif->ipif_lcl_addr == INADDR_ANY) 15428 continue; 15429 15430 /* 15431 * Check compatibility of local address for destination's 15432 * default label if we're on a labeled system. Incompatible 15433 * addresses can't be used at all. 15434 */ 15435 if (dst_rhtp != NULL) { 15436 boolean_t incompat; 15437 15438 src_rhtp = find_tpc(&ipif->ipif_lcl_addr, 15439 IPV4_VERSION, B_FALSE); 15440 if (src_rhtp == NULL) 15441 continue; 15442 incompat = src_rhtp->tpc_tp.host_type != SUN_CIPSO || 15443 src_rhtp->tpc_tp.tp_doi != 15444 dst_rhtp->tpc_tp.tp_doi || 15445 (!_blinrange(&dst_rhtp->tpc_tp.tp_def_label, 15446 &src_rhtp->tpc_tp.tp_sl_range_cipso) && 15447 !blinlset(&dst_rhtp->tpc_tp.tp_def_label, 15448 src_rhtp->tpc_tp.tp_sl_set_cipso)); 15449 TPC_RELE(src_rhtp); 15450 if (incompat) 15451 continue; 15452 } 15453 15454 samenet = ((ipif->ipif_net_mask & dst) == ipif->ipif_subnet); 15455 15456 if (ipif->ipif_lcl_addr == dst) { 15457 type = IPIF_LOCALADDR; 15458 } else if (ipif->ipif_flags & IPIF_DEPRECATED) { 15459 type = samenet ? IPIF_SAMENET_DEPRECATED : 15460 IPIF_DIFFNET_DEPRECATED; 15461 } else if (ipif->ipif_zoneid == ALL_ZONES) { 15462 type = samenet ? IPIF_SAMENET_ALLZONES : 15463 IPIF_DIFFNET_ALLZONES; 15464 } else { 15465 type = samenet ? IPIF_SAMENET : IPIF_DIFFNET; 15466 } 15467 15468 if (type > best_type) { 15469 best_type = type; 15470 best_ipif = ipif; 15471 if (best_type == IPIF_LOCALADDR) 15472 break; /* can't get better */ 15473 } 15474 } while ((ipif = next_ipif) != start_ipif); 15475 15476 if ((ipif = best_ipif) != NULL) { 15477 mutex_enter(&ipif->ipif_ill->ill_lock); 15478 if (IPIF_IS_CONDEMNED(ipif)) { 15479 mutex_exit(&ipif->ipif_ill->ill_lock); 15480 goto retry; 15481 } 15482 ipif_refhold_locked(ipif); 15483 15484 /* 15485 * For IPMP, update the source ipif rotor to the next ipif, 15486 * provided we can look it up. (We must not use it if it's 15487 * IPIF_CONDEMNED since we may have grabbed ill_g_lock after 15488 * ipif_free() checked ill_src_ipif.) 15489 */ 15490 if (IS_IPMP(ill) && ipif != NULL) { 15491 next_ipif = ipif->ipif_next; 15492 if (next_ipif != NULL && !IPIF_IS_CONDEMNED(next_ipif)) 15493 ill->ill_src_ipif = next_ipif; 15494 else 15495 ill->ill_src_ipif = NULL; 15496 } 15497 mutex_exit(&ipif->ipif_ill->ill_lock); 15498 } 15499 15500 rw_exit(&ipst->ips_ill_g_lock); 15501 if (usill != NULL) 15502 ill_refrele(usill); 15503 if (ipmp_ill != NULL) 15504 ill_refrele(ipmp_ill); 15505 if (dst_rhtp != NULL) 15506 TPC_RELE(dst_rhtp); 15507 15508 #ifdef DEBUG 15509 if (ipif == NULL) { 15510 char buf1[INET6_ADDRSTRLEN]; 15511 15512 ip1dbg(("ipif_select_source_v4(%s, %s) -> NULL\n", 15513 ill->ill_name, 15514 inet_ntop(AF_INET, &dst, buf1, sizeof (buf1)))); 15515 } else { 15516 char buf1[INET6_ADDRSTRLEN]; 15517 char buf2[INET6_ADDRSTRLEN]; 15518 15519 ip1dbg(("ipif_select_source_v4(%s, %s) -> %s\n", 15520 ipif->ipif_ill->ill_name, 15521 inet_ntop(AF_INET, &dst, buf1, sizeof (buf1)), 15522 inet_ntop(AF_INET, &ipif->ipif_lcl_addr, 15523 buf2, sizeof (buf2)))); 15524 } 15525 #endif /* DEBUG */ 15526 return (ipif); 15527 } 15528 15529 /* 15530 * Pick a source address based on the destination ill and an optional setsrc 15531 * address. 15532 * The result is stored in srcp. If generation is set, then put the source 15533 * generation number there before we look for the source address (to avoid 15534 * missing changes in the set of source addresses. 15535 * If flagsp is set, then us it to pass back ipif_flags. 15536 * 15537 * If the caller wants to cache the returned source address and detect when 15538 * that might be stale, the caller should pass in a generation argument, 15539 * which the caller can later compare against ips_src_generation 15540 * 15541 * The precedence order for selecting an IPv4 source address is: 15542 * - RTF_SETSRC on the offlink ire always wins. 15543 * - If usrsrc is set, swap the ill to be the usesrc one. 15544 * - If IPMP is used on the ill, select a random address from the most 15545 * preferred ones below: 15546 * 1. If onlink destination, same subnet and not deprecated, not ALL_ZONES 15547 * 2. Not deprecated, not ALL_ZONES 15548 * 3. If onlink destination, same subnet and not deprecated, ALL_ZONES 15549 * 4. Not deprecated, ALL_ZONES 15550 * 5. If onlink destination, same subnet and deprecated 15551 * 6. Deprecated. 15552 * 15553 * We have lower preference for ALL_ZONES IP addresses, 15554 * as they pose problems with unlabeled destinations. 15555 * 15556 * Note that when multiple IP addresses match e.g., #1 we pick 15557 * the first one if IPMP is not in use. With IPMP we randomize. 15558 */ 15559 int 15560 ip_select_source_v4(ill_t *ill, ipaddr_t setsrc, ipaddr_t dst, 15561 ipaddr_t multicast_ifaddr, 15562 zoneid_t zoneid, ip_stack_t *ipst, ipaddr_t *srcp, 15563 uint32_t *generation, uint64_t *flagsp) 15564 { 15565 ipif_t *ipif; 15566 boolean_t notready = B_FALSE; /* Set if !ipif_addr_ready found */ 15567 15568 if (flagsp != NULL) 15569 *flagsp = 0; 15570 15571 /* 15572 * Need to grab the generation number before we check to 15573 * avoid a race with a change to the set of local addresses. 15574 * No lock needed since the thread which updates the set of local 15575 * addresses use ipif/ill locks and exit those (hence a store memory 15576 * barrier) before doing the atomic increase of ips_src_generation. 15577 */ 15578 if (generation != NULL) { 15579 *generation = ipst->ips_src_generation; 15580 } 15581 15582 if (CLASSD(dst) && multicast_ifaddr != INADDR_ANY) { 15583 *srcp = multicast_ifaddr; 15584 return (0); 15585 } 15586 15587 /* Was RTF_SETSRC set on the first IRE in the recursive lookup? */ 15588 if (setsrc != INADDR_ANY) { 15589 *srcp = setsrc; 15590 return (0); 15591 } 15592 ipif = ipif_select_source_v4(ill, dst, zoneid, B_TRUE, ¬ready); 15593 if (ipif == NULL) { 15594 if (notready) 15595 return (ENETDOWN); 15596 else 15597 return (EADDRNOTAVAIL); 15598 } 15599 *srcp = ipif->ipif_lcl_addr; 15600 if (flagsp != NULL) 15601 *flagsp = ipif->ipif_flags; 15602 ipif_refrele(ipif); 15603 return (0); 15604 } 15605 15606 /* ARGSUSED */ 15607 int 15608 if_unitsel_restart(ipif_t *ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, 15609 ip_ioctl_cmd_t *ipip, void *dummy_ifreq) 15610 { 15611 /* 15612 * ill_phyint_reinit merged the v4 and v6 into a single 15613 * ipsq. We might not have been able to complete the 15614 * operation in ipif_set_values, if we could not become 15615 * exclusive. If so restart it here. 15616 */ 15617 return (ipif_set_values_tail(ipif->ipif_ill, ipif, mp, q)); 15618 } 15619 15620 /* 15621 * Can operate on either a module or a driver queue. 15622 * Returns an error if not a module queue. 15623 */ 15624 /* ARGSUSED */ 15625 int 15626 if_unitsel(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, 15627 ip_ioctl_cmd_t *ipip, void *dummy_ifreq) 15628 { 15629 queue_t *q1 = q; 15630 char *cp; 15631 char interf_name[LIFNAMSIZ]; 15632 uint_t ppa = *(uint_t *)mp->b_cont->b_cont->b_rptr; 15633 15634 if (q->q_next == NULL) { 15635 ip1dbg(( 15636 "if_unitsel: IF_UNITSEL: no q_next\n")); 15637 return (EINVAL); 15638 } 15639 15640 if (((ill_t *)(q->q_ptr))->ill_name[0] != '\0') 15641 return (EALREADY); 15642 15643 do { 15644 q1 = q1->q_next; 15645 } while (q1->q_next); 15646 cp = q1->q_qinfo->qi_minfo->mi_idname; 15647 (void) sprintf(interf_name, "%s%d", cp, ppa); 15648 15649 /* 15650 * Here we are not going to delay the ioack until after 15651 * ACKs from DL_ATTACH_REQ/DL_BIND_REQ. So no need to save the 15652 * original ioctl message before sending the requests. 15653 */ 15654 return (ipif_set_values(q, mp, interf_name, &ppa)); 15655 } 15656 15657 /* ARGSUSED */ 15658 int 15659 ip_sioctl_sifname(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, 15660 ip_ioctl_cmd_t *ipip, void *dummy_ifreq) 15661 { 15662 return (ENXIO); 15663 } 15664 15665 /* 15666 * Create any IRE_BROADCAST entries for `ipif', and store those entries in 15667 * `irep'. Returns a pointer to the next free `irep' entry 15668 * A mirror exists in ipif_delete_bcast_ires(). 15669 * 15670 * The management of any "extra" or seemingly duplicate IRE_BROADCASTs is 15671 * done in ire_add. 15672 */ 15673 static ire_t ** 15674 ipif_create_bcast_ires(ipif_t *ipif, ire_t **irep) 15675 { 15676 ipaddr_t addr; 15677 ipaddr_t netmask = ip_net_mask(ipif->ipif_lcl_addr); 15678 ipaddr_t subnetmask = ipif->ipif_net_mask; 15679 ill_t *ill = ipif->ipif_ill; 15680 zoneid_t zoneid = ipif->ipif_zoneid; 15681 15682 ip1dbg(("ipif_create_bcast_ires: creating broadcast IREs\n")); 15683 15684 ASSERT(ipif->ipif_flags & IPIF_BROADCAST); 15685 ASSERT(!(ipif->ipif_flags & IPIF_NOXMIT)); 15686 15687 if (ipif->ipif_lcl_addr == INADDR_ANY || 15688 (ipif->ipif_flags & IPIF_NOLOCAL)) 15689 netmask = htonl(IN_CLASSA_NET); /* fallback */ 15690 15691 irep = ire_create_bcast(ill, 0, zoneid, irep); 15692 irep = ire_create_bcast(ill, INADDR_BROADCAST, zoneid, irep); 15693 15694 /* 15695 * For backward compatibility, we create net broadcast IREs based on 15696 * the old "IP address class system", since some old machines only 15697 * respond to these class derived net broadcast. However, we must not 15698 * create these net broadcast IREs if the subnetmask is shorter than 15699 * the IP address class based derived netmask. Otherwise, we may 15700 * create a net broadcast address which is the same as an IP address 15701 * on the subnet -- and then TCP will refuse to talk to that address. 15702 */ 15703 if (netmask < subnetmask) { 15704 addr = netmask & ipif->ipif_subnet; 15705 irep = ire_create_bcast(ill, addr, zoneid, irep); 15706 irep = ire_create_bcast(ill, ~netmask | addr, zoneid, irep); 15707 } 15708 15709 /* 15710 * Don't create IRE_BROADCAST IREs for the interface if the subnetmask 15711 * is 0xFFFFFFFF, as an IRE_LOCAL for that interface is already 15712 * created. Creating these broadcast IREs will only create confusion 15713 * as `addr' will be the same as the IP address. 15714 */ 15715 if (subnetmask != 0xFFFFFFFF) { 15716 addr = ipif->ipif_subnet; 15717 irep = ire_create_bcast(ill, addr, zoneid, irep); 15718 irep = ire_create_bcast(ill, ~subnetmask | addr, zoneid, irep); 15719 } 15720 15721 return (irep); 15722 } 15723 15724 /* 15725 * Mirror of ipif_create_bcast_ires() 15726 */ 15727 static void 15728 ipif_delete_bcast_ires(ipif_t *ipif) 15729 { 15730 ipaddr_t addr; 15731 ipaddr_t netmask = ip_net_mask(ipif->ipif_lcl_addr); 15732 ipaddr_t subnetmask = ipif->ipif_net_mask; 15733 ill_t *ill = ipif->ipif_ill; 15734 zoneid_t zoneid = ipif->ipif_zoneid; 15735 ire_t *ire; 15736 15737 ASSERT(ipif->ipif_flags & IPIF_BROADCAST); 15738 ASSERT(!(ipif->ipif_flags & IPIF_NOXMIT)); 15739 15740 if (ipif->ipif_lcl_addr == INADDR_ANY || 15741 (ipif->ipif_flags & IPIF_NOLOCAL)) 15742 netmask = htonl(IN_CLASSA_NET); /* fallback */ 15743 15744 ire = ire_lookup_bcast(ill, 0, zoneid); 15745 ASSERT(ire != NULL); 15746 ire_delete(ire); ire_refrele(ire); 15747 ire = ire_lookup_bcast(ill, INADDR_BROADCAST, zoneid); 15748 ASSERT(ire != NULL); 15749 ire_delete(ire); ire_refrele(ire); 15750 15751 /* 15752 * For backward compatibility, we create net broadcast IREs based on 15753 * the old "IP address class system", since some old machines only 15754 * respond to these class derived net broadcast. However, we must not 15755 * create these net broadcast IREs if the subnetmask is shorter than 15756 * the IP address class based derived netmask. Otherwise, we may 15757 * create a net broadcast address which is the same as an IP address 15758 * on the subnet -- and then TCP will refuse to talk to that address. 15759 */ 15760 if (netmask < subnetmask) { 15761 addr = netmask & ipif->ipif_subnet; 15762 ire = ire_lookup_bcast(ill, addr, zoneid); 15763 ASSERT(ire != NULL); 15764 ire_delete(ire); ire_refrele(ire); 15765 ire = ire_lookup_bcast(ill, ~netmask | addr, zoneid); 15766 ASSERT(ire != NULL); 15767 ire_delete(ire); ire_refrele(ire); 15768 } 15769 15770 /* 15771 * Don't create IRE_BROADCAST IREs for the interface if the subnetmask 15772 * is 0xFFFFFFFF, as an IRE_LOCAL for that interface is already 15773 * created. Creating these broadcast IREs will only create confusion 15774 * as `addr' will be the same as the IP address. 15775 */ 15776 if (subnetmask != 0xFFFFFFFF) { 15777 addr = ipif->ipif_subnet; 15778 ire = ire_lookup_bcast(ill, addr, zoneid); 15779 ASSERT(ire != NULL); 15780 ire_delete(ire); ire_refrele(ire); 15781 ire = ire_lookup_bcast(ill, ~subnetmask | addr, zoneid); 15782 ASSERT(ire != NULL); 15783 ire_delete(ire); ire_refrele(ire); 15784 } 15785 } 15786 15787 /* 15788 * Extract both the flags (including IFF_CANTCHANGE) such as IFF_IPV* 15789 * from lifr_flags and the name from lifr_name. 15790 * Set IFF_IPV* and ill_isv6 prior to doing the lookup 15791 * since ipif_lookup_on_name uses the _isv6 flags when matching. 15792 * Returns EINPROGRESS when mp has been consumed by queueing it on 15793 * ipx_pending_mp and the ioctl will complete in ip_rput. 15794 * 15795 * Can operate on either a module or a driver queue. 15796 * Returns an error if not a module queue. 15797 */ 15798 /* ARGSUSED */ 15799 int 15800 ip_sioctl_slifname(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 15801 ip_ioctl_cmd_t *ipip, void *if_req) 15802 { 15803 ill_t *ill = q->q_ptr; 15804 phyint_t *phyi; 15805 ip_stack_t *ipst; 15806 struct lifreq *lifr = if_req; 15807 uint64_t new_flags; 15808 15809 ASSERT(ipif != NULL); 15810 ip1dbg(("ip_sioctl_slifname %s\n", lifr->lifr_name)); 15811 15812 if (q->q_next == NULL) { 15813 ip1dbg(("if_sioctl_slifname: SIOCSLIFNAME: no q_next\n")); 15814 return (EINVAL); 15815 } 15816 15817 /* 15818 * If we are not writer on 'q' then this interface exists already 15819 * and previous lookups (ip_extract_lifreq()) found this ipif -- 15820 * so return EALREADY. 15821 */ 15822 if (ill != ipif->ipif_ill) 15823 return (EALREADY); 15824 15825 if (ill->ill_name[0] != '\0') 15826 return (EALREADY); 15827 15828 /* 15829 * If there's another ill already with the requested name, ensure 15830 * that it's of the same type. Otherwise, ill_phyint_reinit() will 15831 * fuse together two unrelated ills, which will cause chaos. 15832 */ 15833 ipst = ill->ill_ipst; 15834 phyi = avl_find(&ipst->ips_phyint_g_list->phyint_list_avl_by_name, 15835 lifr->lifr_name, NULL); 15836 if (phyi != NULL) { 15837 ill_t *ill_mate = phyi->phyint_illv4; 15838 15839 if (ill_mate == NULL) 15840 ill_mate = phyi->phyint_illv6; 15841 ASSERT(ill_mate != NULL); 15842 15843 if (ill_mate->ill_media->ip_m_mac_type != 15844 ill->ill_media->ip_m_mac_type) { 15845 ip1dbg(("if_sioctl_slifname: SIOCSLIFNAME: attempt to " 15846 "use the same ill name on differing media\n")); 15847 return (EINVAL); 15848 } 15849 } 15850 15851 /* 15852 * We start off as IFF_IPV4 in ipif_allocate and become 15853 * IFF_IPV4 or IFF_IPV6 here depending on lifr_flags value. 15854 * The only flags that we read from user space are IFF_IPV4, 15855 * IFF_IPV6, and IFF_BROADCAST. 15856 * 15857 * This ill has not been inserted into the global list. 15858 * So we are still single threaded and don't need any lock 15859 * 15860 * Saniy check the flags. 15861 */ 15862 15863 if ((lifr->lifr_flags & IFF_BROADCAST) && 15864 ((lifr->lifr_flags & IFF_IPV6) || 15865 (!ill->ill_needs_attach && ill->ill_bcast_addr_length == 0))) { 15866 ip1dbg(("ip_sioctl_slifname: link not broadcast capable " 15867 "or IPv6 i.e., no broadcast \n")); 15868 return (EINVAL); 15869 } 15870 15871 new_flags = 15872 lifr->lifr_flags & (IFF_IPV6|IFF_IPV4|IFF_BROADCAST); 15873 15874 if ((new_flags ^ (IFF_IPV6|IFF_IPV4)) == 0) { 15875 ip1dbg(("ip_sioctl_slifname: flags must be exactly one of " 15876 "IFF_IPV4 or IFF_IPV6\n")); 15877 return (EINVAL); 15878 } 15879 15880 /* 15881 * We always start off as IPv4, so only need to check for IPv6. 15882 */ 15883 if ((new_flags & IFF_IPV6) != 0) { 15884 ill->ill_flags |= ILLF_IPV6; 15885 ill->ill_flags &= ~ILLF_IPV4; 15886 15887 if (lifr->lifr_flags & IFF_NOLINKLOCAL) 15888 ill->ill_flags |= ILLF_NOLINKLOCAL; 15889 } 15890 15891 if ((new_flags & IFF_BROADCAST) != 0) 15892 ipif->ipif_flags |= IPIF_BROADCAST; 15893 else 15894 ipif->ipif_flags &= ~IPIF_BROADCAST; 15895 15896 /* We started off as V4. */ 15897 if (ill->ill_flags & ILLF_IPV6) { 15898 ill->ill_phyint->phyint_illv6 = ill; 15899 ill->ill_phyint->phyint_illv4 = NULL; 15900 } 15901 15902 return (ipif_set_values(q, mp, lifr->lifr_name, &lifr->lifr_ppa)); 15903 } 15904 15905 /* ARGSUSED */ 15906 int 15907 ip_sioctl_slifname_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 15908 ip_ioctl_cmd_t *ipip, void *if_req) 15909 { 15910 /* 15911 * ill_phyint_reinit merged the v4 and v6 into a single 15912 * ipsq. We might not have been able to complete the 15913 * slifname in ipif_set_values, if we could not become 15914 * exclusive. If so restart it here 15915 */ 15916 return (ipif_set_values_tail(ipif->ipif_ill, ipif, mp, q)); 15917 } 15918 15919 /* 15920 * Return a pointer to the ipif which matches the index, IP version type and 15921 * zoneid. 15922 */ 15923 ipif_t * 15924 ipif_lookup_on_ifindex(uint_t index, boolean_t isv6, zoneid_t zoneid, 15925 ip_stack_t *ipst) 15926 { 15927 ill_t *ill; 15928 ipif_t *ipif = NULL; 15929 15930 ill = ill_lookup_on_ifindex(index, isv6, ipst); 15931 if (ill != NULL) { 15932 mutex_enter(&ill->ill_lock); 15933 for (ipif = ill->ill_ipif; ipif != NULL; 15934 ipif = ipif->ipif_next) { 15935 if (!IPIF_IS_CONDEMNED(ipif) && (zoneid == ALL_ZONES || 15936 zoneid == ipif->ipif_zoneid || 15937 ipif->ipif_zoneid == ALL_ZONES)) { 15938 ipif_refhold_locked(ipif); 15939 break; 15940 } 15941 } 15942 mutex_exit(&ill->ill_lock); 15943 ill_refrele(ill); 15944 } 15945 return (ipif); 15946 } 15947 15948 /* 15949 * Change an existing physical interface's index. If the new index 15950 * is acceptable we update the index and the phyint_list_avl_by_index tree. 15951 * Finally, we update other systems which may have a dependence on the 15952 * index value. 15953 */ 15954 /* ARGSUSED */ 15955 int 15956 ip_sioctl_slifindex(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 15957 ip_ioctl_cmd_t *ipip, void *ifreq) 15958 { 15959 ill_t *ill; 15960 phyint_t *phyi; 15961 struct ifreq *ifr = (struct ifreq *)ifreq; 15962 struct lifreq *lifr = (struct lifreq *)ifreq; 15963 uint_t old_index, index; 15964 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; 15965 avl_index_t where; 15966 15967 if (ipip->ipi_cmd_type == IF_CMD) 15968 index = ifr->ifr_index; 15969 else 15970 index = lifr->lifr_index; 15971 15972 /* 15973 * Only allow on physical interface. Also, index zero is illegal. 15974 */ 15975 ill = ipif->ipif_ill; 15976 phyi = ill->ill_phyint; 15977 if (ipif->ipif_id != 0 || index == 0 || index > IF_INDEX_MAX) { 15978 return (EINVAL); 15979 } 15980 15981 /* If the index is not changing, no work to do */ 15982 if (phyi->phyint_ifindex == index) 15983 return (0); 15984 15985 /* 15986 * Use phyint_exists() to determine if the new interface index 15987 * is already in use. If the index is unused then we need to 15988 * change the phyint's position in the phyint_list_avl_by_index 15989 * tree. If we do not do this, subsequent lookups (using the new 15990 * index value) will not find the phyint. 15991 */ 15992 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 15993 if (phyint_exists(index, ipst)) { 15994 rw_exit(&ipst->ips_ill_g_lock); 15995 return (EEXIST); 15996 } 15997 15998 /* 15999 * The new index is unused. Set it in the phyint. However we must not 16000 * forget to trigger NE_IFINDEX_CHANGE event before the ifindex 16001 * changes. The event must be bound to old ifindex value. 16002 */ 16003 ill_nic_event_dispatch(ill, 0, NE_IFINDEX_CHANGE, 16004 &index, sizeof (index)); 16005 16006 old_index = phyi->phyint_ifindex; 16007 phyi->phyint_ifindex = index; 16008 16009 avl_remove(&ipst->ips_phyint_g_list->phyint_list_avl_by_index, phyi); 16010 (void) avl_find(&ipst->ips_phyint_g_list->phyint_list_avl_by_index, 16011 &index, &where); 16012 avl_insert(&ipst->ips_phyint_g_list->phyint_list_avl_by_index, 16013 phyi, where); 16014 rw_exit(&ipst->ips_ill_g_lock); 16015 16016 /* Update SCTP's ILL list */ 16017 sctp_ill_reindex(ill, old_index); 16018 16019 /* Send the routing sockets message */ 16020 ip_rts_ifmsg(ipif, RTSQ_DEFAULT); 16021 if (ILL_OTHER(ill)) 16022 ip_rts_ifmsg(ILL_OTHER(ill)->ill_ipif, RTSQ_DEFAULT); 16023 16024 /* Perhaps ilgs should use this ill */ 16025 update_conn_ill(NULL, ill->ill_ipst); 16026 return (0); 16027 } 16028 16029 /* ARGSUSED */ 16030 int 16031 ip_sioctl_get_lifindex(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 16032 ip_ioctl_cmd_t *ipip, void *ifreq) 16033 { 16034 struct ifreq *ifr = (struct ifreq *)ifreq; 16035 struct lifreq *lifr = (struct lifreq *)ifreq; 16036 16037 ip1dbg(("ip_sioctl_get_lifindex(%s:%u %p)\n", 16038 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 16039 /* Get the interface index */ 16040 if (ipip->ipi_cmd_type == IF_CMD) { 16041 ifr->ifr_index = ipif->ipif_ill->ill_phyint->phyint_ifindex; 16042 } else { 16043 lifr->lifr_index = ipif->ipif_ill->ill_phyint->phyint_ifindex; 16044 } 16045 return (0); 16046 } 16047 16048 /* ARGSUSED */ 16049 int 16050 ip_sioctl_get_lifzone(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 16051 ip_ioctl_cmd_t *ipip, void *ifreq) 16052 { 16053 struct lifreq *lifr = (struct lifreq *)ifreq; 16054 16055 ip1dbg(("ip_sioctl_get_lifzone(%s:%u %p)\n", 16056 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 16057 /* Get the interface zone */ 16058 ASSERT(ipip->ipi_cmd_type == LIF_CMD); 16059 lifr->lifr_zoneid = ipif->ipif_zoneid; 16060 return (0); 16061 } 16062 16063 /* 16064 * Set the zoneid of an interface. 16065 */ 16066 /* ARGSUSED */ 16067 int 16068 ip_sioctl_slifzone(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 16069 ip_ioctl_cmd_t *ipip, void *ifreq) 16070 { 16071 struct lifreq *lifr = (struct lifreq *)ifreq; 16072 int err = 0; 16073 boolean_t need_up = B_FALSE; 16074 zone_t *zptr; 16075 zone_status_t status; 16076 zoneid_t zoneid; 16077 16078 ASSERT(ipip->ipi_cmd_type == LIF_CMD); 16079 if ((zoneid = lifr->lifr_zoneid) == ALL_ZONES) { 16080 if (!is_system_labeled()) 16081 return (ENOTSUP); 16082 zoneid = GLOBAL_ZONEID; 16083 } 16084 16085 /* cannot assign instance zero to a non-global zone */ 16086 if (ipif->ipif_id == 0 && zoneid != GLOBAL_ZONEID) 16087 return (ENOTSUP); 16088 16089 /* 16090 * Cannot assign to a zone that doesn't exist or is shutting down. In 16091 * the event of a race with the zone shutdown processing, since IP 16092 * serializes this ioctl and SIOCGLIFCONF/SIOCLIFREMOVEIF, we know the 16093 * interface will be cleaned up even if the zone is shut down 16094 * immediately after the status check. If the interface can't be brought 16095 * down right away, and the zone is shut down before the restart 16096 * function is called, we resolve the possible races by rechecking the 16097 * zone status in the restart function. 16098 */ 16099 if ((zptr = zone_find_by_id(zoneid)) == NULL) 16100 return (EINVAL); 16101 status = zone_status_get(zptr); 16102 zone_rele(zptr); 16103 16104 if (status != ZONE_IS_READY && status != ZONE_IS_RUNNING) 16105 return (EINVAL); 16106 16107 if (ipif->ipif_flags & IPIF_UP) { 16108 /* 16109 * If the interface is already marked up, 16110 * we call ipif_down which will take care 16111 * of ditching any IREs that have been set 16112 * up based on the old interface address. 16113 */ 16114 err = ipif_logical_down(ipif, q, mp); 16115 if (err == EINPROGRESS) 16116 return (err); 16117 (void) ipif_down_tail(ipif); 16118 need_up = B_TRUE; 16119 } 16120 16121 err = ip_sioctl_slifzone_tail(ipif, lifr->lifr_zoneid, q, mp, need_up); 16122 return (err); 16123 } 16124 16125 static int 16126 ip_sioctl_slifzone_tail(ipif_t *ipif, zoneid_t zoneid, 16127 queue_t *q, mblk_t *mp, boolean_t need_up) 16128 { 16129 int err = 0; 16130 ip_stack_t *ipst; 16131 16132 ip1dbg(("ip_sioctl_zoneid_tail(%s:%u %p)\n", 16133 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 16134 16135 if (CONN_Q(q)) 16136 ipst = CONNQ_TO_IPST(q); 16137 else 16138 ipst = ILLQ_TO_IPST(q); 16139 16140 /* 16141 * For exclusive stacks we don't allow a different zoneid than 16142 * global. 16143 */ 16144 if (ipst->ips_netstack->netstack_stackid != GLOBAL_NETSTACKID && 16145 zoneid != GLOBAL_ZONEID) 16146 return (EINVAL); 16147 16148 /* Set the new zone id. */ 16149 ipif->ipif_zoneid = zoneid; 16150 16151 /* Update sctp list */ 16152 sctp_update_ipif(ipif, SCTP_IPIF_UPDATE); 16153 16154 /* The default multicast interface might have changed */ 16155 ire_increment_multicast_generation(ipst, ipif->ipif_ill->ill_isv6); 16156 16157 if (need_up) { 16158 /* 16159 * Now bring the interface back up. If this 16160 * is the only IPIF for the ILL, ipif_up 16161 * will have to re-bind to the device, so 16162 * we may get back EINPROGRESS, in which 16163 * case, this IOCTL will get completed in 16164 * ip_rput_dlpi when we see the DL_BIND_ACK. 16165 */ 16166 err = ipif_up(ipif, q, mp); 16167 } 16168 return (err); 16169 } 16170 16171 /* ARGSUSED */ 16172 int 16173 ip_sioctl_slifzone_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 16174 ip_ioctl_cmd_t *ipip, void *if_req) 16175 { 16176 struct lifreq *lifr = (struct lifreq *)if_req; 16177 zoneid_t zoneid; 16178 zone_t *zptr; 16179 zone_status_t status; 16180 16181 ASSERT(ipip->ipi_cmd_type == LIF_CMD); 16182 if ((zoneid = lifr->lifr_zoneid) == ALL_ZONES) 16183 zoneid = GLOBAL_ZONEID; 16184 16185 ip1dbg(("ip_sioctl_slifzone_restart(%s:%u %p)\n", 16186 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 16187 16188 /* 16189 * We recheck the zone status to resolve the following race condition: 16190 * 1) process sends SIOCSLIFZONE to put hme0:1 in zone "myzone"; 16191 * 2) hme0:1 is up and can't be brought down right away; 16192 * ip_sioctl_slifzone() returns EINPROGRESS and the request is queued; 16193 * 3) zone "myzone" is halted; the zone status switches to 16194 * 'shutting_down' and the zones framework sends SIOCGLIFCONF to list 16195 * the interfaces to remove - hme0:1 is not returned because it's not 16196 * yet in "myzone", so it won't be removed; 16197 * 4) the restart function for SIOCSLIFZONE is called; without the 16198 * status check here, we would have hme0:1 in "myzone" after it's been 16199 * destroyed. 16200 * Note that if the status check fails, we need to bring the interface 16201 * back to its state prior to ip_sioctl_slifzone(), hence the call to 16202 * ipif_up_done[_v6](). 16203 */ 16204 status = ZONE_IS_UNINITIALIZED; 16205 if ((zptr = zone_find_by_id(zoneid)) != NULL) { 16206 status = zone_status_get(zptr); 16207 zone_rele(zptr); 16208 } 16209 if (status != ZONE_IS_READY && status != ZONE_IS_RUNNING) { 16210 if (ipif->ipif_isv6) { 16211 (void) ipif_up_done_v6(ipif); 16212 } else { 16213 (void) ipif_up_done(ipif); 16214 } 16215 return (EINVAL); 16216 } 16217 16218 (void) ipif_down_tail(ipif); 16219 16220 return (ip_sioctl_slifzone_tail(ipif, lifr->lifr_zoneid, q, mp, 16221 B_TRUE)); 16222 } 16223 16224 /* 16225 * Return the number of addresses on `ill' with one or more of the values 16226 * in `set' set and all of the values in `clear' clear. 16227 */ 16228 static uint_t 16229 ill_flagaddr_cnt(const ill_t *ill, uint64_t set, uint64_t clear) 16230 { 16231 ipif_t *ipif; 16232 uint_t cnt = 0; 16233 16234 ASSERT(IAM_WRITER_ILL(ill)); 16235 16236 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) 16237 if ((ipif->ipif_flags & set) && !(ipif->ipif_flags & clear)) 16238 cnt++; 16239 16240 return (cnt); 16241 } 16242 16243 /* 16244 * Return the number of migratable addresses on `ill' that are under 16245 * application control. 16246 */ 16247 uint_t 16248 ill_appaddr_cnt(const ill_t *ill) 16249 { 16250 return (ill_flagaddr_cnt(ill, IPIF_DHCPRUNNING | IPIF_ADDRCONF, 16251 IPIF_NOFAILOVER)); 16252 } 16253 16254 /* 16255 * Return the number of point-to-point addresses on `ill'. 16256 */ 16257 uint_t 16258 ill_ptpaddr_cnt(const ill_t *ill) 16259 { 16260 return (ill_flagaddr_cnt(ill, IPIF_POINTOPOINT, 0)); 16261 } 16262 16263 /* ARGSUSED */ 16264 int 16265 ip_sioctl_get_lifusesrc(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 16266 ip_ioctl_cmd_t *ipip, void *ifreq) 16267 { 16268 struct lifreq *lifr = ifreq; 16269 16270 ASSERT(q->q_next == NULL); 16271 ASSERT(CONN_Q(q)); 16272 16273 ip1dbg(("ip_sioctl_get_lifusesrc(%s:%u %p)\n", 16274 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 16275 lifr->lifr_index = ipif->ipif_ill->ill_usesrc_ifindex; 16276 ip1dbg(("ip_sioctl_get_lifusesrc:lifr_index = %d\n", lifr->lifr_index)); 16277 16278 return (0); 16279 } 16280 16281 /* Find the previous ILL in this usesrc group */ 16282 static ill_t * 16283 ill_prev_usesrc(ill_t *uill) 16284 { 16285 ill_t *ill; 16286 16287 for (ill = uill->ill_usesrc_grp_next; 16288 ASSERT(ill), ill->ill_usesrc_grp_next != uill; 16289 ill = ill->ill_usesrc_grp_next) 16290 /* do nothing */; 16291 return (ill); 16292 } 16293 16294 /* 16295 * Release all members of the usesrc group. This routine is called 16296 * from ill_delete when the interface being unplumbed is the 16297 * group head. 16298 * 16299 * This silently clears the usesrc that ifconfig setup. 16300 * An alternative would be to keep that ifindex, and drop packets on the floor 16301 * since no source address can be selected. 16302 * Even if we keep the current semantics, don't need a lock and a linked list. 16303 * Can walk all the ills checking if they have a ill_usesrc_ifindex matching 16304 * the one that is being removed. Issue is how we return the usesrc users 16305 * (SIOCGLIFSRCOF). We want to be able to find the ills which have an 16306 * ill_usesrc_ifindex matching a target ill. We could also do that with an 16307 * ill walk, but the walker would need to insert in the ioctl response. 16308 */ 16309 static void 16310 ill_disband_usesrc_group(ill_t *uill) 16311 { 16312 ill_t *next_ill, *tmp_ill; 16313 ip_stack_t *ipst = uill->ill_ipst; 16314 16315 ASSERT(RW_WRITE_HELD(&ipst->ips_ill_g_usesrc_lock)); 16316 next_ill = uill->ill_usesrc_grp_next; 16317 16318 do { 16319 ASSERT(next_ill != NULL); 16320 tmp_ill = next_ill->ill_usesrc_grp_next; 16321 ASSERT(tmp_ill != NULL); 16322 next_ill->ill_usesrc_grp_next = NULL; 16323 next_ill->ill_usesrc_ifindex = 0; 16324 next_ill = tmp_ill; 16325 } while (next_ill->ill_usesrc_ifindex != 0); 16326 uill->ill_usesrc_grp_next = NULL; 16327 } 16328 16329 /* 16330 * Remove the client usesrc ILL from the list and relink to a new list 16331 */ 16332 int 16333 ill_relink_usesrc_ills(ill_t *ucill, ill_t *uill, uint_t ifindex) 16334 { 16335 ill_t *ill, *tmp_ill; 16336 ip_stack_t *ipst = ucill->ill_ipst; 16337 16338 ASSERT((ucill != NULL) && (ucill->ill_usesrc_grp_next != NULL) && 16339 (uill != NULL) && RW_WRITE_HELD(&ipst->ips_ill_g_usesrc_lock)); 16340 16341 /* 16342 * Check if the usesrc client ILL passed in is not already 16343 * in use as a usesrc ILL i.e one whose source address is 16344 * in use OR a usesrc ILL is not already in use as a usesrc 16345 * client ILL 16346 */ 16347 if ((ucill->ill_usesrc_ifindex == 0) || 16348 (uill->ill_usesrc_ifindex != 0)) { 16349 return (-1); 16350 } 16351 16352 ill = ill_prev_usesrc(ucill); 16353 ASSERT(ill->ill_usesrc_grp_next != NULL); 16354 16355 /* Remove from the current list */ 16356 if (ill->ill_usesrc_grp_next->ill_usesrc_grp_next == ill) { 16357 /* Only two elements in the list */ 16358 ASSERT(ill->ill_usesrc_ifindex == 0); 16359 ill->ill_usesrc_grp_next = NULL; 16360 } else { 16361 ill->ill_usesrc_grp_next = ucill->ill_usesrc_grp_next; 16362 } 16363 16364 if (ifindex == 0) { 16365 ucill->ill_usesrc_ifindex = 0; 16366 ucill->ill_usesrc_grp_next = NULL; 16367 return (0); 16368 } 16369 16370 ucill->ill_usesrc_ifindex = ifindex; 16371 tmp_ill = uill->ill_usesrc_grp_next; 16372 uill->ill_usesrc_grp_next = ucill; 16373 ucill->ill_usesrc_grp_next = 16374 (tmp_ill != NULL) ? tmp_ill : uill; 16375 return (0); 16376 } 16377 16378 /* 16379 * Set the ill_usesrc and ill_usesrc_head fields. See synchronization notes in 16380 * ip.c for locking details. 16381 */ 16382 /* ARGSUSED */ 16383 int 16384 ip_sioctl_slifusesrc(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 16385 ip_ioctl_cmd_t *ipip, void *ifreq) 16386 { 16387 struct lifreq *lifr = (struct lifreq *)ifreq; 16388 boolean_t isv6 = B_FALSE, reset_flg = B_FALSE; 16389 ill_t *usesrc_ill, *usesrc_cli_ill = ipif->ipif_ill; 16390 int err = 0, ret; 16391 uint_t ifindex; 16392 ipsq_t *ipsq = NULL; 16393 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; 16394 16395 ASSERT(IAM_WRITER_IPIF(ipif)); 16396 ASSERT(q->q_next == NULL); 16397 ASSERT(CONN_Q(q)); 16398 16399 isv6 = (Q_TO_CONN(q))->conn_family == AF_INET6; 16400 16401 ifindex = lifr->lifr_index; 16402 if (ifindex == 0) { 16403 if (usesrc_cli_ill->ill_usesrc_grp_next == NULL) { 16404 /* non usesrc group interface, nothing to reset */ 16405 return (0); 16406 } 16407 ifindex = usesrc_cli_ill->ill_usesrc_ifindex; 16408 /* valid reset request */ 16409 reset_flg = B_TRUE; 16410 } 16411 16412 usesrc_ill = ill_lookup_on_ifindex(ifindex, isv6, ipst); 16413 if (usesrc_ill == NULL) 16414 return (ENXIO); 16415 if (usesrc_ill == ipif->ipif_ill) { 16416 ill_refrele(usesrc_ill); 16417 return (EINVAL); 16418 } 16419 16420 ipsq = ipsq_try_enter(NULL, usesrc_ill, q, mp, ip_process_ioctl, 16421 NEW_OP, B_TRUE); 16422 if (ipsq == NULL) { 16423 err = EINPROGRESS; 16424 /* Operation enqueued on the ipsq of the usesrc ILL */ 16425 goto done; 16426 } 16427 16428 /* USESRC isn't currently supported with IPMP */ 16429 if (IS_IPMP(usesrc_ill) || IS_UNDER_IPMP(usesrc_ill)) { 16430 err = ENOTSUP; 16431 goto done; 16432 } 16433 16434 /* 16435 * USESRC isn't compatible with the STANDBY flag. (STANDBY is only 16436 * used by IPMP underlying interfaces, but someone might think it's 16437 * more general and try to use it independently with VNI.) 16438 */ 16439 if (usesrc_ill->ill_phyint->phyint_flags & PHYI_STANDBY) { 16440 err = ENOTSUP; 16441 goto done; 16442 } 16443 16444 /* 16445 * If the client is already in use as a usesrc_ill or a usesrc_ill is 16446 * already a client then return EINVAL 16447 */ 16448 if (IS_USESRC_ILL(usesrc_cli_ill) || IS_USESRC_CLI_ILL(usesrc_ill)) { 16449 err = EINVAL; 16450 goto done; 16451 } 16452 16453 /* 16454 * If the ill_usesrc_ifindex field is already set to what it needs to 16455 * be then this is a duplicate operation. 16456 */ 16457 if (!reset_flg && usesrc_cli_ill->ill_usesrc_ifindex == ifindex) { 16458 err = 0; 16459 goto done; 16460 } 16461 16462 ip1dbg(("ip_sioctl_slifusesrc: usesrc_cli_ill %s, usesrc_ill %s," 16463 " v6 = %d", usesrc_cli_ill->ill_name, usesrc_ill->ill_name, 16464 usesrc_ill->ill_isv6)); 16465 16466 /* 16467 * ill_g_usesrc_lock global lock protects the ill_usesrc_grp_next 16468 * and the ill_usesrc_ifindex fields 16469 */ 16470 rw_enter(&ipst->ips_ill_g_usesrc_lock, RW_WRITER); 16471 16472 if (reset_flg) { 16473 ret = ill_relink_usesrc_ills(usesrc_cli_ill, usesrc_ill, 0); 16474 if (ret != 0) { 16475 err = EINVAL; 16476 } 16477 rw_exit(&ipst->ips_ill_g_usesrc_lock); 16478 goto done; 16479 } 16480 16481 /* 16482 * Four possibilities to consider: 16483 * 1. Both usesrc_ill and usesrc_cli_ill are not part of any usesrc grp 16484 * 2. usesrc_ill is part of a group but usesrc_cli_ill isn't 16485 * 3. usesrc_cli_ill is part of a group but usesrc_ill isn't 16486 * 4. Both are part of their respective usesrc groups 16487 */ 16488 if ((usesrc_ill->ill_usesrc_grp_next == NULL) && 16489 (usesrc_cli_ill->ill_usesrc_grp_next == NULL)) { 16490 ASSERT(usesrc_ill->ill_usesrc_ifindex == 0); 16491 usesrc_cli_ill->ill_usesrc_ifindex = ifindex; 16492 usesrc_ill->ill_usesrc_grp_next = usesrc_cli_ill; 16493 usesrc_cli_ill->ill_usesrc_grp_next = usesrc_ill; 16494 } else if ((usesrc_ill->ill_usesrc_grp_next != NULL) && 16495 (usesrc_cli_ill->ill_usesrc_grp_next == NULL)) { 16496 usesrc_cli_ill->ill_usesrc_ifindex = ifindex; 16497 /* Insert at head of list */ 16498 usesrc_cli_ill->ill_usesrc_grp_next = 16499 usesrc_ill->ill_usesrc_grp_next; 16500 usesrc_ill->ill_usesrc_grp_next = usesrc_cli_ill; 16501 } else { 16502 ret = ill_relink_usesrc_ills(usesrc_cli_ill, usesrc_ill, 16503 ifindex); 16504 if (ret != 0) 16505 err = EINVAL; 16506 } 16507 rw_exit(&ipst->ips_ill_g_usesrc_lock); 16508 16509 done: 16510 if (ipsq != NULL) 16511 ipsq_exit(ipsq); 16512 /* The refrele on the lifr_name ipif is done by ip_process_ioctl */ 16513 ill_refrele(usesrc_ill); 16514 16515 /* Let conn_ixa caching know that source address selection changed */ 16516 ip_update_source_selection(ipst); 16517 16518 return (err); 16519 } 16520 16521 /* ARGSUSED */ 16522 int 16523 ip_sioctl_get_dadstate(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 16524 ip_ioctl_cmd_t *ipip, void *if_req) 16525 { 16526 struct lifreq *lifr = (struct lifreq *)if_req; 16527 ill_t *ill = ipif->ipif_ill; 16528 16529 /* 16530 * Need a lock since IFF_UP can be set even when there are 16531 * references to the ipif. 16532 */ 16533 mutex_enter(&ill->ill_lock); 16534 if ((ipif->ipif_flags & IPIF_UP) && ipif->ipif_addr_ready == 0) 16535 lifr->lifr_dadstate = DAD_IN_PROGRESS; 16536 else 16537 lifr->lifr_dadstate = DAD_DONE; 16538 mutex_exit(&ill->ill_lock); 16539 return (0); 16540 } 16541 16542 /* 16543 * comparison function used by avl. 16544 */ 16545 static int 16546 ill_phyint_compare_index(const void *index_ptr, const void *phyip) 16547 { 16548 16549 uint_t index; 16550 16551 ASSERT(phyip != NULL && index_ptr != NULL); 16552 16553 index = *((uint_t *)index_ptr); 16554 /* 16555 * let the phyint with the lowest index be on top. 16556 */ 16557 if (((phyint_t *)phyip)->phyint_ifindex < index) 16558 return (1); 16559 if (((phyint_t *)phyip)->phyint_ifindex > index) 16560 return (-1); 16561 return (0); 16562 } 16563 16564 /* 16565 * comparison function used by avl. 16566 */ 16567 static int 16568 ill_phyint_compare_name(const void *name_ptr, const void *phyip) 16569 { 16570 ill_t *ill; 16571 int res = 0; 16572 16573 ASSERT(phyip != NULL && name_ptr != NULL); 16574 16575 if (((phyint_t *)phyip)->phyint_illv4) 16576 ill = ((phyint_t *)phyip)->phyint_illv4; 16577 else 16578 ill = ((phyint_t *)phyip)->phyint_illv6; 16579 ASSERT(ill != NULL); 16580 16581 res = strcmp(ill->ill_name, (char *)name_ptr); 16582 if (res > 0) 16583 return (1); 16584 else if (res < 0) 16585 return (-1); 16586 return (0); 16587 } 16588 16589 /* 16590 * This function is called on the unplumb path via ill_glist_delete() when 16591 * there are no ills left on the phyint and thus the phyint can be freed. 16592 */ 16593 static void 16594 phyint_free(phyint_t *phyi) 16595 { 16596 ip_stack_t *ipst = PHYINT_TO_IPST(phyi); 16597 16598 ASSERT(phyi->phyint_illv4 == NULL && phyi->phyint_illv6 == NULL); 16599 16600 /* 16601 * If this phyint was an IPMP meta-interface, blow away the group. 16602 * This is safe to do because all of the illgrps have already been 16603 * removed by I_PUNLINK, and thus SIOCSLIFGROUPNAME cannot find us. 16604 * If we're cleaning up as a result of failed initialization, 16605 * phyint_grp may be NULL. 16606 */ 16607 if ((phyi->phyint_flags & PHYI_IPMP) && (phyi->phyint_grp != NULL)) { 16608 rw_enter(&ipst->ips_ipmp_lock, RW_WRITER); 16609 ipmp_grp_destroy(phyi->phyint_grp); 16610 phyi->phyint_grp = NULL; 16611 rw_exit(&ipst->ips_ipmp_lock); 16612 } 16613 16614 /* 16615 * If this interface was under IPMP, take it out of the group. 16616 */ 16617 if (phyi->phyint_grp != NULL) 16618 ipmp_phyint_leave_grp(phyi); 16619 16620 /* 16621 * Delete the phyint and disassociate its ipsq. The ipsq itself 16622 * will be freed in ipsq_exit(). 16623 */ 16624 phyi->phyint_ipsq->ipsq_phyint = NULL; 16625 phyi->phyint_name[0] = '\0'; 16626 16627 mi_free(phyi); 16628 } 16629 16630 /* 16631 * Attach the ill to the phyint structure which can be shared by both 16632 * IPv4 and IPv6 ill. ill_init allocates a phyint to just hold flags. This 16633 * function is called from ipif_set_values and ill_lookup_on_name (for 16634 * loopback) where we know the name of the ill. We lookup the ill and if 16635 * there is one present already with the name use that phyint. Otherwise 16636 * reuse the one allocated by ill_init. 16637 */ 16638 static void 16639 ill_phyint_reinit(ill_t *ill) 16640 { 16641 boolean_t isv6 = ill->ill_isv6; 16642 phyint_t *phyi_old; 16643 phyint_t *phyi; 16644 avl_index_t where = 0; 16645 ill_t *ill_other = NULL; 16646 ip_stack_t *ipst = ill->ill_ipst; 16647 16648 ASSERT(RW_WRITE_HELD(&ipst->ips_ill_g_lock)); 16649 16650 phyi_old = ill->ill_phyint; 16651 ASSERT(isv6 || (phyi_old->phyint_illv4 == ill && 16652 phyi_old->phyint_illv6 == NULL)); 16653 ASSERT(!isv6 || (phyi_old->phyint_illv6 == ill && 16654 phyi_old->phyint_illv4 == NULL)); 16655 ASSERT(phyi_old->phyint_ifindex == 0); 16656 16657 /* 16658 * Now that our ill has a name, set it in the phyint. 16659 */ 16660 (void) strlcpy(ill->ill_phyint->phyint_name, ill->ill_name, LIFNAMSIZ); 16661 16662 phyi = avl_find(&ipst->ips_phyint_g_list->phyint_list_avl_by_name, 16663 ill->ill_name, &where); 16664 16665 /* 16666 * 1. We grabbed the ill_g_lock before inserting this ill into 16667 * the global list of ills. So no other thread could have located 16668 * this ill and hence the ipsq of this ill is guaranteed to be empty. 16669 * 2. Now locate the other protocol instance of this ill. 16670 * 3. Now grab both ill locks in the right order, and the phyint lock of 16671 * the new ipsq. Holding ill locks + ill_g_lock ensures that the ipsq 16672 * of neither ill can change. 16673 * 4. Merge the phyint and thus the ipsq as well of this ill onto the 16674 * other ill. 16675 * 5. Release all locks. 16676 */ 16677 16678 /* 16679 * Look for IPv4 if we are initializing IPv6 or look for IPv6 if 16680 * we are initializing IPv4. 16681 */ 16682 if (phyi != NULL) { 16683 ill_other = (isv6) ? phyi->phyint_illv4 : phyi->phyint_illv6; 16684 ASSERT(ill_other->ill_phyint != NULL); 16685 ASSERT((isv6 && !ill_other->ill_isv6) || 16686 (!isv6 && ill_other->ill_isv6)); 16687 GRAB_ILL_LOCKS(ill, ill_other); 16688 /* 16689 * We are potentially throwing away phyint_flags which 16690 * could be different from the one that we obtain from 16691 * ill_other->ill_phyint. But it is okay as we are assuming 16692 * that the state maintained within IP is correct. 16693 */ 16694 mutex_enter(&phyi->phyint_lock); 16695 if (isv6) { 16696 ASSERT(phyi->phyint_illv6 == NULL); 16697 phyi->phyint_illv6 = ill; 16698 } else { 16699 ASSERT(phyi->phyint_illv4 == NULL); 16700 phyi->phyint_illv4 = ill; 16701 } 16702 16703 /* 16704 * Delete the old phyint and make its ipsq eligible 16705 * to be freed in ipsq_exit(). 16706 */ 16707 phyi_old->phyint_illv4 = NULL; 16708 phyi_old->phyint_illv6 = NULL; 16709 phyi_old->phyint_ipsq->ipsq_phyint = NULL; 16710 phyi_old->phyint_name[0] = '\0'; 16711 mi_free(phyi_old); 16712 } else { 16713 mutex_enter(&ill->ill_lock); 16714 /* 16715 * We don't need to acquire any lock, since 16716 * the ill is not yet visible globally and we 16717 * have not yet released the ill_g_lock. 16718 */ 16719 phyi = phyi_old; 16720 mutex_enter(&phyi->phyint_lock); 16721 /* XXX We need a recovery strategy here. */ 16722 if (!phyint_assign_ifindex(phyi, ipst)) 16723 cmn_err(CE_PANIC, "phyint_assign_ifindex() failed"); 16724 16725 avl_insert(&ipst->ips_phyint_g_list->phyint_list_avl_by_name, 16726 (void *)phyi, where); 16727 16728 (void) avl_find(&ipst->ips_phyint_g_list-> 16729 phyint_list_avl_by_index, 16730 &phyi->phyint_ifindex, &where); 16731 avl_insert(&ipst->ips_phyint_g_list->phyint_list_avl_by_index, 16732 (void *)phyi, where); 16733 } 16734 16735 /* 16736 * Reassigning ill_phyint automatically reassigns the ipsq also. 16737 * pending mp is not affected because that is per ill basis. 16738 */ 16739 ill->ill_phyint = phyi; 16740 16741 /* 16742 * Now that the phyint's ifindex has been assigned, complete the 16743 * remaining 16744 */ 16745 ill->ill_ip_mib->ipIfStatsIfIndex = ill->ill_phyint->phyint_ifindex; 16746 if (ill->ill_isv6) { 16747 ill->ill_icmp6_mib->ipv6IfIcmpIfIndex = 16748 ill->ill_phyint->phyint_ifindex; 16749 ill->ill_mcast_type = ipst->ips_mld_max_version; 16750 } else { 16751 ill->ill_mcast_type = ipst->ips_igmp_max_version; 16752 } 16753 16754 /* 16755 * Generate an event within the hooks framework to indicate that 16756 * a new interface has just been added to IP. For this event to 16757 * be generated, the network interface must, at least, have an 16758 * ifindex assigned to it. (We don't generate the event for 16759 * loopback since ill_lookup_on_name() has its own NE_PLUMB event.) 16760 * 16761 * This needs to be run inside the ill_g_lock perimeter to ensure 16762 * that the ordering of delivered events to listeners matches the 16763 * order of them in the kernel. 16764 */ 16765 if (!IS_LOOPBACK(ill)) { 16766 ill_nic_event_dispatch(ill, 0, NE_PLUMB, ill->ill_name, 16767 ill->ill_name_length); 16768 } 16769 RELEASE_ILL_LOCKS(ill, ill_other); 16770 mutex_exit(&phyi->phyint_lock); 16771 } 16772 16773 /* 16774 * Notify any downstream modules of the name of this interface. 16775 * An M_IOCTL is used even though we don't expect a successful reply. 16776 * Any reply message from the driver (presumably an M_IOCNAK) will 16777 * eventually get discarded somewhere upstream. The message format is 16778 * simply an SIOCSLIFNAME ioctl just as might be sent from ifconfig 16779 * to IP. 16780 */ 16781 static void 16782 ip_ifname_notify(ill_t *ill, queue_t *q) 16783 { 16784 mblk_t *mp1, *mp2; 16785 struct iocblk *iocp; 16786 struct lifreq *lifr; 16787 16788 mp1 = mkiocb(SIOCSLIFNAME); 16789 if (mp1 == NULL) 16790 return; 16791 mp2 = allocb(sizeof (struct lifreq), BPRI_HI); 16792 if (mp2 == NULL) { 16793 freeb(mp1); 16794 return; 16795 } 16796 16797 mp1->b_cont = mp2; 16798 iocp = (struct iocblk *)mp1->b_rptr; 16799 iocp->ioc_count = sizeof (struct lifreq); 16800 16801 lifr = (struct lifreq *)mp2->b_rptr; 16802 mp2->b_wptr += sizeof (struct lifreq); 16803 bzero(lifr, sizeof (struct lifreq)); 16804 16805 (void) strncpy(lifr->lifr_name, ill->ill_name, LIFNAMSIZ); 16806 lifr->lifr_ppa = ill->ill_ppa; 16807 lifr->lifr_flags = (ill->ill_flags & (ILLF_IPV4|ILLF_IPV6)); 16808 16809 DTRACE_PROBE3(ill__dlpi, char *, "ip_ifname_notify", 16810 char *, "SIOCSLIFNAME", ill_t *, ill); 16811 putnext(q, mp1); 16812 } 16813 16814 static int 16815 ipif_set_values_tail(ill_t *ill, ipif_t *ipif, mblk_t *mp, queue_t *q) 16816 { 16817 int err; 16818 ip_stack_t *ipst = ill->ill_ipst; 16819 phyint_t *phyi = ill->ill_phyint; 16820 16821 /* 16822 * Now that ill_name is set, the configuration for the IPMP 16823 * meta-interface can be performed. 16824 */ 16825 if (IS_IPMP(ill)) { 16826 rw_enter(&ipst->ips_ipmp_lock, RW_WRITER); 16827 /* 16828 * If phyi->phyint_grp is NULL, then this is the first IPMP 16829 * meta-interface and we need to create the IPMP group. 16830 */ 16831 if (phyi->phyint_grp == NULL) { 16832 /* 16833 * If someone has renamed another IPMP group to have 16834 * the same name as our interface, bail. 16835 */ 16836 if (ipmp_grp_lookup(ill->ill_name, ipst) != NULL) { 16837 rw_exit(&ipst->ips_ipmp_lock); 16838 return (EEXIST); 16839 } 16840 phyi->phyint_grp = ipmp_grp_create(ill->ill_name, phyi); 16841 if (phyi->phyint_grp == NULL) { 16842 rw_exit(&ipst->ips_ipmp_lock); 16843 return (ENOMEM); 16844 } 16845 } 16846 rw_exit(&ipst->ips_ipmp_lock); 16847 } 16848 16849 /* Tell downstream modules where they are. */ 16850 ip_ifname_notify(ill, q); 16851 16852 /* 16853 * ill_dl_phys returns EINPROGRESS in the usual case. 16854 * Error cases are ENOMEM ... 16855 */ 16856 err = ill_dl_phys(ill, ipif, mp, q); 16857 16858 if (ill->ill_isv6) { 16859 mutex_enter(&ipst->ips_mld_slowtimeout_lock); 16860 if (ipst->ips_mld_slowtimeout_id == 0) { 16861 ipst->ips_mld_slowtimeout_id = timeout(mld_slowtimo, 16862 (void *)ipst, 16863 MSEC_TO_TICK(MCAST_SLOWTIMO_INTERVAL)); 16864 } 16865 mutex_exit(&ipst->ips_mld_slowtimeout_lock); 16866 } else { 16867 mutex_enter(&ipst->ips_igmp_slowtimeout_lock); 16868 if (ipst->ips_igmp_slowtimeout_id == 0) { 16869 ipst->ips_igmp_slowtimeout_id = timeout(igmp_slowtimo, 16870 (void *)ipst, 16871 MSEC_TO_TICK(MCAST_SLOWTIMO_INTERVAL)); 16872 } 16873 mutex_exit(&ipst->ips_igmp_slowtimeout_lock); 16874 } 16875 16876 return (err); 16877 } 16878 16879 /* 16880 * Common routine for ppa and ifname setting. Should be called exclusive. 16881 * 16882 * Returns EINPROGRESS when mp has been consumed by queueing it on 16883 * ipx_pending_mp and the ioctl will complete in ip_rput. 16884 * 16885 * NOTE : If ppa is UNIT_MAX, we assign the next valid ppa and return 16886 * the new name and new ppa in lifr_name and lifr_ppa respectively. 16887 * For SLIFNAME, we pass these values back to the userland. 16888 */ 16889 static int 16890 ipif_set_values(queue_t *q, mblk_t *mp, char *interf_name, uint_t *new_ppa_ptr) 16891 { 16892 ill_t *ill; 16893 ipif_t *ipif; 16894 ipsq_t *ipsq; 16895 char *ppa_ptr; 16896 char *old_ptr; 16897 char old_char; 16898 int error; 16899 ip_stack_t *ipst; 16900 16901 ip1dbg(("ipif_set_values: interface %s\n", interf_name)); 16902 ASSERT(q->q_next != NULL); 16903 ASSERT(interf_name != NULL); 16904 16905 ill = (ill_t *)q->q_ptr; 16906 ipst = ill->ill_ipst; 16907 16908 ASSERT(ill->ill_ipst != NULL); 16909 ASSERT(ill->ill_name[0] == '\0'); 16910 ASSERT(IAM_WRITER_ILL(ill)); 16911 ASSERT((mi_strlen(interf_name) + 1) <= LIFNAMSIZ); 16912 ASSERT(ill->ill_ppa == UINT_MAX); 16913 16914 ill->ill_defend_start = ill->ill_defend_count = 0; 16915 /* The ppa is sent down by ifconfig or is chosen */ 16916 if ((ppa_ptr = ill_get_ppa_ptr(interf_name)) == NULL) { 16917 return (EINVAL); 16918 } 16919 16920 /* 16921 * make sure ppa passed in is same as ppa in the name. 16922 * This check is not made when ppa == UINT_MAX in that case ppa 16923 * in the name could be anything. System will choose a ppa and 16924 * update new_ppa_ptr and inter_name to contain the choosen ppa. 16925 */ 16926 if (*new_ppa_ptr != UINT_MAX) { 16927 /* stoi changes the pointer */ 16928 old_ptr = ppa_ptr; 16929 /* 16930 * ifconfig passed in 0 for the ppa for DLPI 1 style devices 16931 * (they don't have an externally visible ppa). We assign one 16932 * here so that we can manage the interface. Note that in 16933 * the past this value was always 0 for DLPI 1 drivers. 16934 */ 16935 if (*new_ppa_ptr == 0) 16936 *new_ppa_ptr = stoi(&old_ptr); 16937 else if (*new_ppa_ptr != (uint_t)stoi(&old_ptr)) 16938 return (EINVAL); 16939 } 16940 /* 16941 * terminate string before ppa 16942 * save char at that location. 16943 */ 16944 old_char = ppa_ptr[0]; 16945 ppa_ptr[0] = '\0'; 16946 16947 ill->ill_ppa = *new_ppa_ptr; 16948 /* 16949 * Finish as much work now as possible before calling ill_glist_insert 16950 * which makes the ill globally visible and also merges it with the 16951 * other protocol instance of this phyint. The remaining work is 16952 * done after entering the ipsq which may happen sometime later. 16953 */ 16954 ipif = ill->ill_ipif; 16955 16956 /* We didn't do this when we allocated ipif in ip_ll_subnet_defaults */ 16957 ipif_assign_seqid(ipif); 16958 16959 if (!(ill->ill_flags & (ILLF_IPV4|ILLF_IPV6))) 16960 ill->ill_flags |= ILLF_IPV4; 16961 16962 ASSERT(ipif->ipif_next == NULL); /* Only one ipif on ill */ 16963 ASSERT((ipif->ipif_flags & IPIF_UP) == 0); 16964 16965 if (ill->ill_flags & ILLF_IPV6) { 16966 16967 ill->ill_isv6 = B_TRUE; 16968 ill_set_inputfn(ill); 16969 if (ill->ill_rq != NULL) { 16970 ill->ill_rq->q_qinfo = &iprinitv6; 16971 } 16972 16973 /* Keep the !IN6_IS_ADDR_V4MAPPED assertions happy */ 16974 ipif->ipif_v6lcl_addr = ipv6_all_zeros; 16975 ipif->ipif_v6subnet = ipv6_all_zeros; 16976 ipif->ipif_v6net_mask = ipv6_all_zeros; 16977 ipif->ipif_v6brd_addr = ipv6_all_zeros; 16978 ipif->ipif_v6pp_dst_addr = ipv6_all_zeros; 16979 ill->ill_reachable_retrans_time = ND_RETRANS_TIMER; 16980 /* 16981 * point-to-point or Non-mulicast capable 16982 * interfaces won't do NUD unless explicitly 16983 * configured to do so. 16984 */ 16985 if (ipif->ipif_flags & IPIF_POINTOPOINT || 16986 !(ill->ill_flags & ILLF_MULTICAST)) { 16987 ill->ill_flags |= ILLF_NONUD; 16988 } 16989 /* Make sure IPv4 specific flag is not set on IPv6 if */ 16990 if (ill->ill_flags & ILLF_NOARP) { 16991 /* 16992 * Note: xresolv interfaces will eventually need 16993 * NOARP set here as well, but that will require 16994 * those external resolvers to have some 16995 * knowledge of that flag and act appropriately. 16996 * Not to be changed at present. 16997 */ 16998 ill->ill_flags &= ~ILLF_NOARP; 16999 } 17000 /* 17001 * Set the ILLF_ROUTER flag according to the global 17002 * IPv6 forwarding policy. 17003 */ 17004 if (ipst->ips_ipv6_forwarding != 0) 17005 ill->ill_flags |= ILLF_ROUTER; 17006 } else if (ill->ill_flags & ILLF_IPV4) { 17007 ill->ill_isv6 = B_FALSE; 17008 ill_set_inputfn(ill); 17009 ill->ill_reachable_retrans_time = ARP_RETRANS_TIMER; 17010 IN6_IPADDR_TO_V4MAPPED(INADDR_ANY, &ipif->ipif_v6lcl_addr); 17011 IN6_IPADDR_TO_V4MAPPED(INADDR_ANY, &ipif->ipif_v6subnet); 17012 IN6_IPADDR_TO_V4MAPPED(INADDR_ANY, &ipif->ipif_v6net_mask); 17013 IN6_IPADDR_TO_V4MAPPED(INADDR_ANY, &ipif->ipif_v6brd_addr); 17014 IN6_IPADDR_TO_V4MAPPED(INADDR_ANY, &ipif->ipif_v6pp_dst_addr); 17015 /* 17016 * Set the ILLF_ROUTER flag according to the global 17017 * IPv4 forwarding policy. 17018 */ 17019 if (ipst->ips_ip_forwarding != 0) 17020 ill->ill_flags |= ILLF_ROUTER; 17021 } 17022 17023 ASSERT(ill->ill_phyint != NULL); 17024 17025 /* 17026 * The ipIfStatsIfindex and ipv6IfIcmpIfIndex assignments will 17027 * be completed in ill_glist_insert -> ill_phyint_reinit 17028 */ 17029 if (!ill_allocate_mibs(ill)) 17030 return (ENOMEM); 17031 17032 /* 17033 * Pick a default sap until we get the DL_INFO_ACK back from 17034 * the driver. 17035 */ 17036 ill->ill_sap = (ill->ill_isv6) ? ill->ill_media->ip_m_ipv6sap : 17037 ill->ill_media->ip_m_ipv4sap; 17038 17039 ill->ill_ifname_pending = 1; 17040 ill->ill_ifname_pending_err = 0; 17041 17042 /* 17043 * When the first ipif comes up in ipif_up_done(), multicast groups 17044 * that were joined while this ill was not bound to the DLPI link need 17045 * to be recovered by ill_recover_multicast(). 17046 */ 17047 ill->ill_need_recover_multicast = 1; 17048 17049 ill_refhold(ill); 17050 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 17051 if ((error = ill_glist_insert(ill, interf_name, 17052 (ill->ill_flags & ILLF_IPV6) == ILLF_IPV6)) > 0) { 17053 ill->ill_ppa = UINT_MAX; 17054 ill->ill_name[0] = '\0'; 17055 /* 17056 * undo null termination done above. 17057 */ 17058 ppa_ptr[0] = old_char; 17059 rw_exit(&ipst->ips_ill_g_lock); 17060 ill_refrele(ill); 17061 return (error); 17062 } 17063 17064 ASSERT(ill->ill_name_length <= LIFNAMSIZ); 17065 17066 /* 17067 * When we return the buffer pointed to by interf_name should contain 17068 * the same name as in ill_name. 17069 * If a ppa was choosen by the system (ppa passed in was UINT_MAX) 17070 * the buffer pointed to by new_ppa_ptr would not contain the right ppa 17071 * so copy full name and update the ppa ptr. 17072 * When ppa passed in != UINT_MAX all values are correct just undo 17073 * null termination, this saves a bcopy. 17074 */ 17075 if (*new_ppa_ptr == UINT_MAX) { 17076 bcopy(ill->ill_name, interf_name, ill->ill_name_length); 17077 *new_ppa_ptr = ill->ill_ppa; 17078 } else { 17079 /* 17080 * undo null termination done above. 17081 */ 17082 ppa_ptr[0] = old_char; 17083 } 17084 17085 /* Let SCTP know about this ILL */ 17086 sctp_update_ill(ill, SCTP_ILL_INSERT); 17087 17088 /* 17089 * ill_glist_insert has made the ill visible globally, and 17090 * ill_phyint_reinit could have changed the ipsq. At this point, 17091 * we need to hold the ips_ill_g_lock across the call to enter the 17092 * ipsq to enforce atomicity and prevent reordering. In the event 17093 * the ipsq has changed, and if the new ipsq is currently busy, 17094 * we need to make sure that this half-completed ioctl is ahead of 17095 * any subsequent ioctl. We achieve this by not dropping the 17096 * ips_ill_g_lock which prevents any ill lookup itself thereby 17097 * ensuring that new ioctls can't start. 17098 */ 17099 ipsq = ipsq_try_enter_internal(ill, q, mp, ip_reprocess_ioctl, NEW_OP, 17100 B_TRUE); 17101 17102 rw_exit(&ipst->ips_ill_g_lock); 17103 ill_refrele(ill); 17104 if (ipsq == NULL) 17105 return (EINPROGRESS); 17106 17107 /* 17108 * If ill_phyint_reinit() changed our ipsq, then start on the new ipsq. 17109 */ 17110 if (ipsq->ipsq_xop->ipx_current_ipif == NULL) 17111 ipsq_current_start(ipsq, ipif, SIOCSLIFNAME); 17112 else 17113 ASSERT(ipsq->ipsq_xop->ipx_current_ipif == ipif); 17114 17115 error = ipif_set_values_tail(ill, ipif, mp, q); 17116 ipsq_exit(ipsq); 17117 if (error != 0 && error != EINPROGRESS) { 17118 /* 17119 * restore previous values 17120 */ 17121 ill->ill_isv6 = B_FALSE; 17122 ill_set_inputfn(ill); 17123 } 17124 return (error); 17125 } 17126 17127 void 17128 ipif_init(ip_stack_t *ipst) 17129 { 17130 int i; 17131 17132 for (i = 0; i < MAX_G_HEADS; i++) { 17133 ipst->ips_ill_g_heads[i].ill_g_list_head = 17134 (ill_if_t *)&ipst->ips_ill_g_heads[i]; 17135 ipst->ips_ill_g_heads[i].ill_g_list_tail = 17136 (ill_if_t *)&ipst->ips_ill_g_heads[i]; 17137 } 17138 17139 avl_create(&ipst->ips_phyint_g_list->phyint_list_avl_by_index, 17140 ill_phyint_compare_index, 17141 sizeof (phyint_t), 17142 offsetof(struct phyint, phyint_avl_by_index)); 17143 avl_create(&ipst->ips_phyint_g_list->phyint_list_avl_by_name, 17144 ill_phyint_compare_name, 17145 sizeof (phyint_t), 17146 offsetof(struct phyint, phyint_avl_by_name)); 17147 } 17148 17149 /* 17150 * Save enough information so that we can recreate the IRE if 17151 * the interface goes down and then up. 17152 */ 17153 void 17154 ill_save_ire(ill_t *ill, ire_t *ire) 17155 { 17156 mblk_t *save_mp; 17157 17158 save_mp = allocb(sizeof (ifrt_t), BPRI_MED); 17159 if (save_mp != NULL) { 17160 ifrt_t *ifrt; 17161 17162 save_mp->b_wptr += sizeof (ifrt_t); 17163 ifrt = (ifrt_t *)save_mp->b_rptr; 17164 bzero(ifrt, sizeof (ifrt_t)); 17165 ifrt->ifrt_type = ire->ire_type; 17166 if (ire->ire_ipversion == IPV4_VERSION) { 17167 ASSERT(!ill->ill_isv6); 17168 ifrt->ifrt_addr = ire->ire_addr; 17169 ifrt->ifrt_gateway_addr = ire->ire_gateway_addr; 17170 ifrt->ifrt_setsrc_addr = ire->ire_setsrc_addr; 17171 ifrt->ifrt_mask = ire->ire_mask; 17172 } else { 17173 ASSERT(ill->ill_isv6); 17174 ifrt->ifrt_v6addr = ire->ire_addr_v6; 17175 /* ire_gateway_addr_v6 can change due to RTM_CHANGE */ 17176 mutex_enter(&ire->ire_lock); 17177 ifrt->ifrt_v6gateway_addr = ire->ire_gateway_addr_v6; 17178 mutex_exit(&ire->ire_lock); 17179 ifrt->ifrt_v6setsrc_addr = ire->ire_setsrc_addr_v6; 17180 ifrt->ifrt_v6mask = ire->ire_mask_v6; 17181 } 17182 ifrt->ifrt_flags = ire->ire_flags; 17183 ifrt->ifrt_zoneid = ire->ire_zoneid; 17184 mutex_enter(&ill->ill_saved_ire_lock); 17185 save_mp->b_cont = ill->ill_saved_ire_mp; 17186 ill->ill_saved_ire_mp = save_mp; 17187 ill->ill_saved_ire_cnt++; 17188 mutex_exit(&ill->ill_saved_ire_lock); 17189 } 17190 } 17191 17192 /* 17193 * Remove one entry from ill_saved_ire_mp. 17194 */ 17195 void 17196 ill_remove_saved_ire(ill_t *ill, ire_t *ire) 17197 { 17198 mblk_t **mpp; 17199 mblk_t *mp; 17200 ifrt_t *ifrt; 17201 17202 /* Remove from ill_saved_ire_mp list if it is there */ 17203 mutex_enter(&ill->ill_saved_ire_lock); 17204 for (mpp = &ill->ill_saved_ire_mp; *mpp != NULL; 17205 mpp = &(*mpp)->b_cont) { 17206 in6_addr_t gw_addr_v6; 17207 17208 /* 17209 * On a given ill, the tuple of address, gateway, mask, 17210 * ire_type, and zoneid is unique for each saved IRE. 17211 */ 17212 mp = *mpp; 17213 ifrt = (ifrt_t *)mp->b_rptr; 17214 /* ire_gateway_addr_v6 can change - need lock */ 17215 mutex_enter(&ire->ire_lock); 17216 gw_addr_v6 = ire->ire_gateway_addr_v6; 17217 mutex_exit(&ire->ire_lock); 17218 17219 if (ifrt->ifrt_zoneid != ire->ire_zoneid || 17220 ifrt->ifrt_type != ire->ire_type) 17221 continue; 17222 17223 if (ill->ill_isv6 ? 17224 (IN6_ARE_ADDR_EQUAL(&ifrt->ifrt_v6addr, 17225 &ire->ire_addr_v6) && 17226 IN6_ARE_ADDR_EQUAL(&ifrt->ifrt_v6gateway_addr, 17227 &gw_addr_v6) && 17228 IN6_ARE_ADDR_EQUAL(&ifrt->ifrt_v6mask, 17229 &ire->ire_mask_v6)) : 17230 (ifrt->ifrt_addr == ire->ire_addr && 17231 ifrt->ifrt_gateway_addr == ire->ire_gateway_addr && 17232 ifrt->ifrt_mask == ire->ire_mask)) { 17233 *mpp = mp->b_cont; 17234 ill->ill_saved_ire_cnt--; 17235 freeb(mp); 17236 break; 17237 } 17238 } 17239 mutex_exit(&ill->ill_saved_ire_lock); 17240 } 17241 17242 /* 17243 * IP multirouting broadcast routes handling 17244 * Append CGTP broadcast IREs to regular ones created 17245 * at ifconfig time. 17246 * The usage is a route add <cgtp_bc> <nic_bc> -multirt i.e., both 17247 * the destination and the gateway are broadcast addresses. 17248 * The caller has verified that the destination is an IRE_BROADCAST and that 17249 * RTF_MULTIRT was set. Here if the gateway is a broadcast address, then 17250 * we create a MULTIRT IRE_BROADCAST. 17251 * Note that the IRE_HOST created by ire_rt_add doesn't get found by anything 17252 * since the IRE_BROADCAST takes precedence; ire_add_v4 does head insertion. 17253 */ 17254 static void 17255 ip_cgtp_bcast_add(ire_t *ire, ip_stack_t *ipst) 17256 { 17257 ire_t *ire_prim; 17258 17259 ASSERT(ire != NULL); 17260 17261 ire_prim = ire_ftable_lookup_v4(ire->ire_gateway_addr, 0, 0, 17262 IRE_BROADCAST, NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, 0, ipst, 17263 NULL); 17264 if (ire_prim != NULL) { 17265 /* 17266 * We are in the special case of broadcasts for 17267 * CGTP. We add an IRE_BROADCAST that holds 17268 * the RTF_MULTIRT flag, the destination 17269 * address and the low level 17270 * info of ire_prim. In other words, CGTP 17271 * broadcast is added to the redundant ipif. 17272 */ 17273 ill_t *ill_prim; 17274 ire_t *bcast_ire; 17275 17276 ill_prim = ire_prim->ire_ill; 17277 17278 ip2dbg(("ip_cgtp_filter_bcast_add: ire_prim %p, ill_prim %p\n", 17279 (void *)ire_prim, (void *)ill_prim)); 17280 17281 bcast_ire = ire_create( 17282 (uchar_t *)&ire->ire_addr, 17283 (uchar_t *)&ip_g_all_ones, 17284 (uchar_t *)&ire->ire_gateway_addr, 17285 IRE_BROADCAST, 17286 ill_prim, 17287 GLOBAL_ZONEID, /* CGTP is only for the global zone */ 17288 ire->ire_flags | RTF_KERNEL, 17289 NULL, 17290 ipst); 17291 17292 /* 17293 * Here we assume that ire_add does head insertion so that 17294 * the added IRE_BROADCAST comes before the existing IRE_HOST. 17295 */ 17296 if (bcast_ire != NULL) { 17297 if (ire->ire_flags & RTF_SETSRC) { 17298 bcast_ire->ire_setsrc_addr = 17299 ire->ire_setsrc_addr; 17300 } 17301 bcast_ire = ire_add(bcast_ire); 17302 if (bcast_ire != NULL) { 17303 ip2dbg(("ip_cgtp_filter_bcast_add: " 17304 "added bcast_ire %p\n", 17305 (void *)bcast_ire)); 17306 17307 ill_save_ire(ill_prim, bcast_ire); 17308 ire_refrele(bcast_ire); 17309 } 17310 } 17311 ire_refrele(ire_prim); 17312 } 17313 } 17314 17315 /* 17316 * IP multirouting broadcast routes handling 17317 * Remove the broadcast ire. 17318 * The usage is a route delete <cgtp_bc> <nic_bc> -multirt i.e., both 17319 * the destination and the gateway are broadcast addresses. 17320 * The caller has only verified that RTF_MULTIRT was set. We check 17321 * that the destination is broadcast and that the gateway is a broadcast 17322 * address, and if so delete the IRE added by ip_cgtp_bcast_add(). 17323 */ 17324 static void 17325 ip_cgtp_bcast_delete(ire_t *ire, ip_stack_t *ipst) 17326 { 17327 ASSERT(ire != NULL); 17328 17329 if (ip_type_v4(ire->ire_addr, ipst) == IRE_BROADCAST) { 17330 ire_t *ire_prim; 17331 17332 ire_prim = ire_ftable_lookup_v4(ire->ire_gateway_addr, 0, 0, 17333 IRE_BROADCAST, NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, 0, 17334 ipst, NULL); 17335 if (ire_prim != NULL) { 17336 ill_t *ill_prim; 17337 ire_t *bcast_ire; 17338 17339 ill_prim = ire_prim->ire_ill; 17340 17341 ip2dbg(("ip_cgtp_filter_bcast_delete: " 17342 "ire_prim %p, ill_prim %p\n", 17343 (void *)ire_prim, (void *)ill_prim)); 17344 17345 bcast_ire = ire_ftable_lookup_v4(ire->ire_addr, 0, 17346 ire->ire_gateway_addr, IRE_BROADCAST, 17347 ill_prim, ALL_ZONES, NULL, 17348 MATCH_IRE_TYPE | MATCH_IRE_GW | MATCH_IRE_ILL | 17349 MATCH_IRE_MASK, 0, ipst, NULL); 17350 17351 if (bcast_ire != NULL) { 17352 ip2dbg(("ip_cgtp_filter_bcast_delete: " 17353 "looked up bcast_ire %p\n", 17354 (void *)bcast_ire)); 17355 ill_remove_saved_ire(bcast_ire->ire_ill, 17356 bcast_ire); 17357 ire_delete(bcast_ire); 17358 ire_refrele(bcast_ire); 17359 } 17360 ire_refrele(ire_prim); 17361 } 17362 } 17363 } 17364 17365 /* 17366 * Derive an interface id from the link layer address. 17367 * Knows about IEEE 802 and IEEE EUI-64 mappings. 17368 */ 17369 static void 17370 ip_ether_v6intfid(ill_t *ill, in6_addr_t *v6addr) 17371 { 17372 char *addr; 17373 17374 /* 17375 * Note that some IPv6 interfaces get plumbed over links that claim to 17376 * be DL_ETHER, but don't actually have Ethernet MAC addresses (e.g. 17377 * PPP links). The ETHERADDRL check here ensures that we only set the 17378 * interface ID on IPv6 interfaces above links that actually have real 17379 * Ethernet addresses. 17380 */ 17381 if (ill->ill_phys_addr_length == ETHERADDRL) { 17382 /* Form EUI-64 like address */ 17383 addr = (char *)&v6addr->s6_addr32[2]; 17384 bcopy(ill->ill_phys_addr, addr, 3); 17385 addr[0] ^= 0x2; /* Toggle Universal/Local bit */ 17386 addr[3] = (char)0xff; 17387 addr[4] = (char)0xfe; 17388 bcopy(ill->ill_phys_addr + 3, addr + 5, 3); 17389 } 17390 } 17391 17392 /* ARGSUSED */ 17393 static void 17394 ip_nodef_v6intfid(ill_t *ill, in6_addr_t *v6addr) 17395 { 17396 } 17397 17398 typedef struct ipmp_ifcookie { 17399 uint32_t ic_hostid; 17400 char ic_ifname[LIFNAMSIZ]; 17401 char ic_zonename[ZONENAME_MAX]; 17402 } ipmp_ifcookie_t; 17403 17404 /* 17405 * Construct a pseudo-random interface ID for the IPMP interface that's both 17406 * predictable and (almost) guaranteed to be unique. 17407 */ 17408 static void 17409 ip_ipmp_v6intfid(ill_t *ill, in6_addr_t *v6addr) 17410 { 17411 zone_t *zp; 17412 uint8_t *addr; 17413 uchar_t hash[16]; 17414 ulong_t hostid; 17415 MD5_CTX ctx; 17416 ipmp_ifcookie_t ic = { 0 }; 17417 17418 ASSERT(IS_IPMP(ill)); 17419 17420 (void) ddi_strtoul(hw_serial, NULL, 10, &hostid); 17421 ic.ic_hostid = htonl((uint32_t)hostid); 17422 17423 (void) strlcpy(ic.ic_ifname, ill->ill_name, LIFNAMSIZ); 17424 17425 if ((zp = zone_find_by_id(ill->ill_zoneid)) != NULL) { 17426 (void) strlcpy(ic.ic_zonename, zp->zone_name, ZONENAME_MAX); 17427 zone_rele(zp); 17428 } 17429 17430 MD5Init(&ctx); 17431 MD5Update(&ctx, &ic, sizeof (ic)); 17432 MD5Final(hash, &ctx); 17433 17434 /* 17435 * Map the hash to an interface ID per the basic approach in RFC3041. 17436 */ 17437 addr = &v6addr->s6_addr8[8]; 17438 bcopy(hash + 8, addr, sizeof (uint64_t)); 17439 addr[0] &= ~0x2; /* set local bit */ 17440 } 17441 17442 /* 17443 * Map the multicast in6_addr_t in m_ip6addr to the physaddr for ethernet. 17444 */ 17445 static void 17446 ip_ether_v6_mapping(ill_t *ill, uchar_t *m_ip6addr, uchar_t *m_physaddr) 17447 { 17448 phyint_t *phyi = ill->ill_phyint; 17449 17450 /* 17451 * Check PHYI_MULTI_BCAST and length of physical 17452 * address to determine if we use the mapping or the 17453 * broadcast address. 17454 */ 17455 if ((phyi->phyint_flags & PHYI_MULTI_BCAST) != 0 || 17456 ill->ill_phys_addr_length != ETHERADDRL) { 17457 ip_mbcast_mapping(ill, m_ip6addr, m_physaddr); 17458 return; 17459 } 17460 m_physaddr[0] = 0x33; 17461 m_physaddr[1] = 0x33; 17462 m_physaddr[2] = m_ip6addr[12]; 17463 m_physaddr[3] = m_ip6addr[13]; 17464 m_physaddr[4] = m_ip6addr[14]; 17465 m_physaddr[5] = m_ip6addr[15]; 17466 } 17467 17468 /* 17469 * Map the multicast ipaddr_t in m_ipaddr to the physaddr for ethernet. 17470 */ 17471 static void 17472 ip_ether_v4_mapping(ill_t *ill, uchar_t *m_ipaddr, uchar_t *m_physaddr) 17473 { 17474 phyint_t *phyi = ill->ill_phyint; 17475 17476 /* 17477 * Check PHYI_MULTI_BCAST and length of physical 17478 * address to determine if we use the mapping or the 17479 * broadcast address. 17480 */ 17481 if ((phyi->phyint_flags & PHYI_MULTI_BCAST) != 0 || 17482 ill->ill_phys_addr_length != ETHERADDRL) { 17483 ip_mbcast_mapping(ill, m_ipaddr, m_physaddr); 17484 return; 17485 } 17486 m_physaddr[0] = 0x01; 17487 m_physaddr[1] = 0x00; 17488 m_physaddr[2] = 0x5e; 17489 m_physaddr[3] = m_ipaddr[1] & 0x7f; 17490 m_physaddr[4] = m_ipaddr[2]; 17491 m_physaddr[5] = m_ipaddr[3]; 17492 } 17493 17494 /* ARGSUSED */ 17495 static void 17496 ip_mbcast_mapping(ill_t *ill, uchar_t *m_ipaddr, uchar_t *m_physaddr) 17497 { 17498 /* 17499 * for the MULTI_BCAST case and other cases when we want to 17500 * use the link-layer broadcast address for multicast. 17501 */ 17502 uint8_t *bphys_addr; 17503 dl_unitdata_req_t *dlur; 17504 17505 dlur = (dl_unitdata_req_t *)ill->ill_bcast_mp->b_rptr; 17506 if (ill->ill_sap_length < 0) { 17507 bphys_addr = (uchar_t *)dlur + 17508 dlur->dl_dest_addr_offset; 17509 } else { 17510 bphys_addr = (uchar_t *)dlur + 17511 dlur->dl_dest_addr_offset + ill->ill_sap_length; 17512 } 17513 17514 bcopy(bphys_addr, m_physaddr, ill->ill_phys_addr_length); 17515 } 17516 17517 /* 17518 * Derive IPoIB interface id from the link layer address. 17519 */ 17520 static void 17521 ip_ib_v6intfid(ill_t *ill, in6_addr_t *v6addr) 17522 { 17523 char *addr; 17524 17525 ASSERT(ill->ill_phys_addr_length == 20); 17526 addr = (char *)&v6addr->s6_addr32[2]; 17527 bcopy(ill->ill_phys_addr + 12, addr, 8); 17528 /* 17529 * In IBA 1.1 timeframe, some vendors erroneously set the u/l bit 17530 * in the globally assigned EUI-64 GUID to 1, in violation of IEEE 17531 * rules. In these cases, the IBA considers these GUIDs to be in 17532 * "Modified EUI-64" format, and thus toggling the u/l bit is not 17533 * required; vendors are required not to assign global EUI-64's 17534 * that differ only in u/l bit values, thus guaranteeing uniqueness 17535 * of the interface identifier. Whether the GUID is in modified 17536 * or proper EUI-64 format, the ipv6 identifier must have the u/l 17537 * bit set to 1. 17538 */ 17539 addr[0] |= 2; /* Set Universal/Local bit to 1 */ 17540 } 17541 17542 /* 17543 * Map the multicast ipaddr_t in m_ipaddr to the physaddr for InfiniBand. 17544 * Note on mapping from multicast IP addresses to IPoIB multicast link 17545 * addresses. IPoIB multicast link addresses are based on IBA link addresses. 17546 * The format of an IPoIB multicast address is: 17547 * 17548 * 4 byte QPN Scope Sign. Pkey 17549 * +--------------------------------------------+ 17550 * | 00FFFFFF | FF | 1X | X01B | Pkey | GroupID | 17551 * +--------------------------------------------+ 17552 * 17553 * The Scope and Pkey components are properties of the IBA port and 17554 * network interface. They can be ascertained from the broadcast address. 17555 * The Sign. part is the signature, and is 401B for IPv4 and 601B for IPv6. 17556 */ 17557 static void 17558 ip_ib_v4_mapping(ill_t *ill, uchar_t *m_ipaddr, uchar_t *m_physaddr) 17559 { 17560 static uint8_t ipv4_g_phys_ibmulti_addr[] = { 0x00, 0xff, 0xff, 0xff, 17561 0xff, 0x10, 0x40, 0x1b, 0x00, 0x00, 0x00, 0x00, 17562 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 }; 17563 uint8_t *bphys_addr; 17564 dl_unitdata_req_t *dlur; 17565 17566 bcopy(ipv4_g_phys_ibmulti_addr, m_physaddr, ill->ill_phys_addr_length); 17567 17568 /* 17569 * RFC 4391: IPv4 MGID is 28-bit long. 17570 */ 17571 m_physaddr[16] = m_ipaddr[0] & 0x0f; 17572 m_physaddr[17] = m_ipaddr[1]; 17573 m_physaddr[18] = m_ipaddr[2]; 17574 m_physaddr[19] = m_ipaddr[3]; 17575 17576 17577 dlur = (dl_unitdata_req_t *)ill->ill_bcast_mp->b_rptr; 17578 if (ill->ill_sap_length < 0) { 17579 bphys_addr = (uchar_t *)dlur + dlur->dl_dest_addr_offset; 17580 } else { 17581 bphys_addr = (uchar_t *)dlur + dlur->dl_dest_addr_offset + 17582 ill->ill_sap_length; 17583 } 17584 /* 17585 * Now fill in the IBA scope/Pkey values from the broadcast address. 17586 */ 17587 m_physaddr[5] = bphys_addr[5]; 17588 m_physaddr[8] = bphys_addr[8]; 17589 m_physaddr[9] = bphys_addr[9]; 17590 } 17591 17592 static void 17593 ip_ib_v6_mapping(ill_t *ill, uchar_t *m_ipaddr, uchar_t *m_physaddr) 17594 { 17595 static uint8_t ipv4_g_phys_ibmulti_addr[] = { 0x00, 0xff, 0xff, 0xff, 17596 0xff, 0x10, 0x60, 0x1b, 0x00, 0x00, 0x00, 0x00, 17597 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 }; 17598 uint8_t *bphys_addr; 17599 dl_unitdata_req_t *dlur; 17600 17601 bcopy(ipv4_g_phys_ibmulti_addr, m_physaddr, ill->ill_phys_addr_length); 17602 17603 /* 17604 * RFC 4391: IPv4 MGID is 80-bit long. 17605 */ 17606 bcopy(&m_ipaddr[6], &m_physaddr[10], 10); 17607 17608 dlur = (dl_unitdata_req_t *)ill->ill_bcast_mp->b_rptr; 17609 if (ill->ill_sap_length < 0) { 17610 bphys_addr = (uchar_t *)dlur + dlur->dl_dest_addr_offset; 17611 } else { 17612 bphys_addr = (uchar_t *)dlur + dlur->dl_dest_addr_offset + 17613 ill->ill_sap_length; 17614 } 17615 /* 17616 * Now fill in the IBA scope/Pkey values from the broadcast address. 17617 */ 17618 m_physaddr[5] = bphys_addr[5]; 17619 m_physaddr[8] = bphys_addr[8]; 17620 m_physaddr[9] = bphys_addr[9]; 17621 } 17622 17623 /* 17624 * Derive IPv6 interface id from an IPv4 link-layer address (e.g. from an IPv4 17625 * tunnel). The IPv4 address simply get placed in the lower 4 bytes of the 17626 * IPv6 interface id. This is a suggested mechanism described in section 3.7 17627 * of RFC4213. 17628 */ 17629 static void 17630 ip_ipv4_genv6intfid(ill_t *ill, uint8_t *physaddr, in6_addr_t *v6addr) 17631 { 17632 ASSERT(ill->ill_phys_addr_length == sizeof (ipaddr_t)); 17633 v6addr->s6_addr32[2] = 0; 17634 bcopy(physaddr, &v6addr->s6_addr32[3], sizeof (ipaddr_t)); 17635 } 17636 17637 /* 17638 * Derive IPv6 interface id from an IPv6 link-layer address (e.g. from an IPv6 17639 * tunnel). The lower 8 bytes of the IPv6 address simply become the interface 17640 * id. 17641 */ 17642 static void 17643 ip_ipv6_genv6intfid(ill_t *ill, uint8_t *physaddr, in6_addr_t *v6addr) 17644 { 17645 in6_addr_t *v6lladdr = (in6_addr_t *)physaddr; 17646 17647 ASSERT(ill->ill_phys_addr_length == sizeof (in6_addr_t)); 17648 bcopy(&v6lladdr->s6_addr32[2], &v6addr->s6_addr32[2], 8); 17649 } 17650 17651 static void 17652 ip_ipv6_v6intfid(ill_t *ill, in6_addr_t *v6addr) 17653 { 17654 ip_ipv6_genv6intfid(ill, ill->ill_phys_addr, v6addr); 17655 } 17656 17657 static void 17658 ip_ipv6_v6destintfid(ill_t *ill, in6_addr_t *v6addr) 17659 { 17660 ip_ipv6_genv6intfid(ill, ill->ill_dest_addr, v6addr); 17661 } 17662 17663 static void 17664 ip_ipv4_v6intfid(ill_t *ill, in6_addr_t *v6addr) 17665 { 17666 ip_ipv4_genv6intfid(ill, ill->ill_phys_addr, v6addr); 17667 } 17668 17669 static void 17670 ip_ipv4_v6destintfid(ill_t *ill, in6_addr_t *v6addr) 17671 { 17672 ip_ipv4_genv6intfid(ill, ill->ill_dest_addr, v6addr); 17673 } 17674 17675 /* 17676 * Lookup an ill and verify that the zoneid has an ipif on that ill. 17677 * Returns an held ill, or NULL. 17678 */ 17679 ill_t * 17680 ill_lookup_on_ifindex_zoneid(uint_t index, zoneid_t zoneid, boolean_t isv6, 17681 ip_stack_t *ipst) 17682 { 17683 ill_t *ill; 17684 ipif_t *ipif; 17685 17686 ill = ill_lookup_on_ifindex(index, isv6, ipst); 17687 if (ill == NULL) 17688 return (NULL); 17689 17690 mutex_enter(&ill->ill_lock); 17691 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 17692 if (IPIF_IS_CONDEMNED(ipif)) 17693 continue; 17694 if (zoneid != ALL_ZONES && ipif->ipif_zoneid != zoneid && 17695 ipif->ipif_zoneid != ALL_ZONES) 17696 continue; 17697 17698 mutex_exit(&ill->ill_lock); 17699 return (ill); 17700 } 17701 mutex_exit(&ill->ill_lock); 17702 ill_refrele(ill); 17703 return (NULL); 17704 } 17705 17706 /* 17707 * Return a pointer to an ipif_t given a combination of (ill_idx,ipif_id) 17708 * If a pointer to an ipif_t is returned then the caller will need to do 17709 * an ill_refrele(). 17710 */ 17711 ipif_t * 17712 ipif_getby_indexes(uint_t ifindex, uint_t lifidx, boolean_t isv6, 17713 ip_stack_t *ipst) 17714 { 17715 ipif_t *ipif; 17716 ill_t *ill; 17717 17718 ill = ill_lookup_on_ifindex(ifindex, isv6, ipst); 17719 if (ill == NULL) 17720 return (NULL); 17721 17722 mutex_enter(&ill->ill_lock); 17723 if (ill->ill_state_flags & ILL_CONDEMNED) { 17724 mutex_exit(&ill->ill_lock); 17725 ill_refrele(ill); 17726 return (NULL); 17727 } 17728 17729 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 17730 if (!IPIF_CAN_LOOKUP(ipif)) 17731 continue; 17732 if (lifidx == ipif->ipif_id) { 17733 ipif_refhold_locked(ipif); 17734 break; 17735 } 17736 } 17737 17738 mutex_exit(&ill->ill_lock); 17739 ill_refrele(ill); 17740 return (ipif); 17741 } 17742 17743 /* 17744 * Set ill_inputfn based on the current know state. 17745 * This needs to be called when any of the factors taken into 17746 * account changes. 17747 */ 17748 void 17749 ill_set_inputfn(ill_t *ill) 17750 { 17751 ip_stack_t *ipst = ill->ill_ipst; 17752 17753 if (ill->ill_isv6) { 17754 if (is_system_labeled()) 17755 ill->ill_inputfn = ill_input_full_v6; 17756 else 17757 ill->ill_inputfn = ill_input_short_v6; 17758 } else { 17759 if (is_system_labeled()) 17760 ill->ill_inputfn = ill_input_full_v4; 17761 else if (ill->ill_dhcpinit != 0) 17762 ill->ill_inputfn = ill_input_full_v4; 17763 else if (ipst->ips_ipcl_proto_fanout_v4[IPPROTO_RSVP].connf_head 17764 != NULL) 17765 ill->ill_inputfn = ill_input_full_v4; 17766 else if (ipst->ips_ip_cgtp_filter && 17767 ipst->ips_ip_cgtp_filter_ops != NULL) 17768 ill->ill_inputfn = ill_input_full_v4; 17769 else 17770 ill->ill_inputfn = ill_input_short_v4; 17771 } 17772 } 17773 17774 /* 17775 * Re-evaluate ill_inputfn for all the IPv4 ills. 17776 * Used when RSVP and CGTP comes and goes. 17777 */ 17778 void 17779 ill_set_inputfn_all(ip_stack_t *ipst) 17780 { 17781 ill_walk_context_t ctx; 17782 ill_t *ill; 17783 17784 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 17785 ill = ILL_START_WALK_V4(&ctx, ipst); 17786 for (; ill != NULL; ill = ill_next(&ctx, ill)) 17787 ill_set_inputfn(ill); 17788 17789 rw_exit(&ipst->ips_ill_g_lock); 17790 } 17791 17792 /* 17793 * Set the physical address information for `ill' to the contents of the 17794 * dl_notify_ind_t pointed to by `mp'. Must be called as writer, and will be 17795 * asynchronous if `ill' cannot immediately be quiesced -- in which case 17796 * EINPROGRESS will be returned. 17797 */ 17798 int 17799 ill_set_phys_addr(ill_t *ill, mblk_t *mp) 17800 { 17801 ipsq_t *ipsq = ill->ill_phyint->phyint_ipsq; 17802 dl_notify_ind_t *dlindp = (dl_notify_ind_t *)mp->b_rptr; 17803 17804 ASSERT(IAM_WRITER_IPSQ(ipsq)); 17805 17806 if (dlindp->dl_data != DL_IPV6_LINK_LAYER_ADDR && 17807 dlindp->dl_data != DL_CURR_DEST_ADDR && 17808 dlindp->dl_data != DL_CURR_PHYS_ADDR) { 17809 /* Changing DL_IPV6_TOKEN is not yet supported */ 17810 return (0); 17811 } 17812 17813 /* 17814 * We need to store up to two copies of `mp' in `ill'. Due to the 17815 * design of ipsq_pending_mp_add(), we can't pass them as separate 17816 * arguments to ill_set_phys_addr_tail(). Instead, chain them 17817 * together here, then pull 'em apart in ill_set_phys_addr_tail(). 17818 */ 17819 if ((mp = copyb(mp)) == NULL || (mp->b_cont = copyb(mp)) == NULL) { 17820 freemsg(mp); 17821 return (ENOMEM); 17822 } 17823 17824 ipsq_current_start(ipsq, ill->ill_ipif, 0); 17825 17826 /* 17827 * Since we'll only do a logical down, we can't rely on ipif_down 17828 * to turn on ILL_DOWN_IN_PROGRESS, or for the DL_BIND_ACK to reset 17829 * ILL_DOWN_IN_PROGRESS. We instead manage this separately for this 17830 * case, to quiesce ire's and nce's for ill_is_quiescent. 17831 */ 17832 mutex_enter(&ill->ill_lock); 17833 ill->ill_state_flags |= ILL_DOWN_IN_PROGRESS; 17834 /* no more ire/nce addition allowed */ 17835 mutex_exit(&ill->ill_lock); 17836 17837 /* 17838 * If we can quiesce the ill, then set the address. If not, then 17839 * ill_set_phys_addr_tail() will be called from ipif_ill_refrele_tail(). 17840 */ 17841 ill_down_ipifs(ill, B_TRUE); 17842 mutex_enter(&ill->ill_lock); 17843 if (!ill_is_quiescent(ill)) { 17844 /* call cannot fail since `conn_t *' argument is NULL */ 17845 (void) ipsq_pending_mp_add(NULL, ill->ill_ipif, ill->ill_rq, 17846 mp, ILL_DOWN); 17847 mutex_exit(&ill->ill_lock); 17848 return (EINPROGRESS); 17849 } 17850 mutex_exit(&ill->ill_lock); 17851 17852 ill_set_phys_addr_tail(ipsq, ill->ill_rq, mp, NULL); 17853 return (0); 17854 } 17855 17856 /* 17857 * When the allowed-ips link property is set on the datalink, IP receives a 17858 * DL_NOTE_ALLOWED_IPS notification that is processed in ill_set_allowed_ips() 17859 * to initialize the ill_allowed_ips[] array in the ill_t. This array is then 17860 * used to vet addresses passed to ip_sioctl_addr() and to ensure that the 17861 * only IP addresses configured on the ill_t are those in the ill_allowed_ips[] 17862 * array. 17863 */ 17864 void 17865 ill_set_allowed_ips(ill_t *ill, mblk_t *mp) 17866 { 17867 ipsq_t *ipsq = ill->ill_phyint->phyint_ipsq; 17868 dl_notify_ind_t *dlip = (dl_notify_ind_t *)mp->b_rptr; 17869 mac_protect_t *mrp; 17870 int i; 17871 17872 ASSERT(IAM_WRITER_IPSQ(ipsq)); 17873 mrp = (mac_protect_t *)&dlip[1]; 17874 17875 if (mrp->mp_ipaddrcnt == 0) { /* reset allowed-ips */ 17876 kmem_free(ill->ill_allowed_ips, 17877 ill->ill_allowed_ips_cnt * sizeof (in6_addr_t)); 17878 ill->ill_allowed_ips_cnt = 0; 17879 ill->ill_allowed_ips = NULL; 17880 mutex_enter(&ill->ill_phyint->phyint_lock); 17881 ill->ill_phyint->phyint_flags &= ~PHYI_L3PROTECT; 17882 mutex_exit(&ill->ill_phyint->phyint_lock); 17883 return; 17884 } 17885 17886 if (ill->ill_allowed_ips != NULL) { 17887 kmem_free(ill->ill_allowed_ips, 17888 ill->ill_allowed_ips_cnt * sizeof (in6_addr_t)); 17889 } 17890 ill->ill_allowed_ips_cnt = mrp->mp_ipaddrcnt; 17891 ill->ill_allowed_ips = kmem_alloc( 17892 ill->ill_allowed_ips_cnt * sizeof (in6_addr_t), KM_SLEEP); 17893 for (i = 0; i < mrp->mp_ipaddrcnt; i++) 17894 ill->ill_allowed_ips[i] = mrp->mp_ipaddrs[i].ip_addr; 17895 17896 mutex_enter(&ill->ill_phyint->phyint_lock); 17897 ill->ill_phyint->phyint_flags |= PHYI_L3PROTECT; 17898 mutex_exit(&ill->ill_phyint->phyint_lock); 17899 } 17900 17901 /* 17902 * Once the ill associated with `q' has quiesced, set its physical address 17903 * information to the values in `addrmp'. Note that two copies of `addrmp' 17904 * are passed (linked by b_cont), since we sometimes need to save two distinct 17905 * copies in the ill_t, and our context doesn't permit sleeping or allocation 17906 * failure (we'll free the other copy if it's not needed). Since the ill_t 17907 * is quiesced, we know any stale nce's with the old address information have 17908 * already been removed, so we don't need to call nce_flush(). 17909 */ 17910 /* ARGSUSED */ 17911 static void 17912 ill_set_phys_addr_tail(ipsq_t *ipsq, queue_t *q, mblk_t *addrmp, void *dummy) 17913 { 17914 ill_t *ill = q->q_ptr; 17915 mblk_t *addrmp2 = unlinkb(addrmp); 17916 dl_notify_ind_t *dlindp = (dl_notify_ind_t *)addrmp->b_rptr; 17917 uint_t addrlen, addroff; 17918 int status; 17919 17920 ASSERT(IAM_WRITER_IPSQ(ipsq)); 17921 17922 addroff = dlindp->dl_addr_offset; 17923 addrlen = dlindp->dl_addr_length - ABS(ill->ill_sap_length); 17924 17925 switch (dlindp->dl_data) { 17926 case DL_IPV6_LINK_LAYER_ADDR: 17927 ill_set_ndmp(ill, addrmp, addroff, addrlen); 17928 freemsg(addrmp2); 17929 break; 17930 17931 case DL_CURR_DEST_ADDR: 17932 freemsg(ill->ill_dest_addr_mp); 17933 ill->ill_dest_addr = addrmp->b_rptr + addroff; 17934 ill->ill_dest_addr_mp = addrmp; 17935 if (ill->ill_isv6) { 17936 ill_setdesttoken(ill); 17937 ipif_setdestlinklocal(ill->ill_ipif); 17938 } 17939 freemsg(addrmp2); 17940 break; 17941 17942 case DL_CURR_PHYS_ADDR: 17943 freemsg(ill->ill_phys_addr_mp); 17944 ill->ill_phys_addr = addrmp->b_rptr + addroff; 17945 ill->ill_phys_addr_mp = addrmp; 17946 ill->ill_phys_addr_length = addrlen; 17947 if (ill->ill_isv6) 17948 ill_set_ndmp(ill, addrmp2, addroff, addrlen); 17949 else 17950 freemsg(addrmp2); 17951 if (ill->ill_isv6) { 17952 ill_setdefaulttoken(ill); 17953 ipif_setlinklocal(ill->ill_ipif); 17954 } 17955 break; 17956 default: 17957 ASSERT(0); 17958 } 17959 17960 /* 17961 * reset ILL_DOWN_IN_PROGRESS so that we can successfully add ires 17962 * as we bring the ipifs up again. 17963 */ 17964 mutex_enter(&ill->ill_lock); 17965 ill->ill_state_flags &= ~ILL_DOWN_IN_PROGRESS; 17966 mutex_exit(&ill->ill_lock); 17967 /* 17968 * If there are ipifs to bring up, ill_up_ipifs() will return 17969 * EINPROGRESS, and ipsq_current_finish() will be called by 17970 * ip_rput_dlpi_writer() or arp_bringup_done() when the last ipif is 17971 * brought up. 17972 */ 17973 status = ill_up_ipifs(ill, q, addrmp); 17974 if (status != EINPROGRESS) 17975 ipsq_current_finish(ipsq); 17976 } 17977 17978 /* 17979 * Helper routine for setting the ill_nd_lla fields. 17980 */ 17981 void 17982 ill_set_ndmp(ill_t *ill, mblk_t *ndmp, uint_t addroff, uint_t addrlen) 17983 { 17984 freemsg(ill->ill_nd_lla_mp); 17985 ill->ill_nd_lla = ndmp->b_rptr + addroff; 17986 ill->ill_nd_lla_mp = ndmp; 17987 ill->ill_nd_lla_len = addrlen; 17988 } 17989 17990 /* 17991 * Replumb the ill. 17992 */ 17993 int 17994 ill_replumb(ill_t *ill, mblk_t *mp) 17995 { 17996 ipsq_t *ipsq = ill->ill_phyint->phyint_ipsq; 17997 17998 ASSERT(IAM_WRITER_IPSQ(ipsq)); 17999 18000 ipsq_current_start(ipsq, ill->ill_ipif, 0); 18001 18002 /* 18003 * If we can quiesce the ill, then continue. If not, then 18004 * ill_replumb_tail() will be called from ipif_ill_refrele_tail(). 18005 */ 18006 ill_down_ipifs(ill, B_FALSE); 18007 18008 mutex_enter(&ill->ill_lock); 18009 if (!ill_is_quiescent(ill)) { 18010 /* call cannot fail since `conn_t *' argument is NULL */ 18011 (void) ipsq_pending_mp_add(NULL, ill->ill_ipif, ill->ill_rq, 18012 mp, ILL_DOWN); 18013 mutex_exit(&ill->ill_lock); 18014 return (EINPROGRESS); 18015 } 18016 mutex_exit(&ill->ill_lock); 18017 18018 ill_replumb_tail(ipsq, ill->ill_rq, mp, NULL); 18019 return (0); 18020 } 18021 18022 /* ARGSUSED */ 18023 static void 18024 ill_replumb_tail(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy) 18025 { 18026 ill_t *ill = q->q_ptr; 18027 int err; 18028 conn_t *connp = NULL; 18029 18030 ASSERT(IAM_WRITER_IPSQ(ipsq)); 18031 freemsg(ill->ill_replumb_mp); 18032 ill->ill_replumb_mp = copyb(mp); 18033 18034 if (ill->ill_replumb_mp == NULL) { 18035 /* out of memory */ 18036 ipsq_current_finish(ipsq); 18037 return; 18038 } 18039 18040 mutex_enter(&ill->ill_lock); 18041 ill->ill_up_ipifs = ipsq_pending_mp_add(NULL, ill->ill_ipif, 18042 ill->ill_rq, ill->ill_replumb_mp, 0); 18043 mutex_exit(&ill->ill_lock); 18044 18045 if (!ill->ill_up_ipifs) { 18046 /* already closing */ 18047 ipsq_current_finish(ipsq); 18048 return; 18049 } 18050 ill->ill_replumbing = 1; 18051 err = ill_down_ipifs_tail(ill); 18052 18053 /* 18054 * Successfully quiesced and brought down the interface, now we send 18055 * the DL_NOTE_REPLUMB_DONE message down to the driver. Reuse the 18056 * DL_NOTE_REPLUMB message. 18057 */ 18058 mp = mexchange(NULL, mp, sizeof (dl_notify_conf_t), M_PROTO, 18059 DL_NOTIFY_CONF); 18060 ASSERT(mp != NULL); 18061 ((dl_notify_conf_t *)mp->b_rptr)->dl_notification = 18062 DL_NOTE_REPLUMB_DONE; 18063 ill_dlpi_send(ill, mp); 18064 18065 /* 18066 * For IPv4, we would usually get EINPROGRESS because the ETHERTYPE_ARP 18067 * streams have to be unbound. When all the DLPI exchanges are done, 18068 * ipsq_current_finish() will be called by arp_bringup_done(). The 18069 * remainder of ipif bringup via ill_up_ipifs() will also be done in 18070 * arp_bringup_done(). 18071 */ 18072 ASSERT(ill->ill_replumb_mp != NULL); 18073 if (err == EINPROGRESS) 18074 return; 18075 else 18076 ill->ill_replumb_mp = ipsq_pending_mp_get(ipsq, &connp); 18077 ASSERT(connp == NULL); 18078 if (err == 0 && ill->ill_replumb_mp != NULL && 18079 ill_up_ipifs(ill, q, ill->ill_replumb_mp) == EINPROGRESS) { 18080 return; 18081 } 18082 ipsq_current_finish(ipsq); 18083 } 18084 18085 /* 18086 * Issue ioctl `cmd' on `lh'; caller provides the initial payload in `buf' 18087 * which is `bufsize' bytes. On success, zero is returned and `buf' updated 18088 * as per the ioctl. On failure, an errno is returned. 18089 */ 18090 static int 18091 ip_ioctl(ldi_handle_t lh, int cmd, void *buf, uint_t bufsize, cred_t *cr) 18092 { 18093 int rval; 18094 struct strioctl iocb; 18095 18096 iocb.ic_cmd = cmd; 18097 iocb.ic_timout = 15; 18098 iocb.ic_len = bufsize; 18099 iocb.ic_dp = buf; 18100 18101 return (ldi_ioctl(lh, I_STR, (intptr_t)&iocb, FKIOCTL, cr, &rval)); 18102 } 18103 18104 /* 18105 * Issue an SIOCGLIFCONF for address family `af' and store the result into a 18106 * dynamically-allocated `lifcp' that will be `bufsizep' bytes on success. 18107 */ 18108 static int 18109 ip_lifconf_ioctl(ldi_handle_t lh, int af, struct lifconf *lifcp, 18110 uint_t *bufsizep, cred_t *cr) 18111 { 18112 int err; 18113 struct lifnum lifn; 18114 18115 bzero(&lifn, sizeof (lifn)); 18116 lifn.lifn_family = af; 18117 lifn.lifn_flags = LIFC_UNDER_IPMP; 18118 18119 if ((err = ip_ioctl(lh, SIOCGLIFNUM, &lifn, sizeof (lifn), cr)) != 0) 18120 return (err); 18121 18122 /* 18123 * Pad the interface count to account for additional interfaces that 18124 * may have been configured between the SIOCGLIFNUM and SIOCGLIFCONF. 18125 */ 18126 lifn.lifn_count += 4; 18127 bzero(lifcp, sizeof (*lifcp)); 18128 lifcp->lifc_flags = LIFC_UNDER_IPMP; 18129 lifcp->lifc_family = af; 18130 lifcp->lifc_len = *bufsizep = lifn.lifn_count * sizeof (struct lifreq); 18131 lifcp->lifc_buf = kmem_zalloc(*bufsizep, KM_SLEEP); 18132 18133 err = ip_ioctl(lh, SIOCGLIFCONF, lifcp, sizeof (*lifcp), cr); 18134 if (err != 0) { 18135 kmem_free(lifcp->lifc_buf, *bufsizep); 18136 return (err); 18137 } 18138 18139 return (0); 18140 } 18141 18142 /* 18143 * Helper for ip_interface_cleanup() that removes the loopback interface. 18144 */ 18145 static void 18146 ip_loopback_removeif(ldi_handle_t lh, boolean_t isv6, cred_t *cr) 18147 { 18148 int err; 18149 struct lifreq lifr; 18150 18151 bzero(&lifr, sizeof (lifr)); 18152 (void) strcpy(lifr.lifr_name, ipif_loopback_name); 18153 18154 /* 18155 * Attempt to remove the interface. It may legitimately not exist 18156 * (e.g. the zone administrator unplumbed it), so ignore ENXIO. 18157 */ 18158 err = ip_ioctl(lh, SIOCLIFREMOVEIF, &lifr, sizeof (lifr), cr); 18159 if (err != 0 && err != ENXIO) { 18160 ip0dbg(("ip_loopback_removeif: IP%s SIOCLIFREMOVEIF failed: " 18161 "error %d\n", isv6 ? "v6" : "v4", err)); 18162 } 18163 } 18164 18165 /* 18166 * Helper for ip_interface_cleanup() that ensures no IP interfaces are in IPMP 18167 * groups and that IPMP data addresses are down. These conditions must be met 18168 * so that IPMP interfaces can be I_PUNLINK'd, as per ip_sioctl_plink_ipmp(). 18169 */ 18170 static void 18171 ip_ipmp_cleanup(ldi_handle_t lh, boolean_t isv6, cred_t *cr) 18172 { 18173 int af = isv6 ? AF_INET6 : AF_INET; 18174 int i, nifs; 18175 int err; 18176 uint_t bufsize; 18177 uint_t lifrsize = sizeof (struct lifreq); 18178 struct lifconf lifc; 18179 struct lifreq *lifrp; 18180 18181 if ((err = ip_lifconf_ioctl(lh, af, &lifc, &bufsize, cr)) != 0) { 18182 cmn_err(CE_WARN, "ip_ipmp_cleanup: cannot get interface list " 18183 "(error %d); any IPMP interfaces cannot be shutdown", err); 18184 return; 18185 } 18186 18187 nifs = lifc.lifc_len / lifrsize; 18188 for (lifrp = lifc.lifc_req, i = 0; i < nifs; i++, lifrp++) { 18189 err = ip_ioctl(lh, SIOCGLIFFLAGS, lifrp, lifrsize, cr); 18190 if (err != 0) { 18191 cmn_err(CE_WARN, "ip_ipmp_cleanup: %s: cannot get " 18192 "flags: error %d", lifrp->lifr_name, err); 18193 continue; 18194 } 18195 18196 if (lifrp->lifr_flags & IFF_IPMP) { 18197 if ((lifrp->lifr_flags & (IFF_UP|IFF_DUPLICATE)) == 0) 18198 continue; 18199 18200 lifrp->lifr_flags &= ~IFF_UP; 18201 err = ip_ioctl(lh, SIOCSLIFFLAGS, lifrp, lifrsize, cr); 18202 if (err != 0) { 18203 cmn_err(CE_WARN, "ip_ipmp_cleanup: %s: cannot " 18204 "bring down (error %d); IPMP interface may " 18205 "not be shutdown", lifrp->lifr_name, err); 18206 } 18207 18208 /* 18209 * Check if IFF_DUPLICATE is still set -- and if so, 18210 * reset the address to clear it. 18211 */ 18212 err = ip_ioctl(lh, SIOCGLIFFLAGS, lifrp, lifrsize, cr); 18213 if (err != 0 || !(lifrp->lifr_flags & IFF_DUPLICATE)) 18214 continue; 18215 18216 err = ip_ioctl(lh, SIOCGLIFADDR, lifrp, lifrsize, cr); 18217 if (err != 0 || (err = ip_ioctl(lh, SIOCGLIFADDR, 18218 lifrp, lifrsize, cr)) != 0) { 18219 cmn_err(CE_WARN, "ip_ipmp_cleanup: %s: cannot " 18220 "reset DAD (error %d); IPMP interface may " 18221 "not be shutdown", lifrp->lifr_name, err); 18222 } 18223 continue; 18224 } 18225 18226 if (strchr(lifrp->lifr_name, IPIF_SEPARATOR_CHAR) == 0) { 18227 lifrp->lifr_groupname[0] = '\0'; 18228 if ((err = ip_ioctl(lh, SIOCSLIFGROUPNAME, lifrp, 18229 lifrsize, cr)) != 0) { 18230 cmn_err(CE_WARN, "ip_ipmp_cleanup: %s: cannot " 18231 "leave IPMP group (error %d); associated " 18232 "IPMP interface may not be shutdown", 18233 lifrp->lifr_name, err); 18234 continue; 18235 } 18236 } 18237 } 18238 18239 kmem_free(lifc.lifc_buf, bufsize); 18240 } 18241 18242 #define UDPDEV "/devices/pseudo/udp@0:udp" 18243 #define UDP6DEV "/devices/pseudo/udp6@0:udp6" 18244 18245 /* 18246 * Remove the loopback interfaces and prep the IPMP interfaces to be torn down. 18247 * Non-loopback interfaces are either I_LINK'd or I_PLINK'd; the former go away 18248 * when the user-level processes in the zone are killed and the latter are 18249 * cleaned up by str_stack_shutdown(). 18250 */ 18251 void 18252 ip_interface_cleanup(ip_stack_t *ipst) 18253 { 18254 ldi_handle_t lh; 18255 ldi_ident_t li; 18256 cred_t *cr; 18257 int err; 18258 int i; 18259 char *devs[] = { UDP6DEV, UDPDEV }; 18260 netstackid_t stackid = ipst->ips_netstack->netstack_stackid; 18261 18262 if ((err = ldi_ident_from_major(ddi_name_to_major("ip"), &li)) != 0) { 18263 cmn_err(CE_WARN, "ip_interface_cleanup: cannot get ldi ident:" 18264 " error %d", err); 18265 return; 18266 } 18267 18268 cr = zone_get_kcred(netstackid_to_zoneid(stackid)); 18269 ASSERT(cr != NULL); 18270 18271 /* 18272 * NOTE: loop executes exactly twice and is hardcoded to know that the 18273 * first iteration is IPv6. (Unrolling yields repetitious code, hence 18274 * the loop.) 18275 */ 18276 for (i = 0; i < 2; i++) { 18277 err = ldi_open_by_name(devs[i], FREAD|FWRITE, cr, &lh, li); 18278 if (err != 0) { 18279 cmn_err(CE_WARN, "ip_interface_cleanup: cannot open %s:" 18280 " error %d", devs[i], err); 18281 continue; 18282 } 18283 18284 ip_loopback_removeif(lh, i == 0, cr); 18285 ip_ipmp_cleanup(lh, i == 0, cr); 18286 18287 (void) ldi_close(lh, FREAD|FWRITE, cr); 18288 } 18289 18290 ldi_ident_release(li); 18291 crfree(cr); 18292 } 18293 18294 /* 18295 * This needs to be in-sync with nic_event_t definition 18296 */ 18297 static const char * 18298 ill_hook_event2str(nic_event_t event) 18299 { 18300 switch (event) { 18301 case NE_PLUMB: 18302 return ("PLUMB"); 18303 case NE_UNPLUMB: 18304 return ("UNPLUMB"); 18305 case NE_UP: 18306 return ("UP"); 18307 case NE_DOWN: 18308 return ("DOWN"); 18309 case NE_ADDRESS_CHANGE: 18310 return ("ADDRESS_CHANGE"); 18311 case NE_LIF_UP: 18312 return ("LIF_UP"); 18313 case NE_LIF_DOWN: 18314 return ("LIF_DOWN"); 18315 case NE_IFINDEX_CHANGE: 18316 return ("IFINDEX_CHANGE"); 18317 default: 18318 return ("UNKNOWN"); 18319 } 18320 } 18321 18322 void 18323 ill_nic_event_dispatch(ill_t *ill, lif_if_t lif, nic_event_t event, 18324 nic_event_data_t data, size_t datalen) 18325 { 18326 ip_stack_t *ipst = ill->ill_ipst; 18327 hook_nic_event_int_t *info; 18328 const char *str = NULL; 18329 18330 /* create a new nic event info */ 18331 if ((info = kmem_alloc(sizeof (*info), KM_NOSLEEP)) == NULL) 18332 goto fail; 18333 18334 info->hnei_event.hne_nic = ill->ill_phyint->phyint_ifindex; 18335 info->hnei_event.hne_lif = lif; 18336 info->hnei_event.hne_event = event; 18337 info->hnei_event.hne_protocol = ill->ill_isv6 ? 18338 ipst->ips_ipv6_net_data : ipst->ips_ipv4_net_data; 18339 info->hnei_event.hne_data = NULL; 18340 info->hnei_event.hne_datalen = 0; 18341 info->hnei_stackid = ipst->ips_netstack->netstack_stackid; 18342 18343 if (data != NULL && datalen != 0) { 18344 info->hnei_event.hne_data = kmem_alloc(datalen, KM_NOSLEEP); 18345 if (info->hnei_event.hne_data == NULL) 18346 goto fail; 18347 bcopy(data, info->hnei_event.hne_data, datalen); 18348 info->hnei_event.hne_datalen = datalen; 18349 } 18350 18351 if (ddi_taskq_dispatch(eventq_queue_nic, ip_ne_queue_func, info, 18352 DDI_NOSLEEP) == DDI_SUCCESS) 18353 return; 18354 18355 fail: 18356 if (info != NULL) { 18357 if (info->hnei_event.hne_data != NULL) { 18358 kmem_free(info->hnei_event.hne_data, 18359 info->hnei_event.hne_datalen); 18360 } 18361 kmem_free(info, sizeof (hook_nic_event_t)); 18362 } 18363 str = ill_hook_event2str(event); 18364 ip2dbg(("ill_nic_event_dispatch: could not dispatch %s nic event " 18365 "information for %s (ENOMEM)\n", str, ill->ill_name)); 18366 } 18367 18368 static int 18369 ipif_arp_up_done_tail(ipif_t *ipif, enum ip_resolver_action res_act) 18370 { 18371 int err = 0; 18372 const in_addr_t *addr = NULL; 18373 nce_t *nce = NULL; 18374 ill_t *ill = ipif->ipif_ill; 18375 ill_t *bound_ill; 18376 boolean_t added_ipif = B_FALSE; 18377 uint16_t state; 18378 uint16_t flags; 18379 18380 DTRACE_PROBE3(ipif__downup, char *, "ipif_arp_up_done_tail", 18381 ill_t *, ill, ipif_t *, ipif); 18382 if (ipif->ipif_lcl_addr != INADDR_ANY) { 18383 addr = &ipif->ipif_lcl_addr; 18384 } 18385 18386 if ((ipif->ipif_flags & IPIF_UNNUMBERED) || addr == NULL) { 18387 if (res_act != Res_act_initial) 18388 return (EINVAL); 18389 } 18390 18391 if (addr != NULL) { 18392 ipmp_illgrp_t *illg = ill->ill_grp; 18393 18394 /* add unicast nce for the local addr */ 18395 18396 if (IS_IPMP(ill)) { 18397 /* 18398 * If we're here via ipif_up(), then the ipif 18399 * won't be bound yet -- add it to the group, 18400 * which will bind it if possible. (We would 18401 * add it in ipif_up(), but deleting on failure 18402 * there is gruesome.) If we're here via 18403 * ipmp_ill_bind_ipif(), then the ipif has 18404 * already been added to the group and we 18405 * just need to use the binding. 18406 */ 18407 if ((bound_ill = ipmp_ipif_bound_ill(ipif)) == NULL) { 18408 bound_ill = ipmp_illgrp_add_ipif(illg, ipif); 18409 if (bound_ill == NULL) { 18410 /* 18411 * We couldn't bind the ipif to an ill 18412 * yet, so we have nothing to publish. 18413 * Mark the address as ready and return. 18414 */ 18415 ipif->ipif_addr_ready = 1; 18416 return (0); 18417 } 18418 added_ipif = B_TRUE; 18419 } 18420 } else { 18421 bound_ill = ill; 18422 } 18423 18424 flags = (NCE_F_MYADDR | NCE_F_PUBLISH | NCE_F_AUTHORITY | 18425 NCE_F_NONUD); 18426 /* 18427 * If this is an initial bring-up (or the ipif was never 18428 * completely brought up), do DAD. Otherwise, we're here 18429 * because IPMP has rebound an address to this ill: send 18430 * unsolicited advertisements (ARP announcements) to 18431 * inform others. 18432 */ 18433 if (res_act == Res_act_initial || !ipif->ipif_addr_ready) { 18434 state = ND_UNCHANGED; /* compute in nce_add_common() */ 18435 } else { 18436 state = ND_REACHABLE; 18437 flags |= NCE_F_UNSOL_ADV; 18438 } 18439 18440 retry: 18441 err = nce_lookup_then_add_v4(ill, 18442 bound_ill->ill_phys_addr, bound_ill->ill_phys_addr_length, 18443 addr, flags, state, &nce); 18444 18445 /* 18446 * note that we may encounter EEXIST if we are moving 18447 * the nce as a result of a rebind operation. 18448 */ 18449 switch (err) { 18450 case 0: 18451 ipif->ipif_added_nce = 1; 18452 nce->nce_ipif_cnt++; 18453 break; 18454 case EEXIST: 18455 ip1dbg(("ipif_arp_up: NCE already exists for %s\n", 18456 ill->ill_name)); 18457 if (!NCE_MYADDR(nce->nce_common)) { 18458 /* 18459 * A leftover nce from before this address 18460 * existed 18461 */ 18462 ncec_delete(nce->nce_common); 18463 nce_refrele(nce); 18464 nce = NULL; 18465 goto retry; 18466 } 18467 if ((ipif->ipif_flags & IPIF_POINTOPOINT) == 0) { 18468 nce_refrele(nce); 18469 nce = NULL; 18470 ip1dbg(("ipif_arp_up: NCE already exists " 18471 "for %s:%u\n", ill->ill_name, 18472 ipif->ipif_id)); 18473 goto arp_up_done; 18474 } 18475 /* 18476 * Duplicate local addresses are permissible for 18477 * IPIF_POINTOPOINT interfaces which will get marked 18478 * IPIF_UNNUMBERED later in 18479 * ip_addr_availability_check(). 18480 * 18481 * The nce_ipif_cnt field tracks the number of 18482 * ipifs that have nce_addr as their local address. 18483 */ 18484 ipif->ipif_addr_ready = 1; 18485 ipif->ipif_added_nce = 1; 18486 nce->nce_ipif_cnt++; 18487 err = 0; 18488 break; 18489 default: 18490 ASSERT(nce == NULL); 18491 goto arp_up_done; 18492 } 18493 if (arp_no_defense) { 18494 if ((ipif->ipif_flags & IPIF_UP) && 18495 !ipif->ipif_addr_ready) 18496 ipif_up_notify(ipif); 18497 ipif->ipif_addr_ready = 1; 18498 } 18499 } else { 18500 /* zero address. nothing to publish */ 18501 ipif->ipif_addr_ready = 1; 18502 } 18503 if (nce != NULL) 18504 nce_refrele(nce); 18505 arp_up_done: 18506 if (added_ipif && err != 0) 18507 ipmp_illgrp_del_ipif(ill->ill_grp, ipif); 18508 return (err); 18509 } 18510 18511 int 18512 ipif_arp_up(ipif_t *ipif, enum ip_resolver_action res_act, boolean_t was_dup) 18513 { 18514 int err = 0; 18515 ill_t *ill = ipif->ipif_ill; 18516 boolean_t first_interface, wait_for_dlpi = B_FALSE; 18517 18518 DTRACE_PROBE3(ipif__downup, char *, "ipif_arp_up", 18519 ill_t *, ill, ipif_t *, ipif); 18520 18521 /* 18522 * need to bring up ARP or setup mcast mapping only 18523 * when the first interface is coming UP. 18524 */ 18525 first_interface = (ill->ill_ipif_up_count == 0 && 18526 ill->ill_ipif_dup_count == 0 && !was_dup); 18527 18528 if (res_act == Res_act_initial && first_interface) { 18529 /* 18530 * Send ATTACH + BIND 18531 */ 18532 err = arp_ll_up(ill); 18533 if (err != EINPROGRESS && err != 0) 18534 return (err); 18535 18536 /* 18537 * Add NCE for local address. Start DAD. 18538 * we'll wait to hear that DAD has finished 18539 * before using the interface. 18540 */ 18541 if (err == EINPROGRESS) 18542 wait_for_dlpi = B_TRUE; 18543 } 18544 18545 if (!wait_for_dlpi) 18546 (void) ipif_arp_up_done_tail(ipif, res_act); 18547 18548 return (!wait_for_dlpi ? 0 : EINPROGRESS); 18549 } 18550 18551 /* 18552 * Finish processing of "arp_up" after all the DLPI message 18553 * exchanges have completed between arp and the driver. 18554 */ 18555 void 18556 arp_bringup_done(ill_t *ill, int err) 18557 { 18558 mblk_t *mp1; 18559 ipif_t *ipif; 18560 conn_t *connp = NULL; 18561 ipsq_t *ipsq; 18562 queue_t *q; 18563 18564 ip1dbg(("arp_bringup_done(%s)\n", ill->ill_name)); 18565 18566 ASSERT(IAM_WRITER_ILL(ill)); 18567 18568 ipsq = ill->ill_phyint->phyint_ipsq; 18569 ipif = ipsq->ipsq_xop->ipx_pending_ipif; 18570 mp1 = ipsq_pending_mp_get(ipsq, &connp); 18571 ASSERT(!((mp1 != NULL) ^ (ipif != NULL))); 18572 if (mp1 == NULL) /* bringup was aborted by the user */ 18573 return; 18574 18575 /* 18576 * If an IOCTL is waiting on this (ipsq_current_ioctl != 0), then we 18577 * must have an associated conn_t. Otherwise, we're bringing this 18578 * interface back up as part of handling an asynchronous event (e.g., 18579 * physical address change). 18580 */ 18581 if (ipsq->ipsq_xop->ipx_current_ioctl != 0) { 18582 ASSERT(connp != NULL); 18583 q = CONNP_TO_WQ(connp); 18584 } else { 18585 ASSERT(connp == NULL); 18586 q = ill->ill_rq; 18587 } 18588 if (err == 0) { 18589 if (ipif->ipif_isv6) { 18590 if ((err = ipif_up_done_v6(ipif)) != 0) 18591 ip0dbg(("arp_bringup_done: init failed\n")); 18592 } else { 18593 err = ipif_arp_up_done_tail(ipif, Res_act_initial); 18594 if (err != 0 || 18595 (err = ipif_up_done(ipif)) != 0) { 18596 ip0dbg(("arp_bringup_done: " 18597 "init failed err %x\n", err)); 18598 (void) ipif_arp_down(ipif); 18599 } 18600 18601 } 18602 } else { 18603 ip0dbg(("arp_bringup_done: DL_BIND_REQ failed\n")); 18604 } 18605 18606 if ((err == 0) && (ill->ill_up_ipifs)) { 18607 err = ill_up_ipifs(ill, q, mp1); 18608 if (err == EINPROGRESS) 18609 return; 18610 } 18611 18612 /* 18613 * If we have a moved ipif to bring up, and everything has succeeded 18614 * to this point, bring it up on the IPMP ill. Otherwise, leave it 18615 * down -- the admin can try to bring it up by hand if need be. 18616 */ 18617 if (ill->ill_move_ipif != NULL) { 18618 ipif = ill->ill_move_ipif; 18619 ip1dbg(("bringing up ipif %p on ill %s\n", (void *)ipif, 18620 ipif->ipif_ill->ill_name)); 18621 ill->ill_move_ipif = NULL; 18622 if (err == 0) { 18623 err = ipif_up(ipif, q, mp1); 18624 if (err == EINPROGRESS) 18625 return; 18626 } 18627 } 18628 18629 /* 18630 * The operation must complete without EINPROGRESS since 18631 * ipsq_pending_mp_get() has removed the mblk from ipsq_pending_mp. 18632 * Otherwise, the operation will be stuck forever in the ipsq. 18633 */ 18634 ASSERT(err != EINPROGRESS); 18635 if (ipsq->ipsq_xop->ipx_current_ioctl != 0) { 18636 DTRACE_PROBE4(ipif__ioctl, char *, "arp_bringup_done finish", 18637 int, ipsq->ipsq_xop->ipx_current_ioctl, 18638 ill_t *, ill, ipif_t *, ipif); 18639 ip_ioctl_finish(q, mp1, err, NO_COPYOUT, ipsq); 18640 } else { 18641 ipsq_current_finish(ipsq); 18642 } 18643 } 18644 18645 /* 18646 * Finish processing of arp replumb after all the DLPI message 18647 * exchanges have completed between arp and the driver. 18648 */ 18649 void 18650 arp_replumb_done(ill_t *ill, int err) 18651 { 18652 mblk_t *mp1; 18653 ipif_t *ipif; 18654 conn_t *connp = NULL; 18655 ipsq_t *ipsq; 18656 queue_t *q; 18657 18658 ASSERT(IAM_WRITER_ILL(ill)); 18659 18660 ipsq = ill->ill_phyint->phyint_ipsq; 18661 ipif = ipsq->ipsq_xop->ipx_pending_ipif; 18662 mp1 = ipsq_pending_mp_get(ipsq, &connp); 18663 ASSERT(!((mp1 != NULL) ^ (ipif != NULL))); 18664 if (mp1 == NULL) { 18665 ip0dbg(("arp_replumb_done: bringup aborted ioctl %x\n", 18666 ipsq->ipsq_xop->ipx_current_ioctl)); 18667 /* bringup was aborted by the user */ 18668 return; 18669 } 18670 /* 18671 * If an IOCTL is waiting on this (ipsq_current_ioctl != 0), then we 18672 * must have an associated conn_t. Otherwise, we're bringing this 18673 * interface back up as part of handling an asynchronous event (e.g., 18674 * physical address change). 18675 */ 18676 if (ipsq->ipsq_xop->ipx_current_ioctl != 0) { 18677 ASSERT(connp != NULL); 18678 q = CONNP_TO_WQ(connp); 18679 } else { 18680 ASSERT(connp == NULL); 18681 q = ill->ill_rq; 18682 } 18683 if ((err == 0) && (ill->ill_up_ipifs)) { 18684 err = ill_up_ipifs(ill, q, mp1); 18685 if (err == EINPROGRESS) 18686 return; 18687 } 18688 /* 18689 * The operation must complete without EINPROGRESS since 18690 * ipsq_pending_mp_get() has removed the mblk from ipsq_pending_mp. 18691 * Otherwise, the operation will be stuck forever in the ipsq. 18692 */ 18693 ASSERT(err != EINPROGRESS); 18694 if (ipsq->ipsq_xop->ipx_current_ioctl != 0) { 18695 DTRACE_PROBE4(ipif__ioctl, char *, 18696 "arp_replumb_done finish", 18697 int, ipsq->ipsq_xop->ipx_current_ioctl, 18698 ill_t *, ill, ipif_t *, ipif); 18699 ip_ioctl_finish(q, mp1, err, NO_COPYOUT, ipsq); 18700 } else { 18701 ipsq_current_finish(ipsq); 18702 } 18703 } 18704 18705 void 18706 ipif_up_notify(ipif_t *ipif) 18707 { 18708 ip_rts_ifmsg(ipif, RTSQ_DEFAULT); 18709 ip_rts_newaddrmsg(RTM_ADD, 0, ipif, RTSQ_DEFAULT); 18710 sctp_update_ipif(ipif, SCTP_IPIF_UP); 18711 ill_nic_event_dispatch(ipif->ipif_ill, MAP_IPIF_ID(ipif->ipif_id), 18712 NE_LIF_UP, NULL, 0); 18713 } 18714 18715 /* 18716 * ILB ioctl uses cv_wait (such as deleting a rule or adding a server) and 18717 * this assumes the context is cv_wait'able. Hence it shouldnt' be used on 18718 * TPI end points with STREAMS modules pushed above. This is assured by not 18719 * having the IPI_MODOK flag for the ioctl. And IP ensures the ILB ioctl 18720 * never ends up on an ipsq, otherwise we may end up processing the ioctl 18721 * while unwinding from the ispq and that could be a thread from the bottom. 18722 */ 18723 /* ARGSUSED */ 18724 int 18725 ip_sioctl_ilb_cmd(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 18726 ip_ioctl_cmd_t *ipip, void *arg) 18727 { 18728 mblk_t *cmd_mp = mp->b_cont->b_cont; 18729 ilb_cmd_t command = *((ilb_cmd_t *)cmd_mp->b_rptr); 18730 int ret = 0; 18731 int i; 18732 size_t size; 18733 ip_stack_t *ipst; 18734 zoneid_t zoneid; 18735 ilb_stack_t *ilbs; 18736 18737 ipst = CONNQ_TO_IPST(q); 18738 ilbs = ipst->ips_netstack->netstack_ilb; 18739 zoneid = Q_TO_CONN(q)->conn_zoneid; 18740 18741 switch (command) { 18742 case ILB_CREATE_RULE: { 18743 ilb_rule_cmd_t *cmd = (ilb_rule_cmd_t *)cmd_mp->b_rptr; 18744 18745 if (MBLKL(cmd_mp) != sizeof (ilb_rule_cmd_t)) { 18746 ret = EINVAL; 18747 break; 18748 } 18749 18750 ret = ilb_rule_add(ilbs, zoneid, cmd); 18751 break; 18752 } 18753 case ILB_DESTROY_RULE: 18754 case ILB_ENABLE_RULE: 18755 case ILB_DISABLE_RULE: { 18756 ilb_name_cmd_t *cmd = (ilb_name_cmd_t *)cmd_mp->b_rptr; 18757 18758 if (MBLKL(cmd_mp) != sizeof (ilb_name_cmd_t)) { 18759 ret = EINVAL; 18760 break; 18761 } 18762 18763 if (cmd->flags & ILB_RULE_ALLRULES) { 18764 if (command == ILB_DESTROY_RULE) { 18765 ilb_rule_del_all(ilbs, zoneid); 18766 break; 18767 } else if (command == ILB_ENABLE_RULE) { 18768 ilb_rule_enable_all(ilbs, zoneid); 18769 break; 18770 } else if (command == ILB_DISABLE_RULE) { 18771 ilb_rule_disable_all(ilbs, zoneid); 18772 break; 18773 } 18774 } else { 18775 if (command == ILB_DESTROY_RULE) { 18776 ret = ilb_rule_del(ilbs, zoneid, cmd->name); 18777 } else if (command == ILB_ENABLE_RULE) { 18778 ret = ilb_rule_enable(ilbs, zoneid, cmd->name, 18779 NULL); 18780 } else if (command == ILB_DISABLE_RULE) { 18781 ret = ilb_rule_disable(ilbs, zoneid, cmd->name, 18782 NULL); 18783 } 18784 } 18785 break; 18786 } 18787 case ILB_NUM_RULES: { 18788 ilb_num_rules_cmd_t *cmd; 18789 18790 if (MBLKL(cmd_mp) != sizeof (ilb_num_rules_cmd_t)) { 18791 ret = EINVAL; 18792 break; 18793 } 18794 cmd = (ilb_num_rules_cmd_t *)cmd_mp->b_rptr; 18795 ilb_get_num_rules(ilbs, zoneid, &(cmd->num)); 18796 break; 18797 } 18798 case ILB_RULE_NAMES: { 18799 ilb_rule_names_cmd_t *cmd; 18800 18801 cmd = (ilb_rule_names_cmd_t *)cmd_mp->b_rptr; 18802 if (MBLKL(cmd_mp) < sizeof (ilb_rule_names_cmd_t) || 18803 cmd->num_names == 0) { 18804 ret = EINVAL; 18805 break; 18806 } 18807 size = cmd->num_names * ILB_RULE_NAMESZ; 18808 if (cmd_mp->b_rptr + offsetof(ilb_rule_names_cmd_t, buf) + 18809 size != cmd_mp->b_wptr) { 18810 ret = EINVAL; 18811 break; 18812 } 18813 ilb_get_rulenames(ilbs, zoneid, &cmd->num_names, cmd->buf); 18814 break; 18815 } 18816 case ILB_NUM_SERVERS: { 18817 ilb_num_servers_cmd_t *cmd; 18818 18819 if (MBLKL(cmd_mp) != sizeof (ilb_num_servers_cmd_t)) { 18820 ret = EINVAL; 18821 break; 18822 } 18823 cmd = (ilb_num_servers_cmd_t *)cmd_mp->b_rptr; 18824 ret = ilb_get_num_servers(ilbs, zoneid, cmd->name, 18825 &(cmd->num)); 18826 break; 18827 } 18828 case ILB_LIST_RULE: { 18829 ilb_rule_cmd_t *cmd = (ilb_rule_cmd_t *)cmd_mp->b_rptr; 18830 18831 if (MBLKL(cmd_mp) != sizeof (ilb_rule_cmd_t)) { 18832 ret = EINVAL; 18833 break; 18834 } 18835 ret = ilb_rule_list(ilbs, zoneid, cmd); 18836 break; 18837 } 18838 case ILB_LIST_SERVERS: { 18839 ilb_servers_info_cmd_t *cmd; 18840 18841 cmd = (ilb_servers_info_cmd_t *)cmd_mp->b_rptr; 18842 if (MBLKL(cmd_mp) < sizeof (ilb_servers_info_cmd_t) || 18843 cmd->num_servers == 0) { 18844 ret = EINVAL; 18845 break; 18846 } 18847 size = cmd->num_servers * sizeof (ilb_server_info_t); 18848 if (cmd_mp->b_rptr + offsetof(ilb_servers_info_cmd_t, servers) + 18849 size != cmd_mp->b_wptr) { 18850 ret = EINVAL; 18851 break; 18852 } 18853 18854 ret = ilb_get_servers(ilbs, zoneid, cmd->name, cmd->servers, 18855 &cmd->num_servers); 18856 break; 18857 } 18858 case ILB_ADD_SERVERS: { 18859 ilb_servers_info_cmd_t *cmd; 18860 ilb_rule_t *rule; 18861 18862 cmd = (ilb_servers_info_cmd_t *)cmd_mp->b_rptr; 18863 if (MBLKL(cmd_mp) < sizeof (ilb_servers_info_cmd_t)) { 18864 ret = EINVAL; 18865 break; 18866 } 18867 size = cmd->num_servers * sizeof (ilb_server_info_t); 18868 if (cmd_mp->b_rptr + offsetof(ilb_servers_info_cmd_t, servers) + 18869 size != cmd_mp->b_wptr) { 18870 ret = EINVAL; 18871 break; 18872 } 18873 rule = ilb_find_rule(ilbs, zoneid, cmd->name, &ret); 18874 if (rule == NULL) { 18875 ASSERT(ret != 0); 18876 break; 18877 } 18878 for (i = 0; i < cmd->num_servers; i++) { 18879 ilb_server_info_t *s; 18880 18881 s = &cmd->servers[i]; 18882 s->err = ilb_server_add(ilbs, rule, s); 18883 } 18884 ILB_RULE_REFRELE(rule); 18885 break; 18886 } 18887 case ILB_DEL_SERVERS: 18888 case ILB_ENABLE_SERVERS: 18889 case ILB_DISABLE_SERVERS: { 18890 ilb_servers_cmd_t *cmd; 18891 ilb_rule_t *rule; 18892 int (*f)(); 18893 18894 cmd = (ilb_servers_cmd_t *)cmd_mp->b_rptr; 18895 if (MBLKL(cmd_mp) < sizeof (ilb_servers_cmd_t)) { 18896 ret = EINVAL; 18897 break; 18898 } 18899 size = cmd->num_servers * sizeof (ilb_server_arg_t); 18900 if (cmd_mp->b_rptr + offsetof(ilb_servers_cmd_t, servers) + 18901 size != cmd_mp->b_wptr) { 18902 ret = EINVAL; 18903 break; 18904 } 18905 18906 if (command == ILB_DEL_SERVERS) 18907 f = ilb_server_del; 18908 else if (command == ILB_ENABLE_SERVERS) 18909 f = ilb_server_enable; 18910 else if (command == ILB_DISABLE_SERVERS) 18911 f = ilb_server_disable; 18912 18913 rule = ilb_find_rule(ilbs, zoneid, cmd->name, &ret); 18914 if (rule == NULL) { 18915 ASSERT(ret != 0); 18916 break; 18917 } 18918 18919 for (i = 0; i < cmd->num_servers; i++) { 18920 ilb_server_arg_t *s; 18921 18922 s = &cmd->servers[i]; 18923 s->err = f(ilbs, zoneid, NULL, rule, &s->addr); 18924 } 18925 ILB_RULE_REFRELE(rule); 18926 break; 18927 } 18928 case ILB_LIST_NAT_TABLE: { 18929 ilb_list_nat_cmd_t *cmd; 18930 18931 cmd = (ilb_list_nat_cmd_t *)cmd_mp->b_rptr; 18932 if (MBLKL(cmd_mp) < sizeof (ilb_list_nat_cmd_t)) { 18933 ret = EINVAL; 18934 break; 18935 } 18936 size = cmd->num_nat * sizeof (ilb_nat_entry_t); 18937 if (cmd_mp->b_rptr + offsetof(ilb_list_nat_cmd_t, entries) + 18938 size != cmd_mp->b_wptr) { 18939 ret = EINVAL; 18940 break; 18941 } 18942 18943 ret = ilb_list_nat(ilbs, zoneid, cmd->entries, &cmd->num_nat, 18944 &cmd->flags); 18945 break; 18946 } 18947 case ILB_LIST_STICKY_TABLE: { 18948 ilb_list_sticky_cmd_t *cmd; 18949 18950 cmd = (ilb_list_sticky_cmd_t *)cmd_mp->b_rptr; 18951 if (MBLKL(cmd_mp) < sizeof (ilb_list_sticky_cmd_t)) { 18952 ret = EINVAL; 18953 break; 18954 } 18955 size = cmd->num_sticky * sizeof (ilb_sticky_entry_t); 18956 if (cmd_mp->b_rptr + offsetof(ilb_list_sticky_cmd_t, entries) + 18957 size != cmd_mp->b_wptr) { 18958 ret = EINVAL; 18959 break; 18960 } 18961 18962 ret = ilb_list_sticky(ilbs, zoneid, cmd->entries, 18963 &cmd->num_sticky, &cmd->flags); 18964 break; 18965 } 18966 default: 18967 ret = EINVAL; 18968 break; 18969 } 18970 done: 18971 return (ret); 18972 } 18973 18974 /* Remove all cache entries for this logical interface */ 18975 void 18976 ipif_nce_down(ipif_t *ipif) 18977 { 18978 ill_t *ill = ipif->ipif_ill; 18979 nce_t *nce; 18980 18981 DTRACE_PROBE3(ipif__downup, char *, "ipif_nce_down", 18982 ill_t *, ill, ipif_t *, ipif); 18983 if (ipif->ipif_added_nce) { 18984 if (ipif->ipif_isv6) 18985 nce = nce_lookup_v6(ill, &ipif->ipif_v6lcl_addr); 18986 else 18987 nce = nce_lookup_v4(ill, &ipif->ipif_lcl_addr); 18988 if (nce != NULL) { 18989 if (--nce->nce_ipif_cnt == 0) 18990 ncec_delete(nce->nce_common); 18991 ipif->ipif_added_nce = 0; 18992 nce_refrele(nce); 18993 } else { 18994 /* 18995 * nce may already be NULL because it was already 18996 * flushed, e.g., due to a call to nce_flush 18997 */ 18998 ipif->ipif_added_nce = 0; 18999 } 19000 } 19001 /* 19002 * Make IPMP aware of the deleted data address. 19003 */ 19004 if (IS_IPMP(ill)) 19005 ipmp_illgrp_del_ipif(ill->ill_grp, ipif); 19006 19007 /* 19008 * Remove all other nces dependent on this ill when the last ipif 19009 * is going away. 19010 */ 19011 if (ill->ill_ipif_up_count == 0) { 19012 ncec_walk(ill, (pfi_t)ncec_delete_per_ill, 19013 (uchar_t *)ill, ill->ill_ipst); 19014 if (IS_UNDER_IPMP(ill)) 19015 nce_flush(ill, B_TRUE); 19016 } 19017 } 19018 19019 /* 19020 * find the first interface that uses usill for its source address. 19021 */ 19022 ill_t * 19023 ill_lookup_usesrc(ill_t *usill) 19024 { 19025 ip_stack_t *ipst = usill->ill_ipst; 19026 ill_t *ill; 19027 19028 ASSERT(usill != NULL); 19029 19030 /* ill_g_usesrc_lock protects ill_usesrc_grp_next */ 19031 rw_enter(&ipst->ips_ill_g_usesrc_lock, RW_WRITER); 19032 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 19033 for (ill = usill->ill_usesrc_grp_next; ill != NULL && ill != usill; 19034 ill = ill->ill_usesrc_grp_next) { 19035 if (!IS_UNDER_IPMP(ill) && (ill->ill_flags & ILLF_MULTICAST) && 19036 !ILL_IS_CONDEMNED(ill)) { 19037 ill_refhold(ill); 19038 break; 19039 } 19040 } 19041 rw_exit(&ipst->ips_ill_g_lock); 19042 rw_exit(&ipst->ips_ill_g_usesrc_lock); 19043 return (ill); 19044 } 19045 19046 /* 19047 * This comment applies to both ip_sioctl_get_ifhwaddr and 19048 * ip_sioctl_get_lifhwaddr as the basic function of these two functions 19049 * is the same. 19050 * 19051 * The goal here is to find an IP interface that corresponds to the name 19052 * provided by the caller in the ifreq/lifreq structure held in the mblk_t 19053 * chain and to fill out a sockaddr/sockaddr_storage structure with the 19054 * mac address. 19055 * 19056 * The SIOCGIFHWADDR/SIOCGLIFHWADDR ioctl may return an error for a number 19057 * of different reasons: 19058 * ENXIO - the device name is not known to IP. 19059 * EADDRNOTAVAIL - the device has no hardware address. This is indicated 19060 * by ill_phys_addr not pointing to an actual address. 19061 * EPFNOSUPPORT - this will indicate that a request is being made for a 19062 * mac address that will not fit in the data structure supplier (struct 19063 * sockaddr). 19064 * 19065 */ 19066 /* ARGSUSED */ 19067 int 19068 ip_sioctl_get_ifhwaddr(ipif_t *ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, 19069 ip_ioctl_cmd_t *ipip, void *if_req) 19070 { 19071 struct sockaddr *sock; 19072 struct ifreq *ifr; 19073 mblk_t *mp1; 19074 ill_t *ill; 19075 19076 ASSERT(ipif != NULL); 19077 ill = ipif->ipif_ill; 19078 19079 if (ill->ill_phys_addr == NULL) { 19080 return (EADDRNOTAVAIL); 19081 } 19082 if (ill->ill_phys_addr_length > sizeof (sock->sa_data)) { 19083 return (EPFNOSUPPORT); 19084 } 19085 19086 ip1dbg(("ip_sioctl_get_hwaddr(%s)\n", ill->ill_name)); 19087 19088 /* Existence of mp1 has been checked in ip_wput_nondata */ 19089 mp1 = mp->b_cont->b_cont; 19090 ifr = (struct ifreq *)mp1->b_rptr; 19091 19092 sock = &ifr->ifr_addr; 19093 /* 19094 * The "family" field in the returned structure is set to a value 19095 * that represents the type of device to which the address belongs. 19096 * The value returned may differ to that on Linux but it will still 19097 * represent the correct symbol on Solaris. 19098 */ 19099 sock->sa_family = arp_hw_type(ill->ill_mactype); 19100 bcopy(ill->ill_phys_addr, &sock->sa_data, ill->ill_phys_addr_length); 19101 19102 return (0); 19103 } 19104 19105 /* 19106 * The expection of applications using SIOCGIFHWADDR is that data will 19107 * be returned in the sa_data field of the sockaddr structure. With 19108 * SIOCGLIFHWADDR, we're breaking new ground as there is no Linux 19109 * equivalent. In light of this, struct sockaddr_dl is used as it 19110 * offers more space for address storage in sll_data. 19111 */ 19112 /* ARGSUSED */ 19113 int 19114 ip_sioctl_get_lifhwaddr(ipif_t *ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, 19115 ip_ioctl_cmd_t *ipip, void *if_req) 19116 { 19117 struct sockaddr_dl *sock; 19118 struct lifreq *lifr; 19119 mblk_t *mp1; 19120 ill_t *ill; 19121 19122 ASSERT(ipif != NULL); 19123 ill = ipif->ipif_ill; 19124 19125 if (ill->ill_phys_addr == NULL) { 19126 return (EADDRNOTAVAIL); 19127 } 19128 if (ill->ill_phys_addr_length > sizeof (sock->sdl_data)) { 19129 return (EPFNOSUPPORT); 19130 } 19131 19132 ip1dbg(("ip_sioctl_get_lifhwaddr(%s)\n", ill->ill_name)); 19133 19134 /* Existence of mp1 has been checked in ip_wput_nondata */ 19135 mp1 = mp->b_cont->b_cont; 19136 lifr = (struct lifreq *)mp1->b_rptr; 19137 19138 /* 19139 * sockaddr_ll is used here because it is also the structure used in 19140 * responding to the same ioctl in sockpfp. The only other choice is 19141 * sockaddr_dl which contains fields that are not required here 19142 * because its purpose is different. 19143 */ 19144 lifr->lifr_type = ill->ill_type; 19145 sock = (struct sockaddr_dl *)&lifr->lifr_addr; 19146 sock->sdl_family = AF_LINK; 19147 sock->sdl_index = ill->ill_phyint->phyint_ifindex; 19148 sock->sdl_type = ill->ill_mactype; 19149 sock->sdl_nlen = 0; 19150 sock->sdl_slen = 0; 19151 sock->sdl_alen = ill->ill_phys_addr_length; 19152 bcopy(ill->ill_phys_addr, sock->sdl_data, ill->ill_phys_addr_length); 19153 19154 return (0); 19155 } 19156