1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2008 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 /* Copyright (c) 1990 Mentat Inc. */ 26 27 /* 28 * This file contains the interface control functions for IP. 29 */ 30 31 #include <sys/types.h> 32 #include <sys/stream.h> 33 #include <sys/dlpi.h> 34 #include <sys/stropts.h> 35 #include <sys/strsun.h> 36 #include <sys/sysmacros.h> 37 #include <sys/strlog.h> 38 #include <sys/ddi.h> 39 #include <sys/sunddi.h> 40 #include <sys/cmn_err.h> 41 #include <sys/kstat.h> 42 #include <sys/debug.h> 43 #include <sys/zone.h> 44 #include <sys/sunldi.h> 45 #include <sys/file.h> 46 #include <sys/bitmap.h> 47 #include <sys/cpuvar.h> 48 #include <sys/time.h> 49 #include <sys/kmem.h> 50 #include <sys/systm.h> 51 #include <sys/param.h> 52 #include <sys/socket.h> 53 #include <sys/isa_defs.h> 54 #include <net/if.h> 55 #include <net/if_arp.h> 56 #include <net/if_types.h> 57 #include <net/if_dl.h> 58 #include <net/route.h> 59 #include <sys/sockio.h> 60 #include <netinet/in.h> 61 #include <netinet/ip6.h> 62 #include <netinet/icmp6.h> 63 #include <netinet/igmp_var.h> 64 #include <sys/strsun.h> 65 #include <sys/policy.h> 66 #include <sys/ethernet.h> 67 #include <sys/callb.h> 68 69 #include <inet/common.h> /* for various inet/mi.h and inet/nd.h needs */ 70 #include <inet/mi.h> 71 #include <inet/nd.h> 72 #include <inet/arp.h> 73 #include <inet/mib2.h> 74 #include <inet/ip.h> 75 #include <inet/ip6.h> 76 #include <inet/ip6_asp.h> 77 #include <inet/tcp.h> 78 #include <inet/ip_multi.h> 79 #include <inet/ip_ire.h> 80 #include <inet/ip_ftable.h> 81 #include <inet/ip_rts.h> 82 #include <inet/ip_ndp.h> 83 #include <inet/ip_if.h> 84 #include <inet/ip_impl.h> 85 #include <inet/tun.h> 86 #include <inet/sctp_ip.h> 87 #include <inet/ip_netinfo.h> 88 #include <inet/mib2.h> 89 90 #include <net/pfkeyv2.h> 91 #include <inet/ipsec_info.h> 92 #include <inet/sadb.h> 93 #include <inet/ipsec_impl.h> 94 #include <sys/iphada.h> 95 96 97 #include <netinet/igmp.h> 98 #include <inet/ip_listutils.h> 99 #include <inet/ipclassifier.h> 100 #include <sys/mac_client.h> 101 #include <sys/dld.h> 102 103 #include <sys/systeminfo.h> 104 #include <sys/bootconf.h> 105 106 #include <sys/tsol/tndb.h> 107 #include <sys/tsol/tnet.h> 108 109 /* The character which tells where the ill_name ends */ 110 #define IPIF_SEPARATOR_CHAR ':' 111 112 /* IP ioctl function table entry */ 113 typedef struct ipft_s { 114 int ipft_cmd; 115 pfi_t ipft_pfi; 116 int ipft_min_size; 117 int ipft_flags; 118 } ipft_t; 119 #define IPFT_F_NO_REPLY 0x1 /* IP ioctl does not expect any reply */ 120 #define IPFT_F_SELF_REPLY 0x2 /* ioctl callee does the ioctl reply */ 121 122 typedef struct ip_sock_ar_s { 123 union { 124 area_t ip_sock_area; 125 ared_t ip_sock_ared; 126 areq_t ip_sock_areq; 127 } ip_sock_ar_u; 128 queue_t *ip_sock_ar_q; 129 } ip_sock_ar_t; 130 131 static int nd_ill_forward_get(queue_t *, mblk_t *, caddr_t, cred_t *); 132 static int nd_ill_forward_set(queue_t *q, mblk_t *mp, 133 char *value, caddr_t cp, cred_t *ioc_cr); 134 135 static boolean_t ill_is_quiescent(ill_t *); 136 static boolean_t ip_addr_ok_v4(ipaddr_t addr, ipaddr_t subnet_mask); 137 static ip_m_t *ip_m_lookup(t_uscalar_t mac_type); 138 static int ip_sioctl_addr_tail(ipif_t *ipif, sin_t *sin, queue_t *q, 139 mblk_t *mp, boolean_t need_up); 140 static int ip_sioctl_dstaddr_tail(ipif_t *ipif, sin_t *sin, queue_t *q, 141 mblk_t *mp, boolean_t need_up); 142 static int ip_sioctl_slifzone_tail(ipif_t *ipif, zoneid_t zoneid, 143 queue_t *q, mblk_t *mp, boolean_t need_up); 144 static int ip_sioctl_flags_tail(ipif_t *ipif, uint64_t flags, queue_t *q, 145 mblk_t *mp); 146 static int ip_sioctl_netmask_tail(ipif_t *ipif, sin_t *sin, queue_t *q, 147 mblk_t *mp); 148 static int ip_sioctl_subnet_tail(ipif_t *ipif, in6_addr_t, in6_addr_t, 149 queue_t *q, mblk_t *mp, boolean_t need_up); 150 static int ip_sioctl_plink_ipmod(ipsq_t *ipsq, queue_t *q, mblk_t *mp, 151 int ioccmd, struct linkblk *li, boolean_t doconsist); 152 static ipaddr_t ip_subnet_mask(ipaddr_t addr, ipif_t **, ip_stack_t *); 153 static void ip_wput_ioctl(queue_t *q, mblk_t *mp); 154 static void ipsq_flush(ill_t *ill); 155 156 static int ip_sioctl_token_tail(ipif_t *ipif, sin6_t *sin6, int addrlen, 157 queue_t *q, mblk_t *mp, boolean_t need_up); 158 static void ipsq_delete(ipsq_t *); 159 160 static ipif_t *ipif_allocate(ill_t *ill, int id, uint_t ire_type, 161 boolean_t initialize); 162 static void ipif_check_bcast_ires(ipif_t *test_ipif); 163 static ire_t **ipif_create_bcast_ires(ipif_t *ipif, ire_t **irep); 164 static boolean_t ipif_comp_multi(ipif_t *old_ipif, ipif_t *new_ipif, 165 boolean_t isv6); 166 static void ipif_down_delete_ire(ire_t *ire, char *ipif); 167 static void ipif_delete_cache_ire(ire_t *, char *); 168 static int ipif_logical_down(ipif_t *ipif, queue_t *q, mblk_t *mp); 169 static void ipif_free(ipif_t *ipif); 170 static void ipif_free_tail(ipif_t *ipif); 171 static void ipif_mtu_change(ire_t *ire, char *ipif_arg); 172 static void ipif_multicast_down(ipif_t *ipif); 173 static void ipif_recreate_interface_routes(ipif_t *old_ipif, ipif_t *ipif); 174 static void ipif_set_default(ipif_t *ipif); 175 static int ipif_set_values(queue_t *q, mblk_t *mp, 176 char *interf_name, uint_t *ppa); 177 static int ipif_set_values_tail(ill_t *ill, ipif_t *ipif, mblk_t *mp, 178 queue_t *q); 179 static ipif_t *ipif_lookup_on_name(char *name, size_t namelen, 180 boolean_t do_alloc, boolean_t *exists, boolean_t isv6, zoneid_t zoneid, 181 queue_t *q, mblk_t *mp, ipsq_func_t func, int *error, ip_stack_t *); 182 static int ipif_up(ipif_t *ipif, queue_t *q, mblk_t *mp); 183 static void ipif_update_other_ipifs(ipif_t *old_ipif, ill_group_t *illgrp); 184 185 static int ill_alloc_ppa(ill_if_t *, ill_t *); 186 static int ill_arp_off(ill_t *ill); 187 static int ill_arp_on(ill_t *ill); 188 static void ill_delete_interface_type(ill_if_t *); 189 static int ill_dl_up(ill_t *ill, ipif_t *ipif, mblk_t *mp, queue_t *q); 190 static void ill_dl_down(ill_t *ill); 191 static void ill_down(ill_t *ill); 192 static void ill_downi(ire_t *ire, char *ill_arg); 193 static void ill_free_mib(ill_t *ill); 194 static void ill_glist_delete(ill_t *); 195 static boolean_t ill_has_usable_ipif(ill_t *); 196 static int ill_lock_ipsq_ills(ipsq_t *sq, ill_t **list, int); 197 static void ill_nominate_bcast_rcv(ill_group_t *illgrp); 198 static void ill_phyint_free(ill_t *ill); 199 static void ill_phyint_reinit(ill_t *ill); 200 static void ill_set_nce_router_flags(ill_t *, boolean_t); 201 static void ill_set_phys_addr_tail(ipsq_t *, queue_t *, mblk_t *, void *); 202 static void ill_signal_ipsq_ills(ipsq_t *, boolean_t); 203 static boolean_t ill_split_ipsq(ipsq_t *cur_sq); 204 static void ill_stq_cache_delete(ire_t *, char *); 205 206 static boolean_t ip_ether_v6intfid(uint_t, uint8_t *, in6_addr_t *); 207 static boolean_t ip_nodef_v6intfid(uint_t, uint8_t *, in6_addr_t *); 208 static boolean_t ip_ether_v6mapinfo(uint_t, uint8_t *, uint8_t *, uint32_t *, 209 in6_addr_t *); 210 static boolean_t ip_ether_v4mapinfo(uint_t, uint8_t *, uint8_t *, uint32_t *, 211 ipaddr_t *); 212 static boolean_t ip_ib_v6intfid(uint_t, uint8_t *, in6_addr_t *); 213 static boolean_t ip_ib_v6mapinfo(uint_t, uint8_t *, uint8_t *, uint32_t *, 214 in6_addr_t *); 215 static boolean_t ip_ib_v4mapinfo(uint_t, uint8_t *, uint8_t *, uint32_t *, 216 ipaddr_t *); 217 218 static void ipif_save_ire(ipif_t *, ire_t *); 219 static void ipif_remove_ire(ipif_t *, ire_t *); 220 static void ip_cgtp_bcast_add(ire_t *, ire_t *, ip_stack_t *); 221 static void ip_cgtp_bcast_delete(ire_t *, ip_stack_t *); 222 223 /* 224 * Per-ill IPsec capabilities management. 225 */ 226 static ill_ipsec_capab_t *ill_ipsec_capab_alloc(void); 227 static void ill_ipsec_capab_free(ill_ipsec_capab_t *); 228 static void ill_ipsec_capab_add(ill_t *, uint_t, boolean_t); 229 static void ill_ipsec_capab_delete(ill_t *, uint_t); 230 static boolean_t ill_ipsec_capab_resize_algparm(ill_ipsec_capab_t *, int); 231 static void ill_capability_dispatch(ill_t *, mblk_t *, dl_capability_sub_t *, 232 boolean_t); 233 static void ill_capability_id_ack(ill_t *, mblk_t *, dl_capability_sub_t *); 234 static void ill_capability_mdt_ack(ill_t *, mblk_t *, dl_capability_sub_t *); 235 static void ill_capability_mdt_reset_fill(ill_t *, mblk_t *); 236 static void ill_capability_ipsec_ack(ill_t *, mblk_t *, dl_capability_sub_t *); 237 static void ill_capability_ipsec_reset_fill(ill_t *, mblk_t *); 238 static void ill_capability_hcksum_ack(ill_t *, mblk_t *, dl_capability_sub_t *); 239 static void ill_capability_hcksum_reset_fill(ill_t *, mblk_t *); 240 static void ill_capability_zerocopy_ack(ill_t *, mblk_t *, 241 dl_capability_sub_t *); 242 static void ill_capability_zerocopy_reset_fill(ill_t *, mblk_t *); 243 static int ill_capability_ipsec_reset_size(ill_t *, int *, int *, int *, 244 int *); 245 static void ill_capability_dld_reset_fill(ill_t *, mblk_t *); 246 static void ill_capability_dld_ack(ill_t *, mblk_t *, 247 dl_capability_sub_t *); 248 static void ill_capability_dld_enable(ill_t *); 249 static void ill_capability_ack_thr(void *); 250 static void ill_capability_lso_enable(ill_t *); 251 static void ill_capability_send(ill_t *, mblk_t *); 252 253 static void illgrp_cache_delete(ire_t *, char *); 254 static void illgrp_delete(ill_t *ill); 255 static void illgrp_reset_schednext(ill_t *ill); 256 257 static ill_t *ill_prev_usesrc(ill_t *); 258 static int ill_relink_usesrc_ills(ill_t *, ill_t *, uint_t); 259 static void ill_disband_usesrc_group(ill_t *); 260 static void conn_cleanup_stale_ire(conn_t *, caddr_t); 261 262 #ifdef DEBUG 263 static void ill_trace_cleanup(const ill_t *); 264 static void ipif_trace_cleanup(const ipif_t *); 265 #endif 266 267 /* 268 * if we go over the memory footprint limit more than once in this msec 269 * interval, we'll start pruning aggressively. 270 */ 271 int ip_min_frag_prune_time = 0; 272 273 /* 274 * max # of IPsec algorithms supported. Limited to 1 byte by PF_KEY 275 * and the IPsec DOI 276 */ 277 #define MAX_IPSEC_ALGS 256 278 279 #define BITSPERBYTE 8 280 #define BITS(type) (BITSPERBYTE * (long)sizeof (type)) 281 282 #define IPSEC_ALG_ENABLE(algs, algid) \ 283 ((algs)[(algid) / BITS(ipsec_capab_elem_t)] |= \ 284 (1 << ((algid) % BITS(ipsec_capab_elem_t)))) 285 286 #define IPSEC_ALG_IS_ENABLED(algid, algs) \ 287 ((algs)[(algid) / BITS(ipsec_capab_elem_t)] & \ 288 (1 << ((algid) % BITS(ipsec_capab_elem_t)))) 289 290 typedef uint8_t ipsec_capab_elem_t; 291 292 /* 293 * Per-algorithm parameters. Note that at present, only encryption 294 * algorithms have variable keysize (IKE does not provide a way to negotiate 295 * auth algorithm keysize). 296 * 297 * All sizes here are in bits. 298 */ 299 typedef struct 300 { 301 uint16_t minkeylen; 302 uint16_t maxkeylen; 303 } ipsec_capab_algparm_t; 304 305 /* 306 * Per-ill capabilities. 307 */ 308 struct ill_ipsec_capab_s { 309 ipsec_capab_elem_t *encr_hw_algs; 310 ipsec_capab_elem_t *auth_hw_algs; 311 uint32_t algs_size; /* size of _hw_algs in bytes */ 312 /* algorithm key lengths */ 313 ipsec_capab_algparm_t *encr_algparm; 314 uint32_t encr_algparm_size; 315 uint32_t encr_algparm_end; 316 }; 317 318 /* 319 * The field values are larger than strictly necessary for simple 320 * AR_ENTRY_ADDs but the padding lets us accomodate the socket ioctls. 321 */ 322 static area_t ip_area_template = { 323 AR_ENTRY_ADD, /* area_cmd */ 324 sizeof (ip_sock_ar_t) + (IP_ADDR_LEN*2) + sizeof (struct sockaddr_dl), 325 /* area_name_offset */ 326 /* area_name_length temporarily holds this structure length */ 327 sizeof (area_t), /* area_name_length */ 328 IP_ARP_PROTO_TYPE, /* area_proto */ 329 sizeof (ip_sock_ar_t), /* area_proto_addr_offset */ 330 IP_ADDR_LEN, /* area_proto_addr_length */ 331 sizeof (ip_sock_ar_t) + IP_ADDR_LEN, 332 /* area_proto_mask_offset */ 333 0, /* area_flags */ 334 sizeof (ip_sock_ar_t) + IP_ADDR_LEN + IP_ADDR_LEN, 335 /* area_hw_addr_offset */ 336 /* Zero length hw_addr_length means 'use your idea of the address' */ 337 0 /* area_hw_addr_length */ 338 }; 339 340 /* 341 * AR_ENTRY_ADD/DELETE templates have been added for IPv6 external resolver 342 * support 343 */ 344 static area_t ip6_area_template = { 345 AR_ENTRY_ADD, /* area_cmd */ 346 sizeof (ip_sock_ar_t) + (IPV6_ADDR_LEN*2) + sizeof (sin6_t), 347 /* area_name_offset */ 348 /* area_name_length temporarily holds this structure length */ 349 sizeof (area_t), /* area_name_length */ 350 IP_ARP_PROTO_TYPE, /* area_proto */ 351 sizeof (ip_sock_ar_t), /* area_proto_addr_offset */ 352 IPV6_ADDR_LEN, /* area_proto_addr_length */ 353 sizeof (ip_sock_ar_t) + IPV6_ADDR_LEN, 354 /* area_proto_mask_offset */ 355 0, /* area_flags */ 356 sizeof (ip_sock_ar_t) + IPV6_ADDR_LEN + IPV6_ADDR_LEN, 357 /* area_hw_addr_offset */ 358 /* Zero length hw_addr_length means 'use your idea of the address' */ 359 0 /* area_hw_addr_length */ 360 }; 361 362 static ared_t ip_ared_template = { 363 AR_ENTRY_DELETE, 364 sizeof (ared_t) + IP_ADDR_LEN, 365 sizeof (ared_t), 366 IP_ARP_PROTO_TYPE, 367 sizeof (ared_t), 368 IP_ADDR_LEN, 369 0 370 }; 371 372 static ared_t ip6_ared_template = { 373 AR_ENTRY_DELETE, 374 sizeof (ared_t) + IPV6_ADDR_LEN, 375 sizeof (ared_t), 376 IP_ARP_PROTO_TYPE, 377 sizeof (ared_t), 378 IPV6_ADDR_LEN, 379 0 380 }; 381 382 /* 383 * A template for an IPv6 AR_ENTRY_QUERY template has not been created, as 384 * as the areq doesn't include an IP address in ill_dl_up() (the only place a 385 * areq is used). 386 */ 387 static areq_t ip_areq_template = { 388 AR_ENTRY_QUERY, /* cmd */ 389 sizeof (areq_t)+(2*IP_ADDR_LEN), /* name offset */ 390 sizeof (areq_t), /* name len (filled by ill_arp_alloc) */ 391 IP_ARP_PROTO_TYPE, /* protocol, from arps perspective */ 392 sizeof (areq_t), /* target addr offset */ 393 IP_ADDR_LEN, /* target addr_length */ 394 0, /* flags */ 395 sizeof (areq_t) + IP_ADDR_LEN, /* sender addr offset */ 396 IP_ADDR_LEN, /* sender addr length */ 397 AR_EQ_DEFAULT_XMIT_COUNT, /* xmit_count */ 398 AR_EQ_DEFAULT_XMIT_INTERVAL, /* (re)xmit_interval in milliseconds */ 399 AR_EQ_DEFAULT_MAX_BUFFERED /* max # of requests to buffer */ 400 /* anything else filled in by the code */ 401 }; 402 403 static arc_t ip_aru_template = { 404 AR_INTERFACE_UP, 405 sizeof (arc_t), /* Name offset */ 406 sizeof (arc_t) /* Name length (set by ill_arp_alloc) */ 407 }; 408 409 static arc_t ip_ard_template = { 410 AR_INTERFACE_DOWN, 411 sizeof (arc_t), /* Name offset */ 412 sizeof (arc_t) /* Name length (set by ill_arp_alloc) */ 413 }; 414 415 static arc_t ip_aron_template = { 416 AR_INTERFACE_ON, 417 sizeof (arc_t), /* Name offset */ 418 sizeof (arc_t) /* Name length (set by ill_arp_alloc) */ 419 }; 420 421 static arc_t ip_aroff_template = { 422 AR_INTERFACE_OFF, 423 sizeof (arc_t), /* Name offset */ 424 sizeof (arc_t) /* Name length (set by ill_arp_alloc) */ 425 }; 426 427 static arma_t ip_arma_multi_template = { 428 AR_MAPPING_ADD, 429 sizeof (arma_t) + 3*IP_ADDR_LEN + IP_MAX_HW_LEN, 430 /* Name offset */ 431 sizeof (arma_t), /* Name length (set by ill_arp_alloc) */ 432 IP_ARP_PROTO_TYPE, 433 sizeof (arma_t), /* proto_addr_offset */ 434 IP_ADDR_LEN, /* proto_addr_length */ 435 sizeof (arma_t) + IP_ADDR_LEN, /* proto_mask_offset */ 436 sizeof (arma_t) + 2*IP_ADDR_LEN, /* proto_extract_mask_offset */ 437 ACE_F_PERMANENT | ACE_F_MAPPING, /* flags */ 438 sizeof (arma_t) + 3*IP_ADDR_LEN, /* hw_addr_offset */ 439 IP_MAX_HW_LEN, /* hw_addr_length */ 440 0, /* hw_mapping_start */ 441 }; 442 443 static ipft_t ip_ioctl_ftbl[] = { 444 { IP_IOC_IRE_DELETE, ip_ire_delete, sizeof (ipid_t), 0 }, 445 { IP_IOC_IRE_DELETE_NO_REPLY, ip_ire_delete, sizeof (ipid_t), 446 IPFT_F_NO_REPLY }, 447 { IP_IOC_IRE_ADVISE_NO_REPLY, ip_ire_advise, sizeof (ipic_t), 448 IPFT_F_NO_REPLY }, 449 { IP_IOC_RTS_REQUEST, ip_rts_request, 0, IPFT_F_SELF_REPLY }, 450 { 0 } 451 }; 452 453 /* Simple ICMP IP Header Template */ 454 static ipha_t icmp_ipha = { 455 IP_SIMPLE_HDR_VERSION, 0, 0, 0, 0, 0, IPPROTO_ICMP 456 }; 457 458 /* Flag descriptors for ip_ipif_report */ 459 static nv_t ipif_nv_tbl[] = { 460 { IPIF_UP, "UP" }, 461 { IPIF_BROADCAST, "BROADCAST" }, 462 { ILLF_DEBUG, "DEBUG" }, 463 { PHYI_LOOPBACK, "LOOPBACK" }, 464 { IPIF_POINTOPOINT, "POINTOPOINT" }, 465 { ILLF_NOTRAILERS, "NOTRAILERS" }, 466 { PHYI_RUNNING, "RUNNING" }, 467 { ILLF_NOARP, "NOARP" }, 468 { PHYI_PROMISC, "PROMISC" }, 469 { PHYI_ALLMULTI, "ALLMULTI" }, 470 { PHYI_INTELLIGENT, "INTELLIGENT" }, 471 { ILLF_MULTICAST, "MULTICAST" }, 472 { PHYI_MULTI_BCAST, "MULTI_BCAST" }, 473 { IPIF_UNNUMBERED, "UNNUMBERED" }, 474 { IPIF_DHCPRUNNING, "DHCP" }, 475 { IPIF_PRIVATE, "PRIVATE" }, 476 { IPIF_NOXMIT, "NOXMIT" }, 477 { IPIF_NOLOCAL, "NOLOCAL" }, 478 { IPIF_DEPRECATED, "DEPRECATED" }, 479 { IPIF_PREFERRED, "PREFERRED" }, 480 { IPIF_TEMPORARY, "TEMPORARY" }, 481 { IPIF_ADDRCONF, "ADDRCONF" }, 482 { PHYI_VIRTUAL, "VIRTUAL" }, 483 { ILLF_ROUTER, "ROUTER" }, 484 { ILLF_NONUD, "NONUD" }, 485 { IPIF_ANYCAST, "ANYCAST" }, 486 { ILLF_NORTEXCH, "NORTEXCH" }, 487 { ILLF_IPV4, "IPV4" }, 488 { ILLF_IPV6, "IPV6" }, 489 { IPIF_NOFAILOVER, "NOFAILOVER" }, 490 { PHYI_FAILED, "FAILED" }, 491 { PHYI_STANDBY, "STANDBY" }, 492 { PHYI_INACTIVE, "INACTIVE" }, 493 { PHYI_OFFLINE, "OFFLINE" }, 494 }; 495 496 static uchar_t ip_six_byte_all_ones[] = { 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF }; 497 498 static ip_m_t ip_m_tbl[] = { 499 { DL_ETHER, IFT_ETHER, ip_ether_v4mapinfo, ip_ether_v6mapinfo, 500 ip_ether_v6intfid }, 501 { DL_CSMACD, IFT_ISO88023, ip_ether_v4mapinfo, ip_ether_v6mapinfo, 502 ip_nodef_v6intfid }, 503 { DL_TPB, IFT_ISO88024, ip_ether_v4mapinfo, ip_ether_v6mapinfo, 504 ip_nodef_v6intfid }, 505 { DL_TPR, IFT_ISO88025, ip_ether_v4mapinfo, ip_ether_v6mapinfo, 506 ip_nodef_v6intfid }, 507 { DL_FDDI, IFT_FDDI, ip_ether_v4mapinfo, ip_ether_v6mapinfo, 508 ip_ether_v6intfid }, 509 { DL_IB, IFT_IB, ip_ib_v4mapinfo, ip_ib_v6mapinfo, 510 ip_ib_v6intfid }, 511 { SUNW_DL_VNI, IFT_OTHER, NULL, NULL, NULL}, 512 { DL_OTHER, IFT_OTHER, ip_ether_v4mapinfo, ip_ether_v6mapinfo, 513 ip_nodef_v6intfid } 514 }; 515 516 static ill_t ill_null; /* Empty ILL for init. */ 517 char ipif_loopback_name[] = "lo0"; 518 static char *ipv4_forward_suffix = ":ip_forwarding"; 519 static char *ipv6_forward_suffix = ":ip6_forwarding"; 520 static sin6_t sin6_null; /* Zero address for quick clears */ 521 static sin_t sin_null; /* Zero address for quick clears */ 522 523 /* When set search for unused ipif_seqid */ 524 static ipif_t ipif_zero; 525 526 /* 527 * ppa arena is created after these many 528 * interfaces have been plumbed. 529 */ 530 uint_t ill_no_arena = 12; /* Setable in /etc/system */ 531 532 static uint_t 533 ipif_rand(ip_stack_t *ipst) 534 { 535 ipst->ips_ipif_src_random = ipst->ips_ipif_src_random * 1103515245 + 536 12345; 537 return ((ipst->ips_ipif_src_random >> 16) & 0x7fff); 538 } 539 540 /* 541 * Allocate per-interface mibs. 542 * Returns true if ok. False otherwise. 543 * ipsq may not yet be allocated (loopback case ). 544 */ 545 static boolean_t 546 ill_allocate_mibs(ill_t *ill) 547 { 548 /* Already allocated? */ 549 if (ill->ill_ip_mib != NULL) { 550 if (ill->ill_isv6) 551 ASSERT(ill->ill_icmp6_mib != NULL); 552 return (B_TRUE); 553 } 554 555 ill->ill_ip_mib = kmem_zalloc(sizeof (*ill->ill_ip_mib), 556 KM_NOSLEEP); 557 if (ill->ill_ip_mib == NULL) { 558 return (B_FALSE); 559 } 560 561 /* Setup static information */ 562 SET_MIB(ill->ill_ip_mib->ipIfStatsEntrySize, 563 sizeof (mib2_ipIfStatsEntry_t)); 564 if (ill->ill_isv6) { 565 ill->ill_ip_mib->ipIfStatsIPVersion = MIB2_INETADDRESSTYPE_ipv6; 566 SET_MIB(ill->ill_ip_mib->ipIfStatsAddrEntrySize, 567 sizeof (mib2_ipv6AddrEntry_t)); 568 SET_MIB(ill->ill_ip_mib->ipIfStatsRouteEntrySize, 569 sizeof (mib2_ipv6RouteEntry_t)); 570 SET_MIB(ill->ill_ip_mib->ipIfStatsNetToMediaEntrySize, 571 sizeof (mib2_ipv6NetToMediaEntry_t)); 572 SET_MIB(ill->ill_ip_mib->ipIfStatsMemberEntrySize, 573 sizeof (ipv6_member_t)); 574 SET_MIB(ill->ill_ip_mib->ipIfStatsGroupSourceEntrySize, 575 sizeof (ipv6_grpsrc_t)); 576 } else { 577 ill->ill_ip_mib->ipIfStatsIPVersion = MIB2_INETADDRESSTYPE_ipv4; 578 SET_MIB(ill->ill_ip_mib->ipIfStatsAddrEntrySize, 579 sizeof (mib2_ipAddrEntry_t)); 580 SET_MIB(ill->ill_ip_mib->ipIfStatsRouteEntrySize, 581 sizeof (mib2_ipRouteEntry_t)); 582 SET_MIB(ill->ill_ip_mib->ipIfStatsNetToMediaEntrySize, 583 sizeof (mib2_ipNetToMediaEntry_t)); 584 SET_MIB(ill->ill_ip_mib->ipIfStatsMemberEntrySize, 585 sizeof (ip_member_t)); 586 SET_MIB(ill->ill_ip_mib->ipIfStatsGroupSourceEntrySize, 587 sizeof (ip_grpsrc_t)); 588 589 /* 590 * For a v4 ill, we are done at this point, because per ill 591 * icmp mibs are only used for v6. 592 */ 593 return (B_TRUE); 594 } 595 596 ill->ill_icmp6_mib = kmem_zalloc(sizeof (*ill->ill_icmp6_mib), 597 KM_NOSLEEP); 598 if (ill->ill_icmp6_mib == NULL) { 599 kmem_free(ill->ill_ip_mib, sizeof (*ill->ill_ip_mib)); 600 ill->ill_ip_mib = NULL; 601 return (B_FALSE); 602 } 603 /* static icmp info */ 604 ill->ill_icmp6_mib->ipv6IfIcmpEntrySize = 605 sizeof (mib2_ipv6IfIcmpEntry_t); 606 /* 607 * The ipIfStatsIfindex and ipv6IfIcmpIndex will be assigned later 608 * after the phyint merge occurs in ipif_set_values -> ill_glist_insert 609 * -> ill_phyint_reinit 610 */ 611 return (B_TRUE); 612 } 613 614 /* 615 * Common code for preparation of ARP commands. Two points to remember: 616 * 1) The ill_name is tacked on at the end of the allocated space so 617 * the templates name_offset field must contain the total space 618 * to allocate less the name length. 619 * 620 * 2) The templates name_length field should contain the *template* 621 * length. We use it as a parameter to bcopy() and then write 622 * the real ill_name_length into the name_length field of the copy. 623 * (Always called as writer.) 624 */ 625 mblk_t * 626 ill_arp_alloc(ill_t *ill, uchar_t *template, caddr_t addr) 627 { 628 arc_t *arc = (arc_t *)template; 629 char *cp; 630 int len; 631 mblk_t *mp; 632 uint_t name_length = ill->ill_name_length; 633 uint_t template_len = arc->arc_name_length; 634 635 len = arc->arc_name_offset + name_length; 636 mp = allocb(len, BPRI_HI); 637 if (mp == NULL) 638 return (NULL); 639 cp = (char *)mp->b_rptr; 640 mp->b_wptr = (uchar_t *)&cp[len]; 641 if (template_len) 642 bcopy(template, cp, template_len); 643 if (len > template_len) 644 bzero(&cp[template_len], len - template_len); 645 mp->b_datap->db_type = M_PROTO; 646 647 arc = (arc_t *)cp; 648 arc->arc_name_length = name_length; 649 cp = (char *)arc + arc->arc_name_offset; 650 bcopy(ill->ill_name, cp, name_length); 651 652 if (addr) { 653 area_t *area = (area_t *)mp->b_rptr; 654 655 cp = (char *)area + area->area_proto_addr_offset; 656 bcopy(addr, cp, area->area_proto_addr_length); 657 if (area->area_cmd == AR_ENTRY_ADD) { 658 cp = (char *)area; 659 len = area->area_proto_addr_length; 660 if (area->area_proto_mask_offset) 661 cp += area->area_proto_mask_offset; 662 else 663 cp += area->area_proto_addr_offset + len; 664 while (len-- > 0) 665 *cp++ = (char)~0; 666 } 667 } 668 return (mp); 669 } 670 671 mblk_t * 672 ipif_area_alloc(ipif_t *ipif) 673 { 674 return (ill_arp_alloc(ipif->ipif_ill, (uchar_t *)&ip_area_template, 675 (char *)&ipif->ipif_lcl_addr)); 676 } 677 678 mblk_t * 679 ipif_ared_alloc(ipif_t *ipif) 680 { 681 return (ill_arp_alloc(ipif->ipif_ill, (uchar_t *)&ip_ared_template, 682 (char *)&ipif->ipif_lcl_addr)); 683 } 684 685 mblk_t * 686 ill_ared_alloc(ill_t *ill, ipaddr_t addr) 687 { 688 return (ill_arp_alloc(ill, (uchar_t *)&ip_ared_template, 689 (char *)&addr)); 690 } 691 692 /* 693 * Completely vaporize a lower level tap and all associated interfaces. 694 * ill_delete is called only out of ip_close when the device control 695 * stream is being closed. 696 */ 697 void 698 ill_delete(ill_t *ill) 699 { 700 ipif_t *ipif; 701 ill_t *prev_ill; 702 ip_stack_t *ipst = ill->ill_ipst; 703 704 /* 705 * ill_delete may be forcibly entering the ipsq. The previous 706 * ioctl may not have completed and may need to be aborted. 707 * ipsq_flush takes care of it. If we don't need to enter the 708 * the ipsq forcibly, the 2nd invocation of ipsq_flush in 709 * ill_delete_tail is sufficient. 710 */ 711 ipsq_flush(ill); 712 713 /* 714 * Nuke all interfaces. ipif_free will take down the interface, 715 * remove it from the list, and free the data structure. 716 * Walk down the ipif list and remove the logical interfaces 717 * first before removing the main ipif. We can't unplumb 718 * zeroth interface first in the case of IPv6 as reset_conn_ill 719 * -> ip_ll_delmulti_v6 de-references ill_ipif for checking 720 * POINTOPOINT. 721 * 722 * If ill_ipif was not properly initialized (i.e low on memory), 723 * then no interfaces to clean up. In this case just clean up the 724 * ill. 725 */ 726 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) 727 ipif_free(ipif); 728 729 /* 730 * Used only by ill_arp_on and ill_arp_off, which are writers. 731 * So nobody can be using this mp now. Free the mp allocated for 732 * honoring ILLF_NOARP 733 */ 734 freemsg(ill->ill_arp_on_mp); 735 ill->ill_arp_on_mp = NULL; 736 737 /* Clean up msgs on pending upcalls for mrouted */ 738 reset_mrt_ill(ill); 739 740 /* 741 * ipif_free -> reset_conn_ipif will remove all multicast 742 * references for IPv4. For IPv6, we need to do it here as 743 * it points only at ills. 744 */ 745 reset_conn_ill(ill); 746 747 /* 748 * Remove multicast references added as a result of calls to 749 * ip_join_allmulti(). 750 */ 751 ip_purge_allmulti(ill); 752 753 /* 754 * ill_down will arrange to blow off any IRE's dependent on this 755 * ILL, and shut down fragmentation reassembly. 756 */ 757 ill_down(ill); 758 759 /* Let SCTP know, so that it can remove this from its list. */ 760 sctp_update_ill(ill, SCTP_ILL_REMOVE); 761 762 /* 763 * If an address on this ILL is being used as a source address then 764 * clear out the pointers in other ILLs that point to this ILL. 765 */ 766 rw_enter(&ipst->ips_ill_g_usesrc_lock, RW_WRITER); 767 if (ill->ill_usesrc_grp_next != NULL) { 768 if (ill->ill_usesrc_ifindex == 0) { /* usesrc ILL ? */ 769 ill_disband_usesrc_group(ill); 770 } else { /* consumer of the usesrc ILL */ 771 prev_ill = ill_prev_usesrc(ill); 772 prev_ill->ill_usesrc_grp_next = 773 ill->ill_usesrc_grp_next; 774 } 775 } 776 rw_exit(&ipst->ips_ill_g_usesrc_lock); 777 } 778 779 static void 780 ipif_non_duplicate(ipif_t *ipif) 781 { 782 ill_t *ill = ipif->ipif_ill; 783 mutex_enter(&ill->ill_lock); 784 if (ipif->ipif_flags & IPIF_DUPLICATE) { 785 ipif->ipif_flags &= ~IPIF_DUPLICATE; 786 ASSERT(ill->ill_ipif_dup_count > 0); 787 ill->ill_ipif_dup_count--; 788 } 789 mutex_exit(&ill->ill_lock); 790 } 791 792 /* 793 * ill_delete_tail is called from ip_modclose after all references 794 * to the closing ill are gone. The wait is done in ip_modclose 795 */ 796 void 797 ill_delete_tail(ill_t *ill) 798 { 799 mblk_t **mpp; 800 ipif_t *ipif; 801 ip_stack_t *ipst = ill->ill_ipst; 802 803 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 804 ipif_non_duplicate(ipif); 805 ipif_down_tail(ipif); 806 } 807 808 ASSERT(ill->ill_ipif_dup_count == 0 && 809 ill->ill_arp_down_mp == NULL && 810 ill->ill_arp_del_mapping_mp == NULL); 811 812 /* 813 * If polling capability is enabled (which signifies direct 814 * upcall into IP and driver has ill saved as a handle), 815 * we need to make sure that unbind has completed before we 816 * let the ill disappear and driver no longer has any reference 817 * to this ill. 818 */ 819 mutex_enter(&ill->ill_lock); 820 while (ill->ill_state_flags & ILL_DL_UNBIND_IN_PROGRESS) 821 cv_wait(&ill->ill_cv, &ill->ill_lock); 822 mutex_exit(&ill->ill_lock); 823 ASSERT(!(ill->ill_capabilities & 824 (ILL_CAPAB_DLD | ILL_CAPAB_DLD_POLL | ILL_CAPAB_DLD_DIRECT))); 825 826 if (ill->ill_net_type != IRE_LOOPBACK) 827 qprocsoff(ill->ill_rq); 828 829 /* 830 * We do an ipsq_flush once again now. New messages could have 831 * landed up from below (M_ERROR or M_HANGUP). Similarly ioctls 832 * could also have landed up if an ioctl thread had looked up 833 * the ill before we set the ILL_CONDEMNED flag, but not yet 834 * enqueued the ioctl when we did the ipsq_flush last time. 835 */ 836 ipsq_flush(ill); 837 838 /* 839 * Free capabilities. 840 */ 841 if (ill->ill_ipsec_capab_ah != NULL) { 842 ill_ipsec_capab_delete(ill, DL_CAPAB_IPSEC_AH); 843 ill_ipsec_capab_free(ill->ill_ipsec_capab_ah); 844 ill->ill_ipsec_capab_ah = NULL; 845 } 846 847 if (ill->ill_ipsec_capab_esp != NULL) { 848 ill_ipsec_capab_delete(ill, DL_CAPAB_IPSEC_ESP); 849 ill_ipsec_capab_free(ill->ill_ipsec_capab_esp); 850 ill->ill_ipsec_capab_esp = NULL; 851 } 852 853 if (ill->ill_mdt_capab != NULL) { 854 kmem_free(ill->ill_mdt_capab, sizeof (ill_mdt_capab_t)); 855 ill->ill_mdt_capab = NULL; 856 } 857 858 if (ill->ill_hcksum_capab != NULL) { 859 kmem_free(ill->ill_hcksum_capab, sizeof (ill_hcksum_capab_t)); 860 ill->ill_hcksum_capab = NULL; 861 } 862 863 if (ill->ill_zerocopy_capab != NULL) { 864 kmem_free(ill->ill_zerocopy_capab, 865 sizeof (ill_zerocopy_capab_t)); 866 ill->ill_zerocopy_capab = NULL; 867 } 868 869 if (ill->ill_lso_capab != NULL) { 870 kmem_free(ill->ill_lso_capab, sizeof (ill_lso_capab_t)); 871 ill->ill_lso_capab = NULL; 872 } 873 874 if (ill->ill_dld_capab != NULL) { 875 kmem_free(ill->ill_dld_capab, sizeof (ill_dld_capab_t)); 876 ill->ill_dld_capab = NULL; 877 } 878 879 while (ill->ill_ipif != NULL) 880 ipif_free_tail(ill->ill_ipif); 881 882 /* 883 * We have removed all references to ilm from conn and the ones joined 884 * within the kernel. 885 * 886 * We don't walk conns, mrts and ires because 887 * 888 * 1) reset_conn_ill and reset_mrt_ill cleans up conns and mrts. 889 * 2) ill_down ->ill_downi walks all the ires and cleans up 890 * ill references. 891 */ 892 ASSERT(ilm_walk_ill(ill) == 0); 893 /* 894 * Take us out of the list of ILLs. ill_glist_delete -> ill_phyint_free 895 * could free the phyint. No more reference to the phyint after this 896 * point. 897 */ 898 (void) ill_glist_delete(ill); 899 900 rw_enter(&ipst->ips_ip_g_nd_lock, RW_WRITER); 901 if (ill->ill_ndd_name != NULL) 902 nd_unload(&ipst->ips_ip_g_nd, ill->ill_ndd_name); 903 rw_exit(&ipst->ips_ip_g_nd_lock); 904 905 if (ill->ill_frag_ptr != NULL) { 906 uint_t count; 907 908 for (count = 0; count < ILL_FRAG_HASH_TBL_COUNT; count++) { 909 mutex_destroy(&ill->ill_frag_hash_tbl[count].ipfb_lock); 910 } 911 mi_free(ill->ill_frag_ptr); 912 ill->ill_frag_ptr = NULL; 913 ill->ill_frag_hash_tbl = NULL; 914 } 915 916 freemsg(ill->ill_nd_lla_mp); 917 /* Free all retained control messages. */ 918 mpp = &ill->ill_first_mp_to_free; 919 do { 920 while (mpp[0]) { 921 mblk_t *mp; 922 mblk_t *mp1; 923 924 mp = mpp[0]; 925 mpp[0] = mp->b_next; 926 for (mp1 = mp; mp1 != NULL; mp1 = mp1->b_cont) { 927 mp1->b_next = NULL; 928 mp1->b_prev = NULL; 929 } 930 freemsg(mp); 931 } 932 } while (mpp++ != &ill->ill_last_mp_to_free); 933 934 ill_free_mib(ill); 935 936 #ifdef DEBUG 937 ill_trace_cleanup(ill); 938 #endif 939 940 /* Drop refcnt here */ 941 netstack_rele(ill->ill_ipst->ips_netstack); 942 ill->ill_ipst = NULL; 943 } 944 945 static void 946 ill_free_mib(ill_t *ill) 947 { 948 ip_stack_t *ipst = ill->ill_ipst; 949 950 /* 951 * MIB statistics must not be lost, so when an interface 952 * goes away the counter values will be added to the global 953 * MIBs. 954 */ 955 if (ill->ill_ip_mib != NULL) { 956 if (ill->ill_isv6) { 957 ip_mib2_add_ip_stats(&ipst->ips_ip6_mib, 958 ill->ill_ip_mib); 959 } else { 960 ip_mib2_add_ip_stats(&ipst->ips_ip_mib, 961 ill->ill_ip_mib); 962 } 963 964 kmem_free(ill->ill_ip_mib, sizeof (*ill->ill_ip_mib)); 965 ill->ill_ip_mib = NULL; 966 } 967 if (ill->ill_icmp6_mib != NULL) { 968 ip_mib2_add_icmp6_stats(&ipst->ips_icmp6_mib, 969 ill->ill_icmp6_mib); 970 kmem_free(ill->ill_icmp6_mib, sizeof (*ill->ill_icmp6_mib)); 971 ill->ill_icmp6_mib = NULL; 972 } 973 } 974 975 /* 976 * Concatenate together a physical address and a sap. 977 * 978 * Sap_lengths are interpreted as follows: 979 * sap_length == 0 ==> no sap 980 * sap_length > 0 ==> sap is at the head of the dlpi address 981 * sap_length < 0 ==> sap is at the tail of the dlpi address 982 */ 983 static void 984 ill_dlur_copy_address(uchar_t *phys_src, uint_t phys_length, 985 t_scalar_t sap_src, t_scalar_t sap_length, uchar_t *dst) 986 { 987 uint16_t sap_addr = (uint16_t)sap_src; 988 989 if (sap_length == 0) { 990 if (phys_src == NULL) 991 bzero(dst, phys_length); 992 else 993 bcopy(phys_src, dst, phys_length); 994 } else if (sap_length < 0) { 995 if (phys_src == NULL) 996 bzero(dst, phys_length); 997 else 998 bcopy(phys_src, dst, phys_length); 999 bcopy(&sap_addr, (char *)dst + phys_length, sizeof (sap_addr)); 1000 } else { 1001 bcopy(&sap_addr, dst, sizeof (sap_addr)); 1002 if (phys_src == NULL) 1003 bzero((char *)dst + sap_length, phys_length); 1004 else 1005 bcopy(phys_src, (char *)dst + sap_length, phys_length); 1006 } 1007 } 1008 1009 /* 1010 * Generate a dl_unitdata_req mblk for the device and address given. 1011 * addr_length is the length of the physical portion of the address. 1012 * If addr is NULL include an all zero address of the specified length. 1013 * TRUE? In any case, addr_length is taken to be the entire length of the 1014 * dlpi address, including the absolute value of sap_length. 1015 */ 1016 mblk_t * 1017 ill_dlur_gen(uchar_t *addr, uint_t addr_length, t_uscalar_t sap, 1018 t_scalar_t sap_length) 1019 { 1020 dl_unitdata_req_t *dlur; 1021 mblk_t *mp; 1022 t_scalar_t abs_sap_length; /* absolute value */ 1023 1024 abs_sap_length = ABS(sap_length); 1025 mp = ip_dlpi_alloc(sizeof (*dlur) + addr_length + abs_sap_length, 1026 DL_UNITDATA_REQ); 1027 if (mp == NULL) 1028 return (NULL); 1029 dlur = (dl_unitdata_req_t *)mp->b_rptr; 1030 /* HACK: accomodate incompatible DLPI drivers */ 1031 if (addr_length == 8) 1032 addr_length = 6; 1033 dlur->dl_dest_addr_length = addr_length + abs_sap_length; 1034 dlur->dl_dest_addr_offset = sizeof (*dlur); 1035 dlur->dl_priority.dl_min = 0; 1036 dlur->dl_priority.dl_max = 0; 1037 ill_dlur_copy_address(addr, addr_length, sap, sap_length, 1038 (uchar_t *)&dlur[1]); 1039 return (mp); 1040 } 1041 1042 /* 1043 * Add the 'mp' to the list of pending mp's headed by ill_pending_mp 1044 * Return an error if we already have 1 or more ioctls in progress. 1045 * This is used only for non-exclusive ioctls. Currently this is used 1046 * for SIOC*ARP and SIOCGTUNPARAM ioctls. Most set ioctls are exclusive 1047 * and thus need to use ipsq_pending_mp_add. 1048 */ 1049 boolean_t 1050 ill_pending_mp_add(ill_t *ill, conn_t *connp, mblk_t *add_mp) 1051 { 1052 ASSERT(MUTEX_HELD(&ill->ill_lock)); 1053 ASSERT((add_mp->b_next == NULL) && (add_mp->b_prev == NULL)); 1054 /* 1055 * M_IOCDATA from ioctls, M_IOCTL from tunnel ioctls. 1056 */ 1057 ASSERT((add_mp->b_datap->db_type == M_IOCDATA) || 1058 (add_mp->b_datap->db_type == M_IOCTL)); 1059 1060 ASSERT(MUTEX_HELD(&connp->conn_lock)); 1061 /* 1062 * Return error if the conn has started closing. The conn 1063 * could have finished cleaning up the pending mp list, 1064 * If so we should not add another mp to the list negating 1065 * the cleanup. 1066 */ 1067 if (connp->conn_state_flags & CONN_CLOSING) 1068 return (B_FALSE); 1069 /* 1070 * Add the pending mp to the head of the list, chained by b_next. 1071 * Note down the conn on which the ioctl request came, in b_prev. 1072 * This will be used to later get the conn, when we get a response 1073 * on the ill queue, from some other module (typically arp) 1074 */ 1075 add_mp->b_next = (void *)ill->ill_pending_mp; 1076 add_mp->b_queue = CONNP_TO_WQ(connp); 1077 ill->ill_pending_mp = add_mp; 1078 if (connp != NULL) 1079 connp->conn_oper_pending_ill = ill; 1080 return (B_TRUE); 1081 } 1082 1083 /* 1084 * Retrieve the ill_pending_mp and return it. We have to walk the list 1085 * of mblks starting at ill_pending_mp, and match based on the ioc_id. 1086 */ 1087 mblk_t * 1088 ill_pending_mp_get(ill_t *ill, conn_t **connpp, uint_t ioc_id) 1089 { 1090 mblk_t *prev = NULL; 1091 mblk_t *curr = NULL; 1092 uint_t id; 1093 conn_t *connp; 1094 1095 /* 1096 * When the conn closes, conn_ioctl_cleanup needs to clean 1097 * up the pending mp, but it does not know the ioc_id and 1098 * passes in a zero for it. 1099 */ 1100 mutex_enter(&ill->ill_lock); 1101 if (ioc_id != 0) 1102 *connpp = NULL; 1103 1104 /* Search the list for the appropriate ioctl based on ioc_id */ 1105 for (prev = NULL, curr = ill->ill_pending_mp; curr != NULL; 1106 prev = curr, curr = curr->b_next) { 1107 id = ((struct iocblk *)curr->b_rptr)->ioc_id; 1108 connp = Q_TO_CONN(curr->b_queue); 1109 /* Match based on the ioc_id or based on the conn */ 1110 if ((id == ioc_id) || (ioc_id == 0 && connp == *connpp)) 1111 break; 1112 } 1113 1114 if (curr != NULL) { 1115 /* Unlink the mblk from the pending mp list */ 1116 if (prev != NULL) { 1117 prev->b_next = curr->b_next; 1118 } else { 1119 ASSERT(ill->ill_pending_mp == curr); 1120 ill->ill_pending_mp = curr->b_next; 1121 } 1122 1123 /* 1124 * conn refcnt must have been bumped up at the start of 1125 * the ioctl. So we can safely access the conn. 1126 */ 1127 ASSERT(CONN_Q(curr->b_queue)); 1128 *connpp = Q_TO_CONN(curr->b_queue); 1129 curr->b_next = NULL; 1130 curr->b_queue = NULL; 1131 } 1132 1133 mutex_exit(&ill->ill_lock); 1134 1135 return (curr); 1136 } 1137 1138 /* 1139 * Add the pending mp to the list. There can be only 1 pending mp 1140 * in the list. Any exclusive ioctl that needs to wait for a response 1141 * from another module or driver needs to use this function to set 1142 * the ipsq_pending_mp to the ioctl mblk and wait for the response from 1143 * the other module/driver. This is also used while waiting for the 1144 * ipif/ill/ire refcnts to drop to zero in bringing down an ipif. 1145 */ 1146 boolean_t 1147 ipsq_pending_mp_add(conn_t *connp, ipif_t *ipif, queue_t *q, mblk_t *add_mp, 1148 int waitfor) 1149 { 1150 ipsq_t *ipsq = ipif->ipif_ill->ill_phyint->phyint_ipsq; 1151 1152 ASSERT(IAM_WRITER_IPIF(ipif)); 1153 ASSERT(MUTEX_HELD(&ipif->ipif_ill->ill_lock)); 1154 ASSERT((add_mp->b_next == NULL) && (add_mp->b_prev == NULL)); 1155 ASSERT(ipsq->ipsq_pending_mp == NULL); 1156 /* 1157 * The caller may be using a different ipif than the one passed into 1158 * ipsq_current_start() (e.g., suppose an ioctl that came in on the V4 1159 * ill needs to wait for the V6 ill to quiesce). So we can't ASSERT 1160 * that `ipsq_current_ipif == ipif'. 1161 */ 1162 ASSERT(ipsq->ipsq_current_ipif != NULL); 1163 1164 /* 1165 * M_IOCDATA from ioctls, M_IOCTL from tunnel ioctls, 1166 * M_ERROR/M_HANGUP/M_PROTO/M_PCPROTO from the driver. 1167 */ 1168 ASSERT((DB_TYPE(add_mp) == M_IOCDATA) || (DB_TYPE(add_mp) == M_IOCTL) || 1169 (DB_TYPE(add_mp) == M_ERROR) || (DB_TYPE(add_mp) == M_HANGUP) || 1170 (DB_TYPE(add_mp) == M_PROTO) || (DB_TYPE(add_mp) == M_PCPROTO)); 1171 1172 if (connp != NULL) { 1173 ASSERT(MUTEX_HELD(&connp->conn_lock)); 1174 /* 1175 * Return error if the conn has started closing. The conn 1176 * could have finished cleaning up the pending mp list, 1177 * If so we should not add another mp to the list negating 1178 * the cleanup. 1179 */ 1180 if (connp->conn_state_flags & CONN_CLOSING) 1181 return (B_FALSE); 1182 } 1183 mutex_enter(&ipsq->ipsq_lock); 1184 ipsq->ipsq_pending_ipif = ipif; 1185 /* 1186 * Note down the queue in b_queue. This will be returned by 1187 * ipsq_pending_mp_get. Caller will then use these values to restart 1188 * the processing 1189 */ 1190 add_mp->b_next = NULL; 1191 add_mp->b_queue = q; 1192 ipsq->ipsq_pending_mp = add_mp; 1193 ipsq->ipsq_waitfor = waitfor; 1194 1195 if (connp != NULL) 1196 connp->conn_oper_pending_ill = ipif->ipif_ill; 1197 mutex_exit(&ipsq->ipsq_lock); 1198 return (B_TRUE); 1199 } 1200 1201 /* 1202 * Retrieve the ipsq_pending_mp and return it. There can be only 1 mp 1203 * queued in the list. 1204 */ 1205 mblk_t * 1206 ipsq_pending_mp_get(ipsq_t *ipsq, conn_t **connpp) 1207 { 1208 mblk_t *curr = NULL; 1209 1210 mutex_enter(&ipsq->ipsq_lock); 1211 *connpp = NULL; 1212 if (ipsq->ipsq_pending_mp == NULL) { 1213 mutex_exit(&ipsq->ipsq_lock); 1214 return (NULL); 1215 } 1216 1217 /* There can be only 1 such excl message */ 1218 curr = ipsq->ipsq_pending_mp; 1219 ASSERT(curr != NULL && curr->b_next == NULL); 1220 ipsq->ipsq_pending_ipif = NULL; 1221 ipsq->ipsq_pending_mp = NULL; 1222 ipsq->ipsq_waitfor = 0; 1223 mutex_exit(&ipsq->ipsq_lock); 1224 1225 if (CONN_Q(curr->b_queue)) { 1226 /* 1227 * This mp did a refhold on the conn, at the start of the ioctl. 1228 * So we can safely return a pointer to the conn to the caller. 1229 */ 1230 *connpp = Q_TO_CONN(curr->b_queue); 1231 } else { 1232 *connpp = NULL; 1233 } 1234 curr->b_next = NULL; 1235 curr->b_prev = NULL; 1236 return (curr); 1237 } 1238 1239 /* 1240 * Cleanup the ioctl mp queued in ipsq_pending_mp 1241 * - Called in the ill_delete path 1242 * - Called in the M_ERROR or M_HANGUP path on the ill. 1243 * - Called in the conn close path. 1244 */ 1245 boolean_t 1246 ipsq_pending_mp_cleanup(ill_t *ill, conn_t *connp) 1247 { 1248 mblk_t *mp; 1249 ipsq_t *ipsq; 1250 queue_t *q; 1251 ipif_t *ipif; 1252 1253 ASSERT(IAM_WRITER_ILL(ill)); 1254 ipsq = ill->ill_phyint->phyint_ipsq; 1255 mutex_enter(&ipsq->ipsq_lock); 1256 /* 1257 * If connp is null, unconditionally clean up the ipsq_pending_mp. 1258 * This happens in M_ERROR/M_HANGUP. We need to abort the current ioctl 1259 * even if it is meant for another ill, since we have to enqueue 1260 * a new mp now in ipsq_pending_mp to complete the ipif_down. 1261 * If connp is non-null we are called from the conn close path. 1262 */ 1263 mp = ipsq->ipsq_pending_mp; 1264 if (mp == NULL || (connp != NULL && 1265 mp->b_queue != CONNP_TO_WQ(connp))) { 1266 mutex_exit(&ipsq->ipsq_lock); 1267 return (B_FALSE); 1268 } 1269 /* Now remove from the ipsq_pending_mp */ 1270 ipsq->ipsq_pending_mp = NULL; 1271 q = mp->b_queue; 1272 mp->b_next = NULL; 1273 mp->b_prev = NULL; 1274 mp->b_queue = NULL; 1275 1276 /* If MOVE was in progress, clear the move_in_progress fields also. */ 1277 ill = ipsq->ipsq_pending_ipif->ipif_ill; 1278 if (ill->ill_move_in_progress) { 1279 ILL_CLEAR_MOVE(ill); 1280 } else if (ill->ill_up_ipifs) { 1281 ill_group_cleanup(ill); 1282 } 1283 1284 ipif = ipsq->ipsq_pending_ipif; 1285 ipsq->ipsq_pending_ipif = NULL; 1286 ipsq->ipsq_waitfor = 0; 1287 ipsq->ipsq_current_ipif = NULL; 1288 ipsq->ipsq_current_ioctl = 0; 1289 ipsq->ipsq_current_done = B_TRUE; 1290 mutex_exit(&ipsq->ipsq_lock); 1291 1292 if (DB_TYPE(mp) == M_IOCTL || DB_TYPE(mp) == M_IOCDATA) { 1293 if (connp == NULL) { 1294 ip_ioctl_finish(q, mp, ENXIO, NO_COPYOUT, NULL); 1295 } else { 1296 ip_ioctl_finish(q, mp, ENXIO, CONN_CLOSE, NULL); 1297 mutex_enter(&ipif->ipif_ill->ill_lock); 1298 ipif->ipif_state_flags &= ~IPIF_CHANGING; 1299 mutex_exit(&ipif->ipif_ill->ill_lock); 1300 } 1301 } else { 1302 /* 1303 * IP-MT XXX In the case of TLI/XTI bind / optmgmt this can't 1304 * be just inet_freemsg. we have to restart it 1305 * otherwise the thread will be stuck. 1306 */ 1307 inet_freemsg(mp); 1308 } 1309 return (B_TRUE); 1310 } 1311 1312 /* 1313 * The ill is closing. Cleanup all the pending mps. Called exclusively 1314 * towards the end of ill_delete. The refcount has gone to 0. So nobody 1315 * knows this ill, and hence nobody can add an mp to this list 1316 */ 1317 static void 1318 ill_pending_mp_cleanup(ill_t *ill) 1319 { 1320 mblk_t *mp; 1321 queue_t *q; 1322 1323 ASSERT(IAM_WRITER_ILL(ill)); 1324 1325 mutex_enter(&ill->ill_lock); 1326 /* 1327 * Every mp on the pending mp list originating from an ioctl 1328 * added 1 to the conn refcnt, at the start of the ioctl. 1329 * So bump it down now. See comments in ip_wput_nondata() 1330 */ 1331 while (ill->ill_pending_mp != NULL) { 1332 mp = ill->ill_pending_mp; 1333 ill->ill_pending_mp = mp->b_next; 1334 mutex_exit(&ill->ill_lock); 1335 1336 q = mp->b_queue; 1337 ASSERT(CONN_Q(q)); 1338 mp->b_next = NULL; 1339 mp->b_prev = NULL; 1340 mp->b_queue = NULL; 1341 ip_ioctl_finish(q, mp, ENXIO, NO_COPYOUT, NULL); 1342 mutex_enter(&ill->ill_lock); 1343 } 1344 ill->ill_pending_ipif = NULL; 1345 1346 mutex_exit(&ill->ill_lock); 1347 } 1348 1349 /* 1350 * Called in the conn close path and ill delete path 1351 */ 1352 static void 1353 ipsq_xopq_mp_cleanup(ill_t *ill, conn_t *connp) 1354 { 1355 ipsq_t *ipsq; 1356 mblk_t *prev; 1357 mblk_t *curr; 1358 mblk_t *next; 1359 queue_t *q; 1360 mblk_t *tmp_list = NULL; 1361 1362 ASSERT(IAM_WRITER_ILL(ill)); 1363 if (connp != NULL) 1364 q = CONNP_TO_WQ(connp); 1365 else 1366 q = ill->ill_wq; 1367 1368 ipsq = ill->ill_phyint->phyint_ipsq; 1369 /* 1370 * Cleanup the ioctl mp's queued in ipsq_xopq_pending_mp if any. 1371 * In the case of ioctl from a conn, there can be only 1 mp 1372 * queued on the ipsq. If an ill is being unplumbed, only messages 1373 * related to this ill are flushed, like M_ERROR or M_HANGUP message. 1374 * ioctls meant for this ill form conn's are not flushed. They will 1375 * be processed during ipsq_exit and will not find the ill and will 1376 * return error. 1377 */ 1378 mutex_enter(&ipsq->ipsq_lock); 1379 for (prev = NULL, curr = ipsq->ipsq_xopq_mphead; curr != NULL; 1380 curr = next) { 1381 next = curr->b_next; 1382 if (curr->b_queue == q || curr->b_queue == RD(q)) { 1383 /* Unlink the mblk from the pending mp list */ 1384 if (prev != NULL) { 1385 prev->b_next = curr->b_next; 1386 } else { 1387 ASSERT(ipsq->ipsq_xopq_mphead == curr); 1388 ipsq->ipsq_xopq_mphead = curr->b_next; 1389 } 1390 if (ipsq->ipsq_xopq_mptail == curr) 1391 ipsq->ipsq_xopq_mptail = prev; 1392 /* 1393 * Create a temporary list and release the ipsq lock 1394 * New elements are added to the head of the tmp_list 1395 */ 1396 curr->b_next = tmp_list; 1397 tmp_list = curr; 1398 } else { 1399 prev = curr; 1400 } 1401 } 1402 mutex_exit(&ipsq->ipsq_lock); 1403 1404 while (tmp_list != NULL) { 1405 curr = tmp_list; 1406 tmp_list = curr->b_next; 1407 curr->b_next = NULL; 1408 curr->b_prev = NULL; 1409 curr->b_queue = NULL; 1410 if (DB_TYPE(curr) == M_IOCTL || DB_TYPE(curr) == M_IOCDATA) { 1411 ip_ioctl_finish(q, curr, ENXIO, connp != NULL ? 1412 CONN_CLOSE : NO_COPYOUT, NULL); 1413 } else { 1414 /* 1415 * IP-MT XXX In the case of TLI/XTI bind / optmgmt 1416 * this can't be just inet_freemsg. we have to 1417 * restart it otherwise the thread will be stuck. 1418 */ 1419 inet_freemsg(curr); 1420 } 1421 } 1422 } 1423 1424 /* 1425 * This conn has started closing. Cleanup any pending ioctl from this conn. 1426 * STREAMS ensures that there can be at most 1 ioctl pending on a stream. 1427 */ 1428 void 1429 conn_ioctl_cleanup(conn_t *connp) 1430 { 1431 mblk_t *curr; 1432 ipsq_t *ipsq; 1433 ill_t *ill; 1434 boolean_t refheld; 1435 1436 /* 1437 * Is any exclusive ioctl pending ? If so clean it up. If the 1438 * ioctl has not yet started, the mp is pending in the list headed by 1439 * ipsq_xopq_head. If the ioctl has started the mp could be present in 1440 * ipsq_pending_mp. If the ioctl timed out in the streamhead but 1441 * is currently executing now the mp is not queued anywhere but 1442 * conn_oper_pending_ill is null. The conn close will wait 1443 * till the conn_ref drops to zero. 1444 */ 1445 mutex_enter(&connp->conn_lock); 1446 ill = connp->conn_oper_pending_ill; 1447 if (ill == NULL) { 1448 mutex_exit(&connp->conn_lock); 1449 return; 1450 } 1451 1452 curr = ill_pending_mp_get(ill, &connp, 0); 1453 if (curr != NULL) { 1454 mutex_exit(&connp->conn_lock); 1455 CONN_DEC_REF(connp); 1456 inet_freemsg(curr); 1457 return; 1458 } 1459 /* 1460 * We may not be able to refhold the ill if the ill/ipif 1461 * is changing. But we need to make sure that the ill will 1462 * not vanish. So we just bump up the ill_waiter count. 1463 */ 1464 refheld = ill_waiter_inc(ill); 1465 mutex_exit(&connp->conn_lock); 1466 if (refheld) { 1467 if (ipsq_enter(ill, B_TRUE, NEW_OP)) { 1468 ill_waiter_dcr(ill); 1469 /* 1470 * Check whether this ioctl has started and is 1471 * pending now in ipsq_pending_mp. If it is not 1472 * found there then check whether this ioctl has 1473 * not even started and is in the ipsq_xopq list. 1474 */ 1475 if (!ipsq_pending_mp_cleanup(ill, connp)) 1476 ipsq_xopq_mp_cleanup(ill, connp); 1477 ipsq = ill->ill_phyint->phyint_ipsq; 1478 ipsq_exit(ipsq); 1479 return; 1480 } 1481 } 1482 1483 /* 1484 * The ill is also closing and we could not bump up the 1485 * ill_waiter_count or we could not enter the ipsq. Leave 1486 * the cleanup to ill_delete 1487 */ 1488 mutex_enter(&connp->conn_lock); 1489 while (connp->conn_oper_pending_ill != NULL) 1490 cv_wait(&connp->conn_refcv, &connp->conn_lock); 1491 mutex_exit(&connp->conn_lock); 1492 if (refheld) 1493 ill_waiter_dcr(ill); 1494 } 1495 1496 /* 1497 * ipcl_walk function for cleaning up conn_*_ill fields. 1498 */ 1499 static void 1500 conn_cleanup_ill(conn_t *connp, caddr_t arg) 1501 { 1502 ill_t *ill = (ill_t *)arg; 1503 ire_t *ire; 1504 1505 mutex_enter(&connp->conn_lock); 1506 if (connp->conn_multicast_ill == ill) { 1507 /* Revert to late binding */ 1508 connp->conn_multicast_ill = NULL; 1509 connp->conn_orig_multicast_ifindex = 0; 1510 } 1511 if (connp->conn_incoming_ill == ill) 1512 connp->conn_incoming_ill = NULL; 1513 if (connp->conn_outgoing_ill == ill) 1514 connp->conn_outgoing_ill = NULL; 1515 if (connp->conn_outgoing_pill == ill) 1516 connp->conn_outgoing_pill = NULL; 1517 if (connp->conn_nofailover_ill == ill) 1518 connp->conn_nofailover_ill = NULL; 1519 if (connp->conn_dhcpinit_ill == ill) { 1520 connp->conn_dhcpinit_ill = NULL; 1521 ASSERT(ill->ill_dhcpinit != 0); 1522 atomic_dec_32(&ill->ill_dhcpinit); 1523 } 1524 if (connp->conn_ire_cache != NULL) { 1525 ire = connp->conn_ire_cache; 1526 /* 1527 * ip_newroute creates IRE_CACHE with ire_stq coming from 1528 * interface X and ipif coming from interface Y, if interface 1529 * X and Y are part of the same IPMPgroup. Thus whenever 1530 * interface X goes down, remove all references to it by 1531 * checking both on ire_ipif and ire_stq. 1532 */ 1533 if ((ire->ire_ipif != NULL && ire->ire_ipif->ipif_ill == ill) || 1534 (ire->ire_type == IRE_CACHE && 1535 ire->ire_stq == ill->ill_wq)) { 1536 connp->conn_ire_cache = NULL; 1537 mutex_exit(&connp->conn_lock); 1538 ire_refrele_notr(ire); 1539 return; 1540 } 1541 } 1542 mutex_exit(&connp->conn_lock); 1543 } 1544 1545 /* ARGSUSED */ 1546 void 1547 ipif_all_down_tail(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy_arg) 1548 { 1549 ill_t *ill = q->q_ptr; 1550 ipif_t *ipif; 1551 1552 ASSERT(IAM_WRITER_IPSQ(ipsq)); 1553 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 1554 ipif_non_duplicate(ipif); 1555 ipif_down_tail(ipif); 1556 } 1557 freemsg(mp); 1558 ipsq_current_finish(ipsq); 1559 } 1560 1561 /* 1562 * ill_down_start is called when we want to down this ill and bring it up again 1563 * It is called when we receive an M_ERROR / M_HANGUP. In this case we shut down 1564 * all interfaces, but don't tear down any plumbing. 1565 */ 1566 boolean_t 1567 ill_down_start(queue_t *q, mblk_t *mp) 1568 { 1569 ill_t *ill = q->q_ptr; 1570 ipif_t *ipif; 1571 1572 ASSERT(IAM_WRITER_ILL(ill)); 1573 1574 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) 1575 (void) ipif_down(ipif, NULL, NULL); 1576 1577 ill_down(ill); 1578 1579 (void) ipsq_pending_mp_cleanup(ill, NULL); 1580 1581 ipsq_current_start(ill->ill_phyint->phyint_ipsq, ill->ill_ipif, 0); 1582 1583 /* 1584 * Atomically test and add the pending mp if references are active. 1585 */ 1586 mutex_enter(&ill->ill_lock); 1587 if (!ill_is_quiescent(ill)) { 1588 /* call cannot fail since `conn_t *' argument is NULL */ 1589 (void) ipsq_pending_mp_add(NULL, ill->ill_ipif, ill->ill_rq, 1590 mp, ILL_DOWN); 1591 mutex_exit(&ill->ill_lock); 1592 return (B_FALSE); 1593 } 1594 mutex_exit(&ill->ill_lock); 1595 return (B_TRUE); 1596 } 1597 1598 static void 1599 ill_down(ill_t *ill) 1600 { 1601 ip_stack_t *ipst = ill->ill_ipst; 1602 1603 /* Blow off any IREs dependent on this ILL. */ 1604 ire_walk(ill_downi, (char *)ill, ipst); 1605 1606 /* Remove any conn_*_ill depending on this ill */ 1607 ipcl_walk(conn_cleanup_ill, (caddr_t)ill, ipst); 1608 1609 if (ill->ill_group != NULL) { 1610 illgrp_delete(ill); 1611 } 1612 } 1613 1614 /* 1615 * ire_walk routine used to delete every IRE that depends on queues 1616 * associated with 'ill'. (Always called as writer.) 1617 */ 1618 static void 1619 ill_downi(ire_t *ire, char *ill_arg) 1620 { 1621 ill_t *ill = (ill_t *)ill_arg; 1622 1623 /* 1624 * ip_newroute creates IRE_CACHE with ire_stq coming from 1625 * interface X and ipif coming from interface Y, if interface 1626 * X and Y are part of the same IPMP group. Thus whenever interface 1627 * X goes down, remove all references to it by checking both 1628 * on ire_ipif and ire_stq. 1629 */ 1630 if ((ire->ire_ipif != NULL && ire->ire_ipif->ipif_ill == ill) || 1631 (ire->ire_type == IRE_CACHE && ire->ire_stq == ill->ill_wq)) { 1632 ire_delete(ire); 1633 } 1634 } 1635 1636 /* 1637 * Remove ire/nce from the fastpath list. 1638 */ 1639 void 1640 ill_fastpath_nack(ill_t *ill) 1641 { 1642 nce_fastpath_list_dispatch(ill, NULL, NULL); 1643 } 1644 1645 /* Consume an M_IOCACK of the fastpath probe. */ 1646 void 1647 ill_fastpath_ack(ill_t *ill, mblk_t *mp) 1648 { 1649 mblk_t *mp1 = mp; 1650 1651 /* 1652 * If this was the first attempt turn on the fastpath probing. 1653 */ 1654 mutex_enter(&ill->ill_lock); 1655 if (ill->ill_dlpi_fastpath_state == IDS_INPROGRESS) 1656 ill->ill_dlpi_fastpath_state = IDS_OK; 1657 mutex_exit(&ill->ill_lock); 1658 1659 /* Free the M_IOCACK mblk, hold on to the data */ 1660 mp = mp->b_cont; 1661 freeb(mp1); 1662 if (mp == NULL) 1663 return; 1664 if (mp->b_cont != NULL) { 1665 /* 1666 * Update all IRE's or NCE's that are waiting for 1667 * fastpath update. 1668 */ 1669 nce_fastpath_list_dispatch(ill, ndp_fastpath_update, mp); 1670 mp1 = mp->b_cont; 1671 freeb(mp); 1672 mp = mp1; 1673 } else { 1674 ip0dbg(("ill_fastpath_ack: no b_cont\n")); 1675 } 1676 1677 freeb(mp); 1678 } 1679 1680 /* 1681 * Throw an M_IOCTL message downstream asking "do you know fastpath?" 1682 * The data portion of the request is a dl_unitdata_req_t template for 1683 * what we would send downstream in the absence of a fastpath confirmation. 1684 */ 1685 int 1686 ill_fastpath_probe(ill_t *ill, mblk_t *dlur_mp) 1687 { 1688 struct iocblk *ioc; 1689 mblk_t *mp; 1690 1691 if (dlur_mp == NULL) 1692 return (EINVAL); 1693 1694 mutex_enter(&ill->ill_lock); 1695 switch (ill->ill_dlpi_fastpath_state) { 1696 case IDS_FAILED: 1697 /* 1698 * Driver NAKed the first fastpath ioctl - assume it doesn't 1699 * support it. 1700 */ 1701 mutex_exit(&ill->ill_lock); 1702 return (ENOTSUP); 1703 case IDS_UNKNOWN: 1704 /* This is the first probe */ 1705 ill->ill_dlpi_fastpath_state = IDS_INPROGRESS; 1706 break; 1707 default: 1708 break; 1709 } 1710 mutex_exit(&ill->ill_lock); 1711 1712 if ((mp = mkiocb(DL_IOC_HDR_INFO)) == NULL) 1713 return (EAGAIN); 1714 1715 mp->b_cont = copyb(dlur_mp); 1716 if (mp->b_cont == NULL) { 1717 freeb(mp); 1718 return (EAGAIN); 1719 } 1720 1721 ioc = (struct iocblk *)mp->b_rptr; 1722 ioc->ioc_count = msgdsize(mp->b_cont); 1723 1724 putnext(ill->ill_wq, mp); 1725 return (0); 1726 } 1727 1728 void 1729 ill_capability_probe(ill_t *ill) 1730 { 1731 mblk_t *mp; 1732 1733 ASSERT(IAM_WRITER_ILL(ill)); 1734 1735 if (ill->ill_dlpi_capab_state != IDCS_UNKNOWN && 1736 ill->ill_dlpi_capab_state != IDCS_FAILED) 1737 return; 1738 1739 /* 1740 * We are starting a new cycle of capability negotiation. 1741 * Free up the capab reset messages of any previous incarnation. 1742 * We will do a fresh allocation when we get the response to our probe 1743 */ 1744 if (ill->ill_capab_reset_mp != NULL) { 1745 freemsg(ill->ill_capab_reset_mp); 1746 ill->ill_capab_reset_mp = NULL; 1747 } 1748 1749 ip1dbg(("ill_capability_probe: starting capability negotiation\n")); 1750 1751 mp = ip_dlpi_alloc(sizeof (dl_capability_req_t), DL_CAPABILITY_REQ); 1752 if (mp == NULL) 1753 return; 1754 1755 ill_capability_send(ill, mp); 1756 ill->ill_dlpi_capab_state = IDCS_PROBE_SENT; 1757 } 1758 1759 void 1760 ill_capability_reset(ill_t *ill, boolean_t reneg) 1761 { 1762 ASSERT(IAM_WRITER_ILL(ill)); 1763 1764 if (ill->ill_dlpi_capab_state != IDCS_OK) 1765 return; 1766 1767 ill->ill_dlpi_capab_state = reneg ? IDCS_RENEG : IDCS_RESET_SENT; 1768 1769 ill_capability_send(ill, ill->ill_capab_reset_mp); 1770 ill->ill_capab_reset_mp = NULL; 1771 /* 1772 * We turn off all capabilities except those pertaining to 1773 * direct function call capabilities viz. ILL_CAPAB_DLD* 1774 * which will be turned off by the corresponding reset functions. 1775 */ 1776 ill->ill_capabilities &= ~(ILL_CAPAB_MDT | ILL_CAPAB_HCKSUM | 1777 ILL_CAPAB_ZEROCOPY | ILL_CAPAB_AH | ILL_CAPAB_ESP); 1778 } 1779 1780 static void 1781 ill_capability_reset_alloc(ill_t *ill) 1782 { 1783 mblk_t *mp; 1784 size_t size = 0; 1785 int err; 1786 dl_capability_req_t *capb; 1787 1788 ASSERT(IAM_WRITER_ILL(ill)); 1789 ASSERT(ill->ill_capab_reset_mp == NULL); 1790 1791 if (ILL_MDT_CAPABLE(ill)) 1792 size += sizeof (dl_capability_sub_t) + sizeof (dl_capab_mdt_t); 1793 1794 if (ILL_HCKSUM_CAPABLE(ill)) { 1795 size += sizeof (dl_capability_sub_t) + 1796 sizeof (dl_capab_hcksum_t); 1797 } 1798 1799 if (ill->ill_capabilities & ILL_CAPAB_ZEROCOPY) { 1800 size += sizeof (dl_capability_sub_t) + 1801 sizeof (dl_capab_zerocopy_t); 1802 } 1803 1804 if (ill->ill_capabilities & (ILL_CAPAB_AH | ILL_CAPAB_ESP)) { 1805 size += sizeof (dl_capability_sub_t); 1806 size += ill_capability_ipsec_reset_size(ill, NULL, NULL, 1807 NULL, NULL); 1808 } 1809 1810 if (ill->ill_capabilities & ILL_CAPAB_DLD) { 1811 size += sizeof (dl_capability_sub_t) + 1812 sizeof (dl_capab_dld_t); 1813 } 1814 1815 mp = allocb_wait(size + sizeof (dl_capability_req_t), BPRI_MED, 1816 STR_NOSIG, &err); 1817 1818 mp->b_datap->db_type = M_PROTO; 1819 bzero(mp->b_rptr, size + sizeof (dl_capability_req_t)); 1820 1821 capb = (dl_capability_req_t *)mp->b_rptr; 1822 capb->dl_primitive = DL_CAPABILITY_REQ; 1823 capb->dl_sub_offset = sizeof (dl_capability_req_t); 1824 capb->dl_sub_length = size; 1825 1826 mp->b_wptr += sizeof (dl_capability_req_t); 1827 1828 /* 1829 * Each handler fills in the corresponding dl_capability_sub_t 1830 * inside the mblk, 1831 */ 1832 ill_capability_mdt_reset_fill(ill, mp); 1833 ill_capability_hcksum_reset_fill(ill, mp); 1834 ill_capability_zerocopy_reset_fill(ill, mp); 1835 ill_capability_ipsec_reset_fill(ill, mp); 1836 ill_capability_dld_reset_fill(ill, mp); 1837 1838 ill->ill_capab_reset_mp = mp; 1839 } 1840 1841 static void 1842 ill_capability_id_ack(ill_t *ill, mblk_t *mp, dl_capability_sub_t *outers) 1843 { 1844 dl_capab_id_t *id_ic; 1845 uint_t sub_dl_cap = outers->dl_cap; 1846 dl_capability_sub_t *inners; 1847 uint8_t *capend; 1848 1849 ASSERT(sub_dl_cap == DL_CAPAB_ID_WRAPPER); 1850 1851 /* 1852 * Note: range checks here are not absolutely sufficient to 1853 * make us robust against malformed messages sent by drivers; 1854 * this is in keeping with the rest of IP's dlpi handling. 1855 * (Remember, it's coming from something else in the kernel 1856 * address space) 1857 */ 1858 1859 capend = (uint8_t *)(outers + 1) + outers->dl_length; 1860 if (capend > mp->b_wptr) { 1861 cmn_err(CE_WARN, "ill_capability_id_ack: " 1862 "malformed sub-capability too long for mblk"); 1863 return; 1864 } 1865 1866 id_ic = (dl_capab_id_t *)(outers + 1); 1867 1868 if (outers->dl_length < sizeof (*id_ic) || 1869 (inners = &id_ic->id_subcap, 1870 inners->dl_length > (outers->dl_length - sizeof (*inners)))) { 1871 cmn_err(CE_WARN, "ill_capability_id_ack: malformed " 1872 "encapsulated capab type %d too long for mblk", 1873 inners->dl_cap); 1874 return; 1875 } 1876 1877 if (!dlcapabcheckqid(&id_ic->id_mid, ill->ill_lmod_rq)) { 1878 ip1dbg(("ill_capability_id_ack: mid token for capab type %d " 1879 "isn't as expected; pass-thru module(s) detected, " 1880 "discarding capability\n", inners->dl_cap)); 1881 return; 1882 } 1883 1884 /* Process the encapsulated sub-capability */ 1885 ill_capability_dispatch(ill, mp, inners, B_TRUE); 1886 } 1887 1888 /* 1889 * Process Multidata Transmit capability negotiation ack received from a 1890 * DLS Provider. isub must point to the sub-capability (DL_CAPAB_MDT) of a 1891 * DL_CAPABILITY_ACK message. 1892 */ 1893 static void 1894 ill_capability_mdt_ack(ill_t *ill, mblk_t *mp, dl_capability_sub_t *isub) 1895 { 1896 mblk_t *nmp = NULL; 1897 dl_capability_req_t *oc; 1898 dl_capab_mdt_t *mdt_ic, *mdt_oc; 1899 ill_mdt_capab_t **ill_mdt_capab; 1900 uint_t sub_dl_cap = isub->dl_cap; 1901 uint8_t *capend; 1902 1903 ASSERT(sub_dl_cap == DL_CAPAB_MDT); 1904 1905 ill_mdt_capab = (ill_mdt_capab_t **)&ill->ill_mdt_capab; 1906 1907 /* 1908 * Note: range checks here are not absolutely sufficient to 1909 * make us robust against malformed messages sent by drivers; 1910 * this is in keeping with the rest of IP's dlpi handling. 1911 * (Remember, it's coming from something else in the kernel 1912 * address space) 1913 */ 1914 1915 capend = (uint8_t *)(isub + 1) + isub->dl_length; 1916 if (capend > mp->b_wptr) { 1917 cmn_err(CE_WARN, "ill_capability_mdt_ack: " 1918 "malformed sub-capability too long for mblk"); 1919 return; 1920 } 1921 1922 mdt_ic = (dl_capab_mdt_t *)(isub + 1); 1923 1924 if (mdt_ic->mdt_version != MDT_VERSION_2) { 1925 cmn_err(CE_CONT, "ill_capability_mdt_ack: " 1926 "unsupported MDT sub-capability (version %d, expected %d)", 1927 mdt_ic->mdt_version, MDT_VERSION_2); 1928 return; 1929 } 1930 1931 if (!dlcapabcheckqid(&mdt_ic->mdt_mid, ill->ill_lmod_rq)) { 1932 ip1dbg(("ill_capability_mdt_ack: mid token for MDT " 1933 "capability isn't as expected; pass-thru module(s) " 1934 "detected, discarding capability\n")); 1935 return; 1936 } 1937 1938 if (mdt_ic->mdt_flags & DL_CAPAB_MDT_ENABLE) { 1939 1940 if (*ill_mdt_capab == NULL) { 1941 *ill_mdt_capab = kmem_zalloc(sizeof (ill_mdt_capab_t), 1942 KM_NOSLEEP); 1943 if (*ill_mdt_capab == NULL) { 1944 cmn_err(CE_WARN, "ill_capability_mdt_ack: " 1945 "could not enable MDT version %d " 1946 "for %s (ENOMEM)\n", MDT_VERSION_2, 1947 ill->ill_name); 1948 return; 1949 } 1950 } 1951 1952 ip1dbg(("ill_capability_mdt_ack: interface %s supports " 1953 "MDT version %d (%d bytes leading, %d bytes trailing " 1954 "header spaces, %d max pld bufs, %d span limit)\n", 1955 ill->ill_name, MDT_VERSION_2, 1956 mdt_ic->mdt_hdr_head, mdt_ic->mdt_hdr_tail, 1957 mdt_ic->mdt_max_pld, mdt_ic->mdt_span_limit)); 1958 1959 (*ill_mdt_capab)->ill_mdt_version = MDT_VERSION_2; 1960 (*ill_mdt_capab)->ill_mdt_on = 1; 1961 /* 1962 * Round the following values to the nearest 32-bit; ULP 1963 * may further adjust them to accomodate for additional 1964 * protocol headers. We pass these values to ULP during 1965 * bind time. 1966 */ 1967 (*ill_mdt_capab)->ill_mdt_hdr_head = 1968 roundup(mdt_ic->mdt_hdr_head, 4); 1969 (*ill_mdt_capab)->ill_mdt_hdr_tail = 1970 roundup(mdt_ic->mdt_hdr_tail, 4); 1971 (*ill_mdt_capab)->ill_mdt_max_pld = mdt_ic->mdt_max_pld; 1972 (*ill_mdt_capab)->ill_mdt_span_limit = mdt_ic->mdt_span_limit; 1973 1974 ill->ill_capabilities |= ILL_CAPAB_MDT; 1975 } else { 1976 uint_t size; 1977 uchar_t *rptr; 1978 1979 size = sizeof (dl_capability_req_t) + 1980 sizeof (dl_capability_sub_t) + sizeof (dl_capab_mdt_t); 1981 1982 if ((nmp = ip_dlpi_alloc(size, DL_CAPABILITY_REQ)) == NULL) { 1983 cmn_err(CE_WARN, "ill_capability_mdt_ack: " 1984 "could not enable MDT for %s (ENOMEM)\n", 1985 ill->ill_name); 1986 return; 1987 } 1988 1989 rptr = nmp->b_rptr; 1990 /* initialize dl_capability_req_t */ 1991 oc = (dl_capability_req_t *)nmp->b_rptr; 1992 oc->dl_sub_offset = sizeof (dl_capability_req_t); 1993 oc->dl_sub_length = sizeof (dl_capability_sub_t) + 1994 sizeof (dl_capab_mdt_t); 1995 nmp->b_rptr += sizeof (dl_capability_req_t); 1996 1997 /* initialize dl_capability_sub_t */ 1998 bcopy(isub, nmp->b_rptr, sizeof (*isub)); 1999 nmp->b_rptr += sizeof (*isub); 2000 2001 /* initialize dl_capab_mdt_t */ 2002 mdt_oc = (dl_capab_mdt_t *)nmp->b_rptr; 2003 bcopy(mdt_ic, mdt_oc, sizeof (*mdt_ic)); 2004 2005 nmp->b_rptr = rptr; 2006 2007 ip1dbg(("ill_capability_mdt_ack: asking interface %s " 2008 "to enable MDT version %d\n", ill->ill_name, 2009 MDT_VERSION_2)); 2010 2011 /* set ENABLE flag */ 2012 mdt_oc->mdt_flags |= DL_CAPAB_MDT_ENABLE; 2013 2014 /* nmp points to a DL_CAPABILITY_REQ message to enable MDT */ 2015 ill_capability_send(ill, nmp); 2016 } 2017 } 2018 2019 static void 2020 ill_capability_mdt_reset_fill(ill_t *ill, mblk_t *mp) 2021 { 2022 dl_capab_mdt_t *mdt_subcap; 2023 dl_capability_sub_t *dl_subcap; 2024 2025 if (!ILL_MDT_CAPABLE(ill)) 2026 return; 2027 2028 ASSERT(ill->ill_mdt_capab != NULL); 2029 2030 dl_subcap = (dl_capability_sub_t *)mp->b_wptr; 2031 dl_subcap->dl_cap = DL_CAPAB_MDT; 2032 dl_subcap->dl_length = sizeof (*mdt_subcap); 2033 2034 mdt_subcap = (dl_capab_mdt_t *)(dl_subcap + 1); 2035 mdt_subcap->mdt_version = ill->ill_mdt_capab->ill_mdt_version; 2036 mdt_subcap->mdt_flags = 0; 2037 mdt_subcap->mdt_hdr_head = 0; 2038 mdt_subcap->mdt_hdr_tail = 0; 2039 2040 mp->b_wptr += sizeof (*dl_subcap) + sizeof (*mdt_subcap); 2041 } 2042 2043 static void 2044 ill_capability_dld_reset_fill(ill_t *ill, mblk_t *mp) 2045 { 2046 dl_capability_sub_t *dl_subcap; 2047 2048 if (!(ill->ill_capabilities & ILL_CAPAB_DLD)) 2049 return; 2050 2051 /* 2052 * The dl_capab_dld_t that follows the dl_capability_sub_t is not 2053 * initialized below since it is not used by DLD. 2054 */ 2055 dl_subcap = (dl_capability_sub_t *)mp->b_wptr; 2056 dl_subcap->dl_cap = DL_CAPAB_DLD; 2057 dl_subcap->dl_length = sizeof (dl_capab_dld_t); 2058 2059 mp->b_wptr += sizeof (dl_capability_sub_t) + sizeof (dl_capab_dld_t); 2060 } 2061 2062 /* 2063 * Send a DL_NOTIFY_REQ to the specified ill to enable 2064 * DL_NOTE_PROMISC_ON/OFF_PHYS notifications. 2065 * Invoked by ill_capability_ipsec_ack() before enabling IPsec hardware 2066 * acceleration. 2067 * Returns B_TRUE on success, B_FALSE if the message could not be sent. 2068 */ 2069 static boolean_t 2070 ill_enable_promisc_notify(ill_t *ill) 2071 { 2072 mblk_t *mp; 2073 dl_notify_req_t *req; 2074 2075 IPSECHW_DEBUG(IPSECHW_PKT, ("ill_enable_promisc_notify:\n")); 2076 2077 mp = ip_dlpi_alloc(sizeof (dl_notify_req_t), DL_NOTIFY_REQ); 2078 if (mp == NULL) 2079 return (B_FALSE); 2080 2081 req = (dl_notify_req_t *)mp->b_rptr; 2082 req->dl_notifications = DL_NOTE_PROMISC_ON_PHYS | 2083 DL_NOTE_PROMISC_OFF_PHYS; 2084 2085 ill_dlpi_send(ill, mp); 2086 2087 return (B_TRUE); 2088 } 2089 2090 /* 2091 * Allocate an IPsec capability request which will be filled by our 2092 * caller to turn on support for one or more algorithms. 2093 */ 2094 static mblk_t * 2095 ill_alloc_ipsec_cap_req(ill_t *ill, dl_capability_sub_t *isub) 2096 { 2097 mblk_t *nmp; 2098 dl_capability_req_t *ocap; 2099 dl_capab_ipsec_t *ocip; 2100 dl_capab_ipsec_t *icip; 2101 uint8_t *ptr; 2102 icip = (dl_capab_ipsec_t *)(isub + 1); 2103 2104 /* 2105 * The first time around, we send a DL_NOTIFY_REQ to enable 2106 * PROMISC_ON/OFF notification from the provider. We need to 2107 * do this before enabling the algorithms to avoid leakage of 2108 * cleartext packets. 2109 */ 2110 2111 if (!ill_enable_promisc_notify(ill)) 2112 return (NULL); 2113 2114 /* 2115 * Allocate new mblk which will contain a new capability 2116 * request to enable the capabilities. 2117 */ 2118 2119 nmp = ip_dlpi_alloc(sizeof (dl_capability_req_t) + 2120 sizeof (dl_capability_sub_t) + isub->dl_length, DL_CAPABILITY_REQ); 2121 if (nmp == NULL) 2122 return (NULL); 2123 2124 ptr = nmp->b_rptr; 2125 2126 /* initialize dl_capability_req_t */ 2127 ocap = (dl_capability_req_t *)ptr; 2128 ocap->dl_sub_offset = sizeof (dl_capability_req_t); 2129 ocap->dl_sub_length = sizeof (dl_capability_sub_t) + isub->dl_length; 2130 ptr += sizeof (dl_capability_req_t); 2131 2132 /* initialize dl_capability_sub_t */ 2133 bcopy(isub, ptr, sizeof (*isub)); 2134 ptr += sizeof (*isub); 2135 2136 /* initialize dl_capab_ipsec_t */ 2137 ocip = (dl_capab_ipsec_t *)ptr; 2138 bcopy(icip, ocip, sizeof (*icip)); 2139 2140 nmp->b_wptr = (uchar_t *)(&ocip->cip_data[0]); 2141 return (nmp); 2142 } 2143 2144 /* 2145 * Process an IPsec capability negotiation ack received from a DLS Provider. 2146 * isub must point to the sub-capability (DL_CAPAB_IPSEC_AH or 2147 * DL_CAPAB_IPSEC_ESP) of a DL_CAPABILITY_ACK message. 2148 */ 2149 static void 2150 ill_capability_ipsec_ack(ill_t *ill, mblk_t *mp, dl_capability_sub_t *isub) 2151 { 2152 dl_capab_ipsec_t *icip; 2153 dl_capab_ipsec_alg_t *ialg; /* ptr to input alg spec. */ 2154 dl_capab_ipsec_alg_t *oalg; /* ptr to output alg spec. */ 2155 uint_t cipher, nciphers; 2156 mblk_t *nmp; 2157 uint_t alg_len; 2158 boolean_t need_sadb_dump; 2159 uint_t sub_dl_cap = isub->dl_cap; 2160 ill_ipsec_capab_t **ill_capab; 2161 uint64_t ill_capab_flag; 2162 uint8_t *capend, *ciphend; 2163 boolean_t sadb_resync; 2164 2165 ASSERT(sub_dl_cap == DL_CAPAB_IPSEC_AH || 2166 sub_dl_cap == DL_CAPAB_IPSEC_ESP); 2167 2168 if (sub_dl_cap == DL_CAPAB_IPSEC_AH) { 2169 ill_capab = (ill_ipsec_capab_t **)&ill->ill_ipsec_capab_ah; 2170 ill_capab_flag = ILL_CAPAB_AH; 2171 } else { 2172 ill_capab = (ill_ipsec_capab_t **)&ill->ill_ipsec_capab_esp; 2173 ill_capab_flag = ILL_CAPAB_ESP; 2174 } 2175 2176 /* 2177 * If the ill capability structure exists, then this incoming 2178 * DL_CAPABILITY_ACK is a response to a "renegotiation" cycle. 2179 * If this is so, then we'd need to resynchronize the SADB 2180 * after re-enabling the offloaded ciphers. 2181 */ 2182 sadb_resync = (*ill_capab != NULL); 2183 2184 /* 2185 * Note: range checks here are not absolutely sufficient to 2186 * make us robust against malformed messages sent by drivers; 2187 * this is in keeping with the rest of IP's dlpi handling. 2188 * (Remember, it's coming from something else in the kernel 2189 * address space) 2190 */ 2191 2192 capend = (uint8_t *)(isub + 1) + isub->dl_length; 2193 if (capend > mp->b_wptr) { 2194 cmn_err(CE_WARN, "ill_capability_ipsec_ack: " 2195 "malformed sub-capability too long for mblk"); 2196 return; 2197 } 2198 2199 /* 2200 * There are two types of acks we process here: 2201 * 1. acks in reply to a (first form) generic capability req 2202 * (no ENABLE flag set) 2203 * 2. acks in reply to a ENABLE capability req. 2204 * (ENABLE flag set) 2205 * 2206 * We process the subcapability passed as argument as follows: 2207 * 1 do initializations 2208 * 1.1 initialize nmp = NULL 2209 * 1.2 set need_sadb_dump to B_FALSE 2210 * 2 for each cipher in subcapability: 2211 * 2.1 if ENABLE flag is set: 2212 * 2.1.1 update per-ill ipsec capabilities info 2213 * 2.1.2 set need_sadb_dump to B_TRUE 2214 * 2.2 if ENABLE flag is not set: 2215 * 2.2.1 if nmp is NULL: 2216 * 2.2.1.1 allocate and initialize nmp 2217 * 2.2.1.2 init current pos in nmp 2218 * 2.2.2 copy current cipher to current pos in nmp 2219 * 2.2.3 set ENABLE flag in nmp 2220 * 2.2.4 update current pos 2221 * 3 if nmp is not equal to NULL, send enable request 2222 * 3.1 send capability request 2223 * 4 if need_sadb_dump is B_TRUE 2224 * 4.1 enable promiscuous on/off notifications 2225 * 4.2 call ill_dlpi_send(isub->dlcap) to send all 2226 * AH or ESP SA's to interface. 2227 */ 2228 2229 nmp = NULL; 2230 oalg = NULL; 2231 need_sadb_dump = B_FALSE; 2232 icip = (dl_capab_ipsec_t *)(isub + 1); 2233 ialg = (dl_capab_ipsec_alg_t *)(&icip->cip_data[0]); 2234 2235 nciphers = icip->cip_nciphers; 2236 ciphend = (uint8_t *)(ialg + icip->cip_nciphers); 2237 2238 if (ciphend > capend) { 2239 cmn_err(CE_WARN, "ill_capability_ipsec_ack: " 2240 "too many ciphers for sub-capability len"); 2241 return; 2242 } 2243 2244 for (cipher = 0; cipher < nciphers; cipher++) { 2245 alg_len = sizeof (dl_capab_ipsec_alg_t); 2246 2247 if (ialg->alg_flag & DL_CAPAB_ALG_ENABLE) { 2248 /* 2249 * TBD: when we provide a way to disable capabilities 2250 * from above, need to manage the request-pending state 2251 * and fail if we were not expecting this ACK. 2252 */ 2253 IPSECHW_DEBUG(IPSECHW_CAPAB, 2254 ("ill_capability_ipsec_ack: got ENABLE ACK\n")); 2255 2256 /* 2257 * Update IPsec capabilities for this ill 2258 */ 2259 2260 if (*ill_capab == NULL) { 2261 IPSECHW_DEBUG(IPSECHW_CAPAB, 2262 ("ill_capability_ipsec_ack: " 2263 "allocating ipsec_capab for ill\n")); 2264 *ill_capab = ill_ipsec_capab_alloc(); 2265 2266 if (*ill_capab == NULL) { 2267 cmn_err(CE_WARN, 2268 "ill_capability_ipsec_ack: " 2269 "could not enable IPsec Hardware " 2270 "acceleration for %s (ENOMEM)\n", 2271 ill->ill_name); 2272 return; 2273 } 2274 } 2275 2276 ASSERT(ialg->alg_type == DL_CAPAB_IPSEC_ALG_AUTH || 2277 ialg->alg_type == DL_CAPAB_IPSEC_ALG_ENCR); 2278 2279 if (ialg->alg_prim >= MAX_IPSEC_ALGS) { 2280 cmn_err(CE_WARN, 2281 "ill_capability_ipsec_ack: " 2282 "malformed IPsec algorithm id %d", 2283 ialg->alg_prim); 2284 continue; 2285 } 2286 2287 if (ialg->alg_type == DL_CAPAB_IPSEC_ALG_AUTH) { 2288 IPSEC_ALG_ENABLE((*ill_capab)->auth_hw_algs, 2289 ialg->alg_prim); 2290 } else { 2291 ipsec_capab_algparm_t *alp; 2292 2293 IPSEC_ALG_ENABLE((*ill_capab)->encr_hw_algs, 2294 ialg->alg_prim); 2295 if (!ill_ipsec_capab_resize_algparm(*ill_capab, 2296 ialg->alg_prim)) { 2297 cmn_err(CE_WARN, 2298 "ill_capability_ipsec_ack: " 2299 "no space for IPsec alg id %d", 2300 ialg->alg_prim); 2301 continue; 2302 } 2303 alp = &((*ill_capab)->encr_algparm[ 2304 ialg->alg_prim]); 2305 alp->minkeylen = ialg->alg_minbits; 2306 alp->maxkeylen = ialg->alg_maxbits; 2307 } 2308 ill->ill_capabilities |= ill_capab_flag; 2309 /* 2310 * indicate that a capability was enabled, which 2311 * will be used below to kick off a SADB dump 2312 * to the ill. 2313 */ 2314 need_sadb_dump = B_TRUE; 2315 } else { 2316 IPSECHW_DEBUG(IPSECHW_CAPAB, 2317 ("ill_capability_ipsec_ack: enabling alg 0x%x\n", 2318 ialg->alg_prim)); 2319 2320 if (nmp == NULL) { 2321 nmp = ill_alloc_ipsec_cap_req(ill, isub); 2322 if (nmp == NULL) { 2323 /* 2324 * Sending the PROMISC_ON/OFF 2325 * notification request failed. 2326 * We cannot enable the algorithms 2327 * since the Provider will not 2328 * notify IP of promiscous mode 2329 * changes, which could lead 2330 * to leakage of packets. 2331 */ 2332 cmn_err(CE_WARN, 2333 "ill_capability_ipsec_ack: " 2334 "could not enable IPsec Hardware " 2335 "acceleration for %s (ENOMEM)\n", 2336 ill->ill_name); 2337 return; 2338 } 2339 /* ptr to current output alg specifier */ 2340 oalg = (dl_capab_ipsec_alg_t *)nmp->b_wptr; 2341 } 2342 2343 /* 2344 * Copy current alg specifier, set ENABLE 2345 * flag, and advance to next output alg. 2346 * For now we enable all IPsec capabilities. 2347 */ 2348 ASSERT(oalg != NULL); 2349 bcopy(ialg, oalg, alg_len); 2350 oalg->alg_flag |= DL_CAPAB_ALG_ENABLE; 2351 nmp->b_wptr += alg_len; 2352 oalg = (dl_capab_ipsec_alg_t *)nmp->b_wptr; 2353 } 2354 2355 /* move to next input algorithm specifier */ 2356 ialg = (dl_capab_ipsec_alg_t *) 2357 ((char *)ialg + alg_len); 2358 } 2359 2360 if (nmp != NULL) 2361 /* 2362 * nmp points to a DL_CAPABILITY_REQ message to enable 2363 * IPsec hardware acceleration. 2364 */ 2365 ill_capability_send(ill, nmp); 2366 2367 if (need_sadb_dump) 2368 /* 2369 * An acknowledgement corresponding to a request to 2370 * enable acceleration was received, notify SADB. 2371 */ 2372 ill_ipsec_capab_add(ill, sub_dl_cap, sadb_resync); 2373 } 2374 2375 /* 2376 * Given an mblk with enough space in it, create sub-capability entries for 2377 * DL_CAPAB_IPSEC_{AH,ESP} types which consist of previously-advertised 2378 * offloaded ciphers (both AUTH and ENCR) with their enable flags cleared, 2379 * in preparation for the reset the DL_CAPABILITY_REQ message. 2380 */ 2381 static void 2382 ill_fill_ipsec_reset(uint_t nciphers, int stype, uint_t slen, 2383 ill_ipsec_capab_t *ill_cap, mblk_t *mp) 2384 { 2385 dl_capab_ipsec_t *oipsec; 2386 dl_capab_ipsec_alg_t *oalg; 2387 dl_capability_sub_t *dl_subcap; 2388 int i, k; 2389 2390 ASSERT(nciphers > 0); 2391 ASSERT(ill_cap != NULL); 2392 ASSERT(mp != NULL); 2393 ASSERT(MBLKTAIL(mp) >= sizeof (*dl_subcap) + sizeof (*oipsec) + slen); 2394 2395 /* dl_capability_sub_t for "stype" */ 2396 dl_subcap = (dl_capability_sub_t *)mp->b_wptr; 2397 dl_subcap->dl_cap = stype; 2398 dl_subcap->dl_length = sizeof (dl_capab_ipsec_t) + slen; 2399 mp->b_wptr += sizeof (dl_capability_sub_t); 2400 2401 /* dl_capab_ipsec_t for "stype" */ 2402 oipsec = (dl_capab_ipsec_t *)mp->b_wptr; 2403 oipsec->cip_version = 1; 2404 oipsec->cip_nciphers = nciphers; 2405 mp->b_wptr = (uchar_t *)&oipsec->cip_data[0]; 2406 2407 /* create entries for "stype" AUTH ciphers */ 2408 for (i = 0; i < ill_cap->algs_size; i++) { 2409 for (k = 0; k < BITSPERBYTE; k++) { 2410 if ((ill_cap->auth_hw_algs[i] & (1 << k)) == 0) 2411 continue; 2412 2413 oalg = (dl_capab_ipsec_alg_t *)mp->b_wptr; 2414 bzero((void *)oalg, sizeof (*oalg)); 2415 oalg->alg_type = DL_CAPAB_IPSEC_ALG_AUTH; 2416 oalg->alg_prim = k + (BITSPERBYTE * i); 2417 mp->b_wptr += sizeof (dl_capab_ipsec_alg_t); 2418 } 2419 } 2420 /* create entries for "stype" ENCR ciphers */ 2421 for (i = 0; i < ill_cap->algs_size; i++) { 2422 for (k = 0; k < BITSPERBYTE; k++) { 2423 if ((ill_cap->encr_hw_algs[i] & (1 << k)) == 0) 2424 continue; 2425 2426 oalg = (dl_capab_ipsec_alg_t *)mp->b_wptr; 2427 bzero((void *)oalg, sizeof (*oalg)); 2428 oalg->alg_type = DL_CAPAB_IPSEC_ALG_ENCR; 2429 oalg->alg_prim = k + (BITSPERBYTE * i); 2430 mp->b_wptr += sizeof (dl_capab_ipsec_alg_t); 2431 } 2432 } 2433 } 2434 2435 /* 2436 * Macro to count number of 1s in a byte (8-bit word). The total count is 2437 * accumulated into the passed-in argument (sum). We could use SPARCv9's 2438 * POPC instruction, but our macro is more flexible for an arbitrary length 2439 * of bytes, such as {auth,encr}_hw_algs. These variables are currently 2440 * 256-bits long (MAX_IPSEC_ALGS), so if we know for sure that the length 2441 * stays that way, we can reduce the number of iterations required. 2442 */ 2443 #define COUNT_1S(val, sum) { \ 2444 uint8_t x = val & 0xff; \ 2445 x = (x & 0x55) + ((x >> 1) & 0x55); \ 2446 x = (x & 0x33) + ((x >> 2) & 0x33); \ 2447 sum += (x & 0xf) + ((x >> 4) & 0xf); \ 2448 } 2449 2450 /* ARGSUSED */ 2451 static int 2452 ill_capability_ipsec_reset_size(ill_t *ill, int *ah_cntp, int *ah_lenp, 2453 int *esp_cntp, int *esp_lenp) 2454 { 2455 ill_ipsec_capab_t *cap_ah = ill->ill_ipsec_capab_ah; 2456 ill_ipsec_capab_t *cap_esp = ill->ill_ipsec_capab_esp; 2457 uint64_t ill_capabilities = ill->ill_capabilities; 2458 int ah_cnt = 0, esp_cnt = 0; 2459 int ah_len = 0, esp_len = 0; 2460 int i, size = 0; 2461 2462 if (!(ill_capabilities & (ILL_CAPAB_AH | ILL_CAPAB_ESP))) 2463 return (0); 2464 2465 ASSERT(cap_ah != NULL || !(ill_capabilities & ILL_CAPAB_AH)); 2466 ASSERT(cap_esp != NULL || !(ill_capabilities & ILL_CAPAB_ESP)); 2467 2468 /* Find out the number of ciphers for AH */ 2469 if (cap_ah != NULL) { 2470 for (i = 0; i < cap_ah->algs_size; i++) { 2471 COUNT_1S(cap_ah->auth_hw_algs[i], ah_cnt); 2472 COUNT_1S(cap_ah->encr_hw_algs[i], ah_cnt); 2473 } 2474 if (ah_cnt > 0) { 2475 size += sizeof (dl_capability_sub_t) + 2476 sizeof (dl_capab_ipsec_t); 2477 /* dl_capab_ipsec_t contains one dl_capab_ipsec_alg_t */ 2478 ah_len = (ah_cnt - 1) * sizeof (dl_capab_ipsec_alg_t); 2479 size += ah_len; 2480 } 2481 } 2482 2483 /* Find out the number of ciphers for ESP */ 2484 if (cap_esp != NULL) { 2485 for (i = 0; i < cap_esp->algs_size; i++) { 2486 COUNT_1S(cap_esp->auth_hw_algs[i], esp_cnt); 2487 COUNT_1S(cap_esp->encr_hw_algs[i], esp_cnt); 2488 } 2489 if (esp_cnt > 0) { 2490 size += sizeof (dl_capability_sub_t) + 2491 sizeof (dl_capab_ipsec_t); 2492 /* dl_capab_ipsec_t contains one dl_capab_ipsec_alg_t */ 2493 esp_len = (esp_cnt - 1) * sizeof (dl_capab_ipsec_alg_t); 2494 size += esp_len; 2495 } 2496 } 2497 2498 if (ah_cntp != NULL) 2499 *ah_cntp = ah_cnt; 2500 if (ah_lenp != NULL) 2501 *ah_lenp = ah_len; 2502 if (esp_cntp != NULL) 2503 *esp_cntp = esp_cnt; 2504 if (esp_lenp != NULL) 2505 *esp_lenp = esp_len; 2506 2507 return (size); 2508 } 2509 2510 /* ARGSUSED */ 2511 static void 2512 ill_capability_ipsec_reset_fill(ill_t *ill, mblk_t *mp) 2513 { 2514 ill_ipsec_capab_t *cap_ah = ill->ill_ipsec_capab_ah; 2515 ill_ipsec_capab_t *cap_esp = ill->ill_ipsec_capab_esp; 2516 int ah_cnt = 0, esp_cnt = 0; 2517 int ah_len = 0, esp_len = 0; 2518 int size; 2519 2520 size = ill_capability_ipsec_reset_size(ill, &ah_cnt, &ah_len, 2521 &esp_cnt, &esp_len); 2522 if (size == 0) 2523 return; 2524 2525 /* 2526 * Clear the capability flags for IPsec HA but retain the ill 2527 * capability structures since it's possible that another thread 2528 * is still referring to them. The structures only get deallocated 2529 * when we destroy the ill. 2530 * 2531 * Various places check the flags to see if the ill is capable of 2532 * hardware acceleration, and by clearing them we ensure that new 2533 * outbound IPsec packets are sent down encrypted. 2534 */ 2535 2536 /* Fill in DL_CAPAB_IPSEC_AH sub-capability entries */ 2537 if (ah_cnt > 0) { 2538 ill_fill_ipsec_reset(ah_cnt, DL_CAPAB_IPSEC_AH, ah_len, 2539 cap_ah, mp); 2540 } 2541 2542 /* Fill in DL_CAPAB_IPSEC_ESP sub-capability entries */ 2543 if (esp_cnt > 0) { 2544 ill_fill_ipsec_reset(esp_cnt, DL_CAPAB_IPSEC_ESP, esp_len, 2545 cap_esp, mp); 2546 } 2547 2548 /* 2549 * At this point we've composed a bunch of sub-capabilities to be 2550 * encapsulated in a DL_CAPABILITY_REQ and later sent downstream 2551 * by the caller. Upon receiving this reset message, the driver 2552 * must stop inbound decryption (by destroying all inbound SAs) 2553 * and let the corresponding packets come in encrypted. 2554 */ 2555 } 2556 2557 static void 2558 ill_capability_dispatch(ill_t *ill, mblk_t *mp, dl_capability_sub_t *subp, 2559 boolean_t encapsulated) 2560 { 2561 boolean_t legacy = B_FALSE; 2562 2563 /* 2564 * Note that only the following two sub-capabilities may be 2565 * considered as "legacy", since their original definitions 2566 * do not incorporate the dl_mid_t module ID token, and hence 2567 * may require the use of the wrapper sub-capability. 2568 */ 2569 switch (subp->dl_cap) { 2570 case DL_CAPAB_IPSEC_AH: 2571 case DL_CAPAB_IPSEC_ESP: 2572 legacy = B_TRUE; 2573 break; 2574 } 2575 2576 /* 2577 * For legacy sub-capabilities which don't incorporate a queue_t 2578 * pointer in their structures, discard them if we detect that 2579 * there are intermediate modules in between IP and the driver. 2580 */ 2581 if (!encapsulated && legacy && ill->ill_lmod_cnt > 1) { 2582 ip1dbg(("ill_capability_dispatch: unencapsulated capab type " 2583 "%d discarded; %d module(s) present below IP\n", 2584 subp->dl_cap, ill->ill_lmod_cnt)); 2585 return; 2586 } 2587 2588 switch (subp->dl_cap) { 2589 case DL_CAPAB_IPSEC_AH: 2590 case DL_CAPAB_IPSEC_ESP: 2591 ill_capability_ipsec_ack(ill, mp, subp); 2592 break; 2593 case DL_CAPAB_MDT: 2594 ill_capability_mdt_ack(ill, mp, subp); 2595 break; 2596 case DL_CAPAB_HCKSUM: 2597 ill_capability_hcksum_ack(ill, mp, subp); 2598 break; 2599 case DL_CAPAB_ZEROCOPY: 2600 ill_capability_zerocopy_ack(ill, mp, subp); 2601 break; 2602 case DL_CAPAB_DLD: 2603 ill_capability_dld_ack(ill, mp, subp); 2604 break; 2605 default: 2606 ip1dbg(("ill_capability_dispatch: unknown capab type %d\n", 2607 subp->dl_cap)); 2608 } 2609 } 2610 2611 /* 2612 * Process a hardware checksum offload capability negotiation ack received 2613 * from a DLS Provider.isub must point to the sub-capability (DL_CAPAB_HCKSUM) 2614 * of a DL_CAPABILITY_ACK message. 2615 */ 2616 static void 2617 ill_capability_hcksum_ack(ill_t *ill, mblk_t *mp, dl_capability_sub_t *isub) 2618 { 2619 dl_capability_req_t *ocap; 2620 dl_capab_hcksum_t *ihck, *ohck; 2621 ill_hcksum_capab_t **ill_hcksum; 2622 mblk_t *nmp = NULL; 2623 uint_t sub_dl_cap = isub->dl_cap; 2624 uint8_t *capend; 2625 2626 ASSERT(sub_dl_cap == DL_CAPAB_HCKSUM); 2627 2628 ill_hcksum = (ill_hcksum_capab_t **)&ill->ill_hcksum_capab; 2629 2630 /* 2631 * Note: range checks here are not absolutely sufficient to 2632 * make us robust against malformed messages sent by drivers; 2633 * this is in keeping with the rest of IP's dlpi handling. 2634 * (Remember, it's coming from something else in the kernel 2635 * address space) 2636 */ 2637 capend = (uint8_t *)(isub + 1) + isub->dl_length; 2638 if (capend > mp->b_wptr) { 2639 cmn_err(CE_WARN, "ill_capability_hcksum_ack: " 2640 "malformed sub-capability too long for mblk"); 2641 return; 2642 } 2643 2644 /* 2645 * There are two types of acks we process here: 2646 * 1. acks in reply to a (first form) generic capability req 2647 * (no ENABLE flag set) 2648 * 2. acks in reply to a ENABLE capability req. 2649 * (ENABLE flag set) 2650 */ 2651 ihck = (dl_capab_hcksum_t *)(isub + 1); 2652 2653 if (ihck->hcksum_version != HCKSUM_VERSION_1) { 2654 cmn_err(CE_CONT, "ill_capability_hcksum_ack: " 2655 "unsupported hardware checksum " 2656 "sub-capability (version %d, expected %d)", 2657 ihck->hcksum_version, HCKSUM_VERSION_1); 2658 return; 2659 } 2660 2661 if (!dlcapabcheckqid(&ihck->hcksum_mid, ill->ill_lmod_rq)) { 2662 ip1dbg(("ill_capability_hcksum_ack: mid token for hardware " 2663 "checksum capability isn't as expected; pass-thru " 2664 "module(s) detected, discarding capability\n")); 2665 return; 2666 } 2667 2668 #define CURR_HCKSUM_CAPAB \ 2669 (HCKSUM_INET_PARTIAL | HCKSUM_INET_FULL_V4 | \ 2670 HCKSUM_INET_FULL_V6 | HCKSUM_IPHDRCKSUM) 2671 2672 if ((ihck->hcksum_txflags & HCKSUM_ENABLE) && 2673 (ihck->hcksum_txflags & CURR_HCKSUM_CAPAB)) { 2674 /* do ENABLE processing */ 2675 if (*ill_hcksum == NULL) { 2676 *ill_hcksum = kmem_zalloc(sizeof (ill_hcksum_capab_t), 2677 KM_NOSLEEP); 2678 2679 if (*ill_hcksum == NULL) { 2680 cmn_err(CE_WARN, "ill_capability_hcksum_ack: " 2681 "could not enable hcksum version %d " 2682 "for %s (ENOMEM)\n", HCKSUM_CURRENT_VERSION, 2683 ill->ill_name); 2684 return; 2685 } 2686 } 2687 2688 (*ill_hcksum)->ill_hcksum_version = ihck->hcksum_version; 2689 (*ill_hcksum)->ill_hcksum_txflags = ihck->hcksum_txflags; 2690 ill->ill_capabilities |= ILL_CAPAB_HCKSUM; 2691 ip1dbg(("ill_capability_hcksum_ack: interface %s " 2692 "has enabled hardware checksumming\n ", 2693 ill->ill_name)); 2694 } else if (ihck->hcksum_txflags & CURR_HCKSUM_CAPAB) { 2695 /* 2696 * Enabling hardware checksum offload 2697 * Currently IP supports {TCP,UDP}/IPv4 2698 * partial and full cksum offload and 2699 * IPv4 header checksum offload. 2700 * Allocate new mblk which will 2701 * contain a new capability request 2702 * to enable hardware checksum offload. 2703 */ 2704 uint_t size; 2705 uchar_t *rptr; 2706 2707 size = sizeof (dl_capability_req_t) + 2708 sizeof (dl_capability_sub_t) + isub->dl_length; 2709 2710 if ((nmp = ip_dlpi_alloc(size, DL_CAPABILITY_REQ)) == NULL) { 2711 cmn_err(CE_WARN, "ill_capability_hcksum_ack: " 2712 "could not enable hardware cksum for %s (ENOMEM)\n", 2713 ill->ill_name); 2714 return; 2715 } 2716 2717 rptr = nmp->b_rptr; 2718 /* initialize dl_capability_req_t */ 2719 ocap = (dl_capability_req_t *)nmp->b_rptr; 2720 ocap->dl_sub_offset = 2721 sizeof (dl_capability_req_t); 2722 ocap->dl_sub_length = 2723 sizeof (dl_capability_sub_t) + 2724 isub->dl_length; 2725 nmp->b_rptr += sizeof (dl_capability_req_t); 2726 2727 /* initialize dl_capability_sub_t */ 2728 bcopy(isub, nmp->b_rptr, sizeof (*isub)); 2729 nmp->b_rptr += sizeof (*isub); 2730 2731 /* initialize dl_capab_hcksum_t */ 2732 ohck = (dl_capab_hcksum_t *)nmp->b_rptr; 2733 bcopy(ihck, ohck, sizeof (*ihck)); 2734 2735 nmp->b_rptr = rptr; 2736 ASSERT(nmp->b_wptr == (nmp->b_rptr + size)); 2737 2738 /* Set ENABLE flag */ 2739 ohck->hcksum_txflags &= CURR_HCKSUM_CAPAB; 2740 ohck->hcksum_txflags |= HCKSUM_ENABLE; 2741 2742 /* 2743 * nmp points to a DL_CAPABILITY_REQ message to enable 2744 * hardware checksum acceleration. 2745 */ 2746 ill_capability_send(ill, nmp); 2747 } else { 2748 ip1dbg(("ill_capability_hcksum_ack: interface %s has " 2749 "advertised %x hardware checksum capability flags\n", 2750 ill->ill_name, ihck->hcksum_txflags)); 2751 } 2752 } 2753 2754 static void 2755 ill_capability_hcksum_reset_fill(ill_t *ill, mblk_t *mp) 2756 { 2757 dl_capab_hcksum_t *hck_subcap; 2758 dl_capability_sub_t *dl_subcap; 2759 2760 if (!ILL_HCKSUM_CAPABLE(ill)) 2761 return; 2762 2763 ASSERT(ill->ill_hcksum_capab != NULL); 2764 2765 dl_subcap = (dl_capability_sub_t *)mp->b_wptr; 2766 dl_subcap->dl_cap = DL_CAPAB_HCKSUM; 2767 dl_subcap->dl_length = sizeof (*hck_subcap); 2768 2769 hck_subcap = (dl_capab_hcksum_t *)(dl_subcap + 1); 2770 hck_subcap->hcksum_version = ill->ill_hcksum_capab->ill_hcksum_version; 2771 hck_subcap->hcksum_txflags = 0; 2772 2773 mp->b_wptr += sizeof (*dl_subcap) + sizeof (*hck_subcap); 2774 } 2775 2776 static void 2777 ill_capability_zerocopy_ack(ill_t *ill, mblk_t *mp, dl_capability_sub_t *isub) 2778 { 2779 mblk_t *nmp = NULL; 2780 dl_capability_req_t *oc; 2781 dl_capab_zerocopy_t *zc_ic, *zc_oc; 2782 ill_zerocopy_capab_t **ill_zerocopy_capab; 2783 uint_t sub_dl_cap = isub->dl_cap; 2784 uint8_t *capend; 2785 2786 ASSERT(sub_dl_cap == DL_CAPAB_ZEROCOPY); 2787 2788 ill_zerocopy_capab = (ill_zerocopy_capab_t **)&ill->ill_zerocopy_capab; 2789 2790 /* 2791 * Note: range checks here are not absolutely sufficient to 2792 * make us robust against malformed messages sent by drivers; 2793 * this is in keeping with the rest of IP's dlpi handling. 2794 * (Remember, it's coming from something else in the kernel 2795 * address space) 2796 */ 2797 capend = (uint8_t *)(isub + 1) + isub->dl_length; 2798 if (capend > mp->b_wptr) { 2799 cmn_err(CE_WARN, "ill_capability_zerocopy_ack: " 2800 "malformed sub-capability too long for mblk"); 2801 return; 2802 } 2803 2804 zc_ic = (dl_capab_zerocopy_t *)(isub + 1); 2805 if (zc_ic->zerocopy_version != ZEROCOPY_VERSION_1) { 2806 cmn_err(CE_CONT, "ill_capability_zerocopy_ack: " 2807 "unsupported ZEROCOPY sub-capability (version %d, " 2808 "expected %d)", zc_ic->zerocopy_version, 2809 ZEROCOPY_VERSION_1); 2810 return; 2811 } 2812 2813 if (!dlcapabcheckqid(&zc_ic->zerocopy_mid, ill->ill_lmod_rq)) { 2814 ip1dbg(("ill_capability_zerocopy_ack: mid token for zerocopy " 2815 "capability isn't as expected; pass-thru module(s) " 2816 "detected, discarding capability\n")); 2817 return; 2818 } 2819 2820 if ((zc_ic->zerocopy_flags & DL_CAPAB_VMSAFE_MEM) != 0) { 2821 if (*ill_zerocopy_capab == NULL) { 2822 *ill_zerocopy_capab = 2823 kmem_zalloc(sizeof (ill_zerocopy_capab_t), 2824 KM_NOSLEEP); 2825 2826 if (*ill_zerocopy_capab == NULL) { 2827 cmn_err(CE_WARN, "ill_capability_zerocopy_ack: " 2828 "could not enable Zero-copy version %d " 2829 "for %s (ENOMEM)\n", ZEROCOPY_VERSION_1, 2830 ill->ill_name); 2831 return; 2832 } 2833 } 2834 2835 ip1dbg(("ill_capability_zerocopy_ack: interface %s " 2836 "supports Zero-copy version %d\n", ill->ill_name, 2837 ZEROCOPY_VERSION_1)); 2838 2839 (*ill_zerocopy_capab)->ill_zerocopy_version = 2840 zc_ic->zerocopy_version; 2841 (*ill_zerocopy_capab)->ill_zerocopy_flags = 2842 zc_ic->zerocopy_flags; 2843 2844 ill->ill_capabilities |= ILL_CAPAB_ZEROCOPY; 2845 } else { 2846 uint_t size; 2847 uchar_t *rptr; 2848 2849 size = sizeof (dl_capability_req_t) + 2850 sizeof (dl_capability_sub_t) + 2851 sizeof (dl_capab_zerocopy_t); 2852 2853 if ((nmp = ip_dlpi_alloc(size, DL_CAPABILITY_REQ)) == NULL) { 2854 cmn_err(CE_WARN, "ill_capability_zerocopy_ack: " 2855 "could not enable zerocopy for %s (ENOMEM)\n", 2856 ill->ill_name); 2857 return; 2858 } 2859 2860 rptr = nmp->b_rptr; 2861 /* initialize dl_capability_req_t */ 2862 oc = (dl_capability_req_t *)rptr; 2863 oc->dl_sub_offset = sizeof (dl_capability_req_t); 2864 oc->dl_sub_length = sizeof (dl_capability_sub_t) + 2865 sizeof (dl_capab_zerocopy_t); 2866 rptr += sizeof (dl_capability_req_t); 2867 2868 /* initialize dl_capability_sub_t */ 2869 bcopy(isub, rptr, sizeof (*isub)); 2870 rptr += sizeof (*isub); 2871 2872 /* initialize dl_capab_zerocopy_t */ 2873 zc_oc = (dl_capab_zerocopy_t *)rptr; 2874 *zc_oc = *zc_ic; 2875 2876 ip1dbg(("ill_capability_zerocopy_ack: asking interface %s " 2877 "to enable zero-copy version %d\n", ill->ill_name, 2878 ZEROCOPY_VERSION_1)); 2879 2880 /* set VMSAFE_MEM flag */ 2881 zc_oc->zerocopy_flags |= DL_CAPAB_VMSAFE_MEM; 2882 2883 /* nmp points to a DL_CAPABILITY_REQ message to enable zcopy */ 2884 ill_capability_send(ill, nmp); 2885 } 2886 } 2887 2888 static void 2889 ill_capability_zerocopy_reset_fill(ill_t *ill, mblk_t *mp) 2890 { 2891 dl_capab_zerocopy_t *zerocopy_subcap; 2892 dl_capability_sub_t *dl_subcap; 2893 2894 if (!(ill->ill_capabilities & ILL_CAPAB_ZEROCOPY)) 2895 return; 2896 2897 ASSERT(ill->ill_zerocopy_capab != NULL); 2898 2899 dl_subcap = (dl_capability_sub_t *)mp->b_wptr; 2900 dl_subcap->dl_cap = DL_CAPAB_ZEROCOPY; 2901 dl_subcap->dl_length = sizeof (*zerocopy_subcap); 2902 2903 zerocopy_subcap = (dl_capab_zerocopy_t *)(dl_subcap + 1); 2904 zerocopy_subcap->zerocopy_version = 2905 ill->ill_zerocopy_capab->ill_zerocopy_version; 2906 zerocopy_subcap->zerocopy_flags = 0; 2907 2908 mp->b_wptr += sizeof (*dl_subcap) + sizeof (*zerocopy_subcap); 2909 } 2910 2911 /* 2912 * DLD capability 2913 * Refer to dld.h for more information regarding the purpose and usage 2914 * of this capability. 2915 */ 2916 static void 2917 ill_capability_dld_ack(ill_t *ill, mblk_t *mp, dl_capability_sub_t *isub) 2918 { 2919 dl_capab_dld_t *dld_ic, dld; 2920 uint_t sub_dl_cap = isub->dl_cap; 2921 uint8_t *capend; 2922 ill_dld_capab_t *idc; 2923 2924 ASSERT(IAM_WRITER_ILL(ill)); 2925 ASSERT(sub_dl_cap == DL_CAPAB_DLD); 2926 2927 /* 2928 * Note: range checks here are not absolutely sufficient to 2929 * make us robust against malformed messages sent by drivers; 2930 * this is in keeping with the rest of IP's dlpi handling. 2931 * (Remember, it's coming from something else in the kernel 2932 * address space) 2933 */ 2934 capend = (uint8_t *)(isub + 1) + isub->dl_length; 2935 if (capend > mp->b_wptr) { 2936 cmn_err(CE_WARN, "ill_capability_dld_ack: " 2937 "malformed sub-capability too long for mblk"); 2938 return; 2939 } 2940 dld_ic = (dl_capab_dld_t *)(isub + 1); 2941 if (dld_ic->dld_version != DLD_CURRENT_VERSION) { 2942 cmn_err(CE_CONT, "ill_capability_dld_ack: " 2943 "unsupported DLD sub-capability (version %d, " 2944 "expected %d)", dld_ic->dld_version, 2945 DLD_CURRENT_VERSION); 2946 return; 2947 } 2948 if (!dlcapabcheckqid(&dld_ic->dld_mid, ill->ill_lmod_rq)) { 2949 ip1dbg(("ill_capability_dld_ack: mid token for dld " 2950 "capability isn't as expected; pass-thru module(s) " 2951 "detected, discarding capability\n")); 2952 return; 2953 } 2954 2955 /* 2956 * Copy locally to ensure alignment. 2957 */ 2958 bcopy(dld_ic, &dld, sizeof (dl_capab_dld_t)); 2959 2960 if ((idc = ill->ill_dld_capab) == NULL) { 2961 idc = kmem_zalloc(sizeof (ill_dld_capab_t), KM_NOSLEEP); 2962 if (idc == NULL) { 2963 cmn_err(CE_WARN, "ill_capability_dld_ack: " 2964 "could not enable DLD version %d " 2965 "for %s (ENOMEM)\n", DLD_CURRENT_VERSION, 2966 ill->ill_name); 2967 return; 2968 } 2969 idc->idc_capab_df = (ip_capab_func_t)dld.dld_capab; 2970 idc->idc_capab_dh = (void *)dld.dld_capab_handle; 2971 ill->ill_dld_capab = idc; 2972 } 2973 ip1dbg(("ill_capability_dld_ack: interface %s " 2974 "supports DLD version %d\n", ill->ill_name, DLD_CURRENT_VERSION)); 2975 2976 ill_capability_dld_enable(ill); 2977 } 2978 2979 /* 2980 * Typically capability negotiation between IP and the driver happens via 2981 * DLPI message exchange. However GLD also offers a direct function call 2982 * mechanism to exchange the DLD_DIRECT_CAPAB and DLD_POLL_CAPAB capabilities, 2983 * But arbitrary function calls into IP or GLD are not permitted, since both 2984 * of them are protected by their own perimeter mechanism. The perimeter can 2985 * be viewed as a coarse lock or serialization mechanism. The hierarchy of 2986 * these perimeters is IP -> MAC. Thus for example to enable the squeue 2987 * polling, IP needs to enter its perimeter, then call ill_mac_perim_enter 2988 * to enter the mac perimeter and then do the direct function calls into 2989 * GLD to enable squeue polling. The ring related callbacks from the mac into 2990 * the stack to add, bind, quiesce, restart or cleanup a ring are all 2991 * protected by the mac perimeter. 2992 */ 2993 static void 2994 ill_mac_perim_enter(ill_t *ill, mac_perim_handle_t *mphp) 2995 { 2996 ill_dld_capab_t *idc = ill->ill_dld_capab; 2997 int err; 2998 2999 err = idc->idc_capab_df(idc->idc_capab_dh, DLD_CAPAB_PERIM, mphp, 3000 DLD_ENABLE); 3001 ASSERT(err == 0); 3002 } 3003 3004 static void 3005 ill_mac_perim_exit(ill_t *ill, mac_perim_handle_t mph) 3006 { 3007 ill_dld_capab_t *idc = ill->ill_dld_capab; 3008 int err; 3009 3010 err = idc->idc_capab_df(idc->idc_capab_dh, DLD_CAPAB_PERIM, mph, 3011 DLD_DISABLE); 3012 ASSERT(err == 0); 3013 } 3014 3015 boolean_t 3016 ill_mac_perim_held(ill_t *ill) 3017 { 3018 ill_dld_capab_t *idc = ill->ill_dld_capab; 3019 3020 return (idc->idc_capab_df(idc->idc_capab_dh, DLD_CAPAB_PERIM, NULL, 3021 DLD_QUERY)); 3022 } 3023 3024 static void 3025 ill_capability_direct_enable(ill_t *ill) 3026 { 3027 ill_dld_capab_t *idc = ill->ill_dld_capab; 3028 ill_dld_direct_t *idd = &idc->idc_direct; 3029 dld_capab_direct_t direct; 3030 int rc; 3031 3032 ASSERT(!ill->ill_isv6 && IAM_WRITER_ILL(ill)); 3033 3034 bzero(&direct, sizeof (direct)); 3035 direct.di_rx_cf = (uintptr_t)ip_input; 3036 direct.di_rx_ch = ill; 3037 3038 rc = idc->idc_capab_df(idc->idc_capab_dh, DLD_CAPAB_DIRECT, &direct, 3039 DLD_ENABLE); 3040 if (rc == 0) { 3041 idd->idd_tx_df = (ip_dld_tx_t)direct.di_tx_df; 3042 idd->idd_tx_dh = direct.di_tx_dh; 3043 idd->idd_tx_cb_df = (ip_dld_callb_t)direct.di_tx_cb_df; 3044 idd->idd_tx_cb_dh = direct.di_tx_cb_dh; 3045 /* 3046 * One time registration of flow enable callback function 3047 */ 3048 ill->ill_flownotify_mh = idd->idd_tx_cb_df(idd->idd_tx_cb_dh, 3049 ill_flow_enable, ill); 3050 ill->ill_capabilities |= ILL_CAPAB_DLD_DIRECT; 3051 DTRACE_PROBE1(direct_on, (ill_t *), ill); 3052 } else { 3053 cmn_err(CE_WARN, "warning: could not enable DIRECT " 3054 "capability, rc = %d\n", rc); 3055 DTRACE_PROBE2(direct_off, (ill_t *), ill, (int), rc); 3056 } 3057 } 3058 3059 static void 3060 ill_capability_poll_enable(ill_t *ill) 3061 { 3062 ill_dld_capab_t *idc = ill->ill_dld_capab; 3063 dld_capab_poll_t poll; 3064 int rc; 3065 3066 ASSERT(!ill->ill_isv6 && IAM_WRITER_ILL(ill)); 3067 3068 bzero(&poll, sizeof (poll)); 3069 poll.poll_ring_add_cf = (uintptr_t)ip_squeue_add_ring; 3070 poll.poll_ring_remove_cf = (uintptr_t)ip_squeue_clean_ring; 3071 poll.poll_ring_quiesce_cf = (uintptr_t)ip_squeue_quiesce_ring; 3072 poll.poll_ring_restart_cf = (uintptr_t)ip_squeue_restart_ring; 3073 poll.poll_ring_bind_cf = (uintptr_t)ip_squeue_bind_ring; 3074 poll.poll_ring_ch = ill; 3075 rc = idc->idc_capab_df(idc->idc_capab_dh, DLD_CAPAB_POLL, &poll, 3076 DLD_ENABLE); 3077 if (rc == 0) { 3078 ill->ill_capabilities |= ILL_CAPAB_DLD_POLL; 3079 DTRACE_PROBE1(poll_on, (ill_t *), ill); 3080 } else { 3081 ip1dbg(("warning: could not enable POLL " 3082 "capability, rc = %d\n", rc)); 3083 DTRACE_PROBE2(poll_off, (ill_t *), ill, (int), rc); 3084 } 3085 } 3086 3087 /* 3088 * Enable the LSO capability. 3089 */ 3090 static void 3091 ill_capability_lso_enable(ill_t *ill) 3092 { 3093 ill_dld_capab_t *idc = ill->ill_dld_capab; 3094 dld_capab_lso_t lso; 3095 int rc; 3096 3097 ASSERT(!ill->ill_isv6 && IAM_WRITER_ILL(ill)); 3098 3099 if (ill->ill_lso_capab == NULL) { 3100 ill->ill_lso_capab = kmem_zalloc(sizeof (ill_lso_capab_t), 3101 KM_NOSLEEP); 3102 if (ill->ill_lso_capab == NULL) { 3103 cmn_err(CE_WARN, "ill_capability_lso_enable: " 3104 "could not enable LSO for %s (ENOMEM)\n", 3105 ill->ill_name); 3106 return; 3107 } 3108 } 3109 3110 bzero(&lso, sizeof (lso)); 3111 if ((rc = idc->idc_capab_df(idc->idc_capab_dh, DLD_CAPAB_LSO, &lso, 3112 DLD_ENABLE)) == 0) { 3113 ill->ill_lso_capab->ill_lso_flags = lso.lso_flags; 3114 ill->ill_lso_capab->ill_lso_max = lso.lso_max; 3115 ill->ill_capabilities |= ILL_CAPAB_DLD_LSO; 3116 ip1dbg(("ill_capability_lso_enable: interface %s " 3117 "has enabled LSO\n ", ill->ill_name)); 3118 } else { 3119 kmem_free(ill->ill_lso_capab, sizeof (ill_lso_capab_t)); 3120 ill->ill_lso_capab = NULL; 3121 DTRACE_PROBE2(lso_off, (ill_t *), ill, (int), rc); 3122 } 3123 } 3124 3125 static void 3126 ill_capability_dld_enable(ill_t *ill) 3127 { 3128 mac_perim_handle_t mph; 3129 3130 ASSERT(IAM_WRITER_ILL(ill)); 3131 3132 if (ill->ill_isv6) 3133 return; 3134 3135 ill_mac_perim_enter(ill, &mph); 3136 if (!ill->ill_isv6) { 3137 ill_capability_direct_enable(ill); 3138 ill_capability_poll_enable(ill); 3139 ill_capability_lso_enable(ill); 3140 } 3141 ill->ill_capabilities |= ILL_CAPAB_DLD; 3142 ill_mac_perim_exit(ill, mph); 3143 } 3144 3145 static void 3146 ill_capability_dld_disable(ill_t *ill) 3147 { 3148 ill_dld_capab_t *idc; 3149 ill_dld_direct_t *idd; 3150 mac_perim_handle_t mph; 3151 3152 ASSERT(IAM_WRITER_ILL(ill)); 3153 3154 if (!(ill->ill_capabilities & ILL_CAPAB_DLD)) 3155 return; 3156 3157 ill_mac_perim_enter(ill, &mph); 3158 3159 idc = ill->ill_dld_capab; 3160 if ((ill->ill_capabilities & ILL_CAPAB_DLD_DIRECT) != 0) { 3161 /* 3162 * For performance we avoid locks in the transmit data path 3163 * and don't maintain a count of the number of threads using 3164 * direct calls. Thus some threads could be using direct 3165 * transmit calls to GLD, even after the capability mechanism 3166 * turns it off. This is still safe since the handles used in 3167 * the direct calls continue to be valid until the unplumb is 3168 * completed. Remove the callback that was added (1-time) at 3169 * capab enable time. 3170 */ 3171 mutex_enter(&ill->ill_lock); 3172 ill->ill_capabilities &= ~ILL_CAPAB_DLD_DIRECT; 3173 mutex_exit(&ill->ill_lock); 3174 if (ill->ill_flownotify_mh != NULL) { 3175 idd = &idc->idc_direct; 3176 idd->idd_tx_cb_df(idd->idd_tx_cb_dh, NULL, 3177 ill->ill_flownotify_mh); 3178 ill->ill_flownotify_mh = NULL; 3179 } 3180 (void) idc->idc_capab_df(idc->idc_capab_dh, DLD_CAPAB_DIRECT, 3181 NULL, DLD_DISABLE); 3182 } 3183 3184 if ((ill->ill_capabilities & ILL_CAPAB_DLD_POLL) != 0) { 3185 ill->ill_capabilities &= ~ILL_CAPAB_DLD_POLL; 3186 ip_squeue_clean_all(ill); 3187 (void) idc->idc_capab_df(idc->idc_capab_dh, DLD_CAPAB_POLL, 3188 NULL, DLD_DISABLE); 3189 } 3190 3191 if ((ill->ill_capabilities & ILL_CAPAB_DLD_LSO) != 0) { 3192 ASSERT(ill->ill_lso_capab != NULL); 3193 /* 3194 * Clear the capability flag for LSO but retain the 3195 * ill_lso_capab structure since it's possible that another 3196 * thread is still referring to it. The structure only gets 3197 * deallocated when we destroy the ill. 3198 */ 3199 3200 ill->ill_capabilities &= ~ILL_CAPAB_DLD_LSO; 3201 (void) idc->idc_capab_df(idc->idc_capab_dh, DLD_CAPAB_LSO, 3202 NULL, DLD_DISABLE); 3203 } 3204 3205 ill->ill_capabilities &= ~ILL_CAPAB_DLD; 3206 ill_mac_perim_exit(ill, mph); 3207 } 3208 3209 /* 3210 * Capability Negotiation protocol 3211 * 3212 * We don't wait for DLPI capability operations to finish during interface 3213 * bringup or teardown. Doing so would introduce more asynchrony and the 3214 * interface up/down operations will need multiple return and restarts. 3215 * Instead the 'ipsq_current_ipif' of the ipsq is not cleared as long as 3216 * the 'ill_dlpi_deferred' chain is non-empty. This ensures that the next 3217 * exclusive operation won't start until the DLPI operations of the previous 3218 * exclusive operation complete. 3219 * 3220 * The capability state machine is shown below. 3221 * 3222 * state next state event, action 3223 * 3224 * IDCS_UNKNOWN IDCS_PROBE_SENT ill_capability_probe 3225 * IDCS_PROBE_SENT IDCS_OK ill_capability_ack 3226 * IDCS_PROBE_SENT IDCS_FAILED ip_rput_dlpi_writer (nack) 3227 * IDCS_OK IDCS_RENEG Receipt of DL_NOTE_CAPAB_RENEG 3228 * IDCS_OK IDCS_RESET_SENT ill_capability_reset 3229 * IDCS_RESET_SENT IDCS_UNKNOWN ill_capability_ack_thr 3230 * IDCS_RENEG IDCS_PROBE_SENT ill_capability_ack_thr -> 3231 * ill_capability_probe. 3232 */ 3233 3234 /* 3235 * Dedicated thread started from ip_stack_init that handles capability 3236 * disable. This thread ensures the taskq dispatch does not fail by waiting 3237 * for resources using TQ_SLEEP. The taskq mechanism is used to ensure 3238 * that direct calls to DLD are done in a cv_waitable context. 3239 */ 3240 void 3241 ill_taskq_dispatch(ip_stack_t *ipst) 3242 { 3243 callb_cpr_t cprinfo; 3244 char name[64]; 3245 mblk_t *mp; 3246 3247 (void) snprintf(name, sizeof (name), "ill_taskq_dispatch_%d", 3248 ipst->ips_netstack->netstack_stackid); 3249 CALLB_CPR_INIT(&cprinfo, &ipst->ips_capab_taskq_lock, callb_generic_cpr, 3250 name); 3251 mutex_enter(&ipst->ips_capab_taskq_lock); 3252 3253 for (;;) { 3254 mp = list_head(&ipst->ips_capab_taskq_list); 3255 while (mp != NULL) { 3256 list_remove(&ipst->ips_capab_taskq_list, mp); 3257 mutex_exit(&ipst->ips_capab_taskq_lock); 3258 VERIFY(taskq_dispatch(system_taskq, 3259 ill_capability_ack_thr, mp, TQ_SLEEP) != 0); 3260 mutex_enter(&ipst->ips_capab_taskq_lock); 3261 mp = list_head(&ipst->ips_capab_taskq_list); 3262 } 3263 3264 if (ipst->ips_capab_taskq_quit) 3265 break; 3266 CALLB_CPR_SAFE_BEGIN(&cprinfo); 3267 cv_wait(&ipst->ips_capab_taskq_cv, &ipst->ips_capab_taskq_lock); 3268 CALLB_CPR_SAFE_END(&cprinfo, &ipst->ips_capab_taskq_lock); 3269 } 3270 VERIFY(list_head(&ipst->ips_capab_taskq_list) == NULL); 3271 CALLB_CPR_EXIT(&cprinfo); 3272 thread_exit(); 3273 } 3274 3275 /* 3276 * Consume a new-style hardware capabilities negotiation ack. 3277 * Called via taskq on receipt of DL_CAPABBILITY_ACK. 3278 */ 3279 static void 3280 ill_capability_ack_thr(void *arg) 3281 { 3282 mblk_t *mp = arg; 3283 dl_capability_ack_t *capp; 3284 dl_capability_sub_t *subp, *endp; 3285 ill_t *ill; 3286 boolean_t reneg; 3287 3288 ill = (ill_t *)mp->b_prev; 3289 VERIFY(ipsq_enter(ill, B_FALSE, CUR_OP) == B_TRUE); 3290 3291 if (ill->ill_dlpi_capab_state == IDCS_RESET_SENT || 3292 ill->ill_dlpi_capab_state == IDCS_RENEG) { 3293 /* 3294 * We have received the ack for our DL_CAPAB reset request. 3295 * There isnt' anything in the message that needs processing. 3296 * All message based capabilities have been disabled, now 3297 * do the function call based capability disable. 3298 */ 3299 reneg = ill->ill_dlpi_capab_state == IDCS_RENEG; 3300 ill_capability_dld_disable(ill); 3301 ill->ill_dlpi_capab_state = IDCS_UNKNOWN; 3302 if (reneg) 3303 ill_capability_probe(ill); 3304 goto done; 3305 } 3306 3307 if (ill->ill_dlpi_capab_state == IDCS_PROBE_SENT) 3308 ill->ill_dlpi_capab_state = IDCS_OK; 3309 3310 capp = (dl_capability_ack_t *)mp->b_rptr; 3311 3312 if (capp->dl_sub_length == 0) { 3313 /* no new-style capabilities */ 3314 goto done; 3315 } 3316 3317 /* make sure the driver supplied correct dl_sub_length */ 3318 if ((sizeof (*capp) + capp->dl_sub_length) > MBLKL(mp)) { 3319 ip0dbg(("ill_capability_ack: bad DL_CAPABILITY_ACK, " 3320 "invalid dl_sub_length (%d)\n", capp->dl_sub_length)); 3321 goto done; 3322 } 3323 3324 3325 #define SC(base, offset) (dl_capability_sub_t *)(((uchar_t *)(base))+(offset)) 3326 /* 3327 * There are sub-capabilities. Process the ones we know about. 3328 * Loop until we don't have room for another sub-cap header.. 3329 */ 3330 for (subp = SC(capp, capp->dl_sub_offset), 3331 endp = SC(subp, capp->dl_sub_length - sizeof (*subp)); 3332 subp <= endp; 3333 subp = SC(subp, sizeof (dl_capability_sub_t) + subp->dl_length)) { 3334 3335 switch (subp->dl_cap) { 3336 case DL_CAPAB_ID_WRAPPER: 3337 ill_capability_id_ack(ill, mp, subp); 3338 break; 3339 default: 3340 ill_capability_dispatch(ill, mp, subp, B_FALSE); 3341 break; 3342 } 3343 } 3344 #undef SC 3345 done: 3346 inet_freemsg(mp); 3347 ill_capability_done(ill); 3348 ipsq_exit(ill->ill_phyint->phyint_ipsq); 3349 } 3350 3351 /* 3352 * This needs to be started in a taskq thread to provide a cv_waitable 3353 * context. 3354 */ 3355 void 3356 ill_capability_ack(ill_t *ill, mblk_t *mp) 3357 { 3358 ip_stack_t *ipst = ill->ill_ipst; 3359 3360 mp->b_prev = (mblk_t *)ill; 3361 if (taskq_dispatch(system_taskq, ill_capability_ack_thr, mp, 3362 TQ_NOSLEEP) != 0) 3363 return; 3364 3365 /* 3366 * The taskq dispatch failed. Signal the ill_taskq_dispatch thread 3367 * which will do the dispatch using TQ_SLEEP to guarantee success. 3368 */ 3369 mutex_enter(&ipst->ips_capab_taskq_lock); 3370 list_insert_tail(&ipst->ips_capab_taskq_list, mp); 3371 cv_signal(&ipst->ips_capab_taskq_cv); 3372 mutex_exit(&ipst->ips_capab_taskq_lock); 3373 } 3374 3375 /* 3376 * This routine is called to scan the fragmentation reassembly table for 3377 * the specified ILL for any packets that are starting to smell. 3378 * dead_interval is the maximum time in seconds that will be tolerated. It 3379 * will either be the value specified in ip_g_frag_timeout, or zero if the 3380 * ILL is shutting down and it is time to blow everything off. 3381 * 3382 * It returns the number of seconds (as a time_t) that the next frag timer 3383 * should be scheduled for, 0 meaning that the timer doesn't need to be 3384 * re-started. Note that the method of calculating next_timeout isn't 3385 * entirely accurate since time will flow between the time we grab 3386 * current_time and the time we schedule the next timeout. This isn't a 3387 * big problem since this is the timer for sending an ICMP reassembly time 3388 * exceeded messages, and it doesn't have to be exactly accurate. 3389 * 3390 * This function is 3391 * sometimes called as writer, although this is not required. 3392 */ 3393 time_t 3394 ill_frag_timeout(ill_t *ill, time_t dead_interval) 3395 { 3396 ipfb_t *ipfb; 3397 ipfb_t *endp; 3398 ipf_t *ipf; 3399 ipf_t *ipfnext; 3400 mblk_t *mp; 3401 time_t current_time = gethrestime_sec(); 3402 time_t next_timeout = 0; 3403 uint32_t hdr_length; 3404 mblk_t *send_icmp_head; 3405 mblk_t *send_icmp_head_v6; 3406 zoneid_t zoneid; 3407 ip_stack_t *ipst = ill->ill_ipst; 3408 3409 ipfb = ill->ill_frag_hash_tbl; 3410 if (ipfb == NULL) 3411 return (B_FALSE); 3412 endp = &ipfb[ILL_FRAG_HASH_TBL_COUNT]; 3413 /* Walk the frag hash table. */ 3414 for (; ipfb < endp; ipfb++) { 3415 send_icmp_head = NULL; 3416 send_icmp_head_v6 = NULL; 3417 mutex_enter(&ipfb->ipfb_lock); 3418 while ((ipf = ipfb->ipfb_ipf) != 0) { 3419 time_t frag_time = current_time - ipf->ipf_timestamp; 3420 time_t frag_timeout; 3421 3422 if (frag_time < dead_interval) { 3423 /* 3424 * There are some outstanding fragments 3425 * that will timeout later. Make note of 3426 * the time so that we can reschedule the 3427 * next timeout appropriately. 3428 */ 3429 frag_timeout = dead_interval - frag_time; 3430 if (next_timeout == 0 || 3431 frag_timeout < next_timeout) { 3432 next_timeout = frag_timeout; 3433 } 3434 break; 3435 } 3436 /* Time's up. Get it out of here. */ 3437 hdr_length = ipf->ipf_nf_hdr_len; 3438 ipfnext = ipf->ipf_hash_next; 3439 if (ipfnext) 3440 ipfnext->ipf_ptphn = ipf->ipf_ptphn; 3441 *ipf->ipf_ptphn = ipfnext; 3442 mp = ipf->ipf_mp->b_cont; 3443 for (; mp; mp = mp->b_cont) { 3444 /* Extra points for neatness. */ 3445 IP_REASS_SET_START(mp, 0); 3446 IP_REASS_SET_END(mp, 0); 3447 } 3448 mp = ipf->ipf_mp->b_cont; 3449 atomic_add_32(&ill->ill_frag_count, -ipf->ipf_count); 3450 ASSERT(ipfb->ipfb_count >= ipf->ipf_count); 3451 ipfb->ipfb_count -= ipf->ipf_count; 3452 ASSERT(ipfb->ipfb_frag_pkts > 0); 3453 ipfb->ipfb_frag_pkts--; 3454 /* 3455 * We do not send any icmp message from here because 3456 * we currently are holding the ipfb_lock for this 3457 * hash chain. If we try and send any icmp messages 3458 * from here we may end up via a put back into ip 3459 * trying to get the same lock, causing a recursive 3460 * mutex panic. Instead we build a list and send all 3461 * the icmp messages after we have dropped the lock. 3462 */ 3463 if (ill->ill_isv6) { 3464 if (hdr_length != 0) { 3465 mp->b_next = send_icmp_head_v6; 3466 send_icmp_head_v6 = mp; 3467 } else { 3468 freemsg(mp); 3469 } 3470 } else { 3471 if (hdr_length != 0) { 3472 mp->b_next = send_icmp_head; 3473 send_icmp_head = mp; 3474 } else { 3475 freemsg(mp); 3476 } 3477 } 3478 BUMP_MIB(ill->ill_ip_mib, ipIfStatsReasmFails); 3479 freeb(ipf->ipf_mp); 3480 } 3481 mutex_exit(&ipfb->ipfb_lock); 3482 /* 3483 * Now need to send any icmp messages that we delayed from 3484 * above. 3485 */ 3486 while (send_icmp_head_v6 != NULL) { 3487 ip6_t *ip6h; 3488 3489 mp = send_icmp_head_v6; 3490 send_icmp_head_v6 = send_icmp_head_v6->b_next; 3491 mp->b_next = NULL; 3492 if (mp->b_datap->db_type == M_CTL) 3493 ip6h = (ip6_t *)mp->b_cont->b_rptr; 3494 else 3495 ip6h = (ip6_t *)mp->b_rptr; 3496 zoneid = ipif_lookup_addr_zoneid_v6(&ip6h->ip6_dst, 3497 ill, ipst); 3498 if (zoneid == ALL_ZONES) { 3499 freemsg(mp); 3500 } else { 3501 icmp_time_exceeded_v6(ill->ill_wq, mp, 3502 ICMP_REASSEMBLY_TIME_EXCEEDED, B_FALSE, 3503 B_FALSE, zoneid, ipst); 3504 } 3505 } 3506 while (send_icmp_head != NULL) { 3507 ipaddr_t dst; 3508 3509 mp = send_icmp_head; 3510 send_icmp_head = send_icmp_head->b_next; 3511 mp->b_next = NULL; 3512 3513 if (mp->b_datap->db_type == M_CTL) 3514 dst = ((ipha_t *)mp->b_cont->b_rptr)->ipha_dst; 3515 else 3516 dst = ((ipha_t *)mp->b_rptr)->ipha_dst; 3517 3518 zoneid = ipif_lookup_addr_zoneid(dst, ill, ipst); 3519 if (zoneid == ALL_ZONES) { 3520 freemsg(mp); 3521 } else { 3522 icmp_time_exceeded(ill->ill_wq, mp, 3523 ICMP_REASSEMBLY_TIME_EXCEEDED, zoneid, 3524 ipst); 3525 } 3526 } 3527 } 3528 /* 3529 * A non-dying ILL will use the return value to decide whether to 3530 * restart the frag timer, and for how long. 3531 */ 3532 return (next_timeout); 3533 } 3534 3535 /* 3536 * This routine is called when the approximate count of mblk memory used 3537 * for the specified ILL has exceeded max_count. 3538 */ 3539 void 3540 ill_frag_prune(ill_t *ill, uint_t max_count) 3541 { 3542 ipfb_t *ipfb; 3543 ipf_t *ipf; 3544 size_t count; 3545 3546 /* 3547 * If we are here within ip_min_frag_prune_time msecs remove 3548 * ill_frag_free_num_pkts oldest packets from each bucket and increment 3549 * ill_frag_free_num_pkts. 3550 */ 3551 mutex_enter(&ill->ill_lock); 3552 if (TICK_TO_MSEC(lbolt - ill->ill_last_frag_clean_time) <= 3553 (ip_min_frag_prune_time != 0 ? 3554 ip_min_frag_prune_time : msec_per_tick)) { 3555 3556 ill->ill_frag_free_num_pkts++; 3557 3558 } else { 3559 ill->ill_frag_free_num_pkts = 0; 3560 } 3561 ill->ill_last_frag_clean_time = lbolt; 3562 mutex_exit(&ill->ill_lock); 3563 3564 /* 3565 * free ill_frag_free_num_pkts oldest packets from each bucket. 3566 */ 3567 if (ill->ill_frag_free_num_pkts != 0) { 3568 int ix; 3569 3570 for (ix = 0; ix < ILL_FRAG_HASH_TBL_COUNT; ix++) { 3571 ipfb = &ill->ill_frag_hash_tbl[ix]; 3572 mutex_enter(&ipfb->ipfb_lock); 3573 if (ipfb->ipfb_ipf != NULL) { 3574 ill_frag_free_pkts(ill, ipfb, ipfb->ipfb_ipf, 3575 ill->ill_frag_free_num_pkts); 3576 } 3577 mutex_exit(&ipfb->ipfb_lock); 3578 } 3579 } 3580 /* 3581 * While the reassembly list for this ILL is too big, prune a fragment 3582 * queue by age, oldest first. 3583 */ 3584 while (ill->ill_frag_count > max_count) { 3585 int ix; 3586 ipfb_t *oipfb = NULL; 3587 uint_t oldest = UINT_MAX; 3588 3589 count = 0; 3590 for (ix = 0; ix < ILL_FRAG_HASH_TBL_COUNT; ix++) { 3591 ipfb = &ill->ill_frag_hash_tbl[ix]; 3592 mutex_enter(&ipfb->ipfb_lock); 3593 ipf = ipfb->ipfb_ipf; 3594 if (ipf != NULL && ipf->ipf_gen < oldest) { 3595 oldest = ipf->ipf_gen; 3596 oipfb = ipfb; 3597 } 3598 count += ipfb->ipfb_count; 3599 mutex_exit(&ipfb->ipfb_lock); 3600 } 3601 if (oipfb == NULL) 3602 break; 3603 3604 if (count <= max_count) 3605 return; /* Somebody beat us to it, nothing to do */ 3606 mutex_enter(&oipfb->ipfb_lock); 3607 ipf = oipfb->ipfb_ipf; 3608 if (ipf != NULL) { 3609 ill_frag_free_pkts(ill, oipfb, ipf, 1); 3610 } 3611 mutex_exit(&oipfb->ipfb_lock); 3612 } 3613 } 3614 3615 /* 3616 * free 'free_cnt' fragmented packets starting at ipf. 3617 */ 3618 void 3619 ill_frag_free_pkts(ill_t *ill, ipfb_t *ipfb, ipf_t *ipf, int free_cnt) 3620 { 3621 size_t count; 3622 mblk_t *mp; 3623 mblk_t *tmp; 3624 ipf_t **ipfp = ipf->ipf_ptphn; 3625 3626 ASSERT(MUTEX_HELD(&ipfb->ipfb_lock)); 3627 ASSERT(ipfp != NULL); 3628 ASSERT(ipf != NULL); 3629 3630 while (ipf != NULL && free_cnt-- > 0) { 3631 count = ipf->ipf_count; 3632 mp = ipf->ipf_mp; 3633 ipf = ipf->ipf_hash_next; 3634 for (tmp = mp; tmp; tmp = tmp->b_cont) { 3635 IP_REASS_SET_START(tmp, 0); 3636 IP_REASS_SET_END(tmp, 0); 3637 } 3638 atomic_add_32(&ill->ill_frag_count, -count); 3639 ASSERT(ipfb->ipfb_count >= count); 3640 ipfb->ipfb_count -= count; 3641 ASSERT(ipfb->ipfb_frag_pkts > 0); 3642 ipfb->ipfb_frag_pkts--; 3643 freemsg(mp); 3644 BUMP_MIB(ill->ill_ip_mib, ipIfStatsReasmFails); 3645 } 3646 3647 if (ipf) 3648 ipf->ipf_ptphn = ipfp; 3649 ipfp[0] = ipf; 3650 } 3651 3652 #define ND_FORWARD_WARNING "The <if>:ip*_forwarding ndd variables are " \ 3653 "obsolete and may be removed in a future release of Solaris. Use " \ 3654 "ifconfig(1M) to manipulate the forwarding status of an interface." 3655 3656 /* 3657 * For obsolete per-interface forwarding configuration; 3658 * called in response to ND_GET. 3659 */ 3660 /* ARGSUSED */ 3661 static int 3662 nd_ill_forward_get(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *ioc_cr) 3663 { 3664 ill_t *ill = (ill_t *)cp; 3665 3666 cmn_err(CE_WARN, ND_FORWARD_WARNING); 3667 3668 (void) mi_mpprintf(mp, "%d", (ill->ill_flags & ILLF_ROUTER) != 0); 3669 return (0); 3670 } 3671 3672 /* 3673 * For obsolete per-interface forwarding configuration; 3674 * called in response to ND_SET. 3675 */ 3676 /* ARGSUSED */ 3677 static int 3678 nd_ill_forward_set(queue_t *q, mblk_t *mp, char *valuestr, caddr_t cp, 3679 cred_t *ioc_cr) 3680 { 3681 long value; 3682 int retval; 3683 ip_stack_t *ipst = CONNQ_TO_IPST(q); 3684 3685 cmn_err(CE_WARN, ND_FORWARD_WARNING); 3686 3687 if (ddi_strtol(valuestr, NULL, 10, &value) != 0 || 3688 value < 0 || value > 1) { 3689 return (EINVAL); 3690 } 3691 3692 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 3693 retval = ill_forward_set((ill_t *)cp, (value != 0)); 3694 rw_exit(&ipst->ips_ill_g_lock); 3695 return (retval); 3696 } 3697 3698 /* 3699 * Set an ill's ILLF_ROUTER flag appropriately. If the ill is part of an 3700 * IPMP group, make sure all ill's in the group adopt the new policy. Send 3701 * up RTS_IFINFO routing socket messages for each interface whose flags we 3702 * change. 3703 */ 3704 int 3705 ill_forward_set(ill_t *ill, boolean_t enable) 3706 { 3707 ill_group_t *illgrp; 3708 ip_stack_t *ipst = ill->ill_ipst; 3709 3710 ASSERT(IAM_WRITER_ILL(ill) || RW_READ_HELD(&ipst->ips_ill_g_lock)); 3711 3712 if ((enable && (ill->ill_flags & ILLF_ROUTER)) || 3713 (!enable && !(ill->ill_flags & ILLF_ROUTER))) 3714 return (0); 3715 3716 if (IS_LOOPBACK(ill)) 3717 return (EINVAL); 3718 3719 /* 3720 * If the ill is in an IPMP group, set the forwarding policy on all 3721 * members of the group to the same value. 3722 */ 3723 illgrp = ill->ill_group; 3724 if (illgrp != NULL) { 3725 ill_t *tmp_ill; 3726 3727 for (tmp_ill = illgrp->illgrp_ill; tmp_ill != NULL; 3728 tmp_ill = tmp_ill->ill_group_next) { 3729 ip1dbg(("ill_forward_set: %s %s forwarding on %s", 3730 (enable ? "Enabling" : "Disabling"), 3731 (tmp_ill->ill_isv6 ? "IPv6" : "IPv4"), 3732 tmp_ill->ill_name)); 3733 mutex_enter(&tmp_ill->ill_lock); 3734 if (enable) 3735 tmp_ill->ill_flags |= ILLF_ROUTER; 3736 else 3737 tmp_ill->ill_flags &= ~ILLF_ROUTER; 3738 mutex_exit(&tmp_ill->ill_lock); 3739 if (tmp_ill->ill_isv6) 3740 ill_set_nce_router_flags(tmp_ill, enable); 3741 /* Notify routing socket listeners of this change. */ 3742 ip_rts_ifmsg(tmp_ill->ill_ipif); 3743 } 3744 } else { 3745 ip1dbg(("ill_forward_set: %s %s forwarding on %s", 3746 (enable ? "Enabling" : "Disabling"), 3747 (ill->ill_isv6 ? "IPv6" : "IPv4"), ill->ill_name)); 3748 mutex_enter(&ill->ill_lock); 3749 if (enable) 3750 ill->ill_flags |= ILLF_ROUTER; 3751 else 3752 ill->ill_flags &= ~ILLF_ROUTER; 3753 mutex_exit(&ill->ill_lock); 3754 if (ill->ill_isv6) 3755 ill_set_nce_router_flags(ill, enable); 3756 /* Notify routing socket listeners of this change. */ 3757 ip_rts_ifmsg(ill->ill_ipif); 3758 } 3759 3760 return (0); 3761 } 3762 3763 /* 3764 * Based on the ILLF_ROUTER flag of an ill, make sure all local nce's for 3765 * addresses assigned to the ill have the NCE_F_ISROUTER flag appropriately 3766 * set or clear. 3767 */ 3768 static void 3769 ill_set_nce_router_flags(ill_t *ill, boolean_t enable) 3770 { 3771 ipif_t *ipif; 3772 nce_t *nce; 3773 3774 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 3775 nce = ndp_lookup_v6(ill, &ipif->ipif_v6lcl_addr, B_FALSE); 3776 if (nce != NULL) { 3777 mutex_enter(&nce->nce_lock); 3778 if (enable) 3779 nce->nce_flags |= NCE_F_ISROUTER; 3780 else 3781 nce->nce_flags &= ~NCE_F_ISROUTER; 3782 mutex_exit(&nce->nce_lock); 3783 NCE_REFRELE(nce); 3784 } 3785 } 3786 } 3787 3788 /* 3789 * Given an ill with a _valid_ name, add the ip_forwarding ndd variable 3790 * for this ill. Make sure the v6/v4 question has been answered about this 3791 * ill. The creation of this ndd variable is only for backwards compatibility. 3792 * The preferred way to control per-interface IP forwarding is through the 3793 * ILLF_ROUTER interface flag. 3794 */ 3795 static int 3796 ill_set_ndd_name(ill_t *ill) 3797 { 3798 char *suffix; 3799 ip_stack_t *ipst = ill->ill_ipst; 3800 3801 ASSERT(IAM_WRITER_ILL(ill)); 3802 3803 if (ill->ill_isv6) 3804 suffix = ipv6_forward_suffix; 3805 else 3806 suffix = ipv4_forward_suffix; 3807 3808 ill->ill_ndd_name = ill->ill_name + ill->ill_name_length; 3809 bcopy(ill->ill_name, ill->ill_ndd_name, ill->ill_name_length - 1); 3810 /* 3811 * Copies over the '\0'. 3812 * Note that strlen(suffix) is always bounded. 3813 */ 3814 bcopy(suffix, ill->ill_ndd_name + ill->ill_name_length - 1, 3815 strlen(suffix) + 1); 3816 3817 /* 3818 * Use of the nd table requires holding the reader lock. 3819 * Modifying the nd table thru nd_load/nd_unload requires 3820 * the writer lock. 3821 */ 3822 rw_enter(&ipst->ips_ip_g_nd_lock, RW_WRITER); 3823 if (!nd_load(&ipst->ips_ip_g_nd, ill->ill_ndd_name, nd_ill_forward_get, 3824 nd_ill_forward_set, (caddr_t)ill)) { 3825 /* 3826 * If the nd_load failed, it only meant that it could not 3827 * allocate a new bunch of room for further NDD expansion. 3828 * Because of that, the ill_ndd_name will be set to 0, and 3829 * this interface is at the mercy of the global ip_forwarding 3830 * variable. 3831 */ 3832 rw_exit(&ipst->ips_ip_g_nd_lock); 3833 ill->ill_ndd_name = NULL; 3834 return (ENOMEM); 3835 } 3836 rw_exit(&ipst->ips_ip_g_nd_lock); 3837 return (0); 3838 } 3839 3840 /* 3841 * Intializes the context structure and returns the first ill in the list 3842 * cuurently start_list and end_list can have values: 3843 * MAX_G_HEADS Traverse both IPV4 and IPV6 lists. 3844 * IP_V4_G_HEAD Traverse IPV4 list only. 3845 * IP_V6_G_HEAD Traverse IPV6 list only. 3846 */ 3847 3848 /* 3849 * We don't check for CONDEMNED ills here. Caller must do that if 3850 * necessary under the ill lock. 3851 */ 3852 ill_t * 3853 ill_first(int start_list, int end_list, ill_walk_context_t *ctx, 3854 ip_stack_t *ipst) 3855 { 3856 ill_if_t *ifp; 3857 ill_t *ill; 3858 avl_tree_t *avl_tree; 3859 3860 ASSERT(RW_LOCK_HELD(&ipst->ips_ill_g_lock)); 3861 ASSERT(end_list <= MAX_G_HEADS && start_list >= 0); 3862 3863 /* 3864 * setup the lists to search 3865 */ 3866 if (end_list != MAX_G_HEADS) { 3867 ctx->ctx_current_list = start_list; 3868 ctx->ctx_last_list = end_list; 3869 } else { 3870 ctx->ctx_last_list = MAX_G_HEADS - 1; 3871 ctx->ctx_current_list = 0; 3872 } 3873 3874 while (ctx->ctx_current_list <= ctx->ctx_last_list) { 3875 ifp = IP_VX_ILL_G_LIST(ctx->ctx_current_list, ipst); 3876 if (ifp != (ill_if_t *) 3877 &IP_VX_ILL_G_LIST(ctx->ctx_current_list, ipst)) { 3878 avl_tree = &ifp->illif_avl_by_ppa; 3879 ill = avl_first(avl_tree); 3880 /* 3881 * ill is guaranteed to be non NULL or ifp should have 3882 * not existed. 3883 */ 3884 ASSERT(ill != NULL); 3885 return (ill); 3886 } 3887 ctx->ctx_current_list++; 3888 } 3889 3890 return (NULL); 3891 } 3892 3893 /* 3894 * returns the next ill in the list. ill_first() must have been called 3895 * before calling ill_next() or bad things will happen. 3896 */ 3897 3898 /* 3899 * We don't check for CONDEMNED ills here. Caller must do that if 3900 * necessary under the ill lock. 3901 */ 3902 ill_t * 3903 ill_next(ill_walk_context_t *ctx, ill_t *lastill) 3904 { 3905 ill_if_t *ifp; 3906 ill_t *ill; 3907 ip_stack_t *ipst = lastill->ill_ipst; 3908 3909 ASSERT(lastill->ill_ifptr != (ill_if_t *) 3910 &IP_VX_ILL_G_LIST(ctx->ctx_current_list, ipst)); 3911 if ((ill = avl_walk(&lastill->ill_ifptr->illif_avl_by_ppa, lastill, 3912 AVL_AFTER)) != NULL) { 3913 return (ill); 3914 } 3915 3916 /* goto next ill_ifp in the list. */ 3917 ifp = lastill->ill_ifptr->illif_next; 3918 3919 /* make sure not at end of circular list */ 3920 while (ifp == 3921 (ill_if_t *)&IP_VX_ILL_G_LIST(ctx->ctx_current_list, ipst)) { 3922 if (++ctx->ctx_current_list > ctx->ctx_last_list) 3923 return (NULL); 3924 ifp = IP_VX_ILL_G_LIST(ctx->ctx_current_list, ipst); 3925 } 3926 3927 return (avl_first(&ifp->illif_avl_by_ppa)); 3928 } 3929 3930 /* 3931 * Check interface name for correct format which is name+ppa. 3932 * name can contain characters and digits, the right most digits 3933 * make up the ppa number. use of octal is not allowed, name must contain 3934 * a ppa, return pointer to the start of ppa. 3935 * In case of error return NULL. 3936 */ 3937 static char * 3938 ill_get_ppa_ptr(char *name) 3939 { 3940 int namelen = mi_strlen(name); 3941 3942 int len = namelen; 3943 3944 name += len; 3945 while (len > 0) { 3946 name--; 3947 if (*name < '0' || *name > '9') 3948 break; 3949 len--; 3950 } 3951 3952 /* empty string, all digits, or no trailing digits */ 3953 if (len == 0 || len == (int)namelen) 3954 return (NULL); 3955 3956 name++; 3957 /* check for attempted use of octal */ 3958 if (*name == '0' && len != (int)namelen - 1) 3959 return (NULL); 3960 return (name); 3961 } 3962 3963 /* 3964 * use avl tree to locate the ill. 3965 */ 3966 static ill_t * 3967 ill_find_by_name(char *name, boolean_t isv6, queue_t *q, mblk_t *mp, 3968 ipsq_func_t func, int *error, ip_stack_t *ipst) 3969 { 3970 char *ppa_ptr = NULL; 3971 int len; 3972 uint_t ppa; 3973 ill_t *ill = NULL; 3974 ill_if_t *ifp; 3975 int list; 3976 ipsq_t *ipsq; 3977 3978 if (error != NULL) 3979 *error = 0; 3980 3981 /* 3982 * get ppa ptr 3983 */ 3984 if (isv6) 3985 list = IP_V6_G_HEAD; 3986 else 3987 list = IP_V4_G_HEAD; 3988 3989 if ((ppa_ptr = ill_get_ppa_ptr(name)) == NULL) { 3990 if (error != NULL) 3991 *error = ENXIO; 3992 return (NULL); 3993 } 3994 3995 len = ppa_ptr - name + 1; 3996 3997 ppa = stoi(&ppa_ptr); 3998 3999 ifp = IP_VX_ILL_G_LIST(list, ipst); 4000 4001 while (ifp != (ill_if_t *)&IP_VX_ILL_G_LIST(list, ipst)) { 4002 /* 4003 * match is done on len - 1 as the name is not null 4004 * terminated it contains ppa in addition to the interface 4005 * name. 4006 */ 4007 if ((ifp->illif_name_len == len) && 4008 bcmp(ifp->illif_name, name, len - 1) == 0) { 4009 break; 4010 } else { 4011 ifp = ifp->illif_next; 4012 } 4013 } 4014 4015 if (ifp == (ill_if_t *)&IP_VX_ILL_G_LIST(list, ipst)) { 4016 /* 4017 * Even the interface type does not exist. 4018 */ 4019 if (error != NULL) 4020 *error = ENXIO; 4021 return (NULL); 4022 } 4023 4024 ill = avl_find(&ifp->illif_avl_by_ppa, (void *) &ppa, NULL); 4025 if (ill != NULL) { 4026 /* 4027 * The block comment at the start of ipif_down 4028 * explains the use of the macros used below 4029 */ 4030 GRAB_CONN_LOCK(q); 4031 mutex_enter(&ill->ill_lock); 4032 if (ILL_CAN_LOOKUP(ill)) { 4033 ill_refhold_locked(ill); 4034 mutex_exit(&ill->ill_lock); 4035 RELEASE_CONN_LOCK(q); 4036 return (ill); 4037 } else if (ILL_CAN_WAIT(ill, q)) { 4038 ipsq = ill->ill_phyint->phyint_ipsq; 4039 mutex_enter(&ipsq->ipsq_lock); 4040 mutex_exit(&ill->ill_lock); 4041 ipsq_enq(ipsq, q, mp, func, NEW_OP, ill); 4042 mutex_exit(&ipsq->ipsq_lock); 4043 RELEASE_CONN_LOCK(q); 4044 if (error != NULL) 4045 *error = EINPROGRESS; 4046 return (NULL); 4047 } 4048 mutex_exit(&ill->ill_lock); 4049 RELEASE_CONN_LOCK(q); 4050 } 4051 if (error != NULL) 4052 *error = ENXIO; 4053 return (NULL); 4054 } 4055 4056 /* 4057 * comparison function for use with avl. 4058 */ 4059 static int 4060 ill_compare_ppa(const void *ppa_ptr, const void *ill_ptr) 4061 { 4062 uint_t ppa; 4063 uint_t ill_ppa; 4064 4065 ASSERT(ppa_ptr != NULL && ill_ptr != NULL); 4066 4067 ppa = *((uint_t *)ppa_ptr); 4068 ill_ppa = ((const ill_t *)ill_ptr)->ill_ppa; 4069 /* 4070 * We want the ill with the lowest ppa to be on the 4071 * top. 4072 */ 4073 if (ill_ppa < ppa) 4074 return (1); 4075 if (ill_ppa > ppa) 4076 return (-1); 4077 return (0); 4078 } 4079 4080 /* 4081 * remove an interface type from the global list. 4082 */ 4083 static void 4084 ill_delete_interface_type(ill_if_t *interface) 4085 { 4086 ASSERT(interface != NULL); 4087 ASSERT(avl_numnodes(&interface->illif_avl_by_ppa) == 0); 4088 4089 avl_destroy(&interface->illif_avl_by_ppa); 4090 if (interface->illif_ppa_arena != NULL) 4091 vmem_destroy(interface->illif_ppa_arena); 4092 4093 remque(interface); 4094 4095 mi_free(interface); 4096 } 4097 4098 /* 4099 * remove ill from the global list. 4100 */ 4101 static void 4102 ill_glist_delete(ill_t *ill) 4103 { 4104 ip_stack_t *ipst; 4105 4106 if (ill == NULL) 4107 return; 4108 ipst = ill->ill_ipst; 4109 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 4110 4111 /* 4112 * If the ill was never inserted into the AVL tree 4113 * we skip the if branch. 4114 */ 4115 if (ill->ill_ifptr != NULL) { 4116 /* 4117 * remove from AVL tree and free ppa number 4118 */ 4119 avl_remove(&ill->ill_ifptr->illif_avl_by_ppa, ill); 4120 4121 if (ill->ill_ifptr->illif_ppa_arena != NULL) { 4122 vmem_free(ill->ill_ifptr->illif_ppa_arena, 4123 (void *)(uintptr_t)(ill->ill_ppa+1), 1); 4124 } 4125 if (avl_numnodes(&ill->ill_ifptr->illif_avl_by_ppa) == 0) { 4126 ill_delete_interface_type(ill->ill_ifptr); 4127 } 4128 4129 /* 4130 * Indicate ill is no longer in the list. 4131 */ 4132 ill->ill_ifptr = NULL; 4133 ill->ill_name_length = 0; 4134 ill->ill_name[0] = '\0'; 4135 ill->ill_ppa = UINT_MAX; 4136 } 4137 4138 /* Generate one last event for this ill. */ 4139 ill_nic_event_dispatch(ill, 0, NE_UNPLUMB, ill->ill_name, 4140 ill->ill_name_length); 4141 4142 ill_phyint_free(ill); 4143 rw_exit(&ipst->ips_ill_g_lock); 4144 } 4145 4146 /* 4147 * allocate a ppa, if the number of plumbed interfaces of this type are 4148 * less than ill_no_arena do a linear search to find a unused ppa. 4149 * When the number goes beyond ill_no_arena switch to using an arena. 4150 * Note: ppa value of zero cannot be allocated from vmem_arena as it 4151 * is the return value for an error condition, so allocation starts at one 4152 * and is decremented by one. 4153 */ 4154 static int 4155 ill_alloc_ppa(ill_if_t *ifp, ill_t *ill) 4156 { 4157 ill_t *tmp_ill; 4158 uint_t start, end; 4159 int ppa; 4160 4161 if (ifp->illif_ppa_arena == NULL && 4162 (avl_numnodes(&ifp->illif_avl_by_ppa) + 1 > ill_no_arena)) { 4163 /* 4164 * Create an arena. 4165 */ 4166 ifp->illif_ppa_arena = vmem_create(ifp->illif_name, 4167 (void *)1, UINT_MAX - 1, 1, NULL, NULL, 4168 NULL, 0, VM_SLEEP | VMC_IDENTIFIER); 4169 /* allocate what has already been assigned */ 4170 for (tmp_ill = avl_first(&ifp->illif_avl_by_ppa); 4171 tmp_ill != NULL; tmp_ill = avl_walk(&ifp->illif_avl_by_ppa, 4172 tmp_ill, AVL_AFTER)) { 4173 ppa = (int)(uintptr_t)vmem_xalloc(ifp->illif_ppa_arena, 4174 1, /* size */ 4175 1, /* align/quantum */ 4176 0, /* phase */ 4177 0, /* nocross */ 4178 /* minaddr */ 4179 (void *)((uintptr_t)tmp_ill->ill_ppa + 1), 4180 /* maxaddr */ 4181 (void *)((uintptr_t)tmp_ill->ill_ppa + 2), 4182 VM_NOSLEEP|VM_FIRSTFIT); 4183 if (ppa == 0) { 4184 ip1dbg(("ill_alloc_ppa: ppa allocation" 4185 " failed while switching")); 4186 vmem_destroy(ifp->illif_ppa_arena); 4187 ifp->illif_ppa_arena = NULL; 4188 break; 4189 } 4190 } 4191 } 4192 4193 if (ifp->illif_ppa_arena != NULL) { 4194 if (ill->ill_ppa == UINT_MAX) { 4195 ppa = (int)(uintptr_t)vmem_alloc(ifp->illif_ppa_arena, 4196 1, VM_NOSLEEP|VM_FIRSTFIT); 4197 if (ppa == 0) 4198 return (EAGAIN); 4199 ill->ill_ppa = --ppa; 4200 } else { 4201 ppa = (int)(uintptr_t)vmem_xalloc(ifp->illif_ppa_arena, 4202 1, /* size */ 4203 1, /* align/quantum */ 4204 0, /* phase */ 4205 0, /* nocross */ 4206 (void *)(uintptr_t)(ill->ill_ppa + 1), /* minaddr */ 4207 (void *)(uintptr_t)(ill->ill_ppa + 2), /* maxaddr */ 4208 VM_NOSLEEP|VM_FIRSTFIT); 4209 /* 4210 * Most likely the allocation failed because 4211 * the requested ppa was in use. 4212 */ 4213 if (ppa == 0) 4214 return (EEXIST); 4215 } 4216 return (0); 4217 } 4218 4219 /* 4220 * No arena is in use and not enough (>ill_no_arena) interfaces have 4221 * been plumbed to create one. Do a linear search to get a unused ppa. 4222 */ 4223 if (ill->ill_ppa == UINT_MAX) { 4224 end = UINT_MAX - 1; 4225 start = 0; 4226 } else { 4227 end = start = ill->ill_ppa; 4228 } 4229 4230 tmp_ill = avl_find(&ifp->illif_avl_by_ppa, (void *)&start, NULL); 4231 while (tmp_ill != NULL && tmp_ill->ill_ppa == start) { 4232 if (start++ >= end) { 4233 if (ill->ill_ppa == UINT_MAX) 4234 return (EAGAIN); 4235 else 4236 return (EEXIST); 4237 } 4238 tmp_ill = avl_walk(&ifp->illif_avl_by_ppa, tmp_ill, AVL_AFTER); 4239 } 4240 ill->ill_ppa = start; 4241 return (0); 4242 } 4243 4244 /* 4245 * Insert ill into the list of configured ill's. Once this function completes, 4246 * the ill is globally visible and is available through lookups. More precisely 4247 * this happens after the caller drops the ill_g_lock. 4248 */ 4249 static int 4250 ill_glist_insert(ill_t *ill, char *name, boolean_t isv6) 4251 { 4252 ill_if_t *ill_interface; 4253 avl_index_t where = 0; 4254 int error; 4255 int name_length; 4256 int index; 4257 boolean_t check_length = B_FALSE; 4258 ip_stack_t *ipst = ill->ill_ipst; 4259 4260 ASSERT(RW_WRITE_HELD(&ipst->ips_ill_g_lock)); 4261 4262 name_length = mi_strlen(name) + 1; 4263 4264 if (isv6) 4265 index = IP_V6_G_HEAD; 4266 else 4267 index = IP_V4_G_HEAD; 4268 4269 ill_interface = IP_VX_ILL_G_LIST(index, ipst); 4270 /* 4271 * Search for interface type based on name 4272 */ 4273 while (ill_interface != (ill_if_t *)&IP_VX_ILL_G_LIST(index, ipst)) { 4274 if ((ill_interface->illif_name_len == name_length) && 4275 (strcmp(ill_interface->illif_name, name) == 0)) { 4276 break; 4277 } 4278 ill_interface = ill_interface->illif_next; 4279 } 4280 4281 /* 4282 * Interface type not found, create one. 4283 */ 4284 if (ill_interface == (ill_if_t *)&IP_VX_ILL_G_LIST(index, ipst)) { 4285 4286 ill_g_head_t ghead; 4287 4288 /* 4289 * allocate ill_if_t structure 4290 */ 4291 4292 ill_interface = (ill_if_t *)mi_zalloc(sizeof (ill_if_t)); 4293 if (ill_interface == NULL) { 4294 return (ENOMEM); 4295 } 4296 4297 4298 4299 (void) strcpy(ill_interface->illif_name, name); 4300 ill_interface->illif_name_len = name_length; 4301 4302 avl_create(&ill_interface->illif_avl_by_ppa, 4303 ill_compare_ppa, sizeof (ill_t), 4304 offsetof(struct ill_s, ill_avl_byppa)); 4305 4306 /* 4307 * link the structure in the back to maintain order 4308 * of configuration for ifconfig output. 4309 */ 4310 ghead = ipst->ips_ill_g_heads[index]; 4311 insque(ill_interface, ghead.ill_g_list_tail); 4312 4313 } 4314 4315 if (ill->ill_ppa == UINT_MAX) 4316 check_length = B_TRUE; 4317 4318 error = ill_alloc_ppa(ill_interface, ill); 4319 if (error != 0) { 4320 if (avl_numnodes(&ill_interface->illif_avl_by_ppa) == 0) 4321 ill_delete_interface_type(ill->ill_ifptr); 4322 return (error); 4323 } 4324 4325 /* 4326 * When the ppa is choosen by the system, check that there is 4327 * enough space to insert ppa. if a specific ppa was passed in this 4328 * check is not required as the interface name passed in will have 4329 * the right ppa in it. 4330 */ 4331 if (check_length) { 4332 /* 4333 * UINT_MAX - 1 should fit in 10 chars, alloc 12 chars. 4334 */ 4335 char buf[sizeof (uint_t) * 3]; 4336 4337 /* 4338 * convert ppa to string to calculate the amount of space 4339 * required for it in the name. 4340 */ 4341 numtos(ill->ill_ppa, buf); 4342 4343 /* Do we have enough space to insert ppa ? */ 4344 4345 if ((mi_strlen(name) + mi_strlen(buf) + 1) > LIFNAMSIZ) { 4346 /* Free ppa and interface type struct */ 4347 if (ill_interface->illif_ppa_arena != NULL) { 4348 vmem_free(ill_interface->illif_ppa_arena, 4349 (void *)(uintptr_t)(ill->ill_ppa+1), 1); 4350 } 4351 if (avl_numnodes(&ill_interface->illif_avl_by_ppa) == 0) 4352 ill_delete_interface_type(ill->ill_ifptr); 4353 4354 return (EINVAL); 4355 } 4356 } 4357 4358 (void) sprintf(ill->ill_name, "%s%u", name, ill->ill_ppa); 4359 ill->ill_name_length = mi_strlen(ill->ill_name) + 1; 4360 4361 (void) avl_find(&ill_interface->illif_avl_by_ppa, &ill->ill_ppa, 4362 &where); 4363 ill->ill_ifptr = ill_interface; 4364 avl_insert(&ill_interface->illif_avl_by_ppa, ill, where); 4365 4366 ill_phyint_reinit(ill); 4367 return (0); 4368 } 4369 4370 /* Initialize the per phyint (per IPMP group) ipsq used for serialization */ 4371 static boolean_t 4372 ipsq_init(ill_t *ill) 4373 { 4374 ipsq_t *ipsq; 4375 4376 /* Init the ipsq and impicitly enter as writer */ 4377 ill->ill_phyint->phyint_ipsq = 4378 kmem_zalloc(sizeof (ipsq_t), KM_NOSLEEP); 4379 if (ill->ill_phyint->phyint_ipsq == NULL) 4380 return (B_FALSE); 4381 ipsq = ill->ill_phyint->phyint_ipsq; 4382 ipsq->ipsq_phyint_list = ill->ill_phyint; 4383 ill->ill_phyint->phyint_ipsq_next = NULL; 4384 mutex_init(&ipsq->ipsq_lock, NULL, MUTEX_DEFAULT, 0); 4385 ipsq->ipsq_refs = 1; 4386 ipsq->ipsq_writer = curthread; 4387 ipsq->ipsq_reentry_cnt = 1; 4388 ipsq->ipsq_ipst = ill->ill_ipst; /* No netstack_hold */ 4389 #ifdef DEBUG 4390 ipsq->ipsq_depth = getpcstack((pc_t *)ipsq->ipsq_stack, 4391 IPSQ_STACK_DEPTH); 4392 #endif 4393 (void) strcpy(ipsq->ipsq_name, ill->ill_name); 4394 return (B_TRUE); 4395 } 4396 4397 /* 4398 * ill_init is called by ip_open when a device control stream is opened. 4399 * It does a few initializations, and shoots a DL_INFO_REQ message down 4400 * to the driver. The response is later picked up in ip_rput_dlpi and 4401 * used to set up default mechanisms for talking to the driver. (Always 4402 * called as writer.) 4403 * 4404 * If this function returns error, ip_open will call ip_close which in 4405 * turn will call ill_delete to clean up any memory allocated here that 4406 * is not yet freed. 4407 */ 4408 int 4409 ill_init(queue_t *q, ill_t *ill) 4410 { 4411 int count; 4412 dl_info_req_t *dlir; 4413 mblk_t *info_mp; 4414 uchar_t *frag_ptr; 4415 4416 /* 4417 * The ill is initialized to zero by mi_alloc*(). In addition 4418 * some fields already contain valid values, initialized in 4419 * ip_open(), before we reach here. 4420 */ 4421 mutex_init(&ill->ill_lock, NULL, MUTEX_DEFAULT, 0); 4422 4423 ill->ill_rq = q; 4424 ill->ill_wq = WR(q); 4425 4426 info_mp = allocb(MAX(sizeof (dl_info_req_t), sizeof (dl_info_ack_t)), 4427 BPRI_HI); 4428 if (info_mp == NULL) 4429 return (ENOMEM); 4430 4431 /* 4432 * Allocate sufficient space to contain our fragment hash table and 4433 * the device name. 4434 */ 4435 frag_ptr = (uchar_t *)mi_zalloc(ILL_FRAG_HASH_TBL_SIZE + 4436 2 * LIFNAMSIZ + 5 + strlen(ipv6_forward_suffix)); 4437 if (frag_ptr == NULL) { 4438 freemsg(info_mp); 4439 return (ENOMEM); 4440 } 4441 ill->ill_frag_ptr = frag_ptr; 4442 ill->ill_frag_free_num_pkts = 0; 4443 ill->ill_last_frag_clean_time = 0; 4444 ill->ill_frag_hash_tbl = (ipfb_t *)frag_ptr; 4445 ill->ill_name = (char *)(frag_ptr + ILL_FRAG_HASH_TBL_SIZE); 4446 for (count = 0; count < ILL_FRAG_HASH_TBL_COUNT; count++) { 4447 mutex_init(&ill->ill_frag_hash_tbl[count].ipfb_lock, 4448 NULL, MUTEX_DEFAULT, NULL); 4449 } 4450 4451 ill->ill_phyint = (phyint_t *)mi_zalloc(sizeof (phyint_t)); 4452 if (ill->ill_phyint == NULL) { 4453 freemsg(info_mp); 4454 mi_free(frag_ptr); 4455 return (ENOMEM); 4456 } 4457 4458 mutex_init(&ill->ill_phyint->phyint_lock, NULL, MUTEX_DEFAULT, 0); 4459 /* 4460 * For now pretend this is a v4 ill. We need to set phyint_ill* 4461 * at this point because of the following reason. If we can't 4462 * enter the ipsq at some point and cv_wait, the writer that 4463 * wakes us up tries to locate us using the list of all phyints 4464 * in an ipsq and the ills from the phyint thru the phyint_ill*. 4465 * If we don't set it now, we risk a missed wakeup. 4466 */ 4467 ill->ill_phyint->phyint_illv4 = ill; 4468 ill->ill_ppa = UINT_MAX; 4469 ill->ill_fastpath_list = &ill->ill_fastpath_list; 4470 4471 if (!ipsq_init(ill)) { 4472 freemsg(info_mp); 4473 mi_free(frag_ptr); 4474 mi_free(ill->ill_phyint); 4475 return (ENOMEM); 4476 } 4477 4478 ill->ill_state_flags |= ILL_LL_SUBNET_PENDING; 4479 4480 /* Frag queue limit stuff */ 4481 ill->ill_frag_count = 0; 4482 ill->ill_ipf_gen = 0; 4483 4484 ill->ill_global_timer = INFINITY; 4485 ill->ill_mcast_v1_time = ill->ill_mcast_v2_time = 0; 4486 ill->ill_mcast_v1_tset = ill->ill_mcast_v2_tset = 0; 4487 ill->ill_mcast_rv = MCAST_DEF_ROBUSTNESS; 4488 ill->ill_mcast_qi = MCAST_DEF_QUERY_INTERVAL; 4489 4490 /* 4491 * Initialize IPv6 configuration variables. The IP module is always 4492 * opened as an IPv4 module. Instead tracking down the cases where 4493 * it switches to do ipv6, we'll just initialize the IPv6 configuration 4494 * here for convenience, this has no effect until the ill is set to do 4495 * IPv6. 4496 */ 4497 ill->ill_reachable_time = ND_REACHABLE_TIME; 4498 ill->ill_reachable_retrans_time = ND_RETRANS_TIMER; 4499 ill->ill_xmit_count = ND_MAX_MULTICAST_SOLICIT; 4500 ill->ill_max_buf = ND_MAX_Q; 4501 ill->ill_refcnt = 0; 4502 4503 /* Send down the Info Request to the driver. */ 4504 info_mp->b_datap->db_type = M_PCPROTO; 4505 dlir = (dl_info_req_t *)info_mp->b_rptr; 4506 info_mp->b_wptr = (uchar_t *)&dlir[1]; 4507 dlir->dl_primitive = DL_INFO_REQ; 4508 4509 ill->ill_dlpi_pending = DL_PRIM_INVAL; 4510 4511 qprocson(q); 4512 ill_dlpi_send(ill, info_mp); 4513 4514 return (0); 4515 } 4516 4517 /* 4518 * ill_dls_info 4519 * creates datalink socket info from the device. 4520 */ 4521 int 4522 ill_dls_info(struct sockaddr_dl *sdl, const ipif_t *ipif) 4523 { 4524 size_t len; 4525 ill_t *ill = ipif->ipif_ill; 4526 4527 sdl->sdl_family = AF_LINK; 4528 sdl->sdl_index = ill->ill_phyint->phyint_ifindex; 4529 sdl->sdl_type = ill->ill_type; 4530 ipif_get_name(ipif, sdl->sdl_data, sizeof (sdl->sdl_data)); 4531 len = strlen(sdl->sdl_data); 4532 ASSERT(len < 256); 4533 sdl->sdl_nlen = (uchar_t)len; 4534 sdl->sdl_alen = ill->ill_phys_addr_length; 4535 sdl->sdl_slen = 0; 4536 if (ill->ill_phys_addr_length != 0 && ill->ill_phys_addr != NULL) 4537 bcopy(ill->ill_phys_addr, &sdl->sdl_data[len], sdl->sdl_alen); 4538 4539 return (sizeof (struct sockaddr_dl)); 4540 } 4541 4542 /* 4543 * ill_xarp_info 4544 * creates xarp info from the device. 4545 */ 4546 static int 4547 ill_xarp_info(struct sockaddr_dl *sdl, ill_t *ill) 4548 { 4549 sdl->sdl_family = AF_LINK; 4550 sdl->sdl_index = ill->ill_phyint->phyint_ifindex; 4551 sdl->sdl_type = ill->ill_type; 4552 ipif_get_name(ill->ill_ipif, sdl->sdl_data, sizeof (sdl->sdl_data)); 4553 sdl->sdl_nlen = (uchar_t)mi_strlen(sdl->sdl_data); 4554 sdl->sdl_alen = ill->ill_phys_addr_length; 4555 sdl->sdl_slen = 0; 4556 return (sdl->sdl_nlen); 4557 } 4558 4559 static int 4560 loopback_kstat_update(kstat_t *ksp, int rw) 4561 { 4562 kstat_named_t *kn; 4563 netstackid_t stackid; 4564 netstack_t *ns; 4565 ip_stack_t *ipst; 4566 4567 if (ksp == NULL || ksp->ks_data == NULL) 4568 return (EIO); 4569 4570 if (rw == KSTAT_WRITE) 4571 return (EACCES); 4572 4573 kn = KSTAT_NAMED_PTR(ksp); 4574 stackid = (zoneid_t)(uintptr_t)ksp->ks_private; 4575 4576 ns = netstack_find_by_stackid(stackid); 4577 if (ns == NULL) 4578 return (-1); 4579 4580 ipst = ns->netstack_ip; 4581 if (ipst == NULL) { 4582 netstack_rele(ns); 4583 return (-1); 4584 } 4585 kn[0].value.ui32 = ipst->ips_loopback_packets; 4586 kn[1].value.ui32 = ipst->ips_loopback_packets; 4587 netstack_rele(ns); 4588 return (0); 4589 } 4590 4591 /* 4592 * Has ifindex been plumbed already. 4593 * Compares both phyint_ifindex and phyint_group_ifindex. 4594 */ 4595 static boolean_t 4596 phyint_exists(uint_t index, ip_stack_t *ipst) 4597 { 4598 phyint_t *phyi; 4599 4600 ASSERT(index != 0); 4601 ASSERT(RW_LOCK_HELD(&ipst->ips_ill_g_lock)); 4602 /* 4603 * Indexes are stored in the phyint - a common structure 4604 * to both IPv4 and IPv6. 4605 */ 4606 phyi = avl_first(&ipst->ips_phyint_g_list->phyint_list_avl_by_index); 4607 for (; phyi != NULL; 4608 phyi = avl_walk(&ipst->ips_phyint_g_list->phyint_list_avl_by_index, 4609 phyi, AVL_AFTER)) { 4610 if (phyi->phyint_ifindex == index || 4611 phyi->phyint_group_ifindex == index) 4612 return (B_TRUE); 4613 } 4614 return (B_FALSE); 4615 } 4616 4617 /* Pick a unique ifindex */ 4618 boolean_t 4619 ip_assign_ifindex(uint_t *indexp, ip_stack_t *ipst) 4620 { 4621 uint_t starting_index; 4622 4623 if (!ipst->ips_ill_index_wrap) { 4624 *indexp = ipst->ips_ill_index++; 4625 if (ipst->ips_ill_index == 0) { 4626 /* Reached the uint_t limit Next time wrap */ 4627 ipst->ips_ill_index_wrap = B_TRUE; 4628 } 4629 return (B_TRUE); 4630 } 4631 4632 /* 4633 * Start reusing unused indexes. Note that we hold the ill_g_lock 4634 * at this point and don't want to call any function that attempts 4635 * to get the lock again. 4636 */ 4637 starting_index = ipst->ips_ill_index++; 4638 for (; ipst->ips_ill_index != starting_index; ipst->ips_ill_index++) { 4639 if (ipst->ips_ill_index != 0 && 4640 !phyint_exists(ipst->ips_ill_index, ipst)) { 4641 /* found unused index - use it */ 4642 *indexp = ipst->ips_ill_index; 4643 return (B_TRUE); 4644 } 4645 } 4646 4647 /* 4648 * all interface indicies are inuse. 4649 */ 4650 return (B_FALSE); 4651 } 4652 4653 /* 4654 * Assign a unique interface index for the phyint. 4655 */ 4656 static boolean_t 4657 phyint_assign_ifindex(phyint_t *phyi, ip_stack_t *ipst) 4658 { 4659 ASSERT(phyi->phyint_ifindex == 0); 4660 return (ip_assign_ifindex(&phyi->phyint_ifindex, ipst)); 4661 } 4662 4663 /* 4664 * Return a pointer to the ill which matches the supplied name. Note that 4665 * the ill name length includes the null termination character. (May be 4666 * called as writer.) 4667 * If do_alloc and the interface is "lo0" it will be automatically created. 4668 * Cannot bump up reference on condemned ills. So dup detect can't be done 4669 * using this func. 4670 */ 4671 ill_t * 4672 ill_lookup_on_name(char *name, boolean_t do_alloc, boolean_t isv6, 4673 queue_t *q, mblk_t *mp, ipsq_func_t func, int *error, boolean_t *did_alloc, 4674 ip_stack_t *ipst) 4675 { 4676 ill_t *ill; 4677 ipif_t *ipif; 4678 kstat_named_t *kn; 4679 boolean_t isloopback; 4680 ipsq_t *old_ipsq; 4681 in6_addr_t ov6addr; 4682 4683 isloopback = mi_strcmp(name, ipif_loopback_name) == 0; 4684 4685 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 4686 ill = ill_find_by_name(name, isv6, q, mp, func, error, ipst); 4687 rw_exit(&ipst->ips_ill_g_lock); 4688 if (ill != NULL || (error != NULL && *error == EINPROGRESS)) 4689 return (ill); 4690 4691 /* 4692 * Couldn't find it. Does this happen to be a lookup for the 4693 * loopback device and are we allowed to allocate it? 4694 */ 4695 if (!isloopback || !do_alloc) 4696 return (NULL); 4697 4698 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 4699 4700 ill = ill_find_by_name(name, isv6, q, mp, func, error, ipst); 4701 if (ill != NULL || (error != NULL && *error == EINPROGRESS)) { 4702 rw_exit(&ipst->ips_ill_g_lock); 4703 return (ill); 4704 } 4705 4706 /* Create the loopback device on demand */ 4707 ill = (ill_t *)(mi_alloc(sizeof (ill_t) + 4708 sizeof (ipif_loopback_name), BPRI_MED)); 4709 if (ill == NULL) 4710 goto done; 4711 4712 *ill = ill_null; 4713 mutex_init(&ill->ill_lock, NULL, MUTEX_DEFAULT, NULL); 4714 ill->ill_ipst = ipst; 4715 netstack_hold(ipst->ips_netstack); 4716 /* 4717 * For exclusive stacks we set the zoneid to zero 4718 * to make IP operate as if in the global zone. 4719 */ 4720 ill->ill_zoneid = GLOBAL_ZONEID; 4721 4722 ill->ill_phyint = (phyint_t *)mi_zalloc(sizeof (phyint_t)); 4723 if (ill->ill_phyint == NULL) 4724 goto done; 4725 4726 if (isv6) 4727 ill->ill_phyint->phyint_illv6 = ill; 4728 else 4729 ill->ill_phyint->phyint_illv4 = ill; 4730 mutex_init(&ill->ill_phyint->phyint_lock, NULL, MUTEX_DEFAULT, 0); 4731 ill->ill_max_frag = IP_LOOPBACK_MTU; 4732 /* Add room for tcp+ip headers */ 4733 if (isv6) { 4734 ill->ill_isv6 = B_TRUE; 4735 ill->ill_max_frag += IPV6_HDR_LEN + 20; /* for TCP */ 4736 } else { 4737 ill->ill_max_frag += IP_SIMPLE_HDR_LENGTH + 20; 4738 } 4739 if (!ill_allocate_mibs(ill)) 4740 goto done; 4741 ill->ill_max_mtu = ill->ill_max_frag; 4742 /* 4743 * ipif_loopback_name can't be pointed at directly because its used 4744 * by both the ipv4 and ipv6 interfaces. When the ill is removed 4745 * from the glist, ill_glist_delete() sets the first character of 4746 * ill_name to '\0'. 4747 */ 4748 ill->ill_name = (char *)ill + sizeof (*ill); 4749 (void) strcpy(ill->ill_name, ipif_loopback_name); 4750 ill->ill_name_length = sizeof (ipif_loopback_name); 4751 /* Set ill_dlpi_pending for ipsq_current_finish() to work properly */ 4752 ill->ill_dlpi_pending = DL_PRIM_INVAL; 4753 4754 ill->ill_global_timer = INFINITY; 4755 ill->ill_mcast_v1_time = ill->ill_mcast_v2_time = 0; 4756 ill->ill_mcast_v1_tset = ill->ill_mcast_v2_tset = 0; 4757 ill->ill_mcast_rv = MCAST_DEF_ROBUSTNESS; 4758 ill->ill_mcast_qi = MCAST_DEF_QUERY_INTERVAL; 4759 4760 /* No resolver here. */ 4761 ill->ill_net_type = IRE_LOOPBACK; 4762 4763 /* Initialize the ipsq */ 4764 if (!ipsq_init(ill)) 4765 goto done; 4766 4767 ill->ill_phyint->phyint_ipsq->ipsq_writer = NULL; 4768 ill->ill_phyint->phyint_ipsq->ipsq_reentry_cnt--; 4769 ASSERT(ill->ill_phyint->phyint_ipsq->ipsq_reentry_cnt == 0); 4770 #ifdef DEBUG 4771 ill->ill_phyint->phyint_ipsq->ipsq_depth = 0; 4772 #endif 4773 ipif = ipif_allocate(ill, 0L, IRE_LOOPBACK, B_TRUE); 4774 if (ipif == NULL) 4775 goto done; 4776 4777 ill->ill_flags = ILLF_MULTICAST; 4778 4779 ov6addr = ipif->ipif_v6lcl_addr; 4780 /* Set up default loopback address and mask. */ 4781 if (!isv6) { 4782 ipaddr_t inaddr_loopback = htonl(INADDR_LOOPBACK); 4783 4784 IN6_IPADDR_TO_V4MAPPED(inaddr_loopback, &ipif->ipif_v6lcl_addr); 4785 ipif->ipif_v6src_addr = ipif->ipif_v6lcl_addr; 4786 V4MASK_TO_V6(htonl(IN_CLASSA_NET), ipif->ipif_v6net_mask); 4787 V6_MASK_COPY(ipif->ipif_v6lcl_addr, ipif->ipif_v6net_mask, 4788 ipif->ipif_v6subnet); 4789 ill->ill_flags |= ILLF_IPV4; 4790 } else { 4791 ipif->ipif_v6lcl_addr = ipv6_loopback; 4792 ipif->ipif_v6src_addr = ipif->ipif_v6lcl_addr; 4793 ipif->ipif_v6net_mask = ipv6_all_ones; 4794 V6_MASK_COPY(ipif->ipif_v6lcl_addr, ipif->ipif_v6net_mask, 4795 ipif->ipif_v6subnet); 4796 ill->ill_flags |= ILLF_IPV6; 4797 } 4798 4799 /* 4800 * Chain us in at the end of the ill list. hold the ill 4801 * before we make it globally visible. 1 for the lookup. 4802 */ 4803 ill->ill_refcnt = 0; 4804 ill_refhold(ill); 4805 4806 ill->ill_frag_count = 0; 4807 ill->ill_frag_free_num_pkts = 0; 4808 ill->ill_last_frag_clean_time = 0; 4809 4810 old_ipsq = ill->ill_phyint->phyint_ipsq; 4811 4812 if (ill_glist_insert(ill, "lo", isv6) != 0) 4813 cmn_err(CE_PANIC, "cannot insert loopback interface"); 4814 4815 /* Let SCTP know so that it can add this to its list */ 4816 sctp_update_ill(ill, SCTP_ILL_INSERT); 4817 4818 /* 4819 * We have already assigned ipif_v6lcl_addr above, but we need to 4820 * call sctp_update_ipif_addr() after SCTP_ILL_INSERT, which 4821 * requires to be after ill_glist_insert() since we need the 4822 * ill_index set. Pass on ipv6_loopback as the old address. 4823 */ 4824 sctp_update_ipif_addr(ipif, ov6addr); 4825 4826 /* 4827 * If the ipsq was changed in ill_phyint_reinit free the old ipsq. 4828 */ 4829 if (old_ipsq != ill->ill_phyint->phyint_ipsq) { 4830 /* Loopback ills aren't in any IPMP group */ 4831 ASSERT(!(old_ipsq->ipsq_flags & IPSQ_GROUP)); 4832 ipsq_delete(old_ipsq); 4833 } 4834 4835 /* 4836 * Delay this till the ipif is allocated as ipif_allocate 4837 * de-references ill_phyint for getting the ifindex. We 4838 * can't do this before ipif_allocate because ill_phyint_reinit 4839 * -> phyint_assign_ifindex expects ipif to be present. 4840 */ 4841 mutex_enter(&ill->ill_phyint->phyint_lock); 4842 ill->ill_phyint->phyint_flags |= PHYI_LOOPBACK | PHYI_VIRTUAL; 4843 mutex_exit(&ill->ill_phyint->phyint_lock); 4844 4845 if (ipst->ips_loopback_ksp == NULL) { 4846 /* Export loopback interface statistics */ 4847 ipst->ips_loopback_ksp = kstat_create_netstack("lo", 0, 4848 ipif_loopback_name, "net", 4849 KSTAT_TYPE_NAMED, 2, 0, 4850 ipst->ips_netstack->netstack_stackid); 4851 if (ipst->ips_loopback_ksp != NULL) { 4852 ipst->ips_loopback_ksp->ks_update = 4853 loopback_kstat_update; 4854 kn = KSTAT_NAMED_PTR(ipst->ips_loopback_ksp); 4855 kstat_named_init(&kn[0], "ipackets", KSTAT_DATA_UINT32); 4856 kstat_named_init(&kn[1], "opackets", KSTAT_DATA_UINT32); 4857 ipst->ips_loopback_ksp->ks_private = 4858 (void *)(uintptr_t)ipst->ips_netstack-> 4859 netstack_stackid; 4860 kstat_install(ipst->ips_loopback_ksp); 4861 } 4862 } 4863 4864 if (error != NULL) 4865 *error = 0; 4866 *did_alloc = B_TRUE; 4867 rw_exit(&ipst->ips_ill_g_lock); 4868 ill_nic_event_dispatch(ill, MAP_IPIF_ID(ill->ill_ipif->ipif_id), 4869 NE_PLUMB, ill->ill_name, ill->ill_name_length); 4870 return (ill); 4871 done: 4872 if (ill != NULL) { 4873 if (ill->ill_phyint != NULL) { 4874 ipsq_t *ipsq; 4875 4876 ipsq = ill->ill_phyint->phyint_ipsq; 4877 if (ipsq != NULL) { 4878 ipsq->ipsq_ipst = NULL; 4879 kmem_free(ipsq, sizeof (ipsq_t)); 4880 } 4881 mi_free(ill->ill_phyint); 4882 } 4883 ill_free_mib(ill); 4884 if (ill->ill_ipst != NULL) 4885 netstack_rele(ill->ill_ipst->ips_netstack); 4886 mi_free(ill); 4887 } 4888 rw_exit(&ipst->ips_ill_g_lock); 4889 if (error != NULL) 4890 *error = ENOMEM; 4891 return (NULL); 4892 } 4893 4894 /* 4895 * For IPP calls - use the ip_stack_t for global stack. 4896 */ 4897 ill_t * 4898 ill_lookup_on_ifindex_global_instance(uint_t index, boolean_t isv6, 4899 queue_t *q, mblk_t *mp, ipsq_func_t func, int *err) 4900 { 4901 ip_stack_t *ipst; 4902 ill_t *ill; 4903 4904 ipst = netstack_find_by_stackid(GLOBAL_NETSTACKID)->netstack_ip; 4905 if (ipst == NULL) { 4906 cmn_err(CE_WARN, "No ip_stack_t for zoneid zero!\n"); 4907 return (NULL); 4908 } 4909 4910 ill = ill_lookup_on_ifindex(index, isv6, q, mp, func, err, ipst); 4911 netstack_rele(ipst->ips_netstack); 4912 return (ill); 4913 } 4914 4915 /* 4916 * Return a pointer to the ill which matches the index and IP version type. 4917 */ 4918 ill_t * 4919 ill_lookup_on_ifindex(uint_t index, boolean_t isv6, queue_t *q, mblk_t *mp, 4920 ipsq_func_t func, int *err, ip_stack_t *ipst) 4921 { 4922 ill_t *ill; 4923 ipsq_t *ipsq; 4924 phyint_t *phyi; 4925 4926 ASSERT((q == NULL && mp == NULL && func == NULL && err == NULL) || 4927 (q != NULL && mp != NULL && func != NULL && err != NULL)); 4928 4929 if (err != NULL) 4930 *err = 0; 4931 4932 /* 4933 * Indexes are stored in the phyint - a common structure 4934 * to both IPv4 and IPv6. 4935 */ 4936 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 4937 phyi = avl_find(&ipst->ips_phyint_g_list->phyint_list_avl_by_index, 4938 (void *) &index, NULL); 4939 if (phyi != NULL) { 4940 ill = isv6 ? phyi->phyint_illv6: phyi->phyint_illv4; 4941 if (ill != NULL) { 4942 /* 4943 * The block comment at the start of ipif_down 4944 * explains the use of the macros used below 4945 */ 4946 GRAB_CONN_LOCK(q); 4947 mutex_enter(&ill->ill_lock); 4948 if (ILL_CAN_LOOKUP(ill)) { 4949 ill_refhold_locked(ill); 4950 mutex_exit(&ill->ill_lock); 4951 RELEASE_CONN_LOCK(q); 4952 rw_exit(&ipst->ips_ill_g_lock); 4953 return (ill); 4954 } else if (ILL_CAN_WAIT(ill, q)) { 4955 ipsq = ill->ill_phyint->phyint_ipsq; 4956 mutex_enter(&ipsq->ipsq_lock); 4957 rw_exit(&ipst->ips_ill_g_lock); 4958 mutex_exit(&ill->ill_lock); 4959 ipsq_enq(ipsq, q, mp, func, NEW_OP, ill); 4960 mutex_exit(&ipsq->ipsq_lock); 4961 RELEASE_CONN_LOCK(q); 4962 if (err != NULL) 4963 *err = EINPROGRESS; 4964 return (NULL); 4965 } 4966 RELEASE_CONN_LOCK(q); 4967 mutex_exit(&ill->ill_lock); 4968 } 4969 } 4970 rw_exit(&ipst->ips_ill_g_lock); 4971 if (err != NULL) 4972 *err = ENXIO; 4973 return (NULL); 4974 } 4975 4976 /* 4977 * Return the ifindex next in sequence after the passed in ifindex. 4978 * If there is no next ifindex for the given protocol, return 0. 4979 */ 4980 uint_t 4981 ill_get_next_ifindex(uint_t index, boolean_t isv6, ip_stack_t *ipst) 4982 { 4983 phyint_t *phyi; 4984 phyint_t *phyi_initial; 4985 uint_t ifindex; 4986 4987 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 4988 4989 if (index == 0) { 4990 phyi = avl_first( 4991 &ipst->ips_phyint_g_list->phyint_list_avl_by_index); 4992 } else { 4993 phyi = phyi_initial = avl_find( 4994 &ipst->ips_phyint_g_list->phyint_list_avl_by_index, 4995 (void *) &index, NULL); 4996 } 4997 4998 for (; phyi != NULL; 4999 phyi = avl_walk(&ipst->ips_phyint_g_list->phyint_list_avl_by_index, 5000 phyi, AVL_AFTER)) { 5001 /* 5002 * If we're not returning the first interface in the tree 5003 * and we still haven't moved past the phyint_t that 5004 * corresponds to index, avl_walk needs to be called again 5005 */ 5006 if (!((index != 0) && (phyi == phyi_initial))) { 5007 if (isv6) { 5008 if ((phyi->phyint_illv6) && 5009 ILL_CAN_LOOKUP(phyi->phyint_illv6) && 5010 (phyi->phyint_illv6->ill_isv6 == 1)) 5011 break; 5012 } else { 5013 if ((phyi->phyint_illv4) && 5014 ILL_CAN_LOOKUP(phyi->phyint_illv4) && 5015 (phyi->phyint_illv4->ill_isv6 == 0)) 5016 break; 5017 } 5018 } 5019 } 5020 5021 rw_exit(&ipst->ips_ill_g_lock); 5022 5023 if (phyi != NULL) 5024 ifindex = phyi->phyint_ifindex; 5025 else 5026 ifindex = 0; 5027 5028 return (ifindex); 5029 } 5030 5031 /* 5032 * Return the ifindex for the named interface. 5033 * If there is no next ifindex for the interface, return 0. 5034 */ 5035 uint_t 5036 ill_get_ifindex_by_name(char *name, ip_stack_t *ipst) 5037 { 5038 phyint_t *phyi; 5039 avl_index_t where = 0; 5040 uint_t ifindex; 5041 5042 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 5043 5044 if ((phyi = avl_find(&ipst->ips_phyint_g_list->phyint_list_avl_by_name, 5045 name, &where)) == NULL) { 5046 rw_exit(&ipst->ips_ill_g_lock); 5047 return (0); 5048 } 5049 5050 ifindex = phyi->phyint_ifindex; 5051 5052 rw_exit(&ipst->ips_ill_g_lock); 5053 5054 return (ifindex); 5055 } 5056 5057 /* 5058 * Obtain a reference to the ill. The ill_refcnt is a dynamic refcnt 5059 * that gives a running thread a reference to the ill. This reference must be 5060 * released by the thread when it is done accessing the ill and related 5061 * objects. ill_refcnt can not be used to account for static references 5062 * such as other structures pointing to an ill. Callers must generally 5063 * check whether an ill can be refheld by using ILL_CAN_LOOKUP macros 5064 * or be sure that the ill is not being deleted or changing state before 5065 * calling the refhold functions. A non-zero ill_refcnt ensures that the 5066 * ill won't change any of its critical state such as address, netmask etc. 5067 */ 5068 void 5069 ill_refhold(ill_t *ill) 5070 { 5071 mutex_enter(&ill->ill_lock); 5072 ill->ill_refcnt++; 5073 ILL_TRACE_REF(ill); 5074 mutex_exit(&ill->ill_lock); 5075 } 5076 5077 void 5078 ill_refhold_locked(ill_t *ill) 5079 { 5080 ASSERT(MUTEX_HELD(&ill->ill_lock)); 5081 ill->ill_refcnt++; 5082 ILL_TRACE_REF(ill); 5083 } 5084 5085 int 5086 ill_check_and_refhold(ill_t *ill) 5087 { 5088 mutex_enter(&ill->ill_lock); 5089 if (ILL_CAN_LOOKUP(ill)) { 5090 ill_refhold_locked(ill); 5091 mutex_exit(&ill->ill_lock); 5092 return (0); 5093 } 5094 mutex_exit(&ill->ill_lock); 5095 return (ILL_LOOKUP_FAILED); 5096 } 5097 5098 /* 5099 * Must not be called while holding any locks. Otherwise if this is 5100 * the last reference to be released, there is a chance of recursive mutex 5101 * panic due to ill_refrele -> ipif_ill_refrele_tail -> qwriter_ip trying 5102 * to restart an ioctl. 5103 */ 5104 void 5105 ill_refrele(ill_t *ill) 5106 { 5107 mutex_enter(&ill->ill_lock); 5108 ASSERT(ill->ill_refcnt != 0); 5109 ill->ill_refcnt--; 5110 ILL_UNTRACE_REF(ill); 5111 if (ill->ill_refcnt != 0) { 5112 /* Every ire pointing to the ill adds 1 to ill_refcnt */ 5113 mutex_exit(&ill->ill_lock); 5114 return; 5115 } 5116 5117 /* Drops the ill_lock */ 5118 ipif_ill_refrele_tail(ill); 5119 } 5120 5121 /* 5122 * Obtain a weak reference count on the ill. This reference ensures the 5123 * ill won't be freed, but the ill may change any of its critical state 5124 * such as netmask, address etc. Returns an error if the ill has started 5125 * closing. 5126 */ 5127 boolean_t 5128 ill_waiter_inc(ill_t *ill) 5129 { 5130 mutex_enter(&ill->ill_lock); 5131 if (ill->ill_state_flags & ILL_CONDEMNED) { 5132 mutex_exit(&ill->ill_lock); 5133 return (B_FALSE); 5134 } 5135 ill->ill_waiters++; 5136 mutex_exit(&ill->ill_lock); 5137 return (B_TRUE); 5138 } 5139 5140 void 5141 ill_waiter_dcr(ill_t *ill) 5142 { 5143 mutex_enter(&ill->ill_lock); 5144 ill->ill_waiters--; 5145 if (ill->ill_waiters == 0) 5146 cv_broadcast(&ill->ill_cv); 5147 mutex_exit(&ill->ill_lock); 5148 } 5149 5150 /* 5151 * Named Dispatch routine to produce a formatted report on all ILLs. 5152 * This report is accessed by using the ndd utility to "get" ND variable 5153 * "ip_ill_status". 5154 */ 5155 /* ARGSUSED */ 5156 int 5157 ip_ill_report(queue_t *q, mblk_t *mp, caddr_t arg, cred_t *ioc_cr) 5158 { 5159 ill_t *ill; 5160 ill_walk_context_t ctx; 5161 ip_stack_t *ipst; 5162 5163 ipst = CONNQ_TO_IPST(q); 5164 5165 (void) mi_mpprintf(mp, 5166 "ILL " MI_COL_HDRPAD_STR 5167 /* 01234567[89ABCDEF] */ 5168 "rq " MI_COL_HDRPAD_STR 5169 /* 01234567[89ABCDEF] */ 5170 "wq " MI_COL_HDRPAD_STR 5171 /* 01234567[89ABCDEF] */ 5172 "upcnt mxfrg err name"); 5173 /* 12345 12345 123 xxxxxxxx */ 5174 5175 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 5176 ill = ILL_START_WALK_ALL(&ctx, ipst); 5177 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 5178 (void) mi_mpprintf(mp, 5179 MI_COL_PTRFMT_STR MI_COL_PTRFMT_STR MI_COL_PTRFMT_STR 5180 "%05u %05u %03d %s", 5181 (void *)ill, (void *)ill->ill_rq, (void *)ill->ill_wq, 5182 ill->ill_ipif_up_count, 5183 ill->ill_max_frag, ill->ill_error, ill->ill_name); 5184 } 5185 rw_exit(&ipst->ips_ill_g_lock); 5186 5187 return (0); 5188 } 5189 5190 /* 5191 * Named Dispatch routine to produce a formatted report on all IPIFs. 5192 * This report is accessed by using the ndd utility to "get" ND variable 5193 * "ip_ipif_status". 5194 */ 5195 /* ARGSUSED */ 5196 int 5197 ip_ipif_report(queue_t *q, mblk_t *mp, caddr_t arg, cred_t *ioc_cr) 5198 { 5199 char buf1[INET6_ADDRSTRLEN]; 5200 char buf2[INET6_ADDRSTRLEN]; 5201 char buf3[INET6_ADDRSTRLEN]; 5202 char buf4[INET6_ADDRSTRLEN]; 5203 char buf5[INET6_ADDRSTRLEN]; 5204 char buf6[INET6_ADDRSTRLEN]; 5205 char buf[LIFNAMSIZ]; 5206 ill_t *ill; 5207 ipif_t *ipif; 5208 nv_t *nvp; 5209 uint64_t flags; 5210 zoneid_t zoneid; 5211 ill_walk_context_t ctx; 5212 ip_stack_t *ipst = CONNQ_TO_IPST(q); 5213 5214 (void) mi_mpprintf(mp, 5215 "IPIF metric mtu in/out/forward name zone flags...\n" 5216 "\tlocal address\n" 5217 "\tsrc address\n" 5218 "\tsubnet\n" 5219 "\tmask\n" 5220 "\tbroadcast\n" 5221 "\tp-p-dst"); 5222 5223 ASSERT(q->q_next == NULL); 5224 zoneid = Q_TO_CONN(q)->conn_zoneid; /* IP is a driver */ 5225 5226 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 5227 ill = ILL_START_WALK_ALL(&ctx, ipst); 5228 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 5229 for (ipif = ill->ill_ipif; ipif != NULL; 5230 ipif = ipif->ipif_next) { 5231 if (zoneid != GLOBAL_ZONEID && 5232 zoneid != ipif->ipif_zoneid && 5233 ipif->ipif_zoneid != ALL_ZONES) 5234 continue; 5235 5236 ipif_get_name(ipif, buf, sizeof (buf)); 5237 (void) mi_mpprintf(mp, 5238 MI_COL_PTRFMT_STR 5239 "%04u %05u %u/%u/%u %s %d", 5240 (void *)ipif, 5241 ipif->ipif_metric, ipif->ipif_mtu, 5242 ipif->ipif_ib_pkt_count, 5243 ipif->ipif_ob_pkt_count, 5244 ipif->ipif_fo_pkt_count, 5245 buf, 5246 ipif->ipif_zoneid); 5247 5248 flags = ipif->ipif_flags | ipif->ipif_ill->ill_flags | 5249 ipif->ipif_ill->ill_phyint->phyint_flags; 5250 5251 /* Tack on text strings for any flags. */ 5252 nvp = ipif_nv_tbl; 5253 for (; nvp < A_END(ipif_nv_tbl); nvp++) { 5254 if (nvp->nv_value & flags) 5255 (void) mi_mpprintf_nr(mp, " %s", 5256 nvp->nv_name); 5257 } 5258 (void) mi_mpprintf(mp, 5259 "\t%s\n\t%s\n\t%s\n\t%s\n\t%s\n\t%s", 5260 inet_ntop(AF_INET6, 5261 &ipif->ipif_v6lcl_addr, buf1, sizeof (buf1)), 5262 inet_ntop(AF_INET6, 5263 &ipif->ipif_v6src_addr, buf2, sizeof (buf2)), 5264 inet_ntop(AF_INET6, 5265 &ipif->ipif_v6subnet, buf3, sizeof (buf3)), 5266 inet_ntop(AF_INET6, 5267 &ipif->ipif_v6net_mask, buf4, sizeof (buf4)), 5268 inet_ntop(AF_INET6, 5269 &ipif->ipif_v6brd_addr, buf5, sizeof (buf5)), 5270 inet_ntop(AF_INET6, 5271 &ipif->ipif_v6pp_dst_addr, buf6, sizeof (buf6))); 5272 } 5273 } 5274 rw_exit(&ipst->ips_ill_g_lock); 5275 return (0); 5276 } 5277 5278 /* 5279 * ip_ll_subnet_defaults is called when we get the DL_INFO_ACK back from the 5280 * driver. We construct best guess defaults for lower level information that 5281 * we need. If an interface is brought up without injection of any overriding 5282 * information from outside, we have to be ready to go with these defaults. 5283 * When we get the first DL_INFO_ACK (from ip_open() sending a DL_INFO_REQ) 5284 * we primarely want the dl_provider_style. 5285 * The subsequent DL_INFO_ACK is received after doing a DL_ATTACH and DL_BIND 5286 * at which point we assume the other part of the information is valid. 5287 */ 5288 void 5289 ip_ll_subnet_defaults(ill_t *ill, mblk_t *mp) 5290 { 5291 uchar_t *brdcst_addr; 5292 uint_t brdcst_addr_length, phys_addr_length; 5293 t_scalar_t sap_length; 5294 dl_info_ack_t *dlia; 5295 ip_m_t *ipm; 5296 dl_qos_cl_sel1_t *sel1; 5297 5298 ASSERT(IAM_WRITER_ILL(ill)); 5299 5300 /* 5301 * Till the ill is fully up ILL_CHANGING will be set and 5302 * the ill is not globally visible. So no need for a lock. 5303 */ 5304 dlia = (dl_info_ack_t *)mp->b_rptr; 5305 ill->ill_mactype = dlia->dl_mac_type; 5306 5307 ipm = ip_m_lookup(dlia->dl_mac_type); 5308 if (ipm == NULL) { 5309 ipm = ip_m_lookup(DL_OTHER); 5310 ASSERT(ipm != NULL); 5311 } 5312 ill->ill_media = ipm; 5313 5314 /* 5315 * When the new DLPI stuff is ready we'll pull lengths 5316 * from dlia. 5317 */ 5318 if (dlia->dl_version == DL_VERSION_2) { 5319 brdcst_addr_length = dlia->dl_brdcst_addr_length; 5320 brdcst_addr = mi_offset_param(mp, dlia->dl_brdcst_addr_offset, 5321 brdcst_addr_length); 5322 if (brdcst_addr == NULL) { 5323 brdcst_addr_length = 0; 5324 } 5325 sap_length = dlia->dl_sap_length; 5326 phys_addr_length = dlia->dl_addr_length - ABS(sap_length); 5327 ip1dbg(("ip: bcast_len %d, sap_len %d, phys_len %d\n", 5328 brdcst_addr_length, sap_length, phys_addr_length)); 5329 } else { 5330 brdcst_addr_length = 6; 5331 brdcst_addr = ip_six_byte_all_ones; 5332 sap_length = -2; 5333 phys_addr_length = brdcst_addr_length; 5334 } 5335 5336 ill->ill_bcast_addr_length = brdcst_addr_length; 5337 ill->ill_phys_addr_length = phys_addr_length; 5338 ill->ill_sap_length = sap_length; 5339 ill->ill_max_frag = dlia->dl_max_sdu; 5340 ill->ill_max_mtu = ill->ill_max_frag; 5341 5342 ill->ill_type = ipm->ip_m_type; 5343 5344 if (!ill->ill_dlpi_style_set) { 5345 if (dlia->dl_provider_style == DL_STYLE2) 5346 ill->ill_needs_attach = 1; 5347 5348 /* 5349 * Allocate the first ipif on this ill. We don't delay it 5350 * further as ioctl handling assumes atleast one ipif to 5351 * be present. 5352 * 5353 * At this point we don't know whether the ill is v4 or v6. 5354 * We will know this whan the SIOCSLIFNAME happens and 5355 * the correct value for ill_isv6 will be assigned in 5356 * ipif_set_values(). We need to hold the ill lock and 5357 * clear the ILL_LL_SUBNET_PENDING flag and atomically do 5358 * the wakeup. 5359 */ 5360 (void) ipif_allocate(ill, 0, IRE_LOCAL, 5361 dlia->dl_provider_style == DL_STYLE2 ? B_FALSE : B_TRUE); 5362 mutex_enter(&ill->ill_lock); 5363 ASSERT(ill->ill_dlpi_style_set == 0); 5364 ill->ill_dlpi_style_set = 1; 5365 ill->ill_state_flags &= ~ILL_LL_SUBNET_PENDING; 5366 cv_broadcast(&ill->ill_cv); 5367 mutex_exit(&ill->ill_lock); 5368 freemsg(mp); 5369 return; 5370 } 5371 ASSERT(ill->ill_ipif != NULL); 5372 /* 5373 * We know whether it is IPv4 or IPv6 now, as this is the 5374 * second DL_INFO_ACK we are recieving in response to the 5375 * DL_INFO_REQ sent in ipif_set_values. 5376 */ 5377 if (ill->ill_isv6) 5378 ill->ill_sap = IP6_DL_SAP; 5379 else 5380 ill->ill_sap = IP_DL_SAP; 5381 /* 5382 * Set ipif_mtu which is used to set the IRE's 5383 * ire_max_frag value. The driver could have sent 5384 * a different mtu from what it sent last time. No 5385 * need to call ipif_mtu_change because IREs have 5386 * not yet been created. 5387 */ 5388 ill->ill_ipif->ipif_mtu = ill->ill_max_mtu; 5389 /* 5390 * Clear all the flags that were set based on ill_bcast_addr_length 5391 * and ill_phys_addr_length (in ipif_set_values) as these could have 5392 * changed now and we need to re-evaluate. 5393 */ 5394 ill->ill_flags &= ~(ILLF_MULTICAST | ILLF_NONUD | ILLF_NOARP); 5395 ill->ill_ipif->ipif_flags &= ~(IPIF_BROADCAST | IPIF_POINTOPOINT); 5396 5397 /* 5398 * Free ill_resolver_mp and ill_bcast_mp as things could have 5399 * changed now. 5400 */ 5401 if (ill->ill_bcast_addr_length == 0) { 5402 if (ill->ill_resolver_mp != NULL) 5403 freemsg(ill->ill_resolver_mp); 5404 if (ill->ill_bcast_mp != NULL) 5405 freemsg(ill->ill_bcast_mp); 5406 if (ill->ill_flags & ILLF_XRESOLV) 5407 ill->ill_net_type = IRE_IF_RESOLVER; 5408 else 5409 ill->ill_net_type = IRE_IF_NORESOLVER; 5410 ill->ill_resolver_mp = ill_dlur_gen(NULL, 5411 ill->ill_phys_addr_length, 5412 ill->ill_sap, 5413 ill->ill_sap_length); 5414 ill->ill_bcast_mp = copymsg(ill->ill_resolver_mp); 5415 5416 if (ill->ill_isv6) 5417 /* 5418 * Note: xresolv interfaces will eventually need NOARP 5419 * set here as well, but that will require those 5420 * external resolvers to have some knowledge of 5421 * that flag and act appropriately. Not to be changed 5422 * at present. 5423 */ 5424 ill->ill_flags |= ILLF_NONUD; 5425 else 5426 ill->ill_flags |= ILLF_NOARP; 5427 5428 if (ill->ill_phys_addr_length == 0) { 5429 if (ill->ill_media->ip_m_mac_type == SUNW_DL_VNI) { 5430 ill->ill_ipif->ipif_flags |= IPIF_NOXMIT; 5431 ill->ill_phyint->phyint_flags |= PHYI_VIRTUAL; 5432 } else { 5433 /* pt-pt supports multicast. */ 5434 ill->ill_flags |= ILLF_MULTICAST; 5435 ill->ill_ipif->ipif_flags |= IPIF_POINTOPOINT; 5436 } 5437 } 5438 } else { 5439 ill->ill_net_type = IRE_IF_RESOLVER; 5440 if (ill->ill_bcast_mp != NULL) 5441 freemsg(ill->ill_bcast_mp); 5442 ill->ill_bcast_mp = ill_dlur_gen(brdcst_addr, 5443 ill->ill_bcast_addr_length, ill->ill_sap, 5444 ill->ill_sap_length); 5445 /* 5446 * Later detect lack of DLPI driver multicast 5447 * capability by catching DL_ENABMULTI errors in 5448 * ip_rput_dlpi. 5449 */ 5450 ill->ill_flags |= ILLF_MULTICAST; 5451 if (!ill->ill_isv6) 5452 ill->ill_ipif->ipif_flags |= IPIF_BROADCAST; 5453 } 5454 /* By default an interface does not support any CoS marking */ 5455 ill->ill_flags &= ~ILLF_COS_ENABLED; 5456 5457 /* 5458 * If we get QoS information in DL_INFO_ACK, the device supports 5459 * some form of CoS marking, set ILLF_COS_ENABLED. 5460 */ 5461 sel1 = (dl_qos_cl_sel1_t *)mi_offset_param(mp, dlia->dl_qos_offset, 5462 dlia->dl_qos_length); 5463 if ((sel1 != NULL) && (sel1->dl_qos_type == DL_QOS_CL_SEL1)) { 5464 ill->ill_flags |= ILLF_COS_ENABLED; 5465 } 5466 5467 /* Clear any previous error indication. */ 5468 ill->ill_error = 0; 5469 freemsg(mp); 5470 } 5471 5472 /* 5473 * Perform various checks to verify that an address would make sense as a 5474 * local, remote, or subnet interface address. 5475 */ 5476 static boolean_t 5477 ip_addr_ok_v4(ipaddr_t addr, ipaddr_t subnet_mask) 5478 { 5479 ipaddr_t net_mask; 5480 5481 /* 5482 * Don't allow all zeroes, or all ones, but allow 5483 * all ones netmask. 5484 */ 5485 if ((net_mask = ip_net_mask(addr)) == 0) 5486 return (B_FALSE); 5487 /* A given netmask overrides the "guess" netmask */ 5488 if (subnet_mask != 0) 5489 net_mask = subnet_mask; 5490 if ((net_mask != ~(ipaddr_t)0) && ((addr == (addr & net_mask)) || 5491 (addr == (addr | ~net_mask)))) { 5492 return (B_FALSE); 5493 } 5494 5495 /* 5496 * Even if the netmask is all ones, we do not allow address to be 5497 * 255.255.255.255 5498 */ 5499 if (addr == INADDR_BROADCAST) 5500 return (B_FALSE); 5501 5502 if (CLASSD(addr)) 5503 return (B_FALSE); 5504 5505 return (B_TRUE); 5506 } 5507 5508 #define V6_IPIF_LINKLOCAL(p) \ 5509 IN6_IS_ADDR_LINKLOCAL(&(p)->ipif_v6lcl_addr) 5510 5511 /* 5512 * Compare two given ipifs and check if the second one is better than 5513 * the first one using the order of preference (not taking deprecated 5514 * into acount) specified in ipif_lookup_multicast(). 5515 */ 5516 static boolean_t 5517 ipif_comp_multi(ipif_t *old_ipif, ipif_t *new_ipif, boolean_t isv6) 5518 { 5519 /* Check the least preferred first. */ 5520 if (IS_LOOPBACK(old_ipif->ipif_ill)) { 5521 /* If both ipifs are the same, use the first one. */ 5522 if (IS_LOOPBACK(new_ipif->ipif_ill)) 5523 return (B_FALSE); 5524 else 5525 return (B_TRUE); 5526 } 5527 5528 /* For IPv6, check for link local address. */ 5529 if (isv6 && V6_IPIF_LINKLOCAL(old_ipif)) { 5530 if (IS_LOOPBACK(new_ipif->ipif_ill) || 5531 V6_IPIF_LINKLOCAL(new_ipif)) { 5532 /* The second one is equal or less preferred. */ 5533 return (B_FALSE); 5534 } else { 5535 return (B_TRUE); 5536 } 5537 } 5538 5539 /* Then check for point to point interface. */ 5540 if (old_ipif->ipif_flags & IPIF_POINTOPOINT) { 5541 if (IS_LOOPBACK(new_ipif->ipif_ill) || 5542 (isv6 && V6_IPIF_LINKLOCAL(new_ipif)) || 5543 (new_ipif->ipif_flags & IPIF_POINTOPOINT)) { 5544 return (B_FALSE); 5545 } else { 5546 return (B_TRUE); 5547 } 5548 } 5549 5550 /* old_ipif is a normal interface, so no need to use the new one. */ 5551 return (B_FALSE); 5552 } 5553 5554 /* 5555 * Find any non-virtual, not condemned, and up multicast capable interface 5556 * given an IP instance and zoneid. Order of preference is: 5557 * 5558 * 1. normal 5559 * 1.1 normal, but deprecated 5560 * 2. point to point 5561 * 2.1 point to point, but deprecated 5562 * 3. link local 5563 * 3.1 link local, but deprecated 5564 * 4. loopback. 5565 */ 5566 ipif_t * 5567 ipif_lookup_multicast(ip_stack_t *ipst, zoneid_t zoneid, boolean_t isv6) 5568 { 5569 ill_t *ill; 5570 ill_walk_context_t ctx; 5571 ipif_t *ipif; 5572 ipif_t *saved_ipif = NULL; 5573 ipif_t *dep_ipif = NULL; 5574 5575 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 5576 if (isv6) 5577 ill = ILL_START_WALK_V6(&ctx, ipst); 5578 else 5579 ill = ILL_START_WALK_V4(&ctx, ipst); 5580 5581 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 5582 mutex_enter(&ill->ill_lock); 5583 if (IS_VNI(ill) || !ILL_CAN_LOOKUP(ill) || 5584 !(ill->ill_flags & ILLF_MULTICAST)) { 5585 mutex_exit(&ill->ill_lock); 5586 continue; 5587 } 5588 for (ipif = ill->ill_ipif; ipif != NULL; 5589 ipif = ipif->ipif_next) { 5590 if (zoneid != ipif->ipif_zoneid && 5591 zoneid != ALL_ZONES && 5592 ipif->ipif_zoneid != ALL_ZONES) { 5593 continue; 5594 } 5595 if (!(ipif->ipif_flags & IPIF_UP) || 5596 !IPIF_CAN_LOOKUP(ipif)) { 5597 continue; 5598 } 5599 5600 /* 5601 * Found one candidate. If it is deprecated, 5602 * remember it in dep_ipif. If it is not deprecated, 5603 * remember it in saved_ipif. 5604 */ 5605 if (ipif->ipif_flags & IPIF_DEPRECATED) { 5606 if (dep_ipif == NULL) { 5607 dep_ipif = ipif; 5608 } else if (ipif_comp_multi(dep_ipif, ipif, 5609 isv6)) { 5610 /* 5611 * If the previous dep_ipif does not 5612 * belong to the same ill, we've done 5613 * a ipif_refhold() on it. So we need 5614 * to release it. 5615 */ 5616 if (dep_ipif->ipif_ill != ill) 5617 ipif_refrele(dep_ipif); 5618 dep_ipif = ipif; 5619 } 5620 continue; 5621 } 5622 if (saved_ipif == NULL) { 5623 saved_ipif = ipif; 5624 } else { 5625 if (ipif_comp_multi(saved_ipif, ipif, isv6)) { 5626 if (saved_ipif->ipif_ill != ill) 5627 ipif_refrele(saved_ipif); 5628 saved_ipif = ipif; 5629 } 5630 } 5631 } 5632 /* 5633 * Before going to the next ill, do a ipif_refhold() on the 5634 * saved ones. 5635 */ 5636 if (saved_ipif != NULL && saved_ipif->ipif_ill == ill) 5637 ipif_refhold_locked(saved_ipif); 5638 if (dep_ipif != NULL && dep_ipif->ipif_ill == ill) 5639 ipif_refhold_locked(dep_ipif); 5640 mutex_exit(&ill->ill_lock); 5641 } 5642 rw_exit(&ipst->ips_ill_g_lock); 5643 5644 /* 5645 * If we have only the saved_ipif, return it. But if we have both 5646 * saved_ipif and dep_ipif, check to see which one is better. 5647 */ 5648 if (saved_ipif != NULL) { 5649 if (dep_ipif != NULL) { 5650 if (ipif_comp_multi(saved_ipif, dep_ipif, isv6)) { 5651 ipif_refrele(saved_ipif); 5652 return (dep_ipif); 5653 } else { 5654 ipif_refrele(dep_ipif); 5655 return (saved_ipif); 5656 } 5657 } 5658 return (saved_ipif); 5659 } else { 5660 return (dep_ipif); 5661 } 5662 } 5663 5664 /* 5665 * This function is called when an application does not specify an interface 5666 * to be used for multicast traffic (joining a group/sending data). It 5667 * calls ire_lookup_multi() to look for an interface route for the 5668 * specified multicast group. Doing this allows the administrator to add 5669 * prefix routes for multicast to indicate which interface to be used for 5670 * multicast traffic in the above scenario. The route could be for all 5671 * multicast (224.0/4), for a single multicast group (a /32 route) or 5672 * anything in between. If there is no such multicast route, we just find 5673 * any multicast capable interface and return it. The returned ipif 5674 * is refhold'ed. 5675 */ 5676 ipif_t * 5677 ipif_lookup_group(ipaddr_t group, zoneid_t zoneid, ip_stack_t *ipst) 5678 { 5679 ire_t *ire; 5680 ipif_t *ipif; 5681 5682 ire = ire_lookup_multi(group, zoneid, ipst); 5683 if (ire != NULL) { 5684 ipif = ire->ire_ipif; 5685 ipif_refhold(ipif); 5686 ire_refrele(ire); 5687 return (ipif); 5688 } 5689 5690 return (ipif_lookup_multicast(ipst, zoneid, B_FALSE)); 5691 } 5692 5693 /* 5694 * Look for an ipif with the specified interface address and destination. 5695 * The destination address is used only for matching point-to-point interfaces. 5696 */ 5697 ipif_t * 5698 ipif_lookup_interface(ipaddr_t if_addr, ipaddr_t dst, queue_t *q, mblk_t *mp, 5699 ipsq_func_t func, int *error, ip_stack_t *ipst) 5700 { 5701 ipif_t *ipif; 5702 ill_t *ill; 5703 ill_walk_context_t ctx; 5704 ipsq_t *ipsq; 5705 5706 if (error != NULL) 5707 *error = 0; 5708 5709 /* 5710 * First match all the point-to-point interfaces 5711 * before looking at non-point-to-point interfaces. 5712 * This is done to avoid returning non-point-to-point 5713 * ipif instead of unnumbered point-to-point ipif. 5714 */ 5715 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 5716 ill = ILL_START_WALK_V4(&ctx, ipst); 5717 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 5718 GRAB_CONN_LOCK(q); 5719 mutex_enter(&ill->ill_lock); 5720 for (ipif = ill->ill_ipif; ipif != NULL; 5721 ipif = ipif->ipif_next) { 5722 /* Allow the ipif to be down */ 5723 if ((ipif->ipif_flags & IPIF_POINTOPOINT) && 5724 (ipif->ipif_lcl_addr == if_addr) && 5725 (ipif->ipif_pp_dst_addr == dst)) { 5726 /* 5727 * The block comment at the start of ipif_down 5728 * explains the use of the macros used below 5729 */ 5730 if (IPIF_CAN_LOOKUP(ipif)) { 5731 ipif_refhold_locked(ipif); 5732 mutex_exit(&ill->ill_lock); 5733 RELEASE_CONN_LOCK(q); 5734 rw_exit(&ipst->ips_ill_g_lock); 5735 return (ipif); 5736 } else if (IPIF_CAN_WAIT(ipif, q)) { 5737 ipsq = ill->ill_phyint->phyint_ipsq; 5738 mutex_enter(&ipsq->ipsq_lock); 5739 mutex_exit(&ill->ill_lock); 5740 rw_exit(&ipst->ips_ill_g_lock); 5741 ipsq_enq(ipsq, q, mp, func, NEW_OP, 5742 ill); 5743 mutex_exit(&ipsq->ipsq_lock); 5744 RELEASE_CONN_LOCK(q); 5745 if (error != NULL) 5746 *error = EINPROGRESS; 5747 return (NULL); 5748 } 5749 } 5750 } 5751 mutex_exit(&ill->ill_lock); 5752 RELEASE_CONN_LOCK(q); 5753 } 5754 rw_exit(&ipst->ips_ill_g_lock); 5755 5756 /* lookup the ipif based on interface address */ 5757 ipif = ipif_lookup_addr(if_addr, NULL, ALL_ZONES, q, mp, func, error, 5758 ipst); 5759 ASSERT(ipif == NULL || !ipif->ipif_isv6); 5760 return (ipif); 5761 } 5762 5763 /* 5764 * Look for an ipif with the specified address. For point-point links 5765 * we look for matches on either the destination address and the local 5766 * address, but we ignore the check on the local address if IPIF_UNNUMBERED 5767 * is set. 5768 * Matches on a specific ill if match_ill is set. 5769 */ 5770 ipif_t * 5771 ipif_lookup_addr(ipaddr_t addr, ill_t *match_ill, zoneid_t zoneid, queue_t *q, 5772 mblk_t *mp, ipsq_func_t func, int *error, ip_stack_t *ipst) 5773 { 5774 ipif_t *ipif; 5775 ill_t *ill; 5776 boolean_t ptp = B_FALSE; 5777 ipsq_t *ipsq; 5778 ill_walk_context_t ctx; 5779 5780 if (error != NULL) 5781 *error = 0; 5782 5783 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 5784 /* 5785 * Repeat twice, first based on local addresses and 5786 * next time for pointopoint. 5787 */ 5788 repeat: 5789 ill = ILL_START_WALK_V4(&ctx, ipst); 5790 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 5791 if (match_ill != NULL && ill != match_ill) { 5792 continue; 5793 } 5794 GRAB_CONN_LOCK(q); 5795 mutex_enter(&ill->ill_lock); 5796 for (ipif = ill->ill_ipif; ipif != NULL; 5797 ipif = ipif->ipif_next) { 5798 if (zoneid != ALL_ZONES && 5799 zoneid != ipif->ipif_zoneid && 5800 ipif->ipif_zoneid != ALL_ZONES) 5801 continue; 5802 /* Allow the ipif to be down */ 5803 if ((!ptp && (ipif->ipif_lcl_addr == addr) && 5804 ((ipif->ipif_flags & IPIF_UNNUMBERED) == 0)) || 5805 (ptp && (ipif->ipif_flags & IPIF_POINTOPOINT) && 5806 (ipif->ipif_pp_dst_addr == addr))) { 5807 /* 5808 * The block comment at the start of ipif_down 5809 * explains the use of the macros used below 5810 */ 5811 if (IPIF_CAN_LOOKUP(ipif)) { 5812 ipif_refhold_locked(ipif); 5813 mutex_exit(&ill->ill_lock); 5814 RELEASE_CONN_LOCK(q); 5815 rw_exit(&ipst->ips_ill_g_lock); 5816 return (ipif); 5817 } else if (IPIF_CAN_WAIT(ipif, q)) { 5818 ipsq = ill->ill_phyint->phyint_ipsq; 5819 mutex_enter(&ipsq->ipsq_lock); 5820 mutex_exit(&ill->ill_lock); 5821 rw_exit(&ipst->ips_ill_g_lock); 5822 ipsq_enq(ipsq, q, mp, func, NEW_OP, 5823 ill); 5824 mutex_exit(&ipsq->ipsq_lock); 5825 RELEASE_CONN_LOCK(q); 5826 if (error != NULL) 5827 *error = EINPROGRESS; 5828 return (NULL); 5829 } 5830 } 5831 } 5832 mutex_exit(&ill->ill_lock); 5833 RELEASE_CONN_LOCK(q); 5834 } 5835 5836 /* If we already did the ptp case, then we are done */ 5837 if (ptp) { 5838 rw_exit(&ipst->ips_ill_g_lock); 5839 if (error != NULL) 5840 *error = ENXIO; 5841 return (NULL); 5842 } 5843 ptp = B_TRUE; 5844 goto repeat; 5845 } 5846 5847 /* 5848 * Check if the address exists in the system. 5849 * We don't hold the conn_lock as we will not perform defered ipsqueue 5850 * operation. 5851 */ 5852 boolean_t 5853 ip_addr_exists(ipaddr_t addr, zoneid_t zoneid, ip_stack_t *ipst) 5854 { 5855 ipif_t *ipif; 5856 ill_t *ill; 5857 ill_walk_context_t ctx; 5858 5859 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 5860 5861 ill = ILL_START_WALK_V4(&ctx, ipst); 5862 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 5863 mutex_enter(&ill->ill_lock); 5864 for (ipif = ill->ill_ipif; ipif != NULL; 5865 ipif = ipif->ipif_next) { 5866 if (zoneid != ALL_ZONES && 5867 zoneid != ipif->ipif_zoneid && 5868 ipif->ipif_zoneid != ALL_ZONES) 5869 continue; 5870 /* Allow the ipif to be down */ 5871 /* 5872 * XXX Different from ipif_lookup_addr(), we don't do 5873 * twice lookups. As from bind()'s point of view, we 5874 * may return once we find a match. 5875 */ 5876 if (((ipif->ipif_lcl_addr == addr) && 5877 ((ipif->ipif_flags & IPIF_UNNUMBERED) == 0)) || 5878 ((ipif->ipif_flags & IPIF_POINTOPOINT) && 5879 (ipif->ipif_pp_dst_addr == addr))) { 5880 /* 5881 * Allow bind() to be successful even if the 5882 * ipif is with IPIF_CHANGING bit set. 5883 */ 5884 mutex_exit(&ill->ill_lock); 5885 rw_exit(&ipst->ips_ill_g_lock); 5886 return (B_TRUE); 5887 } 5888 } 5889 mutex_exit(&ill->ill_lock); 5890 } 5891 5892 rw_exit(&ipst->ips_ill_g_lock); 5893 return (B_FALSE); 5894 } 5895 5896 /* 5897 * Look for an ipif with the specified address. For point-point links 5898 * we look for matches on either the destination address and the local 5899 * address, but we ignore the check on the local address if IPIF_UNNUMBERED 5900 * is set. 5901 * Matches on a specific ill if match_ill is set. 5902 * Return the zoneid for the ipif which matches. ALL_ZONES if no match. 5903 */ 5904 zoneid_t 5905 ipif_lookup_addr_zoneid(ipaddr_t addr, ill_t *match_ill, ip_stack_t *ipst) 5906 { 5907 zoneid_t zoneid; 5908 ipif_t *ipif; 5909 ill_t *ill; 5910 boolean_t ptp = B_FALSE; 5911 ill_walk_context_t ctx; 5912 5913 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 5914 /* 5915 * Repeat twice, first based on local addresses and 5916 * next time for pointopoint. 5917 */ 5918 repeat: 5919 ill = ILL_START_WALK_V4(&ctx, ipst); 5920 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 5921 if (match_ill != NULL && ill != match_ill) { 5922 continue; 5923 } 5924 mutex_enter(&ill->ill_lock); 5925 for (ipif = ill->ill_ipif; ipif != NULL; 5926 ipif = ipif->ipif_next) { 5927 /* Allow the ipif to be down */ 5928 if ((!ptp && (ipif->ipif_lcl_addr == addr) && 5929 ((ipif->ipif_flags & IPIF_UNNUMBERED) == 0)) || 5930 (ptp && (ipif->ipif_flags & IPIF_POINTOPOINT) && 5931 (ipif->ipif_pp_dst_addr == addr)) && 5932 !(ipif->ipif_state_flags & IPIF_CONDEMNED)) { 5933 zoneid = ipif->ipif_zoneid; 5934 mutex_exit(&ill->ill_lock); 5935 rw_exit(&ipst->ips_ill_g_lock); 5936 /* 5937 * If ipif_zoneid was ALL_ZONES then we have 5938 * a trusted extensions shared IP address. 5939 * In that case GLOBAL_ZONEID works to send. 5940 */ 5941 if (zoneid == ALL_ZONES) 5942 zoneid = GLOBAL_ZONEID; 5943 return (zoneid); 5944 } 5945 } 5946 mutex_exit(&ill->ill_lock); 5947 } 5948 5949 /* If we already did the ptp case, then we are done */ 5950 if (ptp) { 5951 rw_exit(&ipst->ips_ill_g_lock); 5952 return (ALL_ZONES); 5953 } 5954 ptp = B_TRUE; 5955 goto repeat; 5956 } 5957 5958 /* 5959 * Look for an ipif that matches the specified remote address i.e. the 5960 * ipif that would receive the specified packet. 5961 * First look for directly connected interfaces and then do a recursive 5962 * IRE lookup and pick the first ipif corresponding to the source address in the 5963 * ire. 5964 * Returns: held ipif 5965 */ 5966 ipif_t * 5967 ipif_lookup_remote(ill_t *ill, ipaddr_t addr, zoneid_t zoneid) 5968 { 5969 ipif_t *ipif; 5970 ire_t *ire; 5971 ip_stack_t *ipst = ill->ill_ipst; 5972 5973 ASSERT(!ill->ill_isv6); 5974 5975 /* 5976 * Someone could be changing this ipif currently or change it 5977 * after we return this. Thus a few packets could use the old 5978 * old values. However structure updates/creates (ire, ilg, ilm etc) 5979 * will atomically be updated or cleaned up with the new value 5980 * Thus we don't need a lock to check the flags or other attrs below. 5981 */ 5982 mutex_enter(&ill->ill_lock); 5983 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 5984 if (!IPIF_CAN_LOOKUP(ipif)) 5985 continue; 5986 if (zoneid != ALL_ZONES && zoneid != ipif->ipif_zoneid && 5987 ipif->ipif_zoneid != ALL_ZONES) 5988 continue; 5989 /* Allow the ipif to be down */ 5990 if (ipif->ipif_flags & IPIF_POINTOPOINT) { 5991 if ((ipif->ipif_pp_dst_addr == addr) || 5992 (!(ipif->ipif_flags & IPIF_UNNUMBERED) && 5993 ipif->ipif_lcl_addr == addr)) { 5994 ipif_refhold_locked(ipif); 5995 mutex_exit(&ill->ill_lock); 5996 return (ipif); 5997 } 5998 } else if (ipif->ipif_subnet == (addr & ipif->ipif_net_mask)) { 5999 ipif_refhold_locked(ipif); 6000 mutex_exit(&ill->ill_lock); 6001 return (ipif); 6002 } 6003 } 6004 mutex_exit(&ill->ill_lock); 6005 ire = ire_route_lookup(addr, 0, 0, 0, NULL, NULL, zoneid, 6006 NULL, MATCH_IRE_RECURSIVE, ipst); 6007 if (ire != NULL) { 6008 /* 6009 * The callers of this function wants to know the 6010 * interface on which they have to send the replies 6011 * back. For IRE_CACHES that have ire_stq and ire_ipif 6012 * derived from different ills, we really don't care 6013 * what we return here. 6014 */ 6015 ipif = ire->ire_ipif; 6016 if (ipif != NULL) { 6017 ipif_refhold(ipif); 6018 ire_refrele(ire); 6019 return (ipif); 6020 } 6021 ire_refrele(ire); 6022 } 6023 /* Pick the first interface */ 6024 ipif = ipif_get_next_ipif(NULL, ill); 6025 return (ipif); 6026 } 6027 6028 /* 6029 * This func does not prevent refcnt from increasing. But if 6030 * the caller has taken steps to that effect, then this func 6031 * can be used to determine whether the ill has become quiescent 6032 */ 6033 static boolean_t 6034 ill_is_quiescent(ill_t *ill) 6035 { 6036 ipif_t *ipif; 6037 6038 ASSERT(MUTEX_HELD(&ill->ill_lock)); 6039 6040 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 6041 if (ipif->ipif_refcnt != 0 || !IPIF_DOWN_OK(ipif)) { 6042 return (B_FALSE); 6043 } 6044 } 6045 if (!ILL_DOWN_OK(ill) || ill->ill_refcnt != 0) { 6046 return (B_FALSE); 6047 } 6048 return (B_TRUE); 6049 } 6050 6051 boolean_t 6052 ill_is_freeable(ill_t *ill) 6053 { 6054 ipif_t *ipif; 6055 6056 ASSERT(MUTEX_HELD(&ill->ill_lock)); 6057 6058 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 6059 if (ipif->ipif_refcnt != 0 || !IPIF_FREE_OK(ipif)) { 6060 return (B_FALSE); 6061 } 6062 } 6063 if (!ILL_FREE_OK(ill) || ill->ill_refcnt != 0) { 6064 return (B_FALSE); 6065 } 6066 return (B_TRUE); 6067 } 6068 6069 /* 6070 * This func does not prevent refcnt from increasing. But if 6071 * the caller has taken steps to that effect, then this func 6072 * can be used to determine whether the ipif has become quiescent 6073 */ 6074 static boolean_t 6075 ipif_is_quiescent(ipif_t *ipif) 6076 { 6077 ill_t *ill; 6078 6079 ASSERT(MUTEX_HELD(&ipif->ipif_ill->ill_lock)); 6080 6081 if (ipif->ipif_refcnt != 0 || !IPIF_DOWN_OK(ipif)) { 6082 return (B_FALSE); 6083 } 6084 6085 ill = ipif->ipif_ill; 6086 if (ill->ill_ipif_up_count != 0 || ill->ill_ipif_dup_count != 0 || 6087 ill->ill_logical_down) { 6088 return (B_TRUE); 6089 } 6090 6091 /* This is the last ipif going down or being deleted on this ill */ 6092 if (!ILL_DOWN_OK(ill) || ill->ill_refcnt != 0) { 6093 return (B_FALSE); 6094 } 6095 6096 return (B_TRUE); 6097 } 6098 6099 /* 6100 * return true if the ipif can be destroyed: the ipif has to be quiescent 6101 * with zero references from ire/nce/ilm to it. 6102 */ 6103 static boolean_t 6104 ipif_is_freeable(ipif_t *ipif) 6105 { 6106 ASSERT(MUTEX_HELD(&ipif->ipif_ill->ill_lock)); 6107 ASSERT(ipif->ipif_id != 0); 6108 return (ipif->ipif_refcnt == 0 && IPIF_FREE_OK(ipif)); 6109 } 6110 6111 /* 6112 * This func does not prevent refcnt from increasing. But if 6113 * the caller has taken steps to that effect, then this func 6114 * can be used to determine whether the ipifs marked with IPIF_MOVING 6115 * have become quiescent and can be moved in a failover/failback. 6116 */ 6117 static ipif_t * 6118 ill_quiescent_to_move(ill_t *ill) 6119 { 6120 ipif_t *ipif; 6121 6122 ASSERT(MUTEX_HELD(&ill->ill_lock)); 6123 6124 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 6125 if (ipif->ipif_state_flags & IPIF_MOVING) { 6126 if (ipif->ipif_refcnt != 0 || 6127 !IPIF_DOWN_OK(ipif)) { 6128 return (ipif); 6129 } 6130 } 6131 } 6132 return (NULL); 6133 } 6134 6135 /* 6136 * The ipif/ill/ire has been refreled. Do the tail processing. 6137 * Determine if the ipif or ill in question has become quiescent and if so 6138 * wakeup close and/or restart any queued pending ioctl that is waiting 6139 * for the ipif_down (or ill_down) 6140 */ 6141 void 6142 ipif_ill_refrele_tail(ill_t *ill) 6143 { 6144 mblk_t *mp; 6145 conn_t *connp; 6146 ipsq_t *ipsq; 6147 ipif_t *ipif; 6148 dl_notify_ind_t *dlindp; 6149 6150 ASSERT(MUTEX_HELD(&ill->ill_lock)); 6151 6152 if ((ill->ill_state_flags & ILL_CONDEMNED) && 6153 ill_is_freeable(ill)) { 6154 /* ill_close may be waiting */ 6155 cv_broadcast(&ill->ill_cv); 6156 } 6157 6158 /* ipsq can't change because ill_lock is held */ 6159 ipsq = ill->ill_phyint->phyint_ipsq; 6160 if (ipsq->ipsq_waitfor == 0) { 6161 /* Not waiting for anything, just return. */ 6162 mutex_exit(&ill->ill_lock); 6163 return; 6164 } 6165 ASSERT(ipsq->ipsq_pending_mp != NULL && 6166 ipsq->ipsq_pending_ipif != NULL); 6167 /* 6168 * ipif->ipif_refcnt must go down to zero for restarting REMOVEIF. 6169 * Last ipif going down needs to down the ill, so ill_ire_cnt must 6170 * be zero for restarting an ioctl that ends up downing the ill. 6171 */ 6172 ipif = ipsq->ipsq_pending_ipif; 6173 if (ipif->ipif_ill != ill) { 6174 /* The ioctl is pending on some other ill. */ 6175 mutex_exit(&ill->ill_lock); 6176 return; 6177 } 6178 6179 switch (ipsq->ipsq_waitfor) { 6180 case IPIF_DOWN: 6181 if (!ipif_is_quiescent(ipif)) { 6182 mutex_exit(&ill->ill_lock); 6183 return; 6184 } 6185 break; 6186 case IPIF_FREE: 6187 if (!ipif_is_freeable(ipif)) { 6188 mutex_exit(&ill->ill_lock); 6189 return; 6190 } 6191 break; 6192 6193 case ILL_DOWN: 6194 if (!ill_is_quiescent(ill)) { 6195 mutex_exit(&ill->ill_lock); 6196 return; 6197 } 6198 break; 6199 case ILL_FREE: 6200 /* 6201 * case ILL_FREE arises only for loopback. otherwise ill_delete 6202 * waits synchronously in ip_close, and no message is queued in 6203 * ipsq_pending_mp at all in this case 6204 */ 6205 if (!ill_is_freeable(ill)) { 6206 mutex_exit(&ill->ill_lock); 6207 return; 6208 } 6209 break; 6210 6211 case ILL_MOVE_OK: 6212 if (ill_quiescent_to_move(ill) != NULL) { 6213 mutex_exit(&ill->ill_lock); 6214 return; 6215 } 6216 break; 6217 default: 6218 cmn_err(CE_PANIC, "ipsq: %p unknown ipsq_waitfor %d\n", 6219 (void *)ipsq, ipsq->ipsq_waitfor); 6220 } 6221 6222 /* 6223 * Incr refcnt for the qwriter_ip call below which 6224 * does a refrele 6225 */ 6226 ill_refhold_locked(ill); 6227 mp = ipsq_pending_mp_get(ipsq, &connp); 6228 mutex_exit(&ill->ill_lock); 6229 6230 ASSERT(mp != NULL); 6231 /* 6232 * NOTE: all of the qwriter_ip() calls below use CUR_OP since 6233 * we can only get here when the current operation decides it 6234 * it needs to quiesce via ipsq_pending_mp_add(). 6235 */ 6236 switch (mp->b_datap->db_type) { 6237 case M_PCPROTO: 6238 case M_PROTO: 6239 /* 6240 * For now, only DL_NOTIFY_IND messages can use this facility. 6241 */ 6242 dlindp = (dl_notify_ind_t *)mp->b_rptr; 6243 ASSERT(dlindp->dl_primitive == DL_NOTIFY_IND); 6244 6245 switch (dlindp->dl_notification) { 6246 case DL_NOTE_PHYS_ADDR: 6247 qwriter_ip(ill, ill->ill_rq, mp, 6248 ill_set_phys_addr_tail, CUR_OP, B_TRUE); 6249 return; 6250 default: 6251 ASSERT(0); 6252 } 6253 break; 6254 6255 case M_ERROR: 6256 case M_HANGUP: 6257 qwriter_ip(ill, ill->ill_rq, mp, ipif_all_down_tail, CUR_OP, 6258 B_TRUE); 6259 return; 6260 6261 case M_IOCTL: 6262 case M_IOCDATA: 6263 qwriter_ip(ill, (connp != NULL ? CONNP_TO_WQ(connp) : 6264 ill->ill_wq), mp, ip_reprocess_ioctl, CUR_OP, B_TRUE); 6265 return; 6266 6267 default: 6268 cmn_err(CE_PANIC, "ipif_ill_refrele_tail mp %p " 6269 "db_type %d\n", (void *)mp, mp->b_datap->db_type); 6270 } 6271 } 6272 6273 #ifdef DEBUG 6274 /* Reuse trace buffer from beginning (if reached the end) and record trace */ 6275 static void 6276 th_trace_rrecord(th_trace_t *th_trace) 6277 { 6278 tr_buf_t *tr_buf; 6279 uint_t lastref; 6280 6281 lastref = th_trace->th_trace_lastref; 6282 lastref++; 6283 if (lastref == TR_BUF_MAX) 6284 lastref = 0; 6285 th_trace->th_trace_lastref = lastref; 6286 tr_buf = &th_trace->th_trbuf[lastref]; 6287 tr_buf->tr_time = lbolt; 6288 tr_buf->tr_depth = getpcstack(tr_buf->tr_stack, TR_STACK_DEPTH); 6289 } 6290 6291 static void 6292 th_trace_free(void *value) 6293 { 6294 th_trace_t *th_trace = value; 6295 6296 ASSERT(th_trace->th_refcnt == 0); 6297 kmem_free(th_trace, sizeof (*th_trace)); 6298 } 6299 6300 /* 6301 * Find or create the per-thread hash table used to track object references. 6302 * The ipst argument is NULL if we shouldn't allocate. 6303 * 6304 * Accesses per-thread data, so there's no need to lock here. 6305 */ 6306 static mod_hash_t * 6307 th_trace_gethash(ip_stack_t *ipst) 6308 { 6309 th_hash_t *thh; 6310 6311 if ((thh = tsd_get(ip_thread_data)) == NULL && ipst != NULL) { 6312 mod_hash_t *mh; 6313 char name[256]; 6314 size_t objsize, rshift; 6315 int retv; 6316 6317 if ((thh = kmem_alloc(sizeof (*thh), KM_NOSLEEP)) == NULL) 6318 return (NULL); 6319 (void) snprintf(name, sizeof (name), "th_trace_%p", 6320 (void *)curthread); 6321 6322 /* 6323 * We use mod_hash_create_extended here rather than the more 6324 * obvious mod_hash_create_ptrhash because the latter has a 6325 * hard-coded KM_SLEEP, and we'd prefer to fail rather than 6326 * block. 6327 */ 6328 objsize = MAX(MAX(sizeof (ill_t), sizeof (ipif_t)), 6329 MAX(sizeof (ire_t), sizeof (nce_t))); 6330 rshift = highbit(objsize); 6331 mh = mod_hash_create_extended(name, 64, mod_hash_null_keydtor, 6332 th_trace_free, mod_hash_byptr, (void *)rshift, 6333 mod_hash_ptrkey_cmp, KM_NOSLEEP); 6334 if (mh == NULL) { 6335 kmem_free(thh, sizeof (*thh)); 6336 return (NULL); 6337 } 6338 thh->thh_hash = mh; 6339 thh->thh_ipst = ipst; 6340 /* 6341 * We trace ills, ipifs, ires, and nces. All of these are 6342 * per-IP-stack, so the lock on the thread list is as well. 6343 */ 6344 rw_enter(&ip_thread_rwlock, RW_WRITER); 6345 list_insert_tail(&ip_thread_list, thh); 6346 rw_exit(&ip_thread_rwlock); 6347 retv = tsd_set(ip_thread_data, thh); 6348 ASSERT(retv == 0); 6349 } 6350 return (thh != NULL ? thh->thh_hash : NULL); 6351 } 6352 6353 boolean_t 6354 th_trace_ref(const void *obj, ip_stack_t *ipst) 6355 { 6356 th_trace_t *th_trace; 6357 mod_hash_t *mh; 6358 mod_hash_val_t val; 6359 6360 if ((mh = th_trace_gethash(ipst)) == NULL) 6361 return (B_FALSE); 6362 6363 /* 6364 * Attempt to locate the trace buffer for this obj and thread. 6365 * If it does not exist, then allocate a new trace buffer and 6366 * insert into the hash. 6367 */ 6368 if (mod_hash_find(mh, (mod_hash_key_t)obj, &val) == MH_ERR_NOTFOUND) { 6369 th_trace = kmem_zalloc(sizeof (th_trace_t), KM_NOSLEEP); 6370 if (th_trace == NULL) 6371 return (B_FALSE); 6372 6373 th_trace->th_id = curthread; 6374 if (mod_hash_insert(mh, (mod_hash_key_t)obj, 6375 (mod_hash_val_t)th_trace) != 0) { 6376 kmem_free(th_trace, sizeof (th_trace_t)); 6377 return (B_FALSE); 6378 } 6379 } else { 6380 th_trace = (th_trace_t *)val; 6381 } 6382 6383 ASSERT(th_trace->th_refcnt >= 0 && 6384 th_trace->th_refcnt < TR_BUF_MAX - 1); 6385 6386 th_trace->th_refcnt++; 6387 th_trace_rrecord(th_trace); 6388 return (B_TRUE); 6389 } 6390 6391 /* 6392 * For the purpose of tracing a reference release, we assume that global 6393 * tracing is always on and that the same thread initiated the reference hold 6394 * is releasing. 6395 */ 6396 void 6397 th_trace_unref(const void *obj) 6398 { 6399 int retv; 6400 mod_hash_t *mh; 6401 th_trace_t *th_trace; 6402 mod_hash_val_t val; 6403 6404 mh = th_trace_gethash(NULL); 6405 retv = mod_hash_find(mh, (mod_hash_key_t)obj, &val); 6406 ASSERT(retv == 0); 6407 th_trace = (th_trace_t *)val; 6408 6409 ASSERT(th_trace->th_refcnt > 0); 6410 th_trace->th_refcnt--; 6411 th_trace_rrecord(th_trace); 6412 } 6413 6414 /* 6415 * If tracing has been disabled, then we assume that the reference counts are 6416 * now useless, and we clear them out before destroying the entries. 6417 */ 6418 void 6419 th_trace_cleanup(const void *obj, boolean_t trace_disable) 6420 { 6421 th_hash_t *thh; 6422 mod_hash_t *mh; 6423 mod_hash_val_t val; 6424 th_trace_t *th_trace; 6425 int retv; 6426 6427 rw_enter(&ip_thread_rwlock, RW_READER); 6428 for (thh = list_head(&ip_thread_list); thh != NULL; 6429 thh = list_next(&ip_thread_list, thh)) { 6430 if (mod_hash_find(mh = thh->thh_hash, (mod_hash_key_t)obj, 6431 &val) == 0) { 6432 th_trace = (th_trace_t *)val; 6433 if (trace_disable) 6434 th_trace->th_refcnt = 0; 6435 retv = mod_hash_destroy(mh, (mod_hash_key_t)obj); 6436 ASSERT(retv == 0); 6437 } 6438 } 6439 rw_exit(&ip_thread_rwlock); 6440 } 6441 6442 void 6443 ipif_trace_ref(ipif_t *ipif) 6444 { 6445 ASSERT(MUTEX_HELD(&ipif->ipif_ill->ill_lock)); 6446 6447 if (ipif->ipif_trace_disable) 6448 return; 6449 6450 if (!th_trace_ref(ipif, ipif->ipif_ill->ill_ipst)) { 6451 ipif->ipif_trace_disable = B_TRUE; 6452 ipif_trace_cleanup(ipif); 6453 } 6454 } 6455 6456 void 6457 ipif_untrace_ref(ipif_t *ipif) 6458 { 6459 ASSERT(MUTEX_HELD(&ipif->ipif_ill->ill_lock)); 6460 6461 if (!ipif->ipif_trace_disable) 6462 th_trace_unref(ipif); 6463 } 6464 6465 void 6466 ill_trace_ref(ill_t *ill) 6467 { 6468 ASSERT(MUTEX_HELD(&ill->ill_lock)); 6469 6470 if (ill->ill_trace_disable) 6471 return; 6472 6473 if (!th_trace_ref(ill, ill->ill_ipst)) { 6474 ill->ill_trace_disable = B_TRUE; 6475 ill_trace_cleanup(ill); 6476 } 6477 } 6478 6479 void 6480 ill_untrace_ref(ill_t *ill) 6481 { 6482 ASSERT(MUTEX_HELD(&ill->ill_lock)); 6483 6484 if (!ill->ill_trace_disable) 6485 th_trace_unref(ill); 6486 } 6487 6488 /* 6489 * Called when ipif is unplumbed or when memory alloc fails. Note that on 6490 * failure, ipif_trace_disable is set. 6491 */ 6492 static void 6493 ipif_trace_cleanup(const ipif_t *ipif) 6494 { 6495 th_trace_cleanup(ipif, ipif->ipif_trace_disable); 6496 } 6497 6498 /* 6499 * Called when ill is unplumbed or when memory alloc fails. Note that on 6500 * failure, ill_trace_disable is set. 6501 */ 6502 static void 6503 ill_trace_cleanup(const ill_t *ill) 6504 { 6505 th_trace_cleanup(ill, ill->ill_trace_disable); 6506 } 6507 #endif /* DEBUG */ 6508 6509 void 6510 ipif_refhold_locked(ipif_t *ipif) 6511 { 6512 ASSERT(MUTEX_HELD(&ipif->ipif_ill->ill_lock)); 6513 ipif->ipif_refcnt++; 6514 IPIF_TRACE_REF(ipif); 6515 } 6516 6517 void 6518 ipif_refhold(ipif_t *ipif) 6519 { 6520 ill_t *ill; 6521 6522 ill = ipif->ipif_ill; 6523 mutex_enter(&ill->ill_lock); 6524 ipif->ipif_refcnt++; 6525 IPIF_TRACE_REF(ipif); 6526 mutex_exit(&ill->ill_lock); 6527 } 6528 6529 /* 6530 * Must not be called while holding any locks. Otherwise if this is 6531 * the last reference to be released there is a chance of recursive mutex 6532 * panic due to ipif_refrele -> ipif_ill_refrele_tail -> qwriter_ip trying 6533 * to restart an ioctl. 6534 */ 6535 void 6536 ipif_refrele(ipif_t *ipif) 6537 { 6538 ill_t *ill; 6539 6540 ill = ipif->ipif_ill; 6541 6542 mutex_enter(&ill->ill_lock); 6543 ASSERT(ipif->ipif_refcnt != 0); 6544 ipif->ipif_refcnt--; 6545 IPIF_UNTRACE_REF(ipif); 6546 if (ipif->ipif_refcnt != 0) { 6547 mutex_exit(&ill->ill_lock); 6548 return; 6549 } 6550 6551 /* Drops the ill_lock */ 6552 ipif_ill_refrele_tail(ill); 6553 } 6554 6555 ipif_t * 6556 ipif_get_next_ipif(ipif_t *curr, ill_t *ill) 6557 { 6558 ipif_t *ipif; 6559 6560 mutex_enter(&ill->ill_lock); 6561 for (ipif = (curr == NULL ? ill->ill_ipif : curr->ipif_next); 6562 ipif != NULL; ipif = ipif->ipif_next) { 6563 if (!IPIF_CAN_LOOKUP(ipif)) 6564 continue; 6565 ipif_refhold_locked(ipif); 6566 mutex_exit(&ill->ill_lock); 6567 return (ipif); 6568 } 6569 mutex_exit(&ill->ill_lock); 6570 return (NULL); 6571 } 6572 6573 /* 6574 * TODO: make this table extendible at run time 6575 * Return a pointer to the mac type info for 'mac_type' 6576 */ 6577 static ip_m_t * 6578 ip_m_lookup(t_uscalar_t mac_type) 6579 { 6580 ip_m_t *ipm; 6581 6582 for (ipm = ip_m_tbl; ipm < A_END(ip_m_tbl); ipm++) 6583 if (ipm->ip_m_mac_type == mac_type) 6584 return (ipm); 6585 return (NULL); 6586 } 6587 6588 /* 6589 * ip_rt_add is called to add an IPv4 route to the forwarding table. 6590 * ipif_arg is passed in to associate it with the correct interface. 6591 * We may need to restart this operation if the ipif cannot be looked up 6592 * due to an exclusive operation that is currently in progress. The restart 6593 * entry point is specified by 'func' 6594 */ 6595 int 6596 ip_rt_add(ipaddr_t dst_addr, ipaddr_t mask, ipaddr_t gw_addr, 6597 ipaddr_t src_addr, int flags, ipif_t *ipif_arg, ire_t **ire_arg, 6598 boolean_t ioctl_msg, queue_t *q, mblk_t *mp, ipsq_func_t func, 6599 struct rtsa_s *sp, ip_stack_t *ipst) 6600 { 6601 ire_t *ire; 6602 ire_t *gw_ire = NULL; 6603 ipif_t *ipif = NULL; 6604 boolean_t ipif_refheld = B_FALSE; 6605 uint_t type; 6606 int match_flags = MATCH_IRE_TYPE; 6607 int error; 6608 tsol_gc_t *gc = NULL; 6609 tsol_gcgrp_t *gcgrp = NULL; 6610 boolean_t gcgrp_xtraref = B_FALSE; 6611 6612 ip1dbg(("ip_rt_add:")); 6613 6614 if (ire_arg != NULL) 6615 *ire_arg = NULL; 6616 6617 /* 6618 * If this is the case of RTF_HOST being set, then we set the netmask 6619 * to all ones (regardless if one was supplied). 6620 */ 6621 if (flags & RTF_HOST) 6622 mask = IP_HOST_MASK; 6623 6624 /* 6625 * Prevent routes with a zero gateway from being created (since 6626 * interfaces can currently be plumbed and brought up no assigned 6627 * address). 6628 */ 6629 if (gw_addr == 0) 6630 return (ENETUNREACH); 6631 /* 6632 * Get the ipif, if any, corresponding to the gw_addr 6633 */ 6634 ipif = ipif_lookup_interface(gw_addr, dst_addr, q, mp, func, &error, 6635 ipst); 6636 if (ipif != NULL) { 6637 if (IS_VNI(ipif->ipif_ill)) { 6638 ipif_refrele(ipif); 6639 return (EINVAL); 6640 } 6641 ipif_refheld = B_TRUE; 6642 } else if (error == EINPROGRESS) { 6643 ip1dbg(("ip_rt_add: null and EINPROGRESS")); 6644 return (EINPROGRESS); 6645 } else { 6646 error = 0; 6647 } 6648 6649 if (ipif != NULL) { 6650 ip1dbg(("ip_rt_add: ipif_lookup_interface done ipif nonnull")); 6651 ASSERT(!MUTEX_HELD(&ipif->ipif_ill->ill_lock)); 6652 } else { 6653 ip1dbg(("ip_rt_add: ipif_lookup_interface done ipif is null")); 6654 } 6655 6656 /* 6657 * GateD will attempt to create routes with a loopback interface 6658 * address as the gateway and with RTF_GATEWAY set. We allow 6659 * these routes to be added, but create them as interface routes 6660 * since the gateway is an interface address. 6661 */ 6662 if ((ipif != NULL) && (ipif->ipif_ire_type == IRE_LOOPBACK)) { 6663 flags &= ~RTF_GATEWAY; 6664 if (gw_addr == INADDR_LOOPBACK && dst_addr == INADDR_LOOPBACK && 6665 mask == IP_HOST_MASK) { 6666 ire = ire_ctable_lookup(dst_addr, 0, IRE_LOOPBACK, ipif, 6667 ALL_ZONES, NULL, match_flags, ipst); 6668 if (ire != NULL) { 6669 ire_refrele(ire); 6670 if (ipif_refheld) 6671 ipif_refrele(ipif); 6672 return (EEXIST); 6673 } 6674 ip1dbg(("ipif_up_done: 0x%p creating IRE 0x%x" 6675 "for 0x%x\n", (void *)ipif, 6676 ipif->ipif_ire_type, 6677 ntohl(ipif->ipif_lcl_addr))); 6678 ire = ire_create( 6679 (uchar_t *)&dst_addr, /* dest address */ 6680 (uchar_t *)&mask, /* mask */ 6681 (uchar_t *)&ipif->ipif_src_addr, 6682 NULL, /* no gateway */ 6683 &ipif->ipif_mtu, 6684 NULL, 6685 ipif->ipif_rq, /* recv-from queue */ 6686 NULL, /* no send-to queue */ 6687 ipif->ipif_ire_type, /* LOOPBACK */ 6688 ipif, 6689 0, 6690 0, 6691 0, 6692 (ipif->ipif_flags & IPIF_PRIVATE) ? 6693 RTF_PRIVATE : 0, 6694 &ire_uinfo_null, 6695 NULL, 6696 NULL, 6697 ipst); 6698 6699 if (ire == NULL) { 6700 if (ipif_refheld) 6701 ipif_refrele(ipif); 6702 return (ENOMEM); 6703 } 6704 error = ire_add(&ire, q, mp, func, B_FALSE); 6705 if (error == 0) 6706 goto save_ire; 6707 if (ipif_refheld) 6708 ipif_refrele(ipif); 6709 return (error); 6710 6711 } 6712 } 6713 6714 /* 6715 * Traditionally, interface routes are ones where RTF_GATEWAY isn't set 6716 * and the gateway address provided is one of the system's interface 6717 * addresses. By using the routing socket interface and supplying an 6718 * RTA_IFP sockaddr with an interface index, an alternate method of 6719 * specifying an interface route to be created is available which uses 6720 * the interface index that specifies the outgoing interface rather than 6721 * the address of an outgoing interface (which may not be able to 6722 * uniquely identify an interface). When coupled with the RTF_GATEWAY 6723 * flag, routes can be specified which not only specify the next-hop to 6724 * be used when routing to a certain prefix, but also which outgoing 6725 * interface should be used. 6726 * 6727 * Previously, interfaces would have unique addresses assigned to them 6728 * and so the address assigned to a particular interface could be used 6729 * to identify a particular interface. One exception to this was the 6730 * case of an unnumbered interface (where IPIF_UNNUMBERED was set). 6731 * 6732 * With the advent of IPv6 and its link-local addresses, this 6733 * restriction was relaxed and interfaces could share addresses between 6734 * themselves. In fact, typically all of the link-local interfaces on 6735 * an IPv6 node or router will have the same link-local address. In 6736 * order to differentiate between these interfaces, the use of an 6737 * interface index is necessary and this index can be carried inside a 6738 * RTA_IFP sockaddr (which is actually a sockaddr_dl). One restriction 6739 * of using the interface index, however, is that all of the ipif's that 6740 * are part of an ill have the same index and so the RTA_IFP sockaddr 6741 * cannot be used to differentiate between ipif's (or logical 6742 * interfaces) that belong to the same ill (physical interface). 6743 * 6744 * For example, in the following case involving IPv4 interfaces and 6745 * logical interfaces 6746 * 6747 * 192.0.2.32 255.255.255.224 192.0.2.33 U if0 6748 * 192.0.2.32 255.255.255.224 192.0.2.34 U if0:1 6749 * 192.0.2.32 255.255.255.224 192.0.2.35 U if0:2 6750 * 6751 * the ipif's corresponding to each of these interface routes can be 6752 * uniquely identified by the "gateway" (actually interface address). 6753 * 6754 * In this case involving multiple IPv6 default routes to a particular 6755 * link-local gateway, the use of RTA_IFP is necessary to specify which 6756 * default route is of interest: 6757 * 6758 * default fe80::123:4567:89ab:cdef U if0 6759 * default fe80::123:4567:89ab:cdef U if1 6760 */ 6761 6762 /* RTF_GATEWAY not set */ 6763 if (!(flags & RTF_GATEWAY)) { 6764 queue_t *stq; 6765 6766 if (sp != NULL) { 6767 ip2dbg(("ip_rt_add: gateway security attributes " 6768 "cannot be set with interface route\n")); 6769 if (ipif_refheld) 6770 ipif_refrele(ipif); 6771 return (EINVAL); 6772 } 6773 6774 /* 6775 * As the interface index specified with the RTA_IFP sockaddr is 6776 * the same for all ipif's off of an ill, the matching logic 6777 * below uses MATCH_IRE_ILL if such an index was specified. 6778 * This means that routes sharing the same prefix when added 6779 * using a RTA_IFP sockaddr must have distinct interface 6780 * indices (namely, they must be on distinct ill's). 6781 * 6782 * On the other hand, since the gateway address will usually be 6783 * different for each ipif on the system, the matching logic 6784 * uses MATCH_IRE_IPIF in the case of a traditional interface 6785 * route. This means that interface routes for the same prefix 6786 * can be created if they belong to distinct ipif's and if a 6787 * RTA_IFP sockaddr is not present. 6788 */ 6789 if (ipif_arg != NULL) { 6790 if (ipif_refheld) { 6791 ipif_refrele(ipif); 6792 ipif_refheld = B_FALSE; 6793 } 6794 ipif = ipif_arg; 6795 match_flags |= MATCH_IRE_ILL; 6796 } else { 6797 /* 6798 * Check the ipif corresponding to the gw_addr 6799 */ 6800 if (ipif == NULL) 6801 return (ENETUNREACH); 6802 match_flags |= MATCH_IRE_IPIF; 6803 } 6804 ASSERT(ipif != NULL); 6805 6806 /* 6807 * We check for an existing entry at this point. 6808 * 6809 * Since a netmask isn't passed in via the ioctl interface 6810 * (SIOCADDRT), we don't check for a matching netmask in that 6811 * case. 6812 */ 6813 if (!ioctl_msg) 6814 match_flags |= MATCH_IRE_MASK; 6815 ire = ire_ftable_lookup(dst_addr, mask, 0, IRE_INTERFACE, ipif, 6816 NULL, ALL_ZONES, 0, NULL, match_flags, ipst); 6817 if (ire != NULL) { 6818 ire_refrele(ire); 6819 if (ipif_refheld) 6820 ipif_refrele(ipif); 6821 return (EEXIST); 6822 } 6823 6824 stq = (ipif->ipif_net_type == IRE_IF_RESOLVER) 6825 ? ipif->ipif_rq : ipif->ipif_wq; 6826 6827 /* 6828 * Create a copy of the IRE_LOOPBACK, 6829 * IRE_IF_NORESOLVER or IRE_IF_RESOLVER with 6830 * the modified address and netmask. 6831 */ 6832 ire = ire_create( 6833 (uchar_t *)&dst_addr, 6834 (uint8_t *)&mask, 6835 (uint8_t *)&ipif->ipif_src_addr, 6836 NULL, 6837 &ipif->ipif_mtu, 6838 NULL, 6839 NULL, 6840 stq, 6841 ipif->ipif_net_type, 6842 ipif, 6843 0, 6844 0, 6845 0, 6846 flags, 6847 &ire_uinfo_null, 6848 NULL, 6849 NULL, 6850 ipst); 6851 if (ire == NULL) { 6852 if (ipif_refheld) 6853 ipif_refrele(ipif); 6854 return (ENOMEM); 6855 } 6856 6857 /* 6858 * Some software (for example, GateD and Sun Cluster) attempts 6859 * to create (what amount to) IRE_PREFIX routes with the 6860 * loopback address as the gateway. This is primarily done to 6861 * set up prefixes with the RTF_REJECT flag set (for example, 6862 * when generating aggregate routes.) 6863 * 6864 * If the IRE type (as defined by ipif->ipif_net_type) is 6865 * IRE_LOOPBACK, then we map the request into a 6866 * IRE_IF_NORESOLVER. We also OR in the RTF_BLACKHOLE flag as 6867 * these interface routes, by definition, can only be that. 6868 * 6869 * Needless to say, the real IRE_LOOPBACK is NOT created by this 6870 * routine, but rather using ire_create() directly. 6871 * 6872 */ 6873 if (ipif->ipif_net_type == IRE_LOOPBACK) { 6874 ire->ire_type = IRE_IF_NORESOLVER; 6875 ire->ire_flags |= RTF_BLACKHOLE; 6876 } 6877 6878 error = ire_add(&ire, q, mp, func, B_FALSE); 6879 if (error == 0) 6880 goto save_ire; 6881 6882 /* 6883 * In the result of failure, ire_add() will have already 6884 * deleted the ire in question, so there is no need to 6885 * do that here. 6886 */ 6887 if (ipif_refheld) 6888 ipif_refrele(ipif); 6889 return (error); 6890 } 6891 if (ipif_refheld) { 6892 ipif_refrele(ipif); 6893 ipif_refheld = B_FALSE; 6894 } 6895 6896 /* 6897 * Get an interface IRE for the specified gateway. 6898 * If we don't have an IRE_IF_NORESOLVER or IRE_IF_RESOLVER for the 6899 * gateway, it is currently unreachable and we fail the request 6900 * accordingly. 6901 */ 6902 ipif = ipif_arg; 6903 if (ipif_arg != NULL) 6904 match_flags |= MATCH_IRE_ILL; 6905 gw_ire = ire_ftable_lookup(gw_addr, 0, 0, IRE_INTERFACE, ipif_arg, NULL, 6906 ALL_ZONES, 0, NULL, match_flags, ipst); 6907 if (gw_ire == NULL) 6908 return (ENETUNREACH); 6909 6910 /* 6911 * We create one of three types of IREs as a result of this request 6912 * based on the netmask. A netmask of all ones (which is automatically 6913 * assumed when RTF_HOST is set) results in an IRE_HOST being created. 6914 * An all zeroes netmask implies a default route so an IRE_DEFAULT is 6915 * created. Otherwise, an IRE_PREFIX route is created for the 6916 * destination prefix. 6917 */ 6918 if (mask == IP_HOST_MASK) 6919 type = IRE_HOST; 6920 else if (mask == 0) 6921 type = IRE_DEFAULT; 6922 else 6923 type = IRE_PREFIX; 6924 6925 /* check for a duplicate entry */ 6926 ire = ire_ftable_lookup(dst_addr, mask, gw_addr, type, ipif_arg, 6927 NULL, ALL_ZONES, 0, NULL, 6928 match_flags | MATCH_IRE_MASK | MATCH_IRE_GW, ipst); 6929 if (ire != NULL) { 6930 ire_refrele(gw_ire); 6931 ire_refrele(ire); 6932 return (EEXIST); 6933 } 6934 6935 /* Security attribute exists */ 6936 if (sp != NULL) { 6937 tsol_gcgrp_addr_t ga; 6938 6939 /* find or create the gateway credentials group */ 6940 ga.ga_af = AF_INET; 6941 IN6_IPADDR_TO_V4MAPPED(gw_addr, &ga.ga_addr); 6942 6943 /* we hold reference to it upon success */ 6944 gcgrp = gcgrp_lookup(&ga, B_TRUE); 6945 if (gcgrp == NULL) { 6946 ire_refrele(gw_ire); 6947 return (ENOMEM); 6948 } 6949 6950 /* 6951 * Create and add the security attribute to the group; a 6952 * reference to the group is made upon allocating a new 6953 * entry successfully. If it finds an already-existing 6954 * entry for the security attribute in the group, it simply 6955 * returns it and no new reference is made to the group. 6956 */ 6957 gc = gc_create(sp, gcgrp, &gcgrp_xtraref); 6958 if (gc == NULL) { 6959 /* release reference held by gcgrp_lookup */ 6960 GCGRP_REFRELE(gcgrp); 6961 ire_refrele(gw_ire); 6962 return (ENOMEM); 6963 } 6964 } 6965 6966 /* Create the IRE. */ 6967 ire = ire_create( 6968 (uchar_t *)&dst_addr, /* dest address */ 6969 (uchar_t *)&mask, /* mask */ 6970 /* src address assigned by the caller? */ 6971 (uchar_t *)(((src_addr != INADDR_ANY) && 6972 (flags & RTF_SETSRC)) ? &src_addr : NULL), 6973 (uchar_t *)&gw_addr, /* gateway address */ 6974 &gw_ire->ire_max_frag, 6975 NULL, /* no src nce */ 6976 NULL, /* no recv-from queue */ 6977 NULL, /* no send-to queue */ 6978 (ushort_t)type, /* IRE type */ 6979 ipif_arg, 6980 0, 6981 0, 6982 0, 6983 flags, 6984 &gw_ire->ire_uinfo, /* Inherit ULP info from gw */ 6985 gc, /* security attribute */ 6986 NULL, 6987 ipst); 6988 6989 /* 6990 * The ire holds a reference to the 'gc' and the 'gc' holds a 6991 * reference to the 'gcgrp'. We can now release the extra reference 6992 * the 'gcgrp' acquired in the gcgrp_lookup, if it was not used. 6993 */ 6994 if (gcgrp_xtraref) 6995 GCGRP_REFRELE(gcgrp); 6996 if (ire == NULL) { 6997 if (gc != NULL) 6998 GC_REFRELE(gc); 6999 ire_refrele(gw_ire); 7000 return (ENOMEM); 7001 } 7002 7003 /* 7004 * POLICY: should we allow an RTF_HOST with address INADDR_ANY? 7005 * SUN/OS socket stuff does but do we really want to allow 0.0.0.0? 7006 */ 7007 7008 /* Add the new IRE. */ 7009 error = ire_add(&ire, q, mp, func, B_FALSE); 7010 if (error != 0) { 7011 /* 7012 * In the result of failure, ire_add() will have already 7013 * deleted the ire in question, so there is no need to 7014 * do that here. 7015 */ 7016 ire_refrele(gw_ire); 7017 return (error); 7018 } 7019 7020 if (flags & RTF_MULTIRT) { 7021 /* 7022 * Invoke the CGTP (multirouting) filtering module 7023 * to add the dst address in the filtering database. 7024 * Replicated inbound packets coming from that address 7025 * will be filtered to discard the duplicates. 7026 * It is not necessary to call the CGTP filter hook 7027 * when the dst address is a broadcast or multicast, 7028 * because an IP source address cannot be a broadcast 7029 * or a multicast. 7030 */ 7031 ire_t *ire_dst = ire_ctable_lookup(ire->ire_addr, 0, 7032 IRE_BROADCAST, NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 7033 if (ire_dst != NULL) { 7034 ip_cgtp_bcast_add(ire, ire_dst, ipst); 7035 ire_refrele(ire_dst); 7036 goto save_ire; 7037 } 7038 if (ipst->ips_ip_cgtp_filter_ops != NULL && 7039 !CLASSD(ire->ire_addr)) { 7040 int res = ipst->ips_ip_cgtp_filter_ops->cfo_add_dest_v4( 7041 ipst->ips_netstack->netstack_stackid, 7042 ire->ire_addr, 7043 ire->ire_gateway_addr, 7044 ire->ire_src_addr, 7045 gw_ire->ire_src_addr); 7046 if (res != 0) { 7047 ire_refrele(gw_ire); 7048 ire_delete(ire); 7049 return (res); 7050 } 7051 } 7052 } 7053 7054 /* 7055 * Now that the prefix IRE entry has been created, delete any 7056 * existing gateway IRE cache entries as well as any IRE caches 7057 * using the gateway, and force them to be created through 7058 * ip_newroute. 7059 */ 7060 if (gc != NULL) { 7061 ASSERT(gcgrp != NULL); 7062 ire_clookup_delete_cache_gw(gw_addr, ALL_ZONES, ipst); 7063 } 7064 7065 save_ire: 7066 if (gw_ire != NULL) { 7067 ire_refrele(gw_ire); 7068 } 7069 if (ipif != NULL) { 7070 /* 7071 * Save enough information so that we can recreate the IRE if 7072 * the interface goes down and then up. The metrics associated 7073 * with the route will be saved as well when rts_setmetrics() is 7074 * called after the IRE has been created. In the case where 7075 * memory cannot be allocated, none of this information will be 7076 * saved. 7077 */ 7078 ipif_save_ire(ipif, ire); 7079 } 7080 if (ioctl_msg) 7081 ip_rts_rtmsg(RTM_OLDADD, ire, 0, ipst); 7082 if (ire_arg != NULL) { 7083 /* 7084 * Store the ire that was successfully added into where ire_arg 7085 * points to so that callers don't have to look it up 7086 * themselves (but they are responsible for ire_refrele()ing 7087 * the ire when they are finished with it). 7088 */ 7089 *ire_arg = ire; 7090 } else { 7091 ire_refrele(ire); /* Held in ire_add */ 7092 } 7093 if (ipif_refheld) 7094 ipif_refrele(ipif); 7095 return (0); 7096 } 7097 7098 /* 7099 * ip_rt_delete is called to delete an IPv4 route. 7100 * ipif_arg is passed in to associate it with the correct interface. 7101 * We may need to restart this operation if the ipif cannot be looked up 7102 * due to an exclusive operation that is currently in progress. The restart 7103 * entry point is specified by 'func' 7104 */ 7105 /* ARGSUSED4 */ 7106 int 7107 ip_rt_delete(ipaddr_t dst_addr, ipaddr_t mask, ipaddr_t gw_addr, 7108 uint_t rtm_addrs, int flags, ipif_t *ipif_arg, boolean_t ioctl_msg, 7109 queue_t *q, mblk_t *mp, ipsq_func_t func, ip_stack_t *ipst) 7110 { 7111 ire_t *ire = NULL; 7112 ipif_t *ipif; 7113 boolean_t ipif_refheld = B_FALSE; 7114 uint_t type; 7115 uint_t match_flags = MATCH_IRE_TYPE; 7116 int err = 0; 7117 7118 ip1dbg(("ip_rt_delete:")); 7119 /* 7120 * If this is the case of RTF_HOST being set, then we set the netmask 7121 * to all ones. Otherwise, we use the netmask if one was supplied. 7122 */ 7123 if (flags & RTF_HOST) { 7124 mask = IP_HOST_MASK; 7125 match_flags |= MATCH_IRE_MASK; 7126 } else if (rtm_addrs & RTA_NETMASK) { 7127 match_flags |= MATCH_IRE_MASK; 7128 } 7129 7130 /* 7131 * Note that RTF_GATEWAY is never set on a delete, therefore 7132 * we check if the gateway address is one of our interfaces first, 7133 * and fall back on RTF_GATEWAY routes. 7134 * 7135 * This makes it possible to delete an original 7136 * IRE_IF_NORESOLVER/IRE_IF_RESOLVER - consistent with SunOS 4.1. 7137 * 7138 * As the interface index specified with the RTA_IFP sockaddr is the 7139 * same for all ipif's off of an ill, the matching logic below uses 7140 * MATCH_IRE_ILL if such an index was specified. This means a route 7141 * sharing the same prefix and interface index as the the route 7142 * intended to be deleted might be deleted instead if a RTA_IFP sockaddr 7143 * is specified in the request. 7144 * 7145 * On the other hand, since the gateway address will usually be 7146 * different for each ipif on the system, the matching logic 7147 * uses MATCH_IRE_IPIF in the case of a traditional interface 7148 * route. This means that interface routes for the same prefix can be 7149 * uniquely identified if they belong to distinct ipif's and if a 7150 * RTA_IFP sockaddr is not present. 7151 * 7152 * For more detail on specifying routes by gateway address and by 7153 * interface index, see the comments in ip_rt_add(). 7154 */ 7155 ipif = ipif_lookup_interface(gw_addr, dst_addr, q, mp, func, &err, 7156 ipst); 7157 if (ipif != NULL) 7158 ipif_refheld = B_TRUE; 7159 else if (err == EINPROGRESS) 7160 return (err); 7161 else 7162 err = 0; 7163 if (ipif != NULL) { 7164 if (ipif_arg != NULL) { 7165 if (ipif_refheld) { 7166 ipif_refrele(ipif); 7167 ipif_refheld = B_FALSE; 7168 } 7169 ipif = ipif_arg; 7170 match_flags |= MATCH_IRE_ILL; 7171 } else { 7172 match_flags |= MATCH_IRE_IPIF; 7173 } 7174 if (ipif->ipif_ire_type == IRE_LOOPBACK) { 7175 ire = ire_ctable_lookup(dst_addr, 0, IRE_LOOPBACK, ipif, 7176 ALL_ZONES, NULL, match_flags, ipst); 7177 } 7178 if (ire == NULL) { 7179 ire = ire_ftable_lookup(dst_addr, mask, 0, 7180 IRE_INTERFACE, ipif, NULL, ALL_ZONES, 0, NULL, 7181 match_flags, ipst); 7182 } 7183 } 7184 7185 if (ire == NULL) { 7186 /* 7187 * At this point, the gateway address is not one of our own 7188 * addresses or a matching interface route was not found. We 7189 * set the IRE type to lookup based on whether 7190 * this is a host route, a default route or just a prefix. 7191 * 7192 * If an ipif_arg was passed in, then the lookup is based on an 7193 * interface index so MATCH_IRE_ILL is added to match_flags. 7194 * In any case, MATCH_IRE_IPIF is cleared and MATCH_IRE_GW is 7195 * set as the route being looked up is not a traditional 7196 * interface route. 7197 */ 7198 match_flags &= ~MATCH_IRE_IPIF; 7199 match_flags |= MATCH_IRE_GW; 7200 if (ipif_arg != NULL) 7201 match_flags |= MATCH_IRE_ILL; 7202 if (mask == IP_HOST_MASK) 7203 type = IRE_HOST; 7204 else if (mask == 0) 7205 type = IRE_DEFAULT; 7206 else 7207 type = IRE_PREFIX; 7208 ire = ire_ftable_lookup(dst_addr, mask, gw_addr, type, ipif_arg, 7209 NULL, ALL_ZONES, 0, NULL, match_flags, ipst); 7210 } 7211 7212 if (ipif_refheld) 7213 ipif_refrele(ipif); 7214 7215 /* ipif is not refheld anymore */ 7216 if (ire == NULL) 7217 return (ESRCH); 7218 7219 if (ire->ire_flags & RTF_MULTIRT) { 7220 /* 7221 * Invoke the CGTP (multirouting) filtering module 7222 * to remove the dst address from the filtering database. 7223 * Packets coming from that address will no longer be 7224 * filtered to remove duplicates. 7225 */ 7226 if (ipst->ips_ip_cgtp_filter_ops != NULL) { 7227 err = ipst->ips_ip_cgtp_filter_ops->cfo_del_dest_v4( 7228 ipst->ips_netstack->netstack_stackid, 7229 ire->ire_addr, ire->ire_gateway_addr); 7230 } 7231 ip_cgtp_bcast_delete(ire, ipst); 7232 } 7233 7234 ipif = ire->ire_ipif; 7235 if (ipif != NULL) 7236 ipif_remove_ire(ipif, ire); 7237 if (ioctl_msg) 7238 ip_rts_rtmsg(RTM_OLDDEL, ire, 0, ipst); 7239 ire_delete(ire); 7240 ire_refrele(ire); 7241 return (err); 7242 } 7243 7244 /* 7245 * ip_siocaddrt is called to complete processing of an SIOCADDRT IOCTL. 7246 */ 7247 /* ARGSUSED */ 7248 int 7249 ip_siocaddrt(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, 7250 ip_ioctl_cmd_t *ipip, void *dummy_if_req) 7251 { 7252 ipaddr_t dst_addr; 7253 ipaddr_t gw_addr; 7254 ipaddr_t mask; 7255 int error = 0; 7256 mblk_t *mp1; 7257 struct rtentry *rt; 7258 ipif_t *ipif = NULL; 7259 ip_stack_t *ipst; 7260 7261 ASSERT(q->q_next == NULL); 7262 ipst = CONNQ_TO_IPST(q); 7263 7264 ip1dbg(("ip_siocaddrt:")); 7265 /* Existence of mp1 verified in ip_wput_nondata */ 7266 mp1 = mp->b_cont->b_cont; 7267 rt = (struct rtentry *)mp1->b_rptr; 7268 7269 dst_addr = ((sin_t *)&rt->rt_dst)->sin_addr.s_addr; 7270 gw_addr = ((sin_t *)&rt->rt_gateway)->sin_addr.s_addr; 7271 7272 /* 7273 * If the RTF_HOST flag is on, this is a request to assign a gateway 7274 * to a particular host address. In this case, we set the netmask to 7275 * all ones for the particular destination address. Otherwise, 7276 * determine the netmask to be used based on dst_addr and the interfaces 7277 * in use. 7278 */ 7279 if (rt->rt_flags & RTF_HOST) { 7280 mask = IP_HOST_MASK; 7281 } else { 7282 /* 7283 * Note that ip_subnet_mask returns a zero mask in the case of 7284 * default (an all-zeroes address). 7285 */ 7286 mask = ip_subnet_mask(dst_addr, &ipif, ipst); 7287 } 7288 7289 error = ip_rt_add(dst_addr, mask, gw_addr, 0, rt->rt_flags, NULL, NULL, 7290 B_TRUE, q, mp, ip_process_ioctl, NULL, ipst); 7291 if (ipif != NULL) 7292 ipif_refrele(ipif); 7293 return (error); 7294 } 7295 7296 /* 7297 * ip_siocdelrt is called to complete processing of an SIOCDELRT IOCTL. 7298 */ 7299 /* ARGSUSED */ 7300 int 7301 ip_siocdelrt(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, 7302 ip_ioctl_cmd_t *ipip, void *dummy_if_req) 7303 { 7304 ipaddr_t dst_addr; 7305 ipaddr_t gw_addr; 7306 ipaddr_t mask; 7307 int error; 7308 mblk_t *mp1; 7309 struct rtentry *rt; 7310 ipif_t *ipif = NULL; 7311 ip_stack_t *ipst; 7312 7313 ASSERT(q->q_next == NULL); 7314 ipst = CONNQ_TO_IPST(q); 7315 7316 ip1dbg(("ip_siocdelrt:")); 7317 /* Existence of mp1 verified in ip_wput_nondata */ 7318 mp1 = mp->b_cont->b_cont; 7319 rt = (struct rtentry *)mp1->b_rptr; 7320 7321 dst_addr = ((sin_t *)&rt->rt_dst)->sin_addr.s_addr; 7322 gw_addr = ((sin_t *)&rt->rt_gateway)->sin_addr.s_addr; 7323 7324 /* 7325 * If the RTF_HOST flag is on, this is a request to delete a gateway 7326 * to a particular host address. In this case, we set the netmask to 7327 * all ones for the particular destination address. Otherwise, 7328 * determine the netmask to be used based on dst_addr and the interfaces 7329 * in use. 7330 */ 7331 if (rt->rt_flags & RTF_HOST) { 7332 mask = IP_HOST_MASK; 7333 } else { 7334 /* 7335 * Note that ip_subnet_mask returns a zero mask in the case of 7336 * default (an all-zeroes address). 7337 */ 7338 mask = ip_subnet_mask(dst_addr, &ipif, ipst); 7339 } 7340 7341 error = ip_rt_delete(dst_addr, mask, gw_addr, 7342 RTA_DST | RTA_GATEWAY | RTA_NETMASK, rt->rt_flags, NULL, B_TRUE, q, 7343 mp, ip_process_ioctl, ipst); 7344 if (ipif != NULL) 7345 ipif_refrele(ipif); 7346 return (error); 7347 } 7348 7349 /* 7350 * Enqueue the mp onto the ipsq, chained by b_next. 7351 * b_prev stores the function to be executed later, and b_queue the queue 7352 * where this mp originated. 7353 */ 7354 void 7355 ipsq_enq(ipsq_t *ipsq, queue_t *q, mblk_t *mp, ipsq_func_t func, int type, 7356 ill_t *pending_ill) 7357 { 7358 conn_t *connp = NULL; 7359 7360 ASSERT(MUTEX_HELD(&ipsq->ipsq_lock)); 7361 ASSERT(func != NULL); 7362 7363 mp->b_queue = q; 7364 mp->b_prev = (void *)func; 7365 mp->b_next = NULL; 7366 7367 switch (type) { 7368 case CUR_OP: 7369 if (ipsq->ipsq_mptail != NULL) { 7370 ASSERT(ipsq->ipsq_mphead != NULL); 7371 ipsq->ipsq_mptail->b_next = mp; 7372 } else { 7373 ASSERT(ipsq->ipsq_mphead == NULL); 7374 ipsq->ipsq_mphead = mp; 7375 } 7376 ipsq->ipsq_mptail = mp; 7377 break; 7378 7379 case NEW_OP: 7380 if (ipsq->ipsq_xopq_mptail != NULL) { 7381 ASSERT(ipsq->ipsq_xopq_mphead != NULL); 7382 ipsq->ipsq_xopq_mptail->b_next = mp; 7383 } else { 7384 ASSERT(ipsq->ipsq_xopq_mphead == NULL); 7385 ipsq->ipsq_xopq_mphead = mp; 7386 } 7387 ipsq->ipsq_xopq_mptail = mp; 7388 break; 7389 default: 7390 cmn_err(CE_PANIC, "ipsq_enq %d type \n", type); 7391 } 7392 7393 if (CONN_Q(q) && pending_ill != NULL) { 7394 connp = Q_TO_CONN(q); 7395 7396 ASSERT(MUTEX_HELD(&connp->conn_lock)); 7397 connp->conn_oper_pending_ill = pending_ill; 7398 } 7399 } 7400 7401 /* 7402 * Return the mp at the head of the ipsq. After emptying the ipsq 7403 * look at the next ioctl, if this ioctl is complete. Otherwise 7404 * return, we will resume when we complete the current ioctl. 7405 * The current ioctl will wait till it gets a response from the 7406 * driver below. 7407 */ 7408 static mblk_t * 7409 ipsq_dq(ipsq_t *ipsq) 7410 { 7411 mblk_t *mp; 7412 7413 ASSERT(MUTEX_HELD(&ipsq->ipsq_lock)); 7414 7415 mp = ipsq->ipsq_mphead; 7416 if (mp != NULL) { 7417 ipsq->ipsq_mphead = mp->b_next; 7418 if (ipsq->ipsq_mphead == NULL) 7419 ipsq->ipsq_mptail = NULL; 7420 mp->b_next = NULL; 7421 return (mp); 7422 } 7423 if (ipsq->ipsq_current_ipif != NULL) 7424 return (NULL); 7425 mp = ipsq->ipsq_xopq_mphead; 7426 if (mp != NULL) { 7427 ipsq->ipsq_xopq_mphead = mp->b_next; 7428 if (ipsq->ipsq_xopq_mphead == NULL) 7429 ipsq->ipsq_xopq_mptail = NULL; 7430 mp->b_next = NULL; 7431 return (mp); 7432 } 7433 return (NULL); 7434 } 7435 7436 /* 7437 * Enter the ipsq corresponding to ill, by waiting synchronously till 7438 * we can enter the ipsq exclusively. Unless 'force' is used, the ipsq 7439 * will have to drain completely before ipsq_enter returns success. 7440 * ipsq_current_ipif will be set if some exclusive ioctl is in progress, 7441 * and the ipsq_exit logic will start the next enqueued ioctl after 7442 * completion of the current ioctl. If 'force' is used, we don't wait 7443 * for the enqueued ioctls. This is needed when a conn_close wants to 7444 * enter the ipsq and abort an ioctl that is somehow stuck. Unplumb 7445 * of an ill can also use this option. But we dont' use it currently. 7446 */ 7447 #define ENTER_SQ_WAIT_TICKS 100 7448 boolean_t 7449 ipsq_enter(ill_t *ill, boolean_t force, int type) 7450 { 7451 ipsq_t *ipsq; 7452 boolean_t waited_enough = B_FALSE; 7453 7454 /* 7455 * Holding the ill_lock prevents <ill-ipsq> assocs from changing. 7456 * Since the <ill-ipsq> assocs could change while we wait for the 7457 * writer, it is easier to wait on a fixed global rather than try to 7458 * cv_wait on a changing ipsq. 7459 */ 7460 mutex_enter(&ill->ill_lock); 7461 for (;;) { 7462 if (ill->ill_state_flags & ILL_CONDEMNED) { 7463 mutex_exit(&ill->ill_lock); 7464 return (B_FALSE); 7465 } 7466 7467 ipsq = ill->ill_phyint->phyint_ipsq; 7468 mutex_enter(&ipsq->ipsq_lock); 7469 if (ipsq->ipsq_writer == NULL && 7470 (type == CUR_OP || ipsq->ipsq_current_ipif == NULL || 7471 waited_enough)) { 7472 break; 7473 } else if (ipsq->ipsq_writer != NULL) { 7474 mutex_exit(&ipsq->ipsq_lock); 7475 cv_wait(&ill->ill_cv, &ill->ill_lock); 7476 } else { 7477 mutex_exit(&ipsq->ipsq_lock); 7478 if (force) { 7479 (void) cv_timedwait(&ill->ill_cv, 7480 &ill->ill_lock, 7481 lbolt + ENTER_SQ_WAIT_TICKS); 7482 waited_enough = B_TRUE; 7483 continue; 7484 } else { 7485 cv_wait(&ill->ill_cv, &ill->ill_lock); 7486 } 7487 } 7488 } 7489 7490 ASSERT(ipsq->ipsq_mphead == NULL && ipsq->ipsq_mptail == NULL); 7491 ASSERT(ipsq->ipsq_reentry_cnt == 0); 7492 ipsq->ipsq_writer = curthread; 7493 ipsq->ipsq_reentry_cnt++; 7494 #ifdef DEBUG 7495 ipsq->ipsq_depth = getpcstack(ipsq->ipsq_stack, IPSQ_STACK_DEPTH); 7496 #endif 7497 mutex_exit(&ipsq->ipsq_lock); 7498 mutex_exit(&ill->ill_lock); 7499 return (B_TRUE); 7500 } 7501 7502 boolean_t 7503 ill_perim_enter(ill_t *ill) 7504 { 7505 return (ipsq_enter(ill, B_FALSE, CUR_OP)); 7506 } 7507 7508 void 7509 ill_perim_exit(ill_t *ill) 7510 { 7511 ipsq_exit(ill->ill_phyint->phyint_ipsq); 7512 } 7513 7514 /* 7515 * The ipsq_t (ipsq) is the synchronization data structure used to serialize 7516 * certain critical operations like plumbing (i.e. most set ioctls), 7517 * multicast joins, igmp/mld timers, IPMP operations etc. On a non-IPMP 7518 * system there is 1 ipsq per phyint. On an IPMP system there is 1 ipsq per 7519 * IPMP group. The ipsq serializes exclusive ioctls issued by applications 7520 * on a per ipsq basis in ipsq_xopq_mphead. It also protects against multiple 7521 * threads executing in the ipsq. Responses from the driver pertain to the 7522 * current ioctl (say a DL_BIND_ACK in response to a DL_BIND_REQUEST initiated 7523 * as part of bringing up the interface) and are enqueued in ipsq_mphead. 7524 * 7525 * If a thread does not want to reenter the ipsq when it is already writer, 7526 * it must make sure that the specified reentry point to be called later 7527 * when the ipsq is empty, nor any code path starting from the specified reentry 7528 * point must never ever try to enter the ipsq again. Otherwise it can lead 7529 * to an infinite loop. The reentry point ip_rput_dlpi_writer is an example. 7530 * When the thread that is currently exclusive finishes, it (ipsq_exit) 7531 * dequeues the requests waiting to become exclusive in ipsq_mphead and calls 7532 * the reentry point. When the list at ipsq_mphead becomes empty ipsq_exit 7533 * proceeds to dequeue the next ioctl in ipsq_xopq_mphead and start the next 7534 * ioctl if the current ioctl has completed. If the current ioctl is still 7535 * in progress it simply returns. The current ioctl could be waiting for 7536 * a response from another module (arp_ or the driver or could be waiting for 7537 * the ipif/ill/ire refcnts to drop to zero. In such a case the ipsq_pending_mp 7538 * and ipsq_pending_ipif are set. ipsq_current_ipif is set throughout the 7539 * execution of the ioctl and ipsq_exit does not start the next ioctl unless 7540 * ipsq_current_ipif is clear which happens only on ioctl completion. 7541 */ 7542 7543 /* 7544 * Try to enter the ipsq exclusively, corresponding to ipif or ill. (only 1 of 7545 * ipif or ill can be specified). The caller ensures ipif or ill is valid by 7546 * ref-holding it if necessary. If the ipsq cannot be entered, the mp is queued 7547 * completion. 7548 */ 7549 ipsq_t * 7550 ipsq_try_enter(ipif_t *ipif, ill_t *ill, queue_t *q, mblk_t *mp, 7551 ipsq_func_t func, int type, boolean_t reentry_ok) 7552 { 7553 ipsq_t *ipsq; 7554 7555 /* Only 1 of ipif or ill can be specified */ 7556 ASSERT((ipif != NULL) ^ (ill != NULL)); 7557 if (ipif != NULL) 7558 ill = ipif->ipif_ill; 7559 7560 /* 7561 * lock ordering ill_g_lock -> conn_lock -> ill_lock -> ipsq_lock 7562 * ipsq of an ill can't change when ill_lock is held. 7563 */ 7564 GRAB_CONN_LOCK(q); 7565 mutex_enter(&ill->ill_lock); 7566 ipsq = ill->ill_phyint->phyint_ipsq; 7567 mutex_enter(&ipsq->ipsq_lock); 7568 7569 /* 7570 * 1. Enter the ipsq if we are already writer and reentry is ok. 7571 * (Note: If the caller does not specify reentry_ok then neither 7572 * 'func' nor any of its callees must ever attempt to enter the ipsq 7573 * again. Otherwise it can lead to an infinite loop 7574 * 2. Enter the ipsq if there is no current writer and this attempted 7575 * entry is part of the current ioctl or operation 7576 * 3. Enter the ipsq if there is no current writer and this is a new 7577 * ioctl (or operation) and the ioctl (or operation) queue is 7578 * empty and there is no ioctl (or operation) currently in progress 7579 */ 7580 if ((ipsq->ipsq_writer == NULL && ((type == CUR_OP) || 7581 (type == NEW_OP && ipsq->ipsq_xopq_mphead == NULL && 7582 ipsq->ipsq_current_ipif == NULL))) || 7583 (ipsq->ipsq_writer == curthread && reentry_ok)) { 7584 /* Success. */ 7585 ipsq->ipsq_reentry_cnt++; 7586 ipsq->ipsq_writer = curthread; 7587 mutex_exit(&ipsq->ipsq_lock); 7588 mutex_exit(&ill->ill_lock); 7589 RELEASE_CONN_LOCK(q); 7590 #ifdef DEBUG 7591 ipsq->ipsq_depth = getpcstack(ipsq->ipsq_stack, 7592 IPSQ_STACK_DEPTH); 7593 #endif 7594 return (ipsq); 7595 } 7596 7597 ipsq_enq(ipsq, q, mp, func, type, ill); 7598 7599 mutex_exit(&ipsq->ipsq_lock); 7600 mutex_exit(&ill->ill_lock); 7601 RELEASE_CONN_LOCK(q); 7602 return (NULL); 7603 } 7604 7605 /* 7606 * Try to enter the IPSQ corresponding to `ill' as writer. The caller ensures 7607 * ill is valid by refholding it if necessary; we will refrele. If the IPSQ 7608 * cannot be entered, the mp is queued for completion. 7609 */ 7610 void 7611 qwriter_ip(ill_t *ill, queue_t *q, mblk_t *mp, ipsq_func_t func, int type, 7612 boolean_t reentry_ok) 7613 { 7614 ipsq_t *ipsq; 7615 7616 ipsq = ipsq_try_enter(NULL, ill, q, mp, func, type, reentry_ok); 7617 7618 /* 7619 * Drop the caller's refhold on the ill. This is safe since we either 7620 * entered the IPSQ (and thus are exclusive), or failed to enter the 7621 * IPSQ, in which case we return without accessing ill anymore. This 7622 * is needed because func needs to see the correct refcount. 7623 * e.g. removeif can work only then. 7624 */ 7625 ill_refrele(ill); 7626 if (ipsq != NULL) { 7627 (*func)(ipsq, q, mp, NULL); 7628 ipsq_exit(ipsq); 7629 } 7630 } 7631 7632 /* 7633 * If there are more than ILL_GRP_CNT ills in a group, 7634 * we use kmem alloc'd buffers, else use the stack 7635 */ 7636 #define ILL_GRP_CNT 14 7637 /* 7638 * Drain the ipsq, if there are messages on it, and then leave the ipsq. 7639 * Called by a thread that is currently exclusive on this ipsq. 7640 */ 7641 void 7642 ipsq_exit(ipsq_t *ipsq) 7643 { 7644 queue_t *q; 7645 mblk_t *mp; 7646 ipsq_func_t func; 7647 int next; 7648 ill_t **ill_list = NULL; 7649 size_t ill_list_size = 0; 7650 int cnt = 0; 7651 boolean_t need_ipsq_free = B_FALSE; 7652 ip_stack_t *ipst = ipsq->ipsq_ipst; 7653 7654 ASSERT(IAM_WRITER_IPSQ(ipsq)); 7655 mutex_enter(&ipsq->ipsq_lock); 7656 ASSERT(ipsq->ipsq_reentry_cnt >= 1); 7657 if (ipsq->ipsq_reentry_cnt != 1) { 7658 ipsq->ipsq_reentry_cnt--; 7659 mutex_exit(&ipsq->ipsq_lock); 7660 return; 7661 } 7662 7663 mp = ipsq_dq(ipsq); 7664 while (mp != NULL) { 7665 again: 7666 mutex_exit(&ipsq->ipsq_lock); 7667 func = (ipsq_func_t)mp->b_prev; 7668 q = (queue_t *)mp->b_queue; 7669 mp->b_prev = NULL; 7670 mp->b_queue = NULL; 7671 7672 /* 7673 * If 'q' is an conn queue, it is valid, since we did a 7674 * a refhold on the connp, at the start of the ioctl. 7675 * If 'q' is an ill queue, it is valid, since close of an 7676 * ill will clean up the 'ipsq'. 7677 */ 7678 (*func)(ipsq, q, mp, NULL); 7679 7680 mutex_enter(&ipsq->ipsq_lock); 7681 mp = ipsq_dq(ipsq); 7682 } 7683 7684 mutex_exit(&ipsq->ipsq_lock); 7685 7686 /* 7687 * Need to grab the locks in the right order. Need to 7688 * atomically check (under ipsq_lock) that there are no 7689 * messages before relinquishing the ipsq. Also need to 7690 * atomically wakeup waiters on ill_cv while holding ill_lock. 7691 * Holding ill_g_lock ensures that ipsq list of ills is stable. 7692 * If we need to call ill_split_ipsq and change <ill-ipsq> we need 7693 * to grab ill_g_lock as writer. 7694 */ 7695 rw_enter(&ipst->ips_ill_g_lock, 7696 ipsq->ipsq_split ? RW_WRITER : RW_READER); 7697 7698 /* ipsq_refs can't change while ill_g_lock is held as reader */ 7699 if (ipsq->ipsq_refs != 0) { 7700 /* At most 2 ills v4/v6 per phyint */ 7701 cnt = ipsq->ipsq_refs << 1; 7702 ill_list_size = cnt * sizeof (ill_t *); 7703 /* 7704 * If memory allocation fails, we will do the split 7705 * the next time ipsq_exit is called for whatever reason. 7706 * As long as the ipsq_split flag is set the need to 7707 * split is remembered. 7708 */ 7709 ill_list = kmem_zalloc(ill_list_size, KM_NOSLEEP); 7710 if (ill_list != NULL) 7711 cnt = ill_lock_ipsq_ills(ipsq, ill_list, cnt); 7712 } 7713 mutex_enter(&ipsq->ipsq_lock); 7714 mp = ipsq_dq(ipsq); 7715 if (mp != NULL) { 7716 /* oops, some message has landed up, we can't get out */ 7717 if (ill_list != NULL) 7718 ill_unlock_ills(ill_list, cnt); 7719 rw_exit(&ipst->ips_ill_g_lock); 7720 if (ill_list != NULL) 7721 kmem_free(ill_list, ill_list_size); 7722 ill_list = NULL; 7723 ill_list_size = 0; 7724 cnt = 0; 7725 goto again; 7726 } 7727 7728 /* 7729 * Split only if no ioctl is pending and if memory alloc succeeded 7730 * above. 7731 */ 7732 if (ipsq->ipsq_split && ipsq->ipsq_current_ipif == NULL && 7733 ill_list != NULL) { 7734 /* 7735 * No new ill can join this ipsq since we are holding the 7736 * ill_g_lock. Hence ill_split_ipsq can safely traverse the 7737 * ipsq. ill_split_ipsq may fail due to memory shortage. 7738 * If so we will retry on the next ipsq_exit. 7739 */ 7740 ipsq->ipsq_split = ill_split_ipsq(ipsq); 7741 } 7742 7743 /* 7744 * We are holding the ipsq lock, hence no new messages can 7745 * land up on the ipsq, and there are no messages currently. 7746 * Now safe to get out. Wake up waiters and relinquish ipsq 7747 * atomically while holding ill locks. 7748 */ 7749 ipsq->ipsq_writer = NULL; 7750 ipsq->ipsq_reentry_cnt--; 7751 ASSERT(ipsq->ipsq_reentry_cnt == 0); 7752 #ifdef DEBUG 7753 ipsq->ipsq_depth = 0; 7754 #endif 7755 mutex_exit(&ipsq->ipsq_lock); 7756 /* 7757 * For IPMP this should wake up all ills in this ipsq. 7758 * We need to hold the ill_lock while waking up waiters to 7759 * avoid missed wakeups. But there is no need to acquire all 7760 * the ill locks and then wakeup. If we have not acquired all 7761 * the locks (due to memory failure above) ill_signal_ipsq_ills 7762 * wakes up ills one at a time after getting the right ill_lock 7763 */ 7764 ill_signal_ipsq_ills(ipsq, ill_list != NULL); 7765 if (ill_list != NULL) 7766 ill_unlock_ills(ill_list, cnt); 7767 if (ipsq->ipsq_refs == 0) 7768 need_ipsq_free = B_TRUE; 7769 rw_exit(&ipst->ips_ill_g_lock); 7770 if (ill_list != 0) 7771 kmem_free(ill_list, ill_list_size); 7772 7773 if (need_ipsq_free) { 7774 /* 7775 * Free the ipsq. ipsq_refs can't increase because ipsq can't be 7776 * looked up. ipsq can be looked up only thru ill or phyint 7777 * and there are no ills/phyint on this ipsq. 7778 */ 7779 ipsq_delete(ipsq); 7780 } 7781 7782 /* 7783 * Now that we're outside the IPSQ, start any IGMP/MLD timers. We 7784 * can't start these inside the IPSQ since e.g. igmp_start_timers() -> 7785 * untimeout() (inside the IPSQ, waiting for an executing timeout to 7786 * finish) could deadlock with igmp_timeout_handler() -> ipsq_enter() 7787 * (executing the timeout, waiting to get inside the IPSQ). 7788 * 7789 * However, there is one exception to the above: if this thread *is* 7790 * the IGMP/MLD timeout handler thread, then we must not start its 7791 * timer until the current handler is done. 7792 */ 7793 mutex_enter(&ipst->ips_igmp_timer_lock); 7794 if (curthread != ipst->ips_igmp_timer_thread) { 7795 next = ipst->ips_igmp_deferred_next; 7796 ipst->ips_igmp_deferred_next = INFINITY; 7797 mutex_exit(&ipst->ips_igmp_timer_lock); 7798 7799 if (next != INFINITY) 7800 igmp_start_timers(next, ipst); 7801 } else { 7802 mutex_exit(&ipst->ips_igmp_timer_lock); 7803 } 7804 7805 mutex_enter(&ipst->ips_mld_timer_lock); 7806 if (curthread != ipst->ips_mld_timer_thread) { 7807 next = ipst->ips_mld_deferred_next; 7808 ipst->ips_mld_deferred_next = INFINITY; 7809 mutex_exit(&ipst->ips_mld_timer_lock); 7810 7811 if (next != INFINITY) 7812 mld_start_timers(next, ipst); 7813 } else { 7814 mutex_exit(&ipst->ips_mld_timer_lock); 7815 } 7816 } 7817 7818 /* 7819 * Start the current exclusive operation on `ipsq'; associate it with `ipif' 7820 * and `ioccmd'. 7821 */ 7822 void 7823 ipsq_current_start(ipsq_t *ipsq, ipif_t *ipif, int ioccmd) 7824 { 7825 ASSERT(IAM_WRITER_IPSQ(ipsq)); 7826 7827 mutex_enter(&ipsq->ipsq_lock); 7828 ASSERT(ipsq->ipsq_current_ipif == NULL); 7829 ASSERT(ipsq->ipsq_current_ioctl == 0); 7830 ipsq->ipsq_current_done = B_FALSE; 7831 ipsq->ipsq_current_ipif = ipif; 7832 ipsq->ipsq_current_ioctl = ioccmd; 7833 mutex_exit(&ipsq->ipsq_lock); 7834 } 7835 7836 /* 7837 * Finish the current exclusive operation on `ipsq'. Usually, this will allow 7838 * the next exclusive operation to begin once we ipsq_exit(). However, if 7839 * pending DLPI operations remain, then we will wait for the queue to drain 7840 * before allowing the next exclusive operation to begin. This ensures that 7841 * DLPI operations from one exclusive operation are never improperly processed 7842 * as part of a subsequent exclusive operation. 7843 */ 7844 void 7845 ipsq_current_finish(ipsq_t *ipsq) 7846 { 7847 ipif_t *ipif = ipsq->ipsq_current_ipif; 7848 t_uscalar_t dlpi_pending = DL_PRIM_INVAL; 7849 7850 ASSERT(IAM_WRITER_IPSQ(ipsq)); 7851 7852 /* 7853 * For SIOCSLIFREMOVEIF, the ipif has been already been blown away 7854 * (but in that case, IPIF_CHANGING will already be clear and no 7855 * pending DLPI messages can remain). 7856 */ 7857 if (ipsq->ipsq_current_ioctl != SIOCLIFREMOVEIF) { 7858 ill_t *ill = ipif->ipif_ill; 7859 7860 mutex_enter(&ill->ill_lock); 7861 dlpi_pending = ill->ill_dlpi_pending; 7862 ipif->ipif_state_flags &= ~IPIF_CHANGING; 7863 mutex_exit(&ill->ill_lock); 7864 } 7865 7866 mutex_enter(&ipsq->ipsq_lock); 7867 ipsq->ipsq_current_ioctl = 0; 7868 ipsq->ipsq_current_done = B_TRUE; 7869 if (dlpi_pending == DL_PRIM_INVAL) 7870 ipsq->ipsq_current_ipif = NULL; 7871 mutex_exit(&ipsq->ipsq_lock); 7872 } 7873 7874 /* 7875 * The ill is closing. Flush all messages on the ipsq that originated 7876 * from this ill. Usually there wont' be any messages on the ipsq_xopq_mphead 7877 * for this ill since ipsq_enter could not have entered until then. 7878 * New messages can't be queued since the CONDEMNED flag is set. 7879 */ 7880 static void 7881 ipsq_flush(ill_t *ill) 7882 { 7883 queue_t *q; 7884 mblk_t *prev; 7885 mblk_t *mp; 7886 mblk_t *mp_next; 7887 ipsq_t *ipsq; 7888 7889 ASSERT(IAM_WRITER_ILL(ill)); 7890 ipsq = ill->ill_phyint->phyint_ipsq; 7891 /* 7892 * Flush any messages sent up by the driver. 7893 */ 7894 mutex_enter(&ipsq->ipsq_lock); 7895 for (prev = NULL, mp = ipsq->ipsq_mphead; mp != NULL; mp = mp_next) { 7896 mp_next = mp->b_next; 7897 q = mp->b_queue; 7898 if (q == ill->ill_rq || q == ill->ill_wq) { 7899 /* Remove the mp from the ipsq */ 7900 if (prev == NULL) 7901 ipsq->ipsq_mphead = mp->b_next; 7902 else 7903 prev->b_next = mp->b_next; 7904 if (ipsq->ipsq_mptail == mp) { 7905 ASSERT(mp_next == NULL); 7906 ipsq->ipsq_mptail = prev; 7907 } 7908 inet_freemsg(mp); 7909 } else { 7910 prev = mp; 7911 } 7912 } 7913 mutex_exit(&ipsq->ipsq_lock); 7914 (void) ipsq_pending_mp_cleanup(ill, NULL); 7915 ipsq_xopq_mp_cleanup(ill, NULL); 7916 ill_pending_mp_cleanup(ill); 7917 } 7918 7919 /* ARGSUSED */ 7920 int 7921 ip_sioctl_slifoindex(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 7922 ip_ioctl_cmd_t *ipip, void *ifreq) 7923 { 7924 ill_t *ill; 7925 struct lifreq *lifr = (struct lifreq *)ifreq; 7926 boolean_t isv6; 7927 conn_t *connp; 7928 ip_stack_t *ipst; 7929 7930 connp = Q_TO_CONN(q); 7931 ipst = connp->conn_netstack->netstack_ip; 7932 isv6 = connp->conn_af_isv6; 7933 /* 7934 * Set original index. 7935 * Failover and failback move logical interfaces 7936 * from one physical interface to another. The 7937 * original index indicates the parent of a logical 7938 * interface, in other words, the physical interface 7939 * the logical interface will be moved back to on 7940 * failback. 7941 */ 7942 7943 /* 7944 * Don't allow the original index to be changed 7945 * for non-failover addresses, autoconfigured 7946 * addresses, or IPv6 link local addresses. 7947 */ 7948 if (((ipif->ipif_flags & (IPIF_NOFAILOVER | IPIF_ADDRCONF)) != NULL) || 7949 (isv6 && IN6_IS_ADDR_LINKLOCAL(&ipif->ipif_v6lcl_addr))) { 7950 return (EINVAL); 7951 } 7952 /* 7953 * The new original index must be in use by some 7954 * physical interface. 7955 */ 7956 ill = ill_lookup_on_ifindex(lifr->lifr_index, isv6, NULL, NULL, 7957 NULL, NULL, ipst); 7958 if (ill == NULL) 7959 return (ENXIO); 7960 ill_refrele(ill); 7961 7962 ipif->ipif_orig_ifindex = lifr->lifr_index; 7963 /* 7964 * When this ipif gets failed back, don't 7965 * preserve the original id, as it is no 7966 * longer applicable. 7967 */ 7968 ipif->ipif_orig_ipifid = 0; 7969 /* 7970 * For IPv4, change the original index of any 7971 * multicast addresses associated with the 7972 * ipif to the new value. 7973 */ 7974 if (!isv6) { 7975 ilm_t *ilm; 7976 7977 mutex_enter(&ipif->ipif_ill->ill_lock); 7978 for (ilm = ipif->ipif_ill->ill_ilm; ilm != NULL; 7979 ilm = ilm->ilm_next) { 7980 if (ilm->ilm_ipif == ipif) { 7981 ilm->ilm_orig_ifindex = lifr->lifr_index; 7982 } 7983 } 7984 mutex_exit(&ipif->ipif_ill->ill_lock); 7985 } 7986 return (0); 7987 } 7988 7989 /* ARGSUSED */ 7990 int 7991 ip_sioctl_get_oindex(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 7992 ip_ioctl_cmd_t *ipip, void *ifreq) 7993 { 7994 struct lifreq *lifr = (struct lifreq *)ifreq; 7995 7996 /* 7997 * Get the original interface index i.e the one 7998 * before FAILOVER if it ever happened. 7999 */ 8000 lifr->lifr_index = ipif->ipif_orig_ifindex; 8001 return (0); 8002 } 8003 8004 /* 8005 * Parse an iftun_req structure coming down SIOC[GS]TUNPARAM ioctls, 8006 * refhold and return the associated ipif 8007 */ 8008 /* ARGSUSED */ 8009 int 8010 ip_extract_tunreq(queue_t *q, mblk_t *mp, const ip_ioctl_cmd_t *ipip, 8011 cmd_info_t *ci, ipsq_func_t func) 8012 { 8013 boolean_t exists; 8014 struct iftun_req *ta; 8015 ipif_t *ipif; 8016 ill_t *ill; 8017 boolean_t isv6; 8018 mblk_t *mp1; 8019 int error; 8020 conn_t *connp; 8021 ip_stack_t *ipst; 8022 8023 /* Existence verified in ip_wput_nondata */ 8024 mp1 = mp->b_cont->b_cont; 8025 ta = (struct iftun_req *)mp1->b_rptr; 8026 /* 8027 * Null terminate the string to protect against buffer 8028 * overrun. String was generated by user code and may not 8029 * be trusted. 8030 */ 8031 ta->ifta_lifr_name[LIFNAMSIZ - 1] = '\0'; 8032 8033 connp = Q_TO_CONN(q); 8034 isv6 = connp->conn_af_isv6; 8035 ipst = connp->conn_netstack->netstack_ip; 8036 8037 /* Disallows implicit create */ 8038 ipif = ipif_lookup_on_name(ta->ifta_lifr_name, 8039 mi_strlen(ta->ifta_lifr_name), B_FALSE, &exists, isv6, 8040 connp->conn_zoneid, CONNP_TO_WQ(connp), mp, func, &error, ipst); 8041 if (ipif == NULL) 8042 return (error); 8043 8044 if (ipif->ipif_id != 0) { 8045 /* 8046 * We really don't want to set/get tunnel parameters 8047 * on virtual tunnel interfaces. Only allow the 8048 * base tunnel to do these. 8049 */ 8050 ipif_refrele(ipif); 8051 return (EINVAL); 8052 } 8053 8054 /* 8055 * Send down to tunnel mod for ioctl processing. 8056 * Will finish ioctl in ip_rput_other(). 8057 */ 8058 ill = ipif->ipif_ill; 8059 if (ill->ill_net_type == IRE_LOOPBACK) { 8060 ipif_refrele(ipif); 8061 return (EOPNOTSUPP); 8062 } 8063 8064 if (ill->ill_wq == NULL) { 8065 ipif_refrele(ipif); 8066 return (ENXIO); 8067 } 8068 /* 8069 * Mark the ioctl as coming from an IPv6 interface for 8070 * tun's convenience. 8071 */ 8072 if (ill->ill_isv6) 8073 ta->ifta_flags |= 0x80000000; 8074 ci->ci_ipif = ipif; 8075 return (0); 8076 } 8077 8078 /* 8079 * Parse an ifreq or lifreq struct coming down ioctls and refhold 8080 * and return the associated ipif. 8081 * Return value: 8082 * Non zero: An error has occurred. ci may not be filled out. 8083 * zero : ci is filled out with the ioctl cmd in ci.ci_name, and 8084 * a held ipif in ci.ci_ipif. 8085 */ 8086 int 8087 ip_extract_lifreq(queue_t *q, mblk_t *mp, const ip_ioctl_cmd_t *ipip, 8088 cmd_info_t *ci, ipsq_func_t func) 8089 { 8090 sin_t *sin; 8091 sin6_t *sin6; 8092 char *name; 8093 struct ifreq *ifr; 8094 struct lifreq *lifr; 8095 ipif_t *ipif = NULL; 8096 ill_t *ill; 8097 conn_t *connp; 8098 boolean_t isv6; 8099 boolean_t exists; 8100 int err; 8101 mblk_t *mp1; 8102 zoneid_t zoneid; 8103 ip_stack_t *ipst; 8104 8105 if (q->q_next != NULL) { 8106 ill = (ill_t *)q->q_ptr; 8107 isv6 = ill->ill_isv6; 8108 connp = NULL; 8109 zoneid = ALL_ZONES; 8110 ipst = ill->ill_ipst; 8111 } else { 8112 ill = NULL; 8113 connp = Q_TO_CONN(q); 8114 isv6 = connp->conn_af_isv6; 8115 zoneid = connp->conn_zoneid; 8116 if (zoneid == GLOBAL_ZONEID) { 8117 /* global zone can access ipifs in all zones */ 8118 zoneid = ALL_ZONES; 8119 } 8120 ipst = connp->conn_netstack->netstack_ip; 8121 } 8122 8123 /* Has been checked in ip_wput_nondata */ 8124 mp1 = mp->b_cont->b_cont; 8125 8126 if (ipip->ipi_cmd_type == IF_CMD) { 8127 /* This a old style SIOC[GS]IF* command */ 8128 ifr = (struct ifreq *)mp1->b_rptr; 8129 /* 8130 * Null terminate the string to protect against buffer 8131 * overrun. String was generated by user code and may not 8132 * be trusted. 8133 */ 8134 ifr->ifr_name[IFNAMSIZ - 1] = '\0'; 8135 sin = (sin_t *)&ifr->ifr_addr; 8136 name = ifr->ifr_name; 8137 ci->ci_sin = sin; 8138 ci->ci_sin6 = NULL; 8139 ci->ci_lifr = (struct lifreq *)ifr; 8140 } else { 8141 /* This a new style SIOC[GS]LIF* command */ 8142 ASSERT(ipip->ipi_cmd_type == LIF_CMD); 8143 lifr = (struct lifreq *)mp1->b_rptr; 8144 /* 8145 * Null terminate the string to protect against buffer 8146 * overrun. String was generated by user code and may not 8147 * be trusted. 8148 */ 8149 lifr->lifr_name[LIFNAMSIZ - 1] = '\0'; 8150 name = lifr->lifr_name; 8151 sin = (sin_t *)&lifr->lifr_addr; 8152 sin6 = (sin6_t *)&lifr->lifr_addr; 8153 if (ipip->ipi_cmd == SIOCSLIFGROUPNAME) { 8154 (void) strncpy(ci->ci_groupname, lifr->lifr_groupname, 8155 LIFNAMSIZ); 8156 } 8157 ci->ci_sin = sin; 8158 ci->ci_sin6 = sin6; 8159 ci->ci_lifr = lifr; 8160 } 8161 8162 if (ipip->ipi_cmd == SIOCSLIFNAME) { 8163 /* 8164 * The ioctl will be failed if the ioctl comes down 8165 * an conn stream 8166 */ 8167 if (ill == NULL) { 8168 /* 8169 * Not an ill queue, return EINVAL same as the 8170 * old error code. 8171 */ 8172 return (ENXIO); 8173 } 8174 ipif = ill->ill_ipif; 8175 ipif_refhold(ipif); 8176 } else { 8177 ipif = ipif_lookup_on_name(name, mi_strlen(name), B_FALSE, 8178 &exists, isv6, zoneid, 8179 (connp == NULL) ? q : CONNP_TO_WQ(connp), mp, func, &err, 8180 ipst); 8181 if (ipif == NULL) { 8182 if (err == EINPROGRESS) 8183 return (err); 8184 if (ipip->ipi_cmd == SIOCLIFFAILOVER || 8185 ipip->ipi_cmd == SIOCLIFFAILBACK) { 8186 /* 8187 * Need to try both v4 and v6 since this 8188 * ioctl can come down either v4 or v6 8189 * socket. The lifreq.lifr_family passed 8190 * down by this ioctl is AF_UNSPEC. 8191 */ 8192 ipif = ipif_lookup_on_name(name, 8193 mi_strlen(name), B_FALSE, &exists, !isv6, 8194 zoneid, (connp == NULL) ? q : 8195 CONNP_TO_WQ(connp), mp, func, &err, ipst); 8196 if (err == EINPROGRESS) 8197 return (err); 8198 } 8199 err = 0; /* Ensure we don't use it below */ 8200 } 8201 } 8202 8203 /* 8204 * Old style [GS]IFCMD does not admit IPv6 ipif 8205 */ 8206 if (ipif != NULL && ipif->ipif_isv6 && ipip->ipi_cmd_type == IF_CMD) { 8207 ipif_refrele(ipif); 8208 return (ENXIO); 8209 } 8210 8211 if (ipif == NULL && ill != NULL && ill->ill_ipif != NULL && 8212 name[0] == '\0') { 8213 /* 8214 * Handle a or a SIOC?IF* with a null name 8215 * during plumb (on the ill queue before the I_PLINK). 8216 */ 8217 ipif = ill->ill_ipif; 8218 ipif_refhold(ipif); 8219 } 8220 8221 if (ipif == NULL) 8222 return (ENXIO); 8223 8224 /* 8225 * Allow only GET operations if this ipif has been created 8226 * temporarily due to a MOVE operation. 8227 */ 8228 if (ipif->ipif_replace_zero && !(ipip->ipi_flags & IPI_REPL)) { 8229 ipif_refrele(ipif); 8230 return (EINVAL); 8231 } 8232 8233 ci->ci_ipif = ipif; 8234 return (0); 8235 } 8236 8237 /* 8238 * Return the total number of ipifs. 8239 */ 8240 static uint_t 8241 ip_get_numifs(zoneid_t zoneid, ip_stack_t *ipst) 8242 { 8243 uint_t numifs = 0; 8244 ill_t *ill; 8245 ill_walk_context_t ctx; 8246 ipif_t *ipif; 8247 8248 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 8249 ill = ILL_START_WALK_V4(&ctx, ipst); 8250 8251 while (ill != NULL) { 8252 for (ipif = ill->ill_ipif; ipif != NULL; 8253 ipif = ipif->ipif_next) { 8254 if (ipif->ipif_zoneid == zoneid || 8255 ipif->ipif_zoneid == ALL_ZONES) 8256 numifs++; 8257 } 8258 ill = ill_next(&ctx, ill); 8259 } 8260 rw_exit(&ipst->ips_ill_g_lock); 8261 return (numifs); 8262 } 8263 8264 /* 8265 * Return the total number of ipifs. 8266 */ 8267 static uint_t 8268 ip_get_numlifs(int family, int lifn_flags, zoneid_t zoneid, ip_stack_t *ipst) 8269 { 8270 uint_t numifs = 0; 8271 ill_t *ill; 8272 ipif_t *ipif; 8273 ill_walk_context_t ctx; 8274 8275 ip1dbg(("ip_get_numlifs(%d %u %d)\n", family, lifn_flags, (int)zoneid)); 8276 8277 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 8278 if (family == AF_INET) 8279 ill = ILL_START_WALK_V4(&ctx, ipst); 8280 else if (family == AF_INET6) 8281 ill = ILL_START_WALK_V6(&ctx, ipst); 8282 else 8283 ill = ILL_START_WALK_ALL(&ctx, ipst); 8284 8285 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 8286 for (ipif = ill->ill_ipif; ipif != NULL; 8287 ipif = ipif->ipif_next) { 8288 if ((ipif->ipif_flags & IPIF_NOXMIT) && 8289 !(lifn_flags & LIFC_NOXMIT)) 8290 continue; 8291 if ((ipif->ipif_flags & IPIF_TEMPORARY) && 8292 !(lifn_flags & LIFC_TEMPORARY)) 8293 continue; 8294 if (((ipif->ipif_flags & 8295 (IPIF_NOXMIT|IPIF_NOLOCAL| 8296 IPIF_DEPRECATED)) || 8297 IS_LOOPBACK(ill) || 8298 !(ipif->ipif_flags & IPIF_UP)) && 8299 (lifn_flags & LIFC_EXTERNAL_SOURCE)) 8300 continue; 8301 8302 if (zoneid != ipif->ipif_zoneid && 8303 ipif->ipif_zoneid != ALL_ZONES && 8304 (zoneid != GLOBAL_ZONEID || 8305 !(lifn_flags & LIFC_ALLZONES))) 8306 continue; 8307 8308 numifs++; 8309 } 8310 } 8311 rw_exit(&ipst->ips_ill_g_lock); 8312 return (numifs); 8313 } 8314 8315 uint_t 8316 ip_get_lifsrcofnum(ill_t *ill) 8317 { 8318 uint_t numifs = 0; 8319 ill_t *ill_head = ill; 8320 ip_stack_t *ipst = ill->ill_ipst; 8321 8322 /* 8323 * ill_g_usesrc_lock protects ill_usesrc_grp_next, for example, some 8324 * other thread may be trying to relink the ILLs in this usesrc group 8325 * and adjusting the ill_usesrc_grp_next pointers 8326 */ 8327 rw_enter(&ipst->ips_ill_g_usesrc_lock, RW_READER); 8328 if ((ill->ill_usesrc_ifindex == 0) && 8329 (ill->ill_usesrc_grp_next != NULL)) { 8330 for (; (ill != NULL) && (ill->ill_usesrc_grp_next != ill_head); 8331 ill = ill->ill_usesrc_grp_next) 8332 numifs++; 8333 } 8334 rw_exit(&ipst->ips_ill_g_usesrc_lock); 8335 8336 return (numifs); 8337 } 8338 8339 /* Null values are passed in for ipif, sin, and ifreq */ 8340 /* ARGSUSED */ 8341 int 8342 ip_sioctl_get_ifnum(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, 8343 mblk_t *mp, ip_ioctl_cmd_t *ipip, void *ifreq) 8344 { 8345 int *nump; 8346 conn_t *connp = Q_TO_CONN(q); 8347 8348 ASSERT(q->q_next == NULL); /* not a valid ioctl for ip as a module */ 8349 8350 /* Existence of b_cont->b_cont checked in ip_wput_nondata */ 8351 nump = (int *)mp->b_cont->b_cont->b_rptr; 8352 8353 *nump = ip_get_numifs(connp->conn_zoneid, 8354 connp->conn_netstack->netstack_ip); 8355 ip1dbg(("ip_sioctl_get_ifnum numifs %d", *nump)); 8356 return (0); 8357 } 8358 8359 /* Null values are passed in for ipif, sin, and ifreq */ 8360 /* ARGSUSED */ 8361 int 8362 ip_sioctl_get_lifnum(ipif_t *dummy_ipif, sin_t *dummy_sin, 8363 queue_t *q, mblk_t *mp, ip_ioctl_cmd_t *ipip, void *ifreq) 8364 { 8365 struct lifnum *lifn; 8366 mblk_t *mp1; 8367 conn_t *connp = Q_TO_CONN(q); 8368 8369 ASSERT(q->q_next == NULL); /* not a valid ioctl for ip as a module */ 8370 8371 /* Existence checked in ip_wput_nondata */ 8372 mp1 = mp->b_cont->b_cont; 8373 8374 lifn = (struct lifnum *)mp1->b_rptr; 8375 switch (lifn->lifn_family) { 8376 case AF_UNSPEC: 8377 case AF_INET: 8378 case AF_INET6: 8379 break; 8380 default: 8381 return (EAFNOSUPPORT); 8382 } 8383 8384 lifn->lifn_count = ip_get_numlifs(lifn->lifn_family, lifn->lifn_flags, 8385 connp->conn_zoneid, connp->conn_netstack->netstack_ip); 8386 ip1dbg(("ip_sioctl_get_lifnum numifs %d", lifn->lifn_count)); 8387 return (0); 8388 } 8389 8390 /* ARGSUSED */ 8391 int 8392 ip_sioctl_get_ifconf(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, 8393 mblk_t *mp, ip_ioctl_cmd_t *ipip, void *ifreq) 8394 { 8395 STRUCT_HANDLE(ifconf, ifc); 8396 mblk_t *mp1; 8397 struct iocblk *iocp; 8398 struct ifreq *ifr; 8399 ill_walk_context_t ctx; 8400 ill_t *ill; 8401 ipif_t *ipif; 8402 struct sockaddr_in *sin; 8403 int32_t ifclen; 8404 zoneid_t zoneid; 8405 ip_stack_t *ipst = CONNQ_TO_IPST(q); 8406 8407 ASSERT(q->q_next == NULL); /* not valid ioctls for ip as a module */ 8408 8409 ip1dbg(("ip_sioctl_get_ifconf")); 8410 /* Existence verified in ip_wput_nondata */ 8411 mp1 = mp->b_cont->b_cont; 8412 iocp = (struct iocblk *)mp->b_rptr; 8413 zoneid = Q_TO_CONN(q)->conn_zoneid; 8414 8415 /* 8416 * The original SIOCGIFCONF passed in a struct ifconf which specified 8417 * the user buffer address and length into which the list of struct 8418 * ifreqs was to be copied. Since AT&T Streams does not seem to 8419 * allow M_COPYOUT to be used in conjunction with I_STR IOCTLS, 8420 * the SIOCGIFCONF operation was redefined to simply provide 8421 * a large output buffer into which we are supposed to jam the ifreq 8422 * array. The same ioctl command code was used, despite the fact that 8423 * both the applications and the kernel code had to change, thus making 8424 * it impossible to support both interfaces. 8425 * 8426 * For reasons not good enough to try to explain, the following 8427 * algorithm is used for deciding what to do with one of these: 8428 * If the IOCTL comes in as an I_STR, it is assumed to be of the new 8429 * form with the output buffer coming down as the continuation message. 8430 * If it arrives as a TRANSPARENT IOCTL, it is assumed to be old style, 8431 * and we have to copy in the ifconf structure to find out how big the 8432 * output buffer is and where to copy out to. Sure no problem... 8433 * 8434 */ 8435 STRUCT_SET_HANDLE(ifc, iocp->ioc_flag, NULL); 8436 if ((mp1->b_wptr - mp1->b_rptr) == STRUCT_SIZE(ifc)) { 8437 int numifs = 0; 8438 size_t ifc_bufsize; 8439 8440 /* 8441 * Must be (better be!) continuation of a TRANSPARENT 8442 * IOCTL. We just copied in the ifconf structure. 8443 */ 8444 STRUCT_SET_HANDLE(ifc, iocp->ioc_flag, 8445 (struct ifconf *)mp1->b_rptr); 8446 8447 /* 8448 * Allocate a buffer to hold requested information. 8449 * 8450 * If ifc_len is larger than what is needed, we only 8451 * allocate what we will use. 8452 * 8453 * If ifc_len is smaller than what is needed, return 8454 * EINVAL. 8455 * 8456 * XXX: the ill_t structure can hava 2 counters, for 8457 * v4 and v6 (not just ill_ipif_up_count) to store the 8458 * number of interfaces for a device, so we don't need 8459 * to count them here... 8460 */ 8461 numifs = ip_get_numifs(zoneid, ipst); 8462 8463 ifclen = STRUCT_FGET(ifc, ifc_len); 8464 ifc_bufsize = numifs * sizeof (struct ifreq); 8465 if (ifc_bufsize > ifclen) { 8466 if (iocp->ioc_cmd == O_SIOCGIFCONF) { 8467 /* old behaviour */ 8468 return (EINVAL); 8469 } else { 8470 ifc_bufsize = ifclen; 8471 } 8472 } 8473 8474 mp1 = mi_copyout_alloc(q, mp, 8475 STRUCT_FGETP(ifc, ifc_buf), ifc_bufsize, B_FALSE); 8476 if (mp1 == NULL) 8477 return (ENOMEM); 8478 8479 mp1->b_wptr = mp1->b_rptr + ifc_bufsize; 8480 } 8481 bzero(mp1->b_rptr, mp1->b_wptr - mp1->b_rptr); 8482 /* 8483 * the SIOCGIFCONF ioctl only knows about 8484 * IPv4 addresses, so don't try to tell 8485 * it about interfaces with IPv6-only 8486 * addresses. (Last parm 'isv6' is B_FALSE) 8487 */ 8488 8489 ifr = (struct ifreq *)mp1->b_rptr; 8490 8491 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 8492 ill = ILL_START_WALK_V4(&ctx, ipst); 8493 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 8494 for (ipif = ill->ill_ipif; ipif != NULL; 8495 ipif = ipif->ipif_next) { 8496 if (zoneid != ipif->ipif_zoneid && 8497 ipif->ipif_zoneid != ALL_ZONES) 8498 continue; 8499 if ((uchar_t *)&ifr[1] > mp1->b_wptr) { 8500 if (iocp->ioc_cmd == O_SIOCGIFCONF) { 8501 /* old behaviour */ 8502 rw_exit(&ipst->ips_ill_g_lock); 8503 return (EINVAL); 8504 } else { 8505 goto if_copydone; 8506 } 8507 } 8508 ipif_get_name(ipif, ifr->ifr_name, 8509 sizeof (ifr->ifr_name)); 8510 sin = (sin_t *)&ifr->ifr_addr; 8511 *sin = sin_null; 8512 sin->sin_family = AF_INET; 8513 sin->sin_addr.s_addr = ipif->ipif_lcl_addr; 8514 ifr++; 8515 } 8516 } 8517 if_copydone: 8518 rw_exit(&ipst->ips_ill_g_lock); 8519 mp1->b_wptr = (uchar_t *)ifr; 8520 8521 if (STRUCT_BUF(ifc) != NULL) { 8522 STRUCT_FSET(ifc, ifc_len, 8523 (int)((uchar_t *)ifr - mp1->b_rptr)); 8524 } 8525 return (0); 8526 } 8527 8528 /* 8529 * Get the interfaces using the address hosted on the interface passed in, 8530 * as a source adddress 8531 */ 8532 /* ARGSUSED */ 8533 int 8534 ip_sioctl_get_lifsrcof(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, 8535 mblk_t *mp, ip_ioctl_cmd_t *ipip, void *ifreq) 8536 { 8537 mblk_t *mp1; 8538 ill_t *ill, *ill_head; 8539 ipif_t *ipif, *orig_ipif; 8540 int numlifs = 0; 8541 size_t lifs_bufsize, lifsmaxlen; 8542 struct lifreq *lifr; 8543 struct iocblk *iocp = (struct iocblk *)mp->b_rptr; 8544 uint_t ifindex; 8545 zoneid_t zoneid; 8546 int err = 0; 8547 boolean_t isv6 = B_FALSE; 8548 struct sockaddr_in *sin; 8549 struct sockaddr_in6 *sin6; 8550 STRUCT_HANDLE(lifsrcof, lifs); 8551 ip_stack_t *ipst; 8552 8553 ipst = CONNQ_TO_IPST(q); 8554 8555 ASSERT(q->q_next == NULL); 8556 8557 zoneid = Q_TO_CONN(q)->conn_zoneid; 8558 8559 /* Existence verified in ip_wput_nondata */ 8560 mp1 = mp->b_cont->b_cont; 8561 8562 /* 8563 * Must be (better be!) continuation of a TRANSPARENT 8564 * IOCTL. We just copied in the lifsrcof structure. 8565 */ 8566 STRUCT_SET_HANDLE(lifs, iocp->ioc_flag, 8567 (struct lifsrcof *)mp1->b_rptr); 8568 8569 if (MBLKL(mp1) != STRUCT_SIZE(lifs)) 8570 return (EINVAL); 8571 8572 ifindex = STRUCT_FGET(lifs, lifs_ifindex); 8573 isv6 = (Q_TO_CONN(q))->conn_af_isv6; 8574 ipif = ipif_lookup_on_ifindex(ifindex, isv6, zoneid, q, mp, 8575 ip_process_ioctl, &err, ipst); 8576 if (ipif == NULL) { 8577 ip1dbg(("ip_sioctl_get_lifsrcof: no ipif for ifindex %d\n", 8578 ifindex)); 8579 return (err); 8580 } 8581 8582 /* Allocate a buffer to hold requested information */ 8583 numlifs = ip_get_lifsrcofnum(ipif->ipif_ill); 8584 lifs_bufsize = numlifs * sizeof (struct lifreq); 8585 lifsmaxlen = STRUCT_FGET(lifs, lifs_maxlen); 8586 /* The actual size needed is always returned in lifs_len */ 8587 STRUCT_FSET(lifs, lifs_len, lifs_bufsize); 8588 8589 /* If the amount we need is more than what is passed in, abort */ 8590 if (lifs_bufsize > lifsmaxlen || lifs_bufsize == 0) { 8591 ipif_refrele(ipif); 8592 return (0); 8593 } 8594 8595 mp1 = mi_copyout_alloc(q, mp, 8596 STRUCT_FGETP(lifs, lifs_buf), lifs_bufsize, B_FALSE); 8597 if (mp1 == NULL) { 8598 ipif_refrele(ipif); 8599 return (ENOMEM); 8600 } 8601 8602 mp1->b_wptr = mp1->b_rptr + lifs_bufsize; 8603 bzero(mp1->b_rptr, lifs_bufsize); 8604 8605 lifr = (struct lifreq *)mp1->b_rptr; 8606 8607 ill = ill_head = ipif->ipif_ill; 8608 orig_ipif = ipif; 8609 8610 /* ill_g_usesrc_lock protects ill_usesrc_grp_next */ 8611 rw_enter(&ipst->ips_ill_g_usesrc_lock, RW_READER); 8612 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 8613 8614 ill = ill->ill_usesrc_grp_next; /* start from next ill */ 8615 for (; (ill != NULL) && (ill != ill_head); 8616 ill = ill->ill_usesrc_grp_next) { 8617 8618 if ((uchar_t *)&lifr[1] > mp1->b_wptr) 8619 break; 8620 8621 ipif = ill->ill_ipif; 8622 ipif_get_name(ipif, lifr->lifr_name, sizeof (lifr->lifr_name)); 8623 if (ipif->ipif_isv6) { 8624 sin6 = (sin6_t *)&lifr->lifr_addr; 8625 *sin6 = sin6_null; 8626 sin6->sin6_family = AF_INET6; 8627 sin6->sin6_addr = ipif->ipif_v6lcl_addr; 8628 lifr->lifr_addrlen = ip_mask_to_plen_v6( 8629 &ipif->ipif_v6net_mask); 8630 } else { 8631 sin = (sin_t *)&lifr->lifr_addr; 8632 *sin = sin_null; 8633 sin->sin_family = AF_INET; 8634 sin->sin_addr.s_addr = ipif->ipif_lcl_addr; 8635 lifr->lifr_addrlen = ip_mask_to_plen( 8636 ipif->ipif_net_mask); 8637 } 8638 lifr++; 8639 } 8640 rw_exit(&ipst->ips_ill_g_usesrc_lock); 8641 rw_exit(&ipst->ips_ill_g_lock); 8642 ipif_refrele(orig_ipif); 8643 mp1->b_wptr = (uchar_t *)lifr; 8644 STRUCT_FSET(lifs, lifs_len, (int)((uchar_t *)lifr - mp1->b_rptr)); 8645 8646 return (0); 8647 } 8648 8649 /* ARGSUSED */ 8650 int 8651 ip_sioctl_get_lifconf(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, 8652 mblk_t *mp, ip_ioctl_cmd_t *ipip, void *ifreq) 8653 { 8654 mblk_t *mp1; 8655 int list; 8656 ill_t *ill; 8657 ipif_t *ipif; 8658 int flags; 8659 int numlifs = 0; 8660 size_t lifc_bufsize; 8661 struct lifreq *lifr; 8662 sa_family_t family; 8663 struct sockaddr_in *sin; 8664 struct sockaddr_in6 *sin6; 8665 ill_walk_context_t ctx; 8666 struct iocblk *iocp = (struct iocblk *)mp->b_rptr; 8667 int32_t lifclen; 8668 zoneid_t zoneid; 8669 STRUCT_HANDLE(lifconf, lifc); 8670 ip_stack_t *ipst = CONNQ_TO_IPST(q); 8671 8672 ip1dbg(("ip_sioctl_get_lifconf")); 8673 8674 ASSERT(q->q_next == NULL); 8675 8676 zoneid = Q_TO_CONN(q)->conn_zoneid; 8677 8678 /* Existence verified in ip_wput_nondata */ 8679 mp1 = mp->b_cont->b_cont; 8680 8681 /* 8682 * An extended version of SIOCGIFCONF that takes an 8683 * additional address family and flags field. 8684 * AF_UNSPEC retrieve both IPv4 and IPv6. 8685 * Unless LIFC_NOXMIT is specified the IPIF_NOXMIT 8686 * interfaces are omitted. 8687 * Similarly, IPIF_TEMPORARY interfaces are omitted 8688 * unless LIFC_TEMPORARY is specified. 8689 * If LIFC_EXTERNAL_SOURCE is specified, IPIF_NOXMIT, 8690 * IPIF_NOLOCAL, PHYI_LOOPBACK, IPIF_DEPRECATED and 8691 * not IPIF_UP interfaces are omitted. LIFC_EXTERNAL_SOURCE 8692 * has priority over LIFC_NOXMIT. 8693 */ 8694 STRUCT_SET_HANDLE(lifc, iocp->ioc_flag, NULL); 8695 8696 if ((mp1->b_wptr - mp1->b_rptr) != STRUCT_SIZE(lifc)) 8697 return (EINVAL); 8698 8699 /* 8700 * Must be (better be!) continuation of a TRANSPARENT 8701 * IOCTL. We just copied in the lifconf structure. 8702 */ 8703 STRUCT_SET_HANDLE(lifc, iocp->ioc_flag, (struct lifconf *)mp1->b_rptr); 8704 8705 family = STRUCT_FGET(lifc, lifc_family); 8706 flags = STRUCT_FGET(lifc, lifc_flags); 8707 8708 switch (family) { 8709 case AF_UNSPEC: 8710 /* 8711 * walk all ILL's. 8712 */ 8713 list = MAX_G_HEADS; 8714 break; 8715 case AF_INET: 8716 /* 8717 * walk only IPV4 ILL's. 8718 */ 8719 list = IP_V4_G_HEAD; 8720 break; 8721 case AF_INET6: 8722 /* 8723 * walk only IPV6 ILL's. 8724 */ 8725 list = IP_V6_G_HEAD; 8726 break; 8727 default: 8728 return (EAFNOSUPPORT); 8729 } 8730 8731 /* 8732 * Allocate a buffer to hold requested information. 8733 * 8734 * If lifc_len is larger than what is needed, we only 8735 * allocate what we will use. 8736 * 8737 * If lifc_len is smaller than what is needed, return 8738 * EINVAL. 8739 */ 8740 numlifs = ip_get_numlifs(family, flags, zoneid, ipst); 8741 lifc_bufsize = numlifs * sizeof (struct lifreq); 8742 lifclen = STRUCT_FGET(lifc, lifc_len); 8743 if (lifc_bufsize > lifclen) { 8744 if (iocp->ioc_cmd == O_SIOCGLIFCONF) 8745 return (EINVAL); 8746 else 8747 lifc_bufsize = lifclen; 8748 } 8749 8750 mp1 = mi_copyout_alloc(q, mp, 8751 STRUCT_FGETP(lifc, lifc_buf), lifc_bufsize, B_FALSE); 8752 if (mp1 == NULL) 8753 return (ENOMEM); 8754 8755 mp1->b_wptr = mp1->b_rptr + lifc_bufsize; 8756 bzero(mp1->b_rptr, mp1->b_wptr - mp1->b_rptr); 8757 8758 lifr = (struct lifreq *)mp1->b_rptr; 8759 8760 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 8761 ill = ill_first(list, list, &ctx, ipst); 8762 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 8763 for (ipif = ill->ill_ipif; ipif != NULL; 8764 ipif = ipif->ipif_next) { 8765 if ((ipif->ipif_flags & IPIF_NOXMIT) && 8766 !(flags & LIFC_NOXMIT)) 8767 continue; 8768 8769 if ((ipif->ipif_flags & IPIF_TEMPORARY) && 8770 !(flags & LIFC_TEMPORARY)) 8771 continue; 8772 8773 if (((ipif->ipif_flags & 8774 (IPIF_NOXMIT|IPIF_NOLOCAL| 8775 IPIF_DEPRECATED)) || 8776 IS_LOOPBACK(ill) || 8777 !(ipif->ipif_flags & IPIF_UP)) && 8778 (flags & LIFC_EXTERNAL_SOURCE)) 8779 continue; 8780 8781 if (zoneid != ipif->ipif_zoneid && 8782 ipif->ipif_zoneid != ALL_ZONES && 8783 (zoneid != GLOBAL_ZONEID || 8784 !(flags & LIFC_ALLZONES))) 8785 continue; 8786 8787 if ((uchar_t *)&lifr[1] > mp1->b_wptr) { 8788 if (iocp->ioc_cmd == O_SIOCGLIFCONF) { 8789 rw_exit(&ipst->ips_ill_g_lock); 8790 return (EINVAL); 8791 } else { 8792 goto lif_copydone; 8793 } 8794 } 8795 8796 ipif_get_name(ipif, lifr->lifr_name, 8797 sizeof (lifr->lifr_name)); 8798 if (ipif->ipif_isv6) { 8799 sin6 = (sin6_t *)&lifr->lifr_addr; 8800 *sin6 = sin6_null; 8801 sin6->sin6_family = AF_INET6; 8802 sin6->sin6_addr = 8803 ipif->ipif_v6lcl_addr; 8804 lifr->lifr_addrlen = 8805 ip_mask_to_plen_v6( 8806 &ipif->ipif_v6net_mask); 8807 } else { 8808 sin = (sin_t *)&lifr->lifr_addr; 8809 *sin = sin_null; 8810 sin->sin_family = AF_INET; 8811 sin->sin_addr.s_addr = 8812 ipif->ipif_lcl_addr; 8813 lifr->lifr_addrlen = 8814 ip_mask_to_plen( 8815 ipif->ipif_net_mask); 8816 } 8817 lifr++; 8818 } 8819 } 8820 lif_copydone: 8821 rw_exit(&ipst->ips_ill_g_lock); 8822 8823 mp1->b_wptr = (uchar_t *)lifr; 8824 if (STRUCT_BUF(lifc) != NULL) { 8825 STRUCT_FSET(lifc, lifc_len, 8826 (int)((uchar_t *)lifr - mp1->b_rptr)); 8827 } 8828 return (0); 8829 } 8830 8831 /* ARGSUSED */ 8832 int 8833 ip_sioctl_set_ipmpfailback(ipif_t *dummy_ipif, sin_t *dummy_sin, 8834 queue_t *q, mblk_t *mp, ip_ioctl_cmd_t *ipip, void *ifreq) 8835 { 8836 ip_stack_t *ipst; 8837 8838 if (q->q_next == NULL) 8839 ipst = CONNQ_TO_IPST(q); 8840 else 8841 ipst = ILLQ_TO_IPST(q); 8842 8843 /* Existence of b_cont->b_cont checked in ip_wput_nondata */ 8844 ipst->ips_ipmp_enable_failback = *(int *)mp->b_cont->b_cont->b_rptr; 8845 return (0); 8846 } 8847 8848 static void 8849 ip_sioctl_ip6addrpolicy(queue_t *q, mblk_t *mp) 8850 { 8851 ip6_asp_t *table; 8852 size_t table_size; 8853 mblk_t *data_mp; 8854 struct iocblk *iocp = (struct iocblk *)mp->b_rptr; 8855 ip_stack_t *ipst; 8856 8857 if (q->q_next == NULL) 8858 ipst = CONNQ_TO_IPST(q); 8859 else 8860 ipst = ILLQ_TO_IPST(q); 8861 8862 /* These two ioctls are I_STR only */ 8863 if (iocp->ioc_count == TRANSPARENT) { 8864 miocnak(q, mp, 0, EINVAL); 8865 return; 8866 } 8867 8868 data_mp = mp->b_cont; 8869 if (data_mp == NULL) { 8870 /* The user passed us a NULL argument */ 8871 table = NULL; 8872 table_size = iocp->ioc_count; 8873 } else { 8874 /* 8875 * The user provided a table. The stream head 8876 * may have copied in the user data in chunks, 8877 * so make sure everything is pulled up 8878 * properly. 8879 */ 8880 if (MBLKL(data_mp) < iocp->ioc_count) { 8881 mblk_t *new_data_mp; 8882 if ((new_data_mp = msgpullup(data_mp, -1)) == 8883 NULL) { 8884 miocnak(q, mp, 0, ENOMEM); 8885 return; 8886 } 8887 freemsg(data_mp); 8888 data_mp = new_data_mp; 8889 mp->b_cont = data_mp; 8890 } 8891 table = (ip6_asp_t *)data_mp->b_rptr; 8892 table_size = iocp->ioc_count; 8893 } 8894 8895 switch (iocp->ioc_cmd) { 8896 case SIOCGIP6ADDRPOLICY: 8897 iocp->ioc_rval = ip6_asp_get(table, table_size, ipst); 8898 if (iocp->ioc_rval == -1) 8899 iocp->ioc_error = EINVAL; 8900 #if defined(_SYSCALL32_IMPL) && _LONG_LONG_ALIGNMENT_32 == 4 8901 else if (table != NULL && 8902 (iocp->ioc_flag & IOC_MODELS) == IOC_ILP32) { 8903 ip6_asp_t *src = table; 8904 ip6_asp32_t *dst = (void *)table; 8905 int count = table_size / sizeof (ip6_asp_t); 8906 int i; 8907 8908 /* 8909 * We need to do an in-place shrink of the array 8910 * to match the alignment attributes of the 8911 * 32-bit ABI looking at it. 8912 */ 8913 /* LINTED: logical expression always true: op "||" */ 8914 ASSERT(sizeof (*src) > sizeof (*dst)); 8915 for (i = 1; i < count; i++) 8916 bcopy(src + i, dst + i, sizeof (*dst)); 8917 } 8918 #endif 8919 break; 8920 8921 case SIOCSIP6ADDRPOLICY: 8922 ASSERT(mp->b_prev == NULL); 8923 mp->b_prev = (void *)q; 8924 #if defined(_SYSCALL32_IMPL) && _LONG_LONG_ALIGNMENT_32 == 4 8925 /* 8926 * We pass in the datamodel here so that the ip6_asp_replace() 8927 * routine can handle converting from 32-bit to native formats 8928 * where necessary. 8929 * 8930 * A better way to handle this might be to convert the inbound 8931 * data structure here, and hang it off a new 'mp'; thus the 8932 * ip6_asp_replace() logic would always be dealing with native 8933 * format data structures.. 8934 * 8935 * (An even simpler way to handle these ioctls is to just 8936 * add a 32-bit trailing 'pad' field to the ip6_asp_t structure 8937 * and just recompile everything that depends on it.) 8938 */ 8939 #endif 8940 ip6_asp_replace(mp, table, table_size, B_FALSE, ipst, 8941 iocp->ioc_flag & IOC_MODELS); 8942 return; 8943 } 8944 8945 DB_TYPE(mp) = (iocp->ioc_error == 0) ? M_IOCACK : M_IOCNAK; 8946 qreply(q, mp); 8947 } 8948 8949 static void 8950 ip_sioctl_dstinfo(queue_t *q, mblk_t *mp) 8951 { 8952 mblk_t *data_mp; 8953 struct dstinforeq *dir; 8954 uint8_t *end, *cur; 8955 in6_addr_t *daddr, *saddr; 8956 ipaddr_t v4daddr; 8957 ire_t *ire; 8958 char *slabel, *dlabel; 8959 boolean_t isipv4; 8960 int match_ire; 8961 ill_t *dst_ill; 8962 ipif_t *src_ipif, *ire_ipif; 8963 struct iocblk *iocp = (struct iocblk *)mp->b_rptr; 8964 zoneid_t zoneid; 8965 ip_stack_t *ipst = CONNQ_TO_IPST(q); 8966 8967 ASSERT(q->q_next == NULL); /* this ioctl not allowed if ip is module */ 8968 zoneid = Q_TO_CONN(q)->conn_zoneid; 8969 8970 /* 8971 * This ioctl is I_STR only, and must have a 8972 * data mblk following the M_IOCTL mblk. 8973 */ 8974 data_mp = mp->b_cont; 8975 if (iocp->ioc_count == TRANSPARENT || data_mp == NULL) { 8976 miocnak(q, mp, 0, EINVAL); 8977 return; 8978 } 8979 8980 if (MBLKL(data_mp) < iocp->ioc_count) { 8981 mblk_t *new_data_mp; 8982 8983 if ((new_data_mp = msgpullup(data_mp, -1)) == NULL) { 8984 miocnak(q, mp, 0, ENOMEM); 8985 return; 8986 } 8987 freemsg(data_mp); 8988 data_mp = new_data_mp; 8989 mp->b_cont = data_mp; 8990 } 8991 match_ire = MATCH_IRE_RECURSIVE | MATCH_IRE_DEFAULT | MATCH_IRE_PARENT; 8992 8993 for (cur = data_mp->b_rptr, end = data_mp->b_wptr; 8994 end - cur >= sizeof (struct dstinforeq); 8995 cur += sizeof (struct dstinforeq)) { 8996 dir = (struct dstinforeq *)cur; 8997 daddr = &dir->dir_daddr; 8998 saddr = &dir->dir_saddr; 8999 9000 /* 9001 * ip_addr_scope_v6() and ip6_asp_lookup() handle 9002 * v4 mapped addresses; ire_ftable_lookup[_v6]() 9003 * and ipif_select_source[_v6]() do not. 9004 */ 9005 dir->dir_dscope = ip_addr_scope_v6(daddr); 9006 dlabel = ip6_asp_lookup(daddr, &dir->dir_precedence, ipst); 9007 9008 isipv4 = IN6_IS_ADDR_V4MAPPED(daddr); 9009 if (isipv4) { 9010 IN6_V4MAPPED_TO_IPADDR(daddr, v4daddr); 9011 ire = ire_ftable_lookup(v4daddr, NULL, NULL, 9012 0, NULL, NULL, zoneid, 0, NULL, match_ire, ipst); 9013 } else { 9014 ire = ire_ftable_lookup_v6(daddr, NULL, NULL, 9015 0, NULL, NULL, zoneid, 0, NULL, match_ire, ipst); 9016 } 9017 if (ire == NULL) { 9018 dir->dir_dreachable = 0; 9019 9020 /* move on to next dst addr */ 9021 continue; 9022 } 9023 dir->dir_dreachable = 1; 9024 9025 ire_ipif = ire->ire_ipif; 9026 if (ire_ipif == NULL) 9027 goto next_dst; 9028 9029 /* 9030 * We expect to get back an interface ire or a 9031 * gateway ire cache entry. For both types, the 9032 * output interface is ire_ipif->ipif_ill. 9033 */ 9034 dst_ill = ire_ipif->ipif_ill; 9035 dir->dir_dmactype = dst_ill->ill_mactype; 9036 9037 if (isipv4) { 9038 src_ipif = ipif_select_source(dst_ill, v4daddr, zoneid); 9039 } else { 9040 src_ipif = ipif_select_source_v6(dst_ill, 9041 daddr, RESTRICT_TO_NONE, IPV6_PREFER_SRC_DEFAULT, 9042 zoneid); 9043 } 9044 if (src_ipif == NULL) 9045 goto next_dst; 9046 9047 *saddr = src_ipif->ipif_v6lcl_addr; 9048 dir->dir_sscope = ip_addr_scope_v6(saddr); 9049 slabel = ip6_asp_lookup(saddr, NULL, ipst); 9050 dir->dir_labelmatch = ip6_asp_labelcmp(dlabel, slabel); 9051 dir->dir_sdeprecated = 9052 (src_ipif->ipif_flags & IPIF_DEPRECATED) ? 1 : 0; 9053 ipif_refrele(src_ipif); 9054 next_dst: 9055 ire_refrele(ire); 9056 } 9057 miocack(q, mp, iocp->ioc_count, 0); 9058 } 9059 9060 /* 9061 * Check if this is an address assigned to this machine. 9062 * Skips interfaces that are down by using ire checks. 9063 * Translates mapped addresses to v4 addresses and then 9064 * treats them as such, returning true if the v4 address 9065 * associated with this mapped address is configured. 9066 * Note: Applications will have to be careful what they do 9067 * with the response; use of mapped addresses limits 9068 * what can be done with the socket, especially with 9069 * respect to socket options and ioctls - neither IPv4 9070 * options nor IPv6 sticky options/ancillary data options 9071 * may be used. 9072 */ 9073 /* ARGSUSED */ 9074 int 9075 ip_sioctl_tmyaddr(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, 9076 ip_ioctl_cmd_t *ipip, void *dummy_ifreq) 9077 { 9078 struct sioc_addrreq *sia; 9079 sin_t *sin; 9080 ire_t *ire; 9081 mblk_t *mp1; 9082 zoneid_t zoneid; 9083 ip_stack_t *ipst; 9084 9085 ip1dbg(("ip_sioctl_tmyaddr")); 9086 9087 ASSERT(q->q_next == NULL); /* this ioctl not allowed if ip is module */ 9088 zoneid = Q_TO_CONN(q)->conn_zoneid; 9089 ipst = CONNQ_TO_IPST(q); 9090 9091 /* Existence verified in ip_wput_nondata */ 9092 mp1 = mp->b_cont->b_cont; 9093 sia = (struct sioc_addrreq *)mp1->b_rptr; 9094 sin = (sin_t *)&sia->sa_addr; 9095 switch (sin->sin_family) { 9096 case AF_INET6: { 9097 sin6_t *sin6 = (sin6_t *)sin; 9098 9099 if (IN6_IS_ADDR_V4MAPPED(&sin6->sin6_addr)) { 9100 ipaddr_t v4_addr; 9101 9102 IN6_V4MAPPED_TO_IPADDR(&sin6->sin6_addr, 9103 v4_addr); 9104 ire = ire_ctable_lookup(v4_addr, 0, 9105 IRE_LOCAL|IRE_LOOPBACK, NULL, zoneid, 9106 NULL, MATCH_IRE_TYPE | MATCH_IRE_ZONEONLY, ipst); 9107 } else { 9108 in6_addr_t v6addr; 9109 9110 v6addr = sin6->sin6_addr; 9111 ire = ire_ctable_lookup_v6(&v6addr, 0, 9112 IRE_LOCAL|IRE_LOOPBACK, NULL, zoneid, 9113 NULL, MATCH_IRE_TYPE | MATCH_IRE_ZONEONLY, ipst); 9114 } 9115 break; 9116 } 9117 case AF_INET: { 9118 ipaddr_t v4addr; 9119 9120 v4addr = sin->sin_addr.s_addr; 9121 ire = ire_ctable_lookup(v4addr, 0, 9122 IRE_LOCAL|IRE_LOOPBACK, NULL, zoneid, 9123 NULL, MATCH_IRE_TYPE | MATCH_IRE_ZONEONLY, ipst); 9124 break; 9125 } 9126 default: 9127 return (EAFNOSUPPORT); 9128 } 9129 if (ire != NULL) { 9130 sia->sa_res = 1; 9131 ire_refrele(ire); 9132 } else { 9133 sia->sa_res = 0; 9134 } 9135 return (0); 9136 } 9137 9138 /* 9139 * Check if this is an address assigned on-link i.e. neighbor, 9140 * and makes sure it's reachable from the current zone. 9141 * Returns true for my addresses as well. 9142 * Translates mapped addresses to v4 addresses and then 9143 * treats them as such, returning true if the v4 address 9144 * associated with this mapped address is configured. 9145 * Note: Applications will have to be careful what they do 9146 * with the response; use of mapped addresses limits 9147 * what can be done with the socket, especially with 9148 * respect to socket options and ioctls - neither IPv4 9149 * options nor IPv6 sticky options/ancillary data options 9150 * may be used. 9151 */ 9152 /* ARGSUSED */ 9153 int 9154 ip_sioctl_tonlink(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, 9155 ip_ioctl_cmd_t *ipip, void *duymmy_ifreq) 9156 { 9157 struct sioc_addrreq *sia; 9158 sin_t *sin; 9159 mblk_t *mp1; 9160 ire_t *ire = NULL; 9161 zoneid_t zoneid; 9162 ip_stack_t *ipst; 9163 9164 ip1dbg(("ip_sioctl_tonlink")); 9165 9166 ASSERT(q->q_next == NULL); /* this ioctl not allowed if ip is module */ 9167 zoneid = Q_TO_CONN(q)->conn_zoneid; 9168 ipst = CONNQ_TO_IPST(q); 9169 9170 /* Existence verified in ip_wput_nondata */ 9171 mp1 = mp->b_cont->b_cont; 9172 sia = (struct sioc_addrreq *)mp1->b_rptr; 9173 sin = (sin_t *)&sia->sa_addr; 9174 9175 /* 9176 * Match addresses with a zero gateway field to avoid 9177 * routes going through a router. 9178 * Exclude broadcast and multicast addresses. 9179 */ 9180 switch (sin->sin_family) { 9181 case AF_INET6: { 9182 sin6_t *sin6 = (sin6_t *)sin; 9183 9184 if (IN6_IS_ADDR_V4MAPPED(&sin6->sin6_addr)) { 9185 ipaddr_t v4_addr; 9186 9187 IN6_V4MAPPED_TO_IPADDR(&sin6->sin6_addr, 9188 v4_addr); 9189 if (!CLASSD(v4_addr)) { 9190 ire = ire_route_lookup(v4_addr, 0, 0, 0, 9191 NULL, NULL, zoneid, NULL, 9192 MATCH_IRE_GW, ipst); 9193 } 9194 } else { 9195 in6_addr_t v6addr; 9196 in6_addr_t v6gw; 9197 9198 v6addr = sin6->sin6_addr; 9199 v6gw = ipv6_all_zeros; 9200 if (!IN6_IS_ADDR_MULTICAST(&v6addr)) { 9201 ire = ire_route_lookup_v6(&v6addr, 0, 9202 &v6gw, 0, NULL, NULL, zoneid, 9203 NULL, MATCH_IRE_GW, ipst); 9204 } 9205 } 9206 break; 9207 } 9208 case AF_INET: { 9209 ipaddr_t v4addr; 9210 9211 v4addr = sin->sin_addr.s_addr; 9212 if (!CLASSD(v4addr)) { 9213 ire = ire_route_lookup(v4addr, 0, 0, 0, 9214 NULL, NULL, zoneid, NULL, 9215 MATCH_IRE_GW, ipst); 9216 } 9217 break; 9218 } 9219 default: 9220 return (EAFNOSUPPORT); 9221 } 9222 sia->sa_res = 0; 9223 if (ire != NULL) { 9224 if (ire->ire_type & (IRE_INTERFACE|IRE_CACHE| 9225 IRE_LOCAL|IRE_LOOPBACK)) { 9226 sia->sa_res = 1; 9227 } 9228 ire_refrele(ire); 9229 } 9230 return (0); 9231 } 9232 9233 /* 9234 * TBD: implement when kernel maintaines a list of site prefixes. 9235 */ 9236 /* ARGSUSED */ 9237 int 9238 ip_sioctl_tmysite(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 9239 ip_ioctl_cmd_t *ipip, void *ifreq) 9240 { 9241 return (ENXIO); 9242 } 9243 9244 /* ARGSUSED */ 9245 int 9246 ip_sioctl_tunparam(ipif_t *ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, 9247 ip_ioctl_cmd_t *ipip, void *dummy_ifreq) 9248 { 9249 ill_t *ill; 9250 mblk_t *mp1; 9251 conn_t *connp; 9252 boolean_t success; 9253 9254 ip1dbg(("ip_sioctl_tunparam(%s:%u %p)\n", 9255 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 9256 /* ioctl comes down on an conn */ 9257 ASSERT(!(q->q_flag & QREADR) && q->q_next == NULL); 9258 connp = Q_TO_CONN(q); 9259 9260 mp->b_datap->db_type = M_IOCTL; 9261 9262 /* 9263 * Send down a copy. (copymsg does not copy b_next/b_prev). 9264 * The original mp contains contaminated b_next values due to 'mi', 9265 * which is needed to do the mi_copy_done. Unfortunately if we 9266 * send down the original mblk itself and if we are popped due to an 9267 * an unplumb before the response comes back from tunnel, 9268 * the streamhead (which does a freemsg) will see this contaminated 9269 * message and the assertion in freemsg about non-null b_next/b_prev 9270 * will panic a DEBUG kernel. 9271 */ 9272 mp1 = copymsg(mp); 9273 if (mp1 == NULL) 9274 return (ENOMEM); 9275 9276 ill = ipif->ipif_ill; 9277 mutex_enter(&connp->conn_lock); 9278 mutex_enter(&ill->ill_lock); 9279 if (ipip->ipi_cmd == SIOCSTUNPARAM || ipip->ipi_cmd == OSIOCSTUNPARAM) { 9280 success = ipsq_pending_mp_add(connp, ipif, CONNP_TO_WQ(connp), 9281 mp, 0); 9282 } else { 9283 success = ill_pending_mp_add(ill, connp, mp); 9284 } 9285 mutex_exit(&ill->ill_lock); 9286 mutex_exit(&connp->conn_lock); 9287 9288 if (success) { 9289 ip1dbg(("sending down tunparam request ")); 9290 putnext(ill->ill_wq, mp1); 9291 return (EINPROGRESS); 9292 } else { 9293 /* The conn has started closing */ 9294 freemsg(mp1); 9295 return (EINTR); 9296 } 9297 } 9298 9299 /* 9300 * ARP IOCTLs. 9301 * How does IP get in the business of fronting ARP configuration/queries? 9302 * Well it's like this, the Berkeley ARP IOCTLs (SIOCGARP, SIOCDARP, SIOCSARP) 9303 * are by tradition passed in through a datagram socket. That lands in IP. 9304 * As it happens, this is just as well since the interface is quite crude in 9305 * that it passes in no information about protocol or hardware types, or 9306 * interface association. After making the protocol assumption, IP is in 9307 * the position to look up the name of the ILL, which ARP will need, and 9308 * format a request that can be handled by ARP. The request is passed up 9309 * stream to ARP, and the original IOCTL is completed by IP when ARP passes 9310 * back a response. ARP supports its own set of more general IOCTLs, in 9311 * case anyone is interested. 9312 */ 9313 /* ARGSUSED */ 9314 int 9315 ip_sioctl_arp(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 9316 ip_ioctl_cmd_t *ipip, void *dummy_ifreq) 9317 { 9318 mblk_t *mp1; 9319 mblk_t *mp2; 9320 mblk_t *pending_mp; 9321 ipaddr_t ipaddr; 9322 area_t *area; 9323 struct iocblk *iocp; 9324 conn_t *connp; 9325 struct arpreq *ar; 9326 struct xarpreq *xar; 9327 int flags, alength; 9328 char *lladdr; 9329 ip_stack_t *ipst; 9330 ill_t *ill = ipif->ipif_ill; 9331 boolean_t if_arp_ioctl = B_FALSE; 9332 9333 ASSERT(!(q->q_flag & QREADR) && q->q_next == NULL); 9334 connp = Q_TO_CONN(q); 9335 ipst = connp->conn_netstack->netstack_ip; 9336 9337 if (ipip->ipi_cmd_type == XARP_CMD) { 9338 /* We have a chain - M_IOCTL-->MI_COPY_MBLK-->XARPREQ_MBLK */ 9339 xar = (struct xarpreq *)mp->b_cont->b_cont->b_rptr; 9340 ar = NULL; 9341 9342 flags = xar->xarp_flags; 9343 lladdr = LLADDR(&xar->xarp_ha); 9344 if_arp_ioctl = (xar->xarp_ha.sdl_nlen != 0); 9345 /* 9346 * Validate against user's link layer address length 9347 * input and name and addr length limits. 9348 */ 9349 alength = ill->ill_phys_addr_length; 9350 if (ipip->ipi_cmd == SIOCSXARP) { 9351 if (alength != xar->xarp_ha.sdl_alen || 9352 (alength + xar->xarp_ha.sdl_nlen > 9353 sizeof (xar->xarp_ha.sdl_data))) 9354 return (EINVAL); 9355 } 9356 } else { 9357 /* We have a chain - M_IOCTL-->MI_COPY_MBLK-->ARPREQ_MBLK */ 9358 ar = (struct arpreq *)mp->b_cont->b_cont->b_rptr; 9359 xar = NULL; 9360 9361 flags = ar->arp_flags; 9362 lladdr = ar->arp_ha.sa_data; 9363 /* 9364 * Theoretically, the sa_family could tell us what link 9365 * layer type this operation is trying to deal with. By 9366 * common usage AF_UNSPEC means ethernet. We'll assume 9367 * any attempt to use the SIOC?ARP ioctls is for ethernet, 9368 * for now. Our new SIOC*XARP ioctls can be used more 9369 * generally. 9370 * 9371 * If the underlying media happens to have a non 6 byte 9372 * address, arp module will fail set/get, but the del 9373 * operation will succeed. 9374 */ 9375 alength = 6; 9376 if ((ipip->ipi_cmd != SIOCDARP) && 9377 (alength != ill->ill_phys_addr_length)) { 9378 return (EINVAL); 9379 } 9380 } 9381 9382 /* 9383 * We are going to pass up to ARP a packet chain that looks 9384 * like: 9385 * 9386 * M_IOCTL-->ARP_op_MBLK-->ORIG_M_IOCTL-->MI_COPY_MBLK-->[X]ARPREQ_MBLK 9387 * 9388 * Get a copy of the original IOCTL mblk to head the chain, 9389 * to be sent up (in mp1). Also get another copy to store 9390 * in the ill_pending_mp list, for matching the response 9391 * when it comes back from ARP. 9392 */ 9393 mp1 = copyb(mp); 9394 pending_mp = copymsg(mp); 9395 if (mp1 == NULL || pending_mp == NULL) { 9396 if (mp1 != NULL) 9397 freeb(mp1); 9398 if (pending_mp != NULL) 9399 inet_freemsg(pending_mp); 9400 return (ENOMEM); 9401 } 9402 9403 ipaddr = sin->sin_addr.s_addr; 9404 9405 mp2 = ill_arp_alloc(ill, (uchar_t *)&ip_area_template, 9406 (caddr_t)&ipaddr); 9407 if (mp2 == NULL) { 9408 freeb(mp1); 9409 inet_freemsg(pending_mp); 9410 return (ENOMEM); 9411 } 9412 /* Put together the chain. */ 9413 mp1->b_cont = mp2; 9414 mp1->b_datap->db_type = M_IOCTL; 9415 mp2->b_cont = mp; 9416 mp2->b_datap->db_type = M_DATA; 9417 9418 iocp = (struct iocblk *)mp1->b_rptr; 9419 9420 /* 9421 * An M_IOCDATA's payload (struct copyresp) is mostly the same as an 9422 * M_IOCTL's payload (struct iocblk), but 'struct copyresp' has a 9423 * cp_private field (or cp_rval on 32-bit systems) in place of the 9424 * ioc_count field; set ioc_count to be correct. 9425 */ 9426 iocp->ioc_count = MBLKL(mp1->b_cont); 9427 9428 /* 9429 * Set the proper command in the ARP message. 9430 * Convert the SIOC{G|S|D}ARP calls into our 9431 * AR_ENTRY_xxx calls. 9432 */ 9433 area = (area_t *)mp2->b_rptr; 9434 switch (iocp->ioc_cmd) { 9435 case SIOCDARP: 9436 case SIOCDXARP: 9437 /* 9438 * We defer deleting the corresponding IRE until 9439 * we return from arp. 9440 */ 9441 area->area_cmd = AR_ENTRY_DELETE; 9442 area->area_proto_mask_offset = 0; 9443 break; 9444 case SIOCGARP: 9445 case SIOCGXARP: 9446 area->area_cmd = AR_ENTRY_SQUERY; 9447 area->area_proto_mask_offset = 0; 9448 break; 9449 case SIOCSARP: 9450 case SIOCSXARP: 9451 /* 9452 * Delete the corresponding ire to make sure IP will 9453 * pick up any change from arp. 9454 */ 9455 if (!if_arp_ioctl) { 9456 (void) ip_ire_clookup_and_delete(ipaddr, NULL, ipst); 9457 } else { 9458 ipif_t *ipif = ipif_get_next_ipif(NULL, ill); 9459 if (ipif != NULL) { 9460 (void) ip_ire_clookup_and_delete(ipaddr, ipif, 9461 ipst); 9462 ipif_refrele(ipif); 9463 } 9464 } 9465 break; 9466 } 9467 iocp->ioc_cmd = area->area_cmd; 9468 9469 /* 9470 * Fill in the rest of the ARP operation fields. 9471 */ 9472 area->area_hw_addr_length = alength; 9473 bcopy(lladdr, (char *)area + area->area_hw_addr_offset, alength); 9474 9475 /* Translate the flags. */ 9476 if (flags & ATF_PERM) 9477 area->area_flags |= ACE_F_PERMANENT; 9478 if (flags & ATF_PUBL) 9479 area->area_flags |= ACE_F_PUBLISH; 9480 if (flags & ATF_AUTHORITY) 9481 area->area_flags |= ACE_F_AUTHORITY; 9482 9483 /* 9484 * Before sending 'mp' to ARP, we have to clear the b_next 9485 * and b_prev. Otherwise if STREAMS encounters such a message 9486 * in freemsg(), (because ARP can close any time) it can cause 9487 * a panic. But mi code needs the b_next and b_prev values of 9488 * mp->b_cont, to complete the ioctl. So we store it here 9489 * in pending_mp->bcont, and restore it in ip_sioctl_iocack() 9490 * when the response comes down from ARP. 9491 */ 9492 pending_mp->b_cont->b_next = mp->b_cont->b_next; 9493 pending_mp->b_cont->b_prev = mp->b_cont->b_prev; 9494 mp->b_cont->b_next = NULL; 9495 mp->b_cont->b_prev = NULL; 9496 9497 mutex_enter(&connp->conn_lock); 9498 mutex_enter(&ill->ill_lock); 9499 /* conn has not yet started closing, hence this can't fail */ 9500 VERIFY(ill_pending_mp_add(ill, connp, pending_mp) != 0); 9501 mutex_exit(&ill->ill_lock); 9502 mutex_exit(&connp->conn_lock); 9503 9504 /* 9505 * Up to ARP it goes. The response will come back in ip_wput() as an 9506 * M_IOCACK, and will be handed to ip_sioctl_iocack() for completion. 9507 */ 9508 putnext(ill->ill_rq, mp1); 9509 return (EINPROGRESS); 9510 } 9511 9512 /* 9513 * Parse an [x]arpreq structure coming down SIOC[GSD][X]ARP ioctls, identify 9514 * the associated sin and refhold and return the associated ipif via `ci'. 9515 */ 9516 int 9517 ip_extract_arpreq(queue_t *q, mblk_t *mp, const ip_ioctl_cmd_t *ipip, 9518 cmd_info_t *ci, ipsq_func_t func) 9519 { 9520 mblk_t *mp1; 9521 int err; 9522 sin_t *sin; 9523 conn_t *connp; 9524 ipif_t *ipif; 9525 ire_t *ire = NULL; 9526 ill_t *ill = NULL; 9527 boolean_t exists; 9528 ip_stack_t *ipst; 9529 struct arpreq *ar; 9530 struct xarpreq *xar; 9531 struct sockaddr_dl *sdl; 9532 9533 /* ioctl comes down on a conn */ 9534 ASSERT(!(q->q_flag & QREADR) && q->q_next == NULL); 9535 connp = Q_TO_CONN(q); 9536 if (connp->conn_af_isv6) 9537 return (ENXIO); 9538 9539 ipst = connp->conn_netstack->netstack_ip; 9540 9541 /* Verified in ip_wput_nondata */ 9542 mp1 = mp->b_cont->b_cont; 9543 9544 if (ipip->ipi_cmd_type == XARP_CMD) { 9545 ASSERT(MBLKL(mp1) >= sizeof (struct xarpreq)); 9546 xar = (struct xarpreq *)mp1->b_rptr; 9547 sin = (sin_t *)&xar->xarp_pa; 9548 sdl = &xar->xarp_ha; 9549 9550 if (sdl->sdl_family != AF_LINK || sin->sin_family != AF_INET) 9551 return (ENXIO); 9552 if (sdl->sdl_nlen >= LIFNAMSIZ) 9553 return (EINVAL); 9554 } else { 9555 ASSERT(ipip->ipi_cmd_type == ARP_CMD); 9556 ASSERT(MBLKL(mp1) >= sizeof (struct arpreq)); 9557 ar = (struct arpreq *)mp1->b_rptr; 9558 sin = (sin_t *)&ar->arp_pa; 9559 } 9560 9561 if (ipip->ipi_cmd_type == XARP_CMD && sdl->sdl_nlen != 0) { 9562 ipif = ipif_lookup_on_name(sdl->sdl_data, sdl->sdl_nlen, 9563 B_FALSE, &exists, B_FALSE, ALL_ZONES, CONNP_TO_WQ(connp), 9564 mp, func, &err, ipst); 9565 if (ipif == NULL) 9566 return (err); 9567 if (ipif->ipif_id != 0 || 9568 ipif->ipif_net_type != IRE_IF_RESOLVER) { 9569 ipif_refrele(ipif); 9570 return (ENXIO); 9571 } 9572 } else { 9573 /* 9574 * Either an SIOC[DGS]ARP or an SIOC[DGS]XARP with sdl_nlen == 9575 * 0: use the IP address to figure out the ill. In the IPMP 9576 * case, a simple forwarding table lookup will return the 9577 * IRE_IF_RESOLVER for the first interface in the group, which 9578 * might not be the interface on which the requested IP 9579 * address was resolved due to the ill selection algorithm 9580 * (see ip_newroute_get_dst_ill()). So we do a cache table 9581 * lookup first: if the IRE cache entry for the IP address is 9582 * still there, it will contain the ill pointer for the right 9583 * interface, so we use that. If the cache entry has been 9584 * flushed, we fall back to the forwarding table lookup. This 9585 * should be rare enough since IRE cache entries have a longer 9586 * life expectancy than ARP cache entries. 9587 */ 9588 ire = ire_cache_lookup(sin->sin_addr.s_addr, ALL_ZONES, NULL, 9589 ipst); 9590 if ((ire == NULL) || (ire->ire_type == IRE_LOOPBACK) || 9591 ((ill = ire_to_ill(ire)) == NULL) || 9592 (ill->ill_net_type != IRE_IF_RESOLVER)) { 9593 if (ire != NULL) 9594 ire_refrele(ire); 9595 ire = ire_ftable_lookup(sin->sin_addr.s_addr, 9596 0, 0, IRE_IF_RESOLVER, NULL, NULL, ALL_ZONES, 0, 9597 NULL, MATCH_IRE_TYPE, ipst); 9598 if (ire == NULL || ((ill = ire_to_ill(ire)) == NULL)) { 9599 9600 if (ire != NULL) 9601 ire_refrele(ire); 9602 return (ENXIO); 9603 } 9604 } 9605 ASSERT(ire != NULL && ill != NULL); 9606 ipif = ill->ill_ipif; 9607 ipif_refhold(ipif); 9608 ire_refrele(ire); 9609 } 9610 ci->ci_sin = sin; 9611 ci->ci_ipif = ipif; 9612 return (0); 9613 } 9614 9615 /* 9616 * Do I_PLINK/I_LINK or I_PUNLINK/I_UNLINK with consistency checks and also 9617 * atomically set/clear the muxids. Also complete the ioctl by acking or 9618 * naking it. Note that the code is structured such that the link type, 9619 * whether it's persistent or not, is treated equally. ifconfig(1M) and 9620 * its clones use the persistent link, while pppd(1M) and perhaps many 9621 * other daemons may use non-persistent link. When combined with some 9622 * ill_t states, linking and unlinking lower streams may be used as 9623 * indicators of dynamic re-plumbing events [see PSARC/1999/348]. 9624 */ 9625 /* ARGSUSED */ 9626 void 9627 ip_sioctl_plink(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy_arg) 9628 { 9629 mblk_t *mp1, *mp2; 9630 struct linkblk *li; 9631 struct ipmx_s *ipmxp; 9632 ill_t *ill; 9633 int ioccmd = ((struct iocblk *)mp->b_rptr)->ioc_cmd; 9634 int err = 0; 9635 boolean_t entered_ipsq = B_FALSE; 9636 boolean_t islink; 9637 ip_stack_t *ipst; 9638 9639 if (CONN_Q(q)) 9640 ipst = CONNQ_TO_IPST(q); 9641 else 9642 ipst = ILLQ_TO_IPST(q); 9643 9644 ASSERT(ioccmd == I_PLINK || ioccmd == I_PUNLINK || 9645 ioccmd == I_LINK || ioccmd == I_UNLINK); 9646 9647 islink = (ioccmd == I_PLINK || ioccmd == I_LINK); 9648 9649 mp1 = mp->b_cont; /* This is the linkblk info */ 9650 li = (struct linkblk *)mp1->b_rptr; 9651 9652 /* 9653 * ARP has added this special mblk, and the utility is asking us 9654 * to perform consistency checks, and also atomically set the 9655 * muxid. Ifconfig is an example. It achieves this by using 9656 * /dev/arp as the mux to plink the arp stream, and pushes arp on 9657 * to /dev/udp[6] stream for use as the mux when plinking the IP 9658 * stream. SIOCSLIFMUXID is not required. See ifconfig.c, arp.c 9659 * and other comments in this routine for more details. 9660 */ 9661 mp2 = mp1->b_cont; /* This is added by ARP */ 9662 9663 /* 9664 * If I_{P}LINK/I_{P}UNLINK is issued by a utility other than 9665 * ifconfig which didn't push ARP on top of the dummy mux, we won't 9666 * get the special mblk above. For backward compatibility, we 9667 * request ip_sioctl_plink_ipmod() to skip the consistency checks. 9668 * The utility will use SIOCSLIFMUXID to store the muxids. This is 9669 * not atomic, and can leave the streams unplumbable if the utility 9670 * is interrupted before it does the SIOCSLIFMUXID. 9671 */ 9672 if (mp2 == NULL) { 9673 err = ip_sioctl_plink_ipmod(ipsq, q, mp, ioccmd, li, B_FALSE); 9674 if (err == EINPROGRESS) 9675 return; 9676 goto done; 9677 } 9678 9679 /* 9680 * This is an I_{P}LINK sent down by ifconfig through the ARP module; 9681 * ARP has appended this last mblk to tell us whether the lower stream 9682 * is an arp-dev stream or an IP module stream. 9683 */ 9684 ipmxp = (struct ipmx_s *)mp2->b_rptr; 9685 if (ipmxp->ipmx_arpdev_stream) { 9686 /* 9687 * The lower stream is the arp-dev stream. 9688 */ 9689 ill = ill_lookup_on_name(ipmxp->ipmx_name, B_FALSE, B_FALSE, 9690 q, mp, ip_sioctl_plink, &err, NULL, ipst); 9691 if (ill == NULL) { 9692 if (err == EINPROGRESS) 9693 return; 9694 err = EINVAL; 9695 goto done; 9696 } 9697 9698 if (ipsq == NULL) { 9699 ipsq = ipsq_try_enter(NULL, ill, q, mp, ip_sioctl_plink, 9700 NEW_OP, B_TRUE); 9701 if (ipsq == NULL) { 9702 ill_refrele(ill); 9703 return; 9704 } 9705 entered_ipsq = B_TRUE; 9706 } 9707 ASSERT(IAM_WRITER_ILL(ill)); 9708 ill_refrele(ill); 9709 9710 /* 9711 * To ensure consistency between IP and ARP, the following 9712 * LIFO scheme is used in plink/punlink. (IP first, ARP last). 9713 * This is because the muxid's are stored in the IP stream on 9714 * the ill. 9715 * 9716 * I_{P}LINK: ifconfig plinks the IP stream before plinking 9717 * the ARP stream. On an arp-dev stream, IP checks that it is 9718 * not yet plinked, and it also checks that the corresponding 9719 * IP stream is already plinked. 9720 * 9721 * I_{P}UNLINK: ifconfig punlinks the ARP stream before 9722 * punlinking the IP stream. IP does not allow punlink of the 9723 * IP stream unless the arp stream has been punlinked. 9724 */ 9725 if ((islink && 9726 (ill->ill_arp_muxid != 0 || ill->ill_ip_muxid == 0)) || 9727 (!islink && ill->ill_arp_muxid != li->l_index)) { 9728 err = EINVAL; 9729 goto done; 9730 } 9731 ill->ill_arp_muxid = islink ? li->l_index : 0; 9732 } else { 9733 /* 9734 * The lower stream is probably an IP module stream. Do 9735 * consistency checking. 9736 */ 9737 err = ip_sioctl_plink_ipmod(ipsq, q, mp, ioccmd, li, B_TRUE); 9738 if (err == EINPROGRESS) 9739 return; 9740 } 9741 done: 9742 if (err == 0) 9743 miocack(q, mp, 0, 0); 9744 else 9745 miocnak(q, mp, 0, err); 9746 9747 /* Conn was refheld in ip_sioctl_copyin_setup */ 9748 if (CONN_Q(q)) 9749 CONN_OPER_PENDING_DONE(Q_TO_CONN(q)); 9750 if (entered_ipsq) 9751 ipsq_exit(ipsq); 9752 } 9753 9754 /* 9755 * Process I_{P}LINK and I_{P}UNLINK requests named by `ioccmd' and pointed to 9756 * by `mp' and `li' for the IP module stream (if li->q_bot is in fact an IP 9757 * module stream). If `doconsist' is set, then do the extended consistency 9758 * checks requested by ifconfig(1M) and (atomically) set ill_ip_muxid here. 9759 * Returns zero on success, EINPROGRESS if the operation is still pending, or 9760 * an error code on failure. 9761 */ 9762 static int 9763 ip_sioctl_plink_ipmod(ipsq_t *ipsq, queue_t *q, mblk_t *mp, int ioccmd, 9764 struct linkblk *li, boolean_t doconsist) 9765 { 9766 ill_t *ill; 9767 queue_t *ipwq, *dwq; 9768 const char *name; 9769 struct qinit *qinfo; 9770 boolean_t islink = (ioccmd == I_PLINK || ioccmd == I_LINK); 9771 boolean_t entered_ipsq = B_FALSE; 9772 9773 /* 9774 * Walk the lower stream to verify it's the IP module stream. 9775 * The IP module is identified by its name, wput function, 9776 * and non-NULL q_next. STREAMS ensures that the lower stream 9777 * (li->l_qbot) will not vanish until this ioctl completes. 9778 */ 9779 for (ipwq = li->l_qbot; ipwq != NULL; ipwq = ipwq->q_next) { 9780 qinfo = ipwq->q_qinfo; 9781 name = qinfo->qi_minfo->mi_idname; 9782 if (name != NULL && strcmp(name, ip_mod_info.mi_idname) == 0 && 9783 qinfo->qi_putp != (pfi_t)ip_lwput && ipwq->q_next != NULL) { 9784 break; 9785 } 9786 } 9787 9788 /* 9789 * If this isn't an IP module stream, bail. 9790 */ 9791 if (ipwq == NULL) 9792 return (0); 9793 9794 ill = ipwq->q_ptr; 9795 ASSERT(ill != NULL); 9796 9797 if (ipsq == NULL) { 9798 ipsq = ipsq_try_enter(NULL, ill, q, mp, ip_sioctl_plink, 9799 NEW_OP, B_TRUE); 9800 if (ipsq == NULL) 9801 return (EINPROGRESS); 9802 entered_ipsq = B_TRUE; 9803 } 9804 ASSERT(IAM_WRITER_ILL(ill)); 9805 9806 if (doconsist) { 9807 /* 9808 * Consistency checking requires that I_{P}LINK occurs 9809 * prior to setting ill_ip_muxid, and that I_{P}UNLINK 9810 * occurs prior to clearing ill_arp_muxid. 9811 */ 9812 if ((islink && ill->ill_ip_muxid != 0) || 9813 (!islink && ill->ill_arp_muxid != 0)) { 9814 if (entered_ipsq) 9815 ipsq_exit(ipsq); 9816 return (EINVAL); 9817 } 9818 } 9819 9820 /* 9821 * As part of I_{P}LINKing, stash the number of downstream modules and 9822 * the read queue of the module immediately below IP in the ill. 9823 * These are used during the capability negotiation below. 9824 */ 9825 ill->ill_lmod_rq = NULL; 9826 ill->ill_lmod_cnt = 0; 9827 if (islink && ((dwq = ipwq->q_next) != NULL)) { 9828 ill->ill_lmod_rq = RD(dwq); 9829 for (; dwq != NULL; dwq = dwq->q_next) 9830 ill->ill_lmod_cnt++; 9831 } 9832 9833 if (doconsist) 9834 ill->ill_ip_muxid = islink ? li->l_index : 0; 9835 9836 /* 9837 * Mark the ipsq busy until the capability operations initiated below 9838 * complete. The PLINK/UNLINK ioctl itself completes when our caller 9839 * returns, but the capability operation may complete asynchronously 9840 * much later. 9841 */ 9842 ipsq_current_start(ipsq, ill->ill_ipif, ioccmd); 9843 /* 9844 * If there's at least one up ipif on this ill, then we're bound to 9845 * the underlying driver via DLPI. In that case, renegotiate 9846 * capabilities to account for any possible change in modules 9847 * interposed between IP and the driver. 9848 */ 9849 if (ill->ill_ipif_up_count > 0) { 9850 if (islink) 9851 ill_capability_probe(ill); 9852 else 9853 ill_capability_reset(ill, B_FALSE); 9854 } 9855 ipsq_current_finish(ipsq); 9856 9857 if (entered_ipsq) 9858 ipsq_exit(ipsq); 9859 9860 return (0); 9861 } 9862 9863 /* 9864 * Search the ioctl command in the ioctl tables and return a pointer 9865 * to the ioctl command information. The ioctl command tables are 9866 * static and fully populated at compile time. 9867 */ 9868 ip_ioctl_cmd_t * 9869 ip_sioctl_lookup(int ioc_cmd) 9870 { 9871 int index; 9872 ip_ioctl_cmd_t *ipip; 9873 ip_ioctl_cmd_t *ipip_end; 9874 9875 if (ioc_cmd == IPI_DONTCARE) 9876 return (NULL); 9877 9878 /* 9879 * Do a 2 step search. First search the indexed table 9880 * based on the least significant byte of the ioctl cmd. 9881 * If we don't find a match, then search the misc table 9882 * serially. 9883 */ 9884 index = ioc_cmd & 0xFF; 9885 if (index < ip_ndx_ioctl_count) { 9886 ipip = &ip_ndx_ioctl_table[index]; 9887 if (ipip->ipi_cmd == ioc_cmd) { 9888 /* Found a match in the ndx table */ 9889 return (ipip); 9890 } 9891 } 9892 9893 /* Search the misc table */ 9894 ipip_end = &ip_misc_ioctl_table[ip_misc_ioctl_count]; 9895 for (ipip = ip_misc_ioctl_table; ipip < ipip_end; ipip++) { 9896 if (ipip->ipi_cmd == ioc_cmd) 9897 /* Found a match in the misc table */ 9898 return (ipip); 9899 } 9900 9901 return (NULL); 9902 } 9903 9904 /* 9905 * Wrapper function for resuming deferred ioctl processing 9906 * Used for SIOCGDSTINFO, SIOCGIP6ADDRPOLICY, SIOCGMSFILTER, 9907 * SIOCSMSFILTER, SIOCGIPMSFILTER, and SIOCSIPMSFILTER currently. 9908 */ 9909 /* ARGSUSED */ 9910 void 9911 ip_sioctl_copyin_resume(ipsq_t *dummy_ipsq, queue_t *q, mblk_t *mp, 9912 void *dummy_arg) 9913 { 9914 ip_sioctl_copyin_setup(q, mp); 9915 } 9916 9917 /* 9918 * ip_sioctl_copyin_setup is called by ip_wput with any M_IOCTL message 9919 * that arrives. Most of the IOCTLs are "socket" IOCTLs which we handle 9920 * in either I_STR or TRANSPARENT form, using the mi_copy facility. 9921 * We establish here the size of the block to be copied in. mi_copyin 9922 * arranges for this to happen, an processing continues in ip_wput with 9923 * an M_IOCDATA message. 9924 */ 9925 void 9926 ip_sioctl_copyin_setup(queue_t *q, mblk_t *mp) 9927 { 9928 int copyin_size; 9929 struct iocblk *iocp = (struct iocblk *)mp->b_rptr; 9930 ip_ioctl_cmd_t *ipip; 9931 cred_t *cr; 9932 ip_stack_t *ipst; 9933 9934 if (CONN_Q(q)) 9935 ipst = CONNQ_TO_IPST(q); 9936 else 9937 ipst = ILLQ_TO_IPST(q); 9938 9939 ipip = ip_sioctl_lookup(iocp->ioc_cmd); 9940 if (ipip == NULL) { 9941 /* 9942 * The ioctl is not one we understand or own. 9943 * Pass it along to be processed down stream, 9944 * if this is a module instance of IP, else nak 9945 * the ioctl. 9946 */ 9947 if (q->q_next == NULL) { 9948 goto nak; 9949 } else { 9950 putnext(q, mp); 9951 return; 9952 } 9953 } 9954 9955 /* 9956 * If this is deferred, then we will do all the checks when we 9957 * come back. 9958 */ 9959 if ((iocp->ioc_cmd == SIOCGDSTINFO || 9960 iocp->ioc_cmd == SIOCGIP6ADDRPOLICY) && !ip6_asp_can_lookup(ipst)) { 9961 ip6_asp_pending_op(q, mp, ip_sioctl_copyin_resume); 9962 return; 9963 } 9964 9965 /* 9966 * Only allow a very small subset of IP ioctls on this stream if 9967 * IP is a module and not a driver. Allowing ioctls to be processed 9968 * in this case may cause assert failures or data corruption. 9969 * Typically G[L]IFFLAGS, SLIFNAME/IF_UNITSEL are the only few 9970 * ioctls allowed on an IP module stream, after which this stream 9971 * normally becomes a multiplexor (at which time the stream head 9972 * will fail all ioctls). 9973 */ 9974 if ((q->q_next != NULL) && !(ipip->ipi_flags & IPI_MODOK)) { 9975 if (ipip->ipi_flags & IPI_PASS_DOWN) { 9976 /* 9977 * Pass common Streams ioctls which the IP 9978 * module does not own or consume along to 9979 * be processed down stream. 9980 */ 9981 putnext(q, mp); 9982 return; 9983 } else { 9984 goto nak; 9985 } 9986 } 9987 9988 /* Make sure we have ioctl data to process. */ 9989 if (mp->b_cont == NULL && !(ipip->ipi_flags & IPI_NULL_BCONT)) 9990 goto nak; 9991 9992 /* 9993 * Prefer dblk credential over ioctl credential; some synthesized 9994 * ioctls have kcred set because there's no way to crhold() 9995 * a credential in some contexts. (ioc_cr is not crfree() by 9996 * the framework; the caller of ioctl needs to hold the reference 9997 * for the duration of the call). 9998 */ 9999 cr = DB_CREDDEF(mp, iocp->ioc_cr); 10000 10001 /* Make sure normal users don't send down privileged ioctls */ 10002 if ((ipip->ipi_flags & IPI_PRIV) && 10003 (cr != NULL) && secpolicy_ip_config(cr, B_TRUE) != 0) { 10004 /* We checked the privilege earlier but log it here */ 10005 miocnak(q, mp, 0, secpolicy_ip_config(cr, B_FALSE)); 10006 return; 10007 } 10008 10009 /* 10010 * The ioctl command tables can only encode fixed length 10011 * ioctl data. If the length is variable, the table will 10012 * encode the length as zero. Such special cases are handled 10013 * below in the switch. 10014 */ 10015 if (ipip->ipi_copyin_size != 0) { 10016 mi_copyin(q, mp, NULL, ipip->ipi_copyin_size); 10017 return; 10018 } 10019 10020 switch (iocp->ioc_cmd) { 10021 case O_SIOCGIFCONF: 10022 case SIOCGIFCONF: 10023 /* 10024 * This IOCTL is hilarious. See comments in 10025 * ip_sioctl_get_ifconf for the story. 10026 */ 10027 if (iocp->ioc_count == TRANSPARENT) 10028 copyin_size = SIZEOF_STRUCT(ifconf, 10029 iocp->ioc_flag); 10030 else 10031 copyin_size = iocp->ioc_count; 10032 mi_copyin(q, mp, NULL, copyin_size); 10033 return; 10034 10035 case O_SIOCGLIFCONF: 10036 case SIOCGLIFCONF: 10037 copyin_size = SIZEOF_STRUCT(lifconf, iocp->ioc_flag); 10038 mi_copyin(q, mp, NULL, copyin_size); 10039 return; 10040 10041 case SIOCGLIFSRCOF: 10042 copyin_size = SIZEOF_STRUCT(lifsrcof, iocp->ioc_flag); 10043 mi_copyin(q, mp, NULL, copyin_size); 10044 return; 10045 case SIOCGIP6ADDRPOLICY: 10046 ip_sioctl_ip6addrpolicy(q, mp); 10047 ip6_asp_table_refrele(ipst); 10048 return; 10049 10050 case SIOCSIP6ADDRPOLICY: 10051 ip_sioctl_ip6addrpolicy(q, mp); 10052 return; 10053 10054 case SIOCGDSTINFO: 10055 ip_sioctl_dstinfo(q, mp); 10056 ip6_asp_table_refrele(ipst); 10057 return; 10058 10059 case I_PLINK: 10060 case I_PUNLINK: 10061 case I_LINK: 10062 case I_UNLINK: 10063 /* 10064 * We treat non-persistent link similarly as the persistent 10065 * link case, in terms of plumbing/unplumbing, as well as 10066 * dynamic re-plumbing events indicator. See comments 10067 * in ip_sioctl_plink() for more. 10068 * 10069 * Request can be enqueued in the 'ipsq' while waiting 10070 * to become exclusive. So bump up the conn ref. 10071 */ 10072 if (CONN_Q(q)) 10073 CONN_INC_REF(Q_TO_CONN(q)); 10074 ip_sioctl_plink(NULL, q, mp, NULL); 10075 return; 10076 10077 case ND_GET: 10078 case ND_SET: 10079 /* 10080 * Use of the nd table requires holding the reader lock. 10081 * Modifying the nd table thru nd_load/nd_unload requires 10082 * the writer lock. 10083 */ 10084 rw_enter(&ipst->ips_ip_g_nd_lock, RW_READER); 10085 if (nd_getset(q, ipst->ips_ip_g_nd, mp)) { 10086 rw_exit(&ipst->ips_ip_g_nd_lock); 10087 10088 if (iocp->ioc_error) 10089 iocp->ioc_count = 0; 10090 mp->b_datap->db_type = M_IOCACK; 10091 qreply(q, mp); 10092 return; 10093 } 10094 rw_exit(&ipst->ips_ip_g_nd_lock); 10095 /* 10096 * We don't understand this subioctl of ND_GET / ND_SET. 10097 * Maybe intended for some driver / module below us 10098 */ 10099 if (q->q_next) { 10100 putnext(q, mp); 10101 } else { 10102 iocp->ioc_error = ENOENT; 10103 mp->b_datap->db_type = M_IOCNAK; 10104 iocp->ioc_count = 0; 10105 qreply(q, mp); 10106 } 10107 return; 10108 10109 case IP_IOCTL: 10110 ip_wput_ioctl(q, mp); 10111 return; 10112 default: 10113 cmn_err(CE_PANIC, "should not happen "); 10114 } 10115 nak: 10116 if (mp->b_cont != NULL) { 10117 freemsg(mp->b_cont); 10118 mp->b_cont = NULL; 10119 } 10120 iocp->ioc_error = EINVAL; 10121 mp->b_datap->db_type = M_IOCNAK; 10122 iocp->ioc_count = 0; 10123 qreply(q, mp); 10124 } 10125 10126 /* ip_wput hands off ARP IOCTL responses to us */ 10127 void 10128 ip_sioctl_iocack(queue_t *q, mblk_t *mp) 10129 { 10130 struct arpreq *ar; 10131 struct xarpreq *xar; 10132 area_t *area; 10133 mblk_t *area_mp; 10134 struct iocblk *iocp; 10135 mblk_t *orig_ioc_mp, *tmp; 10136 struct iocblk *orig_iocp; 10137 ill_t *ill; 10138 conn_t *connp = NULL; 10139 uint_t ioc_id; 10140 mblk_t *pending_mp; 10141 int x_arp_ioctl = B_FALSE, ifx_arp_ioctl = B_FALSE; 10142 int *flagsp; 10143 char *storage = NULL; 10144 sin_t *sin; 10145 ipaddr_t addr; 10146 int err; 10147 ip_stack_t *ipst; 10148 10149 ill = q->q_ptr; 10150 ASSERT(ill != NULL); 10151 ipst = ill->ill_ipst; 10152 10153 /* 10154 * We should get back from ARP a packet chain that looks like: 10155 * M_IOCACK-->ARP_op_MBLK-->ORIG_M_IOCTL-->MI_COPY_MBLK-->[X]ARPREQ_MBLK 10156 */ 10157 if (!(area_mp = mp->b_cont) || 10158 (area_mp->b_wptr - area_mp->b_rptr) < sizeof (ip_sock_ar_t) || 10159 !(orig_ioc_mp = area_mp->b_cont) || 10160 !orig_ioc_mp->b_cont || !orig_ioc_mp->b_cont->b_cont) { 10161 freemsg(mp); 10162 return; 10163 } 10164 10165 orig_iocp = (struct iocblk *)orig_ioc_mp->b_rptr; 10166 10167 tmp = (orig_ioc_mp->b_cont)->b_cont; 10168 if ((orig_iocp->ioc_cmd == SIOCGXARP) || 10169 (orig_iocp->ioc_cmd == SIOCSXARP) || 10170 (orig_iocp->ioc_cmd == SIOCDXARP)) { 10171 x_arp_ioctl = B_TRUE; 10172 xar = (struct xarpreq *)tmp->b_rptr; 10173 sin = (sin_t *)&xar->xarp_pa; 10174 flagsp = &xar->xarp_flags; 10175 storage = xar->xarp_ha.sdl_data; 10176 if (xar->xarp_ha.sdl_nlen != 0) 10177 ifx_arp_ioctl = B_TRUE; 10178 } else { 10179 ar = (struct arpreq *)tmp->b_rptr; 10180 sin = (sin_t *)&ar->arp_pa; 10181 flagsp = &ar->arp_flags; 10182 storage = ar->arp_ha.sa_data; 10183 } 10184 10185 iocp = (struct iocblk *)mp->b_rptr; 10186 10187 /* 10188 * Pick out the originating queue based on the ioc_id. 10189 */ 10190 ioc_id = iocp->ioc_id; 10191 pending_mp = ill_pending_mp_get(ill, &connp, ioc_id); 10192 if (pending_mp == NULL) { 10193 ASSERT(connp == NULL); 10194 inet_freemsg(mp); 10195 return; 10196 } 10197 ASSERT(connp != NULL); 10198 q = CONNP_TO_WQ(connp); 10199 10200 /* Uncouple the internally generated IOCTL from the original one */ 10201 area = (area_t *)area_mp->b_rptr; 10202 area_mp->b_cont = NULL; 10203 10204 /* 10205 * Restore the b_next and b_prev used by mi code. This is needed 10206 * to complete the ioctl using mi* functions. We stored them in 10207 * the pending mp prior to sending the request to ARP. 10208 */ 10209 orig_ioc_mp->b_cont->b_next = pending_mp->b_cont->b_next; 10210 orig_ioc_mp->b_cont->b_prev = pending_mp->b_cont->b_prev; 10211 inet_freemsg(pending_mp); 10212 10213 /* 10214 * We're done if there was an error or if this is not an SIOCG{X}ARP 10215 * Catch the case where there is an IRE_CACHE by no entry in the 10216 * arp table. 10217 */ 10218 addr = sin->sin_addr.s_addr; 10219 if (iocp->ioc_error && iocp->ioc_cmd == AR_ENTRY_SQUERY) { 10220 ire_t *ire; 10221 dl_unitdata_req_t *dlup; 10222 mblk_t *llmp; 10223 int addr_len; 10224 ill_t *ipsqill = NULL; 10225 10226 if (ifx_arp_ioctl) { 10227 /* 10228 * There's no need to lookup the ill, since 10229 * we've already done that when we started 10230 * processing the ioctl and sent the message 10231 * to ARP on that ill. So use the ill that 10232 * is stored in q->q_ptr. 10233 */ 10234 ipsqill = ill; 10235 ire = ire_ctable_lookup(addr, 0, IRE_CACHE, 10236 ipsqill->ill_ipif, ALL_ZONES, 10237 NULL, MATCH_IRE_TYPE | MATCH_IRE_ILL, ipst); 10238 } else { 10239 ire = ire_ctable_lookup(addr, 0, IRE_CACHE, 10240 NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 10241 if (ire != NULL) 10242 ipsqill = ire_to_ill(ire); 10243 } 10244 10245 if ((x_arp_ioctl) && (ipsqill != NULL)) 10246 storage += ill_xarp_info(&xar->xarp_ha, ipsqill); 10247 10248 if (ire != NULL) { 10249 /* 10250 * Since the ire obtained from cachetable is used for 10251 * mac addr copying below, treat an incomplete ire as if 10252 * as if we never found it. 10253 */ 10254 if (ire->ire_nce != NULL && 10255 ire->ire_nce->nce_state != ND_REACHABLE) { 10256 ire_refrele(ire); 10257 ire = NULL; 10258 ipsqill = NULL; 10259 goto errack; 10260 } 10261 *flagsp = ATF_INUSE; 10262 llmp = (ire->ire_nce != NULL ? 10263 ire->ire_nce->nce_res_mp : NULL); 10264 if (llmp != NULL && ipsqill != NULL) { 10265 uchar_t *macaddr; 10266 10267 addr_len = ipsqill->ill_phys_addr_length; 10268 if (x_arp_ioctl && ((addr_len + 10269 ipsqill->ill_name_length) > 10270 sizeof (xar->xarp_ha.sdl_data))) { 10271 ire_refrele(ire); 10272 freemsg(mp); 10273 ip_ioctl_finish(q, orig_ioc_mp, 10274 EINVAL, NO_COPYOUT, NULL); 10275 return; 10276 } 10277 *flagsp |= ATF_COM; 10278 dlup = (dl_unitdata_req_t *)llmp->b_rptr; 10279 if (ipsqill->ill_sap_length < 0) 10280 macaddr = llmp->b_rptr + 10281 dlup->dl_dest_addr_offset; 10282 else 10283 macaddr = llmp->b_rptr + 10284 dlup->dl_dest_addr_offset + 10285 ipsqill->ill_sap_length; 10286 /* 10287 * For SIOCGARP, MAC address length 10288 * validation has already been done 10289 * before the ioctl was issued to ARP to 10290 * allow it to progress only on 6 byte 10291 * addressable (ethernet like) media. Thus 10292 * the mac address copying can not overwrite 10293 * the sa_data area below. 10294 */ 10295 bcopy(macaddr, storage, addr_len); 10296 } 10297 /* Ditch the internal IOCTL. */ 10298 freemsg(mp); 10299 ire_refrele(ire); 10300 ip_ioctl_finish(q, orig_ioc_mp, 0, COPYOUT, NULL); 10301 return; 10302 } 10303 } 10304 10305 /* 10306 * Delete the coresponding IRE_CACHE if any. 10307 * Reset the error if there was one (in case there was no entry 10308 * in arp.) 10309 */ 10310 if (iocp->ioc_cmd == AR_ENTRY_DELETE) { 10311 ipif_t *ipintf = NULL; 10312 10313 if (ifx_arp_ioctl) { 10314 /* 10315 * There's no need to lookup the ill, since 10316 * we've already done that when we started 10317 * processing the ioctl and sent the message 10318 * to ARP on that ill. So use the ill that 10319 * is stored in q->q_ptr. 10320 */ 10321 ipintf = ill->ill_ipif; 10322 } 10323 if (ip_ire_clookup_and_delete(addr, ipintf, ipst)) { 10324 /* 10325 * The address in "addr" may be an entry for a 10326 * router. If that's true, then any off-net 10327 * IRE_CACHE entries that go through the router 10328 * with address "addr" must be clobbered. Use 10329 * ire_walk to achieve this goal. 10330 */ 10331 if (ifx_arp_ioctl) 10332 ire_walk_ill_v4(MATCH_IRE_ILL, 0, 10333 ire_delete_cache_gw, (char *)&addr, ill); 10334 else 10335 ire_walk_v4(ire_delete_cache_gw, (char *)&addr, 10336 ALL_ZONES, ipst); 10337 iocp->ioc_error = 0; 10338 } 10339 } 10340 errack: 10341 if (iocp->ioc_error || iocp->ioc_cmd != AR_ENTRY_SQUERY) { 10342 err = iocp->ioc_error; 10343 freemsg(mp); 10344 ip_ioctl_finish(q, orig_ioc_mp, err, NO_COPYOUT, NULL); 10345 return; 10346 } 10347 10348 /* 10349 * Completion of an SIOCG{X}ARP. Translate the information from 10350 * the area_t into the struct {x}arpreq. 10351 */ 10352 if (x_arp_ioctl) { 10353 storage += ill_xarp_info(&xar->xarp_ha, ill); 10354 if ((ill->ill_phys_addr_length + ill->ill_name_length) > 10355 sizeof (xar->xarp_ha.sdl_data)) { 10356 freemsg(mp); 10357 ip_ioctl_finish(q, orig_ioc_mp, EINVAL, NO_COPYOUT, 10358 NULL); 10359 return; 10360 } 10361 } 10362 *flagsp = ATF_INUSE; 10363 if (area->area_flags & ACE_F_PERMANENT) 10364 *flagsp |= ATF_PERM; 10365 if (area->area_flags & ACE_F_PUBLISH) 10366 *flagsp |= ATF_PUBL; 10367 if (area->area_flags & ACE_F_AUTHORITY) 10368 *flagsp |= ATF_AUTHORITY; 10369 if (area->area_hw_addr_length != 0) { 10370 *flagsp |= ATF_COM; 10371 /* 10372 * For SIOCGARP, MAC address length validation has 10373 * already been done before the ioctl was issued to ARP 10374 * to allow it to progress only on 6 byte addressable 10375 * (ethernet like) media. Thus the mac address copying 10376 * can not overwrite the sa_data area below. 10377 */ 10378 bcopy((char *)area + area->area_hw_addr_offset, 10379 storage, area->area_hw_addr_length); 10380 } 10381 10382 /* Ditch the internal IOCTL. */ 10383 freemsg(mp); 10384 /* Complete the original. */ 10385 ip_ioctl_finish(q, orig_ioc_mp, 0, COPYOUT, NULL); 10386 } 10387 10388 /* 10389 * Create a new logical interface. If ipif_id is zero (i.e. not a logical 10390 * interface) create the next available logical interface for this 10391 * physical interface. 10392 * If ipif is NULL (i.e. the lookup didn't find one) attempt to create an 10393 * ipif with the specified name. 10394 * 10395 * If the address family is not AF_UNSPEC then set the address as well. 10396 * 10397 * If ip_sioctl_addr returns EINPROGRESS then the ioctl (the copyout) 10398 * is completed when the DL_BIND_ACK arrive in ip_rput_dlpi_writer. 10399 * 10400 * Executed as a writer on the ill or ill group. 10401 * So no lock is needed to traverse the ipif chain, or examine the 10402 * phyint flags. 10403 */ 10404 /* ARGSUSED */ 10405 int 10406 ip_sioctl_addif(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, 10407 ip_ioctl_cmd_t *dummy_ipip, void *dummy_ifreq) 10408 { 10409 mblk_t *mp1; 10410 struct lifreq *lifr; 10411 boolean_t isv6; 10412 boolean_t exists; 10413 char *name; 10414 char *endp; 10415 char *cp; 10416 int namelen; 10417 ipif_t *ipif; 10418 long id; 10419 ipsq_t *ipsq; 10420 ill_t *ill; 10421 sin_t *sin; 10422 int err = 0; 10423 boolean_t found_sep = B_FALSE; 10424 conn_t *connp; 10425 zoneid_t zoneid; 10426 int orig_ifindex = 0; 10427 ip_stack_t *ipst = CONNQ_TO_IPST(q); 10428 10429 ASSERT(q->q_next == NULL); 10430 ip1dbg(("ip_sioctl_addif\n")); 10431 /* Existence of mp1 has been checked in ip_wput_nondata */ 10432 mp1 = mp->b_cont->b_cont; 10433 /* 10434 * Null terminate the string to protect against buffer 10435 * overrun. String was generated by user code and may not 10436 * be trusted. 10437 */ 10438 lifr = (struct lifreq *)mp1->b_rptr; 10439 lifr->lifr_name[LIFNAMSIZ - 1] = '\0'; 10440 name = lifr->lifr_name; 10441 ASSERT(CONN_Q(q)); 10442 connp = Q_TO_CONN(q); 10443 isv6 = connp->conn_af_isv6; 10444 zoneid = connp->conn_zoneid; 10445 namelen = mi_strlen(name); 10446 if (namelen == 0) 10447 return (EINVAL); 10448 10449 exists = B_FALSE; 10450 if ((namelen + 1 == sizeof (ipif_loopback_name)) && 10451 (mi_strcmp(name, ipif_loopback_name) == 0)) { 10452 /* 10453 * Allow creating lo0 using SIOCLIFADDIF. 10454 * can't be any other writer thread. So can pass null below 10455 * for the last 4 args to ipif_lookup_name. 10456 */ 10457 ipif = ipif_lookup_on_name(lifr->lifr_name, namelen, B_TRUE, 10458 &exists, isv6, zoneid, NULL, NULL, NULL, NULL, ipst); 10459 /* Prevent any further action */ 10460 if (ipif == NULL) { 10461 return (ENOBUFS); 10462 } else if (!exists) { 10463 /* We created the ipif now and as writer */ 10464 ipif_refrele(ipif); 10465 return (0); 10466 } else { 10467 ill = ipif->ipif_ill; 10468 ill_refhold(ill); 10469 ipif_refrele(ipif); 10470 } 10471 } else { 10472 /* Look for a colon in the name. */ 10473 endp = &name[namelen]; 10474 for (cp = endp; --cp > name; ) { 10475 if (*cp == IPIF_SEPARATOR_CHAR) { 10476 found_sep = B_TRUE; 10477 /* 10478 * Reject any non-decimal aliases for plumbing 10479 * of logical interfaces. Aliases with leading 10480 * zeroes are also rejected as they introduce 10481 * ambiguity in the naming of the interfaces. 10482 * Comparing with "0" takes care of all such 10483 * cases. 10484 */ 10485 if ((strncmp("0", cp+1, 1)) == 0) 10486 return (EINVAL); 10487 10488 if (ddi_strtol(cp+1, &endp, 10, &id) != 0 || 10489 id <= 0 || *endp != '\0') { 10490 return (EINVAL); 10491 } 10492 *cp = '\0'; 10493 break; 10494 } 10495 } 10496 ill = ill_lookup_on_name(name, B_FALSE, isv6, 10497 CONNP_TO_WQ(connp), mp, ip_process_ioctl, &err, NULL, ipst); 10498 if (found_sep) 10499 *cp = IPIF_SEPARATOR_CHAR; 10500 if (ill == NULL) 10501 return (err); 10502 } 10503 10504 ipsq = ipsq_try_enter(NULL, ill, q, mp, ip_process_ioctl, NEW_OP, 10505 B_TRUE); 10506 10507 /* 10508 * Release the refhold due to the lookup, now that we are excl 10509 * or we are just returning 10510 */ 10511 ill_refrele(ill); 10512 10513 if (ipsq == NULL) 10514 return (EINPROGRESS); 10515 10516 /* 10517 * If the interface is failed, inactive or offlined, look for a working 10518 * interface in the ill group and create the ipif there. If we can't 10519 * find a good interface, create the ipif anyway so that in.mpathd can 10520 * move it to the first repaired interface. 10521 */ 10522 if ((ill->ill_phyint->phyint_flags & 10523 (PHYI_FAILED|PHYI_INACTIVE|PHYI_OFFLINE)) && 10524 ill->ill_phyint->phyint_groupname_len != 0) { 10525 phyint_t *phyi; 10526 char *groupname = ill->ill_phyint->phyint_groupname; 10527 10528 /* 10529 * We're looking for a working interface, but it doesn't matter 10530 * if it's up or down; so instead of following the group lists, 10531 * we look at each physical interface and compare the groupname. 10532 * We're only interested in interfaces with IPv4 (resp. IPv6) 10533 * plumbed when we're adding an IPv4 (resp. IPv6) ipif. 10534 * Otherwise we create the ipif on the failed interface. 10535 */ 10536 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 10537 phyi = avl_first(&ipst->ips_phyint_g_list-> 10538 phyint_list_avl_by_index); 10539 for (; phyi != NULL; 10540 phyi = avl_walk(&ipst->ips_phyint_g_list-> 10541 phyint_list_avl_by_index, 10542 phyi, AVL_AFTER)) { 10543 if (phyi->phyint_groupname_len == 0) 10544 continue; 10545 ASSERT(phyi->phyint_groupname != NULL); 10546 if (mi_strcmp(groupname, phyi->phyint_groupname) == 0 && 10547 !(phyi->phyint_flags & 10548 (PHYI_FAILED|PHYI_INACTIVE|PHYI_OFFLINE)) && 10549 (ill->ill_isv6 ? (phyi->phyint_illv6 != NULL) : 10550 (phyi->phyint_illv4 != NULL))) { 10551 break; 10552 } 10553 } 10554 rw_exit(&ipst->ips_ill_g_lock); 10555 10556 if (phyi != NULL) { 10557 orig_ifindex = ill->ill_phyint->phyint_ifindex; 10558 ill = (ill->ill_isv6 ? phyi->phyint_illv6 : 10559 phyi->phyint_illv4); 10560 } 10561 } 10562 10563 /* 10564 * We are now exclusive on the ipsq, so an ill move will be serialized 10565 * before or after us. 10566 */ 10567 ASSERT(IAM_WRITER_ILL(ill)); 10568 ASSERT(ill->ill_move_in_progress == B_FALSE); 10569 10570 if (found_sep && orig_ifindex == 0) { 10571 /* Now see if there is an IPIF with this unit number. */ 10572 for (ipif = ill->ill_ipif; ipif != NULL; 10573 ipif = ipif->ipif_next) { 10574 if (ipif->ipif_id == id) { 10575 err = EEXIST; 10576 goto done; 10577 } 10578 } 10579 } 10580 10581 /* 10582 * We use IRE_LOCAL for lo0:1 etc. for "receive only" use 10583 * of lo0. We never come here when we plumb lo0:0. It 10584 * happens in ipif_lookup_on_name. 10585 * The specified unit number is ignored when we create the ipif on a 10586 * different interface. However, we save it in ipif_orig_ipifid below so 10587 * that the ipif fails back to the right position. 10588 */ 10589 if ((ipif = ipif_allocate(ill, (found_sep && orig_ifindex == 0) ? 10590 id : -1, IRE_LOCAL, B_TRUE)) == NULL) { 10591 err = ENOBUFS; 10592 goto done; 10593 } 10594 10595 /* Return created name with ioctl */ 10596 (void) sprintf(lifr->lifr_name, "%s%c%d", ill->ill_name, 10597 IPIF_SEPARATOR_CHAR, ipif->ipif_id); 10598 ip1dbg(("created %s\n", lifr->lifr_name)); 10599 10600 /* Set address */ 10601 sin = (sin_t *)&lifr->lifr_addr; 10602 if (sin->sin_family != AF_UNSPEC) { 10603 err = ip_sioctl_addr(ipif, sin, q, mp, 10604 &ip_ndx_ioctl_table[SIOCLIFADDR_NDX], lifr); 10605 } 10606 10607 /* Set ifindex and unit number for failback */ 10608 if (err == 0 && orig_ifindex != 0) { 10609 ipif->ipif_orig_ifindex = orig_ifindex; 10610 if (found_sep) { 10611 ipif->ipif_orig_ipifid = id; 10612 } 10613 } 10614 10615 done: 10616 ipsq_exit(ipsq); 10617 return (err); 10618 } 10619 10620 /* 10621 * Remove an existing logical interface. If ipif_id is zero (i.e. not a logical 10622 * interface) delete it based on the IP address (on this physical interface). 10623 * Otherwise delete it based on the ipif_id. 10624 * Also, special handling to allow a removeif of lo0. 10625 */ 10626 /* ARGSUSED */ 10627 int 10628 ip_sioctl_removeif(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 10629 ip_ioctl_cmd_t *ipip, void *dummy_if_req) 10630 { 10631 conn_t *connp; 10632 ill_t *ill = ipif->ipif_ill; 10633 boolean_t success; 10634 ip_stack_t *ipst; 10635 10636 ipst = CONNQ_TO_IPST(q); 10637 10638 ASSERT(q->q_next == NULL); 10639 ip1dbg(("ip_sioctl_remove_if(%s:%u %p)\n", 10640 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 10641 ASSERT(IAM_WRITER_IPIF(ipif)); 10642 10643 connp = Q_TO_CONN(q); 10644 /* 10645 * Special case for unplumbing lo0 (the loopback physical interface). 10646 * If unplumbing lo0, the incoming address structure has been 10647 * initialized to all zeros. When unplumbing lo0, all its logical 10648 * interfaces must be removed too. 10649 * 10650 * Note that this interface may be called to remove a specific 10651 * loopback logical interface (eg, lo0:1). But in that case 10652 * ipif->ipif_id != 0 so that the code path for that case is the 10653 * same as any other interface (meaning it skips the code directly 10654 * below). 10655 */ 10656 if (ipif->ipif_id == 0 && ipif->ipif_net_type == IRE_LOOPBACK) { 10657 if (sin->sin_family == AF_UNSPEC && 10658 (IN6_IS_ADDR_UNSPECIFIED(&((sin6_t *)sin)->sin6_addr))) { 10659 /* 10660 * Mark it condemned. No new ref. will be made to ill. 10661 */ 10662 mutex_enter(&ill->ill_lock); 10663 ill->ill_state_flags |= ILL_CONDEMNED; 10664 for (ipif = ill->ill_ipif; ipif != NULL; 10665 ipif = ipif->ipif_next) { 10666 ipif->ipif_state_flags |= IPIF_CONDEMNED; 10667 } 10668 mutex_exit(&ill->ill_lock); 10669 10670 ipif = ill->ill_ipif; 10671 /* unplumb the loopback interface */ 10672 ill_delete(ill); 10673 mutex_enter(&connp->conn_lock); 10674 mutex_enter(&ill->ill_lock); 10675 ASSERT(ill->ill_group == NULL); 10676 10677 /* Are any references to this ill active */ 10678 if (ill_is_freeable(ill)) { 10679 mutex_exit(&ill->ill_lock); 10680 mutex_exit(&connp->conn_lock); 10681 ill_delete_tail(ill); 10682 mi_free(ill); 10683 return (0); 10684 } 10685 success = ipsq_pending_mp_add(connp, ipif, 10686 CONNP_TO_WQ(connp), mp, ILL_FREE); 10687 mutex_exit(&connp->conn_lock); 10688 mutex_exit(&ill->ill_lock); 10689 if (success) 10690 return (EINPROGRESS); 10691 else 10692 return (EINTR); 10693 } 10694 } 10695 10696 /* 10697 * We are exclusive on the ipsq, so an ill move will be serialized 10698 * before or after us. 10699 */ 10700 ASSERT(ill->ill_move_in_progress == B_FALSE); 10701 10702 if (ipif->ipif_id == 0) { 10703 10704 ipsq_t *ipsq; 10705 10706 /* Find based on address */ 10707 if (ipif->ipif_isv6) { 10708 sin6_t *sin6; 10709 10710 if (sin->sin_family != AF_INET6) 10711 return (EAFNOSUPPORT); 10712 10713 sin6 = (sin6_t *)sin; 10714 /* We are a writer, so we should be able to lookup */ 10715 ipif = ipif_lookup_addr_v6(&sin6->sin6_addr, 10716 ill, ALL_ZONES, NULL, NULL, NULL, NULL, ipst); 10717 if (ipif == NULL) { 10718 /* 10719 * Maybe the address in on another interface in 10720 * the same IPMP group? We check this below. 10721 */ 10722 ipif = ipif_lookup_addr_v6(&sin6->sin6_addr, 10723 NULL, ALL_ZONES, NULL, NULL, NULL, NULL, 10724 ipst); 10725 } 10726 } else { 10727 ipaddr_t addr; 10728 10729 if (sin->sin_family != AF_INET) 10730 return (EAFNOSUPPORT); 10731 10732 addr = sin->sin_addr.s_addr; 10733 /* We are a writer, so we should be able to lookup */ 10734 ipif = ipif_lookup_addr(addr, ill, ALL_ZONES, NULL, 10735 NULL, NULL, NULL, ipst); 10736 if (ipif == NULL) { 10737 /* 10738 * Maybe the address in on another interface in 10739 * the same IPMP group? We check this below. 10740 */ 10741 ipif = ipif_lookup_addr(addr, NULL, ALL_ZONES, 10742 NULL, NULL, NULL, NULL, ipst); 10743 } 10744 } 10745 if (ipif == NULL) { 10746 return (EADDRNOTAVAIL); 10747 } 10748 10749 /* 10750 * It is possible for a user to send an SIOCLIFREMOVEIF with 10751 * lifr_name of the physical interface but with an ip address 10752 * lifr_addr of a logical interface plumbed over it. 10753 * So update ipsq_current_ipif once ipif points to the 10754 * correct interface after doing ipif_lookup_addr(). 10755 */ 10756 ipsq = ipif->ipif_ill->ill_phyint->phyint_ipsq; 10757 ASSERT(ipsq != NULL); 10758 10759 mutex_enter(&ipsq->ipsq_lock); 10760 ipsq->ipsq_current_ipif = ipif; 10761 mutex_exit(&ipsq->ipsq_lock); 10762 10763 /* 10764 * When the address to be removed is hosted on a different 10765 * interface, we check if the interface is in the same IPMP 10766 * group as the specified one; if so we proceed with the 10767 * removal. 10768 * ill->ill_group is NULL when the ill is down, so we have to 10769 * compare the group names instead. 10770 */ 10771 if (ipif->ipif_ill != ill && 10772 (ipif->ipif_ill->ill_phyint->phyint_groupname_len == 0 || 10773 ill->ill_phyint->phyint_groupname_len == 0 || 10774 mi_strcmp(ipif->ipif_ill->ill_phyint->phyint_groupname, 10775 ill->ill_phyint->phyint_groupname) != 0)) { 10776 ipif_refrele(ipif); 10777 return (EADDRNOTAVAIL); 10778 } 10779 10780 /* This is a writer */ 10781 ipif_refrele(ipif); 10782 } 10783 10784 /* 10785 * Can not delete instance zero since it is tied to the ill. 10786 */ 10787 if (ipif->ipif_id == 0) 10788 return (EBUSY); 10789 10790 mutex_enter(&ill->ill_lock); 10791 ipif->ipif_state_flags |= IPIF_CONDEMNED; 10792 mutex_exit(&ill->ill_lock); 10793 10794 ipif_free(ipif); 10795 10796 mutex_enter(&connp->conn_lock); 10797 mutex_enter(&ill->ill_lock); 10798 10799 10800 /* Are any references to this ipif active */ 10801 if (ipif_is_freeable(ipif)) { 10802 mutex_exit(&ill->ill_lock); 10803 mutex_exit(&connp->conn_lock); 10804 ipif_non_duplicate(ipif); 10805 ipif_down_tail(ipif); 10806 ipif_free_tail(ipif); /* frees ipif */ 10807 return (0); 10808 } 10809 success = ipsq_pending_mp_add(connp, ipif, CONNP_TO_WQ(connp), mp, 10810 IPIF_FREE); 10811 mutex_exit(&ill->ill_lock); 10812 mutex_exit(&connp->conn_lock); 10813 if (success) 10814 return (EINPROGRESS); 10815 else 10816 return (EINTR); 10817 } 10818 10819 /* 10820 * Restart the removeif ioctl. The refcnt has gone down to 0. 10821 * The ipif is already condemned. So can't find it thru lookups. 10822 */ 10823 /* ARGSUSED */ 10824 int 10825 ip_sioctl_removeif_restart(ipif_t *ipif, sin_t *dummy_sin, queue_t *q, 10826 mblk_t *mp, ip_ioctl_cmd_t *ipip, void *dummy_if_req) 10827 { 10828 ill_t *ill = ipif->ipif_ill; 10829 10830 ASSERT(IAM_WRITER_IPIF(ipif)); 10831 ASSERT(ipif->ipif_state_flags & IPIF_CONDEMNED); 10832 10833 ip1dbg(("ip_sioctl_removeif_restart(%s:%u %p)\n", 10834 ill->ill_name, ipif->ipif_id, (void *)ipif)); 10835 10836 if (ipif->ipif_id == 0 && ipif->ipif_net_type == IRE_LOOPBACK) { 10837 ASSERT(ill->ill_state_flags & ILL_CONDEMNED); 10838 ill_delete_tail(ill); 10839 mi_free(ill); 10840 return (0); 10841 } 10842 10843 ipif_non_duplicate(ipif); 10844 ipif_down_tail(ipif); 10845 ipif_free_tail(ipif); 10846 10847 ILL_UNMARK_CHANGING(ill); 10848 return (0); 10849 } 10850 10851 /* 10852 * Set the local interface address. 10853 * Allow an address of all zero when the interface is down. 10854 */ 10855 /* ARGSUSED */ 10856 int 10857 ip_sioctl_addr(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 10858 ip_ioctl_cmd_t *dummy_ipip, void *dummy_ifreq) 10859 { 10860 int err = 0; 10861 in6_addr_t v6addr; 10862 boolean_t need_up = B_FALSE; 10863 10864 ip1dbg(("ip_sioctl_addr(%s:%u %p)\n", 10865 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 10866 10867 ASSERT(IAM_WRITER_IPIF(ipif)); 10868 10869 if (ipif->ipif_isv6) { 10870 sin6_t *sin6; 10871 ill_t *ill; 10872 phyint_t *phyi; 10873 10874 if (sin->sin_family != AF_INET6) 10875 return (EAFNOSUPPORT); 10876 10877 sin6 = (sin6_t *)sin; 10878 v6addr = sin6->sin6_addr; 10879 ill = ipif->ipif_ill; 10880 phyi = ill->ill_phyint; 10881 10882 /* 10883 * Enforce that true multicast interfaces have a link-local 10884 * address for logical unit 0. 10885 */ 10886 if (ipif->ipif_id == 0 && 10887 (ill->ill_flags & ILLF_MULTICAST) && 10888 !(ipif->ipif_flags & (IPIF_POINTOPOINT)) && 10889 !(phyi->phyint_flags & (PHYI_LOOPBACK)) && 10890 !IN6_IS_ADDR_LINKLOCAL(&v6addr)) { 10891 return (EADDRNOTAVAIL); 10892 } 10893 10894 /* 10895 * up interfaces shouldn't have the unspecified address 10896 * unless they also have the IPIF_NOLOCAL flags set and 10897 * have a subnet assigned. 10898 */ 10899 if ((ipif->ipif_flags & IPIF_UP) && 10900 IN6_IS_ADDR_UNSPECIFIED(&v6addr) && 10901 (!(ipif->ipif_flags & IPIF_NOLOCAL) || 10902 IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6subnet))) { 10903 return (EADDRNOTAVAIL); 10904 } 10905 10906 if (!ip_local_addr_ok_v6(&v6addr, &ipif->ipif_v6net_mask)) 10907 return (EADDRNOTAVAIL); 10908 } else { 10909 ipaddr_t addr; 10910 10911 if (sin->sin_family != AF_INET) 10912 return (EAFNOSUPPORT); 10913 10914 addr = sin->sin_addr.s_addr; 10915 10916 /* Allow 0 as the local address. */ 10917 if (addr != 0 && !ip_addr_ok_v4(addr, ipif->ipif_net_mask)) 10918 return (EADDRNOTAVAIL); 10919 10920 IN6_IPADDR_TO_V4MAPPED(addr, &v6addr); 10921 } 10922 10923 /* 10924 * Even if there is no change we redo things just to rerun 10925 * ipif_set_default. 10926 */ 10927 if (ipif->ipif_flags & IPIF_UP) { 10928 /* 10929 * Setting a new local address, make sure 10930 * we have net and subnet bcast ire's for 10931 * the old address if we need them. 10932 */ 10933 if (!ipif->ipif_isv6) 10934 ipif_check_bcast_ires(ipif); 10935 /* 10936 * If the interface is already marked up, 10937 * we call ipif_down which will take care 10938 * of ditching any IREs that have been set 10939 * up based on the old interface address. 10940 */ 10941 err = ipif_logical_down(ipif, q, mp); 10942 if (err == EINPROGRESS) 10943 return (err); 10944 ipif_down_tail(ipif); 10945 need_up = 1; 10946 } 10947 10948 err = ip_sioctl_addr_tail(ipif, sin, q, mp, need_up); 10949 return (err); 10950 } 10951 10952 int 10953 ip_sioctl_addr_tail(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 10954 boolean_t need_up) 10955 { 10956 in6_addr_t v6addr; 10957 in6_addr_t ov6addr; 10958 ipaddr_t addr; 10959 sin6_t *sin6; 10960 int sinlen; 10961 int err = 0; 10962 ill_t *ill = ipif->ipif_ill; 10963 boolean_t need_dl_down; 10964 boolean_t need_arp_down; 10965 struct iocblk *iocp; 10966 10967 iocp = (mp != NULL) ? (struct iocblk *)mp->b_rptr : NULL; 10968 10969 ip1dbg(("ip_sioctl_addr_tail(%s:%u %p)\n", 10970 ill->ill_name, ipif->ipif_id, (void *)ipif)); 10971 ASSERT(IAM_WRITER_IPIF(ipif)); 10972 10973 /* Must cancel any pending timer before taking the ill_lock */ 10974 if (ipif->ipif_recovery_id != 0) 10975 (void) untimeout(ipif->ipif_recovery_id); 10976 ipif->ipif_recovery_id = 0; 10977 10978 if (ipif->ipif_isv6) { 10979 sin6 = (sin6_t *)sin; 10980 v6addr = sin6->sin6_addr; 10981 sinlen = sizeof (struct sockaddr_in6); 10982 } else { 10983 addr = sin->sin_addr.s_addr; 10984 IN6_IPADDR_TO_V4MAPPED(addr, &v6addr); 10985 sinlen = sizeof (struct sockaddr_in); 10986 } 10987 mutex_enter(&ill->ill_lock); 10988 ov6addr = ipif->ipif_v6lcl_addr; 10989 ipif->ipif_v6lcl_addr = v6addr; 10990 sctp_update_ipif_addr(ipif, ov6addr); 10991 if (ipif->ipif_flags & (IPIF_ANYCAST | IPIF_NOLOCAL)) { 10992 ipif->ipif_v6src_addr = ipv6_all_zeros; 10993 } else { 10994 ipif->ipif_v6src_addr = v6addr; 10995 } 10996 ipif->ipif_addr_ready = 0; 10997 10998 /* 10999 * If the interface was previously marked as a duplicate, then since 11000 * we've now got a "new" address, it should no longer be considered a 11001 * duplicate -- even if the "new" address is the same as the old one. 11002 * Note that if all ipifs are down, we may have a pending ARP down 11003 * event to handle. This is because we want to recover from duplicates 11004 * and thus delay tearing down ARP until the duplicates have been 11005 * removed or disabled. 11006 */ 11007 need_dl_down = need_arp_down = B_FALSE; 11008 if (ipif->ipif_flags & IPIF_DUPLICATE) { 11009 need_arp_down = !need_up; 11010 ipif->ipif_flags &= ~IPIF_DUPLICATE; 11011 if (--ill->ill_ipif_dup_count == 0 && !need_up && 11012 ill->ill_ipif_up_count == 0 && ill->ill_dl_up) { 11013 need_dl_down = B_TRUE; 11014 } 11015 } 11016 11017 if (ipif->ipif_isv6 && IN6_IS_ADDR_6TO4(&v6addr) && 11018 !ill->ill_is_6to4tun) { 11019 queue_t *wqp = ill->ill_wq; 11020 11021 /* 11022 * The local address of this interface is a 6to4 address, 11023 * check if this interface is in fact a 6to4 tunnel or just 11024 * an interface configured with a 6to4 address. We are only 11025 * interested in the former. 11026 */ 11027 if (wqp != NULL) { 11028 while ((wqp->q_next != NULL) && 11029 (wqp->q_next->q_qinfo != NULL) && 11030 (wqp->q_next->q_qinfo->qi_minfo != NULL)) { 11031 11032 if (wqp->q_next->q_qinfo->qi_minfo->mi_idnum 11033 == TUN6TO4_MODID) { 11034 /* set for use in IP */ 11035 ill->ill_is_6to4tun = 1; 11036 break; 11037 } 11038 wqp = wqp->q_next; 11039 } 11040 } 11041 } 11042 11043 ipif_set_default(ipif); 11044 11045 /* 11046 * When publishing an interface address change event, we only notify 11047 * the event listeners of the new address. It is assumed that if they 11048 * actively care about the addresses assigned that they will have 11049 * already discovered the previous address assigned (if there was one.) 11050 * 11051 * Don't attach nic event message for SIOCLIFADDIF ioctl. 11052 */ 11053 if (iocp != NULL && iocp->ioc_cmd != SIOCLIFADDIF) { 11054 ill_nic_event_dispatch(ill, MAP_IPIF_ID(ipif->ipif_id), 11055 NE_ADDRESS_CHANGE, sin, sinlen); 11056 } 11057 11058 mutex_exit(&ill->ill_lock); 11059 11060 if (need_up) { 11061 /* 11062 * Now bring the interface back up. If this 11063 * is the only IPIF for the ILL, ipif_up 11064 * will have to re-bind to the device, so 11065 * we may get back EINPROGRESS, in which 11066 * case, this IOCTL will get completed in 11067 * ip_rput_dlpi when we see the DL_BIND_ACK. 11068 */ 11069 err = ipif_up(ipif, q, mp); 11070 } 11071 11072 if (need_dl_down) 11073 ill_dl_down(ill); 11074 if (need_arp_down) 11075 ipif_arp_down(ipif); 11076 11077 return (err); 11078 } 11079 11080 11081 /* 11082 * Restart entry point to restart the address set operation after the 11083 * refcounts have dropped to zero. 11084 */ 11085 /* ARGSUSED */ 11086 int 11087 ip_sioctl_addr_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11088 ip_ioctl_cmd_t *ipip, void *ifreq) 11089 { 11090 ip1dbg(("ip_sioctl_addr_restart(%s:%u %p)\n", 11091 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11092 ASSERT(IAM_WRITER_IPIF(ipif)); 11093 ipif_down_tail(ipif); 11094 return (ip_sioctl_addr_tail(ipif, sin, q, mp, B_TRUE)); 11095 } 11096 11097 /* ARGSUSED */ 11098 int 11099 ip_sioctl_get_addr(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11100 ip_ioctl_cmd_t *ipip, void *if_req) 11101 { 11102 sin6_t *sin6 = (struct sockaddr_in6 *)sin; 11103 struct lifreq *lifr = (struct lifreq *)if_req; 11104 11105 ip1dbg(("ip_sioctl_get_addr(%s:%u %p)\n", 11106 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11107 /* 11108 * The net mask and address can't change since we have a 11109 * reference to the ipif. So no lock is necessary. 11110 */ 11111 if (ipif->ipif_isv6) { 11112 *sin6 = sin6_null; 11113 sin6->sin6_family = AF_INET6; 11114 sin6->sin6_addr = ipif->ipif_v6lcl_addr; 11115 ASSERT(ipip->ipi_cmd_type == LIF_CMD); 11116 lifr->lifr_addrlen = 11117 ip_mask_to_plen_v6(&ipif->ipif_v6net_mask); 11118 } else { 11119 *sin = sin_null; 11120 sin->sin_family = AF_INET; 11121 sin->sin_addr.s_addr = ipif->ipif_lcl_addr; 11122 if (ipip->ipi_cmd_type == LIF_CMD) { 11123 lifr->lifr_addrlen = 11124 ip_mask_to_plen(ipif->ipif_net_mask); 11125 } 11126 } 11127 return (0); 11128 } 11129 11130 /* 11131 * Set the destination address for a pt-pt interface. 11132 */ 11133 /* ARGSUSED */ 11134 int 11135 ip_sioctl_dstaddr(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11136 ip_ioctl_cmd_t *ipip, void *if_req) 11137 { 11138 int err = 0; 11139 in6_addr_t v6addr; 11140 boolean_t need_up = B_FALSE; 11141 11142 ip1dbg(("ip_sioctl_dstaddr(%s:%u %p)\n", 11143 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11144 ASSERT(IAM_WRITER_IPIF(ipif)); 11145 11146 if (ipif->ipif_isv6) { 11147 sin6_t *sin6; 11148 11149 if (sin->sin_family != AF_INET6) 11150 return (EAFNOSUPPORT); 11151 11152 sin6 = (sin6_t *)sin; 11153 v6addr = sin6->sin6_addr; 11154 11155 if (!ip_remote_addr_ok_v6(&v6addr, &ipif->ipif_v6net_mask)) 11156 return (EADDRNOTAVAIL); 11157 } else { 11158 ipaddr_t addr; 11159 11160 if (sin->sin_family != AF_INET) 11161 return (EAFNOSUPPORT); 11162 11163 addr = sin->sin_addr.s_addr; 11164 if (!ip_addr_ok_v4(addr, ipif->ipif_net_mask)) 11165 return (EADDRNOTAVAIL); 11166 11167 IN6_IPADDR_TO_V4MAPPED(addr, &v6addr); 11168 } 11169 11170 if (IN6_ARE_ADDR_EQUAL(&ipif->ipif_v6pp_dst_addr, &v6addr)) 11171 return (0); /* No change */ 11172 11173 if (ipif->ipif_flags & IPIF_UP) { 11174 /* 11175 * If the interface is already marked up, 11176 * we call ipif_down which will take care 11177 * of ditching any IREs that have been set 11178 * up based on the old pp dst address. 11179 */ 11180 err = ipif_logical_down(ipif, q, mp); 11181 if (err == EINPROGRESS) 11182 return (err); 11183 ipif_down_tail(ipif); 11184 need_up = B_TRUE; 11185 } 11186 /* 11187 * could return EINPROGRESS. If so ioctl will complete in 11188 * ip_rput_dlpi_writer 11189 */ 11190 err = ip_sioctl_dstaddr_tail(ipif, sin, q, mp, need_up); 11191 return (err); 11192 } 11193 11194 static int 11195 ip_sioctl_dstaddr_tail(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11196 boolean_t need_up) 11197 { 11198 in6_addr_t v6addr; 11199 ill_t *ill = ipif->ipif_ill; 11200 int err = 0; 11201 boolean_t need_dl_down; 11202 boolean_t need_arp_down; 11203 11204 ip1dbg(("ip_sioctl_dstaddr_tail(%s:%u %p)\n", ill->ill_name, 11205 ipif->ipif_id, (void *)ipif)); 11206 11207 /* Must cancel any pending timer before taking the ill_lock */ 11208 if (ipif->ipif_recovery_id != 0) 11209 (void) untimeout(ipif->ipif_recovery_id); 11210 ipif->ipif_recovery_id = 0; 11211 11212 if (ipif->ipif_isv6) { 11213 sin6_t *sin6; 11214 11215 sin6 = (sin6_t *)sin; 11216 v6addr = sin6->sin6_addr; 11217 } else { 11218 ipaddr_t addr; 11219 11220 addr = sin->sin_addr.s_addr; 11221 IN6_IPADDR_TO_V4MAPPED(addr, &v6addr); 11222 } 11223 mutex_enter(&ill->ill_lock); 11224 /* Set point to point destination address. */ 11225 if ((ipif->ipif_flags & IPIF_POINTOPOINT) == 0) { 11226 /* 11227 * Allow this as a means of creating logical 11228 * pt-pt interfaces on top of e.g. an Ethernet. 11229 * XXX Undocumented HACK for testing. 11230 * pt-pt interfaces are created with NUD disabled. 11231 */ 11232 ipif->ipif_flags |= IPIF_POINTOPOINT; 11233 ipif->ipif_flags &= ~IPIF_BROADCAST; 11234 if (ipif->ipif_isv6) 11235 ill->ill_flags |= ILLF_NONUD; 11236 } 11237 11238 /* 11239 * If the interface was previously marked as a duplicate, then since 11240 * we've now got a "new" address, it should no longer be considered a 11241 * duplicate -- even if the "new" address is the same as the old one. 11242 * Note that if all ipifs are down, we may have a pending ARP down 11243 * event to handle. 11244 */ 11245 need_dl_down = need_arp_down = B_FALSE; 11246 if (ipif->ipif_flags & IPIF_DUPLICATE) { 11247 need_arp_down = !need_up; 11248 ipif->ipif_flags &= ~IPIF_DUPLICATE; 11249 if (--ill->ill_ipif_dup_count == 0 && !need_up && 11250 ill->ill_ipif_up_count == 0 && ill->ill_dl_up) { 11251 need_dl_down = B_TRUE; 11252 } 11253 } 11254 11255 /* Set the new address. */ 11256 ipif->ipif_v6pp_dst_addr = v6addr; 11257 /* Make sure subnet tracks pp_dst */ 11258 ipif->ipif_v6subnet = ipif->ipif_v6pp_dst_addr; 11259 mutex_exit(&ill->ill_lock); 11260 11261 if (need_up) { 11262 /* 11263 * Now bring the interface back up. If this 11264 * is the only IPIF for the ILL, ipif_up 11265 * will have to re-bind to the device, so 11266 * we may get back EINPROGRESS, in which 11267 * case, this IOCTL will get completed in 11268 * ip_rput_dlpi when we see the DL_BIND_ACK. 11269 */ 11270 err = ipif_up(ipif, q, mp); 11271 } 11272 11273 if (need_dl_down) 11274 ill_dl_down(ill); 11275 11276 if (need_arp_down) 11277 ipif_arp_down(ipif); 11278 return (err); 11279 } 11280 11281 /* 11282 * Restart entry point to restart the dstaddress set operation after the 11283 * refcounts have dropped to zero. 11284 */ 11285 /* ARGSUSED */ 11286 int 11287 ip_sioctl_dstaddr_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11288 ip_ioctl_cmd_t *ipip, void *ifreq) 11289 { 11290 ip1dbg(("ip_sioctl_dstaddr_restart(%s:%u %p)\n", 11291 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11292 ipif_down_tail(ipif); 11293 return (ip_sioctl_dstaddr_tail(ipif, sin, q, mp, B_TRUE)); 11294 } 11295 11296 /* ARGSUSED */ 11297 int 11298 ip_sioctl_get_dstaddr(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11299 ip_ioctl_cmd_t *ipip, void *if_req) 11300 { 11301 sin6_t *sin6 = (struct sockaddr_in6 *)sin; 11302 11303 ip1dbg(("ip_sioctl_get_dstaddr(%s:%u %p)\n", 11304 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11305 /* 11306 * Get point to point destination address. The addresses can't 11307 * change since we hold a reference to the ipif. 11308 */ 11309 if ((ipif->ipif_flags & IPIF_POINTOPOINT) == 0) 11310 return (EADDRNOTAVAIL); 11311 11312 if (ipif->ipif_isv6) { 11313 ASSERT(ipip->ipi_cmd_type == LIF_CMD); 11314 *sin6 = sin6_null; 11315 sin6->sin6_family = AF_INET6; 11316 sin6->sin6_addr = ipif->ipif_v6pp_dst_addr; 11317 } else { 11318 *sin = sin_null; 11319 sin->sin_family = AF_INET; 11320 sin->sin_addr.s_addr = ipif->ipif_pp_dst_addr; 11321 } 11322 return (0); 11323 } 11324 11325 /* 11326 * part of ipmp, make this func return the active/inactive state and 11327 * caller can set once atomically instead of multiple mutex_enter/mutex_exit 11328 */ 11329 /* 11330 * This function either sets or clears the IFF_INACTIVE flag. 11331 * 11332 * As long as there are some addresses or multicast memberships on the 11333 * IPv4 or IPv6 interface of the "phyi" that does not belong in here, we 11334 * will consider it to be ACTIVE (clear IFF_INACTIVE) i.e the interface 11335 * will be used for outbound packets. 11336 * 11337 * Caller needs to verify the validity of setting IFF_INACTIVE. 11338 */ 11339 static void 11340 phyint_inactive(phyint_t *phyi) 11341 { 11342 ill_t *ill_v4; 11343 ill_t *ill_v6; 11344 ipif_t *ipif; 11345 ilm_t *ilm; 11346 11347 ill_v4 = phyi->phyint_illv4; 11348 ill_v6 = phyi->phyint_illv6; 11349 11350 /* 11351 * No need for a lock while traversing the list since iam 11352 * a writer 11353 */ 11354 if (ill_v4 != NULL) { 11355 ASSERT(IAM_WRITER_ILL(ill_v4)); 11356 for (ipif = ill_v4->ill_ipif; ipif != NULL; 11357 ipif = ipif->ipif_next) { 11358 if (ipif->ipif_orig_ifindex != phyi->phyint_ifindex) { 11359 mutex_enter(&phyi->phyint_lock); 11360 phyi->phyint_flags &= ~PHYI_INACTIVE; 11361 mutex_exit(&phyi->phyint_lock); 11362 return; 11363 } 11364 } 11365 for (ilm = ill_v4->ill_ilm; ilm != NULL; 11366 ilm = ilm->ilm_next) { 11367 if (ilm->ilm_orig_ifindex != phyi->phyint_ifindex) { 11368 mutex_enter(&phyi->phyint_lock); 11369 phyi->phyint_flags &= ~PHYI_INACTIVE; 11370 mutex_exit(&phyi->phyint_lock); 11371 return; 11372 } 11373 } 11374 } 11375 if (ill_v6 != NULL) { 11376 ill_v6 = phyi->phyint_illv6; 11377 for (ipif = ill_v6->ill_ipif; ipif != NULL; 11378 ipif = ipif->ipif_next) { 11379 if (ipif->ipif_orig_ifindex != phyi->phyint_ifindex) { 11380 mutex_enter(&phyi->phyint_lock); 11381 phyi->phyint_flags &= ~PHYI_INACTIVE; 11382 mutex_exit(&phyi->phyint_lock); 11383 return; 11384 } 11385 } 11386 for (ilm = ill_v6->ill_ilm; ilm != NULL; 11387 ilm = ilm->ilm_next) { 11388 if (ilm->ilm_orig_ifindex != phyi->phyint_ifindex) { 11389 mutex_enter(&phyi->phyint_lock); 11390 phyi->phyint_flags &= ~PHYI_INACTIVE; 11391 mutex_exit(&phyi->phyint_lock); 11392 return; 11393 } 11394 } 11395 } 11396 mutex_enter(&phyi->phyint_lock); 11397 phyi->phyint_flags |= PHYI_INACTIVE; 11398 mutex_exit(&phyi->phyint_lock); 11399 } 11400 11401 /* 11402 * This function is called only when the phyint flags change. Currently 11403 * called from ip_sioctl_flags. We re-do the broadcast nomination so 11404 * that we can select a good ill. 11405 */ 11406 static void 11407 ip_redo_nomination(phyint_t *phyi) 11408 { 11409 ill_t *ill_v4; 11410 11411 ill_v4 = phyi->phyint_illv4; 11412 11413 if (ill_v4 != NULL && ill_v4->ill_group != NULL) { 11414 ASSERT(IAM_WRITER_ILL(ill_v4)); 11415 if (ill_v4->ill_group->illgrp_ill_count > 1) 11416 ill_nominate_bcast_rcv(ill_v4->ill_group); 11417 } 11418 } 11419 11420 /* 11421 * Heuristic to check if ill is INACTIVE. 11422 * Checks if ill has an ipif with an usable ip address. 11423 * 11424 * Return values: 11425 * B_TRUE - ill is INACTIVE; has no usable ipif 11426 * B_FALSE - ill is not INACTIVE; ill has at least one usable ipif 11427 */ 11428 static boolean_t 11429 ill_is_inactive(ill_t *ill) 11430 { 11431 ipif_t *ipif; 11432 11433 /* Check whether it is in an IPMP group */ 11434 if (ill->ill_phyint->phyint_groupname == NULL) 11435 return (B_FALSE); 11436 11437 if (ill->ill_ipif_up_count == 0) 11438 return (B_TRUE); 11439 11440 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 11441 uint64_t flags = ipif->ipif_flags; 11442 11443 /* 11444 * This ipif is usable if it is IPIF_UP and not a 11445 * dedicated test address. A dedicated test address 11446 * is marked IPIF_NOFAILOVER *and* IPIF_DEPRECATED 11447 * (note in particular that V6 test addresses are 11448 * link-local data addresses and thus are marked 11449 * IPIF_NOFAILOVER but not IPIF_DEPRECATED). 11450 */ 11451 if ((flags & IPIF_UP) && 11452 ((flags & (IPIF_DEPRECATED|IPIF_NOFAILOVER)) != 11453 (IPIF_DEPRECATED|IPIF_NOFAILOVER))) 11454 return (B_FALSE); 11455 } 11456 return (B_TRUE); 11457 } 11458 11459 /* 11460 * Set interface flags. 11461 * Need to do special action for IPIF_UP, IPIF_DEPRECATED, IPIF_NOXMIT, 11462 * IPIF_NOLOCAL, ILLF_NONUD, ILLF_NOARP, IPIF_PRIVATE, IPIF_ANYCAST, 11463 * IPIF_PREFERRED, PHYI_STANDBY, PHYI_FAILED and PHYI_OFFLINE. 11464 * 11465 * NOTE : We really don't enforce that ipif_id zero should be used 11466 * for setting any flags other than IFF_LOGINT_FLAGS. This 11467 * is because applications generally does SICGLIFFLAGS and 11468 * ORs in the new flags (that affects the logical) and does a 11469 * SIOCSLIFFLAGS. Thus, "flags" below could contain bits other 11470 * than IFF_LOGINT_FLAGS. One could check whether "turn_on" - the 11471 * flags that will be turned on is correct with respect to 11472 * ipif_id 0. For backward compatibility reasons, it is not done. 11473 */ 11474 /* ARGSUSED */ 11475 int 11476 ip_sioctl_flags(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11477 ip_ioctl_cmd_t *ipip, void *if_req) 11478 { 11479 uint64_t turn_on; 11480 uint64_t turn_off; 11481 int err; 11482 phyint_t *phyi; 11483 ill_t *ill; 11484 uint64_t intf_flags; 11485 boolean_t phyint_flags_modified = B_FALSE; 11486 uint64_t flags; 11487 struct ifreq *ifr; 11488 struct lifreq *lifr; 11489 boolean_t set_linklocal = B_FALSE; 11490 boolean_t zero_source = B_FALSE; 11491 ip_stack_t *ipst; 11492 11493 ip1dbg(("ip_sioctl_flags(%s:%u %p)\n", 11494 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11495 11496 ASSERT(IAM_WRITER_IPIF(ipif)); 11497 11498 ill = ipif->ipif_ill; 11499 phyi = ill->ill_phyint; 11500 ipst = ill->ill_ipst; 11501 11502 if (ipip->ipi_cmd_type == IF_CMD) { 11503 ifr = (struct ifreq *)if_req; 11504 flags = (uint64_t)(ifr->ifr_flags & 0x0000ffff); 11505 } else { 11506 lifr = (struct lifreq *)if_req; 11507 flags = lifr->lifr_flags; 11508 } 11509 11510 intf_flags = ipif->ipif_flags | ill->ill_flags | phyi->phyint_flags; 11511 11512 /* 11513 * Have the flags been set correctly until now? 11514 */ 11515 ASSERT((phyi->phyint_flags & ~(IFF_PHYINT_FLAGS)) == 0); 11516 ASSERT((ill->ill_flags & ~(IFF_PHYINTINST_FLAGS)) == 0); 11517 ASSERT((ipif->ipif_flags & ~(IFF_LOGINT_FLAGS)) == 0); 11518 /* 11519 * Compare the new flags to the old, and partition 11520 * into those coming on and those going off. 11521 * For the 16 bit command keep the bits above bit 16 unchanged. 11522 */ 11523 if (ipip->ipi_cmd == SIOCSIFFLAGS) 11524 flags |= intf_flags & ~0xFFFF; 11525 11526 /* 11527 * First check which bits will change and then which will 11528 * go on and off 11529 */ 11530 turn_on = (flags ^ intf_flags) & ~IFF_CANTCHANGE; 11531 if (!turn_on) 11532 return (0); /* No change */ 11533 11534 turn_off = intf_flags & turn_on; 11535 turn_on ^= turn_off; 11536 err = 0; 11537 11538 /* 11539 * Don't allow any bits belonging to the logical interface 11540 * to be set or cleared on the replacement ipif that was 11541 * created temporarily during a MOVE. 11542 */ 11543 if (ipif->ipif_replace_zero && 11544 ((turn_on|turn_off) & IFF_LOGINT_FLAGS) != 0) { 11545 return (EINVAL); 11546 } 11547 11548 /* 11549 * Only allow the IFF_XRESOLV and IFF_TEMPORARY flags to be set on 11550 * IPv6 interfaces. 11551 */ 11552 if ((turn_on & (IFF_XRESOLV|IFF_TEMPORARY)) && !(ipif->ipif_isv6)) 11553 return (EINVAL); 11554 11555 /* 11556 * cannot turn off IFF_NOXMIT on VNI interfaces. 11557 */ 11558 if ((turn_off & IFF_NOXMIT) && IS_VNI(ipif->ipif_ill)) 11559 return (EINVAL); 11560 11561 /* 11562 * Don't allow the IFF_ROUTER flag to be turned on on loopback 11563 * interfaces. It makes no sense in that context. 11564 */ 11565 if ((turn_on & IFF_ROUTER) && (phyi->phyint_flags & PHYI_LOOPBACK)) 11566 return (EINVAL); 11567 11568 if (flags & (IFF_NOLOCAL|IFF_ANYCAST)) 11569 zero_source = B_TRUE; 11570 11571 /* 11572 * For IPv6 ipif_id 0, don't allow the interface to be up without 11573 * a link local address if IFF_NOLOCAL or IFF_ANYCAST are not set. 11574 * If the link local address isn't set, and can be set, it will get 11575 * set later on in this function. 11576 */ 11577 if (ipif->ipif_id == 0 && ipif->ipif_isv6 && 11578 (flags & IFF_UP) && !zero_source && 11579 IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6lcl_addr)) { 11580 if (ipif_cant_setlinklocal(ipif)) 11581 return (EINVAL); 11582 set_linklocal = B_TRUE; 11583 } 11584 11585 /* 11586 * ILL cannot be part of a usesrc group and and IPMP group at the 11587 * same time. No need to grab ill_g_usesrc_lock here, see 11588 * synchronization notes in ip.c 11589 */ 11590 if (turn_on & PHYI_STANDBY && 11591 ipif->ipif_ill->ill_usesrc_grp_next != NULL) { 11592 return (EINVAL); 11593 } 11594 11595 /* 11596 * If we modify physical interface flags, we'll potentially need to 11597 * send up two routing socket messages for the changes (one for the 11598 * IPv4 ill, and another for the IPv6 ill). Note that here. 11599 */ 11600 if ((turn_on|turn_off) & IFF_PHYINT_FLAGS) 11601 phyint_flags_modified = B_TRUE; 11602 11603 /* 11604 * If we are setting or clearing FAILED or STANDBY or OFFLINE, 11605 * we need to flush the IRE_CACHES belonging to this ill. 11606 * We handle this case here without doing the DOWN/UP dance 11607 * like it is done for other flags. If some other flags are 11608 * being turned on/off with FAILED/STANDBY/OFFLINE, the code 11609 * below will handle it by bringing it down and then 11610 * bringing it UP. 11611 */ 11612 if ((turn_on|turn_off) & (PHYI_FAILED|PHYI_STANDBY|PHYI_OFFLINE)) { 11613 ill_t *ill_v4, *ill_v6; 11614 11615 ill_v4 = phyi->phyint_illv4; 11616 ill_v6 = phyi->phyint_illv6; 11617 11618 /* 11619 * First set the INACTIVE flag if needed. Then delete the ires. 11620 * ire_add will atomically prevent creating new IRE_CACHEs 11621 * unless hidden flag is set. 11622 * PHYI_FAILED and PHYI_INACTIVE are exclusive 11623 */ 11624 if ((turn_on & PHYI_FAILED) && 11625 ((intf_flags & PHYI_STANDBY) || 11626 !ipst->ips_ipmp_enable_failback)) { 11627 /* Reset PHYI_INACTIVE when PHYI_FAILED is being set */ 11628 phyi->phyint_flags &= ~PHYI_INACTIVE; 11629 } 11630 if ((turn_off & PHYI_FAILED) && 11631 ((intf_flags & PHYI_STANDBY) || 11632 (!ipst->ips_ipmp_enable_failback && 11633 ill_is_inactive(ill)))) { 11634 phyint_inactive(phyi); 11635 } 11636 11637 if (turn_on & PHYI_STANDBY) { 11638 /* 11639 * We implicitly set INACTIVE only when STANDBY is set. 11640 * INACTIVE is also set on non-STANDBY phyint when user 11641 * disables FAILBACK using configuration file. 11642 * Do not allow STANDBY to be set on such INACTIVE 11643 * phyint 11644 */ 11645 if (phyi->phyint_flags & PHYI_INACTIVE) 11646 return (EINVAL); 11647 if (!(phyi->phyint_flags & PHYI_FAILED)) 11648 phyint_inactive(phyi); 11649 } 11650 if (turn_off & PHYI_STANDBY) { 11651 if (ipst->ips_ipmp_enable_failback) { 11652 /* 11653 * Reset PHYI_INACTIVE. 11654 */ 11655 phyi->phyint_flags &= ~PHYI_INACTIVE; 11656 } else if (ill_is_inactive(ill) && 11657 !(phyi->phyint_flags & PHYI_FAILED)) { 11658 /* 11659 * Need to set INACTIVE, when user sets 11660 * STANDBY on a non-STANDBY phyint and 11661 * later resets STANDBY 11662 */ 11663 phyint_inactive(phyi); 11664 } 11665 } 11666 /* 11667 * We should always send up a message so that the 11668 * daemons come to know of it. Note that the zeroth 11669 * interface can be down and the check below for IPIF_UP 11670 * will not make sense as we are actually setting 11671 * a phyint flag here. We assume that the ipif used 11672 * is always the zeroth ipif. (ip_rts_ifmsg does not 11673 * send up any message for non-zero ipifs). 11674 */ 11675 phyint_flags_modified = B_TRUE; 11676 11677 if (ill_v4 != NULL) { 11678 ire_walk_ill_v4(MATCH_IRE_ILL | MATCH_IRE_TYPE, 11679 IRE_CACHE, ill_stq_cache_delete, 11680 (char *)ill_v4, ill_v4); 11681 illgrp_reset_schednext(ill_v4); 11682 } 11683 if (ill_v6 != NULL) { 11684 ire_walk_ill_v6(MATCH_IRE_ILL | MATCH_IRE_TYPE, 11685 IRE_CACHE, ill_stq_cache_delete, 11686 (char *)ill_v6, ill_v6); 11687 illgrp_reset_schednext(ill_v6); 11688 } 11689 } 11690 11691 /* 11692 * If ILLF_ROUTER changes, we need to change the ip forwarding 11693 * status of the interface and, if the interface is part of an IPMP 11694 * group, all other interfaces that are part of the same IPMP 11695 * group. 11696 */ 11697 if ((turn_on | turn_off) & ILLF_ROUTER) 11698 (void) ill_forward_set(ill, ((turn_on & ILLF_ROUTER) != 0)); 11699 11700 /* 11701 * If the interface is not UP and we are not going to 11702 * bring it UP, record the flags and return. When the 11703 * interface comes UP later, the right actions will be 11704 * taken. 11705 */ 11706 if (!(ipif->ipif_flags & IPIF_UP) && 11707 !(turn_on & IPIF_UP)) { 11708 /* Record new flags in their respective places. */ 11709 mutex_enter(&ill->ill_lock); 11710 mutex_enter(&ill->ill_phyint->phyint_lock); 11711 ipif->ipif_flags |= (turn_on & IFF_LOGINT_FLAGS); 11712 ipif->ipif_flags &= (~turn_off & IFF_LOGINT_FLAGS); 11713 ill->ill_flags |= (turn_on & IFF_PHYINTINST_FLAGS); 11714 ill->ill_flags &= (~turn_off & IFF_PHYINTINST_FLAGS); 11715 phyi->phyint_flags |= (turn_on & IFF_PHYINT_FLAGS); 11716 phyi->phyint_flags &= (~turn_off & IFF_PHYINT_FLAGS); 11717 mutex_exit(&ill->ill_lock); 11718 mutex_exit(&ill->ill_phyint->phyint_lock); 11719 11720 /* 11721 * We do the broadcast and nomination here rather 11722 * than waiting for a FAILOVER/FAILBACK to happen. In 11723 * the case of FAILBACK from INACTIVE standby to the 11724 * interface that has been repaired, PHYI_FAILED has not 11725 * been cleared yet. If there are only two interfaces in 11726 * that group, all we have is a FAILED and INACTIVE 11727 * interface. If we do the nomination soon after a failback, 11728 * the broadcast nomination code would select the 11729 * INACTIVE interface for receiving broadcasts as FAILED is 11730 * not yet cleared. As we don't want STANDBY/INACTIVE to 11731 * receive broadcast packets, we need to redo nomination 11732 * when the FAILED is cleared here. Thus, in general we 11733 * always do the nomination here for FAILED, STANDBY 11734 * and OFFLINE. 11735 */ 11736 if (((turn_on | turn_off) & 11737 (PHYI_FAILED|PHYI_STANDBY|PHYI_OFFLINE))) { 11738 ip_redo_nomination(phyi); 11739 } 11740 if (phyint_flags_modified) { 11741 if (phyi->phyint_illv4 != NULL) { 11742 ip_rts_ifmsg(phyi->phyint_illv4-> 11743 ill_ipif); 11744 } 11745 if (phyi->phyint_illv6 != NULL) { 11746 ip_rts_ifmsg(phyi->phyint_illv6-> 11747 ill_ipif); 11748 } 11749 } 11750 return (0); 11751 } else if (set_linklocal || zero_source) { 11752 mutex_enter(&ill->ill_lock); 11753 if (set_linklocal) 11754 ipif->ipif_state_flags |= IPIF_SET_LINKLOCAL; 11755 if (zero_source) 11756 ipif->ipif_state_flags |= IPIF_ZERO_SOURCE; 11757 mutex_exit(&ill->ill_lock); 11758 } 11759 11760 /* 11761 * Disallow IPv6 interfaces coming up that have the unspecified address, 11762 * or point-to-point interfaces with an unspecified destination. We do 11763 * allow the address to be unspecified for IPIF_NOLOCAL interfaces that 11764 * have a subnet assigned, which is how in.ndpd currently manages its 11765 * onlink prefix list when no addresses are configured with those 11766 * prefixes. 11767 */ 11768 if (ipif->ipif_isv6 && 11769 ((IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6lcl_addr) && 11770 (!(ipif->ipif_flags & IPIF_NOLOCAL) && !(turn_on & IPIF_NOLOCAL) || 11771 IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6subnet))) || 11772 ((ipif->ipif_flags & IPIF_POINTOPOINT) && 11773 IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6pp_dst_addr)))) { 11774 return (EINVAL); 11775 } 11776 11777 /* 11778 * Prevent IPv4 point-to-point interfaces with a 0.0.0.0 destination 11779 * from being brought up. 11780 */ 11781 if (!ipif->ipif_isv6 && 11782 ((ipif->ipif_flags & IPIF_POINTOPOINT) && 11783 ipif->ipif_pp_dst_addr == INADDR_ANY)) { 11784 return (EINVAL); 11785 } 11786 11787 /* 11788 * The only flag changes that we currently take specific action on 11789 * is IPIF_UP, IPIF_DEPRECATED, IPIF_NOXMIT, IPIF_NOLOCAL, 11790 * ILLF_NOARP, ILLF_NONUD, IPIF_PRIVATE, IPIF_ANYCAST, and 11791 * IPIF_PREFERRED. This is done by bring the ipif down, changing 11792 * the flags and bringing it back up again. 11793 */ 11794 if ((turn_on|turn_off) & 11795 (IPIF_UP|IPIF_DEPRECATED|IPIF_NOXMIT|IPIF_NOLOCAL|ILLF_NOARP| 11796 ILLF_NONUD|IPIF_PRIVATE|IPIF_ANYCAST|IPIF_PREFERRED)) { 11797 /* 11798 * Taking this ipif down, make sure we have 11799 * valid net and subnet bcast ire's for other 11800 * logical interfaces, if we need them. 11801 */ 11802 if (!ipif->ipif_isv6) 11803 ipif_check_bcast_ires(ipif); 11804 11805 if (((ipif->ipif_flags | turn_on) & IPIF_UP) && 11806 !(turn_off & IPIF_UP)) { 11807 if (ipif->ipif_flags & IPIF_UP) 11808 ill->ill_logical_down = 1; 11809 turn_on &= ~IPIF_UP; 11810 } 11811 err = ipif_down(ipif, q, mp); 11812 ip1dbg(("ipif_down returns %d err ", err)); 11813 if (err == EINPROGRESS) 11814 return (err); 11815 ipif_down_tail(ipif); 11816 } 11817 return (ip_sioctl_flags_tail(ipif, flags, q, mp)); 11818 } 11819 11820 static int 11821 ip_sioctl_flags_tail(ipif_t *ipif, uint64_t flags, queue_t *q, mblk_t *mp) 11822 { 11823 ill_t *ill; 11824 phyint_t *phyi; 11825 uint64_t turn_on; 11826 uint64_t turn_off; 11827 uint64_t intf_flags; 11828 boolean_t phyint_flags_modified = B_FALSE; 11829 int err = 0; 11830 boolean_t set_linklocal = B_FALSE; 11831 boolean_t zero_source = B_FALSE; 11832 11833 ip1dbg(("ip_sioctl_flags_tail(%s:%u)\n", 11834 ipif->ipif_ill->ill_name, ipif->ipif_id)); 11835 11836 ASSERT(IAM_WRITER_IPIF(ipif)); 11837 11838 ill = ipif->ipif_ill; 11839 phyi = ill->ill_phyint; 11840 11841 intf_flags = ipif->ipif_flags | ill->ill_flags | phyi->phyint_flags; 11842 turn_on = (flags ^ intf_flags) & ~(IFF_CANTCHANGE | IFF_UP); 11843 11844 turn_off = intf_flags & turn_on; 11845 turn_on ^= turn_off; 11846 11847 if ((turn_on|turn_off) & (PHYI_FAILED|PHYI_STANDBY|PHYI_OFFLINE)) 11848 phyint_flags_modified = B_TRUE; 11849 11850 /* 11851 * Now we change the flags. Track current value of 11852 * other flags in their respective places. 11853 */ 11854 mutex_enter(&ill->ill_lock); 11855 mutex_enter(&phyi->phyint_lock); 11856 ipif->ipif_flags |= (turn_on & IFF_LOGINT_FLAGS); 11857 ipif->ipif_flags &= (~turn_off & IFF_LOGINT_FLAGS); 11858 ill->ill_flags |= (turn_on & IFF_PHYINTINST_FLAGS); 11859 ill->ill_flags &= (~turn_off & IFF_PHYINTINST_FLAGS); 11860 phyi->phyint_flags |= (turn_on & IFF_PHYINT_FLAGS); 11861 phyi->phyint_flags &= (~turn_off & IFF_PHYINT_FLAGS); 11862 if (ipif->ipif_state_flags & IPIF_SET_LINKLOCAL) { 11863 set_linklocal = B_TRUE; 11864 ipif->ipif_state_flags &= ~IPIF_SET_LINKLOCAL; 11865 } 11866 if (ipif->ipif_state_flags & IPIF_ZERO_SOURCE) { 11867 zero_source = B_TRUE; 11868 ipif->ipif_state_flags &= ~IPIF_ZERO_SOURCE; 11869 } 11870 mutex_exit(&ill->ill_lock); 11871 mutex_exit(&phyi->phyint_lock); 11872 11873 if (((turn_on | turn_off) & (PHYI_FAILED|PHYI_STANDBY|PHYI_OFFLINE))) 11874 ip_redo_nomination(phyi); 11875 11876 if (set_linklocal) 11877 (void) ipif_setlinklocal(ipif); 11878 11879 if (zero_source) 11880 ipif->ipif_v6src_addr = ipv6_all_zeros; 11881 else 11882 ipif->ipif_v6src_addr = ipif->ipif_v6lcl_addr; 11883 11884 if ((flags & IFF_UP) && !(ipif->ipif_flags & IPIF_UP)) { 11885 /* 11886 * XXX ipif_up really does not know whether a phyint flags 11887 * was modified or not. So, it sends up information on 11888 * only one routing sockets message. As we don't bring up 11889 * the interface and also set STANDBY/FAILED simultaneously 11890 * it should be okay. 11891 */ 11892 err = ipif_up(ipif, q, mp); 11893 } else { 11894 /* 11895 * Make sure routing socket sees all changes to the flags. 11896 * ipif_up_done* handles this when we use ipif_up. 11897 */ 11898 if (phyint_flags_modified) { 11899 if (phyi->phyint_illv4 != NULL) { 11900 ip_rts_ifmsg(phyi->phyint_illv4-> 11901 ill_ipif); 11902 } 11903 if (phyi->phyint_illv6 != NULL) { 11904 ip_rts_ifmsg(phyi->phyint_illv6-> 11905 ill_ipif); 11906 } 11907 } else { 11908 ip_rts_ifmsg(ipif); 11909 } 11910 /* 11911 * Update the flags in SCTP's IPIF list, ipif_up() will do 11912 * this in need_up case. 11913 */ 11914 sctp_update_ipif(ipif, SCTP_IPIF_UPDATE); 11915 } 11916 return (err); 11917 } 11918 11919 /* 11920 * Restart the flags operation now that the refcounts have dropped to zero. 11921 */ 11922 /* ARGSUSED */ 11923 int 11924 ip_sioctl_flags_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11925 ip_ioctl_cmd_t *ipip, void *if_req) 11926 { 11927 uint64_t flags; 11928 struct ifreq *ifr = if_req; 11929 struct lifreq *lifr = if_req; 11930 11931 ip1dbg(("ip_sioctl_flags_restart(%s:%u %p)\n", 11932 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11933 11934 ipif_down_tail(ipif); 11935 if (ipip->ipi_cmd_type == IF_CMD) { 11936 /* cast to uint16_t prevents unwanted sign extension */ 11937 flags = (uint16_t)ifr->ifr_flags; 11938 } else { 11939 flags = lifr->lifr_flags; 11940 } 11941 return (ip_sioctl_flags_tail(ipif, flags, q, mp)); 11942 } 11943 11944 /* 11945 * Can operate on either a module or a driver queue. 11946 */ 11947 /* ARGSUSED */ 11948 int 11949 ip_sioctl_get_flags(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11950 ip_ioctl_cmd_t *ipip, void *if_req) 11951 { 11952 /* 11953 * Has the flags been set correctly till now ? 11954 */ 11955 ill_t *ill = ipif->ipif_ill; 11956 phyint_t *phyi = ill->ill_phyint; 11957 11958 ip1dbg(("ip_sioctl_get_flags(%s:%u %p)\n", 11959 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11960 ASSERT((phyi->phyint_flags & ~(IFF_PHYINT_FLAGS)) == 0); 11961 ASSERT((ill->ill_flags & ~(IFF_PHYINTINST_FLAGS)) == 0); 11962 ASSERT((ipif->ipif_flags & ~(IFF_LOGINT_FLAGS)) == 0); 11963 11964 /* 11965 * Need a lock since some flags can be set even when there are 11966 * references to the ipif. 11967 */ 11968 mutex_enter(&ill->ill_lock); 11969 if (ipip->ipi_cmd_type == IF_CMD) { 11970 struct ifreq *ifr = (struct ifreq *)if_req; 11971 11972 /* Get interface flags (low 16 only). */ 11973 ifr->ifr_flags = ((ipif->ipif_flags | 11974 ill->ill_flags | phyi->phyint_flags) & 0xffff); 11975 } else { 11976 struct lifreq *lifr = (struct lifreq *)if_req; 11977 11978 /* Get interface flags. */ 11979 lifr->lifr_flags = ipif->ipif_flags | 11980 ill->ill_flags | phyi->phyint_flags; 11981 } 11982 mutex_exit(&ill->ill_lock); 11983 return (0); 11984 } 11985 11986 /* ARGSUSED */ 11987 int 11988 ip_sioctl_mtu(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11989 ip_ioctl_cmd_t *ipip, void *if_req) 11990 { 11991 int mtu; 11992 int ip_min_mtu; 11993 struct ifreq *ifr; 11994 struct lifreq *lifr; 11995 ire_t *ire; 11996 ip_stack_t *ipst; 11997 11998 ip1dbg(("ip_sioctl_mtu(%s:%u %p)\n", ipif->ipif_ill->ill_name, 11999 ipif->ipif_id, (void *)ipif)); 12000 if (ipip->ipi_cmd_type == IF_CMD) { 12001 ifr = (struct ifreq *)if_req; 12002 mtu = ifr->ifr_metric; 12003 } else { 12004 lifr = (struct lifreq *)if_req; 12005 mtu = lifr->lifr_mtu; 12006 } 12007 12008 if (ipif->ipif_isv6) 12009 ip_min_mtu = IPV6_MIN_MTU; 12010 else 12011 ip_min_mtu = IP_MIN_MTU; 12012 12013 if (mtu > ipif->ipif_ill->ill_max_frag || mtu < ip_min_mtu) 12014 return (EINVAL); 12015 12016 /* 12017 * Change the MTU size in all relevant ire's. 12018 * Mtu change Vs. new ire creation - protocol below. 12019 * First change ipif_mtu and the ire_max_frag of the 12020 * interface ire. Then do an ire walk and change the 12021 * ire_max_frag of all affected ires. During ire_add 12022 * under the bucket lock, set the ire_max_frag of the 12023 * new ire being created from the ipif/ire from which 12024 * it is being derived. If an mtu change happens after 12025 * the ire is added, the new ire will be cleaned up. 12026 * Conversely if the mtu change happens before the ire 12027 * is added, ire_add will see the new value of the mtu. 12028 */ 12029 ipif->ipif_mtu = mtu; 12030 ipif->ipif_flags |= IPIF_FIXEDMTU; 12031 12032 if (ipif->ipif_isv6) 12033 ire = ipif_to_ire_v6(ipif); 12034 else 12035 ire = ipif_to_ire(ipif); 12036 if (ire != NULL) { 12037 ire->ire_max_frag = ipif->ipif_mtu; 12038 ire_refrele(ire); 12039 } 12040 ipst = ipif->ipif_ill->ill_ipst; 12041 if (ipif->ipif_flags & IPIF_UP) { 12042 if (ipif->ipif_isv6) 12043 ire_walk_v6(ipif_mtu_change, (char *)ipif, ALL_ZONES, 12044 ipst); 12045 else 12046 ire_walk_v4(ipif_mtu_change, (char *)ipif, ALL_ZONES, 12047 ipst); 12048 } 12049 /* Update the MTU in SCTP's list */ 12050 sctp_update_ipif(ipif, SCTP_IPIF_UPDATE); 12051 return (0); 12052 } 12053 12054 /* Get interface MTU. */ 12055 /* ARGSUSED */ 12056 int 12057 ip_sioctl_get_mtu(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12058 ip_ioctl_cmd_t *ipip, void *if_req) 12059 { 12060 struct ifreq *ifr; 12061 struct lifreq *lifr; 12062 12063 ip1dbg(("ip_sioctl_get_mtu(%s:%u %p)\n", 12064 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12065 if (ipip->ipi_cmd_type == IF_CMD) { 12066 ifr = (struct ifreq *)if_req; 12067 ifr->ifr_metric = ipif->ipif_mtu; 12068 } else { 12069 lifr = (struct lifreq *)if_req; 12070 lifr->lifr_mtu = ipif->ipif_mtu; 12071 } 12072 return (0); 12073 } 12074 12075 /* Set interface broadcast address. */ 12076 /* ARGSUSED2 */ 12077 int 12078 ip_sioctl_brdaddr(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12079 ip_ioctl_cmd_t *ipip, void *if_req) 12080 { 12081 ipaddr_t addr; 12082 ire_t *ire; 12083 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; 12084 12085 ip1dbg(("ip_sioctl_brdaddr(%s:%u)\n", ipif->ipif_ill->ill_name, 12086 ipif->ipif_id)); 12087 12088 ASSERT(IAM_WRITER_IPIF(ipif)); 12089 if (!(ipif->ipif_flags & IPIF_BROADCAST)) 12090 return (EADDRNOTAVAIL); 12091 12092 ASSERT(!(ipif->ipif_isv6)); /* No IPv6 broadcast */ 12093 12094 if (sin->sin_family != AF_INET) 12095 return (EAFNOSUPPORT); 12096 12097 addr = sin->sin_addr.s_addr; 12098 if (ipif->ipif_flags & IPIF_UP) { 12099 /* 12100 * If we are already up, make sure the new 12101 * broadcast address makes sense. If it does, 12102 * there should be an IRE for it already. 12103 * Don't match on ipif, only on the ill 12104 * since we are sharing these now. Don't use 12105 * MATCH_IRE_ILL_GROUP as we are looking for 12106 * the broadcast ire on this ill and each ill 12107 * in the group has its own broadcast ire. 12108 */ 12109 ire = ire_ctable_lookup(addr, 0, IRE_BROADCAST, 12110 ipif, ALL_ZONES, NULL, 12111 (MATCH_IRE_ILL | MATCH_IRE_TYPE), ipst); 12112 if (ire == NULL) { 12113 return (EINVAL); 12114 } else { 12115 ire_refrele(ire); 12116 } 12117 } 12118 /* 12119 * Changing the broadcast addr for this ipif. 12120 * Make sure we have valid net and subnet bcast 12121 * ire's for other logical interfaces, if needed. 12122 */ 12123 if (addr != ipif->ipif_brd_addr) 12124 ipif_check_bcast_ires(ipif); 12125 IN6_IPADDR_TO_V4MAPPED(addr, &ipif->ipif_v6brd_addr); 12126 return (0); 12127 } 12128 12129 /* Get interface broadcast address. */ 12130 /* ARGSUSED */ 12131 int 12132 ip_sioctl_get_brdaddr(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12133 ip_ioctl_cmd_t *ipip, void *if_req) 12134 { 12135 ip1dbg(("ip_sioctl_get_brdaddr(%s:%u %p)\n", 12136 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12137 if (!(ipif->ipif_flags & IPIF_BROADCAST)) 12138 return (EADDRNOTAVAIL); 12139 12140 /* IPIF_BROADCAST not possible with IPv6 */ 12141 ASSERT(!ipif->ipif_isv6); 12142 *sin = sin_null; 12143 sin->sin_family = AF_INET; 12144 sin->sin_addr.s_addr = ipif->ipif_brd_addr; 12145 return (0); 12146 } 12147 12148 /* 12149 * This routine is called to handle the SIOCS*IFNETMASK IOCTL. 12150 */ 12151 /* ARGSUSED */ 12152 int 12153 ip_sioctl_netmask(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12154 ip_ioctl_cmd_t *ipip, void *if_req) 12155 { 12156 int err = 0; 12157 in6_addr_t v6mask; 12158 12159 ip1dbg(("ip_sioctl_netmask(%s:%u %p)\n", 12160 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12161 12162 ASSERT(IAM_WRITER_IPIF(ipif)); 12163 12164 if (ipif->ipif_isv6) { 12165 sin6_t *sin6; 12166 12167 if (sin->sin_family != AF_INET6) 12168 return (EAFNOSUPPORT); 12169 12170 sin6 = (sin6_t *)sin; 12171 v6mask = sin6->sin6_addr; 12172 } else { 12173 ipaddr_t mask; 12174 12175 if (sin->sin_family != AF_INET) 12176 return (EAFNOSUPPORT); 12177 12178 mask = sin->sin_addr.s_addr; 12179 V4MASK_TO_V6(mask, v6mask); 12180 } 12181 12182 /* 12183 * No big deal if the interface isn't already up, or the mask 12184 * isn't really changing, or this is pt-pt. 12185 */ 12186 if (!(ipif->ipif_flags & IPIF_UP) || 12187 IN6_ARE_ADDR_EQUAL(&v6mask, &ipif->ipif_v6net_mask) || 12188 (ipif->ipif_flags & IPIF_POINTOPOINT)) { 12189 ipif->ipif_v6net_mask = v6mask; 12190 if ((ipif->ipif_flags & IPIF_POINTOPOINT) == 0) { 12191 V6_MASK_COPY(ipif->ipif_v6lcl_addr, 12192 ipif->ipif_v6net_mask, 12193 ipif->ipif_v6subnet); 12194 } 12195 return (0); 12196 } 12197 /* 12198 * Make sure we have valid net and subnet broadcast ire's 12199 * for the old netmask, if needed by other logical interfaces. 12200 */ 12201 if (!ipif->ipif_isv6) 12202 ipif_check_bcast_ires(ipif); 12203 12204 err = ipif_logical_down(ipif, q, mp); 12205 if (err == EINPROGRESS) 12206 return (err); 12207 ipif_down_tail(ipif); 12208 err = ip_sioctl_netmask_tail(ipif, sin, q, mp); 12209 return (err); 12210 } 12211 12212 static int 12213 ip_sioctl_netmask_tail(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp) 12214 { 12215 in6_addr_t v6mask; 12216 int err = 0; 12217 12218 ip1dbg(("ip_sioctl_netmask_tail(%s:%u %p)\n", 12219 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12220 12221 if (ipif->ipif_isv6) { 12222 sin6_t *sin6; 12223 12224 sin6 = (sin6_t *)sin; 12225 v6mask = sin6->sin6_addr; 12226 } else { 12227 ipaddr_t mask; 12228 12229 mask = sin->sin_addr.s_addr; 12230 V4MASK_TO_V6(mask, v6mask); 12231 } 12232 12233 ipif->ipif_v6net_mask = v6mask; 12234 if ((ipif->ipif_flags & IPIF_POINTOPOINT) == 0) { 12235 V6_MASK_COPY(ipif->ipif_v6lcl_addr, ipif->ipif_v6net_mask, 12236 ipif->ipif_v6subnet); 12237 } 12238 err = ipif_up(ipif, q, mp); 12239 12240 if (err == 0 || err == EINPROGRESS) { 12241 /* 12242 * The interface must be DL_BOUND if this packet has to 12243 * go out on the wire. Since we only go through a logical 12244 * down and are bound with the driver during an internal 12245 * down/up that is satisfied. 12246 */ 12247 if (!ipif->ipif_isv6 && ipif->ipif_ill->ill_wq != NULL) { 12248 /* Potentially broadcast an address mask reply. */ 12249 ipif_mask_reply(ipif); 12250 } 12251 } 12252 return (err); 12253 } 12254 12255 /* ARGSUSED */ 12256 int 12257 ip_sioctl_netmask_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12258 ip_ioctl_cmd_t *ipip, void *if_req) 12259 { 12260 ip1dbg(("ip_sioctl_netmask_restart(%s:%u %p)\n", 12261 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12262 ipif_down_tail(ipif); 12263 return (ip_sioctl_netmask_tail(ipif, sin, q, mp)); 12264 } 12265 12266 /* Get interface net mask. */ 12267 /* ARGSUSED */ 12268 int 12269 ip_sioctl_get_netmask(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12270 ip_ioctl_cmd_t *ipip, void *if_req) 12271 { 12272 struct lifreq *lifr = (struct lifreq *)if_req; 12273 struct sockaddr_in6 *sin6 = (sin6_t *)sin; 12274 12275 ip1dbg(("ip_sioctl_get_netmask(%s:%u %p)\n", 12276 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12277 12278 /* 12279 * net mask can't change since we have a reference to the ipif. 12280 */ 12281 if (ipif->ipif_isv6) { 12282 ASSERT(ipip->ipi_cmd_type == LIF_CMD); 12283 *sin6 = sin6_null; 12284 sin6->sin6_family = AF_INET6; 12285 sin6->sin6_addr = ipif->ipif_v6net_mask; 12286 lifr->lifr_addrlen = 12287 ip_mask_to_plen_v6(&ipif->ipif_v6net_mask); 12288 } else { 12289 *sin = sin_null; 12290 sin->sin_family = AF_INET; 12291 sin->sin_addr.s_addr = ipif->ipif_net_mask; 12292 if (ipip->ipi_cmd_type == LIF_CMD) { 12293 lifr->lifr_addrlen = 12294 ip_mask_to_plen(ipif->ipif_net_mask); 12295 } 12296 } 12297 return (0); 12298 } 12299 12300 /* ARGSUSED */ 12301 int 12302 ip_sioctl_metric(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12303 ip_ioctl_cmd_t *ipip, void *if_req) 12304 { 12305 12306 ip1dbg(("ip_sioctl_metric(%s:%u %p)\n", 12307 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12308 /* 12309 * Set interface metric. We don't use this for 12310 * anything but we keep track of it in case it is 12311 * important to routing applications or such. 12312 */ 12313 if (ipip->ipi_cmd_type == IF_CMD) { 12314 struct ifreq *ifr; 12315 12316 ifr = (struct ifreq *)if_req; 12317 ipif->ipif_metric = ifr->ifr_metric; 12318 } else { 12319 struct lifreq *lifr; 12320 12321 lifr = (struct lifreq *)if_req; 12322 ipif->ipif_metric = lifr->lifr_metric; 12323 } 12324 return (0); 12325 } 12326 12327 /* ARGSUSED */ 12328 int 12329 ip_sioctl_get_metric(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12330 ip_ioctl_cmd_t *ipip, void *if_req) 12331 { 12332 /* Get interface metric. */ 12333 ip1dbg(("ip_sioctl_get_metric(%s:%u %p)\n", 12334 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12335 if (ipip->ipi_cmd_type == IF_CMD) { 12336 struct ifreq *ifr; 12337 12338 ifr = (struct ifreq *)if_req; 12339 ifr->ifr_metric = ipif->ipif_metric; 12340 } else { 12341 struct lifreq *lifr; 12342 12343 lifr = (struct lifreq *)if_req; 12344 lifr->lifr_metric = ipif->ipif_metric; 12345 } 12346 12347 return (0); 12348 } 12349 12350 /* ARGSUSED */ 12351 int 12352 ip_sioctl_muxid(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12353 ip_ioctl_cmd_t *ipip, void *if_req) 12354 { 12355 12356 ip1dbg(("ip_sioctl_muxid(%s:%u %p)\n", 12357 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12358 /* 12359 * Set the muxid returned from I_PLINK. 12360 */ 12361 if (ipip->ipi_cmd_type == IF_CMD) { 12362 struct ifreq *ifr = (struct ifreq *)if_req; 12363 12364 ipif->ipif_ill->ill_ip_muxid = ifr->ifr_ip_muxid; 12365 ipif->ipif_ill->ill_arp_muxid = ifr->ifr_arp_muxid; 12366 } else { 12367 struct lifreq *lifr = (struct lifreq *)if_req; 12368 12369 ipif->ipif_ill->ill_ip_muxid = lifr->lifr_ip_muxid; 12370 ipif->ipif_ill->ill_arp_muxid = lifr->lifr_arp_muxid; 12371 } 12372 return (0); 12373 } 12374 12375 /* ARGSUSED */ 12376 int 12377 ip_sioctl_get_muxid(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12378 ip_ioctl_cmd_t *ipip, void *if_req) 12379 { 12380 12381 ip1dbg(("ip_sioctl_get_muxid(%s:%u %p)\n", 12382 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12383 /* 12384 * Get the muxid saved in ill for I_PUNLINK. 12385 */ 12386 if (ipip->ipi_cmd_type == IF_CMD) { 12387 struct ifreq *ifr = (struct ifreq *)if_req; 12388 12389 ifr->ifr_ip_muxid = ipif->ipif_ill->ill_ip_muxid; 12390 ifr->ifr_arp_muxid = ipif->ipif_ill->ill_arp_muxid; 12391 } else { 12392 struct lifreq *lifr = (struct lifreq *)if_req; 12393 12394 lifr->lifr_ip_muxid = ipif->ipif_ill->ill_ip_muxid; 12395 lifr->lifr_arp_muxid = ipif->ipif_ill->ill_arp_muxid; 12396 } 12397 return (0); 12398 } 12399 12400 /* 12401 * Set the subnet prefix. Does not modify the broadcast address. 12402 */ 12403 /* ARGSUSED */ 12404 int 12405 ip_sioctl_subnet(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12406 ip_ioctl_cmd_t *ipip, void *if_req) 12407 { 12408 int err = 0; 12409 in6_addr_t v6addr; 12410 in6_addr_t v6mask; 12411 boolean_t need_up = B_FALSE; 12412 int addrlen; 12413 12414 ip1dbg(("ip_sioctl_subnet(%s:%u %p)\n", 12415 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12416 12417 ASSERT(IAM_WRITER_IPIF(ipif)); 12418 addrlen = ((struct lifreq *)if_req)->lifr_addrlen; 12419 12420 if (ipif->ipif_isv6) { 12421 sin6_t *sin6; 12422 12423 if (sin->sin_family != AF_INET6) 12424 return (EAFNOSUPPORT); 12425 12426 sin6 = (sin6_t *)sin; 12427 v6addr = sin6->sin6_addr; 12428 if (!ip_remote_addr_ok_v6(&v6addr, &ipv6_all_ones)) 12429 return (EADDRNOTAVAIL); 12430 } else { 12431 ipaddr_t addr; 12432 12433 if (sin->sin_family != AF_INET) 12434 return (EAFNOSUPPORT); 12435 12436 addr = sin->sin_addr.s_addr; 12437 if (!ip_addr_ok_v4(addr, 0xFFFFFFFF)) 12438 return (EADDRNOTAVAIL); 12439 IN6_IPADDR_TO_V4MAPPED(addr, &v6addr); 12440 /* Add 96 bits */ 12441 addrlen += IPV6_ABITS - IP_ABITS; 12442 } 12443 12444 if (ip_plen_to_mask_v6(addrlen, &v6mask) == NULL) 12445 return (EINVAL); 12446 12447 /* Check if bits in the address is set past the mask */ 12448 if (!V6_MASK_EQ(v6addr, v6mask, v6addr)) 12449 return (EINVAL); 12450 12451 if (IN6_ARE_ADDR_EQUAL(&ipif->ipif_v6subnet, &v6addr) && 12452 IN6_ARE_ADDR_EQUAL(&ipif->ipif_v6net_mask, &v6mask)) 12453 return (0); /* No change */ 12454 12455 if (ipif->ipif_flags & IPIF_UP) { 12456 /* 12457 * If the interface is already marked up, 12458 * we call ipif_down which will take care 12459 * of ditching any IREs that have been set 12460 * up based on the old interface address. 12461 */ 12462 err = ipif_logical_down(ipif, q, mp); 12463 if (err == EINPROGRESS) 12464 return (err); 12465 ipif_down_tail(ipif); 12466 need_up = B_TRUE; 12467 } 12468 12469 err = ip_sioctl_subnet_tail(ipif, v6addr, v6mask, q, mp, need_up); 12470 return (err); 12471 } 12472 12473 static int 12474 ip_sioctl_subnet_tail(ipif_t *ipif, in6_addr_t v6addr, in6_addr_t v6mask, 12475 queue_t *q, mblk_t *mp, boolean_t need_up) 12476 { 12477 ill_t *ill = ipif->ipif_ill; 12478 int err = 0; 12479 12480 ip1dbg(("ip_sioctl_subnet_tail(%s:%u %p)\n", 12481 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12482 12483 /* Set the new address. */ 12484 mutex_enter(&ill->ill_lock); 12485 ipif->ipif_v6net_mask = v6mask; 12486 if ((ipif->ipif_flags & IPIF_POINTOPOINT) == 0) { 12487 V6_MASK_COPY(v6addr, ipif->ipif_v6net_mask, 12488 ipif->ipif_v6subnet); 12489 } 12490 mutex_exit(&ill->ill_lock); 12491 12492 if (need_up) { 12493 /* 12494 * Now bring the interface back up. If this 12495 * is the only IPIF for the ILL, ipif_up 12496 * will have to re-bind to the device, so 12497 * we may get back EINPROGRESS, in which 12498 * case, this IOCTL will get completed in 12499 * ip_rput_dlpi when we see the DL_BIND_ACK. 12500 */ 12501 err = ipif_up(ipif, q, mp); 12502 if (err == EINPROGRESS) 12503 return (err); 12504 } 12505 return (err); 12506 } 12507 12508 /* ARGSUSED */ 12509 int 12510 ip_sioctl_subnet_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12511 ip_ioctl_cmd_t *ipip, void *if_req) 12512 { 12513 int addrlen; 12514 in6_addr_t v6addr; 12515 in6_addr_t v6mask; 12516 struct lifreq *lifr = (struct lifreq *)if_req; 12517 12518 ip1dbg(("ip_sioctl_subnet_restart(%s:%u %p)\n", 12519 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12520 ipif_down_tail(ipif); 12521 12522 addrlen = lifr->lifr_addrlen; 12523 if (ipif->ipif_isv6) { 12524 sin6_t *sin6; 12525 12526 sin6 = (sin6_t *)sin; 12527 v6addr = sin6->sin6_addr; 12528 } else { 12529 ipaddr_t addr; 12530 12531 addr = sin->sin_addr.s_addr; 12532 IN6_IPADDR_TO_V4MAPPED(addr, &v6addr); 12533 addrlen += IPV6_ABITS - IP_ABITS; 12534 } 12535 (void) ip_plen_to_mask_v6(addrlen, &v6mask); 12536 12537 return (ip_sioctl_subnet_tail(ipif, v6addr, v6mask, q, mp, B_TRUE)); 12538 } 12539 12540 /* ARGSUSED */ 12541 int 12542 ip_sioctl_get_subnet(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12543 ip_ioctl_cmd_t *ipip, void *if_req) 12544 { 12545 struct lifreq *lifr = (struct lifreq *)if_req; 12546 struct sockaddr_in6 *sin6 = (struct sockaddr_in6 *)sin; 12547 12548 ip1dbg(("ip_sioctl_get_subnet(%s:%u %p)\n", 12549 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12550 ASSERT(ipip->ipi_cmd_type == LIF_CMD); 12551 12552 if (ipif->ipif_isv6) { 12553 *sin6 = sin6_null; 12554 sin6->sin6_family = AF_INET6; 12555 sin6->sin6_addr = ipif->ipif_v6subnet; 12556 lifr->lifr_addrlen = 12557 ip_mask_to_plen_v6(&ipif->ipif_v6net_mask); 12558 } else { 12559 *sin = sin_null; 12560 sin->sin_family = AF_INET; 12561 sin->sin_addr.s_addr = ipif->ipif_subnet; 12562 lifr->lifr_addrlen = ip_mask_to_plen(ipif->ipif_net_mask); 12563 } 12564 return (0); 12565 } 12566 12567 /* 12568 * Set the IPv6 address token. 12569 */ 12570 /* ARGSUSED */ 12571 int 12572 ip_sioctl_token(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12573 ip_ioctl_cmd_t *ipi, void *if_req) 12574 { 12575 ill_t *ill = ipif->ipif_ill; 12576 int err; 12577 in6_addr_t v6addr; 12578 in6_addr_t v6mask; 12579 boolean_t need_up = B_FALSE; 12580 int i; 12581 sin6_t *sin6 = (sin6_t *)sin; 12582 struct lifreq *lifr = (struct lifreq *)if_req; 12583 int addrlen; 12584 12585 ip1dbg(("ip_sioctl_token(%s:%u %p)\n", 12586 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12587 ASSERT(IAM_WRITER_IPIF(ipif)); 12588 12589 addrlen = lifr->lifr_addrlen; 12590 /* Only allow for logical unit zero i.e. not on "le0:17" */ 12591 if (ipif->ipif_id != 0) 12592 return (EINVAL); 12593 12594 if (!ipif->ipif_isv6) 12595 return (EINVAL); 12596 12597 if (addrlen > IPV6_ABITS) 12598 return (EINVAL); 12599 12600 v6addr = sin6->sin6_addr; 12601 12602 /* 12603 * The length of the token is the length from the end. To get 12604 * the proper mask for this, compute the mask of the bits not 12605 * in the token; ie. the prefix, and then xor to get the mask. 12606 */ 12607 if (ip_plen_to_mask_v6(IPV6_ABITS - addrlen, &v6mask) == NULL) 12608 return (EINVAL); 12609 for (i = 0; i < 4; i++) { 12610 v6mask.s6_addr32[i] ^= (uint32_t)0xffffffff; 12611 } 12612 12613 if (V6_MASK_EQ(v6addr, v6mask, ill->ill_token) && 12614 ill->ill_token_length == addrlen) 12615 return (0); /* No change */ 12616 12617 if (ipif->ipif_flags & IPIF_UP) { 12618 err = ipif_logical_down(ipif, q, mp); 12619 if (err == EINPROGRESS) 12620 return (err); 12621 ipif_down_tail(ipif); 12622 need_up = B_TRUE; 12623 } 12624 err = ip_sioctl_token_tail(ipif, sin6, addrlen, q, mp, need_up); 12625 return (err); 12626 } 12627 12628 static int 12629 ip_sioctl_token_tail(ipif_t *ipif, sin6_t *sin6, int addrlen, queue_t *q, 12630 mblk_t *mp, boolean_t need_up) 12631 { 12632 in6_addr_t v6addr; 12633 in6_addr_t v6mask; 12634 ill_t *ill = ipif->ipif_ill; 12635 int i; 12636 int err = 0; 12637 12638 ip1dbg(("ip_sioctl_token_tail(%s:%u %p)\n", 12639 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12640 v6addr = sin6->sin6_addr; 12641 /* 12642 * The length of the token is the length from the end. To get 12643 * the proper mask for this, compute the mask of the bits not 12644 * in the token; ie. the prefix, and then xor to get the mask. 12645 */ 12646 (void) ip_plen_to_mask_v6(IPV6_ABITS - addrlen, &v6mask); 12647 for (i = 0; i < 4; i++) 12648 v6mask.s6_addr32[i] ^= (uint32_t)0xffffffff; 12649 12650 mutex_enter(&ill->ill_lock); 12651 V6_MASK_COPY(v6addr, v6mask, ill->ill_token); 12652 ill->ill_token_length = addrlen; 12653 mutex_exit(&ill->ill_lock); 12654 12655 if (need_up) { 12656 /* 12657 * Now bring the interface back up. If this 12658 * is the only IPIF for the ILL, ipif_up 12659 * will have to re-bind to the device, so 12660 * we may get back EINPROGRESS, in which 12661 * case, this IOCTL will get completed in 12662 * ip_rput_dlpi when we see the DL_BIND_ACK. 12663 */ 12664 err = ipif_up(ipif, q, mp); 12665 if (err == EINPROGRESS) 12666 return (err); 12667 } 12668 return (err); 12669 } 12670 12671 /* ARGSUSED */ 12672 int 12673 ip_sioctl_get_token(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12674 ip_ioctl_cmd_t *ipi, void *if_req) 12675 { 12676 ill_t *ill; 12677 sin6_t *sin6 = (sin6_t *)sin; 12678 struct lifreq *lifr = (struct lifreq *)if_req; 12679 12680 ip1dbg(("ip_sioctl_get_token(%s:%u %p)\n", 12681 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12682 if (ipif->ipif_id != 0) 12683 return (EINVAL); 12684 12685 ill = ipif->ipif_ill; 12686 if (!ill->ill_isv6) 12687 return (ENXIO); 12688 12689 *sin6 = sin6_null; 12690 sin6->sin6_family = AF_INET6; 12691 ASSERT(!IN6_IS_ADDR_V4MAPPED(&ill->ill_token)); 12692 sin6->sin6_addr = ill->ill_token; 12693 lifr->lifr_addrlen = ill->ill_token_length; 12694 return (0); 12695 } 12696 12697 /* 12698 * Set (hardware) link specific information that might override 12699 * what was acquired through the DL_INFO_ACK. 12700 * The logic is as follows. 12701 * 12702 * become exclusive 12703 * set CHANGING flag 12704 * change mtu on affected IREs 12705 * clear CHANGING flag 12706 * 12707 * An ire add that occurs before the CHANGING flag is set will have its mtu 12708 * changed by the ip_sioctl_lnkinfo. 12709 * 12710 * During the time the CHANGING flag is set, no new ires will be added to the 12711 * bucket, and ire add will fail (due the CHANGING flag). 12712 * 12713 * An ire add that occurs after the CHANGING flag is set will have the right mtu 12714 * before it is added to the bucket. 12715 * 12716 * Obviously only 1 thread can set the CHANGING flag and we need to become 12717 * exclusive to set the flag. 12718 */ 12719 /* ARGSUSED */ 12720 int 12721 ip_sioctl_lnkinfo(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12722 ip_ioctl_cmd_t *ipi, void *if_req) 12723 { 12724 ill_t *ill = ipif->ipif_ill; 12725 ipif_t *nipif; 12726 int ip_min_mtu; 12727 boolean_t mtu_walk = B_FALSE; 12728 struct lifreq *lifr = (struct lifreq *)if_req; 12729 lif_ifinfo_req_t *lir; 12730 ire_t *ire; 12731 12732 ip1dbg(("ip_sioctl_lnkinfo(%s:%u %p)\n", 12733 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12734 lir = &lifr->lifr_ifinfo; 12735 ASSERT(IAM_WRITER_IPIF(ipif)); 12736 12737 /* Only allow for logical unit zero i.e. not on "le0:17" */ 12738 if (ipif->ipif_id != 0) 12739 return (EINVAL); 12740 12741 /* Set interface MTU. */ 12742 if (ipif->ipif_isv6) 12743 ip_min_mtu = IPV6_MIN_MTU; 12744 else 12745 ip_min_mtu = IP_MIN_MTU; 12746 12747 /* 12748 * Verify values before we set anything. Allow zero to 12749 * mean unspecified. 12750 */ 12751 if (lir->lir_maxmtu != 0 && 12752 (lir->lir_maxmtu > ill->ill_max_frag || 12753 lir->lir_maxmtu < ip_min_mtu)) 12754 return (EINVAL); 12755 if (lir->lir_reachtime != 0 && 12756 lir->lir_reachtime > ND_MAX_REACHTIME) 12757 return (EINVAL); 12758 if (lir->lir_reachretrans != 0 && 12759 lir->lir_reachretrans > ND_MAX_REACHRETRANSTIME) 12760 return (EINVAL); 12761 12762 mutex_enter(&ill->ill_lock); 12763 ill->ill_state_flags |= ILL_CHANGING; 12764 for (nipif = ill->ill_ipif; nipif != NULL; 12765 nipif = nipif->ipif_next) { 12766 nipif->ipif_state_flags |= IPIF_CHANGING; 12767 } 12768 12769 mutex_exit(&ill->ill_lock); 12770 12771 if (lir->lir_maxmtu != 0) { 12772 ill->ill_max_mtu = lir->lir_maxmtu; 12773 ill->ill_mtu_userspecified = 1; 12774 mtu_walk = B_TRUE; 12775 } 12776 12777 if (lir->lir_reachtime != 0) 12778 ill->ill_reachable_time = lir->lir_reachtime; 12779 12780 if (lir->lir_reachretrans != 0) 12781 ill->ill_reachable_retrans_time = lir->lir_reachretrans; 12782 12783 ill->ill_max_hops = lir->lir_maxhops; 12784 12785 ill->ill_max_buf = ND_MAX_Q; 12786 12787 if (mtu_walk) { 12788 /* 12789 * Set the MTU on all ipifs associated with this ill except 12790 * for those whose MTU was fixed via SIOCSLIFMTU. 12791 */ 12792 for (nipif = ill->ill_ipif; nipif != NULL; 12793 nipif = nipif->ipif_next) { 12794 if (nipif->ipif_flags & IPIF_FIXEDMTU) 12795 continue; 12796 12797 nipif->ipif_mtu = ill->ill_max_mtu; 12798 12799 if (!(nipif->ipif_flags & IPIF_UP)) 12800 continue; 12801 12802 if (nipif->ipif_isv6) 12803 ire = ipif_to_ire_v6(nipif); 12804 else 12805 ire = ipif_to_ire(nipif); 12806 if (ire != NULL) { 12807 ire->ire_max_frag = ipif->ipif_mtu; 12808 ire_refrele(ire); 12809 } 12810 12811 ire_walk_ill(MATCH_IRE_ILL, 0, ipif_mtu_change, 12812 nipif, ill); 12813 } 12814 } 12815 12816 mutex_enter(&ill->ill_lock); 12817 for (nipif = ill->ill_ipif; nipif != NULL; 12818 nipif = nipif->ipif_next) { 12819 nipif->ipif_state_flags &= ~IPIF_CHANGING; 12820 } 12821 ILL_UNMARK_CHANGING(ill); 12822 mutex_exit(&ill->ill_lock); 12823 12824 return (0); 12825 } 12826 12827 /* ARGSUSED */ 12828 int 12829 ip_sioctl_get_lnkinfo(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12830 ip_ioctl_cmd_t *ipi, void *if_req) 12831 { 12832 struct lif_ifinfo_req *lir; 12833 ill_t *ill = ipif->ipif_ill; 12834 12835 ip1dbg(("ip_sioctl_get_lnkinfo(%s:%u %p)\n", 12836 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12837 if (ipif->ipif_id != 0) 12838 return (EINVAL); 12839 12840 lir = &((struct lifreq *)if_req)->lifr_ifinfo; 12841 lir->lir_maxhops = ill->ill_max_hops; 12842 lir->lir_reachtime = ill->ill_reachable_time; 12843 lir->lir_reachretrans = ill->ill_reachable_retrans_time; 12844 lir->lir_maxmtu = ill->ill_max_mtu; 12845 12846 return (0); 12847 } 12848 12849 /* 12850 * Return best guess as to the subnet mask for the specified address. 12851 * Based on the subnet masks for all the configured interfaces. 12852 * 12853 * We end up returning a zero mask in the case of default, multicast or 12854 * experimental. 12855 */ 12856 static ipaddr_t 12857 ip_subnet_mask(ipaddr_t addr, ipif_t **ipifp, ip_stack_t *ipst) 12858 { 12859 ipaddr_t net_mask; 12860 ill_t *ill; 12861 ipif_t *ipif; 12862 ill_walk_context_t ctx; 12863 ipif_t *fallback_ipif = NULL; 12864 12865 net_mask = ip_net_mask(addr); 12866 if (net_mask == 0) { 12867 *ipifp = NULL; 12868 return (0); 12869 } 12870 12871 /* Let's check to see if this is maybe a local subnet route. */ 12872 /* this function only applies to IPv4 interfaces */ 12873 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 12874 ill = ILL_START_WALK_V4(&ctx, ipst); 12875 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 12876 mutex_enter(&ill->ill_lock); 12877 for (ipif = ill->ill_ipif; ipif != NULL; 12878 ipif = ipif->ipif_next) { 12879 if (!IPIF_CAN_LOOKUP(ipif)) 12880 continue; 12881 if (!(ipif->ipif_flags & IPIF_UP)) 12882 continue; 12883 if ((ipif->ipif_subnet & net_mask) == 12884 (addr & net_mask)) { 12885 /* 12886 * Don't trust pt-pt interfaces if there are 12887 * other interfaces. 12888 */ 12889 if (ipif->ipif_flags & IPIF_POINTOPOINT) { 12890 if (fallback_ipif == NULL) { 12891 ipif_refhold_locked(ipif); 12892 fallback_ipif = ipif; 12893 } 12894 continue; 12895 } 12896 12897 /* 12898 * Fine. Just assume the same net mask as the 12899 * directly attached subnet interface is using. 12900 */ 12901 ipif_refhold_locked(ipif); 12902 mutex_exit(&ill->ill_lock); 12903 rw_exit(&ipst->ips_ill_g_lock); 12904 if (fallback_ipif != NULL) 12905 ipif_refrele(fallback_ipif); 12906 *ipifp = ipif; 12907 return (ipif->ipif_net_mask); 12908 } 12909 } 12910 mutex_exit(&ill->ill_lock); 12911 } 12912 rw_exit(&ipst->ips_ill_g_lock); 12913 12914 *ipifp = fallback_ipif; 12915 return ((fallback_ipif != NULL) ? 12916 fallback_ipif->ipif_net_mask : net_mask); 12917 } 12918 12919 /* 12920 * ip_sioctl_copyin_setup calls ip_wput_ioctl to process the IP_IOCTL ioctl. 12921 */ 12922 static void 12923 ip_wput_ioctl(queue_t *q, mblk_t *mp) 12924 { 12925 IOCP iocp; 12926 ipft_t *ipft; 12927 ipllc_t *ipllc; 12928 mblk_t *mp1; 12929 cred_t *cr; 12930 int error = 0; 12931 conn_t *connp; 12932 12933 ip1dbg(("ip_wput_ioctl")); 12934 iocp = (IOCP)mp->b_rptr; 12935 mp1 = mp->b_cont; 12936 if (mp1 == NULL) { 12937 iocp->ioc_error = EINVAL; 12938 mp->b_datap->db_type = M_IOCNAK; 12939 iocp->ioc_count = 0; 12940 qreply(q, mp); 12941 return; 12942 } 12943 12944 /* 12945 * These IOCTLs provide various control capabilities to 12946 * upstream agents such as ULPs and processes. There 12947 * are currently two such IOCTLs implemented. They 12948 * are used by TCP to provide update information for 12949 * existing IREs and to forcibly delete an IRE for a 12950 * host that is not responding, thereby forcing an 12951 * attempt at a new route. 12952 */ 12953 iocp->ioc_error = EINVAL; 12954 if (!pullupmsg(mp1, sizeof (ipllc->ipllc_cmd))) 12955 goto done; 12956 12957 ipllc = (ipllc_t *)mp1->b_rptr; 12958 for (ipft = ip_ioctl_ftbl; ipft->ipft_pfi; ipft++) { 12959 if (ipllc->ipllc_cmd == ipft->ipft_cmd) 12960 break; 12961 } 12962 /* 12963 * prefer credential from mblk over ioctl; 12964 * see ip_sioctl_copyin_setup 12965 */ 12966 cr = DB_CREDDEF(mp, iocp->ioc_cr); 12967 12968 /* 12969 * Refhold the conn in case the request gets queued up in some lookup 12970 */ 12971 ASSERT(CONN_Q(q)); 12972 connp = Q_TO_CONN(q); 12973 CONN_INC_REF(connp); 12974 if (ipft->ipft_pfi && 12975 ((mp1->b_wptr - mp1->b_rptr) >= ipft->ipft_min_size || 12976 pullupmsg(mp1, ipft->ipft_min_size))) { 12977 error = (*ipft->ipft_pfi)(q, 12978 (ipft->ipft_flags & IPFT_F_SELF_REPLY) ? mp : mp1, cr); 12979 } 12980 if (ipft->ipft_flags & IPFT_F_SELF_REPLY) { 12981 /* 12982 * CONN_OPER_PENDING_DONE happens in the function called 12983 * through ipft_pfi above. 12984 */ 12985 return; 12986 } 12987 12988 CONN_OPER_PENDING_DONE(connp); 12989 if (ipft->ipft_flags & IPFT_F_NO_REPLY) { 12990 freemsg(mp); 12991 return; 12992 } 12993 iocp->ioc_error = error; 12994 12995 done: 12996 mp->b_datap->db_type = M_IOCACK; 12997 if (iocp->ioc_error) 12998 iocp->ioc_count = 0; 12999 qreply(q, mp); 13000 } 13001 13002 /* 13003 * Lookup an ipif using the sequence id (ipif_seqid) 13004 */ 13005 ipif_t * 13006 ipif_lookup_seqid(ill_t *ill, uint_t seqid) 13007 { 13008 ipif_t *ipif; 13009 13010 ASSERT(MUTEX_HELD(&ill->ill_lock)); 13011 13012 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 13013 if (ipif->ipif_seqid == seqid && IPIF_CAN_LOOKUP(ipif)) 13014 return (ipif); 13015 } 13016 return (NULL); 13017 } 13018 13019 /* 13020 * Assign a unique id for the ipif. This is used later when we send 13021 * IRES to ARP for resolution where we initialize ire_ipif_seqid 13022 * to the value pointed by ire_ipif->ipif_seqid. Later when the 13023 * IRE is added, we verify that ipif has not disappeared. 13024 */ 13025 13026 static void 13027 ipif_assign_seqid(ipif_t *ipif) 13028 { 13029 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; 13030 13031 ipif->ipif_seqid = atomic_add_64_nv(&ipst->ips_ipif_g_seqid, 1); 13032 } 13033 13034 /* 13035 * Insert the ipif, so that the list of ipifs on the ill will be sorted 13036 * with respect to ipif_id. Note that an ipif with an ipif_id of -1 will 13037 * be inserted into the first space available in the list. The value of 13038 * ipif_id will then be set to the appropriate value for its position. 13039 */ 13040 static int 13041 ipif_insert(ipif_t *ipif, boolean_t acquire_g_lock, boolean_t acquire_ill_lock) 13042 { 13043 ill_t *ill; 13044 ipif_t *tipif; 13045 ipif_t **tipifp; 13046 int id; 13047 ip_stack_t *ipst; 13048 13049 ASSERT(ipif->ipif_ill->ill_net_type == IRE_LOOPBACK || 13050 IAM_WRITER_IPIF(ipif)); 13051 13052 ill = ipif->ipif_ill; 13053 ASSERT(ill != NULL); 13054 ipst = ill->ill_ipst; 13055 13056 /* 13057 * In the case of lo0:0 we already hold the ill_g_lock. 13058 * ill_lookup_on_name (acquires ill_g_lock) -> ipif_allocate -> 13059 * ipif_insert. Another such caller is ipif_move. 13060 */ 13061 if (acquire_g_lock) 13062 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 13063 if (acquire_ill_lock) 13064 mutex_enter(&ill->ill_lock); 13065 id = ipif->ipif_id; 13066 tipifp = &(ill->ill_ipif); 13067 if (id == -1) { /* need to find a real id */ 13068 id = 0; 13069 while ((tipif = *tipifp) != NULL) { 13070 ASSERT(tipif->ipif_id >= id); 13071 if (tipif->ipif_id != id) 13072 break; /* non-consecutive id */ 13073 id++; 13074 tipifp = &(tipif->ipif_next); 13075 } 13076 /* limit number of logical interfaces */ 13077 if (id >= ipst->ips_ip_addrs_per_if) { 13078 if (acquire_ill_lock) 13079 mutex_exit(&ill->ill_lock); 13080 if (acquire_g_lock) 13081 rw_exit(&ipst->ips_ill_g_lock); 13082 return (-1); 13083 } 13084 ipif->ipif_id = id; /* assign new id */ 13085 } else if (id < ipst->ips_ip_addrs_per_if) { 13086 /* we have a real id; insert ipif in the right place */ 13087 while ((tipif = *tipifp) != NULL) { 13088 ASSERT(tipif->ipif_id != id); 13089 if (tipif->ipif_id > id) 13090 break; /* found correct location */ 13091 tipifp = &(tipif->ipif_next); 13092 } 13093 } else { 13094 if (acquire_ill_lock) 13095 mutex_exit(&ill->ill_lock); 13096 if (acquire_g_lock) 13097 rw_exit(&ipst->ips_ill_g_lock); 13098 return (-1); 13099 } 13100 13101 ASSERT(tipifp != &(ill->ill_ipif) || id == 0); 13102 13103 ipif->ipif_next = tipif; 13104 *tipifp = ipif; 13105 if (acquire_ill_lock) 13106 mutex_exit(&ill->ill_lock); 13107 if (acquire_g_lock) 13108 rw_exit(&ipst->ips_ill_g_lock); 13109 return (0); 13110 } 13111 13112 static void 13113 ipif_remove(ipif_t *ipif, boolean_t acquire_ill_lock) 13114 { 13115 ipif_t **ipifp; 13116 ill_t *ill = ipif->ipif_ill; 13117 13118 ASSERT(RW_WRITE_HELD(&ill->ill_ipst->ips_ill_g_lock)); 13119 if (acquire_ill_lock) 13120 mutex_enter(&ill->ill_lock); 13121 else 13122 ASSERT(MUTEX_HELD(&ill->ill_lock)); 13123 13124 ipifp = &ill->ill_ipif; 13125 for (; *ipifp != NULL; ipifp = &ipifp[0]->ipif_next) { 13126 if (*ipifp == ipif) { 13127 *ipifp = ipif->ipif_next; 13128 break; 13129 } 13130 } 13131 13132 if (acquire_ill_lock) 13133 mutex_exit(&ill->ill_lock); 13134 } 13135 13136 /* 13137 * Allocate and initialize a new interface control structure. (Always 13138 * called as writer.) 13139 * When ipif_allocate() is called from ip_ll_subnet_defaults, the ill 13140 * is not part of the global linked list of ills. ipif_seqid is unique 13141 * in the system and to preserve the uniqueness, it is assigned only 13142 * when ill becomes part of the global list. At that point ill will 13143 * have a name. If it doesn't get assigned here, it will get assigned 13144 * in ipif_set_values() as part of SIOCSLIFNAME processing. 13145 * Aditionally, if we come here from ip_ll_subnet_defaults, we don't set 13146 * the interface flags or any other information from the DL_INFO_ACK for 13147 * DL_STYLE2 drivers (initialize == B_FALSE), since we won't have them at 13148 * this point. The flags etc. will be set in ip_ll_subnet_defaults when the 13149 * second DL_INFO_ACK comes in from the driver. 13150 */ 13151 static ipif_t * 13152 ipif_allocate(ill_t *ill, int id, uint_t ire_type, boolean_t initialize) 13153 { 13154 ipif_t *ipif; 13155 phyint_t *phyi; 13156 13157 ip1dbg(("ipif_allocate(%s:%d ill %p)\n", 13158 ill->ill_name, id, (void *)ill)); 13159 ASSERT(ire_type == IRE_LOOPBACK || IAM_WRITER_ILL(ill)); 13160 13161 if ((ipif = (ipif_t *)mi_alloc(sizeof (ipif_t), BPRI_MED)) == NULL) 13162 return (NULL); 13163 *ipif = ipif_zero; /* start clean */ 13164 13165 ipif->ipif_ill = ill; 13166 ipif->ipif_id = id; /* could be -1 */ 13167 /* 13168 * Inherit the zoneid from the ill; for the shared stack instance 13169 * this is always the global zone 13170 */ 13171 ipif->ipif_zoneid = ill->ill_zoneid; 13172 13173 mutex_init(&ipif->ipif_saved_ire_lock, NULL, MUTEX_DEFAULT, NULL); 13174 13175 ipif->ipif_refcnt = 0; 13176 ipif->ipif_saved_ire_cnt = 0; 13177 13178 if (ipif_insert(ipif, ire_type != IRE_LOOPBACK, B_TRUE)) { 13179 mi_free(ipif); 13180 return (NULL); 13181 } 13182 /* -1 id should have been replaced by real id */ 13183 id = ipif->ipif_id; 13184 ASSERT(id >= 0); 13185 13186 if (ill->ill_name[0] != '\0') 13187 ipif_assign_seqid(ipif); 13188 13189 /* 13190 * Keep a copy of original id in ipif_orig_ipifid. Failback 13191 * will attempt to restore the original id. The SIOCSLIFOINDEX 13192 * ioctl sets ipif_orig_ipifid to zero. 13193 */ 13194 ipif->ipif_orig_ipifid = id; 13195 13196 /* 13197 * We grab the ill_lock and phyint_lock to protect the flag changes. 13198 * The ipif is still not up and can't be looked up until the 13199 * ioctl completes and the IPIF_CHANGING flag is cleared. 13200 */ 13201 mutex_enter(&ill->ill_lock); 13202 mutex_enter(&ill->ill_phyint->phyint_lock); 13203 /* 13204 * Set the running flag when logical interface zero is created. 13205 * For subsequent logical interfaces, a DLPI link down 13206 * notification message may have cleared the running flag to 13207 * indicate the link is down, so we shouldn't just blindly set it. 13208 */ 13209 if (id == 0) 13210 ill->ill_phyint->phyint_flags |= PHYI_RUNNING; 13211 ipif->ipif_ire_type = ire_type; 13212 phyi = ill->ill_phyint; 13213 ipif->ipif_orig_ifindex = phyi->phyint_ifindex; 13214 13215 if (ipif->ipif_isv6) { 13216 ill->ill_flags |= ILLF_IPV6; 13217 } else { 13218 ipaddr_t inaddr_any = INADDR_ANY; 13219 13220 ill->ill_flags |= ILLF_IPV4; 13221 13222 /* Keep the IN6_IS_ADDR_V4MAPPED assertions happy */ 13223 IN6_IPADDR_TO_V4MAPPED(inaddr_any, 13224 &ipif->ipif_v6lcl_addr); 13225 IN6_IPADDR_TO_V4MAPPED(inaddr_any, 13226 &ipif->ipif_v6src_addr); 13227 IN6_IPADDR_TO_V4MAPPED(inaddr_any, 13228 &ipif->ipif_v6subnet); 13229 IN6_IPADDR_TO_V4MAPPED(inaddr_any, 13230 &ipif->ipif_v6net_mask); 13231 IN6_IPADDR_TO_V4MAPPED(inaddr_any, 13232 &ipif->ipif_v6brd_addr); 13233 IN6_IPADDR_TO_V4MAPPED(inaddr_any, 13234 &ipif->ipif_v6pp_dst_addr); 13235 } 13236 13237 /* 13238 * Don't set the interface flags etc. now, will do it in 13239 * ip_ll_subnet_defaults. 13240 */ 13241 if (!initialize) { 13242 mutex_exit(&ill->ill_lock); 13243 mutex_exit(&ill->ill_phyint->phyint_lock); 13244 return (ipif); 13245 } 13246 ipif->ipif_mtu = ill->ill_max_mtu; 13247 13248 if (ill->ill_bcast_addr_length != 0) { 13249 /* 13250 * Later detect lack of DLPI driver multicast 13251 * capability by catching DL_ENABMULTI errors in 13252 * ip_rput_dlpi. 13253 */ 13254 ill->ill_flags |= ILLF_MULTICAST; 13255 if (!ipif->ipif_isv6) 13256 ipif->ipif_flags |= IPIF_BROADCAST; 13257 } else { 13258 if (ill->ill_net_type != IRE_LOOPBACK) { 13259 if (ipif->ipif_isv6) 13260 /* 13261 * Note: xresolv interfaces will eventually need 13262 * NOARP set here as well, but that will require 13263 * those external resolvers to have some 13264 * knowledge of that flag and act appropriately. 13265 * Not to be changed at present. 13266 */ 13267 ill->ill_flags |= ILLF_NONUD; 13268 else 13269 ill->ill_flags |= ILLF_NOARP; 13270 } 13271 if (ill->ill_phys_addr_length == 0) { 13272 if (ill->ill_media && 13273 ill->ill_media->ip_m_mac_type == SUNW_DL_VNI) { 13274 ipif->ipif_flags |= IPIF_NOXMIT; 13275 phyi->phyint_flags |= PHYI_VIRTUAL; 13276 } else { 13277 /* pt-pt supports multicast. */ 13278 ill->ill_flags |= ILLF_MULTICAST; 13279 if (ill->ill_net_type == IRE_LOOPBACK) { 13280 phyi->phyint_flags |= 13281 (PHYI_LOOPBACK | PHYI_VIRTUAL); 13282 } else { 13283 ipif->ipif_flags |= IPIF_POINTOPOINT; 13284 } 13285 } 13286 } 13287 } 13288 mutex_exit(&ill->ill_lock); 13289 mutex_exit(&ill->ill_phyint->phyint_lock); 13290 return (ipif); 13291 } 13292 13293 /* 13294 * If appropriate, send a message up to the resolver delete the entry 13295 * for the address of this interface which is going out of business. 13296 * (Always called as writer). 13297 * 13298 * NOTE : We need to check for NULL mps as some of the fields are 13299 * initialized only for some interface types. See ipif_resolver_up() 13300 * for details. 13301 */ 13302 void 13303 ipif_arp_down(ipif_t *ipif) 13304 { 13305 mblk_t *mp; 13306 ill_t *ill = ipif->ipif_ill; 13307 13308 ip1dbg(("ipif_arp_down(%s:%u)\n", ill->ill_name, ipif->ipif_id)); 13309 ASSERT(IAM_WRITER_IPIF(ipif)); 13310 13311 /* Delete the mapping for the local address */ 13312 mp = ipif->ipif_arp_del_mp; 13313 if (mp != NULL) { 13314 ip1dbg(("ipif_arp_down: arp cmd %x for %s:%u\n", 13315 *(unsigned *)mp->b_rptr, ill->ill_name, ipif->ipif_id)); 13316 putnext(ill->ill_rq, mp); 13317 ipif->ipif_arp_del_mp = NULL; 13318 } 13319 13320 /* 13321 * If this is the last ipif that is going down and there are no 13322 * duplicate addresses we may yet attempt to re-probe, then we need to 13323 * clean up ARP completely. 13324 */ 13325 if (ill->ill_ipif_up_count == 0 && ill->ill_ipif_dup_count == 0) { 13326 13327 /* Send up AR_INTERFACE_DOWN message */ 13328 mp = ill->ill_arp_down_mp; 13329 if (mp != NULL) { 13330 ip1dbg(("ipif_arp_down: arp cmd %x for %s:%u\n", 13331 *(unsigned *)mp->b_rptr, ill->ill_name, 13332 ipif->ipif_id)); 13333 putnext(ill->ill_rq, mp); 13334 ill->ill_arp_down_mp = NULL; 13335 } 13336 13337 /* Tell ARP to delete the multicast mappings */ 13338 mp = ill->ill_arp_del_mapping_mp; 13339 if (mp != NULL) { 13340 ip1dbg(("ipif_arp_down: arp cmd %x for %s:%u\n", 13341 *(unsigned *)mp->b_rptr, ill->ill_name, 13342 ipif->ipif_id)); 13343 putnext(ill->ill_rq, mp); 13344 ill->ill_arp_del_mapping_mp = NULL; 13345 } 13346 } 13347 } 13348 13349 /* 13350 * This function sets up the multicast mappings in ARP. When ipif_resolver_up 13351 * calls this function, it passes a non-NULL arp_add_mapping_mp indicating 13352 * that it wants the add_mp allocated in this function to be returned 13353 * wihtout sending it to arp. When ip_rput_dlpi_writer calls this to 13354 * just re-do the multicast, it wants us to send the add_mp to ARP also. 13355 * ipif_resolver_up does not want us to do the "add" i.e sending to ARP, 13356 * as it does a ipif_arp_down after calling this function - which will 13357 * remove what we add here. 13358 * 13359 * Returns -1 on failures and 0 on success. 13360 */ 13361 int 13362 ipif_arp_setup_multicast(ipif_t *ipif, mblk_t **arp_add_mapping_mp) 13363 { 13364 mblk_t *del_mp = NULL; 13365 mblk_t *add_mp = NULL; 13366 mblk_t *mp; 13367 ill_t *ill = ipif->ipif_ill; 13368 phyint_t *phyi = ill->ill_phyint; 13369 ipaddr_t addr, mask, extract_mask = 0; 13370 arma_t *arma; 13371 uint8_t *maddr, *bphys_addr; 13372 uint32_t hw_start; 13373 dl_unitdata_req_t *dlur; 13374 13375 ASSERT(IAM_WRITER_IPIF(ipif)); 13376 if (ipif->ipif_flags & IPIF_POINTOPOINT) 13377 return (0); 13378 13379 /* 13380 * Delete the existing mapping from ARP. Normally ipif_down 13381 * -> ipif_arp_down should send this up to ARP. The only 13382 * reason we would find this when we are switching from 13383 * Multicast to Broadcast where we did not do a down. 13384 */ 13385 mp = ill->ill_arp_del_mapping_mp; 13386 if (mp != NULL) { 13387 ip1dbg(("ipif_arp_down: arp cmd %x for %s:%u\n", 13388 *(unsigned *)mp->b_rptr, ill->ill_name, ipif->ipif_id)); 13389 putnext(ill->ill_rq, mp); 13390 ill->ill_arp_del_mapping_mp = NULL; 13391 } 13392 13393 if (arp_add_mapping_mp != NULL) 13394 *arp_add_mapping_mp = NULL; 13395 13396 /* 13397 * Check that the address is not to long for the constant 13398 * length reserved in the template arma_t. 13399 */ 13400 if (ill->ill_phys_addr_length > IP_MAX_HW_LEN) 13401 return (-1); 13402 13403 /* Add mapping mblk */ 13404 addr = (ipaddr_t)htonl(INADDR_UNSPEC_GROUP); 13405 mask = (ipaddr_t)htonl(IN_CLASSD_NET); 13406 add_mp = ill_arp_alloc(ill, (uchar_t *)&ip_arma_multi_template, 13407 (caddr_t)&addr); 13408 if (add_mp == NULL) 13409 return (-1); 13410 arma = (arma_t *)add_mp->b_rptr; 13411 maddr = (uint8_t *)arma + arma->arma_hw_addr_offset; 13412 bcopy(&mask, (char *)arma + arma->arma_proto_mask_offset, IP_ADDR_LEN); 13413 arma->arma_hw_addr_length = ill->ill_phys_addr_length; 13414 13415 /* 13416 * Determine the broadcast address. 13417 */ 13418 dlur = (dl_unitdata_req_t *)ill->ill_bcast_mp->b_rptr; 13419 if (ill->ill_sap_length < 0) 13420 bphys_addr = (uchar_t *)dlur + dlur->dl_dest_addr_offset; 13421 else 13422 bphys_addr = (uchar_t *)dlur + 13423 dlur->dl_dest_addr_offset + ill->ill_sap_length; 13424 /* 13425 * Check PHYI_MULTI_BCAST and length of physical 13426 * address to determine if we use the mapping or the 13427 * broadcast address. 13428 */ 13429 if (!(phyi->phyint_flags & PHYI_MULTI_BCAST)) 13430 if (!MEDIA_V4MINFO(ill->ill_media, ill->ill_phys_addr_length, 13431 bphys_addr, maddr, &hw_start, &extract_mask)) 13432 phyi->phyint_flags |= PHYI_MULTI_BCAST; 13433 13434 if ((phyi->phyint_flags & PHYI_MULTI_BCAST) || 13435 (ill->ill_flags & ILLF_MULTICAST)) { 13436 /* Make sure this will not match the "exact" entry. */ 13437 addr = (ipaddr_t)htonl(INADDR_ALLHOSTS_GROUP); 13438 del_mp = ill_arp_alloc(ill, (uchar_t *)&ip_ared_template, 13439 (caddr_t)&addr); 13440 if (del_mp == NULL) { 13441 freemsg(add_mp); 13442 return (-1); 13443 } 13444 bcopy(&extract_mask, (char *)arma + 13445 arma->arma_proto_extract_mask_offset, IP_ADDR_LEN); 13446 if (phyi->phyint_flags & PHYI_MULTI_BCAST) { 13447 /* Use link-layer broadcast address for MULTI_BCAST */ 13448 bcopy(bphys_addr, maddr, ill->ill_phys_addr_length); 13449 ip2dbg(("ipif_arp_setup_multicast: adding" 13450 " MULTI_BCAST ARP setup for %s\n", ill->ill_name)); 13451 } else { 13452 arma->arma_hw_mapping_start = hw_start; 13453 ip2dbg(("ipif_arp_setup_multicast: adding multicast" 13454 " ARP setup for %s\n", ill->ill_name)); 13455 } 13456 } else { 13457 freemsg(add_mp); 13458 ASSERT(del_mp == NULL); 13459 /* It is neither MULTICAST nor MULTI_BCAST */ 13460 return (0); 13461 } 13462 ASSERT(add_mp != NULL && del_mp != NULL); 13463 ASSERT(ill->ill_arp_del_mapping_mp == NULL); 13464 ill->ill_arp_del_mapping_mp = del_mp; 13465 if (arp_add_mapping_mp != NULL) { 13466 /* The caller just wants the mblks allocated */ 13467 *arp_add_mapping_mp = add_mp; 13468 } else { 13469 /* The caller wants us to send it to arp */ 13470 putnext(ill->ill_rq, add_mp); 13471 } 13472 return (0); 13473 } 13474 13475 /* 13476 * Get the resolver set up for a new interface address. 13477 * (Always called as writer.) 13478 * Called both for IPv4 and IPv6 interfaces, 13479 * though it only sets up the resolver for v6 13480 * if it's an xresolv interface (one using an external resolver). 13481 * Honors ILLF_NOARP. 13482 * The enumerated value res_act is used to tune the behavior. 13483 * If set to Res_act_initial, then we set up all the resolver 13484 * structures for a new interface. If set to Res_act_move, then 13485 * we just send an AR_ENTRY_ADD message up to ARP for IPv4 13486 * interfaces; this is called by ip_rput_dlpi_writer() to handle 13487 * asynchronous hardware address change notification. If set to 13488 * Res_act_defend, then we tell ARP that it needs to send a single 13489 * gratuitous message in defense of the address. 13490 * Returns error on failure. 13491 */ 13492 int 13493 ipif_resolver_up(ipif_t *ipif, enum ip_resolver_action res_act) 13494 { 13495 caddr_t addr; 13496 mblk_t *arp_up_mp = NULL; 13497 mblk_t *arp_down_mp = NULL; 13498 mblk_t *arp_add_mp = NULL; 13499 mblk_t *arp_del_mp = NULL; 13500 mblk_t *arp_add_mapping_mp = NULL; 13501 mblk_t *arp_del_mapping_mp = NULL; 13502 ill_t *ill = ipif->ipif_ill; 13503 uchar_t *area_p = NULL; 13504 uchar_t *ared_p = NULL; 13505 int err = ENOMEM; 13506 boolean_t was_dup; 13507 13508 ip1dbg(("ipif_resolver_up(%s:%u) flags 0x%x\n", 13509 ill->ill_name, ipif->ipif_id, (uint_t)ipif->ipif_flags)); 13510 ASSERT(IAM_WRITER_IPIF(ipif)); 13511 13512 was_dup = B_FALSE; 13513 if (res_act == Res_act_initial) { 13514 ipif->ipif_addr_ready = 0; 13515 /* 13516 * We're bringing an interface up here. There's no way that we 13517 * should need to shut down ARP now. 13518 */ 13519 mutex_enter(&ill->ill_lock); 13520 if (ipif->ipif_flags & IPIF_DUPLICATE) { 13521 ipif->ipif_flags &= ~IPIF_DUPLICATE; 13522 ill->ill_ipif_dup_count--; 13523 was_dup = B_TRUE; 13524 } 13525 mutex_exit(&ill->ill_lock); 13526 } 13527 if (ipif->ipif_recovery_id != 0) 13528 (void) untimeout(ipif->ipif_recovery_id); 13529 ipif->ipif_recovery_id = 0; 13530 if (ill->ill_net_type != IRE_IF_RESOLVER) { 13531 ipif->ipif_addr_ready = 1; 13532 return (0); 13533 } 13534 /* NDP will set the ipif_addr_ready flag when it's ready */ 13535 if (ill->ill_isv6 && !(ill->ill_flags & ILLF_XRESOLV)) 13536 return (0); 13537 13538 if (ill->ill_isv6) { 13539 /* 13540 * External resolver for IPv6 13541 */ 13542 ASSERT(res_act == Res_act_initial); 13543 if (!IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6lcl_addr)) { 13544 addr = (caddr_t)&ipif->ipif_v6lcl_addr; 13545 area_p = (uchar_t *)&ip6_area_template; 13546 ared_p = (uchar_t *)&ip6_ared_template; 13547 } 13548 } else { 13549 /* 13550 * IPv4 arp case. If the ARP stream has already started 13551 * closing, fail this request for ARP bringup. Else 13552 * record the fact that an ARP bringup is pending. 13553 */ 13554 mutex_enter(&ill->ill_lock); 13555 if (ill->ill_arp_closing) { 13556 mutex_exit(&ill->ill_lock); 13557 err = EINVAL; 13558 goto failed; 13559 } else { 13560 if (ill->ill_ipif_up_count == 0 && 13561 ill->ill_ipif_dup_count == 0 && !was_dup) 13562 ill->ill_arp_bringup_pending = 1; 13563 mutex_exit(&ill->ill_lock); 13564 } 13565 if (ipif->ipif_lcl_addr != INADDR_ANY) { 13566 addr = (caddr_t)&ipif->ipif_lcl_addr; 13567 area_p = (uchar_t *)&ip_area_template; 13568 ared_p = (uchar_t *)&ip_ared_template; 13569 } 13570 } 13571 13572 /* 13573 * Add an entry for the local address in ARP only if it 13574 * is not UNNUMBERED and the address is not INADDR_ANY. 13575 */ 13576 if (!(ipif->ipif_flags & IPIF_UNNUMBERED) && area_p != NULL) { 13577 area_t *area; 13578 13579 /* Now ask ARP to publish our address. */ 13580 arp_add_mp = ill_arp_alloc(ill, area_p, addr); 13581 if (arp_add_mp == NULL) 13582 goto failed; 13583 area = (area_t *)arp_add_mp->b_rptr; 13584 if (res_act != Res_act_initial) { 13585 /* 13586 * Copy the new hardware address and length into 13587 * arp_add_mp to be sent to ARP. 13588 */ 13589 area->area_hw_addr_length = ill->ill_phys_addr_length; 13590 bcopy(ill->ill_phys_addr, 13591 ((char *)area + area->area_hw_addr_offset), 13592 area->area_hw_addr_length); 13593 } 13594 13595 area->area_flags = ACE_F_PERMANENT | ACE_F_PUBLISH | 13596 ACE_F_MYADDR; 13597 13598 if (res_act == Res_act_defend) { 13599 area->area_flags |= ACE_F_DEFEND; 13600 /* 13601 * If we're just defending our address now, then 13602 * there's no need to set up ARP multicast mappings. 13603 * The publish command is enough. 13604 */ 13605 goto done; 13606 } 13607 13608 if (res_act != Res_act_initial) 13609 goto arp_setup_multicast; 13610 13611 /* 13612 * Allocate an ARP deletion message so we know we can tell ARP 13613 * when the interface goes down. 13614 */ 13615 arp_del_mp = ill_arp_alloc(ill, ared_p, addr); 13616 if (arp_del_mp == NULL) 13617 goto failed; 13618 13619 } else { 13620 if (res_act != Res_act_initial) 13621 goto done; 13622 } 13623 /* 13624 * Need to bring up ARP or setup multicast mapping only 13625 * when the first interface is coming UP. 13626 */ 13627 if (ill->ill_ipif_up_count != 0 || ill->ill_ipif_dup_count != 0 || 13628 was_dup) { 13629 goto done; 13630 } 13631 13632 /* 13633 * Allocate an ARP down message (to be saved) and an ARP up 13634 * message. 13635 */ 13636 arp_down_mp = ill_arp_alloc(ill, (uchar_t *)&ip_ard_template, 0); 13637 if (arp_down_mp == NULL) 13638 goto failed; 13639 13640 arp_up_mp = ill_arp_alloc(ill, (uchar_t *)&ip_aru_template, 0); 13641 if (arp_up_mp == NULL) 13642 goto failed; 13643 13644 if (ipif->ipif_flags & IPIF_POINTOPOINT) 13645 goto done; 13646 13647 arp_setup_multicast: 13648 /* 13649 * Setup the multicast mappings. This function initializes 13650 * ill_arp_del_mapping_mp also. This does not need to be done for 13651 * IPv6. 13652 */ 13653 if (!ill->ill_isv6) { 13654 err = ipif_arp_setup_multicast(ipif, &arp_add_mapping_mp); 13655 if (err != 0) 13656 goto failed; 13657 ASSERT(ill->ill_arp_del_mapping_mp != NULL); 13658 ASSERT(arp_add_mapping_mp != NULL); 13659 } 13660 13661 done: 13662 if (arp_del_mp != NULL) { 13663 ASSERT(ipif->ipif_arp_del_mp == NULL); 13664 ipif->ipif_arp_del_mp = arp_del_mp; 13665 } 13666 if (arp_down_mp != NULL) { 13667 ASSERT(ill->ill_arp_down_mp == NULL); 13668 ill->ill_arp_down_mp = arp_down_mp; 13669 } 13670 if (arp_del_mapping_mp != NULL) { 13671 ASSERT(ill->ill_arp_del_mapping_mp == NULL); 13672 ill->ill_arp_del_mapping_mp = arp_del_mapping_mp; 13673 } 13674 if (arp_up_mp != NULL) { 13675 ip1dbg(("ipif_resolver_up: ARP_UP for %s:%u\n", 13676 ill->ill_name, ipif->ipif_id)); 13677 putnext(ill->ill_rq, arp_up_mp); 13678 } 13679 if (arp_add_mp != NULL) { 13680 ip1dbg(("ipif_resolver_up: ARP_ADD for %s:%u\n", 13681 ill->ill_name, ipif->ipif_id)); 13682 /* 13683 * If it's an extended ARP implementation, then we'll wait to 13684 * hear that DAD has finished before using the interface. 13685 */ 13686 if (!ill->ill_arp_extend) 13687 ipif->ipif_addr_ready = 1; 13688 putnext(ill->ill_rq, arp_add_mp); 13689 } else { 13690 ipif->ipif_addr_ready = 1; 13691 } 13692 if (arp_add_mapping_mp != NULL) { 13693 ip1dbg(("ipif_resolver_up: MAPPING_ADD for %s:%u\n", 13694 ill->ill_name, ipif->ipif_id)); 13695 putnext(ill->ill_rq, arp_add_mapping_mp); 13696 } 13697 if (res_act != Res_act_initial) 13698 return (0); 13699 13700 if (ill->ill_flags & ILLF_NOARP) 13701 err = ill_arp_off(ill); 13702 else 13703 err = ill_arp_on(ill); 13704 if (err != 0) { 13705 ip0dbg(("ipif_resolver_up: arp_on/off failed %d\n", err)); 13706 freemsg(ipif->ipif_arp_del_mp); 13707 freemsg(ill->ill_arp_down_mp); 13708 freemsg(ill->ill_arp_del_mapping_mp); 13709 ipif->ipif_arp_del_mp = NULL; 13710 ill->ill_arp_down_mp = NULL; 13711 ill->ill_arp_del_mapping_mp = NULL; 13712 return (err); 13713 } 13714 return ((ill->ill_ipif_up_count != 0 || was_dup || 13715 ill->ill_ipif_dup_count != 0) ? 0 : EINPROGRESS); 13716 13717 failed: 13718 ip1dbg(("ipif_resolver_up: FAILED\n")); 13719 freemsg(arp_add_mp); 13720 freemsg(arp_del_mp); 13721 freemsg(arp_add_mapping_mp); 13722 freemsg(arp_up_mp); 13723 freemsg(arp_down_mp); 13724 ill->ill_arp_bringup_pending = 0; 13725 return (err); 13726 } 13727 13728 /* 13729 * This routine restarts IPv4 duplicate address detection (DAD) when a link has 13730 * just gone back up. 13731 */ 13732 static void 13733 ipif_arp_start_dad(ipif_t *ipif) 13734 { 13735 ill_t *ill = ipif->ipif_ill; 13736 mblk_t *arp_add_mp; 13737 area_t *area; 13738 13739 if (ill->ill_net_type != IRE_IF_RESOLVER || ill->ill_arp_closing || 13740 (ipif->ipif_flags & IPIF_UNNUMBERED) || 13741 ipif->ipif_lcl_addr == INADDR_ANY || 13742 (arp_add_mp = ill_arp_alloc(ill, (uchar_t *)&ip_area_template, 13743 (char *)&ipif->ipif_lcl_addr)) == NULL) { 13744 /* 13745 * If we can't contact ARP for some reason, that's not really a 13746 * problem. Just send out the routing socket notification that 13747 * DAD completion would have done, and continue. 13748 */ 13749 ipif_mask_reply(ipif); 13750 ipif_up_notify(ipif); 13751 ipif->ipif_addr_ready = 1; 13752 return; 13753 } 13754 13755 /* Setting the 'unverified' flag restarts DAD */ 13756 area = (area_t *)arp_add_mp->b_rptr; 13757 area->area_flags = ACE_F_PERMANENT | ACE_F_PUBLISH | ACE_F_MYADDR | 13758 ACE_F_UNVERIFIED; 13759 putnext(ill->ill_rq, arp_add_mp); 13760 } 13761 13762 static void 13763 ipif_ndp_start_dad(ipif_t *ipif) 13764 { 13765 nce_t *nce; 13766 13767 nce = ndp_lookup_v6(ipif->ipif_ill, &ipif->ipif_v6lcl_addr, B_FALSE); 13768 if (nce == NULL) 13769 return; 13770 13771 if (!ndp_restart_dad(nce)) { 13772 /* 13773 * If we can't restart DAD for some reason, that's not really a 13774 * problem. Just send out the routing socket notification that 13775 * DAD completion would have done, and continue. 13776 */ 13777 ipif_up_notify(ipif); 13778 ipif->ipif_addr_ready = 1; 13779 } 13780 NCE_REFRELE(nce); 13781 } 13782 13783 /* 13784 * Restart duplicate address detection on all interfaces on the given ill. 13785 * 13786 * This is called when an interface transitions from down to up 13787 * (DL_NOTE_LINK_UP) or up to down (DL_NOTE_LINK_DOWN). 13788 * 13789 * Note that since the underlying physical link has transitioned, we must cause 13790 * at least one routing socket message to be sent here, either via DAD 13791 * completion or just by default on the first ipif. (If we don't do this, then 13792 * in.mpathd will see long delays when doing link-based failure recovery.) 13793 */ 13794 void 13795 ill_restart_dad(ill_t *ill, boolean_t went_up) 13796 { 13797 ipif_t *ipif; 13798 13799 if (ill == NULL) 13800 return; 13801 13802 /* 13803 * If layer two doesn't support duplicate address detection, then just 13804 * send the routing socket message now and be done with it. 13805 */ 13806 if ((ill->ill_isv6 && (ill->ill_flags & ILLF_XRESOLV)) || 13807 (!ill->ill_isv6 && !ill->ill_arp_extend)) { 13808 ip_rts_ifmsg(ill->ill_ipif); 13809 return; 13810 } 13811 13812 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 13813 if (went_up) { 13814 if (ipif->ipif_flags & IPIF_UP) { 13815 if (ill->ill_isv6) 13816 ipif_ndp_start_dad(ipif); 13817 else 13818 ipif_arp_start_dad(ipif); 13819 } else if (ill->ill_isv6 && 13820 (ipif->ipif_flags & IPIF_DUPLICATE)) { 13821 /* 13822 * For IPv4, the ARP module itself will 13823 * automatically start the DAD process when it 13824 * sees DL_NOTE_LINK_UP. We respond to the 13825 * AR_CN_READY at the completion of that task. 13826 * For IPv6, we must kick off the bring-up 13827 * process now. 13828 */ 13829 ndp_do_recovery(ipif); 13830 } else { 13831 /* 13832 * Unfortunately, the first ipif is "special" 13833 * and represents the underlying ill in the 13834 * routing socket messages. Thus, when this 13835 * one ipif is down, we must still notify so 13836 * that the user knows the IFF_RUNNING status 13837 * change. (If the first ipif is up, then 13838 * we'll handle eventual routing socket 13839 * notification via DAD completion.) 13840 */ 13841 if (ipif == ill->ill_ipif) 13842 ip_rts_ifmsg(ill->ill_ipif); 13843 } 13844 } else { 13845 /* 13846 * After link down, we'll need to send a new routing 13847 * message when the link comes back, so clear 13848 * ipif_addr_ready. 13849 */ 13850 ipif->ipif_addr_ready = 0; 13851 } 13852 } 13853 13854 /* 13855 * If we've torn down links, then notify the user right away. 13856 */ 13857 if (!went_up) 13858 ip_rts_ifmsg(ill->ill_ipif); 13859 } 13860 13861 /* 13862 * Wakeup all threads waiting to enter the ipsq, and sleeping 13863 * on any of the ills in this ipsq. The ill_lock of the ill 13864 * must be held so that waiters don't miss wakeups 13865 */ 13866 static void 13867 ill_signal_ipsq_ills(ipsq_t *ipsq, boolean_t caller_holds_lock) 13868 { 13869 phyint_t *phyint; 13870 13871 phyint = ipsq->ipsq_phyint_list; 13872 while (phyint != NULL) { 13873 if (phyint->phyint_illv4) { 13874 if (!caller_holds_lock) 13875 mutex_enter(&phyint->phyint_illv4->ill_lock); 13876 ASSERT(MUTEX_HELD(&phyint->phyint_illv4->ill_lock)); 13877 cv_broadcast(&phyint->phyint_illv4->ill_cv); 13878 if (!caller_holds_lock) 13879 mutex_exit(&phyint->phyint_illv4->ill_lock); 13880 } 13881 if (phyint->phyint_illv6) { 13882 if (!caller_holds_lock) 13883 mutex_enter(&phyint->phyint_illv6->ill_lock); 13884 ASSERT(MUTEX_HELD(&phyint->phyint_illv6->ill_lock)); 13885 cv_broadcast(&phyint->phyint_illv6->ill_cv); 13886 if (!caller_holds_lock) 13887 mutex_exit(&phyint->phyint_illv6->ill_lock); 13888 } 13889 phyint = phyint->phyint_ipsq_next; 13890 } 13891 } 13892 13893 static ipsq_t * 13894 ipsq_create(char *groupname, ip_stack_t *ipst) 13895 { 13896 ipsq_t *ipsq; 13897 13898 ASSERT(RW_WRITE_HELD(&ipst->ips_ill_g_lock)); 13899 ipsq = kmem_zalloc(sizeof (ipsq_t), KM_NOSLEEP); 13900 if (ipsq == NULL) { 13901 return (NULL); 13902 } 13903 13904 if (groupname != NULL) 13905 (void) strcpy(ipsq->ipsq_name, groupname); 13906 else 13907 ipsq->ipsq_name[0] = '\0'; 13908 13909 mutex_init(&ipsq->ipsq_lock, NULL, MUTEX_DEFAULT, NULL); 13910 ipsq->ipsq_flags |= IPSQ_GROUP; 13911 ipsq->ipsq_next = ipst->ips_ipsq_g_head; 13912 ipst->ips_ipsq_g_head = ipsq; 13913 ipsq->ipsq_ipst = ipst; /* No netstack_hold */ 13914 return (ipsq); 13915 } 13916 13917 /* 13918 * Return an ipsq correspoding to the groupname. If 'create' is true 13919 * allocate a new ipsq if one does not exist. Usually an ipsq is associated 13920 * uniquely with an IPMP group. However during IPMP groupname operations, 13921 * multiple IPMP groups may be associated with a single ipsq. But no 13922 * IPMP group can be associated with more than 1 ipsq at any time. 13923 * For example 13924 * Interfaces IPMP grpname ipsq ipsq_name ipsq_refs 13925 * hme1, hme2 mpk17-84 ipsq1 mpk17-84 2 13926 * hme3, hme4 mpk17-85 ipsq2 mpk17-85 2 13927 * 13928 * Now the command ifconfig hme3 group mpk17-84 results in the temporary 13929 * status shown below during the execution of the above command. 13930 * hme1, hme2, hme3, hme4 mpk17-84, mpk17-85 ipsq1 mpk17-84 4 13931 * 13932 * After the completion of the above groupname command we return to the stable 13933 * state shown below. 13934 * hme1, hme2, hme3 mpk17-84 ipsq1 mpk17-84 3 13935 * hme4 mpk17-85 ipsq2 mpk17-85 1 13936 * 13937 * Because of the above, we don't search based on the ipsq_name since that 13938 * would miss the correct ipsq during certain windows as shown above. 13939 * The ipsq_name is only used during split of an ipsq to return the ipsq to its 13940 * natural state. 13941 */ 13942 static ipsq_t * 13943 ip_ipsq_lookup(char *groupname, boolean_t create, ipsq_t *exclude_ipsq, 13944 ip_stack_t *ipst) 13945 { 13946 ipsq_t *ipsq; 13947 int group_len; 13948 phyint_t *phyint; 13949 13950 ASSERT(RW_LOCK_HELD(&ipst->ips_ill_g_lock)); 13951 13952 group_len = strlen(groupname); 13953 ASSERT(group_len != 0); 13954 group_len++; 13955 13956 for (ipsq = ipst->ips_ipsq_g_head; 13957 ipsq != NULL; 13958 ipsq = ipsq->ipsq_next) { 13959 /* 13960 * When an ipsq is being split, and ill_split_ipsq 13961 * calls this function, we exclude it from being considered. 13962 */ 13963 if (ipsq == exclude_ipsq) 13964 continue; 13965 13966 /* 13967 * Compare against the ipsq_name. The groupname change happens 13968 * in 2 phases. The 1st phase merges the from group into 13969 * the to group's ipsq, by calling ill_merge_groups and restarts 13970 * the ioctl. The 2nd phase then locates the ipsq again thru 13971 * ipsq_name. At this point the phyint_groupname has not been 13972 * updated. 13973 */ 13974 if ((group_len == strlen(ipsq->ipsq_name) + 1) && 13975 (bcmp(ipsq->ipsq_name, groupname, group_len) == 0)) { 13976 /* 13977 * Verify that an ipmp groupname is exactly 13978 * part of 1 ipsq and is not found in any other 13979 * ipsq. 13980 */ 13981 ASSERT(ip_ipsq_lookup(groupname, B_FALSE, ipsq, ipst) == 13982 NULL); 13983 return (ipsq); 13984 } 13985 13986 /* 13987 * Comparison against ipsq_name alone is not sufficient. 13988 * In the case when groups are currently being 13989 * merged, the ipsq could hold other IPMP groups temporarily. 13990 * so we walk the phyint list and compare against the 13991 * phyint_groupname as well. 13992 */ 13993 phyint = ipsq->ipsq_phyint_list; 13994 while (phyint != NULL) { 13995 if ((group_len == phyint->phyint_groupname_len) && 13996 (bcmp(phyint->phyint_groupname, groupname, 13997 group_len) == 0)) { 13998 /* 13999 * Verify that an ipmp groupname is exactly 14000 * part of 1 ipsq and is not found in any other 14001 * ipsq. 14002 */ 14003 ASSERT(ip_ipsq_lookup(groupname, B_FALSE, ipsq, 14004 ipst) == NULL); 14005 return (ipsq); 14006 } 14007 phyint = phyint->phyint_ipsq_next; 14008 } 14009 } 14010 if (create) 14011 ipsq = ipsq_create(groupname, ipst); 14012 return (ipsq); 14013 } 14014 14015 static void 14016 ipsq_delete(ipsq_t *ipsq) 14017 { 14018 ipsq_t *nipsq; 14019 ipsq_t *pipsq = NULL; 14020 ip_stack_t *ipst = ipsq->ipsq_ipst; 14021 14022 /* 14023 * We don't hold the ipsq lock, but we are sure no new 14024 * messages can land up, since the ipsq_refs is zero. 14025 * i.e. this ipsq is unnamed and no phyint or phyint group 14026 * is associated with this ipsq. (Lookups are based on ill_name 14027 * or phyint_groupname) 14028 */ 14029 ASSERT(ipsq->ipsq_refs == 0); 14030 ASSERT(ipsq->ipsq_xopq_mphead == NULL && ipsq->ipsq_mphead == NULL); 14031 ASSERT(ipsq->ipsq_pending_mp == NULL); 14032 if (!(ipsq->ipsq_flags & IPSQ_GROUP)) { 14033 /* 14034 * This is not the ipsq of an IPMP group. 14035 */ 14036 ipsq->ipsq_ipst = NULL; 14037 kmem_free(ipsq, sizeof (ipsq_t)); 14038 return; 14039 } 14040 14041 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 14042 14043 /* 14044 * Locate the ipsq before we can remove it from 14045 * the singly linked list of ipsq's. 14046 */ 14047 for (nipsq = ipst->ips_ipsq_g_head; nipsq != NULL; 14048 nipsq = nipsq->ipsq_next) { 14049 if (nipsq == ipsq) { 14050 break; 14051 } 14052 pipsq = nipsq; 14053 } 14054 14055 ASSERT(nipsq == ipsq); 14056 14057 /* unlink ipsq from the list */ 14058 if (pipsq != NULL) 14059 pipsq->ipsq_next = ipsq->ipsq_next; 14060 else 14061 ipst->ips_ipsq_g_head = ipsq->ipsq_next; 14062 ipsq->ipsq_ipst = NULL; 14063 kmem_free(ipsq, sizeof (ipsq_t)); 14064 rw_exit(&ipst->ips_ill_g_lock); 14065 } 14066 14067 static void 14068 ill_move_to_new_ipsq(ipsq_t *old_ipsq, ipsq_t *new_ipsq, mblk_t *current_mp, 14069 queue_t *q) 14070 { 14071 ASSERT(MUTEX_HELD(&new_ipsq->ipsq_lock)); 14072 ASSERT(old_ipsq->ipsq_mphead == NULL && old_ipsq->ipsq_mptail == NULL); 14073 ASSERT(old_ipsq->ipsq_pending_ipif == NULL); 14074 ASSERT(old_ipsq->ipsq_pending_mp == NULL); 14075 ASSERT(current_mp != NULL); 14076 14077 ipsq_enq(new_ipsq, q, current_mp, (ipsq_func_t)ip_process_ioctl, 14078 NEW_OP, NULL); 14079 14080 ASSERT(new_ipsq->ipsq_xopq_mptail != NULL && 14081 new_ipsq->ipsq_xopq_mphead != NULL); 14082 14083 /* 14084 * move from old ipsq to the new ipsq. 14085 */ 14086 new_ipsq->ipsq_xopq_mptail->b_next = old_ipsq->ipsq_xopq_mphead; 14087 if (old_ipsq->ipsq_xopq_mphead != NULL) 14088 new_ipsq->ipsq_xopq_mptail = old_ipsq->ipsq_xopq_mptail; 14089 14090 old_ipsq->ipsq_xopq_mphead = old_ipsq->ipsq_xopq_mptail = NULL; 14091 } 14092 14093 void 14094 ill_group_cleanup(ill_t *ill) 14095 { 14096 ill_t *ill_v4; 14097 ill_t *ill_v6; 14098 ipif_t *ipif; 14099 14100 ill_v4 = ill->ill_phyint->phyint_illv4; 14101 ill_v6 = ill->ill_phyint->phyint_illv6; 14102 14103 if (ill_v4 != NULL) { 14104 mutex_enter(&ill_v4->ill_lock); 14105 for (ipif = ill_v4->ill_ipif; ipif != NULL; 14106 ipif = ipif->ipif_next) { 14107 IPIF_UNMARK_MOVING(ipif); 14108 } 14109 ill_v4->ill_up_ipifs = B_FALSE; 14110 mutex_exit(&ill_v4->ill_lock); 14111 } 14112 14113 if (ill_v6 != NULL) { 14114 mutex_enter(&ill_v6->ill_lock); 14115 for (ipif = ill_v6->ill_ipif; ipif != NULL; 14116 ipif = ipif->ipif_next) { 14117 IPIF_UNMARK_MOVING(ipif); 14118 } 14119 ill_v6->ill_up_ipifs = B_FALSE; 14120 mutex_exit(&ill_v6->ill_lock); 14121 } 14122 } 14123 /* 14124 * This function is called when an ill has had a change in its group status 14125 * to bring up all the ipifs that were up before the change. 14126 */ 14127 int 14128 ill_up_ipifs(ill_t *ill, queue_t *q, mblk_t *mp) 14129 { 14130 ipif_t *ipif; 14131 ill_t *ill_v4; 14132 ill_t *ill_v6; 14133 ill_t *from_ill; 14134 int err = 0; 14135 14136 ASSERT(IAM_WRITER_ILL(ill)); 14137 14138 /* 14139 * Except for ipif_state_flags and ill_state_flags the other 14140 * fields of the ipif/ill that are modified below are protected 14141 * implicitly since we are a writer. We would have tried to down 14142 * even an ipif that was already down, in ill_down_ipifs. So we 14143 * just blindly clear the IPIF_CHANGING flag here on all ipifs. 14144 */ 14145 ill_v4 = ill->ill_phyint->phyint_illv4; 14146 ill_v6 = ill->ill_phyint->phyint_illv6; 14147 if (ill_v4 != NULL) { 14148 ill_v4->ill_up_ipifs = B_TRUE; 14149 for (ipif = ill_v4->ill_ipif; ipif != NULL; 14150 ipif = ipif->ipif_next) { 14151 mutex_enter(&ill_v4->ill_lock); 14152 ipif->ipif_state_flags &= ~IPIF_CHANGING; 14153 IPIF_UNMARK_MOVING(ipif); 14154 mutex_exit(&ill_v4->ill_lock); 14155 if (ipif->ipif_was_up) { 14156 if (!(ipif->ipif_flags & IPIF_UP)) 14157 err = ipif_up(ipif, q, mp); 14158 ipif->ipif_was_up = B_FALSE; 14159 if (err != 0) { 14160 /* 14161 * Can there be any other error ? 14162 */ 14163 ASSERT(err == EINPROGRESS); 14164 return (err); 14165 } 14166 } 14167 } 14168 mutex_enter(&ill_v4->ill_lock); 14169 ill_v4->ill_state_flags &= ~ILL_CHANGING; 14170 mutex_exit(&ill_v4->ill_lock); 14171 ill_v4->ill_up_ipifs = B_FALSE; 14172 if (ill_v4->ill_move_in_progress) { 14173 ASSERT(ill_v4->ill_move_peer != NULL); 14174 ill_v4->ill_move_in_progress = B_FALSE; 14175 from_ill = ill_v4->ill_move_peer; 14176 from_ill->ill_move_in_progress = B_FALSE; 14177 from_ill->ill_move_peer = NULL; 14178 mutex_enter(&from_ill->ill_lock); 14179 from_ill->ill_state_flags &= ~ILL_CHANGING; 14180 mutex_exit(&from_ill->ill_lock); 14181 if (ill_v6 == NULL) { 14182 if (from_ill->ill_phyint->phyint_flags & 14183 PHYI_STANDBY) { 14184 phyint_inactive(from_ill->ill_phyint); 14185 } 14186 if (ill_v4->ill_phyint->phyint_flags & 14187 PHYI_STANDBY) { 14188 phyint_inactive(ill_v4->ill_phyint); 14189 } 14190 } 14191 ill_v4->ill_move_peer = NULL; 14192 } 14193 } 14194 14195 if (ill_v6 != NULL) { 14196 ill_v6->ill_up_ipifs = B_TRUE; 14197 for (ipif = ill_v6->ill_ipif; ipif != NULL; 14198 ipif = ipif->ipif_next) { 14199 mutex_enter(&ill_v6->ill_lock); 14200 ipif->ipif_state_flags &= ~IPIF_CHANGING; 14201 IPIF_UNMARK_MOVING(ipif); 14202 mutex_exit(&ill_v6->ill_lock); 14203 if (ipif->ipif_was_up) { 14204 if (!(ipif->ipif_flags & IPIF_UP)) 14205 err = ipif_up(ipif, q, mp); 14206 ipif->ipif_was_up = B_FALSE; 14207 if (err != 0) { 14208 /* 14209 * Can there be any other error ? 14210 */ 14211 ASSERT(err == EINPROGRESS); 14212 return (err); 14213 } 14214 } 14215 } 14216 mutex_enter(&ill_v6->ill_lock); 14217 ill_v6->ill_state_flags &= ~ILL_CHANGING; 14218 mutex_exit(&ill_v6->ill_lock); 14219 ill_v6->ill_up_ipifs = B_FALSE; 14220 if (ill_v6->ill_move_in_progress) { 14221 ASSERT(ill_v6->ill_move_peer != NULL); 14222 ill_v6->ill_move_in_progress = B_FALSE; 14223 from_ill = ill_v6->ill_move_peer; 14224 from_ill->ill_move_in_progress = B_FALSE; 14225 from_ill->ill_move_peer = NULL; 14226 mutex_enter(&from_ill->ill_lock); 14227 from_ill->ill_state_flags &= ~ILL_CHANGING; 14228 mutex_exit(&from_ill->ill_lock); 14229 if (from_ill->ill_phyint->phyint_flags & PHYI_STANDBY) { 14230 phyint_inactive(from_ill->ill_phyint); 14231 } 14232 if (ill_v6->ill_phyint->phyint_flags & PHYI_STANDBY) { 14233 phyint_inactive(ill_v6->ill_phyint); 14234 } 14235 ill_v6->ill_move_peer = NULL; 14236 } 14237 } 14238 return (0); 14239 } 14240 14241 /* 14242 * bring down all the approriate ipifs. 14243 */ 14244 /* ARGSUSED */ 14245 static void 14246 ill_down_ipifs(ill_t *ill, mblk_t *mp, int index, boolean_t chk_nofailover) 14247 { 14248 ipif_t *ipif; 14249 14250 ASSERT(IAM_WRITER_ILL(ill)); 14251 14252 /* 14253 * Except for ipif_state_flags the other fields of the ipif/ill that 14254 * are modified below are protected implicitly since we are a writer 14255 */ 14256 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 14257 if (chk_nofailover && (ipif->ipif_flags & IPIF_NOFAILOVER)) 14258 continue; 14259 /* 14260 * Don't bring down the LINK LOCAL addresses as they are tied 14261 * to physical interface and they don't move. Treat them as 14262 * IPIF_NOFAILOVER. 14263 */ 14264 if (chk_nofailover && ill->ill_isv6 && 14265 IN6_IS_ADDR_LINKLOCAL(&ipif->ipif_v6lcl_addr)) 14266 continue; 14267 if (index == 0 || index == ipif->ipif_orig_ifindex) { 14268 /* 14269 * We go through the ipif_down logic even if the ipif 14270 * is already down, since routes can be added based 14271 * on down ipifs. Going through ipif_down once again 14272 * will delete any IREs created based on these routes. 14273 */ 14274 if (ipif->ipif_flags & IPIF_UP) 14275 ipif->ipif_was_up = B_TRUE; 14276 /* 14277 * If called with chk_nofailover true ipif is moving. 14278 */ 14279 mutex_enter(&ill->ill_lock); 14280 if (chk_nofailover) { 14281 ipif->ipif_state_flags |= 14282 IPIF_MOVING | IPIF_CHANGING; 14283 } else { 14284 ipif->ipif_state_flags |= IPIF_CHANGING; 14285 } 14286 mutex_exit(&ill->ill_lock); 14287 /* 14288 * Need to re-create net/subnet bcast ires if 14289 * they are dependent on ipif. 14290 */ 14291 if (!ipif->ipif_isv6) 14292 ipif_check_bcast_ires(ipif); 14293 (void) ipif_logical_down(ipif, NULL, NULL); 14294 ipif_non_duplicate(ipif); 14295 ipif_down_tail(ipif); 14296 } 14297 } 14298 } 14299 14300 #define IPSQ_INC_REF(ipsq, ipst) { \ 14301 ASSERT(RW_WRITE_HELD(&ipst->ips_ill_g_lock)); \ 14302 (ipsq)->ipsq_refs++; \ 14303 } 14304 14305 #define IPSQ_DEC_REF(ipsq, ipst) { \ 14306 ASSERT(RW_WRITE_HELD(&ipst->ips_ill_g_lock)); \ 14307 (ipsq)->ipsq_refs--; \ 14308 if ((ipsq)->ipsq_refs == 0) \ 14309 (ipsq)->ipsq_name[0] = '\0'; \ 14310 } 14311 14312 /* 14313 * Change the ipsq of all the ill's whose current ipsq is 'cur_ipsq' to 14314 * new_ipsq. 14315 */ 14316 static void 14317 ill_merge_ipsq(ipsq_t *cur_ipsq, ipsq_t *new_ipsq, ip_stack_t *ipst) 14318 { 14319 phyint_t *phyint; 14320 phyint_t *next_phyint; 14321 14322 /* 14323 * To change the ipsq of an ill, we need to hold the ill_g_lock as 14324 * writer and the ill_lock of the ill in question. Also the dest 14325 * ipsq can't vanish while we hold the ill_g_lock as writer. 14326 */ 14327 ASSERT(RW_WRITE_HELD(&ipst->ips_ill_g_lock)); 14328 14329 phyint = cur_ipsq->ipsq_phyint_list; 14330 cur_ipsq->ipsq_phyint_list = NULL; 14331 while (phyint != NULL) { 14332 next_phyint = phyint->phyint_ipsq_next; 14333 IPSQ_DEC_REF(cur_ipsq, ipst); 14334 phyint->phyint_ipsq_next = new_ipsq->ipsq_phyint_list; 14335 new_ipsq->ipsq_phyint_list = phyint; 14336 IPSQ_INC_REF(new_ipsq, ipst); 14337 phyint->phyint_ipsq = new_ipsq; 14338 phyint = next_phyint; 14339 } 14340 } 14341 14342 #define SPLIT_SUCCESS 0 14343 #define SPLIT_NOT_NEEDED 1 14344 #define SPLIT_FAILED 2 14345 14346 int 14347 ill_split_to_grp_ipsq(phyint_t *phyint, ipsq_t *cur_ipsq, boolean_t need_retry, 14348 ip_stack_t *ipst) 14349 { 14350 ipsq_t *newipsq = NULL; 14351 14352 /* 14353 * Assertions denote pre-requisites for changing the ipsq of 14354 * a phyint 14355 */ 14356 ASSERT(RW_WRITE_HELD(&ipst->ips_ill_g_lock)); 14357 /* 14358 * <ill-phyint> assocs can't change while ill_g_lock 14359 * is held as writer. See ill_phyint_reinit() 14360 */ 14361 ASSERT(phyint->phyint_illv4 == NULL || 14362 MUTEX_HELD(&phyint->phyint_illv4->ill_lock)); 14363 ASSERT(phyint->phyint_illv6 == NULL || 14364 MUTEX_HELD(&phyint->phyint_illv6->ill_lock)); 14365 14366 if ((phyint->phyint_groupname_len != 14367 (strlen(cur_ipsq->ipsq_name) + 1) || 14368 bcmp(phyint->phyint_groupname, cur_ipsq->ipsq_name, 14369 phyint->phyint_groupname_len) != 0)) { 14370 /* 14371 * Once we fail in creating a new ipsq due to memory shortage, 14372 * don't attempt to create new ipsq again, based on another 14373 * phyint, since we want all phyints belonging to an IPMP group 14374 * to be in the same ipsq even in the event of mem alloc fails. 14375 */ 14376 newipsq = ip_ipsq_lookup(phyint->phyint_groupname, !need_retry, 14377 cur_ipsq, ipst); 14378 if (newipsq == NULL) { 14379 /* Memory allocation failure */ 14380 return (SPLIT_FAILED); 14381 } else { 14382 /* ipsq_refs protected by ill_g_lock (writer) */ 14383 IPSQ_DEC_REF(cur_ipsq, ipst); 14384 phyint->phyint_ipsq = newipsq; 14385 phyint->phyint_ipsq_next = newipsq->ipsq_phyint_list; 14386 newipsq->ipsq_phyint_list = phyint; 14387 IPSQ_INC_REF(newipsq, ipst); 14388 return (SPLIT_SUCCESS); 14389 } 14390 } 14391 return (SPLIT_NOT_NEEDED); 14392 } 14393 14394 /* 14395 * The ill locks of the phyint and the ill_g_lock (writer) must be held 14396 * to do this split 14397 */ 14398 static int 14399 ill_split_to_own_ipsq(phyint_t *phyint, ipsq_t *cur_ipsq, ip_stack_t *ipst) 14400 { 14401 ipsq_t *newipsq; 14402 14403 ASSERT(RW_WRITE_HELD(&ipst->ips_ill_g_lock)); 14404 /* 14405 * <ill-phyint> assocs can't change while ill_g_lock 14406 * is held as writer. See ill_phyint_reinit() 14407 */ 14408 14409 ASSERT(phyint->phyint_illv4 == NULL || 14410 MUTEX_HELD(&phyint->phyint_illv4->ill_lock)); 14411 ASSERT(phyint->phyint_illv6 == NULL || 14412 MUTEX_HELD(&phyint->phyint_illv6->ill_lock)); 14413 14414 if (!ipsq_init((phyint->phyint_illv4 != NULL) ? 14415 phyint->phyint_illv4: phyint->phyint_illv6)) { 14416 /* 14417 * ipsq_init failed due to no memory 14418 * caller will use the same ipsq 14419 */ 14420 return (SPLIT_FAILED); 14421 } 14422 14423 /* ipsq_ref is protected by ill_g_lock (writer) */ 14424 IPSQ_DEC_REF(cur_ipsq, ipst); 14425 14426 /* 14427 * This is a new ipsq that is unknown to the world. 14428 * So we don't need to hold ipsq_lock, 14429 */ 14430 newipsq = phyint->phyint_ipsq; 14431 newipsq->ipsq_writer = NULL; 14432 newipsq->ipsq_reentry_cnt--; 14433 ASSERT(newipsq->ipsq_reentry_cnt == 0); 14434 #ifdef DEBUG 14435 newipsq->ipsq_depth = 0; 14436 #endif 14437 14438 return (SPLIT_SUCCESS); 14439 } 14440 14441 /* 14442 * Change the ipsq of all the ill's whose current ipsq is 'cur_ipsq' to 14443 * ipsq's representing their individual groups or themselves. Return 14444 * whether split needs to be retried again later. 14445 */ 14446 static boolean_t 14447 ill_split_ipsq(ipsq_t *cur_ipsq) 14448 { 14449 phyint_t *phyint; 14450 phyint_t *next_phyint; 14451 int error; 14452 boolean_t need_retry = B_FALSE; 14453 ip_stack_t *ipst = cur_ipsq->ipsq_ipst; 14454 14455 phyint = cur_ipsq->ipsq_phyint_list; 14456 cur_ipsq->ipsq_phyint_list = NULL; 14457 while (phyint != NULL) { 14458 next_phyint = phyint->phyint_ipsq_next; 14459 /* 14460 * 'created' will tell us whether the callee actually 14461 * created an ipsq. Lack of memory may force the callee 14462 * to return without creating an ipsq. 14463 */ 14464 if (phyint->phyint_groupname == NULL) { 14465 error = ill_split_to_own_ipsq(phyint, cur_ipsq, ipst); 14466 } else { 14467 error = ill_split_to_grp_ipsq(phyint, cur_ipsq, 14468 need_retry, ipst); 14469 } 14470 14471 switch (error) { 14472 case SPLIT_FAILED: 14473 need_retry = B_TRUE; 14474 /* FALLTHRU */ 14475 case SPLIT_NOT_NEEDED: 14476 /* 14477 * Keep it on the list. 14478 */ 14479 phyint->phyint_ipsq_next = cur_ipsq->ipsq_phyint_list; 14480 cur_ipsq->ipsq_phyint_list = phyint; 14481 break; 14482 case SPLIT_SUCCESS: 14483 break; 14484 default: 14485 ASSERT(0); 14486 } 14487 14488 phyint = next_phyint; 14489 } 14490 return (need_retry); 14491 } 14492 14493 /* 14494 * given an ipsq 'ipsq' lock all ills associated with this ipsq. 14495 * and return the ills in the list. This list will be 14496 * needed to unlock all the ills later on by the caller. 14497 * The <ill-ipsq> associations could change between the 14498 * lock and unlock. Hence the unlock can't traverse the 14499 * ipsq to get the list of ills. 14500 */ 14501 static int 14502 ill_lock_ipsq_ills(ipsq_t *ipsq, ill_t **list, int list_max) 14503 { 14504 int cnt = 0; 14505 phyint_t *phyint; 14506 ip_stack_t *ipst = ipsq->ipsq_ipst; 14507 14508 /* 14509 * The caller holds ill_g_lock to ensure that the ill memberships 14510 * of the ipsq don't change 14511 */ 14512 ASSERT(RW_LOCK_HELD(&ipst->ips_ill_g_lock)); 14513 14514 phyint = ipsq->ipsq_phyint_list; 14515 while (phyint != NULL) { 14516 if (phyint->phyint_illv4 != NULL) { 14517 ASSERT(cnt < list_max); 14518 list[cnt++] = phyint->phyint_illv4; 14519 } 14520 if (phyint->phyint_illv6 != NULL) { 14521 ASSERT(cnt < list_max); 14522 list[cnt++] = phyint->phyint_illv6; 14523 } 14524 phyint = phyint->phyint_ipsq_next; 14525 } 14526 ill_lock_ills(list, cnt); 14527 return (cnt); 14528 } 14529 14530 void 14531 ill_lock_ills(ill_t **list, int cnt) 14532 { 14533 int i; 14534 14535 if (cnt > 1) { 14536 boolean_t try_again; 14537 do { 14538 try_again = B_FALSE; 14539 for (i = 0; i < cnt - 1; i++) { 14540 if (list[i] < list[i + 1]) { 14541 ill_t *tmp; 14542 14543 /* swap the elements */ 14544 tmp = list[i]; 14545 list[i] = list[i + 1]; 14546 list[i + 1] = tmp; 14547 try_again = B_TRUE; 14548 } 14549 } 14550 } while (try_again); 14551 } 14552 14553 for (i = 0; i < cnt; i++) { 14554 if (i == 0) { 14555 if (list[i] != NULL) 14556 mutex_enter(&list[i]->ill_lock); 14557 else 14558 return; 14559 } else if ((list[i-1] != list[i]) && (list[i] != NULL)) { 14560 mutex_enter(&list[i]->ill_lock); 14561 } 14562 } 14563 } 14564 14565 void 14566 ill_unlock_ills(ill_t **list, int cnt) 14567 { 14568 int i; 14569 14570 for (i = 0; i < cnt; i++) { 14571 if ((i == 0) && (list[i] != NULL)) { 14572 mutex_exit(&list[i]->ill_lock); 14573 } else if ((list[i-1] != list[i]) && (list[i] != NULL)) { 14574 mutex_exit(&list[i]->ill_lock); 14575 } 14576 } 14577 } 14578 14579 /* 14580 * Merge all the ills from 1 ipsq group into another ipsq group. 14581 * The source ipsq group is specified by the ipsq associated with 14582 * 'from_ill'. The destination ipsq group is specified by the ipsq 14583 * associated with 'to_ill' or 'groupname' respectively. 14584 * Note that ipsq itself does not have a reference count mechanism 14585 * and functions don't look up an ipsq and pass it around. Instead 14586 * functions pass around an ill or groupname, and the ipsq is looked 14587 * up from the ill or groupname and the required operation performed 14588 * atomically with the lookup on the ipsq. 14589 */ 14590 static int 14591 ill_merge_groups(ill_t *from_ill, ill_t *to_ill, char *groupname, mblk_t *mp, 14592 queue_t *q) 14593 { 14594 ipsq_t *old_ipsq; 14595 ipsq_t *new_ipsq; 14596 ill_t **ill_list; 14597 int cnt; 14598 size_t ill_list_size; 14599 boolean_t became_writer_on_new_sq = B_FALSE; 14600 ip_stack_t *ipst = from_ill->ill_ipst; 14601 14602 ASSERT(to_ill == NULL || ipst == to_ill->ill_ipst); 14603 /* Exactly 1 of 'to_ill' and groupname can be specified. */ 14604 ASSERT((to_ill != NULL) ^ (groupname != NULL)); 14605 14606 /* 14607 * Need to hold ill_g_lock as writer and also the ill_lock to 14608 * change the <ill-ipsq> assoc of an ill. Need to hold the 14609 * ipsq_lock to prevent new messages from landing on an ipsq. 14610 */ 14611 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 14612 14613 old_ipsq = from_ill->ill_phyint->phyint_ipsq; 14614 if (groupname != NULL) 14615 new_ipsq = ip_ipsq_lookup(groupname, B_TRUE, NULL, ipst); 14616 else { 14617 new_ipsq = to_ill->ill_phyint->phyint_ipsq; 14618 } 14619 14620 ASSERT(old_ipsq != NULL && new_ipsq != NULL); 14621 14622 /* 14623 * both groups are on the same ipsq. 14624 */ 14625 if (old_ipsq == new_ipsq) { 14626 rw_exit(&ipst->ips_ill_g_lock); 14627 return (0); 14628 } 14629 14630 cnt = old_ipsq->ipsq_refs << 1; 14631 ill_list_size = cnt * sizeof (ill_t *); 14632 ill_list = kmem_zalloc(ill_list_size, KM_NOSLEEP); 14633 if (ill_list == NULL) { 14634 rw_exit(&ipst->ips_ill_g_lock); 14635 return (ENOMEM); 14636 } 14637 cnt = ill_lock_ipsq_ills(old_ipsq, ill_list, cnt); 14638 14639 /* Need ipsq lock to enque messages on new ipsq or to become writer */ 14640 mutex_enter(&new_ipsq->ipsq_lock); 14641 if ((new_ipsq->ipsq_writer == NULL && 14642 new_ipsq->ipsq_current_ipif == NULL) || 14643 (new_ipsq->ipsq_writer == curthread)) { 14644 new_ipsq->ipsq_writer = curthread; 14645 new_ipsq->ipsq_reentry_cnt++; 14646 became_writer_on_new_sq = B_TRUE; 14647 } 14648 14649 /* 14650 * We are holding ill_g_lock as writer and all the ill locks of 14651 * the old ipsq. So the old_ipsq can't be looked up, and hence no new 14652 * message can land up on the old ipsq even though we don't hold the 14653 * ipsq_lock of the old_ipsq. Now move all messages to the newipsq. 14654 */ 14655 ill_move_to_new_ipsq(old_ipsq, new_ipsq, mp, q); 14656 14657 /* 14658 * now change the ipsq of all ills in the 'old_ipsq' to 'new_ipsq'. 14659 * 'new_ipsq' has been looked up, and it can't change its <ill-ipsq> 14660 * assocs. till we release the ill_g_lock, and hence it can't vanish. 14661 */ 14662 ill_merge_ipsq(old_ipsq, new_ipsq, ipst); 14663 14664 /* 14665 * Mark the new ipsq as needing a split since it is currently 14666 * being shared by more than 1 IPMP group. The split will 14667 * occur at the end of ipsq_exit 14668 */ 14669 new_ipsq->ipsq_split = B_TRUE; 14670 14671 /* Now release all the locks */ 14672 mutex_exit(&new_ipsq->ipsq_lock); 14673 ill_unlock_ills(ill_list, cnt); 14674 rw_exit(&ipst->ips_ill_g_lock); 14675 14676 kmem_free(ill_list, ill_list_size); 14677 14678 /* 14679 * If we succeeded in becoming writer on the new ipsq, then 14680 * drain the new ipsq and start processing all enqueued messages 14681 * including the current ioctl we are processing which is either 14682 * a set groupname or failover/failback. 14683 */ 14684 if (became_writer_on_new_sq) 14685 ipsq_exit(new_ipsq); 14686 14687 /* 14688 * syncq has been changed and all the messages have been moved. 14689 */ 14690 mutex_enter(&old_ipsq->ipsq_lock); 14691 old_ipsq->ipsq_current_ipif = NULL; 14692 old_ipsq->ipsq_current_ioctl = 0; 14693 old_ipsq->ipsq_current_done = B_TRUE; 14694 mutex_exit(&old_ipsq->ipsq_lock); 14695 return (EINPROGRESS); 14696 } 14697 14698 /* 14699 * Delete and add the loopback copy and non-loopback copy of 14700 * the BROADCAST ire corresponding to ill and addr. Used to 14701 * group broadcast ires together when ill becomes part of 14702 * a group. 14703 * 14704 * This function is also called when ill is leaving the group 14705 * so that the ires belonging to the group gets re-grouped. 14706 */ 14707 static void 14708 ill_bcast_delete_and_add(ill_t *ill, ipaddr_t addr) 14709 { 14710 ire_t *ire, *nire, *nire_next, *ire_head = NULL; 14711 ire_t **ire_ptpn = &ire_head; 14712 ip_stack_t *ipst = ill->ill_ipst; 14713 14714 /* 14715 * The loopback and non-loopback IREs are inserted in the order in which 14716 * they're found, on the basis that they are correctly ordered (loopback 14717 * first). 14718 */ 14719 for (;;) { 14720 ire = ire_ctable_lookup(addr, 0, IRE_BROADCAST, ill->ill_ipif, 14721 ALL_ZONES, NULL, MATCH_IRE_TYPE | MATCH_IRE_ILL, ipst); 14722 if (ire == NULL) 14723 break; 14724 14725 /* 14726 * we are passing in KM_SLEEP because it is not easy to 14727 * go back to a sane state in case of memory failure. 14728 */ 14729 nire = kmem_cache_alloc(ire_cache, KM_SLEEP); 14730 ASSERT(nire != NULL); 14731 bzero(nire, sizeof (ire_t)); 14732 /* 14733 * Don't use ire_max_frag directly since we don't 14734 * hold on to 'ire' until we add the new ire 'nire' and 14735 * we don't want the new ire to have a dangling reference 14736 * to 'ire'. The ire_max_frag of a broadcast ire must 14737 * be in sync with the ipif_mtu of the associate ipif. 14738 * For eg. this happens as a result of SIOCSLIFNAME, 14739 * SIOCSLIFLNKINFO or a DL_NOTE_SDU_SIZE inititated by 14740 * the driver. A change in ire_max_frag triggered as 14741 * as a result of path mtu discovery, or due to an 14742 * IP_IOC_IRE_ADVISE_NOREPLY from the transport or due a 14743 * route change -mtu command does not apply to broadcast ires. 14744 * 14745 * XXX We need a recovery strategy here if ire_init fails 14746 */ 14747 if (ire_init(nire, 14748 (uchar_t *)&ire->ire_addr, 14749 (uchar_t *)&ire->ire_mask, 14750 (uchar_t *)&ire->ire_src_addr, 14751 (uchar_t *)&ire->ire_gateway_addr, 14752 ire->ire_stq == NULL ? &ip_loopback_mtu : 14753 &ire->ire_ipif->ipif_mtu, 14754 ire->ire_nce, 14755 ire->ire_rfq, 14756 ire->ire_stq, 14757 ire->ire_type, 14758 ire->ire_ipif, 14759 ire->ire_cmask, 14760 ire->ire_phandle, 14761 ire->ire_ihandle, 14762 ire->ire_flags, 14763 &ire->ire_uinfo, 14764 NULL, 14765 NULL, 14766 ipst) == NULL) { 14767 cmn_err(CE_PANIC, "ire_init() failed"); 14768 } 14769 ire_delete(ire); 14770 ire_refrele(ire); 14771 14772 /* 14773 * The newly created IREs are inserted at the tail of the list 14774 * starting with ire_head. As we've just allocated them no one 14775 * knows about them so it's safe. 14776 */ 14777 *ire_ptpn = nire; 14778 ire_ptpn = &nire->ire_next; 14779 } 14780 14781 for (nire = ire_head; nire != NULL; nire = nire_next) { 14782 int error; 14783 ire_t *oire; 14784 /* unlink the IRE from our list before calling ire_add() */ 14785 nire_next = nire->ire_next; 14786 nire->ire_next = NULL; 14787 14788 /* ire_add adds the ire at the right place in the list */ 14789 oire = nire; 14790 error = ire_add(&nire, NULL, NULL, NULL, B_FALSE); 14791 ASSERT(error == 0); 14792 ASSERT(oire == nire); 14793 ire_refrele(nire); /* Held in ire_add */ 14794 } 14795 } 14796 14797 /* 14798 * This function is usually called when an ill is inserted in 14799 * a group and all the ipifs are already UP. As all the ipifs 14800 * are already UP, the broadcast ires have already been created 14801 * and been inserted. But, ire_add_v4 would not have grouped properly. 14802 * We need to re-group for the benefit of ip_wput_ire which 14803 * expects BROADCAST ires to be grouped properly to avoid sending 14804 * more than one copy of the broadcast packet per group. 14805 * 14806 * NOTE : We don't check for ill_ipif_up_count to be non-zero here 14807 * because when ipif_up_done ends up calling this, ires have 14808 * already been added before illgrp_insert i.e before ill_group 14809 * has been initialized. 14810 */ 14811 static void 14812 ill_group_bcast_for_xmit(ill_t *ill) 14813 { 14814 ill_group_t *illgrp; 14815 ipif_t *ipif; 14816 ipaddr_t addr; 14817 ipaddr_t net_mask; 14818 ipaddr_t subnet_netmask; 14819 14820 illgrp = ill->ill_group; 14821 14822 /* 14823 * This function is called even when an ill is deleted from 14824 * the group. Hence, illgrp could be null. 14825 */ 14826 if (illgrp != NULL && illgrp->illgrp_ill_count == 1) 14827 return; 14828 14829 /* 14830 * Delete all the BROADCAST ires matching this ill and add 14831 * them back. This time, ire_add_v4 should take care of 14832 * grouping them with others because ill is part of the 14833 * group. 14834 */ 14835 ill_bcast_delete_and_add(ill, 0); 14836 ill_bcast_delete_and_add(ill, INADDR_BROADCAST); 14837 14838 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 14839 14840 if ((ipif->ipif_lcl_addr != INADDR_ANY) && 14841 !(ipif->ipif_flags & IPIF_NOLOCAL)) { 14842 net_mask = ip_net_mask(ipif->ipif_lcl_addr); 14843 } else { 14844 net_mask = htonl(IN_CLASSA_NET); 14845 } 14846 addr = net_mask & ipif->ipif_subnet; 14847 ill_bcast_delete_and_add(ill, addr); 14848 ill_bcast_delete_and_add(ill, ~net_mask | addr); 14849 14850 subnet_netmask = ipif->ipif_net_mask; 14851 addr = ipif->ipif_subnet; 14852 ill_bcast_delete_and_add(ill, addr); 14853 ill_bcast_delete_and_add(ill, ~subnet_netmask | addr); 14854 } 14855 } 14856 14857 /* 14858 * This function is called from illgrp_delete when ill is being deleted 14859 * from the group. 14860 * 14861 * As ill is not there in the group anymore, any address belonging 14862 * to this ill should be cleared of IRE_MARK_NORECV. 14863 */ 14864 static void 14865 ill_clear_bcast_mark(ill_t *ill, ipaddr_t addr) 14866 { 14867 ire_t *ire; 14868 irb_t *irb; 14869 ip_stack_t *ipst = ill->ill_ipst; 14870 14871 ASSERT(ill->ill_group == NULL); 14872 14873 ire = ire_ctable_lookup(addr, 0, IRE_BROADCAST, ill->ill_ipif, 14874 ALL_ZONES, NULL, MATCH_IRE_TYPE | MATCH_IRE_ILL, ipst); 14875 14876 if (ire != NULL) { 14877 /* 14878 * IPMP and plumbing operations are serialized on the ipsq, so 14879 * no one will insert or delete a broadcast ire under our feet. 14880 */ 14881 irb = ire->ire_bucket; 14882 rw_enter(&irb->irb_lock, RW_READER); 14883 ire_refrele(ire); 14884 14885 for (; ire != NULL; ire = ire->ire_next) { 14886 if (ire->ire_addr != addr) 14887 break; 14888 if (ire_to_ill(ire) != ill) 14889 continue; 14890 14891 ASSERT(!(ire->ire_marks & IRE_MARK_CONDEMNED)); 14892 ire->ire_marks &= ~IRE_MARK_NORECV; 14893 } 14894 rw_exit(&irb->irb_lock); 14895 } 14896 } 14897 14898 ire_t * 14899 irep_insert(ill_group_t *illgrp, ipaddr_t addr, ire_t *ire, ire_t ***pirep) 14900 { 14901 boolean_t first = B_TRUE; 14902 ire_t *clear_ire = NULL; 14903 ire_t *start_ire = NULL; 14904 uint64_t match_flags; 14905 uint64_t phyi_flags; 14906 boolean_t fallback = B_FALSE; 14907 14908 /* 14909 * irb_lock must be held by the caller. 14910 * Get to the first ire matching the address and the 14911 * group. If the address does not match we are done 14912 * as we could not find the IRE. If the address matches 14913 * we should get to the first one matching the group. 14914 */ 14915 while (ire != NULL) { 14916 if (ire->ire_addr != addr || 14917 ire->ire_ipif->ipif_ill->ill_group == illgrp) { 14918 break; 14919 } 14920 ire = ire->ire_next; 14921 } 14922 match_flags = PHYI_FAILED | PHYI_INACTIVE; 14923 start_ire = ire; 14924 redo: 14925 while (ire != NULL && ire->ire_addr == addr && 14926 ire->ire_ipif->ipif_ill->ill_group == illgrp) { 14927 /* 14928 * The first ire for any address within a group 14929 * should always be the one with IRE_MARK_NORECV cleared 14930 * so that ip_wput_ire can avoid searching for one. 14931 * Note down the insertion point which will be used 14932 * later. 14933 */ 14934 if (first && (*pirep == NULL)) 14935 *pirep = ire->ire_ptpn; 14936 /* 14937 * PHYI_FAILED is set when the interface fails. 14938 * This interface might have become good, but the 14939 * daemon has not yet detected. We should still 14940 * not receive on this. PHYI_OFFLINE should never 14941 * be picked as this has been offlined and soon 14942 * be removed. 14943 */ 14944 phyi_flags = ire->ire_ipif->ipif_ill->ill_phyint->phyint_flags; 14945 if (phyi_flags & PHYI_OFFLINE) { 14946 ire->ire_marks |= IRE_MARK_NORECV; 14947 ire = ire->ire_next; 14948 continue; 14949 } 14950 if (phyi_flags & match_flags) { 14951 ire->ire_marks |= IRE_MARK_NORECV; 14952 ire = ire->ire_next; 14953 if ((phyi_flags & (PHYI_FAILED | PHYI_INACTIVE)) == 14954 PHYI_INACTIVE) { 14955 fallback = B_TRUE; 14956 } 14957 continue; 14958 } 14959 if (first) { 14960 /* 14961 * We will move this to the front of the list later 14962 * on. 14963 */ 14964 clear_ire = ire; 14965 ire->ire_marks &= ~IRE_MARK_NORECV; 14966 } else { 14967 ire->ire_marks |= IRE_MARK_NORECV; 14968 } 14969 first = B_FALSE; 14970 ire = ire->ire_next; 14971 } 14972 /* 14973 * If we never nominated anybody, try nominating at least 14974 * an INACTIVE, if we found one. Do it only once though. 14975 */ 14976 if (first && (match_flags == (PHYI_FAILED | PHYI_INACTIVE)) && 14977 fallback) { 14978 match_flags = PHYI_FAILED; 14979 ire = start_ire; 14980 *pirep = NULL; 14981 goto redo; 14982 } 14983 return (clear_ire); 14984 } 14985 14986 /* 14987 * This function must be called only after the broadcast ires 14988 * have been grouped together. For a given address addr, nominate 14989 * only one of the ires whose interface is not FAILED or OFFLINE. 14990 * 14991 * This is also called when an ipif goes down, so that we can nominate 14992 * a different ire with the same address for receiving. 14993 */ 14994 static void 14995 ill_mark_bcast(ill_group_t *illgrp, ipaddr_t addr, ip_stack_t *ipst) 14996 { 14997 irb_t *irb; 14998 ire_t *ire; 14999 ire_t *ire1; 15000 ire_t *save_ire; 15001 ire_t **irep = NULL; 15002 ire_t *clear_ire = NULL; 15003 ire_t *new_lb_ire; 15004 ire_t *new_nlb_ire; 15005 boolean_t new_lb_ire_used = B_FALSE; 15006 boolean_t new_nlb_ire_used = B_FALSE; 15007 boolean_t refrele_lb_ire = B_FALSE; 15008 boolean_t refrele_nlb_ire = B_FALSE; 15009 uint_t max_frag; 15010 15011 ire = ire_ctable_lookup(addr, 0, IRE_BROADCAST, NULL, ALL_ZONES, 15012 NULL, MATCH_IRE_TYPE, ipst); 15013 /* 15014 * We may not be able to find some ires if a previous 15015 * ire_create failed. This happens when an ipif goes 15016 * down and we are unable to create BROADCAST ires due 15017 * to memory failure. Thus, we have to check for NULL 15018 * below. This should handle the case for LOOPBACK, 15019 * POINTOPOINT and interfaces with some POINTOPOINT 15020 * logicals for which there are no BROADCAST ires. 15021 */ 15022 if (ire == NULL) 15023 return; 15024 /* 15025 * Currently IRE_BROADCASTS are deleted when an ipif 15026 * goes down which runs exclusively. Thus, setting 15027 * IRE_MARK_RCVD should not race with ire_delete marking 15028 * IRE_MARK_CONDEMNED. We grab the lock below just to 15029 * be consistent with other parts of the code that walks 15030 * a given bucket. 15031 */ 15032 save_ire = ire; 15033 irb = ire->ire_bucket; 15034 new_lb_ire = kmem_cache_alloc(ire_cache, KM_NOSLEEP); 15035 if (new_lb_ire == NULL) { 15036 ire_refrele(ire); 15037 return; 15038 } 15039 new_nlb_ire = kmem_cache_alloc(ire_cache, KM_NOSLEEP); 15040 if (new_nlb_ire == NULL) { 15041 ire_refrele(ire); 15042 kmem_cache_free(ire_cache, new_lb_ire); 15043 return; 15044 } 15045 IRB_REFHOLD(irb); 15046 rw_enter(&irb->irb_lock, RW_WRITER); 15047 clear_ire = irep_insert(illgrp, addr, ire, &irep); 15048 15049 /* 15050 * irep non-NULL indicates that we entered the while loop 15051 * above. If clear_ire is at the insertion point, we don't 15052 * have to do anything. clear_ire will be NULL if all the 15053 * interfaces are failed. 15054 * 15055 * We cannot unlink and reinsert the ire at the right place 15056 * in the list since there can be other walkers of this bucket. 15057 * Instead we delete and recreate the ire 15058 */ 15059 if (clear_ire != NULL && irep != NULL && *irep != clear_ire) { 15060 ire_t *clear_ire_stq = NULL; 15061 ire_t *clr_ire = NULL; 15062 ire_t *ire_next = NULL; 15063 15064 if (clear_ire->ire_stq == NULL) 15065 ire_next = clear_ire->ire_next; 15066 15067 rw_exit(&irb->irb_lock); 15068 15069 bzero(new_lb_ire, sizeof (ire_t)); 15070 /* XXX We need a recovery strategy here. */ 15071 if (ire_init(new_lb_ire, 15072 (uchar_t *)&clear_ire->ire_addr, 15073 (uchar_t *)&clear_ire->ire_mask, 15074 (uchar_t *)&clear_ire->ire_src_addr, 15075 (uchar_t *)&clear_ire->ire_gateway_addr, 15076 &clear_ire->ire_max_frag, 15077 NULL, /* let ire_nce_init derive the resolver info */ 15078 clear_ire->ire_rfq, 15079 clear_ire->ire_stq, 15080 clear_ire->ire_type, 15081 clear_ire->ire_ipif, 15082 clear_ire->ire_cmask, 15083 clear_ire->ire_phandle, 15084 clear_ire->ire_ihandle, 15085 clear_ire->ire_flags, 15086 &clear_ire->ire_uinfo, 15087 NULL, 15088 NULL, 15089 ipst) == NULL) 15090 cmn_err(CE_PANIC, "ire_init() failed"); 15091 15092 refrele_lb_ire = B_TRUE; 15093 15094 if (ire_next != NULL && 15095 ire_next->ire_stq != NULL && 15096 ire_next->ire_addr == clear_ire->ire_addr && 15097 ire_next->ire_ipif->ipif_ill == 15098 clear_ire->ire_ipif->ipif_ill) { 15099 clear_ire_stq = ire_next; 15100 15101 bzero(new_nlb_ire, sizeof (ire_t)); 15102 /* XXX We need a recovery strategy here. */ 15103 if (ire_init(new_nlb_ire, 15104 (uchar_t *)&clear_ire_stq->ire_addr, 15105 (uchar_t *)&clear_ire_stq->ire_mask, 15106 (uchar_t *)&clear_ire_stq->ire_src_addr, 15107 (uchar_t *)&clear_ire_stq->ire_gateway_addr, 15108 &clear_ire_stq->ire_max_frag, 15109 NULL, 15110 clear_ire_stq->ire_rfq, 15111 clear_ire_stq->ire_stq, 15112 clear_ire_stq->ire_type, 15113 clear_ire_stq->ire_ipif, 15114 clear_ire_stq->ire_cmask, 15115 clear_ire_stq->ire_phandle, 15116 clear_ire_stq->ire_ihandle, 15117 clear_ire_stq->ire_flags, 15118 &clear_ire_stq->ire_uinfo, 15119 NULL, 15120 NULL, 15121 ipst) == NULL) 15122 cmn_err(CE_PANIC, "ire_init() failed"); 15123 15124 refrele_nlb_ire = B_TRUE; 15125 } 15126 15127 rw_enter(&irb->irb_lock, RW_WRITER); 15128 /* 15129 * irb_lock was dropped across call to ire_init() due to 15130 * lock ordering issue with ipst->ips_ndp{4,6}->ndp_g_lock 15131 * mutex lock. Therefore irep could have changed. call 15132 * irep_insert() to get the new insertion point (irep) and 15133 * recheck all known conditions. 15134 */ 15135 irep = NULL; 15136 clr_ire = irep_insert(illgrp, addr, save_ire, &irep); 15137 if ((irep != NULL) && (*irep != clear_ire) && 15138 (clr_ire == clear_ire)) { 15139 if ((clear_ire_stq != NULL) && 15140 (clr_ire->ire_next != clear_ire_stq)) 15141 clear_ire_stq = NULL; 15142 /* 15143 * Delete the ire. We can't call ire_delete() since 15144 * we are holding the bucket lock. We can't release the 15145 * bucket lock since we can't allow irep to change. 15146 * So just mark it CONDEMNED. 15147 * The IRB_REFRELE will delete the ire from the list 15148 * and do the refrele. 15149 */ 15150 clear_ire->ire_marks |= IRE_MARK_CONDEMNED; 15151 irb->irb_marks |= IRB_MARK_CONDEMNED; 15152 15153 if (clear_ire_stq != NULL && 15154 clear_ire_stq->ire_nce != NULL) { 15155 nce_fastpath_list_delete( 15156 clear_ire_stq->ire_nce); 15157 clear_ire_stq->ire_marks |= IRE_MARK_CONDEMNED; 15158 } 15159 15160 /* 15161 * Also take care of otherfields like ib/ob pkt count 15162 * etc. Need to dup them. 15163 * ditto in ill_bcast_delete_and_add 15164 */ 15165 15166 /* Set the max_frag before adding the ire */ 15167 max_frag = *new_lb_ire->ire_max_fragp; 15168 new_lb_ire->ire_max_fragp = NULL; 15169 new_lb_ire->ire_max_frag = max_frag; 15170 15171 /* Add the new ire's. Insert at *irep */ 15172 new_lb_ire->ire_bucket = clear_ire->ire_bucket; 15173 ire1 = *irep; 15174 if (ire1 != NULL) 15175 ire1->ire_ptpn = &new_lb_ire->ire_next; 15176 new_lb_ire->ire_next = ire1; 15177 /* Link the new one in. */ 15178 new_lb_ire->ire_ptpn = irep; 15179 membar_producer(); 15180 *irep = new_lb_ire; 15181 new_lb_ire_used = B_TRUE; 15182 BUMP_IRE_STATS(ipst->ips_ire_stats_v4, 15183 ire_stats_inserted); 15184 new_lb_ire->ire_bucket->irb_ire_cnt++; 15185 DTRACE_PROBE3(ipif__incr__cnt, (ipif_t *), 15186 new_lb_ire->ire_ipif, 15187 (char *), "ire", (void *), new_lb_ire); 15188 new_lb_ire->ire_ipif->ipif_ire_cnt++; 15189 15190 if (clear_ire_stq != NULL) { 15191 ill_t *ire_ill; 15192 /* Set the max_frag before adding the ire */ 15193 max_frag = *new_nlb_ire->ire_max_fragp; 15194 new_nlb_ire->ire_max_fragp = NULL; 15195 new_nlb_ire->ire_max_frag = max_frag; 15196 15197 new_nlb_ire->ire_bucket = clear_ire->ire_bucket; 15198 irep = &new_lb_ire->ire_next; 15199 /* Add the new ire. Insert at *irep */ 15200 ire1 = *irep; 15201 if (ire1 != NULL) 15202 ire1->ire_ptpn = &new_nlb_ire->ire_next; 15203 new_nlb_ire->ire_next = ire1; 15204 /* Link the new one in. */ 15205 new_nlb_ire->ire_ptpn = irep; 15206 membar_producer(); 15207 *irep = new_nlb_ire; 15208 new_nlb_ire_used = B_TRUE; 15209 BUMP_IRE_STATS(ipst->ips_ire_stats_v4, 15210 ire_stats_inserted); 15211 new_nlb_ire->ire_bucket->irb_ire_cnt++; 15212 DTRACE_PROBE3(ipif__incr__cnt, 15213 (ipif_t *), new_nlb_ire->ire_ipif, 15214 (char *), "ire", (void *), new_nlb_ire); 15215 new_nlb_ire->ire_ipif->ipif_ire_cnt++; 15216 DTRACE_PROBE3(ill__incr__cnt, 15217 (ill_t *), new_nlb_ire->ire_stq->q_ptr, 15218 (char *), "ire", (void *), new_nlb_ire); 15219 ire_ill = (ill_t *)new_nlb_ire->ire_stq->q_ptr; 15220 ire_ill->ill_ire_cnt++; 15221 } 15222 } 15223 } 15224 ire_refrele(save_ire); 15225 rw_exit(&irb->irb_lock); 15226 /* 15227 * Since we dropped the irb_lock across call to ire_init() 15228 * and rechecking known conditions, it is possible that 15229 * the checks might fail, therefore undo the work done by 15230 * ire_init() by calling ire_refrele() on the newly created ire. 15231 */ 15232 if (!new_lb_ire_used) { 15233 if (refrele_lb_ire) { 15234 ire_refrele(new_lb_ire); 15235 } else { 15236 kmem_cache_free(ire_cache, new_lb_ire); 15237 } 15238 } 15239 if (!new_nlb_ire_used) { 15240 if (refrele_nlb_ire) { 15241 ire_refrele(new_nlb_ire); 15242 } else { 15243 kmem_cache_free(ire_cache, new_nlb_ire); 15244 } 15245 } 15246 IRB_REFRELE(irb); 15247 } 15248 15249 /* 15250 * Whenever an ipif goes down we have to renominate a different 15251 * broadcast ire to receive. Whenever an ipif comes up, we need 15252 * to make sure that we have only one nominated to receive. 15253 */ 15254 static void 15255 ipif_renominate_bcast(ipif_t *ipif) 15256 { 15257 ill_t *ill = ipif->ipif_ill; 15258 ipaddr_t subnet_addr; 15259 ipaddr_t net_addr; 15260 ipaddr_t net_mask = 0; 15261 ipaddr_t subnet_netmask; 15262 ipaddr_t addr; 15263 ill_group_t *illgrp; 15264 ip_stack_t *ipst = ill->ill_ipst; 15265 15266 illgrp = ill->ill_group; 15267 /* 15268 * If this is the last ipif going down, it might take 15269 * the ill out of the group. In that case ipif_down -> 15270 * illgrp_delete takes care of doing the nomination. 15271 * ipif_down does not call for this case. 15272 */ 15273 ASSERT(illgrp != NULL); 15274 15275 /* There could not have been any ires associated with this */ 15276 if (ipif->ipif_subnet == 0) 15277 return; 15278 15279 ill_mark_bcast(illgrp, 0, ipst); 15280 ill_mark_bcast(illgrp, INADDR_BROADCAST, ipst); 15281 15282 if ((ipif->ipif_lcl_addr != INADDR_ANY) && 15283 !(ipif->ipif_flags & IPIF_NOLOCAL)) { 15284 net_mask = ip_net_mask(ipif->ipif_lcl_addr); 15285 } else { 15286 net_mask = htonl(IN_CLASSA_NET); 15287 } 15288 addr = net_mask & ipif->ipif_subnet; 15289 ill_mark_bcast(illgrp, addr, ipst); 15290 15291 net_addr = ~net_mask | addr; 15292 ill_mark_bcast(illgrp, net_addr, ipst); 15293 15294 subnet_netmask = ipif->ipif_net_mask; 15295 addr = ipif->ipif_subnet; 15296 ill_mark_bcast(illgrp, addr, ipst); 15297 15298 subnet_addr = ~subnet_netmask | addr; 15299 ill_mark_bcast(illgrp, subnet_addr, ipst); 15300 } 15301 15302 /* 15303 * Whenever we form or delete ill groups, we need to nominate one set of 15304 * BROADCAST ires for receiving in the group. 15305 * 15306 * 1) When ipif_up_done -> ilgrp_insert calls this function, BROADCAST ires 15307 * have been added, but ill_ipif_up_count is 0. Thus, we don't assert 15308 * for ill_ipif_up_count to be non-zero. This is the only case where 15309 * ill_ipif_up_count is zero and we would still find the ires. 15310 * 15311 * 2) ip_sioctl_group_name/ifgrp_insert calls this function, at least one 15312 * ipif is UP and we just have to do the nomination. 15313 * 15314 * 3) When ill_handoff_responsibility calls us, some ill has been removed 15315 * from the group. So, we have to do the nomination. 15316 * 15317 * Because of (3), there could be just one ill in the group. But we have 15318 * to nominate still as IRE_MARK_NORCV may have been marked on this. 15319 * Thus, this function does not optimize when there is only one ill as 15320 * it is not correct for (3). 15321 */ 15322 static void 15323 ill_nominate_bcast_rcv(ill_group_t *illgrp) 15324 { 15325 ill_t *ill; 15326 ipif_t *ipif; 15327 ipaddr_t subnet_addr; 15328 ipaddr_t prev_subnet_addr = 0; 15329 ipaddr_t net_addr; 15330 ipaddr_t prev_net_addr = 0; 15331 ipaddr_t net_mask = 0; 15332 ipaddr_t subnet_netmask; 15333 ipaddr_t addr; 15334 ip_stack_t *ipst; 15335 15336 /* 15337 * When the last memeber is leaving, there is nothing to 15338 * nominate. 15339 */ 15340 if (illgrp->illgrp_ill_count == 0) { 15341 ASSERT(illgrp->illgrp_ill == NULL); 15342 return; 15343 } 15344 15345 ill = illgrp->illgrp_ill; 15346 ASSERT(!ill->ill_isv6); 15347 ipst = ill->ill_ipst; 15348 /* 15349 * We assume that ires with same address and belonging to the 15350 * same group, has been grouped together. Nominating a *single* 15351 * ill in the group for sending and receiving broadcast is done 15352 * by making sure that the first BROADCAST ire (which will be 15353 * the one returned by ire_ctable_lookup for ip_rput and the 15354 * one that will be used in ip_wput_ire) will be the one that 15355 * will not have IRE_MARK_NORECV set. 15356 * 15357 * 1) ip_rput checks and discards packets received on ires marked 15358 * with IRE_MARK_NORECV. Thus, we don't send up duplicate 15359 * broadcast packets. We need to clear IRE_MARK_NORECV on the 15360 * first ire in the group for every broadcast address in the group. 15361 * ip_rput will accept packets only on the first ire i.e only 15362 * one copy of the ill. 15363 * 15364 * 2) ip_wput_ire needs to send out just one copy of the broadcast 15365 * packet for the whole group. It needs to send out on the ill 15366 * whose ire has not been marked with IRE_MARK_NORECV. If it sends 15367 * on the one marked with IRE_MARK_NORECV, ip_rput will accept 15368 * the copy echoed back on other port where the ire is not marked 15369 * with IRE_MARK_NORECV. 15370 * 15371 * Note that we just need to have the first IRE either loopback or 15372 * non-loopback (either of them may not exist if ire_create failed 15373 * during ipif_down) with IRE_MARK_NORECV not set. ip_rput will 15374 * always hit the first one and hence will always accept one copy. 15375 * 15376 * We have a broadcast ire per ill for all the unique prefixes 15377 * hosted on that ill. As we don't have a way of knowing the 15378 * unique prefixes on a given ill and hence in the whole group, 15379 * we just call ill_mark_bcast on all the prefixes that exist 15380 * in the group. For the common case of one prefix, the code 15381 * below optimizes by remebering the last address used for 15382 * markng. In the case of multiple prefixes, this will still 15383 * optimize depending the order of prefixes. 15384 * 15385 * The only unique address across the whole group is 0.0.0.0 and 15386 * 255.255.255.255 and thus we call only once. ill_mark_bcast enables 15387 * the first ire in the bucket for receiving and disables the 15388 * others. 15389 */ 15390 ill_mark_bcast(illgrp, 0, ipst); 15391 ill_mark_bcast(illgrp, INADDR_BROADCAST, ipst); 15392 for (; ill != NULL; ill = ill->ill_group_next) { 15393 15394 for (ipif = ill->ill_ipif; ipif != NULL; 15395 ipif = ipif->ipif_next) { 15396 15397 if (!(ipif->ipif_flags & IPIF_UP) || 15398 ipif->ipif_subnet == 0) { 15399 continue; 15400 } 15401 if ((ipif->ipif_lcl_addr != INADDR_ANY) && 15402 !(ipif->ipif_flags & IPIF_NOLOCAL)) { 15403 net_mask = ip_net_mask(ipif->ipif_lcl_addr); 15404 } else { 15405 net_mask = htonl(IN_CLASSA_NET); 15406 } 15407 addr = net_mask & ipif->ipif_subnet; 15408 if (prev_net_addr == 0 || prev_net_addr != addr) { 15409 ill_mark_bcast(illgrp, addr, ipst); 15410 net_addr = ~net_mask | addr; 15411 ill_mark_bcast(illgrp, net_addr, ipst); 15412 } 15413 prev_net_addr = addr; 15414 15415 subnet_netmask = ipif->ipif_net_mask; 15416 addr = ipif->ipif_subnet; 15417 if (prev_subnet_addr == 0 || 15418 prev_subnet_addr != addr) { 15419 ill_mark_bcast(illgrp, addr, ipst); 15420 subnet_addr = ~subnet_netmask | addr; 15421 ill_mark_bcast(illgrp, subnet_addr, ipst); 15422 } 15423 prev_subnet_addr = addr; 15424 } 15425 } 15426 } 15427 15428 /* 15429 * This function is called while forming ill groups. 15430 * 15431 * Currently, we handle only allmulti groups. We want to join 15432 * allmulti on only one of the ills in the groups. In future, 15433 * when we have link aggregation, we may have to join normal 15434 * multicast groups on multiple ills as switch does inbound load 15435 * balancing. Following are the functions that calls this 15436 * function : 15437 * 15438 * 1) ill_recover_multicast : Interface is coming back UP. 15439 * When the first ipif comes back UP, ipif_up_done/ipif_up_done_v6 15440 * will call ill_recover_multicast to recover all the multicast 15441 * groups. We need to make sure that only one member is joined 15442 * in the ill group. 15443 * 15444 * 2) ip_addmulti/ip_addmulti_v6 : ill groups has already been formed. 15445 * Somebody is joining allmulti. We need to make sure that only one 15446 * member is joined in the group. 15447 * 15448 * 3) illgrp_insert : If allmulti has already joined, we need to make 15449 * sure that only one member is joined in the group. 15450 * 15451 * 4) ip_delmulti/ip_delmulti_v6 : Somebody in the group is leaving 15452 * allmulti who we have nominated. We need to pick someother ill. 15453 * 15454 * 5) illgrp_delete : The ill we nominated is leaving the group, 15455 * we need to pick a new ill to join the group. 15456 * 15457 * For (1), (2), (5) - we just have to check whether there is 15458 * a good ill joined in the group. If we could not find any ills 15459 * joined the group, we should join. 15460 * 15461 * For (4), the one that was nominated to receive, left the group. 15462 * There could be nobody joined in the group when this function is 15463 * called. 15464 * 15465 * For (3) - we need to explicitly check whether there are multiple 15466 * ills joined in the group. 15467 * 15468 * For simplicity, we don't differentiate any of the above cases. We 15469 * just leave the group if it is joined on any of them and join on 15470 * the first good ill. 15471 */ 15472 int 15473 ill_nominate_mcast_rcv(ill_group_t *illgrp) 15474 { 15475 ilm_t *ilm; 15476 ill_t *ill; 15477 ill_t *fallback_inactive_ill = NULL; 15478 ill_t *fallback_failed_ill = NULL; 15479 int ret = 0; 15480 15481 /* 15482 * Leave the allmulti on all the ills and start fresh. 15483 */ 15484 for (ill = illgrp->illgrp_ill; ill != NULL; 15485 ill = ill->ill_group_next) { 15486 if (ill->ill_join_allmulti) 15487 ill_leave_allmulti(ill); 15488 } 15489 15490 /* 15491 * Choose a good ill. Fallback to inactive or failed if 15492 * none available. We need to fallback to FAILED in the 15493 * case where we have 2 interfaces in a group - where 15494 * one of them is failed and another is a good one and 15495 * the good one (not marked inactive) is leaving the group. 15496 */ 15497 for (ill = illgrp->illgrp_ill; ill != NULL; ill = ill->ill_group_next) { 15498 if (ill->ill_phyint->phyint_flags & PHYI_OFFLINE) 15499 continue; 15500 if (ill->ill_phyint->phyint_flags & PHYI_FAILED) { 15501 fallback_failed_ill = ill; 15502 continue; 15503 } 15504 if (ill->ill_phyint->phyint_flags & PHYI_INACTIVE) { 15505 fallback_inactive_ill = ill; 15506 continue; 15507 } 15508 for (ilm = ill->ill_ilm; ilm != NULL; ilm = ilm->ilm_next) { 15509 if (IN6_IS_ADDR_UNSPECIFIED(&ilm->ilm_v6addr)) { 15510 ret = ill_join_allmulti(ill); 15511 /* 15512 * ill_join_allmulti() can fail because of 15513 * memory failures so make sure we join at 15514 * least on one ill. 15515 */ 15516 if (ill->ill_join_allmulti) 15517 return (0); 15518 } 15519 } 15520 } 15521 if (ret != 0) { 15522 /* 15523 * If we tried nominating above and failed to do so, 15524 * return error. We might have tried multiple times. 15525 * But, return the latest error. 15526 */ 15527 return (ret); 15528 } 15529 if ((ill = fallback_inactive_ill) != NULL) { 15530 for (ilm = ill->ill_ilm; ilm != NULL; ilm = ilm->ilm_next) { 15531 if (IN6_IS_ADDR_UNSPECIFIED(&ilm->ilm_v6addr)) 15532 return (ill_join_allmulti(ill)); 15533 } 15534 } else if ((ill = fallback_failed_ill) != NULL) { 15535 for (ilm = ill->ill_ilm; ilm != NULL; ilm = ilm->ilm_next) { 15536 if (IN6_IS_ADDR_UNSPECIFIED(&ilm->ilm_v6addr)) 15537 return (ill_join_allmulti(ill)); 15538 } 15539 } 15540 return (0); 15541 } 15542 15543 /* 15544 * This function is called from illgrp_delete after it is 15545 * deleted from the group to reschedule responsibilities 15546 * to a different ill. 15547 */ 15548 static void 15549 ill_handoff_responsibility(ill_t *ill, ill_group_t *illgrp) 15550 { 15551 ilm_t *ilm; 15552 ipif_t *ipif; 15553 ipaddr_t subnet_addr; 15554 ipaddr_t net_addr; 15555 ipaddr_t net_mask = 0; 15556 ipaddr_t subnet_netmask; 15557 ipaddr_t addr; 15558 ip_stack_t *ipst = ill->ill_ipst; 15559 15560 ASSERT(ill->ill_group == NULL); 15561 /* 15562 * Broadcast Responsibility: 15563 * 15564 * 1. If this ill has been nominated for receiving broadcast 15565 * packets, we need to find a new one. Before we find a new 15566 * one, we need to re-group the ires that are part of this new 15567 * group (assumed by ill_nominate_bcast_rcv). We do this by 15568 * calling ill_group_bcast_for_xmit(ill) which will do the right 15569 * thing for us. 15570 * 15571 * 2. If this ill was not nominated for receiving broadcast 15572 * packets, we need to clear the IRE_MARK_NORECV flag 15573 * so that we continue to send up broadcast packets. 15574 */ 15575 if (!ill->ill_isv6) { 15576 /* 15577 * Case 1 above : No optimization here. Just redo the 15578 * nomination. 15579 */ 15580 ill_group_bcast_for_xmit(ill); 15581 ill_nominate_bcast_rcv(illgrp); 15582 15583 /* 15584 * Case 2 above : Lookup and clear IRE_MARK_NORECV. 15585 */ 15586 ill_clear_bcast_mark(ill, 0); 15587 ill_clear_bcast_mark(ill, INADDR_BROADCAST); 15588 15589 for (ipif = ill->ill_ipif; ipif != NULL; 15590 ipif = ipif->ipif_next) { 15591 15592 if (!(ipif->ipif_flags & IPIF_UP) || 15593 ipif->ipif_subnet == 0) { 15594 continue; 15595 } 15596 if ((ipif->ipif_lcl_addr != INADDR_ANY) && 15597 !(ipif->ipif_flags & IPIF_NOLOCAL)) { 15598 net_mask = ip_net_mask(ipif->ipif_lcl_addr); 15599 } else { 15600 net_mask = htonl(IN_CLASSA_NET); 15601 } 15602 addr = net_mask & ipif->ipif_subnet; 15603 ill_clear_bcast_mark(ill, addr); 15604 15605 net_addr = ~net_mask | addr; 15606 ill_clear_bcast_mark(ill, net_addr); 15607 15608 subnet_netmask = ipif->ipif_net_mask; 15609 addr = ipif->ipif_subnet; 15610 ill_clear_bcast_mark(ill, addr); 15611 15612 subnet_addr = ~subnet_netmask | addr; 15613 ill_clear_bcast_mark(ill, subnet_addr); 15614 } 15615 } 15616 15617 /* 15618 * Multicast Responsibility. 15619 * 15620 * If we have joined allmulti on this one, find a new member 15621 * in the group to join allmulti. As this ill is already part 15622 * of allmulti, we don't have to join on this one. 15623 * 15624 * If we have not joined allmulti on this one, there is no 15625 * responsibility to handoff. But we need to take new 15626 * responsibility i.e, join allmulti on this one if we need 15627 * to. 15628 */ 15629 if (ill->ill_join_allmulti) { 15630 (void) ill_nominate_mcast_rcv(illgrp); 15631 } else { 15632 for (ilm = ill->ill_ilm; ilm != NULL; ilm = ilm->ilm_next) { 15633 if (IN6_IS_ADDR_UNSPECIFIED(&ilm->ilm_v6addr)) { 15634 (void) ill_join_allmulti(ill); 15635 break; 15636 } 15637 } 15638 } 15639 15640 /* 15641 * We intentionally do the flushing of IRE_CACHES only matching 15642 * on the ill and not on groups. Note that we are already deleted 15643 * from the group. 15644 * 15645 * This will make sure that all IRE_CACHES whose stq is pointing 15646 * at ill_wq or ire_ipif->ipif_ill pointing at this ill will get 15647 * deleted and IRE_CACHES that are not pointing at this ill will 15648 * be left alone. 15649 */ 15650 ire_walk_ill(MATCH_IRE_ILL | MATCH_IRE_TYPE, IRE_CACHE, 15651 illgrp_cache_delete, ill, ill); 15652 15653 /* 15654 * Some conn may have cached one of the IREs deleted above. By removing 15655 * the ire reference, we clean up the extra reference to the ill held in 15656 * ire->ire_stq. 15657 */ 15658 ipcl_walk(conn_cleanup_stale_ire, NULL, ipst); 15659 15660 /* 15661 * Re-do source address selection for all the members in the 15662 * group, if they borrowed source address from one of the ipifs 15663 * in this ill. 15664 */ 15665 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 15666 if (ill->ill_isv6) { 15667 ipif_update_other_ipifs_v6(ipif, illgrp); 15668 } else { 15669 ipif_update_other_ipifs(ipif, illgrp); 15670 } 15671 } 15672 } 15673 15674 /* 15675 * Delete the ill from the group. The caller makes sure that it is 15676 * in a group and it okay to delete from the group. So, we always 15677 * delete here. 15678 */ 15679 static void 15680 illgrp_delete(ill_t *ill) 15681 { 15682 ill_group_t *illgrp; 15683 ill_group_t *tmpg; 15684 ill_t *tmp_ill; 15685 ip_stack_t *ipst = ill->ill_ipst; 15686 15687 /* 15688 * Reset illgrp_ill_schednext if it was pointing at us. 15689 * We need to do this before we set ill_group to NULL. 15690 */ 15691 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 15692 mutex_enter(&ill->ill_lock); 15693 15694 illgrp_reset_schednext(ill); 15695 15696 illgrp = ill->ill_group; 15697 15698 /* Delete the ill from illgrp. */ 15699 if (illgrp->illgrp_ill == ill) { 15700 illgrp->illgrp_ill = ill->ill_group_next; 15701 } else { 15702 tmp_ill = illgrp->illgrp_ill; 15703 while (tmp_ill->ill_group_next != ill) { 15704 tmp_ill = tmp_ill->ill_group_next; 15705 ASSERT(tmp_ill != NULL); 15706 } 15707 tmp_ill->ill_group_next = ill->ill_group_next; 15708 } 15709 ill->ill_group = NULL; 15710 ill->ill_group_next = NULL; 15711 15712 illgrp->illgrp_ill_count--; 15713 mutex_exit(&ill->ill_lock); 15714 rw_exit(&ipst->ips_ill_g_lock); 15715 15716 /* 15717 * As this ill is leaving the group, we need to hand off 15718 * the responsibilities to the other ills in the group, if 15719 * this ill had some responsibilities. 15720 */ 15721 15722 ill_handoff_responsibility(ill, illgrp); 15723 15724 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 15725 15726 if (illgrp->illgrp_ill_count == 0) { 15727 15728 ASSERT(illgrp->illgrp_ill == NULL); 15729 if (ill->ill_isv6) { 15730 if (illgrp == ipst->ips_illgrp_head_v6) { 15731 ipst->ips_illgrp_head_v6 = illgrp->illgrp_next; 15732 } else { 15733 tmpg = ipst->ips_illgrp_head_v6; 15734 while (tmpg->illgrp_next != illgrp) { 15735 tmpg = tmpg->illgrp_next; 15736 ASSERT(tmpg != NULL); 15737 } 15738 tmpg->illgrp_next = illgrp->illgrp_next; 15739 } 15740 } else { 15741 if (illgrp == ipst->ips_illgrp_head_v4) { 15742 ipst->ips_illgrp_head_v4 = illgrp->illgrp_next; 15743 } else { 15744 tmpg = ipst->ips_illgrp_head_v4; 15745 while (tmpg->illgrp_next != illgrp) { 15746 tmpg = tmpg->illgrp_next; 15747 ASSERT(tmpg != NULL); 15748 } 15749 tmpg->illgrp_next = illgrp->illgrp_next; 15750 } 15751 } 15752 mutex_destroy(&illgrp->illgrp_lock); 15753 mi_free(illgrp); 15754 } 15755 rw_exit(&ipst->ips_ill_g_lock); 15756 15757 /* 15758 * Even though the ill is out of the group its not necessary 15759 * to set ipsq_split as TRUE as the ipifs could be down temporarily 15760 * We will split the ipsq when phyint_groupname is set to NULL. 15761 */ 15762 15763 /* 15764 * Send a routing sockets message if we are deleting from 15765 * groups with names. 15766 */ 15767 if (ill->ill_phyint->phyint_groupname_len != 0) 15768 ip_rts_ifmsg(ill->ill_ipif); 15769 } 15770 15771 /* 15772 * Re-do source address selection. This is normally called when 15773 * an ill joins the group or when a non-NOLOCAL/DEPRECATED/ANYCAST 15774 * ipif comes up. 15775 */ 15776 void 15777 ill_update_source_selection(ill_t *ill) 15778 { 15779 ipif_t *ipif; 15780 15781 ASSERT(IAM_WRITER_ILL(ill)); 15782 15783 if (ill->ill_group != NULL) 15784 ill = ill->ill_group->illgrp_ill; 15785 15786 for (; ill != NULL; ill = ill->ill_group_next) { 15787 for (ipif = ill->ill_ipif; ipif != NULL; 15788 ipif = ipif->ipif_next) { 15789 if (ill->ill_isv6) 15790 ipif_recreate_interface_routes_v6(NULL, ipif); 15791 else 15792 ipif_recreate_interface_routes(NULL, ipif); 15793 } 15794 } 15795 } 15796 15797 /* 15798 * Insert ill in a group headed by illgrp_head. The caller can either 15799 * pass a groupname in which case we search for a group with the 15800 * same name to insert in or pass a group to insert in. This function 15801 * would only search groups with names. 15802 * 15803 * NOTE : The caller should make sure that there is at least one ipif 15804 * UP on this ill so that illgrp_scheduler can pick this ill 15805 * for outbound packets. If ill_ipif_up_count is zero, we have 15806 * already sent a DL_UNBIND to the driver and we don't want to 15807 * send anymore packets. We don't assert for ipif_up_count 15808 * to be greater than zero, because ipif_up_done wants to call 15809 * this function before bumping up the ipif_up_count. See 15810 * ipif_up_done() for details. 15811 */ 15812 int 15813 illgrp_insert(ill_group_t **illgrp_head, ill_t *ill, char *groupname, 15814 ill_group_t *grp_to_insert, boolean_t ipif_is_coming_up) 15815 { 15816 ill_group_t *illgrp; 15817 ill_t *prev_ill; 15818 phyint_t *phyi; 15819 ip_stack_t *ipst = ill->ill_ipst; 15820 15821 ASSERT(ill->ill_group == NULL); 15822 15823 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 15824 mutex_enter(&ill->ill_lock); 15825 15826 if (groupname != NULL) { 15827 /* 15828 * Look for a group with a matching groupname to insert. 15829 */ 15830 for (illgrp = *illgrp_head; illgrp != NULL; 15831 illgrp = illgrp->illgrp_next) { 15832 15833 ill_t *tmp_ill; 15834 15835 /* 15836 * If we have an ill_group_t in the list which has 15837 * no ill_t assigned then we must be in the process of 15838 * removing this group. We skip this as illgrp_delete() 15839 * will remove it from the list. 15840 */ 15841 if ((tmp_ill = illgrp->illgrp_ill) == NULL) { 15842 ASSERT(illgrp->illgrp_ill_count == 0); 15843 continue; 15844 } 15845 15846 ASSERT(tmp_ill->ill_phyint != NULL); 15847 phyi = tmp_ill->ill_phyint; 15848 /* 15849 * Look at groups which has names only. 15850 */ 15851 if (phyi->phyint_groupname_len == 0) 15852 continue; 15853 /* 15854 * Names are stored in the phyint common to both 15855 * IPv4 and IPv6. 15856 */ 15857 if (mi_strcmp(phyi->phyint_groupname, 15858 groupname) == 0) { 15859 break; 15860 } 15861 } 15862 } else { 15863 /* 15864 * If the caller passes in a NULL "grp_to_insert", we 15865 * allocate one below and insert this singleton. 15866 */ 15867 illgrp = grp_to_insert; 15868 } 15869 15870 ill->ill_group_next = NULL; 15871 15872 if (illgrp == NULL) { 15873 illgrp = (ill_group_t *)mi_zalloc(sizeof (ill_group_t)); 15874 if (illgrp == NULL) { 15875 return (ENOMEM); 15876 } 15877 illgrp->illgrp_next = *illgrp_head; 15878 *illgrp_head = illgrp; 15879 illgrp->illgrp_ill = ill; 15880 illgrp->illgrp_ill_count = 1; 15881 ill->ill_group = illgrp; 15882 /* 15883 * Used in illgrp_scheduler to protect multiple threads 15884 * from traversing the list. 15885 */ 15886 mutex_init(&illgrp->illgrp_lock, NULL, MUTEX_DEFAULT, 0); 15887 } else { 15888 ASSERT(ill->ill_net_type == 15889 illgrp->illgrp_ill->ill_net_type); 15890 ASSERT(ill->ill_type == illgrp->illgrp_ill->ill_type); 15891 15892 /* Insert ill at tail of this group */ 15893 prev_ill = illgrp->illgrp_ill; 15894 while (prev_ill->ill_group_next != NULL) 15895 prev_ill = prev_ill->ill_group_next; 15896 prev_ill->ill_group_next = ill; 15897 ill->ill_group = illgrp; 15898 illgrp->illgrp_ill_count++; 15899 /* 15900 * Inherit group properties. Currently only forwarding 15901 * is the property we try to keep the same with all the 15902 * ills. When there are more, we will abstract this into 15903 * a function. 15904 */ 15905 ill->ill_flags &= ~ILLF_ROUTER; 15906 ill->ill_flags |= (illgrp->illgrp_ill->ill_flags & ILLF_ROUTER); 15907 } 15908 mutex_exit(&ill->ill_lock); 15909 rw_exit(&ipst->ips_ill_g_lock); 15910 15911 /* 15912 * 1) When ipif_up_done() calls this function, ipif_up_count 15913 * may be zero as it has not yet been bumped. But the ires 15914 * have already been added. So, we do the nomination here 15915 * itself. But, when ip_sioctl_groupname calls this, it checks 15916 * for ill_ipif_up_count != 0. Thus we don't check for 15917 * ill_ipif_up_count here while nominating broadcast ires for 15918 * receive. 15919 * 15920 * 2) Similarly, we need to call ill_group_bcast_for_xmit here 15921 * to group them properly as ire_add() has already happened 15922 * in the ipif_up_done() case. For ip_sioctl_groupname/ifgrp_insert 15923 * case, we need to do it here anyway. 15924 */ 15925 if (!ill->ill_isv6) { 15926 ill_group_bcast_for_xmit(ill); 15927 ill_nominate_bcast_rcv(illgrp); 15928 } 15929 15930 if (!ipif_is_coming_up) { 15931 /* 15932 * When ipif_up_done() calls this function, the multicast 15933 * groups have not been joined yet. So, there is no point in 15934 * nomination. ill_join_allmulti() will handle groups when 15935 * ill_recover_multicast() is called from ipif_up_done() later. 15936 */ 15937 (void) ill_nominate_mcast_rcv(illgrp); 15938 /* 15939 * ipif_up_done calls ill_update_source_selection 15940 * anyway. Moreover, we don't want to re-create 15941 * interface routes while ipif_up_done() still has reference 15942 * to them. Refer to ipif_up_done() for more details. 15943 */ 15944 ill_update_source_selection(ill); 15945 } 15946 15947 /* 15948 * Send a routing sockets message if we are inserting into 15949 * groups with names. 15950 */ 15951 if (groupname != NULL) 15952 ip_rts_ifmsg(ill->ill_ipif); 15953 return (0); 15954 } 15955 15956 /* 15957 * Return the first phyint matching the groupname. There could 15958 * be more than one when there are ill groups. 15959 * 15960 * If 'usable' is set, then we exclude ones that are marked with any of 15961 * (PHYI_FAILED|PHYI_OFFLINE|PHYI_INACTIVE). 15962 * Needs work: called only from ip_sioctl_groupname and from the ipmp/netinfo 15963 * emulation of ipmp. 15964 */ 15965 phyint_t * 15966 phyint_lookup_group(char *groupname, boolean_t usable, ip_stack_t *ipst) 15967 { 15968 phyint_t *phyi; 15969 15970 ASSERT(RW_LOCK_HELD(&ipst->ips_ill_g_lock)); 15971 /* 15972 * Group names are stored in the phyint - a common structure 15973 * to both IPv4 and IPv6. 15974 */ 15975 phyi = avl_first(&ipst->ips_phyint_g_list->phyint_list_avl_by_index); 15976 for (; phyi != NULL; 15977 phyi = avl_walk(&ipst->ips_phyint_g_list->phyint_list_avl_by_index, 15978 phyi, AVL_AFTER)) { 15979 if (phyi->phyint_groupname_len == 0) 15980 continue; 15981 /* 15982 * Skip the ones that should not be used since the callers 15983 * sometime use this for sending packets. 15984 */ 15985 if (usable && (phyi->phyint_flags & 15986 (PHYI_FAILED|PHYI_OFFLINE|PHYI_INACTIVE))) 15987 continue; 15988 15989 ASSERT(phyi->phyint_groupname != NULL); 15990 if (mi_strcmp(groupname, phyi->phyint_groupname) == 0) 15991 return (phyi); 15992 } 15993 return (NULL); 15994 } 15995 15996 15997 /* 15998 * Return the first usable phyint matching the group index. By 'usable' 15999 * we exclude ones that are marked ununsable with any of 16000 * (PHYI_FAILED|PHYI_OFFLINE|PHYI_INACTIVE). 16001 * 16002 * Used only for the ipmp/netinfo emulation of ipmp. 16003 */ 16004 phyint_t * 16005 phyint_lookup_group_ifindex(uint_t group_ifindex, ip_stack_t *ipst) 16006 { 16007 phyint_t *phyi; 16008 16009 ASSERT(RW_LOCK_HELD(&ipst->ips_ill_g_lock)); 16010 16011 if (!ipst->ips_ipmp_hook_emulation) 16012 return (NULL); 16013 16014 /* 16015 * Group indicies are stored in the phyint - a common structure 16016 * to both IPv4 and IPv6. 16017 */ 16018 phyi = avl_first(&ipst->ips_phyint_g_list->phyint_list_avl_by_index); 16019 for (; phyi != NULL; 16020 phyi = avl_walk(&ipst->ips_phyint_g_list->phyint_list_avl_by_index, 16021 phyi, AVL_AFTER)) { 16022 /* Ignore the ones that do not have a group */ 16023 if (phyi->phyint_groupname_len == 0) 16024 continue; 16025 16026 ASSERT(phyi->phyint_group_ifindex != 0); 16027 /* 16028 * Skip the ones that should not be used since the callers 16029 * sometime use this for sending packets. 16030 */ 16031 if (phyi->phyint_flags & 16032 (PHYI_FAILED|PHYI_OFFLINE|PHYI_INACTIVE)) 16033 continue; 16034 if (phyi->phyint_group_ifindex == group_ifindex) 16035 return (phyi); 16036 } 16037 return (NULL); 16038 } 16039 16040 /* 16041 * MT notes on creation and deletion of IPMP groups 16042 * 16043 * Creation and deletion of IPMP groups introduce the need to merge or 16044 * split the associated serialization objects i.e the ipsq's. Normally all 16045 * the ills in an IPMP group would map to a single ipsq. If IPMP is not enabled 16046 * an ill-pair(v4, v6) i.e. phyint would map to a single ipsq. However during 16047 * the execution of the SIOCSLIFGROUPNAME command the picture changes. There 16048 * is a need to change the <ill-ipsq> association and we have to operate on both 16049 * the source and destination IPMP groups. For eg. attempting to set the 16050 * groupname of hme0 to mpk17-85 when it already belongs to mpk17-84 has to 16051 * handle 2 IPMP groups and 2 ipsqs. All the ills belonging to either of the 16052 * source or destination IPMP group are mapped to a single ipsq for executing 16053 * the SIOCSLIFGROUPNAME command. This is termed as a merge of the ipsq's. 16054 * The <ill-ipsq> mapping is restored back to normal at a later point. This is 16055 * termed as a split of the ipsq. The converse of the merge i.e. a split of the 16056 * ipsq happens while unwinding from ipsq_exit. If at least 1 set groupname 16057 * occurred on the ipsq, then the ipsq_split flag is set. This indicates the 16058 * ipsq has to be examined for redoing the <ill-ipsq> associations. 16059 * 16060 * In the above example the ioctl handling code locates the current ipsq of hme0 16061 * which is ipsq(mpk17-84). It then enters the above ipsq immediately or 16062 * eventually (after queueing the ioctl in ipsq(mpk17-84)). Then it locates 16063 * the destination ipsq which is ipsq(mpk17-85) and merges the source ipsq into 16064 * the destination ipsq. If the destination ipsq is not busy, it also enters 16065 * the destination ipsq exclusively. Now the actual groupname setting operation 16066 * can proceed. If the destination ipsq is busy, the operation is enqueued 16067 * on the destination (merged) ipsq and will be handled in the unwind from 16068 * ipsq_exit. 16069 * 16070 * To prevent other threads accessing the ill while the group name change is 16071 * in progres, we bring down the ipifs which also removes the ill from the 16072 * group. The group is changed in phyint and when the first ipif on the ill 16073 * is brought up, the ill is inserted into the right IPMP group by 16074 * illgrp_insert. 16075 */ 16076 /* ARGSUSED */ 16077 int 16078 ip_sioctl_groupname(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 16079 ip_ioctl_cmd_t *ipip, void *ifreq) 16080 { 16081 int i; 16082 char *tmp; 16083 int namelen; 16084 ill_t *ill = ipif->ipif_ill; 16085 ill_t *ill_v4, *ill_v6; 16086 int err = 0; 16087 phyint_t *phyi; 16088 phyint_t *phyi_tmp; 16089 struct lifreq *lifr; 16090 mblk_t *mp1; 16091 char *groupname; 16092 ipsq_t *ipsq; 16093 ip_stack_t *ipst = ill->ill_ipst; 16094 16095 ASSERT(IAM_WRITER_IPIF(ipif)); 16096 16097 /* Existance verified in ip_wput_nondata */ 16098 mp1 = mp->b_cont->b_cont; 16099 lifr = (struct lifreq *)mp1->b_rptr; 16100 groupname = lifr->lifr_groupname; 16101 16102 if (ipif->ipif_id != 0) 16103 return (EINVAL); 16104 16105 phyi = ill->ill_phyint; 16106 ASSERT(phyi != NULL); 16107 16108 if (phyi->phyint_flags & PHYI_VIRTUAL) 16109 return (EINVAL); 16110 16111 tmp = groupname; 16112 for (i = 0; i < LIFNAMSIZ && *tmp != '\0'; tmp++, i++) 16113 ; 16114 16115 if (i == LIFNAMSIZ) { 16116 /* no null termination */ 16117 return (EINVAL); 16118 } 16119 16120 /* 16121 * Calculate the namelen exclusive of the null 16122 * termination character. 16123 */ 16124 namelen = tmp - groupname; 16125 16126 ill_v4 = phyi->phyint_illv4; 16127 ill_v6 = phyi->phyint_illv6; 16128 16129 /* 16130 * ILL cannot be part of a usesrc group and and IPMP group at the 16131 * same time. No need to grab the ill_g_usesrc_lock here, see 16132 * synchronization notes in ip.c 16133 */ 16134 if (ipif->ipif_ill->ill_usesrc_grp_next != NULL) { 16135 return (EINVAL); 16136 } 16137 16138 /* 16139 * mark the ill as changing. 16140 * this should queue all new requests on the syncq. 16141 */ 16142 GRAB_ILL_LOCKS(ill_v4, ill_v6); 16143 16144 if (ill_v4 != NULL) 16145 ill_v4->ill_state_flags |= ILL_CHANGING; 16146 if (ill_v6 != NULL) 16147 ill_v6->ill_state_flags |= ILL_CHANGING; 16148 RELEASE_ILL_LOCKS(ill_v4, ill_v6); 16149 16150 if (namelen == 0) { 16151 /* 16152 * Null string means remove this interface from the 16153 * existing group. 16154 */ 16155 if (phyi->phyint_groupname_len == 0) { 16156 /* 16157 * Never was in a group. 16158 */ 16159 err = 0; 16160 goto done; 16161 } 16162 16163 /* 16164 * IPv4 or IPv6 may be temporarily out of the group when all 16165 * the ipifs are down. Thus, we need to check for ill_group to 16166 * be non-NULL. 16167 */ 16168 if (ill_v4 != NULL && ill_v4->ill_group != NULL) { 16169 ill_down_ipifs(ill_v4, mp, 0, B_FALSE); 16170 mutex_enter(&ill_v4->ill_lock); 16171 if (!ill_is_quiescent(ill_v4)) { 16172 /* 16173 * ipsq_pending_mp_add will not fail since 16174 * connp is NULL 16175 */ 16176 (void) ipsq_pending_mp_add(NULL, 16177 ill_v4->ill_ipif, q, mp, ILL_DOWN); 16178 mutex_exit(&ill_v4->ill_lock); 16179 err = EINPROGRESS; 16180 goto done; 16181 } 16182 mutex_exit(&ill_v4->ill_lock); 16183 } 16184 16185 if (ill_v6 != NULL && ill_v6->ill_group != NULL) { 16186 ill_down_ipifs(ill_v6, mp, 0, B_FALSE); 16187 mutex_enter(&ill_v6->ill_lock); 16188 if (!ill_is_quiescent(ill_v6)) { 16189 (void) ipsq_pending_mp_add(NULL, 16190 ill_v6->ill_ipif, q, mp, ILL_DOWN); 16191 mutex_exit(&ill_v6->ill_lock); 16192 err = EINPROGRESS; 16193 goto done; 16194 } 16195 mutex_exit(&ill_v6->ill_lock); 16196 } 16197 16198 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 16199 GRAB_ILL_LOCKS(ill_v4, ill_v6); 16200 mutex_enter(&phyi->phyint_lock); 16201 ASSERT(phyi->phyint_groupname != NULL); 16202 mi_free(phyi->phyint_groupname); 16203 phyi->phyint_groupname = NULL; 16204 phyi->phyint_groupname_len = 0; 16205 16206 /* Restore the ifindex used to be the per interface one */ 16207 phyi->phyint_group_ifindex = 0; 16208 phyi->phyint_hook_ifindex = phyi->phyint_ifindex; 16209 mutex_exit(&phyi->phyint_lock); 16210 RELEASE_ILL_LOCKS(ill_v4, ill_v6); 16211 rw_exit(&ipst->ips_ill_g_lock); 16212 err = ill_up_ipifs(ill, q, mp); 16213 16214 /* 16215 * set the split flag so that the ipsq can be split 16216 */ 16217 mutex_enter(&phyi->phyint_ipsq->ipsq_lock); 16218 phyi->phyint_ipsq->ipsq_split = B_TRUE; 16219 mutex_exit(&phyi->phyint_ipsq->ipsq_lock); 16220 16221 } else { 16222 if (phyi->phyint_groupname_len != 0) { 16223 ASSERT(phyi->phyint_groupname != NULL); 16224 /* Are we inserting in the same group ? */ 16225 if (mi_strcmp(groupname, 16226 phyi->phyint_groupname) == 0) { 16227 err = 0; 16228 goto done; 16229 } 16230 } 16231 16232 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 16233 /* 16234 * Merge ipsq for the group's. 16235 * This check is here as multiple groups/ills might be 16236 * sharing the same ipsq. 16237 * If we have to merege than the operation is restarted 16238 * on the new ipsq. 16239 */ 16240 ipsq = ip_ipsq_lookup(groupname, B_FALSE, NULL, ipst); 16241 if (phyi->phyint_ipsq != ipsq) { 16242 rw_exit(&ipst->ips_ill_g_lock); 16243 err = ill_merge_groups(ill, NULL, groupname, mp, q); 16244 goto done; 16245 } 16246 /* 16247 * Running exclusive on new ipsq. 16248 */ 16249 16250 ASSERT(ipsq != NULL); 16251 ASSERT(ipsq->ipsq_writer == curthread); 16252 16253 /* 16254 * Check whether the ill_type and ill_net_type matches before 16255 * we allocate any memory so that the cleanup is easier. 16256 * 16257 * We can't group dissimilar ones as we can't load spread 16258 * packets across the group because of potential link-level 16259 * header differences. 16260 */ 16261 phyi_tmp = phyint_lookup_group(groupname, B_FALSE, ipst); 16262 if (phyi_tmp != NULL) { 16263 if ((ill_v4 != NULL && 16264 phyi_tmp->phyint_illv4 != NULL) && 16265 ((ill_v4->ill_net_type != 16266 phyi_tmp->phyint_illv4->ill_net_type) || 16267 (ill_v4->ill_type != 16268 phyi_tmp->phyint_illv4->ill_type))) { 16269 mutex_enter(&phyi->phyint_ipsq->ipsq_lock); 16270 phyi->phyint_ipsq->ipsq_split = B_TRUE; 16271 mutex_exit(&phyi->phyint_ipsq->ipsq_lock); 16272 rw_exit(&ipst->ips_ill_g_lock); 16273 return (EINVAL); 16274 } 16275 if ((ill_v6 != NULL && 16276 phyi_tmp->phyint_illv6 != NULL) && 16277 ((ill_v6->ill_net_type != 16278 phyi_tmp->phyint_illv6->ill_net_type) || 16279 (ill_v6->ill_type != 16280 phyi_tmp->phyint_illv6->ill_type))) { 16281 mutex_enter(&phyi->phyint_ipsq->ipsq_lock); 16282 phyi->phyint_ipsq->ipsq_split = B_TRUE; 16283 mutex_exit(&phyi->phyint_ipsq->ipsq_lock); 16284 rw_exit(&ipst->ips_ill_g_lock); 16285 return (EINVAL); 16286 } 16287 } 16288 16289 rw_exit(&ipst->ips_ill_g_lock); 16290 16291 /* 16292 * bring down all v4 ipifs. 16293 */ 16294 if (ill_v4 != NULL) { 16295 ill_down_ipifs(ill_v4, mp, 0, B_FALSE); 16296 } 16297 16298 /* 16299 * bring down all v6 ipifs. 16300 */ 16301 if (ill_v6 != NULL) { 16302 ill_down_ipifs(ill_v6, mp, 0, B_FALSE); 16303 } 16304 16305 /* 16306 * make sure all ipifs are down and there are no active 16307 * references. Call to ipsq_pending_mp_add will not fail 16308 * since connp is NULL. 16309 */ 16310 if (ill_v4 != NULL) { 16311 mutex_enter(&ill_v4->ill_lock); 16312 if (!ill_is_quiescent(ill_v4)) { 16313 (void) ipsq_pending_mp_add(NULL, 16314 ill_v4->ill_ipif, q, mp, ILL_DOWN); 16315 mutex_exit(&ill_v4->ill_lock); 16316 err = EINPROGRESS; 16317 goto done; 16318 } 16319 mutex_exit(&ill_v4->ill_lock); 16320 } 16321 16322 if (ill_v6 != NULL) { 16323 mutex_enter(&ill_v6->ill_lock); 16324 if (!ill_is_quiescent(ill_v6)) { 16325 (void) ipsq_pending_mp_add(NULL, 16326 ill_v6->ill_ipif, q, mp, ILL_DOWN); 16327 mutex_exit(&ill_v6->ill_lock); 16328 err = EINPROGRESS; 16329 goto done; 16330 } 16331 mutex_exit(&ill_v6->ill_lock); 16332 } 16333 16334 /* 16335 * allocate including space for null terminator 16336 * before we insert. 16337 */ 16338 tmp = (char *)mi_alloc(namelen + 1, BPRI_MED); 16339 if (tmp == NULL) 16340 return (ENOMEM); 16341 16342 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 16343 GRAB_ILL_LOCKS(ill_v4, ill_v6); 16344 mutex_enter(&phyi->phyint_lock); 16345 if (phyi->phyint_groupname_len != 0) { 16346 ASSERT(phyi->phyint_groupname != NULL); 16347 mi_free(phyi->phyint_groupname); 16348 } 16349 16350 /* 16351 * setup the new group name. 16352 */ 16353 phyi->phyint_groupname = tmp; 16354 bcopy(groupname, phyi->phyint_groupname, namelen + 1); 16355 phyi->phyint_groupname_len = namelen + 1; 16356 16357 if (ipst->ips_ipmp_hook_emulation) { 16358 /* 16359 * If the group already exists we use the existing 16360 * group_ifindex, otherwise we pick a new index here. 16361 */ 16362 if (phyi_tmp != NULL) { 16363 phyi->phyint_group_ifindex = 16364 phyi_tmp->phyint_group_ifindex; 16365 } else { 16366 /* XXX We need a recovery strategy here. */ 16367 if (!ip_assign_ifindex( 16368 &phyi->phyint_group_ifindex, ipst)) 16369 cmn_err(CE_PANIC, 16370 "ip_assign_ifindex() failed"); 16371 } 16372 } 16373 /* 16374 * Select whether the netinfo and hook use the per-interface 16375 * or per-group ifindex. 16376 */ 16377 if (ipst->ips_ipmp_hook_emulation) 16378 phyi->phyint_hook_ifindex = phyi->phyint_group_ifindex; 16379 else 16380 phyi->phyint_hook_ifindex = phyi->phyint_ifindex; 16381 16382 if (ipst->ips_ipmp_hook_emulation && 16383 phyi_tmp != NULL) { 16384 /* First phyint in group - group PLUMB event */ 16385 ill_nic_event_plumb(ill, B_TRUE); 16386 } 16387 mutex_exit(&phyi->phyint_lock); 16388 RELEASE_ILL_LOCKS(ill_v4, ill_v6); 16389 rw_exit(&ipst->ips_ill_g_lock); 16390 16391 err = ill_up_ipifs(ill, q, mp); 16392 } 16393 16394 done: 16395 /* 16396 * normally ILL_CHANGING is cleared in ill_up_ipifs. 16397 */ 16398 if (err != EINPROGRESS) { 16399 GRAB_ILL_LOCKS(ill_v4, ill_v6); 16400 if (ill_v4 != NULL) 16401 ill_v4->ill_state_flags &= ~ILL_CHANGING; 16402 if (ill_v6 != NULL) 16403 ill_v6->ill_state_flags &= ~ILL_CHANGING; 16404 RELEASE_ILL_LOCKS(ill_v4, ill_v6); 16405 } 16406 return (err); 16407 } 16408 16409 /* ARGSUSED */ 16410 int 16411 ip_sioctl_get_groupname(ipif_t *ipif, sin_t *dummy_sin, queue_t *q, 16412 mblk_t *mp, ip_ioctl_cmd_t *ipip, void *dummy_ifreq) 16413 { 16414 ill_t *ill; 16415 phyint_t *phyi; 16416 struct lifreq *lifr; 16417 mblk_t *mp1; 16418 16419 /* Existence verified in ip_wput_nondata */ 16420 mp1 = mp->b_cont->b_cont; 16421 lifr = (struct lifreq *)mp1->b_rptr; 16422 ill = ipif->ipif_ill; 16423 phyi = ill->ill_phyint; 16424 16425 lifr->lifr_groupname[0] = '\0'; 16426 /* 16427 * ill_group may be null if all the interfaces 16428 * are down. But still, the phyint should always 16429 * hold the name. 16430 */ 16431 if (phyi->phyint_groupname_len != 0) { 16432 bcopy(phyi->phyint_groupname, lifr->lifr_groupname, 16433 phyi->phyint_groupname_len); 16434 } 16435 16436 return (0); 16437 } 16438 16439 16440 typedef struct conn_move_s { 16441 ill_t *cm_from_ill; 16442 ill_t *cm_to_ill; 16443 int cm_ifindex; 16444 } conn_move_t; 16445 16446 /* 16447 * ipcl_walk function for moving conn_multicast_ill for a given ill. 16448 */ 16449 static void 16450 conn_move(conn_t *connp, caddr_t arg) 16451 { 16452 conn_move_t *connm; 16453 int ifindex; 16454 int i; 16455 ill_t *from_ill; 16456 ill_t *to_ill; 16457 ilg_t *ilg; 16458 ilm_t *ret_ilm; 16459 16460 connm = (conn_move_t *)arg; 16461 ifindex = connm->cm_ifindex; 16462 from_ill = connm->cm_from_ill; 16463 to_ill = connm->cm_to_ill; 16464 16465 /* Change IP_BOUND_IF/IPV6_BOUND_IF associations. */ 16466 16467 /* All multicast fields protected by conn_lock */ 16468 mutex_enter(&connp->conn_lock); 16469 ASSERT(connp->conn_outgoing_ill == connp->conn_incoming_ill); 16470 if ((connp->conn_outgoing_ill == from_ill) && 16471 (ifindex == 0 || connp->conn_orig_bound_ifindex == ifindex)) { 16472 connp->conn_outgoing_ill = to_ill; 16473 connp->conn_incoming_ill = to_ill; 16474 } 16475 16476 /* Change IP_MULTICAST_IF/IPV6_MULTICAST_IF associations */ 16477 16478 if ((connp->conn_multicast_ill == from_ill) && 16479 (ifindex == 0 || connp->conn_orig_multicast_ifindex == ifindex)) { 16480 connp->conn_multicast_ill = connm->cm_to_ill; 16481 } 16482 16483 /* 16484 * Change the ilg_ill to point to the new one. This assumes 16485 * ilm_move_v6 has moved the ilms to new_ill and the driver 16486 * has been told to receive packets on this interface. 16487 * ilm_move_v6 FAILBACKS all the ilms successfully always. 16488 * But when doing a FAILOVER, it might fail with ENOMEM and so 16489 * some ilms may not have moved. We check to see whether 16490 * the ilms have moved to to_ill. We can't check on from_ill 16491 * as in the process of moving, we could have split an ilm 16492 * in to two - which has the same orig_ifindex and v6group. 16493 * 16494 * For IPv4, ilg_ipif moves implicitly. The code below really 16495 * does not do anything for IPv4 as ilg_ill is NULL for IPv4. 16496 */ 16497 for (i = connp->conn_ilg_inuse - 1; i >= 0; i--) { 16498 ilg = &connp->conn_ilg[i]; 16499 if ((ilg->ilg_ill == from_ill) && 16500 (ifindex == 0 || ilg->ilg_orig_ifindex == ifindex)) { 16501 /* ifindex != 0 indicates failback */ 16502 if (ifindex != 0) { 16503 connp->conn_ilg[i].ilg_ill = to_ill; 16504 continue; 16505 } 16506 16507 mutex_enter(&to_ill->ill_lock); 16508 ret_ilm = ilm_lookup_ill_index_v6(to_ill, 16509 &ilg->ilg_v6group, ilg->ilg_orig_ifindex, 16510 connp->conn_zoneid); 16511 mutex_exit(&to_ill->ill_lock); 16512 16513 if (ret_ilm != NULL) 16514 connp->conn_ilg[i].ilg_ill = to_ill; 16515 } 16516 } 16517 mutex_exit(&connp->conn_lock); 16518 } 16519 16520 static void 16521 conn_move_ill(ill_t *from_ill, ill_t *to_ill, int ifindex) 16522 { 16523 conn_move_t connm; 16524 ip_stack_t *ipst = from_ill->ill_ipst; 16525 16526 connm.cm_from_ill = from_ill; 16527 connm.cm_to_ill = to_ill; 16528 connm.cm_ifindex = ifindex; 16529 16530 ipcl_walk(conn_move, (caddr_t)&connm, ipst); 16531 } 16532 16533 /* 16534 * ilm has been moved from from_ill to to_ill. 16535 * Send DL_DISABMULTI_REQ to ill and DL_ENABMULTI_REQ on to_ill. 16536 * appropriately. 16537 * 16538 * NOTE : We can't reuse the code in ip_ll_addmulti/delmulti because 16539 * the code there de-references ipif_ill to get the ill to 16540 * send multicast requests. It does not work as ipif is on its 16541 * move and already moved when this function is called. 16542 * Thus, we need to use from_ill and to_ill send down multicast 16543 * requests. 16544 */ 16545 static void 16546 ilm_send_multicast_reqs(ill_t *from_ill, ill_t *to_ill) 16547 { 16548 ipif_t *ipif; 16549 ilm_t *ilm; 16550 16551 /* 16552 * See whether we need to send down DL_ENABMULTI_REQ on 16553 * to_ill as ilm has just been added. 16554 */ 16555 ASSERT(IAM_WRITER_ILL(to_ill)); 16556 ASSERT(IAM_WRITER_ILL(from_ill)); 16557 16558 ILM_WALKER_HOLD(to_ill); 16559 for (ilm = to_ill->ill_ilm; ilm != NULL; ilm = ilm->ilm_next) { 16560 16561 if (!ilm->ilm_is_new || (ilm->ilm_flags & ILM_DELETED)) 16562 continue; 16563 /* 16564 * no locks held, ill/ipif cannot dissappear as long 16565 * as we are writer. 16566 */ 16567 ipif = to_ill->ill_ipif; 16568 /* 16569 * No need to hold any lock as we are the writer and this 16570 * can only be changed by a writer. 16571 */ 16572 ilm->ilm_is_new = B_FALSE; 16573 16574 if (to_ill->ill_net_type != IRE_IF_RESOLVER || 16575 ipif->ipif_flags & IPIF_POINTOPOINT) { 16576 ip1dbg(("ilm_send_multicast_reqs: to_ill not " 16577 "resolver\n")); 16578 continue; /* Must be IRE_IF_NORESOLVER */ 16579 } 16580 16581 if (to_ill->ill_phyint->phyint_flags & PHYI_MULTI_BCAST) { 16582 ip1dbg(("ilm_send_multicast_reqs: " 16583 "to_ill MULTI_BCAST\n")); 16584 goto from; 16585 } 16586 16587 if (to_ill->ill_isv6) 16588 mld_joingroup(ilm); 16589 else 16590 igmp_joingroup(ilm); 16591 16592 if (to_ill->ill_ipif_up_count == 0) { 16593 /* 16594 * Nobody there. All multicast addresses will be 16595 * re-joined when we get the DL_BIND_ACK bringing the 16596 * interface up. 16597 */ 16598 ilm->ilm_notify_driver = B_FALSE; 16599 ip1dbg(("ilm_send_multicast_reqs: to_ill nobody up\n")); 16600 goto from; 16601 } 16602 16603 /* 16604 * For allmulti address, we want to join on only one interface. 16605 * Checking for ilm_numentries_v6 is not correct as you may 16606 * find an ilm with zero address on to_ill, but we may not 16607 * have nominated to_ill for receiving. Thus, if we have 16608 * nominated from_ill (ill_join_allmulti is set), nominate 16609 * only if to_ill is not already nominated (to_ill normally 16610 * should not have been nominated if "from_ill" has already 16611 * been nominated. As we don't prevent failovers from happening 16612 * across groups, we don't assert). 16613 */ 16614 if (IN6_IS_ADDR_UNSPECIFIED(&ilm->ilm_v6addr)) { 16615 /* 16616 * There is no need to hold ill locks as we are 16617 * writer on both ills and when ill_join_allmulti() 16618 * is called the thread is always a writer. 16619 */ 16620 if (from_ill->ill_join_allmulti && 16621 !to_ill->ill_join_allmulti) { 16622 (void) ill_join_allmulti(to_ill); 16623 } 16624 } else if (ilm->ilm_notify_driver) { 16625 16626 /* 16627 * This is a newly moved ilm so we need to tell the 16628 * driver about the new group. There can be more than 16629 * one ilm's for the same group in the list each with a 16630 * different orig_ifindex. We have to inform the driver 16631 * once. In ilm_move_v[4,6] we only set the flag 16632 * ilm_notify_driver for the first ilm. 16633 */ 16634 16635 (void) ip_ll_send_enabmulti_req(to_ill, 16636 &ilm->ilm_v6addr); 16637 } 16638 16639 ilm->ilm_notify_driver = B_FALSE; 16640 16641 /* 16642 * See whether we need to send down DL_DISABMULTI_REQ on 16643 * from_ill as ilm has just been removed. 16644 */ 16645 from: 16646 ipif = from_ill->ill_ipif; 16647 if (from_ill->ill_net_type != IRE_IF_RESOLVER || 16648 ipif->ipif_flags & IPIF_POINTOPOINT) { 16649 ip1dbg(("ilm_send_multicast_reqs: " 16650 "from_ill not resolver\n")); 16651 continue; /* Must be IRE_IF_NORESOLVER */ 16652 } 16653 16654 if (from_ill->ill_phyint->phyint_flags & PHYI_MULTI_BCAST) { 16655 ip1dbg(("ilm_send_multicast_reqs: " 16656 "from_ill MULTI_BCAST\n")); 16657 continue; 16658 } 16659 16660 if (IN6_IS_ADDR_UNSPECIFIED(&ilm->ilm_v6addr)) { 16661 if (from_ill->ill_join_allmulti) 16662 ill_leave_allmulti(from_ill); 16663 } else if (ilm_numentries_v6(from_ill, &ilm->ilm_v6addr) == 0) { 16664 (void) ip_ll_send_disabmulti_req(from_ill, 16665 &ilm->ilm_v6addr); 16666 } 16667 } 16668 ILM_WALKER_RELE(to_ill); 16669 } 16670 16671 /* 16672 * This function is called when all multicast memberships needs 16673 * to be moved from "from_ill" to "to_ill" for IPv6. This function is 16674 * called only once unlike the IPv4 counterpart where it is called after 16675 * every logical interface is moved. The reason is due to multicast 16676 * memberships are joined using an interface address in IPv4 while in 16677 * IPv6, interface index is used. 16678 */ 16679 static void 16680 ilm_move_v6(ill_t *from_ill, ill_t *to_ill, int ifindex) 16681 { 16682 ilm_t *ilm; 16683 ilm_t *ilm_next; 16684 ilm_t *new_ilm; 16685 ilm_t **ilmp; 16686 int count; 16687 char buf[INET6_ADDRSTRLEN]; 16688 in6_addr_t ipv6_snm = ipv6_solicited_node_mcast; 16689 ip_stack_t *ipst = from_ill->ill_ipst; 16690 16691 ASSERT(MUTEX_HELD(&to_ill->ill_lock)); 16692 ASSERT(MUTEX_HELD(&from_ill->ill_lock)); 16693 ASSERT(RW_WRITE_HELD(&ipst->ips_ill_g_lock)); 16694 16695 if (ifindex == 0) { 16696 /* 16697 * Form the solicited node mcast address which is used later. 16698 */ 16699 ipif_t *ipif; 16700 16701 ipif = from_ill->ill_ipif; 16702 ASSERT(ipif->ipif_id == 0); 16703 16704 ipv6_snm.s6_addr32[3] |= ipif->ipif_v6lcl_addr.s6_addr32[3]; 16705 } 16706 16707 ilmp = &from_ill->ill_ilm; 16708 for (ilm = from_ill->ill_ilm; ilm != NULL; ilm = ilm_next) { 16709 ilm_next = ilm->ilm_next; 16710 16711 if (ilm->ilm_flags & ILM_DELETED) { 16712 ilmp = &ilm->ilm_next; 16713 continue; 16714 } 16715 16716 new_ilm = ilm_lookup_ill_index_v6(to_ill, &ilm->ilm_v6addr, 16717 ilm->ilm_orig_ifindex, ilm->ilm_zoneid); 16718 ASSERT(ilm->ilm_orig_ifindex != 0); 16719 if (ilm->ilm_orig_ifindex == ifindex) { 16720 /* 16721 * We are failing back multicast memberships. 16722 * If the same ilm exists in to_ill, it means somebody 16723 * has joined the same group there e.g. ff02::1 16724 * is joined within the kernel when the interfaces 16725 * came UP. 16726 */ 16727 ASSERT(ilm->ilm_ipif == NULL); 16728 if (new_ilm != NULL) { 16729 new_ilm->ilm_refcnt += ilm->ilm_refcnt; 16730 if (new_ilm->ilm_fmode != MODE_IS_EXCLUDE || 16731 !SLIST_IS_EMPTY(new_ilm->ilm_filter)) { 16732 new_ilm->ilm_is_new = B_TRUE; 16733 } 16734 } else { 16735 /* 16736 * check if we can just move the ilm 16737 */ 16738 if (from_ill->ill_ilm_walker_cnt != 0) { 16739 /* 16740 * We have walkers we cannot move 16741 * the ilm, so allocate a new ilm, 16742 * this (old) ilm will be marked 16743 * ILM_DELETED at the end of the loop 16744 * and will be freed when the 16745 * last walker exits. 16746 */ 16747 new_ilm = (ilm_t *)mi_zalloc 16748 (sizeof (ilm_t)); 16749 if (new_ilm == NULL) { 16750 ip0dbg(("ilm_move_v6: " 16751 "FAILBACK of IPv6" 16752 " multicast address %s : " 16753 "from %s to" 16754 " %s failed : ENOMEM \n", 16755 inet_ntop(AF_INET6, 16756 &ilm->ilm_v6addr, buf, 16757 sizeof (buf)), 16758 from_ill->ill_name, 16759 to_ill->ill_name)); 16760 16761 ilmp = &ilm->ilm_next; 16762 continue; 16763 } 16764 *new_ilm = *ilm; 16765 /* 16766 * we don't want new_ilm linked to 16767 * ilm's filter list. 16768 */ 16769 new_ilm->ilm_filter = NULL; 16770 } else { 16771 /* 16772 * No walkers we can move the ilm. 16773 * lets take it out of the list. 16774 */ 16775 *ilmp = ilm->ilm_next; 16776 ilm->ilm_next = NULL; 16777 DTRACE_PROBE3(ill__decr__cnt, 16778 (ill_t *), from_ill, 16779 (char *), "ilm", (void *), ilm); 16780 ASSERT(from_ill->ill_ilm_cnt > 0); 16781 from_ill->ill_ilm_cnt--; 16782 16783 new_ilm = ilm; 16784 } 16785 16786 /* 16787 * if this is the first ilm for the group 16788 * set ilm_notify_driver so that we notify the 16789 * driver in ilm_send_multicast_reqs. 16790 */ 16791 if (ilm_lookup_ill_v6(to_ill, 16792 &new_ilm->ilm_v6addr, ALL_ZONES) == NULL) 16793 new_ilm->ilm_notify_driver = B_TRUE; 16794 16795 DTRACE_PROBE3(ill__incr__cnt, (ill_t *), to_ill, 16796 (char *), "ilm", (void *), new_ilm); 16797 new_ilm->ilm_ill = to_ill; 16798 to_ill->ill_ilm_cnt++; 16799 16800 /* Add to the to_ill's list */ 16801 new_ilm->ilm_next = to_ill->ill_ilm; 16802 to_ill->ill_ilm = new_ilm; 16803 /* 16804 * set the flag so that mld_joingroup is 16805 * called in ilm_send_multicast_reqs(). 16806 */ 16807 new_ilm->ilm_is_new = B_TRUE; 16808 } 16809 goto bottom; 16810 } else if (ifindex != 0) { 16811 /* 16812 * If this is FAILBACK (ifindex != 0) and the ifindex 16813 * has not matched above, look at the next ilm. 16814 */ 16815 ilmp = &ilm->ilm_next; 16816 continue; 16817 } 16818 /* 16819 * If we are here, it means ifindex is 0. Failover 16820 * everything. 16821 * 16822 * We need to handle solicited node mcast address 16823 * and all_nodes mcast address differently as they 16824 * are joined witin the kenrel (ipif_multicast_up) 16825 * and potentially from the userland. We are called 16826 * after the ipifs of from_ill has been moved. 16827 * If we still find ilms on ill with solicited node 16828 * mcast address or all_nodes mcast address, it must 16829 * belong to the UP interface that has not moved e.g. 16830 * ipif_id 0 with the link local prefix does not move. 16831 * We join this on the new ill accounting for all the 16832 * userland memberships so that applications don't 16833 * see any failure. 16834 * 16835 * We need to make sure that we account only for the 16836 * solicited node and all node multicast addresses 16837 * that was brought UP on these. In the case of 16838 * a failover from A to B, we might have ilms belonging 16839 * to A (ilm_orig_ifindex pointing at A) on B accounting 16840 * for the membership from the userland. If we are failing 16841 * over from B to C now, we will find the ones belonging 16842 * to A on B. These don't account for the ill_ipif_up_count. 16843 * They just move from B to C. The check below on 16844 * ilm_orig_ifindex ensures that. 16845 */ 16846 if ((ilm->ilm_orig_ifindex == 16847 from_ill->ill_phyint->phyint_ifindex) && 16848 (IN6_ARE_ADDR_EQUAL(&ipv6_snm, &ilm->ilm_v6addr) || 16849 IN6_ARE_ADDR_EQUAL(&ipv6_all_hosts_mcast, 16850 &ilm->ilm_v6addr))) { 16851 ASSERT(ilm->ilm_refcnt > 0); 16852 count = ilm->ilm_refcnt - from_ill->ill_ipif_up_count; 16853 /* 16854 * For indentation reasons, we are not using a 16855 * "else" here. 16856 */ 16857 if (count == 0) { 16858 ilmp = &ilm->ilm_next; 16859 continue; 16860 } 16861 ilm->ilm_refcnt -= count; 16862 if (new_ilm != NULL) { 16863 /* 16864 * Can find one with the same 16865 * ilm_orig_ifindex, if we are failing 16866 * over to a STANDBY. This happens 16867 * when somebody wants to join a group 16868 * on a STANDBY interface and we 16869 * internally join on a different one. 16870 * If we had joined on from_ill then, a 16871 * failover now will find a new ilm 16872 * with this index. 16873 */ 16874 ip1dbg(("ilm_move_v6: FAILOVER, found" 16875 " new ilm on %s, group address %s\n", 16876 to_ill->ill_name, 16877 inet_ntop(AF_INET6, 16878 &ilm->ilm_v6addr, buf, 16879 sizeof (buf)))); 16880 new_ilm->ilm_refcnt += count; 16881 if (new_ilm->ilm_fmode != MODE_IS_EXCLUDE || 16882 !SLIST_IS_EMPTY(new_ilm->ilm_filter)) { 16883 new_ilm->ilm_is_new = B_TRUE; 16884 } 16885 } else { 16886 new_ilm = (ilm_t *)mi_zalloc(sizeof (ilm_t)); 16887 if (new_ilm == NULL) { 16888 ip0dbg(("ilm_move_v6: FAILOVER of IPv6" 16889 " multicast address %s : from %s to" 16890 " %s failed : ENOMEM \n", 16891 inet_ntop(AF_INET6, 16892 &ilm->ilm_v6addr, buf, 16893 sizeof (buf)), from_ill->ill_name, 16894 to_ill->ill_name)); 16895 ilmp = &ilm->ilm_next; 16896 continue; 16897 } 16898 *new_ilm = *ilm; 16899 new_ilm->ilm_filter = NULL; 16900 new_ilm->ilm_refcnt = count; 16901 new_ilm->ilm_timer = INFINITY; 16902 new_ilm->ilm_rtx.rtx_timer = INFINITY; 16903 new_ilm->ilm_is_new = B_TRUE; 16904 /* 16905 * If the to_ill has not joined this 16906 * group we need to tell the driver in 16907 * ill_send_multicast_reqs. 16908 */ 16909 if (ilm_lookup_ill_v6(to_ill, 16910 &new_ilm->ilm_v6addr, ALL_ZONES) == NULL) 16911 new_ilm->ilm_notify_driver = B_TRUE; 16912 16913 new_ilm->ilm_ill = to_ill; 16914 DTRACE_PROBE3(ill__incr__cnt, (ill_t *), to_ill, 16915 (char *), "ilm", (void *), new_ilm); 16916 to_ill->ill_ilm_cnt++; 16917 16918 /* Add to the to_ill's list */ 16919 new_ilm->ilm_next = to_ill->ill_ilm; 16920 to_ill->ill_ilm = new_ilm; 16921 ASSERT(new_ilm->ilm_ipif == NULL); 16922 } 16923 if (ilm->ilm_refcnt == 0) { 16924 goto bottom; 16925 } else { 16926 new_ilm->ilm_fmode = MODE_IS_EXCLUDE; 16927 CLEAR_SLIST(new_ilm->ilm_filter); 16928 ilmp = &ilm->ilm_next; 16929 } 16930 continue; 16931 } else { 16932 /* 16933 * ifindex = 0 means, move everything pointing at 16934 * from_ill. We are doing this becuase ill has 16935 * either FAILED or became INACTIVE. 16936 * 16937 * As we would like to move things later back to 16938 * from_ill, we want to retain the identity of this 16939 * ilm. Thus, we don't blindly increment the reference 16940 * count on the ilms matching the address alone. We 16941 * need to match on the ilm_orig_index also. new_ilm 16942 * was obtained by matching ilm_orig_index also. 16943 */ 16944 if (new_ilm != NULL) { 16945 /* 16946 * This is possible only if a previous restore 16947 * was incomplete i.e restore to 16948 * ilm_orig_ifindex left some ilms because 16949 * of some failures. Thus when we are failing 16950 * again, we might find our old friends there. 16951 */ 16952 ip1dbg(("ilm_move_v6: FAILOVER, found new ilm" 16953 " on %s, group address %s\n", 16954 to_ill->ill_name, 16955 inet_ntop(AF_INET6, 16956 &ilm->ilm_v6addr, buf, 16957 sizeof (buf)))); 16958 new_ilm->ilm_refcnt += ilm->ilm_refcnt; 16959 if (new_ilm->ilm_fmode != MODE_IS_EXCLUDE || 16960 !SLIST_IS_EMPTY(new_ilm->ilm_filter)) { 16961 new_ilm->ilm_is_new = B_TRUE; 16962 } 16963 } else { 16964 if (from_ill->ill_ilm_walker_cnt != 0) { 16965 new_ilm = (ilm_t *) 16966 mi_zalloc(sizeof (ilm_t)); 16967 if (new_ilm == NULL) { 16968 ip0dbg(("ilm_move_v6: " 16969 "FAILOVER of IPv6" 16970 " multicast address %s : " 16971 "from %s to" 16972 " %s failed : ENOMEM \n", 16973 inet_ntop(AF_INET6, 16974 &ilm->ilm_v6addr, buf, 16975 sizeof (buf)), 16976 from_ill->ill_name, 16977 to_ill->ill_name)); 16978 16979 ilmp = &ilm->ilm_next; 16980 continue; 16981 } 16982 *new_ilm = *ilm; 16983 new_ilm->ilm_filter = NULL; 16984 } else { 16985 *ilmp = ilm->ilm_next; 16986 DTRACE_PROBE3(ill__decr__cnt, 16987 (ill_t *), from_ill, 16988 (char *), "ilm", (void *), ilm); 16989 ASSERT(from_ill->ill_ilm_cnt > 0); 16990 from_ill->ill_ilm_cnt--; 16991 16992 new_ilm = ilm; 16993 } 16994 /* 16995 * If the to_ill has not joined this 16996 * group we need to tell the driver in 16997 * ill_send_multicast_reqs. 16998 */ 16999 if (ilm_lookup_ill_v6(to_ill, 17000 &new_ilm->ilm_v6addr, ALL_ZONES) == NULL) 17001 new_ilm->ilm_notify_driver = B_TRUE; 17002 17003 /* Add to the to_ill's list */ 17004 new_ilm->ilm_next = to_ill->ill_ilm; 17005 to_ill->ill_ilm = new_ilm; 17006 ASSERT(ilm->ilm_ipif == NULL); 17007 new_ilm->ilm_ill = to_ill; 17008 DTRACE_PROBE3(ill__incr__cnt, (ill_t *), to_ill, 17009 (char *), "ilm", (void *), new_ilm); 17010 to_ill->ill_ilm_cnt++; 17011 new_ilm->ilm_is_new = B_TRUE; 17012 } 17013 17014 } 17015 17016 bottom: 17017 /* 17018 * Revert multicast filter state to (EXCLUDE, NULL). 17019 * new_ilm->ilm_is_new should already be set if needed. 17020 */ 17021 new_ilm->ilm_fmode = MODE_IS_EXCLUDE; 17022 CLEAR_SLIST(new_ilm->ilm_filter); 17023 /* 17024 * We allocated/got a new ilm, free the old one. 17025 */ 17026 if (new_ilm != ilm) { 17027 if (from_ill->ill_ilm_walker_cnt == 0) { 17028 *ilmp = ilm->ilm_next; 17029 17030 ASSERT(ilm->ilm_ipif == NULL); /* ipv6 */ 17031 DTRACE_PROBE3(ill__decr__cnt, (ill_t *), 17032 from_ill, (char *), "ilm", (void *), ilm); 17033 ASSERT(from_ill->ill_ilm_cnt > 0); 17034 from_ill->ill_ilm_cnt--; 17035 17036 ilm_inactive(ilm); /* frees this ilm */ 17037 17038 } else { 17039 ilm->ilm_flags |= ILM_DELETED; 17040 from_ill->ill_ilm_cleanup_reqd = 1; 17041 ilmp = &ilm->ilm_next; 17042 } 17043 } 17044 } 17045 } 17046 17047 /* 17048 * Move all the multicast memberships to to_ill. Called when 17049 * an ipif moves from "from_ill" to "to_ill". This function is slightly 17050 * different from IPv6 counterpart as multicast memberships are associated 17051 * with ills in IPv6. This function is called after every ipif is moved 17052 * unlike IPv6, where it is moved only once. 17053 */ 17054 static void 17055 ilm_move_v4(ill_t *from_ill, ill_t *to_ill, ipif_t *ipif) 17056 { 17057 ilm_t *ilm; 17058 ilm_t *ilm_next; 17059 ilm_t *new_ilm; 17060 ilm_t **ilmp; 17061 ip_stack_t *ipst = from_ill->ill_ipst; 17062 17063 ASSERT(MUTEX_HELD(&to_ill->ill_lock)); 17064 ASSERT(MUTEX_HELD(&from_ill->ill_lock)); 17065 ASSERT(RW_WRITE_HELD(&ipst->ips_ill_g_lock)); 17066 17067 ilmp = &from_ill->ill_ilm; 17068 for (ilm = from_ill->ill_ilm; ilm != NULL; ilm = ilm_next) { 17069 ilm_next = ilm->ilm_next; 17070 17071 if (ilm->ilm_flags & ILM_DELETED) { 17072 ilmp = &ilm->ilm_next; 17073 continue; 17074 } 17075 17076 ASSERT(ilm->ilm_ipif != NULL); 17077 17078 if (ilm->ilm_ipif != ipif) { 17079 ilmp = &ilm->ilm_next; 17080 continue; 17081 } 17082 17083 if (V4_PART_OF_V6(ilm->ilm_v6addr) == 17084 htonl(INADDR_ALLHOSTS_GROUP)) { 17085 new_ilm = ilm_lookup_ipif(ipif, 17086 V4_PART_OF_V6(ilm->ilm_v6addr)); 17087 if (new_ilm != NULL) { 17088 new_ilm->ilm_refcnt += ilm->ilm_refcnt; 17089 /* 17090 * We still need to deal with the from_ill. 17091 */ 17092 new_ilm->ilm_is_new = B_TRUE; 17093 new_ilm->ilm_fmode = MODE_IS_EXCLUDE; 17094 CLEAR_SLIST(new_ilm->ilm_filter); 17095 ASSERT(ilm->ilm_ipif == ipif); 17096 ASSERT(ilm->ilm_ipif->ipif_ilm_cnt > 0); 17097 if (from_ill->ill_ilm_walker_cnt == 0) { 17098 DTRACE_PROBE3(ill__decr__cnt, 17099 (ill_t *), from_ill, 17100 (char *), "ilm", (void *), ilm); 17101 ASSERT(ilm->ilm_ipif->ipif_ilm_cnt > 0); 17102 } 17103 goto delete_ilm; 17104 } 17105 /* 17106 * If we could not find one e.g. ipif is 17107 * still down on to_ill, we add this ilm 17108 * on ill_new to preserve the reference 17109 * count. 17110 */ 17111 } 17112 /* 17113 * When ipifs move, ilms always move with it 17114 * to the NEW ill. Thus we should never be 17115 * able to find ilm till we really move it here. 17116 */ 17117 ASSERT(ilm_lookup_ipif(ipif, 17118 V4_PART_OF_V6(ilm->ilm_v6addr)) == NULL); 17119 17120 if (from_ill->ill_ilm_walker_cnt != 0) { 17121 new_ilm = (ilm_t *)mi_zalloc(sizeof (ilm_t)); 17122 if (new_ilm == NULL) { 17123 char buf[INET6_ADDRSTRLEN]; 17124 ip0dbg(("ilm_move_v4: FAILBACK of IPv4" 17125 " multicast address %s : " 17126 "from %s to" 17127 " %s failed : ENOMEM \n", 17128 inet_ntop(AF_INET, 17129 &ilm->ilm_v6addr, buf, 17130 sizeof (buf)), 17131 from_ill->ill_name, 17132 to_ill->ill_name)); 17133 17134 ilmp = &ilm->ilm_next; 17135 continue; 17136 } 17137 *new_ilm = *ilm; 17138 DTRACE_PROBE3(ipif__incr__cnt, (ipif_t *), ipif, 17139 (char *), "ilm", (void *), ilm); 17140 new_ilm->ilm_ipif->ipif_ilm_cnt++; 17141 /* We don't want new_ilm linked to ilm's filter list */ 17142 new_ilm->ilm_filter = NULL; 17143 } else { 17144 /* Remove from the list */ 17145 *ilmp = ilm->ilm_next; 17146 new_ilm = ilm; 17147 } 17148 17149 /* 17150 * If we have never joined this group on the to_ill 17151 * make sure we tell the driver. 17152 */ 17153 if (ilm_lookup_ill_v6(to_ill, &new_ilm->ilm_v6addr, 17154 ALL_ZONES) == NULL) 17155 new_ilm->ilm_notify_driver = B_TRUE; 17156 17157 /* Add to the to_ill's list */ 17158 new_ilm->ilm_next = to_ill->ill_ilm; 17159 to_ill->ill_ilm = new_ilm; 17160 new_ilm->ilm_is_new = B_TRUE; 17161 17162 /* 17163 * Revert multicast filter state to (EXCLUDE, NULL) 17164 */ 17165 new_ilm->ilm_fmode = MODE_IS_EXCLUDE; 17166 CLEAR_SLIST(new_ilm->ilm_filter); 17167 17168 /* 17169 * Delete only if we have allocated a new ilm. 17170 */ 17171 if (new_ilm != ilm) { 17172 delete_ilm: 17173 if (from_ill->ill_ilm_walker_cnt == 0) { 17174 /* Remove from the list */ 17175 *ilmp = ilm->ilm_next; 17176 ilm->ilm_next = NULL; 17177 DTRACE_PROBE3(ipif__decr__cnt, 17178 (ipif_t *), ilm->ilm_ipif, 17179 (char *), "ilm", (void *), ilm); 17180 ASSERT(ilm->ilm_ipif->ipif_ilm_cnt > 0); 17181 ilm->ilm_ipif->ipif_ilm_cnt--; 17182 ilm_inactive(ilm); 17183 } else { 17184 ilm->ilm_flags |= ILM_DELETED; 17185 from_ill->ill_ilm_cleanup_reqd = 1; 17186 ilmp = &ilm->ilm_next; 17187 } 17188 } 17189 } 17190 } 17191 17192 static uint_t 17193 ipif_get_id(ill_t *ill, uint_t id) 17194 { 17195 uint_t unit; 17196 ipif_t *tipif; 17197 boolean_t found = B_FALSE; 17198 ip_stack_t *ipst = ill->ill_ipst; 17199 17200 /* 17201 * During failback, we want to go back to the same id 17202 * instead of the smallest id so that the original 17203 * configuration is maintained. id is non-zero in that 17204 * case. 17205 */ 17206 if (id != 0) { 17207 /* 17208 * While failing back, if we still have an ipif with 17209 * MAX_ADDRS_PER_IF, it means this will be replaced 17210 * as soon as we return from this function. It was 17211 * to set to MAX_ADDRS_PER_IF by the caller so that 17212 * we can choose the smallest id. Thus we return zero 17213 * in that case ignoring the hint. 17214 */ 17215 if (ill->ill_ipif->ipif_id == MAX_ADDRS_PER_IF) 17216 return (0); 17217 for (tipif = ill->ill_ipif; tipif != NULL; 17218 tipif = tipif->ipif_next) { 17219 if (tipif->ipif_id == id) { 17220 found = B_TRUE; 17221 break; 17222 } 17223 } 17224 /* 17225 * If somebody already plumbed another logical 17226 * with the same id, we won't be able to find it. 17227 */ 17228 if (!found) 17229 return (id); 17230 } 17231 for (unit = 0; unit <= ipst->ips_ip_addrs_per_if; unit++) { 17232 found = B_FALSE; 17233 for (tipif = ill->ill_ipif; tipif != NULL; 17234 tipif = tipif->ipif_next) { 17235 if (tipif->ipif_id == unit) { 17236 found = B_TRUE; 17237 break; 17238 } 17239 } 17240 if (!found) 17241 break; 17242 } 17243 return (unit); 17244 } 17245 17246 /* ARGSUSED */ 17247 static int 17248 ipif_move(ipif_t *ipif, ill_t *to_ill, queue_t *q, mblk_t *mp, 17249 ipif_t **rep_ipif_ptr) 17250 { 17251 ill_t *from_ill; 17252 ipif_t *rep_ipif; 17253 uint_t unit; 17254 int err = 0; 17255 ipif_t *to_ipif; 17256 struct iocblk *iocp; 17257 boolean_t failback_cmd; 17258 boolean_t remove_ipif; 17259 int rc; 17260 ip_stack_t *ipst; 17261 17262 ASSERT(IAM_WRITER_ILL(to_ill)); 17263 ASSERT(IAM_WRITER_IPIF(ipif)); 17264 17265 iocp = (struct iocblk *)mp->b_rptr; 17266 failback_cmd = (iocp->ioc_cmd == SIOCLIFFAILBACK); 17267 remove_ipif = B_FALSE; 17268 17269 from_ill = ipif->ipif_ill; 17270 ipst = from_ill->ill_ipst; 17271 17272 ASSERT(MUTEX_HELD(&to_ill->ill_lock)); 17273 ASSERT(MUTEX_HELD(&from_ill->ill_lock)); 17274 ASSERT(RW_WRITE_HELD(&ipst->ips_ill_g_lock)); 17275 17276 /* 17277 * Don't move LINK LOCAL addresses as they are tied to 17278 * physical interface. 17279 */ 17280 if (from_ill->ill_isv6 && 17281 IN6_IS_ADDR_LINKLOCAL(&ipif->ipif_v6lcl_addr)) { 17282 ipif->ipif_was_up = B_FALSE; 17283 IPIF_UNMARK_MOVING(ipif); 17284 return (0); 17285 } 17286 17287 /* 17288 * We set the ipif_id to maximum so that the search for 17289 * ipif_id will pick the lowest number i.e 0 in the 17290 * following 2 cases : 17291 * 17292 * 1) We have a replacement ipif at the head of to_ill. 17293 * We can't remove it yet as we can exceed ip_addrs_per_if 17294 * on to_ill and hence the MOVE might fail. We want to 17295 * remove it only if we could move the ipif. Thus, by 17296 * setting it to the MAX value, we make the search in 17297 * ipif_get_id return the zeroth id. 17298 * 17299 * 2) When DR pulls out the NIC and re-plumbs the interface, 17300 * we might just have a zero address plumbed on the ipif 17301 * with zero id in the case of IPv4. We remove that while 17302 * doing the failback. We want to remove it only if we 17303 * could move the ipif. Thus, by setting it to the MAX 17304 * value, we make the search in ipif_get_id return the 17305 * zeroth id. 17306 * 17307 * Both (1) and (2) are done only when when we are moving 17308 * an ipif (either due to failover/failback) which originally 17309 * belonged to this interface i.e the ipif_orig_ifindex is 17310 * the same as to_ill's ifindex. This is needed so that 17311 * FAILOVER from A -> B ( A failed) followed by FAILOVER 17312 * from B -> A (B is being removed from the group) and 17313 * FAILBACK from A -> B restores the original configuration. 17314 * Without the check for orig_ifindex, the second FAILOVER 17315 * could make the ipif belonging to B replace the A's zeroth 17316 * ipif and the subsequent failback re-creating the replacement 17317 * ipif again. 17318 * 17319 * NOTE : We created the replacement ipif when we did a 17320 * FAILOVER (See below). We could check for FAILBACK and 17321 * then look for replacement ipif to be removed. But we don't 17322 * want to do that because we wan't to allow the possibility 17323 * of a FAILOVER from A -> B (which creates the replacement ipif), 17324 * followed by a *FAILOVER* from B -> A instead of a FAILBACK 17325 * from B -> A. 17326 */ 17327 to_ipif = to_ill->ill_ipif; 17328 if ((to_ill->ill_phyint->phyint_ifindex == 17329 ipif->ipif_orig_ifindex) && 17330 to_ipif->ipif_replace_zero) { 17331 ASSERT(to_ipif->ipif_id == 0); 17332 remove_ipif = B_TRUE; 17333 to_ipif->ipif_id = MAX_ADDRS_PER_IF; 17334 } 17335 /* 17336 * Find the lowest logical unit number on the to_ill. 17337 * If we are failing back, try to get the original id 17338 * rather than the lowest one so that the original 17339 * configuration is maintained. 17340 * 17341 * XXX need a better scheme for this. 17342 */ 17343 if (failback_cmd) { 17344 unit = ipif_get_id(to_ill, ipif->ipif_orig_ipifid); 17345 } else { 17346 unit = ipif_get_id(to_ill, 0); 17347 } 17348 17349 /* Reset back to zero in case we fail below */ 17350 if (to_ipif->ipif_id == MAX_ADDRS_PER_IF) 17351 to_ipif->ipif_id = 0; 17352 17353 if (unit == ipst->ips_ip_addrs_per_if) { 17354 ipif->ipif_was_up = B_FALSE; 17355 IPIF_UNMARK_MOVING(ipif); 17356 return (EINVAL); 17357 } 17358 17359 /* 17360 * ipif is ready to move from "from_ill" to "to_ill". 17361 * 17362 * 1) If we are moving ipif with id zero, create a 17363 * replacement ipif for this ipif on from_ill. If this fails 17364 * fail the MOVE operation. 17365 * 17366 * 2) Remove the replacement ipif on to_ill if any. 17367 * We could remove the replacement ipif when we are moving 17368 * the ipif with id zero. But what if somebody already 17369 * unplumbed it ? Thus we always remove it if it is present. 17370 * We want to do it only if we are sure we are going to 17371 * move the ipif to to_ill which is why there are no 17372 * returns due to error till ipif is linked to to_ill. 17373 * Note that the first ipif that we failback will always 17374 * be zero if it is present. 17375 */ 17376 if (ipif->ipif_id == 0) { 17377 ipaddr_t inaddr_any = INADDR_ANY; 17378 17379 rep_ipif = (ipif_t *)mi_alloc(sizeof (ipif_t), BPRI_MED); 17380 if (rep_ipif == NULL) { 17381 ipif->ipif_was_up = B_FALSE; 17382 IPIF_UNMARK_MOVING(ipif); 17383 return (ENOMEM); 17384 } 17385 *rep_ipif = ipif_zero; 17386 /* 17387 * Before we put the ipif on the list, store the addresses 17388 * as mapped addresses as some of the ioctls e.g SIOCGIFADDR 17389 * assumes so. This logic is not any different from what 17390 * ipif_allocate does. 17391 */ 17392 IN6_IPADDR_TO_V4MAPPED(inaddr_any, 17393 &rep_ipif->ipif_v6lcl_addr); 17394 IN6_IPADDR_TO_V4MAPPED(inaddr_any, 17395 &rep_ipif->ipif_v6src_addr); 17396 IN6_IPADDR_TO_V4MAPPED(inaddr_any, 17397 &rep_ipif->ipif_v6subnet); 17398 IN6_IPADDR_TO_V4MAPPED(inaddr_any, 17399 &rep_ipif->ipif_v6net_mask); 17400 IN6_IPADDR_TO_V4MAPPED(inaddr_any, 17401 &rep_ipif->ipif_v6brd_addr); 17402 IN6_IPADDR_TO_V4MAPPED(inaddr_any, 17403 &rep_ipif->ipif_v6pp_dst_addr); 17404 /* 17405 * We mark IPIF_NOFAILOVER so that this can never 17406 * move. 17407 */ 17408 rep_ipif->ipif_flags = ipif->ipif_flags | IPIF_NOFAILOVER; 17409 rep_ipif->ipif_flags &= ~IPIF_UP & ~IPIF_DUPLICATE; 17410 rep_ipif->ipif_replace_zero = B_TRUE; 17411 mutex_init(&rep_ipif->ipif_saved_ire_lock, NULL, 17412 MUTEX_DEFAULT, NULL); 17413 rep_ipif->ipif_id = 0; 17414 rep_ipif->ipif_ire_type = ipif->ipif_ire_type; 17415 rep_ipif->ipif_ill = from_ill; 17416 rep_ipif->ipif_orig_ifindex = 17417 from_ill->ill_phyint->phyint_ifindex; 17418 /* Insert at head */ 17419 rep_ipif->ipif_next = from_ill->ill_ipif; 17420 from_ill->ill_ipif = rep_ipif; 17421 /* 17422 * We don't really care to let apps know about 17423 * this interface. 17424 */ 17425 } 17426 17427 if (remove_ipif) { 17428 /* 17429 * We set to a max value above for this case to get 17430 * id zero. ASSERT that we did get one. 17431 */ 17432 ASSERT((to_ipif->ipif_id == 0) && (unit == 0)); 17433 rep_ipif = to_ipif; 17434 to_ill->ill_ipif = rep_ipif->ipif_next; 17435 rep_ipif->ipif_next = NULL; 17436 /* 17437 * If some apps scanned and find this interface, 17438 * it is time to let them know, so that they can 17439 * delete it. 17440 */ 17441 17442 *rep_ipif_ptr = rep_ipif; 17443 } 17444 17445 /* Get it out of the ILL interface list. */ 17446 ipif_remove(ipif, B_FALSE); 17447 17448 /* Assign the new ill */ 17449 ipif->ipif_ill = to_ill; 17450 ipif->ipif_id = unit; 17451 /* id has already been checked */ 17452 rc = ipif_insert(ipif, B_FALSE, B_FALSE); 17453 ASSERT(rc == 0); 17454 /* Let SCTP update its list */ 17455 sctp_move_ipif(ipif, from_ill, to_ill); 17456 /* 17457 * Handle the failover and failback of ipif_t between 17458 * ill_t that have differing maximum mtu values. 17459 */ 17460 if (ipif->ipif_mtu > to_ill->ill_max_mtu) { 17461 if (ipif->ipif_saved_mtu == 0) { 17462 /* 17463 * As this ipif_t is moving to an ill_t 17464 * that has a lower ill_max_mtu, its 17465 * ipif_mtu needs to be saved so it can 17466 * be restored during failback or during 17467 * failover to an ill_t which has a 17468 * higher ill_max_mtu. 17469 */ 17470 ipif->ipif_saved_mtu = ipif->ipif_mtu; 17471 ipif->ipif_mtu = to_ill->ill_max_mtu; 17472 } else { 17473 /* 17474 * The ipif_t is, once again, moving to 17475 * an ill_t that has a lower maximum mtu 17476 * value. 17477 */ 17478 ipif->ipif_mtu = to_ill->ill_max_mtu; 17479 } 17480 } else if (ipif->ipif_mtu < to_ill->ill_max_mtu && 17481 ipif->ipif_saved_mtu != 0) { 17482 /* 17483 * The mtu of this ipif_t had to be reduced 17484 * during an earlier failover; this is an 17485 * opportunity for it to be increased (either as 17486 * part of another failover or a failback). 17487 */ 17488 if (ipif->ipif_saved_mtu <= to_ill->ill_max_mtu) { 17489 ipif->ipif_mtu = ipif->ipif_saved_mtu; 17490 ipif->ipif_saved_mtu = 0; 17491 } else { 17492 ipif->ipif_mtu = to_ill->ill_max_mtu; 17493 } 17494 } 17495 17496 /* 17497 * We preserve all the other fields of the ipif including 17498 * ipif_saved_ire_mp. The routes that are saved here will 17499 * be recreated on the new interface and back on the old 17500 * interface when we move back. 17501 */ 17502 ASSERT(ipif->ipif_arp_del_mp == NULL); 17503 17504 return (err); 17505 } 17506 17507 static int 17508 ipif_move_all(ill_t *from_ill, ill_t *to_ill, queue_t *q, mblk_t *mp, 17509 int ifindex, ipif_t **rep_ipif_ptr) 17510 { 17511 ipif_t *mipif; 17512 ipif_t *ipif_next; 17513 int err; 17514 17515 /* 17516 * We don't really try to MOVE back things if some of the 17517 * operations fail. The daemon will take care of moving again 17518 * later on. 17519 */ 17520 for (mipif = from_ill->ill_ipif; mipif != NULL; mipif = ipif_next) { 17521 ipif_next = mipif->ipif_next; 17522 if (!(mipif->ipif_flags & IPIF_NOFAILOVER) && 17523 (ifindex == 0 || ifindex == mipif->ipif_orig_ifindex)) { 17524 17525 err = ipif_move(mipif, to_ill, q, mp, rep_ipif_ptr); 17526 17527 /* 17528 * When the MOVE fails, it is the job of the 17529 * application to take care of this properly 17530 * i.e try again if it is ENOMEM. 17531 */ 17532 if (mipif->ipif_ill != from_ill) { 17533 /* 17534 * ipif has moved. 17535 * 17536 * Move the multicast memberships associated 17537 * with this ipif to the new ill. For IPv6, we 17538 * do it once after all the ipifs are moved 17539 * (in ill_move) as they are not associated 17540 * with ipifs. 17541 * 17542 * We need to move the ilms as the ipif has 17543 * already been moved to a new ill even 17544 * in the case of errors. Neither 17545 * ilm_free(ipif) will find the ilm 17546 * when somebody unplumbs this ipif nor 17547 * ilm_delete(ilm) will be able to find the 17548 * ilm, if we don't move now. 17549 */ 17550 if (!from_ill->ill_isv6) 17551 ilm_move_v4(from_ill, to_ill, mipif); 17552 } 17553 17554 if (err != 0) 17555 return (err); 17556 } 17557 } 17558 return (0); 17559 } 17560 17561 static int 17562 ill_move(ill_t *from_ill, ill_t *to_ill, queue_t *q, mblk_t *mp) 17563 { 17564 int ifindex; 17565 int err; 17566 struct iocblk *iocp; 17567 ipif_t *ipif; 17568 ipif_t *rep_ipif_ptr = NULL; 17569 ipif_t *from_ipif = NULL; 17570 boolean_t check_rep_if = B_FALSE; 17571 ip_stack_t *ipst = from_ill->ill_ipst; 17572 17573 iocp = (struct iocblk *)mp->b_rptr; 17574 if (iocp->ioc_cmd == SIOCLIFFAILOVER) { 17575 /* 17576 * Move everything pointing at from_ill to to_ill. 17577 * We acheive this by passing in 0 as ifindex. 17578 */ 17579 ifindex = 0; 17580 } else { 17581 /* 17582 * Move everything pointing at from_ill whose original 17583 * ifindex of connp, ipif, ilm points at to_ill->ill_index. 17584 * We acheive this by passing in ifindex rather than 0. 17585 * Multicast vifs, ilgs move implicitly because ipifs move. 17586 */ 17587 ASSERT(iocp->ioc_cmd == SIOCLIFFAILBACK); 17588 ifindex = to_ill->ill_phyint->phyint_ifindex; 17589 } 17590 17591 /* 17592 * Determine if there is at least one ipif that would move from 17593 * 'from_ill' to 'to_ill'. If so, it is possible that the replacement 17594 * ipif (if it exists) on the to_ill would be consumed as a result of 17595 * the move, in which case we need to quiesce the replacement ipif also. 17596 */ 17597 for (from_ipif = from_ill->ill_ipif; from_ipif != NULL; 17598 from_ipif = from_ipif->ipif_next) { 17599 if (((ifindex == 0) || 17600 (ifindex == from_ipif->ipif_orig_ifindex)) && 17601 !(from_ipif->ipif_flags & IPIF_NOFAILOVER)) { 17602 check_rep_if = B_TRUE; 17603 break; 17604 } 17605 } 17606 17607 ill_down_ipifs(from_ill, mp, ifindex, B_TRUE); 17608 17609 GRAB_ILL_LOCKS(from_ill, to_ill); 17610 if ((ipif = ill_quiescent_to_move(from_ill)) != NULL) { 17611 (void) ipsq_pending_mp_add(NULL, ipif, q, 17612 mp, ILL_MOVE_OK); 17613 RELEASE_ILL_LOCKS(from_ill, to_ill); 17614 return (EINPROGRESS); 17615 } 17616 17617 /* Check if the replacement ipif is quiescent to delete */ 17618 if (check_rep_if && IPIF_REPL_CHECK(to_ill->ill_ipif, 17619 (iocp->ioc_cmd == SIOCLIFFAILBACK))) { 17620 to_ill->ill_ipif->ipif_state_flags |= 17621 IPIF_MOVING | IPIF_CHANGING; 17622 if ((ipif = ill_quiescent_to_move(to_ill)) != NULL) { 17623 (void) ipsq_pending_mp_add(NULL, ipif, q, 17624 mp, ILL_MOVE_OK); 17625 RELEASE_ILL_LOCKS(from_ill, to_ill); 17626 return (EINPROGRESS); 17627 } 17628 } 17629 RELEASE_ILL_LOCKS(from_ill, to_ill); 17630 17631 ASSERT(!MUTEX_HELD(&to_ill->ill_lock)); 17632 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 17633 GRAB_ILL_LOCKS(from_ill, to_ill); 17634 err = ipif_move_all(from_ill, to_ill, q, mp, ifindex, &rep_ipif_ptr); 17635 17636 /* ilm_move is done inside ipif_move for IPv4 */ 17637 if (err == 0 && from_ill->ill_isv6) 17638 ilm_move_v6(from_ill, to_ill, ifindex); 17639 17640 RELEASE_ILL_LOCKS(from_ill, to_ill); 17641 rw_exit(&ipst->ips_ill_g_lock); 17642 17643 /* 17644 * send rts messages and multicast messages. 17645 */ 17646 if (rep_ipif_ptr != NULL) { 17647 if (rep_ipif_ptr->ipif_recovery_id != 0) { 17648 (void) untimeout(rep_ipif_ptr->ipif_recovery_id); 17649 rep_ipif_ptr->ipif_recovery_id = 0; 17650 } 17651 ip_rts_ifmsg(rep_ipif_ptr); 17652 ip_rts_newaddrmsg(RTM_DELETE, 0, rep_ipif_ptr); 17653 #ifdef DEBUG 17654 ipif_trace_cleanup(rep_ipif_ptr); 17655 #endif 17656 mi_free(rep_ipif_ptr); 17657 } 17658 17659 conn_move_ill(from_ill, to_ill, ifindex); 17660 17661 return (err); 17662 } 17663 17664 /* 17665 * Used to extract arguments for FAILOVER/FAILBACK ioctls. 17666 * Also checks for the validity of the arguments. 17667 * Note: We are already exclusive inside the from group. 17668 * It is upto the caller to release refcnt on the to_ill's. 17669 */ 17670 static int 17671 ip_extract_move_args(queue_t *q, mblk_t *mp, ill_t **ill_from_v4, 17672 ill_t **ill_from_v6, ill_t **ill_to_v4, ill_t **ill_to_v6) 17673 { 17674 int dst_index; 17675 ipif_t *ipif_v4, *ipif_v6; 17676 struct lifreq *lifr; 17677 mblk_t *mp1; 17678 boolean_t exists; 17679 sin_t *sin; 17680 int err = 0; 17681 ip_stack_t *ipst; 17682 17683 if (CONN_Q(q)) 17684 ipst = CONNQ_TO_IPST(q); 17685 else 17686 ipst = ILLQ_TO_IPST(q); 17687 17688 if ((mp1 = mp->b_cont) == NULL) 17689 return (EPROTO); 17690 17691 if ((mp1 = mp1->b_cont) == NULL) 17692 return (EPROTO); 17693 17694 lifr = (struct lifreq *)mp1->b_rptr; 17695 sin = (sin_t *)&lifr->lifr_addr; 17696 17697 /* 17698 * We operate on both IPv4 and IPv6. Thus, we don't allow IPv4/IPv6 17699 * specific operations. 17700 */ 17701 if (sin->sin_family != AF_UNSPEC) 17702 return (EINVAL); 17703 17704 /* 17705 * Get ipif with id 0. We are writer on the from ill. So we can pass 17706 * NULLs for the last 4 args and we know the lookup won't fail 17707 * with EINPROGRESS. 17708 */ 17709 ipif_v4 = ipif_lookup_on_name(lifr->lifr_name, 17710 mi_strlen(lifr->lifr_name), B_FALSE, &exists, B_FALSE, 17711 ALL_ZONES, NULL, NULL, NULL, NULL, ipst); 17712 ipif_v6 = ipif_lookup_on_name(lifr->lifr_name, 17713 mi_strlen(lifr->lifr_name), B_FALSE, &exists, B_TRUE, 17714 ALL_ZONES, NULL, NULL, NULL, NULL, ipst); 17715 17716 if (ipif_v4 == NULL && ipif_v6 == NULL) 17717 return (ENXIO); 17718 17719 if (ipif_v4 != NULL) { 17720 ASSERT(ipif_v4->ipif_refcnt != 0); 17721 if (ipif_v4->ipif_id != 0) { 17722 err = EINVAL; 17723 goto done; 17724 } 17725 17726 ASSERT(IAM_WRITER_IPIF(ipif_v4)); 17727 *ill_from_v4 = ipif_v4->ipif_ill; 17728 } 17729 17730 if (ipif_v6 != NULL) { 17731 ASSERT(ipif_v6->ipif_refcnt != 0); 17732 if (ipif_v6->ipif_id != 0) { 17733 err = EINVAL; 17734 goto done; 17735 } 17736 17737 ASSERT(IAM_WRITER_IPIF(ipif_v6)); 17738 *ill_from_v6 = ipif_v6->ipif_ill; 17739 } 17740 17741 err = 0; 17742 dst_index = lifr->lifr_movetoindex; 17743 *ill_to_v4 = ill_lookup_on_ifindex(dst_index, B_FALSE, 17744 q, mp, ip_process_ioctl, &err, ipst); 17745 if (err != 0) { 17746 /* 17747 * A move may be in progress, EINPROGRESS looking up the "to" 17748 * ill means changes already done to the "from" ipsq need to 17749 * be undone to avoid potential deadlocks. 17750 * 17751 * ENXIO will usually be because there is only v6 on the ill, 17752 * that's not treated as an error unless an ENXIO is also 17753 * seen when looking up the v6 "to" ill. 17754 * 17755 * If EINPROGRESS, the mp has been enqueued and can not be 17756 * used to look up the v6 "to" ill, but a preemptive clean 17757 * up of changes to the v6 "from" ipsq is done. 17758 */ 17759 if (err == EINPROGRESS) { 17760 if (*ill_from_v4 != NULL) { 17761 ill_t *from_ill; 17762 ipsq_t *from_ipsq; 17763 17764 from_ill = ipif_v4->ipif_ill; 17765 from_ipsq = from_ill->ill_phyint->phyint_ipsq; 17766 17767 mutex_enter(&from_ipsq->ipsq_lock); 17768 from_ipsq->ipsq_current_ipif = NULL; 17769 mutex_exit(&from_ipsq->ipsq_lock); 17770 } 17771 if (*ill_from_v6 != NULL) { 17772 ill_t *from_ill; 17773 ipsq_t *from_ipsq; 17774 17775 from_ill = ipif_v6->ipif_ill; 17776 from_ipsq = from_ill->ill_phyint->phyint_ipsq; 17777 17778 mutex_enter(&from_ipsq->ipsq_lock); 17779 from_ipsq->ipsq_current_ipif = NULL; 17780 mutex_exit(&from_ipsq->ipsq_lock); 17781 } 17782 goto done; 17783 } 17784 ASSERT(err == ENXIO); 17785 err = 0; 17786 } 17787 17788 *ill_to_v6 = ill_lookup_on_ifindex(dst_index, B_TRUE, 17789 q, mp, ip_process_ioctl, &err, ipst); 17790 if (err != 0) { 17791 /* 17792 * A move may be in progress, EINPROGRESS looking up the "to" 17793 * ill means changes already done to the "from" ipsq need to 17794 * be undone to avoid potential deadlocks. 17795 */ 17796 if (err == EINPROGRESS) { 17797 if (*ill_from_v6 != NULL) { 17798 ill_t *from_ill; 17799 ipsq_t *from_ipsq; 17800 17801 from_ill = ipif_v6->ipif_ill; 17802 from_ipsq = from_ill->ill_phyint->phyint_ipsq; 17803 17804 mutex_enter(&from_ipsq->ipsq_lock); 17805 from_ipsq->ipsq_current_ipif = NULL; 17806 mutex_exit(&from_ipsq->ipsq_lock); 17807 } 17808 goto done; 17809 } 17810 ASSERT(err == ENXIO); 17811 17812 /* Both v4 and v6 lookup failed */ 17813 if (*ill_to_v4 == NULL) { 17814 err = ENXIO; 17815 goto done; 17816 } 17817 err = 0; 17818 } 17819 17820 /* 17821 * If we have something to MOVE i.e "from" not NULL, 17822 * "to" should be non-NULL. 17823 */ 17824 if ((*ill_from_v4 != NULL && *ill_to_v4 == NULL) || 17825 (*ill_from_v6 != NULL && *ill_to_v6 == NULL)) { 17826 err = EINVAL; 17827 } 17828 17829 done: 17830 if (ipif_v4 != NULL) 17831 ipif_refrele(ipif_v4); 17832 if (ipif_v6 != NULL) 17833 ipif_refrele(ipif_v6); 17834 return (err); 17835 } 17836 17837 /* 17838 * FAILOVER and FAILBACK are modelled as MOVE operations. 17839 * 17840 * We don't check whether the MOVE is within the same group or 17841 * not, because this ioctl can be used as a generic mechanism 17842 * to failover from interface A to B, though things will function 17843 * only if they are really part of the same group. Moreover, 17844 * all ipifs may be down and hence temporarily out of the group. 17845 * 17846 * ipif's that need to be moved are first brought down; V4 ipifs are brought 17847 * down first and then V6. For each we wait for the ipif's to become quiescent. 17848 * Bringing down the ipifs ensures that all ires pointing to these ipifs's 17849 * have been deleted and there are no active references. Once quiescent the 17850 * ipif's are moved and brought up on the new ill. 17851 * 17852 * Normally the source ill and destination ill belong to the same IPMP group 17853 * and hence the same ipsq_t. In the event they don't belong to the same 17854 * same group the two ipsq's are first merged into one ipsq - that of the 17855 * to_ill. The multicast memberships on the source and destination ill cannot 17856 * change during the move operation since multicast joins/leaves also have to 17857 * execute on the same ipsq and are hence serialized. 17858 */ 17859 /* ARGSUSED */ 17860 int 17861 ip_sioctl_move(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 17862 ip_ioctl_cmd_t *ipip, void *ifreq) 17863 { 17864 ill_t *ill_to_v4 = NULL; 17865 ill_t *ill_to_v6 = NULL; 17866 ill_t *ill_from_v4 = NULL; 17867 ill_t *ill_from_v6 = NULL; 17868 int err = 0; 17869 17870 /* 17871 * setup from and to ill's, we can get EINPROGRESS only for 17872 * to_ill's. 17873 */ 17874 err = ip_extract_move_args(q, mp, &ill_from_v4, &ill_from_v6, 17875 &ill_to_v4, &ill_to_v6); 17876 17877 if (err != 0) { 17878 ip0dbg(("ip_sioctl_move: extract args failed\n")); 17879 goto done; 17880 } 17881 17882 /* 17883 * nothing to do. 17884 */ 17885 if ((ill_from_v4 != NULL) && (ill_from_v4 == ill_to_v4)) { 17886 goto done; 17887 } 17888 17889 /* 17890 * nothing to do. 17891 */ 17892 if ((ill_from_v6 != NULL) && (ill_from_v6 == ill_to_v6)) { 17893 goto done; 17894 } 17895 17896 /* 17897 * Mark the ill as changing. 17898 * ILL_CHANGING flag is cleared when the ipif's are brought up 17899 * in ill_up_ipifs in case of error they are cleared below. 17900 */ 17901 17902 GRAB_ILL_LOCKS(ill_from_v4, ill_from_v6); 17903 if (ill_from_v4 != NULL) 17904 ill_from_v4->ill_state_flags |= ILL_CHANGING; 17905 if (ill_from_v6 != NULL) 17906 ill_from_v6->ill_state_flags |= ILL_CHANGING; 17907 RELEASE_ILL_LOCKS(ill_from_v4, ill_from_v6); 17908 17909 /* 17910 * Make sure that both src and dst are 17911 * in the same syncq group. If not make it happen. 17912 * We are not holding any locks because we are the writer 17913 * on the from_ipsq and we will hold locks in ill_merge_groups 17914 * to protect to_ipsq against changing. 17915 */ 17916 if (ill_from_v4 != NULL) { 17917 if (ill_from_v4->ill_phyint->phyint_ipsq != 17918 ill_to_v4->ill_phyint->phyint_ipsq) { 17919 err = ill_merge_groups(ill_from_v4, ill_to_v4, 17920 NULL, mp, q); 17921 goto err_ret; 17922 17923 } 17924 ASSERT(!MUTEX_HELD(&ill_to_v4->ill_lock)); 17925 } else { 17926 17927 if (ill_from_v6->ill_phyint->phyint_ipsq != 17928 ill_to_v6->ill_phyint->phyint_ipsq) { 17929 err = ill_merge_groups(ill_from_v6, ill_to_v6, 17930 NULL, mp, q); 17931 goto err_ret; 17932 17933 } 17934 ASSERT(!MUTEX_HELD(&ill_to_v6->ill_lock)); 17935 } 17936 17937 /* 17938 * Now that the ipsq's have been merged and we are the writer 17939 * lets mark to_ill as changing as well. 17940 */ 17941 17942 GRAB_ILL_LOCKS(ill_to_v4, ill_to_v6); 17943 if (ill_to_v4 != NULL) 17944 ill_to_v4->ill_state_flags |= ILL_CHANGING; 17945 if (ill_to_v6 != NULL) 17946 ill_to_v6->ill_state_flags |= ILL_CHANGING; 17947 RELEASE_ILL_LOCKS(ill_to_v4, ill_to_v6); 17948 17949 /* 17950 * Its ok for us to proceed with the move even if 17951 * ill_pending_mp is non null on one of the from ill's as the reply 17952 * should not be looking at the ipif, it should only care about the 17953 * ill itself. 17954 */ 17955 17956 /* 17957 * lets move ipv4 first. 17958 */ 17959 if (ill_from_v4 != NULL) { 17960 ASSERT(IAM_WRITER_ILL(ill_to_v4)); 17961 ill_from_v4->ill_move_in_progress = B_TRUE; 17962 ill_to_v4->ill_move_in_progress = B_TRUE; 17963 ill_to_v4->ill_move_peer = ill_from_v4; 17964 ill_from_v4->ill_move_peer = ill_to_v4; 17965 err = ill_move(ill_from_v4, ill_to_v4, q, mp); 17966 } 17967 17968 /* 17969 * Now lets move ipv6. 17970 */ 17971 if (err == 0 && ill_from_v6 != NULL) { 17972 ASSERT(IAM_WRITER_ILL(ill_to_v6)); 17973 ill_from_v6->ill_move_in_progress = B_TRUE; 17974 ill_to_v6->ill_move_in_progress = B_TRUE; 17975 ill_to_v6->ill_move_peer = ill_from_v6; 17976 ill_from_v6->ill_move_peer = ill_to_v6; 17977 err = ill_move(ill_from_v6, ill_to_v6, q, mp); 17978 } 17979 17980 err_ret: 17981 /* 17982 * EINPROGRESS means we are waiting for the ipif's that need to be 17983 * moved to become quiescent. 17984 */ 17985 if (err == EINPROGRESS) { 17986 goto done; 17987 } 17988 17989 /* 17990 * if err is set ill_up_ipifs will not be called 17991 * lets clear the flags. 17992 */ 17993 17994 GRAB_ILL_LOCKS(ill_to_v4, ill_to_v6); 17995 GRAB_ILL_LOCKS(ill_from_v4, ill_from_v6); 17996 /* 17997 * Some of the clearing may be redundant. But it is simple 17998 * not making any extra checks. 17999 */ 18000 if (ill_from_v6 != NULL) { 18001 ill_from_v6->ill_move_in_progress = B_FALSE; 18002 ill_from_v6->ill_move_peer = NULL; 18003 ill_from_v6->ill_state_flags &= ~ILL_CHANGING; 18004 } 18005 if (ill_from_v4 != NULL) { 18006 ill_from_v4->ill_move_in_progress = B_FALSE; 18007 ill_from_v4->ill_move_peer = NULL; 18008 ill_from_v4->ill_state_flags &= ~ILL_CHANGING; 18009 } 18010 if (ill_to_v6 != NULL) { 18011 ill_to_v6->ill_move_in_progress = B_FALSE; 18012 ill_to_v6->ill_move_peer = NULL; 18013 ill_to_v6->ill_state_flags &= ~ILL_CHANGING; 18014 } 18015 if (ill_to_v4 != NULL) { 18016 ill_to_v4->ill_move_in_progress = B_FALSE; 18017 ill_to_v4->ill_move_peer = NULL; 18018 ill_to_v4->ill_state_flags &= ~ILL_CHANGING; 18019 } 18020 18021 /* 18022 * Check for setting INACTIVE, if STANDBY is set and FAILED is not set. 18023 * Do this always to maintain proper state i.e even in case of errors. 18024 * As phyint_inactive looks at both v4 and v6 interfaces, 18025 * we need not call on both v4 and v6 interfaces. 18026 */ 18027 if (ill_from_v4 != NULL) { 18028 if ((ill_from_v4->ill_phyint->phyint_flags & 18029 (PHYI_STANDBY | PHYI_FAILED)) == PHYI_STANDBY) { 18030 phyint_inactive(ill_from_v4->ill_phyint); 18031 } 18032 } else if (ill_from_v6 != NULL) { 18033 if ((ill_from_v6->ill_phyint->phyint_flags & 18034 (PHYI_STANDBY | PHYI_FAILED)) == PHYI_STANDBY) { 18035 phyint_inactive(ill_from_v6->ill_phyint); 18036 } 18037 } 18038 18039 if (ill_to_v4 != NULL) { 18040 if (ill_to_v4->ill_phyint->phyint_flags & PHYI_INACTIVE) { 18041 ill_to_v4->ill_phyint->phyint_flags &= ~PHYI_INACTIVE; 18042 } 18043 } else if (ill_to_v6 != NULL) { 18044 if (ill_to_v6->ill_phyint->phyint_flags & PHYI_INACTIVE) { 18045 ill_to_v6->ill_phyint->phyint_flags &= ~PHYI_INACTIVE; 18046 } 18047 } 18048 18049 RELEASE_ILL_LOCKS(ill_to_v4, ill_to_v6); 18050 RELEASE_ILL_LOCKS(ill_from_v4, ill_from_v6); 18051 18052 no_err: 18053 /* 18054 * lets bring the interfaces up on the to_ill. 18055 */ 18056 if (err == 0) { 18057 err = ill_up_ipifs(ill_to_v4 == NULL ? ill_to_v6:ill_to_v4, 18058 q, mp); 18059 } 18060 18061 if (err == 0) { 18062 if (ill_from_v4 != NULL && ill_to_v4 != NULL) 18063 ilm_send_multicast_reqs(ill_from_v4, ill_to_v4); 18064 18065 if (ill_from_v6 != NULL && ill_to_v6 != NULL) 18066 ilm_send_multicast_reqs(ill_from_v6, ill_to_v6); 18067 } 18068 done: 18069 18070 if (ill_to_v4 != NULL) { 18071 ill_refrele(ill_to_v4); 18072 } 18073 if (ill_to_v6 != NULL) { 18074 ill_refrele(ill_to_v6); 18075 } 18076 18077 return (err); 18078 } 18079 18080 static void 18081 ill_dl_down(ill_t *ill) 18082 { 18083 /* 18084 * The ill is down; unbind but stay attached since we're still 18085 * associated with a PPA. If we have negotiated DLPI capabilites 18086 * with the data link service provider (IDS_OK) then reset them. 18087 * The interval between unbinding and rebinding is potentially 18088 * unbounded hence we cannot assume things will be the same. 18089 * The DLPI capabilities will be probed again when the data link 18090 * is brought up. 18091 */ 18092 mblk_t *mp = ill->ill_unbind_mp; 18093 18094 ip1dbg(("ill_dl_down(%s)\n", ill->ill_name)); 18095 18096 ill->ill_unbind_mp = NULL; 18097 if (mp != NULL) { 18098 ip1dbg(("ill_dl_down: %s (%u) for %s\n", 18099 dl_primstr(*(int *)mp->b_rptr), *(int *)mp->b_rptr, 18100 ill->ill_name)); 18101 mutex_enter(&ill->ill_lock); 18102 ill->ill_state_flags |= ILL_DL_UNBIND_IN_PROGRESS; 18103 mutex_exit(&ill->ill_lock); 18104 /* 18105 * ip_rput does not pass up normal (M_PROTO) DLPI messages 18106 * after ILL_CONDEMNED is set. So in the unplumb case, we call 18107 * ill_capability_dld_disable disable rightaway. If this is not 18108 * an unplumb operation then the disable happens on receipt of 18109 * the capab ack via ip_rput_dlpi_writer -> 18110 * ill_capability_ack_thr. In both cases the order of 18111 * the operations seen by DLD is capability disable followed 18112 * by DL_UNBIND. Also the DLD capability disable needs a 18113 * cv_wait'able context. 18114 */ 18115 if (ill->ill_state_flags & ILL_CONDEMNED) 18116 ill_capability_dld_disable(ill); 18117 ill_capability_reset(ill, B_FALSE); 18118 ill_dlpi_send(ill, mp); 18119 } 18120 18121 /* 18122 * Toss all of our multicast memberships. We could keep them, but 18123 * then we'd have to do bookkeeping of any joins and leaves performed 18124 * by the application while the the interface is down (we can't just 18125 * issue them because arp cannot currently process AR_ENTRY_SQUERY's 18126 * on a downed interface). 18127 */ 18128 ill_leave_multicast(ill); 18129 18130 mutex_enter(&ill->ill_lock); 18131 ill->ill_dl_up = 0; 18132 ill_nic_event_dispatch(ill, 0, NE_DOWN, NULL, 0); 18133 mutex_exit(&ill->ill_lock); 18134 } 18135 18136 static void 18137 ill_dlpi_dispatch(ill_t *ill, mblk_t *mp) 18138 { 18139 union DL_primitives *dlp; 18140 t_uscalar_t prim; 18141 18142 ASSERT(DB_TYPE(mp) == M_PROTO || DB_TYPE(mp) == M_PCPROTO); 18143 18144 dlp = (union DL_primitives *)mp->b_rptr; 18145 prim = dlp->dl_primitive; 18146 18147 ip1dbg(("ill_dlpi_dispatch: sending %s (%u) to %s\n", 18148 dl_primstr(prim), prim, ill->ill_name)); 18149 18150 switch (prim) { 18151 case DL_PHYS_ADDR_REQ: 18152 { 18153 dl_phys_addr_req_t *dlpap = (dl_phys_addr_req_t *)mp->b_rptr; 18154 ill->ill_phys_addr_pend = dlpap->dl_addr_type; 18155 break; 18156 } 18157 case DL_BIND_REQ: 18158 mutex_enter(&ill->ill_lock); 18159 ill->ill_state_flags &= ~ILL_DL_UNBIND_IN_PROGRESS; 18160 mutex_exit(&ill->ill_lock); 18161 break; 18162 } 18163 18164 /* 18165 * Except for the ACKs for the M_PCPROTO messages, all other ACKs 18166 * are dropped by ip_rput() if ILL_CONDEMNED is set. Therefore 18167 * we only wait for the ACK of the DL_UNBIND_REQ. 18168 */ 18169 mutex_enter(&ill->ill_lock); 18170 if (!(ill->ill_state_flags & ILL_CONDEMNED) || 18171 (prim == DL_UNBIND_REQ)) { 18172 ill->ill_dlpi_pending = prim; 18173 } 18174 mutex_exit(&ill->ill_lock); 18175 putnext(ill->ill_wq, mp); 18176 } 18177 18178 /* 18179 * Helper function for ill_dlpi_send(). 18180 */ 18181 /* ARGSUSED */ 18182 static void 18183 ill_dlpi_send_writer(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *arg) 18184 { 18185 ill_dlpi_send(q->q_ptr, mp); 18186 } 18187 18188 /* 18189 * Send a DLPI control message to the driver but make sure there 18190 * is only one outstanding message. Uses ill_dlpi_pending to tell 18191 * when it must queue. ip_rput_dlpi_writer calls ill_dlpi_done() 18192 * when an ACK or a NAK is received to process the next queued message. 18193 */ 18194 void 18195 ill_dlpi_send(ill_t *ill, mblk_t *mp) 18196 { 18197 mblk_t **mpp; 18198 18199 ASSERT(DB_TYPE(mp) == M_PROTO || DB_TYPE(mp) == M_PCPROTO); 18200 18201 /* 18202 * To ensure that any DLPI requests for current exclusive operation 18203 * are always completely sent before any DLPI messages for other 18204 * operations, require writer access before enqueuing. 18205 */ 18206 if (!IAM_WRITER_ILL(ill)) { 18207 ill_refhold(ill); 18208 /* qwriter_ip() does the ill_refrele() */ 18209 qwriter_ip(ill, ill->ill_wq, mp, ill_dlpi_send_writer, 18210 NEW_OP, B_TRUE); 18211 return; 18212 } 18213 18214 mutex_enter(&ill->ill_lock); 18215 if (ill->ill_dlpi_pending != DL_PRIM_INVAL) { 18216 /* Must queue message. Tail insertion */ 18217 mpp = &ill->ill_dlpi_deferred; 18218 while (*mpp != NULL) 18219 mpp = &((*mpp)->b_next); 18220 18221 ip1dbg(("ill_dlpi_send: deferring request for %s\n", 18222 ill->ill_name)); 18223 18224 *mpp = mp; 18225 mutex_exit(&ill->ill_lock); 18226 return; 18227 } 18228 mutex_exit(&ill->ill_lock); 18229 ill_dlpi_dispatch(ill, mp); 18230 } 18231 18232 static void 18233 ill_capability_send(ill_t *ill, mblk_t *mp) 18234 { 18235 ill->ill_capab_pending_cnt++; 18236 ill_dlpi_send(ill, mp); 18237 } 18238 18239 void 18240 ill_capability_done(ill_t *ill) 18241 { 18242 ASSERT(ill->ill_capab_pending_cnt != 0); 18243 18244 ill_dlpi_done(ill, DL_CAPABILITY_REQ); 18245 18246 ill->ill_capab_pending_cnt--; 18247 if (ill->ill_capab_pending_cnt == 0 && 18248 ill->ill_dlpi_capab_state == IDCS_OK) 18249 ill_capability_reset_alloc(ill); 18250 } 18251 18252 /* 18253 * Send all deferred DLPI messages without waiting for their ACKs. 18254 */ 18255 void 18256 ill_dlpi_send_deferred(ill_t *ill) 18257 { 18258 mblk_t *mp, *nextmp; 18259 18260 /* 18261 * Clear ill_dlpi_pending so that the message is not queued in 18262 * ill_dlpi_send(). 18263 */ 18264 mutex_enter(&ill->ill_lock); 18265 ill->ill_dlpi_pending = DL_PRIM_INVAL; 18266 mp = ill->ill_dlpi_deferred; 18267 ill->ill_dlpi_deferred = NULL; 18268 mutex_exit(&ill->ill_lock); 18269 18270 for (; mp != NULL; mp = nextmp) { 18271 nextmp = mp->b_next; 18272 mp->b_next = NULL; 18273 ill_dlpi_send(ill, mp); 18274 } 18275 } 18276 18277 /* 18278 * Check if the DLPI primitive `prim' is pending; print a warning if not. 18279 */ 18280 boolean_t 18281 ill_dlpi_pending(ill_t *ill, t_uscalar_t prim) 18282 { 18283 t_uscalar_t pending; 18284 18285 mutex_enter(&ill->ill_lock); 18286 if (ill->ill_dlpi_pending == prim) { 18287 mutex_exit(&ill->ill_lock); 18288 return (B_TRUE); 18289 } 18290 18291 /* 18292 * During teardown, ill_dlpi_dispatch() will send DLPI requests 18293 * without waiting, so don't print any warnings in that case. 18294 */ 18295 if (ill->ill_state_flags & ILL_CONDEMNED) { 18296 mutex_exit(&ill->ill_lock); 18297 return (B_FALSE); 18298 } 18299 pending = ill->ill_dlpi_pending; 18300 mutex_exit(&ill->ill_lock); 18301 18302 if (pending == DL_PRIM_INVAL) { 18303 (void) mi_strlog(ill->ill_rq, 1, SL_CONSOLE|SL_ERROR|SL_TRACE, 18304 "received unsolicited ack for %s on %s\n", 18305 dl_primstr(prim), ill->ill_name); 18306 } else { 18307 (void) mi_strlog(ill->ill_rq, 1, SL_CONSOLE|SL_ERROR|SL_TRACE, 18308 "received unexpected ack for %s on %s (expecting %s)\n", 18309 dl_primstr(prim), ill->ill_name, dl_primstr(pending)); 18310 } 18311 return (B_FALSE); 18312 } 18313 18314 /* 18315 * Complete the current DLPI operation associated with `prim' on `ill' and 18316 * start the next queued DLPI operation (if any). If there are no queued DLPI 18317 * operations and the ill's current exclusive IPSQ operation has finished 18318 * (i.e., ipsq_current_finish() was called), then clear ipsq_current_ipif to 18319 * allow the next exclusive IPSQ operation to begin upon ipsq_exit(). See 18320 * the comments above ipsq_current_finish() for details. 18321 */ 18322 void 18323 ill_dlpi_done(ill_t *ill, t_uscalar_t prim) 18324 { 18325 mblk_t *mp; 18326 ipsq_t *ipsq = ill->ill_phyint->phyint_ipsq; 18327 18328 ASSERT(IAM_WRITER_IPSQ(ipsq)); 18329 mutex_enter(&ill->ill_lock); 18330 18331 ASSERT(prim != DL_PRIM_INVAL); 18332 ASSERT(ill->ill_dlpi_pending == prim); 18333 18334 ip1dbg(("ill_dlpi_done: %s has completed %s (%u)\n", ill->ill_name, 18335 dl_primstr(ill->ill_dlpi_pending), ill->ill_dlpi_pending)); 18336 18337 if ((mp = ill->ill_dlpi_deferred) == NULL) { 18338 ill->ill_dlpi_pending = DL_PRIM_INVAL; 18339 18340 mutex_enter(&ipsq->ipsq_lock); 18341 if (ipsq->ipsq_current_done) 18342 ipsq->ipsq_current_ipif = NULL; 18343 mutex_exit(&ipsq->ipsq_lock); 18344 18345 cv_signal(&ill->ill_cv); 18346 mutex_exit(&ill->ill_lock); 18347 return; 18348 } 18349 18350 ill->ill_dlpi_deferred = mp->b_next; 18351 mp->b_next = NULL; 18352 mutex_exit(&ill->ill_lock); 18353 18354 ill_dlpi_dispatch(ill, mp); 18355 } 18356 18357 void 18358 conn_delete_ire(conn_t *connp, caddr_t arg) 18359 { 18360 ipif_t *ipif = (ipif_t *)arg; 18361 ire_t *ire; 18362 18363 /* 18364 * Look at the cached ires on conns which has pointers to ipifs. 18365 * We just call ire_refrele which clears up the reference 18366 * to ire. Called when a conn closes. Also called from ipif_free 18367 * to cleanup indirect references to the stale ipif via the cached ire. 18368 */ 18369 mutex_enter(&connp->conn_lock); 18370 ire = connp->conn_ire_cache; 18371 if (ire != NULL && (ipif == NULL || ire->ire_ipif == ipif)) { 18372 connp->conn_ire_cache = NULL; 18373 mutex_exit(&connp->conn_lock); 18374 IRE_REFRELE_NOTR(ire); 18375 return; 18376 } 18377 mutex_exit(&connp->conn_lock); 18378 18379 } 18380 18381 /* 18382 * Some operations (illgrp_delete(), ipif_down()) conditionally delete a number 18383 * of IREs. Those IREs may have been previously cached in the conn structure. 18384 * This ipcl_walk() walker function releases all references to such IREs based 18385 * on the condemned flag. 18386 */ 18387 /* ARGSUSED */ 18388 void 18389 conn_cleanup_stale_ire(conn_t *connp, caddr_t arg) 18390 { 18391 ire_t *ire; 18392 18393 mutex_enter(&connp->conn_lock); 18394 ire = connp->conn_ire_cache; 18395 if (ire != NULL && (ire->ire_marks & IRE_MARK_CONDEMNED)) { 18396 connp->conn_ire_cache = NULL; 18397 mutex_exit(&connp->conn_lock); 18398 IRE_REFRELE_NOTR(ire); 18399 return; 18400 } 18401 mutex_exit(&connp->conn_lock); 18402 } 18403 18404 /* 18405 * Take down a specific interface, but don't lose any information about it. 18406 * Also delete interface from its interface group (ifgrp). 18407 * (Always called as writer.) 18408 * This function goes through the down sequence even if the interface is 18409 * already down. There are 2 reasons. 18410 * a. Currently we permit interface routes that depend on down interfaces 18411 * to be added. This behaviour itself is questionable. However it appears 18412 * that both Solaris and 4.3 BSD have exhibited this behaviour for a long 18413 * time. We go thru the cleanup in order to remove these routes. 18414 * b. The bringup of the interface could fail in ill_dl_up i.e. we get 18415 * DL_ERROR_ACK in response to the the DL_BIND request. The interface is 18416 * down, but we need to cleanup i.e. do ill_dl_down and 18417 * ip_rput_dlpi_writer (DL_ERROR_ACK) -> ipif_down. 18418 * 18419 * IP-MT notes: 18420 * 18421 * Model of reference to interfaces. 18422 * 18423 * The following members in ipif_t track references to the ipif. 18424 * int ipif_refcnt; Active reference count 18425 * uint_t ipif_ire_cnt; Number of ire's referencing this ipif 18426 * uint_t ipif_ilm_cnt; Number of ilms's references this ipif. 18427 * 18428 * The following members in ill_t track references to the ill. 18429 * int ill_refcnt; active refcnt 18430 * uint_t ill_ire_cnt; Number of ires referencing ill 18431 * uint_t ill_nce_cnt; Number of nces referencing ill 18432 * uint_t ill_ilm_cnt; Number of ilms referencing ill 18433 * 18434 * Reference to an ipif or ill can be obtained in any of the following ways. 18435 * 18436 * Through the lookup functions ipif_lookup_* / ill_lookup_* functions 18437 * Pointers to ipif / ill from other data structures viz ire and conn. 18438 * Implicit reference to the ipif / ill by holding a reference to the ire. 18439 * 18440 * The ipif/ill lookup functions return a reference held ipif / ill. 18441 * ipif_refcnt and ill_refcnt track the reference counts respectively. 18442 * This is a purely dynamic reference count associated with threads holding 18443 * references to the ipif / ill. Pointers from other structures do not 18444 * count towards this reference count. 18445 * 18446 * ipif_ire_cnt/ill_ire_cnt is the number of ire's 18447 * associated with the ipif/ill. This is incremented whenever a new 18448 * ire is created referencing the ipif/ill. This is done atomically inside 18449 * ire_add_v[46] where the ire is actually added to the ire hash table. 18450 * The count is decremented in ire_inactive where the ire is destroyed. 18451 * 18452 * nce's reference ill's thru nce_ill and the count of nce's associated with 18453 * an ill is recorded in ill_nce_cnt. This is incremented atomically in 18454 * ndp_add_v4()/ndp_add_v6() where the nce is actually added to the 18455 * table. Similarly it is decremented in ndp_inactive() where the nce 18456 * is destroyed. 18457 * 18458 * ilm's reference to the ipif (for IPv4 ilm's) or the ill (for IPv6 ilm's) 18459 * is incremented in ilm_add_v6() and decremented before the ilm is freed 18460 * in ilm_walker_cleanup() or ilm_delete(). 18461 * 18462 * Flow of ioctls involving interface down/up 18463 * 18464 * The following is the sequence of an attempt to set some critical flags on an 18465 * up interface. 18466 * ip_sioctl_flags 18467 * ipif_down 18468 * wait for ipif to be quiescent 18469 * ipif_down_tail 18470 * ip_sioctl_flags_tail 18471 * 18472 * All set ioctls that involve down/up sequence would have a skeleton similar 18473 * to the above. All the *tail functions are called after the refcounts have 18474 * dropped to the appropriate values. 18475 * 18476 * The mechanism to quiesce an ipif is as follows. 18477 * 18478 * Mark the ipif as IPIF_CHANGING. No more lookups will be allowed 18479 * on the ipif. Callers either pass a flag requesting wait or the lookup 18480 * functions will return NULL. 18481 * 18482 * Delete all ires referencing this ipif 18483 * 18484 * Any thread attempting to do an ipif_refhold on an ipif that has been 18485 * obtained thru a cached pointer will first make sure that 18486 * the ipif can be refheld using the macro IPIF_CAN_LOOKUP and only then 18487 * increment the refcount. 18488 * 18489 * The above guarantees that the ipif refcount will eventually come down to 18490 * zero and the ipif will quiesce, once all threads that currently hold a 18491 * reference to the ipif refrelease the ipif. The ipif is quiescent after the 18492 * ipif_refcount has dropped to zero and all ire's associated with this ipif 18493 * have also been ire_inactive'd. i.e. when ipif_{ire, ill}_cnt and 18494 * ipif_refcnt both drop to zero. See also: comments above IPIF_DOWN_OK() 18495 * in ip.h 18496 * 18497 * Lookups during the IPIF_CHANGING/ILL_CHANGING interval. 18498 * 18499 * Threads trying to lookup an ipif or ill can pass a flag requesting 18500 * wait and restart if the ipif / ill cannot be looked up currently. 18501 * For eg. bind, and route operations (Eg. route add / delete) cannot return 18502 * failure if the ipif is currently undergoing an exclusive operation, and 18503 * hence pass the flag. The mblk is then enqueued in the ipsq and the operation 18504 * is restarted by ipsq_exit() when the currently exclusive ioctl completes. 18505 * The lookup and enqueue is atomic using the ill_lock and ipsq_lock. The 18506 * lookup is done holding the ill_lock. Hence the ill/ipif state flags can't 18507 * change while the ill_lock is held. Before dropping the ill_lock we acquire 18508 * the ipsq_lock and call ipsq_enq. This ensures that ipsq_exit can't finish 18509 * until we release the ipsq_lock, even though the the ill/ipif state flags 18510 * can change after we drop the ill_lock. 18511 * 18512 * An attempt to send out a packet using an ipif that is currently 18513 * IPIF_CHANGING will fail. No attempt is made in this case to enqueue this 18514 * operation and restart it later when the exclusive condition on the ipif ends. 18515 * This is an example of not passing the wait flag to the lookup functions. For 18516 * example an attempt to refhold and use conn->conn_multicast_ipif and send 18517 * out a multicast packet on that ipif will fail while the ipif is 18518 * IPIF_CHANGING. An attempt to create an IRE_CACHE using an ipif that is 18519 * currently IPIF_CHANGING will also fail. 18520 */ 18521 int 18522 ipif_down(ipif_t *ipif, queue_t *q, mblk_t *mp) 18523 { 18524 ill_t *ill = ipif->ipif_ill; 18525 phyint_t *phyi; 18526 conn_t *connp; 18527 boolean_t success; 18528 boolean_t ipif_was_up = B_FALSE; 18529 ip_stack_t *ipst = ill->ill_ipst; 18530 18531 ASSERT(IAM_WRITER_IPIF(ipif)); 18532 18533 ip1dbg(("ipif_down(%s:%u)\n", ill->ill_name, ipif->ipif_id)); 18534 18535 if (ipif->ipif_flags & IPIF_UP) { 18536 mutex_enter(&ill->ill_lock); 18537 ipif->ipif_flags &= ~IPIF_UP; 18538 ASSERT(ill->ill_ipif_up_count > 0); 18539 --ill->ill_ipif_up_count; 18540 mutex_exit(&ill->ill_lock); 18541 ipif_was_up = B_TRUE; 18542 /* Update status in SCTP's list */ 18543 sctp_update_ipif(ipif, SCTP_IPIF_DOWN); 18544 ill_nic_event_dispatch(ipif->ipif_ill, 18545 MAP_IPIF_ID(ipif->ipif_id), NE_LIF_DOWN, NULL, 0); 18546 } 18547 18548 /* 18549 * Blow away memberships we established in ipif_multicast_up(). 18550 */ 18551 ipif_multicast_down(ipif); 18552 18553 /* 18554 * Remove from the mapping for __sin6_src_id. We insert only 18555 * when the address is not INADDR_ANY. As IPv4 addresses are 18556 * stored as mapped addresses, we need to check for mapped 18557 * INADDR_ANY also. 18558 */ 18559 if (ipif_was_up && !IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6lcl_addr) && 18560 !IN6_IS_ADDR_V4MAPPED_ANY(&ipif->ipif_v6lcl_addr) && 18561 !(ipif->ipif_flags & IPIF_NOLOCAL)) { 18562 int err; 18563 18564 err = ip_srcid_remove(&ipif->ipif_v6lcl_addr, 18565 ipif->ipif_zoneid, ipst); 18566 if (err != 0) { 18567 ip0dbg(("ipif_down: srcid_remove %d\n", err)); 18568 } 18569 } 18570 18571 /* 18572 * Before we delete the ill from the group (if any), we need 18573 * to make sure that we delete all the routes dependent on 18574 * this and also any ipifs dependent on this ipif for 18575 * source address. We need to do before we delete from 18576 * the group because 18577 * 18578 * 1) ipif_down_delete_ire de-references ill->ill_group. 18579 * 18580 * 2) ipif_update_other_ipifs needs to walk the whole group 18581 * for re-doing source address selection. Note that 18582 * ipif_select_source[_v6] called from 18583 * ipif_update_other_ipifs[_v6] will not pick this ipif 18584 * because we have already marked down here i.e cleared 18585 * IPIF_UP. 18586 */ 18587 if (ipif->ipif_isv6) { 18588 ire_walk_v6(ipif_down_delete_ire, (char *)ipif, ALL_ZONES, 18589 ipst); 18590 } else { 18591 ire_walk_v4(ipif_down_delete_ire, (char *)ipif, ALL_ZONES, 18592 ipst); 18593 } 18594 18595 /* 18596 * Cleaning up the conn_ire_cache or conns must be done only after the 18597 * ires have been deleted above. Otherwise a thread could end up 18598 * caching an ire in a conn after we have finished the cleanup of the 18599 * conn. The caching is done after making sure that the ire is not yet 18600 * condemned. Also documented in the block comment above ip_output 18601 */ 18602 ipcl_walk(conn_cleanup_stale_ire, NULL, ipst); 18603 /* Also, delete the ires cached in SCTP */ 18604 sctp_ire_cache_flush(ipif); 18605 18606 /* 18607 * Update any other ipifs which have used "our" local address as 18608 * a source address. This entails removing and recreating IRE_INTERFACE 18609 * entries for such ipifs. 18610 */ 18611 if (ipif->ipif_isv6) 18612 ipif_update_other_ipifs_v6(ipif, ill->ill_group); 18613 else 18614 ipif_update_other_ipifs(ipif, ill->ill_group); 18615 18616 if (ipif_was_up) { 18617 /* 18618 * Check whether it is last ipif to leave this group. 18619 * If this is the last ipif to leave, we should remove 18620 * this ill from the group as ipif_select_source will not 18621 * be able to find any useful ipifs if this ill is selected 18622 * for load balancing. 18623 * 18624 * For nameless groups, we should call ifgrp_delete if this 18625 * belongs to some group. As this ipif is going down, we may 18626 * need to reconstruct groups. 18627 */ 18628 phyi = ill->ill_phyint; 18629 /* 18630 * If the phyint_groupname_len is 0, it may or may not 18631 * be in the nameless group. If the phyint_groupname_len is 18632 * not 0, then this ill should be part of some group. 18633 * As we always insert this ill in the group if 18634 * phyint_groupname_len is not zero when the first ipif 18635 * comes up (in ipif_up_done), it should be in a group 18636 * when the namelen is not 0. 18637 * 18638 * NOTE : When we delete the ill from the group,it will 18639 * blow away all the IRE_CACHES pointing either at this ipif or 18640 * ill_wq (illgrp_cache_delete does this). Thus, no IRES 18641 * should be pointing at this ill. 18642 */ 18643 ASSERT(phyi->phyint_groupname_len == 0 || 18644 (phyi->phyint_groupname != NULL && ill->ill_group != NULL)); 18645 18646 if (phyi->phyint_groupname_len != 0) { 18647 if (ill->ill_ipif_up_count == 0) 18648 illgrp_delete(ill); 18649 } 18650 18651 /* 18652 * If we have deleted some of the broadcast ires associated 18653 * with this ipif, we need to re-nominate somebody else if 18654 * the ires that we deleted were the nominated ones. 18655 */ 18656 if (ill->ill_group != NULL && !ill->ill_isv6) 18657 ipif_renominate_bcast(ipif); 18658 } 18659 18660 /* 18661 * neighbor-discovery or arp entries for this interface. 18662 */ 18663 ipif_ndp_down(ipif); 18664 18665 /* 18666 * If mp is NULL the caller will wait for the appropriate refcnt. 18667 * Eg. ip_sioctl_removeif -> ipif_free -> ipif_down 18668 * and ill_delete -> ipif_free -> ipif_down 18669 */ 18670 if (mp == NULL) { 18671 ASSERT(q == NULL); 18672 return (0); 18673 } 18674 18675 if (CONN_Q(q)) { 18676 connp = Q_TO_CONN(q); 18677 mutex_enter(&connp->conn_lock); 18678 } else { 18679 connp = NULL; 18680 } 18681 mutex_enter(&ill->ill_lock); 18682 /* 18683 * Are there any ire's pointing to this ipif that are still active ? 18684 * If this is the last ipif going down, are there any ire's pointing 18685 * to this ill that are still active ? 18686 */ 18687 if (ipif_is_quiescent(ipif)) { 18688 mutex_exit(&ill->ill_lock); 18689 if (connp != NULL) 18690 mutex_exit(&connp->conn_lock); 18691 return (0); 18692 } 18693 18694 ip1dbg(("ipif_down: need to wait, adding pending mp %s ill %p", 18695 ill->ill_name, (void *)ill)); 18696 /* 18697 * Enqueue the mp atomically in ipsq_pending_mp. When the refcount 18698 * drops down, the operation will be restarted by ipif_ill_refrele_tail 18699 * which in turn is called by the last refrele on the ipif/ill/ire. 18700 */ 18701 success = ipsq_pending_mp_add(connp, ipif, q, mp, IPIF_DOWN); 18702 if (!success) { 18703 /* The conn is closing. So just return */ 18704 ASSERT(connp != NULL); 18705 mutex_exit(&ill->ill_lock); 18706 mutex_exit(&connp->conn_lock); 18707 return (EINTR); 18708 } 18709 18710 mutex_exit(&ill->ill_lock); 18711 if (connp != NULL) 18712 mutex_exit(&connp->conn_lock); 18713 return (EINPROGRESS); 18714 } 18715 18716 void 18717 ipif_down_tail(ipif_t *ipif) 18718 { 18719 ill_t *ill = ipif->ipif_ill; 18720 18721 /* 18722 * Skip any loopback interface (null wq). 18723 * If this is the last logical interface on the ill 18724 * have ill_dl_down tell the driver we are gone (unbind) 18725 * Note that lun 0 can ipif_down even though 18726 * there are other logical units that are up. 18727 * This occurs e.g. when we change a "significant" IFF_ flag. 18728 */ 18729 if (ill->ill_wq != NULL && !ill->ill_logical_down && 18730 ill->ill_ipif_up_count == 0 && ill->ill_ipif_dup_count == 0 && 18731 ill->ill_dl_up) { 18732 ill_dl_down(ill); 18733 } 18734 ill->ill_logical_down = 0; 18735 18736 /* 18737 * Have to be after removing the routes in ipif_down_delete_ire. 18738 */ 18739 if (ipif->ipif_isv6) { 18740 if (ill->ill_flags & ILLF_XRESOLV) 18741 ipif_arp_down(ipif); 18742 } else { 18743 ipif_arp_down(ipif); 18744 } 18745 18746 ip_rts_ifmsg(ipif); 18747 ip_rts_newaddrmsg(RTM_DELETE, 0, ipif); 18748 } 18749 18750 /* 18751 * Bring interface logically down without bringing the physical interface 18752 * down e.g. when the netmask is changed. This avoids long lasting link 18753 * negotiations between an ethernet interface and a certain switches. 18754 */ 18755 static int 18756 ipif_logical_down(ipif_t *ipif, queue_t *q, mblk_t *mp) 18757 { 18758 /* 18759 * The ill_logical_down flag is a transient flag. It is set here 18760 * and is cleared once the down has completed in ipif_down_tail. 18761 * This flag does not indicate whether the ill stream is in the 18762 * DL_BOUND state with the driver. Instead this flag is used by 18763 * ipif_down_tail to determine whether to DL_UNBIND the stream with 18764 * the driver. The state of the ill stream i.e. whether it is 18765 * DL_BOUND with the driver or not is indicated by the ill_dl_up flag. 18766 */ 18767 ipif->ipif_ill->ill_logical_down = 1; 18768 return (ipif_down(ipif, q, mp)); 18769 } 18770 18771 /* 18772 * This is called when the SIOCSLIFUSESRC ioctl is processed in IP. 18773 * If the usesrc client ILL is already part of a usesrc group or not, 18774 * in either case a ire_stq with the matching usesrc client ILL will 18775 * locate the IRE's that need to be deleted. We want IREs to be created 18776 * with the new source address. 18777 */ 18778 static void 18779 ipif_delete_cache_ire(ire_t *ire, char *ill_arg) 18780 { 18781 ill_t *ucill = (ill_t *)ill_arg; 18782 18783 ASSERT(IAM_WRITER_ILL(ucill)); 18784 18785 if (ire->ire_stq == NULL) 18786 return; 18787 18788 if ((ire->ire_type == IRE_CACHE) && 18789 ((ill_t *)ire->ire_stq->q_ptr == ucill)) 18790 ire_delete(ire); 18791 } 18792 18793 /* 18794 * ire_walk routine to delete every IRE dependent on the interface 18795 * address that is going down. (Always called as writer.) 18796 * Works for both v4 and v6. 18797 * In addition for checking for ire_ipif matches it also checks for 18798 * IRE_CACHE entries which have the same source address as the 18799 * disappearing ipif since ipif_select_source might have picked 18800 * that source. Note that ipif_down/ipif_update_other_ipifs takes 18801 * care of any IRE_INTERFACE with the disappearing source address. 18802 */ 18803 static void 18804 ipif_down_delete_ire(ire_t *ire, char *ipif_arg) 18805 { 18806 ipif_t *ipif = (ipif_t *)ipif_arg; 18807 ill_t *ire_ill; 18808 ill_t *ipif_ill; 18809 18810 ASSERT(IAM_WRITER_IPIF(ipif)); 18811 if (ire->ire_ipif == NULL) 18812 return; 18813 18814 /* 18815 * For IPv4, we derive source addresses for an IRE from ipif's 18816 * belonging to the same IPMP group as the IRE's outgoing 18817 * interface. If an IRE's outgoing interface isn't in the 18818 * same IPMP group as a particular ipif, then that ipif 18819 * couldn't have been used as a source address for this IRE. 18820 * 18821 * For IPv6, source addresses are only restricted to the IPMP group 18822 * if the IRE is for a link-local address or a multicast address. 18823 * Otherwise, source addresses for an IRE can be chosen from 18824 * interfaces other than the the outgoing interface for that IRE. 18825 * 18826 * For source address selection details, see ipif_select_source() 18827 * and ipif_select_source_v6(). 18828 */ 18829 if (ire->ire_ipversion == IPV4_VERSION || 18830 IN6_IS_ADDR_LINKLOCAL(&ire->ire_addr_v6) || 18831 IN6_IS_ADDR_MULTICAST(&ire->ire_addr_v6)) { 18832 ire_ill = ire->ire_ipif->ipif_ill; 18833 ipif_ill = ipif->ipif_ill; 18834 18835 if (ire_ill->ill_group != ipif_ill->ill_group) { 18836 return; 18837 } 18838 } 18839 18840 if (ire->ire_ipif != ipif) { 18841 /* 18842 * Look for a matching source address. 18843 */ 18844 if (ire->ire_type != IRE_CACHE) 18845 return; 18846 if (ipif->ipif_flags & IPIF_NOLOCAL) 18847 return; 18848 18849 if (ire->ire_ipversion == IPV4_VERSION) { 18850 if (ire->ire_src_addr != ipif->ipif_src_addr) 18851 return; 18852 } else { 18853 if (!IN6_ARE_ADDR_EQUAL(&ire->ire_src_addr_v6, 18854 &ipif->ipif_v6lcl_addr)) 18855 return; 18856 } 18857 ire_delete(ire); 18858 return; 18859 } 18860 /* 18861 * ire_delete() will do an ire_flush_cache which will delete 18862 * all ire_ipif matches 18863 */ 18864 ire_delete(ire); 18865 } 18866 18867 /* 18868 * ire_walk_ill function for deleting all IRE_CACHE entries for an ill when 18869 * 1) an ipif (on that ill) changes the IPIF_DEPRECATED flags, or 18870 * 2) when an interface is brought up or down (on that ill). 18871 * This ensures that the IRE_CACHE entries don't retain stale source 18872 * address selection results. 18873 */ 18874 void 18875 ill_ipif_cache_delete(ire_t *ire, char *ill_arg) 18876 { 18877 ill_t *ill = (ill_t *)ill_arg; 18878 ill_t *ipif_ill; 18879 18880 ASSERT(IAM_WRITER_ILL(ill)); 18881 /* 18882 * We use MATCH_IRE_TYPE/IRE_CACHE while calling ire_walk_ill_v4. 18883 * Hence this should be IRE_CACHE. 18884 */ 18885 ASSERT(ire->ire_type == IRE_CACHE); 18886 18887 /* 18888 * We are called for IRE_CACHES whose ire_ipif matches ill. 18889 * We are only interested in IRE_CACHES that has borrowed 18890 * the source address from ill_arg e.g. ipif_up_done[_v6] 18891 * for which we need to look at ire_ipif->ipif_ill match 18892 * with ill. 18893 */ 18894 ASSERT(ire->ire_ipif != NULL); 18895 ipif_ill = ire->ire_ipif->ipif_ill; 18896 if (ipif_ill == ill || (ill->ill_group != NULL && 18897 ipif_ill->ill_group == ill->ill_group)) { 18898 ire_delete(ire); 18899 } 18900 } 18901 18902 /* 18903 * Delete all the ire whose stq references ill_arg. 18904 */ 18905 static void 18906 ill_stq_cache_delete(ire_t *ire, char *ill_arg) 18907 { 18908 ill_t *ill = (ill_t *)ill_arg; 18909 ill_t *ire_ill; 18910 18911 ASSERT(IAM_WRITER_ILL(ill)); 18912 /* 18913 * We use MATCH_IRE_TYPE/IRE_CACHE while calling ire_walk_ill_v4. 18914 * Hence this should be IRE_CACHE. 18915 */ 18916 ASSERT(ire->ire_type == IRE_CACHE); 18917 18918 /* 18919 * We are called for IRE_CACHES whose ire_stq and ire_ipif 18920 * matches ill. We are only interested in IRE_CACHES that 18921 * has ire_stq->q_ptr pointing at ill_arg. Thus we do the 18922 * filtering here. 18923 */ 18924 ire_ill = (ill_t *)ire->ire_stq->q_ptr; 18925 18926 if (ire_ill == ill) 18927 ire_delete(ire); 18928 } 18929 18930 /* 18931 * This is called when an ill leaves the group. We want to delete 18932 * all IRE_CACHES whose stq is pointing at ill_wq or ire_ipif is 18933 * pointing at ill. 18934 */ 18935 static void 18936 illgrp_cache_delete(ire_t *ire, char *ill_arg) 18937 { 18938 ill_t *ill = (ill_t *)ill_arg; 18939 18940 ASSERT(IAM_WRITER_ILL(ill)); 18941 ASSERT(ill->ill_group == NULL); 18942 /* 18943 * We use MATCH_IRE_TYPE/IRE_CACHE while calling ire_walk_ill_v4. 18944 * Hence this should be IRE_CACHE. 18945 */ 18946 ASSERT(ire->ire_type == IRE_CACHE); 18947 /* 18948 * We are called for IRE_CACHES whose ire_stq and ire_ipif 18949 * matches ill. We are interested in both. 18950 */ 18951 ASSERT((ill == (ill_t *)ire->ire_stq->q_ptr) || 18952 (ire->ire_ipif->ipif_ill == ill)); 18953 18954 ire_delete(ire); 18955 } 18956 18957 /* 18958 * Initiate deallocate of an IPIF. Always called as writer. Called by 18959 * ill_delete or ip_sioctl_removeif. 18960 */ 18961 static void 18962 ipif_free(ipif_t *ipif) 18963 { 18964 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; 18965 18966 ASSERT(IAM_WRITER_IPIF(ipif)); 18967 18968 if (ipif->ipif_recovery_id != 0) 18969 (void) untimeout(ipif->ipif_recovery_id); 18970 ipif->ipif_recovery_id = 0; 18971 18972 /* Remove conn references */ 18973 reset_conn_ipif(ipif); 18974 18975 /* 18976 * Make sure we have valid net and subnet broadcast ire's for the 18977 * other ipif's which share them with this ipif. 18978 */ 18979 if (!ipif->ipif_isv6) 18980 ipif_check_bcast_ires(ipif); 18981 18982 /* 18983 * Take down the interface. We can be called either from ill_delete 18984 * or from ip_sioctl_removeif. 18985 */ 18986 (void) ipif_down(ipif, NULL, NULL); 18987 18988 /* 18989 * Now that the interface is down, there's no chance it can still 18990 * become a duplicate. Cancel any timer that may have been set while 18991 * tearing down. 18992 */ 18993 if (ipif->ipif_recovery_id != 0) 18994 (void) untimeout(ipif->ipif_recovery_id); 18995 ipif->ipif_recovery_id = 0; 18996 18997 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 18998 /* Remove pointers to this ill in the multicast routing tables */ 18999 reset_mrt_vif_ipif(ipif); 19000 rw_exit(&ipst->ips_ill_g_lock); 19001 } 19002 19003 /* 19004 * Warning: this is not the only function that calls mi_free on an ipif_t. See 19005 * also ill_move(). 19006 */ 19007 static void 19008 ipif_free_tail(ipif_t *ipif) 19009 { 19010 mblk_t *mp; 19011 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; 19012 19013 /* 19014 * Free state for addition IRE_IF_[NO]RESOLVER ire's. 19015 */ 19016 mutex_enter(&ipif->ipif_saved_ire_lock); 19017 mp = ipif->ipif_saved_ire_mp; 19018 ipif->ipif_saved_ire_mp = NULL; 19019 mutex_exit(&ipif->ipif_saved_ire_lock); 19020 freemsg(mp); 19021 19022 /* 19023 * Need to hold both ill_g_lock and ill_lock while 19024 * inserting or removing an ipif from the linked list 19025 * of ipifs hanging off the ill. 19026 */ 19027 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 19028 19029 ASSERT(ilm_walk_ipif(ipif) == 0); 19030 19031 #ifdef DEBUG 19032 ipif_trace_cleanup(ipif); 19033 #endif 19034 19035 /* Ask SCTP to take it out of it list */ 19036 sctp_update_ipif(ipif, SCTP_IPIF_REMOVE); 19037 19038 /* Get it out of the ILL interface list. */ 19039 ipif_remove(ipif, B_TRUE); 19040 rw_exit(&ipst->ips_ill_g_lock); 19041 19042 mutex_destroy(&ipif->ipif_saved_ire_lock); 19043 19044 ASSERT(!(ipif->ipif_flags & (IPIF_UP | IPIF_DUPLICATE))); 19045 ASSERT(ipif->ipif_recovery_id == 0); 19046 19047 /* Free the memory. */ 19048 mi_free(ipif); 19049 } 19050 19051 /* 19052 * Sets `buf' to an ipif name of the form "ill_name:id", or "ill_name" if "id" 19053 * is zero. 19054 */ 19055 void 19056 ipif_get_name(const ipif_t *ipif, char *buf, int len) 19057 { 19058 char lbuf[LIFNAMSIZ]; 19059 char *name; 19060 size_t name_len; 19061 19062 buf[0] = '\0'; 19063 name = ipif->ipif_ill->ill_name; 19064 name_len = ipif->ipif_ill->ill_name_length; 19065 if (ipif->ipif_id != 0) { 19066 (void) sprintf(lbuf, "%s%c%d", name, IPIF_SEPARATOR_CHAR, 19067 ipif->ipif_id); 19068 name = lbuf; 19069 name_len = mi_strlen(name) + 1; 19070 } 19071 len -= 1; 19072 buf[len] = '\0'; 19073 len = MIN(len, name_len); 19074 bcopy(name, buf, len); 19075 } 19076 19077 /* 19078 * Find an IPIF based on the name passed in. Names can be of the 19079 * form <phys> (e.g., le0), <phys>:<#> (e.g., le0:1), 19080 * The <phys> string can have forms like <dev><#> (e.g., le0), 19081 * <dev><#>.<module> (e.g. le0.foo), or <dev>.<module><#> (e.g. ip.tun3). 19082 * When there is no colon, the implied unit id is zero. <phys> must 19083 * correspond to the name of an ILL. (May be called as writer.) 19084 */ 19085 static ipif_t * 19086 ipif_lookup_on_name(char *name, size_t namelen, boolean_t do_alloc, 19087 boolean_t *exists, boolean_t isv6, zoneid_t zoneid, queue_t *q, 19088 mblk_t *mp, ipsq_func_t func, int *error, ip_stack_t *ipst) 19089 { 19090 char *cp; 19091 char *endp; 19092 long id; 19093 ill_t *ill; 19094 ipif_t *ipif; 19095 uint_t ire_type; 19096 boolean_t did_alloc = B_FALSE; 19097 ipsq_t *ipsq; 19098 19099 if (error != NULL) 19100 *error = 0; 19101 19102 /* 19103 * If the caller wants to us to create the ipif, make sure we have a 19104 * valid zoneid 19105 */ 19106 ASSERT(!do_alloc || zoneid != ALL_ZONES); 19107 19108 if (namelen == 0) { 19109 if (error != NULL) 19110 *error = ENXIO; 19111 return (NULL); 19112 } 19113 19114 *exists = B_FALSE; 19115 /* Look for a colon in the name. */ 19116 endp = &name[namelen]; 19117 for (cp = endp; --cp > name; ) { 19118 if (*cp == IPIF_SEPARATOR_CHAR) 19119 break; 19120 } 19121 19122 if (*cp == IPIF_SEPARATOR_CHAR) { 19123 /* 19124 * Reject any non-decimal aliases for logical 19125 * interfaces. Aliases with leading zeroes 19126 * are also rejected as they introduce ambiguity 19127 * in the naming of the interfaces. 19128 * In order to confirm with existing semantics, 19129 * and to not break any programs/script relying 19130 * on that behaviour, if<0>:0 is considered to be 19131 * a valid interface. 19132 * 19133 * If alias has two or more digits and the first 19134 * is zero, fail. 19135 */ 19136 if (&cp[2] < endp && cp[1] == '0') { 19137 if (error != NULL) 19138 *error = EINVAL; 19139 return (NULL); 19140 } 19141 } 19142 19143 if (cp <= name) { 19144 cp = endp; 19145 } else { 19146 *cp = '\0'; 19147 } 19148 19149 /* 19150 * Look up the ILL, based on the portion of the name 19151 * before the slash. ill_lookup_on_name returns a held ill. 19152 * Temporary to check whether ill exists already. If so 19153 * ill_lookup_on_name will clear it. 19154 */ 19155 ill = ill_lookup_on_name(name, do_alloc, isv6, 19156 q, mp, func, error, &did_alloc, ipst); 19157 if (cp != endp) 19158 *cp = IPIF_SEPARATOR_CHAR; 19159 if (ill == NULL) 19160 return (NULL); 19161 19162 /* Establish the unit number in the name. */ 19163 id = 0; 19164 if (cp < endp && *endp == '\0') { 19165 /* If there was a colon, the unit number follows. */ 19166 cp++; 19167 if (ddi_strtol(cp, NULL, 0, &id) != 0) { 19168 ill_refrele(ill); 19169 if (error != NULL) 19170 *error = ENXIO; 19171 return (NULL); 19172 } 19173 } 19174 19175 GRAB_CONN_LOCK(q); 19176 mutex_enter(&ill->ill_lock); 19177 /* Now see if there is an IPIF with this unit number. */ 19178 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 19179 if (ipif->ipif_id == id) { 19180 if (zoneid != ALL_ZONES && 19181 zoneid != ipif->ipif_zoneid && 19182 ipif->ipif_zoneid != ALL_ZONES) { 19183 mutex_exit(&ill->ill_lock); 19184 RELEASE_CONN_LOCK(q); 19185 ill_refrele(ill); 19186 if (error != NULL) 19187 *error = ENXIO; 19188 return (NULL); 19189 } 19190 /* 19191 * The block comment at the start of ipif_down 19192 * explains the use of the macros used below 19193 */ 19194 if (IPIF_CAN_LOOKUP(ipif)) { 19195 ipif_refhold_locked(ipif); 19196 mutex_exit(&ill->ill_lock); 19197 if (!did_alloc) 19198 *exists = B_TRUE; 19199 /* 19200 * Drop locks before calling ill_refrele 19201 * since it can potentially call into 19202 * ipif_ill_refrele_tail which can end up 19203 * in trying to acquire any lock. 19204 */ 19205 RELEASE_CONN_LOCK(q); 19206 ill_refrele(ill); 19207 return (ipif); 19208 } else if (IPIF_CAN_WAIT(ipif, q)) { 19209 ipsq = ill->ill_phyint->phyint_ipsq; 19210 mutex_enter(&ipsq->ipsq_lock); 19211 mutex_exit(&ill->ill_lock); 19212 ipsq_enq(ipsq, q, mp, func, NEW_OP, ill); 19213 mutex_exit(&ipsq->ipsq_lock); 19214 RELEASE_CONN_LOCK(q); 19215 ill_refrele(ill); 19216 if (error != NULL) 19217 *error = EINPROGRESS; 19218 return (NULL); 19219 } 19220 } 19221 } 19222 RELEASE_CONN_LOCK(q); 19223 19224 if (!do_alloc) { 19225 mutex_exit(&ill->ill_lock); 19226 ill_refrele(ill); 19227 if (error != NULL) 19228 *error = ENXIO; 19229 return (NULL); 19230 } 19231 19232 /* 19233 * If none found, atomically allocate and return a new one. 19234 * Historically, we used IRE_LOOPBACK only for lun 0, and IRE_LOCAL 19235 * to support "receive only" use of lo0:1 etc. as is still done 19236 * below as an initial guess. 19237 * However, this is now likely to be overriden later in ipif_up_done() 19238 * when we know for sure what address has been configured on the 19239 * interface, since we might have more than one loopback interface 19240 * with a loopback address, e.g. in the case of zones, and all the 19241 * interfaces with loopback addresses need to be marked IRE_LOOPBACK. 19242 */ 19243 if (ill->ill_net_type == IRE_LOOPBACK && id == 0) 19244 ire_type = IRE_LOOPBACK; 19245 else 19246 ire_type = IRE_LOCAL; 19247 ipif = ipif_allocate(ill, id, ire_type, B_TRUE); 19248 if (ipif != NULL) 19249 ipif_refhold_locked(ipif); 19250 else if (error != NULL) 19251 *error = ENOMEM; 19252 mutex_exit(&ill->ill_lock); 19253 ill_refrele(ill); 19254 return (ipif); 19255 } 19256 19257 /* 19258 * This routine is called whenever a new address comes up on an ipif. If 19259 * we are configured to respond to address mask requests, then we are supposed 19260 * to broadcast an address mask reply at this time. This routine is also 19261 * called if we are already up, but a netmask change is made. This is legal 19262 * but might not make the system manager very popular. (May be called 19263 * as writer.) 19264 */ 19265 void 19266 ipif_mask_reply(ipif_t *ipif) 19267 { 19268 icmph_t *icmph; 19269 ipha_t *ipha; 19270 mblk_t *mp; 19271 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; 19272 19273 #define REPLY_LEN (sizeof (icmp_ipha) + sizeof (icmph_t) + IP_ADDR_LEN) 19274 19275 if (!ipst->ips_ip_respond_to_address_mask_broadcast) 19276 return; 19277 19278 /* ICMP mask reply is IPv4 only */ 19279 ASSERT(!ipif->ipif_isv6); 19280 /* ICMP mask reply is not for a loopback interface */ 19281 ASSERT(ipif->ipif_ill->ill_wq != NULL); 19282 19283 mp = allocb(REPLY_LEN, BPRI_HI); 19284 if (mp == NULL) 19285 return; 19286 mp->b_wptr = mp->b_rptr + REPLY_LEN; 19287 19288 ipha = (ipha_t *)mp->b_rptr; 19289 bzero(ipha, REPLY_LEN); 19290 *ipha = icmp_ipha; 19291 ipha->ipha_ttl = ipst->ips_ip_broadcast_ttl; 19292 ipha->ipha_src = ipif->ipif_src_addr; 19293 ipha->ipha_dst = ipif->ipif_brd_addr; 19294 ipha->ipha_length = htons(REPLY_LEN); 19295 ipha->ipha_ident = 0; 19296 19297 icmph = (icmph_t *)&ipha[1]; 19298 icmph->icmph_type = ICMP_ADDRESS_MASK_REPLY; 19299 bcopy(&ipif->ipif_net_mask, &icmph[1], IP_ADDR_LEN); 19300 icmph->icmph_checksum = IP_CSUM(mp, sizeof (ipha_t), 0); 19301 19302 put(ipif->ipif_wq, mp); 19303 19304 #undef REPLY_LEN 19305 } 19306 19307 /* 19308 * When the mtu in the ipif changes, we call this routine through ire_walk 19309 * to update all the relevant IREs. 19310 * Skip IRE_LOCAL and "loopback" IRE_BROADCAST by checking ire_stq. 19311 */ 19312 static void 19313 ipif_mtu_change(ire_t *ire, char *ipif_arg) 19314 { 19315 ipif_t *ipif = (ipif_t *)ipif_arg; 19316 19317 if (ire->ire_stq == NULL || ire->ire_ipif != ipif) 19318 return; 19319 ire->ire_max_frag = MIN(ipif->ipif_mtu, IP_MAXPACKET); 19320 } 19321 19322 /* 19323 * When the mtu in the ill changes, we call this routine through ire_walk 19324 * to update all the relevant IREs. 19325 * Skip IRE_LOCAL and "loopback" IRE_BROADCAST by checking ire_stq. 19326 */ 19327 void 19328 ill_mtu_change(ire_t *ire, char *ill_arg) 19329 { 19330 ill_t *ill = (ill_t *)ill_arg; 19331 19332 if (ire->ire_stq == NULL || ire->ire_ipif->ipif_ill != ill) 19333 return; 19334 ire->ire_max_frag = ire->ire_ipif->ipif_mtu; 19335 } 19336 19337 /* 19338 * Join the ipif specific multicast groups. 19339 * Must be called after a mapping has been set up in the resolver. (Always 19340 * called as writer.) 19341 */ 19342 void 19343 ipif_multicast_up(ipif_t *ipif) 19344 { 19345 int err, index; 19346 ill_t *ill; 19347 19348 ASSERT(IAM_WRITER_IPIF(ipif)); 19349 19350 ill = ipif->ipif_ill; 19351 index = ill->ill_phyint->phyint_ifindex; 19352 19353 ip1dbg(("ipif_multicast_up\n")); 19354 if (!(ill->ill_flags & ILLF_MULTICAST) || ipif->ipif_multicast_up) 19355 return; 19356 19357 if (ipif->ipif_isv6) { 19358 if (IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6lcl_addr)) 19359 return; 19360 19361 /* Join the all hosts multicast address */ 19362 ip1dbg(("ipif_multicast_up - addmulti\n")); 19363 /* 19364 * Passing B_TRUE means we have to join the multicast 19365 * membership on this interface even though this is 19366 * FAILED. If we join on a different one in the group, 19367 * we will not be able to delete the membership later 19368 * as we currently don't track where we join when we 19369 * join within the kernel unlike applications where 19370 * we have ilg/ilg_orig_index. See ip_addmulti_v6 19371 * for more on this. 19372 */ 19373 err = ip_addmulti_v6(&ipv6_all_hosts_mcast, ill, index, 19374 ipif->ipif_zoneid, ILGSTAT_NONE, MODE_IS_EXCLUDE, NULL); 19375 if (err != 0) { 19376 ip0dbg(("ipif_multicast_up: " 19377 "all_hosts_mcast failed %d\n", 19378 err)); 19379 return; 19380 } 19381 /* 19382 * Enable multicast for the solicited node multicast address 19383 */ 19384 if (!(ipif->ipif_flags & IPIF_NOLOCAL)) { 19385 in6_addr_t ipv6_multi = ipv6_solicited_node_mcast; 19386 19387 ipv6_multi.s6_addr32[3] |= 19388 ipif->ipif_v6lcl_addr.s6_addr32[3]; 19389 19390 err = ip_addmulti_v6(&ipv6_multi, ill, index, 19391 ipif->ipif_zoneid, ILGSTAT_NONE, MODE_IS_EXCLUDE, 19392 NULL); 19393 if (err != 0) { 19394 ip0dbg(("ipif_multicast_up: solicited MC" 19395 " failed %d\n", err)); 19396 (void) ip_delmulti_v6(&ipv6_all_hosts_mcast, 19397 ill, ill->ill_phyint->phyint_ifindex, 19398 ipif->ipif_zoneid, B_TRUE, B_TRUE); 19399 return; 19400 } 19401 } 19402 } else { 19403 if (ipif->ipif_lcl_addr == INADDR_ANY) 19404 return; 19405 19406 /* Join the all hosts multicast address */ 19407 ip1dbg(("ipif_multicast_up - addmulti\n")); 19408 err = ip_addmulti(htonl(INADDR_ALLHOSTS_GROUP), ipif, 19409 ILGSTAT_NONE, MODE_IS_EXCLUDE, NULL); 19410 if (err) { 19411 ip0dbg(("ipif_multicast_up: failed %d\n", err)); 19412 return; 19413 } 19414 } 19415 ipif->ipif_multicast_up = 1; 19416 } 19417 19418 /* 19419 * Blow away any multicast groups that we joined in ipif_multicast_up(). 19420 * (Explicit memberships are blown away in ill_leave_multicast() when the 19421 * ill is brought down.) 19422 */ 19423 static void 19424 ipif_multicast_down(ipif_t *ipif) 19425 { 19426 int err; 19427 19428 ASSERT(IAM_WRITER_IPIF(ipif)); 19429 19430 ip1dbg(("ipif_multicast_down\n")); 19431 if (!ipif->ipif_multicast_up) 19432 return; 19433 19434 ip1dbg(("ipif_multicast_down - delmulti\n")); 19435 19436 if (!ipif->ipif_isv6) { 19437 err = ip_delmulti(htonl(INADDR_ALLHOSTS_GROUP), ipif, B_TRUE, 19438 B_TRUE); 19439 if (err != 0) 19440 ip0dbg(("ipif_multicast_down: failed %d\n", err)); 19441 19442 ipif->ipif_multicast_up = 0; 19443 return; 19444 } 19445 19446 /* 19447 * Leave the all hosts multicast address. Similar to ip_addmulti_v6, 19448 * we should look for ilms on this ill rather than the ones that have 19449 * been failed over here. They are here temporarily. As 19450 * ipif_multicast_up has joined on this ill, we should delete only 19451 * from this ill. 19452 */ 19453 err = ip_delmulti_v6(&ipv6_all_hosts_mcast, ipif->ipif_ill, 19454 ipif->ipif_ill->ill_phyint->phyint_ifindex, ipif->ipif_zoneid, 19455 B_TRUE, B_TRUE); 19456 if (err != 0) { 19457 ip0dbg(("ipif_multicast_down: all_hosts_mcast failed %d\n", 19458 err)); 19459 } 19460 /* 19461 * Disable multicast for the solicited node multicast address 19462 */ 19463 if (!(ipif->ipif_flags & IPIF_NOLOCAL)) { 19464 in6_addr_t ipv6_multi = ipv6_solicited_node_mcast; 19465 19466 ipv6_multi.s6_addr32[3] |= 19467 ipif->ipif_v6lcl_addr.s6_addr32[3]; 19468 19469 err = ip_delmulti_v6(&ipv6_multi, ipif->ipif_ill, 19470 ipif->ipif_ill->ill_phyint->phyint_ifindex, 19471 ipif->ipif_zoneid, B_TRUE, B_TRUE); 19472 19473 if (err != 0) { 19474 ip0dbg(("ipif_multicast_down: sol MC failed %d\n", 19475 err)); 19476 } 19477 } 19478 19479 ipif->ipif_multicast_up = 0; 19480 } 19481 19482 /* 19483 * Used when an interface comes up to recreate any extra routes on this 19484 * interface. 19485 */ 19486 static ire_t ** 19487 ipif_recover_ire(ipif_t *ipif) 19488 { 19489 mblk_t *mp; 19490 ire_t **ipif_saved_irep; 19491 ire_t **irep; 19492 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; 19493 19494 ip1dbg(("ipif_recover_ire(%s:%u)", ipif->ipif_ill->ill_name, 19495 ipif->ipif_id)); 19496 19497 mutex_enter(&ipif->ipif_saved_ire_lock); 19498 ipif_saved_irep = (ire_t **)kmem_zalloc(sizeof (ire_t *) * 19499 ipif->ipif_saved_ire_cnt, KM_NOSLEEP); 19500 if (ipif_saved_irep == NULL) { 19501 mutex_exit(&ipif->ipif_saved_ire_lock); 19502 return (NULL); 19503 } 19504 19505 irep = ipif_saved_irep; 19506 for (mp = ipif->ipif_saved_ire_mp; mp != NULL; mp = mp->b_cont) { 19507 ire_t *ire; 19508 queue_t *rfq; 19509 queue_t *stq; 19510 ifrt_t *ifrt; 19511 uchar_t *src_addr; 19512 uchar_t *gateway_addr; 19513 ushort_t type; 19514 19515 /* 19516 * When the ire was initially created and then added in 19517 * ip_rt_add(), it was created either using ipif->ipif_net_type 19518 * in the case of a traditional interface route, or as one of 19519 * the IRE_OFFSUBNET types (with the exception of 19520 * IRE_HOST types ire which is created by icmp_redirect() and 19521 * which we don't need to save or recover). In the case where 19522 * ipif->ipif_net_type was IRE_LOOPBACK, ip_rt_add() will update 19523 * the ire_type to IRE_IF_NORESOLVER before calling ire_add() 19524 * to satisfy software like GateD and Sun Cluster which creates 19525 * routes using the the loopback interface's address as a 19526 * gateway. 19527 * 19528 * As ifrt->ifrt_type reflects the already updated ire_type, 19529 * ire_create() will be called in the same way here as 19530 * in ip_rt_add(), namely using ipif->ipif_net_type when 19531 * the route looks like a traditional interface route (where 19532 * ifrt->ifrt_type & IRE_INTERFACE is true) and otherwise using 19533 * the saved ifrt->ifrt_type. This means that in the case where 19534 * ipif->ipif_net_type is IRE_LOOPBACK, the ire created by 19535 * ire_create() will be an IRE_LOOPBACK, it will then be turned 19536 * into an IRE_IF_NORESOLVER and then added by ire_add(). 19537 */ 19538 ifrt = (ifrt_t *)mp->b_rptr; 19539 ASSERT(ifrt->ifrt_type != IRE_CACHE); 19540 if (ifrt->ifrt_type & IRE_INTERFACE) { 19541 rfq = NULL; 19542 stq = (ipif->ipif_net_type == IRE_IF_RESOLVER) 19543 ? ipif->ipif_rq : ipif->ipif_wq; 19544 src_addr = (ifrt->ifrt_flags & RTF_SETSRC) 19545 ? (uint8_t *)&ifrt->ifrt_src_addr 19546 : (uint8_t *)&ipif->ipif_src_addr; 19547 gateway_addr = NULL; 19548 type = ipif->ipif_net_type; 19549 } else if (ifrt->ifrt_type & IRE_BROADCAST) { 19550 /* Recover multiroute broadcast IRE. */ 19551 rfq = ipif->ipif_rq; 19552 stq = ipif->ipif_wq; 19553 src_addr = (ifrt->ifrt_flags & RTF_SETSRC) 19554 ? (uint8_t *)&ifrt->ifrt_src_addr 19555 : (uint8_t *)&ipif->ipif_src_addr; 19556 gateway_addr = (uint8_t *)&ifrt->ifrt_gateway_addr; 19557 type = ifrt->ifrt_type; 19558 } else { 19559 rfq = NULL; 19560 stq = NULL; 19561 src_addr = (ifrt->ifrt_flags & RTF_SETSRC) 19562 ? (uint8_t *)&ifrt->ifrt_src_addr : NULL; 19563 gateway_addr = (uint8_t *)&ifrt->ifrt_gateway_addr; 19564 type = ifrt->ifrt_type; 19565 } 19566 19567 /* 19568 * Create a copy of the IRE with the saved address and netmask. 19569 */ 19570 ip1dbg(("ipif_recover_ire: creating IRE %s (%d) for " 19571 "0x%x/0x%x\n", 19572 ip_nv_lookup(ire_nv_tbl, ifrt->ifrt_type), ifrt->ifrt_type, 19573 ntohl(ifrt->ifrt_addr), 19574 ntohl(ifrt->ifrt_mask))); 19575 ire = ire_create( 19576 (uint8_t *)&ifrt->ifrt_addr, 19577 (uint8_t *)&ifrt->ifrt_mask, 19578 src_addr, 19579 gateway_addr, 19580 &ifrt->ifrt_max_frag, 19581 NULL, 19582 rfq, 19583 stq, 19584 type, 19585 ipif, 19586 0, 19587 0, 19588 0, 19589 ifrt->ifrt_flags, 19590 &ifrt->ifrt_iulp_info, 19591 NULL, 19592 NULL, 19593 ipst); 19594 19595 if (ire == NULL) { 19596 mutex_exit(&ipif->ipif_saved_ire_lock); 19597 kmem_free(ipif_saved_irep, 19598 ipif->ipif_saved_ire_cnt * sizeof (ire_t *)); 19599 return (NULL); 19600 } 19601 19602 /* 19603 * Some software (for example, GateD and Sun Cluster) attempts 19604 * to create (what amount to) IRE_PREFIX routes with the 19605 * loopback address as the gateway. This is primarily done to 19606 * set up prefixes with the RTF_REJECT flag set (for example, 19607 * when generating aggregate routes.) 19608 * 19609 * If the IRE type (as defined by ipif->ipif_net_type) is 19610 * IRE_LOOPBACK, then we map the request into a 19611 * IRE_IF_NORESOLVER. 19612 */ 19613 if (ipif->ipif_net_type == IRE_LOOPBACK) 19614 ire->ire_type = IRE_IF_NORESOLVER; 19615 /* 19616 * ire held by ire_add, will be refreled' towards the 19617 * the end of ipif_up_done 19618 */ 19619 (void) ire_add(&ire, NULL, NULL, NULL, B_FALSE); 19620 *irep = ire; 19621 irep++; 19622 ip1dbg(("ipif_recover_ire: added ire %p\n", (void *)ire)); 19623 } 19624 mutex_exit(&ipif->ipif_saved_ire_lock); 19625 return (ipif_saved_irep); 19626 } 19627 19628 /* 19629 * Used to set the netmask and broadcast address to default values when the 19630 * interface is brought up. (Always called as writer.) 19631 */ 19632 static void 19633 ipif_set_default(ipif_t *ipif) 19634 { 19635 ASSERT(MUTEX_HELD(&ipif->ipif_ill->ill_lock)); 19636 19637 if (!ipif->ipif_isv6) { 19638 /* 19639 * Interface holds an IPv4 address. Default 19640 * mask is the natural netmask. 19641 */ 19642 if (!ipif->ipif_net_mask) { 19643 ipaddr_t v4mask; 19644 19645 v4mask = ip_net_mask(ipif->ipif_lcl_addr); 19646 V4MASK_TO_V6(v4mask, ipif->ipif_v6net_mask); 19647 } 19648 if (ipif->ipif_flags & IPIF_POINTOPOINT) { 19649 /* ipif_subnet is ipif_pp_dst_addr for pt-pt */ 19650 ipif->ipif_v6subnet = ipif->ipif_v6pp_dst_addr; 19651 } else { 19652 V6_MASK_COPY(ipif->ipif_v6lcl_addr, 19653 ipif->ipif_v6net_mask, ipif->ipif_v6subnet); 19654 } 19655 /* 19656 * NOTE: SunOS 4.X does this even if the broadcast address 19657 * has been already set thus we do the same here. 19658 */ 19659 if (ipif->ipif_flags & IPIF_BROADCAST) { 19660 ipaddr_t v4addr; 19661 19662 v4addr = ipif->ipif_subnet | ~ipif->ipif_net_mask; 19663 IN6_IPADDR_TO_V4MAPPED(v4addr, &ipif->ipif_v6brd_addr); 19664 } 19665 } else { 19666 /* 19667 * Interface holds an IPv6-only address. Default 19668 * mask is all-ones. 19669 */ 19670 if (IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6net_mask)) 19671 ipif->ipif_v6net_mask = ipv6_all_ones; 19672 if (ipif->ipif_flags & IPIF_POINTOPOINT) { 19673 /* ipif_subnet is ipif_pp_dst_addr for pt-pt */ 19674 ipif->ipif_v6subnet = ipif->ipif_v6pp_dst_addr; 19675 } else { 19676 V6_MASK_COPY(ipif->ipif_v6lcl_addr, 19677 ipif->ipif_v6net_mask, ipif->ipif_v6subnet); 19678 } 19679 } 19680 } 19681 19682 /* 19683 * Return 0 if this address can be used as local address without causing 19684 * duplicate address problems. Otherwise, return EADDRNOTAVAIL if the address 19685 * is already up on a different ill, and EADDRINUSE if it's up on the same ill. 19686 * Special checks are needed to allow the same IPv6 link-local address 19687 * on different ills. 19688 * TODO: allowing the same site-local address on different ill's. 19689 */ 19690 int 19691 ip_addr_availability_check(ipif_t *new_ipif) 19692 { 19693 in6_addr_t our_v6addr; 19694 ill_t *ill; 19695 ipif_t *ipif; 19696 ill_walk_context_t ctx; 19697 ip_stack_t *ipst = new_ipif->ipif_ill->ill_ipst; 19698 19699 ASSERT(IAM_WRITER_IPIF(new_ipif)); 19700 ASSERT(MUTEX_HELD(&ipst->ips_ip_addr_avail_lock)); 19701 ASSERT(RW_READ_HELD(&ipst->ips_ill_g_lock)); 19702 19703 new_ipif->ipif_flags &= ~IPIF_UNNUMBERED; 19704 if (IN6_IS_ADDR_UNSPECIFIED(&new_ipif->ipif_v6lcl_addr) || 19705 IN6_IS_ADDR_V4MAPPED_ANY(&new_ipif->ipif_v6lcl_addr)) 19706 return (0); 19707 19708 our_v6addr = new_ipif->ipif_v6lcl_addr; 19709 19710 if (new_ipif->ipif_isv6) 19711 ill = ILL_START_WALK_V6(&ctx, ipst); 19712 else 19713 ill = ILL_START_WALK_V4(&ctx, ipst); 19714 19715 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 19716 for (ipif = ill->ill_ipif; ipif != NULL; 19717 ipif = ipif->ipif_next) { 19718 if ((ipif == new_ipif) || 19719 !(ipif->ipif_flags & IPIF_UP) || 19720 (ipif->ipif_flags & IPIF_UNNUMBERED)) 19721 continue; 19722 if (IN6_ARE_ADDR_EQUAL(&ipif->ipif_v6lcl_addr, 19723 &our_v6addr)) { 19724 if (new_ipif->ipif_flags & IPIF_POINTOPOINT) 19725 new_ipif->ipif_flags |= IPIF_UNNUMBERED; 19726 else if (ipif->ipif_flags & IPIF_POINTOPOINT) 19727 ipif->ipif_flags |= IPIF_UNNUMBERED; 19728 else if (IN6_IS_ADDR_LINKLOCAL(&our_v6addr) && 19729 new_ipif->ipif_ill != ill) 19730 continue; 19731 else if (IN6_IS_ADDR_SITELOCAL(&our_v6addr) && 19732 new_ipif->ipif_ill != ill) 19733 continue; 19734 else if (new_ipif->ipif_zoneid != 19735 ipif->ipif_zoneid && 19736 ipif->ipif_zoneid != ALL_ZONES && 19737 IS_LOOPBACK(ill)) 19738 continue; 19739 else if (new_ipif->ipif_ill == ill) 19740 return (EADDRINUSE); 19741 else 19742 return (EADDRNOTAVAIL); 19743 } 19744 } 19745 } 19746 19747 return (0); 19748 } 19749 19750 /* 19751 * Bring up an ipif: bring up arp/ndp, bring up the DLPI stream, and add 19752 * IREs for the ipif. 19753 * When the routine returns EINPROGRESS then mp has been consumed and 19754 * the ioctl will be acked from ip_rput_dlpi. 19755 */ 19756 static int 19757 ipif_up(ipif_t *ipif, queue_t *q, mblk_t *mp) 19758 { 19759 ill_t *ill = ipif->ipif_ill; 19760 boolean_t isv6 = ipif->ipif_isv6; 19761 int err = 0; 19762 boolean_t success; 19763 19764 ASSERT(IAM_WRITER_IPIF(ipif)); 19765 19766 ip1dbg(("ipif_up(%s:%u)\n", ill->ill_name, ipif->ipif_id)); 19767 19768 /* Shouldn't get here if it is already up. */ 19769 if (ipif->ipif_flags & IPIF_UP) 19770 return (EALREADY); 19771 19772 /* Skip arp/ndp for any loopback interface. */ 19773 if (ill->ill_wq != NULL) { 19774 conn_t *connp = CONN_Q(q) ? Q_TO_CONN(q) : NULL; 19775 ipsq_t *ipsq = ill->ill_phyint->phyint_ipsq; 19776 19777 if (!ill->ill_dl_up) { 19778 /* 19779 * ill_dl_up is not yet set. i.e. we are yet to 19780 * DL_BIND with the driver and this is the first 19781 * logical interface on the ill to become "up". 19782 * Tell the driver to get going (via DL_BIND_REQ). 19783 * Note that changing "significant" IFF_ flags 19784 * address/netmask etc cause a down/up dance, but 19785 * does not cause an unbind (DL_UNBIND) with the driver 19786 */ 19787 return (ill_dl_up(ill, ipif, mp, q)); 19788 } 19789 19790 /* 19791 * ipif_resolver_up may end up sending an 19792 * AR_INTERFACE_UP message to ARP, which would, in 19793 * turn send a DLPI message to the driver. ioctls are 19794 * serialized and so we cannot send more than one 19795 * interface up message at a time. If ipif_resolver_up 19796 * does send an interface up message to ARP, we get 19797 * EINPROGRESS and we will complete in ip_arp_done. 19798 */ 19799 19800 ASSERT(connp != NULL || !CONN_Q(q)); 19801 ASSERT(ipsq->ipsq_pending_mp == NULL); 19802 if (connp != NULL) 19803 mutex_enter(&connp->conn_lock); 19804 mutex_enter(&ill->ill_lock); 19805 success = ipsq_pending_mp_add(connp, ipif, q, mp, 0); 19806 mutex_exit(&ill->ill_lock); 19807 if (connp != NULL) 19808 mutex_exit(&connp->conn_lock); 19809 if (!success) 19810 return (EINTR); 19811 19812 /* 19813 * Crank up IPv6 neighbor discovery 19814 * Unlike ARP, this should complete when 19815 * ipif_ndp_up returns. However, for 19816 * ILLF_XRESOLV interfaces we also send a 19817 * AR_INTERFACE_UP to the external resolver. 19818 * That ioctl will complete in ip_rput. 19819 */ 19820 if (isv6) { 19821 err = ipif_ndp_up(ipif); 19822 if (err != 0) { 19823 if (err != EINPROGRESS) 19824 mp = ipsq_pending_mp_get(ipsq, &connp); 19825 return (err); 19826 } 19827 } 19828 /* Now, ARP */ 19829 err = ipif_resolver_up(ipif, Res_act_initial); 19830 if (err == EINPROGRESS) { 19831 /* We will complete it in ip_arp_done */ 19832 return (err); 19833 } 19834 mp = ipsq_pending_mp_get(ipsq, &connp); 19835 ASSERT(mp != NULL); 19836 if (err != 0) 19837 return (err); 19838 } else { 19839 /* 19840 * Interfaces without underlying hardware don't do duplicate 19841 * address detection. 19842 */ 19843 ASSERT(!(ipif->ipif_flags & IPIF_DUPLICATE)); 19844 ipif->ipif_addr_ready = 1; 19845 } 19846 return (isv6 ? ipif_up_done_v6(ipif) : ipif_up_done(ipif)); 19847 } 19848 19849 /* 19850 * Perform a bind for the physical device. 19851 * When the routine returns EINPROGRESS then mp has been consumed and 19852 * the ioctl will be acked from ip_rput_dlpi. 19853 * Allocate an unbind message and save it until ipif_down. 19854 */ 19855 static int 19856 ill_dl_up(ill_t *ill, ipif_t *ipif, mblk_t *mp, queue_t *q) 19857 { 19858 areq_t *areq; 19859 mblk_t *areq_mp = NULL; 19860 mblk_t *bind_mp = NULL; 19861 mblk_t *unbind_mp = NULL; 19862 conn_t *connp; 19863 boolean_t success; 19864 uint16_t sap_addr; 19865 19866 ip1dbg(("ill_dl_up(%s)\n", ill->ill_name)); 19867 ASSERT(IAM_WRITER_ILL(ill)); 19868 ASSERT(mp != NULL); 19869 19870 /* Create a resolver cookie for ARP */ 19871 if (!ill->ill_isv6 && ill->ill_net_type == IRE_IF_RESOLVER) { 19872 areq_mp = ill_arp_alloc(ill, (uchar_t *)&ip_areq_template, 0); 19873 if (areq_mp == NULL) 19874 return (ENOMEM); 19875 19876 freemsg(ill->ill_resolver_mp); 19877 ill->ill_resolver_mp = areq_mp; 19878 areq = (areq_t *)areq_mp->b_rptr; 19879 sap_addr = ill->ill_sap; 19880 bcopy(&sap_addr, areq->areq_sap, sizeof (sap_addr)); 19881 } 19882 bind_mp = ip_dlpi_alloc(sizeof (dl_bind_req_t) + sizeof (long), 19883 DL_BIND_REQ); 19884 if (bind_mp == NULL) 19885 goto bad; 19886 ((dl_bind_req_t *)bind_mp->b_rptr)->dl_sap = ill->ill_sap; 19887 ((dl_bind_req_t *)bind_mp->b_rptr)->dl_service_mode = DL_CLDLS; 19888 19889 unbind_mp = ip_dlpi_alloc(sizeof (dl_unbind_req_t), DL_UNBIND_REQ); 19890 if (unbind_mp == NULL) 19891 goto bad; 19892 19893 /* 19894 * Record state needed to complete this operation when the 19895 * DL_BIND_ACK shows up. Also remember the pre-allocated mblks. 19896 */ 19897 ASSERT(WR(q)->q_next == NULL); 19898 connp = Q_TO_CONN(q); 19899 19900 mutex_enter(&connp->conn_lock); 19901 mutex_enter(&ipif->ipif_ill->ill_lock); 19902 success = ipsq_pending_mp_add(connp, ipif, q, mp, 0); 19903 mutex_exit(&ipif->ipif_ill->ill_lock); 19904 mutex_exit(&connp->conn_lock); 19905 if (!success) 19906 goto bad; 19907 19908 /* 19909 * Save the unbind message for ill_dl_down(); it will be consumed when 19910 * the interface goes down. 19911 */ 19912 ASSERT(ill->ill_unbind_mp == NULL); 19913 ill->ill_unbind_mp = unbind_mp; 19914 19915 ill_dlpi_send(ill, bind_mp); 19916 /* Send down link-layer capabilities probe if not already done. */ 19917 ill_capability_probe(ill); 19918 19919 /* 19920 * Sysid used to rely on the fact that netboots set domainname 19921 * and the like. Now that miniroot boots aren't strictly netboots 19922 * and miniroot network configuration is driven from userland 19923 * these things still need to be set. This situation can be detected 19924 * by comparing the interface being configured here to the one 19925 * dhcifname was set to reference by the boot loader. Once sysid is 19926 * converted to use dhcp_ipc_getinfo() this call can go away. 19927 */ 19928 if ((ipif->ipif_flags & IPIF_DHCPRUNNING) && 19929 (strcmp(ill->ill_name, dhcifname) == 0) && 19930 (strlen(srpc_domain) == 0)) { 19931 if (dhcpinit() != 0) 19932 cmn_err(CE_WARN, "no cached dhcp response"); 19933 } 19934 19935 /* 19936 * This operation will complete in ip_rput_dlpi with either 19937 * a DL_BIND_ACK or DL_ERROR_ACK. 19938 */ 19939 return (EINPROGRESS); 19940 bad: 19941 ip1dbg(("ill_dl_up(%s) FAILED\n", ill->ill_name)); 19942 /* 19943 * We don't have to check for possible removal from illgrp 19944 * as we have not yet inserted in illgrp. For groups 19945 * without names, this ipif is still not UP and hence 19946 * this could not have possibly had any influence in forming 19947 * groups. 19948 */ 19949 19950 freemsg(bind_mp); 19951 freemsg(unbind_mp); 19952 return (ENOMEM); 19953 } 19954 19955 uint_t ip_loopback_mtuplus = IP_LOOPBACK_MTU + IP_SIMPLE_HDR_LENGTH + 20; 19956 19957 /* 19958 * DLPI and ARP is up. 19959 * Create all the IREs associated with an interface bring up multicast. 19960 * Set the interface flag and finish other initialization 19961 * that potentially had to be differed to after DL_BIND_ACK. 19962 */ 19963 int 19964 ipif_up_done(ipif_t *ipif) 19965 { 19966 ire_t *ire_array[20]; 19967 ire_t **irep = ire_array; 19968 ire_t **irep1; 19969 ipaddr_t net_mask = 0; 19970 ipaddr_t subnet_mask, route_mask; 19971 ill_t *ill = ipif->ipif_ill; 19972 queue_t *stq; 19973 ipif_t *src_ipif; 19974 ipif_t *tmp_ipif; 19975 boolean_t flush_ire_cache = B_TRUE; 19976 int err = 0; 19977 phyint_t *phyi; 19978 ire_t **ipif_saved_irep = NULL; 19979 int ipif_saved_ire_cnt; 19980 int cnt; 19981 boolean_t src_ipif_held = B_FALSE; 19982 boolean_t ire_added = B_FALSE; 19983 boolean_t loopback = B_FALSE; 19984 ip_stack_t *ipst = ill->ill_ipst; 19985 19986 ip1dbg(("ipif_up_done(%s:%u)\n", 19987 ipif->ipif_ill->ill_name, ipif->ipif_id)); 19988 /* Check if this is a loopback interface */ 19989 if (ipif->ipif_ill->ill_wq == NULL) 19990 loopback = B_TRUE; 19991 19992 ASSERT(!MUTEX_HELD(&ipif->ipif_ill->ill_lock)); 19993 /* 19994 * If all other interfaces for this ill are down or DEPRECATED, 19995 * or otherwise unsuitable for source address selection, remove 19996 * any IRE_CACHE entries for this ill to make sure source 19997 * address selection gets to take this new ipif into account. 19998 * No need to hold ill_lock while traversing the ipif list since 19999 * we are writer 20000 */ 20001 for (tmp_ipif = ill->ill_ipif; tmp_ipif; 20002 tmp_ipif = tmp_ipif->ipif_next) { 20003 if (((tmp_ipif->ipif_flags & 20004 (IPIF_NOXMIT|IPIF_ANYCAST|IPIF_NOLOCAL|IPIF_DEPRECATED)) || 20005 !(tmp_ipif->ipif_flags & IPIF_UP)) || 20006 (tmp_ipif == ipif)) 20007 continue; 20008 /* first useable pre-existing interface */ 20009 flush_ire_cache = B_FALSE; 20010 break; 20011 } 20012 if (flush_ire_cache) 20013 ire_walk_ill_v4(MATCH_IRE_ILL_GROUP | MATCH_IRE_TYPE, 20014 IRE_CACHE, ill_ipif_cache_delete, (char *)ill, ill); 20015 20016 /* 20017 * Figure out which way the send-to queue should go. Only 20018 * IRE_IF_RESOLVER or IRE_IF_NORESOLVER or IRE_LOOPBACK 20019 * should show up here. 20020 */ 20021 switch (ill->ill_net_type) { 20022 case IRE_IF_RESOLVER: 20023 stq = ill->ill_rq; 20024 break; 20025 case IRE_IF_NORESOLVER: 20026 case IRE_LOOPBACK: 20027 stq = ill->ill_wq; 20028 break; 20029 default: 20030 return (EINVAL); 20031 } 20032 20033 if (IS_LOOPBACK(ill)) { 20034 /* 20035 * lo0:1 and subsequent ipifs were marked IRE_LOCAL in 20036 * ipif_lookup_on_name(), but in the case of zones we can have 20037 * several loopback addresses on lo0. So all the interfaces with 20038 * loopback addresses need to be marked IRE_LOOPBACK. 20039 */ 20040 if (V4_PART_OF_V6(ipif->ipif_v6lcl_addr) == 20041 htonl(INADDR_LOOPBACK)) 20042 ipif->ipif_ire_type = IRE_LOOPBACK; 20043 else 20044 ipif->ipif_ire_type = IRE_LOCAL; 20045 } 20046 20047 if (ipif->ipif_flags & (IPIF_NOLOCAL|IPIF_ANYCAST|IPIF_DEPRECATED)) { 20048 /* 20049 * Can't use our source address. Select a different 20050 * source address for the IRE_INTERFACE and IRE_LOCAL 20051 */ 20052 src_ipif = ipif_select_source(ipif->ipif_ill, 20053 ipif->ipif_subnet, ipif->ipif_zoneid); 20054 if (src_ipif == NULL) 20055 src_ipif = ipif; /* Last resort */ 20056 else 20057 src_ipif_held = B_TRUE; 20058 } else { 20059 src_ipif = ipif; 20060 } 20061 20062 /* Create all the IREs associated with this interface */ 20063 if ((ipif->ipif_lcl_addr != INADDR_ANY) && 20064 !(ipif->ipif_flags & IPIF_NOLOCAL)) { 20065 20066 /* 20067 * If we're on a labeled system then make sure that zone- 20068 * private addresses have proper remote host database entries. 20069 */ 20070 if (is_system_labeled() && 20071 ipif->ipif_ire_type != IRE_LOOPBACK && 20072 !tsol_check_interface_address(ipif)) 20073 return (EINVAL); 20074 20075 /* Register the source address for __sin6_src_id */ 20076 err = ip_srcid_insert(&ipif->ipif_v6lcl_addr, 20077 ipif->ipif_zoneid, ipst); 20078 if (err != 0) { 20079 ip0dbg(("ipif_up_done: srcid_insert %d\n", err)); 20080 return (err); 20081 } 20082 20083 /* If the interface address is set, create the local IRE. */ 20084 ip1dbg(("ipif_up_done: 0x%p creating IRE 0x%x for 0x%x\n", 20085 (void *)ipif, 20086 ipif->ipif_ire_type, 20087 ntohl(ipif->ipif_lcl_addr))); 20088 *irep++ = ire_create( 20089 (uchar_t *)&ipif->ipif_lcl_addr, /* dest address */ 20090 (uchar_t *)&ip_g_all_ones, /* mask */ 20091 (uchar_t *)&src_ipif->ipif_src_addr, /* source address */ 20092 NULL, /* no gateway */ 20093 &ip_loopback_mtuplus, /* max frag size */ 20094 NULL, 20095 ipif->ipif_rq, /* recv-from queue */ 20096 NULL, /* no send-to queue */ 20097 ipif->ipif_ire_type, /* LOCAL or LOOPBACK */ 20098 ipif, 20099 0, 20100 0, 20101 0, 20102 (ipif->ipif_flags & IPIF_PRIVATE) ? 20103 RTF_PRIVATE : 0, 20104 &ire_uinfo_null, 20105 NULL, 20106 NULL, 20107 ipst); 20108 } else { 20109 ip1dbg(( 20110 "ipif_up_done: not creating IRE %d for 0x%x: flags 0x%x\n", 20111 ipif->ipif_ire_type, 20112 ntohl(ipif->ipif_lcl_addr), 20113 (uint_t)ipif->ipif_flags)); 20114 } 20115 if ((ipif->ipif_lcl_addr != INADDR_ANY) && 20116 !(ipif->ipif_flags & IPIF_NOLOCAL)) { 20117 net_mask = ip_net_mask(ipif->ipif_lcl_addr); 20118 } else { 20119 net_mask = htonl(IN_CLASSA_NET); /* fallback */ 20120 } 20121 20122 subnet_mask = ipif->ipif_net_mask; 20123 20124 /* 20125 * If mask was not specified, use natural netmask of 20126 * interface address. Also, store this mask back into the 20127 * ipif struct. 20128 */ 20129 if (subnet_mask == 0) { 20130 subnet_mask = net_mask; 20131 V4MASK_TO_V6(subnet_mask, ipif->ipif_v6net_mask); 20132 V6_MASK_COPY(ipif->ipif_v6lcl_addr, ipif->ipif_v6net_mask, 20133 ipif->ipif_v6subnet); 20134 } 20135 20136 /* Set up the IRE_IF_RESOLVER or IRE_IF_NORESOLVER, as appropriate. */ 20137 if (stq != NULL && !(ipif->ipif_flags & IPIF_NOXMIT) && 20138 ipif->ipif_subnet != INADDR_ANY) { 20139 /* ipif_subnet is ipif_pp_dst_addr for pt-pt */ 20140 20141 if (ipif->ipif_flags & IPIF_POINTOPOINT) { 20142 route_mask = IP_HOST_MASK; 20143 } else { 20144 route_mask = subnet_mask; 20145 } 20146 20147 ip1dbg(("ipif_up_done: ipif 0x%p ill 0x%p " 20148 "creating if IRE ill_net_type 0x%x for 0x%x\n", 20149 (void *)ipif, (void *)ill, 20150 ill->ill_net_type, 20151 ntohl(ipif->ipif_subnet))); 20152 *irep++ = ire_create( 20153 (uchar_t *)&ipif->ipif_subnet, /* dest address */ 20154 (uchar_t *)&route_mask, /* mask */ 20155 (uchar_t *)&src_ipif->ipif_src_addr, /* src addr */ 20156 NULL, /* no gateway */ 20157 &ipif->ipif_mtu, /* max frag */ 20158 NULL, 20159 NULL, /* no recv queue */ 20160 stq, /* send-to queue */ 20161 ill->ill_net_type, /* IF_[NO]RESOLVER */ 20162 ipif, 20163 0, 20164 0, 20165 0, 20166 (ipif->ipif_flags & IPIF_PRIVATE) ? RTF_PRIVATE: 0, 20167 &ire_uinfo_null, 20168 NULL, 20169 NULL, 20170 ipst); 20171 } 20172 20173 /* 20174 * Create any necessary broadcast IREs. 20175 */ 20176 if (ipif->ipif_flags & IPIF_BROADCAST) 20177 irep = ipif_create_bcast_ires(ipif, irep); 20178 20179 ASSERT(!MUTEX_HELD(&ipif->ipif_ill->ill_lock)); 20180 20181 /* If an earlier ire_create failed, get out now */ 20182 for (irep1 = irep; irep1 > ire_array; ) { 20183 irep1--; 20184 if (*irep1 == NULL) { 20185 ip1dbg(("ipif_up_done: NULL ire found in ire_array\n")); 20186 err = ENOMEM; 20187 goto bad; 20188 } 20189 } 20190 20191 /* 20192 * Need to atomically check for ip_addr_availablity_check 20193 * under ip_addr_avail_lock, and if it fails got bad, and remove 20194 * from group also.The ill_g_lock is grabbed as reader 20195 * just to make sure no new ills or new ipifs are being added 20196 * to the system while we are checking the uniqueness of addresses. 20197 */ 20198 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 20199 mutex_enter(&ipst->ips_ip_addr_avail_lock); 20200 /* Mark it up, and increment counters. */ 20201 ipif->ipif_flags |= IPIF_UP; 20202 ill->ill_ipif_up_count++; 20203 err = ip_addr_availability_check(ipif); 20204 mutex_exit(&ipst->ips_ip_addr_avail_lock); 20205 rw_exit(&ipst->ips_ill_g_lock); 20206 20207 if (err != 0) { 20208 /* 20209 * Our address may already be up on the same ill. In this case, 20210 * the ARP entry for our ipif replaced the one for the other 20211 * ipif. So we don't want to delete it (otherwise the other ipif 20212 * would be unable to send packets). 20213 * ip_addr_availability_check() identifies this case for us and 20214 * returns EADDRINUSE; we need to turn it into EADDRNOTAVAIL 20215 * which is the expected error code. 20216 */ 20217 if (err == EADDRINUSE) { 20218 freemsg(ipif->ipif_arp_del_mp); 20219 ipif->ipif_arp_del_mp = NULL; 20220 err = EADDRNOTAVAIL; 20221 } 20222 ill->ill_ipif_up_count--; 20223 ipif->ipif_flags &= ~IPIF_UP; 20224 goto bad; 20225 } 20226 20227 /* 20228 * Add in all newly created IREs. ire_create_bcast() has 20229 * already checked for duplicates of the IRE_BROADCAST type. 20230 * We want to add before we call ifgrp_insert which wants 20231 * to know whether IRE_IF_RESOLVER exists or not. 20232 * 20233 * NOTE : We refrele the ire though we may branch to "bad" 20234 * later on where we do ire_delete. This is okay 20235 * because nobody can delete it as we are running 20236 * exclusively. 20237 */ 20238 for (irep1 = irep; irep1 > ire_array; ) { 20239 irep1--; 20240 ASSERT(!MUTEX_HELD(&((*irep1)->ire_ipif->ipif_ill->ill_lock))); 20241 /* 20242 * refheld by ire_add. refele towards the end of the func 20243 */ 20244 (void) ire_add(irep1, NULL, NULL, NULL, B_FALSE); 20245 } 20246 ire_added = B_TRUE; 20247 /* 20248 * Form groups if possible. 20249 * 20250 * If we are supposed to be in a ill_group with a name, insert it 20251 * now as we know that at least one ipif is UP. Otherwise form 20252 * nameless groups. 20253 * 20254 * If ip_enable_group_ifs is set and ipif address is not 0, insert 20255 * this ipif into the appropriate interface group, or create a 20256 * new one. If this is already in a nameless group, we try to form 20257 * a bigger group looking at other ills potentially sharing this 20258 * ipif's prefix. 20259 */ 20260 phyi = ill->ill_phyint; 20261 if (phyi->phyint_groupname_len != 0) { 20262 ASSERT(phyi->phyint_groupname != NULL); 20263 if (ill->ill_ipif_up_count == 1) { 20264 ASSERT(ill->ill_group == NULL); 20265 err = illgrp_insert(&ipst->ips_illgrp_head_v4, ill, 20266 phyi->phyint_groupname, NULL, B_TRUE); 20267 if (err != 0) { 20268 ip1dbg(("ipif_up_done: illgrp allocation " 20269 "failed, error %d\n", err)); 20270 goto bad; 20271 } 20272 } 20273 ASSERT(ill->ill_group != NULL); 20274 } 20275 20276 /* 20277 * When this is part of group, we need to make sure that 20278 * any broadcast ires created because of this ipif coming 20279 * UP gets marked/cleared with IRE_MARK_NORECV appropriately 20280 * so that we don't receive duplicate broadcast packets. 20281 */ 20282 if (ill->ill_group != NULL && ill->ill_ipif_up_count != 0) 20283 ipif_renominate_bcast(ipif); 20284 20285 /* Recover any additional IRE_IF_[NO]RESOLVER entries for this ipif */ 20286 ipif_saved_ire_cnt = ipif->ipif_saved_ire_cnt; 20287 ipif_saved_irep = ipif_recover_ire(ipif); 20288 20289 if (!loopback) { 20290 /* 20291 * If the broadcast address has been set, make sure it makes 20292 * sense based on the interface address. 20293 * Only match on ill since we are sharing broadcast addresses. 20294 */ 20295 if ((ipif->ipif_brd_addr != INADDR_ANY) && 20296 (ipif->ipif_flags & IPIF_BROADCAST)) { 20297 ire_t *ire; 20298 20299 ire = ire_ctable_lookup(ipif->ipif_brd_addr, 0, 20300 IRE_BROADCAST, ipif, ALL_ZONES, 20301 NULL, (MATCH_IRE_TYPE | MATCH_IRE_ILL), ipst); 20302 20303 if (ire == NULL) { 20304 /* 20305 * If there isn't a matching broadcast IRE, 20306 * revert to the default for this netmask. 20307 */ 20308 ipif->ipif_v6brd_addr = ipv6_all_zeros; 20309 mutex_enter(&ipif->ipif_ill->ill_lock); 20310 ipif_set_default(ipif); 20311 mutex_exit(&ipif->ipif_ill->ill_lock); 20312 } else { 20313 ire_refrele(ire); 20314 } 20315 } 20316 20317 } 20318 20319 if (ill->ill_need_recover_multicast) { 20320 /* 20321 * Need to recover all multicast memberships in the driver. 20322 * This had to be deferred until we had attached. The same 20323 * code exists in ipif_up_done_v6() to recover IPv6 20324 * memberships. 20325 * 20326 * Note that it would be preferable to unconditionally do the 20327 * ill_recover_multicast() in ill_dl_up(), but we cannot do 20328 * that since ill_join_allmulti() depends on ill_dl_up being 20329 * set, and it is not set until we receive a DL_BIND_ACK after 20330 * having called ill_dl_up(). 20331 */ 20332 ill_recover_multicast(ill); 20333 } 20334 /* Join the allhosts multicast address */ 20335 ipif_multicast_up(ipif); 20336 20337 if (!loopback) { 20338 /* 20339 * See whether anybody else would benefit from the 20340 * new ipif that we added. We call this always rather 20341 * than while adding a non-IPIF_NOLOCAL/DEPRECATED/ANYCAST 20342 * ipif is for the benefit of illgrp_insert (done above) 20343 * which does not do source address selection as it does 20344 * not want to re-create interface routes that we are 20345 * having reference to it here. 20346 */ 20347 ill_update_source_selection(ill); 20348 } 20349 20350 for (irep1 = irep; irep1 > ire_array; ) { 20351 irep1--; 20352 if (*irep1 != NULL) { 20353 /* was held in ire_add */ 20354 ire_refrele(*irep1); 20355 } 20356 } 20357 20358 cnt = ipif_saved_ire_cnt; 20359 for (irep1 = ipif_saved_irep; cnt > 0; irep1++, cnt--) { 20360 if (*irep1 != NULL) { 20361 /* was held in ire_add */ 20362 ire_refrele(*irep1); 20363 } 20364 } 20365 20366 if (!loopback && ipif->ipif_addr_ready) { 20367 /* Broadcast an address mask reply. */ 20368 ipif_mask_reply(ipif); 20369 } 20370 if (ipif_saved_irep != NULL) { 20371 kmem_free(ipif_saved_irep, 20372 ipif_saved_ire_cnt * sizeof (ire_t *)); 20373 } 20374 if (src_ipif_held) 20375 ipif_refrele(src_ipif); 20376 20377 /* 20378 * This had to be deferred until we had bound. Tell routing sockets and 20379 * others that this interface is up if it looks like the address has 20380 * been validated. Otherwise, if it isn't ready yet, wait for 20381 * duplicate address detection to do its thing. 20382 */ 20383 if (ipif->ipif_addr_ready) 20384 ipif_up_notify(ipif); 20385 return (0); 20386 20387 bad: 20388 ip1dbg(("ipif_up_done: FAILED \n")); 20389 /* 20390 * We don't have to bother removing from ill groups because 20391 * 20392 * 1) For groups with names, we insert only when the first ipif 20393 * comes up. In that case if it fails, it will not be in any 20394 * group. So, we need not try to remove for that case. 20395 * 20396 * 2) For groups without names, either we tried to insert ipif_ill 20397 * in a group as singleton or found some other group to become 20398 * a bigger group. For the former, if it fails we don't have 20399 * anything to do as ipif_ill is not in the group and for the 20400 * latter, there are no failures in illgrp_insert/illgrp_delete 20401 * (ENOMEM can't occur for this. Check ifgrp_insert). 20402 */ 20403 while (irep > ire_array) { 20404 irep--; 20405 if (*irep != NULL) { 20406 ire_delete(*irep); 20407 if (ire_added) 20408 ire_refrele(*irep); 20409 } 20410 } 20411 (void) ip_srcid_remove(&ipif->ipif_v6lcl_addr, ipif->ipif_zoneid, ipst); 20412 20413 if (ipif_saved_irep != NULL) { 20414 kmem_free(ipif_saved_irep, 20415 ipif_saved_ire_cnt * sizeof (ire_t *)); 20416 } 20417 if (src_ipif_held) 20418 ipif_refrele(src_ipif); 20419 20420 ipif_arp_down(ipif); 20421 return (err); 20422 } 20423 20424 /* 20425 * Turn off the ARP with the ILLF_NOARP flag. 20426 */ 20427 static int 20428 ill_arp_off(ill_t *ill) 20429 { 20430 mblk_t *arp_off_mp = NULL; 20431 mblk_t *arp_on_mp = NULL; 20432 20433 ip1dbg(("ill_arp_off(%s)\n", ill->ill_name)); 20434 20435 ASSERT(IAM_WRITER_ILL(ill)); 20436 ASSERT(ill->ill_net_type == IRE_IF_RESOLVER); 20437 20438 /* 20439 * If the on message is still around we've already done 20440 * an arp_off without doing an arp_on thus there is no 20441 * work needed. 20442 */ 20443 if (ill->ill_arp_on_mp != NULL) 20444 return (0); 20445 20446 /* 20447 * Allocate an ARP on message (to be saved) and an ARP off message 20448 */ 20449 arp_off_mp = ill_arp_alloc(ill, (uchar_t *)&ip_aroff_template, 0); 20450 if (!arp_off_mp) 20451 return (ENOMEM); 20452 20453 arp_on_mp = ill_arp_alloc(ill, (uchar_t *)&ip_aron_template, 0); 20454 if (!arp_on_mp) 20455 goto failed; 20456 20457 ASSERT(ill->ill_arp_on_mp == NULL); 20458 ill->ill_arp_on_mp = arp_on_mp; 20459 20460 /* Send an AR_INTERFACE_OFF request */ 20461 putnext(ill->ill_rq, arp_off_mp); 20462 return (0); 20463 failed: 20464 20465 if (arp_off_mp) 20466 freemsg(arp_off_mp); 20467 return (ENOMEM); 20468 } 20469 20470 /* 20471 * Turn on ARP by turning off the ILLF_NOARP flag. 20472 */ 20473 static int 20474 ill_arp_on(ill_t *ill) 20475 { 20476 mblk_t *mp; 20477 20478 ip1dbg(("ipif_arp_on(%s)\n", ill->ill_name)); 20479 20480 ASSERT(ill->ill_net_type == IRE_IF_RESOLVER); 20481 20482 ASSERT(IAM_WRITER_ILL(ill)); 20483 /* 20484 * Send an AR_INTERFACE_ON request if we have already done 20485 * an arp_off (which allocated the message). 20486 */ 20487 if (ill->ill_arp_on_mp != NULL) { 20488 mp = ill->ill_arp_on_mp; 20489 ill->ill_arp_on_mp = NULL; 20490 putnext(ill->ill_rq, mp); 20491 } 20492 return (0); 20493 } 20494 20495 /* 20496 * Called after either deleting ill from the group or when setting 20497 * FAILED or STANDBY on the interface. 20498 */ 20499 static void 20500 illgrp_reset_schednext(ill_t *ill) 20501 { 20502 ill_group_t *illgrp; 20503 ill_t *save_ill; 20504 20505 ASSERT(IAM_WRITER_ILL(ill)); 20506 /* 20507 * When called from illgrp_delete, ill_group will be non-NULL. 20508 * But when called from ip_sioctl_flags, it could be NULL if 20509 * somebody is setting FAILED/INACTIVE on some interface which 20510 * is not part of a group. 20511 */ 20512 illgrp = ill->ill_group; 20513 if (illgrp == NULL) 20514 return; 20515 if (illgrp->illgrp_ill_schednext != ill) 20516 return; 20517 20518 illgrp->illgrp_ill_schednext = NULL; 20519 save_ill = ill; 20520 /* 20521 * Choose a good ill to be the next one for 20522 * outbound traffic. As the flags FAILED/STANDBY is 20523 * not yet marked when called from ip_sioctl_flags, 20524 * we check for ill separately. 20525 */ 20526 for (ill = illgrp->illgrp_ill; ill != NULL; 20527 ill = ill->ill_group_next) { 20528 if ((ill != save_ill) && 20529 !(ill->ill_phyint->phyint_flags & 20530 (PHYI_FAILED|PHYI_INACTIVE|PHYI_OFFLINE))) { 20531 illgrp->illgrp_ill_schednext = ill; 20532 return; 20533 } 20534 } 20535 } 20536 20537 /* 20538 * Given an ill, find the next ill in the group to be scheduled. 20539 * (This should be called by ip_newroute() before ire_create().) 20540 * The passed in ill may be pulled out of the group, after we have picked 20541 * up a different outgoing ill from the same group. However ire add will 20542 * atomically check this. 20543 */ 20544 ill_t * 20545 illgrp_scheduler(ill_t *ill) 20546 { 20547 ill_t *retill; 20548 ill_group_t *illgrp; 20549 int illcnt; 20550 int i; 20551 uint64_t flags; 20552 ip_stack_t *ipst = ill->ill_ipst; 20553 20554 /* 20555 * We don't use a lock to check for the ill_group. If this ill 20556 * is currently being inserted we may end up just returning this 20557 * ill itself. That is ok. 20558 */ 20559 if (ill->ill_group == NULL) { 20560 ill_refhold(ill); 20561 return (ill); 20562 } 20563 20564 /* 20565 * Grab the ill_g_lock as reader to make sure we are dealing with 20566 * a set of stable ills. No ill can be added or deleted or change 20567 * group while we hold the reader lock. 20568 */ 20569 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 20570 if ((illgrp = ill->ill_group) == NULL) { 20571 rw_exit(&ipst->ips_ill_g_lock); 20572 ill_refhold(ill); 20573 return (ill); 20574 } 20575 20576 illcnt = illgrp->illgrp_ill_count; 20577 mutex_enter(&illgrp->illgrp_lock); 20578 retill = illgrp->illgrp_ill_schednext; 20579 20580 if (retill == NULL) 20581 retill = illgrp->illgrp_ill; 20582 20583 /* 20584 * We do a circular search beginning at illgrp_ill_schednext 20585 * or illgrp_ill. We don't check the flags against the ill lock 20586 * since it can change anytime. The ire creation will be atomic 20587 * and will fail if the ill is FAILED or OFFLINE. 20588 */ 20589 for (i = 0; i < illcnt; i++) { 20590 flags = retill->ill_phyint->phyint_flags; 20591 20592 if (!(flags & (PHYI_FAILED|PHYI_INACTIVE|PHYI_OFFLINE)) && 20593 ILL_CAN_LOOKUP(retill)) { 20594 illgrp->illgrp_ill_schednext = retill->ill_group_next; 20595 ill_refhold(retill); 20596 break; 20597 } 20598 retill = retill->ill_group_next; 20599 if (retill == NULL) 20600 retill = illgrp->illgrp_ill; 20601 } 20602 mutex_exit(&illgrp->illgrp_lock); 20603 rw_exit(&ipst->ips_ill_g_lock); 20604 20605 return (i == illcnt ? NULL : retill); 20606 } 20607 20608 /* 20609 * Checks for availbility of a usable source address (if there is one) when the 20610 * destination ILL has the ill_usesrc_ifindex pointing to another ILL. Note 20611 * this selection is done regardless of the destination. 20612 */ 20613 boolean_t 20614 ipif_usesrc_avail(ill_t *ill, zoneid_t zoneid) 20615 { 20616 uint_t ifindex; 20617 ipif_t *ipif = NULL; 20618 ill_t *uill; 20619 boolean_t isv6; 20620 ip_stack_t *ipst = ill->ill_ipst; 20621 20622 ASSERT(ill != NULL); 20623 20624 isv6 = ill->ill_isv6; 20625 ifindex = ill->ill_usesrc_ifindex; 20626 if (ifindex != 0) { 20627 uill = ill_lookup_on_ifindex(ifindex, isv6, NULL, NULL, NULL, 20628 NULL, ipst); 20629 if (uill == NULL) 20630 return (NULL); 20631 mutex_enter(&uill->ill_lock); 20632 for (ipif = uill->ill_ipif; ipif != NULL; 20633 ipif = ipif->ipif_next) { 20634 if (!IPIF_CAN_LOOKUP(ipif)) 20635 continue; 20636 if (ipif->ipif_flags & (IPIF_NOLOCAL|IPIF_ANYCAST)) 20637 continue; 20638 if (!(ipif->ipif_flags & IPIF_UP)) 20639 continue; 20640 if (ipif->ipif_zoneid != zoneid) 20641 continue; 20642 if ((isv6 && 20643 IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6lcl_addr)) || 20644 (ipif->ipif_lcl_addr == INADDR_ANY)) 20645 continue; 20646 mutex_exit(&uill->ill_lock); 20647 ill_refrele(uill); 20648 return (B_TRUE); 20649 } 20650 mutex_exit(&uill->ill_lock); 20651 ill_refrele(uill); 20652 } 20653 return (B_FALSE); 20654 } 20655 20656 /* 20657 * Determine the best source address given a destination address and an ill. 20658 * Prefers non-deprecated over deprecated but will return a deprecated 20659 * address if there is no other choice. If there is a usable source address 20660 * on the interface pointed to by ill_usesrc_ifindex then that is given 20661 * first preference. 20662 * 20663 * Returns NULL if there is no suitable source address for the ill. 20664 * This only occurs when there is no valid source address for the ill. 20665 */ 20666 ipif_t * 20667 ipif_select_source(ill_t *ill, ipaddr_t dst, zoneid_t zoneid) 20668 { 20669 ipif_t *ipif; 20670 ipif_t *ipif_dep = NULL; /* Fallback to deprecated */ 20671 ipif_t *ipif_arr[MAX_IPIF_SELECT_SOURCE]; 20672 int index = 0; 20673 boolean_t wrapped = B_FALSE; 20674 boolean_t same_subnet_only = B_FALSE; 20675 boolean_t ipif_same_found, ipif_other_found; 20676 boolean_t specific_found; 20677 ill_t *till, *usill = NULL; 20678 tsol_tpc_t *src_rhtp, *dst_rhtp; 20679 ip_stack_t *ipst = ill->ill_ipst; 20680 20681 if (ill->ill_usesrc_ifindex != 0) { 20682 usill = ill_lookup_on_ifindex(ill->ill_usesrc_ifindex, 20683 B_FALSE, NULL, NULL, NULL, NULL, ipst); 20684 if (usill != NULL) 20685 ill = usill; /* Select source from usesrc ILL */ 20686 else 20687 return (NULL); 20688 } 20689 20690 /* 20691 * If we're dealing with an unlabeled destination on a labeled system, 20692 * make sure that we ignore source addresses that are incompatible with 20693 * the destination's default label. That destination's default label 20694 * must dominate the minimum label on the source address. 20695 */ 20696 dst_rhtp = NULL; 20697 if (is_system_labeled()) { 20698 dst_rhtp = find_tpc(&dst, IPV4_VERSION, B_FALSE); 20699 if (dst_rhtp == NULL) 20700 return (NULL); 20701 if (dst_rhtp->tpc_tp.host_type != UNLABELED) { 20702 TPC_RELE(dst_rhtp); 20703 dst_rhtp = NULL; 20704 } 20705 } 20706 20707 /* 20708 * Holds the ill_g_lock as reader. This makes sure that no ipif/ill 20709 * can be deleted. But an ipif/ill can get CONDEMNED any time. 20710 * After selecting the right ipif, under ill_lock make sure ipif is 20711 * not condemned, and increment refcnt. If ipif is CONDEMNED, 20712 * we retry. Inside the loop we still need to check for CONDEMNED, 20713 * but not under a lock. 20714 */ 20715 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 20716 20717 retry: 20718 till = ill; 20719 ipif_arr[0] = NULL; 20720 20721 if (till->ill_group != NULL) 20722 till = till->ill_group->illgrp_ill; 20723 20724 /* 20725 * Choose one good source address from each ill across the group. 20726 * If possible choose a source address in the same subnet as 20727 * the destination address. 20728 * 20729 * We don't check for PHYI_FAILED or PHYI_INACTIVE or PHYI_OFFLINE 20730 * This is okay because of the following. 20731 * 20732 * If PHYI_FAILED is set and we still have non-deprecated 20733 * addresses, it means the addresses have not yet been 20734 * failed over to a different interface. We potentially 20735 * select them to create IRE_CACHES, which will be later 20736 * flushed when the addresses move over. 20737 * 20738 * If PHYI_INACTIVE is set and we still have non-deprecated 20739 * addresses, it means either the user has configured them 20740 * or PHYI_INACTIVE has not been cleared after the addresses 20741 * been moved over. For the former, in.mpathd does a failover 20742 * when the interface becomes INACTIVE and hence we should 20743 * not find them. Once INACTIVE is set, we don't allow them 20744 * to create logical interfaces anymore. For the latter, a 20745 * flush will happen when INACTIVE is cleared which will 20746 * flush the IRE_CACHES. 20747 * 20748 * If PHYI_OFFLINE is set, all the addresses will be failed 20749 * over soon. We potentially select them to create IRE_CACHEs, 20750 * which will be later flushed when the addresses move over. 20751 * 20752 * NOTE : As ipif_select_source is called to borrow source address 20753 * for an ipif that is part of a group, source address selection 20754 * will be re-done whenever the group changes i.e either an 20755 * insertion/deletion in the group. 20756 * 20757 * Fill ipif_arr[] with source addresses, using these rules: 20758 * 20759 * 1. At most one source address from a given ill ends up 20760 * in ipif_arr[] -- that is, at most one of the ipif's 20761 * associated with a given ill ends up in ipif_arr[]. 20762 * 20763 * 2. If there is at least one non-deprecated ipif in the 20764 * IPMP group with a source address on the same subnet as 20765 * our destination, then fill ipif_arr[] only with 20766 * source addresses on the same subnet as our destination. 20767 * Note that because of (1), only the first 20768 * non-deprecated ipif found with a source address 20769 * matching the destination ends up in ipif_arr[]. 20770 * 20771 * 3. Otherwise, fill ipif_arr[] with non-deprecated source 20772 * addresses not in the same subnet as our destination. 20773 * Again, because of (1), only the first off-subnet source 20774 * address will be chosen. 20775 * 20776 * 4. If there are no non-deprecated ipifs, then just use 20777 * the source address associated with the last deprecated 20778 * one we find that happens to be on the same subnet, 20779 * otherwise the first one not in the same subnet. 20780 */ 20781 specific_found = B_FALSE; 20782 for (; till != NULL; till = till->ill_group_next) { 20783 ipif_same_found = B_FALSE; 20784 ipif_other_found = B_FALSE; 20785 for (ipif = till->ill_ipif; ipif != NULL; 20786 ipif = ipif->ipif_next) { 20787 if (!IPIF_CAN_LOOKUP(ipif)) 20788 continue; 20789 /* Always skip NOLOCAL and ANYCAST interfaces */ 20790 if (ipif->ipif_flags & (IPIF_NOLOCAL|IPIF_ANYCAST)) 20791 continue; 20792 if (!(ipif->ipif_flags & IPIF_UP) || 20793 !ipif->ipif_addr_ready) 20794 continue; 20795 if (ipif->ipif_zoneid != zoneid && 20796 ipif->ipif_zoneid != ALL_ZONES) 20797 continue; 20798 /* 20799 * Interfaces with 0.0.0.0 address are allowed to be UP, 20800 * but are not valid as source addresses. 20801 */ 20802 if (ipif->ipif_lcl_addr == INADDR_ANY) 20803 continue; 20804 20805 /* 20806 * Check compatibility of local address for 20807 * destination's default label if we're on a labeled 20808 * system. Incompatible addresses can't be used at 20809 * all. 20810 */ 20811 if (dst_rhtp != NULL) { 20812 boolean_t incompat; 20813 20814 src_rhtp = find_tpc(&ipif->ipif_lcl_addr, 20815 IPV4_VERSION, B_FALSE); 20816 if (src_rhtp == NULL) 20817 continue; 20818 incompat = 20819 src_rhtp->tpc_tp.host_type != SUN_CIPSO || 20820 src_rhtp->tpc_tp.tp_doi != 20821 dst_rhtp->tpc_tp.tp_doi || 20822 (!_blinrange(&dst_rhtp->tpc_tp.tp_def_label, 20823 &src_rhtp->tpc_tp.tp_sl_range_cipso) && 20824 !blinlset(&dst_rhtp->tpc_tp.tp_def_label, 20825 src_rhtp->tpc_tp.tp_sl_set_cipso)); 20826 TPC_RELE(src_rhtp); 20827 if (incompat) 20828 continue; 20829 } 20830 20831 /* 20832 * We prefer not to use all all-zones addresses, if we 20833 * can avoid it, as they pose problems with unlabeled 20834 * destinations. 20835 */ 20836 if (ipif->ipif_zoneid != ALL_ZONES) { 20837 if (!specific_found && 20838 (!same_subnet_only || 20839 (ipif->ipif_net_mask & dst) == 20840 ipif->ipif_subnet)) { 20841 index = 0; 20842 specific_found = B_TRUE; 20843 ipif_other_found = B_FALSE; 20844 } 20845 } else { 20846 if (specific_found) 20847 continue; 20848 } 20849 if (ipif->ipif_flags & IPIF_DEPRECATED) { 20850 if (ipif_dep == NULL || 20851 (ipif->ipif_net_mask & dst) == 20852 ipif->ipif_subnet) 20853 ipif_dep = ipif; 20854 continue; 20855 } 20856 if ((ipif->ipif_net_mask & dst) == ipif->ipif_subnet) { 20857 /* found a source address in the same subnet */ 20858 if (!same_subnet_only) { 20859 same_subnet_only = B_TRUE; 20860 index = 0; 20861 } 20862 ipif_same_found = B_TRUE; 20863 } else { 20864 if (same_subnet_only || ipif_other_found) 20865 continue; 20866 ipif_other_found = B_TRUE; 20867 } 20868 ipif_arr[index++] = ipif; 20869 if (index == MAX_IPIF_SELECT_SOURCE) { 20870 wrapped = B_TRUE; 20871 index = 0; 20872 } 20873 if (ipif_same_found) 20874 break; 20875 } 20876 } 20877 20878 if (ipif_arr[0] == NULL) { 20879 ipif = ipif_dep; 20880 } else { 20881 if (wrapped) 20882 index = MAX_IPIF_SELECT_SOURCE; 20883 ipif = ipif_arr[ipif_rand(ipst) % index]; 20884 ASSERT(ipif != NULL); 20885 } 20886 20887 if (ipif != NULL) { 20888 mutex_enter(&ipif->ipif_ill->ill_lock); 20889 if (!IPIF_CAN_LOOKUP(ipif)) { 20890 mutex_exit(&ipif->ipif_ill->ill_lock); 20891 goto retry; 20892 } 20893 ipif_refhold_locked(ipif); 20894 mutex_exit(&ipif->ipif_ill->ill_lock); 20895 } 20896 20897 rw_exit(&ipst->ips_ill_g_lock); 20898 if (usill != NULL) 20899 ill_refrele(usill); 20900 if (dst_rhtp != NULL) 20901 TPC_RELE(dst_rhtp); 20902 20903 #ifdef DEBUG 20904 if (ipif == NULL) { 20905 char buf1[INET6_ADDRSTRLEN]; 20906 20907 ip1dbg(("ipif_select_source(%s, %s) -> NULL\n", 20908 ill->ill_name, 20909 inet_ntop(AF_INET, &dst, buf1, sizeof (buf1)))); 20910 } else { 20911 char buf1[INET6_ADDRSTRLEN]; 20912 char buf2[INET6_ADDRSTRLEN]; 20913 20914 ip1dbg(("ipif_select_source(%s, %s) -> %s\n", 20915 ipif->ipif_ill->ill_name, 20916 inet_ntop(AF_INET, &dst, buf1, sizeof (buf1)), 20917 inet_ntop(AF_INET, &ipif->ipif_lcl_addr, 20918 buf2, sizeof (buf2)))); 20919 } 20920 #endif /* DEBUG */ 20921 return (ipif); 20922 } 20923 20924 20925 /* 20926 * If old_ipif is not NULL, see if ipif was derived from old 20927 * ipif and if so, recreate the interface route by re-doing 20928 * source address selection. This happens when ipif_down -> 20929 * ipif_update_other_ipifs calls us. 20930 * 20931 * If old_ipif is NULL, just redo the source address selection 20932 * if needed. This happens when illgrp_insert or ipif_up_done 20933 * calls us. 20934 */ 20935 static void 20936 ipif_recreate_interface_routes(ipif_t *old_ipif, ipif_t *ipif) 20937 { 20938 ire_t *ire; 20939 ire_t *ipif_ire; 20940 queue_t *stq; 20941 ipif_t *nipif; 20942 ill_t *ill; 20943 boolean_t need_rele = B_FALSE; 20944 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; 20945 20946 ASSERT(old_ipif == NULL || IAM_WRITER_IPIF(old_ipif)); 20947 ASSERT(IAM_WRITER_IPIF(ipif)); 20948 20949 ill = ipif->ipif_ill; 20950 if (!(ipif->ipif_flags & 20951 (IPIF_NOLOCAL|IPIF_ANYCAST|IPIF_DEPRECATED))) { 20952 /* 20953 * Can't possibly have borrowed the source 20954 * from old_ipif. 20955 */ 20956 return; 20957 } 20958 20959 /* 20960 * Is there any work to be done? No work if the address 20961 * is INADDR_ANY, loopback or NOLOCAL or ANYCAST ( 20962 * ipif_select_source() does not borrow addresses from 20963 * NOLOCAL and ANYCAST interfaces). 20964 */ 20965 if ((old_ipif != NULL) && 20966 ((old_ipif->ipif_lcl_addr == INADDR_ANY) || 20967 (old_ipif->ipif_ill->ill_wq == NULL) || 20968 (old_ipif->ipif_flags & 20969 (IPIF_NOLOCAL|IPIF_ANYCAST)))) { 20970 return; 20971 } 20972 20973 /* 20974 * Perform the same checks as when creating the 20975 * IRE_INTERFACE in ipif_up_done. 20976 */ 20977 if (!(ipif->ipif_flags & IPIF_UP)) 20978 return; 20979 20980 if ((ipif->ipif_flags & IPIF_NOXMIT) || 20981 (ipif->ipif_subnet == INADDR_ANY)) 20982 return; 20983 20984 ipif_ire = ipif_to_ire(ipif); 20985 if (ipif_ire == NULL) 20986 return; 20987 20988 /* 20989 * We know that ipif uses some other source for its 20990 * IRE_INTERFACE. Is it using the source of this 20991 * old_ipif? 20992 */ 20993 if (old_ipif != NULL && 20994 old_ipif->ipif_lcl_addr != ipif_ire->ire_src_addr) { 20995 ire_refrele(ipif_ire); 20996 return; 20997 } 20998 if (ip_debug > 2) { 20999 /* ip1dbg */ 21000 pr_addr_dbg("ipif_recreate_interface_routes: deleting IRE for" 21001 " src %s\n", AF_INET, &ipif_ire->ire_src_addr); 21002 } 21003 21004 stq = ipif_ire->ire_stq; 21005 21006 /* 21007 * Can't use our source address. Select a different 21008 * source address for the IRE_INTERFACE. 21009 */ 21010 nipif = ipif_select_source(ill, ipif->ipif_subnet, ipif->ipif_zoneid); 21011 if (nipif == NULL) { 21012 /* Last resort - all ipif's have IPIF_NOLOCAL */ 21013 nipif = ipif; 21014 } else { 21015 need_rele = B_TRUE; 21016 } 21017 21018 ire = ire_create( 21019 (uchar_t *)&ipif->ipif_subnet, /* dest pref */ 21020 (uchar_t *)&ipif->ipif_net_mask, /* mask */ 21021 (uchar_t *)&nipif->ipif_src_addr, /* src addr */ 21022 NULL, /* no gateway */ 21023 &ipif->ipif_mtu, /* max frag */ 21024 NULL, /* no src nce */ 21025 NULL, /* no recv from queue */ 21026 stq, /* send-to queue */ 21027 ill->ill_net_type, /* IF_[NO]RESOLVER */ 21028 ipif, 21029 0, 21030 0, 21031 0, 21032 0, 21033 &ire_uinfo_null, 21034 NULL, 21035 NULL, 21036 ipst); 21037 21038 if (ire != NULL) { 21039 ire_t *ret_ire; 21040 int error; 21041 21042 /* 21043 * We don't need ipif_ire anymore. We need to delete 21044 * before we add so that ire_add does not detect 21045 * duplicates. 21046 */ 21047 ire_delete(ipif_ire); 21048 ret_ire = ire; 21049 error = ire_add(&ret_ire, NULL, NULL, NULL, B_FALSE); 21050 ASSERT(error == 0); 21051 ASSERT(ire == ret_ire); 21052 /* Held in ire_add */ 21053 ire_refrele(ret_ire); 21054 } 21055 /* 21056 * Either we are falling through from above or could not 21057 * allocate a replacement. 21058 */ 21059 ire_refrele(ipif_ire); 21060 if (need_rele) 21061 ipif_refrele(nipif); 21062 } 21063 21064 /* 21065 * This old_ipif is going away. 21066 * 21067 * Determine if any other ipif's is using our address as 21068 * ipif_lcl_addr (due to those being IPIF_NOLOCAL, IPIF_ANYCAST, or 21069 * IPIF_DEPRECATED). 21070 * Find the IRE_INTERFACE for such ipifs and recreate them 21071 * to use an different source address following the rules in 21072 * ipif_up_done. 21073 * 21074 * This function takes an illgrp as an argument so that illgrp_delete 21075 * can call this to update source address even after deleting the 21076 * old_ipif->ipif_ill from the ill group. 21077 */ 21078 static void 21079 ipif_update_other_ipifs(ipif_t *old_ipif, ill_group_t *illgrp) 21080 { 21081 ipif_t *ipif; 21082 ill_t *ill; 21083 char buf[INET6_ADDRSTRLEN]; 21084 21085 ASSERT(IAM_WRITER_IPIF(old_ipif)); 21086 ASSERT(illgrp == NULL || IAM_WRITER_IPIF(old_ipif)); 21087 21088 ill = old_ipif->ipif_ill; 21089 21090 ip1dbg(("ipif_update_other_ipifs(%s, %s)\n", 21091 ill->ill_name, 21092 inet_ntop(AF_INET, &old_ipif->ipif_lcl_addr, 21093 buf, sizeof (buf)))); 21094 /* 21095 * If this part of a group, look at all ills as ipif_select_source 21096 * borrows source address across all the ills in the group. 21097 */ 21098 if (illgrp != NULL) 21099 ill = illgrp->illgrp_ill; 21100 21101 for (; ill != NULL; ill = ill->ill_group_next) { 21102 for (ipif = ill->ill_ipif; ipif != NULL; 21103 ipif = ipif->ipif_next) { 21104 21105 if (ipif == old_ipif) 21106 continue; 21107 21108 ipif_recreate_interface_routes(old_ipif, ipif); 21109 } 21110 } 21111 } 21112 21113 /* ARGSUSED */ 21114 int 21115 if_unitsel_restart(ipif_t *ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, 21116 ip_ioctl_cmd_t *ipip, void *dummy_ifreq) 21117 { 21118 /* 21119 * ill_phyint_reinit merged the v4 and v6 into a single 21120 * ipsq. Could also have become part of a ipmp group in the 21121 * process, and we might not have been able to complete the 21122 * operation in ipif_set_values, if we could not become 21123 * exclusive. If so restart it here. 21124 */ 21125 return (ipif_set_values_tail(ipif->ipif_ill, ipif, mp, q)); 21126 } 21127 21128 /* 21129 * Can operate on either a module or a driver queue. 21130 * Returns an error if not a module queue. 21131 */ 21132 /* ARGSUSED */ 21133 int 21134 if_unitsel(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, 21135 ip_ioctl_cmd_t *ipip, void *dummy_ifreq) 21136 { 21137 queue_t *q1 = q; 21138 char *cp; 21139 char interf_name[LIFNAMSIZ]; 21140 uint_t ppa = *(uint_t *)mp->b_cont->b_cont->b_rptr; 21141 21142 if (q->q_next == NULL) { 21143 ip1dbg(( 21144 "if_unitsel: IF_UNITSEL: no q_next\n")); 21145 return (EINVAL); 21146 } 21147 21148 if (((ill_t *)(q->q_ptr))->ill_name[0] != '\0') 21149 return (EALREADY); 21150 21151 do { 21152 q1 = q1->q_next; 21153 } while (q1->q_next); 21154 cp = q1->q_qinfo->qi_minfo->mi_idname; 21155 (void) sprintf(interf_name, "%s%d", cp, ppa); 21156 21157 /* 21158 * Here we are not going to delay the ioack until after 21159 * ACKs from DL_ATTACH_REQ/DL_BIND_REQ. So no need to save the 21160 * original ioctl message before sending the requests. 21161 */ 21162 return (ipif_set_values(q, mp, interf_name, &ppa)); 21163 } 21164 21165 /* ARGSUSED */ 21166 int 21167 ip_sioctl_sifname(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, 21168 ip_ioctl_cmd_t *ipip, void *dummy_ifreq) 21169 { 21170 return (ENXIO); 21171 } 21172 21173 /* 21174 * Create any IRE_BROADCAST entries for `ipif', and store those entries in 21175 * `irep'. Returns a pointer to the next free `irep' entry (just like 21176 * ire_check_and_create_bcast()). 21177 */ 21178 static ire_t ** 21179 ipif_create_bcast_ires(ipif_t *ipif, ire_t **irep) 21180 { 21181 ipaddr_t addr; 21182 ipaddr_t netmask = ip_net_mask(ipif->ipif_lcl_addr); 21183 ipaddr_t subnetmask = ipif->ipif_net_mask; 21184 int flags = MATCH_IRE_TYPE | MATCH_IRE_ILL; 21185 21186 ip1dbg(("ipif_create_bcast_ires: creating broadcast IREs\n")); 21187 21188 ASSERT(ipif->ipif_flags & IPIF_BROADCAST); 21189 21190 if (ipif->ipif_lcl_addr == INADDR_ANY || 21191 (ipif->ipif_flags & IPIF_NOLOCAL)) 21192 netmask = htonl(IN_CLASSA_NET); /* fallback */ 21193 21194 irep = ire_check_and_create_bcast(ipif, 0, irep, flags); 21195 irep = ire_check_and_create_bcast(ipif, INADDR_BROADCAST, irep, flags); 21196 21197 /* 21198 * For backward compatibility, we create net broadcast IREs based on 21199 * the old "IP address class system", since some old machines only 21200 * respond to these class derived net broadcast. However, we must not 21201 * create these net broadcast IREs if the subnetmask is shorter than 21202 * the IP address class based derived netmask. Otherwise, we may 21203 * create a net broadcast address which is the same as an IP address 21204 * on the subnet -- and then TCP will refuse to talk to that address. 21205 */ 21206 if (netmask < subnetmask) { 21207 addr = netmask & ipif->ipif_subnet; 21208 irep = ire_check_and_create_bcast(ipif, addr, irep, flags); 21209 irep = ire_check_and_create_bcast(ipif, ~netmask | addr, irep, 21210 flags); 21211 } 21212 21213 /* 21214 * Don't create IRE_BROADCAST IREs for the interface if the subnetmask 21215 * is 0xFFFFFFFF, as an IRE_LOCAL for that interface is already 21216 * created. Creating these broadcast IREs will only create confusion 21217 * as `addr' will be the same as the IP address. 21218 */ 21219 if (subnetmask != 0xFFFFFFFF) { 21220 addr = ipif->ipif_subnet; 21221 irep = ire_check_and_create_bcast(ipif, addr, irep, flags); 21222 irep = ire_check_and_create_bcast(ipif, ~subnetmask | addr, 21223 irep, flags); 21224 } 21225 21226 return (irep); 21227 } 21228 21229 /* 21230 * Broadcast IRE info structure used in the functions below. Since we 21231 * allocate BCAST_COUNT of them on the stack, keep the bit layout compact. 21232 */ 21233 typedef struct bcast_ireinfo { 21234 uchar_t bi_type; /* BCAST_* value from below */ 21235 uchar_t bi_willdie:1, /* will this IRE be going away? */ 21236 bi_needrep:1, /* do we need to replace it? */ 21237 bi_haverep:1, /* have we replaced it? */ 21238 bi_pad:5; 21239 ipaddr_t bi_addr; /* IRE address */ 21240 ipif_t *bi_backup; /* last-ditch ipif to replace it on */ 21241 } bcast_ireinfo_t; 21242 21243 enum { BCAST_ALLONES, BCAST_ALLZEROES, BCAST_NET, BCAST_SUBNET, BCAST_COUNT }; 21244 21245 /* 21246 * Check if `ipif' needs the dying broadcast IRE described by `bireinfop', and 21247 * return B_TRUE if it should immediately be used to recreate the IRE. 21248 */ 21249 static boolean_t 21250 ipif_consider_bcast(ipif_t *ipif, bcast_ireinfo_t *bireinfop) 21251 { 21252 ipaddr_t addr; 21253 21254 ASSERT(!bireinfop->bi_haverep && bireinfop->bi_willdie); 21255 21256 switch (bireinfop->bi_type) { 21257 case BCAST_NET: 21258 addr = ipif->ipif_subnet & ip_net_mask(ipif->ipif_subnet); 21259 if (addr != bireinfop->bi_addr) 21260 return (B_FALSE); 21261 break; 21262 case BCAST_SUBNET: 21263 if (ipif->ipif_subnet != bireinfop->bi_addr) 21264 return (B_FALSE); 21265 break; 21266 } 21267 21268 bireinfop->bi_needrep = 1; 21269 if (ipif->ipif_flags & (IPIF_DEPRECATED|IPIF_NOLOCAL|IPIF_ANYCAST)) { 21270 if (bireinfop->bi_backup == NULL) 21271 bireinfop->bi_backup = ipif; 21272 return (B_FALSE); 21273 } 21274 return (B_TRUE); 21275 } 21276 21277 /* 21278 * Create the broadcast IREs described by `bireinfop' on `ipif', and return 21279 * them ala ire_check_and_create_bcast(). 21280 */ 21281 static ire_t ** 21282 ipif_create_bcast(ipif_t *ipif, bcast_ireinfo_t *bireinfop, ire_t **irep) 21283 { 21284 ipaddr_t mask, addr; 21285 21286 ASSERT(!bireinfop->bi_haverep && bireinfop->bi_needrep); 21287 21288 addr = bireinfop->bi_addr; 21289 irep = ire_create_bcast(ipif, addr, irep); 21290 21291 switch (bireinfop->bi_type) { 21292 case BCAST_NET: 21293 mask = ip_net_mask(ipif->ipif_subnet); 21294 irep = ire_create_bcast(ipif, addr | ~mask, irep); 21295 break; 21296 case BCAST_SUBNET: 21297 mask = ipif->ipif_net_mask; 21298 irep = ire_create_bcast(ipif, addr | ~mask, irep); 21299 break; 21300 } 21301 21302 bireinfop->bi_haverep = 1; 21303 return (irep); 21304 } 21305 21306 /* 21307 * Walk through all of the ipifs on `ill' that will be affected by `test_ipif' 21308 * going away, and determine if any of the broadcast IREs (named by `bireinfop') 21309 * that are going away are still needed. If so, have ipif_create_bcast() 21310 * recreate them (except for the deprecated case, as explained below). 21311 */ 21312 static ire_t ** 21313 ill_create_bcast(ill_t *ill, ipif_t *test_ipif, bcast_ireinfo_t *bireinfo, 21314 ire_t **irep) 21315 { 21316 int i; 21317 ipif_t *ipif; 21318 21319 ASSERT(!ill->ill_isv6); 21320 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 21321 /* 21322 * Skip this ipif if it's (a) the one being taken down, (b) 21323 * not in the same zone, or (c) has no valid local address. 21324 */ 21325 if (ipif == test_ipif || 21326 ipif->ipif_zoneid != test_ipif->ipif_zoneid || 21327 ipif->ipif_subnet == 0 || 21328 (ipif->ipif_flags & (IPIF_UP|IPIF_BROADCAST|IPIF_NOXMIT)) != 21329 (IPIF_UP|IPIF_BROADCAST)) 21330 continue; 21331 21332 /* 21333 * For each dying IRE that hasn't yet been replaced, see if 21334 * `ipif' needs it and whether the IRE should be recreated on 21335 * `ipif'. If `ipif' is deprecated, ipif_consider_bcast() 21336 * will return B_FALSE even if `ipif' needs the IRE on the 21337 * hopes that we'll later find a needy non-deprecated ipif. 21338 * However, the ipif is recorded in bi_backup for possible 21339 * subsequent use by ipif_check_bcast_ires(). 21340 */ 21341 for (i = 0; i < BCAST_COUNT; i++) { 21342 if (!bireinfo[i].bi_willdie || bireinfo[i].bi_haverep) 21343 continue; 21344 if (!ipif_consider_bcast(ipif, &bireinfo[i])) 21345 continue; 21346 irep = ipif_create_bcast(ipif, &bireinfo[i], irep); 21347 } 21348 21349 /* 21350 * If we've replaced all of the broadcast IREs that are going 21351 * to be taken down, we know we're done. 21352 */ 21353 for (i = 0; i < BCAST_COUNT; i++) { 21354 if (bireinfo[i].bi_willdie && !bireinfo[i].bi_haverep) 21355 break; 21356 } 21357 if (i == BCAST_COUNT) 21358 break; 21359 } 21360 return (irep); 21361 } 21362 21363 /* 21364 * Check if `test_ipif' (which is going away) is associated with any existing 21365 * broadcast IREs, and whether any other ipifs (e.g., on the same ill) were 21366 * using those broadcast IREs. If so, recreate the broadcast IREs on one or 21367 * more of those other ipifs. (The old IREs will be deleted in ipif_down().) 21368 * 21369 * This is necessary because broadcast IREs are shared. In particular, a 21370 * given ill has one set of all-zeroes and all-ones broadcast IREs (for every 21371 * zone), plus one set of all-subnet-ones, all-subnet-zeroes, all-net-ones, 21372 * and all-net-zeroes for every net/subnet (and every zone) it has IPIF_UP 21373 * ipifs on. Thus, if there are two IPIF_UP ipifs on the same subnet with the 21374 * same zone, they will share the same set of broadcast IREs. 21375 * 21376 * Note: the upper bound of 12 IREs comes from the worst case of replacing all 21377 * six pairs (loopback and non-loopback) of broadcast IREs (all-zeroes, 21378 * all-ones, subnet-zeroes, subnet-ones, net-zeroes, and net-ones). 21379 */ 21380 static void 21381 ipif_check_bcast_ires(ipif_t *test_ipif) 21382 { 21383 ill_t *ill = test_ipif->ipif_ill; 21384 ire_t *ire, *ire_array[12]; /* see note above */ 21385 ire_t **irep1, **irep = &ire_array[0]; 21386 uint_t i, willdie; 21387 ipaddr_t mask = ip_net_mask(test_ipif->ipif_subnet); 21388 bcast_ireinfo_t bireinfo[BCAST_COUNT]; 21389 21390 ASSERT(!test_ipif->ipif_isv6); 21391 ASSERT(IAM_WRITER_IPIF(test_ipif)); 21392 21393 /* 21394 * No broadcast IREs for the LOOPBACK interface 21395 * or others such as point to point and IPIF_NOXMIT. 21396 */ 21397 if (!(test_ipif->ipif_flags & IPIF_BROADCAST) || 21398 (test_ipif->ipif_flags & IPIF_NOXMIT)) 21399 return; 21400 21401 bzero(bireinfo, sizeof (bireinfo)); 21402 bireinfo[0].bi_type = BCAST_ALLZEROES; 21403 bireinfo[0].bi_addr = 0; 21404 21405 bireinfo[1].bi_type = BCAST_ALLONES; 21406 bireinfo[1].bi_addr = INADDR_BROADCAST; 21407 21408 bireinfo[2].bi_type = BCAST_NET; 21409 bireinfo[2].bi_addr = test_ipif->ipif_subnet & mask; 21410 21411 if (test_ipif->ipif_net_mask != 0) 21412 mask = test_ipif->ipif_net_mask; 21413 bireinfo[3].bi_type = BCAST_SUBNET; 21414 bireinfo[3].bi_addr = test_ipif->ipif_subnet & mask; 21415 21416 /* 21417 * Figure out what (if any) broadcast IREs will die as a result of 21418 * `test_ipif' going away. If none will die, we're done. 21419 */ 21420 for (i = 0, willdie = 0; i < BCAST_COUNT; i++) { 21421 ire = ire_ctable_lookup(bireinfo[i].bi_addr, 0, IRE_BROADCAST, 21422 test_ipif, ALL_ZONES, NULL, 21423 (MATCH_IRE_TYPE | MATCH_IRE_IPIF), ill->ill_ipst); 21424 if (ire != NULL) { 21425 willdie++; 21426 bireinfo[i].bi_willdie = 1; 21427 ire_refrele(ire); 21428 } 21429 } 21430 21431 if (willdie == 0) 21432 return; 21433 21434 /* 21435 * Walk through all the ipifs that will be affected by the dying IREs, 21436 * and recreate the IREs as necessary. 21437 */ 21438 irep = ill_create_bcast(ill, test_ipif, bireinfo, irep); 21439 21440 /* 21441 * Scan through the set of broadcast IREs and see if there are any 21442 * that we need to replace that have not yet been replaced. If so, 21443 * replace them using the appropriate backup ipif. 21444 */ 21445 for (i = 0; i < BCAST_COUNT; i++) { 21446 if (bireinfo[i].bi_needrep && !bireinfo[i].bi_haverep) 21447 irep = ipif_create_bcast(bireinfo[i].bi_backup, 21448 &bireinfo[i], irep); 21449 } 21450 21451 /* 21452 * If we can't create all of them, don't add any of them. (Code in 21453 * ip_wput_ire() and ire_to_ill() assumes that we always have a 21454 * non-loopback copy and loopback copy for a given address.) 21455 */ 21456 for (irep1 = irep; irep1 > ire_array; ) { 21457 irep1--; 21458 if (*irep1 == NULL) { 21459 ip0dbg(("ipif_check_bcast_ires: can't create " 21460 "IRE_BROADCAST, memory allocation failure\n")); 21461 while (irep > ire_array) { 21462 irep--; 21463 if (*irep != NULL) 21464 ire_delete(*irep); 21465 } 21466 return; 21467 } 21468 } 21469 21470 for (irep1 = irep; irep1 > ire_array; ) { 21471 irep1--; 21472 if (ire_add(irep1, NULL, NULL, NULL, B_FALSE) == 0) 21473 ire_refrele(*irep1); /* Held in ire_add */ 21474 } 21475 } 21476 21477 /* 21478 * Extract both the flags (including IFF_CANTCHANGE) such as IFF_IPV* 21479 * from lifr_flags and the name from lifr_name. 21480 * Set IFF_IPV* and ill_isv6 prior to doing the lookup 21481 * since ipif_lookup_on_name uses the _isv6 flags when matching. 21482 * Returns EINPROGRESS when mp has been consumed by queueing it on 21483 * ill_pending_mp and the ioctl will complete in ip_rput. 21484 * 21485 * Can operate on either a module or a driver queue. 21486 * Returns an error if not a module queue. 21487 */ 21488 /* ARGSUSED */ 21489 int 21490 ip_sioctl_slifname(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 21491 ip_ioctl_cmd_t *ipip, void *if_req) 21492 { 21493 ill_t *ill = q->q_ptr; 21494 phyint_t *phyi; 21495 ip_stack_t *ipst; 21496 struct lifreq *lifr = if_req; 21497 21498 ASSERT(ipif != NULL); 21499 ip1dbg(("ip_sioctl_slifname %s\n", lifr->lifr_name)); 21500 21501 if (q->q_next == NULL) { 21502 ip1dbg(("if_sioctl_slifname: SIOCSLIFNAME: no q_next\n")); 21503 return (EINVAL); 21504 } 21505 21506 /* 21507 * If we are not writer on 'q' then this interface exists already 21508 * and previous lookups (ip_extract_lifreq()) found this ipif -- 21509 * so return EALREADY. 21510 */ 21511 if (ill != ipif->ipif_ill) 21512 return (EALREADY); 21513 21514 if (ill->ill_name[0] != '\0') 21515 return (EALREADY); 21516 21517 /* 21518 * Set all the flags. Allows all kinds of override. Provide some 21519 * sanity checking by not allowing IFF_BROADCAST and IFF_MULTICAST 21520 * unless there is either multicast/broadcast support in the driver 21521 * or it is a pt-pt link. 21522 */ 21523 if (lifr->lifr_flags & (IFF_PROMISC|IFF_ALLMULTI)) { 21524 /* Meaningless to IP thus don't allow them to be set. */ 21525 ip1dbg(("ip_setname: EINVAL 1\n")); 21526 return (EINVAL); 21527 } 21528 21529 /* 21530 * If there's another ill already with the requested name, ensure 21531 * that it's of the same type. Otherwise, ill_phyint_reinit() will 21532 * fuse together two unrelated ills, which will cause chaos. 21533 */ 21534 ipst = ill->ill_ipst; 21535 phyi = avl_find(&ipst->ips_phyint_g_list->phyint_list_avl_by_name, 21536 lifr->lifr_name, NULL); 21537 if (phyi != NULL) { 21538 ill_t *ill_mate = phyi->phyint_illv4; 21539 21540 if (ill_mate == NULL) 21541 ill_mate = phyi->phyint_illv6; 21542 ASSERT(ill_mate != NULL); 21543 21544 if (ill_mate->ill_media->ip_m_mac_type != 21545 ill->ill_media->ip_m_mac_type) { 21546 ip1dbg(("if_sioctl_slifname: SIOCSLIFNAME: attempt to " 21547 "use the same ill name on differing media\n")); 21548 return (EINVAL); 21549 } 21550 } 21551 21552 /* 21553 * For a DL_STYLE2 driver (ill_needs_attach), we would not have the 21554 * ill_bcast_addr_length info. 21555 */ 21556 if (!ill->ill_needs_attach && 21557 ((lifr->lifr_flags & IFF_MULTICAST) && 21558 !(lifr->lifr_flags & IFF_POINTOPOINT) && 21559 ill->ill_bcast_addr_length == 0)) { 21560 /* Link not broadcast/pt-pt capable i.e. no multicast */ 21561 ip1dbg(("ip_setname: EINVAL 2\n")); 21562 return (EINVAL); 21563 } 21564 if ((lifr->lifr_flags & IFF_BROADCAST) && 21565 ((lifr->lifr_flags & IFF_IPV6) || 21566 (!ill->ill_needs_attach && ill->ill_bcast_addr_length == 0))) { 21567 /* Link not broadcast capable or IPv6 i.e. no broadcast */ 21568 ip1dbg(("ip_setname: EINVAL 3\n")); 21569 return (EINVAL); 21570 } 21571 if (lifr->lifr_flags & IFF_UP) { 21572 /* Can only be set with SIOCSLIFFLAGS */ 21573 ip1dbg(("ip_setname: EINVAL 4\n")); 21574 return (EINVAL); 21575 } 21576 if ((lifr->lifr_flags & (IFF_IPV6|IFF_IPV4)) != IFF_IPV6 && 21577 (lifr->lifr_flags & (IFF_IPV6|IFF_IPV4)) != IFF_IPV4) { 21578 ip1dbg(("ip_setname: EINVAL 5\n")); 21579 return (EINVAL); 21580 } 21581 /* 21582 * Only allow the IFF_XRESOLV flag to be set on IPv6 interfaces. 21583 */ 21584 if ((lifr->lifr_flags & IFF_XRESOLV) && 21585 !(lifr->lifr_flags & IFF_IPV6) && 21586 !(ipif->ipif_isv6)) { 21587 ip1dbg(("ip_setname: EINVAL 6\n")); 21588 return (EINVAL); 21589 } 21590 21591 /* 21592 * The user has done SIOCGLIFFLAGS prior to this ioctl and hence 21593 * we have all the flags here. So, we assign rather than we OR. 21594 * We can't OR the flags here because we don't want to set 21595 * both IFF_IPV4 and IFF_IPV6. We start off as IFF_IPV4 in 21596 * ipif_allocate and become IFF_IPV4 or IFF_IPV6 here depending 21597 * on lifr_flags value here. 21598 */ 21599 /* 21600 * This ill has not been inserted into the global list. 21601 * So we are still single threaded and don't need any lock 21602 */ 21603 ipif->ipif_flags = lifr->lifr_flags & IFF_LOGINT_FLAGS & ~IFF_DUPLICATE; 21604 ill->ill_flags = lifr->lifr_flags & IFF_PHYINTINST_FLAGS; 21605 ill->ill_phyint->phyint_flags = lifr->lifr_flags & IFF_PHYINT_FLAGS; 21606 21607 /* We started off as V4. */ 21608 if (ill->ill_flags & ILLF_IPV6) { 21609 ill->ill_phyint->phyint_illv6 = ill; 21610 ill->ill_phyint->phyint_illv4 = NULL; 21611 } 21612 21613 return (ipif_set_values(q, mp, lifr->lifr_name, &lifr->lifr_ppa)); 21614 } 21615 21616 /* ARGSUSED */ 21617 int 21618 ip_sioctl_slifname_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 21619 ip_ioctl_cmd_t *ipip, void *if_req) 21620 { 21621 /* 21622 * ill_phyint_reinit merged the v4 and v6 into a single 21623 * ipsq. Could also have become part of a ipmp group in the 21624 * process, and we might not have been able to complete the 21625 * slifname in ipif_set_values, if we could not become 21626 * exclusive. If so restart it here 21627 */ 21628 return (ipif_set_values_tail(ipif->ipif_ill, ipif, mp, q)); 21629 } 21630 21631 /* 21632 * Return a pointer to the ipif which matches the index, IP version type and 21633 * zoneid. 21634 */ 21635 ipif_t * 21636 ipif_lookup_on_ifindex(uint_t index, boolean_t isv6, zoneid_t zoneid, 21637 queue_t *q, mblk_t *mp, ipsq_func_t func, int *err, ip_stack_t *ipst) 21638 { 21639 ill_t *ill; 21640 ipif_t *ipif = NULL; 21641 21642 ASSERT((q == NULL && mp == NULL && func == NULL && err == NULL) || 21643 (q != NULL && mp != NULL && func != NULL && err != NULL)); 21644 21645 if (err != NULL) 21646 *err = 0; 21647 21648 ill = ill_lookup_on_ifindex(index, isv6, q, mp, func, err, ipst); 21649 if (ill != NULL) { 21650 mutex_enter(&ill->ill_lock); 21651 for (ipif = ill->ill_ipif; ipif != NULL; 21652 ipif = ipif->ipif_next) { 21653 if (IPIF_CAN_LOOKUP(ipif) && (zoneid == ALL_ZONES || 21654 zoneid == ipif->ipif_zoneid || 21655 ipif->ipif_zoneid == ALL_ZONES)) { 21656 ipif_refhold_locked(ipif); 21657 break; 21658 } 21659 } 21660 mutex_exit(&ill->ill_lock); 21661 ill_refrele(ill); 21662 if (ipif == NULL && err != NULL) 21663 *err = ENXIO; 21664 } 21665 return (ipif); 21666 } 21667 21668 typedef struct conn_change_s { 21669 uint_t cc_old_ifindex; 21670 uint_t cc_new_ifindex; 21671 } conn_change_t; 21672 21673 /* 21674 * ipcl_walk function for changing interface index. 21675 */ 21676 static void 21677 conn_change_ifindex(conn_t *connp, caddr_t arg) 21678 { 21679 conn_change_t *connc; 21680 uint_t old_ifindex; 21681 uint_t new_ifindex; 21682 int i; 21683 ilg_t *ilg; 21684 21685 connc = (conn_change_t *)arg; 21686 old_ifindex = connc->cc_old_ifindex; 21687 new_ifindex = connc->cc_new_ifindex; 21688 21689 if (connp->conn_orig_bound_ifindex == old_ifindex) 21690 connp->conn_orig_bound_ifindex = new_ifindex; 21691 21692 if (connp->conn_orig_multicast_ifindex == old_ifindex) 21693 connp->conn_orig_multicast_ifindex = new_ifindex; 21694 21695 for (i = connp->conn_ilg_inuse - 1; i >= 0; i--) { 21696 ilg = &connp->conn_ilg[i]; 21697 if (ilg->ilg_orig_ifindex == old_ifindex) 21698 ilg->ilg_orig_ifindex = new_ifindex; 21699 } 21700 } 21701 21702 /* 21703 * Walk all the ipifs and ilms on this ill and change the orig_ifindex 21704 * to new_index if it matches the old_index. 21705 * 21706 * Failovers typically happen within a group of ills. But somebody 21707 * can remove an ill from the group after a failover happened. If 21708 * we are setting the ifindex after this, we potentially need to 21709 * look at all the ills rather than just the ones in the group. 21710 * We cut down the work by looking at matching ill_net_types 21711 * and ill_types as we could not possibly grouped them together. 21712 */ 21713 static void 21714 ip_change_ifindex(ill_t *ill_orig, conn_change_t *connc) 21715 { 21716 ill_t *ill; 21717 ipif_t *ipif; 21718 uint_t old_ifindex; 21719 uint_t new_ifindex; 21720 ilm_t *ilm; 21721 ill_walk_context_t ctx; 21722 ip_stack_t *ipst = ill_orig->ill_ipst; 21723 21724 old_ifindex = connc->cc_old_ifindex; 21725 new_ifindex = connc->cc_new_ifindex; 21726 21727 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 21728 ill = ILL_START_WALK_ALL(&ctx, ipst); 21729 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 21730 if ((ill_orig->ill_net_type != ill->ill_net_type) || 21731 (ill_orig->ill_type != ill->ill_type)) { 21732 continue; 21733 } 21734 for (ipif = ill->ill_ipif; ipif != NULL; 21735 ipif = ipif->ipif_next) { 21736 if (ipif->ipif_orig_ifindex == old_ifindex) 21737 ipif->ipif_orig_ifindex = new_ifindex; 21738 } 21739 for (ilm = ill->ill_ilm; ilm != NULL; ilm = ilm->ilm_next) { 21740 if (ilm->ilm_orig_ifindex == old_ifindex) 21741 ilm->ilm_orig_ifindex = new_ifindex; 21742 } 21743 } 21744 rw_exit(&ipst->ips_ill_g_lock); 21745 } 21746 21747 /* 21748 * We first need to ensure that the new index is unique, and 21749 * then carry the change across both v4 and v6 ill representation 21750 * of the physical interface. 21751 */ 21752 /* ARGSUSED */ 21753 int 21754 ip_sioctl_slifindex(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 21755 ip_ioctl_cmd_t *ipip, void *ifreq) 21756 { 21757 ill_t *ill; 21758 ill_t *ill_other; 21759 phyint_t *phyi; 21760 int old_index; 21761 conn_change_t connc; 21762 struct ifreq *ifr = (struct ifreq *)ifreq; 21763 struct lifreq *lifr = (struct lifreq *)ifreq; 21764 uint_t index; 21765 ill_t *ill_v4; 21766 ill_t *ill_v6; 21767 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; 21768 21769 if (ipip->ipi_cmd_type == IF_CMD) 21770 index = ifr->ifr_index; 21771 else 21772 index = lifr->lifr_index; 21773 21774 /* 21775 * Only allow on physical interface. Also, index zero is illegal. 21776 * 21777 * Need to check for PHYI_FAILED and PHYI_INACTIVE 21778 * 21779 * 1) If PHYI_FAILED is set, a failover could have happened which 21780 * implies a possible failback might have to happen. As failback 21781 * depends on the old index, we should fail setting the index. 21782 * 21783 * 2) If PHYI_INACTIVE is set, in.mpathd does a failover so that 21784 * any addresses or multicast memberships are failed over to 21785 * a non-STANDBY interface. As failback depends on the old 21786 * index, we should fail setting the index for this case also. 21787 * 21788 * 3) If PHYI_OFFLINE is set, a possible failover has happened. 21789 * Be consistent with PHYI_FAILED and fail the ioctl. 21790 */ 21791 ill = ipif->ipif_ill; 21792 phyi = ill->ill_phyint; 21793 if ((phyi->phyint_flags & (PHYI_FAILED|PHYI_INACTIVE|PHYI_OFFLINE)) || 21794 ipif->ipif_id != 0 || index == 0) { 21795 return (EINVAL); 21796 } 21797 old_index = phyi->phyint_ifindex; 21798 21799 /* If the index is not changing, no work to do */ 21800 if (old_index == index) 21801 return (0); 21802 21803 /* 21804 * Use ill_lookup_on_ifindex to determine if the 21805 * new index is unused and if so allow the change. 21806 */ 21807 ill_v6 = ill_lookup_on_ifindex(index, B_TRUE, NULL, NULL, NULL, NULL, 21808 ipst); 21809 ill_v4 = ill_lookup_on_ifindex(index, B_FALSE, NULL, NULL, NULL, NULL, 21810 ipst); 21811 if (ill_v6 != NULL || ill_v4 != NULL) { 21812 if (ill_v4 != NULL) 21813 ill_refrele(ill_v4); 21814 if (ill_v6 != NULL) 21815 ill_refrele(ill_v6); 21816 return (EBUSY); 21817 } 21818 21819 /* 21820 * The new index is unused. Set it in the phyint. 21821 * Locate the other ill so that we can send a routing 21822 * sockets message. 21823 */ 21824 if (ill->ill_isv6) { 21825 ill_other = phyi->phyint_illv4; 21826 } else { 21827 ill_other = phyi->phyint_illv6; 21828 } 21829 21830 phyi->phyint_ifindex = index; 21831 21832 /* Update SCTP's ILL list */ 21833 sctp_ill_reindex(ill, old_index); 21834 21835 connc.cc_old_ifindex = old_index; 21836 connc.cc_new_ifindex = index; 21837 ip_change_ifindex(ill, &connc); 21838 ipcl_walk(conn_change_ifindex, (caddr_t)&connc, ipst); 21839 21840 /* Send the routing sockets message */ 21841 ip_rts_ifmsg(ipif); 21842 if (ill_other != NULL) 21843 ip_rts_ifmsg(ill_other->ill_ipif); 21844 21845 return (0); 21846 } 21847 21848 /* ARGSUSED */ 21849 int 21850 ip_sioctl_get_lifindex(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 21851 ip_ioctl_cmd_t *ipip, void *ifreq) 21852 { 21853 struct ifreq *ifr = (struct ifreq *)ifreq; 21854 struct lifreq *lifr = (struct lifreq *)ifreq; 21855 21856 ip1dbg(("ip_sioctl_get_lifindex(%s:%u %p)\n", 21857 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 21858 /* Get the interface index */ 21859 if (ipip->ipi_cmd_type == IF_CMD) { 21860 ifr->ifr_index = ipif->ipif_ill->ill_phyint->phyint_ifindex; 21861 } else { 21862 lifr->lifr_index = ipif->ipif_ill->ill_phyint->phyint_ifindex; 21863 } 21864 return (0); 21865 } 21866 21867 /* ARGSUSED */ 21868 int 21869 ip_sioctl_get_lifzone(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 21870 ip_ioctl_cmd_t *ipip, void *ifreq) 21871 { 21872 struct lifreq *lifr = (struct lifreq *)ifreq; 21873 21874 ip1dbg(("ip_sioctl_get_lifzone(%s:%u %p)\n", 21875 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 21876 /* Get the interface zone */ 21877 ASSERT(ipip->ipi_cmd_type == LIF_CMD); 21878 lifr->lifr_zoneid = ipif->ipif_zoneid; 21879 return (0); 21880 } 21881 21882 /* 21883 * Set the zoneid of an interface. 21884 */ 21885 /* ARGSUSED */ 21886 int 21887 ip_sioctl_slifzone(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 21888 ip_ioctl_cmd_t *ipip, void *ifreq) 21889 { 21890 struct lifreq *lifr = (struct lifreq *)ifreq; 21891 int err = 0; 21892 boolean_t need_up = B_FALSE; 21893 zone_t *zptr; 21894 zone_status_t status; 21895 zoneid_t zoneid; 21896 21897 ASSERT(ipip->ipi_cmd_type == LIF_CMD); 21898 if ((zoneid = lifr->lifr_zoneid) == ALL_ZONES) { 21899 if (!is_system_labeled()) 21900 return (ENOTSUP); 21901 zoneid = GLOBAL_ZONEID; 21902 } 21903 21904 /* cannot assign instance zero to a non-global zone */ 21905 if (ipif->ipif_id == 0 && zoneid != GLOBAL_ZONEID) 21906 return (ENOTSUP); 21907 21908 /* 21909 * Cannot assign to a zone that doesn't exist or is shutting down. In 21910 * the event of a race with the zone shutdown processing, since IP 21911 * serializes this ioctl and SIOCGLIFCONF/SIOCLIFREMOVEIF, we know the 21912 * interface will be cleaned up even if the zone is shut down 21913 * immediately after the status check. If the interface can't be brought 21914 * down right away, and the zone is shut down before the restart 21915 * function is called, we resolve the possible races by rechecking the 21916 * zone status in the restart function. 21917 */ 21918 if ((zptr = zone_find_by_id(zoneid)) == NULL) 21919 return (EINVAL); 21920 status = zone_status_get(zptr); 21921 zone_rele(zptr); 21922 21923 if (status != ZONE_IS_READY && status != ZONE_IS_RUNNING) 21924 return (EINVAL); 21925 21926 if (ipif->ipif_flags & IPIF_UP) { 21927 /* 21928 * If the interface is already marked up, 21929 * we call ipif_down which will take care 21930 * of ditching any IREs that have been set 21931 * up based on the old interface address. 21932 */ 21933 err = ipif_logical_down(ipif, q, mp); 21934 if (err == EINPROGRESS) 21935 return (err); 21936 ipif_down_tail(ipif); 21937 need_up = B_TRUE; 21938 } 21939 21940 err = ip_sioctl_slifzone_tail(ipif, lifr->lifr_zoneid, q, mp, need_up); 21941 return (err); 21942 } 21943 21944 static int 21945 ip_sioctl_slifzone_tail(ipif_t *ipif, zoneid_t zoneid, 21946 queue_t *q, mblk_t *mp, boolean_t need_up) 21947 { 21948 int err = 0; 21949 ip_stack_t *ipst; 21950 21951 ip1dbg(("ip_sioctl_zoneid_tail(%s:%u %p)\n", 21952 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 21953 21954 if (CONN_Q(q)) 21955 ipst = CONNQ_TO_IPST(q); 21956 else 21957 ipst = ILLQ_TO_IPST(q); 21958 21959 /* 21960 * For exclusive stacks we don't allow a different zoneid than 21961 * global. 21962 */ 21963 if (ipst->ips_netstack->netstack_stackid != GLOBAL_NETSTACKID && 21964 zoneid != GLOBAL_ZONEID) 21965 return (EINVAL); 21966 21967 /* Set the new zone id. */ 21968 ipif->ipif_zoneid = zoneid; 21969 21970 /* Update sctp list */ 21971 sctp_update_ipif(ipif, SCTP_IPIF_UPDATE); 21972 21973 if (need_up) { 21974 /* 21975 * Now bring the interface back up. If this 21976 * is the only IPIF for the ILL, ipif_up 21977 * will have to re-bind to the device, so 21978 * we may get back EINPROGRESS, in which 21979 * case, this IOCTL will get completed in 21980 * ip_rput_dlpi when we see the DL_BIND_ACK. 21981 */ 21982 err = ipif_up(ipif, q, mp); 21983 } 21984 return (err); 21985 } 21986 21987 /* ARGSUSED */ 21988 int 21989 ip_sioctl_slifzone_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 21990 ip_ioctl_cmd_t *ipip, void *if_req) 21991 { 21992 struct lifreq *lifr = (struct lifreq *)if_req; 21993 zoneid_t zoneid; 21994 zone_t *zptr; 21995 zone_status_t status; 21996 21997 ASSERT(ipif->ipif_id != 0); 21998 ASSERT(ipip->ipi_cmd_type == LIF_CMD); 21999 if ((zoneid = lifr->lifr_zoneid) == ALL_ZONES) 22000 zoneid = GLOBAL_ZONEID; 22001 22002 ip1dbg(("ip_sioctl_slifzone_restart(%s:%u %p)\n", 22003 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 22004 22005 /* 22006 * We recheck the zone status to resolve the following race condition: 22007 * 1) process sends SIOCSLIFZONE to put hme0:1 in zone "myzone"; 22008 * 2) hme0:1 is up and can't be brought down right away; 22009 * ip_sioctl_slifzone() returns EINPROGRESS and the request is queued; 22010 * 3) zone "myzone" is halted; the zone status switches to 22011 * 'shutting_down' and the zones framework sends SIOCGLIFCONF to list 22012 * the interfaces to remove - hme0:1 is not returned because it's not 22013 * yet in "myzone", so it won't be removed; 22014 * 4) the restart function for SIOCSLIFZONE is called; without the 22015 * status check here, we would have hme0:1 in "myzone" after it's been 22016 * destroyed. 22017 * Note that if the status check fails, we need to bring the interface 22018 * back to its state prior to ip_sioctl_slifzone(), hence the call to 22019 * ipif_up_done[_v6](). 22020 */ 22021 status = ZONE_IS_UNINITIALIZED; 22022 if ((zptr = zone_find_by_id(zoneid)) != NULL) { 22023 status = zone_status_get(zptr); 22024 zone_rele(zptr); 22025 } 22026 if (status != ZONE_IS_READY && status != ZONE_IS_RUNNING) { 22027 if (ipif->ipif_isv6) { 22028 (void) ipif_up_done_v6(ipif); 22029 } else { 22030 (void) ipif_up_done(ipif); 22031 } 22032 return (EINVAL); 22033 } 22034 22035 ipif_down_tail(ipif); 22036 22037 return (ip_sioctl_slifzone_tail(ipif, lifr->lifr_zoneid, q, mp, 22038 B_TRUE)); 22039 } 22040 22041 /* ARGSUSED */ 22042 int 22043 ip_sioctl_get_lifusesrc(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 22044 ip_ioctl_cmd_t *ipip, void *ifreq) 22045 { 22046 struct lifreq *lifr = ifreq; 22047 22048 ASSERT(q->q_next == NULL); 22049 ASSERT(CONN_Q(q)); 22050 22051 ip1dbg(("ip_sioctl_get_lifusesrc(%s:%u %p)\n", 22052 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 22053 lifr->lifr_index = ipif->ipif_ill->ill_usesrc_ifindex; 22054 ip1dbg(("ip_sioctl_get_lifusesrc:lifr_index = %d\n", lifr->lifr_index)); 22055 22056 return (0); 22057 } 22058 22059 /* Find the previous ILL in this usesrc group */ 22060 static ill_t * 22061 ill_prev_usesrc(ill_t *uill) 22062 { 22063 ill_t *ill; 22064 22065 for (ill = uill->ill_usesrc_grp_next; 22066 ASSERT(ill), ill->ill_usesrc_grp_next != uill; 22067 ill = ill->ill_usesrc_grp_next) 22068 /* do nothing */; 22069 return (ill); 22070 } 22071 22072 /* 22073 * Release all members of the usesrc group. This routine is called 22074 * from ill_delete when the interface being unplumbed is the 22075 * group head. 22076 */ 22077 static void 22078 ill_disband_usesrc_group(ill_t *uill) 22079 { 22080 ill_t *next_ill, *tmp_ill; 22081 ip_stack_t *ipst = uill->ill_ipst; 22082 22083 ASSERT(RW_WRITE_HELD(&ipst->ips_ill_g_usesrc_lock)); 22084 next_ill = uill->ill_usesrc_grp_next; 22085 22086 do { 22087 ASSERT(next_ill != NULL); 22088 tmp_ill = next_ill->ill_usesrc_grp_next; 22089 ASSERT(tmp_ill != NULL); 22090 next_ill->ill_usesrc_grp_next = NULL; 22091 next_ill->ill_usesrc_ifindex = 0; 22092 next_ill = tmp_ill; 22093 } while (next_ill->ill_usesrc_ifindex != 0); 22094 uill->ill_usesrc_grp_next = NULL; 22095 } 22096 22097 /* 22098 * Remove the client usesrc ILL from the list and relink to a new list 22099 */ 22100 int 22101 ill_relink_usesrc_ills(ill_t *ucill, ill_t *uill, uint_t ifindex) 22102 { 22103 ill_t *ill, *tmp_ill; 22104 ip_stack_t *ipst = ucill->ill_ipst; 22105 22106 ASSERT((ucill != NULL) && (ucill->ill_usesrc_grp_next != NULL) && 22107 (uill != NULL) && RW_WRITE_HELD(&ipst->ips_ill_g_usesrc_lock)); 22108 22109 /* 22110 * Check if the usesrc client ILL passed in is not already 22111 * in use as a usesrc ILL i.e one whose source address is 22112 * in use OR a usesrc ILL is not already in use as a usesrc 22113 * client ILL 22114 */ 22115 if ((ucill->ill_usesrc_ifindex == 0) || 22116 (uill->ill_usesrc_ifindex != 0)) { 22117 return (-1); 22118 } 22119 22120 ill = ill_prev_usesrc(ucill); 22121 ASSERT(ill->ill_usesrc_grp_next != NULL); 22122 22123 /* Remove from the current list */ 22124 if (ill->ill_usesrc_grp_next->ill_usesrc_grp_next == ill) { 22125 /* Only two elements in the list */ 22126 ASSERT(ill->ill_usesrc_ifindex == 0); 22127 ill->ill_usesrc_grp_next = NULL; 22128 } else { 22129 ill->ill_usesrc_grp_next = ucill->ill_usesrc_grp_next; 22130 } 22131 22132 if (ifindex == 0) { 22133 ucill->ill_usesrc_ifindex = 0; 22134 ucill->ill_usesrc_grp_next = NULL; 22135 return (0); 22136 } 22137 22138 ucill->ill_usesrc_ifindex = ifindex; 22139 tmp_ill = uill->ill_usesrc_grp_next; 22140 uill->ill_usesrc_grp_next = ucill; 22141 ucill->ill_usesrc_grp_next = 22142 (tmp_ill != NULL) ? tmp_ill : uill; 22143 return (0); 22144 } 22145 22146 /* 22147 * Set the ill_usesrc and ill_usesrc_head fields. See synchronization notes in 22148 * ip.c for locking details. 22149 */ 22150 /* ARGSUSED */ 22151 int 22152 ip_sioctl_slifusesrc(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 22153 ip_ioctl_cmd_t *ipip, void *ifreq) 22154 { 22155 struct lifreq *lifr = (struct lifreq *)ifreq; 22156 boolean_t isv6 = B_FALSE, reset_flg = B_FALSE, 22157 ill_flag_changed = B_FALSE; 22158 ill_t *usesrc_ill, *usesrc_cli_ill = ipif->ipif_ill; 22159 int err = 0, ret; 22160 uint_t ifindex; 22161 phyint_t *us_phyint, *us_cli_phyint; 22162 ipsq_t *ipsq = NULL; 22163 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; 22164 22165 ASSERT(IAM_WRITER_IPIF(ipif)); 22166 ASSERT(q->q_next == NULL); 22167 ASSERT(CONN_Q(q)); 22168 22169 isv6 = (Q_TO_CONN(q))->conn_af_isv6; 22170 us_cli_phyint = usesrc_cli_ill->ill_phyint; 22171 22172 ASSERT(us_cli_phyint != NULL); 22173 22174 /* 22175 * If the client ILL is being used for IPMP, abort. 22176 * Note, this can be done before ipsq_try_enter since we are already 22177 * exclusive on this ILL 22178 */ 22179 if ((us_cli_phyint->phyint_groupname != NULL) || 22180 (us_cli_phyint->phyint_flags & PHYI_STANDBY)) { 22181 return (EINVAL); 22182 } 22183 22184 ifindex = lifr->lifr_index; 22185 if (ifindex == 0) { 22186 if (usesrc_cli_ill->ill_usesrc_grp_next == NULL) { 22187 /* non usesrc group interface, nothing to reset */ 22188 return (0); 22189 } 22190 ifindex = usesrc_cli_ill->ill_usesrc_ifindex; 22191 /* valid reset request */ 22192 reset_flg = B_TRUE; 22193 } 22194 22195 usesrc_ill = ill_lookup_on_ifindex(ifindex, isv6, q, mp, 22196 ip_process_ioctl, &err, ipst); 22197 if (usesrc_ill == NULL) { 22198 return (err); 22199 } 22200 22201 /* 22202 * The usesrc_cli_ill or the usesrc_ill cannot be part of an IPMP 22203 * group nor can either of the interfaces be used for standy. So 22204 * to guarantee mutual exclusion with ip_sioctl_flags (which sets 22205 * PHYI_STANDBY) and ip_sioctl_groupname (which sets the groupname) 22206 * we need to be exclusive on the ipsq belonging to the usesrc_ill. 22207 * We are already exlusive on this ipsq i.e ipsq corresponding to 22208 * the usesrc_cli_ill 22209 */ 22210 ipsq = ipsq_try_enter(NULL, usesrc_ill, q, mp, ip_process_ioctl, 22211 NEW_OP, B_TRUE); 22212 if (ipsq == NULL) { 22213 err = EINPROGRESS; 22214 /* Operation enqueued on the ipsq of the usesrc ILL */ 22215 goto done; 22216 } 22217 22218 /* Check if the usesrc_ill is used for IPMP */ 22219 us_phyint = usesrc_ill->ill_phyint; 22220 if ((us_phyint->phyint_groupname != NULL) || 22221 (us_phyint->phyint_flags & PHYI_STANDBY)) { 22222 err = EINVAL; 22223 goto done; 22224 } 22225 22226 /* 22227 * If the client is already in use as a usesrc_ill or a usesrc_ill is 22228 * already a client then return EINVAL 22229 */ 22230 if (IS_USESRC_ILL(usesrc_cli_ill) || IS_USESRC_CLI_ILL(usesrc_ill)) { 22231 err = EINVAL; 22232 goto done; 22233 } 22234 22235 /* 22236 * If the ill_usesrc_ifindex field is already set to what it needs to 22237 * be then this is a duplicate operation. 22238 */ 22239 if (!reset_flg && usesrc_cli_ill->ill_usesrc_ifindex == ifindex) { 22240 err = 0; 22241 goto done; 22242 } 22243 22244 ip1dbg(("ip_sioctl_slifusesrc: usesrc_cli_ill %s, usesrc_ill %s," 22245 " v6 = %d", usesrc_cli_ill->ill_name, usesrc_ill->ill_name, 22246 usesrc_ill->ill_isv6)); 22247 22248 /* 22249 * The next step ensures that no new ires will be created referencing 22250 * the client ill, until the ILL_CHANGING flag is cleared. Then 22251 * we go through an ire walk deleting all ire caches that reference 22252 * the client ill. New ires referencing the client ill that are added 22253 * to the ire table before the ILL_CHANGING flag is set, will be 22254 * cleaned up by the ire walk below. Attempt to add new ires referencing 22255 * the client ill while the ILL_CHANGING flag is set will be failed 22256 * during the ire_add in ire_atomic_start. ire_atomic_start atomically 22257 * checks (under the ill_g_usesrc_lock) that the ire being added 22258 * is not stale, i.e the ire_stq and ire_ipif are consistent and 22259 * belong to the same usesrc group. 22260 */ 22261 mutex_enter(&usesrc_cli_ill->ill_lock); 22262 usesrc_cli_ill->ill_state_flags |= ILL_CHANGING; 22263 mutex_exit(&usesrc_cli_ill->ill_lock); 22264 ill_flag_changed = B_TRUE; 22265 22266 if (ipif->ipif_isv6) 22267 ire_walk_v6(ipif_delete_cache_ire, (char *)usesrc_cli_ill, 22268 ALL_ZONES, ipst); 22269 else 22270 ire_walk_v4(ipif_delete_cache_ire, (char *)usesrc_cli_ill, 22271 ALL_ZONES, ipst); 22272 22273 /* 22274 * ill_g_usesrc_lock global lock protects the ill_usesrc_grp_next 22275 * and the ill_usesrc_ifindex fields 22276 */ 22277 rw_enter(&ipst->ips_ill_g_usesrc_lock, RW_WRITER); 22278 22279 if (reset_flg) { 22280 ret = ill_relink_usesrc_ills(usesrc_cli_ill, usesrc_ill, 0); 22281 if (ret != 0) { 22282 err = EINVAL; 22283 } 22284 rw_exit(&ipst->ips_ill_g_usesrc_lock); 22285 goto done; 22286 } 22287 22288 /* 22289 * Four possibilities to consider: 22290 * 1. Both usesrc_ill and usesrc_cli_ill are not part of any usesrc grp 22291 * 2. usesrc_ill is part of a group but usesrc_cli_ill isn't 22292 * 3. usesrc_cli_ill is part of a group but usesrc_ill isn't 22293 * 4. Both are part of their respective usesrc groups 22294 */ 22295 if ((usesrc_ill->ill_usesrc_grp_next == NULL) && 22296 (usesrc_cli_ill->ill_usesrc_grp_next == NULL)) { 22297 ASSERT(usesrc_ill->ill_usesrc_ifindex == 0); 22298 usesrc_cli_ill->ill_usesrc_ifindex = ifindex; 22299 usesrc_ill->ill_usesrc_grp_next = usesrc_cli_ill; 22300 usesrc_cli_ill->ill_usesrc_grp_next = usesrc_ill; 22301 } else if ((usesrc_ill->ill_usesrc_grp_next != NULL) && 22302 (usesrc_cli_ill->ill_usesrc_grp_next == NULL)) { 22303 usesrc_cli_ill->ill_usesrc_ifindex = ifindex; 22304 /* Insert at head of list */ 22305 usesrc_cli_ill->ill_usesrc_grp_next = 22306 usesrc_ill->ill_usesrc_grp_next; 22307 usesrc_ill->ill_usesrc_grp_next = usesrc_cli_ill; 22308 } else { 22309 ret = ill_relink_usesrc_ills(usesrc_cli_ill, usesrc_ill, 22310 ifindex); 22311 if (ret != 0) 22312 err = EINVAL; 22313 } 22314 rw_exit(&ipst->ips_ill_g_usesrc_lock); 22315 22316 done: 22317 if (ill_flag_changed) { 22318 mutex_enter(&usesrc_cli_ill->ill_lock); 22319 usesrc_cli_ill->ill_state_flags &= ~ILL_CHANGING; 22320 mutex_exit(&usesrc_cli_ill->ill_lock); 22321 } 22322 if (ipsq != NULL) 22323 ipsq_exit(ipsq); 22324 /* The refrele on the lifr_name ipif is done by ip_process_ioctl */ 22325 ill_refrele(usesrc_ill); 22326 return (err); 22327 } 22328 22329 /* 22330 * comparison function used by avl. 22331 */ 22332 static int 22333 ill_phyint_compare_index(const void *index_ptr, const void *phyip) 22334 { 22335 22336 uint_t index; 22337 22338 ASSERT(phyip != NULL && index_ptr != NULL); 22339 22340 index = *((uint_t *)index_ptr); 22341 /* 22342 * let the phyint with the lowest index be on top. 22343 */ 22344 if (((phyint_t *)phyip)->phyint_ifindex < index) 22345 return (1); 22346 if (((phyint_t *)phyip)->phyint_ifindex > index) 22347 return (-1); 22348 return (0); 22349 } 22350 22351 /* 22352 * comparison function used by avl. 22353 */ 22354 static int 22355 ill_phyint_compare_name(const void *name_ptr, const void *phyip) 22356 { 22357 ill_t *ill; 22358 int res = 0; 22359 22360 ASSERT(phyip != NULL && name_ptr != NULL); 22361 22362 if (((phyint_t *)phyip)->phyint_illv4) 22363 ill = ((phyint_t *)phyip)->phyint_illv4; 22364 else 22365 ill = ((phyint_t *)phyip)->phyint_illv6; 22366 ASSERT(ill != NULL); 22367 22368 res = strcmp(ill->ill_name, (char *)name_ptr); 22369 if (res > 0) 22370 return (1); 22371 else if (res < 0) 22372 return (-1); 22373 return (0); 22374 } 22375 /* 22376 * This function is called from ill_delete when the ill is being 22377 * unplumbed. We remove the reference from the phyint and we also 22378 * free the phyint when there are no more references to it. 22379 */ 22380 static void 22381 ill_phyint_free(ill_t *ill) 22382 { 22383 phyint_t *phyi; 22384 phyint_t *next_phyint; 22385 ipsq_t *cur_ipsq; 22386 ip_stack_t *ipst = ill->ill_ipst; 22387 22388 ASSERT(ill->ill_phyint != NULL); 22389 22390 ASSERT(RW_WRITE_HELD(&ipst->ips_ill_g_lock)); 22391 phyi = ill->ill_phyint; 22392 ill->ill_phyint = NULL; 22393 /* 22394 * ill_init allocates a phyint always to store the copy 22395 * of flags relevant to phyint. At that point in time, we could 22396 * not assign the name and hence phyint_illv4/v6 could not be 22397 * initialized. Later in ipif_set_values, we assign the name to 22398 * the ill, at which point in time we assign phyint_illv4/v6. 22399 * Thus we don't rely on phyint_illv6 to be initialized always. 22400 */ 22401 if (ill->ill_flags & ILLF_IPV6) { 22402 phyi->phyint_illv6 = NULL; 22403 } else { 22404 phyi->phyint_illv4 = NULL; 22405 } 22406 /* 22407 * ipif_down removes it from the group when the last ipif goes 22408 * down. 22409 */ 22410 ASSERT(ill->ill_group == NULL); 22411 22412 if (phyi->phyint_illv4 != NULL || phyi->phyint_illv6 != NULL) 22413 return; 22414 22415 /* 22416 * Make sure this phyint was put in the list. 22417 */ 22418 if (phyi->phyint_ifindex > 0) { 22419 avl_remove(&ipst->ips_phyint_g_list->phyint_list_avl_by_index, 22420 phyi); 22421 avl_remove(&ipst->ips_phyint_g_list->phyint_list_avl_by_name, 22422 phyi); 22423 } 22424 /* 22425 * remove phyint from the ipsq list. 22426 */ 22427 cur_ipsq = phyi->phyint_ipsq; 22428 if (phyi == cur_ipsq->ipsq_phyint_list) { 22429 cur_ipsq->ipsq_phyint_list = phyi->phyint_ipsq_next; 22430 } else { 22431 next_phyint = cur_ipsq->ipsq_phyint_list; 22432 while (next_phyint != NULL) { 22433 if (next_phyint->phyint_ipsq_next == phyi) { 22434 next_phyint->phyint_ipsq_next = 22435 phyi->phyint_ipsq_next; 22436 break; 22437 } 22438 next_phyint = next_phyint->phyint_ipsq_next; 22439 } 22440 ASSERT(next_phyint != NULL); 22441 } 22442 IPSQ_DEC_REF(cur_ipsq, ipst); 22443 22444 if (phyi->phyint_groupname_len != 0) { 22445 ASSERT(phyi->phyint_groupname != NULL); 22446 mi_free(phyi->phyint_groupname); 22447 } 22448 mi_free(phyi); 22449 } 22450 22451 /* 22452 * Attach the ill to the phyint structure which can be shared by both 22453 * IPv4 and IPv6 ill. ill_init allocates a phyint to just hold flags. This 22454 * function is called from ipif_set_values and ill_lookup_on_name (for 22455 * loopback) where we know the name of the ill. We lookup the ill and if 22456 * there is one present already with the name use that phyint. Otherwise 22457 * reuse the one allocated by ill_init. 22458 */ 22459 static void 22460 ill_phyint_reinit(ill_t *ill) 22461 { 22462 boolean_t isv6 = ill->ill_isv6; 22463 phyint_t *phyi_old; 22464 phyint_t *phyi; 22465 avl_index_t where = 0; 22466 ill_t *ill_other = NULL; 22467 ipsq_t *ipsq; 22468 ip_stack_t *ipst = ill->ill_ipst; 22469 22470 ASSERT(RW_WRITE_HELD(&ipst->ips_ill_g_lock)); 22471 22472 phyi_old = ill->ill_phyint; 22473 ASSERT(isv6 || (phyi_old->phyint_illv4 == ill && 22474 phyi_old->phyint_illv6 == NULL)); 22475 ASSERT(!isv6 || (phyi_old->phyint_illv6 == ill && 22476 phyi_old->phyint_illv4 == NULL)); 22477 ASSERT(phyi_old->phyint_ifindex == 0); 22478 22479 phyi = avl_find(&ipst->ips_phyint_g_list->phyint_list_avl_by_name, 22480 ill->ill_name, &where); 22481 22482 /* 22483 * 1. We grabbed the ill_g_lock before inserting this ill into 22484 * the global list of ills. So no other thread could have located 22485 * this ill and hence the ipsq of this ill is guaranteed to be empty. 22486 * 2. Now locate the other protocol instance of this ill. 22487 * 3. Now grab both ill locks in the right order, and the phyint lock of 22488 * the new ipsq. Holding ill locks + ill_g_lock ensures that the ipsq 22489 * of neither ill can change. 22490 * 4. Merge the phyint and thus the ipsq as well of this ill onto the 22491 * other ill. 22492 * 5. Release all locks. 22493 */ 22494 22495 /* 22496 * Look for IPv4 if we are initializing IPv6 or look for IPv6 if 22497 * we are initializing IPv4. 22498 */ 22499 if (phyi != NULL) { 22500 ill_other = (isv6) ? phyi->phyint_illv4 : 22501 phyi->phyint_illv6; 22502 ASSERT(ill_other->ill_phyint != NULL); 22503 ASSERT((isv6 && !ill_other->ill_isv6) || 22504 (!isv6 && ill_other->ill_isv6)); 22505 GRAB_ILL_LOCKS(ill, ill_other); 22506 /* 22507 * We are potentially throwing away phyint_flags which 22508 * could be different from the one that we obtain from 22509 * ill_other->ill_phyint. But it is okay as we are assuming 22510 * that the state maintained within IP is correct. 22511 */ 22512 mutex_enter(&phyi->phyint_lock); 22513 if (isv6) { 22514 ASSERT(phyi->phyint_illv6 == NULL); 22515 phyi->phyint_illv6 = ill; 22516 } else { 22517 ASSERT(phyi->phyint_illv4 == NULL); 22518 phyi->phyint_illv4 = ill; 22519 } 22520 /* 22521 * This is a new ill, currently undergoing SLIFNAME 22522 * So we could not have joined an IPMP group until now. 22523 */ 22524 ASSERT(phyi_old->phyint_ipsq_next == NULL && 22525 phyi_old->phyint_groupname == NULL); 22526 22527 /* 22528 * This phyi_old is going away. Decref ipsq_refs and 22529 * assert it is zero. The ipsq itself will be freed in 22530 * ipsq_exit 22531 */ 22532 ipsq = phyi_old->phyint_ipsq; 22533 IPSQ_DEC_REF(ipsq, ipst); 22534 ASSERT(ipsq->ipsq_refs == 0); 22535 /* Get the singleton phyint out of the ipsq list */ 22536 ASSERT(phyi_old->phyint_ipsq_next == NULL); 22537 ipsq->ipsq_phyint_list = NULL; 22538 phyi_old->phyint_illv4 = NULL; 22539 phyi_old->phyint_illv6 = NULL; 22540 mi_free(phyi_old); 22541 } else { 22542 mutex_enter(&ill->ill_lock); 22543 /* 22544 * We don't need to acquire any lock, since 22545 * the ill is not yet visible globally and we 22546 * have not yet released the ill_g_lock. 22547 */ 22548 phyi = phyi_old; 22549 mutex_enter(&phyi->phyint_lock); 22550 /* XXX We need a recovery strategy here. */ 22551 if (!phyint_assign_ifindex(phyi, ipst)) 22552 cmn_err(CE_PANIC, "phyint_assign_ifindex() failed"); 22553 22554 /* No IPMP group yet, thus the hook uses the ifindex */ 22555 phyi->phyint_hook_ifindex = phyi->phyint_ifindex; 22556 22557 avl_insert(&ipst->ips_phyint_g_list->phyint_list_avl_by_name, 22558 (void *)phyi, where); 22559 22560 (void) avl_find(&ipst->ips_phyint_g_list-> 22561 phyint_list_avl_by_index, 22562 &phyi->phyint_ifindex, &where); 22563 avl_insert(&ipst->ips_phyint_g_list->phyint_list_avl_by_index, 22564 (void *)phyi, where); 22565 } 22566 22567 /* 22568 * Reassigning ill_phyint automatically reassigns the ipsq also. 22569 * pending mp is not affected because that is per ill basis. 22570 */ 22571 ill->ill_phyint = phyi; 22572 22573 /* 22574 * Keep the index on ipif_orig_index to be used by FAILOVER. 22575 * We do this here as when the first ipif was allocated, 22576 * ipif_allocate does not know the right interface index. 22577 */ 22578 22579 ill->ill_ipif->ipif_orig_ifindex = ill->ill_phyint->phyint_ifindex; 22580 /* 22581 * Now that the phyint's ifindex has been assigned, complete the 22582 * remaining 22583 */ 22584 22585 ill->ill_ip_mib->ipIfStatsIfIndex = ill->ill_phyint->phyint_ifindex; 22586 if (ill->ill_isv6) { 22587 ill->ill_icmp6_mib->ipv6IfIcmpIfIndex = 22588 ill->ill_phyint->phyint_ifindex; 22589 ill->ill_mcast_type = ipst->ips_mld_max_version; 22590 } else { 22591 ill->ill_mcast_type = ipst->ips_igmp_max_version; 22592 } 22593 22594 /* 22595 * Generate an event within the hooks framework to indicate that 22596 * a new interface has just been added to IP. For this event to 22597 * be generated, the network interface must, at least, have an 22598 * ifindex assigned to it. 22599 * 22600 * This needs to be run inside the ill_g_lock perimeter to ensure 22601 * that the ordering of delivered events to listeners matches the 22602 * order of them in the kernel. 22603 * 22604 * This function could be called from ill_lookup_on_name. In that case 22605 * the interface is loopback "lo", which will not generate a NIC event. 22606 */ 22607 if (ill->ill_name_length <= 2 || 22608 ill->ill_name[0] != 'l' || ill->ill_name[1] != 'o') { 22609 /* 22610 * Generate nic plumb event for ill_name even if 22611 * ipmp_hook_emulation is set. That avoids generating events 22612 * for the ill_names should ipmp_hook_emulation be turned on 22613 * later. 22614 */ 22615 ill_nic_event_plumb(ill, B_FALSE); 22616 } 22617 RELEASE_ILL_LOCKS(ill, ill_other); 22618 mutex_exit(&phyi->phyint_lock); 22619 } 22620 22621 /* 22622 * Allocate a NE_PLUMB nic info event and store in the ill. 22623 * If 'group' is set we do it for the group name, otherwise the ill name. 22624 * It will be sent when we leave the ipsq. 22625 */ 22626 void 22627 ill_nic_event_plumb(ill_t *ill, boolean_t group) 22628 { 22629 phyint_t *phyi = ill->ill_phyint; 22630 char *name; 22631 int namelen; 22632 22633 ASSERT(MUTEX_HELD(&ill->ill_lock)); 22634 22635 if (group) { 22636 ASSERT(phyi->phyint_groupname_len != 0); 22637 namelen = phyi->phyint_groupname_len; 22638 name = phyi->phyint_groupname; 22639 } else { 22640 namelen = ill->ill_name_length; 22641 name = ill->ill_name; 22642 } 22643 22644 ill_nic_event_dispatch(ill, 0, NE_PLUMB, name, namelen); 22645 } 22646 22647 /* 22648 * Notify any downstream modules of the name of this interface. 22649 * An M_IOCTL is used even though we don't expect a successful reply. 22650 * Any reply message from the driver (presumably an M_IOCNAK) will 22651 * eventually get discarded somewhere upstream. The message format is 22652 * simply an SIOCSLIFNAME ioctl just as might be sent from ifconfig 22653 * to IP. 22654 */ 22655 static void 22656 ip_ifname_notify(ill_t *ill, queue_t *q) 22657 { 22658 mblk_t *mp1, *mp2; 22659 struct iocblk *iocp; 22660 struct lifreq *lifr; 22661 22662 mp1 = mkiocb(SIOCSLIFNAME); 22663 if (mp1 == NULL) 22664 return; 22665 mp2 = allocb(sizeof (struct lifreq), BPRI_HI); 22666 if (mp2 == NULL) { 22667 freeb(mp1); 22668 return; 22669 } 22670 22671 mp1->b_cont = mp2; 22672 iocp = (struct iocblk *)mp1->b_rptr; 22673 iocp->ioc_count = sizeof (struct lifreq); 22674 22675 lifr = (struct lifreq *)mp2->b_rptr; 22676 mp2->b_wptr += sizeof (struct lifreq); 22677 bzero(lifr, sizeof (struct lifreq)); 22678 22679 (void) strncpy(lifr->lifr_name, ill->ill_name, LIFNAMSIZ); 22680 lifr->lifr_ppa = ill->ill_ppa; 22681 lifr->lifr_flags = (ill->ill_flags & (ILLF_IPV4|ILLF_IPV6)); 22682 22683 putnext(q, mp1); 22684 } 22685 22686 static int 22687 ipif_set_values_tail(ill_t *ill, ipif_t *ipif, mblk_t *mp, queue_t *q) 22688 { 22689 int err; 22690 ip_stack_t *ipst = ill->ill_ipst; 22691 22692 /* Set the obsolete NDD per-interface forwarding name. */ 22693 err = ill_set_ndd_name(ill); 22694 if (err != 0) { 22695 cmn_err(CE_WARN, "ipif_set_values: ill_set_ndd_name (%d)\n", 22696 err); 22697 } 22698 22699 /* Tell downstream modules where they are. */ 22700 ip_ifname_notify(ill, q); 22701 22702 /* 22703 * ill_dl_phys returns EINPROGRESS in the usual case. 22704 * Error cases are ENOMEM ... 22705 */ 22706 err = ill_dl_phys(ill, ipif, mp, q); 22707 22708 /* 22709 * If there is no IRE expiration timer running, get one started. 22710 * igmp and mld timers will be triggered by the first multicast 22711 */ 22712 if (ipst->ips_ip_ire_expire_id == 0) { 22713 /* 22714 * acquire the lock and check again. 22715 */ 22716 mutex_enter(&ipst->ips_ip_trash_timer_lock); 22717 if (ipst->ips_ip_ire_expire_id == 0) { 22718 ipst->ips_ip_ire_expire_id = timeout( 22719 ip_trash_timer_expire, ipst, 22720 MSEC_TO_TICK(ipst->ips_ip_timer_interval)); 22721 } 22722 mutex_exit(&ipst->ips_ip_trash_timer_lock); 22723 } 22724 22725 if (ill->ill_isv6) { 22726 mutex_enter(&ipst->ips_mld_slowtimeout_lock); 22727 if (ipst->ips_mld_slowtimeout_id == 0) { 22728 ipst->ips_mld_slowtimeout_id = timeout(mld_slowtimo, 22729 (void *)ipst, 22730 MSEC_TO_TICK(MCAST_SLOWTIMO_INTERVAL)); 22731 } 22732 mutex_exit(&ipst->ips_mld_slowtimeout_lock); 22733 } else { 22734 mutex_enter(&ipst->ips_igmp_slowtimeout_lock); 22735 if (ipst->ips_igmp_slowtimeout_id == 0) { 22736 ipst->ips_igmp_slowtimeout_id = timeout(igmp_slowtimo, 22737 (void *)ipst, 22738 MSEC_TO_TICK(MCAST_SLOWTIMO_INTERVAL)); 22739 } 22740 mutex_exit(&ipst->ips_igmp_slowtimeout_lock); 22741 } 22742 22743 return (err); 22744 } 22745 22746 /* 22747 * Common routine for ppa and ifname setting. Should be called exclusive. 22748 * 22749 * Returns EINPROGRESS when mp has been consumed by queueing it on 22750 * ill_pending_mp and the ioctl will complete in ip_rput. 22751 * 22752 * NOTE : If ppa is UNIT_MAX, we assign the next valid ppa and return 22753 * the new name and new ppa in lifr_name and lifr_ppa respectively. 22754 * For SLIFNAME, we pass these values back to the userland. 22755 */ 22756 static int 22757 ipif_set_values(queue_t *q, mblk_t *mp, char *interf_name, uint_t *new_ppa_ptr) 22758 { 22759 ill_t *ill; 22760 ipif_t *ipif; 22761 ipsq_t *ipsq; 22762 char *ppa_ptr; 22763 char *old_ptr; 22764 char old_char; 22765 int error; 22766 ip_stack_t *ipst; 22767 22768 ip1dbg(("ipif_set_values: interface %s\n", interf_name)); 22769 ASSERT(q->q_next != NULL); 22770 ASSERT(interf_name != NULL); 22771 22772 ill = (ill_t *)q->q_ptr; 22773 ipst = ill->ill_ipst; 22774 22775 ASSERT(ill->ill_ipst != NULL); 22776 ASSERT(ill->ill_name[0] == '\0'); 22777 ASSERT(IAM_WRITER_ILL(ill)); 22778 ASSERT((mi_strlen(interf_name) + 1) <= LIFNAMSIZ); 22779 ASSERT(ill->ill_ppa == UINT_MAX); 22780 22781 /* The ppa is sent down by ifconfig or is chosen */ 22782 if ((ppa_ptr = ill_get_ppa_ptr(interf_name)) == NULL) { 22783 return (EINVAL); 22784 } 22785 22786 /* 22787 * make sure ppa passed in is same as ppa in the name. 22788 * This check is not made when ppa == UINT_MAX in that case ppa 22789 * in the name could be anything. System will choose a ppa and 22790 * update new_ppa_ptr and inter_name to contain the choosen ppa. 22791 */ 22792 if (*new_ppa_ptr != UINT_MAX) { 22793 /* stoi changes the pointer */ 22794 old_ptr = ppa_ptr; 22795 /* 22796 * ifconfig passed in 0 for the ppa for DLPI 1 style devices 22797 * (they don't have an externally visible ppa). We assign one 22798 * here so that we can manage the interface. Note that in 22799 * the past this value was always 0 for DLPI 1 drivers. 22800 */ 22801 if (*new_ppa_ptr == 0) 22802 *new_ppa_ptr = stoi(&old_ptr); 22803 else if (*new_ppa_ptr != (uint_t)stoi(&old_ptr)) 22804 return (EINVAL); 22805 } 22806 /* 22807 * terminate string before ppa 22808 * save char at that location. 22809 */ 22810 old_char = ppa_ptr[0]; 22811 ppa_ptr[0] = '\0'; 22812 22813 ill->ill_ppa = *new_ppa_ptr; 22814 /* 22815 * Finish as much work now as possible before calling ill_glist_insert 22816 * which makes the ill globally visible and also merges it with the 22817 * other protocol instance of this phyint. The remaining work is 22818 * done after entering the ipsq which may happen sometime later. 22819 * ill_set_ndd_name occurs after the ill has been made globally visible. 22820 */ 22821 ipif = ill->ill_ipif; 22822 22823 /* We didn't do this when we allocated ipif in ip_ll_subnet_defaults */ 22824 ipif_assign_seqid(ipif); 22825 22826 if (!(ill->ill_flags & (ILLF_IPV4|ILLF_IPV6))) 22827 ill->ill_flags |= ILLF_IPV4; 22828 22829 ASSERT(ipif->ipif_next == NULL); /* Only one ipif on ill */ 22830 ASSERT((ipif->ipif_flags & IPIF_UP) == 0); 22831 22832 if (ill->ill_flags & ILLF_IPV6) { 22833 22834 ill->ill_isv6 = B_TRUE; 22835 if (ill->ill_rq != NULL) { 22836 ill->ill_rq->q_qinfo = &iprinitv6; 22837 ill->ill_wq->q_qinfo = &ipwinitv6; 22838 } 22839 22840 /* Keep the !IN6_IS_ADDR_V4MAPPED assertions happy */ 22841 ipif->ipif_v6lcl_addr = ipv6_all_zeros; 22842 ipif->ipif_v6src_addr = ipv6_all_zeros; 22843 ipif->ipif_v6subnet = ipv6_all_zeros; 22844 ipif->ipif_v6net_mask = ipv6_all_zeros; 22845 ipif->ipif_v6brd_addr = ipv6_all_zeros; 22846 ipif->ipif_v6pp_dst_addr = ipv6_all_zeros; 22847 /* 22848 * point-to-point or Non-mulicast capable 22849 * interfaces won't do NUD unless explicitly 22850 * configured to do so. 22851 */ 22852 if (ipif->ipif_flags & IPIF_POINTOPOINT || 22853 !(ill->ill_flags & ILLF_MULTICAST)) { 22854 ill->ill_flags |= ILLF_NONUD; 22855 } 22856 /* Make sure IPv4 specific flag is not set on IPv6 if */ 22857 if (ill->ill_flags & ILLF_NOARP) { 22858 /* 22859 * Note: xresolv interfaces will eventually need 22860 * NOARP set here as well, but that will require 22861 * those external resolvers to have some 22862 * knowledge of that flag and act appropriately. 22863 * Not to be changed at present. 22864 */ 22865 ill->ill_flags &= ~ILLF_NOARP; 22866 } 22867 /* 22868 * Set the ILLF_ROUTER flag according to the global 22869 * IPv6 forwarding policy. 22870 */ 22871 if (ipst->ips_ipv6_forward != 0) 22872 ill->ill_flags |= ILLF_ROUTER; 22873 } else if (ill->ill_flags & ILLF_IPV4) { 22874 ill->ill_isv6 = B_FALSE; 22875 IN6_IPADDR_TO_V4MAPPED(INADDR_ANY, &ipif->ipif_v6lcl_addr); 22876 IN6_IPADDR_TO_V4MAPPED(INADDR_ANY, &ipif->ipif_v6src_addr); 22877 IN6_IPADDR_TO_V4MAPPED(INADDR_ANY, &ipif->ipif_v6subnet); 22878 IN6_IPADDR_TO_V4MAPPED(INADDR_ANY, &ipif->ipif_v6net_mask); 22879 IN6_IPADDR_TO_V4MAPPED(INADDR_ANY, &ipif->ipif_v6brd_addr); 22880 IN6_IPADDR_TO_V4MAPPED(INADDR_ANY, &ipif->ipif_v6pp_dst_addr); 22881 /* 22882 * Set the ILLF_ROUTER flag according to the global 22883 * IPv4 forwarding policy. 22884 */ 22885 if (ipst->ips_ip_g_forward != 0) 22886 ill->ill_flags |= ILLF_ROUTER; 22887 } 22888 22889 ASSERT(ill->ill_phyint != NULL); 22890 22891 /* 22892 * The ipIfStatsIfindex and ipv6IfIcmpIfIndex assignments will 22893 * be completed in ill_glist_insert -> ill_phyint_reinit 22894 */ 22895 if (!ill_allocate_mibs(ill)) 22896 return (ENOMEM); 22897 22898 /* 22899 * Pick a default sap until we get the DL_INFO_ACK back from 22900 * the driver. 22901 */ 22902 if (ill->ill_sap == 0) { 22903 if (ill->ill_isv6) 22904 ill->ill_sap = IP6_DL_SAP; 22905 else 22906 ill->ill_sap = IP_DL_SAP; 22907 } 22908 22909 ill->ill_ifname_pending = 1; 22910 ill->ill_ifname_pending_err = 0; 22911 22912 /* 22913 * When the first ipif comes up in ipif_up_done(), multicast groups 22914 * that were joined while this ill was not bound to the DLPI link need 22915 * to be recovered by ill_recover_multicast(). 22916 */ 22917 ill->ill_need_recover_multicast = 1; 22918 22919 ill_refhold(ill); 22920 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 22921 if ((error = ill_glist_insert(ill, interf_name, 22922 (ill->ill_flags & ILLF_IPV6) == ILLF_IPV6)) > 0) { 22923 ill->ill_ppa = UINT_MAX; 22924 ill->ill_name[0] = '\0'; 22925 /* 22926 * undo null termination done above. 22927 */ 22928 ppa_ptr[0] = old_char; 22929 rw_exit(&ipst->ips_ill_g_lock); 22930 ill_refrele(ill); 22931 return (error); 22932 } 22933 22934 ASSERT(ill->ill_name_length <= LIFNAMSIZ); 22935 22936 /* 22937 * When we return the buffer pointed to by interf_name should contain 22938 * the same name as in ill_name. 22939 * If a ppa was choosen by the system (ppa passed in was UINT_MAX) 22940 * the buffer pointed to by new_ppa_ptr would not contain the right ppa 22941 * so copy full name and update the ppa ptr. 22942 * When ppa passed in != UINT_MAX all values are correct just undo 22943 * null termination, this saves a bcopy. 22944 */ 22945 if (*new_ppa_ptr == UINT_MAX) { 22946 bcopy(ill->ill_name, interf_name, ill->ill_name_length); 22947 *new_ppa_ptr = ill->ill_ppa; 22948 } else { 22949 /* 22950 * undo null termination done above. 22951 */ 22952 ppa_ptr[0] = old_char; 22953 } 22954 22955 /* Let SCTP know about this ILL */ 22956 sctp_update_ill(ill, SCTP_ILL_INSERT); 22957 22958 ipsq = ipsq_try_enter(NULL, ill, q, mp, ip_reprocess_ioctl, NEW_OP, 22959 B_TRUE); 22960 22961 rw_exit(&ipst->ips_ill_g_lock); 22962 ill_refrele(ill); 22963 if (ipsq == NULL) 22964 return (EINPROGRESS); 22965 22966 /* 22967 * If ill_phyint_reinit() changed our ipsq, then start on the new ipsq. 22968 */ 22969 if (ipsq->ipsq_current_ipif == NULL) 22970 ipsq_current_start(ipsq, ipif, SIOCSLIFNAME); 22971 else 22972 ASSERT(ipsq->ipsq_current_ipif == ipif); 22973 22974 error = ipif_set_values_tail(ill, ipif, mp, q); 22975 ipsq_exit(ipsq); 22976 if (error != 0 && error != EINPROGRESS) { 22977 /* 22978 * restore previous values 22979 */ 22980 ill->ill_isv6 = B_FALSE; 22981 } 22982 return (error); 22983 } 22984 22985 22986 void 22987 ipif_init(ip_stack_t *ipst) 22988 { 22989 hrtime_t hrt; 22990 int i; 22991 22992 /* 22993 * Can't call drv_getparm here as it is too early in the boot. 22994 * As we use ipif_src_random just for picking a different 22995 * source address everytime, this need not be really random. 22996 */ 22997 hrt = gethrtime(); 22998 ipst->ips_ipif_src_random = 22999 ((hrt >> 32) & 0xffffffff) * (hrt & 0xffffffff); 23000 23001 for (i = 0; i < MAX_G_HEADS; i++) { 23002 ipst->ips_ill_g_heads[i].ill_g_list_head = 23003 (ill_if_t *)&ipst->ips_ill_g_heads[i]; 23004 ipst->ips_ill_g_heads[i].ill_g_list_tail = 23005 (ill_if_t *)&ipst->ips_ill_g_heads[i]; 23006 } 23007 23008 avl_create(&ipst->ips_phyint_g_list->phyint_list_avl_by_index, 23009 ill_phyint_compare_index, 23010 sizeof (phyint_t), 23011 offsetof(struct phyint, phyint_avl_by_index)); 23012 avl_create(&ipst->ips_phyint_g_list->phyint_list_avl_by_name, 23013 ill_phyint_compare_name, 23014 sizeof (phyint_t), 23015 offsetof(struct phyint, phyint_avl_by_name)); 23016 } 23017 23018 /* 23019 * Lookup the ipif corresponding to the onlink destination address. For 23020 * point-to-point interfaces, it matches with remote endpoint destination 23021 * address. For point-to-multipoint interfaces it only tries to match the 23022 * destination with the interface's subnet address. The longest, most specific 23023 * match is found to take care of such rare network configurations like - 23024 * le0: 129.146.1.1/16 23025 * le1: 129.146.2.2/24 23026 * It is used only by SO_DONTROUTE at the moment. 23027 */ 23028 ipif_t * 23029 ipif_lookup_onlink_addr(ipaddr_t addr, zoneid_t zoneid, ip_stack_t *ipst) 23030 { 23031 ipif_t *ipif, *best_ipif; 23032 ill_t *ill; 23033 ill_walk_context_t ctx; 23034 23035 ASSERT(zoneid != ALL_ZONES); 23036 best_ipif = NULL; 23037 23038 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 23039 ill = ILL_START_WALK_V4(&ctx, ipst); 23040 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 23041 mutex_enter(&ill->ill_lock); 23042 for (ipif = ill->ill_ipif; ipif != NULL; 23043 ipif = ipif->ipif_next) { 23044 if (!IPIF_CAN_LOOKUP(ipif)) 23045 continue; 23046 if (ipif->ipif_zoneid != zoneid && 23047 ipif->ipif_zoneid != ALL_ZONES) 23048 continue; 23049 /* 23050 * Point-to-point case. Look for exact match with 23051 * destination address. 23052 */ 23053 if (ipif->ipif_flags & IPIF_POINTOPOINT) { 23054 if (ipif->ipif_pp_dst_addr == addr) { 23055 ipif_refhold_locked(ipif); 23056 mutex_exit(&ill->ill_lock); 23057 rw_exit(&ipst->ips_ill_g_lock); 23058 if (best_ipif != NULL) 23059 ipif_refrele(best_ipif); 23060 return (ipif); 23061 } 23062 } else if (ipif->ipif_subnet == (addr & 23063 ipif->ipif_net_mask)) { 23064 /* 23065 * Point-to-multipoint case. Looping through to 23066 * find the most specific match. If there are 23067 * multiple best match ipif's then prefer ipif's 23068 * that are UP. If there is only one best match 23069 * ipif and it is DOWN we must still return it. 23070 */ 23071 if ((best_ipif == NULL) || 23072 (ipif->ipif_net_mask > 23073 best_ipif->ipif_net_mask) || 23074 ((ipif->ipif_net_mask == 23075 best_ipif->ipif_net_mask) && 23076 ((ipif->ipif_flags & IPIF_UP) && 23077 (!(best_ipif->ipif_flags & IPIF_UP))))) { 23078 ipif_refhold_locked(ipif); 23079 mutex_exit(&ill->ill_lock); 23080 rw_exit(&ipst->ips_ill_g_lock); 23081 if (best_ipif != NULL) 23082 ipif_refrele(best_ipif); 23083 best_ipif = ipif; 23084 rw_enter(&ipst->ips_ill_g_lock, 23085 RW_READER); 23086 mutex_enter(&ill->ill_lock); 23087 } 23088 } 23089 } 23090 mutex_exit(&ill->ill_lock); 23091 } 23092 rw_exit(&ipst->ips_ill_g_lock); 23093 return (best_ipif); 23094 } 23095 23096 /* 23097 * Save enough information so that we can recreate the IRE if 23098 * the interface goes down and then up. 23099 */ 23100 static void 23101 ipif_save_ire(ipif_t *ipif, ire_t *ire) 23102 { 23103 mblk_t *save_mp; 23104 23105 save_mp = allocb(sizeof (ifrt_t), BPRI_MED); 23106 if (save_mp != NULL) { 23107 ifrt_t *ifrt; 23108 23109 save_mp->b_wptr += sizeof (ifrt_t); 23110 ifrt = (ifrt_t *)save_mp->b_rptr; 23111 bzero(ifrt, sizeof (ifrt_t)); 23112 ifrt->ifrt_type = ire->ire_type; 23113 ifrt->ifrt_addr = ire->ire_addr; 23114 ifrt->ifrt_gateway_addr = ire->ire_gateway_addr; 23115 ifrt->ifrt_src_addr = ire->ire_src_addr; 23116 ifrt->ifrt_mask = ire->ire_mask; 23117 ifrt->ifrt_flags = ire->ire_flags; 23118 ifrt->ifrt_max_frag = ire->ire_max_frag; 23119 mutex_enter(&ipif->ipif_saved_ire_lock); 23120 save_mp->b_cont = ipif->ipif_saved_ire_mp; 23121 ipif->ipif_saved_ire_mp = save_mp; 23122 ipif->ipif_saved_ire_cnt++; 23123 mutex_exit(&ipif->ipif_saved_ire_lock); 23124 } 23125 } 23126 23127 static void 23128 ipif_remove_ire(ipif_t *ipif, ire_t *ire) 23129 { 23130 mblk_t **mpp; 23131 mblk_t *mp; 23132 ifrt_t *ifrt; 23133 23134 /* Remove from ipif_saved_ire_mp list if it is there */ 23135 mutex_enter(&ipif->ipif_saved_ire_lock); 23136 for (mpp = &ipif->ipif_saved_ire_mp; *mpp != NULL; 23137 mpp = &(*mpp)->b_cont) { 23138 /* 23139 * On a given ipif, the triple of address, gateway and 23140 * mask is unique for each saved IRE (in the case of 23141 * ordinary interface routes, the gateway address is 23142 * all-zeroes). 23143 */ 23144 mp = *mpp; 23145 ifrt = (ifrt_t *)mp->b_rptr; 23146 if (ifrt->ifrt_addr == ire->ire_addr && 23147 ifrt->ifrt_gateway_addr == ire->ire_gateway_addr && 23148 ifrt->ifrt_mask == ire->ire_mask) { 23149 *mpp = mp->b_cont; 23150 ipif->ipif_saved_ire_cnt--; 23151 freeb(mp); 23152 break; 23153 } 23154 } 23155 mutex_exit(&ipif->ipif_saved_ire_lock); 23156 } 23157 23158 /* 23159 * IP multirouting broadcast routes handling 23160 * Append CGTP broadcast IREs to regular ones created 23161 * at ifconfig time. 23162 */ 23163 static void 23164 ip_cgtp_bcast_add(ire_t *ire, ire_t *ire_dst, ip_stack_t *ipst) 23165 { 23166 ire_t *ire_prim; 23167 23168 ASSERT(ire != NULL); 23169 ASSERT(ire_dst != NULL); 23170 23171 ire_prim = ire_ctable_lookup(ire->ire_gateway_addr, 0, 23172 IRE_BROADCAST, NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 23173 if (ire_prim != NULL) { 23174 /* 23175 * We are in the special case of broadcasts for 23176 * CGTP. We add an IRE_BROADCAST that holds 23177 * the RTF_MULTIRT flag, the destination 23178 * address of ire_dst and the low level 23179 * info of ire_prim. In other words, CGTP 23180 * broadcast is added to the redundant ipif. 23181 */ 23182 ipif_t *ipif_prim; 23183 ire_t *bcast_ire; 23184 23185 ipif_prim = ire_prim->ire_ipif; 23186 23187 ip2dbg(("ip_cgtp_filter_bcast_add: " 23188 "ire_dst %p, ire_prim %p, ipif_prim %p\n", 23189 (void *)ire_dst, (void *)ire_prim, 23190 (void *)ipif_prim)); 23191 23192 bcast_ire = ire_create( 23193 (uchar_t *)&ire->ire_addr, 23194 (uchar_t *)&ip_g_all_ones, 23195 (uchar_t *)&ire_dst->ire_src_addr, 23196 (uchar_t *)&ire->ire_gateway_addr, 23197 &ipif_prim->ipif_mtu, 23198 NULL, 23199 ipif_prim->ipif_rq, 23200 ipif_prim->ipif_wq, 23201 IRE_BROADCAST, 23202 ipif_prim, 23203 0, 23204 0, 23205 0, 23206 ire->ire_flags, 23207 &ire_uinfo_null, 23208 NULL, 23209 NULL, 23210 ipst); 23211 23212 if (bcast_ire != NULL) { 23213 23214 if (ire_add(&bcast_ire, NULL, NULL, NULL, 23215 B_FALSE) == 0) { 23216 ip2dbg(("ip_cgtp_filter_bcast_add: " 23217 "added bcast_ire %p\n", 23218 (void *)bcast_ire)); 23219 23220 ipif_save_ire(bcast_ire->ire_ipif, 23221 bcast_ire); 23222 ire_refrele(bcast_ire); 23223 } 23224 } 23225 ire_refrele(ire_prim); 23226 } 23227 } 23228 23229 23230 /* 23231 * IP multirouting broadcast routes handling 23232 * Remove the broadcast ire 23233 */ 23234 static void 23235 ip_cgtp_bcast_delete(ire_t *ire, ip_stack_t *ipst) 23236 { 23237 ire_t *ire_dst; 23238 23239 ASSERT(ire != NULL); 23240 ire_dst = ire_ctable_lookup(ire->ire_addr, 0, IRE_BROADCAST, 23241 NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 23242 if (ire_dst != NULL) { 23243 ire_t *ire_prim; 23244 23245 ire_prim = ire_ctable_lookup(ire->ire_gateway_addr, 0, 23246 IRE_BROADCAST, NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 23247 if (ire_prim != NULL) { 23248 ipif_t *ipif_prim; 23249 ire_t *bcast_ire; 23250 23251 ipif_prim = ire_prim->ire_ipif; 23252 23253 ip2dbg(("ip_cgtp_filter_bcast_delete: " 23254 "ire_dst %p, ire_prim %p, ipif_prim %p\n", 23255 (void *)ire_dst, (void *)ire_prim, 23256 (void *)ipif_prim)); 23257 23258 bcast_ire = ire_ctable_lookup(ire->ire_addr, 23259 ire->ire_gateway_addr, 23260 IRE_BROADCAST, 23261 ipif_prim, ALL_ZONES, 23262 NULL, 23263 MATCH_IRE_TYPE | MATCH_IRE_GW | MATCH_IRE_IPIF | 23264 MATCH_IRE_MASK, ipst); 23265 23266 if (bcast_ire != NULL) { 23267 ip2dbg(("ip_cgtp_filter_bcast_delete: " 23268 "looked up bcast_ire %p\n", 23269 (void *)bcast_ire)); 23270 ipif_remove_ire(bcast_ire->ire_ipif, 23271 bcast_ire); 23272 ire_delete(bcast_ire); 23273 ire_refrele(bcast_ire); 23274 } 23275 ire_refrele(ire_prim); 23276 } 23277 ire_refrele(ire_dst); 23278 } 23279 } 23280 23281 /* 23282 * IPsec hardware acceleration capabilities related functions. 23283 */ 23284 23285 /* 23286 * Free a per-ill IPsec capabilities structure. 23287 */ 23288 static void 23289 ill_ipsec_capab_free(ill_ipsec_capab_t *capab) 23290 { 23291 if (capab->auth_hw_algs != NULL) 23292 kmem_free(capab->auth_hw_algs, capab->algs_size); 23293 if (capab->encr_hw_algs != NULL) 23294 kmem_free(capab->encr_hw_algs, capab->algs_size); 23295 if (capab->encr_algparm != NULL) 23296 kmem_free(capab->encr_algparm, capab->encr_algparm_size); 23297 kmem_free(capab, sizeof (ill_ipsec_capab_t)); 23298 } 23299 23300 /* 23301 * Allocate a new per-ill IPsec capabilities structure. This structure 23302 * is specific to an IPsec protocol (AH or ESP). It is implemented as 23303 * an array which specifies, for each algorithm, whether this algorithm 23304 * is supported by the ill or not. 23305 */ 23306 static ill_ipsec_capab_t * 23307 ill_ipsec_capab_alloc(void) 23308 { 23309 ill_ipsec_capab_t *capab; 23310 uint_t nelems; 23311 23312 capab = kmem_zalloc(sizeof (ill_ipsec_capab_t), KM_NOSLEEP); 23313 if (capab == NULL) 23314 return (NULL); 23315 23316 /* we need one bit per algorithm */ 23317 nelems = MAX_IPSEC_ALGS / BITS(ipsec_capab_elem_t); 23318 capab->algs_size = nelems * sizeof (ipsec_capab_elem_t); 23319 23320 /* allocate memory to store algorithm flags */ 23321 capab->encr_hw_algs = kmem_zalloc(capab->algs_size, KM_NOSLEEP); 23322 if (capab->encr_hw_algs == NULL) 23323 goto nomem; 23324 capab->auth_hw_algs = kmem_zalloc(capab->algs_size, KM_NOSLEEP); 23325 if (capab->auth_hw_algs == NULL) 23326 goto nomem; 23327 /* 23328 * Leave encr_algparm NULL for now since we won't need it half 23329 * the time 23330 */ 23331 return (capab); 23332 23333 nomem: 23334 ill_ipsec_capab_free(capab); 23335 return (NULL); 23336 } 23337 23338 /* 23339 * Resize capability array. Since we're exclusive, this is OK. 23340 */ 23341 static boolean_t 23342 ill_ipsec_capab_resize_algparm(ill_ipsec_capab_t *capab, int algid) 23343 { 23344 ipsec_capab_algparm_t *nalp, *oalp; 23345 uint32_t olen, nlen; 23346 23347 oalp = capab->encr_algparm; 23348 olen = capab->encr_algparm_size; 23349 23350 if (oalp != NULL) { 23351 if (algid < capab->encr_algparm_end) 23352 return (B_TRUE); 23353 } 23354 23355 nlen = (algid + 1) * sizeof (*nalp); 23356 nalp = kmem_zalloc(nlen, KM_NOSLEEP); 23357 if (nalp == NULL) 23358 return (B_FALSE); 23359 23360 if (oalp != NULL) { 23361 bcopy(oalp, nalp, olen); 23362 kmem_free(oalp, olen); 23363 } 23364 capab->encr_algparm = nalp; 23365 capab->encr_algparm_size = nlen; 23366 capab->encr_algparm_end = algid + 1; 23367 23368 return (B_TRUE); 23369 } 23370 23371 /* 23372 * Compare the capabilities of the specified ill with the protocol 23373 * and algorithms specified by the SA passed as argument. 23374 * If they match, returns B_TRUE, B_FALSE if they do not match. 23375 * 23376 * The ill can be passed as a pointer to it, or by specifying its index 23377 * and whether it is an IPv6 ill (ill_index and ill_isv6 arguments). 23378 * 23379 * Called by ipsec_out_is_accelerated() do decide whether an outbound 23380 * packet is eligible for hardware acceleration, and by 23381 * ill_ipsec_capab_send_all() to decide whether a SA must be sent down 23382 * to a particular ill. 23383 */ 23384 boolean_t 23385 ipsec_capab_match(ill_t *ill, uint_t ill_index, boolean_t ill_isv6, 23386 ipsa_t *sa, netstack_t *ns) 23387 { 23388 boolean_t sa_isv6; 23389 uint_t algid; 23390 struct ill_ipsec_capab_s *cpp; 23391 boolean_t need_refrele = B_FALSE; 23392 ip_stack_t *ipst = ns->netstack_ip; 23393 23394 if (ill == NULL) { 23395 ill = ill_lookup_on_ifindex(ill_index, ill_isv6, NULL, 23396 NULL, NULL, NULL, ipst); 23397 if (ill == NULL) { 23398 ip0dbg(("ipsec_capab_match: ill doesn't exist\n")); 23399 return (B_FALSE); 23400 } 23401 need_refrele = B_TRUE; 23402 } 23403 23404 /* 23405 * Use the address length specified by the SA to determine 23406 * if it corresponds to a IPv6 address, and fail the matching 23407 * if the isv6 flag passed as argument does not match. 23408 * Note: this check is used for SADB capability checking before 23409 * sending SA information to an ill. 23410 */ 23411 sa_isv6 = (sa->ipsa_addrfam == AF_INET6); 23412 if (sa_isv6 != ill_isv6) 23413 /* protocol mismatch */ 23414 goto done; 23415 23416 /* 23417 * Check if the ill supports the protocol, algorithm(s) and 23418 * key size(s) specified by the SA, and get the pointers to 23419 * the algorithms supported by the ill. 23420 */ 23421 switch (sa->ipsa_type) { 23422 23423 case SADB_SATYPE_ESP: 23424 if (!(ill->ill_capabilities & ILL_CAPAB_ESP)) 23425 /* ill does not support ESP acceleration */ 23426 goto done; 23427 cpp = ill->ill_ipsec_capab_esp; 23428 algid = sa->ipsa_auth_alg; 23429 if (!IPSEC_ALG_IS_ENABLED(algid, cpp->auth_hw_algs)) 23430 goto done; 23431 algid = sa->ipsa_encr_alg; 23432 if (!IPSEC_ALG_IS_ENABLED(algid, cpp->encr_hw_algs)) 23433 goto done; 23434 if (algid < cpp->encr_algparm_end) { 23435 ipsec_capab_algparm_t *alp = &cpp->encr_algparm[algid]; 23436 if (sa->ipsa_encrkeybits < alp->minkeylen) 23437 goto done; 23438 if (sa->ipsa_encrkeybits > alp->maxkeylen) 23439 goto done; 23440 } 23441 break; 23442 23443 case SADB_SATYPE_AH: 23444 if (!(ill->ill_capabilities & ILL_CAPAB_AH)) 23445 /* ill does not support AH acceleration */ 23446 goto done; 23447 if (!IPSEC_ALG_IS_ENABLED(sa->ipsa_auth_alg, 23448 ill->ill_ipsec_capab_ah->auth_hw_algs)) 23449 goto done; 23450 break; 23451 } 23452 23453 if (need_refrele) 23454 ill_refrele(ill); 23455 return (B_TRUE); 23456 done: 23457 if (need_refrele) 23458 ill_refrele(ill); 23459 return (B_FALSE); 23460 } 23461 23462 /* 23463 * Add a new ill to the list of IPsec capable ills. 23464 * Called from ill_capability_ipsec_ack() when an ACK was received 23465 * indicating that IPsec hardware processing was enabled for an ill. 23466 * 23467 * ill must point to the ill for which acceleration was enabled. 23468 * dl_cap must be set to DL_CAPAB_IPSEC_AH or DL_CAPAB_IPSEC_ESP. 23469 */ 23470 static void 23471 ill_ipsec_capab_add(ill_t *ill, uint_t dl_cap, boolean_t sadb_resync) 23472 { 23473 ipsec_capab_ill_t **ills, *cur_ill, *new_ill; 23474 uint_t sa_type; 23475 uint_t ipproto; 23476 ip_stack_t *ipst = ill->ill_ipst; 23477 23478 ASSERT((dl_cap == DL_CAPAB_IPSEC_AH) || 23479 (dl_cap == DL_CAPAB_IPSEC_ESP)); 23480 23481 switch (dl_cap) { 23482 case DL_CAPAB_IPSEC_AH: 23483 sa_type = SADB_SATYPE_AH; 23484 ills = &ipst->ips_ipsec_capab_ills_ah; 23485 ipproto = IPPROTO_AH; 23486 break; 23487 case DL_CAPAB_IPSEC_ESP: 23488 sa_type = SADB_SATYPE_ESP; 23489 ills = &ipst->ips_ipsec_capab_ills_esp; 23490 ipproto = IPPROTO_ESP; 23491 break; 23492 } 23493 23494 rw_enter(&ipst->ips_ipsec_capab_ills_lock, RW_WRITER); 23495 23496 /* 23497 * Add ill index to list of hardware accelerators. If 23498 * already in list, do nothing. 23499 */ 23500 for (cur_ill = *ills; cur_ill != NULL && 23501 (cur_ill->ill_index != ill->ill_phyint->phyint_ifindex || 23502 cur_ill->ill_isv6 != ill->ill_isv6); cur_ill = cur_ill->next) 23503 ; 23504 23505 if (cur_ill == NULL) { 23506 /* if this is a new entry for this ill */ 23507 new_ill = kmem_zalloc(sizeof (ipsec_capab_ill_t), KM_NOSLEEP); 23508 if (new_ill == NULL) { 23509 rw_exit(&ipst->ips_ipsec_capab_ills_lock); 23510 return; 23511 } 23512 23513 new_ill->ill_index = ill->ill_phyint->phyint_ifindex; 23514 new_ill->ill_isv6 = ill->ill_isv6; 23515 new_ill->next = *ills; 23516 *ills = new_ill; 23517 } else if (!sadb_resync) { 23518 /* not resync'ing SADB and an entry exists for this ill */ 23519 rw_exit(&ipst->ips_ipsec_capab_ills_lock); 23520 return; 23521 } 23522 23523 rw_exit(&ipst->ips_ipsec_capab_ills_lock); 23524 23525 if (ipst->ips_ipcl_proto_fanout_v6[ipproto].connf_head != NULL) 23526 /* 23527 * IPsec module for protocol loaded, initiate dump 23528 * of the SADB to this ill. 23529 */ 23530 sadb_ill_download(ill, sa_type); 23531 } 23532 23533 /* 23534 * Remove an ill from the list of IPsec capable ills. 23535 */ 23536 static void 23537 ill_ipsec_capab_delete(ill_t *ill, uint_t dl_cap) 23538 { 23539 ipsec_capab_ill_t **ills, *cur_ill, *prev_ill; 23540 ip_stack_t *ipst = ill->ill_ipst; 23541 23542 ASSERT(dl_cap == DL_CAPAB_IPSEC_AH || 23543 dl_cap == DL_CAPAB_IPSEC_ESP); 23544 23545 ills = (dl_cap == DL_CAPAB_IPSEC_AH) ? &ipst->ips_ipsec_capab_ills_ah : 23546 &ipst->ips_ipsec_capab_ills_esp; 23547 23548 rw_enter(&ipst->ips_ipsec_capab_ills_lock, RW_WRITER); 23549 23550 prev_ill = NULL; 23551 for (cur_ill = *ills; cur_ill != NULL && (cur_ill->ill_index != 23552 ill->ill_phyint->phyint_ifindex || cur_ill->ill_isv6 != 23553 ill->ill_isv6); prev_ill = cur_ill, cur_ill = cur_ill->next) 23554 ; 23555 if (cur_ill == NULL) { 23556 /* entry not found */ 23557 rw_exit(&ipst->ips_ipsec_capab_ills_lock); 23558 return; 23559 } 23560 if (prev_ill == NULL) { 23561 /* entry at front of list */ 23562 *ills = NULL; 23563 } else { 23564 prev_ill->next = cur_ill->next; 23565 } 23566 kmem_free(cur_ill, sizeof (ipsec_capab_ill_t)); 23567 rw_exit(&ipst->ips_ipsec_capab_ills_lock); 23568 } 23569 23570 /* 23571 * Called by SADB to send a DL_CONTROL_REQ message to every ill 23572 * supporting the specified IPsec protocol acceleration. 23573 * sa_type must be SADB_SATYPE_AH or SADB_SATYPE_ESP. 23574 * We free the mblk and, if sa is non-null, release the held referece. 23575 */ 23576 void 23577 ill_ipsec_capab_send_all(uint_t sa_type, mblk_t *mp, ipsa_t *sa, 23578 netstack_t *ns) 23579 { 23580 ipsec_capab_ill_t *ici, *cur_ici; 23581 ill_t *ill; 23582 mblk_t *nmp, *mp_ship_list = NULL, *next_mp; 23583 ip_stack_t *ipst = ns->netstack_ip; 23584 23585 ici = (sa_type == SADB_SATYPE_AH) ? ipst->ips_ipsec_capab_ills_ah : 23586 ipst->ips_ipsec_capab_ills_esp; 23587 23588 rw_enter(&ipst->ips_ipsec_capab_ills_lock, RW_READER); 23589 23590 for (cur_ici = ici; cur_ici != NULL; cur_ici = cur_ici->next) { 23591 ill = ill_lookup_on_ifindex(cur_ici->ill_index, 23592 cur_ici->ill_isv6, NULL, NULL, NULL, NULL, ipst); 23593 23594 /* 23595 * Handle the case where the ill goes away while the SADB is 23596 * attempting to send messages. If it's going away, it's 23597 * nuking its shadow SADB, so we don't care.. 23598 */ 23599 23600 if (ill == NULL) 23601 continue; 23602 23603 if (sa != NULL) { 23604 /* 23605 * Make sure capabilities match before 23606 * sending SA to ill. 23607 */ 23608 if (!ipsec_capab_match(ill, cur_ici->ill_index, 23609 cur_ici->ill_isv6, sa, ipst->ips_netstack)) { 23610 ill_refrele(ill); 23611 continue; 23612 } 23613 23614 mutex_enter(&sa->ipsa_lock); 23615 sa->ipsa_flags |= IPSA_F_HW; 23616 mutex_exit(&sa->ipsa_lock); 23617 } 23618 23619 /* 23620 * Copy template message, and add it to the front 23621 * of the mblk ship list. We want to avoid holding 23622 * the ipsec_capab_ills_lock while sending the 23623 * message to the ills. 23624 * 23625 * The b_next and b_prev are temporarily used 23626 * to build a list of mblks to be sent down, and to 23627 * save the ill to which they must be sent. 23628 */ 23629 nmp = copymsg(mp); 23630 if (nmp == NULL) { 23631 ill_refrele(ill); 23632 continue; 23633 } 23634 ASSERT(nmp->b_next == NULL && nmp->b_prev == NULL); 23635 nmp->b_next = mp_ship_list; 23636 mp_ship_list = nmp; 23637 nmp->b_prev = (mblk_t *)ill; 23638 } 23639 23640 rw_exit(&ipst->ips_ipsec_capab_ills_lock); 23641 23642 for (nmp = mp_ship_list; nmp != NULL; nmp = next_mp) { 23643 /* restore the mblk to a sane state */ 23644 next_mp = nmp->b_next; 23645 nmp->b_next = NULL; 23646 ill = (ill_t *)nmp->b_prev; 23647 nmp->b_prev = NULL; 23648 23649 ill_dlpi_send(ill, nmp); 23650 ill_refrele(ill); 23651 } 23652 23653 if (sa != NULL) 23654 IPSA_REFRELE(sa); 23655 freemsg(mp); 23656 } 23657 23658 /* 23659 * Derive an interface id from the link layer address. 23660 * Knows about IEEE 802 and IEEE EUI-64 mappings. 23661 */ 23662 static boolean_t 23663 ip_ether_v6intfid(uint_t phys_length, uint8_t *phys_addr, in6_addr_t *v6addr) 23664 { 23665 char *addr; 23666 23667 if (phys_length != ETHERADDRL) 23668 return (B_FALSE); 23669 23670 /* Form EUI-64 like address */ 23671 addr = (char *)&v6addr->s6_addr32[2]; 23672 bcopy((char *)phys_addr, addr, 3); 23673 addr[0] ^= 0x2; /* Toggle Universal/Local bit */ 23674 addr[3] = (char)0xff; 23675 addr[4] = (char)0xfe; 23676 bcopy((char *)phys_addr + 3, addr + 5, 3); 23677 return (B_TRUE); 23678 } 23679 23680 /* ARGSUSED */ 23681 static boolean_t 23682 ip_nodef_v6intfid(uint_t phys_length, uint8_t *phys_addr, in6_addr_t *v6addr) 23683 { 23684 return (B_FALSE); 23685 } 23686 23687 /* ARGSUSED */ 23688 static boolean_t 23689 ip_ether_v6mapinfo(uint_t lla_length, uint8_t *bphys_addr, uint8_t *maddr, 23690 uint32_t *hw_start, in6_addr_t *v6_extract_mask) 23691 { 23692 /* 23693 * Multicast address mappings used over Ethernet/802.X. 23694 * This address is used as a base for mappings. 23695 */ 23696 static uint8_t ipv6_g_phys_multi_addr[] = {0x33, 0x33, 0x00, 23697 0x00, 0x00, 0x00}; 23698 23699 /* 23700 * Extract low order 32 bits from IPv6 multicast address. 23701 * Or that into the link layer address, starting from the 23702 * second byte. 23703 */ 23704 *hw_start = 2; 23705 v6_extract_mask->s6_addr32[0] = 0; 23706 v6_extract_mask->s6_addr32[1] = 0; 23707 v6_extract_mask->s6_addr32[2] = 0; 23708 v6_extract_mask->s6_addr32[3] = 0xffffffffU; 23709 bcopy(ipv6_g_phys_multi_addr, maddr, lla_length); 23710 return (B_TRUE); 23711 } 23712 23713 /* 23714 * Indicate by return value whether multicast is supported. If not, 23715 * this code should not touch/change any parameters. 23716 */ 23717 /* ARGSUSED */ 23718 static boolean_t 23719 ip_ether_v4mapinfo(uint_t phys_length, uint8_t *bphys_addr, uint8_t *maddr, 23720 uint32_t *hw_start, ipaddr_t *extract_mask) 23721 { 23722 /* 23723 * Multicast address mappings used over Ethernet/802.X. 23724 * This address is used as a base for mappings. 23725 */ 23726 static uint8_t ip_g_phys_multi_addr[] = { 0x01, 0x00, 0x5e, 23727 0x00, 0x00, 0x00 }; 23728 23729 if (phys_length != ETHERADDRL) 23730 return (B_FALSE); 23731 23732 *extract_mask = htonl(0x007fffff); 23733 *hw_start = 2; 23734 bcopy(ip_g_phys_multi_addr, maddr, ETHERADDRL); 23735 return (B_TRUE); 23736 } 23737 23738 /* 23739 * Derive IPoIB interface id from the link layer address. 23740 */ 23741 static boolean_t 23742 ip_ib_v6intfid(uint_t phys_length, uint8_t *phys_addr, in6_addr_t *v6addr) 23743 { 23744 char *addr; 23745 23746 if (phys_length != 20) 23747 return (B_FALSE); 23748 addr = (char *)&v6addr->s6_addr32[2]; 23749 bcopy(phys_addr + 12, addr, 8); 23750 /* 23751 * In IBA 1.1 timeframe, some vendors erroneously set the u/l bit 23752 * in the globally assigned EUI-64 GUID to 1, in violation of IEEE 23753 * rules. In these cases, the IBA considers these GUIDs to be in 23754 * "Modified EUI-64" format, and thus toggling the u/l bit is not 23755 * required; vendors are required not to assign global EUI-64's 23756 * that differ only in u/l bit values, thus guaranteeing uniqueness 23757 * of the interface identifier. Whether the GUID is in modified 23758 * or proper EUI-64 format, the ipv6 identifier must have the u/l 23759 * bit set to 1. 23760 */ 23761 addr[0] |= 2; /* Set Universal/Local bit to 1 */ 23762 return (B_TRUE); 23763 } 23764 23765 /* 23766 * Note on mapping from multicast IP addresses to IPoIB multicast link 23767 * addresses. IPoIB multicast link addresses are based on IBA link addresses. 23768 * The format of an IPoIB multicast address is: 23769 * 23770 * 4 byte QPN Scope Sign. Pkey 23771 * +--------------------------------------------+ 23772 * | 00FFFFFF | FF | 1X | X01B | Pkey | GroupID | 23773 * +--------------------------------------------+ 23774 * 23775 * The Scope and Pkey components are properties of the IBA port and 23776 * network interface. They can be ascertained from the broadcast address. 23777 * The Sign. part is the signature, and is 401B for IPv4 and 601B for IPv6. 23778 */ 23779 23780 static boolean_t 23781 ip_ib_v6mapinfo(uint_t lla_length, uint8_t *bphys_addr, uint8_t *maddr, 23782 uint32_t *hw_start, in6_addr_t *v6_extract_mask) 23783 { 23784 /* 23785 * Base IPoIB IPv6 multicast address used for mappings. 23786 * Does not contain the IBA scope/Pkey values. 23787 */ 23788 static uint8_t ipv6_g_phys_ibmulti_addr[] = { 0x00, 0xff, 0xff, 0xff, 23789 0xff, 0x10, 0x60, 0x1b, 0x00, 0x00, 0x00, 0x00, 23790 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 }; 23791 23792 /* 23793 * Extract low order 80 bits from IPv6 multicast address. 23794 * Or that into the link layer address, starting from the 23795 * sixth byte. 23796 */ 23797 *hw_start = 6; 23798 bcopy(ipv6_g_phys_ibmulti_addr, maddr, lla_length); 23799 23800 /* 23801 * Now fill in the IBA scope/Pkey values from the broadcast address. 23802 */ 23803 *(maddr + 5) = *(bphys_addr + 5); 23804 *(maddr + 8) = *(bphys_addr + 8); 23805 *(maddr + 9) = *(bphys_addr + 9); 23806 23807 v6_extract_mask->s6_addr32[0] = 0; 23808 v6_extract_mask->s6_addr32[1] = htonl(0x0000ffff); 23809 v6_extract_mask->s6_addr32[2] = 0xffffffffU; 23810 v6_extract_mask->s6_addr32[3] = 0xffffffffU; 23811 return (B_TRUE); 23812 } 23813 23814 static boolean_t 23815 ip_ib_v4mapinfo(uint_t phys_length, uint8_t *bphys_addr, uint8_t *maddr, 23816 uint32_t *hw_start, ipaddr_t *extract_mask) 23817 { 23818 /* 23819 * Base IPoIB IPv4 multicast address used for mappings. 23820 * Does not contain the IBA scope/Pkey values. 23821 */ 23822 static uint8_t ipv4_g_phys_ibmulti_addr[] = { 0x00, 0xff, 0xff, 0xff, 23823 0xff, 0x10, 0x40, 0x1b, 0x00, 0x00, 0x00, 0x00, 23824 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 }; 23825 23826 if (phys_length != sizeof (ipv4_g_phys_ibmulti_addr)) 23827 return (B_FALSE); 23828 23829 /* 23830 * Extract low order 28 bits from IPv4 multicast address. 23831 * Or that into the link layer address, starting from the 23832 * sixteenth byte. 23833 */ 23834 *extract_mask = htonl(0x0fffffff); 23835 *hw_start = 16; 23836 bcopy(ipv4_g_phys_ibmulti_addr, maddr, phys_length); 23837 23838 /* 23839 * Now fill in the IBA scope/Pkey values from the broadcast address. 23840 */ 23841 *(maddr + 5) = *(bphys_addr + 5); 23842 *(maddr + 8) = *(bphys_addr + 8); 23843 *(maddr + 9) = *(bphys_addr + 9); 23844 return (B_TRUE); 23845 } 23846 23847 /* 23848 * Returns B_TRUE if an ipif is present in the given zone, matching some flags 23849 * (typically IPIF_UP). If ipifp is non-null, the held ipif is returned there. 23850 * This works for both IPv4 and IPv6; if the passed-in ill is v6, the ipif with 23851 * the link-local address is preferred. 23852 */ 23853 boolean_t 23854 ipif_lookup_zoneid(ill_t *ill, zoneid_t zoneid, int flags, ipif_t **ipifp) 23855 { 23856 ipif_t *ipif; 23857 ipif_t *maybe_ipif = NULL; 23858 23859 mutex_enter(&ill->ill_lock); 23860 if (ill->ill_state_flags & ILL_CONDEMNED) { 23861 mutex_exit(&ill->ill_lock); 23862 if (ipifp != NULL) 23863 *ipifp = NULL; 23864 return (B_FALSE); 23865 } 23866 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 23867 if (!IPIF_CAN_LOOKUP(ipif)) 23868 continue; 23869 if (zoneid != ALL_ZONES && ipif->ipif_zoneid != zoneid && 23870 ipif->ipif_zoneid != ALL_ZONES) 23871 continue; 23872 if ((ipif->ipif_flags & flags) != flags) 23873 continue; 23874 23875 if (ipifp == NULL) { 23876 mutex_exit(&ill->ill_lock); 23877 ASSERT(maybe_ipif == NULL); 23878 return (B_TRUE); 23879 } 23880 if (!ill->ill_isv6 || 23881 IN6_IS_ADDR_LINKLOCAL(&ipif->ipif_v6src_addr)) { 23882 ipif_refhold_locked(ipif); 23883 mutex_exit(&ill->ill_lock); 23884 *ipifp = ipif; 23885 return (B_TRUE); 23886 } 23887 if (maybe_ipif == NULL) 23888 maybe_ipif = ipif; 23889 } 23890 if (ipifp != NULL) { 23891 if (maybe_ipif != NULL) 23892 ipif_refhold_locked(maybe_ipif); 23893 *ipifp = maybe_ipif; 23894 } 23895 mutex_exit(&ill->ill_lock); 23896 return (maybe_ipif != NULL); 23897 } 23898 23899 /* 23900 * Same as ipif_lookup_zoneid() but looks at all the ills in the same group. 23901 */ 23902 boolean_t 23903 ipif_lookup_zoneid_group(ill_t *ill, zoneid_t zoneid, int flags, ipif_t **ipifp) 23904 { 23905 ill_t *illg; 23906 ip_stack_t *ipst = ill->ill_ipst; 23907 23908 /* 23909 * We look at the passed-in ill first without grabbing ill_g_lock. 23910 */ 23911 if (ipif_lookup_zoneid(ill, zoneid, flags, ipifp)) { 23912 return (B_TRUE); 23913 } 23914 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 23915 if (ill->ill_group == NULL) { 23916 /* ill not in a group */ 23917 rw_exit(&ipst->ips_ill_g_lock); 23918 return (B_FALSE); 23919 } 23920 23921 /* 23922 * There's no ipif in the zone on ill, however ill is part of an IPMP 23923 * group. We need to look for an ipif in the zone on all the ills in the 23924 * group. 23925 */ 23926 illg = ill->ill_group->illgrp_ill; 23927 do { 23928 /* 23929 * We don't call ipif_lookup_zoneid() on ill as we already know 23930 * that it's not there. 23931 */ 23932 if (illg != ill && 23933 ipif_lookup_zoneid(illg, zoneid, flags, ipifp)) { 23934 break; 23935 } 23936 } while ((illg = illg->ill_group_next) != NULL); 23937 rw_exit(&ipst->ips_ill_g_lock); 23938 return (illg != NULL); 23939 } 23940 23941 /* 23942 * Check if this ill is only being used to send ICMP probes for IPMP 23943 */ 23944 boolean_t 23945 ill_is_probeonly(ill_t *ill) 23946 { 23947 /* 23948 * Check if the interface is FAILED, or INACTIVE 23949 */ 23950 if (ill->ill_phyint->phyint_flags & (PHYI_FAILED|PHYI_INACTIVE)) 23951 return (B_TRUE); 23952 23953 return (B_FALSE); 23954 } 23955 23956 /* 23957 * Return a pointer to an ipif_t given a combination of (ill_idx,ipif_id) 23958 * If a pointer to an ipif_t is returned then the caller will need to do 23959 * an ill_refrele(). 23960 * 23961 * If there is no real interface which matches the ifindex, then it looks 23962 * for a group that has a matching index. In the case of a group match the 23963 * lifidx must be zero. We don't need emulate the logical interfaces 23964 * since IP Filter's use of netinfo doesn't use that. 23965 */ 23966 ipif_t * 23967 ipif_getby_indexes(uint_t ifindex, uint_t lifidx, boolean_t isv6, 23968 ip_stack_t *ipst) 23969 { 23970 ipif_t *ipif; 23971 ill_t *ill; 23972 23973 ill = ill_lookup_on_ifindex(ifindex, isv6, NULL, NULL, NULL, NULL, 23974 ipst); 23975 23976 if (ill == NULL) { 23977 /* Fallback to group names only if hook_emulation set */ 23978 if (!ipst->ips_ipmp_hook_emulation) 23979 return (NULL); 23980 23981 if (lifidx != 0) 23982 return (NULL); 23983 ill = ill_group_lookup_on_ifindex(ifindex, isv6, ipst); 23984 if (ill == NULL) 23985 return (NULL); 23986 } 23987 23988 mutex_enter(&ill->ill_lock); 23989 if (ill->ill_state_flags & ILL_CONDEMNED) { 23990 mutex_exit(&ill->ill_lock); 23991 ill_refrele(ill); 23992 return (NULL); 23993 } 23994 23995 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 23996 if (!IPIF_CAN_LOOKUP(ipif)) 23997 continue; 23998 if (lifidx == ipif->ipif_id) { 23999 ipif_refhold_locked(ipif); 24000 break; 24001 } 24002 } 24003 24004 mutex_exit(&ill->ill_lock); 24005 ill_refrele(ill); 24006 return (ipif); 24007 } 24008 24009 /* 24010 * Flush the fastpath by deleting any nce's that are waiting for the fastpath, 24011 * There is one exceptions IRE_BROADCAST are difficult to recreate, 24012 * so instead we just nuke their nce_fp_mp's; see ndp_fastpath_flush() 24013 * for details. 24014 */ 24015 void 24016 ill_fastpath_flush(ill_t *ill) 24017 { 24018 ip_stack_t *ipst = ill->ill_ipst; 24019 24020 nce_fastpath_list_dispatch(ill, NULL, NULL); 24021 ndp_walk_common((ill->ill_isv6 ? ipst->ips_ndp6 : ipst->ips_ndp4), 24022 ill, (pfi_t)ndp_fastpath_flush, NULL, B_TRUE); 24023 } 24024 24025 /* 24026 * Set the physical address information for `ill' to the contents of the 24027 * dl_notify_ind_t pointed to by `mp'. Must be called as writer, and will be 24028 * asynchronous if `ill' cannot immediately be quiesced -- in which case 24029 * EINPROGRESS will be returned. 24030 */ 24031 int 24032 ill_set_phys_addr(ill_t *ill, mblk_t *mp) 24033 { 24034 ipsq_t *ipsq = ill->ill_phyint->phyint_ipsq; 24035 dl_notify_ind_t *dlindp = (dl_notify_ind_t *)mp->b_rptr; 24036 24037 ASSERT(IAM_WRITER_IPSQ(ipsq)); 24038 24039 if (dlindp->dl_data != DL_IPV6_LINK_LAYER_ADDR && 24040 dlindp->dl_data != DL_CURR_PHYS_ADDR) { 24041 /* Changing DL_IPV6_TOKEN is not yet supported */ 24042 return (0); 24043 } 24044 24045 /* 24046 * We need to store up to two copies of `mp' in `ill'. Due to the 24047 * design of ipsq_pending_mp_add(), we can't pass them as separate 24048 * arguments to ill_set_phys_addr_tail(). Instead, chain them 24049 * together here, then pull 'em apart in ill_set_phys_addr_tail(). 24050 */ 24051 if ((mp = copyb(mp)) == NULL || (mp->b_cont = copyb(mp)) == NULL) { 24052 freemsg(mp); 24053 return (ENOMEM); 24054 } 24055 24056 ipsq_current_start(ipsq, ill->ill_ipif, 0); 24057 24058 /* 24059 * If we can quiesce the ill, then set the address. If not, then 24060 * ill_set_phys_addr_tail() will be called from ipif_ill_refrele_tail(). 24061 */ 24062 ill_down_ipifs(ill, NULL, 0, B_FALSE); 24063 mutex_enter(&ill->ill_lock); 24064 if (!ill_is_quiescent(ill)) { 24065 /* call cannot fail since `conn_t *' argument is NULL */ 24066 (void) ipsq_pending_mp_add(NULL, ill->ill_ipif, ill->ill_rq, 24067 mp, ILL_DOWN); 24068 mutex_exit(&ill->ill_lock); 24069 return (EINPROGRESS); 24070 } 24071 mutex_exit(&ill->ill_lock); 24072 24073 ill_set_phys_addr_tail(ipsq, ill->ill_rq, mp, NULL); 24074 return (0); 24075 } 24076 24077 /* 24078 * Once the ill associated with `q' has quiesced, set its physical address 24079 * information to the values in `addrmp'. Note that two copies of `addrmp' 24080 * are passed (linked by b_cont), since we sometimes need to save two distinct 24081 * copies in the ill_t, and our context doesn't permit sleeping or allocation 24082 * failure (we'll free the other copy if it's not needed). Since the ill_t 24083 * is quiesced, we know any stale IREs with the old address information have 24084 * already been removed, so we don't need to call ill_fastpath_flush(). 24085 */ 24086 /* ARGSUSED */ 24087 static void 24088 ill_set_phys_addr_tail(ipsq_t *ipsq, queue_t *q, mblk_t *addrmp, void *dummy) 24089 { 24090 ill_t *ill = q->q_ptr; 24091 mblk_t *addrmp2 = unlinkb(addrmp); 24092 dl_notify_ind_t *dlindp = (dl_notify_ind_t *)addrmp->b_rptr; 24093 uint_t addrlen, addroff; 24094 24095 ASSERT(IAM_WRITER_IPSQ(ipsq)); 24096 24097 addroff = dlindp->dl_addr_offset; 24098 addrlen = dlindp->dl_addr_length - ABS(ill->ill_sap_length); 24099 24100 switch (dlindp->dl_data) { 24101 case DL_IPV6_LINK_LAYER_ADDR: 24102 ill_set_ndmp(ill, addrmp, addroff, addrlen); 24103 freemsg(addrmp2); 24104 break; 24105 24106 case DL_CURR_PHYS_ADDR: 24107 freemsg(ill->ill_phys_addr_mp); 24108 ill->ill_phys_addr = addrmp->b_rptr + addroff; 24109 ill->ill_phys_addr_mp = addrmp; 24110 ill->ill_phys_addr_length = addrlen; 24111 24112 if (ill->ill_isv6 && !(ill->ill_flags & ILLF_XRESOLV)) 24113 ill_set_ndmp(ill, addrmp2, addroff, addrlen); 24114 else 24115 freemsg(addrmp2); 24116 break; 24117 default: 24118 ASSERT(0); 24119 } 24120 24121 /* 24122 * If there are ipifs to bring up, ill_up_ipifs() will return 24123 * EINPROGRESS, and ipsq_current_finish() will be called by 24124 * ip_rput_dlpi_writer() or ip_arp_done() when the last ipif is 24125 * brought up. 24126 */ 24127 if (ill_up_ipifs(ill, q, addrmp) != EINPROGRESS) 24128 ipsq_current_finish(ipsq); 24129 } 24130 24131 /* 24132 * Helper routine for setting the ill_nd_lla fields. 24133 */ 24134 void 24135 ill_set_ndmp(ill_t *ill, mblk_t *ndmp, uint_t addroff, uint_t addrlen) 24136 { 24137 freemsg(ill->ill_nd_lla_mp); 24138 ill->ill_nd_lla = ndmp->b_rptr + addroff; 24139 ill->ill_nd_lla_mp = ndmp; 24140 ill->ill_nd_lla_len = addrlen; 24141 } 24142 24143 major_t IP_MAJ; 24144 #define IP "ip" 24145 24146 #define UDP6DEV "/devices/pseudo/udp6@0:udp6" 24147 #define UDPDEV "/devices/pseudo/udp@0:udp" 24148 24149 /* 24150 * Issue REMOVEIF ioctls to have the loopback interfaces 24151 * go away. Other interfaces are either I_LINKed or I_PLINKed; 24152 * the former going away when the user-level processes in the zone 24153 * are killed * and the latter are cleaned up by the stream head 24154 * str_stack_shutdown callback that undoes all I_PLINKs. 24155 */ 24156 void 24157 ip_loopback_cleanup(ip_stack_t *ipst) 24158 { 24159 int error; 24160 ldi_handle_t lh = NULL; 24161 ldi_ident_t li = NULL; 24162 int rval; 24163 cred_t *cr; 24164 struct strioctl iocb; 24165 struct lifreq lifreq; 24166 24167 IP_MAJ = ddi_name_to_major(IP); 24168 24169 #ifdef NS_DEBUG 24170 (void) printf("ip_loopback_cleanup() stackid %d\n", 24171 ipst->ips_netstack->netstack_stackid); 24172 #endif 24173 24174 bzero(&lifreq, sizeof (lifreq)); 24175 (void) strcpy(lifreq.lifr_name, ipif_loopback_name); 24176 24177 error = ldi_ident_from_major(IP_MAJ, &li); 24178 if (error) { 24179 #ifdef DEBUG 24180 printf("ip_loopback_cleanup: lyr ident get failed error %d\n", 24181 error); 24182 #endif 24183 return; 24184 } 24185 24186 cr = zone_get_kcred(netstackid_to_zoneid( 24187 ipst->ips_netstack->netstack_stackid)); 24188 ASSERT(cr != NULL); 24189 error = ldi_open_by_name(UDP6DEV, FREAD|FWRITE, cr, &lh, li); 24190 if (error) { 24191 #ifdef DEBUG 24192 printf("ip_loopback_cleanup: open of UDP6DEV failed error %d\n", 24193 error); 24194 #endif 24195 goto out; 24196 } 24197 iocb.ic_cmd = SIOCLIFREMOVEIF; 24198 iocb.ic_timout = 15; 24199 iocb.ic_len = sizeof (lifreq); 24200 iocb.ic_dp = (char *)&lifreq; 24201 24202 error = ldi_ioctl(lh, I_STR, (intptr_t)&iocb, FKIOCTL, cr, &rval); 24203 /* LINTED - statement has no consequent */ 24204 if (error) { 24205 #ifdef NS_DEBUG 24206 printf("ip_loopback_cleanup: ioctl SIOCLIFREMOVEIF failed on " 24207 "UDP6 error %d\n", error); 24208 #endif 24209 } 24210 (void) ldi_close(lh, FREAD|FWRITE, cr); 24211 lh = NULL; 24212 24213 error = ldi_open_by_name(UDPDEV, FREAD|FWRITE, cr, &lh, li); 24214 if (error) { 24215 #ifdef NS_DEBUG 24216 printf("ip_loopback_cleanup: open of UDPDEV failed error %d\n", 24217 error); 24218 #endif 24219 goto out; 24220 } 24221 24222 iocb.ic_cmd = SIOCLIFREMOVEIF; 24223 iocb.ic_timout = 15; 24224 iocb.ic_len = sizeof (lifreq); 24225 iocb.ic_dp = (char *)&lifreq; 24226 24227 error = ldi_ioctl(lh, I_STR, (intptr_t)&iocb, FKIOCTL, cr, &rval); 24228 /* LINTED - statement has no consequent */ 24229 if (error) { 24230 #ifdef NS_DEBUG 24231 printf("ip_loopback_cleanup: ioctl SIOCLIFREMOVEIF failed on " 24232 "UDP error %d\n", error); 24233 #endif 24234 } 24235 (void) ldi_close(lh, FREAD|FWRITE, cr); 24236 lh = NULL; 24237 24238 out: 24239 /* Close layered handles */ 24240 if (lh) 24241 (void) ldi_close(lh, FREAD|FWRITE, cr); 24242 if (li) 24243 ldi_ident_release(li); 24244 24245 crfree(cr); 24246 } 24247 24248 /* 24249 * This needs to be in-sync with nic_event_t definition 24250 */ 24251 static const char * 24252 ill_hook_event2str(nic_event_t event) 24253 { 24254 switch (event) { 24255 case NE_PLUMB: 24256 return ("PLUMB"); 24257 case NE_UNPLUMB: 24258 return ("UNPLUMB"); 24259 case NE_UP: 24260 return ("UP"); 24261 case NE_DOWN: 24262 return ("DOWN"); 24263 case NE_ADDRESS_CHANGE: 24264 return ("ADDRESS_CHANGE"); 24265 case NE_LIF_UP: 24266 return ("LIF_UP"); 24267 case NE_LIF_DOWN: 24268 return ("LIF_DOWN"); 24269 default: 24270 return ("UNKNOWN"); 24271 } 24272 } 24273 24274 void 24275 ill_nic_event_dispatch(ill_t *ill, lif_if_t lif, nic_event_t event, 24276 nic_event_data_t data, size_t datalen) 24277 { 24278 ip_stack_t *ipst = ill->ill_ipst; 24279 hook_nic_event_int_t *info; 24280 const char *str = NULL; 24281 24282 /* create a new nic event info */ 24283 if ((info = kmem_alloc(sizeof (*info), KM_NOSLEEP)) == NULL) 24284 goto fail; 24285 24286 if (event == NE_UNPLUMB) 24287 info->hnei_event.hne_nic = ill->ill_phyint->phyint_ifindex; 24288 else 24289 info->hnei_event.hne_nic = ill->ill_phyint->phyint_hook_ifindex; 24290 info->hnei_event.hne_lif = lif; 24291 info->hnei_event.hne_event = event; 24292 info->hnei_event.hne_protocol = ill->ill_isv6 ? 24293 ipst->ips_ipv6_net_data : ipst->ips_ipv4_net_data; 24294 info->hnei_event.hne_data = NULL; 24295 info->hnei_event.hne_datalen = 0; 24296 info->hnei_stackid = ipst->ips_netstack->netstack_stackid; 24297 24298 if (data != NULL && datalen != 0) { 24299 info->hnei_event.hne_data = kmem_alloc(datalen, KM_NOSLEEP); 24300 if (info->hnei_event.hne_data == NULL) 24301 goto fail; 24302 bcopy(data, info->hnei_event.hne_data, datalen); 24303 info->hnei_event.hne_datalen = datalen; 24304 } 24305 24306 if (ddi_taskq_dispatch(eventq_queue_nic, ip_ne_queue_func, info, 24307 DDI_NOSLEEP) == DDI_SUCCESS) 24308 return; 24309 24310 fail: 24311 if (info != NULL) { 24312 if (info->hnei_event.hne_data != NULL) { 24313 kmem_free(info->hnei_event.hne_data, 24314 info->hnei_event.hne_datalen); 24315 } 24316 kmem_free(info, sizeof (hook_nic_event_t)); 24317 } 24318 str = ill_hook_event2str(event); 24319 ip2dbg(("ill_nic_event_dispatch: could not dispatch %s nic event " 24320 "information for %s (ENOMEM)\n", str, ill->ill_name)); 24321 } 24322 24323 void 24324 ipif_up_notify(ipif_t *ipif) 24325 { 24326 ip_rts_ifmsg(ipif); 24327 ip_rts_newaddrmsg(RTM_ADD, 0, ipif); 24328 sctp_update_ipif(ipif, SCTP_IPIF_UP); 24329 ill_nic_event_dispatch(ipif->ipif_ill, MAP_IPIF_ID(ipif->ipif_id), 24330 NE_LIF_UP, NULL, 0); 24331 } 24332