1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2006 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 /* Copyright (c) 1990 Mentat Inc. */ 26 27 #pragma ident "%Z%%M% %I% %E% SMI" 28 29 /* 30 * This file contains the interface control functions for IP. 31 */ 32 33 #include <sys/types.h> 34 #include <sys/stream.h> 35 #include <sys/dlpi.h> 36 #include <sys/stropts.h> 37 #include <sys/strsun.h> 38 #include <sys/sysmacros.h> 39 #include <sys/strlog.h> 40 #include <sys/ddi.h> 41 #include <sys/sunddi.h> 42 #include <sys/cmn_err.h> 43 #include <sys/kstat.h> 44 #include <sys/debug.h> 45 #include <sys/zone.h> 46 47 #include <sys/kmem.h> 48 #include <sys/systm.h> 49 #include <sys/param.h> 50 #include <sys/socket.h> 51 #include <sys/isa_defs.h> 52 #include <net/if.h> 53 #include <net/if_arp.h> 54 #include <net/if_types.h> 55 #include <net/if_dl.h> 56 #include <net/route.h> 57 #include <sys/sockio.h> 58 #include <netinet/in.h> 59 #include <netinet/ip6.h> 60 #include <netinet/icmp6.h> 61 #include <netinet/igmp_var.h> 62 #include <sys/strsun.h> 63 #include <sys/policy.h> 64 #include <sys/ethernet.h> 65 66 #include <inet/common.h> /* for various inet/mi.h and inet/nd.h needs */ 67 #include <inet/mi.h> 68 #include <inet/nd.h> 69 #include <inet/arp.h> 70 #include <inet/mib2.h> 71 #include <inet/ip.h> 72 #include <inet/ip6.h> 73 #include <inet/ip6_asp.h> 74 #include <inet/tcp.h> 75 #include <inet/ip_multi.h> 76 #include <inet/ip_ire.h> 77 #include <inet/ip_rts.h> 78 #include <inet/ip_ndp.h> 79 #include <inet/ip_if.h> 80 #include <inet/ip_impl.h> 81 #include <inet/tun.h> 82 #include <inet/sctp_ip.h> 83 84 #include <net/pfkeyv2.h> 85 #include <inet/ipsec_info.h> 86 #include <inet/sadb.h> 87 #include <inet/ipsec_impl.h> 88 #include <sys/iphada.h> 89 90 91 #include <netinet/igmp.h> 92 #include <inet/ip_listutils.h> 93 #include <inet/ipclassifier.h> 94 #include <sys/mac.h> 95 96 #include <sys/systeminfo.h> 97 #include <sys/bootconf.h> 98 99 #include <sys/tsol/tndb.h> 100 #include <sys/tsol/tnet.h> 101 102 /* The character which tells where the ill_name ends */ 103 #define IPIF_SEPARATOR_CHAR ':' 104 105 /* IP ioctl function table entry */ 106 typedef struct ipft_s { 107 int ipft_cmd; 108 pfi_t ipft_pfi; 109 int ipft_min_size; 110 int ipft_flags; 111 } ipft_t; 112 #define IPFT_F_NO_REPLY 0x1 /* IP ioctl does not expect any reply */ 113 #define IPFT_F_SELF_REPLY 0x2 /* ioctl callee does the ioctl reply */ 114 115 typedef struct ip_sock_ar_s { 116 union { 117 area_t ip_sock_area; 118 ared_t ip_sock_ared; 119 areq_t ip_sock_areq; 120 } ip_sock_ar_u; 121 queue_t *ip_sock_ar_q; 122 } ip_sock_ar_t; 123 124 static int nd_ill_forward_get(queue_t *, mblk_t *, caddr_t, cred_t *); 125 static int nd_ill_forward_set(queue_t *q, mblk_t *mp, 126 char *value, caddr_t cp, cred_t *ioc_cr); 127 128 static boolean_t ip_addr_ok_v4(ipaddr_t addr, ipaddr_t subnet_mask); 129 static ip_m_t *ip_m_lookup(t_uscalar_t mac_type); 130 static int ip_sioctl_addr_tail(ipif_t *ipif, sin_t *sin, queue_t *q, 131 mblk_t *mp, boolean_t need_up); 132 static int ip_sioctl_dstaddr_tail(ipif_t *ipif, sin_t *sin, queue_t *q, 133 mblk_t *mp, boolean_t need_up); 134 static int ip_sioctl_slifzone_tail(ipif_t *ipif, zoneid_t zoneid, 135 queue_t *q, mblk_t *mp, boolean_t need_up); 136 static int ip_sioctl_flags_tail(ipif_t *ipif, uint64_t flags, queue_t *q, 137 mblk_t *mp, boolean_t need_up); 138 static int ip_sioctl_netmask_tail(ipif_t *ipif, sin_t *sin, queue_t *q, 139 mblk_t *mp); 140 static int ip_sioctl_subnet_tail(ipif_t *ipif, in6_addr_t, in6_addr_t, 141 queue_t *q, mblk_t *mp, boolean_t need_up); 142 static int ip_sioctl_arp_common(ill_t *ill, queue_t *q, mblk_t *mp, 143 sin_t *sin, boolean_t x_arp_ioctl, boolean_t if_arp_ioctl); 144 static ipaddr_t ip_subnet_mask(ipaddr_t addr, ipif_t **); 145 static void ip_wput_ioctl(queue_t *q, mblk_t *mp); 146 static void ipsq_flush(ill_t *ill); 147 static void ipsq_clean_all(ill_t *ill); 148 static void ipsq_clean_ring(ill_t *ill, ill_rx_ring_t *rx_ring); 149 static int ip_sioctl_token_tail(ipif_t *ipif, sin6_t *sin6, int addrlen, 150 queue_t *q, mblk_t *mp, boolean_t need_up); 151 static void ipsq_delete(ipsq_t *); 152 153 static ipif_t *ipif_allocate(ill_t *ill, int id, uint_t ire_type, 154 boolean_t initialize); 155 static void ipif_check_bcast_ires(ipif_t *test_ipif); 156 static void ipif_down_delete_ire(ire_t *ire, char *ipif); 157 static void ipif_delete_cache_ire(ire_t *, char *); 158 static int ipif_logical_down(ipif_t *ipif, queue_t *q, mblk_t *mp); 159 static void ipif_down_tail(ipif_t *ipif); 160 static void ipif_free(ipif_t *ipif); 161 static void ipif_free_tail(ipif_t *ipif); 162 static void ipif_mask_reply(ipif_t *); 163 static void ipif_mtu_change(ire_t *ire, char *ipif_arg); 164 static void ipif_multicast_down(ipif_t *ipif); 165 static void ipif_recreate_interface_routes(ipif_t *old_ipif, ipif_t *ipif); 166 static void ipif_set_default(ipif_t *ipif); 167 static int ipif_set_values(queue_t *q, mblk_t *mp, 168 char *interf_name, uint_t *ppa); 169 static int ipif_set_values_tail(ill_t *ill, ipif_t *ipif, mblk_t *mp, 170 queue_t *q); 171 static ipif_t *ipif_lookup_on_name(char *name, size_t namelen, 172 boolean_t do_alloc, boolean_t *exists, boolean_t isv6, zoneid_t zoneid, 173 queue_t *q, mblk_t *mp, ipsq_func_t func, int *error); 174 static int ipif_up(ipif_t *ipif, queue_t *q, mblk_t *mp); 175 static void ipif_update_other_ipifs(ipif_t *old_ipif, ill_group_t *illgrp); 176 177 static int ill_alloc_ppa(ill_if_t *, ill_t *); 178 static int ill_arp_off(ill_t *ill); 179 static int ill_arp_on(ill_t *ill); 180 static void ill_delete_interface_type(ill_if_t *); 181 static int ill_dl_up(ill_t *ill, ipif_t *ipif, mblk_t *mp, queue_t *q); 182 static void ill_down(ill_t *ill); 183 static void ill_downi(ire_t *ire, char *ill_arg); 184 static void ill_downi_mrtun_srcif(ire_t *ire, char *ill_arg); 185 static void ill_down_tail(ill_t *ill); 186 static void ill_free_mib(ill_t *ill); 187 static void ill_glist_delete(ill_t *); 188 static boolean_t ill_has_usable_ipif(ill_t *); 189 static int ill_lock_ipsq_ills(ipsq_t *sq, ill_t **list, int); 190 static void ill_nominate_bcast_rcv(ill_group_t *illgrp); 191 static void ill_phyint_free(ill_t *ill); 192 static void ill_phyint_reinit(ill_t *ill); 193 static void ill_set_nce_router_flags(ill_t *, boolean_t); 194 static void ill_signal_ipsq_ills(ipsq_t *, boolean_t); 195 static boolean_t ill_split_ipsq(ipsq_t *cur_sq); 196 static void ill_stq_cache_delete(ire_t *, char *); 197 198 static boolean_t ip_ether_v6intfid(uint_t, uint8_t *, in6_addr_t *); 199 static boolean_t ip_nodef_v6intfid(uint_t, uint8_t *, in6_addr_t *); 200 static boolean_t ip_ether_v6mapinfo(uint_t, uint8_t *, uint8_t *, uint32_t *, 201 in6_addr_t *); 202 static boolean_t ip_ether_v4mapinfo(uint_t, uint8_t *, uint8_t *, uint32_t *, 203 ipaddr_t *); 204 static boolean_t ip_ib_v6intfid(uint_t, uint8_t *, in6_addr_t *); 205 static boolean_t ip_ib_v6mapinfo(uint_t, uint8_t *, uint8_t *, uint32_t *, 206 in6_addr_t *); 207 static boolean_t ip_ib_v4mapinfo(uint_t, uint8_t *, uint8_t *, uint32_t *, 208 ipaddr_t *); 209 210 static void ipif_save_ire(ipif_t *, ire_t *); 211 static void ipif_remove_ire(ipif_t *, ire_t *); 212 static void ip_cgtp_bcast_add(ire_t *, ire_t *); 213 static void ip_cgtp_bcast_delete(ire_t *); 214 215 /* 216 * Per-ill IPsec capabilities management. 217 */ 218 static ill_ipsec_capab_t *ill_ipsec_capab_alloc(void); 219 static void ill_ipsec_capab_free(ill_ipsec_capab_t *); 220 static void ill_ipsec_capab_add(ill_t *, uint_t, boolean_t); 221 static void ill_ipsec_capab_delete(ill_t *, uint_t); 222 static boolean_t ill_ipsec_capab_resize_algparm(ill_ipsec_capab_t *, int); 223 static void ill_capability_proto(ill_t *, int, mblk_t *); 224 static void ill_capability_dispatch(ill_t *, mblk_t *, dl_capability_sub_t *, 225 boolean_t); 226 static void ill_capability_id_ack(ill_t *, mblk_t *, dl_capability_sub_t *); 227 static void ill_capability_mdt_ack(ill_t *, mblk_t *, dl_capability_sub_t *); 228 static void ill_capability_mdt_reset(ill_t *, mblk_t **); 229 static void ill_capability_ipsec_ack(ill_t *, mblk_t *, dl_capability_sub_t *); 230 static void ill_capability_ipsec_reset(ill_t *, mblk_t **); 231 static void ill_capability_hcksum_ack(ill_t *, mblk_t *, dl_capability_sub_t *); 232 static void ill_capability_hcksum_reset(ill_t *, mblk_t **); 233 static void ill_capability_zerocopy_ack(ill_t *, mblk_t *, 234 dl_capability_sub_t *); 235 static void ill_capability_zerocopy_reset(ill_t *, mblk_t **); 236 237 static void ill_capability_dls_ack(ill_t *, mblk_t *, dl_capability_sub_t *); 238 static mac_resource_handle_t ill_ring_add(void *, mac_resource_t *); 239 static void ill_capability_dls_reset(ill_t *, mblk_t **); 240 static void ill_capability_dls_disable(ill_t *); 241 242 static void illgrp_cache_delete(ire_t *, char *); 243 static void illgrp_delete(ill_t *ill); 244 static void illgrp_reset_schednext(ill_t *ill); 245 246 static ill_t *ill_prev_usesrc(ill_t *); 247 static int ill_relink_usesrc_ills(ill_t *, ill_t *, uint_t); 248 static void ill_disband_usesrc_group(ill_t *); 249 250 static void conn_cleanup_stale_ire(conn_t *, caddr_t); 251 252 /* 253 * if we go over the memory footprint limit more than once in this msec 254 * interval, we'll start pruning aggressively. 255 */ 256 int ip_min_frag_prune_time = 0; 257 258 /* 259 * max # of IPsec algorithms supported. Limited to 1 byte by PF_KEY 260 * and the IPsec DOI 261 */ 262 #define MAX_IPSEC_ALGS 256 263 264 #define BITSPERBYTE 8 265 #define BITS(type) (BITSPERBYTE * (long)sizeof (type)) 266 267 #define IPSEC_ALG_ENABLE(algs, algid) \ 268 ((algs)[(algid) / BITS(ipsec_capab_elem_t)] |= \ 269 (1 << ((algid) % BITS(ipsec_capab_elem_t)))) 270 271 #define IPSEC_ALG_IS_ENABLED(algid, algs) \ 272 ((algs)[(algid) / BITS(ipsec_capab_elem_t)] & \ 273 (1 << ((algid) % BITS(ipsec_capab_elem_t)))) 274 275 typedef uint8_t ipsec_capab_elem_t; 276 277 /* 278 * Per-algorithm parameters. Note that at present, only encryption 279 * algorithms have variable keysize (IKE does not provide a way to negotiate 280 * auth algorithm keysize). 281 * 282 * All sizes here are in bits. 283 */ 284 typedef struct 285 { 286 uint16_t minkeylen; 287 uint16_t maxkeylen; 288 } ipsec_capab_algparm_t; 289 290 /* 291 * Per-ill capabilities. 292 */ 293 struct ill_ipsec_capab_s { 294 ipsec_capab_elem_t *encr_hw_algs; 295 ipsec_capab_elem_t *auth_hw_algs; 296 uint32_t algs_size; /* size of _hw_algs in bytes */ 297 /* algorithm key lengths */ 298 ipsec_capab_algparm_t *encr_algparm; 299 uint32_t encr_algparm_size; 300 uint32_t encr_algparm_end; 301 }; 302 303 /* 304 * List of AH and ESP IPsec acceleration capable ills 305 */ 306 typedef struct ipsec_capab_ill_s { 307 uint_t ill_index; 308 boolean_t ill_isv6; 309 struct ipsec_capab_ill_s *next; 310 } ipsec_capab_ill_t; 311 312 static ipsec_capab_ill_t *ipsec_capab_ills_ah; 313 static ipsec_capab_ill_t *ipsec_capab_ills_esp; 314 krwlock_t ipsec_capab_ills_lock; 315 316 /* 317 * The field values are larger than strictly necessary for simple 318 * AR_ENTRY_ADDs but the padding lets us accomodate the socket ioctls. 319 */ 320 static area_t ip_area_template = { 321 AR_ENTRY_ADD, /* area_cmd */ 322 sizeof (ip_sock_ar_t) + (IP_ADDR_LEN*2) + sizeof (struct sockaddr_dl), 323 /* area_name_offset */ 324 /* area_name_length temporarily holds this structure length */ 325 sizeof (area_t), /* area_name_length */ 326 IP_ARP_PROTO_TYPE, /* area_proto */ 327 sizeof (ip_sock_ar_t), /* area_proto_addr_offset */ 328 IP_ADDR_LEN, /* area_proto_addr_length */ 329 sizeof (ip_sock_ar_t) + IP_ADDR_LEN, 330 /* area_proto_mask_offset */ 331 0, /* area_flags */ 332 sizeof (ip_sock_ar_t) + IP_ADDR_LEN + IP_ADDR_LEN, 333 /* area_hw_addr_offset */ 334 /* Zero length hw_addr_length means 'use your idea of the address' */ 335 0 /* area_hw_addr_length */ 336 }; 337 338 /* 339 * AR_ENTRY_ADD/DELETE templates have been added for IPv6 external resolver 340 * support 341 */ 342 static area_t ip6_area_template = { 343 AR_ENTRY_ADD, /* area_cmd */ 344 sizeof (ip_sock_ar_t) + (IPV6_ADDR_LEN*2) + sizeof (sin6_t), 345 /* area_name_offset */ 346 /* area_name_length temporarily holds this structure length */ 347 sizeof (area_t), /* area_name_length */ 348 IP_ARP_PROTO_TYPE, /* area_proto */ 349 sizeof (ip_sock_ar_t), /* area_proto_addr_offset */ 350 IPV6_ADDR_LEN, /* area_proto_addr_length */ 351 sizeof (ip_sock_ar_t) + IPV6_ADDR_LEN, 352 /* area_proto_mask_offset */ 353 0, /* area_flags */ 354 sizeof (ip_sock_ar_t) + IPV6_ADDR_LEN + IPV6_ADDR_LEN, 355 /* area_hw_addr_offset */ 356 /* Zero length hw_addr_length means 'use your idea of the address' */ 357 0 /* area_hw_addr_length */ 358 }; 359 360 static ared_t ip_ared_template = { 361 AR_ENTRY_DELETE, 362 sizeof (ared_t) + IP_ADDR_LEN, 363 sizeof (ared_t), 364 IP_ARP_PROTO_TYPE, 365 sizeof (ared_t), 366 IP_ADDR_LEN 367 }; 368 369 static ared_t ip6_ared_template = { 370 AR_ENTRY_DELETE, 371 sizeof (ared_t) + IPV6_ADDR_LEN, 372 sizeof (ared_t), 373 IP_ARP_PROTO_TYPE, 374 sizeof (ared_t), 375 IPV6_ADDR_LEN 376 }; 377 378 /* 379 * A template for an IPv6 AR_ENTRY_QUERY template has not been created, as 380 * as the areq doesn't include an IP address in ill_dl_up() (the only place a 381 * areq is used). 382 */ 383 static areq_t ip_areq_template = { 384 AR_ENTRY_QUERY, /* cmd */ 385 sizeof (areq_t)+(2*IP_ADDR_LEN), /* name offset */ 386 sizeof (areq_t), /* name len (filled by ill_arp_alloc) */ 387 IP_ARP_PROTO_TYPE, /* protocol, from arps perspective */ 388 sizeof (areq_t), /* target addr offset */ 389 IP_ADDR_LEN, /* target addr_length */ 390 0, /* flags */ 391 sizeof (areq_t) + IP_ADDR_LEN, /* sender addr offset */ 392 IP_ADDR_LEN, /* sender addr length */ 393 6, /* xmit_count */ 394 1000, /* (re)xmit_interval in milliseconds */ 395 4 /* max # of requests to buffer */ 396 /* anything else filled in by the code */ 397 }; 398 399 static arc_t ip_aru_template = { 400 AR_INTERFACE_UP, 401 sizeof (arc_t), /* Name offset */ 402 sizeof (arc_t) /* Name length (set by ill_arp_alloc) */ 403 }; 404 405 static arc_t ip_ard_template = { 406 AR_INTERFACE_DOWN, 407 sizeof (arc_t), /* Name offset */ 408 sizeof (arc_t) /* Name length (set by ill_arp_alloc) */ 409 }; 410 411 static arc_t ip_aron_template = { 412 AR_INTERFACE_ON, 413 sizeof (arc_t), /* Name offset */ 414 sizeof (arc_t) /* Name length (set by ill_arp_alloc) */ 415 }; 416 417 static arc_t ip_aroff_template = { 418 AR_INTERFACE_OFF, 419 sizeof (arc_t), /* Name offset */ 420 sizeof (arc_t) /* Name length (set by ill_arp_alloc) */ 421 }; 422 423 424 static arma_t ip_arma_multi_template = { 425 AR_MAPPING_ADD, 426 sizeof (arma_t) + 3*IP_ADDR_LEN + IP_MAX_HW_LEN, 427 /* Name offset */ 428 sizeof (arma_t), /* Name length (set by ill_arp_alloc) */ 429 IP_ARP_PROTO_TYPE, 430 sizeof (arma_t), /* proto_addr_offset */ 431 IP_ADDR_LEN, /* proto_addr_length */ 432 sizeof (arma_t) + IP_ADDR_LEN, /* proto_mask_offset */ 433 sizeof (arma_t) + 2*IP_ADDR_LEN, /* proto_extract_mask_offset */ 434 ACE_F_PERMANENT | ACE_F_MAPPING, /* flags */ 435 sizeof (arma_t) + 3*IP_ADDR_LEN, /* hw_addr_offset */ 436 IP_MAX_HW_LEN, /* hw_addr_length */ 437 0, /* hw_mapping_start */ 438 }; 439 440 static ipft_t ip_ioctl_ftbl[] = { 441 { IP_IOC_IRE_DELETE, ip_ire_delete, sizeof (ipid_t), 0 }, 442 { IP_IOC_IRE_DELETE_NO_REPLY, ip_ire_delete, sizeof (ipid_t), 443 IPFT_F_NO_REPLY }, 444 { IP_IOC_IRE_ADVISE_NO_REPLY, ip_ire_advise, sizeof (ipic_t), 445 IPFT_F_NO_REPLY }, 446 { IP_IOC_RTS_REQUEST, ip_rts_request, 0, IPFT_F_SELF_REPLY }, 447 { 0 } 448 }; 449 450 /* Simple ICMP IP Header Template */ 451 static ipha_t icmp_ipha = { 452 IP_SIMPLE_HDR_VERSION, 0, 0, 0, 0, 0, IPPROTO_ICMP 453 }; 454 455 /* Flag descriptors for ip_ipif_report */ 456 static nv_t ipif_nv_tbl[] = { 457 { IPIF_UP, "UP" }, 458 { IPIF_BROADCAST, "BROADCAST" }, 459 { ILLF_DEBUG, "DEBUG" }, 460 { PHYI_LOOPBACK, "LOOPBACK" }, 461 { IPIF_POINTOPOINT, "POINTOPOINT" }, 462 { ILLF_NOTRAILERS, "NOTRAILERS" }, 463 { PHYI_RUNNING, "RUNNING" }, 464 { ILLF_NOARP, "NOARP" }, 465 { PHYI_PROMISC, "PROMISC" }, 466 { PHYI_ALLMULTI, "ALLMULTI" }, 467 { PHYI_INTELLIGENT, "INTELLIGENT" }, 468 { ILLF_MULTICAST, "MULTICAST" }, 469 { PHYI_MULTI_BCAST, "MULTI_BCAST" }, 470 { IPIF_UNNUMBERED, "UNNUMBERED" }, 471 { IPIF_DHCPRUNNING, "DHCP" }, 472 { IPIF_PRIVATE, "PRIVATE" }, 473 { IPIF_NOXMIT, "NOXMIT" }, 474 { IPIF_NOLOCAL, "NOLOCAL" }, 475 { IPIF_DEPRECATED, "DEPRECATED" }, 476 { IPIF_PREFERRED, "PREFERRED" }, 477 { IPIF_TEMPORARY, "TEMPORARY" }, 478 { IPIF_ADDRCONF, "ADDRCONF" }, 479 { PHYI_VIRTUAL, "VIRTUAL" }, 480 { ILLF_ROUTER, "ROUTER" }, 481 { ILLF_NONUD, "NONUD" }, 482 { IPIF_ANYCAST, "ANYCAST" }, 483 { ILLF_NORTEXCH, "NORTEXCH" }, 484 { ILLF_IPV4, "IPV4" }, 485 { ILLF_IPV6, "IPV6" }, 486 { IPIF_MIPRUNNING, "MIP" }, 487 { IPIF_NOFAILOVER, "NOFAILOVER" }, 488 { PHYI_FAILED, "FAILED" }, 489 { PHYI_STANDBY, "STANDBY" }, 490 { PHYI_INACTIVE, "INACTIVE" }, 491 { PHYI_OFFLINE, "OFFLINE" }, 492 }; 493 494 static uchar_t ip_six_byte_all_ones[] = { 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF }; 495 496 static ip_m_t ip_m_tbl[] = { 497 { DL_ETHER, IFT_ETHER, ip_ether_v4mapinfo, ip_ether_v6mapinfo, 498 ip_ether_v6intfid }, 499 { DL_CSMACD, IFT_ISO88023, ip_ether_v4mapinfo, ip_ether_v6mapinfo, 500 ip_nodef_v6intfid }, 501 { DL_TPB, IFT_ISO88024, ip_ether_v4mapinfo, ip_ether_v6mapinfo, 502 ip_nodef_v6intfid }, 503 { DL_TPR, IFT_ISO88025, ip_ether_v4mapinfo, ip_ether_v6mapinfo, 504 ip_nodef_v6intfid }, 505 { DL_FDDI, IFT_FDDI, ip_ether_v4mapinfo, ip_ether_v6mapinfo, 506 ip_ether_v6intfid }, 507 { DL_IB, IFT_IB, ip_ib_v4mapinfo, ip_ib_v6mapinfo, 508 ip_ib_v6intfid }, 509 { SUNW_DL_VNI, IFT_OTHER, NULL, NULL, NULL}, 510 { DL_OTHER, IFT_OTHER, ip_ether_v4mapinfo, ip_ether_v6mapinfo, 511 ip_nodef_v6intfid } 512 }; 513 514 static ill_t ill_null; /* Empty ILL for init. */ 515 char ipif_loopback_name[] = "lo0"; 516 static char *ipv4_forward_suffix = ":ip_forwarding"; 517 static char *ipv6_forward_suffix = ":ip6_forwarding"; 518 static kstat_t *loopback_ksp = NULL; 519 static sin6_t sin6_null; /* Zero address for quick clears */ 520 static sin_t sin_null; /* Zero address for quick clears */ 521 static uint_t ill_index = 1; /* Used to assign interface indicies */ 522 /* When set search for unused index */ 523 static boolean_t ill_index_wrap = B_FALSE; 524 /* When set search for unused ipif_seqid */ 525 static ipif_t ipif_zero; 526 uint_t ipif_src_random; 527 528 /* 529 * For details on the protection offered by these locks please refer 530 * to the notes under the Synchronization section at the start of ip.c 531 */ 532 krwlock_t ill_g_lock; /* The global ill_g_lock */ 533 kmutex_t ip_addr_avail_lock; /* Address availability check lock */ 534 ipsq_t *ipsq_g_head; /* List of all ipsq's on the system */ 535 536 krwlock_t ill_g_usesrc_lock; /* Protects usesrc related fields */ 537 538 /* 539 * illgrp_head/ifgrp_head is protected by IP's perimeter. 540 */ 541 static ill_group_t *illgrp_head_v4; /* Head of IPv4 ill groups */ 542 ill_group_t *illgrp_head_v6; /* Head of IPv6 ill groups */ 543 544 ill_g_head_t ill_g_heads[MAX_G_HEADS]; /* ILL List Head */ 545 546 /* 547 * ppa arena is created after these many 548 * interfaces have been plumbed. 549 */ 550 uint_t ill_no_arena = 12; 551 552 #pragma align CACHE_ALIGN_SIZE(phyint_g_list) 553 static phyint_list_t phyint_g_list; /* start of phyint list */ 554 555 /* 556 * Reflects value of FAILBACK variable in IPMP config file 557 * /etc/default/mpathd. Default value is B_TRUE. 558 * Set to B_FALSE if user disabled failback by configuring "FAILBACK=no" 559 * in.mpathd uses SIOCSIPMPFAILBACK ioctl to pass this information to kernel. 560 */ 561 static boolean_t ipmp_enable_failback = B_TRUE; 562 563 /* 564 * Enable soft rings if ip_squeue_soft_ring or ip_squeue_fanout 565 * is set and ip_soft_rings_cnt > 0. ip_squeue_soft_ring is 566 * set through platform specific code (Niagara/Ontario). 567 */ 568 #define SOFT_RINGS_ENABLED() (ip_soft_rings_cnt ? \ 569 (ip_squeue_soft_ring || ip_squeue_fanout) : B_FALSE) 570 571 #define ILL_CAPAB_DLS (ILL_CAPAB_SOFT_RING | ILL_CAPAB_POLL) 572 573 static uint_t 574 ipif_rand(void) 575 { 576 ipif_src_random = ipif_src_random * 1103515245 + 12345; 577 return ((ipif_src_random >> 16) & 0x7fff); 578 } 579 580 /* 581 * Allocate per-interface mibs. Only used for ipv6. 582 * Returns true if ok. False otherwise. 583 * ipsq may not yet be allocated (loopback case ). 584 */ 585 static boolean_t 586 ill_allocate_mibs(ill_t *ill) 587 { 588 ASSERT(ill->ill_isv6); 589 590 /* Already allocated? */ 591 if (ill->ill_ip6_mib != NULL) { 592 ASSERT(ill->ill_icmp6_mib != NULL); 593 return (B_TRUE); 594 } 595 596 ill->ill_ip6_mib = kmem_zalloc(sizeof (*ill->ill_ip6_mib), 597 KM_NOSLEEP); 598 if (ill->ill_ip6_mib == NULL) { 599 return (B_FALSE); 600 } 601 ill->ill_icmp6_mib = kmem_zalloc(sizeof (*ill->ill_icmp6_mib), 602 KM_NOSLEEP); 603 if (ill->ill_icmp6_mib == NULL) { 604 kmem_free(ill->ill_ip6_mib, sizeof (*ill->ill_ip6_mib)); 605 ill->ill_ip6_mib = NULL; 606 return (B_FALSE); 607 } 608 /* 609 * The ipv6Ifindex and ipv6IfIcmpIndex will be assigned later 610 * after the phyint merge occurs in ipif_set_values -> ill_glist_insert 611 * -> ill_phyint_reinit 612 */ 613 return (B_TRUE); 614 } 615 616 /* 617 * Common code for preparation of ARP commands. Two points to remember: 618 * 1) The ill_name is tacked on at the end of the allocated space so 619 * the templates name_offset field must contain the total space 620 * to allocate less the name length. 621 * 622 * 2) The templates name_length field should contain the *template* 623 * length. We use it as a parameter to bcopy() and then write 624 * the real ill_name_length into the name_length field of the copy. 625 * (Always called as writer.) 626 */ 627 mblk_t * 628 ill_arp_alloc(ill_t *ill, uchar_t *template, caddr_t addr) 629 { 630 arc_t *arc = (arc_t *)template; 631 char *cp; 632 int len; 633 mblk_t *mp; 634 uint_t name_length = ill->ill_name_length; 635 uint_t template_len = arc->arc_name_length; 636 637 len = arc->arc_name_offset + name_length; 638 mp = allocb(len, BPRI_HI); 639 if (mp == NULL) 640 return (NULL); 641 cp = (char *)mp->b_rptr; 642 mp->b_wptr = (uchar_t *)&cp[len]; 643 if (template_len) 644 bcopy(template, cp, template_len); 645 if (len > template_len) 646 bzero(&cp[template_len], len - template_len); 647 mp->b_datap->db_type = M_PROTO; 648 649 arc = (arc_t *)cp; 650 arc->arc_name_length = name_length; 651 cp = (char *)arc + arc->arc_name_offset; 652 bcopy(ill->ill_name, cp, name_length); 653 654 if (addr) { 655 area_t *area = (area_t *)mp->b_rptr; 656 657 cp = (char *)area + area->area_proto_addr_offset; 658 bcopy(addr, cp, area->area_proto_addr_length); 659 if (area->area_cmd == AR_ENTRY_ADD) { 660 cp = (char *)area; 661 len = area->area_proto_addr_length; 662 if (area->area_proto_mask_offset) 663 cp += area->area_proto_mask_offset; 664 else 665 cp += area->area_proto_addr_offset + len; 666 while (len-- > 0) 667 *cp++ = (char)~0; 668 } 669 } 670 return (mp); 671 } 672 673 /* 674 * Completely vaporize a lower level tap and all associated interfaces. 675 * ill_delete is called only out of ip_close when the device control 676 * stream is being closed. 677 */ 678 void 679 ill_delete(ill_t *ill) 680 { 681 ipif_t *ipif; 682 ill_t *prev_ill; 683 684 /* 685 * ill_delete may be forcibly entering the ipsq. The previous 686 * ioctl may not have completed and may need to be aborted. 687 * ipsq_flush takes care of it. If we don't need to enter the 688 * the ipsq forcibly, the 2nd invocation of ipsq_flush in 689 * ill_delete_tail is sufficient. 690 */ 691 ipsq_flush(ill); 692 693 /* 694 * Nuke all interfaces. ipif_free will take down the interface, 695 * remove it from the list, and free the data structure. 696 * Walk down the ipif list and remove the logical interfaces 697 * first before removing the main ipif. We can't unplumb 698 * zeroth interface first in the case of IPv6 as reset_conn_ill 699 * -> ip_ll_delmulti_v6 de-references ill_ipif for checking 700 * POINTOPOINT. 701 * 702 * If ill_ipif was not properly initialized (i.e low on memory), 703 * then no interfaces to clean up. In this case just clean up the 704 * ill. 705 */ 706 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) 707 ipif_free(ipif); 708 709 /* 710 * Used only by ill_arp_on and ill_arp_off, which are writers. 711 * So nobody can be using this mp now. Free the mp allocated for 712 * honoring ILLF_NOARP 713 */ 714 freemsg(ill->ill_arp_on_mp); 715 ill->ill_arp_on_mp = NULL; 716 717 /* Clean up msgs on pending upcalls for mrouted */ 718 reset_mrt_ill(ill); 719 720 /* 721 * ipif_free -> reset_conn_ipif will remove all multicast 722 * references for IPv4. For IPv6, we need to do it here as 723 * it points only at ills. 724 */ 725 reset_conn_ill(ill); 726 727 /* 728 * ill_down will arrange to blow off any IRE's dependent on this 729 * ILL, and shut down fragmentation reassembly. 730 */ 731 ill_down(ill); 732 733 /* Let SCTP know, so that it can remove this from its list. */ 734 sctp_update_ill(ill, SCTP_ILL_REMOVE); 735 736 /* 737 * If an address on this ILL is being used as a source address then 738 * clear out the pointers in other ILLs that point to this ILL. 739 */ 740 rw_enter(&ill_g_usesrc_lock, RW_WRITER); 741 if (ill->ill_usesrc_grp_next != NULL) { 742 if (ill->ill_usesrc_ifindex == 0) { /* usesrc ILL ? */ 743 ill_disband_usesrc_group(ill); 744 } else { /* consumer of the usesrc ILL */ 745 prev_ill = ill_prev_usesrc(ill); 746 prev_ill->ill_usesrc_grp_next = 747 ill->ill_usesrc_grp_next; 748 } 749 } 750 rw_exit(&ill_g_usesrc_lock); 751 } 752 753 /* 754 * ill_delete_tail is called from ip_modclose after all references 755 * to the closing ill are gone. The wait is done in ip_modclose 756 */ 757 void 758 ill_delete_tail(ill_t *ill) 759 { 760 mblk_t **mpp; 761 ipif_t *ipif; 762 763 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) 764 ipif_down_tail(ipif); 765 766 /* 767 * If polling capability is enabled (which signifies direct 768 * upcall into IP and driver has ill saved as a handle), 769 * we need to make sure that unbind has completed before we 770 * let the ill disappear and driver no longer has any reference 771 * to this ill. 772 */ 773 mutex_enter(&ill->ill_lock); 774 while (ill->ill_state_flags & ILL_DL_UNBIND_IN_PROGRESS) 775 cv_wait(&ill->ill_cv, &ill->ill_lock); 776 mutex_exit(&ill->ill_lock); 777 778 /* 779 * Clean up polling and soft ring capabilities 780 */ 781 if (ill->ill_capabilities & (ILL_CAPAB_POLL|ILL_CAPAB_SOFT_RING)) 782 ill_capability_dls_disable(ill); 783 784 /* 785 * Send the detach if there's one to send (i.e., if we're above a 786 * style 2 DLPI driver). 787 */ 788 if (ill->ill_detach_mp != NULL) { 789 ill_dlpi_send(ill, ill->ill_detach_mp); 790 ill->ill_detach_mp = NULL; 791 } 792 793 if (ill->ill_net_type != IRE_LOOPBACK) 794 qprocsoff(ill->ill_rq); 795 796 /* 797 * We do an ipsq_flush once again now. New messages could have 798 * landed up from below (M_ERROR or M_HANGUP). Similarly ioctls 799 * could also have landed up if an ioctl thread had looked up 800 * the ill before we set the ILL_CONDEMNED flag, but not yet 801 * enqueued the ioctl when we did the ipsq_flush last time. 802 */ 803 ipsq_flush(ill); 804 805 /* 806 * Free capabilities. 807 */ 808 if (ill->ill_ipsec_capab_ah != NULL) { 809 ill_ipsec_capab_delete(ill, DL_CAPAB_IPSEC_AH); 810 ill_ipsec_capab_free(ill->ill_ipsec_capab_ah); 811 ill->ill_ipsec_capab_ah = NULL; 812 } 813 814 if (ill->ill_ipsec_capab_esp != NULL) { 815 ill_ipsec_capab_delete(ill, DL_CAPAB_IPSEC_ESP); 816 ill_ipsec_capab_free(ill->ill_ipsec_capab_esp); 817 ill->ill_ipsec_capab_esp = NULL; 818 } 819 820 if (ill->ill_mdt_capab != NULL) { 821 kmem_free(ill->ill_mdt_capab, sizeof (ill_mdt_capab_t)); 822 ill->ill_mdt_capab = NULL; 823 } 824 825 if (ill->ill_hcksum_capab != NULL) { 826 kmem_free(ill->ill_hcksum_capab, sizeof (ill_hcksum_capab_t)); 827 ill->ill_hcksum_capab = NULL; 828 } 829 830 if (ill->ill_zerocopy_capab != NULL) { 831 kmem_free(ill->ill_zerocopy_capab, 832 sizeof (ill_zerocopy_capab_t)); 833 ill->ill_zerocopy_capab = NULL; 834 } 835 836 if (ill->ill_dls_capab != NULL) { 837 CONN_DEC_REF(ill->ill_dls_capab->ill_unbind_conn); 838 ill->ill_dls_capab->ill_unbind_conn = NULL; 839 kmem_free(ill->ill_dls_capab, 840 sizeof (ill_dls_capab_t) + 841 (sizeof (ill_rx_ring_t) * ILL_MAX_RINGS)); 842 ill->ill_dls_capab = NULL; 843 } 844 845 ASSERT(!(ill->ill_capabilities & ILL_CAPAB_POLL)); 846 847 while (ill->ill_ipif != NULL) 848 ipif_free_tail(ill->ill_ipif); 849 850 ill_down_tail(ill); 851 852 /* 853 * We have removed all references to ilm from conn and the ones joined 854 * within the kernel. 855 * 856 * We don't walk conns, mrts and ires because 857 * 858 * 1) reset_conn_ill and reset_mrt_ill cleans up conns and mrts. 859 * 2) ill_down ->ill_downi walks all the ires and cleans up 860 * ill references. 861 */ 862 ASSERT(ilm_walk_ill(ill) == 0); 863 /* 864 * Take us out of the list of ILLs. ill_glist_delete -> ill_phyint_free 865 * could free the phyint. No more reference to the phyint after this 866 * point. 867 */ 868 (void) ill_glist_delete(ill); 869 870 rw_enter(&ip_g_nd_lock, RW_WRITER); 871 if (ill->ill_ndd_name != NULL) 872 nd_unload(&ip_g_nd, ill->ill_ndd_name); 873 rw_exit(&ip_g_nd_lock); 874 875 876 if (ill->ill_frag_ptr != NULL) { 877 uint_t count; 878 879 for (count = 0; count < ILL_FRAG_HASH_TBL_COUNT; count++) { 880 mutex_destroy(&ill->ill_frag_hash_tbl[count].ipfb_lock); 881 } 882 mi_free(ill->ill_frag_ptr); 883 ill->ill_frag_ptr = NULL; 884 ill->ill_frag_hash_tbl = NULL; 885 } 886 if (ill->ill_nd_lla_mp != NULL) 887 freemsg(ill->ill_nd_lla_mp); 888 /* Free all retained control messages. */ 889 mpp = &ill->ill_first_mp_to_free; 890 do { 891 while (mpp[0]) { 892 mblk_t *mp; 893 mblk_t *mp1; 894 895 mp = mpp[0]; 896 mpp[0] = mp->b_next; 897 for (mp1 = mp; mp1 != NULL; mp1 = mp1->b_cont) { 898 mp1->b_next = NULL; 899 mp1->b_prev = NULL; 900 } 901 freemsg(mp); 902 } 903 } while (mpp++ != &ill->ill_last_mp_to_free); 904 905 ill_free_mib(ill); 906 ILL_TRACE_CLEANUP(ill); 907 } 908 909 static void 910 ill_free_mib(ill_t *ill) 911 { 912 if (ill->ill_ip6_mib != NULL) { 913 kmem_free(ill->ill_ip6_mib, sizeof (*ill->ill_ip6_mib)); 914 ill->ill_ip6_mib = NULL; 915 } 916 if (ill->ill_icmp6_mib != NULL) { 917 kmem_free(ill->ill_icmp6_mib, sizeof (*ill->ill_icmp6_mib)); 918 ill->ill_icmp6_mib = NULL; 919 } 920 } 921 922 /* 923 * Concatenate together a physical address and a sap. 924 * 925 * Sap_lengths are interpreted as follows: 926 * sap_length == 0 ==> no sap 927 * sap_length > 0 ==> sap is at the head of the dlpi address 928 * sap_length < 0 ==> sap is at the tail of the dlpi address 929 */ 930 static void 931 ill_dlur_copy_address(uchar_t *phys_src, uint_t phys_length, 932 t_scalar_t sap_src, t_scalar_t sap_length, uchar_t *dst) 933 { 934 uint16_t sap_addr = (uint16_t)sap_src; 935 936 if (sap_length == 0) { 937 if (phys_src == NULL) 938 bzero(dst, phys_length); 939 else 940 bcopy(phys_src, dst, phys_length); 941 } else if (sap_length < 0) { 942 if (phys_src == NULL) 943 bzero(dst, phys_length); 944 else 945 bcopy(phys_src, dst, phys_length); 946 bcopy(&sap_addr, (char *)dst + phys_length, sizeof (sap_addr)); 947 } else { 948 bcopy(&sap_addr, dst, sizeof (sap_addr)); 949 if (phys_src == NULL) 950 bzero((char *)dst + sap_length, phys_length); 951 else 952 bcopy(phys_src, (char *)dst + sap_length, phys_length); 953 } 954 } 955 956 /* 957 * Generate a dl_unitdata_req mblk for the device and address given. 958 * addr_length is the length of the physical portion of the address. 959 * If addr is NULL include an all zero address of the specified length. 960 * TRUE? In any case, addr_length is taken to be the entire length of the 961 * dlpi address, including the absolute value of sap_length. 962 */ 963 mblk_t * 964 ill_dlur_gen(uchar_t *addr, uint_t addr_length, t_uscalar_t sap, 965 t_scalar_t sap_length) 966 { 967 dl_unitdata_req_t *dlur; 968 mblk_t *mp; 969 t_scalar_t abs_sap_length; /* absolute value */ 970 971 abs_sap_length = ABS(sap_length); 972 mp = ip_dlpi_alloc(sizeof (*dlur) + addr_length + abs_sap_length, 973 DL_UNITDATA_REQ); 974 if (mp == NULL) 975 return (NULL); 976 dlur = (dl_unitdata_req_t *)mp->b_rptr; 977 /* HACK: accomodate incompatible DLPI drivers */ 978 if (addr_length == 8) 979 addr_length = 6; 980 dlur->dl_dest_addr_length = addr_length + abs_sap_length; 981 dlur->dl_dest_addr_offset = sizeof (*dlur); 982 dlur->dl_priority.dl_min = 0; 983 dlur->dl_priority.dl_max = 0; 984 ill_dlur_copy_address(addr, addr_length, sap, sap_length, 985 (uchar_t *)&dlur[1]); 986 return (mp); 987 } 988 989 /* 990 * Add the 'mp' to the list of pending mp's headed by ill_pending_mp 991 * Return an error if we already have 1 or more ioctls in progress. 992 * This is used only for non-exclusive ioctls. Currently this is used 993 * for SIOC*ARP and SIOCGTUNPARAM ioctls. Most set ioctls are exclusive 994 * and thus need to use ipsq_pending_mp_add. 995 */ 996 boolean_t 997 ill_pending_mp_add(ill_t *ill, conn_t *connp, mblk_t *add_mp) 998 { 999 ASSERT(MUTEX_HELD(&ill->ill_lock)); 1000 ASSERT((add_mp->b_next == NULL) && (add_mp->b_prev == NULL)); 1001 /* 1002 * M_IOCDATA from ioctls, M_IOCTL from tunnel ioctls. 1003 */ 1004 ASSERT((add_mp->b_datap->db_type == M_IOCDATA) || 1005 (add_mp->b_datap->db_type == M_IOCTL)); 1006 1007 ASSERT(MUTEX_HELD(&connp->conn_lock)); 1008 /* 1009 * Return error if the conn has started closing. The conn 1010 * could have finished cleaning up the pending mp list, 1011 * If so we should not add another mp to the list negating 1012 * the cleanup. 1013 */ 1014 if (connp->conn_state_flags & CONN_CLOSING) 1015 return (B_FALSE); 1016 /* 1017 * Add the pending mp to the head of the list, chained by b_next. 1018 * Note down the conn on which the ioctl request came, in b_prev. 1019 * This will be used to later get the conn, when we get a response 1020 * on the ill queue, from some other module (typically arp) 1021 */ 1022 add_mp->b_next = (void *)ill->ill_pending_mp; 1023 add_mp->b_queue = CONNP_TO_WQ(connp); 1024 ill->ill_pending_mp = add_mp; 1025 if (connp != NULL) 1026 connp->conn_oper_pending_ill = ill; 1027 return (B_TRUE); 1028 } 1029 1030 /* 1031 * Retrieve the ill_pending_mp and return it. We have to walk the list 1032 * of mblks starting at ill_pending_mp, and match based on the ioc_id. 1033 */ 1034 mblk_t * 1035 ill_pending_mp_get(ill_t *ill, conn_t **connpp, uint_t ioc_id) 1036 { 1037 mblk_t *prev = NULL; 1038 mblk_t *curr = NULL; 1039 uint_t id; 1040 conn_t *connp; 1041 1042 /* 1043 * When the conn closes, conn_ioctl_cleanup needs to clean 1044 * up the pending mp, but it does not know the ioc_id and 1045 * passes in a zero for it. 1046 */ 1047 mutex_enter(&ill->ill_lock); 1048 if (ioc_id != 0) 1049 *connpp = NULL; 1050 1051 /* Search the list for the appropriate ioctl based on ioc_id */ 1052 for (prev = NULL, curr = ill->ill_pending_mp; curr != NULL; 1053 prev = curr, curr = curr->b_next) { 1054 id = ((struct iocblk *)curr->b_rptr)->ioc_id; 1055 connp = Q_TO_CONN(curr->b_queue); 1056 /* Match based on the ioc_id or based on the conn */ 1057 if ((id == ioc_id) || (ioc_id == 0 && connp == *connpp)) 1058 break; 1059 } 1060 1061 if (curr != NULL) { 1062 /* Unlink the mblk from the pending mp list */ 1063 if (prev != NULL) { 1064 prev->b_next = curr->b_next; 1065 } else { 1066 ASSERT(ill->ill_pending_mp == curr); 1067 ill->ill_pending_mp = curr->b_next; 1068 } 1069 1070 /* 1071 * conn refcnt must have been bumped up at the start of 1072 * the ioctl. So we can safely access the conn. 1073 */ 1074 ASSERT(CONN_Q(curr->b_queue)); 1075 *connpp = Q_TO_CONN(curr->b_queue); 1076 curr->b_next = NULL; 1077 curr->b_queue = NULL; 1078 } 1079 1080 mutex_exit(&ill->ill_lock); 1081 1082 return (curr); 1083 } 1084 1085 /* 1086 * Add the pending mp to the list. There can be only 1 pending mp 1087 * in the list. Any exclusive ioctl that needs to wait for a response 1088 * from another module or driver needs to use this function to set 1089 * the ipsq_pending_mp to the ioctl mblk and wait for the response from 1090 * the other module/driver. This is also used while waiting for the 1091 * ipif/ill/ire refcnts to drop to zero in bringing down an ipif. 1092 */ 1093 boolean_t 1094 ipsq_pending_mp_add(conn_t *connp, ipif_t *ipif, queue_t *q, mblk_t *add_mp, 1095 int waitfor) 1096 { 1097 ipsq_t *ipsq; 1098 1099 ASSERT(IAM_WRITER_IPIF(ipif)); 1100 ASSERT(MUTEX_HELD(&ipif->ipif_ill->ill_lock)); 1101 ASSERT((add_mp->b_next == NULL) && (add_mp->b_prev == NULL)); 1102 /* 1103 * M_IOCDATA from ioctls, M_IOCTL from tunnel ioctls, 1104 * M_ERROR/M_HANGUP from driver 1105 */ 1106 ASSERT((DB_TYPE(add_mp) == M_IOCDATA) || (DB_TYPE(add_mp) == M_IOCTL) || 1107 (DB_TYPE(add_mp) == M_ERROR) || (DB_TYPE(add_mp) == M_HANGUP)); 1108 1109 ipsq = ipif->ipif_ill->ill_phyint->phyint_ipsq; 1110 if (connp != NULL) { 1111 ASSERT(MUTEX_HELD(&connp->conn_lock)); 1112 /* 1113 * Return error if the conn has started closing. The conn 1114 * could have finished cleaning up the pending mp list, 1115 * If so we should not add another mp to the list negating 1116 * the cleanup. 1117 */ 1118 if (connp->conn_state_flags & CONN_CLOSING) 1119 return (B_FALSE); 1120 } 1121 mutex_enter(&ipsq->ipsq_lock); 1122 ipsq->ipsq_pending_ipif = ipif; 1123 /* 1124 * Note down the queue in b_queue. This will be returned by 1125 * ipsq_pending_mp_get. Caller will then use these values to restart 1126 * the processing 1127 */ 1128 add_mp->b_next = NULL; 1129 add_mp->b_queue = q; 1130 ipsq->ipsq_pending_mp = add_mp; 1131 ipsq->ipsq_waitfor = waitfor; 1132 /* 1133 * ipsq_current_ipif is needed to restart the operation from 1134 * ipif_ill_refrele_tail when the last reference to the ipi/ill 1135 * is gone. Since this is not an ioctl ipsq_current_ipif has not 1136 * been set until now. 1137 */ 1138 if (DB_TYPE(add_mp) == M_ERROR || DB_TYPE(add_mp) == M_HANGUP) { 1139 ASSERT(ipsq->ipsq_current_ipif == NULL); 1140 ipsq->ipsq_current_ipif = ipif; 1141 ipsq->ipsq_last_cmd = DB_TYPE(add_mp); 1142 } 1143 if (connp != NULL) 1144 connp->conn_oper_pending_ill = ipif->ipif_ill; 1145 mutex_exit(&ipsq->ipsq_lock); 1146 return (B_TRUE); 1147 } 1148 1149 /* 1150 * Retrieve the ipsq_pending_mp and return it. There can be only 1 mp 1151 * queued in the list. 1152 */ 1153 mblk_t * 1154 ipsq_pending_mp_get(ipsq_t *ipsq, conn_t **connpp) 1155 { 1156 mblk_t *curr = NULL; 1157 1158 mutex_enter(&ipsq->ipsq_lock); 1159 *connpp = NULL; 1160 if (ipsq->ipsq_pending_mp == NULL) { 1161 mutex_exit(&ipsq->ipsq_lock); 1162 return (NULL); 1163 } 1164 1165 /* There can be only 1 such excl message */ 1166 curr = ipsq->ipsq_pending_mp; 1167 ASSERT(curr != NULL && curr->b_next == NULL); 1168 ipsq->ipsq_pending_ipif = NULL; 1169 ipsq->ipsq_pending_mp = NULL; 1170 ipsq->ipsq_waitfor = 0; 1171 mutex_exit(&ipsq->ipsq_lock); 1172 1173 if (CONN_Q(curr->b_queue)) { 1174 /* 1175 * This mp did a refhold on the conn, at the start of the ioctl. 1176 * So we can safely return a pointer to the conn to the caller. 1177 */ 1178 *connpp = Q_TO_CONN(curr->b_queue); 1179 } else { 1180 *connpp = NULL; 1181 } 1182 curr->b_next = NULL; 1183 curr->b_prev = NULL; 1184 return (curr); 1185 } 1186 1187 /* 1188 * Cleanup the ioctl mp queued in ipsq_pending_mp 1189 * - Called in the ill_delete path 1190 * - Called in the M_ERROR or M_HANGUP path on the ill. 1191 * - Called in the conn close path. 1192 */ 1193 boolean_t 1194 ipsq_pending_mp_cleanup(ill_t *ill, conn_t *connp) 1195 { 1196 mblk_t *mp; 1197 ipsq_t *ipsq; 1198 queue_t *q; 1199 ipif_t *ipif; 1200 1201 ASSERT(IAM_WRITER_ILL(ill)); 1202 ipsq = ill->ill_phyint->phyint_ipsq; 1203 mutex_enter(&ipsq->ipsq_lock); 1204 /* 1205 * If connp is null, unconditionally clean up the ipsq_pending_mp. 1206 * This happens in M_ERROR/M_HANGUP. We need to abort the current ioctl 1207 * even if it is meant for another ill, since we have to enqueue 1208 * a new mp now in ipsq_pending_mp to complete the ipif_down. 1209 * If connp is non-null we are called from the conn close path. 1210 */ 1211 mp = ipsq->ipsq_pending_mp; 1212 if (mp == NULL || (connp != NULL && 1213 mp->b_queue != CONNP_TO_WQ(connp))) { 1214 mutex_exit(&ipsq->ipsq_lock); 1215 return (B_FALSE); 1216 } 1217 /* Now remove from the ipsq_pending_mp */ 1218 ipsq->ipsq_pending_mp = NULL; 1219 q = mp->b_queue; 1220 mp->b_next = NULL; 1221 mp->b_prev = NULL; 1222 mp->b_queue = NULL; 1223 1224 /* If MOVE was in progress, clear the move_in_progress fields also. */ 1225 ill = ipsq->ipsq_pending_ipif->ipif_ill; 1226 if (ill->ill_move_in_progress) { 1227 ILL_CLEAR_MOVE(ill); 1228 } else if (ill->ill_up_ipifs) { 1229 ill_group_cleanup(ill); 1230 } 1231 1232 ipif = ipsq->ipsq_pending_ipif; 1233 ipsq->ipsq_pending_ipif = NULL; 1234 ipsq->ipsq_waitfor = 0; 1235 ipsq->ipsq_current_ipif = NULL; 1236 mutex_exit(&ipsq->ipsq_lock); 1237 1238 if (DB_TYPE(mp) == M_IOCTL || DB_TYPE(mp) == M_IOCDATA) { 1239 ip_ioctl_finish(q, mp, ENXIO, connp != NULL ? CONN_CLOSE : 1240 NO_COPYOUT, connp != NULL ? ipif : NULL, NULL); 1241 } else { 1242 /* 1243 * IP-MT XXX In the case of TLI/XTI bind / optmgmt this can't 1244 * be just inet_freemsg. we have to restart it 1245 * otherwise the thread will be stuck. 1246 */ 1247 inet_freemsg(mp); 1248 } 1249 return (B_TRUE); 1250 } 1251 1252 /* 1253 * The ill is closing. Cleanup all the pending mps. Called exclusively 1254 * towards the end of ill_delete. The refcount has gone to 0. So nobody 1255 * knows this ill, and hence nobody can add an mp to this list 1256 */ 1257 static void 1258 ill_pending_mp_cleanup(ill_t *ill) 1259 { 1260 mblk_t *mp; 1261 queue_t *q; 1262 1263 ASSERT(IAM_WRITER_ILL(ill)); 1264 1265 mutex_enter(&ill->ill_lock); 1266 /* 1267 * Every mp on the pending mp list originating from an ioctl 1268 * added 1 to the conn refcnt, at the start of the ioctl. 1269 * So bump it down now. See comments in ip_wput_nondata() 1270 */ 1271 while (ill->ill_pending_mp != NULL) { 1272 mp = ill->ill_pending_mp; 1273 ill->ill_pending_mp = mp->b_next; 1274 mutex_exit(&ill->ill_lock); 1275 1276 q = mp->b_queue; 1277 ASSERT(CONN_Q(q)); 1278 mp->b_next = NULL; 1279 mp->b_prev = NULL; 1280 mp->b_queue = NULL; 1281 ip_ioctl_finish(q, mp, ENXIO, NO_COPYOUT, NULL, NULL); 1282 mutex_enter(&ill->ill_lock); 1283 } 1284 ill->ill_pending_ipif = NULL; 1285 1286 mutex_exit(&ill->ill_lock); 1287 } 1288 1289 /* 1290 * Called in the conn close path and ill delete path 1291 */ 1292 static void 1293 ipsq_xopq_mp_cleanup(ill_t *ill, conn_t *connp) 1294 { 1295 ipsq_t *ipsq; 1296 mblk_t *prev; 1297 mblk_t *curr; 1298 mblk_t *next; 1299 queue_t *q; 1300 mblk_t *tmp_list = NULL; 1301 1302 ASSERT(IAM_WRITER_ILL(ill)); 1303 if (connp != NULL) 1304 q = CONNP_TO_WQ(connp); 1305 else 1306 q = ill->ill_wq; 1307 1308 ipsq = ill->ill_phyint->phyint_ipsq; 1309 /* 1310 * Cleanup the ioctl mp's queued in ipsq_xopq_pending_mp if any. 1311 * In the case of ioctl from a conn, there can be only 1 mp 1312 * queued on the ipsq. If an ill is being unplumbed, only messages 1313 * related to this ill are flushed, like M_ERROR or M_HANGUP message. 1314 * ioctls meant for this ill form conn's are not flushed. They will 1315 * be processed during ipsq_exit and will not find the ill and will 1316 * return error. 1317 */ 1318 mutex_enter(&ipsq->ipsq_lock); 1319 for (prev = NULL, curr = ipsq->ipsq_xopq_mphead; curr != NULL; 1320 curr = next) { 1321 next = curr->b_next; 1322 if (curr->b_queue == q || curr->b_queue == RD(q)) { 1323 /* Unlink the mblk from the pending mp list */ 1324 if (prev != NULL) { 1325 prev->b_next = curr->b_next; 1326 } else { 1327 ASSERT(ipsq->ipsq_xopq_mphead == curr); 1328 ipsq->ipsq_xopq_mphead = curr->b_next; 1329 } 1330 if (ipsq->ipsq_xopq_mptail == curr) 1331 ipsq->ipsq_xopq_mptail = prev; 1332 /* 1333 * Create a temporary list and release the ipsq lock 1334 * New elements are added to the head of the tmp_list 1335 */ 1336 curr->b_next = tmp_list; 1337 tmp_list = curr; 1338 } else { 1339 prev = curr; 1340 } 1341 } 1342 mutex_exit(&ipsq->ipsq_lock); 1343 1344 while (tmp_list != NULL) { 1345 curr = tmp_list; 1346 tmp_list = curr->b_next; 1347 curr->b_next = NULL; 1348 curr->b_prev = NULL; 1349 curr->b_queue = NULL; 1350 if (DB_TYPE(curr) == M_IOCTL || DB_TYPE(curr) == M_IOCDATA) { 1351 ip_ioctl_finish(q, curr, ENXIO, connp != NULL ? 1352 CONN_CLOSE : NO_COPYOUT, NULL, NULL); 1353 } else { 1354 /* 1355 * IP-MT XXX In the case of TLI/XTI bind / optmgmt 1356 * this can't be just inet_freemsg. we have to 1357 * restart it otherwise the thread will be stuck. 1358 */ 1359 inet_freemsg(curr); 1360 } 1361 } 1362 } 1363 1364 /* 1365 * This conn has started closing. Cleanup any pending ioctl from this conn. 1366 * STREAMS ensures that there can be at most 1 ioctl pending on a stream. 1367 */ 1368 void 1369 conn_ioctl_cleanup(conn_t *connp) 1370 { 1371 mblk_t *curr; 1372 ipsq_t *ipsq; 1373 ill_t *ill; 1374 boolean_t refheld; 1375 1376 /* 1377 * Is any exclusive ioctl pending ? If so clean it up. If the 1378 * ioctl has not yet started, the mp is pending in the list headed by 1379 * ipsq_xopq_head. If the ioctl has started the mp could be present in 1380 * ipsq_pending_mp. If the ioctl timed out in the streamhead but 1381 * is currently executing now the mp is not queued anywhere but 1382 * conn_oper_pending_ill is null. The conn close will wait 1383 * till the conn_ref drops to zero. 1384 */ 1385 mutex_enter(&connp->conn_lock); 1386 ill = connp->conn_oper_pending_ill; 1387 if (ill == NULL) { 1388 mutex_exit(&connp->conn_lock); 1389 return; 1390 } 1391 1392 curr = ill_pending_mp_get(ill, &connp, 0); 1393 if (curr != NULL) { 1394 mutex_exit(&connp->conn_lock); 1395 CONN_DEC_REF(connp); 1396 inet_freemsg(curr); 1397 return; 1398 } 1399 /* 1400 * We may not be able to refhold the ill if the ill/ipif 1401 * is changing. But we need to make sure that the ill will 1402 * not vanish. So we just bump up the ill_waiter count. 1403 */ 1404 refheld = ill_waiter_inc(ill); 1405 mutex_exit(&connp->conn_lock); 1406 if (refheld) { 1407 if (ipsq_enter(ill, B_TRUE)) { 1408 ill_waiter_dcr(ill); 1409 /* 1410 * Check whether this ioctl has started and is 1411 * pending now in ipsq_pending_mp. If it is not 1412 * found there then check whether this ioctl has 1413 * not even started and is in the ipsq_xopq list. 1414 */ 1415 if (!ipsq_pending_mp_cleanup(ill, connp)) 1416 ipsq_xopq_mp_cleanup(ill, connp); 1417 ipsq = ill->ill_phyint->phyint_ipsq; 1418 ipsq_exit(ipsq, B_TRUE, B_TRUE); 1419 return; 1420 } 1421 } 1422 1423 /* 1424 * The ill is also closing and we could not bump up the 1425 * ill_waiter_count or we could not enter the ipsq. Leave 1426 * the cleanup to ill_delete 1427 */ 1428 mutex_enter(&connp->conn_lock); 1429 while (connp->conn_oper_pending_ill != NULL) 1430 cv_wait(&connp->conn_refcv, &connp->conn_lock); 1431 mutex_exit(&connp->conn_lock); 1432 if (refheld) 1433 ill_waiter_dcr(ill); 1434 } 1435 1436 /* 1437 * ipcl_walk function for cleaning up conn_*_ill fields. 1438 */ 1439 static void 1440 conn_cleanup_ill(conn_t *connp, caddr_t arg) 1441 { 1442 ill_t *ill = (ill_t *)arg; 1443 ire_t *ire; 1444 1445 mutex_enter(&connp->conn_lock); 1446 if (connp->conn_multicast_ill == ill) { 1447 /* Revert to late binding */ 1448 connp->conn_multicast_ill = NULL; 1449 connp->conn_orig_multicast_ifindex = 0; 1450 } 1451 if (connp->conn_incoming_ill == ill) 1452 connp->conn_incoming_ill = NULL; 1453 if (connp->conn_outgoing_ill == ill) 1454 connp->conn_outgoing_ill = NULL; 1455 if (connp->conn_outgoing_pill == ill) 1456 connp->conn_outgoing_pill = NULL; 1457 if (connp->conn_nofailover_ill == ill) 1458 connp->conn_nofailover_ill = NULL; 1459 if (connp->conn_xmit_if_ill == ill) 1460 connp->conn_xmit_if_ill = NULL; 1461 if (connp->conn_ire_cache != NULL) { 1462 ire = connp->conn_ire_cache; 1463 /* 1464 * ip_newroute creates IRE_CACHE with ire_stq coming from 1465 * interface X and ipif coming from interface Y, if interface 1466 * X and Y are part of the same IPMPgroup. Thus whenever 1467 * interface X goes down, remove all references to it by 1468 * checking both on ire_ipif and ire_stq. 1469 */ 1470 if ((ire->ire_ipif != NULL && ire->ire_ipif->ipif_ill == ill) || 1471 (ire->ire_type == IRE_CACHE && 1472 ire->ire_stq == ill->ill_wq)) { 1473 connp->conn_ire_cache = NULL; 1474 mutex_exit(&connp->conn_lock); 1475 ire_refrele_notr(ire); 1476 return; 1477 } 1478 } 1479 mutex_exit(&connp->conn_lock); 1480 1481 } 1482 1483 /* ARGSUSED */ 1484 void 1485 ipif_all_down_tail(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy_arg) 1486 { 1487 ill_t *ill = q->q_ptr; 1488 ipif_t *ipif; 1489 1490 ASSERT(IAM_WRITER_IPSQ(ipsq)); 1491 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) 1492 ipif_down_tail(ipif); 1493 ill_down_tail(ill); 1494 freemsg(mp); 1495 ipsq->ipsq_current_ipif = NULL; 1496 } 1497 1498 /* 1499 * ill_down_start is called when we want to down this ill and bring it up again 1500 * It is called when we receive an M_ERROR / M_HANGUP. In this case we shut down 1501 * all interfaces, but don't tear down any plumbing. 1502 */ 1503 boolean_t 1504 ill_down_start(queue_t *q, mblk_t *mp) 1505 { 1506 ill_t *ill; 1507 ipif_t *ipif; 1508 1509 ill = q->q_ptr; 1510 1511 ASSERT(IAM_WRITER_ILL(ill)); 1512 1513 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) 1514 (void) ipif_down(ipif, NULL, NULL); 1515 1516 ill_down(ill); 1517 1518 (void) ipsq_pending_mp_cleanup(ill, NULL); 1519 mutex_enter(&ill->ill_lock); 1520 /* 1521 * Atomically test and add the pending mp if references are 1522 * still active. 1523 */ 1524 if (!ill_is_quiescent(ill)) { 1525 /* 1526 * Get rid of any pending mps and cleanup. Call will 1527 * not fail since we are passing a null connp. 1528 */ 1529 (void) ipsq_pending_mp_add(NULL, ill->ill_ipif, ill->ill_rq, 1530 mp, ILL_DOWN); 1531 mutex_exit(&ill->ill_lock); 1532 return (B_FALSE); 1533 } 1534 mutex_exit(&ill->ill_lock); 1535 return (B_TRUE); 1536 } 1537 1538 static void 1539 ill_down(ill_t *ill) 1540 { 1541 /* Blow off any IREs dependent on this ILL. */ 1542 ire_walk(ill_downi, (char *)ill); 1543 1544 mutex_enter(&ire_mrtun_lock); 1545 if (ire_mrtun_count != 0) { 1546 mutex_exit(&ire_mrtun_lock); 1547 ire_walk_ill_mrtun(0, 0, ill_downi_mrtun_srcif, 1548 (char *)ill, NULL); 1549 } else { 1550 mutex_exit(&ire_mrtun_lock); 1551 } 1552 1553 /* 1554 * If any interface based forwarding table exists 1555 * Blow off the ires there dependent on this ill 1556 */ 1557 mutex_enter(&ire_srcif_table_lock); 1558 if (ire_srcif_table_count > 0) { 1559 mutex_exit(&ire_srcif_table_lock); 1560 ire_walk_srcif_table_v4(ill_downi_mrtun_srcif, (char *)ill); 1561 } else { 1562 mutex_exit(&ire_srcif_table_lock); 1563 } 1564 1565 /* Remove any conn_*_ill depending on this ill */ 1566 ipcl_walk(conn_cleanup_ill, (caddr_t)ill); 1567 1568 if (ill->ill_group != NULL) { 1569 illgrp_delete(ill); 1570 } 1571 1572 } 1573 1574 static void 1575 ill_down_tail(ill_t *ill) 1576 { 1577 int i; 1578 1579 /* Destroy ill_srcif_table if it exists */ 1580 /* Lock not reqd really because nobody should be able to access */ 1581 mutex_enter(&ill->ill_lock); 1582 if (ill->ill_srcif_table != NULL) { 1583 ill->ill_srcif_refcnt = 0; 1584 for (i = 0; i < IP_SRCIF_TABLE_SIZE; i++) { 1585 rw_destroy(&ill->ill_srcif_table[i].irb_lock); 1586 } 1587 kmem_free(ill->ill_srcif_table, 1588 IP_SRCIF_TABLE_SIZE * sizeof (irb_t)); 1589 ill->ill_srcif_table = NULL; 1590 ill->ill_srcif_refcnt = 0; 1591 ill->ill_mrtun_refcnt = 0; 1592 } 1593 mutex_exit(&ill->ill_lock); 1594 } 1595 1596 /* 1597 * ire_walk routine used to delete every IRE that depends on queues 1598 * associated with 'ill'. (Always called as writer.) 1599 */ 1600 static void 1601 ill_downi(ire_t *ire, char *ill_arg) 1602 { 1603 ill_t *ill = (ill_t *)ill_arg; 1604 1605 /* 1606 * ip_newroute creates IRE_CACHE with ire_stq coming from 1607 * interface X and ipif coming from interface Y, if interface 1608 * X and Y are part of the same IPMP group. Thus whenever interface 1609 * X goes down, remove all references to it by checking both 1610 * on ire_ipif and ire_stq. 1611 */ 1612 if ((ire->ire_ipif != NULL && ire->ire_ipif->ipif_ill == ill) || 1613 (ire->ire_type == IRE_CACHE && ire->ire_stq == ill->ill_wq)) { 1614 ire_delete(ire); 1615 } 1616 } 1617 1618 /* 1619 * A seperate routine for deleting revtun and srcif based routes 1620 * are needed because the ires only deleted when the interface 1621 * is unplumbed. Also these ires have ire_in_ill non-null as well. 1622 * we want to keep mobile IP specific code separate. 1623 */ 1624 static void 1625 ill_downi_mrtun_srcif(ire_t *ire, char *ill_arg) 1626 { 1627 ill_t *ill = (ill_t *)ill_arg; 1628 1629 ASSERT(ire->ire_in_ill != NULL); 1630 1631 if ((ire->ire_in_ill != NULL && ire->ire_in_ill == ill) || 1632 (ire->ire_stq == ill->ill_wq) || (ire->ire_stq == ill->ill_rq)) { 1633 ire_delete(ire); 1634 } 1635 } 1636 1637 /* 1638 * Remove ire/nce from the fastpath list. 1639 */ 1640 void 1641 ill_fastpath_nack(ill_t *ill) 1642 { 1643 if (ill->ill_isv6) { 1644 nce_fastpath_list_dispatch(ill, NULL, NULL); 1645 } else { 1646 ire_fastpath_list_dispatch(ill, NULL, NULL); 1647 } 1648 } 1649 1650 /* Consume an M_IOCACK of the fastpath probe. */ 1651 void 1652 ill_fastpath_ack(ill_t *ill, mblk_t *mp) 1653 { 1654 mblk_t *mp1 = mp; 1655 1656 /* 1657 * If this was the first attempt turn on the fastpath probing. 1658 */ 1659 mutex_enter(&ill->ill_lock); 1660 if (ill->ill_dlpi_fastpath_state == IDMS_INPROGRESS) 1661 ill->ill_dlpi_fastpath_state = IDMS_OK; 1662 mutex_exit(&ill->ill_lock); 1663 1664 /* Free the M_IOCACK mblk, hold on to the data */ 1665 mp = mp->b_cont; 1666 freeb(mp1); 1667 if (mp == NULL) 1668 return; 1669 if (mp->b_cont != NULL) { 1670 /* 1671 * Update all IRE's or NCE's that are waiting for 1672 * fastpath update. 1673 */ 1674 if (ill->ill_isv6) { 1675 /* 1676 * update nce's in the fastpath list. 1677 */ 1678 nce_fastpath_list_dispatch(ill, 1679 ndp_fastpath_update, mp); 1680 } else { 1681 1682 /* 1683 * update ire's in the fastpath list. 1684 */ 1685 ire_fastpath_list_dispatch(ill, 1686 ire_fastpath_update, mp); 1687 /* 1688 * Check if we need to traverse reverse tunnel table. 1689 * Since there is only single ire_type (IRE_MIPRTUN) 1690 * in the table, we don't need to match on ire_type. 1691 * We have to check ire_mrtun_count and not the 1692 * ill_mrtun_refcnt since ill_mrtun_refcnt is set 1693 * on the incoming ill and here we are dealing with 1694 * outgoing ill. 1695 */ 1696 mutex_enter(&ire_mrtun_lock); 1697 if (ire_mrtun_count != 0) { 1698 mutex_exit(&ire_mrtun_lock); 1699 ire_walk_ill_mrtun(MATCH_IRE_WQ, IRE_MIPRTUN, 1700 (void (*)(ire_t *, void *)) 1701 ire_fastpath_update, mp, ill); 1702 } else { 1703 mutex_exit(&ire_mrtun_lock); 1704 } 1705 } 1706 mp1 = mp->b_cont; 1707 freeb(mp); 1708 mp = mp1; 1709 } else { 1710 ip0dbg(("ill_fastpath_ack: no b_cont\n")); 1711 } 1712 1713 freeb(mp); 1714 } 1715 1716 /* 1717 * Throw an M_IOCTL message downstream asking "do you know fastpath?" 1718 * The data portion of the request is a dl_unitdata_req_t template for 1719 * what we would send downstream in the absence of a fastpath confirmation. 1720 */ 1721 int 1722 ill_fastpath_probe(ill_t *ill, mblk_t *dlur_mp) 1723 { 1724 struct iocblk *ioc; 1725 mblk_t *mp; 1726 1727 if (dlur_mp == NULL) 1728 return (EINVAL); 1729 1730 mutex_enter(&ill->ill_lock); 1731 switch (ill->ill_dlpi_fastpath_state) { 1732 case IDMS_FAILED: 1733 /* 1734 * Driver NAKed the first fastpath ioctl - assume it doesn't 1735 * support it. 1736 */ 1737 mutex_exit(&ill->ill_lock); 1738 return (ENOTSUP); 1739 case IDMS_UNKNOWN: 1740 /* This is the first probe */ 1741 ill->ill_dlpi_fastpath_state = IDMS_INPROGRESS; 1742 break; 1743 default: 1744 break; 1745 } 1746 mutex_exit(&ill->ill_lock); 1747 1748 if ((mp = mkiocb(DL_IOC_HDR_INFO)) == NULL) 1749 return (EAGAIN); 1750 1751 mp->b_cont = copyb(dlur_mp); 1752 if (mp->b_cont == NULL) { 1753 freeb(mp); 1754 return (EAGAIN); 1755 } 1756 1757 ioc = (struct iocblk *)mp->b_rptr; 1758 ioc->ioc_count = msgdsize(mp->b_cont); 1759 1760 putnext(ill->ill_wq, mp); 1761 return (0); 1762 } 1763 1764 void 1765 ill_capability_probe(ill_t *ill) 1766 { 1767 /* 1768 * Do so only if negotiation is enabled, capabilities are unknown, 1769 * and a capability negotiation is not already in progress. 1770 */ 1771 if (ill->ill_capab_state != IDMS_UNKNOWN && 1772 ill->ill_capab_state != IDMS_RENEG) 1773 return; 1774 1775 ill->ill_capab_state = IDMS_INPROGRESS; 1776 ip1dbg(("ill_capability_probe: starting capability negotiation\n")); 1777 ill_capability_proto(ill, DL_CAPABILITY_REQ, NULL); 1778 } 1779 1780 void 1781 ill_capability_reset(ill_t *ill) 1782 { 1783 mblk_t *sc_mp = NULL; 1784 mblk_t *tmp; 1785 1786 /* 1787 * Note here that we reset the state to UNKNOWN, and later send 1788 * down the DL_CAPABILITY_REQ without first setting the state to 1789 * INPROGRESS. We do this in order to distinguish the 1790 * DL_CAPABILITY_ACK response which may come back in response to 1791 * a "reset" apart from the "probe" DL_CAPABILITY_REQ. This would 1792 * also handle the case where the driver doesn't send us back 1793 * a DL_CAPABILITY_ACK in response, since the "probe" routine 1794 * requires the state to be in UNKNOWN anyway. In any case, all 1795 * features are turned off until the state reaches IDMS_OK. 1796 */ 1797 ill->ill_capab_state = IDMS_UNKNOWN; 1798 1799 /* 1800 * Disable sub-capabilities and request a list of sub-capability 1801 * messages which will be sent down to the driver. Each handler 1802 * allocates the corresponding dl_capability_sub_t inside an 1803 * mblk, and links it to the existing sc_mp mblk, or return it 1804 * as sc_mp if it's the first sub-capability (the passed in 1805 * sc_mp is NULL). Upon returning from all capability handlers, 1806 * sc_mp will be pulled-up, before passing it downstream. 1807 */ 1808 ill_capability_mdt_reset(ill, &sc_mp); 1809 ill_capability_hcksum_reset(ill, &sc_mp); 1810 ill_capability_zerocopy_reset(ill, &sc_mp); 1811 ill_capability_ipsec_reset(ill, &sc_mp); 1812 ill_capability_dls_reset(ill, &sc_mp); 1813 1814 /* Nothing to send down in order to disable the capabilities? */ 1815 if (sc_mp == NULL) 1816 return; 1817 1818 tmp = msgpullup(sc_mp, -1); 1819 freemsg(sc_mp); 1820 if ((sc_mp = tmp) == NULL) { 1821 cmn_err(CE_WARN, "ill_capability_reset: unable to send down " 1822 "DL_CAPABILITY_REQ (ENOMEM)\n"); 1823 return; 1824 } 1825 1826 ip1dbg(("ill_capability_reset: resetting negotiated capabilities\n")); 1827 ill_capability_proto(ill, DL_CAPABILITY_REQ, sc_mp); 1828 } 1829 1830 /* 1831 * Request or set new-style hardware capabilities supported by DLS provider. 1832 */ 1833 static void 1834 ill_capability_proto(ill_t *ill, int type, mblk_t *reqp) 1835 { 1836 mblk_t *mp; 1837 dl_capability_req_t *capb; 1838 size_t size = 0; 1839 uint8_t *ptr; 1840 1841 if (reqp != NULL) 1842 size = MBLKL(reqp); 1843 1844 mp = ip_dlpi_alloc(sizeof (dl_capability_req_t) + size, type); 1845 if (mp == NULL) { 1846 freemsg(reqp); 1847 return; 1848 } 1849 ptr = mp->b_rptr; 1850 1851 capb = (dl_capability_req_t *)ptr; 1852 ptr += sizeof (dl_capability_req_t); 1853 1854 if (reqp != NULL) { 1855 capb->dl_sub_offset = sizeof (dl_capability_req_t); 1856 capb->dl_sub_length = size; 1857 bcopy(reqp->b_rptr, ptr, size); 1858 ptr += size; 1859 mp->b_cont = reqp->b_cont; 1860 freeb(reqp); 1861 } 1862 ASSERT(ptr == mp->b_wptr); 1863 1864 ill_dlpi_send(ill, mp); 1865 } 1866 1867 static void 1868 ill_capability_id_ack(ill_t *ill, mblk_t *mp, dl_capability_sub_t *outers) 1869 { 1870 dl_capab_id_t *id_ic; 1871 uint_t sub_dl_cap = outers->dl_cap; 1872 dl_capability_sub_t *inners; 1873 uint8_t *capend; 1874 1875 ASSERT(sub_dl_cap == DL_CAPAB_ID_WRAPPER); 1876 1877 /* 1878 * Note: range checks here are not absolutely sufficient to 1879 * make us robust against malformed messages sent by drivers; 1880 * this is in keeping with the rest of IP's dlpi handling. 1881 * (Remember, it's coming from something else in the kernel 1882 * address space) 1883 */ 1884 1885 capend = (uint8_t *)(outers + 1) + outers->dl_length; 1886 if (capend > mp->b_wptr) { 1887 cmn_err(CE_WARN, "ill_capability_id_ack: " 1888 "malformed sub-capability too long for mblk"); 1889 return; 1890 } 1891 1892 id_ic = (dl_capab_id_t *)(outers + 1); 1893 1894 if (outers->dl_length < sizeof (*id_ic) || 1895 (inners = &id_ic->id_subcap, 1896 inners->dl_length > (outers->dl_length - sizeof (*inners)))) { 1897 cmn_err(CE_WARN, "ill_capability_id_ack: malformed " 1898 "encapsulated capab type %d too long for mblk", 1899 inners->dl_cap); 1900 return; 1901 } 1902 1903 if (!dlcapabcheckqid(&id_ic->id_mid, ill->ill_lmod_rq)) { 1904 ip1dbg(("ill_capability_id_ack: mid token for capab type %d " 1905 "isn't as expected; pass-thru module(s) detected, " 1906 "discarding capability\n", inners->dl_cap)); 1907 return; 1908 } 1909 1910 /* Process the encapsulated sub-capability */ 1911 ill_capability_dispatch(ill, mp, inners, B_TRUE); 1912 } 1913 1914 /* 1915 * Process Multidata Transmit capability negotiation ack received from a 1916 * DLS Provider. isub must point to the sub-capability (DL_CAPAB_MDT) of a 1917 * DL_CAPABILITY_ACK message. 1918 */ 1919 static void 1920 ill_capability_mdt_ack(ill_t *ill, mblk_t *mp, dl_capability_sub_t *isub) 1921 { 1922 mblk_t *nmp = NULL; 1923 dl_capability_req_t *oc; 1924 dl_capab_mdt_t *mdt_ic, *mdt_oc; 1925 ill_mdt_capab_t **ill_mdt_capab; 1926 uint_t sub_dl_cap = isub->dl_cap; 1927 uint8_t *capend; 1928 1929 ASSERT(sub_dl_cap == DL_CAPAB_MDT); 1930 1931 ill_mdt_capab = (ill_mdt_capab_t **)&ill->ill_mdt_capab; 1932 1933 /* 1934 * Note: range checks here are not absolutely sufficient to 1935 * make us robust against malformed messages sent by drivers; 1936 * this is in keeping with the rest of IP's dlpi handling. 1937 * (Remember, it's coming from something else in the kernel 1938 * address space) 1939 */ 1940 1941 capend = (uint8_t *)(isub + 1) + isub->dl_length; 1942 if (capend > mp->b_wptr) { 1943 cmn_err(CE_WARN, "ill_capability_mdt_ack: " 1944 "malformed sub-capability too long for mblk"); 1945 return; 1946 } 1947 1948 mdt_ic = (dl_capab_mdt_t *)(isub + 1); 1949 1950 if (mdt_ic->mdt_version != MDT_VERSION_2) { 1951 cmn_err(CE_CONT, "ill_capability_mdt_ack: " 1952 "unsupported MDT sub-capability (version %d, expected %d)", 1953 mdt_ic->mdt_version, MDT_VERSION_2); 1954 return; 1955 } 1956 1957 if (!dlcapabcheckqid(&mdt_ic->mdt_mid, ill->ill_lmod_rq)) { 1958 ip1dbg(("ill_capability_mdt_ack: mid token for MDT " 1959 "capability isn't as expected; pass-thru module(s) " 1960 "detected, discarding capability\n")); 1961 return; 1962 } 1963 1964 if (mdt_ic->mdt_flags & DL_CAPAB_MDT_ENABLE) { 1965 1966 if (*ill_mdt_capab == NULL) { 1967 *ill_mdt_capab = kmem_zalloc(sizeof (ill_mdt_capab_t), 1968 KM_NOSLEEP); 1969 1970 if (*ill_mdt_capab == NULL) { 1971 cmn_err(CE_WARN, "ill_capability_mdt_ack: " 1972 "could not enable MDT version %d " 1973 "for %s (ENOMEM)\n", MDT_VERSION_2, 1974 ill->ill_name); 1975 return; 1976 } 1977 } 1978 1979 ip1dbg(("ill_capability_mdt_ack: interface %s supports " 1980 "MDT version %d (%d bytes leading, %d bytes trailing " 1981 "header spaces, %d max pld bufs, %d span limit)\n", 1982 ill->ill_name, MDT_VERSION_2, 1983 mdt_ic->mdt_hdr_head, mdt_ic->mdt_hdr_tail, 1984 mdt_ic->mdt_max_pld, mdt_ic->mdt_span_limit)); 1985 1986 (*ill_mdt_capab)->ill_mdt_version = MDT_VERSION_2; 1987 (*ill_mdt_capab)->ill_mdt_on = 1; 1988 /* 1989 * Round the following values to the nearest 32-bit; ULP 1990 * may further adjust them to accomodate for additional 1991 * protocol headers. We pass these values to ULP during 1992 * bind time. 1993 */ 1994 (*ill_mdt_capab)->ill_mdt_hdr_head = 1995 roundup(mdt_ic->mdt_hdr_head, 4); 1996 (*ill_mdt_capab)->ill_mdt_hdr_tail = 1997 roundup(mdt_ic->mdt_hdr_tail, 4); 1998 (*ill_mdt_capab)->ill_mdt_max_pld = mdt_ic->mdt_max_pld; 1999 (*ill_mdt_capab)->ill_mdt_span_limit = mdt_ic->mdt_span_limit; 2000 2001 ill->ill_capabilities |= ILL_CAPAB_MDT; 2002 } else { 2003 uint_t size; 2004 uchar_t *rptr; 2005 2006 size = sizeof (dl_capability_req_t) + 2007 sizeof (dl_capability_sub_t) + sizeof (dl_capab_mdt_t); 2008 2009 if ((nmp = ip_dlpi_alloc(size, DL_CAPABILITY_REQ)) == NULL) { 2010 cmn_err(CE_WARN, "ill_capability_mdt_ack: " 2011 "could not enable MDT for %s (ENOMEM)\n", 2012 ill->ill_name); 2013 return; 2014 } 2015 2016 rptr = nmp->b_rptr; 2017 /* initialize dl_capability_req_t */ 2018 oc = (dl_capability_req_t *)nmp->b_rptr; 2019 oc->dl_sub_offset = sizeof (dl_capability_req_t); 2020 oc->dl_sub_length = sizeof (dl_capability_sub_t) + 2021 sizeof (dl_capab_mdt_t); 2022 nmp->b_rptr += sizeof (dl_capability_req_t); 2023 2024 /* initialize dl_capability_sub_t */ 2025 bcopy(isub, nmp->b_rptr, sizeof (*isub)); 2026 nmp->b_rptr += sizeof (*isub); 2027 2028 /* initialize dl_capab_mdt_t */ 2029 mdt_oc = (dl_capab_mdt_t *)nmp->b_rptr; 2030 bcopy(mdt_ic, mdt_oc, sizeof (*mdt_ic)); 2031 2032 nmp->b_rptr = rptr; 2033 2034 ip1dbg(("ill_capability_mdt_ack: asking interface %s " 2035 "to enable MDT version %d\n", ill->ill_name, 2036 MDT_VERSION_2)); 2037 2038 /* set ENABLE flag */ 2039 mdt_oc->mdt_flags |= DL_CAPAB_MDT_ENABLE; 2040 2041 /* nmp points to a DL_CAPABILITY_REQ message to enable MDT */ 2042 ill_dlpi_send(ill, nmp); 2043 } 2044 } 2045 2046 static void 2047 ill_capability_mdt_reset(ill_t *ill, mblk_t **sc_mp) 2048 { 2049 mblk_t *mp; 2050 dl_capab_mdt_t *mdt_subcap; 2051 dl_capability_sub_t *dl_subcap; 2052 int size; 2053 2054 if (!ILL_MDT_CAPABLE(ill)) 2055 return; 2056 2057 ASSERT(ill->ill_mdt_capab != NULL); 2058 /* 2059 * Clear the capability flag for MDT but retain the ill_mdt_capab 2060 * structure since it's possible that another thread is still 2061 * referring to it. The structure only gets deallocated when 2062 * we destroy the ill. 2063 */ 2064 ill->ill_capabilities &= ~ILL_CAPAB_MDT; 2065 2066 size = sizeof (*dl_subcap) + sizeof (*mdt_subcap); 2067 2068 mp = allocb(size, BPRI_HI); 2069 if (mp == NULL) { 2070 ip1dbg(("ill_capability_mdt_reset: unable to allocate " 2071 "request to disable MDT\n")); 2072 return; 2073 } 2074 2075 mp->b_wptr = mp->b_rptr + size; 2076 2077 dl_subcap = (dl_capability_sub_t *)mp->b_rptr; 2078 dl_subcap->dl_cap = DL_CAPAB_MDT; 2079 dl_subcap->dl_length = sizeof (*mdt_subcap); 2080 2081 mdt_subcap = (dl_capab_mdt_t *)(dl_subcap + 1); 2082 mdt_subcap->mdt_version = ill->ill_mdt_capab->ill_mdt_version; 2083 mdt_subcap->mdt_flags = 0; 2084 mdt_subcap->mdt_hdr_head = 0; 2085 mdt_subcap->mdt_hdr_tail = 0; 2086 2087 if (*sc_mp != NULL) 2088 linkb(*sc_mp, mp); 2089 else 2090 *sc_mp = mp; 2091 } 2092 2093 /* 2094 * Send a DL_NOTIFY_REQ to the specified ill to enable 2095 * DL_NOTE_PROMISC_ON/OFF_PHYS notifications. 2096 * Invoked by ill_capability_ipsec_ack() before enabling IPsec hardware 2097 * acceleration. 2098 * Returns B_TRUE on success, B_FALSE if the message could not be sent. 2099 */ 2100 static boolean_t 2101 ill_enable_promisc_notify(ill_t *ill) 2102 { 2103 mblk_t *mp; 2104 dl_notify_req_t *req; 2105 2106 IPSECHW_DEBUG(IPSECHW_PKT, ("ill_enable_promisc_notify:\n")); 2107 2108 mp = ip_dlpi_alloc(sizeof (dl_notify_req_t), DL_NOTIFY_REQ); 2109 if (mp == NULL) 2110 return (B_FALSE); 2111 2112 req = (dl_notify_req_t *)mp->b_rptr; 2113 req->dl_notifications = DL_NOTE_PROMISC_ON_PHYS | 2114 DL_NOTE_PROMISC_OFF_PHYS; 2115 2116 ill_dlpi_send(ill, mp); 2117 2118 return (B_TRUE); 2119 } 2120 2121 2122 /* 2123 * Allocate an IPsec capability request which will be filled by our 2124 * caller to turn on support for one or more algorithms. 2125 */ 2126 static mblk_t * 2127 ill_alloc_ipsec_cap_req(ill_t *ill, dl_capability_sub_t *isub) 2128 { 2129 mblk_t *nmp; 2130 dl_capability_req_t *ocap; 2131 dl_capab_ipsec_t *ocip; 2132 dl_capab_ipsec_t *icip; 2133 uint8_t *ptr; 2134 icip = (dl_capab_ipsec_t *)(isub + 1); 2135 2136 /* 2137 * The first time around, we send a DL_NOTIFY_REQ to enable 2138 * PROMISC_ON/OFF notification from the provider. We need to 2139 * do this before enabling the algorithms to avoid leakage of 2140 * cleartext packets. 2141 */ 2142 2143 if (!ill_enable_promisc_notify(ill)) 2144 return (NULL); 2145 2146 /* 2147 * Allocate new mblk which will contain a new capability 2148 * request to enable the capabilities. 2149 */ 2150 2151 nmp = ip_dlpi_alloc(sizeof (dl_capability_req_t) + 2152 sizeof (dl_capability_sub_t) + isub->dl_length, DL_CAPABILITY_REQ); 2153 if (nmp == NULL) 2154 return (NULL); 2155 2156 ptr = nmp->b_rptr; 2157 2158 /* initialize dl_capability_req_t */ 2159 ocap = (dl_capability_req_t *)ptr; 2160 ocap->dl_sub_offset = sizeof (dl_capability_req_t); 2161 ocap->dl_sub_length = sizeof (dl_capability_sub_t) + isub->dl_length; 2162 ptr += sizeof (dl_capability_req_t); 2163 2164 /* initialize dl_capability_sub_t */ 2165 bcopy(isub, ptr, sizeof (*isub)); 2166 ptr += sizeof (*isub); 2167 2168 /* initialize dl_capab_ipsec_t */ 2169 ocip = (dl_capab_ipsec_t *)ptr; 2170 bcopy(icip, ocip, sizeof (*icip)); 2171 2172 nmp->b_wptr = (uchar_t *)(&ocip->cip_data[0]); 2173 return (nmp); 2174 } 2175 2176 /* 2177 * Process an IPsec capability negotiation ack received from a DLS Provider. 2178 * isub must point to the sub-capability (DL_CAPAB_IPSEC_AH or 2179 * DL_CAPAB_IPSEC_ESP) of a DL_CAPABILITY_ACK message. 2180 */ 2181 static void 2182 ill_capability_ipsec_ack(ill_t *ill, mblk_t *mp, dl_capability_sub_t *isub) 2183 { 2184 dl_capab_ipsec_t *icip; 2185 dl_capab_ipsec_alg_t *ialg; /* ptr to input alg spec. */ 2186 dl_capab_ipsec_alg_t *oalg; /* ptr to output alg spec. */ 2187 uint_t cipher, nciphers; 2188 mblk_t *nmp; 2189 uint_t alg_len; 2190 boolean_t need_sadb_dump; 2191 uint_t sub_dl_cap = isub->dl_cap; 2192 ill_ipsec_capab_t **ill_capab; 2193 uint64_t ill_capab_flag; 2194 uint8_t *capend, *ciphend; 2195 boolean_t sadb_resync; 2196 2197 ASSERT(sub_dl_cap == DL_CAPAB_IPSEC_AH || 2198 sub_dl_cap == DL_CAPAB_IPSEC_ESP); 2199 2200 if (sub_dl_cap == DL_CAPAB_IPSEC_AH) { 2201 ill_capab = (ill_ipsec_capab_t **)&ill->ill_ipsec_capab_ah; 2202 ill_capab_flag = ILL_CAPAB_AH; 2203 } else { 2204 ill_capab = (ill_ipsec_capab_t **)&ill->ill_ipsec_capab_esp; 2205 ill_capab_flag = ILL_CAPAB_ESP; 2206 } 2207 2208 /* 2209 * If the ill capability structure exists, then this incoming 2210 * DL_CAPABILITY_ACK is a response to a "renegotiation" cycle. 2211 * If this is so, then we'd need to resynchronize the SADB 2212 * after re-enabling the offloaded ciphers. 2213 */ 2214 sadb_resync = (*ill_capab != NULL); 2215 2216 /* 2217 * Note: range checks here are not absolutely sufficient to 2218 * make us robust against malformed messages sent by drivers; 2219 * this is in keeping with the rest of IP's dlpi handling. 2220 * (Remember, it's coming from something else in the kernel 2221 * address space) 2222 */ 2223 2224 capend = (uint8_t *)(isub + 1) + isub->dl_length; 2225 if (capend > mp->b_wptr) { 2226 cmn_err(CE_WARN, "ill_capability_ipsec_ack: " 2227 "malformed sub-capability too long for mblk"); 2228 return; 2229 } 2230 2231 /* 2232 * There are two types of acks we process here: 2233 * 1. acks in reply to a (first form) generic capability req 2234 * (no ENABLE flag set) 2235 * 2. acks in reply to a ENABLE capability req. 2236 * (ENABLE flag set) 2237 * 2238 * We process the subcapability passed as argument as follows: 2239 * 1 do initializations 2240 * 1.1 initialize nmp = NULL 2241 * 1.2 set need_sadb_dump to B_FALSE 2242 * 2 for each cipher in subcapability: 2243 * 2.1 if ENABLE flag is set: 2244 * 2.1.1 update per-ill ipsec capabilities info 2245 * 2.1.2 set need_sadb_dump to B_TRUE 2246 * 2.2 if ENABLE flag is not set: 2247 * 2.2.1 if nmp is NULL: 2248 * 2.2.1.1 allocate and initialize nmp 2249 * 2.2.1.2 init current pos in nmp 2250 * 2.2.2 copy current cipher to current pos in nmp 2251 * 2.2.3 set ENABLE flag in nmp 2252 * 2.2.4 update current pos 2253 * 3 if nmp is not equal to NULL, send enable request 2254 * 3.1 send capability request 2255 * 4 if need_sadb_dump is B_TRUE 2256 * 4.1 enable promiscuous on/off notifications 2257 * 4.2 call ill_dlpi_send(isub->dlcap) to send all 2258 * AH or ESP SA's to interface. 2259 */ 2260 2261 nmp = NULL; 2262 oalg = NULL; 2263 need_sadb_dump = B_FALSE; 2264 icip = (dl_capab_ipsec_t *)(isub + 1); 2265 ialg = (dl_capab_ipsec_alg_t *)(&icip->cip_data[0]); 2266 2267 nciphers = icip->cip_nciphers; 2268 ciphend = (uint8_t *)(ialg + icip->cip_nciphers); 2269 2270 if (ciphend > capend) { 2271 cmn_err(CE_WARN, "ill_capability_ipsec_ack: " 2272 "too many ciphers for sub-capability len"); 2273 return; 2274 } 2275 2276 for (cipher = 0; cipher < nciphers; cipher++) { 2277 alg_len = sizeof (dl_capab_ipsec_alg_t); 2278 2279 if (ialg->alg_flag & DL_CAPAB_ALG_ENABLE) { 2280 /* 2281 * TBD: when we provide a way to disable capabilities 2282 * from above, need to manage the request-pending state 2283 * and fail if we were not expecting this ACK. 2284 */ 2285 IPSECHW_DEBUG(IPSECHW_CAPAB, 2286 ("ill_capability_ipsec_ack: got ENABLE ACK\n")); 2287 2288 /* 2289 * Update IPsec capabilities for this ill 2290 */ 2291 2292 if (*ill_capab == NULL) { 2293 IPSECHW_DEBUG(IPSECHW_CAPAB, 2294 ("ill_capability_ipsec_ack: " 2295 "allocating ipsec_capab for ill\n")); 2296 *ill_capab = ill_ipsec_capab_alloc(); 2297 2298 if (*ill_capab == NULL) { 2299 cmn_err(CE_WARN, 2300 "ill_capability_ipsec_ack: " 2301 "could not enable IPsec Hardware " 2302 "acceleration for %s (ENOMEM)\n", 2303 ill->ill_name); 2304 return; 2305 } 2306 } 2307 2308 ASSERT(ialg->alg_type == DL_CAPAB_IPSEC_ALG_AUTH || 2309 ialg->alg_type == DL_CAPAB_IPSEC_ALG_ENCR); 2310 2311 if (ialg->alg_prim >= MAX_IPSEC_ALGS) { 2312 cmn_err(CE_WARN, 2313 "ill_capability_ipsec_ack: " 2314 "malformed IPsec algorithm id %d", 2315 ialg->alg_prim); 2316 continue; 2317 } 2318 2319 if (ialg->alg_type == DL_CAPAB_IPSEC_ALG_AUTH) { 2320 IPSEC_ALG_ENABLE((*ill_capab)->auth_hw_algs, 2321 ialg->alg_prim); 2322 } else { 2323 ipsec_capab_algparm_t *alp; 2324 2325 IPSEC_ALG_ENABLE((*ill_capab)->encr_hw_algs, 2326 ialg->alg_prim); 2327 if (!ill_ipsec_capab_resize_algparm(*ill_capab, 2328 ialg->alg_prim)) { 2329 cmn_err(CE_WARN, 2330 "ill_capability_ipsec_ack: " 2331 "no space for IPsec alg id %d", 2332 ialg->alg_prim); 2333 continue; 2334 } 2335 alp = &((*ill_capab)->encr_algparm[ 2336 ialg->alg_prim]); 2337 alp->minkeylen = ialg->alg_minbits; 2338 alp->maxkeylen = ialg->alg_maxbits; 2339 } 2340 ill->ill_capabilities |= ill_capab_flag; 2341 /* 2342 * indicate that a capability was enabled, which 2343 * will be used below to kick off a SADB dump 2344 * to the ill. 2345 */ 2346 need_sadb_dump = B_TRUE; 2347 } else { 2348 IPSECHW_DEBUG(IPSECHW_CAPAB, 2349 ("ill_capability_ipsec_ack: enabling alg 0x%x\n", 2350 ialg->alg_prim)); 2351 2352 if (nmp == NULL) { 2353 nmp = ill_alloc_ipsec_cap_req(ill, isub); 2354 if (nmp == NULL) { 2355 /* 2356 * Sending the PROMISC_ON/OFF 2357 * notification request failed. 2358 * We cannot enable the algorithms 2359 * since the Provider will not 2360 * notify IP of promiscous mode 2361 * changes, which could lead 2362 * to leakage of packets. 2363 */ 2364 cmn_err(CE_WARN, 2365 "ill_capability_ipsec_ack: " 2366 "could not enable IPsec Hardware " 2367 "acceleration for %s (ENOMEM)\n", 2368 ill->ill_name); 2369 return; 2370 } 2371 /* ptr to current output alg specifier */ 2372 oalg = (dl_capab_ipsec_alg_t *)nmp->b_wptr; 2373 } 2374 2375 /* 2376 * Copy current alg specifier, set ENABLE 2377 * flag, and advance to next output alg. 2378 * For now we enable all IPsec capabilities. 2379 */ 2380 ASSERT(oalg != NULL); 2381 bcopy(ialg, oalg, alg_len); 2382 oalg->alg_flag |= DL_CAPAB_ALG_ENABLE; 2383 nmp->b_wptr += alg_len; 2384 oalg = (dl_capab_ipsec_alg_t *)nmp->b_wptr; 2385 } 2386 2387 /* move to next input algorithm specifier */ 2388 ialg = (dl_capab_ipsec_alg_t *) 2389 ((char *)ialg + alg_len); 2390 } 2391 2392 if (nmp != NULL) 2393 /* 2394 * nmp points to a DL_CAPABILITY_REQ message to enable 2395 * IPsec hardware acceleration. 2396 */ 2397 ill_dlpi_send(ill, nmp); 2398 2399 if (need_sadb_dump) 2400 /* 2401 * An acknowledgement corresponding to a request to 2402 * enable acceleration was received, notify SADB. 2403 */ 2404 ill_ipsec_capab_add(ill, sub_dl_cap, sadb_resync); 2405 } 2406 2407 /* 2408 * Given an mblk with enough space in it, create sub-capability entries for 2409 * DL_CAPAB_IPSEC_{AH,ESP} types which consist of previously-advertised 2410 * offloaded ciphers (both AUTH and ENCR) with their enable flags cleared, 2411 * in preparation for the reset the DL_CAPABILITY_REQ message. 2412 */ 2413 static void 2414 ill_fill_ipsec_reset(uint_t nciphers, int stype, uint_t slen, 2415 ill_ipsec_capab_t *ill_cap, mblk_t *mp) 2416 { 2417 dl_capab_ipsec_t *oipsec; 2418 dl_capab_ipsec_alg_t *oalg; 2419 dl_capability_sub_t *dl_subcap; 2420 int i, k; 2421 2422 ASSERT(nciphers > 0); 2423 ASSERT(ill_cap != NULL); 2424 ASSERT(mp != NULL); 2425 ASSERT(MBLKTAIL(mp) >= sizeof (*dl_subcap) + sizeof (*oipsec) + slen); 2426 2427 /* dl_capability_sub_t for "stype" */ 2428 dl_subcap = (dl_capability_sub_t *)mp->b_wptr; 2429 dl_subcap->dl_cap = stype; 2430 dl_subcap->dl_length = sizeof (dl_capab_ipsec_t) + slen; 2431 mp->b_wptr += sizeof (dl_capability_sub_t); 2432 2433 /* dl_capab_ipsec_t for "stype" */ 2434 oipsec = (dl_capab_ipsec_t *)mp->b_wptr; 2435 oipsec->cip_version = 1; 2436 oipsec->cip_nciphers = nciphers; 2437 mp->b_wptr = (uchar_t *)&oipsec->cip_data[0]; 2438 2439 /* create entries for "stype" AUTH ciphers */ 2440 for (i = 0; i < ill_cap->algs_size; i++) { 2441 for (k = 0; k < BITSPERBYTE; k++) { 2442 if ((ill_cap->auth_hw_algs[i] & (1 << k)) == 0) 2443 continue; 2444 2445 oalg = (dl_capab_ipsec_alg_t *)mp->b_wptr; 2446 bzero((void *)oalg, sizeof (*oalg)); 2447 oalg->alg_type = DL_CAPAB_IPSEC_ALG_AUTH; 2448 oalg->alg_prim = k + (BITSPERBYTE * i); 2449 mp->b_wptr += sizeof (dl_capab_ipsec_alg_t); 2450 } 2451 } 2452 /* create entries for "stype" ENCR ciphers */ 2453 for (i = 0; i < ill_cap->algs_size; i++) { 2454 for (k = 0; k < BITSPERBYTE; k++) { 2455 if ((ill_cap->encr_hw_algs[i] & (1 << k)) == 0) 2456 continue; 2457 2458 oalg = (dl_capab_ipsec_alg_t *)mp->b_wptr; 2459 bzero((void *)oalg, sizeof (*oalg)); 2460 oalg->alg_type = DL_CAPAB_IPSEC_ALG_ENCR; 2461 oalg->alg_prim = k + (BITSPERBYTE * i); 2462 mp->b_wptr += sizeof (dl_capab_ipsec_alg_t); 2463 } 2464 } 2465 } 2466 2467 /* 2468 * Macro to count number of 1s in a byte (8-bit word). The total count is 2469 * accumulated into the passed-in argument (sum). We could use SPARCv9's 2470 * POPC instruction, but our macro is more flexible for an arbitrary length 2471 * of bytes, such as {auth,encr}_hw_algs. These variables are currently 2472 * 256-bits long (MAX_IPSEC_ALGS), so if we know for sure that the length 2473 * stays that way, we can reduce the number of iterations required. 2474 */ 2475 #define COUNT_1S(val, sum) { \ 2476 uint8_t x = val & 0xff; \ 2477 x = (x & 0x55) + ((x >> 1) & 0x55); \ 2478 x = (x & 0x33) + ((x >> 2) & 0x33); \ 2479 sum += (x & 0xf) + ((x >> 4) & 0xf); \ 2480 } 2481 2482 /* ARGSUSED */ 2483 static void 2484 ill_capability_ipsec_reset(ill_t *ill, mblk_t **sc_mp) 2485 { 2486 mblk_t *mp; 2487 ill_ipsec_capab_t *cap_ah = ill->ill_ipsec_capab_ah; 2488 ill_ipsec_capab_t *cap_esp = ill->ill_ipsec_capab_esp; 2489 uint64_t ill_capabilities = ill->ill_capabilities; 2490 int ah_cnt = 0, esp_cnt = 0; 2491 int ah_len = 0, esp_len = 0; 2492 int i, size = 0; 2493 2494 if (!(ill_capabilities & (ILL_CAPAB_AH | ILL_CAPAB_ESP))) 2495 return; 2496 2497 ASSERT(cap_ah != NULL || !(ill_capabilities & ILL_CAPAB_AH)); 2498 ASSERT(cap_esp != NULL || !(ill_capabilities & ILL_CAPAB_ESP)); 2499 2500 /* Find out the number of ciphers for AH */ 2501 if (cap_ah != NULL) { 2502 for (i = 0; i < cap_ah->algs_size; i++) { 2503 COUNT_1S(cap_ah->auth_hw_algs[i], ah_cnt); 2504 COUNT_1S(cap_ah->encr_hw_algs[i], ah_cnt); 2505 } 2506 if (ah_cnt > 0) { 2507 size += sizeof (dl_capability_sub_t) + 2508 sizeof (dl_capab_ipsec_t); 2509 /* dl_capab_ipsec_t contains one dl_capab_ipsec_alg_t */ 2510 ah_len = (ah_cnt - 1) * sizeof (dl_capab_ipsec_alg_t); 2511 size += ah_len; 2512 } 2513 } 2514 2515 /* Find out the number of ciphers for ESP */ 2516 if (cap_esp != NULL) { 2517 for (i = 0; i < cap_esp->algs_size; i++) { 2518 COUNT_1S(cap_esp->auth_hw_algs[i], esp_cnt); 2519 COUNT_1S(cap_esp->encr_hw_algs[i], esp_cnt); 2520 } 2521 if (esp_cnt > 0) { 2522 size += sizeof (dl_capability_sub_t) + 2523 sizeof (dl_capab_ipsec_t); 2524 /* dl_capab_ipsec_t contains one dl_capab_ipsec_alg_t */ 2525 esp_len = (esp_cnt - 1) * sizeof (dl_capab_ipsec_alg_t); 2526 size += esp_len; 2527 } 2528 } 2529 2530 if (size == 0) { 2531 ip1dbg(("ill_capability_ipsec_reset: capabilities exist but " 2532 "there's nothing to reset\n")); 2533 return; 2534 } 2535 2536 mp = allocb(size, BPRI_HI); 2537 if (mp == NULL) { 2538 ip1dbg(("ill_capability_ipsec_reset: unable to allocate " 2539 "request to disable IPSEC Hardware Acceleration\n")); 2540 return; 2541 } 2542 2543 /* 2544 * Clear the capability flags for IPSec HA but retain the ill 2545 * capability structures since it's possible that another thread 2546 * is still referring to them. The structures only get deallocated 2547 * when we destroy the ill. 2548 * 2549 * Various places check the flags to see if the ill is capable of 2550 * hardware acceleration, and by clearing them we ensure that new 2551 * outbound IPSec packets are sent down encrypted. 2552 */ 2553 ill->ill_capabilities &= ~(ILL_CAPAB_AH | ILL_CAPAB_ESP); 2554 2555 /* Fill in DL_CAPAB_IPSEC_AH sub-capability entries */ 2556 if (ah_cnt > 0) { 2557 ill_fill_ipsec_reset(ah_cnt, DL_CAPAB_IPSEC_AH, ah_len, 2558 cap_ah, mp); 2559 ASSERT(mp->b_rptr + size >= mp->b_wptr); 2560 } 2561 2562 /* Fill in DL_CAPAB_IPSEC_ESP sub-capability entries */ 2563 if (esp_cnt > 0) { 2564 ill_fill_ipsec_reset(esp_cnt, DL_CAPAB_IPSEC_ESP, esp_len, 2565 cap_esp, mp); 2566 ASSERT(mp->b_rptr + size >= mp->b_wptr); 2567 } 2568 2569 /* 2570 * At this point we've composed a bunch of sub-capabilities to be 2571 * encapsulated in a DL_CAPABILITY_REQ and later sent downstream 2572 * by the caller. Upon receiving this reset message, the driver 2573 * must stop inbound decryption (by destroying all inbound SAs) 2574 * and let the corresponding packets come in encrypted. 2575 */ 2576 2577 if (*sc_mp != NULL) 2578 linkb(*sc_mp, mp); 2579 else 2580 *sc_mp = mp; 2581 } 2582 2583 static void 2584 ill_capability_dispatch(ill_t *ill, mblk_t *mp, dl_capability_sub_t *subp, 2585 boolean_t encapsulated) 2586 { 2587 boolean_t legacy = B_FALSE; 2588 2589 /* 2590 * If this DL_CAPABILITY_ACK came in as a response to our "reset" 2591 * DL_CAPABILITY_REQ, ignore it during this cycle. We've just 2592 * instructed the driver to disable its advertised capabilities, 2593 * so there's no point in accepting any response at this moment. 2594 */ 2595 if (ill->ill_capab_state == IDMS_UNKNOWN) 2596 return; 2597 2598 /* 2599 * Note that only the following two sub-capabilities may be 2600 * considered as "legacy", since their original definitions 2601 * do not incorporate the dl_mid_t module ID token, and hence 2602 * may require the use of the wrapper sub-capability. 2603 */ 2604 switch (subp->dl_cap) { 2605 case DL_CAPAB_IPSEC_AH: 2606 case DL_CAPAB_IPSEC_ESP: 2607 legacy = B_TRUE; 2608 break; 2609 } 2610 2611 /* 2612 * For legacy sub-capabilities which don't incorporate a queue_t 2613 * pointer in their structures, discard them if we detect that 2614 * there are intermediate modules in between IP and the driver. 2615 */ 2616 if (!encapsulated && legacy && ill->ill_lmod_cnt > 1) { 2617 ip1dbg(("ill_capability_dispatch: unencapsulated capab type " 2618 "%d discarded; %d module(s) present below IP\n", 2619 subp->dl_cap, ill->ill_lmod_cnt)); 2620 return; 2621 } 2622 2623 switch (subp->dl_cap) { 2624 case DL_CAPAB_IPSEC_AH: 2625 case DL_CAPAB_IPSEC_ESP: 2626 ill_capability_ipsec_ack(ill, mp, subp); 2627 break; 2628 case DL_CAPAB_MDT: 2629 ill_capability_mdt_ack(ill, mp, subp); 2630 break; 2631 case DL_CAPAB_HCKSUM: 2632 ill_capability_hcksum_ack(ill, mp, subp); 2633 break; 2634 case DL_CAPAB_ZEROCOPY: 2635 ill_capability_zerocopy_ack(ill, mp, subp); 2636 break; 2637 case DL_CAPAB_POLL: 2638 if (!SOFT_RINGS_ENABLED()) 2639 ill_capability_dls_ack(ill, mp, subp); 2640 break; 2641 case DL_CAPAB_SOFT_RING: 2642 if (SOFT_RINGS_ENABLED()) 2643 ill_capability_dls_ack(ill, mp, subp); 2644 break; 2645 default: 2646 ip1dbg(("ill_capability_dispatch: unknown capab type %d\n", 2647 subp->dl_cap)); 2648 } 2649 } 2650 2651 /* 2652 * As part of negotiating polling capability, the driver tells us 2653 * the default (or normal) blanking interval and packet threshold 2654 * (the receive timer fires if blanking interval is reached or 2655 * the packet threshold is reached). 2656 * 2657 * As part of manipulating the polling interval, we always use our 2658 * estimated interval (avg service time * number of packets queued 2659 * on the squeue) but we try to blank for a minimum of 2660 * rr_normal_blank_time * rr_max_blank_ratio. We disable the 2661 * packet threshold during this time. When we are not in polling mode 2662 * we set the blank interval typically lower, rr_normal_pkt_cnt * 2663 * rr_min_blank_ratio but up the packet cnt by a ratio of 2664 * rr_min_pkt_cnt_ratio so that we are still getting chains if 2665 * possible although for a shorter interval. 2666 */ 2667 #define RR_MAX_BLANK_RATIO 20 2668 #define RR_MIN_BLANK_RATIO 10 2669 #define RR_MAX_PKT_CNT_RATIO 3 2670 #define RR_MIN_PKT_CNT_RATIO 3 2671 2672 /* 2673 * These can be tuned via /etc/system. 2674 */ 2675 int rr_max_blank_ratio = RR_MAX_BLANK_RATIO; 2676 int rr_min_blank_ratio = RR_MIN_BLANK_RATIO; 2677 int rr_max_pkt_cnt_ratio = RR_MAX_PKT_CNT_RATIO; 2678 int rr_min_pkt_cnt_ratio = RR_MIN_PKT_CNT_RATIO; 2679 2680 static mac_resource_handle_t 2681 ill_ring_add(void *arg, mac_resource_t *mrp) 2682 { 2683 ill_t *ill = (ill_t *)arg; 2684 mac_rx_fifo_t *mrfp = (mac_rx_fifo_t *)mrp; 2685 ill_rx_ring_t *rx_ring; 2686 int ip_rx_index; 2687 2688 ASSERT(mrp != NULL); 2689 if (mrp->mr_type != MAC_RX_FIFO) { 2690 return (NULL); 2691 } 2692 ASSERT(ill != NULL); 2693 ASSERT(ill->ill_dls_capab != NULL); 2694 2695 mutex_enter(&ill->ill_lock); 2696 for (ip_rx_index = 0; ip_rx_index < ILL_MAX_RINGS; ip_rx_index++) { 2697 rx_ring = &ill->ill_dls_capab->ill_ring_tbl[ip_rx_index]; 2698 ASSERT(rx_ring != NULL); 2699 2700 if (rx_ring->rr_ring_state == ILL_RING_FREE) { 2701 time_t normal_blank_time = 2702 mrfp->mrf_normal_blank_time; 2703 uint_t normal_pkt_cnt = 2704 mrfp->mrf_normal_pkt_count; 2705 2706 bzero(rx_ring, sizeof (ill_rx_ring_t)); 2707 2708 rx_ring->rr_blank = mrfp->mrf_blank; 2709 rx_ring->rr_handle = mrfp->mrf_arg; 2710 rx_ring->rr_ill = ill; 2711 rx_ring->rr_normal_blank_time = normal_blank_time; 2712 rx_ring->rr_normal_pkt_cnt = normal_pkt_cnt; 2713 2714 rx_ring->rr_max_blank_time = 2715 normal_blank_time * rr_max_blank_ratio; 2716 rx_ring->rr_min_blank_time = 2717 normal_blank_time * rr_min_blank_ratio; 2718 rx_ring->rr_max_pkt_cnt = 2719 normal_pkt_cnt * rr_max_pkt_cnt_ratio; 2720 rx_ring->rr_min_pkt_cnt = 2721 normal_pkt_cnt * rr_min_pkt_cnt_ratio; 2722 2723 rx_ring->rr_ring_state = ILL_RING_INUSE; 2724 mutex_exit(&ill->ill_lock); 2725 2726 DTRACE_PROBE2(ill__ring__add, (void *), ill, 2727 (int), ip_rx_index); 2728 return ((mac_resource_handle_t)rx_ring); 2729 } 2730 } 2731 2732 /* 2733 * We ran out of ILL_MAX_RINGS worth rx_ring structures. If 2734 * we have devices which can overwhelm this limit, ILL_MAX_RING 2735 * should be made configurable. Meanwhile it cause no panic because 2736 * driver will pass ip_input a NULL handle which will make 2737 * IP allocate the default squeue and Polling mode will not 2738 * be used for this ring. 2739 */ 2740 cmn_err(CE_NOTE, "Reached maximum number of receiving rings (%d) " 2741 "for %s\n", ILL_MAX_RINGS, ill->ill_name); 2742 2743 mutex_exit(&ill->ill_lock); 2744 return (NULL); 2745 } 2746 2747 static boolean_t 2748 ill_capability_dls_init(ill_t *ill) 2749 { 2750 ill_dls_capab_t *ill_dls = ill->ill_dls_capab; 2751 conn_t *connp; 2752 size_t sz; 2753 2754 if (ill->ill_capabilities & ILL_CAPAB_SOFT_RING) { 2755 if (ill_dls == NULL) { 2756 cmn_err(CE_PANIC, "ill_capability_dls_init: " 2757 "soft_ring enabled for ill=%s (%p) but data " 2758 "structs uninitialized\n", ill->ill_name, 2759 (void *)ill); 2760 } 2761 return (B_TRUE); 2762 } else if (ill->ill_capabilities & ILL_CAPAB_POLL) { 2763 if (ill_dls == NULL) { 2764 cmn_err(CE_PANIC, "ill_capability_dls_init: " 2765 "polling enabled for ill=%s (%p) but data " 2766 "structs uninitialized\n", ill->ill_name, 2767 (void *)ill); 2768 } 2769 return (B_TRUE); 2770 } 2771 2772 if (ill_dls != NULL) { 2773 ill_rx_ring_t *rx_ring = ill_dls->ill_ring_tbl; 2774 /* Soft_Ring or polling is being re-enabled */ 2775 2776 connp = ill_dls->ill_unbind_conn; 2777 ASSERT(rx_ring != NULL); 2778 bzero((void *)ill_dls, sizeof (ill_dls_capab_t)); 2779 bzero((void *)rx_ring, 2780 sizeof (ill_rx_ring_t) * ILL_MAX_RINGS); 2781 ill_dls->ill_ring_tbl = rx_ring; 2782 ill_dls->ill_unbind_conn = connp; 2783 return (B_TRUE); 2784 } 2785 2786 if ((connp = ipcl_conn_create(IPCL_TCPCONN, KM_NOSLEEP)) == NULL) 2787 return (B_FALSE); 2788 2789 sz = sizeof (ill_dls_capab_t); 2790 sz += sizeof (ill_rx_ring_t) * ILL_MAX_RINGS; 2791 2792 ill_dls = kmem_zalloc(sz, KM_NOSLEEP); 2793 if (ill_dls == NULL) { 2794 cmn_err(CE_WARN, "ill_capability_dls_init: could not " 2795 "allocate dls_capab for %s (%p)\n", ill->ill_name, 2796 (void *)ill); 2797 CONN_DEC_REF(connp); 2798 return (B_FALSE); 2799 } 2800 2801 /* Allocate space to hold ring table */ 2802 ill_dls->ill_ring_tbl = (ill_rx_ring_t *)&ill_dls[1]; 2803 ill->ill_dls_capab = ill_dls; 2804 ill_dls->ill_unbind_conn = connp; 2805 return (B_TRUE); 2806 } 2807 2808 /* 2809 * ill_capability_dls_disable: disable soft_ring and/or polling 2810 * capability. Since any of the rings might already be in use, need 2811 * to call ipsq_clean_all() which gets behind the squeue to disable 2812 * direct calls if necessary. 2813 */ 2814 static void 2815 ill_capability_dls_disable(ill_t *ill) 2816 { 2817 ill_dls_capab_t *ill_dls = ill->ill_dls_capab; 2818 2819 if (ill->ill_capabilities & ILL_CAPAB_DLS) { 2820 ipsq_clean_all(ill); 2821 ill_dls->ill_tx = NULL; 2822 ill_dls->ill_tx_handle = NULL; 2823 ill_dls->ill_dls_change_status = NULL; 2824 ill_dls->ill_dls_bind = NULL; 2825 ill_dls->ill_dls_unbind = NULL; 2826 } 2827 2828 ASSERT(!(ill->ill_capabilities & ILL_CAPAB_DLS)); 2829 } 2830 2831 static void 2832 ill_capability_dls_capable(ill_t *ill, dl_capab_dls_t *idls, 2833 dl_capability_sub_t *isub) 2834 { 2835 uint_t size; 2836 uchar_t *rptr; 2837 dl_capab_dls_t dls, *odls; 2838 ill_dls_capab_t *ill_dls; 2839 mblk_t *nmp = NULL; 2840 dl_capability_req_t *ocap; 2841 uint_t sub_dl_cap = isub->dl_cap; 2842 2843 if (!ill_capability_dls_init(ill)) 2844 return; 2845 ill_dls = ill->ill_dls_capab; 2846 2847 /* Copy locally to get the members aligned */ 2848 bcopy((void *)idls, (void *)&dls, 2849 sizeof (dl_capab_dls_t)); 2850 2851 /* Get the tx function and handle from dld */ 2852 ill_dls->ill_tx = (ip_dld_tx_t)dls.dls_tx; 2853 ill_dls->ill_tx_handle = (void *)dls.dls_tx_handle; 2854 2855 if (sub_dl_cap == DL_CAPAB_SOFT_RING) { 2856 ill_dls->ill_dls_change_status = 2857 (ip_dls_chg_soft_ring_t)dls.dls_ring_change_status; 2858 ill_dls->ill_dls_bind = (ip_dls_bind_t)dls.dls_ring_bind; 2859 ill_dls->ill_dls_unbind = 2860 (ip_dls_unbind_t)dls.dls_ring_unbind; 2861 ill_dls->ill_dls_soft_ring_cnt = ip_soft_rings_cnt; 2862 } 2863 2864 size = sizeof (dl_capability_req_t) + sizeof (dl_capability_sub_t) + 2865 isub->dl_length; 2866 2867 if ((nmp = ip_dlpi_alloc(size, DL_CAPABILITY_REQ)) == NULL) { 2868 cmn_err(CE_WARN, "ill_capability_dls_capable: could " 2869 "not allocate memory for CAPAB_REQ for %s (%p)\n", 2870 ill->ill_name, (void *)ill); 2871 return; 2872 } 2873 2874 /* initialize dl_capability_req_t */ 2875 rptr = nmp->b_rptr; 2876 ocap = (dl_capability_req_t *)rptr; 2877 ocap->dl_sub_offset = sizeof (dl_capability_req_t); 2878 ocap->dl_sub_length = sizeof (dl_capability_sub_t) + isub->dl_length; 2879 rptr += sizeof (dl_capability_req_t); 2880 2881 /* initialize dl_capability_sub_t */ 2882 bcopy(isub, rptr, sizeof (*isub)); 2883 rptr += sizeof (*isub); 2884 2885 odls = (dl_capab_dls_t *)rptr; 2886 rptr += sizeof (dl_capab_dls_t); 2887 2888 /* initialize dl_capab_dls_t to be sent down */ 2889 dls.dls_rx_handle = (uintptr_t)ill; 2890 dls.dls_rx = (uintptr_t)ip_input; 2891 dls.dls_ring_add = (uintptr_t)ill_ring_add; 2892 2893 if (sub_dl_cap == DL_CAPAB_SOFT_RING) { 2894 dls.dls_ring_cnt = ip_soft_rings_cnt; 2895 dls.dls_ring_assign = (uintptr_t)ip_soft_ring_assignment; 2896 dls.dls_flags = SOFT_RING_ENABLE; 2897 } else { 2898 dls.dls_flags = POLL_ENABLE; 2899 ip1dbg(("ill_capability_dls_capable: asking interface %s " 2900 "to enable polling\n", ill->ill_name)); 2901 } 2902 bcopy((void *)&dls, (void *)odls, 2903 sizeof (dl_capab_dls_t)); 2904 ASSERT(nmp->b_wptr == (nmp->b_rptr + size)); 2905 /* 2906 * nmp points to a DL_CAPABILITY_REQ message to 2907 * enable either soft_ring or polling 2908 */ 2909 ill_dlpi_send(ill, nmp); 2910 } 2911 2912 static void 2913 ill_capability_dls_reset(ill_t *ill, mblk_t **sc_mp) 2914 { 2915 mblk_t *mp; 2916 dl_capab_dls_t *idls; 2917 dl_capability_sub_t *dl_subcap; 2918 int size; 2919 2920 if (!(ill->ill_capabilities & ILL_CAPAB_DLS)) 2921 return; 2922 2923 ASSERT(ill->ill_dls_capab != NULL); 2924 2925 size = sizeof (*dl_subcap) + sizeof (*idls); 2926 2927 mp = allocb(size, BPRI_HI); 2928 if (mp == NULL) { 2929 ip1dbg(("ill_capability_dls_reset: unable to allocate " 2930 "request to disable soft_ring\n")); 2931 return; 2932 } 2933 2934 mp->b_wptr = mp->b_rptr + size; 2935 2936 dl_subcap = (dl_capability_sub_t *)mp->b_rptr; 2937 dl_subcap->dl_length = sizeof (*idls); 2938 if (ill->ill_capabilities & ILL_CAPAB_SOFT_RING) 2939 dl_subcap->dl_cap = DL_CAPAB_SOFT_RING; 2940 else 2941 dl_subcap->dl_cap = DL_CAPAB_POLL; 2942 2943 idls = (dl_capab_dls_t *)(dl_subcap + 1); 2944 if (ill->ill_capabilities & ILL_CAPAB_SOFT_RING) 2945 idls->dls_flags = SOFT_RING_DISABLE; 2946 else 2947 idls->dls_flags = POLL_DISABLE; 2948 2949 if (*sc_mp != NULL) 2950 linkb(*sc_mp, mp); 2951 else 2952 *sc_mp = mp; 2953 } 2954 2955 /* 2956 * Process a soft_ring/poll capability negotiation ack received 2957 * from a DLS Provider.isub must point to the sub-capability 2958 * (DL_CAPAB_SOFT_RING/DL_CAPAB_POLL) of a DL_CAPABILITY_ACK message. 2959 */ 2960 static void 2961 ill_capability_dls_ack(ill_t *ill, mblk_t *mp, dl_capability_sub_t *isub) 2962 { 2963 dl_capab_dls_t *idls; 2964 uint_t sub_dl_cap = isub->dl_cap; 2965 uint8_t *capend; 2966 2967 ASSERT(sub_dl_cap == DL_CAPAB_SOFT_RING || 2968 sub_dl_cap == DL_CAPAB_POLL); 2969 2970 if (ill->ill_isv6) 2971 return; 2972 2973 /* 2974 * Note: range checks here are not absolutely sufficient to 2975 * make us robust against malformed messages sent by drivers; 2976 * this is in keeping with the rest of IP's dlpi handling. 2977 * (Remember, it's coming from something else in the kernel 2978 * address space) 2979 */ 2980 capend = (uint8_t *)(isub + 1) + isub->dl_length; 2981 if (capend > mp->b_wptr) { 2982 cmn_err(CE_WARN, "ill_capability_dls_ack: " 2983 "malformed sub-capability too long for mblk"); 2984 return; 2985 } 2986 2987 /* 2988 * There are two types of acks we process here: 2989 * 1. acks in reply to a (first form) generic capability req 2990 * (dls_flag will be set to SOFT_RING_CAPABLE or POLL_CAPABLE) 2991 * 2. acks in reply to a SOFT_RING_ENABLE or POLL_ENABLE 2992 * capability req. 2993 */ 2994 idls = (dl_capab_dls_t *)(isub + 1); 2995 2996 if (!dlcapabcheckqid(&idls->dls_mid, ill->ill_lmod_rq)) { 2997 ip1dbg(("ill_capability_dls_ack: mid token for dls " 2998 "capability isn't as expected; pass-thru " 2999 "module(s) detected, discarding capability\n")); 3000 if (ill->ill_capabilities & ILL_CAPAB_DLS) { 3001 /* 3002 * This is a capability renegotitation case. 3003 * The interface better be unusable at this 3004 * point other wise bad things will happen 3005 * if we disable direct calls on a running 3006 * and up interface. 3007 */ 3008 ill_capability_dls_disable(ill); 3009 } 3010 return; 3011 } 3012 3013 switch (idls->dls_flags) { 3014 default: 3015 /* Disable if unknown flag */ 3016 case SOFT_RING_DISABLE: 3017 case POLL_DISABLE: 3018 ill_capability_dls_disable(ill); 3019 break; 3020 case SOFT_RING_CAPABLE: 3021 case POLL_CAPABLE: 3022 /* 3023 * If the capability was already enabled, its safe 3024 * to disable it first to get rid of stale information 3025 * and then start enabling it again. 3026 */ 3027 ill_capability_dls_disable(ill); 3028 ill_capability_dls_capable(ill, idls, isub); 3029 break; 3030 case SOFT_RING_ENABLE: 3031 case POLL_ENABLE: 3032 mutex_enter(&ill->ill_lock); 3033 if (sub_dl_cap == DL_CAPAB_SOFT_RING && 3034 !(ill->ill_capabilities & ILL_CAPAB_SOFT_RING)) { 3035 ASSERT(ill->ill_dls_capab != NULL); 3036 ill->ill_capabilities |= ILL_CAPAB_SOFT_RING; 3037 } 3038 if (sub_dl_cap == DL_CAPAB_POLL && 3039 !(ill->ill_capabilities & ILL_CAPAB_POLL)) { 3040 ASSERT(ill->ill_dls_capab != NULL); 3041 ill->ill_capabilities |= ILL_CAPAB_POLL; 3042 ip1dbg(("ill_capability_dls_ack: interface %s " 3043 "has enabled polling\n", ill->ill_name)); 3044 } 3045 mutex_exit(&ill->ill_lock); 3046 break; 3047 } 3048 } 3049 3050 /* 3051 * Process a hardware checksum offload capability negotiation ack received 3052 * from a DLS Provider.isub must point to the sub-capability (DL_CAPAB_HCKSUM) 3053 * of a DL_CAPABILITY_ACK message. 3054 */ 3055 static void 3056 ill_capability_hcksum_ack(ill_t *ill, mblk_t *mp, dl_capability_sub_t *isub) 3057 { 3058 dl_capability_req_t *ocap; 3059 dl_capab_hcksum_t *ihck, *ohck; 3060 ill_hcksum_capab_t **ill_hcksum; 3061 mblk_t *nmp = NULL; 3062 uint_t sub_dl_cap = isub->dl_cap; 3063 uint8_t *capend; 3064 3065 ASSERT(sub_dl_cap == DL_CAPAB_HCKSUM); 3066 3067 ill_hcksum = (ill_hcksum_capab_t **)&ill->ill_hcksum_capab; 3068 3069 /* 3070 * Note: range checks here are not absolutely sufficient to 3071 * make us robust against malformed messages sent by drivers; 3072 * this is in keeping with the rest of IP's dlpi handling. 3073 * (Remember, it's coming from something else in the kernel 3074 * address space) 3075 */ 3076 capend = (uint8_t *)(isub + 1) + isub->dl_length; 3077 if (capend > mp->b_wptr) { 3078 cmn_err(CE_WARN, "ill_capability_hcksum_ack: " 3079 "malformed sub-capability too long for mblk"); 3080 return; 3081 } 3082 3083 /* 3084 * There are two types of acks we process here: 3085 * 1. acks in reply to a (first form) generic capability req 3086 * (no ENABLE flag set) 3087 * 2. acks in reply to a ENABLE capability req. 3088 * (ENABLE flag set) 3089 */ 3090 ihck = (dl_capab_hcksum_t *)(isub + 1); 3091 3092 if (ihck->hcksum_version != HCKSUM_VERSION_1) { 3093 cmn_err(CE_CONT, "ill_capability_hcksum_ack: " 3094 "unsupported hardware checksum " 3095 "sub-capability (version %d, expected %d)", 3096 ihck->hcksum_version, HCKSUM_VERSION_1); 3097 return; 3098 } 3099 3100 if (!dlcapabcheckqid(&ihck->hcksum_mid, ill->ill_lmod_rq)) { 3101 ip1dbg(("ill_capability_hcksum_ack: mid token for hardware " 3102 "checksum capability isn't as expected; pass-thru " 3103 "module(s) detected, discarding capability\n")); 3104 return; 3105 } 3106 3107 #define CURR_HCKSUM_CAPAB \ 3108 (HCKSUM_INET_PARTIAL | HCKSUM_INET_FULL_V4 | \ 3109 HCKSUM_INET_FULL_V6 | HCKSUM_IPHDRCKSUM) 3110 3111 if ((ihck->hcksum_txflags & HCKSUM_ENABLE) && 3112 (ihck->hcksum_txflags & CURR_HCKSUM_CAPAB)) { 3113 /* do ENABLE processing */ 3114 if (*ill_hcksum == NULL) { 3115 *ill_hcksum = kmem_zalloc(sizeof (ill_hcksum_capab_t), 3116 KM_NOSLEEP); 3117 3118 if (*ill_hcksum == NULL) { 3119 cmn_err(CE_WARN, "ill_capability_hcksum_ack: " 3120 "could not enable hcksum version %d " 3121 "for %s (ENOMEM)\n", HCKSUM_CURRENT_VERSION, 3122 ill->ill_name); 3123 return; 3124 } 3125 } 3126 3127 (*ill_hcksum)->ill_hcksum_version = ihck->hcksum_version; 3128 (*ill_hcksum)->ill_hcksum_txflags = ihck->hcksum_txflags; 3129 ill->ill_capabilities |= ILL_CAPAB_HCKSUM; 3130 ip1dbg(("ill_capability_hcksum_ack: interface %s " 3131 "has enabled hardware checksumming\n ", 3132 ill->ill_name)); 3133 } else if (ihck->hcksum_txflags & CURR_HCKSUM_CAPAB) { 3134 /* 3135 * Enabling hardware checksum offload 3136 * Currently IP supports {TCP,UDP}/IPv4 3137 * partial and full cksum offload and 3138 * IPv4 header checksum offload. 3139 * Allocate new mblk which will 3140 * contain a new capability request 3141 * to enable hardware checksum offload. 3142 */ 3143 uint_t size; 3144 uchar_t *rptr; 3145 3146 size = sizeof (dl_capability_req_t) + 3147 sizeof (dl_capability_sub_t) + isub->dl_length; 3148 3149 if ((nmp = ip_dlpi_alloc(size, DL_CAPABILITY_REQ)) == NULL) { 3150 cmn_err(CE_WARN, "ill_capability_hcksum_ack: " 3151 "could not enable hardware cksum for %s (ENOMEM)\n", 3152 ill->ill_name); 3153 return; 3154 } 3155 3156 rptr = nmp->b_rptr; 3157 /* initialize dl_capability_req_t */ 3158 ocap = (dl_capability_req_t *)nmp->b_rptr; 3159 ocap->dl_sub_offset = 3160 sizeof (dl_capability_req_t); 3161 ocap->dl_sub_length = 3162 sizeof (dl_capability_sub_t) + 3163 isub->dl_length; 3164 nmp->b_rptr += sizeof (dl_capability_req_t); 3165 3166 /* initialize dl_capability_sub_t */ 3167 bcopy(isub, nmp->b_rptr, sizeof (*isub)); 3168 nmp->b_rptr += sizeof (*isub); 3169 3170 /* initialize dl_capab_hcksum_t */ 3171 ohck = (dl_capab_hcksum_t *)nmp->b_rptr; 3172 bcopy(ihck, ohck, sizeof (*ihck)); 3173 3174 nmp->b_rptr = rptr; 3175 ASSERT(nmp->b_wptr == (nmp->b_rptr + size)); 3176 3177 /* Set ENABLE flag */ 3178 ohck->hcksum_txflags &= CURR_HCKSUM_CAPAB; 3179 ohck->hcksum_txflags |= HCKSUM_ENABLE; 3180 3181 /* 3182 * nmp points to a DL_CAPABILITY_REQ message to enable 3183 * hardware checksum acceleration. 3184 */ 3185 ill_dlpi_send(ill, nmp); 3186 } else { 3187 ip1dbg(("ill_capability_hcksum_ack: interface %s has " 3188 "advertised %x hardware checksum capability flags\n", 3189 ill->ill_name, ihck->hcksum_txflags)); 3190 } 3191 } 3192 3193 static void 3194 ill_capability_hcksum_reset(ill_t *ill, mblk_t **sc_mp) 3195 { 3196 mblk_t *mp; 3197 dl_capab_hcksum_t *hck_subcap; 3198 dl_capability_sub_t *dl_subcap; 3199 int size; 3200 3201 if (!ILL_HCKSUM_CAPABLE(ill)) 3202 return; 3203 3204 ASSERT(ill->ill_hcksum_capab != NULL); 3205 /* 3206 * Clear the capability flag for hardware checksum offload but 3207 * retain the ill_hcksum_capab structure since it's possible that 3208 * another thread is still referring to it. The structure only 3209 * gets deallocated when we destroy the ill. 3210 */ 3211 ill->ill_capabilities &= ~ILL_CAPAB_HCKSUM; 3212 3213 size = sizeof (*dl_subcap) + sizeof (*hck_subcap); 3214 3215 mp = allocb(size, BPRI_HI); 3216 if (mp == NULL) { 3217 ip1dbg(("ill_capability_hcksum_reset: unable to allocate " 3218 "request to disable hardware checksum offload\n")); 3219 return; 3220 } 3221 3222 mp->b_wptr = mp->b_rptr + size; 3223 3224 dl_subcap = (dl_capability_sub_t *)mp->b_rptr; 3225 dl_subcap->dl_cap = DL_CAPAB_HCKSUM; 3226 dl_subcap->dl_length = sizeof (*hck_subcap); 3227 3228 hck_subcap = (dl_capab_hcksum_t *)(dl_subcap + 1); 3229 hck_subcap->hcksum_version = ill->ill_hcksum_capab->ill_hcksum_version; 3230 hck_subcap->hcksum_txflags = 0; 3231 3232 if (*sc_mp != NULL) 3233 linkb(*sc_mp, mp); 3234 else 3235 *sc_mp = mp; 3236 } 3237 3238 static void 3239 ill_capability_zerocopy_ack(ill_t *ill, mblk_t *mp, dl_capability_sub_t *isub) 3240 { 3241 mblk_t *nmp = NULL; 3242 dl_capability_req_t *oc; 3243 dl_capab_zerocopy_t *zc_ic, *zc_oc; 3244 ill_zerocopy_capab_t **ill_zerocopy_capab; 3245 uint_t sub_dl_cap = isub->dl_cap; 3246 uint8_t *capend; 3247 3248 ASSERT(sub_dl_cap == DL_CAPAB_ZEROCOPY); 3249 3250 ill_zerocopy_capab = (ill_zerocopy_capab_t **)&ill->ill_zerocopy_capab; 3251 3252 /* 3253 * Note: range checks here are not absolutely sufficient to 3254 * make us robust against malformed messages sent by drivers; 3255 * this is in keeping with the rest of IP's dlpi handling. 3256 * (Remember, it's coming from something else in the kernel 3257 * address space) 3258 */ 3259 capend = (uint8_t *)(isub + 1) + isub->dl_length; 3260 if (capend > mp->b_wptr) { 3261 cmn_err(CE_WARN, "ill_capability_zerocopy_ack: " 3262 "malformed sub-capability too long for mblk"); 3263 return; 3264 } 3265 3266 zc_ic = (dl_capab_zerocopy_t *)(isub + 1); 3267 if (zc_ic->zerocopy_version != ZEROCOPY_VERSION_1) { 3268 cmn_err(CE_CONT, "ill_capability_zerocopy_ack: " 3269 "unsupported ZEROCOPY sub-capability (version %d, " 3270 "expected %d)", zc_ic->zerocopy_version, 3271 ZEROCOPY_VERSION_1); 3272 return; 3273 } 3274 3275 if (!dlcapabcheckqid(&zc_ic->zerocopy_mid, ill->ill_lmod_rq)) { 3276 ip1dbg(("ill_capability_zerocopy_ack: mid token for zerocopy " 3277 "capability isn't as expected; pass-thru module(s) " 3278 "detected, discarding capability\n")); 3279 return; 3280 } 3281 3282 if ((zc_ic->zerocopy_flags & DL_CAPAB_VMSAFE_MEM) != 0) { 3283 if (*ill_zerocopy_capab == NULL) { 3284 *ill_zerocopy_capab = 3285 kmem_zalloc(sizeof (ill_zerocopy_capab_t), 3286 KM_NOSLEEP); 3287 3288 if (*ill_zerocopy_capab == NULL) { 3289 cmn_err(CE_WARN, "ill_capability_zerocopy_ack: " 3290 "could not enable Zero-copy version %d " 3291 "for %s (ENOMEM)\n", ZEROCOPY_VERSION_1, 3292 ill->ill_name); 3293 return; 3294 } 3295 } 3296 3297 ip1dbg(("ill_capability_zerocopy_ack: interface %s " 3298 "supports Zero-copy version %d\n", ill->ill_name, 3299 ZEROCOPY_VERSION_1)); 3300 3301 (*ill_zerocopy_capab)->ill_zerocopy_version = 3302 zc_ic->zerocopy_version; 3303 (*ill_zerocopy_capab)->ill_zerocopy_flags = 3304 zc_ic->zerocopy_flags; 3305 3306 ill->ill_capabilities |= ILL_CAPAB_ZEROCOPY; 3307 } else { 3308 uint_t size; 3309 uchar_t *rptr; 3310 3311 size = sizeof (dl_capability_req_t) + 3312 sizeof (dl_capability_sub_t) + 3313 sizeof (dl_capab_zerocopy_t); 3314 3315 if ((nmp = ip_dlpi_alloc(size, DL_CAPABILITY_REQ)) == NULL) { 3316 cmn_err(CE_WARN, "ill_capability_zerocopy_ack: " 3317 "could not enable zerocopy for %s (ENOMEM)\n", 3318 ill->ill_name); 3319 return; 3320 } 3321 3322 rptr = nmp->b_rptr; 3323 /* initialize dl_capability_req_t */ 3324 oc = (dl_capability_req_t *)rptr; 3325 oc->dl_sub_offset = sizeof (dl_capability_req_t); 3326 oc->dl_sub_length = sizeof (dl_capability_sub_t) + 3327 sizeof (dl_capab_zerocopy_t); 3328 rptr += sizeof (dl_capability_req_t); 3329 3330 /* initialize dl_capability_sub_t */ 3331 bcopy(isub, rptr, sizeof (*isub)); 3332 rptr += sizeof (*isub); 3333 3334 /* initialize dl_capab_zerocopy_t */ 3335 zc_oc = (dl_capab_zerocopy_t *)rptr; 3336 *zc_oc = *zc_ic; 3337 3338 ip1dbg(("ill_capability_zerocopy_ack: asking interface %s " 3339 "to enable zero-copy version %d\n", ill->ill_name, 3340 ZEROCOPY_VERSION_1)); 3341 3342 /* set VMSAFE_MEM flag */ 3343 zc_oc->zerocopy_flags |= DL_CAPAB_VMSAFE_MEM; 3344 3345 /* nmp points to a DL_CAPABILITY_REQ message to enable zcopy */ 3346 ill_dlpi_send(ill, nmp); 3347 } 3348 } 3349 3350 static void 3351 ill_capability_zerocopy_reset(ill_t *ill, mblk_t **sc_mp) 3352 { 3353 mblk_t *mp; 3354 dl_capab_zerocopy_t *zerocopy_subcap; 3355 dl_capability_sub_t *dl_subcap; 3356 int size; 3357 3358 if (!(ill->ill_capabilities & ILL_CAPAB_ZEROCOPY)) 3359 return; 3360 3361 ASSERT(ill->ill_zerocopy_capab != NULL); 3362 /* 3363 * Clear the capability flag for Zero-copy but retain the 3364 * ill_zerocopy_capab structure since it's possible that another 3365 * thread is still referring to it. The structure only gets 3366 * deallocated when we destroy the ill. 3367 */ 3368 ill->ill_capabilities &= ~ILL_CAPAB_ZEROCOPY; 3369 3370 size = sizeof (*dl_subcap) + sizeof (*zerocopy_subcap); 3371 3372 mp = allocb(size, BPRI_HI); 3373 if (mp == NULL) { 3374 ip1dbg(("ill_capability_zerocopy_reset: unable to allocate " 3375 "request to disable Zero-copy\n")); 3376 return; 3377 } 3378 3379 mp->b_wptr = mp->b_rptr + size; 3380 3381 dl_subcap = (dl_capability_sub_t *)mp->b_rptr; 3382 dl_subcap->dl_cap = DL_CAPAB_ZEROCOPY; 3383 dl_subcap->dl_length = sizeof (*zerocopy_subcap); 3384 3385 zerocopy_subcap = (dl_capab_zerocopy_t *)(dl_subcap + 1); 3386 zerocopy_subcap->zerocopy_version = 3387 ill->ill_zerocopy_capab->ill_zerocopy_version; 3388 zerocopy_subcap->zerocopy_flags = 0; 3389 3390 if (*sc_mp != NULL) 3391 linkb(*sc_mp, mp); 3392 else 3393 *sc_mp = mp; 3394 } 3395 3396 /* 3397 * Consume a new-style hardware capabilities negotiation ack. 3398 * Called from ip_rput_dlpi_writer(). 3399 */ 3400 void 3401 ill_capability_ack(ill_t *ill, mblk_t *mp) 3402 { 3403 dl_capability_ack_t *capp; 3404 dl_capability_sub_t *subp, *endp; 3405 3406 if (ill->ill_capab_state == IDMS_INPROGRESS) 3407 ill->ill_capab_state = IDMS_OK; 3408 3409 capp = (dl_capability_ack_t *)mp->b_rptr; 3410 3411 if (capp->dl_sub_length == 0) 3412 /* no new-style capabilities */ 3413 return; 3414 3415 /* make sure the driver supplied correct dl_sub_length */ 3416 if ((sizeof (*capp) + capp->dl_sub_length) > MBLKL(mp)) { 3417 ip0dbg(("ill_capability_ack: bad DL_CAPABILITY_ACK, " 3418 "invalid dl_sub_length (%d)\n", capp->dl_sub_length)); 3419 return; 3420 } 3421 3422 #define SC(base, offset) (dl_capability_sub_t *)(((uchar_t *)(base))+(offset)) 3423 /* 3424 * There are sub-capabilities. Process the ones we know about. 3425 * Loop until we don't have room for another sub-cap header.. 3426 */ 3427 for (subp = SC(capp, capp->dl_sub_offset), 3428 endp = SC(subp, capp->dl_sub_length - sizeof (*subp)); 3429 subp <= endp; 3430 subp = SC(subp, sizeof (dl_capability_sub_t) + subp->dl_length)) { 3431 3432 switch (subp->dl_cap) { 3433 case DL_CAPAB_ID_WRAPPER: 3434 ill_capability_id_ack(ill, mp, subp); 3435 break; 3436 default: 3437 ill_capability_dispatch(ill, mp, subp, B_FALSE); 3438 break; 3439 } 3440 } 3441 #undef SC 3442 } 3443 3444 /* 3445 * This routine is called to scan the fragmentation reassembly table for 3446 * the specified ILL for any packets that are starting to smell. 3447 * dead_interval is the maximum time in seconds that will be tolerated. It 3448 * will either be the value specified in ip_g_frag_timeout, or zero if the 3449 * ILL is shutting down and it is time to blow everything off. 3450 * 3451 * It returns the number of seconds (as a time_t) that the next frag timer 3452 * should be scheduled for, 0 meaning that the timer doesn't need to be 3453 * re-started. Note that the method of calculating next_timeout isn't 3454 * entirely accurate since time will flow between the time we grab 3455 * current_time and the time we schedule the next timeout. This isn't a 3456 * big problem since this is the timer for sending an ICMP reassembly time 3457 * exceeded messages, and it doesn't have to be exactly accurate. 3458 * 3459 * This function is 3460 * sometimes called as writer, although this is not required. 3461 */ 3462 time_t 3463 ill_frag_timeout(ill_t *ill, time_t dead_interval) 3464 { 3465 ipfb_t *ipfb; 3466 ipfb_t *endp; 3467 ipf_t *ipf; 3468 ipf_t *ipfnext; 3469 mblk_t *mp; 3470 time_t current_time = gethrestime_sec(); 3471 time_t next_timeout = 0; 3472 uint32_t hdr_length; 3473 mblk_t *send_icmp_head; 3474 mblk_t *send_icmp_head_v6; 3475 3476 ipfb = ill->ill_frag_hash_tbl; 3477 if (ipfb == NULL) 3478 return (B_FALSE); 3479 endp = &ipfb[ILL_FRAG_HASH_TBL_COUNT]; 3480 /* Walk the frag hash table. */ 3481 for (; ipfb < endp; ipfb++) { 3482 send_icmp_head = NULL; 3483 send_icmp_head_v6 = NULL; 3484 mutex_enter(&ipfb->ipfb_lock); 3485 while ((ipf = ipfb->ipfb_ipf) != 0) { 3486 time_t frag_time = current_time - ipf->ipf_timestamp; 3487 time_t frag_timeout; 3488 3489 if (frag_time < dead_interval) { 3490 /* 3491 * There are some outstanding fragments 3492 * that will timeout later. Make note of 3493 * the time so that we can reschedule the 3494 * next timeout appropriately. 3495 */ 3496 frag_timeout = dead_interval - frag_time; 3497 if (next_timeout == 0 || 3498 frag_timeout < next_timeout) { 3499 next_timeout = frag_timeout; 3500 } 3501 break; 3502 } 3503 /* Time's up. Get it out of here. */ 3504 hdr_length = ipf->ipf_nf_hdr_len; 3505 ipfnext = ipf->ipf_hash_next; 3506 if (ipfnext) 3507 ipfnext->ipf_ptphn = ipf->ipf_ptphn; 3508 *ipf->ipf_ptphn = ipfnext; 3509 mp = ipf->ipf_mp->b_cont; 3510 for (; mp; mp = mp->b_cont) { 3511 /* Extra points for neatness. */ 3512 IP_REASS_SET_START(mp, 0); 3513 IP_REASS_SET_END(mp, 0); 3514 } 3515 mp = ipf->ipf_mp->b_cont; 3516 ill->ill_frag_count -= ipf->ipf_count; 3517 ASSERT(ipfb->ipfb_count >= ipf->ipf_count); 3518 ipfb->ipfb_count -= ipf->ipf_count; 3519 ASSERT(ipfb->ipfb_frag_pkts > 0); 3520 ipfb->ipfb_frag_pkts--; 3521 /* 3522 * We do not send any icmp message from here because 3523 * we currently are holding the ipfb_lock for this 3524 * hash chain. If we try and send any icmp messages 3525 * from here we may end up via a put back into ip 3526 * trying to get the same lock, causing a recursive 3527 * mutex panic. Instead we build a list and send all 3528 * the icmp messages after we have dropped the lock. 3529 */ 3530 if (ill->ill_isv6) { 3531 BUMP_MIB(ill->ill_ip6_mib, ipv6ReasmFails); 3532 if (hdr_length != 0) { 3533 mp->b_next = send_icmp_head_v6; 3534 send_icmp_head_v6 = mp; 3535 } else { 3536 freemsg(mp); 3537 } 3538 } else { 3539 BUMP_MIB(&ip_mib, ipReasmFails); 3540 if (hdr_length != 0) { 3541 mp->b_next = send_icmp_head; 3542 send_icmp_head = mp; 3543 } else { 3544 freemsg(mp); 3545 } 3546 } 3547 freeb(ipf->ipf_mp); 3548 } 3549 mutex_exit(&ipfb->ipfb_lock); 3550 /* 3551 * Now need to send any icmp messages that we delayed from 3552 * above. 3553 */ 3554 while (send_icmp_head_v6 != NULL) { 3555 mp = send_icmp_head_v6; 3556 send_icmp_head_v6 = send_icmp_head_v6->b_next; 3557 mp->b_next = NULL; 3558 icmp_time_exceeded_v6(ill->ill_wq, mp, 3559 ICMP_REASSEMBLY_TIME_EXCEEDED, B_FALSE, B_FALSE); 3560 } 3561 while (send_icmp_head != NULL) { 3562 mp = send_icmp_head; 3563 send_icmp_head = send_icmp_head->b_next; 3564 mp->b_next = NULL; 3565 icmp_time_exceeded(ill->ill_wq, mp, 3566 ICMP_REASSEMBLY_TIME_EXCEEDED); 3567 } 3568 } 3569 /* 3570 * A non-dying ILL will use the return value to decide whether to 3571 * restart the frag timer, and for how long. 3572 */ 3573 return (next_timeout); 3574 } 3575 3576 /* 3577 * This routine is called when the approximate count of mblk memory used 3578 * for the specified ILL has exceeded max_count. 3579 */ 3580 void 3581 ill_frag_prune(ill_t *ill, uint_t max_count) 3582 { 3583 ipfb_t *ipfb; 3584 ipf_t *ipf; 3585 size_t count; 3586 3587 /* 3588 * If we are here within ip_min_frag_prune_time msecs remove 3589 * ill_frag_free_num_pkts oldest packets from each bucket and increment 3590 * ill_frag_free_num_pkts. 3591 */ 3592 mutex_enter(&ill->ill_lock); 3593 if (TICK_TO_MSEC(lbolt - ill->ill_last_frag_clean_time) <= 3594 (ip_min_frag_prune_time != 0 ? 3595 ip_min_frag_prune_time : msec_per_tick)) { 3596 3597 ill->ill_frag_free_num_pkts++; 3598 3599 } else { 3600 ill->ill_frag_free_num_pkts = 0; 3601 } 3602 ill->ill_last_frag_clean_time = lbolt; 3603 mutex_exit(&ill->ill_lock); 3604 3605 /* 3606 * free ill_frag_free_num_pkts oldest packets from each bucket. 3607 */ 3608 if (ill->ill_frag_free_num_pkts != 0) { 3609 int ix; 3610 3611 for (ix = 0; ix < ILL_FRAG_HASH_TBL_COUNT; ix++) { 3612 ipfb = &ill->ill_frag_hash_tbl[ix]; 3613 mutex_enter(&ipfb->ipfb_lock); 3614 if (ipfb->ipfb_ipf != NULL) { 3615 ill_frag_free_pkts(ill, ipfb, ipfb->ipfb_ipf, 3616 ill->ill_frag_free_num_pkts); 3617 } 3618 mutex_exit(&ipfb->ipfb_lock); 3619 } 3620 } 3621 /* 3622 * While the reassembly list for this ILL is too big, prune a fragment 3623 * queue by age, oldest first. Note that the per ILL count is 3624 * approximate, while the per frag hash bucket counts are accurate. 3625 */ 3626 while (ill->ill_frag_count > max_count) { 3627 int ix; 3628 ipfb_t *oipfb = NULL; 3629 uint_t oldest = UINT_MAX; 3630 3631 count = 0; 3632 for (ix = 0; ix < ILL_FRAG_HASH_TBL_COUNT; ix++) { 3633 ipfb = &ill->ill_frag_hash_tbl[ix]; 3634 mutex_enter(&ipfb->ipfb_lock); 3635 ipf = ipfb->ipfb_ipf; 3636 if (ipf != NULL && ipf->ipf_gen < oldest) { 3637 oldest = ipf->ipf_gen; 3638 oipfb = ipfb; 3639 } 3640 count += ipfb->ipfb_count; 3641 mutex_exit(&ipfb->ipfb_lock); 3642 } 3643 /* Refresh the per ILL count */ 3644 ill->ill_frag_count = count; 3645 if (oipfb == NULL) { 3646 ill->ill_frag_count = 0; 3647 break; 3648 } 3649 if (count <= max_count) 3650 return; /* Somebody beat us to it, nothing to do */ 3651 mutex_enter(&oipfb->ipfb_lock); 3652 ipf = oipfb->ipfb_ipf; 3653 if (ipf != NULL) { 3654 ill_frag_free_pkts(ill, oipfb, ipf, 1); 3655 } 3656 mutex_exit(&oipfb->ipfb_lock); 3657 } 3658 } 3659 3660 /* 3661 * free 'free_cnt' fragmented packets starting at ipf. 3662 */ 3663 void 3664 ill_frag_free_pkts(ill_t *ill, ipfb_t *ipfb, ipf_t *ipf, int free_cnt) 3665 { 3666 size_t count; 3667 mblk_t *mp; 3668 mblk_t *tmp; 3669 ipf_t **ipfp = ipf->ipf_ptphn; 3670 3671 ASSERT(MUTEX_HELD(&ipfb->ipfb_lock)); 3672 ASSERT(ipfp != NULL); 3673 ASSERT(ipf != NULL); 3674 3675 while (ipf != NULL && free_cnt-- > 0) { 3676 count = ipf->ipf_count; 3677 mp = ipf->ipf_mp; 3678 ipf = ipf->ipf_hash_next; 3679 for (tmp = mp; tmp; tmp = tmp->b_cont) { 3680 IP_REASS_SET_START(tmp, 0); 3681 IP_REASS_SET_END(tmp, 0); 3682 } 3683 ill->ill_frag_count -= count; 3684 ASSERT(ipfb->ipfb_count >= count); 3685 ipfb->ipfb_count -= count; 3686 ASSERT(ipfb->ipfb_frag_pkts > 0); 3687 ipfb->ipfb_frag_pkts--; 3688 freemsg(mp); 3689 BUMP_MIB(&ip_mib, ipReasmFails); 3690 } 3691 3692 if (ipf) 3693 ipf->ipf_ptphn = ipfp; 3694 ipfp[0] = ipf; 3695 } 3696 3697 #define ND_FORWARD_WARNING "The <if>:ip*_forwarding ndd variables are " \ 3698 "obsolete and may be removed in a future release of Solaris. Use " \ 3699 "ifconfig(1M) to manipulate the forwarding status of an interface." 3700 3701 /* 3702 * For obsolete per-interface forwarding configuration; 3703 * called in response to ND_GET. 3704 */ 3705 /* ARGSUSED */ 3706 static int 3707 nd_ill_forward_get(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *ioc_cr) 3708 { 3709 ill_t *ill = (ill_t *)cp; 3710 3711 cmn_err(CE_WARN, ND_FORWARD_WARNING); 3712 3713 (void) mi_mpprintf(mp, "%d", (ill->ill_flags & ILLF_ROUTER) != 0); 3714 return (0); 3715 } 3716 3717 /* 3718 * For obsolete per-interface forwarding configuration; 3719 * called in response to ND_SET. 3720 */ 3721 /* ARGSUSED */ 3722 static int 3723 nd_ill_forward_set(queue_t *q, mblk_t *mp, char *valuestr, caddr_t cp, 3724 cred_t *ioc_cr) 3725 { 3726 long value; 3727 int retval; 3728 3729 cmn_err(CE_WARN, ND_FORWARD_WARNING); 3730 3731 if (ddi_strtol(valuestr, NULL, 10, &value) != 0 || 3732 value < 0 || value > 1) { 3733 return (EINVAL); 3734 } 3735 3736 rw_enter(&ill_g_lock, RW_READER); 3737 retval = ill_forward_set(q, mp, (value != 0), cp); 3738 rw_exit(&ill_g_lock); 3739 return (retval); 3740 } 3741 3742 /* 3743 * Set an ill's ILLF_ROUTER flag appropriately. If the ill is part of an 3744 * IPMP group, make sure all ill's in the group adopt the new policy. Send 3745 * up RTS_IFINFO routing socket messages for each interface whose flags we 3746 * change. 3747 */ 3748 /* ARGSUSED */ 3749 int 3750 ill_forward_set(queue_t *q, mblk_t *mp, boolean_t enable, caddr_t cp) 3751 { 3752 ill_t *ill = (ill_t *)cp; 3753 ill_group_t *illgrp; 3754 3755 ASSERT(IAM_WRITER_ILL(ill) || RW_READ_HELD(&ill_g_lock)); 3756 3757 if ((enable && (ill->ill_flags & ILLF_ROUTER)) || 3758 (!enable && !(ill->ill_flags & ILLF_ROUTER)) || 3759 (ill->ill_phyint->phyint_flags & PHYI_LOOPBACK)) 3760 return (EINVAL); 3761 3762 /* 3763 * If the ill is in an IPMP group, set the forwarding policy on all 3764 * members of the group to the same value. 3765 */ 3766 illgrp = ill->ill_group; 3767 if (illgrp != NULL) { 3768 ill_t *tmp_ill; 3769 3770 for (tmp_ill = illgrp->illgrp_ill; tmp_ill != NULL; 3771 tmp_ill = tmp_ill->ill_group_next) { 3772 ip1dbg(("ill_forward_set: %s %s forwarding on %s", 3773 (enable ? "Enabling" : "Disabling"), 3774 (tmp_ill->ill_isv6 ? "IPv6" : "IPv4"), 3775 tmp_ill->ill_name)); 3776 mutex_enter(&tmp_ill->ill_lock); 3777 if (enable) 3778 tmp_ill->ill_flags |= ILLF_ROUTER; 3779 else 3780 tmp_ill->ill_flags &= ~ILLF_ROUTER; 3781 mutex_exit(&tmp_ill->ill_lock); 3782 if (tmp_ill->ill_isv6) 3783 ill_set_nce_router_flags(tmp_ill, enable); 3784 /* Notify routing socket listeners of this change. */ 3785 ip_rts_ifmsg(tmp_ill->ill_ipif); 3786 } 3787 } else { 3788 ip1dbg(("ill_forward_set: %s %s forwarding on %s", 3789 (enable ? "Enabling" : "Disabling"), 3790 (ill->ill_isv6 ? "IPv6" : "IPv4"), ill->ill_name)); 3791 mutex_enter(&ill->ill_lock); 3792 if (enable) 3793 ill->ill_flags |= ILLF_ROUTER; 3794 else 3795 ill->ill_flags &= ~ILLF_ROUTER; 3796 mutex_exit(&ill->ill_lock); 3797 if (ill->ill_isv6) 3798 ill_set_nce_router_flags(ill, enable); 3799 /* Notify routing socket listeners of this change. */ 3800 ip_rts_ifmsg(ill->ill_ipif); 3801 } 3802 3803 return (0); 3804 } 3805 3806 /* 3807 * Based on the ILLF_ROUTER flag of an ill, make sure all local nce's for 3808 * addresses assigned to the ill have the NCE_F_ISROUTER flag appropriately 3809 * set or clear. 3810 */ 3811 static void 3812 ill_set_nce_router_flags(ill_t *ill, boolean_t enable) 3813 { 3814 ipif_t *ipif; 3815 nce_t *nce; 3816 3817 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 3818 nce = ndp_lookup(ill, &ipif->ipif_v6lcl_addr, B_FALSE); 3819 if (nce != NULL) { 3820 mutex_enter(&nce->nce_lock); 3821 if (enable) 3822 nce->nce_flags |= NCE_F_ISROUTER; 3823 else 3824 nce->nce_flags &= ~NCE_F_ISROUTER; 3825 mutex_exit(&nce->nce_lock); 3826 NCE_REFRELE(nce); 3827 } 3828 } 3829 } 3830 3831 /* 3832 * Given an ill with a _valid_ name, add the ip_forwarding ndd variable 3833 * for this ill. Make sure the v6/v4 question has been answered about this 3834 * ill. The creation of this ndd variable is only for backwards compatibility. 3835 * The preferred way to control per-interface IP forwarding is through the 3836 * ILLF_ROUTER interface flag. 3837 */ 3838 static int 3839 ill_set_ndd_name(ill_t *ill) 3840 { 3841 char *suffix; 3842 3843 ASSERT(IAM_WRITER_ILL(ill)); 3844 3845 if (ill->ill_isv6) 3846 suffix = ipv6_forward_suffix; 3847 else 3848 suffix = ipv4_forward_suffix; 3849 3850 ill->ill_ndd_name = ill->ill_name + ill->ill_name_length; 3851 bcopy(ill->ill_name, ill->ill_ndd_name, ill->ill_name_length - 1); 3852 /* 3853 * Copies over the '\0'. 3854 * Note that strlen(suffix) is always bounded. 3855 */ 3856 bcopy(suffix, ill->ill_ndd_name + ill->ill_name_length - 1, 3857 strlen(suffix) + 1); 3858 3859 /* 3860 * Use of the nd table requires holding the reader lock. 3861 * Modifying the nd table thru nd_load/nd_unload requires 3862 * the writer lock. 3863 */ 3864 rw_enter(&ip_g_nd_lock, RW_WRITER); 3865 if (!nd_load(&ip_g_nd, ill->ill_ndd_name, nd_ill_forward_get, 3866 nd_ill_forward_set, (caddr_t)ill)) { 3867 /* 3868 * If the nd_load failed, it only meant that it could not 3869 * allocate a new bunch of room for further NDD expansion. 3870 * Because of that, the ill_ndd_name will be set to 0, and 3871 * this interface is at the mercy of the global ip_forwarding 3872 * variable. 3873 */ 3874 rw_exit(&ip_g_nd_lock); 3875 ill->ill_ndd_name = NULL; 3876 return (ENOMEM); 3877 } 3878 rw_exit(&ip_g_nd_lock); 3879 return (0); 3880 } 3881 3882 /* 3883 * Intializes the context structure and returns the first ill in the list 3884 * cuurently start_list and end_list can have values: 3885 * MAX_G_HEADS Traverse both IPV4 and IPV6 lists. 3886 * IP_V4_G_HEAD Traverse IPV4 list only. 3887 * IP_V6_G_HEAD Traverse IPV6 list only. 3888 */ 3889 3890 /* 3891 * We don't check for CONDEMNED ills here. Caller must do that if 3892 * necessary under the ill lock. 3893 */ 3894 ill_t * 3895 ill_first(int start_list, int end_list, ill_walk_context_t *ctx) 3896 { 3897 ill_if_t *ifp; 3898 ill_t *ill; 3899 avl_tree_t *avl_tree; 3900 3901 ASSERT(RW_LOCK_HELD(&ill_g_lock)); 3902 ASSERT(end_list <= MAX_G_HEADS && start_list >= 0); 3903 3904 /* 3905 * setup the lists to search 3906 */ 3907 if (end_list != MAX_G_HEADS) { 3908 ctx->ctx_current_list = start_list; 3909 ctx->ctx_last_list = end_list; 3910 } else { 3911 ctx->ctx_last_list = MAX_G_HEADS - 1; 3912 ctx->ctx_current_list = 0; 3913 } 3914 3915 while (ctx->ctx_current_list <= ctx->ctx_last_list) { 3916 ifp = IP_VX_ILL_G_LIST(ctx->ctx_current_list); 3917 if (ifp != (ill_if_t *) 3918 &IP_VX_ILL_G_LIST(ctx->ctx_current_list)) { 3919 avl_tree = &ifp->illif_avl_by_ppa; 3920 ill = avl_first(avl_tree); 3921 /* 3922 * ill is guaranteed to be non NULL or ifp should have 3923 * not existed. 3924 */ 3925 ASSERT(ill != NULL); 3926 return (ill); 3927 } 3928 ctx->ctx_current_list++; 3929 } 3930 3931 return (NULL); 3932 } 3933 3934 /* 3935 * returns the next ill in the list. ill_first() must have been called 3936 * before calling ill_next() or bad things will happen. 3937 */ 3938 3939 /* 3940 * We don't check for CONDEMNED ills here. Caller must do that if 3941 * necessary under the ill lock. 3942 */ 3943 ill_t * 3944 ill_next(ill_walk_context_t *ctx, ill_t *lastill) 3945 { 3946 ill_if_t *ifp; 3947 ill_t *ill; 3948 3949 3950 ASSERT(RW_LOCK_HELD(&ill_g_lock)); 3951 ASSERT(lastill->ill_ifptr != (ill_if_t *) 3952 &IP_VX_ILL_G_LIST(ctx->ctx_current_list)); 3953 if ((ill = avl_walk(&lastill->ill_ifptr->illif_avl_by_ppa, lastill, 3954 AVL_AFTER)) != NULL) { 3955 return (ill); 3956 } 3957 3958 /* goto next ill_ifp in the list. */ 3959 ifp = lastill->ill_ifptr->illif_next; 3960 3961 /* make sure not at end of circular list */ 3962 while (ifp == (ill_if_t *)&IP_VX_ILL_G_LIST(ctx->ctx_current_list)) { 3963 if (++ctx->ctx_current_list > ctx->ctx_last_list) 3964 return (NULL); 3965 ifp = IP_VX_ILL_G_LIST(ctx->ctx_current_list); 3966 } 3967 3968 return (avl_first(&ifp->illif_avl_by_ppa)); 3969 } 3970 3971 /* 3972 * Check interface name for correct format which is name+ppa. 3973 * name can contain characters and digits, the right most digits 3974 * make up the ppa number. use of octal is not allowed, name must contain 3975 * a ppa, return pointer to the start of ppa. 3976 * In case of error return NULL. 3977 */ 3978 static char * 3979 ill_get_ppa_ptr(char *name) 3980 { 3981 int namelen = mi_strlen(name); 3982 3983 int len = namelen; 3984 3985 name += len; 3986 while (len > 0) { 3987 name--; 3988 if (*name < '0' || *name > '9') 3989 break; 3990 len--; 3991 } 3992 3993 /* empty string, all digits, or no trailing digits */ 3994 if (len == 0 || len == (int)namelen) 3995 return (NULL); 3996 3997 name++; 3998 /* check for attempted use of octal */ 3999 if (*name == '0' && len != (int)namelen - 1) 4000 return (NULL); 4001 return (name); 4002 } 4003 4004 /* 4005 * use avl tree to locate the ill. 4006 */ 4007 static ill_t * 4008 ill_find_by_name(char *name, boolean_t isv6, queue_t *q, mblk_t *mp, 4009 ipsq_func_t func, int *error) 4010 { 4011 char *ppa_ptr = NULL; 4012 int len; 4013 uint_t ppa; 4014 ill_t *ill = NULL; 4015 ill_if_t *ifp; 4016 int list; 4017 ipsq_t *ipsq; 4018 4019 if (error != NULL) 4020 *error = 0; 4021 4022 /* 4023 * get ppa ptr 4024 */ 4025 if (isv6) 4026 list = IP_V6_G_HEAD; 4027 else 4028 list = IP_V4_G_HEAD; 4029 4030 if ((ppa_ptr = ill_get_ppa_ptr(name)) == NULL) { 4031 if (error != NULL) 4032 *error = ENXIO; 4033 return (NULL); 4034 } 4035 4036 len = ppa_ptr - name + 1; 4037 4038 ppa = stoi(&ppa_ptr); 4039 4040 ifp = IP_VX_ILL_G_LIST(list); 4041 4042 while (ifp != (ill_if_t *)&IP_VX_ILL_G_LIST(list)) { 4043 /* 4044 * match is done on len - 1 as the name is not null 4045 * terminated it contains ppa in addition to the interface 4046 * name. 4047 */ 4048 if ((ifp->illif_name_len == len) && 4049 bcmp(ifp->illif_name, name, len - 1) == 0) { 4050 break; 4051 } else { 4052 ifp = ifp->illif_next; 4053 } 4054 } 4055 4056 4057 if (ifp == (ill_if_t *)&IP_VX_ILL_G_LIST(list)) { 4058 /* 4059 * Even the interface type does not exist. 4060 */ 4061 if (error != NULL) 4062 *error = ENXIO; 4063 return (NULL); 4064 } 4065 4066 ill = avl_find(&ifp->illif_avl_by_ppa, (void *) &ppa, NULL); 4067 if (ill != NULL) { 4068 /* 4069 * The block comment at the start of ipif_down 4070 * explains the use of the macros used below 4071 */ 4072 GRAB_CONN_LOCK(q); 4073 mutex_enter(&ill->ill_lock); 4074 if (ILL_CAN_LOOKUP(ill)) { 4075 ill_refhold_locked(ill); 4076 mutex_exit(&ill->ill_lock); 4077 RELEASE_CONN_LOCK(q); 4078 return (ill); 4079 } else if (ILL_CAN_WAIT(ill, q)) { 4080 ipsq = ill->ill_phyint->phyint_ipsq; 4081 mutex_enter(&ipsq->ipsq_lock); 4082 mutex_exit(&ill->ill_lock); 4083 ipsq_enq(ipsq, q, mp, func, NEW_OP, ill); 4084 mutex_exit(&ipsq->ipsq_lock); 4085 RELEASE_CONN_LOCK(q); 4086 *error = EINPROGRESS; 4087 return (NULL); 4088 } 4089 mutex_exit(&ill->ill_lock); 4090 RELEASE_CONN_LOCK(q); 4091 } 4092 if (error != NULL) 4093 *error = ENXIO; 4094 return (NULL); 4095 } 4096 4097 /* 4098 * comparison function for use with avl. 4099 */ 4100 static int 4101 ill_compare_ppa(const void *ppa_ptr, const void *ill_ptr) 4102 { 4103 uint_t ppa; 4104 uint_t ill_ppa; 4105 4106 ASSERT(ppa_ptr != NULL && ill_ptr != NULL); 4107 4108 ppa = *((uint_t *)ppa_ptr); 4109 ill_ppa = ((const ill_t *)ill_ptr)->ill_ppa; 4110 /* 4111 * We want the ill with the lowest ppa to be on the 4112 * top. 4113 */ 4114 if (ill_ppa < ppa) 4115 return (1); 4116 if (ill_ppa > ppa) 4117 return (-1); 4118 return (0); 4119 } 4120 4121 /* 4122 * remove an interface type from the global list. 4123 */ 4124 static void 4125 ill_delete_interface_type(ill_if_t *interface) 4126 { 4127 ASSERT(RW_WRITE_HELD(&ill_g_lock)); 4128 4129 ASSERT(interface != NULL); 4130 ASSERT(avl_numnodes(&interface->illif_avl_by_ppa) == 0); 4131 4132 avl_destroy(&interface->illif_avl_by_ppa); 4133 if (interface->illif_ppa_arena != NULL) 4134 vmem_destroy(interface->illif_ppa_arena); 4135 4136 remque(interface); 4137 4138 mi_free(interface); 4139 } 4140 4141 /* 4142 * remove ill from the global list. 4143 */ 4144 static void 4145 ill_glist_delete(ill_t *ill) 4146 { 4147 if (ill == NULL) 4148 return; 4149 4150 rw_enter(&ill_g_lock, RW_WRITER); 4151 /* 4152 * If the ill was never inserted into the AVL tree 4153 * we skip the if branch. 4154 */ 4155 if (ill->ill_ifptr != NULL) { 4156 /* 4157 * remove from AVL tree and free ppa number 4158 */ 4159 avl_remove(&ill->ill_ifptr->illif_avl_by_ppa, ill); 4160 4161 if (ill->ill_ifptr->illif_ppa_arena != NULL) { 4162 vmem_free(ill->ill_ifptr->illif_ppa_arena, 4163 (void *)(uintptr_t)(ill->ill_ppa+1), 1); 4164 } 4165 if (avl_numnodes(&ill->ill_ifptr->illif_avl_by_ppa) == 0) { 4166 ill_delete_interface_type(ill->ill_ifptr); 4167 } 4168 4169 /* 4170 * Indicate ill is no longer in the list. 4171 */ 4172 ill->ill_ifptr = NULL; 4173 ill->ill_name_length = 0; 4174 ill->ill_name[0] = '\0'; 4175 ill->ill_ppa = UINT_MAX; 4176 } 4177 ill_phyint_free(ill); 4178 rw_exit(&ill_g_lock); 4179 } 4180 4181 /* 4182 * allocate a ppa, if the number of plumbed interfaces of this type are 4183 * less than ill_no_arena do a linear search to find a unused ppa. 4184 * When the number goes beyond ill_no_arena switch to using an arena. 4185 * Note: ppa value of zero cannot be allocated from vmem_arena as it 4186 * is the return value for an error condition, so allocation starts at one 4187 * and is decremented by one. 4188 */ 4189 static int 4190 ill_alloc_ppa(ill_if_t *ifp, ill_t *ill) 4191 { 4192 ill_t *tmp_ill; 4193 uint_t start, end; 4194 int ppa; 4195 4196 if (ifp->illif_ppa_arena == NULL && 4197 (avl_numnodes(&ifp->illif_avl_by_ppa) + 1 > ill_no_arena)) { 4198 /* 4199 * Create an arena. 4200 */ 4201 ifp->illif_ppa_arena = vmem_create(ifp->illif_name, 4202 (void *)1, UINT_MAX - 1, 1, NULL, NULL, 4203 NULL, 0, VM_SLEEP | VMC_IDENTIFIER); 4204 /* allocate what has already been assigned */ 4205 for (tmp_ill = avl_first(&ifp->illif_avl_by_ppa); 4206 tmp_ill != NULL; tmp_ill = avl_walk(&ifp->illif_avl_by_ppa, 4207 tmp_ill, AVL_AFTER)) { 4208 ppa = (int)(uintptr_t)vmem_xalloc(ifp->illif_ppa_arena, 4209 1, /* size */ 4210 1, /* align/quantum */ 4211 0, /* phase */ 4212 0, /* nocross */ 4213 (void *)((uintptr_t)tmp_ill->ill_ppa + 1), /* minaddr */ 4214 (void *)((uintptr_t)tmp_ill->ill_ppa + 2), /* maxaddr */ 4215 VM_NOSLEEP|VM_FIRSTFIT); 4216 if (ppa == 0) { 4217 ip1dbg(("ill_alloc_ppa: ppa allocation" 4218 " failed while switching")); 4219 vmem_destroy(ifp->illif_ppa_arena); 4220 ifp->illif_ppa_arena = NULL; 4221 break; 4222 } 4223 } 4224 } 4225 4226 if (ifp->illif_ppa_arena != NULL) { 4227 if (ill->ill_ppa == UINT_MAX) { 4228 ppa = (int)(uintptr_t)vmem_alloc(ifp->illif_ppa_arena, 4229 1, VM_NOSLEEP|VM_FIRSTFIT); 4230 if (ppa == 0) 4231 return (EAGAIN); 4232 ill->ill_ppa = --ppa; 4233 } else { 4234 ppa = (int)(uintptr_t)vmem_xalloc(ifp->illif_ppa_arena, 4235 1, /* size */ 4236 1, /* align/quantum */ 4237 0, /* phase */ 4238 0, /* nocross */ 4239 (void *)(uintptr_t)(ill->ill_ppa + 1), /* minaddr */ 4240 (void *)(uintptr_t)(ill->ill_ppa + 2), /* maxaddr */ 4241 VM_NOSLEEP|VM_FIRSTFIT); 4242 /* 4243 * Most likely the allocation failed because 4244 * the requested ppa was in use. 4245 */ 4246 if (ppa == 0) 4247 return (EEXIST); 4248 } 4249 return (0); 4250 } 4251 4252 /* 4253 * No arena is in use and not enough (>ill_no_arena) interfaces have 4254 * been plumbed to create one. Do a linear search to get a unused ppa. 4255 */ 4256 if (ill->ill_ppa == UINT_MAX) { 4257 end = UINT_MAX - 1; 4258 start = 0; 4259 } else { 4260 end = start = ill->ill_ppa; 4261 } 4262 4263 tmp_ill = avl_find(&ifp->illif_avl_by_ppa, (void *)&start, NULL); 4264 while (tmp_ill != NULL && tmp_ill->ill_ppa == start) { 4265 if (start++ >= end) { 4266 if (ill->ill_ppa == UINT_MAX) 4267 return (EAGAIN); 4268 else 4269 return (EEXIST); 4270 } 4271 tmp_ill = avl_walk(&ifp->illif_avl_by_ppa, tmp_ill, AVL_AFTER); 4272 } 4273 ill->ill_ppa = start; 4274 return (0); 4275 } 4276 4277 /* 4278 * Insert ill into the list of configured ill's. Once this function completes, 4279 * the ill is globally visible and is available through lookups. More precisely 4280 * this happens after the caller drops the ill_g_lock. 4281 */ 4282 static int 4283 ill_glist_insert(ill_t *ill, char *name, boolean_t isv6) 4284 { 4285 ill_if_t *ill_interface; 4286 avl_index_t where = 0; 4287 int error; 4288 int name_length; 4289 int index; 4290 boolean_t check_length = B_FALSE; 4291 4292 ASSERT(RW_WRITE_HELD(&ill_g_lock)); 4293 4294 name_length = mi_strlen(name) + 1; 4295 4296 if (isv6) 4297 index = IP_V6_G_HEAD; 4298 else 4299 index = IP_V4_G_HEAD; 4300 4301 ill_interface = IP_VX_ILL_G_LIST(index); 4302 /* 4303 * Search for interface type based on name 4304 */ 4305 while (ill_interface != (ill_if_t *)&IP_VX_ILL_G_LIST(index)) { 4306 if ((ill_interface->illif_name_len == name_length) && 4307 (strcmp(ill_interface->illif_name, name) == 0)) { 4308 break; 4309 } 4310 ill_interface = ill_interface->illif_next; 4311 } 4312 4313 /* 4314 * Interface type not found, create one. 4315 */ 4316 if (ill_interface == (ill_if_t *)&IP_VX_ILL_G_LIST(index)) { 4317 4318 ill_g_head_t ghead; 4319 4320 /* 4321 * allocate ill_if_t structure 4322 */ 4323 4324 ill_interface = (ill_if_t *)mi_zalloc(sizeof (ill_if_t)); 4325 if (ill_interface == NULL) { 4326 return (ENOMEM); 4327 } 4328 4329 4330 4331 (void) strcpy(ill_interface->illif_name, name); 4332 ill_interface->illif_name_len = name_length; 4333 4334 avl_create(&ill_interface->illif_avl_by_ppa, 4335 ill_compare_ppa, sizeof (ill_t), 4336 offsetof(struct ill_s, ill_avl_byppa)); 4337 4338 /* 4339 * link the structure in the back to maintain order 4340 * of configuration for ifconfig output. 4341 */ 4342 ghead = ill_g_heads[index]; 4343 insque(ill_interface, ghead.ill_g_list_tail); 4344 4345 } 4346 4347 if (ill->ill_ppa == UINT_MAX) 4348 check_length = B_TRUE; 4349 4350 error = ill_alloc_ppa(ill_interface, ill); 4351 if (error != 0) { 4352 if (avl_numnodes(&ill_interface->illif_avl_by_ppa) == 0) 4353 ill_delete_interface_type(ill->ill_ifptr); 4354 return (error); 4355 } 4356 4357 /* 4358 * When the ppa is choosen by the system, check that there is 4359 * enough space to insert ppa. if a specific ppa was passed in this 4360 * check is not required as the interface name passed in will have 4361 * the right ppa in it. 4362 */ 4363 if (check_length) { 4364 /* 4365 * UINT_MAX - 1 should fit in 10 chars, alloc 12 chars. 4366 */ 4367 char buf[sizeof (uint_t) * 3]; 4368 4369 /* 4370 * convert ppa to string to calculate the amount of space 4371 * required for it in the name. 4372 */ 4373 numtos(ill->ill_ppa, buf); 4374 4375 /* Do we have enough space to insert ppa ? */ 4376 4377 if ((mi_strlen(name) + mi_strlen(buf) + 1) > LIFNAMSIZ) { 4378 /* Free ppa and interface type struct */ 4379 if (ill_interface->illif_ppa_arena != NULL) { 4380 vmem_free(ill_interface->illif_ppa_arena, 4381 (void *)(uintptr_t)(ill->ill_ppa+1), 1); 4382 } 4383 if (avl_numnodes(&ill_interface->illif_avl_by_ppa) == 4384 0) { 4385 ill_delete_interface_type(ill->ill_ifptr); 4386 } 4387 4388 return (EINVAL); 4389 } 4390 } 4391 4392 (void) sprintf(ill->ill_name, "%s%u", name, ill->ill_ppa); 4393 ill->ill_name_length = mi_strlen(ill->ill_name) + 1; 4394 4395 (void) avl_find(&ill_interface->illif_avl_by_ppa, &ill->ill_ppa, 4396 &where); 4397 ill->ill_ifptr = ill_interface; 4398 avl_insert(&ill_interface->illif_avl_by_ppa, ill, where); 4399 4400 ill_phyint_reinit(ill); 4401 return (0); 4402 } 4403 4404 /* Initialize the per phyint (per IPMP group) ipsq used for serialization */ 4405 static boolean_t 4406 ipsq_init(ill_t *ill) 4407 { 4408 ipsq_t *ipsq; 4409 4410 /* Init the ipsq and impicitly enter as writer */ 4411 ill->ill_phyint->phyint_ipsq = 4412 kmem_zalloc(sizeof (ipsq_t), KM_NOSLEEP); 4413 if (ill->ill_phyint->phyint_ipsq == NULL) 4414 return (B_FALSE); 4415 ipsq = ill->ill_phyint->phyint_ipsq; 4416 ipsq->ipsq_phyint_list = ill->ill_phyint; 4417 ill->ill_phyint->phyint_ipsq_next = NULL; 4418 mutex_init(&ipsq->ipsq_lock, NULL, MUTEX_DEFAULT, 0); 4419 ipsq->ipsq_refs = 1; 4420 ipsq->ipsq_writer = curthread; 4421 ipsq->ipsq_reentry_cnt = 1; 4422 #ifdef ILL_DEBUG 4423 ipsq->ipsq_depth = getpcstack((pc_t *)ipsq->ipsq_stack, IP_STACK_DEPTH); 4424 #endif 4425 (void) strcpy(ipsq->ipsq_name, ill->ill_name); 4426 return (B_TRUE); 4427 } 4428 4429 /* 4430 * ill_init is called by ip_open when a device control stream is opened. 4431 * It does a few initializations, and shoots a DL_INFO_REQ message down 4432 * to the driver. The response is later picked up in ip_rput_dlpi and 4433 * used to set up default mechanisms for talking to the driver. (Always 4434 * called as writer.) 4435 * 4436 * If this function returns error, ip_open will call ip_close which in 4437 * turn will call ill_delete to clean up any memory allocated here that 4438 * is not yet freed. 4439 */ 4440 int 4441 ill_init(queue_t *q, ill_t *ill) 4442 { 4443 int count; 4444 dl_info_req_t *dlir; 4445 mblk_t *info_mp; 4446 uchar_t *frag_ptr; 4447 4448 /* 4449 * The ill is initialized to zero by mi_alloc*(). In addition 4450 * some fields already contain valid values, initialized in 4451 * ip_open(), before we reach here. 4452 */ 4453 mutex_init(&ill->ill_lock, NULL, MUTEX_DEFAULT, 0); 4454 4455 ill->ill_rq = q; 4456 ill->ill_wq = WR(q); 4457 4458 info_mp = allocb(MAX(sizeof (dl_info_req_t), sizeof (dl_info_ack_t)), 4459 BPRI_HI); 4460 if (info_mp == NULL) 4461 return (ENOMEM); 4462 4463 /* 4464 * Allocate sufficient space to contain our fragment hash table and 4465 * the device name. 4466 */ 4467 frag_ptr = (uchar_t *)mi_zalloc(ILL_FRAG_HASH_TBL_SIZE + 4468 2 * LIFNAMSIZ + 5 + strlen(ipv6_forward_suffix)); 4469 if (frag_ptr == NULL) { 4470 freemsg(info_mp); 4471 return (ENOMEM); 4472 } 4473 ill->ill_frag_ptr = frag_ptr; 4474 ill->ill_frag_free_num_pkts = 0; 4475 ill->ill_last_frag_clean_time = 0; 4476 ill->ill_frag_hash_tbl = (ipfb_t *)frag_ptr; 4477 ill->ill_name = (char *)(frag_ptr + ILL_FRAG_HASH_TBL_SIZE); 4478 for (count = 0; count < ILL_FRAG_HASH_TBL_COUNT; count++) { 4479 mutex_init(&ill->ill_frag_hash_tbl[count].ipfb_lock, 4480 NULL, MUTEX_DEFAULT, NULL); 4481 } 4482 4483 ill->ill_phyint = (phyint_t *)mi_zalloc(sizeof (phyint_t)); 4484 if (ill->ill_phyint == NULL) { 4485 freemsg(info_mp); 4486 mi_free(frag_ptr); 4487 return (ENOMEM); 4488 } 4489 4490 mutex_init(&ill->ill_phyint->phyint_lock, NULL, MUTEX_DEFAULT, 0); 4491 /* 4492 * For now pretend this is a v4 ill. We need to set phyint_ill* 4493 * at this point because of the following reason. If we can't 4494 * enter the ipsq at some point and cv_wait, the writer that 4495 * wakes us up tries to locate us using the list of all phyints 4496 * in an ipsq and the ills from the phyint thru the phyint_ill*. 4497 * If we don't set it now, we risk a missed wakeup. 4498 */ 4499 ill->ill_phyint->phyint_illv4 = ill; 4500 ill->ill_ppa = UINT_MAX; 4501 ill->ill_fastpath_list = &ill->ill_fastpath_list; 4502 4503 if (!ipsq_init(ill)) { 4504 freemsg(info_mp); 4505 mi_free(frag_ptr); 4506 mi_free(ill->ill_phyint); 4507 return (ENOMEM); 4508 } 4509 4510 ill->ill_state_flags |= ILL_LL_SUBNET_PENDING; 4511 4512 4513 /* Frag queue limit stuff */ 4514 ill->ill_frag_count = 0; 4515 ill->ill_ipf_gen = 0; 4516 4517 ill->ill_global_timer = INFINITY; 4518 ill->ill_mcast_type = IGMP_V3_ROUTER; /* == MLD_V2_ROUTER */ 4519 ill->ill_mcast_v1_time = ill->ill_mcast_v2_time = 0; 4520 ill->ill_mcast_v1_tset = ill->ill_mcast_v2_tset = 0; 4521 ill->ill_mcast_rv = MCAST_DEF_ROBUSTNESS; 4522 ill->ill_mcast_qi = MCAST_DEF_QUERY_INTERVAL; 4523 4524 /* 4525 * Initialize IPv6 configuration variables. The IP module is always 4526 * opened as an IPv4 module. Instead tracking down the cases where 4527 * it switches to do ipv6, we'll just initialize the IPv6 configuration 4528 * here for convenience, this has no effect until the ill is set to do 4529 * IPv6. 4530 */ 4531 ill->ill_reachable_time = ND_REACHABLE_TIME; 4532 ill->ill_reachable_retrans_time = ND_RETRANS_TIMER; 4533 ill->ill_xmit_count = ND_MAX_MULTICAST_SOLICIT; 4534 ill->ill_max_buf = ND_MAX_Q; 4535 ill->ill_refcnt = 0; 4536 4537 /* Send down the Info Request to the driver. */ 4538 info_mp->b_datap->db_type = M_PCPROTO; 4539 dlir = (dl_info_req_t *)info_mp->b_rptr; 4540 info_mp->b_wptr = (uchar_t *)&dlir[1]; 4541 dlir->dl_primitive = DL_INFO_REQ; 4542 4543 ill->ill_dlpi_pending = DL_PRIM_INVAL; 4544 4545 qprocson(q); 4546 ill_dlpi_send(ill, info_mp); 4547 4548 return (0); 4549 } 4550 4551 /* 4552 * ill_dls_info 4553 * creates datalink socket info from the device. 4554 */ 4555 int 4556 ill_dls_info(struct sockaddr_dl *sdl, const ipif_t *ipif) 4557 { 4558 size_t length; 4559 ill_t *ill = ipif->ipif_ill; 4560 4561 sdl->sdl_family = AF_LINK; 4562 sdl->sdl_index = ill->ill_phyint->phyint_ifindex; 4563 sdl->sdl_type = ipif->ipif_type; 4564 (void) ipif_get_name(ipif, sdl->sdl_data, sizeof (sdl->sdl_data)); 4565 length = mi_strlen(sdl->sdl_data); 4566 ASSERT(length < 256); 4567 sdl->sdl_nlen = (uchar_t)length; 4568 sdl->sdl_alen = ill->ill_phys_addr_length; 4569 mutex_enter(&ill->ill_lock); 4570 if (ill->ill_phys_addr_length != 0 && ill->ill_phys_addr != NULL) { 4571 bcopy(ill->ill_phys_addr, &sdl->sdl_data[length], 4572 ill->ill_phys_addr_length); 4573 } 4574 mutex_exit(&ill->ill_lock); 4575 sdl->sdl_slen = 0; 4576 return (sizeof (struct sockaddr_dl)); 4577 } 4578 4579 /* 4580 * ill_xarp_info 4581 * creates xarp info from the device. 4582 */ 4583 static int 4584 ill_xarp_info(struct sockaddr_dl *sdl, ill_t *ill) 4585 { 4586 sdl->sdl_family = AF_LINK; 4587 sdl->sdl_index = ill->ill_phyint->phyint_ifindex; 4588 sdl->sdl_type = ill->ill_type; 4589 (void) ipif_get_name(ill->ill_ipif, sdl->sdl_data, 4590 sizeof (sdl->sdl_data)); 4591 sdl->sdl_nlen = (uchar_t)mi_strlen(sdl->sdl_data); 4592 sdl->sdl_alen = ill->ill_phys_addr_length; 4593 sdl->sdl_slen = 0; 4594 return (sdl->sdl_nlen); 4595 } 4596 4597 static int 4598 loopback_kstat_update(kstat_t *ksp, int rw) 4599 { 4600 kstat_named_t *kn = KSTAT_NAMED_PTR(ksp); 4601 4602 if (rw == KSTAT_WRITE) 4603 return (EACCES); 4604 kn[0].value.ui32 = loopback_packets; 4605 kn[1].value.ui32 = loopback_packets; 4606 return (0); 4607 } 4608 4609 4610 /* 4611 * Has ifindex been plumbed already. 4612 */ 4613 static boolean_t 4614 phyint_exists(uint_t index) 4615 { 4616 phyint_t *phyi; 4617 4618 ASSERT(RW_LOCK_HELD(&ill_g_lock)); 4619 /* 4620 * Indexes are stored in the phyint - a common structure 4621 * to both IPv4 and IPv6. 4622 */ 4623 phyi = avl_find(&phyint_g_list.phyint_list_avl_by_index, 4624 (void *) &index, NULL); 4625 return (phyi != NULL); 4626 } 4627 4628 /* 4629 * Assign a unique interface index for the phyint. 4630 */ 4631 static boolean_t 4632 phyint_assign_ifindex(phyint_t *phyi) 4633 { 4634 uint_t starting_index; 4635 4636 ASSERT(phyi->phyint_ifindex == 0); 4637 if (!ill_index_wrap) { 4638 phyi->phyint_ifindex = ill_index++; 4639 if (ill_index == 0) { 4640 /* Reached the uint_t limit Next time wrap */ 4641 ill_index_wrap = B_TRUE; 4642 } 4643 return (B_TRUE); 4644 } 4645 4646 /* 4647 * Start reusing unused indexes. Note that we hold the ill_g_lock 4648 * at this point and don't want to call any function that attempts 4649 * to get the lock again. 4650 */ 4651 starting_index = ill_index++; 4652 for (; ill_index != starting_index; ill_index++) { 4653 if (ill_index != 0 && !phyint_exists(ill_index)) { 4654 /* found unused index - use it */ 4655 phyi->phyint_ifindex = ill_index; 4656 return (B_TRUE); 4657 } 4658 } 4659 4660 /* 4661 * all interface indicies are inuse. 4662 */ 4663 return (B_FALSE); 4664 } 4665 4666 /* 4667 * Return a pointer to the ill which matches the supplied name. Note that 4668 * the ill name length includes the null termination character. (May be 4669 * called as writer.) 4670 * If do_alloc and the interface is "lo0" it will be automatically created. 4671 * Cannot bump up reference on condemned ills. So dup detect can't be done 4672 * using this func. 4673 */ 4674 ill_t * 4675 ill_lookup_on_name(char *name, boolean_t do_alloc, boolean_t isv6, 4676 queue_t *q, mblk_t *mp, ipsq_func_t func, int *error, boolean_t *did_alloc) 4677 { 4678 ill_t *ill; 4679 ipif_t *ipif; 4680 kstat_named_t *kn; 4681 boolean_t isloopback; 4682 ipsq_t *old_ipsq; 4683 4684 isloopback = mi_strcmp(name, ipif_loopback_name) == 0; 4685 4686 rw_enter(&ill_g_lock, RW_READER); 4687 ill = ill_find_by_name(name, isv6, q, mp, func, error); 4688 rw_exit(&ill_g_lock); 4689 if (ill != NULL || (error != NULL && *error == EINPROGRESS)) 4690 return (ill); 4691 4692 /* 4693 * Couldn't find it. Does this happen to be a lookup for the 4694 * loopback device and are we allowed to allocate it? 4695 */ 4696 if (!isloopback || !do_alloc) 4697 return (NULL); 4698 4699 rw_enter(&ill_g_lock, RW_WRITER); 4700 4701 ill = ill_find_by_name(name, isv6, q, mp, func, error); 4702 if (ill != NULL || (error != NULL && *error == EINPROGRESS)) { 4703 rw_exit(&ill_g_lock); 4704 return (ill); 4705 } 4706 4707 /* Create the loopback device on demand */ 4708 ill = (ill_t *)(mi_alloc(sizeof (ill_t) + 4709 sizeof (ipif_loopback_name), BPRI_MED)); 4710 if (ill == NULL) 4711 goto done; 4712 4713 *ill = ill_null; 4714 mutex_init(&ill->ill_lock, NULL, MUTEX_DEFAULT, NULL); 4715 ill->ill_phyint = (phyint_t *)mi_zalloc(sizeof (phyint_t)); 4716 if (ill->ill_phyint == NULL) 4717 goto done; 4718 4719 if (isv6) 4720 ill->ill_phyint->phyint_illv6 = ill; 4721 else 4722 ill->ill_phyint->phyint_illv4 = ill; 4723 mutex_init(&ill->ill_phyint->phyint_lock, NULL, MUTEX_DEFAULT, 0); 4724 ill->ill_max_frag = IP_LOOPBACK_MTU; 4725 /* Add room for tcp+ip headers */ 4726 if (isv6) { 4727 ill->ill_isv6 = B_TRUE; 4728 ill->ill_max_frag += IPV6_HDR_LEN + 20; /* for TCP */ 4729 if (!ill_allocate_mibs(ill)) 4730 goto done; 4731 } else { 4732 ill->ill_max_frag += IP_SIMPLE_HDR_LENGTH + 20; 4733 } 4734 ill->ill_max_mtu = ill->ill_max_frag; 4735 /* 4736 * ipif_loopback_name can't be pointed at directly because its used 4737 * by both the ipv4 and ipv6 interfaces. When the ill is removed 4738 * from the glist, ill_glist_delete() sets the first character of 4739 * ill_name to '\0'. 4740 */ 4741 ill->ill_name = (char *)ill + sizeof (*ill); 4742 (void) strcpy(ill->ill_name, ipif_loopback_name); 4743 ill->ill_name_length = sizeof (ipif_loopback_name); 4744 /* Set ill_name_set for ill_phyint_reinit to work properly */ 4745 4746 ill->ill_global_timer = INFINITY; 4747 ill->ill_mcast_type = IGMP_V3_ROUTER; /* == MLD_V2_ROUTER */ 4748 ill->ill_mcast_v1_time = ill->ill_mcast_v2_time = 0; 4749 ill->ill_mcast_v1_tset = ill->ill_mcast_v2_tset = 0; 4750 ill->ill_mcast_rv = MCAST_DEF_ROBUSTNESS; 4751 ill->ill_mcast_qi = MCAST_DEF_QUERY_INTERVAL; 4752 4753 /* No resolver here. */ 4754 ill->ill_net_type = IRE_LOOPBACK; 4755 4756 /* Initialize the ipsq */ 4757 if (!ipsq_init(ill)) 4758 goto done; 4759 4760 ill->ill_phyint->phyint_ipsq->ipsq_writer = NULL; 4761 ill->ill_phyint->phyint_ipsq->ipsq_reentry_cnt--; 4762 ASSERT(ill->ill_phyint->phyint_ipsq->ipsq_reentry_cnt == 0); 4763 #ifdef ILL_DEBUG 4764 ill->ill_phyint->phyint_ipsq->ipsq_depth = 0; 4765 #endif 4766 ipif = ipif_allocate(ill, 0L, IRE_LOOPBACK, B_TRUE); 4767 if (ipif == NULL) 4768 goto done; 4769 4770 ill->ill_flags = ILLF_MULTICAST; 4771 4772 /* Set up default loopback address and mask. */ 4773 if (!isv6) { 4774 ipaddr_t inaddr_loopback = htonl(INADDR_LOOPBACK); 4775 4776 IN6_IPADDR_TO_V4MAPPED(inaddr_loopback, &ipif->ipif_v6lcl_addr); 4777 ipif->ipif_v6src_addr = ipif->ipif_v6lcl_addr; 4778 V4MASK_TO_V6(htonl(IN_CLASSA_NET), ipif->ipif_v6net_mask); 4779 V6_MASK_COPY(ipif->ipif_v6lcl_addr, ipif->ipif_v6net_mask, 4780 ipif->ipif_v6subnet); 4781 ill->ill_flags |= ILLF_IPV4; 4782 } else { 4783 ipif->ipif_v6lcl_addr = ipv6_loopback; 4784 ipif->ipif_v6src_addr = ipif->ipif_v6lcl_addr; 4785 ipif->ipif_v6net_mask = ipv6_all_ones; 4786 V6_MASK_COPY(ipif->ipif_v6lcl_addr, ipif->ipif_v6net_mask, 4787 ipif->ipif_v6subnet); 4788 ill->ill_flags |= ILLF_IPV6; 4789 } 4790 4791 /* 4792 * Chain us in at the end of the ill list. hold the ill 4793 * before we make it globally visible. 1 for the lookup. 4794 */ 4795 ill->ill_refcnt = 0; 4796 ill_refhold(ill); 4797 4798 ill->ill_frag_count = 0; 4799 ill->ill_frag_free_num_pkts = 0; 4800 ill->ill_last_frag_clean_time = 0; 4801 4802 old_ipsq = ill->ill_phyint->phyint_ipsq; 4803 4804 if (ill_glist_insert(ill, "lo", isv6) != 0) 4805 cmn_err(CE_PANIC, "cannot insert loopback interface"); 4806 4807 /* Let SCTP know so that it can add this to its list */ 4808 sctp_update_ill(ill, SCTP_ILL_INSERT); 4809 4810 /* Let SCTP know about this IPIF, so that it can add it to its list */ 4811 sctp_update_ipif(ipif, SCTP_IPIF_INSERT); 4812 4813 /* 4814 * If the ipsq was changed in ill_phyint_reinit free the old ipsq. 4815 */ 4816 if (old_ipsq != ill->ill_phyint->phyint_ipsq) { 4817 /* Loopback ills aren't in any IPMP group */ 4818 ASSERT(!(old_ipsq->ipsq_flags & IPSQ_GROUP)); 4819 ipsq_delete(old_ipsq); 4820 } 4821 4822 /* 4823 * Delay this till the ipif is allocated as ipif_allocate 4824 * de-references ill_phyint for getting the ifindex. We 4825 * can't do this before ipif_allocate because ill_phyint_reinit 4826 * -> phyint_assign_ifindex expects ipif to be present. 4827 */ 4828 mutex_enter(&ill->ill_phyint->phyint_lock); 4829 ill->ill_phyint->phyint_flags |= PHYI_LOOPBACK | PHYI_VIRTUAL; 4830 mutex_exit(&ill->ill_phyint->phyint_lock); 4831 4832 if (loopback_ksp == NULL) { 4833 /* Export loopback interface statistics */ 4834 loopback_ksp = kstat_create("lo", 0, ipif_loopback_name, "net", 4835 KSTAT_TYPE_NAMED, 2, 0); 4836 if (loopback_ksp != NULL) { 4837 loopback_ksp->ks_update = loopback_kstat_update; 4838 kn = KSTAT_NAMED_PTR(loopback_ksp); 4839 kstat_named_init(&kn[0], "ipackets", KSTAT_DATA_UINT32); 4840 kstat_named_init(&kn[1], "opackets", KSTAT_DATA_UINT32); 4841 kstat_install(loopback_ksp); 4842 } 4843 } 4844 4845 if (error != NULL) 4846 *error = 0; 4847 *did_alloc = B_TRUE; 4848 rw_exit(&ill_g_lock); 4849 return (ill); 4850 done: 4851 if (ill != NULL) { 4852 if (ill->ill_phyint != NULL) { 4853 ipsq_t *ipsq; 4854 4855 ipsq = ill->ill_phyint->phyint_ipsq; 4856 if (ipsq != NULL) 4857 kmem_free(ipsq, sizeof (ipsq_t)); 4858 mi_free(ill->ill_phyint); 4859 } 4860 ill_free_mib(ill); 4861 mi_free(ill); 4862 } 4863 rw_exit(&ill_g_lock); 4864 if (error != NULL) 4865 *error = ENOMEM; 4866 return (NULL); 4867 } 4868 4869 /* 4870 * Return a pointer to the ill which matches the index and IP version type. 4871 */ 4872 ill_t * 4873 ill_lookup_on_ifindex(uint_t index, boolean_t isv6, queue_t *q, mblk_t *mp, 4874 ipsq_func_t func, int *err) 4875 { 4876 ill_t *ill; 4877 ipsq_t *ipsq; 4878 phyint_t *phyi; 4879 4880 ASSERT((q == NULL && mp == NULL && func == NULL && err == NULL) || 4881 (q != NULL && mp != NULL && func != NULL && err != NULL)); 4882 4883 if (err != NULL) 4884 *err = 0; 4885 4886 /* 4887 * Indexes are stored in the phyint - a common structure 4888 * to both IPv4 and IPv6. 4889 */ 4890 rw_enter(&ill_g_lock, RW_READER); 4891 phyi = avl_find(&phyint_g_list.phyint_list_avl_by_index, 4892 (void *) &index, NULL); 4893 if (phyi != NULL) { 4894 ill = isv6 ? phyi->phyint_illv6: phyi->phyint_illv4; 4895 if (ill != NULL) { 4896 /* 4897 * The block comment at the start of ipif_down 4898 * explains the use of the macros used below 4899 */ 4900 GRAB_CONN_LOCK(q); 4901 mutex_enter(&ill->ill_lock); 4902 if (ILL_CAN_LOOKUP(ill)) { 4903 ill_refhold_locked(ill); 4904 mutex_exit(&ill->ill_lock); 4905 RELEASE_CONN_LOCK(q); 4906 rw_exit(&ill_g_lock); 4907 return (ill); 4908 } else if (ILL_CAN_WAIT(ill, q)) { 4909 ipsq = ill->ill_phyint->phyint_ipsq; 4910 mutex_enter(&ipsq->ipsq_lock); 4911 rw_exit(&ill_g_lock); 4912 mutex_exit(&ill->ill_lock); 4913 ipsq_enq(ipsq, q, mp, func, NEW_OP, ill); 4914 mutex_exit(&ipsq->ipsq_lock); 4915 RELEASE_CONN_LOCK(q); 4916 *err = EINPROGRESS; 4917 return (NULL); 4918 } 4919 RELEASE_CONN_LOCK(q); 4920 mutex_exit(&ill->ill_lock); 4921 } 4922 } 4923 rw_exit(&ill_g_lock); 4924 if (err != NULL) 4925 *err = ENXIO; 4926 return (NULL); 4927 } 4928 4929 /* 4930 * Obtain a reference to the ill. The ill_refcnt is a dynamic refcnt 4931 * that gives a running thread a reference to the ill. This reference must be 4932 * released by the thread when it is done accessing the ill and related 4933 * objects. ill_refcnt can not be used to account for static references 4934 * such as other structures pointing to an ill. Callers must generally 4935 * check whether an ill can be refheld by using ILL_CAN_LOOKUP macros 4936 * or be sure that the ill is not being deleted or changing state before 4937 * calling the refhold functions. A non-zero ill_refcnt ensures that the 4938 * ill won't change any of its critical state such as address, netmask etc. 4939 */ 4940 void 4941 ill_refhold(ill_t *ill) 4942 { 4943 mutex_enter(&ill->ill_lock); 4944 ill->ill_refcnt++; 4945 ILL_TRACE_REF(ill); 4946 mutex_exit(&ill->ill_lock); 4947 } 4948 4949 void 4950 ill_refhold_locked(ill_t *ill) 4951 { 4952 ASSERT(MUTEX_HELD(&ill->ill_lock)); 4953 ill->ill_refcnt++; 4954 ILL_TRACE_REF(ill); 4955 } 4956 4957 int 4958 ill_check_and_refhold(ill_t *ill) 4959 { 4960 mutex_enter(&ill->ill_lock); 4961 if (ILL_CAN_LOOKUP(ill)) { 4962 ill_refhold_locked(ill); 4963 mutex_exit(&ill->ill_lock); 4964 return (0); 4965 } 4966 mutex_exit(&ill->ill_lock); 4967 return (ILL_LOOKUP_FAILED); 4968 } 4969 4970 /* 4971 * Must not be called while holding any locks. Otherwise if this is 4972 * the last reference to be released, there is a chance of recursive mutex 4973 * panic due to ill_refrele -> ipif_ill_refrele_tail -> qwriter_ip trying 4974 * to restart an ioctl. 4975 */ 4976 void 4977 ill_refrele(ill_t *ill) 4978 { 4979 mutex_enter(&ill->ill_lock); 4980 ASSERT(ill->ill_refcnt != 0); 4981 ill->ill_refcnt--; 4982 ILL_UNTRACE_REF(ill); 4983 if (ill->ill_refcnt != 0) { 4984 /* Every ire pointing to the ill adds 1 to ill_refcnt */ 4985 mutex_exit(&ill->ill_lock); 4986 return; 4987 } 4988 4989 /* Drops the ill_lock */ 4990 ipif_ill_refrele_tail(ill); 4991 } 4992 4993 /* 4994 * Obtain a weak reference count on the ill. This reference ensures the 4995 * ill won't be freed, but the ill may change any of its critical state 4996 * such as netmask, address etc. Returns an error if the ill has started 4997 * closing. 4998 */ 4999 boolean_t 5000 ill_waiter_inc(ill_t *ill) 5001 { 5002 mutex_enter(&ill->ill_lock); 5003 if (ill->ill_state_flags & ILL_CONDEMNED) { 5004 mutex_exit(&ill->ill_lock); 5005 return (B_FALSE); 5006 } 5007 ill->ill_waiters++; 5008 mutex_exit(&ill->ill_lock); 5009 return (B_TRUE); 5010 } 5011 5012 void 5013 ill_waiter_dcr(ill_t *ill) 5014 { 5015 mutex_enter(&ill->ill_lock); 5016 ill->ill_waiters--; 5017 if (ill->ill_waiters == 0) 5018 cv_broadcast(&ill->ill_cv); 5019 mutex_exit(&ill->ill_lock); 5020 } 5021 5022 /* 5023 * Named Dispatch routine to produce a formatted report on all ILLs. 5024 * This report is accessed by using the ndd utility to "get" ND variable 5025 * "ip_ill_status". 5026 */ 5027 /* ARGSUSED */ 5028 int 5029 ip_ill_report(queue_t *q, mblk_t *mp, caddr_t arg, cred_t *ioc_cr) 5030 { 5031 ill_t *ill; 5032 ill_walk_context_t ctx; 5033 5034 (void) mi_mpprintf(mp, 5035 "ILL " MI_COL_HDRPAD_STR 5036 /* 01234567[89ABCDEF] */ 5037 "rq " MI_COL_HDRPAD_STR 5038 /* 01234567[89ABCDEF] */ 5039 "wq " MI_COL_HDRPAD_STR 5040 /* 01234567[89ABCDEF] */ 5041 "upcnt mxfrg err name"); 5042 /* 12345 12345 123 xxxxxxxx */ 5043 5044 rw_enter(&ill_g_lock, RW_READER); 5045 ill = ILL_START_WALK_ALL(&ctx); 5046 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 5047 (void) mi_mpprintf(mp, 5048 MI_COL_PTRFMT_STR MI_COL_PTRFMT_STR MI_COL_PTRFMT_STR 5049 "%05u %05u %03d %s", 5050 (void *)ill, (void *)ill->ill_rq, (void *)ill->ill_wq, 5051 ill->ill_ipif_up_count, 5052 ill->ill_max_frag, ill->ill_error, ill->ill_name); 5053 } 5054 rw_exit(&ill_g_lock); 5055 5056 return (0); 5057 } 5058 5059 /* 5060 * Named Dispatch routine to produce a formatted report on all IPIFs. 5061 * This report is accessed by using the ndd utility to "get" ND variable 5062 * "ip_ipif_status". 5063 */ 5064 /* ARGSUSED */ 5065 int 5066 ip_ipif_report(queue_t *q, mblk_t *mp, caddr_t arg, cred_t *ioc_cr) 5067 { 5068 char buf1[INET6_ADDRSTRLEN]; 5069 char buf2[INET6_ADDRSTRLEN]; 5070 char buf3[INET6_ADDRSTRLEN]; 5071 char buf4[INET6_ADDRSTRLEN]; 5072 char buf5[INET6_ADDRSTRLEN]; 5073 char buf6[INET6_ADDRSTRLEN]; 5074 char buf[LIFNAMSIZ]; 5075 ill_t *ill; 5076 ipif_t *ipif; 5077 nv_t *nvp; 5078 uint64_t flags; 5079 zoneid_t zoneid; 5080 ill_walk_context_t ctx; 5081 5082 (void) mi_mpprintf(mp, 5083 "IPIF metric mtu in/out/forward name zone flags...\n" 5084 "\tlocal address\n" 5085 "\tsrc address\n" 5086 "\tsubnet\n" 5087 "\tmask\n" 5088 "\tbroadcast\n" 5089 "\tp-p-dst"); 5090 5091 ASSERT(q->q_next == NULL); 5092 zoneid = Q_TO_CONN(q)->conn_zoneid; /* IP is a driver */ 5093 5094 rw_enter(&ill_g_lock, RW_READER); 5095 ill = ILL_START_WALK_ALL(&ctx); 5096 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 5097 for (ipif = ill->ill_ipif; ipif; ipif = ipif->ipif_next) { 5098 if (zoneid != GLOBAL_ZONEID && 5099 zoneid != ipif->ipif_zoneid && 5100 ipif->ipif_zoneid != ALL_ZONES) 5101 continue; 5102 (void) mi_mpprintf(mp, 5103 MI_COL_PTRFMT_STR 5104 "%04u %05u %u/%u/%u %s %d", 5105 (void *)ipif, 5106 ipif->ipif_metric, ipif->ipif_mtu, 5107 ipif->ipif_ib_pkt_count, 5108 ipif->ipif_ob_pkt_count, 5109 ipif->ipif_fo_pkt_count, 5110 ipif_get_name(ipif, buf, sizeof (buf)), 5111 ipif->ipif_zoneid); 5112 5113 flags = ipif->ipif_flags | ipif->ipif_ill->ill_flags | 5114 ipif->ipif_ill->ill_phyint->phyint_flags; 5115 5116 /* Tack on text strings for any flags. */ 5117 nvp = ipif_nv_tbl; 5118 for (; nvp < A_END(ipif_nv_tbl); nvp++) { 5119 if (nvp->nv_value & flags) 5120 (void) mi_mpprintf_nr(mp, " %s", 5121 nvp->nv_name); 5122 } 5123 (void) mi_mpprintf(mp, 5124 "\t%s\n\t%s\n\t%s\n\t%s\n\t%s\n\t%s", 5125 inet_ntop(AF_INET6, 5126 &ipif->ipif_v6lcl_addr, buf1, sizeof (buf1)), 5127 inet_ntop(AF_INET6, 5128 &ipif->ipif_v6src_addr, buf2, sizeof (buf2)), 5129 inet_ntop(AF_INET6, 5130 &ipif->ipif_v6subnet, buf3, sizeof (buf3)), 5131 inet_ntop(AF_INET6, 5132 &ipif->ipif_v6net_mask, buf4, sizeof (buf4)), 5133 inet_ntop(AF_INET6, 5134 &ipif->ipif_v6brd_addr, buf5, sizeof (buf5)), 5135 inet_ntop(AF_INET6, 5136 &ipif->ipif_v6pp_dst_addr, 5137 buf6, sizeof (buf6))); 5138 } 5139 } 5140 rw_exit(&ill_g_lock); 5141 return (0); 5142 } 5143 5144 /* 5145 * ip_ll_subnet_defaults is called when we get the DL_INFO_ACK back from the 5146 * driver. We construct best guess defaults for lower level information that 5147 * we need. If an interface is brought up without injection of any overriding 5148 * information from outside, we have to be ready to go with these defaults. 5149 * When we get the first DL_INFO_ACK (from ip_open() sending a DL_INFO_REQ) 5150 * we primarely want the dl_provider_style. 5151 * The subsequent DL_INFO_ACK is received after doing a DL_ATTACH and DL_BIND 5152 * at which point we assume the other part of the information is valid. 5153 */ 5154 void 5155 ip_ll_subnet_defaults(ill_t *ill, mblk_t *mp) 5156 { 5157 uchar_t *brdcst_addr; 5158 uint_t brdcst_addr_length, phys_addr_length; 5159 t_scalar_t sap_length; 5160 dl_info_ack_t *dlia; 5161 ip_m_t *ipm; 5162 dl_qos_cl_sel1_t *sel1; 5163 5164 ASSERT(IAM_WRITER_ILL(ill)); 5165 5166 /* 5167 * Till the ill is fully up ILL_CHANGING will be set and 5168 * the ill is not globally visible. So no need for a lock. 5169 */ 5170 dlia = (dl_info_ack_t *)mp->b_rptr; 5171 ill->ill_mactype = dlia->dl_mac_type; 5172 5173 ipm = ip_m_lookup(dlia->dl_mac_type); 5174 if (ipm == NULL) { 5175 ipm = ip_m_lookup(DL_OTHER); 5176 ASSERT(ipm != NULL); 5177 } 5178 ill->ill_media = ipm; 5179 5180 /* 5181 * When the new DLPI stuff is ready we'll pull lengths 5182 * from dlia. 5183 */ 5184 if (dlia->dl_version == DL_VERSION_2) { 5185 brdcst_addr_length = dlia->dl_brdcst_addr_length; 5186 brdcst_addr = mi_offset_param(mp, dlia->dl_brdcst_addr_offset, 5187 brdcst_addr_length); 5188 if (brdcst_addr == NULL) { 5189 brdcst_addr_length = 0; 5190 } 5191 sap_length = dlia->dl_sap_length; 5192 phys_addr_length = dlia->dl_addr_length - ABS(sap_length); 5193 ip1dbg(("ip: bcast_len %d, sap_len %d, phys_len %d\n", 5194 brdcst_addr_length, sap_length, phys_addr_length)); 5195 } else { 5196 brdcst_addr_length = 6; 5197 brdcst_addr = ip_six_byte_all_ones; 5198 sap_length = -2; 5199 phys_addr_length = brdcst_addr_length; 5200 } 5201 5202 ill->ill_bcast_addr_length = brdcst_addr_length; 5203 ill->ill_phys_addr_length = phys_addr_length; 5204 ill->ill_sap_length = sap_length; 5205 ill->ill_max_frag = dlia->dl_max_sdu; 5206 ill->ill_max_mtu = ill->ill_max_frag; 5207 5208 ill->ill_type = ipm->ip_m_type; 5209 5210 if (!ill->ill_dlpi_style_set) { 5211 if (dlia->dl_provider_style == DL_STYLE2) 5212 ill->ill_needs_attach = 1; 5213 5214 /* 5215 * Allocate the first ipif on this ill. We don't delay it 5216 * further as ioctl handling assumes atleast one ipif to 5217 * be present. 5218 * 5219 * At this point we don't know whether the ill is v4 or v6. 5220 * We will know this whan the SIOCSLIFNAME happens and 5221 * the correct value for ill_isv6 will be assigned in 5222 * ipif_set_values(). We need to hold the ill lock and 5223 * clear the ILL_LL_SUBNET_PENDING flag and atomically do 5224 * the wakeup. 5225 */ 5226 (void) ipif_allocate(ill, 0, IRE_LOCAL, 5227 dlia->dl_provider_style == DL_STYLE2 ? B_FALSE : B_TRUE); 5228 mutex_enter(&ill->ill_lock); 5229 ASSERT(ill->ill_dlpi_style_set == 0); 5230 ill->ill_dlpi_style_set = 1; 5231 ill->ill_state_flags &= ~ILL_LL_SUBNET_PENDING; 5232 cv_broadcast(&ill->ill_cv); 5233 mutex_exit(&ill->ill_lock); 5234 freemsg(mp); 5235 return; 5236 } 5237 ASSERT(ill->ill_ipif != NULL); 5238 /* 5239 * We know whether it is IPv4 or IPv6 now, as this is the 5240 * second DL_INFO_ACK we are recieving in response to the 5241 * DL_INFO_REQ sent in ipif_set_values. 5242 */ 5243 if (ill->ill_isv6) 5244 ill->ill_sap = IP6_DL_SAP; 5245 else 5246 ill->ill_sap = IP_DL_SAP; 5247 /* 5248 * Set ipif_mtu which is used to set the IRE's 5249 * ire_max_frag value. The driver could have sent 5250 * a different mtu from what it sent last time. No 5251 * need to call ipif_mtu_change because IREs have 5252 * not yet been created. 5253 */ 5254 ill->ill_ipif->ipif_mtu = ill->ill_max_mtu; 5255 /* 5256 * Clear all the flags that were set based on ill_bcast_addr_length 5257 * and ill_phys_addr_length (in ipif_set_values) as these could have 5258 * changed now and we need to re-evaluate. 5259 */ 5260 ill->ill_flags &= ~(ILLF_MULTICAST | ILLF_NONUD | ILLF_NOARP); 5261 ill->ill_ipif->ipif_flags &= ~(IPIF_BROADCAST | IPIF_POINTOPOINT); 5262 5263 /* 5264 * Free ill_resolver_mp and ill_bcast_mp as things could have 5265 * changed now. 5266 */ 5267 if (ill->ill_bcast_addr_length == 0) { 5268 if (ill->ill_resolver_mp != NULL) 5269 freemsg(ill->ill_resolver_mp); 5270 if (ill->ill_bcast_mp != NULL) 5271 freemsg(ill->ill_bcast_mp); 5272 if (ill->ill_flags & ILLF_XRESOLV) 5273 ill->ill_net_type = IRE_IF_RESOLVER; 5274 else 5275 ill->ill_net_type = IRE_IF_NORESOLVER; 5276 ill->ill_resolver_mp = ill_dlur_gen(NULL, 5277 ill->ill_phys_addr_length, 5278 ill->ill_sap, 5279 ill->ill_sap_length); 5280 ill->ill_bcast_mp = copymsg(ill->ill_resolver_mp); 5281 5282 if (ill->ill_isv6) 5283 /* 5284 * Note: xresolv interfaces will eventually need NOARP 5285 * set here as well, but that will require those 5286 * external resolvers to have some knowledge of 5287 * that flag and act appropriately. Not to be changed 5288 * at present. 5289 */ 5290 ill->ill_flags |= ILLF_NONUD; 5291 else 5292 ill->ill_flags |= ILLF_NOARP; 5293 5294 if (ill->ill_phys_addr_length == 0) { 5295 if (ill->ill_media->ip_m_mac_type == SUNW_DL_VNI) { 5296 ill->ill_ipif->ipif_flags |= IPIF_NOXMIT; 5297 ill->ill_phyint->phyint_flags |= PHYI_VIRTUAL; 5298 } else { 5299 /* pt-pt supports multicast. */ 5300 ill->ill_flags |= ILLF_MULTICAST; 5301 ill->ill_ipif->ipif_flags |= IPIF_POINTOPOINT; 5302 } 5303 } 5304 } else { 5305 ill->ill_net_type = IRE_IF_RESOLVER; 5306 if (ill->ill_bcast_mp != NULL) 5307 freemsg(ill->ill_bcast_mp); 5308 ill->ill_bcast_mp = ill_dlur_gen(brdcst_addr, 5309 ill->ill_bcast_addr_length, ill->ill_sap, 5310 ill->ill_sap_length); 5311 /* 5312 * Later detect lack of DLPI driver multicast 5313 * capability by catching DL_ENABMULTI errors in 5314 * ip_rput_dlpi. 5315 */ 5316 ill->ill_flags |= ILLF_MULTICAST; 5317 if (!ill->ill_isv6) 5318 ill->ill_ipif->ipif_flags |= IPIF_BROADCAST; 5319 } 5320 /* By default an interface does not support any CoS marking */ 5321 ill->ill_flags &= ~ILLF_COS_ENABLED; 5322 5323 /* 5324 * If we get QoS information in DL_INFO_ACK, the device supports 5325 * some form of CoS marking, set ILLF_COS_ENABLED. 5326 */ 5327 sel1 = (dl_qos_cl_sel1_t *)mi_offset_param(mp, dlia->dl_qos_offset, 5328 dlia->dl_qos_length); 5329 if ((sel1 != NULL) && (sel1->dl_qos_type == DL_QOS_CL_SEL1)) { 5330 ill->ill_flags |= ILLF_COS_ENABLED; 5331 } 5332 5333 /* Clear any previous error indication. */ 5334 ill->ill_error = 0; 5335 freemsg(mp); 5336 } 5337 5338 /* 5339 * Perform various checks to verify that an address would make sense as a 5340 * local, remote, or subnet interface address. 5341 */ 5342 static boolean_t 5343 ip_addr_ok_v4(ipaddr_t addr, ipaddr_t subnet_mask) 5344 { 5345 ipaddr_t net_mask; 5346 5347 /* 5348 * Don't allow all zeroes, all ones or experimental address, but allow 5349 * all ones netmask. 5350 */ 5351 if ((net_mask = ip_net_mask(addr)) == 0) 5352 return (B_FALSE); 5353 /* A given netmask overrides the "guess" netmask */ 5354 if (subnet_mask != 0) 5355 net_mask = subnet_mask; 5356 if ((net_mask != ~(ipaddr_t)0) && ((addr == (addr & net_mask)) || 5357 (addr == (addr | ~net_mask)))) { 5358 return (B_FALSE); 5359 } 5360 if (CLASSD(addr)) 5361 return (B_FALSE); 5362 5363 return (B_TRUE); 5364 } 5365 5366 /* 5367 * ipif_lookup_group 5368 * Returns held ipif 5369 */ 5370 ipif_t * 5371 ipif_lookup_group(ipaddr_t group, zoneid_t zoneid) 5372 { 5373 ire_t *ire; 5374 ipif_t *ipif; 5375 5376 ire = ire_lookup_multi(group, zoneid); 5377 if (ire == NULL) 5378 return (NULL); 5379 ipif = ire->ire_ipif; 5380 ipif_refhold(ipif); 5381 ire_refrele(ire); 5382 return (ipif); 5383 } 5384 5385 /* 5386 * Look for an ipif with the specified interface address and destination. 5387 * The destination address is used only for matching point-to-point interfaces. 5388 */ 5389 ipif_t * 5390 ipif_lookup_interface(ipaddr_t if_addr, ipaddr_t dst, queue_t *q, mblk_t *mp, 5391 ipsq_func_t func, int *error) 5392 { 5393 ipif_t *ipif; 5394 ill_t *ill; 5395 ill_walk_context_t ctx; 5396 ipsq_t *ipsq; 5397 5398 if (error != NULL) 5399 *error = 0; 5400 5401 /* 5402 * First match all the point-to-point interfaces 5403 * before looking at non-point-to-point interfaces. 5404 * This is done to avoid returning non-point-to-point 5405 * ipif instead of unnumbered point-to-point ipif. 5406 */ 5407 rw_enter(&ill_g_lock, RW_READER); 5408 ill = ILL_START_WALK_V4(&ctx); 5409 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 5410 GRAB_CONN_LOCK(q); 5411 mutex_enter(&ill->ill_lock); 5412 for (ipif = ill->ill_ipif; ipif != NULL; 5413 ipif = ipif->ipif_next) { 5414 /* Allow the ipif to be down */ 5415 if ((ipif->ipif_flags & IPIF_POINTOPOINT) && 5416 (ipif->ipif_lcl_addr == if_addr) && 5417 (ipif->ipif_pp_dst_addr == dst)) { 5418 /* 5419 * The block comment at the start of ipif_down 5420 * explains the use of the macros used below 5421 */ 5422 if (IPIF_CAN_LOOKUP(ipif)) { 5423 ipif_refhold_locked(ipif); 5424 mutex_exit(&ill->ill_lock); 5425 RELEASE_CONN_LOCK(q); 5426 rw_exit(&ill_g_lock); 5427 return (ipif); 5428 } else if (IPIF_CAN_WAIT(ipif, q)) { 5429 ipsq = ill->ill_phyint->phyint_ipsq; 5430 mutex_enter(&ipsq->ipsq_lock); 5431 mutex_exit(&ill->ill_lock); 5432 rw_exit(&ill_g_lock); 5433 ipsq_enq(ipsq, q, mp, func, NEW_OP, 5434 ill); 5435 mutex_exit(&ipsq->ipsq_lock); 5436 RELEASE_CONN_LOCK(q); 5437 *error = EINPROGRESS; 5438 return (NULL); 5439 } 5440 } 5441 } 5442 mutex_exit(&ill->ill_lock); 5443 RELEASE_CONN_LOCK(q); 5444 } 5445 rw_exit(&ill_g_lock); 5446 5447 /* lookup the ipif based on interface address */ 5448 ipif = ipif_lookup_addr(if_addr, NULL, ALL_ZONES, q, mp, func, error); 5449 ASSERT(ipif == NULL || !ipif->ipif_isv6); 5450 return (ipif); 5451 } 5452 5453 /* 5454 * Look for an ipif with the specified address. For point-point links 5455 * we look for matches on either the destination address and the local 5456 * address, but we ignore the check on the local address if IPIF_UNNUMBERED 5457 * is set. 5458 * Matches on a specific ill if match_ill is set. 5459 */ 5460 ipif_t * 5461 ipif_lookup_addr(ipaddr_t addr, ill_t *match_ill, zoneid_t zoneid, queue_t *q, 5462 mblk_t *mp, ipsq_func_t func, int *error) 5463 { 5464 ipif_t *ipif; 5465 ill_t *ill; 5466 boolean_t ptp = B_FALSE; 5467 ipsq_t *ipsq; 5468 ill_walk_context_t ctx; 5469 5470 if (error != NULL) 5471 *error = 0; 5472 5473 rw_enter(&ill_g_lock, RW_READER); 5474 /* 5475 * Repeat twice, first based on local addresses and 5476 * next time for pointopoint. 5477 */ 5478 repeat: 5479 ill = ILL_START_WALK_V4(&ctx); 5480 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 5481 if (match_ill != NULL && ill != match_ill) { 5482 continue; 5483 } 5484 GRAB_CONN_LOCK(q); 5485 mutex_enter(&ill->ill_lock); 5486 for (ipif = ill->ill_ipif; ipif != NULL; 5487 ipif = ipif->ipif_next) { 5488 if (zoneid != ALL_ZONES && 5489 zoneid != ipif->ipif_zoneid && 5490 ipif->ipif_zoneid != ALL_ZONES) 5491 continue; 5492 /* Allow the ipif to be down */ 5493 if ((!ptp && (ipif->ipif_lcl_addr == addr) && 5494 ((ipif->ipif_flags & IPIF_UNNUMBERED) == 0)) || 5495 (ptp && (ipif->ipif_flags & IPIF_POINTOPOINT) && 5496 (ipif->ipif_pp_dst_addr == addr))) { 5497 /* 5498 * The block comment at the start of ipif_down 5499 * explains the use of the macros used below 5500 */ 5501 if (IPIF_CAN_LOOKUP(ipif)) { 5502 ipif_refhold_locked(ipif); 5503 mutex_exit(&ill->ill_lock); 5504 RELEASE_CONN_LOCK(q); 5505 rw_exit(&ill_g_lock); 5506 return (ipif); 5507 } else if (IPIF_CAN_WAIT(ipif, q)) { 5508 ipsq = ill->ill_phyint->phyint_ipsq; 5509 mutex_enter(&ipsq->ipsq_lock); 5510 mutex_exit(&ill->ill_lock); 5511 rw_exit(&ill_g_lock); 5512 ipsq_enq(ipsq, q, mp, func, NEW_OP, 5513 ill); 5514 mutex_exit(&ipsq->ipsq_lock); 5515 RELEASE_CONN_LOCK(q); 5516 *error = EINPROGRESS; 5517 return (NULL); 5518 } 5519 } 5520 } 5521 mutex_exit(&ill->ill_lock); 5522 RELEASE_CONN_LOCK(q); 5523 } 5524 5525 /* Now try the ptp case */ 5526 if (ptp) { 5527 rw_exit(&ill_g_lock); 5528 if (error != NULL) 5529 *error = ENXIO; 5530 return (NULL); 5531 } 5532 ptp = B_TRUE; 5533 goto repeat; 5534 } 5535 5536 /* 5537 * Look for an ipif that matches the specified remote address i.e. the 5538 * ipif that would receive the specified packet. 5539 * First look for directly connected interfaces and then do a recursive 5540 * IRE lookup and pick the first ipif corresponding to the source address in the 5541 * ire. 5542 * Returns: held ipif 5543 */ 5544 ipif_t * 5545 ipif_lookup_remote(ill_t *ill, ipaddr_t addr, zoneid_t zoneid) 5546 { 5547 ipif_t *ipif; 5548 ire_t *ire; 5549 5550 ASSERT(!ill->ill_isv6); 5551 5552 /* 5553 * Someone could be changing this ipif currently or change it 5554 * after we return this. Thus a few packets could use the old 5555 * old values. However structure updates/creates (ire, ilg, ilm etc) 5556 * will atomically be updated or cleaned up with the new value 5557 * Thus we don't need a lock to check the flags or other attrs below. 5558 */ 5559 mutex_enter(&ill->ill_lock); 5560 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 5561 if (!IPIF_CAN_LOOKUP(ipif)) 5562 continue; 5563 if (zoneid != ALL_ZONES && zoneid != ipif->ipif_zoneid && 5564 ipif->ipif_zoneid != ALL_ZONES) 5565 continue; 5566 /* Allow the ipif to be down */ 5567 if (ipif->ipif_flags & IPIF_POINTOPOINT) { 5568 if ((ipif->ipif_pp_dst_addr == addr) || 5569 (!(ipif->ipif_flags & IPIF_UNNUMBERED) && 5570 ipif->ipif_lcl_addr == addr)) { 5571 ipif_refhold_locked(ipif); 5572 mutex_exit(&ill->ill_lock); 5573 return (ipif); 5574 } 5575 } else if (ipif->ipif_subnet == (addr & ipif->ipif_net_mask)) { 5576 ipif_refhold_locked(ipif); 5577 mutex_exit(&ill->ill_lock); 5578 return (ipif); 5579 } 5580 } 5581 mutex_exit(&ill->ill_lock); 5582 ire = ire_route_lookup(addr, 0, 0, 0, NULL, NULL, zoneid, 5583 NULL, MATCH_IRE_RECURSIVE); 5584 if (ire != NULL) { 5585 /* 5586 * The callers of this function wants to know the 5587 * interface on which they have to send the replies 5588 * back. For IRE_CACHES that have ire_stq and ire_ipif 5589 * derived from different ills, we really don't care 5590 * what we return here. 5591 */ 5592 ipif = ire->ire_ipif; 5593 if (ipif != NULL) { 5594 ipif_refhold(ipif); 5595 ire_refrele(ire); 5596 return (ipif); 5597 } 5598 ire_refrele(ire); 5599 } 5600 /* Pick the first interface */ 5601 ipif = ipif_get_next_ipif(NULL, ill); 5602 return (ipif); 5603 } 5604 5605 /* 5606 * This func does not prevent refcnt from increasing. But if 5607 * the caller has taken steps to that effect, then this func 5608 * can be used to determine whether the ill has become quiescent 5609 */ 5610 boolean_t 5611 ill_is_quiescent(ill_t *ill) 5612 { 5613 ipif_t *ipif; 5614 5615 ASSERT(MUTEX_HELD(&ill->ill_lock)); 5616 5617 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 5618 if (ipif->ipif_refcnt != 0 || ipif->ipif_ire_cnt != 0) 5619 return (B_FALSE); 5620 } 5621 if (ill->ill_ire_cnt != 0 || ill->ill_refcnt != 0 || 5622 ill->ill_nce_cnt != 0 || ill->ill_srcif_refcnt != 0 || 5623 ill->ill_mrtun_refcnt != 0) 5624 return (B_FALSE); 5625 return (B_TRUE); 5626 } 5627 5628 /* 5629 * This func does not prevent refcnt from increasing. But if 5630 * the caller has taken steps to that effect, then this func 5631 * can be used to determine whether the ipif has become quiescent 5632 */ 5633 static boolean_t 5634 ipif_is_quiescent(ipif_t *ipif) 5635 { 5636 ill_t *ill; 5637 5638 ASSERT(MUTEX_HELD(&ipif->ipif_ill->ill_lock)); 5639 5640 if (ipif->ipif_refcnt != 0 || ipif->ipif_ire_cnt != 0) 5641 return (B_FALSE); 5642 5643 ill = ipif->ipif_ill; 5644 if (ill->ill_ipif_up_count != 0 || ill->ill_logical_down) 5645 return (B_TRUE); 5646 5647 /* This is the last ipif going down or being deleted on this ill */ 5648 if (ill->ill_ire_cnt != 0 || ill->ill_refcnt != 0) 5649 return (B_FALSE); 5650 5651 return (B_TRUE); 5652 } 5653 5654 /* 5655 * This func does not prevent refcnt from increasing. But if 5656 * the caller has taken steps to that effect, then this func 5657 * can be used to determine whether the ipifs marked with IPIF_MOVING 5658 * have become quiescent and can be moved in a failover/failback. 5659 */ 5660 static ipif_t * 5661 ill_quiescent_to_move(ill_t *ill) 5662 { 5663 ipif_t *ipif; 5664 5665 ASSERT(MUTEX_HELD(&ill->ill_lock)); 5666 5667 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 5668 if (ipif->ipif_state_flags & IPIF_MOVING) { 5669 if (ipif->ipif_refcnt != 0 || ipif->ipif_ire_cnt != 0) { 5670 return (ipif); 5671 } 5672 } 5673 } 5674 return (NULL); 5675 } 5676 5677 /* 5678 * The ipif/ill/ire has been refreled. Do the tail processing. 5679 * Determine if the ipif or ill in question has become quiescent and if so 5680 * wakeup close and/or restart any queued pending ioctl that is waiting 5681 * for the ipif_down (or ill_down) 5682 */ 5683 void 5684 ipif_ill_refrele_tail(ill_t *ill) 5685 { 5686 mblk_t *mp; 5687 conn_t *connp; 5688 ipsq_t *ipsq; 5689 ipif_t *ipif; 5690 5691 ASSERT(MUTEX_HELD(&ill->ill_lock)); 5692 5693 if ((ill->ill_state_flags & ILL_CONDEMNED) && 5694 ill_is_quiescent(ill)) { 5695 /* ill_close may be waiting */ 5696 cv_broadcast(&ill->ill_cv); 5697 } 5698 5699 /* ipsq can't change because ill_lock is held */ 5700 ipsq = ill->ill_phyint->phyint_ipsq; 5701 if (ipsq->ipsq_waitfor == 0) { 5702 /* Not waiting for anything, just return. */ 5703 mutex_exit(&ill->ill_lock); 5704 return; 5705 } 5706 ASSERT(ipsq->ipsq_pending_mp != NULL && 5707 ipsq->ipsq_pending_ipif != NULL); 5708 /* 5709 * ipif->ipif_refcnt must go down to zero for restarting REMOVEIF. 5710 * Last ipif going down needs to down the ill, so ill_ire_cnt must 5711 * be zero for restarting an ioctl that ends up downing the ill. 5712 */ 5713 ipif = ipsq->ipsq_pending_ipif; 5714 if (ipif->ipif_ill != ill) { 5715 /* The ioctl is pending on some other ill. */ 5716 mutex_exit(&ill->ill_lock); 5717 return; 5718 } 5719 5720 switch (ipsq->ipsq_waitfor) { 5721 case IPIF_DOWN: 5722 case IPIF_FREE: 5723 if (!ipif_is_quiescent(ipif)) { 5724 mutex_exit(&ill->ill_lock); 5725 return; 5726 } 5727 break; 5728 5729 case ILL_DOWN: 5730 case ILL_FREE: 5731 /* 5732 * case ILL_FREE arises only for loopback. otherwise ill_delete 5733 * waits synchronously in ip_close, and no message is queued in 5734 * ipsq_pending_mp at all in this case 5735 */ 5736 if (!ill_is_quiescent(ill)) { 5737 mutex_exit(&ill->ill_lock); 5738 return; 5739 } 5740 5741 break; 5742 5743 case ILL_MOVE_OK: 5744 if (ill_quiescent_to_move(ill) != NULL) { 5745 mutex_exit(&ill->ill_lock); 5746 return; 5747 } 5748 5749 break; 5750 default: 5751 cmn_err(CE_PANIC, "ipsq: %p unknown ipsq_waitfor %d\n", 5752 (void *)ipsq, ipsq->ipsq_waitfor); 5753 } 5754 5755 /* 5756 * Incr refcnt for the qwriter_ip call below which 5757 * does a refrele 5758 */ 5759 ill_refhold_locked(ill); 5760 mutex_exit(&ill->ill_lock); 5761 5762 mp = ipsq_pending_mp_get(ipsq, &connp); 5763 ASSERT(mp != NULL); 5764 5765 switch (mp->b_datap->db_type) { 5766 case M_ERROR: 5767 case M_HANGUP: 5768 (void) qwriter_ip(NULL, ill, ill->ill_rq, mp, 5769 ipif_all_down_tail, CUR_OP, B_TRUE); 5770 return; 5771 5772 case M_IOCTL: 5773 case M_IOCDATA: 5774 (void) qwriter_ip(NULL, ill, 5775 (connp != NULL ? CONNP_TO_WQ(connp) : ill->ill_wq), mp, 5776 ip_reprocess_ioctl, CUR_OP, B_TRUE); 5777 return; 5778 5779 default: 5780 cmn_err(CE_PANIC, "ipif_ill_refrele_tail mp %p " 5781 "db_type %d\n", (void *)mp, mp->b_datap->db_type); 5782 } 5783 } 5784 5785 #ifdef ILL_DEBUG 5786 /* Reuse trace buffer from beginning (if reached the end) and record trace */ 5787 void 5788 th_trace_rrecord(th_trace_t *th_trace) 5789 { 5790 tr_buf_t *tr_buf; 5791 uint_t lastref; 5792 5793 lastref = th_trace->th_trace_lastref; 5794 lastref++; 5795 if (lastref == TR_BUF_MAX) 5796 lastref = 0; 5797 th_trace->th_trace_lastref = lastref; 5798 tr_buf = &th_trace->th_trbuf[lastref]; 5799 tr_buf->tr_depth = getpcstack(tr_buf->tr_stack, IP_STACK_DEPTH); 5800 } 5801 5802 th_trace_t * 5803 th_trace_ipif_lookup(ipif_t *ipif) 5804 { 5805 int bucket_id; 5806 th_trace_t *th_trace; 5807 5808 ASSERT(MUTEX_HELD(&ipif->ipif_ill->ill_lock)); 5809 5810 bucket_id = IP_TR_HASH(curthread); 5811 ASSERT(bucket_id < IP_TR_HASH_MAX); 5812 5813 for (th_trace = ipif->ipif_trace[bucket_id]; th_trace != NULL; 5814 th_trace = th_trace->th_next) { 5815 if (th_trace->th_id == curthread) 5816 return (th_trace); 5817 } 5818 return (NULL); 5819 } 5820 5821 void 5822 ipif_trace_ref(ipif_t *ipif) 5823 { 5824 int bucket_id; 5825 th_trace_t *th_trace; 5826 5827 ASSERT(MUTEX_HELD(&ipif->ipif_ill->ill_lock)); 5828 5829 if (ipif->ipif_trace_disable) 5830 return; 5831 5832 /* 5833 * Attempt to locate the trace buffer for the curthread. 5834 * If it does not exist, then allocate a new trace buffer 5835 * and link it in list of trace bufs for this ipif, at the head 5836 */ 5837 th_trace = th_trace_ipif_lookup(ipif); 5838 if (th_trace == NULL) { 5839 bucket_id = IP_TR_HASH(curthread); 5840 th_trace = (th_trace_t *)kmem_zalloc(sizeof (th_trace_t), 5841 KM_NOSLEEP); 5842 if (th_trace == NULL) { 5843 ipif->ipif_trace_disable = B_TRUE; 5844 ipif_trace_cleanup(ipif); 5845 return; 5846 } 5847 th_trace->th_id = curthread; 5848 th_trace->th_next = ipif->ipif_trace[bucket_id]; 5849 th_trace->th_prev = &ipif->ipif_trace[bucket_id]; 5850 if (th_trace->th_next != NULL) 5851 th_trace->th_next->th_prev = &th_trace->th_next; 5852 ipif->ipif_trace[bucket_id] = th_trace; 5853 } 5854 ASSERT(th_trace->th_refcnt >= 0 && 5855 th_trace->th_refcnt < TR_BUF_MAX -1); 5856 th_trace->th_refcnt++; 5857 th_trace_rrecord(th_trace); 5858 } 5859 5860 void 5861 ipif_untrace_ref(ipif_t *ipif) 5862 { 5863 th_trace_t *th_trace; 5864 5865 ASSERT(MUTEX_HELD(&ipif->ipif_ill->ill_lock)); 5866 5867 if (ipif->ipif_trace_disable) 5868 return; 5869 th_trace = th_trace_ipif_lookup(ipif); 5870 ASSERT(th_trace != NULL); 5871 ASSERT(th_trace->th_refcnt > 0); 5872 5873 th_trace->th_refcnt--; 5874 th_trace_rrecord(th_trace); 5875 } 5876 5877 th_trace_t * 5878 th_trace_ill_lookup(ill_t *ill) 5879 { 5880 th_trace_t *th_trace; 5881 int bucket_id; 5882 5883 ASSERT(MUTEX_HELD(&ill->ill_lock)); 5884 5885 bucket_id = IP_TR_HASH(curthread); 5886 ASSERT(bucket_id < IP_TR_HASH_MAX); 5887 5888 for (th_trace = ill->ill_trace[bucket_id]; th_trace != NULL; 5889 th_trace = th_trace->th_next) { 5890 if (th_trace->th_id == curthread) 5891 return (th_trace); 5892 } 5893 return (NULL); 5894 } 5895 5896 void 5897 ill_trace_ref(ill_t *ill) 5898 { 5899 int bucket_id; 5900 th_trace_t *th_trace; 5901 5902 ASSERT(MUTEX_HELD(&ill->ill_lock)); 5903 if (ill->ill_trace_disable) 5904 return; 5905 /* 5906 * Attempt to locate the trace buffer for the curthread. 5907 * If it does not exist, then allocate a new trace buffer 5908 * and link it in list of trace bufs for this ill, at the head 5909 */ 5910 th_trace = th_trace_ill_lookup(ill); 5911 if (th_trace == NULL) { 5912 bucket_id = IP_TR_HASH(curthread); 5913 th_trace = (th_trace_t *)kmem_zalloc(sizeof (th_trace_t), 5914 KM_NOSLEEP); 5915 if (th_trace == NULL) { 5916 ill->ill_trace_disable = B_TRUE; 5917 ill_trace_cleanup(ill); 5918 return; 5919 } 5920 th_trace->th_id = curthread; 5921 th_trace->th_next = ill->ill_trace[bucket_id]; 5922 th_trace->th_prev = &ill->ill_trace[bucket_id]; 5923 if (th_trace->th_next != NULL) 5924 th_trace->th_next->th_prev = &th_trace->th_next; 5925 ill->ill_trace[bucket_id] = th_trace; 5926 } 5927 ASSERT(th_trace->th_refcnt >= 0 && 5928 th_trace->th_refcnt < TR_BUF_MAX - 1); 5929 5930 th_trace->th_refcnt++; 5931 th_trace_rrecord(th_trace); 5932 } 5933 5934 void 5935 ill_untrace_ref(ill_t *ill) 5936 { 5937 th_trace_t *th_trace; 5938 5939 ASSERT(MUTEX_HELD(&ill->ill_lock)); 5940 5941 if (ill->ill_trace_disable) 5942 return; 5943 th_trace = th_trace_ill_lookup(ill); 5944 ASSERT(th_trace != NULL); 5945 ASSERT(th_trace->th_refcnt > 0); 5946 5947 th_trace->th_refcnt--; 5948 th_trace_rrecord(th_trace); 5949 } 5950 5951 /* 5952 * Verify that this thread has no refs to the ipif and free 5953 * the trace buffers 5954 */ 5955 /* ARGSUSED */ 5956 void 5957 ipif_thread_exit(ipif_t *ipif, void *dummy) 5958 { 5959 th_trace_t *th_trace; 5960 5961 mutex_enter(&ipif->ipif_ill->ill_lock); 5962 5963 th_trace = th_trace_ipif_lookup(ipif); 5964 if (th_trace == NULL) { 5965 mutex_exit(&ipif->ipif_ill->ill_lock); 5966 return; 5967 } 5968 ASSERT(th_trace->th_refcnt == 0); 5969 /* unlink th_trace and free it */ 5970 *th_trace->th_prev = th_trace->th_next; 5971 if (th_trace->th_next != NULL) 5972 th_trace->th_next->th_prev = th_trace->th_prev; 5973 th_trace->th_next = NULL; 5974 th_trace->th_prev = NULL; 5975 kmem_free(th_trace, sizeof (th_trace_t)); 5976 5977 mutex_exit(&ipif->ipif_ill->ill_lock); 5978 } 5979 5980 /* 5981 * Verify that this thread has no refs to the ill and free 5982 * the trace buffers 5983 */ 5984 /* ARGSUSED */ 5985 void 5986 ill_thread_exit(ill_t *ill, void *dummy) 5987 { 5988 th_trace_t *th_trace; 5989 5990 mutex_enter(&ill->ill_lock); 5991 5992 th_trace = th_trace_ill_lookup(ill); 5993 if (th_trace == NULL) { 5994 mutex_exit(&ill->ill_lock); 5995 return; 5996 } 5997 ASSERT(th_trace->th_refcnt == 0); 5998 /* unlink th_trace and free it */ 5999 *th_trace->th_prev = th_trace->th_next; 6000 if (th_trace->th_next != NULL) 6001 th_trace->th_next->th_prev = th_trace->th_prev; 6002 th_trace->th_next = NULL; 6003 th_trace->th_prev = NULL; 6004 kmem_free(th_trace, sizeof (th_trace_t)); 6005 6006 mutex_exit(&ill->ill_lock); 6007 } 6008 #endif 6009 6010 #ifdef ILL_DEBUG 6011 void 6012 ip_thread_exit(void) 6013 { 6014 ill_t *ill; 6015 ipif_t *ipif; 6016 ill_walk_context_t ctx; 6017 6018 rw_enter(&ill_g_lock, RW_READER); 6019 ill = ILL_START_WALK_ALL(&ctx); 6020 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 6021 for (ipif = ill->ill_ipif; ipif != NULL; 6022 ipif = ipif->ipif_next) { 6023 ipif_thread_exit(ipif, NULL); 6024 } 6025 ill_thread_exit(ill, NULL); 6026 } 6027 rw_exit(&ill_g_lock); 6028 6029 ire_walk(ire_thread_exit, NULL); 6030 ndp_walk_impl(NULL, nce_thread_exit, NULL, B_FALSE); 6031 } 6032 6033 /* 6034 * Called when ipif is unplumbed or when memory alloc fails 6035 */ 6036 void 6037 ipif_trace_cleanup(ipif_t *ipif) 6038 { 6039 int i; 6040 th_trace_t *th_trace; 6041 th_trace_t *th_trace_next; 6042 6043 for (i = 0; i < IP_TR_HASH_MAX; i++) { 6044 for (th_trace = ipif->ipif_trace[i]; th_trace != NULL; 6045 th_trace = th_trace_next) { 6046 th_trace_next = th_trace->th_next; 6047 kmem_free(th_trace, sizeof (th_trace_t)); 6048 } 6049 ipif->ipif_trace[i] = NULL; 6050 } 6051 } 6052 6053 /* 6054 * Called when ill is unplumbed or when memory alloc fails 6055 */ 6056 void 6057 ill_trace_cleanup(ill_t *ill) 6058 { 6059 int i; 6060 th_trace_t *th_trace; 6061 th_trace_t *th_trace_next; 6062 6063 for (i = 0; i < IP_TR_HASH_MAX; i++) { 6064 for (th_trace = ill->ill_trace[i]; th_trace != NULL; 6065 th_trace = th_trace_next) { 6066 th_trace_next = th_trace->th_next; 6067 kmem_free(th_trace, sizeof (th_trace_t)); 6068 } 6069 ill->ill_trace[i] = NULL; 6070 } 6071 } 6072 6073 #else 6074 void ip_thread_exit(void) {} 6075 #endif 6076 6077 void 6078 ipif_refhold_locked(ipif_t *ipif) 6079 { 6080 ASSERT(MUTEX_HELD(&ipif->ipif_ill->ill_lock)); 6081 ipif->ipif_refcnt++; 6082 IPIF_TRACE_REF(ipif); 6083 } 6084 6085 void 6086 ipif_refhold(ipif_t *ipif) 6087 { 6088 ill_t *ill; 6089 6090 ill = ipif->ipif_ill; 6091 mutex_enter(&ill->ill_lock); 6092 ipif->ipif_refcnt++; 6093 IPIF_TRACE_REF(ipif); 6094 mutex_exit(&ill->ill_lock); 6095 } 6096 6097 /* 6098 * Must not be called while holding any locks. Otherwise if this is 6099 * the last reference to be released there is a chance of recursive mutex 6100 * panic due to ipif_refrele -> ipif_ill_refrele_tail -> qwriter_ip trying 6101 * to restart an ioctl. 6102 */ 6103 void 6104 ipif_refrele(ipif_t *ipif) 6105 { 6106 ill_t *ill; 6107 6108 ill = ipif->ipif_ill; 6109 6110 mutex_enter(&ill->ill_lock); 6111 ASSERT(ipif->ipif_refcnt != 0); 6112 ipif->ipif_refcnt--; 6113 IPIF_UNTRACE_REF(ipif); 6114 if (ipif->ipif_refcnt != 0) { 6115 mutex_exit(&ill->ill_lock); 6116 return; 6117 } 6118 6119 /* Drops the ill_lock */ 6120 ipif_ill_refrele_tail(ill); 6121 } 6122 6123 ipif_t * 6124 ipif_get_next_ipif(ipif_t *curr, ill_t *ill) 6125 { 6126 ipif_t *ipif; 6127 6128 mutex_enter(&ill->ill_lock); 6129 for (ipif = (curr == NULL ? ill->ill_ipif : curr->ipif_next); 6130 ipif != NULL; ipif = ipif->ipif_next) { 6131 if (!IPIF_CAN_LOOKUP(ipif)) 6132 continue; 6133 ipif_refhold_locked(ipif); 6134 mutex_exit(&ill->ill_lock); 6135 return (ipif); 6136 } 6137 mutex_exit(&ill->ill_lock); 6138 return (NULL); 6139 } 6140 6141 /* 6142 * TODO: make this table extendible at run time 6143 * Return a pointer to the mac type info for 'mac_type' 6144 */ 6145 static ip_m_t * 6146 ip_m_lookup(t_uscalar_t mac_type) 6147 { 6148 ip_m_t *ipm; 6149 6150 for (ipm = ip_m_tbl; ipm < A_END(ip_m_tbl); ipm++) 6151 if (ipm->ip_m_mac_type == mac_type) 6152 return (ipm); 6153 return (NULL); 6154 } 6155 6156 /* 6157 * ip_rt_add is called to add an IPv4 route to the forwarding table. 6158 * ipif_arg is passed in to associate it with the correct interface. 6159 * We may need to restart this operation if the ipif cannot be looked up 6160 * due to an exclusive operation that is currently in progress. The restart 6161 * entry point is specified by 'func' 6162 */ 6163 int 6164 ip_rt_add(ipaddr_t dst_addr, ipaddr_t mask, ipaddr_t gw_addr, 6165 ipaddr_t src_addr, int flags, ipif_t *ipif_arg, ipif_t *src_ipif, 6166 ire_t **ire_arg, boolean_t ioctl_msg, queue_t *q, mblk_t *mp, 6167 ipsq_func_t func, struct rtsa_s *sp) 6168 { 6169 ire_t *ire; 6170 ire_t *gw_ire = NULL; 6171 ipif_t *ipif = NULL; 6172 boolean_t ipif_refheld = B_FALSE; 6173 uint_t type; 6174 int match_flags = MATCH_IRE_TYPE; 6175 int error; 6176 tsol_gc_t *gc = NULL; 6177 tsol_gcgrp_t *gcgrp = NULL; 6178 boolean_t gcgrp_xtraref = B_FALSE; 6179 6180 ip1dbg(("ip_rt_add:")); 6181 6182 if (ire_arg != NULL) 6183 *ire_arg = NULL; 6184 6185 /* 6186 * If this is the case of RTF_HOST being set, then we set the netmask 6187 * to all ones (regardless if one was supplied). 6188 */ 6189 if (flags & RTF_HOST) 6190 mask = IP_HOST_MASK; 6191 6192 /* 6193 * Prevent routes with a zero gateway from being created (since 6194 * interfaces can currently be plumbed and brought up no assigned 6195 * address). 6196 * For routes with RTA_SRCIFP, the gateway address can be 0.0.0.0. 6197 */ 6198 if (gw_addr == 0 && src_ipif == NULL) 6199 return (ENETUNREACH); 6200 /* 6201 * Get the ipif, if any, corresponding to the gw_addr 6202 */ 6203 if (gw_addr != 0) { 6204 ipif = ipif_lookup_interface(gw_addr, dst_addr, q, mp, func, 6205 &error); 6206 if (ipif != NULL) { 6207 if (IS_VNI(ipif->ipif_ill)) { 6208 ipif_refrele(ipif); 6209 return (EINVAL); 6210 } 6211 ipif_refheld = B_TRUE; 6212 } else if (error == EINPROGRESS) { 6213 ip1dbg(("ip_rt_add: null and EINPROGRESS")); 6214 return (EINPROGRESS); 6215 } else { 6216 error = 0; 6217 } 6218 } 6219 6220 if (ipif != NULL) { 6221 ip1dbg(("ip_rt_add: ipif_lookup_interface done ipif nonnull")); 6222 ASSERT(!MUTEX_HELD(&ipif->ipif_ill->ill_lock)); 6223 } else { 6224 ip1dbg(("ip_rt_add: ipif_lookup_interface done ipif is null")); 6225 } 6226 6227 /* 6228 * GateD will attempt to create routes with a loopback interface 6229 * address as the gateway and with RTF_GATEWAY set. We allow 6230 * these routes to be added, but create them as interface routes 6231 * since the gateway is an interface address. 6232 */ 6233 if ((ipif != NULL) && (ipif->ipif_ire_type == IRE_LOOPBACK)) { 6234 flags &= ~RTF_GATEWAY; 6235 if (gw_addr == INADDR_LOOPBACK && dst_addr == INADDR_LOOPBACK && 6236 mask == IP_HOST_MASK) { 6237 ire = ire_ctable_lookup(dst_addr, 0, IRE_LOOPBACK, ipif, 6238 ALL_ZONES, NULL, match_flags); 6239 if (ire != NULL) { 6240 ire_refrele(ire); 6241 if (ipif_refheld) 6242 ipif_refrele(ipif); 6243 return (EEXIST); 6244 } 6245 ip1dbg(("ipif_up_done: 0x%p creating IRE 0x%x" 6246 "for 0x%x\n", (void *)ipif, 6247 ipif->ipif_ire_type, 6248 ntohl(ipif->ipif_lcl_addr))); 6249 ire = ire_create( 6250 (uchar_t *)&dst_addr, /* dest address */ 6251 (uchar_t *)&mask, /* mask */ 6252 (uchar_t *)&ipif->ipif_src_addr, 6253 NULL, /* no gateway */ 6254 NULL, 6255 &ipif->ipif_mtu, 6256 NULL, 6257 ipif->ipif_rq, /* recv-from queue */ 6258 NULL, /* no send-to queue */ 6259 ipif->ipif_ire_type, /* LOOPBACK */ 6260 NULL, 6261 ipif, 6262 NULL, 6263 0, 6264 0, 6265 0, 6266 (ipif->ipif_flags & IPIF_PRIVATE) ? 6267 RTF_PRIVATE : 0, 6268 &ire_uinfo_null, 6269 NULL, 6270 NULL); 6271 6272 if (ire == NULL) { 6273 if (ipif_refheld) 6274 ipif_refrele(ipif); 6275 return (ENOMEM); 6276 } 6277 error = ire_add(&ire, q, mp, func); 6278 if (error == 0) 6279 goto save_ire; 6280 if (ipif_refheld) 6281 ipif_refrele(ipif); 6282 return (error); 6283 6284 } 6285 } 6286 6287 /* 6288 * Traditionally, interface routes are ones where RTF_GATEWAY isn't set 6289 * and the gateway address provided is one of the system's interface 6290 * addresses. By using the routing socket interface and supplying an 6291 * RTA_IFP sockaddr with an interface index, an alternate method of 6292 * specifying an interface route to be created is available which uses 6293 * the interface index that specifies the outgoing interface rather than 6294 * the address of an outgoing interface (which may not be able to 6295 * uniquely identify an interface). When coupled with the RTF_GATEWAY 6296 * flag, routes can be specified which not only specify the next-hop to 6297 * be used when routing to a certain prefix, but also which outgoing 6298 * interface should be used. 6299 * 6300 * Previously, interfaces would have unique addresses assigned to them 6301 * and so the address assigned to a particular interface could be used 6302 * to identify a particular interface. One exception to this was the 6303 * case of an unnumbered interface (where IPIF_UNNUMBERED was set). 6304 * 6305 * With the advent of IPv6 and its link-local addresses, this 6306 * restriction was relaxed and interfaces could share addresses between 6307 * themselves. In fact, typically all of the link-local interfaces on 6308 * an IPv6 node or router will have the same link-local address. In 6309 * order to differentiate between these interfaces, the use of an 6310 * interface index is necessary and this index can be carried inside a 6311 * RTA_IFP sockaddr (which is actually a sockaddr_dl). One restriction 6312 * of using the interface index, however, is that all of the ipif's that 6313 * are part of an ill have the same index and so the RTA_IFP sockaddr 6314 * cannot be used to differentiate between ipif's (or logical 6315 * interfaces) that belong to the same ill (physical interface). 6316 * 6317 * For example, in the following case involving IPv4 interfaces and 6318 * logical interfaces 6319 * 6320 * 192.0.2.32 255.255.255.224 192.0.2.33 U if0 6321 * 192.0.2.32 255.255.255.224 192.0.2.34 U if0:1 6322 * 192.0.2.32 255.255.255.224 192.0.2.35 U if0:2 6323 * 6324 * the ipif's corresponding to each of these interface routes can be 6325 * uniquely identified by the "gateway" (actually interface address). 6326 * 6327 * In this case involving multiple IPv6 default routes to a particular 6328 * link-local gateway, the use of RTA_IFP is necessary to specify which 6329 * default route is of interest: 6330 * 6331 * default fe80::123:4567:89ab:cdef U if0 6332 * default fe80::123:4567:89ab:cdef U if1 6333 */ 6334 6335 /* RTF_GATEWAY not set */ 6336 if (!(flags & RTF_GATEWAY)) { 6337 queue_t *stq; 6338 queue_t *rfq = NULL; 6339 ill_t *in_ill = NULL; 6340 6341 if (sp != NULL) { 6342 ip2dbg(("ip_rt_add: gateway security attributes " 6343 "cannot be set with interface route\n")); 6344 if (ipif_refheld) 6345 ipif_refrele(ipif); 6346 return (EINVAL); 6347 } 6348 6349 /* 6350 * As the interface index specified with the RTA_IFP sockaddr is 6351 * the same for all ipif's off of an ill, the matching logic 6352 * below uses MATCH_IRE_ILL if such an index was specified. 6353 * This means that routes sharing the same prefix when added 6354 * using a RTA_IFP sockaddr must have distinct interface 6355 * indices (namely, they must be on distinct ill's). 6356 * 6357 * On the other hand, since the gateway address will usually be 6358 * different for each ipif on the system, the matching logic 6359 * uses MATCH_IRE_IPIF in the case of a traditional interface 6360 * route. This means that interface routes for the same prefix 6361 * can be created if they belong to distinct ipif's and if a 6362 * RTA_IFP sockaddr is not present. 6363 */ 6364 if (ipif_arg != NULL) { 6365 if (ipif_refheld) { 6366 ipif_refrele(ipif); 6367 ipif_refheld = B_FALSE; 6368 } 6369 ipif = ipif_arg; 6370 match_flags |= MATCH_IRE_ILL; 6371 } else { 6372 /* 6373 * Check the ipif corresponding to the gw_addr 6374 */ 6375 if (ipif == NULL) 6376 return (ENETUNREACH); 6377 match_flags |= MATCH_IRE_IPIF; 6378 } 6379 ASSERT(ipif != NULL); 6380 /* 6381 * If src_ipif is not NULL, we have to create 6382 * an ire with non-null ire_in_ill value 6383 */ 6384 if (src_ipif != NULL) { 6385 in_ill = src_ipif->ipif_ill; 6386 } 6387 6388 /* 6389 * We check for an existing entry at this point. 6390 * 6391 * Since a netmask isn't passed in via the ioctl interface 6392 * (SIOCADDRT), we don't check for a matching netmask in that 6393 * case. 6394 */ 6395 if (!ioctl_msg) 6396 match_flags |= MATCH_IRE_MASK; 6397 if (src_ipif != NULL) { 6398 /* Look up in the special table */ 6399 ire = ire_srcif_table_lookup(dst_addr, IRE_INTERFACE, 6400 ipif, src_ipif->ipif_ill, match_flags); 6401 } else { 6402 ire = ire_ftable_lookup(dst_addr, mask, 0, 6403 IRE_INTERFACE, ipif, NULL, ALL_ZONES, 0, 6404 NULL, match_flags); 6405 } 6406 if (ire != NULL) { 6407 ire_refrele(ire); 6408 if (ipif_refheld) 6409 ipif_refrele(ipif); 6410 return (EEXIST); 6411 } 6412 6413 if (src_ipif != NULL) { 6414 /* 6415 * Create the special ire for the IRE table 6416 * which hangs out of ire_in_ill. This ire 6417 * is in-between IRE_CACHE and IRE_INTERFACE. 6418 * Thus rfq is non-NULL. 6419 */ 6420 rfq = ipif->ipif_rq; 6421 } 6422 /* Create the usual interface ires */ 6423 6424 stq = (ipif->ipif_net_type == IRE_IF_RESOLVER) 6425 ? ipif->ipif_rq : ipif->ipif_wq; 6426 6427 /* 6428 * Create a copy of the IRE_LOOPBACK, 6429 * IRE_IF_NORESOLVER or IRE_IF_RESOLVER with 6430 * the modified address and netmask. 6431 */ 6432 ire = ire_create( 6433 (uchar_t *)&dst_addr, 6434 (uint8_t *)&mask, 6435 (uint8_t *)&ipif->ipif_src_addr, 6436 NULL, 6437 NULL, 6438 &ipif->ipif_mtu, 6439 NULL, 6440 rfq, 6441 stq, 6442 ipif->ipif_net_type, 6443 ipif->ipif_resolver_mp, 6444 ipif, 6445 in_ill, 6446 0, 6447 0, 6448 0, 6449 flags, 6450 &ire_uinfo_null, 6451 NULL, 6452 NULL); 6453 if (ire == NULL) { 6454 if (ipif_refheld) 6455 ipif_refrele(ipif); 6456 return (ENOMEM); 6457 } 6458 6459 /* 6460 * Some software (for example, GateD and Sun Cluster) attempts 6461 * to create (what amount to) IRE_PREFIX routes with the 6462 * loopback address as the gateway. This is primarily done to 6463 * set up prefixes with the RTF_REJECT flag set (for example, 6464 * when generating aggregate routes.) 6465 * 6466 * If the IRE type (as defined by ipif->ipif_net_type) is 6467 * IRE_LOOPBACK, then we map the request into a 6468 * IRE_IF_NORESOLVER. 6469 * 6470 * Needless to say, the real IRE_LOOPBACK is NOT created by this 6471 * routine, but rather using ire_create() directly. 6472 */ 6473 if (ipif->ipif_net_type == IRE_LOOPBACK) 6474 ire->ire_type = IRE_IF_NORESOLVER; 6475 error = ire_add(&ire, q, mp, func); 6476 if (error == 0) 6477 goto save_ire; 6478 6479 /* 6480 * In the result of failure, ire_add() will have already 6481 * deleted the ire in question, so there is no need to 6482 * do that here. 6483 */ 6484 if (ipif_refheld) 6485 ipif_refrele(ipif); 6486 return (error); 6487 } 6488 if (ipif_refheld) { 6489 ipif_refrele(ipif); 6490 ipif_refheld = B_FALSE; 6491 } 6492 6493 if (src_ipif != NULL) { 6494 /* RTA_SRCIFP is not supported on RTF_GATEWAY */ 6495 ip2dbg(("ip_rt_add: SRCIF cannot be set with gateway route\n")); 6496 return (EINVAL); 6497 } 6498 /* 6499 * Get an interface IRE for the specified gateway. 6500 * If we don't have an IRE_IF_NORESOLVER or IRE_IF_RESOLVER for the 6501 * gateway, it is currently unreachable and we fail the request 6502 * accordingly. 6503 */ 6504 ipif = ipif_arg; 6505 if (ipif_arg != NULL) 6506 match_flags |= MATCH_IRE_ILL; 6507 gw_ire = ire_ftable_lookup(gw_addr, 0, 0, IRE_INTERFACE, ipif_arg, NULL, 6508 ALL_ZONES, 0, NULL, match_flags); 6509 if (gw_ire == NULL) 6510 return (ENETUNREACH); 6511 6512 /* 6513 * We create one of three types of IREs as a result of this request 6514 * based on the netmask. A netmask of all ones (which is automatically 6515 * assumed when RTF_HOST is set) results in an IRE_HOST being created. 6516 * An all zeroes netmask implies a default route so an IRE_DEFAULT is 6517 * created. Otherwise, an IRE_PREFIX route is created for the 6518 * destination prefix. 6519 */ 6520 if (mask == IP_HOST_MASK) 6521 type = IRE_HOST; 6522 else if (mask == 0) 6523 type = IRE_DEFAULT; 6524 else 6525 type = IRE_PREFIX; 6526 6527 /* check for a duplicate entry */ 6528 ire = ire_ftable_lookup(dst_addr, mask, gw_addr, type, ipif_arg, 6529 NULL, ALL_ZONES, 0, NULL, 6530 match_flags | MATCH_IRE_MASK | MATCH_IRE_GW); 6531 if (ire != NULL) { 6532 ire_refrele(gw_ire); 6533 ire_refrele(ire); 6534 return (EEXIST); 6535 } 6536 6537 /* Security attribute exists */ 6538 if (sp != NULL) { 6539 tsol_gcgrp_addr_t ga; 6540 6541 /* find or create the gateway credentials group */ 6542 ga.ga_af = AF_INET; 6543 IN6_IPADDR_TO_V4MAPPED(gw_addr, &ga.ga_addr); 6544 6545 /* we hold reference to it upon success */ 6546 gcgrp = gcgrp_lookup(&ga, B_TRUE); 6547 if (gcgrp == NULL) { 6548 ire_refrele(gw_ire); 6549 return (ENOMEM); 6550 } 6551 6552 /* 6553 * Create and add the security attribute to the group; a 6554 * reference to the group is made upon allocating a new 6555 * entry successfully. If it finds an already-existing 6556 * entry for the security attribute in the group, it simply 6557 * returns it and no new reference is made to the group. 6558 */ 6559 gc = gc_create(sp, gcgrp, &gcgrp_xtraref); 6560 if (gc == NULL) { 6561 /* release reference held by gcgrp_lookup */ 6562 GCGRP_REFRELE(gcgrp); 6563 ire_refrele(gw_ire); 6564 return (ENOMEM); 6565 } 6566 } 6567 6568 /* Create the IRE. */ 6569 ire = ire_create( 6570 (uchar_t *)&dst_addr, /* dest address */ 6571 (uchar_t *)&mask, /* mask */ 6572 /* src address assigned by the caller? */ 6573 (uchar_t *)(((src_addr != INADDR_ANY) && 6574 (flags & RTF_SETSRC)) ? &src_addr : NULL), 6575 (uchar_t *)&gw_addr, /* gateway address */ 6576 NULL, /* no in-srcaddress */ 6577 &gw_ire->ire_max_frag, 6578 NULL, /* no Fast Path header */ 6579 NULL, /* no recv-from queue */ 6580 NULL, /* no send-to queue */ 6581 (ushort_t)type, /* IRE type */ 6582 NULL, 6583 ipif_arg, 6584 NULL, 6585 0, 6586 0, 6587 0, 6588 flags, 6589 &gw_ire->ire_uinfo, /* Inherit ULP info from gw */ 6590 gc, /* security attribute */ 6591 NULL); 6592 /* 6593 * The ire holds a reference to the 'gc' and the 'gc' holds a 6594 * reference to the 'gcgrp'. We can now release the extra reference 6595 * the 'gcgrp' acquired in the gcgrp_lookup, if it was not used. 6596 */ 6597 if (gcgrp_xtraref) 6598 GCGRP_REFRELE(gcgrp); 6599 if (ire == NULL) { 6600 if (gc != NULL) 6601 GC_REFRELE(gc); 6602 ire_refrele(gw_ire); 6603 return (ENOMEM); 6604 } 6605 6606 /* 6607 * POLICY: should we allow an RTF_HOST with address INADDR_ANY? 6608 * SUN/OS socket stuff does but do we really want to allow 0.0.0.0? 6609 */ 6610 6611 /* Add the new IRE. */ 6612 error = ire_add(&ire, q, mp, func); 6613 if (error != 0) { 6614 /* 6615 * In the result of failure, ire_add() will have already 6616 * deleted the ire in question, so there is no need to 6617 * do that here. 6618 */ 6619 ire_refrele(gw_ire); 6620 return (error); 6621 } 6622 6623 if (flags & RTF_MULTIRT) { 6624 /* 6625 * Invoke the CGTP (multirouting) filtering module 6626 * to add the dst address in the filtering database. 6627 * Replicated inbound packets coming from that address 6628 * will be filtered to discard the duplicates. 6629 * It is not necessary to call the CGTP filter hook 6630 * when the dst address is a broadcast or multicast, 6631 * because an IP source address cannot be a broadcast 6632 * or a multicast. 6633 */ 6634 ire_t *ire_dst = ire_ctable_lookup(ire->ire_addr, 0, 6635 IRE_BROADCAST, NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE); 6636 if (ire_dst != NULL) { 6637 ip_cgtp_bcast_add(ire, ire_dst); 6638 ire_refrele(ire_dst); 6639 goto save_ire; 6640 } 6641 if ((ip_cgtp_filter_ops != NULL) && !CLASSD(ire->ire_addr)) { 6642 int res = ip_cgtp_filter_ops->cfo_add_dest_v4( 6643 ire->ire_addr, 6644 ire->ire_gateway_addr, 6645 ire->ire_src_addr, 6646 gw_ire->ire_src_addr); 6647 if (res != 0) { 6648 ire_refrele(gw_ire); 6649 ire_delete(ire); 6650 return (res); 6651 } 6652 } 6653 } 6654 6655 /* 6656 * Now that the prefix IRE entry has been created, delete any 6657 * existing gateway IRE cache entries as well as any IRE caches 6658 * using the gateway, and force them to be created through 6659 * ip_newroute. 6660 */ 6661 if (gc != NULL) { 6662 ASSERT(gcgrp != NULL); 6663 ire_clookup_delete_cache_gw(gw_addr, ALL_ZONES); 6664 } 6665 6666 save_ire: 6667 if (gw_ire != NULL) { 6668 ire_refrele(gw_ire); 6669 } 6670 /* 6671 * We do not do save_ire for the routes added with RTA_SRCIFP 6672 * flag. This route is only added and deleted by mipagent. 6673 * So, for simplicity of design, we refrain from saving 6674 * ires that are created with srcif value. This may change 6675 * in future if we find more usage of srcifp feature. 6676 */ 6677 if (ipif != NULL && src_ipif == NULL) { 6678 /* 6679 * Save enough information so that we can recreate the IRE if 6680 * the interface goes down and then up. The metrics associated 6681 * with the route will be saved as well when rts_setmetrics() is 6682 * called after the IRE has been created. In the case where 6683 * memory cannot be allocated, none of this information will be 6684 * saved. 6685 */ 6686 ipif_save_ire(ipif, ire); 6687 } 6688 if (ioctl_msg) 6689 ip_rts_rtmsg(RTM_OLDADD, ire, 0); 6690 if (ire_arg != NULL) { 6691 /* 6692 * Store the ire that was successfully added into where ire_arg 6693 * points to so that callers don't have to look it up 6694 * themselves (but they are responsible for ire_refrele()ing 6695 * the ire when they are finished with it). 6696 */ 6697 *ire_arg = ire; 6698 } else { 6699 ire_refrele(ire); /* Held in ire_add */ 6700 } 6701 if (ipif_refheld) 6702 ipif_refrele(ipif); 6703 return (0); 6704 } 6705 6706 /* 6707 * ip_rt_delete is called to delete an IPv4 route. 6708 * ipif_arg is passed in to associate it with the correct interface. 6709 * src_ipif is passed to associate the incoming interface of the packet. 6710 * We may need to restart this operation if the ipif cannot be looked up 6711 * due to an exclusive operation that is currently in progress. The restart 6712 * entry point is specified by 'func' 6713 */ 6714 /* ARGSUSED4 */ 6715 int 6716 ip_rt_delete(ipaddr_t dst_addr, ipaddr_t mask, ipaddr_t gw_addr, 6717 uint_t rtm_addrs, int flags, ipif_t *ipif_arg, ipif_t *src_ipif, 6718 boolean_t ioctl_msg, queue_t *q, mblk_t *mp, ipsq_func_t func) 6719 { 6720 ire_t *ire = NULL; 6721 ipif_t *ipif; 6722 boolean_t ipif_refheld = B_FALSE; 6723 uint_t type; 6724 uint_t match_flags = MATCH_IRE_TYPE; 6725 int err = 0; 6726 6727 ip1dbg(("ip_rt_delete:")); 6728 /* 6729 * If this is the case of RTF_HOST being set, then we set the netmask 6730 * to all ones. Otherwise, we use the netmask if one was supplied. 6731 */ 6732 if (flags & RTF_HOST) { 6733 mask = IP_HOST_MASK; 6734 match_flags |= MATCH_IRE_MASK; 6735 } else if (rtm_addrs & RTA_NETMASK) { 6736 match_flags |= MATCH_IRE_MASK; 6737 } 6738 6739 /* 6740 * Note that RTF_GATEWAY is never set on a delete, therefore 6741 * we check if the gateway address is one of our interfaces first, 6742 * and fall back on RTF_GATEWAY routes. 6743 * 6744 * This makes it possible to delete an original 6745 * IRE_IF_NORESOLVER/IRE_IF_RESOLVER - consistent with SunOS 4.1. 6746 * 6747 * As the interface index specified with the RTA_IFP sockaddr is the 6748 * same for all ipif's off of an ill, the matching logic below uses 6749 * MATCH_IRE_ILL if such an index was specified. This means a route 6750 * sharing the same prefix and interface index as the the route 6751 * intended to be deleted might be deleted instead if a RTA_IFP sockaddr 6752 * is specified in the request. 6753 * 6754 * On the other hand, since the gateway address will usually be 6755 * different for each ipif on the system, the matching logic 6756 * uses MATCH_IRE_IPIF in the case of a traditional interface 6757 * route. This means that interface routes for the same prefix can be 6758 * uniquely identified if they belong to distinct ipif's and if a 6759 * RTA_IFP sockaddr is not present. 6760 * 6761 * For more detail on specifying routes by gateway address and by 6762 * interface index, see the comments in ip_rt_add(). 6763 * gw_addr could be zero in some cases when both RTA_SRCIFP and 6764 * RTA_IFP are specified. If RTA_SRCIFP is specified and both 6765 * RTA_IFP and gateway_addr are NULL/zero, then delete will not 6766 * succeed. 6767 */ 6768 if (src_ipif != NULL) { 6769 if (ipif_arg == NULL && gw_addr != 0) { 6770 ipif_arg = ipif_lookup_interface(gw_addr, dst_addr, 6771 q, mp, func, &err); 6772 if (ipif_arg != NULL) 6773 ipif_refheld = B_TRUE; 6774 } 6775 if (ipif_arg == NULL) { 6776 err = (err == EINPROGRESS) ? err : ESRCH; 6777 return (err); 6778 } 6779 ipif = ipif_arg; 6780 } else { 6781 ipif = ipif_lookup_interface(gw_addr, dst_addr, 6782 q, mp, func, &err); 6783 if (ipif != NULL) 6784 ipif_refheld = B_TRUE; 6785 else if (err == EINPROGRESS) 6786 return (err); 6787 else 6788 err = 0; 6789 } 6790 if (ipif != NULL) { 6791 if (ipif_arg != NULL) { 6792 if (ipif_refheld) { 6793 ipif_refrele(ipif); 6794 ipif_refheld = B_FALSE; 6795 } 6796 ipif = ipif_arg; 6797 match_flags |= MATCH_IRE_ILL; 6798 } else { 6799 match_flags |= MATCH_IRE_IPIF; 6800 } 6801 if (src_ipif != NULL) { 6802 ire = ire_srcif_table_lookup(dst_addr, IRE_INTERFACE, 6803 ipif, src_ipif->ipif_ill, match_flags); 6804 } else { 6805 if (ipif->ipif_ire_type == IRE_LOOPBACK) { 6806 ire = ire_ctable_lookup(dst_addr, 0, 6807 IRE_LOOPBACK, ipif, ALL_ZONES, NULL, 6808 match_flags); 6809 } 6810 if (ire == NULL) { 6811 ire = ire_ftable_lookup(dst_addr, mask, 0, 6812 IRE_INTERFACE, ipif, NULL, ALL_ZONES, 0, 6813 NULL, match_flags); 6814 } 6815 } 6816 } 6817 6818 if (ire == NULL) { 6819 /* 6820 * At this point, the gateway address is not one of our own 6821 * addresses or a matching interface route was not found. We 6822 * set the IRE type to lookup based on whether 6823 * this is a host route, a default route or just a prefix. 6824 * 6825 * If an ipif_arg was passed in, then the lookup is based on an 6826 * interface index so MATCH_IRE_ILL is added to match_flags. 6827 * In any case, MATCH_IRE_IPIF is cleared and MATCH_IRE_GW is 6828 * set as the route being looked up is not a traditional 6829 * interface route. 6830 * Since we do not add gateway route with srcipif, we don't 6831 * expect to find it either. 6832 */ 6833 if (src_ipif != NULL) { 6834 if (ipif_refheld) 6835 ipif_refrele(ipif); 6836 return (ESRCH); 6837 } else { 6838 match_flags &= ~MATCH_IRE_IPIF; 6839 match_flags |= MATCH_IRE_GW; 6840 if (ipif_arg != NULL) 6841 match_flags |= MATCH_IRE_ILL; 6842 if (mask == IP_HOST_MASK) 6843 type = IRE_HOST; 6844 else if (mask == 0) 6845 type = IRE_DEFAULT; 6846 else 6847 type = IRE_PREFIX; 6848 ire = ire_ftable_lookup(dst_addr, mask, gw_addr, type, 6849 ipif_arg, NULL, ALL_ZONES, 0, NULL, match_flags); 6850 if (ire == NULL && type == IRE_HOST) { 6851 ire = ire_ftable_lookup(dst_addr, mask, gw_addr, 6852 IRE_HOST_REDIRECT, ipif_arg, NULL, 6853 ALL_ZONES, 0, NULL, match_flags); 6854 } 6855 } 6856 } 6857 6858 if (ipif_refheld) 6859 ipif_refrele(ipif); 6860 6861 /* ipif is not refheld anymore */ 6862 if (ire == NULL) 6863 return (ESRCH); 6864 6865 if (ire->ire_flags & RTF_MULTIRT) { 6866 /* 6867 * Invoke the CGTP (multirouting) filtering module 6868 * to remove the dst address from the filtering database. 6869 * Packets coming from that address will no longer be 6870 * filtered to remove duplicates. 6871 */ 6872 if (ip_cgtp_filter_ops != NULL) { 6873 err = ip_cgtp_filter_ops->cfo_del_dest_v4(ire->ire_addr, 6874 ire->ire_gateway_addr); 6875 } 6876 ip_cgtp_bcast_delete(ire); 6877 } 6878 6879 ipif = ire->ire_ipif; 6880 /* 6881 * Removing from ipif_saved_ire_mp is not necessary 6882 * when src_ipif being non-NULL. ip_rt_add does not 6883 * save the ires which src_ipif being non-NULL. 6884 */ 6885 if (ipif != NULL && src_ipif == NULL) { 6886 ipif_remove_ire(ipif, ire); 6887 } 6888 if (ioctl_msg) 6889 ip_rts_rtmsg(RTM_OLDDEL, ire, 0); 6890 ire_delete(ire); 6891 ire_refrele(ire); 6892 return (err); 6893 } 6894 6895 /* 6896 * ip_siocaddrt is called to complete processing of an SIOCADDRT IOCTL. 6897 */ 6898 /* ARGSUSED */ 6899 int 6900 ip_siocaddrt(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, 6901 ip_ioctl_cmd_t *ipip, void *dummy_if_req) 6902 { 6903 ipaddr_t dst_addr; 6904 ipaddr_t gw_addr; 6905 ipaddr_t mask; 6906 int error = 0; 6907 mblk_t *mp1; 6908 struct rtentry *rt; 6909 ipif_t *ipif = NULL; 6910 6911 ip1dbg(("ip_siocaddrt:")); 6912 /* Existence of mp1 verified in ip_wput_nondata */ 6913 mp1 = mp->b_cont->b_cont; 6914 rt = (struct rtentry *)mp1->b_rptr; 6915 6916 dst_addr = ((sin_t *)&rt->rt_dst)->sin_addr.s_addr; 6917 gw_addr = ((sin_t *)&rt->rt_gateway)->sin_addr.s_addr; 6918 6919 /* 6920 * If the RTF_HOST flag is on, this is a request to assign a gateway 6921 * to a particular host address. In this case, we set the netmask to 6922 * all ones for the particular destination address. Otherwise, 6923 * determine the netmask to be used based on dst_addr and the interfaces 6924 * in use. 6925 */ 6926 if (rt->rt_flags & RTF_HOST) { 6927 mask = IP_HOST_MASK; 6928 } else { 6929 /* 6930 * Note that ip_subnet_mask returns a zero mask in the case of 6931 * default (an all-zeroes address). 6932 */ 6933 mask = ip_subnet_mask(dst_addr, &ipif); 6934 } 6935 6936 error = ip_rt_add(dst_addr, mask, gw_addr, 0, rt->rt_flags, NULL, NULL, 6937 NULL, B_TRUE, q, mp, ip_process_ioctl, NULL); 6938 if (ipif != NULL) 6939 ipif_refrele(ipif); 6940 return (error); 6941 } 6942 6943 /* 6944 * ip_siocdelrt is called to complete processing of an SIOCDELRT IOCTL. 6945 */ 6946 /* ARGSUSED */ 6947 int 6948 ip_siocdelrt(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, 6949 ip_ioctl_cmd_t *ipip, void *dummy_if_req) 6950 { 6951 ipaddr_t dst_addr; 6952 ipaddr_t gw_addr; 6953 ipaddr_t mask; 6954 int error; 6955 mblk_t *mp1; 6956 struct rtentry *rt; 6957 ipif_t *ipif = NULL; 6958 6959 ip1dbg(("ip_siocdelrt:")); 6960 /* Existence of mp1 verified in ip_wput_nondata */ 6961 mp1 = mp->b_cont->b_cont; 6962 rt = (struct rtentry *)mp1->b_rptr; 6963 6964 dst_addr = ((sin_t *)&rt->rt_dst)->sin_addr.s_addr; 6965 gw_addr = ((sin_t *)&rt->rt_gateway)->sin_addr.s_addr; 6966 6967 /* 6968 * If the RTF_HOST flag is on, this is a request to delete a gateway 6969 * to a particular host address. In this case, we set the netmask to 6970 * all ones for the particular destination address. Otherwise, 6971 * determine the netmask to be used based on dst_addr and the interfaces 6972 * in use. 6973 */ 6974 if (rt->rt_flags & RTF_HOST) { 6975 mask = IP_HOST_MASK; 6976 } else { 6977 /* 6978 * Note that ip_subnet_mask returns a zero mask in the case of 6979 * default (an all-zeroes address). 6980 */ 6981 mask = ip_subnet_mask(dst_addr, &ipif); 6982 } 6983 6984 error = ip_rt_delete(dst_addr, mask, gw_addr, 6985 RTA_DST | RTA_GATEWAY | RTA_NETMASK, rt->rt_flags, NULL, NULL, 6986 B_TRUE, q, mp, ip_process_ioctl); 6987 if (ipif != NULL) 6988 ipif_refrele(ipif); 6989 return (error); 6990 } 6991 6992 /* 6993 * Enqueue the mp onto the ipsq, chained by b_next. 6994 * b_prev stores the function to be executed later, and b_queue the queue 6995 * where this mp originated. 6996 */ 6997 void 6998 ipsq_enq(ipsq_t *ipsq, queue_t *q, mblk_t *mp, ipsq_func_t func, int type, 6999 ill_t *pending_ill) 7000 { 7001 conn_t *connp = NULL; 7002 7003 ASSERT(MUTEX_HELD(&ipsq->ipsq_lock)); 7004 ASSERT(func != NULL); 7005 7006 mp->b_queue = q; 7007 mp->b_prev = (void *)func; 7008 mp->b_next = NULL; 7009 7010 switch (type) { 7011 case CUR_OP: 7012 if (ipsq->ipsq_mptail != NULL) { 7013 ASSERT(ipsq->ipsq_mphead != NULL); 7014 ipsq->ipsq_mptail->b_next = mp; 7015 } else { 7016 ASSERT(ipsq->ipsq_mphead == NULL); 7017 ipsq->ipsq_mphead = mp; 7018 } 7019 ipsq->ipsq_mptail = mp; 7020 break; 7021 7022 case NEW_OP: 7023 if (ipsq->ipsq_xopq_mptail != NULL) { 7024 ASSERT(ipsq->ipsq_xopq_mphead != NULL); 7025 ipsq->ipsq_xopq_mptail->b_next = mp; 7026 } else { 7027 ASSERT(ipsq->ipsq_xopq_mphead == NULL); 7028 ipsq->ipsq_xopq_mphead = mp; 7029 } 7030 ipsq->ipsq_xopq_mptail = mp; 7031 break; 7032 default: 7033 cmn_err(CE_PANIC, "ipsq_enq %d type \n", type); 7034 } 7035 7036 if (CONN_Q(q) && pending_ill != NULL) { 7037 connp = Q_TO_CONN(q); 7038 7039 ASSERT(MUTEX_HELD(&connp->conn_lock)); 7040 connp->conn_oper_pending_ill = pending_ill; 7041 } 7042 } 7043 7044 /* 7045 * Return the mp at the head of the ipsq. After emptying the ipsq 7046 * look at the next ioctl, if this ioctl is complete. Otherwise 7047 * return, we will resume when we complete the current ioctl. 7048 * The current ioctl will wait till it gets a response from the 7049 * driver below. 7050 */ 7051 static mblk_t * 7052 ipsq_dq(ipsq_t *ipsq) 7053 { 7054 mblk_t *mp; 7055 7056 ASSERT(MUTEX_HELD(&ipsq->ipsq_lock)); 7057 7058 mp = ipsq->ipsq_mphead; 7059 if (mp != NULL) { 7060 ipsq->ipsq_mphead = mp->b_next; 7061 if (ipsq->ipsq_mphead == NULL) 7062 ipsq->ipsq_mptail = NULL; 7063 mp->b_next = NULL; 7064 return (mp); 7065 } 7066 if (ipsq->ipsq_current_ipif != NULL) 7067 return (NULL); 7068 mp = ipsq->ipsq_xopq_mphead; 7069 if (mp != NULL) { 7070 ipsq->ipsq_xopq_mphead = mp->b_next; 7071 if (ipsq->ipsq_xopq_mphead == NULL) 7072 ipsq->ipsq_xopq_mptail = NULL; 7073 mp->b_next = NULL; 7074 return (mp); 7075 } 7076 return (NULL); 7077 } 7078 7079 /* 7080 * Enter the ipsq corresponding to ill, by waiting synchronously till 7081 * we can enter the ipsq exclusively. Unless 'force' is used, the ipsq 7082 * will have to drain completely before ipsq_enter returns success. 7083 * ipsq_current_ipif will be set if some exclusive ioctl is in progress, 7084 * and the ipsq_exit logic will start the next enqueued ioctl after 7085 * completion of the current ioctl. If 'force' is used, we don't wait 7086 * for the enqueued ioctls. This is needed when a conn_close wants to 7087 * enter the ipsq and abort an ioctl that is somehow stuck. Unplumb 7088 * of an ill can also use this option. But we dont' use it currently. 7089 */ 7090 #define ENTER_SQ_WAIT_TICKS 100 7091 boolean_t 7092 ipsq_enter(ill_t *ill, boolean_t force) 7093 { 7094 ipsq_t *ipsq; 7095 boolean_t waited_enough = B_FALSE; 7096 7097 /* 7098 * Holding the ill_lock prevents <ill-ipsq> assocs from changing. 7099 * Since the <ill-ipsq> assocs could change while we wait for the 7100 * writer, it is easier to wait on a fixed global rather than try to 7101 * cv_wait on a changing ipsq. 7102 */ 7103 mutex_enter(&ill->ill_lock); 7104 for (;;) { 7105 if (ill->ill_state_flags & ILL_CONDEMNED) { 7106 mutex_exit(&ill->ill_lock); 7107 return (B_FALSE); 7108 } 7109 7110 ipsq = ill->ill_phyint->phyint_ipsq; 7111 mutex_enter(&ipsq->ipsq_lock); 7112 if (ipsq->ipsq_writer == NULL && 7113 (ipsq->ipsq_current_ipif == NULL || waited_enough)) { 7114 break; 7115 } else if (ipsq->ipsq_writer != NULL) { 7116 mutex_exit(&ipsq->ipsq_lock); 7117 cv_wait(&ill->ill_cv, &ill->ill_lock); 7118 } else { 7119 mutex_exit(&ipsq->ipsq_lock); 7120 if (force) { 7121 (void) cv_timedwait(&ill->ill_cv, 7122 &ill->ill_lock, 7123 lbolt + ENTER_SQ_WAIT_TICKS); 7124 waited_enough = B_TRUE; 7125 continue; 7126 } else { 7127 cv_wait(&ill->ill_cv, &ill->ill_lock); 7128 } 7129 } 7130 } 7131 7132 ASSERT(ipsq->ipsq_mphead == NULL && ipsq->ipsq_mptail == NULL); 7133 ASSERT(ipsq->ipsq_reentry_cnt == 0); 7134 ipsq->ipsq_writer = curthread; 7135 ipsq->ipsq_reentry_cnt++; 7136 #ifdef ILL_DEBUG 7137 ipsq->ipsq_depth = getpcstack(ipsq->ipsq_stack, IP_STACK_DEPTH); 7138 #endif 7139 mutex_exit(&ipsq->ipsq_lock); 7140 mutex_exit(&ill->ill_lock); 7141 return (B_TRUE); 7142 } 7143 7144 /* 7145 * The ipsq_t (ipsq) is the synchronization data structure used to serialize 7146 * certain critical operations like plumbing (i.e. most set ioctls), 7147 * multicast joins, igmp/mld timers, IPMP operations etc. On a non-IPMP 7148 * system there is 1 ipsq per phyint. On an IPMP system there is 1 ipsq per 7149 * IPMP group. The ipsq serializes exclusive ioctls issued by applications 7150 * on a per ipsq basis in ipsq_xopq_mphead. It also protects against multiple 7151 * threads executing in the ipsq. Responses from the driver pertain to the 7152 * current ioctl (say a DL_BIND_ACK in response to a DL_BIND_REQUEST initiated 7153 * as part of bringing up the interface) and are enqueued in ipsq_mphead. 7154 * 7155 * If a thread does not want to reenter the ipsq when it is already writer, 7156 * it must make sure that the specified reentry point to be called later 7157 * when the ipsq is empty, nor any code path starting from the specified reentry 7158 * point must never ever try to enter the ipsq again. Otherwise it can lead 7159 * to an infinite loop. The reentry point ip_rput_dlpi_writer is an example. 7160 * When the thread that is currently exclusive finishes, it (ipsq_exit) 7161 * dequeues the requests waiting to become exclusive in ipsq_mphead and calls 7162 * the reentry point. When the list at ipsq_mphead becomes empty ipsq_exit 7163 * proceeds to dequeue the next ioctl in ipsq_xopq_mphead and start the next 7164 * ioctl if the current ioctl has completed. If the current ioctl is still 7165 * in progress it simply returns. The current ioctl could be waiting for 7166 * a response from another module (arp_ or the driver or could be waiting for 7167 * the ipif/ill/ire refcnts to drop to zero. In such a case the ipsq_pending_mp 7168 * and ipsq_pending_ipif are set. ipsq_current_ipif is set throughout the 7169 * execution of the ioctl and ipsq_exit does not start the next ioctl unless 7170 * ipsq_current_ipif is clear which happens only on ioctl completion. 7171 */ 7172 7173 /* 7174 * Try to enter the ipsq exclusively, corresponding to ipif or ill. (only 1 of 7175 * ipif or ill can be specified). The caller ensures ipif or ill is valid by 7176 * ref-holding it if necessary. If the ipsq cannot be entered, the mp is queued 7177 * completion. 7178 */ 7179 ipsq_t * 7180 ipsq_try_enter(ipif_t *ipif, ill_t *ill, queue_t *q, mblk_t *mp, 7181 ipsq_func_t func, int type, boolean_t reentry_ok) 7182 { 7183 ipsq_t *ipsq; 7184 7185 /* Only 1 of ipif or ill can be specified */ 7186 ASSERT((ipif != NULL) ^ (ill != NULL)); 7187 if (ipif != NULL) 7188 ill = ipif->ipif_ill; 7189 7190 /* 7191 * lock ordering ill_g_lock -> conn_lock -> ill_lock -> ipsq_lock 7192 * ipsq of an ill can't change when ill_lock is held. 7193 */ 7194 GRAB_CONN_LOCK(q); 7195 mutex_enter(&ill->ill_lock); 7196 ipsq = ill->ill_phyint->phyint_ipsq; 7197 mutex_enter(&ipsq->ipsq_lock); 7198 7199 /* 7200 * 1. Enter the ipsq if we are already writer and reentry is ok. 7201 * (Note: If the caller does not specify reentry_ok then neither 7202 * 'func' nor any of its callees must ever attempt to enter the ipsq 7203 * again. Otherwise it can lead to an infinite loop 7204 * 2. Enter the ipsq if there is no current writer and this attempted 7205 * entry is part of the current ioctl or operation 7206 * 3. Enter the ipsq if there is no current writer and this is a new 7207 * ioctl (or operation) and the ioctl (or operation) queue is 7208 * empty and there is no ioctl (or operation) currently in progress 7209 */ 7210 if ((ipsq->ipsq_writer == NULL && ((type == CUR_OP) || 7211 (type == NEW_OP && ipsq->ipsq_xopq_mphead == NULL && 7212 ipsq->ipsq_current_ipif == NULL))) || 7213 (ipsq->ipsq_writer == curthread && reentry_ok)) { 7214 /* Success. */ 7215 ipsq->ipsq_reentry_cnt++; 7216 ipsq->ipsq_writer = curthread; 7217 mutex_exit(&ipsq->ipsq_lock); 7218 mutex_exit(&ill->ill_lock); 7219 RELEASE_CONN_LOCK(q); 7220 #ifdef ILL_DEBUG 7221 ipsq->ipsq_depth = getpcstack(ipsq->ipsq_stack, IP_STACK_DEPTH); 7222 #endif 7223 return (ipsq); 7224 } 7225 7226 ipsq_enq(ipsq, q, mp, func, type, ill); 7227 7228 mutex_exit(&ipsq->ipsq_lock); 7229 mutex_exit(&ill->ill_lock); 7230 RELEASE_CONN_LOCK(q); 7231 return (NULL); 7232 } 7233 7234 /* 7235 * Try to enter the ipsq exclusively, corresponding to ipif or ill. (only 1 of 7236 * ipif or ill can be specified). The caller ensures ipif or ill is valid by 7237 * ref-holding it if necessary. If the ipsq cannot be entered, the mp is queued 7238 * completion. 7239 * 7240 * This function does a refrele on the ipif/ill. 7241 */ 7242 void 7243 qwriter_ip(ipif_t *ipif, ill_t *ill, queue_t *q, mblk_t *mp, 7244 ipsq_func_t func, int type, boolean_t reentry_ok) 7245 { 7246 ipsq_t *ipsq; 7247 7248 ipsq = ipsq_try_enter(ipif, ill, q, mp, func, type, reentry_ok); 7249 /* 7250 * Caller must have done a refhold on the ipif. ipif_refrele 7251 * happens on the passed ipif. We can do this since we are 7252 * already exclusive, or we won't access ipif henceforth, Both 7253 * this func and caller will just return if we ipsq_try_enter 7254 * fails above. This is needed because func needs to 7255 * see the correct refcount. Eg. removeif can work only then. 7256 */ 7257 if (ipif != NULL) 7258 ipif_refrele(ipif); 7259 else 7260 ill_refrele(ill); 7261 if (ipsq != NULL) { 7262 (*func)(ipsq, q, mp, NULL); 7263 ipsq_exit(ipsq, B_TRUE, B_TRUE); 7264 } 7265 } 7266 7267 /* 7268 * If there are more than ILL_GRP_CNT ills in a group, 7269 * we use kmem alloc'd buffers, else use the stack 7270 */ 7271 #define ILL_GRP_CNT 14 7272 /* 7273 * Drain the ipsq, if there are messages on it, and then leave the ipsq. 7274 * Called by a thread that is currently exclusive on this ipsq. 7275 */ 7276 void 7277 ipsq_exit(ipsq_t *ipsq, boolean_t start_igmp_timer, boolean_t start_mld_timer) 7278 { 7279 queue_t *q; 7280 mblk_t *mp; 7281 ipsq_func_t func; 7282 int next; 7283 ill_t **ill_list = NULL; 7284 size_t ill_list_size = 0; 7285 int cnt = 0; 7286 boolean_t need_ipsq_free = B_FALSE; 7287 7288 ASSERT(IAM_WRITER_IPSQ(ipsq)); 7289 mutex_enter(&ipsq->ipsq_lock); 7290 ASSERT(ipsq->ipsq_reentry_cnt >= 1); 7291 if (ipsq->ipsq_reentry_cnt != 1) { 7292 ipsq->ipsq_reentry_cnt--; 7293 mutex_exit(&ipsq->ipsq_lock); 7294 return; 7295 } 7296 7297 mp = ipsq_dq(ipsq); 7298 while (mp != NULL) { 7299 again: 7300 mutex_exit(&ipsq->ipsq_lock); 7301 func = (ipsq_func_t)mp->b_prev; 7302 q = (queue_t *)mp->b_queue; 7303 mp->b_prev = NULL; 7304 mp->b_queue = NULL; 7305 7306 /* 7307 * If 'q' is an conn queue, it is valid, since we did a 7308 * a refhold on the connp, at the start of the ioctl. 7309 * If 'q' is an ill queue, it is valid, since close of an 7310 * ill will clean up the 'ipsq'. 7311 */ 7312 (*func)(ipsq, q, mp, NULL); 7313 7314 mutex_enter(&ipsq->ipsq_lock); 7315 mp = ipsq_dq(ipsq); 7316 } 7317 7318 mutex_exit(&ipsq->ipsq_lock); 7319 7320 /* 7321 * Need to grab the locks in the right order. Need to 7322 * atomically check (under ipsq_lock) that there are no 7323 * messages before relinquishing the ipsq. Also need to 7324 * atomically wakeup waiters on ill_cv while holding ill_lock. 7325 * Holding ill_g_lock ensures that ipsq list of ills is stable. 7326 * If we need to call ill_split_ipsq and change <ill-ipsq> we need 7327 * to grab ill_g_lock as writer. 7328 */ 7329 rw_enter(&ill_g_lock, ipsq->ipsq_split ? RW_WRITER : RW_READER); 7330 7331 /* ipsq_refs can't change while ill_g_lock is held as reader */ 7332 if (ipsq->ipsq_refs != 0) { 7333 /* At most 2 ills v4/v6 per phyint */ 7334 cnt = ipsq->ipsq_refs << 1; 7335 ill_list_size = cnt * sizeof (ill_t *); 7336 /* 7337 * If memory allocation fails, we will do the split 7338 * the next time ipsq_exit is called for whatever reason. 7339 * As long as the ipsq_split flag is set the need to 7340 * split is remembered. 7341 */ 7342 ill_list = kmem_zalloc(ill_list_size, KM_NOSLEEP); 7343 if (ill_list != NULL) 7344 cnt = ill_lock_ipsq_ills(ipsq, ill_list, cnt); 7345 } 7346 mutex_enter(&ipsq->ipsq_lock); 7347 mp = ipsq_dq(ipsq); 7348 if (mp != NULL) { 7349 /* oops, some message has landed up, we can't get out */ 7350 if (ill_list != NULL) 7351 ill_unlock_ills(ill_list, cnt); 7352 rw_exit(&ill_g_lock); 7353 if (ill_list != NULL) 7354 kmem_free(ill_list, ill_list_size); 7355 ill_list = NULL; 7356 ill_list_size = 0; 7357 cnt = 0; 7358 goto again; 7359 } 7360 7361 /* 7362 * Split only if no ioctl is pending and if memory alloc succeeded 7363 * above. 7364 */ 7365 if (ipsq->ipsq_split && ipsq->ipsq_current_ipif == NULL && 7366 ill_list != NULL) { 7367 /* 7368 * No new ill can join this ipsq since we are holding the 7369 * ill_g_lock. Hence ill_split_ipsq can safely traverse the 7370 * ipsq. ill_split_ipsq may fail due to memory shortage. 7371 * If so we will retry on the next ipsq_exit. 7372 */ 7373 ipsq->ipsq_split = ill_split_ipsq(ipsq); 7374 } 7375 7376 /* 7377 * We are holding the ipsq lock, hence no new messages can 7378 * land up on the ipsq, and there are no messages currently. 7379 * Now safe to get out. Wake up waiters and relinquish ipsq 7380 * atomically while holding ill locks. 7381 */ 7382 ipsq->ipsq_writer = NULL; 7383 ipsq->ipsq_reentry_cnt--; 7384 ASSERT(ipsq->ipsq_reentry_cnt == 0); 7385 #ifdef ILL_DEBUG 7386 ipsq->ipsq_depth = 0; 7387 #endif 7388 mutex_exit(&ipsq->ipsq_lock); 7389 /* 7390 * For IPMP this should wake up all ills in this ipsq. 7391 * We need to hold the ill_lock while waking up waiters to 7392 * avoid missed wakeups. But there is no need to acquire all 7393 * the ill locks and then wakeup. If we have not acquired all 7394 * the locks (due to memory failure above) ill_signal_ipsq_ills 7395 * wakes up ills one at a time after getting the right ill_lock 7396 */ 7397 ill_signal_ipsq_ills(ipsq, ill_list != NULL); 7398 if (ill_list != NULL) 7399 ill_unlock_ills(ill_list, cnt); 7400 if (ipsq->ipsq_refs == 0) 7401 need_ipsq_free = B_TRUE; 7402 rw_exit(&ill_g_lock); 7403 if (ill_list != 0) 7404 kmem_free(ill_list, ill_list_size); 7405 7406 if (need_ipsq_free) { 7407 /* 7408 * Free the ipsq. ipsq_refs can't increase because ipsq can't be 7409 * looked up. ipsq can be looked up only thru ill or phyint 7410 * and there are no ills/phyint on this ipsq. 7411 */ 7412 ipsq_delete(ipsq); 7413 } 7414 /* 7415 * Now start any igmp or mld timers that could not be started 7416 * while inside the ipsq. The timers can't be started while inside 7417 * the ipsq, since igmp_start_timers may need to call untimeout() 7418 * which can't be done while holding a lock i.e. the ipsq. Otherwise 7419 * there could be a deadlock since the timeout handlers 7420 * mld_timeout_handler / igmp_timeout_handler also synchronously 7421 * wait in ipsq_enter() trying to get the ipsq. 7422 * 7423 * However there is one exception to the above. If this thread is 7424 * itself the igmp/mld timeout handler thread, then we don't want 7425 * to start any new timer until the current handler is done. The 7426 * handler thread passes in B_FALSE for start_igmp/mld_timers, while 7427 * all others pass B_TRUE. 7428 */ 7429 if (start_igmp_timer) { 7430 mutex_enter(&igmp_timer_lock); 7431 next = igmp_deferred_next; 7432 igmp_deferred_next = INFINITY; 7433 mutex_exit(&igmp_timer_lock); 7434 7435 if (next != INFINITY) 7436 igmp_start_timers(next); 7437 } 7438 7439 if (start_mld_timer) { 7440 mutex_enter(&mld_timer_lock); 7441 next = mld_deferred_next; 7442 mld_deferred_next = INFINITY; 7443 mutex_exit(&mld_timer_lock); 7444 7445 if (next != INFINITY) 7446 mld_start_timers(next); 7447 } 7448 } 7449 7450 /* 7451 * The ill is closing. Flush all messages on the ipsq that originated 7452 * from this ill. Usually there wont' be any messages on the ipsq_xopq_mphead 7453 * for this ill since ipsq_enter could not have entered until then. 7454 * New messages can't be queued since the CONDEMNED flag is set. 7455 */ 7456 static void 7457 ipsq_flush(ill_t *ill) 7458 { 7459 queue_t *q; 7460 mblk_t *prev; 7461 mblk_t *mp; 7462 mblk_t *mp_next; 7463 ipsq_t *ipsq; 7464 7465 ASSERT(IAM_WRITER_ILL(ill)); 7466 ipsq = ill->ill_phyint->phyint_ipsq; 7467 /* 7468 * Flush any messages sent up by the driver. 7469 */ 7470 mutex_enter(&ipsq->ipsq_lock); 7471 for (prev = NULL, mp = ipsq->ipsq_mphead; mp != NULL; mp = mp_next) { 7472 mp_next = mp->b_next; 7473 q = mp->b_queue; 7474 if (q == ill->ill_rq || q == ill->ill_wq) { 7475 /* Remove the mp from the ipsq */ 7476 if (prev == NULL) 7477 ipsq->ipsq_mphead = mp->b_next; 7478 else 7479 prev->b_next = mp->b_next; 7480 if (ipsq->ipsq_mptail == mp) { 7481 ASSERT(mp_next == NULL); 7482 ipsq->ipsq_mptail = prev; 7483 } 7484 inet_freemsg(mp); 7485 } else { 7486 prev = mp; 7487 } 7488 } 7489 mutex_exit(&ipsq->ipsq_lock); 7490 (void) ipsq_pending_mp_cleanup(ill, NULL); 7491 ipsq_xopq_mp_cleanup(ill, NULL); 7492 ill_pending_mp_cleanup(ill); 7493 } 7494 7495 /* 7496 * Clean up one squeue element. ill_inuse_ref is protected by ill_lock. 7497 * The real cleanup happens behind the squeue via ip_squeue_clean function but 7498 * we need to protect ourselfs from 2 threads trying to cleanup at the same 7499 * time (possible with one port going down for aggr and someone tearing down the 7500 * entire aggr simultaneously. So we use ill_inuse_ref protected by ill_lock 7501 * to indicate when the cleanup has started (1 ref) and when the cleanup 7502 * is done (0 ref). When a new ring gets assigned to squeue, we start by 7503 * putting 2 ref on ill_inuse_ref. 7504 */ 7505 static void 7506 ipsq_clean_ring(ill_t *ill, ill_rx_ring_t *rx_ring) 7507 { 7508 conn_t *connp; 7509 squeue_t *sqp; 7510 mblk_t *mp; 7511 7512 ASSERT(rx_ring != NULL); 7513 7514 /* Just clean one squeue */ 7515 mutex_enter(&ill->ill_lock); 7516 /* 7517 * Reset the ILL_SOFT_RING_ASSIGN bit so that 7518 * ip_squeue_soft_ring_affinty() will not go 7519 * ahead with assigning rings. 7520 */ 7521 ill->ill_state_flags &= ~ILL_SOFT_RING_ASSIGN; 7522 while (rx_ring->rr_ring_state == ILL_RING_INPROC) 7523 /* Some operations pending on the ring. Wait */ 7524 cv_wait(&ill->ill_cv, &ill->ill_lock); 7525 7526 if (rx_ring->rr_ring_state != ILL_RING_INUSE) { 7527 /* 7528 * Someone already trying to clean 7529 * this squeue or its already been cleaned. 7530 */ 7531 mutex_exit(&ill->ill_lock); 7532 return; 7533 } 7534 sqp = rx_ring->rr_sqp; 7535 7536 if (sqp == NULL) { 7537 /* 7538 * The rx_ring never had a squeue assigned to it. 7539 * We are under ill_lock so we can clean it up 7540 * here itself since no one can get to it. 7541 */ 7542 rx_ring->rr_blank = NULL; 7543 rx_ring->rr_handle = NULL; 7544 rx_ring->rr_sqp = NULL; 7545 rx_ring->rr_ring_state = ILL_RING_FREE; 7546 mutex_exit(&ill->ill_lock); 7547 return; 7548 } 7549 7550 /* Set the state that its being cleaned */ 7551 rx_ring->rr_ring_state = ILL_RING_BEING_FREED; 7552 ASSERT(sqp != NULL); 7553 mutex_exit(&ill->ill_lock); 7554 7555 /* 7556 * Use the preallocated ill_unbind_conn for this purpose 7557 */ 7558 connp = ill->ill_dls_capab->ill_unbind_conn; 7559 mp = &connp->conn_tcp->tcp_closemp; 7560 CONN_INC_REF(connp); 7561 squeue_enter(sqp, mp, ip_squeue_clean, connp, NULL); 7562 7563 mutex_enter(&ill->ill_lock); 7564 while (rx_ring->rr_ring_state != ILL_RING_FREE) 7565 cv_wait(&ill->ill_cv, &ill->ill_lock); 7566 7567 mutex_exit(&ill->ill_lock); 7568 } 7569 7570 static void 7571 ipsq_clean_all(ill_t *ill) 7572 { 7573 int idx; 7574 7575 /* 7576 * No need to clean if poll_capab isn't set for this ill 7577 */ 7578 if (!(ill->ill_capabilities & (ILL_CAPAB_POLL|ILL_CAPAB_SOFT_RING))) 7579 return; 7580 7581 for (idx = 0; idx < ILL_MAX_RINGS; idx++) { 7582 ill_rx_ring_t *ipr = &ill->ill_dls_capab->ill_ring_tbl[idx]; 7583 ipsq_clean_ring(ill, ipr); 7584 } 7585 7586 ill->ill_capabilities &= ~(ILL_CAPAB_POLL|ILL_CAPAB_SOFT_RING); 7587 } 7588 7589 /* ARGSUSED */ 7590 int 7591 ip_sioctl_slifoindex(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 7592 ip_ioctl_cmd_t *ipip, void *ifreq) 7593 { 7594 ill_t *ill; 7595 struct lifreq *lifr = (struct lifreq *)ifreq; 7596 boolean_t isv6; 7597 conn_t *connp; 7598 7599 connp = Q_TO_CONN(q); 7600 isv6 = connp->conn_af_isv6; 7601 /* 7602 * Set original index. 7603 * Failover and failback move logical interfaces 7604 * from one physical interface to another. The 7605 * original index indicates the parent of a logical 7606 * interface, in other words, the physical interface 7607 * the logical interface will be moved back to on 7608 * failback. 7609 */ 7610 7611 /* 7612 * Don't allow the original index to be changed 7613 * for non-failover addresses, autoconfigured 7614 * addresses, or IPv6 link local addresses. 7615 */ 7616 if (((ipif->ipif_flags & (IPIF_NOFAILOVER | IPIF_ADDRCONF)) != NULL) || 7617 (isv6 && IN6_IS_ADDR_LINKLOCAL(&ipif->ipif_v6lcl_addr))) { 7618 return (EINVAL); 7619 } 7620 /* 7621 * The new original index must be in use by some 7622 * physical interface. 7623 */ 7624 ill = ill_lookup_on_ifindex(lifr->lifr_index, isv6, NULL, NULL, 7625 NULL, NULL); 7626 if (ill == NULL) 7627 return (ENXIO); 7628 ill_refrele(ill); 7629 7630 ipif->ipif_orig_ifindex = lifr->lifr_index; 7631 /* 7632 * When this ipif gets failed back, don't 7633 * preserve the original id, as it is no 7634 * longer applicable. 7635 */ 7636 ipif->ipif_orig_ipifid = 0; 7637 /* 7638 * For IPv4, change the original index of any 7639 * multicast addresses associated with the 7640 * ipif to the new value. 7641 */ 7642 if (!isv6) { 7643 ilm_t *ilm; 7644 7645 mutex_enter(&ipif->ipif_ill->ill_lock); 7646 for (ilm = ipif->ipif_ill->ill_ilm; ilm != NULL; 7647 ilm = ilm->ilm_next) { 7648 if (ilm->ilm_ipif == ipif) { 7649 ilm->ilm_orig_ifindex = lifr->lifr_index; 7650 } 7651 } 7652 mutex_exit(&ipif->ipif_ill->ill_lock); 7653 } 7654 return (0); 7655 } 7656 7657 /* ARGSUSED */ 7658 int 7659 ip_sioctl_get_oindex(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 7660 ip_ioctl_cmd_t *ipip, void *ifreq) 7661 { 7662 struct lifreq *lifr = (struct lifreq *)ifreq; 7663 7664 /* 7665 * Get the original interface index i.e the one 7666 * before FAILOVER if it ever happened. 7667 */ 7668 lifr->lifr_index = ipif->ipif_orig_ifindex; 7669 return (0); 7670 } 7671 7672 /* 7673 * Parse an iftun_req structure coming down SIOC[GS]TUNPARAM ioctls, 7674 * refhold and return the associated ipif 7675 */ 7676 int 7677 ip_extract_tunreq(queue_t *q, mblk_t *mp, ipif_t **ipifp, ipsq_func_t func) 7678 { 7679 boolean_t exists; 7680 struct iftun_req *ta; 7681 ipif_t *ipif; 7682 ill_t *ill; 7683 boolean_t isv6; 7684 mblk_t *mp1; 7685 int error; 7686 conn_t *connp; 7687 7688 /* Existence verified in ip_wput_nondata */ 7689 mp1 = mp->b_cont->b_cont; 7690 ta = (struct iftun_req *)mp1->b_rptr; 7691 /* 7692 * Null terminate the string to protect against buffer 7693 * overrun. String was generated by user code and may not 7694 * be trusted. 7695 */ 7696 ta->ifta_lifr_name[LIFNAMSIZ - 1] = '\0'; 7697 7698 connp = Q_TO_CONN(q); 7699 isv6 = connp->conn_af_isv6; 7700 7701 /* Disallows implicit create */ 7702 ipif = ipif_lookup_on_name(ta->ifta_lifr_name, 7703 mi_strlen(ta->ifta_lifr_name), B_FALSE, &exists, isv6, 7704 connp->conn_zoneid, CONNP_TO_WQ(connp), mp, func, &error); 7705 if (ipif == NULL) 7706 return (error); 7707 7708 if (ipif->ipif_id != 0) { 7709 /* 7710 * We really don't want to set/get tunnel parameters 7711 * on virtual tunnel interfaces. Only allow the 7712 * base tunnel to do these. 7713 */ 7714 ipif_refrele(ipif); 7715 return (EINVAL); 7716 } 7717 7718 /* 7719 * Send down to tunnel mod for ioctl processing. 7720 * Will finish ioctl in ip_rput_other(). 7721 */ 7722 ill = ipif->ipif_ill; 7723 if (ill->ill_net_type == IRE_LOOPBACK) { 7724 ipif_refrele(ipif); 7725 return (EOPNOTSUPP); 7726 } 7727 7728 if (ill->ill_wq == NULL) { 7729 ipif_refrele(ipif); 7730 return (ENXIO); 7731 } 7732 /* 7733 * Mark the ioctl as coming from an IPv6 interface for 7734 * tun's convenience. 7735 */ 7736 if (ill->ill_isv6) 7737 ta->ifta_flags |= 0x80000000; 7738 *ipifp = ipif; 7739 return (0); 7740 } 7741 7742 /* 7743 * Parse an ifreq or lifreq struct coming down ioctls and refhold 7744 * and return the associated ipif. 7745 * Return value: 7746 * Non zero: An error has occurred. ci may not be filled out. 7747 * zero : ci is filled out with the ioctl cmd in ci.ci_name, and 7748 * a held ipif in ci.ci_ipif. 7749 */ 7750 int 7751 ip_extract_lifreq_cmn(queue_t *q, mblk_t *mp, int cmd_type, int flags, 7752 cmd_info_t *ci, ipsq_func_t func) 7753 { 7754 sin_t *sin; 7755 sin6_t *sin6; 7756 char *name; 7757 struct ifreq *ifr; 7758 struct lifreq *lifr; 7759 ipif_t *ipif = NULL; 7760 ill_t *ill; 7761 conn_t *connp; 7762 boolean_t isv6; 7763 struct iocblk *iocp = (struct iocblk *)mp->b_rptr; 7764 boolean_t exists; 7765 int err; 7766 mblk_t *mp1; 7767 zoneid_t zoneid; 7768 7769 if (q->q_next != NULL) { 7770 ill = (ill_t *)q->q_ptr; 7771 isv6 = ill->ill_isv6; 7772 connp = NULL; 7773 zoneid = ALL_ZONES; 7774 } else { 7775 ill = NULL; 7776 connp = Q_TO_CONN(q); 7777 isv6 = connp->conn_af_isv6; 7778 zoneid = connp->conn_zoneid; 7779 if (zoneid == GLOBAL_ZONEID) { 7780 /* global zone can access ipifs in all zones */ 7781 zoneid = ALL_ZONES; 7782 } 7783 } 7784 7785 /* Has been checked in ip_wput_nondata */ 7786 mp1 = mp->b_cont->b_cont; 7787 7788 7789 if (cmd_type == IF_CMD) { 7790 /* This a old style SIOC[GS]IF* command */ 7791 ifr = (struct ifreq *)mp1->b_rptr; 7792 /* 7793 * Null terminate the string to protect against buffer 7794 * overrun. String was generated by user code and may not 7795 * be trusted. 7796 */ 7797 ifr->ifr_name[IFNAMSIZ - 1] = '\0'; 7798 sin = (sin_t *)&ifr->ifr_addr; 7799 name = ifr->ifr_name; 7800 ci->ci_sin = sin; 7801 ci->ci_sin6 = NULL; 7802 ci->ci_lifr = (struct lifreq *)ifr; 7803 } else { 7804 /* This a new style SIOC[GS]LIF* command */ 7805 ASSERT(cmd_type == LIF_CMD); 7806 lifr = (struct lifreq *)mp1->b_rptr; 7807 /* 7808 * Null terminate the string to protect against buffer 7809 * overrun. String was generated by user code and may not 7810 * be trusted. 7811 */ 7812 lifr->lifr_name[LIFNAMSIZ - 1] = '\0'; 7813 name = lifr->lifr_name; 7814 sin = (sin_t *)&lifr->lifr_addr; 7815 sin6 = (sin6_t *)&lifr->lifr_addr; 7816 if (iocp->ioc_cmd == SIOCSLIFGROUPNAME) { 7817 (void) strncpy(ci->ci_groupname, lifr->lifr_groupname, 7818 LIFNAMSIZ); 7819 } 7820 ci->ci_sin = sin; 7821 ci->ci_sin6 = sin6; 7822 ci->ci_lifr = lifr; 7823 } 7824 7825 7826 if (iocp->ioc_cmd == SIOCSLIFNAME) { 7827 /* 7828 * The ioctl will be failed if the ioctl comes down 7829 * an conn stream 7830 */ 7831 if (ill == NULL) { 7832 /* 7833 * Not an ill queue, return EINVAL same as the 7834 * old error code. 7835 */ 7836 return (ENXIO); 7837 } 7838 ipif = ill->ill_ipif; 7839 ipif_refhold(ipif); 7840 } else { 7841 ipif = ipif_lookup_on_name(name, mi_strlen(name), B_FALSE, 7842 &exists, isv6, zoneid, 7843 (connp == NULL) ? q : CONNP_TO_WQ(connp), mp, func, &err); 7844 if (ipif == NULL) { 7845 if (err == EINPROGRESS) 7846 return (err); 7847 if (iocp->ioc_cmd == SIOCLIFFAILOVER || 7848 iocp->ioc_cmd == SIOCLIFFAILBACK) { 7849 /* 7850 * Need to try both v4 and v6 since this 7851 * ioctl can come down either v4 or v6 7852 * socket. The lifreq.lifr_family passed 7853 * down by this ioctl is AF_UNSPEC. 7854 */ 7855 ipif = ipif_lookup_on_name(name, 7856 mi_strlen(name), B_FALSE, &exists, !isv6, 7857 zoneid, (connp == NULL) ? q : 7858 CONNP_TO_WQ(connp), mp, func, &err); 7859 if (err == EINPROGRESS) 7860 return (err); 7861 } 7862 err = 0; /* Ensure we don't use it below */ 7863 } 7864 } 7865 7866 /* 7867 * Old style [GS]IFCMD does not admit IPv6 ipif 7868 */ 7869 if (ipif != NULL && ipif->ipif_isv6 && cmd_type == IF_CMD) { 7870 ipif_refrele(ipif); 7871 return (ENXIO); 7872 } 7873 7874 if (ipif == NULL && ill != NULL && ill->ill_ipif != NULL && 7875 name[0] == '\0') { 7876 /* 7877 * Handle a or a SIOC?IF* with a null name 7878 * during plumb (on the ill queue before the I_PLINK). 7879 */ 7880 ipif = ill->ill_ipif; 7881 ipif_refhold(ipif); 7882 } 7883 7884 if (ipif == NULL) 7885 return (ENXIO); 7886 7887 /* 7888 * Allow only GET operations if this ipif has been created 7889 * temporarily due to a MOVE operation. 7890 */ 7891 if (ipif->ipif_replace_zero && !(flags & IPI_REPL)) { 7892 ipif_refrele(ipif); 7893 return (EINVAL); 7894 } 7895 7896 ci->ci_ipif = ipif; 7897 return (0); 7898 } 7899 7900 /* 7901 * Return the total number of ipifs. 7902 */ 7903 static uint_t 7904 ip_get_numifs(zoneid_t zoneid) 7905 { 7906 uint_t numifs = 0; 7907 ill_t *ill; 7908 ill_walk_context_t ctx; 7909 ipif_t *ipif; 7910 7911 rw_enter(&ill_g_lock, RW_READER); 7912 ill = ILL_START_WALK_V4(&ctx); 7913 7914 while (ill != NULL) { 7915 for (ipif = ill->ill_ipif; ipif != NULL; 7916 ipif = ipif->ipif_next) { 7917 if (ipif->ipif_zoneid == zoneid || 7918 ipif->ipif_zoneid == ALL_ZONES) 7919 numifs++; 7920 } 7921 ill = ill_next(&ctx, ill); 7922 } 7923 rw_exit(&ill_g_lock); 7924 return (numifs); 7925 } 7926 7927 /* 7928 * Return the total number of ipifs. 7929 */ 7930 static uint_t 7931 ip_get_numlifs(int family, int lifn_flags, zoneid_t zoneid) 7932 { 7933 uint_t numifs = 0; 7934 ill_t *ill; 7935 ipif_t *ipif; 7936 ill_walk_context_t ctx; 7937 7938 ip1dbg(("ip_get_numlifs(%d %u %d)\n", family, lifn_flags, (int)zoneid)); 7939 7940 rw_enter(&ill_g_lock, RW_READER); 7941 if (family == AF_INET) 7942 ill = ILL_START_WALK_V4(&ctx); 7943 else if (family == AF_INET6) 7944 ill = ILL_START_WALK_V6(&ctx); 7945 else 7946 ill = ILL_START_WALK_ALL(&ctx); 7947 7948 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 7949 for (ipif = ill->ill_ipif; ipif != NULL; 7950 ipif = ipif->ipif_next) { 7951 if ((ipif->ipif_flags & IPIF_NOXMIT) && 7952 !(lifn_flags & LIFC_NOXMIT)) 7953 continue; 7954 if ((ipif->ipif_flags & IPIF_TEMPORARY) && 7955 !(lifn_flags & LIFC_TEMPORARY)) 7956 continue; 7957 if (((ipif->ipif_flags & 7958 (IPIF_NOXMIT|IPIF_NOLOCAL| 7959 IPIF_DEPRECATED)) || 7960 (ill->ill_phyint->phyint_flags & 7961 PHYI_LOOPBACK) || 7962 !(ipif->ipif_flags & IPIF_UP)) && 7963 (lifn_flags & LIFC_EXTERNAL_SOURCE)) 7964 continue; 7965 7966 if (zoneid != ipif->ipif_zoneid && 7967 ipif->ipif_zoneid != ALL_ZONES && 7968 (zoneid != GLOBAL_ZONEID || 7969 !(lifn_flags & LIFC_ALLZONES))) 7970 continue; 7971 7972 numifs++; 7973 } 7974 } 7975 rw_exit(&ill_g_lock); 7976 return (numifs); 7977 } 7978 7979 uint_t 7980 ip_get_lifsrcofnum(ill_t *ill) 7981 { 7982 uint_t numifs = 0; 7983 ill_t *ill_head = ill; 7984 7985 /* 7986 * ill_g_usesrc_lock protects ill_usesrc_grp_next, for example, some 7987 * other thread may be trying to relink the ILLs in this usesrc group 7988 * and adjusting the ill_usesrc_grp_next pointers 7989 */ 7990 rw_enter(&ill_g_usesrc_lock, RW_READER); 7991 if ((ill->ill_usesrc_ifindex == 0) && 7992 (ill->ill_usesrc_grp_next != NULL)) { 7993 for (; (ill != NULL) && (ill->ill_usesrc_grp_next != ill_head); 7994 ill = ill->ill_usesrc_grp_next) 7995 numifs++; 7996 } 7997 rw_exit(&ill_g_usesrc_lock); 7998 7999 return (numifs); 8000 } 8001 8002 /* Null values are passed in for ipif, sin, and ifreq */ 8003 /* ARGSUSED */ 8004 int 8005 ip_sioctl_get_ifnum(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, 8006 mblk_t *mp, ip_ioctl_cmd_t *ipip, void *ifreq) 8007 { 8008 int *nump; 8009 8010 ASSERT(q->q_next == NULL); /* not a valid ioctl for ip as a module */ 8011 8012 /* Existence of b_cont->b_cont checked in ip_wput_nondata */ 8013 nump = (int *)mp->b_cont->b_cont->b_rptr; 8014 8015 *nump = ip_get_numifs(Q_TO_CONN(q)->conn_zoneid); 8016 ip1dbg(("ip_sioctl_get_ifnum numifs %d", *nump)); 8017 return (0); 8018 } 8019 8020 /* Null values are passed in for ipif, sin, and ifreq */ 8021 /* ARGSUSED */ 8022 int 8023 ip_sioctl_get_lifnum(ipif_t *dummy_ipif, sin_t *dummy_sin, 8024 queue_t *q, mblk_t *mp, ip_ioctl_cmd_t *ipip, void *ifreq) 8025 { 8026 struct lifnum *lifn; 8027 mblk_t *mp1; 8028 8029 ASSERT(q->q_next == NULL); /* not a valid ioctl for ip as a module */ 8030 8031 /* Existence checked in ip_wput_nondata */ 8032 mp1 = mp->b_cont->b_cont; 8033 8034 lifn = (struct lifnum *)mp1->b_rptr; 8035 switch (lifn->lifn_family) { 8036 case AF_UNSPEC: 8037 case AF_INET: 8038 case AF_INET6: 8039 break; 8040 default: 8041 return (EAFNOSUPPORT); 8042 } 8043 8044 lifn->lifn_count = ip_get_numlifs(lifn->lifn_family, lifn->lifn_flags, 8045 Q_TO_CONN(q)->conn_zoneid); 8046 ip1dbg(("ip_sioctl_get_lifnum numifs %d", lifn->lifn_count)); 8047 return (0); 8048 } 8049 8050 /* ARGSUSED */ 8051 int 8052 ip_sioctl_get_ifconf(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, 8053 mblk_t *mp, ip_ioctl_cmd_t *ipip, void *ifreq) 8054 { 8055 STRUCT_HANDLE(ifconf, ifc); 8056 mblk_t *mp1; 8057 struct iocblk *iocp; 8058 struct ifreq *ifr; 8059 ill_walk_context_t ctx; 8060 ill_t *ill; 8061 ipif_t *ipif; 8062 struct sockaddr_in *sin; 8063 int32_t ifclen; 8064 zoneid_t zoneid; 8065 8066 ASSERT(q->q_next == NULL); /* not valid ioctls for ip as a module */ 8067 8068 ip1dbg(("ip_sioctl_get_ifconf")); 8069 /* Existence verified in ip_wput_nondata */ 8070 mp1 = mp->b_cont->b_cont; 8071 iocp = (struct iocblk *)mp->b_rptr; 8072 zoneid = Q_TO_CONN(q)->conn_zoneid; 8073 8074 /* 8075 * The original SIOCGIFCONF passed in a struct ifconf which specified 8076 * the user buffer address and length into which the list of struct 8077 * ifreqs was to be copied. Since AT&T Streams does not seem to 8078 * allow M_COPYOUT to be used in conjunction with I_STR IOCTLS, 8079 * the SIOCGIFCONF operation was redefined to simply provide 8080 * a large output buffer into which we are supposed to jam the ifreq 8081 * array. The same ioctl command code was used, despite the fact that 8082 * both the applications and the kernel code had to change, thus making 8083 * it impossible to support both interfaces. 8084 * 8085 * For reasons not good enough to try to explain, the following 8086 * algorithm is used for deciding what to do with one of these: 8087 * If the IOCTL comes in as an I_STR, it is assumed to be of the new 8088 * form with the output buffer coming down as the continuation message. 8089 * If it arrives as a TRANSPARENT IOCTL, it is assumed to be old style, 8090 * and we have to copy in the ifconf structure to find out how big the 8091 * output buffer is and where to copy out to. Sure no problem... 8092 * 8093 */ 8094 STRUCT_SET_HANDLE(ifc, iocp->ioc_flag, NULL); 8095 if ((mp1->b_wptr - mp1->b_rptr) == STRUCT_SIZE(ifc)) { 8096 int numifs = 0; 8097 size_t ifc_bufsize; 8098 8099 /* 8100 * Must be (better be!) continuation of a TRANSPARENT 8101 * IOCTL. We just copied in the ifconf structure. 8102 */ 8103 STRUCT_SET_HANDLE(ifc, iocp->ioc_flag, 8104 (struct ifconf *)mp1->b_rptr); 8105 8106 /* 8107 * Allocate a buffer to hold requested information. 8108 * 8109 * If ifc_len is larger than what is needed, we only 8110 * allocate what we will use. 8111 * 8112 * If ifc_len is smaller than what is needed, return 8113 * EINVAL. 8114 * 8115 * XXX: the ill_t structure can hava 2 counters, for 8116 * v4 and v6 (not just ill_ipif_up_count) to store the 8117 * number of interfaces for a device, so we don't need 8118 * to count them here... 8119 */ 8120 numifs = ip_get_numifs(zoneid); 8121 8122 ifclen = STRUCT_FGET(ifc, ifc_len); 8123 ifc_bufsize = numifs * sizeof (struct ifreq); 8124 if (ifc_bufsize > ifclen) { 8125 if (iocp->ioc_cmd == O_SIOCGIFCONF) { 8126 /* old behaviour */ 8127 return (EINVAL); 8128 } else { 8129 ifc_bufsize = ifclen; 8130 } 8131 } 8132 8133 mp1 = mi_copyout_alloc(q, mp, 8134 STRUCT_FGETP(ifc, ifc_buf), ifc_bufsize, B_FALSE); 8135 if (mp1 == NULL) 8136 return (ENOMEM); 8137 8138 mp1->b_wptr = mp1->b_rptr + ifc_bufsize; 8139 } 8140 bzero(mp1->b_rptr, mp1->b_wptr - mp1->b_rptr); 8141 /* 8142 * the SIOCGIFCONF ioctl only knows about 8143 * IPv4 addresses, so don't try to tell 8144 * it about interfaces with IPv6-only 8145 * addresses. (Last parm 'isv6' is B_FALSE) 8146 */ 8147 8148 ifr = (struct ifreq *)mp1->b_rptr; 8149 8150 rw_enter(&ill_g_lock, RW_READER); 8151 ill = ILL_START_WALK_V4(&ctx); 8152 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 8153 for (ipif = ill->ill_ipif; ipif; 8154 ipif = ipif->ipif_next) { 8155 if (zoneid != ipif->ipif_zoneid && 8156 ipif->ipif_zoneid != ALL_ZONES) 8157 continue; 8158 if ((uchar_t *)&ifr[1] > mp1->b_wptr) { 8159 if (iocp->ioc_cmd == O_SIOCGIFCONF) { 8160 /* old behaviour */ 8161 rw_exit(&ill_g_lock); 8162 return (EINVAL); 8163 } else { 8164 goto if_copydone; 8165 } 8166 } 8167 (void) ipif_get_name(ipif, 8168 ifr->ifr_name, 8169 sizeof (ifr->ifr_name)); 8170 sin = (sin_t *)&ifr->ifr_addr; 8171 *sin = sin_null; 8172 sin->sin_family = AF_INET; 8173 sin->sin_addr.s_addr = ipif->ipif_lcl_addr; 8174 ifr++; 8175 } 8176 } 8177 if_copydone: 8178 rw_exit(&ill_g_lock); 8179 mp1->b_wptr = (uchar_t *)ifr; 8180 8181 if (STRUCT_BUF(ifc) != NULL) { 8182 STRUCT_FSET(ifc, ifc_len, 8183 (int)((uchar_t *)ifr - mp1->b_rptr)); 8184 } 8185 return (0); 8186 } 8187 8188 /* 8189 * Get the interfaces using the address hosted on the interface passed in, 8190 * as a source adddress 8191 */ 8192 /* ARGSUSED */ 8193 int 8194 ip_sioctl_get_lifsrcof(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, 8195 mblk_t *mp, ip_ioctl_cmd_t *ipip, void *ifreq) 8196 { 8197 mblk_t *mp1; 8198 ill_t *ill, *ill_head; 8199 ipif_t *ipif, *orig_ipif; 8200 int numlifs = 0; 8201 size_t lifs_bufsize, lifsmaxlen; 8202 struct lifreq *lifr; 8203 struct iocblk *iocp = (struct iocblk *)mp->b_rptr; 8204 uint_t ifindex; 8205 zoneid_t zoneid; 8206 int err = 0; 8207 boolean_t isv6 = B_FALSE; 8208 struct sockaddr_in *sin; 8209 struct sockaddr_in6 *sin6; 8210 8211 STRUCT_HANDLE(lifsrcof, lifs); 8212 8213 ASSERT(q->q_next == NULL); 8214 8215 zoneid = Q_TO_CONN(q)->conn_zoneid; 8216 8217 /* Existence verified in ip_wput_nondata */ 8218 mp1 = mp->b_cont->b_cont; 8219 8220 /* 8221 * Must be (better be!) continuation of a TRANSPARENT 8222 * IOCTL. We just copied in the lifsrcof structure. 8223 */ 8224 STRUCT_SET_HANDLE(lifs, iocp->ioc_flag, 8225 (struct lifsrcof *)mp1->b_rptr); 8226 8227 if (MBLKL(mp1) != STRUCT_SIZE(lifs)) 8228 return (EINVAL); 8229 8230 ifindex = STRUCT_FGET(lifs, lifs_ifindex); 8231 isv6 = (Q_TO_CONN(q))->conn_af_isv6; 8232 ipif = ipif_lookup_on_ifindex(ifindex, isv6, zoneid, q, mp, 8233 ip_process_ioctl, &err); 8234 if (ipif == NULL) { 8235 ip1dbg(("ip_sioctl_get_lifsrcof: no ipif for ifindex %d\n", 8236 ifindex)); 8237 return (err); 8238 } 8239 8240 8241 /* Allocate a buffer to hold requested information */ 8242 numlifs = ip_get_lifsrcofnum(ipif->ipif_ill); 8243 lifs_bufsize = numlifs * sizeof (struct lifreq); 8244 lifsmaxlen = STRUCT_FGET(lifs, lifs_maxlen); 8245 /* The actual size needed is always returned in lifs_len */ 8246 STRUCT_FSET(lifs, lifs_len, lifs_bufsize); 8247 8248 /* If the amount we need is more than what is passed in, abort */ 8249 if (lifs_bufsize > lifsmaxlen || lifs_bufsize == 0) { 8250 ipif_refrele(ipif); 8251 return (0); 8252 } 8253 8254 mp1 = mi_copyout_alloc(q, mp, 8255 STRUCT_FGETP(lifs, lifs_buf), lifs_bufsize, B_FALSE); 8256 if (mp1 == NULL) { 8257 ipif_refrele(ipif); 8258 return (ENOMEM); 8259 } 8260 8261 mp1->b_wptr = mp1->b_rptr + lifs_bufsize; 8262 bzero(mp1->b_rptr, lifs_bufsize); 8263 8264 lifr = (struct lifreq *)mp1->b_rptr; 8265 8266 ill = ill_head = ipif->ipif_ill; 8267 orig_ipif = ipif; 8268 8269 /* ill_g_usesrc_lock protects ill_usesrc_grp_next */ 8270 rw_enter(&ill_g_usesrc_lock, RW_READER); 8271 rw_enter(&ill_g_lock, RW_READER); 8272 8273 ill = ill->ill_usesrc_grp_next; /* start from next ill */ 8274 for (; (ill != NULL) && (ill != ill_head); 8275 ill = ill->ill_usesrc_grp_next) { 8276 8277 if ((uchar_t *)&lifr[1] > mp1->b_wptr) 8278 break; 8279 8280 ipif = ill->ill_ipif; 8281 (void) ipif_get_name(ipif, 8282 lifr->lifr_name, sizeof (lifr->lifr_name)); 8283 if (ipif->ipif_isv6) { 8284 sin6 = (sin6_t *)&lifr->lifr_addr; 8285 *sin6 = sin6_null; 8286 sin6->sin6_family = AF_INET6; 8287 sin6->sin6_addr = ipif->ipif_v6lcl_addr; 8288 lifr->lifr_addrlen = ip_mask_to_plen_v6( 8289 &ipif->ipif_v6net_mask); 8290 } else { 8291 sin = (sin_t *)&lifr->lifr_addr; 8292 *sin = sin_null; 8293 sin->sin_family = AF_INET; 8294 sin->sin_addr.s_addr = ipif->ipif_lcl_addr; 8295 lifr->lifr_addrlen = ip_mask_to_plen( 8296 ipif->ipif_net_mask); 8297 } 8298 lifr++; 8299 } 8300 rw_exit(&ill_g_usesrc_lock); 8301 rw_exit(&ill_g_lock); 8302 ipif_refrele(orig_ipif); 8303 mp1->b_wptr = (uchar_t *)lifr; 8304 STRUCT_FSET(lifs, lifs_len, (int)((uchar_t *)lifr - mp1->b_rptr)); 8305 8306 return (0); 8307 } 8308 8309 /* ARGSUSED */ 8310 int 8311 ip_sioctl_get_lifconf(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, 8312 mblk_t *mp, ip_ioctl_cmd_t *ipip, void *ifreq) 8313 { 8314 mblk_t *mp1; 8315 int list; 8316 ill_t *ill; 8317 ipif_t *ipif; 8318 int flags; 8319 int numlifs = 0; 8320 size_t lifc_bufsize; 8321 struct lifreq *lifr; 8322 sa_family_t family; 8323 struct sockaddr_in *sin; 8324 struct sockaddr_in6 *sin6; 8325 ill_walk_context_t ctx; 8326 struct iocblk *iocp = (struct iocblk *)mp->b_rptr; 8327 int32_t lifclen; 8328 zoneid_t zoneid; 8329 STRUCT_HANDLE(lifconf, lifc); 8330 8331 ip1dbg(("ip_sioctl_get_lifconf")); 8332 8333 ASSERT(q->q_next == NULL); 8334 8335 zoneid = Q_TO_CONN(q)->conn_zoneid; 8336 8337 /* Existence verified in ip_wput_nondata */ 8338 mp1 = mp->b_cont->b_cont; 8339 8340 /* 8341 * An extended version of SIOCGIFCONF that takes an 8342 * additional address family and flags field. 8343 * AF_UNSPEC retrieve both IPv4 and IPv6. 8344 * Unless LIFC_NOXMIT is specified the IPIF_NOXMIT 8345 * interfaces are omitted. 8346 * Similarly, IPIF_TEMPORARY interfaces are omitted 8347 * unless LIFC_TEMPORARY is specified. 8348 * If LIFC_EXTERNAL_SOURCE is specified, IPIF_NOXMIT, 8349 * IPIF_NOLOCAL, PHYI_LOOPBACK, IPIF_DEPRECATED and 8350 * not IPIF_UP interfaces are omitted. LIFC_EXTERNAL_SOURCE 8351 * has priority over LIFC_NOXMIT. 8352 */ 8353 STRUCT_SET_HANDLE(lifc, iocp->ioc_flag, NULL); 8354 8355 if ((mp1->b_wptr - mp1->b_rptr) != STRUCT_SIZE(lifc)) 8356 return (EINVAL); 8357 8358 /* 8359 * Must be (better be!) continuation of a TRANSPARENT 8360 * IOCTL. We just copied in the lifconf structure. 8361 */ 8362 STRUCT_SET_HANDLE(lifc, iocp->ioc_flag, (struct lifconf *)mp1->b_rptr); 8363 8364 family = STRUCT_FGET(lifc, lifc_family); 8365 flags = STRUCT_FGET(lifc, lifc_flags); 8366 8367 switch (family) { 8368 case AF_UNSPEC: 8369 /* 8370 * walk all ILL's. 8371 */ 8372 list = MAX_G_HEADS; 8373 break; 8374 case AF_INET: 8375 /* 8376 * walk only IPV4 ILL's. 8377 */ 8378 list = IP_V4_G_HEAD; 8379 break; 8380 case AF_INET6: 8381 /* 8382 * walk only IPV6 ILL's. 8383 */ 8384 list = IP_V6_G_HEAD; 8385 break; 8386 default: 8387 return (EAFNOSUPPORT); 8388 } 8389 8390 /* 8391 * Allocate a buffer to hold requested information. 8392 * 8393 * If lifc_len is larger than what is needed, we only 8394 * allocate what we will use. 8395 * 8396 * If lifc_len is smaller than what is needed, return 8397 * EINVAL. 8398 */ 8399 numlifs = ip_get_numlifs(family, flags, zoneid); 8400 lifc_bufsize = numlifs * sizeof (struct lifreq); 8401 lifclen = STRUCT_FGET(lifc, lifc_len); 8402 if (lifc_bufsize > lifclen) { 8403 if (iocp->ioc_cmd == O_SIOCGLIFCONF) 8404 return (EINVAL); 8405 else 8406 lifc_bufsize = lifclen; 8407 } 8408 8409 mp1 = mi_copyout_alloc(q, mp, 8410 STRUCT_FGETP(lifc, lifc_buf), lifc_bufsize, B_FALSE); 8411 if (mp1 == NULL) 8412 return (ENOMEM); 8413 8414 mp1->b_wptr = mp1->b_rptr + lifc_bufsize; 8415 bzero(mp1->b_rptr, mp1->b_wptr - mp1->b_rptr); 8416 8417 lifr = (struct lifreq *)mp1->b_rptr; 8418 8419 rw_enter(&ill_g_lock, RW_READER); 8420 ill = ill_first(list, list, &ctx); 8421 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 8422 for (ipif = ill->ill_ipif; ipif != NULL; 8423 ipif = ipif->ipif_next) { 8424 if ((ipif->ipif_flags & IPIF_NOXMIT) && 8425 !(flags & LIFC_NOXMIT)) 8426 continue; 8427 8428 if ((ipif->ipif_flags & IPIF_TEMPORARY) && 8429 !(flags & LIFC_TEMPORARY)) 8430 continue; 8431 8432 if (((ipif->ipif_flags & 8433 (IPIF_NOXMIT|IPIF_NOLOCAL| 8434 IPIF_DEPRECATED)) || 8435 (ill->ill_phyint->phyint_flags & 8436 PHYI_LOOPBACK) || 8437 !(ipif->ipif_flags & IPIF_UP)) && 8438 (flags & LIFC_EXTERNAL_SOURCE)) 8439 continue; 8440 8441 if (zoneid != ipif->ipif_zoneid && 8442 ipif->ipif_zoneid != ALL_ZONES && 8443 (zoneid != GLOBAL_ZONEID || 8444 !(flags & LIFC_ALLZONES))) 8445 continue; 8446 8447 if ((uchar_t *)&lifr[1] > mp1->b_wptr) { 8448 if (iocp->ioc_cmd == O_SIOCGLIFCONF) { 8449 rw_exit(&ill_g_lock); 8450 return (EINVAL); 8451 } else { 8452 goto lif_copydone; 8453 } 8454 } 8455 8456 (void) ipif_get_name(ipif, 8457 lifr->lifr_name, 8458 sizeof (lifr->lifr_name)); 8459 if (ipif->ipif_isv6) { 8460 sin6 = (sin6_t *)&lifr->lifr_addr; 8461 *sin6 = sin6_null; 8462 sin6->sin6_family = AF_INET6; 8463 sin6->sin6_addr = 8464 ipif->ipif_v6lcl_addr; 8465 lifr->lifr_addrlen = 8466 ip_mask_to_plen_v6( 8467 &ipif->ipif_v6net_mask); 8468 } else { 8469 sin = (sin_t *)&lifr->lifr_addr; 8470 *sin = sin_null; 8471 sin->sin_family = AF_INET; 8472 sin->sin_addr.s_addr = 8473 ipif->ipif_lcl_addr; 8474 lifr->lifr_addrlen = 8475 ip_mask_to_plen( 8476 ipif->ipif_net_mask); 8477 } 8478 lifr++; 8479 } 8480 } 8481 lif_copydone: 8482 rw_exit(&ill_g_lock); 8483 8484 mp1->b_wptr = (uchar_t *)lifr; 8485 if (STRUCT_BUF(lifc) != NULL) { 8486 STRUCT_FSET(lifc, lifc_len, 8487 (int)((uchar_t *)lifr - mp1->b_rptr)); 8488 } 8489 return (0); 8490 } 8491 8492 /* ARGSUSED */ 8493 int 8494 ip_sioctl_set_ipmpfailback(ipif_t *dummy_ipif, sin_t *dummy_sin, 8495 queue_t *q, mblk_t *mp, ip_ioctl_cmd_t *ipip, void *ifreq) 8496 { 8497 /* Existence of b_cont->b_cont checked in ip_wput_nondata */ 8498 ipmp_enable_failback = *(int *)mp->b_cont->b_cont->b_rptr; 8499 return (0); 8500 } 8501 8502 static void 8503 ip_sioctl_ip6addrpolicy(queue_t *q, mblk_t *mp) 8504 { 8505 ip6_asp_t *table; 8506 size_t table_size; 8507 mblk_t *data_mp; 8508 struct iocblk *iocp = (struct iocblk *)mp->b_rptr; 8509 8510 /* These two ioctls are I_STR only */ 8511 if (iocp->ioc_count == TRANSPARENT) { 8512 miocnak(q, mp, 0, EINVAL); 8513 return; 8514 } 8515 8516 data_mp = mp->b_cont; 8517 if (data_mp == NULL) { 8518 /* The user passed us a NULL argument */ 8519 table = NULL; 8520 table_size = iocp->ioc_count; 8521 } else { 8522 /* 8523 * The user provided a table. The stream head 8524 * may have copied in the user data in chunks, 8525 * so make sure everything is pulled up 8526 * properly. 8527 */ 8528 if (MBLKL(data_mp) < iocp->ioc_count) { 8529 mblk_t *new_data_mp; 8530 if ((new_data_mp = msgpullup(data_mp, -1)) == 8531 NULL) { 8532 miocnak(q, mp, 0, ENOMEM); 8533 return; 8534 } 8535 freemsg(data_mp); 8536 data_mp = new_data_mp; 8537 mp->b_cont = data_mp; 8538 } 8539 table = (ip6_asp_t *)data_mp->b_rptr; 8540 table_size = iocp->ioc_count; 8541 } 8542 8543 switch (iocp->ioc_cmd) { 8544 case SIOCGIP6ADDRPOLICY: 8545 iocp->ioc_rval = ip6_asp_get(table, table_size); 8546 if (iocp->ioc_rval == -1) 8547 iocp->ioc_error = EINVAL; 8548 #if defined(_SYSCALL32_IMPL) && _LONG_LONG_ALIGNMENT_32 == 4 8549 else if (table != NULL && 8550 (iocp->ioc_flag & IOC_MODELS) == IOC_ILP32) { 8551 ip6_asp_t *src = table; 8552 ip6_asp32_t *dst = (void *)table; 8553 int count = table_size / sizeof (ip6_asp_t); 8554 int i; 8555 8556 /* 8557 * We need to do an in-place shrink of the array 8558 * to match the alignment attributes of the 8559 * 32-bit ABI looking at it. 8560 */ 8561 /* LINTED: logical expression always true: op "||" */ 8562 ASSERT(sizeof (*src) > sizeof (*dst)); 8563 for (i = 1; i < count; i++) 8564 bcopy(src + i, dst + i, sizeof (*dst)); 8565 } 8566 #endif 8567 break; 8568 8569 case SIOCSIP6ADDRPOLICY: 8570 ASSERT(mp->b_prev == NULL); 8571 mp->b_prev = (void *)q; 8572 #if defined(_SYSCALL32_IMPL) && _LONG_LONG_ALIGNMENT_32 == 4 8573 /* 8574 * We pass in the datamodel here so that the ip6_asp_replace() 8575 * routine can handle converting from 32-bit to native formats 8576 * where necessary. 8577 * 8578 * A better way to handle this might be to convert the inbound 8579 * data structure here, and hang it off a new 'mp'; thus the 8580 * ip6_asp_replace() logic would always be dealing with native 8581 * format data structures.. 8582 * 8583 * (An even simpler way to handle these ioctls is to just 8584 * add a 32-bit trailing 'pad' field to the ip6_asp_t structure 8585 * and just recompile everything that depends on it.) 8586 */ 8587 #endif 8588 ip6_asp_replace(mp, table, table_size, B_FALSE, 8589 iocp->ioc_flag & IOC_MODELS); 8590 return; 8591 } 8592 8593 DB_TYPE(mp) = (iocp->ioc_error == 0) ? M_IOCACK : M_IOCNAK; 8594 qreply(q, mp); 8595 } 8596 8597 static void 8598 ip_sioctl_dstinfo(queue_t *q, mblk_t *mp) 8599 { 8600 mblk_t *data_mp; 8601 struct dstinforeq *dir; 8602 uint8_t *end, *cur; 8603 in6_addr_t *daddr, *saddr; 8604 ipaddr_t v4daddr; 8605 ire_t *ire; 8606 char *slabel, *dlabel; 8607 boolean_t isipv4; 8608 int match_ire; 8609 ill_t *dst_ill; 8610 ipif_t *src_ipif, *ire_ipif; 8611 struct iocblk *iocp = (struct iocblk *)mp->b_rptr; 8612 zoneid_t zoneid; 8613 8614 ASSERT(q->q_next == NULL); /* this ioctl not allowed if ip is module */ 8615 zoneid = Q_TO_CONN(q)->conn_zoneid; 8616 8617 /* 8618 * This ioctl is I_STR only, and must have a 8619 * data mblk following the M_IOCTL mblk. 8620 */ 8621 data_mp = mp->b_cont; 8622 if (iocp->ioc_count == TRANSPARENT || data_mp == NULL) { 8623 miocnak(q, mp, 0, EINVAL); 8624 return; 8625 } 8626 8627 if (MBLKL(data_mp) < iocp->ioc_count) { 8628 mblk_t *new_data_mp; 8629 8630 if ((new_data_mp = msgpullup(data_mp, -1)) == NULL) { 8631 miocnak(q, mp, 0, ENOMEM); 8632 return; 8633 } 8634 freemsg(data_mp); 8635 data_mp = new_data_mp; 8636 mp->b_cont = data_mp; 8637 } 8638 match_ire = MATCH_IRE_RECURSIVE | MATCH_IRE_DEFAULT | MATCH_IRE_PARENT; 8639 8640 for (cur = data_mp->b_rptr, end = data_mp->b_wptr; 8641 end - cur >= sizeof (struct dstinforeq); 8642 cur += sizeof (struct dstinforeq)) { 8643 dir = (struct dstinforeq *)cur; 8644 daddr = &dir->dir_daddr; 8645 saddr = &dir->dir_saddr; 8646 8647 /* 8648 * ip_addr_scope_v6() and ip6_asp_lookup() handle 8649 * v4 mapped addresses; ire_ftable_lookup[_v6]() 8650 * and ipif_select_source[_v6]() do not. 8651 */ 8652 dir->dir_dscope = ip_addr_scope_v6(daddr); 8653 dlabel = ip6_asp_lookup(daddr, &dir->dir_precedence); 8654 8655 isipv4 = IN6_IS_ADDR_V4MAPPED(daddr); 8656 if (isipv4) { 8657 IN6_V4MAPPED_TO_IPADDR(daddr, v4daddr); 8658 ire = ire_ftable_lookup(v4daddr, NULL, NULL, 8659 0, NULL, NULL, zoneid, 0, NULL, match_ire); 8660 } else { 8661 ire = ire_ftable_lookup_v6(daddr, NULL, NULL, 8662 0, NULL, NULL, zoneid, 0, NULL, match_ire); 8663 } 8664 if (ire == NULL) { 8665 dir->dir_dreachable = 0; 8666 8667 /* move on to next dst addr */ 8668 continue; 8669 } 8670 dir->dir_dreachable = 1; 8671 8672 ire_ipif = ire->ire_ipif; 8673 if (ire_ipif == NULL) 8674 goto next_dst; 8675 8676 /* 8677 * We expect to get back an interface ire or a 8678 * gateway ire cache entry. For both types, the 8679 * output interface is ire_ipif->ipif_ill. 8680 */ 8681 dst_ill = ire_ipif->ipif_ill; 8682 dir->dir_dmactype = dst_ill->ill_mactype; 8683 8684 if (isipv4) { 8685 src_ipif = ipif_select_source(dst_ill, v4daddr, zoneid); 8686 } else { 8687 src_ipif = ipif_select_source_v6(dst_ill, 8688 daddr, B_FALSE, IPV6_PREFER_SRC_DEFAULT, 8689 zoneid); 8690 } 8691 if (src_ipif == NULL) 8692 goto next_dst; 8693 8694 *saddr = src_ipif->ipif_v6lcl_addr; 8695 dir->dir_sscope = ip_addr_scope_v6(saddr); 8696 slabel = ip6_asp_lookup(saddr, NULL); 8697 dir->dir_labelmatch = ip6_asp_labelcmp(dlabel, slabel); 8698 dir->dir_sdeprecated = 8699 (src_ipif->ipif_flags & IPIF_DEPRECATED) ? 1 : 0; 8700 ipif_refrele(src_ipif); 8701 next_dst: 8702 ire_refrele(ire); 8703 } 8704 miocack(q, mp, iocp->ioc_count, 0); 8705 } 8706 8707 8708 /* 8709 * Check if this is an address assigned to this machine. 8710 * Skips interfaces that are down by using ire checks. 8711 * Translates mapped addresses to v4 addresses and then 8712 * treats them as such, returning true if the v4 address 8713 * associated with this mapped address is configured. 8714 * Note: Applications will have to be careful what they do 8715 * with the response; use of mapped addresses limits 8716 * what can be done with the socket, especially with 8717 * respect to socket options and ioctls - neither IPv4 8718 * options nor IPv6 sticky options/ancillary data options 8719 * may be used. 8720 */ 8721 /* ARGSUSED */ 8722 int 8723 ip_sioctl_tmyaddr(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, 8724 ip_ioctl_cmd_t *ipip, void *dummy_ifreq) 8725 { 8726 struct sioc_addrreq *sia; 8727 sin_t *sin; 8728 ire_t *ire; 8729 mblk_t *mp1; 8730 zoneid_t zoneid; 8731 8732 ip1dbg(("ip_sioctl_tmyaddr")); 8733 8734 ASSERT(q->q_next == NULL); /* this ioctl not allowed if ip is module */ 8735 zoneid = Q_TO_CONN(q)->conn_zoneid; 8736 8737 /* Existence verified in ip_wput_nondata */ 8738 mp1 = mp->b_cont->b_cont; 8739 sia = (struct sioc_addrreq *)mp1->b_rptr; 8740 sin = (sin_t *)&sia->sa_addr; 8741 switch (sin->sin_family) { 8742 case AF_INET6: { 8743 sin6_t *sin6 = (sin6_t *)sin; 8744 8745 if (IN6_IS_ADDR_V4MAPPED(&sin6->sin6_addr)) { 8746 ipaddr_t v4_addr; 8747 8748 IN6_V4MAPPED_TO_IPADDR(&sin6->sin6_addr, 8749 v4_addr); 8750 ire = ire_ctable_lookup(v4_addr, 0, 8751 IRE_LOCAL|IRE_LOOPBACK, NULL, zoneid, 8752 NULL, MATCH_IRE_TYPE | MATCH_IRE_ZONEONLY); 8753 } else { 8754 in6_addr_t v6addr; 8755 8756 v6addr = sin6->sin6_addr; 8757 ire = ire_ctable_lookup_v6(&v6addr, 0, 8758 IRE_LOCAL|IRE_LOOPBACK, NULL, zoneid, 8759 NULL, MATCH_IRE_TYPE | MATCH_IRE_ZONEONLY); 8760 } 8761 break; 8762 } 8763 case AF_INET: { 8764 ipaddr_t v4addr; 8765 8766 v4addr = sin->sin_addr.s_addr; 8767 ire = ire_ctable_lookup(v4addr, 0, 8768 IRE_LOCAL|IRE_LOOPBACK, NULL, zoneid, 8769 NULL, MATCH_IRE_TYPE | MATCH_IRE_ZONEONLY); 8770 break; 8771 } 8772 default: 8773 return (EAFNOSUPPORT); 8774 } 8775 if (ire != NULL) { 8776 sia->sa_res = 1; 8777 ire_refrele(ire); 8778 } else { 8779 sia->sa_res = 0; 8780 } 8781 return (0); 8782 } 8783 8784 /* 8785 * Check if this is an address assigned on-link i.e. neighbor, 8786 * and makes sure it's reachable from the current zone. 8787 * Returns true for my addresses as well. 8788 * Translates mapped addresses to v4 addresses and then 8789 * treats them as such, returning true if the v4 address 8790 * associated with this mapped address is configured. 8791 * Note: Applications will have to be careful what they do 8792 * with the response; use of mapped addresses limits 8793 * what can be done with the socket, especially with 8794 * respect to socket options and ioctls - neither IPv4 8795 * options nor IPv6 sticky options/ancillary data options 8796 * may be used. 8797 */ 8798 /* ARGSUSED */ 8799 int 8800 ip_sioctl_tonlink(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, 8801 ip_ioctl_cmd_t *ipip, void *duymmy_ifreq) 8802 { 8803 struct sioc_addrreq *sia; 8804 sin_t *sin; 8805 mblk_t *mp1; 8806 ire_t *ire = NULL; 8807 zoneid_t zoneid; 8808 8809 ip1dbg(("ip_sioctl_tonlink")); 8810 8811 ASSERT(q->q_next == NULL); /* this ioctl not allowed if ip is module */ 8812 zoneid = Q_TO_CONN(q)->conn_zoneid; 8813 8814 /* Existence verified in ip_wput_nondata */ 8815 mp1 = mp->b_cont->b_cont; 8816 sia = (struct sioc_addrreq *)mp1->b_rptr; 8817 sin = (sin_t *)&sia->sa_addr; 8818 8819 /* 8820 * Match addresses with a zero gateway field to avoid 8821 * routes going through a router. 8822 * Exclude broadcast and multicast addresses. 8823 */ 8824 switch (sin->sin_family) { 8825 case AF_INET6: { 8826 sin6_t *sin6 = (sin6_t *)sin; 8827 8828 if (IN6_IS_ADDR_V4MAPPED(&sin6->sin6_addr)) { 8829 ipaddr_t v4_addr; 8830 8831 IN6_V4MAPPED_TO_IPADDR(&sin6->sin6_addr, 8832 v4_addr); 8833 if (!CLASSD(v4_addr)) { 8834 ire = ire_route_lookup(v4_addr, 0, 0, 0, 8835 NULL, NULL, zoneid, NULL, 8836 MATCH_IRE_GW); 8837 } 8838 } else { 8839 in6_addr_t v6addr; 8840 in6_addr_t v6gw; 8841 8842 v6addr = sin6->sin6_addr; 8843 v6gw = ipv6_all_zeros; 8844 if (!IN6_IS_ADDR_MULTICAST(&v6addr)) { 8845 ire = ire_route_lookup_v6(&v6addr, 0, 8846 &v6gw, 0, NULL, NULL, zoneid, 8847 NULL, MATCH_IRE_GW); 8848 } 8849 } 8850 break; 8851 } 8852 case AF_INET: { 8853 ipaddr_t v4addr; 8854 8855 v4addr = sin->sin_addr.s_addr; 8856 if (!CLASSD(v4addr)) { 8857 ire = ire_route_lookup(v4addr, 0, 0, 0, 8858 NULL, NULL, zoneid, NULL, 8859 MATCH_IRE_GW); 8860 } 8861 break; 8862 } 8863 default: 8864 return (EAFNOSUPPORT); 8865 } 8866 sia->sa_res = 0; 8867 if (ire != NULL) { 8868 if (ire->ire_type & (IRE_INTERFACE|IRE_CACHE| 8869 IRE_LOCAL|IRE_LOOPBACK)) { 8870 sia->sa_res = 1; 8871 } 8872 ire_refrele(ire); 8873 } 8874 return (0); 8875 } 8876 8877 /* 8878 * TBD: implement when kernel maintaines a list of site prefixes. 8879 */ 8880 /* ARGSUSED */ 8881 int 8882 ip_sioctl_tmysite(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 8883 ip_ioctl_cmd_t *ipip, void *ifreq) 8884 { 8885 return (ENXIO); 8886 } 8887 8888 /* ARGSUSED */ 8889 int 8890 ip_sioctl_tunparam(ipif_t *ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, 8891 ip_ioctl_cmd_t *ipip, void *dummy_ifreq) 8892 { 8893 ill_t *ill; 8894 mblk_t *mp1; 8895 conn_t *connp; 8896 boolean_t success; 8897 8898 ip1dbg(("ip_sioctl_tunparam(%s:%u %p)\n", 8899 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 8900 /* ioctl comes down on an conn */ 8901 ASSERT(!(q->q_flag & QREADR) && q->q_next == NULL); 8902 connp = Q_TO_CONN(q); 8903 8904 mp->b_datap->db_type = M_IOCTL; 8905 8906 /* 8907 * Send down a copy. (copymsg does not copy b_next/b_prev). 8908 * The original mp contains contaminated b_next values due to 'mi', 8909 * which is needed to do the mi_copy_done. Unfortunately if we 8910 * send down the original mblk itself and if we are popped due to an 8911 * an unplumb before the response comes back from tunnel, 8912 * the streamhead (which does a freemsg) will see this contaminated 8913 * message and the assertion in freemsg about non-null b_next/b_prev 8914 * will panic a DEBUG kernel. 8915 */ 8916 mp1 = copymsg(mp); 8917 if (mp1 == NULL) 8918 return (ENOMEM); 8919 8920 ill = ipif->ipif_ill; 8921 mutex_enter(&connp->conn_lock); 8922 mutex_enter(&ill->ill_lock); 8923 if (ipip->ipi_cmd == SIOCSTUNPARAM || ipip->ipi_cmd == OSIOCSTUNPARAM) { 8924 success = ipsq_pending_mp_add(connp, ipif, CONNP_TO_WQ(connp), 8925 mp, 0); 8926 } else { 8927 success = ill_pending_mp_add(ill, connp, mp); 8928 } 8929 mutex_exit(&ill->ill_lock); 8930 mutex_exit(&connp->conn_lock); 8931 8932 if (success) { 8933 ip1dbg(("sending down tunparam request ")); 8934 putnext(ill->ill_wq, mp1); 8935 return (EINPROGRESS); 8936 } else { 8937 /* The conn has started closing */ 8938 freemsg(mp1); 8939 return (EINTR); 8940 } 8941 } 8942 8943 static int 8944 ip_sioctl_arp_common(ill_t *ill, queue_t *q, mblk_t *mp, sin_t *sin, 8945 boolean_t x_arp_ioctl, boolean_t if_arp_ioctl) 8946 { 8947 mblk_t *mp1; 8948 mblk_t *mp2; 8949 mblk_t *pending_mp; 8950 ipaddr_t ipaddr; 8951 area_t *area; 8952 struct iocblk *iocp; 8953 conn_t *connp; 8954 struct arpreq *ar; 8955 struct xarpreq *xar; 8956 boolean_t success; 8957 int flags, alength; 8958 char *lladdr; 8959 8960 ASSERT(!(q->q_flag & QREADR) && q->q_next == NULL); 8961 connp = Q_TO_CONN(q); 8962 8963 iocp = (struct iocblk *)mp->b_rptr; 8964 /* 8965 * ill has already been set depending on whether 8966 * bsd style or interface style ioctl. 8967 */ 8968 ASSERT(ill != NULL); 8969 8970 /* 8971 * Is this one of the new SIOC*XARP ioctls? 8972 */ 8973 if (x_arp_ioctl) { 8974 /* We have a chain - M_IOCTL-->MI_COPY_MBLK-->XARPREQ_MBLK */ 8975 xar = (struct xarpreq *)mp->b_cont->b_cont->b_rptr; 8976 ar = NULL; 8977 8978 flags = xar->xarp_flags; 8979 lladdr = LLADDR(&xar->xarp_ha); 8980 /* 8981 * Validate against user's link layer address length 8982 * input and name and addr length limits. 8983 */ 8984 alength = ill->ill_phys_addr_length; 8985 if (iocp->ioc_cmd == SIOCSXARP) { 8986 if (alength != xar->xarp_ha.sdl_alen || 8987 (alength + xar->xarp_ha.sdl_nlen > 8988 sizeof (xar->xarp_ha.sdl_data))) 8989 return (EINVAL); 8990 } 8991 } else { 8992 /* We have a chain - M_IOCTL-->MI_COPY_MBLK-->ARPREQ_MBLK */ 8993 ar = (struct arpreq *)mp->b_cont->b_cont->b_rptr; 8994 xar = NULL; 8995 8996 flags = ar->arp_flags; 8997 lladdr = ar->arp_ha.sa_data; 8998 /* 8999 * Theoretically, the sa_family could tell us what link 9000 * layer type this operation is trying to deal with. By 9001 * common usage AF_UNSPEC means ethernet. We'll assume 9002 * any attempt to use the SIOC?ARP ioctls is for ethernet, 9003 * for now. Our new SIOC*XARP ioctls can be used more 9004 * generally. 9005 * 9006 * If the underlying media happens to have a non 6 byte 9007 * address, arp module will fail set/get, but the del 9008 * operation will succeed. 9009 */ 9010 alength = 6; 9011 if ((iocp->ioc_cmd != SIOCDARP) && 9012 (alength != ill->ill_phys_addr_length)) { 9013 return (EINVAL); 9014 } 9015 } 9016 9017 /* 9018 * We are going to pass up to ARP a packet chain that looks 9019 * like: 9020 * 9021 * M_IOCTL-->ARP_op_MBLK-->ORIG_M_IOCTL-->MI_COPY_MBLK-->[X]ARPREQ_MBLK 9022 * 9023 * Get a copy of the original IOCTL mblk to head the chain, 9024 * to be sent up (in mp1). Also get another copy to store 9025 * in the ill_pending_mp list, for matching the response 9026 * when it comes back from ARP. 9027 */ 9028 mp1 = copyb(mp); 9029 pending_mp = copymsg(mp); 9030 if (mp1 == NULL || pending_mp == NULL) { 9031 if (mp1 != NULL) 9032 freeb(mp1); 9033 if (pending_mp != NULL) 9034 inet_freemsg(pending_mp); 9035 return (ENOMEM); 9036 } 9037 9038 ipaddr = sin->sin_addr.s_addr; 9039 9040 mp2 = ill_arp_alloc(ill, (uchar_t *)&ip_area_template, 9041 (caddr_t)&ipaddr); 9042 if (mp2 == NULL) { 9043 freeb(mp1); 9044 inet_freemsg(pending_mp); 9045 return (ENOMEM); 9046 } 9047 /* Put together the chain. */ 9048 mp1->b_cont = mp2; 9049 mp1->b_datap->db_type = M_IOCTL; 9050 mp2->b_cont = mp; 9051 mp2->b_datap->db_type = M_DATA; 9052 9053 iocp = (struct iocblk *)mp1->b_rptr; 9054 9055 /* 9056 * An M_IOCDATA's payload (struct copyresp) is mostly the same as an 9057 * M_IOCTL's payload (struct iocblk), but 'struct copyresp' has a 9058 * cp_private field (or cp_rval on 32-bit systems) in place of the 9059 * ioc_count field; set ioc_count to be correct. 9060 */ 9061 iocp->ioc_count = MBLKL(mp1->b_cont); 9062 9063 /* 9064 * Set the proper command in the ARP message. 9065 * Convert the SIOC{G|S|D}ARP calls into our 9066 * AR_ENTRY_xxx calls. 9067 */ 9068 area = (area_t *)mp2->b_rptr; 9069 switch (iocp->ioc_cmd) { 9070 case SIOCDARP: 9071 case SIOCDXARP: 9072 /* 9073 * We defer deleting the corresponding IRE until 9074 * we return from arp. 9075 */ 9076 area->area_cmd = AR_ENTRY_DELETE; 9077 area->area_proto_mask_offset = 0; 9078 break; 9079 case SIOCGARP: 9080 case SIOCGXARP: 9081 area->area_cmd = AR_ENTRY_SQUERY; 9082 area->area_proto_mask_offset = 0; 9083 break; 9084 case SIOCSARP: 9085 case SIOCSXARP: { 9086 /* 9087 * Delete the corresponding ire to make sure IP will 9088 * pick up any change from arp. 9089 */ 9090 if (!if_arp_ioctl) { 9091 (void) ip_ire_clookup_and_delete(ipaddr, NULL); 9092 break; 9093 } else { 9094 ipif_t *ipif = ipif_get_next_ipif(NULL, ill); 9095 if (ipif != NULL) { 9096 (void) ip_ire_clookup_and_delete(ipaddr, ipif); 9097 ipif_refrele(ipif); 9098 } 9099 break; 9100 } 9101 } 9102 } 9103 iocp->ioc_cmd = area->area_cmd; 9104 9105 /* 9106 * Before sending 'mp' to ARP, we have to clear the b_next 9107 * and b_prev. Otherwise if STREAMS encounters such a message 9108 * in freemsg(), (because ARP can close any time) it can cause 9109 * a panic. But mi code needs the b_next and b_prev values of 9110 * mp->b_cont, to complete the ioctl. So we store it here 9111 * in pending_mp->bcont, and restore it in ip_sioctl_iocack() 9112 * when the response comes down from ARP. 9113 */ 9114 pending_mp->b_cont->b_next = mp->b_cont->b_next; 9115 pending_mp->b_cont->b_prev = mp->b_cont->b_prev; 9116 mp->b_cont->b_next = NULL; 9117 mp->b_cont->b_prev = NULL; 9118 9119 mutex_enter(&connp->conn_lock); 9120 mutex_enter(&ill->ill_lock); 9121 /* conn has not yet started closing, hence this can't fail */ 9122 success = ill_pending_mp_add(ill, connp, pending_mp); 9123 ASSERT(success); 9124 mutex_exit(&ill->ill_lock); 9125 mutex_exit(&connp->conn_lock); 9126 9127 /* 9128 * Fill in the rest of the ARP operation fields. 9129 */ 9130 area->area_hw_addr_length = alength; 9131 bcopy(lladdr, 9132 (char *)area + area->area_hw_addr_offset, 9133 area->area_hw_addr_length); 9134 /* Translate the flags. */ 9135 if (flags & ATF_PERM) 9136 area->area_flags |= ACE_F_PERMANENT; 9137 if (flags & ATF_PUBL) 9138 area->area_flags |= ACE_F_PUBLISH; 9139 9140 /* 9141 * Up to ARP it goes. The response will come 9142 * back in ip_wput as an M_IOCACK message, and 9143 * will be handed to ip_sioctl_iocack for 9144 * completion. 9145 */ 9146 putnext(ill->ill_rq, mp1); 9147 return (EINPROGRESS); 9148 } 9149 9150 /* ARGSUSED */ 9151 int 9152 ip_sioctl_xarp(ipif_t *ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, 9153 ip_ioctl_cmd_t *ipip, void *ifreq) 9154 { 9155 struct xarpreq *xar; 9156 boolean_t isv6; 9157 mblk_t *mp1; 9158 int err; 9159 conn_t *connp; 9160 int ifnamelen; 9161 ire_t *ire = NULL; 9162 ill_t *ill = NULL; 9163 struct sockaddr_in *sin; 9164 boolean_t if_arp_ioctl = B_FALSE; 9165 9166 /* ioctl comes down on an conn */ 9167 ASSERT(!(q->q_flag & QREADR) && q->q_next == NULL); 9168 connp = Q_TO_CONN(q); 9169 isv6 = connp->conn_af_isv6; 9170 9171 /* Existance verified in ip_wput_nondata */ 9172 mp1 = mp->b_cont->b_cont; 9173 9174 ASSERT(MBLKL(mp1) >= sizeof (*xar)); 9175 xar = (struct xarpreq *)mp1->b_rptr; 9176 sin = (sin_t *)&xar->xarp_pa; 9177 9178 if (isv6 || (xar->xarp_ha.sdl_family != AF_LINK) || 9179 (xar->xarp_pa.ss_family != AF_INET)) 9180 return (ENXIO); 9181 9182 ifnamelen = xar->xarp_ha.sdl_nlen; 9183 if (ifnamelen != 0) { 9184 char *cptr, cval; 9185 9186 if (ifnamelen >= LIFNAMSIZ) 9187 return (EINVAL); 9188 9189 /* 9190 * Instead of bcopying a bunch of bytes, 9191 * null-terminate the string in-situ. 9192 */ 9193 cptr = xar->xarp_ha.sdl_data + ifnamelen; 9194 cval = *cptr; 9195 *cptr = '\0'; 9196 ill = ill_lookup_on_name(xar->xarp_ha.sdl_data, 9197 B_FALSE, isv6, CONNP_TO_WQ(connp), mp, ip_process_ioctl, 9198 &err, NULL); 9199 *cptr = cval; 9200 if (ill == NULL) 9201 return (err); 9202 if (ill->ill_net_type != IRE_IF_RESOLVER) { 9203 ill_refrele(ill); 9204 return (ENXIO); 9205 } 9206 9207 if_arp_ioctl = B_TRUE; 9208 } else { 9209 /* 9210 * PSARC 2003/088 states that if sdl_nlen == 0, it behaves 9211 * as an extended BSD ioctl. The kernel uses the IP address 9212 * to figure out the network interface. 9213 */ 9214 ire = ire_cache_lookup(sin->sin_addr.s_addr, ALL_ZONES, NULL); 9215 if ((ire == NULL) || (ire->ire_type == IRE_LOOPBACK) || 9216 ((ill = ire_to_ill(ire)) == NULL) || 9217 (ill->ill_net_type != IRE_IF_RESOLVER)) { 9218 if (ire != NULL) 9219 ire_refrele(ire); 9220 ire = ire_ftable_lookup(sin->sin_addr.s_addr, 9221 0, 0, IRE_IF_RESOLVER, NULL, NULL, ALL_ZONES, 0, 9222 NULL, MATCH_IRE_TYPE); 9223 if ((ire == NULL) || 9224 ((ill = ire_to_ill(ire)) == NULL)) { 9225 if (ire != NULL) 9226 ire_refrele(ire); 9227 return (ENXIO); 9228 } 9229 } 9230 ASSERT(ire != NULL && ill != NULL); 9231 } 9232 9233 err = ip_sioctl_arp_common(ill, q, mp, sin, B_TRUE, if_arp_ioctl); 9234 if (if_arp_ioctl) 9235 ill_refrele(ill); 9236 if (ire != NULL) 9237 ire_refrele(ire); 9238 9239 return (err); 9240 } 9241 9242 /* 9243 * ARP IOCTLs. 9244 * How does IP get in the business of fronting ARP configuration/queries? 9245 * Well its like this, the Berkeley ARP IOCTLs (SIOCGARP, SIOCDARP, SIOCSARP) 9246 * are by tradition passed in through a datagram socket. That lands in IP. 9247 * As it happens, this is just as well since the interface is quite crude in 9248 * that it passes in no information about protocol or hardware types, or 9249 * interface association. After making the protocol assumption, IP is in 9250 * the position to look up the name of the ILL, which ARP will need, and 9251 * format a request that can be handled by ARP. The request is passed up 9252 * stream to ARP, and the original IOCTL is completed by IP when ARP passes 9253 * back a response. ARP supports its own set of more general IOCTLs, in 9254 * case anyone is interested. 9255 */ 9256 /* ARGSUSED */ 9257 int 9258 ip_sioctl_arp(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, 9259 ip_ioctl_cmd_t *ipip, void *dummy_ifreq) 9260 { 9261 struct arpreq *ar; 9262 struct sockaddr_in *sin; 9263 ire_t *ire; 9264 boolean_t isv6; 9265 mblk_t *mp1; 9266 int err; 9267 conn_t *connp; 9268 ill_t *ill; 9269 9270 /* ioctl comes down on an conn */ 9271 ASSERT(!(q->q_flag & QREADR) && q->q_next == NULL); 9272 connp = Q_TO_CONN(q); 9273 isv6 = connp->conn_af_isv6; 9274 if (isv6) 9275 return (ENXIO); 9276 9277 /* Existance verified in ip_wput_nondata */ 9278 mp1 = mp->b_cont->b_cont; 9279 9280 ar = (struct arpreq *)mp1->b_rptr; 9281 sin = (sin_t *)&ar->arp_pa; 9282 9283 /* 9284 * We need to let ARP know on which interface the IP 9285 * address has an ARP mapping. In the IPMP case, a 9286 * simple forwarding table lookup will return the 9287 * IRE_IF_RESOLVER for the first interface in the group, 9288 * which might not be the interface on which the 9289 * requested IP address was resolved due to the ill 9290 * selection algorithm (see ip_newroute_get_dst_ill()). 9291 * So we do a cache table lookup first: if the IRE cache 9292 * entry for the IP address is still there, it will 9293 * contain the ill pointer for the right interface, so 9294 * we use that. If the cache entry has been flushed, we 9295 * fall back to the forwarding table lookup. This should 9296 * be rare enough since IRE cache entries have a longer 9297 * life expectancy than ARP cache entries. 9298 */ 9299 ire = ire_cache_lookup(sin->sin_addr.s_addr, ALL_ZONES, NULL); 9300 if ((ire == NULL) || (ire->ire_type == IRE_LOOPBACK) || 9301 ((ill = ire_to_ill(ire)) == NULL)) { 9302 if (ire != NULL) 9303 ire_refrele(ire); 9304 ire = ire_ftable_lookup(sin->sin_addr.s_addr, 9305 0, 0, IRE_IF_RESOLVER, NULL, NULL, ALL_ZONES, 0, 9306 NULL, MATCH_IRE_TYPE); 9307 if ((ire == NULL) || ((ill = ire_to_ill(ire)) == NULL)) { 9308 if (ire != NULL) 9309 ire_refrele(ire); 9310 return (ENXIO); 9311 } 9312 } 9313 ASSERT(ire != NULL && ill != NULL); 9314 9315 err = ip_sioctl_arp_common(ill, q, mp, sin, B_FALSE, B_FALSE); 9316 ire_refrele(ire); 9317 return (err); 9318 } 9319 9320 /* 9321 * Do I_PLINK/I_LINK or I_PUNLINK/I_UNLINK with consistency checks and also 9322 * atomically set/clear the muxids. Also complete the ioctl by acking or 9323 * naking it. Note that the code is structured such that the link type, 9324 * whether it's persistent or not, is treated equally. ifconfig(1M) and 9325 * its clones use the persistent link, while pppd(1M) and perhaps many 9326 * other daemons may use non-persistent link. When combined with some 9327 * ill_t states, linking and unlinking lower streams may be used as 9328 * indicators of dynamic re-plumbing events [see PSARC/1999/348]. 9329 */ 9330 /* ARGSUSED */ 9331 void 9332 ip_sioctl_plink(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy_arg) 9333 { 9334 mblk_t *mp1; 9335 mblk_t *mp2; 9336 struct linkblk *li; 9337 queue_t *ipwq; 9338 char *name; 9339 struct qinit *qinfo; 9340 struct ipmx_s *ipmxp; 9341 ill_t *ill = NULL; 9342 struct iocblk *iocp = (struct iocblk *)mp->b_rptr; 9343 int err = 0; 9344 boolean_t entered_ipsq = B_FALSE; 9345 boolean_t islink; 9346 queue_t *dwq = NULL; 9347 9348 ASSERT(iocp->ioc_cmd == I_PLINK || iocp->ioc_cmd == I_PUNLINK || 9349 iocp->ioc_cmd == I_LINK || iocp->ioc_cmd == I_UNLINK); 9350 9351 islink = (iocp->ioc_cmd == I_PLINK || iocp->ioc_cmd == I_LINK) ? 9352 B_TRUE : B_FALSE; 9353 9354 mp1 = mp->b_cont; /* This is the linkblk info */ 9355 li = (struct linkblk *)mp1->b_rptr; 9356 9357 /* 9358 * ARP has added this special mblk, and the utility is asking us 9359 * to perform consistency checks, and also atomically set the 9360 * muxid. Ifconfig is an example. It achieves this by using 9361 * /dev/arp as the mux to plink the arp stream, and pushes arp on 9362 * to /dev/udp[6] stream for use as the mux when plinking the IP 9363 * stream. SIOCSLIFMUXID is not required. See ifconfig.c, arp.c 9364 * and other comments in this routine for more details. 9365 */ 9366 mp2 = mp1->b_cont; /* This is added by ARP */ 9367 9368 /* 9369 * If I_{P}LINK/I_{P}UNLINK is issued by a utility other than 9370 * ifconfig which didn't push ARP on top of the dummy mux, we won't 9371 * get the special mblk above. For backward compatibility, we just 9372 * return success. The utility will use SIOCSLIFMUXID to store 9373 * the muxids. This is not atomic, and can leave the streams 9374 * unplumbable if the utility is interrrupted, before it does the 9375 * SIOCSLIFMUXID. 9376 */ 9377 if (mp2 == NULL) { 9378 /* 9379 * At this point we don't know whether or not this is the 9380 * IP module stream or the ARP device stream. We need to 9381 * walk the lower stream in order to find this out, since 9382 * the capability negotiation is done only on the IP module 9383 * stream. IP module instance is identified by the module 9384 * name IP, non-null q_next, and it's wput not being ip_lwput. 9385 * STREAMS ensures that the lower stream (l_qbot) will not 9386 * vanish until this ioctl completes. So we can safely walk 9387 * the stream or refer to the q_ptr. 9388 */ 9389 ipwq = li->l_qbot; 9390 while (ipwq != NULL) { 9391 qinfo = ipwq->q_qinfo; 9392 name = qinfo->qi_minfo->mi_idname; 9393 if (name != NULL && name[0] != NULL && 9394 (strcmp(name, ip_mod_info.mi_idname) == 0) && 9395 ((void *)(qinfo->qi_putp) != (void *)ip_lwput) && 9396 (ipwq->q_next != NULL)) { 9397 break; 9398 } 9399 ipwq = ipwq->q_next; 9400 } 9401 /* 9402 * This looks like an IP module stream, so trigger 9403 * the capability reset or re-negotiation if necessary. 9404 */ 9405 if (ipwq != NULL) { 9406 ill = ipwq->q_ptr; 9407 ASSERT(ill != NULL); 9408 9409 if (ipsq == NULL) { 9410 ipsq = ipsq_try_enter(NULL, ill, q, mp, 9411 ip_sioctl_plink, NEW_OP, B_TRUE); 9412 if (ipsq == NULL) 9413 return; 9414 entered_ipsq = B_TRUE; 9415 } 9416 ASSERT(IAM_WRITER_ILL(ill)); 9417 /* 9418 * Store the upper read queue of the module 9419 * immediately below IP, and count the total 9420 * number of lower modules. Do this only 9421 * for I_PLINK or I_LINK event. 9422 */ 9423 ill->ill_lmod_rq = NULL; 9424 ill->ill_lmod_cnt = 0; 9425 if (islink && (dwq = ipwq->q_next) != NULL) { 9426 ill->ill_lmod_rq = RD(dwq); 9427 9428 while (dwq != NULL) { 9429 ill->ill_lmod_cnt++; 9430 dwq = dwq->q_next; 9431 } 9432 } 9433 /* 9434 * There's no point in resetting or re-negotiating if 9435 * we are not bound to the driver, so only do this if 9436 * the DLPI state is idle (up); we assume such state 9437 * since ill_ipif_up_count gets incremented in 9438 * ipif_up_done(), which is after we are bound to the 9439 * driver. Note that in the case of logical 9440 * interfaces, IP won't rebind to the driver unless 9441 * the ill_ipif_up_count is 0, meaning that all other 9442 * IP interfaces (including the main ipif) are in the 9443 * down state. Because of this, we use such counter 9444 * as an indicator, instead of relying on the IPIF_UP 9445 * flag, which is per ipif instance. 9446 */ 9447 if (ill->ill_ipif_up_count > 0) { 9448 if (islink) 9449 ill_capability_probe(ill); 9450 else 9451 ill_capability_reset(ill); 9452 } 9453 } 9454 goto done; 9455 } 9456 9457 /* 9458 * This is an I_{P}LINK sent down by ifconfig on 9459 * /dev/arp. ARP has appended this last (3rd) mblk, 9460 * giving more info. STREAMS ensures that the lower 9461 * stream (l_qbot) will not vanish until this ioctl 9462 * completes. So we can safely walk the stream or refer 9463 * to the q_ptr. 9464 */ 9465 ipmxp = (struct ipmx_s *)mp2->b_rptr; 9466 if (ipmxp->ipmx_arpdev_stream) { 9467 /* 9468 * The operation is occuring on the arp-device 9469 * stream. 9470 */ 9471 ill = ill_lookup_on_name(ipmxp->ipmx_name, B_FALSE, B_FALSE, 9472 q, mp, ip_sioctl_plink, &err, NULL); 9473 if (ill == NULL) { 9474 if (err == EINPROGRESS) { 9475 return; 9476 } else { 9477 err = EINVAL; 9478 goto done; 9479 } 9480 } 9481 9482 if (ipsq == NULL) { 9483 ipsq = ipsq_try_enter(NULL, ill, q, mp, ip_sioctl_plink, 9484 NEW_OP, B_TRUE); 9485 if (ipsq == NULL) { 9486 ill_refrele(ill); 9487 return; 9488 } 9489 entered_ipsq = B_TRUE; 9490 } 9491 ASSERT(IAM_WRITER_ILL(ill)); 9492 ill_refrele(ill); 9493 /* 9494 * To ensure consistency between IP and ARP, 9495 * the following LIFO scheme is used in 9496 * plink/punlink. (IP first, ARP last). 9497 * This is because the muxid's are stored 9498 * in the IP stream on the ill. 9499 * 9500 * I_{P}LINK: ifconfig plinks the IP stream before 9501 * plinking the ARP stream. On an arp-dev 9502 * stream, IP checks that it is not yet 9503 * plinked, and it also checks that the 9504 * corresponding IP stream is already plinked. 9505 * 9506 * I_{P}UNLINK: ifconfig punlinks the ARP stream 9507 * before punlinking the IP stream. IP does 9508 * not allow punlink of the IP stream unless 9509 * the arp stream has been punlinked. 9510 * 9511 */ 9512 if ((islink && 9513 (ill->ill_arp_muxid != 0 || ill->ill_ip_muxid == 0)) || 9514 (!islink && 9515 ill->ill_arp_muxid != li->l_index)) { 9516 err = EINVAL; 9517 goto done; 9518 } 9519 if (islink) { 9520 ill->ill_arp_muxid = li->l_index; 9521 } else { 9522 ill->ill_arp_muxid = 0; 9523 } 9524 } else { 9525 /* 9526 * This must be the IP module stream with or 9527 * without arp. Walk the stream and locate the 9528 * IP module. An IP module instance is 9529 * identified by the module name IP, non-null 9530 * q_next, and it's wput not being ip_lwput. 9531 */ 9532 ipwq = li->l_qbot; 9533 while (ipwq != NULL) { 9534 qinfo = ipwq->q_qinfo; 9535 name = qinfo->qi_minfo->mi_idname; 9536 if (name != NULL && name[0] != NULL && 9537 (strcmp(name, ip_mod_info.mi_idname) == 0) && 9538 ((void *)(qinfo->qi_putp) != (void *)ip_lwput) && 9539 (ipwq->q_next != NULL)) { 9540 break; 9541 } 9542 ipwq = ipwq->q_next; 9543 } 9544 if (ipwq != NULL) { 9545 ill = ipwq->q_ptr; 9546 ASSERT(ill != NULL); 9547 9548 if (ipsq == NULL) { 9549 ipsq = ipsq_try_enter(NULL, ill, q, mp, 9550 ip_sioctl_plink, NEW_OP, B_TRUE); 9551 if (ipsq == NULL) 9552 return; 9553 entered_ipsq = B_TRUE; 9554 } 9555 ASSERT(IAM_WRITER_ILL(ill)); 9556 /* 9557 * Return error if the ip_mux_id is 9558 * non-zero and command is I_{P}LINK. 9559 * If command is I_{P}UNLINK, return 9560 * error if the arp-devstr is not 9561 * yet punlinked. 9562 */ 9563 if ((islink && ill->ill_ip_muxid != 0) || 9564 (!islink && ill->ill_arp_muxid != 0)) { 9565 err = EINVAL; 9566 goto done; 9567 } 9568 ill->ill_lmod_rq = NULL; 9569 ill->ill_lmod_cnt = 0; 9570 if (islink) { 9571 /* 9572 * Store the upper read queue of the module 9573 * immediately below IP, and count the total 9574 * number of lower modules. 9575 */ 9576 if ((dwq = ipwq->q_next) != NULL) { 9577 ill->ill_lmod_rq = RD(dwq); 9578 9579 while (dwq != NULL) { 9580 ill->ill_lmod_cnt++; 9581 dwq = dwq->q_next; 9582 } 9583 } 9584 ill->ill_ip_muxid = li->l_index; 9585 } else { 9586 ill->ill_ip_muxid = 0; 9587 } 9588 9589 /* 9590 * See comments above about resetting/re- 9591 * negotiating driver sub-capabilities. 9592 */ 9593 if (ill->ill_ipif_up_count > 0) { 9594 if (islink) 9595 ill_capability_probe(ill); 9596 else 9597 ill_capability_reset(ill); 9598 } 9599 } 9600 } 9601 done: 9602 iocp->ioc_count = 0; 9603 iocp->ioc_error = err; 9604 if (err == 0) 9605 mp->b_datap->db_type = M_IOCACK; 9606 else 9607 mp->b_datap->db_type = M_IOCNAK; 9608 qreply(q, mp); 9609 9610 /* Conn was refheld in ip_sioctl_copyin_setup */ 9611 if (CONN_Q(q)) 9612 CONN_OPER_PENDING_DONE(Q_TO_CONN(q)); 9613 if (entered_ipsq) 9614 ipsq_exit(ipsq, B_TRUE, B_TRUE); 9615 } 9616 9617 /* 9618 * Search the ioctl command in the ioctl tables and return a pointer 9619 * to the ioctl command information. The ioctl command tables are 9620 * static and fully populated at compile time. 9621 */ 9622 ip_ioctl_cmd_t * 9623 ip_sioctl_lookup(int ioc_cmd) 9624 { 9625 int index; 9626 ip_ioctl_cmd_t *ipip; 9627 ip_ioctl_cmd_t *ipip_end; 9628 9629 if (ioc_cmd == IPI_DONTCARE) 9630 return (NULL); 9631 9632 /* 9633 * Do a 2 step search. First search the indexed table 9634 * based on the least significant byte of the ioctl cmd. 9635 * If we don't find a match, then search the misc table 9636 * serially. 9637 */ 9638 index = ioc_cmd & 0xFF; 9639 if (index < ip_ndx_ioctl_count) { 9640 ipip = &ip_ndx_ioctl_table[index]; 9641 if (ipip->ipi_cmd == ioc_cmd) { 9642 /* Found a match in the ndx table */ 9643 return (ipip); 9644 } 9645 } 9646 9647 /* Search the misc table */ 9648 ipip_end = &ip_misc_ioctl_table[ip_misc_ioctl_count]; 9649 for (ipip = ip_misc_ioctl_table; ipip < ipip_end; ipip++) { 9650 if (ipip->ipi_cmd == ioc_cmd) 9651 /* Found a match in the misc table */ 9652 return (ipip); 9653 } 9654 9655 return (NULL); 9656 } 9657 9658 /* 9659 * Wrapper function for resuming deferred ioctl processing 9660 * Used for SIOCGDSTINFO, SIOCGIP6ADDRPOLICY, SIOCGMSFILTER, 9661 * SIOCSMSFILTER, SIOCGIPMSFILTER, and SIOCSIPMSFILTER currently. 9662 */ 9663 /* ARGSUSED */ 9664 void 9665 ip_sioctl_copyin_resume(ipsq_t *dummy_ipsq, queue_t *q, mblk_t *mp, 9666 void *dummy_arg) 9667 { 9668 ip_sioctl_copyin_setup(q, mp); 9669 } 9670 9671 /* 9672 * ip_sioctl_copyin_setup is called by ip_wput with any M_IOCTL message 9673 * that arrives. Most of the IOCTLs are "socket" IOCTLs which we handle 9674 * in either I_STR or TRANSPARENT form, using the mi_copy facility. 9675 * We establish here the size of the block to be copied in. mi_copyin 9676 * arranges for this to happen, an processing continues in ip_wput with 9677 * an M_IOCDATA message. 9678 */ 9679 void 9680 ip_sioctl_copyin_setup(queue_t *q, mblk_t *mp) 9681 { 9682 int copyin_size; 9683 struct iocblk *iocp = (struct iocblk *)mp->b_rptr; 9684 ip_ioctl_cmd_t *ipip; 9685 cred_t *cr; 9686 9687 ipip = ip_sioctl_lookup(iocp->ioc_cmd); 9688 if (ipip == NULL) { 9689 /* 9690 * The ioctl is not one we understand or own. 9691 * Pass it along to be processed down stream, 9692 * if this is a module instance of IP, else nak 9693 * the ioctl. 9694 */ 9695 if (q->q_next == NULL) { 9696 goto nak; 9697 } else { 9698 putnext(q, mp); 9699 return; 9700 } 9701 } 9702 9703 /* 9704 * If this is deferred, then we will do all the checks when we 9705 * come back. 9706 */ 9707 if ((iocp->ioc_cmd == SIOCGDSTINFO || 9708 iocp->ioc_cmd == SIOCGIP6ADDRPOLICY) && !ip6_asp_can_lookup()) { 9709 ip6_asp_pending_op(q, mp, ip_sioctl_copyin_resume); 9710 return; 9711 } 9712 9713 /* 9714 * Only allow a very small subset of IP ioctls on this stream if 9715 * IP is a module and not a driver. Allowing ioctls to be processed 9716 * in this case may cause assert failures or data corruption. 9717 * Typically G[L]IFFLAGS, SLIFNAME/IF_UNITSEL are the only few 9718 * ioctls allowed on an IP module stream, after which this stream 9719 * normally becomes a multiplexor (at which time the stream head 9720 * will fail all ioctls). 9721 */ 9722 if ((q->q_next != NULL) && !(ipip->ipi_flags & IPI_MODOK)) { 9723 if (ipip->ipi_flags & IPI_PASS_DOWN) { 9724 /* 9725 * Pass common Streams ioctls which the IP 9726 * module does not own or consume along to 9727 * be processed down stream. 9728 */ 9729 putnext(q, mp); 9730 return; 9731 } else { 9732 goto nak; 9733 } 9734 } 9735 9736 /* Make sure we have ioctl data to process. */ 9737 if (mp->b_cont == NULL && !(ipip->ipi_flags & IPI_NULL_BCONT)) 9738 goto nak; 9739 9740 /* 9741 * Prefer dblk credential over ioctl credential; some synthesized 9742 * ioctls have kcred set because there's no way to crhold() 9743 * a credential in some contexts. (ioc_cr is not crfree() by 9744 * the framework; the caller of ioctl needs to hold the reference 9745 * for the duration of the call). 9746 */ 9747 cr = DB_CREDDEF(mp, iocp->ioc_cr); 9748 9749 /* Make sure normal users don't send down privileged ioctls */ 9750 if ((ipip->ipi_flags & IPI_PRIV) && 9751 (cr != NULL) && secpolicy_net_config(cr, B_TRUE) != 0) { 9752 /* We checked the privilege earlier but log it here */ 9753 miocnak(q, mp, 0, secpolicy_net_config(cr, B_FALSE)); 9754 return; 9755 } 9756 9757 /* 9758 * The ioctl command tables can only encode fixed length 9759 * ioctl data. If the length is variable, the table will 9760 * encode the length as zero. Such special cases are handled 9761 * below in the switch. 9762 */ 9763 if (ipip->ipi_copyin_size != 0) { 9764 mi_copyin(q, mp, NULL, ipip->ipi_copyin_size); 9765 return; 9766 } 9767 9768 switch (iocp->ioc_cmd) { 9769 case O_SIOCGIFCONF: 9770 case SIOCGIFCONF: 9771 /* 9772 * This IOCTL is hilarious. See comments in 9773 * ip_sioctl_get_ifconf for the story. 9774 */ 9775 if (iocp->ioc_count == TRANSPARENT) 9776 copyin_size = SIZEOF_STRUCT(ifconf, 9777 iocp->ioc_flag); 9778 else 9779 copyin_size = iocp->ioc_count; 9780 mi_copyin(q, mp, NULL, copyin_size); 9781 return; 9782 9783 case O_SIOCGLIFCONF: 9784 case SIOCGLIFCONF: 9785 copyin_size = SIZEOF_STRUCT(lifconf, iocp->ioc_flag); 9786 mi_copyin(q, mp, NULL, copyin_size); 9787 return; 9788 9789 case SIOCGLIFSRCOF: 9790 copyin_size = SIZEOF_STRUCT(lifsrcof, iocp->ioc_flag); 9791 mi_copyin(q, mp, NULL, copyin_size); 9792 return; 9793 case SIOCGIP6ADDRPOLICY: 9794 ip_sioctl_ip6addrpolicy(q, mp); 9795 ip6_asp_table_refrele(); 9796 return; 9797 9798 case SIOCSIP6ADDRPOLICY: 9799 ip_sioctl_ip6addrpolicy(q, mp); 9800 return; 9801 9802 case SIOCGDSTINFO: 9803 ip_sioctl_dstinfo(q, mp); 9804 ip6_asp_table_refrele(); 9805 return; 9806 9807 case I_PLINK: 9808 case I_PUNLINK: 9809 case I_LINK: 9810 case I_UNLINK: 9811 /* 9812 * We treat non-persistent link similarly as the persistent 9813 * link case, in terms of plumbing/unplumbing, as well as 9814 * dynamic re-plumbing events indicator. See comments 9815 * in ip_sioctl_plink() for more. 9816 * 9817 * Request can be enqueued in the 'ipsq' while waiting 9818 * to become exclusive. So bump up the conn ref. 9819 */ 9820 if (CONN_Q(q)) 9821 CONN_INC_REF(Q_TO_CONN(q)); 9822 ip_sioctl_plink(NULL, q, mp, NULL); 9823 return; 9824 9825 case ND_GET: 9826 case ND_SET: 9827 /* 9828 * Use of the nd table requires holding the reader lock. 9829 * Modifying the nd table thru nd_load/nd_unload requires 9830 * the writer lock. 9831 */ 9832 rw_enter(&ip_g_nd_lock, RW_READER); 9833 if (nd_getset(q, ip_g_nd, mp)) { 9834 rw_exit(&ip_g_nd_lock); 9835 9836 if (iocp->ioc_error) 9837 iocp->ioc_count = 0; 9838 mp->b_datap->db_type = M_IOCACK; 9839 qreply(q, mp); 9840 return; 9841 } 9842 rw_exit(&ip_g_nd_lock); 9843 /* 9844 * We don't understand this subioctl of ND_GET / ND_SET. 9845 * Maybe intended for some driver / module below us 9846 */ 9847 if (q->q_next) { 9848 putnext(q, mp); 9849 } else { 9850 iocp->ioc_error = ENOENT; 9851 mp->b_datap->db_type = M_IOCNAK; 9852 iocp->ioc_count = 0; 9853 qreply(q, mp); 9854 } 9855 return; 9856 9857 case IP_IOCTL: 9858 ip_wput_ioctl(q, mp); 9859 return; 9860 default: 9861 cmn_err(CE_PANIC, "should not happen "); 9862 } 9863 nak: 9864 if (mp->b_cont != NULL) { 9865 freemsg(mp->b_cont); 9866 mp->b_cont = NULL; 9867 } 9868 iocp->ioc_error = EINVAL; 9869 mp->b_datap->db_type = M_IOCNAK; 9870 iocp->ioc_count = 0; 9871 qreply(q, mp); 9872 } 9873 9874 /* ip_wput hands off ARP IOCTL responses to us */ 9875 void 9876 ip_sioctl_iocack(queue_t *q, mblk_t *mp) 9877 { 9878 struct arpreq *ar; 9879 struct xarpreq *xar; 9880 area_t *area; 9881 mblk_t *area_mp; 9882 struct iocblk *iocp; 9883 mblk_t *orig_ioc_mp, *tmp; 9884 struct iocblk *orig_iocp; 9885 ill_t *ill; 9886 conn_t *connp = NULL; 9887 uint_t ioc_id; 9888 mblk_t *pending_mp; 9889 int x_arp_ioctl = B_FALSE, ifx_arp_ioctl = B_FALSE; 9890 int *flagsp; 9891 char *storage = NULL; 9892 sin_t *sin; 9893 ipaddr_t addr; 9894 int err; 9895 9896 ill = q->q_ptr; 9897 ASSERT(ill != NULL); 9898 9899 /* 9900 * We should get back from ARP a packet chain that looks like: 9901 * M_IOCACK-->ARP_op_MBLK-->ORIG_M_IOCTL-->MI_COPY_MBLK-->[X]ARPREQ_MBLK 9902 */ 9903 if (!(area_mp = mp->b_cont) || 9904 (area_mp->b_wptr - area_mp->b_rptr) < sizeof (ip_sock_ar_t) || 9905 !(orig_ioc_mp = area_mp->b_cont) || 9906 !orig_ioc_mp->b_cont || !orig_ioc_mp->b_cont->b_cont) { 9907 freemsg(mp); 9908 return; 9909 } 9910 9911 orig_iocp = (struct iocblk *)orig_ioc_mp->b_rptr; 9912 9913 tmp = (orig_ioc_mp->b_cont)->b_cont; 9914 if ((orig_iocp->ioc_cmd == SIOCGXARP) || 9915 (orig_iocp->ioc_cmd == SIOCSXARP) || 9916 (orig_iocp->ioc_cmd == SIOCDXARP)) { 9917 x_arp_ioctl = B_TRUE; 9918 xar = (struct xarpreq *)tmp->b_rptr; 9919 sin = (sin_t *)&xar->xarp_pa; 9920 flagsp = &xar->xarp_flags; 9921 storage = xar->xarp_ha.sdl_data; 9922 if (xar->xarp_ha.sdl_nlen != 0) 9923 ifx_arp_ioctl = B_TRUE; 9924 } else { 9925 ar = (struct arpreq *)tmp->b_rptr; 9926 sin = (sin_t *)&ar->arp_pa; 9927 flagsp = &ar->arp_flags; 9928 storage = ar->arp_ha.sa_data; 9929 } 9930 9931 iocp = (struct iocblk *)mp->b_rptr; 9932 9933 /* 9934 * Pick out the originating queue based on the ioc_id. 9935 */ 9936 ioc_id = iocp->ioc_id; 9937 pending_mp = ill_pending_mp_get(ill, &connp, ioc_id); 9938 if (pending_mp == NULL) { 9939 ASSERT(connp == NULL); 9940 inet_freemsg(mp); 9941 return; 9942 } 9943 ASSERT(connp != NULL); 9944 q = CONNP_TO_WQ(connp); 9945 9946 /* Uncouple the internally generated IOCTL from the original one */ 9947 area = (area_t *)area_mp->b_rptr; 9948 area_mp->b_cont = NULL; 9949 9950 /* 9951 * Restore the b_next and b_prev used by mi code. This is needed 9952 * to complete the ioctl using mi* functions. We stored them in 9953 * the pending mp prior to sending the request to ARP. 9954 */ 9955 orig_ioc_mp->b_cont->b_next = pending_mp->b_cont->b_next; 9956 orig_ioc_mp->b_cont->b_prev = pending_mp->b_cont->b_prev; 9957 inet_freemsg(pending_mp); 9958 9959 /* 9960 * We're done if there was an error or if this is not an SIOCG{X}ARP 9961 * Catch the case where there is an IRE_CACHE by no entry in the 9962 * arp table. 9963 */ 9964 addr = sin->sin_addr.s_addr; 9965 if (iocp->ioc_error && iocp->ioc_cmd == AR_ENTRY_SQUERY) { 9966 ire_t *ire; 9967 dl_unitdata_req_t *dlup; 9968 mblk_t *llmp; 9969 int addr_len; 9970 ill_t *ipsqill = NULL; 9971 9972 if (ifx_arp_ioctl) { 9973 /* 9974 * There's no need to lookup the ill, since 9975 * we've already done that when we started 9976 * processing the ioctl and sent the message 9977 * to ARP on that ill. So use the ill that 9978 * is stored in q->q_ptr. 9979 */ 9980 ipsqill = ill; 9981 ire = ire_ctable_lookup(addr, 0, IRE_CACHE, 9982 ipsqill->ill_ipif, ALL_ZONES, 9983 NULL, MATCH_IRE_TYPE | MATCH_IRE_ILL); 9984 } else { 9985 ire = ire_ctable_lookup(addr, 0, IRE_CACHE, 9986 NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE); 9987 if (ire != NULL) 9988 ipsqill = ire_to_ill(ire); 9989 } 9990 9991 if ((x_arp_ioctl) && (ipsqill != NULL)) 9992 storage += ill_xarp_info(&xar->xarp_ha, ipsqill); 9993 9994 if (ire != NULL) { 9995 *flagsp = ATF_INUSE; 9996 llmp = ire->ire_dlureq_mp; 9997 if (llmp != NULL && ipsqill != NULL) { 9998 uchar_t *macaddr; 9999 10000 addr_len = ipsqill->ill_phys_addr_length; 10001 if (x_arp_ioctl && ((addr_len + 10002 ipsqill->ill_name_length) > 10003 sizeof (xar->xarp_ha.sdl_data))) { 10004 ire_refrele(ire); 10005 freemsg(mp); 10006 ip_ioctl_finish(q, orig_ioc_mp, 10007 EINVAL, NO_COPYOUT, NULL, NULL); 10008 return; 10009 } 10010 *flagsp |= ATF_COM; 10011 dlup = (dl_unitdata_req_t *)llmp->b_rptr; 10012 if (ipsqill->ill_sap_length < 0) 10013 macaddr = llmp->b_rptr + 10014 dlup->dl_dest_addr_offset; 10015 else 10016 macaddr = llmp->b_rptr + 10017 dlup->dl_dest_addr_offset + 10018 ipsqill->ill_sap_length; 10019 /* 10020 * For SIOCGARP, MAC address length 10021 * validation has already been done 10022 * before the ioctl was issued to ARP to 10023 * allow it to progress only on 6 byte 10024 * addressable (ethernet like) media. Thus 10025 * the mac address copying can not overwrite 10026 * the sa_data area below. 10027 */ 10028 bcopy(macaddr, storage, addr_len); 10029 } 10030 /* Ditch the internal IOCTL. */ 10031 freemsg(mp); 10032 ire_refrele(ire); 10033 ip_ioctl_finish(q, orig_ioc_mp, 0, COPYOUT, NULL, NULL); 10034 return; 10035 } 10036 } 10037 10038 /* 10039 * Delete the coresponding IRE_CACHE if any. 10040 * Reset the error if there was one (in case there was no entry 10041 * in arp.) 10042 */ 10043 if (iocp->ioc_cmd == AR_ENTRY_DELETE) { 10044 ipif_t *ipintf = NULL; 10045 10046 if (ifx_arp_ioctl) { 10047 /* 10048 * There's no need to lookup the ill, since 10049 * we've already done that when we started 10050 * processing the ioctl and sent the message 10051 * to ARP on that ill. So use the ill that 10052 * is stored in q->q_ptr. 10053 */ 10054 ipintf = ill->ill_ipif; 10055 } 10056 if (ip_ire_clookup_and_delete(addr, ipintf)) { 10057 /* 10058 * The address in "addr" may be an entry for a 10059 * router. If that's true, then any off-net 10060 * IRE_CACHE entries that go through the router 10061 * with address "addr" must be clobbered. Use 10062 * ire_walk to achieve this goal. 10063 */ 10064 if (ifx_arp_ioctl) 10065 ire_walk_ill_v4(MATCH_IRE_ILL, 0, 10066 ire_delete_cache_gw, (char *)&addr, ill); 10067 else 10068 ire_walk_v4(ire_delete_cache_gw, (char *)&addr, 10069 ALL_ZONES); 10070 iocp->ioc_error = 0; 10071 } 10072 } 10073 10074 if (iocp->ioc_error || iocp->ioc_cmd != AR_ENTRY_SQUERY) { 10075 err = iocp->ioc_error; 10076 freemsg(mp); 10077 ip_ioctl_finish(q, orig_ioc_mp, err, NO_COPYOUT, NULL, NULL); 10078 return; 10079 } 10080 10081 /* 10082 * Completion of an SIOCG{X}ARP. Translate the information from 10083 * the area_t into the struct {x}arpreq. 10084 */ 10085 if (x_arp_ioctl) { 10086 storage += ill_xarp_info(&xar->xarp_ha, ill); 10087 if ((ill->ill_phys_addr_length + ill->ill_name_length) > 10088 sizeof (xar->xarp_ha.sdl_data)) { 10089 freemsg(mp); 10090 ip_ioctl_finish(q, orig_ioc_mp, EINVAL, 10091 NO_COPYOUT, NULL, NULL); 10092 return; 10093 } 10094 } 10095 *flagsp = ATF_INUSE; 10096 if (area->area_flags & ACE_F_PERMANENT) 10097 *flagsp |= ATF_PERM; 10098 if (area->area_flags & ACE_F_PUBLISH) 10099 *flagsp |= ATF_PUBL; 10100 if (area->area_hw_addr_length != 0) { 10101 *flagsp |= ATF_COM; 10102 /* 10103 * For SIOCGARP, MAC address length validation has 10104 * already been done before the ioctl was issued to ARP 10105 * to allow it to progress only on 6 byte addressable 10106 * (ethernet like) media. Thus the mac address copying 10107 * can not overwrite the sa_data area below. 10108 */ 10109 bcopy((char *)area + area->area_hw_addr_offset, 10110 storage, area->area_hw_addr_length); 10111 } 10112 10113 /* Ditch the internal IOCTL. */ 10114 freemsg(mp); 10115 /* Complete the original. */ 10116 ip_ioctl_finish(q, orig_ioc_mp, 0, COPYOUT, NULL, NULL); 10117 } 10118 10119 /* 10120 * Create a new logical interface. If ipif_id is zero (i.e. not a logical 10121 * interface) create the next available logical interface for this 10122 * physical interface. 10123 * If ipif is NULL (i.e. the lookup didn't find one) attempt to create an 10124 * ipif with the specified name. 10125 * 10126 * If the address family is not AF_UNSPEC then set the address as well. 10127 * 10128 * If ip_sioctl_addr returns EINPROGRESS then the ioctl (the copyout) 10129 * is completed when the DL_BIND_ACK arrive in ip_rput_dlpi_writer. 10130 * 10131 * Executed as a writer on the ill or ill group. 10132 * So no lock is needed to traverse the ipif chain, or examine the 10133 * phyint flags. 10134 */ 10135 /* ARGSUSED */ 10136 int 10137 ip_sioctl_addif(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, 10138 ip_ioctl_cmd_t *dummy_ipip, void *dummy_ifreq) 10139 { 10140 mblk_t *mp1; 10141 struct lifreq *lifr; 10142 boolean_t isv6; 10143 boolean_t exists; 10144 char *name; 10145 char *endp; 10146 char *cp; 10147 int namelen; 10148 ipif_t *ipif; 10149 long id; 10150 ipsq_t *ipsq; 10151 ill_t *ill; 10152 sin_t *sin; 10153 int err = 0; 10154 boolean_t found_sep = B_FALSE; 10155 conn_t *connp; 10156 zoneid_t zoneid; 10157 int orig_ifindex = 0; 10158 10159 ip1dbg(("ip_sioctl_addif\n")); 10160 /* Existence of mp1 has been checked in ip_wput_nondata */ 10161 mp1 = mp->b_cont->b_cont; 10162 /* 10163 * Null terminate the string to protect against buffer 10164 * overrun. String was generated by user code and may not 10165 * be trusted. 10166 */ 10167 lifr = (struct lifreq *)mp1->b_rptr; 10168 lifr->lifr_name[LIFNAMSIZ - 1] = '\0'; 10169 name = lifr->lifr_name; 10170 ASSERT(CONN_Q(q)); 10171 connp = Q_TO_CONN(q); 10172 isv6 = connp->conn_af_isv6; 10173 zoneid = connp->conn_zoneid; 10174 namelen = mi_strlen(name); 10175 if (namelen == 0) 10176 return (EINVAL); 10177 10178 exists = B_FALSE; 10179 if ((namelen + 1 == sizeof (ipif_loopback_name)) && 10180 (mi_strcmp(name, ipif_loopback_name) == 0)) { 10181 /* 10182 * Allow creating lo0 using SIOCLIFADDIF. 10183 * can't be any other writer thread. So can pass null below 10184 * for the last 4 args to ipif_lookup_name. 10185 */ 10186 ipif = ipif_lookup_on_name(lifr->lifr_name, namelen, 10187 B_TRUE, &exists, isv6, zoneid, NULL, NULL, NULL, NULL); 10188 /* Prevent any further action */ 10189 if (ipif == NULL) { 10190 return (ENOBUFS); 10191 } else if (!exists) { 10192 /* We created the ipif now and as writer */ 10193 ipif_refrele(ipif); 10194 return (0); 10195 } else { 10196 ill = ipif->ipif_ill; 10197 ill_refhold(ill); 10198 ipif_refrele(ipif); 10199 } 10200 } else { 10201 /* Look for a colon in the name. */ 10202 endp = &name[namelen]; 10203 for (cp = endp; --cp > name; ) { 10204 if (*cp == IPIF_SEPARATOR_CHAR) { 10205 found_sep = B_TRUE; 10206 /* 10207 * Reject any non-decimal aliases for plumbing 10208 * of logical interfaces. Aliases with leading 10209 * zeroes are also rejected as they introduce 10210 * ambiguity in the naming of the interfaces. 10211 * Comparing with "0" takes care of all such 10212 * cases. 10213 */ 10214 if ((strncmp("0", cp+1, 1)) == 0) 10215 return (EINVAL); 10216 10217 if (ddi_strtol(cp+1, &endp, 10, &id) != 0 || 10218 id <= 0 || *endp != '\0') { 10219 return (EINVAL); 10220 } 10221 *cp = '\0'; 10222 break; 10223 } 10224 } 10225 ill = ill_lookup_on_name(name, B_FALSE, isv6, 10226 CONNP_TO_WQ(connp), mp, ip_process_ioctl, &err, NULL); 10227 if (found_sep) 10228 *cp = IPIF_SEPARATOR_CHAR; 10229 if (ill == NULL) 10230 return (err); 10231 } 10232 10233 ipsq = ipsq_try_enter(NULL, ill, q, mp, ip_process_ioctl, NEW_OP, 10234 B_TRUE); 10235 10236 /* 10237 * Release the refhold due to the lookup, now that we are excl 10238 * or we are just returning 10239 */ 10240 ill_refrele(ill); 10241 10242 if (ipsq == NULL) 10243 return (EINPROGRESS); 10244 10245 /* 10246 * If the interface is failed, inactive or offlined, look for a working 10247 * interface in the ill group and create the ipif there. If we can't 10248 * find a good interface, create the ipif anyway so that in.mpathd can 10249 * move it to the first repaired interface. 10250 */ 10251 if ((ill->ill_phyint->phyint_flags & 10252 (PHYI_FAILED|PHYI_INACTIVE|PHYI_OFFLINE)) && 10253 ill->ill_phyint->phyint_groupname_len != 0) { 10254 phyint_t *phyi; 10255 char *groupname = ill->ill_phyint->phyint_groupname; 10256 10257 /* 10258 * We're looking for a working interface, but it doesn't matter 10259 * if it's up or down; so instead of following the group lists, 10260 * we look at each physical interface and compare the groupname. 10261 * We're only interested in interfaces with IPv4 (resp. IPv6) 10262 * plumbed when we're adding an IPv4 (resp. IPv6) ipif. 10263 * Otherwise we create the ipif on the failed interface. 10264 */ 10265 rw_enter(&ill_g_lock, RW_READER); 10266 phyi = avl_first(&phyint_g_list.phyint_list_avl_by_index); 10267 for (; phyi != NULL; 10268 phyi = avl_walk(&phyint_g_list.phyint_list_avl_by_index, 10269 phyi, AVL_AFTER)) { 10270 if (phyi->phyint_groupname_len == 0) 10271 continue; 10272 ASSERT(phyi->phyint_groupname != NULL); 10273 if (mi_strcmp(groupname, phyi->phyint_groupname) == 0 && 10274 !(phyi->phyint_flags & 10275 (PHYI_FAILED|PHYI_INACTIVE|PHYI_OFFLINE)) && 10276 (ill->ill_isv6 ? (phyi->phyint_illv6 != NULL) : 10277 (phyi->phyint_illv4 != NULL))) { 10278 break; 10279 } 10280 } 10281 rw_exit(&ill_g_lock); 10282 10283 if (phyi != NULL) { 10284 orig_ifindex = ill->ill_phyint->phyint_ifindex; 10285 ill = (ill->ill_isv6 ? phyi->phyint_illv6 : 10286 phyi->phyint_illv4); 10287 } 10288 } 10289 10290 /* 10291 * We are now exclusive on the ipsq, so an ill move will be serialized 10292 * before or after us. 10293 */ 10294 ASSERT(IAM_WRITER_ILL(ill)); 10295 ASSERT(ill->ill_move_in_progress == B_FALSE); 10296 10297 if (found_sep && orig_ifindex == 0) { 10298 /* Now see if there is an IPIF with this unit number. */ 10299 for (ipif = ill->ill_ipif; ipif; ipif = ipif->ipif_next) { 10300 if (ipif->ipif_id == id) { 10301 err = EEXIST; 10302 goto done; 10303 } 10304 } 10305 } 10306 10307 /* 10308 * We use IRE_LOCAL for lo0:1 etc. for "receive only" use 10309 * of lo0. We never come here when we plumb lo0:0. It 10310 * happens in ipif_lookup_on_name. 10311 * The specified unit number is ignored when we create the ipif on a 10312 * different interface. However, we save it in ipif_orig_ipifid below so 10313 * that the ipif fails back to the right position. 10314 */ 10315 if ((ipif = ipif_allocate(ill, (found_sep && orig_ifindex == 0) ? 10316 id : -1, IRE_LOCAL, B_TRUE)) == NULL) { 10317 err = ENOBUFS; 10318 goto done; 10319 } 10320 10321 /* Return created name with ioctl */ 10322 (void) sprintf(lifr->lifr_name, "%s%c%d", ill->ill_name, 10323 IPIF_SEPARATOR_CHAR, ipif->ipif_id); 10324 ip1dbg(("created %s\n", lifr->lifr_name)); 10325 10326 /* Set address */ 10327 sin = (sin_t *)&lifr->lifr_addr; 10328 if (sin->sin_family != AF_UNSPEC) { 10329 err = ip_sioctl_addr(ipif, sin, q, mp, 10330 &ip_ndx_ioctl_table[SIOCLIFADDR_NDX], lifr); 10331 } 10332 10333 /* Set ifindex and unit number for failback */ 10334 if (err == 0 && orig_ifindex != 0) { 10335 ipif->ipif_orig_ifindex = orig_ifindex; 10336 if (found_sep) { 10337 ipif->ipif_orig_ipifid = id; 10338 } 10339 } 10340 10341 done: 10342 ipsq_exit(ipsq, B_TRUE, B_TRUE); 10343 return (err); 10344 } 10345 10346 /* 10347 * Remove an existing logical interface. If ipif_id is zero (i.e. not a logical 10348 * interface) delete it based on the IP address (on this physical interface). 10349 * Otherwise delete it based on the ipif_id. 10350 * Also, special handling to allow a removeif of lo0. 10351 */ 10352 /* ARGSUSED */ 10353 int 10354 ip_sioctl_removeif(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 10355 ip_ioctl_cmd_t *ipip, void *dummy_if_req) 10356 { 10357 conn_t *connp; 10358 ill_t *ill = ipif->ipif_ill; 10359 boolean_t success; 10360 10361 ip1dbg(("ip_sioctl_remove_if(%s:%u %p)\n", 10362 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 10363 ASSERT(IAM_WRITER_IPIF(ipif)); 10364 10365 connp = Q_TO_CONN(q); 10366 /* 10367 * Special case for unplumbing lo0 (the loopback physical interface). 10368 * If unplumbing lo0, the incoming address structure has been 10369 * initialized to all zeros. When unplumbing lo0, all its logical 10370 * interfaces must be removed too. 10371 * 10372 * Note that this interface may be called to remove a specific 10373 * loopback logical interface (eg, lo0:1). But in that case 10374 * ipif->ipif_id != 0 so that the code path for that case is the 10375 * same as any other interface (meaning it skips the code directly 10376 * below). 10377 */ 10378 if (ipif->ipif_id == 0 && ipif->ipif_net_type == IRE_LOOPBACK) { 10379 if (sin->sin_family == AF_UNSPEC && 10380 (IN6_IS_ADDR_UNSPECIFIED(&((sin6_t *)sin)->sin6_addr))) { 10381 /* 10382 * Mark it condemned. No new ref. will be made to ill. 10383 */ 10384 mutex_enter(&ill->ill_lock); 10385 ill->ill_state_flags |= ILL_CONDEMNED; 10386 for (ipif = ill->ill_ipif; ipif != NULL; 10387 ipif = ipif->ipif_next) { 10388 ipif->ipif_state_flags |= IPIF_CONDEMNED; 10389 } 10390 mutex_exit(&ill->ill_lock); 10391 10392 ipif = ill->ill_ipif; 10393 /* unplumb the loopback interface */ 10394 ill_delete(ill); 10395 mutex_enter(&connp->conn_lock); 10396 mutex_enter(&ill->ill_lock); 10397 ASSERT(ill->ill_group == NULL); 10398 10399 /* Are any references to this ill active */ 10400 if (ill_is_quiescent(ill)) { 10401 mutex_exit(&ill->ill_lock); 10402 mutex_exit(&connp->conn_lock); 10403 ill_delete_tail(ill); 10404 mi_free(ill); 10405 return (0); 10406 } 10407 success = ipsq_pending_mp_add(connp, ipif, 10408 CONNP_TO_WQ(connp), mp, ILL_FREE); 10409 mutex_exit(&connp->conn_lock); 10410 mutex_exit(&ill->ill_lock); 10411 if (success) 10412 return (EINPROGRESS); 10413 else 10414 return (EINTR); 10415 } 10416 } 10417 10418 /* 10419 * We are exclusive on the ipsq, so an ill move will be serialized 10420 * before or after us. 10421 */ 10422 ASSERT(ill->ill_move_in_progress == B_FALSE); 10423 10424 if (ipif->ipif_id == 0) { 10425 /* Find based on address */ 10426 if (ipif->ipif_isv6) { 10427 sin6_t *sin6; 10428 10429 if (sin->sin_family != AF_INET6) 10430 return (EAFNOSUPPORT); 10431 10432 sin6 = (sin6_t *)sin; 10433 /* We are a writer, so we should be able to lookup */ 10434 ipif = ipif_lookup_addr_v6(&sin6->sin6_addr, 10435 ill, ALL_ZONES, NULL, NULL, NULL, NULL); 10436 if (ipif == NULL) { 10437 /* 10438 * Maybe the address in on another interface in 10439 * the same IPMP group? We check this below. 10440 */ 10441 ipif = ipif_lookup_addr_v6(&sin6->sin6_addr, 10442 NULL, ALL_ZONES, NULL, NULL, NULL, NULL); 10443 } 10444 } else { 10445 ipaddr_t addr; 10446 10447 if (sin->sin_family != AF_INET) 10448 return (EAFNOSUPPORT); 10449 10450 addr = sin->sin_addr.s_addr; 10451 /* We are a writer, so we should be able to lookup */ 10452 ipif = ipif_lookup_addr(addr, ill, ALL_ZONES, NULL, 10453 NULL, NULL, NULL); 10454 if (ipif == NULL) { 10455 /* 10456 * Maybe the address in on another interface in 10457 * the same IPMP group? We check this below. 10458 */ 10459 ipif = ipif_lookup_addr(addr, NULL, ALL_ZONES, 10460 NULL, NULL, NULL, NULL); 10461 } 10462 } 10463 if (ipif == NULL) { 10464 return (EADDRNOTAVAIL); 10465 } 10466 /* 10467 * When the address to be removed is hosted on a different 10468 * interface, we check if the interface is in the same IPMP 10469 * group as the specified one; if so we proceed with the 10470 * removal. 10471 * ill->ill_group is NULL when the ill is down, so we have to 10472 * compare the group names instead. 10473 */ 10474 if (ipif->ipif_ill != ill && 10475 (ipif->ipif_ill->ill_phyint->phyint_groupname_len == 0 || 10476 ill->ill_phyint->phyint_groupname_len == 0 || 10477 mi_strcmp(ipif->ipif_ill->ill_phyint->phyint_groupname, 10478 ill->ill_phyint->phyint_groupname) != 0)) { 10479 ipif_refrele(ipif); 10480 return (EADDRNOTAVAIL); 10481 } 10482 10483 /* This is a writer */ 10484 ipif_refrele(ipif); 10485 } 10486 10487 /* 10488 * Can not delete instance zero since it is tied to the ill. 10489 */ 10490 if (ipif->ipif_id == 0) 10491 return (EBUSY); 10492 10493 mutex_enter(&ill->ill_lock); 10494 ipif->ipif_state_flags |= IPIF_CONDEMNED; 10495 mutex_exit(&ill->ill_lock); 10496 10497 ipif_free(ipif); 10498 10499 mutex_enter(&connp->conn_lock); 10500 mutex_enter(&ill->ill_lock); 10501 10502 /* Are any references to this ipif active */ 10503 if (ipif->ipif_refcnt == 0 && ipif->ipif_ire_cnt == 0) { 10504 mutex_exit(&ill->ill_lock); 10505 mutex_exit(&connp->conn_lock); 10506 ipif_down_tail(ipif); 10507 ipif_free_tail(ipif); 10508 return (0); 10509 } 10510 success = ipsq_pending_mp_add(connp, ipif, CONNP_TO_WQ(connp), mp, 10511 IPIF_FREE); 10512 mutex_exit(&ill->ill_lock); 10513 mutex_exit(&connp->conn_lock); 10514 if (success) 10515 return (EINPROGRESS); 10516 else 10517 return (EINTR); 10518 } 10519 10520 /* 10521 * Restart the removeif ioctl. The refcnt has gone down to 0. 10522 * The ipif is already condemned. So can't find it thru lookups. 10523 */ 10524 /* ARGSUSED */ 10525 int 10526 ip_sioctl_removeif_restart(ipif_t *ipif, sin_t *dummy_sin, queue_t *q, 10527 mblk_t *mp, ip_ioctl_cmd_t *ipip, void *dummy_if_req) 10528 { 10529 ill_t *ill; 10530 10531 ip1dbg(("ip_sioctl_removeif_restart(%s:%u %p)\n", 10532 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 10533 if (ipif->ipif_id == 0 && ipif->ipif_net_type == IRE_LOOPBACK) { 10534 ill = ipif->ipif_ill; 10535 ASSERT(IAM_WRITER_ILL(ill)); 10536 ASSERT((ipif->ipif_state_flags & IPIF_CONDEMNED) && 10537 (ill->ill_state_flags & IPIF_CONDEMNED)); 10538 ill_delete_tail(ill); 10539 mi_free(ill); 10540 return (0); 10541 } 10542 10543 ill = ipif->ipif_ill; 10544 ASSERT(IAM_WRITER_IPIF(ipif)); 10545 ASSERT(ipif->ipif_state_flags & IPIF_CONDEMNED); 10546 10547 ipif_down_tail(ipif); 10548 ipif_free_tail(ipif); 10549 10550 ILL_UNMARK_CHANGING(ill); 10551 return (0); 10552 } 10553 10554 /* 10555 * Set the local interface address. 10556 * Allow an address of all zero when the interface is down. 10557 */ 10558 /* ARGSUSED */ 10559 int 10560 ip_sioctl_addr(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 10561 ip_ioctl_cmd_t *dummy_ipip, void *dummy_ifreq) 10562 { 10563 int err = 0; 10564 in6_addr_t v6addr; 10565 boolean_t need_up = B_FALSE; 10566 10567 ip1dbg(("ip_sioctl_addr(%s:%u %p)\n", 10568 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 10569 10570 ASSERT(IAM_WRITER_IPIF(ipif)); 10571 10572 if (ipif->ipif_isv6) { 10573 sin6_t *sin6; 10574 ill_t *ill; 10575 phyint_t *phyi; 10576 10577 if (sin->sin_family != AF_INET6) 10578 return (EAFNOSUPPORT); 10579 10580 sin6 = (sin6_t *)sin; 10581 v6addr = sin6->sin6_addr; 10582 ill = ipif->ipif_ill; 10583 phyi = ill->ill_phyint; 10584 10585 /* 10586 * Enforce that true multicast interfaces have a link-local 10587 * address for logical unit 0. 10588 */ 10589 if (ipif->ipif_id == 0 && 10590 (ill->ill_flags & ILLF_MULTICAST) && 10591 !(ipif->ipif_flags & (IPIF_POINTOPOINT)) && 10592 !(phyi->phyint_flags & (PHYI_LOOPBACK)) && 10593 !IN6_IS_ADDR_LINKLOCAL(&v6addr)) { 10594 return (EADDRNOTAVAIL); 10595 } 10596 10597 /* 10598 * up interfaces shouldn't have the unspecified address 10599 * unless they also have the IPIF_NOLOCAL flags set and 10600 * have a subnet assigned. 10601 */ 10602 if ((ipif->ipif_flags & IPIF_UP) && 10603 IN6_IS_ADDR_UNSPECIFIED(&v6addr) && 10604 (!(ipif->ipif_flags & IPIF_NOLOCAL) || 10605 IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6subnet))) { 10606 return (EADDRNOTAVAIL); 10607 } 10608 10609 if (!ip_local_addr_ok_v6(&v6addr, &ipif->ipif_v6net_mask)) 10610 return (EADDRNOTAVAIL); 10611 } else { 10612 ipaddr_t addr; 10613 10614 if (sin->sin_family != AF_INET) 10615 return (EAFNOSUPPORT); 10616 10617 addr = sin->sin_addr.s_addr; 10618 10619 /* Allow 0 as the local address. */ 10620 if (addr != 0 && !ip_addr_ok_v4(addr, ipif->ipif_net_mask)) 10621 return (EADDRNOTAVAIL); 10622 10623 IN6_IPADDR_TO_V4MAPPED(addr, &v6addr); 10624 } 10625 10626 10627 /* 10628 * Even if there is no change we redo things just to rerun 10629 * ipif_set_default. 10630 */ 10631 if (ipif->ipif_flags & IPIF_UP) { 10632 /* 10633 * Setting a new local address, make sure 10634 * we have net and subnet bcast ire's for 10635 * the old address if we need them. 10636 */ 10637 if (!ipif->ipif_isv6) 10638 ipif_check_bcast_ires(ipif); 10639 /* 10640 * If the interface is already marked up, 10641 * we call ipif_down which will take care 10642 * of ditching any IREs that have been set 10643 * up based on the old interface address. 10644 */ 10645 err = ipif_logical_down(ipif, q, mp); 10646 if (err == EINPROGRESS) 10647 return (err); 10648 ipif_down_tail(ipif); 10649 need_up = 1; 10650 } 10651 10652 err = ip_sioctl_addr_tail(ipif, sin, q, mp, need_up); 10653 return (err); 10654 } 10655 10656 int 10657 ip_sioctl_addr_tail(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 10658 boolean_t need_up) 10659 { 10660 in6_addr_t v6addr; 10661 ipaddr_t addr; 10662 sin6_t *sin6; 10663 int err = 0; 10664 10665 ip1dbg(("ip_sioctl_addr_tail(%s:%u %p)\n", 10666 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 10667 ASSERT(IAM_WRITER_IPIF(ipif)); 10668 if (ipif->ipif_isv6) { 10669 sin6 = (sin6_t *)sin; 10670 v6addr = sin6->sin6_addr; 10671 } else { 10672 addr = sin->sin_addr.s_addr; 10673 IN6_IPADDR_TO_V4MAPPED(addr, &v6addr); 10674 } 10675 mutex_enter(&ipif->ipif_ill->ill_lock); 10676 ipif->ipif_v6lcl_addr = v6addr; 10677 if (ipif->ipif_flags & (IPIF_ANYCAST | IPIF_NOLOCAL)) { 10678 ipif->ipif_v6src_addr = ipv6_all_zeros; 10679 } else { 10680 ipif->ipif_v6src_addr = v6addr; 10681 } 10682 10683 if ((ipif->ipif_isv6) && IN6_IS_ADDR_6TO4(&v6addr) && 10684 (!ipif->ipif_ill->ill_is_6to4tun)) { 10685 queue_t *wqp = ipif->ipif_ill->ill_wq; 10686 10687 /* 10688 * The local address of this interface is a 6to4 address, 10689 * check if this interface is in fact a 6to4 tunnel or just 10690 * an interface configured with a 6to4 address. We are only 10691 * interested in the former. 10692 */ 10693 if (wqp != NULL) { 10694 while ((wqp->q_next != NULL) && 10695 (wqp->q_next->q_qinfo != NULL) && 10696 (wqp->q_next->q_qinfo->qi_minfo != NULL)) { 10697 10698 if (wqp->q_next->q_qinfo->qi_minfo->mi_idnum 10699 == TUN6TO4_MODID) { 10700 /* set for use in IP */ 10701 ipif->ipif_ill->ill_is_6to4tun = 1; 10702 break; 10703 } 10704 wqp = wqp->q_next; 10705 } 10706 } 10707 } 10708 10709 ipif_set_default(ipif); 10710 mutex_exit(&ipif->ipif_ill->ill_lock); 10711 10712 if (need_up) { 10713 /* 10714 * Now bring the interface back up. If this 10715 * is the only IPIF for the ILL, ipif_up 10716 * will have to re-bind to the device, so 10717 * we may get back EINPROGRESS, in which 10718 * case, this IOCTL will get completed in 10719 * ip_rput_dlpi when we see the DL_BIND_ACK. 10720 */ 10721 err = ipif_up(ipif, q, mp); 10722 } else { 10723 /* 10724 * Update the IPIF list in SCTP, ipif_up_done() will do it 10725 * if need_up is true. 10726 */ 10727 sctp_update_ipif(ipif, SCTP_IPIF_UPDATE); 10728 } 10729 10730 return (err); 10731 } 10732 10733 10734 /* 10735 * Restart entry point to restart the address set operation after the 10736 * refcounts have dropped to zero. 10737 */ 10738 /* ARGSUSED */ 10739 int 10740 ip_sioctl_addr_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 10741 ip_ioctl_cmd_t *ipip, void *ifreq) 10742 { 10743 ip1dbg(("ip_sioctl_addr_restart(%s:%u %p)\n", 10744 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 10745 ASSERT(IAM_WRITER_IPIF(ipif)); 10746 ipif_down_tail(ipif); 10747 return (ip_sioctl_addr_tail(ipif, sin, q, mp, B_TRUE)); 10748 } 10749 10750 /* ARGSUSED */ 10751 int 10752 ip_sioctl_get_addr(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 10753 ip_ioctl_cmd_t *ipip, void *if_req) 10754 { 10755 sin6_t *sin6 = (struct sockaddr_in6 *)sin; 10756 struct lifreq *lifr = (struct lifreq *)if_req; 10757 10758 ip1dbg(("ip_sioctl_get_addr(%s:%u %p)\n", 10759 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 10760 /* 10761 * The net mask and address can't change since we have a 10762 * reference to the ipif. So no lock is necessary. 10763 */ 10764 if (ipif->ipif_isv6) { 10765 *sin6 = sin6_null; 10766 sin6->sin6_family = AF_INET6; 10767 sin6->sin6_addr = ipif->ipif_v6lcl_addr; 10768 ASSERT(ipip->ipi_cmd_type == LIF_CMD); 10769 lifr->lifr_addrlen = 10770 ip_mask_to_plen_v6(&ipif->ipif_v6net_mask); 10771 } else { 10772 *sin = sin_null; 10773 sin->sin_family = AF_INET; 10774 sin->sin_addr.s_addr = ipif->ipif_lcl_addr; 10775 if (ipip->ipi_cmd_type == LIF_CMD) { 10776 lifr->lifr_addrlen = 10777 ip_mask_to_plen(ipif->ipif_net_mask); 10778 } 10779 } 10780 return (0); 10781 } 10782 10783 /* 10784 * Set the destination address for a pt-pt interface. 10785 */ 10786 /* ARGSUSED */ 10787 int 10788 ip_sioctl_dstaddr(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 10789 ip_ioctl_cmd_t *ipip, void *if_req) 10790 { 10791 int err = 0; 10792 in6_addr_t v6addr; 10793 boolean_t need_up = B_FALSE; 10794 10795 ip1dbg(("ip_sioctl_dstaddr(%s:%u %p)\n", 10796 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 10797 ASSERT(IAM_WRITER_IPIF(ipif)); 10798 10799 if (ipif->ipif_isv6) { 10800 sin6_t *sin6; 10801 10802 if (sin->sin_family != AF_INET6) 10803 return (EAFNOSUPPORT); 10804 10805 sin6 = (sin6_t *)sin; 10806 v6addr = sin6->sin6_addr; 10807 10808 if (!ip_remote_addr_ok_v6(&v6addr, &ipif->ipif_v6net_mask)) 10809 return (EADDRNOTAVAIL); 10810 } else { 10811 ipaddr_t addr; 10812 10813 if (sin->sin_family != AF_INET) 10814 return (EAFNOSUPPORT); 10815 10816 addr = sin->sin_addr.s_addr; 10817 if (!ip_addr_ok_v4(addr, ipif->ipif_net_mask)) 10818 return (EADDRNOTAVAIL); 10819 10820 IN6_IPADDR_TO_V4MAPPED(addr, &v6addr); 10821 } 10822 10823 if (IN6_ARE_ADDR_EQUAL(&ipif->ipif_v6pp_dst_addr, &v6addr)) 10824 return (0); /* No change */ 10825 10826 if (ipif->ipif_flags & IPIF_UP) { 10827 /* 10828 * If the interface is already marked up, 10829 * we call ipif_down which will take care 10830 * of ditching any IREs that have been set 10831 * up based on the old pp dst address. 10832 */ 10833 err = ipif_logical_down(ipif, q, mp); 10834 if (err == EINPROGRESS) 10835 return (err); 10836 ipif_down_tail(ipif); 10837 need_up = B_TRUE; 10838 } 10839 /* 10840 * could return EINPROGRESS. If so ioctl will complete in 10841 * ip_rput_dlpi_writer 10842 */ 10843 err = ip_sioctl_dstaddr_tail(ipif, sin, q, mp, need_up); 10844 return (err); 10845 } 10846 10847 static int 10848 ip_sioctl_dstaddr_tail(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 10849 boolean_t need_up) 10850 { 10851 in6_addr_t v6addr; 10852 ill_t *ill = ipif->ipif_ill; 10853 int err = 0; 10854 10855 ip1dbg(("ip_sioctl_dstaddr_tail(%s:%u %p)\n", 10856 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 10857 if (ipif->ipif_isv6) { 10858 sin6_t *sin6; 10859 10860 sin6 = (sin6_t *)sin; 10861 v6addr = sin6->sin6_addr; 10862 } else { 10863 ipaddr_t addr; 10864 10865 addr = sin->sin_addr.s_addr; 10866 IN6_IPADDR_TO_V4MAPPED(addr, &v6addr); 10867 } 10868 mutex_enter(&ill->ill_lock); 10869 /* Set point to point destination address. */ 10870 if ((ipif->ipif_flags & IPIF_POINTOPOINT) == 0) { 10871 /* 10872 * Allow this as a means of creating logical 10873 * pt-pt interfaces on top of e.g. an Ethernet. 10874 * XXX Undocumented HACK for testing. 10875 * pt-pt interfaces are created with NUD disabled. 10876 */ 10877 ipif->ipif_flags |= IPIF_POINTOPOINT; 10878 ipif->ipif_flags &= ~IPIF_BROADCAST; 10879 if (ipif->ipif_isv6) 10880 ipif->ipif_ill->ill_flags |= ILLF_NONUD; 10881 } 10882 10883 /* Set the new address. */ 10884 ipif->ipif_v6pp_dst_addr = v6addr; 10885 /* Make sure subnet tracks pp_dst */ 10886 ipif->ipif_v6subnet = ipif->ipif_v6pp_dst_addr; 10887 mutex_exit(&ill->ill_lock); 10888 10889 if (need_up) { 10890 /* 10891 * Now bring the interface back up. If this 10892 * is the only IPIF for the ILL, ipif_up 10893 * will have to re-bind to the device, so 10894 * we may get back EINPROGRESS, in which 10895 * case, this IOCTL will get completed in 10896 * ip_rput_dlpi when we see the DL_BIND_ACK. 10897 */ 10898 err = ipif_up(ipif, q, mp); 10899 } 10900 return (err); 10901 } 10902 10903 /* 10904 * Restart entry point to restart the dstaddress set operation after the 10905 * refcounts have dropped to zero. 10906 */ 10907 /* ARGSUSED */ 10908 int 10909 ip_sioctl_dstaddr_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 10910 ip_ioctl_cmd_t *ipip, void *ifreq) 10911 { 10912 ip1dbg(("ip_sioctl_dstaddr_restart(%s:%u %p)\n", 10913 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 10914 ipif_down_tail(ipif); 10915 return (ip_sioctl_dstaddr_tail(ipif, sin, q, mp, B_TRUE)); 10916 } 10917 10918 /* ARGSUSED */ 10919 int 10920 ip_sioctl_get_dstaddr(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 10921 ip_ioctl_cmd_t *ipip, void *if_req) 10922 { 10923 sin6_t *sin6 = (struct sockaddr_in6 *)sin; 10924 10925 ip1dbg(("ip_sioctl_get_dstaddr(%s:%u %p)\n", 10926 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 10927 /* 10928 * Get point to point destination address. The addresses can't 10929 * change since we hold a reference to the ipif. 10930 */ 10931 if ((ipif->ipif_flags & IPIF_POINTOPOINT) == 0) 10932 return (EADDRNOTAVAIL); 10933 10934 if (ipif->ipif_isv6) { 10935 ASSERT(ipip->ipi_cmd_type == LIF_CMD); 10936 *sin6 = sin6_null; 10937 sin6->sin6_family = AF_INET6; 10938 sin6->sin6_addr = ipif->ipif_v6pp_dst_addr; 10939 } else { 10940 *sin = sin_null; 10941 sin->sin_family = AF_INET; 10942 sin->sin_addr.s_addr = ipif->ipif_pp_dst_addr; 10943 } 10944 return (0); 10945 } 10946 10947 /* 10948 * part of ipmp, make this func return the active/inactive state and 10949 * caller can set once atomically instead of multiple mutex_enter/mutex_exit 10950 */ 10951 /* 10952 * This function either sets or clears the IFF_INACTIVE flag. 10953 * 10954 * As long as there are some addresses or multicast memberships on the 10955 * IPv4 or IPv6 interface of the "phyi" that does not belong in here, we 10956 * will consider it to be ACTIVE (clear IFF_INACTIVE) i.e the interface 10957 * will be used for outbound packets. 10958 * 10959 * Caller needs to verify the validity of setting IFF_INACTIVE. 10960 */ 10961 static void 10962 phyint_inactive(phyint_t *phyi) 10963 { 10964 ill_t *ill_v4; 10965 ill_t *ill_v6; 10966 ipif_t *ipif; 10967 ilm_t *ilm; 10968 10969 ill_v4 = phyi->phyint_illv4; 10970 ill_v6 = phyi->phyint_illv6; 10971 10972 /* 10973 * No need for a lock while traversing the list since iam 10974 * a writer 10975 */ 10976 if (ill_v4 != NULL) { 10977 ASSERT(IAM_WRITER_ILL(ill_v4)); 10978 for (ipif = ill_v4->ill_ipif; ipif != NULL; 10979 ipif = ipif->ipif_next) { 10980 if (ipif->ipif_orig_ifindex != phyi->phyint_ifindex) { 10981 mutex_enter(&phyi->phyint_lock); 10982 phyi->phyint_flags &= ~PHYI_INACTIVE; 10983 mutex_exit(&phyi->phyint_lock); 10984 return; 10985 } 10986 } 10987 for (ilm = ill_v4->ill_ilm; ilm != NULL; 10988 ilm = ilm->ilm_next) { 10989 if (ilm->ilm_orig_ifindex != phyi->phyint_ifindex) { 10990 mutex_enter(&phyi->phyint_lock); 10991 phyi->phyint_flags &= ~PHYI_INACTIVE; 10992 mutex_exit(&phyi->phyint_lock); 10993 return; 10994 } 10995 } 10996 } 10997 if (ill_v6 != NULL) { 10998 ill_v6 = phyi->phyint_illv6; 10999 for (ipif = ill_v6->ill_ipif; ipif != NULL; 11000 ipif = ipif->ipif_next) { 11001 if (ipif->ipif_orig_ifindex != phyi->phyint_ifindex) { 11002 mutex_enter(&phyi->phyint_lock); 11003 phyi->phyint_flags &= ~PHYI_INACTIVE; 11004 mutex_exit(&phyi->phyint_lock); 11005 return; 11006 } 11007 } 11008 for (ilm = ill_v6->ill_ilm; ilm != NULL; 11009 ilm = ilm->ilm_next) { 11010 if (ilm->ilm_orig_ifindex != phyi->phyint_ifindex) { 11011 mutex_enter(&phyi->phyint_lock); 11012 phyi->phyint_flags &= ~PHYI_INACTIVE; 11013 mutex_exit(&phyi->phyint_lock); 11014 return; 11015 } 11016 } 11017 } 11018 mutex_enter(&phyi->phyint_lock); 11019 phyi->phyint_flags |= PHYI_INACTIVE; 11020 mutex_exit(&phyi->phyint_lock); 11021 } 11022 11023 /* 11024 * This function is called only when the phyint flags change. Currently 11025 * called from ip_sioctl_flags. We re-do the broadcast nomination so 11026 * that we can select a good ill. 11027 */ 11028 static void 11029 ip_redo_nomination(phyint_t *phyi) 11030 { 11031 ill_t *ill_v4; 11032 11033 ill_v4 = phyi->phyint_illv4; 11034 11035 if (ill_v4 != NULL && ill_v4->ill_group != NULL) { 11036 ASSERT(IAM_WRITER_ILL(ill_v4)); 11037 if (ill_v4->ill_group->illgrp_ill_count > 1) 11038 ill_nominate_bcast_rcv(ill_v4->ill_group); 11039 } 11040 } 11041 11042 /* 11043 * Heuristic to check if ill is INACTIVE. 11044 * Checks if ill has an ipif with an usable ip address. 11045 * 11046 * Return values: 11047 * B_TRUE - ill is INACTIVE; has no usable ipif 11048 * B_FALSE - ill is not INACTIVE; ill has at least one usable ipif 11049 */ 11050 static boolean_t 11051 ill_is_inactive(ill_t *ill) 11052 { 11053 ipif_t *ipif; 11054 11055 /* Check whether it is in an IPMP group */ 11056 if (ill->ill_phyint->phyint_groupname == NULL) 11057 return (B_FALSE); 11058 11059 if (ill->ill_ipif_up_count == 0) 11060 return (B_TRUE); 11061 11062 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 11063 uint64_t flags = ipif->ipif_flags; 11064 11065 /* 11066 * This ipif is usable if it is IPIF_UP and not a 11067 * dedicated test address. A dedicated test address 11068 * is marked IPIF_NOFAILOVER *and* IPIF_DEPRECATED 11069 * (note in particular that V6 test addresses are 11070 * link-local data addresses and thus are marked 11071 * IPIF_NOFAILOVER but not IPIF_DEPRECATED). 11072 */ 11073 if ((flags & IPIF_UP) && 11074 ((flags & (IPIF_DEPRECATED|IPIF_NOFAILOVER)) != 11075 (IPIF_DEPRECATED|IPIF_NOFAILOVER))) 11076 return (B_FALSE); 11077 } 11078 return (B_TRUE); 11079 } 11080 11081 /* 11082 * Set interface flags. 11083 * Need to do special action for IPIF_UP, IPIF_DEPRECATED, IPIF_NOXMIT, 11084 * IPIF_NOLOCAL, ILLF_NONUD, ILLF_NOARP, IPIF_PRIVATE, IPIF_ANYCAST, 11085 * IPIF_PREFERRED, PHYI_STANDBY, PHYI_FAILED and PHYI_OFFLINE. 11086 * 11087 * NOTE : We really don't enforce that ipif_id zero should be used 11088 * for setting any flags other than IFF_LOGINT_FLAGS. This 11089 * is because applications generally does SICGLIFFLAGS and 11090 * ORs in the new flags (that affects the logical) and does a 11091 * SIOCSLIFFLAGS. Thus, "flags" below could contain bits other 11092 * than IFF_LOGINT_FLAGS. One could check whether "turn_on" - the 11093 * flags that will be turned on is correct with respect to 11094 * ipif_id 0. For backward compatibility reasons, it is not done. 11095 */ 11096 /* ARGSUSED */ 11097 int 11098 ip_sioctl_flags(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11099 ip_ioctl_cmd_t *ipip, void *if_req) 11100 { 11101 uint64_t turn_on; 11102 uint64_t turn_off; 11103 int err; 11104 boolean_t need_up = B_FALSE; 11105 phyint_t *phyi; 11106 ill_t *ill; 11107 uint64_t intf_flags; 11108 boolean_t phyint_flags_modified = B_FALSE; 11109 uint64_t flags; 11110 struct ifreq *ifr; 11111 struct lifreq *lifr; 11112 boolean_t set_linklocal = B_FALSE; 11113 boolean_t zero_source = B_FALSE; 11114 11115 ip1dbg(("ip_sioctl_flags(%s:%u %p)\n", 11116 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11117 11118 ASSERT(IAM_WRITER_IPIF(ipif)); 11119 11120 ill = ipif->ipif_ill; 11121 phyi = ill->ill_phyint; 11122 11123 if (ipip->ipi_cmd_type == IF_CMD) { 11124 ifr = (struct ifreq *)if_req; 11125 flags = (uint64_t)(ifr->ifr_flags & 0x0000ffff); 11126 } else { 11127 lifr = (struct lifreq *)if_req; 11128 flags = lifr->lifr_flags; 11129 } 11130 11131 intf_flags = ipif->ipif_flags | ill->ill_flags | phyi->phyint_flags; 11132 11133 /* 11134 * Has the flags been set correctly till now ? 11135 */ 11136 ASSERT((phyi->phyint_flags & ~(IFF_PHYINT_FLAGS)) == 0); 11137 ASSERT((ill->ill_flags & ~(IFF_PHYINTINST_FLAGS)) == 0); 11138 ASSERT((ipif->ipif_flags & ~(IFF_LOGINT_FLAGS)) == 0); 11139 /* 11140 * Compare the new flags to the old, and partition 11141 * into those coming on and those going off. 11142 * For the 16 bit command keep the bits above bit 16 unchanged. 11143 */ 11144 if (ipip->ipi_cmd == SIOCSIFFLAGS) 11145 flags |= intf_flags & ~0xFFFF; 11146 11147 /* 11148 * First check which bits will change and then which will 11149 * go on and off 11150 */ 11151 turn_on = (flags ^ intf_flags) & ~IFF_CANTCHANGE; 11152 if (!turn_on) 11153 return (0); /* No change */ 11154 11155 turn_off = intf_flags & turn_on; 11156 turn_on ^= turn_off; 11157 err = 0; 11158 11159 /* 11160 * Don't allow any bits belonging to the logical interface 11161 * to be set or cleared on the replacement ipif that was 11162 * created temporarily during a MOVE. 11163 */ 11164 if (ipif->ipif_replace_zero && 11165 ((turn_on|turn_off) & IFF_LOGINT_FLAGS) != 0) { 11166 return (EINVAL); 11167 } 11168 11169 /* 11170 * Only allow the IFF_XRESOLV and IFF_TEMPORARY flags to be set on 11171 * IPv6 interfaces. 11172 */ 11173 if ((turn_on & (IFF_XRESOLV|IFF_TEMPORARY)) && !(ipif->ipif_isv6)) 11174 return (EINVAL); 11175 11176 /* 11177 * Don't allow the IFF_ROUTER flag to be turned on on loopback 11178 * interfaces. It makes no sense in that context. 11179 */ 11180 if ((turn_on & IFF_ROUTER) && (phyi->phyint_flags & PHYI_LOOPBACK)) 11181 return (EINVAL); 11182 11183 if (flags & (IFF_NOLOCAL|IFF_ANYCAST)) 11184 zero_source = B_TRUE; 11185 11186 /* 11187 * For IPv6 ipif_id 0, don't allow the interface to be up without 11188 * a link local address if IFF_NOLOCAL or IFF_ANYCAST are not set. 11189 * If the link local address isn't set, and can be set, it will get 11190 * set later on in this function. 11191 */ 11192 if (ipif->ipif_id == 0 && ipif->ipif_isv6 && 11193 (flags & IFF_UP) && !zero_source && 11194 IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6lcl_addr)) { 11195 if (ipif_cant_setlinklocal(ipif)) 11196 return (EINVAL); 11197 set_linklocal = B_TRUE; 11198 } 11199 11200 /* 11201 * ILL cannot be part of a usesrc group and and IPMP group at the 11202 * same time. No need to grab ill_g_usesrc_lock here, see 11203 * synchronization notes in ip.c 11204 */ 11205 if (turn_on & PHYI_STANDBY && 11206 ipif->ipif_ill->ill_usesrc_grp_next != NULL) { 11207 return (EINVAL); 11208 } 11209 11210 /* 11211 * If we modify physical interface flags, we'll potentially need to 11212 * send up two routing socket messages for the changes (one for the 11213 * IPv4 ill, and another for the IPv6 ill). Note that here. 11214 */ 11215 if ((turn_on|turn_off) & IFF_PHYINT_FLAGS) 11216 phyint_flags_modified = B_TRUE; 11217 11218 /* 11219 * If we are setting or clearing FAILED or STANDBY or OFFLINE, 11220 * we need to flush the IRE_CACHES belonging to this ill. 11221 * We handle this case here without doing the DOWN/UP dance 11222 * like it is done for other flags. If some other flags are 11223 * being turned on/off with FAILED/STANDBY/OFFLINE, the code 11224 * below will handle it by bringing it down and then 11225 * bringing it UP. 11226 */ 11227 if ((turn_on|turn_off) & (PHYI_FAILED|PHYI_STANDBY|PHYI_OFFLINE)) { 11228 ill_t *ill_v4, *ill_v6; 11229 11230 ill_v4 = phyi->phyint_illv4; 11231 ill_v6 = phyi->phyint_illv6; 11232 11233 /* 11234 * First set the INACTIVE flag if needed. Then delete the ires. 11235 * ire_add will atomically prevent creating new IRE_CACHEs 11236 * unless hidden flag is set. 11237 * PHYI_FAILED and PHYI_INACTIVE are exclusive 11238 */ 11239 if ((turn_on & PHYI_FAILED) && 11240 ((intf_flags & PHYI_STANDBY) || !ipmp_enable_failback)) { 11241 /* Reset PHYI_INACTIVE when PHYI_FAILED is being set */ 11242 phyi->phyint_flags &= ~PHYI_INACTIVE; 11243 } 11244 if ((turn_off & PHYI_FAILED) && 11245 ((intf_flags & PHYI_STANDBY) || 11246 (!ipmp_enable_failback && ill_is_inactive(ill)))) { 11247 phyint_inactive(phyi); 11248 } 11249 11250 if (turn_on & PHYI_STANDBY) { 11251 /* 11252 * We implicitly set INACTIVE only when STANDBY is set. 11253 * INACTIVE is also set on non-STANDBY phyint when user 11254 * disables FAILBACK using configuration file. 11255 * Do not allow STANDBY to be set on such INACTIVE 11256 * phyint 11257 */ 11258 if (phyi->phyint_flags & PHYI_INACTIVE) 11259 return (EINVAL); 11260 if (!(phyi->phyint_flags & PHYI_FAILED)) 11261 phyint_inactive(phyi); 11262 } 11263 if (turn_off & PHYI_STANDBY) { 11264 if (ipmp_enable_failback) { 11265 /* 11266 * Reset PHYI_INACTIVE. 11267 */ 11268 phyi->phyint_flags &= ~PHYI_INACTIVE; 11269 } else if (ill_is_inactive(ill) && 11270 !(phyi->phyint_flags & PHYI_FAILED)) { 11271 /* 11272 * Need to set INACTIVE, when user sets 11273 * STANDBY on a non-STANDBY phyint and 11274 * later resets STANDBY 11275 */ 11276 phyint_inactive(phyi); 11277 } 11278 } 11279 /* 11280 * We should always send up a message so that the 11281 * daemons come to know of it. Note that the zeroth 11282 * interface can be down and the check below for IPIF_UP 11283 * will not make sense as we are actually setting 11284 * a phyint flag here. We assume that the ipif used 11285 * is always the zeroth ipif. (ip_rts_ifmsg does not 11286 * send up any message for non-zero ipifs). 11287 */ 11288 phyint_flags_modified = B_TRUE; 11289 11290 if (ill_v4 != NULL) { 11291 ire_walk_ill_v4(MATCH_IRE_ILL | MATCH_IRE_TYPE, 11292 IRE_CACHE, ill_stq_cache_delete, 11293 (char *)ill_v4, ill_v4); 11294 illgrp_reset_schednext(ill_v4); 11295 } 11296 if (ill_v6 != NULL) { 11297 ire_walk_ill_v6(MATCH_IRE_ILL | MATCH_IRE_TYPE, 11298 IRE_CACHE, ill_stq_cache_delete, 11299 (char *)ill_v6, ill_v6); 11300 illgrp_reset_schednext(ill_v6); 11301 } 11302 } 11303 11304 /* 11305 * If ILLF_ROUTER changes, we need to change the ip forwarding 11306 * status of the interface and, if the interface is part of an IPMP 11307 * group, all other interfaces that are part of the same IPMP 11308 * group. 11309 */ 11310 if ((turn_on | turn_off) & ILLF_ROUTER) { 11311 (void) ill_forward_set(q, mp, ((turn_on & ILLF_ROUTER) != 0), 11312 (caddr_t)ill); 11313 } 11314 11315 /* 11316 * If the interface is not UP and we are not going to 11317 * bring it UP, record the flags and return. When the 11318 * interface comes UP later, the right actions will be 11319 * taken. 11320 */ 11321 if (!(ipif->ipif_flags & IPIF_UP) && 11322 !(turn_on & IPIF_UP)) { 11323 /* Record new flags in their respective places. */ 11324 mutex_enter(&ill->ill_lock); 11325 mutex_enter(&ill->ill_phyint->phyint_lock); 11326 ipif->ipif_flags |= (turn_on & IFF_LOGINT_FLAGS); 11327 ipif->ipif_flags &= (~turn_off & IFF_LOGINT_FLAGS); 11328 ill->ill_flags |= (turn_on & IFF_PHYINTINST_FLAGS); 11329 ill->ill_flags &= (~turn_off & IFF_PHYINTINST_FLAGS); 11330 phyi->phyint_flags |= (turn_on & IFF_PHYINT_FLAGS); 11331 phyi->phyint_flags &= (~turn_off & IFF_PHYINT_FLAGS); 11332 mutex_exit(&ill->ill_lock); 11333 mutex_exit(&ill->ill_phyint->phyint_lock); 11334 11335 /* 11336 * We do the broadcast and nomination here rather 11337 * than waiting for a FAILOVER/FAILBACK to happen. In 11338 * the case of FAILBACK from INACTIVE standby to the 11339 * interface that has been repaired, PHYI_FAILED has not 11340 * been cleared yet. If there are only two interfaces in 11341 * that group, all we have is a FAILED and INACTIVE 11342 * interface. If we do the nomination soon after a failback, 11343 * the broadcast nomination code would select the 11344 * INACTIVE interface for receiving broadcasts as FAILED is 11345 * not yet cleared. As we don't want STANDBY/INACTIVE to 11346 * receive broadcast packets, we need to redo nomination 11347 * when the FAILED is cleared here. Thus, in general we 11348 * always do the nomination here for FAILED, STANDBY 11349 * and OFFLINE. 11350 */ 11351 if (((turn_on | turn_off) & 11352 (PHYI_FAILED|PHYI_STANDBY|PHYI_OFFLINE))) { 11353 ip_redo_nomination(phyi); 11354 } 11355 if (phyint_flags_modified) { 11356 if (phyi->phyint_illv4 != NULL) { 11357 ip_rts_ifmsg(phyi->phyint_illv4-> 11358 ill_ipif); 11359 } 11360 if (phyi->phyint_illv6 != NULL) { 11361 ip_rts_ifmsg(phyi->phyint_illv6-> 11362 ill_ipif); 11363 } 11364 } 11365 return (0); 11366 } else if (set_linklocal || zero_source) { 11367 mutex_enter(&ill->ill_lock); 11368 if (set_linklocal) 11369 ipif->ipif_state_flags |= IPIF_SET_LINKLOCAL; 11370 if (zero_source) 11371 ipif->ipif_state_flags |= IPIF_ZERO_SOURCE; 11372 mutex_exit(&ill->ill_lock); 11373 } 11374 11375 /* 11376 * Disallow IPv6 interfaces coming up that have the unspecified address, 11377 * or point-to-point interfaces with an unspecified destination. We do 11378 * allow the address to be unspecified for IPIF_NOLOCAL interfaces that 11379 * have a subnet assigned, which is how in.ndpd currently manages its 11380 * onlink prefix list when no addresses are configured with those 11381 * prefixes. 11382 */ 11383 if (ipif->ipif_isv6 && 11384 ((IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6lcl_addr) && 11385 (!(ipif->ipif_flags & IPIF_NOLOCAL) && !(turn_on & IPIF_NOLOCAL) || 11386 IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6subnet))) || 11387 ((ipif->ipif_flags & IPIF_POINTOPOINT) && 11388 IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6pp_dst_addr)))) { 11389 return (EINVAL); 11390 } 11391 11392 /* 11393 * Prevent IPv4 point-to-point interfaces with a 0.0.0.0 destination 11394 * from being brought up. 11395 */ 11396 if (!ipif->ipif_isv6 && 11397 ((ipif->ipif_flags & IPIF_POINTOPOINT) && 11398 ipif->ipif_pp_dst_addr == INADDR_ANY)) { 11399 return (EINVAL); 11400 } 11401 11402 /* 11403 * The only flag changes that we currently take specific action on 11404 * is IPIF_UP, IPIF_DEPRECATED, IPIF_NOXMIT, IPIF_NOLOCAL, 11405 * ILLF_NOARP, ILLF_NONUD, IPIF_PRIVATE, IPIF_ANYCAST, and 11406 * IPIF_PREFERRED. This is done by bring the ipif down, changing 11407 * the flags and bringing it back up again. 11408 */ 11409 if ((turn_on|turn_off) & 11410 (IPIF_UP|IPIF_DEPRECATED|IPIF_NOXMIT|IPIF_NOLOCAL|ILLF_NOARP| 11411 ILLF_NONUD|IPIF_PRIVATE|IPIF_ANYCAST|IPIF_PREFERRED)) { 11412 /* 11413 * Taking this ipif down, make sure we have 11414 * valid net and subnet bcast ire's for other 11415 * logical interfaces, if we need them. 11416 */ 11417 if (!ipif->ipif_isv6) 11418 ipif_check_bcast_ires(ipif); 11419 11420 if (((ipif->ipif_flags | turn_on) & IPIF_UP) && 11421 !(turn_off & IPIF_UP)) { 11422 need_up = B_TRUE; 11423 if (ipif->ipif_flags & IPIF_UP) 11424 ill->ill_logical_down = 1; 11425 turn_on &= ~IPIF_UP; 11426 } 11427 err = ipif_down(ipif, q, mp); 11428 ip1dbg(("ipif_down returns %d err ", err)); 11429 if (err == EINPROGRESS) 11430 return (err); 11431 ipif_down_tail(ipif); 11432 } 11433 return (ip_sioctl_flags_tail(ipif, flags, q, mp, need_up)); 11434 } 11435 11436 static int 11437 ip_sioctl_flags_tail(ipif_t *ipif, uint64_t flags, queue_t *q, mblk_t *mp, 11438 boolean_t need_up) 11439 { 11440 ill_t *ill; 11441 phyint_t *phyi; 11442 uint64_t turn_on; 11443 uint64_t turn_off; 11444 uint64_t intf_flags; 11445 boolean_t phyint_flags_modified = B_FALSE; 11446 int err = 0; 11447 boolean_t set_linklocal = B_FALSE; 11448 boolean_t zero_source = B_FALSE; 11449 11450 ip1dbg(("ip_sioctl_flags_tail(%s:%u)\n", 11451 ipif->ipif_ill->ill_name, ipif->ipif_id)); 11452 11453 ASSERT(IAM_WRITER_IPIF(ipif)); 11454 11455 ill = ipif->ipif_ill; 11456 phyi = ill->ill_phyint; 11457 11458 intf_flags = ipif->ipif_flags | ill->ill_flags | phyi->phyint_flags; 11459 turn_on = (flags ^ intf_flags) & ~(IFF_CANTCHANGE | IFF_UP); 11460 11461 turn_off = intf_flags & turn_on; 11462 turn_on ^= turn_off; 11463 11464 if ((turn_on|turn_off) & (PHYI_FAILED|PHYI_STANDBY|PHYI_OFFLINE)) 11465 phyint_flags_modified = B_TRUE; 11466 11467 /* 11468 * Now we change the flags. Track current value of 11469 * other flags in their respective places. 11470 */ 11471 mutex_enter(&ill->ill_lock); 11472 mutex_enter(&phyi->phyint_lock); 11473 ipif->ipif_flags |= (turn_on & IFF_LOGINT_FLAGS); 11474 ipif->ipif_flags &= (~turn_off & IFF_LOGINT_FLAGS); 11475 ill->ill_flags |= (turn_on & IFF_PHYINTINST_FLAGS); 11476 ill->ill_flags &= (~turn_off & IFF_PHYINTINST_FLAGS); 11477 phyi->phyint_flags |= (turn_on & IFF_PHYINT_FLAGS); 11478 phyi->phyint_flags &= (~turn_off & IFF_PHYINT_FLAGS); 11479 if (ipif->ipif_state_flags & IPIF_SET_LINKLOCAL) { 11480 set_linklocal = B_TRUE; 11481 ipif->ipif_state_flags &= ~IPIF_SET_LINKLOCAL; 11482 } 11483 if (ipif->ipif_state_flags & IPIF_ZERO_SOURCE) { 11484 zero_source = B_TRUE; 11485 ipif->ipif_state_flags &= ~IPIF_ZERO_SOURCE; 11486 } 11487 mutex_exit(&ill->ill_lock); 11488 mutex_exit(&phyi->phyint_lock); 11489 11490 if (((turn_on | turn_off) & (PHYI_FAILED|PHYI_STANDBY|PHYI_OFFLINE))) 11491 ip_redo_nomination(phyi); 11492 11493 if (set_linklocal) 11494 (void) ipif_setlinklocal(ipif); 11495 11496 if (zero_source) 11497 ipif->ipif_v6src_addr = ipv6_all_zeros; 11498 else 11499 ipif->ipif_v6src_addr = ipif->ipif_v6lcl_addr; 11500 11501 if (need_up) { 11502 /* 11503 * XXX ipif_up really does not know whether a phyint flags 11504 * was modified or not. So, it sends up information on 11505 * only one routing sockets message. As we don't bring up 11506 * the interface and also set STANDBY/FAILED simultaneously 11507 * it should be okay. 11508 */ 11509 err = ipif_up(ipif, q, mp); 11510 } else { 11511 /* 11512 * Make sure routing socket sees all changes to the flags. 11513 * ipif_up_done* handles this when we use ipif_up. 11514 */ 11515 if (phyint_flags_modified) { 11516 if (phyi->phyint_illv4 != NULL) { 11517 ip_rts_ifmsg(phyi->phyint_illv4-> 11518 ill_ipif); 11519 } 11520 if (phyi->phyint_illv6 != NULL) { 11521 ip_rts_ifmsg(phyi->phyint_illv6-> 11522 ill_ipif); 11523 } 11524 } else { 11525 ip_rts_ifmsg(ipif); 11526 } 11527 } 11528 return (err); 11529 } 11530 11531 /* 11532 * Restart entry point to restart the flags restart operation after the 11533 * refcounts have dropped to zero. 11534 */ 11535 /* ARGSUSED */ 11536 int 11537 ip_sioctl_flags_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11538 ip_ioctl_cmd_t *ipip, void *if_req) 11539 { 11540 int err; 11541 struct ifreq *ifr = (struct ifreq *)if_req; 11542 struct lifreq *lifr = (struct lifreq *)if_req; 11543 11544 ip1dbg(("ip_sioctl_flags_restart(%s:%u %p)\n", 11545 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11546 11547 ipif_down_tail(ipif); 11548 if (ipip->ipi_cmd_type == IF_CMD) { 11549 /* 11550 * Since ip_sioctl_flags expects an int and ifr_flags 11551 * is a short we need to cast ifr_flags into an int 11552 * to avoid having sign extension cause bits to get 11553 * set that should not be. 11554 */ 11555 err = ip_sioctl_flags_tail(ipif, 11556 (uint64_t)(ifr->ifr_flags & 0x0000ffff), 11557 q, mp, B_TRUE); 11558 } else { 11559 err = ip_sioctl_flags_tail(ipif, lifr->lifr_flags, 11560 q, mp, B_TRUE); 11561 } 11562 return (err); 11563 } 11564 11565 /* ARGSUSED */ 11566 int 11567 ip_sioctl_get_flags(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11568 ip_ioctl_cmd_t *ipip, void *if_req) 11569 { 11570 /* 11571 * Has the flags been set correctly till now ? 11572 */ 11573 ill_t *ill = ipif->ipif_ill; 11574 phyint_t *phyi = ill->ill_phyint; 11575 11576 ip1dbg(("ip_sioctl_get_flags(%s:%u %p)\n", 11577 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11578 ASSERT((phyi->phyint_flags & ~(IFF_PHYINT_FLAGS)) == 0); 11579 ASSERT((ill->ill_flags & ~(IFF_PHYINTINST_FLAGS)) == 0); 11580 ASSERT((ipif->ipif_flags & ~(IFF_LOGINT_FLAGS)) == 0); 11581 11582 /* 11583 * Need a lock since some flags can be set even when there are 11584 * references to the ipif. 11585 */ 11586 mutex_enter(&ill->ill_lock); 11587 if (ipip->ipi_cmd_type == IF_CMD) { 11588 struct ifreq *ifr = (struct ifreq *)if_req; 11589 11590 /* Get interface flags (low 16 only). */ 11591 ifr->ifr_flags = ((ipif->ipif_flags | 11592 ill->ill_flags | phyi->phyint_flags) & 0xffff); 11593 } else { 11594 struct lifreq *lifr = (struct lifreq *)if_req; 11595 11596 /* Get interface flags. */ 11597 lifr->lifr_flags = ipif->ipif_flags | 11598 ill->ill_flags | phyi->phyint_flags; 11599 } 11600 mutex_exit(&ill->ill_lock); 11601 return (0); 11602 } 11603 11604 /* ARGSUSED */ 11605 int 11606 ip_sioctl_mtu(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11607 ip_ioctl_cmd_t *ipip, void *if_req) 11608 { 11609 int mtu; 11610 int ip_min_mtu; 11611 struct ifreq *ifr; 11612 struct lifreq *lifr; 11613 ire_t *ire; 11614 11615 ip1dbg(("ip_sioctl_mtu(%s:%u %p)\n", ipif->ipif_ill->ill_name, 11616 ipif->ipif_id, (void *)ipif)); 11617 if (ipip->ipi_cmd_type == IF_CMD) { 11618 ifr = (struct ifreq *)if_req; 11619 mtu = ifr->ifr_metric; 11620 } else { 11621 lifr = (struct lifreq *)if_req; 11622 mtu = lifr->lifr_mtu; 11623 } 11624 11625 if (ipif->ipif_isv6) 11626 ip_min_mtu = IPV6_MIN_MTU; 11627 else 11628 ip_min_mtu = IP_MIN_MTU; 11629 11630 if (mtu > ipif->ipif_ill->ill_max_frag || mtu < ip_min_mtu) 11631 return (EINVAL); 11632 11633 /* 11634 * Change the MTU size in all relevant ire's. 11635 * Mtu change Vs. new ire creation - protocol below. 11636 * First change ipif_mtu and the ire_max_frag of the 11637 * interface ire. Then do an ire walk and change the 11638 * ire_max_frag of all affected ires. During ire_add 11639 * under the bucket lock, set the ire_max_frag of the 11640 * new ire being created from the ipif/ire from which 11641 * it is being derived. If an mtu change happens after 11642 * the ire is added, the new ire will be cleaned up. 11643 * Conversely if the mtu change happens before the ire 11644 * is added, ire_add will see the new value of the mtu. 11645 */ 11646 ipif->ipif_mtu = mtu; 11647 ipif->ipif_flags |= IPIF_FIXEDMTU; 11648 11649 if (ipif->ipif_isv6) 11650 ire = ipif_to_ire_v6(ipif); 11651 else 11652 ire = ipif_to_ire(ipif); 11653 if (ire != NULL) { 11654 ire->ire_max_frag = ipif->ipif_mtu; 11655 ire_refrele(ire); 11656 } 11657 if (ipif->ipif_flags & IPIF_UP) { 11658 if (ipif->ipif_isv6) 11659 ire_walk_v6(ipif_mtu_change, (char *)ipif, ALL_ZONES); 11660 else 11661 ire_walk_v4(ipif_mtu_change, (char *)ipif, ALL_ZONES); 11662 } 11663 /* Update the MTU in SCTP's list */ 11664 sctp_update_ipif(ipif, SCTP_IPIF_UPDATE); 11665 return (0); 11666 } 11667 11668 /* Get interface MTU. */ 11669 /* ARGSUSED */ 11670 int 11671 ip_sioctl_get_mtu(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11672 ip_ioctl_cmd_t *ipip, void *if_req) 11673 { 11674 struct ifreq *ifr; 11675 struct lifreq *lifr; 11676 11677 ip1dbg(("ip_sioctl_get_mtu(%s:%u %p)\n", 11678 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11679 if (ipip->ipi_cmd_type == IF_CMD) { 11680 ifr = (struct ifreq *)if_req; 11681 ifr->ifr_metric = ipif->ipif_mtu; 11682 } else { 11683 lifr = (struct lifreq *)if_req; 11684 lifr->lifr_mtu = ipif->ipif_mtu; 11685 } 11686 return (0); 11687 } 11688 11689 /* Set interface broadcast address. */ 11690 /* ARGSUSED2 */ 11691 int 11692 ip_sioctl_brdaddr(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11693 ip_ioctl_cmd_t *ipip, void *if_req) 11694 { 11695 ipaddr_t addr; 11696 ire_t *ire; 11697 11698 ip1dbg(("ip_sioctl_brdaddr(%s:%u)\n", ipif->ipif_ill->ill_name, 11699 ipif->ipif_id)); 11700 11701 ASSERT(IAM_WRITER_IPIF(ipif)); 11702 if (!(ipif->ipif_flags & IPIF_BROADCAST)) 11703 return (EADDRNOTAVAIL); 11704 11705 ASSERT(!(ipif->ipif_isv6)); /* No IPv6 broadcast */ 11706 11707 if (sin->sin_family != AF_INET) 11708 return (EAFNOSUPPORT); 11709 11710 addr = sin->sin_addr.s_addr; 11711 if (ipif->ipif_flags & IPIF_UP) { 11712 /* 11713 * If we are already up, make sure the new 11714 * broadcast address makes sense. If it does, 11715 * there should be an IRE for it already. 11716 * Don't match on ipif, only on the ill 11717 * since we are sharing these now. Don't use 11718 * MATCH_IRE_ILL_GROUP as we are looking for 11719 * the broadcast ire on this ill and each ill 11720 * in the group has its own broadcast ire. 11721 */ 11722 ire = ire_ctable_lookup(addr, 0, IRE_BROADCAST, 11723 ipif, ALL_ZONES, NULL, 11724 (MATCH_IRE_ILL | MATCH_IRE_TYPE)); 11725 if (ire == NULL) { 11726 return (EINVAL); 11727 } else { 11728 ire_refrele(ire); 11729 } 11730 } 11731 /* 11732 * Changing the broadcast addr for this ipif. 11733 * Make sure we have valid net and subnet bcast 11734 * ire's for other logical interfaces, if needed. 11735 */ 11736 if (addr != ipif->ipif_brd_addr) 11737 ipif_check_bcast_ires(ipif); 11738 IN6_IPADDR_TO_V4MAPPED(addr, &ipif->ipif_v6brd_addr); 11739 return (0); 11740 } 11741 11742 /* Get interface broadcast address. */ 11743 /* ARGSUSED */ 11744 int 11745 ip_sioctl_get_brdaddr(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11746 ip_ioctl_cmd_t *ipip, void *if_req) 11747 { 11748 ip1dbg(("ip_sioctl_get_brdaddr(%s:%u %p)\n", 11749 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11750 if (!(ipif->ipif_flags & IPIF_BROADCAST)) 11751 return (EADDRNOTAVAIL); 11752 11753 /* IPIF_BROADCAST not possible with IPv6 */ 11754 ASSERT(!ipif->ipif_isv6); 11755 *sin = sin_null; 11756 sin->sin_family = AF_INET; 11757 sin->sin_addr.s_addr = ipif->ipif_brd_addr; 11758 return (0); 11759 } 11760 11761 /* 11762 * This routine is called to handle the SIOCS*IFNETMASK IOCTL. 11763 */ 11764 /* ARGSUSED */ 11765 int 11766 ip_sioctl_netmask(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11767 ip_ioctl_cmd_t *ipip, void *if_req) 11768 { 11769 int err = 0; 11770 in6_addr_t v6mask; 11771 11772 ip1dbg(("ip_sioctl_netmask(%s:%u %p)\n", 11773 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11774 11775 ASSERT(IAM_WRITER_IPIF(ipif)); 11776 11777 if (ipif->ipif_isv6) { 11778 sin6_t *sin6; 11779 11780 if (sin->sin_family != AF_INET6) 11781 return (EAFNOSUPPORT); 11782 11783 sin6 = (sin6_t *)sin; 11784 v6mask = sin6->sin6_addr; 11785 } else { 11786 ipaddr_t mask; 11787 11788 if (sin->sin_family != AF_INET) 11789 return (EAFNOSUPPORT); 11790 11791 mask = sin->sin_addr.s_addr; 11792 V4MASK_TO_V6(mask, v6mask); 11793 } 11794 11795 /* 11796 * No big deal if the interface isn't already up, or the mask 11797 * isn't really changing, or this is pt-pt. 11798 */ 11799 if (!(ipif->ipif_flags & IPIF_UP) || 11800 IN6_ARE_ADDR_EQUAL(&v6mask, &ipif->ipif_v6net_mask) || 11801 (ipif->ipif_flags & IPIF_POINTOPOINT)) { 11802 ipif->ipif_v6net_mask = v6mask; 11803 if ((ipif->ipif_flags & IPIF_POINTOPOINT) == 0) { 11804 V6_MASK_COPY(ipif->ipif_v6lcl_addr, 11805 ipif->ipif_v6net_mask, 11806 ipif->ipif_v6subnet); 11807 } 11808 return (0); 11809 } 11810 /* 11811 * Make sure we have valid net and subnet broadcast ire's 11812 * for the old netmask, if needed by other logical interfaces. 11813 */ 11814 if (!ipif->ipif_isv6) 11815 ipif_check_bcast_ires(ipif); 11816 11817 err = ipif_logical_down(ipif, q, mp); 11818 if (err == EINPROGRESS) 11819 return (err); 11820 ipif_down_tail(ipif); 11821 err = ip_sioctl_netmask_tail(ipif, sin, q, mp); 11822 return (err); 11823 } 11824 11825 static int 11826 ip_sioctl_netmask_tail(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp) 11827 { 11828 in6_addr_t v6mask; 11829 int err = 0; 11830 11831 ip1dbg(("ip_sioctl_netmask_tail(%s:%u %p)\n", 11832 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11833 11834 if (ipif->ipif_isv6) { 11835 sin6_t *sin6; 11836 11837 sin6 = (sin6_t *)sin; 11838 v6mask = sin6->sin6_addr; 11839 } else { 11840 ipaddr_t mask; 11841 11842 mask = sin->sin_addr.s_addr; 11843 V4MASK_TO_V6(mask, v6mask); 11844 } 11845 11846 ipif->ipif_v6net_mask = v6mask; 11847 if ((ipif->ipif_flags & IPIF_POINTOPOINT) == 0) { 11848 V6_MASK_COPY(ipif->ipif_v6lcl_addr, ipif->ipif_v6net_mask, 11849 ipif->ipif_v6subnet); 11850 } 11851 err = ipif_up(ipif, q, mp); 11852 11853 if (err == 0 || err == EINPROGRESS) { 11854 /* 11855 * The interface must be DL_BOUND if this packet has to 11856 * go out on the wire. Since we only go through a logical 11857 * down and are bound with the driver during an internal 11858 * down/up that is satisfied. 11859 */ 11860 if (!ipif->ipif_isv6 && ipif->ipif_ill->ill_wq != NULL) { 11861 /* Potentially broadcast an address mask reply. */ 11862 ipif_mask_reply(ipif); 11863 } 11864 } 11865 return (err); 11866 } 11867 11868 /* ARGSUSED */ 11869 int 11870 ip_sioctl_netmask_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11871 ip_ioctl_cmd_t *ipip, void *if_req) 11872 { 11873 ip1dbg(("ip_sioctl_netmask_restart(%s:%u %p)\n", 11874 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11875 ipif_down_tail(ipif); 11876 return (ip_sioctl_netmask_tail(ipif, sin, q, mp)); 11877 } 11878 11879 /* Get interface net mask. */ 11880 /* ARGSUSED */ 11881 int 11882 ip_sioctl_get_netmask(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11883 ip_ioctl_cmd_t *ipip, void *if_req) 11884 { 11885 struct lifreq *lifr = (struct lifreq *)if_req; 11886 struct sockaddr_in6 *sin6 = (sin6_t *)sin; 11887 11888 ip1dbg(("ip_sioctl_get_netmask(%s:%u %p)\n", 11889 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11890 11891 /* 11892 * net mask can't change since we have a reference to the ipif. 11893 */ 11894 if (ipif->ipif_isv6) { 11895 ASSERT(ipip->ipi_cmd_type == LIF_CMD); 11896 *sin6 = sin6_null; 11897 sin6->sin6_family = AF_INET6; 11898 sin6->sin6_addr = ipif->ipif_v6net_mask; 11899 lifr->lifr_addrlen = 11900 ip_mask_to_plen_v6(&ipif->ipif_v6net_mask); 11901 } else { 11902 *sin = sin_null; 11903 sin->sin_family = AF_INET; 11904 sin->sin_addr.s_addr = ipif->ipif_net_mask; 11905 if (ipip->ipi_cmd_type == LIF_CMD) { 11906 lifr->lifr_addrlen = 11907 ip_mask_to_plen(ipif->ipif_net_mask); 11908 } 11909 } 11910 return (0); 11911 } 11912 11913 /* ARGSUSED */ 11914 int 11915 ip_sioctl_metric(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11916 ip_ioctl_cmd_t *ipip, void *if_req) 11917 { 11918 11919 ip1dbg(("ip_sioctl_metric(%s:%u %p)\n", 11920 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11921 /* 11922 * Set interface metric. We don't use this for 11923 * anything but we keep track of it in case it is 11924 * important to routing applications or such. 11925 */ 11926 if (ipip->ipi_cmd_type == IF_CMD) { 11927 struct ifreq *ifr; 11928 11929 ifr = (struct ifreq *)if_req; 11930 ipif->ipif_metric = ifr->ifr_metric; 11931 } else { 11932 struct lifreq *lifr; 11933 11934 lifr = (struct lifreq *)if_req; 11935 ipif->ipif_metric = lifr->lifr_metric; 11936 } 11937 return (0); 11938 } 11939 11940 11941 /* ARGSUSED */ 11942 int 11943 ip_sioctl_get_metric(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11944 ip_ioctl_cmd_t *ipip, void *if_req) 11945 { 11946 11947 /* Get interface metric. */ 11948 ip1dbg(("ip_sioctl_get_metric(%s:%u %p)\n", 11949 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11950 if (ipip->ipi_cmd_type == IF_CMD) { 11951 struct ifreq *ifr; 11952 11953 ifr = (struct ifreq *)if_req; 11954 ifr->ifr_metric = ipif->ipif_metric; 11955 } else { 11956 struct lifreq *lifr; 11957 11958 lifr = (struct lifreq *)if_req; 11959 lifr->lifr_metric = ipif->ipif_metric; 11960 } 11961 11962 return (0); 11963 } 11964 11965 /* ARGSUSED */ 11966 int 11967 ip_sioctl_muxid(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11968 ip_ioctl_cmd_t *ipip, void *if_req) 11969 { 11970 11971 ip1dbg(("ip_sioctl_muxid(%s:%u %p)\n", 11972 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11973 /* 11974 * Set the muxid returned from I_PLINK. 11975 */ 11976 if (ipip->ipi_cmd_type == IF_CMD) { 11977 struct ifreq *ifr = (struct ifreq *)if_req; 11978 11979 ipif->ipif_ill->ill_ip_muxid = ifr->ifr_ip_muxid; 11980 ipif->ipif_ill->ill_arp_muxid = ifr->ifr_arp_muxid; 11981 } else { 11982 struct lifreq *lifr = (struct lifreq *)if_req; 11983 11984 ipif->ipif_ill->ill_ip_muxid = lifr->lifr_ip_muxid; 11985 ipif->ipif_ill->ill_arp_muxid = lifr->lifr_arp_muxid; 11986 } 11987 return (0); 11988 } 11989 11990 /* ARGSUSED */ 11991 int 11992 ip_sioctl_get_muxid(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11993 ip_ioctl_cmd_t *ipip, void *if_req) 11994 { 11995 11996 ip1dbg(("ip_sioctl_get_muxid(%s:%u %p)\n", 11997 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11998 /* 11999 * Get the muxid saved in ill for I_PUNLINK. 12000 */ 12001 if (ipip->ipi_cmd_type == IF_CMD) { 12002 struct ifreq *ifr = (struct ifreq *)if_req; 12003 12004 ifr->ifr_ip_muxid = ipif->ipif_ill->ill_ip_muxid; 12005 ifr->ifr_arp_muxid = ipif->ipif_ill->ill_arp_muxid; 12006 } else { 12007 struct lifreq *lifr = (struct lifreq *)if_req; 12008 12009 lifr->lifr_ip_muxid = ipif->ipif_ill->ill_ip_muxid; 12010 lifr->lifr_arp_muxid = ipif->ipif_ill->ill_arp_muxid; 12011 } 12012 return (0); 12013 } 12014 12015 /* 12016 * Set the subnet prefix. Does not modify the broadcast address. 12017 */ 12018 /* ARGSUSED */ 12019 int 12020 ip_sioctl_subnet(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12021 ip_ioctl_cmd_t *ipip, void *if_req) 12022 { 12023 int err = 0; 12024 in6_addr_t v6addr; 12025 in6_addr_t v6mask; 12026 boolean_t need_up = B_FALSE; 12027 int addrlen; 12028 12029 ip1dbg(("ip_sioctl_subnet(%s:%u %p)\n", 12030 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12031 12032 ASSERT(IAM_WRITER_IPIF(ipif)); 12033 addrlen = ((struct lifreq *)if_req)->lifr_addrlen; 12034 12035 if (ipif->ipif_isv6) { 12036 sin6_t *sin6; 12037 12038 if (sin->sin_family != AF_INET6) 12039 return (EAFNOSUPPORT); 12040 12041 sin6 = (sin6_t *)sin; 12042 v6addr = sin6->sin6_addr; 12043 if (!ip_remote_addr_ok_v6(&v6addr, &ipv6_all_ones)) 12044 return (EADDRNOTAVAIL); 12045 } else { 12046 ipaddr_t addr; 12047 12048 if (sin->sin_family != AF_INET) 12049 return (EAFNOSUPPORT); 12050 12051 addr = sin->sin_addr.s_addr; 12052 if (!ip_addr_ok_v4(addr, 0xFFFFFFFF)) 12053 return (EADDRNOTAVAIL); 12054 IN6_IPADDR_TO_V4MAPPED(addr, &v6addr); 12055 /* Add 96 bits */ 12056 addrlen += IPV6_ABITS - IP_ABITS; 12057 } 12058 12059 if (ip_plen_to_mask_v6(addrlen, &v6mask) == NULL) 12060 return (EINVAL); 12061 12062 /* Check if bits in the address is set past the mask */ 12063 if (!V6_MASK_EQ(v6addr, v6mask, v6addr)) 12064 return (EINVAL); 12065 12066 if (IN6_ARE_ADDR_EQUAL(&ipif->ipif_v6subnet, &v6addr) && 12067 IN6_ARE_ADDR_EQUAL(&ipif->ipif_v6net_mask, &v6mask)) 12068 return (0); /* No change */ 12069 12070 if (ipif->ipif_flags & IPIF_UP) { 12071 /* 12072 * If the interface is already marked up, 12073 * we call ipif_down which will take care 12074 * of ditching any IREs that have been set 12075 * up based on the old interface address. 12076 */ 12077 err = ipif_logical_down(ipif, q, mp); 12078 if (err == EINPROGRESS) 12079 return (err); 12080 ipif_down_tail(ipif); 12081 need_up = B_TRUE; 12082 } 12083 12084 err = ip_sioctl_subnet_tail(ipif, v6addr, v6mask, q, mp, need_up); 12085 return (err); 12086 } 12087 12088 static int 12089 ip_sioctl_subnet_tail(ipif_t *ipif, in6_addr_t v6addr, in6_addr_t v6mask, 12090 queue_t *q, mblk_t *mp, boolean_t need_up) 12091 { 12092 ill_t *ill = ipif->ipif_ill; 12093 int err = 0; 12094 12095 ip1dbg(("ip_sioctl_subnet_tail(%s:%u %p)\n", 12096 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12097 12098 /* Set the new address. */ 12099 mutex_enter(&ill->ill_lock); 12100 ipif->ipif_v6net_mask = v6mask; 12101 if ((ipif->ipif_flags & IPIF_POINTOPOINT) == 0) { 12102 V6_MASK_COPY(v6addr, ipif->ipif_v6net_mask, 12103 ipif->ipif_v6subnet); 12104 } 12105 mutex_exit(&ill->ill_lock); 12106 12107 if (need_up) { 12108 /* 12109 * Now bring the interface back up. If this 12110 * is the only IPIF for the ILL, ipif_up 12111 * will have to re-bind to the device, so 12112 * we may get back EINPROGRESS, in which 12113 * case, this IOCTL will get completed in 12114 * ip_rput_dlpi when we see the DL_BIND_ACK. 12115 */ 12116 err = ipif_up(ipif, q, mp); 12117 if (err == EINPROGRESS) 12118 return (err); 12119 } 12120 return (err); 12121 } 12122 12123 /* ARGSUSED */ 12124 int 12125 ip_sioctl_subnet_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12126 ip_ioctl_cmd_t *ipip, void *if_req) 12127 { 12128 int addrlen; 12129 in6_addr_t v6addr; 12130 in6_addr_t v6mask; 12131 struct lifreq *lifr = (struct lifreq *)if_req; 12132 12133 ip1dbg(("ip_sioctl_subnet_restart(%s:%u %p)\n", 12134 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12135 ipif_down_tail(ipif); 12136 12137 addrlen = lifr->lifr_addrlen; 12138 if (ipif->ipif_isv6) { 12139 sin6_t *sin6; 12140 12141 sin6 = (sin6_t *)sin; 12142 v6addr = sin6->sin6_addr; 12143 } else { 12144 ipaddr_t addr; 12145 12146 addr = sin->sin_addr.s_addr; 12147 IN6_IPADDR_TO_V4MAPPED(addr, &v6addr); 12148 addrlen += IPV6_ABITS - IP_ABITS; 12149 } 12150 (void) ip_plen_to_mask_v6(addrlen, &v6mask); 12151 12152 return (ip_sioctl_subnet_tail(ipif, v6addr, v6mask, q, mp, B_TRUE)); 12153 } 12154 12155 /* ARGSUSED */ 12156 int 12157 ip_sioctl_get_subnet(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12158 ip_ioctl_cmd_t *ipip, void *if_req) 12159 { 12160 struct lifreq *lifr = (struct lifreq *)if_req; 12161 struct sockaddr_in6 *sin6 = (struct sockaddr_in6 *)sin; 12162 12163 ip1dbg(("ip_sioctl_get_subnet(%s:%u %p)\n", 12164 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12165 ASSERT(ipip->ipi_cmd_type == LIF_CMD); 12166 12167 if (ipif->ipif_isv6) { 12168 *sin6 = sin6_null; 12169 sin6->sin6_family = AF_INET6; 12170 sin6->sin6_addr = ipif->ipif_v6subnet; 12171 lifr->lifr_addrlen = 12172 ip_mask_to_plen_v6(&ipif->ipif_v6net_mask); 12173 } else { 12174 *sin = sin_null; 12175 sin->sin_family = AF_INET; 12176 sin->sin_addr.s_addr = ipif->ipif_subnet; 12177 lifr->lifr_addrlen = ip_mask_to_plen(ipif->ipif_net_mask); 12178 } 12179 return (0); 12180 } 12181 12182 /* 12183 * Set the IPv6 address token. 12184 */ 12185 /* ARGSUSED */ 12186 int 12187 ip_sioctl_token(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12188 ip_ioctl_cmd_t *ipi, void *if_req) 12189 { 12190 ill_t *ill = ipif->ipif_ill; 12191 int err; 12192 in6_addr_t v6addr; 12193 in6_addr_t v6mask; 12194 boolean_t need_up = B_FALSE; 12195 int i; 12196 sin6_t *sin6 = (sin6_t *)sin; 12197 struct lifreq *lifr = (struct lifreq *)if_req; 12198 int addrlen; 12199 12200 ip1dbg(("ip_sioctl_token(%s:%u %p)\n", 12201 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12202 ASSERT(IAM_WRITER_IPIF(ipif)); 12203 12204 addrlen = lifr->lifr_addrlen; 12205 /* Only allow for logical unit zero i.e. not on "le0:17" */ 12206 if (ipif->ipif_id != 0) 12207 return (EINVAL); 12208 12209 if (!ipif->ipif_isv6) 12210 return (EINVAL); 12211 12212 if (addrlen > IPV6_ABITS) 12213 return (EINVAL); 12214 12215 v6addr = sin6->sin6_addr; 12216 12217 /* 12218 * The length of the token is the length from the end. To get 12219 * the proper mask for this, compute the mask of the bits not 12220 * in the token; ie. the prefix, and then xor to get the mask. 12221 */ 12222 if (ip_plen_to_mask_v6(IPV6_ABITS - addrlen, &v6mask) == NULL) 12223 return (EINVAL); 12224 for (i = 0; i < 4; i++) { 12225 v6mask.s6_addr32[i] ^= (uint32_t)0xffffffff; 12226 } 12227 12228 if (V6_MASK_EQ(v6addr, v6mask, ill->ill_token) && 12229 ill->ill_token_length == addrlen) 12230 return (0); /* No change */ 12231 12232 if (ipif->ipif_flags & IPIF_UP) { 12233 err = ipif_logical_down(ipif, q, mp); 12234 if (err == EINPROGRESS) 12235 return (err); 12236 ipif_down_tail(ipif); 12237 need_up = B_TRUE; 12238 } 12239 err = ip_sioctl_token_tail(ipif, sin6, addrlen, q, mp, need_up); 12240 return (err); 12241 } 12242 12243 static int 12244 ip_sioctl_token_tail(ipif_t *ipif, sin6_t *sin6, int addrlen, queue_t *q, 12245 mblk_t *mp, boolean_t need_up) 12246 { 12247 in6_addr_t v6addr; 12248 in6_addr_t v6mask; 12249 ill_t *ill = ipif->ipif_ill; 12250 int i; 12251 int err = 0; 12252 12253 ip1dbg(("ip_sioctl_token_tail(%s:%u %p)\n", 12254 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12255 v6addr = sin6->sin6_addr; 12256 /* 12257 * The length of the token is the length from the end. To get 12258 * the proper mask for this, compute the mask of the bits not 12259 * in the token; ie. the prefix, and then xor to get the mask. 12260 */ 12261 (void) ip_plen_to_mask_v6(IPV6_ABITS - addrlen, &v6mask); 12262 for (i = 0; i < 4; i++) 12263 v6mask.s6_addr32[i] ^= (uint32_t)0xffffffff; 12264 12265 mutex_enter(&ill->ill_lock); 12266 V6_MASK_COPY(v6addr, v6mask, ill->ill_token); 12267 ill->ill_token_length = addrlen; 12268 mutex_exit(&ill->ill_lock); 12269 12270 if (need_up) { 12271 /* 12272 * Now bring the interface back up. If this 12273 * is the only IPIF for the ILL, ipif_up 12274 * will have to re-bind to the device, so 12275 * we may get back EINPROGRESS, in which 12276 * case, this IOCTL will get completed in 12277 * ip_rput_dlpi when we see the DL_BIND_ACK. 12278 */ 12279 err = ipif_up(ipif, q, mp); 12280 if (err == EINPROGRESS) 12281 return (err); 12282 } 12283 return (err); 12284 } 12285 12286 /* ARGSUSED */ 12287 int 12288 ip_sioctl_get_token(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12289 ip_ioctl_cmd_t *ipi, void *if_req) 12290 { 12291 ill_t *ill; 12292 sin6_t *sin6 = (sin6_t *)sin; 12293 struct lifreq *lifr = (struct lifreq *)if_req; 12294 12295 ip1dbg(("ip_sioctl_get_token(%s:%u %p)\n", 12296 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12297 if (ipif->ipif_id != 0) 12298 return (EINVAL); 12299 12300 ill = ipif->ipif_ill; 12301 if (!ill->ill_isv6) 12302 return (ENXIO); 12303 12304 *sin6 = sin6_null; 12305 sin6->sin6_family = AF_INET6; 12306 ASSERT(!IN6_IS_ADDR_V4MAPPED(&ill->ill_token)); 12307 sin6->sin6_addr = ill->ill_token; 12308 lifr->lifr_addrlen = ill->ill_token_length; 12309 return (0); 12310 } 12311 12312 /* 12313 * Set (hardware) link specific information that might override 12314 * what was acquired through the DL_INFO_ACK. 12315 * The logic is as follows. 12316 * 12317 * become exclusive 12318 * set CHANGING flag 12319 * change mtu on affected IREs 12320 * clear CHANGING flag 12321 * 12322 * An ire add that occurs before the CHANGING flag is set will have its mtu 12323 * changed by the ip_sioctl_lnkinfo. 12324 * 12325 * During the time the CHANGING flag is set, no new ires will be added to the 12326 * bucket, and ire add will fail (due the CHANGING flag). 12327 * 12328 * An ire add that occurs after the CHANGING flag is set will have the right mtu 12329 * before it is added to the bucket. 12330 * 12331 * Obviously only 1 thread can set the CHANGING flag and we need to become 12332 * exclusive to set the flag. 12333 */ 12334 /* ARGSUSED */ 12335 int 12336 ip_sioctl_lnkinfo(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12337 ip_ioctl_cmd_t *ipi, void *if_req) 12338 { 12339 ill_t *ill = ipif->ipif_ill; 12340 ipif_t *nipif; 12341 int ip_min_mtu; 12342 boolean_t mtu_walk = B_FALSE; 12343 struct lifreq *lifr = (struct lifreq *)if_req; 12344 lif_ifinfo_req_t *lir; 12345 ire_t *ire; 12346 12347 ip1dbg(("ip_sioctl_lnkinfo(%s:%u %p)\n", 12348 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12349 lir = &lifr->lifr_ifinfo; 12350 ASSERT(IAM_WRITER_IPIF(ipif)); 12351 12352 /* Only allow for logical unit zero i.e. not on "le0:17" */ 12353 if (ipif->ipif_id != 0) 12354 return (EINVAL); 12355 12356 /* Set interface MTU. */ 12357 if (ipif->ipif_isv6) 12358 ip_min_mtu = IPV6_MIN_MTU; 12359 else 12360 ip_min_mtu = IP_MIN_MTU; 12361 12362 /* 12363 * Verify values before we set anything. Allow zero to 12364 * mean unspecified. 12365 */ 12366 if (lir->lir_maxmtu != 0 && 12367 (lir->lir_maxmtu > ill->ill_max_frag || 12368 lir->lir_maxmtu < ip_min_mtu)) 12369 return (EINVAL); 12370 if (lir->lir_reachtime != 0 && 12371 lir->lir_reachtime > ND_MAX_REACHTIME) 12372 return (EINVAL); 12373 if (lir->lir_reachretrans != 0 && 12374 lir->lir_reachretrans > ND_MAX_REACHRETRANSTIME) 12375 return (EINVAL); 12376 12377 mutex_enter(&ill->ill_lock); 12378 ill->ill_state_flags |= ILL_CHANGING; 12379 for (nipif = ill->ill_ipif; nipif != NULL; 12380 nipif = nipif->ipif_next) { 12381 nipif->ipif_state_flags |= IPIF_CHANGING; 12382 } 12383 12384 mutex_exit(&ill->ill_lock); 12385 12386 if (lir->lir_maxmtu != 0) { 12387 ill->ill_max_mtu = lir->lir_maxmtu; 12388 ill->ill_mtu_userspecified = 1; 12389 mtu_walk = B_TRUE; 12390 } 12391 12392 if (lir->lir_reachtime != 0) 12393 ill->ill_reachable_time = lir->lir_reachtime; 12394 12395 if (lir->lir_reachretrans != 0) 12396 ill->ill_reachable_retrans_time = lir->lir_reachretrans; 12397 12398 ill->ill_max_hops = lir->lir_maxhops; 12399 12400 ill->ill_max_buf = ND_MAX_Q; 12401 12402 if (mtu_walk) { 12403 /* 12404 * Set the MTU on all ipifs associated with this ill except 12405 * for those whose MTU was fixed via SIOCSLIFMTU. 12406 */ 12407 for (nipif = ill->ill_ipif; nipif != NULL; 12408 nipif = nipif->ipif_next) { 12409 if (nipif->ipif_flags & IPIF_FIXEDMTU) 12410 continue; 12411 12412 nipif->ipif_mtu = ill->ill_max_mtu; 12413 12414 if (!(nipif->ipif_flags & IPIF_UP)) 12415 continue; 12416 12417 if (nipif->ipif_isv6) 12418 ire = ipif_to_ire_v6(nipif); 12419 else 12420 ire = ipif_to_ire(nipif); 12421 if (ire != NULL) { 12422 ire->ire_max_frag = ipif->ipif_mtu; 12423 ire_refrele(ire); 12424 } 12425 if (ill->ill_isv6) { 12426 ire_walk_ill_v6(MATCH_IRE_ILL, 0, 12427 ipif_mtu_change, (char *)nipif, 12428 ill); 12429 } else { 12430 ire_walk_ill_v4(MATCH_IRE_ILL, 0, 12431 ipif_mtu_change, (char *)nipif, 12432 ill); 12433 } 12434 } 12435 } 12436 12437 mutex_enter(&ill->ill_lock); 12438 for (nipif = ill->ill_ipif; nipif != NULL; 12439 nipif = nipif->ipif_next) { 12440 nipif->ipif_state_flags &= ~IPIF_CHANGING; 12441 } 12442 ILL_UNMARK_CHANGING(ill); 12443 mutex_exit(&ill->ill_lock); 12444 12445 return (0); 12446 } 12447 12448 /* ARGSUSED */ 12449 int 12450 ip_sioctl_get_lnkinfo(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12451 ip_ioctl_cmd_t *ipi, void *if_req) 12452 { 12453 struct lif_ifinfo_req *lir; 12454 ill_t *ill = ipif->ipif_ill; 12455 12456 ip1dbg(("ip_sioctl_get_lnkinfo(%s:%u %p)\n", 12457 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12458 if (ipif->ipif_id != 0) 12459 return (EINVAL); 12460 12461 lir = &((struct lifreq *)if_req)->lifr_ifinfo; 12462 lir->lir_maxhops = ill->ill_max_hops; 12463 lir->lir_reachtime = ill->ill_reachable_time; 12464 lir->lir_reachretrans = ill->ill_reachable_retrans_time; 12465 lir->lir_maxmtu = ill->ill_max_mtu; 12466 12467 return (0); 12468 } 12469 12470 /* 12471 * Return best guess as to the subnet mask for the specified address. 12472 * Based on the subnet masks for all the configured interfaces. 12473 * 12474 * We end up returning a zero mask in the case of default, multicast or 12475 * experimental. 12476 */ 12477 static ipaddr_t 12478 ip_subnet_mask(ipaddr_t addr, ipif_t **ipifp) 12479 { 12480 ipaddr_t net_mask; 12481 ill_t *ill; 12482 ipif_t *ipif; 12483 ill_walk_context_t ctx; 12484 ipif_t *fallback_ipif = NULL; 12485 12486 net_mask = ip_net_mask(addr); 12487 if (net_mask == 0) { 12488 *ipifp = NULL; 12489 return (0); 12490 } 12491 12492 /* Let's check to see if this is maybe a local subnet route. */ 12493 /* this function only applies to IPv4 interfaces */ 12494 rw_enter(&ill_g_lock, RW_READER); 12495 ill = ILL_START_WALK_V4(&ctx); 12496 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 12497 mutex_enter(&ill->ill_lock); 12498 for (ipif = ill->ill_ipif; ipif != NULL; 12499 ipif = ipif->ipif_next) { 12500 if (!IPIF_CAN_LOOKUP(ipif)) 12501 continue; 12502 if (!(ipif->ipif_flags & IPIF_UP)) 12503 continue; 12504 if ((ipif->ipif_subnet & net_mask) == 12505 (addr & net_mask)) { 12506 /* 12507 * Don't trust pt-pt interfaces if there are 12508 * other interfaces. 12509 */ 12510 if (ipif->ipif_flags & IPIF_POINTOPOINT) { 12511 if (fallback_ipif == NULL) { 12512 ipif_refhold_locked(ipif); 12513 fallback_ipif = ipif; 12514 } 12515 continue; 12516 } 12517 12518 /* 12519 * Fine. Just assume the same net mask as the 12520 * directly attached subnet interface is using. 12521 */ 12522 ipif_refhold_locked(ipif); 12523 mutex_exit(&ill->ill_lock); 12524 rw_exit(&ill_g_lock); 12525 if (fallback_ipif != NULL) 12526 ipif_refrele(fallback_ipif); 12527 *ipifp = ipif; 12528 return (ipif->ipif_net_mask); 12529 } 12530 } 12531 mutex_exit(&ill->ill_lock); 12532 } 12533 rw_exit(&ill_g_lock); 12534 12535 *ipifp = fallback_ipif; 12536 return ((fallback_ipif != NULL) ? 12537 fallback_ipif->ipif_net_mask : net_mask); 12538 } 12539 12540 /* 12541 * ip_sioctl_copyin_setup calls ip_wput_ioctl to process the IP_IOCTL ioctl. 12542 */ 12543 static void 12544 ip_wput_ioctl(queue_t *q, mblk_t *mp) 12545 { 12546 IOCP iocp; 12547 ipft_t *ipft; 12548 ipllc_t *ipllc; 12549 mblk_t *mp1; 12550 cred_t *cr; 12551 int error = 0; 12552 conn_t *connp; 12553 12554 ip1dbg(("ip_wput_ioctl")); 12555 iocp = (IOCP)mp->b_rptr; 12556 mp1 = mp->b_cont; 12557 if (mp1 == NULL) { 12558 iocp->ioc_error = EINVAL; 12559 mp->b_datap->db_type = M_IOCNAK; 12560 iocp->ioc_count = 0; 12561 qreply(q, mp); 12562 return; 12563 } 12564 12565 /* 12566 * These IOCTLs provide various control capabilities to 12567 * upstream agents such as ULPs and processes. There 12568 * are currently two such IOCTLs implemented. They 12569 * are used by TCP to provide update information for 12570 * existing IREs and to forcibly delete an IRE for a 12571 * host that is not responding, thereby forcing an 12572 * attempt at a new route. 12573 */ 12574 iocp->ioc_error = EINVAL; 12575 if (!pullupmsg(mp1, sizeof (ipllc->ipllc_cmd))) 12576 goto done; 12577 12578 ipllc = (ipllc_t *)mp1->b_rptr; 12579 for (ipft = ip_ioctl_ftbl; ipft->ipft_pfi; ipft++) { 12580 if (ipllc->ipllc_cmd == ipft->ipft_cmd) 12581 break; 12582 } 12583 /* 12584 * prefer credential from mblk over ioctl; 12585 * see ip_sioctl_copyin_setup 12586 */ 12587 cr = DB_CREDDEF(mp, iocp->ioc_cr); 12588 12589 /* 12590 * Refhold the conn in case the request gets queued up in some lookup 12591 */ 12592 ASSERT(CONN_Q(q)); 12593 connp = Q_TO_CONN(q); 12594 CONN_INC_REF(connp); 12595 if (ipft->ipft_pfi && 12596 ((mp1->b_wptr - mp1->b_rptr) >= ipft->ipft_min_size || 12597 pullupmsg(mp1, ipft->ipft_min_size))) { 12598 error = (*ipft->ipft_pfi)(q, 12599 (ipft->ipft_flags & IPFT_F_SELF_REPLY) ? mp : mp1, cr); 12600 } 12601 if (ipft->ipft_flags & IPFT_F_SELF_REPLY) { 12602 /* 12603 * CONN_OPER_PENDING_DONE happens in the function called 12604 * through ipft_pfi above. 12605 */ 12606 return; 12607 } 12608 12609 CONN_OPER_PENDING_DONE(connp); 12610 if (ipft->ipft_flags & IPFT_F_NO_REPLY) { 12611 freemsg(mp); 12612 return; 12613 } 12614 iocp->ioc_error = error; 12615 12616 done: 12617 mp->b_datap->db_type = M_IOCACK; 12618 if (iocp->ioc_error) 12619 iocp->ioc_count = 0; 12620 qreply(q, mp); 12621 } 12622 12623 /* 12624 * Lookup an ipif using the sequence id (ipif_seqid) 12625 */ 12626 ipif_t * 12627 ipif_lookup_seqid(ill_t *ill, uint_t seqid) 12628 { 12629 ipif_t *ipif; 12630 12631 ASSERT(MUTEX_HELD(&ill->ill_lock)); 12632 12633 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 12634 if (ipif->ipif_seqid == seqid && IPIF_CAN_LOOKUP(ipif)) 12635 return (ipif); 12636 } 12637 return (NULL); 12638 } 12639 12640 uint64_t ipif_g_seqid; 12641 12642 /* 12643 * Assign a unique id for the ipif. This is used later when we send 12644 * IRES to ARP for resolution where we initialize ire_ipif_seqid 12645 * to the value pointed by ire_ipif->ipif_seqid. Later when the 12646 * IRE is added, we verify that ipif has not disappeared. 12647 */ 12648 12649 static void 12650 ipif_assign_seqid(ipif_t *ipif) 12651 { 12652 ipif->ipif_seqid = atomic_add_64_nv(&ipif_g_seqid, 1); 12653 } 12654 12655 /* 12656 * Insert the ipif, so that the list of ipifs on the ill will be sorted 12657 * with respect to ipif_id. Note that an ipif with an ipif_id of -1 will 12658 * be inserted into the first space available in the list. The value of 12659 * ipif_id will then be set to the appropriate value for its position. 12660 */ 12661 static int 12662 ipif_insert(ipif_t *ipif, boolean_t acquire_g_lock, boolean_t acquire_ill_lock) 12663 { 12664 ill_t *ill; 12665 ipif_t *tipif; 12666 ipif_t **tipifp; 12667 int id; 12668 12669 ASSERT(ipif->ipif_ill->ill_net_type == IRE_LOOPBACK || 12670 IAM_WRITER_IPIF(ipif)); 12671 12672 ill = ipif->ipif_ill; 12673 ASSERT(ill != NULL); 12674 12675 /* 12676 * In the case of lo0:0 we already hold the ill_g_lock. 12677 * ill_lookup_on_name (acquires ill_g_lock) -> ipif_allocate -> 12678 * ipif_insert. Another such caller is ipif_move. 12679 */ 12680 if (acquire_g_lock) 12681 rw_enter(&ill_g_lock, RW_WRITER); 12682 if (acquire_ill_lock) 12683 mutex_enter(&ill->ill_lock); 12684 id = ipif->ipif_id; 12685 tipifp = &(ill->ill_ipif); 12686 if (id == -1) { /* need to find a real id */ 12687 id = 0; 12688 while ((tipif = *tipifp) != NULL) { 12689 ASSERT(tipif->ipif_id >= id); 12690 if (tipif->ipif_id != id) 12691 break; /* non-consecutive id */ 12692 id++; 12693 tipifp = &(tipif->ipif_next); 12694 } 12695 /* limit number of logical interfaces */ 12696 if (id >= ip_addrs_per_if) { 12697 if (acquire_ill_lock) 12698 mutex_exit(&ill->ill_lock); 12699 if (acquire_g_lock) 12700 rw_exit(&ill_g_lock); 12701 return (-1); 12702 } 12703 ipif->ipif_id = id; /* assign new id */ 12704 } else if (id < ip_addrs_per_if) { 12705 /* we have a real id; insert ipif in the right place */ 12706 while ((tipif = *tipifp) != NULL) { 12707 ASSERT(tipif->ipif_id != id); 12708 if (tipif->ipif_id > id) 12709 break; /* found correct location */ 12710 tipifp = &(tipif->ipif_next); 12711 } 12712 } else { 12713 if (acquire_ill_lock) 12714 mutex_exit(&ill->ill_lock); 12715 if (acquire_g_lock) 12716 rw_exit(&ill_g_lock); 12717 return (-1); 12718 } 12719 12720 ASSERT(tipifp != &(ill->ill_ipif) || id == 0); 12721 12722 ipif->ipif_next = tipif; 12723 *tipifp = ipif; 12724 if (acquire_ill_lock) 12725 mutex_exit(&ill->ill_lock); 12726 if (acquire_g_lock) 12727 rw_exit(&ill_g_lock); 12728 return (0); 12729 } 12730 12731 /* 12732 * Allocate and initialize a new interface control structure. (Always 12733 * called as writer.) 12734 * When ipif_allocate() is called from ip_ll_subnet_defaults, the ill 12735 * is not part of the global linked list of ills. ipif_seqid is unique 12736 * in the system and to preserve the uniqueness, it is assigned only 12737 * when ill becomes part of the global list. At that point ill will 12738 * have a name. If it doesn't get assigned here, it will get assigned 12739 * in ipif_set_values() as part of SIOCSLIFNAME processing. 12740 * Aditionally, if we come here from ip_ll_subnet_defaults, we don't set 12741 * the interface flags or any other information from the DL_INFO_ACK for 12742 * DL_STYLE2 drivers (initialize == B_FALSE), since we won't have them at 12743 * this point. The flags etc. will be set in ip_ll_subnet_defaults when the 12744 * second DL_INFO_ACK comes in from the driver. 12745 */ 12746 static ipif_t * 12747 ipif_allocate(ill_t *ill, int id, uint_t ire_type, boolean_t initialize) 12748 { 12749 ipif_t *ipif; 12750 phyint_t *phyi; 12751 12752 ip1dbg(("ipif_allocate(%s:%d ill %p)\n", 12753 ill->ill_name, id, (void *)ill)); 12754 ASSERT(ire_type == IRE_LOOPBACK || IAM_WRITER_ILL(ill)); 12755 12756 if ((ipif = (ipif_t *)mi_alloc(sizeof (ipif_t), BPRI_MED)) == NULL) 12757 return (NULL); 12758 *ipif = ipif_zero; /* start clean */ 12759 12760 ipif->ipif_ill = ill; 12761 ipif->ipif_id = id; /* could be -1 */ 12762 ipif->ipif_zoneid = GLOBAL_ZONEID; 12763 12764 mutex_init(&ipif->ipif_saved_ire_lock, NULL, MUTEX_DEFAULT, NULL); 12765 12766 ipif->ipif_refcnt = 0; 12767 ipif->ipif_saved_ire_cnt = 0; 12768 12769 if (ipif_insert(ipif, ire_type != IRE_LOOPBACK, B_TRUE)) { 12770 mi_free(ipif); 12771 return (NULL); 12772 } 12773 /* -1 id should have been replaced by real id */ 12774 id = ipif->ipif_id; 12775 ASSERT(id >= 0); 12776 12777 if (ill->ill_name[0] != '\0') { 12778 ipif_assign_seqid(ipif); 12779 if (ill->ill_phyint->phyint_ifindex != 0) 12780 sctp_update_ipif(ipif, SCTP_IPIF_INSERT); 12781 } 12782 /* 12783 * Keep a copy of original id in ipif_orig_ipifid. Failback 12784 * will attempt to restore the original id. The SIOCSLIFOINDEX 12785 * ioctl sets ipif_orig_ipifid to zero. 12786 */ 12787 ipif->ipif_orig_ipifid = id; 12788 12789 /* 12790 * We grab the ill_lock and phyint_lock to protect the flag changes. 12791 * The ipif is still not up and can't be looked up until the 12792 * ioctl completes and the IPIF_CHANGING flag is cleared. 12793 */ 12794 mutex_enter(&ill->ill_lock); 12795 mutex_enter(&ill->ill_phyint->phyint_lock); 12796 /* 12797 * Set the running flag when logical interface zero is created. 12798 * For subsequent logical interfaces, a DLPI link down 12799 * notification message may have cleared the running flag to 12800 * indicate the link is down, so we shouldn't just blindly set it. 12801 */ 12802 if (id == 0) 12803 ill->ill_phyint->phyint_flags |= PHYI_RUNNING; 12804 ipif->ipif_ire_type = ire_type; 12805 phyi = ill->ill_phyint; 12806 ipif->ipif_orig_ifindex = phyi->phyint_ifindex; 12807 12808 if (ipif->ipif_isv6) { 12809 ill->ill_flags |= ILLF_IPV6; 12810 } else { 12811 ipaddr_t inaddr_any = INADDR_ANY; 12812 12813 ill->ill_flags |= ILLF_IPV4; 12814 12815 /* Keep the IN6_IS_ADDR_V4MAPPED assertions happy */ 12816 IN6_IPADDR_TO_V4MAPPED(inaddr_any, 12817 &ipif->ipif_v6lcl_addr); 12818 IN6_IPADDR_TO_V4MAPPED(inaddr_any, 12819 &ipif->ipif_v6src_addr); 12820 IN6_IPADDR_TO_V4MAPPED(inaddr_any, 12821 &ipif->ipif_v6subnet); 12822 IN6_IPADDR_TO_V4MAPPED(inaddr_any, 12823 &ipif->ipif_v6net_mask); 12824 IN6_IPADDR_TO_V4MAPPED(inaddr_any, 12825 &ipif->ipif_v6brd_addr); 12826 IN6_IPADDR_TO_V4MAPPED(inaddr_any, 12827 &ipif->ipif_v6pp_dst_addr); 12828 } 12829 12830 /* 12831 * Don't set the interface flags etc. now, will do it in 12832 * ip_ll_subnet_defaults. 12833 */ 12834 if (!initialize) { 12835 mutex_exit(&ill->ill_lock); 12836 mutex_exit(&ill->ill_phyint->phyint_lock); 12837 return (ipif); 12838 } 12839 ipif->ipif_mtu = ill->ill_max_mtu; 12840 12841 if (ill->ill_bcast_addr_length != 0) { 12842 /* 12843 * Later detect lack of DLPI driver multicast 12844 * capability by catching DL_ENABMULTI errors in 12845 * ip_rput_dlpi. 12846 */ 12847 ill->ill_flags |= ILLF_MULTICAST; 12848 if (!ipif->ipif_isv6) 12849 ipif->ipif_flags |= IPIF_BROADCAST; 12850 } else { 12851 if (ill->ill_net_type != IRE_LOOPBACK) { 12852 if (ipif->ipif_isv6) 12853 /* 12854 * Note: xresolv interfaces will eventually need 12855 * NOARP set here as well, but that will require 12856 * those external resolvers to have some 12857 * knowledge of that flag and act appropriately. 12858 * Not to be changed at present. 12859 */ 12860 ill->ill_flags |= ILLF_NONUD; 12861 else 12862 ill->ill_flags |= ILLF_NOARP; 12863 } 12864 if (ill->ill_phys_addr_length == 0) { 12865 if (ill->ill_media && 12866 ill->ill_media->ip_m_mac_type == SUNW_DL_VNI) { 12867 ipif->ipif_flags |= IPIF_NOXMIT; 12868 phyi->phyint_flags |= PHYI_VIRTUAL; 12869 } else { 12870 /* pt-pt supports multicast. */ 12871 ill->ill_flags |= ILLF_MULTICAST; 12872 if (ill->ill_net_type == IRE_LOOPBACK) { 12873 phyi->phyint_flags |= 12874 (PHYI_LOOPBACK | PHYI_VIRTUAL); 12875 } else { 12876 ipif->ipif_flags |= IPIF_POINTOPOINT; 12877 } 12878 } 12879 } 12880 } 12881 mutex_exit(&ill->ill_lock); 12882 mutex_exit(&ill->ill_phyint->phyint_lock); 12883 return (ipif); 12884 } 12885 12886 /* 12887 * If appropriate, send a message up to the resolver delete the entry 12888 * for the address of this interface which is going out of business. 12889 * (Always called as writer). 12890 * 12891 * NOTE : We need to check for NULL mps as some of the fields are 12892 * initialized only for some interface types. See ipif_resolver_up() 12893 * for details. 12894 */ 12895 void 12896 ipif_arp_down(ipif_t *ipif) 12897 { 12898 mblk_t *mp; 12899 12900 ip1dbg(("ipif_arp_down(%s:%u)\n", 12901 ipif->ipif_ill->ill_name, ipif->ipif_id)); 12902 ASSERT(IAM_WRITER_IPIF(ipif)); 12903 12904 /* Delete the mapping for the local address */ 12905 mp = ipif->ipif_arp_del_mp; 12906 if (mp != NULL) { 12907 ip1dbg(("ipif_arp_down: %s (%u) for %s:%u\n", 12908 dlpi_prim_str(*(int *)mp->b_rptr), *(int *)mp->b_rptr, 12909 ipif->ipif_ill->ill_name, ipif->ipif_id)); 12910 putnext(ipif->ipif_ill->ill_rq, mp); 12911 ipif->ipif_arp_del_mp = NULL; 12912 } 12913 12914 /* 12915 * If this is the last ipif that is going down, we need 12916 * to clean up ARP completely. 12917 */ 12918 if (ipif->ipif_ill->ill_ipif_up_count == 0) { 12919 12920 /* Send up AR_INTERFACE_DOWN message */ 12921 mp = ipif->ipif_ill->ill_arp_down_mp; 12922 if (mp != NULL) { 12923 ip1dbg(("ipif_arp_down: %s (%u) for %s:%u\n", 12924 dlpi_prim_str(*(int *)mp->b_rptr), 12925 *(int *)mp->b_rptr, ipif->ipif_ill->ill_name, 12926 ipif->ipif_id)); 12927 putnext(ipif->ipif_ill->ill_rq, mp); 12928 ipif->ipif_ill->ill_arp_down_mp = NULL; 12929 } 12930 12931 /* Tell ARP to delete the multicast mappings */ 12932 mp = ipif->ipif_ill->ill_arp_del_mapping_mp; 12933 if (mp != NULL) { 12934 ip1dbg(("ipif_arp_down: %s (%u) for %s:%u\n", 12935 dlpi_prim_str(*(int *)mp->b_rptr), 12936 *(int *)mp->b_rptr, ipif->ipif_ill->ill_name, 12937 ipif->ipif_id)); 12938 putnext(ipif->ipif_ill->ill_rq, mp); 12939 ipif->ipif_ill->ill_arp_del_mapping_mp = NULL; 12940 } 12941 } 12942 } 12943 12944 /* 12945 * This function sets up the multicast mappings in ARP. When ipif_resolver_up 12946 * calls this function, it passes a non-NULL arp_add_mapping_mp indicating 12947 * that it wants the add_mp allocated in this function to be returned 12948 * wihtout sending it to arp. When ip_rput_dlpi_writer calls this to 12949 * just re-do the multicast, it wants us to send the add_mp to ARP also. 12950 * ipif_resolver_up does not want us to do the "add" i.e sending to ARP, 12951 * as it does a ipif_arp_down after calling this function - which will 12952 * remove what we add here. 12953 * 12954 * Returns -1 on failures and 0 on success. 12955 */ 12956 int 12957 ipif_arp_setup_multicast(ipif_t *ipif, mblk_t **arp_add_mapping_mp) 12958 { 12959 mblk_t *del_mp = NULL; 12960 mblk_t *add_mp = NULL; 12961 mblk_t *mp; 12962 ill_t *ill = ipif->ipif_ill; 12963 phyint_t *phyi = ill->ill_phyint; 12964 ipaddr_t addr, mask, extract_mask = 0; 12965 arma_t *arma; 12966 uint8_t *maddr, *bphys_addr; 12967 uint32_t hw_start; 12968 dl_unitdata_req_t *dlur; 12969 12970 ASSERT(IAM_WRITER_IPIF(ipif)); 12971 if (ipif->ipif_flags & IPIF_POINTOPOINT) 12972 return (0); 12973 12974 /* 12975 * Delete the existing mapping from ARP. Normally ipif_down 12976 * -> ipif_arp_down should send this up to ARP. The only 12977 * reason we would find this when we are switching from 12978 * Multicast to Broadcast where we did not do a down. 12979 */ 12980 mp = ill->ill_arp_del_mapping_mp; 12981 if (mp != NULL) { 12982 ip1dbg(("ipif_arp_down: %s (%u) for %s:%u\n", 12983 dlpi_prim_str(*(int *)mp->b_rptr), 12984 *(int *)mp->b_rptr, ill->ill_name, ipif->ipif_id)); 12985 putnext(ill->ill_rq, mp); 12986 ill->ill_arp_del_mapping_mp = NULL; 12987 } 12988 12989 if (arp_add_mapping_mp != NULL) 12990 *arp_add_mapping_mp = NULL; 12991 12992 /* 12993 * Check that the address is not to long for the constant 12994 * length reserved in the template arma_t. 12995 */ 12996 if (ill->ill_phys_addr_length > IP_MAX_HW_LEN) 12997 return (-1); 12998 12999 /* Add mapping mblk */ 13000 addr = (ipaddr_t)htonl(INADDR_UNSPEC_GROUP); 13001 mask = (ipaddr_t)htonl(IN_CLASSD_NET); 13002 add_mp = ill_arp_alloc(ill, (uchar_t *)&ip_arma_multi_template, 13003 (caddr_t)&addr); 13004 if (add_mp == NULL) 13005 return (-1); 13006 arma = (arma_t *)add_mp->b_rptr; 13007 maddr = (uint8_t *)arma + arma->arma_hw_addr_offset; 13008 bcopy(&mask, (char *)arma + arma->arma_proto_mask_offset, IP_ADDR_LEN); 13009 arma->arma_hw_addr_length = ill->ill_phys_addr_length; 13010 13011 /* 13012 * Determine the broadcast address. 13013 */ 13014 dlur = (dl_unitdata_req_t *)ill->ill_bcast_mp->b_rptr; 13015 if (ill->ill_sap_length < 0) 13016 bphys_addr = (uchar_t *)dlur + dlur->dl_dest_addr_offset; 13017 else 13018 bphys_addr = (uchar_t *)dlur + 13019 dlur->dl_dest_addr_offset + ill->ill_sap_length; 13020 /* 13021 * Check PHYI_MULTI_BCAST and length of physical 13022 * address to determine if we use the mapping or the 13023 * broadcast address. 13024 */ 13025 if (!(phyi->phyint_flags & PHYI_MULTI_BCAST)) 13026 if (!MEDIA_V4MINFO(ill->ill_media, ill->ill_phys_addr_length, 13027 bphys_addr, maddr, &hw_start, &extract_mask)) 13028 phyi->phyint_flags |= PHYI_MULTI_BCAST; 13029 13030 if ((phyi->phyint_flags & PHYI_MULTI_BCAST) || 13031 (ill->ill_flags & ILLF_MULTICAST)) { 13032 /* Make sure this will not match the "exact" entry. */ 13033 addr = (ipaddr_t)htonl(INADDR_ALLHOSTS_GROUP); 13034 del_mp = ill_arp_alloc(ill, (uchar_t *)&ip_ared_template, 13035 (caddr_t)&addr); 13036 if (del_mp == NULL) { 13037 freemsg(add_mp); 13038 return (-1); 13039 } 13040 bcopy(&extract_mask, (char *)arma + 13041 arma->arma_proto_extract_mask_offset, IP_ADDR_LEN); 13042 if (phyi->phyint_flags & PHYI_MULTI_BCAST) { 13043 /* Use link-layer broadcast address for MULTI_BCAST */ 13044 bcopy(bphys_addr, maddr, ill->ill_phys_addr_length); 13045 ip2dbg(("ipif_arp_setup_multicast: adding" 13046 " MULTI_BCAST ARP setup for %s\n", ill->ill_name)); 13047 } else { 13048 arma->arma_hw_mapping_start = hw_start; 13049 ip2dbg(("ipif_arp_setup_multicast: adding multicast" 13050 " ARP setup for %s\n", ill->ill_name)); 13051 } 13052 } else { 13053 freemsg(add_mp); 13054 ASSERT(del_mp == NULL); 13055 /* It is neither MULTICAST nor MULTI_BCAST */ 13056 return (0); 13057 } 13058 ASSERT(add_mp != NULL && del_mp != NULL); 13059 ill->ill_arp_del_mapping_mp = del_mp; 13060 if (arp_add_mapping_mp != NULL) { 13061 /* The caller just wants the mblks allocated */ 13062 *arp_add_mapping_mp = add_mp; 13063 } else { 13064 /* The caller wants us to send it to arp */ 13065 putnext(ill->ill_rq, add_mp); 13066 } 13067 return (0); 13068 } 13069 13070 /* 13071 * Get the resolver set up for a new interface address. 13072 * (Always called as writer.) 13073 * Called both for IPv4 and IPv6 interfaces, 13074 * though it only sets up the resolver for v6 13075 * if it's an xresolv interface (one using an external resolver). 13076 * Honors ILLF_NOARP. 13077 * The boolean value arp_just_publish, if B_TRUE, indicates that 13078 * it only needs to send an AR_ENTRY_ADD message up to ARP for 13079 * IPv4 interfaces. Currently, B_TRUE is only set when this 13080 * function is called by ip_rput_dlpi_writer() to handle 13081 * asynchronous hardware address change notification. 13082 * Returns error on failure. 13083 */ 13084 int 13085 ipif_resolver_up(ipif_t *ipif, boolean_t arp_just_publish) 13086 { 13087 caddr_t addr; 13088 mblk_t *arp_up_mp = NULL; 13089 mblk_t *arp_down_mp = NULL; 13090 mblk_t *arp_add_mp = NULL; 13091 mblk_t *arp_del_mp = NULL; 13092 mblk_t *arp_add_mapping_mp = NULL; 13093 mblk_t *arp_del_mapping_mp = NULL; 13094 ill_t *ill = ipif->ipif_ill; 13095 uchar_t *area_p = NULL; 13096 uchar_t *ared_p = NULL; 13097 int err = ENOMEM; 13098 13099 ip1dbg(("ipif_resolver_up(%s:%u) flags 0x%x\n", 13100 ipif->ipif_ill->ill_name, ipif->ipif_id, 13101 (uint_t)ipif->ipif_flags)); 13102 ASSERT(IAM_WRITER_IPIF(ipif)); 13103 13104 if ((ill->ill_net_type != IRE_IF_RESOLVER) || 13105 (ill->ill_isv6 && !(ill->ill_flags & ILLF_XRESOLV))) { 13106 return (0); 13107 } 13108 13109 if (ill->ill_isv6) { 13110 /* 13111 * External resolver for IPv6 13112 */ 13113 ASSERT(!arp_just_publish); 13114 if (!IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6lcl_addr)) { 13115 addr = (caddr_t)&ipif->ipif_v6lcl_addr; 13116 area_p = (uchar_t *)&ip6_area_template; 13117 ared_p = (uchar_t *)&ip6_ared_template; 13118 } 13119 } else { 13120 /* 13121 * IPv4 arp case. If the ARP stream has already started 13122 * closing, fail this request for ARP bringup. Else 13123 * record the fact that an ARP bringup is pending. 13124 */ 13125 mutex_enter(&ill->ill_lock); 13126 if (ill->ill_arp_closing) { 13127 mutex_exit(&ill->ill_lock); 13128 err = EINVAL; 13129 goto failed; 13130 } else { 13131 if (ill->ill_ipif_up_count == 0) 13132 ill->ill_arp_bringup_pending = 1; 13133 mutex_exit(&ill->ill_lock); 13134 } 13135 if (ipif->ipif_lcl_addr != INADDR_ANY) { 13136 addr = (caddr_t)&ipif->ipif_lcl_addr; 13137 area_p = (uchar_t *)&ip_area_template; 13138 ared_p = (uchar_t *)&ip_ared_template; 13139 } 13140 } 13141 13142 /* 13143 * Add an entry for the local address in ARP only if it 13144 * is not UNNUMBERED and the address is not INADDR_ANY. 13145 */ 13146 if (((ipif->ipif_flags & IPIF_UNNUMBERED) == 0) && area_p != NULL) { 13147 /* Now ask ARP to publish our address. */ 13148 arp_add_mp = ill_arp_alloc(ill, area_p, addr); 13149 if (arp_add_mp == NULL) 13150 goto failed; 13151 if (arp_just_publish) { 13152 /* 13153 * Copy the new hardware address and length into 13154 * arp_add_mp to be sent to ARP. 13155 */ 13156 area_t *area = (area_t *)arp_add_mp->b_rptr; 13157 area->area_hw_addr_length = 13158 ill->ill_phys_addr_length; 13159 bcopy((char *)ill->ill_phys_addr, 13160 ((char *)area + area->area_hw_addr_offset), 13161 area->area_hw_addr_length); 13162 } 13163 13164 ((area_t *)arp_add_mp->b_rptr)->area_flags = 13165 ACE_F_PERMANENT | ACE_F_PUBLISH | ACE_F_MYADDR; 13166 13167 if (arp_just_publish) 13168 goto arp_setup_multicast; 13169 13170 /* 13171 * Allocate an ARP deletion message so we know we can tell ARP 13172 * when the interface goes down. 13173 */ 13174 arp_del_mp = ill_arp_alloc(ill, ared_p, addr); 13175 if (arp_del_mp == NULL) 13176 goto failed; 13177 13178 } else { 13179 if (arp_just_publish) 13180 goto done; 13181 } 13182 /* 13183 * Need to bring up ARP or setup multicast mapping only 13184 * when the first interface is coming UP. 13185 */ 13186 if (ill->ill_ipif_up_count != 0) 13187 goto done; 13188 13189 /* 13190 * Allocate an ARP down message (to be saved) and an ARP up 13191 * message. 13192 */ 13193 arp_down_mp = ill_arp_alloc(ill, (uchar_t *)&ip_ard_template, 0); 13194 if (arp_down_mp == NULL) 13195 goto failed; 13196 13197 arp_up_mp = ill_arp_alloc(ill, (uchar_t *)&ip_aru_template, 0); 13198 if (arp_up_mp == NULL) 13199 goto failed; 13200 13201 if (ipif->ipif_flags & IPIF_POINTOPOINT) 13202 goto done; 13203 13204 arp_setup_multicast: 13205 /* 13206 * Setup the multicast mappings. This function initializes 13207 * ill_arp_del_mapping_mp also. This does not need to be done for 13208 * IPv6. 13209 */ 13210 if (!ill->ill_isv6) { 13211 err = ipif_arp_setup_multicast(ipif, &arp_add_mapping_mp); 13212 if (err != 0) 13213 goto failed; 13214 ASSERT(ill->ill_arp_del_mapping_mp != NULL); 13215 ASSERT(arp_add_mapping_mp != NULL); 13216 } 13217 13218 done:; 13219 if (arp_del_mp != NULL) { 13220 ASSERT(ipif->ipif_arp_del_mp == NULL); 13221 ipif->ipif_arp_del_mp = arp_del_mp; 13222 } 13223 if (arp_down_mp != NULL) { 13224 ASSERT(ill->ill_arp_down_mp == NULL); 13225 ill->ill_arp_down_mp = arp_down_mp; 13226 } 13227 if (arp_del_mapping_mp != NULL) { 13228 ASSERT(ill->ill_arp_del_mapping_mp == NULL); 13229 ill->ill_arp_del_mapping_mp = arp_del_mapping_mp; 13230 } 13231 if (arp_up_mp != NULL) { 13232 ip1dbg(("ipif_resolver_up: ARP_UP for %s:%u\n", 13233 ipif->ipif_ill->ill_name, ipif->ipif_id)); 13234 putnext(ill->ill_rq, arp_up_mp); 13235 } 13236 if (arp_add_mp != NULL) { 13237 ip1dbg(("ipif_resolver_up: ARP_ADD for %s:%u\n", 13238 ipif->ipif_ill->ill_name, ipif->ipif_id)); 13239 putnext(ill->ill_rq, arp_add_mp); 13240 } 13241 if (arp_add_mapping_mp != NULL) { 13242 ip1dbg(("ipif_resolver_up: MAPPING_ADD for %s:%u\n", 13243 ipif->ipif_ill->ill_name, ipif->ipif_id)); 13244 putnext(ill->ill_rq, arp_add_mapping_mp); 13245 } 13246 if (arp_just_publish) 13247 return (0); 13248 13249 if (ill->ill_flags & ILLF_NOARP) 13250 err = ill_arp_off(ill); 13251 else 13252 err = ill_arp_on(ill); 13253 if (err) { 13254 ip0dbg(("ipif_resolver_up: arp_on/off failed %d\n", err)); 13255 freemsg(ipif->ipif_arp_del_mp); 13256 if (arp_down_mp != NULL) 13257 freemsg(ill->ill_arp_down_mp); 13258 if (ill->ill_arp_del_mapping_mp != NULL) 13259 freemsg(ill->ill_arp_del_mapping_mp); 13260 ipif->ipif_arp_del_mp = NULL; 13261 ill->ill_arp_down_mp = NULL; 13262 ill->ill_arp_del_mapping_mp = NULL; 13263 return (err); 13264 } 13265 return (ill->ill_ipif_up_count != 0 ? 0 : EINPROGRESS); 13266 13267 failed:; 13268 ip1dbg(("ipif_resolver_up: FAILED\n")); 13269 freemsg(arp_add_mp); 13270 freemsg(arp_del_mp); 13271 freemsg(arp_add_mapping_mp); 13272 freemsg(arp_up_mp); 13273 freemsg(arp_down_mp); 13274 ill->ill_arp_bringup_pending = 0; 13275 return (err); 13276 } 13277 13278 /* 13279 * Wakeup all threads waiting to enter the ipsq, and sleeping 13280 * on any of the ills in this ipsq. The ill_lock of the ill 13281 * must be held so that waiters don't miss wakeups 13282 */ 13283 static void 13284 ill_signal_ipsq_ills(ipsq_t *ipsq, boolean_t caller_holds_lock) 13285 { 13286 phyint_t *phyint; 13287 13288 phyint = ipsq->ipsq_phyint_list; 13289 while (phyint != NULL) { 13290 if (phyint->phyint_illv4) { 13291 if (!caller_holds_lock) 13292 mutex_enter(&phyint->phyint_illv4->ill_lock); 13293 ASSERT(MUTEX_HELD(&phyint->phyint_illv4->ill_lock)); 13294 cv_broadcast(&phyint->phyint_illv4->ill_cv); 13295 if (!caller_holds_lock) 13296 mutex_exit(&phyint->phyint_illv4->ill_lock); 13297 } 13298 if (phyint->phyint_illv6) { 13299 if (!caller_holds_lock) 13300 mutex_enter(&phyint->phyint_illv6->ill_lock); 13301 ASSERT(MUTEX_HELD(&phyint->phyint_illv6->ill_lock)); 13302 cv_broadcast(&phyint->phyint_illv6->ill_cv); 13303 if (!caller_holds_lock) 13304 mutex_exit(&phyint->phyint_illv6->ill_lock); 13305 } 13306 phyint = phyint->phyint_ipsq_next; 13307 } 13308 } 13309 13310 static ipsq_t * 13311 ipsq_create(char *groupname) 13312 { 13313 ipsq_t *ipsq; 13314 13315 ASSERT(RW_WRITE_HELD(&ill_g_lock)); 13316 ipsq = kmem_zalloc(sizeof (ipsq_t), KM_NOSLEEP); 13317 if (ipsq == NULL) { 13318 return (NULL); 13319 } 13320 13321 if (groupname != NULL) 13322 (void) strcpy(ipsq->ipsq_name, groupname); 13323 else 13324 ipsq->ipsq_name[0] = '\0'; 13325 13326 mutex_init(&ipsq->ipsq_lock, NULL, MUTEX_DEFAULT, NULL); 13327 ipsq->ipsq_flags |= IPSQ_GROUP; 13328 ipsq->ipsq_next = ipsq_g_head; 13329 ipsq_g_head = ipsq; 13330 return (ipsq); 13331 } 13332 13333 /* 13334 * Return an ipsq correspoding to the groupname. If 'create' is true 13335 * allocate a new ipsq if one does not exist. Usually an ipsq is associated 13336 * uniquely with an IPMP group. However during IPMP groupname operations, 13337 * multiple IPMP groups may be associated with a single ipsq. But no 13338 * IPMP group can be associated with more than 1 ipsq at any time. 13339 * For example 13340 * Interfaces IPMP grpname ipsq ipsq_name ipsq_refs 13341 * hme1, hme2 mpk17-84 ipsq1 mpk17-84 2 13342 * hme3, hme4 mpk17-85 ipsq2 mpk17-85 2 13343 * 13344 * Now the command ifconfig hme3 group mpk17-84 results in the temporary 13345 * status shown below during the execution of the above command. 13346 * hme1, hme2, hme3, hme4 mpk17-84, mpk17-85 ipsq1 mpk17-84 4 13347 * 13348 * After the completion of the above groupname command we return to the stable 13349 * state shown below. 13350 * hme1, hme2, hme3 mpk17-84 ipsq1 mpk17-84 3 13351 * hme4 mpk17-85 ipsq2 mpk17-85 1 13352 * 13353 * Because of the above, we don't search based on the ipsq_name since that 13354 * would miss the correct ipsq during certain windows as shown above. 13355 * The ipsq_name is only used during split of an ipsq to return the ipsq to its 13356 * natural state. 13357 */ 13358 static ipsq_t * 13359 ip_ipsq_lookup(char *groupname, boolean_t create, ipsq_t *exclude_ipsq) 13360 { 13361 ipsq_t *ipsq; 13362 int group_len; 13363 phyint_t *phyint; 13364 13365 ASSERT(RW_LOCK_HELD(&ill_g_lock)); 13366 13367 group_len = strlen(groupname); 13368 ASSERT(group_len != 0); 13369 group_len++; 13370 13371 for (ipsq = ipsq_g_head; ipsq != NULL; ipsq = ipsq->ipsq_next) { 13372 /* 13373 * When an ipsq is being split, and ill_split_ipsq 13374 * calls this function, we exclude it from being considered. 13375 */ 13376 if (ipsq == exclude_ipsq) 13377 continue; 13378 13379 /* 13380 * Compare against the ipsq_name. The groupname change happens 13381 * in 2 phases. The 1st phase merges the from group into 13382 * the to group's ipsq, by calling ill_merge_groups and restarts 13383 * the ioctl. The 2nd phase then locates the ipsq again thru 13384 * ipsq_name. At this point the phyint_groupname has not been 13385 * updated. 13386 */ 13387 if ((group_len == strlen(ipsq->ipsq_name) + 1) && 13388 (bcmp(ipsq->ipsq_name, groupname, group_len) == 0)) { 13389 /* 13390 * Verify that an ipmp groupname is exactly 13391 * part of 1 ipsq and is not found in any other 13392 * ipsq. 13393 */ 13394 ASSERT(ip_ipsq_lookup(groupname, B_FALSE, ipsq) == 13395 NULL); 13396 return (ipsq); 13397 } 13398 13399 /* 13400 * Comparison against ipsq_name alone is not sufficient. 13401 * In the case when groups are currently being 13402 * merged, the ipsq could hold other IPMP groups temporarily. 13403 * so we walk the phyint list and compare against the 13404 * phyint_groupname as well. 13405 */ 13406 phyint = ipsq->ipsq_phyint_list; 13407 while (phyint != NULL) { 13408 if ((group_len == phyint->phyint_groupname_len) && 13409 (bcmp(phyint->phyint_groupname, groupname, 13410 group_len) == 0)) { 13411 /* 13412 * Verify that an ipmp groupname is exactly 13413 * part of 1 ipsq and is not found in any other 13414 * ipsq. 13415 */ 13416 ASSERT(ip_ipsq_lookup(groupname, B_FALSE, ipsq) 13417 == NULL); 13418 return (ipsq); 13419 } 13420 phyint = phyint->phyint_ipsq_next; 13421 } 13422 } 13423 if (create) 13424 ipsq = ipsq_create(groupname); 13425 return (ipsq); 13426 } 13427 13428 static void 13429 ipsq_delete(ipsq_t *ipsq) 13430 { 13431 ipsq_t *nipsq; 13432 ipsq_t *pipsq = NULL; 13433 13434 /* 13435 * We don't hold the ipsq lock, but we are sure no new 13436 * messages can land up, since the ipsq_refs is zero. 13437 * i.e. this ipsq is unnamed and no phyint or phyint group 13438 * is associated with this ipsq. (Lookups are based on ill_name 13439 * or phyint_group_name) 13440 */ 13441 ASSERT(ipsq->ipsq_refs == 0); 13442 ASSERT(ipsq->ipsq_xopq_mphead == NULL && ipsq->ipsq_mphead == NULL); 13443 ASSERT(ipsq->ipsq_pending_mp == NULL); 13444 if (!(ipsq->ipsq_flags & IPSQ_GROUP)) { 13445 /* 13446 * This is not the ipsq of an IPMP group. 13447 */ 13448 kmem_free(ipsq, sizeof (ipsq_t)); 13449 return; 13450 } 13451 13452 rw_enter(&ill_g_lock, RW_WRITER); 13453 13454 /* 13455 * Locate the ipsq before we can remove it from 13456 * the singly linked list of ipsq's. 13457 */ 13458 for (nipsq = ipsq_g_head; nipsq != NULL; nipsq = nipsq->ipsq_next) { 13459 if (nipsq == ipsq) { 13460 break; 13461 } 13462 pipsq = nipsq; 13463 } 13464 13465 ASSERT(nipsq == ipsq); 13466 13467 /* unlink ipsq from the list */ 13468 if (pipsq != NULL) 13469 pipsq->ipsq_next = ipsq->ipsq_next; 13470 else 13471 ipsq_g_head = ipsq->ipsq_next; 13472 kmem_free(ipsq, sizeof (ipsq_t)); 13473 rw_exit(&ill_g_lock); 13474 } 13475 13476 static void 13477 ill_move_to_new_ipsq(ipsq_t *old_ipsq, ipsq_t *new_ipsq, mblk_t *current_mp, 13478 queue_t *q) 13479 13480 { 13481 13482 ASSERT(MUTEX_HELD(&new_ipsq->ipsq_lock)); 13483 ASSERT(old_ipsq->ipsq_mphead == NULL && old_ipsq->ipsq_mptail == NULL); 13484 ASSERT(old_ipsq->ipsq_pending_ipif == NULL); 13485 ASSERT(old_ipsq->ipsq_pending_mp == NULL); 13486 ASSERT(current_mp != NULL); 13487 13488 ipsq_enq(new_ipsq, q, current_mp, (ipsq_func_t)ip_process_ioctl, 13489 NEW_OP, NULL); 13490 13491 ASSERT(new_ipsq->ipsq_xopq_mptail != NULL && 13492 new_ipsq->ipsq_xopq_mphead != NULL); 13493 13494 /* 13495 * move from old ipsq to the new ipsq. 13496 */ 13497 new_ipsq->ipsq_xopq_mptail->b_next = old_ipsq->ipsq_xopq_mphead; 13498 if (old_ipsq->ipsq_xopq_mphead != NULL) 13499 new_ipsq->ipsq_xopq_mptail = old_ipsq->ipsq_xopq_mptail; 13500 13501 old_ipsq->ipsq_xopq_mphead = old_ipsq->ipsq_xopq_mptail = NULL; 13502 } 13503 13504 void 13505 ill_group_cleanup(ill_t *ill) 13506 { 13507 ill_t *ill_v4; 13508 ill_t *ill_v6; 13509 ipif_t *ipif; 13510 13511 ill_v4 = ill->ill_phyint->phyint_illv4; 13512 ill_v6 = ill->ill_phyint->phyint_illv6; 13513 13514 if (ill_v4 != NULL) { 13515 mutex_enter(&ill_v4->ill_lock); 13516 for (ipif = ill_v4->ill_ipif; ipif != NULL; 13517 ipif = ipif->ipif_next) { 13518 IPIF_UNMARK_MOVING(ipif); 13519 } 13520 ill_v4->ill_up_ipifs = B_FALSE; 13521 mutex_exit(&ill_v4->ill_lock); 13522 } 13523 13524 if (ill_v6 != NULL) { 13525 mutex_enter(&ill_v6->ill_lock); 13526 for (ipif = ill_v6->ill_ipif; ipif != NULL; 13527 ipif = ipif->ipif_next) { 13528 IPIF_UNMARK_MOVING(ipif); 13529 } 13530 ill_v6->ill_up_ipifs = B_FALSE; 13531 mutex_exit(&ill_v6->ill_lock); 13532 } 13533 } 13534 /* 13535 * This function is called when an ill has had a change in its group status 13536 * to bring up all the ipifs that were up before the change. 13537 */ 13538 int 13539 ill_up_ipifs(ill_t *ill, queue_t *q, mblk_t *mp) 13540 { 13541 ipif_t *ipif; 13542 ill_t *ill_v4; 13543 ill_t *ill_v6; 13544 ill_t *from_ill; 13545 int err = 0; 13546 13547 13548 ASSERT(IAM_WRITER_ILL(ill)); 13549 13550 /* 13551 * Except for ipif_state_flags and ill_state_flags the other 13552 * fields of the ipif/ill that are modified below are protected 13553 * implicitly since we are a writer. We would have tried to down 13554 * even an ipif that was already down, in ill_down_ipifs. So we 13555 * just blindly clear the IPIF_CHANGING flag here on all ipifs. 13556 */ 13557 ill_v4 = ill->ill_phyint->phyint_illv4; 13558 ill_v6 = ill->ill_phyint->phyint_illv6; 13559 if (ill_v4 != NULL) { 13560 ill_v4->ill_up_ipifs = B_TRUE; 13561 for (ipif = ill_v4->ill_ipif; ipif != NULL; 13562 ipif = ipif->ipif_next) { 13563 mutex_enter(&ill_v4->ill_lock); 13564 ipif->ipif_state_flags &= ~IPIF_CHANGING; 13565 IPIF_UNMARK_MOVING(ipif); 13566 mutex_exit(&ill_v4->ill_lock); 13567 if (ipif->ipif_was_up) { 13568 if (!(ipif->ipif_flags & IPIF_UP)) 13569 err = ipif_up(ipif, q, mp); 13570 ipif->ipif_was_up = B_FALSE; 13571 if (err != 0) { 13572 /* 13573 * Can there be any other error ? 13574 */ 13575 ASSERT(err == EINPROGRESS); 13576 return (err); 13577 } 13578 } 13579 } 13580 mutex_enter(&ill_v4->ill_lock); 13581 ill_v4->ill_state_flags &= ~ILL_CHANGING; 13582 mutex_exit(&ill_v4->ill_lock); 13583 ill_v4->ill_up_ipifs = B_FALSE; 13584 if (ill_v4->ill_move_in_progress) { 13585 ASSERT(ill_v4->ill_move_peer != NULL); 13586 ill_v4->ill_move_in_progress = B_FALSE; 13587 from_ill = ill_v4->ill_move_peer; 13588 from_ill->ill_move_in_progress = B_FALSE; 13589 from_ill->ill_move_peer = NULL; 13590 mutex_enter(&from_ill->ill_lock); 13591 from_ill->ill_state_flags &= ~ILL_CHANGING; 13592 mutex_exit(&from_ill->ill_lock); 13593 if (ill_v6 == NULL) { 13594 if (from_ill->ill_phyint->phyint_flags & 13595 PHYI_STANDBY) { 13596 phyint_inactive(from_ill->ill_phyint); 13597 } 13598 if (ill_v4->ill_phyint->phyint_flags & 13599 PHYI_STANDBY) { 13600 phyint_inactive(ill_v4->ill_phyint); 13601 } 13602 } 13603 ill_v4->ill_move_peer = NULL; 13604 } 13605 } 13606 13607 if (ill_v6 != NULL) { 13608 ill_v6->ill_up_ipifs = B_TRUE; 13609 for (ipif = ill_v6->ill_ipif; ipif != NULL; 13610 ipif = ipif->ipif_next) { 13611 mutex_enter(&ill_v6->ill_lock); 13612 ipif->ipif_state_flags &= ~IPIF_CHANGING; 13613 IPIF_UNMARK_MOVING(ipif); 13614 mutex_exit(&ill_v6->ill_lock); 13615 if (ipif->ipif_was_up) { 13616 if (!(ipif->ipif_flags & IPIF_UP)) 13617 err = ipif_up(ipif, q, mp); 13618 ipif->ipif_was_up = B_FALSE; 13619 if (err != 0) { 13620 /* 13621 * Can there be any other error ? 13622 */ 13623 ASSERT(err == EINPROGRESS); 13624 return (err); 13625 } 13626 } 13627 } 13628 mutex_enter(&ill_v6->ill_lock); 13629 ill_v6->ill_state_flags &= ~ILL_CHANGING; 13630 mutex_exit(&ill_v6->ill_lock); 13631 ill_v6->ill_up_ipifs = B_FALSE; 13632 if (ill_v6->ill_move_in_progress) { 13633 ASSERT(ill_v6->ill_move_peer != NULL); 13634 ill_v6->ill_move_in_progress = B_FALSE; 13635 from_ill = ill_v6->ill_move_peer; 13636 from_ill->ill_move_in_progress = B_FALSE; 13637 from_ill->ill_move_peer = NULL; 13638 mutex_enter(&from_ill->ill_lock); 13639 from_ill->ill_state_flags &= ~ILL_CHANGING; 13640 mutex_exit(&from_ill->ill_lock); 13641 if (from_ill->ill_phyint->phyint_flags & PHYI_STANDBY) { 13642 phyint_inactive(from_ill->ill_phyint); 13643 } 13644 if (ill_v6->ill_phyint->phyint_flags & PHYI_STANDBY) { 13645 phyint_inactive(ill_v6->ill_phyint); 13646 } 13647 ill_v6->ill_move_peer = NULL; 13648 } 13649 } 13650 return (0); 13651 } 13652 13653 /* 13654 * bring down all the approriate ipifs. 13655 */ 13656 /* ARGSUSED */ 13657 static void 13658 ill_down_ipifs(ill_t *ill, mblk_t *mp, int index, boolean_t chk_nofailover) 13659 { 13660 ipif_t *ipif; 13661 13662 ASSERT(IAM_WRITER_ILL(ill)); 13663 13664 /* 13665 * Except for ipif_state_flags the other fields of the ipif/ill that 13666 * are modified below are protected implicitly since we are a writer 13667 */ 13668 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 13669 if (chk_nofailover && (ipif->ipif_flags & IPIF_NOFAILOVER)) 13670 continue; 13671 if (index == 0 || index == ipif->ipif_orig_ifindex) { 13672 /* 13673 * We go through the ipif_down logic even if the ipif 13674 * is already down, since routes can be added based 13675 * on down ipifs. Going through ipif_down once again 13676 * will delete any IREs created based on these routes. 13677 */ 13678 if (ipif->ipif_flags & IPIF_UP) 13679 ipif->ipif_was_up = B_TRUE; 13680 /* 13681 * If called with chk_nofailover true ipif is moving. 13682 */ 13683 mutex_enter(&ill->ill_lock); 13684 if (chk_nofailover) { 13685 ipif->ipif_state_flags |= 13686 IPIF_MOVING | IPIF_CHANGING; 13687 } else { 13688 ipif->ipif_state_flags |= IPIF_CHANGING; 13689 } 13690 mutex_exit(&ill->ill_lock); 13691 /* 13692 * Need to re-create net/subnet bcast ires if 13693 * they are dependent on ipif. 13694 */ 13695 if (!ipif->ipif_isv6) 13696 ipif_check_bcast_ires(ipif); 13697 (void) ipif_logical_down(ipif, NULL, NULL); 13698 ipif_down_tail(ipif); 13699 /* 13700 * We don't do ipif_multicast_down for IPv4 in 13701 * ipif_down. We need to set this so that 13702 * ipif_multicast_up will join the 13703 * ALLHOSTS_GROUP on to_ill. 13704 */ 13705 ipif->ipif_multicast_up = B_FALSE; 13706 } 13707 } 13708 } 13709 13710 #define IPSQ_INC_REF(ipsq) { \ 13711 ASSERT(RW_WRITE_HELD(&ill_g_lock)); \ 13712 (ipsq)->ipsq_refs++; \ 13713 } 13714 13715 #define IPSQ_DEC_REF(ipsq) { \ 13716 ASSERT(RW_WRITE_HELD(&ill_g_lock)); \ 13717 (ipsq)->ipsq_refs--; \ 13718 if ((ipsq)->ipsq_refs == 0) \ 13719 (ipsq)->ipsq_name[0] = '\0'; \ 13720 } 13721 13722 /* 13723 * Change the ipsq of all the ill's whose current ipsq is 'cur_ipsq' to 13724 * new_ipsq. 13725 */ 13726 static void 13727 ill_merge_ipsq(ipsq_t *cur_ipsq, ipsq_t *new_ipsq) 13728 { 13729 phyint_t *phyint; 13730 phyint_t *next_phyint; 13731 13732 /* 13733 * To change the ipsq of an ill, we need to hold the ill_g_lock as 13734 * writer and the ill_lock of the ill in question. Also the dest 13735 * ipsq can't vanish while we hold the ill_g_lock as writer. 13736 */ 13737 ASSERT(RW_WRITE_HELD(&ill_g_lock)); 13738 13739 phyint = cur_ipsq->ipsq_phyint_list; 13740 cur_ipsq->ipsq_phyint_list = NULL; 13741 while (phyint != NULL) { 13742 next_phyint = phyint->phyint_ipsq_next; 13743 IPSQ_DEC_REF(cur_ipsq); 13744 phyint->phyint_ipsq_next = new_ipsq->ipsq_phyint_list; 13745 new_ipsq->ipsq_phyint_list = phyint; 13746 IPSQ_INC_REF(new_ipsq); 13747 phyint->phyint_ipsq = new_ipsq; 13748 phyint = next_phyint; 13749 } 13750 } 13751 13752 #define SPLIT_SUCCESS 0 13753 #define SPLIT_NOT_NEEDED 1 13754 #define SPLIT_FAILED 2 13755 13756 int 13757 ill_split_to_grp_ipsq(phyint_t *phyint, ipsq_t *cur_ipsq, boolean_t need_retry) 13758 { 13759 ipsq_t *newipsq = NULL; 13760 13761 /* 13762 * Assertions denote pre-requisites for changing the ipsq of 13763 * a phyint 13764 */ 13765 ASSERT(RW_WRITE_HELD(&ill_g_lock)); 13766 /* 13767 * <ill-phyint> assocs can't change while ill_g_lock 13768 * is held as writer. See ill_phyint_reinit() 13769 */ 13770 ASSERT(phyint->phyint_illv4 == NULL || 13771 MUTEX_HELD(&phyint->phyint_illv4->ill_lock)); 13772 ASSERT(phyint->phyint_illv6 == NULL || 13773 MUTEX_HELD(&phyint->phyint_illv6->ill_lock)); 13774 13775 if ((phyint->phyint_groupname_len != 13776 (strlen(cur_ipsq->ipsq_name) + 1) || 13777 bcmp(phyint->phyint_groupname, cur_ipsq->ipsq_name, 13778 phyint->phyint_groupname_len) != 0)) { 13779 /* 13780 * Once we fail in creating a new ipsq due to memory shortage, 13781 * don't attempt to create new ipsq again, based on another 13782 * phyint, since we want all phyints belonging to an IPMP group 13783 * to be in the same ipsq even in the event of mem alloc fails. 13784 */ 13785 newipsq = ip_ipsq_lookup(phyint->phyint_groupname, !need_retry, 13786 cur_ipsq); 13787 if (newipsq == NULL) { 13788 /* Memory allocation failure */ 13789 return (SPLIT_FAILED); 13790 } else { 13791 /* ipsq_refs protected by ill_g_lock (writer) */ 13792 IPSQ_DEC_REF(cur_ipsq); 13793 phyint->phyint_ipsq = newipsq; 13794 phyint->phyint_ipsq_next = newipsq->ipsq_phyint_list; 13795 newipsq->ipsq_phyint_list = phyint; 13796 IPSQ_INC_REF(newipsq); 13797 return (SPLIT_SUCCESS); 13798 } 13799 } 13800 return (SPLIT_NOT_NEEDED); 13801 } 13802 13803 /* 13804 * The ill locks of the phyint and the ill_g_lock (writer) must be held 13805 * to do this split 13806 */ 13807 static int 13808 ill_split_to_own_ipsq(phyint_t *phyint, ipsq_t *cur_ipsq) 13809 { 13810 ipsq_t *newipsq; 13811 13812 ASSERT(RW_WRITE_HELD(&ill_g_lock)); 13813 /* 13814 * <ill-phyint> assocs can't change while ill_g_lock 13815 * is held as writer. See ill_phyint_reinit() 13816 */ 13817 13818 ASSERT(phyint->phyint_illv4 == NULL || 13819 MUTEX_HELD(&phyint->phyint_illv4->ill_lock)); 13820 ASSERT(phyint->phyint_illv6 == NULL || 13821 MUTEX_HELD(&phyint->phyint_illv6->ill_lock)); 13822 13823 if (!ipsq_init((phyint->phyint_illv4 != NULL) ? 13824 phyint->phyint_illv4: phyint->phyint_illv6)) { 13825 /* 13826 * ipsq_init failed due to no memory 13827 * caller will use the same ipsq 13828 */ 13829 return (SPLIT_FAILED); 13830 } 13831 13832 /* ipsq_ref is protected by ill_g_lock (writer) */ 13833 IPSQ_DEC_REF(cur_ipsq); 13834 13835 /* 13836 * This is a new ipsq that is unknown to the world. 13837 * So we don't need to hold ipsq_lock, 13838 */ 13839 newipsq = phyint->phyint_ipsq; 13840 newipsq->ipsq_writer = NULL; 13841 newipsq->ipsq_reentry_cnt--; 13842 ASSERT(newipsq->ipsq_reentry_cnt == 0); 13843 #ifdef ILL_DEBUG 13844 newipsq->ipsq_depth = 0; 13845 #endif 13846 13847 return (SPLIT_SUCCESS); 13848 } 13849 13850 /* 13851 * Change the ipsq of all the ill's whose current ipsq is 'cur_ipsq' to 13852 * ipsq's representing their individual groups or themselves. Return 13853 * whether split needs to be retried again later. 13854 */ 13855 static boolean_t 13856 ill_split_ipsq(ipsq_t *cur_ipsq) 13857 { 13858 phyint_t *phyint; 13859 phyint_t *next_phyint; 13860 int error; 13861 boolean_t need_retry = B_FALSE; 13862 13863 phyint = cur_ipsq->ipsq_phyint_list; 13864 cur_ipsq->ipsq_phyint_list = NULL; 13865 while (phyint != NULL) { 13866 next_phyint = phyint->phyint_ipsq_next; 13867 /* 13868 * 'created' will tell us whether the callee actually 13869 * created an ipsq. Lack of memory may force the callee 13870 * to return without creating an ipsq. 13871 */ 13872 if (phyint->phyint_groupname == NULL) { 13873 error = ill_split_to_own_ipsq(phyint, cur_ipsq); 13874 } else { 13875 error = ill_split_to_grp_ipsq(phyint, cur_ipsq, 13876 need_retry); 13877 } 13878 13879 switch (error) { 13880 case SPLIT_FAILED: 13881 need_retry = B_TRUE; 13882 /* FALLTHRU */ 13883 case SPLIT_NOT_NEEDED: 13884 /* 13885 * Keep it on the list. 13886 */ 13887 phyint->phyint_ipsq_next = cur_ipsq->ipsq_phyint_list; 13888 cur_ipsq->ipsq_phyint_list = phyint; 13889 break; 13890 case SPLIT_SUCCESS: 13891 break; 13892 default: 13893 ASSERT(0); 13894 } 13895 13896 phyint = next_phyint; 13897 } 13898 return (need_retry); 13899 } 13900 13901 /* 13902 * given an ipsq 'ipsq' lock all ills associated with this ipsq. 13903 * and return the ills in the list. This list will be 13904 * needed to unlock all the ills later on by the caller. 13905 * The <ill-ipsq> associations could change between the 13906 * lock and unlock. Hence the unlock can't traverse the 13907 * ipsq to get the list of ills. 13908 */ 13909 static int 13910 ill_lock_ipsq_ills(ipsq_t *ipsq, ill_t **list, int list_max) 13911 { 13912 int cnt = 0; 13913 phyint_t *phyint; 13914 13915 /* 13916 * The caller holds ill_g_lock to ensure that the ill memberships 13917 * of the ipsq don't change 13918 */ 13919 ASSERT(RW_LOCK_HELD(&ill_g_lock)); 13920 13921 phyint = ipsq->ipsq_phyint_list; 13922 while (phyint != NULL) { 13923 if (phyint->phyint_illv4 != NULL) { 13924 ASSERT(cnt < list_max); 13925 list[cnt++] = phyint->phyint_illv4; 13926 } 13927 if (phyint->phyint_illv6 != NULL) { 13928 ASSERT(cnt < list_max); 13929 list[cnt++] = phyint->phyint_illv6; 13930 } 13931 phyint = phyint->phyint_ipsq_next; 13932 } 13933 ill_lock_ills(list, cnt); 13934 return (cnt); 13935 } 13936 13937 void 13938 ill_lock_ills(ill_t **list, int cnt) 13939 { 13940 int i; 13941 13942 if (cnt > 1) { 13943 boolean_t try_again; 13944 do { 13945 try_again = B_FALSE; 13946 for (i = 0; i < cnt - 1; i++) { 13947 if (list[i] < list[i + 1]) { 13948 ill_t *tmp; 13949 13950 /* swap the elements */ 13951 tmp = list[i]; 13952 list[i] = list[i + 1]; 13953 list[i + 1] = tmp; 13954 try_again = B_TRUE; 13955 } 13956 } 13957 } while (try_again); 13958 } 13959 13960 for (i = 0; i < cnt; i++) { 13961 if (i == 0) { 13962 if (list[i] != NULL) 13963 mutex_enter(&list[i]->ill_lock); 13964 else 13965 return; 13966 } else if ((list[i-1] != list[i]) && (list[i] != NULL)) { 13967 mutex_enter(&list[i]->ill_lock); 13968 } 13969 } 13970 } 13971 13972 void 13973 ill_unlock_ills(ill_t **list, int cnt) 13974 { 13975 int i; 13976 13977 for (i = 0; i < cnt; i++) { 13978 if ((i == 0) && (list[i] != NULL)) { 13979 mutex_exit(&list[i]->ill_lock); 13980 } else if ((list[i-1] != list[i]) && (list[i] != NULL)) { 13981 mutex_exit(&list[i]->ill_lock); 13982 } 13983 } 13984 } 13985 13986 /* 13987 * Merge all the ills from 1 ipsq group into another ipsq group. 13988 * The source ipsq group is specified by the ipsq associated with 13989 * 'from_ill'. The destination ipsq group is specified by the ipsq 13990 * associated with 'to_ill' or 'groupname' respectively. 13991 * Note that ipsq itself does not have a reference count mechanism 13992 * and functions don't look up an ipsq and pass it around. Instead 13993 * functions pass around an ill or groupname, and the ipsq is looked 13994 * up from the ill or groupname and the required operation performed 13995 * atomically with the lookup on the ipsq. 13996 */ 13997 static int 13998 ill_merge_groups(ill_t *from_ill, ill_t *to_ill, char *groupname, mblk_t *mp, 13999 queue_t *q) 14000 { 14001 ipsq_t *old_ipsq; 14002 ipsq_t *new_ipsq; 14003 ill_t **ill_list; 14004 int cnt; 14005 size_t ill_list_size; 14006 boolean_t became_writer_on_new_sq = B_FALSE; 14007 14008 /* Exactly 1 of 'to_ill' and groupname can be specified. */ 14009 ASSERT((to_ill != NULL) ^ (groupname != NULL)); 14010 14011 /* 14012 * Need to hold ill_g_lock as writer and also the ill_lock to 14013 * change the <ill-ipsq> assoc of an ill. Need to hold the 14014 * ipsq_lock to prevent new messages from landing on an ipsq. 14015 */ 14016 rw_enter(&ill_g_lock, RW_WRITER); 14017 14018 old_ipsq = from_ill->ill_phyint->phyint_ipsq; 14019 if (groupname != NULL) 14020 new_ipsq = ip_ipsq_lookup(groupname, B_TRUE, NULL); 14021 else { 14022 new_ipsq = to_ill->ill_phyint->phyint_ipsq; 14023 } 14024 14025 ASSERT(old_ipsq != NULL && new_ipsq != NULL); 14026 14027 /* 14028 * both groups are on the same ipsq. 14029 */ 14030 if (old_ipsq == new_ipsq) { 14031 rw_exit(&ill_g_lock); 14032 return (0); 14033 } 14034 14035 cnt = old_ipsq->ipsq_refs << 1; 14036 ill_list_size = cnt * sizeof (ill_t *); 14037 ill_list = kmem_zalloc(ill_list_size, KM_NOSLEEP); 14038 if (ill_list == NULL) { 14039 rw_exit(&ill_g_lock); 14040 return (ENOMEM); 14041 } 14042 cnt = ill_lock_ipsq_ills(old_ipsq, ill_list, cnt); 14043 14044 /* Need ipsq lock to enque messages on new ipsq or to become writer */ 14045 mutex_enter(&new_ipsq->ipsq_lock); 14046 if ((new_ipsq->ipsq_writer == NULL && 14047 new_ipsq->ipsq_current_ipif == NULL) || 14048 (new_ipsq->ipsq_writer == curthread)) { 14049 new_ipsq->ipsq_writer = curthread; 14050 new_ipsq->ipsq_reentry_cnt++; 14051 became_writer_on_new_sq = B_TRUE; 14052 } 14053 14054 /* 14055 * We are holding ill_g_lock as writer and all the ill locks of 14056 * the old ipsq. So the old_ipsq can't be looked up, and hence no new 14057 * message can land up on the old ipsq even though we don't hold the 14058 * ipsq_lock of the old_ipsq. Now move all messages to the newipsq. 14059 */ 14060 ill_move_to_new_ipsq(old_ipsq, new_ipsq, mp, q); 14061 14062 /* 14063 * now change the ipsq of all ills in the 'old_ipsq' to 'new_ipsq'. 14064 * 'new_ipsq' has been looked up, and it can't change its <ill-ipsq> 14065 * assocs. till we release the ill_g_lock, and hence it can't vanish. 14066 */ 14067 ill_merge_ipsq(old_ipsq, new_ipsq); 14068 14069 /* 14070 * Mark the new ipsq as needing a split since it is currently 14071 * being shared by more than 1 IPMP group. The split will 14072 * occur at the end of ipsq_exit 14073 */ 14074 new_ipsq->ipsq_split = B_TRUE; 14075 14076 /* Now release all the locks */ 14077 mutex_exit(&new_ipsq->ipsq_lock); 14078 ill_unlock_ills(ill_list, cnt); 14079 rw_exit(&ill_g_lock); 14080 14081 kmem_free(ill_list, ill_list_size); 14082 14083 /* 14084 * If we succeeded in becoming writer on the new ipsq, then 14085 * drain the new ipsq and start processing all enqueued messages 14086 * including the current ioctl we are processing which is either 14087 * a set groupname or failover/failback. 14088 */ 14089 if (became_writer_on_new_sq) 14090 ipsq_exit(new_ipsq, B_TRUE, B_TRUE); 14091 14092 /* 14093 * syncq has been changed and all the messages have been moved. 14094 */ 14095 mutex_enter(&old_ipsq->ipsq_lock); 14096 old_ipsq->ipsq_current_ipif = NULL; 14097 mutex_exit(&old_ipsq->ipsq_lock); 14098 return (EINPROGRESS); 14099 } 14100 14101 /* 14102 * Delete and add the loopback copy and non-loopback copy of 14103 * the BROADCAST ire corresponding to ill and addr. Used to 14104 * group broadcast ires together when ill becomes part of 14105 * a group. 14106 * 14107 * This function is also called when ill is leaving the group 14108 * so that the ires belonging to the group gets re-grouped. 14109 */ 14110 static void 14111 ill_bcast_delete_and_add(ill_t *ill, ipaddr_t addr) 14112 { 14113 ire_t *ire, *nire, *nire_next, *ire_head = NULL; 14114 ire_t **ire_ptpn = &ire_head; 14115 14116 /* 14117 * The loopback and non-loopback IREs are inserted in the order in which 14118 * they're found, on the basis that they are correctly ordered (loopback 14119 * first). 14120 */ 14121 for (;;) { 14122 ire = ire_ctable_lookup(addr, 0, IRE_BROADCAST, ill->ill_ipif, 14123 ALL_ZONES, NULL, MATCH_IRE_TYPE | MATCH_IRE_ILL); 14124 if (ire == NULL) 14125 break; 14126 14127 /* 14128 * we are passing in KM_SLEEP because it is not easy to 14129 * go back to a sane state in case of memory failure. 14130 */ 14131 nire = kmem_cache_alloc(ire_cache, KM_SLEEP); 14132 ASSERT(nire != NULL); 14133 bzero(nire, sizeof (ire_t)); 14134 /* 14135 * Don't use ire_max_frag directly since we don't 14136 * hold on to 'ire' until we add the new ire 'nire' and 14137 * we don't want the new ire to have a dangling reference 14138 * to 'ire'. The ire_max_frag of a broadcast ire must 14139 * be in sync with the ipif_mtu of the associate ipif. 14140 * For eg. this happens as a result of SIOCSLIFNAME, 14141 * SIOCSLIFLNKINFO or a DL_NOTE_SDU_SIZE inititated by 14142 * the driver. A change in ire_max_frag triggered as 14143 * as a result of path mtu discovery, or due to an 14144 * IP_IOC_IRE_ADVISE_NOREPLY from the transport or due a 14145 * route change -mtu command does not apply to broadcast ires. 14146 * 14147 * XXX We need a recovery strategy here if ire_init fails 14148 */ 14149 if (ire_init(nire, 14150 (uchar_t *)&ire->ire_addr, 14151 (uchar_t *)&ire->ire_mask, 14152 (uchar_t *)&ire->ire_src_addr, 14153 (uchar_t *)&ire->ire_gateway_addr, 14154 (uchar_t *)&ire->ire_in_src_addr, 14155 ire->ire_stq == NULL ? &ip_loopback_mtu : 14156 &ire->ire_ipif->ipif_mtu, 14157 ire->ire_fp_mp, 14158 ire->ire_rfq, 14159 ire->ire_stq, 14160 ire->ire_type, 14161 ire->ire_dlureq_mp, 14162 ire->ire_ipif, 14163 ire->ire_in_ill, 14164 ire->ire_cmask, 14165 ire->ire_phandle, 14166 ire->ire_ihandle, 14167 ire->ire_flags, 14168 &ire->ire_uinfo, 14169 NULL, 14170 NULL) == NULL) { 14171 cmn_err(CE_PANIC, "ire_init() failed"); 14172 } 14173 ire_delete(ire); 14174 ire_refrele(ire); 14175 14176 /* 14177 * The newly created IREs are inserted at the tail of the list 14178 * starting with ire_head. As we've just allocated them no one 14179 * knows about them so it's safe. 14180 */ 14181 *ire_ptpn = nire; 14182 ire_ptpn = &nire->ire_next; 14183 } 14184 14185 for (nire = ire_head; nire != NULL; nire = nire_next) { 14186 int error; 14187 ire_t *oire; 14188 /* unlink the IRE from our list before calling ire_add() */ 14189 nire_next = nire->ire_next; 14190 nire->ire_next = NULL; 14191 14192 /* ire_add adds the ire at the right place in the list */ 14193 oire = nire; 14194 error = ire_add(&nire, NULL, NULL, NULL); 14195 ASSERT(error == 0); 14196 ASSERT(oire == nire); 14197 ire_refrele(nire); /* Held in ire_add */ 14198 } 14199 } 14200 14201 /* 14202 * This function is usually called when an ill is inserted in 14203 * a group and all the ipifs are already UP. As all the ipifs 14204 * are already UP, the broadcast ires have already been created 14205 * and been inserted. But, ire_add_v4 would not have grouped properly. 14206 * We need to re-group for the benefit of ip_wput_ire which 14207 * expects BROADCAST ires to be grouped properly to avoid sending 14208 * more than one copy of the broadcast packet per group. 14209 * 14210 * NOTE : We don't check for ill_ipif_up_count to be non-zero here 14211 * because when ipif_up_done ends up calling this, ires have 14212 * already been added before illgrp_insert i.e before ill_group 14213 * has been initialized. 14214 */ 14215 static void 14216 ill_group_bcast_for_xmit(ill_t *ill) 14217 { 14218 ill_group_t *illgrp; 14219 ipif_t *ipif; 14220 ipaddr_t addr; 14221 ipaddr_t net_mask; 14222 ipaddr_t subnet_netmask; 14223 14224 illgrp = ill->ill_group; 14225 14226 /* 14227 * This function is called even when an ill is deleted from 14228 * the group. Hence, illgrp could be null. 14229 */ 14230 if (illgrp != NULL && illgrp->illgrp_ill_count == 1) 14231 return; 14232 14233 /* 14234 * Delete all the BROADCAST ires matching this ill and add 14235 * them back. This time, ire_add_v4 should take care of 14236 * grouping them with others because ill is part of the 14237 * group. 14238 */ 14239 ill_bcast_delete_and_add(ill, 0); 14240 ill_bcast_delete_and_add(ill, INADDR_BROADCAST); 14241 14242 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 14243 14244 if ((ipif->ipif_lcl_addr != INADDR_ANY) && 14245 !(ipif->ipif_flags & IPIF_NOLOCAL)) { 14246 net_mask = ip_net_mask(ipif->ipif_lcl_addr); 14247 } else { 14248 net_mask = htonl(IN_CLASSA_NET); 14249 } 14250 addr = net_mask & ipif->ipif_subnet; 14251 ill_bcast_delete_and_add(ill, addr); 14252 ill_bcast_delete_and_add(ill, ~net_mask | addr); 14253 14254 subnet_netmask = ipif->ipif_net_mask; 14255 addr = ipif->ipif_subnet; 14256 ill_bcast_delete_and_add(ill, addr); 14257 ill_bcast_delete_and_add(ill, ~subnet_netmask | addr); 14258 } 14259 } 14260 14261 /* 14262 * This function is called from illgrp_delete when ill is being deleted 14263 * from the group. 14264 * 14265 * As ill is not there in the group anymore, any address belonging 14266 * to this ill should be cleared of IRE_MARK_NORECV. 14267 */ 14268 static void 14269 ill_clear_bcast_mark(ill_t *ill, ipaddr_t addr) 14270 { 14271 ire_t *ire; 14272 irb_t *irb; 14273 14274 ASSERT(ill->ill_group == NULL); 14275 14276 ire = ire_ctable_lookup(addr, 0, IRE_BROADCAST, ill->ill_ipif, 14277 ALL_ZONES, NULL, MATCH_IRE_TYPE | MATCH_IRE_ILL); 14278 14279 if (ire != NULL) { 14280 /* 14281 * IPMP and plumbing operations are serialized on the ipsq, so 14282 * no one will insert or delete a broadcast ire under our feet. 14283 */ 14284 irb = ire->ire_bucket; 14285 rw_enter(&irb->irb_lock, RW_READER); 14286 ire_refrele(ire); 14287 14288 for (; ire != NULL; ire = ire->ire_next) { 14289 if (ire->ire_addr != addr) 14290 break; 14291 if (ire_to_ill(ire) != ill) 14292 continue; 14293 14294 ASSERT(!(ire->ire_marks & IRE_MARK_CONDEMNED)); 14295 ire->ire_marks &= ~IRE_MARK_NORECV; 14296 } 14297 rw_exit(&irb->irb_lock); 14298 } 14299 } 14300 14301 /* 14302 * This function must be called only after the broadcast ires 14303 * have been grouped together. For a given address addr, nominate 14304 * only one of the ires whose interface is not FAILED or OFFLINE. 14305 * 14306 * This is also called when an ipif goes down, so that we can nominate 14307 * a different ire with the same address for receiving. 14308 */ 14309 static void 14310 ill_mark_bcast(ill_group_t *illgrp, ipaddr_t addr) 14311 { 14312 irb_t *irb; 14313 ire_t *ire; 14314 ire_t *ire1; 14315 ire_t *save_ire; 14316 ire_t **irep = NULL; 14317 boolean_t first = B_TRUE; 14318 ire_t *clear_ire = NULL; 14319 ire_t *start_ire = NULL; 14320 ire_t *new_lb_ire; 14321 ire_t *new_nlb_ire; 14322 boolean_t new_lb_ire_used = B_FALSE; 14323 boolean_t new_nlb_ire_used = B_FALSE; 14324 uint64_t match_flags; 14325 uint64_t phyi_flags; 14326 boolean_t fallback = B_FALSE; 14327 14328 ire = ire_ctable_lookup(addr, 0, IRE_BROADCAST, NULL, ALL_ZONES, 14329 NULL, MATCH_IRE_TYPE); 14330 /* 14331 * We may not be able to find some ires if a previous 14332 * ire_create failed. This happens when an ipif goes 14333 * down and we are unable to create BROADCAST ires due 14334 * to memory failure. Thus, we have to check for NULL 14335 * below. This should handle the case for LOOPBACK, 14336 * POINTOPOINT and interfaces with some POINTOPOINT 14337 * logicals for which there are no BROADCAST ires. 14338 */ 14339 if (ire == NULL) 14340 return; 14341 /* 14342 * Currently IRE_BROADCASTS are deleted when an ipif 14343 * goes down which runs exclusively. Thus, setting 14344 * IRE_MARK_RCVD should not race with ire_delete marking 14345 * IRE_MARK_CONDEMNED. We grab the lock below just to 14346 * be consistent with other parts of the code that walks 14347 * a given bucket. 14348 */ 14349 save_ire = ire; 14350 irb = ire->ire_bucket; 14351 new_lb_ire = kmem_cache_alloc(ire_cache, KM_NOSLEEP); 14352 if (new_lb_ire == NULL) { 14353 ire_refrele(ire); 14354 return; 14355 } 14356 new_nlb_ire = kmem_cache_alloc(ire_cache, KM_NOSLEEP); 14357 if (new_nlb_ire == NULL) { 14358 ire_refrele(ire); 14359 kmem_cache_free(ire_cache, new_lb_ire); 14360 return; 14361 } 14362 IRB_REFHOLD(irb); 14363 rw_enter(&irb->irb_lock, RW_WRITER); 14364 /* 14365 * Get to the first ire matching the address and the 14366 * group. If the address does not match we are done 14367 * as we could not find the IRE. If the address matches 14368 * we should get to the first one matching the group. 14369 */ 14370 while (ire != NULL) { 14371 if (ire->ire_addr != addr || 14372 ire->ire_ipif->ipif_ill->ill_group == illgrp) { 14373 break; 14374 } 14375 ire = ire->ire_next; 14376 } 14377 match_flags = PHYI_FAILED | PHYI_INACTIVE; 14378 start_ire = ire; 14379 redo: 14380 while (ire != NULL && ire->ire_addr == addr && 14381 ire->ire_ipif->ipif_ill->ill_group == illgrp) { 14382 /* 14383 * The first ire for any address within a group 14384 * should always be the one with IRE_MARK_NORECV cleared 14385 * so that ip_wput_ire can avoid searching for one. 14386 * Note down the insertion point which will be used 14387 * later. 14388 */ 14389 if (first && (irep == NULL)) 14390 irep = ire->ire_ptpn; 14391 /* 14392 * PHYI_FAILED is set when the interface fails. 14393 * This interface might have become good, but the 14394 * daemon has not yet detected. We should still 14395 * not receive on this. PHYI_OFFLINE should never 14396 * be picked as this has been offlined and soon 14397 * be removed. 14398 */ 14399 phyi_flags = ire->ire_ipif->ipif_ill->ill_phyint->phyint_flags; 14400 if (phyi_flags & PHYI_OFFLINE) { 14401 ire->ire_marks |= IRE_MARK_NORECV; 14402 ire = ire->ire_next; 14403 continue; 14404 } 14405 if (phyi_flags & match_flags) { 14406 ire->ire_marks |= IRE_MARK_NORECV; 14407 ire = ire->ire_next; 14408 if ((phyi_flags & (PHYI_FAILED | PHYI_INACTIVE)) == 14409 PHYI_INACTIVE) { 14410 fallback = B_TRUE; 14411 } 14412 continue; 14413 } 14414 if (first) { 14415 /* 14416 * We will move this to the front of the list later 14417 * on. 14418 */ 14419 clear_ire = ire; 14420 ire->ire_marks &= ~IRE_MARK_NORECV; 14421 } else { 14422 ire->ire_marks |= IRE_MARK_NORECV; 14423 } 14424 first = B_FALSE; 14425 ire = ire->ire_next; 14426 } 14427 /* 14428 * If we never nominated anybody, try nominating at least 14429 * an INACTIVE, if we found one. Do it only once though. 14430 */ 14431 if (first && (match_flags == (PHYI_FAILED | PHYI_INACTIVE)) && 14432 fallback) { 14433 match_flags = PHYI_FAILED; 14434 ire = start_ire; 14435 irep = NULL; 14436 goto redo; 14437 } 14438 ire_refrele(save_ire); 14439 14440 /* 14441 * irep non-NULL indicates that we entered the while loop 14442 * above. If clear_ire is at the insertion point, we don't 14443 * have to do anything. clear_ire will be NULL if all the 14444 * interfaces are failed. 14445 * 14446 * We cannot unlink and reinsert the ire at the right place 14447 * in the list since there can be other walkers of this bucket. 14448 * Instead we delete and recreate the ire 14449 */ 14450 if (clear_ire != NULL && irep != NULL && *irep != clear_ire) { 14451 ire_t *clear_ire_stq = NULL; 14452 bzero(new_lb_ire, sizeof (ire_t)); 14453 /* XXX We need a recovery strategy here. */ 14454 if (ire_init(new_lb_ire, 14455 (uchar_t *)&clear_ire->ire_addr, 14456 (uchar_t *)&clear_ire->ire_mask, 14457 (uchar_t *)&clear_ire->ire_src_addr, 14458 (uchar_t *)&clear_ire->ire_gateway_addr, 14459 (uchar_t *)&clear_ire->ire_in_src_addr, 14460 &clear_ire->ire_max_frag, 14461 clear_ire->ire_fp_mp, 14462 clear_ire->ire_rfq, 14463 clear_ire->ire_stq, 14464 clear_ire->ire_type, 14465 clear_ire->ire_dlureq_mp, 14466 clear_ire->ire_ipif, 14467 clear_ire->ire_in_ill, 14468 clear_ire->ire_cmask, 14469 clear_ire->ire_phandle, 14470 clear_ire->ire_ihandle, 14471 clear_ire->ire_flags, 14472 &clear_ire->ire_uinfo, 14473 NULL, 14474 NULL) == NULL) 14475 cmn_err(CE_PANIC, "ire_init() failed"); 14476 if (clear_ire->ire_stq == NULL) { 14477 ire_t *ire_next = clear_ire->ire_next; 14478 if (ire_next != NULL && 14479 ire_next->ire_stq != NULL && 14480 ire_next->ire_addr == clear_ire->ire_addr && 14481 ire_next->ire_ipif->ipif_ill == 14482 clear_ire->ire_ipif->ipif_ill) { 14483 clear_ire_stq = ire_next; 14484 14485 bzero(new_nlb_ire, sizeof (ire_t)); 14486 /* XXX We need a recovery strategy here. */ 14487 if (ire_init(new_nlb_ire, 14488 (uchar_t *)&clear_ire_stq->ire_addr, 14489 (uchar_t *)&clear_ire_stq->ire_mask, 14490 (uchar_t *)&clear_ire_stq->ire_src_addr, 14491 (uchar_t *)&clear_ire_stq->ire_gateway_addr, 14492 (uchar_t *)&clear_ire_stq->ire_in_src_addr, 14493 &clear_ire_stq->ire_max_frag, 14494 clear_ire_stq->ire_fp_mp, 14495 clear_ire_stq->ire_rfq, 14496 clear_ire_stq->ire_stq, 14497 clear_ire_stq->ire_type, 14498 clear_ire_stq->ire_dlureq_mp, 14499 clear_ire_stq->ire_ipif, 14500 clear_ire_stq->ire_in_ill, 14501 clear_ire_stq->ire_cmask, 14502 clear_ire_stq->ire_phandle, 14503 clear_ire_stq->ire_ihandle, 14504 clear_ire_stq->ire_flags, 14505 &clear_ire_stq->ire_uinfo, 14506 NULL, 14507 NULL) == NULL) 14508 cmn_err(CE_PANIC, "ire_init() failed"); 14509 } 14510 } 14511 14512 /* 14513 * Delete the ire. We can't call ire_delete() since 14514 * we are holding the bucket lock. We can't release the 14515 * bucket lock since we can't allow irep to change. So just 14516 * mark it CONDEMNED. The IRB_REFRELE will delete the 14517 * ire from the list and do the refrele. 14518 */ 14519 clear_ire->ire_marks |= IRE_MARK_CONDEMNED; 14520 irb->irb_marks |= IRE_MARK_CONDEMNED; 14521 14522 if (clear_ire_stq != NULL) { 14523 ire_fastpath_list_delete( 14524 (ill_t *)clear_ire_stq->ire_stq->q_ptr, 14525 clear_ire_stq); 14526 clear_ire_stq->ire_marks |= IRE_MARK_CONDEMNED; 14527 } 14528 14529 /* 14530 * Also take care of otherfields like ib/ob pkt count 14531 * etc. Need to dup them. ditto in ill_bcast_delete_and_add 14532 */ 14533 14534 /* Add the new ire's. Insert at *irep */ 14535 new_lb_ire->ire_bucket = clear_ire->ire_bucket; 14536 ire1 = *irep; 14537 if (ire1 != NULL) 14538 ire1->ire_ptpn = &new_lb_ire->ire_next; 14539 new_lb_ire->ire_next = ire1; 14540 /* Link the new one in. */ 14541 new_lb_ire->ire_ptpn = irep; 14542 membar_producer(); 14543 *irep = new_lb_ire; 14544 new_lb_ire_used = B_TRUE; 14545 BUMP_IRE_STATS(ire_stats_v4, ire_stats_inserted); 14546 new_lb_ire->ire_bucket->irb_ire_cnt++; 14547 new_lb_ire->ire_ipif->ipif_ire_cnt++; 14548 14549 if (clear_ire_stq != NULL) { 14550 new_nlb_ire->ire_bucket = clear_ire->ire_bucket; 14551 irep = &new_lb_ire->ire_next; 14552 /* Add the new ire. Insert at *irep */ 14553 ire1 = *irep; 14554 if (ire1 != NULL) 14555 ire1->ire_ptpn = &new_nlb_ire->ire_next; 14556 new_nlb_ire->ire_next = ire1; 14557 /* Link the new one in. */ 14558 new_nlb_ire->ire_ptpn = irep; 14559 membar_producer(); 14560 *irep = new_nlb_ire; 14561 new_nlb_ire_used = B_TRUE; 14562 BUMP_IRE_STATS(ire_stats_v4, ire_stats_inserted); 14563 new_nlb_ire->ire_bucket->irb_ire_cnt++; 14564 new_nlb_ire->ire_ipif->ipif_ire_cnt++; 14565 ((ill_t *)new_nlb_ire->ire_stq->q_ptr)->ill_ire_cnt++; 14566 } 14567 } 14568 rw_exit(&irb->irb_lock); 14569 if (!new_lb_ire_used) 14570 kmem_cache_free(ire_cache, new_lb_ire); 14571 if (!new_nlb_ire_used) 14572 kmem_cache_free(ire_cache, new_nlb_ire); 14573 IRB_REFRELE(irb); 14574 } 14575 14576 /* 14577 * Whenever an ipif goes down we have to renominate a different 14578 * broadcast ire to receive. Whenever an ipif comes up, we need 14579 * to make sure that we have only one nominated to receive. 14580 */ 14581 static void 14582 ipif_renominate_bcast(ipif_t *ipif) 14583 { 14584 ill_t *ill = ipif->ipif_ill; 14585 ipaddr_t subnet_addr; 14586 ipaddr_t net_addr; 14587 ipaddr_t net_mask = 0; 14588 ipaddr_t subnet_netmask; 14589 ipaddr_t addr; 14590 ill_group_t *illgrp; 14591 14592 illgrp = ill->ill_group; 14593 /* 14594 * If this is the last ipif going down, it might take 14595 * the ill out of the group. In that case ipif_down -> 14596 * illgrp_delete takes care of doing the nomination. 14597 * ipif_down does not call for this case. 14598 */ 14599 ASSERT(illgrp != NULL); 14600 14601 /* There could not have been any ires associated with this */ 14602 if (ipif->ipif_subnet == 0) 14603 return; 14604 14605 ill_mark_bcast(illgrp, 0); 14606 ill_mark_bcast(illgrp, INADDR_BROADCAST); 14607 14608 if ((ipif->ipif_lcl_addr != INADDR_ANY) && 14609 !(ipif->ipif_flags & IPIF_NOLOCAL)) { 14610 net_mask = ip_net_mask(ipif->ipif_lcl_addr); 14611 } else { 14612 net_mask = htonl(IN_CLASSA_NET); 14613 } 14614 addr = net_mask & ipif->ipif_subnet; 14615 ill_mark_bcast(illgrp, addr); 14616 14617 net_addr = ~net_mask | addr; 14618 ill_mark_bcast(illgrp, net_addr); 14619 14620 subnet_netmask = ipif->ipif_net_mask; 14621 addr = ipif->ipif_subnet; 14622 ill_mark_bcast(illgrp, addr); 14623 14624 subnet_addr = ~subnet_netmask | addr; 14625 ill_mark_bcast(illgrp, subnet_addr); 14626 } 14627 14628 /* 14629 * Whenever we form or delete ill groups, we need to nominate one set of 14630 * BROADCAST ires for receiving in the group. 14631 * 14632 * 1) When ipif_up_done -> ilgrp_insert calls this function, BROADCAST ires 14633 * have been added, but ill_ipif_up_count is 0. Thus, we don't assert 14634 * for ill_ipif_up_count to be non-zero. This is the only case where 14635 * ill_ipif_up_count is zero and we would still find the ires. 14636 * 14637 * 2) ip_sioctl_group_name/ifgrp_insert calls this function, at least one 14638 * ipif is UP and we just have to do the nomination. 14639 * 14640 * 3) When ill_handoff_responsibility calls us, some ill has been removed 14641 * from the group. So, we have to do the nomination. 14642 * 14643 * Because of (3), there could be just one ill in the group. But we have 14644 * to nominate still as IRE_MARK_NORCV may have been marked on this. 14645 * Thus, this function does not optimize when there is only one ill as 14646 * it is not correct for (3). 14647 */ 14648 static void 14649 ill_nominate_bcast_rcv(ill_group_t *illgrp) 14650 { 14651 ill_t *ill; 14652 ipif_t *ipif; 14653 ipaddr_t subnet_addr; 14654 ipaddr_t prev_subnet_addr = 0; 14655 ipaddr_t net_addr; 14656 ipaddr_t prev_net_addr = 0; 14657 ipaddr_t net_mask = 0; 14658 ipaddr_t subnet_netmask; 14659 ipaddr_t addr; 14660 14661 /* 14662 * When the last memeber is leaving, there is nothing to 14663 * nominate. 14664 */ 14665 if (illgrp->illgrp_ill_count == 0) { 14666 ASSERT(illgrp->illgrp_ill == NULL); 14667 return; 14668 } 14669 14670 ill = illgrp->illgrp_ill; 14671 ASSERT(!ill->ill_isv6); 14672 /* 14673 * We assume that ires with same address and belonging to the 14674 * same group, has been grouped together. Nominating a *single* 14675 * ill in the group for sending and receiving broadcast is done 14676 * by making sure that the first BROADCAST ire (which will be 14677 * the one returned by ire_ctable_lookup for ip_rput and the 14678 * one that will be used in ip_wput_ire) will be the one that 14679 * will not have IRE_MARK_NORECV set. 14680 * 14681 * 1) ip_rput checks and discards packets received on ires marked 14682 * with IRE_MARK_NORECV. Thus, we don't send up duplicate 14683 * broadcast packets. We need to clear IRE_MARK_NORECV on the 14684 * first ire in the group for every broadcast address in the group. 14685 * ip_rput will accept packets only on the first ire i.e only 14686 * one copy of the ill. 14687 * 14688 * 2) ip_wput_ire needs to send out just one copy of the broadcast 14689 * packet for the whole group. It needs to send out on the ill 14690 * whose ire has not been marked with IRE_MARK_NORECV. If it sends 14691 * on the one marked with IRE_MARK_NORECV, ip_rput will accept 14692 * the copy echoed back on other port where the ire is not marked 14693 * with IRE_MARK_NORECV. 14694 * 14695 * Note that we just need to have the first IRE either loopback or 14696 * non-loopback (either of them may not exist if ire_create failed 14697 * during ipif_down) with IRE_MARK_NORECV not set. ip_rput will 14698 * always hit the first one and hence will always accept one copy. 14699 * 14700 * We have a broadcast ire per ill for all the unique prefixes 14701 * hosted on that ill. As we don't have a way of knowing the 14702 * unique prefixes on a given ill and hence in the whole group, 14703 * we just call ill_mark_bcast on all the prefixes that exist 14704 * in the group. For the common case of one prefix, the code 14705 * below optimizes by remebering the last address used for 14706 * markng. In the case of multiple prefixes, this will still 14707 * optimize depending the order of prefixes. 14708 * 14709 * The only unique address across the whole group is 0.0.0.0 and 14710 * 255.255.255.255 and thus we call only once. ill_mark_bcast enables 14711 * the first ire in the bucket for receiving and disables the 14712 * others. 14713 */ 14714 ill_mark_bcast(illgrp, 0); 14715 ill_mark_bcast(illgrp, INADDR_BROADCAST); 14716 for (; ill != NULL; ill = ill->ill_group_next) { 14717 14718 for (ipif = ill->ill_ipif; ipif != NULL; 14719 ipif = ipif->ipif_next) { 14720 14721 if (!(ipif->ipif_flags & IPIF_UP) || 14722 ipif->ipif_subnet == 0) { 14723 continue; 14724 } 14725 if ((ipif->ipif_lcl_addr != INADDR_ANY) && 14726 !(ipif->ipif_flags & IPIF_NOLOCAL)) { 14727 net_mask = ip_net_mask(ipif->ipif_lcl_addr); 14728 } else { 14729 net_mask = htonl(IN_CLASSA_NET); 14730 } 14731 addr = net_mask & ipif->ipif_subnet; 14732 if (prev_net_addr == 0 || prev_net_addr != addr) { 14733 ill_mark_bcast(illgrp, addr); 14734 net_addr = ~net_mask | addr; 14735 ill_mark_bcast(illgrp, net_addr); 14736 } 14737 prev_net_addr = addr; 14738 14739 subnet_netmask = ipif->ipif_net_mask; 14740 addr = ipif->ipif_subnet; 14741 if (prev_subnet_addr == 0 || 14742 prev_subnet_addr != addr) { 14743 ill_mark_bcast(illgrp, addr); 14744 subnet_addr = ~subnet_netmask | addr; 14745 ill_mark_bcast(illgrp, subnet_addr); 14746 } 14747 prev_subnet_addr = addr; 14748 } 14749 } 14750 } 14751 14752 /* 14753 * This function is called while forming ill groups. 14754 * 14755 * Currently, we handle only allmulti groups. We want to join 14756 * allmulti on only one of the ills in the groups. In future, 14757 * when we have link aggregation, we may have to join normal 14758 * multicast groups on multiple ills as switch does inbound load 14759 * balancing. Following are the functions that calls this 14760 * function : 14761 * 14762 * 1) ill_recover_multicast : Interface is coming back UP. 14763 * When the first ipif comes back UP, ipif_up_done/ipif_up_done_v6 14764 * will call ill_recover_multicast to recover all the multicast 14765 * groups. We need to make sure that only one member is joined 14766 * in the ill group. 14767 * 14768 * 2) ip_addmulti/ip_addmulti_v6 : ill groups has already been formed. 14769 * Somebody is joining allmulti. We need to make sure that only one 14770 * member is joined in the group. 14771 * 14772 * 3) illgrp_insert : If allmulti has already joined, we need to make 14773 * sure that only one member is joined in the group. 14774 * 14775 * 4) ip_delmulti/ip_delmulti_v6 : Somebody in the group is leaving 14776 * allmulti who we have nominated. We need to pick someother ill. 14777 * 14778 * 5) illgrp_delete : The ill we nominated is leaving the group, 14779 * we need to pick a new ill to join the group. 14780 * 14781 * For (1), (2), (5) - we just have to check whether there is 14782 * a good ill joined in the group. If we could not find any ills 14783 * joined the group, we should join. 14784 * 14785 * For (4), the one that was nominated to receive, left the group. 14786 * There could be nobody joined in the group when this function is 14787 * called. 14788 * 14789 * For (3) - we need to explicitly check whether there are multiple 14790 * ills joined in the group. 14791 * 14792 * For simplicity, we don't differentiate any of the above cases. We 14793 * just leave the group if it is joined on any of them and join on 14794 * the first good ill. 14795 */ 14796 int 14797 ill_nominate_mcast_rcv(ill_group_t *illgrp) 14798 { 14799 ilm_t *ilm; 14800 ill_t *ill; 14801 ill_t *fallback_inactive_ill = NULL; 14802 ill_t *fallback_failed_ill = NULL; 14803 int ret = 0; 14804 14805 /* 14806 * Leave the allmulti on all the ills and start fresh. 14807 */ 14808 for (ill = illgrp->illgrp_ill; ill != NULL; 14809 ill = ill->ill_group_next) { 14810 if (ill->ill_join_allmulti) 14811 (void) ip_leave_allmulti(ill->ill_ipif); 14812 } 14813 14814 /* 14815 * Choose a good ill. Fallback to inactive or failed if 14816 * none available. We need to fallback to FAILED in the 14817 * case where we have 2 interfaces in a group - where 14818 * one of them is failed and another is a good one and 14819 * the good one (not marked inactive) is leaving the group. 14820 */ 14821 ret = 0; 14822 for (ill = illgrp->illgrp_ill; ill != NULL; 14823 ill = ill->ill_group_next) { 14824 /* Never pick an offline interface */ 14825 if (ill->ill_phyint->phyint_flags & PHYI_OFFLINE) 14826 continue; 14827 14828 if (ill->ill_phyint->phyint_flags & PHYI_FAILED) { 14829 fallback_failed_ill = ill; 14830 continue; 14831 } 14832 if (ill->ill_phyint->phyint_flags & PHYI_INACTIVE) { 14833 fallback_inactive_ill = ill; 14834 continue; 14835 } 14836 for (ilm = ill->ill_ilm; ilm != NULL; ilm = ilm->ilm_next) { 14837 if (IN6_IS_ADDR_UNSPECIFIED(&ilm->ilm_v6addr)) { 14838 ret = ip_join_allmulti(ill->ill_ipif); 14839 /* 14840 * ip_join_allmulti can fail because of memory 14841 * failures. So, make sure we join at least 14842 * on one ill. 14843 */ 14844 if (ill->ill_join_allmulti) 14845 return (0); 14846 } 14847 } 14848 } 14849 if (ret != 0) { 14850 /* 14851 * If we tried nominating above and failed to do so, 14852 * return error. We might have tried multiple times. 14853 * But, return the latest error. 14854 */ 14855 return (ret); 14856 } 14857 if ((ill = fallback_inactive_ill) != NULL) { 14858 for (ilm = ill->ill_ilm; ilm != NULL; ilm = ilm->ilm_next) { 14859 if (IN6_IS_ADDR_UNSPECIFIED(&ilm->ilm_v6addr)) { 14860 ret = ip_join_allmulti(ill->ill_ipif); 14861 return (ret); 14862 } 14863 } 14864 } else if ((ill = fallback_failed_ill) != NULL) { 14865 for (ilm = ill->ill_ilm; ilm != NULL; ilm = ilm->ilm_next) { 14866 if (IN6_IS_ADDR_UNSPECIFIED(&ilm->ilm_v6addr)) { 14867 ret = ip_join_allmulti(ill->ill_ipif); 14868 return (ret); 14869 } 14870 } 14871 } 14872 return (0); 14873 } 14874 14875 /* 14876 * This function is called from illgrp_delete after it is 14877 * deleted from the group to reschedule responsibilities 14878 * to a different ill. 14879 */ 14880 static void 14881 ill_handoff_responsibility(ill_t *ill, ill_group_t *illgrp) 14882 { 14883 ilm_t *ilm; 14884 ipif_t *ipif; 14885 ipaddr_t subnet_addr; 14886 ipaddr_t net_addr; 14887 ipaddr_t net_mask = 0; 14888 ipaddr_t subnet_netmask; 14889 ipaddr_t addr; 14890 14891 ASSERT(ill->ill_group == NULL); 14892 /* 14893 * Broadcast Responsibility: 14894 * 14895 * 1. If this ill has been nominated for receiving broadcast 14896 * packets, we need to find a new one. Before we find a new 14897 * one, we need to re-group the ires that are part of this new 14898 * group (assumed by ill_nominate_bcast_rcv). We do this by 14899 * calling ill_group_bcast_for_xmit(ill) which will do the right 14900 * thing for us. 14901 * 14902 * 2. If this ill was not nominated for receiving broadcast 14903 * packets, we need to clear the IRE_MARK_NORECV flag 14904 * so that we continue to send up broadcast packets. 14905 */ 14906 if (!ill->ill_isv6) { 14907 /* 14908 * Case 1 above : No optimization here. Just redo the 14909 * nomination. 14910 */ 14911 ill_group_bcast_for_xmit(ill); 14912 ill_nominate_bcast_rcv(illgrp); 14913 14914 /* 14915 * Case 2 above : Lookup and clear IRE_MARK_NORECV. 14916 */ 14917 ill_clear_bcast_mark(ill, 0); 14918 ill_clear_bcast_mark(ill, INADDR_BROADCAST); 14919 14920 for (ipif = ill->ill_ipif; ipif != NULL; 14921 ipif = ipif->ipif_next) { 14922 14923 if (!(ipif->ipif_flags & IPIF_UP) || 14924 ipif->ipif_subnet == 0) { 14925 continue; 14926 } 14927 if ((ipif->ipif_lcl_addr != INADDR_ANY) && 14928 !(ipif->ipif_flags & IPIF_NOLOCAL)) { 14929 net_mask = ip_net_mask(ipif->ipif_lcl_addr); 14930 } else { 14931 net_mask = htonl(IN_CLASSA_NET); 14932 } 14933 addr = net_mask & ipif->ipif_subnet; 14934 ill_clear_bcast_mark(ill, addr); 14935 14936 net_addr = ~net_mask | addr; 14937 ill_clear_bcast_mark(ill, net_addr); 14938 14939 subnet_netmask = ipif->ipif_net_mask; 14940 addr = ipif->ipif_subnet; 14941 ill_clear_bcast_mark(ill, addr); 14942 14943 subnet_addr = ~subnet_netmask | addr; 14944 ill_clear_bcast_mark(ill, subnet_addr); 14945 } 14946 } 14947 14948 /* 14949 * Multicast Responsibility. 14950 * 14951 * If we have joined allmulti on this one, find a new member 14952 * in the group to join allmulti. As this ill is already part 14953 * of allmulti, we don't have to join on this one. 14954 * 14955 * If we have not joined allmulti on this one, there is no 14956 * responsibility to handoff. But we need to take new 14957 * responsibility i.e, join allmulti on this one if we need 14958 * to. 14959 */ 14960 if (ill->ill_join_allmulti) { 14961 (void) ill_nominate_mcast_rcv(illgrp); 14962 } else { 14963 for (ilm = ill->ill_ilm; ilm != NULL; ilm = ilm->ilm_next) { 14964 if (IN6_IS_ADDR_UNSPECIFIED(&ilm->ilm_v6addr)) { 14965 (void) ip_join_allmulti(ill->ill_ipif); 14966 break; 14967 } 14968 } 14969 } 14970 14971 /* 14972 * We intentionally do the flushing of IRE_CACHES only matching 14973 * on the ill and not on groups. Note that we are already deleted 14974 * from the group. 14975 * 14976 * This will make sure that all IRE_CACHES whose stq is pointing 14977 * at ill_wq or ire_ipif->ipif_ill pointing at this ill will get 14978 * deleted and IRE_CACHES that are not pointing at this ill will 14979 * be left alone. 14980 */ 14981 if (ill->ill_isv6) { 14982 ire_walk_ill_v6(MATCH_IRE_ILL | MATCH_IRE_TYPE, 14983 IRE_CACHE, illgrp_cache_delete, (char *)ill, ill); 14984 } else { 14985 ire_walk_ill_v4(MATCH_IRE_ILL | MATCH_IRE_TYPE, 14986 IRE_CACHE, illgrp_cache_delete, (char *)ill, ill); 14987 } 14988 14989 /* 14990 * Some conn may have cached one of the IREs deleted above. By removing 14991 * the ire reference, we clean up the extra reference to the ill held in 14992 * ire->ire_stq. 14993 */ 14994 ipcl_walk(conn_cleanup_stale_ire, NULL); 14995 14996 /* 14997 * Re-do source address selection for all the members in the 14998 * group, if they borrowed source address from one of the ipifs 14999 * in this ill. 15000 */ 15001 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 15002 if (ill->ill_isv6) { 15003 ipif_update_other_ipifs_v6(ipif, illgrp); 15004 } else { 15005 ipif_update_other_ipifs(ipif, illgrp); 15006 } 15007 } 15008 } 15009 15010 /* 15011 * Delete the ill from the group. The caller makes sure that it is 15012 * in a group and it okay to delete from the group. So, we always 15013 * delete here. 15014 */ 15015 static void 15016 illgrp_delete(ill_t *ill) 15017 { 15018 ill_group_t *illgrp; 15019 ill_group_t *tmpg; 15020 ill_t *tmp_ill; 15021 15022 /* 15023 * Reset illgrp_ill_schednext if it was pointing at us. 15024 * We need to do this before we set ill_group to NULL. 15025 */ 15026 rw_enter(&ill_g_lock, RW_WRITER); 15027 mutex_enter(&ill->ill_lock); 15028 15029 illgrp_reset_schednext(ill); 15030 15031 illgrp = ill->ill_group; 15032 15033 /* Delete the ill from illgrp. */ 15034 if (illgrp->illgrp_ill == ill) { 15035 illgrp->illgrp_ill = ill->ill_group_next; 15036 } else { 15037 tmp_ill = illgrp->illgrp_ill; 15038 while (tmp_ill->ill_group_next != ill) { 15039 tmp_ill = tmp_ill->ill_group_next; 15040 ASSERT(tmp_ill != NULL); 15041 } 15042 tmp_ill->ill_group_next = ill->ill_group_next; 15043 } 15044 ill->ill_group = NULL; 15045 ill->ill_group_next = NULL; 15046 15047 illgrp->illgrp_ill_count--; 15048 mutex_exit(&ill->ill_lock); 15049 rw_exit(&ill_g_lock); 15050 15051 /* 15052 * As this ill is leaving the group, we need to hand off 15053 * the responsibilities to the other ills in the group, if 15054 * this ill had some responsibilities. 15055 */ 15056 15057 ill_handoff_responsibility(ill, illgrp); 15058 15059 rw_enter(&ill_g_lock, RW_WRITER); 15060 15061 if (illgrp->illgrp_ill_count == 0) { 15062 15063 ASSERT(illgrp->illgrp_ill == NULL); 15064 if (ill->ill_isv6) { 15065 if (illgrp == illgrp_head_v6) { 15066 illgrp_head_v6 = illgrp->illgrp_next; 15067 } else { 15068 tmpg = illgrp_head_v6; 15069 while (tmpg->illgrp_next != illgrp) { 15070 tmpg = tmpg->illgrp_next; 15071 ASSERT(tmpg != NULL); 15072 } 15073 tmpg->illgrp_next = illgrp->illgrp_next; 15074 } 15075 } else { 15076 if (illgrp == illgrp_head_v4) { 15077 illgrp_head_v4 = illgrp->illgrp_next; 15078 } else { 15079 tmpg = illgrp_head_v4; 15080 while (tmpg->illgrp_next != illgrp) { 15081 tmpg = tmpg->illgrp_next; 15082 ASSERT(tmpg != NULL); 15083 } 15084 tmpg->illgrp_next = illgrp->illgrp_next; 15085 } 15086 } 15087 mutex_destroy(&illgrp->illgrp_lock); 15088 mi_free(illgrp); 15089 } 15090 rw_exit(&ill_g_lock); 15091 15092 /* 15093 * Even though the ill is out of the group its not necessary 15094 * to set ipsq_split as TRUE as the ipifs could be down temporarily 15095 * We will split the ipsq when phyint_groupname is set to NULL. 15096 */ 15097 15098 /* 15099 * Send a routing sockets message if we are deleting from 15100 * groups with names. 15101 */ 15102 if (ill->ill_phyint->phyint_groupname_len != 0) 15103 ip_rts_ifmsg(ill->ill_ipif); 15104 } 15105 15106 /* 15107 * Re-do source address selection. This is normally called when 15108 * an ill joins the group or when a non-NOLOCAL/DEPRECATED/ANYCAST 15109 * ipif comes up. 15110 */ 15111 void 15112 ill_update_source_selection(ill_t *ill) 15113 { 15114 ipif_t *ipif; 15115 15116 ASSERT(IAM_WRITER_ILL(ill)); 15117 15118 if (ill->ill_group != NULL) 15119 ill = ill->ill_group->illgrp_ill; 15120 15121 for (; ill != NULL; ill = ill->ill_group_next) { 15122 for (ipif = ill->ill_ipif; ipif != NULL; 15123 ipif = ipif->ipif_next) { 15124 if (ill->ill_isv6) 15125 ipif_recreate_interface_routes_v6(NULL, ipif); 15126 else 15127 ipif_recreate_interface_routes(NULL, ipif); 15128 } 15129 } 15130 } 15131 15132 /* 15133 * Insert ill in a group headed by illgrp_head. The caller can either 15134 * pass a groupname in which case we search for a group with the 15135 * same name to insert in or pass a group to insert in. This function 15136 * would only search groups with names. 15137 * 15138 * NOTE : The caller should make sure that there is at least one ipif 15139 * UP on this ill so that illgrp_scheduler can pick this ill 15140 * for outbound packets. If ill_ipif_up_count is zero, we have 15141 * already sent a DL_UNBIND to the driver and we don't want to 15142 * send anymore packets. We don't assert for ipif_up_count 15143 * to be greater than zero, because ipif_up_done wants to call 15144 * this function before bumping up the ipif_up_count. See 15145 * ipif_up_done() for details. 15146 */ 15147 int 15148 illgrp_insert(ill_group_t **illgrp_head, ill_t *ill, char *groupname, 15149 ill_group_t *grp_to_insert, boolean_t ipif_is_coming_up) 15150 { 15151 ill_group_t *illgrp; 15152 ill_t *prev_ill; 15153 phyint_t *phyi; 15154 15155 ASSERT(ill->ill_group == NULL); 15156 15157 rw_enter(&ill_g_lock, RW_WRITER); 15158 mutex_enter(&ill->ill_lock); 15159 15160 if (groupname != NULL) { 15161 /* 15162 * Look for a group with a matching groupname to insert. 15163 */ 15164 for (illgrp = *illgrp_head; illgrp != NULL; 15165 illgrp = illgrp->illgrp_next) { 15166 15167 ill_t *tmp_ill; 15168 15169 /* 15170 * If we have an ill_group_t in the list which has 15171 * no ill_t assigned then we must be in the process of 15172 * removing this group. We skip this as illgrp_delete() 15173 * will remove it from the list. 15174 */ 15175 if ((tmp_ill = illgrp->illgrp_ill) == NULL) { 15176 ASSERT(illgrp->illgrp_ill_count == 0); 15177 continue; 15178 } 15179 15180 ASSERT(tmp_ill->ill_phyint != NULL); 15181 phyi = tmp_ill->ill_phyint; 15182 /* 15183 * Look at groups which has names only. 15184 */ 15185 if (phyi->phyint_groupname_len == 0) 15186 continue; 15187 /* 15188 * Names are stored in the phyint common to both 15189 * IPv4 and IPv6. 15190 */ 15191 if (mi_strcmp(phyi->phyint_groupname, 15192 groupname) == 0) { 15193 break; 15194 } 15195 } 15196 } else { 15197 /* 15198 * If the caller passes in a NULL "grp_to_insert", we 15199 * allocate one below and insert this singleton. 15200 */ 15201 illgrp = grp_to_insert; 15202 } 15203 15204 ill->ill_group_next = NULL; 15205 15206 if (illgrp == NULL) { 15207 illgrp = (ill_group_t *)mi_zalloc(sizeof (ill_group_t)); 15208 if (illgrp == NULL) { 15209 return (ENOMEM); 15210 } 15211 illgrp->illgrp_next = *illgrp_head; 15212 *illgrp_head = illgrp; 15213 illgrp->illgrp_ill = ill; 15214 illgrp->illgrp_ill_count = 1; 15215 ill->ill_group = illgrp; 15216 /* 15217 * Used in illgrp_scheduler to protect multiple threads 15218 * from traversing the list. 15219 */ 15220 mutex_init(&illgrp->illgrp_lock, NULL, MUTEX_DEFAULT, 0); 15221 } else { 15222 ASSERT(ill->ill_net_type == 15223 illgrp->illgrp_ill->ill_net_type); 15224 ASSERT(ill->ill_type == illgrp->illgrp_ill->ill_type); 15225 15226 /* Insert ill at tail of this group */ 15227 prev_ill = illgrp->illgrp_ill; 15228 while (prev_ill->ill_group_next != NULL) 15229 prev_ill = prev_ill->ill_group_next; 15230 prev_ill->ill_group_next = ill; 15231 ill->ill_group = illgrp; 15232 illgrp->illgrp_ill_count++; 15233 /* 15234 * Inherit group properties. Currently only forwarding 15235 * is the property we try to keep the same with all the 15236 * ills. When there are more, we will abstract this into 15237 * a function. 15238 */ 15239 ill->ill_flags &= ~ILLF_ROUTER; 15240 ill->ill_flags |= (illgrp->illgrp_ill->ill_flags & ILLF_ROUTER); 15241 } 15242 mutex_exit(&ill->ill_lock); 15243 rw_exit(&ill_g_lock); 15244 15245 /* 15246 * 1) When ipif_up_done() calls this function, ipif_up_count 15247 * may be zero as it has not yet been bumped. But the ires 15248 * have already been added. So, we do the nomination here 15249 * itself. But, when ip_sioctl_groupname calls this, it checks 15250 * for ill_ipif_up_count != 0. Thus we don't check for 15251 * ill_ipif_up_count here while nominating broadcast ires for 15252 * receive. 15253 * 15254 * 2) Similarly, we need to call ill_group_bcast_for_xmit here 15255 * to group them properly as ire_add() has already happened 15256 * in the ipif_up_done() case. For ip_sioctl_groupname/ifgrp_insert 15257 * case, we need to do it here anyway. 15258 */ 15259 if (!ill->ill_isv6) { 15260 ill_group_bcast_for_xmit(ill); 15261 ill_nominate_bcast_rcv(illgrp); 15262 } 15263 15264 if (!ipif_is_coming_up) { 15265 /* 15266 * When ipif_up_done() calls this function, the multicast 15267 * groups have not been joined yet. So, there is no point in 15268 * nomination. ip_join_allmulti will handle groups when 15269 * ill_recover_multicast is called from ipif_up_done() later. 15270 */ 15271 (void) ill_nominate_mcast_rcv(illgrp); 15272 /* 15273 * ipif_up_done calls ill_update_source_selection 15274 * anyway. Moreover, we don't want to re-create 15275 * interface routes while ipif_up_done() still has reference 15276 * to them. Refer to ipif_up_done() for more details. 15277 */ 15278 ill_update_source_selection(ill); 15279 } 15280 15281 /* 15282 * Send a routing sockets message if we are inserting into 15283 * groups with names. 15284 */ 15285 if (groupname != NULL) 15286 ip_rts_ifmsg(ill->ill_ipif); 15287 return (0); 15288 } 15289 15290 /* 15291 * Return the first phyint matching the groupname. There could 15292 * be more than one when there are ill groups. 15293 * 15294 * Needs work: called only from ip_sioctl_groupname 15295 */ 15296 static phyint_t * 15297 phyint_lookup_group(char *groupname) 15298 { 15299 phyint_t *phyi; 15300 15301 ASSERT(RW_LOCK_HELD(&ill_g_lock)); 15302 /* 15303 * Group names are stored in the phyint - a common structure 15304 * to both IPv4 and IPv6. 15305 */ 15306 phyi = avl_first(&phyint_g_list.phyint_list_avl_by_index); 15307 for (; phyi != NULL; 15308 phyi = avl_walk(&phyint_g_list.phyint_list_avl_by_index, 15309 phyi, AVL_AFTER)) { 15310 if (phyi->phyint_groupname_len == 0) 15311 continue; 15312 ASSERT(phyi->phyint_groupname != NULL); 15313 if (mi_strcmp(groupname, phyi->phyint_groupname) == 0) 15314 return (phyi); 15315 } 15316 return (NULL); 15317 } 15318 15319 15320 15321 /* 15322 * MT notes on creation and deletion of IPMP groups 15323 * 15324 * Creation and deletion of IPMP groups introduce the need to merge or 15325 * split the associated serialization objects i.e the ipsq's. Normally all 15326 * the ills in an IPMP group would map to a single ipsq. If IPMP is not enabled 15327 * an ill-pair(v4, v6) i.e. phyint would map to a single ipsq. However during 15328 * the execution of the SIOCSLIFGROUPNAME command the picture changes. There 15329 * is a need to change the <ill-ipsq> association and we have to operate on both 15330 * the source and destination IPMP groups. For eg. attempting to set the 15331 * groupname of hme0 to mpk17-85 when it already belongs to mpk17-84 has to 15332 * handle 2 IPMP groups and 2 ipsqs. All the ills belonging to either of the 15333 * source or destination IPMP group are mapped to a single ipsq for executing 15334 * the SIOCSLIFGROUPNAME command. This is termed as a merge of the ipsq's. 15335 * The <ill-ipsq> mapping is restored back to normal at a later point. This is 15336 * termed as a split of the ipsq. The converse of the merge i.e. a split of the 15337 * ipsq happens while unwinding from ipsq_exit. If at least 1 set groupname 15338 * occurred on the ipsq, then the ipsq_split flag is set. This indicates the 15339 * ipsq has to be examined for redoing the <ill-ipsq> associations. 15340 * 15341 * In the above example the ioctl handling code locates the current ipsq of hme0 15342 * which is ipsq(mpk17-84). It then enters the above ipsq immediately or 15343 * eventually (after queueing the ioctl in ipsq(mpk17-84)). Then it locates 15344 * the destination ipsq which is ipsq(mpk17-85) and merges the source ipsq into 15345 * the destination ipsq. If the destination ipsq is not busy, it also enters 15346 * the destination ipsq exclusively. Now the actual groupname setting operation 15347 * can proceed. If the destination ipsq is busy, the operation is enqueued 15348 * on the destination (merged) ipsq and will be handled in the unwind from 15349 * ipsq_exit. 15350 * 15351 * To prevent other threads accessing the ill while the group name change is 15352 * in progres, we bring down the ipifs which also removes the ill from the 15353 * group. The group is changed in phyint and when the first ipif on the ill 15354 * is brought up, the ill is inserted into the right IPMP group by 15355 * illgrp_insert. 15356 */ 15357 /* ARGSUSED */ 15358 int 15359 ip_sioctl_groupname(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 15360 ip_ioctl_cmd_t *ipip, void *ifreq) 15361 { 15362 int i; 15363 char *tmp; 15364 int namelen; 15365 ill_t *ill = ipif->ipif_ill; 15366 ill_t *ill_v4, *ill_v6; 15367 int err = 0; 15368 phyint_t *phyi; 15369 phyint_t *phyi_tmp; 15370 struct lifreq *lifr; 15371 mblk_t *mp1; 15372 char *groupname; 15373 ipsq_t *ipsq; 15374 15375 ASSERT(IAM_WRITER_IPIF(ipif)); 15376 15377 /* Existance verified in ip_wput_nondata */ 15378 mp1 = mp->b_cont->b_cont; 15379 lifr = (struct lifreq *)mp1->b_rptr; 15380 groupname = lifr->lifr_groupname; 15381 15382 if (ipif->ipif_id != 0) 15383 return (EINVAL); 15384 15385 phyi = ill->ill_phyint; 15386 ASSERT(phyi != NULL); 15387 15388 if (phyi->phyint_flags & PHYI_VIRTUAL) 15389 return (EINVAL); 15390 15391 tmp = groupname; 15392 for (i = 0; i < LIFNAMSIZ && *tmp != '\0'; tmp++, i++) 15393 ; 15394 15395 if (i == LIFNAMSIZ) { 15396 /* no null termination */ 15397 return (EINVAL); 15398 } 15399 15400 /* 15401 * Calculate the namelen exclusive of the null 15402 * termination character. 15403 */ 15404 namelen = tmp - groupname; 15405 15406 ill_v4 = phyi->phyint_illv4; 15407 ill_v6 = phyi->phyint_illv6; 15408 15409 /* 15410 * ILL cannot be part of a usesrc group and and IPMP group at the 15411 * same time. No need to grab the ill_g_usesrc_lock here, see 15412 * synchronization notes in ip.c 15413 */ 15414 if (ipif->ipif_ill->ill_usesrc_grp_next != NULL) { 15415 return (EINVAL); 15416 } 15417 15418 /* 15419 * mark the ill as changing. 15420 * this should queue all new requests on the syncq. 15421 */ 15422 GRAB_ILL_LOCKS(ill_v4, ill_v6); 15423 15424 if (ill_v4 != NULL) 15425 ill_v4->ill_state_flags |= ILL_CHANGING; 15426 if (ill_v6 != NULL) 15427 ill_v6->ill_state_flags |= ILL_CHANGING; 15428 RELEASE_ILL_LOCKS(ill_v4, ill_v6); 15429 15430 if (namelen == 0) { 15431 /* 15432 * Null string means remove this interface from the 15433 * existing group. 15434 */ 15435 if (phyi->phyint_groupname_len == 0) { 15436 /* 15437 * Never was in a group. 15438 */ 15439 err = 0; 15440 goto done; 15441 } 15442 15443 /* 15444 * IPv4 or IPv6 may be temporarily out of the group when all 15445 * the ipifs are down. Thus, we need to check for ill_group to 15446 * be non-NULL. 15447 */ 15448 if (ill_v4 != NULL && ill_v4->ill_group != NULL) { 15449 ill_down_ipifs(ill_v4, mp, 0, B_FALSE); 15450 mutex_enter(&ill_v4->ill_lock); 15451 if (!ill_is_quiescent(ill_v4)) { 15452 /* 15453 * ipsq_pending_mp_add will not fail since 15454 * connp is NULL 15455 */ 15456 (void) ipsq_pending_mp_add(NULL, 15457 ill_v4->ill_ipif, q, mp, ILL_DOWN); 15458 mutex_exit(&ill_v4->ill_lock); 15459 err = EINPROGRESS; 15460 goto done; 15461 } 15462 mutex_exit(&ill_v4->ill_lock); 15463 } 15464 15465 if (ill_v6 != NULL && ill_v6->ill_group != NULL) { 15466 ill_down_ipifs(ill_v6, mp, 0, B_FALSE); 15467 mutex_enter(&ill_v6->ill_lock); 15468 if (!ill_is_quiescent(ill_v6)) { 15469 (void) ipsq_pending_mp_add(NULL, 15470 ill_v6->ill_ipif, q, mp, ILL_DOWN); 15471 mutex_exit(&ill_v6->ill_lock); 15472 err = EINPROGRESS; 15473 goto done; 15474 } 15475 mutex_exit(&ill_v6->ill_lock); 15476 } 15477 15478 rw_enter(&ill_g_lock, RW_WRITER); 15479 GRAB_ILL_LOCKS(ill_v4, ill_v6); 15480 mutex_enter(&phyi->phyint_lock); 15481 ASSERT(phyi->phyint_groupname != NULL); 15482 mi_free(phyi->phyint_groupname); 15483 phyi->phyint_groupname = NULL; 15484 phyi->phyint_groupname_len = 0; 15485 mutex_exit(&phyi->phyint_lock); 15486 RELEASE_ILL_LOCKS(ill_v4, ill_v6); 15487 rw_exit(&ill_g_lock); 15488 err = ill_up_ipifs(ill, q, mp); 15489 15490 /* 15491 * set the split flag so that the ipsq can be split 15492 */ 15493 mutex_enter(&phyi->phyint_ipsq->ipsq_lock); 15494 phyi->phyint_ipsq->ipsq_split = B_TRUE; 15495 mutex_exit(&phyi->phyint_ipsq->ipsq_lock); 15496 15497 } else { 15498 if (phyi->phyint_groupname_len != 0) { 15499 ASSERT(phyi->phyint_groupname != NULL); 15500 /* Are we inserting in the same group ? */ 15501 if (mi_strcmp(groupname, 15502 phyi->phyint_groupname) == 0) { 15503 err = 0; 15504 goto done; 15505 } 15506 } 15507 15508 rw_enter(&ill_g_lock, RW_READER); 15509 /* 15510 * Merge ipsq for the group's. 15511 * This check is here as multiple groups/ills might be 15512 * sharing the same ipsq. 15513 * If we have to merege than the operation is restarted 15514 * on the new ipsq. 15515 */ 15516 ipsq = ip_ipsq_lookup(groupname, B_FALSE, NULL); 15517 if (phyi->phyint_ipsq != ipsq) { 15518 rw_exit(&ill_g_lock); 15519 err = ill_merge_groups(ill, NULL, groupname, mp, q); 15520 goto done; 15521 } 15522 /* 15523 * Running exclusive on new ipsq. 15524 */ 15525 15526 ASSERT(ipsq != NULL); 15527 ASSERT(ipsq->ipsq_writer == curthread); 15528 15529 /* 15530 * Check whether the ill_type and ill_net_type matches before 15531 * we allocate any memory so that the cleanup is easier. 15532 * 15533 * We can't group dissimilar ones as we can't load spread 15534 * packets across the group because of potential link-level 15535 * header differences. 15536 */ 15537 phyi_tmp = phyint_lookup_group(groupname); 15538 if (phyi_tmp != NULL) { 15539 if ((ill_v4 != NULL && 15540 phyi_tmp->phyint_illv4 != NULL) && 15541 ((ill_v4->ill_net_type != 15542 phyi_tmp->phyint_illv4->ill_net_type) || 15543 (ill_v4->ill_type != 15544 phyi_tmp->phyint_illv4->ill_type))) { 15545 mutex_enter(&phyi->phyint_ipsq->ipsq_lock); 15546 phyi->phyint_ipsq->ipsq_split = B_TRUE; 15547 mutex_exit(&phyi->phyint_ipsq->ipsq_lock); 15548 rw_exit(&ill_g_lock); 15549 return (EINVAL); 15550 } 15551 if ((ill_v6 != NULL && 15552 phyi_tmp->phyint_illv6 != NULL) && 15553 ((ill_v6->ill_net_type != 15554 phyi_tmp->phyint_illv6->ill_net_type) || 15555 (ill_v6->ill_type != 15556 phyi_tmp->phyint_illv6->ill_type))) { 15557 mutex_enter(&phyi->phyint_ipsq->ipsq_lock); 15558 phyi->phyint_ipsq->ipsq_split = B_TRUE; 15559 mutex_exit(&phyi->phyint_ipsq->ipsq_lock); 15560 rw_exit(&ill_g_lock); 15561 return (EINVAL); 15562 } 15563 } 15564 15565 rw_exit(&ill_g_lock); 15566 15567 /* 15568 * bring down all v4 ipifs. 15569 */ 15570 if (ill_v4 != NULL) { 15571 ill_down_ipifs(ill_v4, mp, 0, B_FALSE); 15572 } 15573 15574 /* 15575 * bring down all v6 ipifs. 15576 */ 15577 if (ill_v6 != NULL) { 15578 ill_down_ipifs(ill_v6, mp, 0, B_FALSE); 15579 } 15580 15581 /* 15582 * make sure all ipifs are down and there are no active 15583 * references. Call to ipsq_pending_mp_add will not fail 15584 * since connp is NULL. 15585 */ 15586 if (ill_v4 != NULL) { 15587 mutex_enter(&ill_v4->ill_lock); 15588 if (!ill_is_quiescent(ill_v4)) { 15589 (void) ipsq_pending_mp_add(NULL, 15590 ill_v4->ill_ipif, q, mp, ILL_DOWN); 15591 mutex_exit(&ill_v4->ill_lock); 15592 err = EINPROGRESS; 15593 goto done; 15594 } 15595 mutex_exit(&ill_v4->ill_lock); 15596 } 15597 15598 if (ill_v6 != NULL) { 15599 mutex_enter(&ill_v6->ill_lock); 15600 if (!ill_is_quiescent(ill_v6)) { 15601 (void) ipsq_pending_mp_add(NULL, 15602 ill_v6->ill_ipif, q, mp, ILL_DOWN); 15603 mutex_exit(&ill_v6->ill_lock); 15604 err = EINPROGRESS; 15605 goto done; 15606 } 15607 mutex_exit(&ill_v6->ill_lock); 15608 } 15609 15610 /* 15611 * allocate including space for null terminator 15612 * before we insert. 15613 */ 15614 tmp = (char *)mi_alloc(namelen + 1, BPRI_MED); 15615 if (tmp == NULL) 15616 return (ENOMEM); 15617 15618 rw_enter(&ill_g_lock, RW_WRITER); 15619 GRAB_ILL_LOCKS(ill_v4, ill_v6); 15620 mutex_enter(&phyi->phyint_lock); 15621 if (phyi->phyint_groupname_len != 0) { 15622 ASSERT(phyi->phyint_groupname != NULL); 15623 mi_free(phyi->phyint_groupname); 15624 } 15625 15626 /* 15627 * setup the new group name. 15628 */ 15629 phyi->phyint_groupname = tmp; 15630 bcopy(groupname, phyi->phyint_groupname, namelen + 1); 15631 phyi->phyint_groupname_len = namelen + 1; 15632 mutex_exit(&phyi->phyint_lock); 15633 RELEASE_ILL_LOCKS(ill_v4, ill_v6); 15634 rw_exit(&ill_g_lock); 15635 15636 err = ill_up_ipifs(ill, q, mp); 15637 } 15638 15639 done: 15640 /* 15641 * normally ILL_CHANGING is cleared in ill_up_ipifs. 15642 */ 15643 if (err != EINPROGRESS) { 15644 GRAB_ILL_LOCKS(ill_v4, ill_v6); 15645 if (ill_v4 != NULL) 15646 ill_v4->ill_state_flags &= ~ILL_CHANGING; 15647 if (ill_v6 != NULL) 15648 ill_v6->ill_state_flags &= ~ILL_CHANGING; 15649 RELEASE_ILL_LOCKS(ill_v4, ill_v6); 15650 } 15651 return (err); 15652 } 15653 15654 /* ARGSUSED */ 15655 int 15656 ip_sioctl_get_groupname(ipif_t *ipif, sin_t *dummy_sin, queue_t *q, 15657 mblk_t *mp, ip_ioctl_cmd_t *ipip, void *dummy_ifreq) 15658 { 15659 ill_t *ill; 15660 phyint_t *phyi; 15661 struct lifreq *lifr; 15662 mblk_t *mp1; 15663 15664 /* Existence verified in ip_wput_nondata */ 15665 mp1 = mp->b_cont->b_cont; 15666 lifr = (struct lifreq *)mp1->b_rptr; 15667 ill = ipif->ipif_ill; 15668 phyi = ill->ill_phyint; 15669 15670 lifr->lifr_groupname[0] = '\0'; 15671 /* 15672 * ill_group may be null if all the interfaces 15673 * are down. But still, the phyint should always 15674 * hold the name. 15675 */ 15676 if (phyi->phyint_groupname_len != 0) { 15677 bcopy(phyi->phyint_groupname, lifr->lifr_groupname, 15678 phyi->phyint_groupname_len); 15679 } 15680 15681 return (0); 15682 } 15683 15684 15685 typedef struct conn_move_s { 15686 ill_t *cm_from_ill; 15687 ill_t *cm_to_ill; 15688 int cm_ifindex; 15689 } conn_move_t; 15690 15691 /* 15692 * ipcl_walk function for moving conn_multicast_ill for a given ill. 15693 */ 15694 static void 15695 conn_move(conn_t *connp, caddr_t arg) 15696 { 15697 conn_move_t *connm; 15698 int ifindex; 15699 int i; 15700 ill_t *from_ill; 15701 ill_t *to_ill; 15702 ilg_t *ilg; 15703 ilm_t *ret_ilm; 15704 15705 connm = (conn_move_t *)arg; 15706 ifindex = connm->cm_ifindex; 15707 from_ill = connm->cm_from_ill; 15708 to_ill = connm->cm_to_ill; 15709 15710 /* Change IP_BOUND_IF/IPV6_BOUND_IF associations. */ 15711 15712 /* All multicast fields protected by conn_lock */ 15713 mutex_enter(&connp->conn_lock); 15714 ASSERT(connp->conn_outgoing_ill == connp->conn_incoming_ill); 15715 if ((connp->conn_outgoing_ill == from_ill) && 15716 (ifindex == 0 || connp->conn_orig_bound_ifindex == ifindex)) { 15717 connp->conn_outgoing_ill = to_ill; 15718 connp->conn_incoming_ill = to_ill; 15719 } 15720 15721 /* Change IP_MULTICAST_IF/IPV6_MULTICAST_IF associations */ 15722 15723 if ((connp->conn_multicast_ill == from_ill) && 15724 (ifindex == 0 || connp->conn_orig_multicast_ifindex == ifindex)) { 15725 connp->conn_multicast_ill = connm->cm_to_ill; 15726 } 15727 15728 /* Change IP_XMIT_IF associations */ 15729 if ((connp->conn_xmit_if_ill == from_ill) && 15730 (ifindex == 0 || connp->conn_orig_xmit_ifindex == ifindex)) { 15731 connp->conn_xmit_if_ill = to_ill; 15732 } 15733 /* 15734 * Change the ilg_ill to point to the new one. This assumes 15735 * ilm_move_v6 has moved the ilms to new_ill and the driver 15736 * has been told to receive packets on this interface. 15737 * ilm_move_v6 FAILBACKS all the ilms successfully always. 15738 * But when doing a FAILOVER, it might fail with ENOMEM and so 15739 * some ilms may not have moved. We check to see whether 15740 * the ilms have moved to to_ill. We can't check on from_ill 15741 * as in the process of moving, we could have split an ilm 15742 * in to two - which has the same orig_ifindex and v6group. 15743 * 15744 * For IPv4, ilg_ipif moves implicitly. The code below really 15745 * does not do anything for IPv4 as ilg_ill is NULL for IPv4. 15746 */ 15747 for (i = connp->conn_ilg_inuse - 1; i >= 0; i--) { 15748 ilg = &connp->conn_ilg[i]; 15749 if ((ilg->ilg_ill == from_ill) && 15750 (ifindex == 0 || ilg->ilg_orig_ifindex == ifindex)) { 15751 /* ifindex != 0 indicates failback */ 15752 if (ifindex != 0) { 15753 connp->conn_ilg[i].ilg_ill = to_ill; 15754 continue; 15755 } 15756 15757 ret_ilm = ilm_lookup_ill_index_v6(to_ill, 15758 &ilg->ilg_v6group, ilg->ilg_orig_ifindex, 15759 connp->conn_zoneid); 15760 15761 if (ret_ilm != NULL) 15762 connp->conn_ilg[i].ilg_ill = to_ill; 15763 } 15764 } 15765 mutex_exit(&connp->conn_lock); 15766 } 15767 15768 static void 15769 conn_move_ill(ill_t *from_ill, ill_t *to_ill, int ifindex) 15770 { 15771 conn_move_t connm; 15772 15773 connm.cm_from_ill = from_ill; 15774 connm.cm_to_ill = to_ill; 15775 connm.cm_ifindex = ifindex; 15776 15777 ipcl_walk(conn_move, (caddr_t)&connm); 15778 } 15779 15780 /* 15781 * ilm has been moved from from_ill to to_ill. 15782 * Send DL_DISABMULTI_REQ to ill and DL_ENABMULTI_REQ on to_ill. 15783 * appropriately. 15784 * 15785 * NOTE : We can't reuse the code in ip_ll_addmulti/delmulti because 15786 * the code there de-references ipif_ill to get the ill to 15787 * send multicast requests. It does not work as ipif is on its 15788 * move and already moved when this function is called. 15789 * Thus, we need to use from_ill and to_ill send down multicast 15790 * requests. 15791 */ 15792 static void 15793 ilm_send_multicast_reqs(ill_t *from_ill, ill_t *to_ill) 15794 { 15795 ipif_t *ipif; 15796 ilm_t *ilm; 15797 15798 /* 15799 * See whether we need to send down DL_ENABMULTI_REQ on 15800 * to_ill as ilm has just been added. 15801 */ 15802 ASSERT(IAM_WRITER_ILL(to_ill)); 15803 ASSERT(IAM_WRITER_ILL(from_ill)); 15804 15805 ILM_WALKER_HOLD(to_ill); 15806 for (ilm = to_ill->ill_ilm; ilm != NULL; ilm = ilm->ilm_next) { 15807 15808 if (!ilm->ilm_is_new || (ilm->ilm_flags & ILM_DELETED)) 15809 continue; 15810 /* 15811 * no locks held, ill/ipif cannot dissappear as long 15812 * as we are writer. 15813 */ 15814 ipif = to_ill->ill_ipif; 15815 /* 15816 * No need to hold any lock as we are the writer and this 15817 * can only be changed by a writer. 15818 */ 15819 ilm->ilm_is_new = B_FALSE; 15820 15821 if (to_ill->ill_net_type != IRE_IF_RESOLVER || 15822 ipif->ipif_flags & IPIF_POINTOPOINT) { 15823 ip1dbg(("ilm_send_multicast_reqs: to_ill not " 15824 "resolver\n")); 15825 continue; /* Must be IRE_IF_NORESOLVER */ 15826 } 15827 15828 15829 if (to_ill->ill_phyint->phyint_flags & PHYI_MULTI_BCAST) { 15830 ip1dbg(("ilm_send_multicast_reqs: " 15831 "to_ill MULTI_BCAST\n")); 15832 goto from; 15833 } 15834 15835 if (to_ill->ill_isv6) 15836 mld_joingroup(ilm); 15837 else 15838 igmp_joingroup(ilm); 15839 15840 if (to_ill->ill_ipif_up_count == 0) { 15841 /* 15842 * Nobody there. All multicast addresses will be 15843 * re-joined when we get the DL_BIND_ACK bringing the 15844 * interface up. 15845 */ 15846 ilm->ilm_notify_driver = B_FALSE; 15847 ip1dbg(("ilm_send_multicast_reqs: to_ill nobody up\n")); 15848 goto from; 15849 } 15850 15851 /* 15852 * For allmulti address, we want to join on only one interface. 15853 * Checking for ilm_numentries_v6 is not correct as you may 15854 * find an ilm with zero address on to_ill, but we may not 15855 * have nominated to_ill for receiving. Thus, if we have 15856 * nominated from_ill (ill_join_allmulti is set), nominate 15857 * only if to_ill is not already nominated (to_ill normally 15858 * should not have been nominated if "from_ill" has already 15859 * been nominated. As we don't prevent failovers from happening 15860 * across groups, we don't assert). 15861 */ 15862 if (IN6_IS_ADDR_UNSPECIFIED(&ilm->ilm_v6addr)) { 15863 /* 15864 * There is no need to hold ill locks as we are 15865 * writer on both ills and when ill_join_allmulti 15866 * is changed the thread is always a writer. 15867 */ 15868 if (from_ill->ill_join_allmulti && 15869 !to_ill->ill_join_allmulti) { 15870 (void) ip_join_allmulti(to_ill->ill_ipif); 15871 } 15872 } else if (ilm->ilm_notify_driver) { 15873 15874 /* 15875 * This is a newly moved ilm so we need to tell the 15876 * driver about the new group. There can be more than 15877 * one ilm's for the same group in the list each with a 15878 * different orig_ifindex. We have to inform the driver 15879 * once. In ilm_move_v[4,6] we only set the flag 15880 * ilm_notify_driver for the first ilm. 15881 */ 15882 15883 (void) ip_ll_send_enabmulti_req(to_ill, 15884 &ilm->ilm_v6addr); 15885 } 15886 15887 ilm->ilm_notify_driver = B_FALSE; 15888 15889 /* 15890 * See whether we need to send down DL_DISABMULTI_REQ on 15891 * from_ill as ilm has just been removed. 15892 */ 15893 from: 15894 ipif = from_ill->ill_ipif; 15895 if (from_ill->ill_net_type != IRE_IF_RESOLVER || 15896 ipif->ipif_flags & IPIF_POINTOPOINT) { 15897 ip1dbg(("ilm_send_multicast_reqs: " 15898 "from_ill not resolver\n")); 15899 continue; /* Must be IRE_IF_NORESOLVER */ 15900 } 15901 15902 if (from_ill->ill_phyint->phyint_flags & PHYI_MULTI_BCAST) { 15903 ip1dbg(("ilm_send_multicast_reqs: " 15904 "from_ill MULTI_BCAST\n")); 15905 continue; 15906 } 15907 15908 if (IN6_IS_ADDR_UNSPECIFIED(&ilm->ilm_v6addr)) { 15909 if (from_ill->ill_join_allmulti) 15910 (void) ip_leave_allmulti(from_ill->ill_ipif); 15911 } else if (ilm_numentries_v6(from_ill, &ilm->ilm_v6addr) == 0) { 15912 (void) ip_ll_send_disabmulti_req(from_ill, 15913 &ilm->ilm_v6addr); 15914 } 15915 } 15916 ILM_WALKER_RELE(to_ill); 15917 } 15918 15919 /* 15920 * This function is called when all multicast memberships needs 15921 * to be moved from "from_ill" to "to_ill" for IPv6. This function is 15922 * called only once unlike the IPv4 counterpart where it is called after 15923 * every logical interface is moved. The reason is due to multicast 15924 * memberships are joined using an interface address in IPv4 while in 15925 * IPv6, interface index is used. 15926 */ 15927 static void 15928 ilm_move_v6(ill_t *from_ill, ill_t *to_ill, int ifindex) 15929 { 15930 ilm_t *ilm; 15931 ilm_t *ilm_next; 15932 ilm_t *new_ilm; 15933 ilm_t **ilmp; 15934 int count; 15935 char buf[INET6_ADDRSTRLEN]; 15936 in6_addr_t ipv6_snm = ipv6_solicited_node_mcast; 15937 15938 ASSERT(MUTEX_HELD(&to_ill->ill_lock)); 15939 ASSERT(MUTEX_HELD(&from_ill->ill_lock)); 15940 ASSERT(RW_WRITE_HELD(&ill_g_lock)); 15941 15942 if (ifindex == 0) { 15943 /* 15944 * Form the solicited node mcast address which is used later. 15945 */ 15946 ipif_t *ipif; 15947 15948 ipif = from_ill->ill_ipif; 15949 ASSERT(ipif->ipif_id == 0); 15950 15951 ipv6_snm.s6_addr32[3] |= ipif->ipif_v6lcl_addr.s6_addr32[3]; 15952 } 15953 15954 ilmp = &from_ill->ill_ilm; 15955 for (ilm = from_ill->ill_ilm; ilm != NULL; ilm = ilm_next) { 15956 ilm_next = ilm->ilm_next; 15957 15958 if (ilm->ilm_flags & ILM_DELETED) { 15959 ilmp = &ilm->ilm_next; 15960 continue; 15961 } 15962 15963 new_ilm = ilm_lookup_ill_index_v6(to_ill, &ilm->ilm_v6addr, 15964 ilm->ilm_orig_ifindex, ilm->ilm_zoneid); 15965 ASSERT(ilm->ilm_orig_ifindex != 0); 15966 if (ilm->ilm_orig_ifindex == ifindex) { 15967 /* 15968 * We are failing back multicast memberships. 15969 * If the same ilm exists in to_ill, it means somebody 15970 * has joined the same group there e.g. ff02::1 15971 * is joined within the kernel when the interfaces 15972 * came UP. 15973 */ 15974 ASSERT(ilm->ilm_ipif == NULL); 15975 if (new_ilm != NULL) { 15976 new_ilm->ilm_refcnt += ilm->ilm_refcnt; 15977 if (new_ilm->ilm_fmode != MODE_IS_EXCLUDE || 15978 !SLIST_IS_EMPTY(new_ilm->ilm_filter)) { 15979 new_ilm->ilm_is_new = B_TRUE; 15980 } 15981 } else { 15982 /* 15983 * check if we can just move the ilm 15984 */ 15985 if (from_ill->ill_ilm_walker_cnt != 0) { 15986 /* 15987 * We have walkers we cannot move 15988 * the ilm, so allocate a new ilm, 15989 * this (old) ilm will be marked 15990 * ILM_DELETED at the end of the loop 15991 * and will be freed when the 15992 * last walker exits. 15993 */ 15994 new_ilm = (ilm_t *)mi_zalloc 15995 (sizeof (ilm_t)); 15996 if (new_ilm == NULL) { 15997 ip0dbg(("ilm_move_v6: " 15998 "FAILBACK of IPv6" 15999 " multicast address %s : " 16000 "from %s to" 16001 " %s failed : ENOMEM \n", 16002 inet_ntop(AF_INET6, 16003 &ilm->ilm_v6addr, buf, 16004 sizeof (buf)), 16005 from_ill->ill_name, 16006 to_ill->ill_name)); 16007 16008 ilmp = &ilm->ilm_next; 16009 continue; 16010 } 16011 *new_ilm = *ilm; 16012 /* 16013 * we don't want new_ilm linked to 16014 * ilm's filter list. 16015 */ 16016 new_ilm->ilm_filter = NULL; 16017 } else { 16018 /* 16019 * No walkers we can move the ilm. 16020 * lets take it out of the list. 16021 */ 16022 *ilmp = ilm->ilm_next; 16023 ilm->ilm_next = NULL; 16024 new_ilm = ilm; 16025 } 16026 16027 /* 16028 * if this is the first ilm for the group 16029 * set ilm_notify_driver so that we notify the 16030 * driver in ilm_send_multicast_reqs. 16031 */ 16032 if (ilm_lookup_ill_v6(to_ill, 16033 &new_ilm->ilm_v6addr, ALL_ZONES) == NULL) 16034 new_ilm->ilm_notify_driver = B_TRUE; 16035 16036 new_ilm->ilm_ill = to_ill; 16037 /* Add to the to_ill's list */ 16038 new_ilm->ilm_next = to_ill->ill_ilm; 16039 to_ill->ill_ilm = new_ilm; 16040 /* 16041 * set the flag so that mld_joingroup is 16042 * called in ilm_send_multicast_reqs(). 16043 */ 16044 new_ilm->ilm_is_new = B_TRUE; 16045 } 16046 goto bottom; 16047 } else if (ifindex != 0) { 16048 /* 16049 * If this is FAILBACK (ifindex != 0) and the ifindex 16050 * has not matched above, look at the next ilm. 16051 */ 16052 ilmp = &ilm->ilm_next; 16053 continue; 16054 } 16055 /* 16056 * If we are here, it means ifindex is 0. Failover 16057 * everything. 16058 * 16059 * We need to handle solicited node mcast address 16060 * and all_nodes mcast address differently as they 16061 * are joined witin the kenrel (ipif_multicast_up) 16062 * and potentially from the userland. We are called 16063 * after the ipifs of from_ill has been moved. 16064 * If we still find ilms on ill with solicited node 16065 * mcast address or all_nodes mcast address, it must 16066 * belong to the UP interface that has not moved e.g. 16067 * ipif_id 0 with the link local prefix does not move. 16068 * We join this on the new ill accounting for all the 16069 * userland memberships so that applications don't 16070 * see any failure. 16071 * 16072 * We need to make sure that we account only for the 16073 * solicited node and all node multicast addresses 16074 * that was brought UP on these. In the case of 16075 * a failover from A to B, we might have ilms belonging 16076 * to A (ilm_orig_ifindex pointing at A) on B accounting 16077 * for the membership from the userland. If we are failing 16078 * over from B to C now, we will find the ones belonging 16079 * to A on B. These don't account for the ill_ipif_up_count. 16080 * They just move from B to C. The check below on 16081 * ilm_orig_ifindex ensures that. 16082 */ 16083 if ((ilm->ilm_orig_ifindex == 16084 from_ill->ill_phyint->phyint_ifindex) && 16085 (IN6_ARE_ADDR_EQUAL(&ipv6_snm, &ilm->ilm_v6addr) || 16086 IN6_ARE_ADDR_EQUAL(&ipv6_all_hosts_mcast, 16087 &ilm->ilm_v6addr))) { 16088 ASSERT(ilm->ilm_refcnt > 0); 16089 count = ilm->ilm_refcnt - from_ill->ill_ipif_up_count; 16090 /* 16091 * For indentation reasons, we are not using a 16092 * "else" here. 16093 */ 16094 if (count == 0) { 16095 ilmp = &ilm->ilm_next; 16096 continue; 16097 } 16098 ilm->ilm_refcnt -= count; 16099 if (new_ilm != NULL) { 16100 /* 16101 * Can find one with the same 16102 * ilm_orig_ifindex, if we are failing 16103 * over to a STANDBY. This happens 16104 * when somebody wants to join a group 16105 * on a STANDBY interface and we 16106 * internally join on a different one. 16107 * If we had joined on from_ill then, a 16108 * failover now will find a new ilm 16109 * with this index. 16110 */ 16111 ip1dbg(("ilm_move_v6: FAILOVER, found" 16112 " new ilm on %s, group address %s\n", 16113 to_ill->ill_name, 16114 inet_ntop(AF_INET6, 16115 &ilm->ilm_v6addr, buf, 16116 sizeof (buf)))); 16117 new_ilm->ilm_refcnt += count; 16118 if (new_ilm->ilm_fmode != MODE_IS_EXCLUDE || 16119 !SLIST_IS_EMPTY(new_ilm->ilm_filter)) { 16120 new_ilm->ilm_is_new = B_TRUE; 16121 } 16122 } else { 16123 new_ilm = (ilm_t *)mi_zalloc(sizeof (ilm_t)); 16124 if (new_ilm == NULL) { 16125 ip0dbg(("ilm_move_v6: FAILOVER of IPv6" 16126 " multicast address %s : from %s to" 16127 " %s failed : ENOMEM \n", 16128 inet_ntop(AF_INET6, 16129 &ilm->ilm_v6addr, buf, 16130 sizeof (buf)), from_ill->ill_name, 16131 to_ill->ill_name)); 16132 ilmp = &ilm->ilm_next; 16133 continue; 16134 } 16135 *new_ilm = *ilm; 16136 new_ilm->ilm_filter = NULL; 16137 new_ilm->ilm_refcnt = count; 16138 new_ilm->ilm_timer = INFINITY; 16139 new_ilm->ilm_rtx.rtx_timer = INFINITY; 16140 new_ilm->ilm_is_new = B_TRUE; 16141 /* 16142 * If the to_ill has not joined this 16143 * group we need to tell the driver in 16144 * ill_send_multicast_reqs. 16145 */ 16146 if (ilm_lookup_ill_v6(to_ill, 16147 &new_ilm->ilm_v6addr, ALL_ZONES) == NULL) 16148 new_ilm->ilm_notify_driver = B_TRUE; 16149 16150 new_ilm->ilm_ill = to_ill; 16151 /* Add to the to_ill's list */ 16152 new_ilm->ilm_next = to_ill->ill_ilm; 16153 to_ill->ill_ilm = new_ilm; 16154 ASSERT(new_ilm->ilm_ipif == NULL); 16155 } 16156 if (ilm->ilm_refcnt == 0) { 16157 goto bottom; 16158 } else { 16159 new_ilm->ilm_fmode = MODE_IS_EXCLUDE; 16160 CLEAR_SLIST(new_ilm->ilm_filter); 16161 ilmp = &ilm->ilm_next; 16162 } 16163 continue; 16164 } else { 16165 /* 16166 * ifindex = 0 means, move everything pointing at 16167 * from_ill. We are doing this becuase ill has 16168 * either FAILED or became INACTIVE. 16169 * 16170 * As we would like to move things later back to 16171 * from_ill, we want to retain the identity of this 16172 * ilm. Thus, we don't blindly increment the reference 16173 * count on the ilms matching the address alone. We 16174 * need to match on the ilm_orig_index also. new_ilm 16175 * was obtained by matching ilm_orig_index also. 16176 */ 16177 if (new_ilm != NULL) { 16178 /* 16179 * This is possible only if a previous restore 16180 * was incomplete i.e restore to 16181 * ilm_orig_ifindex left some ilms because 16182 * of some failures. Thus when we are failing 16183 * again, we might find our old friends there. 16184 */ 16185 ip1dbg(("ilm_move_v6: FAILOVER, found new ilm" 16186 " on %s, group address %s\n", 16187 to_ill->ill_name, 16188 inet_ntop(AF_INET6, 16189 &ilm->ilm_v6addr, buf, 16190 sizeof (buf)))); 16191 new_ilm->ilm_refcnt += ilm->ilm_refcnt; 16192 if (new_ilm->ilm_fmode != MODE_IS_EXCLUDE || 16193 !SLIST_IS_EMPTY(new_ilm->ilm_filter)) { 16194 new_ilm->ilm_is_new = B_TRUE; 16195 } 16196 } else { 16197 if (from_ill->ill_ilm_walker_cnt != 0) { 16198 new_ilm = (ilm_t *) 16199 mi_zalloc(sizeof (ilm_t)); 16200 if (new_ilm == NULL) { 16201 ip0dbg(("ilm_move_v6: " 16202 "FAILOVER of IPv6" 16203 " multicast address %s : " 16204 "from %s to" 16205 " %s failed : ENOMEM \n", 16206 inet_ntop(AF_INET6, 16207 &ilm->ilm_v6addr, buf, 16208 sizeof (buf)), 16209 from_ill->ill_name, 16210 to_ill->ill_name)); 16211 16212 ilmp = &ilm->ilm_next; 16213 continue; 16214 } 16215 *new_ilm = *ilm; 16216 new_ilm->ilm_filter = NULL; 16217 } else { 16218 *ilmp = ilm->ilm_next; 16219 new_ilm = ilm; 16220 } 16221 /* 16222 * If the to_ill has not joined this 16223 * group we need to tell the driver in 16224 * ill_send_multicast_reqs. 16225 */ 16226 if (ilm_lookup_ill_v6(to_ill, 16227 &new_ilm->ilm_v6addr, ALL_ZONES) == NULL) 16228 new_ilm->ilm_notify_driver = B_TRUE; 16229 16230 /* Add to the to_ill's list */ 16231 new_ilm->ilm_next = to_ill->ill_ilm; 16232 to_ill->ill_ilm = new_ilm; 16233 ASSERT(ilm->ilm_ipif == NULL); 16234 new_ilm->ilm_ill = to_ill; 16235 new_ilm->ilm_is_new = B_TRUE; 16236 } 16237 16238 } 16239 16240 bottom: 16241 /* 16242 * Revert multicast filter state to (EXCLUDE, NULL). 16243 * new_ilm->ilm_is_new should already be set if needed. 16244 */ 16245 new_ilm->ilm_fmode = MODE_IS_EXCLUDE; 16246 CLEAR_SLIST(new_ilm->ilm_filter); 16247 /* 16248 * We allocated/got a new ilm, free the old one. 16249 */ 16250 if (new_ilm != ilm) { 16251 if (from_ill->ill_ilm_walker_cnt == 0) { 16252 *ilmp = ilm->ilm_next; 16253 ilm->ilm_next = NULL; 16254 FREE_SLIST(ilm->ilm_filter); 16255 FREE_SLIST(ilm->ilm_pendsrcs); 16256 FREE_SLIST(ilm->ilm_rtx.rtx_allow); 16257 FREE_SLIST(ilm->ilm_rtx.rtx_block); 16258 mi_free((char *)ilm); 16259 } else { 16260 ilm->ilm_flags |= ILM_DELETED; 16261 from_ill->ill_ilm_cleanup_reqd = 1; 16262 ilmp = &ilm->ilm_next; 16263 } 16264 } 16265 } 16266 } 16267 16268 /* 16269 * Move all the multicast memberships to to_ill. Called when 16270 * an ipif moves from "from_ill" to "to_ill". This function is slightly 16271 * different from IPv6 counterpart as multicast memberships are associated 16272 * with ills in IPv6. This function is called after every ipif is moved 16273 * unlike IPv6, where it is moved only once. 16274 */ 16275 static void 16276 ilm_move_v4(ill_t *from_ill, ill_t *to_ill, ipif_t *ipif) 16277 { 16278 ilm_t *ilm; 16279 ilm_t *ilm_next; 16280 ilm_t *new_ilm; 16281 ilm_t **ilmp; 16282 16283 ASSERT(MUTEX_HELD(&to_ill->ill_lock)); 16284 ASSERT(MUTEX_HELD(&from_ill->ill_lock)); 16285 ASSERT(RW_WRITE_HELD(&ill_g_lock)); 16286 16287 ilmp = &from_ill->ill_ilm; 16288 for (ilm = from_ill->ill_ilm; ilm != NULL; ilm = ilm_next) { 16289 ilm_next = ilm->ilm_next; 16290 16291 if (ilm->ilm_flags & ILM_DELETED) { 16292 ilmp = &ilm->ilm_next; 16293 continue; 16294 } 16295 16296 ASSERT(ilm->ilm_ipif != NULL); 16297 16298 if (ilm->ilm_ipif != ipif) { 16299 ilmp = &ilm->ilm_next; 16300 continue; 16301 } 16302 16303 if (V4_PART_OF_V6(ilm->ilm_v6addr) == 16304 htonl(INADDR_ALLHOSTS_GROUP)) { 16305 /* 16306 * We joined this in ipif_multicast_up 16307 * and we never did an ipif_multicast_down 16308 * for IPv4. If nobody else from the userland 16309 * has reference, we free the ilm, and later 16310 * when this ipif comes up on the new ill, 16311 * we will join this again. 16312 */ 16313 if (--ilm->ilm_refcnt == 0) 16314 goto delete_ilm; 16315 16316 new_ilm = ilm_lookup_ipif(ipif, 16317 V4_PART_OF_V6(ilm->ilm_v6addr)); 16318 if (new_ilm != NULL) { 16319 new_ilm->ilm_refcnt += ilm->ilm_refcnt; 16320 /* 16321 * We still need to deal with the from_ill. 16322 */ 16323 new_ilm->ilm_is_new = B_TRUE; 16324 new_ilm->ilm_fmode = MODE_IS_EXCLUDE; 16325 CLEAR_SLIST(new_ilm->ilm_filter); 16326 goto delete_ilm; 16327 } 16328 /* 16329 * If we could not find one e.g. ipif is 16330 * still down on to_ill, we add this ilm 16331 * on ill_new to preserve the reference 16332 * count. 16333 */ 16334 } 16335 /* 16336 * When ipifs move, ilms always move with it 16337 * to the NEW ill. Thus we should never be 16338 * able to find ilm till we really move it here. 16339 */ 16340 ASSERT(ilm_lookup_ipif(ipif, 16341 V4_PART_OF_V6(ilm->ilm_v6addr)) == NULL); 16342 16343 if (from_ill->ill_ilm_walker_cnt != 0) { 16344 new_ilm = (ilm_t *)mi_zalloc(sizeof (ilm_t)); 16345 if (new_ilm == NULL) { 16346 char buf[INET6_ADDRSTRLEN]; 16347 ip0dbg(("ilm_move_v4: FAILBACK of IPv4" 16348 " multicast address %s : " 16349 "from %s to" 16350 " %s failed : ENOMEM \n", 16351 inet_ntop(AF_INET, 16352 &ilm->ilm_v6addr, buf, 16353 sizeof (buf)), 16354 from_ill->ill_name, 16355 to_ill->ill_name)); 16356 16357 ilmp = &ilm->ilm_next; 16358 continue; 16359 } 16360 *new_ilm = *ilm; 16361 /* We don't want new_ilm linked to ilm's filter list */ 16362 new_ilm->ilm_filter = NULL; 16363 } else { 16364 /* Remove from the list */ 16365 *ilmp = ilm->ilm_next; 16366 new_ilm = ilm; 16367 } 16368 16369 /* 16370 * If we have never joined this group on the to_ill 16371 * make sure we tell the driver. 16372 */ 16373 if (ilm_lookup_ill_v6(to_ill, &new_ilm->ilm_v6addr, 16374 ALL_ZONES) == NULL) 16375 new_ilm->ilm_notify_driver = B_TRUE; 16376 16377 /* Add to the to_ill's list */ 16378 new_ilm->ilm_next = to_ill->ill_ilm; 16379 to_ill->ill_ilm = new_ilm; 16380 new_ilm->ilm_is_new = B_TRUE; 16381 16382 /* 16383 * Revert multicast filter state to (EXCLUDE, NULL) 16384 */ 16385 new_ilm->ilm_fmode = MODE_IS_EXCLUDE; 16386 CLEAR_SLIST(new_ilm->ilm_filter); 16387 16388 /* 16389 * Delete only if we have allocated a new ilm. 16390 */ 16391 if (new_ilm != ilm) { 16392 delete_ilm: 16393 if (from_ill->ill_ilm_walker_cnt == 0) { 16394 /* Remove from the list */ 16395 *ilmp = ilm->ilm_next; 16396 ilm->ilm_next = NULL; 16397 FREE_SLIST(ilm->ilm_filter); 16398 FREE_SLIST(ilm->ilm_pendsrcs); 16399 FREE_SLIST(ilm->ilm_rtx.rtx_allow); 16400 FREE_SLIST(ilm->ilm_rtx.rtx_block); 16401 mi_free((char *)ilm); 16402 } else { 16403 ilm->ilm_flags |= ILM_DELETED; 16404 from_ill->ill_ilm_cleanup_reqd = 1; 16405 ilmp = &ilm->ilm_next; 16406 } 16407 } 16408 } 16409 } 16410 16411 static uint_t 16412 ipif_get_id(ill_t *ill, uint_t id) 16413 { 16414 uint_t unit; 16415 ipif_t *tipif; 16416 boolean_t found = B_FALSE; 16417 16418 /* 16419 * During failback, we want to go back to the same id 16420 * instead of the smallest id so that the original 16421 * configuration is maintained. id is non-zero in that 16422 * case. 16423 */ 16424 if (id != 0) { 16425 /* 16426 * While failing back, if we still have an ipif with 16427 * MAX_ADDRS_PER_IF, it means this will be replaced 16428 * as soon as we return from this function. It was 16429 * to set to MAX_ADDRS_PER_IF by the caller so that 16430 * we can choose the smallest id. Thus we return zero 16431 * in that case ignoring the hint. 16432 */ 16433 if (ill->ill_ipif->ipif_id == MAX_ADDRS_PER_IF) 16434 return (0); 16435 for (tipif = ill->ill_ipif; tipif != NULL; 16436 tipif = tipif->ipif_next) { 16437 if (tipif->ipif_id == id) { 16438 found = B_TRUE; 16439 break; 16440 } 16441 } 16442 /* 16443 * If somebody already plumbed another logical 16444 * with the same id, we won't be able to find it. 16445 */ 16446 if (!found) 16447 return (id); 16448 } 16449 for (unit = 0; unit <= ip_addrs_per_if; unit++) { 16450 found = B_FALSE; 16451 for (tipif = ill->ill_ipif; tipif != NULL; 16452 tipif = tipif->ipif_next) { 16453 if (tipif->ipif_id == unit) { 16454 found = B_TRUE; 16455 break; 16456 } 16457 } 16458 if (!found) 16459 break; 16460 } 16461 return (unit); 16462 } 16463 16464 /* ARGSUSED */ 16465 static int 16466 ipif_move(ipif_t *ipif, ill_t *to_ill, queue_t *q, mblk_t *mp, 16467 ipif_t **rep_ipif_ptr) 16468 { 16469 ill_t *from_ill; 16470 ipif_t *rep_ipif; 16471 ipif_t **ipifp; 16472 uint_t unit; 16473 int err = 0; 16474 ipif_t *to_ipif; 16475 struct iocblk *iocp; 16476 boolean_t failback_cmd; 16477 boolean_t remove_ipif; 16478 int rc; 16479 16480 ASSERT(IAM_WRITER_ILL(to_ill)); 16481 ASSERT(IAM_WRITER_IPIF(ipif)); 16482 16483 iocp = (struct iocblk *)mp->b_rptr; 16484 failback_cmd = (iocp->ioc_cmd == SIOCLIFFAILBACK); 16485 remove_ipif = B_FALSE; 16486 16487 from_ill = ipif->ipif_ill; 16488 16489 ASSERT(MUTEX_HELD(&to_ill->ill_lock)); 16490 ASSERT(MUTEX_HELD(&from_ill->ill_lock)); 16491 ASSERT(RW_WRITE_HELD(&ill_g_lock)); 16492 16493 /* 16494 * Don't move LINK LOCAL addresses as they are tied to 16495 * physical interface. 16496 */ 16497 if (from_ill->ill_isv6 && 16498 IN6_IS_ADDR_LINKLOCAL(&ipif->ipif_v6lcl_addr)) { 16499 ipif->ipif_was_up = B_FALSE; 16500 IPIF_UNMARK_MOVING(ipif); 16501 return (0); 16502 } 16503 16504 /* 16505 * We set the ipif_id to maximum so that the search for 16506 * ipif_id will pick the lowest number i.e 0 in the 16507 * following 2 cases : 16508 * 16509 * 1) We have a replacement ipif at the head of to_ill. 16510 * We can't remove it yet as we can exceed ip_addrs_per_if 16511 * on to_ill and hence the MOVE might fail. We want to 16512 * remove it only if we could move the ipif. Thus, by 16513 * setting it to the MAX value, we make the search in 16514 * ipif_get_id return the zeroth id. 16515 * 16516 * 2) When DR pulls out the NIC and re-plumbs the interface, 16517 * we might just have a zero address plumbed on the ipif 16518 * with zero id in the case of IPv4. We remove that while 16519 * doing the failback. We want to remove it only if we 16520 * could move the ipif. Thus, by setting it to the MAX 16521 * value, we make the search in ipif_get_id return the 16522 * zeroth id. 16523 * 16524 * Both (1) and (2) are done only when when we are moving 16525 * an ipif (either due to failover/failback) which originally 16526 * belonged to this interface i.e the ipif_orig_ifindex is 16527 * the same as to_ill's ifindex. This is needed so that 16528 * FAILOVER from A -> B ( A failed) followed by FAILOVER 16529 * from B -> A (B is being removed from the group) and 16530 * FAILBACK from A -> B restores the original configuration. 16531 * Without the check for orig_ifindex, the second FAILOVER 16532 * could make the ipif belonging to B replace the A's zeroth 16533 * ipif and the subsequent failback re-creating the replacement 16534 * ipif again. 16535 * 16536 * NOTE : We created the replacement ipif when we did a 16537 * FAILOVER (See below). We could check for FAILBACK and 16538 * then look for replacement ipif to be removed. But we don't 16539 * want to do that because we wan't to allow the possibility 16540 * of a FAILOVER from A -> B (which creates the replacement ipif), 16541 * followed by a *FAILOVER* from B -> A instead of a FAILBACK 16542 * from B -> A. 16543 */ 16544 to_ipif = to_ill->ill_ipif; 16545 if ((to_ill->ill_phyint->phyint_ifindex == 16546 ipif->ipif_orig_ifindex) && 16547 IPIF_REPL_CHECK(to_ipif, failback_cmd)) { 16548 ASSERT(to_ipif->ipif_id == 0); 16549 remove_ipif = B_TRUE; 16550 to_ipif->ipif_id = MAX_ADDRS_PER_IF; 16551 } 16552 /* 16553 * Find the lowest logical unit number on the to_ill. 16554 * If we are failing back, try to get the original id 16555 * rather than the lowest one so that the original 16556 * configuration is maintained. 16557 * 16558 * XXX need a better scheme for this. 16559 */ 16560 if (failback_cmd) { 16561 unit = ipif_get_id(to_ill, ipif->ipif_orig_ipifid); 16562 } else { 16563 unit = ipif_get_id(to_ill, 0); 16564 } 16565 16566 /* Reset back to zero in case we fail below */ 16567 if (to_ipif->ipif_id == MAX_ADDRS_PER_IF) 16568 to_ipif->ipif_id = 0; 16569 16570 if (unit == ip_addrs_per_if) { 16571 ipif->ipif_was_up = B_FALSE; 16572 IPIF_UNMARK_MOVING(ipif); 16573 return (EINVAL); 16574 } 16575 16576 /* 16577 * ipif is ready to move from "from_ill" to "to_ill". 16578 * 16579 * 1) If we are moving ipif with id zero, create a 16580 * replacement ipif for this ipif on from_ill. If this fails 16581 * fail the MOVE operation. 16582 * 16583 * 2) Remove the replacement ipif on to_ill if any. 16584 * We could remove the replacement ipif when we are moving 16585 * the ipif with id zero. But what if somebody already 16586 * unplumbed it ? Thus we always remove it if it is present. 16587 * We want to do it only if we are sure we are going to 16588 * move the ipif to to_ill which is why there are no 16589 * returns due to error till ipif is linked to to_ill. 16590 * Note that the first ipif that we failback will always 16591 * be zero if it is present. 16592 */ 16593 if (ipif->ipif_id == 0) { 16594 ipaddr_t inaddr_any = INADDR_ANY; 16595 16596 rep_ipif = (ipif_t *)mi_alloc(sizeof (ipif_t), BPRI_MED); 16597 if (rep_ipif == NULL) { 16598 ipif->ipif_was_up = B_FALSE; 16599 IPIF_UNMARK_MOVING(ipif); 16600 return (ENOMEM); 16601 } 16602 *rep_ipif = ipif_zero; 16603 /* 16604 * Before we put the ipif on the list, store the addresses 16605 * as mapped addresses as some of the ioctls e.g SIOCGIFADDR 16606 * assumes so. This logic is not any different from what 16607 * ipif_allocate does. 16608 */ 16609 IN6_IPADDR_TO_V4MAPPED(inaddr_any, 16610 &rep_ipif->ipif_v6lcl_addr); 16611 IN6_IPADDR_TO_V4MAPPED(inaddr_any, 16612 &rep_ipif->ipif_v6src_addr); 16613 IN6_IPADDR_TO_V4MAPPED(inaddr_any, 16614 &rep_ipif->ipif_v6subnet); 16615 IN6_IPADDR_TO_V4MAPPED(inaddr_any, 16616 &rep_ipif->ipif_v6net_mask); 16617 IN6_IPADDR_TO_V4MAPPED(inaddr_any, 16618 &rep_ipif->ipif_v6brd_addr); 16619 IN6_IPADDR_TO_V4MAPPED(inaddr_any, 16620 &rep_ipif->ipif_v6pp_dst_addr); 16621 /* 16622 * We mark IPIF_NOFAILOVER so that this can never 16623 * move. 16624 */ 16625 rep_ipif->ipif_flags = ipif->ipif_flags | IPIF_NOFAILOVER; 16626 rep_ipif->ipif_flags &= ~IPIF_UP; 16627 rep_ipif->ipif_replace_zero = B_TRUE; 16628 mutex_init(&rep_ipif->ipif_saved_ire_lock, NULL, 16629 MUTEX_DEFAULT, NULL); 16630 rep_ipif->ipif_id = 0; 16631 rep_ipif->ipif_ire_type = ipif->ipif_ire_type; 16632 rep_ipif->ipif_ill = from_ill; 16633 rep_ipif->ipif_orig_ifindex = 16634 from_ill->ill_phyint->phyint_ifindex; 16635 /* Insert at head */ 16636 rep_ipif->ipif_next = from_ill->ill_ipif; 16637 from_ill->ill_ipif = rep_ipif; 16638 /* 16639 * We don't really care to let apps know about 16640 * this interface. 16641 */ 16642 } 16643 16644 if (remove_ipif) { 16645 /* 16646 * We set to a max value above for this case to get 16647 * id zero. ASSERT that we did get one. 16648 */ 16649 ASSERT((to_ipif->ipif_id == 0) && (unit == 0)); 16650 rep_ipif = to_ipif; 16651 to_ill->ill_ipif = rep_ipif->ipif_next; 16652 rep_ipif->ipif_next = NULL; 16653 /* 16654 * If some apps scanned and find this interface, 16655 * it is time to let them know, so that they can 16656 * delete it. 16657 */ 16658 16659 *rep_ipif_ptr = rep_ipif; 16660 } 16661 16662 /* Get it out of the ILL interface list. */ 16663 ipifp = &ipif->ipif_ill->ill_ipif; 16664 for (; *ipifp != NULL; ipifp = &ipifp[0]->ipif_next) { 16665 if (*ipifp == ipif) { 16666 *ipifp = ipif->ipif_next; 16667 break; 16668 } 16669 } 16670 16671 /* Assign the new ill */ 16672 ipif->ipif_ill = to_ill; 16673 ipif->ipif_id = unit; 16674 /* id has already been checked */ 16675 rc = ipif_insert(ipif, B_FALSE, B_FALSE); 16676 ASSERT(rc == 0); 16677 /* Let SCTP update its list */ 16678 sctp_move_ipif(ipif, from_ill, to_ill); 16679 /* 16680 * Handle the failover and failback of ipif_t between 16681 * ill_t that have differing maximum mtu values. 16682 */ 16683 if (ipif->ipif_mtu > to_ill->ill_max_mtu) { 16684 if (ipif->ipif_saved_mtu == 0) { 16685 /* 16686 * As this ipif_t is moving to an ill_t 16687 * that has a lower ill_max_mtu, its 16688 * ipif_mtu needs to be saved so it can 16689 * be restored during failback or during 16690 * failover to an ill_t which has a 16691 * higher ill_max_mtu. 16692 */ 16693 ipif->ipif_saved_mtu = ipif->ipif_mtu; 16694 ipif->ipif_mtu = to_ill->ill_max_mtu; 16695 } else { 16696 /* 16697 * The ipif_t is, once again, moving to 16698 * an ill_t that has a lower maximum mtu 16699 * value. 16700 */ 16701 ipif->ipif_mtu = to_ill->ill_max_mtu; 16702 } 16703 } else if (ipif->ipif_mtu < to_ill->ill_max_mtu && 16704 ipif->ipif_saved_mtu != 0) { 16705 /* 16706 * The mtu of this ipif_t had to be reduced 16707 * during an earlier failover; this is an 16708 * opportunity for it to be increased (either as 16709 * part of another failover or a failback). 16710 */ 16711 if (ipif->ipif_saved_mtu <= to_ill->ill_max_mtu) { 16712 ipif->ipif_mtu = ipif->ipif_saved_mtu; 16713 ipif->ipif_saved_mtu = 0; 16714 } else { 16715 ipif->ipif_mtu = to_ill->ill_max_mtu; 16716 } 16717 } 16718 16719 /* 16720 * We preserve all the other fields of the ipif including 16721 * ipif_saved_ire_mp. The routes that are saved here will 16722 * be recreated on the new interface and back on the old 16723 * interface when we move back. 16724 */ 16725 ASSERT(ipif->ipif_arp_del_mp == NULL); 16726 16727 return (err); 16728 } 16729 16730 static int 16731 ipif_move_all(ill_t *from_ill, ill_t *to_ill, queue_t *q, mblk_t *mp, 16732 int ifindex, ipif_t **rep_ipif_ptr) 16733 { 16734 ipif_t *mipif; 16735 ipif_t *ipif_next; 16736 int err; 16737 16738 /* 16739 * We don't really try to MOVE back things if some of the 16740 * operations fail. The daemon will take care of moving again 16741 * later on. 16742 */ 16743 for (mipif = from_ill->ill_ipif; mipif != NULL; mipif = ipif_next) { 16744 ipif_next = mipif->ipif_next; 16745 if (!(mipif->ipif_flags & IPIF_NOFAILOVER) && 16746 (ifindex == 0 || ifindex == mipif->ipif_orig_ifindex)) { 16747 16748 err = ipif_move(mipif, to_ill, q, mp, rep_ipif_ptr); 16749 16750 /* 16751 * When the MOVE fails, it is the job of the 16752 * application to take care of this properly 16753 * i.e try again if it is ENOMEM. 16754 */ 16755 if (mipif->ipif_ill != from_ill) { 16756 /* 16757 * ipif has moved. 16758 * 16759 * Move the multicast memberships associated 16760 * with this ipif to the new ill. For IPv6, we 16761 * do it once after all the ipifs are moved 16762 * (in ill_move) as they are not associated 16763 * with ipifs. 16764 * 16765 * We need to move the ilms as the ipif has 16766 * already been moved to a new ill even 16767 * in the case of errors. Neither 16768 * ilm_free(ipif) will find the ilm 16769 * when somebody unplumbs this ipif nor 16770 * ilm_delete(ilm) will be able to find the 16771 * ilm, if we don't move now. 16772 */ 16773 if (!from_ill->ill_isv6) 16774 ilm_move_v4(from_ill, to_ill, mipif); 16775 } 16776 16777 if (err != 0) 16778 return (err); 16779 } 16780 } 16781 return (0); 16782 } 16783 16784 static int 16785 ill_move(ill_t *from_ill, ill_t *to_ill, queue_t *q, mblk_t *mp) 16786 { 16787 int ifindex; 16788 int err; 16789 struct iocblk *iocp; 16790 ipif_t *ipif; 16791 ipif_t *rep_ipif_ptr = NULL; 16792 ipif_t *from_ipif = NULL; 16793 boolean_t check_rep_if = B_FALSE; 16794 16795 iocp = (struct iocblk *)mp->b_rptr; 16796 if (iocp->ioc_cmd == SIOCLIFFAILOVER) { 16797 /* 16798 * Move everything pointing at from_ill to to_ill. 16799 * We acheive this by passing in 0 as ifindex. 16800 */ 16801 ifindex = 0; 16802 } else { 16803 /* 16804 * Move everything pointing at from_ill whose original 16805 * ifindex of connp, ipif, ilm points at to_ill->ill_index. 16806 * We acheive this by passing in ifindex rather than 0. 16807 * Multicast vifs, ilgs move implicitly because ipifs move. 16808 */ 16809 ASSERT(iocp->ioc_cmd == SIOCLIFFAILBACK); 16810 ifindex = to_ill->ill_phyint->phyint_ifindex; 16811 } 16812 16813 /* 16814 * Determine if there is at least one ipif that would move from 16815 * 'from_ill' to 'to_ill'. If so, it is possible that the replacement 16816 * ipif (if it exists) on the to_ill would be consumed as a result of 16817 * the move, in which case we need to quiesce the replacement ipif also. 16818 */ 16819 for (from_ipif = from_ill->ill_ipif; from_ipif != NULL; 16820 from_ipif = from_ipif->ipif_next) { 16821 if (((ifindex == 0) || 16822 (ifindex == from_ipif->ipif_orig_ifindex)) && 16823 !(from_ipif->ipif_flags & IPIF_NOFAILOVER)) { 16824 check_rep_if = B_TRUE; 16825 break; 16826 } 16827 } 16828 16829 16830 ill_down_ipifs(from_ill, mp, ifindex, B_TRUE); 16831 16832 GRAB_ILL_LOCKS(from_ill, to_ill); 16833 if ((ipif = ill_quiescent_to_move(from_ill)) != NULL) { 16834 (void) ipsq_pending_mp_add(NULL, ipif, q, 16835 mp, ILL_MOVE_OK); 16836 RELEASE_ILL_LOCKS(from_ill, to_ill); 16837 return (EINPROGRESS); 16838 } 16839 16840 /* Check if the replacement ipif is quiescent to delete */ 16841 if (check_rep_if && IPIF_REPL_CHECK(to_ill->ill_ipif, 16842 (iocp->ioc_cmd == SIOCLIFFAILBACK))) { 16843 to_ill->ill_ipif->ipif_state_flags |= 16844 IPIF_MOVING | IPIF_CHANGING; 16845 if ((ipif = ill_quiescent_to_move(to_ill)) != NULL) { 16846 (void) ipsq_pending_mp_add(NULL, ipif, q, 16847 mp, ILL_MOVE_OK); 16848 RELEASE_ILL_LOCKS(from_ill, to_ill); 16849 return (EINPROGRESS); 16850 } 16851 } 16852 RELEASE_ILL_LOCKS(from_ill, to_ill); 16853 16854 ASSERT(!MUTEX_HELD(&to_ill->ill_lock)); 16855 rw_enter(&ill_g_lock, RW_WRITER); 16856 GRAB_ILL_LOCKS(from_ill, to_ill); 16857 err = ipif_move_all(from_ill, to_ill, q, mp, ifindex, &rep_ipif_ptr); 16858 16859 /* ilm_move is done inside ipif_move for IPv4 */ 16860 if (err == 0 && from_ill->ill_isv6) 16861 ilm_move_v6(from_ill, to_ill, ifindex); 16862 16863 RELEASE_ILL_LOCKS(from_ill, to_ill); 16864 rw_exit(&ill_g_lock); 16865 16866 /* 16867 * send rts messages and multicast messages. 16868 */ 16869 if (rep_ipif_ptr != NULL) { 16870 ip_rts_ifmsg(rep_ipif_ptr); 16871 ip_rts_newaddrmsg(RTM_DELETE, 0, rep_ipif_ptr); 16872 IPIF_TRACE_CLEANUP(rep_ipif_ptr); 16873 mi_free(rep_ipif_ptr); 16874 } 16875 16876 conn_move_ill(from_ill, to_ill, ifindex); 16877 16878 return (err); 16879 } 16880 16881 /* 16882 * Used to extract arguments for FAILOVER/FAILBACK ioctls. 16883 * Also checks for the validity of the arguments. 16884 * Note: We are already exclusive inside the from group. 16885 * It is upto the caller to release refcnt on the to_ill's. 16886 */ 16887 static int 16888 ip_extract_move_args(queue_t *q, mblk_t *mp, ill_t **ill_from_v4, 16889 ill_t **ill_from_v6, ill_t **ill_to_v4, ill_t **ill_to_v6) 16890 { 16891 int dst_index; 16892 ipif_t *ipif_v4, *ipif_v6; 16893 struct lifreq *lifr; 16894 mblk_t *mp1; 16895 boolean_t exists; 16896 sin_t *sin; 16897 int err = 0; 16898 16899 if ((mp1 = mp->b_cont) == NULL) 16900 return (EPROTO); 16901 16902 if ((mp1 = mp1->b_cont) == NULL) 16903 return (EPROTO); 16904 16905 lifr = (struct lifreq *)mp1->b_rptr; 16906 sin = (sin_t *)&lifr->lifr_addr; 16907 16908 /* 16909 * We operate on both IPv4 and IPv6. Thus, we don't allow IPv4/IPv6 16910 * specific operations. 16911 */ 16912 if (sin->sin_family != AF_UNSPEC) 16913 return (EINVAL); 16914 16915 /* 16916 * Get ipif with id 0. We are writer on the from ill. So we can pass 16917 * NULLs for the last 4 args and we know the lookup won't fail 16918 * with EINPROGRESS. 16919 */ 16920 ipif_v4 = ipif_lookup_on_name(lifr->lifr_name, 16921 mi_strlen(lifr->lifr_name), B_FALSE, &exists, B_FALSE, 16922 ALL_ZONES, NULL, NULL, NULL, NULL); 16923 ipif_v6 = ipif_lookup_on_name(lifr->lifr_name, 16924 mi_strlen(lifr->lifr_name), B_FALSE, &exists, B_TRUE, 16925 ALL_ZONES, NULL, NULL, NULL, NULL); 16926 16927 if (ipif_v4 == NULL && ipif_v6 == NULL) 16928 return (ENXIO); 16929 16930 if (ipif_v4 != NULL) { 16931 ASSERT(ipif_v4->ipif_refcnt != 0); 16932 if (ipif_v4->ipif_id != 0) { 16933 err = EINVAL; 16934 goto done; 16935 } 16936 16937 ASSERT(IAM_WRITER_IPIF(ipif_v4)); 16938 *ill_from_v4 = ipif_v4->ipif_ill; 16939 } 16940 16941 if (ipif_v6 != NULL) { 16942 ASSERT(ipif_v6->ipif_refcnt != 0); 16943 if (ipif_v6->ipif_id != 0) { 16944 err = EINVAL; 16945 goto done; 16946 } 16947 16948 ASSERT(IAM_WRITER_IPIF(ipif_v6)); 16949 *ill_from_v6 = ipif_v6->ipif_ill; 16950 } 16951 16952 err = 0; 16953 dst_index = lifr->lifr_movetoindex; 16954 *ill_to_v4 = ill_lookup_on_ifindex(dst_index, B_FALSE, 16955 q, mp, ip_process_ioctl, &err); 16956 if (err != 0) { 16957 /* 16958 * There could be only v6. 16959 */ 16960 if (err != ENXIO) 16961 goto done; 16962 err = 0; 16963 } 16964 16965 *ill_to_v6 = ill_lookup_on_ifindex(dst_index, B_TRUE, 16966 q, mp, ip_process_ioctl, &err); 16967 if (err != 0) { 16968 if (err != ENXIO) 16969 goto done; 16970 if (*ill_to_v4 == NULL) { 16971 err = ENXIO; 16972 goto done; 16973 } 16974 err = 0; 16975 } 16976 16977 /* 16978 * If we have something to MOVE i.e "from" not NULL, 16979 * "to" should be non-NULL. 16980 */ 16981 if ((*ill_from_v4 != NULL && *ill_to_v4 == NULL) || 16982 (*ill_from_v6 != NULL && *ill_to_v6 == NULL)) { 16983 err = EINVAL; 16984 } 16985 16986 done: 16987 if (ipif_v4 != NULL) 16988 ipif_refrele(ipif_v4); 16989 if (ipif_v6 != NULL) 16990 ipif_refrele(ipif_v6); 16991 return (err); 16992 } 16993 16994 /* 16995 * FAILOVER and FAILBACK are modelled as MOVE operations. 16996 * 16997 * We don't check whether the MOVE is within the same group or 16998 * not, because this ioctl can be used as a generic mechanism 16999 * to failover from interface A to B, though things will function 17000 * only if they are really part of the same group. Moreover, 17001 * all ipifs may be down and hence temporarily out of the group. 17002 * 17003 * ipif's that need to be moved are first brought down; V4 ipifs are brought 17004 * down first and then V6. For each we wait for the ipif's to become quiescent. 17005 * Bringing down the ipifs ensures that all ires pointing to these ipifs's 17006 * have been deleted and there are no active references. Once quiescent the 17007 * ipif's are moved and brought up on the new ill. 17008 * 17009 * Normally the source ill and destination ill belong to the same IPMP group 17010 * and hence the same ipsq_t. In the event they don't belong to the same 17011 * same group the two ipsq's are first merged into one ipsq - that of the 17012 * to_ill. The multicast memberships on the source and destination ill cannot 17013 * change during the move operation since multicast joins/leaves also have to 17014 * execute on the same ipsq and are hence serialized. 17015 */ 17016 /* ARGSUSED */ 17017 int 17018 ip_sioctl_move(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 17019 ip_ioctl_cmd_t *ipip, void *ifreq) 17020 { 17021 ill_t *ill_to_v4 = NULL; 17022 ill_t *ill_to_v6 = NULL; 17023 ill_t *ill_from_v4 = NULL; 17024 ill_t *ill_from_v6 = NULL; 17025 int err = 0; 17026 17027 /* 17028 * setup from and to ill's, we can get EINPROGRESS only for 17029 * to_ill's. 17030 */ 17031 err = ip_extract_move_args(q, mp, &ill_from_v4, &ill_from_v6, 17032 &ill_to_v4, &ill_to_v6); 17033 17034 if (err != 0) { 17035 ip0dbg(("ip_sioctl_move: extract args failed\n")); 17036 goto done; 17037 } 17038 17039 /* 17040 * nothing to do. 17041 */ 17042 if ((ill_from_v4 != NULL) && (ill_from_v4 == ill_to_v4)) { 17043 goto done; 17044 } 17045 17046 /* 17047 * nothing to do. 17048 */ 17049 if ((ill_from_v6 != NULL) && (ill_from_v6 == ill_to_v6)) { 17050 goto done; 17051 } 17052 17053 /* 17054 * Mark the ill as changing. 17055 * ILL_CHANGING flag is cleared when the ipif's are brought up 17056 * in ill_up_ipifs in case of error they are cleared below. 17057 */ 17058 17059 GRAB_ILL_LOCKS(ill_from_v4, ill_from_v6); 17060 if (ill_from_v4 != NULL) 17061 ill_from_v4->ill_state_flags |= ILL_CHANGING; 17062 if (ill_from_v6 != NULL) 17063 ill_from_v6->ill_state_flags |= ILL_CHANGING; 17064 RELEASE_ILL_LOCKS(ill_from_v4, ill_from_v6); 17065 17066 /* 17067 * Make sure that both src and dst are 17068 * in the same syncq group. If not make it happen. 17069 * We are not holding any locks because we are the writer 17070 * on the from_ipsq and we will hold locks in ill_merge_groups 17071 * to protect to_ipsq against changing. 17072 */ 17073 if (ill_from_v4 != NULL) { 17074 if (ill_from_v4->ill_phyint->phyint_ipsq != 17075 ill_to_v4->ill_phyint->phyint_ipsq) { 17076 err = ill_merge_groups(ill_from_v4, ill_to_v4, 17077 NULL, mp, q); 17078 goto err_ret; 17079 17080 } 17081 ASSERT(!MUTEX_HELD(&ill_to_v4->ill_lock)); 17082 } else { 17083 17084 if (ill_from_v6->ill_phyint->phyint_ipsq != 17085 ill_to_v6->ill_phyint->phyint_ipsq) { 17086 err = ill_merge_groups(ill_from_v6, ill_to_v6, 17087 NULL, mp, q); 17088 goto err_ret; 17089 17090 } 17091 ASSERT(!MUTEX_HELD(&ill_to_v6->ill_lock)); 17092 } 17093 17094 /* 17095 * Now that the ipsq's have been merged and we are the writer 17096 * lets mark to_ill as changing as well. 17097 */ 17098 17099 GRAB_ILL_LOCKS(ill_to_v4, ill_to_v6); 17100 if (ill_to_v4 != NULL) 17101 ill_to_v4->ill_state_flags |= ILL_CHANGING; 17102 if (ill_to_v6 != NULL) 17103 ill_to_v6->ill_state_flags |= ILL_CHANGING; 17104 RELEASE_ILL_LOCKS(ill_to_v4, ill_to_v6); 17105 17106 /* 17107 * Its ok for us to proceed with the move even if 17108 * ill_pending_mp is non null on one of the from ill's as the reply 17109 * should not be looking at the ipif, it should only care about the 17110 * ill itself. 17111 */ 17112 17113 /* 17114 * lets move ipv4 first. 17115 */ 17116 if (ill_from_v4 != NULL) { 17117 ASSERT(IAM_WRITER_ILL(ill_to_v4)); 17118 ill_from_v4->ill_move_in_progress = B_TRUE; 17119 ill_to_v4->ill_move_in_progress = B_TRUE; 17120 ill_to_v4->ill_move_peer = ill_from_v4; 17121 ill_from_v4->ill_move_peer = ill_to_v4; 17122 err = ill_move(ill_from_v4, ill_to_v4, q, mp); 17123 } 17124 17125 /* 17126 * Now lets move ipv6. 17127 */ 17128 if (err == 0 && ill_from_v6 != NULL) { 17129 ASSERT(IAM_WRITER_ILL(ill_to_v6)); 17130 ill_from_v6->ill_move_in_progress = B_TRUE; 17131 ill_to_v6->ill_move_in_progress = B_TRUE; 17132 ill_to_v6->ill_move_peer = ill_from_v6; 17133 ill_from_v6->ill_move_peer = ill_to_v6; 17134 err = ill_move(ill_from_v6, ill_to_v6, q, mp); 17135 } 17136 17137 err_ret: 17138 /* 17139 * EINPROGRESS means we are waiting for the ipif's that need to be 17140 * moved to become quiescent. 17141 */ 17142 if (err == EINPROGRESS) { 17143 goto done; 17144 } 17145 17146 /* 17147 * if err is set ill_up_ipifs will not be called 17148 * lets clear the flags. 17149 */ 17150 17151 GRAB_ILL_LOCKS(ill_to_v4, ill_to_v6); 17152 GRAB_ILL_LOCKS(ill_from_v4, ill_from_v6); 17153 /* 17154 * Some of the clearing may be redundant. But it is simple 17155 * not making any extra checks. 17156 */ 17157 if (ill_from_v6 != NULL) { 17158 ill_from_v6->ill_move_in_progress = B_FALSE; 17159 ill_from_v6->ill_move_peer = NULL; 17160 ill_from_v6->ill_state_flags &= ~ILL_CHANGING; 17161 } 17162 if (ill_from_v4 != NULL) { 17163 ill_from_v4->ill_move_in_progress = B_FALSE; 17164 ill_from_v4->ill_move_peer = NULL; 17165 ill_from_v4->ill_state_flags &= ~ILL_CHANGING; 17166 } 17167 if (ill_to_v6 != NULL) { 17168 ill_to_v6->ill_move_in_progress = B_FALSE; 17169 ill_to_v6->ill_move_peer = NULL; 17170 ill_to_v6->ill_state_flags &= ~ILL_CHANGING; 17171 } 17172 if (ill_to_v4 != NULL) { 17173 ill_to_v4->ill_move_in_progress = B_FALSE; 17174 ill_to_v4->ill_move_peer = NULL; 17175 ill_to_v4->ill_state_flags &= ~ILL_CHANGING; 17176 } 17177 17178 /* 17179 * Check for setting INACTIVE, if STANDBY is set and FAILED is not set. 17180 * Do this always to maintain proper state i.e even in case of errors. 17181 * As phyint_inactive looks at both v4 and v6 interfaces, 17182 * we need not call on both v4 and v6 interfaces. 17183 */ 17184 if (ill_from_v4 != NULL) { 17185 if ((ill_from_v4->ill_phyint->phyint_flags & 17186 (PHYI_STANDBY | PHYI_FAILED)) == PHYI_STANDBY) { 17187 phyint_inactive(ill_from_v4->ill_phyint); 17188 } 17189 } else if (ill_from_v6 != NULL) { 17190 if ((ill_from_v6->ill_phyint->phyint_flags & 17191 (PHYI_STANDBY | PHYI_FAILED)) == PHYI_STANDBY) { 17192 phyint_inactive(ill_from_v6->ill_phyint); 17193 } 17194 } 17195 17196 if (ill_to_v4 != NULL) { 17197 if (ill_to_v4->ill_phyint->phyint_flags & PHYI_INACTIVE) { 17198 ill_to_v4->ill_phyint->phyint_flags &= ~PHYI_INACTIVE; 17199 } 17200 } else if (ill_to_v6 != NULL) { 17201 if (ill_to_v6->ill_phyint->phyint_flags & PHYI_INACTIVE) { 17202 ill_to_v6->ill_phyint->phyint_flags &= ~PHYI_INACTIVE; 17203 } 17204 } 17205 17206 RELEASE_ILL_LOCKS(ill_to_v4, ill_to_v6); 17207 RELEASE_ILL_LOCKS(ill_from_v4, ill_from_v6); 17208 17209 no_err: 17210 /* 17211 * lets bring the interfaces up on the to_ill. 17212 */ 17213 if (err == 0) { 17214 err = ill_up_ipifs(ill_to_v4 == NULL ? ill_to_v6:ill_to_v4, 17215 q, mp); 17216 } 17217 17218 if (err == 0) { 17219 if (ill_to_v4 != NULL) 17220 ilm_send_multicast_reqs(ill_from_v4, ill_to_v4); 17221 17222 if (ill_to_v6 != NULL) 17223 ilm_send_multicast_reqs(ill_from_v6, ill_to_v6); 17224 } 17225 done: 17226 17227 if (ill_to_v4 != NULL) { 17228 ill_refrele(ill_to_v4); 17229 } 17230 if (ill_to_v6 != NULL) { 17231 ill_refrele(ill_to_v6); 17232 } 17233 17234 return (err); 17235 } 17236 17237 static void 17238 ill_dl_down(ill_t *ill) 17239 { 17240 /* 17241 * The ill is down; unbind but stay attached since we're still 17242 * associated with a PPA. 17243 */ 17244 mblk_t *mp = ill->ill_unbind_mp; 17245 17246 ill->ill_unbind_mp = NULL; 17247 ip1dbg(("ill_dl_down(%s)\n", ill->ill_name)); 17248 if (mp != NULL) { 17249 ip1dbg(("ill_dl_down: %s (%u) for %s\n", 17250 dlpi_prim_str(*(int *)mp->b_rptr), *(int *)mp->b_rptr, 17251 ill->ill_name)); 17252 mutex_enter(&ill->ill_lock); 17253 ill->ill_state_flags |= ILL_DL_UNBIND_IN_PROGRESS; 17254 mutex_exit(&ill->ill_lock); 17255 ill_dlpi_send(ill, mp); 17256 } 17257 17258 /* 17259 * Toss all of our multicast memberships. We could keep them, but 17260 * then we'd have to do bookkeeping of any joins and leaves performed 17261 * by the application while the the interface is down (we can't just 17262 * issue them because arp cannot currently process AR_ENTRY_SQUERY's 17263 * on a downed interface). 17264 */ 17265 ill_leave_multicast(ill); 17266 17267 mutex_enter(&ill->ill_lock); 17268 ill->ill_dl_up = 0; 17269 mutex_exit(&ill->ill_lock); 17270 } 17271 17272 void 17273 ill_dlpi_dispatch(ill_t *ill, mblk_t *mp) 17274 { 17275 union DL_primitives *dlp; 17276 t_uscalar_t prim; 17277 17278 ASSERT(DB_TYPE(mp) == M_PROTO || DB_TYPE(mp) == M_PCPROTO); 17279 17280 dlp = (union DL_primitives *)mp->b_rptr; 17281 prim = dlp->dl_primitive; 17282 17283 ip1dbg(("ill_dlpi_dispatch: sending %s (%u) to %s\n", 17284 dlpi_prim_str(prim), prim, ill->ill_name)); 17285 17286 switch (prim) { 17287 case DL_PHYS_ADDR_REQ: 17288 { 17289 dl_phys_addr_req_t *dlpap = (dl_phys_addr_req_t *)mp->b_rptr; 17290 ill->ill_phys_addr_pend = dlpap->dl_addr_type; 17291 break; 17292 } 17293 case DL_BIND_REQ: 17294 mutex_enter(&ill->ill_lock); 17295 ill->ill_state_flags &= ~ILL_DL_UNBIND_IN_PROGRESS; 17296 mutex_exit(&ill->ill_lock); 17297 break; 17298 } 17299 17300 ill->ill_dlpi_pending = prim; 17301 17302 /* 17303 * Some drivers send M_FLUSH up to IP as part of unbind 17304 * request. When this M_FLUSH is sent back to the driver, 17305 * this can go after we send the detach request if the 17306 * M_FLUSH ends up in IP's syncq. To avoid that, we reply 17307 * to the M_FLUSH in ip_rput and locally generate another 17308 * M_FLUSH for the correctness. This will get freed in 17309 * ip_wput_nondata. 17310 */ 17311 if (prim == DL_UNBIND_REQ) 17312 (void) putnextctl1(ill->ill_rq, M_FLUSH, FLUSHRW); 17313 17314 putnext(ill->ill_wq, mp); 17315 } 17316 17317 /* 17318 * Send a DLPI control message to the driver but make sure there 17319 * is only one outstanding message. Uses ill_dlpi_pending to tell 17320 * when it must queue. ip_rput_dlpi_writer calls ill_dlpi_done() 17321 * when an ACK or a NAK is received to process the next queued message. 17322 * 17323 * We don't protect ill_dlpi_pending with any lock. This is okay as 17324 * every place where its accessed, ip is exclusive while accessing 17325 * ill_dlpi_pending except when this function is called from ill_init() 17326 */ 17327 void 17328 ill_dlpi_send(ill_t *ill, mblk_t *mp) 17329 { 17330 mblk_t **mpp; 17331 17332 ASSERT(IAM_WRITER_ILL(ill)); 17333 ASSERT(DB_TYPE(mp) == M_PROTO || DB_TYPE(mp) == M_PCPROTO); 17334 17335 if (ill->ill_dlpi_pending != DL_PRIM_INVAL) { 17336 /* Must queue message. Tail insertion */ 17337 mpp = &ill->ill_dlpi_deferred; 17338 while (*mpp != NULL) 17339 mpp = &((*mpp)->b_next); 17340 17341 ip1dbg(("ill_dlpi_send: deferring request for %s\n", 17342 ill->ill_name)); 17343 17344 *mpp = mp; 17345 return; 17346 } 17347 17348 ill_dlpi_dispatch(ill, mp); 17349 } 17350 17351 /* 17352 * Called when an DLPI control message has been acked or nacked to 17353 * send down the next queued message (if any). 17354 */ 17355 void 17356 ill_dlpi_done(ill_t *ill, t_uscalar_t prim) 17357 { 17358 mblk_t *mp; 17359 17360 ASSERT(IAM_WRITER_ILL(ill)); 17361 17362 ASSERT(prim != DL_PRIM_INVAL); 17363 if (ill->ill_dlpi_pending != prim) { 17364 if (ill->ill_dlpi_pending == DL_PRIM_INVAL) { 17365 (void) mi_strlog(ill->ill_rq, 1, 17366 SL_CONSOLE|SL_ERROR|SL_TRACE, 17367 "ill_dlpi_done: unsolicited ack for %s from %s\n", 17368 dlpi_prim_str(prim), ill->ill_name); 17369 } else { 17370 (void) mi_strlog(ill->ill_rq, 1, 17371 SL_CONSOLE|SL_ERROR|SL_TRACE, 17372 "ill_dlpi_done: unexpected ack for %s from %s " 17373 "(expecting ack for %s)\n", 17374 dlpi_prim_str(prim), ill->ill_name, 17375 dlpi_prim_str(ill->ill_dlpi_pending)); 17376 } 17377 return; 17378 } 17379 17380 ip1dbg(("ill_dlpi_done: %s has completed %s (%u)\n", ill->ill_name, 17381 dlpi_prim_str(ill->ill_dlpi_pending), ill->ill_dlpi_pending)); 17382 17383 if ((mp = ill->ill_dlpi_deferred) == NULL) { 17384 ill->ill_dlpi_pending = DL_PRIM_INVAL; 17385 return; 17386 } 17387 17388 ill->ill_dlpi_deferred = mp->b_next; 17389 mp->b_next = NULL; 17390 17391 ill_dlpi_dispatch(ill, mp); 17392 } 17393 17394 void 17395 conn_delete_ire(conn_t *connp, caddr_t arg) 17396 { 17397 ipif_t *ipif = (ipif_t *)arg; 17398 ire_t *ire; 17399 17400 /* 17401 * Look at the cached ires on conns which has pointers to ipifs. 17402 * We just call ire_refrele which clears up the reference 17403 * to ire. Called when a conn closes. Also called from ipif_free 17404 * to cleanup indirect references to the stale ipif via the cached ire. 17405 */ 17406 mutex_enter(&connp->conn_lock); 17407 ire = connp->conn_ire_cache; 17408 if (ire != NULL && (ipif == NULL || ire->ire_ipif == ipif)) { 17409 connp->conn_ire_cache = NULL; 17410 mutex_exit(&connp->conn_lock); 17411 IRE_REFRELE_NOTR(ire); 17412 return; 17413 } 17414 mutex_exit(&connp->conn_lock); 17415 17416 } 17417 17418 /* 17419 * Some operations (illgrp_delete(), ipif_down()) conditionally delete a number 17420 * of IREs. Those IREs may have been previously cached in the conn structure. 17421 * This ipcl_walk() walker function releases all references to such IREs based 17422 * on the condemned flag. 17423 */ 17424 /* ARGSUSED */ 17425 void 17426 conn_cleanup_stale_ire(conn_t *connp, caddr_t arg) 17427 { 17428 ire_t *ire; 17429 17430 mutex_enter(&connp->conn_lock); 17431 ire = connp->conn_ire_cache; 17432 if (ire != NULL && (ire->ire_marks & IRE_MARK_CONDEMNED)) { 17433 connp->conn_ire_cache = NULL; 17434 mutex_exit(&connp->conn_lock); 17435 IRE_REFRELE_NOTR(ire); 17436 return; 17437 } 17438 mutex_exit(&connp->conn_lock); 17439 } 17440 17441 /* 17442 * Take down a specific interface, but don't lose any information about it. 17443 * Also delete interface from its interface group (ifgrp). 17444 * (Always called as writer.) 17445 * This function goes through the down sequence even if the interface is 17446 * already down. There are 2 reasons. 17447 * a. Currently we permit interface routes that depend on down interfaces 17448 * to be added. This behaviour itself is questionable. However it appears 17449 * that both Solaris and 4.3 BSD have exhibited this behaviour for a long 17450 * time. We go thru the cleanup in order to remove these routes. 17451 * b. The bringup of the interface could fail in ill_dl_up i.e. we get 17452 * DL_ERROR_ACK in response to the the DL_BIND request. The interface is 17453 * down, but we need to cleanup i.e. do ill_dl_down and 17454 * ip_rput_dlpi_writer (DL_ERROR_ACK) -> ipif_down. 17455 * 17456 * IP-MT notes: 17457 * 17458 * Model of reference to interfaces. 17459 * 17460 * The following members in ipif_t track references to the ipif. 17461 * int ipif_refcnt; Active reference count 17462 * uint_t ipif_ire_cnt; Number of ire's referencing this ipif 17463 * The following members in ill_t track references to the ill. 17464 * int ill_refcnt; active refcnt 17465 * uint_t ill_ire_cnt; Number of ires referencing ill 17466 * uint_t ill_nce_cnt; Number of nces referencing ill 17467 * 17468 * Reference to an ipif or ill can be obtained in any of the following ways. 17469 * 17470 * Through the lookup functions ipif_lookup_* / ill_lookup_* functions 17471 * Pointers to ipif / ill from other data structures viz ire and conn. 17472 * Implicit reference to the ipif / ill by holding a reference to the ire. 17473 * 17474 * The ipif/ill lookup functions return a reference held ipif / ill. 17475 * ipif_refcnt and ill_refcnt track the reference counts respectively. 17476 * This is a purely dynamic reference count associated with threads holding 17477 * references to the ipif / ill. Pointers from other structures do not 17478 * count towards this reference count. 17479 * 17480 * ipif_ire_cnt/ill_ire_cnt is the number of ire's associated with the 17481 * ipif/ill. This is incremented whenever a new ire is created referencing the 17482 * ipif/ill. This is done atomically inside ire_add_v[46] where the ire is 17483 * actually added to the ire hash table. The count is decremented in 17484 * ire_inactive where the ire is destroyed. 17485 * 17486 * nce's reference ill's thru nce_ill and the count of nce's associated with 17487 * an ill is recorded in ill_nce_cnt. This is incremented atomically in 17488 * ndp_add() where the nce is actually added to the table. Similarly it is 17489 * decremented in ndp_inactive where the nce is destroyed. 17490 * 17491 * Flow of ioctls involving interface down/up 17492 * 17493 * The following is the sequence of an attempt to set some critical flags on an 17494 * up interface. 17495 * ip_sioctl_flags 17496 * ipif_down 17497 * wait for ipif to be quiescent 17498 * ipif_down_tail 17499 * ip_sioctl_flags_tail 17500 * 17501 * All set ioctls that involve down/up sequence would have a skeleton similar 17502 * to the above. All the *tail functions are called after the refcounts have 17503 * dropped to the appropriate values. 17504 * 17505 * The mechanism to quiesce an ipif is as follows. 17506 * 17507 * Mark the ipif as IPIF_CHANGING. No more lookups will be allowed 17508 * on the ipif. Callers either pass a flag requesting wait or the lookup 17509 * functions will return NULL. 17510 * 17511 * Delete all ires referencing this ipif 17512 * 17513 * Any thread attempting to do an ipif_refhold on an ipif that has been 17514 * obtained thru a cached pointer will first make sure that 17515 * the ipif can be refheld using the macro IPIF_CAN_LOOKUP and only then 17516 * increment the refcount. 17517 * 17518 * The above guarantees that the ipif refcount will eventually come down to 17519 * zero and the ipif will quiesce, once all threads that currently hold a 17520 * reference to the ipif refrelease the ipif. The ipif is quiescent after the 17521 * ipif_refcount has dropped to zero and all ire's associated with this ipif 17522 * have also been ire_inactive'd. i.e. when ipif_ire_cnt and ipif_refcnt both 17523 * drop to zero. 17524 * 17525 * Lookups during the IPIF_CHANGING/ILL_CHANGING interval. 17526 * 17527 * Threads trying to lookup an ipif or ill can pass a flag requesting 17528 * wait and restart if the ipif / ill cannot be looked up currently. 17529 * For eg. bind, and route operations (Eg. route add / delete) cannot return 17530 * failure if the ipif is currently undergoing an exclusive operation, and 17531 * hence pass the flag. The mblk is then enqueued in the ipsq and the operation 17532 * is restarted by ipsq_exit() when the currently exclusive ioctl completes. 17533 * The lookup and enqueue is atomic using the ill_lock and ipsq_lock. The 17534 * lookup is done holding the ill_lock. Hence the ill/ipif state flags can't 17535 * change while the ill_lock is held. Before dropping the ill_lock we acquire 17536 * the ipsq_lock and call ipsq_enq. This ensures that ipsq_exit can't finish 17537 * until we release the ipsq_lock, even though the the ill/ipif state flags 17538 * can change after we drop the ill_lock. 17539 * 17540 * An attempt to send out a packet using an ipif that is currently 17541 * IPIF_CHANGING will fail. No attempt is made in this case to enqueue this 17542 * operation and restart it later when the exclusive condition on the ipif ends. 17543 * This is an example of not passing the wait flag to the lookup functions. For 17544 * example an attempt to refhold and use conn->conn_multicast_ipif and send 17545 * out a multicast packet on that ipif will fail while the ipif is 17546 * IPIF_CHANGING. An attempt to create an IRE_CACHE using an ipif that is 17547 * currently IPIF_CHANGING will also fail. 17548 */ 17549 int 17550 ipif_down(ipif_t *ipif, queue_t *q, mblk_t *mp) 17551 { 17552 ill_t *ill = ipif->ipif_ill; 17553 phyint_t *phyi; 17554 conn_t *connp; 17555 boolean_t success; 17556 boolean_t ipif_was_up = B_FALSE; 17557 17558 ASSERT(IAM_WRITER_IPIF(ipif)); 17559 17560 ip1dbg(("ipif_down(%s:%u)\n", ill->ill_name, ipif->ipif_id)); 17561 17562 if (ipif->ipif_flags & IPIF_UP) { 17563 mutex_enter(&ill->ill_lock); 17564 ipif->ipif_flags &= ~IPIF_UP; 17565 ASSERT(ill->ill_ipif_up_count > 0); 17566 --ill->ill_ipif_up_count; 17567 mutex_exit(&ill->ill_lock); 17568 ipif_was_up = B_TRUE; 17569 /* Update status in SCTP's list */ 17570 sctp_update_ipif(ipif, SCTP_IPIF_DOWN); 17571 } 17572 17573 /* 17574 * Blow away v6 memberships we established in ipif_multicast_up(); the 17575 * v4 ones are left alone (as is the ipif_multicast_up flag, so we 17576 * know not to rejoin when the interface is brought back up). 17577 */ 17578 if (ipif->ipif_isv6) 17579 ipif_multicast_down(ipif); 17580 /* 17581 * Remove from the mapping for __sin6_src_id. We insert only 17582 * when the address is not INADDR_ANY. As IPv4 addresses are 17583 * stored as mapped addresses, we need to check for mapped 17584 * INADDR_ANY also. 17585 */ 17586 if (ipif_was_up && !IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6lcl_addr) && 17587 !IN6_IS_ADDR_V4MAPPED_ANY(&ipif->ipif_v6lcl_addr) && 17588 !(ipif->ipif_flags & IPIF_NOLOCAL)) { 17589 int err; 17590 17591 err = ip_srcid_remove(&ipif->ipif_v6lcl_addr, 17592 ipif->ipif_zoneid); 17593 if (err != 0) { 17594 ip0dbg(("ipif_down: srcid_remove %d\n", err)); 17595 } 17596 } 17597 17598 /* 17599 * Before we delete the ill from the group (if any), we need 17600 * to make sure that we delete all the routes dependent on 17601 * this and also any ipifs dependent on this ipif for 17602 * source address. We need to do before we delete from 17603 * the group because 17604 * 17605 * 1) ipif_down_delete_ire de-references ill->ill_group. 17606 * 17607 * 2) ipif_update_other_ipifs needs to walk the whole group 17608 * for re-doing source address selection. Note that 17609 * ipif_select_source[_v6] called from 17610 * ipif_update_other_ipifs[_v6] will not pick this ipif 17611 * because we have already marked down here i.e cleared 17612 * IPIF_UP. 17613 */ 17614 if (ipif->ipif_isv6) 17615 ire_walk_v6(ipif_down_delete_ire, (char *)ipif, ALL_ZONES); 17616 else 17617 ire_walk_v4(ipif_down_delete_ire, (char *)ipif, ALL_ZONES); 17618 17619 /* 17620 * Need to add these also to be saved and restored when the 17621 * ipif is brought down and up 17622 */ 17623 mutex_enter(&ire_mrtun_lock); 17624 if (ire_mrtun_count != 0) { 17625 mutex_exit(&ire_mrtun_lock); 17626 ire_walk_ill_mrtun(0, 0, ipif_down_delete_ire, 17627 (char *)ipif, NULL); 17628 } else { 17629 mutex_exit(&ire_mrtun_lock); 17630 } 17631 17632 mutex_enter(&ire_srcif_table_lock); 17633 if (ire_srcif_table_count > 0) { 17634 mutex_exit(&ire_srcif_table_lock); 17635 ire_walk_srcif_table_v4(ipif_down_delete_ire, (char *)ipif); 17636 } else { 17637 mutex_exit(&ire_srcif_table_lock); 17638 } 17639 17640 /* 17641 * Cleaning up the conn_ire_cache or conns must be done only after the 17642 * ires have been deleted above. Otherwise a thread could end up 17643 * caching an ire in a conn after we have finished the cleanup of the 17644 * conn. The caching is done after making sure that the ire is not yet 17645 * condemned. Also documented in the block comment above ip_output 17646 */ 17647 ipcl_walk(conn_cleanup_stale_ire, NULL); 17648 /* Also, delete the ires cached in SCTP */ 17649 sctp_ire_cache_flush(ipif); 17650 17651 /* Resolve any IPsec/IKE NAT-T instances that depend on this ipif. */ 17652 nattymod_clean_ipif(ipif); 17653 17654 /* 17655 * Update any other ipifs which have used "our" local address as 17656 * a source address. This entails removing and recreating IRE_INTERFACE 17657 * entries for such ipifs. 17658 */ 17659 if (ipif->ipif_isv6) 17660 ipif_update_other_ipifs_v6(ipif, ill->ill_group); 17661 else 17662 ipif_update_other_ipifs(ipif, ill->ill_group); 17663 17664 if (ipif_was_up) { 17665 /* 17666 * Check whether it is last ipif to leave this group. 17667 * If this is the last ipif to leave, we should remove 17668 * this ill from the group as ipif_select_source will not 17669 * be able to find any useful ipifs if this ill is selected 17670 * for load balancing. 17671 * 17672 * For nameless groups, we should call ifgrp_delete if this 17673 * belongs to some group. As this ipif is going down, we may 17674 * need to reconstruct groups. 17675 */ 17676 phyi = ill->ill_phyint; 17677 /* 17678 * If the phyint_groupname_len is 0, it may or may not 17679 * be in the nameless group. If the phyint_groupname_len is 17680 * not 0, then this ill should be part of some group. 17681 * As we always insert this ill in the group if 17682 * phyint_groupname_len is not zero when the first ipif 17683 * comes up (in ipif_up_done), it should be in a group 17684 * when the namelen is not 0. 17685 * 17686 * NOTE : When we delete the ill from the group,it will 17687 * blow away all the IRE_CACHES pointing either at this ipif or 17688 * ill_wq (illgrp_cache_delete does this). Thus, no IRES 17689 * should be pointing at this ill. 17690 */ 17691 ASSERT(phyi->phyint_groupname_len == 0 || 17692 (phyi->phyint_groupname != NULL && ill->ill_group != NULL)); 17693 17694 if (phyi->phyint_groupname_len != 0) { 17695 if (ill->ill_ipif_up_count == 0) 17696 illgrp_delete(ill); 17697 } 17698 17699 /* 17700 * If we have deleted some of the broadcast ires associated 17701 * with this ipif, we need to re-nominate somebody else if 17702 * the ires that we deleted were the nominated ones. 17703 */ 17704 if (ill->ill_group != NULL && !ill->ill_isv6) 17705 ipif_renominate_bcast(ipif); 17706 } 17707 17708 if (ipif->ipif_isv6) 17709 ipif_ndp_down(ipif); 17710 17711 /* 17712 * If mp is NULL the caller will wait for the appropriate refcnt. 17713 * Eg. ip_sioctl_removeif -> ipif_free -> ipif_down 17714 * and ill_delete -> ipif_free -> ipif_down 17715 */ 17716 if (mp == NULL) { 17717 ASSERT(q == NULL); 17718 return (0); 17719 } 17720 17721 if (CONN_Q(q)) { 17722 connp = Q_TO_CONN(q); 17723 mutex_enter(&connp->conn_lock); 17724 } else { 17725 connp = NULL; 17726 } 17727 mutex_enter(&ill->ill_lock); 17728 /* 17729 * Are there any ire's pointing to this ipif that are still active ? 17730 * If this is the last ipif going down, are there any ire's pointing 17731 * to this ill that are still active ? 17732 */ 17733 if (ipif_is_quiescent(ipif)) { 17734 mutex_exit(&ill->ill_lock); 17735 if (connp != NULL) 17736 mutex_exit(&connp->conn_lock); 17737 return (0); 17738 } 17739 17740 ip1dbg(("ipif_down: need to wait, adding pending mp %s ill %p", 17741 ill->ill_name, (void *)ill)); 17742 /* 17743 * Enqueue the mp atomically in ipsq_pending_mp. When the refcount 17744 * drops down, the operation will be restarted by ipif_ill_refrele_tail 17745 * which in turn is called by the last refrele on the ipif/ill/ire. 17746 */ 17747 success = ipsq_pending_mp_add(connp, ipif, q, mp, IPIF_DOWN); 17748 if (!success) { 17749 /* The conn is closing. So just return */ 17750 ASSERT(connp != NULL); 17751 mutex_exit(&ill->ill_lock); 17752 mutex_exit(&connp->conn_lock); 17753 return (EINTR); 17754 } 17755 17756 mutex_exit(&ill->ill_lock); 17757 if (connp != NULL) 17758 mutex_exit(&connp->conn_lock); 17759 return (EINPROGRESS); 17760 } 17761 17762 static void 17763 ipif_down_tail(ipif_t *ipif) 17764 { 17765 ill_t *ill = ipif->ipif_ill; 17766 17767 /* 17768 * Skip any loopback interface (null wq). 17769 * If this is the last logical interface on the ill 17770 * have ill_dl_down tell the driver we are gone (unbind) 17771 * Note that lun 0 can ipif_down even though 17772 * there are other logical units that are up. 17773 * This occurs e.g. when we change a "significant" IFF_ flag. 17774 */ 17775 if (ipif->ipif_ill->ill_wq != NULL) { 17776 if (!ill->ill_logical_down && (ill->ill_ipif_up_count == 0) && 17777 ill->ill_dl_up) { 17778 ill_dl_down(ill); 17779 } 17780 } 17781 ill->ill_logical_down = 0; 17782 17783 /* 17784 * Have to be after removing the routes in ipif_down_delete_ire. 17785 */ 17786 if (ipif->ipif_isv6) { 17787 if (ipif->ipif_ill->ill_flags & ILLF_XRESOLV) 17788 ipif_arp_down(ipif); 17789 } else { 17790 ipif_arp_down(ipif); 17791 } 17792 17793 ip_rts_ifmsg(ipif); 17794 ip_rts_newaddrmsg(RTM_DELETE, 0, ipif); 17795 } 17796 17797 /* 17798 * Bring interface logically down without bringing the physical interface 17799 * down e.g. when the netmask is changed. This avoids long lasting link 17800 * negotiations between an ethernet interface and a certain switches. 17801 */ 17802 static int 17803 ipif_logical_down(ipif_t *ipif, queue_t *q, mblk_t *mp) 17804 { 17805 /* 17806 * The ill_logical_down flag is a transient flag. It is set here 17807 * and is cleared once the down has completed in ipif_down_tail. 17808 * This flag does not indicate whether the ill stream is in the 17809 * DL_BOUND state with the driver. Instead this flag is used by 17810 * ipif_down_tail to determine whether to DL_UNBIND the stream with 17811 * the driver. The state of the ill stream i.e. whether it is 17812 * DL_BOUND with the driver or not is indicated by the ill_dl_up flag. 17813 */ 17814 ipif->ipif_ill->ill_logical_down = 1; 17815 return (ipif_down(ipif, q, mp)); 17816 } 17817 17818 /* 17819 * This is called when the SIOCSLIFUSESRC ioctl is processed in IP. 17820 * If the usesrc client ILL is already part of a usesrc group or not, 17821 * in either case a ire_stq with the matching usesrc client ILL will 17822 * locate the IRE's that need to be deleted. We want IREs to be created 17823 * with the new source address. 17824 */ 17825 static void 17826 ipif_delete_cache_ire(ire_t *ire, char *ill_arg) 17827 { 17828 ill_t *ucill = (ill_t *)ill_arg; 17829 17830 ASSERT(IAM_WRITER_ILL(ucill)); 17831 17832 if (ire->ire_stq == NULL) 17833 return; 17834 17835 if ((ire->ire_type == IRE_CACHE) && 17836 ((ill_t *)ire->ire_stq->q_ptr == ucill)) 17837 ire_delete(ire); 17838 } 17839 17840 /* 17841 * ire_walk routine to delete every IRE dependent on the interface 17842 * address that is going down. (Always called as writer.) 17843 * Works for both v4 and v6. 17844 * In addition for checking for ire_ipif matches it also checks for 17845 * IRE_CACHE entries which have the same source address as the 17846 * disappearing ipif since ipif_select_source might have picked 17847 * that source. Note that ipif_down/ipif_update_other_ipifs takes 17848 * care of any IRE_INTERFACE with the disappearing source address. 17849 */ 17850 static void 17851 ipif_down_delete_ire(ire_t *ire, char *ipif_arg) 17852 { 17853 ipif_t *ipif = (ipif_t *)ipif_arg; 17854 ill_t *ire_ill; 17855 ill_t *ipif_ill; 17856 17857 ASSERT(IAM_WRITER_IPIF(ipif)); 17858 if (ire->ire_ipif == NULL) 17859 return; 17860 17861 /* 17862 * For IPv4, we derive source addresses for an IRE from ipif's 17863 * belonging to the same IPMP group as the IRE's outgoing 17864 * interface. If an IRE's outgoing interface isn't in the 17865 * same IPMP group as a particular ipif, then that ipif 17866 * couldn't have been used as a source address for this IRE. 17867 * 17868 * For IPv6, source addresses are only restricted to the IPMP group 17869 * if the IRE is for a link-local address or a multicast address. 17870 * Otherwise, source addresses for an IRE can be chosen from 17871 * interfaces other than the the outgoing interface for that IRE. 17872 * 17873 * For source address selection details, see ipif_select_source() 17874 * and ipif_select_source_v6(). 17875 */ 17876 if (ire->ire_ipversion == IPV4_VERSION || 17877 IN6_IS_ADDR_LINKLOCAL(&ire->ire_addr_v6) || 17878 IN6_IS_ADDR_MULTICAST(&ire->ire_addr_v6)) { 17879 ire_ill = ire->ire_ipif->ipif_ill; 17880 ipif_ill = ipif->ipif_ill; 17881 17882 if (ire_ill->ill_group != ipif_ill->ill_group) { 17883 return; 17884 } 17885 } 17886 17887 17888 if (ire->ire_ipif != ipif) { 17889 /* 17890 * Look for a matching source address. 17891 */ 17892 if (ire->ire_type != IRE_CACHE) 17893 return; 17894 if (ipif->ipif_flags & IPIF_NOLOCAL) 17895 return; 17896 17897 if (ire->ire_ipversion == IPV4_VERSION) { 17898 if (ire->ire_src_addr != ipif->ipif_src_addr) 17899 return; 17900 } else { 17901 if (!IN6_ARE_ADDR_EQUAL(&ire->ire_src_addr_v6, 17902 &ipif->ipif_v6lcl_addr)) 17903 return; 17904 } 17905 ire_delete(ire); 17906 return; 17907 } 17908 /* 17909 * ire_delete() will do an ire_flush_cache which will delete 17910 * all ire_ipif matches 17911 */ 17912 ire_delete(ire); 17913 } 17914 17915 /* 17916 * ire_walk_ill function for deleting all IRE_CACHE entries for an ill when 17917 * 1) an ipif (on that ill) changes the IPIF_DEPRECATED flags, or 17918 * 2) when an interface is brought up or down (on that ill). 17919 * This ensures that the IRE_CACHE entries don't retain stale source 17920 * address selection results. 17921 */ 17922 void 17923 ill_ipif_cache_delete(ire_t *ire, char *ill_arg) 17924 { 17925 ill_t *ill = (ill_t *)ill_arg; 17926 ill_t *ipif_ill; 17927 17928 ASSERT(IAM_WRITER_ILL(ill)); 17929 /* 17930 * We use MATCH_IRE_TYPE/IRE_CACHE while calling ire_walk_ill_v4. 17931 * Hence this should be IRE_CACHE. 17932 */ 17933 ASSERT(ire->ire_type == IRE_CACHE); 17934 17935 /* 17936 * We are called for IRE_CACHES whose ire_ipif matches ill. 17937 * We are only interested in IRE_CACHES that has borrowed 17938 * the source address from ill_arg e.g. ipif_up_done[_v6] 17939 * for which we need to look at ire_ipif->ipif_ill match 17940 * with ill. 17941 */ 17942 ASSERT(ire->ire_ipif != NULL); 17943 ipif_ill = ire->ire_ipif->ipif_ill; 17944 if (ipif_ill == ill || (ill->ill_group != NULL && 17945 ipif_ill->ill_group == ill->ill_group)) { 17946 ire_delete(ire); 17947 } 17948 } 17949 17950 /* 17951 * Delete all the ire whose stq references ill_arg. 17952 */ 17953 static void 17954 ill_stq_cache_delete(ire_t *ire, char *ill_arg) 17955 { 17956 ill_t *ill = (ill_t *)ill_arg; 17957 ill_t *ire_ill; 17958 17959 ASSERT(IAM_WRITER_ILL(ill)); 17960 /* 17961 * We use MATCH_IRE_TYPE/IRE_CACHE while calling ire_walk_ill_v4. 17962 * Hence this should be IRE_CACHE. 17963 */ 17964 ASSERT(ire->ire_type == IRE_CACHE); 17965 17966 /* 17967 * We are called for IRE_CACHES whose ire_stq and ire_ipif 17968 * matches ill. We are only interested in IRE_CACHES that 17969 * has ire_stq->q_ptr pointing at ill_arg. Thus we do the 17970 * filtering here. 17971 */ 17972 ire_ill = (ill_t *)ire->ire_stq->q_ptr; 17973 17974 if (ire_ill == ill) 17975 ire_delete(ire); 17976 } 17977 17978 /* 17979 * This is called when an ill leaves the group. We want to delete 17980 * all IRE_CACHES whose stq is pointing at ill_wq or ire_ipif is 17981 * pointing at ill. 17982 */ 17983 static void 17984 illgrp_cache_delete(ire_t *ire, char *ill_arg) 17985 { 17986 ill_t *ill = (ill_t *)ill_arg; 17987 17988 ASSERT(IAM_WRITER_ILL(ill)); 17989 ASSERT(ill->ill_group == NULL); 17990 /* 17991 * We use MATCH_IRE_TYPE/IRE_CACHE while calling ire_walk_ill_v4. 17992 * Hence this should be IRE_CACHE. 17993 */ 17994 ASSERT(ire->ire_type == IRE_CACHE); 17995 /* 17996 * We are called for IRE_CACHES whose ire_stq and ire_ipif 17997 * matches ill. We are interested in both. 17998 */ 17999 ASSERT((ill == (ill_t *)ire->ire_stq->q_ptr) || 18000 (ire->ire_ipif->ipif_ill == ill)); 18001 18002 ire_delete(ire); 18003 } 18004 18005 /* 18006 * Initiate deallocate of an IPIF. Always called as writer. Called by 18007 * ill_delete or ip_sioctl_removeif. 18008 */ 18009 static void 18010 ipif_free(ipif_t *ipif) 18011 { 18012 ASSERT(IAM_WRITER_IPIF(ipif)); 18013 18014 /* Remove conn references */ 18015 reset_conn_ipif(ipif); 18016 18017 /* 18018 * Make sure we have valid net and subnet broadcast ire's for the 18019 * other ipif's which share them with this ipif. 18020 */ 18021 if (!ipif->ipif_isv6) 18022 ipif_check_bcast_ires(ipif); 18023 18024 /* 18025 * Take down the interface. We can be called either from ill_delete 18026 * or from ip_sioctl_removeif. 18027 */ 18028 (void) ipif_down(ipif, NULL, NULL); 18029 18030 rw_enter(&ill_g_lock, RW_WRITER); 18031 /* Remove pointers to this ill in the multicast routing tables */ 18032 reset_mrt_vif_ipif(ipif); 18033 rw_exit(&ill_g_lock); 18034 } 18035 18036 static void 18037 ipif_free_tail(ipif_t *ipif) 18038 { 18039 mblk_t *mp; 18040 ipif_t **ipifp; 18041 18042 /* 18043 * Free state for addition IRE_IF_[NO]RESOLVER ire's. 18044 */ 18045 mutex_enter(&ipif->ipif_saved_ire_lock); 18046 mp = ipif->ipif_saved_ire_mp; 18047 ipif->ipif_saved_ire_mp = NULL; 18048 mutex_exit(&ipif->ipif_saved_ire_lock); 18049 freemsg(mp); 18050 18051 /* 18052 * Need to hold both ill_g_lock and ill_lock while 18053 * inserting or removing an ipif from the linked list 18054 * of ipifs hanging off the ill. 18055 */ 18056 rw_enter(&ill_g_lock, RW_WRITER); 18057 /* 18058 * Remove all multicast memberships on the interface now. 18059 * This removes IPv4 multicast memberships joined within 18060 * the kernel as ipif_down does not do ipif_multicast_down 18061 * for IPv4. IPv6 is not handled here as the multicast memberships 18062 * are based on ill and not on ipif. 18063 */ 18064 ilm_free(ipif); 18065 18066 /* 18067 * Since we held the ill_g_lock while doing the ilm_free above, 18068 * we can assert the ilms were really deleted and not just marked 18069 * ILM_DELETED. 18070 */ 18071 ASSERT(ilm_walk_ipif(ipif) == 0); 18072 18073 18074 IPIF_TRACE_CLEANUP(ipif); 18075 18076 /* Ask SCTP to take it out of it list */ 18077 sctp_update_ipif(ipif, SCTP_IPIF_REMOVE); 18078 18079 mutex_enter(&ipif->ipif_ill->ill_lock); 18080 /* Get it out of the ILL interface list. */ 18081 ipifp = &ipif->ipif_ill->ill_ipif; 18082 for (; *ipifp != NULL; ipifp = &ipifp[0]->ipif_next) { 18083 if (*ipifp == ipif) { 18084 *ipifp = ipif->ipif_next; 18085 break; 18086 } 18087 } 18088 18089 mutex_exit(&ipif->ipif_ill->ill_lock); 18090 rw_exit(&ill_g_lock); 18091 18092 mutex_destroy(&ipif->ipif_saved_ire_lock); 18093 /* Free the memory. */ 18094 mi_free((char *)ipif); 18095 } 18096 18097 /* 18098 * Returns an ipif name in the form "ill_name/unit" if ipif_id is not zero, 18099 * "ill_name" otherwise. 18100 */ 18101 char * 18102 ipif_get_name(const ipif_t *ipif, char *buf, int len) 18103 { 18104 char lbuf[32]; 18105 char *name; 18106 size_t name_len; 18107 18108 buf[0] = '\0'; 18109 if (!ipif) 18110 return (buf); 18111 name = ipif->ipif_ill->ill_name; 18112 name_len = ipif->ipif_ill->ill_name_length; 18113 if (ipif->ipif_id != 0) { 18114 (void) sprintf(lbuf, "%s%c%d", name, IPIF_SEPARATOR_CHAR, 18115 ipif->ipif_id); 18116 name = lbuf; 18117 name_len = mi_strlen(name) + 1; 18118 } 18119 len -= 1; 18120 buf[len] = '\0'; 18121 len = MIN(len, name_len); 18122 bcopy(name, buf, len); 18123 return (buf); 18124 } 18125 18126 /* 18127 * Find an IPIF based on the name passed in. Names can be of the 18128 * form <phys> (e.g., le0), <phys>:<#> (e.g., le0:1), 18129 * The <phys> string can have forms like <dev><#> (e.g., le0), 18130 * <dev><#>.<module> (e.g. le0.foo), or <dev>.<module><#> (e.g. ip.tun3). 18131 * When there is no colon, the implied unit id is zero. <phys> must 18132 * correspond to the name of an ILL. (May be called as writer.) 18133 */ 18134 static ipif_t * 18135 ipif_lookup_on_name(char *name, size_t namelen, boolean_t do_alloc, 18136 boolean_t *exists, boolean_t isv6, zoneid_t zoneid, queue_t *q, 18137 mblk_t *mp, ipsq_func_t func, int *error) 18138 { 18139 char *cp; 18140 char *endp; 18141 long id; 18142 ill_t *ill; 18143 ipif_t *ipif; 18144 uint_t ire_type; 18145 boolean_t did_alloc = B_FALSE; 18146 ipsq_t *ipsq; 18147 18148 if (error != NULL) 18149 *error = 0; 18150 18151 /* 18152 * If the caller wants to us to create the ipif, make sure we have a 18153 * valid zoneid 18154 */ 18155 ASSERT(!do_alloc || zoneid != ALL_ZONES); 18156 18157 if (namelen == 0) { 18158 if (error != NULL) 18159 *error = ENXIO; 18160 return (NULL); 18161 } 18162 18163 *exists = B_FALSE; 18164 /* Look for a colon in the name. */ 18165 endp = &name[namelen]; 18166 for (cp = endp; --cp > name; ) { 18167 if (*cp == IPIF_SEPARATOR_CHAR) 18168 break; 18169 } 18170 18171 if (*cp == IPIF_SEPARATOR_CHAR) { 18172 /* 18173 * Reject any non-decimal aliases for logical 18174 * interfaces. Aliases with leading zeroes 18175 * are also rejected as they introduce ambiguity 18176 * in the naming of the interfaces. 18177 * In order to confirm with existing semantics, 18178 * and to not break any programs/script relying 18179 * on that behaviour, if<0>:0 is considered to be 18180 * a valid interface. 18181 * 18182 * If alias has two or more digits and the first 18183 * is zero, fail. 18184 */ 18185 if (&cp[2] < endp && cp[1] == '0') 18186 return (NULL); 18187 } 18188 18189 if (cp <= name) { 18190 cp = endp; 18191 } else { 18192 *cp = '\0'; 18193 } 18194 18195 /* 18196 * Look up the ILL, based on the portion of the name 18197 * before the slash. ill_lookup_on_name returns a held ill. 18198 * Temporary to check whether ill exists already. If so 18199 * ill_lookup_on_name will clear it. 18200 */ 18201 ill = ill_lookup_on_name(name, do_alloc, isv6, 18202 q, mp, func, error, &did_alloc); 18203 if (cp != endp) 18204 *cp = IPIF_SEPARATOR_CHAR; 18205 if (ill == NULL) 18206 return (NULL); 18207 18208 /* Establish the unit number in the name. */ 18209 id = 0; 18210 if (cp < endp && *endp == '\0') { 18211 /* If there was a colon, the unit number follows. */ 18212 cp++; 18213 if (ddi_strtol(cp, NULL, 0, &id) != 0) { 18214 ill_refrele(ill); 18215 if (error != NULL) 18216 *error = ENXIO; 18217 return (NULL); 18218 } 18219 } 18220 18221 GRAB_CONN_LOCK(q); 18222 mutex_enter(&ill->ill_lock); 18223 /* Now see if there is an IPIF with this unit number. */ 18224 for (ipif = ill->ill_ipif; ipif; ipif = ipif->ipif_next) { 18225 if (ipif->ipif_id == id) { 18226 if (zoneid != ALL_ZONES && 18227 zoneid != ipif->ipif_zoneid && 18228 ipif->ipif_zoneid != ALL_ZONES) { 18229 mutex_exit(&ill->ill_lock); 18230 RELEASE_CONN_LOCK(q); 18231 ill_refrele(ill); 18232 if (error != NULL) 18233 *error = ENXIO; 18234 return (NULL); 18235 } 18236 /* 18237 * The block comment at the start of ipif_down 18238 * explains the use of the macros used below 18239 */ 18240 if (IPIF_CAN_LOOKUP(ipif)) { 18241 ipif_refhold_locked(ipif); 18242 mutex_exit(&ill->ill_lock); 18243 if (!did_alloc) 18244 *exists = B_TRUE; 18245 /* 18246 * Drop locks before calling ill_refrele 18247 * since it can potentially call into 18248 * ipif_ill_refrele_tail which can end up 18249 * in trying to acquire any lock. 18250 */ 18251 RELEASE_CONN_LOCK(q); 18252 ill_refrele(ill); 18253 return (ipif); 18254 } else if (IPIF_CAN_WAIT(ipif, q)) { 18255 ipsq = ill->ill_phyint->phyint_ipsq; 18256 mutex_enter(&ipsq->ipsq_lock); 18257 mutex_exit(&ill->ill_lock); 18258 ipsq_enq(ipsq, q, mp, func, NEW_OP, ill); 18259 mutex_exit(&ipsq->ipsq_lock); 18260 RELEASE_CONN_LOCK(q); 18261 ill_refrele(ill); 18262 *error = EINPROGRESS; 18263 return (NULL); 18264 } 18265 } 18266 } 18267 RELEASE_CONN_LOCK(q); 18268 18269 if (!do_alloc) { 18270 mutex_exit(&ill->ill_lock); 18271 ill_refrele(ill); 18272 if (error != NULL) 18273 *error = ENXIO; 18274 return (NULL); 18275 } 18276 18277 /* 18278 * If none found, atomically allocate and return a new one. 18279 * Historically, we used IRE_LOOPBACK only for lun 0, and IRE_LOCAL 18280 * to support "receive only" use of lo0:1 etc. as is still done 18281 * below as an initial guess. 18282 * However, this is now likely to be overriden later in ipif_up_done() 18283 * when we know for sure what address has been configured on the 18284 * interface, since we might have more than one loopback interface 18285 * with a loopback address, e.g. in the case of zones, and all the 18286 * interfaces with loopback addresses need to be marked IRE_LOOPBACK. 18287 */ 18288 if (ill->ill_net_type == IRE_LOOPBACK && id == 0) 18289 ire_type = IRE_LOOPBACK; 18290 else 18291 ire_type = IRE_LOCAL; 18292 ipif = ipif_allocate(ill, id, ire_type, B_TRUE); 18293 if (ipif != NULL) 18294 ipif_refhold_locked(ipif); 18295 else if (error != NULL) 18296 *error = ENOMEM; 18297 mutex_exit(&ill->ill_lock); 18298 ill_refrele(ill); 18299 return (ipif); 18300 } 18301 18302 /* 18303 * This routine is called whenever a new address comes up on an ipif. If 18304 * we are configured to respond to address mask requests, then we are supposed 18305 * to broadcast an address mask reply at this time. This routine is also 18306 * called if we are already up, but a netmask change is made. This is legal 18307 * but might not make the system manager very popular. (May be called 18308 * as writer.) 18309 */ 18310 static void 18311 ipif_mask_reply(ipif_t *ipif) 18312 { 18313 icmph_t *icmph; 18314 ipha_t *ipha; 18315 mblk_t *mp; 18316 18317 #define REPLY_LEN (sizeof (icmp_ipha) + sizeof (icmph_t) + IP_ADDR_LEN) 18318 18319 if (!ip_respond_to_address_mask_broadcast) 18320 return; 18321 18322 /* ICMP mask reply is IPv4 only */ 18323 ASSERT(!ipif->ipif_isv6); 18324 /* ICMP mask reply is not for a loopback interface */ 18325 ASSERT(ipif->ipif_ill->ill_wq != NULL); 18326 18327 mp = allocb(REPLY_LEN, BPRI_HI); 18328 if (mp == NULL) 18329 return; 18330 mp->b_wptr = mp->b_rptr + REPLY_LEN; 18331 18332 ipha = (ipha_t *)mp->b_rptr; 18333 bzero(ipha, REPLY_LEN); 18334 *ipha = icmp_ipha; 18335 ipha->ipha_ttl = ip_broadcast_ttl; 18336 ipha->ipha_src = ipif->ipif_src_addr; 18337 ipha->ipha_dst = ipif->ipif_brd_addr; 18338 ipha->ipha_length = htons(REPLY_LEN); 18339 ipha->ipha_ident = 0; 18340 18341 icmph = (icmph_t *)&ipha[1]; 18342 icmph->icmph_type = ICMP_ADDRESS_MASK_REPLY; 18343 bcopy(&ipif->ipif_net_mask, &icmph[1], IP_ADDR_LEN); 18344 icmph->icmph_checksum = IP_CSUM(mp, sizeof (ipha_t), 0); 18345 if (icmph->icmph_checksum == 0) 18346 icmph->icmph_checksum = 0xffff; 18347 18348 put(ipif->ipif_wq, mp); 18349 18350 #undef REPLY_LEN 18351 } 18352 18353 /* 18354 * When the mtu in the ipif changes, we call this routine through ire_walk 18355 * to update all the relevant IREs. 18356 * Skip IRE_LOCAL and "loopback" IRE_BROADCAST by checking ire_stq. 18357 */ 18358 static void 18359 ipif_mtu_change(ire_t *ire, char *ipif_arg) 18360 { 18361 ipif_t *ipif = (ipif_t *)ipif_arg; 18362 18363 if (ire->ire_stq == NULL || ire->ire_ipif != ipif) 18364 return; 18365 ire->ire_max_frag = MIN(ipif->ipif_mtu, IP_MAXPACKET); 18366 } 18367 18368 /* 18369 * When the mtu in the ill changes, we call this routine through ire_walk 18370 * to update all the relevant IREs. 18371 * Skip IRE_LOCAL and "loopback" IRE_BROADCAST by checking ire_stq. 18372 */ 18373 void 18374 ill_mtu_change(ire_t *ire, char *ill_arg) 18375 { 18376 ill_t *ill = (ill_t *)ill_arg; 18377 18378 if (ire->ire_stq == NULL || ire->ire_ipif->ipif_ill != ill) 18379 return; 18380 ire->ire_max_frag = ire->ire_ipif->ipif_mtu; 18381 } 18382 18383 /* 18384 * Join the ipif specific multicast groups. 18385 * Must be called after a mapping has been set up in the resolver. (Always 18386 * called as writer.) 18387 */ 18388 void 18389 ipif_multicast_up(ipif_t *ipif) 18390 { 18391 int err, index; 18392 ill_t *ill; 18393 18394 ASSERT(IAM_WRITER_IPIF(ipif)); 18395 18396 ill = ipif->ipif_ill; 18397 index = ill->ill_phyint->phyint_ifindex; 18398 18399 ip1dbg(("ipif_multicast_up\n")); 18400 if (!(ill->ill_flags & ILLF_MULTICAST) || ipif->ipif_multicast_up) 18401 return; 18402 18403 if (ipif->ipif_isv6) { 18404 if (IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6lcl_addr)) 18405 return; 18406 18407 /* Join the all hosts multicast address */ 18408 ip1dbg(("ipif_multicast_up - addmulti\n")); 18409 /* 18410 * Passing B_TRUE means we have to join the multicast 18411 * membership on this interface even though this is 18412 * FAILED. If we join on a different one in the group, 18413 * we will not be able to delete the membership later 18414 * as we currently don't track where we join when we 18415 * join within the kernel unlike applications where 18416 * we have ilg/ilg_orig_index. See ip_addmulti_v6 18417 * for more on this. 18418 */ 18419 err = ip_addmulti_v6(&ipv6_all_hosts_mcast, ill, index, 18420 ipif->ipif_zoneid, ILGSTAT_NONE, MODE_IS_EXCLUDE, NULL); 18421 if (err != 0) { 18422 ip0dbg(("ipif_multicast_up: " 18423 "all_hosts_mcast failed %d\n", 18424 err)); 18425 return; 18426 } 18427 /* 18428 * Enable multicast for the solicited node multicast address 18429 */ 18430 if (!(ipif->ipif_flags & IPIF_NOLOCAL)) { 18431 in6_addr_t ipv6_multi = ipv6_solicited_node_mcast; 18432 18433 ipv6_multi.s6_addr32[3] |= 18434 ipif->ipif_v6lcl_addr.s6_addr32[3]; 18435 18436 err = ip_addmulti_v6(&ipv6_multi, ill, index, 18437 ipif->ipif_zoneid, ILGSTAT_NONE, MODE_IS_EXCLUDE, 18438 NULL); 18439 if (err != 0) { 18440 ip0dbg(("ipif_multicast_up: solicited MC" 18441 " failed %d\n", err)); 18442 (void) ip_delmulti_v6(&ipv6_all_hosts_mcast, 18443 ill, ill->ill_phyint->phyint_ifindex, 18444 ipif->ipif_zoneid, B_TRUE, B_TRUE); 18445 return; 18446 } 18447 } 18448 } else { 18449 if (ipif->ipif_lcl_addr == INADDR_ANY) 18450 return; 18451 18452 /* Join the all hosts multicast address */ 18453 ip1dbg(("ipif_multicast_up - addmulti\n")); 18454 err = ip_addmulti(htonl(INADDR_ALLHOSTS_GROUP), ipif, 18455 ILGSTAT_NONE, MODE_IS_EXCLUDE, NULL); 18456 if (err) { 18457 ip0dbg(("ipif_multicast_up: failed %d\n", err)); 18458 return; 18459 } 18460 } 18461 ipif->ipif_multicast_up = 1; 18462 } 18463 18464 /* 18465 * Blow away any IPv6 multicast groups that we joined in ipif_multicast_up(); 18466 * any explicit memberships are blown away in ill_leave_multicast() when the 18467 * ill is brought down. 18468 */ 18469 static void 18470 ipif_multicast_down(ipif_t *ipif) 18471 { 18472 int err; 18473 18474 ASSERT(IAM_WRITER_IPIF(ipif)); 18475 18476 ip1dbg(("ipif_multicast_down\n")); 18477 if (!ipif->ipif_multicast_up) 18478 return; 18479 18480 ASSERT(ipif->ipif_isv6); 18481 18482 ip1dbg(("ipif_multicast_down - delmulti\n")); 18483 18484 /* 18485 * Leave the all hosts multicast address. Similar to ip_addmulti_v6, 18486 * we should look for ilms on this ill rather than the ones that have 18487 * been failed over here. They are here temporarily. As 18488 * ipif_multicast_up has joined on this ill, we should delete only 18489 * from this ill. 18490 */ 18491 err = ip_delmulti_v6(&ipv6_all_hosts_mcast, ipif->ipif_ill, 18492 ipif->ipif_ill->ill_phyint->phyint_ifindex, ipif->ipif_zoneid, 18493 B_TRUE, B_TRUE); 18494 if (err != 0) { 18495 ip0dbg(("ipif_multicast_down: all_hosts_mcast failed %d\n", 18496 err)); 18497 } 18498 /* 18499 * Disable multicast for the solicited node multicast address 18500 */ 18501 if (!(ipif->ipif_flags & IPIF_NOLOCAL)) { 18502 in6_addr_t ipv6_multi = ipv6_solicited_node_mcast; 18503 18504 ipv6_multi.s6_addr32[3] |= 18505 ipif->ipif_v6lcl_addr.s6_addr32[3]; 18506 18507 err = ip_delmulti_v6(&ipv6_multi, ipif->ipif_ill, 18508 ipif->ipif_ill->ill_phyint->phyint_ifindex, 18509 ipif->ipif_zoneid, B_TRUE, B_TRUE); 18510 18511 if (err != 0) { 18512 ip0dbg(("ipif_multicast_down: sol MC failed %d\n", 18513 err)); 18514 } 18515 } 18516 18517 ipif->ipif_multicast_up = 0; 18518 } 18519 18520 /* 18521 * Used when an interface comes up to recreate any extra routes on this 18522 * interface. 18523 */ 18524 static ire_t ** 18525 ipif_recover_ire(ipif_t *ipif) 18526 { 18527 mblk_t *mp; 18528 ire_t **ipif_saved_irep; 18529 ire_t **irep; 18530 18531 ip1dbg(("ipif_recover_ire(%s:%u)", ipif->ipif_ill->ill_name, 18532 ipif->ipif_id)); 18533 18534 mutex_enter(&ipif->ipif_saved_ire_lock); 18535 ipif_saved_irep = (ire_t **)kmem_zalloc(sizeof (ire_t *) * 18536 ipif->ipif_saved_ire_cnt, KM_NOSLEEP); 18537 if (ipif_saved_irep == NULL) { 18538 mutex_exit(&ipif->ipif_saved_ire_lock); 18539 return (NULL); 18540 } 18541 18542 irep = ipif_saved_irep; 18543 for (mp = ipif->ipif_saved_ire_mp; mp != NULL; mp = mp->b_cont) { 18544 ire_t *ire; 18545 queue_t *rfq; 18546 queue_t *stq; 18547 ifrt_t *ifrt; 18548 uchar_t *src_addr; 18549 uchar_t *gateway_addr; 18550 mblk_t *resolver_mp; 18551 ushort_t type; 18552 18553 /* 18554 * When the ire was initially created and then added in 18555 * ip_rt_add(), it was created either using ipif->ipif_net_type 18556 * in the case of a traditional interface route, or as one of 18557 * the IRE_OFFSUBNET types (with the exception of 18558 * IRE_HOST_REDIRECT which is created by icmp_redirect() and 18559 * which we don't need to save or recover). In the case where 18560 * ipif->ipif_net_type was IRE_LOOPBACK, ip_rt_add() will update 18561 * the ire_type to IRE_IF_NORESOLVER before calling ire_add() 18562 * to satisfy software like GateD and Sun Cluster which creates 18563 * routes using the the loopback interface's address as a 18564 * gateway. 18565 * 18566 * As ifrt->ifrt_type reflects the already updated ire_type and 18567 * since ire_create() expects that IRE_IF_NORESOLVER will have 18568 * a valid ire_dlureq_mp field (which doesn't make sense for a 18569 * IRE_LOOPBACK), ire_create() will be called in the same way 18570 * here as in ip_rt_add(), namely using ipif->ipif_net_type when 18571 * the route looks like a traditional interface route (where 18572 * ifrt->ifrt_type & IRE_INTERFACE is true) and otherwise using 18573 * the saved ifrt->ifrt_type. This means that in the case where 18574 * ipif->ipif_net_type is IRE_LOOPBACK, the ire created by 18575 * ire_create() will be an IRE_LOOPBACK, it will then be turned 18576 * into an IRE_IF_NORESOLVER and then added by ire_add(). 18577 */ 18578 ifrt = (ifrt_t *)mp->b_rptr; 18579 if (ifrt->ifrt_type & IRE_INTERFACE) { 18580 rfq = NULL; 18581 stq = (ipif->ipif_net_type == IRE_IF_RESOLVER) 18582 ? ipif->ipif_rq : ipif->ipif_wq; 18583 src_addr = (ifrt->ifrt_flags & RTF_SETSRC) 18584 ? (uint8_t *)&ifrt->ifrt_src_addr 18585 : (uint8_t *)&ipif->ipif_src_addr; 18586 gateway_addr = NULL; 18587 resolver_mp = ipif->ipif_resolver_mp; 18588 type = ipif->ipif_net_type; 18589 } else if (ifrt->ifrt_type & IRE_BROADCAST) { 18590 /* Recover multiroute broadcast IRE. */ 18591 rfq = ipif->ipif_rq; 18592 stq = ipif->ipif_wq; 18593 src_addr = (ifrt->ifrt_flags & RTF_SETSRC) 18594 ? (uint8_t *)&ifrt->ifrt_src_addr 18595 : (uint8_t *)&ipif->ipif_src_addr; 18596 gateway_addr = (uint8_t *)&ifrt->ifrt_gateway_addr; 18597 resolver_mp = ipif->ipif_bcast_mp; 18598 type = ifrt->ifrt_type; 18599 } else { 18600 rfq = NULL; 18601 stq = NULL; 18602 src_addr = (ifrt->ifrt_flags & RTF_SETSRC) 18603 ? (uint8_t *)&ifrt->ifrt_src_addr : NULL; 18604 gateway_addr = (uint8_t *)&ifrt->ifrt_gateway_addr; 18605 resolver_mp = NULL; 18606 type = ifrt->ifrt_type; 18607 } 18608 18609 /* 18610 * Create a copy of the IRE with the saved address and netmask. 18611 */ 18612 ip1dbg(("ipif_recover_ire: creating IRE %s (%d) for " 18613 "0x%x/0x%x\n", 18614 ip_nv_lookup(ire_nv_tbl, ifrt->ifrt_type), ifrt->ifrt_type, 18615 ntohl(ifrt->ifrt_addr), 18616 ntohl(ifrt->ifrt_mask))); 18617 ire = ire_create( 18618 (uint8_t *)&ifrt->ifrt_addr, 18619 (uint8_t *)&ifrt->ifrt_mask, 18620 src_addr, 18621 gateway_addr, 18622 NULL, 18623 &ifrt->ifrt_max_frag, 18624 NULL, 18625 rfq, 18626 stq, 18627 type, 18628 resolver_mp, 18629 ipif, 18630 NULL, 18631 0, 18632 0, 18633 0, 18634 ifrt->ifrt_flags, 18635 &ifrt->ifrt_iulp_info, 18636 NULL, 18637 NULL); 18638 18639 if (ire == NULL) { 18640 mutex_exit(&ipif->ipif_saved_ire_lock); 18641 kmem_free(ipif_saved_irep, 18642 ipif->ipif_saved_ire_cnt * sizeof (ire_t *)); 18643 return (NULL); 18644 } 18645 18646 /* 18647 * Some software (for example, GateD and Sun Cluster) attempts 18648 * to create (what amount to) IRE_PREFIX routes with the 18649 * loopback address as the gateway. This is primarily done to 18650 * set up prefixes with the RTF_REJECT flag set (for example, 18651 * when generating aggregate routes.) 18652 * 18653 * If the IRE type (as defined by ipif->ipif_net_type) is 18654 * IRE_LOOPBACK, then we map the request into a 18655 * IRE_IF_NORESOLVER. 18656 */ 18657 if (ipif->ipif_net_type == IRE_LOOPBACK) 18658 ire->ire_type = IRE_IF_NORESOLVER; 18659 /* 18660 * ire held by ire_add, will be refreled' towards the 18661 * the end of ipif_up_done 18662 */ 18663 (void) ire_add(&ire, NULL, NULL, NULL); 18664 *irep = ire; 18665 irep++; 18666 ip1dbg(("ipif_recover_ire: added ire %p\n", (void *)ire)); 18667 } 18668 mutex_exit(&ipif->ipif_saved_ire_lock); 18669 return (ipif_saved_irep); 18670 } 18671 18672 /* 18673 * Used to set the netmask and broadcast address to default values when the 18674 * interface is brought up. (Always called as writer.) 18675 */ 18676 static void 18677 ipif_set_default(ipif_t *ipif) 18678 { 18679 ASSERT(MUTEX_HELD(&ipif->ipif_ill->ill_lock)); 18680 18681 if (!ipif->ipif_isv6) { 18682 /* 18683 * Interface holds an IPv4 address. Default 18684 * mask is the natural netmask. 18685 */ 18686 if (!ipif->ipif_net_mask) { 18687 ipaddr_t v4mask; 18688 18689 v4mask = ip_net_mask(ipif->ipif_lcl_addr); 18690 V4MASK_TO_V6(v4mask, ipif->ipif_v6net_mask); 18691 } 18692 if (ipif->ipif_flags & IPIF_POINTOPOINT) { 18693 /* ipif_subnet is ipif_pp_dst_addr for pt-pt */ 18694 ipif->ipif_v6subnet = ipif->ipif_v6pp_dst_addr; 18695 } else { 18696 V6_MASK_COPY(ipif->ipif_v6lcl_addr, 18697 ipif->ipif_v6net_mask, ipif->ipif_v6subnet); 18698 } 18699 /* 18700 * NOTE: SunOS 4.X does this even if the broadcast address 18701 * has been already set thus we do the same here. 18702 */ 18703 if (ipif->ipif_flags & IPIF_BROADCAST) { 18704 ipaddr_t v4addr; 18705 18706 v4addr = ipif->ipif_subnet | ~ipif->ipif_net_mask; 18707 IN6_IPADDR_TO_V4MAPPED(v4addr, &ipif->ipif_v6brd_addr); 18708 } 18709 } else { 18710 /* 18711 * Interface holds an IPv6-only address. Default 18712 * mask is all-ones. 18713 */ 18714 if (IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6net_mask)) 18715 ipif->ipif_v6net_mask = ipv6_all_ones; 18716 if (ipif->ipif_flags & IPIF_POINTOPOINT) { 18717 /* ipif_subnet is ipif_pp_dst_addr for pt-pt */ 18718 ipif->ipif_v6subnet = ipif->ipif_v6pp_dst_addr; 18719 } else { 18720 V6_MASK_COPY(ipif->ipif_v6lcl_addr, 18721 ipif->ipif_v6net_mask, ipif->ipif_v6subnet); 18722 } 18723 } 18724 } 18725 18726 /* 18727 * Return 0 if this address can be used as local address without causing 18728 * duplicate address problems. Otherwise, return EADDRNOTAVAIL if the address 18729 * is already up on a different ill, and EADDRINUSE if it's up on the same ill. 18730 * Special checks are needed to allow the same IPv6 link-local address 18731 * on different ills. 18732 * TODO: allowing the same site-local address on different ill's. 18733 */ 18734 int 18735 ip_addr_availability_check(ipif_t *new_ipif) 18736 { 18737 in6_addr_t our_v6addr; 18738 ill_t *ill; 18739 ipif_t *ipif; 18740 ill_walk_context_t ctx; 18741 18742 ASSERT(IAM_WRITER_IPIF(new_ipif)); 18743 ASSERT(MUTEX_HELD(&ip_addr_avail_lock)); 18744 ASSERT(RW_READ_HELD(&ill_g_lock)); 18745 18746 new_ipif->ipif_flags &= ~IPIF_UNNUMBERED; 18747 if (IN6_IS_ADDR_UNSPECIFIED(&new_ipif->ipif_v6lcl_addr) || 18748 IN6_IS_ADDR_V4MAPPED_ANY(&new_ipif->ipif_v6lcl_addr)) 18749 return (0); 18750 18751 our_v6addr = new_ipif->ipif_v6lcl_addr; 18752 18753 if (new_ipif->ipif_isv6) 18754 ill = ILL_START_WALK_V6(&ctx); 18755 else 18756 ill = ILL_START_WALK_V4(&ctx); 18757 18758 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 18759 for (ipif = ill->ill_ipif; ipif != NULL; 18760 ipif = ipif->ipif_next) { 18761 if ((ipif == new_ipif) || 18762 !(ipif->ipif_flags & IPIF_UP) || 18763 (ipif->ipif_flags & IPIF_UNNUMBERED)) 18764 continue; 18765 if (IN6_ARE_ADDR_EQUAL(&ipif->ipif_v6lcl_addr, 18766 &our_v6addr)) { 18767 if (new_ipif->ipif_flags & IPIF_POINTOPOINT) 18768 new_ipif->ipif_flags |= IPIF_UNNUMBERED; 18769 else if (ipif->ipif_flags & IPIF_POINTOPOINT) 18770 ipif->ipif_flags |= IPIF_UNNUMBERED; 18771 else if (IN6_IS_ADDR_LINKLOCAL(&our_v6addr) && 18772 new_ipif->ipif_ill != ill) 18773 continue; 18774 else if (IN6_IS_ADDR_SITELOCAL(&our_v6addr) && 18775 new_ipif->ipif_ill != ill) 18776 continue; 18777 else if (new_ipif->ipif_zoneid != 18778 ipif->ipif_zoneid && 18779 ipif->ipif_zoneid != ALL_ZONES && 18780 (ill->ill_phyint->phyint_flags & 18781 PHYI_LOOPBACK)) 18782 continue; 18783 else if (new_ipif->ipif_ill == ill) 18784 return (EADDRINUSE); 18785 else 18786 return (EADDRNOTAVAIL); 18787 } 18788 } 18789 } 18790 18791 return (0); 18792 } 18793 18794 /* 18795 * Bring up an ipif: bring up arp/ndp, bring up the DLPI stream, and add 18796 * IREs for the ipif. 18797 * When the routine returns EINPROGRESS then mp has been consumed and 18798 * the ioctl will be acked from ip_rput_dlpi. 18799 */ 18800 static int 18801 ipif_up(ipif_t *ipif, queue_t *q, mblk_t *mp) 18802 { 18803 ill_t *ill = ipif->ipif_ill; 18804 boolean_t isv6 = ipif->ipif_isv6; 18805 int err = 0; 18806 boolean_t success; 18807 18808 ASSERT(IAM_WRITER_IPIF(ipif)); 18809 18810 ip1dbg(("ipif_up(%s:%u)\n", ill->ill_name, ipif->ipif_id)); 18811 18812 /* Shouldn't get here if it is already up. */ 18813 if (ipif->ipif_flags & IPIF_UP) 18814 return (EALREADY); 18815 18816 /* Skip arp/ndp for any loopback interface. */ 18817 if (ill->ill_wq != NULL) { 18818 conn_t *connp = Q_TO_CONN(q); 18819 ipsq_t *ipsq = ill->ill_phyint->phyint_ipsq; 18820 18821 if (!ill->ill_dl_up) { 18822 /* 18823 * ill_dl_up is not yet set. i.e. we are yet to 18824 * DL_BIND with the driver and this is the first 18825 * logical interface on the ill to become "up". 18826 * Tell the driver to get going (via DL_BIND_REQ). 18827 * Note that changing "significant" IFF_ flags 18828 * address/netmask etc cause a down/up dance, but 18829 * does not cause an unbind (DL_UNBIND) with the driver 18830 */ 18831 return (ill_dl_up(ill, ipif, mp, q)); 18832 } 18833 18834 /* 18835 * ipif_resolver_up may end up sending an 18836 * AR_INTERFACE_UP message to ARP, which would, in 18837 * turn send a DLPI message to the driver. ioctls are 18838 * serialized and so we cannot send more than one 18839 * interface up message at a time. If ipif_resolver_up 18840 * does send an interface up message to ARP, we get 18841 * EINPROGRESS and we will complete in ip_arp_done. 18842 */ 18843 18844 ASSERT(connp != NULL); 18845 ASSERT(ipsq->ipsq_pending_mp == NULL); 18846 mutex_enter(&connp->conn_lock); 18847 mutex_enter(&ill->ill_lock); 18848 success = ipsq_pending_mp_add(connp, ipif, q, mp, 0); 18849 mutex_exit(&ill->ill_lock); 18850 mutex_exit(&connp->conn_lock); 18851 if (!success) 18852 return (EINTR); 18853 18854 /* 18855 * Crank up IPv6 neighbor discovery 18856 * Unlike ARP, this should complete when 18857 * ipif_ndp_up returns. However, for 18858 * ILLF_XRESOLV interfaces we also send a 18859 * AR_INTERFACE_UP to the external resolver. 18860 * That ioctl will complete in ip_rput. 18861 */ 18862 if (isv6) { 18863 err = ipif_ndp_up(ipif, &ipif->ipif_v6lcl_addr, 18864 B_FALSE); 18865 if (err != 0) { 18866 mp = ipsq_pending_mp_get(ipsq, &connp); 18867 return (err); 18868 } 18869 } 18870 /* Now, ARP */ 18871 if ((err = ipif_resolver_up(ipif, B_FALSE)) == 18872 EINPROGRESS) { 18873 /* We will complete it in ip_arp_done */ 18874 return (err); 18875 } 18876 mp = ipsq_pending_mp_get(ipsq, &connp); 18877 ASSERT(mp != NULL); 18878 if (err != 0) 18879 return (err); 18880 } 18881 return (isv6 ? ipif_up_done_v6(ipif) : ipif_up_done(ipif)); 18882 } 18883 18884 /* 18885 * Perform a bind for the physical device. 18886 * When the routine returns EINPROGRESS then mp has been consumed and 18887 * the ioctl will be acked from ip_rput_dlpi. 18888 * Allocate an unbind message and save it until ipif_down. 18889 */ 18890 static int 18891 ill_dl_up(ill_t *ill, ipif_t *ipif, mblk_t *mp, queue_t *q) 18892 { 18893 mblk_t *areq_mp = NULL; 18894 mblk_t *bind_mp = NULL; 18895 mblk_t *unbind_mp = NULL; 18896 conn_t *connp; 18897 boolean_t success; 18898 18899 ip1dbg(("ill_dl_up(%s)\n", ill->ill_name)); 18900 ASSERT(IAM_WRITER_ILL(ill)); 18901 18902 ASSERT(mp != NULL); 18903 18904 /* Create a resolver cookie for ARP */ 18905 if (!ill->ill_isv6 && ill->ill_net_type == IRE_IF_RESOLVER) { 18906 areq_t *areq; 18907 uint16_t sap_addr; 18908 18909 areq_mp = ill_arp_alloc(ill, 18910 (uchar_t *)&ip_areq_template, 0); 18911 if (areq_mp == NULL) { 18912 return (ENOMEM); 18913 } 18914 freemsg(ill->ill_resolver_mp); 18915 ill->ill_resolver_mp = areq_mp; 18916 areq = (areq_t *)areq_mp->b_rptr; 18917 sap_addr = ill->ill_sap; 18918 bcopy(&sap_addr, areq->areq_sap, sizeof (sap_addr)); 18919 /* 18920 * Wait till we call ill_pending_mp_add to determine 18921 * the success before we free the ill_resolver_mp and 18922 * attach areq_mp in it's place. 18923 */ 18924 } 18925 bind_mp = ip_dlpi_alloc(sizeof (dl_bind_req_t) + sizeof (long), 18926 DL_BIND_REQ); 18927 if (bind_mp == NULL) 18928 goto bad; 18929 ((dl_bind_req_t *)bind_mp->b_rptr)->dl_sap = ill->ill_sap; 18930 ((dl_bind_req_t *)bind_mp->b_rptr)->dl_service_mode = DL_CLDLS; 18931 18932 unbind_mp = ip_dlpi_alloc(sizeof (dl_unbind_req_t), DL_UNBIND_REQ); 18933 if (unbind_mp == NULL) 18934 goto bad; 18935 18936 /* 18937 * Record state needed to complete this operation when the 18938 * DL_BIND_ACK shows up. Also remember the pre-allocated mblks. 18939 */ 18940 if (WR(q)->q_next == NULL) { 18941 connp = Q_TO_CONN(q); 18942 mutex_enter(&connp->conn_lock); 18943 } else { 18944 connp = NULL; 18945 } 18946 mutex_enter(&ipif->ipif_ill->ill_lock); 18947 success = ipsq_pending_mp_add(connp, ipif, q, mp, 0); 18948 mutex_exit(&ipif->ipif_ill->ill_lock); 18949 if (connp != NULL) 18950 mutex_exit(&connp->conn_lock); 18951 if (!success) 18952 goto bad; 18953 18954 /* 18955 * Save the unbind message for ill_dl_down(); it will be consumed when 18956 * the interface goes down. 18957 */ 18958 ASSERT(ill->ill_unbind_mp == NULL); 18959 ill->ill_unbind_mp = unbind_mp; 18960 18961 ill_dlpi_send(ill, bind_mp); 18962 /* Send down link-layer capabilities probe if not already done. */ 18963 ill_capability_probe(ill); 18964 18965 /* 18966 * Sysid used to rely on the fact that netboots set domainname 18967 * and the like. Now that miniroot boots aren't strictly netboots 18968 * and miniroot network configuration is driven from userland 18969 * these things still need to be set. This situation can be detected 18970 * by comparing the interface being configured here to the one 18971 * dhcack was set to reference by the boot loader. Once sysid is 18972 * converted to use dhcp_ipc_getinfo() this call can go away. 18973 */ 18974 if ((ipif->ipif_flags & IPIF_DHCPRUNNING) && (dhcack != NULL) && 18975 (strcmp(ill->ill_name, dhcack) == 0) && 18976 (strlen(srpc_domain) == 0)) { 18977 if (dhcpinit() != 0) 18978 cmn_err(CE_WARN, "no cached dhcp response"); 18979 } 18980 18981 /* 18982 * This operation will complete in ip_rput_dlpi with either 18983 * a DL_BIND_ACK or DL_ERROR_ACK. 18984 */ 18985 return (EINPROGRESS); 18986 bad: 18987 ip1dbg(("ill_dl_up(%s) FAILED\n", ill->ill_name)); 18988 /* 18989 * We don't have to check for possible removal from illgrp 18990 * as we have not yet inserted in illgrp. For groups 18991 * without names, this ipif is still not UP and hence 18992 * this could not have possibly had any influence in forming 18993 * groups. 18994 */ 18995 18996 if (bind_mp != NULL) 18997 freemsg(bind_mp); 18998 if (unbind_mp != NULL) 18999 freemsg(unbind_mp); 19000 return (ENOMEM); 19001 } 19002 19003 uint_t ip_loopback_mtuplus = IP_LOOPBACK_MTU + IP_SIMPLE_HDR_LENGTH + 20; 19004 19005 /* 19006 * DLPI and ARP is up. 19007 * Create all the IREs associated with an interface bring up multicast. 19008 * Set the interface flag and finish other initialization 19009 * that potentially had to be differed to after DL_BIND_ACK. 19010 */ 19011 int 19012 ipif_up_done(ipif_t *ipif) 19013 { 19014 ire_t *ire_array[20]; 19015 ire_t **irep = ire_array; 19016 ire_t **irep1; 19017 ipaddr_t net_mask = 0; 19018 ipaddr_t subnet_mask, route_mask; 19019 ill_t *ill = ipif->ipif_ill; 19020 queue_t *stq; 19021 ipif_t *src_ipif; 19022 ipif_t *tmp_ipif; 19023 boolean_t flush_ire_cache = B_TRUE; 19024 int err = 0; 19025 phyint_t *phyi; 19026 ire_t **ipif_saved_irep = NULL; 19027 int ipif_saved_ire_cnt; 19028 int cnt; 19029 boolean_t src_ipif_held = B_FALSE; 19030 boolean_t ire_added = B_FALSE; 19031 boolean_t loopback = B_FALSE; 19032 19033 ip1dbg(("ipif_up_done(%s:%u)\n", 19034 ipif->ipif_ill->ill_name, ipif->ipif_id)); 19035 /* Check if this is a loopback interface */ 19036 if (ipif->ipif_ill->ill_wq == NULL) 19037 loopback = B_TRUE; 19038 19039 ASSERT(!MUTEX_HELD(&ipif->ipif_ill->ill_lock)); 19040 /* 19041 * If all other interfaces for this ill are down or DEPRECATED, 19042 * or otherwise unsuitable for source address selection, remove 19043 * any IRE_CACHE entries for this ill to make sure source 19044 * address selection gets to take this new ipif into account. 19045 * No need to hold ill_lock while traversing the ipif list since 19046 * we are writer 19047 */ 19048 for (tmp_ipif = ill->ill_ipif; tmp_ipif; 19049 tmp_ipif = tmp_ipif->ipif_next) { 19050 if (((tmp_ipif->ipif_flags & 19051 (IPIF_NOXMIT|IPIF_ANYCAST|IPIF_NOLOCAL|IPIF_DEPRECATED)) || 19052 !(tmp_ipif->ipif_flags & IPIF_UP)) || 19053 (tmp_ipif == ipif)) 19054 continue; 19055 /* first useable pre-existing interface */ 19056 flush_ire_cache = B_FALSE; 19057 break; 19058 } 19059 if (flush_ire_cache) 19060 ire_walk_ill_v4(MATCH_IRE_ILL_GROUP | MATCH_IRE_TYPE, 19061 IRE_CACHE, ill_ipif_cache_delete, (char *)ill, ill); 19062 19063 /* 19064 * Figure out which way the send-to queue should go. Only 19065 * IRE_IF_RESOLVER or IRE_IF_NORESOLVER or IRE_LOOPBACK 19066 * should show up here. 19067 */ 19068 switch (ill->ill_net_type) { 19069 case IRE_IF_RESOLVER: 19070 stq = ill->ill_rq; 19071 break; 19072 case IRE_IF_NORESOLVER: 19073 case IRE_LOOPBACK: 19074 stq = ill->ill_wq; 19075 break; 19076 default: 19077 return (EINVAL); 19078 } 19079 19080 if (ill->ill_phyint->phyint_flags & PHYI_LOOPBACK) { 19081 /* 19082 * lo0:1 and subsequent ipifs were marked IRE_LOCAL in 19083 * ipif_lookup_on_name(), but in the case of zones we can have 19084 * several loopback addresses on lo0. So all the interfaces with 19085 * loopback addresses need to be marked IRE_LOOPBACK. 19086 */ 19087 if (V4_PART_OF_V6(ipif->ipif_v6lcl_addr) == 19088 htonl(INADDR_LOOPBACK)) 19089 ipif->ipif_ire_type = IRE_LOOPBACK; 19090 else 19091 ipif->ipif_ire_type = IRE_LOCAL; 19092 } 19093 19094 if (ipif->ipif_flags & (IPIF_NOLOCAL|IPIF_ANYCAST|IPIF_DEPRECATED)) { 19095 /* 19096 * Can't use our source address. Select a different 19097 * source address for the IRE_INTERFACE and IRE_LOCAL 19098 */ 19099 src_ipif = ipif_select_source(ipif->ipif_ill, 19100 ipif->ipif_subnet, ipif->ipif_zoneid); 19101 if (src_ipif == NULL) 19102 src_ipif = ipif; /* Last resort */ 19103 else 19104 src_ipif_held = B_TRUE; 19105 } else { 19106 src_ipif = ipif; 19107 } 19108 19109 /* Create all the IREs associated with this interface */ 19110 if ((ipif->ipif_lcl_addr != INADDR_ANY) && 19111 !(ipif->ipif_flags & IPIF_NOLOCAL)) { 19112 19113 /* 19114 * If we're on a labeled system then make sure that zone- 19115 * private addresses have proper remote host database entries. 19116 */ 19117 if (is_system_labeled() && 19118 ipif->ipif_ire_type != IRE_LOOPBACK && 19119 !tsol_check_interface_address(ipif)) 19120 return (EINVAL); 19121 19122 /* Register the source address for __sin6_src_id */ 19123 err = ip_srcid_insert(&ipif->ipif_v6lcl_addr, 19124 ipif->ipif_zoneid); 19125 if (err != 0) { 19126 ip0dbg(("ipif_up_done: srcid_insert %d\n", err)); 19127 return (err); 19128 } 19129 19130 /* If the interface address is set, create the local IRE. */ 19131 ip1dbg(("ipif_up_done: 0x%p creating IRE 0x%x for 0x%x\n", 19132 (void *)ipif, 19133 ipif->ipif_ire_type, 19134 ntohl(ipif->ipif_lcl_addr))); 19135 *irep++ = ire_create( 19136 (uchar_t *)&ipif->ipif_lcl_addr, /* dest address */ 19137 (uchar_t *)&ip_g_all_ones, /* mask */ 19138 (uchar_t *)&src_ipif->ipif_src_addr, /* source address */ 19139 NULL, /* no gateway */ 19140 NULL, 19141 &ip_loopback_mtuplus, /* max frag size */ 19142 NULL, 19143 ipif->ipif_rq, /* recv-from queue */ 19144 NULL, /* no send-to queue */ 19145 ipif->ipif_ire_type, /* LOCAL or LOOPBACK */ 19146 NULL, 19147 ipif, 19148 NULL, 19149 0, 19150 0, 19151 0, 19152 (ipif->ipif_flags & IPIF_PRIVATE) ? 19153 RTF_PRIVATE : 0, 19154 &ire_uinfo_null, 19155 NULL, 19156 NULL); 19157 } else { 19158 ip1dbg(( 19159 "ipif_up_done: not creating IRE %d for 0x%x: flags 0x%x\n", 19160 ipif->ipif_ire_type, 19161 ntohl(ipif->ipif_lcl_addr), 19162 (uint_t)ipif->ipif_flags)); 19163 } 19164 if ((ipif->ipif_lcl_addr != INADDR_ANY) && 19165 !(ipif->ipif_flags & IPIF_NOLOCAL)) { 19166 net_mask = ip_net_mask(ipif->ipif_lcl_addr); 19167 } else { 19168 net_mask = htonl(IN_CLASSA_NET); /* fallback */ 19169 } 19170 19171 subnet_mask = ipif->ipif_net_mask; 19172 19173 /* 19174 * If mask was not specified, use natural netmask of 19175 * interface address. Also, store this mask back into the 19176 * ipif struct. 19177 */ 19178 if (subnet_mask == 0) { 19179 subnet_mask = net_mask; 19180 V4MASK_TO_V6(subnet_mask, ipif->ipif_v6net_mask); 19181 V6_MASK_COPY(ipif->ipif_v6lcl_addr, ipif->ipif_v6net_mask, 19182 ipif->ipif_v6subnet); 19183 } 19184 19185 /* Set up the IRE_IF_RESOLVER or IRE_IF_NORESOLVER, as appropriate. */ 19186 if (stq != NULL && !(ipif->ipif_flags & IPIF_NOXMIT) && 19187 ipif->ipif_subnet != INADDR_ANY) { 19188 /* ipif_subnet is ipif_pp_dst_addr for pt-pt */ 19189 19190 if (ipif->ipif_flags & IPIF_POINTOPOINT) { 19191 route_mask = IP_HOST_MASK; 19192 } else { 19193 route_mask = subnet_mask; 19194 } 19195 19196 ip1dbg(("ipif_up_done: ipif 0x%p ill 0x%p " 19197 "creating if IRE ill_net_type 0x%x for 0x%x\n", 19198 (void *)ipif, (void *)ill, 19199 ill->ill_net_type, 19200 ntohl(ipif->ipif_subnet))); 19201 *irep++ = ire_create( 19202 (uchar_t *)&ipif->ipif_subnet, /* dest address */ 19203 (uchar_t *)&route_mask, /* mask */ 19204 (uchar_t *)&src_ipif->ipif_src_addr, /* src addr */ 19205 NULL, /* no gateway */ 19206 NULL, 19207 &ipif->ipif_mtu, /* max frag */ 19208 NULL, 19209 NULL, /* no recv queue */ 19210 stq, /* send-to queue */ 19211 ill->ill_net_type, /* IF_[NO]RESOLVER */ 19212 ill->ill_resolver_mp, /* xmit header */ 19213 ipif, 19214 NULL, 19215 0, 19216 0, 19217 0, 19218 (ipif->ipif_flags & IPIF_PRIVATE) ? RTF_PRIVATE: 0, 19219 &ire_uinfo_null, 19220 NULL, 19221 NULL); 19222 } 19223 19224 /* 19225 * If the interface address is set, create the broadcast IREs. 19226 * 19227 * ire_create_bcast checks if the proposed new IRE matches 19228 * any existing IRE's with the same physical interface (ILL). 19229 * This should get rid of duplicates. 19230 * ire_create_bcast also check IPIF_NOXMIT and does not create 19231 * any broadcast ires. 19232 */ 19233 if ((ipif->ipif_subnet != INADDR_ANY) && 19234 (ipif->ipif_flags & IPIF_BROADCAST)) { 19235 ipaddr_t addr; 19236 19237 ip1dbg(("ipif_up_done: creating broadcast IRE\n")); 19238 irep = ire_check_and_create_bcast(ipif, 0, irep, 19239 (MATCH_IRE_TYPE | MATCH_IRE_ILL)); 19240 irep = ire_check_and_create_bcast(ipif, INADDR_BROADCAST, irep, 19241 (MATCH_IRE_TYPE | MATCH_IRE_ILL)); 19242 19243 /* 19244 * For backward compatibility, we need to create net 19245 * broadcast ire's based on the old "IP address class 19246 * system." The reason is that some old machines only 19247 * respond to these class derived net broadcast. 19248 * 19249 * But we should not create these net broadcast ire's if 19250 * the subnet_mask is shorter than the IP address class based 19251 * derived netmask. Otherwise, we may create a net 19252 * broadcast address which is the same as an IP address 19253 * on the subnet. Then TCP will refuse to talk to that 19254 * address. 19255 * 19256 * Nor do we need IRE_BROADCAST ire's for the interface 19257 * with the netmask as 0xFFFFFFFF, as IRE_LOCAL for that 19258 * interface is already created. Creating these broadcast 19259 * ire's will only create confusion as the "addr" is going 19260 * to be same as that of the IP address of the interface. 19261 */ 19262 if (net_mask < subnet_mask) { 19263 addr = net_mask & ipif->ipif_subnet; 19264 irep = ire_check_and_create_bcast(ipif, addr, irep, 19265 (MATCH_IRE_TYPE | MATCH_IRE_ILL)); 19266 irep = ire_check_and_create_bcast(ipif, 19267 ~net_mask | addr, irep, 19268 (MATCH_IRE_TYPE | MATCH_IRE_ILL)); 19269 } 19270 19271 if (subnet_mask != 0xFFFFFFFF) { 19272 addr = ipif->ipif_subnet; 19273 irep = ire_check_and_create_bcast(ipif, addr, irep, 19274 (MATCH_IRE_TYPE | MATCH_IRE_ILL)); 19275 irep = ire_check_and_create_bcast(ipif, 19276 ~subnet_mask|addr, irep, 19277 (MATCH_IRE_TYPE | MATCH_IRE_ILL)); 19278 } 19279 } 19280 19281 ASSERT(!MUTEX_HELD(&ipif->ipif_ill->ill_lock)); 19282 19283 /* If an earlier ire_create failed, get out now */ 19284 for (irep1 = irep; irep1 > ire_array; ) { 19285 irep1--; 19286 if (*irep1 == NULL) { 19287 ip1dbg(("ipif_up_done: NULL ire found in ire_array\n")); 19288 err = ENOMEM; 19289 goto bad; 19290 } 19291 } 19292 19293 /* 19294 * Need to atomically check for ip_addr_availablity_check 19295 * under ip_addr_avail_lock, and if it fails got bad, and remove 19296 * from group also.The ill_g_lock is grabbed as reader 19297 * just to make sure no new ills or new ipifs are being added 19298 * to the system while we are checking the uniqueness of addresses. 19299 */ 19300 rw_enter(&ill_g_lock, RW_READER); 19301 mutex_enter(&ip_addr_avail_lock); 19302 /* Mark it up, and increment counters. */ 19303 ill->ill_ipif_up_count++; 19304 ipif->ipif_flags |= IPIF_UP; 19305 err = ip_addr_availability_check(ipif); 19306 mutex_exit(&ip_addr_avail_lock); 19307 rw_exit(&ill_g_lock); 19308 19309 if (err != 0) { 19310 /* 19311 * Our address may already be up on the same ill. In this case, 19312 * the ARP entry for our ipif replaced the one for the other 19313 * ipif. So we don't want to delete it (otherwise the other ipif 19314 * would be unable to send packets). 19315 * ip_addr_availability_check() identifies this case for us and 19316 * returns EADDRINUSE; we need to turn it into EADDRNOTAVAIL 19317 * which is the expected error code. 19318 */ 19319 if (err == EADDRINUSE) { 19320 freemsg(ipif->ipif_arp_del_mp); 19321 ipif->ipif_arp_del_mp = NULL; 19322 err = EADDRNOTAVAIL; 19323 } 19324 ill->ill_ipif_up_count--; 19325 ipif->ipif_flags &= ~IPIF_UP; 19326 goto bad; 19327 } 19328 19329 /* 19330 * Add in all newly created IREs. ire_create_bcast() has 19331 * already checked for duplicates of the IRE_BROADCAST type. 19332 * We want to add before we call ifgrp_insert which wants 19333 * to know whether IRE_IF_RESOLVER exists or not. 19334 * 19335 * NOTE : We refrele the ire though we may branch to "bad" 19336 * later on where we do ire_delete. This is okay 19337 * because nobody can delete it as we are running 19338 * exclusively. 19339 */ 19340 for (irep1 = irep; irep1 > ire_array; ) { 19341 irep1--; 19342 ASSERT(!MUTEX_HELD(&((*irep1)->ire_ipif->ipif_ill->ill_lock))); 19343 /* 19344 * refheld by ire_add. refele towards the end of the func 19345 */ 19346 (void) ire_add(irep1, NULL, NULL, NULL); 19347 } 19348 ire_added = B_TRUE; 19349 /* 19350 * Form groups if possible. 19351 * 19352 * If we are supposed to be in a ill_group with a name, insert it 19353 * now as we know that at least one ipif is UP. Otherwise form 19354 * nameless groups. 19355 * 19356 * If ip_enable_group_ifs is set and ipif address is not 0, insert 19357 * this ipif into the appropriate interface group, or create a 19358 * new one. If this is already in a nameless group, we try to form 19359 * a bigger group looking at other ills potentially sharing this 19360 * ipif's prefix. 19361 */ 19362 phyi = ill->ill_phyint; 19363 if (phyi->phyint_groupname_len != 0) { 19364 ASSERT(phyi->phyint_groupname != NULL); 19365 if (ill->ill_ipif_up_count == 1) { 19366 ASSERT(ill->ill_group == NULL); 19367 err = illgrp_insert(&illgrp_head_v4, ill, 19368 phyi->phyint_groupname, NULL, B_TRUE); 19369 if (err != 0) { 19370 ip1dbg(("ipif_up_done: illgrp allocation " 19371 "failed, error %d\n", err)); 19372 goto bad; 19373 } 19374 } 19375 ASSERT(ill->ill_group != NULL); 19376 } 19377 19378 /* 19379 * When this is part of group, we need to make sure that 19380 * any broadcast ires created because of this ipif coming 19381 * UP gets marked/cleared with IRE_MARK_NORECV appropriately 19382 * so that we don't receive duplicate broadcast packets. 19383 */ 19384 if (ill->ill_group != NULL && ill->ill_ipif_up_count != 0) 19385 ipif_renominate_bcast(ipif); 19386 19387 /* Recover any additional IRE_IF_[NO]RESOLVER entries for this ipif */ 19388 ipif_saved_ire_cnt = ipif->ipif_saved_ire_cnt; 19389 ipif_saved_irep = ipif_recover_ire(ipif); 19390 19391 if (!loopback) { 19392 /* 19393 * If the broadcast address has been set, make sure it makes 19394 * sense based on the interface address. 19395 * Only match on ill since we are sharing broadcast addresses. 19396 */ 19397 if ((ipif->ipif_brd_addr != INADDR_ANY) && 19398 (ipif->ipif_flags & IPIF_BROADCAST)) { 19399 ire_t *ire; 19400 19401 ire = ire_ctable_lookup(ipif->ipif_brd_addr, 0, 19402 IRE_BROADCAST, ipif, ALL_ZONES, 19403 NULL, (MATCH_IRE_TYPE | MATCH_IRE_ILL)); 19404 19405 if (ire == NULL) { 19406 /* 19407 * If there isn't a matching broadcast IRE, 19408 * revert to the default for this netmask. 19409 */ 19410 ipif->ipif_v6brd_addr = ipv6_all_zeros; 19411 mutex_enter(&ipif->ipif_ill->ill_lock); 19412 ipif_set_default(ipif); 19413 mutex_exit(&ipif->ipif_ill->ill_lock); 19414 } else { 19415 ire_refrele(ire); 19416 } 19417 } 19418 19419 } 19420 19421 19422 /* This is the first interface on this ill */ 19423 if (ipif->ipif_ipif_up_count == 1 && !loopback) { 19424 /* 19425 * Need to recover all multicast memberships in the driver. 19426 * This had to be deferred until we had attached. 19427 */ 19428 ill_recover_multicast(ill); 19429 } 19430 /* Join the allhosts multicast address */ 19431 ipif_multicast_up(ipif); 19432 19433 if (!loopback) { 19434 /* 19435 * See whether anybody else would benefit from the 19436 * new ipif that we added. We call this always rather 19437 * than while adding a non-IPIF_NOLOCAL/DEPRECATED/ANYCAST 19438 * ipif is for the benefit of illgrp_insert (done above) 19439 * which does not do source address selection as it does 19440 * not want to re-create interface routes that we are 19441 * having reference to it here. 19442 */ 19443 ill_update_source_selection(ill); 19444 } 19445 19446 for (irep1 = irep; irep1 > ire_array; ) { 19447 irep1--; 19448 if (*irep1 != NULL) { 19449 /* was held in ire_add */ 19450 ire_refrele(*irep1); 19451 } 19452 } 19453 19454 cnt = ipif_saved_ire_cnt; 19455 for (irep1 = ipif_saved_irep; cnt > 0; irep1++, cnt--) { 19456 if (*irep1 != NULL) { 19457 /* was held in ire_add */ 19458 ire_refrele(*irep1); 19459 } 19460 } 19461 19462 /* 19463 * This had to be deferred until we had bound. 19464 * tell routing sockets that this interface is up 19465 */ 19466 ip_rts_ifmsg(ipif); 19467 ip_rts_newaddrmsg(RTM_ADD, 0, ipif); 19468 19469 if (!loopback) { 19470 /* Broadcast an address mask reply. */ 19471 ipif_mask_reply(ipif); 19472 } 19473 if (ipif_saved_irep != NULL) { 19474 kmem_free(ipif_saved_irep, 19475 ipif_saved_ire_cnt * sizeof (ire_t *)); 19476 } 19477 if (src_ipif_held) 19478 ipif_refrele(src_ipif); 19479 /* Let SCTP update the status for this ipif */ 19480 sctp_update_ipif(ipif, SCTP_IPIF_UP); 19481 return (0); 19482 19483 bad: 19484 ip1dbg(("ipif_up_done: FAILED \n")); 19485 /* 19486 * We don't have to bother removing from ill groups because 19487 * 19488 * 1) For groups with names, we insert only when the first ipif 19489 * comes up. In that case if it fails, it will not be in any 19490 * group. So, we need not try to remove for that case. 19491 * 19492 * 2) For groups without names, either we tried to insert ipif_ill 19493 * in a group as singleton or found some other group to become 19494 * a bigger group. For the former, if it fails we don't have 19495 * anything to do as ipif_ill is not in the group and for the 19496 * latter, there are no failures in illgrp_insert/illgrp_delete 19497 * (ENOMEM can't occur for this. Check ifgrp_insert). 19498 */ 19499 while (irep > ire_array) { 19500 irep--; 19501 if (*irep != NULL) { 19502 ire_delete(*irep); 19503 if (ire_added) 19504 ire_refrele(*irep); 19505 } 19506 } 19507 (void) ip_srcid_remove(&ipif->ipif_v6lcl_addr, ipif->ipif_zoneid); 19508 19509 if (ipif_saved_irep != NULL) { 19510 kmem_free(ipif_saved_irep, 19511 ipif_saved_ire_cnt * sizeof (ire_t *)); 19512 } 19513 if (src_ipif_held) 19514 ipif_refrele(src_ipif); 19515 19516 ipif_arp_down(ipif); 19517 return (err); 19518 } 19519 19520 /* 19521 * Turn off the ARP with the ILLF_NOARP flag. 19522 */ 19523 static int 19524 ill_arp_off(ill_t *ill) 19525 { 19526 mblk_t *arp_off_mp = NULL; 19527 mblk_t *arp_on_mp = NULL; 19528 19529 ip1dbg(("ill_arp_off(%s)\n", ill->ill_name)); 19530 19531 ASSERT(IAM_WRITER_ILL(ill)); 19532 ASSERT(ill->ill_net_type == IRE_IF_RESOLVER); 19533 19534 /* 19535 * If the on message is still around we've already done 19536 * an arp_off without doing an arp_on thus there is no 19537 * work needed. 19538 */ 19539 if (ill->ill_arp_on_mp != NULL) 19540 return (0); 19541 19542 /* 19543 * Allocate an ARP on message (to be saved) and an ARP off message 19544 */ 19545 arp_off_mp = ill_arp_alloc(ill, (uchar_t *)&ip_aroff_template, 0); 19546 if (!arp_off_mp) 19547 return (ENOMEM); 19548 19549 arp_on_mp = ill_arp_alloc(ill, (uchar_t *)&ip_aron_template, 0); 19550 if (!arp_on_mp) 19551 goto failed; 19552 19553 ASSERT(ill->ill_arp_on_mp == NULL); 19554 ill->ill_arp_on_mp = arp_on_mp; 19555 19556 /* Send an AR_INTERFACE_OFF request */ 19557 putnext(ill->ill_rq, arp_off_mp); 19558 return (0); 19559 failed: 19560 19561 if (arp_off_mp) 19562 freemsg(arp_off_mp); 19563 return (ENOMEM); 19564 } 19565 19566 /* 19567 * Turn on ARP by turning off the ILLF_NOARP flag. 19568 */ 19569 static int 19570 ill_arp_on(ill_t *ill) 19571 { 19572 mblk_t *mp; 19573 19574 ip1dbg(("ipif_arp_on(%s)\n", ill->ill_name)); 19575 19576 ASSERT(ill->ill_net_type == IRE_IF_RESOLVER); 19577 19578 ASSERT(IAM_WRITER_ILL(ill)); 19579 /* 19580 * Send an AR_INTERFACE_ON request if we have already done 19581 * an arp_off (which allocated the message). 19582 */ 19583 if (ill->ill_arp_on_mp != NULL) { 19584 mp = ill->ill_arp_on_mp; 19585 ill->ill_arp_on_mp = NULL; 19586 putnext(ill->ill_rq, mp); 19587 } 19588 return (0); 19589 } 19590 19591 /* 19592 * Called after either deleting ill from the group or when setting 19593 * FAILED or STANDBY on the interface. 19594 */ 19595 static void 19596 illgrp_reset_schednext(ill_t *ill) 19597 { 19598 ill_group_t *illgrp; 19599 ill_t *save_ill; 19600 19601 ASSERT(IAM_WRITER_ILL(ill)); 19602 /* 19603 * When called from illgrp_delete, ill_group will be non-NULL. 19604 * But when called from ip_sioctl_flags, it could be NULL if 19605 * somebody is setting FAILED/INACTIVE on some interface which 19606 * is not part of a group. 19607 */ 19608 illgrp = ill->ill_group; 19609 if (illgrp == NULL) 19610 return; 19611 if (illgrp->illgrp_ill_schednext != ill) 19612 return; 19613 19614 illgrp->illgrp_ill_schednext = NULL; 19615 save_ill = ill; 19616 /* 19617 * Choose a good ill to be the next one for 19618 * outbound traffic. As the flags FAILED/STANDBY is 19619 * not yet marked when called from ip_sioctl_flags, 19620 * we check for ill separately. 19621 */ 19622 for (ill = illgrp->illgrp_ill; ill != NULL; 19623 ill = ill->ill_group_next) { 19624 if ((ill != save_ill) && 19625 !(ill->ill_phyint->phyint_flags & 19626 (PHYI_FAILED|PHYI_INACTIVE|PHYI_OFFLINE))) { 19627 illgrp->illgrp_ill_schednext = ill; 19628 return; 19629 } 19630 } 19631 } 19632 19633 /* 19634 * Given an ill, find the next ill in the group to be scheduled. 19635 * (This should be called by ip_newroute() before ire_create().) 19636 * The passed in ill may be pulled out of the group, after we have picked 19637 * up a different outgoing ill from the same group. However ire add will 19638 * atomically check this. 19639 */ 19640 ill_t * 19641 illgrp_scheduler(ill_t *ill) 19642 { 19643 ill_t *retill; 19644 ill_group_t *illgrp; 19645 int illcnt; 19646 int i; 19647 uint64_t flags; 19648 19649 /* 19650 * We don't use a lock to check for the ill_group. If this ill 19651 * is currently being inserted we may end up just returning this 19652 * ill itself. That is ok. 19653 */ 19654 if (ill->ill_group == NULL) { 19655 ill_refhold(ill); 19656 return (ill); 19657 } 19658 19659 /* 19660 * Grab the ill_g_lock as reader to make sure we are dealing with 19661 * a set of stable ills. No ill can be added or deleted or change 19662 * group while we hold the reader lock. 19663 */ 19664 rw_enter(&ill_g_lock, RW_READER); 19665 if ((illgrp = ill->ill_group) == NULL) { 19666 rw_exit(&ill_g_lock); 19667 ill_refhold(ill); 19668 return (ill); 19669 } 19670 19671 illcnt = illgrp->illgrp_ill_count; 19672 mutex_enter(&illgrp->illgrp_lock); 19673 retill = illgrp->illgrp_ill_schednext; 19674 19675 if (retill == NULL) 19676 retill = illgrp->illgrp_ill; 19677 19678 /* 19679 * We do a circular search beginning at illgrp_ill_schednext 19680 * or illgrp_ill. We don't check the flags against the ill lock 19681 * since it can change anytime. The ire creation will be atomic 19682 * and will fail if the ill is FAILED or OFFLINE. 19683 */ 19684 for (i = 0; i < illcnt; i++) { 19685 flags = retill->ill_phyint->phyint_flags; 19686 19687 if (!(flags & (PHYI_FAILED|PHYI_INACTIVE|PHYI_OFFLINE)) && 19688 ILL_CAN_LOOKUP(retill)) { 19689 illgrp->illgrp_ill_schednext = retill->ill_group_next; 19690 ill_refhold(retill); 19691 break; 19692 } 19693 retill = retill->ill_group_next; 19694 if (retill == NULL) 19695 retill = illgrp->illgrp_ill; 19696 } 19697 mutex_exit(&illgrp->illgrp_lock); 19698 rw_exit(&ill_g_lock); 19699 19700 return (i == illcnt ? NULL : retill); 19701 } 19702 19703 /* 19704 * Checks for availbility of a usable source address (if there is one) when the 19705 * destination ILL has the ill_usesrc_ifindex pointing to another ILL. Note 19706 * this selection is done regardless of the destination. 19707 */ 19708 boolean_t 19709 ipif_usesrc_avail(ill_t *ill, zoneid_t zoneid) 19710 { 19711 uint_t ifindex; 19712 ipif_t *ipif = NULL; 19713 ill_t *uill; 19714 boolean_t isv6; 19715 19716 ASSERT(ill != NULL); 19717 19718 isv6 = ill->ill_isv6; 19719 ifindex = ill->ill_usesrc_ifindex; 19720 if (ifindex != 0) { 19721 uill = ill_lookup_on_ifindex(ifindex, isv6, NULL, NULL, NULL, 19722 NULL); 19723 if (uill == NULL) 19724 return (NULL); 19725 mutex_enter(&uill->ill_lock); 19726 for (ipif = uill->ill_ipif; ipif != NULL; 19727 ipif = ipif->ipif_next) { 19728 if (!IPIF_CAN_LOOKUP(ipif)) 19729 continue; 19730 if (ipif->ipif_flags & (IPIF_NOLOCAL|IPIF_ANYCAST)) 19731 continue; 19732 if (!(ipif->ipif_flags & IPIF_UP)) 19733 continue; 19734 if (ipif->ipif_zoneid != zoneid) 19735 continue; 19736 if ((isv6 && 19737 IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6lcl_addr)) || 19738 (ipif->ipif_lcl_addr == INADDR_ANY)) 19739 continue; 19740 mutex_exit(&uill->ill_lock); 19741 ill_refrele(uill); 19742 return (B_TRUE); 19743 } 19744 mutex_exit(&uill->ill_lock); 19745 ill_refrele(uill); 19746 } 19747 return (B_FALSE); 19748 } 19749 19750 /* 19751 * Determine the best source address given a destination address and an ill. 19752 * Prefers non-deprecated over deprecated but will return a deprecated 19753 * address if there is no other choice. If there is a usable source address 19754 * on the interface pointed to by ill_usesrc_ifindex then that is given 19755 * first preference. 19756 * 19757 * Returns NULL if there is no suitable source address for the ill. 19758 * This only occurs when there is no valid source address for the ill. 19759 */ 19760 ipif_t * 19761 ipif_select_source(ill_t *ill, ipaddr_t dst, zoneid_t zoneid) 19762 { 19763 ipif_t *ipif; 19764 ipif_t *ipif_dep = NULL; /* Fallback to deprecated */ 19765 ipif_t *ipif_arr[MAX_IPIF_SELECT_SOURCE]; 19766 int index = 0; 19767 boolean_t wrapped = B_FALSE; 19768 boolean_t same_subnet_only = B_FALSE; 19769 boolean_t ipif_same_found, ipif_other_found; 19770 boolean_t specific_found; 19771 ill_t *till, *usill = NULL; 19772 tsol_tpc_t *src_rhtp, *dst_rhtp; 19773 19774 if (ill->ill_usesrc_ifindex != 0) { 19775 usill = ill_lookup_on_ifindex(ill->ill_usesrc_ifindex, B_FALSE, 19776 NULL, NULL, NULL, NULL); 19777 if (usill != NULL) 19778 ill = usill; /* Select source from usesrc ILL */ 19779 else 19780 return (NULL); 19781 } 19782 19783 /* 19784 * If we're dealing with an unlabeled destination on a labeled system, 19785 * make sure that we ignore source addresses that are incompatible with 19786 * the destination's default label. That destination's default label 19787 * must dominate the minimum label on the source address. 19788 */ 19789 dst_rhtp = NULL; 19790 if (is_system_labeled()) { 19791 dst_rhtp = find_tpc(&dst, IPV4_VERSION, B_FALSE); 19792 if (dst_rhtp == NULL) 19793 return (NULL); 19794 if (dst_rhtp->tpc_tp.host_type != UNLABELED) { 19795 TPC_RELE(dst_rhtp); 19796 dst_rhtp = NULL; 19797 } 19798 } 19799 19800 /* 19801 * Holds the ill_g_lock as reader. This makes sure that no ipif/ill 19802 * can be deleted. But an ipif/ill can get CONDEMNED any time. 19803 * After selecting the right ipif, under ill_lock make sure ipif is 19804 * not condemned, and increment refcnt. If ipif is CONDEMNED, 19805 * we retry. Inside the loop we still need to check for CONDEMNED, 19806 * but not under a lock. 19807 */ 19808 rw_enter(&ill_g_lock, RW_READER); 19809 19810 retry: 19811 till = ill; 19812 ipif_arr[0] = NULL; 19813 19814 if (till->ill_group != NULL) 19815 till = till->ill_group->illgrp_ill; 19816 19817 /* 19818 * Choose one good source address from each ill across the group. 19819 * If possible choose a source address in the same subnet as 19820 * the destination address. 19821 * 19822 * We don't check for PHYI_FAILED or PHYI_INACTIVE or PHYI_OFFLINE 19823 * This is okay because of the following. 19824 * 19825 * If PHYI_FAILED is set and we still have non-deprecated 19826 * addresses, it means the addresses have not yet been 19827 * failed over to a different interface. We potentially 19828 * select them to create IRE_CACHES, which will be later 19829 * flushed when the addresses move over. 19830 * 19831 * If PHYI_INACTIVE is set and we still have non-deprecated 19832 * addresses, it means either the user has configured them 19833 * or PHYI_INACTIVE has not been cleared after the addresses 19834 * been moved over. For the former, in.mpathd does a failover 19835 * when the interface becomes INACTIVE and hence we should 19836 * not find them. Once INACTIVE is set, we don't allow them 19837 * to create logical interfaces anymore. For the latter, a 19838 * flush will happen when INACTIVE is cleared which will 19839 * flush the IRE_CACHES. 19840 * 19841 * If PHYI_OFFLINE is set, all the addresses will be failed 19842 * over soon. We potentially select them to create IRE_CACHEs, 19843 * which will be later flushed when the addresses move over. 19844 * 19845 * NOTE : As ipif_select_source is called to borrow source address 19846 * for an ipif that is part of a group, source address selection 19847 * will be re-done whenever the group changes i.e either an 19848 * insertion/deletion in the group. 19849 * 19850 * Fill ipif_arr[] with source addresses, using these rules: 19851 * 19852 * 1. At most one source address from a given ill ends up 19853 * in ipif_arr[] -- that is, at most one of the ipif's 19854 * associated with a given ill ends up in ipif_arr[]. 19855 * 19856 * 2. If there is at least one non-deprecated ipif in the 19857 * IPMP group with a source address on the same subnet as 19858 * our destination, then fill ipif_arr[] only with 19859 * source addresses on the same subnet as our destination. 19860 * Note that because of (1), only the first 19861 * non-deprecated ipif found with a source address 19862 * matching the destination ends up in ipif_arr[]. 19863 * 19864 * 3. Otherwise, fill ipif_arr[] with non-deprecated source 19865 * addresses not in the same subnet as our destination. 19866 * Again, because of (1), only the first off-subnet source 19867 * address will be chosen. 19868 * 19869 * 4. If there are no non-deprecated ipifs, then just use 19870 * the source address associated with the last deprecated 19871 * one we find that happens to be on the same subnet, 19872 * otherwise the first one not in the same subnet. 19873 */ 19874 specific_found = B_FALSE; 19875 for (; till != NULL; till = till->ill_group_next) { 19876 ipif_same_found = B_FALSE; 19877 ipif_other_found = B_FALSE; 19878 for (ipif = till->ill_ipif; ipif != NULL; 19879 ipif = ipif->ipif_next) { 19880 if (!IPIF_CAN_LOOKUP(ipif)) 19881 continue; 19882 /* Always skip NOLOCAL and ANYCAST interfaces */ 19883 if (ipif->ipif_flags & (IPIF_NOLOCAL|IPIF_ANYCAST)) 19884 continue; 19885 if (!(ipif->ipif_flags & IPIF_UP)) 19886 continue; 19887 if (ipif->ipif_zoneid != zoneid && 19888 ipif->ipif_zoneid != ALL_ZONES) 19889 continue; 19890 /* 19891 * Interfaces with 0.0.0.0 address are allowed to be UP, 19892 * but are not valid as source addresses. 19893 */ 19894 if (ipif->ipif_lcl_addr == INADDR_ANY) 19895 continue; 19896 19897 /* 19898 * Check compatibility of local address for 19899 * destination's default label if we're on a labeled 19900 * system. Incompatible addresses can't be used at 19901 * all. 19902 */ 19903 if (dst_rhtp != NULL) { 19904 boolean_t incompat; 19905 19906 src_rhtp = find_tpc(&ipif->ipif_lcl_addr, 19907 IPV4_VERSION, B_FALSE); 19908 if (src_rhtp == NULL) 19909 continue; 19910 incompat = 19911 src_rhtp->tpc_tp.host_type != SUN_CIPSO || 19912 src_rhtp->tpc_tp.tp_doi != 19913 dst_rhtp->tpc_tp.tp_doi || 19914 (!_blinrange(&dst_rhtp->tpc_tp.tp_def_label, 19915 &src_rhtp->tpc_tp.tp_sl_range_cipso) && 19916 !blinlset(&dst_rhtp->tpc_tp.tp_def_label, 19917 src_rhtp->tpc_tp.tp_sl_set_cipso)); 19918 TPC_RELE(src_rhtp); 19919 if (incompat) 19920 continue; 19921 } 19922 19923 /* 19924 * We prefer not to use all all-zones addresses, if we 19925 * can avoid it, as they pose problems with unlabeled 19926 * destinations. 19927 */ 19928 if (ipif->ipif_zoneid != ALL_ZONES) { 19929 if (!specific_found && 19930 (!same_subnet_only || 19931 (ipif->ipif_net_mask & dst) == 19932 ipif->ipif_subnet)) { 19933 index = 0; 19934 specific_found = B_TRUE; 19935 ipif_other_found = B_FALSE; 19936 } 19937 } else { 19938 if (specific_found) 19939 continue; 19940 } 19941 if (ipif->ipif_flags & IPIF_DEPRECATED) { 19942 if (ipif_dep == NULL || 19943 (ipif->ipif_net_mask & dst) == 19944 ipif->ipif_subnet) 19945 ipif_dep = ipif; 19946 continue; 19947 } 19948 if ((ipif->ipif_net_mask & dst) == ipif->ipif_subnet) { 19949 /* found a source address in the same subnet */ 19950 if (!same_subnet_only) { 19951 same_subnet_only = B_TRUE; 19952 index = 0; 19953 } 19954 ipif_same_found = B_TRUE; 19955 } else { 19956 if (same_subnet_only || ipif_other_found) 19957 continue; 19958 ipif_other_found = B_TRUE; 19959 } 19960 ipif_arr[index++] = ipif; 19961 if (index == MAX_IPIF_SELECT_SOURCE) { 19962 wrapped = B_TRUE; 19963 index = 0; 19964 } 19965 if (ipif_same_found) 19966 break; 19967 } 19968 } 19969 19970 if (ipif_arr[0] == NULL) { 19971 ipif = ipif_dep; 19972 } else { 19973 if (wrapped) 19974 index = MAX_IPIF_SELECT_SOURCE; 19975 ipif = ipif_arr[ipif_rand() % index]; 19976 ASSERT(ipif != NULL); 19977 } 19978 19979 if (ipif != NULL) { 19980 mutex_enter(&ipif->ipif_ill->ill_lock); 19981 if (!IPIF_CAN_LOOKUP(ipif)) { 19982 mutex_exit(&ipif->ipif_ill->ill_lock); 19983 goto retry; 19984 } 19985 ipif_refhold_locked(ipif); 19986 mutex_exit(&ipif->ipif_ill->ill_lock); 19987 } 19988 19989 rw_exit(&ill_g_lock); 19990 if (usill != NULL) 19991 ill_refrele(usill); 19992 if (dst_rhtp != NULL) 19993 TPC_RELE(dst_rhtp); 19994 19995 #ifdef DEBUG 19996 if (ipif == NULL) { 19997 char buf1[INET6_ADDRSTRLEN]; 19998 19999 ip1dbg(("ipif_select_source(%s, %s) -> NULL\n", 20000 ill->ill_name, 20001 inet_ntop(AF_INET, &dst, buf1, sizeof (buf1)))); 20002 } else { 20003 char buf1[INET6_ADDRSTRLEN]; 20004 char buf2[INET6_ADDRSTRLEN]; 20005 20006 ip1dbg(("ipif_select_source(%s, %s) -> %s\n", 20007 ipif->ipif_ill->ill_name, 20008 inet_ntop(AF_INET, &dst, buf1, sizeof (buf1)), 20009 inet_ntop(AF_INET, &ipif->ipif_lcl_addr, 20010 buf2, sizeof (buf2)))); 20011 } 20012 #endif /* DEBUG */ 20013 return (ipif); 20014 } 20015 20016 20017 /* 20018 * If old_ipif is not NULL, see if ipif was derived from old 20019 * ipif and if so, recreate the interface route by re-doing 20020 * source address selection. This happens when ipif_down -> 20021 * ipif_update_other_ipifs calls us. 20022 * 20023 * If old_ipif is NULL, just redo the source address selection 20024 * if needed. This happens when illgrp_insert or ipif_up_done 20025 * calls us. 20026 */ 20027 static void 20028 ipif_recreate_interface_routes(ipif_t *old_ipif, ipif_t *ipif) 20029 { 20030 ire_t *ire; 20031 ire_t *ipif_ire; 20032 queue_t *stq; 20033 ipif_t *nipif; 20034 ill_t *ill; 20035 boolean_t need_rele = B_FALSE; 20036 20037 ASSERT(old_ipif == NULL || IAM_WRITER_IPIF(old_ipif)); 20038 ASSERT(IAM_WRITER_IPIF(ipif)); 20039 20040 ill = ipif->ipif_ill; 20041 if (!(ipif->ipif_flags & 20042 (IPIF_NOLOCAL|IPIF_ANYCAST|IPIF_DEPRECATED))) { 20043 /* 20044 * Can't possibly have borrowed the source 20045 * from old_ipif. 20046 */ 20047 return; 20048 } 20049 20050 /* 20051 * Is there any work to be done? No work if the address 20052 * is INADDR_ANY, loopback or NOLOCAL or ANYCAST ( 20053 * ipif_select_source() does not borrow addresses from 20054 * NOLOCAL and ANYCAST interfaces). 20055 */ 20056 if ((old_ipif != NULL) && 20057 ((old_ipif->ipif_lcl_addr == INADDR_ANY) || 20058 (old_ipif->ipif_ill->ill_wq == NULL) || 20059 (old_ipif->ipif_flags & 20060 (IPIF_NOLOCAL|IPIF_ANYCAST)))) { 20061 return; 20062 } 20063 20064 /* 20065 * Perform the same checks as when creating the 20066 * IRE_INTERFACE in ipif_up_done. 20067 */ 20068 if (!(ipif->ipif_flags & IPIF_UP)) 20069 return; 20070 20071 if ((ipif->ipif_flags & IPIF_NOXMIT) || 20072 (ipif->ipif_subnet == INADDR_ANY)) 20073 return; 20074 20075 ipif_ire = ipif_to_ire(ipif); 20076 if (ipif_ire == NULL) 20077 return; 20078 20079 /* 20080 * We know that ipif uses some other source for its 20081 * IRE_INTERFACE. Is it using the source of this 20082 * old_ipif? 20083 */ 20084 if (old_ipif != NULL && 20085 old_ipif->ipif_lcl_addr != ipif_ire->ire_src_addr) { 20086 ire_refrele(ipif_ire); 20087 return; 20088 } 20089 if (ip_debug > 2) { 20090 /* ip1dbg */ 20091 pr_addr_dbg("ipif_recreate_interface_routes: deleting IRE for" 20092 " src %s\n", AF_INET, &ipif_ire->ire_src_addr); 20093 } 20094 20095 stq = ipif_ire->ire_stq; 20096 20097 /* 20098 * Can't use our source address. Select a different 20099 * source address for the IRE_INTERFACE. 20100 */ 20101 nipif = ipif_select_source(ill, ipif->ipif_subnet, ipif->ipif_zoneid); 20102 if (nipif == NULL) { 20103 /* Last resort - all ipif's have IPIF_NOLOCAL */ 20104 nipif = ipif; 20105 } else { 20106 need_rele = B_TRUE; 20107 } 20108 20109 ire = ire_create( 20110 (uchar_t *)&ipif->ipif_subnet, /* dest pref */ 20111 (uchar_t *)&ipif->ipif_net_mask, /* mask */ 20112 (uchar_t *)&nipif->ipif_src_addr, /* src addr */ 20113 NULL, /* no gateway */ 20114 NULL, 20115 &ipif->ipif_mtu, /* max frag */ 20116 NULL, /* fast path header */ 20117 NULL, /* no recv from queue */ 20118 stq, /* send-to queue */ 20119 ill->ill_net_type, /* IF_[NO]RESOLVER */ 20120 ill->ill_resolver_mp, /* xmit header */ 20121 ipif, 20122 NULL, 20123 0, 20124 0, 20125 0, 20126 0, 20127 &ire_uinfo_null, 20128 NULL, 20129 NULL); 20130 20131 if (ire != NULL) { 20132 ire_t *ret_ire; 20133 int error; 20134 20135 /* 20136 * We don't need ipif_ire anymore. We need to delete 20137 * before we add so that ire_add does not detect 20138 * duplicates. 20139 */ 20140 ire_delete(ipif_ire); 20141 ret_ire = ire; 20142 error = ire_add(&ret_ire, NULL, NULL, NULL); 20143 ASSERT(error == 0); 20144 ASSERT(ire == ret_ire); 20145 /* Held in ire_add */ 20146 ire_refrele(ret_ire); 20147 } 20148 /* 20149 * Either we are falling through from above or could not 20150 * allocate a replacement. 20151 */ 20152 ire_refrele(ipif_ire); 20153 if (need_rele) 20154 ipif_refrele(nipif); 20155 } 20156 20157 /* 20158 * This old_ipif is going away. 20159 * 20160 * Determine if any other ipif's is using our address as 20161 * ipif_lcl_addr (due to those being IPIF_NOLOCAL, IPIF_ANYCAST, or 20162 * IPIF_DEPRECATED). 20163 * Find the IRE_INTERFACE for such ipifs and recreate them 20164 * to use an different source address following the rules in 20165 * ipif_up_done. 20166 * 20167 * This function takes an illgrp as an argument so that illgrp_delete 20168 * can call this to update source address even after deleting the 20169 * old_ipif->ipif_ill from the ill group. 20170 */ 20171 static void 20172 ipif_update_other_ipifs(ipif_t *old_ipif, ill_group_t *illgrp) 20173 { 20174 ipif_t *ipif; 20175 ill_t *ill; 20176 char buf[INET6_ADDRSTRLEN]; 20177 20178 ASSERT(IAM_WRITER_IPIF(old_ipif)); 20179 ASSERT(illgrp == NULL || IAM_WRITER_IPIF(old_ipif)); 20180 20181 ill = old_ipif->ipif_ill; 20182 20183 ip1dbg(("ipif_update_other_ipifs(%s, %s)\n", 20184 ill->ill_name, 20185 inet_ntop(AF_INET, &old_ipif->ipif_lcl_addr, 20186 buf, sizeof (buf)))); 20187 /* 20188 * If this part of a group, look at all ills as ipif_select_source 20189 * borrows source address across all the ills in the group. 20190 */ 20191 if (illgrp != NULL) 20192 ill = illgrp->illgrp_ill; 20193 20194 for (; ill != NULL; ill = ill->ill_group_next) { 20195 for (ipif = ill->ill_ipif; ipif != NULL; 20196 ipif = ipif->ipif_next) { 20197 20198 if (ipif == old_ipif) 20199 continue; 20200 20201 ipif_recreate_interface_routes(old_ipif, ipif); 20202 } 20203 } 20204 } 20205 20206 /* ARGSUSED */ 20207 int 20208 if_unitsel_restart(ipif_t *ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, 20209 ip_ioctl_cmd_t *ipip, void *dummy_ifreq) 20210 { 20211 /* 20212 * ill_phyint_reinit merged the v4 and v6 into a single 20213 * ipsq. Could also have become part of a ipmp group in the 20214 * process, and we might not have been able to complete the 20215 * operation in ipif_set_values, if we could not become 20216 * exclusive. If so restart it here. 20217 */ 20218 return (ipif_set_values_tail(ipif->ipif_ill, ipif, mp, q)); 20219 } 20220 20221 20222 /* ARGSUSED */ 20223 int 20224 if_unitsel(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, 20225 ip_ioctl_cmd_t *ipip, void *dummy_ifreq) 20226 { 20227 queue_t *q1 = q; 20228 char *cp; 20229 char interf_name[LIFNAMSIZ]; 20230 uint_t ppa = *(uint_t *)mp->b_cont->b_cont->b_rptr; 20231 20232 if (!q->q_next) { 20233 ip1dbg(( 20234 "if_unitsel: IF_UNITSEL: no q_next\n")); 20235 return (EINVAL); 20236 } 20237 20238 if (((ill_t *)(q->q_ptr))->ill_name[0] != '\0') 20239 return (EALREADY); 20240 20241 do { 20242 q1 = q1->q_next; 20243 } while (q1->q_next); 20244 cp = q1->q_qinfo->qi_minfo->mi_idname; 20245 (void) sprintf(interf_name, "%s%d", cp, ppa); 20246 20247 /* 20248 * Here we are not going to delay the ioack until after 20249 * ACKs from DL_ATTACH_REQ/DL_BIND_REQ. So no need to save the 20250 * original ioctl message before sending the requests. 20251 */ 20252 return (ipif_set_values(q, mp, interf_name, &ppa)); 20253 } 20254 20255 /* ARGSUSED */ 20256 int 20257 ip_sioctl_sifname(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, 20258 ip_ioctl_cmd_t *ipip, void *dummy_ifreq) 20259 { 20260 return (ENXIO); 20261 } 20262 20263 /* 20264 * Net and subnet broadcast ire's are now specific to the particular 20265 * physical interface (ill) and not to any one locigal interface (ipif). 20266 * However, if a particular logical interface is being taken down, it's 20267 * associated ire's will be taken down as well. Hence, when we go to 20268 * take down or change the local address, broadcast address or netmask 20269 * of a specific logical interface, we must check to make sure that we 20270 * have valid net and subnet broadcast ire's for the other logical 20271 * interfaces which may have been shared with the logical interface 20272 * being brought down or changed. 20273 * 20274 * There is one set of 0.0.0.0 and 255.255.255.255 per ill. Usually it 20275 * is tied to the first interface coming UP. If that ipif is going down, 20276 * we need to recreate them on the next valid ipif. 20277 * 20278 * Note: assume that the ipif passed in is still up so that it's IRE 20279 * entries are still valid. 20280 */ 20281 static void 20282 ipif_check_bcast_ires(ipif_t *test_ipif) 20283 { 20284 ipif_t *ipif; 20285 ire_t *test_subnet_ire, *test_net_ire; 20286 ire_t *test_allzero_ire, *test_allone_ire; 20287 ire_t *ire_array[12]; 20288 ire_t **irep = &ire_array[0]; 20289 ire_t **irep1; 20290 20291 ipaddr_t net_addr, subnet_addr, net_mask, subnet_mask; 20292 ipaddr_t test_net_addr, test_subnet_addr; 20293 ipaddr_t test_net_mask, test_subnet_mask; 20294 boolean_t need_net_bcast_ire = B_FALSE; 20295 boolean_t need_subnet_bcast_ire = B_FALSE; 20296 boolean_t allzero_bcast_ire_created = B_FALSE; 20297 boolean_t allone_bcast_ire_created = B_FALSE; 20298 boolean_t net_bcast_ire_created = B_FALSE; 20299 boolean_t subnet_bcast_ire_created = B_FALSE; 20300 20301 ipif_t *backup_ipif_net = (ipif_t *)NULL; 20302 ipif_t *backup_ipif_subnet = (ipif_t *)NULL; 20303 ipif_t *backup_ipif_allzeros = (ipif_t *)NULL; 20304 ipif_t *backup_ipif_allones = (ipif_t *)NULL; 20305 uint64_t check_flags = IPIF_DEPRECATED | IPIF_NOLOCAL | IPIF_ANYCAST; 20306 20307 ASSERT(!test_ipif->ipif_isv6); 20308 ASSERT(IAM_WRITER_IPIF(test_ipif)); 20309 20310 /* 20311 * No broadcast IREs for the LOOPBACK interface 20312 * or others such as point to point and IPIF_NOXMIT. 20313 */ 20314 if (!(test_ipif->ipif_flags & IPIF_BROADCAST) || 20315 (test_ipif->ipif_flags & IPIF_NOXMIT)) 20316 return; 20317 20318 test_allzero_ire = ire_ctable_lookup(0, 0, IRE_BROADCAST, 20319 test_ipif, ALL_ZONES, NULL, (MATCH_IRE_TYPE | MATCH_IRE_IPIF)); 20320 20321 test_allone_ire = ire_ctable_lookup(INADDR_BROADCAST, 0, IRE_BROADCAST, 20322 test_ipif, ALL_ZONES, NULL, (MATCH_IRE_TYPE | MATCH_IRE_IPIF)); 20323 20324 test_net_mask = ip_net_mask(test_ipif->ipif_subnet); 20325 test_subnet_mask = test_ipif->ipif_net_mask; 20326 20327 /* 20328 * If no net mask set, assume the default based on net class. 20329 */ 20330 if (test_subnet_mask == 0) 20331 test_subnet_mask = test_net_mask; 20332 20333 /* 20334 * Check if there is a network broadcast ire associated with this ipif 20335 */ 20336 test_net_addr = test_net_mask & test_ipif->ipif_subnet; 20337 test_net_ire = ire_ctable_lookup(test_net_addr, 0, IRE_BROADCAST, 20338 test_ipif, ALL_ZONES, NULL, (MATCH_IRE_TYPE | MATCH_IRE_IPIF)); 20339 20340 /* 20341 * Check if there is a subnet broadcast IRE associated with this ipif 20342 */ 20343 test_subnet_addr = test_subnet_mask & test_ipif->ipif_subnet; 20344 test_subnet_ire = ire_ctable_lookup(test_subnet_addr, 0, IRE_BROADCAST, 20345 test_ipif, ALL_ZONES, NULL, (MATCH_IRE_TYPE | MATCH_IRE_IPIF)); 20346 20347 /* 20348 * No broadcast ire's associated with this ipif. 20349 */ 20350 if ((test_subnet_ire == NULL) && (test_net_ire == NULL) && 20351 (test_allzero_ire == NULL) && (test_allone_ire == NULL)) { 20352 return; 20353 } 20354 20355 /* 20356 * We have established which bcast ires have to be replaced. 20357 * Next we try to locate ipifs that match there ires. 20358 * The rules are simple: If we find an ipif that matches on the subnet 20359 * address it will also match on the net address, the allzeros and 20360 * allones address. Any ipif that matches only on the net address will 20361 * also match the allzeros and allones addresses. 20362 * The other criterion is the ipif_flags. We look for non-deprecated 20363 * (and non-anycast and non-nolocal) ipifs as the best choice. 20364 * ipifs with check_flags matching (deprecated, etc) are used only 20365 * if good ipifs are not available. While looping, we save existing 20366 * deprecated ipifs as backup_ipif. 20367 * We loop through all the ipifs for this ill looking for ipifs 20368 * whose broadcast addr match the ipif passed in, but do not have 20369 * their own broadcast ires. For creating 0.0.0.0 and 20370 * 255.255.255.255 we just need an ipif on this ill to create. 20371 */ 20372 for (ipif = test_ipif->ipif_ill->ill_ipif; ipif != NULL; 20373 ipif = ipif->ipif_next) { 20374 20375 ASSERT(!ipif->ipif_isv6); 20376 /* 20377 * Already checked the ipif passed in. 20378 */ 20379 if (ipif == test_ipif) { 20380 continue; 20381 } 20382 20383 /* 20384 * We only need to recreate broadcast ires if another ipif in 20385 * the same zone uses them. The new ires must be created in the 20386 * same zone. 20387 */ 20388 if (ipif->ipif_zoneid != test_ipif->ipif_zoneid) { 20389 continue; 20390 } 20391 20392 /* 20393 * Only interested in logical interfaces with valid local 20394 * addresses or with the ability to broadcast. 20395 */ 20396 if ((ipif->ipif_subnet == 0) || 20397 !(ipif->ipif_flags & IPIF_BROADCAST) || 20398 (ipif->ipif_flags & IPIF_NOXMIT) || 20399 !(ipif->ipif_flags & IPIF_UP)) { 20400 continue; 20401 } 20402 /* 20403 * Check if there is a net broadcast ire for this 20404 * net address. If it turns out that the ipif we are 20405 * about to take down owns this ire, we must make a 20406 * new one because it is potentially going away. 20407 */ 20408 if (test_net_ire && (!net_bcast_ire_created)) { 20409 net_mask = ip_net_mask(ipif->ipif_subnet); 20410 net_addr = net_mask & ipif->ipif_subnet; 20411 if (net_addr == test_net_addr) { 20412 need_net_bcast_ire = B_TRUE; 20413 /* 20414 * Use DEPRECATED ipif only if no good 20415 * ires are available. subnet_addr is 20416 * a better match than net_addr. 20417 */ 20418 if ((ipif->ipif_flags & check_flags) && 20419 (backup_ipif_net == NULL)) { 20420 backup_ipif_net = ipif; 20421 } 20422 } 20423 } 20424 /* 20425 * Check if there is a subnet broadcast ire for this 20426 * net address. If it turns out that the ipif we are 20427 * about to take down owns this ire, we must make a 20428 * new one because it is potentially going away. 20429 */ 20430 if (test_subnet_ire && (!subnet_bcast_ire_created)) { 20431 subnet_mask = ipif->ipif_net_mask; 20432 subnet_addr = ipif->ipif_subnet; 20433 if (subnet_addr == test_subnet_addr) { 20434 need_subnet_bcast_ire = B_TRUE; 20435 if ((ipif->ipif_flags & check_flags) && 20436 (backup_ipif_subnet == NULL)) { 20437 backup_ipif_subnet = ipif; 20438 } 20439 } 20440 } 20441 20442 20443 /* Short circuit here if this ipif is deprecated */ 20444 if (ipif->ipif_flags & check_flags) { 20445 if ((test_allzero_ire != NULL) && 20446 (!allzero_bcast_ire_created) && 20447 (backup_ipif_allzeros == NULL)) { 20448 backup_ipif_allzeros = ipif; 20449 } 20450 if ((test_allone_ire != NULL) && 20451 (!allone_bcast_ire_created) && 20452 (backup_ipif_allones == NULL)) { 20453 backup_ipif_allones = ipif; 20454 } 20455 continue; 20456 } 20457 20458 /* 20459 * Found an ipif which has the same broadcast ire as the 20460 * ipif passed in and the ipif passed in "owns" the ire. 20461 * Create new broadcast ire's for this broadcast addr. 20462 */ 20463 if (need_net_bcast_ire && !net_bcast_ire_created) { 20464 irep = ire_create_bcast(ipif, net_addr, irep); 20465 irep = ire_create_bcast(ipif, 20466 ~net_mask | net_addr, irep); 20467 net_bcast_ire_created = B_TRUE; 20468 } 20469 if (need_subnet_bcast_ire && !subnet_bcast_ire_created) { 20470 irep = ire_create_bcast(ipif, subnet_addr, irep); 20471 irep = ire_create_bcast(ipif, 20472 ~subnet_mask | subnet_addr, irep); 20473 subnet_bcast_ire_created = B_TRUE; 20474 } 20475 if (test_allzero_ire != NULL && !allzero_bcast_ire_created) { 20476 irep = ire_create_bcast(ipif, 0, irep); 20477 allzero_bcast_ire_created = B_TRUE; 20478 } 20479 if (test_allone_ire != NULL && !allone_bcast_ire_created) { 20480 irep = ire_create_bcast(ipif, INADDR_BROADCAST, irep); 20481 allone_bcast_ire_created = B_TRUE; 20482 } 20483 /* 20484 * Once we have created all the appropriate ires, we 20485 * just break out of this loop to add what we have created. 20486 * This has been indented similar to ire_match_args for 20487 * readability. 20488 */ 20489 if (((test_net_ire == NULL) || 20490 (net_bcast_ire_created)) && 20491 ((test_subnet_ire == NULL) || 20492 (subnet_bcast_ire_created)) && 20493 ((test_allzero_ire == NULL) || 20494 (allzero_bcast_ire_created)) && 20495 ((test_allone_ire == NULL) || 20496 (allone_bcast_ire_created))) { 20497 break; 20498 } 20499 } 20500 20501 /* 20502 * Create bcast ires on deprecated ipifs if no non-deprecated ipifs 20503 * exist. 6 pairs of bcast ires are needed. 20504 * Note - the old ires are deleted in ipif_down. 20505 */ 20506 if (need_net_bcast_ire && !net_bcast_ire_created && backup_ipif_net) { 20507 ipif = backup_ipif_net; 20508 irep = ire_create_bcast(ipif, net_addr, irep); 20509 irep = ire_create_bcast(ipif, ~net_mask | net_addr, irep); 20510 net_bcast_ire_created = B_TRUE; 20511 } 20512 if (need_subnet_bcast_ire && !subnet_bcast_ire_created && 20513 backup_ipif_subnet) { 20514 ipif = backup_ipif_subnet; 20515 irep = ire_create_bcast(ipif, subnet_addr, irep); 20516 irep = ire_create_bcast(ipif, 20517 ~subnet_mask | subnet_addr, irep); 20518 subnet_bcast_ire_created = B_TRUE; 20519 } 20520 if (test_allzero_ire != NULL && !allzero_bcast_ire_created && 20521 backup_ipif_allzeros) { 20522 irep = ire_create_bcast(backup_ipif_allzeros, 0, irep); 20523 allzero_bcast_ire_created = B_TRUE; 20524 } 20525 if (test_allone_ire != NULL && !allone_bcast_ire_created && 20526 backup_ipif_allones) { 20527 irep = ire_create_bcast(backup_ipif_allones, 20528 INADDR_BROADCAST, irep); 20529 allone_bcast_ire_created = B_TRUE; 20530 } 20531 20532 /* 20533 * If we can't create all of them, don't add any of them. 20534 * Code in ip_wput_ire and ire_to_ill assumes that we 20535 * always have a non-loopback copy and loopback copy 20536 * for a given address. 20537 */ 20538 for (irep1 = irep; irep1 > ire_array; ) { 20539 irep1--; 20540 if (*irep1 == NULL) { 20541 ip0dbg(("ipif_check_bcast_ires: can't create " 20542 "IRE_BROADCAST, memory allocation failure\n")); 20543 while (irep > ire_array) { 20544 irep--; 20545 if (*irep != NULL) 20546 ire_delete(*irep); 20547 } 20548 goto bad; 20549 } 20550 } 20551 for (irep1 = irep; irep1 > ire_array; ) { 20552 int error; 20553 20554 irep1--; 20555 error = ire_add(irep1, NULL, NULL, NULL); 20556 if (error == 0) { 20557 ire_refrele(*irep1); /* Held in ire_add */ 20558 } 20559 } 20560 bad: 20561 if (test_allzero_ire != NULL) 20562 ire_refrele(test_allzero_ire); 20563 if (test_allone_ire != NULL) 20564 ire_refrele(test_allone_ire); 20565 if (test_net_ire != NULL) 20566 ire_refrele(test_net_ire); 20567 if (test_subnet_ire != NULL) 20568 ire_refrele(test_subnet_ire); 20569 } 20570 20571 /* 20572 * Extract both the flags (including IFF_CANTCHANGE) such as IFF_IPV* 20573 * from lifr_flags and the name from lifr_name. 20574 * Set IFF_IPV* and ill_isv6 prior to doing the lookup 20575 * since ipif_lookup_on_name uses the _isv6 flags when matching. 20576 * Returns EINPROGRESS when mp has been consumed by queueing it on 20577 * ill_pending_mp and the ioctl will complete in ip_rput. 20578 */ 20579 /* ARGSUSED */ 20580 int 20581 ip_sioctl_slifname(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 20582 ip_ioctl_cmd_t *ipip, void *if_req) 20583 { 20584 int err; 20585 ill_t *ill; 20586 struct lifreq *lifr = (struct lifreq *)if_req; 20587 20588 ASSERT(ipif != NULL); 20589 ip1dbg(("ip_sioctl_slifname %s\n", lifr->lifr_name)); 20590 ASSERT(q->q_next != NULL); 20591 20592 ill = (ill_t *)q->q_ptr; 20593 /* 20594 * If we are not writer on 'q' then this interface exists already 20595 * and previous lookups (ipif_extract_lifreq_cmn) found this ipif. 20596 * So return EALREADY 20597 */ 20598 if (ill != ipif->ipif_ill) 20599 return (EALREADY); 20600 20601 if (ill->ill_name[0] != '\0') 20602 return (EALREADY); 20603 20604 /* 20605 * Set all the flags. Allows all kinds of override. Provide some 20606 * sanity checking by not allowing IFF_BROADCAST and IFF_MULTICAST 20607 * unless there is either multicast/broadcast support in the driver 20608 * or it is a pt-pt link. 20609 */ 20610 if (lifr->lifr_flags & (IFF_PROMISC|IFF_ALLMULTI)) { 20611 /* Meaningless to IP thus don't allow them to be set. */ 20612 ip1dbg(("ip_setname: EINVAL 1\n")); 20613 return (EINVAL); 20614 } 20615 /* 20616 * For a DL_STYLE2 driver (ill_needs_attach), we would not have the 20617 * ill_bcast_addr_length info. 20618 */ 20619 if (!ill->ill_needs_attach && 20620 ((lifr->lifr_flags & IFF_MULTICAST) && 20621 !(lifr->lifr_flags & IFF_POINTOPOINT) && 20622 ill->ill_bcast_addr_length == 0)) { 20623 /* Link not broadcast/pt-pt capable i.e. no multicast */ 20624 ip1dbg(("ip_setname: EINVAL 2\n")); 20625 return (EINVAL); 20626 } 20627 if ((lifr->lifr_flags & IFF_BROADCAST) && 20628 ((lifr->lifr_flags & IFF_IPV6) || 20629 (!ill->ill_needs_attach && ill->ill_bcast_addr_length == 0))) { 20630 /* Link not broadcast capable or IPv6 i.e. no broadcast */ 20631 ip1dbg(("ip_setname: EINVAL 3\n")); 20632 return (EINVAL); 20633 } 20634 if (lifr->lifr_flags & IFF_UP) { 20635 /* Can only be set with SIOCSLIFFLAGS */ 20636 ip1dbg(("ip_setname: EINVAL 4\n")); 20637 return (EINVAL); 20638 } 20639 if ((lifr->lifr_flags & (IFF_IPV6|IFF_IPV4)) != IFF_IPV6 && 20640 (lifr->lifr_flags & (IFF_IPV6|IFF_IPV4)) != IFF_IPV4) { 20641 ip1dbg(("ip_setname: EINVAL 5\n")); 20642 return (EINVAL); 20643 } 20644 /* 20645 * Only allow the IFF_XRESOLV flag to be set on IPv6 interfaces. 20646 */ 20647 if ((lifr->lifr_flags & IFF_XRESOLV) && 20648 !(lifr->lifr_flags & IFF_IPV6) && 20649 !(ipif->ipif_isv6)) { 20650 ip1dbg(("ip_setname: EINVAL 6\n")); 20651 return (EINVAL); 20652 } 20653 20654 /* 20655 * The user has done SIOCGLIFFLAGS prior to this ioctl and hence 20656 * we have all the flags here. So, we assign rather than we OR. 20657 * We can't OR the flags here because we don't want to set 20658 * both IFF_IPV4 and IFF_IPV6. We start off as IFF_IPV4 in 20659 * ipif_allocate and become IFF_IPV4 or IFF_IPV6 here depending 20660 * on lifr_flags value here. 20661 */ 20662 /* 20663 * This ill has not been inserted into the global list. 20664 * So we are still single threaded and don't need any lock 20665 */ 20666 ipif->ipif_flags = lifr->lifr_flags & IFF_LOGINT_FLAGS; 20667 ill->ill_flags = lifr->lifr_flags & IFF_PHYINTINST_FLAGS; 20668 ill->ill_phyint->phyint_flags = lifr->lifr_flags & IFF_PHYINT_FLAGS; 20669 20670 /* We started off as V4. */ 20671 if (ill->ill_flags & ILLF_IPV6) { 20672 ill->ill_phyint->phyint_illv6 = ill; 20673 ill->ill_phyint->phyint_illv4 = NULL; 20674 } 20675 err = ipif_set_values(q, mp, lifr->lifr_name, &lifr->lifr_ppa); 20676 return (err); 20677 } 20678 20679 /* ARGSUSED */ 20680 int 20681 ip_sioctl_slifname_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 20682 ip_ioctl_cmd_t *ipip, void *if_req) 20683 { 20684 /* 20685 * ill_phyint_reinit merged the v4 and v6 into a single 20686 * ipsq. Could also have become part of a ipmp group in the 20687 * process, and we might not have been able to complete the 20688 * slifname in ipif_set_values, if we could not become 20689 * exclusive. If so restart it here 20690 */ 20691 return (ipif_set_values_tail(ipif->ipif_ill, ipif, mp, q)); 20692 } 20693 20694 /* 20695 * Return a pointer to the ipif which matches the index, IP version type and 20696 * zoneid. 20697 */ 20698 ipif_t * 20699 ipif_lookup_on_ifindex(uint_t index, boolean_t isv6, zoneid_t zoneid, 20700 queue_t *q, mblk_t *mp, ipsq_func_t func, int *err) 20701 { 20702 ill_t *ill; 20703 ipsq_t *ipsq; 20704 phyint_t *phyi; 20705 ipif_t *ipif; 20706 20707 ASSERT((q == NULL && mp == NULL && func == NULL && err == NULL) || 20708 (q != NULL && mp != NULL && func != NULL && err != NULL)); 20709 20710 if (err != NULL) 20711 *err = 0; 20712 20713 /* 20714 * Indexes are stored in the phyint - a common structure 20715 * to both IPv4 and IPv6. 20716 */ 20717 20718 rw_enter(&ill_g_lock, RW_READER); 20719 phyi = avl_find(&phyint_g_list.phyint_list_avl_by_index, 20720 (void *) &index, NULL); 20721 if (phyi != NULL) { 20722 ill = isv6 ? phyi->phyint_illv6 : phyi->phyint_illv4; 20723 if (ill == NULL) { 20724 rw_exit(&ill_g_lock); 20725 if (err != NULL) 20726 *err = ENXIO; 20727 return (NULL); 20728 } 20729 GRAB_CONN_LOCK(q); 20730 mutex_enter(&ill->ill_lock); 20731 if (ILL_CAN_LOOKUP(ill)) { 20732 for (ipif = ill->ill_ipif; ipif != NULL; 20733 ipif = ipif->ipif_next) { 20734 if (IPIF_CAN_LOOKUP(ipif) && 20735 (zoneid == ALL_ZONES || 20736 zoneid == ipif->ipif_zoneid || 20737 ipif->ipif_zoneid == ALL_ZONES)) { 20738 ipif_refhold_locked(ipif); 20739 mutex_exit(&ill->ill_lock); 20740 RELEASE_CONN_LOCK(q); 20741 rw_exit(&ill_g_lock); 20742 return (ipif); 20743 } 20744 } 20745 } else if (ILL_CAN_WAIT(ill, q)) { 20746 ipsq = ill->ill_phyint->phyint_ipsq; 20747 mutex_enter(&ipsq->ipsq_lock); 20748 rw_exit(&ill_g_lock); 20749 mutex_exit(&ill->ill_lock); 20750 ipsq_enq(ipsq, q, mp, func, NEW_OP, ill); 20751 mutex_exit(&ipsq->ipsq_lock); 20752 RELEASE_CONN_LOCK(q); 20753 *err = EINPROGRESS; 20754 return (NULL); 20755 } 20756 mutex_exit(&ill->ill_lock); 20757 RELEASE_CONN_LOCK(q); 20758 } 20759 rw_exit(&ill_g_lock); 20760 if (err != NULL) 20761 *err = ENXIO; 20762 return (NULL); 20763 } 20764 20765 typedef struct conn_change_s { 20766 uint_t cc_old_ifindex; 20767 uint_t cc_new_ifindex; 20768 } conn_change_t; 20769 20770 /* 20771 * ipcl_walk function for changing interface index. 20772 */ 20773 static void 20774 conn_change_ifindex(conn_t *connp, caddr_t arg) 20775 { 20776 conn_change_t *connc; 20777 uint_t old_ifindex; 20778 uint_t new_ifindex; 20779 int i; 20780 ilg_t *ilg; 20781 20782 connc = (conn_change_t *)arg; 20783 old_ifindex = connc->cc_old_ifindex; 20784 new_ifindex = connc->cc_new_ifindex; 20785 20786 if (connp->conn_orig_bound_ifindex == old_ifindex) 20787 connp->conn_orig_bound_ifindex = new_ifindex; 20788 20789 if (connp->conn_orig_multicast_ifindex == old_ifindex) 20790 connp->conn_orig_multicast_ifindex = new_ifindex; 20791 20792 if (connp->conn_orig_xmit_ifindex == old_ifindex) 20793 connp->conn_orig_xmit_ifindex = new_ifindex; 20794 20795 for (i = connp->conn_ilg_inuse - 1; i >= 0; i--) { 20796 ilg = &connp->conn_ilg[i]; 20797 if (ilg->ilg_orig_ifindex == old_ifindex) 20798 ilg->ilg_orig_ifindex = new_ifindex; 20799 } 20800 } 20801 20802 /* 20803 * Walk all the ipifs and ilms on this ill and change the orig_ifindex 20804 * to new_index if it matches the old_index. 20805 * 20806 * Failovers typically happen within a group of ills. But somebody 20807 * can remove an ill from the group after a failover happened. If 20808 * we are setting the ifindex after this, we potentially need to 20809 * look at all the ills rather than just the ones in the group. 20810 * We cut down the work by looking at matching ill_net_types 20811 * and ill_types as we could not possibly grouped them together. 20812 */ 20813 static void 20814 ip_change_ifindex(ill_t *ill_orig, conn_change_t *connc) 20815 { 20816 ill_t *ill; 20817 ipif_t *ipif; 20818 uint_t old_ifindex; 20819 uint_t new_ifindex; 20820 ilm_t *ilm; 20821 ill_walk_context_t ctx; 20822 20823 old_ifindex = connc->cc_old_ifindex; 20824 new_ifindex = connc->cc_new_ifindex; 20825 20826 rw_enter(&ill_g_lock, RW_READER); 20827 ill = ILL_START_WALK_ALL(&ctx); 20828 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 20829 if ((ill_orig->ill_net_type != ill->ill_net_type) || 20830 (ill_orig->ill_type != ill->ill_type)) { 20831 continue; 20832 } 20833 for (ipif = ill->ill_ipif; ipif != NULL; 20834 ipif = ipif->ipif_next) { 20835 if (ipif->ipif_orig_ifindex == old_ifindex) 20836 ipif->ipif_orig_ifindex = new_ifindex; 20837 } 20838 for (ilm = ill->ill_ilm; ilm != NULL; ilm = ilm->ilm_next) { 20839 if (ilm->ilm_orig_ifindex == old_ifindex) 20840 ilm->ilm_orig_ifindex = new_ifindex; 20841 } 20842 } 20843 rw_exit(&ill_g_lock); 20844 } 20845 20846 /* 20847 * We first need to ensure that the new index is unique, and 20848 * then carry the change across both v4 and v6 ill representation 20849 * of the physical interface. 20850 */ 20851 /* ARGSUSED */ 20852 int 20853 ip_sioctl_slifindex(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 20854 ip_ioctl_cmd_t *ipip, void *ifreq) 20855 { 20856 ill_t *ill; 20857 ill_t *ill_other; 20858 phyint_t *phyi; 20859 int old_index; 20860 conn_change_t connc; 20861 struct ifreq *ifr = (struct ifreq *)ifreq; 20862 struct lifreq *lifr = (struct lifreq *)ifreq; 20863 uint_t index; 20864 ill_t *ill_v4; 20865 ill_t *ill_v6; 20866 20867 if (ipip->ipi_cmd_type == IF_CMD) 20868 index = ifr->ifr_index; 20869 else 20870 index = lifr->lifr_index; 20871 20872 /* 20873 * Only allow on physical interface. Also, index zero is illegal. 20874 * 20875 * Need to check for PHYI_FAILED and PHYI_INACTIVE 20876 * 20877 * 1) If PHYI_FAILED is set, a failover could have happened which 20878 * implies a possible failback might have to happen. As failback 20879 * depends on the old index, we should fail setting the index. 20880 * 20881 * 2) If PHYI_INACTIVE is set, in.mpathd does a failover so that 20882 * any addresses or multicast memberships are failed over to 20883 * a non-STANDBY interface. As failback depends on the old 20884 * index, we should fail setting the index for this case also. 20885 * 20886 * 3) If PHYI_OFFLINE is set, a possible failover has happened. 20887 * Be consistent with PHYI_FAILED and fail the ioctl. 20888 */ 20889 ill = ipif->ipif_ill; 20890 phyi = ill->ill_phyint; 20891 if ((phyi->phyint_flags & (PHYI_FAILED|PHYI_INACTIVE|PHYI_OFFLINE)) || 20892 ipif->ipif_id != 0 || index == 0) { 20893 return (EINVAL); 20894 } 20895 old_index = phyi->phyint_ifindex; 20896 20897 /* If the index is not changing, no work to do */ 20898 if (old_index == index) 20899 return (0); 20900 20901 /* 20902 * Use ill_lookup_on_ifindex to determine if the 20903 * new index is unused and if so allow the change. 20904 */ 20905 ill_v6 = ill_lookup_on_ifindex(index, B_TRUE, NULL, NULL, NULL, NULL); 20906 ill_v4 = ill_lookup_on_ifindex(index, B_FALSE, NULL, NULL, NULL, NULL); 20907 if (ill_v6 != NULL || ill_v4 != NULL) { 20908 if (ill_v4 != NULL) 20909 ill_refrele(ill_v4); 20910 if (ill_v6 != NULL) 20911 ill_refrele(ill_v6); 20912 return (EBUSY); 20913 } 20914 20915 /* 20916 * The new index is unused. Set it in the phyint. 20917 * Locate the other ill so that we can send a routing 20918 * sockets message. 20919 */ 20920 if (ill->ill_isv6) { 20921 ill_other = phyi->phyint_illv4; 20922 } else { 20923 ill_other = phyi->phyint_illv6; 20924 } 20925 20926 phyi->phyint_ifindex = index; 20927 20928 connc.cc_old_ifindex = old_index; 20929 connc.cc_new_ifindex = index; 20930 ip_change_ifindex(ill, &connc); 20931 ipcl_walk(conn_change_ifindex, (caddr_t)&connc); 20932 20933 /* Send the routing sockets message */ 20934 ip_rts_ifmsg(ipif); 20935 if (ill_other != NULL) 20936 ip_rts_ifmsg(ill_other->ill_ipif); 20937 20938 return (0); 20939 } 20940 20941 /* ARGSUSED */ 20942 int 20943 ip_sioctl_get_lifindex(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 20944 ip_ioctl_cmd_t *ipip, void *ifreq) 20945 { 20946 struct ifreq *ifr = (struct ifreq *)ifreq; 20947 struct lifreq *lifr = (struct lifreq *)ifreq; 20948 20949 ip1dbg(("ip_sioctl_get_lifindex(%s:%u %p)\n", 20950 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 20951 /* Get the interface index */ 20952 if (ipip->ipi_cmd_type == IF_CMD) { 20953 ifr->ifr_index = ipif->ipif_ill->ill_phyint->phyint_ifindex; 20954 } else { 20955 lifr->lifr_index = ipif->ipif_ill->ill_phyint->phyint_ifindex; 20956 } 20957 return (0); 20958 } 20959 20960 /* ARGSUSED */ 20961 int 20962 ip_sioctl_get_lifzone(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 20963 ip_ioctl_cmd_t *ipip, void *ifreq) 20964 { 20965 struct lifreq *lifr = (struct lifreq *)ifreq; 20966 20967 ip1dbg(("ip_sioctl_get_lifzone(%s:%u %p)\n", 20968 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 20969 /* Get the interface zone */ 20970 ASSERT(ipip->ipi_cmd_type == LIF_CMD); 20971 lifr->lifr_zoneid = ipif->ipif_zoneid; 20972 return (0); 20973 } 20974 20975 /* 20976 * Set the zoneid of an interface. 20977 */ 20978 /* ARGSUSED */ 20979 int 20980 ip_sioctl_slifzone(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 20981 ip_ioctl_cmd_t *ipip, void *ifreq) 20982 { 20983 struct lifreq *lifr = (struct lifreq *)ifreq; 20984 int err = 0; 20985 boolean_t need_up = B_FALSE; 20986 zone_t *zptr; 20987 zone_status_t status; 20988 zoneid_t zoneid; 20989 20990 ASSERT(ipip->ipi_cmd_type == LIF_CMD); 20991 if ((zoneid = lifr->lifr_zoneid) == ALL_ZONES) { 20992 if (!is_system_labeled()) 20993 return (ENOTSUP); 20994 zoneid = GLOBAL_ZONEID; 20995 } 20996 20997 /* cannot assign instance zero to a non-global zone */ 20998 if (ipif->ipif_id == 0 && zoneid != GLOBAL_ZONEID) 20999 return (ENOTSUP); 21000 21001 /* 21002 * Cannot assign to a zone that doesn't exist or is shutting down. In 21003 * the event of a race with the zone shutdown processing, since IP 21004 * serializes this ioctl and SIOCGLIFCONF/SIOCLIFREMOVEIF, we know the 21005 * interface will be cleaned up even if the zone is shut down 21006 * immediately after the status check. If the interface can't be brought 21007 * down right away, and the zone is shut down before the restart 21008 * function is called, we resolve the possible races by rechecking the 21009 * zone status in the restart function. 21010 */ 21011 if ((zptr = zone_find_by_id(zoneid)) == NULL) 21012 return (EINVAL); 21013 status = zone_status_get(zptr); 21014 zone_rele(zptr); 21015 21016 if (status != ZONE_IS_READY && status != ZONE_IS_RUNNING) 21017 return (EINVAL); 21018 21019 if (ipif->ipif_flags & IPIF_UP) { 21020 /* 21021 * If the interface is already marked up, 21022 * we call ipif_down which will take care 21023 * of ditching any IREs that have been set 21024 * up based on the old interface address. 21025 */ 21026 err = ipif_logical_down(ipif, q, mp); 21027 if (err == EINPROGRESS) 21028 return (err); 21029 ipif_down_tail(ipif); 21030 need_up = B_TRUE; 21031 } 21032 21033 err = ip_sioctl_slifzone_tail(ipif, lifr->lifr_zoneid, q, mp, need_up); 21034 return (err); 21035 } 21036 21037 static int 21038 ip_sioctl_slifzone_tail(ipif_t *ipif, zoneid_t zoneid, 21039 queue_t *q, mblk_t *mp, boolean_t need_up) 21040 { 21041 int err = 0; 21042 21043 ip1dbg(("ip_sioctl_zoneid_tail(%s:%u %p)\n", 21044 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 21045 21046 /* Set the new zone id. */ 21047 ipif->ipif_zoneid = zoneid; 21048 21049 /* Update sctp list */ 21050 sctp_update_ipif(ipif, SCTP_IPIF_UPDATE); 21051 21052 if (need_up) { 21053 /* 21054 * Now bring the interface back up. If this 21055 * is the only IPIF for the ILL, ipif_up 21056 * will have to re-bind to the device, so 21057 * we may get back EINPROGRESS, in which 21058 * case, this IOCTL will get completed in 21059 * ip_rput_dlpi when we see the DL_BIND_ACK. 21060 */ 21061 err = ipif_up(ipif, q, mp); 21062 } 21063 return (err); 21064 } 21065 21066 /* ARGSUSED */ 21067 int 21068 ip_sioctl_slifzone_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 21069 ip_ioctl_cmd_t *ipip, void *if_req) 21070 { 21071 struct lifreq *lifr = (struct lifreq *)if_req; 21072 zoneid_t zoneid; 21073 zone_t *zptr; 21074 zone_status_t status; 21075 21076 ASSERT(ipif->ipif_id != 0); 21077 ASSERT(ipip->ipi_cmd_type == LIF_CMD); 21078 if ((zoneid = lifr->lifr_zoneid) == ALL_ZONES) 21079 zoneid = GLOBAL_ZONEID; 21080 21081 ip1dbg(("ip_sioctl_slifzone_restart(%s:%u %p)\n", 21082 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 21083 21084 /* 21085 * We recheck the zone status to resolve the following race condition: 21086 * 1) process sends SIOCSLIFZONE to put hme0:1 in zone "myzone"; 21087 * 2) hme0:1 is up and can't be brought down right away; 21088 * ip_sioctl_slifzone() returns EINPROGRESS and the request is queued; 21089 * 3) zone "myzone" is halted; the zone status switches to 21090 * 'shutting_down' and the zones framework sends SIOCGLIFCONF to list 21091 * the interfaces to remove - hme0:1 is not returned because it's not 21092 * yet in "myzone", so it won't be removed; 21093 * 4) the restart function for SIOCSLIFZONE is called; without the 21094 * status check here, we would have hme0:1 in "myzone" after it's been 21095 * destroyed. 21096 * Note that if the status check fails, we need to bring the interface 21097 * back to its state prior to ip_sioctl_slifzone(), hence the call to 21098 * ipif_up_done[_v6](). 21099 */ 21100 status = ZONE_IS_UNINITIALIZED; 21101 if ((zptr = zone_find_by_id(zoneid)) != NULL) { 21102 status = zone_status_get(zptr); 21103 zone_rele(zptr); 21104 } 21105 if (status != ZONE_IS_READY && status != ZONE_IS_RUNNING) { 21106 if (ipif->ipif_isv6) { 21107 (void) ipif_up_done_v6(ipif); 21108 } else { 21109 (void) ipif_up_done(ipif); 21110 } 21111 return (EINVAL); 21112 } 21113 21114 ipif_down_tail(ipif); 21115 21116 return (ip_sioctl_slifzone_tail(ipif, lifr->lifr_zoneid, q, mp, 21117 B_TRUE)); 21118 } 21119 21120 /* ARGSUSED */ 21121 int 21122 ip_sioctl_get_lifusesrc(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 21123 ip_ioctl_cmd_t *ipip, void *ifreq) 21124 { 21125 struct lifreq *lifr = ifreq; 21126 21127 ASSERT(q->q_next == NULL); 21128 ASSERT(CONN_Q(q)); 21129 21130 ip1dbg(("ip_sioctl_get_lifusesrc(%s:%u %p)\n", 21131 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 21132 lifr->lifr_index = ipif->ipif_ill->ill_usesrc_ifindex; 21133 ip1dbg(("ip_sioctl_get_lifusesrc:lifr_index = %d\n", lifr->lifr_index)); 21134 21135 return (0); 21136 } 21137 21138 21139 /* Find the previous ILL in this usesrc group */ 21140 static ill_t * 21141 ill_prev_usesrc(ill_t *uill) 21142 { 21143 ill_t *ill; 21144 21145 for (ill = uill->ill_usesrc_grp_next; 21146 ASSERT(ill), ill->ill_usesrc_grp_next != uill; 21147 ill = ill->ill_usesrc_grp_next) 21148 /* do nothing */; 21149 return (ill); 21150 } 21151 21152 /* 21153 * Release all members of the usesrc group. This routine is called 21154 * from ill_delete when the interface being unplumbed is the 21155 * group head. 21156 */ 21157 static void 21158 ill_disband_usesrc_group(ill_t *uill) 21159 { 21160 ill_t *next_ill, *tmp_ill; 21161 ASSERT(RW_WRITE_HELD(&ill_g_usesrc_lock)); 21162 next_ill = uill->ill_usesrc_grp_next; 21163 21164 do { 21165 ASSERT(next_ill != NULL); 21166 tmp_ill = next_ill->ill_usesrc_grp_next; 21167 ASSERT(tmp_ill != NULL); 21168 next_ill->ill_usesrc_grp_next = NULL; 21169 next_ill->ill_usesrc_ifindex = 0; 21170 next_ill = tmp_ill; 21171 } while (next_ill->ill_usesrc_ifindex != 0); 21172 uill->ill_usesrc_grp_next = NULL; 21173 } 21174 21175 /* 21176 * Remove the client usesrc ILL from the list and relink to a new list 21177 */ 21178 int 21179 ill_relink_usesrc_ills(ill_t *ucill, ill_t *uill, uint_t ifindex) 21180 { 21181 ill_t *ill, *tmp_ill; 21182 21183 ASSERT((ucill != NULL) && (ucill->ill_usesrc_grp_next != NULL) && 21184 (uill != NULL) && RW_WRITE_HELD(&ill_g_usesrc_lock)); 21185 21186 /* 21187 * Check if the usesrc client ILL passed in is not already 21188 * in use as a usesrc ILL i.e one whose source address is 21189 * in use OR a usesrc ILL is not already in use as a usesrc 21190 * client ILL 21191 */ 21192 if ((ucill->ill_usesrc_ifindex == 0) || 21193 (uill->ill_usesrc_ifindex != 0)) { 21194 return (-1); 21195 } 21196 21197 ill = ill_prev_usesrc(ucill); 21198 ASSERT(ill->ill_usesrc_grp_next != NULL); 21199 21200 /* Remove from the current list */ 21201 if (ill->ill_usesrc_grp_next->ill_usesrc_grp_next == ill) { 21202 /* Only two elements in the list */ 21203 ASSERT(ill->ill_usesrc_ifindex == 0); 21204 ill->ill_usesrc_grp_next = NULL; 21205 } else { 21206 ill->ill_usesrc_grp_next = ucill->ill_usesrc_grp_next; 21207 } 21208 21209 if (ifindex == 0) { 21210 ucill->ill_usesrc_ifindex = 0; 21211 ucill->ill_usesrc_grp_next = NULL; 21212 return (0); 21213 } 21214 21215 ucill->ill_usesrc_ifindex = ifindex; 21216 tmp_ill = uill->ill_usesrc_grp_next; 21217 uill->ill_usesrc_grp_next = ucill; 21218 ucill->ill_usesrc_grp_next = 21219 (tmp_ill != NULL) ? tmp_ill : uill; 21220 return (0); 21221 } 21222 21223 /* 21224 * Set the ill_usesrc and ill_usesrc_head fields. See synchronization notes in 21225 * ip.c for locking details. 21226 */ 21227 /* ARGSUSED */ 21228 int 21229 ip_sioctl_slifusesrc(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 21230 ip_ioctl_cmd_t *ipip, void *ifreq) 21231 { 21232 struct lifreq *lifr = (struct lifreq *)ifreq; 21233 boolean_t isv6 = B_FALSE, reset_flg = B_FALSE, 21234 ill_flag_changed = B_FALSE; 21235 ill_t *usesrc_ill, *usesrc_cli_ill = ipif->ipif_ill; 21236 int err = 0, ret; 21237 uint_t ifindex; 21238 phyint_t *us_phyint, *us_cli_phyint; 21239 ipsq_t *ipsq = NULL; 21240 21241 ASSERT(IAM_WRITER_IPIF(ipif)); 21242 ASSERT(q->q_next == NULL); 21243 ASSERT(CONN_Q(q)); 21244 21245 isv6 = (Q_TO_CONN(q))->conn_af_isv6; 21246 us_cli_phyint = usesrc_cli_ill->ill_phyint; 21247 21248 ASSERT(us_cli_phyint != NULL); 21249 21250 /* 21251 * If the client ILL is being used for IPMP, abort. 21252 * Note, this can be done before ipsq_try_enter since we are already 21253 * exclusive on this ILL 21254 */ 21255 if ((us_cli_phyint->phyint_groupname != NULL) || 21256 (us_cli_phyint->phyint_flags & PHYI_STANDBY)) { 21257 return (EINVAL); 21258 } 21259 21260 ifindex = lifr->lifr_index; 21261 if (ifindex == 0) { 21262 if (usesrc_cli_ill->ill_usesrc_grp_next == NULL) { 21263 /* non usesrc group interface, nothing to reset */ 21264 return (0); 21265 } 21266 ifindex = usesrc_cli_ill->ill_usesrc_ifindex; 21267 /* valid reset request */ 21268 reset_flg = B_TRUE; 21269 } 21270 21271 usesrc_ill = ill_lookup_on_ifindex(ifindex, isv6, q, mp, 21272 ip_process_ioctl, &err); 21273 21274 if (usesrc_ill == NULL) { 21275 return (err); 21276 } 21277 21278 /* 21279 * The usesrc_cli_ill or the usesrc_ill cannot be part of an IPMP 21280 * group nor can either of the interfaces be used for standy. So 21281 * to guarantee mutual exclusion with ip_sioctl_flags (which sets 21282 * PHYI_STANDBY) and ip_sioctl_groupname (which sets the groupname) 21283 * we need to be exclusive on the ipsq belonging to the usesrc_ill. 21284 * We are already exlusive on this ipsq i.e ipsq corresponding to 21285 * the usesrc_cli_ill 21286 */ 21287 ipsq = ipsq_try_enter(NULL, usesrc_ill, q, mp, ip_process_ioctl, 21288 NEW_OP, B_TRUE); 21289 if (ipsq == NULL) { 21290 err = EINPROGRESS; 21291 /* Operation enqueued on the ipsq of the usesrc ILL */ 21292 goto done; 21293 } 21294 21295 /* Check if the usesrc_ill is used for IPMP */ 21296 us_phyint = usesrc_ill->ill_phyint; 21297 if ((us_phyint->phyint_groupname != NULL) || 21298 (us_phyint->phyint_flags & PHYI_STANDBY)) { 21299 err = EINVAL; 21300 goto done; 21301 } 21302 21303 /* 21304 * If the client is already in use as a usesrc_ill or a usesrc_ill is 21305 * already a client then return EINVAL 21306 */ 21307 if (IS_USESRC_ILL(usesrc_cli_ill) || IS_USESRC_CLI_ILL(usesrc_ill)) { 21308 err = EINVAL; 21309 goto done; 21310 } 21311 21312 /* 21313 * If the ill_usesrc_ifindex field is already set to what it needs to 21314 * be then this is a duplicate operation. 21315 */ 21316 if (!reset_flg && usesrc_cli_ill->ill_usesrc_ifindex == ifindex) { 21317 err = 0; 21318 goto done; 21319 } 21320 21321 ip1dbg(("ip_sioctl_slifusesrc: usesrc_cli_ill %s, usesrc_ill %s," 21322 " v6 = %d", usesrc_cli_ill->ill_name, usesrc_ill->ill_name, 21323 usesrc_ill->ill_isv6)); 21324 21325 /* 21326 * The next step ensures that no new ires will be created referencing 21327 * the client ill, until the ILL_CHANGING flag is cleared. Then 21328 * we go through an ire walk deleting all ire caches that reference 21329 * the client ill. New ires referencing the client ill that are added 21330 * to the ire table before the ILL_CHANGING flag is set, will be 21331 * cleaned up by the ire walk below. Attempt to add new ires referencing 21332 * the client ill while the ILL_CHANGING flag is set will be failed 21333 * during the ire_add in ire_atomic_start. ire_atomic_start atomically 21334 * checks (under the ill_g_usesrc_lock) that the ire being added 21335 * is not stale, i.e the ire_stq and ire_ipif are consistent and 21336 * belong to the same usesrc group. 21337 */ 21338 mutex_enter(&usesrc_cli_ill->ill_lock); 21339 usesrc_cli_ill->ill_state_flags |= ILL_CHANGING; 21340 mutex_exit(&usesrc_cli_ill->ill_lock); 21341 ill_flag_changed = B_TRUE; 21342 21343 if (ipif->ipif_isv6) 21344 ire_walk_v6(ipif_delete_cache_ire, (char *)usesrc_cli_ill, 21345 ALL_ZONES); 21346 else 21347 ire_walk_v4(ipif_delete_cache_ire, (char *)usesrc_cli_ill, 21348 ALL_ZONES); 21349 21350 /* 21351 * ill_g_usesrc_lock global lock protects the ill_usesrc_grp_next 21352 * and the ill_usesrc_ifindex fields 21353 */ 21354 rw_enter(&ill_g_usesrc_lock, RW_WRITER); 21355 21356 if (reset_flg) { 21357 ret = ill_relink_usesrc_ills(usesrc_cli_ill, usesrc_ill, 0); 21358 if (ret != 0) { 21359 err = EINVAL; 21360 } 21361 rw_exit(&ill_g_usesrc_lock); 21362 goto done; 21363 } 21364 21365 /* 21366 * Four possibilities to consider: 21367 * 1. Both usesrc_ill and usesrc_cli_ill are not part of any usesrc grp 21368 * 2. usesrc_ill is part of a group but usesrc_cli_ill isn't 21369 * 3. usesrc_cli_ill is part of a group but usesrc_ill isn't 21370 * 4. Both are part of their respective usesrc groups 21371 */ 21372 if ((usesrc_ill->ill_usesrc_grp_next == NULL) && 21373 (usesrc_cli_ill->ill_usesrc_grp_next == NULL)) { 21374 ASSERT(usesrc_ill->ill_usesrc_ifindex == 0); 21375 usesrc_cli_ill->ill_usesrc_ifindex = ifindex; 21376 usesrc_ill->ill_usesrc_grp_next = usesrc_cli_ill; 21377 usesrc_cli_ill->ill_usesrc_grp_next = usesrc_ill; 21378 } else if ((usesrc_ill->ill_usesrc_grp_next != NULL) && 21379 (usesrc_cli_ill->ill_usesrc_grp_next == NULL)) { 21380 usesrc_cli_ill->ill_usesrc_ifindex = ifindex; 21381 /* Insert at head of list */ 21382 usesrc_cli_ill->ill_usesrc_grp_next = 21383 usesrc_ill->ill_usesrc_grp_next; 21384 usesrc_ill->ill_usesrc_grp_next = usesrc_cli_ill; 21385 } else { 21386 ret = ill_relink_usesrc_ills(usesrc_cli_ill, usesrc_ill, 21387 ifindex); 21388 if (ret != 0) 21389 err = EINVAL; 21390 } 21391 rw_exit(&ill_g_usesrc_lock); 21392 21393 done: 21394 if (ill_flag_changed) { 21395 mutex_enter(&usesrc_cli_ill->ill_lock); 21396 usesrc_cli_ill->ill_state_flags &= ~ILL_CHANGING; 21397 mutex_exit(&usesrc_cli_ill->ill_lock); 21398 } 21399 if (ipsq != NULL) 21400 ipsq_exit(ipsq, B_TRUE, B_TRUE); 21401 /* The refrele on the lifr_name ipif is done by ip_process_ioctl */ 21402 ill_refrele(usesrc_ill); 21403 return (err); 21404 } 21405 21406 /* 21407 * comparison function used by avl. 21408 */ 21409 static int 21410 ill_phyint_compare_index(const void *index_ptr, const void *phyip) 21411 { 21412 21413 uint_t index; 21414 21415 ASSERT(phyip != NULL && index_ptr != NULL); 21416 21417 index = *((uint_t *)index_ptr); 21418 /* 21419 * let the phyint with the lowest index be on top. 21420 */ 21421 if (((phyint_t *)phyip)->phyint_ifindex < index) 21422 return (1); 21423 if (((phyint_t *)phyip)->phyint_ifindex > index) 21424 return (-1); 21425 return (0); 21426 } 21427 21428 /* 21429 * comparison function used by avl. 21430 */ 21431 static int 21432 ill_phyint_compare_name(const void *name_ptr, const void *phyip) 21433 { 21434 ill_t *ill; 21435 int res = 0; 21436 21437 ASSERT(phyip != NULL && name_ptr != NULL); 21438 21439 if (((phyint_t *)phyip)->phyint_illv4) 21440 ill = ((phyint_t *)phyip)->phyint_illv4; 21441 else 21442 ill = ((phyint_t *)phyip)->phyint_illv6; 21443 ASSERT(ill != NULL); 21444 21445 res = strcmp(ill->ill_name, (char *)name_ptr); 21446 if (res > 0) 21447 return (1); 21448 else if (res < 0) 21449 return (-1); 21450 return (0); 21451 } 21452 /* 21453 * This function is called from ill_delete when the ill is being 21454 * unplumbed. We remove the reference from the phyint and we also 21455 * free the phyint when there are no more references to it. 21456 */ 21457 static void 21458 ill_phyint_free(ill_t *ill) 21459 { 21460 phyint_t *phyi; 21461 phyint_t *next_phyint; 21462 ipsq_t *cur_ipsq; 21463 21464 ASSERT(ill->ill_phyint != NULL); 21465 21466 ASSERT(RW_WRITE_HELD(&ill_g_lock)); 21467 phyi = ill->ill_phyint; 21468 ill->ill_phyint = NULL; 21469 /* 21470 * ill_init allocates a phyint always to store the copy 21471 * of flags relevant to phyint. At that point in time, we could 21472 * not assign the name and hence phyint_illv4/v6 could not be 21473 * initialized. Later in ipif_set_values, we assign the name to 21474 * the ill, at which point in time we assign phyint_illv4/v6. 21475 * Thus we don't rely on phyint_illv6 to be initialized always. 21476 */ 21477 if (ill->ill_flags & ILLF_IPV6) { 21478 phyi->phyint_illv6 = NULL; 21479 } else { 21480 phyi->phyint_illv4 = NULL; 21481 } 21482 /* 21483 * ipif_down removes it from the group when the last ipif goes 21484 * down. 21485 */ 21486 ASSERT(ill->ill_group == NULL); 21487 21488 if (phyi->phyint_illv4 != NULL || phyi->phyint_illv6 != NULL) 21489 return; 21490 21491 /* 21492 * Make sure this phyint was put in the list. 21493 */ 21494 if (phyi->phyint_ifindex > 0) { 21495 avl_remove(&phyint_g_list.phyint_list_avl_by_index, 21496 phyi); 21497 avl_remove(&phyint_g_list.phyint_list_avl_by_name, 21498 phyi); 21499 } 21500 /* 21501 * remove phyint from the ipsq list. 21502 */ 21503 cur_ipsq = phyi->phyint_ipsq; 21504 if (phyi == cur_ipsq->ipsq_phyint_list) { 21505 cur_ipsq->ipsq_phyint_list = phyi->phyint_ipsq_next; 21506 } else { 21507 next_phyint = cur_ipsq->ipsq_phyint_list; 21508 while (next_phyint != NULL) { 21509 if (next_phyint->phyint_ipsq_next == phyi) { 21510 next_phyint->phyint_ipsq_next = 21511 phyi->phyint_ipsq_next; 21512 break; 21513 } 21514 next_phyint = next_phyint->phyint_ipsq_next; 21515 } 21516 ASSERT(next_phyint != NULL); 21517 } 21518 IPSQ_DEC_REF(cur_ipsq); 21519 21520 if (phyi->phyint_groupname_len != 0) { 21521 ASSERT(phyi->phyint_groupname != NULL); 21522 mi_free(phyi->phyint_groupname); 21523 } 21524 mi_free(phyi); 21525 } 21526 21527 /* 21528 * Attach the ill to the phyint structure which can be shared by both 21529 * IPv4 and IPv6 ill. ill_init allocates a phyint to just hold flags. This 21530 * function is called from ipif_set_values and ill_lookup_on_name (for 21531 * loopback) where we know the name of the ill. We lookup the ill and if 21532 * there is one present already with the name use that phyint. Otherwise 21533 * reuse the one allocated by ill_init. 21534 */ 21535 static void 21536 ill_phyint_reinit(ill_t *ill) 21537 { 21538 boolean_t isv6 = ill->ill_isv6; 21539 phyint_t *phyi_old; 21540 phyint_t *phyi; 21541 avl_index_t where = 0; 21542 ill_t *ill_other = NULL; 21543 ipsq_t *ipsq; 21544 21545 ASSERT(RW_WRITE_HELD(&ill_g_lock)); 21546 21547 phyi_old = ill->ill_phyint; 21548 ASSERT(isv6 || (phyi_old->phyint_illv4 == ill && 21549 phyi_old->phyint_illv6 == NULL)); 21550 ASSERT(!isv6 || (phyi_old->phyint_illv6 == ill && 21551 phyi_old->phyint_illv4 == NULL)); 21552 ASSERT(phyi_old->phyint_ifindex == 0); 21553 21554 phyi = avl_find(&phyint_g_list.phyint_list_avl_by_name, 21555 ill->ill_name, &where); 21556 21557 /* 21558 * 1. We grabbed the ill_g_lock before inserting this ill into 21559 * the global list of ills. So no other thread could have located 21560 * this ill and hence the ipsq of this ill is guaranteed to be empty. 21561 * 2. Now locate the other protocol instance of this ill. 21562 * 3. Now grab both ill locks in the right order, and the phyint lock of 21563 * the new ipsq. Holding ill locks + ill_g_lock ensures that the ipsq 21564 * of neither ill can change. 21565 * 4. Merge the phyint and thus the ipsq as well of this ill onto the 21566 * other ill. 21567 * 5. Release all locks. 21568 */ 21569 21570 /* 21571 * Look for IPv4 if we are initializing IPv6 or look for IPv6 if 21572 * we are initializing IPv4. 21573 */ 21574 if (phyi != NULL) { 21575 ill_other = (isv6) ? phyi->phyint_illv4 : 21576 phyi->phyint_illv6; 21577 ASSERT(ill_other->ill_phyint != NULL); 21578 ASSERT((isv6 && !ill_other->ill_isv6) || 21579 (!isv6 && ill_other->ill_isv6)); 21580 GRAB_ILL_LOCKS(ill, ill_other); 21581 /* 21582 * We are potentially throwing away phyint_flags which 21583 * could be different from the one that we obtain from 21584 * ill_other->ill_phyint. But it is okay as we are assuming 21585 * that the state maintained within IP is correct. 21586 */ 21587 mutex_enter(&phyi->phyint_lock); 21588 if (isv6) { 21589 ASSERT(phyi->phyint_illv6 == NULL); 21590 phyi->phyint_illv6 = ill; 21591 } else { 21592 ASSERT(phyi->phyint_illv4 == NULL); 21593 phyi->phyint_illv4 = ill; 21594 } 21595 /* 21596 * This is a new ill, currently undergoing SLIFNAME 21597 * So we could not have joined an IPMP group until now. 21598 */ 21599 ASSERT(phyi_old->phyint_ipsq_next == NULL && 21600 phyi_old->phyint_groupname == NULL); 21601 21602 /* 21603 * This phyi_old is going away. Decref ipsq_refs and 21604 * assert it is zero. The ipsq itself will be freed in 21605 * ipsq_exit 21606 */ 21607 ipsq = phyi_old->phyint_ipsq; 21608 IPSQ_DEC_REF(ipsq); 21609 ASSERT(ipsq->ipsq_refs == 0); 21610 /* Get the singleton phyint out of the ipsq list */ 21611 ASSERT(phyi_old->phyint_ipsq_next == NULL); 21612 ipsq->ipsq_phyint_list = NULL; 21613 phyi_old->phyint_illv4 = NULL; 21614 phyi_old->phyint_illv6 = NULL; 21615 mi_free(phyi_old); 21616 } else { 21617 mutex_enter(&ill->ill_lock); 21618 /* 21619 * We don't need to acquire any lock, since 21620 * the ill is not yet visible globally and we 21621 * have not yet released the ill_g_lock. 21622 */ 21623 phyi = phyi_old; 21624 mutex_enter(&phyi->phyint_lock); 21625 /* XXX We need a recovery strategy here. */ 21626 if (!phyint_assign_ifindex(phyi)) 21627 cmn_err(CE_PANIC, "phyint_assign_ifindex() failed"); 21628 21629 avl_insert(&phyint_g_list.phyint_list_avl_by_name, 21630 (void *)phyi, where); 21631 21632 (void) avl_find(&phyint_g_list.phyint_list_avl_by_index, 21633 &phyi->phyint_ifindex, &where); 21634 avl_insert(&phyint_g_list.phyint_list_avl_by_index, 21635 (void *)phyi, where); 21636 } 21637 21638 /* 21639 * Reassigning ill_phyint automatically reassigns the ipsq also. 21640 * pending mp is not affected because that is per ill basis. 21641 */ 21642 ill->ill_phyint = phyi; 21643 21644 /* 21645 * Keep the index on ipif_orig_index to be used by FAILOVER. 21646 * We do this here as when the first ipif was allocated, 21647 * ipif_allocate does not know the right interface index. 21648 */ 21649 21650 ill->ill_ipif->ipif_orig_ifindex = ill->ill_phyint->phyint_ifindex; 21651 /* 21652 * Now that the phyint's ifindex has been assigned, complete the 21653 * remaining 21654 */ 21655 if (ill->ill_isv6) { 21656 ill->ill_ip6_mib->ipv6IfIndex = 21657 ill->ill_phyint->phyint_ifindex; 21658 ill->ill_icmp6_mib->ipv6IfIcmpIfIndex = 21659 ill->ill_phyint->phyint_ifindex; 21660 } 21661 21662 RELEASE_ILL_LOCKS(ill, ill_other); 21663 mutex_exit(&phyi->phyint_lock); 21664 } 21665 21666 /* 21667 * Notify any downstream modules of the name of this interface. 21668 * An M_IOCTL is used even though we don't expect a successful reply. 21669 * Any reply message from the driver (presumably an M_IOCNAK) will 21670 * eventually get discarded somewhere upstream. The message format is 21671 * simply an SIOCSLIFNAME ioctl just as might be sent from ifconfig 21672 * to IP. 21673 */ 21674 static void 21675 ip_ifname_notify(ill_t *ill, queue_t *q) 21676 { 21677 mblk_t *mp1, *mp2; 21678 struct iocblk *iocp; 21679 struct lifreq *lifr; 21680 21681 mp1 = mkiocb(SIOCSLIFNAME); 21682 if (mp1 == NULL) 21683 return; 21684 mp2 = allocb(sizeof (struct lifreq), BPRI_HI); 21685 if (mp2 == NULL) { 21686 freeb(mp1); 21687 return; 21688 } 21689 21690 mp1->b_cont = mp2; 21691 iocp = (struct iocblk *)mp1->b_rptr; 21692 iocp->ioc_count = sizeof (struct lifreq); 21693 21694 lifr = (struct lifreq *)mp2->b_rptr; 21695 mp2->b_wptr += sizeof (struct lifreq); 21696 bzero(lifr, sizeof (struct lifreq)); 21697 21698 (void) strncpy(lifr->lifr_name, ill->ill_name, LIFNAMSIZ); 21699 lifr->lifr_ppa = ill->ill_ppa; 21700 lifr->lifr_flags = (ill->ill_flags & (ILLF_IPV4|ILLF_IPV6)); 21701 21702 putnext(q, mp1); 21703 } 21704 21705 static boolean_t ip_trash_timer_started = B_FALSE; 21706 21707 static int 21708 ipif_set_values_tail(ill_t *ill, ipif_t *ipif, mblk_t *mp, queue_t *q) 21709 { 21710 int err; 21711 21712 /* Set the obsolete NDD per-interface forwarding name. */ 21713 err = ill_set_ndd_name(ill); 21714 if (err != 0) { 21715 cmn_err(CE_WARN, "ipif_set_values: ill_set_ndd_name (%d)\n", 21716 err); 21717 } 21718 21719 /* Tell downstream modules where they are. */ 21720 ip_ifname_notify(ill, q); 21721 21722 /* 21723 * ill_dl_phys returns EINPROGRESS in the usual case. 21724 * Error cases are ENOMEM ... 21725 */ 21726 err = ill_dl_phys(ill, ipif, mp, q); 21727 21728 /* 21729 * If there is no IRE expiration timer running, get one started. 21730 * igmp and mld timers will be triggered by the first multicast 21731 */ 21732 if (!ip_trash_timer_started) { 21733 /* 21734 * acquire the lock and check again. 21735 */ 21736 mutex_enter(&ip_trash_timer_lock); 21737 if (!ip_trash_timer_started) { 21738 ip_ire_expire_id = timeout(ip_trash_timer_expire, NULL, 21739 MSEC_TO_TICK(ip_timer_interval)); 21740 ip_trash_timer_started = B_TRUE; 21741 } 21742 mutex_exit(&ip_trash_timer_lock); 21743 } 21744 21745 if (ill->ill_isv6) { 21746 mutex_enter(&mld_slowtimeout_lock); 21747 if (mld_slowtimeout_id == 0) { 21748 mld_slowtimeout_id = timeout(mld_slowtimo, NULL, 21749 MSEC_TO_TICK(MCAST_SLOWTIMO_INTERVAL)); 21750 } 21751 mutex_exit(&mld_slowtimeout_lock); 21752 } else { 21753 mutex_enter(&igmp_slowtimeout_lock); 21754 if (igmp_slowtimeout_id == 0) { 21755 igmp_slowtimeout_id = timeout(igmp_slowtimo, NULL, 21756 MSEC_TO_TICK(MCAST_SLOWTIMO_INTERVAL)); 21757 } 21758 mutex_exit(&igmp_slowtimeout_lock); 21759 } 21760 21761 return (err); 21762 } 21763 21764 /* 21765 * Common routine for ppa and ifname setting. Should be called exclusive. 21766 * 21767 * Returns EINPROGRESS when mp has been consumed by queueing it on 21768 * ill_pending_mp and the ioctl will complete in ip_rput. 21769 * 21770 * NOTE : If ppa is UNIT_MAX, we assign the next valid ppa and return 21771 * the new name and new ppa in lifr_name and lifr_ppa respectively. 21772 * For SLIFNAME, we pass these values back to the userland. 21773 */ 21774 static int 21775 ipif_set_values(queue_t *q, mblk_t *mp, char *interf_name, uint_t *new_ppa_ptr) 21776 { 21777 ill_t *ill; 21778 ipif_t *ipif; 21779 ipsq_t *ipsq; 21780 char *ppa_ptr; 21781 char *old_ptr; 21782 char old_char; 21783 int error; 21784 21785 ip1dbg(("ipif_set_values: interface %s\n", interf_name)); 21786 ASSERT(q->q_next != NULL); 21787 ASSERT(interf_name != NULL); 21788 21789 ill = (ill_t *)q->q_ptr; 21790 21791 ASSERT(ill->ill_name[0] == '\0'); 21792 ASSERT(IAM_WRITER_ILL(ill)); 21793 ASSERT((mi_strlen(interf_name) + 1) <= LIFNAMSIZ); 21794 ASSERT(ill->ill_ppa == UINT_MAX); 21795 21796 /* The ppa is sent down by ifconfig or is chosen */ 21797 if ((ppa_ptr = ill_get_ppa_ptr(interf_name)) == NULL) { 21798 return (EINVAL); 21799 } 21800 21801 /* 21802 * make sure ppa passed in is same as ppa in the name. 21803 * This check is not made when ppa == UINT_MAX in that case ppa 21804 * in the name could be anything. System will choose a ppa and 21805 * update new_ppa_ptr and inter_name to contain the choosen ppa. 21806 */ 21807 if (*new_ppa_ptr != UINT_MAX) { 21808 /* stoi changes the pointer */ 21809 old_ptr = ppa_ptr; 21810 /* 21811 * ifconfig passed in 0 for the ppa for DLPI 1 style devices 21812 * (they don't have an externally visible ppa). We assign one 21813 * here so that we can manage the interface. Note that in 21814 * the past this value was always 0 for DLPI 1 drivers. 21815 */ 21816 if (*new_ppa_ptr == 0) 21817 *new_ppa_ptr = stoi(&old_ptr); 21818 else if (*new_ppa_ptr != (uint_t)stoi(&old_ptr)) 21819 return (EINVAL); 21820 } 21821 /* 21822 * terminate string before ppa 21823 * save char at that location. 21824 */ 21825 old_char = ppa_ptr[0]; 21826 ppa_ptr[0] = '\0'; 21827 21828 ill->ill_ppa = *new_ppa_ptr; 21829 /* 21830 * Finish as much work now as possible before calling ill_glist_insert 21831 * which makes the ill globally visible and also merges it with the 21832 * other protocol instance of this phyint. The remaining work is 21833 * done after entering the ipsq which may happen sometime later. 21834 * ill_set_ndd_name occurs after the ill has been made globally visible. 21835 */ 21836 ipif = ill->ill_ipif; 21837 21838 /* We didn't do this when we allocated ipif in ip_ll_subnet_defaults */ 21839 ipif_assign_seqid(ipif); 21840 21841 if (!(ill->ill_flags & (ILLF_IPV4|ILLF_IPV6))) 21842 ill->ill_flags |= ILLF_IPV4; 21843 21844 ASSERT(ipif->ipif_next == NULL); /* Only one ipif on ill */ 21845 ASSERT((ipif->ipif_flags & IPIF_UP) == 0); 21846 21847 if (ill->ill_flags & ILLF_IPV6) { 21848 21849 ill->ill_isv6 = B_TRUE; 21850 if (ill->ill_rq != NULL) { 21851 ill->ill_rq->q_qinfo = &rinit_ipv6; 21852 ill->ill_wq->q_qinfo = &winit_ipv6; 21853 } 21854 21855 /* Keep the !IN6_IS_ADDR_V4MAPPED assertions happy */ 21856 ipif->ipif_v6lcl_addr = ipv6_all_zeros; 21857 ipif->ipif_v6src_addr = ipv6_all_zeros; 21858 ipif->ipif_v6subnet = ipv6_all_zeros; 21859 ipif->ipif_v6net_mask = ipv6_all_zeros; 21860 ipif->ipif_v6brd_addr = ipv6_all_zeros; 21861 ipif->ipif_v6pp_dst_addr = ipv6_all_zeros; 21862 /* 21863 * point-to-point or Non-mulicast capable 21864 * interfaces won't do NUD unless explicitly 21865 * configured to do so. 21866 */ 21867 if (ipif->ipif_flags & IPIF_POINTOPOINT || 21868 !(ill->ill_flags & ILLF_MULTICAST)) { 21869 ill->ill_flags |= ILLF_NONUD; 21870 } 21871 /* Make sure IPv4 specific flag is not set on IPv6 if */ 21872 if (ill->ill_flags & ILLF_NOARP) { 21873 /* 21874 * Note: xresolv interfaces will eventually need 21875 * NOARP set here as well, but that will require 21876 * those external resolvers to have some 21877 * knowledge of that flag and act appropriately. 21878 * Not to be changed at present. 21879 */ 21880 ill->ill_flags &= ~ILLF_NOARP; 21881 } 21882 /* 21883 * Set the ILLF_ROUTER flag according to the global 21884 * IPv6 forwarding policy. 21885 */ 21886 if (ipv6_forward != 0) 21887 ill->ill_flags |= ILLF_ROUTER; 21888 } else if (ill->ill_flags & ILLF_IPV4) { 21889 ill->ill_isv6 = B_FALSE; 21890 IN6_IPADDR_TO_V4MAPPED(INADDR_ANY, &ipif->ipif_v6lcl_addr); 21891 IN6_IPADDR_TO_V4MAPPED(INADDR_ANY, &ipif->ipif_v6src_addr); 21892 IN6_IPADDR_TO_V4MAPPED(INADDR_ANY, &ipif->ipif_v6subnet); 21893 IN6_IPADDR_TO_V4MAPPED(INADDR_ANY, &ipif->ipif_v6net_mask); 21894 IN6_IPADDR_TO_V4MAPPED(INADDR_ANY, &ipif->ipif_v6brd_addr); 21895 IN6_IPADDR_TO_V4MAPPED(INADDR_ANY, &ipif->ipif_v6pp_dst_addr); 21896 /* 21897 * Set the ILLF_ROUTER flag according to the global 21898 * IPv4 forwarding policy. 21899 */ 21900 if (ip_g_forward != 0) 21901 ill->ill_flags |= ILLF_ROUTER; 21902 } 21903 21904 ASSERT(ill->ill_phyint != NULL); 21905 21906 /* 21907 * The ipv6Ifindex and ipv6IfIcmpIfIndex assignments will 21908 * be completed in ill_glist_insert -> ill_phyint_reinit 21909 */ 21910 if (ill->ill_isv6) { 21911 /* allocate v6 mib */ 21912 if (!ill_allocate_mibs(ill)) 21913 return (ENOMEM); 21914 } 21915 21916 /* 21917 * Pick a default sap until we get the DL_INFO_ACK back from 21918 * the driver. 21919 */ 21920 if (ill->ill_sap == 0) { 21921 if (ill->ill_isv6) 21922 ill->ill_sap = IP6_DL_SAP; 21923 else 21924 ill->ill_sap = IP_DL_SAP; 21925 } 21926 21927 ill->ill_ifname_pending = 1; 21928 ill->ill_ifname_pending_err = 0; 21929 21930 ill_refhold(ill); 21931 rw_enter(&ill_g_lock, RW_WRITER); 21932 if ((error = ill_glist_insert(ill, interf_name, 21933 (ill->ill_flags & ILLF_IPV6) == ILLF_IPV6)) > 0) { 21934 ill->ill_ppa = UINT_MAX; 21935 ill->ill_name[0] = '\0'; 21936 /* 21937 * undo null termination done above. 21938 */ 21939 ppa_ptr[0] = old_char; 21940 rw_exit(&ill_g_lock); 21941 ill_refrele(ill); 21942 return (error); 21943 } 21944 21945 ASSERT(ill->ill_name_length <= LIFNAMSIZ); 21946 21947 /* 21948 * When we return the buffer pointed to by interf_name should contain 21949 * the same name as in ill_name. 21950 * If a ppa was choosen by the system (ppa passed in was UINT_MAX) 21951 * the buffer pointed to by new_ppa_ptr would not contain the right ppa 21952 * so copy full name and update the ppa ptr. 21953 * When ppa passed in != UINT_MAX all values are correct just undo 21954 * null termination, this saves a bcopy. 21955 */ 21956 if (*new_ppa_ptr == UINT_MAX) { 21957 bcopy(ill->ill_name, interf_name, ill->ill_name_length); 21958 *new_ppa_ptr = ill->ill_ppa; 21959 } else { 21960 /* 21961 * undo null termination done above. 21962 */ 21963 ppa_ptr[0] = old_char; 21964 } 21965 21966 /* Let SCTP know about this ILL */ 21967 sctp_update_ill(ill, SCTP_ILL_INSERT); 21968 21969 /* and also about the first ipif */ 21970 sctp_update_ipif(ipif, SCTP_IPIF_INSERT); 21971 21972 ipsq = ipsq_try_enter(NULL, ill, q, mp, ip_reprocess_ioctl, NEW_OP, 21973 B_TRUE); 21974 21975 rw_exit(&ill_g_lock); 21976 ill_refrele(ill); 21977 if (ipsq == NULL) 21978 return (EINPROGRESS); 21979 21980 /* 21981 * Need to set the ipsq_current_ipif now, if we have changed ipsq 21982 * due to the phyint merge in ill_phyint_reinit. 21983 */ 21984 ASSERT(ipsq->ipsq_current_ipif == NULL || 21985 ipsq->ipsq_current_ipif == ipif); 21986 ipsq->ipsq_current_ipif = ipif; 21987 ipsq->ipsq_last_cmd = SIOCSLIFNAME; 21988 error = ipif_set_values_tail(ill, ipif, mp, q); 21989 ipsq_exit(ipsq, B_TRUE, B_TRUE); 21990 if (error != 0 && error != EINPROGRESS) { 21991 /* 21992 * restore previous values 21993 */ 21994 ill->ill_isv6 = B_FALSE; 21995 } 21996 return (error); 21997 } 21998 21999 22000 extern void (*ip_cleanup_func)(void); 22001 22002 void 22003 ipif_init(void) 22004 { 22005 hrtime_t hrt; 22006 int i; 22007 22008 /* 22009 * Can't call drv_getparm here as it is too early in the boot. 22010 * As we use ipif_src_random just for picking a different 22011 * source address everytime, this need not be really random. 22012 */ 22013 hrt = gethrtime(); 22014 ipif_src_random = ((hrt >> 32) & 0xffffffff) * (hrt & 0xffffffff); 22015 22016 for (i = 0; i < MAX_G_HEADS; i++) { 22017 ill_g_heads[i].ill_g_list_head = (ill_if_t *)&ill_g_heads[i]; 22018 ill_g_heads[i].ill_g_list_tail = (ill_if_t *)&ill_g_heads[i]; 22019 } 22020 22021 avl_create(&phyint_g_list.phyint_list_avl_by_index, 22022 ill_phyint_compare_index, 22023 sizeof (phyint_t), 22024 offsetof(struct phyint, phyint_avl_by_index)); 22025 avl_create(&phyint_g_list.phyint_list_avl_by_name, 22026 ill_phyint_compare_name, 22027 sizeof (phyint_t), 22028 offsetof(struct phyint, phyint_avl_by_name)); 22029 22030 ip_cleanup_func = ip_thread_exit; 22031 } 22032 22033 /* 22034 * This is called by ip_rt_add when src_addr value is other than zero. 22035 * src_addr signifies the source address of the incoming packet. For 22036 * reverse tunnel route we need to create a source addr based routing 22037 * table. This routine creates ip_mrtun_table if it's empty and then 22038 * it adds the route entry hashed by source address. It verifies that 22039 * the outgoing interface is always a non-resolver interface (tunnel). 22040 */ 22041 int 22042 ip_mrtun_rt_add(ipaddr_t in_src_addr, int flags, ipif_t *ipif_arg, 22043 ipif_t *src_ipif, ire_t **ire_arg, queue_t *q, mblk_t *mp, ipsq_func_t func) 22044 { 22045 ire_t *ire; 22046 ire_t *save_ire; 22047 ipif_t *ipif; 22048 ill_t *in_ill = NULL; 22049 ill_t *out_ill; 22050 queue_t *stq; 22051 mblk_t *dlureq_mp; 22052 int error; 22053 22054 if (ire_arg != NULL) 22055 *ire_arg = NULL; 22056 ASSERT(in_src_addr != INADDR_ANY); 22057 22058 ipif = ipif_arg; 22059 if (ipif != NULL) { 22060 out_ill = ipif->ipif_ill; 22061 } else { 22062 ip1dbg(("ip_mrtun_rt_add: ipif is NULL\n")); 22063 return (EINVAL); 22064 } 22065 22066 if (src_ipif == NULL) { 22067 ip1dbg(("ip_mrtun_rt_add: src_ipif is NULL\n")); 22068 return (EINVAL); 22069 } 22070 in_ill = src_ipif->ipif_ill; 22071 22072 /* 22073 * Check for duplicates. We don't need to 22074 * match out_ill, because the uniqueness of 22075 * a route is only dependent on src_addr and 22076 * in_ill. 22077 */ 22078 ire = ire_mrtun_lookup(in_src_addr, in_ill); 22079 if (ire != NULL) { 22080 ire_refrele(ire); 22081 return (EEXIST); 22082 } 22083 if (ipif->ipif_net_type != IRE_IF_NORESOLVER) { 22084 ip2dbg(("ip_mrtun_rt_add: outgoing interface is type %d\n", 22085 ipif->ipif_net_type)); 22086 return (EINVAL); 22087 } 22088 22089 stq = ipif->ipif_wq; 22090 ASSERT(stq != NULL); 22091 22092 /* 22093 * The outgoing interface must be non-resolver 22094 * interface. 22095 */ 22096 dlureq_mp = ill_dlur_gen(NULL, 22097 out_ill->ill_phys_addr_length, out_ill->ill_sap, 22098 out_ill->ill_sap_length); 22099 22100 if (dlureq_mp == NULL) { 22101 ip1dbg(("ip_newroute: dlureq_mp NULL\n")); 22102 return (ENOMEM); 22103 } 22104 22105 /* Create the IRE. */ 22106 22107 ire = ire_create( 22108 NULL, /* Zero dst addr */ 22109 NULL, /* Zero mask */ 22110 NULL, /* Zero gateway addr */ 22111 NULL, /* Zero ipif_src addr */ 22112 (uint8_t *)&in_src_addr, /* in_src-addr */ 22113 &ipif->ipif_mtu, 22114 NULL, 22115 NULL, /* rfq */ 22116 stq, 22117 IRE_MIPRTUN, 22118 dlureq_mp, 22119 ipif, 22120 in_ill, 22121 0, 22122 0, 22123 0, 22124 flags, 22125 &ire_uinfo_null, 22126 NULL, 22127 NULL); 22128 22129 if (ire == NULL) 22130 return (ENOMEM); 22131 ip2dbg(("ip_mrtun_rt_add: mrtun route is created with type %d\n", 22132 ire->ire_type)); 22133 save_ire = ire; 22134 ASSERT(save_ire != NULL); 22135 error = ire_add_mrtun(&ire, q, mp, func); 22136 /* 22137 * If ire_add_mrtun() failed, the ire passed in was freed 22138 * so there is no need to do so here. 22139 */ 22140 if (error != 0) { 22141 return (error); 22142 } 22143 22144 /* Duplicate check */ 22145 if (ire != save_ire) { 22146 /* route already exists by now */ 22147 ire_refrele(ire); 22148 return (EEXIST); 22149 } 22150 22151 if (ire_arg != NULL) { 22152 /* 22153 * Store the ire that was just added. the caller 22154 * ip_rts_request responsible for doing ire_refrele() 22155 * on it. 22156 */ 22157 *ire_arg = ire; 22158 } else { 22159 ire_refrele(ire); /* held in ire_add_mrtun */ 22160 } 22161 22162 return (0); 22163 } 22164 22165 /* 22166 * It is called by ip_rt_delete() only when mipagent requests to delete 22167 * a reverse tunnel route that was added by ip_mrtun_rt_add() before. 22168 */ 22169 22170 int 22171 ip_mrtun_rt_delete(ipaddr_t in_src_addr, ipif_t *src_ipif) 22172 { 22173 ire_t *ire = NULL; 22174 22175 if (in_src_addr == INADDR_ANY) 22176 return (EINVAL); 22177 if (src_ipif == NULL) 22178 return (EINVAL); 22179 22180 /* search if this route exists in the ip_mrtun_table */ 22181 ire = ire_mrtun_lookup(in_src_addr, src_ipif->ipif_ill); 22182 if (ire == NULL) { 22183 ip2dbg(("ip_mrtun_rt_delete: ire not found\n")); 22184 return (ESRCH); 22185 } 22186 ire_delete(ire); 22187 ire_refrele(ire); 22188 return (0); 22189 } 22190 22191 /* 22192 * Lookup the ipif corresponding to the onlink destination address. For 22193 * point-to-point interfaces, it matches with remote endpoint destination 22194 * address. For point-to-multipoint interfaces it only tries to match the 22195 * destination with the interface's subnet address. The longest, most specific 22196 * match is found to take care of such rare network configurations like - 22197 * le0: 129.146.1.1/16 22198 * le1: 129.146.2.2/24 22199 * It is used only by SO_DONTROUTE at the moment. 22200 */ 22201 ipif_t * 22202 ipif_lookup_onlink_addr(ipaddr_t addr, zoneid_t zoneid) 22203 { 22204 ipif_t *ipif, *best_ipif; 22205 ill_t *ill; 22206 ill_walk_context_t ctx; 22207 22208 ASSERT(zoneid != ALL_ZONES); 22209 best_ipif = NULL; 22210 22211 rw_enter(&ill_g_lock, RW_READER); 22212 ill = ILL_START_WALK_V4(&ctx); 22213 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 22214 mutex_enter(&ill->ill_lock); 22215 for (ipif = ill->ill_ipif; ipif != NULL; 22216 ipif = ipif->ipif_next) { 22217 if (!IPIF_CAN_LOOKUP(ipif)) 22218 continue; 22219 if (ipif->ipif_zoneid != zoneid && 22220 ipif->ipif_zoneid != ALL_ZONES) 22221 continue; 22222 /* 22223 * Point-to-point case. Look for exact match with 22224 * destination address. 22225 */ 22226 if (ipif->ipif_flags & IPIF_POINTOPOINT) { 22227 if (ipif->ipif_pp_dst_addr == addr) { 22228 ipif_refhold_locked(ipif); 22229 mutex_exit(&ill->ill_lock); 22230 rw_exit(&ill_g_lock); 22231 if (best_ipif != NULL) 22232 ipif_refrele(best_ipif); 22233 return (ipif); 22234 } 22235 } else if (ipif->ipif_subnet == (addr & 22236 ipif->ipif_net_mask)) { 22237 /* 22238 * Point-to-multipoint case. Looping through to 22239 * find the most specific match. If there are 22240 * multiple best match ipif's then prefer ipif's 22241 * that are UP. If there is only one best match 22242 * ipif and it is DOWN we must still return it. 22243 */ 22244 if ((best_ipif == NULL) || 22245 (ipif->ipif_net_mask > 22246 best_ipif->ipif_net_mask) || 22247 ((ipif->ipif_net_mask == 22248 best_ipif->ipif_net_mask) && 22249 ((ipif->ipif_flags & IPIF_UP) && 22250 (!(best_ipif->ipif_flags & IPIF_UP))))) { 22251 ipif_refhold_locked(ipif); 22252 mutex_exit(&ill->ill_lock); 22253 rw_exit(&ill_g_lock); 22254 if (best_ipif != NULL) 22255 ipif_refrele(best_ipif); 22256 best_ipif = ipif; 22257 rw_enter(&ill_g_lock, RW_READER); 22258 mutex_enter(&ill->ill_lock); 22259 } 22260 } 22261 } 22262 mutex_exit(&ill->ill_lock); 22263 } 22264 rw_exit(&ill_g_lock); 22265 return (best_ipif); 22266 } 22267 22268 22269 /* 22270 * Save enough information so that we can recreate the IRE if 22271 * the interface goes down and then up. 22272 */ 22273 static void 22274 ipif_save_ire(ipif_t *ipif, ire_t *ire) 22275 { 22276 mblk_t *save_mp; 22277 22278 save_mp = allocb(sizeof (ifrt_t), BPRI_MED); 22279 if (save_mp != NULL) { 22280 ifrt_t *ifrt; 22281 22282 save_mp->b_wptr += sizeof (ifrt_t); 22283 ifrt = (ifrt_t *)save_mp->b_rptr; 22284 bzero(ifrt, sizeof (ifrt_t)); 22285 ifrt->ifrt_type = ire->ire_type; 22286 ifrt->ifrt_addr = ire->ire_addr; 22287 ifrt->ifrt_gateway_addr = ire->ire_gateway_addr; 22288 ifrt->ifrt_src_addr = ire->ire_src_addr; 22289 ifrt->ifrt_mask = ire->ire_mask; 22290 ifrt->ifrt_flags = ire->ire_flags; 22291 ifrt->ifrt_max_frag = ire->ire_max_frag; 22292 mutex_enter(&ipif->ipif_saved_ire_lock); 22293 save_mp->b_cont = ipif->ipif_saved_ire_mp; 22294 ipif->ipif_saved_ire_mp = save_mp; 22295 ipif->ipif_saved_ire_cnt++; 22296 mutex_exit(&ipif->ipif_saved_ire_lock); 22297 } 22298 } 22299 22300 22301 static void 22302 ipif_remove_ire(ipif_t *ipif, ire_t *ire) 22303 { 22304 mblk_t **mpp; 22305 mblk_t *mp; 22306 ifrt_t *ifrt; 22307 22308 /* Remove from ipif_saved_ire_mp list if it is there */ 22309 mutex_enter(&ipif->ipif_saved_ire_lock); 22310 for (mpp = &ipif->ipif_saved_ire_mp; *mpp != NULL; 22311 mpp = &(*mpp)->b_cont) { 22312 /* 22313 * On a given ipif, the triple of address, gateway and 22314 * mask is unique for each saved IRE (in the case of 22315 * ordinary interface routes, the gateway address is 22316 * all-zeroes). 22317 */ 22318 mp = *mpp; 22319 ifrt = (ifrt_t *)mp->b_rptr; 22320 if (ifrt->ifrt_addr == ire->ire_addr && 22321 ifrt->ifrt_gateway_addr == ire->ire_gateway_addr && 22322 ifrt->ifrt_mask == ire->ire_mask) { 22323 *mpp = mp->b_cont; 22324 ipif->ipif_saved_ire_cnt--; 22325 freeb(mp); 22326 break; 22327 } 22328 } 22329 mutex_exit(&ipif->ipif_saved_ire_lock); 22330 } 22331 22332 22333 /* 22334 * IP multirouting broadcast routes handling 22335 * Append CGTP broadcast IREs to regular ones created 22336 * at ifconfig time. 22337 */ 22338 static void 22339 ip_cgtp_bcast_add(ire_t *ire, ire_t *ire_dst) 22340 { 22341 ire_t *ire_prim; 22342 22343 ASSERT(ire != NULL); 22344 ASSERT(ire_dst != NULL); 22345 22346 ire_prim = ire_ctable_lookup(ire->ire_gateway_addr, 0, 22347 IRE_BROADCAST, NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE); 22348 if (ire_prim != NULL) { 22349 /* 22350 * We are in the special case of broadcasts for 22351 * CGTP. We add an IRE_BROADCAST that holds 22352 * the RTF_MULTIRT flag, the destination 22353 * address of ire_dst and the low level 22354 * info of ire_prim. In other words, CGTP 22355 * broadcast is added to the redundant ipif. 22356 */ 22357 ipif_t *ipif_prim; 22358 ire_t *bcast_ire; 22359 22360 ipif_prim = ire_prim->ire_ipif; 22361 22362 ip2dbg(("ip_cgtp_filter_bcast_add: " 22363 "ire_dst %p, ire_prim %p, ipif_prim %p\n", 22364 (void *)ire_dst, (void *)ire_prim, 22365 (void *)ipif_prim)); 22366 22367 bcast_ire = ire_create( 22368 (uchar_t *)&ire->ire_addr, 22369 (uchar_t *)&ip_g_all_ones, 22370 (uchar_t *)&ire_dst->ire_src_addr, 22371 (uchar_t *)&ire->ire_gateway_addr, 22372 NULL, 22373 &ipif_prim->ipif_mtu, 22374 NULL, 22375 ipif_prim->ipif_rq, 22376 ipif_prim->ipif_wq, 22377 IRE_BROADCAST, 22378 ipif_prim->ipif_bcast_mp, 22379 ipif_prim, 22380 NULL, 22381 0, 22382 0, 22383 0, 22384 ire->ire_flags, 22385 &ire_uinfo_null, 22386 NULL, 22387 NULL); 22388 22389 if (bcast_ire != NULL) { 22390 22391 if (ire_add(&bcast_ire, NULL, NULL, NULL) == 0) { 22392 ip2dbg(("ip_cgtp_filter_bcast_add: " 22393 "added bcast_ire %p\n", 22394 (void *)bcast_ire)); 22395 22396 ipif_save_ire(bcast_ire->ire_ipif, 22397 bcast_ire); 22398 ire_refrele(bcast_ire); 22399 } 22400 } 22401 ire_refrele(ire_prim); 22402 } 22403 } 22404 22405 22406 /* 22407 * IP multirouting broadcast routes handling 22408 * Remove the broadcast ire 22409 */ 22410 static void 22411 ip_cgtp_bcast_delete(ire_t *ire) 22412 { 22413 ire_t *ire_dst; 22414 22415 ASSERT(ire != NULL); 22416 ire_dst = ire_ctable_lookup(ire->ire_addr, 0, IRE_BROADCAST, 22417 NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE); 22418 if (ire_dst != NULL) { 22419 ire_t *ire_prim; 22420 22421 ire_prim = ire_ctable_lookup(ire->ire_gateway_addr, 0, 22422 IRE_BROADCAST, NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE); 22423 if (ire_prim != NULL) { 22424 ipif_t *ipif_prim; 22425 ire_t *bcast_ire; 22426 22427 ipif_prim = ire_prim->ire_ipif; 22428 22429 ip2dbg(("ip_cgtp_filter_bcast_delete: " 22430 "ire_dst %p, ire_prim %p, ipif_prim %p\n", 22431 (void *)ire_dst, (void *)ire_prim, 22432 (void *)ipif_prim)); 22433 22434 bcast_ire = ire_ctable_lookup(ire->ire_addr, 22435 ire->ire_gateway_addr, 22436 IRE_BROADCAST, 22437 ipif_prim, ALL_ZONES, 22438 NULL, 22439 MATCH_IRE_TYPE | MATCH_IRE_GW | MATCH_IRE_IPIF | 22440 MATCH_IRE_MASK); 22441 22442 if (bcast_ire != NULL) { 22443 ip2dbg(("ip_cgtp_filter_bcast_delete: " 22444 "looked up bcast_ire %p\n", 22445 (void *)bcast_ire)); 22446 ipif_remove_ire(bcast_ire->ire_ipif, 22447 bcast_ire); 22448 ire_delete(bcast_ire); 22449 } 22450 ire_refrele(ire_prim); 22451 } 22452 ire_refrele(ire_dst); 22453 } 22454 } 22455 22456 /* 22457 * IPsec hardware acceleration capabilities related functions. 22458 */ 22459 22460 /* 22461 * Free a per-ill IPsec capabilities structure. 22462 */ 22463 static void 22464 ill_ipsec_capab_free(ill_ipsec_capab_t *capab) 22465 { 22466 if (capab->auth_hw_algs != NULL) 22467 kmem_free(capab->auth_hw_algs, capab->algs_size); 22468 if (capab->encr_hw_algs != NULL) 22469 kmem_free(capab->encr_hw_algs, capab->algs_size); 22470 if (capab->encr_algparm != NULL) 22471 kmem_free(capab->encr_algparm, capab->encr_algparm_size); 22472 kmem_free(capab, sizeof (ill_ipsec_capab_t)); 22473 } 22474 22475 /* 22476 * Allocate a new per-ill IPsec capabilities structure. This structure 22477 * is specific to an IPsec protocol (AH or ESP). It is implemented as 22478 * an array which specifies, for each algorithm, whether this algorithm 22479 * is supported by the ill or not. 22480 */ 22481 static ill_ipsec_capab_t * 22482 ill_ipsec_capab_alloc(void) 22483 { 22484 ill_ipsec_capab_t *capab; 22485 uint_t nelems; 22486 22487 capab = kmem_zalloc(sizeof (ill_ipsec_capab_t), KM_NOSLEEP); 22488 if (capab == NULL) 22489 return (NULL); 22490 22491 /* we need one bit per algorithm */ 22492 nelems = MAX_IPSEC_ALGS / BITS(ipsec_capab_elem_t); 22493 capab->algs_size = nelems * sizeof (ipsec_capab_elem_t); 22494 22495 /* allocate memory to store algorithm flags */ 22496 capab->encr_hw_algs = kmem_zalloc(capab->algs_size, KM_NOSLEEP); 22497 if (capab->encr_hw_algs == NULL) 22498 goto nomem; 22499 capab->auth_hw_algs = kmem_zalloc(capab->algs_size, KM_NOSLEEP); 22500 if (capab->auth_hw_algs == NULL) 22501 goto nomem; 22502 /* 22503 * Leave encr_algparm NULL for now since we won't need it half 22504 * the time 22505 */ 22506 return (capab); 22507 22508 nomem: 22509 ill_ipsec_capab_free(capab); 22510 return (NULL); 22511 } 22512 22513 /* 22514 * Resize capability array. Since we're exclusive, this is OK. 22515 */ 22516 static boolean_t 22517 ill_ipsec_capab_resize_algparm(ill_ipsec_capab_t *capab, int algid) 22518 { 22519 ipsec_capab_algparm_t *nalp, *oalp; 22520 uint32_t olen, nlen; 22521 22522 oalp = capab->encr_algparm; 22523 olen = capab->encr_algparm_size; 22524 22525 if (oalp != NULL) { 22526 if (algid < capab->encr_algparm_end) 22527 return (B_TRUE); 22528 } 22529 22530 nlen = (algid + 1) * sizeof (*nalp); 22531 nalp = kmem_zalloc(nlen, KM_NOSLEEP); 22532 if (nalp == NULL) 22533 return (B_FALSE); 22534 22535 if (oalp != NULL) { 22536 bcopy(oalp, nalp, olen); 22537 kmem_free(oalp, olen); 22538 } 22539 capab->encr_algparm = nalp; 22540 capab->encr_algparm_size = nlen; 22541 capab->encr_algparm_end = algid + 1; 22542 22543 return (B_TRUE); 22544 } 22545 22546 /* 22547 * Compare the capabilities of the specified ill with the protocol 22548 * and algorithms specified by the SA passed as argument. 22549 * If they match, returns B_TRUE, B_FALSE if they do not match. 22550 * 22551 * The ill can be passed as a pointer to it, or by specifying its index 22552 * and whether it is an IPv6 ill (ill_index and ill_isv6 arguments). 22553 * 22554 * Called by ipsec_out_is_accelerated() do decide whether an outbound 22555 * packet is eligible for hardware acceleration, and by 22556 * ill_ipsec_capab_send_all() to decide whether a SA must be sent down 22557 * to a particular ill. 22558 */ 22559 boolean_t 22560 ipsec_capab_match(ill_t *ill, uint_t ill_index, boolean_t ill_isv6, 22561 ipsa_t *sa) 22562 { 22563 boolean_t sa_isv6; 22564 uint_t algid; 22565 struct ill_ipsec_capab_s *cpp; 22566 boolean_t need_refrele = B_FALSE; 22567 22568 if (ill == NULL) { 22569 ill = ill_lookup_on_ifindex(ill_index, ill_isv6, NULL, 22570 NULL, NULL, NULL); 22571 if (ill == NULL) { 22572 ip0dbg(("ipsec_capab_match: ill doesn't exist\n")); 22573 return (B_FALSE); 22574 } 22575 need_refrele = B_TRUE; 22576 } 22577 22578 /* 22579 * Use the address length specified by the SA to determine 22580 * if it corresponds to a IPv6 address, and fail the matching 22581 * if the isv6 flag passed as argument does not match. 22582 * Note: this check is used for SADB capability checking before 22583 * sending SA information to an ill. 22584 */ 22585 sa_isv6 = (sa->ipsa_addrfam == AF_INET6); 22586 if (sa_isv6 != ill_isv6) 22587 /* protocol mismatch */ 22588 goto done; 22589 22590 /* 22591 * Check if the ill supports the protocol, algorithm(s) and 22592 * key size(s) specified by the SA, and get the pointers to 22593 * the algorithms supported by the ill. 22594 */ 22595 switch (sa->ipsa_type) { 22596 22597 case SADB_SATYPE_ESP: 22598 if (!(ill->ill_capabilities & ILL_CAPAB_ESP)) 22599 /* ill does not support ESP acceleration */ 22600 goto done; 22601 cpp = ill->ill_ipsec_capab_esp; 22602 algid = sa->ipsa_auth_alg; 22603 if (!IPSEC_ALG_IS_ENABLED(algid, cpp->auth_hw_algs)) 22604 goto done; 22605 algid = sa->ipsa_encr_alg; 22606 if (!IPSEC_ALG_IS_ENABLED(algid, cpp->encr_hw_algs)) 22607 goto done; 22608 if (algid < cpp->encr_algparm_end) { 22609 ipsec_capab_algparm_t *alp = &cpp->encr_algparm[algid]; 22610 if (sa->ipsa_encrkeybits < alp->minkeylen) 22611 goto done; 22612 if (sa->ipsa_encrkeybits > alp->maxkeylen) 22613 goto done; 22614 } 22615 break; 22616 22617 case SADB_SATYPE_AH: 22618 if (!(ill->ill_capabilities & ILL_CAPAB_AH)) 22619 /* ill does not support AH acceleration */ 22620 goto done; 22621 if (!IPSEC_ALG_IS_ENABLED(sa->ipsa_auth_alg, 22622 ill->ill_ipsec_capab_ah->auth_hw_algs)) 22623 goto done; 22624 break; 22625 } 22626 22627 if (need_refrele) 22628 ill_refrele(ill); 22629 return (B_TRUE); 22630 done: 22631 if (need_refrele) 22632 ill_refrele(ill); 22633 return (B_FALSE); 22634 } 22635 22636 22637 /* 22638 * Add a new ill to the list of IPsec capable ills. 22639 * Called from ill_capability_ipsec_ack() when an ACK was received 22640 * indicating that IPsec hardware processing was enabled for an ill. 22641 * 22642 * ill must point to the ill for which acceleration was enabled. 22643 * dl_cap must be set to DL_CAPAB_IPSEC_AH or DL_CAPAB_IPSEC_ESP. 22644 */ 22645 static void 22646 ill_ipsec_capab_add(ill_t *ill, uint_t dl_cap, boolean_t sadb_resync) 22647 { 22648 ipsec_capab_ill_t **ills, *cur_ill, *new_ill; 22649 uint_t sa_type; 22650 uint_t ipproto; 22651 22652 ASSERT((dl_cap == DL_CAPAB_IPSEC_AH) || 22653 (dl_cap == DL_CAPAB_IPSEC_ESP)); 22654 22655 switch (dl_cap) { 22656 case DL_CAPAB_IPSEC_AH: 22657 sa_type = SADB_SATYPE_AH; 22658 ills = &ipsec_capab_ills_ah; 22659 ipproto = IPPROTO_AH; 22660 break; 22661 case DL_CAPAB_IPSEC_ESP: 22662 sa_type = SADB_SATYPE_ESP; 22663 ills = &ipsec_capab_ills_esp; 22664 ipproto = IPPROTO_ESP; 22665 break; 22666 } 22667 22668 rw_enter(&ipsec_capab_ills_lock, RW_WRITER); 22669 22670 /* 22671 * Add ill index to list of hardware accelerators. If 22672 * already in list, do nothing. 22673 */ 22674 for (cur_ill = *ills; cur_ill != NULL && 22675 (cur_ill->ill_index != ill->ill_phyint->phyint_ifindex || 22676 cur_ill->ill_isv6 != ill->ill_isv6); cur_ill = cur_ill->next) 22677 ; 22678 22679 if (cur_ill == NULL) { 22680 /* if this is a new entry for this ill */ 22681 new_ill = kmem_zalloc(sizeof (ipsec_capab_ill_t), KM_NOSLEEP); 22682 if (new_ill == NULL) { 22683 rw_exit(&ipsec_capab_ills_lock); 22684 return; 22685 } 22686 22687 new_ill->ill_index = ill->ill_phyint->phyint_ifindex; 22688 new_ill->ill_isv6 = ill->ill_isv6; 22689 new_ill->next = *ills; 22690 *ills = new_ill; 22691 } else if (!sadb_resync) { 22692 /* not resync'ing SADB and an entry exists for this ill */ 22693 rw_exit(&ipsec_capab_ills_lock); 22694 return; 22695 } 22696 22697 rw_exit(&ipsec_capab_ills_lock); 22698 22699 if (ipcl_proto_fanout_v6[ipproto].connf_head != NULL) 22700 /* 22701 * IPsec module for protocol loaded, initiate dump 22702 * of the SADB to this ill. 22703 */ 22704 sadb_ill_download(ill, sa_type); 22705 } 22706 22707 /* 22708 * Remove an ill from the list of IPsec capable ills. 22709 */ 22710 static void 22711 ill_ipsec_capab_delete(ill_t *ill, uint_t dl_cap) 22712 { 22713 ipsec_capab_ill_t **ills, *cur_ill, *prev_ill; 22714 22715 ASSERT(dl_cap == DL_CAPAB_IPSEC_AH || 22716 dl_cap == DL_CAPAB_IPSEC_ESP); 22717 22718 ills = (dl_cap == DL_CAPAB_IPSEC_AH) ? &ipsec_capab_ills_ah : 22719 &ipsec_capab_ills_esp; 22720 22721 rw_enter(&ipsec_capab_ills_lock, RW_WRITER); 22722 22723 prev_ill = NULL; 22724 for (cur_ill = *ills; cur_ill != NULL && (cur_ill->ill_index != 22725 ill->ill_phyint->phyint_ifindex || cur_ill->ill_isv6 != 22726 ill->ill_isv6); prev_ill = cur_ill, cur_ill = cur_ill->next) 22727 ; 22728 if (cur_ill == NULL) { 22729 /* entry not found */ 22730 rw_exit(&ipsec_capab_ills_lock); 22731 return; 22732 } 22733 if (prev_ill == NULL) { 22734 /* entry at front of list */ 22735 *ills = NULL; 22736 } else { 22737 prev_ill->next = cur_ill->next; 22738 } 22739 kmem_free(cur_ill, sizeof (ipsec_capab_ill_t)); 22740 rw_exit(&ipsec_capab_ills_lock); 22741 } 22742 22743 22744 /* 22745 * Handling of DL_CONTROL_REQ messages that must be sent down to 22746 * an ill while having exclusive access. 22747 */ 22748 /* ARGSUSED */ 22749 static void 22750 ill_ipsec_capab_send_writer(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *arg) 22751 { 22752 ill_t *ill = (ill_t *)q->q_ptr; 22753 22754 ill_dlpi_send(ill, mp); 22755 } 22756 22757 22758 /* 22759 * Called by SADB to send a DL_CONTROL_REQ message to every ill 22760 * supporting the specified IPsec protocol acceleration. 22761 * sa_type must be SADB_SATYPE_AH or SADB_SATYPE_ESP. 22762 * We free the mblk and, if sa is non-null, release the held referece. 22763 */ 22764 void 22765 ill_ipsec_capab_send_all(uint_t sa_type, mblk_t *mp, ipsa_t *sa) 22766 { 22767 ipsec_capab_ill_t *ici, *cur_ici; 22768 ill_t *ill; 22769 mblk_t *nmp, *mp_ship_list = NULL, *next_mp; 22770 22771 ici = (sa_type == SADB_SATYPE_AH) ? ipsec_capab_ills_ah : 22772 ipsec_capab_ills_esp; 22773 22774 rw_enter(&ipsec_capab_ills_lock, RW_READER); 22775 22776 for (cur_ici = ici; cur_ici != NULL; cur_ici = cur_ici->next) { 22777 ill = ill_lookup_on_ifindex(cur_ici->ill_index, 22778 cur_ici->ill_isv6, NULL, NULL, NULL, NULL); 22779 22780 /* 22781 * Handle the case where the ill goes away while the SADB is 22782 * attempting to send messages. If it's going away, it's 22783 * nuking its shadow SADB, so we don't care.. 22784 */ 22785 22786 if (ill == NULL) 22787 continue; 22788 22789 if (sa != NULL) { 22790 /* 22791 * Make sure capabilities match before 22792 * sending SA to ill. 22793 */ 22794 if (!ipsec_capab_match(ill, cur_ici->ill_index, 22795 cur_ici->ill_isv6, sa)) { 22796 ill_refrele(ill); 22797 continue; 22798 } 22799 22800 mutex_enter(&sa->ipsa_lock); 22801 sa->ipsa_flags |= IPSA_F_HW; 22802 mutex_exit(&sa->ipsa_lock); 22803 } 22804 22805 /* 22806 * Copy template message, and add it to the front 22807 * of the mblk ship list. We want to avoid holding 22808 * the ipsec_capab_ills_lock while sending the 22809 * message to the ills. 22810 * 22811 * The b_next and b_prev are temporarily used 22812 * to build a list of mblks to be sent down, and to 22813 * save the ill to which they must be sent. 22814 */ 22815 nmp = copymsg(mp); 22816 if (nmp == NULL) { 22817 ill_refrele(ill); 22818 continue; 22819 } 22820 ASSERT(nmp->b_next == NULL && nmp->b_prev == NULL); 22821 nmp->b_next = mp_ship_list; 22822 mp_ship_list = nmp; 22823 nmp->b_prev = (mblk_t *)ill; 22824 } 22825 22826 rw_exit(&ipsec_capab_ills_lock); 22827 22828 nmp = mp_ship_list; 22829 while (nmp != NULL) { 22830 /* restore the mblk to a sane state */ 22831 next_mp = nmp->b_next; 22832 nmp->b_next = NULL; 22833 ill = (ill_t *)nmp->b_prev; 22834 nmp->b_prev = NULL; 22835 22836 /* 22837 * Ship the mblk to the ill, must be exclusive. Keep the 22838 * reference to the ill as qwriter_ip() does a ill_referele(). 22839 */ 22840 (void) qwriter_ip(NULL, ill, ill->ill_wq, nmp, 22841 ill_ipsec_capab_send_writer, NEW_OP, B_TRUE); 22842 22843 nmp = next_mp; 22844 } 22845 22846 if (sa != NULL) 22847 IPSA_REFRELE(sa); 22848 freemsg(mp); 22849 } 22850 22851 22852 /* 22853 * Derive an interface id from the link layer address. 22854 * Knows about IEEE 802 and IEEE EUI-64 mappings. 22855 */ 22856 static boolean_t 22857 ip_ether_v6intfid(uint_t phys_length, uint8_t *phys_addr, in6_addr_t *v6addr) 22858 { 22859 char *addr; 22860 22861 if (phys_length != ETHERADDRL) 22862 return (B_FALSE); 22863 22864 /* Form EUI-64 like address */ 22865 addr = (char *)&v6addr->s6_addr32[2]; 22866 bcopy((char *)phys_addr, addr, 3); 22867 addr[0] ^= 0x2; /* Toggle Universal/Local bit */ 22868 addr[3] = (char)0xff; 22869 addr[4] = (char)0xfe; 22870 bcopy((char *)phys_addr + 3, addr + 5, 3); 22871 return (B_TRUE); 22872 } 22873 22874 /* ARGSUSED */ 22875 static boolean_t 22876 ip_nodef_v6intfid(uint_t phys_length, uint8_t *phys_addr, in6_addr_t *v6addr) 22877 { 22878 return (B_FALSE); 22879 } 22880 22881 /* ARGSUSED */ 22882 static boolean_t 22883 ip_ether_v6mapinfo(uint_t lla_length, uint8_t *bphys_addr, uint8_t *maddr, 22884 uint32_t *hw_start, in6_addr_t *v6_extract_mask) 22885 { 22886 /* 22887 * Multicast address mappings used over Ethernet/802.X. 22888 * This address is used as a base for mappings. 22889 */ 22890 static uint8_t ipv6_g_phys_multi_addr[] = {0x33, 0x33, 0x00, 22891 0x00, 0x00, 0x00}; 22892 22893 /* 22894 * Extract low order 32 bits from IPv6 multicast address. 22895 * Or that into the link layer address, starting from the 22896 * second byte. 22897 */ 22898 *hw_start = 2; 22899 v6_extract_mask->s6_addr32[0] = 0; 22900 v6_extract_mask->s6_addr32[1] = 0; 22901 v6_extract_mask->s6_addr32[2] = 0; 22902 v6_extract_mask->s6_addr32[3] = 0xffffffffU; 22903 bcopy(ipv6_g_phys_multi_addr, maddr, lla_length); 22904 return (B_TRUE); 22905 } 22906 22907 /* 22908 * Indicate by return value whether multicast is supported. If not, 22909 * this code should not touch/change any parameters. 22910 */ 22911 /* ARGSUSED */ 22912 static boolean_t 22913 ip_ether_v4mapinfo(uint_t phys_length, uint8_t *bphys_addr, uint8_t *maddr, 22914 uint32_t *hw_start, ipaddr_t *extract_mask) 22915 { 22916 /* 22917 * Multicast address mappings used over Ethernet/802.X. 22918 * This address is used as a base for mappings. 22919 */ 22920 static uint8_t ip_g_phys_multi_addr[] = { 0x01, 0x00, 0x5e, 22921 0x00, 0x00, 0x00 }; 22922 22923 if (phys_length != ETHERADDRL) 22924 return (B_FALSE); 22925 22926 *extract_mask = htonl(0x007fffff); 22927 *hw_start = 2; 22928 bcopy(ip_g_phys_multi_addr, maddr, ETHERADDRL); 22929 return (B_TRUE); 22930 } 22931 22932 /* 22933 * Derive IPoIB interface id from the link layer address. 22934 */ 22935 static boolean_t 22936 ip_ib_v6intfid(uint_t phys_length, uint8_t *phys_addr, in6_addr_t *v6addr) 22937 { 22938 char *addr; 22939 22940 if (phys_length != 20) 22941 return (B_FALSE); 22942 addr = (char *)&v6addr->s6_addr32[2]; 22943 bcopy(phys_addr + 12, addr, 8); 22944 /* 22945 * In IBA 1.1 timeframe, some vendors erroneously set the u/l bit 22946 * in the globally assigned EUI-64 GUID to 1, in violation of IEEE 22947 * rules. In these cases, the IBA considers these GUIDs to be in 22948 * "Modified EUI-64" format, and thus toggling the u/l bit is not 22949 * required; vendors are required not to assign global EUI-64's 22950 * that differ only in u/l bit values, thus guaranteeing uniqueness 22951 * of the interface identifier. Whether the GUID is in modified 22952 * or proper EUI-64 format, the ipv6 identifier must have the u/l 22953 * bit set to 1. 22954 */ 22955 addr[0] |= 2; /* Set Universal/Local bit to 1 */ 22956 return (B_TRUE); 22957 } 22958 22959 /* 22960 * Note on mapping from multicast IP addresses to IPoIB multicast link 22961 * addresses. IPoIB multicast link addresses are based on IBA link addresses. 22962 * The format of an IPoIB multicast address is: 22963 * 22964 * 4 byte QPN Scope Sign. Pkey 22965 * +--------------------------------------------+ 22966 * | 00FFFFFF | FF | 1X | X01B | Pkey | GroupID | 22967 * +--------------------------------------------+ 22968 * 22969 * The Scope and Pkey components are properties of the IBA port and 22970 * network interface. They can be ascertained from the broadcast address. 22971 * The Sign. part is the signature, and is 401B for IPv4 and 601B for IPv6. 22972 */ 22973 22974 static boolean_t 22975 ip_ib_v6mapinfo(uint_t lla_length, uint8_t *bphys_addr, uint8_t *maddr, 22976 uint32_t *hw_start, in6_addr_t *v6_extract_mask) 22977 { 22978 /* 22979 * Base IPoIB IPv6 multicast address used for mappings. 22980 * Does not contain the IBA scope/Pkey values. 22981 */ 22982 static uint8_t ipv6_g_phys_ibmulti_addr[] = { 0x00, 0xff, 0xff, 0xff, 22983 0xff, 0x10, 0x60, 0x1b, 0x00, 0x00, 0x00, 0x00, 22984 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 }; 22985 22986 /* 22987 * Extract low order 80 bits from IPv6 multicast address. 22988 * Or that into the link layer address, starting from the 22989 * sixth byte. 22990 */ 22991 *hw_start = 6; 22992 bcopy(ipv6_g_phys_ibmulti_addr, maddr, lla_length); 22993 22994 /* 22995 * Now fill in the IBA scope/Pkey values from the broadcast address. 22996 */ 22997 *(maddr + 5) = *(bphys_addr + 5); 22998 *(maddr + 8) = *(bphys_addr + 8); 22999 *(maddr + 9) = *(bphys_addr + 9); 23000 23001 v6_extract_mask->s6_addr32[0] = 0; 23002 v6_extract_mask->s6_addr32[1] = htonl(0x0000ffff); 23003 v6_extract_mask->s6_addr32[2] = 0xffffffffU; 23004 v6_extract_mask->s6_addr32[3] = 0xffffffffU; 23005 return (B_TRUE); 23006 } 23007 23008 static boolean_t 23009 ip_ib_v4mapinfo(uint_t phys_length, uint8_t *bphys_addr, uint8_t *maddr, 23010 uint32_t *hw_start, ipaddr_t *extract_mask) 23011 { 23012 /* 23013 * Base IPoIB IPv4 multicast address used for mappings. 23014 * Does not contain the IBA scope/Pkey values. 23015 */ 23016 static uint8_t ipv4_g_phys_ibmulti_addr[] = { 0x00, 0xff, 0xff, 0xff, 23017 0xff, 0x10, 0x40, 0x1b, 0x00, 0x00, 0x00, 0x00, 23018 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 }; 23019 23020 if (phys_length != sizeof (ipv4_g_phys_ibmulti_addr)) 23021 return (B_FALSE); 23022 23023 /* 23024 * Extract low order 28 bits from IPv4 multicast address. 23025 * Or that into the link layer address, starting from the 23026 * sixteenth byte. 23027 */ 23028 *extract_mask = htonl(0x0fffffff); 23029 *hw_start = 16; 23030 bcopy(ipv4_g_phys_ibmulti_addr, maddr, phys_length); 23031 23032 /* 23033 * Now fill in the IBA scope/Pkey values from the broadcast address. 23034 */ 23035 *(maddr + 5) = *(bphys_addr + 5); 23036 *(maddr + 8) = *(bphys_addr + 8); 23037 *(maddr + 9) = *(bphys_addr + 9); 23038 return (B_TRUE); 23039 } 23040 23041 /* 23042 * Returns B_TRUE if an ipif is present in the given zone, matching some flags 23043 * (typically IPIF_UP). If ipifp is non-null, the held ipif is returned there. 23044 * This works for both IPv4 and IPv6; if the passed-in ill is v6, the ipif with 23045 * the link-local address is preferred. 23046 */ 23047 boolean_t 23048 ipif_lookup_zoneid(ill_t *ill, zoneid_t zoneid, int flags, ipif_t **ipifp) 23049 { 23050 ipif_t *ipif; 23051 ipif_t *maybe_ipif = NULL; 23052 23053 mutex_enter(&ill->ill_lock); 23054 if (ill->ill_state_flags & ILL_CONDEMNED) { 23055 mutex_exit(&ill->ill_lock); 23056 if (ipifp != NULL) 23057 *ipifp = NULL; 23058 return (B_FALSE); 23059 } 23060 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 23061 if (!IPIF_CAN_LOOKUP(ipif)) 23062 continue; 23063 if (zoneid != ALL_ZONES && ipif->ipif_zoneid != zoneid && 23064 ipif->ipif_zoneid != ALL_ZONES) 23065 continue; 23066 if ((ipif->ipif_flags & flags) != flags) 23067 continue; 23068 23069 if (ipifp == NULL) { 23070 mutex_exit(&ill->ill_lock); 23071 ASSERT(maybe_ipif == NULL); 23072 return (B_TRUE); 23073 } 23074 if (!ill->ill_isv6 || 23075 IN6_IS_ADDR_LINKLOCAL(&ipif->ipif_v6src_addr)) { 23076 ipif_refhold_locked(ipif); 23077 mutex_exit(&ill->ill_lock); 23078 *ipifp = ipif; 23079 return (B_TRUE); 23080 } 23081 if (maybe_ipif == NULL) 23082 maybe_ipif = ipif; 23083 } 23084 if (ipifp != NULL) { 23085 if (maybe_ipif != NULL) 23086 ipif_refhold_locked(maybe_ipif); 23087 *ipifp = maybe_ipif; 23088 } 23089 mutex_exit(&ill->ill_lock); 23090 return (maybe_ipif != NULL); 23091 } 23092 23093 /* 23094 * Same as ipif_lookup_zoneid() but looks at all the ills in the same group. 23095 */ 23096 boolean_t 23097 ipif_lookup_zoneid_group(ill_t *ill, zoneid_t zoneid, int flags, ipif_t **ipifp) 23098 { 23099 ill_t *illg; 23100 23101 /* 23102 * We look at the passed-in ill first without grabbing ill_g_lock. 23103 */ 23104 if (ipif_lookup_zoneid(ill, zoneid, flags, ipifp)) { 23105 return (B_TRUE); 23106 } 23107 rw_enter(&ill_g_lock, RW_READER); 23108 if (ill->ill_group == NULL) { 23109 /* ill not in a group */ 23110 rw_exit(&ill_g_lock); 23111 return (B_FALSE); 23112 } 23113 23114 /* 23115 * There's no ipif in the zone on ill, however ill is part of an IPMP 23116 * group. We need to look for an ipif in the zone on all the ills in the 23117 * group. 23118 */ 23119 illg = ill->ill_group->illgrp_ill; 23120 do { 23121 /* 23122 * We don't call ipif_lookup_zoneid() on ill as we already know 23123 * that it's not there. 23124 */ 23125 if (illg != ill && 23126 ipif_lookup_zoneid(illg, zoneid, flags, ipifp)) { 23127 break; 23128 } 23129 } while ((illg = illg->ill_group_next) != NULL); 23130 rw_exit(&ill_g_lock); 23131 return (illg != NULL); 23132 } 23133 23134 /* 23135 * Check if this ill is only being used to send ICMP probes for IPMP 23136 */ 23137 boolean_t 23138 ill_is_probeonly(ill_t *ill) 23139 { 23140 /* 23141 * Check if the interface is FAILED, or INACTIVE 23142 */ 23143 if (ill->ill_phyint->phyint_flags & (PHYI_FAILED|PHYI_INACTIVE)) 23144 return (B_TRUE); 23145 23146 return (B_FALSE); 23147 } 23148