1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License, Version 1.0 only 6 * (the "License"). You may not use this file except in compliance 7 * with the License. 8 * 9 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 10 * or http://www.opensolaris.org/os/licensing. 11 * See the License for the specific language governing permissions 12 * and limitations under the License. 13 * 14 * When distributing Covered Code, include this CDDL HEADER in each 15 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 16 * If applicable, add the following below this CDDL HEADER, with the 17 * fields enclosed by brackets "[]" replaced with your own identifying 18 * information: Portions Copyright [yyyy] [name of copyright owner] 19 * 20 * CDDL HEADER END 21 */ 22 /* 23 * Copyright 2005 Sun Microsystems, Inc. All rights reserved. 24 * Use is subject to license terms. 25 */ 26 /* Copyright (c) 1990 Mentat Inc. */ 27 28 #pragma ident "%Z%%M% %I% %E% SMI" 29 30 /* 31 * This file contains the interface control functions for IP. 32 */ 33 34 #include <sys/types.h> 35 #include <sys/stream.h> 36 #include <sys/dlpi.h> 37 #include <sys/stropts.h> 38 #include <sys/strsun.h> 39 #include <sys/sysmacros.h> 40 #include <sys/strlog.h> 41 #include <sys/ddi.h> 42 #include <sys/sunddi.h> 43 #include <sys/cmn_err.h> 44 #include <sys/kstat.h> 45 #include <sys/debug.h> 46 #include <sys/zone.h> 47 48 #include <sys/kmem.h> 49 #include <sys/systm.h> 50 #include <sys/param.h> 51 #include <sys/socket.h> 52 #define _SUN_TPI_VERSION 2 53 #include <sys/tihdr.h> 54 #include <sys/isa_defs.h> 55 #include <net/if.h> 56 #include <net/if_arp.h> 57 #include <net/if_types.h> 58 #include <net/if_dl.h> 59 #include <net/route.h> 60 #include <sys/sockio.h> 61 #include <netinet/in.h> 62 #include <netinet/ip6.h> 63 #include <netinet/icmp6.h> 64 #include <netinet/igmp_var.h> 65 #include <sys/strsun.h> 66 #include <sys/policy.h> 67 #include <sys/ethernet.h> 68 69 #include <inet/common.h> /* for various inet/mi.h and inet/nd.h needs */ 70 #include <inet/mi.h> 71 #include <inet/nd.h> 72 #include <inet/arp.h> 73 #include <inet/mib2.h> 74 #include <inet/ip.h> 75 #include <inet/ip6.h> 76 #include <inet/ip6_asp.h> 77 #include <inet/tcp.h> 78 #include <inet/ip_multi.h> 79 #include <inet/ip_ire.h> 80 #include <inet/ip_rts.h> 81 #include <inet/ip_ndp.h> 82 #include <inet/ip_if.h> 83 #include <inet/tun.h> 84 #include <inet/sctp_ip.h> 85 86 #include <net/pfkeyv2.h> 87 #include <inet/ipsec_info.h> 88 #include <inet/sadb.h> 89 #include <inet/ipsec_impl.h> 90 #include <sys/iphada.h> 91 92 93 #include <netinet/igmp.h> 94 #include <inet/ip_listutils.h> 95 #include <netinet/ip_mroute.h> 96 #include <inet/ipclassifier.h> 97 #include <sys/mac.h> 98 99 #include <sys/systeminfo.h> 100 #include <sys/bootconf.h> 101 102 /* The character which tells where the ill_name ends */ 103 #define IPIF_SEPARATOR_CHAR ':' 104 105 /* IP ioctl function table entry */ 106 typedef struct ipft_s { 107 int ipft_cmd; 108 pfi_t ipft_pfi; 109 int ipft_min_size; 110 int ipft_flags; 111 } ipft_t; 112 #define IPFT_F_NO_REPLY 0x1 /* IP ioctl does not expect any reply */ 113 #define IPFT_F_SELF_REPLY 0x2 /* ioctl callee does the ioctl reply */ 114 115 typedef struct ip_sock_ar_s { 116 union { 117 area_t ip_sock_area; 118 ared_t ip_sock_ared; 119 areq_t ip_sock_areq; 120 } ip_sock_ar_u; 121 queue_t *ip_sock_ar_q; 122 } ip_sock_ar_t; 123 124 static int nd_ill_forward_get(queue_t *, mblk_t *, caddr_t, cred_t *); 125 static int nd_ill_forward_set(queue_t *q, mblk_t *mp, 126 char *value, caddr_t cp, cred_t *ioc_cr); 127 128 static boolean_t ip_addr_ok_v4(ipaddr_t addr, ipaddr_t subnet_mask); 129 static ip_m_t *ip_m_lookup(t_uscalar_t mac_type); 130 static int ip_sioctl_addr_tail(ipif_t *ipif, sin_t *sin, queue_t *q, 131 mblk_t *mp, boolean_t need_up); 132 static int ip_sioctl_dstaddr_tail(ipif_t *ipif, sin_t *sin, queue_t *q, 133 mblk_t *mp, boolean_t need_up); 134 static int ip_sioctl_slifzone_tail(ipif_t *ipif, zoneid_t zoneid, 135 queue_t *q, mblk_t *mp, boolean_t need_up); 136 static int ip_sioctl_flags_tail(ipif_t *ipif, uint64_t flags, queue_t *q, 137 mblk_t *mp, boolean_t need_up); 138 static int ip_sioctl_netmask_tail(ipif_t *ipif, sin_t *sin, queue_t *q, 139 mblk_t *mp); 140 static int ip_sioctl_subnet_tail(ipif_t *ipif, in6_addr_t, in6_addr_t, 141 queue_t *q, mblk_t *mp, boolean_t need_up); 142 static int ip_sioctl_arp_common(ill_t *ill, queue_t *q, mblk_t *mp, 143 sin_t *sin, boolean_t x_arp_ioctl, boolean_t if_arp_ioctl); 144 static ipaddr_t ip_subnet_mask(ipaddr_t addr, ipif_t **); 145 static void ip_wput_ioctl(queue_t *q, mblk_t *mp); 146 static void ipsq_flush(ill_t *ill); 147 static void ipsq_clean_all(ill_t *ill); 148 static void ipsq_clean_ring(ill_t *ill, ill_rx_ring_t *rx_ring); 149 static int ip_sioctl_token_tail(ipif_t *ipif, sin6_t *sin6, int addrlen, 150 queue_t *q, mblk_t *mp, boolean_t need_up); 151 static void ipsq_delete(ipsq_t *); 152 153 static ipif_t *ipif_allocate(ill_t *ill, int id, uint_t ire_type, 154 boolean_t initialize); 155 static void ipif_check_bcast_ires(ipif_t *test_ipif); 156 static void ipif_down_delete_ire(ire_t *ire, char *ipif); 157 static void ipif_delete_cache_ire(ire_t *, char *); 158 static int ipif_logical_down(ipif_t *ipif, queue_t *q, mblk_t *mp); 159 static void ipif_down_tail(ipif_t *ipif); 160 static void ipif_free(ipif_t *ipif); 161 static void ipif_free_tail(ipif_t *ipif); 162 static void ipif_mask_reply(ipif_t *); 163 static void ipif_mtu_change(ire_t *ire, char *ipif_arg); 164 static void ipif_multicast_down(ipif_t *ipif); 165 static void ipif_recreate_interface_routes(ipif_t *old_ipif, ipif_t *ipif); 166 static void ipif_set_default(ipif_t *ipif); 167 static int ipif_set_values(queue_t *q, mblk_t *mp, 168 char *interf_name, uint_t *ppa); 169 static int ipif_set_values_tail(ill_t *ill, ipif_t *ipif, mblk_t *mp, 170 queue_t *q); 171 static ipif_t *ipif_lookup_on_name(char *name, size_t namelen, 172 boolean_t do_alloc, boolean_t *exists, boolean_t isv6, zoneid_t zoneid, 173 queue_t *q, mblk_t *mp, ipsq_func_t func, int *error); 174 static int ipif_up(ipif_t *ipif, queue_t *q, mblk_t *mp); 175 static void ipif_update_other_ipifs(ipif_t *old_ipif, ill_group_t *illgrp); 176 177 static int ill_alloc_ppa(ill_if_t *, ill_t *); 178 static int ill_arp_off(ill_t *ill); 179 static int ill_arp_on(ill_t *ill); 180 static void ill_delete_interface_type(ill_if_t *); 181 static int ill_dl_up(ill_t *ill, ipif_t *ipif, mblk_t *mp, queue_t *q); 182 static void ill_down(ill_t *ill); 183 static void ill_downi(ire_t *ire, char *ill_arg); 184 static void ill_downi_mrtun_srcif(ire_t *ire, char *ill_arg); 185 static void ill_down_tail(ill_t *ill); 186 static void ill_free_mib(ill_t *ill); 187 static void ill_glist_delete(ill_t *); 188 static boolean_t ill_has_usable_ipif(ill_t *); 189 static int ill_lock_ipsq_ills(ipsq_t *sq, ill_t **list, int); 190 static void ill_nominate_bcast_rcv(ill_group_t *illgrp); 191 static void ill_phyint_free(ill_t *ill); 192 static void ill_phyint_reinit(ill_t *ill); 193 static void ill_set_nce_router_flags(ill_t *, boolean_t); 194 static void ill_signal_ipsq_ills(ipsq_t *, boolean_t); 195 static boolean_t ill_split_ipsq(ipsq_t *cur_sq); 196 static void ill_stq_cache_delete(ire_t *, char *); 197 198 static boolean_t ip_ether_v6intfid(uint_t, uint8_t *, in6_addr_t *); 199 static boolean_t ip_nodef_v6intfid(uint_t, uint8_t *, in6_addr_t *); 200 static boolean_t ip_ether_v6mapinfo(uint_t, uint8_t *, uint8_t *, uint32_t *, 201 in6_addr_t *); 202 static boolean_t ip_ether_v4mapinfo(uint_t, uint8_t *, uint8_t *, uint32_t *, 203 ipaddr_t *); 204 static boolean_t ip_ib_v6intfid(uint_t, uint8_t *, in6_addr_t *); 205 static boolean_t ip_ib_v6mapinfo(uint_t, uint8_t *, uint8_t *, uint32_t *, 206 in6_addr_t *); 207 static boolean_t ip_ib_v4mapinfo(uint_t, uint8_t *, uint8_t *, uint32_t *, 208 ipaddr_t *); 209 210 static void ipif_save_ire(ipif_t *, ire_t *); 211 static void ipif_remove_ire(ipif_t *, ire_t *); 212 static void ip_cgtp_bcast_add(ire_t *, ire_t *); 213 static void ip_cgtp_bcast_delete(ire_t *); 214 215 /* 216 * Per-ill IPsec capabilities management. 217 */ 218 static ill_ipsec_capab_t *ill_ipsec_capab_alloc(void); 219 static void ill_ipsec_capab_free(ill_ipsec_capab_t *); 220 static void ill_ipsec_capab_add(ill_t *, uint_t, boolean_t); 221 static void ill_ipsec_capab_delete(ill_t *, uint_t); 222 static boolean_t ill_ipsec_capab_resize_algparm(ill_ipsec_capab_t *, int); 223 static void ill_capability_proto(ill_t *, int, mblk_t *); 224 static void ill_capability_dispatch(ill_t *, mblk_t *, dl_capability_sub_t *, 225 boolean_t); 226 static void ill_capability_id_ack(ill_t *, mblk_t *, dl_capability_sub_t *); 227 static void ill_capability_mdt_ack(ill_t *, mblk_t *, dl_capability_sub_t *); 228 static void ill_capability_mdt_reset(ill_t *, mblk_t **); 229 static void ill_capability_ipsec_ack(ill_t *, mblk_t *, dl_capability_sub_t *); 230 static void ill_capability_ipsec_reset(ill_t *, mblk_t **); 231 static void ill_capability_hcksum_ack(ill_t *, mblk_t *, dl_capability_sub_t *); 232 static void ill_capability_hcksum_reset(ill_t *, mblk_t **); 233 static void ill_capability_zerocopy_ack(ill_t *, mblk_t *, 234 dl_capability_sub_t *); 235 static void ill_capability_zerocopy_reset(ill_t *, mblk_t **); 236 237 static void ill_capability_poll_ack(ill_t *, mblk_t *, dl_capability_sub_t *); 238 static mac_resource_handle_t ill_ring_add(void *, mac_resource_t *); 239 static void ill_capability_poll_reset(ill_t *, mblk_t **); 240 241 static void illgrp_cache_delete(ire_t *, char *); 242 static void illgrp_delete(ill_t *ill); 243 static void illgrp_reset_schednext(ill_t *ill); 244 245 static ill_t *ill_prev_usesrc(ill_t *); 246 static int ill_relink_usesrc_ills(ill_t *, ill_t *, uint_t); 247 static void ill_disband_usesrc_group(ill_t *); 248 249 static void conn_cleanup_stale_ire(conn_t *, caddr_t); 250 251 /* 252 * if we go over the memory footprint limit more than once in this msec 253 * interval, we'll start pruning aggressively. 254 */ 255 int ip_min_frag_prune_time = 0; 256 257 /* 258 * max # of IPsec algorithms supported. Limited to 1 byte by PF_KEY 259 * and the IPsec DOI 260 */ 261 #define MAX_IPSEC_ALGS 256 262 263 #define BITSPERBYTE 8 264 #define BITS(type) (BITSPERBYTE * (long)sizeof (type)) 265 266 #define IPSEC_ALG_ENABLE(algs, algid) \ 267 ((algs)[(algid) / BITS(ipsec_capab_elem_t)] |= \ 268 (1 << ((algid) % BITS(ipsec_capab_elem_t)))) 269 270 #define IPSEC_ALG_IS_ENABLED(algid, algs) \ 271 ((algs)[(algid) / BITS(ipsec_capab_elem_t)] & \ 272 (1 << ((algid) % BITS(ipsec_capab_elem_t)))) 273 274 typedef uint8_t ipsec_capab_elem_t; 275 276 /* 277 * Per-algorithm parameters. Note that at present, only encryption 278 * algorithms have variable keysize (IKE does not provide a way to negotiate 279 * auth algorithm keysize). 280 * 281 * All sizes here are in bits. 282 */ 283 typedef struct 284 { 285 uint16_t minkeylen; 286 uint16_t maxkeylen; 287 } ipsec_capab_algparm_t; 288 289 /* 290 * Per-ill capabilities. 291 */ 292 struct ill_ipsec_capab_s { 293 ipsec_capab_elem_t *encr_hw_algs; 294 ipsec_capab_elem_t *auth_hw_algs; 295 uint32_t algs_size; /* size of _hw_algs in bytes */ 296 /* algorithm key lengths */ 297 ipsec_capab_algparm_t *encr_algparm; 298 uint32_t encr_algparm_size; 299 uint32_t encr_algparm_end; 300 }; 301 302 /* 303 * List of AH and ESP IPsec acceleration capable ills 304 */ 305 typedef struct ipsec_capab_ill_s { 306 uint_t ill_index; 307 boolean_t ill_isv6; 308 struct ipsec_capab_ill_s *next; 309 } ipsec_capab_ill_t; 310 311 static ipsec_capab_ill_t *ipsec_capab_ills_ah; 312 static ipsec_capab_ill_t *ipsec_capab_ills_esp; 313 krwlock_t ipsec_capab_ills_lock; 314 315 /* 316 * The field values are larger than strictly necessary for simple 317 * AR_ENTRY_ADDs but the padding lets us accomodate the socket ioctls. 318 */ 319 static area_t ip_area_template = { 320 AR_ENTRY_ADD, /* area_cmd */ 321 sizeof (ip_sock_ar_t) + (IP_ADDR_LEN*2) + sizeof (struct sockaddr_dl), 322 /* area_name_offset */ 323 /* area_name_length temporarily holds this structure length */ 324 sizeof (area_t), /* area_name_length */ 325 IP_ARP_PROTO_TYPE, /* area_proto */ 326 sizeof (ip_sock_ar_t), /* area_proto_addr_offset */ 327 IP_ADDR_LEN, /* area_proto_addr_length */ 328 sizeof (ip_sock_ar_t) + IP_ADDR_LEN, 329 /* area_proto_mask_offset */ 330 0, /* area_flags */ 331 sizeof (ip_sock_ar_t) + IP_ADDR_LEN + IP_ADDR_LEN, 332 /* area_hw_addr_offset */ 333 /* Zero length hw_addr_length means 'use your idea of the address' */ 334 0 /* area_hw_addr_length */ 335 }; 336 337 /* 338 * AR_ENTRY_ADD/DELETE templates have been added for IPv6 external resolver 339 * support 340 */ 341 static area_t ip6_area_template = { 342 AR_ENTRY_ADD, /* area_cmd */ 343 sizeof (ip_sock_ar_t) + (IPV6_ADDR_LEN*2) + sizeof (sin6_t), 344 /* area_name_offset */ 345 /* area_name_length temporarily holds this structure length */ 346 sizeof (area_t), /* area_name_length */ 347 IP_ARP_PROTO_TYPE, /* area_proto */ 348 sizeof (ip_sock_ar_t), /* area_proto_addr_offset */ 349 IPV6_ADDR_LEN, /* area_proto_addr_length */ 350 sizeof (ip_sock_ar_t) + IPV6_ADDR_LEN, 351 /* area_proto_mask_offset */ 352 0, /* area_flags */ 353 sizeof (ip_sock_ar_t) + IPV6_ADDR_LEN + IPV6_ADDR_LEN, 354 /* area_hw_addr_offset */ 355 /* Zero length hw_addr_length means 'use your idea of the address' */ 356 0 /* area_hw_addr_length */ 357 }; 358 359 static ared_t ip_ared_template = { 360 AR_ENTRY_DELETE, 361 sizeof (ared_t) + IP_ADDR_LEN, 362 sizeof (ared_t), 363 IP_ARP_PROTO_TYPE, 364 sizeof (ared_t), 365 IP_ADDR_LEN 366 }; 367 368 static ared_t ip6_ared_template = { 369 AR_ENTRY_DELETE, 370 sizeof (ared_t) + IPV6_ADDR_LEN, 371 sizeof (ared_t), 372 IP_ARP_PROTO_TYPE, 373 sizeof (ared_t), 374 IPV6_ADDR_LEN 375 }; 376 377 /* 378 * A template for an IPv6 AR_ENTRY_QUERY template has not been created, as 379 * as the areq doesn't include an IP address in ill_dl_up() (the only place a 380 * areq is used). 381 */ 382 static areq_t ip_areq_template = { 383 AR_ENTRY_QUERY, /* cmd */ 384 sizeof (areq_t)+(2*IP_ADDR_LEN), /* name offset */ 385 sizeof (areq_t), /* name len (filled by ill_arp_alloc) */ 386 IP_ARP_PROTO_TYPE, /* protocol, from arps perspective */ 387 sizeof (areq_t), /* target addr offset */ 388 IP_ADDR_LEN, /* target addr_length */ 389 0, /* flags */ 390 sizeof (areq_t) + IP_ADDR_LEN, /* sender addr offset */ 391 IP_ADDR_LEN, /* sender addr length */ 392 6, /* xmit_count */ 393 1000, /* (re)xmit_interval in milliseconds */ 394 4 /* max # of requests to buffer */ 395 /* anything else filled in by the code */ 396 }; 397 398 static arc_t ip_aru_template = { 399 AR_INTERFACE_UP, 400 sizeof (arc_t), /* Name offset */ 401 sizeof (arc_t) /* Name length (set by ill_arp_alloc) */ 402 }; 403 404 static arc_t ip_ard_template = { 405 AR_INTERFACE_DOWN, 406 sizeof (arc_t), /* Name offset */ 407 sizeof (arc_t) /* Name length (set by ill_arp_alloc) */ 408 }; 409 410 static arc_t ip_aron_template = { 411 AR_INTERFACE_ON, 412 sizeof (arc_t), /* Name offset */ 413 sizeof (arc_t) /* Name length (set by ill_arp_alloc) */ 414 }; 415 416 static arc_t ip_aroff_template = { 417 AR_INTERFACE_OFF, 418 sizeof (arc_t), /* Name offset */ 419 sizeof (arc_t) /* Name length (set by ill_arp_alloc) */ 420 }; 421 422 423 static arma_t ip_arma_multi_template = { 424 AR_MAPPING_ADD, 425 sizeof (arma_t) + 3*IP_ADDR_LEN + IP_MAX_HW_LEN, 426 /* Name offset */ 427 sizeof (arma_t), /* Name length (set by ill_arp_alloc) */ 428 IP_ARP_PROTO_TYPE, 429 sizeof (arma_t), /* proto_addr_offset */ 430 IP_ADDR_LEN, /* proto_addr_length */ 431 sizeof (arma_t) + IP_ADDR_LEN, /* proto_mask_offset */ 432 sizeof (arma_t) + 2*IP_ADDR_LEN, /* proto_extract_mask_offset */ 433 ACE_F_PERMANENT | ACE_F_MAPPING, /* flags */ 434 sizeof (arma_t) + 3*IP_ADDR_LEN, /* hw_addr_offset */ 435 IP_MAX_HW_LEN, /* hw_addr_length */ 436 0, /* hw_mapping_start */ 437 }; 438 439 static ipft_t ip_ioctl_ftbl[] = { 440 { IP_IOC_IRE_DELETE, ip_ire_delete, sizeof (ipid_t), 0 }, 441 { IP_IOC_IRE_DELETE_NO_REPLY, ip_ire_delete, sizeof (ipid_t), 442 IPFT_F_NO_REPLY }, 443 { IP_IOC_IRE_ADVISE_NO_REPLY, ip_ire_advise, sizeof (ipic_t), 444 IPFT_F_NO_REPLY }, 445 { IP_IOC_RTS_REQUEST, ip_rts_request, 0, IPFT_F_SELF_REPLY }, 446 { 0 } 447 }; 448 449 /* Simple ICMP IP Header Template */ 450 static ipha_t icmp_ipha = { 451 IP_SIMPLE_HDR_VERSION, 0, 0, 0, 0, 0, IPPROTO_ICMP 452 }; 453 454 /* Flag descriptors for ip_ipif_report */ 455 static nv_t ipif_nv_tbl[] = { 456 { IPIF_UP, "UP" }, 457 { IPIF_BROADCAST, "BROADCAST" }, 458 { ILLF_DEBUG, "DEBUG" }, 459 { PHYI_LOOPBACK, "LOOPBACK" }, 460 { IPIF_POINTOPOINT, "POINTOPOINT" }, 461 { ILLF_NOTRAILERS, "NOTRAILERS" }, 462 { PHYI_RUNNING, "RUNNING" }, 463 { ILLF_NOARP, "NOARP" }, 464 { PHYI_PROMISC, "PROMISC" }, 465 { PHYI_ALLMULTI, "ALLMULTI" }, 466 { PHYI_INTELLIGENT, "INTELLIGENT" }, 467 { ILLF_MULTICAST, "MULTICAST" }, 468 { PHYI_MULTI_BCAST, "MULTI_BCAST" }, 469 { IPIF_UNNUMBERED, "UNNUMBERED" }, 470 { IPIF_DHCPRUNNING, "DHCP" }, 471 { IPIF_PRIVATE, "PRIVATE" }, 472 { IPIF_NOXMIT, "NOXMIT" }, 473 { IPIF_NOLOCAL, "NOLOCAL" }, 474 { IPIF_DEPRECATED, "DEPRECATED" }, 475 { IPIF_PREFERRED, "PREFERRED" }, 476 { IPIF_TEMPORARY, "TEMPORARY" }, 477 { IPIF_ADDRCONF, "ADDRCONF" }, 478 { PHYI_VIRTUAL, "VIRTUAL" }, 479 { ILLF_ROUTER, "ROUTER" }, 480 { ILLF_NONUD, "NONUD" }, 481 { IPIF_ANYCAST, "ANYCAST" }, 482 { ILLF_NORTEXCH, "NORTEXCH" }, 483 { ILLF_IPV4, "IPV4" }, 484 { ILLF_IPV6, "IPV6" }, 485 { IPIF_MIPRUNNING, "MIP" }, 486 { IPIF_NOFAILOVER, "NOFAILOVER" }, 487 { PHYI_FAILED, "FAILED" }, 488 { PHYI_STANDBY, "STANDBY" }, 489 { PHYI_INACTIVE, "INACTIVE" }, 490 { PHYI_OFFLINE, "OFFLINE" }, 491 }; 492 493 static uchar_t ip_six_byte_all_ones[] = { 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF }; 494 495 static ip_m_t ip_m_tbl[] = { 496 { DL_ETHER, IFT_ETHER, ip_ether_v4mapinfo, ip_ether_v6mapinfo, 497 ip_ether_v6intfid }, 498 { DL_CSMACD, IFT_ISO88023, ip_ether_v4mapinfo, ip_ether_v6mapinfo, 499 ip_nodef_v6intfid }, 500 { DL_TPB, IFT_ISO88024, ip_ether_v4mapinfo, ip_ether_v6mapinfo, 501 ip_nodef_v6intfid }, 502 { DL_TPR, IFT_ISO88025, ip_ether_v4mapinfo, ip_ether_v6mapinfo, 503 ip_nodef_v6intfid }, 504 { DL_FDDI, IFT_FDDI, ip_ether_v4mapinfo, ip_ether_v6mapinfo, 505 ip_ether_v6intfid }, 506 { DL_IB, IFT_IB, ip_ib_v4mapinfo, ip_ib_v6mapinfo, 507 ip_ib_v6intfid }, 508 { SUNW_DL_VNI, IFT_OTHER, NULL, NULL, NULL}, 509 { DL_OTHER, IFT_OTHER, ip_ether_v4mapinfo, ip_ether_v6mapinfo, 510 ip_nodef_v6intfid } 511 }; 512 513 static ill_t ill_null; /* Empty ILL for init. */ 514 char ipif_loopback_name[] = "lo0"; 515 static char *ipv4_forward_suffix = ":ip_forwarding"; 516 static char *ipv6_forward_suffix = ":ip6_forwarding"; 517 static kstat_t *loopback_ksp = NULL; 518 static sin6_t sin6_null; /* Zero address for quick clears */ 519 static sin_t sin_null; /* Zero address for quick clears */ 520 static uint_t ill_index = 1; /* Used to assign interface indicies */ 521 /* When set search for unused index */ 522 static boolean_t ill_index_wrap = B_FALSE; 523 /* When set search for unused ipif_seqid */ 524 static ipif_t ipif_zero; 525 uint_t ipif_src_random; 526 527 /* 528 * For details on the protection offered by these locks please refer 529 * to the notes under the Synchronization section at the start of ip.c 530 */ 531 krwlock_t ill_g_lock; /* The global ill_g_lock */ 532 kmutex_t ip_addr_avail_lock; /* Address availability check lock */ 533 ipsq_t *ipsq_g_head; /* List of all ipsq's on the system */ 534 535 krwlock_t ill_g_usesrc_lock; /* Protects usesrc related fields */ 536 537 /* 538 * illgrp_head/ifgrp_head is protected by IP's perimeter. 539 */ 540 static ill_group_t *illgrp_head_v4; /* Head of IPv4 ill groups */ 541 ill_group_t *illgrp_head_v6; /* Head of IPv6 ill groups */ 542 543 ill_g_head_t ill_g_heads[MAX_G_HEADS]; /* ILL List Head */ 544 545 /* 546 * ppa arena is created after these many 547 * interfaces have been plumbed. 548 */ 549 uint_t ill_no_arena = 12; 550 551 #pragma align CACHE_ALIGN_SIZE(phyint_g_list) 552 static phyint_list_t phyint_g_list; /* start of phyint list */ 553 554 static uint_t 555 ipif_rand(void) 556 { 557 ipif_src_random = ipif_src_random * 1103515245 + 12345; 558 return ((ipif_src_random >> 16) & 0x7fff); 559 } 560 561 /* 562 * Allocate per-interface mibs. Only used for ipv6. 563 * Returns true if ok. False otherwise. 564 * ipsq may not yet be allocated (loopback case ). 565 */ 566 static boolean_t 567 ill_allocate_mibs(ill_t *ill) 568 { 569 ASSERT(ill->ill_isv6); 570 571 /* Already allocated? */ 572 if (ill->ill_ip6_mib != NULL) { 573 ASSERT(ill->ill_icmp6_mib != NULL); 574 return (B_TRUE); 575 } 576 577 ill->ill_ip6_mib = kmem_zalloc(sizeof (*ill->ill_ip6_mib), 578 KM_NOSLEEP); 579 if (ill->ill_ip6_mib == NULL) { 580 return (B_FALSE); 581 } 582 ill->ill_icmp6_mib = kmem_zalloc(sizeof (*ill->ill_icmp6_mib), 583 KM_NOSLEEP); 584 if (ill->ill_icmp6_mib == NULL) { 585 kmem_free(ill->ill_ip6_mib, sizeof (*ill->ill_ip6_mib)); 586 ill->ill_ip6_mib = NULL; 587 return (B_FALSE); 588 } 589 /* 590 * The ipv6Ifindex and ipv6IfIcmpIndex will be assigned later 591 * after the phyint merge occurs in ipif_set_values -> ill_glist_insert 592 * -> ill_phyint_reinit 593 */ 594 return (B_TRUE); 595 } 596 597 /* 598 * Common code for preparation of ARP commands. Two points to remember: 599 * 1) The ill_name is tacked on at the end of the allocated space so 600 * the templates name_offset field must contain the total space 601 * to allocate less the name length. 602 * 603 * 2) The templates name_length field should contain the *template* 604 * length. We use it as a parameter to bcopy() and then write 605 * the real ill_name_length into the name_length field of the copy. 606 * (Always called as writer.) 607 */ 608 mblk_t * 609 ill_arp_alloc(ill_t *ill, uchar_t *template, caddr_t addr) 610 { 611 arc_t *arc = (arc_t *)template; 612 char *cp; 613 int len; 614 mblk_t *mp; 615 uint_t name_length = ill->ill_name_length; 616 uint_t template_len = arc->arc_name_length; 617 618 len = arc->arc_name_offset + name_length; 619 mp = allocb(len, BPRI_HI); 620 if (mp == NULL) 621 return (NULL); 622 cp = (char *)mp->b_rptr; 623 mp->b_wptr = (uchar_t *)&cp[len]; 624 if (template_len) 625 bcopy(template, cp, template_len); 626 if (len > template_len) 627 bzero(&cp[template_len], len - template_len); 628 mp->b_datap->db_type = M_PROTO; 629 630 arc = (arc_t *)cp; 631 arc->arc_name_length = name_length; 632 cp = (char *)arc + arc->arc_name_offset; 633 bcopy(ill->ill_name, cp, name_length); 634 635 if (addr) { 636 area_t *area = (area_t *)mp->b_rptr; 637 638 cp = (char *)area + area->area_proto_addr_offset; 639 bcopy(addr, cp, area->area_proto_addr_length); 640 if (area->area_cmd == AR_ENTRY_ADD) { 641 cp = (char *)area; 642 len = area->area_proto_addr_length; 643 if (area->area_proto_mask_offset) 644 cp += area->area_proto_mask_offset; 645 else 646 cp += area->area_proto_addr_offset + len; 647 while (len-- > 0) 648 *cp++ = (char)~0; 649 } 650 } 651 return (mp); 652 } 653 654 /* 655 * Completely vaporize a lower level tap and all associated interfaces. 656 * ill_delete is called only out of ip_close when the device control 657 * stream is being closed. 658 */ 659 void 660 ill_delete(ill_t *ill) 661 { 662 ipif_t *ipif; 663 ill_t *prev_ill; 664 665 /* 666 * ill_delete may be forcibly entering the ipsq. The previous 667 * ioctl may not have completed and may need to be aborted. 668 * ipsq_flush takes care of it. If we don't need to enter the 669 * the ipsq forcibly, the 2nd invocation of ipsq_flush in 670 * ill_delete_tail is sufficient. 671 */ 672 ipsq_flush(ill); 673 674 /* 675 * Nuke all interfaces. ipif_free will take down the interface, 676 * remove it from the list, and free the data structure. 677 * Walk down the ipif list and remove the logical interfaces 678 * first before removing the main ipif. We can't unplumb 679 * zeroth interface first in the case of IPv6 as reset_conn_ill 680 * -> ip_ll_delmulti_v6 de-references ill_ipif for checking 681 * POINTOPOINT. 682 * 683 * If ill_ipif was not properly initialized (i.e low on memory), 684 * then no interfaces to clean up. In this case just clean up the 685 * ill. 686 */ 687 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) 688 ipif_free(ipif); 689 690 /* 691 * Used only by ill_arp_on and ill_arp_off, which are writers. 692 * So nobody can be using this mp now. Free the mp allocated for 693 * honoring ILLF_NOARP 694 */ 695 freemsg(ill->ill_arp_on_mp); 696 ill->ill_arp_on_mp = NULL; 697 698 /* Clean up msgs on pending upcalls for mrouted */ 699 reset_mrt_ill(ill); 700 701 /* 702 * ipif_free -> reset_conn_ipif will remove all multicast 703 * references for IPv4. For IPv6, we need to do it here as 704 * it points only at ills. 705 */ 706 reset_conn_ill(ill); 707 708 /* 709 * ill_down will arrange to blow off any IRE's dependent on this 710 * ILL, and shut down fragmentation reassembly. 711 */ 712 ill_down(ill); 713 714 /* Let SCTP know, so that it can remove this from its list. */ 715 sctp_update_ill(ill, SCTP_ILL_REMOVE); 716 717 /* 718 * If an address on this ILL is being used as a source address then 719 * clear out the pointers in other ILLs that point to this ILL. 720 */ 721 rw_enter(&ill_g_usesrc_lock, RW_WRITER); 722 if (ill->ill_usesrc_grp_next != NULL) { 723 if (ill->ill_usesrc_ifindex == 0) { /* usesrc ILL ? */ 724 ill_disband_usesrc_group(ill); 725 } else { /* consumer of the usesrc ILL */ 726 prev_ill = ill_prev_usesrc(ill); 727 prev_ill->ill_usesrc_grp_next = 728 ill->ill_usesrc_grp_next; 729 } 730 } 731 rw_exit(&ill_g_usesrc_lock); 732 } 733 734 /* 735 * ill_delete_tail is called from ip_modclose after all references 736 * to the closing ill are gone. The wait is done in ip_modclose 737 */ 738 void 739 ill_delete_tail(ill_t *ill) 740 { 741 mblk_t **mpp; 742 ipif_t *ipif; 743 744 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) 745 ipif_down_tail(ipif); 746 747 /* 748 * Send the detach if there's one to send (i.e., if we're above a 749 * style 2 DLPI driver). 750 */ 751 if (ill->ill_detach_mp != NULL) { 752 ill_dlpi_send(ill, ill->ill_detach_mp); 753 ill->ill_detach_mp = NULL; 754 } 755 756 /* 757 * If polling capability is enabled (which signifies direct 758 * upcall into IP and driver has ill saved as a handle), 759 * we need to make sure that unbind has completed before we 760 * let the ill disappear and driver no longer has any reference 761 * to this ill. 762 */ 763 mutex_enter(&ill->ill_lock); 764 if (ill->ill_capabilities & ILL_CAPAB_POLL) { 765 while (!(ill->ill_state_flags & ILL_DL_UNBIND_DONE)) 766 cv_wait(&ill->ill_cv, &ill->ill_lock); 767 } 768 mutex_exit(&ill->ill_lock); 769 770 if (ill->ill_net_type != IRE_LOOPBACK) 771 qprocsoff(ill->ill_rq); 772 773 /* 774 * We do an ipsq_flush once again now. New messages could have 775 * landed up from below (M_ERROR or M_HANGUP). Similarly ioctls 776 * could also have landed up if an ioctl thread had looked up 777 * the ill before we set the ILL_CONDEMNED flag, but not yet 778 * enqueued the ioctl when we did the ipsq_flush last time. 779 */ 780 ipsq_flush(ill); 781 782 /* 783 * Free capabilities. 784 */ 785 if (ill->ill_ipsec_capab_ah != NULL) { 786 ill_ipsec_capab_delete(ill, DL_CAPAB_IPSEC_AH); 787 ill_ipsec_capab_free(ill->ill_ipsec_capab_ah); 788 ill->ill_ipsec_capab_ah = NULL; 789 } 790 791 if (ill->ill_ipsec_capab_esp != NULL) { 792 ill_ipsec_capab_delete(ill, DL_CAPAB_IPSEC_ESP); 793 ill_ipsec_capab_free(ill->ill_ipsec_capab_esp); 794 ill->ill_ipsec_capab_esp = NULL; 795 } 796 797 if (ill->ill_mdt_capab != NULL) { 798 kmem_free(ill->ill_mdt_capab, sizeof (ill_mdt_capab_t)); 799 ill->ill_mdt_capab = NULL; 800 } 801 802 if (ill->ill_hcksum_capab != NULL) { 803 kmem_free(ill->ill_hcksum_capab, sizeof (ill_hcksum_capab_t)); 804 ill->ill_hcksum_capab = NULL; 805 } 806 807 if (ill->ill_zerocopy_capab != NULL) { 808 kmem_free(ill->ill_zerocopy_capab, 809 sizeof (ill_zerocopy_capab_t)); 810 ill->ill_zerocopy_capab = NULL; 811 } 812 813 /* 814 * Clean up polling capabilities 815 */ 816 if (ill->ill_capabilities & ILL_CAPAB_POLL) 817 ipsq_clean_all(ill); 818 819 if (ill->ill_poll_capab != NULL) { 820 CONN_DEC_REF(ill->ill_poll_capab->ill_unbind_conn); 821 ill->ill_poll_capab->ill_unbind_conn = NULL; 822 kmem_free(ill->ill_poll_capab, 823 sizeof (ill_poll_capab_t) + 824 (sizeof (ill_rx_ring_t) * ILL_MAX_RINGS)); 825 ill->ill_poll_capab = NULL; 826 } 827 828 ASSERT(!(ill->ill_capabilities & ILL_CAPAB_POLL)); 829 830 while (ill->ill_ipif != NULL) 831 ipif_free_tail(ill->ill_ipif); 832 833 ill_down_tail(ill); 834 835 /* 836 * We have removed all references to ilm from conn and the ones joined 837 * within the kernel. 838 * 839 * We don't walk conns, mrts and ires because 840 * 841 * 1) reset_conn_ill and reset_mrt_ill cleans up conns and mrts. 842 * 2) ill_down ->ill_downi walks all the ires and cleans up 843 * ill references. 844 */ 845 ASSERT(ilm_walk_ill(ill) == 0); 846 /* 847 * Take us out of the list of ILLs. ill_glist_delete -> ill_phyint_free 848 * could free the phyint. No more reference to the phyint after this 849 * point. 850 */ 851 (void) ill_glist_delete(ill); 852 853 rw_enter(&ip_g_nd_lock, RW_WRITER); 854 if (ill->ill_ndd_name != NULL) 855 nd_unload(&ip_g_nd, ill->ill_ndd_name); 856 rw_exit(&ip_g_nd_lock); 857 858 859 if (ill->ill_frag_ptr != NULL) { 860 uint_t count; 861 862 for (count = 0; count < ILL_FRAG_HASH_TBL_COUNT; count++) { 863 mutex_destroy(&ill->ill_frag_hash_tbl[count].ipfb_lock); 864 } 865 mi_free(ill->ill_frag_ptr); 866 ill->ill_frag_ptr = NULL; 867 ill->ill_frag_hash_tbl = NULL; 868 } 869 if (ill->ill_nd_lla_mp != NULL) 870 freemsg(ill->ill_nd_lla_mp); 871 /* Free all retained control messages. */ 872 mpp = &ill->ill_first_mp_to_free; 873 do { 874 while (mpp[0]) { 875 mblk_t *mp; 876 mblk_t *mp1; 877 878 mp = mpp[0]; 879 mpp[0] = mp->b_next; 880 for (mp1 = mp; mp1 != NULL; mp1 = mp1->b_cont) { 881 mp1->b_next = NULL; 882 mp1->b_prev = NULL; 883 } 884 freemsg(mp); 885 } 886 } while (mpp++ != &ill->ill_last_mp_to_free); 887 888 ill_free_mib(ill); 889 ILL_TRACE_CLEANUP(ill); 890 } 891 892 static void 893 ill_free_mib(ill_t *ill) 894 { 895 if (ill->ill_ip6_mib != NULL) { 896 kmem_free(ill->ill_ip6_mib, sizeof (*ill->ill_ip6_mib)); 897 ill->ill_ip6_mib = NULL; 898 } 899 if (ill->ill_icmp6_mib != NULL) { 900 kmem_free(ill->ill_icmp6_mib, sizeof (*ill->ill_icmp6_mib)); 901 ill->ill_icmp6_mib = NULL; 902 } 903 } 904 905 /* 906 * Concatenate together a physical address and a sap. 907 * 908 * Sap_lengths are interpreted as follows: 909 * sap_length == 0 ==> no sap 910 * sap_length > 0 ==> sap is at the head of the dlpi address 911 * sap_length < 0 ==> sap is at the tail of the dlpi address 912 */ 913 static void 914 ill_dlur_copy_address(uchar_t *phys_src, uint_t phys_length, 915 t_scalar_t sap_src, t_scalar_t sap_length, uchar_t *dst) 916 { 917 uint16_t sap_addr = (uint16_t)sap_src; 918 919 if (sap_length == 0) { 920 if (phys_src == NULL) 921 bzero(dst, phys_length); 922 else 923 bcopy(phys_src, dst, phys_length); 924 } else if (sap_length < 0) { 925 if (phys_src == NULL) 926 bzero(dst, phys_length); 927 else 928 bcopy(phys_src, dst, phys_length); 929 bcopy(&sap_addr, (char *)dst + phys_length, sizeof (sap_addr)); 930 } else { 931 bcopy(&sap_addr, dst, sizeof (sap_addr)); 932 if (phys_src == NULL) 933 bzero((char *)dst + sap_length, phys_length); 934 else 935 bcopy(phys_src, (char *)dst + sap_length, phys_length); 936 } 937 } 938 939 /* 940 * Generate a dl_unitdata_req mblk for the device and address given. 941 * addr_length is the length of the physical portion of the address. 942 * If addr is NULL include an all zero address of the specified length. 943 * TRUE? In any case, addr_length is taken to be the entire length of the 944 * dlpi address, including the absolute value of sap_length. 945 */ 946 mblk_t * 947 ill_dlur_gen(uchar_t *addr, uint_t addr_length, t_uscalar_t sap, 948 t_scalar_t sap_length) 949 { 950 dl_unitdata_req_t *dlur; 951 mblk_t *mp; 952 t_scalar_t abs_sap_length; /* absolute value */ 953 954 abs_sap_length = ABS(sap_length); 955 mp = ip_dlpi_alloc(sizeof (*dlur) + addr_length + abs_sap_length, 956 DL_UNITDATA_REQ); 957 if (mp == NULL) 958 return (NULL); 959 dlur = (dl_unitdata_req_t *)mp->b_rptr; 960 /* HACK: accomodate incompatible DLPI drivers */ 961 if (addr_length == 8) 962 addr_length = 6; 963 dlur->dl_dest_addr_length = addr_length + abs_sap_length; 964 dlur->dl_dest_addr_offset = sizeof (*dlur); 965 dlur->dl_priority.dl_min = 0; 966 dlur->dl_priority.dl_max = 0; 967 ill_dlur_copy_address(addr, addr_length, sap, sap_length, 968 (uchar_t *)&dlur[1]); 969 return (mp); 970 } 971 972 /* 973 * Add the 'mp' to the list of pending mp's headed by ill_pending_mp 974 * Return an error if we already have 1 or more ioctls in progress. 975 * This is used only for non-exclusive ioctls. Currently this is used 976 * for SIOC*ARP and SIOCGTUNPARAM ioctls. Most set ioctls are exclusive 977 * and thus need to use ipsq_pending_mp_add. 978 */ 979 boolean_t 980 ill_pending_mp_add(ill_t *ill, conn_t *connp, mblk_t *add_mp) 981 { 982 ASSERT(MUTEX_HELD(&ill->ill_lock)); 983 ASSERT((add_mp->b_next == NULL) && (add_mp->b_prev == NULL)); 984 /* 985 * M_IOCDATA from ioctls, M_IOCTL from tunnel ioctls. 986 */ 987 ASSERT((add_mp->b_datap->db_type == M_IOCDATA) || 988 (add_mp->b_datap->db_type == M_IOCTL)); 989 990 ASSERT(MUTEX_HELD(&connp->conn_lock)); 991 /* 992 * Return error if the conn has started closing. The conn 993 * could have finished cleaning up the pending mp list, 994 * If so we should not add another mp to the list negating 995 * the cleanup. 996 */ 997 if (connp->conn_state_flags & CONN_CLOSING) 998 return (B_FALSE); 999 /* 1000 * Add the pending mp to the head of the list, chained by b_next. 1001 * Note down the conn on which the ioctl request came, in b_prev. 1002 * This will be used to later get the conn, when we get a response 1003 * on the ill queue, from some other module (typically arp) 1004 */ 1005 add_mp->b_next = (void *)ill->ill_pending_mp; 1006 add_mp->b_queue = CONNP_TO_WQ(connp); 1007 ill->ill_pending_mp = add_mp; 1008 if (connp != NULL) 1009 connp->conn_oper_pending_ill = ill; 1010 return (B_TRUE); 1011 } 1012 1013 /* 1014 * Retrieve the ill_pending_mp and return it. We have to walk the list 1015 * of mblks starting at ill_pending_mp, and match based on the ioc_id. 1016 */ 1017 mblk_t * 1018 ill_pending_mp_get(ill_t *ill, conn_t **connpp, uint_t ioc_id) 1019 { 1020 mblk_t *prev = NULL; 1021 mblk_t *curr = NULL; 1022 uint_t id; 1023 conn_t *connp; 1024 1025 /* 1026 * When the conn closes, conn_ioctl_cleanup needs to clean 1027 * up the pending mp, but it does not know the ioc_id and 1028 * passes in a zero for it. 1029 */ 1030 mutex_enter(&ill->ill_lock); 1031 if (ioc_id != 0) 1032 *connpp = NULL; 1033 1034 /* Search the list for the appropriate ioctl based on ioc_id */ 1035 for (prev = NULL, curr = ill->ill_pending_mp; curr != NULL; 1036 prev = curr, curr = curr->b_next) { 1037 id = ((struct iocblk *)curr->b_rptr)->ioc_id; 1038 connp = Q_TO_CONN(curr->b_queue); 1039 /* Match based on the ioc_id or based on the conn */ 1040 if ((id == ioc_id) || (ioc_id == 0 && connp == *connpp)) 1041 break; 1042 } 1043 1044 if (curr != NULL) { 1045 /* Unlink the mblk from the pending mp list */ 1046 if (prev != NULL) { 1047 prev->b_next = curr->b_next; 1048 } else { 1049 ASSERT(ill->ill_pending_mp == curr); 1050 ill->ill_pending_mp = curr->b_next; 1051 } 1052 1053 /* 1054 * conn refcnt must have been bumped up at the start of 1055 * the ioctl. So we can safely access the conn. 1056 */ 1057 ASSERT(CONN_Q(curr->b_queue)); 1058 *connpp = Q_TO_CONN(curr->b_queue); 1059 curr->b_next = NULL; 1060 curr->b_queue = NULL; 1061 } 1062 1063 mutex_exit(&ill->ill_lock); 1064 1065 return (curr); 1066 } 1067 1068 /* 1069 * Add the pending mp to the list. There can be only 1 pending mp 1070 * in the list. Any exclusive ioctl that needs to wait for a response 1071 * from another module or driver needs to use this function to set 1072 * the ipsq_pending_mp to the ioctl mblk and wait for the response from 1073 * the other module/driver. This is also used while waiting for the 1074 * ipif/ill/ire refcnts to drop to zero in bringing down an ipif. 1075 */ 1076 boolean_t 1077 ipsq_pending_mp_add(conn_t *connp, ipif_t *ipif, queue_t *q, mblk_t *add_mp, 1078 int waitfor) 1079 { 1080 ipsq_t *ipsq; 1081 1082 ASSERT(IAM_WRITER_IPIF(ipif)); 1083 ASSERT(MUTEX_HELD(&ipif->ipif_ill->ill_lock)); 1084 ASSERT((add_mp->b_next == NULL) && (add_mp->b_prev == NULL)); 1085 /* 1086 * M_IOCDATA from ioctls, M_IOCTL from tunnel ioctls, 1087 * M_ERROR/M_HANGUP from driver 1088 */ 1089 ASSERT((DB_TYPE(add_mp) == M_IOCDATA) || (DB_TYPE(add_mp) == M_IOCTL) || 1090 (DB_TYPE(add_mp) == M_ERROR) || (DB_TYPE(add_mp) == M_HANGUP)); 1091 1092 ipsq = ipif->ipif_ill->ill_phyint->phyint_ipsq; 1093 if (connp != NULL) { 1094 ASSERT(MUTEX_HELD(&connp->conn_lock)); 1095 /* 1096 * Return error if the conn has started closing. The conn 1097 * could have finished cleaning up the pending mp list, 1098 * If so we should not add another mp to the list negating 1099 * the cleanup. 1100 */ 1101 if (connp->conn_state_flags & CONN_CLOSING) 1102 return (B_FALSE); 1103 } 1104 mutex_enter(&ipsq->ipsq_lock); 1105 ipsq->ipsq_pending_ipif = ipif; 1106 /* 1107 * Note down the queue in b_queue. This will be returned by 1108 * ipsq_pending_mp_get. Caller will then use these values to restart 1109 * the processing 1110 */ 1111 add_mp->b_next = NULL; 1112 add_mp->b_queue = q; 1113 ipsq->ipsq_pending_mp = add_mp; 1114 ipsq->ipsq_waitfor = waitfor; 1115 /* 1116 * ipsq_current_ipif is needed to restart the operation from 1117 * ipif_ill_refrele_tail when the last reference to the ipi/ill 1118 * is gone. Since this is not an ioctl ipsq_current_ipif has not 1119 * been set until now. 1120 */ 1121 if (DB_TYPE(add_mp) == M_ERROR || DB_TYPE(add_mp) == M_HANGUP) { 1122 ASSERT(ipsq->ipsq_current_ipif == NULL); 1123 ipsq->ipsq_current_ipif = ipif; 1124 ipsq->ipsq_last_cmd = DB_TYPE(add_mp); 1125 } 1126 if (connp != NULL) 1127 connp->conn_oper_pending_ill = ipif->ipif_ill; 1128 mutex_exit(&ipsq->ipsq_lock); 1129 return (B_TRUE); 1130 } 1131 1132 /* 1133 * Retrieve the ipsq_pending_mp and return it. There can be only 1 mp 1134 * queued in the list. 1135 */ 1136 mblk_t * 1137 ipsq_pending_mp_get(ipsq_t *ipsq, conn_t **connpp) 1138 { 1139 mblk_t *curr = NULL; 1140 1141 mutex_enter(&ipsq->ipsq_lock); 1142 *connpp = NULL; 1143 if (ipsq->ipsq_pending_mp == NULL) { 1144 mutex_exit(&ipsq->ipsq_lock); 1145 return (NULL); 1146 } 1147 1148 /* There can be only 1 such excl message */ 1149 curr = ipsq->ipsq_pending_mp; 1150 ASSERT(curr != NULL && curr->b_next == NULL); 1151 ipsq->ipsq_pending_ipif = NULL; 1152 ipsq->ipsq_pending_mp = NULL; 1153 ipsq->ipsq_waitfor = 0; 1154 mutex_exit(&ipsq->ipsq_lock); 1155 1156 if (CONN_Q(curr->b_queue)) { 1157 /* 1158 * This mp did a refhold on the conn, at the start of the ioctl. 1159 * So we can safely return a pointer to the conn to the caller. 1160 */ 1161 *connpp = Q_TO_CONN(curr->b_queue); 1162 } else { 1163 *connpp = NULL; 1164 } 1165 curr->b_next = NULL; 1166 curr->b_prev = NULL; 1167 return (curr); 1168 } 1169 1170 /* 1171 * Cleanup the ioctl mp queued in ipsq_pending_mp 1172 * - Called in the ill_delete path 1173 * - Called in the M_ERROR or M_HANGUP path on the ill. 1174 * - Called in the conn close path. 1175 */ 1176 boolean_t 1177 ipsq_pending_mp_cleanup(ill_t *ill, conn_t *connp) 1178 { 1179 mblk_t *mp; 1180 ipsq_t *ipsq; 1181 queue_t *q; 1182 ipif_t *ipif; 1183 1184 ASSERT(IAM_WRITER_ILL(ill)); 1185 ipsq = ill->ill_phyint->phyint_ipsq; 1186 mutex_enter(&ipsq->ipsq_lock); 1187 /* 1188 * If connp is null, unconditionally clean up the ipsq_pending_mp. 1189 * This happens in M_ERROR/M_HANGUP. We need to abort the current ioctl 1190 * even if it is meant for another ill, since we have to enqueue 1191 * a new mp now in ipsq_pending_mp to complete the ipif_down. 1192 * If connp is non-null we are called from the conn close path. 1193 */ 1194 mp = ipsq->ipsq_pending_mp; 1195 if (mp == NULL || (connp != NULL && 1196 mp->b_queue != CONNP_TO_WQ(connp))) { 1197 mutex_exit(&ipsq->ipsq_lock); 1198 return (B_FALSE); 1199 } 1200 /* Now remove from the ipsq_pending_mp */ 1201 ipsq->ipsq_pending_mp = NULL; 1202 q = mp->b_queue; 1203 mp->b_next = NULL; 1204 mp->b_prev = NULL; 1205 mp->b_queue = NULL; 1206 1207 /* If MOVE was in progress, clear the move_in_progress fields also. */ 1208 ill = ipsq->ipsq_pending_ipif->ipif_ill; 1209 if (ill->ill_move_in_progress) { 1210 ILL_CLEAR_MOVE(ill); 1211 } else if (ill->ill_up_ipifs) { 1212 ill_group_cleanup(ill); 1213 } 1214 1215 ipif = ipsq->ipsq_pending_ipif; 1216 ipsq->ipsq_pending_ipif = NULL; 1217 ipsq->ipsq_waitfor = 0; 1218 ipsq->ipsq_current_ipif = NULL; 1219 mutex_exit(&ipsq->ipsq_lock); 1220 1221 if (DB_TYPE(mp) == M_IOCTL || DB_TYPE(mp) == M_IOCDATA) { 1222 ip_ioctl_finish(q, mp, ENXIO, connp != NULL ? CONN_CLOSE : 1223 NO_COPYOUT, connp != NULL ? ipif : NULL, NULL); 1224 } else { 1225 /* 1226 * IP-MT XXX In the case of TLI/XTI bind / optmgmt this can't 1227 * be just ip_ioctl_freemsg. we have to restart it 1228 * otherwise the thread will be stuck. 1229 */ 1230 ip_ioctl_freemsg(mp); 1231 } 1232 return (B_TRUE); 1233 } 1234 1235 /* 1236 * The ill is closing. Cleanup all the pending mps. Called exclusively 1237 * towards the end of ill_delete. The refcount has gone to 0. So nobody 1238 * knows this ill, and hence nobody can add an mp to this list 1239 */ 1240 static void 1241 ill_pending_mp_cleanup(ill_t *ill) 1242 { 1243 mblk_t *mp; 1244 queue_t *q; 1245 1246 ASSERT(IAM_WRITER_ILL(ill)); 1247 1248 mutex_enter(&ill->ill_lock); 1249 /* 1250 * Every mp on the pending mp list originating from an ioctl 1251 * added 1 to the conn refcnt, at the start of the ioctl. 1252 * So bump it down now. See comments in ip_wput_nondata() 1253 */ 1254 while (ill->ill_pending_mp != NULL) { 1255 mp = ill->ill_pending_mp; 1256 ill->ill_pending_mp = mp->b_next; 1257 mutex_exit(&ill->ill_lock); 1258 1259 q = mp->b_queue; 1260 ASSERT(CONN_Q(q)); 1261 mp->b_next = NULL; 1262 mp->b_prev = NULL; 1263 mp->b_queue = NULL; 1264 ip_ioctl_finish(q, mp, ENXIO, NO_COPYOUT, NULL, NULL); 1265 mutex_enter(&ill->ill_lock); 1266 } 1267 ill->ill_pending_ipif = NULL; 1268 1269 mutex_exit(&ill->ill_lock); 1270 } 1271 1272 /* 1273 * Called in the conn close path and ill delete path 1274 */ 1275 static void 1276 ipsq_xopq_mp_cleanup(ill_t *ill, conn_t *connp) 1277 { 1278 ipsq_t *ipsq; 1279 mblk_t *prev; 1280 mblk_t *curr; 1281 mblk_t *next; 1282 queue_t *q; 1283 mblk_t *tmp_list = NULL; 1284 1285 ASSERT(IAM_WRITER_ILL(ill)); 1286 if (connp != NULL) 1287 q = CONNP_TO_WQ(connp); 1288 else 1289 q = ill->ill_wq; 1290 1291 ipsq = ill->ill_phyint->phyint_ipsq; 1292 /* 1293 * Cleanup the ioctl mp's queued in ipsq_xopq_pending_mp if any. 1294 * In the case of ioctl from a conn, there can be only 1 mp 1295 * queued on the ipsq. If an ill is being unplumbed, only messages 1296 * related to this ill are flushed, like M_ERROR or M_HANGUP message. 1297 * ioctls meant for this ill form conn's are not flushed. They will 1298 * be processed during ipsq_exit and will not find the ill and will 1299 * return error. 1300 */ 1301 mutex_enter(&ipsq->ipsq_lock); 1302 for (prev = NULL, curr = ipsq->ipsq_xopq_mphead; curr != NULL; 1303 curr = next) { 1304 next = curr->b_next; 1305 if (curr->b_queue == q || curr->b_queue == RD(q)) { 1306 /* Unlink the mblk from the pending mp list */ 1307 if (prev != NULL) { 1308 prev->b_next = curr->b_next; 1309 } else { 1310 ASSERT(ipsq->ipsq_xopq_mphead == curr); 1311 ipsq->ipsq_xopq_mphead = curr->b_next; 1312 } 1313 if (ipsq->ipsq_xopq_mptail == curr) 1314 ipsq->ipsq_xopq_mptail = prev; 1315 /* 1316 * Create a temporary list and release the ipsq lock 1317 * New elements are added to the head of the tmp_list 1318 */ 1319 curr->b_next = tmp_list; 1320 tmp_list = curr; 1321 } else { 1322 prev = curr; 1323 } 1324 } 1325 mutex_exit(&ipsq->ipsq_lock); 1326 1327 while (tmp_list != NULL) { 1328 curr = tmp_list; 1329 tmp_list = curr->b_next; 1330 curr->b_next = NULL; 1331 curr->b_prev = NULL; 1332 curr->b_queue = NULL; 1333 if (DB_TYPE(curr) == M_IOCTL || DB_TYPE(curr) == M_IOCDATA) { 1334 ip_ioctl_finish(q, curr, ENXIO, connp != NULL ? 1335 CONN_CLOSE : NO_COPYOUT, NULL, NULL); 1336 } else { 1337 /* 1338 * IP-MT XXX In the case of TLI/XTI bind / optmgmt 1339 * this can't be just ip_ioctl_freemsg. we have to 1340 * restart it otherwise the thread will be stuck. 1341 */ 1342 ip_ioctl_freemsg(curr); 1343 } 1344 } 1345 } 1346 1347 /* 1348 * This conn has started closing. Cleanup any pending ioctl from this conn. 1349 * STREAMS ensures that there can be at most 1 ioctl pending on a stream. 1350 */ 1351 void 1352 conn_ioctl_cleanup(conn_t *connp) 1353 { 1354 mblk_t *curr; 1355 ipsq_t *ipsq; 1356 ill_t *ill; 1357 boolean_t refheld; 1358 1359 /* 1360 * Is any exclusive ioctl pending ? If so clean it up. If the 1361 * ioctl has not yet started, the mp is pending in the list headed by 1362 * ipsq_xopq_head. If the ioctl has started the mp could be present in 1363 * ipsq_pending_mp. If the ioctl timed out in the streamhead but 1364 * is currently executing now the mp is not queued anywhere but 1365 * conn_oper_pending_ill is null. The conn close will wait 1366 * till the conn_ref drops to zero. 1367 */ 1368 mutex_enter(&connp->conn_lock); 1369 ill = connp->conn_oper_pending_ill; 1370 if (ill == NULL) { 1371 mutex_exit(&connp->conn_lock); 1372 return; 1373 } 1374 1375 curr = ill_pending_mp_get(ill, &connp, 0); 1376 if (curr != NULL) { 1377 mutex_exit(&connp->conn_lock); 1378 CONN_DEC_REF(connp); 1379 ip_ioctl_freemsg(curr); 1380 return; 1381 } 1382 /* 1383 * We may not be able to refhold the ill if the ill/ipif 1384 * is changing. But we need to make sure that the ill will 1385 * not vanish. So we just bump up the ill_waiter count. 1386 */ 1387 refheld = ill_waiter_inc(ill); 1388 mutex_exit(&connp->conn_lock); 1389 if (refheld) { 1390 if (ipsq_enter(ill, B_TRUE)) { 1391 ill_waiter_dcr(ill); 1392 /* 1393 * Check whether this ioctl has started and is 1394 * pending now in ipsq_pending_mp. If it is not 1395 * found there then check whether this ioctl has 1396 * not even started and is in the ipsq_xopq list. 1397 */ 1398 if (!ipsq_pending_mp_cleanup(ill, connp)) 1399 ipsq_xopq_mp_cleanup(ill, connp); 1400 ipsq = ill->ill_phyint->phyint_ipsq; 1401 ipsq_exit(ipsq, B_TRUE, B_TRUE); 1402 return; 1403 } 1404 } 1405 1406 /* 1407 * The ill is also closing and we could not bump up the 1408 * ill_waiter_count or we could not enter the ipsq. Leave 1409 * the cleanup to ill_delete 1410 */ 1411 mutex_enter(&connp->conn_lock); 1412 while (connp->conn_oper_pending_ill != NULL) 1413 cv_wait(&connp->conn_refcv, &connp->conn_lock); 1414 mutex_exit(&connp->conn_lock); 1415 if (refheld) 1416 ill_waiter_dcr(ill); 1417 } 1418 1419 /* 1420 * ipcl_walk function for cleaning up conn_*_ill fields. 1421 */ 1422 static void 1423 conn_cleanup_ill(conn_t *connp, caddr_t arg) 1424 { 1425 ill_t *ill = (ill_t *)arg; 1426 ire_t *ire; 1427 1428 mutex_enter(&connp->conn_lock); 1429 if (connp->conn_multicast_ill == ill) { 1430 /* Revert to late binding */ 1431 connp->conn_multicast_ill = NULL; 1432 connp->conn_orig_multicast_ifindex = 0; 1433 } 1434 if (connp->conn_incoming_ill == ill) 1435 connp->conn_incoming_ill = NULL; 1436 if (connp->conn_outgoing_ill == ill) 1437 connp->conn_outgoing_ill = NULL; 1438 if (connp->conn_outgoing_pill == ill) 1439 connp->conn_outgoing_pill = NULL; 1440 if (connp->conn_nofailover_ill == ill) 1441 connp->conn_nofailover_ill = NULL; 1442 if (connp->conn_xmit_if_ill == ill) 1443 connp->conn_xmit_if_ill = NULL; 1444 if (connp->conn_ire_cache != NULL) { 1445 ire = connp->conn_ire_cache; 1446 /* 1447 * ip_newroute creates IRE_CACHE with ire_stq coming from 1448 * interface X and ipif coming from interface Y, if interface 1449 * X and Y are part of the same IPMPgroup. Thus whenever 1450 * interface X goes down, remove all references to it by 1451 * checking both on ire_ipif and ire_stq. 1452 */ 1453 if ((ire->ire_ipif != NULL && ire->ire_ipif->ipif_ill == ill) || 1454 (ire->ire_type == IRE_CACHE && 1455 ire->ire_stq == ill->ill_wq)) { 1456 connp->conn_ire_cache = NULL; 1457 mutex_exit(&connp->conn_lock); 1458 ire_refrele_notr(ire); 1459 return; 1460 } 1461 } 1462 mutex_exit(&connp->conn_lock); 1463 1464 } 1465 1466 /* ARGSUSED */ 1467 void 1468 ipif_all_down_tail(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy_arg) 1469 { 1470 ill_t *ill = q->q_ptr; 1471 ipif_t *ipif; 1472 1473 ASSERT(IAM_WRITER_IPSQ(ipsq)); 1474 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) 1475 ipif_down_tail(ipif); 1476 ill_down_tail(ill); 1477 freemsg(mp); 1478 ipsq->ipsq_current_ipif = NULL; 1479 } 1480 1481 /* 1482 * ill_down_start is called when we want to down this ill and bring it up again 1483 * It is called when we receive an M_ERROR / M_HANGUP. In this case we shut down 1484 * all interfaces, but don't tear down any plumbing. 1485 */ 1486 boolean_t 1487 ill_down_start(queue_t *q, mblk_t *mp) 1488 { 1489 ill_t *ill; 1490 ipif_t *ipif; 1491 1492 ill = q->q_ptr; 1493 1494 ASSERT(IAM_WRITER_ILL(ill)); 1495 1496 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) 1497 (void) ipif_down(ipif, NULL, NULL); 1498 1499 ill_down(ill); 1500 1501 (void) ipsq_pending_mp_cleanup(ill, NULL); 1502 mutex_enter(&ill->ill_lock); 1503 /* 1504 * Atomically test and add the pending mp if references are 1505 * still active. 1506 */ 1507 if (!ill_is_quiescent(ill)) { 1508 /* 1509 * Get rid of any pending mps and cleanup. Call will 1510 * not fail since we are passing a null connp. 1511 */ 1512 (void) ipsq_pending_mp_add(NULL, ill->ill_ipif, ill->ill_rq, 1513 mp, ILL_DOWN); 1514 mutex_exit(&ill->ill_lock); 1515 return (B_FALSE); 1516 } 1517 mutex_exit(&ill->ill_lock); 1518 return (B_TRUE); 1519 } 1520 1521 static void 1522 ill_down(ill_t *ill) 1523 { 1524 /* Blow off any IREs dependent on this ILL. */ 1525 ire_walk(ill_downi, (char *)ill); 1526 1527 mutex_enter(&ire_mrtun_lock); 1528 if (ire_mrtun_count != 0) { 1529 mutex_exit(&ire_mrtun_lock); 1530 ire_walk_ill_mrtun(0, 0, ill_downi_mrtun_srcif, 1531 (char *)ill, NULL); 1532 } else { 1533 mutex_exit(&ire_mrtun_lock); 1534 } 1535 1536 /* 1537 * If any interface based forwarding table exists 1538 * Blow off the ires there dependent on this ill 1539 */ 1540 mutex_enter(&ire_srcif_table_lock); 1541 if (ire_srcif_table_count > 0) { 1542 mutex_exit(&ire_srcif_table_lock); 1543 ire_walk_srcif_table_v4(ill_downi_mrtun_srcif, (char *)ill); 1544 } else { 1545 mutex_exit(&ire_srcif_table_lock); 1546 } 1547 1548 /* Remove any conn_*_ill depending on this ill */ 1549 ipcl_walk(conn_cleanup_ill, (caddr_t)ill); 1550 1551 if (ill->ill_group != NULL) { 1552 illgrp_delete(ill); 1553 } 1554 1555 } 1556 1557 static void 1558 ill_down_tail(ill_t *ill) 1559 { 1560 int i; 1561 1562 /* Destroy ill_srcif_table if it exists */ 1563 /* Lock not reqd really because nobody should be able to access */ 1564 mutex_enter(&ill->ill_lock); 1565 if (ill->ill_srcif_table != NULL) { 1566 ill->ill_srcif_refcnt = 0; 1567 for (i = 0; i < IP_SRCIF_TABLE_SIZE; i++) { 1568 rw_destroy(&ill->ill_srcif_table[i].irb_lock); 1569 } 1570 kmem_free(ill->ill_srcif_table, 1571 IP_SRCIF_TABLE_SIZE * sizeof (irb_t)); 1572 ill->ill_srcif_table = NULL; 1573 ill->ill_srcif_refcnt = 0; 1574 ill->ill_mrtun_refcnt = 0; 1575 } 1576 mutex_exit(&ill->ill_lock); 1577 } 1578 1579 /* 1580 * ire_walk routine used to delete every IRE that depends on queues 1581 * associated with 'ill'. (Always called as writer.) 1582 */ 1583 static void 1584 ill_downi(ire_t *ire, char *ill_arg) 1585 { 1586 ill_t *ill = (ill_t *)ill_arg; 1587 1588 /* 1589 * ip_newroute creates IRE_CACHE with ire_stq coming from 1590 * interface X and ipif coming from interface Y, if interface 1591 * X and Y are part of the same IPMP group. Thus whenever interface 1592 * X goes down, remove all references to it by checking both 1593 * on ire_ipif and ire_stq. 1594 */ 1595 if ((ire->ire_ipif != NULL && ire->ire_ipif->ipif_ill == ill) || 1596 (ire->ire_type == IRE_CACHE && ire->ire_stq == ill->ill_wq)) { 1597 ire_delete(ire); 1598 } 1599 } 1600 1601 /* 1602 * A seperate routine for deleting revtun and srcif based routes 1603 * are needed because the ires only deleted when the interface 1604 * is unplumbed. Also these ires have ire_in_ill non-null as well. 1605 * we want to keep mobile IP specific code separate. 1606 */ 1607 static void 1608 ill_downi_mrtun_srcif(ire_t *ire, char *ill_arg) 1609 { 1610 ill_t *ill = (ill_t *)ill_arg; 1611 1612 ASSERT(ire->ire_in_ill != NULL); 1613 1614 if ((ire->ire_in_ill != NULL && ire->ire_in_ill == ill) || 1615 (ire->ire_stq == ill->ill_wq) || (ire->ire_stq == ill->ill_rq)) { 1616 ire_delete(ire); 1617 } 1618 } 1619 1620 /* 1621 * Remove ire/nce from the fastpath list. 1622 */ 1623 void 1624 ill_fastpath_nack(ill_t *ill) 1625 { 1626 if (ill->ill_isv6) { 1627 nce_fastpath_list_dispatch(ill, NULL, NULL); 1628 } else { 1629 ire_fastpath_list_dispatch(ill, NULL, NULL); 1630 } 1631 } 1632 1633 /* Consume an M_IOCACK of the fastpath probe. */ 1634 void 1635 ill_fastpath_ack(ill_t *ill, mblk_t *mp) 1636 { 1637 mblk_t *mp1 = mp; 1638 1639 /* 1640 * If this was the first attempt turn on the fastpath probing. 1641 */ 1642 mutex_enter(&ill->ill_lock); 1643 if (ill->ill_dlpi_fastpath_state == IDMS_INPROGRESS) 1644 ill->ill_dlpi_fastpath_state = IDMS_OK; 1645 mutex_exit(&ill->ill_lock); 1646 1647 /* Free the M_IOCACK mblk, hold on to the data */ 1648 mp = mp->b_cont; 1649 freeb(mp1); 1650 if (mp == NULL) 1651 return; 1652 if (mp->b_cont != NULL) { 1653 /* 1654 * Update all IRE's or NCE's that are waiting for 1655 * fastpath update. 1656 */ 1657 if (ill->ill_isv6) { 1658 /* 1659 * update nce's in the fastpath list. 1660 */ 1661 nce_fastpath_list_dispatch(ill, 1662 ndp_fastpath_update, mp); 1663 } else { 1664 1665 /* 1666 * update ire's in the fastpath list. 1667 */ 1668 ire_fastpath_list_dispatch(ill, 1669 ire_fastpath_update, mp); 1670 /* 1671 * Check if we need to traverse reverse tunnel table. 1672 * Since there is only single ire_type (IRE_MIPRTUN) 1673 * in the table, we don't need to match on ire_type. 1674 * We have to check ire_mrtun_count and not the 1675 * ill_mrtun_refcnt since ill_mrtun_refcnt is set 1676 * on the incoming ill and here we are dealing with 1677 * outgoing ill. 1678 */ 1679 mutex_enter(&ire_mrtun_lock); 1680 if (ire_mrtun_count != 0) { 1681 mutex_exit(&ire_mrtun_lock); 1682 ire_walk_ill_mrtun(MATCH_IRE_WQ, IRE_MIPRTUN, 1683 (void (*)(ire_t *, void *)) 1684 ire_fastpath_update, mp, ill); 1685 } else { 1686 mutex_exit(&ire_mrtun_lock); 1687 } 1688 } 1689 mp1 = mp->b_cont; 1690 freeb(mp); 1691 mp = mp1; 1692 } else { 1693 ip0dbg(("ill_fastpath_ack: no b_cont\n")); 1694 } 1695 1696 freeb(mp); 1697 } 1698 1699 /* 1700 * Throw an M_IOCTL message downstream asking "do you know fastpath?" 1701 * The data portion of the request is a dl_unitdata_req_t template for 1702 * what we would send downstream in the absence of a fastpath confirmation. 1703 */ 1704 int 1705 ill_fastpath_probe(ill_t *ill, mblk_t *dlur_mp) 1706 { 1707 struct iocblk *ioc; 1708 mblk_t *mp; 1709 1710 if (dlur_mp == NULL) 1711 return (EINVAL); 1712 1713 mutex_enter(&ill->ill_lock); 1714 switch (ill->ill_dlpi_fastpath_state) { 1715 case IDMS_FAILED: 1716 /* 1717 * Driver NAKed the first fastpath ioctl - assume it doesn't 1718 * support it. 1719 */ 1720 mutex_exit(&ill->ill_lock); 1721 return (ENOTSUP); 1722 case IDMS_UNKNOWN: 1723 /* This is the first probe */ 1724 ill->ill_dlpi_fastpath_state = IDMS_INPROGRESS; 1725 break; 1726 default: 1727 break; 1728 } 1729 mutex_exit(&ill->ill_lock); 1730 1731 if ((mp = mkiocb(DL_IOC_HDR_INFO)) == NULL) 1732 return (EAGAIN); 1733 1734 mp->b_cont = copyb(dlur_mp); 1735 if (mp->b_cont == NULL) { 1736 freeb(mp); 1737 return (EAGAIN); 1738 } 1739 1740 ioc = (struct iocblk *)mp->b_rptr; 1741 ioc->ioc_count = msgdsize(mp->b_cont); 1742 1743 putnext(ill->ill_wq, mp); 1744 return (0); 1745 } 1746 1747 void 1748 ill_capability_probe(ill_t *ill) 1749 { 1750 /* 1751 * Do so only if negotiation is enabled, capabilities are unknown, 1752 * and a capability negotiation is not already in progress. 1753 */ 1754 if (ill->ill_capab_state != IDMS_UNKNOWN && 1755 ill->ill_capab_state != IDMS_RENEG) 1756 return; 1757 1758 ill->ill_capab_state = IDMS_INPROGRESS; 1759 ip1dbg(("ill_capability_probe: starting capability negotiation\n")); 1760 ill_capability_proto(ill, DL_CAPABILITY_REQ, NULL); 1761 } 1762 1763 void 1764 ill_capability_reset(ill_t *ill) 1765 { 1766 mblk_t *sc_mp = NULL; 1767 mblk_t *tmp; 1768 1769 /* 1770 * Note here that we reset the state to UNKNOWN, and later send 1771 * down the DL_CAPABILITY_REQ without first setting the state to 1772 * INPROGRESS. We do this in order to distinguish the 1773 * DL_CAPABILITY_ACK response which may come back in response to 1774 * a "reset" apart from the "probe" DL_CAPABILITY_REQ. This would 1775 * also handle the case where the driver doesn't send us back 1776 * a DL_CAPABILITY_ACK in response, since the "probe" routine 1777 * requires the state to be in UNKNOWN anyway. In any case, all 1778 * features are turned off until the state reaches IDMS_OK. 1779 */ 1780 ill->ill_capab_state = IDMS_UNKNOWN; 1781 1782 /* 1783 * Disable sub-capabilities and request a list of sub-capability 1784 * messages which will be sent down to the driver. Each handler 1785 * allocates the corresponding dl_capability_sub_t inside an 1786 * mblk, and links it to the existing sc_mp mblk, or return it 1787 * as sc_mp if it's the first sub-capability (the passed in 1788 * sc_mp is NULL). Upon returning from all capability handlers, 1789 * sc_mp will be pulled-up, before passing it downstream. 1790 */ 1791 ill_capability_mdt_reset(ill, &sc_mp); 1792 ill_capability_hcksum_reset(ill, &sc_mp); 1793 ill_capability_zerocopy_reset(ill, &sc_mp); 1794 ill_capability_ipsec_reset(ill, &sc_mp); 1795 ill_capability_poll_reset(ill, &sc_mp); 1796 1797 /* Nothing to send down in order to disable the capabilities? */ 1798 if (sc_mp == NULL) 1799 return; 1800 1801 tmp = msgpullup(sc_mp, -1); 1802 freemsg(sc_mp); 1803 if ((sc_mp = tmp) == NULL) { 1804 cmn_err(CE_WARN, "ill_capability_reset: unable to send down " 1805 "DL_CAPABILITY_REQ (ENOMEM)\n"); 1806 return; 1807 } 1808 1809 ip1dbg(("ill_capability_reset: resetting negotiated capabilities\n")); 1810 ill_capability_proto(ill, DL_CAPABILITY_REQ, sc_mp); 1811 } 1812 1813 /* 1814 * Request or set new-style hardware capabilities supported by DLS provider. 1815 */ 1816 static void 1817 ill_capability_proto(ill_t *ill, int type, mblk_t *reqp) 1818 { 1819 mblk_t *mp; 1820 dl_capability_req_t *capb; 1821 size_t size = 0; 1822 uint8_t *ptr; 1823 1824 if (reqp != NULL) 1825 size = MBLKL(reqp); 1826 1827 mp = ip_dlpi_alloc(sizeof (dl_capability_req_t) + size, type); 1828 if (mp == NULL) { 1829 freemsg(reqp); 1830 return; 1831 } 1832 ptr = mp->b_rptr; 1833 1834 capb = (dl_capability_req_t *)ptr; 1835 ptr += sizeof (dl_capability_req_t); 1836 1837 if (reqp != NULL) { 1838 capb->dl_sub_offset = sizeof (dl_capability_req_t); 1839 capb->dl_sub_length = size; 1840 bcopy(reqp->b_rptr, ptr, size); 1841 ptr += size; 1842 mp->b_cont = reqp->b_cont; 1843 freeb(reqp); 1844 } 1845 ASSERT(ptr == mp->b_wptr); 1846 1847 ill_dlpi_send(ill, mp); 1848 } 1849 1850 static void 1851 ill_capability_id_ack(ill_t *ill, mblk_t *mp, dl_capability_sub_t *outers) 1852 { 1853 dl_capab_id_t *id_ic; 1854 uint_t sub_dl_cap = outers->dl_cap; 1855 dl_capability_sub_t *inners; 1856 uint8_t *capend; 1857 1858 ASSERT(sub_dl_cap == DL_CAPAB_ID_WRAPPER); 1859 1860 /* 1861 * Note: range checks here are not absolutely sufficient to 1862 * make us robust against malformed messages sent by drivers; 1863 * this is in keeping with the rest of IP's dlpi handling. 1864 * (Remember, it's coming from something else in the kernel 1865 * address space) 1866 */ 1867 1868 capend = (uint8_t *)(outers + 1) + outers->dl_length; 1869 if (capend > mp->b_wptr) { 1870 cmn_err(CE_WARN, "ill_capability_id_ack: " 1871 "malformed sub-capability too long for mblk"); 1872 return; 1873 } 1874 1875 id_ic = (dl_capab_id_t *)(outers + 1); 1876 1877 if (outers->dl_length < sizeof (*id_ic) || 1878 (inners = &id_ic->id_subcap, 1879 inners->dl_length > (outers->dl_length - sizeof (*inners)))) { 1880 cmn_err(CE_WARN, "ill_capability_id_ack: malformed " 1881 "encapsulated capab type %d too long for mblk", 1882 inners->dl_cap); 1883 return; 1884 } 1885 1886 if (!dlcapabcheckqid(&id_ic->id_mid, ill->ill_lmod_rq)) { 1887 ip1dbg(("ill_capability_id_ack: mid token for capab type %d " 1888 "isn't as expected; pass-thru module(s) detected, " 1889 "discarding capability\n", inners->dl_cap)); 1890 return; 1891 } 1892 1893 /* Process the encapsulated sub-capability */ 1894 ill_capability_dispatch(ill, mp, inners, B_TRUE); 1895 } 1896 1897 /* 1898 * Process Multidata Transmit capability negotiation ack received from a 1899 * DLS Provider. isub must point to the sub-capability (DL_CAPAB_MDT) of a 1900 * DL_CAPABILITY_ACK message. 1901 */ 1902 static void 1903 ill_capability_mdt_ack(ill_t *ill, mblk_t *mp, dl_capability_sub_t *isub) 1904 { 1905 mblk_t *nmp = NULL; 1906 dl_capability_req_t *oc; 1907 dl_capab_mdt_t *mdt_ic, *mdt_oc; 1908 ill_mdt_capab_t **ill_mdt_capab; 1909 uint_t sub_dl_cap = isub->dl_cap; 1910 uint8_t *capend; 1911 1912 ASSERT(sub_dl_cap == DL_CAPAB_MDT); 1913 1914 ill_mdt_capab = (ill_mdt_capab_t **)&ill->ill_mdt_capab; 1915 1916 /* 1917 * Note: range checks here are not absolutely sufficient to 1918 * make us robust against malformed messages sent by drivers; 1919 * this is in keeping with the rest of IP's dlpi handling. 1920 * (Remember, it's coming from something else in the kernel 1921 * address space) 1922 */ 1923 1924 capend = (uint8_t *)(isub + 1) + isub->dl_length; 1925 if (capend > mp->b_wptr) { 1926 cmn_err(CE_WARN, "ill_capability_mdt_ack: " 1927 "malformed sub-capability too long for mblk"); 1928 return; 1929 } 1930 1931 mdt_ic = (dl_capab_mdt_t *)(isub + 1); 1932 1933 if (mdt_ic->mdt_version != MDT_VERSION_2) { 1934 cmn_err(CE_CONT, "ill_capability_mdt_ack: " 1935 "unsupported MDT sub-capability (version %d, expected %d)", 1936 mdt_ic->mdt_version, MDT_VERSION_2); 1937 return; 1938 } 1939 1940 if (!dlcapabcheckqid(&mdt_ic->mdt_mid, ill->ill_lmod_rq)) { 1941 ip1dbg(("ill_capability_mdt_ack: mid token for MDT " 1942 "capability isn't as expected; pass-thru module(s) " 1943 "detected, discarding capability\n")); 1944 return; 1945 } 1946 1947 if (mdt_ic->mdt_flags & DL_CAPAB_MDT_ENABLE) { 1948 1949 if (*ill_mdt_capab == NULL) { 1950 *ill_mdt_capab = kmem_zalloc(sizeof (ill_mdt_capab_t), 1951 KM_NOSLEEP); 1952 1953 if (*ill_mdt_capab == NULL) { 1954 cmn_err(CE_WARN, "ill_capability_mdt_ack: " 1955 "could not enable MDT version %d " 1956 "for %s (ENOMEM)\n", MDT_VERSION_2, 1957 ill->ill_name); 1958 return; 1959 } 1960 } 1961 1962 ip1dbg(("ill_capability_mdt_ack: interface %s supports " 1963 "MDT version %d (%d bytes leading, %d bytes trailing " 1964 "header spaces, %d max pld bufs, %d span limit)\n", 1965 ill->ill_name, MDT_VERSION_2, 1966 mdt_ic->mdt_hdr_head, mdt_ic->mdt_hdr_tail, 1967 mdt_ic->mdt_max_pld, mdt_ic->mdt_span_limit)); 1968 1969 (*ill_mdt_capab)->ill_mdt_version = MDT_VERSION_2; 1970 (*ill_mdt_capab)->ill_mdt_on = 1; 1971 /* 1972 * Round the following values to the nearest 32-bit; ULP 1973 * may further adjust them to accomodate for additional 1974 * protocol headers. We pass these values to ULP during 1975 * bind time. 1976 */ 1977 (*ill_mdt_capab)->ill_mdt_hdr_head = 1978 roundup(mdt_ic->mdt_hdr_head, 4); 1979 (*ill_mdt_capab)->ill_mdt_hdr_tail = 1980 roundup(mdt_ic->mdt_hdr_tail, 4); 1981 (*ill_mdt_capab)->ill_mdt_max_pld = mdt_ic->mdt_max_pld; 1982 (*ill_mdt_capab)->ill_mdt_span_limit = mdt_ic->mdt_span_limit; 1983 1984 ill->ill_capabilities |= ILL_CAPAB_MDT; 1985 } else { 1986 uint_t size; 1987 uchar_t *rptr; 1988 1989 size = sizeof (dl_capability_req_t) + 1990 sizeof (dl_capability_sub_t) + sizeof (dl_capab_mdt_t); 1991 1992 if ((nmp = ip_dlpi_alloc(size, DL_CAPABILITY_REQ)) == NULL) { 1993 cmn_err(CE_WARN, "ill_capability_mdt_ack: " 1994 "could not enable MDT for %s (ENOMEM)\n", 1995 ill->ill_name); 1996 return; 1997 } 1998 1999 rptr = nmp->b_rptr; 2000 /* initialize dl_capability_req_t */ 2001 oc = (dl_capability_req_t *)nmp->b_rptr; 2002 oc->dl_sub_offset = sizeof (dl_capability_req_t); 2003 oc->dl_sub_length = sizeof (dl_capability_sub_t) + 2004 sizeof (dl_capab_mdt_t); 2005 nmp->b_rptr += sizeof (dl_capability_req_t); 2006 2007 /* initialize dl_capability_sub_t */ 2008 bcopy(isub, nmp->b_rptr, sizeof (*isub)); 2009 nmp->b_rptr += sizeof (*isub); 2010 2011 /* initialize dl_capab_mdt_t */ 2012 mdt_oc = (dl_capab_mdt_t *)nmp->b_rptr; 2013 bcopy(mdt_ic, mdt_oc, sizeof (*mdt_ic)); 2014 2015 nmp->b_rptr = rptr; 2016 2017 ip1dbg(("ill_capability_mdt_ack: asking interface %s " 2018 "to enable MDT version %d\n", ill->ill_name, 2019 MDT_VERSION_2)); 2020 2021 /* set ENABLE flag */ 2022 mdt_oc->mdt_flags |= DL_CAPAB_MDT_ENABLE; 2023 2024 /* nmp points to a DL_CAPABILITY_REQ message to enable MDT */ 2025 ill_dlpi_send(ill, nmp); 2026 } 2027 } 2028 2029 static void 2030 ill_capability_mdt_reset(ill_t *ill, mblk_t **sc_mp) 2031 { 2032 mblk_t *mp; 2033 dl_capab_mdt_t *mdt_subcap; 2034 dl_capability_sub_t *dl_subcap; 2035 int size; 2036 2037 if (!(ill->ill_capabilities & ILL_CAPAB_MDT)) 2038 return; 2039 2040 ASSERT(ill->ill_mdt_capab != NULL); 2041 /* 2042 * Clear the capability flag for MDT but retain the ill_mdt_capab 2043 * structure since it's possible that another thread is still 2044 * referring to it. The structure only gets deallocated when 2045 * we destroy the ill. 2046 */ 2047 ill->ill_capabilities &= ~ILL_CAPAB_MDT; 2048 2049 size = sizeof (*dl_subcap) + sizeof (*mdt_subcap); 2050 2051 mp = allocb(size, BPRI_HI); 2052 if (mp == NULL) { 2053 ip1dbg(("ill_capability_mdt_reset: unable to allocate " 2054 "request to disable MDT\n")); 2055 return; 2056 } 2057 2058 mp->b_wptr = mp->b_rptr + size; 2059 2060 dl_subcap = (dl_capability_sub_t *)mp->b_rptr; 2061 dl_subcap->dl_cap = DL_CAPAB_MDT; 2062 dl_subcap->dl_length = sizeof (*mdt_subcap); 2063 2064 mdt_subcap = (dl_capab_mdt_t *)(dl_subcap + 1); 2065 mdt_subcap->mdt_version = ill->ill_mdt_capab->ill_mdt_version; 2066 mdt_subcap->mdt_flags = 0; 2067 mdt_subcap->mdt_hdr_head = 0; 2068 mdt_subcap->mdt_hdr_tail = 0; 2069 2070 if (*sc_mp != NULL) 2071 linkb(*sc_mp, mp); 2072 else 2073 *sc_mp = mp; 2074 } 2075 2076 /* 2077 * Send a DL_NOTIFY_REQ to the specified ill to enable 2078 * DL_NOTE_PROMISC_ON/OFF_PHYS notifications. 2079 * Invoked by ill_capability_ipsec_ack() before enabling IPsec hardware 2080 * acceleration. 2081 * Returns B_TRUE on success, B_FALSE if the message could not be sent. 2082 */ 2083 static boolean_t 2084 ill_enable_promisc_notify(ill_t *ill) 2085 { 2086 mblk_t *mp; 2087 dl_notify_req_t *req; 2088 2089 IPSECHW_DEBUG(IPSECHW_PKT, ("ill_enable_promisc_notify:\n")); 2090 2091 mp = ip_dlpi_alloc(sizeof (dl_notify_req_t), DL_NOTIFY_REQ); 2092 if (mp == NULL) 2093 return (B_FALSE); 2094 2095 req = (dl_notify_req_t *)mp->b_rptr; 2096 req->dl_notifications = DL_NOTE_PROMISC_ON_PHYS | 2097 DL_NOTE_PROMISC_OFF_PHYS; 2098 2099 ill_dlpi_send(ill, mp); 2100 2101 return (B_TRUE); 2102 } 2103 2104 2105 /* 2106 * Allocate an IPsec capability request which will be filled by our 2107 * caller to turn on support for one or more algorithms. 2108 */ 2109 static mblk_t * 2110 ill_alloc_ipsec_cap_req(ill_t *ill, dl_capability_sub_t *isub) 2111 { 2112 mblk_t *nmp; 2113 dl_capability_req_t *ocap; 2114 dl_capab_ipsec_t *ocip; 2115 dl_capab_ipsec_t *icip; 2116 uint8_t *ptr; 2117 icip = (dl_capab_ipsec_t *)(isub + 1); 2118 2119 /* 2120 * The first time around, we send a DL_NOTIFY_REQ to enable 2121 * PROMISC_ON/OFF notification from the provider. We need to 2122 * do this before enabling the algorithms to avoid leakage of 2123 * cleartext packets. 2124 */ 2125 2126 if (!ill_enable_promisc_notify(ill)) 2127 return (NULL); 2128 2129 /* 2130 * Allocate new mblk which will contain a new capability 2131 * request to enable the capabilities. 2132 */ 2133 2134 nmp = ip_dlpi_alloc(sizeof (dl_capability_req_t) + 2135 sizeof (dl_capability_sub_t) + isub->dl_length, DL_CAPABILITY_REQ); 2136 if (nmp == NULL) 2137 return (NULL); 2138 2139 ptr = nmp->b_rptr; 2140 2141 /* initialize dl_capability_req_t */ 2142 ocap = (dl_capability_req_t *)ptr; 2143 ocap->dl_sub_offset = sizeof (dl_capability_req_t); 2144 ocap->dl_sub_length = sizeof (dl_capability_sub_t) + isub->dl_length; 2145 ptr += sizeof (dl_capability_req_t); 2146 2147 /* initialize dl_capability_sub_t */ 2148 bcopy(isub, ptr, sizeof (*isub)); 2149 ptr += sizeof (*isub); 2150 2151 /* initialize dl_capab_ipsec_t */ 2152 ocip = (dl_capab_ipsec_t *)ptr; 2153 bcopy(icip, ocip, sizeof (*icip)); 2154 2155 nmp->b_wptr = (uchar_t *)(&ocip->cip_data[0]); 2156 return (nmp); 2157 } 2158 2159 /* 2160 * Process an IPsec capability negotiation ack received from a DLS Provider. 2161 * isub must point to the sub-capability (DL_CAPAB_IPSEC_AH or 2162 * DL_CAPAB_IPSEC_ESP) of a DL_CAPABILITY_ACK message. 2163 */ 2164 static void 2165 ill_capability_ipsec_ack(ill_t *ill, mblk_t *mp, dl_capability_sub_t *isub) 2166 { 2167 dl_capab_ipsec_t *icip; 2168 dl_capab_ipsec_alg_t *ialg; /* ptr to input alg spec. */ 2169 dl_capab_ipsec_alg_t *oalg; /* ptr to output alg spec. */ 2170 uint_t cipher, nciphers; 2171 mblk_t *nmp; 2172 uint_t alg_len; 2173 boolean_t need_sadb_dump; 2174 uint_t sub_dl_cap = isub->dl_cap; 2175 ill_ipsec_capab_t **ill_capab; 2176 uint64_t ill_capab_flag; 2177 uint8_t *capend, *ciphend; 2178 boolean_t sadb_resync; 2179 2180 ASSERT(sub_dl_cap == DL_CAPAB_IPSEC_AH || 2181 sub_dl_cap == DL_CAPAB_IPSEC_ESP); 2182 2183 if (sub_dl_cap == DL_CAPAB_IPSEC_AH) { 2184 ill_capab = (ill_ipsec_capab_t **)&ill->ill_ipsec_capab_ah; 2185 ill_capab_flag = ILL_CAPAB_AH; 2186 } else { 2187 ill_capab = (ill_ipsec_capab_t **)&ill->ill_ipsec_capab_esp; 2188 ill_capab_flag = ILL_CAPAB_ESP; 2189 } 2190 2191 /* 2192 * If the ill capability structure exists, then this incoming 2193 * DL_CAPABILITY_ACK is a response to a "renegotiation" cycle. 2194 * If this is so, then we'd need to resynchronize the SADB 2195 * after re-enabling the offloaded ciphers. 2196 */ 2197 sadb_resync = (*ill_capab != NULL); 2198 2199 /* 2200 * Note: range checks here are not absolutely sufficient to 2201 * make us robust against malformed messages sent by drivers; 2202 * this is in keeping with the rest of IP's dlpi handling. 2203 * (Remember, it's coming from something else in the kernel 2204 * address space) 2205 */ 2206 2207 capend = (uint8_t *)(isub + 1) + isub->dl_length; 2208 if (capend > mp->b_wptr) { 2209 cmn_err(CE_WARN, "ill_capability_ipsec_ack: " 2210 "malformed sub-capability too long for mblk"); 2211 return; 2212 } 2213 2214 /* 2215 * There are two types of acks we process here: 2216 * 1. acks in reply to a (first form) generic capability req 2217 * (no ENABLE flag set) 2218 * 2. acks in reply to a ENABLE capability req. 2219 * (ENABLE flag set) 2220 * 2221 * We process the subcapability passed as argument as follows: 2222 * 1 do initializations 2223 * 1.1 initialize nmp = NULL 2224 * 1.2 set need_sadb_dump to B_FALSE 2225 * 2 for each cipher in subcapability: 2226 * 2.1 if ENABLE flag is set: 2227 * 2.1.1 update per-ill ipsec capabilities info 2228 * 2.1.2 set need_sadb_dump to B_TRUE 2229 * 2.2 if ENABLE flag is not set: 2230 * 2.2.1 if nmp is NULL: 2231 * 2.2.1.1 allocate and initialize nmp 2232 * 2.2.1.2 init current pos in nmp 2233 * 2.2.2 copy current cipher to current pos in nmp 2234 * 2.2.3 set ENABLE flag in nmp 2235 * 2.2.4 update current pos 2236 * 3 if nmp is not equal to NULL, send enable request 2237 * 3.1 send capability request 2238 * 4 if need_sadb_dump is B_TRUE 2239 * 4.1 enable promiscuous on/off notifications 2240 * 4.2 call ill_dlpi_send(isub->dlcap) to send all 2241 * AH or ESP SA's to interface. 2242 */ 2243 2244 nmp = NULL; 2245 oalg = NULL; 2246 need_sadb_dump = B_FALSE; 2247 icip = (dl_capab_ipsec_t *)(isub + 1); 2248 ialg = (dl_capab_ipsec_alg_t *)(&icip->cip_data[0]); 2249 2250 nciphers = icip->cip_nciphers; 2251 ciphend = (uint8_t *)(ialg + icip->cip_nciphers); 2252 2253 if (ciphend > capend) { 2254 cmn_err(CE_WARN, "ill_capability_ipsec_ack: " 2255 "too many ciphers for sub-capability len"); 2256 return; 2257 } 2258 2259 for (cipher = 0; cipher < nciphers; cipher++) { 2260 alg_len = sizeof (dl_capab_ipsec_alg_t); 2261 2262 if (ialg->alg_flag & DL_CAPAB_ALG_ENABLE) { 2263 /* 2264 * TBD: when we provide a way to disable capabilities 2265 * from above, need to manage the request-pending state 2266 * and fail if we were not expecting this ACK. 2267 */ 2268 IPSECHW_DEBUG(IPSECHW_CAPAB, 2269 ("ill_capability_ipsec_ack: got ENABLE ACK\n")); 2270 2271 /* 2272 * Update IPsec capabilities for this ill 2273 */ 2274 2275 if (*ill_capab == NULL) { 2276 IPSECHW_DEBUG(IPSECHW_CAPAB, 2277 ("ill_capability_ipsec_ack: " 2278 "allocating ipsec_capab for ill\n")); 2279 *ill_capab = ill_ipsec_capab_alloc(); 2280 2281 if (*ill_capab == NULL) { 2282 cmn_err(CE_WARN, 2283 "ill_capability_ipsec_ack: " 2284 "could not enable IPsec Hardware " 2285 "acceleration for %s (ENOMEM)\n", 2286 ill->ill_name); 2287 return; 2288 } 2289 } 2290 2291 ASSERT(ialg->alg_type == DL_CAPAB_IPSEC_ALG_AUTH || 2292 ialg->alg_type == DL_CAPAB_IPSEC_ALG_ENCR); 2293 2294 if (ialg->alg_prim >= MAX_IPSEC_ALGS) { 2295 cmn_err(CE_WARN, 2296 "ill_capability_ipsec_ack: " 2297 "malformed IPsec algorithm id %d", 2298 ialg->alg_prim); 2299 continue; 2300 } 2301 2302 if (ialg->alg_type == DL_CAPAB_IPSEC_ALG_AUTH) { 2303 IPSEC_ALG_ENABLE((*ill_capab)->auth_hw_algs, 2304 ialg->alg_prim); 2305 } else { 2306 ipsec_capab_algparm_t *alp; 2307 2308 IPSEC_ALG_ENABLE((*ill_capab)->encr_hw_algs, 2309 ialg->alg_prim); 2310 if (!ill_ipsec_capab_resize_algparm(*ill_capab, 2311 ialg->alg_prim)) { 2312 cmn_err(CE_WARN, 2313 "ill_capability_ipsec_ack: " 2314 "no space for IPsec alg id %d", 2315 ialg->alg_prim); 2316 continue; 2317 } 2318 alp = &((*ill_capab)->encr_algparm[ 2319 ialg->alg_prim]); 2320 alp->minkeylen = ialg->alg_minbits; 2321 alp->maxkeylen = ialg->alg_maxbits; 2322 } 2323 ill->ill_capabilities |= ill_capab_flag; 2324 /* 2325 * indicate that a capability was enabled, which 2326 * will be used below to kick off a SADB dump 2327 * to the ill. 2328 */ 2329 need_sadb_dump = B_TRUE; 2330 } else { 2331 IPSECHW_DEBUG(IPSECHW_CAPAB, 2332 ("ill_capability_ipsec_ack: enabling alg 0x%x\n", 2333 ialg->alg_prim)); 2334 2335 if (nmp == NULL) { 2336 nmp = ill_alloc_ipsec_cap_req(ill, isub); 2337 if (nmp == NULL) { 2338 /* 2339 * Sending the PROMISC_ON/OFF 2340 * notification request failed. 2341 * We cannot enable the algorithms 2342 * since the Provider will not 2343 * notify IP of promiscous mode 2344 * changes, which could lead 2345 * to leakage of packets. 2346 */ 2347 cmn_err(CE_WARN, 2348 "ill_capability_ipsec_ack: " 2349 "could not enable IPsec Hardware " 2350 "acceleration for %s (ENOMEM)\n", 2351 ill->ill_name); 2352 return; 2353 } 2354 /* ptr to current output alg specifier */ 2355 oalg = (dl_capab_ipsec_alg_t *)nmp->b_wptr; 2356 } 2357 2358 /* 2359 * Copy current alg specifier, set ENABLE 2360 * flag, and advance to next output alg. 2361 * For now we enable all IPsec capabilities. 2362 */ 2363 ASSERT(oalg != NULL); 2364 bcopy(ialg, oalg, alg_len); 2365 oalg->alg_flag |= DL_CAPAB_ALG_ENABLE; 2366 nmp->b_wptr += alg_len; 2367 oalg = (dl_capab_ipsec_alg_t *)nmp->b_wptr; 2368 } 2369 2370 /* move to next input algorithm specifier */ 2371 ialg = (dl_capab_ipsec_alg_t *) 2372 ((char *)ialg + alg_len); 2373 } 2374 2375 if (nmp != NULL) 2376 /* 2377 * nmp points to a DL_CAPABILITY_REQ message to enable 2378 * IPsec hardware acceleration. 2379 */ 2380 ill_dlpi_send(ill, nmp); 2381 2382 if (need_sadb_dump) 2383 /* 2384 * An acknowledgement corresponding to a request to 2385 * enable acceleration was received, notify SADB. 2386 */ 2387 ill_ipsec_capab_add(ill, sub_dl_cap, sadb_resync); 2388 } 2389 2390 /* 2391 * Given an mblk with enough space in it, create sub-capability entries for 2392 * DL_CAPAB_IPSEC_{AH,ESP} types which consist of previously-advertised 2393 * offloaded ciphers (both AUTH and ENCR) with their enable flags cleared, 2394 * in preparation for the reset the DL_CAPABILITY_REQ message. 2395 */ 2396 static void 2397 ill_fill_ipsec_reset(uint_t nciphers, int stype, uint_t slen, 2398 ill_ipsec_capab_t *ill_cap, mblk_t *mp) 2399 { 2400 dl_capab_ipsec_t *oipsec; 2401 dl_capab_ipsec_alg_t *oalg; 2402 dl_capability_sub_t *dl_subcap; 2403 int i, k; 2404 2405 ASSERT(nciphers > 0); 2406 ASSERT(ill_cap != NULL); 2407 ASSERT(mp != NULL); 2408 ASSERT(MBLKTAIL(mp) >= sizeof (*dl_subcap) + sizeof (*oipsec) + slen); 2409 2410 /* dl_capability_sub_t for "stype" */ 2411 dl_subcap = (dl_capability_sub_t *)mp->b_wptr; 2412 dl_subcap->dl_cap = stype; 2413 dl_subcap->dl_length = sizeof (dl_capab_ipsec_t) + slen; 2414 mp->b_wptr += sizeof (dl_capability_sub_t); 2415 2416 /* dl_capab_ipsec_t for "stype" */ 2417 oipsec = (dl_capab_ipsec_t *)mp->b_wptr; 2418 oipsec->cip_version = 1; 2419 oipsec->cip_nciphers = nciphers; 2420 mp->b_wptr = (uchar_t *)&oipsec->cip_data[0]; 2421 2422 /* create entries for "stype" AUTH ciphers */ 2423 for (i = 0; i < ill_cap->algs_size; i++) { 2424 for (k = 0; k < BITSPERBYTE; k++) { 2425 if ((ill_cap->auth_hw_algs[i] & (1 << k)) == 0) 2426 continue; 2427 2428 oalg = (dl_capab_ipsec_alg_t *)mp->b_wptr; 2429 bzero((void *)oalg, sizeof (*oalg)); 2430 oalg->alg_type = DL_CAPAB_IPSEC_ALG_AUTH; 2431 oalg->alg_prim = k + (BITSPERBYTE * i); 2432 mp->b_wptr += sizeof (dl_capab_ipsec_alg_t); 2433 } 2434 } 2435 /* create entries for "stype" ENCR ciphers */ 2436 for (i = 0; i < ill_cap->algs_size; i++) { 2437 for (k = 0; k < BITSPERBYTE; k++) { 2438 if ((ill_cap->encr_hw_algs[i] & (1 << k)) == 0) 2439 continue; 2440 2441 oalg = (dl_capab_ipsec_alg_t *)mp->b_wptr; 2442 bzero((void *)oalg, sizeof (*oalg)); 2443 oalg->alg_type = DL_CAPAB_IPSEC_ALG_ENCR; 2444 oalg->alg_prim = k + (BITSPERBYTE * i); 2445 mp->b_wptr += sizeof (dl_capab_ipsec_alg_t); 2446 } 2447 } 2448 } 2449 2450 /* 2451 * Macro to count number of 1s in a byte (8-bit word). The total count is 2452 * accumulated into the passed-in argument (sum). We could use SPARCv9's 2453 * POPC instruction, but our macro is more flexible for an arbitrary length 2454 * of bytes, such as {auth,encr}_hw_algs. These variables are currently 2455 * 256-bits long (MAX_IPSEC_ALGS), so if we know for sure that the length 2456 * stays that way, we can reduce the number of iterations required. 2457 */ 2458 #define COUNT_1S(val, sum) { \ 2459 uint8_t x = val & 0xff; \ 2460 x = (x & 0x55) + ((x >> 1) & 0x55); \ 2461 x = (x & 0x33) + ((x >> 2) & 0x33); \ 2462 sum += (x & 0xf) + ((x >> 4) & 0xf); \ 2463 } 2464 2465 /* ARGSUSED */ 2466 static void 2467 ill_capability_ipsec_reset(ill_t *ill, mblk_t **sc_mp) 2468 { 2469 mblk_t *mp; 2470 ill_ipsec_capab_t *cap_ah = ill->ill_ipsec_capab_ah; 2471 ill_ipsec_capab_t *cap_esp = ill->ill_ipsec_capab_esp; 2472 uint64_t ill_capabilities = ill->ill_capabilities; 2473 int ah_cnt = 0, esp_cnt = 0; 2474 int ah_len = 0, esp_len = 0; 2475 int i, size = 0; 2476 2477 if (!(ill_capabilities & (ILL_CAPAB_AH | ILL_CAPAB_ESP))) 2478 return; 2479 2480 ASSERT(cap_ah != NULL || !(ill_capabilities & ILL_CAPAB_AH)); 2481 ASSERT(cap_esp != NULL || !(ill_capabilities & ILL_CAPAB_ESP)); 2482 2483 /* Find out the number of ciphers for AH */ 2484 if (cap_ah != NULL) { 2485 for (i = 0; i < cap_ah->algs_size; i++) { 2486 COUNT_1S(cap_ah->auth_hw_algs[i], ah_cnt); 2487 COUNT_1S(cap_ah->encr_hw_algs[i], ah_cnt); 2488 } 2489 if (ah_cnt > 0) { 2490 size += sizeof (dl_capability_sub_t) + 2491 sizeof (dl_capab_ipsec_t); 2492 /* dl_capab_ipsec_t contains one dl_capab_ipsec_alg_t */ 2493 ah_len = (ah_cnt - 1) * sizeof (dl_capab_ipsec_alg_t); 2494 size += ah_len; 2495 } 2496 } 2497 2498 /* Find out the number of ciphers for ESP */ 2499 if (cap_esp != NULL) { 2500 for (i = 0; i < cap_esp->algs_size; i++) { 2501 COUNT_1S(cap_esp->auth_hw_algs[i], esp_cnt); 2502 COUNT_1S(cap_esp->encr_hw_algs[i], esp_cnt); 2503 } 2504 if (esp_cnt > 0) { 2505 size += sizeof (dl_capability_sub_t) + 2506 sizeof (dl_capab_ipsec_t); 2507 /* dl_capab_ipsec_t contains one dl_capab_ipsec_alg_t */ 2508 esp_len = (esp_cnt - 1) * sizeof (dl_capab_ipsec_alg_t); 2509 size += esp_len; 2510 } 2511 } 2512 2513 if (size == 0) { 2514 ip1dbg(("ill_capability_ipsec_reset: capabilities exist but " 2515 "there's nothing to reset\n")); 2516 return; 2517 } 2518 2519 mp = allocb(size, BPRI_HI); 2520 if (mp == NULL) { 2521 ip1dbg(("ill_capability_ipsec_reset: unable to allocate " 2522 "request to disable IPSEC Hardware Acceleration\n")); 2523 return; 2524 } 2525 2526 /* 2527 * Clear the capability flags for IPSec HA but retain the ill 2528 * capability structures since it's possible that another thread 2529 * is still referring to them. The structures only get deallocated 2530 * when we destroy the ill. 2531 * 2532 * Various places check the flags to see if the ill is capable of 2533 * hardware acceleration, and by clearing them we ensure that new 2534 * outbound IPSec packets are sent down encrypted. 2535 */ 2536 ill->ill_capabilities &= ~(ILL_CAPAB_AH | ILL_CAPAB_ESP); 2537 2538 /* Fill in DL_CAPAB_IPSEC_AH sub-capability entries */ 2539 if (ah_cnt > 0) { 2540 ill_fill_ipsec_reset(ah_cnt, DL_CAPAB_IPSEC_AH, ah_len, 2541 cap_ah, mp); 2542 ASSERT(mp->b_rptr + size >= mp->b_wptr); 2543 } 2544 2545 /* Fill in DL_CAPAB_IPSEC_ESP sub-capability entries */ 2546 if (esp_cnt > 0) { 2547 ill_fill_ipsec_reset(esp_cnt, DL_CAPAB_IPSEC_ESP, esp_len, 2548 cap_esp, mp); 2549 ASSERT(mp->b_rptr + size >= mp->b_wptr); 2550 } 2551 2552 /* 2553 * At this point we've composed a bunch of sub-capabilities to be 2554 * encapsulated in a DL_CAPABILITY_REQ and later sent downstream 2555 * by the caller. Upon receiving this reset message, the driver 2556 * must stop inbound decryption (by destroying all inbound SAs) 2557 * and let the corresponding packets come in encrypted. 2558 */ 2559 2560 if (*sc_mp != NULL) 2561 linkb(*sc_mp, mp); 2562 else 2563 *sc_mp = mp; 2564 } 2565 2566 static void 2567 ill_capability_dispatch(ill_t *ill, mblk_t *mp, dl_capability_sub_t *subp, 2568 boolean_t encapsulated) 2569 { 2570 boolean_t legacy = B_FALSE; 2571 2572 /* 2573 * If this DL_CAPABILITY_ACK came in as a response to our "reset" 2574 * DL_CAPABILITY_REQ, ignore it during this cycle. We've just 2575 * instructed the driver to disable its advertised capabilities, 2576 * so there's no point in accepting any response at this moment. 2577 */ 2578 if (ill->ill_capab_state == IDMS_UNKNOWN) 2579 return; 2580 2581 /* 2582 * Note that only the following two sub-capabilities may be 2583 * considered as "legacy", since their original definitions 2584 * do not incorporate the dl_mid_t module ID token, and hence 2585 * may require the use of the wrapper sub-capability. 2586 */ 2587 switch (subp->dl_cap) { 2588 case DL_CAPAB_IPSEC_AH: 2589 case DL_CAPAB_IPSEC_ESP: 2590 legacy = B_TRUE; 2591 break; 2592 } 2593 2594 /* 2595 * For legacy sub-capabilities which don't incorporate a queue_t 2596 * pointer in their structures, discard them if we detect that 2597 * there are intermediate modules in between IP and the driver. 2598 */ 2599 if (!encapsulated && legacy && ill->ill_lmod_cnt > 1) { 2600 ip1dbg(("ill_capability_dispatch: unencapsulated capab type " 2601 "%d discarded; %d module(s) present below IP\n", 2602 subp->dl_cap, ill->ill_lmod_cnt)); 2603 return; 2604 } 2605 2606 switch (subp->dl_cap) { 2607 case DL_CAPAB_IPSEC_AH: 2608 case DL_CAPAB_IPSEC_ESP: 2609 ill_capability_ipsec_ack(ill, mp, subp); 2610 break; 2611 case DL_CAPAB_MDT: 2612 ill_capability_mdt_ack(ill, mp, subp); 2613 break; 2614 case DL_CAPAB_HCKSUM: 2615 ill_capability_hcksum_ack(ill, mp, subp); 2616 break; 2617 case DL_CAPAB_ZEROCOPY: 2618 ill_capability_zerocopy_ack(ill, mp, subp); 2619 break; 2620 case DL_CAPAB_POLL: 2621 ill_capability_poll_ack(ill, mp, subp); 2622 break; 2623 default: 2624 ip1dbg(("ill_capability_dispatch: unknown capab type %d\n", 2625 subp->dl_cap)); 2626 } 2627 } 2628 2629 /* 2630 * As part of negotiating polling capability, the driver tells us 2631 * the default (or normal) blanking interval and packet threshold 2632 * (the receive timer fires if blanking interval is reached or 2633 * the packet threshold is reached). 2634 * 2635 * As part of manipulating the polling interval, we always use our 2636 * estimated interval (avg service time * number of packets queued 2637 * on the squeue) but we try to blank for a minimum of 2638 * rr_normal_blank_time * rr_max_blank_ratio. We disable the 2639 * packet threshold during this time. When we are not in polling mode 2640 * we set the blank interval typically lower, rr_normal_pkt_cnt * 2641 * rr_min_blank_ratio but up the packet cnt by a ratio of 2642 * rr_min_pkt_cnt_ratio so that we are still getting chains if 2643 * possible although for a shorter interval. 2644 */ 2645 #define RR_MAX_BLANK_RATIO 20 2646 #define RR_MIN_BLANK_RATIO 10 2647 #define RR_MAX_PKT_CNT_RATIO 3 2648 #define RR_MIN_PKT_CNT_RATIO 3 2649 2650 /* 2651 * These can be tuned via /etc/system. 2652 */ 2653 int rr_max_blank_ratio = RR_MAX_BLANK_RATIO; 2654 int rr_min_blank_ratio = RR_MIN_BLANK_RATIO; 2655 int rr_max_pkt_cnt_ratio = RR_MAX_PKT_CNT_RATIO; 2656 int rr_min_pkt_cnt_ratio = RR_MIN_PKT_CNT_RATIO; 2657 2658 static mac_resource_handle_t 2659 ill_ring_add(void *arg, mac_resource_t *mrp) 2660 { 2661 ill_t *ill = (ill_t *)arg; 2662 mac_rx_fifo_t *mrfp = (mac_rx_fifo_t *)mrp; 2663 ill_rx_ring_t *rx_ring; 2664 int ip_rx_index; 2665 2666 if (mrp->mr_type != MAC_RX_FIFO) { 2667 return (NULL); 2668 } 2669 ASSERT(ill != NULL); 2670 ASSERT(ill->ill_poll_capab != NULL); 2671 ASSERT(mrp != NULL); 2672 2673 mutex_enter(&ill->ill_lock); 2674 for (ip_rx_index = 0; ip_rx_index < ILL_MAX_RINGS; ip_rx_index++) { 2675 rx_ring = &ill->ill_poll_capab->ill_ring_tbl[ip_rx_index]; 2676 ASSERT(rx_ring != NULL); 2677 2678 if (rx_ring->rr_ring_state == ILL_RING_FREE) { 2679 time_t normal_blank_time = 2680 mrfp->mrf_normal_blank_time; 2681 uint_t normal_pkt_cnt = 2682 mrfp->mrf_normal_pkt_count; 2683 2684 bzero(rx_ring, sizeof (ill_rx_ring_t)); 2685 2686 rx_ring->rr_blank = mrfp->mrf_blank; 2687 rx_ring->rr_handle = mrfp->mrf_arg; 2688 rx_ring->rr_ill = ill; 2689 rx_ring->rr_normal_blank_time = normal_blank_time; 2690 rx_ring->rr_normal_pkt_cnt = normal_pkt_cnt; 2691 2692 rx_ring->rr_max_blank_time = 2693 normal_blank_time * rr_max_blank_ratio; 2694 rx_ring->rr_min_blank_time = 2695 normal_blank_time * rr_min_blank_ratio; 2696 rx_ring->rr_max_pkt_cnt = 2697 normal_pkt_cnt * rr_max_pkt_cnt_ratio; 2698 rx_ring->rr_min_pkt_cnt = 2699 normal_pkt_cnt * rr_min_pkt_cnt_ratio; 2700 2701 rx_ring->rr_ring_state = ILL_RING_INUSE; 2702 mutex_exit(&ill->ill_lock); 2703 2704 DTRACE_PROBE2(ill__ring__add, (void *), ill, 2705 (int), ip_rx_index); 2706 return ((mac_resource_handle_t)rx_ring); 2707 } 2708 } 2709 2710 /* 2711 * We ran out of ILL_MAX_RINGS worth rx_ring structures. If 2712 * we have devices which can overwhelm this limit, ILL_MAX_RING 2713 * should be made configurable. Meanwhile it cause no panic because 2714 * driver will pass ip_input a NULL handle which will make 2715 * IP allocate the default squeue and Polling mode will not 2716 * be used for this ring. 2717 */ 2718 cmn_err(CE_NOTE, "Reached maximum number of receiving rings (%d) " 2719 "for %s\n", ILL_MAX_RINGS, ill->ill_name); 2720 2721 mutex_exit(&ill->ill_lock); 2722 return (NULL); 2723 } 2724 2725 static boolean_t 2726 ill_capability_poll_init(ill_t *ill) 2727 { 2728 ill_poll_capab_t *ill_poll = ill->ill_poll_capab; 2729 conn_t *connp; 2730 size_t sz; 2731 2732 if (ill->ill_capabilities & ILL_CAPAB_POLL) { 2733 if (ill_poll == NULL) { 2734 cmn_err(CE_PANIC, "ill_capability_poll_init: " 2735 "polling enabled for ill=%s (%p) but data " 2736 "structs uninitialized\n", ill->ill_name, 2737 (void *)ill); 2738 } 2739 return (B_TRUE); 2740 } 2741 2742 if (ill_poll != NULL) { 2743 ill_rx_ring_t *rx_ring = ill_poll->ill_ring_tbl; 2744 /* Polling is being re-enabled */ 2745 2746 connp = ill_poll->ill_unbind_conn; 2747 ASSERT(rx_ring != NULL); 2748 bzero((void *)ill_poll, sizeof (ill_poll_capab_t)); 2749 bzero((void *)rx_ring, 2750 sizeof (ill_rx_ring_t) * ILL_MAX_RINGS); 2751 ill_poll->ill_ring_tbl = rx_ring; 2752 ill_poll->ill_unbind_conn = connp; 2753 return (B_TRUE); 2754 } 2755 2756 if ((connp = ipcl_conn_create(IPCL_TCPCONN, KM_NOSLEEP)) == NULL) 2757 return (B_FALSE); 2758 2759 sz = sizeof (ill_poll_capab_t); 2760 sz += sizeof (ill_rx_ring_t) * ILL_MAX_RINGS; 2761 2762 ill_poll = kmem_zalloc(sz, KM_NOSLEEP); 2763 if (ill_poll == NULL) { 2764 cmn_err(CE_WARN, "ill_capability_poll_init: could not " 2765 "allocate poll_capab for %s (%p)\n", ill->ill_name, 2766 (void *)ill); 2767 CONN_DEC_REF(connp); 2768 return (B_FALSE); 2769 } 2770 2771 /* Allocate space to hold ring table */ 2772 ill_poll->ill_ring_tbl = (ill_rx_ring_t *)&ill_poll[1]; 2773 ill->ill_poll_capab = ill_poll; 2774 ill_poll->ill_unbind_conn = connp; 2775 return (B_TRUE); 2776 } 2777 2778 /* 2779 * ill_capability_poll_disable: disable polling capability. Since 2780 * any of the rings might already be in use, need to call ipsq_clean_all() 2781 * which gets behind the squeue to disable direct calls if necessary. 2782 * Clean up the direct tx function pointers as well. 2783 */ 2784 static void 2785 ill_capability_poll_disable(ill_t *ill) 2786 { 2787 ill_poll_capab_t *ill_poll = ill->ill_poll_capab; 2788 2789 if (ill->ill_capabilities & ILL_CAPAB_POLL) { 2790 ipsq_clean_all(ill); 2791 ill_poll->ill_tx = NULL; 2792 ill_poll->ill_tx_handle = NULL; 2793 } 2794 2795 ASSERT(!(ill->ill_capabilities & ILL_CAPAB_POLL)); 2796 } 2797 2798 static void 2799 ill_capability_poll_capable(ill_t *ill, dl_capab_poll_t *ipoll, 2800 dl_capability_sub_t *isub) 2801 { 2802 uint_t size; 2803 uchar_t *rptr; 2804 dl_capab_poll_t poll, *opoll; 2805 ill_poll_capab_t *ill_poll; 2806 mblk_t *nmp = NULL; 2807 dl_capability_req_t *ocap; 2808 2809 if (!ill_capability_poll_init(ill)) 2810 return; 2811 ill_poll = ill->ill_poll_capab; 2812 2813 /* Copy locally to get the members aligned */ 2814 bcopy((void *)ipoll, (void *)&poll, sizeof (dl_capab_poll_t)); 2815 2816 /* Get the tx function and handle from the driver */ 2817 ill_poll->ill_tx = (ip_mac_tx_t)poll.poll_tx; 2818 ill_poll->ill_tx_handle = (void *)poll.poll_tx_handle; 2819 2820 size = sizeof (dl_capability_req_t) + sizeof (dl_capability_sub_t) + 2821 isub->dl_length; 2822 2823 if ((nmp = ip_dlpi_alloc(size, DL_CAPABILITY_REQ)) == NULL) { 2824 cmn_err(CE_WARN, "ill_capability_poll_ack: could not allocate " 2825 "memory for CAPAB_REQ for %s (%p)\n", ill->ill_name, 2826 (void *)ill); 2827 return; 2828 } 2829 2830 /* initialize dl_capability_req_t */ 2831 rptr = nmp->b_rptr; 2832 ocap = (dl_capability_req_t *)rptr; 2833 ocap->dl_sub_offset = sizeof (dl_capability_req_t); 2834 ocap->dl_sub_length = sizeof (dl_capability_sub_t) + isub->dl_length; 2835 rptr += sizeof (dl_capability_req_t); 2836 2837 /* initialize dl_capability_sub_t */ 2838 bcopy(isub, rptr, sizeof (*isub)); 2839 rptr += sizeof (*isub); 2840 2841 opoll = (dl_capab_poll_t *)rptr; 2842 rptr += sizeof (dl_capab_poll_t); 2843 2844 /* initialize dl_capab_poll_t to be sent down */ 2845 poll.poll_rx_handle = (uintptr_t)ill; 2846 poll.poll_rx = (uintptr_t)ip_input; 2847 poll.poll_ring_add = (uintptr_t)ill_ring_add; 2848 poll.poll_flags = POLL_ENABLE; 2849 bcopy((void *)&poll, (void *)opoll, sizeof (dl_capab_poll_t)); 2850 ASSERT(nmp->b_wptr == (nmp->b_rptr + size)); 2851 2852 /* nmp points to a DL_CAPABILITY_REQ message to enable polling */ 2853 ill_dlpi_send(ill, nmp); 2854 } 2855 2856 2857 /* 2858 * Process a polling capability negotiation ack received 2859 * from a DLS Provider.isub must point to the sub-capability (DL_CAPAB_POLL) 2860 * of a DL_CAPABILITY_ACK message. 2861 */ 2862 static void 2863 ill_capability_poll_ack(ill_t *ill, mblk_t *mp, dl_capability_sub_t *isub) 2864 { 2865 dl_capab_poll_t *ipoll; 2866 uint_t sub_dl_cap = isub->dl_cap; 2867 uint8_t *capend; 2868 2869 2870 ASSERT(sub_dl_cap == DL_CAPAB_POLL); 2871 2872 /* 2873 * Don't enable polling for ipv6 ill's 2874 */ 2875 if (ill->ill_isv6) { 2876 return; 2877 } 2878 2879 /* 2880 * Note: range checks here are not absolutely sufficient to 2881 * make us robust against malformed messages sent by drivers; 2882 * this is in keeping with the rest of IP's dlpi handling. 2883 * (Remember, it's coming from something else in the kernel 2884 * address space) 2885 */ 2886 capend = (uint8_t *)(isub + 1) + isub->dl_length; 2887 if (capend > mp->b_wptr) { 2888 cmn_err(CE_WARN, "ill_capability_poll_ack: " 2889 "malformed sub-capability too long for mblk"); 2890 return; 2891 } 2892 2893 /* 2894 * There are two types of acks we process here: 2895 * 1. acks in reply to a (first form) generic capability req 2896 * (poll_flag will be set to POLL_CAPABLE) 2897 * 2. acks in reply to a POLL_ENABLE capability req. 2898 * (POLL_ENABLE flag set) 2899 */ 2900 ipoll = (dl_capab_poll_t *)(isub + 1); 2901 2902 if (!dlcapabcheckqid(&ipoll->poll_mid, ill->ill_lmod_rq)) { 2903 ip1dbg(("ill_capability_poll_ack: mid token for polling " 2904 "capability isn't as expected; pass-thru " 2905 "module(s) detected, discarding capability\n")); 2906 if (ill->ill_capabilities & ILL_CAPAB_POLL) { 2907 /* 2908 * This is a capability renegotitation case. 2909 * The interface better be unusable at this 2910 * point other wise bad things will happen 2911 * if we disable direct calls on a running 2912 * and up interface. 2913 */ 2914 ill_capability_poll_disable(ill); 2915 } 2916 return; 2917 } 2918 2919 switch (ipoll->poll_flags) { 2920 default: 2921 /* Disable if unknown flag */ 2922 case POLL_DISABLE: 2923 ill_capability_poll_disable(ill); 2924 break; 2925 case POLL_CAPABLE: 2926 /* 2927 * If the capability was already enabled, its safe 2928 * to disable it first to get rid of stale information 2929 * and then start enabling it again. 2930 */ 2931 ill_capability_poll_disable(ill); 2932 ill_capability_poll_capable(ill, ipoll, isub); 2933 break; 2934 case POLL_ENABLE: 2935 if (!(ill->ill_capabilities & ILL_CAPAB_POLL)) { 2936 ASSERT(ill->ill_poll_capab != NULL); 2937 ill->ill_capabilities |= ILL_CAPAB_POLL; 2938 } 2939 break; 2940 } 2941 } 2942 2943 static void 2944 ill_capability_poll_reset(ill_t *ill, mblk_t **sc_mp) 2945 { 2946 mblk_t *mp; 2947 dl_capab_poll_t *ipoll; 2948 dl_capability_sub_t *dl_subcap; 2949 int size; 2950 2951 if (!(ill->ill_capabilities & ILL_CAPAB_POLL)) 2952 return; 2953 2954 ASSERT(ill->ill_poll_capab != NULL); 2955 2956 /* 2957 * Disable polling capability 2958 */ 2959 ill_capability_poll_disable(ill); 2960 2961 size = sizeof (*dl_subcap) + sizeof (*ipoll); 2962 2963 mp = allocb(size, BPRI_HI); 2964 if (mp == NULL) { 2965 ip1dbg(("ill_capability_poll_reset: unable to allocate " 2966 "request to disable polling\n")); 2967 return; 2968 } 2969 2970 mp->b_wptr = mp->b_rptr + size; 2971 2972 dl_subcap = (dl_capability_sub_t *)mp->b_rptr; 2973 dl_subcap->dl_cap = DL_CAPAB_POLL; 2974 dl_subcap->dl_length = sizeof (*ipoll); 2975 2976 ipoll = (dl_capab_poll_t *)(dl_subcap + 1); 2977 ipoll->poll_flags = POLL_DISABLE; 2978 2979 if (*sc_mp != NULL) 2980 linkb(*sc_mp, mp); 2981 else 2982 *sc_mp = mp; 2983 } 2984 2985 2986 /* 2987 * Process a hardware checksum offload capability negotiation ack received 2988 * from a DLS Provider.isub must point to the sub-capability (DL_CAPAB_HCKSUM) 2989 * of a DL_CAPABILITY_ACK message. 2990 */ 2991 static void 2992 ill_capability_hcksum_ack(ill_t *ill, mblk_t *mp, dl_capability_sub_t *isub) 2993 { 2994 dl_capability_req_t *ocap; 2995 dl_capab_hcksum_t *ihck, *ohck; 2996 ill_hcksum_capab_t **ill_hcksum; 2997 mblk_t *nmp = NULL; 2998 uint_t sub_dl_cap = isub->dl_cap; 2999 uint8_t *capend; 3000 3001 ASSERT(sub_dl_cap == DL_CAPAB_HCKSUM); 3002 3003 ill_hcksum = (ill_hcksum_capab_t **)&ill->ill_hcksum_capab; 3004 3005 /* 3006 * Note: range checks here are not absolutely sufficient to 3007 * make us robust against malformed messages sent by drivers; 3008 * this is in keeping with the rest of IP's dlpi handling. 3009 * (Remember, it's coming from something else in the kernel 3010 * address space) 3011 */ 3012 capend = (uint8_t *)(isub + 1) + isub->dl_length; 3013 if (capend > mp->b_wptr) { 3014 cmn_err(CE_WARN, "ill_capability_hcksum_ack: " 3015 "malformed sub-capability too long for mblk"); 3016 return; 3017 } 3018 3019 /* 3020 * There are two types of acks we process here: 3021 * 1. acks in reply to a (first form) generic capability req 3022 * (no ENABLE flag set) 3023 * 2. acks in reply to a ENABLE capability req. 3024 * (ENABLE flag set) 3025 */ 3026 ihck = (dl_capab_hcksum_t *)(isub + 1); 3027 3028 if (ihck->hcksum_version != HCKSUM_VERSION_1) { 3029 cmn_err(CE_CONT, "ill_capability_hcksum_ack: " 3030 "unsupported hardware checksum " 3031 "sub-capability (version %d, expected %d)", 3032 ihck->hcksum_version, HCKSUM_VERSION_1); 3033 return; 3034 } 3035 3036 if (!dlcapabcheckqid(&ihck->hcksum_mid, ill->ill_lmod_rq)) { 3037 ip1dbg(("ill_capability_hcksum_ack: mid token for hardware " 3038 "checksum capability isn't as expected; pass-thru " 3039 "module(s) detected, discarding capability\n")); 3040 return; 3041 } 3042 3043 #define CURR_HCKSUM_CAPAB \ 3044 (HCKSUM_INET_PARTIAL | HCKSUM_INET_FULL_V4 | HCKSUM_IPHDRCKSUM) 3045 3046 if ((ihck->hcksum_txflags & HCKSUM_ENABLE) && 3047 (ihck->hcksum_txflags & CURR_HCKSUM_CAPAB)) { 3048 /* do ENABLE processing */ 3049 if (*ill_hcksum == NULL) { 3050 *ill_hcksum = kmem_zalloc(sizeof (ill_hcksum_capab_t), 3051 KM_NOSLEEP); 3052 3053 if (*ill_hcksum == NULL) { 3054 cmn_err(CE_WARN, "ill_capability_hcksum_ack: " 3055 "could not enable hcksum version %d " 3056 "for %s (ENOMEM)\n", HCKSUM_CURRENT_VERSION, 3057 ill->ill_name); 3058 return; 3059 } 3060 } 3061 3062 (*ill_hcksum)->ill_hcksum_version = ihck->hcksum_version; 3063 (*ill_hcksum)->ill_hcksum_txflags = ihck->hcksum_txflags; 3064 ill->ill_capabilities |= ILL_CAPAB_HCKSUM; 3065 ip1dbg(("ill_capability_hcksum_ack: interface %s " 3066 "has enabled hardware checksumming\n ", 3067 ill->ill_name)); 3068 } else if (ihck->hcksum_txflags & CURR_HCKSUM_CAPAB) { 3069 /* 3070 * Enabling hardware checksum offload 3071 * Currently IP supports {TCP,UDP}/IPv4 3072 * partial and full cksum offload and 3073 * IPv4 header checksum offload. 3074 * Allocate new mblk which will 3075 * contain a new capability request 3076 * to enable hardware checksum offload. 3077 */ 3078 uint_t size; 3079 uchar_t *rptr; 3080 3081 size = sizeof (dl_capability_req_t) + 3082 sizeof (dl_capability_sub_t) + isub->dl_length; 3083 3084 if ((nmp = ip_dlpi_alloc(size, DL_CAPABILITY_REQ)) == NULL) { 3085 cmn_err(CE_WARN, "ill_capability_hcksum_ack: " 3086 "could not enable hardware cksum for %s (ENOMEM)\n", 3087 ill->ill_name); 3088 return; 3089 } 3090 3091 rptr = nmp->b_rptr; 3092 /* initialize dl_capability_req_t */ 3093 ocap = (dl_capability_req_t *)nmp->b_rptr; 3094 ocap->dl_sub_offset = 3095 sizeof (dl_capability_req_t); 3096 ocap->dl_sub_length = 3097 sizeof (dl_capability_sub_t) + 3098 isub->dl_length; 3099 nmp->b_rptr += sizeof (dl_capability_req_t); 3100 3101 /* initialize dl_capability_sub_t */ 3102 bcopy(isub, nmp->b_rptr, sizeof (*isub)); 3103 nmp->b_rptr += sizeof (*isub); 3104 3105 /* initialize dl_capab_hcksum_t */ 3106 ohck = (dl_capab_hcksum_t *)nmp->b_rptr; 3107 bcopy(ihck, ohck, sizeof (*ihck)); 3108 3109 nmp->b_rptr = rptr; 3110 ASSERT(nmp->b_wptr == (nmp->b_rptr + size)); 3111 3112 /* Set ENABLE flag */ 3113 ohck->hcksum_txflags &= CURR_HCKSUM_CAPAB; 3114 ohck->hcksum_txflags |= HCKSUM_ENABLE; 3115 3116 /* 3117 * nmp points to a DL_CAPABILITY_REQ message to enable 3118 * hardware checksum acceleration. 3119 */ 3120 ill_dlpi_send(ill, nmp); 3121 } else 3122 ip1dbg(("ill_capability_hcksum_ack: interface %s has " 3123 "advertised %x hardware checksum capability flags\n", 3124 ill->ill_name, ihck->hcksum_txflags)); 3125 } 3126 3127 static void 3128 ill_capability_hcksum_reset(ill_t *ill, mblk_t **sc_mp) 3129 { 3130 mblk_t *mp; 3131 dl_capab_hcksum_t *hck_subcap; 3132 dl_capability_sub_t *dl_subcap; 3133 int size; 3134 3135 if (!(ill->ill_capabilities & ILL_CAPAB_HCKSUM)) 3136 return; 3137 3138 ASSERT(ill->ill_hcksum_capab != NULL); 3139 /* 3140 * Clear the capability flag for hardware checksum offload but 3141 * retain the ill_hcksum_capab structure since it's possible that 3142 * another thread is still referring to it. The structure only 3143 * gets deallocated when we destroy the ill. 3144 */ 3145 ill->ill_capabilities &= ~ILL_CAPAB_HCKSUM; 3146 3147 size = sizeof (*dl_subcap) + sizeof (*hck_subcap); 3148 3149 mp = allocb(size, BPRI_HI); 3150 if (mp == NULL) { 3151 ip1dbg(("ill_capability_hcksum_reset: unable to allocate " 3152 "request to disable hardware checksum offload\n")); 3153 return; 3154 } 3155 3156 mp->b_wptr = mp->b_rptr + size; 3157 3158 dl_subcap = (dl_capability_sub_t *)mp->b_rptr; 3159 dl_subcap->dl_cap = DL_CAPAB_HCKSUM; 3160 dl_subcap->dl_length = sizeof (*hck_subcap); 3161 3162 hck_subcap = (dl_capab_hcksum_t *)(dl_subcap + 1); 3163 hck_subcap->hcksum_version = ill->ill_hcksum_capab->ill_hcksum_version; 3164 hck_subcap->hcksum_txflags = 0; 3165 3166 if (*sc_mp != NULL) 3167 linkb(*sc_mp, mp); 3168 else 3169 *sc_mp = mp; 3170 } 3171 3172 static void 3173 ill_capability_zerocopy_ack(ill_t *ill, mblk_t *mp, dl_capability_sub_t *isub) 3174 { 3175 mblk_t *nmp = NULL; 3176 dl_capability_req_t *oc; 3177 dl_capab_zerocopy_t *zc_ic, *zc_oc; 3178 ill_zerocopy_capab_t **ill_zerocopy_capab; 3179 uint_t sub_dl_cap = isub->dl_cap; 3180 uint8_t *capend; 3181 3182 ASSERT(sub_dl_cap == DL_CAPAB_ZEROCOPY); 3183 3184 ill_zerocopy_capab = (ill_zerocopy_capab_t **)&ill->ill_zerocopy_capab; 3185 3186 /* 3187 * Note: range checks here are not absolutely sufficient to 3188 * make us robust against malformed messages sent by drivers; 3189 * this is in keeping with the rest of IP's dlpi handling. 3190 * (Remember, it's coming from something else in the kernel 3191 * address space) 3192 */ 3193 capend = (uint8_t *)(isub + 1) + isub->dl_length; 3194 if (capend > mp->b_wptr) { 3195 cmn_err(CE_WARN, "ill_capability_zerocopy_ack: " 3196 "malformed sub-capability too long for mblk"); 3197 return; 3198 } 3199 3200 zc_ic = (dl_capab_zerocopy_t *)(isub + 1); 3201 if (zc_ic->zerocopy_version != ZEROCOPY_VERSION_1) { 3202 cmn_err(CE_CONT, "ill_capability_zerocopy_ack: " 3203 "unsupported ZEROCOPY sub-capability (version %d, " 3204 "expected %d)", zc_ic->zerocopy_version, 3205 ZEROCOPY_VERSION_1); 3206 return; 3207 } 3208 3209 if (!dlcapabcheckqid(&zc_ic->zerocopy_mid, ill->ill_lmod_rq)) { 3210 ip1dbg(("ill_capability_zerocopy_ack: mid token for zerocopy " 3211 "capability isn't as expected; pass-thru module(s) " 3212 "detected, discarding capability\n")); 3213 return; 3214 } 3215 3216 if ((zc_ic->zerocopy_flags & DL_CAPAB_VMSAFE_MEM) != 0) { 3217 if (*ill_zerocopy_capab == NULL) { 3218 *ill_zerocopy_capab = 3219 kmem_zalloc(sizeof (ill_zerocopy_capab_t), 3220 KM_NOSLEEP); 3221 3222 if (*ill_zerocopy_capab == NULL) { 3223 cmn_err(CE_WARN, "ill_capability_zerocopy_ack: " 3224 "could not enable Zero-copy version %d " 3225 "for %s (ENOMEM)\n", ZEROCOPY_VERSION_1, 3226 ill->ill_name); 3227 return; 3228 } 3229 } 3230 3231 ip1dbg(("ill_capability_zerocopy_ack: interface %s " 3232 "supports Zero-copy version %d\n", ill->ill_name, 3233 ZEROCOPY_VERSION_1)); 3234 3235 (*ill_zerocopy_capab)->ill_zerocopy_version = 3236 zc_ic->zerocopy_version; 3237 (*ill_zerocopy_capab)->ill_zerocopy_flags = 3238 zc_ic->zerocopy_flags; 3239 3240 ill->ill_capabilities |= ILL_CAPAB_ZEROCOPY; 3241 } else { 3242 uint_t size; 3243 uchar_t *rptr; 3244 3245 size = sizeof (dl_capability_req_t) + 3246 sizeof (dl_capability_sub_t) + 3247 sizeof (dl_capab_zerocopy_t); 3248 3249 if ((nmp = ip_dlpi_alloc(size, DL_CAPABILITY_REQ)) == NULL) { 3250 cmn_err(CE_WARN, "ill_capability_zerocopy_ack: " 3251 "could not enable zerocopy for %s (ENOMEM)\n", 3252 ill->ill_name); 3253 return; 3254 } 3255 3256 rptr = nmp->b_rptr; 3257 /* initialize dl_capability_req_t */ 3258 oc = (dl_capability_req_t *)rptr; 3259 oc->dl_sub_offset = sizeof (dl_capability_req_t); 3260 oc->dl_sub_length = sizeof (dl_capability_sub_t) + 3261 sizeof (dl_capab_zerocopy_t); 3262 rptr += sizeof (dl_capability_req_t); 3263 3264 /* initialize dl_capability_sub_t */ 3265 bcopy(isub, rptr, sizeof (*isub)); 3266 rptr += sizeof (*isub); 3267 3268 /* initialize dl_capab_zerocopy_t */ 3269 zc_oc = (dl_capab_zerocopy_t *)rptr; 3270 *zc_oc = *zc_ic; 3271 3272 ip1dbg(("ill_capability_zerocopy_ack: asking interface %s " 3273 "to enable zero-copy version %d\n", ill->ill_name, 3274 ZEROCOPY_VERSION_1)); 3275 3276 /* set VMSAFE_MEM flag */ 3277 zc_oc->zerocopy_flags |= DL_CAPAB_VMSAFE_MEM; 3278 3279 /* nmp points to a DL_CAPABILITY_REQ message to enable zcopy */ 3280 ill_dlpi_send(ill, nmp); 3281 } 3282 } 3283 3284 static void 3285 ill_capability_zerocopy_reset(ill_t *ill, mblk_t **sc_mp) 3286 { 3287 mblk_t *mp; 3288 dl_capab_zerocopy_t *zerocopy_subcap; 3289 dl_capability_sub_t *dl_subcap; 3290 int size; 3291 3292 if (!(ill->ill_capabilities & ILL_CAPAB_ZEROCOPY)) 3293 return; 3294 3295 ASSERT(ill->ill_zerocopy_capab != NULL); 3296 /* 3297 * Clear the capability flag for Zero-copy but retain the 3298 * ill_zerocopy_capab structure since it's possible that another 3299 * thread is still referring to it. The structure only gets 3300 * deallocated when we destroy the ill. 3301 */ 3302 ill->ill_capabilities &= ~ILL_CAPAB_ZEROCOPY; 3303 3304 size = sizeof (*dl_subcap) + sizeof (*zerocopy_subcap); 3305 3306 mp = allocb(size, BPRI_HI); 3307 if (mp == NULL) { 3308 ip1dbg(("ill_capability_zerocopy_reset: unable to allocate " 3309 "request to disable Zero-copy\n")); 3310 return; 3311 } 3312 3313 mp->b_wptr = mp->b_rptr + size; 3314 3315 dl_subcap = (dl_capability_sub_t *)mp->b_rptr; 3316 dl_subcap->dl_cap = DL_CAPAB_ZEROCOPY; 3317 dl_subcap->dl_length = sizeof (*zerocopy_subcap); 3318 3319 zerocopy_subcap = (dl_capab_zerocopy_t *)(dl_subcap + 1); 3320 zerocopy_subcap->zerocopy_version = 3321 ill->ill_zerocopy_capab->ill_zerocopy_version; 3322 zerocopy_subcap->zerocopy_flags = 0; 3323 3324 if (*sc_mp != NULL) 3325 linkb(*sc_mp, mp); 3326 else 3327 *sc_mp = mp; 3328 } 3329 3330 /* 3331 * Consume a new-style hardware capabilities negotiation ack. 3332 * Called from ip_rput_dlpi_writer(). 3333 */ 3334 void 3335 ill_capability_ack(ill_t *ill, mblk_t *mp) 3336 { 3337 dl_capability_ack_t *capp; 3338 dl_capability_sub_t *subp, *endp; 3339 3340 if (ill->ill_capab_state == IDMS_INPROGRESS) 3341 ill->ill_capab_state = IDMS_OK; 3342 3343 capp = (dl_capability_ack_t *)mp->b_rptr; 3344 3345 if (capp->dl_sub_length == 0) 3346 /* no new-style capabilities */ 3347 return; 3348 3349 /* make sure the driver supplied correct dl_sub_length */ 3350 if ((sizeof (*capp) + capp->dl_sub_length) > MBLKL(mp)) { 3351 ip0dbg(("ill_capability_ack: bad DL_CAPABILITY_ACK, " 3352 "invalid dl_sub_length (%d)\n", capp->dl_sub_length)); 3353 return; 3354 } 3355 3356 #define SC(base, offset) (dl_capability_sub_t *)(((uchar_t *)(base))+(offset)) 3357 /* 3358 * There are sub-capabilities. Process the ones we know about. 3359 * Loop until we don't have room for another sub-cap header.. 3360 */ 3361 for (subp = SC(capp, capp->dl_sub_offset), 3362 endp = SC(subp, capp->dl_sub_length - sizeof (*subp)); 3363 subp <= endp; 3364 subp = SC(subp, sizeof (dl_capability_sub_t) + subp->dl_length)) { 3365 3366 switch (subp->dl_cap) { 3367 case DL_CAPAB_ID_WRAPPER: 3368 ill_capability_id_ack(ill, mp, subp); 3369 break; 3370 default: 3371 ill_capability_dispatch(ill, mp, subp, B_FALSE); 3372 break; 3373 } 3374 } 3375 #undef SC 3376 } 3377 3378 /* 3379 * This routine is called to scan the fragmentation reassembly table for 3380 * the specified ILL for any packets that are starting to smell. 3381 * dead_interval is the maximum time in seconds that will be tolerated. It 3382 * will either be the value specified in ip_g_frag_timeout, or zero if the 3383 * ILL is shutting down and it is time to blow everything off. 3384 * 3385 * It returns the number of seconds (as a time_t) that the next frag timer 3386 * should be scheduled for, 0 meaning that the timer doesn't need to be 3387 * re-started. Note that the method of calculating next_timeout isn't 3388 * entirely accurate since time will flow between the time we grab 3389 * current_time and the time we schedule the next timeout. This isn't a 3390 * big problem since this is the timer for sending an ICMP reassembly time 3391 * exceeded messages, and it doesn't have to be exactly accurate. 3392 * 3393 * This function is 3394 * sometimes called as writer, although this is not required. 3395 */ 3396 time_t 3397 ill_frag_timeout(ill_t *ill, time_t dead_interval) 3398 { 3399 ipfb_t *ipfb; 3400 ipfb_t *endp; 3401 ipf_t *ipf; 3402 ipf_t *ipfnext; 3403 mblk_t *mp; 3404 time_t current_time = gethrestime_sec(); 3405 time_t next_timeout = 0; 3406 uint32_t hdr_length; 3407 mblk_t *send_icmp_head; 3408 mblk_t *send_icmp_head_v6; 3409 3410 ipfb = ill->ill_frag_hash_tbl; 3411 if (ipfb == NULL) 3412 return (B_FALSE); 3413 endp = &ipfb[ILL_FRAG_HASH_TBL_COUNT]; 3414 /* Walk the frag hash table. */ 3415 for (; ipfb < endp; ipfb++) { 3416 send_icmp_head = NULL; 3417 send_icmp_head_v6 = NULL; 3418 mutex_enter(&ipfb->ipfb_lock); 3419 while ((ipf = ipfb->ipfb_ipf) != 0) { 3420 time_t frag_time = current_time - ipf->ipf_timestamp; 3421 time_t frag_timeout; 3422 3423 if (frag_time < dead_interval) { 3424 /* 3425 * There are some outstanding fragments 3426 * that will timeout later. Make note of 3427 * the time so that we can reschedule the 3428 * next timeout appropriately. 3429 */ 3430 frag_timeout = dead_interval - frag_time; 3431 if (next_timeout == 0 || 3432 frag_timeout < next_timeout) { 3433 next_timeout = frag_timeout; 3434 } 3435 break; 3436 } 3437 /* Time's up. Get it out of here. */ 3438 hdr_length = ipf->ipf_nf_hdr_len; 3439 ipfnext = ipf->ipf_hash_next; 3440 if (ipfnext) 3441 ipfnext->ipf_ptphn = ipf->ipf_ptphn; 3442 *ipf->ipf_ptphn = ipfnext; 3443 mp = ipf->ipf_mp->b_cont; 3444 for (; mp; mp = mp->b_cont) { 3445 /* Extra points for neatness. */ 3446 IP_REASS_SET_START(mp, 0); 3447 IP_REASS_SET_END(mp, 0); 3448 } 3449 mp = ipf->ipf_mp->b_cont; 3450 ill->ill_frag_count -= ipf->ipf_count; 3451 ASSERT(ipfb->ipfb_count >= ipf->ipf_count); 3452 ipfb->ipfb_count -= ipf->ipf_count; 3453 ASSERT(ipfb->ipfb_frag_pkts > 0); 3454 ipfb->ipfb_frag_pkts--; 3455 /* 3456 * We do not send any icmp message from here because 3457 * we currently are holding the ipfb_lock for this 3458 * hash chain. If we try and send any icmp messages 3459 * from here we may end up via a put back into ip 3460 * trying to get the same lock, causing a recursive 3461 * mutex panic. Instead we build a list and send all 3462 * the icmp messages after we have dropped the lock. 3463 */ 3464 if (ill->ill_isv6) { 3465 BUMP_MIB(ill->ill_ip6_mib, ipv6ReasmFails); 3466 if (hdr_length != 0) { 3467 mp->b_next = send_icmp_head_v6; 3468 send_icmp_head_v6 = mp; 3469 } else { 3470 freemsg(mp); 3471 } 3472 } else { 3473 BUMP_MIB(&ip_mib, ipReasmFails); 3474 if (hdr_length != 0) { 3475 mp->b_next = send_icmp_head; 3476 send_icmp_head = mp; 3477 } else { 3478 freemsg(mp); 3479 } 3480 } 3481 freeb(ipf->ipf_mp); 3482 } 3483 mutex_exit(&ipfb->ipfb_lock); 3484 /* 3485 * Now need to send any icmp messages that we delayed from 3486 * above. 3487 */ 3488 while (send_icmp_head_v6 != NULL) { 3489 mp = send_icmp_head_v6; 3490 send_icmp_head_v6 = send_icmp_head_v6->b_next; 3491 mp->b_next = NULL; 3492 icmp_time_exceeded_v6(ill->ill_wq, mp, 3493 ICMP_REASSEMBLY_TIME_EXCEEDED, B_FALSE, B_FALSE); 3494 } 3495 while (send_icmp_head != NULL) { 3496 mp = send_icmp_head; 3497 send_icmp_head = send_icmp_head->b_next; 3498 mp->b_next = NULL; 3499 icmp_time_exceeded(ill->ill_wq, mp, 3500 ICMP_REASSEMBLY_TIME_EXCEEDED); 3501 } 3502 } 3503 /* 3504 * A non-dying ILL will use the return value to decide whether to 3505 * restart the frag timer, and for how long. 3506 */ 3507 return (next_timeout); 3508 } 3509 3510 /* 3511 * This routine is called when the approximate count of mblk memory used 3512 * for the specified ILL has exceeded max_count. 3513 */ 3514 void 3515 ill_frag_prune(ill_t *ill, uint_t max_count) 3516 { 3517 ipfb_t *ipfb; 3518 ipf_t *ipf; 3519 size_t count; 3520 3521 /* 3522 * If we are here within ip_min_frag_prune_time msecs remove 3523 * ill_frag_free_num_pkts oldest packets from each bucket and increment 3524 * ill_frag_free_num_pkts. 3525 */ 3526 mutex_enter(&ill->ill_lock); 3527 if (TICK_TO_MSEC(lbolt - ill->ill_last_frag_clean_time) <= 3528 (ip_min_frag_prune_time != 0 ? 3529 ip_min_frag_prune_time : msec_per_tick)) { 3530 3531 ill->ill_frag_free_num_pkts++; 3532 3533 } else { 3534 ill->ill_frag_free_num_pkts = 0; 3535 } 3536 ill->ill_last_frag_clean_time = lbolt; 3537 mutex_exit(&ill->ill_lock); 3538 3539 /* 3540 * free ill_frag_free_num_pkts oldest packets from each bucket. 3541 */ 3542 if (ill->ill_frag_free_num_pkts != 0) { 3543 int ix; 3544 3545 for (ix = 0; ix < ILL_FRAG_HASH_TBL_COUNT; ix++) { 3546 ipfb = &ill->ill_frag_hash_tbl[ix]; 3547 mutex_enter(&ipfb->ipfb_lock); 3548 if (ipfb->ipfb_ipf != NULL) { 3549 ill_frag_free_pkts(ill, ipfb, ipfb->ipfb_ipf, 3550 ill->ill_frag_free_num_pkts); 3551 } 3552 mutex_exit(&ipfb->ipfb_lock); 3553 } 3554 } 3555 /* 3556 * While the reassembly list for this ILL is too big, prune a fragment 3557 * queue by age, oldest first. Note that the per ILL count is 3558 * approximate, while the per frag hash bucket counts are accurate. 3559 */ 3560 while (ill->ill_frag_count > max_count) { 3561 int ix; 3562 ipfb_t *oipfb = NULL; 3563 uint_t oldest = UINT_MAX; 3564 3565 count = 0; 3566 for (ix = 0; ix < ILL_FRAG_HASH_TBL_COUNT; ix++) { 3567 ipfb = &ill->ill_frag_hash_tbl[ix]; 3568 mutex_enter(&ipfb->ipfb_lock); 3569 ipf = ipfb->ipfb_ipf; 3570 if (ipf != NULL && ipf->ipf_gen < oldest) { 3571 oldest = ipf->ipf_gen; 3572 oipfb = ipfb; 3573 } 3574 count += ipfb->ipfb_count; 3575 mutex_exit(&ipfb->ipfb_lock); 3576 } 3577 /* Refresh the per ILL count */ 3578 ill->ill_frag_count = count; 3579 if (oipfb == NULL) { 3580 ill->ill_frag_count = 0; 3581 break; 3582 } 3583 if (count <= max_count) 3584 return; /* Somebody beat us to it, nothing to do */ 3585 mutex_enter(&oipfb->ipfb_lock); 3586 ipf = oipfb->ipfb_ipf; 3587 if (ipf != NULL) { 3588 ill_frag_free_pkts(ill, oipfb, ipf, 1); 3589 } 3590 mutex_exit(&oipfb->ipfb_lock); 3591 } 3592 } 3593 3594 /* 3595 * free 'free_cnt' fragmented packets starting at ipf. 3596 */ 3597 void 3598 ill_frag_free_pkts(ill_t *ill, ipfb_t *ipfb, ipf_t *ipf, int free_cnt) 3599 { 3600 size_t count; 3601 mblk_t *mp; 3602 mblk_t *tmp; 3603 ipf_t **ipfp = ipf->ipf_ptphn; 3604 3605 ASSERT(MUTEX_HELD(&ipfb->ipfb_lock)); 3606 ASSERT(ipfp != NULL); 3607 ASSERT(ipf != NULL); 3608 3609 while (ipf != NULL && free_cnt-- > 0) { 3610 count = ipf->ipf_count; 3611 mp = ipf->ipf_mp; 3612 ipf = ipf->ipf_hash_next; 3613 for (tmp = mp; tmp; tmp = tmp->b_cont) { 3614 IP_REASS_SET_START(tmp, 0); 3615 IP_REASS_SET_END(tmp, 0); 3616 } 3617 ill->ill_frag_count -= count; 3618 ASSERT(ipfb->ipfb_count >= count); 3619 ipfb->ipfb_count -= count; 3620 ASSERT(ipfb->ipfb_frag_pkts > 0); 3621 ipfb->ipfb_frag_pkts--; 3622 freemsg(mp); 3623 BUMP_MIB(&ip_mib, ipReasmFails); 3624 } 3625 3626 if (ipf) 3627 ipf->ipf_ptphn = ipfp; 3628 ipfp[0] = ipf; 3629 } 3630 3631 #define ND_FORWARD_WARNING "The <if>:ip*_forwarding ndd variables are " \ 3632 "obsolete and may be removed in a future release of Solaris. Use " \ 3633 "ifconfig(1M) to manipulate the forwarding status of an interface." 3634 3635 /* 3636 * For obsolete per-interface forwarding configuration; 3637 * called in response to ND_GET. 3638 */ 3639 /* ARGSUSED */ 3640 static int 3641 nd_ill_forward_get(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *ioc_cr) 3642 { 3643 ill_t *ill = (ill_t *)cp; 3644 3645 cmn_err(CE_WARN, ND_FORWARD_WARNING); 3646 3647 (void) mi_mpprintf(mp, "%d", (ill->ill_flags & ILLF_ROUTER) != 0); 3648 return (0); 3649 } 3650 3651 /* 3652 * For obsolete per-interface forwarding configuration; 3653 * called in response to ND_SET. 3654 */ 3655 /* ARGSUSED */ 3656 static int 3657 nd_ill_forward_set(queue_t *q, mblk_t *mp, char *valuestr, caddr_t cp, 3658 cred_t *ioc_cr) 3659 { 3660 long value; 3661 int retval; 3662 3663 cmn_err(CE_WARN, ND_FORWARD_WARNING); 3664 3665 if (ddi_strtol(valuestr, NULL, 10, &value) != 0 || 3666 value < 0 || value > 1) { 3667 return (EINVAL); 3668 } 3669 3670 rw_enter(&ill_g_lock, RW_READER); 3671 retval = ill_forward_set(q, mp, (value != 0), cp); 3672 rw_exit(&ill_g_lock); 3673 return (retval); 3674 } 3675 3676 /* 3677 * Set an ill's ILLF_ROUTER flag appropriately. If the ill is part of an 3678 * IPMP group, make sure all ill's in the group adopt the new policy. Send 3679 * up RTS_IFINFO routing socket messages for each interface whose flags we 3680 * change. 3681 */ 3682 /* ARGSUSED */ 3683 int 3684 ill_forward_set(queue_t *q, mblk_t *mp, boolean_t enable, caddr_t cp) 3685 { 3686 ill_t *ill = (ill_t *)cp; 3687 ill_group_t *illgrp; 3688 3689 ASSERT(IAM_WRITER_ILL(ill) || RW_READ_HELD(&ill_g_lock)); 3690 3691 if ((enable && (ill->ill_flags & ILLF_ROUTER)) || 3692 (!enable && !(ill->ill_flags & ILLF_ROUTER)) || 3693 (ill->ill_phyint->phyint_flags & PHYI_LOOPBACK)) 3694 return (EINVAL); 3695 3696 /* 3697 * If the ill is in an IPMP group, set the forwarding policy on all 3698 * members of the group to the same value. 3699 */ 3700 illgrp = ill->ill_group; 3701 if (illgrp != NULL) { 3702 ill_t *tmp_ill; 3703 3704 for (tmp_ill = illgrp->illgrp_ill; tmp_ill != NULL; 3705 tmp_ill = tmp_ill->ill_group_next) { 3706 ip1dbg(("ill_forward_set: %s %s forwarding on %s", 3707 (enable ? "Enabling" : "Disabling"), 3708 (tmp_ill->ill_isv6 ? "IPv6" : "IPv4"), 3709 tmp_ill->ill_name)); 3710 mutex_enter(&tmp_ill->ill_lock); 3711 if (enable) 3712 tmp_ill->ill_flags |= ILLF_ROUTER; 3713 else 3714 tmp_ill->ill_flags &= ~ILLF_ROUTER; 3715 mutex_exit(&tmp_ill->ill_lock); 3716 if (tmp_ill->ill_isv6) 3717 ill_set_nce_router_flags(tmp_ill, enable); 3718 /* Notify routing socket listeners of this change. */ 3719 ip_rts_ifmsg(tmp_ill->ill_ipif); 3720 } 3721 } else { 3722 ip1dbg(("ill_forward_set: %s %s forwarding on %s", 3723 (enable ? "Enabling" : "Disabling"), 3724 (ill->ill_isv6 ? "IPv6" : "IPv4"), ill->ill_name)); 3725 mutex_enter(&ill->ill_lock); 3726 if (enable) 3727 ill->ill_flags |= ILLF_ROUTER; 3728 else 3729 ill->ill_flags &= ~ILLF_ROUTER; 3730 mutex_exit(&ill->ill_lock); 3731 if (ill->ill_isv6) 3732 ill_set_nce_router_flags(ill, enable); 3733 /* Notify routing socket listeners of this change. */ 3734 ip_rts_ifmsg(ill->ill_ipif); 3735 } 3736 3737 return (0); 3738 } 3739 3740 /* 3741 * Based on the ILLF_ROUTER flag of an ill, make sure all local nce's for 3742 * addresses assigned to the ill have the NCE_F_ISROUTER flag appropriately 3743 * set or clear. 3744 */ 3745 static void 3746 ill_set_nce_router_flags(ill_t *ill, boolean_t enable) 3747 { 3748 ipif_t *ipif; 3749 nce_t *nce; 3750 3751 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 3752 nce = ndp_lookup(ill, &ipif->ipif_v6lcl_addr, B_FALSE); 3753 if (nce != NULL) { 3754 mutex_enter(&nce->nce_lock); 3755 if (enable) 3756 nce->nce_flags |= NCE_F_ISROUTER; 3757 else 3758 nce->nce_flags &= ~NCE_F_ISROUTER; 3759 mutex_exit(&nce->nce_lock); 3760 NCE_REFRELE(nce); 3761 } 3762 } 3763 } 3764 3765 /* 3766 * Given an ill with a _valid_ name, add the ip_forwarding ndd variable 3767 * for this ill. Make sure the v6/v4 question has been answered about this 3768 * ill. The creation of this ndd variable is only for backwards compatibility. 3769 * The preferred way to control per-interface IP forwarding is through the 3770 * ILLF_ROUTER interface flag. 3771 */ 3772 static int 3773 ill_set_ndd_name(ill_t *ill) 3774 { 3775 char *suffix; 3776 3777 ASSERT(IAM_WRITER_ILL(ill)); 3778 3779 if (ill->ill_isv6) 3780 suffix = ipv6_forward_suffix; 3781 else 3782 suffix = ipv4_forward_suffix; 3783 3784 ill->ill_ndd_name = ill->ill_name + ill->ill_name_length; 3785 bcopy(ill->ill_name, ill->ill_ndd_name, ill->ill_name_length - 1); 3786 /* 3787 * Copies over the '\0'. 3788 * Note that strlen(suffix) is always bounded. 3789 */ 3790 bcopy(suffix, ill->ill_ndd_name + ill->ill_name_length - 1, 3791 strlen(suffix) + 1); 3792 3793 /* 3794 * Use of the nd table requires holding the reader lock. 3795 * Modifying the nd table thru nd_load/nd_unload requires 3796 * the writer lock. 3797 */ 3798 rw_enter(&ip_g_nd_lock, RW_WRITER); 3799 if (!nd_load(&ip_g_nd, ill->ill_ndd_name, nd_ill_forward_get, 3800 nd_ill_forward_set, (caddr_t)ill)) { 3801 /* 3802 * If the nd_load failed, it only meant that it could not 3803 * allocate a new bunch of room for further NDD expansion. 3804 * Because of that, the ill_ndd_name will be set to 0, and 3805 * this interface is at the mercy of the global ip_forwarding 3806 * variable. 3807 */ 3808 rw_exit(&ip_g_nd_lock); 3809 ill->ill_ndd_name = NULL; 3810 return (ENOMEM); 3811 } 3812 rw_exit(&ip_g_nd_lock); 3813 return (0); 3814 } 3815 3816 /* 3817 * Intializes the context structure and returns the first ill in the list 3818 * cuurently start_list and end_list can have values: 3819 * MAX_G_HEADS Traverse both IPV4 and IPV6 lists. 3820 * IP_V4_G_HEAD Traverse IPV4 list only. 3821 * IP_V6_G_HEAD Traverse IPV6 list only. 3822 */ 3823 3824 /* 3825 * We don't check for CONDEMNED ills here. Caller must do that if 3826 * necessary under the ill lock. 3827 */ 3828 ill_t * 3829 ill_first(int start_list, int end_list, ill_walk_context_t *ctx) 3830 { 3831 ill_if_t *ifp; 3832 ill_t *ill; 3833 avl_tree_t *avl_tree; 3834 3835 ASSERT(RW_LOCK_HELD(&ill_g_lock)); 3836 ASSERT(end_list <= MAX_G_HEADS && start_list >= 0); 3837 3838 /* 3839 * setup the lists to search 3840 */ 3841 if (end_list != MAX_G_HEADS) { 3842 ctx->ctx_current_list = start_list; 3843 ctx->ctx_last_list = end_list; 3844 } else { 3845 ctx->ctx_last_list = MAX_G_HEADS - 1; 3846 ctx->ctx_current_list = 0; 3847 } 3848 3849 while (ctx->ctx_current_list <= ctx->ctx_last_list) { 3850 ifp = IP_VX_ILL_G_LIST(ctx->ctx_current_list); 3851 if (ifp != (ill_if_t *) 3852 &IP_VX_ILL_G_LIST(ctx->ctx_current_list)) { 3853 avl_tree = &ifp->illif_avl_by_ppa; 3854 ill = avl_first(avl_tree); 3855 /* 3856 * ill is guaranteed to be non NULL or ifp should have 3857 * not existed. 3858 */ 3859 ASSERT(ill != NULL); 3860 return (ill); 3861 } 3862 ctx->ctx_current_list++; 3863 } 3864 3865 return (NULL); 3866 } 3867 3868 /* 3869 * returns the next ill in the list. ill_first() must have been called 3870 * before calling ill_next() or bad things will happen. 3871 */ 3872 3873 /* 3874 * We don't check for CONDEMNED ills here. Caller must do that if 3875 * necessary under the ill lock. 3876 */ 3877 ill_t * 3878 ill_next(ill_walk_context_t *ctx, ill_t *lastill) 3879 { 3880 ill_if_t *ifp; 3881 ill_t *ill; 3882 3883 3884 ASSERT(RW_LOCK_HELD(&ill_g_lock)); 3885 ASSERT(lastill->ill_ifptr != (ill_if_t *) 3886 &IP_VX_ILL_G_LIST(ctx->ctx_current_list)); 3887 if ((ill = avl_walk(&lastill->ill_ifptr->illif_avl_by_ppa, lastill, 3888 AVL_AFTER)) != NULL) { 3889 return (ill); 3890 } 3891 3892 /* goto next ill_ifp in the list. */ 3893 ifp = lastill->ill_ifptr->illif_next; 3894 3895 /* make sure not at end of circular list */ 3896 while (ifp == (ill_if_t *)&IP_VX_ILL_G_LIST(ctx->ctx_current_list)) { 3897 if (++ctx->ctx_current_list > ctx->ctx_last_list) 3898 return (NULL); 3899 ifp = IP_VX_ILL_G_LIST(ctx->ctx_current_list); 3900 } 3901 3902 return (avl_first(&ifp->illif_avl_by_ppa)); 3903 } 3904 3905 /* 3906 * Check interface name for correct format which is name+ppa. 3907 * name can contain characters and digits, the right most digits 3908 * make up the ppa number. use of octal is not allowed, name must contain 3909 * a ppa, return pointer to the start of ppa. 3910 * In case of error return NULL. 3911 */ 3912 static char * 3913 ill_get_ppa_ptr(char *name) 3914 { 3915 int namelen = mi_strlen(name); 3916 3917 int len = namelen; 3918 3919 name += len; 3920 while (len > 0) { 3921 name--; 3922 if (*name < '0' || *name > '9') 3923 break; 3924 len--; 3925 } 3926 3927 /* empty string, all digits, or no trailing digits */ 3928 if (len == 0 || len == (int)namelen) 3929 return (NULL); 3930 3931 name++; 3932 /* check for attempted use of octal */ 3933 if (*name == '0' && len != (int)namelen - 1) 3934 return (NULL); 3935 return (name); 3936 } 3937 3938 /* 3939 * use avl tree to locate the ill. 3940 */ 3941 static ill_t * 3942 ill_find_by_name(char *name, boolean_t isv6, queue_t *q, mblk_t *mp, 3943 ipsq_func_t func, int *error) 3944 { 3945 char *ppa_ptr = NULL; 3946 int len; 3947 uint_t ppa; 3948 ill_t *ill = NULL; 3949 ill_if_t *ifp; 3950 int list; 3951 ipsq_t *ipsq; 3952 3953 if (error != NULL) 3954 *error = 0; 3955 3956 /* 3957 * get ppa ptr 3958 */ 3959 if (isv6) 3960 list = IP_V6_G_HEAD; 3961 else 3962 list = IP_V4_G_HEAD; 3963 3964 if ((ppa_ptr = ill_get_ppa_ptr(name)) == NULL) { 3965 if (error != NULL) 3966 *error = ENXIO; 3967 return (NULL); 3968 } 3969 3970 len = ppa_ptr - name + 1; 3971 3972 ppa = stoi(&ppa_ptr); 3973 3974 ifp = IP_VX_ILL_G_LIST(list); 3975 3976 while (ifp != (ill_if_t *)&IP_VX_ILL_G_LIST(list)) { 3977 /* 3978 * match is done on len - 1 as the name is not null 3979 * terminated it contains ppa in addition to the interface 3980 * name. 3981 */ 3982 if ((ifp->illif_name_len == len) && 3983 bcmp(ifp->illif_name, name, len - 1) == 0) { 3984 break; 3985 } else { 3986 ifp = ifp->illif_next; 3987 } 3988 } 3989 3990 3991 if (ifp == (ill_if_t *)&IP_VX_ILL_G_LIST(list)) { 3992 /* 3993 * Even the interface type does not exist. 3994 */ 3995 if (error != NULL) 3996 *error = ENXIO; 3997 return (NULL); 3998 } 3999 4000 ill = avl_find(&ifp->illif_avl_by_ppa, (void *) &ppa, NULL); 4001 if (ill != NULL) { 4002 /* 4003 * The block comment at the start of ipif_down 4004 * explains the use of the macros used below 4005 */ 4006 GRAB_CONN_LOCK(q); 4007 mutex_enter(&ill->ill_lock); 4008 if (ILL_CAN_LOOKUP(ill)) { 4009 ill_refhold_locked(ill); 4010 mutex_exit(&ill->ill_lock); 4011 RELEASE_CONN_LOCK(q); 4012 return (ill); 4013 } else if (ILL_CAN_WAIT(ill, q)) { 4014 ipsq = ill->ill_phyint->phyint_ipsq; 4015 mutex_enter(&ipsq->ipsq_lock); 4016 mutex_exit(&ill->ill_lock); 4017 ipsq_enq(ipsq, q, mp, func, NEW_OP, ill); 4018 mutex_exit(&ipsq->ipsq_lock); 4019 RELEASE_CONN_LOCK(q); 4020 *error = EINPROGRESS; 4021 return (NULL); 4022 } 4023 mutex_exit(&ill->ill_lock); 4024 RELEASE_CONN_LOCK(q); 4025 } 4026 if (error != NULL) 4027 *error = ENXIO; 4028 return (NULL); 4029 } 4030 4031 /* 4032 * comparison function for use with avl. 4033 */ 4034 static int 4035 ill_compare_ppa(const void *ppa_ptr, const void *ill_ptr) 4036 { 4037 uint_t ppa; 4038 uint_t ill_ppa; 4039 4040 ASSERT(ppa_ptr != NULL && ill_ptr != NULL); 4041 4042 ppa = *((uint_t *)ppa_ptr); 4043 ill_ppa = ((const ill_t *)ill_ptr)->ill_ppa; 4044 /* 4045 * We want the ill with the lowest ppa to be on the 4046 * top. 4047 */ 4048 if (ill_ppa < ppa) 4049 return (1); 4050 if (ill_ppa > ppa) 4051 return (-1); 4052 return (0); 4053 } 4054 4055 /* 4056 * remove an interface type from the global list. 4057 */ 4058 static void 4059 ill_delete_interface_type(ill_if_t *interface) 4060 { 4061 ASSERT(RW_WRITE_HELD(&ill_g_lock)); 4062 4063 ASSERT(interface != NULL); 4064 ASSERT(avl_numnodes(&interface->illif_avl_by_ppa) == 0); 4065 4066 avl_destroy(&interface->illif_avl_by_ppa); 4067 if (interface->illif_ppa_arena != NULL) 4068 vmem_destroy(interface->illif_ppa_arena); 4069 4070 remque(interface); 4071 4072 mi_free(interface); 4073 } 4074 4075 /* 4076 * remove ill from the global list. 4077 */ 4078 static void 4079 ill_glist_delete(ill_t *ill) 4080 { 4081 if (ill == NULL) 4082 return; 4083 4084 rw_enter(&ill_g_lock, RW_WRITER); 4085 /* 4086 * If the ill was never inserted into the AVL tree 4087 * we skip the if branch. 4088 */ 4089 if (ill->ill_ifptr != NULL) { 4090 /* 4091 * remove from AVL tree and free ppa number 4092 */ 4093 avl_remove(&ill->ill_ifptr->illif_avl_by_ppa, ill); 4094 4095 if (ill->ill_ifptr->illif_ppa_arena != NULL) { 4096 vmem_free(ill->ill_ifptr->illif_ppa_arena, 4097 (void *)(uintptr_t)(ill->ill_ppa+1), 1); 4098 } 4099 if (avl_numnodes(&ill->ill_ifptr->illif_avl_by_ppa) == 0) { 4100 ill_delete_interface_type(ill->ill_ifptr); 4101 } 4102 4103 /* 4104 * Indicate ill is no longer in the list. 4105 */ 4106 ill->ill_ifptr = NULL; 4107 ill->ill_name_length = 0; 4108 ill->ill_name[0] = '\0'; 4109 ill->ill_ppa = UINT_MAX; 4110 } 4111 ill_phyint_free(ill); 4112 rw_exit(&ill_g_lock); 4113 } 4114 4115 /* 4116 * allocate a ppa, if the number of plumbed interfaces of this type are 4117 * less than ill_no_arena do a linear search to find a unused ppa. 4118 * When the number goes beyond ill_no_arena switch to using an arena. 4119 * Note: ppa value of zero cannot be allocated from vmem_arena as it 4120 * is the return value for an error condition, so allocation starts at one 4121 * and is decremented by one. 4122 */ 4123 static int 4124 ill_alloc_ppa(ill_if_t *ifp, ill_t *ill) 4125 { 4126 ill_t *tmp_ill; 4127 uint_t start, end; 4128 int ppa; 4129 4130 if (ifp->illif_ppa_arena == NULL && 4131 (avl_numnodes(&ifp->illif_avl_by_ppa) + 1 > ill_no_arena)) { 4132 /* 4133 * Create an arena. 4134 */ 4135 ifp->illif_ppa_arena = vmem_create(ifp->illif_name, 4136 (void *)1, UINT_MAX - 1, 1, NULL, NULL, 4137 NULL, 0, VM_SLEEP | VMC_IDENTIFIER); 4138 /* allocate what has already been assigned */ 4139 for (tmp_ill = avl_first(&ifp->illif_avl_by_ppa); 4140 tmp_ill != NULL; tmp_ill = avl_walk(&ifp->illif_avl_by_ppa, 4141 tmp_ill, AVL_AFTER)) { 4142 ppa = (int)(uintptr_t)vmem_xalloc(ifp->illif_ppa_arena, 4143 1, /* size */ 4144 1, /* align/quantum */ 4145 0, /* phase */ 4146 0, /* nocross */ 4147 (void *)((uintptr_t)tmp_ill->ill_ppa + 1), /* minaddr */ 4148 (void *)((uintptr_t)tmp_ill->ill_ppa + 2), /* maxaddr */ 4149 VM_NOSLEEP|VM_FIRSTFIT); 4150 if (ppa == 0) { 4151 ip1dbg(("ill_alloc_ppa: ppa allocation" 4152 " failed while switching")); 4153 vmem_destroy(ifp->illif_ppa_arena); 4154 ifp->illif_ppa_arena = NULL; 4155 break; 4156 } 4157 } 4158 } 4159 4160 if (ifp->illif_ppa_arena != NULL) { 4161 if (ill->ill_ppa == UINT_MAX) { 4162 ppa = (int)(uintptr_t)vmem_alloc(ifp->illif_ppa_arena, 4163 1, VM_NOSLEEP|VM_FIRSTFIT); 4164 if (ppa == 0) 4165 return (EAGAIN); 4166 ill->ill_ppa = --ppa; 4167 } else { 4168 ppa = (int)(uintptr_t)vmem_xalloc(ifp->illif_ppa_arena, 4169 1, /* size */ 4170 1, /* align/quantum */ 4171 0, /* phase */ 4172 0, /* nocross */ 4173 (void *)(uintptr_t)(ill->ill_ppa + 1), /* minaddr */ 4174 (void *)(uintptr_t)(ill->ill_ppa + 2), /* maxaddr */ 4175 VM_NOSLEEP|VM_FIRSTFIT); 4176 /* 4177 * Most likely the allocation failed because 4178 * the requested ppa was in use. 4179 */ 4180 if (ppa == 0) 4181 return (EEXIST); 4182 } 4183 return (0); 4184 } 4185 4186 /* 4187 * No arena is in use and not enough (>ill_no_arena) interfaces have 4188 * been plumbed to create one. Do a linear search to get a unused ppa. 4189 */ 4190 if (ill->ill_ppa == UINT_MAX) { 4191 end = UINT_MAX - 1; 4192 start = 0; 4193 } else { 4194 end = start = ill->ill_ppa; 4195 } 4196 4197 tmp_ill = avl_find(&ifp->illif_avl_by_ppa, (void *)&start, NULL); 4198 while (tmp_ill != NULL && tmp_ill->ill_ppa == start) { 4199 if (start++ >= end) { 4200 if (ill->ill_ppa == UINT_MAX) 4201 return (EAGAIN); 4202 else 4203 return (EEXIST); 4204 } 4205 tmp_ill = avl_walk(&ifp->illif_avl_by_ppa, tmp_ill, AVL_AFTER); 4206 } 4207 ill->ill_ppa = start; 4208 return (0); 4209 } 4210 4211 /* 4212 * Insert ill into the list of configured ill's. Once this function completes, 4213 * the ill is globally visible and is available through lookups. More precisely 4214 * this happens after the caller drops the ill_g_lock. 4215 */ 4216 static int 4217 ill_glist_insert(ill_t *ill, char *name, boolean_t isv6) 4218 { 4219 ill_if_t *ill_interface; 4220 avl_index_t where = 0; 4221 int error; 4222 int name_length; 4223 int index; 4224 boolean_t check_length = B_FALSE; 4225 4226 ASSERT(RW_WRITE_HELD(&ill_g_lock)); 4227 4228 name_length = mi_strlen(name) + 1; 4229 4230 if (isv6) 4231 index = IP_V6_G_HEAD; 4232 else 4233 index = IP_V4_G_HEAD; 4234 4235 ill_interface = IP_VX_ILL_G_LIST(index); 4236 /* 4237 * Search for interface type based on name 4238 */ 4239 while (ill_interface != (ill_if_t *)&IP_VX_ILL_G_LIST(index)) { 4240 if ((ill_interface->illif_name_len == name_length) && 4241 (strcmp(ill_interface->illif_name, name) == 0)) { 4242 break; 4243 } 4244 ill_interface = ill_interface->illif_next; 4245 } 4246 4247 /* 4248 * Interface type not found, create one. 4249 */ 4250 if (ill_interface == (ill_if_t *)&IP_VX_ILL_G_LIST(index)) { 4251 4252 ill_g_head_t ghead; 4253 4254 /* 4255 * allocate ill_if_t structure 4256 */ 4257 4258 ill_interface = (ill_if_t *)mi_zalloc(sizeof (ill_if_t)); 4259 if (ill_interface == NULL) { 4260 return (ENOMEM); 4261 } 4262 4263 4264 4265 (void) strcpy(ill_interface->illif_name, name); 4266 ill_interface->illif_name_len = name_length; 4267 4268 avl_create(&ill_interface->illif_avl_by_ppa, 4269 ill_compare_ppa, sizeof (ill_t), 4270 offsetof(struct ill_s, ill_avl_byppa)); 4271 4272 /* 4273 * link the structure in the back to maintain order 4274 * of configuration for ifconfig output. 4275 */ 4276 ghead = ill_g_heads[index]; 4277 insque(ill_interface, ghead.ill_g_list_tail); 4278 4279 } 4280 4281 if (ill->ill_ppa == UINT_MAX) 4282 check_length = B_TRUE; 4283 4284 error = ill_alloc_ppa(ill_interface, ill); 4285 if (error != 0) { 4286 if (avl_numnodes(&ill_interface->illif_avl_by_ppa) == 0) 4287 ill_delete_interface_type(ill->ill_ifptr); 4288 return (error); 4289 } 4290 4291 /* 4292 * When the ppa is choosen by the system, check that there is 4293 * enough space to insert ppa. if a specific ppa was passed in this 4294 * check is not required as the interface name passed in will have 4295 * the right ppa in it. 4296 */ 4297 if (check_length) { 4298 /* 4299 * UINT_MAX - 1 should fit in 10 chars, alloc 12 chars. 4300 */ 4301 char buf[sizeof (uint_t) * 3]; 4302 4303 /* 4304 * convert ppa to string to calculate the amount of space 4305 * required for it in the name. 4306 */ 4307 numtos(ill->ill_ppa, buf); 4308 4309 /* Do we have enough space to insert ppa ? */ 4310 4311 if ((mi_strlen(name) + mi_strlen(buf) + 1) > LIFNAMSIZ) { 4312 /* Free ppa and interface type struct */ 4313 if (ill_interface->illif_ppa_arena != NULL) { 4314 vmem_free(ill_interface->illif_ppa_arena, 4315 (void *)(uintptr_t)(ill->ill_ppa+1), 1); 4316 } 4317 if (avl_numnodes(&ill_interface->illif_avl_by_ppa) == 4318 0) { 4319 ill_delete_interface_type(ill->ill_ifptr); 4320 } 4321 4322 return (EINVAL); 4323 } 4324 } 4325 4326 (void) sprintf(ill->ill_name, "%s%u", name, ill->ill_ppa); 4327 ill->ill_name_length = mi_strlen(ill->ill_name) + 1; 4328 4329 (void) avl_find(&ill_interface->illif_avl_by_ppa, &ill->ill_ppa, 4330 &where); 4331 ill->ill_ifptr = ill_interface; 4332 avl_insert(&ill_interface->illif_avl_by_ppa, ill, where); 4333 4334 ill_phyint_reinit(ill); 4335 return (0); 4336 } 4337 4338 /* Initialize the per phyint (per IPMP group) ipsq used for serialization */ 4339 static boolean_t 4340 ipsq_init(ill_t *ill) 4341 { 4342 ipsq_t *ipsq; 4343 4344 /* Init the ipsq and impicitly enter as writer */ 4345 ill->ill_phyint->phyint_ipsq = 4346 kmem_zalloc(sizeof (ipsq_t), KM_NOSLEEP); 4347 if (ill->ill_phyint->phyint_ipsq == NULL) 4348 return (B_FALSE); 4349 ipsq = ill->ill_phyint->phyint_ipsq; 4350 ipsq->ipsq_phyint_list = ill->ill_phyint; 4351 ill->ill_phyint->phyint_ipsq_next = NULL; 4352 mutex_init(&ipsq->ipsq_lock, NULL, MUTEX_DEFAULT, 0); 4353 ipsq->ipsq_refs = 1; 4354 ipsq->ipsq_writer = curthread; 4355 ipsq->ipsq_reentry_cnt = 1; 4356 #ifdef ILL_DEBUG 4357 ipsq->ipsq_depth = getpcstack((pc_t *)ipsq->ipsq_stack, IP_STACK_DEPTH); 4358 #endif 4359 (void) strcpy(ipsq->ipsq_name, ill->ill_name); 4360 return (B_TRUE); 4361 } 4362 4363 /* 4364 * ill_init is called by ip_open when a device control stream is opened. 4365 * It does a few initializations, and shoots a DL_INFO_REQ message down 4366 * to the driver. The response is later picked up in ip_rput_dlpi and 4367 * used to set up default mechanisms for talking to the driver. (Always 4368 * called as writer.) 4369 * 4370 * If this function returns error, ip_open will call ip_close which in 4371 * turn will call ill_delete to clean up any memory allocated here that 4372 * is not yet freed. 4373 */ 4374 int 4375 ill_init(queue_t *q, ill_t *ill) 4376 { 4377 int count; 4378 dl_info_req_t *dlir; 4379 mblk_t *info_mp; 4380 uchar_t *frag_ptr; 4381 4382 /* 4383 * The ill is initialized to zero by mi_alloc*(). In addition 4384 * some fields already contain valid values, initialized in 4385 * ip_open(), before we reach here. 4386 */ 4387 mutex_init(&ill->ill_lock, NULL, MUTEX_DEFAULT, 0); 4388 4389 ill->ill_rq = q; 4390 ill->ill_wq = WR(q); 4391 4392 info_mp = allocb(MAX(sizeof (dl_info_req_t), sizeof (dl_info_ack_t)), 4393 BPRI_HI); 4394 if (info_mp == NULL) 4395 return (ENOMEM); 4396 4397 /* 4398 * Allocate sufficient space to contain our fragment hash table and 4399 * the device name. 4400 */ 4401 frag_ptr = (uchar_t *)mi_zalloc(ILL_FRAG_HASH_TBL_SIZE + 4402 2 * LIFNAMSIZ + 5 + strlen(ipv6_forward_suffix)); 4403 if (frag_ptr == NULL) { 4404 freemsg(info_mp); 4405 return (ENOMEM); 4406 } 4407 ill->ill_frag_ptr = frag_ptr; 4408 ill->ill_frag_free_num_pkts = 0; 4409 ill->ill_last_frag_clean_time = 0; 4410 ill->ill_frag_hash_tbl = (ipfb_t *)frag_ptr; 4411 ill->ill_name = (char *)(frag_ptr + ILL_FRAG_HASH_TBL_SIZE); 4412 for (count = 0; count < ILL_FRAG_HASH_TBL_COUNT; count++) { 4413 mutex_init(&ill->ill_frag_hash_tbl[count].ipfb_lock, 4414 NULL, MUTEX_DEFAULT, NULL); 4415 } 4416 4417 ill->ill_phyint = (phyint_t *)mi_zalloc(sizeof (phyint_t)); 4418 if (ill->ill_phyint == NULL) { 4419 freemsg(info_mp); 4420 mi_free(frag_ptr); 4421 return (ENOMEM); 4422 } 4423 4424 mutex_init(&ill->ill_phyint->phyint_lock, NULL, MUTEX_DEFAULT, 0); 4425 /* 4426 * For now pretend this is a v4 ill. We need to set phyint_ill* 4427 * at this point because of the following reason. If we can't 4428 * enter the ipsq at some point and cv_wait, the writer that 4429 * wakes us up tries to locate us using the list of all phyints 4430 * in an ipsq and the ills from the phyint thru the phyint_ill*. 4431 * If we don't set it now, we risk a missed wakeup. 4432 */ 4433 ill->ill_phyint->phyint_illv4 = ill; 4434 ill->ill_ppa = UINT_MAX; 4435 ill->ill_fastpath_list = &ill->ill_fastpath_list; 4436 4437 if (!ipsq_init(ill)) { 4438 freemsg(info_mp); 4439 mi_free(frag_ptr); 4440 mi_free(ill->ill_phyint); 4441 return (ENOMEM); 4442 } 4443 4444 ill->ill_state_flags |= ILL_LL_SUBNET_PENDING; 4445 4446 4447 /* Frag queue limit stuff */ 4448 ill->ill_frag_count = 0; 4449 ill->ill_ipf_gen = 0; 4450 4451 ill->ill_global_timer = INFINITY; 4452 ill->ill_mcast_type = IGMP_V3_ROUTER; /* == MLD_V2_ROUTER */ 4453 ill->ill_mcast_v1_time = ill->ill_mcast_v2_time = 0; 4454 ill->ill_mcast_v1_tset = ill->ill_mcast_v2_tset = 0; 4455 ill->ill_mcast_rv = MCAST_DEF_ROBUSTNESS; 4456 ill->ill_mcast_qi = MCAST_DEF_QUERY_INTERVAL; 4457 4458 /* 4459 * Initialize IPv6 configuration variables. The IP module is always 4460 * opened as an IPv4 module. Instead tracking down the cases where 4461 * it switches to do ipv6, we'll just initialize the IPv6 configuration 4462 * here for convenience, this has no effect until the ill is set to do 4463 * IPv6. 4464 */ 4465 ill->ill_reachable_time = ND_REACHABLE_TIME; 4466 ill->ill_reachable_retrans_time = ND_RETRANS_TIMER; 4467 ill->ill_xmit_count = ND_MAX_MULTICAST_SOLICIT; 4468 ill->ill_max_buf = ND_MAX_Q; 4469 ill->ill_refcnt = 0; 4470 4471 /* Send down the Info Request to the driver. */ 4472 info_mp->b_datap->db_type = M_PCPROTO; 4473 dlir = (dl_info_req_t *)info_mp->b_rptr; 4474 info_mp->b_wptr = (uchar_t *)&dlir[1]; 4475 dlir->dl_primitive = DL_INFO_REQ; 4476 4477 ill->ill_dlpi_pending = DL_PRIM_INVAL; 4478 4479 qprocson(q); 4480 ill_dlpi_send(ill, info_mp); 4481 4482 return (0); 4483 } 4484 4485 /* 4486 * ill_dls_info 4487 * creates datalink socket info from the device. 4488 */ 4489 int 4490 ill_dls_info(struct sockaddr_dl *sdl, ipif_t *ipif) 4491 { 4492 size_t length; 4493 ill_t *ill = ipif->ipif_ill; 4494 4495 sdl->sdl_family = AF_LINK; 4496 sdl->sdl_index = ill->ill_phyint->phyint_ifindex; 4497 sdl->sdl_type = ipif->ipif_type; 4498 (void) ipif_get_name(ipif, sdl->sdl_data, sizeof (sdl->sdl_data)); 4499 length = mi_strlen(sdl->sdl_data); 4500 ASSERT(length < 256); 4501 sdl->sdl_nlen = (uchar_t)length; 4502 sdl->sdl_alen = ill->ill_phys_addr_length; 4503 mutex_enter(&ill->ill_lock); 4504 if (ill->ill_phys_addr_length != 0 && ill->ill_phys_addr != NULL) { 4505 bcopy(ill->ill_phys_addr, &sdl->sdl_data[length], 4506 ill->ill_phys_addr_length); 4507 } 4508 mutex_exit(&ill->ill_lock); 4509 sdl->sdl_slen = 0; 4510 return (sizeof (struct sockaddr_dl)); 4511 } 4512 4513 /* 4514 * ill_xarp_info 4515 * creates xarp info from the device. 4516 */ 4517 static int 4518 ill_xarp_info(struct sockaddr_dl *sdl, ill_t *ill) 4519 { 4520 sdl->sdl_family = AF_LINK; 4521 sdl->sdl_index = ill->ill_phyint->phyint_ifindex; 4522 sdl->sdl_type = ill->ill_type; 4523 (void) ipif_get_name(ill->ill_ipif, sdl->sdl_data, 4524 sizeof (sdl->sdl_data)); 4525 sdl->sdl_nlen = (uchar_t)mi_strlen(sdl->sdl_data); 4526 sdl->sdl_alen = ill->ill_phys_addr_length; 4527 sdl->sdl_slen = 0; 4528 return (sdl->sdl_nlen); 4529 } 4530 4531 static int 4532 loopback_kstat_update(kstat_t *ksp, int rw) 4533 { 4534 kstat_named_t *kn = KSTAT_NAMED_PTR(ksp); 4535 4536 if (rw == KSTAT_WRITE) 4537 return (EACCES); 4538 kn[0].value.ui32 = loopback_packets; 4539 kn[1].value.ui32 = loopback_packets; 4540 return (0); 4541 } 4542 4543 4544 /* 4545 * Has ifindex been plumbed already. 4546 */ 4547 static boolean_t 4548 phyint_exists(uint_t index) 4549 { 4550 phyint_t *phyi; 4551 4552 ASSERT(RW_LOCK_HELD(&ill_g_lock)); 4553 /* 4554 * Indexes are stored in the phyint - a common structure 4555 * to both IPv4 and IPv6. 4556 */ 4557 phyi = avl_find(&phyint_g_list.phyint_list_avl_by_index, 4558 (void *) &index, NULL); 4559 return (phyi != NULL); 4560 } 4561 4562 /* 4563 * Assign a unique interface index for the phyint. 4564 */ 4565 static boolean_t 4566 phyint_assign_ifindex(phyint_t *phyi) 4567 { 4568 uint_t starting_index; 4569 4570 ASSERT(phyi->phyint_ifindex == 0); 4571 if (!ill_index_wrap) { 4572 phyi->phyint_ifindex = ill_index++; 4573 if (ill_index == 0) { 4574 /* Reached the uint_t limit Next time wrap */ 4575 ill_index_wrap = B_TRUE; 4576 } 4577 return (B_TRUE); 4578 } 4579 4580 /* 4581 * Start reusing unused indexes. Note that we hold the ill_g_lock 4582 * at this point and don't want to call any function that attempts 4583 * to get the lock again. 4584 */ 4585 starting_index = ill_index++; 4586 for (; ill_index != starting_index; ill_index++) { 4587 if (ill_index != 0 && !phyint_exists(ill_index)) { 4588 /* found unused index - use it */ 4589 phyi->phyint_ifindex = ill_index; 4590 return (B_TRUE); 4591 } 4592 } 4593 4594 /* 4595 * all interface indicies are inuse. 4596 */ 4597 return (B_FALSE); 4598 } 4599 4600 /* 4601 * Return a pointer to the ill which matches the supplied name. Note that 4602 * the ill name length includes the null termination character. (May be 4603 * called as writer.) 4604 * If do_alloc and the interface is "lo0" it will be automatically created. 4605 * Cannot bump up reference on condemned ills. So dup detect can't be done 4606 * using this func. 4607 */ 4608 ill_t * 4609 ill_lookup_on_name(char *name, boolean_t do_alloc, boolean_t isv6, 4610 queue_t *q, mblk_t *mp, ipsq_func_t func, int *error, boolean_t *did_alloc) 4611 { 4612 ill_t *ill; 4613 ipif_t *ipif; 4614 kstat_named_t *kn; 4615 boolean_t isloopback; 4616 ipsq_t *old_ipsq; 4617 4618 isloopback = mi_strcmp(name, ipif_loopback_name) == 0; 4619 4620 rw_enter(&ill_g_lock, RW_READER); 4621 ill = ill_find_by_name(name, isv6, q, mp, func, error); 4622 rw_exit(&ill_g_lock); 4623 if (ill != NULL || (error != NULL && *error == EINPROGRESS)) 4624 return (ill); 4625 4626 /* 4627 * Couldn't find it. Does this happen to be a lookup for the 4628 * loopback device and are we allowed to allocate it? 4629 */ 4630 if (!isloopback || !do_alloc) 4631 return (NULL); 4632 4633 rw_enter(&ill_g_lock, RW_WRITER); 4634 4635 ill = ill_find_by_name(name, isv6, q, mp, func, error); 4636 if (ill != NULL || (error != NULL && *error == EINPROGRESS)) { 4637 rw_exit(&ill_g_lock); 4638 return (ill); 4639 } 4640 4641 /* Create the loopback device on demand */ 4642 ill = (ill_t *)(mi_alloc(sizeof (ill_t) + 4643 sizeof (ipif_loopback_name), BPRI_MED)); 4644 if (ill == NULL) 4645 goto done; 4646 4647 *ill = ill_null; 4648 mutex_init(&ill->ill_lock, NULL, MUTEX_DEFAULT, NULL); 4649 ill->ill_phyint = (phyint_t *)mi_zalloc(sizeof (phyint_t)); 4650 if (ill->ill_phyint == NULL) 4651 goto done; 4652 4653 if (isv6) 4654 ill->ill_phyint->phyint_illv6 = ill; 4655 else 4656 ill->ill_phyint->phyint_illv4 = ill; 4657 mutex_init(&ill->ill_phyint->phyint_lock, NULL, MUTEX_DEFAULT, 0); 4658 ill->ill_max_frag = IP_LOOPBACK_MTU; 4659 /* Add room for tcp+ip headers */ 4660 if (isv6) { 4661 ill->ill_isv6 = B_TRUE; 4662 ill->ill_max_frag += IPV6_HDR_LEN + 20; /* for TCP */ 4663 if (!ill_allocate_mibs(ill)) 4664 goto done; 4665 } else { 4666 ill->ill_max_frag += IP_SIMPLE_HDR_LENGTH + 20; 4667 } 4668 ill->ill_max_mtu = ill->ill_max_frag; 4669 /* 4670 * ipif_loopback_name can't be pointed at directly because its used 4671 * by both the ipv4 and ipv6 interfaces. When the ill is removed 4672 * from the glist, ill_glist_delete() sets the first character of 4673 * ill_name to '\0'. 4674 */ 4675 ill->ill_name = (char *)ill + sizeof (*ill); 4676 (void) strcpy(ill->ill_name, ipif_loopback_name); 4677 ill->ill_name_length = sizeof (ipif_loopback_name); 4678 /* Set ill_name_set for ill_phyint_reinit to work properly */ 4679 4680 ill->ill_global_timer = INFINITY; 4681 ill->ill_mcast_type = IGMP_V3_ROUTER; /* == MLD_V2_ROUTER */ 4682 ill->ill_mcast_v1_time = ill->ill_mcast_v2_time = 0; 4683 ill->ill_mcast_v1_tset = ill->ill_mcast_v2_tset = 0; 4684 ill->ill_mcast_rv = MCAST_DEF_ROBUSTNESS; 4685 ill->ill_mcast_qi = MCAST_DEF_QUERY_INTERVAL; 4686 4687 /* No resolver here. */ 4688 ill->ill_net_type = IRE_LOOPBACK; 4689 4690 /* Initialize the ipsq */ 4691 if (!ipsq_init(ill)) 4692 goto done; 4693 4694 ill->ill_phyint->phyint_ipsq->ipsq_writer = NULL; 4695 ill->ill_phyint->phyint_ipsq->ipsq_reentry_cnt--; 4696 ASSERT(ill->ill_phyint->phyint_ipsq->ipsq_reentry_cnt == 0); 4697 #ifdef ILL_DEBUG 4698 ill->ill_phyint->phyint_ipsq->ipsq_depth = 0; 4699 #endif 4700 ipif = ipif_allocate(ill, 0L, IRE_LOOPBACK, B_TRUE); 4701 if (ipif == NULL) 4702 goto done; 4703 4704 ill->ill_flags = ILLF_MULTICAST; 4705 4706 /* Set up default loopback address and mask. */ 4707 if (!isv6) { 4708 ipaddr_t inaddr_loopback = htonl(INADDR_LOOPBACK); 4709 4710 IN6_IPADDR_TO_V4MAPPED(inaddr_loopback, &ipif->ipif_v6lcl_addr); 4711 ipif->ipif_v6src_addr = ipif->ipif_v6lcl_addr; 4712 V4MASK_TO_V6(htonl(IN_CLASSA_NET), ipif->ipif_v6net_mask); 4713 V6_MASK_COPY(ipif->ipif_v6lcl_addr, ipif->ipif_v6net_mask, 4714 ipif->ipif_v6subnet); 4715 ill->ill_flags |= ILLF_IPV4; 4716 } else { 4717 ipif->ipif_v6lcl_addr = ipv6_loopback; 4718 ipif->ipif_v6src_addr = ipif->ipif_v6lcl_addr; 4719 ipif->ipif_v6net_mask = ipv6_all_ones; 4720 V6_MASK_COPY(ipif->ipif_v6lcl_addr, ipif->ipif_v6net_mask, 4721 ipif->ipif_v6subnet); 4722 ill->ill_flags |= ILLF_IPV6; 4723 } 4724 4725 /* 4726 * Chain us in at the end of the ill list. hold the ill 4727 * before we make it globally visible. 1 for the lookup. 4728 */ 4729 ill->ill_refcnt = 0; 4730 ill_refhold(ill); 4731 4732 ill->ill_frag_count = 0; 4733 ill->ill_frag_free_num_pkts = 0; 4734 ill->ill_last_frag_clean_time = 0; 4735 4736 old_ipsq = ill->ill_phyint->phyint_ipsq; 4737 4738 if (ill_glist_insert(ill, "lo", isv6) != 0) 4739 cmn_err(CE_PANIC, "cannot insert loopback interface"); 4740 4741 /* Let SCTP know so that it can add this to its list */ 4742 sctp_update_ill(ill, SCTP_ILL_INSERT); 4743 4744 /* Let SCTP know about this IPIF, so that it can add it to its list */ 4745 sctp_update_ipif(ipif, SCTP_IPIF_INSERT); 4746 4747 /* 4748 * If the ipsq was changed in ill_phyint_reinit free the old ipsq. 4749 */ 4750 if (old_ipsq != ill->ill_phyint->phyint_ipsq) { 4751 /* Loopback ills aren't in any IPMP group */ 4752 ASSERT(!(old_ipsq->ipsq_flags & IPSQ_GROUP)); 4753 ipsq_delete(old_ipsq); 4754 } 4755 4756 /* 4757 * Delay this till the ipif is allocated as ipif_allocate 4758 * de-references ill_phyint for getting the ifindex. We 4759 * can't do this before ipif_allocate because ill_phyint_reinit 4760 * -> phyint_assign_ifindex expects ipif to be present. 4761 */ 4762 mutex_enter(&ill->ill_phyint->phyint_lock); 4763 ill->ill_phyint->phyint_flags |= PHYI_LOOPBACK | PHYI_VIRTUAL; 4764 mutex_exit(&ill->ill_phyint->phyint_lock); 4765 4766 if (loopback_ksp == NULL) { 4767 /* Export loopback interface statistics */ 4768 loopback_ksp = kstat_create("lo", 0, ipif_loopback_name, "net", 4769 KSTAT_TYPE_NAMED, 2, 0); 4770 if (loopback_ksp != NULL) { 4771 loopback_ksp->ks_update = loopback_kstat_update; 4772 kn = KSTAT_NAMED_PTR(loopback_ksp); 4773 kstat_named_init(&kn[0], "ipackets", KSTAT_DATA_UINT32); 4774 kstat_named_init(&kn[1], "opackets", KSTAT_DATA_UINT32); 4775 kstat_install(loopback_ksp); 4776 } 4777 } 4778 4779 if (error != NULL) 4780 *error = 0; 4781 *did_alloc = B_TRUE; 4782 rw_exit(&ill_g_lock); 4783 return (ill); 4784 done: 4785 if (ill != NULL) { 4786 if (ill->ill_phyint != NULL) { 4787 ipsq_t *ipsq; 4788 4789 ipsq = ill->ill_phyint->phyint_ipsq; 4790 if (ipsq != NULL) 4791 kmem_free(ipsq, sizeof (ipsq_t)); 4792 mi_free(ill->ill_phyint); 4793 } 4794 ill_free_mib(ill); 4795 mi_free(ill); 4796 } 4797 rw_exit(&ill_g_lock); 4798 if (error != NULL) 4799 *error = ENOMEM; 4800 return (NULL); 4801 } 4802 4803 /* 4804 * Return a pointer to the ill which matches the index and IP version type. 4805 */ 4806 ill_t * 4807 ill_lookup_on_ifindex(uint_t index, boolean_t isv6, queue_t *q, mblk_t *mp, 4808 ipsq_func_t func, int *err) 4809 { 4810 ill_t *ill; 4811 ipsq_t *ipsq; 4812 phyint_t *phyi; 4813 4814 ASSERT((q == NULL && mp == NULL && func == NULL && err == NULL) || 4815 (q != NULL && mp != NULL && func != NULL && err != NULL)); 4816 4817 if (err != NULL) 4818 *err = 0; 4819 4820 /* 4821 * Indexes are stored in the phyint - a common structure 4822 * to both IPv4 and IPv6. 4823 */ 4824 rw_enter(&ill_g_lock, RW_READER); 4825 phyi = avl_find(&phyint_g_list.phyint_list_avl_by_index, 4826 (void *) &index, NULL); 4827 if (phyi != NULL) { 4828 ill = isv6 ? phyi->phyint_illv6: phyi->phyint_illv4; 4829 if (ill != NULL) { 4830 /* 4831 * The block comment at the start of ipif_down 4832 * explains the use of the macros used below 4833 */ 4834 GRAB_CONN_LOCK(q); 4835 mutex_enter(&ill->ill_lock); 4836 if (ILL_CAN_LOOKUP(ill)) { 4837 ill_refhold_locked(ill); 4838 mutex_exit(&ill->ill_lock); 4839 RELEASE_CONN_LOCK(q); 4840 rw_exit(&ill_g_lock); 4841 return (ill); 4842 } else if (ILL_CAN_WAIT(ill, q)) { 4843 ipsq = ill->ill_phyint->phyint_ipsq; 4844 mutex_enter(&ipsq->ipsq_lock); 4845 rw_exit(&ill_g_lock); 4846 mutex_exit(&ill->ill_lock); 4847 ipsq_enq(ipsq, q, mp, func, NEW_OP, ill); 4848 mutex_exit(&ipsq->ipsq_lock); 4849 RELEASE_CONN_LOCK(q); 4850 *err = EINPROGRESS; 4851 return (NULL); 4852 } 4853 RELEASE_CONN_LOCK(q); 4854 mutex_exit(&ill->ill_lock); 4855 } 4856 } 4857 rw_exit(&ill_g_lock); 4858 if (err != NULL) 4859 *err = ENXIO; 4860 return (NULL); 4861 } 4862 4863 /* 4864 * Obtain a reference to the ill. The ill_refcnt is a dynamic refcnt 4865 * that gives a running thread a reference to the ill. This reference must be 4866 * released by the thread when it is done accessing the ill and related 4867 * objects. ill_refcnt can not be used to account for static references 4868 * such as other structures pointing to an ill. Callers must generally 4869 * check whether an ill can be refheld by using ILL_CAN_LOOKUP macros 4870 * or be sure that the ill is not being deleted or changing state before 4871 * calling the refhold functions. A non-zero ill_refcnt ensures that the 4872 * ill won't change any of its critical state such as address, netmask etc. 4873 */ 4874 void 4875 ill_refhold(ill_t *ill) 4876 { 4877 mutex_enter(&ill->ill_lock); 4878 ill->ill_refcnt++; 4879 ILL_TRACE_REF(ill); 4880 mutex_exit(&ill->ill_lock); 4881 } 4882 4883 void 4884 ill_refhold_locked(ill_t *ill) 4885 { 4886 ASSERT(MUTEX_HELD(&ill->ill_lock)); 4887 ill->ill_refcnt++; 4888 ILL_TRACE_REF(ill); 4889 } 4890 4891 int 4892 ill_check_and_refhold(ill_t *ill) 4893 { 4894 mutex_enter(&ill->ill_lock); 4895 if (ILL_CAN_LOOKUP(ill)) { 4896 ill_refhold_locked(ill); 4897 mutex_exit(&ill->ill_lock); 4898 return (0); 4899 } 4900 mutex_exit(&ill->ill_lock); 4901 return (ILL_LOOKUP_FAILED); 4902 } 4903 4904 /* 4905 * Must not be called while holding any locks. Otherwise if this is 4906 * the last reference to be released, there is a chance of recursive mutex 4907 * panic due to ill_refrele -> ipif_ill_refrele_tail -> qwriter_ip trying 4908 * to restart an ioctl. 4909 */ 4910 void 4911 ill_refrele(ill_t *ill) 4912 { 4913 mutex_enter(&ill->ill_lock); 4914 ASSERT(ill->ill_refcnt != 0); 4915 ill->ill_refcnt--; 4916 ILL_UNTRACE_REF(ill); 4917 if (ill->ill_refcnt != 0) { 4918 /* Every ire pointing to the ill adds 1 to ill_refcnt */ 4919 mutex_exit(&ill->ill_lock); 4920 return; 4921 } 4922 4923 /* Drops the ill_lock */ 4924 ipif_ill_refrele_tail(ill); 4925 } 4926 4927 /* 4928 * Obtain a weak reference count on the ill. This reference ensures the 4929 * ill won't be freed, but the ill may change any of its critical state 4930 * such as netmask, address etc. Returns an error if the ill has started 4931 * closing. 4932 */ 4933 boolean_t 4934 ill_waiter_inc(ill_t *ill) 4935 { 4936 mutex_enter(&ill->ill_lock); 4937 if (ill->ill_state_flags & ILL_CONDEMNED) { 4938 mutex_exit(&ill->ill_lock); 4939 return (B_FALSE); 4940 } 4941 ill->ill_waiters++; 4942 mutex_exit(&ill->ill_lock); 4943 return (B_TRUE); 4944 } 4945 4946 void 4947 ill_waiter_dcr(ill_t *ill) 4948 { 4949 mutex_enter(&ill->ill_lock); 4950 ill->ill_waiters--; 4951 if (ill->ill_waiters == 0) 4952 cv_broadcast(&ill->ill_cv); 4953 mutex_exit(&ill->ill_lock); 4954 } 4955 4956 /* 4957 * Named Dispatch routine to produce a formatted report on all ILLs. 4958 * This report is accessed by using the ndd utility to "get" ND variable 4959 * "ip_ill_status". 4960 */ 4961 /* ARGSUSED */ 4962 int 4963 ip_ill_report(queue_t *q, mblk_t *mp, caddr_t arg, cred_t *ioc_cr) 4964 { 4965 ill_t *ill; 4966 ill_walk_context_t ctx; 4967 4968 (void) mi_mpprintf(mp, 4969 "ILL " MI_COL_HDRPAD_STR 4970 /* 01234567[89ABCDEF] */ 4971 "rq " MI_COL_HDRPAD_STR 4972 /* 01234567[89ABCDEF] */ 4973 "wq " MI_COL_HDRPAD_STR 4974 /* 01234567[89ABCDEF] */ 4975 "upcnt mxfrg err name"); 4976 /* 12345 12345 123 xxxxxxxx */ 4977 4978 rw_enter(&ill_g_lock, RW_READER); 4979 ill = ILL_START_WALK_ALL(&ctx); 4980 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 4981 (void) mi_mpprintf(mp, 4982 MI_COL_PTRFMT_STR MI_COL_PTRFMT_STR MI_COL_PTRFMT_STR 4983 "%05u %05u %03d %s", 4984 (void *)ill, (void *)ill->ill_rq, (void *)ill->ill_wq, 4985 ill->ill_ipif_up_count, 4986 ill->ill_max_frag, ill->ill_error, ill->ill_name); 4987 } 4988 rw_exit(&ill_g_lock); 4989 4990 return (0); 4991 } 4992 4993 /* 4994 * Named Dispatch routine to produce a formatted report on all IPIFs. 4995 * This report is accessed by using the ndd utility to "get" ND variable 4996 * "ip_ipif_status". 4997 */ 4998 /* ARGSUSED */ 4999 int 5000 ip_ipif_report(queue_t *q, mblk_t *mp, caddr_t arg, cred_t *ioc_cr) 5001 { 5002 char buf1[INET6_ADDRSTRLEN]; 5003 char buf2[INET6_ADDRSTRLEN]; 5004 char buf3[INET6_ADDRSTRLEN]; 5005 char buf4[INET6_ADDRSTRLEN]; 5006 char buf5[INET6_ADDRSTRLEN]; 5007 char buf6[INET6_ADDRSTRLEN]; 5008 char buf[LIFNAMSIZ]; 5009 ill_t *ill; 5010 ipif_t *ipif; 5011 nv_t *nvp; 5012 uint64_t flags; 5013 zoneid_t zoneid; 5014 ill_walk_context_t ctx; 5015 5016 (void) mi_mpprintf(mp, 5017 "IPIF metric mtu in/out/forward name zone flags...\n" 5018 "\tlocal address\n" 5019 "\tsrc address\n" 5020 "\tsubnet\n" 5021 "\tmask\n" 5022 "\tbroadcast\n" 5023 "\tp-p-dst"); 5024 5025 ASSERT(q->q_next == NULL); 5026 zoneid = Q_TO_CONN(q)->conn_zoneid; /* IP is a driver */ 5027 5028 rw_enter(&ill_g_lock, RW_READER); 5029 ill = ILL_START_WALK_ALL(&ctx); 5030 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 5031 for (ipif = ill->ill_ipif; ipif; ipif = ipif->ipif_next) { 5032 if (zoneid != GLOBAL_ZONEID && 5033 zoneid != ipif->ipif_zoneid) 5034 continue; 5035 (void) mi_mpprintf(mp, 5036 MI_COL_PTRFMT_STR 5037 "%04u %05u %u/%u/%u %s %d", 5038 (void *)ipif, 5039 ipif->ipif_metric, ipif->ipif_mtu, 5040 ipif->ipif_ib_pkt_count, 5041 ipif->ipif_ob_pkt_count, 5042 ipif->ipif_fo_pkt_count, 5043 ipif_get_name(ipif, buf, sizeof (buf)), 5044 ipif->ipif_zoneid); 5045 5046 flags = ipif->ipif_flags | ipif->ipif_ill->ill_flags | 5047 ipif->ipif_ill->ill_phyint->phyint_flags; 5048 5049 /* Tack on text strings for any flags. */ 5050 nvp = ipif_nv_tbl; 5051 for (; nvp < A_END(ipif_nv_tbl); nvp++) { 5052 if (nvp->nv_value & flags) 5053 (void) mi_mpprintf_nr(mp, " %s", 5054 nvp->nv_name); 5055 } 5056 (void) mi_mpprintf(mp, 5057 "\t%s\n\t%s\n\t%s\n\t%s\n\t%s\n\t%s", 5058 inet_ntop(AF_INET6, 5059 &ipif->ipif_v6lcl_addr, buf1, sizeof (buf1)), 5060 inet_ntop(AF_INET6, 5061 &ipif->ipif_v6src_addr, buf2, sizeof (buf2)), 5062 inet_ntop(AF_INET6, 5063 &ipif->ipif_v6subnet, buf3, sizeof (buf3)), 5064 inet_ntop(AF_INET6, 5065 &ipif->ipif_v6net_mask, buf4, sizeof (buf4)), 5066 inet_ntop(AF_INET6, 5067 &ipif->ipif_v6brd_addr, buf5, sizeof (buf5)), 5068 inet_ntop(AF_INET6, 5069 &ipif->ipif_v6pp_dst_addr, 5070 buf6, sizeof (buf6))); 5071 } 5072 } 5073 rw_exit(&ill_g_lock); 5074 return (0); 5075 } 5076 5077 /* 5078 * ip_ll_subnet_defaults is called when we get the DL_INFO_ACK back from the 5079 * driver. We construct best guess defaults for lower level information that 5080 * we need. If an interface is brought up without injection of any overriding 5081 * information from outside, we have to be ready to go with these defaults. 5082 * When we get the first DL_INFO_ACK (from ip_open() sending a DL_INFO_REQ) 5083 * we primarely want the dl_provider_style. 5084 * The subsequent DL_INFO_ACK is received after doing a DL_ATTACH and DL_BIND 5085 * at which point we assume the other part of the information is valid. 5086 */ 5087 void 5088 ip_ll_subnet_defaults(ill_t *ill, mblk_t *mp) 5089 { 5090 uchar_t *brdcst_addr; 5091 uint_t brdcst_addr_length, phys_addr_length; 5092 t_scalar_t sap_length; 5093 dl_info_ack_t *dlia; 5094 ip_m_t *ipm; 5095 dl_qos_cl_sel1_t *sel1; 5096 5097 ASSERT(IAM_WRITER_ILL(ill)); 5098 5099 /* 5100 * Till the ill is fully up ILL_CHANGING will be set and 5101 * the ill is not globally visible. So no need for a lock. 5102 */ 5103 dlia = (dl_info_ack_t *)mp->b_rptr; 5104 ill->ill_mactype = dlia->dl_mac_type; 5105 5106 ipm = ip_m_lookup(dlia->dl_mac_type); 5107 if (ipm == NULL) { 5108 ipm = ip_m_lookup(DL_OTHER); 5109 ASSERT(ipm != NULL); 5110 } 5111 ill->ill_media = ipm; 5112 5113 /* 5114 * When the new DLPI stuff is ready we'll pull lengths 5115 * from dlia. 5116 */ 5117 if (dlia->dl_version == DL_VERSION_2) { 5118 brdcst_addr_length = dlia->dl_brdcst_addr_length; 5119 brdcst_addr = mi_offset_param(mp, dlia->dl_brdcst_addr_offset, 5120 brdcst_addr_length); 5121 if (brdcst_addr == NULL) { 5122 brdcst_addr_length = 0; 5123 } 5124 sap_length = dlia->dl_sap_length; 5125 phys_addr_length = dlia->dl_addr_length - ABS(sap_length); 5126 ip1dbg(("ip: bcast_len %d, sap_len %d, phys_len %d\n", 5127 brdcst_addr_length, sap_length, phys_addr_length)); 5128 } else { 5129 brdcst_addr_length = 6; 5130 brdcst_addr = ip_six_byte_all_ones; 5131 sap_length = -2; 5132 phys_addr_length = brdcst_addr_length; 5133 } 5134 5135 ill->ill_bcast_addr_length = brdcst_addr_length; 5136 ill->ill_phys_addr_length = phys_addr_length; 5137 ill->ill_sap_length = sap_length; 5138 ill->ill_max_frag = dlia->dl_max_sdu; 5139 ill->ill_max_mtu = ill->ill_max_frag; 5140 5141 ill->ill_type = ipm->ip_m_type; 5142 5143 if (!ill->ill_dlpi_style_set) { 5144 if (dlia->dl_provider_style == DL_STYLE2) 5145 ill->ill_needs_attach = 1; 5146 5147 /* 5148 * Allocate the first ipif on this ill. We don't delay it 5149 * further as ioctl handling assumes atleast one ipif to 5150 * be present. 5151 * 5152 * At this point we don't know whether the ill is v4 or v6. 5153 * We will know this whan the SIOCSLIFNAME happens and 5154 * the correct value for ill_isv6 will be assigned in 5155 * ipif_set_values(). We need to hold the ill lock and 5156 * clear the ILL_LL_SUBNET_PENDING flag and atomically do 5157 * the wakeup. 5158 */ 5159 (void) ipif_allocate(ill, 0, IRE_LOCAL, 5160 dlia->dl_provider_style == DL_STYLE2 ? B_FALSE : B_TRUE); 5161 mutex_enter(&ill->ill_lock); 5162 ASSERT(ill->ill_dlpi_style_set == 0); 5163 ill->ill_dlpi_style_set = 1; 5164 ill->ill_state_flags &= ~ILL_LL_SUBNET_PENDING; 5165 cv_broadcast(&ill->ill_cv); 5166 mutex_exit(&ill->ill_lock); 5167 freemsg(mp); 5168 return; 5169 } 5170 ASSERT(ill->ill_ipif != NULL); 5171 /* 5172 * We know whether it is IPv4 or IPv6 now, as this is the 5173 * second DL_INFO_ACK we are recieving in response to the 5174 * DL_INFO_REQ sent in ipif_set_values. 5175 */ 5176 if (ill->ill_isv6) 5177 ill->ill_sap = IP6_DL_SAP; 5178 else 5179 ill->ill_sap = IP_DL_SAP; 5180 /* 5181 * Set ipif_mtu which is used to set the IRE's 5182 * ire_max_frag value. The driver could have sent 5183 * a different mtu from what it sent last time. No 5184 * need to call ipif_mtu_change because IREs have 5185 * not yet been created. 5186 */ 5187 ill->ill_ipif->ipif_mtu = ill->ill_max_mtu; 5188 /* 5189 * Clear all the flags that were set based on ill_bcast_addr_length 5190 * and ill_phys_addr_length (in ipif_set_values) as these could have 5191 * changed now and we need to re-evaluate. 5192 */ 5193 ill->ill_flags &= ~(ILLF_MULTICAST | ILLF_NONUD | ILLF_NOARP); 5194 ill->ill_ipif->ipif_flags &= ~(IPIF_BROADCAST | IPIF_POINTOPOINT); 5195 5196 /* 5197 * Free ill_resolver_mp and ill_bcast_mp as things could have 5198 * changed now. 5199 */ 5200 if (ill->ill_bcast_addr_length == 0) { 5201 if (ill->ill_resolver_mp != NULL) 5202 freemsg(ill->ill_resolver_mp); 5203 if (ill->ill_bcast_mp != NULL) 5204 freemsg(ill->ill_bcast_mp); 5205 if (ill->ill_flags & ILLF_XRESOLV) 5206 ill->ill_net_type = IRE_IF_RESOLVER; 5207 else 5208 ill->ill_net_type = IRE_IF_NORESOLVER; 5209 ill->ill_resolver_mp = ill_dlur_gen(NULL, 5210 ill->ill_phys_addr_length, 5211 ill->ill_sap, 5212 ill->ill_sap_length); 5213 ill->ill_bcast_mp = copymsg(ill->ill_resolver_mp); 5214 5215 if (ill->ill_isv6) 5216 /* 5217 * Note: xresolv interfaces will eventually need NOARP 5218 * set here as well, but that will require those 5219 * external resolvers to have some knowledge of 5220 * that flag and act appropriately. Not to be changed 5221 * at present. 5222 */ 5223 ill->ill_flags |= ILLF_NONUD; 5224 else 5225 ill->ill_flags |= ILLF_NOARP; 5226 5227 if (ill->ill_phys_addr_length == 0) { 5228 if (ill->ill_media->ip_m_mac_type == SUNW_DL_VNI) { 5229 ill->ill_ipif->ipif_flags |= IPIF_NOXMIT; 5230 ill->ill_phyint->phyint_flags |= PHYI_VIRTUAL; 5231 } else { 5232 /* pt-pt supports multicast. */ 5233 ill->ill_flags |= ILLF_MULTICAST; 5234 ill->ill_ipif->ipif_flags |= IPIF_POINTOPOINT; 5235 } 5236 } 5237 } else { 5238 ill->ill_net_type = IRE_IF_RESOLVER; 5239 if (ill->ill_bcast_mp != NULL) 5240 freemsg(ill->ill_bcast_mp); 5241 ill->ill_bcast_mp = ill_dlur_gen(brdcst_addr, 5242 ill->ill_bcast_addr_length, ill->ill_sap, 5243 ill->ill_sap_length); 5244 /* 5245 * Later detect lack of DLPI driver multicast 5246 * capability by catching DL_ENABMULTI errors in 5247 * ip_rput_dlpi. 5248 */ 5249 ill->ill_flags |= ILLF_MULTICAST; 5250 if (!ill->ill_isv6) 5251 ill->ill_ipif->ipif_flags |= IPIF_BROADCAST; 5252 } 5253 /* By default an interface does not support any CoS marking */ 5254 ill->ill_flags &= ~ILLF_COS_ENABLED; 5255 5256 /* 5257 * If we get QoS information in DL_INFO_ACK, the device supports 5258 * some form of CoS marking, set ILLF_COS_ENABLED. 5259 */ 5260 sel1 = (dl_qos_cl_sel1_t *)mi_offset_param(mp, dlia->dl_qos_offset, 5261 dlia->dl_qos_length); 5262 if ((sel1 != NULL) && (sel1->dl_qos_type == DL_QOS_CL_SEL1)) { 5263 ill->ill_flags |= ILLF_COS_ENABLED; 5264 } 5265 5266 /* Clear any previous error indication. */ 5267 ill->ill_error = 0; 5268 freemsg(mp); 5269 } 5270 5271 /* 5272 * Perform various checks to verify that an address would make sense as a 5273 * local, remote, or subnet interface address. 5274 */ 5275 static boolean_t 5276 ip_addr_ok_v4(ipaddr_t addr, ipaddr_t subnet_mask) 5277 { 5278 ipaddr_t net_mask; 5279 5280 /* 5281 * Don't allow all zeroes, all ones or experimental address, but allow 5282 * all ones netmask. 5283 */ 5284 if ((net_mask = ip_net_mask(addr)) == 0) 5285 return (B_FALSE); 5286 /* A given netmask overrides the "guess" netmask */ 5287 if (subnet_mask != 0) 5288 net_mask = subnet_mask; 5289 if ((net_mask != ~(ipaddr_t)0) && ((addr == (addr & net_mask)) || 5290 (addr == (addr | ~net_mask)))) { 5291 return (B_FALSE); 5292 } 5293 if (CLASSD(addr)) 5294 return (B_FALSE); 5295 5296 return (B_TRUE); 5297 } 5298 5299 /* 5300 * ipif_lookup_group 5301 * Returns held ipif 5302 */ 5303 ipif_t * 5304 ipif_lookup_group(ipaddr_t group, zoneid_t zoneid) 5305 { 5306 ire_t *ire; 5307 ipif_t *ipif; 5308 5309 ire = ire_lookup_multi(group, zoneid); 5310 if (ire == NULL) 5311 return (NULL); 5312 ipif = ire->ire_ipif; 5313 ipif_refhold(ipif); 5314 ire_refrele(ire); 5315 return (ipif); 5316 } 5317 5318 /* 5319 * Look for an ipif with the specified interface address and destination. 5320 * The destination address is used only for matching point-to-point interfaces. 5321 */ 5322 ipif_t * 5323 ipif_lookup_interface(ipaddr_t if_addr, ipaddr_t dst, queue_t *q, mblk_t *mp, 5324 ipsq_func_t func, int *error) 5325 { 5326 ipif_t *ipif; 5327 ill_t *ill; 5328 ill_walk_context_t ctx; 5329 ipsq_t *ipsq; 5330 5331 if (error != NULL) 5332 *error = 0; 5333 5334 /* 5335 * First match all the point-to-point interfaces 5336 * before looking at non-point-to-point interfaces. 5337 * This is done to avoid returning non-point-to-point 5338 * ipif instead of unnumbered point-to-point ipif. 5339 */ 5340 rw_enter(&ill_g_lock, RW_READER); 5341 ill = ILL_START_WALK_V4(&ctx); 5342 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 5343 GRAB_CONN_LOCK(q); 5344 mutex_enter(&ill->ill_lock); 5345 for (ipif = ill->ill_ipif; ipif != NULL; 5346 ipif = ipif->ipif_next) { 5347 /* Allow the ipif to be down */ 5348 if ((ipif->ipif_flags & IPIF_POINTOPOINT) && 5349 (ipif->ipif_lcl_addr == if_addr) && 5350 (ipif->ipif_pp_dst_addr == dst)) { 5351 /* 5352 * The block comment at the start of ipif_down 5353 * explains the use of the macros used below 5354 */ 5355 if (IPIF_CAN_LOOKUP(ipif)) { 5356 ipif_refhold_locked(ipif); 5357 mutex_exit(&ill->ill_lock); 5358 RELEASE_CONN_LOCK(q); 5359 rw_exit(&ill_g_lock); 5360 return (ipif); 5361 } else if (IPIF_CAN_WAIT(ipif, q)) { 5362 ipsq = ill->ill_phyint->phyint_ipsq; 5363 mutex_enter(&ipsq->ipsq_lock); 5364 mutex_exit(&ill->ill_lock); 5365 rw_exit(&ill_g_lock); 5366 ipsq_enq(ipsq, q, mp, func, NEW_OP, 5367 ill); 5368 mutex_exit(&ipsq->ipsq_lock); 5369 RELEASE_CONN_LOCK(q); 5370 *error = EINPROGRESS; 5371 return (NULL); 5372 } 5373 } 5374 } 5375 mutex_exit(&ill->ill_lock); 5376 RELEASE_CONN_LOCK(q); 5377 } 5378 rw_exit(&ill_g_lock); 5379 5380 /* lookup the ipif based on interface address */ 5381 ipif = ipif_lookup_addr(if_addr, NULL, ALL_ZONES, q, mp, func, error); 5382 ASSERT(ipif == NULL || !ipif->ipif_isv6); 5383 return (ipif); 5384 } 5385 5386 /* 5387 * Look for an ipif with the specified address. For point-point links 5388 * we look for matches on either the destination address and the local 5389 * address, but we ignore the check on the local address if IPIF_UNNUMBERED 5390 * is set. 5391 * Matches on a specific ill if match_ill is set. 5392 */ 5393 ipif_t * 5394 ipif_lookup_addr(ipaddr_t addr, ill_t *match_ill, zoneid_t zoneid, queue_t *q, 5395 mblk_t *mp, ipsq_func_t func, int *error) 5396 { 5397 ipif_t *ipif; 5398 ill_t *ill; 5399 boolean_t ptp = B_FALSE; 5400 ipsq_t *ipsq; 5401 ill_walk_context_t ctx; 5402 5403 if (error != NULL) 5404 *error = 0; 5405 5406 rw_enter(&ill_g_lock, RW_READER); 5407 /* 5408 * Repeat twice, first based on local addresses and 5409 * next time for pointopoint. 5410 */ 5411 repeat: 5412 ill = ILL_START_WALK_V4(&ctx); 5413 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 5414 if (match_ill != NULL && ill != match_ill) { 5415 continue; 5416 } 5417 GRAB_CONN_LOCK(q); 5418 mutex_enter(&ill->ill_lock); 5419 for (ipif = ill->ill_ipif; ipif != NULL; 5420 ipif = ipif->ipif_next) { 5421 if (zoneid != ALL_ZONES && zoneid != ipif->ipif_zoneid) 5422 continue; 5423 /* Allow the ipif to be down */ 5424 if ((!ptp && (ipif->ipif_lcl_addr == addr) && 5425 ((ipif->ipif_flags & IPIF_UNNUMBERED) == 0)) || 5426 (ptp && (ipif->ipif_flags & IPIF_POINTOPOINT) && 5427 (ipif->ipif_pp_dst_addr == addr))) { 5428 /* 5429 * The block comment at the start of ipif_down 5430 * explains the use of the macros used below 5431 */ 5432 if (IPIF_CAN_LOOKUP(ipif)) { 5433 ipif_refhold_locked(ipif); 5434 mutex_exit(&ill->ill_lock); 5435 RELEASE_CONN_LOCK(q); 5436 rw_exit(&ill_g_lock); 5437 return (ipif); 5438 } else if (IPIF_CAN_WAIT(ipif, q)) { 5439 ipsq = ill->ill_phyint->phyint_ipsq; 5440 mutex_enter(&ipsq->ipsq_lock); 5441 mutex_exit(&ill->ill_lock); 5442 rw_exit(&ill_g_lock); 5443 ipsq_enq(ipsq, q, mp, func, NEW_OP, 5444 ill); 5445 mutex_exit(&ipsq->ipsq_lock); 5446 RELEASE_CONN_LOCK(q); 5447 *error = EINPROGRESS; 5448 return (NULL); 5449 } 5450 } 5451 } 5452 mutex_exit(&ill->ill_lock); 5453 RELEASE_CONN_LOCK(q); 5454 } 5455 5456 /* Now try the ptp case */ 5457 if (ptp) { 5458 rw_exit(&ill_g_lock); 5459 if (error != NULL) 5460 *error = ENXIO; 5461 return (NULL); 5462 } 5463 ptp = B_TRUE; 5464 goto repeat; 5465 } 5466 5467 /* 5468 * Look for an ipif that matches the specified remote address i.e. the 5469 * ipif that would receive the specified packet. 5470 * First look for directly connected interfaces and then do a recursive 5471 * IRE lookup and pick the first ipif corresponding to the source address in the 5472 * ire. 5473 * Returns: held ipif 5474 */ 5475 ipif_t * 5476 ipif_lookup_remote(ill_t *ill, ipaddr_t addr, zoneid_t zoneid) 5477 { 5478 ipif_t *ipif; 5479 ire_t *ire; 5480 5481 ASSERT(!ill->ill_isv6); 5482 5483 /* 5484 * Someone could be changing this ipif currently or change it 5485 * after we return this. Thus a few packets could use the old 5486 * old values. However structure updates/creates (ire, ilg, ilm etc) 5487 * will atomically be updated or cleaned up with the new value 5488 * Thus we don't need a lock to check the flags or other attrs below. 5489 */ 5490 mutex_enter(&ill->ill_lock); 5491 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 5492 if (!IPIF_CAN_LOOKUP(ipif)) 5493 continue; 5494 if (zoneid != ALL_ZONES && zoneid != ipif->ipif_zoneid) 5495 continue; 5496 /* Allow the ipif to be down */ 5497 if (ipif->ipif_flags & IPIF_POINTOPOINT) { 5498 if ((ipif->ipif_pp_dst_addr == addr) || 5499 (!(ipif->ipif_flags & IPIF_UNNUMBERED) && 5500 ipif->ipif_lcl_addr == addr)) { 5501 ipif_refhold_locked(ipif); 5502 mutex_exit(&ill->ill_lock); 5503 return (ipif); 5504 } 5505 } else if (ipif->ipif_subnet == (addr & ipif->ipif_net_mask)) { 5506 ipif_refhold_locked(ipif); 5507 mutex_exit(&ill->ill_lock); 5508 return (ipif); 5509 } 5510 } 5511 mutex_exit(&ill->ill_lock); 5512 ire = ire_route_lookup(addr, 0, 0, 0, NULL, NULL, zoneid, 5513 MATCH_IRE_RECURSIVE); 5514 if (ire != NULL) { 5515 /* 5516 * The callers of this function wants to know the 5517 * interface on which they have to send the replies 5518 * back. For IRE_CACHES that have ire_stq and ire_ipif 5519 * derived from different ills, we really don't care 5520 * what we return here. 5521 */ 5522 ipif = ire->ire_ipif; 5523 if (ipif != NULL) { 5524 ipif_refhold(ipif); 5525 ire_refrele(ire); 5526 return (ipif); 5527 } 5528 ire_refrele(ire); 5529 } 5530 /* Pick the first interface */ 5531 ipif = ipif_get_next_ipif(NULL, ill); 5532 return (ipif); 5533 } 5534 5535 /* 5536 * This func does not prevent refcnt from increasing. But if 5537 * the caller has taken steps to that effect, then this func 5538 * can be used to determine whether the ill has become quiescent 5539 */ 5540 boolean_t 5541 ill_is_quiescent(ill_t *ill) 5542 { 5543 ipif_t *ipif; 5544 5545 ASSERT(MUTEX_HELD(&ill->ill_lock)); 5546 5547 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 5548 if (ipif->ipif_refcnt != 0 || ipif->ipif_ire_cnt != 0) 5549 return (B_FALSE); 5550 } 5551 if (ill->ill_ire_cnt != 0 || ill->ill_refcnt != 0 || 5552 ill->ill_nce_cnt != 0 || ill->ill_srcif_refcnt != 0 || 5553 ill->ill_mrtun_refcnt != 0) 5554 return (B_FALSE); 5555 return (B_TRUE); 5556 } 5557 5558 /* 5559 * This func does not prevent refcnt from increasing. But if 5560 * the caller has taken steps to that effect, then this func 5561 * can be used to determine whether the ipif has become quiescent 5562 */ 5563 static boolean_t 5564 ipif_is_quiescent(ipif_t *ipif) 5565 { 5566 ill_t *ill; 5567 5568 ASSERT(MUTEX_HELD(&ipif->ipif_ill->ill_lock)); 5569 5570 if (ipif->ipif_refcnt != 0 || ipif->ipif_ire_cnt != 0) 5571 return (B_FALSE); 5572 5573 ill = ipif->ipif_ill; 5574 if (ill->ill_ipif_up_count != 0 || ill->ill_logical_down) 5575 return (B_TRUE); 5576 5577 /* This is the last ipif going down or being deleted on this ill */ 5578 if (ill->ill_ire_cnt != 0 || ill->ill_refcnt != 0) 5579 return (B_FALSE); 5580 5581 return (B_TRUE); 5582 } 5583 5584 /* 5585 * This func does not prevent refcnt from increasing. But if 5586 * the caller has taken steps to that effect, then this func 5587 * can be used to determine whether the ipifs marked with IPIF_MOVING 5588 * have become quiescent and can be moved in a failover/failback. 5589 */ 5590 static ipif_t * 5591 ill_quiescent_to_move(ill_t *ill) 5592 { 5593 ipif_t *ipif; 5594 5595 ASSERT(MUTEX_HELD(&ill->ill_lock)); 5596 5597 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 5598 if (ipif->ipif_state_flags & IPIF_MOVING) { 5599 if (ipif->ipif_refcnt != 0 || ipif->ipif_ire_cnt != 0) { 5600 return (ipif); 5601 } 5602 } 5603 } 5604 return (NULL); 5605 } 5606 5607 /* 5608 * The ipif/ill/ire has been refreled. Do the tail processing. 5609 * Determine if the ipif or ill in question has become quiescent and if so 5610 * wakeup close and/or restart any queued pending ioctl that is waiting 5611 * for the ipif_down (or ill_down) 5612 */ 5613 void 5614 ipif_ill_refrele_tail(ill_t *ill) 5615 { 5616 mblk_t *mp; 5617 conn_t *connp; 5618 ipsq_t *ipsq; 5619 ipif_t *ipif; 5620 5621 ASSERT(MUTEX_HELD(&ill->ill_lock)); 5622 5623 if ((ill->ill_state_flags & ILL_CONDEMNED) && 5624 ill_is_quiescent(ill)) { 5625 /* ill_close may be waiting */ 5626 cv_broadcast(&ill->ill_cv); 5627 } 5628 5629 /* ipsq can't change because ill_lock is held */ 5630 ipsq = ill->ill_phyint->phyint_ipsq; 5631 if (ipsq->ipsq_waitfor == 0) { 5632 /* Not waiting for anything, just return. */ 5633 mutex_exit(&ill->ill_lock); 5634 return; 5635 } 5636 ASSERT(ipsq->ipsq_pending_mp != NULL && 5637 ipsq->ipsq_pending_ipif != NULL); 5638 /* 5639 * ipif->ipif_refcnt must go down to zero for restarting REMOVEIF. 5640 * Last ipif going down needs to down the ill, so ill_ire_cnt must 5641 * be zero for restarting an ioctl that ends up downing the ill. 5642 */ 5643 ipif = ipsq->ipsq_pending_ipif; 5644 if (ipif->ipif_ill != ill) { 5645 /* The ioctl is pending on some other ill. */ 5646 mutex_exit(&ill->ill_lock); 5647 return; 5648 } 5649 5650 switch (ipsq->ipsq_waitfor) { 5651 case IPIF_DOWN: 5652 case IPIF_FREE: 5653 if (!ipif_is_quiescent(ipif)) { 5654 mutex_exit(&ill->ill_lock); 5655 return; 5656 } 5657 break; 5658 5659 case ILL_DOWN: 5660 case ILL_FREE: 5661 /* 5662 * case ILL_FREE arises only for loopback. otherwise ill_delete 5663 * waits synchronously in ip_close, and no message is queued in 5664 * ipsq_pending_mp at all in this case 5665 */ 5666 if (!ill_is_quiescent(ill)) { 5667 mutex_exit(&ill->ill_lock); 5668 return; 5669 } 5670 5671 break; 5672 5673 case ILL_MOVE_OK: 5674 if (ill_quiescent_to_move(ill) != NULL) { 5675 mutex_exit(&ill->ill_lock); 5676 return; 5677 } 5678 5679 break; 5680 default: 5681 cmn_err(CE_PANIC, "ipsq: %p unknown ipsq_waitfor %d\n", 5682 (void *)ipsq, ipsq->ipsq_waitfor); 5683 } 5684 5685 /* 5686 * Incr refcnt for the qwriter_ip call below which 5687 * does a refrele 5688 */ 5689 ill_refhold_locked(ill); 5690 mutex_exit(&ill->ill_lock); 5691 5692 mp = ipsq_pending_mp_get(ipsq, &connp); 5693 ASSERT(mp != NULL); 5694 5695 switch (mp->b_datap->db_type) { 5696 case M_ERROR: 5697 case M_HANGUP: 5698 (void) qwriter_ip(NULL, ill, ill->ill_rq, mp, 5699 ipif_all_down_tail, CUR_OP, B_TRUE); 5700 return; 5701 5702 case M_IOCTL: 5703 case M_IOCDATA: 5704 (void) qwriter_ip(NULL, ill, 5705 (connp != NULL ? CONNP_TO_WQ(connp) : ill->ill_wq), mp, 5706 ip_reprocess_ioctl, CUR_OP, B_TRUE); 5707 return; 5708 5709 default: 5710 cmn_err(CE_PANIC, "ipif_ill_refrele_tail mp %p " 5711 "db_type %d\n", (void *)mp, mp->b_datap->db_type); 5712 } 5713 } 5714 5715 #ifdef ILL_DEBUG 5716 /* Reuse trace buffer from beginning (if reached the end) and record trace */ 5717 void 5718 th_trace_rrecord(th_trace_t *th_trace) 5719 { 5720 tr_buf_t *tr_buf; 5721 uint_t lastref; 5722 5723 lastref = th_trace->th_trace_lastref; 5724 lastref++; 5725 if (lastref == TR_BUF_MAX) 5726 lastref = 0; 5727 th_trace->th_trace_lastref = lastref; 5728 tr_buf = &th_trace->th_trbuf[lastref]; 5729 tr_buf->tr_depth = getpcstack(tr_buf->tr_stack, IP_STACK_DEPTH); 5730 } 5731 5732 th_trace_t * 5733 th_trace_ipif_lookup(ipif_t *ipif) 5734 { 5735 int bucket_id; 5736 th_trace_t *th_trace; 5737 5738 ASSERT(MUTEX_HELD(&ipif->ipif_ill->ill_lock)); 5739 5740 bucket_id = IP_TR_HASH(curthread); 5741 ASSERT(bucket_id < IP_TR_HASH_MAX); 5742 5743 for (th_trace = ipif->ipif_trace[bucket_id]; th_trace != NULL; 5744 th_trace = th_trace->th_next) { 5745 if (th_trace->th_id == curthread) 5746 return (th_trace); 5747 } 5748 return (NULL); 5749 } 5750 5751 void 5752 ipif_trace_ref(ipif_t *ipif) 5753 { 5754 int bucket_id; 5755 th_trace_t *th_trace; 5756 5757 ASSERT(MUTEX_HELD(&ipif->ipif_ill->ill_lock)); 5758 5759 if (ipif->ipif_trace_disable) 5760 return; 5761 5762 /* 5763 * Attempt to locate the trace buffer for the curthread. 5764 * If it does not exist, then allocate a new trace buffer 5765 * and link it in list of trace bufs for this ipif, at the head 5766 */ 5767 th_trace = th_trace_ipif_lookup(ipif); 5768 if (th_trace == NULL) { 5769 bucket_id = IP_TR_HASH(curthread); 5770 th_trace = (th_trace_t *)kmem_zalloc(sizeof (th_trace_t), 5771 KM_NOSLEEP); 5772 if (th_trace == NULL) { 5773 ipif->ipif_trace_disable = B_TRUE; 5774 ipif_trace_cleanup(ipif); 5775 return; 5776 } 5777 th_trace->th_id = curthread; 5778 th_trace->th_next = ipif->ipif_trace[bucket_id]; 5779 th_trace->th_prev = &ipif->ipif_trace[bucket_id]; 5780 if (th_trace->th_next != NULL) 5781 th_trace->th_next->th_prev = &th_trace->th_next; 5782 ipif->ipif_trace[bucket_id] = th_trace; 5783 } 5784 ASSERT(th_trace->th_refcnt >= 0 && 5785 th_trace->th_refcnt < TR_BUF_MAX -1); 5786 th_trace->th_refcnt++; 5787 th_trace_rrecord(th_trace); 5788 } 5789 5790 void 5791 ipif_untrace_ref(ipif_t *ipif) 5792 { 5793 th_trace_t *th_trace; 5794 5795 ASSERT(MUTEX_HELD(&ipif->ipif_ill->ill_lock)); 5796 5797 if (ipif->ipif_trace_disable) 5798 return; 5799 th_trace = th_trace_ipif_lookup(ipif); 5800 ASSERT(th_trace != NULL); 5801 ASSERT(th_trace->th_refcnt > 0); 5802 5803 th_trace->th_refcnt--; 5804 th_trace_rrecord(th_trace); 5805 } 5806 5807 th_trace_t * 5808 th_trace_ill_lookup(ill_t *ill) 5809 { 5810 th_trace_t *th_trace; 5811 int bucket_id; 5812 5813 ASSERT(MUTEX_HELD(&ill->ill_lock)); 5814 5815 bucket_id = IP_TR_HASH(curthread); 5816 ASSERT(bucket_id < IP_TR_HASH_MAX); 5817 5818 for (th_trace = ill->ill_trace[bucket_id]; th_trace != NULL; 5819 th_trace = th_trace->th_next) { 5820 if (th_trace->th_id == curthread) 5821 return (th_trace); 5822 } 5823 return (NULL); 5824 } 5825 5826 void 5827 ill_trace_ref(ill_t *ill) 5828 { 5829 int bucket_id; 5830 th_trace_t *th_trace; 5831 5832 ASSERT(MUTEX_HELD(&ill->ill_lock)); 5833 if (ill->ill_trace_disable) 5834 return; 5835 /* 5836 * Attempt to locate the trace buffer for the curthread. 5837 * If it does not exist, then allocate a new trace buffer 5838 * and link it in list of trace bufs for this ill, at the head 5839 */ 5840 th_trace = th_trace_ill_lookup(ill); 5841 if (th_trace == NULL) { 5842 bucket_id = IP_TR_HASH(curthread); 5843 th_trace = (th_trace_t *)kmem_zalloc(sizeof (th_trace_t), 5844 KM_NOSLEEP); 5845 if (th_trace == NULL) { 5846 ill->ill_trace_disable = B_TRUE; 5847 ill_trace_cleanup(ill); 5848 return; 5849 } 5850 th_trace->th_id = curthread; 5851 th_trace->th_next = ill->ill_trace[bucket_id]; 5852 th_trace->th_prev = &ill->ill_trace[bucket_id]; 5853 if (th_trace->th_next != NULL) 5854 th_trace->th_next->th_prev = &th_trace->th_next; 5855 ill->ill_trace[bucket_id] = th_trace; 5856 } 5857 ASSERT(th_trace->th_refcnt >= 0 && 5858 th_trace->th_refcnt < TR_BUF_MAX - 1); 5859 5860 th_trace->th_refcnt++; 5861 th_trace_rrecord(th_trace); 5862 } 5863 5864 void 5865 ill_untrace_ref(ill_t *ill) 5866 { 5867 th_trace_t *th_trace; 5868 5869 ASSERT(MUTEX_HELD(&ill->ill_lock)); 5870 5871 if (ill->ill_trace_disable) 5872 return; 5873 th_trace = th_trace_ill_lookup(ill); 5874 ASSERT(th_trace != NULL); 5875 ASSERT(th_trace->th_refcnt > 0); 5876 5877 th_trace->th_refcnt--; 5878 th_trace_rrecord(th_trace); 5879 } 5880 5881 /* 5882 * Verify that this thread has no refs to the ipif and free 5883 * the trace buffers 5884 */ 5885 /* ARGSUSED */ 5886 void 5887 ipif_thread_exit(ipif_t *ipif, void *dummy) 5888 { 5889 th_trace_t *th_trace; 5890 5891 mutex_enter(&ipif->ipif_ill->ill_lock); 5892 5893 th_trace = th_trace_ipif_lookup(ipif); 5894 if (th_trace == NULL) { 5895 mutex_exit(&ipif->ipif_ill->ill_lock); 5896 return; 5897 } 5898 ASSERT(th_trace->th_refcnt == 0); 5899 /* unlink th_trace and free it */ 5900 *th_trace->th_prev = th_trace->th_next; 5901 if (th_trace->th_next != NULL) 5902 th_trace->th_next->th_prev = th_trace->th_prev; 5903 th_trace->th_next = NULL; 5904 th_trace->th_prev = NULL; 5905 kmem_free(th_trace, sizeof (th_trace_t)); 5906 5907 mutex_exit(&ipif->ipif_ill->ill_lock); 5908 } 5909 5910 /* 5911 * Verify that this thread has no refs to the ill and free 5912 * the trace buffers 5913 */ 5914 /* ARGSUSED */ 5915 void 5916 ill_thread_exit(ill_t *ill, void *dummy) 5917 { 5918 th_trace_t *th_trace; 5919 5920 mutex_enter(&ill->ill_lock); 5921 5922 th_trace = th_trace_ill_lookup(ill); 5923 if (th_trace == NULL) { 5924 mutex_exit(&ill->ill_lock); 5925 return; 5926 } 5927 ASSERT(th_trace->th_refcnt == 0); 5928 /* unlink th_trace and free it */ 5929 *th_trace->th_prev = th_trace->th_next; 5930 if (th_trace->th_next != NULL) 5931 th_trace->th_next->th_prev = th_trace->th_prev; 5932 th_trace->th_next = NULL; 5933 th_trace->th_prev = NULL; 5934 kmem_free(th_trace, sizeof (th_trace_t)); 5935 5936 mutex_exit(&ill->ill_lock); 5937 } 5938 #endif 5939 5940 #ifdef ILL_DEBUG 5941 void 5942 ip_thread_exit(void) 5943 { 5944 ill_t *ill; 5945 ipif_t *ipif; 5946 ill_walk_context_t ctx; 5947 5948 rw_enter(&ill_g_lock, RW_READER); 5949 ill = ILL_START_WALK_ALL(&ctx); 5950 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 5951 for (ipif = ill->ill_ipif; ipif != NULL; 5952 ipif = ipif->ipif_next) { 5953 ipif_thread_exit(ipif, NULL); 5954 } 5955 ill_thread_exit(ill, NULL); 5956 } 5957 rw_exit(&ill_g_lock); 5958 5959 ire_walk(ire_thread_exit, NULL); 5960 ndp_walk_impl(NULL, nce_thread_exit, NULL, B_FALSE); 5961 } 5962 5963 /* 5964 * Called when ipif is unplumbed or when memory alloc fails 5965 */ 5966 void 5967 ipif_trace_cleanup(ipif_t *ipif) 5968 { 5969 int i; 5970 th_trace_t *th_trace; 5971 th_trace_t *th_trace_next; 5972 5973 for (i = 0; i < IP_TR_HASH_MAX; i++) { 5974 for (th_trace = ipif->ipif_trace[i]; th_trace != NULL; 5975 th_trace = th_trace_next) { 5976 th_trace_next = th_trace->th_next; 5977 kmem_free(th_trace, sizeof (th_trace_t)); 5978 } 5979 ipif->ipif_trace[i] = NULL; 5980 } 5981 } 5982 5983 /* 5984 * Called when ill is unplumbed or when memory alloc fails 5985 */ 5986 void 5987 ill_trace_cleanup(ill_t *ill) 5988 { 5989 int i; 5990 th_trace_t *th_trace; 5991 th_trace_t *th_trace_next; 5992 5993 for (i = 0; i < IP_TR_HASH_MAX; i++) { 5994 for (th_trace = ill->ill_trace[i]; th_trace != NULL; 5995 th_trace = th_trace_next) { 5996 th_trace_next = th_trace->th_next; 5997 kmem_free(th_trace, sizeof (th_trace_t)); 5998 } 5999 ill->ill_trace[i] = NULL; 6000 } 6001 } 6002 6003 #else 6004 void ip_thread_exit(void) {} 6005 #endif 6006 6007 void 6008 ipif_refhold_locked(ipif_t *ipif) 6009 { 6010 ASSERT(MUTEX_HELD(&ipif->ipif_ill->ill_lock)); 6011 ipif->ipif_refcnt++; 6012 IPIF_TRACE_REF(ipif); 6013 } 6014 6015 void 6016 ipif_refhold(ipif_t *ipif) 6017 { 6018 ill_t *ill; 6019 6020 ill = ipif->ipif_ill; 6021 mutex_enter(&ill->ill_lock); 6022 ipif->ipif_refcnt++; 6023 IPIF_TRACE_REF(ipif); 6024 mutex_exit(&ill->ill_lock); 6025 } 6026 6027 /* 6028 * Must not be called while holding any locks. Otherwise if this is 6029 * the last reference to be released there is a chance of recursive mutex 6030 * panic due to ipif_refrele -> ipif_ill_refrele_tail -> qwriter_ip trying 6031 * to restart an ioctl. 6032 */ 6033 void 6034 ipif_refrele(ipif_t *ipif) 6035 { 6036 ill_t *ill; 6037 6038 ill = ipif->ipif_ill; 6039 6040 mutex_enter(&ill->ill_lock); 6041 ASSERT(ipif->ipif_refcnt != 0); 6042 ipif->ipif_refcnt--; 6043 IPIF_UNTRACE_REF(ipif); 6044 if (ipif->ipif_refcnt != 0) { 6045 mutex_exit(&ill->ill_lock); 6046 return; 6047 } 6048 6049 /* Drops the ill_lock */ 6050 ipif_ill_refrele_tail(ill); 6051 } 6052 6053 ipif_t * 6054 ipif_get_next_ipif(ipif_t *curr, ill_t *ill) 6055 { 6056 ipif_t *ipif; 6057 6058 mutex_enter(&ill->ill_lock); 6059 for (ipif = (curr == NULL ? ill->ill_ipif : curr->ipif_next); 6060 ipif != NULL; ipif = ipif->ipif_next) { 6061 if (!IPIF_CAN_LOOKUP(ipif)) 6062 continue; 6063 ipif_refhold_locked(ipif); 6064 mutex_exit(&ill->ill_lock); 6065 return (ipif); 6066 } 6067 mutex_exit(&ill->ill_lock); 6068 return (NULL); 6069 } 6070 6071 /* 6072 * TODO: make this table extendible at run time 6073 * Return a pointer to the mac type info for 'mac_type' 6074 */ 6075 static ip_m_t * 6076 ip_m_lookup(t_uscalar_t mac_type) 6077 { 6078 ip_m_t *ipm; 6079 6080 for (ipm = ip_m_tbl; ipm < A_END(ip_m_tbl); ipm++) 6081 if (ipm->ip_m_mac_type == mac_type) 6082 return (ipm); 6083 return (NULL); 6084 } 6085 6086 /* 6087 * ip_rt_add is called to add an IPv4 route to the forwarding table. 6088 * ipif_arg is passed in to associate it with the correct interface. 6089 * We may need to restart this operation if the ipif cannot be looked up 6090 * due to an exclusive operation that is currently in progress. The restart 6091 * entry point is specified by 'func' 6092 */ 6093 int 6094 ip_rt_add(ipaddr_t dst_addr, ipaddr_t mask, ipaddr_t gw_addr, 6095 ipaddr_t src_addr, int flags, ipif_t *ipif_arg, ipif_t *src_ipif, 6096 ire_t **ire_arg, boolean_t ioctl_msg, queue_t *q, mblk_t *mp, 6097 ipsq_func_t func) 6098 { 6099 ire_t *ire; 6100 ire_t *gw_ire = NULL; 6101 ipif_t *ipif = NULL; 6102 boolean_t ipif_refheld = B_FALSE; 6103 uint_t type; 6104 int match_flags = MATCH_IRE_TYPE; 6105 int error; 6106 6107 ip1dbg(("ip_rt_add:")); 6108 6109 if (ire_arg != NULL) 6110 *ire_arg = NULL; 6111 6112 /* 6113 * If this is the case of RTF_HOST being set, then we set the netmask 6114 * to all ones (regardless if one was supplied). 6115 */ 6116 if (flags & RTF_HOST) 6117 mask = IP_HOST_MASK; 6118 6119 /* 6120 * Prevent routes with a zero gateway from being created (since 6121 * interfaces can currently be plumbed and brought up no assigned 6122 * address). 6123 * For routes with RTA_SRCIFP, the gateway address can be 0.0.0.0. 6124 */ 6125 if (gw_addr == 0 && src_ipif == NULL) 6126 return (ENETUNREACH); 6127 /* 6128 * Get the ipif, if any, corresponding to the gw_addr 6129 */ 6130 if (gw_addr != 0) { 6131 ipif = ipif_lookup_interface(gw_addr, dst_addr, q, mp, func, 6132 &error); 6133 if (ipif != NULL) { 6134 if (IS_VNI(ipif->ipif_ill)) { 6135 ipif_refrele(ipif); 6136 return (EINVAL); 6137 } 6138 ipif_refheld = B_TRUE; 6139 } else if (error == EINPROGRESS) { 6140 ip1dbg(("ip_rt_add: null and EINPROGRESS")); 6141 return (EINPROGRESS); 6142 } else { 6143 error = 0; 6144 } 6145 } 6146 6147 if (ipif != NULL) { 6148 ip1dbg(("ip_rt_add: ipif_lookup_interface done ipif nonnull")); 6149 ASSERT(!MUTEX_HELD(&ipif->ipif_ill->ill_lock)); 6150 } else { 6151 ip1dbg(("ip_rt_add: ipif_lookup_interface done ipif is null")); 6152 } 6153 6154 /* 6155 * GateD will attempt to create routes with a loopback interface 6156 * address as the gateway and with RTF_GATEWAY set. We allow 6157 * these routes to be added, but create them as interface routes 6158 * since the gateway is an interface address. 6159 */ 6160 if ((ipif != NULL) && (ipif->ipif_ire_type == IRE_LOOPBACK)) 6161 flags &= ~RTF_GATEWAY; 6162 6163 /* 6164 * Traditionally, interface routes are ones where RTF_GATEWAY isn't set 6165 * and the gateway address provided is one of the system's interface 6166 * addresses. By using the routing socket interface and supplying an 6167 * RTA_IFP sockaddr with an interface index, an alternate method of 6168 * specifying an interface route to be created is available which uses 6169 * the interface index that specifies the outgoing interface rather than 6170 * the address of an outgoing interface (which may not be able to 6171 * uniquely identify an interface). When coupled with the RTF_GATEWAY 6172 * flag, routes can be specified which not only specify the next-hop to 6173 * be used when routing to a certain prefix, but also which outgoing 6174 * interface should be used. 6175 * 6176 * Previously, interfaces would have unique addresses assigned to them 6177 * and so the address assigned to a particular interface could be used 6178 * to identify a particular interface. One exception to this was the 6179 * case of an unnumbered interface (where IPIF_UNNUMBERED was set). 6180 * 6181 * With the advent of IPv6 and its link-local addresses, this 6182 * restriction was relaxed and interfaces could share addresses between 6183 * themselves. In fact, typically all of the link-local interfaces on 6184 * an IPv6 node or router will have the same link-local address. In 6185 * order to differentiate between these interfaces, the use of an 6186 * interface index is necessary and this index can be carried inside a 6187 * RTA_IFP sockaddr (which is actually a sockaddr_dl). One restriction 6188 * of using the interface index, however, is that all of the ipif's that 6189 * are part of an ill have the same index and so the RTA_IFP sockaddr 6190 * cannot be used to differentiate between ipif's (or logical 6191 * interfaces) that belong to the same ill (physical interface). 6192 * 6193 * For example, in the following case involving IPv4 interfaces and 6194 * logical interfaces 6195 * 6196 * 192.0.2.32 255.255.255.224 192.0.2.33 U if0 6197 * 192.0.2.32 255.255.255.224 192.0.2.34 U if0:1 6198 * 192.0.2.32 255.255.255.224 192.0.2.35 U if0:2 6199 * 6200 * the ipif's corresponding to each of these interface routes can be 6201 * uniquely identified by the "gateway" (actually interface address). 6202 * 6203 * In this case involving multiple IPv6 default routes to a particular 6204 * link-local gateway, the use of RTA_IFP is necessary to specify which 6205 * default route is of interest: 6206 * 6207 * default fe80::123:4567:89ab:cdef U if0 6208 * default fe80::123:4567:89ab:cdef U if1 6209 */ 6210 6211 /* RTF_GATEWAY not set */ 6212 if (!(flags & RTF_GATEWAY)) { 6213 queue_t *stq; 6214 queue_t *rfq = NULL; 6215 ill_t *in_ill = NULL; 6216 6217 /* 6218 * As the interface index specified with the RTA_IFP sockaddr is 6219 * the same for all ipif's off of an ill, the matching logic 6220 * below uses MATCH_IRE_ILL if such an index was specified. 6221 * This means that routes sharing the same prefix when added 6222 * using a RTA_IFP sockaddr must have distinct interface 6223 * indices (namely, they must be on distinct ill's). 6224 * 6225 * On the other hand, since the gateway address will usually be 6226 * different for each ipif on the system, the matching logic 6227 * uses MATCH_IRE_IPIF in the case of a traditional interface 6228 * route. This means that interface routes for the same prefix 6229 * can be created if they belong to distinct ipif's and if a 6230 * RTA_IFP sockaddr is not present. 6231 */ 6232 if (ipif_arg != NULL) { 6233 if (ipif_refheld) { 6234 ipif_refrele(ipif); 6235 ipif_refheld = B_FALSE; 6236 } 6237 ipif = ipif_arg; 6238 match_flags |= MATCH_IRE_ILL; 6239 } else { 6240 /* 6241 * Check the ipif corresponding to the gw_addr 6242 */ 6243 if (ipif == NULL) 6244 return (ENETUNREACH); 6245 match_flags |= MATCH_IRE_IPIF; 6246 } 6247 ASSERT(ipif != NULL); 6248 /* 6249 * If src_ipif is not NULL, we have to create 6250 * an ire with non-null ire_in_ill value 6251 */ 6252 if (src_ipif != NULL) { 6253 in_ill = src_ipif->ipif_ill; 6254 } 6255 6256 /* 6257 * We check for an existing entry at this point. 6258 * 6259 * Since a netmask isn't passed in via the ioctl interface 6260 * (SIOCADDRT), we don't check for a matching netmask in that 6261 * case. 6262 */ 6263 if (!ioctl_msg) 6264 match_flags |= MATCH_IRE_MASK; 6265 if (src_ipif != NULL) { 6266 /* Look up in the special table */ 6267 ire = ire_srcif_table_lookup(dst_addr, IRE_INTERFACE, 6268 ipif, src_ipif->ipif_ill, match_flags); 6269 } else { 6270 ire = ire_ftable_lookup(dst_addr, mask, 0, 6271 IRE_INTERFACE, ipif, NULL, ALL_ZONES, 0, 6272 match_flags); 6273 } 6274 if (ire != NULL) { 6275 ire_refrele(ire); 6276 if (ipif_refheld) 6277 ipif_refrele(ipif); 6278 return (EEXIST); 6279 } 6280 6281 if (src_ipif != NULL) { 6282 /* 6283 * Create the special ire for the IRE table 6284 * which hangs out of ire_in_ill. This ire 6285 * is in-between IRE_CACHE and IRE_INTERFACE. 6286 * Thus rfq is non-NULL. 6287 */ 6288 rfq = ipif->ipif_rq; 6289 } 6290 /* Create the usual interface ires */ 6291 6292 stq = (ipif->ipif_net_type == IRE_IF_RESOLVER) 6293 ? ipif->ipif_rq : ipif->ipif_wq; 6294 6295 /* 6296 * Create a copy of the IRE_LOOPBACK, 6297 * IRE_IF_NORESOLVER or IRE_IF_RESOLVER with 6298 * the modified address and netmask. 6299 */ 6300 ire = ire_create( 6301 (uchar_t *)&dst_addr, 6302 (uint8_t *)&mask, 6303 (uint8_t *)&ipif->ipif_src_addr, 6304 NULL, 6305 NULL, 6306 &ipif->ipif_mtu, 6307 NULL, 6308 rfq, 6309 stq, 6310 ipif->ipif_net_type, 6311 ipif->ipif_resolver_mp, 6312 ipif, 6313 in_ill, 6314 0, 6315 0, 6316 0, 6317 flags, 6318 &ire_uinfo_null); 6319 if (ire == NULL) { 6320 if (ipif_refheld) 6321 ipif_refrele(ipif); 6322 return (ENOMEM); 6323 } 6324 6325 /* 6326 * Some software (for example, GateD and Sun Cluster) attempts 6327 * to create (what amount to) IRE_PREFIX routes with the 6328 * loopback address as the gateway. This is primarily done to 6329 * set up prefixes with the RTF_REJECT flag set (for example, 6330 * when generating aggregate routes.) 6331 * 6332 * If the IRE type (as defined by ipif->ipif_net_type) is 6333 * IRE_LOOPBACK, then we map the request into a 6334 * IRE_IF_NORESOLVER. 6335 * 6336 * Needless to say, the real IRE_LOOPBACK is NOT created by this 6337 * routine, but rather using ire_create() directly. 6338 */ 6339 if (ipif->ipif_net_type == IRE_LOOPBACK) 6340 ire->ire_type = IRE_IF_NORESOLVER; 6341 error = ire_add(&ire, q, mp, func); 6342 if (error == 0) 6343 goto save_ire; 6344 6345 /* 6346 * In the result of failure, ire_add() will have already 6347 * deleted the ire in question, so there is no need to 6348 * do that here. 6349 */ 6350 if (ipif_refheld) 6351 ipif_refrele(ipif); 6352 return (error); 6353 } 6354 if (ipif_refheld) { 6355 ipif_refrele(ipif); 6356 ipif_refheld = B_FALSE; 6357 } 6358 6359 if (src_ipif != NULL) { 6360 /* RTA_SRCIFP is not supported on RTF_GATEWAY */ 6361 ip2dbg(("ip_rt_add: SRCIF cannot be set with gateway route\n")); 6362 return (EINVAL); 6363 } 6364 /* 6365 * Get an interface IRE for the specified gateway. 6366 * If we don't have an IRE_IF_NORESOLVER or IRE_IF_RESOLVER for the 6367 * gateway, it is currently unreachable and we fail the request 6368 * accordingly. 6369 */ 6370 ipif = ipif_arg; 6371 if (ipif_arg != NULL) 6372 match_flags |= MATCH_IRE_ILL; 6373 gw_ire = ire_ftable_lookup(gw_addr, 0, 0, IRE_INTERFACE, ipif_arg, NULL, 6374 ALL_ZONES, 0, match_flags); 6375 if (gw_ire == NULL) 6376 return (ENETUNREACH); 6377 6378 /* 6379 * We create one of three types of IREs as a result of this request 6380 * based on the netmask. A netmask of all ones (which is automatically 6381 * assumed when RTF_HOST is set) results in an IRE_HOST being created. 6382 * An all zeroes netmask implies a default route so an IRE_DEFAULT is 6383 * created. Otherwise, an IRE_PREFIX route is created for the 6384 * destination prefix. 6385 */ 6386 if (mask == IP_HOST_MASK) 6387 type = IRE_HOST; 6388 else if (mask == 0) 6389 type = IRE_DEFAULT; 6390 else 6391 type = IRE_PREFIX; 6392 6393 /* check for a duplicate entry */ 6394 ire = ire_ftable_lookup(dst_addr, mask, gw_addr, type, ipif_arg, 6395 NULL, ALL_ZONES, 0, match_flags | MATCH_IRE_MASK | MATCH_IRE_GW); 6396 if (ire != NULL) { 6397 ire_refrele(gw_ire); 6398 ire_refrele(ire); 6399 return (EEXIST); 6400 } 6401 6402 /* Create the IRE. */ 6403 ire = ire_create( 6404 (uchar_t *)&dst_addr, /* dest address */ 6405 (uchar_t *)&mask, /* mask */ 6406 /* src address assigned by the caller? */ 6407 (uchar_t *)(((src_addr != INADDR_ANY) && 6408 (flags & RTF_SETSRC)) ? &src_addr : NULL), 6409 (uchar_t *)&gw_addr, /* gateway address */ 6410 NULL, /* no in-srcaddress */ 6411 &gw_ire->ire_max_frag, 6412 NULL, /* no Fast Path header */ 6413 NULL, /* no recv-from queue */ 6414 NULL, /* no send-to queue */ 6415 (ushort_t)type, /* IRE type */ 6416 NULL, 6417 ipif_arg, 6418 NULL, 6419 0, 6420 0, 6421 0, 6422 flags, 6423 &gw_ire->ire_uinfo); /* Inherit ULP info from gw */ 6424 if (ire == NULL) { 6425 ire_refrele(gw_ire); 6426 return (ENOMEM); 6427 } 6428 6429 /* 6430 * POLICY: should we allow an RTF_HOST with address INADDR_ANY? 6431 * SUN/OS socket stuff does but do we really want to allow 0.0.0.0? 6432 */ 6433 6434 /* Add the new IRE. */ 6435 error = ire_add(&ire, q, mp, func); 6436 if (error != 0) { 6437 /* 6438 * In the result of failure, ire_add() will have already 6439 * deleted the ire in question, so there is no need to 6440 * do that here. 6441 */ 6442 ire_refrele(gw_ire); 6443 return (error); 6444 } 6445 6446 if (flags & RTF_MULTIRT) { 6447 /* 6448 * Invoke the CGTP (multirouting) filtering module 6449 * to add the dst address in the filtering database. 6450 * Replicated inbound packets coming from that address 6451 * will be filtered to discard the duplicates. 6452 * It is not necessary to call the CGTP filter hook 6453 * when the dst address is a broadcast or multicast, 6454 * because an IP source address cannot be a broadcast 6455 * or a multicast. 6456 */ 6457 ire_t *ire_dst = ire_ctable_lookup(ire->ire_addr, 0, 6458 IRE_BROADCAST, NULL, NULL, MATCH_IRE_TYPE); 6459 if (ire_dst != NULL) { 6460 ip_cgtp_bcast_add(ire, ire_dst); 6461 ire_refrele(ire_dst); 6462 goto save_ire; 6463 } 6464 if ((ip_cgtp_filter_ops != NULL) && !CLASSD(ire->ire_addr)) { 6465 int res = ip_cgtp_filter_ops->cfo_add_dest_v4( 6466 ire->ire_addr, 6467 ire->ire_gateway_addr, 6468 ire->ire_src_addr, 6469 gw_ire->ire_src_addr); 6470 if (res != 0) { 6471 ire_refrele(gw_ire); 6472 ire_delete(ire); 6473 return (res); 6474 } 6475 } 6476 } 6477 6478 save_ire: 6479 if (gw_ire != NULL) { 6480 ire_refrele(gw_ire); 6481 } 6482 /* 6483 * We do not do save_ire for the routes added with RTA_SRCIFP 6484 * flag. This route is only added and deleted by mipagent. 6485 * So, for simplicity of design, we refrain from saving 6486 * ires that are created with srcif value. This may change 6487 * in future if we find more usage of srcifp feature. 6488 */ 6489 if (ipif != NULL && src_ipif == NULL) { 6490 /* 6491 * Save enough information so that we can recreate the IRE if 6492 * the interface goes down and then up. The metrics associated 6493 * with the route will be saved as well when rts_setmetrics() is 6494 * called after the IRE has been created. In the case where 6495 * memory cannot be allocated, none of this information will be 6496 * saved. 6497 */ 6498 ipif_save_ire(ipif, ire); 6499 } 6500 if (ioctl_msg) 6501 ip_rts_rtmsg(RTM_OLDADD, ire, 0); 6502 if (ire_arg != NULL) { 6503 /* 6504 * Store the ire that was successfully added into where ire_arg 6505 * points to so that callers don't have to look it up 6506 * themselves (but they are responsible for ire_refrele()ing 6507 * the ire when they are finished with it). 6508 */ 6509 *ire_arg = ire; 6510 } else { 6511 ire_refrele(ire); /* Held in ire_add */ 6512 } 6513 if (ipif_refheld) 6514 ipif_refrele(ipif); 6515 return (0); 6516 } 6517 6518 /* 6519 * ip_rt_delete is called to delete an IPv4 route. 6520 * ipif_arg is passed in to associate it with the correct interface. 6521 * src_ipif is passed to associate the incoming interface of the packet. 6522 * We may need to restart this operation if the ipif cannot be looked up 6523 * due to an exclusive operation that is currently in progress. The restart 6524 * entry point is specified by 'func' 6525 */ 6526 /* ARGSUSED4 */ 6527 int 6528 ip_rt_delete(ipaddr_t dst_addr, ipaddr_t mask, ipaddr_t gw_addr, 6529 uint_t rtm_addrs, int flags, ipif_t *ipif_arg, ipif_t *src_ipif, 6530 boolean_t ioctl_msg, queue_t *q, mblk_t *mp, ipsq_func_t func) 6531 { 6532 ire_t *ire = NULL; 6533 ipif_t *ipif; 6534 boolean_t ipif_refheld = B_FALSE; 6535 uint_t type; 6536 uint_t match_flags = MATCH_IRE_TYPE; 6537 int err = 0; 6538 6539 ip1dbg(("ip_rt_delete:")); 6540 /* 6541 * If this is the case of RTF_HOST being set, then we set the netmask 6542 * to all ones. Otherwise, we use the netmask if one was supplied. 6543 */ 6544 if (flags & RTF_HOST) { 6545 mask = IP_HOST_MASK; 6546 match_flags |= MATCH_IRE_MASK; 6547 } else if (rtm_addrs & RTA_NETMASK) { 6548 match_flags |= MATCH_IRE_MASK; 6549 } 6550 6551 /* 6552 * Note that RTF_GATEWAY is never set on a delete, therefore 6553 * we check if the gateway address is one of our interfaces first, 6554 * and fall back on RTF_GATEWAY routes. 6555 * 6556 * This makes it possible to delete an original 6557 * IRE_IF_NORESOLVER/IRE_IF_RESOLVER - consistent with SunOS 4.1. 6558 * 6559 * As the interface index specified with the RTA_IFP sockaddr is the 6560 * same for all ipif's off of an ill, the matching logic below uses 6561 * MATCH_IRE_ILL if such an index was specified. This means a route 6562 * sharing the same prefix and interface index as the the route 6563 * intended to be deleted might be deleted instead if a RTA_IFP sockaddr 6564 * is specified in the request. 6565 * 6566 * On the other hand, since the gateway address will usually be 6567 * different for each ipif on the system, the matching logic 6568 * uses MATCH_IRE_IPIF in the case of a traditional interface 6569 * route. This means that interface routes for the same prefix can be 6570 * uniquely identified if they belong to distinct ipif's and if a 6571 * RTA_IFP sockaddr is not present. 6572 * 6573 * For more detail on specifying routes by gateway address and by 6574 * interface index, see the comments in ip_rt_add(). 6575 * gw_addr could be zero in some cases when both RTA_SRCIFP and 6576 * RTA_IFP are specified. If RTA_SRCIFP is specified and both 6577 * RTA_IFP and gateway_addr are NULL/zero, then delete will not 6578 * succeed. 6579 */ 6580 if (src_ipif != NULL) { 6581 if (ipif_arg == NULL && gw_addr != 0) { 6582 ipif_arg = ipif_lookup_interface(gw_addr, dst_addr, 6583 q, mp, func, &err); 6584 if (ipif_arg != NULL) 6585 ipif_refheld = B_TRUE; 6586 } 6587 if (ipif_arg == NULL) { 6588 err = (err == EINPROGRESS) ? err : ESRCH; 6589 return (err); 6590 } 6591 ipif = ipif_arg; 6592 } else { 6593 ipif = ipif_lookup_interface(gw_addr, dst_addr, 6594 q, mp, func, &err); 6595 if (ipif != NULL) 6596 ipif_refheld = B_TRUE; 6597 else if (err == EINPROGRESS) 6598 return (err); 6599 else 6600 err = 0; 6601 } 6602 if (ipif != NULL) { 6603 if (ipif_arg != NULL) { 6604 if (ipif_refheld) { 6605 ipif_refrele(ipif); 6606 ipif_refheld = B_FALSE; 6607 } 6608 ipif = ipif_arg; 6609 match_flags |= MATCH_IRE_ILL; 6610 } else { 6611 match_flags |= MATCH_IRE_IPIF; 6612 } 6613 if (src_ipif != NULL) { 6614 ire = ire_srcif_table_lookup(dst_addr, IRE_INTERFACE, 6615 ipif, src_ipif->ipif_ill, match_flags); 6616 } else { 6617 if (ipif->ipif_ire_type == IRE_LOOPBACK) { 6618 ire = ire_ctable_lookup(dst_addr, 0, 6619 IRE_LOOPBACK, ipif, ALL_ZONES, match_flags); 6620 } 6621 if (ire == NULL) { 6622 ire = ire_ftable_lookup(dst_addr, mask, 0, 6623 IRE_INTERFACE, ipif, NULL, ALL_ZONES, 0, 6624 match_flags); 6625 } 6626 } 6627 } 6628 6629 if (ire == NULL) { 6630 /* 6631 * At this point, the gateway address is not one of our own 6632 * addresses or a matching interface route was not found. We 6633 * set the IRE type to lookup based on whether 6634 * this is a host route, a default route or just a prefix. 6635 * 6636 * If an ipif_arg was passed in, then the lookup is based on an 6637 * interface index so MATCH_IRE_ILL is added to match_flags. 6638 * In any case, MATCH_IRE_IPIF is cleared and MATCH_IRE_GW is 6639 * set as the route being looked up is not a traditional 6640 * interface route. 6641 * Since we do not add gateway route with srcipif, we don't 6642 * expect to find it either. 6643 */ 6644 if (src_ipif != NULL) { 6645 if (ipif_refheld) 6646 ipif_refrele(ipif); 6647 return (ESRCH); 6648 } else { 6649 match_flags &= ~MATCH_IRE_IPIF; 6650 match_flags |= MATCH_IRE_GW; 6651 if (ipif_arg != NULL) 6652 match_flags |= MATCH_IRE_ILL; 6653 if (mask == IP_HOST_MASK) 6654 type = IRE_HOST; 6655 else if (mask == 0) 6656 type = IRE_DEFAULT; 6657 else 6658 type = IRE_PREFIX; 6659 ire = ire_ftable_lookup(dst_addr, mask, gw_addr, type, 6660 ipif_arg, NULL, ALL_ZONES, 0, match_flags); 6661 if (ire == NULL && type == IRE_HOST) { 6662 ire = ire_ftable_lookup(dst_addr, mask, gw_addr, 6663 IRE_HOST_REDIRECT, ipif_arg, NULL, 6664 ALL_ZONES, 0, match_flags); 6665 } 6666 } 6667 } 6668 6669 if (ipif_refheld) 6670 ipif_refrele(ipif); 6671 6672 /* ipif is not refheld anymore */ 6673 if (ire == NULL) 6674 return (ESRCH); 6675 6676 if (ire->ire_flags & RTF_MULTIRT) { 6677 /* 6678 * Invoke the CGTP (multirouting) filtering module 6679 * to remove the dst address from the filtering database. 6680 * Packets coming from that address will no longer be 6681 * filtered to remove duplicates. 6682 */ 6683 if (ip_cgtp_filter_ops != NULL) { 6684 err = ip_cgtp_filter_ops->cfo_del_dest_v4(ire->ire_addr, 6685 ire->ire_gateway_addr); 6686 } 6687 ip_cgtp_bcast_delete(ire); 6688 } 6689 6690 ipif = ire->ire_ipif; 6691 /* 6692 * Removing from ipif_saved_ire_mp is not necessary 6693 * when src_ipif being non-NULL. ip_rt_add does not 6694 * save the ires which src_ipif being non-NULL. 6695 */ 6696 if (ipif != NULL && src_ipif == NULL) { 6697 ipif_remove_ire(ipif, ire); 6698 } 6699 if (ioctl_msg) 6700 ip_rts_rtmsg(RTM_OLDDEL, ire, 0); 6701 ire_delete(ire); 6702 ire_refrele(ire); 6703 return (err); 6704 } 6705 6706 /* 6707 * ip_siocaddrt is called to complete processing of an SIOCADDRT IOCTL. 6708 */ 6709 /* ARGSUSED */ 6710 int 6711 ip_siocaddrt(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, 6712 ip_ioctl_cmd_t *ipip, void *dummy_if_req) 6713 { 6714 ipaddr_t dst_addr; 6715 ipaddr_t gw_addr; 6716 ipaddr_t mask; 6717 int error = 0; 6718 mblk_t *mp1; 6719 struct rtentry *rt; 6720 ipif_t *ipif = NULL; 6721 6722 ip1dbg(("ip_siocaddrt:")); 6723 /* Existence of mp1 verified in ip_wput_nondata */ 6724 mp1 = mp->b_cont->b_cont; 6725 rt = (struct rtentry *)mp1->b_rptr; 6726 6727 dst_addr = ((sin_t *)&rt->rt_dst)->sin_addr.s_addr; 6728 gw_addr = ((sin_t *)&rt->rt_gateway)->sin_addr.s_addr; 6729 6730 /* 6731 * If the RTF_HOST flag is on, this is a request to assign a gateway 6732 * to a particular host address. In this case, we set the netmask to 6733 * all ones for the particular destination address. Otherwise, 6734 * determine the netmask to be used based on dst_addr and the interfaces 6735 * in use. 6736 */ 6737 if (rt->rt_flags & RTF_HOST) { 6738 mask = IP_HOST_MASK; 6739 } else { 6740 /* 6741 * Note that ip_subnet_mask returns a zero mask in the case of 6742 * default (an all-zeroes address). 6743 */ 6744 mask = ip_subnet_mask(dst_addr, &ipif); 6745 } 6746 6747 error = ip_rt_add(dst_addr, mask, gw_addr, 0, rt->rt_flags, 6748 NULL, NULL, NULL, B_TRUE, q, mp, ip_process_ioctl); 6749 if (ipif != NULL) 6750 ipif_refrele(ipif); 6751 return (error); 6752 } 6753 6754 /* 6755 * ip_siocdelrt is called to complete processing of an SIOCDELRT IOCTL. 6756 */ 6757 /* ARGSUSED */ 6758 int 6759 ip_siocdelrt(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, 6760 ip_ioctl_cmd_t *ipip, void *dummy_if_req) 6761 { 6762 ipaddr_t dst_addr; 6763 ipaddr_t gw_addr; 6764 ipaddr_t mask; 6765 int error; 6766 mblk_t *mp1; 6767 struct rtentry *rt; 6768 ipif_t *ipif = NULL; 6769 6770 ip1dbg(("ip_siocdelrt:")); 6771 /* Existence of mp1 verified in ip_wput_nondata */ 6772 mp1 = mp->b_cont->b_cont; 6773 rt = (struct rtentry *)mp1->b_rptr; 6774 6775 dst_addr = ((sin_t *)&rt->rt_dst)->sin_addr.s_addr; 6776 gw_addr = ((sin_t *)&rt->rt_gateway)->sin_addr.s_addr; 6777 6778 /* 6779 * If the RTF_HOST flag is on, this is a request to delete a gateway 6780 * to a particular host address. In this case, we set the netmask to 6781 * all ones for the particular destination address. Otherwise, 6782 * determine the netmask to be used based on dst_addr and the interfaces 6783 * in use. 6784 */ 6785 if (rt->rt_flags & RTF_HOST) { 6786 mask = IP_HOST_MASK; 6787 } else { 6788 /* 6789 * Note that ip_subnet_mask returns a zero mask in the case of 6790 * default (an all-zeroes address). 6791 */ 6792 mask = ip_subnet_mask(dst_addr, &ipif); 6793 } 6794 6795 error = ip_rt_delete(dst_addr, mask, gw_addr, 6796 RTA_DST | RTA_GATEWAY | RTA_NETMASK, rt->rt_flags, NULL, NULL, 6797 B_TRUE, q, mp, ip_process_ioctl); 6798 if (ipif != NULL) 6799 ipif_refrele(ipif); 6800 return (error); 6801 } 6802 6803 /* 6804 * Enqueue the mp onto the ipsq, chained by b_next. 6805 * b_prev stores the function to be executed later, and b_queue the queue 6806 * where this mp originated. 6807 */ 6808 void 6809 ipsq_enq(ipsq_t *ipsq, queue_t *q, mblk_t *mp, ipsq_func_t func, int type, 6810 ill_t *pending_ill) 6811 { 6812 conn_t *connp = NULL; 6813 6814 ASSERT(MUTEX_HELD(&ipsq->ipsq_lock)); 6815 ASSERT(func != NULL); 6816 6817 mp->b_queue = q; 6818 mp->b_prev = (void *)func; 6819 mp->b_next = NULL; 6820 6821 switch (type) { 6822 case CUR_OP: 6823 if (ipsq->ipsq_mptail != NULL) { 6824 ASSERT(ipsq->ipsq_mphead != NULL); 6825 ipsq->ipsq_mptail->b_next = mp; 6826 } else { 6827 ASSERT(ipsq->ipsq_mphead == NULL); 6828 ipsq->ipsq_mphead = mp; 6829 } 6830 ipsq->ipsq_mptail = mp; 6831 break; 6832 6833 case NEW_OP: 6834 if (ipsq->ipsq_xopq_mptail != NULL) { 6835 ASSERT(ipsq->ipsq_xopq_mphead != NULL); 6836 ipsq->ipsq_xopq_mptail->b_next = mp; 6837 } else { 6838 ASSERT(ipsq->ipsq_xopq_mphead == NULL); 6839 ipsq->ipsq_xopq_mphead = mp; 6840 } 6841 ipsq->ipsq_xopq_mptail = mp; 6842 break; 6843 default: 6844 cmn_err(CE_PANIC, "ipsq_enq %d type \n", type); 6845 } 6846 6847 if (CONN_Q(q) && pending_ill != NULL) { 6848 connp = Q_TO_CONN(q); 6849 6850 ASSERT(MUTEX_HELD(&connp->conn_lock)); 6851 connp->conn_oper_pending_ill = pending_ill; 6852 } 6853 } 6854 6855 /* 6856 * Return the mp at the head of the ipsq. After emptying the ipsq 6857 * look at the next ioctl, if this ioctl is complete. Otherwise 6858 * return, we will resume when we complete the current ioctl. 6859 * The current ioctl will wait till it gets a response from the 6860 * driver below. 6861 */ 6862 static mblk_t * 6863 ipsq_dq(ipsq_t *ipsq) 6864 { 6865 mblk_t *mp; 6866 6867 ASSERT(MUTEX_HELD(&ipsq->ipsq_lock)); 6868 6869 mp = ipsq->ipsq_mphead; 6870 if (mp != NULL) { 6871 ipsq->ipsq_mphead = mp->b_next; 6872 if (ipsq->ipsq_mphead == NULL) 6873 ipsq->ipsq_mptail = NULL; 6874 mp->b_next = NULL; 6875 return (mp); 6876 } 6877 if (ipsq->ipsq_current_ipif != NULL) 6878 return (NULL); 6879 mp = ipsq->ipsq_xopq_mphead; 6880 if (mp != NULL) { 6881 ipsq->ipsq_xopq_mphead = mp->b_next; 6882 if (ipsq->ipsq_xopq_mphead == NULL) 6883 ipsq->ipsq_xopq_mptail = NULL; 6884 mp->b_next = NULL; 6885 return (mp); 6886 } 6887 return (NULL); 6888 } 6889 6890 /* 6891 * Enter the ipsq corresponding to ill, by waiting synchronously till 6892 * we can enter the ipsq exclusively. Unless 'force' is used, the ipsq 6893 * will have to drain completely before ipsq_enter returns success. 6894 * ipsq_current_ipif will be set if some exclusive ioctl is in progress, 6895 * and the ipsq_exit logic will start the next enqueued ioctl after 6896 * completion of the current ioctl. If 'force' is used, we don't wait 6897 * for the enqueued ioctls. This is needed when a conn_close wants to 6898 * enter the ipsq and abort an ioctl that is somehow stuck. Unplumb 6899 * of an ill can also use this option. But we dont' use it currently. 6900 */ 6901 #define ENTER_SQ_WAIT_TICKS 100 6902 boolean_t 6903 ipsq_enter(ill_t *ill, boolean_t force) 6904 { 6905 ipsq_t *ipsq; 6906 boolean_t waited_enough = B_FALSE; 6907 6908 /* 6909 * Holding the ill_lock prevents <ill-ipsq> assocs from changing. 6910 * Since the <ill-ipsq> assocs could change while we wait for the 6911 * writer, it is easier to wait on a fixed global rather than try to 6912 * cv_wait on a changing ipsq. 6913 */ 6914 mutex_enter(&ill->ill_lock); 6915 for (;;) { 6916 if (ill->ill_state_flags & ILL_CONDEMNED) { 6917 mutex_exit(&ill->ill_lock); 6918 return (B_FALSE); 6919 } 6920 6921 ipsq = ill->ill_phyint->phyint_ipsq; 6922 mutex_enter(&ipsq->ipsq_lock); 6923 if (ipsq->ipsq_writer == NULL && 6924 (ipsq->ipsq_current_ipif == NULL || waited_enough)) { 6925 break; 6926 } else if (ipsq->ipsq_writer != NULL) { 6927 mutex_exit(&ipsq->ipsq_lock); 6928 cv_wait(&ill->ill_cv, &ill->ill_lock); 6929 } else { 6930 mutex_exit(&ipsq->ipsq_lock); 6931 if (force) { 6932 (void) cv_timedwait(&ill->ill_cv, 6933 &ill->ill_lock, 6934 lbolt + ENTER_SQ_WAIT_TICKS); 6935 waited_enough = B_TRUE; 6936 continue; 6937 } else { 6938 cv_wait(&ill->ill_cv, &ill->ill_lock); 6939 } 6940 } 6941 } 6942 6943 ASSERT(ipsq->ipsq_mphead == NULL && ipsq->ipsq_mptail == NULL); 6944 ASSERT(ipsq->ipsq_reentry_cnt == 0); 6945 ipsq->ipsq_writer = curthread; 6946 ipsq->ipsq_reentry_cnt++; 6947 #ifdef ILL_DEBUG 6948 ipsq->ipsq_depth = getpcstack(ipsq->ipsq_stack, IP_STACK_DEPTH); 6949 #endif 6950 mutex_exit(&ipsq->ipsq_lock); 6951 mutex_exit(&ill->ill_lock); 6952 return (B_TRUE); 6953 } 6954 6955 /* 6956 * The ipsq_t (ipsq) is the synchronization data structure used to serialize 6957 * certain critical operations like plumbing (i.e. most set ioctls), 6958 * multicast joins, igmp/mld timers, IPMP operations etc. On a non-IPMP 6959 * system there is 1 ipsq per phyint. On an IPMP system there is 1 ipsq per 6960 * IPMP group. The ipsq serializes exclusive ioctls issued by applications 6961 * on a per ipsq basis in ipsq_xopq_mphead. It also protects against multiple 6962 * threads executing in the ipsq. Responses from the driver pertain to the 6963 * current ioctl (say a DL_BIND_ACK in response to a DL_BIND_REQUEST initiated 6964 * as part of bringing up the interface) and are enqueued in ipsq_mphead. 6965 * 6966 * If a thread does not want to reenter the ipsq when it is already writer, 6967 * it must make sure that the specified reentry point to be called later 6968 * when the ipsq is empty, nor any code path starting from the specified reentry 6969 * point must never ever try to enter the ipsq again. Otherwise it can lead 6970 * to an infinite loop. The reentry point ip_rput_dlpi_writer is an example. 6971 * When the thread that is currently exclusive finishes, it (ipsq_exit) 6972 * dequeues the requests waiting to become exclusive in ipsq_mphead and calls 6973 * the reentry point. When the list at ipsq_mphead becomes empty ipsq_exit 6974 * proceeds to dequeue the next ioctl in ipsq_xopq_mphead and start the next 6975 * ioctl if the current ioctl has completed. If the current ioctl is still 6976 * in progress it simply returns. The current ioctl could be waiting for 6977 * a response from another module (arp_ or the driver or could be waiting for 6978 * the ipif/ill/ire refcnts to drop to zero. In such a case the ipsq_pending_mp 6979 * and ipsq_pending_ipif are set. ipsq_current_ipif is set throughout the 6980 * execution of the ioctl and ipsq_exit does not start the next ioctl unless 6981 * ipsq_current_ipif is clear which happens only on ioctl completion. 6982 */ 6983 6984 /* 6985 * Try to enter the ipsq exclusively, corresponding to ipif or ill. (only 1 of 6986 * ipif or ill can be specified). The caller ensures ipif or ill is valid by 6987 * ref-holding it if necessary. If the ipsq cannot be entered, the mp is queued 6988 * completion. 6989 */ 6990 ipsq_t * 6991 ipsq_try_enter(ipif_t *ipif, ill_t *ill, queue_t *q, mblk_t *mp, 6992 ipsq_func_t func, int type, boolean_t reentry_ok) 6993 { 6994 ipsq_t *ipsq; 6995 6996 /* Only 1 of ipif or ill can be specified */ 6997 ASSERT((ipif != NULL) ^ (ill != NULL)); 6998 if (ipif != NULL) 6999 ill = ipif->ipif_ill; 7000 7001 /* 7002 * lock ordering ill_g_lock -> conn_lock -> ill_lock -> ipsq_lock 7003 * ipsq of an ill can't change when ill_lock is held. 7004 */ 7005 GRAB_CONN_LOCK(q); 7006 mutex_enter(&ill->ill_lock); 7007 ipsq = ill->ill_phyint->phyint_ipsq; 7008 mutex_enter(&ipsq->ipsq_lock); 7009 7010 /* 7011 * 1. Enter the ipsq if we are already writer and reentry is ok. 7012 * (Note: If the caller does not specify reentry_ok then neither 7013 * 'func' nor any of its callees must ever attempt to enter the ipsq 7014 * again. Otherwise it can lead to an infinite loop 7015 * 2. Enter the ipsq if there is no current writer and this attempted 7016 * entry is part of the current ioctl or operation 7017 * 3. Enter the ipsq if there is no current writer and this is a new 7018 * ioctl (or operation) and the ioctl (or operation) queue is 7019 * empty and there is no ioctl (or operation) currently in progress 7020 */ 7021 if ((ipsq->ipsq_writer == NULL && ((type == CUR_OP) || 7022 (type == NEW_OP && ipsq->ipsq_xopq_mphead == NULL && 7023 ipsq->ipsq_current_ipif == NULL))) || 7024 (ipsq->ipsq_writer == curthread && reentry_ok)) { 7025 /* Success. */ 7026 ipsq->ipsq_reentry_cnt++; 7027 ipsq->ipsq_writer = curthread; 7028 mutex_exit(&ipsq->ipsq_lock); 7029 mutex_exit(&ill->ill_lock); 7030 RELEASE_CONN_LOCK(q); 7031 #ifdef ILL_DEBUG 7032 ipsq->ipsq_depth = getpcstack(ipsq->ipsq_stack, IP_STACK_DEPTH); 7033 #endif 7034 return (ipsq); 7035 } 7036 7037 ipsq_enq(ipsq, q, mp, func, type, ill); 7038 7039 mutex_exit(&ipsq->ipsq_lock); 7040 mutex_exit(&ill->ill_lock); 7041 RELEASE_CONN_LOCK(q); 7042 return (NULL); 7043 } 7044 7045 /* 7046 * Try to enter the ipsq exclusively, corresponding to ipif or ill. (only 1 of 7047 * ipif or ill can be specified). The caller ensures ipif or ill is valid by 7048 * ref-holding it if necessary. If the ipsq cannot be entered, the mp is queued 7049 * completion. 7050 * 7051 * This function does a refrele on the ipif/ill. 7052 */ 7053 void 7054 qwriter_ip(ipif_t *ipif, ill_t *ill, queue_t *q, mblk_t *mp, 7055 ipsq_func_t func, int type, boolean_t reentry_ok) 7056 { 7057 ipsq_t *ipsq; 7058 7059 ipsq = ipsq_try_enter(ipif, ill, q, mp, func, type, reentry_ok); 7060 /* 7061 * Caller must have done a refhold on the ipif. ipif_refrele 7062 * happens on the passed ipif. We can do this since we are 7063 * already exclusive, or we won't access ipif henceforth, Both 7064 * this func and caller will just return if we ipsq_try_enter 7065 * fails above. This is needed because func needs to 7066 * see the correct refcount. Eg. removeif can work only then. 7067 */ 7068 if (ipif != NULL) 7069 ipif_refrele(ipif); 7070 else 7071 ill_refrele(ill); 7072 if (ipsq != NULL) { 7073 (*func)(ipsq, q, mp, NULL); 7074 ipsq_exit(ipsq, B_TRUE, B_TRUE); 7075 } 7076 } 7077 7078 /* 7079 * If there are more than ILL_GRP_CNT ills in a group, 7080 * we use kmem alloc'd buffers, else use the stack 7081 */ 7082 #define ILL_GRP_CNT 14 7083 /* 7084 * Drain the ipsq, if there are messages on it, and then leave the ipsq. 7085 * Called by a thread that is currently exclusive on this ipsq. 7086 */ 7087 void 7088 ipsq_exit(ipsq_t *ipsq, boolean_t start_igmp_timer, boolean_t start_mld_timer) 7089 { 7090 queue_t *q; 7091 mblk_t *mp; 7092 ipsq_func_t func; 7093 int next; 7094 ill_t **ill_list = NULL; 7095 size_t ill_list_size = 0; 7096 int cnt = 0; 7097 boolean_t need_ipsq_free = B_FALSE; 7098 7099 ASSERT(IAM_WRITER_IPSQ(ipsq)); 7100 mutex_enter(&ipsq->ipsq_lock); 7101 ASSERT(ipsq->ipsq_reentry_cnt >= 1); 7102 if (ipsq->ipsq_reentry_cnt != 1) { 7103 ipsq->ipsq_reentry_cnt--; 7104 mutex_exit(&ipsq->ipsq_lock); 7105 return; 7106 } 7107 7108 mp = ipsq_dq(ipsq); 7109 while (mp != NULL) { 7110 again: 7111 mutex_exit(&ipsq->ipsq_lock); 7112 func = (ipsq_func_t)mp->b_prev; 7113 q = (queue_t *)mp->b_queue; 7114 mp->b_prev = NULL; 7115 mp->b_queue = NULL; 7116 7117 /* 7118 * If 'q' is an conn queue, it is valid, since we did a 7119 * a refhold on the connp, at the start of the ioctl. 7120 * If 'q' is an ill queue, it is valid, since close of an 7121 * ill will clean up the 'ipsq'. 7122 */ 7123 (*func)(ipsq, q, mp, NULL); 7124 7125 mutex_enter(&ipsq->ipsq_lock); 7126 mp = ipsq_dq(ipsq); 7127 } 7128 7129 mutex_exit(&ipsq->ipsq_lock); 7130 7131 /* 7132 * Need to grab the locks in the right order. Need to 7133 * atomically check (under ipsq_lock) that there are no 7134 * messages before relinquishing the ipsq. Also need to 7135 * atomically wakeup waiters on ill_cv while holding ill_lock. 7136 * Holding ill_g_lock ensures that ipsq list of ills is stable. 7137 * If we need to call ill_split_ipsq and change <ill-ipsq> we need 7138 * to grab ill_g_lock as writer. 7139 */ 7140 rw_enter(&ill_g_lock, ipsq->ipsq_split ? RW_WRITER : RW_READER); 7141 7142 /* ipsq_refs can't change while ill_g_lock is held as reader */ 7143 if (ipsq->ipsq_refs != 0) { 7144 /* At most 2 ills v4/v6 per phyint */ 7145 cnt = ipsq->ipsq_refs << 1; 7146 ill_list_size = cnt * sizeof (ill_t *); 7147 /* 7148 * If memory allocation fails, we will do the split 7149 * the next time ipsq_exit is called for whatever reason. 7150 * As long as the ipsq_split flag is set the need to 7151 * split is remembered. 7152 */ 7153 ill_list = kmem_zalloc(ill_list_size, KM_NOSLEEP); 7154 if (ill_list != NULL) 7155 cnt = ill_lock_ipsq_ills(ipsq, ill_list, cnt); 7156 } 7157 mutex_enter(&ipsq->ipsq_lock); 7158 mp = ipsq_dq(ipsq); 7159 if (mp != NULL) { 7160 /* oops, some message has landed up, we can't get out */ 7161 if (ill_list != NULL) 7162 ill_unlock_ills(ill_list, cnt); 7163 rw_exit(&ill_g_lock); 7164 if (ill_list != NULL) 7165 kmem_free(ill_list, ill_list_size); 7166 ill_list = NULL; 7167 ill_list_size = 0; 7168 cnt = 0; 7169 goto again; 7170 } 7171 7172 /* 7173 * Split only if no ioctl is pending and if memory alloc succeeded 7174 * above. 7175 */ 7176 if (ipsq->ipsq_split && ipsq->ipsq_current_ipif == NULL && 7177 ill_list != NULL) { 7178 /* 7179 * No new ill can join this ipsq since we are holding the 7180 * ill_g_lock. Hence ill_split_ipsq can safely traverse the 7181 * ipsq. ill_split_ipsq may fail due to memory shortage. 7182 * If so we will retry on the next ipsq_exit. 7183 */ 7184 ipsq->ipsq_split = ill_split_ipsq(ipsq); 7185 } 7186 7187 /* 7188 * We are holding the ipsq lock, hence no new messages can 7189 * land up on the ipsq, and there are no messages currently. 7190 * Now safe to get out. Wake up waiters and relinquish ipsq 7191 * atomically while holding ill locks. 7192 */ 7193 ipsq->ipsq_writer = NULL; 7194 ipsq->ipsq_reentry_cnt--; 7195 ASSERT(ipsq->ipsq_reentry_cnt == 0); 7196 #ifdef ILL_DEBUG 7197 ipsq->ipsq_depth = 0; 7198 #endif 7199 mutex_exit(&ipsq->ipsq_lock); 7200 /* 7201 * For IPMP this should wake up all ills in this ipsq. 7202 * We need to hold the ill_lock while waking up waiters to 7203 * avoid missed wakeups. But there is no need to acquire all 7204 * the ill locks and then wakeup. If we have not acquired all 7205 * the locks (due to memory failure above) ill_signal_ipsq_ills 7206 * wakes up ills one at a time after getting the right ill_lock 7207 */ 7208 ill_signal_ipsq_ills(ipsq, ill_list != NULL); 7209 if (ill_list != NULL) 7210 ill_unlock_ills(ill_list, cnt); 7211 if (ipsq->ipsq_refs == 0) 7212 need_ipsq_free = B_TRUE; 7213 rw_exit(&ill_g_lock); 7214 if (ill_list != 0) 7215 kmem_free(ill_list, ill_list_size); 7216 7217 if (need_ipsq_free) { 7218 /* 7219 * Free the ipsq. ipsq_refs can't increase because ipsq can't be 7220 * looked up. ipsq can be looked up only thru ill or phyint 7221 * and there are no ills/phyint on this ipsq. 7222 */ 7223 ipsq_delete(ipsq); 7224 } 7225 /* 7226 * Now start any igmp or mld timers that could not be started 7227 * while inside the ipsq. The timers can't be started while inside 7228 * the ipsq, since igmp_start_timers may need to call untimeout() 7229 * which can't be done while holding a lock i.e. the ipsq. Otherwise 7230 * there could be a deadlock since the timeout handlers 7231 * mld_timeout_handler / igmp_timeout_handler also synchronously 7232 * wait in ipsq_enter() trying to get the ipsq. 7233 * 7234 * However there is one exception to the above. If this thread is 7235 * itself the igmp/mld timeout handler thread, then we don't want 7236 * to start any new timer until the current handler is done. The 7237 * handler thread passes in B_FALSE for start_igmp/mld_timers, while 7238 * all others pass B_TRUE. 7239 */ 7240 if (start_igmp_timer) { 7241 mutex_enter(&igmp_timer_lock); 7242 next = igmp_deferred_next; 7243 igmp_deferred_next = INFINITY; 7244 mutex_exit(&igmp_timer_lock); 7245 7246 if (next != INFINITY) 7247 igmp_start_timers(next); 7248 } 7249 7250 if (start_mld_timer) { 7251 mutex_enter(&mld_timer_lock); 7252 next = mld_deferred_next; 7253 mld_deferred_next = INFINITY; 7254 mutex_exit(&mld_timer_lock); 7255 7256 if (next != INFINITY) 7257 mld_start_timers(next); 7258 } 7259 } 7260 7261 /* 7262 * The ill is closing. Flush all messages on the ipsq that originated 7263 * from this ill. Usually there wont' be any messages on the ipsq_xopq_mphead 7264 * for this ill since ipsq_enter could not have entered until then. 7265 * New messages can't be queued since the CONDEMNED flag is set. 7266 */ 7267 static void 7268 ipsq_flush(ill_t *ill) 7269 { 7270 queue_t *q; 7271 mblk_t *prev; 7272 mblk_t *mp; 7273 mblk_t *mp_next; 7274 ipsq_t *ipsq; 7275 7276 ASSERT(IAM_WRITER_ILL(ill)); 7277 ipsq = ill->ill_phyint->phyint_ipsq; 7278 /* 7279 * Flush any messages sent up by the driver. 7280 */ 7281 mutex_enter(&ipsq->ipsq_lock); 7282 for (prev = NULL, mp = ipsq->ipsq_mphead; mp != NULL; mp = mp_next) { 7283 mp_next = mp->b_next; 7284 q = mp->b_queue; 7285 if (q == ill->ill_rq || q == ill->ill_wq) { 7286 /* Remove the mp from the ipsq */ 7287 if (prev == NULL) 7288 ipsq->ipsq_mphead = mp->b_next; 7289 else 7290 prev->b_next = mp->b_next; 7291 if (ipsq->ipsq_mptail == mp) { 7292 ASSERT(mp_next == NULL); 7293 ipsq->ipsq_mptail = prev; 7294 } 7295 ip_ioctl_freemsg(mp); 7296 } else { 7297 prev = mp; 7298 } 7299 } 7300 mutex_exit(&ipsq->ipsq_lock); 7301 (void) ipsq_pending_mp_cleanup(ill, NULL); 7302 ipsq_xopq_mp_cleanup(ill, NULL); 7303 ill_pending_mp_cleanup(ill); 7304 } 7305 7306 /* 7307 * Clean up one squeue element. ill_inuse_ref is protected by ill_lock. 7308 * The real cleanup happens behind the squeue via ip_squeue_clean function but 7309 * we need to protect ourselfs from 2 threads trying to cleanup at the same 7310 * time (possible with one port going down for aggr and someone tearing down the 7311 * entire aggr simultaneously. So we use ill_inuse_ref protected by ill_lock 7312 * to indicate when the cleanup has started (1 ref) and when the cleanup 7313 * is done (0 ref). When a new ring gets assigned to squeue, we start by 7314 * putting 2 ref on ill_inuse_ref. 7315 */ 7316 static void 7317 ipsq_clean_ring(ill_t *ill, ill_rx_ring_t *rx_ring) 7318 { 7319 conn_t *connp; 7320 squeue_t *sqp; 7321 mblk_t *mp; 7322 7323 ASSERT(rx_ring != NULL); 7324 7325 /* Just clean one squeue */ 7326 mutex_enter(&ill->ill_lock); 7327 while (rx_ring->rr_ring_state == ILL_RING_INPROC) 7328 /* Some operations pending on the ring. Wait */ 7329 cv_wait(&ill->ill_cv, &ill->ill_lock); 7330 7331 if (rx_ring->rr_ring_state != ILL_RING_INUSE) { 7332 /* 7333 * Someone already trying to clean 7334 * this squeue or its already been cleaned. 7335 */ 7336 mutex_exit(&ill->ill_lock); 7337 return; 7338 } 7339 sqp = rx_ring->rr_sqp; 7340 7341 if (sqp == NULL) { 7342 /* 7343 * The rx_ring never had a squeue assigned to it. 7344 * We are under ill_lock so we can clean it up 7345 * here itself since no one can get to it. 7346 */ 7347 rx_ring->rr_blank = NULL; 7348 rx_ring->rr_handle = NULL; 7349 rx_ring->rr_sqp = NULL; 7350 rx_ring->rr_ring_state = ILL_RING_FREE; 7351 mutex_exit(&ill->ill_lock); 7352 return; 7353 } 7354 7355 /* Set the state that its being cleaned */ 7356 rx_ring->rr_ring_state = ILL_RING_BEING_FREED; 7357 ASSERT(sqp != NULL); 7358 mutex_exit(&ill->ill_lock); 7359 7360 /* 7361 * Use the preallocated ill_unbind_conn for this purpose 7362 */ 7363 connp = ill->ill_poll_capab->ill_unbind_conn; 7364 mp = &connp->conn_tcp->tcp_closemp; 7365 CONN_INC_REF(connp); 7366 squeue_enter(sqp, mp, ip_squeue_clean, connp, NULL); 7367 7368 mutex_enter(&ill->ill_lock); 7369 while (rx_ring->rr_ring_state != ILL_RING_FREE) 7370 cv_wait(&ill->ill_cv, &ill->ill_lock); 7371 7372 mutex_exit(&ill->ill_lock); 7373 } 7374 7375 static void 7376 ipsq_clean_all(ill_t *ill) 7377 { 7378 int idx; 7379 7380 /* 7381 * No need to clean if poll_capab isn't set for this ill 7382 */ 7383 if (!(ill->ill_capabilities & ILL_CAPAB_POLL)) 7384 return; 7385 7386 ill->ill_capabilities &= ~ILL_CAPAB_POLL; 7387 7388 for (idx = 0; idx < ILL_MAX_RINGS; idx++) { 7389 ill_rx_ring_t *ipr = &ill->ill_poll_capab->ill_ring_tbl[idx]; 7390 ipsq_clean_ring(ill, ipr); 7391 } 7392 } 7393 7394 /* ARGSUSED */ 7395 int 7396 ip_sioctl_slifoindex(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 7397 ip_ioctl_cmd_t *ipip, void *ifreq) 7398 { 7399 ill_t *ill; 7400 struct lifreq *lifr = (struct lifreq *)ifreq; 7401 boolean_t isv6; 7402 conn_t *connp; 7403 7404 connp = Q_TO_CONN(q); 7405 isv6 = connp->conn_af_isv6; 7406 /* 7407 * Set original index. 7408 * Failover and failback move logical interfaces 7409 * from one physical interface to another. The 7410 * original index indicates the parent of a logical 7411 * interface, in other words, the physical interface 7412 * the logical interface will be moved back to on 7413 * failback. 7414 */ 7415 7416 /* 7417 * Don't allow the original index to be changed 7418 * for non-failover addresses, autoconfigured 7419 * addresses, or IPv6 link local addresses. 7420 */ 7421 if (((ipif->ipif_flags & (IPIF_NOFAILOVER | IPIF_ADDRCONF)) != NULL) || 7422 (isv6 && IN6_IS_ADDR_LINKLOCAL(&ipif->ipif_v6lcl_addr))) { 7423 return (EINVAL); 7424 } 7425 /* 7426 * The new original index must be in use by some 7427 * physical interface. 7428 */ 7429 ill = ill_lookup_on_ifindex(lifr->lifr_index, isv6, NULL, NULL, 7430 NULL, NULL); 7431 if (ill == NULL) 7432 return (ENXIO); 7433 ill_refrele(ill); 7434 7435 ipif->ipif_orig_ifindex = lifr->lifr_index; 7436 /* 7437 * When this ipif gets failed back, don't 7438 * preserve the original id, as it is no 7439 * longer applicable. 7440 */ 7441 ipif->ipif_orig_ipifid = 0; 7442 /* 7443 * For IPv4, change the original index of any 7444 * multicast addresses associated with the 7445 * ipif to the new value. 7446 */ 7447 if (!isv6) { 7448 ilm_t *ilm; 7449 7450 mutex_enter(&ipif->ipif_ill->ill_lock); 7451 for (ilm = ipif->ipif_ill->ill_ilm; ilm != NULL; 7452 ilm = ilm->ilm_next) { 7453 if (ilm->ilm_ipif == ipif) { 7454 ilm->ilm_orig_ifindex = lifr->lifr_index; 7455 } 7456 } 7457 mutex_exit(&ipif->ipif_ill->ill_lock); 7458 } 7459 return (0); 7460 } 7461 7462 /* ARGSUSED */ 7463 int 7464 ip_sioctl_get_oindex(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 7465 ip_ioctl_cmd_t *ipip, void *ifreq) 7466 { 7467 struct lifreq *lifr = (struct lifreq *)ifreq; 7468 7469 /* 7470 * Get the original interface index i.e the one 7471 * before FAILOVER if it ever happened. 7472 */ 7473 lifr->lifr_index = ipif->ipif_orig_ifindex; 7474 return (0); 7475 } 7476 7477 /* 7478 * Parse an iftun_req structure coming down SIOC[GS]TUNPARAM ioctls, 7479 * refhold and return the associated ipif 7480 */ 7481 int 7482 ip_extract_tunreq(queue_t *q, mblk_t *mp, ipif_t **ipifp, ipsq_func_t func) 7483 { 7484 boolean_t exists; 7485 struct iftun_req *ta; 7486 ipif_t *ipif; 7487 ill_t *ill; 7488 boolean_t isv6; 7489 mblk_t *mp1; 7490 int error; 7491 conn_t *connp; 7492 7493 /* Existence verified in ip_wput_nondata */ 7494 mp1 = mp->b_cont->b_cont; 7495 ta = (struct iftun_req *)mp1->b_rptr; 7496 /* 7497 * Null terminate the string to protect against buffer 7498 * overrun. String was generated by user code and may not 7499 * be trusted. 7500 */ 7501 ta->ifta_lifr_name[LIFNAMSIZ - 1] = '\0'; 7502 7503 connp = Q_TO_CONN(q); 7504 isv6 = connp->conn_af_isv6; 7505 7506 /* Disallows implicit create */ 7507 ipif = ipif_lookup_on_name(ta->ifta_lifr_name, 7508 mi_strlen(ta->ifta_lifr_name), B_FALSE, &exists, isv6, 7509 connp->conn_zoneid, CONNP_TO_WQ(connp), mp, func, &error); 7510 if (ipif == NULL) 7511 return (error); 7512 7513 if (ipif->ipif_id != 0) { 7514 /* 7515 * We really don't want to set/get tunnel parameters 7516 * on virtual tunnel interfaces. Only allow the 7517 * base tunnel to do these. 7518 */ 7519 ipif_refrele(ipif); 7520 return (EINVAL); 7521 } 7522 7523 /* 7524 * Send down to tunnel mod for ioctl processing. 7525 * Will finish ioctl in ip_rput_other(). 7526 */ 7527 ill = ipif->ipif_ill; 7528 if (ill->ill_net_type == IRE_LOOPBACK) { 7529 ipif_refrele(ipif); 7530 return (EOPNOTSUPP); 7531 } 7532 7533 if (ill->ill_wq == NULL) { 7534 ipif_refrele(ipif); 7535 return (ENXIO); 7536 } 7537 /* 7538 * Mark the ioctl as coming from an IPv6 interface for 7539 * tun's convenience. 7540 */ 7541 if (ill->ill_isv6) 7542 ta->ifta_flags |= 0x80000000; 7543 *ipifp = ipif; 7544 return (0); 7545 } 7546 7547 /* 7548 * Parse an ifreq or lifreq struct coming down ioctls and refhold 7549 * and return the associated ipif. 7550 * Return value: 7551 * Non zero: An error has occurred. ci may not be filled out. 7552 * zero : ci is filled out with the ioctl cmd in ci.ci_name, and 7553 * a held ipif in ci.ci_ipif. 7554 */ 7555 int 7556 ip_extract_lifreq_cmn(queue_t *q, mblk_t *mp, int cmd_type, int flags, 7557 cmd_info_t *ci, ipsq_func_t func) 7558 { 7559 sin_t *sin; 7560 sin6_t *sin6; 7561 char *name; 7562 struct ifreq *ifr; 7563 struct lifreq *lifr; 7564 ipif_t *ipif = NULL; 7565 ill_t *ill; 7566 conn_t *connp; 7567 boolean_t isv6; 7568 struct iocblk *iocp = (struct iocblk *)mp->b_rptr; 7569 boolean_t exists; 7570 int err; 7571 mblk_t *mp1; 7572 zoneid_t zoneid; 7573 7574 if (q->q_next != NULL) { 7575 ill = (ill_t *)q->q_ptr; 7576 isv6 = ill->ill_isv6; 7577 connp = NULL; 7578 zoneid = ALL_ZONES; 7579 } else { 7580 ill = NULL; 7581 connp = Q_TO_CONN(q); 7582 isv6 = connp->conn_af_isv6; 7583 zoneid = connp->conn_zoneid; 7584 if (zoneid == GLOBAL_ZONEID) { 7585 /* global zone can access ipifs in all zones */ 7586 zoneid = ALL_ZONES; 7587 } 7588 } 7589 7590 /* Has been checked in ip_wput_nondata */ 7591 mp1 = mp->b_cont->b_cont; 7592 7593 7594 if (cmd_type == IF_CMD) { 7595 /* This a old style SIOC[GS]IF* command */ 7596 ifr = (struct ifreq *)mp1->b_rptr; 7597 /* 7598 * Null terminate the string to protect against buffer 7599 * overrun. String was generated by user code and may not 7600 * be trusted. 7601 */ 7602 ifr->ifr_name[IFNAMSIZ - 1] = '\0'; 7603 sin = (sin_t *)&ifr->ifr_addr; 7604 name = ifr->ifr_name; 7605 ci->ci_sin = sin; 7606 ci->ci_sin6 = NULL; 7607 ci->ci_lifr = (struct lifreq *)ifr; 7608 } else { 7609 /* This a new style SIOC[GS]LIF* command */ 7610 ASSERT(cmd_type == LIF_CMD); 7611 lifr = (struct lifreq *)mp1->b_rptr; 7612 /* 7613 * Null terminate the string to protect against buffer 7614 * overrun. String was generated by user code and may not 7615 * be trusted. 7616 */ 7617 lifr->lifr_name[LIFNAMSIZ - 1] = '\0'; 7618 name = lifr->lifr_name; 7619 sin = (sin_t *)&lifr->lifr_addr; 7620 sin6 = (sin6_t *)&lifr->lifr_addr; 7621 if (iocp->ioc_cmd == SIOCSLIFGROUPNAME) { 7622 (void) strncpy(ci->ci_groupname, lifr->lifr_groupname, 7623 LIFNAMSIZ); 7624 } 7625 ci->ci_sin = sin; 7626 ci->ci_sin6 = sin6; 7627 ci->ci_lifr = lifr; 7628 } 7629 7630 7631 if (iocp->ioc_cmd == SIOCSLIFNAME) { 7632 /* 7633 * The ioctl will be failed if the ioctl comes down 7634 * an conn stream 7635 */ 7636 if (ill == NULL) { 7637 /* 7638 * Not an ill queue, return EINVAL same as the 7639 * old error code. 7640 */ 7641 return (ENXIO); 7642 } 7643 ipif = ill->ill_ipif; 7644 ipif_refhold(ipif); 7645 } else { 7646 ipif = ipif_lookup_on_name(name, mi_strlen(name), B_FALSE, 7647 &exists, isv6, zoneid, 7648 (connp == NULL) ? q : CONNP_TO_WQ(connp), mp, func, &err); 7649 if (ipif == NULL) { 7650 if (err == EINPROGRESS) 7651 return (err); 7652 if (iocp->ioc_cmd == SIOCLIFFAILOVER || 7653 iocp->ioc_cmd == SIOCLIFFAILBACK) { 7654 /* 7655 * Need to try both v4 and v6 since this 7656 * ioctl can come down either v4 or v6 7657 * socket. The lifreq.lifr_family passed 7658 * down by this ioctl is AF_UNSPEC. 7659 */ 7660 ipif = ipif_lookup_on_name(name, 7661 mi_strlen(name), B_FALSE, &exists, !isv6, 7662 zoneid, (connp == NULL) ? q : 7663 CONNP_TO_WQ(connp), mp, func, &err); 7664 if (err == EINPROGRESS) 7665 return (err); 7666 } 7667 err = 0; /* Ensure we don't use it below */ 7668 } 7669 } 7670 7671 /* 7672 * Old style [GS]IFCMD does not admit IPv6 ipif 7673 */ 7674 if (ipif != NULL && ipif->ipif_isv6 && cmd_type == IF_CMD) { 7675 ipif_refrele(ipif); 7676 return (ENXIO); 7677 } 7678 7679 if (ipif == NULL && ill != NULL && ill->ill_ipif != NULL && 7680 name[0] == '\0') { 7681 /* 7682 * Handle a or a SIOC?IF* with a null name 7683 * during plumb (on the ill queue before the I_PLINK). 7684 */ 7685 ipif = ill->ill_ipif; 7686 ipif_refhold(ipif); 7687 } 7688 7689 if (ipif == NULL) 7690 return (ENXIO); 7691 7692 /* 7693 * Allow only GET operations if this ipif has been created 7694 * temporarily due to a MOVE operation. 7695 */ 7696 if (ipif->ipif_replace_zero && !(flags & IPI_REPL)) { 7697 ipif_refrele(ipif); 7698 return (EINVAL); 7699 } 7700 7701 ci->ci_ipif = ipif; 7702 return (0); 7703 } 7704 7705 /* 7706 * Return the total number of ipifs. 7707 */ 7708 static uint_t 7709 ip_get_numifs(zoneid_t zoneid) 7710 { 7711 uint_t numifs = 0; 7712 ill_t *ill; 7713 ill_walk_context_t ctx; 7714 ipif_t *ipif; 7715 7716 rw_enter(&ill_g_lock, RW_READER); 7717 ill = ILL_START_WALK_V4(&ctx); 7718 7719 while (ill != NULL) { 7720 for (ipif = ill->ill_ipif; ipif != NULL; 7721 ipif = ipif->ipif_next) { 7722 if (ipif->ipif_zoneid == zoneid) 7723 numifs++; 7724 } 7725 ill = ill_next(&ctx, ill); 7726 } 7727 rw_exit(&ill_g_lock); 7728 return (numifs); 7729 } 7730 7731 /* 7732 * Return the total number of ipifs. 7733 */ 7734 static uint_t 7735 ip_get_numlifs(int family, int lifn_flags, zoneid_t zoneid) 7736 { 7737 uint_t numifs = 0; 7738 ill_t *ill; 7739 ipif_t *ipif; 7740 ill_walk_context_t ctx; 7741 7742 ip1dbg(("ip_get_numlifs(%d %u %d)\n", family, lifn_flags, (int)zoneid)); 7743 7744 rw_enter(&ill_g_lock, RW_READER); 7745 if (family == AF_INET) 7746 ill = ILL_START_WALK_V4(&ctx); 7747 else if (family == AF_INET6) 7748 ill = ILL_START_WALK_V6(&ctx); 7749 else 7750 ill = ILL_START_WALK_ALL(&ctx); 7751 7752 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 7753 for (ipif = ill->ill_ipif; ipif != NULL; 7754 ipif = ipif->ipif_next) { 7755 if ((ipif->ipif_flags & IPIF_NOXMIT) && 7756 !(lifn_flags & LIFC_NOXMIT)) 7757 continue; 7758 if ((ipif->ipif_flags & IPIF_TEMPORARY) && 7759 !(lifn_flags & LIFC_TEMPORARY)) 7760 continue; 7761 if (((ipif->ipif_flags & 7762 (IPIF_NOXMIT|IPIF_NOLOCAL| 7763 IPIF_DEPRECATED)) || 7764 (ill->ill_phyint->phyint_flags & 7765 PHYI_LOOPBACK) || 7766 !(ipif->ipif_flags & IPIF_UP)) && 7767 (lifn_flags & LIFC_EXTERNAL_SOURCE)) 7768 continue; 7769 7770 if (zoneid != ipif->ipif_zoneid && 7771 (zoneid != GLOBAL_ZONEID || 7772 !(lifn_flags & LIFC_ALLZONES))) 7773 continue; 7774 7775 numifs++; 7776 } 7777 } 7778 rw_exit(&ill_g_lock); 7779 return (numifs); 7780 } 7781 7782 uint_t 7783 ip_get_lifsrcofnum(ill_t *ill) 7784 { 7785 uint_t numifs = 0; 7786 ill_t *ill_head = ill; 7787 7788 /* 7789 * ill_g_usesrc_lock protects ill_usesrc_grp_next, for example, some 7790 * other thread may be trying to relink the ILLs in this usesrc group 7791 * and adjusting the ill_usesrc_grp_next pointers 7792 */ 7793 rw_enter(&ill_g_usesrc_lock, RW_READER); 7794 if ((ill->ill_usesrc_ifindex == 0) && 7795 (ill->ill_usesrc_grp_next != NULL)) { 7796 for (; (ill != NULL) && (ill->ill_usesrc_grp_next != ill_head); 7797 ill = ill->ill_usesrc_grp_next) 7798 numifs++; 7799 } 7800 rw_exit(&ill_g_usesrc_lock); 7801 7802 return (numifs); 7803 } 7804 7805 /* Null values are passed in for ipif, sin, and ifreq */ 7806 /* ARGSUSED */ 7807 int 7808 ip_sioctl_get_ifnum(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, 7809 mblk_t *mp, ip_ioctl_cmd_t *ipip, void *ifreq) 7810 { 7811 int *nump; 7812 7813 ASSERT(q->q_next == NULL); /* not a valid ioctl for ip as a module */ 7814 7815 /* Existence of b_cont->b_cont checked in ip_wput_nondata */ 7816 nump = (int *)mp->b_cont->b_cont->b_rptr; 7817 7818 *nump = ip_get_numifs(Q_TO_CONN(q)->conn_zoneid); 7819 ip1dbg(("ip_sioctl_get_ifnum numifs %d", *nump)); 7820 return (0); 7821 } 7822 7823 /* Null values are passed in for ipif, sin, and ifreq */ 7824 /* ARGSUSED */ 7825 int 7826 ip_sioctl_get_lifnum(ipif_t *dummy_ipif, sin_t *dummy_sin, 7827 queue_t *q, mblk_t *mp, ip_ioctl_cmd_t *ipip, void *ifreq) 7828 { 7829 struct lifnum *lifn; 7830 mblk_t *mp1; 7831 7832 ASSERT(q->q_next == NULL); /* not a valid ioctl for ip as a module */ 7833 7834 /* Existence checked in ip_wput_nondata */ 7835 mp1 = mp->b_cont->b_cont; 7836 7837 lifn = (struct lifnum *)mp1->b_rptr; 7838 switch (lifn->lifn_family) { 7839 case AF_UNSPEC: 7840 case AF_INET: 7841 case AF_INET6: 7842 break; 7843 default: 7844 return (EAFNOSUPPORT); 7845 } 7846 7847 lifn->lifn_count = ip_get_numlifs(lifn->lifn_family, lifn->lifn_flags, 7848 Q_TO_CONN(q)->conn_zoneid); 7849 ip1dbg(("ip_sioctl_get_lifnum numifs %d", lifn->lifn_count)); 7850 return (0); 7851 } 7852 7853 /* ARGSUSED */ 7854 int 7855 ip_sioctl_get_ifconf(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, 7856 mblk_t *mp, ip_ioctl_cmd_t *ipip, void *ifreq) 7857 { 7858 STRUCT_HANDLE(ifconf, ifc); 7859 mblk_t *mp1; 7860 struct iocblk *iocp; 7861 struct ifreq *ifr; 7862 ill_walk_context_t ctx; 7863 ill_t *ill; 7864 ipif_t *ipif; 7865 struct sockaddr_in *sin; 7866 int32_t ifclen; 7867 zoneid_t zoneid; 7868 7869 ASSERT(q->q_next == NULL); /* not valid ioctls for ip as a module */ 7870 7871 ip1dbg(("ip_sioctl_get_ifconf")); 7872 /* Existence verified in ip_wput_nondata */ 7873 mp1 = mp->b_cont->b_cont; 7874 iocp = (struct iocblk *)mp->b_rptr; 7875 zoneid = Q_TO_CONN(q)->conn_zoneid; 7876 7877 /* 7878 * The original SIOCGIFCONF passed in a struct ifconf which specified 7879 * the user buffer address and length into which the list of struct 7880 * ifreqs was to be copied. Since AT&T Streams does not seem to 7881 * allow M_COPYOUT to be used in conjunction with I_STR IOCTLS, 7882 * the SIOCGIFCONF operation was redefined to simply provide 7883 * a large output buffer into which we are supposed to jam the ifreq 7884 * array. The same ioctl command code was used, despite the fact that 7885 * both the applications and the kernel code had to change, thus making 7886 * it impossible to support both interfaces. 7887 * 7888 * For reasons not good enough to try to explain, the following 7889 * algorithm is used for deciding what to do with one of these: 7890 * If the IOCTL comes in as an I_STR, it is assumed to be of the new 7891 * form with the output buffer coming down as the continuation message. 7892 * If it arrives as a TRANSPARENT IOCTL, it is assumed to be old style, 7893 * and we have to copy in the ifconf structure to find out how big the 7894 * output buffer is and where to copy out to. Sure no problem... 7895 * 7896 */ 7897 STRUCT_SET_HANDLE(ifc, iocp->ioc_flag, NULL); 7898 if ((mp1->b_wptr - mp1->b_rptr) == STRUCT_SIZE(ifc)) { 7899 int numifs = 0; 7900 size_t ifc_bufsize; 7901 7902 /* 7903 * Must be (better be!) continuation of a TRANSPARENT 7904 * IOCTL. We just copied in the ifconf structure. 7905 */ 7906 STRUCT_SET_HANDLE(ifc, iocp->ioc_flag, 7907 (struct ifconf *)mp1->b_rptr); 7908 7909 /* 7910 * Allocate a buffer to hold requested information. 7911 * 7912 * If ifc_len is larger than what is needed, we only 7913 * allocate what we will use. 7914 * 7915 * If ifc_len is smaller than what is needed, return 7916 * EINVAL. 7917 * 7918 * XXX: the ill_t structure can hava 2 counters, for 7919 * v4 and v6 (not just ill_ipif_up_count) to store the 7920 * number of interfaces for a device, so we don't need 7921 * to count them here... 7922 */ 7923 numifs = ip_get_numifs(zoneid); 7924 7925 ifclen = STRUCT_FGET(ifc, ifc_len); 7926 ifc_bufsize = numifs * sizeof (struct ifreq); 7927 if (ifc_bufsize > ifclen) { 7928 if (iocp->ioc_cmd == O_SIOCGIFCONF) { 7929 /* old behaviour */ 7930 return (EINVAL); 7931 } else { 7932 ifc_bufsize = ifclen; 7933 } 7934 } 7935 7936 mp1 = mi_copyout_alloc(q, mp, 7937 STRUCT_FGETP(ifc, ifc_buf), ifc_bufsize, B_FALSE); 7938 if (mp1 == NULL) 7939 return (ENOMEM); 7940 7941 mp1->b_wptr = mp1->b_rptr + ifc_bufsize; 7942 } 7943 bzero(mp1->b_rptr, mp1->b_wptr - mp1->b_rptr); 7944 /* 7945 * the SIOCGIFCONF ioctl only knows about 7946 * IPv4 addresses, so don't try to tell 7947 * it about interfaces with IPv6-only 7948 * addresses. (Last parm 'isv6' is B_FALSE) 7949 */ 7950 7951 ifr = (struct ifreq *)mp1->b_rptr; 7952 7953 rw_enter(&ill_g_lock, RW_READER); 7954 ill = ILL_START_WALK_V4(&ctx); 7955 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 7956 for (ipif = ill->ill_ipif; ipif; 7957 ipif = ipif->ipif_next) { 7958 if (zoneid != ipif->ipif_zoneid) 7959 continue; 7960 if ((uchar_t *)&ifr[1] > mp1->b_wptr) { 7961 if (iocp->ioc_cmd == O_SIOCGIFCONF) { 7962 /* old behaviour */ 7963 rw_exit(&ill_g_lock); 7964 return (EINVAL); 7965 } else { 7966 goto if_copydone; 7967 } 7968 } 7969 (void) ipif_get_name(ipif, 7970 ifr->ifr_name, 7971 sizeof (ifr->ifr_name)); 7972 sin = (sin_t *)&ifr->ifr_addr; 7973 *sin = sin_null; 7974 sin->sin_family = AF_INET; 7975 sin->sin_addr.s_addr = ipif->ipif_lcl_addr; 7976 ifr++; 7977 } 7978 } 7979 if_copydone: 7980 rw_exit(&ill_g_lock); 7981 mp1->b_wptr = (uchar_t *)ifr; 7982 7983 if (STRUCT_BUF(ifc) != NULL) { 7984 STRUCT_FSET(ifc, ifc_len, 7985 (int)((uchar_t *)ifr - mp1->b_rptr)); 7986 } 7987 return (0); 7988 } 7989 7990 /* 7991 * Get the interfaces using the address hosted on the interface passed in, 7992 * as a source adddress 7993 */ 7994 /* ARGSUSED */ 7995 int 7996 ip_sioctl_get_lifsrcof(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, 7997 mblk_t *mp, ip_ioctl_cmd_t *ipip, void *ifreq) 7998 { 7999 mblk_t *mp1; 8000 ill_t *ill, *ill_head; 8001 ipif_t *ipif, *orig_ipif; 8002 int numlifs = 0; 8003 size_t lifs_bufsize, lifsmaxlen; 8004 struct lifreq *lifr; 8005 struct iocblk *iocp = (struct iocblk *)mp->b_rptr; 8006 uint_t ifindex; 8007 zoneid_t zoneid; 8008 int err = 0; 8009 boolean_t isv6 = B_FALSE; 8010 struct sockaddr_in *sin; 8011 struct sockaddr_in6 *sin6; 8012 8013 STRUCT_HANDLE(lifsrcof, lifs); 8014 8015 ASSERT(q->q_next == NULL); 8016 8017 zoneid = Q_TO_CONN(q)->conn_zoneid; 8018 8019 /* Existence verified in ip_wput_nondata */ 8020 mp1 = mp->b_cont->b_cont; 8021 8022 /* 8023 * Must be (better be!) continuation of a TRANSPARENT 8024 * IOCTL. We just copied in the lifsrcof structure. 8025 */ 8026 STRUCT_SET_HANDLE(lifs, iocp->ioc_flag, 8027 (struct lifsrcof *)mp1->b_rptr); 8028 8029 if (MBLKL(mp1) != STRUCT_SIZE(lifs)) 8030 return (EINVAL); 8031 8032 ifindex = STRUCT_FGET(lifs, lifs_ifindex); 8033 isv6 = (Q_TO_CONN(q))->conn_af_isv6; 8034 ipif = ipif_lookup_on_ifindex(ifindex, isv6, zoneid, q, mp, 8035 ip_process_ioctl, &err); 8036 if (ipif == NULL) { 8037 ip1dbg(("ip_sioctl_get_lifsrcof: no ipif for ifindex %d\n", 8038 ifindex)); 8039 return (err); 8040 } 8041 8042 8043 /* Allocate a buffer to hold requested information */ 8044 numlifs = ip_get_lifsrcofnum(ipif->ipif_ill); 8045 lifs_bufsize = numlifs * sizeof (struct lifreq); 8046 lifsmaxlen = STRUCT_FGET(lifs, lifs_maxlen); 8047 /* The actual size needed is always returned in lifs_len */ 8048 STRUCT_FSET(lifs, lifs_len, lifs_bufsize); 8049 8050 /* If the amount we need is more than what is passed in, abort */ 8051 if (lifs_bufsize > lifsmaxlen || lifs_bufsize == 0) { 8052 ipif_refrele(ipif); 8053 return (0); 8054 } 8055 8056 mp1 = mi_copyout_alloc(q, mp, 8057 STRUCT_FGETP(lifs, lifs_buf), lifs_bufsize, B_FALSE); 8058 if (mp1 == NULL) { 8059 ipif_refrele(ipif); 8060 return (ENOMEM); 8061 } 8062 8063 mp1->b_wptr = mp1->b_rptr + lifs_bufsize; 8064 bzero(mp1->b_rptr, lifs_bufsize); 8065 8066 lifr = (struct lifreq *)mp1->b_rptr; 8067 8068 ill = ill_head = ipif->ipif_ill; 8069 orig_ipif = ipif; 8070 8071 /* ill_g_usesrc_lock protects ill_usesrc_grp_next */ 8072 rw_enter(&ill_g_usesrc_lock, RW_READER); 8073 rw_enter(&ill_g_lock, RW_READER); 8074 8075 ill = ill->ill_usesrc_grp_next; /* start from next ill */ 8076 for (; (ill != NULL) && (ill != ill_head); 8077 ill = ill->ill_usesrc_grp_next) { 8078 8079 if ((uchar_t *)&lifr[1] > mp1->b_wptr) 8080 break; 8081 8082 ipif = ill->ill_ipif; 8083 (void) ipif_get_name(ipif, 8084 lifr->lifr_name, sizeof (lifr->lifr_name)); 8085 if (ipif->ipif_isv6) { 8086 sin6 = (sin6_t *)&lifr->lifr_addr; 8087 *sin6 = sin6_null; 8088 sin6->sin6_family = AF_INET6; 8089 sin6->sin6_addr = ipif->ipif_v6lcl_addr; 8090 lifr->lifr_addrlen = ip_mask_to_plen_v6( 8091 &ipif->ipif_v6net_mask); 8092 } else { 8093 sin = (sin_t *)&lifr->lifr_addr; 8094 *sin = sin_null; 8095 sin->sin_family = AF_INET; 8096 sin->sin_addr.s_addr = ipif->ipif_lcl_addr; 8097 lifr->lifr_addrlen = ip_mask_to_plen( 8098 ipif->ipif_net_mask); 8099 } 8100 lifr++; 8101 } 8102 rw_exit(&ill_g_usesrc_lock); 8103 rw_exit(&ill_g_lock); 8104 ipif_refrele(orig_ipif); 8105 mp1->b_wptr = (uchar_t *)lifr; 8106 STRUCT_FSET(lifs, lifs_len, (int)((uchar_t *)lifr - mp1->b_rptr)); 8107 8108 return (0); 8109 } 8110 8111 /* ARGSUSED */ 8112 int 8113 ip_sioctl_get_lifconf(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, 8114 mblk_t *mp, ip_ioctl_cmd_t *ipip, void *ifreq) 8115 { 8116 mblk_t *mp1; 8117 int list; 8118 ill_t *ill; 8119 ipif_t *ipif; 8120 int flags; 8121 int numlifs = 0; 8122 size_t lifc_bufsize; 8123 struct lifreq *lifr; 8124 sa_family_t family; 8125 struct sockaddr_in *sin; 8126 struct sockaddr_in6 *sin6; 8127 ill_walk_context_t ctx; 8128 struct iocblk *iocp = (struct iocblk *)mp->b_rptr; 8129 int32_t lifclen; 8130 zoneid_t zoneid; 8131 STRUCT_HANDLE(lifconf, lifc); 8132 8133 ip1dbg(("ip_sioctl_get_lifconf")); 8134 8135 ASSERT(q->q_next == NULL); 8136 8137 zoneid = Q_TO_CONN(q)->conn_zoneid; 8138 8139 /* Existence verified in ip_wput_nondata */ 8140 mp1 = mp->b_cont->b_cont; 8141 8142 /* 8143 * An extended version of SIOCGIFCONF that takes an 8144 * additional address family and flags field. 8145 * AF_UNSPEC retrieve both IPv4 and IPv6. 8146 * Unless LIFC_NOXMIT is specified the IPIF_NOXMIT 8147 * interfaces are omitted. 8148 * Similarly, IPIF_TEMPORARY interfaces are omitted 8149 * unless LIFC_TEMPORARY is specified. 8150 * If LIFC_EXTERNAL_SOURCE is specified, IPIF_NOXMIT, 8151 * IPIF_NOLOCAL, PHYI_LOOPBACK, IPIF_DEPRECATED and 8152 * not IPIF_UP interfaces are omitted. LIFC_EXTERNAL_SOURCE 8153 * has priority over LIFC_NOXMIT. 8154 */ 8155 STRUCT_SET_HANDLE(lifc, iocp->ioc_flag, NULL); 8156 8157 if ((mp1->b_wptr - mp1->b_rptr) != STRUCT_SIZE(lifc)) 8158 return (EINVAL); 8159 8160 /* 8161 * Must be (better be!) continuation of a TRANSPARENT 8162 * IOCTL. We just copied in the lifconf structure. 8163 */ 8164 STRUCT_SET_HANDLE(lifc, iocp->ioc_flag, (struct lifconf *)mp1->b_rptr); 8165 8166 family = STRUCT_FGET(lifc, lifc_family); 8167 flags = STRUCT_FGET(lifc, lifc_flags); 8168 8169 switch (family) { 8170 case AF_UNSPEC: 8171 /* 8172 * walk all ILL's. 8173 */ 8174 list = MAX_G_HEADS; 8175 break; 8176 case AF_INET: 8177 /* 8178 * walk only IPV4 ILL's. 8179 */ 8180 list = IP_V4_G_HEAD; 8181 break; 8182 case AF_INET6: 8183 /* 8184 * walk only IPV6 ILL's. 8185 */ 8186 list = IP_V6_G_HEAD; 8187 break; 8188 default: 8189 return (EAFNOSUPPORT); 8190 } 8191 8192 /* 8193 * Allocate a buffer to hold requested information. 8194 * 8195 * If lifc_len is larger than what is needed, we only 8196 * allocate what we will use. 8197 * 8198 * If lifc_len is smaller than what is needed, return 8199 * EINVAL. 8200 */ 8201 numlifs = ip_get_numlifs(family, flags, zoneid); 8202 lifc_bufsize = numlifs * sizeof (struct lifreq); 8203 lifclen = STRUCT_FGET(lifc, lifc_len); 8204 if (lifc_bufsize > lifclen) { 8205 if (iocp->ioc_cmd == O_SIOCGLIFCONF) 8206 return (EINVAL); 8207 else 8208 lifc_bufsize = lifclen; 8209 } 8210 8211 mp1 = mi_copyout_alloc(q, mp, 8212 STRUCT_FGETP(lifc, lifc_buf), lifc_bufsize, B_FALSE); 8213 if (mp1 == NULL) 8214 return (ENOMEM); 8215 8216 mp1->b_wptr = mp1->b_rptr + lifc_bufsize; 8217 bzero(mp1->b_rptr, mp1->b_wptr - mp1->b_rptr); 8218 8219 lifr = (struct lifreq *)mp1->b_rptr; 8220 8221 rw_enter(&ill_g_lock, RW_READER); 8222 ill = ill_first(list, list, &ctx); 8223 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 8224 for (ipif = ill->ill_ipif; ipif != NULL; 8225 ipif = ipif->ipif_next) { 8226 if ((ipif->ipif_flags & IPIF_NOXMIT) && 8227 !(flags & LIFC_NOXMIT)) 8228 continue; 8229 8230 if ((ipif->ipif_flags & IPIF_TEMPORARY) && 8231 !(flags & LIFC_TEMPORARY)) 8232 continue; 8233 8234 if (((ipif->ipif_flags & 8235 (IPIF_NOXMIT|IPIF_NOLOCAL| 8236 IPIF_DEPRECATED)) || 8237 (ill->ill_phyint->phyint_flags & 8238 PHYI_LOOPBACK) || 8239 !(ipif->ipif_flags & IPIF_UP)) && 8240 (flags & LIFC_EXTERNAL_SOURCE)) 8241 continue; 8242 8243 if (zoneid != ipif->ipif_zoneid && 8244 (zoneid != GLOBAL_ZONEID || 8245 !(flags & LIFC_ALLZONES))) 8246 continue; 8247 8248 if ((uchar_t *)&lifr[1] > mp1->b_wptr) { 8249 if (iocp->ioc_cmd == O_SIOCGLIFCONF) { 8250 rw_exit(&ill_g_lock); 8251 return (EINVAL); 8252 } else { 8253 goto lif_copydone; 8254 } 8255 } 8256 8257 (void) ipif_get_name(ipif, 8258 lifr->lifr_name, 8259 sizeof (lifr->lifr_name)); 8260 if (ipif->ipif_isv6) { 8261 sin6 = (sin6_t *)&lifr->lifr_addr; 8262 *sin6 = sin6_null; 8263 sin6->sin6_family = AF_INET6; 8264 sin6->sin6_addr = 8265 ipif->ipif_v6lcl_addr; 8266 lifr->lifr_addrlen = 8267 ip_mask_to_plen_v6( 8268 &ipif->ipif_v6net_mask); 8269 } else { 8270 sin = (sin_t *)&lifr->lifr_addr; 8271 *sin = sin_null; 8272 sin->sin_family = AF_INET; 8273 sin->sin_addr.s_addr = 8274 ipif->ipif_lcl_addr; 8275 lifr->lifr_addrlen = 8276 ip_mask_to_plen( 8277 ipif->ipif_net_mask); 8278 } 8279 lifr++; 8280 } 8281 } 8282 lif_copydone: 8283 rw_exit(&ill_g_lock); 8284 8285 mp1->b_wptr = (uchar_t *)lifr; 8286 if (STRUCT_BUF(lifc) != NULL) { 8287 STRUCT_FSET(lifc, lifc_len, 8288 (int)((uchar_t *)lifr - mp1->b_rptr)); 8289 } 8290 return (0); 8291 } 8292 8293 static void 8294 ip_sioctl_ip6addrpolicy(queue_t *q, mblk_t *mp) 8295 { 8296 ip6_asp_t *table; 8297 size_t table_size; 8298 mblk_t *data_mp; 8299 struct iocblk *iocp = (struct iocblk *)mp->b_rptr; 8300 8301 /* These two ioctls are I_STR only */ 8302 if (iocp->ioc_count == TRANSPARENT) { 8303 miocnak(q, mp, 0, EINVAL); 8304 return; 8305 } 8306 8307 data_mp = mp->b_cont; 8308 if (data_mp == NULL) { 8309 /* The user passed us a NULL argument */ 8310 table = NULL; 8311 table_size = iocp->ioc_count; 8312 } else { 8313 /* 8314 * The user provided a table. The stream head 8315 * may have copied in the user data in chunks, 8316 * so make sure everything is pulled up 8317 * properly. 8318 */ 8319 if (MBLKL(data_mp) < iocp->ioc_count) { 8320 mblk_t *new_data_mp; 8321 if ((new_data_mp = msgpullup(data_mp, -1)) == 8322 NULL) { 8323 miocnak(q, mp, 0, ENOMEM); 8324 return; 8325 } 8326 freemsg(data_mp); 8327 data_mp = new_data_mp; 8328 mp->b_cont = data_mp; 8329 } 8330 table = (ip6_asp_t *)data_mp->b_rptr; 8331 table_size = iocp->ioc_count; 8332 } 8333 8334 switch (iocp->ioc_cmd) { 8335 case SIOCGIP6ADDRPOLICY: 8336 iocp->ioc_rval = ip6_asp_get(table, table_size); 8337 if (iocp->ioc_rval == -1) 8338 iocp->ioc_error = EINVAL; 8339 #if defined(_SYSCALL32_IMPL) && _LONG_LONG_ALIGNMENT_32 == 4 8340 else if (table != NULL && 8341 (iocp->ioc_flag & IOC_MODELS) == IOC_ILP32) { 8342 ip6_asp_t *src = table; 8343 ip6_asp32_t *dst = (void *)table; 8344 int count = table_size / sizeof (ip6_asp_t); 8345 int i; 8346 8347 /* 8348 * We need to do an in-place shrink of the array 8349 * to match the alignment attributes of the 8350 * 32-bit ABI looking at it. 8351 */ 8352 /* LINTED: logical expression always true: op "||" */ 8353 ASSERT(sizeof (*src) > sizeof (*dst)); 8354 for (i = 1; i < count; i++) 8355 bcopy(src + i, dst + i, sizeof (*dst)); 8356 } 8357 #endif 8358 break; 8359 8360 case SIOCSIP6ADDRPOLICY: 8361 ASSERT(mp->b_prev == NULL); 8362 mp->b_prev = (void *)q; 8363 #if defined(_SYSCALL32_IMPL) && _LONG_LONG_ALIGNMENT_32 == 4 8364 /* 8365 * We pass in the datamodel here so that the ip6_asp_replace() 8366 * routine can handle converting from 32-bit to native formats 8367 * where necessary. 8368 * 8369 * A better way to handle this might be to convert the inbound 8370 * data structure here, and hang it off a new 'mp'; thus the 8371 * ip6_asp_replace() logic would always be dealing with native 8372 * format data structures.. 8373 * 8374 * (An even simpler way to handle these ioctls is to just 8375 * add a 32-bit trailing 'pad' field to the ip6_asp_t structure 8376 * and just recompile everything that depends on it.) 8377 */ 8378 #endif 8379 ip6_asp_replace(mp, table, table_size, B_FALSE, 8380 iocp->ioc_flag & IOC_MODELS); 8381 return; 8382 } 8383 8384 DB_TYPE(mp) = (iocp->ioc_error == 0) ? M_IOCACK : M_IOCNAK; 8385 qreply(q, mp); 8386 } 8387 8388 static void 8389 ip_sioctl_dstinfo(queue_t *q, mblk_t *mp) 8390 { 8391 mblk_t *data_mp; 8392 struct dstinforeq *dir; 8393 uint8_t *end, *cur; 8394 in6_addr_t *daddr, *saddr; 8395 ipaddr_t v4daddr; 8396 ire_t *ire; 8397 char *slabel, *dlabel; 8398 boolean_t isipv4; 8399 int match_ire; 8400 ill_t *dst_ill; 8401 ipif_t *src_ipif, *ire_ipif; 8402 struct iocblk *iocp = (struct iocblk *)mp->b_rptr; 8403 zoneid_t zoneid; 8404 8405 ASSERT(q->q_next == NULL); /* this ioctl not allowed if ip is module */ 8406 zoneid = Q_TO_CONN(q)->conn_zoneid; 8407 8408 /* 8409 * This ioctl is I_STR only, and must have a 8410 * data mblk following the M_IOCTL mblk. 8411 */ 8412 data_mp = mp->b_cont; 8413 if (iocp->ioc_count == TRANSPARENT || data_mp == NULL) { 8414 miocnak(q, mp, 0, EINVAL); 8415 return; 8416 } 8417 8418 if (MBLKL(data_mp) < iocp->ioc_count) { 8419 mblk_t *new_data_mp; 8420 8421 if ((new_data_mp = msgpullup(data_mp, -1)) == NULL) { 8422 miocnak(q, mp, 0, ENOMEM); 8423 return; 8424 } 8425 freemsg(data_mp); 8426 data_mp = new_data_mp; 8427 mp->b_cont = data_mp; 8428 } 8429 match_ire = MATCH_IRE_RECURSIVE | MATCH_IRE_DEFAULT | MATCH_IRE_PARENT; 8430 8431 for (cur = data_mp->b_rptr, end = data_mp->b_wptr; 8432 end - cur >= sizeof (struct dstinforeq); 8433 cur += sizeof (struct dstinforeq)) { 8434 dir = (struct dstinforeq *)cur; 8435 daddr = &dir->dir_daddr; 8436 saddr = &dir->dir_saddr; 8437 8438 /* 8439 * ip_addr_scope_v6() and ip6_asp_lookup() handle 8440 * v4 mapped addresses; ire_ftable_lookup[_v6]() 8441 * and ipif_select_source[_v6]() do not. 8442 */ 8443 dir->dir_dscope = ip_addr_scope_v6(daddr); 8444 dlabel = ip6_asp_lookup(daddr, &dir->dir_precedence); 8445 8446 isipv4 = IN6_IS_ADDR_V4MAPPED(daddr); 8447 if (isipv4) { 8448 IN6_V4MAPPED_TO_IPADDR(daddr, v4daddr); 8449 ire = ire_ftable_lookup(v4daddr, NULL, NULL, 8450 0, NULL, NULL, zoneid, 0, match_ire); 8451 } else { 8452 ire = ire_ftable_lookup_v6(daddr, NULL, NULL, 8453 0, NULL, NULL, zoneid, 0, match_ire); 8454 } 8455 if (ire == NULL) { 8456 dir->dir_dreachable = 0; 8457 8458 /* move on to next dst addr */ 8459 continue; 8460 } 8461 dir->dir_dreachable = 1; 8462 8463 ire_ipif = ire->ire_ipif; 8464 if (ire_ipif == NULL) 8465 goto next_dst; 8466 8467 /* 8468 * We expect to get back an interface ire or a 8469 * gateway ire cache entry. For both types, the 8470 * output interface is ire_ipif->ipif_ill. 8471 */ 8472 dst_ill = ire_ipif->ipif_ill; 8473 dir->dir_dmactype = dst_ill->ill_mactype; 8474 8475 if (isipv4) { 8476 src_ipif = ipif_select_source(dst_ill, v4daddr, zoneid); 8477 } else { 8478 src_ipif = ipif_select_source_v6(dst_ill, 8479 daddr, B_FALSE, IPV6_PREFER_SRC_DEFAULT, 8480 zoneid); 8481 } 8482 if (src_ipif == NULL) 8483 goto next_dst; 8484 8485 *saddr = src_ipif->ipif_v6lcl_addr; 8486 dir->dir_sscope = ip_addr_scope_v6(saddr); 8487 slabel = ip6_asp_lookup(saddr, NULL); 8488 dir->dir_labelmatch = ip6_asp_labelcmp(dlabel, slabel); 8489 dir->dir_sdeprecated = 8490 (src_ipif->ipif_flags & IPIF_DEPRECATED) ? 1 : 0; 8491 ipif_refrele(src_ipif); 8492 next_dst: 8493 ire_refrele(ire); 8494 } 8495 miocack(q, mp, iocp->ioc_count, 0); 8496 } 8497 8498 8499 /* 8500 * Check if this is an address assigned to this machine. 8501 * Skips interfaces that are down by using ire checks. 8502 * Translates mapped addresses to v4 addresses and then 8503 * treats them as such, returning true if the v4 address 8504 * associated with this mapped address is configured. 8505 * Note: Applications will have to be careful what they do 8506 * with the response; use of mapped addresses limits 8507 * what can be done with the socket, especially with 8508 * respect to socket options and ioctls - neither IPv4 8509 * options nor IPv6 sticky options/ancillary data options 8510 * may be used. 8511 */ 8512 /* ARGSUSED */ 8513 int 8514 ip_sioctl_tmyaddr(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, 8515 ip_ioctl_cmd_t *ipip, void *dummy_ifreq) 8516 { 8517 struct sioc_addrreq *sia; 8518 sin_t *sin; 8519 ire_t *ire; 8520 mblk_t *mp1; 8521 zoneid_t zoneid; 8522 8523 ip1dbg(("ip_sioctl_tmyaddr")); 8524 8525 ASSERT(q->q_next == NULL); /* this ioctl not allowed if ip is module */ 8526 zoneid = Q_TO_CONN(q)->conn_zoneid; 8527 8528 /* Existence verified in ip_wput_nondata */ 8529 mp1 = mp->b_cont->b_cont; 8530 sia = (struct sioc_addrreq *)mp1->b_rptr; 8531 sin = (sin_t *)&sia->sa_addr; 8532 switch (sin->sin_family) { 8533 case AF_INET6: { 8534 sin6_t *sin6 = (sin6_t *)sin; 8535 8536 if (IN6_IS_ADDR_V4MAPPED(&sin6->sin6_addr)) { 8537 ipaddr_t v4_addr; 8538 8539 IN6_V4MAPPED_TO_IPADDR(&sin6->sin6_addr, 8540 v4_addr); 8541 ire = ire_ctable_lookup(v4_addr, 0, 8542 IRE_LOCAL|IRE_LOOPBACK, NULL, zoneid, 8543 MATCH_IRE_TYPE | MATCH_IRE_ZONEONLY); 8544 } else { 8545 in6_addr_t v6addr; 8546 8547 v6addr = sin6->sin6_addr; 8548 ire = ire_ctable_lookup_v6(&v6addr, 0, 8549 IRE_LOCAL|IRE_LOOPBACK, NULL, zoneid, 8550 MATCH_IRE_TYPE | MATCH_IRE_ZONEONLY); 8551 } 8552 break; 8553 } 8554 case AF_INET: { 8555 ipaddr_t v4addr; 8556 8557 v4addr = sin->sin_addr.s_addr; 8558 ire = ire_ctable_lookup(v4addr, 0, 8559 IRE_LOCAL|IRE_LOOPBACK, NULL, zoneid, 8560 MATCH_IRE_TYPE | MATCH_IRE_ZONEONLY); 8561 break; 8562 } 8563 default: 8564 return (EAFNOSUPPORT); 8565 } 8566 if (ire != NULL) { 8567 sia->sa_res = 1; 8568 ire_refrele(ire); 8569 } else { 8570 sia->sa_res = 0; 8571 } 8572 return (0); 8573 } 8574 8575 /* 8576 * Check if this is an address assigned on-link i.e. neighbor, 8577 * and makes sure it's reachable from the current zone. 8578 * Returns true for my addresses as well. 8579 * Translates mapped addresses to v4 addresses and then 8580 * treats them as such, returning true if the v4 address 8581 * associated with this mapped address is configured. 8582 * Note: Applications will have to be careful what they do 8583 * with the response; use of mapped addresses limits 8584 * what can be done with the socket, especially with 8585 * respect to socket options and ioctls - neither IPv4 8586 * options nor IPv6 sticky options/ancillary data options 8587 * may be used. 8588 */ 8589 /* ARGSUSED */ 8590 int 8591 ip_sioctl_tonlink(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, 8592 ip_ioctl_cmd_t *ipip, void *duymmy_ifreq) 8593 { 8594 struct sioc_addrreq *sia; 8595 sin_t *sin; 8596 mblk_t *mp1; 8597 ire_t *ire = NULL; 8598 zoneid_t zoneid; 8599 8600 ip1dbg(("ip_sioctl_tonlink")); 8601 8602 ASSERT(q->q_next == NULL); /* this ioctl not allowed if ip is module */ 8603 zoneid = Q_TO_CONN(q)->conn_zoneid; 8604 8605 /* Existence verified in ip_wput_nondata */ 8606 mp1 = mp->b_cont->b_cont; 8607 sia = (struct sioc_addrreq *)mp1->b_rptr; 8608 sin = (sin_t *)&sia->sa_addr; 8609 8610 /* 8611 * Match addresses with a zero gateway field to avoid 8612 * routes going through a router. 8613 * Exclude broadcast and multicast addresses. 8614 */ 8615 switch (sin->sin_family) { 8616 case AF_INET6: { 8617 sin6_t *sin6 = (sin6_t *)sin; 8618 8619 if (IN6_IS_ADDR_V4MAPPED(&sin6->sin6_addr)) { 8620 ipaddr_t v4_addr; 8621 8622 IN6_V4MAPPED_TO_IPADDR(&sin6->sin6_addr, 8623 v4_addr); 8624 if (!CLASSD(v4_addr)) { 8625 ire = ire_route_lookup(v4_addr, 0, 0, 0, 8626 NULL, NULL, zoneid, MATCH_IRE_GW); 8627 } 8628 } else { 8629 in6_addr_t v6addr; 8630 in6_addr_t v6gw; 8631 8632 v6addr = sin6->sin6_addr; 8633 v6gw = ipv6_all_zeros; 8634 if (!IN6_IS_ADDR_MULTICAST(&v6addr)) { 8635 ire = ire_route_lookup_v6(&v6addr, 0, 8636 &v6gw, 0, NULL, NULL, zoneid, 8637 MATCH_IRE_GW); 8638 } 8639 } 8640 break; 8641 } 8642 case AF_INET: { 8643 ipaddr_t v4addr; 8644 8645 v4addr = sin->sin_addr.s_addr; 8646 if (!CLASSD(v4addr)) { 8647 ire = ire_route_lookup(v4addr, 0, 0, 0, 8648 NULL, NULL, zoneid, MATCH_IRE_GW); 8649 } 8650 break; 8651 } 8652 default: 8653 return (EAFNOSUPPORT); 8654 } 8655 sia->sa_res = 0; 8656 if (ire != NULL) { 8657 if (ire->ire_type & (IRE_INTERFACE|IRE_CACHE| 8658 IRE_LOCAL|IRE_LOOPBACK)) { 8659 sia->sa_res = 1; 8660 } 8661 ire_refrele(ire); 8662 } 8663 return (0); 8664 } 8665 8666 /* 8667 * TBD: implement when kernel maintaines a list of site prefixes. 8668 */ 8669 /* ARGSUSED */ 8670 int 8671 ip_sioctl_tmysite(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 8672 ip_ioctl_cmd_t *ipip, void *ifreq) 8673 { 8674 return (ENXIO); 8675 } 8676 8677 /* ARGSUSED */ 8678 int 8679 ip_sioctl_tunparam(ipif_t *ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, 8680 ip_ioctl_cmd_t *ipip, void *dummy_ifreq) 8681 { 8682 ill_t *ill; 8683 mblk_t *mp1; 8684 conn_t *connp; 8685 boolean_t success; 8686 8687 ip1dbg(("ip_sioctl_tunparam(%s:%u %p)\n", 8688 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 8689 /* ioctl comes down on an conn */ 8690 ASSERT(!(q->q_flag & QREADR) && q->q_next == NULL); 8691 connp = Q_TO_CONN(q); 8692 8693 mp->b_datap->db_type = M_IOCTL; 8694 8695 /* 8696 * Send down a copy. (copymsg does not copy b_next/b_prev). 8697 * The original mp contains contaminated b_next values due to 'mi', 8698 * which is needed to do the mi_copy_done. Unfortunately if we 8699 * send down the original mblk itself and if we are popped due to an 8700 * an unplumb before the response comes back from tunnel, 8701 * the streamhead (which does a freemsg) will see this contaminated 8702 * message and the assertion in freemsg about non-null b_next/b_prev 8703 * will panic a DEBUG kernel. 8704 */ 8705 mp1 = copymsg(mp); 8706 if (mp1 == NULL) 8707 return (ENOMEM); 8708 8709 ill = ipif->ipif_ill; 8710 mutex_enter(&connp->conn_lock); 8711 mutex_enter(&ill->ill_lock); 8712 if (ipip->ipi_cmd == SIOCSTUNPARAM || ipip->ipi_cmd == OSIOCSTUNPARAM) { 8713 success = ipsq_pending_mp_add(connp, ipif, CONNP_TO_WQ(connp), 8714 mp, 0); 8715 } else { 8716 success = ill_pending_mp_add(ill, connp, mp); 8717 } 8718 mutex_exit(&ill->ill_lock); 8719 mutex_exit(&connp->conn_lock); 8720 8721 if (success) { 8722 ip1dbg(("sending down tunparam request ")); 8723 putnext(ill->ill_wq, mp1); 8724 return (EINPROGRESS); 8725 } else { 8726 /* The conn has started closing */ 8727 freemsg(mp1); 8728 return (EINTR); 8729 } 8730 } 8731 8732 static int 8733 ip_sioctl_arp_common(ill_t *ill, queue_t *q, mblk_t *mp, sin_t *sin, 8734 boolean_t x_arp_ioctl, boolean_t if_arp_ioctl) 8735 { 8736 mblk_t *mp1; 8737 mblk_t *mp2; 8738 mblk_t *pending_mp; 8739 ipaddr_t ipaddr; 8740 area_t *area; 8741 struct iocblk *iocp; 8742 conn_t *connp; 8743 struct arpreq *ar; 8744 struct xarpreq *xar; 8745 boolean_t success; 8746 int flags, alength; 8747 char *lladdr; 8748 8749 ASSERT(!(q->q_flag & QREADR) && q->q_next == NULL); 8750 connp = Q_TO_CONN(q); 8751 8752 iocp = (struct iocblk *)mp->b_rptr; 8753 /* 8754 * ill has already been set depending on whether 8755 * bsd style or interface style ioctl. 8756 */ 8757 ASSERT(ill != NULL); 8758 8759 /* 8760 * Is this one of the new SIOC*XARP ioctls? 8761 */ 8762 if (x_arp_ioctl) { 8763 /* We have a chain - M_IOCTL-->MI_COPY_MBLK-->XARPREQ_MBLK */ 8764 xar = (struct xarpreq *)mp->b_cont->b_cont->b_rptr; 8765 ar = NULL; 8766 8767 flags = xar->xarp_flags; 8768 lladdr = LLADDR(&xar->xarp_ha); 8769 /* 8770 * Validate against user's link layer address length 8771 * input and name and addr length limits. 8772 */ 8773 alength = ill->ill_phys_addr_length; 8774 if (iocp->ioc_cmd == SIOCSXARP) { 8775 if (alength != xar->xarp_ha.sdl_alen || 8776 (alength + xar->xarp_ha.sdl_nlen > 8777 sizeof (xar->xarp_ha.sdl_data))) 8778 return (EINVAL); 8779 } 8780 } else { 8781 /* We have a chain - M_IOCTL-->MI_COPY_MBLK-->ARPREQ_MBLK */ 8782 ar = (struct arpreq *)mp->b_cont->b_cont->b_rptr; 8783 xar = NULL; 8784 8785 flags = ar->arp_flags; 8786 lladdr = ar->arp_ha.sa_data; 8787 /* 8788 * Theoretically, the sa_family could tell us what link 8789 * layer type this operation is trying to deal with. By 8790 * common usage AF_UNSPEC means ethernet. We'll assume 8791 * any attempt to use the SIOC?ARP ioctls is for ethernet, 8792 * for now. Our new SIOC*XARP ioctls can be used more 8793 * generally. 8794 * 8795 * If the underlying media happens to have a non 6 byte 8796 * address, arp module will fail set/get, but the del 8797 * operation will succeed. 8798 */ 8799 alength = 6; 8800 if ((iocp->ioc_cmd != SIOCDARP) && 8801 (alength != ill->ill_phys_addr_length)) { 8802 return (EINVAL); 8803 } 8804 } 8805 8806 /* 8807 * We are going to pass up to ARP a packet chain that looks 8808 * like: 8809 * 8810 * M_IOCTL-->ARP_op_MBLK-->ORIG_M_IOCTL-->MI_COPY_MBLK-->[X]ARPREQ_MBLK 8811 * 8812 * Get a copy of the original IOCTL mblk to head the chain, 8813 * to be sent up (in mp1). Also get another copy to store 8814 * in the ill_pending_mp list, for matching the response 8815 * when it comes back from ARP. 8816 */ 8817 mp1 = copyb(mp); 8818 pending_mp = copymsg(mp); 8819 if (mp1 == NULL || pending_mp == NULL) { 8820 if (mp1 != NULL) 8821 freeb(mp1); 8822 if (pending_mp != NULL) 8823 ip_ioctl_freemsg(pending_mp); 8824 return (ENOMEM); 8825 } 8826 8827 ipaddr = sin->sin_addr.s_addr; 8828 8829 mp2 = ill_arp_alloc(ill, (uchar_t *)&ip_area_template, 8830 (caddr_t)&ipaddr); 8831 if (mp2 == NULL) { 8832 freeb(mp1); 8833 ip_ioctl_freemsg(pending_mp); 8834 return (ENOMEM); 8835 } 8836 /* Put together the chain. */ 8837 mp1->b_cont = mp2; 8838 mp1->b_datap->db_type = M_IOCTL; 8839 mp2->b_cont = mp; 8840 mp2->b_datap->db_type = M_DATA; 8841 8842 iocp = (struct iocblk *)mp1->b_rptr; 8843 8844 /* 8845 * An M_IOCDATA's payload (struct copyresp) is mostly the same as an 8846 * M_IOCTL's payload (struct iocblk), but 'struct copyresp' has a 8847 * cp_private field (or cp_rval on 32-bit systems) in place of the 8848 * ioc_count field; set ioc_count to be correct. 8849 */ 8850 iocp->ioc_count = MBLKL(mp1->b_cont); 8851 8852 /* 8853 * Set the proper command in the ARP message. 8854 * Convert the SIOC{G|S|D}ARP calls into our 8855 * AR_ENTRY_xxx calls. 8856 */ 8857 area = (area_t *)mp2->b_rptr; 8858 switch (iocp->ioc_cmd) { 8859 case SIOCDARP: 8860 case SIOCDXARP: 8861 /* 8862 * We defer deleting the corresponding IRE until 8863 * we return from arp. 8864 */ 8865 area->area_cmd = AR_ENTRY_DELETE; 8866 area->area_proto_mask_offset = 0; 8867 break; 8868 case SIOCGARP: 8869 case SIOCGXARP: 8870 area->area_cmd = AR_ENTRY_SQUERY; 8871 area->area_proto_mask_offset = 0; 8872 break; 8873 case SIOCSARP: 8874 case SIOCSXARP: { 8875 /* 8876 * Delete the corresponding ire to make sure IP will 8877 * pick up any change from arp. 8878 */ 8879 if (!if_arp_ioctl) { 8880 (void) ip_ire_clookup_and_delete(ipaddr, NULL); 8881 break; 8882 } else { 8883 ipif_t *ipif = ipif_get_next_ipif(NULL, ill); 8884 if (ipif != NULL) { 8885 (void) ip_ire_clookup_and_delete(ipaddr, ipif); 8886 ipif_refrele(ipif); 8887 } 8888 break; 8889 } 8890 } 8891 } 8892 iocp->ioc_cmd = area->area_cmd; 8893 8894 /* 8895 * Before sending 'mp' to ARP, we have to clear the b_next 8896 * and b_prev. Otherwise if STREAMS encounters such a message 8897 * in freemsg(), (because ARP can close any time) it can cause 8898 * a panic. But mi code needs the b_next and b_prev values of 8899 * mp->b_cont, to complete the ioctl. So we store it here 8900 * in pending_mp->bcont, and restore it in ip_sioctl_iocack() 8901 * when the response comes down from ARP. 8902 */ 8903 pending_mp->b_cont->b_next = mp->b_cont->b_next; 8904 pending_mp->b_cont->b_prev = mp->b_cont->b_prev; 8905 mp->b_cont->b_next = NULL; 8906 mp->b_cont->b_prev = NULL; 8907 8908 mutex_enter(&connp->conn_lock); 8909 mutex_enter(&ill->ill_lock); 8910 /* conn has not yet started closing, hence this can't fail */ 8911 success = ill_pending_mp_add(ill, connp, pending_mp); 8912 ASSERT(success); 8913 mutex_exit(&ill->ill_lock); 8914 mutex_exit(&connp->conn_lock); 8915 8916 /* 8917 * Fill in the rest of the ARP operation fields. 8918 */ 8919 area->area_hw_addr_length = alength; 8920 bcopy(lladdr, 8921 (char *)area + area->area_hw_addr_offset, 8922 area->area_hw_addr_length); 8923 /* Translate the flags. */ 8924 if (flags & ATF_PERM) 8925 area->area_flags |= ACE_F_PERMANENT; 8926 if (flags & ATF_PUBL) 8927 area->area_flags |= ACE_F_PUBLISH; 8928 8929 /* 8930 * Up to ARP it goes. The response will come 8931 * back in ip_wput as an M_IOCACK message, and 8932 * will be handed to ip_sioctl_iocack for 8933 * completion. 8934 */ 8935 putnext(ill->ill_rq, mp1); 8936 return (EINPROGRESS); 8937 } 8938 8939 /* ARGSUSED */ 8940 int 8941 ip_sioctl_xarp(ipif_t *ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, 8942 ip_ioctl_cmd_t *ipip, void *ifreq) 8943 { 8944 struct xarpreq *xar; 8945 boolean_t isv6; 8946 mblk_t *mp1; 8947 int err; 8948 conn_t *connp; 8949 int ifnamelen; 8950 ire_t *ire = NULL; 8951 ill_t *ill = NULL; 8952 struct sockaddr_in *sin; 8953 boolean_t if_arp_ioctl = B_FALSE; 8954 8955 /* ioctl comes down on an conn */ 8956 ASSERT(!(q->q_flag & QREADR) && q->q_next == NULL); 8957 connp = Q_TO_CONN(q); 8958 isv6 = connp->conn_af_isv6; 8959 8960 /* Existance verified in ip_wput_nondata */ 8961 mp1 = mp->b_cont->b_cont; 8962 8963 ASSERT(MBLKL(mp1) >= sizeof (*xar)); 8964 xar = (struct xarpreq *)mp1->b_rptr; 8965 sin = (sin_t *)&xar->xarp_pa; 8966 8967 if (isv6 || (xar->xarp_ha.sdl_family != AF_LINK) || 8968 (xar->xarp_pa.ss_family != AF_INET)) 8969 return (ENXIO); 8970 8971 ifnamelen = xar->xarp_ha.sdl_nlen; 8972 if (ifnamelen != 0) { 8973 char *cptr, cval; 8974 8975 if (ifnamelen >= LIFNAMSIZ) 8976 return (EINVAL); 8977 8978 /* 8979 * Instead of bcopying a bunch of bytes, 8980 * null-terminate the string in-situ. 8981 */ 8982 cptr = xar->xarp_ha.sdl_data + ifnamelen; 8983 cval = *cptr; 8984 *cptr = '\0'; 8985 ill = ill_lookup_on_name(xar->xarp_ha.sdl_data, 8986 B_FALSE, isv6, CONNP_TO_WQ(connp), mp, ip_process_ioctl, 8987 &err, NULL); 8988 *cptr = cval; 8989 if (ill == NULL) 8990 return (err); 8991 if (ill->ill_net_type != IRE_IF_RESOLVER) { 8992 ill_refrele(ill); 8993 return (ENXIO); 8994 } 8995 8996 if_arp_ioctl = B_TRUE; 8997 } else { 8998 /* 8999 * PSARC 2003/088 states that if sdl_nlen == 0, it behaves 9000 * as an extended BSD ioctl. The kernel uses the IP address 9001 * to figure out the network interface. 9002 */ 9003 ire = ire_cache_lookup(sin->sin_addr.s_addr, ALL_ZONES); 9004 if ((ire == NULL) || (ire->ire_type == IRE_LOOPBACK) || 9005 ((ill = ire_to_ill(ire)) == NULL)) { 9006 if (ire != NULL) 9007 ire_refrele(ire); 9008 ire = ire_ftable_lookup(sin->sin_addr.s_addr, 9009 0, 0, IRE_IF_RESOLVER, NULL, NULL, ALL_ZONES, 0, 9010 MATCH_IRE_TYPE); 9011 if ((ire == NULL) || 9012 ((ill = ire_to_ill(ire)) == NULL)) { 9013 if (ire != NULL) 9014 ire_refrele(ire); 9015 return (ENXIO); 9016 } 9017 } 9018 ASSERT(ire != NULL && ill != NULL); 9019 } 9020 9021 err = ip_sioctl_arp_common(ill, q, mp, sin, B_TRUE, if_arp_ioctl); 9022 if (if_arp_ioctl) 9023 ill_refrele(ill); 9024 if (ire != NULL) 9025 ire_refrele(ire); 9026 9027 return (err); 9028 } 9029 9030 /* 9031 * ARP IOCTLs. 9032 * How does IP get in the business of fronting ARP configuration/queries? 9033 * Well its like this, the Berkeley ARP IOCTLs (SIOCGARP, SIOCDARP, SIOCSARP) 9034 * are by tradition passed in through a datagram socket. That lands in IP. 9035 * As it happens, this is just as well since the interface is quite crude in 9036 * that it passes in no information about protocol or hardware types, or 9037 * interface association. After making the protocol assumption, IP is in 9038 * the position to look up the name of the ILL, which ARP will need, and 9039 * format a request that can be handled by ARP. The request is passed up 9040 * stream to ARP, and the original IOCTL is completed by IP when ARP passes 9041 * back a response. ARP supports its own set of more general IOCTLs, in 9042 * case anyone is interested. 9043 */ 9044 /* ARGSUSED */ 9045 int 9046 ip_sioctl_arp(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, 9047 ip_ioctl_cmd_t *ipip, void *dummy_ifreq) 9048 { 9049 struct arpreq *ar; 9050 struct sockaddr_in *sin; 9051 ire_t *ire; 9052 boolean_t isv6; 9053 mblk_t *mp1; 9054 int err; 9055 conn_t *connp; 9056 ill_t *ill; 9057 9058 /* ioctl comes down on an conn */ 9059 ASSERT(!(q->q_flag & QREADR) && q->q_next == NULL); 9060 connp = Q_TO_CONN(q); 9061 isv6 = connp->conn_af_isv6; 9062 if (isv6) 9063 return (ENXIO); 9064 9065 /* Existance verified in ip_wput_nondata */ 9066 mp1 = mp->b_cont->b_cont; 9067 9068 ar = (struct arpreq *)mp1->b_rptr; 9069 sin = (sin_t *)&ar->arp_pa; 9070 9071 /* 9072 * We need to let ARP know on which interface the IP 9073 * address has an ARP mapping. In the IPMP case, a 9074 * simple forwarding table lookup will return the 9075 * IRE_IF_RESOLVER for the first interface in the group, 9076 * which might not be the interface on which the 9077 * requested IP address was resolved due to the ill 9078 * selection algorithm (see ip_newroute_get_dst_ill()). 9079 * So we do a cache table lookup first: if the IRE cache 9080 * entry for the IP address is still there, it will 9081 * contain the ill pointer for the right interface, so 9082 * we use that. If the cache entry has been flushed, we 9083 * fall back to the forwarding table lookup. This should 9084 * be rare enough since IRE cache entries have a longer 9085 * life expectancy than ARP cache entries. 9086 */ 9087 ire = ire_cache_lookup(sin->sin_addr.s_addr, ALL_ZONES); 9088 if ((ire == NULL) || (ire->ire_type == IRE_LOOPBACK) || 9089 ((ill = ire_to_ill(ire)) == NULL)) { 9090 if (ire != NULL) 9091 ire_refrele(ire); 9092 ire = ire_ftable_lookup(sin->sin_addr.s_addr, 9093 0, 0, IRE_IF_RESOLVER, NULL, NULL, ALL_ZONES, 0, 9094 MATCH_IRE_TYPE); 9095 if ((ire == NULL) || ((ill = ire_to_ill(ire)) == NULL)) { 9096 if (ire != NULL) 9097 ire_refrele(ire); 9098 return (ENXIO); 9099 } 9100 } 9101 ASSERT(ire != NULL && ill != NULL); 9102 9103 err = ip_sioctl_arp_common(ill, q, mp, sin, B_FALSE, B_FALSE); 9104 ire_refrele(ire); 9105 return (err); 9106 } 9107 9108 /* 9109 * Do I_PLINK/I_LINK or I_PUNLINK/I_UNLINK with consistency checks and also 9110 * atomically set/clear the muxids. Also complete the ioctl by acking or 9111 * naking it. Note that the code is structured such that the link type, 9112 * whether it's persistent or not, is treated equally. ifconfig(1M) and 9113 * its clones use the persistent link, while pppd(1M) and perhaps many 9114 * other daemons may use non-persistent link. When combined with some 9115 * ill_t states, linking and unlinking lower streams may be used as 9116 * indicators of dynamic re-plumbing events [see PSARC/1999/348]. 9117 */ 9118 /* ARGSUSED */ 9119 void 9120 ip_sioctl_plink(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy_arg) 9121 { 9122 mblk_t *mp1; 9123 mblk_t *mp2; 9124 struct linkblk *li; 9125 queue_t *ipwq; 9126 char *name; 9127 struct qinit *qinfo; 9128 struct ipmx_s *ipmxp; 9129 ill_t *ill = NULL; 9130 struct iocblk *iocp = (struct iocblk *)mp->b_rptr; 9131 int err = 0; 9132 boolean_t entered_ipsq = B_FALSE; 9133 boolean_t islink; 9134 queue_t *dwq = NULL; 9135 9136 ASSERT(iocp->ioc_cmd == I_PLINK || iocp->ioc_cmd == I_PUNLINK || 9137 iocp->ioc_cmd == I_LINK || iocp->ioc_cmd == I_UNLINK); 9138 9139 islink = (iocp->ioc_cmd == I_PLINK || iocp->ioc_cmd == I_LINK) ? 9140 B_TRUE : B_FALSE; 9141 9142 mp1 = mp->b_cont; /* This is the linkblk info */ 9143 li = (struct linkblk *)mp1->b_rptr; 9144 9145 /* 9146 * ARP has added this special mblk, and the utility is asking us 9147 * to perform consistency checks, and also atomically set the 9148 * muxid. Ifconfig is an example. It achieves this by using 9149 * /dev/arp as the mux to plink the arp stream, and pushes arp on 9150 * to /dev/udp[6] stream for use as the mux when plinking the IP 9151 * stream. SIOCSLIFMUXID is not required. See ifconfig.c, arp.c 9152 * and other comments in this routine for more details. 9153 */ 9154 mp2 = mp1->b_cont; /* This is added by ARP */ 9155 9156 /* 9157 * If I_{P}LINK/I_{P}UNLINK is issued by a utility other than 9158 * ifconfig which didn't push ARP on top of the dummy mux, we won't 9159 * get the special mblk above. For backward compatibility, we just 9160 * return success. The utility will use SIOCSLIFMUXID to store 9161 * the muxids. This is not atomic, and can leave the streams 9162 * unplumbable if the utility is interrrupted, before it does the 9163 * SIOCSLIFMUXID. 9164 */ 9165 if (mp2 == NULL) { 9166 /* 9167 * At this point we don't know whether or not this is the 9168 * IP module stream or the ARP device stream. We need to 9169 * walk the lower stream in order to find this out, since 9170 * the capability negotiation is done only on the IP module 9171 * stream. IP module instance is identified by the module 9172 * name IP, non-null q_next, and it's wput not being ip_lwput. 9173 * STREAMS ensures that the lower stream (l_qbot) will not 9174 * vanish until this ioctl completes. So we can safely walk 9175 * the stream or refer to the q_ptr. 9176 */ 9177 ipwq = li->l_qbot; 9178 while (ipwq != NULL) { 9179 qinfo = ipwq->q_qinfo; 9180 name = qinfo->qi_minfo->mi_idname; 9181 if (name != NULL && name[0] != NULL && 9182 (strcmp(name, ip_mod_info.mi_idname) == 0) && 9183 ((void *)(qinfo->qi_putp) != (void *)ip_lwput) && 9184 (ipwq->q_next != NULL)) { 9185 break; 9186 } 9187 ipwq = ipwq->q_next; 9188 } 9189 /* 9190 * This looks like an IP module stream, so trigger 9191 * the capability reset or re-negotiation if necessary. 9192 */ 9193 if (ipwq != NULL) { 9194 ill = ipwq->q_ptr; 9195 ASSERT(ill != NULL); 9196 9197 if (ipsq == NULL) { 9198 ipsq = ipsq_try_enter(NULL, ill, q, mp, 9199 ip_sioctl_plink, NEW_OP, B_TRUE); 9200 if (ipsq == NULL) 9201 return; 9202 entered_ipsq = B_TRUE; 9203 } 9204 ASSERT(IAM_WRITER_ILL(ill)); 9205 /* 9206 * Store the upper read queue of the module 9207 * immediately below IP, and count the total 9208 * number of lower modules. Do this only 9209 * for I_PLINK or I_LINK event. 9210 */ 9211 ill->ill_lmod_rq = NULL; 9212 ill->ill_lmod_cnt = 0; 9213 if (islink && (dwq = ipwq->q_next) != NULL) { 9214 ill->ill_lmod_rq = RD(dwq); 9215 9216 while (dwq != NULL) { 9217 ill->ill_lmod_cnt++; 9218 dwq = dwq->q_next; 9219 } 9220 } 9221 /* 9222 * There's no point in resetting or re-negotiating if 9223 * we are not bound to the driver, so only do this if 9224 * the DLPI state is idle (up); we assume such state 9225 * since ill_ipif_up_count gets incremented in 9226 * ipif_up_done(), which is after we are bound to the 9227 * driver. Note that in the case of logical 9228 * interfaces, IP won't rebind to the driver unless 9229 * the ill_ipif_up_count is 0, meaning that all other 9230 * IP interfaces (including the main ipif) are in the 9231 * down state. Because of this, we use such counter 9232 * as an indicator, instead of relying on the IPIF_UP 9233 * flag, which is per ipif instance. 9234 */ 9235 if (ill->ill_ipif_up_count > 0) { 9236 if (islink) 9237 ill_capability_probe(ill); 9238 else 9239 ill_capability_reset(ill); 9240 } 9241 } 9242 goto done; 9243 } 9244 9245 /* 9246 * This is an I_{P}LINK sent down by ifconfig on 9247 * /dev/arp. ARP has appended this last (3rd) mblk, 9248 * giving more info. STREAMS ensures that the lower 9249 * stream (l_qbot) will not vanish until this ioctl 9250 * completes. So we can safely walk the stream or refer 9251 * to the q_ptr. 9252 */ 9253 ipmxp = (struct ipmx_s *)mp2->b_rptr; 9254 if (ipmxp->ipmx_arpdev_stream) { 9255 /* 9256 * The operation is occuring on the arp-device 9257 * stream. 9258 */ 9259 ill = ill_lookup_on_name(ipmxp->ipmx_name, B_FALSE, B_FALSE, 9260 q, mp, ip_sioctl_plink, &err, NULL); 9261 if (ill == NULL) { 9262 if (err == EINPROGRESS) { 9263 return; 9264 } else { 9265 err = EINVAL; 9266 goto done; 9267 } 9268 } 9269 9270 if (ipsq == NULL) { 9271 ipsq = ipsq_try_enter(NULL, ill, q, mp, ip_sioctl_plink, 9272 NEW_OP, B_TRUE); 9273 if (ipsq == NULL) { 9274 ill_refrele(ill); 9275 return; 9276 } 9277 entered_ipsq = B_TRUE; 9278 } 9279 ASSERT(IAM_WRITER_ILL(ill)); 9280 ill_refrele(ill); 9281 /* 9282 * To ensure consistency between IP and ARP, 9283 * the following LIFO scheme is used in 9284 * plink/punlink. (IP first, ARP last). 9285 * This is because the muxid's are stored 9286 * in the IP stream on the ill. 9287 * 9288 * I_{P}LINK: ifconfig plinks the IP stream before 9289 * plinking the ARP stream. On an arp-dev 9290 * stream, IP checks that it is not yet 9291 * plinked, and it also checks that the 9292 * corresponding IP stream is already plinked. 9293 * 9294 * I_{P}UNLINK: ifconfig punlinks the ARP stream 9295 * before punlinking the IP stream. IP does 9296 * not allow punlink of the IP stream unless 9297 * the arp stream has been punlinked. 9298 * 9299 */ 9300 if ((islink && 9301 (ill->ill_arp_muxid != 0 || ill->ill_ip_muxid == 0)) || 9302 (!islink && 9303 ill->ill_arp_muxid != li->l_index)) { 9304 err = EINVAL; 9305 goto done; 9306 } 9307 if (islink) { 9308 ill->ill_arp_muxid = li->l_index; 9309 } else { 9310 ill->ill_arp_muxid = 0; 9311 } 9312 } else { 9313 /* 9314 * This must be the IP module stream with or 9315 * without arp. Walk the stream and locate the 9316 * IP module. An IP module instance is 9317 * identified by the module name IP, non-null 9318 * q_next, and it's wput not being ip_lwput. 9319 */ 9320 ipwq = li->l_qbot; 9321 while (ipwq != NULL) { 9322 qinfo = ipwq->q_qinfo; 9323 name = qinfo->qi_minfo->mi_idname; 9324 if (name != NULL && name[0] != NULL && 9325 (strcmp(name, ip_mod_info.mi_idname) == 0) && 9326 ((void *)(qinfo->qi_putp) != (void *)ip_lwput) && 9327 (ipwq->q_next != NULL)) { 9328 break; 9329 } 9330 ipwq = ipwq->q_next; 9331 } 9332 if (ipwq != NULL) { 9333 ill = ipwq->q_ptr; 9334 ASSERT(ill != NULL); 9335 9336 if (ipsq == NULL) { 9337 ipsq = ipsq_try_enter(NULL, ill, q, mp, 9338 ip_sioctl_plink, NEW_OP, B_TRUE); 9339 if (ipsq == NULL) 9340 return; 9341 entered_ipsq = B_TRUE; 9342 } 9343 ASSERT(IAM_WRITER_ILL(ill)); 9344 /* 9345 * Return error if the ip_mux_id is 9346 * non-zero and command is I_{P}LINK. 9347 * If command is I_{P}UNLINK, return 9348 * error if the arp-devstr is not 9349 * yet punlinked. 9350 */ 9351 if ((islink && ill->ill_ip_muxid != 0) || 9352 (!islink && ill->ill_arp_muxid != 0)) { 9353 err = EINVAL; 9354 goto done; 9355 } 9356 ill->ill_lmod_rq = NULL; 9357 ill->ill_lmod_cnt = 0; 9358 if (islink) { 9359 /* 9360 * Store the upper read queue of the module 9361 * immediately below IP, and count the total 9362 * number of lower modules. 9363 */ 9364 if ((dwq = ipwq->q_next) != NULL) { 9365 ill->ill_lmod_rq = RD(dwq); 9366 9367 while (dwq != NULL) { 9368 ill->ill_lmod_cnt++; 9369 dwq = dwq->q_next; 9370 } 9371 } 9372 ill->ill_ip_muxid = li->l_index; 9373 } else { 9374 ill->ill_ip_muxid = 0; 9375 } 9376 9377 /* 9378 * See comments above about resetting/re- 9379 * negotiating driver sub-capabilities. 9380 */ 9381 if (ill->ill_ipif_up_count > 0) { 9382 if (islink) 9383 ill_capability_probe(ill); 9384 else 9385 ill_capability_reset(ill); 9386 } 9387 } 9388 } 9389 done: 9390 iocp->ioc_count = 0; 9391 iocp->ioc_error = err; 9392 if (err == 0) 9393 mp->b_datap->db_type = M_IOCACK; 9394 else 9395 mp->b_datap->db_type = M_IOCNAK; 9396 qreply(q, mp); 9397 9398 /* Conn was refheld in ip_sioctl_copyin_setup */ 9399 if (CONN_Q(q)) 9400 CONN_OPER_PENDING_DONE(Q_TO_CONN(q)); 9401 if (entered_ipsq) 9402 ipsq_exit(ipsq, B_TRUE, B_TRUE); 9403 } 9404 9405 /* 9406 * Search the ioctl command in the ioctl tables and return a pointer 9407 * to the ioctl command information. The ioctl command tables are 9408 * static and fully populated at compile time. 9409 */ 9410 ip_ioctl_cmd_t * 9411 ip_sioctl_lookup(int ioc_cmd) 9412 { 9413 int index; 9414 ip_ioctl_cmd_t *ipip; 9415 ip_ioctl_cmd_t *ipip_end; 9416 9417 if (ioc_cmd == IPI_DONTCARE) 9418 return (NULL); 9419 9420 /* 9421 * Do a 2 step search. First search the indexed table 9422 * based on the least significant byte of the ioctl cmd. 9423 * If we don't find a match, then search the misc table 9424 * serially. 9425 */ 9426 index = ioc_cmd & 0xFF; 9427 if (index < ip_ndx_ioctl_count) { 9428 ipip = &ip_ndx_ioctl_table[index]; 9429 if (ipip->ipi_cmd == ioc_cmd) { 9430 /* Found a match in the ndx table */ 9431 return (ipip); 9432 } 9433 } 9434 9435 /* Search the misc table */ 9436 ipip_end = &ip_misc_ioctl_table[ip_misc_ioctl_count]; 9437 for (ipip = ip_misc_ioctl_table; ipip < ipip_end; ipip++) { 9438 if (ipip->ipi_cmd == ioc_cmd) 9439 /* Found a match in the misc table */ 9440 return (ipip); 9441 } 9442 9443 return (NULL); 9444 } 9445 9446 /* 9447 * Wrapper function for resuming deferred ioctl processing 9448 * Used for SIOCGDSTINFO, SIOCGIP6ADDRPOLICY, SIOCGMSFILTER, 9449 * SIOCSMSFILTER, SIOCGIPMSFILTER, and SIOCSIPMSFILTER currently. 9450 */ 9451 /* ARGSUSED */ 9452 void 9453 ip_sioctl_copyin_resume(ipsq_t *dummy_ipsq, queue_t *q, mblk_t *mp, 9454 void *dummy_arg) 9455 { 9456 ip_sioctl_copyin_setup(q, mp); 9457 } 9458 9459 /* 9460 * ip_sioctl_copyin_setup is called by ip_wput with any M_IOCTL message 9461 * that arrives. Most of the IOCTLs are "socket" IOCTLs which we handle 9462 * in either I_STR or TRANSPARENT form, using the mi_copy facility. 9463 * We establish here the size of the block to be copied in. mi_copyin 9464 * arranges for this to happen, an processing continues in ip_wput with 9465 * an M_IOCDATA message. 9466 */ 9467 void 9468 ip_sioctl_copyin_setup(queue_t *q, mblk_t *mp) 9469 { 9470 int copyin_size; 9471 struct iocblk *iocp = (struct iocblk *)mp->b_rptr; 9472 ip_ioctl_cmd_t *ipip; 9473 cred_t *cr; 9474 9475 ipip = ip_sioctl_lookup(iocp->ioc_cmd); 9476 if (ipip == NULL) { 9477 /* 9478 * The ioctl is not one we understand or own. 9479 * Pass it along to be processed down stream, 9480 * if this is a module instance of IP, else nak 9481 * the ioctl. 9482 */ 9483 if (q->q_next == NULL) { 9484 goto nak; 9485 } else { 9486 putnext(q, mp); 9487 return; 9488 } 9489 } 9490 9491 /* 9492 * If this is deferred, then we will do all the checks when we 9493 * come back. 9494 */ 9495 if ((iocp->ioc_cmd == SIOCGDSTINFO || 9496 iocp->ioc_cmd == SIOCGIP6ADDRPOLICY) && !ip6_asp_can_lookup()) { 9497 ip6_asp_pending_op(q, mp, ip_sioctl_copyin_resume); 9498 return; 9499 } 9500 9501 /* 9502 * Only allow a very small subset of IP ioctls on this stream if 9503 * IP is a module and not a driver. Allowing ioctls to be processed 9504 * in this case may cause assert failures or data corruption. 9505 * Typically G[L]IFFLAGS, SLIFNAME/IF_UNITSEL are the only few 9506 * ioctls allowed on an IP module stream, after which this stream 9507 * normally becomes a multiplexor (at which time the stream head 9508 * will fail all ioctls). 9509 */ 9510 if ((q->q_next != NULL) && !(ipip->ipi_flags & IPI_MODOK)) { 9511 if (ipip->ipi_flags & IPI_PASS_DOWN) { 9512 /* 9513 * Pass common Streams ioctls which the IP 9514 * module does not own or consume along to 9515 * be processed down stream. 9516 */ 9517 putnext(q, mp); 9518 return; 9519 } else { 9520 goto nak; 9521 } 9522 } 9523 9524 /* Make sure we have ioctl data to process. */ 9525 if (mp->b_cont == NULL && !(ipip->ipi_flags & IPI_NULL_BCONT)) 9526 goto nak; 9527 9528 /* 9529 * Prefer dblk credential over ioctl credential; some synthesized 9530 * ioctls have kcred set because there's no way to crhold() 9531 * a credential in some contexts. (ioc_cr is not crfree() by 9532 * the framework; the caller of ioctl needs to hold the reference 9533 * for the duration of the call). 9534 */ 9535 cr = DB_CREDDEF(mp, iocp->ioc_cr); 9536 9537 /* Make sure normal users don't send down privileged ioctls */ 9538 if ((ipip->ipi_flags & IPI_PRIV) && 9539 (cr != NULL) && secpolicy_net_config(cr, B_TRUE) != 0) { 9540 /* We checked the privilege earlier but log it here */ 9541 miocnak(q, mp, 0, secpolicy_net_config(cr, B_FALSE)); 9542 return; 9543 } 9544 9545 /* 9546 * The ioctl command tables can only encode fixed length 9547 * ioctl data. If the length is variable, the table will 9548 * encode the length as zero. Such special cases are handled 9549 * below in the switch. 9550 */ 9551 if (ipip->ipi_copyin_size != 0) { 9552 mi_copyin(q, mp, NULL, ipip->ipi_copyin_size); 9553 return; 9554 } 9555 9556 switch (iocp->ioc_cmd) { 9557 case O_SIOCGIFCONF: 9558 case SIOCGIFCONF: 9559 /* 9560 * This IOCTL is hilarious. See comments in 9561 * ip_sioctl_get_ifconf for the story. 9562 */ 9563 if (iocp->ioc_count == TRANSPARENT) 9564 copyin_size = SIZEOF_STRUCT(ifconf, 9565 iocp->ioc_flag); 9566 else 9567 copyin_size = iocp->ioc_count; 9568 mi_copyin(q, mp, NULL, copyin_size); 9569 return; 9570 9571 case O_SIOCGLIFCONF: 9572 case SIOCGLIFCONF: 9573 copyin_size = SIZEOF_STRUCT(lifconf, iocp->ioc_flag); 9574 mi_copyin(q, mp, NULL, copyin_size); 9575 return; 9576 9577 case SIOCGLIFSRCOF: 9578 copyin_size = SIZEOF_STRUCT(lifsrcof, iocp->ioc_flag); 9579 mi_copyin(q, mp, NULL, copyin_size); 9580 return; 9581 case SIOCGIP6ADDRPOLICY: 9582 ip_sioctl_ip6addrpolicy(q, mp); 9583 ip6_asp_table_refrele(); 9584 return; 9585 9586 case SIOCSIP6ADDRPOLICY: 9587 ip_sioctl_ip6addrpolicy(q, mp); 9588 return; 9589 9590 case SIOCGDSTINFO: 9591 ip_sioctl_dstinfo(q, mp); 9592 ip6_asp_table_refrele(); 9593 return; 9594 9595 case I_PLINK: 9596 case I_PUNLINK: 9597 case I_LINK: 9598 case I_UNLINK: 9599 /* 9600 * We treat non-persistent link similarly as the persistent 9601 * link case, in terms of plumbing/unplumbing, as well as 9602 * dynamic re-plumbing events indicator. See comments 9603 * in ip_sioctl_plink() for more. 9604 * 9605 * Request can be enqueued in the 'ipsq' while waiting 9606 * to become exclusive. So bump up the conn ref. 9607 */ 9608 if (CONN_Q(q)) 9609 CONN_INC_REF(Q_TO_CONN(q)); 9610 ip_sioctl_plink(NULL, q, mp, NULL); 9611 return; 9612 9613 case ND_GET: 9614 case ND_SET: 9615 /* 9616 * Use of the nd table requires holding the reader lock. 9617 * Modifying the nd table thru nd_load/nd_unload requires 9618 * the writer lock. 9619 */ 9620 rw_enter(&ip_g_nd_lock, RW_READER); 9621 if (nd_getset(q, ip_g_nd, mp)) { 9622 rw_exit(&ip_g_nd_lock); 9623 9624 if (iocp->ioc_error) 9625 iocp->ioc_count = 0; 9626 mp->b_datap->db_type = M_IOCACK; 9627 qreply(q, mp); 9628 return; 9629 } 9630 rw_exit(&ip_g_nd_lock); 9631 /* 9632 * We don't understand this subioctl of ND_GET / ND_SET. 9633 * Maybe intended for some driver / module below us 9634 */ 9635 if (q->q_next) { 9636 putnext(q, mp); 9637 } else { 9638 iocp->ioc_error = ENOENT; 9639 mp->b_datap->db_type = M_IOCNAK; 9640 iocp->ioc_count = 0; 9641 qreply(q, mp); 9642 } 9643 return; 9644 9645 case IP_IOCTL: 9646 ip_wput_ioctl(q, mp); 9647 return; 9648 default: 9649 cmn_err(CE_PANIC, "should not happen "); 9650 } 9651 nak: 9652 if (mp->b_cont != NULL) { 9653 freemsg(mp->b_cont); 9654 mp->b_cont = NULL; 9655 } 9656 iocp->ioc_error = EINVAL; 9657 mp->b_datap->db_type = M_IOCNAK; 9658 iocp->ioc_count = 0; 9659 qreply(q, mp); 9660 } 9661 9662 /* ip_wput hands off ARP IOCTL responses to us */ 9663 void 9664 ip_sioctl_iocack(queue_t *q, mblk_t *mp) 9665 { 9666 struct arpreq *ar; 9667 struct xarpreq *xar; 9668 area_t *area; 9669 mblk_t *area_mp; 9670 struct iocblk *iocp; 9671 mblk_t *orig_ioc_mp, *tmp; 9672 struct iocblk *orig_iocp; 9673 ill_t *ill; 9674 conn_t *connp = NULL; 9675 uint_t ioc_id; 9676 mblk_t *pending_mp; 9677 int x_arp_ioctl = B_FALSE, ifx_arp_ioctl = B_FALSE; 9678 int *flagsp; 9679 char *storage = NULL; 9680 sin_t *sin; 9681 ipaddr_t addr; 9682 int err; 9683 9684 ill = q->q_ptr; 9685 ASSERT(ill != NULL); 9686 9687 /* 9688 * We should get back from ARP a packet chain that looks like: 9689 * M_IOCACK-->ARP_op_MBLK-->ORIG_M_IOCTL-->MI_COPY_MBLK-->[X]ARPREQ_MBLK 9690 */ 9691 if (!(area_mp = mp->b_cont) || 9692 (area_mp->b_wptr - area_mp->b_rptr) < sizeof (ip_sock_ar_t) || 9693 !(orig_ioc_mp = area_mp->b_cont) || 9694 !orig_ioc_mp->b_cont || !orig_ioc_mp->b_cont->b_cont) { 9695 freemsg(mp); 9696 return; 9697 } 9698 9699 orig_iocp = (struct iocblk *)orig_ioc_mp->b_rptr; 9700 9701 tmp = (orig_ioc_mp->b_cont)->b_cont; 9702 if ((orig_iocp->ioc_cmd == SIOCGXARP) || 9703 (orig_iocp->ioc_cmd == SIOCSXARP) || 9704 (orig_iocp->ioc_cmd == SIOCDXARP)) { 9705 x_arp_ioctl = B_TRUE; 9706 xar = (struct xarpreq *)tmp->b_rptr; 9707 sin = (sin_t *)&xar->xarp_pa; 9708 flagsp = &xar->xarp_flags; 9709 storage = xar->xarp_ha.sdl_data; 9710 if (xar->xarp_ha.sdl_nlen != 0) 9711 ifx_arp_ioctl = B_TRUE; 9712 } else { 9713 ar = (struct arpreq *)tmp->b_rptr; 9714 sin = (sin_t *)&ar->arp_pa; 9715 flagsp = &ar->arp_flags; 9716 storage = ar->arp_ha.sa_data; 9717 } 9718 9719 iocp = (struct iocblk *)mp->b_rptr; 9720 9721 /* 9722 * Pick out the originating queue based on the ioc_id. 9723 */ 9724 ioc_id = iocp->ioc_id; 9725 pending_mp = ill_pending_mp_get(ill, &connp, ioc_id); 9726 if (pending_mp == NULL) { 9727 ASSERT(connp == NULL); 9728 ip_ioctl_freemsg(mp); 9729 return; 9730 } 9731 ASSERT(connp != NULL); 9732 q = CONNP_TO_WQ(connp); 9733 9734 /* Uncouple the internally generated IOCTL from the original one */ 9735 area = (area_t *)area_mp->b_rptr; 9736 area_mp->b_cont = NULL; 9737 9738 /* 9739 * Restore the b_next and b_prev used by mi code. This is needed 9740 * to complete the ioctl using mi* functions. We stored them in 9741 * the pending mp prior to sending the request to ARP. 9742 */ 9743 orig_ioc_mp->b_cont->b_next = pending_mp->b_cont->b_next; 9744 orig_ioc_mp->b_cont->b_prev = pending_mp->b_cont->b_prev; 9745 ip_ioctl_freemsg(pending_mp); 9746 9747 /* 9748 * We're done if there was an error or if this is not an SIOCG{X}ARP 9749 * Catch the case where there is an IRE_CACHE by no entry in the 9750 * arp table. 9751 */ 9752 addr = sin->sin_addr.s_addr; 9753 if (iocp->ioc_error && iocp->ioc_cmd == AR_ENTRY_SQUERY) { 9754 ire_t *ire; 9755 dl_unitdata_req_t *dlup; 9756 mblk_t *llmp; 9757 int addr_len; 9758 ill_t *ipsqill = NULL; 9759 9760 if (ifx_arp_ioctl) { 9761 /* 9762 * There's no need to lookup the ill, since 9763 * we've already done that when we started 9764 * processing the ioctl and sent the message 9765 * to ARP on that ill. So use the ill that 9766 * is stored in q->q_ptr. 9767 */ 9768 ipsqill = ill; 9769 ire = ire_ctable_lookup(addr, 0, IRE_CACHE, 9770 ipsqill->ill_ipif, ALL_ZONES, 9771 MATCH_IRE_TYPE | MATCH_IRE_ILL); 9772 } else { 9773 ire = ire_ctable_lookup(addr, 0, IRE_CACHE, 9774 NULL, ALL_ZONES, MATCH_IRE_TYPE); 9775 if (ire != NULL) 9776 ipsqill = ire_to_ill(ire); 9777 } 9778 9779 if ((x_arp_ioctl) && (ipsqill != NULL)) 9780 storage += ill_xarp_info(&xar->xarp_ha, ipsqill); 9781 9782 if (ire != NULL) { 9783 *flagsp = ATF_INUSE; 9784 llmp = ire->ire_dlureq_mp; 9785 if (llmp != NULL && ipsqill != NULL) { 9786 uchar_t *macaddr; 9787 9788 addr_len = ipsqill->ill_phys_addr_length; 9789 if (x_arp_ioctl && ((addr_len + 9790 ipsqill->ill_name_length) > 9791 sizeof (xar->xarp_ha.sdl_data))) { 9792 ire_refrele(ire); 9793 freemsg(mp); 9794 ip_ioctl_finish(q, orig_ioc_mp, 9795 EINVAL, NO_COPYOUT, NULL, NULL); 9796 return; 9797 } 9798 *flagsp |= ATF_COM; 9799 dlup = (dl_unitdata_req_t *)llmp->b_rptr; 9800 if (ipsqill->ill_sap_length < 0) 9801 macaddr = llmp->b_rptr + 9802 dlup->dl_dest_addr_offset; 9803 else 9804 macaddr = llmp->b_rptr + 9805 dlup->dl_dest_addr_offset + 9806 ipsqill->ill_sap_length; 9807 /* 9808 * For SIOCGARP, MAC address length 9809 * validation has already been done 9810 * before the ioctl was issued to ARP to 9811 * allow it to progress only on 6 byte 9812 * addressable (ethernet like) media. Thus 9813 * the mac address copying can not overwrite 9814 * the sa_data area below. 9815 */ 9816 bcopy(macaddr, storage, addr_len); 9817 } 9818 /* Ditch the internal IOCTL. */ 9819 freemsg(mp); 9820 ire_refrele(ire); 9821 ip_ioctl_finish(q, orig_ioc_mp, 0, COPYOUT, NULL, NULL); 9822 return; 9823 } 9824 } 9825 9826 /* 9827 * Delete the coresponding IRE_CACHE if any. 9828 * Reset the error if there was one (in case there was no entry 9829 * in arp.) 9830 */ 9831 if (iocp->ioc_cmd == AR_ENTRY_DELETE) { 9832 ipif_t *ipintf = NULL; 9833 9834 if (ifx_arp_ioctl) { 9835 /* 9836 * There's no need to lookup the ill, since 9837 * we've already done that when we started 9838 * processing the ioctl and sent the message 9839 * to ARP on that ill. So use the ill that 9840 * is stored in q->q_ptr. 9841 */ 9842 ipintf = ill->ill_ipif; 9843 } 9844 if (ip_ire_clookup_and_delete(addr, ipintf)) { 9845 /* 9846 * The address in "addr" may be an entry for a 9847 * router. If that's true, then any off-net 9848 * IRE_CACHE entries that go through the router 9849 * with address "addr" must be clobbered. Use 9850 * ire_walk to achieve this goal. 9851 */ 9852 if (ifx_arp_ioctl) 9853 ire_walk_ill_v4(MATCH_IRE_ILL, 0, 9854 ire_delete_cache_gw, (char *)&addr, ill); 9855 else 9856 ire_walk_v4(ire_delete_cache_gw, (char *)&addr, 9857 ALL_ZONES); 9858 iocp->ioc_error = 0; 9859 } 9860 } 9861 9862 if (iocp->ioc_error || iocp->ioc_cmd != AR_ENTRY_SQUERY) { 9863 err = iocp->ioc_error; 9864 freemsg(mp); 9865 ip_ioctl_finish(q, orig_ioc_mp, err, NO_COPYOUT, NULL, NULL); 9866 return; 9867 } 9868 9869 /* 9870 * Completion of an SIOCG{X}ARP. Translate the information from 9871 * the area_t into the struct {x}arpreq. 9872 */ 9873 if (x_arp_ioctl) { 9874 storage += ill_xarp_info(&xar->xarp_ha, ill); 9875 if ((ill->ill_phys_addr_length + ill->ill_name_length) > 9876 sizeof (xar->xarp_ha.sdl_data)) { 9877 freemsg(mp); 9878 ip_ioctl_finish(q, orig_ioc_mp, EINVAL, 9879 NO_COPYOUT, NULL, NULL); 9880 return; 9881 } 9882 } 9883 *flagsp = ATF_INUSE; 9884 if (area->area_flags & ACE_F_PERMANENT) 9885 *flagsp |= ATF_PERM; 9886 if (area->area_flags & ACE_F_PUBLISH) 9887 *flagsp |= ATF_PUBL; 9888 if (area->area_hw_addr_length != 0) { 9889 *flagsp |= ATF_COM; 9890 /* 9891 * For SIOCGARP, MAC address length validation has 9892 * already been done before the ioctl was issued to ARP 9893 * to allow it to progress only on 6 byte addressable 9894 * (ethernet like) media. Thus the mac address copying 9895 * can not overwrite the sa_data area below. 9896 */ 9897 bcopy((char *)area + area->area_hw_addr_offset, 9898 storage, area->area_hw_addr_length); 9899 } 9900 9901 /* Ditch the internal IOCTL. */ 9902 freemsg(mp); 9903 /* Complete the original. */ 9904 ip_ioctl_finish(q, orig_ioc_mp, 0, COPYOUT, NULL, NULL); 9905 } 9906 9907 /* 9908 * Create a new logical interface. If ipif_id is zero (i.e. not a logical 9909 * interface) create the next available logical interface for this 9910 * physical interface. 9911 * If ipif is NULL (i.e. the lookup didn't find one) attempt to create an 9912 * ipif with the specified name. 9913 * 9914 * If the address family is not AF_UNSPEC then set the address as well. 9915 * 9916 * If ip_sioctl_addr returns EINPROGRESS then the ioctl (the copyout) 9917 * is completed when the DL_BIND_ACK arrive in ip_rput_dlpi_writer. 9918 * 9919 * Executed as a writer on the ill or ill group. 9920 * So no lock is needed to traverse the ipif chain, or examine the 9921 * phyint flags. 9922 */ 9923 /* ARGSUSED */ 9924 int 9925 ip_sioctl_addif(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, 9926 ip_ioctl_cmd_t *dummy_ipip, void *dummy_ifreq) 9927 { 9928 mblk_t *mp1; 9929 struct lifreq *lifr; 9930 boolean_t isv6; 9931 boolean_t exists; 9932 char *name; 9933 char *endp; 9934 char *cp; 9935 int namelen; 9936 ipif_t *ipif; 9937 long id; 9938 ipsq_t *ipsq; 9939 ill_t *ill; 9940 sin_t *sin; 9941 int err = 0; 9942 boolean_t found_sep = B_FALSE; 9943 conn_t *connp; 9944 zoneid_t zoneid; 9945 int orig_ifindex = 0; 9946 9947 ip1dbg(("ip_sioctl_addif\n")); 9948 /* Existence of mp1 has been checked in ip_wput_nondata */ 9949 mp1 = mp->b_cont->b_cont; 9950 /* 9951 * Null terminate the string to protect against buffer 9952 * overrun. String was generated by user code and may not 9953 * be trusted. 9954 */ 9955 lifr = (struct lifreq *)mp1->b_rptr; 9956 lifr->lifr_name[LIFNAMSIZ - 1] = '\0'; 9957 name = lifr->lifr_name; 9958 ASSERT(CONN_Q(q)); 9959 connp = Q_TO_CONN(q); 9960 isv6 = connp->conn_af_isv6; 9961 zoneid = connp->conn_zoneid; 9962 namelen = mi_strlen(name); 9963 if (namelen == 0) 9964 return (EINVAL); 9965 9966 exists = B_FALSE; 9967 if ((namelen + 1 == sizeof (ipif_loopback_name)) && 9968 (mi_strcmp(name, ipif_loopback_name) == 0)) { 9969 /* 9970 * Allow creating lo0 using SIOCLIFADDIF. 9971 * can't be any other writer thread. So can pass null below 9972 * for the last 4 args to ipif_lookup_name. 9973 */ 9974 ipif = ipif_lookup_on_name(lifr->lifr_name, namelen, 9975 B_TRUE, &exists, isv6, zoneid, NULL, NULL, NULL, NULL); 9976 /* Prevent any further action */ 9977 if (ipif == NULL) { 9978 return (ENOBUFS); 9979 } else if (!exists) { 9980 /* We created the ipif now and as writer */ 9981 ipif_refrele(ipif); 9982 return (0); 9983 } else { 9984 ill = ipif->ipif_ill; 9985 ill_refhold(ill); 9986 ipif_refrele(ipif); 9987 } 9988 } else { 9989 /* Look for a colon in the name. */ 9990 endp = &name[namelen]; 9991 for (cp = endp; --cp > name; ) { 9992 if (*cp == IPIF_SEPARATOR_CHAR) { 9993 found_sep = B_TRUE; 9994 /* 9995 * Reject any non-decimal aliases for plumbing 9996 * of logical interfaces. Aliases with leading 9997 * zeroes are also rejected as they introduce 9998 * ambiguity in the naming of the interfaces. 9999 * Comparing with "0" takes care of all such 10000 * cases. 10001 */ 10002 if ((strncmp("0", cp+1, 1)) == 0) 10003 return (EINVAL); 10004 10005 if (ddi_strtol(cp+1, &endp, 10, &id) != 0 || 10006 id <= 0 || *endp != '\0') { 10007 return (EINVAL); 10008 } 10009 *cp = '\0'; 10010 break; 10011 } 10012 } 10013 ill = ill_lookup_on_name(name, B_FALSE, isv6, 10014 CONNP_TO_WQ(connp), mp, ip_process_ioctl, &err, NULL); 10015 if (found_sep) 10016 *cp = IPIF_SEPARATOR_CHAR; 10017 if (ill == NULL) 10018 return (err); 10019 } 10020 10021 ipsq = ipsq_try_enter(NULL, ill, q, mp, ip_process_ioctl, NEW_OP, 10022 B_TRUE); 10023 10024 /* 10025 * Release the refhold due to the lookup, now that we are excl 10026 * or we are just returning 10027 */ 10028 ill_refrele(ill); 10029 10030 if (ipsq == NULL) 10031 return (EINPROGRESS); 10032 10033 /* 10034 * If the interface is failed, inactive or offlined, look for a working 10035 * interface in the ill group and create the ipif there. If we can't 10036 * find a good interface, create the ipif anyway so that in.mpathd can 10037 * move it to the first repaired interface. 10038 */ 10039 if ((ill->ill_phyint->phyint_flags & 10040 (PHYI_FAILED|PHYI_INACTIVE|PHYI_OFFLINE)) && 10041 ill->ill_phyint->phyint_groupname_len != 0) { 10042 phyint_t *phyi; 10043 char *groupname = ill->ill_phyint->phyint_groupname; 10044 10045 /* 10046 * We're looking for a working interface, but it doesn't matter 10047 * if it's up or down; so instead of following the group lists, 10048 * we look at each physical interface and compare the groupname. 10049 * We're only interested in interfaces with IPv4 (resp. IPv6) 10050 * plumbed when we're adding an IPv4 (resp. IPv6) ipif. 10051 * Otherwise we create the ipif on the failed interface. 10052 */ 10053 rw_enter(&ill_g_lock, RW_READER); 10054 phyi = avl_first(&phyint_g_list.phyint_list_avl_by_index); 10055 for (; phyi != NULL; 10056 phyi = avl_walk(&phyint_g_list.phyint_list_avl_by_index, 10057 phyi, AVL_AFTER)) { 10058 if (phyi->phyint_groupname_len == 0) 10059 continue; 10060 ASSERT(phyi->phyint_groupname != NULL); 10061 if (mi_strcmp(groupname, phyi->phyint_groupname) == 0 && 10062 !(phyi->phyint_flags & 10063 (PHYI_FAILED|PHYI_INACTIVE|PHYI_OFFLINE)) && 10064 (ill->ill_isv6 ? (phyi->phyint_illv6 != NULL) : 10065 (phyi->phyint_illv4 != NULL))) { 10066 break; 10067 } 10068 } 10069 rw_exit(&ill_g_lock); 10070 10071 if (phyi != NULL) { 10072 orig_ifindex = ill->ill_phyint->phyint_ifindex; 10073 ill = (ill->ill_isv6 ? phyi->phyint_illv6 : 10074 phyi->phyint_illv4); 10075 } 10076 } 10077 10078 /* 10079 * We are now exclusive on the ipsq, so an ill move will be serialized 10080 * before or after us. 10081 */ 10082 ASSERT(IAM_WRITER_ILL(ill)); 10083 ASSERT(ill->ill_move_in_progress == B_FALSE); 10084 10085 if (found_sep && orig_ifindex == 0) { 10086 /* Now see if there is an IPIF with this unit number. */ 10087 for (ipif = ill->ill_ipif; ipif; ipif = ipif->ipif_next) { 10088 if (ipif->ipif_id == id) { 10089 err = EEXIST; 10090 goto done; 10091 } 10092 } 10093 } 10094 10095 /* 10096 * We use IRE_LOCAL for lo0:1 etc. for "receive only" use 10097 * of lo0. We never come here when we plumb lo0:0. It 10098 * happens in ipif_lookup_on_name. 10099 * The specified unit number is ignored when we create the ipif on a 10100 * different interface. However, we save it in ipif_orig_ipifid below so 10101 * that the ipif fails back to the right position. 10102 */ 10103 if ((ipif = ipif_allocate(ill, (found_sep && orig_ifindex == 0) ? 10104 id : -1, IRE_LOCAL, B_TRUE)) == NULL) { 10105 err = ENOBUFS; 10106 goto done; 10107 } 10108 10109 /* Return created name with ioctl */ 10110 (void) sprintf(lifr->lifr_name, "%s%c%d", ill->ill_name, 10111 IPIF_SEPARATOR_CHAR, ipif->ipif_id); 10112 ip1dbg(("created %s\n", lifr->lifr_name)); 10113 10114 /* Set address */ 10115 sin = (sin_t *)&lifr->lifr_addr; 10116 if (sin->sin_family != AF_UNSPEC) { 10117 err = ip_sioctl_addr(ipif, sin, q, mp, 10118 &ip_ndx_ioctl_table[SIOCLIFADDR_NDX], lifr); 10119 } 10120 10121 /* Set ifindex and unit number for failback */ 10122 if (err == 0 && orig_ifindex != 0) { 10123 ipif->ipif_orig_ifindex = orig_ifindex; 10124 if (found_sep) { 10125 ipif->ipif_orig_ipifid = id; 10126 } 10127 } 10128 10129 done: 10130 ipsq_exit(ipsq, B_TRUE, B_TRUE); 10131 return (err); 10132 } 10133 10134 /* 10135 * Remove an existing logical interface. If ipif_id is zero (i.e. not a logical 10136 * interface) delete it based on the IP address (on this physical interface). 10137 * Otherwise delete it based on the ipif_id. 10138 * Also, special handling to allow a removeif of lo0. 10139 */ 10140 /* ARGSUSED */ 10141 int 10142 ip_sioctl_removeif(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 10143 ip_ioctl_cmd_t *ipip, void *dummy_if_req) 10144 { 10145 conn_t *connp; 10146 ill_t *ill = ipif->ipif_ill; 10147 boolean_t success; 10148 10149 ip1dbg(("ip_sioctl_remove_if(%s:%u %p)\n", 10150 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 10151 ASSERT(IAM_WRITER_IPIF(ipif)); 10152 10153 connp = Q_TO_CONN(q); 10154 /* 10155 * Special case for unplumbing lo0 (the loopback physical interface). 10156 * If unplumbing lo0, the incoming address structure has been 10157 * initialized to all zeros. When unplumbing lo0, all its logical 10158 * interfaces must be removed too. 10159 * 10160 * Note that this interface may be called to remove a specific 10161 * loopback logical interface (eg, lo0:1). But in that case 10162 * ipif->ipif_id != 0 so that the code path for that case is the 10163 * same as any other interface (meaning it skips the code directly 10164 * below). 10165 */ 10166 if (ipif->ipif_id == 0 && ipif->ipif_net_type == IRE_LOOPBACK) { 10167 if (sin->sin_family == AF_UNSPEC && 10168 (IN6_IS_ADDR_UNSPECIFIED(&((sin6_t *)sin)->sin6_addr))) { 10169 /* 10170 * Mark it condemned. No new ref. will be made to ill. 10171 */ 10172 mutex_enter(&ill->ill_lock); 10173 ill->ill_state_flags |= ILL_CONDEMNED; 10174 for (ipif = ill->ill_ipif; ipif != NULL; 10175 ipif = ipif->ipif_next) { 10176 ipif->ipif_state_flags |= IPIF_CONDEMNED; 10177 } 10178 mutex_exit(&ill->ill_lock); 10179 10180 ipif = ill->ill_ipif; 10181 /* unplumb the loopback interface */ 10182 ill_delete(ill); 10183 mutex_enter(&connp->conn_lock); 10184 mutex_enter(&ill->ill_lock); 10185 ASSERT(ill->ill_group == NULL); 10186 10187 /* Are any references to this ill active */ 10188 if (ill_is_quiescent(ill)) { 10189 mutex_exit(&ill->ill_lock); 10190 mutex_exit(&connp->conn_lock); 10191 ill_delete_tail(ill); 10192 return (0); 10193 } 10194 success = ipsq_pending_mp_add(connp, ipif, 10195 CONNP_TO_WQ(connp), mp, ILL_FREE); 10196 mutex_exit(&connp->conn_lock); 10197 mutex_exit(&ill->ill_lock); 10198 if (success) 10199 return (EINPROGRESS); 10200 else 10201 return (EINTR); 10202 } 10203 } 10204 10205 /* 10206 * We are exclusive on the ipsq, so an ill move will be serialized 10207 * before or after us. 10208 */ 10209 ASSERT(ill->ill_move_in_progress == B_FALSE); 10210 10211 if (ipif->ipif_id == 0) { 10212 /* Find based on address */ 10213 if (ipif->ipif_isv6) { 10214 sin6_t *sin6; 10215 10216 if (sin->sin_family != AF_INET6) 10217 return (EAFNOSUPPORT); 10218 10219 sin6 = (sin6_t *)sin; 10220 /* We are a writer, so we should be able to lookup */ 10221 ipif = ipif_lookup_addr_v6(&sin6->sin6_addr, 10222 ill, ALL_ZONES, NULL, NULL, NULL, NULL); 10223 if (ipif == NULL) { 10224 /* 10225 * Maybe the address in on another interface in 10226 * the same IPMP group? We check this below. 10227 */ 10228 ipif = ipif_lookup_addr_v6(&sin6->sin6_addr, 10229 NULL, ALL_ZONES, NULL, NULL, NULL, NULL); 10230 } 10231 } else { 10232 ipaddr_t addr; 10233 10234 if (sin->sin_family != AF_INET) 10235 return (EAFNOSUPPORT); 10236 10237 addr = sin->sin_addr.s_addr; 10238 /* We are a writer, so we should be able to lookup */ 10239 ipif = ipif_lookup_addr(addr, ill, ALL_ZONES, NULL, 10240 NULL, NULL, NULL); 10241 if (ipif == NULL) { 10242 /* 10243 * Maybe the address in on another interface in 10244 * the same IPMP group? We check this below. 10245 */ 10246 ipif = ipif_lookup_addr(addr, NULL, ALL_ZONES, 10247 NULL, NULL, NULL, NULL); 10248 } 10249 } 10250 if (ipif == NULL) { 10251 return (EADDRNOTAVAIL); 10252 } 10253 /* 10254 * When the address to be removed is hosted on a different 10255 * interface, we check if the interface is in the same IPMP 10256 * group as the specified one; if so we proceed with the 10257 * removal. 10258 * ill->ill_group is NULL when the ill is down, so we have to 10259 * compare the group names instead. 10260 */ 10261 if (ipif->ipif_ill != ill && 10262 (ipif->ipif_ill->ill_phyint->phyint_groupname_len == 0 || 10263 ill->ill_phyint->phyint_groupname_len == 0 || 10264 mi_strcmp(ipif->ipif_ill->ill_phyint->phyint_groupname, 10265 ill->ill_phyint->phyint_groupname) != 0)) { 10266 ipif_refrele(ipif); 10267 return (EADDRNOTAVAIL); 10268 } 10269 10270 /* This is a writer */ 10271 ipif_refrele(ipif); 10272 } 10273 10274 /* 10275 * Can not delete instance zero since it is tied to the ill. 10276 */ 10277 if (ipif->ipif_id == 0) 10278 return (EBUSY); 10279 10280 mutex_enter(&ill->ill_lock); 10281 ipif->ipif_state_flags |= IPIF_CONDEMNED; 10282 mutex_exit(&ill->ill_lock); 10283 10284 ipif_free(ipif); 10285 10286 mutex_enter(&connp->conn_lock); 10287 mutex_enter(&ill->ill_lock); 10288 10289 /* Are any references to this ipif active */ 10290 if (ipif->ipif_refcnt == 0 && ipif->ipif_ire_cnt == 0) { 10291 mutex_exit(&ill->ill_lock); 10292 mutex_exit(&connp->conn_lock); 10293 ipif_down_tail(ipif); 10294 ipif_free_tail(ipif); 10295 return (0); 10296 } 10297 success = ipsq_pending_mp_add(connp, ipif, CONNP_TO_WQ(connp), mp, 10298 IPIF_FREE); 10299 mutex_exit(&ill->ill_lock); 10300 mutex_exit(&connp->conn_lock); 10301 if (success) 10302 return (EINPROGRESS); 10303 else 10304 return (EINTR); 10305 } 10306 10307 /* 10308 * Restart the removeif ioctl. The refcnt has gone down to 0. 10309 * The ipif is already condemned. So can't find it thru lookups. 10310 */ 10311 /* ARGSUSED */ 10312 int 10313 ip_sioctl_removeif_restart(ipif_t *ipif, sin_t *dummy_sin, queue_t *q, 10314 mblk_t *mp, ip_ioctl_cmd_t *ipip, void *dummy_if_req) 10315 { 10316 ill_t *ill; 10317 10318 ip1dbg(("ip_sioctl_removeif_restart(%s:%u %p)\n", 10319 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 10320 if (ipif->ipif_id == 0 && ipif->ipif_net_type == IRE_LOOPBACK) { 10321 ill = ipif->ipif_ill; 10322 ASSERT(IAM_WRITER_ILL(ill)); 10323 ASSERT((ipif->ipif_state_flags & IPIF_CONDEMNED) && 10324 (ill->ill_state_flags & IPIF_CONDEMNED)); 10325 ill_delete_tail(ill); 10326 return (0); 10327 } 10328 10329 ill = ipif->ipif_ill; 10330 ASSERT(IAM_WRITER_IPIF(ipif)); 10331 ASSERT(ipif->ipif_state_flags & IPIF_CONDEMNED); 10332 10333 ipif_down_tail(ipif); 10334 ipif_free_tail(ipif); 10335 10336 ILL_UNMARK_CHANGING(ill); 10337 return (0); 10338 } 10339 10340 /* 10341 * Set the local interface address. 10342 * Allow an address of all zero when the interface is down. 10343 */ 10344 /* ARGSUSED */ 10345 int 10346 ip_sioctl_addr(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 10347 ip_ioctl_cmd_t *dummy_ipip, void *dummy_ifreq) 10348 { 10349 int err = 0; 10350 in6_addr_t v6addr; 10351 boolean_t need_up = B_FALSE; 10352 10353 ip1dbg(("ip_sioctl_addr(%s:%u %p)\n", 10354 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 10355 10356 ASSERT(IAM_WRITER_IPIF(ipif)); 10357 10358 if (ipif->ipif_isv6) { 10359 sin6_t *sin6; 10360 ill_t *ill; 10361 phyint_t *phyi; 10362 10363 if (sin->sin_family != AF_INET6) 10364 return (EAFNOSUPPORT); 10365 10366 sin6 = (sin6_t *)sin; 10367 v6addr = sin6->sin6_addr; 10368 ill = ipif->ipif_ill; 10369 phyi = ill->ill_phyint; 10370 10371 /* 10372 * Enforce that true multicast interfaces have a link-local 10373 * address for logical unit 0. 10374 */ 10375 if (ipif->ipif_id == 0 && 10376 (ill->ill_flags & ILLF_MULTICAST) && 10377 !(ipif->ipif_flags & (IPIF_POINTOPOINT)) && 10378 !(phyi->phyint_flags & (PHYI_LOOPBACK)) && 10379 !IN6_IS_ADDR_LINKLOCAL(&v6addr)) { 10380 return (EADDRNOTAVAIL); 10381 } 10382 10383 /* 10384 * up interfaces shouldn't have the unspecified address 10385 * unless they also have the IPIF_NOLOCAL flags set and 10386 * have a subnet assigned. 10387 */ 10388 if ((ipif->ipif_flags & IPIF_UP) && 10389 IN6_IS_ADDR_UNSPECIFIED(&v6addr) && 10390 (!(ipif->ipif_flags & IPIF_NOLOCAL) || 10391 IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6subnet))) { 10392 return (EADDRNOTAVAIL); 10393 } 10394 10395 if (!ip_local_addr_ok_v6(&v6addr, &ipif->ipif_v6net_mask)) 10396 return (EADDRNOTAVAIL); 10397 } else { 10398 ipaddr_t addr; 10399 10400 if (sin->sin_family != AF_INET) 10401 return (EAFNOSUPPORT); 10402 10403 addr = sin->sin_addr.s_addr; 10404 10405 /* Allow 0 as the local address. */ 10406 if (addr != 0 && !ip_addr_ok_v4(addr, ipif->ipif_net_mask)) 10407 return (EADDRNOTAVAIL); 10408 10409 IN6_IPADDR_TO_V4MAPPED(addr, &v6addr); 10410 } 10411 10412 10413 /* 10414 * Even if there is no change we redo things just to rerun 10415 * ipif_set_default. 10416 */ 10417 if (ipif->ipif_flags & IPIF_UP) { 10418 /* 10419 * Setting a new local address, make sure 10420 * we have net and subnet bcast ire's for 10421 * the old address if we need them. 10422 */ 10423 if (!ipif->ipif_isv6) 10424 ipif_check_bcast_ires(ipif); 10425 /* 10426 * If the interface is already marked up, 10427 * we call ipif_down which will take care 10428 * of ditching any IREs that have been set 10429 * up based on the old interface address. 10430 */ 10431 err = ipif_logical_down(ipif, q, mp); 10432 if (err == EINPROGRESS) 10433 return (err); 10434 ipif_down_tail(ipif); 10435 need_up = 1; 10436 } 10437 10438 err = ip_sioctl_addr_tail(ipif, sin, q, mp, need_up); 10439 return (err); 10440 } 10441 10442 int 10443 ip_sioctl_addr_tail(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 10444 boolean_t need_up) 10445 { 10446 in6_addr_t v6addr; 10447 ipaddr_t addr; 10448 sin6_t *sin6; 10449 int err = 0; 10450 10451 ip1dbg(("ip_sioctl_addr_tail(%s:%u %p)\n", 10452 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 10453 ASSERT(IAM_WRITER_IPIF(ipif)); 10454 if (ipif->ipif_isv6) { 10455 sin6 = (sin6_t *)sin; 10456 v6addr = sin6->sin6_addr; 10457 } else { 10458 addr = sin->sin_addr.s_addr; 10459 IN6_IPADDR_TO_V4MAPPED(addr, &v6addr); 10460 } 10461 mutex_enter(&ipif->ipif_ill->ill_lock); 10462 ipif->ipif_v6lcl_addr = v6addr; 10463 if (ipif->ipif_flags & (IPIF_ANYCAST | IPIF_NOLOCAL)) { 10464 ipif->ipif_v6src_addr = ipv6_all_zeros; 10465 } else { 10466 ipif->ipif_v6src_addr = v6addr; 10467 } 10468 10469 if ((ipif->ipif_isv6) && IN6_IS_ADDR_6TO4(&v6addr) && 10470 (!ipif->ipif_ill->ill_is_6to4tun)) { 10471 queue_t *wqp = ipif->ipif_ill->ill_wq; 10472 10473 /* 10474 * The local address of this interface is a 6to4 address, 10475 * check if this interface is in fact a 6to4 tunnel or just 10476 * an interface configured with a 6to4 address. We are only 10477 * interested in the former. 10478 */ 10479 if (wqp != NULL) { 10480 while ((wqp->q_next != NULL) && 10481 (wqp->q_next->q_qinfo != NULL) && 10482 (wqp->q_next->q_qinfo->qi_minfo != NULL)) { 10483 10484 if (wqp->q_next->q_qinfo->qi_minfo->mi_idnum 10485 == TUN6TO4_MODID) { 10486 /* set for use in IP */ 10487 ipif->ipif_ill->ill_is_6to4tun = 1; 10488 break; 10489 } 10490 wqp = wqp->q_next; 10491 } 10492 } 10493 } 10494 10495 ipif_set_default(ipif); 10496 mutex_exit(&ipif->ipif_ill->ill_lock); 10497 10498 if (need_up) { 10499 /* 10500 * Now bring the interface back up. If this 10501 * is the only IPIF for the ILL, ipif_up 10502 * will have to re-bind to the device, so 10503 * we may get back EINPROGRESS, in which 10504 * case, this IOCTL will get completed in 10505 * ip_rput_dlpi when we see the DL_BIND_ACK. 10506 */ 10507 err = ipif_up(ipif, q, mp); 10508 } else { 10509 /* 10510 * Update the IPIF list in SCTP, ipif_up_done() will do it 10511 * if need_up is true. 10512 */ 10513 sctp_update_ipif(ipif, SCTP_IPIF_UPDATE); 10514 } 10515 10516 return (err); 10517 } 10518 10519 10520 /* 10521 * Restart entry point to restart the address set operation after the 10522 * refcounts have dropped to zero. 10523 */ 10524 /* ARGSUSED */ 10525 int 10526 ip_sioctl_addr_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 10527 ip_ioctl_cmd_t *ipip, void *ifreq) 10528 { 10529 ip1dbg(("ip_sioctl_addr_restart(%s:%u %p)\n", 10530 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 10531 ASSERT(IAM_WRITER_IPIF(ipif)); 10532 ipif_down_tail(ipif); 10533 return (ip_sioctl_addr_tail(ipif, sin, q, mp, B_TRUE)); 10534 } 10535 10536 /* ARGSUSED */ 10537 int 10538 ip_sioctl_get_addr(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 10539 ip_ioctl_cmd_t *ipip, void *if_req) 10540 { 10541 sin6_t *sin6 = (struct sockaddr_in6 *)sin; 10542 struct lifreq *lifr = (struct lifreq *)if_req; 10543 10544 ip1dbg(("ip_sioctl_get_addr(%s:%u %p)\n", 10545 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 10546 /* 10547 * The net mask and address can't change since we have a 10548 * reference to the ipif. So no lock is necessary. 10549 */ 10550 if (ipif->ipif_isv6) { 10551 *sin6 = sin6_null; 10552 sin6->sin6_family = AF_INET6; 10553 sin6->sin6_addr = ipif->ipif_v6lcl_addr; 10554 ASSERT(ipip->ipi_cmd_type == LIF_CMD); 10555 lifr->lifr_addrlen = 10556 ip_mask_to_plen_v6(&ipif->ipif_v6net_mask); 10557 } else { 10558 *sin = sin_null; 10559 sin->sin_family = AF_INET; 10560 sin->sin_addr.s_addr = ipif->ipif_lcl_addr; 10561 if (ipip->ipi_cmd_type == LIF_CMD) { 10562 lifr->lifr_addrlen = 10563 ip_mask_to_plen(ipif->ipif_net_mask); 10564 } 10565 } 10566 return (0); 10567 } 10568 10569 /* 10570 * Set the destination address for a pt-pt interface. 10571 */ 10572 /* ARGSUSED */ 10573 int 10574 ip_sioctl_dstaddr(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 10575 ip_ioctl_cmd_t *ipip, void *if_req) 10576 { 10577 int err = 0; 10578 in6_addr_t v6addr; 10579 boolean_t need_up = B_FALSE; 10580 10581 ip1dbg(("ip_sioctl_dstaddr(%s:%u %p)\n", 10582 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 10583 ASSERT(IAM_WRITER_IPIF(ipif)); 10584 10585 if (ipif->ipif_isv6) { 10586 sin6_t *sin6; 10587 10588 if (sin->sin_family != AF_INET6) 10589 return (EAFNOSUPPORT); 10590 10591 sin6 = (sin6_t *)sin; 10592 v6addr = sin6->sin6_addr; 10593 10594 if (!ip_remote_addr_ok_v6(&v6addr, &ipif->ipif_v6net_mask)) 10595 return (EADDRNOTAVAIL); 10596 } else { 10597 ipaddr_t addr; 10598 10599 if (sin->sin_family != AF_INET) 10600 return (EAFNOSUPPORT); 10601 10602 addr = sin->sin_addr.s_addr; 10603 if (!ip_addr_ok_v4(addr, ipif->ipif_net_mask)) 10604 return (EADDRNOTAVAIL); 10605 10606 IN6_IPADDR_TO_V4MAPPED(addr, &v6addr); 10607 } 10608 10609 if (IN6_ARE_ADDR_EQUAL(&ipif->ipif_v6pp_dst_addr, &v6addr)) 10610 return (0); /* No change */ 10611 10612 if (ipif->ipif_flags & IPIF_UP) { 10613 /* 10614 * If the interface is already marked up, 10615 * we call ipif_down which will take care 10616 * of ditching any IREs that have been set 10617 * up based on the old pp dst address. 10618 */ 10619 err = ipif_logical_down(ipif, q, mp); 10620 if (err == EINPROGRESS) 10621 return (err); 10622 ipif_down_tail(ipif); 10623 need_up = B_TRUE; 10624 } 10625 /* 10626 * could return EINPROGRESS. If so ioctl will complete in 10627 * ip_rput_dlpi_writer 10628 */ 10629 err = ip_sioctl_dstaddr_tail(ipif, sin, q, mp, need_up); 10630 return (err); 10631 } 10632 10633 static int 10634 ip_sioctl_dstaddr_tail(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 10635 boolean_t need_up) 10636 { 10637 in6_addr_t v6addr; 10638 ill_t *ill = ipif->ipif_ill; 10639 int err = 0; 10640 10641 ip1dbg(("ip_sioctl_dstaddr_tail(%s:%u %p)\n", 10642 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 10643 if (ipif->ipif_isv6) { 10644 sin6_t *sin6; 10645 10646 sin6 = (sin6_t *)sin; 10647 v6addr = sin6->sin6_addr; 10648 } else { 10649 ipaddr_t addr; 10650 10651 addr = sin->sin_addr.s_addr; 10652 IN6_IPADDR_TO_V4MAPPED(addr, &v6addr); 10653 } 10654 mutex_enter(&ill->ill_lock); 10655 /* Set point to point destination address. */ 10656 if ((ipif->ipif_flags & IPIF_POINTOPOINT) == 0) { 10657 /* 10658 * Allow this as a means of creating logical 10659 * pt-pt interfaces on top of e.g. an Ethernet. 10660 * XXX Undocumented HACK for testing. 10661 * pt-pt interfaces are created with NUD disabled. 10662 */ 10663 ipif->ipif_flags |= IPIF_POINTOPOINT; 10664 ipif->ipif_flags &= ~IPIF_BROADCAST; 10665 if (ipif->ipif_isv6) 10666 ipif->ipif_ill->ill_flags |= ILLF_NONUD; 10667 } 10668 10669 /* Set the new address. */ 10670 ipif->ipif_v6pp_dst_addr = v6addr; 10671 /* Make sure subnet tracks pp_dst */ 10672 ipif->ipif_v6subnet = ipif->ipif_v6pp_dst_addr; 10673 mutex_exit(&ill->ill_lock); 10674 10675 if (need_up) { 10676 /* 10677 * Now bring the interface back up. If this 10678 * is the only IPIF for the ILL, ipif_up 10679 * will have to re-bind to the device, so 10680 * we may get back EINPROGRESS, in which 10681 * case, this IOCTL will get completed in 10682 * ip_rput_dlpi when we see the DL_BIND_ACK. 10683 */ 10684 err = ipif_up(ipif, q, mp); 10685 } 10686 return (err); 10687 } 10688 10689 /* 10690 * Restart entry point to restart the dstaddress set operation after the 10691 * refcounts have dropped to zero. 10692 */ 10693 /* ARGSUSED */ 10694 int 10695 ip_sioctl_dstaddr_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 10696 ip_ioctl_cmd_t *ipip, void *ifreq) 10697 { 10698 ip1dbg(("ip_sioctl_dstaddr_restart(%s:%u %p)\n", 10699 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 10700 ipif_down_tail(ipif); 10701 return (ip_sioctl_dstaddr_tail(ipif, sin, q, mp, B_TRUE)); 10702 } 10703 10704 /* ARGSUSED */ 10705 int 10706 ip_sioctl_get_dstaddr(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 10707 ip_ioctl_cmd_t *ipip, void *if_req) 10708 { 10709 sin6_t *sin6 = (struct sockaddr_in6 *)sin; 10710 10711 ip1dbg(("ip_sioctl_get_dstaddr(%s:%u %p)\n", 10712 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 10713 /* 10714 * Get point to point destination address. The addresses can't 10715 * change since we hold a reference to the ipif. 10716 */ 10717 if ((ipif->ipif_flags & IPIF_POINTOPOINT) == 0) 10718 return (EADDRNOTAVAIL); 10719 10720 if (ipif->ipif_isv6) { 10721 ASSERT(ipip->ipi_cmd_type == LIF_CMD); 10722 *sin6 = sin6_null; 10723 sin6->sin6_family = AF_INET6; 10724 sin6->sin6_addr = ipif->ipif_v6pp_dst_addr; 10725 } else { 10726 *sin = sin_null; 10727 sin->sin_family = AF_INET; 10728 sin->sin_addr.s_addr = ipif->ipif_pp_dst_addr; 10729 } 10730 return (0); 10731 } 10732 10733 /* 10734 * part of ipmp, make this func return the active/inactive state and 10735 * caller can set once atomically instead of multiple mutex_enter/mutex_exit 10736 */ 10737 /* 10738 * This function either sets or clears the IFF_INACTIVE flag. 10739 * 10740 * As long as there are some addresses or multicast memberships on the 10741 * IPv4 or IPv6 interface of the "phyi" that does not belong in here, we 10742 * will consider it to be ACTIVE (clear IFF_INACTIVE) i.e the interface 10743 * will be used for outbound packets. 10744 */ 10745 static void 10746 phyint_standby_inactive(phyint_t *phyi) 10747 { 10748 ill_t *ill_v4; 10749 ill_t *ill_v6; 10750 ipif_t *ipif; 10751 ilm_t *ilm; 10752 10753 ill_v4 = phyi->phyint_illv4; 10754 ill_v6 = phyi->phyint_illv6; 10755 10756 /* 10757 * No need for a lock while traversing the list since iam 10758 * a writer 10759 */ 10760 if (ill_v4 != NULL) { 10761 ASSERT(IAM_WRITER_ILL(ill_v4)); 10762 for (ipif = ill_v4->ill_ipif; ipif != NULL; 10763 ipif = ipif->ipif_next) { 10764 if (ipif->ipif_orig_ifindex != phyi->phyint_ifindex) { 10765 mutex_enter(&phyi->phyint_lock); 10766 phyi->phyint_flags &= ~PHYI_INACTIVE; 10767 mutex_exit(&phyi->phyint_lock); 10768 return; 10769 } 10770 } 10771 for (ilm = ill_v4->ill_ilm; ilm != NULL; 10772 ilm = ilm->ilm_next) { 10773 if (ilm->ilm_orig_ifindex != phyi->phyint_ifindex) { 10774 mutex_enter(&phyi->phyint_lock); 10775 phyi->phyint_flags &= ~PHYI_INACTIVE; 10776 mutex_exit(&phyi->phyint_lock); 10777 return; 10778 } 10779 } 10780 } 10781 if (ill_v6 != NULL) { 10782 ill_v6 = phyi->phyint_illv6; 10783 for (ipif = ill_v6->ill_ipif; ipif != NULL; 10784 ipif = ipif->ipif_next) { 10785 if (ipif->ipif_orig_ifindex != phyi->phyint_ifindex) { 10786 mutex_enter(&phyi->phyint_lock); 10787 phyi->phyint_flags &= ~PHYI_INACTIVE; 10788 mutex_exit(&phyi->phyint_lock); 10789 return; 10790 } 10791 } 10792 for (ilm = ill_v6->ill_ilm; ilm != NULL; 10793 ilm = ilm->ilm_next) { 10794 if (ilm->ilm_orig_ifindex != phyi->phyint_ifindex) { 10795 mutex_enter(&phyi->phyint_lock); 10796 phyi->phyint_flags &= ~PHYI_INACTIVE; 10797 mutex_exit(&phyi->phyint_lock); 10798 return; 10799 } 10800 } 10801 } 10802 mutex_enter(&phyi->phyint_lock); 10803 phyi->phyint_flags |= PHYI_INACTIVE; 10804 mutex_exit(&phyi->phyint_lock); 10805 } 10806 10807 /* 10808 * This function is called only when the phyint flags change. Currently 10809 * called from ip_sioctl_flags. We re-do the broadcast nomination so 10810 * that we can select a good ill. 10811 */ 10812 static void 10813 ip_redo_nomination(phyint_t *phyi) 10814 { 10815 ill_t *ill_v4; 10816 10817 ill_v4 = phyi->phyint_illv4; 10818 10819 if (ill_v4 != NULL && ill_v4->ill_group != NULL) { 10820 ASSERT(IAM_WRITER_ILL(ill_v4)); 10821 if (ill_v4->ill_group->illgrp_ill_count > 1) 10822 ill_nominate_bcast_rcv(ill_v4->ill_group); 10823 } 10824 } 10825 10826 /* 10827 * Set interface flags. 10828 * Need to do special action for IPIF_UP, IPIF_DEPRECATED, IPIF_NOXMIT, 10829 * IPIF_NOLOCAL, ILLF_NONUD, ILLF_NOARP, IPIF_PRIVATE, IPIF_ANYCAST, 10830 * IPIF_PREFERRED, PHYI_STANDBY, PHYI_FAILED and PHYI_OFFLINE. 10831 * 10832 * NOTE : We really don't enforce that ipif_id zero should be used 10833 * for setting any flags other than IFF_LOGINT_FLAGS. This 10834 * is because applications generally does SICGLIFFLAGS and 10835 * ORs in the new flags (that affects the logical) and does a 10836 * SIOCSLIFFLAGS. Thus, "flags" below could contain bits other 10837 * than IFF_LOGINT_FLAGS. One could check whether "turn_on" - the 10838 * flags that will be turned on is correct with respect to 10839 * ipif_id 0. For backward compatibility reasons, it is not done. 10840 */ 10841 /* ARGSUSED */ 10842 int 10843 ip_sioctl_flags(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 10844 ip_ioctl_cmd_t *ipip, void *if_req) 10845 { 10846 uint64_t turn_on; 10847 uint64_t turn_off; 10848 int err; 10849 boolean_t need_up = B_FALSE; 10850 phyint_t *phyi; 10851 ill_t *ill; 10852 uint64_t intf_flags; 10853 boolean_t phyint_flags_modified = B_FALSE; 10854 uint64_t flags; 10855 struct ifreq *ifr; 10856 struct lifreq *lifr; 10857 boolean_t set_linklocal = B_FALSE; 10858 boolean_t zero_source = B_FALSE; 10859 10860 ip1dbg(("ip_sioctl_flags(%s:%u %p)\n", 10861 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 10862 10863 ASSERT(IAM_WRITER_IPIF(ipif)); 10864 10865 ill = ipif->ipif_ill; 10866 phyi = ill->ill_phyint; 10867 10868 if (ipip->ipi_cmd_type == IF_CMD) { 10869 ifr = (struct ifreq *)if_req; 10870 flags = (uint64_t)(ifr->ifr_flags & 0x0000ffff); 10871 } else { 10872 lifr = (struct lifreq *)if_req; 10873 flags = lifr->lifr_flags; 10874 } 10875 10876 intf_flags = ipif->ipif_flags | ill->ill_flags | phyi->phyint_flags; 10877 10878 /* 10879 * Has the flags been set correctly till now ? 10880 */ 10881 ASSERT((phyi->phyint_flags & ~(IFF_PHYINT_FLAGS)) == 0); 10882 ASSERT((ill->ill_flags & ~(IFF_PHYINTINST_FLAGS)) == 0); 10883 ASSERT((ipif->ipif_flags & ~(IFF_LOGINT_FLAGS)) == 0); 10884 /* 10885 * Compare the new flags to the old, and partition 10886 * into those coming on and those going off. 10887 * For the 16 bit command keep the bits above bit 16 unchanged. 10888 */ 10889 if (ipip->ipi_cmd == SIOCSIFFLAGS) 10890 flags |= intf_flags & ~0xFFFF; 10891 10892 /* 10893 * First check which bits will change and then which will 10894 * go on and off 10895 */ 10896 turn_on = (flags ^ intf_flags) & ~IFF_CANTCHANGE; 10897 if (!turn_on) 10898 return (0); /* No change */ 10899 10900 turn_off = intf_flags & turn_on; 10901 turn_on ^= turn_off; 10902 err = 0; 10903 10904 /* 10905 * Don't allow any bits belonging to the logical interface 10906 * to be set or cleared on the replacement ipif that was 10907 * created temporarily during a MOVE. 10908 */ 10909 if (ipif->ipif_replace_zero && 10910 ((turn_on|turn_off) & IFF_LOGINT_FLAGS) != 0) { 10911 return (EINVAL); 10912 } 10913 10914 /* 10915 * Only allow the IFF_XRESOLV and IFF_TEMPORARY flags to be set on 10916 * IPv6 interfaces. 10917 */ 10918 if ((turn_on & (IFF_XRESOLV|IFF_TEMPORARY)) && !(ipif->ipif_isv6)) 10919 return (EINVAL); 10920 10921 /* 10922 * Don't allow the IFF_ROUTER flag to be turned on on loopback 10923 * interfaces. It makes no sense in that context. 10924 */ 10925 if ((turn_on & IFF_ROUTER) && (phyi->phyint_flags & PHYI_LOOPBACK)) 10926 return (EINVAL); 10927 10928 if (flags & (IFF_NOLOCAL|IFF_ANYCAST)) 10929 zero_source = B_TRUE; 10930 10931 /* 10932 * For IPv6 ipif_id 0, don't allow the interface to be up without 10933 * a link local address if IFF_NOLOCAL or IFF_ANYCAST are not set. 10934 * If the link local address isn't set, and can be set, it will get 10935 * set later on in this function. 10936 */ 10937 if (ipif->ipif_id == 0 && ipif->ipif_isv6 && 10938 (flags & IFF_UP) && !zero_source && 10939 IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6lcl_addr)) { 10940 if (ipif_cant_setlinklocal(ipif)) 10941 return (EINVAL); 10942 set_linklocal = B_TRUE; 10943 } 10944 10945 /* 10946 * ILL cannot be part of a usesrc group and and IPMP group at the 10947 * same time. No need to grab ill_g_usesrc_lock here, see 10948 * synchronization notes in ip.c 10949 */ 10950 if (turn_on & PHYI_STANDBY && 10951 ipif->ipif_ill->ill_usesrc_grp_next != NULL) { 10952 return (EINVAL); 10953 } 10954 10955 /* 10956 * If we modify physical interface flags, we'll potentially need to 10957 * send up two routing socket messages for the changes (one for the 10958 * IPv4 ill, and another for the IPv6 ill). Note that here. 10959 */ 10960 if ((turn_on|turn_off) & IFF_PHYINT_FLAGS) 10961 phyint_flags_modified = B_TRUE; 10962 10963 /* 10964 * If we are setting or clearing FAILED or STANDBY or OFFLINE, 10965 * we need to flush the IRE_CACHES belonging to this ill. 10966 * We handle this case here without doing the DOWN/UP dance 10967 * like it is done for other flags. If some other flags are 10968 * being turned on/off with FAILED/STANDBY/OFFLINE, the code 10969 * below will handle it by bringing it down and then 10970 * bringing it UP. 10971 */ 10972 if ((turn_on|turn_off) & (PHYI_FAILED|PHYI_STANDBY|PHYI_OFFLINE)) { 10973 ill_t *ill_v4, *ill_v6; 10974 10975 ill_v4 = phyi->phyint_illv4; 10976 ill_v6 = phyi->phyint_illv6; 10977 10978 /* 10979 * First set the INACTIVE flag if needed. Then delete the ires. 10980 * ire_add will atomically prevent creating new IRE_CACHEs 10981 * unless hidden flag is set 10982 */ 10983 if (turn_on & PHYI_STANDBY) { 10984 /* 10985 * We set INACTIVE only when STANDBY is set. 10986 */ 10987 ASSERT(!(phyi->phyint_flags & PHYI_INACTIVE)); 10988 phyint_standby_inactive(phyi); 10989 } 10990 if (turn_off & PHYI_STANDBY) { 10991 /* 10992 * PHYI_INACTIVE makes sense only when PHYI_STANDBY is 10993 * set. 10994 */ 10995 phyi->phyint_flags &= ~PHYI_INACTIVE; 10996 } 10997 /* 10998 * We should always send up a message so that the 10999 * daemons come to know of it. Note that the zeroth 11000 * interface can be down and the check below for IPIF_UP 11001 * will not make sense as we are actually setting 11002 * a phyint flag here. We assume that the ipif used 11003 * is always the zeroth ipif. (ip_rts_ifmsg does not 11004 * send up any message for non-zero ipifs). 11005 */ 11006 phyint_flags_modified = B_TRUE; 11007 11008 if (ill_v4 != NULL) { 11009 ire_walk_ill_v4(MATCH_IRE_ILL | MATCH_IRE_TYPE, 11010 IRE_CACHE, ill_stq_cache_delete, 11011 (char *)ill_v4, ill_v4); 11012 illgrp_reset_schednext(ill_v4); 11013 } 11014 if (ill_v6 != NULL) { 11015 ire_walk_ill_v6(MATCH_IRE_ILL | MATCH_IRE_TYPE, 11016 IRE_CACHE, ill_stq_cache_delete, 11017 (char *)ill_v6, ill_v6); 11018 illgrp_reset_schednext(ill_v6); 11019 } 11020 } 11021 11022 /* 11023 * If ILLF_ROUTER changes, we need to change the ip forwarding 11024 * status of the interface and, if the interface is part of an IPMP 11025 * group, all other interfaces that are part of the same IPMP 11026 * group. 11027 */ 11028 if ((turn_on | turn_off) & ILLF_ROUTER) { 11029 (void) ill_forward_set(q, mp, ((turn_on & ILLF_ROUTER) != 0), 11030 (caddr_t)ill); 11031 } 11032 11033 /* 11034 * If the interface is not UP and we are not going to 11035 * bring it UP, record the flags and return. When the 11036 * interface comes UP later, the right actions will be 11037 * taken. 11038 */ 11039 if (!(ipif->ipif_flags & IPIF_UP) && 11040 !(turn_on & IPIF_UP)) { 11041 /* Record new flags in their respective places. */ 11042 mutex_enter(&ill->ill_lock); 11043 mutex_enter(&ill->ill_phyint->phyint_lock); 11044 ipif->ipif_flags |= (turn_on & IFF_LOGINT_FLAGS); 11045 ipif->ipif_flags &= (~turn_off & IFF_LOGINT_FLAGS); 11046 ill->ill_flags |= (turn_on & IFF_PHYINTINST_FLAGS); 11047 ill->ill_flags &= (~turn_off & IFF_PHYINTINST_FLAGS); 11048 phyi->phyint_flags |= (turn_on & IFF_PHYINT_FLAGS); 11049 phyi->phyint_flags &= (~turn_off & IFF_PHYINT_FLAGS); 11050 mutex_exit(&ill->ill_lock); 11051 mutex_exit(&ill->ill_phyint->phyint_lock); 11052 11053 /* 11054 * We do the broadcast and nomination here rather 11055 * than waiting for a FAILOVER/FAILBACK to happen. In 11056 * the case of FAILBACK from INACTIVE standby to the 11057 * interface that has been repaired, PHYI_FAILED has not 11058 * been cleared yet. If there are only two interfaces in 11059 * that group, all we have is a FAILED and INACTIVE 11060 * interface. If we do the nomination soon after a failback, 11061 * the broadcast nomination code would select the 11062 * INACTIVE interface for receiving broadcasts as FAILED is 11063 * not yet cleared. As we don't want STANDBY/INACTIVE to 11064 * receive broadcast packets, we need to redo nomination 11065 * when the FAILED is cleared here. Thus, in general we 11066 * always do the nomination here for FAILED, STANDBY 11067 * and OFFLINE. 11068 */ 11069 if (((turn_on | turn_off) & 11070 (PHYI_FAILED|PHYI_STANDBY|PHYI_OFFLINE))) { 11071 ip_redo_nomination(phyi); 11072 } 11073 if (phyint_flags_modified) { 11074 if (phyi->phyint_illv4 != NULL) { 11075 ip_rts_ifmsg(phyi->phyint_illv4-> 11076 ill_ipif); 11077 } 11078 if (phyi->phyint_illv6 != NULL) { 11079 ip_rts_ifmsg(phyi->phyint_illv6-> 11080 ill_ipif); 11081 } 11082 } 11083 return (0); 11084 } else if (set_linklocal || zero_source) { 11085 mutex_enter(&ill->ill_lock); 11086 if (set_linklocal) 11087 ipif->ipif_state_flags |= IPIF_SET_LINKLOCAL; 11088 if (zero_source) 11089 ipif->ipif_state_flags |= IPIF_ZERO_SOURCE; 11090 mutex_exit(&ill->ill_lock); 11091 } 11092 11093 /* 11094 * Disallow IPv6 interfaces coming up that have the unspecified address, 11095 * or point-to-point interfaces with an unspecified destination. We do 11096 * allow the address to be unspecified for IPIF_NOLOCAL interfaces that 11097 * have a subnet assigned, which is how in.ndpd currently manages its 11098 * onlink prefix list when no addresses are configured with those 11099 * prefixes. 11100 */ 11101 if (ipif->ipif_isv6 && 11102 ((IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6lcl_addr) && 11103 (!(ipif->ipif_flags & IPIF_NOLOCAL) && !(turn_on & IPIF_NOLOCAL) || 11104 IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6subnet))) || 11105 ((ipif->ipif_flags & IPIF_POINTOPOINT) && 11106 IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6pp_dst_addr)))) { 11107 return (EINVAL); 11108 } 11109 11110 /* 11111 * Prevent IPv4 point-to-point interfaces with a 0.0.0.0 destination 11112 * from being brought up. 11113 */ 11114 if (!ipif->ipif_isv6 && 11115 ((ipif->ipif_flags & IPIF_POINTOPOINT) && 11116 ipif->ipif_pp_dst_addr == INADDR_ANY)) { 11117 return (EINVAL); 11118 } 11119 11120 /* 11121 * The only flag changes that we currently take specific action on 11122 * is IPIF_UP, IPIF_DEPRECATED, IPIF_NOXMIT, IPIF_NOLOCAL, 11123 * ILLF_NOARP, ILLF_NONUD, IPIF_PRIVATE, IPIF_ANYCAST, and 11124 * IPIF_PREFERRED. This is done by bring the ipif down, changing 11125 * the flags and bringing it back up again. 11126 */ 11127 if ((turn_on|turn_off) & 11128 (IPIF_UP|IPIF_DEPRECATED|IPIF_NOXMIT|IPIF_NOLOCAL|ILLF_NOARP| 11129 ILLF_NONUD|IPIF_PRIVATE|IPIF_ANYCAST|IPIF_PREFERRED)) { 11130 /* 11131 * Taking this ipif down, make sure we have 11132 * valid net and subnet bcast ire's for other 11133 * logical interfaces, if we need them. 11134 */ 11135 if (!ipif->ipif_isv6) 11136 ipif_check_bcast_ires(ipif); 11137 11138 if (((ipif->ipif_flags | turn_on) & IPIF_UP) && 11139 !(turn_off & IPIF_UP)) { 11140 need_up = B_TRUE; 11141 if (ipif->ipif_flags & IPIF_UP) 11142 ill->ill_logical_down = 1; 11143 turn_on &= ~IPIF_UP; 11144 } 11145 err = ipif_down(ipif, q, mp); 11146 ip1dbg(("ipif_down returns %d err ", err)); 11147 if (err == EINPROGRESS) 11148 return (err); 11149 ipif_down_tail(ipif); 11150 } 11151 return (ip_sioctl_flags_tail(ipif, flags, q, mp, need_up)); 11152 } 11153 11154 static int 11155 ip_sioctl_flags_tail(ipif_t *ipif, uint64_t flags, queue_t *q, mblk_t *mp, 11156 boolean_t need_up) 11157 { 11158 ill_t *ill; 11159 phyint_t *phyi; 11160 uint64_t turn_on; 11161 uint64_t turn_off; 11162 uint64_t intf_flags; 11163 boolean_t phyint_flags_modified = B_FALSE; 11164 int err = 0; 11165 boolean_t set_linklocal = B_FALSE; 11166 boolean_t zero_source = B_FALSE; 11167 11168 ip1dbg(("ip_sioctl_flags_tail(%s:%u)\n", 11169 ipif->ipif_ill->ill_name, ipif->ipif_id)); 11170 11171 ASSERT(IAM_WRITER_IPIF(ipif)); 11172 11173 ill = ipif->ipif_ill; 11174 phyi = ill->ill_phyint; 11175 11176 intf_flags = ipif->ipif_flags | ill->ill_flags | phyi->phyint_flags; 11177 turn_on = (flags ^ intf_flags) & ~(IFF_CANTCHANGE | IFF_UP); 11178 11179 turn_off = intf_flags & turn_on; 11180 turn_on ^= turn_off; 11181 11182 if ((turn_on|turn_off) & (PHYI_FAILED|PHYI_STANDBY|PHYI_OFFLINE)) 11183 phyint_flags_modified = B_TRUE; 11184 11185 /* 11186 * Now we change the flags. Track current value of 11187 * other flags in their respective places. 11188 */ 11189 mutex_enter(&ill->ill_lock); 11190 mutex_enter(&phyi->phyint_lock); 11191 ipif->ipif_flags |= (turn_on & IFF_LOGINT_FLAGS); 11192 ipif->ipif_flags &= (~turn_off & IFF_LOGINT_FLAGS); 11193 ill->ill_flags |= (turn_on & IFF_PHYINTINST_FLAGS); 11194 ill->ill_flags &= (~turn_off & IFF_PHYINTINST_FLAGS); 11195 phyi->phyint_flags |= (turn_on & IFF_PHYINT_FLAGS); 11196 phyi->phyint_flags &= (~turn_off & IFF_PHYINT_FLAGS); 11197 if (ipif->ipif_state_flags & IPIF_SET_LINKLOCAL) { 11198 set_linklocal = B_TRUE; 11199 ipif->ipif_state_flags &= ~IPIF_SET_LINKLOCAL; 11200 } 11201 if (ipif->ipif_state_flags & IPIF_ZERO_SOURCE) { 11202 zero_source = B_TRUE; 11203 ipif->ipif_state_flags &= ~IPIF_ZERO_SOURCE; 11204 } 11205 mutex_exit(&ill->ill_lock); 11206 mutex_exit(&phyi->phyint_lock); 11207 11208 if (((turn_on | turn_off) & (PHYI_FAILED|PHYI_STANDBY|PHYI_OFFLINE))) 11209 ip_redo_nomination(phyi); 11210 11211 if (set_linklocal) 11212 (void) ipif_setlinklocal(ipif); 11213 11214 if (zero_source) 11215 ipif->ipif_v6src_addr = ipv6_all_zeros; 11216 else 11217 ipif->ipif_v6src_addr = ipif->ipif_v6lcl_addr; 11218 11219 if (need_up) { 11220 /* 11221 * XXX ipif_up really does not know whether a phyint flags 11222 * was modified or not. So, it sends up information on 11223 * only one routing sockets message. As we don't bring up 11224 * the interface and also set STANDBY/FAILED simultaneously 11225 * it should be okay. 11226 */ 11227 err = ipif_up(ipif, q, mp); 11228 } else { 11229 /* 11230 * Make sure routing socket sees all changes to the flags. 11231 * ipif_up_done* handles this when we use ipif_up. 11232 */ 11233 if (phyint_flags_modified) { 11234 if (phyi->phyint_illv4 != NULL) { 11235 ip_rts_ifmsg(phyi->phyint_illv4-> 11236 ill_ipif); 11237 } 11238 if (phyi->phyint_illv6 != NULL) { 11239 ip_rts_ifmsg(phyi->phyint_illv6-> 11240 ill_ipif); 11241 } 11242 } else { 11243 ip_rts_ifmsg(ipif); 11244 } 11245 } 11246 return (err); 11247 } 11248 11249 /* 11250 * Restart entry point to restart the flags restart operation after the 11251 * refcounts have dropped to zero. 11252 */ 11253 /* ARGSUSED */ 11254 int 11255 ip_sioctl_flags_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11256 ip_ioctl_cmd_t *ipip, void *if_req) 11257 { 11258 int err; 11259 struct ifreq *ifr = (struct ifreq *)if_req; 11260 struct lifreq *lifr = (struct lifreq *)if_req; 11261 11262 ip1dbg(("ip_sioctl_flags_restart(%s:%u %p)\n", 11263 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11264 11265 ipif_down_tail(ipif); 11266 if (ipip->ipi_cmd_type == IF_CMD) { 11267 /* 11268 * Since ip_sioctl_flags expects an int and ifr_flags 11269 * is a short we need to cast ifr_flags into an int 11270 * to avoid having sign extension cause bits to get 11271 * set that should not be. 11272 */ 11273 err = ip_sioctl_flags_tail(ipif, 11274 (uint64_t)(ifr->ifr_flags & 0x0000ffff), 11275 q, mp, B_TRUE); 11276 } else { 11277 err = ip_sioctl_flags_tail(ipif, lifr->lifr_flags, 11278 q, mp, B_TRUE); 11279 } 11280 return (err); 11281 } 11282 11283 /* ARGSUSED */ 11284 int 11285 ip_sioctl_get_flags(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11286 ip_ioctl_cmd_t *ipip, void *if_req) 11287 { 11288 /* 11289 * Has the flags been set correctly till now ? 11290 */ 11291 ill_t *ill = ipif->ipif_ill; 11292 phyint_t *phyi = ill->ill_phyint; 11293 11294 ip1dbg(("ip_sioctl_get_flags(%s:%u %p)\n", 11295 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11296 ASSERT((phyi->phyint_flags & ~(IFF_PHYINT_FLAGS)) == 0); 11297 ASSERT((ill->ill_flags & ~(IFF_PHYINTINST_FLAGS)) == 0); 11298 ASSERT((ipif->ipif_flags & ~(IFF_LOGINT_FLAGS)) == 0); 11299 11300 /* 11301 * Need a lock since some flags can be set even when there are 11302 * references to the ipif. 11303 */ 11304 mutex_enter(&ill->ill_lock); 11305 if (ipip->ipi_cmd_type == IF_CMD) { 11306 struct ifreq *ifr = (struct ifreq *)if_req; 11307 11308 /* Get interface flags (low 16 only). */ 11309 ifr->ifr_flags = ((ipif->ipif_flags | 11310 ill->ill_flags | phyi->phyint_flags) & 0xffff); 11311 } else { 11312 struct lifreq *lifr = (struct lifreq *)if_req; 11313 11314 /* Get interface flags. */ 11315 lifr->lifr_flags = ipif->ipif_flags | 11316 ill->ill_flags | phyi->phyint_flags; 11317 } 11318 mutex_exit(&ill->ill_lock); 11319 return (0); 11320 } 11321 11322 /* ARGSUSED */ 11323 int 11324 ip_sioctl_mtu(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11325 ip_ioctl_cmd_t *ipip, void *if_req) 11326 { 11327 int mtu; 11328 int ip_min_mtu; 11329 struct ifreq *ifr; 11330 struct lifreq *lifr; 11331 ire_t *ire; 11332 11333 ip1dbg(("ip_sioctl_mtu(%s:%u %p)\n", ipif->ipif_ill->ill_name, 11334 ipif->ipif_id, (void *)ipif)); 11335 if (ipip->ipi_cmd_type == IF_CMD) { 11336 ifr = (struct ifreq *)if_req; 11337 mtu = ifr->ifr_metric; 11338 } else { 11339 lifr = (struct lifreq *)if_req; 11340 mtu = lifr->lifr_mtu; 11341 } 11342 11343 if (ipif->ipif_isv6) 11344 ip_min_mtu = IPV6_MIN_MTU; 11345 else 11346 ip_min_mtu = IP_MIN_MTU; 11347 11348 if (mtu > ipif->ipif_ill->ill_max_frag || mtu < ip_min_mtu) 11349 return (EINVAL); 11350 11351 /* 11352 * Change the MTU size in all relevant ire's. 11353 * Mtu change Vs. new ire creation - protocol below. 11354 * First change ipif_mtu and the ire_max_frag of the 11355 * interface ire. Then do an ire walk and change the 11356 * ire_max_frag of all affected ires. During ire_add 11357 * under the bucket lock, set the ire_max_frag of the 11358 * new ire being created from the ipif/ire from which 11359 * it is being derived. If an mtu change happens after 11360 * the ire is added, the new ire will be cleaned up. 11361 * Conversely if the mtu change happens before the ire 11362 * is added, ire_add will see the new value of the mtu. 11363 */ 11364 ipif->ipif_mtu = mtu; 11365 ipif->ipif_flags |= IPIF_FIXEDMTU; 11366 11367 if (ipif->ipif_isv6) 11368 ire = ipif_to_ire_v6(ipif); 11369 else 11370 ire = ipif_to_ire(ipif); 11371 if (ire != NULL) { 11372 ire->ire_max_frag = ipif->ipif_mtu; 11373 ire_refrele(ire); 11374 } 11375 if (ipif->ipif_flags & IPIF_UP) { 11376 if (ipif->ipif_isv6) 11377 ire_walk_v6(ipif_mtu_change, (char *)ipif, ALL_ZONES); 11378 else 11379 ire_walk_v4(ipif_mtu_change, (char *)ipif, ALL_ZONES); 11380 } 11381 /* Update the MTU in SCTP's list */ 11382 sctp_update_ipif(ipif, SCTP_IPIF_UPDATE); 11383 return (0); 11384 } 11385 11386 /* Get interface MTU. */ 11387 /* ARGSUSED */ 11388 int 11389 ip_sioctl_get_mtu(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11390 ip_ioctl_cmd_t *ipip, void *if_req) 11391 { 11392 struct ifreq *ifr; 11393 struct lifreq *lifr; 11394 11395 ip1dbg(("ip_sioctl_get_mtu(%s:%u %p)\n", 11396 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11397 if (ipip->ipi_cmd_type == IF_CMD) { 11398 ifr = (struct ifreq *)if_req; 11399 ifr->ifr_metric = ipif->ipif_mtu; 11400 } else { 11401 lifr = (struct lifreq *)if_req; 11402 lifr->lifr_mtu = ipif->ipif_mtu; 11403 } 11404 return (0); 11405 } 11406 11407 /* Set interface broadcast address. */ 11408 /* ARGSUSED2 */ 11409 int 11410 ip_sioctl_brdaddr(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11411 ip_ioctl_cmd_t *ipip, void *if_req) 11412 { 11413 ipaddr_t addr; 11414 ire_t *ire; 11415 11416 ip1dbg(("ip_sioctl_brdaddr(%s:%u)\n", ipif->ipif_ill->ill_name, 11417 ipif->ipif_id)); 11418 11419 ASSERT(IAM_WRITER_IPIF(ipif)); 11420 if (!(ipif->ipif_flags & IPIF_BROADCAST)) 11421 return (EADDRNOTAVAIL); 11422 11423 ASSERT(!(ipif->ipif_isv6)); /* No IPv6 broadcast */ 11424 11425 if (sin->sin_family != AF_INET) 11426 return (EAFNOSUPPORT); 11427 11428 addr = sin->sin_addr.s_addr; 11429 if (ipif->ipif_flags & IPIF_UP) { 11430 /* 11431 * If we are already up, make sure the new 11432 * broadcast address makes sense. If it does, 11433 * there should be an IRE for it already. 11434 * Don't match on ipif, only on the ill 11435 * since we are sharing these now. Don't use 11436 * MATCH_IRE_ILL_GROUP as we are looking for 11437 * the broadcast ire on this ill and each ill 11438 * in the group has its own broadcast ire. 11439 */ 11440 ire = ire_ctable_lookup(addr, 0, IRE_BROADCAST, 11441 ipif, ALL_ZONES, (MATCH_IRE_ILL | MATCH_IRE_TYPE)); 11442 if (ire == NULL) { 11443 return (EINVAL); 11444 } else { 11445 ire_refrele(ire); 11446 } 11447 } 11448 /* 11449 * Changing the broadcast addr for this ipif. 11450 * Make sure we have valid net and subnet bcast 11451 * ire's for other logical interfaces, if needed. 11452 */ 11453 if (addr != ipif->ipif_brd_addr) 11454 ipif_check_bcast_ires(ipif); 11455 IN6_IPADDR_TO_V4MAPPED(addr, &ipif->ipif_v6brd_addr); 11456 return (0); 11457 } 11458 11459 /* Get interface broadcast address. */ 11460 /* ARGSUSED */ 11461 int 11462 ip_sioctl_get_brdaddr(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11463 ip_ioctl_cmd_t *ipip, void *if_req) 11464 { 11465 ip1dbg(("ip_sioctl_get_brdaddr(%s:%u %p)\n", 11466 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11467 if (!(ipif->ipif_flags & IPIF_BROADCAST)) 11468 return (EADDRNOTAVAIL); 11469 11470 /* IPIF_BROADCAST not possible with IPv6 */ 11471 ASSERT(!ipif->ipif_isv6); 11472 *sin = sin_null; 11473 sin->sin_family = AF_INET; 11474 sin->sin_addr.s_addr = ipif->ipif_brd_addr; 11475 return (0); 11476 } 11477 11478 /* 11479 * This routine is called to handle the SIOCS*IFNETMASK IOCTL. 11480 */ 11481 /* ARGSUSED */ 11482 int 11483 ip_sioctl_netmask(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11484 ip_ioctl_cmd_t *ipip, void *if_req) 11485 { 11486 int err = 0; 11487 in6_addr_t v6mask; 11488 11489 ip1dbg(("ip_sioctl_netmask(%s:%u %p)\n", 11490 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11491 11492 ASSERT(IAM_WRITER_IPIF(ipif)); 11493 11494 if (ipif->ipif_isv6) { 11495 sin6_t *sin6; 11496 11497 if (sin->sin_family != AF_INET6) 11498 return (EAFNOSUPPORT); 11499 11500 sin6 = (sin6_t *)sin; 11501 v6mask = sin6->sin6_addr; 11502 } else { 11503 ipaddr_t mask; 11504 11505 if (sin->sin_family != AF_INET) 11506 return (EAFNOSUPPORT); 11507 11508 mask = sin->sin_addr.s_addr; 11509 V4MASK_TO_V6(mask, v6mask); 11510 } 11511 11512 /* 11513 * No big deal if the interface isn't already up, or the mask 11514 * isn't really changing, or this is pt-pt. 11515 */ 11516 if (!(ipif->ipif_flags & IPIF_UP) || 11517 IN6_ARE_ADDR_EQUAL(&v6mask, &ipif->ipif_v6net_mask) || 11518 (ipif->ipif_flags & IPIF_POINTOPOINT)) { 11519 ipif->ipif_v6net_mask = v6mask; 11520 if ((ipif->ipif_flags & IPIF_POINTOPOINT) == 0) { 11521 V6_MASK_COPY(ipif->ipif_v6lcl_addr, 11522 ipif->ipif_v6net_mask, 11523 ipif->ipif_v6subnet); 11524 } 11525 return (0); 11526 } 11527 /* 11528 * Make sure we have valid net and subnet broadcast ire's 11529 * for the old netmask, if needed by other logical interfaces. 11530 */ 11531 if (!ipif->ipif_isv6) 11532 ipif_check_bcast_ires(ipif); 11533 11534 err = ipif_logical_down(ipif, q, mp); 11535 if (err == EINPROGRESS) 11536 return (err); 11537 ipif_down_tail(ipif); 11538 err = ip_sioctl_netmask_tail(ipif, sin, q, mp); 11539 return (err); 11540 } 11541 11542 static int 11543 ip_sioctl_netmask_tail(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp) 11544 { 11545 in6_addr_t v6mask; 11546 int err = 0; 11547 11548 ip1dbg(("ip_sioctl_netmask_tail(%s:%u %p)\n", 11549 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11550 11551 if (ipif->ipif_isv6) { 11552 sin6_t *sin6; 11553 11554 sin6 = (sin6_t *)sin; 11555 v6mask = sin6->sin6_addr; 11556 } else { 11557 ipaddr_t mask; 11558 11559 mask = sin->sin_addr.s_addr; 11560 V4MASK_TO_V6(mask, v6mask); 11561 } 11562 11563 ipif->ipif_v6net_mask = v6mask; 11564 if ((ipif->ipif_flags & IPIF_POINTOPOINT) == 0) { 11565 V6_MASK_COPY(ipif->ipif_v6lcl_addr, ipif->ipif_v6net_mask, 11566 ipif->ipif_v6subnet); 11567 } 11568 err = ipif_up(ipif, q, mp); 11569 11570 if (err == 0 || err == EINPROGRESS) { 11571 /* 11572 * The interface must be DL_BOUND if this packet has to 11573 * go out on the wire. Since we only go through a logical 11574 * down and are bound with the driver during an internal 11575 * down/up that is satisfied. 11576 */ 11577 if (!ipif->ipif_isv6 && ipif->ipif_ill->ill_wq != NULL) { 11578 /* Potentially broadcast an address mask reply. */ 11579 ipif_mask_reply(ipif); 11580 } 11581 } 11582 return (err); 11583 } 11584 11585 /* ARGSUSED */ 11586 int 11587 ip_sioctl_netmask_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11588 ip_ioctl_cmd_t *ipip, void *if_req) 11589 { 11590 ip1dbg(("ip_sioctl_netmask_restart(%s:%u %p)\n", 11591 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11592 ipif_down_tail(ipif); 11593 return (ip_sioctl_netmask_tail(ipif, sin, q, mp)); 11594 } 11595 11596 /* Get interface net mask. */ 11597 /* ARGSUSED */ 11598 int 11599 ip_sioctl_get_netmask(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11600 ip_ioctl_cmd_t *ipip, void *if_req) 11601 { 11602 struct lifreq *lifr = (struct lifreq *)if_req; 11603 struct sockaddr_in6 *sin6 = (sin6_t *)sin; 11604 11605 ip1dbg(("ip_sioctl_get_netmask(%s:%u %p)\n", 11606 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11607 11608 /* 11609 * net mask can't change since we have a reference to the ipif. 11610 */ 11611 if (ipif->ipif_isv6) { 11612 ASSERT(ipip->ipi_cmd_type == LIF_CMD); 11613 *sin6 = sin6_null; 11614 sin6->sin6_family = AF_INET6; 11615 sin6->sin6_addr = ipif->ipif_v6net_mask; 11616 lifr->lifr_addrlen = 11617 ip_mask_to_plen_v6(&ipif->ipif_v6net_mask); 11618 } else { 11619 *sin = sin_null; 11620 sin->sin_family = AF_INET; 11621 sin->sin_addr.s_addr = ipif->ipif_net_mask; 11622 if (ipip->ipi_cmd_type == LIF_CMD) { 11623 lifr->lifr_addrlen = 11624 ip_mask_to_plen(ipif->ipif_net_mask); 11625 } 11626 } 11627 return (0); 11628 } 11629 11630 /* ARGSUSED */ 11631 int 11632 ip_sioctl_metric(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11633 ip_ioctl_cmd_t *ipip, void *if_req) 11634 { 11635 11636 ip1dbg(("ip_sioctl_metric(%s:%u %p)\n", 11637 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11638 /* 11639 * Set interface metric. We don't use this for 11640 * anything but we keep track of it in case it is 11641 * important to routing applications or such. 11642 */ 11643 if (ipip->ipi_cmd_type == IF_CMD) { 11644 struct ifreq *ifr; 11645 11646 ifr = (struct ifreq *)if_req; 11647 ipif->ipif_metric = ifr->ifr_metric; 11648 } else { 11649 struct lifreq *lifr; 11650 11651 lifr = (struct lifreq *)if_req; 11652 ipif->ipif_metric = lifr->lifr_metric; 11653 } 11654 return (0); 11655 } 11656 11657 11658 /* ARGSUSED */ 11659 int 11660 ip_sioctl_get_metric(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11661 ip_ioctl_cmd_t *ipip, void *if_req) 11662 { 11663 11664 /* Get interface metric. */ 11665 ip1dbg(("ip_sioctl_get_metric(%s:%u %p)\n", 11666 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11667 if (ipip->ipi_cmd_type == IF_CMD) { 11668 struct ifreq *ifr; 11669 11670 ifr = (struct ifreq *)if_req; 11671 ifr->ifr_metric = ipif->ipif_metric; 11672 } else { 11673 struct lifreq *lifr; 11674 11675 lifr = (struct lifreq *)if_req; 11676 lifr->lifr_metric = ipif->ipif_metric; 11677 } 11678 11679 return (0); 11680 } 11681 11682 /* ARGSUSED */ 11683 int 11684 ip_sioctl_muxid(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11685 ip_ioctl_cmd_t *ipip, void *if_req) 11686 { 11687 11688 ip1dbg(("ip_sioctl_muxid(%s:%u %p)\n", 11689 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11690 /* 11691 * Set the muxid returned from I_PLINK. 11692 */ 11693 if (ipip->ipi_cmd_type == IF_CMD) { 11694 struct ifreq *ifr = (struct ifreq *)if_req; 11695 11696 ipif->ipif_ill->ill_ip_muxid = ifr->ifr_ip_muxid; 11697 ipif->ipif_ill->ill_arp_muxid = ifr->ifr_arp_muxid; 11698 } else { 11699 struct lifreq *lifr = (struct lifreq *)if_req; 11700 11701 ipif->ipif_ill->ill_ip_muxid = lifr->lifr_ip_muxid; 11702 ipif->ipif_ill->ill_arp_muxid = lifr->lifr_arp_muxid; 11703 } 11704 return (0); 11705 } 11706 11707 /* ARGSUSED */ 11708 int 11709 ip_sioctl_get_muxid(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11710 ip_ioctl_cmd_t *ipip, void *if_req) 11711 { 11712 11713 ip1dbg(("ip_sioctl_get_muxid(%s:%u %p)\n", 11714 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11715 /* 11716 * Get the muxid saved in ill for I_PUNLINK. 11717 */ 11718 if (ipip->ipi_cmd_type == IF_CMD) { 11719 struct ifreq *ifr = (struct ifreq *)if_req; 11720 11721 ifr->ifr_ip_muxid = ipif->ipif_ill->ill_ip_muxid; 11722 ifr->ifr_arp_muxid = ipif->ipif_ill->ill_arp_muxid; 11723 } else { 11724 struct lifreq *lifr = (struct lifreq *)if_req; 11725 11726 lifr->lifr_ip_muxid = ipif->ipif_ill->ill_ip_muxid; 11727 lifr->lifr_arp_muxid = ipif->ipif_ill->ill_arp_muxid; 11728 } 11729 return (0); 11730 } 11731 11732 /* 11733 * Set the subnet prefix. Does not modify the broadcast address. 11734 */ 11735 /* ARGSUSED */ 11736 int 11737 ip_sioctl_subnet(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11738 ip_ioctl_cmd_t *ipip, void *if_req) 11739 { 11740 int err = 0; 11741 in6_addr_t v6addr; 11742 in6_addr_t v6mask; 11743 boolean_t need_up = B_FALSE; 11744 int addrlen; 11745 11746 ip1dbg(("ip_sioctl_subnet(%s:%u %p)\n", 11747 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11748 11749 ASSERT(IAM_WRITER_IPIF(ipif)); 11750 addrlen = ((struct lifreq *)if_req)->lifr_addrlen; 11751 11752 if (ipif->ipif_isv6) { 11753 sin6_t *sin6; 11754 11755 if (sin->sin_family != AF_INET6) 11756 return (EAFNOSUPPORT); 11757 11758 sin6 = (sin6_t *)sin; 11759 v6addr = sin6->sin6_addr; 11760 if (!ip_remote_addr_ok_v6(&v6addr, &ipv6_all_ones)) 11761 return (EADDRNOTAVAIL); 11762 } else { 11763 ipaddr_t addr; 11764 11765 if (sin->sin_family != AF_INET) 11766 return (EAFNOSUPPORT); 11767 11768 addr = sin->sin_addr.s_addr; 11769 if (!ip_addr_ok_v4(addr, 0xFFFFFFFF)) 11770 return (EADDRNOTAVAIL); 11771 IN6_IPADDR_TO_V4MAPPED(addr, &v6addr); 11772 /* Add 96 bits */ 11773 addrlen += IPV6_ABITS - IP_ABITS; 11774 } 11775 11776 if (ip_plen_to_mask_v6(addrlen, &v6mask) == NULL) 11777 return (EINVAL); 11778 11779 /* Check if bits in the address is set past the mask */ 11780 if (!V6_MASK_EQ(v6addr, v6mask, v6addr)) 11781 return (EINVAL); 11782 11783 if (IN6_ARE_ADDR_EQUAL(&ipif->ipif_v6subnet, &v6addr) && 11784 IN6_ARE_ADDR_EQUAL(&ipif->ipif_v6net_mask, &v6mask)) 11785 return (0); /* No change */ 11786 11787 if (ipif->ipif_flags & IPIF_UP) { 11788 /* 11789 * If the interface is already marked up, 11790 * we call ipif_down which will take care 11791 * of ditching any IREs that have been set 11792 * up based on the old interface address. 11793 */ 11794 err = ipif_logical_down(ipif, q, mp); 11795 if (err == EINPROGRESS) 11796 return (err); 11797 ipif_down_tail(ipif); 11798 need_up = B_TRUE; 11799 } 11800 11801 err = ip_sioctl_subnet_tail(ipif, v6addr, v6mask, q, mp, need_up); 11802 return (err); 11803 } 11804 11805 static int 11806 ip_sioctl_subnet_tail(ipif_t *ipif, in6_addr_t v6addr, in6_addr_t v6mask, 11807 queue_t *q, mblk_t *mp, boolean_t need_up) 11808 { 11809 ill_t *ill = ipif->ipif_ill; 11810 int err = 0; 11811 11812 ip1dbg(("ip_sioctl_subnet_tail(%s:%u %p)\n", 11813 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11814 11815 /* Set the new address. */ 11816 mutex_enter(&ill->ill_lock); 11817 ipif->ipif_v6net_mask = v6mask; 11818 if ((ipif->ipif_flags & IPIF_POINTOPOINT) == 0) { 11819 V6_MASK_COPY(v6addr, ipif->ipif_v6net_mask, 11820 ipif->ipif_v6subnet); 11821 } 11822 mutex_exit(&ill->ill_lock); 11823 11824 if (need_up) { 11825 /* 11826 * Now bring the interface back up. If this 11827 * is the only IPIF for the ILL, ipif_up 11828 * will have to re-bind to the device, so 11829 * we may get back EINPROGRESS, in which 11830 * case, this IOCTL will get completed in 11831 * ip_rput_dlpi when we see the DL_BIND_ACK. 11832 */ 11833 err = ipif_up(ipif, q, mp); 11834 if (err == EINPROGRESS) 11835 return (err); 11836 } 11837 return (err); 11838 } 11839 11840 /* ARGSUSED */ 11841 int 11842 ip_sioctl_subnet_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11843 ip_ioctl_cmd_t *ipip, void *if_req) 11844 { 11845 int addrlen; 11846 in6_addr_t v6addr; 11847 in6_addr_t v6mask; 11848 struct lifreq *lifr = (struct lifreq *)if_req; 11849 11850 ip1dbg(("ip_sioctl_subnet_restart(%s:%u %p)\n", 11851 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11852 ipif_down_tail(ipif); 11853 11854 addrlen = lifr->lifr_addrlen; 11855 if (ipif->ipif_isv6) { 11856 sin6_t *sin6; 11857 11858 sin6 = (sin6_t *)sin; 11859 v6addr = sin6->sin6_addr; 11860 } else { 11861 ipaddr_t addr; 11862 11863 addr = sin->sin_addr.s_addr; 11864 IN6_IPADDR_TO_V4MAPPED(addr, &v6addr); 11865 addrlen += IPV6_ABITS - IP_ABITS; 11866 } 11867 (void) ip_plen_to_mask_v6(addrlen, &v6mask); 11868 11869 return (ip_sioctl_subnet_tail(ipif, v6addr, v6mask, q, mp, B_TRUE)); 11870 } 11871 11872 /* ARGSUSED */ 11873 int 11874 ip_sioctl_get_subnet(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11875 ip_ioctl_cmd_t *ipip, void *if_req) 11876 { 11877 struct lifreq *lifr = (struct lifreq *)if_req; 11878 struct sockaddr_in6 *sin6 = (struct sockaddr_in6 *)sin; 11879 11880 ip1dbg(("ip_sioctl_get_subnet(%s:%u %p)\n", 11881 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11882 ASSERT(ipip->ipi_cmd_type == LIF_CMD); 11883 11884 if (ipif->ipif_isv6) { 11885 *sin6 = sin6_null; 11886 sin6->sin6_family = AF_INET6; 11887 sin6->sin6_addr = ipif->ipif_v6subnet; 11888 lifr->lifr_addrlen = 11889 ip_mask_to_plen_v6(&ipif->ipif_v6net_mask); 11890 } else { 11891 *sin = sin_null; 11892 sin->sin_family = AF_INET; 11893 sin->sin_addr.s_addr = ipif->ipif_subnet; 11894 lifr->lifr_addrlen = ip_mask_to_plen(ipif->ipif_net_mask); 11895 } 11896 return (0); 11897 } 11898 11899 /* 11900 * Set the IPv6 address token. 11901 */ 11902 /* ARGSUSED */ 11903 int 11904 ip_sioctl_token(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11905 ip_ioctl_cmd_t *ipi, void *if_req) 11906 { 11907 ill_t *ill = ipif->ipif_ill; 11908 int err; 11909 in6_addr_t v6addr; 11910 in6_addr_t v6mask; 11911 boolean_t need_up = B_FALSE; 11912 int i; 11913 sin6_t *sin6 = (sin6_t *)sin; 11914 struct lifreq *lifr = (struct lifreq *)if_req; 11915 int addrlen; 11916 11917 ip1dbg(("ip_sioctl_token(%s:%u %p)\n", 11918 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11919 ASSERT(IAM_WRITER_IPIF(ipif)); 11920 11921 addrlen = lifr->lifr_addrlen; 11922 /* Only allow for logical unit zero i.e. not on "le0:17" */ 11923 if (ipif->ipif_id != 0) 11924 return (EINVAL); 11925 11926 if (!ipif->ipif_isv6) 11927 return (EINVAL); 11928 11929 if (addrlen > IPV6_ABITS) 11930 return (EINVAL); 11931 11932 v6addr = sin6->sin6_addr; 11933 11934 /* 11935 * The length of the token is the length from the end. To get 11936 * the proper mask for this, compute the mask of the bits not 11937 * in the token; ie. the prefix, and then xor to get the mask. 11938 */ 11939 if (ip_plen_to_mask_v6(IPV6_ABITS - addrlen, &v6mask) == NULL) 11940 return (EINVAL); 11941 for (i = 0; i < 4; i++) { 11942 v6mask.s6_addr32[i] ^= (uint32_t)0xffffffff; 11943 } 11944 11945 if (V6_MASK_EQ(v6addr, v6mask, ill->ill_token) && 11946 ill->ill_token_length == addrlen) 11947 return (0); /* No change */ 11948 11949 if (ipif->ipif_flags & IPIF_UP) { 11950 err = ipif_logical_down(ipif, q, mp); 11951 if (err == EINPROGRESS) 11952 return (err); 11953 ipif_down_tail(ipif); 11954 need_up = B_TRUE; 11955 } 11956 err = ip_sioctl_token_tail(ipif, sin6, addrlen, q, mp, need_up); 11957 return (err); 11958 } 11959 11960 static int 11961 ip_sioctl_token_tail(ipif_t *ipif, sin6_t *sin6, int addrlen, queue_t *q, 11962 mblk_t *mp, boolean_t need_up) 11963 { 11964 in6_addr_t v6addr; 11965 in6_addr_t v6mask; 11966 ill_t *ill = ipif->ipif_ill; 11967 int i; 11968 int err = 0; 11969 11970 ip1dbg(("ip_sioctl_token_tail(%s:%u %p)\n", 11971 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11972 v6addr = sin6->sin6_addr; 11973 /* 11974 * The length of the token is the length from the end. To get 11975 * the proper mask for this, compute the mask of the bits not 11976 * in the token; ie. the prefix, and then xor to get the mask. 11977 */ 11978 (void) ip_plen_to_mask_v6(IPV6_ABITS - addrlen, &v6mask); 11979 for (i = 0; i < 4; i++) 11980 v6mask.s6_addr32[i] ^= (uint32_t)0xffffffff; 11981 11982 mutex_enter(&ill->ill_lock); 11983 V6_MASK_COPY(v6addr, v6mask, ill->ill_token); 11984 ill->ill_token_length = addrlen; 11985 mutex_exit(&ill->ill_lock); 11986 11987 if (need_up) { 11988 /* 11989 * Now bring the interface back up. If this 11990 * is the only IPIF for the ILL, ipif_up 11991 * will have to re-bind to the device, so 11992 * we may get back EINPROGRESS, in which 11993 * case, this IOCTL will get completed in 11994 * ip_rput_dlpi when we see the DL_BIND_ACK. 11995 */ 11996 err = ipif_up(ipif, q, mp); 11997 if (err == EINPROGRESS) 11998 return (err); 11999 } 12000 return (err); 12001 } 12002 12003 /* ARGSUSED */ 12004 int 12005 ip_sioctl_get_token(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12006 ip_ioctl_cmd_t *ipi, void *if_req) 12007 { 12008 ill_t *ill; 12009 sin6_t *sin6 = (sin6_t *)sin; 12010 struct lifreq *lifr = (struct lifreq *)if_req; 12011 12012 ip1dbg(("ip_sioctl_get_token(%s:%u %p)\n", 12013 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12014 if (ipif->ipif_id != 0) 12015 return (EINVAL); 12016 12017 ill = ipif->ipif_ill; 12018 if (!ill->ill_isv6) 12019 return (ENXIO); 12020 12021 *sin6 = sin6_null; 12022 sin6->sin6_family = AF_INET6; 12023 ASSERT(!IN6_IS_ADDR_V4MAPPED(&ill->ill_token)); 12024 sin6->sin6_addr = ill->ill_token; 12025 lifr->lifr_addrlen = ill->ill_token_length; 12026 return (0); 12027 } 12028 12029 /* 12030 * Set (hardware) link specific information that might override 12031 * what was acquired through the DL_INFO_ACK. 12032 * The logic is as follows. 12033 * 12034 * become exclusive 12035 * set CHANGING flag 12036 * change mtu on affected IREs 12037 * clear CHANGING flag 12038 * 12039 * An ire add that occurs before the CHANGING flag is set will have its mtu 12040 * changed by the ip_sioctl_lnkinfo. 12041 * 12042 * During the time the CHANGING flag is set, no new ires will be added to the 12043 * bucket, and ire add will fail (due the CHANGING flag). 12044 * 12045 * An ire add that occurs after the CHANGING flag is set will have the right mtu 12046 * before it is added to the bucket. 12047 * 12048 * Obviously only 1 thread can set the CHANGING flag and we need to become 12049 * exclusive to set the flag. 12050 */ 12051 /* ARGSUSED */ 12052 int 12053 ip_sioctl_lnkinfo(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12054 ip_ioctl_cmd_t *ipi, void *if_req) 12055 { 12056 ill_t *ill = ipif->ipif_ill; 12057 ipif_t *nipif; 12058 int ip_min_mtu; 12059 boolean_t mtu_walk = B_FALSE; 12060 struct lifreq *lifr = (struct lifreq *)if_req; 12061 lif_ifinfo_req_t *lir; 12062 ire_t *ire; 12063 12064 ip1dbg(("ip_sioctl_lnkinfo(%s:%u %p)\n", 12065 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12066 lir = &lifr->lifr_ifinfo; 12067 ASSERT(IAM_WRITER_IPIF(ipif)); 12068 12069 /* Only allow for logical unit zero i.e. not on "le0:17" */ 12070 if (ipif->ipif_id != 0) 12071 return (EINVAL); 12072 12073 /* Set interface MTU. */ 12074 if (ipif->ipif_isv6) 12075 ip_min_mtu = IPV6_MIN_MTU; 12076 else 12077 ip_min_mtu = IP_MIN_MTU; 12078 12079 /* 12080 * Verify values before we set anything. Allow zero to 12081 * mean unspecified. 12082 */ 12083 if (lir->lir_maxmtu != 0 && 12084 (lir->lir_maxmtu > ill->ill_max_frag || 12085 lir->lir_maxmtu < ip_min_mtu)) 12086 return (EINVAL); 12087 if (lir->lir_reachtime != 0 && 12088 lir->lir_reachtime > ND_MAX_REACHTIME) 12089 return (EINVAL); 12090 if (lir->lir_reachretrans != 0 && 12091 lir->lir_reachretrans > ND_MAX_REACHRETRANSTIME) 12092 return (EINVAL); 12093 12094 mutex_enter(&ill->ill_lock); 12095 ill->ill_state_flags |= ILL_CHANGING; 12096 for (nipif = ill->ill_ipif; nipif != NULL; 12097 nipif = nipif->ipif_next) { 12098 nipif->ipif_state_flags |= IPIF_CHANGING; 12099 } 12100 12101 mutex_exit(&ill->ill_lock); 12102 12103 if (lir->lir_maxmtu != 0) { 12104 ill->ill_max_mtu = lir->lir_maxmtu; 12105 ill->ill_mtu_userspecified = 1; 12106 mtu_walk = B_TRUE; 12107 } 12108 12109 if (lir->lir_reachtime != 0) 12110 ill->ill_reachable_time = lir->lir_reachtime; 12111 12112 if (lir->lir_reachretrans != 0) 12113 ill->ill_reachable_retrans_time = lir->lir_reachretrans; 12114 12115 ill->ill_max_hops = lir->lir_maxhops; 12116 12117 ill->ill_max_buf = ND_MAX_Q; 12118 12119 if (mtu_walk) { 12120 /* 12121 * Set the MTU on all ipifs associated with this ill except 12122 * for those whose MTU was fixed via SIOCSLIFMTU. 12123 */ 12124 for (nipif = ill->ill_ipif; nipif != NULL; 12125 nipif = nipif->ipif_next) { 12126 if (nipif->ipif_flags & IPIF_FIXEDMTU) 12127 continue; 12128 12129 nipif->ipif_mtu = ill->ill_max_mtu; 12130 12131 if (!(nipif->ipif_flags & IPIF_UP)) 12132 continue; 12133 12134 if (nipif->ipif_isv6) 12135 ire = ipif_to_ire_v6(nipif); 12136 else 12137 ire = ipif_to_ire(nipif); 12138 if (ire != NULL) { 12139 ire->ire_max_frag = ipif->ipif_mtu; 12140 ire_refrele(ire); 12141 } 12142 if (ill->ill_isv6) { 12143 ire_walk_ill_v6(MATCH_IRE_ILL, 0, 12144 ipif_mtu_change, (char *)nipif, 12145 ill); 12146 } else { 12147 ire_walk_ill_v4(MATCH_IRE_ILL, 0, 12148 ipif_mtu_change, (char *)nipif, 12149 ill); 12150 } 12151 } 12152 } 12153 12154 mutex_enter(&ill->ill_lock); 12155 for (nipif = ill->ill_ipif; nipif != NULL; 12156 nipif = nipif->ipif_next) { 12157 nipif->ipif_state_flags &= ~IPIF_CHANGING; 12158 } 12159 ILL_UNMARK_CHANGING(ill); 12160 mutex_exit(&ill->ill_lock); 12161 12162 return (0); 12163 } 12164 12165 /* ARGSUSED */ 12166 int 12167 ip_sioctl_get_lnkinfo(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12168 ip_ioctl_cmd_t *ipi, void *if_req) 12169 { 12170 struct lif_ifinfo_req *lir; 12171 ill_t *ill = ipif->ipif_ill; 12172 12173 ip1dbg(("ip_sioctl_get_lnkinfo(%s:%u %p)\n", 12174 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12175 if (ipif->ipif_id != 0) 12176 return (EINVAL); 12177 12178 lir = &((struct lifreq *)if_req)->lifr_ifinfo; 12179 lir->lir_maxhops = ill->ill_max_hops; 12180 lir->lir_reachtime = ill->ill_reachable_time; 12181 lir->lir_reachretrans = ill->ill_reachable_retrans_time; 12182 lir->lir_maxmtu = ill->ill_max_mtu; 12183 12184 return (0); 12185 } 12186 12187 /* 12188 * Return best guess as to the subnet mask for the specified address. 12189 * Based on the subnet masks for all the configured interfaces. 12190 * 12191 * We end up returning a zero mask in the case of default, multicast or 12192 * experimental. 12193 */ 12194 static ipaddr_t 12195 ip_subnet_mask(ipaddr_t addr, ipif_t **ipifp) 12196 { 12197 ipaddr_t net_mask; 12198 ill_t *ill; 12199 ipif_t *ipif; 12200 ill_walk_context_t ctx; 12201 ipif_t *fallback_ipif = NULL; 12202 12203 net_mask = ip_net_mask(addr); 12204 if (net_mask == 0) { 12205 *ipifp = NULL; 12206 return (0); 12207 } 12208 12209 /* Let's check to see if this is maybe a local subnet route. */ 12210 /* this function only applies to IPv4 interfaces */ 12211 rw_enter(&ill_g_lock, RW_READER); 12212 ill = ILL_START_WALK_V4(&ctx); 12213 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 12214 mutex_enter(&ill->ill_lock); 12215 for (ipif = ill->ill_ipif; ipif != NULL; 12216 ipif = ipif->ipif_next) { 12217 if (!IPIF_CAN_LOOKUP(ipif)) 12218 continue; 12219 if (!(ipif->ipif_flags & IPIF_UP)) 12220 continue; 12221 if ((ipif->ipif_subnet & net_mask) == 12222 (addr & net_mask)) { 12223 /* 12224 * Don't trust pt-pt interfaces if there are 12225 * other interfaces. 12226 */ 12227 if (ipif->ipif_flags & IPIF_POINTOPOINT) { 12228 if (fallback_ipif == NULL) { 12229 ipif_refhold_locked(ipif); 12230 fallback_ipif = ipif; 12231 } 12232 continue; 12233 } 12234 12235 /* 12236 * Fine. Just assume the same net mask as the 12237 * directly attached subnet interface is using. 12238 */ 12239 ipif_refhold_locked(ipif); 12240 mutex_exit(&ill->ill_lock); 12241 rw_exit(&ill_g_lock); 12242 if (fallback_ipif != NULL) 12243 ipif_refrele(fallback_ipif); 12244 *ipifp = ipif; 12245 return (ipif->ipif_net_mask); 12246 } 12247 } 12248 mutex_exit(&ill->ill_lock); 12249 } 12250 rw_exit(&ill_g_lock); 12251 12252 *ipifp = fallback_ipif; 12253 return ((fallback_ipif != NULL) ? 12254 fallback_ipif->ipif_net_mask : net_mask); 12255 } 12256 12257 /* 12258 * ip_sioctl_copyin_setup calls ip_wput_ioctl to process the IP_IOCTL ioctl. 12259 */ 12260 static void 12261 ip_wput_ioctl(queue_t *q, mblk_t *mp) 12262 { 12263 IOCP iocp; 12264 ipft_t *ipft; 12265 ipllc_t *ipllc; 12266 mblk_t *mp1; 12267 cred_t *cr; 12268 int error = 0; 12269 conn_t *connp; 12270 12271 ip1dbg(("ip_wput_ioctl")); 12272 iocp = (IOCP)mp->b_rptr; 12273 mp1 = mp->b_cont; 12274 if (mp1 == NULL) { 12275 iocp->ioc_error = EINVAL; 12276 mp->b_datap->db_type = M_IOCNAK; 12277 iocp->ioc_count = 0; 12278 qreply(q, mp); 12279 return; 12280 } 12281 12282 /* 12283 * These IOCTLs provide various control capabilities to 12284 * upstream agents such as ULPs and processes. There 12285 * are currently two such IOCTLs implemented. They 12286 * are used by TCP to provide update information for 12287 * existing IREs and to forcibly delete an IRE for a 12288 * host that is not responding, thereby forcing an 12289 * attempt at a new route. 12290 */ 12291 iocp->ioc_error = EINVAL; 12292 if (!pullupmsg(mp1, sizeof (ipllc->ipllc_cmd))) 12293 goto done; 12294 12295 ipllc = (ipllc_t *)mp1->b_rptr; 12296 for (ipft = ip_ioctl_ftbl; ipft->ipft_pfi; ipft++) { 12297 if (ipllc->ipllc_cmd == ipft->ipft_cmd) 12298 break; 12299 } 12300 /* 12301 * prefer credential from mblk over ioctl; 12302 * see ip_sioctl_copyin_setup 12303 */ 12304 cr = DB_CREDDEF(mp, iocp->ioc_cr); 12305 12306 /* 12307 * Refhold the conn in case the request gets queued up in some lookup 12308 */ 12309 ASSERT(CONN_Q(q)); 12310 connp = Q_TO_CONN(q); 12311 CONN_INC_REF(connp); 12312 if (ipft->ipft_pfi && 12313 ((mp1->b_wptr - mp1->b_rptr) >= ipft->ipft_min_size || 12314 pullupmsg(mp1, ipft->ipft_min_size))) { 12315 error = (*ipft->ipft_pfi)(q, 12316 (ipft->ipft_flags & IPFT_F_SELF_REPLY) ? mp : mp1, cr); 12317 } 12318 if (ipft->ipft_flags & IPFT_F_SELF_REPLY) { 12319 /* 12320 * CONN_OPER_PENDING_DONE happens in the function called 12321 * through ipft_pfi above. 12322 */ 12323 return; 12324 } 12325 12326 CONN_OPER_PENDING_DONE(connp); 12327 if (ipft->ipft_flags & IPFT_F_NO_REPLY) { 12328 freemsg(mp); 12329 return; 12330 } 12331 iocp->ioc_error = error; 12332 12333 done: 12334 mp->b_datap->db_type = M_IOCACK; 12335 if (iocp->ioc_error) 12336 iocp->ioc_count = 0; 12337 qreply(q, mp); 12338 } 12339 12340 /* 12341 * Lookup an ipif using the sequence id (ipif_seqid) 12342 */ 12343 ipif_t * 12344 ipif_lookup_seqid(ill_t *ill, uint_t seqid) 12345 { 12346 ipif_t *ipif; 12347 12348 ASSERT(MUTEX_HELD(&ill->ill_lock)); 12349 12350 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 12351 if (ipif->ipif_seqid == seqid && IPIF_CAN_LOOKUP(ipif)) 12352 return (ipif); 12353 } 12354 return (NULL); 12355 } 12356 12357 uint64_t ipif_g_seqid; 12358 12359 /* 12360 * Assign a unique id for the ipif. This is used later when we send 12361 * IRES to ARP for resolution where we initialize ire_ipif_seqid 12362 * to the value pointed by ire_ipif->ipif_seqid. Later when the 12363 * IRE is added, we verify that ipif has not disappeared. 12364 */ 12365 12366 static void 12367 ipif_assign_seqid(ipif_t *ipif) 12368 { 12369 ipif->ipif_seqid = atomic_add_64_nv(&ipif_g_seqid, 1); 12370 } 12371 12372 /* 12373 * Insert the ipif, so that the list of ipifs on the ill will be sorted 12374 * with respect to ipif_id. Note that an ipif with an ipif_id of -1 will 12375 * be inserted into the first space available in the list. The value of 12376 * ipif_id will then be set to the appropriate value for its position. 12377 */ 12378 static int 12379 ipif_insert(ipif_t *ipif, boolean_t acquire_g_lock, boolean_t acquire_ill_lock) 12380 { 12381 ill_t *ill; 12382 ipif_t *tipif; 12383 ipif_t **tipifp; 12384 int id; 12385 12386 ASSERT(ipif->ipif_ill->ill_net_type == IRE_LOOPBACK || 12387 IAM_WRITER_IPIF(ipif)); 12388 12389 ill = ipif->ipif_ill; 12390 ASSERT(ill != NULL); 12391 12392 /* 12393 * In the case of lo0:0 we already hold the ill_g_lock. 12394 * ill_lookup_on_name (acquires ill_g_lock) -> ipif_allocate -> 12395 * ipif_insert. Another such caller is ipif_move. 12396 */ 12397 if (acquire_g_lock) 12398 rw_enter(&ill_g_lock, RW_WRITER); 12399 if (acquire_ill_lock) 12400 mutex_enter(&ill->ill_lock); 12401 id = ipif->ipif_id; 12402 tipifp = &(ill->ill_ipif); 12403 if (id == -1) { /* need to find a real id */ 12404 id = 0; 12405 while ((tipif = *tipifp) != NULL) { 12406 ASSERT(tipif->ipif_id >= id); 12407 if (tipif->ipif_id != id) 12408 break; /* non-consecutive id */ 12409 id++; 12410 tipifp = &(tipif->ipif_next); 12411 } 12412 /* limit number of logical interfaces */ 12413 if (id >= ip_addrs_per_if) { 12414 if (acquire_ill_lock) 12415 mutex_exit(&ill->ill_lock); 12416 if (acquire_g_lock) 12417 rw_exit(&ill_g_lock); 12418 return (-1); 12419 } 12420 ipif->ipif_id = id; /* assign new id */ 12421 } else if (id < ip_addrs_per_if) { 12422 /* we have a real id; insert ipif in the right place */ 12423 while ((tipif = *tipifp) != NULL) { 12424 ASSERT(tipif->ipif_id != id); 12425 if (tipif->ipif_id > id) 12426 break; /* found correct location */ 12427 tipifp = &(tipif->ipif_next); 12428 } 12429 } else { 12430 if (acquire_ill_lock) 12431 mutex_exit(&ill->ill_lock); 12432 if (acquire_g_lock) 12433 rw_exit(&ill_g_lock); 12434 return (-1); 12435 } 12436 12437 ASSERT(tipifp != &(ill->ill_ipif) || id == 0); 12438 12439 ipif->ipif_next = tipif; 12440 *tipifp = ipif; 12441 if (acquire_ill_lock) 12442 mutex_exit(&ill->ill_lock); 12443 if (acquire_g_lock) 12444 rw_exit(&ill_g_lock); 12445 return (0); 12446 } 12447 12448 /* 12449 * Allocate and initialize a new interface control structure. (Always 12450 * called as writer.) 12451 * When ipif_allocate() is called from ip_ll_subnet_defaults, the ill 12452 * is not part of the global linked list of ills. ipif_seqid is unique 12453 * in the system and to preserve the uniqueness, it is assigned only 12454 * when ill becomes part of the global list. At that point ill will 12455 * have a name. If it doesn't get assigned here, it will get assigned 12456 * in ipif_set_values() as part of SIOCSLIFNAME processing. 12457 * Aditionally, if we come here from ip_ll_subnet_defaults, we don't set 12458 * the interface flags or any other information from the DL_INFO_ACK for 12459 * DL_STYLE2 drivers (initialize == B_FALSE), since we won't have them at 12460 * this point. The flags etc. will be set in ip_ll_subnet_defaults when the 12461 * second DL_INFO_ACK comes in from the driver. 12462 */ 12463 static ipif_t * 12464 ipif_allocate(ill_t *ill, int id, uint_t ire_type, boolean_t initialize) 12465 { 12466 ipif_t *ipif; 12467 phyint_t *phyi; 12468 12469 ip1dbg(("ipif_allocate(%s:%d ill %p)\n", 12470 ill->ill_name, id, (void *)ill)); 12471 ASSERT(ire_type == IRE_LOOPBACK || IAM_WRITER_ILL(ill)); 12472 12473 if ((ipif = (ipif_t *)mi_alloc(sizeof (ipif_t), BPRI_MED)) == NULL) 12474 return (NULL); 12475 *ipif = ipif_zero; /* start clean */ 12476 12477 ipif->ipif_ill = ill; 12478 ipif->ipif_id = id; /* could be -1 */ 12479 ipif->ipif_zoneid = GLOBAL_ZONEID; 12480 12481 mutex_init(&ipif->ipif_saved_ire_lock, NULL, MUTEX_DEFAULT, NULL); 12482 12483 ipif->ipif_refcnt = 0; 12484 ipif->ipif_saved_ire_cnt = 0; 12485 12486 if (ipif_insert(ipif, ire_type != IRE_LOOPBACK, B_TRUE)) { 12487 mi_free(ipif); 12488 return (NULL); 12489 } 12490 /* -1 id should have been replaced by real id */ 12491 id = ipif->ipif_id; 12492 ASSERT(id >= 0); 12493 12494 if (ill->ill_name[0] != '\0') { 12495 ipif_assign_seqid(ipif); 12496 if (ill->ill_phyint->phyint_ifindex != 0) 12497 sctp_update_ipif(ipif, SCTP_IPIF_INSERT); 12498 } 12499 /* 12500 * Keep a copy of original id in ipif_orig_ipifid. Failback 12501 * will attempt to restore the original id. The SIOCSLIFOINDEX 12502 * ioctl sets ipif_orig_ipifid to zero. 12503 */ 12504 ipif->ipif_orig_ipifid = id; 12505 12506 /* 12507 * We grab the ill_lock and phyint_lock to protect the flag changes. 12508 * The ipif is still not up and can't be looked up until the 12509 * ioctl completes and the IPIF_CHANGING flag is cleared. 12510 */ 12511 mutex_enter(&ill->ill_lock); 12512 mutex_enter(&ill->ill_phyint->phyint_lock); 12513 /* 12514 * Set the running flag when logical interface zero is created. 12515 * For subsequent logical interfaces, a DLPI link down 12516 * notification message may have cleared the running flag to 12517 * indicate the link is down, so we shouldn't just blindly set it. 12518 */ 12519 if (id == 0) 12520 ill->ill_phyint->phyint_flags |= PHYI_RUNNING; 12521 ipif->ipif_ire_type = ire_type; 12522 phyi = ill->ill_phyint; 12523 ipif->ipif_orig_ifindex = phyi->phyint_ifindex; 12524 12525 if (ipif->ipif_isv6) { 12526 ill->ill_flags |= ILLF_IPV6; 12527 } else { 12528 ipaddr_t inaddr_any = INADDR_ANY; 12529 12530 ill->ill_flags |= ILLF_IPV4; 12531 12532 /* Keep the IN6_IS_ADDR_V4MAPPED assertions happy */ 12533 IN6_IPADDR_TO_V4MAPPED(inaddr_any, 12534 &ipif->ipif_v6lcl_addr); 12535 IN6_IPADDR_TO_V4MAPPED(inaddr_any, 12536 &ipif->ipif_v6src_addr); 12537 IN6_IPADDR_TO_V4MAPPED(inaddr_any, 12538 &ipif->ipif_v6subnet); 12539 IN6_IPADDR_TO_V4MAPPED(inaddr_any, 12540 &ipif->ipif_v6net_mask); 12541 IN6_IPADDR_TO_V4MAPPED(inaddr_any, 12542 &ipif->ipif_v6brd_addr); 12543 IN6_IPADDR_TO_V4MAPPED(inaddr_any, 12544 &ipif->ipif_v6pp_dst_addr); 12545 } 12546 12547 /* 12548 * Don't set the interface flags etc. now, will do it in 12549 * ip_ll_subnet_defaults. 12550 */ 12551 if (!initialize) { 12552 mutex_exit(&ill->ill_lock); 12553 mutex_exit(&ill->ill_phyint->phyint_lock); 12554 return (ipif); 12555 } 12556 ipif->ipif_mtu = ill->ill_max_mtu; 12557 12558 if (ill->ill_bcast_addr_length != 0) { 12559 /* 12560 * Later detect lack of DLPI driver multicast 12561 * capability by catching DL_ENABMULTI errors in 12562 * ip_rput_dlpi. 12563 */ 12564 ill->ill_flags |= ILLF_MULTICAST; 12565 if (!ipif->ipif_isv6) 12566 ipif->ipif_flags |= IPIF_BROADCAST; 12567 } else { 12568 if (ill->ill_net_type != IRE_LOOPBACK) { 12569 if (ipif->ipif_isv6) 12570 /* 12571 * Note: xresolv interfaces will eventually need 12572 * NOARP set here as well, but that will require 12573 * those external resolvers to have some 12574 * knowledge of that flag and act appropriately. 12575 * Not to be changed at present. 12576 */ 12577 ill->ill_flags |= ILLF_NONUD; 12578 else 12579 ill->ill_flags |= ILLF_NOARP; 12580 } 12581 if (ill->ill_phys_addr_length == 0) { 12582 if (ill->ill_media && 12583 ill->ill_media->ip_m_mac_type == SUNW_DL_VNI) { 12584 ipif->ipif_flags |= IPIF_NOXMIT; 12585 phyi->phyint_flags |= PHYI_VIRTUAL; 12586 } else { 12587 /* pt-pt supports multicast. */ 12588 ill->ill_flags |= ILLF_MULTICAST; 12589 if (ill->ill_net_type == IRE_LOOPBACK) { 12590 phyi->phyint_flags |= 12591 (PHYI_LOOPBACK | PHYI_VIRTUAL); 12592 } else { 12593 ipif->ipif_flags |= IPIF_POINTOPOINT; 12594 } 12595 } 12596 } 12597 } 12598 mutex_exit(&ill->ill_lock); 12599 mutex_exit(&ill->ill_phyint->phyint_lock); 12600 return (ipif); 12601 } 12602 12603 /* 12604 * If appropriate, send a message up to the resolver delete the entry 12605 * for the address of this interface which is going out of business. 12606 * (Always called as writer). 12607 * 12608 * NOTE : We need to check for NULL mps as some of the fields are 12609 * initialized only for some interface types. See ipif_resolver_up() 12610 * for details. 12611 */ 12612 void 12613 ipif_arp_down(ipif_t *ipif) 12614 { 12615 mblk_t *mp; 12616 12617 ip1dbg(("ipif_arp_down(%s:%u)\n", 12618 ipif->ipif_ill->ill_name, ipif->ipif_id)); 12619 ASSERT(IAM_WRITER_IPIF(ipif)); 12620 12621 /* Delete the mapping for the local address */ 12622 mp = ipif->ipif_arp_del_mp; 12623 if (mp != NULL) { 12624 ip1dbg(("ipif_arp_down: %s (%u) for %s:%u\n", 12625 dlpi_prim_str(*(int *)mp->b_rptr), *(int *)mp->b_rptr, 12626 ipif->ipif_ill->ill_name, ipif->ipif_id)); 12627 putnext(ipif->ipif_ill->ill_rq, mp); 12628 ipif->ipif_arp_del_mp = NULL; 12629 } 12630 12631 /* 12632 * If this is the last ipif that is going down, we need 12633 * to clean up ARP completely. 12634 */ 12635 if (ipif->ipif_ill->ill_ipif_up_count == 0) { 12636 12637 /* Send up AR_INTERFACE_DOWN message */ 12638 mp = ipif->ipif_ill->ill_arp_down_mp; 12639 if (mp != NULL) { 12640 ip1dbg(("ipif_arp_down: %s (%u) for %s:%u\n", 12641 dlpi_prim_str(*(int *)mp->b_rptr), 12642 *(int *)mp->b_rptr, ipif->ipif_ill->ill_name, 12643 ipif->ipif_id)); 12644 putnext(ipif->ipif_ill->ill_rq, mp); 12645 ipif->ipif_ill->ill_arp_down_mp = NULL; 12646 } 12647 12648 /* Tell ARP to delete the multicast mappings */ 12649 mp = ipif->ipif_ill->ill_arp_del_mapping_mp; 12650 if (mp != NULL) { 12651 ip1dbg(("ipif_arp_down: %s (%u) for %s:%u\n", 12652 dlpi_prim_str(*(int *)mp->b_rptr), 12653 *(int *)mp->b_rptr, ipif->ipif_ill->ill_name, 12654 ipif->ipif_id)); 12655 putnext(ipif->ipif_ill->ill_rq, mp); 12656 ipif->ipif_ill->ill_arp_del_mapping_mp = NULL; 12657 } 12658 } 12659 } 12660 12661 /* 12662 * This function sets up the multicast mappings in ARP. When ipif_resolver_up 12663 * calls this function, it passes a non-NULL arp_add_mapping_mp indicating 12664 * that it wants the add_mp allocated in this function to be returned 12665 * wihtout sending it to arp. When ip_rput_dlpi_writer calls this to 12666 * just re-do the multicast, it wants us to send the add_mp to ARP also. 12667 * ipif_resolver_up does not want us to do the "add" i.e sending to ARP, 12668 * as it does a ipif_arp_down after calling this function - which will 12669 * remove what we add here. 12670 * 12671 * Returns -1 on failures and 0 on success. 12672 */ 12673 int 12674 ipif_arp_setup_multicast(ipif_t *ipif, mblk_t **arp_add_mapping_mp) 12675 { 12676 mblk_t *del_mp = NULL; 12677 mblk_t *add_mp = NULL; 12678 mblk_t *mp; 12679 ill_t *ill = ipif->ipif_ill; 12680 phyint_t *phyi = ill->ill_phyint; 12681 ipaddr_t addr, mask, extract_mask = 0; 12682 arma_t *arma; 12683 uint8_t *maddr, *bphys_addr; 12684 uint32_t hw_start; 12685 dl_unitdata_req_t *dlur; 12686 12687 ASSERT(IAM_WRITER_IPIF(ipif)); 12688 if (ipif->ipif_flags & IPIF_POINTOPOINT) 12689 return (0); 12690 12691 /* 12692 * Delete the existing mapping from ARP. Normally ipif_down 12693 * -> ipif_arp_down should send this up to ARP. The only 12694 * reason we would find this when we are switching from 12695 * Multicast to Broadcast where we did not do a down. 12696 */ 12697 mp = ill->ill_arp_del_mapping_mp; 12698 if (mp != NULL) { 12699 ip1dbg(("ipif_arp_down: %s (%u) for %s:%u\n", 12700 dlpi_prim_str(*(int *)mp->b_rptr), 12701 *(int *)mp->b_rptr, ill->ill_name, ipif->ipif_id)); 12702 putnext(ill->ill_rq, mp); 12703 ill->ill_arp_del_mapping_mp = NULL; 12704 } 12705 12706 if (arp_add_mapping_mp != NULL) 12707 *arp_add_mapping_mp = NULL; 12708 12709 /* 12710 * Check that the address is not to long for the constant 12711 * length reserved in the template arma_t. 12712 */ 12713 if (ill->ill_phys_addr_length > IP_MAX_HW_LEN) 12714 return (-1); 12715 12716 /* Add mapping mblk */ 12717 addr = (ipaddr_t)htonl(INADDR_UNSPEC_GROUP); 12718 mask = (ipaddr_t)htonl(IN_CLASSD_NET); 12719 add_mp = ill_arp_alloc(ill, (uchar_t *)&ip_arma_multi_template, 12720 (caddr_t)&addr); 12721 if (add_mp == NULL) 12722 return (-1); 12723 arma = (arma_t *)add_mp->b_rptr; 12724 maddr = (uint8_t *)arma + arma->arma_hw_addr_offset; 12725 bcopy(&mask, (char *)arma + arma->arma_proto_mask_offset, IP_ADDR_LEN); 12726 arma->arma_hw_addr_length = ill->ill_phys_addr_length; 12727 12728 /* 12729 * Determine the broadcast address. 12730 */ 12731 dlur = (dl_unitdata_req_t *)ill->ill_bcast_mp->b_rptr; 12732 if (ill->ill_sap_length < 0) 12733 bphys_addr = (uchar_t *)dlur + dlur->dl_dest_addr_offset; 12734 else 12735 bphys_addr = (uchar_t *)dlur + 12736 dlur->dl_dest_addr_offset + ill->ill_sap_length; 12737 /* 12738 * Check PHYI_MULTI_BCAST and length of physical 12739 * address to determine if we use the mapping or the 12740 * broadcast address. 12741 */ 12742 if (!(phyi->phyint_flags & PHYI_MULTI_BCAST)) 12743 if (!MEDIA_V4MINFO(ill->ill_media, ill->ill_phys_addr_length, 12744 bphys_addr, maddr, &hw_start, &extract_mask)) 12745 phyi->phyint_flags |= PHYI_MULTI_BCAST; 12746 12747 if ((phyi->phyint_flags & PHYI_MULTI_BCAST) || 12748 (ill->ill_flags & ILLF_MULTICAST)) { 12749 /* Make sure this will not match the "exact" entry. */ 12750 addr = (ipaddr_t)htonl(INADDR_ALLHOSTS_GROUP); 12751 del_mp = ill_arp_alloc(ill, (uchar_t *)&ip_ared_template, 12752 (caddr_t)&addr); 12753 if (del_mp == NULL) { 12754 freemsg(add_mp); 12755 return (-1); 12756 } 12757 bcopy(&extract_mask, (char *)arma + 12758 arma->arma_proto_extract_mask_offset, IP_ADDR_LEN); 12759 if (phyi->phyint_flags & PHYI_MULTI_BCAST) { 12760 /* Use link-layer broadcast address for MULTI_BCAST */ 12761 bcopy(bphys_addr, maddr, ill->ill_phys_addr_length); 12762 ip2dbg(("ipif_arp_setup_multicast: adding" 12763 " MULTI_BCAST ARP setup for %s\n", ill->ill_name)); 12764 } else { 12765 arma->arma_hw_mapping_start = hw_start; 12766 ip2dbg(("ipif_arp_setup_multicast: adding multicast" 12767 " ARP setup for %s\n", ill->ill_name)); 12768 } 12769 } else { 12770 freemsg(add_mp); 12771 ASSERT(del_mp == NULL); 12772 /* It is neither MULTICAST nor MULTI_BCAST */ 12773 return (0); 12774 } 12775 ASSERT(add_mp != NULL && del_mp != NULL); 12776 ill->ill_arp_del_mapping_mp = del_mp; 12777 if (arp_add_mapping_mp != NULL) { 12778 /* The caller just wants the mblks allocated */ 12779 *arp_add_mapping_mp = add_mp; 12780 } else { 12781 /* The caller wants us to send it to arp */ 12782 putnext(ill->ill_rq, add_mp); 12783 } 12784 return (0); 12785 } 12786 12787 /* 12788 * Get the resolver set up for a new interface address. 12789 * (Always called as writer.) 12790 * Called both for IPv4 and IPv6 interfaces, 12791 * though it only sets up the resolver for v6 12792 * if it's an xresolv interface (one using an external resolver). 12793 * Honors ILLF_NOARP. 12794 * The boolean value arp_just_publish, if B_TRUE, indicates that 12795 * it only needs to send an AR_ENTRY_ADD message up to ARP for 12796 * IPv4 interfaces. Currently, B_TRUE is only set when this 12797 * function is called by ip_rput_dlpi_writer() to handle 12798 * asynchronous hardware address change notification. 12799 * Returns error on failure. 12800 */ 12801 int 12802 ipif_resolver_up(ipif_t *ipif, boolean_t arp_just_publish) 12803 { 12804 caddr_t addr; 12805 mblk_t *arp_up_mp = NULL; 12806 mblk_t *arp_down_mp = NULL; 12807 mblk_t *arp_add_mp = NULL; 12808 mblk_t *arp_del_mp = NULL; 12809 mblk_t *arp_add_mapping_mp = NULL; 12810 mblk_t *arp_del_mapping_mp = NULL; 12811 ill_t *ill = ipif->ipif_ill; 12812 uchar_t *area_p = NULL; 12813 uchar_t *ared_p = NULL; 12814 int err = ENOMEM; 12815 12816 ip1dbg(("ipif_resolver_up(%s:%u) flags 0x%x\n", 12817 ipif->ipif_ill->ill_name, ipif->ipif_id, 12818 (uint_t)ipif->ipif_flags)); 12819 ASSERT(IAM_WRITER_IPIF(ipif)); 12820 12821 if ((ill->ill_net_type != IRE_IF_RESOLVER) || 12822 (ill->ill_isv6 && !(ill->ill_flags & ILLF_XRESOLV))) { 12823 return (0); 12824 } 12825 12826 if (ill->ill_isv6) { 12827 /* 12828 * External resolver for IPv6 12829 */ 12830 ASSERT(!arp_just_publish); 12831 if (!IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6lcl_addr)) { 12832 addr = (caddr_t)&ipif->ipif_v6lcl_addr; 12833 area_p = (uchar_t *)&ip6_area_template; 12834 ared_p = (uchar_t *)&ip6_ared_template; 12835 } 12836 } else { 12837 /* 12838 * IPv4 arp case. If the ARP stream has already started 12839 * closing, fail this request for ARP bringup. Else 12840 * record the fact that an ARP bringup is pending. 12841 */ 12842 mutex_enter(&ill->ill_lock); 12843 if (ill->ill_arp_closing) { 12844 mutex_exit(&ill->ill_lock); 12845 err = EINVAL; 12846 goto failed; 12847 } else { 12848 if (ill->ill_ipif_up_count == 0) 12849 ill->ill_arp_bringup_pending = 1; 12850 mutex_exit(&ill->ill_lock); 12851 } 12852 if (ipif->ipif_lcl_addr != INADDR_ANY) { 12853 addr = (caddr_t)&ipif->ipif_lcl_addr; 12854 area_p = (uchar_t *)&ip_area_template; 12855 ared_p = (uchar_t *)&ip_ared_template; 12856 } 12857 } 12858 12859 /* 12860 * Add an entry for the local address in ARP only if it 12861 * is not UNNUMBERED and the address is not INADDR_ANY. 12862 */ 12863 if (((ipif->ipif_flags & IPIF_UNNUMBERED) == 0) && area_p != NULL) { 12864 /* Now ask ARP to publish our address. */ 12865 arp_add_mp = ill_arp_alloc(ill, area_p, addr); 12866 if (arp_add_mp == NULL) 12867 goto failed; 12868 if (arp_just_publish) { 12869 /* 12870 * Copy the new hardware address and length into 12871 * arp_add_mp to be sent to ARP. 12872 */ 12873 area_t *area = (area_t *)arp_add_mp->b_rptr; 12874 area->area_hw_addr_length = 12875 ill->ill_phys_addr_length; 12876 bcopy((char *)ill->ill_phys_addr, 12877 ((char *)area + area->area_hw_addr_offset), 12878 area->area_hw_addr_length); 12879 } 12880 12881 ((area_t *)arp_add_mp->b_rptr)->area_flags = 12882 ACE_F_PERMANENT | ACE_F_PUBLISH | ACE_F_MYADDR; 12883 12884 if (arp_just_publish) 12885 goto arp_setup_multicast; 12886 12887 /* 12888 * Allocate an ARP deletion message so we know we can tell ARP 12889 * when the interface goes down. 12890 */ 12891 arp_del_mp = ill_arp_alloc(ill, ared_p, addr); 12892 if (arp_del_mp == NULL) 12893 goto failed; 12894 12895 } else { 12896 if (arp_just_publish) 12897 goto done; 12898 } 12899 /* 12900 * Need to bring up ARP or setup multicast mapping only 12901 * when the first interface is coming UP. 12902 */ 12903 if (ill->ill_ipif_up_count != 0) 12904 goto done; 12905 12906 /* 12907 * Allocate an ARP down message (to be saved) and an ARP up 12908 * message. 12909 */ 12910 arp_down_mp = ill_arp_alloc(ill, (uchar_t *)&ip_ard_template, 0); 12911 if (arp_down_mp == NULL) 12912 goto failed; 12913 12914 arp_up_mp = ill_arp_alloc(ill, (uchar_t *)&ip_aru_template, 0); 12915 if (arp_up_mp == NULL) 12916 goto failed; 12917 12918 if (ipif->ipif_flags & IPIF_POINTOPOINT) 12919 goto done; 12920 12921 arp_setup_multicast: 12922 /* 12923 * Setup the multicast mappings. This function initializes 12924 * ill_arp_del_mapping_mp also. This does not need to be done for 12925 * IPv6. 12926 */ 12927 if (!ill->ill_isv6) { 12928 err = ipif_arp_setup_multicast(ipif, &arp_add_mapping_mp); 12929 if (err != 0) 12930 goto failed; 12931 ASSERT(ill->ill_arp_del_mapping_mp != NULL); 12932 ASSERT(arp_add_mapping_mp != NULL); 12933 } 12934 12935 done:; 12936 if (arp_del_mp != NULL) { 12937 ASSERT(ipif->ipif_arp_del_mp == NULL); 12938 ipif->ipif_arp_del_mp = arp_del_mp; 12939 } 12940 if (arp_down_mp != NULL) { 12941 ASSERT(ill->ill_arp_down_mp == NULL); 12942 ill->ill_arp_down_mp = arp_down_mp; 12943 } 12944 if (arp_del_mapping_mp != NULL) { 12945 ASSERT(ill->ill_arp_del_mapping_mp == NULL); 12946 ill->ill_arp_del_mapping_mp = arp_del_mapping_mp; 12947 } 12948 if (arp_up_mp != NULL) { 12949 ip1dbg(("ipif_resolver_up: ARP_UP for %s:%u\n", 12950 ipif->ipif_ill->ill_name, ipif->ipif_id)); 12951 putnext(ill->ill_rq, arp_up_mp); 12952 } 12953 if (arp_add_mp != NULL) { 12954 ip1dbg(("ipif_resolver_up: ARP_ADD for %s:%u\n", 12955 ipif->ipif_ill->ill_name, ipif->ipif_id)); 12956 putnext(ill->ill_rq, arp_add_mp); 12957 } 12958 if (arp_add_mapping_mp != NULL) { 12959 ip1dbg(("ipif_resolver_up: MAPPING_ADD for %s:%u\n", 12960 ipif->ipif_ill->ill_name, ipif->ipif_id)); 12961 putnext(ill->ill_rq, arp_add_mapping_mp); 12962 } 12963 if (arp_just_publish) 12964 return (0); 12965 12966 if (ill->ill_flags & ILLF_NOARP) 12967 err = ill_arp_off(ill); 12968 else 12969 err = ill_arp_on(ill); 12970 if (err) { 12971 ip0dbg(("ipif_resolver_up: arp_on/off failed %d\n", err)); 12972 freemsg(ipif->ipif_arp_del_mp); 12973 if (arp_down_mp != NULL) 12974 freemsg(ill->ill_arp_down_mp); 12975 if (ill->ill_arp_del_mapping_mp != NULL) 12976 freemsg(ill->ill_arp_del_mapping_mp); 12977 ipif->ipif_arp_del_mp = NULL; 12978 ill->ill_arp_down_mp = NULL; 12979 ill->ill_arp_del_mapping_mp = NULL; 12980 return (err); 12981 } 12982 return (ill->ill_ipif_up_count != 0 ? 0 : EINPROGRESS); 12983 12984 failed:; 12985 ip1dbg(("ipif_resolver_up: FAILED\n")); 12986 freemsg(arp_add_mp); 12987 freemsg(arp_del_mp); 12988 freemsg(arp_add_mapping_mp); 12989 freemsg(arp_up_mp); 12990 freemsg(arp_down_mp); 12991 ill->ill_arp_bringup_pending = 0; 12992 return (err); 12993 } 12994 12995 /* 12996 * Wakeup all threads waiting to enter the ipsq, and sleeping 12997 * on any of the ills in this ipsq. The ill_lock of the ill 12998 * must be held so that waiters don't miss wakeups 12999 */ 13000 static void 13001 ill_signal_ipsq_ills(ipsq_t *ipsq, boolean_t caller_holds_lock) 13002 { 13003 phyint_t *phyint; 13004 13005 phyint = ipsq->ipsq_phyint_list; 13006 while (phyint != NULL) { 13007 if (phyint->phyint_illv4) { 13008 if (!caller_holds_lock) 13009 mutex_enter(&phyint->phyint_illv4->ill_lock); 13010 ASSERT(MUTEX_HELD(&phyint->phyint_illv4->ill_lock)); 13011 cv_broadcast(&phyint->phyint_illv4->ill_cv); 13012 if (!caller_holds_lock) 13013 mutex_exit(&phyint->phyint_illv4->ill_lock); 13014 } 13015 if (phyint->phyint_illv6) { 13016 if (!caller_holds_lock) 13017 mutex_enter(&phyint->phyint_illv6->ill_lock); 13018 ASSERT(MUTEX_HELD(&phyint->phyint_illv6->ill_lock)); 13019 cv_broadcast(&phyint->phyint_illv6->ill_cv); 13020 if (!caller_holds_lock) 13021 mutex_exit(&phyint->phyint_illv6->ill_lock); 13022 } 13023 phyint = phyint->phyint_ipsq_next; 13024 } 13025 } 13026 13027 static ipsq_t * 13028 ipsq_create(char *groupname) 13029 { 13030 ipsq_t *ipsq; 13031 13032 ASSERT(RW_WRITE_HELD(&ill_g_lock)); 13033 ipsq = kmem_zalloc(sizeof (ipsq_t), KM_NOSLEEP); 13034 if (ipsq == NULL) { 13035 return (NULL); 13036 } 13037 13038 if (groupname != NULL) 13039 (void) strcpy(ipsq->ipsq_name, groupname); 13040 else 13041 ipsq->ipsq_name[0] = '\0'; 13042 13043 mutex_init(&ipsq->ipsq_lock, NULL, MUTEX_DEFAULT, NULL); 13044 ipsq->ipsq_flags |= IPSQ_GROUP; 13045 ipsq->ipsq_next = ipsq_g_head; 13046 ipsq_g_head = ipsq; 13047 return (ipsq); 13048 } 13049 13050 /* 13051 * Return an ipsq correspoding to the groupname. If 'create' is true 13052 * allocate a new ipsq if one does not exist. Usually an ipsq is associated 13053 * uniquely with an IPMP group. However during IPMP groupname operations, 13054 * multiple IPMP groups may be associated with a single ipsq. But no 13055 * IPMP group can be associated with more than 1 ipsq at any time. 13056 * For example 13057 * Interfaces IPMP grpname ipsq ipsq_name ipsq_refs 13058 * hme1, hme2 mpk17-84 ipsq1 mpk17-84 2 13059 * hme3, hme4 mpk17-85 ipsq2 mpk17-85 2 13060 * 13061 * Now the command ifconfig hme3 group mpk17-84 results in the temporary 13062 * status shown below during the execution of the above command. 13063 * hme1, hme2, hme3, hme4 mpk17-84, mpk17-85 ipsq1 mpk17-84 4 13064 * 13065 * After the completion of the above groupname command we return to the stable 13066 * state shown below. 13067 * hme1, hme2, hme3 mpk17-84 ipsq1 mpk17-84 3 13068 * hme4 mpk17-85 ipsq2 mpk17-85 1 13069 * 13070 * Because of the above, we don't search based on the ipsq_name since that 13071 * would miss the correct ipsq during certain windows as shown above. 13072 * The ipsq_name is only used during split of an ipsq to return the ipsq to its 13073 * natural state. 13074 */ 13075 static ipsq_t * 13076 ip_ipsq_lookup(char *groupname, boolean_t create, ipsq_t *exclude_ipsq) 13077 { 13078 ipsq_t *ipsq; 13079 int group_len; 13080 phyint_t *phyint; 13081 13082 ASSERT(RW_LOCK_HELD(&ill_g_lock)); 13083 13084 group_len = strlen(groupname); 13085 ASSERT(group_len != 0); 13086 group_len++; 13087 13088 for (ipsq = ipsq_g_head; ipsq != NULL; ipsq = ipsq->ipsq_next) { 13089 /* 13090 * When an ipsq is being split, and ill_split_ipsq 13091 * calls this function, we exclude it from being considered. 13092 */ 13093 if (ipsq == exclude_ipsq) 13094 continue; 13095 13096 /* 13097 * Compare against the ipsq_name. The groupname change happens 13098 * in 2 phases. The 1st phase merges the from group into 13099 * the to group's ipsq, by calling ill_merge_groups and restarts 13100 * the ioctl. The 2nd phase then locates the ipsq again thru 13101 * ipsq_name. At this point the phyint_groupname has not been 13102 * updated. 13103 */ 13104 if ((group_len == strlen(ipsq->ipsq_name) + 1) && 13105 (bcmp(ipsq->ipsq_name, groupname, group_len) == 0)) { 13106 /* 13107 * Verify that an ipmp groupname is exactly 13108 * part of 1 ipsq and is not found in any other 13109 * ipsq. 13110 */ 13111 ASSERT(ip_ipsq_lookup(groupname, B_FALSE, ipsq) == 13112 NULL); 13113 return (ipsq); 13114 } 13115 13116 /* 13117 * Comparison against ipsq_name alone is not sufficient. 13118 * In the case when groups are currently being 13119 * merged, the ipsq could hold other IPMP groups temporarily. 13120 * so we walk the phyint list and compare against the 13121 * phyint_groupname as well. 13122 */ 13123 phyint = ipsq->ipsq_phyint_list; 13124 while (phyint != NULL) { 13125 if ((group_len == phyint->phyint_groupname_len) && 13126 (bcmp(phyint->phyint_groupname, groupname, 13127 group_len) == 0)) { 13128 /* 13129 * Verify that an ipmp groupname is exactly 13130 * part of 1 ipsq and is not found in any other 13131 * ipsq. 13132 */ 13133 ASSERT(ip_ipsq_lookup(groupname, B_FALSE, ipsq) 13134 == NULL); 13135 return (ipsq); 13136 } 13137 phyint = phyint->phyint_ipsq_next; 13138 } 13139 } 13140 if (create) 13141 ipsq = ipsq_create(groupname); 13142 return (ipsq); 13143 } 13144 13145 static void 13146 ipsq_delete(ipsq_t *ipsq) 13147 { 13148 ipsq_t *nipsq; 13149 ipsq_t *pipsq = NULL; 13150 13151 /* 13152 * We don't hold the ipsq lock, but we are sure no new 13153 * messages can land up, since the ipsq_refs is zero. 13154 * i.e. this ipsq is unnamed and no phyint or phyint group 13155 * is associated with this ipsq. (Lookups are based on ill_name 13156 * or phyint_group_name) 13157 */ 13158 ASSERT(ipsq->ipsq_refs == 0); 13159 ASSERT(ipsq->ipsq_xopq_mphead == NULL && ipsq->ipsq_mphead == NULL); 13160 ASSERT(ipsq->ipsq_pending_mp == NULL); 13161 if (!(ipsq->ipsq_flags & IPSQ_GROUP)) { 13162 /* 13163 * This is not the ipsq of an IPMP group. 13164 */ 13165 kmem_free(ipsq, sizeof (ipsq_t)); 13166 return; 13167 } 13168 13169 rw_enter(&ill_g_lock, RW_WRITER); 13170 13171 /* 13172 * Locate the ipsq before we can remove it from 13173 * the singly linked list of ipsq's. 13174 */ 13175 for (nipsq = ipsq_g_head; nipsq != NULL; nipsq = nipsq->ipsq_next) { 13176 if (nipsq == ipsq) { 13177 break; 13178 } 13179 pipsq = nipsq; 13180 } 13181 13182 ASSERT(nipsq == ipsq); 13183 13184 /* unlink ipsq from the list */ 13185 if (pipsq != NULL) 13186 pipsq->ipsq_next = ipsq->ipsq_next; 13187 else 13188 ipsq_g_head = ipsq->ipsq_next; 13189 kmem_free(ipsq, sizeof (ipsq_t)); 13190 rw_exit(&ill_g_lock); 13191 } 13192 13193 static void 13194 ill_move_to_new_ipsq(ipsq_t *old_ipsq, ipsq_t *new_ipsq, mblk_t *current_mp, 13195 queue_t *q) 13196 13197 { 13198 13199 ASSERT(MUTEX_HELD(&new_ipsq->ipsq_lock)); 13200 ASSERT(old_ipsq->ipsq_mphead == NULL && old_ipsq->ipsq_mptail == NULL); 13201 ASSERT(old_ipsq->ipsq_pending_ipif == NULL); 13202 ASSERT(old_ipsq->ipsq_pending_mp == NULL); 13203 ASSERT(current_mp != NULL); 13204 13205 ipsq_enq(new_ipsq, q, current_mp, (ipsq_func_t)ip_process_ioctl, 13206 NEW_OP, NULL); 13207 13208 ASSERT(new_ipsq->ipsq_xopq_mptail != NULL && 13209 new_ipsq->ipsq_xopq_mphead != NULL); 13210 13211 /* 13212 * move from old ipsq to the new ipsq. 13213 */ 13214 new_ipsq->ipsq_xopq_mptail->b_next = old_ipsq->ipsq_xopq_mphead; 13215 if (old_ipsq->ipsq_xopq_mphead != NULL) 13216 new_ipsq->ipsq_xopq_mptail = old_ipsq->ipsq_xopq_mptail; 13217 13218 old_ipsq->ipsq_xopq_mphead = old_ipsq->ipsq_xopq_mptail = NULL; 13219 } 13220 13221 void 13222 ill_group_cleanup(ill_t *ill) 13223 { 13224 ill_t *ill_v4; 13225 ill_t *ill_v6; 13226 ipif_t *ipif; 13227 13228 ill_v4 = ill->ill_phyint->phyint_illv4; 13229 ill_v6 = ill->ill_phyint->phyint_illv6; 13230 13231 if (ill_v4 != NULL) { 13232 mutex_enter(&ill_v4->ill_lock); 13233 for (ipif = ill_v4->ill_ipif; ipif != NULL; 13234 ipif = ipif->ipif_next) { 13235 IPIF_UNMARK_MOVING(ipif); 13236 } 13237 ill_v4->ill_up_ipifs = B_FALSE; 13238 mutex_exit(&ill_v4->ill_lock); 13239 } 13240 13241 if (ill_v6 != NULL) { 13242 mutex_enter(&ill_v6->ill_lock); 13243 for (ipif = ill_v6->ill_ipif; ipif != NULL; 13244 ipif = ipif->ipif_next) { 13245 IPIF_UNMARK_MOVING(ipif); 13246 } 13247 ill_v6->ill_up_ipifs = B_FALSE; 13248 mutex_exit(&ill_v6->ill_lock); 13249 } 13250 } 13251 /* 13252 * This function is called when an ill has had a change in its group status 13253 * to bring up all the ipifs that were up before the change. 13254 */ 13255 int 13256 ill_up_ipifs(ill_t *ill, queue_t *q, mblk_t *mp) 13257 { 13258 ipif_t *ipif; 13259 ill_t *ill_v4; 13260 ill_t *ill_v6; 13261 ill_t *from_ill; 13262 int err = 0; 13263 13264 13265 ASSERT(IAM_WRITER_ILL(ill)); 13266 13267 /* 13268 * Except for ipif_state_flags and ill_state_flags the other 13269 * fields of the ipif/ill that are modified below are protected 13270 * implicitly since we are a writer. We would have tried to down 13271 * even an ipif that was already down, in ill_down_ipifs. So we 13272 * just blindly clear the IPIF_CHANGING flag here on all ipifs. 13273 */ 13274 ill_v4 = ill->ill_phyint->phyint_illv4; 13275 ill_v6 = ill->ill_phyint->phyint_illv6; 13276 if (ill_v4 != NULL) { 13277 ill_v4->ill_up_ipifs = B_TRUE; 13278 for (ipif = ill_v4->ill_ipif; ipif != NULL; 13279 ipif = ipif->ipif_next) { 13280 mutex_enter(&ill_v4->ill_lock); 13281 ipif->ipif_state_flags &= ~IPIF_CHANGING; 13282 IPIF_UNMARK_MOVING(ipif); 13283 mutex_exit(&ill_v4->ill_lock); 13284 if (ipif->ipif_was_up) { 13285 if (!(ipif->ipif_flags & IPIF_UP)) 13286 err = ipif_up(ipif, q, mp); 13287 ipif->ipif_was_up = B_FALSE; 13288 if (err != 0) { 13289 /* 13290 * Can there be any other error ? 13291 */ 13292 ASSERT(err == EINPROGRESS); 13293 return (err); 13294 } 13295 } 13296 } 13297 mutex_enter(&ill_v4->ill_lock); 13298 ill_v4->ill_state_flags &= ~ILL_CHANGING; 13299 mutex_exit(&ill_v4->ill_lock); 13300 ill_v4->ill_up_ipifs = B_FALSE; 13301 if (ill_v4->ill_move_in_progress) { 13302 ASSERT(ill_v4->ill_move_peer != NULL); 13303 ill_v4->ill_move_in_progress = B_FALSE; 13304 from_ill = ill_v4->ill_move_peer; 13305 from_ill->ill_move_in_progress = B_FALSE; 13306 from_ill->ill_move_peer = NULL; 13307 mutex_enter(&from_ill->ill_lock); 13308 from_ill->ill_state_flags &= ~ILL_CHANGING; 13309 mutex_exit(&from_ill->ill_lock); 13310 if (ill_v6 == NULL) { 13311 if (from_ill->ill_phyint->phyint_flags & 13312 PHYI_STANDBY) { 13313 phyint_standby_inactive 13314 (from_ill->ill_phyint); 13315 } 13316 if (ill_v4->ill_phyint->phyint_flags & 13317 PHYI_STANDBY) { 13318 phyint_standby_inactive 13319 (ill_v4->ill_phyint); 13320 } 13321 } 13322 ill_v4->ill_move_peer = NULL; 13323 } 13324 } 13325 13326 if (ill_v6 != NULL) { 13327 ill_v6->ill_up_ipifs = B_TRUE; 13328 for (ipif = ill_v6->ill_ipif; ipif != NULL; 13329 ipif = ipif->ipif_next) { 13330 mutex_enter(&ill_v6->ill_lock); 13331 ipif->ipif_state_flags &= ~IPIF_CHANGING; 13332 IPIF_UNMARK_MOVING(ipif); 13333 mutex_exit(&ill_v6->ill_lock); 13334 if (ipif->ipif_was_up) { 13335 if (!(ipif->ipif_flags & IPIF_UP)) 13336 err = ipif_up(ipif, q, mp); 13337 ipif->ipif_was_up = B_FALSE; 13338 if (err != 0) { 13339 /* 13340 * Can there be any other error ? 13341 */ 13342 ASSERT(err == EINPROGRESS); 13343 return (err); 13344 } 13345 } 13346 } 13347 mutex_enter(&ill_v6->ill_lock); 13348 ill_v6->ill_state_flags &= ~ILL_CHANGING; 13349 mutex_exit(&ill_v6->ill_lock); 13350 ill_v6->ill_up_ipifs = B_FALSE; 13351 if (ill_v6->ill_move_in_progress) { 13352 ASSERT(ill_v6->ill_move_peer != NULL); 13353 ill_v6->ill_move_in_progress = B_FALSE; 13354 from_ill = ill_v6->ill_move_peer; 13355 from_ill->ill_move_in_progress = B_FALSE; 13356 from_ill->ill_move_peer = NULL; 13357 mutex_enter(&from_ill->ill_lock); 13358 from_ill->ill_state_flags &= ~ILL_CHANGING; 13359 mutex_exit(&from_ill->ill_lock); 13360 if (from_ill->ill_phyint->phyint_flags & PHYI_STANDBY) { 13361 phyint_standby_inactive(from_ill->ill_phyint); 13362 } 13363 if (ill_v6->ill_phyint->phyint_flags & PHYI_STANDBY) { 13364 phyint_standby_inactive(ill_v6->ill_phyint); 13365 } 13366 ill_v6->ill_move_peer = NULL; 13367 } 13368 } 13369 return (0); 13370 } 13371 13372 /* 13373 * bring down all the approriate ipifs. 13374 */ 13375 /* ARGSUSED */ 13376 static void 13377 ill_down_ipifs(ill_t *ill, mblk_t *mp, int index, boolean_t chk_nofailover) 13378 { 13379 ipif_t *ipif; 13380 13381 ASSERT(IAM_WRITER_ILL(ill)); 13382 13383 /* 13384 * Except for ipif_state_flags the other fields of the ipif/ill that 13385 * are modified below are protected implicitly since we are a writer 13386 */ 13387 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 13388 if (chk_nofailover && (ipif->ipif_flags & IPIF_NOFAILOVER)) 13389 continue; 13390 if (index == 0 || index == ipif->ipif_orig_ifindex) { 13391 /* 13392 * We go through the ipif_down logic even if the ipif 13393 * is already down, since routes can be added based 13394 * on down ipifs. Going through ipif_down once again 13395 * will delete any IREs created based on these routes. 13396 */ 13397 if (ipif->ipif_flags & IPIF_UP) 13398 ipif->ipif_was_up = B_TRUE; 13399 /* 13400 * If called with chk_nofailover true ipif is moving. 13401 */ 13402 mutex_enter(&ill->ill_lock); 13403 if (chk_nofailover) { 13404 ipif->ipif_state_flags |= 13405 IPIF_MOVING | IPIF_CHANGING; 13406 } else { 13407 ipif->ipif_state_flags |= IPIF_CHANGING; 13408 } 13409 mutex_exit(&ill->ill_lock); 13410 /* 13411 * Need to re-create net/subnet bcast ires if 13412 * they are dependent on ipif. 13413 */ 13414 if (!ipif->ipif_isv6) 13415 ipif_check_bcast_ires(ipif); 13416 (void) ipif_logical_down(ipif, NULL, NULL); 13417 ipif_down_tail(ipif); 13418 /* 13419 * We don't do ipif_multicast_down for IPv4 in 13420 * ipif_down. We need to set this so that 13421 * ipif_multicast_up will join the 13422 * ALLHOSTS_GROUP on to_ill. 13423 */ 13424 ipif->ipif_multicast_up = B_FALSE; 13425 } 13426 } 13427 } 13428 13429 #define IPSQ_INC_REF(ipsq) { \ 13430 ASSERT(RW_WRITE_HELD(&ill_g_lock)); \ 13431 (ipsq)->ipsq_refs++; \ 13432 } 13433 13434 #define IPSQ_DEC_REF(ipsq) { \ 13435 ASSERT(RW_WRITE_HELD(&ill_g_lock)); \ 13436 (ipsq)->ipsq_refs--; \ 13437 if ((ipsq)->ipsq_refs == 0) \ 13438 (ipsq)->ipsq_name[0] = '\0'; \ 13439 } 13440 13441 /* 13442 * Change the ipsq of all the ill's whose current ipsq is 'cur_ipsq' to 13443 * new_ipsq. 13444 */ 13445 static void 13446 ill_merge_ipsq(ipsq_t *cur_ipsq, ipsq_t *new_ipsq) 13447 { 13448 phyint_t *phyint; 13449 phyint_t *next_phyint; 13450 13451 /* 13452 * To change the ipsq of an ill, we need to hold the ill_g_lock as 13453 * writer and the ill_lock of the ill in question. Also the dest 13454 * ipsq can't vanish while we hold the ill_g_lock as writer. 13455 */ 13456 ASSERT(RW_WRITE_HELD(&ill_g_lock)); 13457 13458 phyint = cur_ipsq->ipsq_phyint_list; 13459 cur_ipsq->ipsq_phyint_list = NULL; 13460 while (phyint != NULL) { 13461 next_phyint = phyint->phyint_ipsq_next; 13462 IPSQ_DEC_REF(cur_ipsq); 13463 phyint->phyint_ipsq_next = new_ipsq->ipsq_phyint_list; 13464 new_ipsq->ipsq_phyint_list = phyint; 13465 IPSQ_INC_REF(new_ipsq); 13466 phyint->phyint_ipsq = new_ipsq; 13467 phyint = next_phyint; 13468 } 13469 } 13470 13471 #define SPLIT_SUCCESS 0 13472 #define SPLIT_NOT_NEEDED 1 13473 #define SPLIT_FAILED 2 13474 13475 int 13476 ill_split_to_grp_ipsq(phyint_t *phyint, ipsq_t *cur_ipsq, boolean_t need_retry) 13477 { 13478 ipsq_t *newipsq = NULL; 13479 13480 /* 13481 * Assertions denote pre-requisites for changing the ipsq of 13482 * a phyint 13483 */ 13484 ASSERT(RW_WRITE_HELD(&ill_g_lock)); 13485 /* 13486 * <ill-phyint> assocs can't change while ill_g_lock 13487 * is held as writer. See ill_phyint_reinit() 13488 */ 13489 ASSERT(phyint->phyint_illv4 == NULL || 13490 MUTEX_HELD(&phyint->phyint_illv4->ill_lock)); 13491 ASSERT(phyint->phyint_illv6 == NULL || 13492 MUTEX_HELD(&phyint->phyint_illv6->ill_lock)); 13493 13494 if ((phyint->phyint_groupname_len != 13495 (strlen(cur_ipsq->ipsq_name) + 1) || 13496 bcmp(phyint->phyint_groupname, cur_ipsq->ipsq_name, 13497 phyint->phyint_groupname_len) != 0)) { 13498 /* 13499 * Once we fail in creating a new ipsq due to memory shortage, 13500 * don't attempt to create new ipsq again, based on another 13501 * phyint, since we want all phyints belonging to an IPMP group 13502 * to be in the same ipsq even in the event of mem alloc fails. 13503 */ 13504 newipsq = ip_ipsq_lookup(phyint->phyint_groupname, !need_retry, 13505 cur_ipsq); 13506 if (newipsq == NULL) { 13507 /* Memory allocation failure */ 13508 return (SPLIT_FAILED); 13509 } else { 13510 /* ipsq_refs protected by ill_g_lock (writer) */ 13511 IPSQ_DEC_REF(cur_ipsq); 13512 phyint->phyint_ipsq = newipsq; 13513 phyint->phyint_ipsq_next = newipsq->ipsq_phyint_list; 13514 newipsq->ipsq_phyint_list = phyint; 13515 IPSQ_INC_REF(newipsq); 13516 return (SPLIT_SUCCESS); 13517 } 13518 } 13519 return (SPLIT_NOT_NEEDED); 13520 } 13521 13522 /* 13523 * The ill locks of the phyint and the ill_g_lock (writer) must be held 13524 * to do this split 13525 */ 13526 static int 13527 ill_split_to_own_ipsq(phyint_t *phyint, ipsq_t *cur_ipsq) 13528 { 13529 ipsq_t *newipsq; 13530 13531 ASSERT(RW_WRITE_HELD(&ill_g_lock)); 13532 /* 13533 * <ill-phyint> assocs can't change while ill_g_lock 13534 * is held as writer. See ill_phyint_reinit() 13535 */ 13536 13537 ASSERT(phyint->phyint_illv4 == NULL || 13538 MUTEX_HELD(&phyint->phyint_illv4->ill_lock)); 13539 ASSERT(phyint->phyint_illv6 == NULL || 13540 MUTEX_HELD(&phyint->phyint_illv6->ill_lock)); 13541 13542 if (!ipsq_init((phyint->phyint_illv4 != NULL) ? 13543 phyint->phyint_illv4: phyint->phyint_illv6)) { 13544 /* 13545 * ipsq_init failed due to no memory 13546 * caller will use the same ipsq 13547 */ 13548 return (SPLIT_FAILED); 13549 } 13550 13551 /* ipsq_ref is protected by ill_g_lock (writer) */ 13552 IPSQ_DEC_REF(cur_ipsq); 13553 13554 /* 13555 * This is a new ipsq that is unknown to the world. 13556 * So we don't need to hold ipsq_lock, 13557 */ 13558 newipsq = phyint->phyint_ipsq; 13559 newipsq->ipsq_writer = NULL; 13560 newipsq->ipsq_reentry_cnt--; 13561 ASSERT(newipsq->ipsq_reentry_cnt == 0); 13562 #ifdef ILL_DEBUG 13563 newipsq->ipsq_depth = 0; 13564 #endif 13565 13566 return (SPLIT_SUCCESS); 13567 } 13568 13569 /* 13570 * Change the ipsq of all the ill's whose current ipsq is 'cur_ipsq' to 13571 * ipsq's representing their individual groups or themselves. Return 13572 * whether split needs to be retried again later. 13573 */ 13574 static boolean_t 13575 ill_split_ipsq(ipsq_t *cur_ipsq) 13576 { 13577 phyint_t *phyint; 13578 phyint_t *next_phyint; 13579 int error; 13580 boolean_t need_retry = B_FALSE; 13581 13582 phyint = cur_ipsq->ipsq_phyint_list; 13583 cur_ipsq->ipsq_phyint_list = NULL; 13584 while (phyint != NULL) { 13585 next_phyint = phyint->phyint_ipsq_next; 13586 /* 13587 * 'created' will tell us whether the callee actually 13588 * created an ipsq. Lack of memory may force the callee 13589 * to return without creating an ipsq. 13590 */ 13591 if (phyint->phyint_groupname == NULL) { 13592 error = ill_split_to_own_ipsq(phyint, cur_ipsq); 13593 } else { 13594 error = ill_split_to_grp_ipsq(phyint, cur_ipsq, 13595 need_retry); 13596 } 13597 13598 switch (error) { 13599 case SPLIT_FAILED: 13600 need_retry = B_TRUE; 13601 /* FALLTHRU */ 13602 case SPLIT_NOT_NEEDED: 13603 /* 13604 * Keep it on the list. 13605 */ 13606 phyint->phyint_ipsq_next = cur_ipsq->ipsq_phyint_list; 13607 cur_ipsq->ipsq_phyint_list = phyint; 13608 break; 13609 case SPLIT_SUCCESS: 13610 break; 13611 default: 13612 ASSERT(0); 13613 } 13614 13615 phyint = next_phyint; 13616 } 13617 return (need_retry); 13618 } 13619 13620 /* 13621 * given an ipsq 'ipsq' lock all ills associated with this ipsq. 13622 * and return the ills in the list. This list will be 13623 * needed to unlock all the ills later on by the caller. 13624 * The <ill-ipsq> associations could change between the 13625 * lock and unlock. Hence the unlock can't traverse the 13626 * ipsq to get the list of ills. 13627 */ 13628 static int 13629 ill_lock_ipsq_ills(ipsq_t *ipsq, ill_t **list, int list_max) 13630 { 13631 int cnt = 0; 13632 phyint_t *phyint; 13633 13634 /* 13635 * The caller holds ill_g_lock to ensure that the ill memberships 13636 * of the ipsq don't change 13637 */ 13638 ASSERT(RW_LOCK_HELD(&ill_g_lock)); 13639 13640 phyint = ipsq->ipsq_phyint_list; 13641 while (phyint != NULL) { 13642 if (phyint->phyint_illv4 != NULL) { 13643 ASSERT(cnt < list_max); 13644 list[cnt++] = phyint->phyint_illv4; 13645 } 13646 if (phyint->phyint_illv6 != NULL) { 13647 ASSERT(cnt < list_max); 13648 list[cnt++] = phyint->phyint_illv6; 13649 } 13650 phyint = phyint->phyint_ipsq_next; 13651 } 13652 ill_lock_ills(list, cnt); 13653 return (cnt); 13654 } 13655 13656 void 13657 ill_lock_ills(ill_t **list, int cnt) 13658 { 13659 int i; 13660 13661 if (cnt > 1) { 13662 boolean_t try_again; 13663 do { 13664 try_again = B_FALSE; 13665 for (i = 0; i < cnt - 1; i++) { 13666 if (list[i] < list[i + 1]) { 13667 ill_t *tmp; 13668 13669 /* swap the elements */ 13670 tmp = list[i]; 13671 list[i] = list[i + 1]; 13672 list[i + 1] = tmp; 13673 try_again = B_TRUE; 13674 } 13675 } 13676 } while (try_again); 13677 } 13678 13679 for (i = 0; i < cnt; i++) { 13680 if (i == 0) { 13681 if (list[i] != NULL) 13682 mutex_enter(&list[i]->ill_lock); 13683 else 13684 return; 13685 } else if ((list[i-1] != list[i]) && (list[i] != NULL)) { 13686 mutex_enter(&list[i]->ill_lock); 13687 } 13688 } 13689 } 13690 13691 void 13692 ill_unlock_ills(ill_t **list, int cnt) 13693 { 13694 int i; 13695 13696 for (i = 0; i < cnt; i++) { 13697 if ((i == 0) && (list[i] != NULL)) { 13698 mutex_exit(&list[i]->ill_lock); 13699 } else if ((list[i-1] != list[i]) && (list[i] != NULL)) { 13700 mutex_exit(&list[i]->ill_lock); 13701 } 13702 } 13703 } 13704 13705 /* 13706 * Merge all the ills from 1 ipsq group into another ipsq group. 13707 * The source ipsq group is specified by the ipsq associated with 13708 * 'from_ill'. The destination ipsq group is specified by the ipsq 13709 * associated with 'to_ill' or 'groupname' respectively. 13710 * Note that ipsq itself does not have a reference count mechanism 13711 * and functions don't look up an ipsq and pass it around. Instead 13712 * functions pass around an ill or groupname, and the ipsq is looked 13713 * up from the ill or groupname and the required operation performed 13714 * atomically with the lookup on the ipsq. 13715 */ 13716 static int 13717 ill_merge_groups(ill_t *from_ill, ill_t *to_ill, char *groupname, mblk_t *mp, 13718 queue_t *q) 13719 { 13720 ipsq_t *old_ipsq; 13721 ipsq_t *new_ipsq; 13722 ill_t **ill_list; 13723 int cnt; 13724 size_t ill_list_size; 13725 boolean_t became_writer_on_new_sq = B_FALSE; 13726 13727 /* Exactly 1 of 'to_ill' and groupname can be specified. */ 13728 ASSERT((to_ill != NULL) ^ (groupname != NULL)); 13729 13730 /* 13731 * Need to hold ill_g_lock as writer and also the ill_lock to 13732 * change the <ill-ipsq> assoc of an ill. Need to hold the 13733 * ipsq_lock to prevent new messages from landing on an ipsq. 13734 */ 13735 rw_enter(&ill_g_lock, RW_WRITER); 13736 13737 old_ipsq = from_ill->ill_phyint->phyint_ipsq; 13738 if (groupname != NULL) 13739 new_ipsq = ip_ipsq_lookup(groupname, B_TRUE, NULL); 13740 else { 13741 new_ipsq = to_ill->ill_phyint->phyint_ipsq; 13742 } 13743 13744 ASSERT(old_ipsq != NULL && new_ipsq != NULL); 13745 13746 /* 13747 * both groups are on the same ipsq. 13748 */ 13749 if (old_ipsq == new_ipsq) { 13750 rw_exit(&ill_g_lock); 13751 return (0); 13752 } 13753 13754 cnt = old_ipsq->ipsq_refs << 1; 13755 ill_list_size = cnt * sizeof (ill_t *); 13756 ill_list = kmem_zalloc(ill_list_size, KM_NOSLEEP); 13757 if (ill_list == NULL) { 13758 rw_exit(&ill_g_lock); 13759 return (ENOMEM); 13760 } 13761 cnt = ill_lock_ipsq_ills(old_ipsq, ill_list, cnt); 13762 13763 /* Need ipsq lock to enque messages on new ipsq or to become writer */ 13764 mutex_enter(&new_ipsq->ipsq_lock); 13765 if ((new_ipsq->ipsq_writer == NULL && 13766 new_ipsq->ipsq_current_ipif == NULL) || 13767 (new_ipsq->ipsq_writer == curthread)) { 13768 new_ipsq->ipsq_writer = curthread; 13769 new_ipsq->ipsq_reentry_cnt++; 13770 became_writer_on_new_sq = B_TRUE; 13771 } 13772 13773 /* 13774 * We are holding ill_g_lock as writer and all the ill locks of 13775 * the old ipsq. So the old_ipsq can't be looked up, and hence no new 13776 * message can land up on the old ipsq even though we don't hold the 13777 * ipsq_lock of the old_ipsq. Now move all messages to the newipsq. 13778 */ 13779 ill_move_to_new_ipsq(old_ipsq, new_ipsq, mp, q); 13780 13781 /* 13782 * now change the ipsq of all ills in the 'old_ipsq' to 'new_ipsq'. 13783 * 'new_ipsq' has been looked up, and it can't change its <ill-ipsq> 13784 * assocs. till we release the ill_g_lock, and hence it can't vanish. 13785 */ 13786 ill_merge_ipsq(old_ipsq, new_ipsq); 13787 13788 /* 13789 * Mark the new ipsq as needing a split since it is currently 13790 * being shared by more than 1 IPMP group. The split will 13791 * occur at the end of ipsq_exit 13792 */ 13793 new_ipsq->ipsq_split = B_TRUE; 13794 13795 /* Now release all the locks */ 13796 mutex_exit(&new_ipsq->ipsq_lock); 13797 ill_unlock_ills(ill_list, cnt); 13798 rw_exit(&ill_g_lock); 13799 13800 kmem_free(ill_list, ill_list_size); 13801 13802 /* 13803 * If we succeeded in becoming writer on the new ipsq, then 13804 * drain the new ipsq and start processing all enqueued messages 13805 * including the current ioctl we are processing which is either 13806 * a set groupname or failover/failback. 13807 */ 13808 if (became_writer_on_new_sq) 13809 ipsq_exit(new_ipsq, B_TRUE, B_TRUE); 13810 13811 /* 13812 * syncq has been changed and all the messages have been moved. 13813 */ 13814 mutex_enter(&old_ipsq->ipsq_lock); 13815 old_ipsq->ipsq_current_ipif = NULL; 13816 mutex_exit(&old_ipsq->ipsq_lock); 13817 return (EINPROGRESS); 13818 } 13819 13820 /* 13821 * Delete and add the loopback copy and non-loopback copy of 13822 * the BROADCAST ire corresponding to ill and addr. Used to 13823 * group broadcast ires together when ill becomes part of 13824 * a group. 13825 * 13826 * This function is also called when ill is leaving the group 13827 * so that the ires belonging to the group gets re-grouped. 13828 */ 13829 static void 13830 ill_bcast_delete_and_add(ill_t *ill, ipaddr_t addr) 13831 { 13832 ire_t *ire, *nire, *nire_next, *ire_head = NULL; 13833 ire_t **ire_ptpn = &ire_head; 13834 13835 /* 13836 * The loopback and non-loopback IREs are inserted in the order in which 13837 * they're found, on the basis that they are correctly ordered (loopback 13838 * first). 13839 */ 13840 for (;;) { 13841 ire = ire_ctable_lookup(addr, 0, IRE_BROADCAST, ill->ill_ipif, 13842 ALL_ZONES, MATCH_IRE_TYPE | MATCH_IRE_ILL); 13843 if (ire == NULL) 13844 break; 13845 13846 /* 13847 * we are passing in KM_SLEEP because it is not easy to 13848 * go back to a sane state in case of memory failure. 13849 */ 13850 nire = kmem_cache_alloc(ire_cache, KM_SLEEP); 13851 ASSERT(nire != NULL); 13852 bzero(nire, sizeof (ire_t)); 13853 /* 13854 * Don't use ire_max_frag directly since we don't 13855 * hold on to 'ire' until we add the new ire 'nire' and 13856 * we don't want the new ire to have a dangling reference 13857 * to 'ire'. The ire_max_frag of a broadcast ire must 13858 * be in sync with the ipif_mtu of the associate ipif. 13859 * For eg. this happens as a result of SIOCSLIFNAME, 13860 * SIOCSLIFLNKINFO or a DL_NOTE_SDU_SIZE inititated by 13861 * the driver. A change in ire_max_frag triggered as 13862 * as a result of path mtu discovery, or due to an 13863 * IP_IOC_IRE_ADVISE_NOREPLY from the transport or due a 13864 * route change -mtu command does not apply to broadcast ires. 13865 * 13866 * XXX We need a recovery strategy here if ire_init fails 13867 */ 13868 if (ire_init(nire, 13869 (uchar_t *)&ire->ire_addr, 13870 (uchar_t *)&ire->ire_mask, 13871 (uchar_t *)&ire->ire_src_addr, 13872 (uchar_t *)&ire->ire_gateway_addr, 13873 (uchar_t *)&ire->ire_in_src_addr, 13874 ire->ire_stq == NULL ? &ip_loopback_mtu : 13875 &ire->ire_ipif->ipif_mtu, 13876 ire->ire_fp_mp, 13877 ire->ire_rfq, 13878 ire->ire_stq, 13879 ire->ire_type, 13880 ire->ire_dlureq_mp, 13881 ire->ire_ipif, 13882 ire->ire_in_ill, 13883 ire->ire_cmask, 13884 ire->ire_phandle, 13885 ire->ire_ihandle, 13886 ire->ire_flags, 13887 &ire->ire_uinfo) == NULL) { 13888 cmn_err(CE_PANIC, "ire_init() failed"); 13889 } 13890 ire_delete(ire); 13891 ire_refrele(ire); 13892 13893 /* 13894 * The newly created IREs are inserted at the tail of the list 13895 * starting with ire_head. As we've just allocated them no one 13896 * knows about them so it's safe. 13897 */ 13898 *ire_ptpn = nire; 13899 ire_ptpn = &nire->ire_next; 13900 } 13901 13902 for (nire = ire_head; nire != NULL; nire = nire_next) { 13903 int error; 13904 ire_t *oire; 13905 /* unlink the IRE from our list before calling ire_add() */ 13906 nire_next = nire->ire_next; 13907 nire->ire_next = NULL; 13908 13909 /* ire_add adds the ire at the right place in the list */ 13910 oire = nire; 13911 error = ire_add(&nire, NULL, NULL, NULL); 13912 ASSERT(error == 0); 13913 ASSERT(oire == nire); 13914 ire_refrele(nire); /* Held in ire_add */ 13915 } 13916 } 13917 13918 /* 13919 * This function is usually called when an ill is inserted in 13920 * a group and all the ipifs are already UP. As all the ipifs 13921 * are already UP, the broadcast ires have already been created 13922 * and been inserted. But, ire_add_v4 would not have grouped properly. 13923 * We need to re-group for the benefit of ip_wput_ire which 13924 * expects BROADCAST ires to be grouped properly to avoid sending 13925 * more than one copy of the broadcast packet per group. 13926 * 13927 * NOTE : We don't check for ill_ipif_up_count to be non-zero here 13928 * because when ipif_up_done ends up calling this, ires have 13929 * already been added before illgrp_insert i.e before ill_group 13930 * has been initialized. 13931 */ 13932 static void 13933 ill_group_bcast_for_xmit(ill_t *ill) 13934 { 13935 ill_group_t *illgrp; 13936 ipif_t *ipif; 13937 ipaddr_t addr; 13938 ipaddr_t net_mask; 13939 ipaddr_t subnet_netmask; 13940 13941 illgrp = ill->ill_group; 13942 13943 /* 13944 * This function is called even when an ill is deleted from 13945 * the group. Hence, illgrp could be null. 13946 */ 13947 if (illgrp != NULL && illgrp->illgrp_ill_count == 1) 13948 return; 13949 13950 /* 13951 * Delete all the BROADCAST ires matching this ill and add 13952 * them back. This time, ire_add_v4 should take care of 13953 * grouping them with others because ill is part of the 13954 * group. 13955 */ 13956 ill_bcast_delete_and_add(ill, 0); 13957 ill_bcast_delete_and_add(ill, INADDR_BROADCAST); 13958 13959 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 13960 13961 if ((ipif->ipif_lcl_addr != INADDR_ANY) && 13962 !(ipif->ipif_flags & IPIF_NOLOCAL)) { 13963 net_mask = ip_net_mask(ipif->ipif_lcl_addr); 13964 } else { 13965 net_mask = htonl(IN_CLASSA_NET); 13966 } 13967 addr = net_mask & ipif->ipif_subnet; 13968 ill_bcast_delete_and_add(ill, addr); 13969 ill_bcast_delete_and_add(ill, ~net_mask | addr); 13970 13971 subnet_netmask = ipif->ipif_net_mask; 13972 addr = ipif->ipif_subnet; 13973 ill_bcast_delete_and_add(ill, addr); 13974 ill_bcast_delete_and_add(ill, ~subnet_netmask | addr); 13975 } 13976 } 13977 13978 /* 13979 * This function is called from illgrp_delete when ill is being deleted 13980 * from the group. 13981 * 13982 * As ill is not there in the group anymore, any address belonging 13983 * to this ill should be cleared of IRE_MARK_NORECV. 13984 */ 13985 static void 13986 ill_clear_bcast_mark(ill_t *ill, ipaddr_t addr) 13987 { 13988 ire_t *ire; 13989 irb_t *irb; 13990 13991 ASSERT(ill->ill_group == NULL); 13992 13993 ire = ire_ctable_lookup(addr, 0, IRE_BROADCAST, ill->ill_ipif, 13994 ALL_ZONES, MATCH_IRE_TYPE | MATCH_IRE_ILL); 13995 13996 if (ire != NULL) { 13997 /* 13998 * IPMP and plumbing operations are serialized on the ipsq, so 13999 * no one will insert or delete a broadcast ire under our feet. 14000 */ 14001 irb = ire->ire_bucket; 14002 rw_enter(&irb->irb_lock, RW_READER); 14003 ire_refrele(ire); 14004 14005 for (; ire != NULL; ire = ire->ire_next) { 14006 if (ire->ire_addr != addr) 14007 break; 14008 if (ire_to_ill(ire) != ill) 14009 continue; 14010 14011 ASSERT(!(ire->ire_marks & IRE_MARK_CONDEMNED)); 14012 ire->ire_marks &= ~IRE_MARK_NORECV; 14013 } 14014 rw_exit(&irb->irb_lock); 14015 } 14016 } 14017 14018 /* 14019 * This function must be called only after the broadcast ires 14020 * have been grouped together. For a given address addr, nominate 14021 * only one of the ires whose interface is not FAILED or OFFLINE. 14022 * 14023 * This is also called when an ipif goes down, so that we can nominate 14024 * a different ire with the same address for receiving. 14025 */ 14026 static void 14027 ill_mark_bcast(ill_group_t *illgrp, ipaddr_t addr) 14028 { 14029 irb_t *irb; 14030 ire_t *ire; 14031 ire_t *ire1; 14032 ire_t *save_ire; 14033 ire_t **irep = NULL; 14034 boolean_t first = B_TRUE; 14035 ire_t *clear_ire = NULL; 14036 ire_t *start_ire = NULL; 14037 ire_t *new_lb_ire; 14038 ire_t *new_nlb_ire; 14039 boolean_t new_lb_ire_used = B_FALSE; 14040 boolean_t new_nlb_ire_used = B_FALSE; 14041 uint64_t match_flags; 14042 uint64_t phyi_flags; 14043 boolean_t fallback = B_FALSE; 14044 14045 ire = ire_ctable_lookup(addr, 0, IRE_BROADCAST, NULL, ALL_ZONES, 14046 MATCH_IRE_TYPE); 14047 /* 14048 * We may not be able to find some ires if a previous 14049 * ire_create failed. This happens when an ipif goes 14050 * down and we are unable to create BROADCAST ires due 14051 * to memory failure. Thus, we have to check for NULL 14052 * below. This should handle the case for LOOPBACK, 14053 * POINTOPOINT and interfaces with some POINTOPOINT 14054 * logicals for which there are no BROADCAST ires. 14055 */ 14056 if (ire == NULL) 14057 return; 14058 /* 14059 * Currently IRE_BROADCASTS are deleted when an ipif 14060 * goes down which runs exclusively. Thus, setting 14061 * IRE_MARK_RCVD should not race with ire_delete marking 14062 * IRE_MARK_CONDEMNED. We grab the lock below just to 14063 * be consistent with other parts of the code that walks 14064 * a given bucket. 14065 */ 14066 save_ire = ire; 14067 irb = ire->ire_bucket; 14068 new_lb_ire = kmem_cache_alloc(ire_cache, KM_NOSLEEP); 14069 if (new_lb_ire == NULL) { 14070 ire_refrele(ire); 14071 return; 14072 } 14073 new_nlb_ire = kmem_cache_alloc(ire_cache, KM_NOSLEEP); 14074 if (new_nlb_ire == NULL) { 14075 ire_refrele(ire); 14076 kmem_cache_free(ire_cache, new_lb_ire); 14077 return; 14078 } 14079 IRB_REFHOLD(irb); 14080 rw_enter(&irb->irb_lock, RW_WRITER); 14081 /* 14082 * Get to the first ire matching the address and the 14083 * group. If the address does not match we are done 14084 * as we could not find the IRE. If the address matches 14085 * we should get to the first one matching the group. 14086 */ 14087 while (ire != NULL) { 14088 if (ire->ire_addr != addr || 14089 ire->ire_ipif->ipif_ill->ill_group == illgrp) { 14090 break; 14091 } 14092 ire = ire->ire_next; 14093 } 14094 match_flags = PHYI_FAILED | PHYI_INACTIVE; 14095 start_ire = ire; 14096 redo: 14097 while (ire != NULL && ire->ire_addr == addr && 14098 ire->ire_ipif->ipif_ill->ill_group == illgrp) { 14099 /* 14100 * The first ire for any address within a group 14101 * should always be the one with IRE_MARK_NORECV cleared 14102 * so that ip_wput_ire can avoid searching for one. 14103 * Note down the insertion point which will be used 14104 * later. 14105 */ 14106 if (first && (irep == NULL)) 14107 irep = ire->ire_ptpn; 14108 /* 14109 * PHYI_FAILED is set when the interface fails. 14110 * This interface might have become good, but the 14111 * daemon has not yet detected. We should still 14112 * not receive on this. PHYI_OFFLINE should never 14113 * be picked as this has been offlined and soon 14114 * be removed. 14115 */ 14116 phyi_flags = ire->ire_ipif->ipif_ill->ill_phyint->phyint_flags; 14117 if (phyi_flags & PHYI_OFFLINE) { 14118 ire->ire_marks |= IRE_MARK_NORECV; 14119 ire = ire->ire_next; 14120 continue; 14121 } 14122 if (phyi_flags & match_flags) { 14123 ire->ire_marks |= IRE_MARK_NORECV; 14124 ire = ire->ire_next; 14125 if ((phyi_flags & (PHYI_FAILED | PHYI_INACTIVE)) == 14126 PHYI_INACTIVE) { 14127 fallback = B_TRUE; 14128 } 14129 continue; 14130 } 14131 if (first) { 14132 /* 14133 * We will move this to the front of the list later 14134 * on. 14135 */ 14136 clear_ire = ire; 14137 ire->ire_marks &= ~IRE_MARK_NORECV; 14138 } else { 14139 ire->ire_marks |= IRE_MARK_NORECV; 14140 } 14141 first = B_FALSE; 14142 ire = ire->ire_next; 14143 } 14144 /* 14145 * If we never nominated anybody, try nominating at least 14146 * an INACTIVE, if we found one. Do it only once though. 14147 */ 14148 if (first && (match_flags == (PHYI_FAILED | PHYI_INACTIVE)) && 14149 fallback) { 14150 match_flags = PHYI_FAILED; 14151 ire = start_ire; 14152 irep = NULL; 14153 goto redo; 14154 } 14155 ire_refrele(save_ire); 14156 14157 /* 14158 * irep non-NULL indicates that we entered the while loop 14159 * above. If clear_ire is at the insertion point, we don't 14160 * have to do anything. clear_ire will be NULL if all the 14161 * interfaces are failed. 14162 * 14163 * We cannot unlink and reinsert the ire at the right place 14164 * in the list since there can be other walkers of this bucket. 14165 * Instead we delete and recreate the ire 14166 */ 14167 if (clear_ire != NULL && irep != NULL && *irep != clear_ire) { 14168 ire_t *clear_ire_stq = NULL; 14169 bzero(new_lb_ire, sizeof (ire_t)); 14170 /* XXX We need a recovery strategy here. */ 14171 if (ire_init(new_lb_ire, 14172 (uchar_t *)&clear_ire->ire_addr, 14173 (uchar_t *)&clear_ire->ire_mask, 14174 (uchar_t *)&clear_ire->ire_src_addr, 14175 (uchar_t *)&clear_ire->ire_gateway_addr, 14176 (uchar_t *)&clear_ire->ire_in_src_addr, 14177 &clear_ire->ire_max_frag, 14178 clear_ire->ire_fp_mp, 14179 clear_ire->ire_rfq, 14180 clear_ire->ire_stq, 14181 clear_ire->ire_type, 14182 clear_ire->ire_dlureq_mp, 14183 clear_ire->ire_ipif, 14184 clear_ire->ire_in_ill, 14185 clear_ire->ire_cmask, 14186 clear_ire->ire_phandle, 14187 clear_ire->ire_ihandle, 14188 clear_ire->ire_flags, 14189 &clear_ire->ire_uinfo) == NULL) 14190 cmn_err(CE_PANIC, "ire_init() failed"); 14191 if (clear_ire->ire_stq == NULL) { 14192 ire_t *ire_next = clear_ire->ire_next; 14193 if (ire_next != NULL && 14194 ire_next->ire_stq != NULL && 14195 ire_next->ire_addr == clear_ire->ire_addr && 14196 ire_next->ire_ipif->ipif_ill == 14197 clear_ire->ire_ipif->ipif_ill) { 14198 clear_ire_stq = ire_next; 14199 14200 bzero(new_nlb_ire, sizeof (ire_t)); 14201 /* XXX We need a recovery strategy here. */ 14202 if (ire_init(new_nlb_ire, 14203 (uchar_t *)&clear_ire_stq->ire_addr, 14204 (uchar_t *)&clear_ire_stq->ire_mask, 14205 (uchar_t *)&clear_ire_stq->ire_src_addr, 14206 (uchar_t *)&clear_ire_stq->ire_gateway_addr, 14207 (uchar_t *)&clear_ire_stq->ire_in_src_addr, 14208 &clear_ire_stq->ire_max_frag, 14209 clear_ire_stq->ire_fp_mp, 14210 clear_ire_stq->ire_rfq, 14211 clear_ire_stq->ire_stq, 14212 clear_ire_stq->ire_type, 14213 clear_ire_stq->ire_dlureq_mp, 14214 clear_ire_stq->ire_ipif, 14215 clear_ire_stq->ire_in_ill, 14216 clear_ire_stq->ire_cmask, 14217 clear_ire_stq->ire_phandle, 14218 clear_ire_stq->ire_ihandle, 14219 clear_ire_stq->ire_flags, 14220 &clear_ire_stq->ire_uinfo) == NULL) 14221 cmn_err(CE_PANIC, "ire_init() failed"); 14222 } 14223 } 14224 14225 /* 14226 * Delete the ire. We can't call ire_delete() since 14227 * we are holding the bucket lock. We can't release the 14228 * bucket lock since we can't allow irep to change. So just 14229 * mark it CONDEMNED. The IRB_REFRELE will delete the 14230 * ire from the list and do the refrele. 14231 */ 14232 clear_ire->ire_marks |= IRE_MARK_CONDEMNED; 14233 irb->irb_marks |= IRE_MARK_CONDEMNED; 14234 14235 if (clear_ire_stq != NULL) { 14236 ire_fastpath_list_delete( 14237 (ill_t *)clear_ire_stq->ire_stq->q_ptr, 14238 clear_ire_stq); 14239 clear_ire_stq->ire_marks |= IRE_MARK_CONDEMNED; 14240 } 14241 14242 /* 14243 * Also take care of otherfields like ib/ob pkt count 14244 * etc. Need to dup them. ditto in ill_bcast_delete_and_add 14245 */ 14246 14247 /* Add the new ire's. Insert at *irep */ 14248 new_lb_ire->ire_bucket = clear_ire->ire_bucket; 14249 ire1 = *irep; 14250 if (ire1 != NULL) 14251 ire1->ire_ptpn = &new_lb_ire->ire_next; 14252 new_lb_ire->ire_next = ire1; 14253 /* Link the new one in. */ 14254 new_lb_ire->ire_ptpn = irep; 14255 membar_producer(); 14256 *irep = new_lb_ire; 14257 new_lb_ire_used = B_TRUE; 14258 BUMP_IRE_STATS(ire_stats_v4, ire_stats_inserted); 14259 new_lb_ire->ire_bucket->irb_ire_cnt++; 14260 new_lb_ire->ire_ipif->ipif_ire_cnt++; 14261 14262 if (clear_ire_stq != NULL) { 14263 new_nlb_ire->ire_bucket = clear_ire->ire_bucket; 14264 irep = &new_lb_ire->ire_next; 14265 /* Add the new ire. Insert at *irep */ 14266 ire1 = *irep; 14267 if (ire1 != NULL) 14268 ire1->ire_ptpn = &new_nlb_ire->ire_next; 14269 new_nlb_ire->ire_next = ire1; 14270 /* Link the new one in. */ 14271 new_nlb_ire->ire_ptpn = irep; 14272 membar_producer(); 14273 *irep = new_nlb_ire; 14274 new_nlb_ire_used = B_TRUE; 14275 BUMP_IRE_STATS(ire_stats_v4, ire_stats_inserted); 14276 new_nlb_ire->ire_bucket->irb_ire_cnt++; 14277 new_nlb_ire->ire_ipif->ipif_ire_cnt++; 14278 ((ill_t *)new_nlb_ire->ire_stq->q_ptr)->ill_ire_cnt++; 14279 } 14280 } 14281 rw_exit(&irb->irb_lock); 14282 if (!new_lb_ire_used) 14283 kmem_cache_free(ire_cache, new_lb_ire); 14284 if (!new_nlb_ire_used) 14285 kmem_cache_free(ire_cache, new_nlb_ire); 14286 IRB_REFRELE(irb); 14287 } 14288 14289 /* 14290 * Whenever an ipif goes down we have to renominate a different 14291 * broadcast ire to receive. Whenever an ipif comes up, we need 14292 * to make sure that we have only one nominated to receive. 14293 */ 14294 static void 14295 ipif_renominate_bcast(ipif_t *ipif) 14296 { 14297 ill_t *ill = ipif->ipif_ill; 14298 ipaddr_t subnet_addr; 14299 ipaddr_t net_addr; 14300 ipaddr_t net_mask = 0; 14301 ipaddr_t subnet_netmask; 14302 ipaddr_t addr; 14303 ill_group_t *illgrp; 14304 14305 illgrp = ill->ill_group; 14306 /* 14307 * If this is the last ipif going down, it might take 14308 * the ill out of the group. In that case ipif_down -> 14309 * illgrp_delete takes care of doing the nomination. 14310 * ipif_down does not call for this case. 14311 */ 14312 ASSERT(illgrp != NULL); 14313 14314 /* There could not have been any ires associated with this */ 14315 if (ipif->ipif_subnet == 0) 14316 return; 14317 14318 ill_mark_bcast(illgrp, 0); 14319 ill_mark_bcast(illgrp, INADDR_BROADCAST); 14320 14321 if ((ipif->ipif_lcl_addr != INADDR_ANY) && 14322 !(ipif->ipif_flags & IPIF_NOLOCAL)) { 14323 net_mask = ip_net_mask(ipif->ipif_lcl_addr); 14324 } else { 14325 net_mask = htonl(IN_CLASSA_NET); 14326 } 14327 addr = net_mask & ipif->ipif_subnet; 14328 ill_mark_bcast(illgrp, addr); 14329 14330 net_addr = ~net_mask | addr; 14331 ill_mark_bcast(illgrp, net_addr); 14332 14333 subnet_netmask = ipif->ipif_net_mask; 14334 addr = ipif->ipif_subnet; 14335 ill_mark_bcast(illgrp, addr); 14336 14337 subnet_addr = ~subnet_netmask | addr; 14338 ill_mark_bcast(illgrp, subnet_addr); 14339 } 14340 14341 /* 14342 * Whenever we form or delete ill groups, we need to nominate one set of 14343 * BROADCAST ires for receiving in the group. 14344 * 14345 * 1) When ipif_up_done -> ilgrp_insert calls this function, BROADCAST ires 14346 * have been added, but ill_ipif_up_count is 0. Thus, we don't assert 14347 * for ill_ipif_up_count to be non-zero. This is the only case where 14348 * ill_ipif_up_count is zero and we would still find the ires. 14349 * 14350 * 2) ip_sioctl_group_name/ifgrp_insert calls this function, at least one 14351 * ipif is UP and we just have to do the nomination. 14352 * 14353 * 3) When ill_handoff_responsibility calls us, some ill has been removed 14354 * from the group. So, we have to do the nomination. 14355 * 14356 * Because of (3), there could be just one ill in the group. But we have 14357 * to nominate still as IRE_MARK_NORCV may have been marked on this. 14358 * Thus, this function does not optimize when there is only one ill as 14359 * it is not correct for (3). 14360 */ 14361 static void 14362 ill_nominate_bcast_rcv(ill_group_t *illgrp) 14363 { 14364 ill_t *ill; 14365 ipif_t *ipif; 14366 ipaddr_t subnet_addr; 14367 ipaddr_t prev_subnet_addr = 0; 14368 ipaddr_t net_addr; 14369 ipaddr_t prev_net_addr = 0; 14370 ipaddr_t net_mask = 0; 14371 ipaddr_t subnet_netmask; 14372 ipaddr_t addr; 14373 14374 /* 14375 * When the last memeber is leaving, there is nothing to 14376 * nominate. 14377 */ 14378 if (illgrp->illgrp_ill_count == 0) { 14379 ASSERT(illgrp->illgrp_ill == NULL); 14380 return; 14381 } 14382 14383 ill = illgrp->illgrp_ill; 14384 ASSERT(!ill->ill_isv6); 14385 /* 14386 * We assume that ires with same address and belonging to the 14387 * same group, has been grouped together. Nominating a *single* 14388 * ill in the group for sending and receiving broadcast is done 14389 * by making sure that the first BROADCAST ire (which will be 14390 * the one returned by ire_ctable_lookup for ip_rput and the 14391 * one that will be used in ip_wput_ire) will be the one that 14392 * will not have IRE_MARK_NORECV set. 14393 * 14394 * 1) ip_rput checks and discards packets received on ires marked 14395 * with IRE_MARK_NORECV. Thus, we don't send up duplicate 14396 * broadcast packets. We need to clear IRE_MARK_NORECV on the 14397 * first ire in the group for every broadcast address in the group. 14398 * ip_rput will accept packets only on the first ire i.e only 14399 * one copy of the ill. 14400 * 14401 * 2) ip_wput_ire needs to send out just one copy of the broadcast 14402 * packet for the whole group. It needs to send out on the ill 14403 * whose ire has not been marked with IRE_MARK_NORECV. If it sends 14404 * on the one marked with IRE_MARK_NORECV, ip_rput will accept 14405 * the copy echoed back on other port where the ire is not marked 14406 * with IRE_MARK_NORECV. 14407 * 14408 * Note that we just need to have the first IRE either loopback or 14409 * non-loopback (either of them may not exist if ire_create failed 14410 * during ipif_down) with IRE_MARK_NORECV not set. ip_rput will 14411 * always hit the first one and hence will always accept one copy. 14412 * 14413 * We have a broadcast ire per ill for all the unique prefixes 14414 * hosted on that ill. As we don't have a way of knowing the 14415 * unique prefixes on a given ill and hence in the whole group, 14416 * we just call ill_mark_bcast on all the prefixes that exist 14417 * in the group. For the common case of one prefix, the code 14418 * below optimizes by remebering the last address used for 14419 * markng. In the case of multiple prefixes, this will still 14420 * optimize depending the order of prefixes. 14421 * 14422 * The only unique address across the whole group is 0.0.0.0 and 14423 * 255.255.255.255 and thus we call only once. ill_mark_bcast enables 14424 * the first ire in the bucket for receiving and disables the 14425 * others. 14426 */ 14427 ill_mark_bcast(illgrp, 0); 14428 ill_mark_bcast(illgrp, INADDR_BROADCAST); 14429 for (; ill != NULL; ill = ill->ill_group_next) { 14430 14431 for (ipif = ill->ill_ipif; ipif != NULL; 14432 ipif = ipif->ipif_next) { 14433 14434 if (!(ipif->ipif_flags & IPIF_UP) || 14435 ipif->ipif_subnet == 0) { 14436 continue; 14437 } 14438 if ((ipif->ipif_lcl_addr != INADDR_ANY) && 14439 !(ipif->ipif_flags & IPIF_NOLOCAL)) { 14440 net_mask = ip_net_mask(ipif->ipif_lcl_addr); 14441 } else { 14442 net_mask = htonl(IN_CLASSA_NET); 14443 } 14444 addr = net_mask & ipif->ipif_subnet; 14445 if (prev_net_addr == 0 || prev_net_addr != addr) { 14446 ill_mark_bcast(illgrp, addr); 14447 net_addr = ~net_mask | addr; 14448 ill_mark_bcast(illgrp, net_addr); 14449 } 14450 prev_net_addr = addr; 14451 14452 subnet_netmask = ipif->ipif_net_mask; 14453 addr = ipif->ipif_subnet; 14454 if (prev_subnet_addr == 0 || 14455 prev_subnet_addr != addr) { 14456 ill_mark_bcast(illgrp, addr); 14457 subnet_addr = ~subnet_netmask | addr; 14458 ill_mark_bcast(illgrp, subnet_addr); 14459 } 14460 prev_subnet_addr = addr; 14461 } 14462 } 14463 } 14464 14465 /* 14466 * This function is called while forming ill groups. 14467 * 14468 * Currently, we handle only allmulti groups. We want to join 14469 * allmulti on only one of the ills in the groups. In future, 14470 * when we have link aggregation, we may have to join normal 14471 * multicast groups on multiple ills as switch does inbound load 14472 * balancing. Following are the functions that calls this 14473 * function : 14474 * 14475 * 1) ill_recover_multicast : Interface is coming back UP. 14476 * When the first ipif comes back UP, ipif_up_done/ipif_up_done_v6 14477 * will call ill_recover_multicast to recover all the multicast 14478 * groups. We need to make sure that only one member is joined 14479 * in the ill group. 14480 * 14481 * 2) ip_addmulti/ip_addmulti_v6 : ill groups has already been formed. 14482 * Somebody is joining allmulti. We need to make sure that only one 14483 * member is joined in the group. 14484 * 14485 * 3) illgrp_insert : If allmulti has already joined, we need to make 14486 * sure that only one member is joined in the group. 14487 * 14488 * 4) ip_delmulti/ip_delmulti_v6 : Somebody in the group is leaving 14489 * allmulti who we have nominated. We need to pick someother ill. 14490 * 14491 * 5) illgrp_delete : The ill we nominated is leaving the group, 14492 * we need to pick a new ill to join the group. 14493 * 14494 * For (1), (2), (5) - we just have to check whether there is 14495 * a good ill joined in the group. If we could not find any ills 14496 * joined the group, we should join. 14497 * 14498 * For (4), the one that was nominated to receive, left the group. 14499 * There could be nobody joined in the group when this function is 14500 * called. 14501 * 14502 * For (3) - we need to explicitly check whether there are multiple 14503 * ills joined in the group. 14504 * 14505 * For simplicity, we don't differentiate any of the above cases. We 14506 * just leave the group if it is joined on any of them and join on 14507 * the first good ill. 14508 */ 14509 int 14510 ill_nominate_mcast_rcv(ill_group_t *illgrp) 14511 { 14512 ilm_t *ilm; 14513 ill_t *ill; 14514 ill_t *fallback_stand_ill = NULL; 14515 ill_t *fallback_failed_ill = NULL; 14516 int ret = 0; 14517 14518 /* 14519 * Leave the allmulti on all the ills and start fresh. 14520 */ 14521 for (ill = illgrp->illgrp_ill; ill != NULL; 14522 ill = ill->ill_group_next) { 14523 if (ill->ill_join_allmulti) 14524 (void) ip_leave_allmulti(ill->ill_ipif); 14525 } 14526 14527 /* 14528 * Choose a good ill. Fallback to standby or failed if 14529 * none available. We need to fallback to FAILED in the 14530 * case where we have 2 interfaces in a group - where 14531 * one of them is failed and another is a good one and 14532 * the good one (not marked standby) is leaving the group. 14533 */ 14534 ret = 0; 14535 for (ill = illgrp->illgrp_ill; ill != NULL; 14536 ill = ill->ill_group_next) { 14537 /* Never pick an offline interface */ 14538 if (ill->ill_phyint->phyint_flags & PHYI_OFFLINE) 14539 continue; 14540 14541 if (ill->ill_phyint->phyint_flags & PHYI_FAILED) { 14542 fallback_failed_ill = ill; 14543 continue; 14544 } 14545 if (ill->ill_phyint->phyint_flags & PHYI_INACTIVE) { 14546 fallback_stand_ill = ill; 14547 continue; 14548 } 14549 for (ilm = ill->ill_ilm; ilm != NULL; ilm = ilm->ilm_next) { 14550 if (IN6_IS_ADDR_UNSPECIFIED(&ilm->ilm_v6addr)) { 14551 ret = ip_join_allmulti(ill->ill_ipif); 14552 /* 14553 * ip_join_allmulti can fail because of memory 14554 * failures. So, make sure we join at least 14555 * on one ill. 14556 */ 14557 if (ill->ill_join_allmulti) 14558 return (0); 14559 } 14560 } 14561 } 14562 if (ret != 0) { 14563 /* 14564 * If we tried nominating above and failed to do so, 14565 * return error. We might have tried multiple times. 14566 * But, return the latest error. 14567 */ 14568 return (ret); 14569 } 14570 if ((ill = fallback_stand_ill) != NULL) { 14571 for (ilm = ill->ill_ilm; ilm != NULL; ilm = ilm->ilm_next) { 14572 if (IN6_IS_ADDR_UNSPECIFIED(&ilm->ilm_v6addr)) { 14573 ret = ip_join_allmulti(ill->ill_ipif); 14574 return (ret); 14575 } 14576 } 14577 } else if ((ill = fallback_failed_ill) != NULL) { 14578 for (ilm = ill->ill_ilm; ilm != NULL; ilm = ilm->ilm_next) { 14579 if (IN6_IS_ADDR_UNSPECIFIED(&ilm->ilm_v6addr)) { 14580 ret = ip_join_allmulti(ill->ill_ipif); 14581 return (ret); 14582 } 14583 } 14584 } 14585 return (0); 14586 } 14587 14588 /* 14589 * This function is called from illgrp_delete after it is 14590 * deleted from the group to reschedule responsibilities 14591 * to a different ill. 14592 */ 14593 static void 14594 ill_handoff_responsibility(ill_t *ill, ill_group_t *illgrp) 14595 { 14596 ilm_t *ilm; 14597 ipif_t *ipif; 14598 ipaddr_t subnet_addr; 14599 ipaddr_t net_addr; 14600 ipaddr_t net_mask = 0; 14601 ipaddr_t subnet_netmask; 14602 ipaddr_t addr; 14603 14604 ASSERT(ill->ill_group == NULL); 14605 /* 14606 * Broadcast Responsibility: 14607 * 14608 * 1. If this ill has been nominated for receiving broadcast 14609 * packets, we need to find a new one. Before we find a new 14610 * one, we need to re-group the ires that are part of this new 14611 * group (assumed by ill_nominate_bcast_rcv). We do this by 14612 * calling ill_group_bcast_for_xmit(ill) which will do the right 14613 * thing for us. 14614 * 14615 * 2. If this ill was not nominated for receiving broadcast 14616 * packets, we need to clear the IRE_MARK_NORECV flag 14617 * so that we continue to send up broadcast packets. 14618 */ 14619 if (!ill->ill_isv6) { 14620 /* 14621 * Case 1 above : No optimization here. Just redo the 14622 * nomination. 14623 */ 14624 ill_group_bcast_for_xmit(ill); 14625 ill_nominate_bcast_rcv(illgrp); 14626 14627 /* 14628 * Case 2 above : Lookup and clear IRE_MARK_NORECV. 14629 */ 14630 ill_clear_bcast_mark(ill, 0); 14631 ill_clear_bcast_mark(ill, INADDR_BROADCAST); 14632 14633 for (ipif = ill->ill_ipif; ipif != NULL; 14634 ipif = ipif->ipif_next) { 14635 14636 if (!(ipif->ipif_flags & IPIF_UP) || 14637 ipif->ipif_subnet == 0) { 14638 continue; 14639 } 14640 if ((ipif->ipif_lcl_addr != INADDR_ANY) && 14641 !(ipif->ipif_flags & IPIF_NOLOCAL)) { 14642 net_mask = ip_net_mask(ipif->ipif_lcl_addr); 14643 } else { 14644 net_mask = htonl(IN_CLASSA_NET); 14645 } 14646 addr = net_mask & ipif->ipif_subnet; 14647 ill_clear_bcast_mark(ill, addr); 14648 14649 net_addr = ~net_mask | addr; 14650 ill_clear_bcast_mark(ill, net_addr); 14651 14652 subnet_netmask = ipif->ipif_net_mask; 14653 addr = ipif->ipif_subnet; 14654 ill_clear_bcast_mark(ill, addr); 14655 14656 subnet_addr = ~subnet_netmask | addr; 14657 ill_clear_bcast_mark(ill, subnet_addr); 14658 } 14659 } 14660 14661 /* 14662 * Multicast Responsibility. 14663 * 14664 * If we have joined allmulti on this one, find a new member 14665 * in the group to join allmulti. As this ill is already part 14666 * of allmulti, we don't have to join on this one. 14667 * 14668 * If we have not joined allmulti on this one, there is no 14669 * responsibility to handoff. But we need to take new 14670 * responsibility i.e, join allmulti on this one if we need 14671 * to. 14672 */ 14673 if (ill->ill_join_allmulti) { 14674 (void) ill_nominate_mcast_rcv(illgrp); 14675 } else { 14676 for (ilm = ill->ill_ilm; ilm != NULL; ilm = ilm->ilm_next) { 14677 if (IN6_IS_ADDR_UNSPECIFIED(&ilm->ilm_v6addr)) { 14678 (void) ip_join_allmulti(ill->ill_ipif); 14679 break; 14680 } 14681 } 14682 } 14683 14684 /* 14685 * We intentionally do the flushing of IRE_CACHES only matching 14686 * on the ill and not on groups. Note that we are already deleted 14687 * from the group. 14688 * 14689 * This will make sure that all IRE_CACHES whose stq is pointing 14690 * at ill_wq or ire_ipif->ipif_ill pointing at this ill will get 14691 * deleted and IRE_CACHES that are not pointing at this ill will 14692 * be left alone. 14693 */ 14694 if (ill->ill_isv6) { 14695 ire_walk_ill_v6(MATCH_IRE_ILL | MATCH_IRE_TYPE, 14696 IRE_CACHE, illgrp_cache_delete, (char *)ill, ill); 14697 } else { 14698 ire_walk_ill_v4(MATCH_IRE_ILL | MATCH_IRE_TYPE, 14699 IRE_CACHE, illgrp_cache_delete, (char *)ill, ill); 14700 } 14701 14702 /* 14703 * Some conn may have cached one of the IREs deleted above. By removing 14704 * the ire reference, we clean up the extra reference to the ill held in 14705 * ire->ire_stq. 14706 */ 14707 ipcl_walk(conn_cleanup_stale_ire, NULL); 14708 14709 /* 14710 * Re-do source address selection for all the members in the 14711 * group, if they borrowed source address from one of the ipifs 14712 * in this ill. 14713 */ 14714 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 14715 if (ill->ill_isv6) { 14716 ipif_update_other_ipifs_v6(ipif, illgrp); 14717 } else { 14718 ipif_update_other_ipifs(ipif, illgrp); 14719 } 14720 } 14721 } 14722 14723 /* 14724 * Delete the ill from the group. The caller makes sure that it is 14725 * in a group and it okay to delete from the group. So, we always 14726 * delete here. 14727 */ 14728 static void 14729 illgrp_delete(ill_t *ill) 14730 { 14731 ill_group_t *illgrp; 14732 ill_group_t *tmpg; 14733 ill_t *tmp_ill; 14734 14735 /* 14736 * Reset illgrp_ill_schednext if it was pointing at us. 14737 * We need to do this before we set ill_group to NULL. 14738 */ 14739 rw_enter(&ill_g_lock, RW_WRITER); 14740 mutex_enter(&ill->ill_lock); 14741 14742 illgrp_reset_schednext(ill); 14743 14744 illgrp = ill->ill_group; 14745 14746 /* Delete the ill from illgrp. */ 14747 if (illgrp->illgrp_ill == ill) { 14748 illgrp->illgrp_ill = ill->ill_group_next; 14749 } else { 14750 tmp_ill = illgrp->illgrp_ill; 14751 while (tmp_ill->ill_group_next != ill) { 14752 tmp_ill = tmp_ill->ill_group_next; 14753 ASSERT(tmp_ill != NULL); 14754 } 14755 tmp_ill->ill_group_next = ill->ill_group_next; 14756 } 14757 ill->ill_group = NULL; 14758 ill->ill_group_next = NULL; 14759 14760 illgrp->illgrp_ill_count--; 14761 mutex_exit(&ill->ill_lock); 14762 rw_exit(&ill_g_lock); 14763 14764 /* 14765 * As this ill is leaving the group, we need to hand off 14766 * the responsibilities to the other ills in the group, if 14767 * this ill had some responsibilities. 14768 */ 14769 14770 ill_handoff_responsibility(ill, illgrp); 14771 14772 rw_enter(&ill_g_lock, RW_WRITER); 14773 14774 if (illgrp->illgrp_ill_count == 0) { 14775 14776 ASSERT(illgrp->illgrp_ill == NULL); 14777 if (ill->ill_isv6) { 14778 if (illgrp == illgrp_head_v6) { 14779 illgrp_head_v6 = illgrp->illgrp_next; 14780 } else { 14781 tmpg = illgrp_head_v6; 14782 while (tmpg->illgrp_next != illgrp) { 14783 tmpg = tmpg->illgrp_next; 14784 ASSERT(tmpg != NULL); 14785 } 14786 tmpg->illgrp_next = illgrp->illgrp_next; 14787 } 14788 } else { 14789 if (illgrp == illgrp_head_v4) { 14790 illgrp_head_v4 = illgrp->illgrp_next; 14791 } else { 14792 tmpg = illgrp_head_v4; 14793 while (tmpg->illgrp_next != illgrp) { 14794 tmpg = tmpg->illgrp_next; 14795 ASSERT(tmpg != NULL); 14796 } 14797 tmpg->illgrp_next = illgrp->illgrp_next; 14798 } 14799 } 14800 mutex_destroy(&illgrp->illgrp_lock); 14801 mi_free(illgrp); 14802 } 14803 rw_exit(&ill_g_lock); 14804 14805 /* 14806 * Even though the ill is out of the group its not necessary 14807 * to set ipsq_split as TRUE as the ipifs could be down temporarily 14808 * We will split the ipsq when phyint_groupname is set to NULL. 14809 */ 14810 14811 /* 14812 * Send a routing sockets message if we are deleting from 14813 * groups with names. 14814 */ 14815 if (ill->ill_phyint->phyint_groupname_len != 0) 14816 ip_rts_ifmsg(ill->ill_ipif); 14817 } 14818 14819 /* 14820 * Re-do source address selection. This is normally called when 14821 * an ill joins the group or when a non-NOLOCAL/DEPRECATED/ANYCAST 14822 * ipif comes up. 14823 */ 14824 void 14825 ill_update_source_selection(ill_t *ill) 14826 { 14827 ipif_t *ipif; 14828 14829 ASSERT(IAM_WRITER_ILL(ill)); 14830 14831 if (ill->ill_group != NULL) 14832 ill = ill->ill_group->illgrp_ill; 14833 14834 for (; ill != NULL; ill = ill->ill_group_next) { 14835 for (ipif = ill->ill_ipif; ipif != NULL; 14836 ipif = ipif->ipif_next) { 14837 if (ill->ill_isv6) 14838 ipif_recreate_interface_routes_v6(NULL, ipif); 14839 else 14840 ipif_recreate_interface_routes(NULL, ipif); 14841 } 14842 } 14843 } 14844 14845 /* 14846 * Insert ill in a group headed by illgrp_head. The caller can either 14847 * pass a groupname in which case we search for a group with the 14848 * same name to insert in or pass a group to insert in. This function 14849 * would only search groups with names. 14850 * 14851 * NOTE : The caller should make sure that there is at least one ipif 14852 * UP on this ill so that illgrp_scheduler can pick this ill 14853 * for outbound packets. If ill_ipif_up_count is zero, we have 14854 * already sent a DL_UNBIND to the driver and we don't want to 14855 * send anymore packets. We don't assert for ipif_up_count 14856 * to be greater than zero, because ipif_up_done wants to call 14857 * this function before bumping up the ipif_up_count. See 14858 * ipif_up_done() for details. 14859 */ 14860 int 14861 illgrp_insert(ill_group_t **illgrp_head, ill_t *ill, char *groupname, 14862 ill_group_t *grp_to_insert, boolean_t ipif_is_coming_up) 14863 { 14864 ill_group_t *illgrp; 14865 ill_t *prev_ill; 14866 phyint_t *phyi; 14867 14868 ASSERT(ill->ill_group == NULL); 14869 14870 rw_enter(&ill_g_lock, RW_WRITER); 14871 mutex_enter(&ill->ill_lock); 14872 14873 if (groupname != NULL) { 14874 /* 14875 * Look for a group with a matching groupname to insert. 14876 */ 14877 for (illgrp = *illgrp_head; illgrp != NULL; 14878 illgrp = illgrp->illgrp_next) { 14879 14880 ill_t *tmp_ill; 14881 14882 tmp_ill = illgrp->illgrp_ill; 14883 ASSERT(tmp_ill != NULL && tmp_ill->ill_phyint != NULL); 14884 phyi = tmp_ill->ill_phyint; 14885 /* 14886 * Look at groups which has names only. 14887 */ 14888 if (phyi->phyint_groupname_len == 0) 14889 continue; 14890 /* 14891 * Names are stored in the phyint common to both 14892 * IPv4 and IPv6. 14893 */ 14894 if (mi_strcmp(phyi->phyint_groupname, 14895 groupname) == 0) { 14896 break; 14897 } 14898 } 14899 } else { 14900 /* 14901 * If the caller passes in a NULL "grp_to_insert", we 14902 * allocate one below and insert this singleton. 14903 */ 14904 illgrp = grp_to_insert; 14905 } 14906 14907 ill->ill_group_next = NULL; 14908 14909 if (illgrp == NULL) { 14910 illgrp = (ill_group_t *)mi_zalloc(sizeof (ill_group_t)); 14911 if (illgrp == NULL) { 14912 return (ENOMEM); 14913 } 14914 illgrp->illgrp_next = *illgrp_head; 14915 *illgrp_head = illgrp; 14916 illgrp->illgrp_ill = ill; 14917 illgrp->illgrp_ill_count = 1; 14918 ill->ill_group = illgrp; 14919 /* 14920 * Used in illgrp_scheduler to protect multiple threads 14921 * from traversing the list. 14922 */ 14923 mutex_init(&illgrp->illgrp_lock, NULL, MUTEX_DEFAULT, 0); 14924 } else { 14925 ASSERT(ill->ill_net_type == 14926 illgrp->illgrp_ill->ill_net_type); 14927 ASSERT(ill->ill_type == illgrp->illgrp_ill->ill_type); 14928 14929 /* Insert ill at tail of this group */ 14930 prev_ill = illgrp->illgrp_ill; 14931 while (prev_ill->ill_group_next != NULL) 14932 prev_ill = prev_ill->ill_group_next; 14933 prev_ill->ill_group_next = ill; 14934 ill->ill_group = illgrp; 14935 illgrp->illgrp_ill_count++; 14936 /* 14937 * Inherit group properties. Currently only forwarding 14938 * is the property we try to keep the same with all the 14939 * ills. When there are more, we will abstract this into 14940 * a function. 14941 */ 14942 ill->ill_flags &= ~ILLF_ROUTER; 14943 ill->ill_flags |= (illgrp->illgrp_ill->ill_flags & ILLF_ROUTER); 14944 } 14945 mutex_exit(&ill->ill_lock); 14946 rw_exit(&ill_g_lock); 14947 14948 /* 14949 * 1) When ipif_up_done() calls this function, ipif_up_count 14950 * may be zero as it has not yet been bumped. But the ires 14951 * have already been added. So, we do the nomination here 14952 * itself. But, when ip_sioctl_groupname calls this, it checks 14953 * for ill_ipif_up_count != 0. Thus we don't check for 14954 * ill_ipif_up_count here while nominating broadcast ires for 14955 * receive. 14956 * 14957 * 2) Similarly, we need to call ill_group_bcast_for_xmit here 14958 * to group them properly as ire_add() has already happened 14959 * in the ipif_up_done() case. For ip_sioctl_groupname/ifgrp_insert 14960 * case, we need to do it here anyway. 14961 */ 14962 if (!ill->ill_isv6) { 14963 ill_group_bcast_for_xmit(ill); 14964 ill_nominate_bcast_rcv(illgrp); 14965 } 14966 14967 if (!ipif_is_coming_up) { 14968 /* 14969 * When ipif_up_done() calls this function, the multicast 14970 * groups have not been joined yet. So, there is no point in 14971 * nomination. ip_join_allmulti will handle groups when 14972 * ill_recover_multicast is called from ipif_up_done() later. 14973 */ 14974 (void) ill_nominate_mcast_rcv(illgrp); 14975 /* 14976 * ipif_up_done calls ill_update_source_selection 14977 * anyway. Moreover, we don't want to re-create 14978 * interface routes while ipif_up_done() still has reference 14979 * to them. Refer to ipif_up_done() for more details. 14980 */ 14981 ill_update_source_selection(ill); 14982 } 14983 14984 /* 14985 * Send a routing sockets message if we are inserting into 14986 * groups with names. 14987 */ 14988 if (groupname != NULL) 14989 ip_rts_ifmsg(ill->ill_ipif); 14990 return (0); 14991 } 14992 14993 /* 14994 * Return the first phyint matching the groupname. There could 14995 * be more than one when there are ill groups. 14996 * 14997 * Needs work: called only from ip_sioctl_groupname 14998 */ 14999 static phyint_t * 15000 phyint_lookup_group(char *groupname) 15001 { 15002 phyint_t *phyi; 15003 15004 ASSERT(RW_LOCK_HELD(&ill_g_lock)); 15005 /* 15006 * Group names are stored in the phyint - a common structure 15007 * to both IPv4 and IPv6. 15008 */ 15009 phyi = avl_first(&phyint_g_list.phyint_list_avl_by_index); 15010 for (; phyi != NULL; 15011 phyi = avl_walk(&phyint_g_list.phyint_list_avl_by_index, 15012 phyi, AVL_AFTER)) { 15013 if (phyi->phyint_groupname_len == 0) 15014 continue; 15015 ASSERT(phyi->phyint_groupname != NULL); 15016 if (mi_strcmp(groupname, phyi->phyint_groupname) == 0) 15017 return (phyi); 15018 } 15019 return (NULL); 15020 } 15021 15022 15023 15024 /* 15025 * MT notes on creation and deletion of IPMP groups 15026 * 15027 * Creation and deletion of IPMP groups introduce the need to merge or 15028 * split the associated serialization objects i.e the ipsq's. Normally all 15029 * the ills in an IPMP group would map to a single ipsq. If IPMP is not enabled 15030 * an ill-pair(v4, v6) i.e. phyint would map to a single ipsq. However during 15031 * the execution of the SIOCSLIFGROUPNAME command the picture changes. There 15032 * is a need to change the <ill-ipsq> association and we have to operate on both 15033 * the source and destination IPMP groups. For eg. attempting to set the 15034 * groupname of hme0 to mpk17-85 when it already belongs to mpk17-84 has to 15035 * handle 2 IPMP groups and 2 ipsqs. All the ills belonging to either of the 15036 * source or destination IPMP group are mapped to a single ipsq for executing 15037 * the SIOCSLIFGROUPNAME command. This is termed as a merge of the ipsq's. 15038 * The <ill-ipsq> mapping is restored back to normal at a later point. This is 15039 * termed as a split of the ipsq. The converse of the merge i.e. a split of the 15040 * ipsq happens while unwinding from ipsq_exit. If at least 1 set groupname 15041 * occurred on the ipsq, then the ipsq_split flag is set. This indicates the 15042 * ipsq has to be examined for redoing the <ill-ipsq> associations. 15043 * 15044 * In the above example the ioctl handling code locates the current ipsq of hme0 15045 * which is ipsq(mpk17-84). It then enters the above ipsq immediately or 15046 * eventually (after queueing the ioctl in ipsq(mpk17-84)). Then it locates 15047 * the destination ipsq which is ipsq(mpk17-85) and merges the source ipsq into 15048 * the destination ipsq. If the destination ipsq is not busy, it also enters 15049 * the destination ipsq exclusively. Now the actual groupname setting operation 15050 * can proceed. If the destination ipsq is busy, the operation is enqueued 15051 * on the destination (merged) ipsq and will be handled in the unwind from 15052 * ipsq_exit. 15053 * 15054 * To prevent other threads accessing the ill while the group name change is 15055 * in progres, we bring down the ipifs which also removes the ill from the 15056 * group. The group is changed in phyint and when the first ipif on the ill 15057 * is brought up, the ill is inserted into the right IPMP group by 15058 * illgrp_insert. 15059 */ 15060 /* ARGSUSED */ 15061 int 15062 ip_sioctl_groupname(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 15063 ip_ioctl_cmd_t *ipip, void *ifreq) 15064 { 15065 int i; 15066 char *tmp; 15067 int namelen; 15068 ill_t *ill = ipif->ipif_ill; 15069 ill_t *ill_v4, *ill_v6; 15070 int err = 0; 15071 phyint_t *phyi; 15072 phyint_t *phyi_tmp; 15073 struct lifreq *lifr; 15074 mblk_t *mp1; 15075 char *groupname; 15076 ipsq_t *ipsq; 15077 15078 ASSERT(IAM_WRITER_IPIF(ipif)); 15079 15080 /* Existance verified in ip_wput_nondata */ 15081 mp1 = mp->b_cont->b_cont; 15082 lifr = (struct lifreq *)mp1->b_rptr; 15083 groupname = lifr->lifr_groupname; 15084 15085 if (ipif->ipif_id != 0) 15086 return (EINVAL); 15087 15088 phyi = ill->ill_phyint; 15089 ASSERT(phyi != NULL); 15090 15091 if (phyi->phyint_flags & PHYI_VIRTUAL) 15092 return (EINVAL); 15093 15094 tmp = groupname; 15095 for (i = 0; i < LIFNAMSIZ && *tmp != '\0'; tmp++, i++) 15096 ; 15097 15098 if (i == LIFNAMSIZ) { 15099 /* no null termination */ 15100 return (EINVAL); 15101 } 15102 15103 /* 15104 * Calculate the namelen exclusive of the null 15105 * termination character. 15106 */ 15107 namelen = tmp - groupname; 15108 15109 ill_v4 = phyi->phyint_illv4; 15110 ill_v6 = phyi->phyint_illv6; 15111 15112 /* 15113 * ILL cannot be part of a usesrc group and and IPMP group at the 15114 * same time. No need to grab the ill_g_usesrc_lock here, see 15115 * synchronization notes in ip.c 15116 */ 15117 if (ipif->ipif_ill->ill_usesrc_grp_next != NULL) { 15118 return (EINVAL); 15119 } 15120 15121 /* 15122 * mark the ill as changing. 15123 * this should queue all new requests on the syncq. 15124 */ 15125 GRAB_ILL_LOCKS(ill_v4, ill_v6); 15126 15127 if (ill_v4 != NULL) 15128 ill_v4->ill_state_flags |= ILL_CHANGING; 15129 if (ill_v6 != NULL) 15130 ill_v6->ill_state_flags |= ILL_CHANGING; 15131 RELEASE_ILL_LOCKS(ill_v4, ill_v6); 15132 15133 if (namelen == 0) { 15134 /* 15135 * Null string means remove this interface from the 15136 * existing group. 15137 */ 15138 if (phyi->phyint_groupname_len == 0) { 15139 /* 15140 * Never was in a group. 15141 */ 15142 err = 0; 15143 goto done; 15144 } 15145 15146 /* 15147 * IPv4 or IPv6 may be temporarily out of the group when all 15148 * the ipifs are down. Thus, we need to check for ill_group to 15149 * be non-NULL. 15150 */ 15151 if (ill_v4 != NULL && ill_v4->ill_group != NULL) { 15152 ill_down_ipifs(ill_v4, mp, 0, B_FALSE); 15153 mutex_enter(&ill_v4->ill_lock); 15154 if (!ill_is_quiescent(ill_v4)) { 15155 /* 15156 * ipsq_pending_mp_add will not fail since 15157 * connp is NULL 15158 */ 15159 (void) ipsq_pending_mp_add(NULL, 15160 ill_v4->ill_ipif, q, mp, ILL_DOWN); 15161 mutex_exit(&ill_v4->ill_lock); 15162 err = EINPROGRESS; 15163 goto done; 15164 } 15165 mutex_exit(&ill_v4->ill_lock); 15166 } 15167 15168 if (ill_v6 != NULL && ill_v6->ill_group != NULL) { 15169 ill_down_ipifs(ill_v6, mp, 0, B_FALSE); 15170 mutex_enter(&ill_v6->ill_lock); 15171 if (!ill_is_quiescent(ill_v6)) { 15172 (void) ipsq_pending_mp_add(NULL, 15173 ill_v6->ill_ipif, q, mp, ILL_DOWN); 15174 mutex_exit(&ill_v6->ill_lock); 15175 err = EINPROGRESS; 15176 goto done; 15177 } 15178 mutex_exit(&ill_v6->ill_lock); 15179 } 15180 15181 rw_enter(&ill_g_lock, RW_WRITER); 15182 GRAB_ILL_LOCKS(ill_v4, ill_v6); 15183 mutex_enter(&phyi->phyint_lock); 15184 ASSERT(phyi->phyint_groupname != NULL); 15185 mi_free(phyi->phyint_groupname); 15186 phyi->phyint_groupname = NULL; 15187 phyi->phyint_groupname_len = 0; 15188 mutex_exit(&phyi->phyint_lock); 15189 RELEASE_ILL_LOCKS(ill_v4, ill_v6); 15190 rw_exit(&ill_g_lock); 15191 err = ill_up_ipifs(ill, q, mp); 15192 15193 /* 15194 * set the split flag so that the ipsq can be split 15195 */ 15196 mutex_enter(&phyi->phyint_ipsq->ipsq_lock); 15197 phyi->phyint_ipsq->ipsq_split = B_TRUE; 15198 mutex_exit(&phyi->phyint_ipsq->ipsq_lock); 15199 15200 } else { 15201 if (phyi->phyint_groupname_len != 0) { 15202 ASSERT(phyi->phyint_groupname != NULL); 15203 /* Are we inserting in the same group ? */ 15204 if (mi_strcmp(groupname, 15205 phyi->phyint_groupname) == 0) { 15206 err = 0; 15207 goto done; 15208 } 15209 } 15210 15211 rw_enter(&ill_g_lock, RW_READER); 15212 /* 15213 * Merge ipsq for the group's. 15214 * This check is here as multiple groups/ills might be 15215 * sharing the same ipsq. 15216 * If we have to merege than the operation is restarted 15217 * on the new ipsq. 15218 */ 15219 ipsq = ip_ipsq_lookup(groupname, B_FALSE, NULL); 15220 if (phyi->phyint_ipsq != ipsq) { 15221 rw_exit(&ill_g_lock); 15222 err = ill_merge_groups(ill, NULL, groupname, mp, q); 15223 goto done; 15224 } 15225 /* 15226 * Running exclusive on new ipsq. 15227 */ 15228 15229 ASSERT(ipsq != NULL); 15230 ASSERT(ipsq->ipsq_writer == curthread); 15231 15232 /* 15233 * Check whether the ill_type and ill_net_type matches before 15234 * we allocate any memory so that the cleanup is easier. 15235 * 15236 * We can't group dissimilar ones as we can't load spread 15237 * packets across the group because of potential link-level 15238 * header differences. 15239 */ 15240 phyi_tmp = phyint_lookup_group(groupname); 15241 if (phyi_tmp != NULL) { 15242 if ((ill_v4 != NULL && 15243 phyi_tmp->phyint_illv4 != NULL) && 15244 ((ill_v4->ill_net_type != 15245 phyi_tmp->phyint_illv4->ill_net_type) || 15246 (ill_v4->ill_type != 15247 phyi_tmp->phyint_illv4->ill_type))) { 15248 mutex_enter(&phyi->phyint_ipsq->ipsq_lock); 15249 phyi->phyint_ipsq->ipsq_split = B_TRUE; 15250 mutex_exit(&phyi->phyint_ipsq->ipsq_lock); 15251 rw_exit(&ill_g_lock); 15252 return (EINVAL); 15253 } 15254 if ((ill_v6 != NULL && 15255 phyi_tmp->phyint_illv6 != NULL) && 15256 ((ill_v6->ill_net_type != 15257 phyi_tmp->phyint_illv6->ill_net_type) || 15258 (ill_v6->ill_type != 15259 phyi_tmp->phyint_illv6->ill_type))) { 15260 mutex_enter(&phyi->phyint_ipsq->ipsq_lock); 15261 phyi->phyint_ipsq->ipsq_split = B_TRUE; 15262 mutex_exit(&phyi->phyint_ipsq->ipsq_lock); 15263 rw_exit(&ill_g_lock); 15264 return (EINVAL); 15265 } 15266 } 15267 15268 rw_exit(&ill_g_lock); 15269 15270 /* 15271 * bring down all v4 ipifs. 15272 */ 15273 if (ill_v4 != NULL) { 15274 ill_down_ipifs(ill_v4, mp, 0, B_FALSE); 15275 } 15276 15277 /* 15278 * bring down all v6 ipifs. 15279 */ 15280 if (ill_v6 != NULL) { 15281 ill_down_ipifs(ill_v6, mp, 0, B_FALSE); 15282 } 15283 15284 /* 15285 * make sure all ipifs are down and there are no active 15286 * references. Call to ipsq_pending_mp_add will not fail 15287 * since connp is NULL. 15288 */ 15289 if (ill_v4 != NULL) { 15290 mutex_enter(&ill_v4->ill_lock); 15291 if (!ill_is_quiescent(ill_v4)) { 15292 (void) ipsq_pending_mp_add(NULL, 15293 ill_v4->ill_ipif, q, mp, ILL_DOWN); 15294 mutex_exit(&ill_v4->ill_lock); 15295 err = EINPROGRESS; 15296 goto done; 15297 } 15298 mutex_exit(&ill_v4->ill_lock); 15299 } 15300 15301 if (ill_v6 != NULL) { 15302 mutex_enter(&ill_v6->ill_lock); 15303 if (!ill_is_quiescent(ill_v6)) { 15304 (void) ipsq_pending_mp_add(NULL, 15305 ill_v6->ill_ipif, q, mp, ILL_DOWN); 15306 mutex_exit(&ill_v6->ill_lock); 15307 err = EINPROGRESS; 15308 goto done; 15309 } 15310 mutex_exit(&ill_v6->ill_lock); 15311 } 15312 15313 /* 15314 * allocate including space for null terminator 15315 * before we insert. 15316 */ 15317 tmp = (char *)mi_alloc(namelen + 1, BPRI_MED); 15318 if (tmp == NULL) 15319 return (ENOMEM); 15320 15321 rw_enter(&ill_g_lock, RW_WRITER); 15322 GRAB_ILL_LOCKS(ill_v4, ill_v6); 15323 mutex_enter(&phyi->phyint_lock); 15324 if (phyi->phyint_groupname_len != 0) { 15325 ASSERT(phyi->phyint_groupname != NULL); 15326 mi_free(phyi->phyint_groupname); 15327 } 15328 15329 /* 15330 * setup the new group name. 15331 */ 15332 phyi->phyint_groupname = tmp; 15333 bcopy(groupname, phyi->phyint_groupname, namelen + 1); 15334 phyi->phyint_groupname_len = namelen + 1; 15335 mutex_exit(&phyi->phyint_lock); 15336 RELEASE_ILL_LOCKS(ill_v4, ill_v6); 15337 rw_exit(&ill_g_lock); 15338 15339 err = ill_up_ipifs(ill, q, mp); 15340 } 15341 15342 done: 15343 /* 15344 * normally ILL_CHANGING is cleared in ill_up_ipifs. 15345 */ 15346 if (err != EINPROGRESS) { 15347 GRAB_ILL_LOCKS(ill_v4, ill_v6); 15348 if (ill_v4 != NULL) 15349 ill_v4->ill_state_flags &= ~ILL_CHANGING; 15350 if (ill_v6 != NULL) 15351 ill_v6->ill_state_flags &= ~ILL_CHANGING; 15352 RELEASE_ILL_LOCKS(ill_v4, ill_v6); 15353 } 15354 return (err); 15355 } 15356 15357 /* ARGSUSED */ 15358 int 15359 ip_sioctl_get_groupname(ipif_t *ipif, sin_t *dummy_sin, queue_t *q, 15360 mblk_t *mp, ip_ioctl_cmd_t *ipip, void *dummy_ifreq) 15361 { 15362 ill_t *ill; 15363 phyint_t *phyi; 15364 struct lifreq *lifr; 15365 mblk_t *mp1; 15366 15367 /* Existence verified in ip_wput_nondata */ 15368 mp1 = mp->b_cont->b_cont; 15369 lifr = (struct lifreq *)mp1->b_rptr; 15370 ill = ipif->ipif_ill; 15371 phyi = ill->ill_phyint; 15372 15373 lifr->lifr_groupname[0] = '\0'; 15374 /* 15375 * ill_group may be null if all the interfaces 15376 * are down. But still, the phyint should always 15377 * hold the name. 15378 */ 15379 if (phyi->phyint_groupname_len != 0) { 15380 bcopy(phyi->phyint_groupname, lifr->lifr_groupname, 15381 phyi->phyint_groupname_len); 15382 } 15383 15384 return (0); 15385 } 15386 15387 15388 typedef struct conn_move_s { 15389 ill_t *cm_from_ill; 15390 ill_t *cm_to_ill; 15391 int cm_ifindex; 15392 } conn_move_t; 15393 15394 /* 15395 * ipcl_walk function for moving conn_multicast_ill for a given ill. 15396 */ 15397 static void 15398 conn_move(conn_t *connp, caddr_t arg) 15399 { 15400 conn_move_t *connm; 15401 int ifindex; 15402 int i; 15403 ill_t *from_ill; 15404 ill_t *to_ill; 15405 ilg_t *ilg; 15406 ilm_t *ret_ilm; 15407 15408 connm = (conn_move_t *)arg; 15409 ifindex = connm->cm_ifindex; 15410 from_ill = connm->cm_from_ill; 15411 to_ill = connm->cm_to_ill; 15412 15413 /* Change IP_BOUND_IF/IPV6_BOUND_IF associations. */ 15414 15415 /* All multicast fields protected by conn_lock */ 15416 mutex_enter(&connp->conn_lock); 15417 ASSERT(connp->conn_outgoing_ill == connp->conn_incoming_ill); 15418 if ((connp->conn_outgoing_ill == from_ill) && 15419 (ifindex == 0 || connp->conn_orig_bound_ifindex == ifindex)) { 15420 connp->conn_outgoing_ill = to_ill; 15421 connp->conn_incoming_ill = to_ill; 15422 } 15423 15424 /* Change IP_MULTICAST_IF/IPV6_MULTICAST_IF associations */ 15425 15426 if ((connp->conn_multicast_ill == from_ill) && 15427 (ifindex == 0 || connp->conn_orig_multicast_ifindex == ifindex)) { 15428 connp->conn_multicast_ill = connm->cm_to_ill; 15429 } 15430 15431 /* Change IP_XMIT_IF associations */ 15432 if ((connp->conn_xmit_if_ill == from_ill) && 15433 (ifindex == 0 || connp->conn_orig_xmit_ifindex == ifindex)) { 15434 connp->conn_xmit_if_ill = to_ill; 15435 } 15436 /* 15437 * Change the ilg_ill to point to the new one. This assumes 15438 * ilm_move_v6 has moved the ilms to new_ill and the driver 15439 * has been told to receive packets on this interface. 15440 * ilm_move_v6 FAILBACKS all the ilms successfully always. 15441 * But when doing a FAILOVER, it might fail with ENOMEM and so 15442 * some ilms may not have moved. We check to see whether 15443 * the ilms have moved to to_ill. We can't check on from_ill 15444 * as in the process of moving, we could have split an ilm 15445 * in to two - which has the same orig_ifindex and v6group. 15446 * 15447 * For IPv4, ilg_ipif moves implicitly. The code below really 15448 * does not do anything for IPv4 as ilg_ill is NULL for IPv4. 15449 */ 15450 for (i = connp->conn_ilg_inuse - 1; i >= 0; i--) { 15451 ilg = &connp->conn_ilg[i]; 15452 if ((ilg->ilg_ill == from_ill) && 15453 (ifindex == 0 || ilg->ilg_orig_ifindex == ifindex)) { 15454 /* ifindex != 0 indicates failback */ 15455 if (ifindex != 0) { 15456 connp->conn_ilg[i].ilg_ill = to_ill; 15457 continue; 15458 } 15459 15460 ret_ilm = ilm_lookup_ill_index_v6(to_ill, 15461 &ilg->ilg_v6group, ilg->ilg_orig_ifindex, 15462 connp->conn_zoneid); 15463 15464 if (ret_ilm != NULL) 15465 connp->conn_ilg[i].ilg_ill = to_ill; 15466 } 15467 } 15468 mutex_exit(&connp->conn_lock); 15469 } 15470 15471 static void 15472 conn_move_ill(ill_t *from_ill, ill_t *to_ill, int ifindex) 15473 { 15474 conn_move_t connm; 15475 15476 connm.cm_from_ill = from_ill; 15477 connm.cm_to_ill = to_ill; 15478 connm.cm_ifindex = ifindex; 15479 15480 ipcl_walk(conn_move, (caddr_t)&connm); 15481 } 15482 15483 /* 15484 * ilm has been moved from from_ill to to_ill. 15485 * Send DL_DISABMULTI_REQ to ill and DL_ENABMULTI_REQ on to_ill. 15486 * appropriately. 15487 * 15488 * NOTE : We can't reuse the code in ip_ll_addmulti/delmulti because 15489 * the code there de-references ipif_ill to get the ill to 15490 * send multicast requests. It does not work as ipif is on its 15491 * move and already moved when this function is called. 15492 * Thus, we need to use from_ill and to_ill send down multicast 15493 * requests. 15494 */ 15495 static void 15496 ilm_send_multicast_reqs(ill_t *from_ill, ill_t *to_ill) 15497 { 15498 ipif_t *ipif; 15499 ilm_t *ilm; 15500 15501 /* 15502 * See whether we need to send down DL_ENABMULTI_REQ on 15503 * to_ill as ilm has just been added. 15504 */ 15505 ASSERT(IAM_WRITER_ILL(to_ill)); 15506 ASSERT(IAM_WRITER_ILL(from_ill)); 15507 15508 ILM_WALKER_HOLD(to_ill); 15509 for (ilm = to_ill->ill_ilm; ilm != NULL && ilm->ilm_is_new && 15510 !(ilm->ilm_flags & ILM_DELETED); ilm = ilm->ilm_next) { 15511 15512 /* 15513 * no locks held, ill/ipif cannot dissappear as long 15514 * as we are writer. 15515 */ 15516 ipif = to_ill->ill_ipif; 15517 /* 15518 * No need to hold any lock as we are the writer and this 15519 * can only be changed by a writer. 15520 */ 15521 ilm->ilm_is_new = B_FALSE; 15522 15523 if (to_ill->ill_net_type != IRE_IF_RESOLVER || 15524 ipif->ipif_flags & IPIF_POINTOPOINT) { 15525 ip1dbg(("ilm_send_multicast_reqs: to_ill not " 15526 "resolver\n")); 15527 continue; /* Must be IRE_IF_NORESOLVER */ 15528 } 15529 15530 15531 if (to_ill->ill_phyint->phyint_flags & PHYI_MULTI_BCAST) { 15532 ip1dbg(("ilm_send_multicast_reqs: " 15533 "to_ill MULTI_BCAST\n")); 15534 ilm->ilm_join_mld = B_FALSE; 15535 goto from; 15536 } 15537 15538 if (ilm->ilm_join_mld) { 15539 ASSERT(to_ill->ill_isv6); 15540 mld_joingroup(ilm); 15541 } 15542 15543 ilm->ilm_join_mld = B_FALSE; 15544 15545 if (to_ill->ill_ipif_up_count == 0) { 15546 /* 15547 * Nobody there. All multicast addresses will be 15548 * re-joined when we get the DL_BIND_ACK bringing the 15549 * interface up. 15550 */ 15551 ilm->ilm_notify_driver = B_FALSE; 15552 ip1dbg(("ilm_send_multicast_reqs: to_ill nobody up\n")); 15553 goto from; 15554 } 15555 15556 /* 15557 * For allmulti address, we want to join on only one interface. 15558 * Checking for ilm_numentries_v6 is not correct as you may 15559 * find an ilm with zero address on to_ill, but we may not 15560 * have nominated to_ill for receiving. Thus, if we have 15561 * nominated from_ill (ill_join_allmulti is set), nominate 15562 * only if to_ill is not already nominated (to_ill normally 15563 * should not have been nominated if "from_ill" has already 15564 * been nominated. As we don't prevent failovers from happening 15565 * across groups, we don't assert). 15566 */ 15567 if (IN6_IS_ADDR_UNSPECIFIED(&ilm->ilm_v6addr)) { 15568 /* 15569 * There is no need to hold ill locks as we are 15570 * writer on both ills and when ill_join_allmulti 15571 * is changed the thread is always a writer. 15572 */ 15573 if (from_ill->ill_join_allmulti && 15574 !to_ill->ill_join_allmulti) { 15575 (void) ip_join_allmulti(to_ill->ill_ipif); 15576 } 15577 } else if (ilm->ilm_notify_driver) { 15578 15579 /* 15580 * This is a newly moved ilm so we need to tell the 15581 * driver about the new group. There can be more than 15582 * one ilm's for the same group in the list each with a 15583 * different orig_ifindex. We have to inform the driver 15584 * once. In ilm_move_v[4,6] we only set the flag 15585 * ilm_notify_driver for the first ilm. 15586 */ 15587 15588 (void) ip_ll_send_enabmulti_req(to_ill, 15589 &ilm->ilm_v6addr); 15590 } 15591 15592 ilm->ilm_notify_driver = B_FALSE; 15593 15594 /* 15595 * See whether we need to send down DL_DISABMULTI_REQ on 15596 * from_ill as ilm has just been removed. 15597 */ 15598 from: 15599 ipif = from_ill->ill_ipif; 15600 if (from_ill->ill_net_type != IRE_IF_RESOLVER || 15601 ipif->ipif_flags & IPIF_POINTOPOINT) { 15602 ip1dbg(("ilm_send_multicast_reqs: " 15603 "from_ill not resolver\n")); 15604 continue; /* Must be IRE_IF_NORESOLVER */ 15605 } 15606 15607 if (from_ill->ill_phyint->phyint_flags & PHYI_MULTI_BCAST) { 15608 ip1dbg(("ilm_send_multicast_reqs: " 15609 "from_ill MULTI_BCAST\n")); 15610 continue; 15611 } 15612 15613 if (IN6_IS_ADDR_UNSPECIFIED(&ilm->ilm_v6addr)) { 15614 if (from_ill->ill_join_allmulti) 15615 (void) ip_leave_allmulti(from_ill->ill_ipif); 15616 } else if (ilm_numentries_v6(from_ill, &ilm->ilm_v6addr) == 0) { 15617 (void) ip_ll_send_disabmulti_req(from_ill, 15618 &ilm->ilm_v6addr); 15619 } 15620 } 15621 ILM_WALKER_RELE(to_ill); 15622 } 15623 15624 /* 15625 * This function is called when all multicast memberships needs 15626 * to be moved from "from_ill" to "to_ill" for IPv6. This function is 15627 * called only once unlike the IPv4 counterpart where it is called after 15628 * every logical interface is moved. The reason is due to multicast 15629 * memberships are joined using an interface address in IPv4 while in 15630 * IPv6, interface index is used. 15631 */ 15632 static void 15633 ilm_move_v6(ill_t *from_ill, ill_t *to_ill, int ifindex) 15634 { 15635 ilm_t *ilm; 15636 ilm_t *ilm_next; 15637 ilm_t *new_ilm; 15638 ilm_t **ilmp; 15639 int count; 15640 char buf[INET6_ADDRSTRLEN]; 15641 in6_addr_t ipv6_snm = ipv6_solicited_node_mcast; 15642 15643 ASSERT(MUTEX_HELD(&to_ill->ill_lock)); 15644 ASSERT(MUTEX_HELD(&from_ill->ill_lock)); 15645 ASSERT(RW_WRITE_HELD(&ill_g_lock)); 15646 15647 if (ifindex == 0) { 15648 /* 15649 * Form the solicited node mcast address which is used later. 15650 */ 15651 ipif_t *ipif; 15652 15653 ipif = from_ill->ill_ipif; 15654 ASSERT(ipif->ipif_id == 0); 15655 15656 ipv6_snm.s6_addr32[3] |= ipif->ipif_v6lcl_addr.s6_addr32[3]; 15657 } 15658 15659 ilmp = &from_ill->ill_ilm; 15660 for (ilm = from_ill->ill_ilm; ilm != NULL && 15661 !(ilm->ilm_flags & ILM_DELETED); ilm = ilm_next) { 15662 ilm_next = ilm->ilm_next; 15663 new_ilm = ilm_lookup_ill_index_v6(to_ill, &ilm->ilm_v6addr, 15664 ilm->ilm_orig_ifindex, ilm->ilm_zoneid); 15665 ASSERT(ilm->ilm_orig_ifindex != 0); 15666 if (ilm->ilm_orig_ifindex == ifindex) { 15667 /* 15668 * We are failing back multicast memberships. 15669 * If the same ilm exists in to_ill, it means somebody 15670 * has joined the same group there e.g. ff02::1 15671 * is joined within the kernel when the interfaces 15672 * came UP. 15673 */ 15674 ASSERT(ilm->ilm_ipif == NULL); 15675 if (new_ilm != NULL) { 15676 new_ilm->ilm_refcnt += ilm->ilm_refcnt; 15677 if (new_ilm->ilm_fmode != MODE_IS_EXCLUDE || 15678 !SLIST_IS_EMPTY(new_ilm->ilm_filter)) { 15679 new_ilm->ilm_join_mld = B_TRUE; 15680 } 15681 } else { 15682 /* 15683 * check if we can just move the ilm 15684 */ 15685 if (from_ill->ill_ilm_walker_cnt != 0) { 15686 /* 15687 * We have walkers we cannot move 15688 * the ilm, so allocate a new ilm, 15689 * this (old) ilm will be marked 15690 * ILM_DELETED at the end of the loop 15691 * and will be freed when the 15692 * last walker exits. 15693 */ 15694 new_ilm = (ilm_t *)mi_zalloc 15695 (sizeof (ilm_t)); 15696 if (new_ilm == NULL) { 15697 ip0dbg(("ilm_move_v6: " 15698 "FAILBACK of IPv6" 15699 " multicast address %s : " 15700 "from %s to" 15701 " %s failed : ENOMEM \n", 15702 inet_ntop(AF_INET6, 15703 &ilm->ilm_v6addr, buf, 15704 sizeof (buf)), 15705 from_ill->ill_name, 15706 to_ill->ill_name)); 15707 15708 ilmp = &ilm->ilm_next; 15709 continue; 15710 } 15711 *new_ilm = *ilm; 15712 /* 15713 * we don't want new_ilm linked to 15714 * ilm's filter list. 15715 */ 15716 new_ilm->ilm_filter = NULL; 15717 } else { 15718 /* 15719 * No walkers we can move the ilm. 15720 * lets take it out of the list. 15721 */ 15722 *ilmp = ilm->ilm_next; 15723 ilm->ilm_next = NULL; 15724 new_ilm = ilm; 15725 } 15726 15727 new_ilm->ilm_ill = to_ill; 15728 /* Add to the to_ill's list */ 15729 new_ilm->ilm_next = to_ill->ill_ilm; 15730 to_ill->ill_ilm = new_ilm; 15731 /* 15732 * set the flag so that mld_joingroup is 15733 * called in ilm_send_multicast_reqs(). 15734 */ 15735 new_ilm->ilm_join_mld = B_TRUE; 15736 /* 15737 * if this is the first ilm for the group 15738 * set ilm_notify_driver so that we notify the 15739 * driver in ilm_send_multicast_reqs. 15740 */ 15741 if (ilm_lookup_ill_v6(to_ill, 15742 &new_ilm->ilm_v6addr, ALL_ZONES) == NULL) 15743 new_ilm->ilm_notify_driver = B_TRUE; 15744 } 15745 goto bottom; 15746 } else if (ifindex != 0) { 15747 /* 15748 * If this is FAILBACK (ifindex != 0) and the ifindex 15749 * has not matched above, look at the next ilm. 15750 */ 15751 ilmp = &ilm->ilm_next; 15752 continue; 15753 } 15754 /* 15755 * If we are here, it means ifindex is 0. Failover 15756 * everything. 15757 * 15758 * We need to handle solicited node mcast address 15759 * and all_nodes mcast address differently as they 15760 * are joined witin the kenrel (ipif_multicast_up) 15761 * and potentially from the userland. We are called 15762 * after the ipifs of from_ill has been moved. 15763 * If we still find ilms on ill with solicited node 15764 * mcast address or all_nodes mcast address, it must 15765 * belong to the UP interface that has not moved e.g. 15766 * ipif_id 0 with the link local prefix does not move. 15767 * We join this on the new ill accounting for all the 15768 * userland memberships so that applications don't 15769 * see any failure. 15770 * 15771 * We need to make sure that we account only for the 15772 * solicited node and all node multicast addresses 15773 * that was brought UP on these. In the case of 15774 * a failover from A to B, we might have ilms belonging 15775 * to A (ilm_orig_ifindex pointing at A) on B accounting 15776 * for the membership from the userland. If we are failing 15777 * over from B to C now, we will find the ones belonging 15778 * to A on B. These don't account for the ill_ipif_up_count. 15779 * They just move from B to C. The check below on 15780 * ilm_orig_ifindex ensures that. 15781 */ 15782 if ((ilm->ilm_orig_ifindex == 15783 from_ill->ill_phyint->phyint_ifindex) && 15784 (IN6_ARE_ADDR_EQUAL(&ipv6_snm, &ilm->ilm_v6addr) || 15785 IN6_ARE_ADDR_EQUAL(&ipv6_all_hosts_mcast, 15786 &ilm->ilm_v6addr))) { 15787 ASSERT(ilm->ilm_refcnt > 0); 15788 count = ilm->ilm_refcnt - from_ill->ill_ipif_up_count; 15789 /* 15790 * For indentation reasons, we are not using a 15791 * "else" here. 15792 */ 15793 if (count == 0) { 15794 ilmp = &ilm->ilm_next; 15795 continue; 15796 } 15797 ilm->ilm_refcnt -= count; 15798 if (new_ilm != NULL) { 15799 /* 15800 * Can find one with the same 15801 * ilm_orig_ifindex, if we are failing 15802 * over to a STANDBY. This happens 15803 * when somebody wants to join a group 15804 * on a STANDBY interface and we 15805 * internally join on a different one. 15806 * If we had joined on from_ill then, a 15807 * failover now will find a new ilm 15808 * with this index. 15809 */ 15810 ip1dbg(("ilm_move_v6: FAILOVER, found" 15811 " new ilm on %s, group address %s\n", 15812 to_ill->ill_name, 15813 inet_ntop(AF_INET6, 15814 &ilm->ilm_v6addr, buf, 15815 sizeof (buf)))); 15816 new_ilm->ilm_refcnt += count; 15817 if (new_ilm->ilm_fmode != MODE_IS_EXCLUDE || 15818 !SLIST_IS_EMPTY(new_ilm->ilm_filter)) { 15819 new_ilm->ilm_join_mld = B_TRUE; 15820 } 15821 } else { 15822 new_ilm = (ilm_t *)mi_zalloc(sizeof (ilm_t)); 15823 if (new_ilm == NULL) { 15824 ip0dbg(("ilm_move_v6: FAILOVER of IPv6" 15825 " multicast address %s : from %s to" 15826 " %s failed : ENOMEM \n", 15827 inet_ntop(AF_INET6, 15828 &ilm->ilm_v6addr, buf, 15829 sizeof (buf)), from_ill->ill_name, 15830 to_ill->ill_name)); 15831 ilmp = &ilm->ilm_next; 15832 continue; 15833 } 15834 *new_ilm = *ilm; 15835 new_ilm->ilm_filter = NULL; 15836 new_ilm->ilm_refcnt = count; 15837 new_ilm->ilm_ill = to_ill; 15838 new_ilm->ilm_timer = INFINITY; 15839 new_ilm->ilm_rtx.rtx_timer = INFINITY; 15840 new_ilm->ilm_join_mld = B_TRUE; 15841 /* Add to the to_ill's list */ 15842 new_ilm->ilm_next = to_ill->ill_ilm; 15843 to_ill->ill_ilm = new_ilm; 15844 /* 15845 * If the to_ill has not joined this 15846 * group we need to tell the driver in 15847 * ill_send_multicast_reqs. 15848 */ 15849 if (ilm_lookup_ill_v6(to_ill, 15850 &new_ilm->ilm_v6addr, ALL_ZONES) == NULL) 15851 new_ilm->ilm_notify_driver = B_TRUE; 15852 ASSERT(new_ilm->ilm_ipif == NULL); 15853 } 15854 if (ilm->ilm_refcnt == 0) { 15855 goto bottom; 15856 } else { 15857 new_ilm->ilm_is_new = B_TRUE; 15858 new_ilm->ilm_fmode = MODE_IS_EXCLUDE; 15859 CLEAR_SLIST(new_ilm->ilm_filter); 15860 ilmp = &ilm->ilm_next; 15861 } 15862 continue; 15863 } else { 15864 /* 15865 * ifindex = 0 means, move everything pointing at 15866 * from_ill. We are doing this becuase ill has 15867 * either FAILED or became INACTIVE. 15868 * 15869 * As we would like to move things later back to 15870 * from_ill, we want to retain the identity of this 15871 * ilm. Thus, we don't blindly increment the reference 15872 * count on the ilms matching the address alone. We 15873 * need to match on the ilm_orig_index also. new_ilm 15874 * was obtained by matching ilm_orig_index also. 15875 */ 15876 if (new_ilm != NULL) { 15877 /* 15878 * This is possible only if a previous restore 15879 * was incomplete i.e restore to 15880 * ilm_orig_ifindex left some ilms because 15881 * of some failures. Thus when we are failing 15882 * again, we might find our old friends there. 15883 */ 15884 ip1dbg(("ilm_move_v6: FAILOVER, found new ilm" 15885 " on %s, group address %s\n", 15886 to_ill->ill_name, 15887 inet_ntop(AF_INET6, 15888 &ilm->ilm_v6addr, buf, 15889 sizeof (buf)))); 15890 new_ilm->ilm_refcnt += ilm->ilm_refcnt; 15891 if (new_ilm->ilm_fmode != MODE_IS_EXCLUDE || 15892 !SLIST_IS_EMPTY(new_ilm->ilm_filter)) { 15893 new_ilm->ilm_join_mld = B_TRUE; 15894 } 15895 } else { 15896 if (from_ill->ill_ilm_walker_cnt != 0) { 15897 new_ilm = (ilm_t *) 15898 mi_zalloc(sizeof (ilm_t)); 15899 if (new_ilm == NULL) { 15900 ip0dbg(("ilm_move_v6: " 15901 "FAILOVER of IPv6" 15902 " multicast address %s : " 15903 "from %s to" 15904 " %s failed : ENOMEM \n", 15905 inet_ntop(AF_INET6, 15906 &ilm->ilm_v6addr, buf, 15907 sizeof (buf)), 15908 from_ill->ill_name, 15909 to_ill->ill_name)); 15910 15911 ilmp = &ilm->ilm_next; 15912 continue; 15913 } 15914 *new_ilm = *ilm; 15915 new_ilm->ilm_filter = NULL; 15916 } else { 15917 *ilmp = ilm->ilm_next; 15918 new_ilm = ilm; 15919 } 15920 /* Add to the to_ill's list */ 15921 new_ilm->ilm_next = to_ill->ill_ilm; 15922 to_ill->ill_ilm = new_ilm; 15923 ASSERT(ilm->ilm_ipif == NULL); 15924 new_ilm->ilm_ill = to_ill; 15925 new_ilm->ilm_join_mld = B_TRUE; 15926 /* 15927 * If the to_ill has not joined this 15928 * group we need to tell the driver in 15929 * ill_send_multicast_reqs. 15930 */ 15931 if (ilm_lookup_ill_v6(to_ill, 15932 &new_ilm->ilm_v6addr, ALL_ZONES) == NULL) 15933 new_ilm->ilm_notify_driver = B_TRUE; 15934 } 15935 15936 } 15937 15938 bottom: 15939 /* 15940 * set ilm_send_multicast_reqs so that we inform the 15941 * driver about the multicast group. 15942 */ 15943 new_ilm->ilm_is_new = B_TRUE; 15944 /* 15945 * Revert multicast filter state to (EXCLUDE, NULL). 15946 * new_ilm->ilm_join_mld should already be set if needed. 15947 */ 15948 new_ilm->ilm_fmode = MODE_IS_EXCLUDE; 15949 CLEAR_SLIST(new_ilm->ilm_filter); 15950 /* 15951 * We allocated/got a new ilm, free the old one. 15952 */ 15953 if (new_ilm != ilm) { 15954 if (from_ill->ill_ilm_walker_cnt == 0) { 15955 *ilmp = ilm->ilm_next; 15956 ilm->ilm_next = NULL; 15957 FREE_SLIST(ilm->ilm_filter); 15958 FREE_SLIST(ilm->ilm_pendsrcs); 15959 FREE_SLIST(ilm->ilm_rtx.rtx_allow); 15960 FREE_SLIST(ilm->ilm_rtx.rtx_block); 15961 mi_free((char *)ilm); 15962 } else { 15963 ilm->ilm_flags |= ILM_DELETED; 15964 from_ill->ill_ilm_cleanup_reqd = 1; 15965 ilmp = &ilm->ilm_next; 15966 } 15967 } 15968 } 15969 } 15970 15971 /* 15972 * Move all the multicast memberships to to_ill. Called when 15973 * an ipif moves from "from_ill" to "to_ill". This function is slightly 15974 * different from IPv6 counterpart as multicast memberships are associated 15975 * with ills in IPv6. This function is called after every ipif is moved 15976 * unlike IPv6, where it is moved only once. 15977 */ 15978 static void 15979 ilm_move_v4(ill_t *from_ill, ill_t *to_ill, ipif_t *ipif) 15980 { 15981 ilm_t *ilm; 15982 ilm_t *ilm_next; 15983 ilm_t *new_ilm; 15984 ilm_t **ilmp; 15985 15986 ASSERT(MUTEX_HELD(&to_ill->ill_lock)); 15987 ASSERT(MUTEX_HELD(&from_ill->ill_lock)); 15988 ASSERT(RW_WRITE_HELD(&ill_g_lock)); 15989 15990 ilmp = &from_ill->ill_ilm; 15991 for (ilm = from_ill->ill_ilm; ilm != NULL && 15992 !(ilm->ilm_flags & ILM_DELETED); ilm = ilm_next) { 15993 ilm_next = ilm->ilm_next; 15994 ASSERT(ilm->ilm_ipif != NULL); 15995 15996 if (ilm->ilm_ipif != ipif) { 15997 ilmp = &ilm->ilm_next; 15998 continue; 15999 } 16000 16001 if (V4_PART_OF_V6(ilm->ilm_v6addr) == 16002 htonl(INADDR_ALLHOSTS_GROUP)) { 16003 /* 16004 * We joined this in ipif_multicast_up 16005 * and we never did an ipif_multicast_down 16006 * for IPv4. If nobody else from the userland 16007 * has reference, we free the ilm, and later 16008 * when this ipif comes up on the new ill, 16009 * we will join this again. 16010 */ 16011 if (--ilm->ilm_refcnt == 0) 16012 goto delete_ilm; 16013 16014 new_ilm = ilm_lookup_ipif(ipif, 16015 V4_PART_OF_V6(ilm->ilm_v6addr)); 16016 if (new_ilm != NULL) { 16017 new_ilm->ilm_refcnt += ilm->ilm_refcnt; 16018 /* 16019 * We still need to deal with the from_ill. 16020 */ 16021 new_ilm->ilm_is_new = B_TRUE; 16022 new_ilm->ilm_fmode = MODE_IS_EXCLUDE; 16023 CLEAR_SLIST(new_ilm->ilm_filter); 16024 goto delete_ilm; 16025 } 16026 /* 16027 * If we could not find one e.g. ipif is 16028 * still down on to_ill, we add this ilm 16029 * on ill_new to preserve the reference 16030 * count. 16031 */ 16032 } 16033 /* 16034 * When ipifs move, ilms always move with it 16035 * to the NEW ill. Thus we should never be 16036 * able to find ilm till we really move it here. 16037 */ 16038 ASSERT(ilm_lookup_ipif(ipif, 16039 V4_PART_OF_V6(ilm->ilm_v6addr)) == NULL); 16040 16041 if (from_ill->ill_ilm_walker_cnt != 0) { 16042 new_ilm = (ilm_t *)mi_zalloc(sizeof (ilm_t)); 16043 if (new_ilm == NULL) { 16044 char buf[INET6_ADDRSTRLEN]; 16045 ip0dbg(("ilm_move_v4: FAILBACK of IPv4" 16046 " multicast address %s : " 16047 "from %s to" 16048 " %s failed : ENOMEM \n", 16049 inet_ntop(AF_INET, 16050 &ilm->ilm_v6addr, buf, 16051 sizeof (buf)), 16052 from_ill->ill_name, 16053 to_ill->ill_name)); 16054 16055 ilmp = &ilm->ilm_next; 16056 continue; 16057 } 16058 *new_ilm = *ilm; 16059 /* We don't want new_ilm linked to ilm's filter list */ 16060 new_ilm->ilm_filter = NULL; 16061 } else { 16062 /* Remove from the list */ 16063 *ilmp = ilm->ilm_next; 16064 new_ilm = ilm; 16065 } 16066 16067 /* 16068 * If we have never joined this group on the to_ill 16069 * make sure we tell the driver. 16070 */ 16071 if (ilm_lookup_ill_v6(to_ill, &new_ilm->ilm_v6addr, 16072 ALL_ZONES) == NULL) 16073 new_ilm->ilm_notify_driver = B_TRUE; 16074 16075 /* Add to the to_ill's list */ 16076 new_ilm->ilm_next = to_ill->ill_ilm; 16077 to_ill->ill_ilm = new_ilm; 16078 new_ilm->ilm_is_new = B_TRUE; 16079 16080 /* 16081 * Revert multicast filter state to (EXCLUDE, NULL) 16082 */ 16083 new_ilm->ilm_fmode = MODE_IS_EXCLUDE; 16084 CLEAR_SLIST(new_ilm->ilm_filter); 16085 16086 /* 16087 * Delete only if we have allocated a new ilm. 16088 */ 16089 if (new_ilm != ilm) { 16090 delete_ilm: 16091 if (from_ill->ill_ilm_walker_cnt == 0) { 16092 /* Remove from the list */ 16093 *ilmp = ilm->ilm_next; 16094 ilm->ilm_next = NULL; 16095 FREE_SLIST(ilm->ilm_filter); 16096 FREE_SLIST(ilm->ilm_pendsrcs); 16097 FREE_SLIST(ilm->ilm_rtx.rtx_allow); 16098 FREE_SLIST(ilm->ilm_rtx.rtx_block); 16099 mi_free((char *)ilm); 16100 } else { 16101 ilm->ilm_flags |= ILM_DELETED; 16102 from_ill->ill_ilm_cleanup_reqd = 1; 16103 ilmp = &ilm->ilm_next; 16104 } 16105 } 16106 } 16107 } 16108 16109 static uint_t 16110 ipif_get_id(ill_t *ill, uint_t id) 16111 { 16112 uint_t unit; 16113 ipif_t *tipif; 16114 boolean_t found = B_FALSE; 16115 16116 /* 16117 * During failback, we want to go back to the same id 16118 * instead of the smallest id so that the original 16119 * configuration is maintained. id is non-zero in that 16120 * case. 16121 */ 16122 if (id != 0) { 16123 /* 16124 * While failing back, if we still have an ipif with 16125 * MAX_ADDRS_PER_IF, it means this will be replaced 16126 * as soon as we return from this function. It was 16127 * to set to MAX_ADDRS_PER_IF by the caller so that 16128 * we can choose the smallest id. Thus we return zero 16129 * in that case ignoring the hint. 16130 */ 16131 if (ill->ill_ipif->ipif_id == MAX_ADDRS_PER_IF) 16132 return (0); 16133 for (tipif = ill->ill_ipif; tipif != NULL; 16134 tipif = tipif->ipif_next) { 16135 if (tipif->ipif_id == id) { 16136 found = B_TRUE; 16137 break; 16138 } 16139 } 16140 /* 16141 * If somebody already plumbed another logical 16142 * with the same id, we won't be able to find it. 16143 */ 16144 if (!found) 16145 return (id); 16146 } 16147 for (unit = 0; unit <= ip_addrs_per_if; unit++) { 16148 found = B_FALSE; 16149 for (tipif = ill->ill_ipif; tipif != NULL; 16150 tipif = tipif->ipif_next) { 16151 if (tipif->ipif_id == unit) { 16152 found = B_TRUE; 16153 break; 16154 } 16155 } 16156 if (!found) 16157 break; 16158 } 16159 return (unit); 16160 } 16161 16162 /* ARGSUSED */ 16163 static int 16164 ipif_move(ipif_t *ipif, ill_t *to_ill, queue_t *q, mblk_t *mp, 16165 ipif_t **rep_ipif_ptr) 16166 { 16167 ill_t *from_ill; 16168 ipif_t *rep_ipif; 16169 ipif_t **ipifp; 16170 uint_t unit; 16171 int err = 0; 16172 ipif_t *to_ipif; 16173 struct iocblk *iocp; 16174 boolean_t failback_cmd; 16175 boolean_t remove_ipif; 16176 int rc; 16177 16178 ASSERT(IAM_WRITER_ILL(to_ill)); 16179 ASSERT(IAM_WRITER_IPIF(ipif)); 16180 16181 iocp = (struct iocblk *)mp->b_rptr; 16182 failback_cmd = (iocp->ioc_cmd == SIOCLIFFAILBACK); 16183 remove_ipif = B_FALSE; 16184 16185 from_ill = ipif->ipif_ill; 16186 16187 ASSERT(MUTEX_HELD(&to_ill->ill_lock)); 16188 ASSERT(MUTEX_HELD(&from_ill->ill_lock)); 16189 ASSERT(RW_WRITE_HELD(&ill_g_lock)); 16190 16191 /* 16192 * Don't move LINK LOCAL addresses as they are tied to 16193 * physical interface. 16194 */ 16195 if (from_ill->ill_isv6 && 16196 IN6_IS_ADDR_LINKLOCAL(&ipif->ipif_v6lcl_addr)) { 16197 ipif->ipif_was_up = B_FALSE; 16198 IPIF_UNMARK_MOVING(ipif); 16199 return (0); 16200 } 16201 16202 /* 16203 * We set the ipif_id to maximum so that the search for 16204 * ipif_id will pick the lowest number i.e 0 in the 16205 * following 2 cases : 16206 * 16207 * 1) We have a replacement ipif at the head of to_ill. 16208 * We can't remove it yet as we can exceed ip_addrs_per_if 16209 * on to_ill and hence the MOVE might fail. We want to 16210 * remove it only if we could move the ipif. Thus, by 16211 * setting it to the MAX value, we make the search in 16212 * ipif_get_id return the zeroth id. 16213 * 16214 * 2) When DR pulls out the NIC and re-plumbs the interface, 16215 * we might just have a zero address plumbed on the ipif 16216 * with zero id in the case of IPv4. We remove that while 16217 * doing the failback. We want to remove it only if we 16218 * could move the ipif. Thus, by setting it to the MAX 16219 * value, we make the search in ipif_get_id return the 16220 * zeroth id. 16221 * 16222 * Both (1) and (2) are done only when when we are moving 16223 * an ipif (either due to failover/failback) which originally 16224 * belonged to this interface i.e the ipif_orig_ifindex is 16225 * the same as to_ill's ifindex. This is needed so that 16226 * FAILOVER from A -> B ( A failed) followed by FAILOVER 16227 * from B -> A (B is being removed from the group) and 16228 * FAILBACK from A -> B restores the original configuration. 16229 * Without the check for orig_ifindex, the second FAILOVER 16230 * could make the ipif belonging to B replace the A's zeroth 16231 * ipif and the subsequent failback re-creating the replacement 16232 * ipif again. 16233 * 16234 * NOTE : We created the replacement ipif when we did a 16235 * FAILOVER (See below). We could check for FAILBACK and 16236 * then look for replacement ipif to be removed. But we don't 16237 * want to do that because we wan't to allow the possibility 16238 * of a FAILOVER from A -> B (which creates the replacement ipif), 16239 * followed by a *FAILOVER* from B -> A instead of a FAILBACK 16240 * from B -> A. 16241 */ 16242 to_ipif = to_ill->ill_ipif; 16243 if ((to_ill->ill_phyint->phyint_ifindex == 16244 ipif->ipif_orig_ifindex) && 16245 IPIF_REPL_CHECK(to_ipif, failback_cmd)) { 16246 ASSERT(to_ipif->ipif_id == 0); 16247 remove_ipif = B_TRUE; 16248 to_ipif->ipif_id = MAX_ADDRS_PER_IF; 16249 } 16250 /* 16251 * Find the lowest logical unit number on the to_ill. 16252 * If we are failing back, try to get the original id 16253 * rather than the lowest one so that the original 16254 * configuration is maintained. 16255 * 16256 * XXX need a better scheme for this. 16257 */ 16258 if (failback_cmd) { 16259 unit = ipif_get_id(to_ill, ipif->ipif_orig_ipifid); 16260 } else { 16261 unit = ipif_get_id(to_ill, 0); 16262 } 16263 16264 /* Reset back to zero in case we fail below */ 16265 if (to_ipif->ipif_id == MAX_ADDRS_PER_IF) 16266 to_ipif->ipif_id = 0; 16267 16268 if (unit == ip_addrs_per_if) { 16269 ipif->ipif_was_up = B_FALSE; 16270 IPIF_UNMARK_MOVING(ipif); 16271 return (EINVAL); 16272 } 16273 16274 /* 16275 * ipif is ready to move from "from_ill" to "to_ill". 16276 * 16277 * 1) If we are moving ipif with id zero, create a 16278 * replacement ipif for this ipif on from_ill. If this fails 16279 * fail the MOVE operation. 16280 * 16281 * 2) Remove the replacement ipif on to_ill if any. 16282 * We could remove the replacement ipif when we are moving 16283 * the ipif with id zero. But what if somebody already 16284 * unplumbed it ? Thus we always remove it if it is present. 16285 * We want to do it only if we are sure we are going to 16286 * move the ipif to to_ill which is why there are no 16287 * returns due to error till ipif is linked to to_ill. 16288 * Note that the first ipif that we failback will always 16289 * be zero if it is present. 16290 */ 16291 if (ipif->ipif_id == 0) { 16292 ipaddr_t inaddr_any = INADDR_ANY; 16293 16294 rep_ipif = (ipif_t *)mi_alloc(sizeof (ipif_t), BPRI_MED); 16295 if (rep_ipif == NULL) { 16296 ipif->ipif_was_up = B_FALSE; 16297 IPIF_UNMARK_MOVING(ipif); 16298 return (ENOMEM); 16299 } 16300 *rep_ipif = ipif_zero; 16301 /* 16302 * Before we put the ipif on the list, store the addresses 16303 * as mapped addresses as some of the ioctls e.g SIOCGIFADDR 16304 * assumes so. This logic is not any different from what 16305 * ipif_allocate does. 16306 */ 16307 IN6_IPADDR_TO_V4MAPPED(inaddr_any, 16308 &rep_ipif->ipif_v6lcl_addr); 16309 IN6_IPADDR_TO_V4MAPPED(inaddr_any, 16310 &rep_ipif->ipif_v6src_addr); 16311 IN6_IPADDR_TO_V4MAPPED(inaddr_any, 16312 &rep_ipif->ipif_v6subnet); 16313 IN6_IPADDR_TO_V4MAPPED(inaddr_any, 16314 &rep_ipif->ipif_v6net_mask); 16315 IN6_IPADDR_TO_V4MAPPED(inaddr_any, 16316 &rep_ipif->ipif_v6brd_addr); 16317 IN6_IPADDR_TO_V4MAPPED(inaddr_any, 16318 &rep_ipif->ipif_v6pp_dst_addr); 16319 /* 16320 * We mark IPIF_NOFAILOVER so that this can never 16321 * move. 16322 */ 16323 rep_ipif->ipif_flags = ipif->ipif_flags | IPIF_NOFAILOVER; 16324 rep_ipif->ipif_flags &= ~IPIF_UP; 16325 rep_ipif->ipif_replace_zero = B_TRUE; 16326 mutex_init(&rep_ipif->ipif_saved_ire_lock, NULL, 16327 MUTEX_DEFAULT, NULL); 16328 rep_ipif->ipif_id = 0; 16329 rep_ipif->ipif_ire_type = ipif->ipif_ire_type; 16330 rep_ipif->ipif_ill = from_ill; 16331 rep_ipif->ipif_orig_ifindex = 16332 from_ill->ill_phyint->phyint_ifindex; 16333 /* Insert at head */ 16334 rep_ipif->ipif_next = from_ill->ill_ipif; 16335 from_ill->ill_ipif = rep_ipif; 16336 /* 16337 * We don't really care to let apps know about 16338 * this interface. 16339 */ 16340 } 16341 16342 if (remove_ipif) { 16343 /* 16344 * We set to a max value above for this case to get 16345 * id zero. ASSERT that we did get one. 16346 */ 16347 ASSERT((to_ipif->ipif_id == 0) && (unit == 0)); 16348 rep_ipif = to_ipif; 16349 to_ill->ill_ipif = rep_ipif->ipif_next; 16350 rep_ipif->ipif_next = NULL; 16351 /* 16352 * If some apps scanned and find this interface, 16353 * it is time to let them know, so that they can 16354 * delete it. 16355 */ 16356 16357 *rep_ipif_ptr = rep_ipif; 16358 } 16359 16360 /* Get it out of the ILL interface list. */ 16361 ipifp = &ipif->ipif_ill->ill_ipif; 16362 for (; *ipifp != NULL; ipifp = &ipifp[0]->ipif_next) { 16363 if (*ipifp == ipif) { 16364 *ipifp = ipif->ipif_next; 16365 break; 16366 } 16367 } 16368 16369 /* Assign the new ill */ 16370 ipif->ipif_ill = to_ill; 16371 ipif->ipif_id = unit; 16372 /* id has already been checked */ 16373 rc = ipif_insert(ipif, B_FALSE, B_FALSE); 16374 ASSERT(rc == 0); 16375 /* Let SCTP update its list */ 16376 sctp_move_ipif(ipif, from_ill, to_ill); 16377 /* 16378 * Handle the failover and failback of ipif_t between 16379 * ill_t that have differing maximum mtu values. 16380 */ 16381 if (ipif->ipif_mtu > to_ill->ill_max_mtu) { 16382 if (ipif->ipif_saved_mtu == 0) { 16383 /* 16384 * As this ipif_t is moving to an ill_t 16385 * that has a lower ill_max_mtu, its 16386 * ipif_mtu needs to be saved so it can 16387 * be restored during failback or during 16388 * failover to an ill_t which has a 16389 * higher ill_max_mtu. 16390 */ 16391 ipif->ipif_saved_mtu = ipif->ipif_mtu; 16392 ipif->ipif_mtu = to_ill->ill_max_mtu; 16393 } else { 16394 /* 16395 * The ipif_t is, once again, moving to 16396 * an ill_t that has a lower maximum mtu 16397 * value. 16398 */ 16399 ipif->ipif_mtu = to_ill->ill_max_mtu; 16400 } 16401 } else if (ipif->ipif_mtu < to_ill->ill_max_mtu && 16402 ipif->ipif_saved_mtu != 0) { 16403 /* 16404 * The mtu of this ipif_t had to be reduced 16405 * during an earlier failover; this is an 16406 * opportunity for it to be increased (either as 16407 * part of another failover or a failback). 16408 */ 16409 if (ipif->ipif_saved_mtu <= to_ill->ill_max_mtu) { 16410 ipif->ipif_mtu = ipif->ipif_saved_mtu; 16411 ipif->ipif_saved_mtu = 0; 16412 } else { 16413 ipif->ipif_mtu = to_ill->ill_max_mtu; 16414 } 16415 } 16416 16417 /* 16418 * We preserve all the other fields of the ipif including 16419 * ipif_saved_ire_mp. The routes that are saved here will 16420 * be recreated on the new interface and back on the old 16421 * interface when we move back. 16422 */ 16423 ASSERT(ipif->ipif_arp_del_mp == NULL); 16424 16425 return (err); 16426 } 16427 16428 static int 16429 ipif_move_all(ill_t *from_ill, ill_t *to_ill, queue_t *q, mblk_t *mp, 16430 int ifindex, ipif_t **rep_ipif_ptr) 16431 { 16432 ipif_t *mipif; 16433 ipif_t *ipif_next; 16434 int err; 16435 16436 /* 16437 * We don't really try to MOVE back things if some of the 16438 * operations fail. The daemon will take care of moving again 16439 * later on. 16440 */ 16441 for (mipif = from_ill->ill_ipif; mipif != NULL; mipif = ipif_next) { 16442 ipif_next = mipif->ipif_next; 16443 if (!(mipif->ipif_flags & IPIF_NOFAILOVER) && 16444 (ifindex == 0 || ifindex == mipif->ipif_orig_ifindex)) { 16445 16446 err = ipif_move(mipif, to_ill, q, mp, rep_ipif_ptr); 16447 16448 /* 16449 * When the MOVE fails, it is the job of the 16450 * application to take care of this properly 16451 * i.e try again if it is ENOMEM. 16452 */ 16453 if (mipif->ipif_ill != from_ill) { 16454 /* 16455 * ipif has moved. 16456 * 16457 * Move the multicast memberships associated 16458 * with this ipif to the new ill. For IPv6, we 16459 * do it once after all the ipifs are moved 16460 * (in ill_move) as they are not associated 16461 * with ipifs. 16462 * 16463 * We need to move the ilms as the ipif has 16464 * already been moved to a new ill even 16465 * in the case of errors. Neither 16466 * ilm_free(ipif) will find the ilm 16467 * when somebody unplumbs this ipif nor 16468 * ilm_delete(ilm) will be able to find the 16469 * ilm, if we don't move now. 16470 */ 16471 if (!from_ill->ill_isv6) 16472 ilm_move_v4(from_ill, to_ill, mipif); 16473 } 16474 16475 if (err != 0) 16476 return (err); 16477 } 16478 } 16479 return (0); 16480 } 16481 16482 static int 16483 ill_move(ill_t *from_ill, ill_t *to_ill, queue_t *q, mblk_t *mp) 16484 { 16485 int ifindex; 16486 int err; 16487 struct iocblk *iocp; 16488 ipif_t *ipif; 16489 ipif_t *rep_ipif_ptr = NULL; 16490 ipif_t *from_ipif = NULL; 16491 boolean_t check_rep_if = B_FALSE; 16492 16493 iocp = (struct iocblk *)mp->b_rptr; 16494 if (iocp->ioc_cmd == SIOCLIFFAILOVER) { 16495 /* 16496 * Move everything pointing at from_ill to to_ill. 16497 * We acheive this by passing in 0 as ifindex. 16498 */ 16499 ifindex = 0; 16500 } else { 16501 /* 16502 * Move everything pointing at from_ill whose original 16503 * ifindex of connp, ipif, ilm points at to_ill->ill_index. 16504 * We acheive this by passing in ifindex rather than 0. 16505 * Multicast vifs, ilgs move implicitly because ipifs move. 16506 */ 16507 ASSERT(iocp->ioc_cmd == SIOCLIFFAILBACK); 16508 ifindex = to_ill->ill_phyint->phyint_ifindex; 16509 } 16510 16511 /* 16512 * Determine if there is at least one ipif that would move from 16513 * 'from_ill' to 'to_ill'. If so, it is possible that the replacement 16514 * ipif (if it exists) on the to_ill would be consumed as a result of 16515 * the move, in which case we need to quiesce the replacement ipif also. 16516 */ 16517 for (from_ipif = from_ill->ill_ipif; from_ipif != NULL; 16518 from_ipif = from_ipif->ipif_next) { 16519 if (((ifindex == 0) || 16520 (ifindex == from_ipif->ipif_orig_ifindex)) && 16521 !(from_ipif->ipif_flags & IPIF_NOFAILOVER)) { 16522 check_rep_if = B_TRUE; 16523 break; 16524 } 16525 } 16526 16527 16528 ill_down_ipifs(from_ill, mp, ifindex, B_TRUE); 16529 16530 GRAB_ILL_LOCKS(from_ill, to_ill); 16531 if ((ipif = ill_quiescent_to_move(from_ill)) != NULL) { 16532 (void) ipsq_pending_mp_add(NULL, ipif, q, 16533 mp, ILL_MOVE_OK); 16534 RELEASE_ILL_LOCKS(from_ill, to_ill); 16535 return (EINPROGRESS); 16536 } 16537 16538 /* Check if the replacement ipif is quiescent to delete */ 16539 if (check_rep_if && IPIF_REPL_CHECK(to_ill->ill_ipif, 16540 (iocp->ioc_cmd == SIOCLIFFAILBACK))) { 16541 to_ill->ill_ipif->ipif_state_flags |= 16542 IPIF_MOVING | IPIF_CHANGING; 16543 if ((ipif = ill_quiescent_to_move(to_ill)) != NULL) { 16544 (void) ipsq_pending_mp_add(NULL, ipif, q, 16545 mp, ILL_MOVE_OK); 16546 RELEASE_ILL_LOCKS(from_ill, to_ill); 16547 return (EINPROGRESS); 16548 } 16549 } 16550 RELEASE_ILL_LOCKS(from_ill, to_ill); 16551 16552 ASSERT(!MUTEX_HELD(&to_ill->ill_lock)); 16553 rw_enter(&ill_g_lock, RW_WRITER); 16554 GRAB_ILL_LOCKS(from_ill, to_ill); 16555 err = ipif_move_all(from_ill, to_ill, q, mp, ifindex, &rep_ipif_ptr); 16556 16557 /* ilm_move is done inside ipif_move for IPv4 */ 16558 if (err == 0 && from_ill->ill_isv6) 16559 ilm_move_v6(from_ill, to_ill, ifindex); 16560 16561 RELEASE_ILL_LOCKS(from_ill, to_ill); 16562 rw_exit(&ill_g_lock); 16563 16564 /* 16565 * send rts messages and multicast messages. 16566 */ 16567 if (rep_ipif_ptr != NULL) { 16568 ip_rts_ifmsg(rep_ipif_ptr); 16569 ip_rts_newaddrmsg(RTM_DELETE, 0, rep_ipif_ptr); 16570 IPIF_TRACE_CLEANUP(rep_ipif_ptr); 16571 mi_free(rep_ipif_ptr); 16572 } 16573 16574 ilm_send_multicast_reqs(from_ill, to_ill); 16575 16576 conn_move_ill(from_ill, to_ill, ifindex); 16577 16578 return (err); 16579 } 16580 16581 /* 16582 * Used to extract arguments for FAILOVER/FAILBACK ioctls. 16583 * Also checks for the validity of the arguments. 16584 * Note: We are already exclusive inside the from group. 16585 * It is upto the caller to release refcnt on the to_ill's. 16586 */ 16587 static int 16588 ip_extract_move_args(queue_t *q, mblk_t *mp, ill_t **ill_from_v4, 16589 ill_t **ill_from_v6, ill_t **ill_to_v4, ill_t **ill_to_v6) 16590 { 16591 int dst_index; 16592 ipif_t *ipif_v4, *ipif_v6; 16593 struct lifreq *lifr; 16594 mblk_t *mp1; 16595 boolean_t exists; 16596 sin_t *sin; 16597 int err = 0; 16598 16599 if ((mp1 = mp->b_cont) == NULL) 16600 return (EPROTO); 16601 16602 if ((mp1 = mp1->b_cont) == NULL) 16603 return (EPROTO); 16604 16605 lifr = (struct lifreq *)mp1->b_rptr; 16606 sin = (sin_t *)&lifr->lifr_addr; 16607 16608 /* 16609 * We operate on both IPv4 and IPv6. Thus, we don't allow IPv4/IPv6 16610 * specific operations. 16611 */ 16612 if (sin->sin_family != AF_UNSPEC) 16613 return (EINVAL); 16614 16615 /* 16616 * Get ipif with id 0. We are writer on the from ill. So we can pass 16617 * NULLs for the last 4 args and we know the lookup won't fail 16618 * with EINPROGRESS. 16619 */ 16620 ipif_v4 = ipif_lookup_on_name(lifr->lifr_name, 16621 mi_strlen(lifr->lifr_name), B_FALSE, &exists, B_FALSE, 16622 ALL_ZONES, NULL, NULL, NULL, NULL); 16623 ipif_v6 = ipif_lookup_on_name(lifr->lifr_name, 16624 mi_strlen(lifr->lifr_name), B_FALSE, &exists, B_TRUE, 16625 ALL_ZONES, NULL, NULL, NULL, NULL); 16626 16627 if (ipif_v4 == NULL && ipif_v6 == NULL) 16628 return (ENXIO); 16629 16630 if (ipif_v4 != NULL) { 16631 ASSERT(ipif_v4->ipif_refcnt != 0); 16632 if (ipif_v4->ipif_id != 0) { 16633 err = EINVAL; 16634 goto done; 16635 } 16636 16637 ASSERT(IAM_WRITER_IPIF(ipif_v4)); 16638 *ill_from_v4 = ipif_v4->ipif_ill; 16639 } 16640 16641 if (ipif_v6 != NULL) { 16642 ASSERT(ipif_v6->ipif_refcnt != 0); 16643 if (ipif_v6->ipif_id != 0) { 16644 err = EINVAL; 16645 goto done; 16646 } 16647 16648 ASSERT(IAM_WRITER_IPIF(ipif_v6)); 16649 *ill_from_v6 = ipif_v6->ipif_ill; 16650 } 16651 16652 err = 0; 16653 dst_index = lifr->lifr_movetoindex; 16654 *ill_to_v4 = ill_lookup_on_ifindex(dst_index, B_FALSE, 16655 q, mp, ip_process_ioctl, &err); 16656 if (err != 0) { 16657 /* 16658 * There could be only v6. 16659 */ 16660 if (err != ENXIO) 16661 goto done; 16662 err = 0; 16663 } 16664 16665 *ill_to_v6 = ill_lookup_on_ifindex(dst_index, B_TRUE, 16666 q, mp, ip_process_ioctl, &err); 16667 if (err != 0) { 16668 if (err != ENXIO) 16669 goto done; 16670 if (*ill_to_v4 == NULL) { 16671 err = ENXIO; 16672 goto done; 16673 } 16674 err = 0; 16675 } 16676 16677 /* 16678 * If we have something to MOVE i.e "from" not NULL, 16679 * "to" should be non-NULL. 16680 */ 16681 if ((*ill_from_v4 != NULL && *ill_to_v4 == NULL) || 16682 (*ill_from_v6 != NULL && *ill_to_v6 == NULL)) { 16683 err = EINVAL; 16684 } 16685 16686 done: 16687 if (ipif_v4 != NULL) 16688 ipif_refrele(ipif_v4); 16689 if (ipif_v6 != NULL) 16690 ipif_refrele(ipif_v6); 16691 return (err); 16692 } 16693 16694 /* 16695 * FAILOVER and FAILBACK are modelled as MOVE operations. 16696 * 16697 * We don't check whether the MOVE is within the same group or 16698 * not, because this ioctl can be used as a generic mechanism 16699 * to failover from interface A to B, though things will function 16700 * only if they are really part of the same group. Moreover, 16701 * all ipifs may be down and hence temporarily out of the group. 16702 * 16703 * ipif's that need to be moved are first brought down; V4 ipifs are brought 16704 * down first and then V6. For each we wait for the ipif's to become quiescent. 16705 * Bringing down the ipifs ensures that all ires pointing to these ipifs's 16706 * have been deleted and there are no active references. Once quiescent the 16707 * ipif's are moved and brought up on the new ill. 16708 * 16709 * Normally the source ill and destination ill belong to the same IPMP group 16710 * and hence the same ipsq_t. In the event they don't belong to the same 16711 * same group the two ipsq's are first merged into one ipsq - that of the 16712 * to_ill. The multicast memberships on the source and destination ill cannot 16713 * change during the move operation since multicast joins/leaves also have to 16714 * execute on the same ipsq and are hence serialized. 16715 */ 16716 /* ARGSUSED */ 16717 int 16718 ip_sioctl_move(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 16719 ip_ioctl_cmd_t *ipip, void *ifreq) 16720 { 16721 ill_t *ill_to_v4 = NULL; 16722 ill_t *ill_to_v6 = NULL; 16723 ill_t *ill_from_v4 = NULL; 16724 ill_t *ill_from_v6 = NULL; 16725 int err = 0; 16726 16727 /* 16728 * setup from and to ill's, we can get EINPROGRESS only for 16729 * to_ill's. 16730 */ 16731 err = ip_extract_move_args(q, mp, &ill_from_v4, &ill_from_v6, 16732 &ill_to_v4, &ill_to_v6); 16733 16734 if (err != 0) { 16735 ip0dbg(("ip_sioctl_move: extract args failed\n")); 16736 goto done; 16737 } 16738 16739 /* 16740 * nothing to do. 16741 */ 16742 if ((ill_from_v4 != NULL) && (ill_from_v4 == ill_to_v4)) { 16743 goto done; 16744 } 16745 16746 /* 16747 * nothing to do. 16748 */ 16749 if ((ill_from_v6 != NULL) && (ill_from_v6 == ill_to_v6)) { 16750 goto done; 16751 } 16752 16753 /* 16754 * Mark the ill as changing. 16755 * ILL_CHANGING flag is cleared when the ipif's are brought up 16756 * in ill_up_ipifs in case of error they are cleared below. 16757 */ 16758 16759 GRAB_ILL_LOCKS(ill_from_v4, ill_from_v6); 16760 if (ill_from_v4 != NULL) 16761 ill_from_v4->ill_state_flags |= ILL_CHANGING; 16762 if (ill_from_v6 != NULL) 16763 ill_from_v6->ill_state_flags |= ILL_CHANGING; 16764 RELEASE_ILL_LOCKS(ill_from_v4, ill_from_v6); 16765 16766 /* 16767 * Make sure that both src and dst are 16768 * in the same syncq group. If not make it happen. 16769 * We are not holding any locks because we are the writer 16770 * on the from_ipsq and we will hold locks in ill_merge_groups 16771 * to protect to_ipsq against changing. 16772 */ 16773 if (ill_from_v4 != NULL) { 16774 if (ill_from_v4->ill_phyint->phyint_ipsq != 16775 ill_to_v4->ill_phyint->phyint_ipsq) { 16776 err = ill_merge_groups(ill_from_v4, ill_to_v4, 16777 NULL, mp, q); 16778 goto err_ret; 16779 16780 } 16781 ASSERT(!MUTEX_HELD(&ill_to_v4->ill_lock)); 16782 } else { 16783 16784 if (ill_from_v6->ill_phyint->phyint_ipsq != 16785 ill_to_v6->ill_phyint->phyint_ipsq) { 16786 err = ill_merge_groups(ill_from_v6, ill_to_v6, 16787 NULL, mp, q); 16788 goto err_ret; 16789 16790 } 16791 ASSERT(!MUTEX_HELD(&ill_to_v6->ill_lock)); 16792 } 16793 16794 /* 16795 * Now that the ipsq's have been merged and we are the writer 16796 * lets mark to_ill as changing as well. 16797 */ 16798 16799 GRAB_ILL_LOCKS(ill_to_v4, ill_to_v6); 16800 if (ill_to_v4 != NULL) 16801 ill_to_v4->ill_state_flags |= ILL_CHANGING; 16802 if (ill_to_v6 != NULL) 16803 ill_to_v6->ill_state_flags |= ILL_CHANGING; 16804 RELEASE_ILL_LOCKS(ill_to_v4, ill_to_v6); 16805 16806 /* 16807 * Its ok for us to proceed with the move even if 16808 * ill_pending_mp is non null on one of the from ill's as the reply 16809 * should not be looking at the ipif, it should only care about the 16810 * ill itself. 16811 */ 16812 16813 /* 16814 * lets move ipv4 first. 16815 */ 16816 if (ill_from_v4 != NULL) { 16817 ASSERT(IAM_WRITER_ILL(ill_to_v4)); 16818 ill_from_v4->ill_move_in_progress = B_TRUE; 16819 ill_to_v4->ill_move_in_progress = B_TRUE; 16820 ill_to_v4->ill_move_peer = ill_from_v4; 16821 ill_from_v4->ill_move_peer = ill_to_v4; 16822 err = ill_move(ill_from_v4, ill_to_v4, q, mp); 16823 } 16824 16825 /* 16826 * Now lets move ipv6. 16827 */ 16828 if (err == 0 && ill_from_v6 != NULL) { 16829 ASSERT(IAM_WRITER_ILL(ill_to_v6)); 16830 ill_from_v6->ill_move_in_progress = B_TRUE; 16831 ill_to_v6->ill_move_in_progress = B_TRUE; 16832 ill_to_v6->ill_move_peer = ill_from_v6; 16833 ill_from_v6->ill_move_peer = ill_to_v6; 16834 err = ill_move(ill_from_v6, ill_to_v6, q, mp); 16835 } 16836 16837 err_ret: 16838 if (err == 0) 16839 goto no_err; 16840 /* 16841 * EINPROGRESS means we are waiting for the ipif's that need to be 16842 * moved to become quiescent. 16843 */ 16844 if (err == EINPROGRESS) { 16845 goto done; 16846 } 16847 16848 /* 16849 * if err is set ill_up_ipifs will not be called 16850 * lets clear the flags. 16851 */ 16852 16853 GRAB_ILL_LOCKS(ill_to_v4, ill_to_v6); 16854 GRAB_ILL_LOCKS(ill_from_v4, ill_from_v6); 16855 /* 16856 * Some of the clearing may be redundant. But it is simple 16857 * not making any extra checks. 16858 */ 16859 if (ill_from_v6 != NULL) { 16860 ill_from_v6->ill_move_in_progress = B_FALSE; 16861 ill_from_v6->ill_move_peer = NULL; 16862 ill_from_v6->ill_state_flags &= ~ILL_CHANGING; 16863 } 16864 if (ill_from_v4 != NULL) { 16865 ill_from_v4->ill_move_in_progress = B_FALSE; 16866 ill_from_v4->ill_move_peer = NULL; 16867 ill_from_v4->ill_state_flags &= ~ILL_CHANGING; 16868 } 16869 if (ill_to_v6 != NULL) { 16870 ill_to_v6->ill_move_in_progress = B_FALSE; 16871 ill_to_v6->ill_move_peer = NULL; 16872 ill_to_v6->ill_state_flags &= ~ILL_CHANGING; 16873 } 16874 if (ill_to_v4 != NULL) { 16875 ill_to_v4->ill_move_in_progress = B_FALSE; 16876 ill_to_v4->ill_move_peer = NULL; 16877 ill_to_v4->ill_state_flags &= ~ILL_CHANGING; 16878 } 16879 /* 16880 * Check for setting INACTIVE, if STANDBY is set. Do this always 16881 * to maintain proper state i.e even in the case of errors. 16882 * As phyint_standby_inactive looks at both v4 and v6 interfaces, 16883 * we need not call on both v4 and v6 interfaces. 16884 */ 16885 if (ill_from_v4 != NULL) { 16886 if (ill_from_v4->ill_phyint->phyint_flags & PHYI_STANDBY) { 16887 phyint_standby_inactive(ill_from_v4->ill_phyint); 16888 } 16889 } else if (ill_from_v6 != NULL) { 16890 if (ill_from_v6->ill_phyint->phyint_flags & PHYI_STANDBY) { 16891 phyint_standby_inactive(ill_from_v6->ill_phyint); 16892 } 16893 } 16894 16895 if (ill_to_v4 != NULL) { 16896 if (ill_to_v4->ill_phyint->phyint_flags & PHYI_STANDBY) { 16897 phyint_standby_inactive(ill_to_v4->ill_phyint); 16898 } 16899 16900 } else if (ill_to_v6 != NULL) { 16901 if (ill_to_v6->ill_phyint->phyint_flags & PHYI_STANDBY) { 16902 phyint_standby_inactive(ill_to_v6->ill_phyint); 16903 } 16904 } 16905 16906 RELEASE_ILL_LOCKS(ill_to_v4, ill_to_v6); 16907 RELEASE_ILL_LOCKS(ill_from_v4, ill_from_v6); 16908 16909 no_err: 16910 /* 16911 * lets bring the interfaces up on the to_ill. 16912 */ 16913 if (err == 0) { 16914 err = ill_up_ipifs(ill_to_v4 == NULL ? ill_to_v6:ill_to_v4, 16915 q, mp); 16916 } 16917 done: 16918 16919 if (ill_to_v4 != NULL) { 16920 ill_refrele(ill_to_v4); 16921 } 16922 if (ill_to_v6 != NULL) { 16923 ill_refrele(ill_to_v6); 16924 } 16925 16926 return (err); 16927 } 16928 16929 static void 16930 ill_dl_down(ill_t *ill) 16931 { 16932 /* 16933 * The ill is down; unbind but stay attached since we're still 16934 * associated with a PPA. 16935 */ 16936 mblk_t *mp = ill->ill_unbind_mp; 16937 16938 ill->ill_unbind_mp = NULL; 16939 ip1dbg(("ill_dl_down(%s)\n", ill->ill_name)); 16940 if (mp != NULL) { 16941 ip1dbg(("ill_dl_down: %s (%u) for %s\n", 16942 dlpi_prim_str(*(int *)mp->b_rptr), *(int *)mp->b_rptr, 16943 ill->ill_name)); 16944 ill_dlpi_send(ill, mp); 16945 } 16946 16947 /* 16948 * Toss all of our multicast memberships. We could keep them, but 16949 * then we'd have to do bookkeeping of any joins and leaves performed 16950 * by the application while the the interface is down (we can't just 16951 * issue them because arp cannot currently process AR_ENTRY_SQUERY's 16952 * on a downed interface). 16953 */ 16954 ill_leave_multicast(ill); 16955 16956 mutex_enter(&ill->ill_lock); 16957 ill->ill_dl_up = 0; 16958 mutex_exit(&ill->ill_lock); 16959 } 16960 16961 void 16962 ill_dlpi_dispatch(ill_t *ill, mblk_t *mp) 16963 { 16964 union DL_primitives *dlp; 16965 t_uscalar_t prim; 16966 16967 ASSERT(DB_TYPE(mp) == M_PROTO || DB_TYPE(mp) == M_PCPROTO); 16968 16969 dlp = (union DL_primitives *)mp->b_rptr; 16970 prim = dlp->dl_primitive; 16971 16972 ip1dbg(("ill_dlpi_dispatch: sending %s (%u) to %s\n", 16973 dlpi_prim_str(prim), prim, ill->ill_name)); 16974 16975 switch (prim) { 16976 case DL_PHYS_ADDR_REQ: 16977 { 16978 dl_phys_addr_req_t *dlpap = (dl_phys_addr_req_t *)mp->b_rptr; 16979 ill->ill_phys_addr_pend = dlpap->dl_addr_type; 16980 break; 16981 } 16982 case DL_BIND_REQ: 16983 mutex_enter(&ill->ill_lock); 16984 ill->ill_state_flags &= ~ILL_DL_UNBIND_DONE; 16985 mutex_exit(&ill->ill_lock); 16986 break; 16987 } 16988 16989 ill->ill_dlpi_pending = prim; 16990 16991 /* 16992 * Some drivers send M_FLUSH up to IP as part of unbind 16993 * request. When this M_FLUSH is sent back to the driver, 16994 * this can go after we send the detach request if the 16995 * M_FLUSH ends up in IP's syncq. To avoid that, we reply 16996 * to the M_FLUSH in ip_rput and locally generate another 16997 * M_FLUSH for the correctness. This will get freed in 16998 * ip_wput_nondata. 16999 */ 17000 if (prim == DL_UNBIND_REQ) 17001 (void) putnextctl1(ill->ill_rq, M_FLUSH, FLUSHRW); 17002 17003 putnext(ill->ill_wq, mp); 17004 } 17005 17006 /* 17007 * Send a DLPI control message to the driver but make sure there 17008 * is only one outstanding message. Uses ill_dlpi_pending to tell 17009 * when it must queue. ip_rput_dlpi_writer calls ill_dlpi_done() 17010 * when an ACK or a NAK is received to process the next queued message. 17011 * 17012 * We don't protect ill_dlpi_pending with any lock. This is okay as 17013 * every place where its accessed, ip is exclusive while accessing 17014 * ill_dlpi_pending except when this function is called from ill_init() 17015 */ 17016 void 17017 ill_dlpi_send(ill_t *ill, mblk_t *mp) 17018 { 17019 mblk_t **mpp; 17020 17021 ASSERT(IAM_WRITER_ILL(ill)); 17022 ASSERT(DB_TYPE(mp) == M_PROTO || DB_TYPE(mp) == M_PCPROTO); 17023 17024 if (ill->ill_dlpi_pending != DL_PRIM_INVAL) { 17025 /* Must queue message. Tail insertion */ 17026 mpp = &ill->ill_dlpi_deferred; 17027 while (*mpp != NULL) 17028 mpp = &((*mpp)->b_next); 17029 17030 ip1dbg(("ill_dlpi_send: deferring request for %s\n", 17031 ill->ill_name)); 17032 17033 *mpp = mp; 17034 return; 17035 } 17036 17037 ill_dlpi_dispatch(ill, mp); 17038 } 17039 17040 /* 17041 * Called when an DLPI control message has been acked or nacked to 17042 * send down the next queued message (if any). 17043 */ 17044 void 17045 ill_dlpi_done(ill_t *ill, t_uscalar_t prim) 17046 { 17047 mblk_t *mp; 17048 17049 ASSERT(IAM_WRITER_ILL(ill)); 17050 17051 ASSERT(prim != DL_PRIM_INVAL); 17052 if (ill->ill_dlpi_pending != prim) { 17053 if (ill->ill_dlpi_pending == DL_PRIM_INVAL) { 17054 (void) mi_strlog(ill->ill_rq, 1, 17055 SL_CONSOLE|SL_ERROR|SL_TRACE, 17056 "ill_dlpi_done: unsolicited ack for %s from %s\n", 17057 dlpi_prim_str(prim), ill->ill_name); 17058 } else { 17059 (void) mi_strlog(ill->ill_rq, 1, 17060 SL_CONSOLE|SL_ERROR|SL_TRACE, 17061 "ill_dlpi_done: unexpected ack for %s from %s " 17062 "(expecting ack for %s)\n", 17063 dlpi_prim_str(prim), ill->ill_name, 17064 dlpi_prim_str(ill->ill_dlpi_pending)); 17065 } 17066 return; 17067 } 17068 17069 ip1dbg(("ill_dlpi_done: %s has completed %s (%u)\n", ill->ill_name, 17070 dlpi_prim_str(ill->ill_dlpi_pending), ill->ill_dlpi_pending)); 17071 17072 if ((mp = ill->ill_dlpi_deferred) == NULL) { 17073 ill->ill_dlpi_pending = DL_PRIM_INVAL; 17074 return; 17075 } 17076 17077 ill->ill_dlpi_deferred = mp->b_next; 17078 mp->b_next = NULL; 17079 17080 ill_dlpi_dispatch(ill, mp); 17081 } 17082 17083 void 17084 conn_delete_ire(conn_t *connp, caddr_t arg) 17085 { 17086 ipif_t *ipif = (ipif_t *)arg; 17087 ire_t *ire; 17088 17089 /* 17090 * Look at the cached ires on conns which has pointers to ipifs. 17091 * We just call ire_refrele which clears up the reference 17092 * to ire. Called when a conn closes. Also called from ipif_free 17093 * to cleanup indirect references to the stale ipif via the cached ire. 17094 */ 17095 mutex_enter(&connp->conn_lock); 17096 ire = connp->conn_ire_cache; 17097 if (ire != NULL && (ipif == NULL || ire->ire_ipif == ipif)) { 17098 connp->conn_ire_cache = NULL; 17099 mutex_exit(&connp->conn_lock); 17100 IRE_REFRELE_NOTR(ire); 17101 return; 17102 } 17103 mutex_exit(&connp->conn_lock); 17104 17105 } 17106 17107 /* 17108 * Some operations (illgrp_delete(), ipif_down()) conditionally delete a number 17109 * of IREs. Those IREs may have been previously cached in the conn structure. 17110 * This ipcl_walk() walker function releases all references to such IREs based 17111 * on the condemned flag. 17112 */ 17113 /* ARGSUSED */ 17114 void 17115 conn_cleanup_stale_ire(conn_t *connp, caddr_t arg) 17116 { 17117 ire_t *ire; 17118 17119 mutex_enter(&connp->conn_lock); 17120 ire = connp->conn_ire_cache; 17121 if (ire != NULL && (ire->ire_marks & IRE_MARK_CONDEMNED)) { 17122 connp->conn_ire_cache = NULL; 17123 mutex_exit(&connp->conn_lock); 17124 IRE_REFRELE_NOTR(ire); 17125 return; 17126 } 17127 mutex_exit(&connp->conn_lock); 17128 } 17129 17130 /* 17131 * Take down a specific interface, but don't lose any information about it. 17132 * Also delete interface from its interface group (ifgrp). 17133 * (Always called as writer.) 17134 * This function goes through the down sequence even if the interface is 17135 * already down. There are 2 reasons. 17136 * a. Currently we permit interface routes that depend on down interfaces 17137 * to be added. This behaviour itself is questionable. However it appears 17138 * that both Solaris and 4.3 BSD have exhibited this behaviour for a long 17139 * time. We go thru the cleanup in order to remove these routes. 17140 * b. The bringup of the interface could fail in ill_dl_up i.e. we get 17141 * DL_ERROR_ACK in response to the the DL_BIND request. The interface is 17142 * down, but we need to cleanup i.e. do ill_dl_down and 17143 * ip_rput_dlpi_writer (DL_ERROR_ACK) -> ipif_down. 17144 * 17145 * IP-MT notes: 17146 * 17147 * Model of reference to interfaces. 17148 * 17149 * The following members in ipif_t track references to the ipif. 17150 * int ipif_refcnt; Active reference count 17151 * uint_t ipif_ire_cnt; Number of ire's referencing this ipif 17152 * The following members in ill_t track references to the ill. 17153 * int ill_refcnt; active refcnt 17154 * uint_t ill_ire_cnt; Number of ires referencing ill 17155 * uint_t ill_nce_cnt; Number of nces referencing ill 17156 * 17157 * Reference to an ipif or ill can be obtained in any of the following ways. 17158 * 17159 * Through the lookup functions ipif_lookup_* / ill_lookup_* functions 17160 * Pointers to ipif / ill from other data structures viz ire and conn. 17161 * Implicit reference to the ipif / ill by holding a reference to the ire. 17162 * 17163 * The ipif/ill lookup functions return a reference held ipif / ill. 17164 * ipif_refcnt and ill_refcnt track the reference counts respectively. 17165 * This is a purely dynamic reference count associated with threads holding 17166 * references to the ipif / ill. Pointers from other structures do not 17167 * count towards this reference count. 17168 * 17169 * ipif_ire_cnt/ill_ire_cnt is the number of ire's associated with the 17170 * ipif/ill. This is incremented whenever a new ire is created referencing the 17171 * ipif/ill. This is done atomically inside ire_add_v[46] where the ire is 17172 * actually added to the ire hash table. The count is decremented in 17173 * ire_inactive where the ire is destroyed. 17174 * 17175 * nce's reference ill's thru nce_ill and the count of nce's associated with 17176 * an ill is recorded in ill_nce_cnt. This is incremented atomically in 17177 * ndp_add() where the nce is actually added to the table. Similarly it is 17178 * decremented in ndp_inactive where the nce is destroyed. 17179 * 17180 * Flow of ioctls involving interface down/up 17181 * 17182 * The following is the sequence of an attempt to set some critical flags on an 17183 * up interface. 17184 * ip_sioctl_flags 17185 * ipif_down 17186 * wait for ipif to be quiescent 17187 * ipif_down_tail 17188 * ip_sioctl_flags_tail 17189 * 17190 * All set ioctls that involve down/up sequence would have a skeleton similar 17191 * to the above. All the *tail functions are called after the refcounts have 17192 * dropped to the appropriate values. 17193 * 17194 * The mechanism to quiesce an ipif is as follows. 17195 * 17196 * Mark the ipif as IPIF_CHANGING. No more lookups will be allowed 17197 * on the ipif. Callers either pass a flag requesting wait or the lookup 17198 * functions will return NULL. 17199 * 17200 * Delete all ires referencing this ipif 17201 * 17202 * Any thread attempting to do an ipif_refhold on an ipif that has been 17203 * obtained thru a cached pointer will first make sure that 17204 * the ipif can be refheld using the macro IPIF_CAN_LOOKUP and only then 17205 * increment the refcount. 17206 * 17207 * The above guarantees that the ipif refcount will eventually come down to 17208 * zero and the ipif will quiesce, once all threads that currently hold a 17209 * reference to the ipif refrelease the ipif. The ipif is quiescent after the 17210 * ipif_refcount has dropped to zero and all ire's associated with this ipif 17211 * have also been ire_inactive'd. i.e. when ipif_ire_cnt and ipif_refcnt both 17212 * drop to zero. 17213 * 17214 * Lookups during the IPIF_CHANGING/ILL_CHANGING interval. 17215 * 17216 * Threads trying to lookup an ipif or ill can pass a flag requesting 17217 * wait and restart if the ipif / ill cannot be looked up currently. 17218 * For eg. bind, and route operations (Eg. route add / delete) cannot return 17219 * failure if the ipif is currently undergoing an exclusive operation, and 17220 * hence pass the flag. The mblk is then enqueued in the ipsq and the operation 17221 * is restarted by ipsq_exit() when the currently exclusive ioctl completes. 17222 * The lookup and enqueue is atomic using the ill_lock and ipsq_lock. The 17223 * lookup is done holding the ill_lock. Hence the ill/ipif state flags can't 17224 * change while the ill_lock is held. Before dropping the ill_lock we acquire 17225 * the ipsq_lock and call ipsq_enq. This ensures that ipsq_exit can't finish 17226 * until we release the ipsq_lock, even though the the ill/ipif state flags 17227 * can change after we drop the ill_lock. 17228 * 17229 * An attempt to send out a packet using an ipif that is currently 17230 * IPIF_CHANGING will fail. No attempt is made in this case to enqueue this 17231 * operation and restart it later when the exclusive condition on the ipif ends. 17232 * This is an example of not passing the wait flag to the lookup functions. For 17233 * example an attempt to refhold and use conn->conn_multicast_ipif and send 17234 * out a multicast packet on that ipif will fail while the ipif is 17235 * IPIF_CHANGING. An attempt to create an IRE_CACHE using an ipif that is 17236 * currently IPIF_CHANGING will also fail. 17237 */ 17238 int 17239 ipif_down(ipif_t *ipif, queue_t *q, mblk_t *mp) 17240 { 17241 ill_t *ill = ipif->ipif_ill; 17242 phyint_t *phyi; 17243 conn_t *connp; 17244 boolean_t success; 17245 boolean_t ipif_was_up = B_FALSE; 17246 17247 ASSERT(IAM_WRITER_IPIF(ipif)); 17248 17249 ip1dbg(("ipif_down(%s:%u)\n", ill->ill_name, ipif->ipif_id)); 17250 17251 if (ipif->ipif_flags & IPIF_UP) { 17252 mutex_enter(&ill->ill_lock); 17253 ipif->ipif_flags &= ~IPIF_UP; 17254 ASSERT(ill->ill_ipif_up_count > 0); 17255 --ill->ill_ipif_up_count; 17256 mutex_exit(&ill->ill_lock); 17257 ipif_was_up = B_TRUE; 17258 /* Update status in SCTP's list */ 17259 sctp_update_ipif(ipif, SCTP_IPIF_DOWN); 17260 } 17261 17262 /* 17263 * Blow away v6 memberships we established in ipif_multicast_up(); the 17264 * v4 ones are left alone (as is the ipif_multicast_up flag, so we 17265 * know not to rejoin when the interface is brought back up). 17266 */ 17267 if (ipif->ipif_isv6) 17268 ipif_multicast_down(ipif); 17269 /* 17270 * Remove from the mapping for __sin6_src_id. We insert only 17271 * when the address is not INADDR_ANY. As IPv4 addresses are 17272 * stored as mapped addresses, we need to check for mapped 17273 * INADDR_ANY also. 17274 */ 17275 if (ipif_was_up && !IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6lcl_addr) && 17276 !IN6_IS_ADDR_V4MAPPED_ANY(&ipif->ipif_v6lcl_addr) && 17277 !(ipif->ipif_flags & IPIF_NOLOCAL)) { 17278 int err; 17279 17280 err = ip_srcid_remove(&ipif->ipif_v6lcl_addr, 17281 ipif->ipif_zoneid); 17282 if (err != 0) { 17283 ip0dbg(("ipif_down: srcid_remove %d\n", err)); 17284 } 17285 } 17286 17287 /* 17288 * Before we delete the ill from the group (if any), we need 17289 * to make sure that we delete all the routes dependent on 17290 * this and also any ipifs dependent on this ipif for 17291 * source address. We need to do before we delete from 17292 * the group because 17293 * 17294 * 1) ipif_down_delete_ire de-references ill->ill_group. 17295 * 17296 * 2) ipif_update_other_ipifs needs to walk the whole group 17297 * for re-doing source address selection. Note that 17298 * ipif_select_source[_v6] called from 17299 * ipif_update_other_ipifs[_v6] will not pick this ipif 17300 * because we have already marked down here i.e cleared 17301 * IPIF_UP. 17302 */ 17303 if (ipif->ipif_isv6) 17304 ire_walk_v6(ipif_down_delete_ire, (char *)ipif, ALL_ZONES); 17305 else 17306 ire_walk_v4(ipif_down_delete_ire, (char *)ipif, ALL_ZONES); 17307 17308 /* 17309 * Need to add these also to be saved and restored when the 17310 * ipif is brought down and up 17311 */ 17312 mutex_enter(&ire_mrtun_lock); 17313 if (ire_mrtun_count != 0) { 17314 mutex_exit(&ire_mrtun_lock); 17315 ire_walk_ill_mrtun(0, 0, ipif_down_delete_ire, 17316 (char *)ipif, NULL); 17317 } else { 17318 mutex_exit(&ire_mrtun_lock); 17319 } 17320 17321 mutex_enter(&ire_srcif_table_lock); 17322 if (ire_srcif_table_count > 0) { 17323 mutex_exit(&ire_srcif_table_lock); 17324 ire_walk_srcif_table_v4(ipif_down_delete_ire, (char *)ipif); 17325 } else { 17326 mutex_exit(&ire_srcif_table_lock); 17327 } 17328 17329 /* 17330 * Cleaning up the conn_ire_cache or conns must be done only after the 17331 * ires have been deleted above. Otherwise a thread could end up 17332 * caching an ire in a conn after we have finished the cleanup of the 17333 * conn. The caching is done after making sure that the ire is not yet 17334 * condemned. Also documented in the block comment above ip_output 17335 */ 17336 ipcl_walk(conn_cleanup_stale_ire, NULL); 17337 /* Also, delete the ires cached in SCTP */ 17338 sctp_ire_cache_flush(ipif); 17339 17340 /* Resolve any IPsec/IKE NAT-T instances that depend on this ipif. */ 17341 nattymod_clean_ipif(ipif); 17342 17343 /* 17344 * Update any other ipifs which have used "our" local address as 17345 * a source address. This entails removing and recreating IRE_INTERFACE 17346 * entries for such ipifs. 17347 */ 17348 if (ipif->ipif_isv6) 17349 ipif_update_other_ipifs_v6(ipif, ill->ill_group); 17350 else 17351 ipif_update_other_ipifs(ipif, ill->ill_group); 17352 17353 if (ipif_was_up) { 17354 /* 17355 * Check whether it is last ipif to leave this group. 17356 * If this is the last ipif to leave, we should remove 17357 * this ill from the group as ipif_select_source will not 17358 * be able to find any useful ipifs if this ill is selected 17359 * for load balancing. 17360 * 17361 * For nameless groups, we should call ifgrp_delete if this 17362 * belongs to some group. As this ipif is going down, we may 17363 * need to reconstruct groups. 17364 */ 17365 phyi = ill->ill_phyint; 17366 /* 17367 * If the phyint_groupname_len is 0, it may or may not 17368 * be in the nameless group. If the phyint_groupname_len is 17369 * not 0, then this ill should be part of some group. 17370 * As we always insert this ill in the group if 17371 * phyint_groupname_len is not zero when the first ipif 17372 * comes up (in ipif_up_done), it should be in a group 17373 * when the namelen is not 0. 17374 * 17375 * NOTE : When we delete the ill from the group,it will 17376 * blow away all the IRE_CACHES pointing either at this ipif or 17377 * ill_wq (illgrp_cache_delete does this). Thus, no IRES 17378 * should be pointing at this ill. 17379 */ 17380 ASSERT(phyi->phyint_groupname_len == 0 || 17381 (phyi->phyint_groupname != NULL && ill->ill_group != NULL)); 17382 17383 if (phyi->phyint_groupname_len != 0) { 17384 if (ill->ill_ipif_up_count == 0) 17385 illgrp_delete(ill); 17386 } 17387 17388 /* 17389 * If we have deleted some of the broadcast ires associated 17390 * with this ipif, we need to re-nominate somebody else if 17391 * the ires that we deleted were the nominated ones. 17392 */ 17393 if (ill->ill_group != NULL && !ill->ill_isv6) 17394 ipif_renominate_bcast(ipif); 17395 } 17396 17397 if (ipif->ipif_isv6) 17398 ipif_ndp_down(ipif); 17399 17400 /* 17401 * If mp is NULL the caller will wait for the appropriate refcnt. 17402 * Eg. ip_sioctl_removeif -> ipif_free -> ipif_down 17403 * and ill_delete -> ipif_free -> ipif_down 17404 */ 17405 if (mp == NULL) { 17406 ASSERT(q == NULL); 17407 return (0); 17408 } 17409 17410 if (CONN_Q(q)) { 17411 connp = Q_TO_CONN(q); 17412 mutex_enter(&connp->conn_lock); 17413 } else { 17414 connp = NULL; 17415 } 17416 mutex_enter(&ill->ill_lock); 17417 /* 17418 * Are there any ire's pointing to this ipif that are still active ? 17419 * If this is the last ipif going down, are there any ire's pointing 17420 * to this ill that are still active ? 17421 */ 17422 if (ipif_is_quiescent(ipif)) { 17423 mutex_exit(&ill->ill_lock); 17424 if (connp != NULL) 17425 mutex_exit(&connp->conn_lock); 17426 return (0); 17427 } 17428 17429 ip1dbg(("ipif_down: need to wait, adding pending mp %s ill %p", 17430 ill->ill_name, (void *)ill)); 17431 /* 17432 * Enqueue the mp atomically in ipsq_pending_mp. When the refcount 17433 * drops down, the operation will be restarted by ipif_ill_refrele_tail 17434 * which in turn is called by the last refrele on the ipif/ill/ire. 17435 */ 17436 success = ipsq_pending_mp_add(connp, ipif, q, mp, IPIF_DOWN); 17437 if (!success) { 17438 /* The conn is closing. So just return */ 17439 ASSERT(connp != NULL); 17440 mutex_exit(&ill->ill_lock); 17441 mutex_exit(&connp->conn_lock); 17442 return (EINTR); 17443 } 17444 17445 mutex_exit(&ill->ill_lock); 17446 if (connp != NULL) 17447 mutex_exit(&connp->conn_lock); 17448 return (EINPROGRESS); 17449 } 17450 17451 static void 17452 ipif_down_tail(ipif_t *ipif) 17453 { 17454 ill_t *ill = ipif->ipif_ill; 17455 17456 /* 17457 * Skip any loopback interface (null wq). 17458 * If this is the last logical interface on the ill 17459 * have ill_dl_down tell the driver we are gone (unbind) 17460 * Note that lun 0 can ipif_down even though 17461 * there are other logical units that are up. 17462 * This occurs e.g. when we change a "significant" IFF_ flag. 17463 */ 17464 if (ipif->ipif_ill->ill_wq != NULL) { 17465 if (!ill->ill_logical_down && (ill->ill_ipif_up_count == 0) && 17466 ill->ill_dl_up) { 17467 ill_dl_down(ill); 17468 } 17469 } 17470 ill->ill_logical_down = 0; 17471 17472 /* 17473 * Have to be after removing the routes in ipif_down_delete_ire. 17474 */ 17475 if (ipif->ipif_isv6) { 17476 if (ipif->ipif_ill->ill_flags & ILLF_XRESOLV) 17477 ipif_arp_down(ipif); 17478 } else { 17479 ipif_arp_down(ipif); 17480 } 17481 17482 ip_rts_ifmsg(ipif); 17483 ip_rts_newaddrmsg(RTM_DELETE, 0, ipif); 17484 } 17485 17486 /* 17487 * Bring interface logically down without bringing the physical interface 17488 * down e.g. when the netmask is changed. This avoids long lasting link 17489 * negotiations between an ethernet interface and a certain switches. 17490 */ 17491 static int 17492 ipif_logical_down(ipif_t *ipif, queue_t *q, mblk_t *mp) 17493 { 17494 /* 17495 * The ill_logical_down flag is a transient flag. It is set here 17496 * and is cleared once the down has completed in ipif_down_tail. 17497 * This flag does not indicate whether the ill stream is in the 17498 * DL_BOUND state with the driver. Instead this flag is used by 17499 * ipif_down_tail to determine whether to DL_UNBIND the stream with 17500 * the driver. The state of the ill stream i.e. whether it is 17501 * DL_BOUND with the driver or not is indicated by the ill_dl_up flag. 17502 */ 17503 ipif->ipif_ill->ill_logical_down = 1; 17504 return (ipif_down(ipif, q, mp)); 17505 } 17506 17507 /* 17508 * This is called when the SIOCSLIFUSESRC ioctl is processed in IP. 17509 * If the usesrc client ILL is already part of a usesrc group or not, 17510 * in either case a ire_stq with the matching usesrc client ILL will 17511 * locate the IRE's that need to be deleted. We want IREs to be created 17512 * with the new source address. 17513 */ 17514 static void 17515 ipif_delete_cache_ire(ire_t *ire, char *ill_arg) 17516 { 17517 ill_t *ucill = (ill_t *)ill_arg; 17518 17519 ASSERT(IAM_WRITER_ILL(ucill)); 17520 17521 if (ire->ire_stq == NULL) 17522 return; 17523 17524 if ((ire->ire_type == IRE_CACHE) && 17525 ((ill_t *)ire->ire_stq->q_ptr == ucill)) 17526 ire_delete(ire); 17527 } 17528 17529 /* 17530 * ire_walk routine to delete every IRE dependent on the interface 17531 * address that is going down. (Always called as writer.) 17532 * Works for both v4 and v6. 17533 * In addition for checking for ire_ipif matches it also checks for 17534 * IRE_CACHE entries which have the same source address as the 17535 * disappearing ipif since ipif_select_source might have picked 17536 * that source. Note that ipif_down/ipif_update_other_ipifs takes 17537 * care of any IRE_INTERFACE with the disappearing source address. 17538 */ 17539 static void 17540 ipif_down_delete_ire(ire_t *ire, char *ipif_arg) 17541 { 17542 ipif_t *ipif = (ipif_t *)ipif_arg; 17543 ill_t *ire_ill; 17544 ill_t *ipif_ill; 17545 17546 ASSERT(IAM_WRITER_IPIF(ipif)); 17547 if (ire->ire_ipif == NULL) 17548 return; 17549 17550 /* 17551 * For IPv4, we derive source addresses for an IRE from ipif's 17552 * belonging to the same IPMP group as the IRE's outgoing 17553 * interface. If an IRE's outgoing interface isn't in the 17554 * same IPMP group as a particular ipif, then that ipif 17555 * couldn't have been used as a source address for this IRE. 17556 * 17557 * For IPv6, source addresses are only restricted to the IPMP group 17558 * if the IRE is for a link-local address or a multicast address. 17559 * Otherwise, source addresses for an IRE can be chosen from 17560 * interfaces other than the the outgoing interface for that IRE. 17561 * 17562 * For source address selection details, see ipif_select_source() 17563 * and ipif_select_source_v6(). 17564 */ 17565 if (ire->ire_ipversion == IPV4_VERSION || 17566 IN6_IS_ADDR_LINKLOCAL(&ire->ire_addr_v6) || 17567 IN6_IS_ADDR_MULTICAST(&ire->ire_addr_v6)) { 17568 ire_ill = ire->ire_ipif->ipif_ill; 17569 ipif_ill = ipif->ipif_ill; 17570 17571 if (ire_ill->ill_group != ipif_ill->ill_group) { 17572 return; 17573 } 17574 } 17575 17576 17577 if (ire->ire_ipif != ipif) { 17578 /* 17579 * Look for a matching source address. 17580 */ 17581 if (ire->ire_type != IRE_CACHE) 17582 return; 17583 if (ipif->ipif_flags & IPIF_NOLOCAL) 17584 return; 17585 17586 if (ire->ire_ipversion == IPV4_VERSION) { 17587 if (ire->ire_src_addr != ipif->ipif_src_addr) 17588 return; 17589 } else { 17590 if (!IN6_ARE_ADDR_EQUAL(&ire->ire_src_addr_v6, 17591 &ipif->ipif_v6lcl_addr)) 17592 return; 17593 } 17594 ire_delete(ire); 17595 return; 17596 } 17597 /* 17598 * ire_delete() will do an ire_flush_cache which will delete 17599 * all ire_ipif matches 17600 */ 17601 ire_delete(ire); 17602 } 17603 17604 /* 17605 * ire_walk_ill function for deleting all IRE_CACHE entries for an ill when 17606 * 1) an ipif (on that ill) changes the IPIF_DEPRECATED flags, or 17607 * 2) when an interface is brought up or down (on that ill). 17608 * This ensures that the IRE_CACHE entries don't retain stale source 17609 * address selection results. 17610 */ 17611 void 17612 ill_ipif_cache_delete(ire_t *ire, char *ill_arg) 17613 { 17614 ill_t *ill = (ill_t *)ill_arg; 17615 ill_t *ipif_ill; 17616 17617 ASSERT(IAM_WRITER_ILL(ill)); 17618 /* 17619 * We use MATCH_IRE_TYPE/IRE_CACHE while calling ire_walk_ill_v4. 17620 * Hence this should be IRE_CACHE. 17621 */ 17622 ASSERT(ire->ire_type == IRE_CACHE); 17623 17624 /* 17625 * We are called for IRE_CACHES whose ire_ipif matches ill. 17626 * We are only interested in IRE_CACHES that has borrowed 17627 * the source address from ill_arg e.g. ipif_up_done[_v6] 17628 * for which we need to look at ire_ipif->ipif_ill match 17629 * with ill. 17630 */ 17631 ASSERT(ire->ire_ipif != NULL); 17632 ipif_ill = ire->ire_ipif->ipif_ill; 17633 if (ipif_ill == ill || (ill->ill_group != NULL && 17634 ipif_ill->ill_group == ill->ill_group)) { 17635 ire_delete(ire); 17636 } 17637 } 17638 17639 /* 17640 * Delete all the ire whose stq references ill_arg. 17641 */ 17642 static void 17643 ill_stq_cache_delete(ire_t *ire, char *ill_arg) 17644 { 17645 ill_t *ill = (ill_t *)ill_arg; 17646 ill_t *ire_ill; 17647 17648 ASSERT(IAM_WRITER_ILL(ill)); 17649 /* 17650 * We use MATCH_IRE_TYPE/IRE_CACHE while calling ire_walk_ill_v4. 17651 * Hence this should be IRE_CACHE. 17652 */ 17653 ASSERT(ire->ire_type == IRE_CACHE); 17654 17655 /* 17656 * We are called for IRE_CACHES whose ire_stq and ire_ipif 17657 * matches ill. We are only interested in IRE_CACHES that 17658 * has ire_stq->q_ptr pointing at ill_arg. Thus we do the 17659 * filtering here. 17660 */ 17661 ire_ill = (ill_t *)ire->ire_stq->q_ptr; 17662 17663 if (ire_ill == ill) 17664 ire_delete(ire); 17665 } 17666 17667 /* 17668 * This is called when an ill leaves the group. We want to delete 17669 * all IRE_CACHES whose stq is pointing at ill_wq or ire_ipif is 17670 * pointing at ill. 17671 */ 17672 static void 17673 illgrp_cache_delete(ire_t *ire, char *ill_arg) 17674 { 17675 ill_t *ill = (ill_t *)ill_arg; 17676 17677 ASSERT(IAM_WRITER_ILL(ill)); 17678 ASSERT(ill->ill_group == NULL); 17679 /* 17680 * We use MATCH_IRE_TYPE/IRE_CACHE while calling ire_walk_ill_v4. 17681 * Hence this should be IRE_CACHE. 17682 */ 17683 ASSERT(ire->ire_type == IRE_CACHE); 17684 /* 17685 * We are called for IRE_CACHES whose ire_stq and ire_ipif 17686 * matches ill. We are interested in both. 17687 */ 17688 ASSERT((ill == (ill_t *)ire->ire_stq->q_ptr) || 17689 (ire->ire_ipif->ipif_ill == ill)); 17690 17691 ire_delete(ire); 17692 } 17693 17694 /* 17695 * Initiate deallocate of an IPIF. Always called as writer. Called by 17696 * ill_delete or ip_sioctl_removeif. 17697 */ 17698 static void 17699 ipif_free(ipif_t *ipif) 17700 { 17701 ASSERT(IAM_WRITER_IPIF(ipif)); 17702 17703 /* Remove conn references */ 17704 reset_conn_ipif(ipif); 17705 17706 /* 17707 * Make sure we have valid net and subnet broadcast ire's for the 17708 * other ipif's which share them with this ipif. 17709 */ 17710 if (!ipif->ipif_isv6) 17711 ipif_check_bcast_ires(ipif); 17712 17713 /* 17714 * Take down the interface. We can be called either from ill_delete 17715 * or from ip_sioctl_removeif. 17716 */ 17717 (void) ipif_down(ipif, NULL, NULL); 17718 17719 rw_enter(&ill_g_lock, RW_WRITER); 17720 /* Remove pointers to this ill in the multicast routing tables */ 17721 reset_mrt_vif_ipif(ipif); 17722 rw_exit(&ill_g_lock); 17723 } 17724 17725 static void 17726 ipif_free_tail(ipif_t *ipif) 17727 { 17728 mblk_t *mp; 17729 ipif_t **ipifp; 17730 17731 /* 17732 * Free state for addition IRE_IF_[NO]RESOLVER ire's. 17733 */ 17734 mutex_enter(&ipif->ipif_saved_ire_lock); 17735 mp = ipif->ipif_saved_ire_mp; 17736 ipif->ipif_saved_ire_mp = NULL; 17737 mutex_exit(&ipif->ipif_saved_ire_lock); 17738 freemsg(mp); 17739 17740 /* 17741 * Need to hold both ill_g_lock and ill_lock while 17742 * inserting or removing an ipif from the linked list 17743 * of ipifs hanging off the ill. 17744 */ 17745 rw_enter(&ill_g_lock, RW_WRITER); 17746 /* 17747 * Remove all multicast memberships on the interface now. 17748 * This removes IPv4 multicast memberships joined within 17749 * the kernel as ipif_down does not do ipif_multicast_down 17750 * for IPv4. IPv6 is not handled here as the multicast memberships 17751 * are based on ill and not on ipif. 17752 */ 17753 ilm_free(ipif); 17754 17755 /* 17756 * Since we held the ill_g_lock while doing the ilm_free above, 17757 * we can assert the ilms were really deleted and not just marked 17758 * ILM_DELETED. 17759 */ 17760 ASSERT(ilm_walk_ipif(ipif) == 0); 17761 17762 17763 IPIF_TRACE_CLEANUP(ipif); 17764 17765 /* Ask SCTP to take it out of it list */ 17766 sctp_update_ipif(ipif, SCTP_IPIF_REMOVE); 17767 17768 mutex_enter(&ipif->ipif_ill->ill_lock); 17769 /* Get it out of the ILL interface list. */ 17770 ipifp = &ipif->ipif_ill->ill_ipif; 17771 for (; *ipifp != NULL; ipifp = &ipifp[0]->ipif_next) { 17772 if (*ipifp == ipif) { 17773 *ipifp = ipif->ipif_next; 17774 break; 17775 } 17776 } 17777 17778 mutex_exit(&ipif->ipif_ill->ill_lock); 17779 rw_exit(&ill_g_lock); 17780 17781 mutex_destroy(&ipif->ipif_saved_ire_lock); 17782 /* Free the memory. */ 17783 mi_free((char *)ipif); 17784 } 17785 17786 /* 17787 * Returns an ipif name in the form "ill_name/unit" if ipif_id is not zero, 17788 * "ill_name" otherwise. 17789 */ 17790 char * 17791 ipif_get_name(ipif_t *ipif, char *buf, int len) 17792 { 17793 char lbuf[32]; 17794 char *name; 17795 size_t name_len; 17796 17797 buf[0] = '\0'; 17798 if (!ipif) 17799 return (buf); 17800 name = ipif->ipif_ill->ill_name; 17801 name_len = ipif->ipif_ill->ill_name_length; 17802 if (ipif->ipif_id != 0) { 17803 (void) sprintf(lbuf, "%s%c%d", name, IPIF_SEPARATOR_CHAR, 17804 ipif->ipif_id); 17805 name = lbuf; 17806 name_len = mi_strlen(name) + 1; 17807 } 17808 len -= 1; 17809 buf[len] = '\0'; 17810 len = MIN(len, name_len); 17811 bcopy(name, buf, len); 17812 return (buf); 17813 } 17814 17815 /* 17816 * Find an IPIF based on the name passed in. Names can be of the 17817 * form <phys> (e.g., le0), <phys>:<#> (e.g., le0:1), 17818 * The <phys> string can have forms like <dev><#> (e.g., le0), 17819 * <dev><#>.<module> (e.g. le0.foo), or <dev>.<module><#> (e.g. ip.tun3). 17820 * When there is no colon, the implied unit id is zero. <phys> must 17821 * correspond to the name of an ILL. (May be called as writer.) 17822 */ 17823 static ipif_t * 17824 ipif_lookup_on_name(char *name, size_t namelen, boolean_t do_alloc, 17825 boolean_t *exists, boolean_t isv6, zoneid_t zoneid, queue_t *q, 17826 mblk_t *mp, ipsq_func_t func, int *error) 17827 { 17828 char *cp; 17829 char *endp; 17830 long id; 17831 ill_t *ill; 17832 ipif_t *ipif; 17833 uint_t ire_type; 17834 boolean_t did_alloc = B_FALSE; 17835 ipsq_t *ipsq; 17836 17837 if (error != NULL) 17838 *error = 0; 17839 17840 /* 17841 * If the caller wants to us to create the ipif, make sure we have a 17842 * valid zoneid 17843 */ 17844 ASSERT(!do_alloc || zoneid != ALL_ZONES); 17845 17846 if (namelen == 0) { 17847 if (error != NULL) 17848 *error = ENXIO; 17849 return (NULL); 17850 } 17851 17852 *exists = B_FALSE; 17853 /* Look for a colon in the name. */ 17854 endp = &name[namelen]; 17855 for (cp = endp; --cp > name; ) { 17856 if (*cp == IPIF_SEPARATOR_CHAR) 17857 break; 17858 } 17859 17860 if (*cp == IPIF_SEPARATOR_CHAR) { 17861 /* 17862 * Reject any non-decimal aliases for logical 17863 * interfaces. Aliases with leading zeroes 17864 * are also rejected as they introduce ambiguity 17865 * in the naming of the interfaces. 17866 * In order to confirm with existing semantics, 17867 * and to not break any programs/script relying 17868 * on that behaviour, if<0>:0 is considered to be 17869 * a valid interface. 17870 * 17871 * If alias has two or more digits and the first 17872 * is zero, fail. 17873 */ 17874 if (&cp[2] < endp && cp[1] == '0') 17875 return (NULL); 17876 } 17877 17878 if (cp <= name) { 17879 cp = endp; 17880 } else { 17881 *cp = '\0'; 17882 } 17883 17884 /* 17885 * Look up the ILL, based on the portion of the name 17886 * before the slash. ill_lookup_on_name returns a held ill. 17887 * Temporary to check whether ill exists already. If so 17888 * ill_lookup_on_name will clear it. 17889 */ 17890 ill = ill_lookup_on_name(name, do_alloc, isv6, 17891 q, mp, func, error, &did_alloc); 17892 if (cp != endp) 17893 *cp = IPIF_SEPARATOR_CHAR; 17894 if (ill == NULL) 17895 return (NULL); 17896 17897 /* Establish the unit number in the name. */ 17898 id = 0; 17899 if (cp < endp && *endp == '\0') { 17900 /* If there was a colon, the unit number follows. */ 17901 cp++; 17902 if (ddi_strtol(cp, NULL, 0, &id) != 0) { 17903 ill_refrele(ill); 17904 if (error != NULL) 17905 *error = ENXIO; 17906 return (NULL); 17907 } 17908 } 17909 17910 GRAB_CONN_LOCK(q); 17911 mutex_enter(&ill->ill_lock); 17912 /* Now see if there is an IPIF with this unit number. */ 17913 for (ipif = ill->ill_ipif; ipif; ipif = ipif->ipif_next) { 17914 if (ipif->ipif_id == id) { 17915 if (zoneid != ALL_ZONES && 17916 zoneid != ipif->ipif_zoneid) { 17917 mutex_exit(&ill->ill_lock); 17918 RELEASE_CONN_LOCK(q); 17919 ill_refrele(ill); 17920 if (error != NULL) 17921 *error = ENXIO; 17922 return (NULL); 17923 } 17924 /* 17925 * The block comment at the start of ipif_down 17926 * explains the use of the macros used below 17927 */ 17928 if (IPIF_CAN_LOOKUP(ipif)) { 17929 ipif_refhold_locked(ipif); 17930 mutex_exit(&ill->ill_lock); 17931 if (!did_alloc) 17932 *exists = B_TRUE; 17933 /* 17934 * Drop locks before calling ill_refrele 17935 * since it can potentially call into 17936 * ipif_ill_refrele_tail which can end up 17937 * in trying to acquire any lock. 17938 */ 17939 RELEASE_CONN_LOCK(q); 17940 ill_refrele(ill); 17941 return (ipif); 17942 } else if (IPIF_CAN_WAIT(ipif, q)) { 17943 ipsq = ill->ill_phyint->phyint_ipsq; 17944 mutex_enter(&ipsq->ipsq_lock); 17945 mutex_exit(&ill->ill_lock); 17946 ipsq_enq(ipsq, q, mp, func, NEW_OP, ill); 17947 mutex_exit(&ipsq->ipsq_lock); 17948 RELEASE_CONN_LOCK(q); 17949 ill_refrele(ill); 17950 *error = EINPROGRESS; 17951 return (NULL); 17952 } 17953 } 17954 } 17955 RELEASE_CONN_LOCK(q); 17956 17957 if (!do_alloc) { 17958 mutex_exit(&ill->ill_lock); 17959 ill_refrele(ill); 17960 if (error != NULL) 17961 *error = ENXIO; 17962 return (NULL); 17963 } 17964 17965 /* 17966 * If none found, atomically allocate and return a new one. 17967 * Historically, we used IRE_LOOPBACK only for lun 0, and IRE_LOCAL 17968 * to support "receive only" use of lo0:1 etc. as is still done 17969 * below as an initial guess. 17970 * However, this is now likely to be overriden later in ipif_up_done() 17971 * when we know for sure what address has been configured on the 17972 * interface, since we might have more than one loopback interface 17973 * with a loopback address, e.g. in the case of zones, and all the 17974 * interfaces with loopback addresses need to be marked IRE_LOOPBACK. 17975 */ 17976 if (ill->ill_net_type == IRE_LOOPBACK && id == 0) 17977 ire_type = IRE_LOOPBACK; 17978 else 17979 ire_type = IRE_LOCAL; 17980 ipif = ipif_allocate(ill, id, ire_type, B_TRUE); 17981 if (ipif != NULL) 17982 ipif_refhold_locked(ipif); 17983 else if (error != NULL) 17984 *error = ENOMEM; 17985 mutex_exit(&ill->ill_lock); 17986 ill_refrele(ill); 17987 return (ipif); 17988 } 17989 17990 /* 17991 * This routine is called whenever a new address comes up on an ipif. If 17992 * we are configured to respond to address mask requests, then we are supposed 17993 * to broadcast an address mask reply at this time. This routine is also 17994 * called if we are already up, but a netmask change is made. This is legal 17995 * but might not make the system manager very popular. (May be called 17996 * as writer.) 17997 */ 17998 static void 17999 ipif_mask_reply(ipif_t *ipif) 18000 { 18001 icmph_t *icmph; 18002 ipha_t *ipha; 18003 mblk_t *mp; 18004 18005 #define REPLY_LEN (sizeof (icmp_ipha) + sizeof (icmph_t) + IP_ADDR_LEN) 18006 18007 if (!ip_respond_to_address_mask_broadcast) 18008 return; 18009 18010 /* ICMP mask reply is IPv4 only */ 18011 ASSERT(!ipif->ipif_isv6); 18012 /* ICMP mask reply is not for a loopback interface */ 18013 ASSERT(ipif->ipif_ill->ill_wq != NULL); 18014 18015 mp = allocb(REPLY_LEN, BPRI_HI); 18016 if (mp == NULL) 18017 return; 18018 mp->b_wptr = mp->b_rptr + REPLY_LEN; 18019 18020 ipha = (ipha_t *)mp->b_rptr; 18021 bzero(ipha, REPLY_LEN); 18022 *ipha = icmp_ipha; 18023 ipha->ipha_ttl = ip_broadcast_ttl; 18024 ipha->ipha_src = ipif->ipif_src_addr; 18025 ipha->ipha_dst = ipif->ipif_brd_addr; 18026 ipha->ipha_length = htons(REPLY_LEN); 18027 ipha->ipha_ident = 0; 18028 18029 icmph = (icmph_t *)&ipha[1]; 18030 icmph->icmph_type = ICMP_ADDRESS_MASK_REPLY; 18031 bcopy(&ipif->ipif_net_mask, &icmph[1], IP_ADDR_LEN); 18032 icmph->icmph_checksum = IP_CSUM(mp, sizeof (ipha_t), 0); 18033 18034 put(ipif->ipif_wq, mp); 18035 18036 #undef REPLY_LEN 18037 } 18038 18039 /* 18040 * When the mtu in the ipif changes, we call this routine through ire_walk 18041 * to update all the relevant IREs. 18042 * Skip IRE_LOCAL and "loopback" IRE_BROADCAST by checking ire_stq. 18043 */ 18044 static void 18045 ipif_mtu_change(ire_t *ire, char *ipif_arg) 18046 { 18047 ipif_t *ipif = (ipif_t *)ipif_arg; 18048 18049 if (ire->ire_stq == NULL || ire->ire_ipif != ipif) 18050 return; 18051 ire->ire_max_frag = MIN(ipif->ipif_mtu, IP_MAXPACKET); 18052 } 18053 18054 /* 18055 * When the mtu in the ill changes, we call this routine through ire_walk 18056 * to update all the relevant IREs. 18057 * Skip IRE_LOCAL and "loopback" IRE_BROADCAST by checking ire_stq. 18058 */ 18059 void 18060 ill_mtu_change(ire_t *ire, char *ill_arg) 18061 { 18062 ill_t *ill = (ill_t *)ill_arg; 18063 18064 if (ire->ire_stq == NULL || ire->ire_ipif->ipif_ill != ill) 18065 return; 18066 ire->ire_max_frag = ire->ire_ipif->ipif_mtu; 18067 } 18068 18069 /* 18070 * Join the ipif specific multicast groups. 18071 * Must be called after a mapping has been set up in the resolver. (Always 18072 * called as writer.) 18073 */ 18074 void 18075 ipif_multicast_up(ipif_t *ipif) 18076 { 18077 int err, index; 18078 ill_t *ill; 18079 18080 ASSERT(IAM_WRITER_IPIF(ipif)); 18081 18082 ill = ipif->ipif_ill; 18083 index = ill->ill_phyint->phyint_ifindex; 18084 18085 ip1dbg(("ipif_multicast_up\n")); 18086 if (!(ill->ill_flags & ILLF_MULTICAST) || ipif->ipif_multicast_up) 18087 return; 18088 18089 if (ipif->ipif_isv6) { 18090 if (IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6lcl_addr)) 18091 return; 18092 18093 /* Join the all hosts multicast address */ 18094 ip1dbg(("ipif_multicast_up - addmulti\n")); 18095 /* 18096 * Passing B_TRUE means we have to join the multicast 18097 * membership on this interface even though this is 18098 * FAILED. If we join on a different one in the group, 18099 * we will not be able to delete the membership later 18100 * as we currently don't track where we join when we 18101 * join within the kernel unlike applications where 18102 * we have ilg/ilg_orig_index. See ip_addmulti_v6 18103 * for more on this. 18104 */ 18105 err = ip_addmulti_v6(&ipv6_all_hosts_mcast, ill, index, 18106 ipif->ipif_zoneid, ILGSTAT_NONE, MODE_IS_EXCLUDE, NULL); 18107 if (err != 0) { 18108 ip0dbg(("ipif_multicast_up: " 18109 "all_hosts_mcast failed %d\n", 18110 err)); 18111 return; 18112 } 18113 /* 18114 * Enable multicast for the solicited node multicast address 18115 */ 18116 if (!(ipif->ipif_flags & IPIF_NOLOCAL)) { 18117 in6_addr_t ipv6_multi = ipv6_solicited_node_mcast; 18118 18119 ipv6_multi.s6_addr32[3] |= 18120 ipif->ipif_v6lcl_addr.s6_addr32[3]; 18121 18122 err = ip_addmulti_v6(&ipv6_multi, ill, index, 18123 ipif->ipif_zoneid, ILGSTAT_NONE, MODE_IS_EXCLUDE, 18124 NULL); 18125 if (err != 0) { 18126 ip0dbg(("ipif_multicast_up: solicited MC" 18127 " failed %d\n", err)); 18128 (void) ip_delmulti_v6(&ipv6_all_hosts_mcast, 18129 ill, ill->ill_phyint->phyint_ifindex, 18130 ipif->ipif_zoneid, B_TRUE, B_TRUE); 18131 return; 18132 } 18133 } 18134 } else { 18135 if (ipif->ipif_lcl_addr == INADDR_ANY) 18136 return; 18137 18138 /* Join the all hosts multicast address */ 18139 ip1dbg(("ipif_multicast_up - addmulti\n")); 18140 err = ip_addmulti(htonl(INADDR_ALLHOSTS_GROUP), ipif, 18141 ILGSTAT_NONE, MODE_IS_EXCLUDE, NULL); 18142 if (err) { 18143 ip0dbg(("ipif_multicast_up: failed %d\n", err)); 18144 return; 18145 } 18146 } 18147 ipif->ipif_multicast_up = 1; 18148 } 18149 18150 /* 18151 * Blow away any IPv6 multicast groups that we joined in ipif_multicast_up(); 18152 * any explicit memberships are blown away in ill_leave_multicast() when the 18153 * ill is brought down. 18154 */ 18155 static void 18156 ipif_multicast_down(ipif_t *ipif) 18157 { 18158 int err; 18159 18160 ASSERT(IAM_WRITER_IPIF(ipif)); 18161 18162 ip1dbg(("ipif_multicast_down\n")); 18163 if (!ipif->ipif_multicast_up) 18164 return; 18165 18166 ASSERT(ipif->ipif_isv6); 18167 18168 ip1dbg(("ipif_multicast_down - delmulti\n")); 18169 18170 /* 18171 * Leave the all hosts multicast address. Similar to ip_addmulti_v6, 18172 * we should look for ilms on this ill rather than the ones that have 18173 * been failed over here. They are here temporarily. As 18174 * ipif_multicast_up has joined on this ill, we should delete only 18175 * from this ill. 18176 */ 18177 err = ip_delmulti_v6(&ipv6_all_hosts_mcast, ipif->ipif_ill, 18178 ipif->ipif_ill->ill_phyint->phyint_ifindex, ipif->ipif_zoneid, 18179 B_TRUE, B_TRUE); 18180 if (err != 0) { 18181 ip0dbg(("ipif_multicast_down: all_hosts_mcast failed %d\n", 18182 err)); 18183 } 18184 /* 18185 * Disable multicast for the solicited node multicast address 18186 */ 18187 if (!(ipif->ipif_flags & IPIF_NOLOCAL)) { 18188 in6_addr_t ipv6_multi = ipv6_solicited_node_mcast; 18189 18190 ipv6_multi.s6_addr32[3] |= 18191 ipif->ipif_v6lcl_addr.s6_addr32[3]; 18192 18193 err = ip_delmulti_v6(&ipv6_multi, ipif->ipif_ill, 18194 ipif->ipif_ill->ill_phyint->phyint_ifindex, 18195 ipif->ipif_zoneid, B_TRUE, B_TRUE); 18196 18197 if (err != 0) { 18198 ip0dbg(("ipif_multicast_down: sol MC failed %d\n", 18199 err)); 18200 } 18201 } 18202 18203 ipif->ipif_multicast_up = 0; 18204 } 18205 18206 /* 18207 * Used when an interface comes up to recreate any extra routes on this 18208 * interface. 18209 */ 18210 static ire_t ** 18211 ipif_recover_ire(ipif_t *ipif) 18212 { 18213 mblk_t *mp; 18214 ire_t **ipif_saved_irep; 18215 ire_t **irep; 18216 18217 ip1dbg(("ipif_recover_ire(%s:%u)", ipif->ipif_ill->ill_name, 18218 ipif->ipif_id)); 18219 18220 mutex_enter(&ipif->ipif_saved_ire_lock); 18221 ipif_saved_irep = (ire_t **)kmem_zalloc(sizeof (ire_t *) * 18222 ipif->ipif_saved_ire_cnt, KM_NOSLEEP); 18223 if (ipif_saved_irep == NULL) { 18224 mutex_exit(&ipif->ipif_saved_ire_lock); 18225 return (NULL); 18226 } 18227 18228 irep = ipif_saved_irep; 18229 for (mp = ipif->ipif_saved_ire_mp; mp != NULL; mp = mp->b_cont) { 18230 ire_t *ire; 18231 queue_t *rfq; 18232 queue_t *stq; 18233 ifrt_t *ifrt; 18234 uchar_t *src_addr; 18235 uchar_t *gateway_addr; 18236 mblk_t *resolver_mp; 18237 ushort_t type; 18238 18239 /* 18240 * When the ire was initially created and then added in 18241 * ip_rt_add(), it was created either using ipif->ipif_net_type 18242 * in the case of a traditional interface route, or as one of 18243 * the IRE_OFFSUBNET types (with the exception of 18244 * IRE_HOST_REDIRECT which is created by icmp_redirect() and 18245 * which we don't need to save or recover). In the case where 18246 * ipif->ipif_net_type was IRE_LOOPBACK, ip_rt_add() will update 18247 * the ire_type to IRE_IF_NORESOLVER before calling ire_add() 18248 * to satisfy software like GateD and Sun Cluster which creates 18249 * routes using the the loopback interface's address as a 18250 * gateway. 18251 * 18252 * As ifrt->ifrt_type reflects the already updated ire_type and 18253 * since ire_create() expects that IRE_IF_NORESOLVER will have 18254 * a valid ire_dlureq_mp field (which doesn't make sense for a 18255 * IRE_LOOPBACK), ire_create() will be called in the same way 18256 * here as in ip_rt_add(), namely using ipif->ipif_net_type when 18257 * the route looks like a traditional interface route (where 18258 * ifrt->ifrt_type & IRE_INTERFACE is true) and otherwise using 18259 * the saved ifrt->ifrt_type. This means that in the case where 18260 * ipif->ipif_net_type is IRE_LOOPBACK, the ire created by 18261 * ire_create() will be an IRE_LOOPBACK, it will then be turned 18262 * into an IRE_IF_NORESOLVER and then added by ire_add(). 18263 */ 18264 ifrt = (ifrt_t *)mp->b_rptr; 18265 if (ifrt->ifrt_type & IRE_INTERFACE) { 18266 rfq = NULL; 18267 stq = (ipif->ipif_net_type == IRE_IF_RESOLVER) 18268 ? ipif->ipif_rq : ipif->ipif_wq; 18269 src_addr = (ifrt->ifrt_flags & RTF_SETSRC) 18270 ? (uint8_t *)&ifrt->ifrt_src_addr 18271 : (uint8_t *)&ipif->ipif_src_addr; 18272 gateway_addr = NULL; 18273 resolver_mp = ipif->ipif_resolver_mp; 18274 type = ipif->ipif_net_type; 18275 } else if (ifrt->ifrt_type & IRE_BROADCAST) { 18276 /* Recover multiroute broadcast IRE. */ 18277 rfq = ipif->ipif_rq; 18278 stq = ipif->ipif_wq; 18279 src_addr = (ifrt->ifrt_flags & RTF_SETSRC) 18280 ? (uint8_t *)&ifrt->ifrt_src_addr 18281 : (uint8_t *)&ipif->ipif_src_addr; 18282 gateway_addr = (uint8_t *)&ifrt->ifrt_gateway_addr; 18283 resolver_mp = ipif->ipif_bcast_mp; 18284 type = ifrt->ifrt_type; 18285 } else { 18286 rfq = NULL; 18287 stq = NULL; 18288 src_addr = (ifrt->ifrt_flags & RTF_SETSRC) 18289 ? (uint8_t *)&ifrt->ifrt_src_addr : NULL; 18290 gateway_addr = (uint8_t *)&ifrt->ifrt_gateway_addr; 18291 resolver_mp = NULL; 18292 type = ifrt->ifrt_type; 18293 } 18294 18295 /* 18296 * Create a copy of the IRE with the saved address and netmask. 18297 */ 18298 ip1dbg(("ipif_recover_ire: creating IRE %s (%d) for " 18299 "0x%x/0x%x\n", 18300 ip_nv_lookup(ire_nv_tbl, ifrt->ifrt_type), ifrt->ifrt_type, 18301 ntohl(ifrt->ifrt_addr), 18302 ntohl(ifrt->ifrt_mask))); 18303 ire = ire_create( 18304 (uint8_t *)&ifrt->ifrt_addr, 18305 (uint8_t *)&ifrt->ifrt_mask, 18306 src_addr, 18307 gateway_addr, 18308 NULL, 18309 &ifrt->ifrt_max_frag, 18310 NULL, 18311 rfq, 18312 stq, 18313 type, 18314 resolver_mp, 18315 ipif, 18316 NULL, 18317 0, 18318 0, 18319 0, 18320 ifrt->ifrt_flags, 18321 &ifrt->ifrt_iulp_info); 18322 18323 if (ire == NULL) { 18324 mutex_exit(&ipif->ipif_saved_ire_lock); 18325 kmem_free(ipif_saved_irep, 18326 ipif->ipif_saved_ire_cnt * sizeof (ire_t *)); 18327 return (NULL); 18328 } 18329 18330 /* 18331 * Some software (for example, GateD and Sun Cluster) attempts 18332 * to create (what amount to) IRE_PREFIX routes with the 18333 * loopback address as the gateway. This is primarily done to 18334 * set up prefixes with the RTF_REJECT flag set (for example, 18335 * when generating aggregate routes.) 18336 * 18337 * If the IRE type (as defined by ipif->ipif_net_type) is 18338 * IRE_LOOPBACK, then we map the request into a 18339 * IRE_IF_NORESOLVER. 18340 */ 18341 if (ipif->ipif_net_type == IRE_LOOPBACK) 18342 ire->ire_type = IRE_IF_NORESOLVER; 18343 /* 18344 * ire held by ire_add, will be refreled' towards the 18345 * the end of ipif_up_done 18346 */ 18347 (void) ire_add(&ire, NULL, NULL, NULL); 18348 *irep = ire; 18349 irep++; 18350 ip1dbg(("ipif_recover_ire: added ire %p\n", (void *)ire)); 18351 } 18352 mutex_exit(&ipif->ipif_saved_ire_lock); 18353 return (ipif_saved_irep); 18354 } 18355 18356 /* 18357 * Used to set the netmask and broadcast address to default values when the 18358 * interface is brought up. (Always called as writer.) 18359 */ 18360 static void 18361 ipif_set_default(ipif_t *ipif) 18362 { 18363 ASSERT(MUTEX_HELD(&ipif->ipif_ill->ill_lock)); 18364 18365 if (!ipif->ipif_isv6) { 18366 /* 18367 * Interface holds an IPv4 address. Default 18368 * mask is the natural netmask. 18369 */ 18370 if (!ipif->ipif_net_mask) { 18371 ipaddr_t v4mask; 18372 18373 v4mask = ip_net_mask(ipif->ipif_lcl_addr); 18374 V4MASK_TO_V6(v4mask, ipif->ipif_v6net_mask); 18375 } 18376 if (ipif->ipif_flags & IPIF_POINTOPOINT) { 18377 /* ipif_subnet is ipif_pp_dst_addr for pt-pt */ 18378 ipif->ipif_v6subnet = ipif->ipif_v6pp_dst_addr; 18379 } else { 18380 V6_MASK_COPY(ipif->ipif_v6lcl_addr, 18381 ipif->ipif_v6net_mask, ipif->ipif_v6subnet); 18382 } 18383 /* 18384 * NOTE: SunOS 4.X does this even if the broadcast address 18385 * has been already set thus we do the same here. 18386 */ 18387 if (ipif->ipif_flags & IPIF_BROADCAST) { 18388 ipaddr_t v4addr; 18389 18390 v4addr = ipif->ipif_subnet | ~ipif->ipif_net_mask; 18391 IN6_IPADDR_TO_V4MAPPED(v4addr, &ipif->ipif_v6brd_addr); 18392 } 18393 } else { 18394 /* 18395 * Interface holds an IPv6-only address. Default 18396 * mask is all-ones. 18397 */ 18398 if (IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6net_mask)) 18399 ipif->ipif_v6net_mask = ipv6_all_ones; 18400 if (ipif->ipif_flags & IPIF_POINTOPOINT) { 18401 /* ipif_subnet is ipif_pp_dst_addr for pt-pt */ 18402 ipif->ipif_v6subnet = ipif->ipif_v6pp_dst_addr; 18403 } else { 18404 V6_MASK_COPY(ipif->ipif_v6lcl_addr, 18405 ipif->ipif_v6net_mask, ipif->ipif_v6subnet); 18406 } 18407 } 18408 } 18409 18410 /* 18411 * Return 0 if this address can be used as local address without causing 18412 * duplicate address problems. Otherwise, return EADDRNOTAVAIL if the address 18413 * is already up on a different ill, and EADDRINUSE if it's up on the same ill. 18414 * Special checks are needed to allow the same IPv6 link-local address 18415 * on different ills. 18416 * TODO: allowing the same site-local address on different ill's. 18417 */ 18418 int 18419 ip_addr_availability_check(ipif_t *new_ipif) 18420 { 18421 in6_addr_t our_v6addr; 18422 ill_t *ill; 18423 ipif_t *ipif; 18424 ill_walk_context_t ctx; 18425 18426 ASSERT(IAM_WRITER_IPIF(new_ipif)); 18427 ASSERT(MUTEX_HELD(&ip_addr_avail_lock)); 18428 ASSERT(RW_READ_HELD(&ill_g_lock)); 18429 18430 new_ipif->ipif_flags &= ~IPIF_UNNUMBERED; 18431 if (IN6_IS_ADDR_UNSPECIFIED(&new_ipif->ipif_v6lcl_addr) || 18432 IN6_IS_ADDR_V4MAPPED_ANY(&new_ipif->ipif_v6lcl_addr)) 18433 return (0); 18434 18435 our_v6addr = new_ipif->ipif_v6lcl_addr; 18436 18437 if (new_ipif->ipif_isv6) 18438 ill = ILL_START_WALK_V6(&ctx); 18439 else 18440 ill = ILL_START_WALK_V4(&ctx); 18441 18442 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 18443 for (ipif = ill->ill_ipif; ipif != NULL; 18444 ipif = ipif->ipif_next) { 18445 if ((ipif == new_ipif) || 18446 !(ipif->ipif_flags & IPIF_UP) || 18447 (ipif->ipif_flags & IPIF_UNNUMBERED)) 18448 continue; 18449 if (IN6_ARE_ADDR_EQUAL(&ipif->ipif_v6lcl_addr, 18450 &our_v6addr)) { 18451 if (new_ipif->ipif_flags & IPIF_POINTOPOINT) 18452 new_ipif->ipif_flags |= IPIF_UNNUMBERED; 18453 else if (ipif->ipif_flags & IPIF_POINTOPOINT) 18454 ipif->ipif_flags |= IPIF_UNNUMBERED; 18455 else if (IN6_IS_ADDR_LINKLOCAL(&our_v6addr) && 18456 new_ipif->ipif_ill != ill) 18457 continue; 18458 else if (IN6_IS_ADDR_SITELOCAL(&our_v6addr) && 18459 new_ipif->ipif_ill != ill) 18460 continue; 18461 else if (new_ipif->ipif_zoneid != 18462 ipif->ipif_zoneid && 18463 (ill->ill_phyint->phyint_flags & 18464 PHYI_LOOPBACK)) 18465 continue; 18466 else if (new_ipif->ipif_ill == ill) 18467 return (EADDRINUSE); 18468 else 18469 return (EADDRNOTAVAIL); 18470 } 18471 } 18472 } 18473 18474 return (0); 18475 } 18476 18477 /* 18478 * Bring up an ipif: bring up arp/ndp, bring up the DLPI stream, and add 18479 * IREs for the ipif. 18480 * When the routine returns EINPROGRESS then mp has been consumed and 18481 * the ioctl will be acked from ip_rput_dlpi. 18482 */ 18483 static int 18484 ipif_up(ipif_t *ipif, queue_t *q, mblk_t *mp) 18485 { 18486 ill_t *ill = ipif->ipif_ill; 18487 boolean_t isv6 = ipif->ipif_isv6; 18488 int err = 0; 18489 boolean_t success; 18490 18491 ASSERT(IAM_WRITER_IPIF(ipif)); 18492 18493 ip1dbg(("ipif_up(%s:%u)\n", ill->ill_name, ipif->ipif_id)); 18494 18495 /* Shouldn't get here if it is already up. */ 18496 if (ipif->ipif_flags & IPIF_UP) 18497 return (EALREADY); 18498 18499 /* Skip arp/ndp for any loopback interface. */ 18500 if (ill->ill_wq != NULL) { 18501 conn_t *connp = Q_TO_CONN(q); 18502 ipsq_t *ipsq = ill->ill_phyint->phyint_ipsq; 18503 18504 if (!ill->ill_dl_up) { 18505 /* 18506 * ill_dl_up is not yet set. i.e. we are yet to 18507 * DL_BIND with the driver and this is the first 18508 * logical interface on the ill to become "up". 18509 * Tell the driver to get going (via DL_BIND_REQ). 18510 * Note that changing "significant" IFF_ flags 18511 * address/netmask etc cause a down/up dance, but 18512 * does not cause an unbind (DL_UNBIND) with the driver 18513 */ 18514 return (ill_dl_up(ill, ipif, mp, q)); 18515 } 18516 18517 /* 18518 * ipif_resolver_up may end up sending an 18519 * AR_INTERFACE_UP message to ARP, which would, in 18520 * turn send a DLPI message to the driver. ioctls are 18521 * serialized and so we cannot send more than one 18522 * interface up message at a time. If ipif_resolver_up 18523 * does send an interface up message to ARP, we get 18524 * EINPROGRESS and we will complete in ip_arp_done. 18525 */ 18526 18527 ASSERT(connp != NULL); 18528 ASSERT(ipsq->ipsq_pending_mp == NULL); 18529 mutex_enter(&connp->conn_lock); 18530 mutex_enter(&ill->ill_lock); 18531 success = ipsq_pending_mp_add(connp, ipif, q, mp, 0); 18532 mutex_exit(&ill->ill_lock); 18533 mutex_exit(&connp->conn_lock); 18534 if (!success) 18535 return (EINTR); 18536 18537 /* 18538 * Crank up IPv6 neighbor discovery 18539 * Unlike ARP, this should complete when 18540 * ipif_ndp_up returns. However, for 18541 * ILLF_XRESOLV interfaces we also send a 18542 * AR_INTERFACE_UP to the external resolver. 18543 * That ioctl will complete in ip_rput. 18544 */ 18545 if (isv6) { 18546 err = ipif_ndp_up(ipif, &ipif->ipif_v6lcl_addr, 18547 B_FALSE); 18548 if (err != 0) { 18549 mp = ipsq_pending_mp_get(ipsq, &connp); 18550 return (err); 18551 } 18552 } 18553 /* Now, ARP */ 18554 if ((err = ipif_resolver_up(ipif, B_FALSE)) == 18555 EINPROGRESS) { 18556 /* We will complete it in ip_arp_done */ 18557 return (err); 18558 } 18559 mp = ipsq_pending_mp_get(ipsq, &connp); 18560 ASSERT(mp != NULL); 18561 if (err != 0) 18562 return (err); 18563 } 18564 return (isv6 ? ipif_up_done_v6(ipif) : ipif_up_done(ipif)); 18565 } 18566 18567 /* 18568 * Perform a bind for the physical device. 18569 * When the routine returns EINPROGRESS then mp has been consumed and 18570 * the ioctl will be acked from ip_rput_dlpi. 18571 * Allocate an unbind message and save it until ipif_down. 18572 */ 18573 static int 18574 ill_dl_up(ill_t *ill, ipif_t *ipif, mblk_t *mp, queue_t *q) 18575 { 18576 mblk_t *areq_mp = NULL; 18577 mblk_t *bind_mp = NULL; 18578 mblk_t *unbind_mp = NULL; 18579 conn_t *connp; 18580 boolean_t success; 18581 18582 ip1dbg(("ill_dl_up(%s)\n", ill->ill_name)); 18583 ASSERT(IAM_WRITER_ILL(ill)); 18584 18585 ASSERT(mp != NULL); 18586 18587 /* Create a resolver cookie for ARP */ 18588 if (!ill->ill_isv6 && ill->ill_net_type == IRE_IF_RESOLVER) { 18589 areq_t *areq; 18590 uint16_t sap_addr; 18591 18592 areq_mp = ill_arp_alloc(ill, 18593 (uchar_t *)&ip_areq_template, 0); 18594 if (areq_mp == NULL) { 18595 return (ENOMEM); 18596 } 18597 freemsg(ill->ill_resolver_mp); 18598 ill->ill_resolver_mp = areq_mp; 18599 areq = (areq_t *)areq_mp->b_rptr; 18600 sap_addr = ill->ill_sap; 18601 bcopy(&sap_addr, areq->areq_sap, sizeof (sap_addr)); 18602 /* 18603 * Wait till we call ill_pending_mp_add to determine 18604 * the success before we free the ill_resolver_mp and 18605 * attach areq_mp in it's place. 18606 */ 18607 } 18608 bind_mp = ip_dlpi_alloc(sizeof (dl_bind_req_t) + sizeof (long), 18609 DL_BIND_REQ); 18610 if (bind_mp == NULL) 18611 goto bad; 18612 ((dl_bind_req_t *)bind_mp->b_rptr)->dl_sap = ill->ill_sap; 18613 ((dl_bind_req_t *)bind_mp->b_rptr)->dl_service_mode = DL_CLDLS; 18614 18615 unbind_mp = ip_dlpi_alloc(sizeof (dl_unbind_req_t), DL_UNBIND_REQ); 18616 if (unbind_mp == NULL) 18617 goto bad; 18618 18619 /* 18620 * Record state needed to complete this operation when the 18621 * DL_BIND_ACK shows up. Also remember the pre-allocated mblks. 18622 */ 18623 if (WR(q)->q_next == NULL) { 18624 connp = Q_TO_CONN(q); 18625 mutex_enter(&connp->conn_lock); 18626 } else { 18627 connp = NULL; 18628 } 18629 mutex_enter(&ipif->ipif_ill->ill_lock); 18630 success = ipsq_pending_mp_add(connp, ipif, q, mp, 0); 18631 mutex_exit(&ipif->ipif_ill->ill_lock); 18632 if (connp != NULL) 18633 mutex_exit(&connp->conn_lock); 18634 if (!success) 18635 goto bad; 18636 18637 /* 18638 * Save the unbind message for ill_dl_down(); it will be consumed when 18639 * the interface goes down. 18640 */ 18641 ASSERT(ill->ill_unbind_mp == NULL); 18642 ill->ill_unbind_mp = unbind_mp; 18643 18644 ill_dlpi_send(ill, bind_mp); 18645 /* Send down link-layer capabilities probe if not already done. */ 18646 ill_capability_probe(ill); 18647 18648 /* 18649 * Sysid used to rely on the fact that netboots set domainname 18650 * and the like. Now that miniroot boots aren't strictly netboots 18651 * and miniroot network configuration is driven from userland 18652 * these things still need to be set. This situation can be detected 18653 * by comparing the interface being configured here to the one 18654 * dhcack was set to reference by the boot loader. Once sysid is 18655 * converted to use dhcp_ipc_getinfo() this call can go away. 18656 */ 18657 if ((ipif->ipif_flags & IPIF_DHCPRUNNING) && (dhcack != NULL) && 18658 (strcmp(ill->ill_name, dhcack) == 0) && 18659 (strlen(srpc_domain) == 0)) { 18660 if (dhcpinit() != 0) 18661 cmn_err(CE_WARN, "no cached dhcp response"); 18662 } 18663 18664 /* 18665 * This operation will complete in ip_rput_dlpi with either 18666 * a DL_BIND_ACK or DL_ERROR_ACK. 18667 */ 18668 return (EINPROGRESS); 18669 bad: 18670 ip1dbg(("ill_dl_up(%s) FAILED\n", ill->ill_name)); 18671 /* 18672 * We don't have to check for possible removal from illgrp 18673 * as we have not yet inserted in illgrp. For groups 18674 * without names, this ipif is still not UP and hence 18675 * this could not have possibly had any influence in forming 18676 * groups. 18677 */ 18678 18679 if (bind_mp != NULL) 18680 freemsg(bind_mp); 18681 if (unbind_mp != NULL) 18682 freemsg(unbind_mp); 18683 return (ENOMEM); 18684 } 18685 18686 uint_t ip_loopback_mtuplus = IP_LOOPBACK_MTU + IP_SIMPLE_HDR_LENGTH + 20; 18687 18688 /* 18689 * DLPI and ARP is up. 18690 * Create all the IREs associated with an interface bring up multicast. 18691 * Set the interface flag and finish other initialization 18692 * that potentially had to be differed to after DL_BIND_ACK. 18693 */ 18694 int 18695 ipif_up_done(ipif_t *ipif) 18696 { 18697 ire_t *ire_array[20]; 18698 ire_t **irep = ire_array; 18699 ire_t **irep1; 18700 ipaddr_t net_mask = 0; 18701 ipaddr_t subnet_mask, route_mask; 18702 ill_t *ill = ipif->ipif_ill; 18703 queue_t *stq; 18704 ipif_t *src_ipif; 18705 ipif_t *tmp_ipif; 18706 boolean_t flush_ire_cache = B_TRUE; 18707 int err = 0; 18708 phyint_t *phyi; 18709 ire_t **ipif_saved_irep = NULL; 18710 int ipif_saved_ire_cnt; 18711 int cnt; 18712 boolean_t src_ipif_held = B_FALSE; 18713 boolean_t ire_added = B_FALSE; 18714 boolean_t loopback = B_FALSE; 18715 18716 ip1dbg(("ipif_up_done(%s:%u)\n", 18717 ipif->ipif_ill->ill_name, ipif->ipif_id)); 18718 /* Check if this is a loopback interface */ 18719 if (ipif->ipif_ill->ill_wq == NULL) 18720 loopback = B_TRUE; 18721 18722 ASSERT(!MUTEX_HELD(&ipif->ipif_ill->ill_lock)); 18723 /* 18724 * If all other interfaces for this ill are down or DEPRECATED, 18725 * or otherwise unsuitable for source address selection, remove 18726 * any IRE_CACHE entries for this ill to make sure source 18727 * address selection gets to take this new ipif into account. 18728 * No need to hold ill_lock while traversing the ipif list since 18729 * we are writer 18730 */ 18731 for (tmp_ipif = ill->ill_ipif; tmp_ipif; 18732 tmp_ipif = tmp_ipif->ipif_next) { 18733 if (((tmp_ipif->ipif_flags & 18734 (IPIF_NOXMIT|IPIF_ANYCAST|IPIF_NOLOCAL|IPIF_DEPRECATED)) || 18735 !(tmp_ipif->ipif_flags & IPIF_UP)) || 18736 (tmp_ipif == ipif)) 18737 continue; 18738 /* first useable pre-existing interface */ 18739 flush_ire_cache = B_FALSE; 18740 break; 18741 } 18742 if (flush_ire_cache) 18743 ire_walk_ill_v4(MATCH_IRE_ILL_GROUP | MATCH_IRE_TYPE, 18744 IRE_CACHE, ill_ipif_cache_delete, (char *)ill, ill); 18745 18746 /* 18747 * Figure out which way the send-to queue should go. Only 18748 * IRE_IF_RESOLVER or IRE_IF_NORESOLVER or IRE_LOOPBACK 18749 * should show up here. 18750 */ 18751 switch (ill->ill_net_type) { 18752 case IRE_IF_RESOLVER: 18753 stq = ill->ill_rq; 18754 break; 18755 case IRE_IF_NORESOLVER: 18756 case IRE_LOOPBACK: 18757 stq = ill->ill_wq; 18758 break; 18759 default: 18760 return (EINVAL); 18761 } 18762 18763 if (ill->ill_phyint->phyint_flags & PHYI_LOOPBACK) { 18764 /* 18765 * lo0:1 and subsequent ipifs were marked IRE_LOCAL in 18766 * ipif_lookup_on_name(), but in the case of zones we can have 18767 * several loopback addresses on lo0. So all the interfaces with 18768 * loopback addresses need to be marked IRE_LOOPBACK. 18769 */ 18770 if (V4_PART_OF_V6(ipif->ipif_v6lcl_addr) == 18771 htonl(INADDR_LOOPBACK)) 18772 ipif->ipif_ire_type = IRE_LOOPBACK; 18773 else 18774 ipif->ipif_ire_type = IRE_LOCAL; 18775 } 18776 18777 if (ipif->ipif_flags & (IPIF_NOLOCAL|IPIF_ANYCAST|IPIF_DEPRECATED)) { 18778 /* 18779 * Can't use our source address. Select a different 18780 * source address for the IRE_INTERFACE and IRE_LOCAL 18781 */ 18782 src_ipif = ipif_select_source(ipif->ipif_ill, 18783 ipif->ipif_subnet, ipif->ipif_zoneid); 18784 if (src_ipif == NULL) 18785 src_ipif = ipif; /* Last resort */ 18786 else 18787 src_ipif_held = B_TRUE; 18788 } else { 18789 src_ipif = ipif; 18790 } 18791 18792 /* Create all the IREs associated with this interface */ 18793 if ((ipif->ipif_lcl_addr != INADDR_ANY) && 18794 !(ipif->ipif_flags & IPIF_NOLOCAL)) { 18795 /* Register the source address for __sin6_src_id */ 18796 err = ip_srcid_insert(&ipif->ipif_v6lcl_addr, 18797 ipif->ipif_zoneid); 18798 if (err != 0) { 18799 ip0dbg(("ipif_up_done: srcid_insert %d\n", err)); 18800 return (err); 18801 } 18802 /* If the interface address is set, create the local IRE. */ 18803 ip1dbg(("ipif_up_done: 0x%p creating IRE 0x%x for 0x%x\n", 18804 (void *)ipif, 18805 ipif->ipif_ire_type, 18806 ntohl(ipif->ipif_lcl_addr))); 18807 *irep++ = ire_create( 18808 (uchar_t *)&ipif->ipif_lcl_addr, /* dest address */ 18809 (uchar_t *)&ip_g_all_ones, /* mask */ 18810 (uchar_t *)&src_ipif->ipif_src_addr, /* source address */ 18811 NULL, /* no gateway */ 18812 NULL, 18813 &ip_loopback_mtuplus, /* max frag size */ 18814 NULL, 18815 ipif->ipif_rq, /* recv-from queue */ 18816 NULL, /* no send-to queue */ 18817 ipif->ipif_ire_type, /* LOCAL or LOOPBACK */ 18818 NULL, 18819 ipif, 18820 NULL, 18821 0, 18822 0, 18823 0, 18824 (ipif->ipif_flags & IPIF_PRIVATE) ? 18825 RTF_PRIVATE : 0, 18826 &ire_uinfo_null); 18827 } else { 18828 ip1dbg(( 18829 "ipif_up_done: not creating IRE %d for 0x%x: flags 0x%x\n", 18830 ipif->ipif_ire_type, 18831 ntohl(ipif->ipif_lcl_addr), 18832 (uint_t)ipif->ipif_flags)); 18833 } 18834 if ((ipif->ipif_lcl_addr != INADDR_ANY) && 18835 !(ipif->ipif_flags & IPIF_NOLOCAL)) { 18836 net_mask = ip_net_mask(ipif->ipif_lcl_addr); 18837 } else { 18838 net_mask = htonl(IN_CLASSA_NET); /* fallback */ 18839 } 18840 18841 subnet_mask = ipif->ipif_net_mask; 18842 18843 /* 18844 * If mask was not specified, use natural netmask of 18845 * interface address. Also, store this mask back into the 18846 * ipif struct. 18847 */ 18848 if (subnet_mask == 0) { 18849 subnet_mask = net_mask; 18850 V4MASK_TO_V6(subnet_mask, ipif->ipif_v6net_mask); 18851 V6_MASK_COPY(ipif->ipif_v6lcl_addr, ipif->ipif_v6net_mask, 18852 ipif->ipif_v6subnet); 18853 } 18854 18855 /* Set up the IRE_IF_RESOLVER or IRE_IF_NORESOLVER, as appropriate. */ 18856 if (stq != NULL && !(ipif->ipif_flags & IPIF_NOXMIT) && 18857 ipif->ipif_subnet != INADDR_ANY) { 18858 /* ipif_subnet is ipif_pp_dst_addr for pt-pt */ 18859 18860 if (ipif->ipif_flags & IPIF_POINTOPOINT) { 18861 route_mask = IP_HOST_MASK; 18862 } else { 18863 route_mask = subnet_mask; 18864 } 18865 18866 ip1dbg(("ipif_up_done: ipif 0x%p ill 0x%p " 18867 "creating if IRE ill_net_type 0x%x for 0x%x\n", 18868 (void *)ipif, (void *)ill, 18869 ill->ill_net_type, 18870 ntohl(ipif->ipif_subnet))); 18871 *irep++ = ire_create( 18872 (uchar_t *)&ipif->ipif_subnet, /* dest address */ 18873 (uchar_t *)&route_mask, /* mask */ 18874 (uchar_t *)&src_ipif->ipif_src_addr, /* src addr */ 18875 NULL, /* no gateway */ 18876 NULL, 18877 &ipif->ipif_mtu, /* max frag */ 18878 NULL, 18879 NULL, /* no recv queue */ 18880 stq, /* send-to queue */ 18881 ill->ill_net_type, /* IF_[NO]RESOLVER */ 18882 ill->ill_resolver_mp, /* xmit header */ 18883 ipif, 18884 NULL, 18885 0, 18886 0, 18887 0, 18888 (ipif->ipif_flags & IPIF_PRIVATE) ? RTF_PRIVATE: 0, 18889 &ire_uinfo_null); 18890 } 18891 18892 /* 18893 * If the interface address is set, create the broadcast IREs. 18894 * 18895 * ire_create_bcast checks if the proposed new IRE matches 18896 * any existing IRE's with the same physical interface (ILL). 18897 * This should get rid of duplicates. 18898 * ire_create_bcast also check IPIF_NOXMIT and does not create 18899 * any broadcast ires. 18900 */ 18901 if ((ipif->ipif_subnet != INADDR_ANY) && 18902 (ipif->ipif_flags & IPIF_BROADCAST)) { 18903 ipaddr_t addr; 18904 18905 ip1dbg(("ipif_up_done: creating broadcast IRE\n")); 18906 irep = ire_check_and_create_bcast(ipif, 0, irep, 18907 (MATCH_IRE_TYPE | MATCH_IRE_ILL)); 18908 irep = ire_check_and_create_bcast(ipif, INADDR_BROADCAST, irep, 18909 (MATCH_IRE_TYPE | MATCH_IRE_ILL)); 18910 18911 /* 18912 * For backward compatibility, we need to create net 18913 * broadcast ire's based on the old "IP address class 18914 * system." The reason is that some old machines only 18915 * respond to these class derived net broadcast. 18916 * 18917 * But we should not create these net broadcast ire's if 18918 * the subnet_mask is shorter than the IP address class based 18919 * derived netmask. Otherwise, we may create a net 18920 * broadcast address which is the same as an IP address 18921 * on the subnet. Then TCP will refuse to talk to that 18922 * address. 18923 * 18924 * Nor do we need IRE_BROADCAST ire's for the interface 18925 * with the netmask as 0xFFFFFFFF, as IRE_LOCAL for that 18926 * interface is already created. Creating these broadcast 18927 * ire's will only create confusion as the "addr" is going 18928 * to be same as that of the IP address of the interface. 18929 */ 18930 if (net_mask < subnet_mask) { 18931 addr = net_mask & ipif->ipif_subnet; 18932 irep = ire_check_and_create_bcast(ipif, addr, irep, 18933 (MATCH_IRE_TYPE | MATCH_IRE_ILL)); 18934 irep = ire_check_and_create_bcast(ipif, 18935 ~net_mask | addr, irep, 18936 (MATCH_IRE_TYPE | MATCH_IRE_ILL)); 18937 } 18938 18939 if (subnet_mask != 0xFFFFFFFF) { 18940 addr = ipif->ipif_subnet; 18941 irep = ire_check_and_create_bcast(ipif, addr, irep, 18942 (MATCH_IRE_TYPE | MATCH_IRE_ILL)); 18943 irep = ire_check_and_create_bcast(ipif, 18944 ~subnet_mask|addr, irep, 18945 (MATCH_IRE_TYPE | MATCH_IRE_ILL)); 18946 } 18947 } 18948 18949 ASSERT(!MUTEX_HELD(&ipif->ipif_ill->ill_lock)); 18950 18951 /* If an earlier ire_create failed, get out now */ 18952 for (irep1 = irep; irep1 > ire_array; ) { 18953 irep1--; 18954 if (*irep1 == NULL) { 18955 ip1dbg(("ipif_up_done: NULL ire found in ire_array\n")); 18956 err = ENOMEM; 18957 goto bad; 18958 } 18959 } 18960 18961 /* 18962 * Need to atomically check for ip_addr_availablity_check 18963 * under ip_addr_avail_lock, and if it fails got bad, and remove 18964 * from group also.The ill_g_lock is grabbed as reader 18965 * just to make sure no new ills or new ipifs are being added 18966 * to the system while we are checking the uniqueness of addresses. 18967 */ 18968 rw_enter(&ill_g_lock, RW_READER); 18969 mutex_enter(&ip_addr_avail_lock); 18970 /* Mark it up, and increment counters. */ 18971 ill->ill_ipif_up_count++; 18972 ipif->ipif_flags |= IPIF_UP; 18973 err = ip_addr_availability_check(ipif); 18974 mutex_exit(&ip_addr_avail_lock); 18975 rw_exit(&ill_g_lock); 18976 18977 if (err != 0) { 18978 /* 18979 * Our address may already be up on the same ill. In this case, 18980 * the ARP entry for our ipif replaced the one for the other 18981 * ipif. So we don't want to delete it (otherwise the other ipif 18982 * would be unable to send packets). 18983 * ip_addr_availability_check() identifies this case for us and 18984 * returns EADDRINUSE; we need to turn it into EADDRNOTAVAIL 18985 * which is the expected error code. 18986 */ 18987 if (err == EADDRINUSE) { 18988 freemsg(ipif->ipif_arp_del_mp); 18989 ipif->ipif_arp_del_mp = NULL; 18990 err = EADDRNOTAVAIL; 18991 } 18992 ill->ill_ipif_up_count--; 18993 ipif->ipif_flags &= ~IPIF_UP; 18994 goto bad; 18995 } 18996 18997 /* 18998 * Add in all newly created IREs. ire_create_bcast() has 18999 * already checked for duplicates of the IRE_BROADCAST type. 19000 * We want to add before we call ifgrp_insert which wants 19001 * to know whether IRE_IF_RESOLVER exists or not. 19002 * 19003 * NOTE : We refrele the ire though we may branch to "bad" 19004 * later on where we do ire_delete. This is okay 19005 * because nobody can delete it as we are running 19006 * exclusively. 19007 */ 19008 for (irep1 = irep; irep1 > ire_array; ) { 19009 irep1--; 19010 ASSERT(!MUTEX_HELD(&((*irep1)->ire_ipif->ipif_ill->ill_lock))); 19011 /* 19012 * refheld by ire_add. refele towards the end of the func 19013 */ 19014 (void) ire_add(irep1, NULL, NULL, NULL); 19015 } 19016 ire_added = B_TRUE; 19017 /* 19018 * Form groups if possible. 19019 * 19020 * If we are supposed to be in a ill_group with a name, insert it 19021 * now as we know that at least one ipif is UP. Otherwise form 19022 * nameless groups. 19023 * 19024 * If ip_enable_group_ifs is set and ipif address is not 0, insert 19025 * this ipif into the appropriate interface group, or create a 19026 * new one. If this is already in a nameless group, we try to form 19027 * a bigger group looking at other ills potentially sharing this 19028 * ipif's prefix. 19029 */ 19030 phyi = ill->ill_phyint; 19031 if (phyi->phyint_groupname_len != 0) { 19032 ASSERT(phyi->phyint_groupname != NULL); 19033 if (ill->ill_ipif_up_count == 1) { 19034 ASSERT(ill->ill_group == NULL); 19035 err = illgrp_insert(&illgrp_head_v4, ill, 19036 phyi->phyint_groupname, NULL, B_TRUE); 19037 if (err != 0) { 19038 ip1dbg(("ipif_up_done: illgrp allocation " 19039 "failed, error %d\n", err)); 19040 goto bad; 19041 } 19042 } 19043 ASSERT(ill->ill_group != NULL); 19044 } 19045 19046 /* 19047 * When this is part of group, we need to make sure that 19048 * any broadcast ires created because of this ipif coming 19049 * UP gets marked/cleared with IRE_MARK_NORECV appropriately 19050 * so that we don't receive duplicate broadcast packets. 19051 */ 19052 if (ill->ill_group != NULL && ill->ill_ipif_up_count != 0) 19053 ipif_renominate_bcast(ipif); 19054 19055 /* Recover any additional IRE_IF_[NO]RESOLVER entries for this ipif */ 19056 ipif_saved_ire_cnt = ipif->ipif_saved_ire_cnt; 19057 ipif_saved_irep = ipif_recover_ire(ipif); 19058 19059 if (!loopback) { 19060 /* 19061 * If the broadcast address has been set, make sure it makes 19062 * sense based on the interface address. 19063 * Only match on ill since we are sharing broadcast addresses. 19064 */ 19065 if ((ipif->ipif_brd_addr != INADDR_ANY) && 19066 (ipif->ipif_flags & IPIF_BROADCAST)) { 19067 ire_t *ire; 19068 19069 ire = ire_ctable_lookup(ipif->ipif_brd_addr, 0, 19070 IRE_BROADCAST, ipif, ALL_ZONES, 19071 (MATCH_IRE_TYPE | MATCH_IRE_ILL)); 19072 19073 if (ire == NULL) { 19074 /* 19075 * If there isn't a matching broadcast IRE, 19076 * revert to the default for this netmask. 19077 */ 19078 ipif->ipif_v6brd_addr = ipv6_all_zeros; 19079 mutex_enter(&ipif->ipif_ill->ill_lock); 19080 ipif_set_default(ipif); 19081 mutex_exit(&ipif->ipif_ill->ill_lock); 19082 } else { 19083 ire_refrele(ire); 19084 } 19085 } 19086 19087 } 19088 19089 19090 /* This is the first interface on this ill */ 19091 if (ipif->ipif_ipif_up_count == 1 && !loopback) { 19092 /* 19093 * Need to recover all multicast memberships in the driver. 19094 * This had to be deferred until we had attached. 19095 */ 19096 ill_recover_multicast(ill); 19097 } 19098 /* Join the allhosts multicast address */ 19099 ipif_multicast_up(ipif); 19100 19101 if (!loopback) { 19102 /* 19103 * See whether anybody else would benefit from the 19104 * new ipif that we added. We call this always rather 19105 * than while adding a non-IPIF_NOLOCAL/DEPRECATED/ANYCAST 19106 * ipif is for the benefit of illgrp_insert (done above) 19107 * which does not do source address selection as it does 19108 * not want to re-create interface routes that we are 19109 * having reference to it here. 19110 */ 19111 ill_update_source_selection(ill); 19112 } 19113 19114 for (irep1 = irep; irep1 > ire_array; ) { 19115 irep1--; 19116 if (*irep1 != NULL) { 19117 /* was held in ire_add */ 19118 ire_refrele(*irep1); 19119 } 19120 } 19121 19122 cnt = ipif_saved_ire_cnt; 19123 for (irep1 = ipif_saved_irep; cnt > 0; irep1++, cnt--) { 19124 if (*irep1 != NULL) { 19125 /* was held in ire_add */ 19126 ire_refrele(*irep1); 19127 } 19128 } 19129 19130 /* 19131 * This had to be deferred until we had bound. 19132 * tell routing sockets that this interface is up 19133 */ 19134 ip_rts_ifmsg(ipif); 19135 ip_rts_newaddrmsg(RTM_ADD, 0, ipif); 19136 19137 if (!loopback) { 19138 /* Broadcast an address mask reply. */ 19139 ipif_mask_reply(ipif); 19140 } 19141 if (ipif_saved_irep != NULL) { 19142 kmem_free(ipif_saved_irep, 19143 ipif_saved_ire_cnt * sizeof (ire_t *)); 19144 } 19145 if (src_ipif_held) 19146 ipif_refrele(src_ipif); 19147 /* Let SCTP update the status for this ipif */ 19148 sctp_update_ipif(ipif, SCTP_IPIF_UP); 19149 return (0); 19150 19151 bad: 19152 ip1dbg(("ipif_up_done: FAILED \n")); 19153 /* 19154 * We don't have to bother removing from ill groups because 19155 * 19156 * 1) For groups with names, we insert only when the first ipif 19157 * comes up. In that case if it fails, it will not be in any 19158 * group. So, we need not try to remove for that case. 19159 * 19160 * 2) For groups without names, either we tried to insert ipif_ill 19161 * in a group as singleton or found some other group to become 19162 * a bigger group. For the former, if it fails we don't have 19163 * anything to do as ipif_ill is not in the group and for the 19164 * latter, there are no failures in illgrp_insert/illgrp_delete 19165 * (ENOMEM can't occur for this. Check ifgrp_insert). 19166 */ 19167 while (irep > ire_array) { 19168 irep--; 19169 if (*irep != NULL) { 19170 ire_delete(*irep); 19171 if (ire_added) 19172 ire_refrele(*irep); 19173 } 19174 } 19175 (void) ip_srcid_remove(&ipif->ipif_v6lcl_addr, ipif->ipif_zoneid); 19176 19177 if (ipif_saved_irep != NULL) { 19178 kmem_free(ipif_saved_irep, 19179 ipif_saved_ire_cnt * sizeof (ire_t *)); 19180 } 19181 if (src_ipif_held) 19182 ipif_refrele(src_ipif); 19183 19184 ipif_arp_down(ipif); 19185 return (err); 19186 } 19187 19188 /* 19189 * Turn off the ARP with the ILLF_NOARP flag. 19190 */ 19191 static int 19192 ill_arp_off(ill_t *ill) 19193 { 19194 mblk_t *arp_off_mp = NULL; 19195 mblk_t *arp_on_mp = NULL; 19196 19197 ip1dbg(("ill_arp_off(%s)\n", ill->ill_name)); 19198 19199 ASSERT(IAM_WRITER_ILL(ill)); 19200 ASSERT(ill->ill_net_type == IRE_IF_RESOLVER); 19201 19202 /* 19203 * If the on message is still around we've already done 19204 * an arp_off without doing an arp_on thus there is no 19205 * work needed. 19206 */ 19207 if (ill->ill_arp_on_mp != NULL) 19208 return (0); 19209 19210 /* 19211 * Allocate an ARP on message (to be saved) and an ARP off message 19212 */ 19213 arp_off_mp = ill_arp_alloc(ill, (uchar_t *)&ip_aroff_template, 0); 19214 if (!arp_off_mp) 19215 return (ENOMEM); 19216 19217 arp_on_mp = ill_arp_alloc(ill, (uchar_t *)&ip_aron_template, 0); 19218 if (!arp_on_mp) 19219 goto failed; 19220 19221 ASSERT(ill->ill_arp_on_mp == NULL); 19222 ill->ill_arp_on_mp = arp_on_mp; 19223 19224 /* Send an AR_INTERFACE_OFF request */ 19225 putnext(ill->ill_rq, arp_off_mp); 19226 return (0); 19227 failed: 19228 19229 if (arp_off_mp) 19230 freemsg(arp_off_mp); 19231 return (ENOMEM); 19232 } 19233 19234 /* 19235 * Turn on ARP by turning off the ILLF_NOARP flag. 19236 */ 19237 static int 19238 ill_arp_on(ill_t *ill) 19239 { 19240 mblk_t *mp; 19241 19242 ip1dbg(("ipif_arp_on(%s)\n", ill->ill_name)); 19243 19244 ASSERT(ill->ill_net_type == IRE_IF_RESOLVER); 19245 19246 ASSERT(IAM_WRITER_ILL(ill)); 19247 /* 19248 * Send an AR_INTERFACE_ON request if we have already done 19249 * an arp_off (which allocated the message). 19250 */ 19251 if (ill->ill_arp_on_mp != NULL) { 19252 mp = ill->ill_arp_on_mp; 19253 ill->ill_arp_on_mp = NULL; 19254 putnext(ill->ill_rq, mp); 19255 } 19256 return (0); 19257 } 19258 19259 /* 19260 * Called after either deleting ill from the group or when setting 19261 * FAILED or STANDBY on the interface. 19262 */ 19263 static void 19264 illgrp_reset_schednext(ill_t *ill) 19265 { 19266 ill_group_t *illgrp; 19267 ill_t *save_ill; 19268 19269 ASSERT(IAM_WRITER_ILL(ill)); 19270 /* 19271 * When called from illgrp_delete, ill_group will be non-NULL. 19272 * But when called from ip_sioctl_flags, it could be NULL if 19273 * somebody is setting FAILED/INACTIVE on some interface which 19274 * is not part of a group. 19275 */ 19276 illgrp = ill->ill_group; 19277 if (illgrp == NULL) 19278 return; 19279 if (illgrp->illgrp_ill_schednext != ill) 19280 return; 19281 19282 illgrp->illgrp_ill_schednext = NULL; 19283 save_ill = ill; 19284 /* 19285 * Choose a good ill to be the next one for 19286 * outbound traffic. As the flags FAILED/STANDBY is 19287 * not yet marked when called from ip_sioctl_flags, 19288 * we check for ill separately. 19289 */ 19290 for (ill = illgrp->illgrp_ill; ill != NULL; 19291 ill = ill->ill_group_next) { 19292 if ((ill != save_ill) && 19293 !(ill->ill_phyint->phyint_flags & 19294 (PHYI_FAILED|PHYI_INACTIVE|PHYI_OFFLINE))) { 19295 illgrp->illgrp_ill_schednext = ill; 19296 return; 19297 } 19298 } 19299 } 19300 19301 /* 19302 * Given an ill, find the next ill in the group to be scheduled. 19303 * (This should be called by ip_newroute() before ire_create().) 19304 * The passed in ill may be pulled out of the group, after we have picked 19305 * up a different outgoing ill from the same group. However ire add will 19306 * atomically check this. 19307 */ 19308 ill_t * 19309 illgrp_scheduler(ill_t *ill) 19310 { 19311 ill_t *retill; 19312 ill_group_t *illgrp; 19313 int illcnt; 19314 int i; 19315 uint64_t flags; 19316 19317 /* 19318 * We don't use a lock to check for the ill_group. If this ill 19319 * is currently being inserted we may end up just returning this 19320 * ill itself. That is ok. 19321 */ 19322 if (ill->ill_group == NULL) { 19323 ill_refhold(ill); 19324 return (ill); 19325 } 19326 19327 /* 19328 * Grab the ill_g_lock as reader to make sure we are dealing with 19329 * a set of stable ills. No ill can be added or deleted or change 19330 * group while we hold the reader lock. 19331 */ 19332 rw_enter(&ill_g_lock, RW_READER); 19333 if ((illgrp = ill->ill_group) == NULL) { 19334 rw_exit(&ill_g_lock); 19335 ill_refhold(ill); 19336 return (ill); 19337 } 19338 19339 illcnt = illgrp->illgrp_ill_count; 19340 mutex_enter(&illgrp->illgrp_lock); 19341 retill = illgrp->illgrp_ill_schednext; 19342 19343 if (retill == NULL) 19344 retill = illgrp->illgrp_ill; 19345 19346 /* 19347 * We do a circular search beginning at illgrp_ill_schednext 19348 * or illgrp_ill. We don't check the flags against the ill lock 19349 * since it can change anytime. The ire creation will be atomic 19350 * and will fail if the ill is FAILED or OFFLINE. 19351 */ 19352 for (i = 0; i < illcnt; i++) { 19353 flags = retill->ill_phyint->phyint_flags; 19354 19355 if (!(flags & (PHYI_FAILED|PHYI_INACTIVE|PHYI_OFFLINE)) && 19356 ILL_CAN_LOOKUP(retill)) { 19357 illgrp->illgrp_ill_schednext = retill->ill_group_next; 19358 ill_refhold(retill); 19359 break; 19360 } 19361 retill = retill->ill_group_next; 19362 if (retill == NULL) 19363 retill = illgrp->illgrp_ill; 19364 } 19365 mutex_exit(&illgrp->illgrp_lock); 19366 rw_exit(&ill_g_lock); 19367 19368 return (i == illcnt ? NULL : retill); 19369 } 19370 19371 /* 19372 * Checks for availbility of a usable source address (if there is one) when the 19373 * destination ILL has the ill_usesrc_ifindex pointing to another ILL. Note 19374 * this selection is done regardless of the destination. 19375 */ 19376 boolean_t 19377 ipif_usesrc_avail(ill_t *ill, zoneid_t zoneid) 19378 { 19379 uint_t ifindex; 19380 ipif_t *ipif = NULL; 19381 ill_t *uill; 19382 boolean_t isv6; 19383 19384 ASSERT(ill != NULL); 19385 19386 isv6 = ill->ill_isv6; 19387 ifindex = ill->ill_usesrc_ifindex; 19388 if (ifindex != 0) { 19389 uill = ill_lookup_on_ifindex(ifindex, isv6, NULL, NULL, NULL, 19390 NULL); 19391 if (uill == NULL) 19392 return (NULL); 19393 mutex_enter(&uill->ill_lock); 19394 for (ipif = uill->ill_ipif; ipif != NULL; 19395 ipif = ipif->ipif_next) { 19396 if (!IPIF_CAN_LOOKUP(ipif)) 19397 continue; 19398 if (ipif->ipif_flags & (IPIF_NOLOCAL|IPIF_ANYCAST)) 19399 continue; 19400 if (!(ipif->ipif_flags & IPIF_UP)) 19401 continue; 19402 if (ipif->ipif_zoneid != zoneid) 19403 continue; 19404 if ((isv6 && 19405 IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6lcl_addr)) || 19406 (ipif->ipif_lcl_addr == INADDR_ANY)) 19407 continue; 19408 mutex_exit(&uill->ill_lock); 19409 ill_refrele(uill); 19410 return (B_TRUE); 19411 } 19412 mutex_exit(&uill->ill_lock); 19413 ill_refrele(uill); 19414 } 19415 return (B_FALSE); 19416 } 19417 19418 /* 19419 * Determine the best source address given a destination address and an ill. 19420 * Prefers non-deprecated over deprecated but will return a deprecated 19421 * address if there is no other choice. If there is a usable source address 19422 * on the interface pointed to by ill_usesrc_ifindex then that is given 19423 * first preference. 19424 * 19425 * Returns NULL if there is no suitable source address for the ill. 19426 * This only occurs when there is no valid source address for the ill. 19427 */ 19428 ipif_t * 19429 ipif_select_source(ill_t *ill, ipaddr_t dst, zoneid_t zoneid) 19430 { 19431 ipif_t *ipif; 19432 ipif_t *ipif_dep = NULL; /* Fallback to deprecated */ 19433 ipif_t *ipif_arr[MAX_IPIF_SELECT_SOURCE]; 19434 int index = 0; 19435 boolean_t wrapped = B_FALSE; 19436 boolean_t same_subnet_only = B_FALSE; 19437 boolean_t ipif_same_found, ipif_other_found; 19438 ill_t *till, *usill = NULL; 19439 19440 if (ill->ill_usesrc_ifindex != 0) { 19441 usill = ill_lookup_on_ifindex(ill->ill_usesrc_ifindex, B_FALSE, 19442 NULL, NULL, NULL, NULL); 19443 if (usill != NULL) 19444 ill = usill; /* Select source from usesrc ILL */ 19445 else 19446 return (NULL); 19447 } 19448 19449 /* 19450 * Holds the ill_g_lock as reader. This makes sure that no ipif/ill 19451 * can be deleted. But an ipif/ill can get CONDEMNED any time. 19452 * After selecting the right ipif, under ill_lock make sure ipif is 19453 * not condemned, and increment refcnt. If ipif is CONDEMNED, 19454 * we retry. Inside the loop we still need to check for CONDEMNED, 19455 * but not under a lock. 19456 */ 19457 rw_enter(&ill_g_lock, RW_READER); 19458 19459 retry: 19460 till = ill; 19461 ipif_arr[0] = NULL; 19462 19463 if (till->ill_group != NULL) 19464 till = till->ill_group->illgrp_ill; 19465 19466 /* 19467 * Choose one good source address from each ill across the group. 19468 * If possible choose a source address in the same subnet as 19469 * the destination address. 19470 * 19471 * We don't check for PHYI_FAILED or PHYI_INACTIVE or PHYI_OFFLINE 19472 * This is okay because of the following. 19473 * 19474 * If PHYI_FAILED is set and we still have non-deprecated 19475 * addresses, it means the addresses have not yet been 19476 * failed over to a different interface. We potentially 19477 * select them to create IRE_CACHES, which will be later 19478 * flushed when the addresses move over. 19479 * 19480 * If PHYI_INACTIVE is set and we still have non-deprecated 19481 * addresses, it means either the user has configured them 19482 * or PHYI_INACTIVE has not been cleared after the addresses 19483 * been moved over. For the former, in.mpathd does a failover 19484 * when the interface becomes INACTIVE and hence we should 19485 * not find them. Once INACTIVE is set, we don't allow them 19486 * to create logical interfaces anymore. For the latter, a 19487 * flush will happen when INACTIVE is cleared which will 19488 * flush the IRE_CACHES. 19489 * 19490 * If PHYI_OFFLINE is set, all the addresses will be failed 19491 * over soon. We potentially select them to create IRE_CACHEs, 19492 * which will be later flushed when the addresses move over. 19493 * 19494 * NOTE : As ipif_select_source is called to borrow source address 19495 * for an ipif that is part of a group, source address selection 19496 * will be re-done whenever the group changes i.e either an 19497 * insertion/deletion in the group. 19498 * 19499 * Fill ipif_arr[] with source addresses, using these rules: 19500 * 19501 * 1. At most one source address from a given ill ends up 19502 * in ipif_arr[] -- that is, at most one of the ipif's 19503 * associated with a given ill ends up in ipif_arr[]. 19504 * 19505 * 2. If there is at least one non-deprecated ipif in the 19506 * IPMP group with a source address on the same subnet as 19507 * our destination, then fill ipif_arr[] only with 19508 * source addresses on the same subnet as our destination. 19509 * Note that because of (1), only the first 19510 * non-deprecated ipif found with a source address 19511 * matching the destination ends up in ipif_arr[]. 19512 * 19513 * 3. Otherwise, fill ipif_arr[] with non-deprecated source 19514 * addresses not in the same subnet as our destination. 19515 * Again, because of (1), only the first off-subnet source 19516 * address will be chosen. 19517 * 19518 * 4. If there are no non-deprecated ipifs, then just use 19519 * the source address associated with the last deprecated 19520 * one we find that happens to be on the same subnet, 19521 * otherwise the first one not in the same subnet. 19522 */ 19523 for (; till != NULL; till = till->ill_group_next) { 19524 ipif_same_found = B_FALSE; 19525 ipif_other_found = B_FALSE; 19526 for (ipif = till->ill_ipif; ipif != NULL; 19527 ipif = ipif->ipif_next) { 19528 if (!IPIF_CAN_LOOKUP(ipif)) 19529 continue; 19530 /* Always skip NOLOCAL and ANYCAST interfaces */ 19531 if (ipif->ipif_flags & (IPIF_NOLOCAL|IPIF_ANYCAST)) 19532 continue; 19533 if (!(ipif->ipif_flags & IPIF_UP)) 19534 continue; 19535 if (ipif->ipif_zoneid != zoneid) 19536 continue; 19537 /* 19538 * Interfaces with 0.0.0.0 address are allowed to be UP, 19539 * but are not valid as source addresses. 19540 */ 19541 if (ipif->ipif_lcl_addr == INADDR_ANY) 19542 continue; 19543 if (ipif->ipif_flags & IPIF_DEPRECATED) { 19544 if (ipif_dep == NULL || 19545 (ipif->ipif_net_mask & dst) == 19546 ipif->ipif_subnet) 19547 ipif_dep = ipif; 19548 continue; 19549 } 19550 if ((ipif->ipif_net_mask & dst) == ipif->ipif_subnet) { 19551 /* found a source address in the same subnet */ 19552 if (same_subnet_only == B_FALSE) { 19553 same_subnet_only = B_TRUE; 19554 index = 0; 19555 } 19556 ipif_same_found = B_TRUE; 19557 } else { 19558 if (same_subnet_only == B_TRUE || 19559 ipif_other_found == B_TRUE) 19560 continue; 19561 ipif_other_found = B_TRUE; 19562 } 19563 ipif_arr[index++] = ipif; 19564 if (index == MAX_IPIF_SELECT_SOURCE) { 19565 wrapped = B_TRUE; 19566 index = 0; 19567 } 19568 if (ipif_same_found == B_TRUE) 19569 break; 19570 } 19571 } 19572 19573 if (ipif_arr[0] == NULL) { 19574 ipif = ipif_dep; 19575 } else { 19576 if (wrapped) 19577 index = MAX_IPIF_SELECT_SOURCE; 19578 ipif = ipif_arr[ipif_rand() % index]; 19579 ASSERT(ipif != NULL); 19580 } 19581 19582 if (ipif != NULL) { 19583 mutex_enter(&ipif->ipif_ill->ill_lock); 19584 if (!IPIF_CAN_LOOKUP(ipif)) { 19585 mutex_exit(&ipif->ipif_ill->ill_lock); 19586 goto retry; 19587 } 19588 ipif_refhold_locked(ipif); 19589 mutex_exit(&ipif->ipif_ill->ill_lock); 19590 } 19591 19592 rw_exit(&ill_g_lock); 19593 if (usill != NULL) 19594 ill_refrele(usill); 19595 19596 #ifdef DEBUG 19597 if (ipif == NULL) { 19598 char buf1[INET6_ADDRSTRLEN]; 19599 19600 ip1dbg(("ipif_select_source(%s, %s) -> NULL\n", 19601 ill->ill_name, 19602 inet_ntop(AF_INET, &dst, buf1, sizeof (buf1)))); 19603 } else { 19604 char buf1[INET6_ADDRSTRLEN]; 19605 char buf2[INET6_ADDRSTRLEN]; 19606 19607 ip1dbg(("ipif_select_source(%s, %s) -> %s\n", 19608 ipif->ipif_ill->ill_name, 19609 inet_ntop(AF_INET, &dst, buf1, sizeof (buf1)), 19610 inet_ntop(AF_INET, &ipif->ipif_lcl_addr, 19611 buf2, sizeof (buf2)))); 19612 } 19613 #endif /* DEBUG */ 19614 return (ipif); 19615 } 19616 19617 19618 /* 19619 * If old_ipif is not NULL, see if ipif was derived from old 19620 * ipif and if so, recreate the interface route by re-doing 19621 * source address selection. This happens when ipif_down -> 19622 * ipif_update_other_ipifs calls us. 19623 * 19624 * If old_ipif is NULL, just redo the source address selection 19625 * if needed. This happens when illgrp_insert or ipif_up_done 19626 * calls us. 19627 */ 19628 static void 19629 ipif_recreate_interface_routes(ipif_t *old_ipif, ipif_t *ipif) 19630 { 19631 ire_t *ire; 19632 ire_t *ipif_ire; 19633 queue_t *stq; 19634 ipif_t *nipif; 19635 ill_t *ill; 19636 boolean_t need_rele = B_FALSE; 19637 19638 ASSERT(old_ipif == NULL || IAM_WRITER_IPIF(old_ipif)); 19639 ASSERT(IAM_WRITER_IPIF(ipif)); 19640 19641 ill = ipif->ipif_ill; 19642 if (!(ipif->ipif_flags & 19643 (IPIF_NOLOCAL|IPIF_ANYCAST|IPIF_DEPRECATED))) { 19644 /* 19645 * Can't possibly have borrowed the source 19646 * from old_ipif. 19647 */ 19648 return; 19649 } 19650 19651 /* 19652 * Is there any work to be done? No work if the address 19653 * is INADDR_ANY, loopback or NOLOCAL or ANYCAST ( 19654 * ipif_select_source() does not borrow addresses from 19655 * NOLOCAL and ANYCAST interfaces). 19656 */ 19657 if ((old_ipif != NULL) && 19658 ((old_ipif->ipif_lcl_addr == INADDR_ANY) || 19659 (old_ipif->ipif_ill->ill_wq == NULL) || 19660 (old_ipif->ipif_flags & 19661 (IPIF_NOLOCAL|IPIF_ANYCAST)))) { 19662 return; 19663 } 19664 19665 /* 19666 * Perform the same checks as when creating the 19667 * IRE_INTERFACE in ipif_up_done. 19668 */ 19669 if (!(ipif->ipif_flags & IPIF_UP)) 19670 return; 19671 19672 if ((ipif->ipif_flags & IPIF_NOXMIT) || 19673 (ipif->ipif_subnet == INADDR_ANY)) 19674 return; 19675 19676 ipif_ire = ipif_to_ire(ipif); 19677 if (ipif_ire == NULL) 19678 return; 19679 19680 /* 19681 * We know that ipif uses some other source for its 19682 * IRE_INTERFACE. Is it using the source of this 19683 * old_ipif? 19684 */ 19685 if (old_ipif != NULL && 19686 old_ipif->ipif_lcl_addr != ipif_ire->ire_src_addr) { 19687 ire_refrele(ipif_ire); 19688 return; 19689 } 19690 if (ip_debug > 2) { 19691 /* ip1dbg */ 19692 pr_addr_dbg("ipif_recreate_interface_routes: deleting IRE for" 19693 " src %s\n", AF_INET, &ipif_ire->ire_src_addr); 19694 } 19695 19696 stq = ipif_ire->ire_stq; 19697 19698 /* 19699 * Can't use our source address. Select a different 19700 * source address for the IRE_INTERFACE. 19701 */ 19702 nipif = ipif_select_source(ill, ipif->ipif_subnet, ipif->ipif_zoneid); 19703 if (nipif == NULL) { 19704 /* Last resort - all ipif's have IPIF_NOLOCAL */ 19705 nipif = ipif; 19706 } else { 19707 need_rele = B_TRUE; 19708 } 19709 19710 ire = ire_create( 19711 (uchar_t *)&ipif->ipif_subnet, /* dest pref */ 19712 (uchar_t *)&ipif->ipif_net_mask, /* mask */ 19713 (uchar_t *)&nipif->ipif_src_addr, /* src addr */ 19714 NULL, /* no gateway */ 19715 NULL, 19716 &ipif->ipif_mtu, /* max frag */ 19717 NULL, /* fast path header */ 19718 NULL, /* no recv from queue */ 19719 stq, /* send-to queue */ 19720 ill->ill_net_type, /* IF_[NO]RESOLVER */ 19721 ill->ill_resolver_mp, /* xmit header */ 19722 ipif, 19723 NULL, 19724 0, 19725 0, 19726 0, 19727 0, 19728 &ire_uinfo_null); 19729 19730 if (ire != NULL) { 19731 ire_t *ret_ire; 19732 int error; 19733 19734 /* 19735 * We don't need ipif_ire anymore. We need to delete 19736 * before we add so that ire_add does not detect 19737 * duplicates. 19738 */ 19739 ire_delete(ipif_ire); 19740 ret_ire = ire; 19741 error = ire_add(&ret_ire, NULL, NULL, NULL); 19742 ASSERT(error == 0); 19743 ASSERT(ire == ret_ire); 19744 /* Held in ire_add */ 19745 ire_refrele(ret_ire); 19746 } 19747 /* 19748 * Either we are falling through from above or could not 19749 * allocate a replacement. 19750 */ 19751 ire_refrele(ipif_ire); 19752 if (need_rele) 19753 ipif_refrele(nipif); 19754 } 19755 19756 /* 19757 * This old_ipif is going away. 19758 * 19759 * Determine if any other ipif's is using our address as 19760 * ipif_lcl_addr (due to those being IPIF_NOLOCAL, IPIF_ANYCAST, or 19761 * IPIF_DEPRECATED). 19762 * Find the IRE_INTERFACE for such ipifs and recreate them 19763 * to use an different source address following the rules in 19764 * ipif_up_done. 19765 * 19766 * This function takes an illgrp as an argument so that illgrp_delete 19767 * can call this to update source address even after deleting the 19768 * old_ipif->ipif_ill from the ill group. 19769 */ 19770 static void 19771 ipif_update_other_ipifs(ipif_t *old_ipif, ill_group_t *illgrp) 19772 { 19773 ipif_t *ipif; 19774 ill_t *ill; 19775 char buf[INET6_ADDRSTRLEN]; 19776 19777 ASSERT(IAM_WRITER_IPIF(old_ipif)); 19778 ASSERT(illgrp == NULL || IAM_WRITER_IPIF(old_ipif)); 19779 19780 ill = old_ipif->ipif_ill; 19781 19782 ip1dbg(("ipif_update_other_ipifs(%s, %s)\n", 19783 ill->ill_name, 19784 inet_ntop(AF_INET, &old_ipif->ipif_lcl_addr, 19785 buf, sizeof (buf)))); 19786 /* 19787 * If this part of a group, look at all ills as ipif_select_source 19788 * borrows source address across all the ills in the group. 19789 */ 19790 if (illgrp != NULL) 19791 ill = illgrp->illgrp_ill; 19792 19793 for (; ill != NULL; ill = ill->ill_group_next) { 19794 for (ipif = ill->ill_ipif; ipif != NULL; 19795 ipif = ipif->ipif_next) { 19796 19797 if (ipif == old_ipif) 19798 continue; 19799 19800 ipif_recreate_interface_routes(old_ipif, ipif); 19801 } 19802 } 19803 } 19804 19805 /* ARGSUSED */ 19806 int 19807 if_unitsel_restart(ipif_t *ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, 19808 ip_ioctl_cmd_t *ipip, void *dummy_ifreq) 19809 { 19810 /* 19811 * ill_phyint_reinit merged the v4 and v6 into a single 19812 * ipsq. Could also have become part of a ipmp group in the 19813 * process, and we might not have been able to complete the 19814 * operation in ipif_set_values, if we could not become 19815 * exclusive. If so restart it here. 19816 */ 19817 return (ipif_set_values_tail(ipif->ipif_ill, ipif, mp, q)); 19818 } 19819 19820 19821 /* ARGSUSED */ 19822 int 19823 if_unitsel(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, 19824 ip_ioctl_cmd_t *ipip, void *dummy_ifreq) 19825 { 19826 queue_t *q1 = q; 19827 char *cp; 19828 char interf_name[LIFNAMSIZ]; 19829 uint_t ppa = *(uint_t *)mp->b_cont->b_cont->b_rptr; 19830 19831 if (!q->q_next) { 19832 ip1dbg(( 19833 "if_unitsel: IF_UNITSEL: no q_next\n")); 19834 return (EINVAL); 19835 } 19836 19837 if (((ill_t *)(q->q_ptr))->ill_name[0] != '\0') 19838 return (EALREADY); 19839 19840 do { 19841 q1 = q1->q_next; 19842 } while (q1->q_next); 19843 cp = q1->q_qinfo->qi_minfo->mi_idname; 19844 (void) sprintf(interf_name, "%s%d", cp, ppa); 19845 19846 /* 19847 * Here we are not going to delay the ioack until after 19848 * ACKs from DL_ATTACH_REQ/DL_BIND_REQ. So no need to save the 19849 * original ioctl message before sending the requests. 19850 */ 19851 return (ipif_set_values(q, mp, interf_name, &ppa)); 19852 } 19853 19854 /* ARGSUSED */ 19855 int 19856 ip_sioctl_sifname(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, 19857 ip_ioctl_cmd_t *ipip, void *dummy_ifreq) 19858 { 19859 return (ENXIO); 19860 } 19861 19862 /* 19863 * Net and subnet broadcast ire's are now specific to the particular 19864 * physical interface (ill) and not to any one locigal interface (ipif). 19865 * However, if a particular logical interface is being taken down, it's 19866 * associated ire's will be taken down as well. Hence, when we go to 19867 * take down or change the local address, broadcast address or netmask 19868 * of a specific logical interface, we must check to make sure that we 19869 * have valid net and subnet broadcast ire's for the other logical 19870 * interfaces which may have been shared with the logical interface 19871 * being brought down or changed. 19872 * 19873 * There is one set of 0.0.0.0 and 255.255.255.255 per ill. Usually it 19874 * is tied to the first interface coming UP. If that ipif is going down, 19875 * we need to recreate them on the next valid ipif. 19876 * 19877 * Note: assume that the ipif passed in is still up so that it's IRE 19878 * entries are still valid. 19879 */ 19880 static void 19881 ipif_check_bcast_ires(ipif_t *test_ipif) 19882 { 19883 ipif_t *ipif; 19884 ire_t *test_subnet_ire, *test_net_ire; 19885 ire_t *test_allzero_ire, *test_allone_ire; 19886 ire_t *ire_array[12]; 19887 ire_t **irep = &ire_array[0]; 19888 ire_t **irep1; 19889 19890 ipaddr_t net_addr, subnet_addr, net_mask, subnet_mask; 19891 ipaddr_t test_net_addr, test_subnet_addr; 19892 ipaddr_t test_net_mask, test_subnet_mask; 19893 boolean_t need_net_bcast_ire = B_FALSE; 19894 boolean_t need_subnet_bcast_ire = B_FALSE; 19895 boolean_t allzero_bcast_ire_created = B_FALSE; 19896 boolean_t allone_bcast_ire_created = B_FALSE; 19897 boolean_t net_bcast_ire_created = B_FALSE; 19898 boolean_t subnet_bcast_ire_created = B_FALSE; 19899 19900 ipif_t *backup_ipif_net = (ipif_t *)NULL; 19901 ipif_t *backup_ipif_subnet = (ipif_t *)NULL; 19902 ipif_t *backup_ipif_allzeros = (ipif_t *)NULL; 19903 ipif_t *backup_ipif_allones = (ipif_t *)NULL; 19904 uint64_t check_flags = IPIF_DEPRECATED | IPIF_NOLOCAL | IPIF_ANYCAST; 19905 19906 ASSERT(!test_ipif->ipif_isv6); 19907 ASSERT(IAM_WRITER_IPIF(test_ipif)); 19908 19909 /* 19910 * No broadcast IREs for the LOOPBACK interface 19911 * or others such as point to point and IPIF_NOXMIT. 19912 */ 19913 if (!(test_ipif->ipif_flags & IPIF_BROADCAST) || 19914 (test_ipif->ipif_flags & IPIF_NOXMIT)) 19915 return; 19916 19917 test_allzero_ire = ire_ctable_lookup(0, 0, IRE_BROADCAST, 19918 test_ipif, ALL_ZONES, (MATCH_IRE_TYPE | MATCH_IRE_IPIF)); 19919 19920 test_allone_ire = ire_ctable_lookup(INADDR_BROADCAST, 0, IRE_BROADCAST, 19921 test_ipif, ALL_ZONES, (MATCH_IRE_TYPE | MATCH_IRE_IPIF)); 19922 19923 test_net_mask = ip_net_mask(test_ipif->ipif_subnet); 19924 test_subnet_mask = test_ipif->ipif_net_mask; 19925 19926 /* 19927 * If no net mask set, assume the default based on net class. 19928 */ 19929 if (test_subnet_mask == 0) 19930 test_subnet_mask = test_net_mask; 19931 19932 /* 19933 * Check if there is a network broadcast ire associated with this ipif 19934 */ 19935 test_net_addr = test_net_mask & test_ipif->ipif_subnet; 19936 test_net_ire = ire_ctable_lookup(test_net_addr, 0, IRE_BROADCAST, 19937 test_ipif, ALL_ZONES, (MATCH_IRE_TYPE | MATCH_IRE_IPIF)); 19938 19939 /* 19940 * Check if there is a subnet broadcast IRE associated with this ipif 19941 */ 19942 test_subnet_addr = test_subnet_mask & test_ipif->ipif_subnet; 19943 test_subnet_ire = ire_ctable_lookup(test_subnet_addr, 0, IRE_BROADCAST, 19944 test_ipif, ALL_ZONES, (MATCH_IRE_TYPE | MATCH_IRE_IPIF)); 19945 19946 /* 19947 * No broadcast ire's associated with this ipif. 19948 */ 19949 if ((test_subnet_ire == NULL) && (test_net_ire == NULL) && 19950 (test_allzero_ire == NULL) && (test_allone_ire == NULL)) { 19951 return; 19952 } 19953 19954 /* 19955 * We have established which bcast ires have to be replaced. 19956 * Next we try to locate ipifs that match there ires. 19957 * The rules are simple: If we find an ipif that matches on the subnet 19958 * address it will also match on the net address, the allzeros and 19959 * allones address. Any ipif that matches only on the net address will 19960 * also match the allzeros and allones addresses. 19961 * The other criterion is the ipif_flags. We look for non-deprecated 19962 * (and non-anycast and non-nolocal) ipifs as the best choice. 19963 * ipifs with check_flags matching (deprecated, etc) are used only 19964 * if good ipifs are not available. While looping, we save existing 19965 * deprecated ipifs as backup_ipif. 19966 * We loop through all the ipifs for this ill looking for ipifs 19967 * whose broadcast addr match the ipif passed in, but do not have 19968 * their own broadcast ires. For creating 0.0.0.0 and 19969 * 255.255.255.255 we just need an ipif on this ill to create. 19970 */ 19971 for (ipif = test_ipif->ipif_ill->ill_ipif; ipif != NULL; 19972 ipif = ipif->ipif_next) { 19973 19974 ASSERT(!ipif->ipif_isv6); 19975 /* 19976 * Already checked the ipif passed in. 19977 */ 19978 if (ipif == test_ipif) { 19979 continue; 19980 } 19981 19982 /* 19983 * We only need to recreate broadcast ires if another ipif in 19984 * the same zone uses them. The new ires must be created in the 19985 * same zone. 19986 */ 19987 if (ipif->ipif_zoneid != test_ipif->ipif_zoneid) { 19988 continue; 19989 } 19990 19991 /* 19992 * Only interested in logical interfaces with valid local 19993 * addresses or with the ability to broadcast. 19994 */ 19995 if ((ipif->ipif_subnet == 0) || 19996 !(ipif->ipif_flags & IPIF_BROADCAST) || 19997 (ipif->ipif_flags & IPIF_NOXMIT) || 19998 !(ipif->ipif_flags & IPIF_UP)) { 19999 continue; 20000 } 20001 /* 20002 * Check if there is a net broadcast ire for this 20003 * net address. If it turns out that the ipif we are 20004 * about to take down owns this ire, we must make a 20005 * new one because it is potentially going away. 20006 */ 20007 if (test_net_ire && (!net_bcast_ire_created)) { 20008 net_mask = ip_net_mask(ipif->ipif_subnet); 20009 net_addr = net_mask & ipif->ipif_subnet; 20010 if (net_addr == test_net_addr) { 20011 need_net_bcast_ire = B_TRUE; 20012 /* 20013 * Use DEPRECATED ipif only if no good 20014 * ires are available. subnet_addr is 20015 * a better match than net_addr. 20016 */ 20017 if ((ipif->ipif_flags & check_flags) && 20018 (backup_ipif_net == NULL)) { 20019 backup_ipif_net = ipif; 20020 } 20021 } 20022 } 20023 /* 20024 * Check if there is a subnet broadcast ire for this 20025 * net address. If it turns out that the ipif we are 20026 * about to take down owns this ire, we must make a 20027 * new one because it is potentially going away. 20028 */ 20029 if (test_subnet_ire && (!subnet_bcast_ire_created)) { 20030 subnet_mask = ipif->ipif_net_mask; 20031 subnet_addr = ipif->ipif_subnet; 20032 if (subnet_addr == test_subnet_addr) { 20033 need_subnet_bcast_ire = B_TRUE; 20034 if ((ipif->ipif_flags & check_flags) && 20035 (backup_ipif_subnet == NULL)) { 20036 backup_ipif_subnet = ipif; 20037 } 20038 } 20039 } 20040 20041 20042 /* Short circuit here if this ipif is deprecated */ 20043 if (ipif->ipif_flags & check_flags) { 20044 if ((test_allzero_ire != NULL) && 20045 (!allzero_bcast_ire_created) && 20046 (backup_ipif_allzeros == NULL)) { 20047 backup_ipif_allzeros = ipif; 20048 } 20049 if ((test_allone_ire != NULL) && 20050 (!allone_bcast_ire_created) && 20051 (backup_ipif_allones == NULL)) { 20052 backup_ipif_allones = ipif; 20053 } 20054 continue; 20055 } 20056 20057 /* 20058 * Found an ipif which has the same broadcast ire as the 20059 * ipif passed in and the ipif passed in "owns" the ire. 20060 * Create new broadcast ire's for this broadcast addr. 20061 */ 20062 if (need_net_bcast_ire && !net_bcast_ire_created) { 20063 irep = ire_create_bcast(ipif, net_addr, irep); 20064 irep = ire_create_bcast(ipif, 20065 ~net_mask | net_addr, irep); 20066 net_bcast_ire_created = B_TRUE; 20067 } 20068 if (need_subnet_bcast_ire && !subnet_bcast_ire_created) { 20069 irep = ire_create_bcast(ipif, subnet_addr, irep); 20070 irep = ire_create_bcast(ipif, 20071 ~subnet_mask | subnet_addr, irep); 20072 subnet_bcast_ire_created = B_TRUE; 20073 } 20074 if (test_allzero_ire != NULL && !allzero_bcast_ire_created) { 20075 irep = ire_create_bcast(ipif, 0, irep); 20076 allzero_bcast_ire_created = B_TRUE; 20077 } 20078 if (test_allone_ire != NULL && !allone_bcast_ire_created) { 20079 irep = ire_create_bcast(ipif, INADDR_BROADCAST, irep); 20080 allone_bcast_ire_created = B_TRUE; 20081 } 20082 /* 20083 * Once we have created all the appropriate ires, we 20084 * just break out of this loop to add what we have created. 20085 * This has been indented similar to ire_match_args for 20086 * readability. 20087 */ 20088 if (((test_net_ire == NULL) || 20089 (net_bcast_ire_created)) && 20090 ((test_subnet_ire == NULL) || 20091 (subnet_bcast_ire_created)) && 20092 ((test_allzero_ire == NULL) || 20093 (allzero_bcast_ire_created)) && 20094 ((test_allone_ire == NULL) || 20095 (allone_bcast_ire_created))) { 20096 break; 20097 } 20098 } 20099 20100 /* 20101 * Create bcast ires on deprecated ipifs if no non-deprecated ipifs 20102 * exist. 6 pairs of bcast ires are needed. 20103 * Note - the old ires are deleted in ipif_down. 20104 */ 20105 if (need_net_bcast_ire && !net_bcast_ire_created && backup_ipif_net) { 20106 ipif = backup_ipif_net; 20107 irep = ire_create_bcast(ipif, net_addr, irep); 20108 irep = ire_create_bcast(ipif, ~net_mask | net_addr, irep); 20109 net_bcast_ire_created = B_TRUE; 20110 } 20111 if (need_subnet_bcast_ire && !subnet_bcast_ire_created && 20112 backup_ipif_subnet) { 20113 ipif = backup_ipif_subnet; 20114 irep = ire_create_bcast(ipif, subnet_addr, irep); 20115 irep = ire_create_bcast(ipif, 20116 ~subnet_mask | subnet_addr, irep); 20117 subnet_bcast_ire_created = B_TRUE; 20118 } 20119 if (test_allzero_ire != NULL && !allzero_bcast_ire_created && 20120 backup_ipif_allzeros) { 20121 irep = ire_create_bcast(backup_ipif_allzeros, 0, irep); 20122 allzero_bcast_ire_created = B_TRUE; 20123 } 20124 if (test_allone_ire != NULL && !allone_bcast_ire_created && 20125 backup_ipif_allones) { 20126 irep = ire_create_bcast(backup_ipif_allones, 20127 INADDR_BROADCAST, irep); 20128 allone_bcast_ire_created = B_TRUE; 20129 } 20130 20131 /* 20132 * If we can't create all of them, don't add any of them. 20133 * Code in ip_wput_ire and ire_to_ill assumes that we 20134 * always have a non-loopback copy and loopback copy 20135 * for a given address. 20136 */ 20137 for (irep1 = irep; irep1 > ire_array; ) { 20138 irep1--; 20139 if (*irep1 == NULL) { 20140 ip0dbg(("ipif_check_bcast_ires: can't create " 20141 "IRE_BROADCAST, memory allocation failure\n")); 20142 while (irep > ire_array) { 20143 irep--; 20144 if (*irep != NULL) 20145 ire_delete(*irep); 20146 } 20147 goto bad; 20148 } 20149 } 20150 for (irep1 = irep; irep1 > ire_array; ) { 20151 int error; 20152 20153 irep1--; 20154 error = ire_add(irep1, NULL, NULL, NULL); 20155 if (error == 0) { 20156 ire_refrele(*irep1); /* Held in ire_add */ 20157 } 20158 } 20159 bad: 20160 if (test_allzero_ire != NULL) 20161 ire_refrele(test_allzero_ire); 20162 if (test_allone_ire != NULL) 20163 ire_refrele(test_allone_ire); 20164 if (test_net_ire != NULL) 20165 ire_refrele(test_net_ire); 20166 if (test_subnet_ire != NULL) 20167 ire_refrele(test_subnet_ire); 20168 } 20169 20170 /* 20171 * Extract both the flags (including IFF_CANTCHANGE) such as IFF_IPV* 20172 * from lifr_flags and the name from lifr_name. 20173 * Set IFF_IPV* and ill_isv6 prior to doing the lookup 20174 * since ipif_lookup_on_name uses the _isv6 flags when matching. 20175 * Returns EINPROGRESS when mp has been consumed by queueing it on 20176 * ill_pending_mp and the ioctl will complete in ip_rput. 20177 */ 20178 /* ARGSUSED */ 20179 int 20180 ip_sioctl_slifname(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 20181 ip_ioctl_cmd_t *ipip, void *if_req) 20182 { 20183 int err; 20184 ill_t *ill; 20185 struct lifreq *lifr = (struct lifreq *)if_req; 20186 20187 ASSERT(ipif != NULL); 20188 ip1dbg(("ip_sioctl_slifname %s\n", lifr->lifr_name)); 20189 ASSERT(q->q_next != NULL); 20190 20191 ill = (ill_t *)q->q_ptr; 20192 /* 20193 * If we are not writer on 'q' then this interface exists already 20194 * and previous lookups (ipif_extract_lifreq_cmn) found this ipif. 20195 * So return EALREADY 20196 */ 20197 if (ill != ipif->ipif_ill) 20198 return (EALREADY); 20199 20200 if (ill->ill_name[0] != '\0') 20201 return (EALREADY); 20202 20203 /* 20204 * Set all the flags. Allows all kinds of override. Provide some 20205 * sanity checking by not allowing IFF_BROADCAST and IFF_MULTICAST 20206 * unless there is either multicast/broadcast support in the driver 20207 * or it is a pt-pt link. 20208 */ 20209 if (lifr->lifr_flags & (IFF_PROMISC|IFF_ALLMULTI)) { 20210 /* Meaningless to IP thus don't allow them to be set. */ 20211 ip1dbg(("ip_setname: EINVAL 1\n")); 20212 return (EINVAL); 20213 } 20214 /* 20215 * For a DL_STYLE2 driver (ill_needs_attach), we would not have the 20216 * ill_bcast_addr_length info. 20217 */ 20218 if (!ill->ill_needs_attach && 20219 ((lifr->lifr_flags & IFF_MULTICAST) && 20220 !(lifr->lifr_flags & IFF_POINTOPOINT) && 20221 ill->ill_bcast_addr_length == 0)) { 20222 /* Link not broadcast/pt-pt capable i.e. no multicast */ 20223 ip1dbg(("ip_setname: EINVAL 2\n")); 20224 return (EINVAL); 20225 } 20226 if ((lifr->lifr_flags & IFF_BROADCAST) && 20227 ((lifr->lifr_flags & IFF_IPV6) || 20228 (!ill->ill_needs_attach && ill->ill_bcast_addr_length == 0))) { 20229 /* Link not broadcast capable or IPv6 i.e. no broadcast */ 20230 ip1dbg(("ip_setname: EINVAL 3\n")); 20231 return (EINVAL); 20232 } 20233 if (lifr->lifr_flags & IFF_UP) { 20234 /* Can only be set with SIOCSLIFFLAGS */ 20235 ip1dbg(("ip_setname: EINVAL 4\n")); 20236 return (EINVAL); 20237 } 20238 if ((lifr->lifr_flags & (IFF_IPV6|IFF_IPV4)) != IFF_IPV6 && 20239 (lifr->lifr_flags & (IFF_IPV6|IFF_IPV4)) != IFF_IPV4) { 20240 ip1dbg(("ip_setname: EINVAL 5\n")); 20241 return (EINVAL); 20242 } 20243 /* 20244 * Only allow the IFF_XRESOLV flag to be set on IPv6 interfaces. 20245 */ 20246 if ((lifr->lifr_flags & IFF_XRESOLV) && 20247 !(lifr->lifr_flags & IFF_IPV6) && 20248 !(ipif->ipif_isv6)) { 20249 ip1dbg(("ip_setname: EINVAL 6\n")); 20250 return (EINVAL); 20251 } 20252 20253 /* 20254 * The user has done SIOCGLIFFLAGS prior to this ioctl and hence 20255 * we have all the flags here. So, we assign rather than we OR. 20256 * We can't OR the flags here because we don't want to set 20257 * both IFF_IPV4 and IFF_IPV6. We start off as IFF_IPV4 in 20258 * ipif_allocate and become IFF_IPV4 or IFF_IPV6 here depending 20259 * on lifr_flags value here. 20260 */ 20261 /* 20262 * This ill has not been inserted into the global list. 20263 * So we are still single threaded and don't need any lock 20264 */ 20265 ipif->ipif_flags = lifr->lifr_flags & IFF_LOGINT_FLAGS; 20266 ill->ill_flags = lifr->lifr_flags & IFF_PHYINTINST_FLAGS; 20267 ill->ill_phyint->phyint_flags = lifr->lifr_flags & IFF_PHYINT_FLAGS; 20268 20269 /* We started off as V4. */ 20270 if (ill->ill_flags & ILLF_IPV6) { 20271 ill->ill_phyint->phyint_illv6 = ill; 20272 ill->ill_phyint->phyint_illv4 = NULL; 20273 } 20274 err = ipif_set_values(q, mp, lifr->lifr_name, &lifr->lifr_ppa); 20275 return (err); 20276 } 20277 20278 /* ARGSUSED */ 20279 int 20280 ip_sioctl_slifname_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 20281 ip_ioctl_cmd_t *ipip, void *if_req) 20282 { 20283 /* 20284 * ill_phyint_reinit merged the v4 and v6 into a single 20285 * ipsq. Could also have become part of a ipmp group in the 20286 * process, and we might not have been able to complete the 20287 * slifname in ipif_set_values, if we could not become 20288 * exclusive. If so restart it here 20289 */ 20290 return (ipif_set_values_tail(ipif->ipif_ill, ipif, mp, q)); 20291 } 20292 20293 /* 20294 * Return a pointer to the ipif which matches the index, IP version type and 20295 * zoneid. 20296 */ 20297 ipif_t * 20298 ipif_lookup_on_ifindex(uint_t index, boolean_t isv6, zoneid_t zoneid, 20299 queue_t *q, mblk_t *mp, ipsq_func_t func, int *err) 20300 { 20301 ill_t *ill; 20302 ipsq_t *ipsq; 20303 phyint_t *phyi; 20304 ipif_t *ipif; 20305 20306 ASSERT((q == NULL && mp == NULL && func == NULL && err == NULL) || 20307 (q != NULL && mp != NULL && func != NULL && err != NULL)); 20308 20309 if (err != NULL) 20310 *err = 0; 20311 20312 /* 20313 * Indexes are stored in the phyint - a common structure 20314 * to both IPv4 and IPv6. 20315 */ 20316 20317 rw_enter(&ill_g_lock, RW_READER); 20318 phyi = avl_find(&phyint_g_list.phyint_list_avl_by_index, 20319 (void *) &index, NULL); 20320 if (phyi != NULL) { 20321 ill = isv6 ? phyi->phyint_illv6 : phyi->phyint_illv4; 20322 if (ill == NULL) { 20323 rw_exit(&ill_g_lock); 20324 if (err != NULL) 20325 *err = ENXIO; 20326 return (NULL); 20327 } 20328 GRAB_CONN_LOCK(q); 20329 mutex_enter(&ill->ill_lock); 20330 if (ILL_CAN_LOOKUP(ill)) { 20331 for (ipif = ill->ill_ipif; ipif != NULL; 20332 ipif = ipif->ipif_next) { 20333 if (IPIF_CAN_LOOKUP(ipif) && 20334 (zoneid == ALL_ZONES || 20335 zoneid == ipif->ipif_zoneid)) { 20336 ipif_refhold_locked(ipif); 20337 mutex_exit(&ill->ill_lock); 20338 RELEASE_CONN_LOCK(q); 20339 rw_exit(&ill_g_lock); 20340 return (ipif); 20341 } 20342 } 20343 } else if (ILL_CAN_WAIT(ill, q)) { 20344 ipsq = ill->ill_phyint->phyint_ipsq; 20345 mutex_enter(&ipsq->ipsq_lock); 20346 rw_exit(&ill_g_lock); 20347 mutex_exit(&ill->ill_lock); 20348 ipsq_enq(ipsq, q, mp, func, NEW_OP, ill); 20349 mutex_exit(&ipsq->ipsq_lock); 20350 RELEASE_CONN_LOCK(q); 20351 *err = EINPROGRESS; 20352 return (NULL); 20353 } 20354 mutex_exit(&ill->ill_lock); 20355 RELEASE_CONN_LOCK(q); 20356 } 20357 rw_exit(&ill_g_lock); 20358 if (err != NULL) 20359 *err = ENXIO; 20360 return (NULL); 20361 } 20362 20363 typedef struct conn_change_s { 20364 uint_t cc_old_ifindex; 20365 uint_t cc_new_ifindex; 20366 } conn_change_t; 20367 20368 /* 20369 * ipcl_walk function for changing interface index. 20370 */ 20371 static void 20372 conn_change_ifindex(conn_t *connp, caddr_t arg) 20373 { 20374 conn_change_t *connc; 20375 uint_t old_ifindex; 20376 uint_t new_ifindex; 20377 int i; 20378 ilg_t *ilg; 20379 20380 connc = (conn_change_t *)arg; 20381 old_ifindex = connc->cc_old_ifindex; 20382 new_ifindex = connc->cc_new_ifindex; 20383 20384 if (connp->conn_orig_bound_ifindex == old_ifindex) 20385 connp->conn_orig_bound_ifindex = new_ifindex; 20386 20387 if (connp->conn_orig_multicast_ifindex == old_ifindex) 20388 connp->conn_orig_multicast_ifindex = new_ifindex; 20389 20390 if (connp->conn_orig_xmit_ifindex == old_ifindex) 20391 connp->conn_orig_xmit_ifindex = new_ifindex; 20392 20393 for (i = connp->conn_ilg_inuse - 1; i >= 0; i--) { 20394 ilg = &connp->conn_ilg[i]; 20395 if (ilg->ilg_orig_ifindex == old_ifindex) 20396 ilg->ilg_orig_ifindex = new_ifindex; 20397 } 20398 } 20399 20400 /* 20401 * Walk all the ipifs and ilms on this ill and change the orig_ifindex 20402 * to new_index if it matches the old_index. 20403 * 20404 * Failovers typically happen within a group of ills. But somebody 20405 * can remove an ill from the group after a failover happened. If 20406 * we are setting the ifindex after this, we potentially need to 20407 * look at all the ills rather than just the ones in the group. 20408 * We cut down the work by looking at matching ill_net_types 20409 * and ill_types as we could not possibly grouped them together. 20410 */ 20411 static void 20412 ip_change_ifindex(ill_t *ill_orig, conn_change_t *connc) 20413 { 20414 ill_t *ill; 20415 ipif_t *ipif; 20416 uint_t old_ifindex; 20417 uint_t new_ifindex; 20418 ilm_t *ilm; 20419 ill_walk_context_t ctx; 20420 20421 old_ifindex = connc->cc_old_ifindex; 20422 new_ifindex = connc->cc_new_ifindex; 20423 20424 rw_enter(&ill_g_lock, RW_READER); 20425 ill = ILL_START_WALK_ALL(&ctx); 20426 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 20427 if ((ill_orig->ill_net_type != ill->ill_net_type) || 20428 (ill_orig->ill_type != ill->ill_type)) { 20429 continue; 20430 } 20431 for (ipif = ill->ill_ipif; ipif != NULL; 20432 ipif = ipif->ipif_next) { 20433 if (ipif->ipif_orig_ifindex == old_ifindex) 20434 ipif->ipif_orig_ifindex = new_ifindex; 20435 } 20436 for (ilm = ill->ill_ilm; ilm != NULL; ilm = ilm->ilm_next) { 20437 if (ilm->ilm_orig_ifindex == old_ifindex) 20438 ilm->ilm_orig_ifindex = new_ifindex; 20439 } 20440 } 20441 rw_exit(&ill_g_lock); 20442 } 20443 20444 /* 20445 * We first need to ensure that the new index is unique, and 20446 * then carry the change across both v4 and v6 ill representation 20447 * of the physical interface. 20448 */ 20449 /* ARGSUSED */ 20450 int 20451 ip_sioctl_slifindex(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 20452 ip_ioctl_cmd_t *ipip, void *ifreq) 20453 { 20454 ill_t *ill; 20455 ill_t *ill_other; 20456 phyint_t *phyi; 20457 int old_index; 20458 conn_change_t connc; 20459 struct ifreq *ifr = (struct ifreq *)ifreq; 20460 struct lifreq *lifr = (struct lifreq *)ifreq; 20461 uint_t index; 20462 ill_t *ill_v4; 20463 ill_t *ill_v6; 20464 20465 if (ipip->ipi_cmd_type == IF_CMD) 20466 index = ifr->ifr_index; 20467 else 20468 index = lifr->lifr_index; 20469 20470 /* 20471 * Only allow on physical interface. Also, index zero is illegal. 20472 * 20473 * Need to check for PHYI_FAILED and PHYI_INACTIVE 20474 * 20475 * 1) If PHYI_FAILED is set, a failover could have happened which 20476 * implies a possible failback might have to happen. As failback 20477 * depends on the old index, we should fail setting the index. 20478 * 20479 * 2) If PHYI_INACTIVE is set, in.mpathd does a failover so that 20480 * any addresses or multicast memberships are failed over to 20481 * a non-STANDBY interface. As failback depends on the old 20482 * index, we should fail setting the index for this case also. 20483 * 20484 * 3) If PHYI_OFFLINE is set, a possible failover has happened. 20485 * Be consistent with PHYI_FAILED and fail the ioctl. 20486 */ 20487 ill = ipif->ipif_ill; 20488 phyi = ill->ill_phyint; 20489 if ((phyi->phyint_flags & (PHYI_FAILED|PHYI_INACTIVE|PHYI_OFFLINE)) || 20490 ipif->ipif_id != 0 || index == 0) { 20491 return (EINVAL); 20492 } 20493 old_index = phyi->phyint_ifindex; 20494 20495 /* If the index is not changing, no work to do */ 20496 if (old_index == index) 20497 return (0); 20498 20499 /* 20500 * Use ill_lookup_on_ifindex to determine if the 20501 * new index is unused and if so allow the change. 20502 */ 20503 ill_v6 = ill_lookup_on_ifindex(index, B_TRUE, NULL, NULL, NULL, NULL); 20504 ill_v4 = ill_lookup_on_ifindex(index, B_FALSE, NULL, NULL, NULL, NULL); 20505 if (ill_v6 != NULL || ill_v4 != NULL) { 20506 if (ill_v4 != NULL) 20507 ill_refrele(ill_v4); 20508 if (ill_v6 != NULL) 20509 ill_refrele(ill_v6); 20510 return (EBUSY); 20511 } 20512 20513 /* 20514 * The new index is unused. Set it in the phyint. 20515 * Locate the other ill so that we can send a routing 20516 * sockets message. 20517 */ 20518 if (ill->ill_isv6) { 20519 ill_other = phyi->phyint_illv4; 20520 } else { 20521 ill_other = phyi->phyint_illv6; 20522 } 20523 20524 phyi->phyint_ifindex = index; 20525 20526 connc.cc_old_ifindex = old_index; 20527 connc.cc_new_ifindex = index; 20528 ip_change_ifindex(ill, &connc); 20529 ipcl_walk(conn_change_ifindex, (caddr_t)&connc); 20530 20531 /* Send the routing sockets message */ 20532 ip_rts_ifmsg(ipif); 20533 if (ill_other != NULL) 20534 ip_rts_ifmsg(ill_other->ill_ipif); 20535 20536 return (0); 20537 } 20538 20539 /* ARGSUSED */ 20540 int 20541 ip_sioctl_get_lifindex(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 20542 ip_ioctl_cmd_t *ipip, void *ifreq) 20543 { 20544 struct ifreq *ifr = (struct ifreq *)ifreq; 20545 struct lifreq *lifr = (struct lifreq *)ifreq; 20546 20547 ip1dbg(("ip_sioctl_get_lifindex(%s:%u %p)\n", 20548 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 20549 /* Get the interface index */ 20550 if (ipip->ipi_cmd_type == IF_CMD) { 20551 ifr->ifr_index = ipif->ipif_ill->ill_phyint->phyint_ifindex; 20552 } else { 20553 lifr->lifr_index = ipif->ipif_ill->ill_phyint->phyint_ifindex; 20554 } 20555 return (0); 20556 } 20557 20558 /* ARGSUSED */ 20559 int 20560 ip_sioctl_get_lifzone(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 20561 ip_ioctl_cmd_t *ipip, void *ifreq) 20562 { 20563 struct lifreq *lifr = (struct lifreq *)ifreq; 20564 20565 ip1dbg(("ip_sioctl_get_lifzone(%s:%u %p)\n", 20566 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 20567 /* Get the interface zone */ 20568 ASSERT(ipip->ipi_cmd_type == LIF_CMD); 20569 lifr->lifr_zoneid = ipif->ipif_zoneid; 20570 return (0); 20571 } 20572 20573 /* 20574 * Set the zoneid of an interface. 20575 */ 20576 /* ARGSUSED */ 20577 int 20578 ip_sioctl_slifzone(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 20579 ip_ioctl_cmd_t *ipip, void *ifreq) 20580 { 20581 struct lifreq *lifr = (struct lifreq *)ifreq; 20582 int err = 0; 20583 boolean_t need_up = B_FALSE; 20584 zone_t *zptr; 20585 zone_status_t status; 20586 zoneid_t zoneid; 20587 20588 /* cannot assign instance zero to a non-global zone */ 20589 if (ipif->ipif_id == 0) 20590 return (ENOTSUP); 20591 20592 ASSERT(ipip->ipi_cmd_type == LIF_CMD); 20593 zoneid = lifr->lifr_zoneid; 20594 20595 /* 20596 * Cannot assign to a zone that doesn't exist or is shutting down. In 20597 * the event of a race with the zone shutdown processing, since IP 20598 * serializes this ioctl and SIOCGLIFCONF/SIOCLIFREMOVEIF, we know the 20599 * interface will be cleaned up even if the zone is shut down 20600 * immediately after the status check. If the interface can't be brought 20601 * down right away, and the zone is shut down before the restart 20602 * function is called, we resolve the possible races by rechecking the 20603 * zone status in the restart function. 20604 */ 20605 if ((zptr = zone_find_by_id(zoneid)) == NULL) 20606 return (EINVAL); 20607 status = zone_status_get(zptr); 20608 zone_rele(zptr); 20609 20610 if (status != ZONE_IS_READY && status != ZONE_IS_RUNNING) 20611 return (EINVAL); 20612 20613 if (ipif->ipif_flags & IPIF_UP) { 20614 /* 20615 * If the interface is already marked up, 20616 * we call ipif_down which will take care 20617 * of ditching any IREs that have been set 20618 * up based on the old interface address. 20619 */ 20620 err = ipif_logical_down(ipif, q, mp); 20621 if (err == EINPROGRESS) 20622 return (err); 20623 ipif_down_tail(ipif); 20624 need_up = B_TRUE; 20625 } 20626 20627 err = ip_sioctl_slifzone_tail(ipif, zoneid, q, mp, need_up); 20628 return (err); 20629 } 20630 20631 static int 20632 ip_sioctl_slifzone_tail(ipif_t *ipif, zoneid_t zoneid, 20633 queue_t *q, mblk_t *mp, boolean_t need_up) 20634 { 20635 int err = 0; 20636 20637 ip1dbg(("ip_sioctl_zoneid_tail(%s:%u %p)\n", 20638 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 20639 20640 /* Set the new zone id. */ 20641 ipif->ipif_zoneid = zoneid; 20642 20643 /* Update sctp list */ 20644 sctp_update_ipif(ipif, SCTP_IPIF_UPDATE); 20645 20646 if (need_up) { 20647 /* 20648 * Now bring the interface back up. If this 20649 * is the only IPIF for the ILL, ipif_up 20650 * will have to re-bind to the device, so 20651 * we may get back EINPROGRESS, in which 20652 * case, this IOCTL will get completed in 20653 * ip_rput_dlpi when we see the DL_BIND_ACK. 20654 */ 20655 err = ipif_up(ipif, q, mp); 20656 } 20657 return (err); 20658 } 20659 20660 /* ARGSUSED */ 20661 int 20662 ip_sioctl_slifzone_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 20663 ip_ioctl_cmd_t *ipip, void *if_req) 20664 { 20665 struct lifreq *lifr = (struct lifreq *)if_req; 20666 zoneid_t zoneid; 20667 zone_t *zptr; 20668 zone_status_t status; 20669 20670 ASSERT(ipif->ipif_id != 0); 20671 ASSERT(ipip->ipi_cmd_type == LIF_CMD); 20672 zoneid = lifr->lifr_zoneid; 20673 20674 ip1dbg(("ip_sioctl_slifzone_restart(%s:%u %p)\n", 20675 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 20676 20677 /* 20678 * We recheck the zone status to resolve the following race condition: 20679 * 1) process sends SIOCSLIFZONE to put hme0:1 in zone "myzone"; 20680 * 2) hme0:1 is up and can't be brought down right away; 20681 * ip_sioctl_slifzone() returns EINPROGRESS and the request is queued; 20682 * 3) zone "myzone" is halted; the zone status switches to 20683 * 'shutting_down' and the zones framework sends SIOCGLIFCONF to list 20684 * the interfaces to remove - hme0:1 is not returned because it's not 20685 * yet in "myzone", so it won't be removed; 20686 * 4) the restart function for SIOCSLIFZONE is called; without the 20687 * status check here, we would have hme0:1 in "myzone" after it's been 20688 * destroyed. 20689 * Note that if the status check fails, we need to bring the interface 20690 * back to its state prior to ip_sioctl_slifzone(), hence the call to 20691 * ipif_up_done[_v6](). 20692 */ 20693 status = ZONE_IS_UNINITIALIZED; 20694 if ((zptr = zone_find_by_id(zoneid)) != NULL) { 20695 status = zone_status_get(zptr); 20696 zone_rele(zptr); 20697 } 20698 if (status != ZONE_IS_READY && status != ZONE_IS_RUNNING) { 20699 if (ipif->ipif_isv6) { 20700 (void) ipif_up_done_v6(ipif); 20701 } else { 20702 (void) ipif_up_done(ipif); 20703 } 20704 return (EINVAL); 20705 } 20706 20707 ipif_down_tail(ipif); 20708 20709 return (ip_sioctl_slifzone_tail(ipif, zoneid, q, mp, B_TRUE)); 20710 } 20711 20712 /* ARGSUSED */ 20713 int 20714 ip_sioctl_get_lifusesrc(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 20715 ip_ioctl_cmd_t *ipip, void *ifreq) 20716 { 20717 struct lifreq *lifr = ifreq; 20718 20719 ASSERT(q->q_next == NULL); 20720 ASSERT(CONN_Q(q)); 20721 20722 ip1dbg(("ip_sioctl_get_lifusesrc(%s:%u %p)\n", 20723 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 20724 lifr->lifr_index = ipif->ipif_ill->ill_usesrc_ifindex; 20725 ip1dbg(("ip_sioctl_get_lifusesrc:lifr_index = %d\n", lifr->lifr_index)); 20726 20727 return (0); 20728 } 20729 20730 20731 /* Find the previous ILL in this usesrc group */ 20732 static ill_t * 20733 ill_prev_usesrc(ill_t *uill) 20734 { 20735 ill_t *ill; 20736 20737 for (ill = uill->ill_usesrc_grp_next; 20738 ASSERT(ill), ill->ill_usesrc_grp_next != uill; 20739 ill = ill->ill_usesrc_grp_next) 20740 /* do nothing */; 20741 return (ill); 20742 } 20743 20744 /* 20745 * Release all members of the usesrc group. This routine is called 20746 * from ill_delete when the interface being unplumbed is the 20747 * group head. 20748 */ 20749 static void 20750 ill_disband_usesrc_group(ill_t *uill) 20751 { 20752 ill_t *next_ill, *tmp_ill; 20753 ASSERT(RW_WRITE_HELD(&ill_g_usesrc_lock)); 20754 next_ill = uill->ill_usesrc_grp_next; 20755 20756 do { 20757 ASSERT(next_ill != NULL); 20758 tmp_ill = next_ill->ill_usesrc_grp_next; 20759 ASSERT(tmp_ill != NULL); 20760 next_ill->ill_usesrc_grp_next = NULL; 20761 next_ill->ill_usesrc_ifindex = 0; 20762 next_ill = tmp_ill; 20763 } while (next_ill->ill_usesrc_ifindex != 0); 20764 uill->ill_usesrc_grp_next = NULL; 20765 } 20766 20767 /* 20768 * Remove the client usesrc ILL from the list and relink to a new list 20769 */ 20770 int 20771 ill_relink_usesrc_ills(ill_t *ucill, ill_t *uill, uint_t ifindex) 20772 { 20773 ill_t *ill, *tmp_ill; 20774 20775 ASSERT((ucill != NULL) && (ucill->ill_usesrc_grp_next != NULL) && 20776 (uill != NULL) && RW_WRITE_HELD(&ill_g_usesrc_lock)); 20777 20778 /* 20779 * Check if the usesrc client ILL passed in is not already 20780 * in use as a usesrc ILL i.e one whose source address is 20781 * in use OR a usesrc ILL is not already in use as a usesrc 20782 * client ILL 20783 */ 20784 if ((ucill->ill_usesrc_ifindex == 0) || 20785 (uill->ill_usesrc_ifindex != 0)) { 20786 return (-1); 20787 } 20788 20789 ill = ill_prev_usesrc(ucill); 20790 ASSERT(ill->ill_usesrc_grp_next != NULL); 20791 20792 /* Remove from the current list */ 20793 if (ill->ill_usesrc_grp_next->ill_usesrc_grp_next == ill) { 20794 /* Only two elements in the list */ 20795 ASSERT(ill->ill_usesrc_ifindex == 0); 20796 ill->ill_usesrc_grp_next = NULL; 20797 } else { 20798 ill->ill_usesrc_grp_next = ucill->ill_usesrc_grp_next; 20799 } 20800 20801 if (ifindex == 0) { 20802 ucill->ill_usesrc_ifindex = 0; 20803 ucill->ill_usesrc_grp_next = NULL; 20804 return (0); 20805 } 20806 20807 ucill->ill_usesrc_ifindex = ifindex; 20808 tmp_ill = uill->ill_usesrc_grp_next; 20809 uill->ill_usesrc_grp_next = ucill; 20810 ucill->ill_usesrc_grp_next = 20811 (tmp_ill != NULL) ? tmp_ill : uill; 20812 return (0); 20813 } 20814 20815 /* 20816 * Set the ill_usesrc and ill_usesrc_head fields. See synchronization notes in 20817 * ip.c for locking details. 20818 */ 20819 /* ARGSUSED */ 20820 int 20821 ip_sioctl_slifusesrc(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 20822 ip_ioctl_cmd_t *ipip, void *ifreq) 20823 { 20824 struct lifreq *lifr = (struct lifreq *)ifreq; 20825 boolean_t isv6 = B_FALSE, reset_flg = B_FALSE, 20826 ill_flag_changed = B_FALSE; 20827 ill_t *usesrc_ill, *usesrc_cli_ill = ipif->ipif_ill; 20828 int err = 0, ret; 20829 uint_t ifindex; 20830 phyint_t *us_phyint, *us_cli_phyint; 20831 ipsq_t *ipsq = NULL; 20832 20833 ASSERT(IAM_WRITER_IPIF(ipif)); 20834 ASSERT(q->q_next == NULL); 20835 ASSERT(CONN_Q(q)); 20836 20837 isv6 = (Q_TO_CONN(q))->conn_af_isv6; 20838 us_cli_phyint = usesrc_cli_ill->ill_phyint; 20839 20840 ASSERT(us_cli_phyint != NULL); 20841 20842 /* 20843 * If the client ILL is being used for IPMP, abort. 20844 * Note, this can be done before ipsq_try_enter since we are already 20845 * exclusive on this ILL 20846 */ 20847 if ((us_cli_phyint->phyint_groupname != NULL) || 20848 (us_cli_phyint->phyint_flags & PHYI_STANDBY)) { 20849 return (EINVAL); 20850 } 20851 20852 ifindex = lifr->lifr_index; 20853 if (ifindex == 0) { 20854 if (usesrc_cli_ill->ill_usesrc_grp_next == NULL) { 20855 /* non usesrc group interface, nothing to reset */ 20856 return (0); 20857 } 20858 ifindex = usesrc_cli_ill->ill_usesrc_ifindex; 20859 /* valid reset request */ 20860 reset_flg = B_TRUE; 20861 } 20862 20863 usesrc_ill = ill_lookup_on_ifindex(ifindex, isv6, q, mp, 20864 ip_process_ioctl, &err); 20865 20866 if (usesrc_ill == NULL) { 20867 return (err); 20868 } 20869 20870 /* 20871 * The usesrc_cli_ill or the usesrc_ill cannot be part of an IPMP 20872 * group nor can either of the interfaces be used for standy. So 20873 * to guarantee mutual exclusion with ip_sioctl_flags (which sets 20874 * PHYI_STANDBY) and ip_sioctl_groupname (which sets the groupname) 20875 * we need to be exclusive on the ipsq belonging to the usesrc_ill. 20876 * We are already exlusive on this ipsq i.e ipsq corresponding to 20877 * the usesrc_cli_ill 20878 */ 20879 ipsq = ipsq_try_enter(NULL, usesrc_ill, q, mp, ip_process_ioctl, 20880 NEW_OP, B_TRUE); 20881 if (ipsq == NULL) { 20882 err = EINPROGRESS; 20883 /* Operation enqueued on the ipsq of the usesrc ILL */ 20884 goto done; 20885 } 20886 20887 /* Check if the usesrc_ill is used for IPMP */ 20888 us_phyint = usesrc_ill->ill_phyint; 20889 if ((us_phyint->phyint_groupname != NULL) || 20890 (us_phyint->phyint_flags & PHYI_STANDBY)) { 20891 err = EINVAL; 20892 goto done; 20893 } 20894 20895 /* 20896 * If the client is already in use as a usesrc_ill or a usesrc_ill is 20897 * already a client then return EINVAL 20898 */ 20899 if (IS_USESRC_ILL(usesrc_cli_ill) || IS_USESRC_CLI_ILL(usesrc_ill)) { 20900 err = EINVAL; 20901 goto done; 20902 } 20903 20904 /* 20905 * If the ill_usesrc_ifindex field is already set to what it needs to 20906 * be then this is a duplicate operation. 20907 */ 20908 if (!reset_flg && usesrc_cli_ill->ill_usesrc_ifindex == ifindex) { 20909 err = 0; 20910 goto done; 20911 } 20912 20913 ip1dbg(("ip_sioctl_slifusesrc: usesrc_cli_ill %s, usesrc_ill %s," 20914 " v6 = %d", usesrc_cli_ill->ill_name, usesrc_ill->ill_name, 20915 usesrc_ill->ill_isv6)); 20916 20917 /* 20918 * The next step ensures that no new ires will be created referencing 20919 * the client ill, until the ILL_CHANGING flag is cleared. Then 20920 * we go through an ire walk deleting all ire caches that reference 20921 * the client ill. New ires referencing the client ill that are added 20922 * to the ire table before the ILL_CHANGING flag is set, will be 20923 * cleaned up by the ire walk below. Attempt to add new ires referencing 20924 * the client ill while the ILL_CHANGING flag is set will be failed 20925 * during the ire_add in ire_atomic_start. ire_atomic_start atomically 20926 * checks (under the ill_g_usesrc_lock) that the ire being added 20927 * is not stale, i.e the ire_stq and ire_ipif are consistent and 20928 * belong to the same usesrc group. 20929 */ 20930 mutex_enter(&usesrc_cli_ill->ill_lock); 20931 usesrc_cli_ill->ill_state_flags |= ILL_CHANGING; 20932 mutex_exit(&usesrc_cli_ill->ill_lock); 20933 ill_flag_changed = B_TRUE; 20934 20935 if (ipif->ipif_isv6) 20936 ire_walk_v6(ipif_delete_cache_ire, (char *)usesrc_cli_ill, 20937 ALL_ZONES); 20938 else 20939 ire_walk_v4(ipif_delete_cache_ire, (char *)usesrc_cli_ill, 20940 ALL_ZONES); 20941 20942 /* 20943 * ill_g_usesrc_lock global lock protects the ill_usesrc_grp_next 20944 * and the ill_usesrc_ifindex fields 20945 */ 20946 rw_enter(&ill_g_usesrc_lock, RW_WRITER); 20947 20948 if (reset_flg) { 20949 ret = ill_relink_usesrc_ills(usesrc_cli_ill, usesrc_ill, 0); 20950 if (ret != 0) { 20951 err = EINVAL; 20952 } 20953 rw_exit(&ill_g_usesrc_lock); 20954 goto done; 20955 } 20956 20957 /* 20958 * Four possibilities to consider: 20959 * 1. Both usesrc_ill and usesrc_cli_ill are not part of any usesrc grp 20960 * 2. usesrc_ill is part of a group but usesrc_cli_ill isn't 20961 * 3. usesrc_cli_ill is part of a group but usesrc_ill isn't 20962 * 4. Both are part of their respective usesrc groups 20963 */ 20964 if ((usesrc_ill->ill_usesrc_grp_next == NULL) && 20965 (usesrc_cli_ill->ill_usesrc_grp_next == NULL)) { 20966 ASSERT(usesrc_ill->ill_usesrc_ifindex == 0); 20967 usesrc_cli_ill->ill_usesrc_ifindex = ifindex; 20968 usesrc_ill->ill_usesrc_grp_next = usesrc_cli_ill; 20969 usesrc_cli_ill->ill_usesrc_grp_next = usesrc_ill; 20970 } else if ((usesrc_ill->ill_usesrc_grp_next != NULL) && 20971 (usesrc_cli_ill->ill_usesrc_grp_next == NULL)) { 20972 usesrc_cli_ill->ill_usesrc_ifindex = ifindex; 20973 /* Insert at head of list */ 20974 usesrc_cli_ill->ill_usesrc_grp_next = 20975 usesrc_ill->ill_usesrc_grp_next; 20976 usesrc_ill->ill_usesrc_grp_next = usesrc_cli_ill; 20977 } else { 20978 ret = ill_relink_usesrc_ills(usesrc_cli_ill, usesrc_ill, 20979 ifindex); 20980 if (ret != 0) 20981 err = EINVAL; 20982 } 20983 rw_exit(&ill_g_usesrc_lock); 20984 20985 done: 20986 if (ill_flag_changed) { 20987 mutex_enter(&usesrc_cli_ill->ill_lock); 20988 usesrc_cli_ill->ill_state_flags &= ~ILL_CHANGING; 20989 mutex_exit(&usesrc_cli_ill->ill_lock); 20990 } 20991 if (ipsq != NULL) 20992 ipsq_exit(ipsq, B_TRUE, B_TRUE); 20993 /* The refrele on the lifr_name ipif is done by ip_process_ioctl */ 20994 ill_refrele(usesrc_ill); 20995 return (err); 20996 } 20997 20998 /* 20999 * comparison function used by avl. 21000 */ 21001 static int 21002 ill_phyint_compare_index(const void *index_ptr, const void *phyip) 21003 { 21004 21005 uint_t index; 21006 21007 ASSERT(phyip != NULL && index_ptr != NULL); 21008 21009 index = *((uint_t *)index_ptr); 21010 /* 21011 * let the phyint with the lowest index be on top. 21012 */ 21013 if (((phyint_t *)phyip)->phyint_ifindex < index) 21014 return (1); 21015 if (((phyint_t *)phyip)->phyint_ifindex > index) 21016 return (-1); 21017 return (0); 21018 } 21019 21020 /* 21021 * comparison function used by avl. 21022 */ 21023 static int 21024 ill_phyint_compare_name(const void *name_ptr, const void *phyip) 21025 { 21026 ill_t *ill; 21027 int res = 0; 21028 21029 ASSERT(phyip != NULL && name_ptr != NULL); 21030 21031 if (((phyint_t *)phyip)->phyint_illv4) 21032 ill = ((phyint_t *)phyip)->phyint_illv4; 21033 else 21034 ill = ((phyint_t *)phyip)->phyint_illv6; 21035 ASSERT(ill != NULL); 21036 21037 res = strcmp(ill->ill_name, (char *)name_ptr); 21038 if (res > 0) 21039 return (1); 21040 else if (res < 0) 21041 return (-1); 21042 return (0); 21043 } 21044 /* 21045 * This function is called from ill_delete when the ill is being 21046 * unplumbed. We remove the reference from the phyint and we also 21047 * free the phyint when there are no more references to it. 21048 */ 21049 static void 21050 ill_phyint_free(ill_t *ill) 21051 { 21052 phyint_t *phyi; 21053 phyint_t *next_phyint; 21054 ipsq_t *cur_ipsq; 21055 21056 ASSERT(ill->ill_phyint != NULL); 21057 21058 ASSERT(RW_WRITE_HELD(&ill_g_lock)); 21059 phyi = ill->ill_phyint; 21060 ill->ill_phyint = NULL; 21061 /* 21062 * ill_init allocates a phyint always to store the copy 21063 * of flags relevant to phyint. At that point in time, we could 21064 * not assign the name and hence phyint_illv4/v6 could not be 21065 * initialized. Later in ipif_set_values, we assign the name to 21066 * the ill, at which point in time we assign phyint_illv4/v6. 21067 * Thus we don't rely on phyint_illv6 to be initialized always. 21068 */ 21069 if (ill->ill_flags & ILLF_IPV6) { 21070 phyi->phyint_illv6 = NULL; 21071 } else { 21072 phyi->phyint_illv4 = NULL; 21073 } 21074 /* 21075 * ipif_down removes it from the group when the last ipif goes 21076 * down. 21077 */ 21078 ASSERT(ill->ill_group == NULL); 21079 21080 if (phyi->phyint_illv4 != NULL || phyi->phyint_illv6 != NULL) 21081 return; 21082 21083 /* 21084 * Make sure this phyint was put in the list. 21085 */ 21086 if (phyi->phyint_ifindex > 0) { 21087 avl_remove(&phyint_g_list.phyint_list_avl_by_index, 21088 phyi); 21089 avl_remove(&phyint_g_list.phyint_list_avl_by_name, 21090 phyi); 21091 } 21092 /* 21093 * remove phyint from the ipsq list. 21094 */ 21095 cur_ipsq = phyi->phyint_ipsq; 21096 if (phyi == cur_ipsq->ipsq_phyint_list) { 21097 cur_ipsq->ipsq_phyint_list = phyi->phyint_ipsq_next; 21098 } else { 21099 next_phyint = cur_ipsq->ipsq_phyint_list; 21100 while (next_phyint != NULL) { 21101 if (next_phyint->phyint_ipsq_next == phyi) { 21102 next_phyint->phyint_ipsq_next = 21103 phyi->phyint_ipsq_next; 21104 break; 21105 } 21106 next_phyint = next_phyint->phyint_ipsq_next; 21107 } 21108 ASSERT(next_phyint != NULL); 21109 } 21110 IPSQ_DEC_REF(cur_ipsq); 21111 21112 if (phyi->phyint_groupname_len != 0) { 21113 ASSERT(phyi->phyint_groupname != NULL); 21114 mi_free(phyi->phyint_groupname); 21115 } 21116 mi_free(phyi); 21117 } 21118 21119 /* 21120 * Attach the ill to the phyint structure which can be shared by both 21121 * IPv4 and IPv6 ill. ill_init allocates a phyint to just hold flags. This 21122 * function is called from ipif_set_values and ill_lookup_on_name (for 21123 * loopback) where we know the name of the ill. We lookup the ill and if 21124 * there is one present already with the name use that phyint. Otherwise 21125 * reuse the one allocated by ill_init. 21126 */ 21127 static void 21128 ill_phyint_reinit(ill_t *ill) 21129 { 21130 boolean_t isv6 = ill->ill_isv6; 21131 phyint_t *phyi_old; 21132 phyint_t *phyi; 21133 avl_index_t where = 0; 21134 ill_t *ill_other = NULL; 21135 ipsq_t *ipsq; 21136 21137 ASSERT(RW_WRITE_HELD(&ill_g_lock)); 21138 21139 phyi_old = ill->ill_phyint; 21140 ASSERT(isv6 || (phyi_old->phyint_illv4 == ill && 21141 phyi_old->phyint_illv6 == NULL)); 21142 ASSERT(!isv6 || (phyi_old->phyint_illv6 == ill && 21143 phyi_old->phyint_illv4 == NULL)); 21144 ASSERT(phyi_old->phyint_ifindex == 0); 21145 21146 phyi = avl_find(&phyint_g_list.phyint_list_avl_by_name, 21147 ill->ill_name, &where); 21148 21149 /* 21150 * 1. We grabbed the ill_g_lock before inserting this ill into 21151 * the global list of ills. So no other thread could have located 21152 * this ill and hence the ipsq of this ill is guaranteed to be empty. 21153 * 2. Now locate the other protocol instance of this ill. 21154 * 3. Now grab both ill locks in the right order, and the phyint lock of 21155 * the new ipsq. Holding ill locks + ill_g_lock ensures that the ipsq 21156 * of neither ill can change. 21157 * 4. Merge the phyint and thus the ipsq as well of this ill onto the 21158 * other ill. 21159 * 5. Release all locks. 21160 */ 21161 21162 /* 21163 * Look for IPv4 if we are initializing IPv6 or look for IPv6 if 21164 * we are initializing IPv4. 21165 */ 21166 if (phyi != NULL) { 21167 ill_other = (isv6) ? phyi->phyint_illv4 : 21168 phyi->phyint_illv6; 21169 ASSERT(ill_other->ill_phyint != NULL); 21170 ASSERT((isv6 && !ill_other->ill_isv6) || 21171 (!isv6 && ill_other->ill_isv6)); 21172 GRAB_ILL_LOCKS(ill, ill_other); 21173 /* 21174 * We are potentially throwing away phyint_flags which 21175 * could be different from the one that we obtain from 21176 * ill_other->ill_phyint. But it is okay as we are assuming 21177 * that the state maintained within IP is correct. 21178 */ 21179 mutex_enter(&phyi->phyint_lock); 21180 if (isv6) { 21181 ASSERT(phyi->phyint_illv6 == NULL); 21182 phyi->phyint_illv6 = ill; 21183 } else { 21184 ASSERT(phyi->phyint_illv4 == NULL); 21185 phyi->phyint_illv4 = ill; 21186 } 21187 /* 21188 * This is a new ill, currently undergoing SLIFNAME 21189 * So we could not have joined an IPMP group until now. 21190 */ 21191 ASSERT(phyi_old->phyint_ipsq_next == NULL && 21192 phyi_old->phyint_groupname == NULL); 21193 21194 /* 21195 * This phyi_old is going away. Decref ipsq_refs and 21196 * assert it is zero. The ipsq itself will be freed in 21197 * ipsq_exit 21198 */ 21199 ipsq = phyi_old->phyint_ipsq; 21200 IPSQ_DEC_REF(ipsq); 21201 ASSERT(ipsq->ipsq_refs == 0); 21202 /* Get the singleton phyint out of the ipsq list */ 21203 ASSERT(phyi_old->phyint_ipsq_next == NULL); 21204 ipsq->ipsq_phyint_list = NULL; 21205 phyi_old->phyint_illv4 = NULL; 21206 phyi_old->phyint_illv6 = NULL; 21207 mi_free(phyi_old); 21208 } else { 21209 mutex_enter(&ill->ill_lock); 21210 /* 21211 * We don't need to acquire any lock, since 21212 * the ill is not yet visible globally and we 21213 * have not yet released the ill_g_lock. 21214 */ 21215 phyi = phyi_old; 21216 mutex_enter(&phyi->phyint_lock); 21217 /* XXX We need a recovery strategy here. */ 21218 if (!phyint_assign_ifindex(phyi)) 21219 cmn_err(CE_PANIC, "phyint_assign_ifindex() failed"); 21220 21221 avl_insert(&phyint_g_list.phyint_list_avl_by_name, 21222 (void *)phyi, where); 21223 21224 (void) avl_find(&phyint_g_list.phyint_list_avl_by_index, 21225 &phyi->phyint_ifindex, &where); 21226 avl_insert(&phyint_g_list.phyint_list_avl_by_index, 21227 (void *)phyi, where); 21228 } 21229 21230 /* 21231 * Reassigning ill_phyint automatically reassigns the ipsq also. 21232 * pending mp is not affected because that is per ill basis. 21233 */ 21234 ill->ill_phyint = phyi; 21235 21236 /* 21237 * Keep the index on ipif_orig_index to be used by FAILOVER. 21238 * We do this here as when the first ipif was allocated, 21239 * ipif_allocate does not know the right interface index. 21240 */ 21241 21242 ill->ill_ipif->ipif_orig_ifindex = ill->ill_phyint->phyint_ifindex; 21243 /* 21244 * Now that the phyint's ifindex has been assigned, complete the 21245 * remaining 21246 */ 21247 if (ill->ill_isv6) { 21248 ill->ill_ip6_mib->ipv6IfIndex = 21249 ill->ill_phyint->phyint_ifindex; 21250 ill->ill_icmp6_mib->ipv6IfIcmpIfIndex = 21251 ill->ill_phyint->phyint_ifindex; 21252 } 21253 21254 RELEASE_ILL_LOCKS(ill, ill_other); 21255 mutex_exit(&phyi->phyint_lock); 21256 } 21257 21258 /* 21259 * Notify any downstream modules of the name of this interface. 21260 * An M_IOCTL is used even though we don't expect a successful reply. 21261 * Any reply message from the driver (presumably an M_IOCNAK) will 21262 * eventually get discarded somewhere upstream. The message format is 21263 * simply an SIOCSLIFNAME ioctl just as might be sent from ifconfig 21264 * to IP. 21265 */ 21266 static void 21267 ip_ifname_notify(ill_t *ill, queue_t *q) 21268 { 21269 mblk_t *mp1, *mp2; 21270 struct iocblk *iocp; 21271 struct lifreq *lifr; 21272 21273 mp1 = mkiocb(SIOCSLIFNAME); 21274 if (mp1 == NULL) 21275 return; 21276 mp2 = allocb(sizeof (struct lifreq), BPRI_HI); 21277 if (mp2 == NULL) { 21278 freeb(mp1); 21279 return; 21280 } 21281 21282 mp1->b_cont = mp2; 21283 iocp = (struct iocblk *)mp1->b_rptr; 21284 iocp->ioc_count = sizeof (struct lifreq); 21285 21286 lifr = (struct lifreq *)mp2->b_rptr; 21287 mp2->b_wptr += sizeof (struct lifreq); 21288 bzero(lifr, sizeof (struct lifreq)); 21289 21290 (void) strncpy(lifr->lifr_name, ill->ill_name, LIFNAMSIZ); 21291 lifr->lifr_ppa = ill->ill_ppa; 21292 lifr->lifr_flags = (ill->ill_flags & (ILLF_IPV4|ILLF_IPV6)); 21293 21294 putnext(q, mp1); 21295 } 21296 21297 static boolean_t ip_trash_timer_started = B_FALSE; 21298 21299 static int 21300 ipif_set_values_tail(ill_t *ill, ipif_t *ipif, mblk_t *mp, queue_t *q) 21301 { 21302 int err; 21303 21304 /* Set the obsolete NDD per-interface forwarding name. */ 21305 err = ill_set_ndd_name(ill); 21306 if (err != 0) { 21307 cmn_err(CE_WARN, "ipif_set_values: ill_set_ndd_name (%d)\n", 21308 err); 21309 } 21310 21311 /* Tell downstream modules where they are. */ 21312 ip_ifname_notify(ill, q); 21313 21314 /* 21315 * ill_dl_phys returns EINPROGRESS in the usual case. 21316 * Error cases are ENOMEM ... 21317 */ 21318 err = ill_dl_phys(ill, ipif, mp, q); 21319 21320 /* 21321 * If there is no IRE expiration timer running, get one started. 21322 * igmp and mld timers will be triggered by the first multicast 21323 */ 21324 if (!ip_trash_timer_started) { 21325 /* 21326 * acquire the lock and check again. 21327 */ 21328 mutex_enter(&ip_trash_timer_lock); 21329 if (!ip_trash_timer_started) { 21330 ip_ire_expire_id = timeout(ip_trash_timer_expire, NULL, 21331 MSEC_TO_TICK(ip_timer_interval)); 21332 ip_trash_timer_started = B_TRUE; 21333 } 21334 mutex_exit(&ip_trash_timer_lock); 21335 } 21336 21337 if (ill->ill_isv6) { 21338 mutex_enter(&mld_slowtimeout_lock); 21339 if (mld_slowtimeout_id == 0) { 21340 mld_slowtimeout_id = timeout(mld_slowtimo, NULL, 21341 MSEC_TO_TICK(MCAST_SLOWTIMO_INTERVAL)); 21342 } 21343 mutex_exit(&mld_slowtimeout_lock); 21344 } else { 21345 mutex_enter(&igmp_slowtimeout_lock); 21346 if (igmp_slowtimeout_id == 0) { 21347 igmp_slowtimeout_id = timeout(igmp_slowtimo, NULL, 21348 MSEC_TO_TICK(MCAST_SLOWTIMO_INTERVAL)); 21349 } 21350 mutex_exit(&igmp_slowtimeout_lock); 21351 } 21352 21353 return (err); 21354 } 21355 21356 /* 21357 * Common routine for ppa and ifname setting. Should be called exclusive. 21358 * 21359 * Returns EINPROGRESS when mp has been consumed by queueing it on 21360 * ill_pending_mp and the ioctl will complete in ip_rput. 21361 * 21362 * NOTE : If ppa is UNIT_MAX, we assign the next valid ppa and return 21363 * the new name and new ppa in lifr_name and lifr_ppa respectively. 21364 * For SLIFNAME, we pass these values back to the userland. 21365 */ 21366 static int 21367 ipif_set_values(queue_t *q, mblk_t *mp, char *interf_name, uint_t *new_ppa_ptr) 21368 { 21369 ill_t *ill; 21370 ipif_t *ipif; 21371 ipsq_t *ipsq; 21372 char *ppa_ptr; 21373 char *old_ptr; 21374 char old_char; 21375 int error; 21376 21377 ip1dbg(("ipif_set_values: interface %s\n", interf_name)); 21378 ASSERT(q->q_next != NULL); 21379 ASSERT(interf_name != NULL); 21380 21381 ill = (ill_t *)q->q_ptr; 21382 21383 ASSERT(ill->ill_name[0] == '\0'); 21384 ASSERT(IAM_WRITER_ILL(ill)); 21385 ASSERT((mi_strlen(interf_name) + 1) <= LIFNAMSIZ); 21386 ASSERT(ill->ill_ppa == UINT_MAX); 21387 21388 /* The ppa is sent down by ifconfig or is chosen */ 21389 if ((ppa_ptr = ill_get_ppa_ptr(interf_name)) == NULL) { 21390 return (EINVAL); 21391 } 21392 21393 /* 21394 * make sure ppa passed in is same as ppa in the name. 21395 * This check is not made when ppa == UINT_MAX in that case ppa 21396 * in the name could be anything. System will choose a ppa and 21397 * update new_ppa_ptr and inter_name to contain the choosen ppa. 21398 */ 21399 if (*new_ppa_ptr != UINT_MAX) { 21400 /* stoi changes the pointer */ 21401 old_ptr = ppa_ptr; 21402 /* 21403 * ifconfig passed in 0 for the ppa for DLPI 1 style devices 21404 * (they don't have an externally visible ppa). We assign one 21405 * here so that we can manage the interface. Note that in 21406 * the past this value was always 0 for DLPI 1 drivers. 21407 */ 21408 if (*new_ppa_ptr == 0) 21409 *new_ppa_ptr = stoi(&old_ptr); 21410 else if (*new_ppa_ptr != (uint_t)stoi(&old_ptr)) 21411 return (EINVAL); 21412 } 21413 /* 21414 * terminate string before ppa 21415 * save char at that location. 21416 */ 21417 old_char = ppa_ptr[0]; 21418 ppa_ptr[0] = '\0'; 21419 21420 ill->ill_ppa = *new_ppa_ptr; 21421 /* 21422 * Finish as much work now as possible before calling ill_glist_insert 21423 * which makes the ill globally visible and also merges it with the 21424 * other protocol instance of this phyint. The remaining work is 21425 * done after entering the ipsq which may happen sometime later. 21426 * ill_set_ndd_name occurs after the ill has been made globally visible. 21427 */ 21428 ipif = ill->ill_ipif; 21429 21430 /* We didn't do this when we allocated ipif in ip_ll_subnet_defaults */ 21431 ipif_assign_seqid(ipif); 21432 21433 if (!(ill->ill_flags & (ILLF_IPV4|ILLF_IPV6))) 21434 ill->ill_flags |= ILLF_IPV4; 21435 21436 ASSERT(ipif->ipif_next == NULL); /* Only one ipif on ill */ 21437 ASSERT((ipif->ipif_flags & IPIF_UP) == 0); 21438 21439 if (ill->ill_flags & ILLF_IPV6) { 21440 21441 ill->ill_isv6 = B_TRUE; 21442 if (ill->ill_rq != NULL) { 21443 ill->ill_rq->q_qinfo = &rinit_ipv6; 21444 ill->ill_wq->q_qinfo = &winit_ipv6; 21445 } 21446 21447 /* Keep the !IN6_IS_ADDR_V4MAPPED assertions happy */ 21448 ipif->ipif_v6lcl_addr = ipv6_all_zeros; 21449 ipif->ipif_v6src_addr = ipv6_all_zeros; 21450 ipif->ipif_v6subnet = ipv6_all_zeros; 21451 ipif->ipif_v6net_mask = ipv6_all_zeros; 21452 ipif->ipif_v6brd_addr = ipv6_all_zeros; 21453 ipif->ipif_v6pp_dst_addr = ipv6_all_zeros; 21454 /* 21455 * point-to-point or Non-mulicast capable 21456 * interfaces won't do NUD unless explicitly 21457 * configured to do so. 21458 */ 21459 if (ipif->ipif_flags & IPIF_POINTOPOINT || 21460 !(ill->ill_flags & ILLF_MULTICAST)) { 21461 ill->ill_flags |= ILLF_NONUD; 21462 } 21463 /* Make sure IPv4 specific flag is not set on IPv6 if */ 21464 if (ill->ill_flags & ILLF_NOARP) { 21465 /* 21466 * Note: xresolv interfaces will eventually need 21467 * NOARP set here as well, but that will require 21468 * those external resolvers to have some 21469 * knowledge of that flag and act appropriately. 21470 * Not to be changed at present. 21471 */ 21472 ill->ill_flags &= ~ILLF_NOARP; 21473 } 21474 /* 21475 * Set the ILLF_ROUTER flag according to the global 21476 * IPv6 forwarding policy. 21477 */ 21478 if (ipv6_forward != 0) 21479 ill->ill_flags |= ILLF_ROUTER; 21480 } else if (ill->ill_flags & ILLF_IPV4) { 21481 ill->ill_isv6 = B_FALSE; 21482 IN6_IPADDR_TO_V4MAPPED(INADDR_ANY, &ipif->ipif_v6lcl_addr); 21483 IN6_IPADDR_TO_V4MAPPED(INADDR_ANY, &ipif->ipif_v6src_addr); 21484 IN6_IPADDR_TO_V4MAPPED(INADDR_ANY, &ipif->ipif_v6subnet); 21485 IN6_IPADDR_TO_V4MAPPED(INADDR_ANY, &ipif->ipif_v6net_mask); 21486 IN6_IPADDR_TO_V4MAPPED(INADDR_ANY, &ipif->ipif_v6brd_addr); 21487 IN6_IPADDR_TO_V4MAPPED(INADDR_ANY, &ipif->ipif_v6pp_dst_addr); 21488 /* 21489 * Set the ILLF_ROUTER flag according to the global 21490 * IPv4 forwarding policy. 21491 */ 21492 if (ip_g_forward != 0) 21493 ill->ill_flags |= ILLF_ROUTER; 21494 } 21495 21496 ASSERT(ill->ill_phyint != NULL); 21497 21498 /* 21499 * The ipv6Ifindex and ipv6IfIcmpIfIndex assignments will 21500 * be completed in ill_glist_insert -> ill_phyint_reinit 21501 */ 21502 if (ill->ill_isv6) { 21503 /* allocate v6 mib */ 21504 if (!ill_allocate_mibs(ill)) 21505 return (ENOMEM); 21506 } 21507 21508 /* 21509 * Pick a default sap until we get the DL_INFO_ACK back from 21510 * the driver. 21511 */ 21512 if (ill->ill_sap == 0) { 21513 if (ill->ill_isv6) 21514 ill->ill_sap = IP6_DL_SAP; 21515 else 21516 ill->ill_sap = IP_DL_SAP; 21517 } 21518 21519 ill->ill_ifname_pending = 1; 21520 ill->ill_ifname_pending_err = 0; 21521 21522 ill_refhold(ill); 21523 rw_enter(&ill_g_lock, RW_WRITER); 21524 if ((error = ill_glist_insert(ill, interf_name, 21525 (ill->ill_flags & ILLF_IPV6) == ILLF_IPV6)) > 0) { 21526 ill->ill_ppa = UINT_MAX; 21527 ill->ill_name[0] = '\0'; 21528 /* 21529 * undo null termination done above. 21530 */ 21531 ppa_ptr[0] = old_char; 21532 rw_exit(&ill_g_lock); 21533 ill_refrele(ill); 21534 return (error); 21535 } 21536 21537 ASSERT(ill->ill_name_length <= LIFNAMSIZ); 21538 21539 /* 21540 * When we return the buffer pointed to by interf_name should contain 21541 * the same name as in ill_name. 21542 * If a ppa was choosen by the system (ppa passed in was UINT_MAX) 21543 * the buffer pointed to by new_ppa_ptr would not contain the right ppa 21544 * so copy full name and update the ppa ptr. 21545 * When ppa passed in != UINT_MAX all values are correct just undo 21546 * null termination, this saves a bcopy. 21547 */ 21548 if (*new_ppa_ptr == UINT_MAX) { 21549 bcopy(ill->ill_name, interf_name, ill->ill_name_length); 21550 *new_ppa_ptr = ill->ill_ppa; 21551 } else { 21552 /* 21553 * undo null termination done above. 21554 */ 21555 ppa_ptr[0] = old_char; 21556 } 21557 21558 /* Let SCTP know about this ILL */ 21559 sctp_update_ill(ill, SCTP_ILL_INSERT); 21560 21561 /* and also about the first ipif */ 21562 sctp_update_ipif(ipif, SCTP_IPIF_INSERT); 21563 21564 ipsq = ipsq_try_enter(NULL, ill, q, mp, ip_reprocess_ioctl, NEW_OP, 21565 B_TRUE); 21566 21567 rw_exit(&ill_g_lock); 21568 ill_refrele(ill); 21569 if (ipsq == NULL) 21570 return (EINPROGRESS); 21571 21572 /* 21573 * Need to set the ipsq_current_ipif now, if we have changed ipsq 21574 * due to the phyint merge in ill_phyint_reinit. 21575 */ 21576 ASSERT(ipsq->ipsq_current_ipif == NULL || 21577 ipsq->ipsq_current_ipif == ipif); 21578 ipsq->ipsq_current_ipif = ipif; 21579 ipsq->ipsq_last_cmd = SIOCSLIFNAME; 21580 error = ipif_set_values_tail(ill, ipif, mp, q); 21581 ipsq_exit(ipsq, B_TRUE, B_TRUE); 21582 if (error != 0 && error != EINPROGRESS) { 21583 /* 21584 * restore previous values 21585 */ 21586 ill->ill_isv6 = B_FALSE; 21587 } 21588 return (error); 21589 } 21590 21591 21592 extern void (*ip_cleanup_func)(void); 21593 21594 void 21595 ipif_init(void) 21596 { 21597 hrtime_t hrt; 21598 int i; 21599 21600 /* 21601 * Can't call drv_getparm here as it is too early in the boot. 21602 * As we use ipif_src_random just for picking a different 21603 * source address everytime, this need not be really random. 21604 */ 21605 hrt = gethrtime(); 21606 ipif_src_random = ((hrt >> 32) & 0xffffffff) * (hrt & 0xffffffff); 21607 21608 for (i = 0; i < MAX_G_HEADS; i++) { 21609 ill_g_heads[i].ill_g_list_head = (ill_if_t *)&ill_g_heads[i]; 21610 ill_g_heads[i].ill_g_list_tail = (ill_if_t *)&ill_g_heads[i]; 21611 } 21612 21613 avl_create(&phyint_g_list.phyint_list_avl_by_index, 21614 ill_phyint_compare_index, 21615 sizeof (phyint_t), 21616 offsetof(struct phyint, phyint_avl_by_index)); 21617 avl_create(&phyint_g_list.phyint_list_avl_by_name, 21618 ill_phyint_compare_name, 21619 sizeof (phyint_t), 21620 offsetof(struct phyint, phyint_avl_by_name)); 21621 21622 ip_cleanup_func = ip_thread_exit; 21623 } 21624 21625 /* 21626 * This is called by ip_rt_add when src_addr value is other than zero. 21627 * src_addr signifies the source address of the incoming packet. For 21628 * reverse tunnel route we need to create a source addr based routing 21629 * table. This routine creates ip_mrtun_table if it's empty and then 21630 * it adds the route entry hashed by source address. It verifies that 21631 * the outgoing interface is always a non-resolver interface (tunnel). 21632 */ 21633 int 21634 ip_mrtun_rt_add(ipaddr_t in_src_addr, int flags, ipif_t *ipif_arg, 21635 ipif_t *src_ipif, ire_t **ire_arg, queue_t *q, mblk_t *mp, ipsq_func_t func) 21636 { 21637 ire_t *ire; 21638 ire_t *save_ire; 21639 ipif_t *ipif; 21640 ill_t *in_ill = NULL; 21641 ill_t *out_ill; 21642 queue_t *stq; 21643 mblk_t *dlureq_mp; 21644 int error; 21645 21646 if (ire_arg != NULL) 21647 *ire_arg = NULL; 21648 ASSERT(in_src_addr != INADDR_ANY); 21649 21650 ipif = ipif_arg; 21651 if (ipif != NULL) { 21652 out_ill = ipif->ipif_ill; 21653 } else { 21654 ip1dbg(("ip_mrtun_rt_add: ipif is NULL\n")); 21655 return (EINVAL); 21656 } 21657 21658 if (src_ipif == NULL) { 21659 ip1dbg(("ip_mrtun_rt_add: src_ipif is NULL\n")); 21660 return (EINVAL); 21661 } 21662 in_ill = src_ipif->ipif_ill; 21663 21664 /* 21665 * Check for duplicates. We don't need to 21666 * match out_ill, because the uniqueness of 21667 * a route is only dependent on src_addr and 21668 * in_ill. 21669 */ 21670 ire = ire_mrtun_lookup(in_src_addr, in_ill); 21671 if (ire != NULL) { 21672 ire_refrele(ire); 21673 return (EEXIST); 21674 } 21675 if (ipif->ipif_net_type != IRE_IF_NORESOLVER) { 21676 ip2dbg(("ip_mrtun_rt_add: outgoing interface is type %d\n", 21677 ipif->ipif_net_type)); 21678 return (EINVAL); 21679 } 21680 21681 stq = ipif->ipif_wq; 21682 ASSERT(stq != NULL); 21683 21684 /* 21685 * The outgoing interface must be non-resolver 21686 * interface. 21687 */ 21688 dlureq_mp = ill_dlur_gen(NULL, 21689 out_ill->ill_phys_addr_length, out_ill->ill_sap, 21690 out_ill->ill_sap_length); 21691 21692 if (dlureq_mp == NULL) { 21693 ip1dbg(("ip_newroute: dlureq_mp NULL\n")); 21694 return (ENOMEM); 21695 } 21696 21697 /* Create the IRE. */ 21698 21699 ire = ire_create( 21700 NULL, /* Zero dst addr */ 21701 NULL, /* Zero mask */ 21702 NULL, /* Zero gateway addr */ 21703 NULL, /* Zero ipif_src addr */ 21704 (uint8_t *)&in_src_addr, /* in_src-addr */ 21705 &ipif->ipif_mtu, 21706 NULL, 21707 NULL, /* rfq */ 21708 stq, 21709 IRE_MIPRTUN, 21710 dlureq_mp, 21711 ipif, 21712 in_ill, 21713 0, 21714 0, 21715 0, 21716 flags, 21717 &ire_uinfo_null); 21718 21719 if (ire == NULL) 21720 return (ENOMEM); 21721 ip2dbg(("ip_mrtun_rt_add: mrtun route is created with type %d\n", 21722 ire->ire_type)); 21723 save_ire = ire; 21724 ASSERT(save_ire != NULL); 21725 error = ire_add_mrtun(&ire, q, mp, func); 21726 /* 21727 * If ire_add_mrtun() failed, the ire passed in was freed 21728 * so there is no need to do so here. 21729 */ 21730 if (error != 0) { 21731 return (error); 21732 } 21733 21734 /* Duplicate check */ 21735 if (ire != save_ire) { 21736 /* route already exists by now */ 21737 ire_refrele(ire); 21738 return (EEXIST); 21739 } 21740 21741 if (ire_arg != NULL) { 21742 /* 21743 * Store the ire that was just added. the caller 21744 * ip_rts_request responsible for doing ire_refrele() 21745 * on it. 21746 */ 21747 *ire_arg = ire; 21748 } else { 21749 ire_refrele(ire); /* held in ire_add_mrtun */ 21750 } 21751 21752 return (0); 21753 } 21754 21755 /* 21756 * It is called by ip_rt_delete() only when mipagent requests to delete 21757 * a reverse tunnel route that was added by ip_mrtun_rt_add() before. 21758 */ 21759 21760 int 21761 ip_mrtun_rt_delete(ipaddr_t in_src_addr, ipif_t *src_ipif) 21762 { 21763 ire_t *ire = NULL; 21764 21765 if (in_src_addr == INADDR_ANY) 21766 return (EINVAL); 21767 if (src_ipif == NULL) 21768 return (EINVAL); 21769 21770 /* search if this route exists in the ip_mrtun_table */ 21771 ire = ire_mrtun_lookup(in_src_addr, src_ipif->ipif_ill); 21772 if (ire == NULL) { 21773 ip2dbg(("ip_mrtun_rt_delete: ire not found\n")); 21774 return (ESRCH); 21775 } 21776 ire_delete(ire); 21777 ire_refrele(ire); 21778 return (0); 21779 } 21780 21781 /* 21782 * Lookup the ipif corresponding to the onlink destination address. For 21783 * point-to-point interfaces, it matches with remote endpoint destination 21784 * address. For point-to-multipoint interfaces it only tries to match the 21785 * destination with the interface's subnet address. The longest, most specific 21786 * match is found to take care of such rare network configurations like - 21787 * le0: 129.146.1.1/16 21788 * le1: 129.146.2.2/24 21789 * It is used only by SO_DONTROUTE at the moment. 21790 */ 21791 ipif_t * 21792 ipif_lookup_onlink_addr(ipaddr_t addr, zoneid_t zoneid) 21793 { 21794 ipif_t *ipif, *best_ipif; 21795 ill_t *ill; 21796 ill_walk_context_t ctx; 21797 21798 ASSERT(zoneid != ALL_ZONES); 21799 best_ipif = NULL; 21800 21801 rw_enter(&ill_g_lock, RW_READER); 21802 ill = ILL_START_WALK_V4(&ctx); 21803 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 21804 mutex_enter(&ill->ill_lock); 21805 for (ipif = ill->ill_ipif; ipif != NULL; 21806 ipif = ipif->ipif_next) { 21807 if (!IPIF_CAN_LOOKUP(ipif)) 21808 continue; 21809 if (ipif->ipif_zoneid != zoneid) 21810 continue; 21811 /* 21812 * Point-to-point case. Look for exact match with 21813 * destination address. 21814 */ 21815 if (ipif->ipif_flags & IPIF_POINTOPOINT) { 21816 if (ipif->ipif_pp_dst_addr == addr) { 21817 ipif_refhold_locked(ipif); 21818 mutex_exit(&ill->ill_lock); 21819 rw_exit(&ill_g_lock); 21820 if (best_ipif != NULL) 21821 ipif_refrele(best_ipif); 21822 return (ipif); 21823 } 21824 } else if (ipif->ipif_subnet == (addr & 21825 ipif->ipif_net_mask)) { 21826 /* 21827 * Point-to-multipoint case. Looping through to 21828 * find the most specific match. If there are 21829 * multiple best match ipif's then prefer ipif's 21830 * that are UP. If there is only one best match 21831 * ipif and it is DOWN we must still return it. 21832 */ 21833 if ((best_ipif == NULL) || 21834 (ipif->ipif_net_mask > 21835 best_ipif->ipif_net_mask) || 21836 ((ipif->ipif_net_mask == 21837 best_ipif->ipif_net_mask) && 21838 ((ipif->ipif_flags & IPIF_UP) && 21839 (!(best_ipif->ipif_flags & IPIF_UP))))) { 21840 ipif_refhold_locked(ipif); 21841 mutex_exit(&ill->ill_lock); 21842 rw_exit(&ill_g_lock); 21843 if (best_ipif != NULL) 21844 ipif_refrele(best_ipif); 21845 best_ipif = ipif; 21846 rw_enter(&ill_g_lock, RW_READER); 21847 mutex_enter(&ill->ill_lock); 21848 } 21849 } 21850 } 21851 mutex_exit(&ill->ill_lock); 21852 } 21853 rw_exit(&ill_g_lock); 21854 return (best_ipif); 21855 } 21856 21857 21858 /* 21859 * Save enough information so that we can recreate the IRE if 21860 * the interface goes down and then up. 21861 */ 21862 static void 21863 ipif_save_ire(ipif_t *ipif, ire_t *ire) 21864 { 21865 mblk_t *save_mp; 21866 21867 save_mp = allocb(sizeof (ifrt_t), BPRI_MED); 21868 if (save_mp != NULL) { 21869 ifrt_t *ifrt; 21870 21871 save_mp->b_wptr += sizeof (ifrt_t); 21872 ifrt = (ifrt_t *)save_mp->b_rptr; 21873 bzero(ifrt, sizeof (ifrt_t)); 21874 ifrt->ifrt_type = ire->ire_type; 21875 ifrt->ifrt_addr = ire->ire_addr; 21876 ifrt->ifrt_gateway_addr = ire->ire_gateway_addr; 21877 ifrt->ifrt_src_addr = ire->ire_src_addr; 21878 ifrt->ifrt_mask = ire->ire_mask; 21879 ifrt->ifrt_flags = ire->ire_flags; 21880 ifrt->ifrt_max_frag = ire->ire_max_frag; 21881 mutex_enter(&ipif->ipif_saved_ire_lock); 21882 save_mp->b_cont = ipif->ipif_saved_ire_mp; 21883 ipif->ipif_saved_ire_mp = save_mp; 21884 ipif->ipif_saved_ire_cnt++; 21885 mutex_exit(&ipif->ipif_saved_ire_lock); 21886 } 21887 } 21888 21889 21890 static void 21891 ipif_remove_ire(ipif_t *ipif, ire_t *ire) 21892 { 21893 mblk_t **mpp; 21894 mblk_t *mp; 21895 ifrt_t *ifrt; 21896 21897 /* Remove from ipif_saved_ire_mp list if it is there */ 21898 mutex_enter(&ipif->ipif_saved_ire_lock); 21899 for (mpp = &ipif->ipif_saved_ire_mp; *mpp != NULL; 21900 mpp = &(*mpp)->b_cont) { 21901 /* 21902 * On a given ipif, the triple of address, gateway and 21903 * mask is unique for each saved IRE (in the case of 21904 * ordinary interface routes, the gateway address is 21905 * all-zeroes). 21906 */ 21907 mp = *mpp; 21908 ifrt = (ifrt_t *)mp->b_rptr; 21909 if (ifrt->ifrt_addr == ire->ire_addr && 21910 ifrt->ifrt_gateway_addr == ire->ire_gateway_addr && 21911 ifrt->ifrt_mask == ire->ire_mask) { 21912 *mpp = mp->b_cont; 21913 ipif->ipif_saved_ire_cnt--; 21914 freeb(mp); 21915 break; 21916 } 21917 } 21918 mutex_exit(&ipif->ipif_saved_ire_lock); 21919 } 21920 21921 21922 /* 21923 * IP multirouting broadcast routes handling 21924 * Append CGTP broadcast IREs to regular ones created 21925 * at ifconfig time. 21926 */ 21927 static void 21928 ip_cgtp_bcast_add(ire_t *ire, ire_t *ire_dst) 21929 { 21930 ire_t *ire_prim; 21931 21932 ASSERT(ire != NULL); 21933 ASSERT(ire_dst != NULL); 21934 21935 ire_prim = ire_ctable_lookup(ire->ire_gateway_addr, 0, 21936 IRE_BROADCAST, NULL, NULL, MATCH_IRE_TYPE); 21937 if (ire_prim != NULL) { 21938 /* 21939 * We are in the special case of broadcasts for 21940 * CGTP. We add an IRE_BROADCAST that holds 21941 * the RTF_MULTIRT flag, the destination 21942 * address of ire_dst and the low level 21943 * info of ire_prim. In other words, CGTP 21944 * broadcast is added to the redundant ipif. 21945 */ 21946 ipif_t *ipif_prim; 21947 ire_t *bcast_ire; 21948 21949 ipif_prim = ire_prim->ire_ipif; 21950 21951 ip2dbg(("ip_cgtp_filter_bcast_add: " 21952 "ire_dst %p, ire_prim %p, ipif_prim %p\n", 21953 (void *)ire_dst, (void *)ire_prim, 21954 (void *)ipif_prim)); 21955 21956 bcast_ire = ire_create( 21957 (uchar_t *)&ire->ire_addr, 21958 (uchar_t *)&ip_g_all_ones, 21959 (uchar_t *)&ire_dst->ire_src_addr, 21960 (uchar_t *)&ire->ire_gateway_addr, 21961 NULL, 21962 &ipif_prim->ipif_mtu, 21963 NULL, 21964 ipif_prim->ipif_rq, 21965 ipif_prim->ipif_wq, 21966 IRE_BROADCAST, 21967 ipif_prim->ipif_bcast_mp, 21968 ipif_prim, 21969 NULL, 21970 0, 21971 0, 21972 0, 21973 ire->ire_flags, 21974 &ire_uinfo_null); 21975 21976 if (bcast_ire != NULL) { 21977 21978 if (ire_add(&bcast_ire, NULL, NULL, NULL) == 0) { 21979 ip2dbg(("ip_cgtp_filter_bcast_add: " 21980 "added bcast_ire %p\n", 21981 (void *)bcast_ire)); 21982 21983 ipif_save_ire(bcast_ire->ire_ipif, 21984 bcast_ire); 21985 ire_refrele(bcast_ire); 21986 } 21987 } 21988 ire_refrele(ire_prim); 21989 } 21990 } 21991 21992 21993 /* 21994 * IP multirouting broadcast routes handling 21995 * Remove the broadcast ire 21996 */ 21997 static void 21998 ip_cgtp_bcast_delete(ire_t *ire) 21999 { 22000 ire_t *ire_dst; 22001 22002 ASSERT(ire != NULL); 22003 ire_dst = ire_ctable_lookup(ire->ire_addr, 0, IRE_BROADCAST, 22004 NULL, NULL, MATCH_IRE_TYPE); 22005 if (ire_dst != NULL) { 22006 ire_t *ire_prim; 22007 22008 ire_prim = ire_ctable_lookup(ire->ire_gateway_addr, 0, 22009 IRE_BROADCAST, NULL, NULL, MATCH_IRE_TYPE); 22010 if (ire_prim != NULL) { 22011 ipif_t *ipif_prim; 22012 ire_t *bcast_ire; 22013 22014 ipif_prim = ire_prim->ire_ipif; 22015 22016 ip2dbg(("ip_cgtp_filter_bcast_delete: " 22017 "ire_dst %p, ire_prim %p, ipif_prim %p\n", 22018 (void *)ire_dst, (void *)ire_prim, 22019 (void *)ipif_prim)); 22020 22021 bcast_ire = ire_ctable_lookup(ire->ire_addr, 22022 ire->ire_gateway_addr, 22023 IRE_BROADCAST, 22024 ipif_prim, 22025 NULL, 22026 MATCH_IRE_TYPE | MATCH_IRE_GW | MATCH_IRE_IPIF | 22027 MATCH_IRE_MASK); 22028 22029 if (bcast_ire != NULL) { 22030 ip2dbg(("ip_cgtp_filter_bcast_delete: " 22031 "looked up bcast_ire %p\n", 22032 (void *)bcast_ire)); 22033 ipif_remove_ire(bcast_ire->ire_ipif, 22034 bcast_ire); 22035 ire_delete(bcast_ire); 22036 } 22037 ire_refrele(ire_prim); 22038 } 22039 ire_refrele(ire_dst); 22040 } 22041 } 22042 22043 /* 22044 * IPsec hardware acceleration capabilities related functions. 22045 */ 22046 22047 /* 22048 * Free a per-ill IPsec capabilities structure. 22049 */ 22050 static void 22051 ill_ipsec_capab_free(ill_ipsec_capab_t *capab) 22052 { 22053 if (capab->auth_hw_algs != NULL) 22054 kmem_free(capab->auth_hw_algs, capab->algs_size); 22055 if (capab->encr_hw_algs != NULL) 22056 kmem_free(capab->encr_hw_algs, capab->algs_size); 22057 if (capab->encr_algparm != NULL) 22058 kmem_free(capab->encr_algparm, capab->encr_algparm_size); 22059 kmem_free(capab, sizeof (ill_ipsec_capab_t)); 22060 } 22061 22062 /* 22063 * Allocate a new per-ill IPsec capabilities structure. This structure 22064 * is specific to an IPsec protocol (AH or ESP). It is implemented as 22065 * an array which specifies, for each algorithm, whether this algorithm 22066 * is supported by the ill or not. 22067 */ 22068 static ill_ipsec_capab_t * 22069 ill_ipsec_capab_alloc(void) 22070 { 22071 ill_ipsec_capab_t *capab; 22072 uint_t nelems; 22073 22074 capab = kmem_zalloc(sizeof (ill_ipsec_capab_t), KM_NOSLEEP); 22075 if (capab == NULL) 22076 return (NULL); 22077 22078 /* we need one bit per algorithm */ 22079 nelems = MAX_IPSEC_ALGS / BITS(ipsec_capab_elem_t); 22080 capab->algs_size = nelems * sizeof (ipsec_capab_elem_t); 22081 22082 /* allocate memory to store algorithm flags */ 22083 capab->encr_hw_algs = kmem_zalloc(capab->algs_size, KM_NOSLEEP); 22084 if (capab->encr_hw_algs == NULL) 22085 goto nomem; 22086 capab->auth_hw_algs = kmem_zalloc(capab->algs_size, KM_NOSLEEP); 22087 if (capab->auth_hw_algs == NULL) 22088 goto nomem; 22089 /* 22090 * Leave encr_algparm NULL for now since we won't need it half 22091 * the time 22092 */ 22093 return (capab); 22094 22095 nomem: 22096 ill_ipsec_capab_free(capab); 22097 return (NULL); 22098 } 22099 22100 /* 22101 * Resize capability array. Since we're exclusive, this is OK. 22102 */ 22103 static boolean_t 22104 ill_ipsec_capab_resize_algparm(ill_ipsec_capab_t *capab, int algid) 22105 { 22106 ipsec_capab_algparm_t *nalp, *oalp; 22107 uint32_t olen, nlen; 22108 22109 oalp = capab->encr_algparm; 22110 olen = capab->encr_algparm_size; 22111 22112 if (oalp != NULL) { 22113 if (algid < capab->encr_algparm_end) 22114 return (B_TRUE); 22115 } 22116 22117 nlen = (algid + 1) * sizeof (*nalp); 22118 nalp = kmem_zalloc(nlen, KM_NOSLEEP); 22119 if (nalp == NULL) 22120 return (B_FALSE); 22121 22122 if (oalp != NULL) { 22123 bcopy(oalp, nalp, olen); 22124 kmem_free(oalp, olen); 22125 } 22126 capab->encr_algparm = nalp; 22127 capab->encr_algparm_size = nlen; 22128 capab->encr_algparm_end = algid + 1; 22129 22130 return (B_TRUE); 22131 } 22132 22133 /* 22134 * Compare the capabilities of the specified ill with the protocol 22135 * and algorithms specified by the SA passed as argument. 22136 * If they match, returns B_TRUE, B_FALSE if they do not match. 22137 * 22138 * The ill can be passed as a pointer to it, or by specifying its index 22139 * and whether it is an IPv6 ill (ill_index and ill_isv6 arguments). 22140 * 22141 * Called by ipsec_out_is_accelerated() do decide whether an outbound 22142 * packet is eligible for hardware acceleration, and by 22143 * ill_ipsec_capab_send_all() to decide whether a SA must be sent down 22144 * to a particular ill. 22145 */ 22146 boolean_t 22147 ipsec_capab_match(ill_t *ill, uint_t ill_index, boolean_t ill_isv6, 22148 ipsa_t *sa) 22149 { 22150 boolean_t sa_isv6; 22151 uint_t algid; 22152 struct ill_ipsec_capab_s *cpp; 22153 boolean_t need_refrele = B_FALSE; 22154 22155 if (ill == NULL) { 22156 ill = ill_lookup_on_ifindex(ill_index, ill_isv6, NULL, 22157 NULL, NULL, NULL); 22158 if (ill == NULL) { 22159 ip0dbg(("ipsec_capab_match: ill doesn't exist\n")); 22160 return (B_FALSE); 22161 } 22162 need_refrele = B_TRUE; 22163 } 22164 22165 /* 22166 * Use the address length specified by the SA to determine 22167 * if it corresponds to a IPv6 address, and fail the matching 22168 * if the isv6 flag passed as argument does not match. 22169 * Note: this check is used for SADB capability checking before 22170 * sending SA information to an ill. 22171 */ 22172 sa_isv6 = (sa->ipsa_addrfam == AF_INET6); 22173 if (sa_isv6 != ill_isv6) 22174 /* protocol mismatch */ 22175 goto done; 22176 22177 /* 22178 * Check if the ill supports the protocol, algorithm(s) and 22179 * key size(s) specified by the SA, and get the pointers to 22180 * the algorithms supported by the ill. 22181 */ 22182 switch (sa->ipsa_type) { 22183 22184 case SADB_SATYPE_ESP: 22185 if (!(ill->ill_capabilities & ILL_CAPAB_ESP)) 22186 /* ill does not support ESP acceleration */ 22187 goto done; 22188 cpp = ill->ill_ipsec_capab_esp; 22189 algid = sa->ipsa_auth_alg; 22190 if (!IPSEC_ALG_IS_ENABLED(algid, cpp->auth_hw_algs)) 22191 goto done; 22192 algid = sa->ipsa_encr_alg; 22193 if (!IPSEC_ALG_IS_ENABLED(algid, cpp->encr_hw_algs)) 22194 goto done; 22195 if (algid < cpp->encr_algparm_end) { 22196 ipsec_capab_algparm_t *alp = &cpp->encr_algparm[algid]; 22197 if (sa->ipsa_encrkeybits < alp->minkeylen) 22198 goto done; 22199 if (sa->ipsa_encrkeybits > alp->maxkeylen) 22200 goto done; 22201 } 22202 break; 22203 22204 case SADB_SATYPE_AH: 22205 if (!(ill->ill_capabilities & ILL_CAPAB_AH)) 22206 /* ill does not support AH acceleration */ 22207 goto done; 22208 if (!IPSEC_ALG_IS_ENABLED(sa->ipsa_auth_alg, 22209 ill->ill_ipsec_capab_ah->auth_hw_algs)) 22210 goto done; 22211 break; 22212 } 22213 22214 if (need_refrele) 22215 ill_refrele(ill); 22216 return (B_TRUE); 22217 done: 22218 if (need_refrele) 22219 ill_refrele(ill); 22220 return (B_FALSE); 22221 } 22222 22223 22224 /* 22225 * Add a new ill to the list of IPsec capable ills. 22226 * Called from ill_capability_ipsec_ack() when an ACK was received 22227 * indicating that IPsec hardware processing was enabled for an ill. 22228 * 22229 * ill must point to the ill for which acceleration was enabled. 22230 * dl_cap must be set to DL_CAPAB_IPSEC_AH or DL_CAPAB_IPSEC_ESP. 22231 */ 22232 static void 22233 ill_ipsec_capab_add(ill_t *ill, uint_t dl_cap, boolean_t sadb_resync) 22234 { 22235 ipsec_capab_ill_t **ills, *cur_ill, *new_ill; 22236 uint_t sa_type; 22237 uint_t ipproto; 22238 22239 ASSERT((dl_cap == DL_CAPAB_IPSEC_AH) || 22240 (dl_cap == DL_CAPAB_IPSEC_ESP)); 22241 22242 switch (dl_cap) { 22243 case DL_CAPAB_IPSEC_AH: 22244 sa_type = SADB_SATYPE_AH; 22245 ills = &ipsec_capab_ills_ah; 22246 ipproto = IPPROTO_AH; 22247 break; 22248 case DL_CAPAB_IPSEC_ESP: 22249 sa_type = SADB_SATYPE_ESP; 22250 ills = &ipsec_capab_ills_esp; 22251 ipproto = IPPROTO_ESP; 22252 break; 22253 } 22254 22255 rw_enter(&ipsec_capab_ills_lock, RW_WRITER); 22256 22257 /* 22258 * Add ill index to list of hardware accelerators. If 22259 * already in list, do nothing. 22260 */ 22261 for (cur_ill = *ills; cur_ill != NULL && 22262 (cur_ill->ill_index != ill->ill_phyint->phyint_ifindex || 22263 cur_ill->ill_isv6 != ill->ill_isv6); cur_ill = cur_ill->next) 22264 ; 22265 22266 if (cur_ill == NULL) { 22267 /* if this is a new entry for this ill */ 22268 new_ill = kmem_zalloc(sizeof (ipsec_capab_ill_t), KM_NOSLEEP); 22269 if (new_ill == NULL) { 22270 rw_exit(&ipsec_capab_ills_lock); 22271 return; 22272 } 22273 22274 new_ill->ill_index = ill->ill_phyint->phyint_ifindex; 22275 new_ill->ill_isv6 = ill->ill_isv6; 22276 new_ill->next = *ills; 22277 *ills = new_ill; 22278 } else if (!sadb_resync) { 22279 /* not resync'ing SADB and an entry exists for this ill */ 22280 rw_exit(&ipsec_capab_ills_lock); 22281 return; 22282 } 22283 22284 rw_exit(&ipsec_capab_ills_lock); 22285 22286 if (ipcl_proto_fanout_v6[ipproto].connf_head != NULL) 22287 /* 22288 * IPsec module for protocol loaded, initiate dump 22289 * of the SADB to this ill. 22290 */ 22291 sadb_ill_download(ill, sa_type); 22292 } 22293 22294 /* 22295 * Remove an ill from the list of IPsec capable ills. 22296 */ 22297 static void 22298 ill_ipsec_capab_delete(ill_t *ill, uint_t dl_cap) 22299 { 22300 ipsec_capab_ill_t **ills, *cur_ill, *prev_ill; 22301 22302 ASSERT(dl_cap == DL_CAPAB_IPSEC_AH || 22303 dl_cap == DL_CAPAB_IPSEC_ESP); 22304 22305 ills = (dl_cap == DL_CAPAB_IPSEC_AH) ? &ipsec_capab_ills_ah : 22306 &ipsec_capab_ills_esp; 22307 22308 rw_enter(&ipsec_capab_ills_lock, RW_WRITER); 22309 22310 prev_ill = NULL; 22311 for (cur_ill = *ills; cur_ill != NULL && (cur_ill->ill_index != 22312 ill->ill_phyint->phyint_ifindex || cur_ill->ill_isv6 != 22313 ill->ill_isv6); prev_ill = cur_ill, cur_ill = cur_ill->next) 22314 ; 22315 if (cur_ill == NULL) { 22316 /* entry not found */ 22317 rw_exit(&ipsec_capab_ills_lock); 22318 return; 22319 } 22320 if (prev_ill == NULL) { 22321 /* entry at front of list */ 22322 *ills = NULL; 22323 } else { 22324 prev_ill->next = cur_ill->next; 22325 } 22326 kmem_free(cur_ill, sizeof (ipsec_capab_ill_t)); 22327 rw_exit(&ipsec_capab_ills_lock); 22328 } 22329 22330 22331 /* 22332 * Handling of DL_CONTROL_REQ messages that must be sent down to 22333 * an ill while having exclusive access. 22334 */ 22335 /* ARGSUSED */ 22336 static void 22337 ill_ipsec_capab_send_writer(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *arg) 22338 { 22339 ill_t *ill = (ill_t *)q->q_ptr; 22340 22341 ill_dlpi_send(ill, mp); 22342 } 22343 22344 22345 /* 22346 * Called by SADB to send a DL_CONTROL_REQ message to every ill 22347 * supporting the specified IPsec protocol acceleration. 22348 * sa_type must be SADB_SATYPE_AH or SADB_SATYPE_ESP. 22349 * We free the mblk and, if sa is non-null, release the held referece. 22350 */ 22351 void 22352 ill_ipsec_capab_send_all(uint_t sa_type, mblk_t *mp, ipsa_t *sa) 22353 { 22354 ipsec_capab_ill_t *ici, *cur_ici; 22355 ill_t *ill; 22356 mblk_t *nmp, *mp_ship_list = NULL, *next_mp; 22357 22358 ici = (sa_type == SADB_SATYPE_AH) ? ipsec_capab_ills_ah : 22359 ipsec_capab_ills_esp; 22360 22361 rw_enter(&ipsec_capab_ills_lock, RW_READER); 22362 22363 for (cur_ici = ici; cur_ici != NULL; cur_ici = cur_ici->next) { 22364 ill = ill_lookup_on_ifindex(cur_ici->ill_index, 22365 cur_ici->ill_isv6, NULL, NULL, NULL, NULL); 22366 22367 /* 22368 * Handle the case where the ill goes away while the SADB is 22369 * attempting to send messages. If it's going away, it's 22370 * nuking its shadow SADB, so we don't care.. 22371 */ 22372 22373 if (ill == NULL) 22374 continue; 22375 22376 if (sa != NULL) { 22377 /* 22378 * Make sure capabilities match before 22379 * sending SA to ill. 22380 */ 22381 if (!ipsec_capab_match(ill, cur_ici->ill_index, 22382 cur_ici->ill_isv6, sa)) { 22383 ill_refrele(ill); 22384 continue; 22385 } 22386 22387 mutex_enter(&sa->ipsa_lock); 22388 sa->ipsa_flags |= IPSA_F_HW; 22389 mutex_exit(&sa->ipsa_lock); 22390 } 22391 22392 /* 22393 * Copy template message, and add it to the front 22394 * of the mblk ship list. We want to avoid holding 22395 * the ipsec_capab_ills_lock while sending the 22396 * message to the ills. 22397 * 22398 * The b_next and b_prev are temporarily used 22399 * to build a list of mblks to be sent down, and to 22400 * save the ill to which they must be sent. 22401 */ 22402 nmp = copymsg(mp); 22403 if (nmp == NULL) { 22404 ill_refrele(ill); 22405 continue; 22406 } 22407 ASSERT(nmp->b_next == NULL && nmp->b_prev == NULL); 22408 nmp->b_next = mp_ship_list; 22409 mp_ship_list = nmp; 22410 nmp->b_prev = (mblk_t *)ill; 22411 } 22412 22413 rw_exit(&ipsec_capab_ills_lock); 22414 22415 nmp = mp_ship_list; 22416 while (nmp != NULL) { 22417 /* restore the mblk to a sane state */ 22418 next_mp = nmp->b_next; 22419 nmp->b_next = NULL; 22420 ill = (ill_t *)nmp->b_prev; 22421 nmp->b_prev = NULL; 22422 22423 /* 22424 * Ship the mblk to the ill, must be exclusive. Keep the 22425 * reference to the ill as qwriter_ip() does a ill_referele(). 22426 */ 22427 (void) qwriter_ip(NULL, ill, ill->ill_wq, nmp, 22428 ill_ipsec_capab_send_writer, NEW_OP, B_TRUE); 22429 22430 nmp = next_mp; 22431 } 22432 22433 if (sa != NULL) 22434 IPSA_REFRELE(sa); 22435 freemsg(mp); 22436 } 22437 22438 22439 /* 22440 * Derive an interface id from the link layer address. 22441 * Knows about IEEE 802 and IEEE EUI-64 mappings. 22442 */ 22443 static boolean_t 22444 ip_ether_v6intfid(uint_t phys_length, uint8_t *phys_addr, in6_addr_t *v6addr) 22445 { 22446 char *addr; 22447 22448 if (phys_length != ETHERADDRL) 22449 return (B_FALSE); 22450 22451 /* Form EUI-64 like address */ 22452 addr = (char *)&v6addr->s6_addr32[2]; 22453 bcopy((char *)phys_addr, addr, 3); 22454 addr[0] ^= 0x2; /* Toggle Universal/Local bit */ 22455 addr[3] = (char)0xff; 22456 addr[4] = (char)0xfe; 22457 bcopy((char *)phys_addr + 3, addr + 5, 3); 22458 return (B_TRUE); 22459 } 22460 22461 /* ARGSUSED */ 22462 static boolean_t 22463 ip_nodef_v6intfid(uint_t phys_length, uint8_t *phys_addr, in6_addr_t *v6addr) 22464 { 22465 return (B_FALSE); 22466 } 22467 22468 /* ARGSUSED */ 22469 static boolean_t 22470 ip_ether_v6mapinfo(uint_t lla_length, uint8_t *bphys_addr, uint8_t *maddr, 22471 uint32_t *hw_start, in6_addr_t *v6_extract_mask) 22472 { 22473 /* 22474 * Multicast address mappings used over Ethernet/802.X. 22475 * This address is used as a base for mappings. 22476 */ 22477 static uint8_t ipv6_g_phys_multi_addr[] = {0x33, 0x33, 0x00, 22478 0x00, 0x00, 0x00}; 22479 22480 /* 22481 * Extract low order 32 bits from IPv6 multicast address. 22482 * Or that into the link layer address, starting from the 22483 * second byte. 22484 */ 22485 *hw_start = 2; 22486 v6_extract_mask->s6_addr32[0] = 0; 22487 v6_extract_mask->s6_addr32[1] = 0; 22488 v6_extract_mask->s6_addr32[2] = 0; 22489 v6_extract_mask->s6_addr32[3] = 0xffffffffU; 22490 bcopy(ipv6_g_phys_multi_addr, maddr, lla_length); 22491 return (B_TRUE); 22492 } 22493 22494 /* 22495 * Indicate by return value whether multicast is supported. If not, 22496 * this code should not touch/change any parameters. 22497 */ 22498 /* ARGSUSED */ 22499 static boolean_t 22500 ip_ether_v4mapinfo(uint_t phys_length, uint8_t *bphys_addr, uint8_t *maddr, 22501 uint32_t *hw_start, ipaddr_t *extract_mask) 22502 { 22503 /* 22504 * Multicast address mappings used over Ethernet/802.X. 22505 * This address is used as a base for mappings. 22506 */ 22507 static uint8_t ip_g_phys_multi_addr[] = { 0x01, 0x00, 0x5e, 22508 0x00, 0x00, 0x00 }; 22509 22510 if (phys_length != ETHERADDRL) 22511 return (B_FALSE); 22512 22513 *extract_mask = htonl(0x007fffff); 22514 *hw_start = 2; 22515 bcopy(ip_g_phys_multi_addr, maddr, ETHERADDRL); 22516 return (B_TRUE); 22517 } 22518 22519 /* 22520 * Derive IPoIB interface id from the link layer address. 22521 */ 22522 static boolean_t 22523 ip_ib_v6intfid(uint_t phys_length, uint8_t *phys_addr, in6_addr_t *v6addr) 22524 { 22525 char *addr; 22526 22527 if (phys_length != 20) 22528 return (B_FALSE); 22529 addr = (char *)&v6addr->s6_addr32[2]; 22530 bcopy(phys_addr + 12, addr, 8); 22531 /* 22532 * In IBA 1.1 timeframe, some vendors erroneously set the u/l bit 22533 * in the globally assigned EUI-64 GUID to 1, in violation of IEEE 22534 * rules. In these cases, the IBA considers these GUIDs to be in 22535 * "Modified EUI-64" format, and thus toggling the u/l bit is not 22536 * required; vendors are required not to assign global EUI-64's 22537 * that differ only in u/l bit values, thus guaranteeing uniqueness 22538 * of the interface identifier. Whether the GUID is in modified 22539 * or proper EUI-64 format, the ipv6 identifier must have the u/l 22540 * bit set to 1. 22541 */ 22542 addr[0] |= 2; /* Set Universal/Local bit to 1 */ 22543 return (B_TRUE); 22544 } 22545 22546 /* 22547 * Note on mapping from multicast IP addresses to IPoIB multicast link 22548 * addresses. IPoIB multicast link addresses are based on IBA link addresses. 22549 * The format of an IPoIB multicast address is: 22550 * 22551 * 4 byte QPN Scope Sign. Pkey 22552 * +--------------------------------------------+ 22553 * | 00FFFFFF | FF | 1X | X01B | Pkey | GroupID | 22554 * +--------------------------------------------+ 22555 * 22556 * The Scope and Pkey components are properties of the IBA port and 22557 * network interface. They can be ascertained from the broadcast address. 22558 * The Sign. part is the signature, and is 401B for IPv4 and 601B for IPv6. 22559 */ 22560 22561 static boolean_t 22562 ip_ib_v6mapinfo(uint_t lla_length, uint8_t *bphys_addr, uint8_t *maddr, 22563 uint32_t *hw_start, in6_addr_t *v6_extract_mask) 22564 { 22565 /* 22566 * Base IPoIB IPv6 multicast address used for mappings. 22567 * Does not contain the IBA scope/Pkey values. 22568 */ 22569 static uint8_t ipv6_g_phys_ibmulti_addr[] = { 0x00, 0xff, 0xff, 0xff, 22570 0xff, 0x10, 0x60, 0x1b, 0x00, 0x00, 0x00, 0x00, 22571 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 }; 22572 22573 /* 22574 * Extract low order 80 bits from IPv6 multicast address. 22575 * Or that into the link layer address, starting from the 22576 * sixth byte. 22577 */ 22578 *hw_start = 6; 22579 bcopy(ipv6_g_phys_ibmulti_addr, maddr, lla_length); 22580 22581 /* 22582 * Now fill in the IBA scope/Pkey values from the broadcast address. 22583 */ 22584 *(maddr + 5) = *(bphys_addr + 5); 22585 *(maddr + 8) = *(bphys_addr + 8); 22586 *(maddr + 9) = *(bphys_addr + 9); 22587 22588 v6_extract_mask->s6_addr32[0] = 0; 22589 v6_extract_mask->s6_addr32[1] = htonl(0x0000ffff); 22590 v6_extract_mask->s6_addr32[2] = 0xffffffffU; 22591 v6_extract_mask->s6_addr32[3] = 0xffffffffU; 22592 return (B_TRUE); 22593 } 22594 22595 static boolean_t 22596 ip_ib_v4mapinfo(uint_t phys_length, uint8_t *bphys_addr, uint8_t *maddr, 22597 uint32_t *hw_start, ipaddr_t *extract_mask) 22598 { 22599 /* 22600 * Base IPoIB IPv4 multicast address used for mappings. 22601 * Does not contain the IBA scope/Pkey values. 22602 */ 22603 static uint8_t ipv4_g_phys_ibmulti_addr[] = { 0x00, 0xff, 0xff, 0xff, 22604 0xff, 0x10, 0x40, 0x1b, 0x00, 0x00, 0x00, 0x00, 22605 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 }; 22606 22607 if (phys_length != sizeof (ipv4_g_phys_ibmulti_addr)) 22608 return (B_FALSE); 22609 22610 /* 22611 * Extract low order 28 bits from IPv4 multicast address. 22612 * Or that into the link layer address, starting from the 22613 * sixteenth byte. 22614 */ 22615 *extract_mask = htonl(0x0fffffff); 22616 *hw_start = 16; 22617 bcopy(ipv4_g_phys_ibmulti_addr, maddr, phys_length); 22618 22619 /* 22620 * Now fill in the IBA scope/Pkey values from the broadcast address. 22621 */ 22622 *(maddr + 5) = *(bphys_addr + 5); 22623 *(maddr + 8) = *(bphys_addr + 8); 22624 *(maddr + 9) = *(bphys_addr + 9); 22625 return (B_TRUE); 22626 } 22627 22628 /* 22629 * Returns B_TRUE if an ipif is present in the given zone, matching some flags 22630 * (typically IPIF_UP). If ipifp is non-null, the held ipif is returned there. 22631 * This works for both IPv4 and IPv6; if the passed-in ill is v6, the ipif with 22632 * the link-local address is preferred. 22633 */ 22634 boolean_t 22635 ipif_lookup_zoneid(ill_t *ill, zoneid_t zoneid, int flags, ipif_t **ipifp) 22636 { 22637 ipif_t *ipif; 22638 ipif_t *maybe_ipif = NULL; 22639 22640 mutex_enter(&ill->ill_lock); 22641 if (ill->ill_state_flags & ILL_CONDEMNED) { 22642 mutex_exit(&ill->ill_lock); 22643 if (ipifp != NULL) 22644 *ipifp = NULL; 22645 return (B_FALSE); 22646 } 22647 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 22648 if (!IPIF_CAN_LOOKUP(ipif)) 22649 continue; 22650 if (zoneid != ALL_ZONES && ipif->ipif_zoneid != zoneid) 22651 continue; 22652 if ((ipif->ipif_flags & flags) != flags) 22653 continue; 22654 22655 if (ipifp == NULL) { 22656 mutex_exit(&ill->ill_lock); 22657 ASSERT(maybe_ipif == NULL); 22658 return (B_TRUE); 22659 } 22660 if (!ill->ill_isv6 || 22661 IN6_IS_ADDR_LINKLOCAL(&ipif->ipif_v6src_addr)) { 22662 ipif_refhold_locked(ipif); 22663 mutex_exit(&ill->ill_lock); 22664 *ipifp = ipif; 22665 return (B_TRUE); 22666 } 22667 if (maybe_ipif == NULL) 22668 maybe_ipif = ipif; 22669 } 22670 if (ipifp != NULL) { 22671 if (maybe_ipif != NULL) 22672 ipif_refhold_locked(maybe_ipif); 22673 *ipifp = maybe_ipif; 22674 } 22675 mutex_exit(&ill->ill_lock); 22676 return (maybe_ipif != NULL); 22677 } 22678 22679 /* 22680 * Same as ipif_lookup_zoneid() but looks at all the ills in the same group. 22681 */ 22682 boolean_t 22683 ipif_lookup_zoneid_group(ill_t *ill, zoneid_t zoneid, int flags, ipif_t **ipifp) 22684 { 22685 ill_t *illg; 22686 22687 /* 22688 * We look at the passed-in ill first without grabbing ill_g_lock. 22689 */ 22690 if (ipif_lookup_zoneid(ill, zoneid, flags, ipifp)) { 22691 return (B_TRUE); 22692 } 22693 rw_enter(&ill_g_lock, RW_READER); 22694 if (ill->ill_group == NULL) { 22695 /* ill not in a group */ 22696 rw_exit(&ill_g_lock); 22697 return (B_FALSE); 22698 } 22699 22700 /* 22701 * There's no ipif in the zone on ill, however ill is part of an IPMP 22702 * group. We need to look for an ipif in the zone on all the ills in the 22703 * group. 22704 */ 22705 illg = ill->ill_group->illgrp_ill; 22706 do { 22707 /* 22708 * We don't call ipif_lookup_zoneid() on ill as we already know 22709 * that it's not there. 22710 */ 22711 if (illg != ill && 22712 ipif_lookup_zoneid(illg, zoneid, flags, ipifp)) { 22713 break; 22714 } 22715 } while ((illg = illg->ill_group_next) != NULL); 22716 rw_exit(&ill_g_lock); 22717 return (illg != NULL); 22718 } 22719 22720 /* 22721 * Heuristic to check if ill has hit the FAILBACK=no case, 22722 * i.e. failover has occured from ill and later interface has recovered, 22723 * but user has configured FAILBACK=no. 22724 * Checks if ill has an usable ipif. 22725 * 22726 * Return values: 22727 * B_FALSE - ill has no usable ipif, hit FAILBACK=no case 22728 * B_TRUE - ill has at least one usable ipif, FAILBACK=no case not hit 22729 */ 22730 static boolean_t 22731 ill_has_usable_ipif(ill_t *ill) 22732 { 22733 ipif_t *ipif; 22734 22735 /* Check whether it is in an IPMP group */ 22736 if (ill->ill_phyint->phyint_groupname == NULL) 22737 return (B_TRUE); 22738 22739 if (ill->ill_ipif_up_count == 0) 22740 return (B_FALSE); 22741 22742 for (ipif = ill->ill_ipif; ipif; ipif = ipif->ipif_next) { 22743 uint64_t flags = ipif->ipif_flags; 22744 22745 /* 22746 * This ipif is usable if it is IPIF_UP and not a 22747 * dedicated test address. A dedicated test address 22748 * is marked IPIF_NOFAILOVER *and* IPIF_DEPRECATED 22749 * (note in particular that V6 test addresses are 22750 * link-local data addresses and thus are marked 22751 * IPIF_NOFAILOVER but not IPIF_DEPRECATED). 22752 */ 22753 if ((flags & IPIF_UP) && 22754 ((flags & (IPIF_DEPRECATED|IPIF_NOFAILOVER)) != 22755 (IPIF_DEPRECATED|IPIF_NOFAILOVER))) 22756 return (B_TRUE); 22757 } 22758 return (B_FALSE); 22759 } 22760 22761 /* 22762 * Check if this ill is only being used to send ICMP probes for IPMP 22763 */ 22764 boolean_t 22765 ill_is_probeonly(ill_t *ill) 22766 { 22767 /* 22768 * Check if the interface is FAILED, or INACTIVE 22769 * or has hit the FAILBACK=no case. 22770 */ 22771 if ((ill->ill_phyint->phyint_flags & (PHYI_FAILED|PHYI_INACTIVE)) || 22772 ill_has_usable_ipif(ill) == B_FALSE) { 22773 return (B_TRUE); 22774 } 22775 22776 return (B_FALSE); 22777 } 22778