1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2009 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 /* Copyright (c) 1990 Mentat Inc. */ 26 27 /* 28 * This file contains the interface control functions for IP. 29 */ 30 31 #include <sys/types.h> 32 #include <sys/stream.h> 33 #include <sys/dlpi.h> 34 #include <sys/stropts.h> 35 #include <sys/strsun.h> 36 #include <sys/sysmacros.h> 37 #include <sys/strsubr.h> 38 #include <sys/strlog.h> 39 #include <sys/ddi.h> 40 #include <sys/sunddi.h> 41 #include <sys/cmn_err.h> 42 #include <sys/kstat.h> 43 #include <sys/debug.h> 44 #include <sys/zone.h> 45 #include <sys/sunldi.h> 46 #include <sys/file.h> 47 #include <sys/bitmap.h> 48 #include <sys/cpuvar.h> 49 #include <sys/time.h> 50 #include <sys/ctype.h> 51 #include <sys/kmem.h> 52 #include <sys/systm.h> 53 #include <sys/param.h> 54 #include <sys/socket.h> 55 #include <sys/isa_defs.h> 56 #include <net/if.h> 57 #include <net/if_arp.h> 58 #include <net/if_types.h> 59 #include <net/if_dl.h> 60 #include <net/route.h> 61 #include <sys/sockio.h> 62 #include <netinet/in.h> 63 #include <netinet/ip6.h> 64 #include <netinet/icmp6.h> 65 #include <netinet/igmp_var.h> 66 #include <sys/policy.h> 67 #include <sys/ethernet.h> 68 #include <sys/callb.h> 69 #include <sys/md5.h> 70 71 #include <inet/common.h> /* for various inet/mi.h and inet/nd.h needs */ 72 #include <inet/mi.h> 73 #include <inet/nd.h> 74 #include <inet/arp.h> 75 #include <inet/mib2.h> 76 #include <inet/ip.h> 77 #include <inet/ip6.h> 78 #include <inet/ip6_asp.h> 79 #include <inet/tcp.h> 80 #include <inet/ip_multi.h> 81 #include <inet/ip_ire.h> 82 #include <inet/ip_ftable.h> 83 #include <inet/ip_rts.h> 84 #include <inet/ip_ndp.h> 85 #include <inet/ip_if.h> 86 #include <inet/ip_impl.h> 87 #include <inet/tun.h> 88 #include <inet/sctp_ip.h> 89 #include <inet/ip_netinfo.h> 90 91 #include <net/pfkeyv2.h> 92 #include <inet/ipsec_info.h> 93 #include <inet/sadb.h> 94 #include <inet/ipsec_impl.h> 95 #include <sys/iphada.h> 96 97 #include <netinet/igmp.h> 98 #include <inet/ip_listutils.h> 99 #include <inet/ipclassifier.h> 100 #include <sys/mac_client.h> 101 #include <sys/dld.h> 102 103 #include <sys/systeminfo.h> 104 #include <sys/bootconf.h> 105 106 #include <sys/tsol/tndb.h> 107 #include <sys/tsol/tnet.h> 108 109 /* The character which tells where the ill_name ends */ 110 #define IPIF_SEPARATOR_CHAR ':' 111 112 /* IP ioctl function table entry */ 113 typedef struct ipft_s { 114 int ipft_cmd; 115 pfi_t ipft_pfi; 116 int ipft_min_size; 117 int ipft_flags; 118 } ipft_t; 119 #define IPFT_F_NO_REPLY 0x1 /* IP ioctl does not expect any reply */ 120 #define IPFT_F_SELF_REPLY 0x2 /* ioctl callee does the ioctl reply */ 121 122 typedef struct ip_sock_ar_s { 123 union { 124 area_t ip_sock_area; 125 ared_t ip_sock_ared; 126 areq_t ip_sock_areq; 127 } ip_sock_ar_u; 128 queue_t *ip_sock_ar_q; 129 } ip_sock_ar_t; 130 131 static int nd_ill_forward_get(queue_t *, mblk_t *, caddr_t, cred_t *); 132 static int nd_ill_forward_set(queue_t *q, mblk_t *mp, 133 char *value, caddr_t cp, cred_t *ioc_cr); 134 135 static boolean_t ill_is_quiescent(ill_t *); 136 static boolean_t ip_addr_ok_v4(ipaddr_t addr, ipaddr_t subnet_mask); 137 static ip_m_t *ip_m_lookup(t_uscalar_t mac_type); 138 static int ip_sioctl_addr_tail(ipif_t *ipif, sin_t *sin, queue_t *q, 139 mblk_t *mp, boolean_t need_up); 140 static int ip_sioctl_dstaddr_tail(ipif_t *ipif, sin_t *sin, queue_t *q, 141 mblk_t *mp, boolean_t need_up); 142 static int ip_sioctl_slifzone_tail(ipif_t *ipif, zoneid_t zoneid, 143 queue_t *q, mblk_t *mp, boolean_t need_up); 144 static int ip_sioctl_flags_tail(ipif_t *ipif, uint64_t flags, queue_t *q, 145 mblk_t *mp); 146 static int ip_sioctl_netmask_tail(ipif_t *ipif, sin_t *sin, queue_t *q, 147 mblk_t *mp); 148 static int ip_sioctl_subnet_tail(ipif_t *ipif, in6_addr_t, in6_addr_t, 149 queue_t *q, mblk_t *mp, boolean_t need_up); 150 static int ip_sioctl_plink_ipmod(ipsq_t *ipsq, queue_t *q, mblk_t *mp, 151 int ioccmd, struct linkblk *li, boolean_t doconsist); 152 static ipaddr_t ip_subnet_mask(ipaddr_t addr, ipif_t **, ip_stack_t *); 153 static void ip_wput_ioctl(queue_t *q, mblk_t *mp); 154 static void ipsq_flush(ill_t *ill); 155 156 static int ip_sioctl_token_tail(ipif_t *ipif, sin6_t *sin6, int addrlen, 157 queue_t *q, mblk_t *mp, boolean_t need_up); 158 static void ipsq_delete(ipsq_t *); 159 160 static ipif_t *ipif_allocate(ill_t *ill, int id, uint_t ire_type, 161 boolean_t initialize, boolean_t insert); 162 static void ipif_check_bcast_ires(ipif_t *test_ipif); 163 static ire_t **ipif_create_bcast_ires(ipif_t *ipif, ire_t **irep); 164 static boolean_t ipif_comp_multi(ipif_t *old_ipif, ipif_t *new_ipif, 165 boolean_t isv6); 166 static void ipif_down_delete_ire(ire_t *ire, char *ipif); 167 static void ipif_delete_cache_ire(ire_t *, char *); 168 static int ipif_logical_down(ipif_t *ipif, queue_t *q, mblk_t *mp); 169 static void ipif_free(ipif_t *ipif); 170 static void ipif_free_tail(ipif_t *ipif); 171 static void ipif_mtu_change(ire_t *ire, char *ipif_arg); 172 static void ipif_recreate_interface_routes(ipif_t *old_ipif, ipif_t *ipif); 173 static void ipif_set_default(ipif_t *ipif); 174 static int ipif_set_values(queue_t *q, mblk_t *mp, 175 char *interf_name, uint_t *ppa); 176 static int ipif_set_values_tail(ill_t *ill, ipif_t *ipif, mblk_t *mp, 177 queue_t *q); 178 static ipif_t *ipif_lookup_on_name(char *name, size_t namelen, 179 boolean_t do_alloc, boolean_t *exists, boolean_t isv6, zoneid_t zoneid, 180 queue_t *q, mblk_t *mp, ipsq_func_t func, int *error, ip_stack_t *); 181 static void ipif_update_other_ipifs(ipif_t *old_ipif); 182 183 static int ill_alloc_ppa(ill_if_t *, ill_t *); 184 static int ill_arp_off(ill_t *ill); 185 static int ill_arp_on(ill_t *ill); 186 static void ill_delete_interface_type(ill_if_t *); 187 static int ill_dl_up(ill_t *ill, ipif_t *ipif, mblk_t *mp, queue_t *q); 188 static void ill_dl_down(ill_t *ill); 189 static void ill_down(ill_t *ill); 190 static void ill_downi(ire_t *ire, char *ill_arg); 191 static void ill_free_mib(ill_t *ill); 192 static void ill_glist_delete(ill_t *); 193 static void ill_phyint_reinit(ill_t *ill); 194 static void ill_set_nce_router_flags(ill_t *, boolean_t); 195 static void ill_set_phys_addr_tail(ipsq_t *, queue_t *, mblk_t *, void *); 196 static void ill_replumb_tail(ipsq_t *, queue_t *, mblk_t *, void *); 197 198 static ip_v6intfid_func_t ip_ether_v6intfid, ip_ib_v6intfid; 199 static ip_v6intfid_func_t ip_ipmp_v6intfid, ip_nodef_v6intfid; 200 static ip_v6mapinfo_func_t ip_ether_v6mapinfo, ip_ib_v6mapinfo; 201 static ip_v4mapinfo_func_t ip_ether_v4mapinfo, ip_ib_v4mapinfo; 202 static void ipif_save_ire(ipif_t *, ire_t *); 203 static void ipif_remove_ire(ipif_t *, ire_t *); 204 static void ip_cgtp_bcast_add(ire_t *, ire_t *, ip_stack_t *); 205 static void ip_cgtp_bcast_delete(ire_t *, ip_stack_t *); 206 static void phyint_free(phyint_t *); 207 208 /* 209 * Per-ill IPsec capabilities management. 210 */ 211 static ill_ipsec_capab_t *ill_ipsec_capab_alloc(void); 212 static void ill_ipsec_capab_free(ill_ipsec_capab_t *); 213 static void ill_ipsec_capab_add(ill_t *, uint_t, boolean_t); 214 static void ill_ipsec_capab_delete(ill_t *, uint_t); 215 static boolean_t ill_ipsec_capab_resize_algparm(ill_ipsec_capab_t *, int); 216 static void ill_capability_dispatch(ill_t *, mblk_t *, dl_capability_sub_t *, 217 boolean_t); 218 static void ill_capability_id_ack(ill_t *, mblk_t *, dl_capability_sub_t *); 219 static void ill_capability_mdt_ack(ill_t *, mblk_t *, dl_capability_sub_t *); 220 static void ill_capability_mdt_reset_fill(ill_t *, mblk_t *); 221 static void ill_capability_ipsec_ack(ill_t *, mblk_t *, dl_capability_sub_t *); 222 static void ill_capability_ipsec_reset_fill(ill_t *, mblk_t *); 223 static void ill_capability_hcksum_ack(ill_t *, mblk_t *, dl_capability_sub_t *); 224 static void ill_capability_hcksum_reset_fill(ill_t *, mblk_t *); 225 static void ill_capability_zerocopy_ack(ill_t *, mblk_t *, 226 dl_capability_sub_t *); 227 static void ill_capability_zerocopy_reset_fill(ill_t *, mblk_t *); 228 static int ill_capability_ipsec_reset_size(ill_t *, int *, int *, int *, 229 int *); 230 static void ill_capability_dld_reset_fill(ill_t *, mblk_t *); 231 static void ill_capability_dld_ack(ill_t *, mblk_t *, 232 dl_capability_sub_t *); 233 static void ill_capability_dld_enable(ill_t *); 234 static void ill_capability_ack_thr(void *); 235 static void ill_capability_lso_enable(ill_t *); 236 static void ill_capability_send(ill_t *, mblk_t *); 237 238 static ill_t *ill_prev_usesrc(ill_t *); 239 static int ill_relink_usesrc_ills(ill_t *, ill_t *, uint_t); 240 static void ill_disband_usesrc_group(ill_t *); 241 static void conn_cleanup_stale_ire(conn_t *, caddr_t); 242 243 #ifdef DEBUG 244 static void ill_trace_cleanup(const ill_t *); 245 static void ipif_trace_cleanup(const ipif_t *); 246 #endif 247 248 /* 249 * if we go over the memory footprint limit more than once in this msec 250 * interval, we'll start pruning aggressively. 251 */ 252 int ip_min_frag_prune_time = 0; 253 254 /* 255 * max # of IPsec algorithms supported. Limited to 1 byte by PF_KEY 256 * and the IPsec DOI 257 */ 258 #define MAX_IPSEC_ALGS 256 259 260 #define BITSPERBYTE 8 261 #define BITS(type) (BITSPERBYTE * (long)sizeof (type)) 262 263 #define IPSEC_ALG_ENABLE(algs, algid) \ 264 ((algs)[(algid) / BITS(ipsec_capab_elem_t)] |= \ 265 (1 << ((algid) % BITS(ipsec_capab_elem_t)))) 266 267 #define IPSEC_ALG_IS_ENABLED(algid, algs) \ 268 ((algs)[(algid) / BITS(ipsec_capab_elem_t)] & \ 269 (1 << ((algid) % BITS(ipsec_capab_elem_t)))) 270 271 typedef uint8_t ipsec_capab_elem_t; 272 273 /* 274 * Per-algorithm parameters. Note that at present, only encryption 275 * algorithms have variable keysize (IKE does not provide a way to negotiate 276 * auth algorithm keysize). 277 * 278 * All sizes here are in bits. 279 */ 280 typedef struct 281 { 282 uint16_t minkeylen; 283 uint16_t maxkeylen; 284 } ipsec_capab_algparm_t; 285 286 /* 287 * Per-ill capabilities. 288 */ 289 struct ill_ipsec_capab_s { 290 ipsec_capab_elem_t *encr_hw_algs; 291 ipsec_capab_elem_t *auth_hw_algs; 292 uint32_t algs_size; /* size of _hw_algs in bytes */ 293 /* algorithm key lengths */ 294 ipsec_capab_algparm_t *encr_algparm; 295 uint32_t encr_algparm_size; 296 uint32_t encr_algparm_end; 297 }; 298 299 /* 300 * The field values are larger than strictly necessary for simple 301 * AR_ENTRY_ADDs but the padding lets us accomodate the socket ioctls. 302 */ 303 static area_t ip_area_template = { 304 AR_ENTRY_ADD, /* area_cmd */ 305 sizeof (ip_sock_ar_t) + (IP_ADDR_LEN*2) + sizeof (struct sockaddr_dl), 306 /* area_name_offset */ 307 /* area_name_length temporarily holds this structure length */ 308 sizeof (area_t), /* area_name_length */ 309 IP_ARP_PROTO_TYPE, /* area_proto */ 310 sizeof (ip_sock_ar_t), /* area_proto_addr_offset */ 311 IP_ADDR_LEN, /* area_proto_addr_length */ 312 sizeof (ip_sock_ar_t) + IP_ADDR_LEN, 313 /* area_proto_mask_offset */ 314 0, /* area_flags */ 315 sizeof (ip_sock_ar_t) + IP_ADDR_LEN + IP_ADDR_LEN, 316 /* area_hw_addr_offset */ 317 /* Zero length hw_addr_length means 'use your idea of the address' */ 318 0 /* area_hw_addr_length */ 319 }; 320 321 /* 322 * AR_ENTRY_ADD/DELETE templates have been added for IPv6 external resolver 323 * support 324 */ 325 static area_t ip6_area_template = { 326 AR_ENTRY_ADD, /* area_cmd */ 327 sizeof (ip_sock_ar_t) + (IPV6_ADDR_LEN*2) + sizeof (sin6_t), 328 /* area_name_offset */ 329 /* area_name_length temporarily holds this structure length */ 330 sizeof (area_t), /* area_name_length */ 331 IP_ARP_PROTO_TYPE, /* area_proto */ 332 sizeof (ip_sock_ar_t), /* area_proto_addr_offset */ 333 IPV6_ADDR_LEN, /* area_proto_addr_length */ 334 sizeof (ip_sock_ar_t) + IPV6_ADDR_LEN, 335 /* area_proto_mask_offset */ 336 0, /* area_flags */ 337 sizeof (ip_sock_ar_t) + IPV6_ADDR_LEN + IPV6_ADDR_LEN, 338 /* area_hw_addr_offset */ 339 /* Zero length hw_addr_length means 'use your idea of the address' */ 340 0 /* area_hw_addr_length */ 341 }; 342 343 static ared_t ip_ared_template = { 344 AR_ENTRY_DELETE, 345 sizeof (ared_t) + IP_ADDR_LEN, 346 sizeof (ared_t), 347 IP_ARP_PROTO_TYPE, 348 sizeof (ared_t), 349 IP_ADDR_LEN, 350 0 351 }; 352 353 static ared_t ip6_ared_template = { 354 AR_ENTRY_DELETE, 355 sizeof (ared_t) + IPV6_ADDR_LEN, 356 sizeof (ared_t), 357 IP_ARP_PROTO_TYPE, 358 sizeof (ared_t), 359 IPV6_ADDR_LEN, 360 0 361 }; 362 363 /* 364 * A template for an IPv6 AR_ENTRY_QUERY template has not been created, as 365 * as the areq doesn't include an IP address in ill_dl_up() (the only place a 366 * areq is used). 367 */ 368 static areq_t ip_areq_template = { 369 AR_ENTRY_QUERY, /* cmd */ 370 sizeof (areq_t)+(2*IP_ADDR_LEN), /* name offset */ 371 sizeof (areq_t), /* name len (filled by ill_arp_alloc) */ 372 IP_ARP_PROTO_TYPE, /* protocol, from arps perspective */ 373 sizeof (areq_t), /* target addr offset */ 374 IP_ADDR_LEN, /* target addr_length */ 375 0, /* flags */ 376 sizeof (areq_t) + IP_ADDR_LEN, /* sender addr offset */ 377 IP_ADDR_LEN, /* sender addr length */ 378 AR_EQ_DEFAULT_XMIT_COUNT, /* xmit_count */ 379 AR_EQ_DEFAULT_XMIT_INTERVAL, /* (re)xmit_interval in milliseconds */ 380 AR_EQ_DEFAULT_MAX_BUFFERED /* max # of requests to buffer */ 381 /* anything else filled in by the code */ 382 }; 383 384 static arc_t ip_aru_template = { 385 AR_INTERFACE_UP, 386 sizeof (arc_t), /* Name offset */ 387 sizeof (arc_t) /* Name length (set by ill_arp_alloc) */ 388 }; 389 390 static arc_t ip_ard_template = { 391 AR_INTERFACE_DOWN, 392 sizeof (arc_t), /* Name offset */ 393 sizeof (arc_t) /* Name length (set by ill_arp_alloc) */ 394 }; 395 396 static arc_t ip_aron_template = { 397 AR_INTERFACE_ON, 398 sizeof (arc_t), /* Name offset */ 399 sizeof (arc_t) /* Name length (set by ill_arp_alloc) */ 400 }; 401 402 static arc_t ip_aroff_template = { 403 AR_INTERFACE_OFF, 404 sizeof (arc_t), /* Name offset */ 405 sizeof (arc_t) /* Name length (set by ill_arp_alloc) */ 406 }; 407 408 static arma_t ip_arma_multi_template = { 409 AR_MAPPING_ADD, 410 sizeof (arma_t) + 3*IP_ADDR_LEN + IP_MAX_HW_LEN, 411 /* Name offset */ 412 sizeof (arma_t), /* Name length (set by ill_arp_alloc) */ 413 IP_ARP_PROTO_TYPE, 414 sizeof (arma_t), /* proto_addr_offset */ 415 IP_ADDR_LEN, /* proto_addr_length */ 416 sizeof (arma_t) + IP_ADDR_LEN, /* proto_mask_offset */ 417 sizeof (arma_t) + 2*IP_ADDR_LEN, /* proto_extract_mask_offset */ 418 ACE_F_PERMANENT | ACE_F_MAPPING, /* flags */ 419 sizeof (arma_t) + 3*IP_ADDR_LEN, /* hw_addr_offset */ 420 IP_MAX_HW_LEN, /* hw_addr_length */ 421 0, /* hw_mapping_start */ 422 }; 423 424 static ipft_t ip_ioctl_ftbl[] = { 425 { IP_IOC_IRE_DELETE, ip_ire_delete, sizeof (ipid_t), 0 }, 426 { IP_IOC_IRE_DELETE_NO_REPLY, ip_ire_delete, sizeof (ipid_t), 427 IPFT_F_NO_REPLY }, 428 { IP_IOC_IRE_ADVISE_NO_REPLY, ip_ire_advise, sizeof (ipic_t), 429 IPFT_F_NO_REPLY }, 430 { IP_IOC_RTS_REQUEST, ip_rts_request, 0, IPFT_F_SELF_REPLY }, 431 { 0 } 432 }; 433 434 /* Simple ICMP IP Header Template */ 435 static ipha_t icmp_ipha = { 436 IP_SIMPLE_HDR_VERSION, 0, 0, 0, 0, 0, IPPROTO_ICMP 437 }; 438 439 static uchar_t ip_six_byte_all_ones[] = { 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF }; 440 441 static ip_m_t ip_m_tbl[] = { 442 { DL_ETHER, IFT_ETHER, ip_ether_v4mapinfo, ip_ether_v6mapinfo, 443 ip_ether_v6intfid }, 444 { DL_CSMACD, IFT_ISO88023, ip_ether_v4mapinfo, ip_ether_v6mapinfo, 445 ip_nodef_v6intfid }, 446 { DL_TPB, IFT_ISO88024, ip_ether_v4mapinfo, ip_ether_v6mapinfo, 447 ip_nodef_v6intfid }, 448 { DL_TPR, IFT_ISO88025, ip_ether_v4mapinfo, ip_ether_v6mapinfo, 449 ip_nodef_v6intfid }, 450 { DL_FDDI, IFT_FDDI, ip_ether_v4mapinfo, ip_ether_v6mapinfo, 451 ip_ether_v6intfid }, 452 { DL_IB, IFT_IB, ip_ib_v4mapinfo, ip_ib_v6mapinfo, 453 ip_ib_v6intfid }, 454 { SUNW_DL_VNI, IFT_OTHER, NULL, NULL, NULL }, 455 { SUNW_DL_IPMP, IFT_OTHER, NULL, NULL, ip_ipmp_v6intfid }, 456 { DL_OTHER, IFT_OTHER, ip_ether_v4mapinfo, ip_ether_v6mapinfo, 457 ip_nodef_v6intfid } 458 }; 459 460 static ill_t ill_null; /* Empty ILL for init. */ 461 char ipif_loopback_name[] = "lo0"; 462 static char *ipv4_forward_suffix = ":ip_forwarding"; 463 static char *ipv6_forward_suffix = ":ip6_forwarding"; 464 static sin6_t sin6_null; /* Zero address for quick clears */ 465 static sin_t sin_null; /* Zero address for quick clears */ 466 467 /* When set search for unused ipif_seqid */ 468 static ipif_t ipif_zero; 469 470 /* 471 * ppa arena is created after these many 472 * interfaces have been plumbed. 473 */ 474 uint_t ill_no_arena = 12; /* Setable in /etc/system */ 475 476 /* 477 * Allocate per-interface mibs. 478 * Returns true if ok. False otherwise. 479 * ipsq may not yet be allocated (loopback case ). 480 */ 481 static boolean_t 482 ill_allocate_mibs(ill_t *ill) 483 { 484 /* Already allocated? */ 485 if (ill->ill_ip_mib != NULL) { 486 if (ill->ill_isv6) 487 ASSERT(ill->ill_icmp6_mib != NULL); 488 return (B_TRUE); 489 } 490 491 ill->ill_ip_mib = kmem_zalloc(sizeof (*ill->ill_ip_mib), 492 KM_NOSLEEP); 493 if (ill->ill_ip_mib == NULL) { 494 return (B_FALSE); 495 } 496 497 /* Setup static information */ 498 SET_MIB(ill->ill_ip_mib->ipIfStatsEntrySize, 499 sizeof (mib2_ipIfStatsEntry_t)); 500 if (ill->ill_isv6) { 501 ill->ill_ip_mib->ipIfStatsIPVersion = MIB2_INETADDRESSTYPE_ipv6; 502 SET_MIB(ill->ill_ip_mib->ipIfStatsAddrEntrySize, 503 sizeof (mib2_ipv6AddrEntry_t)); 504 SET_MIB(ill->ill_ip_mib->ipIfStatsRouteEntrySize, 505 sizeof (mib2_ipv6RouteEntry_t)); 506 SET_MIB(ill->ill_ip_mib->ipIfStatsNetToMediaEntrySize, 507 sizeof (mib2_ipv6NetToMediaEntry_t)); 508 SET_MIB(ill->ill_ip_mib->ipIfStatsMemberEntrySize, 509 sizeof (ipv6_member_t)); 510 SET_MIB(ill->ill_ip_mib->ipIfStatsGroupSourceEntrySize, 511 sizeof (ipv6_grpsrc_t)); 512 } else { 513 ill->ill_ip_mib->ipIfStatsIPVersion = MIB2_INETADDRESSTYPE_ipv4; 514 SET_MIB(ill->ill_ip_mib->ipIfStatsAddrEntrySize, 515 sizeof (mib2_ipAddrEntry_t)); 516 SET_MIB(ill->ill_ip_mib->ipIfStatsRouteEntrySize, 517 sizeof (mib2_ipRouteEntry_t)); 518 SET_MIB(ill->ill_ip_mib->ipIfStatsNetToMediaEntrySize, 519 sizeof (mib2_ipNetToMediaEntry_t)); 520 SET_MIB(ill->ill_ip_mib->ipIfStatsMemberEntrySize, 521 sizeof (ip_member_t)); 522 SET_MIB(ill->ill_ip_mib->ipIfStatsGroupSourceEntrySize, 523 sizeof (ip_grpsrc_t)); 524 525 /* 526 * For a v4 ill, we are done at this point, because per ill 527 * icmp mibs are only used for v6. 528 */ 529 return (B_TRUE); 530 } 531 532 ill->ill_icmp6_mib = kmem_zalloc(sizeof (*ill->ill_icmp6_mib), 533 KM_NOSLEEP); 534 if (ill->ill_icmp6_mib == NULL) { 535 kmem_free(ill->ill_ip_mib, sizeof (*ill->ill_ip_mib)); 536 ill->ill_ip_mib = NULL; 537 return (B_FALSE); 538 } 539 /* static icmp info */ 540 ill->ill_icmp6_mib->ipv6IfIcmpEntrySize = 541 sizeof (mib2_ipv6IfIcmpEntry_t); 542 /* 543 * The ipIfStatsIfindex and ipv6IfIcmpIndex will be assigned later 544 * after the phyint merge occurs in ipif_set_values -> ill_glist_insert 545 * -> ill_phyint_reinit 546 */ 547 return (B_TRUE); 548 } 549 550 /* 551 * Common code for preparation of ARP commands. Two points to remember: 552 * 1) The ill_name is tacked on at the end of the allocated space so 553 * the templates name_offset field must contain the total space 554 * to allocate less the name length. 555 * 556 * 2) The templates name_length field should contain the *template* 557 * length. We use it as a parameter to bcopy() and then write 558 * the real ill_name_length into the name_length field of the copy. 559 * (Always called as writer.) 560 */ 561 mblk_t * 562 ill_arp_alloc(ill_t *ill, const uchar_t *template, caddr_t addr) 563 { 564 arc_t *arc = (arc_t *)template; 565 char *cp; 566 int len; 567 mblk_t *mp; 568 uint_t name_length = ill->ill_name_length; 569 uint_t template_len = arc->arc_name_length; 570 571 len = arc->arc_name_offset + name_length; 572 mp = allocb(len, BPRI_HI); 573 if (mp == NULL) 574 return (NULL); 575 cp = (char *)mp->b_rptr; 576 mp->b_wptr = (uchar_t *)&cp[len]; 577 if (template_len) 578 bcopy(template, cp, template_len); 579 if (len > template_len) 580 bzero(&cp[template_len], len - template_len); 581 mp->b_datap->db_type = M_PROTO; 582 583 arc = (arc_t *)cp; 584 arc->arc_name_length = name_length; 585 cp = (char *)arc + arc->arc_name_offset; 586 bcopy(ill->ill_name, cp, name_length); 587 588 if (addr) { 589 area_t *area = (area_t *)mp->b_rptr; 590 591 cp = (char *)area + area->area_proto_addr_offset; 592 bcopy(addr, cp, area->area_proto_addr_length); 593 if (area->area_cmd == AR_ENTRY_ADD) { 594 cp = (char *)area; 595 len = area->area_proto_addr_length; 596 if (area->area_proto_mask_offset) 597 cp += area->area_proto_mask_offset; 598 else 599 cp += area->area_proto_addr_offset + len; 600 while (len-- > 0) 601 *cp++ = (char)~0; 602 } 603 } 604 return (mp); 605 } 606 607 mblk_t * 608 ipif_area_alloc(ipif_t *ipif, uint_t optflags) 609 { 610 caddr_t addr; 611 mblk_t *mp; 612 area_t *area; 613 uchar_t *areap; 614 ill_t *ill = ipif->ipif_ill; 615 616 if (ill->ill_isv6) { 617 ASSERT(ill->ill_flags & ILLF_XRESOLV); 618 addr = (caddr_t)&ipif->ipif_v6lcl_addr; 619 areap = (uchar_t *)&ip6_area_template; 620 } else { 621 addr = (caddr_t)&ipif->ipif_lcl_addr; 622 areap = (uchar_t *)&ip_area_template; 623 } 624 625 if ((mp = ill_arp_alloc(ill, areap, addr)) == NULL) 626 return (NULL); 627 628 /* 629 * IPMP requires that the hardware address be included in all 630 * AR_ENTRY_ADD requests so that ARP can deduce the arl to send on. 631 * If there are no active underlying ills in the group (and thus no 632 * hardware address, DAD will be deferred until an underlying ill 633 * becomes active. 634 */ 635 if (IS_IPMP(ill)) { 636 if ((ill = ipmp_ipif_hold_bound_ill(ipif)) == NULL) { 637 freemsg(mp); 638 return (NULL); 639 } 640 } else { 641 ill_refhold(ill); 642 } 643 644 area = (area_t *)mp->b_rptr; 645 area->area_flags = ACE_F_PERMANENT | ACE_F_PUBLISH | ACE_F_MYADDR; 646 area->area_flags |= optflags; 647 area->area_hw_addr_length = ill->ill_phys_addr_length; 648 bcopy(ill->ill_phys_addr, mp->b_rptr + area->area_hw_addr_offset, 649 area->area_hw_addr_length); 650 651 ill_refrele(ill); 652 return (mp); 653 } 654 655 mblk_t * 656 ipif_ared_alloc(ipif_t *ipif) 657 { 658 caddr_t addr; 659 uchar_t *aredp; 660 661 if (ipif->ipif_ill->ill_isv6) { 662 ASSERT(ipif->ipif_ill->ill_flags & ILLF_XRESOLV); 663 addr = (caddr_t)&ipif->ipif_v6lcl_addr; 664 aredp = (uchar_t *)&ip6_ared_template; 665 } else { 666 addr = (caddr_t)&ipif->ipif_lcl_addr; 667 aredp = (uchar_t *)&ip_ared_template; 668 } 669 670 return (ill_arp_alloc(ipif->ipif_ill, aredp, addr)); 671 } 672 673 mblk_t * 674 ill_ared_alloc(ill_t *ill, ipaddr_t addr) 675 { 676 return (ill_arp_alloc(ill, (uchar_t *)&ip_ared_template, 677 (char *)&addr)); 678 } 679 680 mblk_t * 681 ill_arie_alloc(ill_t *ill, const char *grifname, const void *template) 682 { 683 mblk_t *mp = ill_arp_alloc(ill, template, 0); 684 arie_t *arie; 685 686 if (mp != NULL) { 687 arie = (arie_t *)mp->b_rptr; 688 (void) strlcpy(arie->arie_grifname, grifname, LIFNAMSIZ); 689 } 690 return (mp); 691 } 692 693 /* 694 * Completely vaporize a lower level tap and all associated interfaces. 695 * ill_delete is called only out of ip_close when the device control 696 * stream is being closed. 697 */ 698 void 699 ill_delete(ill_t *ill) 700 { 701 ipif_t *ipif; 702 ill_t *prev_ill; 703 ip_stack_t *ipst = ill->ill_ipst; 704 705 /* 706 * ill_delete may be forcibly entering the ipsq. The previous 707 * ioctl may not have completed and may need to be aborted. 708 * ipsq_flush takes care of it. If we don't need to enter the 709 * the ipsq forcibly, the 2nd invocation of ipsq_flush in 710 * ill_delete_tail is sufficient. 711 */ 712 ipsq_flush(ill); 713 714 /* 715 * Nuke all interfaces. ipif_free will take down the interface, 716 * remove it from the list, and free the data structure. 717 * Walk down the ipif list and remove the logical interfaces 718 * first before removing the main ipif. We can't unplumb 719 * zeroth interface first in the case of IPv6 as reset_conn_ill 720 * -> ip_ll_delmulti_v6 de-references ill_ipif for checking 721 * POINTOPOINT. 722 * 723 * If ill_ipif was not properly initialized (i.e low on memory), 724 * then no interfaces to clean up. In this case just clean up the 725 * ill. 726 */ 727 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) 728 ipif_free(ipif); 729 730 /* 731 * Used only by ill_arp_on and ill_arp_off, which are writers. 732 * So nobody can be using this mp now. Free the mp allocated for 733 * honoring ILLF_NOARP 734 */ 735 freemsg(ill->ill_arp_on_mp); 736 ill->ill_arp_on_mp = NULL; 737 738 /* Clean up msgs on pending upcalls for mrouted */ 739 reset_mrt_ill(ill); 740 741 /* 742 * ipif_free -> reset_conn_ipif will remove all multicast 743 * references for IPv4. For IPv6, we need to do it here as 744 * it points only at ills. 745 */ 746 reset_conn_ill(ill); 747 748 /* 749 * Remove multicast references added as a result of calls to 750 * ip_join_allmulti(). 751 */ 752 ip_purge_allmulti(ill); 753 754 /* 755 * If the ill being deleted is under IPMP, boot it out of the illgrp. 756 */ 757 if (IS_UNDER_IPMP(ill)) 758 ipmp_ill_leave_illgrp(ill); 759 760 /* 761 * ill_down will arrange to blow off any IRE's dependent on this 762 * ILL, and shut down fragmentation reassembly. 763 */ 764 ill_down(ill); 765 766 /* Let SCTP know, so that it can remove this from its list. */ 767 sctp_update_ill(ill, SCTP_ILL_REMOVE); 768 769 /* 770 * If an address on this ILL is being used as a source address then 771 * clear out the pointers in other ILLs that point to this ILL. 772 */ 773 rw_enter(&ipst->ips_ill_g_usesrc_lock, RW_WRITER); 774 if (ill->ill_usesrc_grp_next != NULL) { 775 if (ill->ill_usesrc_ifindex == 0) { /* usesrc ILL ? */ 776 ill_disband_usesrc_group(ill); 777 } else { /* consumer of the usesrc ILL */ 778 prev_ill = ill_prev_usesrc(ill); 779 prev_ill->ill_usesrc_grp_next = 780 ill->ill_usesrc_grp_next; 781 } 782 } 783 rw_exit(&ipst->ips_ill_g_usesrc_lock); 784 } 785 786 static void 787 ipif_non_duplicate(ipif_t *ipif) 788 { 789 ill_t *ill = ipif->ipif_ill; 790 mutex_enter(&ill->ill_lock); 791 if (ipif->ipif_flags & IPIF_DUPLICATE) { 792 ipif->ipif_flags &= ~IPIF_DUPLICATE; 793 ASSERT(ill->ill_ipif_dup_count > 0); 794 ill->ill_ipif_dup_count--; 795 } 796 mutex_exit(&ill->ill_lock); 797 } 798 799 /* 800 * ill_delete_tail is called from ip_modclose after all references 801 * to the closing ill are gone. The wait is done in ip_modclose 802 */ 803 void 804 ill_delete_tail(ill_t *ill) 805 { 806 mblk_t **mpp; 807 ipif_t *ipif; 808 ip_stack_t *ipst = ill->ill_ipst; 809 810 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 811 ipif_non_duplicate(ipif); 812 ipif_down_tail(ipif); 813 } 814 815 ASSERT(ill->ill_ipif_dup_count == 0 && 816 ill->ill_arp_down_mp == NULL && 817 ill->ill_arp_del_mapping_mp == NULL); 818 819 /* 820 * If polling capability is enabled (which signifies direct 821 * upcall into IP and driver has ill saved as a handle), 822 * we need to make sure that unbind has completed before we 823 * let the ill disappear and driver no longer has any reference 824 * to this ill. 825 */ 826 mutex_enter(&ill->ill_lock); 827 while (ill->ill_state_flags & ILL_DL_UNBIND_IN_PROGRESS) 828 cv_wait(&ill->ill_cv, &ill->ill_lock); 829 mutex_exit(&ill->ill_lock); 830 ASSERT(!(ill->ill_capabilities & 831 (ILL_CAPAB_DLD | ILL_CAPAB_DLD_POLL | ILL_CAPAB_DLD_DIRECT))); 832 833 if (ill->ill_net_type != IRE_LOOPBACK) 834 qprocsoff(ill->ill_rq); 835 836 /* 837 * We do an ipsq_flush once again now. New messages could have 838 * landed up from below (M_ERROR or M_HANGUP). Similarly ioctls 839 * could also have landed up if an ioctl thread had looked up 840 * the ill before we set the ILL_CONDEMNED flag, but not yet 841 * enqueued the ioctl when we did the ipsq_flush last time. 842 */ 843 ipsq_flush(ill); 844 845 /* 846 * Free capabilities. 847 */ 848 if (ill->ill_ipsec_capab_ah != NULL) { 849 ill_ipsec_capab_delete(ill, DL_CAPAB_IPSEC_AH); 850 ill_ipsec_capab_free(ill->ill_ipsec_capab_ah); 851 ill->ill_ipsec_capab_ah = NULL; 852 } 853 854 if (ill->ill_ipsec_capab_esp != NULL) { 855 ill_ipsec_capab_delete(ill, DL_CAPAB_IPSEC_ESP); 856 ill_ipsec_capab_free(ill->ill_ipsec_capab_esp); 857 ill->ill_ipsec_capab_esp = NULL; 858 } 859 860 if (ill->ill_mdt_capab != NULL) { 861 kmem_free(ill->ill_mdt_capab, sizeof (ill_mdt_capab_t)); 862 ill->ill_mdt_capab = NULL; 863 } 864 865 if (ill->ill_hcksum_capab != NULL) { 866 kmem_free(ill->ill_hcksum_capab, sizeof (ill_hcksum_capab_t)); 867 ill->ill_hcksum_capab = NULL; 868 } 869 870 if (ill->ill_zerocopy_capab != NULL) { 871 kmem_free(ill->ill_zerocopy_capab, 872 sizeof (ill_zerocopy_capab_t)); 873 ill->ill_zerocopy_capab = NULL; 874 } 875 876 if (ill->ill_lso_capab != NULL) { 877 kmem_free(ill->ill_lso_capab, sizeof (ill_lso_capab_t)); 878 ill->ill_lso_capab = NULL; 879 } 880 881 if (ill->ill_dld_capab != NULL) { 882 kmem_free(ill->ill_dld_capab, sizeof (ill_dld_capab_t)); 883 ill->ill_dld_capab = NULL; 884 } 885 886 while (ill->ill_ipif != NULL) 887 ipif_free_tail(ill->ill_ipif); 888 889 /* 890 * We have removed all references to ilm from conn and the ones joined 891 * within the kernel. 892 * 893 * We don't walk conns, mrts and ires because 894 * 895 * 1) reset_conn_ill and reset_mrt_ill cleans up conns and mrts. 896 * 2) ill_down ->ill_downi walks all the ires and cleans up 897 * ill references. 898 */ 899 ASSERT(ilm_walk_ill(ill) == 0); 900 901 /* 902 * If this ill is an IPMP meta-interface, blow away the illgrp. This 903 * is safe to do because the illgrp has already been unlinked from the 904 * group by I_PUNLINK, and thus SIOCSLIFGROUPNAME cannot find it. 905 */ 906 if (IS_IPMP(ill)) { 907 ipmp_illgrp_destroy(ill->ill_grp); 908 ill->ill_grp = NULL; 909 } 910 911 /* 912 * Take us out of the list of ILLs. ill_glist_delete -> phyint_free 913 * could free the phyint. No more reference to the phyint after this 914 * point. 915 */ 916 (void) ill_glist_delete(ill); 917 918 rw_enter(&ipst->ips_ip_g_nd_lock, RW_WRITER); 919 if (ill->ill_ndd_name != NULL) 920 nd_unload(&ipst->ips_ip_g_nd, ill->ill_ndd_name); 921 rw_exit(&ipst->ips_ip_g_nd_lock); 922 923 if (ill->ill_frag_ptr != NULL) { 924 uint_t count; 925 926 for (count = 0; count < ILL_FRAG_HASH_TBL_COUNT; count++) { 927 mutex_destroy(&ill->ill_frag_hash_tbl[count].ipfb_lock); 928 } 929 mi_free(ill->ill_frag_ptr); 930 ill->ill_frag_ptr = NULL; 931 ill->ill_frag_hash_tbl = NULL; 932 } 933 934 freemsg(ill->ill_nd_lla_mp); 935 /* Free all retained control messages. */ 936 mpp = &ill->ill_first_mp_to_free; 937 do { 938 while (mpp[0]) { 939 mblk_t *mp; 940 mblk_t *mp1; 941 942 mp = mpp[0]; 943 mpp[0] = mp->b_next; 944 for (mp1 = mp; mp1 != NULL; mp1 = mp1->b_cont) { 945 mp1->b_next = NULL; 946 mp1->b_prev = NULL; 947 } 948 freemsg(mp); 949 } 950 } while (mpp++ != &ill->ill_last_mp_to_free); 951 952 ill_free_mib(ill); 953 954 #ifdef DEBUG 955 ill_trace_cleanup(ill); 956 #endif 957 958 /* Drop refcnt here */ 959 netstack_rele(ill->ill_ipst->ips_netstack); 960 ill->ill_ipst = NULL; 961 } 962 963 static void 964 ill_free_mib(ill_t *ill) 965 { 966 ip_stack_t *ipst = ill->ill_ipst; 967 968 /* 969 * MIB statistics must not be lost, so when an interface 970 * goes away the counter values will be added to the global 971 * MIBs. 972 */ 973 if (ill->ill_ip_mib != NULL) { 974 if (ill->ill_isv6) { 975 ip_mib2_add_ip_stats(&ipst->ips_ip6_mib, 976 ill->ill_ip_mib); 977 } else { 978 ip_mib2_add_ip_stats(&ipst->ips_ip_mib, 979 ill->ill_ip_mib); 980 } 981 982 kmem_free(ill->ill_ip_mib, sizeof (*ill->ill_ip_mib)); 983 ill->ill_ip_mib = NULL; 984 } 985 if (ill->ill_icmp6_mib != NULL) { 986 ip_mib2_add_icmp6_stats(&ipst->ips_icmp6_mib, 987 ill->ill_icmp6_mib); 988 kmem_free(ill->ill_icmp6_mib, sizeof (*ill->ill_icmp6_mib)); 989 ill->ill_icmp6_mib = NULL; 990 } 991 } 992 993 /* 994 * Concatenate together a physical address and a sap. 995 * 996 * Sap_lengths are interpreted as follows: 997 * sap_length == 0 ==> no sap 998 * sap_length > 0 ==> sap is at the head of the dlpi address 999 * sap_length < 0 ==> sap is at the tail of the dlpi address 1000 */ 1001 static void 1002 ill_dlur_copy_address(uchar_t *phys_src, uint_t phys_length, 1003 t_scalar_t sap_src, t_scalar_t sap_length, uchar_t *dst) 1004 { 1005 uint16_t sap_addr = (uint16_t)sap_src; 1006 1007 if (sap_length == 0) { 1008 if (phys_src == NULL) 1009 bzero(dst, phys_length); 1010 else 1011 bcopy(phys_src, dst, phys_length); 1012 } else if (sap_length < 0) { 1013 if (phys_src == NULL) 1014 bzero(dst, phys_length); 1015 else 1016 bcopy(phys_src, dst, phys_length); 1017 bcopy(&sap_addr, (char *)dst + phys_length, sizeof (sap_addr)); 1018 } else { 1019 bcopy(&sap_addr, dst, sizeof (sap_addr)); 1020 if (phys_src == NULL) 1021 bzero((char *)dst + sap_length, phys_length); 1022 else 1023 bcopy(phys_src, (char *)dst + sap_length, phys_length); 1024 } 1025 } 1026 1027 /* 1028 * Generate a dl_unitdata_req mblk for the device and address given. 1029 * addr_length is the length of the physical portion of the address. 1030 * If addr is NULL include an all zero address of the specified length. 1031 * TRUE? In any case, addr_length is taken to be the entire length of the 1032 * dlpi address, including the absolute value of sap_length. 1033 */ 1034 mblk_t * 1035 ill_dlur_gen(uchar_t *addr, uint_t addr_length, t_uscalar_t sap, 1036 t_scalar_t sap_length) 1037 { 1038 dl_unitdata_req_t *dlur; 1039 mblk_t *mp; 1040 t_scalar_t abs_sap_length; /* absolute value */ 1041 1042 abs_sap_length = ABS(sap_length); 1043 mp = ip_dlpi_alloc(sizeof (*dlur) + addr_length + abs_sap_length, 1044 DL_UNITDATA_REQ); 1045 if (mp == NULL) 1046 return (NULL); 1047 dlur = (dl_unitdata_req_t *)mp->b_rptr; 1048 /* HACK: accomodate incompatible DLPI drivers */ 1049 if (addr_length == 8) 1050 addr_length = 6; 1051 dlur->dl_dest_addr_length = addr_length + abs_sap_length; 1052 dlur->dl_dest_addr_offset = sizeof (*dlur); 1053 dlur->dl_priority.dl_min = 0; 1054 dlur->dl_priority.dl_max = 0; 1055 ill_dlur_copy_address(addr, addr_length, sap, sap_length, 1056 (uchar_t *)&dlur[1]); 1057 return (mp); 1058 } 1059 1060 /* 1061 * Add the 'mp' to the list of pending mp's headed by ill_pending_mp 1062 * Return an error if we already have 1 or more ioctls in progress. 1063 * This is used only for non-exclusive ioctls. Currently this is used 1064 * for SIOC*ARP and SIOCGTUNPARAM ioctls. Most set ioctls are exclusive 1065 * and thus need to use ipsq_pending_mp_add. 1066 */ 1067 boolean_t 1068 ill_pending_mp_add(ill_t *ill, conn_t *connp, mblk_t *add_mp) 1069 { 1070 ASSERT(MUTEX_HELD(&ill->ill_lock)); 1071 ASSERT((add_mp->b_next == NULL) && (add_mp->b_prev == NULL)); 1072 /* 1073 * M_IOCDATA from ioctls, M_IOCTL from tunnel ioctls. 1074 */ 1075 ASSERT((add_mp->b_datap->db_type == M_IOCDATA) || 1076 (add_mp->b_datap->db_type == M_IOCTL)); 1077 1078 ASSERT(MUTEX_HELD(&connp->conn_lock)); 1079 /* 1080 * Return error if the conn has started closing. The conn 1081 * could have finished cleaning up the pending mp list, 1082 * If so we should not add another mp to the list negating 1083 * the cleanup. 1084 */ 1085 if (connp->conn_state_flags & CONN_CLOSING) 1086 return (B_FALSE); 1087 /* 1088 * Add the pending mp to the head of the list, chained by b_next. 1089 * Note down the conn on which the ioctl request came, in b_prev. 1090 * This will be used to later get the conn, when we get a response 1091 * on the ill queue, from some other module (typically arp) 1092 */ 1093 add_mp->b_next = (void *)ill->ill_pending_mp; 1094 add_mp->b_queue = CONNP_TO_WQ(connp); 1095 ill->ill_pending_mp = add_mp; 1096 if (connp != NULL) 1097 connp->conn_oper_pending_ill = ill; 1098 return (B_TRUE); 1099 } 1100 1101 /* 1102 * Retrieve the ill_pending_mp and return it. We have to walk the list 1103 * of mblks starting at ill_pending_mp, and match based on the ioc_id. 1104 */ 1105 mblk_t * 1106 ill_pending_mp_get(ill_t *ill, conn_t **connpp, uint_t ioc_id) 1107 { 1108 mblk_t *prev = NULL; 1109 mblk_t *curr = NULL; 1110 uint_t id; 1111 conn_t *connp; 1112 1113 /* 1114 * When the conn closes, conn_ioctl_cleanup needs to clean 1115 * up the pending mp, but it does not know the ioc_id and 1116 * passes in a zero for it. 1117 */ 1118 mutex_enter(&ill->ill_lock); 1119 if (ioc_id != 0) 1120 *connpp = NULL; 1121 1122 /* Search the list for the appropriate ioctl based on ioc_id */ 1123 for (prev = NULL, curr = ill->ill_pending_mp; curr != NULL; 1124 prev = curr, curr = curr->b_next) { 1125 id = ((struct iocblk *)curr->b_rptr)->ioc_id; 1126 connp = Q_TO_CONN(curr->b_queue); 1127 /* Match based on the ioc_id or based on the conn */ 1128 if ((id == ioc_id) || (ioc_id == 0 && connp == *connpp)) 1129 break; 1130 } 1131 1132 if (curr != NULL) { 1133 /* Unlink the mblk from the pending mp list */ 1134 if (prev != NULL) { 1135 prev->b_next = curr->b_next; 1136 } else { 1137 ASSERT(ill->ill_pending_mp == curr); 1138 ill->ill_pending_mp = curr->b_next; 1139 } 1140 1141 /* 1142 * conn refcnt must have been bumped up at the start of 1143 * the ioctl. So we can safely access the conn. 1144 */ 1145 ASSERT(CONN_Q(curr->b_queue)); 1146 *connpp = Q_TO_CONN(curr->b_queue); 1147 curr->b_next = NULL; 1148 curr->b_queue = NULL; 1149 } 1150 1151 mutex_exit(&ill->ill_lock); 1152 1153 return (curr); 1154 } 1155 1156 /* 1157 * Add the pending mp to the list. There can be only 1 pending mp 1158 * in the list. Any exclusive ioctl that needs to wait for a response 1159 * from another module or driver needs to use this function to set 1160 * the ipx_pending_mp to the ioctl mblk and wait for the response from 1161 * the other module/driver. This is also used while waiting for the 1162 * ipif/ill/ire refcnts to drop to zero in bringing down an ipif. 1163 */ 1164 boolean_t 1165 ipsq_pending_mp_add(conn_t *connp, ipif_t *ipif, queue_t *q, mblk_t *add_mp, 1166 int waitfor) 1167 { 1168 ipxop_t *ipx = ipif->ipif_ill->ill_phyint->phyint_ipsq->ipsq_xop; 1169 1170 ASSERT(IAM_WRITER_IPIF(ipif)); 1171 ASSERT(MUTEX_HELD(&ipif->ipif_ill->ill_lock)); 1172 ASSERT((add_mp->b_next == NULL) && (add_mp->b_prev == NULL)); 1173 ASSERT(ipx->ipx_pending_mp == NULL); 1174 /* 1175 * The caller may be using a different ipif than the one passed into 1176 * ipsq_current_start() (e.g., suppose an ioctl that came in on the V4 1177 * ill needs to wait for the V6 ill to quiesce). So we can't ASSERT 1178 * that `ipx_current_ipif == ipif'. 1179 */ 1180 ASSERT(ipx->ipx_current_ipif != NULL); 1181 1182 /* 1183 * M_IOCDATA from ioctls, M_IOCTL from tunnel ioctls, 1184 * M_ERROR/M_HANGUP/M_PROTO/M_PCPROTO from the driver. 1185 */ 1186 ASSERT((DB_TYPE(add_mp) == M_IOCDATA) || (DB_TYPE(add_mp) == M_IOCTL) || 1187 (DB_TYPE(add_mp) == M_ERROR) || (DB_TYPE(add_mp) == M_HANGUP) || 1188 (DB_TYPE(add_mp) == M_PROTO) || (DB_TYPE(add_mp) == M_PCPROTO)); 1189 1190 if (connp != NULL) { 1191 ASSERT(MUTEX_HELD(&connp->conn_lock)); 1192 /* 1193 * Return error if the conn has started closing. The conn 1194 * could have finished cleaning up the pending mp list, 1195 * If so we should not add another mp to the list negating 1196 * the cleanup. 1197 */ 1198 if (connp->conn_state_flags & CONN_CLOSING) 1199 return (B_FALSE); 1200 } 1201 mutex_enter(&ipx->ipx_lock); 1202 ipx->ipx_pending_ipif = ipif; 1203 /* 1204 * Note down the queue in b_queue. This will be returned by 1205 * ipsq_pending_mp_get. Caller will then use these values to restart 1206 * the processing 1207 */ 1208 add_mp->b_next = NULL; 1209 add_mp->b_queue = q; 1210 ipx->ipx_pending_mp = add_mp; 1211 ipx->ipx_waitfor = waitfor; 1212 mutex_exit(&ipx->ipx_lock); 1213 1214 if (connp != NULL) 1215 connp->conn_oper_pending_ill = ipif->ipif_ill; 1216 1217 return (B_TRUE); 1218 } 1219 1220 /* 1221 * Retrieve the ipx_pending_mp and return it. There can be only 1 mp 1222 * queued in the list. 1223 */ 1224 mblk_t * 1225 ipsq_pending_mp_get(ipsq_t *ipsq, conn_t **connpp) 1226 { 1227 mblk_t *curr = NULL; 1228 ipxop_t *ipx = ipsq->ipsq_xop; 1229 1230 *connpp = NULL; 1231 mutex_enter(&ipx->ipx_lock); 1232 if (ipx->ipx_pending_mp == NULL) { 1233 mutex_exit(&ipx->ipx_lock); 1234 return (NULL); 1235 } 1236 1237 /* There can be only 1 such excl message */ 1238 curr = ipx->ipx_pending_mp; 1239 ASSERT(curr->b_next == NULL); 1240 ipx->ipx_pending_ipif = NULL; 1241 ipx->ipx_pending_mp = NULL; 1242 ipx->ipx_waitfor = 0; 1243 mutex_exit(&ipx->ipx_lock); 1244 1245 if (CONN_Q(curr->b_queue)) { 1246 /* 1247 * This mp did a refhold on the conn, at the start of the ioctl. 1248 * So we can safely return a pointer to the conn to the caller. 1249 */ 1250 *connpp = Q_TO_CONN(curr->b_queue); 1251 } else { 1252 *connpp = NULL; 1253 } 1254 curr->b_next = NULL; 1255 curr->b_prev = NULL; 1256 return (curr); 1257 } 1258 1259 /* 1260 * Cleanup the ioctl mp queued in ipx_pending_mp 1261 * - Called in the ill_delete path 1262 * - Called in the M_ERROR or M_HANGUP path on the ill. 1263 * - Called in the conn close path. 1264 */ 1265 boolean_t 1266 ipsq_pending_mp_cleanup(ill_t *ill, conn_t *connp) 1267 { 1268 mblk_t *mp; 1269 ipxop_t *ipx; 1270 queue_t *q; 1271 ipif_t *ipif; 1272 1273 ASSERT(IAM_WRITER_ILL(ill)); 1274 ipx = ill->ill_phyint->phyint_ipsq->ipsq_xop; 1275 1276 /* 1277 * If connp is null, unconditionally clean up the ipx_pending_mp. 1278 * This happens in M_ERROR/M_HANGUP. We need to abort the current ioctl 1279 * even if it is meant for another ill, since we have to enqueue 1280 * a new mp now in ipx_pending_mp to complete the ipif_down. 1281 * If connp is non-null we are called from the conn close path. 1282 */ 1283 mutex_enter(&ipx->ipx_lock); 1284 mp = ipx->ipx_pending_mp; 1285 if (mp == NULL || (connp != NULL && 1286 mp->b_queue != CONNP_TO_WQ(connp))) { 1287 mutex_exit(&ipx->ipx_lock); 1288 return (B_FALSE); 1289 } 1290 /* Now remove from the ipx_pending_mp */ 1291 ipx->ipx_pending_mp = NULL; 1292 q = mp->b_queue; 1293 mp->b_next = NULL; 1294 mp->b_prev = NULL; 1295 mp->b_queue = NULL; 1296 1297 ipif = ipx->ipx_pending_ipif; 1298 ipx->ipx_pending_ipif = NULL; 1299 ipx->ipx_waitfor = 0; 1300 ipx->ipx_current_ipif = NULL; 1301 ipx->ipx_current_ioctl = 0; 1302 ipx->ipx_current_done = B_TRUE; 1303 mutex_exit(&ipx->ipx_lock); 1304 1305 if (DB_TYPE(mp) == M_IOCTL || DB_TYPE(mp) == M_IOCDATA) { 1306 if (connp == NULL) { 1307 ip_ioctl_finish(q, mp, ENXIO, NO_COPYOUT, NULL); 1308 } else { 1309 ip_ioctl_finish(q, mp, ENXIO, CONN_CLOSE, NULL); 1310 mutex_enter(&ipif->ipif_ill->ill_lock); 1311 ipif->ipif_state_flags &= ~IPIF_CHANGING; 1312 mutex_exit(&ipif->ipif_ill->ill_lock); 1313 } 1314 } else { 1315 /* 1316 * IP-MT XXX In the case of TLI/XTI bind / optmgmt this can't 1317 * be just inet_freemsg. we have to restart it 1318 * otherwise the thread will be stuck. 1319 */ 1320 inet_freemsg(mp); 1321 } 1322 return (B_TRUE); 1323 } 1324 1325 /* 1326 * The ill is closing. Cleanup all the pending mps. Called exclusively 1327 * towards the end of ill_delete. The refcount has gone to 0. So nobody 1328 * knows this ill, and hence nobody can add an mp to this list 1329 */ 1330 static void 1331 ill_pending_mp_cleanup(ill_t *ill) 1332 { 1333 mblk_t *mp; 1334 queue_t *q; 1335 1336 ASSERT(IAM_WRITER_ILL(ill)); 1337 1338 mutex_enter(&ill->ill_lock); 1339 /* 1340 * Every mp on the pending mp list originating from an ioctl 1341 * added 1 to the conn refcnt, at the start of the ioctl. 1342 * So bump it down now. See comments in ip_wput_nondata() 1343 */ 1344 while (ill->ill_pending_mp != NULL) { 1345 mp = ill->ill_pending_mp; 1346 ill->ill_pending_mp = mp->b_next; 1347 mutex_exit(&ill->ill_lock); 1348 1349 q = mp->b_queue; 1350 ASSERT(CONN_Q(q)); 1351 mp->b_next = NULL; 1352 mp->b_prev = NULL; 1353 mp->b_queue = NULL; 1354 ip_ioctl_finish(q, mp, ENXIO, NO_COPYOUT, NULL); 1355 mutex_enter(&ill->ill_lock); 1356 } 1357 ill->ill_pending_ipif = NULL; 1358 1359 mutex_exit(&ill->ill_lock); 1360 } 1361 1362 /* 1363 * Called in the conn close path and ill delete path 1364 */ 1365 static void 1366 ipsq_xopq_mp_cleanup(ill_t *ill, conn_t *connp) 1367 { 1368 ipsq_t *ipsq; 1369 mblk_t *prev; 1370 mblk_t *curr; 1371 mblk_t *next; 1372 queue_t *q; 1373 mblk_t *tmp_list = NULL; 1374 1375 ASSERT(IAM_WRITER_ILL(ill)); 1376 if (connp != NULL) 1377 q = CONNP_TO_WQ(connp); 1378 else 1379 q = ill->ill_wq; 1380 1381 ipsq = ill->ill_phyint->phyint_ipsq; 1382 /* 1383 * Cleanup the ioctl mp's queued in ipsq_xopq_pending_mp if any. 1384 * In the case of ioctl from a conn, there can be only 1 mp 1385 * queued on the ipsq. If an ill is being unplumbed, only messages 1386 * related to this ill are flushed, like M_ERROR or M_HANGUP message. 1387 * ioctls meant for this ill form conn's are not flushed. They will 1388 * be processed during ipsq_exit and will not find the ill and will 1389 * return error. 1390 */ 1391 mutex_enter(&ipsq->ipsq_lock); 1392 for (prev = NULL, curr = ipsq->ipsq_xopq_mphead; curr != NULL; 1393 curr = next) { 1394 next = curr->b_next; 1395 if (curr->b_queue == q || curr->b_queue == RD(q)) { 1396 /* Unlink the mblk from the pending mp list */ 1397 if (prev != NULL) { 1398 prev->b_next = curr->b_next; 1399 } else { 1400 ASSERT(ipsq->ipsq_xopq_mphead == curr); 1401 ipsq->ipsq_xopq_mphead = curr->b_next; 1402 } 1403 if (ipsq->ipsq_xopq_mptail == curr) 1404 ipsq->ipsq_xopq_mptail = prev; 1405 /* 1406 * Create a temporary list and release the ipsq lock 1407 * New elements are added to the head of the tmp_list 1408 */ 1409 curr->b_next = tmp_list; 1410 tmp_list = curr; 1411 } else { 1412 prev = curr; 1413 } 1414 } 1415 mutex_exit(&ipsq->ipsq_lock); 1416 1417 while (tmp_list != NULL) { 1418 curr = tmp_list; 1419 tmp_list = curr->b_next; 1420 curr->b_next = NULL; 1421 curr->b_prev = NULL; 1422 curr->b_queue = NULL; 1423 if (DB_TYPE(curr) == M_IOCTL || DB_TYPE(curr) == M_IOCDATA) { 1424 ip_ioctl_finish(q, curr, ENXIO, connp != NULL ? 1425 CONN_CLOSE : NO_COPYOUT, NULL); 1426 } else { 1427 /* 1428 * IP-MT XXX In the case of TLI/XTI bind / optmgmt 1429 * this can't be just inet_freemsg. we have to 1430 * restart it otherwise the thread will be stuck. 1431 */ 1432 inet_freemsg(curr); 1433 } 1434 } 1435 } 1436 1437 /* 1438 * This conn has started closing. Cleanup any pending ioctl from this conn. 1439 * STREAMS ensures that there can be at most 1 ioctl pending on a stream. 1440 */ 1441 void 1442 conn_ioctl_cleanup(conn_t *connp) 1443 { 1444 mblk_t *curr; 1445 ipsq_t *ipsq; 1446 ill_t *ill; 1447 boolean_t refheld; 1448 1449 /* 1450 * Is any exclusive ioctl pending ? If so clean it up. If the 1451 * ioctl has not yet started, the mp is pending in the list headed by 1452 * ipsq_xopq_head. If the ioctl has started the mp could be present in 1453 * ipx_pending_mp. If the ioctl timed out in the streamhead but 1454 * is currently executing now the mp is not queued anywhere but 1455 * conn_oper_pending_ill is null. The conn close will wait 1456 * till the conn_ref drops to zero. 1457 */ 1458 mutex_enter(&connp->conn_lock); 1459 ill = connp->conn_oper_pending_ill; 1460 if (ill == NULL) { 1461 mutex_exit(&connp->conn_lock); 1462 return; 1463 } 1464 1465 curr = ill_pending_mp_get(ill, &connp, 0); 1466 if (curr != NULL) { 1467 mutex_exit(&connp->conn_lock); 1468 CONN_DEC_REF(connp); 1469 inet_freemsg(curr); 1470 return; 1471 } 1472 /* 1473 * We may not be able to refhold the ill if the ill/ipif 1474 * is changing. But we need to make sure that the ill will 1475 * not vanish. So we just bump up the ill_waiter count. 1476 */ 1477 refheld = ill_waiter_inc(ill); 1478 mutex_exit(&connp->conn_lock); 1479 if (refheld) { 1480 if (ipsq_enter(ill, B_TRUE, NEW_OP)) { 1481 ill_waiter_dcr(ill); 1482 /* 1483 * Check whether this ioctl has started and is 1484 * pending. If it is not found there then check 1485 * whether this ioctl has not even started and is in 1486 * the ipsq_xopq list. 1487 */ 1488 if (!ipsq_pending_mp_cleanup(ill, connp)) 1489 ipsq_xopq_mp_cleanup(ill, connp); 1490 ipsq = ill->ill_phyint->phyint_ipsq; 1491 ipsq_exit(ipsq); 1492 return; 1493 } 1494 } 1495 1496 /* 1497 * The ill is also closing and we could not bump up the 1498 * ill_waiter_count or we could not enter the ipsq. Leave 1499 * the cleanup to ill_delete 1500 */ 1501 mutex_enter(&connp->conn_lock); 1502 while (connp->conn_oper_pending_ill != NULL) 1503 cv_wait(&connp->conn_refcv, &connp->conn_lock); 1504 mutex_exit(&connp->conn_lock); 1505 if (refheld) 1506 ill_waiter_dcr(ill); 1507 } 1508 1509 /* 1510 * ipcl_walk function for cleaning up conn_*_ill fields. 1511 */ 1512 static void 1513 conn_cleanup_ill(conn_t *connp, caddr_t arg) 1514 { 1515 ill_t *ill = (ill_t *)arg; 1516 ire_t *ire; 1517 1518 mutex_enter(&connp->conn_lock); 1519 if (connp->conn_multicast_ill == ill) { 1520 /* Revert to late binding */ 1521 connp->conn_multicast_ill = NULL; 1522 } 1523 if (connp->conn_incoming_ill == ill) 1524 connp->conn_incoming_ill = NULL; 1525 if (connp->conn_outgoing_ill == ill) 1526 connp->conn_outgoing_ill = NULL; 1527 if (connp->conn_dhcpinit_ill == ill) { 1528 connp->conn_dhcpinit_ill = NULL; 1529 ASSERT(ill->ill_dhcpinit != 0); 1530 atomic_dec_32(&ill->ill_dhcpinit); 1531 } 1532 if (connp->conn_ire_cache != NULL) { 1533 ire = connp->conn_ire_cache; 1534 /* 1535 * Source address selection makes it possible for IRE_CACHE 1536 * entries to be created with ire_stq coming from interface X 1537 * and ipif coming from interface Y. Thus whenever interface 1538 * X goes down, remove all references to it by checking both 1539 * on ire_ipif and ire_stq. 1540 */ 1541 if ((ire->ire_ipif != NULL && ire->ire_ipif->ipif_ill == ill) || 1542 (ire->ire_type == IRE_CACHE && 1543 ire->ire_stq == ill->ill_wq)) { 1544 connp->conn_ire_cache = NULL; 1545 mutex_exit(&connp->conn_lock); 1546 ire_refrele_notr(ire); 1547 return; 1548 } 1549 } 1550 mutex_exit(&connp->conn_lock); 1551 } 1552 1553 static void 1554 ill_down_ipifs_tail(ill_t *ill) 1555 { 1556 ipif_t *ipif; 1557 1558 ASSERT(IAM_WRITER_ILL(ill)); 1559 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 1560 ipif_non_duplicate(ipif); 1561 ipif_down_tail(ipif); 1562 } 1563 } 1564 1565 /* ARGSUSED */ 1566 void 1567 ipif_all_down_tail(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy_arg) 1568 { 1569 ASSERT(IAM_WRITER_IPSQ(ipsq)); 1570 ill_down_ipifs_tail(q->q_ptr); 1571 freemsg(mp); 1572 ipsq_current_finish(ipsq); 1573 } 1574 1575 /* 1576 * ill_down_start is called when we want to down this ill and bring it up again 1577 * It is called when we receive an M_ERROR / M_HANGUP. In this case we shut down 1578 * all interfaces, but don't tear down any plumbing. 1579 */ 1580 boolean_t 1581 ill_down_start(queue_t *q, mblk_t *mp) 1582 { 1583 ill_t *ill = q->q_ptr; 1584 ipif_t *ipif; 1585 1586 ASSERT(IAM_WRITER_ILL(ill)); 1587 1588 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) 1589 (void) ipif_down(ipif, NULL, NULL); 1590 1591 ill_down(ill); 1592 1593 (void) ipsq_pending_mp_cleanup(ill, NULL); 1594 1595 ipsq_current_start(ill->ill_phyint->phyint_ipsq, ill->ill_ipif, 0); 1596 1597 /* 1598 * Atomically test and add the pending mp if references are active. 1599 */ 1600 mutex_enter(&ill->ill_lock); 1601 if (!ill_is_quiescent(ill)) { 1602 /* call cannot fail since `conn_t *' argument is NULL */ 1603 (void) ipsq_pending_mp_add(NULL, ill->ill_ipif, ill->ill_rq, 1604 mp, ILL_DOWN); 1605 mutex_exit(&ill->ill_lock); 1606 return (B_FALSE); 1607 } 1608 mutex_exit(&ill->ill_lock); 1609 return (B_TRUE); 1610 } 1611 1612 static void 1613 ill_down(ill_t *ill) 1614 { 1615 ip_stack_t *ipst = ill->ill_ipst; 1616 1617 /* Blow off any IREs dependent on this ILL. */ 1618 ire_walk(ill_downi, ill, ipst); 1619 1620 /* Remove any conn_*_ill depending on this ill */ 1621 ipcl_walk(conn_cleanup_ill, (caddr_t)ill, ipst); 1622 } 1623 1624 /* 1625 * ire_walk routine used to delete every IRE that depends on queues 1626 * associated with 'ill'. (Always called as writer.) 1627 */ 1628 static void 1629 ill_downi(ire_t *ire, char *ill_arg) 1630 { 1631 ill_t *ill = (ill_t *)ill_arg; 1632 1633 /* 1634 * Source address selection makes it possible for IRE_CACHE 1635 * entries to be created with ire_stq coming from interface X 1636 * and ipif coming from interface Y. Thus whenever interface 1637 * X goes down, remove all references to it by checking both 1638 * on ire_ipif and ire_stq. 1639 */ 1640 if ((ire->ire_ipif != NULL && ire->ire_ipif->ipif_ill == ill) || 1641 (ire->ire_type == IRE_CACHE && ire->ire_stq == ill->ill_wq)) { 1642 ire_delete(ire); 1643 } 1644 } 1645 1646 /* 1647 * Remove ire/nce from the fastpath list. 1648 */ 1649 void 1650 ill_fastpath_nack(ill_t *ill) 1651 { 1652 nce_fastpath_list_dispatch(ill, NULL, NULL); 1653 } 1654 1655 /* Consume an M_IOCACK of the fastpath probe. */ 1656 void 1657 ill_fastpath_ack(ill_t *ill, mblk_t *mp) 1658 { 1659 mblk_t *mp1 = mp; 1660 1661 /* 1662 * If this was the first attempt turn on the fastpath probing. 1663 */ 1664 mutex_enter(&ill->ill_lock); 1665 if (ill->ill_dlpi_fastpath_state == IDS_INPROGRESS) 1666 ill->ill_dlpi_fastpath_state = IDS_OK; 1667 mutex_exit(&ill->ill_lock); 1668 1669 /* Free the M_IOCACK mblk, hold on to the data */ 1670 mp = mp->b_cont; 1671 freeb(mp1); 1672 if (mp == NULL) 1673 return; 1674 if (mp->b_cont != NULL) { 1675 /* 1676 * Update all IRE's or NCE's that are waiting for 1677 * fastpath update. 1678 */ 1679 nce_fastpath_list_dispatch(ill, ndp_fastpath_update, mp); 1680 mp1 = mp->b_cont; 1681 freeb(mp); 1682 mp = mp1; 1683 } else { 1684 ip0dbg(("ill_fastpath_ack: no b_cont\n")); 1685 } 1686 1687 freeb(mp); 1688 } 1689 1690 /* 1691 * Throw an M_IOCTL message downstream asking "do you know fastpath?" 1692 * The data portion of the request is a dl_unitdata_req_t template for 1693 * what we would send downstream in the absence of a fastpath confirmation. 1694 */ 1695 int 1696 ill_fastpath_probe(ill_t *ill, mblk_t *dlur_mp) 1697 { 1698 struct iocblk *ioc; 1699 mblk_t *mp; 1700 1701 if (dlur_mp == NULL) 1702 return (EINVAL); 1703 1704 mutex_enter(&ill->ill_lock); 1705 switch (ill->ill_dlpi_fastpath_state) { 1706 case IDS_FAILED: 1707 /* 1708 * Driver NAKed the first fastpath ioctl - assume it doesn't 1709 * support it. 1710 */ 1711 mutex_exit(&ill->ill_lock); 1712 return (ENOTSUP); 1713 case IDS_UNKNOWN: 1714 /* This is the first probe */ 1715 ill->ill_dlpi_fastpath_state = IDS_INPROGRESS; 1716 break; 1717 default: 1718 break; 1719 } 1720 mutex_exit(&ill->ill_lock); 1721 1722 if ((mp = mkiocb(DL_IOC_HDR_INFO)) == NULL) 1723 return (EAGAIN); 1724 1725 mp->b_cont = copyb(dlur_mp); 1726 if (mp->b_cont == NULL) { 1727 freeb(mp); 1728 return (EAGAIN); 1729 } 1730 1731 ioc = (struct iocblk *)mp->b_rptr; 1732 ioc->ioc_count = msgdsize(mp->b_cont); 1733 1734 putnext(ill->ill_wq, mp); 1735 return (0); 1736 } 1737 1738 void 1739 ill_capability_probe(ill_t *ill) 1740 { 1741 mblk_t *mp; 1742 1743 ASSERT(IAM_WRITER_ILL(ill)); 1744 1745 if (ill->ill_dlpi_capab_state != IDCS_UNKNOWN && 1746 ill->ill_dlpi_capab_state != IDCS_FAILED) 1747 return; 1748 1749 /* 1750 * We are starting a new cycle of capability negotiation. 1751 * Free up the capab reset messages of any previous incarnation. 1752 * We will do a fresh allocation when we get the response to our probe 1753 */ 1754 if (ill->ill_capab_reset_mp != NULL) { 1755 freemsg(ill->ill_capab_reset_mp); 1756 ill->ill_capab_reset_mp = NULL; 1757 } 1758 1759 ip1dbg(("ill_capability_probe: starting capability negotiation\n")); 1760 1761 mp = ip_dlpi_alloc(sizeof (dl_capability_req_t), DL_CAPABILITY_REQ); 1762 if (mp == NULL) 1763 return; 1764 1765 ill_capability_send(ill, mp); 1766 ill->ill_dlpi_capab_state = IDCS_PROBE_SENT; 1767 } 1768 1769 void 1770 ill_capability_reset(ill_t *ill, boolean_t reneg) 1771 { 1772 ASSERT(IAM_WRITER_ILL(ill)); 1773 1774 if (ill->ill_dlpi_capab_state != IDCS_OK) 1775 return; 1776 1777 ill->ill_dlpi_capab_state = reneg ? IDCS_RENEG : IDCS_RESET_SENT; 1778 1779 ill_capability_send(ill, ill->ill_capab_reset_mp); 1780 ill->ill_capab_reset_mp = NULL; 1781 /* 1782 * We turn off all capabilities except those pertaining to 1783 * direct function call capabilities viz. ILL_CAPAB_DLD* 1784 * which will be turned off by the corresponding reset functions. 1785 */ 1786 ill->ill_capabilities &= ~(ILL_CAPAB_MDT | ILL_CAPAB_HCKSUM | 1787 ILL_CAPAB_ZEROCOPY | ILL_CAPAB_AH | ILL_CAPAB_ESP); 1788 } 1789 1790 static void 1791 ill_capability_reset_alloc(ill_t *ill) 1792 { 1793 mblk_t *mp; 1794 size_t size = 0; 1795 int err; 1796 dl_capability_req_t *capb; 1797 1798 ASSERT(IAM_WRITER_ILL(ill)); 1799 ASSERT(ill->ill_capab_reset_mp == NULL); 1800 1801 if (ILL_MDT_CAPABLE(ill)) 1802 size += sizeof (dl_capability_sub_t) + sizeof (dl_capab_mdt_t); 1803 1804 if (ILL_HCKSUM_CAPABLE(ill)) { 1805 size += sizeof (dl_capability_sub_t) + 1806 sizeof (dl_capab_hcksum_t); 1807 } 1808 1809 if (ill->ill_capabilities & ILL_CAPAB_ZEROCOPY) { 1810 size += sizeof (dl_capability_sub_t) + 1811 sizeof (dl_capab_zerocopy_t); 1812 } 1813 1814 if (ill->ill_capabilities & (ILL_CAPAB_AH | ILL_CAPAB_ESP)) { 1815 size += sizeof (dl_capability_sub_t); 1816 size += ill_capability_ipsec_reset_size(ill, NULL, NULL, 1817 NULL, NULL); 1818 } 1819 1820 if (ill->ill_capabilities & ILL_CAPAB_DLD) { 1821 size += sizeof (dl_capability_sub_t) + 1822 sizeof (dl_capab_dld_t); 1823 } 1824 1825 mp = allocb_wait(size + sizeof (dl_capability_req_t), BPRI_MED, 1826 STR_NOSIG, &err); 1827 1828 mp->b_datap->db_type = M_PROTO; 1829 bzero(mp->b_rptr, size + sizeof (dl_capability_req_t)); 1830 1831 capb = (dl_capability_req_t *)mp->b_rptr; 1832 capb->dl_primitive = DL_CAPABILITY_REQ; 1833 capb->dl_sub_offset = sizeof (dl_capability_req_t); 1834 capb->dl_sub_length = size; 1835 1836 mp->b_wptr += sizeof (dl_capability_req_t); 1837 1838 /* 1839 * Each handler fills in the corresponding dl_capability_sub_t 1840 * inside the mblk, 1841 */ 1842 ill_capability_mdt_reset_fill(ill, mp); 1843 ill_capability_hcksum_reset_fill(ill, mp); 1844 ill_capability_zerocopy_reset_fill(ill, mp); 1845 ill_capability_ipsec_reset_fill(ill, mp); 1846 ill_capability_dld_reset_fill(ill, mp); 1847 1848 ill->ill_capab_reset_mp = mp; 1849 } 1850 1851 static void 1852 ill_capability_id_ack(ill_t *ill, mblk_t *mp, dl_capability_sub_t *outers) 1853 { 1854 dl_capab_id_t *id_ic; 1855 uint_t sub_dl_cap = outers->dl_cap; 1856 dl_capability_sub_t *inners; 1857 uint8_t *capend; 1858 1859 ASSERT(sub_dl_cap == DL_CAPAB_ID_WRAPPER); 1860 1861 /* 1862 * Note: range checks here are not absolutely sufficient to 1863 * make us robust against malformed messages sent by drivers; 1864 * this is in keeping with the rest of IP's dlpi handling. 1865 * (Remember, it's coming from something else in the kernel 1866 * address space) 1867 */ 1868 1869 capend = (uint8_t *)(outers + 1) + outers->dl_length; 1870 if (capend > mp->b_wptr) { 1871 cmn_err(CE_WARN, "ill_capability_id_ack: " 1872 "malformed sub-capability too long for mblk"); 1873 return; 1874 } 1875 1876 id_ic = (dl_capab_id_t *)(outers + 1); 1877 1878 if (outers->dl_length < sizeof (*id_ic) || 1879 (inners = &id_ic->id_subcap, 1880 inners->dl_length > (outers->dl_length - sizeof (*inners)))) { 1881 cmn_err(CE_WARN, "ill_capability_id_ack: malformed " 1882 "encapsulated capab type %d too long for mblk", 1883 inners->dl_cap); 1884 return; 1885 } 1886 1887 if (!dlcapabcheckqid(&id_ic->id_mid, ill->ill_lmod_rq)) { 1888 ip1dbg(("ill_capability_id_ack: mid token for capab type %d " 1889 "isn't as expected; pass-thru module(s) detected, " 1890 "discarding capability\n", inners->dl_cap)); 1891 return; 1892 } 1893 1894 /* Process the encapsulated sub-capability */ 1895 ill_capability_dispatch(ill, mp, inners, B_TRUE); 1896 } 1897 1898 /* 1899 * Process Multidata Transmit capability negotiation ack received from a 1900 * DLS Provider. isub must point to the sub-capability (DL_CAPAB_MDT) of a 1901 * DL_CAPABILITY_ACK message. 1902 */ 1903 static void 1904 ill_capability_mdt_ack(ill_t *ill, mblk_t *mp, dl_capability_sub_t *isub) 1905 { 1906 mblk_t *nmp = NULL; 1907 dl_capability_req_t *oc; 1908 dl_capab_mdt_t *mdt_ic, *mdt_oc; 1909 ill_mdt_capab_t **ill_mdt_capab; 1910 uint_t sub_dl_cap = isub->dl_cap; 1911 uint8_t *capend; 1912 1913 ASSERT(sub_dl_cap == DL_CAPAB_MDT); 1914 1915 ill_mdt_capab = (ill_mdt_capab_t **)&ill->ill_mdt_capab; 1916 1917 /* 1918 * Note: range checks here are not absolutely sufficient to 1919 * make us robust against malformed messages sent by drivers; 1920 * this is in keeping with the rest of IP's dlpi handling. 1921 * (Remember, it's coming from something else in the kernel 1922 * address space) 1923 */ 1924 1925 capend = (uint8_t *)(isub + 1) + isub->dl_length; 1926 if (capend > mp->b_wptr) { 1927 cmn_err(CE_WARN, "ill_capability_mdt_ack: " 1928 "malformed sub-capability too long for mblk"); 1929 return; 1930 } 1931 1932 mdt_ic = (dl_capab_mdt_t *)(isub + 1); 1933 1934 if (mdt_ic->mdt_version != MDT_VERSION_2) { 1935 cmn_err(CE_CONT, "ill_capability_mdt_ack: " 1936 "unsupported MDT sub-capability (version %d, expected %d)", 1937 mdt_ic->mdt_version, MDT_VERSION_2); 1938 return; 1939 } 1940 1941 if (!dlcapabcheckqid(&mdt_ic->mdt_mid, ill->ill_lmod_rq)) { 1942 ip1dbg(("ill_capability_mdt_ack: mid token for MDT " 1943 "capability isn't as expected; pass-thru module(s) " 1944 "detected, discarding capability\n")); 1945 return; 1946 } 1947 1948 if (mdt_ic->mdt_flags & DL_CAPAB_MDT_ENABLE) { 1949 1950 if (*ill_mdt_capab == NULL) { 1951 *ill_mdt_capab = kmem_zalloc(sizeof (ill_mdt_capab_t), 1952 KM_NOSLEEP); 1953 if (*ill_mdt_capab == NULL) { 1954 cmn_err(CE_WARN, "ill_capability_mdt_ack: " 1955 "could not enable MDT version %d " 1956 "for %s (ENOMEM)\n", MDT_VERSION_2, 1957 ill->ill_name); 1958 return; 1959 } 1960 } 1961 1962 ip1dbg(("ill_capability_mdt_ack: interface %s supports " 1963 "MDT version %d (%d bytes leading, %d bytes trailing " 1964 "header spaces, %d max pld bufs, %d span limit)\n", 1965 ill->ill_name, MDT_VERSION_2, 1966 mdt_ic->mdt_hdr_head, mdt_ic->mdt_hdr_tail, 1967 mdt_ic->mdt_max_pld, mdt_ic->mdt_span_limit)); 1968 1969 (*ill_mdt_capab)->ill_mdt_version = MDT_VERSION_2; 1970 (*ill_mdt_capab)->ill_mdt_on = 1; 1971 /* 1972 * Round the following values to the nearest 32-bit; ULP 1973 * may further adjust them to accomodate for additional 1974 * protocol headers. We pass these values to ULP during 1975 * bind time. 1976 */ 1977 (*ill_mdt_capab)->ill_mdt_hdr_head = 1978 roundup(mdt_ic->mdt_hdr_head, 4); 1979 (*ill_mdt_capab)->ill_mdt_hdr_tail = 1980 roundup(mdt_ic->mdt_hdr_tail, 4); 1981 (*ill_mdt_capab)->ill_mdt_max_pld = mdt_ic->mdt_max_pld; 1982 (*ill_mdt_capab)->ill_mdt_span_limit = mdt_ic->mdt_span_limit; 1983 1984 ill->ill_capabilities |= ILL_CAPAB_MDT; 1985 } else { 1986 uint_t size; 1987 uchar_t *rptr; 1988 1989 size = sizeof (dl_capability_req_t) + 1990 sizeof (dl_capability_sub_t) + sizeof (dl_capab_mdt_t); 1991 1992 if ((nmp = ip_dlpi_alloc(size, DL_CAPABILITY_REQ)) == NULL) { 1993 cmn_err(CE_WARN, "ill_capability_mdt_ack: " 1994 "could not enable MDT for %s (ENOMEM)\n", 1995 ill->ill_name); 1996 return; 1997 } 1998 1999 rptr = nmp->b_rptr; 2000 /* initialize dl_capability_req_t */ 2001 oc = (dl_capability_req_t *)nmp->b_rptr; 2002 oc->dl_sub_offset = sizeof (dl_capability_req_t); 2003 oc->dl_sub_length = sizeof (dl_capability_sub_t) + 2004 sizeof (dl_capab_mdt_t); 2005 nmp->b_rptr += sizeof (dl_capability_req_t); 2006 2007 /* initialize dl_capability_sub_t */ 2008 bcopy(isub, nmp->b_rptr, sizeof (*isub)); 2009 nmp->b_rptr += sizeof (*isub); 2010 2011 /* initialize dl_capab_mdt_t */ 2012 mdt_oc = (dl_capab_mdt_t *)nmp->b_rptr; 2013 bcopy(mdt_ic, mdt_oc, sizeof (*mdt_ic)); 2014 2015 nmp->b_rptr = rptr; 2016 2017 ip1dbg(("ill_capability_mdt_ack: asking interface %s " 2018 "to enable MDT version %d\n", ill->ill_name, 2019 MDT_VERSION_2)); 2020 2021 /* set ENABLE flag */ 2022 mdt_oc->mdt_flags |= DL_CAPAB_MDT_ENABLE; 2023 2024 /* nmp points to a DL_CAPABILITY_REQ message to enable MDT */ 2025 ill_capability_send(ill, nmp); 2026 } 2027 } 2028 2029 static void 2030 ill_capability_mdt_reset_fill(ill_t *ill, mblk_t *mp) 2031 { 2032 dl_capab_mdt_t *mdt_subcap; 2033 dl_capability_sub_t *dl_subcap; 2034 2035 if (!ILL_MDT_CAPABLE(ill)) 2036 return; 2037 2038 ASSERT(ill->ill_mdt_capab != NULL); 2039 2040 dl_subcap = (dl_capability_sub_t *)mp->b_wptr; 2041 dl_subcap->dl_cap = DL_CAPAB_MDT; 2042 dl_subcap->dl_length = sizeof (*mdt_subcap); 2043 2044 mdt_subcap = (dl_capab_mdt_t *)(dl_subcap + 1); 2045 mdt_subcap->mdt_version = ill->ill_mdt_capab->ill_mdt_version; 2046 mdt_subcap->mdt_flags = 0; 2047 mdt_subcap->mdt_hdr_head = 0; 2048 mdt_subcap->mdt_hdr_tail = 0; 2049 2050 mp->b_wptr += sizeof (*dl_subcap) + sizeof (*mdt_subcap); 2051 } 2052 2053 static void 2054 ill_capability_dld_reset_fill(ill_t *ill, mblk_t *mp) 2055 { 2056 dl_capability_sub_t *dl_subcap; 2057 2058 if (!(ill->ill_capabilities & ILL_CAPAB_DLD)) 2059 return; 2060 2061 /* 2062 * The dl_capab_dld_t that follows the dl_capability_sub_t is not 2063 * initialized below since it is not used by DLD. 2064 */ 2065 dl_subcap = (dl_capability_sub_t *)mp->b_wptr; 2066 dl_subcap->dl_cap = DL_CAPAB_DLD; 2067 dl_subcap->dl_length = sizeof (dl_capab_dld_t); 2068 2069 mp->b_wptr += sizeof (dl_capability_sub_t) + sizeof (dl_capab_dld_t); 2070 } 2071 2072 /* 2073 * Send a DL_NOTIFY_REQ to the specified ill to enable 2074 * DL_NOTE_PROMISC_ON/OFF_PHYS notifications. 2075 * Invoked by ill_capability_ipsec_ack() before enabling IPsec hardware 2076 * acceleration. 2077 * Returns B_TRUE on success, B_FALSE if the message could not be sent. 2078 */ 2079 static boolean_t 2080 ill_enable_promisc_notify(ill_t *ill) 2081 { 2082 mblk_t *mp; 2083 dl_notify_req_t *req; 2084 2085 IPSECHW_DEBUG(IPSECHW_PKT, ("ill_enable_promisc_notify:\n")); 2086 2087 mp = ip_dlpi_alloc(sizeof (dl_notify_req_t), DL_NOTIFY_REQ); 2088 if (mp == NULL) 2089 return (B_FALSE); 2090 2091 req = (dl_notify_req_t *)mp->b_rptr; 2092 req->dl_notifications = DL_NOTE_PROMISC_ON_PHYS | 2093 DL_NOTE_PROMISC_OFF_PHYS; 2094 2095 ill_dlpi_send(ill, mp); 2096 2097 return (B_TRUE); 2098 } 2099 2100 /* 2101 * Allocate an IPsec capability request which will be filled by our 2102 * caller to turn on support for one or more algorithms. 2103 */ 2104 static mblk_t * 2105 ill_alloc_ipsec_cap_req(ill_t *ill, dl_capability_sub_t *isub) 2106 { 2107 mblk_t *nmp; 2108 dl_capability_req_t *ocap; 2109 dl_capab_ipsec_t *ocip; 2110 dl_capab_ipsec_t *icip; 2111 uint8_t *ptr; 2112 icip = (dl_capab_ipsec_t *)(isub + 1); 2113 2114 /* 2115 * The first time around, we send a DL_NOTIFY_REQ to enable 2116 * PROMISC_ON/OFF notification from the provider. We need to 2117 * do this before enabling the algorithms to avoid leakage of 2118 * cleartext packets. 2119 */ 2120 2121 if (!ill_enable_promisc_notify(ill)) 2122 return (NULL); 2123 2124 /* 2125 * Allocate new mblk which will contain a new capability 2126 * request to enable the capabilities. 2127 */ 2128 2129 nmp = ip_dlpi_alloc(sizeof (dl_capability_req_t) + 2130 sizeof (dl_capability_sub_t) + isub->dl_length, DL_CAPABILITY_REQ); 2131 if (nmp == NULL) 2132 return (NULL); 2133 2134 ptr = nmp->b_rptr; 2135 2136 /* initialize dl_capability_req_t */ 2137 ocap = (dl_capability_req_t *)ptr; 2138 ocap->dl_sub_offset = sizeof (dl_capability_req_t); 2139 ocap->dl_sub_length = sizeof (dl_capability_sub_t) + isub->dl_length; 2140 ptr += sizeof (dl_capability_req_t); 2141 2142 /* initialize dl_capability_sub_t */ 2143 bcopy(isub, ptr, sizeof (*isub)); 2144 ptr += sizeof (*isub); 2145 2146 /* initialize dl_capab_ipsec_t */ 2147 ocip = (dl_capab_ipsec_t *)ptr; 2148 bcopy(icip, ocip, sizeof (*icip)); 2149 2150 nmp->b_wptr = (uchar_t *)(&ocip->cip_data[0]); 2151 return (nmp); 2152 } 2153 2154 /* 2155 * Process an IPsec capability negotiation ack received from a DLS Provider. 2156 * isub must point to the sub-capability (DL_CAPAB_IPSEC_AH or 2157 * DL_CAPAB_IPSEC_ESP) of a DL_CAPABILITY_ACK message. 2158 */ 2159 static void 2160 ill_capability_ipsec_ack(ill_t *ill, mblk_t *mp, dl_capability_sub_t *isub) 2161 { 2162 dl_capab_ipsec_t *icip; 2163 dl_capab_ipsec_alg_t *ialg; /* ptr to input alg spec. */ 2164 dl_capab_ipsec_alg_t *oalg; /* ptr to output alg spec. */ 2165 uint_t cipher, nciphers; 2166 mblk_t *nmp; 2167 uint_t alg_len; 2168 boolean_t need_sadb_dump; 2169 uint_t sub_dl_cap = isub->dl_cap; 2170 ill_ipsec_capab_t **ill_capab; 2171 uint64_t ill_capab_flag; 2172 uint8_t *capend, *ciphend; 2173 boolean_t sadb_resync; 2174 2175 ASSERT(sub_dl_cap == DL_CAPAB_IPSEC_AH || 2176 sub_dl_cap == DL_CAPAB_IPSEC_ESP); 2177 2178 if (sub_dl_cap == DL_CAPAB_IPSEC_AH) { 2179 ill_capab = (ill_ipsec_capab_t **)&ill->ill_ipsec_capab_ah; 2180 ill_capab_flag = ILL_CAPAB_AH; 2181 } else { 2182 ill_capab = (ill_ipsec_capab_t **)&ill->ill_ipsec_capab_esp; 2183 ill_capab_flag = ILL_CAPAB_ESP; 2184 } 2185 2186 /* 2187 * If the ill capability structure exists, then this incoming 2188 * DL_CAPABILITY_ACK is a response to a "renegotiation" cycle. 2189 * If this is so, then we'd need to resynchronize the SADB 2190 * after re-enabling the offloaded ciphers. 2191 */ 2192 sadb_resync = (*ill_capab != NULL); 2193 2194 /* 2195 * Note: range checks here are not absolutely sufficient to 2196 * make us robust against malformed messages sent by drivers; 2197 * this is in keeping with the rest of IP's dlpi handling. 2198 * (Remember, it's coming from something else in the kernel 2199 * address space) 2200 */ 2201 2202 capend = (uint8_t *)(isub + 1) + isub->dl_length; 2203 if (capend > mp->b_wptr) { 2204 cmn_err(CE_WARN, "ill_capability_ipsec_ack: " 2205 "malformed sub-capability too long for mblk"); 2206 return; 2207 } 2208 2209 /* 2210 * There are two types of acks we process here: 2211 * 1. acks in reply to a (first form) generic capability req 2212 * (no ENABLE flag set) 2213 * 2. acks in reply to a ENABLE capability req. 2214 * (ENABLE flag set) 2215 * 2216 * We process the subcapability passed as argument as follows: 2217 * 1 do initializations 2218 * 1.1 initialize nmp = NULL 2219 * 1.2 set need_sadb_dump to B_FALSE 2220 * 2 for each cipher in subcapability: 2221 * 2.1 if ENABLE flag is set: 2222 * 2.1.1 update per-ill ipsec capabilities info 2223 * 2.1.2 set need_sadb_dump to B_TRUE 2224 * 2.2 if ENABLE flag is not set: 2225 * 2.2.1 if nmp is NULL: 2226 * 2.2.1.1 allocate and initialize nmp 2227 * 2.2.1.2 init current pos in nmp 2228 * 2.2.2 copy current cipher to current pos in nmp 2229 * 2.2.3 set ENABLE flag in nmp 2230 * 2.2.4 update current pos 2231 * 3 if nmp is not equal to NULL, send enable request 2232 * 3.1 send capability request 2233 * 4 if need_sadb_dump is B_TRUE 2234 * 4.1 enable promiscuous on/off notifications 2235 * 4.2 call ill_dlpi_send(isub->dlcap) to send all 2236 * AH or ESP SA's to interface. 2237 */ 2238 2239 nmp = NULL; 2240 oalg = NULL; 2241 need_sadb_dump = B_FALSE; 2242 icip = (dl_capab_ipsec_t *)(isub + 1); 2243 ialg = (dl_capab_ipsec_alg_t *)(&icip->cip_data[0]); 2244 2245 nciphers = icip->cip_nciphers; 2246 ciphend = (uint8_t *)(ialg + icip->cip_nciphers); 2247 2248 if (ciphend > capend) { 2249 cmn_err(CE_WARN, "ill_capability_ipsec_ack: " 2250 "too many ciphers for sub-capability len"); 2251 return; 2252 } 2253 2254 for (cipher = 0; cipher < nciphers; cipher++) { 2255 alg_len = sizeof (dl_capab_ipsec_alg_t); 2256 2257 if (ialg->alg_flag & DL_CAPAB_ALG_ENABLE) { 2258 /* 2259 * TBD: when we provide a way to disable capabilities 2260 * from above, need to manage the request-pending state 2261 * and fail if we were not expecting this ACK. 2262 */ 2263 IPSECHW_DEBUG(IPSECHW_CAPAB, 2264 ("ill_capability_ipsec_ack: got ENABLE ACK\n")); 2265 2266 /* 2267 * Update IPsec capabilities for this ill 2268 */ 2269 2270 if (*ill_capab == NULL) { 2271 IPSECHW_DEBUG(IPSECHW_CAPAB, 2272 ("ill_capability_ipsec_ack: " 2273 "allocating ipsec_capab for ill\n")); 2274 *ill_capab = ill_ipsec_capab_alloc(); 2275 2276 if (*ill_capab == NULL) { 2277 cmn_err(CE_WARN, 2278 "ill_capability_ipsec_ack: " 2279 "could not enable IPsec Hardware " 2280 "acceleration for %s (ENOMEM)\n", 2281 ill->ill_name); 2282 return; 2283 } 2284 } 2285 2286 ASSERT(ialg->alg_type == DL_CAPAB_IPSEC_ALG_AUTH || 2287 ialg->alg_type == DL_CAPAB_IPSEC_ALG_ENCR); 2288 2289 if (ialg->alg_prim >= MAX_IPSEC_ALGS) { 2290 cmn_err(CE_WARN, 2291 "ill_capability_ipsec_ack: " 2292 "malformed IPsec algorithm id %d", 2293 ialg->alg_prim); 2294 continue; 2295 } 2296 2297 if (ialg->alg_type == DL_CAPAB_IPSEC_ALG_AUTH) { 2298 IPSEC_ALG_ENABLE((*ill_capab)->auth_hw_algs, 2299 ialg->alg_prim); 2300 } else { 2301 ipsec_capab_algparm_t *alp; 2302 2303 IPSEC_ALG_ENABLE((*ill_capab)->encr_hw_algs, 2304 ialg->alg_prim); 2305 if (!ill_ipsec_capab_resize_algparm(*ill_capab, 2306 ialg->alg_prim)) { 2307 cmn_err(CE_WARN, 2308 "ill_capability_ipsec_ack: " 2309 "no space for IPsec alg id %d", 2310 ialg->alg_prim); 2311 continue; 2312 } 2313 alp = &((*ill_capab)->encr_algparm[ 2314 ialg->alg_prim]); 2315 alp->minkeylen = ialg->alg_minbits; 2316 alp->maxkeylen = ialg->alg_maxbits; 2317 } 2318 ill->ill_capabilities |= ill_capab_flag; 2319 /* 2320 * indicate that a capability was enabled, which 2321 * will be used below to kick off a SADB dump 2322 * to the ill. 2323 */ 2324 need_sadb_dump = B_TRUE; 2325 } else { 2326 IPSECHW_DEBUG(IPSECHW_CAPAB, 2327 ("ill_capability_ipsec_ack: enabling alg 0x%x\n", 2328 ialg->alg_prim)); 2329 2330 if (nmp == NULL) { 2331 nmp = ill_alloc_ipsec_cap_req(ill, isub); 2332 if (nmp == NULL) { 2333 /* 2334 * Sending the PROMISC_ON/OFF 2335 * notification request failed. 2336 * We cannot enable the algorithms 2337 * since the Provider will not 2338 * notify IP of promiscous mode 2339 * changes, which could lead 2340 * to leakage of packets. 2341 */ 2342 cmn_err(CE_WARN, 2343 "ill_capability_ipsec_ack: " 2344 "could not enable IPsec Hardware " 2345 "acceleration for %s (ENOMEM)\n", 2346 ill->ill_name); 2347 return; 2348 } 2349 /* ptr to current output alg specifier */ 2350 oalg = (dl_capab_ipsec_alg_t *)nmp->b_wptr; 2351 } 2352 2353 /* 2354 * Copy current alg specifier, set ENABLE 2355 * flag, and advance to next output alg. 2356 * For now we enable all IPsec capabilities. 2357 */ 2358 ASSERT(oalg != NULL); 2359 bcopy(ialg, oalg, alg_len); 2360 oalg->alg_flag |= DL_CAPAB_ALG_ENABLE; 2361 nmp->b_wptr += alg_len; 2362 oalg = (dl_capab_ipsec_alg_t *)nmp->b_wptr; 2363 } 2364 2365 /* move to next input algorithm specifier */ 2366 ialg = (dl_capab_ipsec_alg_t *) 2367 ((char *)ialg + alg_len); 2368 } 2369 2370 if (nmp != NULL) 2371 /* 2372 * nmp points to a DL_CAPABILITY_REQ message to enable 2373 * IPsec hardware acceleration. 2374 */ 2375 ill_capability_send(ill, nmp); 2376 2377 if (need_sadb_dump) 2378 /* 2379 * An acknowledgement corresponding to a request to 2380 * enable acceleration was received, notify SADB. 2381 */ 2382 ill_ipsec_capab_add(ill, sub_dl_cap, sadb_resync); 2383 } 2384 2385 /* 2386 * Given an mblk with enough space in it, create sub-capability entries for 2387 * DL_CAPAB_IPSEC_{AH,ESP} types which consist of previously-advertised 2388 * offloaded ciphers (both AUTH and ENCR) with their enable flags cleared, 2389 * in preparation for the reset the DL_CAPABILITY_REQ message. 2390 */ 2391 static void 2392 ill_fill_ipsec_reset(uint_t nciphers, int stype, uint_t slen, 2393 ill_ipsec_capab_t *ill_cap, mblk_t *mp) 2394 { 2395 dl_capab_ipsec_t *oipsec; 2396 dl_capab_ipsec_alg_t *oalg; 2397 dl_capability_sub_t *dl_subcap; 2398 int i, k; 2399 2400 ASSERT(nciphers > 0); 2401 ASSERT(ill_cap != NULL); 2402 ASSERT(mp != NULL); 2403 ASSERT(MBLKTAIL(mp) >= sizeof (*dl_subcap) + sizeof (*oipsec) + slen); 2404 2405 /* dl_capability_sub_t for "stype" */ 2406 dl_subcap = (dl_capability_sub_t *)mp->b_wptr; 2407 dl_subcap->dl_cap = stype; 2408 dl_subcap->dl_length = sizeof (dl_capab_ipsec_t) + slen; 2409 mp->b_wptr += sizeof (dl_capability_sub_t); 2410 2411 /* dl_capab_ipsec_t for "stype" */ 2412 oipsec = (dl_capab_ipsec_t *)mp->b_wptr; 2413 oipsec->cip_version = 1; 2414 oipsec->cip_nciphers = nciphers; 2415 mp->b_wptr = (uchar_t *)&oipsec->cip_data[0]; 2416 2417 /* create entries for "stype" AUTH ciphers */ 2418 for (i = 0; i < ill_cap->algs_size; i++) { 2419 for (k = 0; k < BITSPERBYTE; k++) { 2420 if ((ill_cap->auth_hw_algs[i] & (1 << k)) == 0) 2421 continue; 2422 2423 oalg = (dl_capab_ipsec_alg_t *)mp->b_wptr; 2424 bzero((void *)oalg, sizeof (*oalg)); 2425 oalg->alg_type = DL_CAPAB_IPSEC_ALG_AUTH; 2426 oalg->alg_prim = k + (BITSPERBYTE * i); 2427 mp->b_wptr += sizeof (dl_capab_ipsec_alg_t); 2428 } 2429 } 2430 /* create entries for "stype" ENCR ciphers */ 2431 for (i = 0; i < ill_cap->algs_size; i++) { 2432 for (k = 0; k < BITSPERBYTE; k++) { 2433 if ((ill_cap->encr_hw_algs[i] & (1 << k)) == 0) 2434 continue; 2435 2436 oalg = (dl_capab_ipsec_alg_t *)mp->b_wptr; 2437 bzero((void *)oalg, sizeof (*oalg)); 2438 oalg->alg_type = DL_CAPAB_IPSEC_ALG_ENCR; 2439 oalg->alg_prim = k + (BITSPERBYTE * i); 2440 mp->b_wptr += sizeof (dl_capab_ipsec_alg_t); 2441 } 2442 } 2443 } 2444 2445 /* 2446 * Macro to count number of 1s in a byte (8-bit word). The total count is 2447 * accumulated into the passed-in argument (sum). We could use SPARCv9's 2448 * POPC instruction, but our macro is more flexible for an arbitrary length 2449 * of bytes, such as {auth,encr}_hw_algs. These variables are currently 2450 * 256-bits long (MAX_IPSEC_ALGS), so if we know for sure that the length 2451 * stays that way, we can reduce the number of iterations required. 2452 */ 2453 #define COUNT_1S(val, sum) { \ 2454 uint8_t x = val & 0xff; \ 2455 x = (x & 0x55) + ((x >> 1) & 0x55); \ 2456 x = (x & 0x33) + ((x >> 2) & 0x33); \ 2457 sum += (x & 0xf) + ((x >> 4) & 0xf); \ 2458 } 2459 2460 /* ARGSUSED */ 2461 static int 2462 ill_capability_ipsec_reset_size(ill_t *ill, int *ah_cntp, int *ah_lenp, 2463 int *esp_cntp, int *esp_lenp) 2464 { 2465 ill_ipsec_capab_t *cap_ah = ill->ill_ipsec_capab_ah; 2466 ill_ipsec_capab_t *cap_esp = ill->ill_ipsec_capab_esp; 2467 uint64_t ill_capabilities = ill->ill_capabilities; 2468 int ah_cnt = 0, esp_cnt = 0; 2469 int ah_len = 0, esp_len = 0; 2470 int i, size = 0; 2471 2472 if (!(ill_capabilities & (ILL_CAPAB_AH | ILL_CAPAB_ESP))) 2473 return (0); 2474 2475 ASSERT(cap_ah != NULL || !(ill_capabilities & ILL_CAPAB_AH)); 2476 ASSERT(cap_esp != NULL || !(ill_capabilities & ILL_CAPAB_ESP)); 2477 2478 /* Find out the number of ciphers for AH */ 2479 if (cap_ah != NULL) { 2480 for (i = 0; i < cap_ah->algs_size; i++) { 2481 COUNT_1S(cap_ah->auth_hw_algs[i], ah_cnt); 2482 COUNT_1S(cap_ah->encr_hw_algs[i], ah_cnt); 2483 } 2484 if (ah_cnt > 0) { 2485 size += sizeof (dl_capability_sub_t) + 2486 sizeof (dl_capab_ipsec_t); 2487 /* dl_capab_ipsec_t contains one dl_capab_ipsec_alg_t */ 2488 ah_len = (ah_cnt - 1) * sizeof (dl_capab_ipsec_alg_t); 2489 size += ah_len; 2490 } 2491 } 2492 2493 /* Find out the number of ciphers for ESP */ 2494 if (cap_esp != NULL) { 2495 for (i = 0; i < cap_esp->algs_size; i++) { 2496 COUNT_1S(cap_esp->auth_hw_algs[i], esp_cnt); 2497 COUNT_1S(cap_esp->encr_hw_algs[i], esp_cnt); 2498 } 2499 if (esp_cnt > 0) { 2500 size += sizeof (dl_capability_sub_t) + 2501 sizeof (dl_capab_ipsec_t); 2502 /* dl_capab_ipsec_t contains one dl_capab_ipsec_alg_t */ 2503 esp_len = (esp_cnt - 1) * sizeof (dl_capab_ipsec_alg_t); 2504 size += esp_len; 2505 } 2506 } 2507 2508 if (ah_cntp != NULL) 2509 *ah_cntp = ah_cnt; 2510 if (ah_lenp != NULL) 2511 *ah_lenp = ah_len; 2512 if (esp_cntp != NULL) 2513 *esp_cntp = esp_cnt; 2514 if (esp_lenp != NULL) 2515 *esp_lenp = esp_len; 2516 2517 return (size); 2518 } 2519 2520 /* ARGSUSED */ 2521 static void 2522 ill_capability_ipsec_reset_fill(ill_t *ill, mblk_t *mp) 2523 { 2524 ill_ipsec_capab_t *cap_ah = ill->ill_ipsec_capab_ah; 2525 ill_ipsec_capab_t *cap_esp = ill->ill_ipsec_capab_esp; 2526 int ah_cnt = 0, esp_cnt = 0; 2527 int ah_len = 0, esp_len = 0; 2528 int size; 2529 2530 size = ill_capability_ipsec_reset_size(ill, &ah_cnt, &ah_len, 2531 &esp_cnt, &esp_len); 2532 if (size == 0) 2533 return; 2534 2535 /* 2536 * Clear the capability flags for IPsec HA but retain the ill 2537 * capability structures since it's possible that another thread 2538 * is still referring to them. The structures only get deallocated 2539 * when we destroy the ill. 2540 * 2541 * Various places check the flags to see if the ill is capable of 2542 * hardware acceleration, and by clearing them we ensure that new 2543 * outbound IPsec packets are sent down encrypted. 2544 */ 2545 2546 /* Fill in DL_CAPAB_IPSEC_AH sub-capability entries */ 2547 if (ah_cnt > 0) { 2548 ill_fill_ipsec_reset(ah_cnt, DL_CAPAB_IPSEC_AH, ah_len, 2549 cap_ah, mp); 2550 } 2551 2552 /* Fill in DL_CAPAB_IPSEC_ESP sub-capability entries */ 2553 if (esp_cnt > 0) { 2554 ill_fill_ipsec_reset(esp_cnt, DL_CAPAB_IPSEC_ESP, esp_len, 2555 cap_esp, mp); 2556 } 2557 2558 /* 2559 * At this point we've composed a bunch of sub-capabilities to be 2560 * encapsulated in a DL_CAPABILITY_REQ and later sent downstream 2561 * by the caller. Upon receiving this reset message, the driver 2562 * must stop inbound decryption (by destroying all inbound SAs) 2563 * and let the corresponding packets come in encrypted. 2564 */ 2565 } 2566 2567 static void 2568 ill_capability_dispatch(ill_t *ill, mblk_t *mp, dl_capability_sub_t *subp, 2569 boolean_t encapsulated) 2570 { 2571 boolean_t legacy = B_FALSE; 2572 2573 /* 2574 * Note that only the following two sub-capabilities may be 2575 * considered as "legacy", since their original definitions 2576 * do not incorporate the dl_mid_t module ID token, and hence 2577 * may require the use of the wrapper sub-capability. 2578 */ 2579 switch (subp->dl_cap) { 2580 case DL_CAPAB_IPSEC_AH: 2581 case DL_CAPAB_IPSEC_ESP: 2582 legacy = B_TRUE; 2583 break; 2584 } 2585 2586 /* 2587 * For legacy sub-capabilities which don't incorporate a queue_t 2588 * pointer in their structures, discard them if we detect that 2589 * there are intermediate modules in between IP and the driver. 2590 */ 2591 if (!encapsulated && legacy && ill->ill_lmod_cnt > 1) { 2592 ip1dbg(("ill_capability_dispatch: unencapsulated capab type " 2593 "%d discarded; %d module(s) present below IP\n", 2594 subp->dl_cap, ill->ill_lmod_cnt)); 2595 return; 2596 } 2597 2598 switch (subp->dl_cap) { 2599 case DL_CAPAB_IPSEC_AH: 2600 case DL_CAPAB_IPSEC_ESP: 2601 ill_capability_ipsec_ack(ill, mp, subp); 2602 break; 2603 case DL_CAPAB_MDT: 2604 ill_capability_mdt_ack(ill, mp, subp); 2605 break; 2606 case DL_CAPAB_HCKSUM: 2607 ill_capability_hcksum_ack(ill, mp, subp); 2608 break; 2609 case DL_CAPAB_ZEROCOPY: 2610 ill_capability_zerocopy_ack(ill, mp, subp); 2611 break; 2612 case DL_CAPAB_DLD: 2613 ill_capability_dld_ack(ill, mp, subp); 2614 break; 2615 default: 2616 ip1dbg(("ill_capability_dispatch: unknown capab type %d\n", 2617 subp->dl_cap)); 2618 } 2619 } 2620 2621 /* 2622 * Process a hardware checksum offload capability negotiation ack received 2623 * from a DLS Provider.isub must point to the sub-capability (DL_CAPAB_HCKSUM) 2624 * of a DL_CAPABILITY_ACK message. 2625 */ 2626 static void 2627 ill_capability_hcksum_ack(ill_t *ill, mblk_t *mp, dl_capability_sub_t *isub) 2628 { 2629 dl_capability_req_t *ocap; 2630 dl_capab_hcksum_t *ihck, *ohck; 2631 ill_hcksum_capab_t **ill_hcksum; 2632 mblk_t *nmp = NULL; 2633 uint_t sub_dl_cap = isub->dl_cap; 2634 uint8_t *capend; 2635 2636 ASSERT(sub_dl_cap == DL_CAPAB_HCKSUM); 2637 2638 ill_hcksum = (ill_hcksum_capab_t **)&ill->ill_hcksum_capab; 2639 2640 /* 2641 * Note: range checks here are not absolutely sufficient to 2642 * make us robust against malformed messages sent by drivers; 2643 * this is in keeping with the rest of IP's dlpi handling. 2644 * (Remember, it's coming from something else in the kernel 2645 * address space) 2646 */ 2647 capend = (uint8_t *)(isub + 1) + isub->dl_length; 2648 if (capend > mp->b_wptr) { 2649 cmn_err(CE_WARN, "ill_capability_hcksum_ack: " 2650 "malformed sub-capability too long for mblk"); 2651 return; 2652 } 2653 2654 /* 2655 * There are two types of acks we process here: 2656 * 1. acks in reply to a (first form) generic capability req 2657 * (no ENABLE flag set) 2658 * 2. acks in reply to a ENABLE capability req. 2659 * (ENABLE flag set) 2660 */ 2661 ihck = (dl_capab_hcksum_t *)(isub + 1); 2662 2663 if (ihck->hcksum_version != HCKSUM_VERSION_1) { 2664 cmn_err(CE_CONT, "ill_capability_hcksum_ack: " 2665 "unsupported hardware checksum " 2666 "sub-capability (version %d, expected %d)", 2667 ihck->hcksum_version, HCKSUM_VERSION_1); 2668 return; 2669 } 2670 2671 if (!dlcapabcheckqid(&ihck->hcksum_mid, ill->ill_lmod_rq)) { 2672 ip1dbg(("ill_capability_hcksum_ack: mid token for hardware " 2673 "checksum capability isn't as expected; pass-thru " 2674 "module(s) detected, discarding capability\n")); 2675 return; 2676 } 2677 2678 #define CURR_HCKSUM_CAPAB \ 2679 (HCKSUM_INET_PARTIAL | HCKSUM_INET_FULL_V4 | \ 2680 HCKSUM_INET_FULL_V6 | HCKSUM_IPHDRCKSUM) 2681 2682 if ((ihck->hcksum_txflags & HCKSUM_ENABLE) && 2683 (ihck->hcksum_txflags & CURR_HCKSUM_CAPAB)) { 2684 /* do ENABLE processing */ 2685 if (*ill_hcksum == NULL) { 2686 *ill_hcksum = kmem_zalloc(sizeof (ill_hcksum_capab_t), 2687 KM_NOSLEEP); 2688 2689 if (*ill_hcksum == NULL) { 2690 cmn_err(CE_WARN, "ill_capability_hcksum_ack: " 2691 "could not enable hcksum version %d " 2692 "for %s (ENOMEM)\n", HCKSUM_CURRENT_VERSION, 2693 ill->ill_name); 2694 return; 2695 } 2696 } 2697 2698 (*ill_hcksum)->ill_hcksum_version = ihck->hcksum_version; 2699 (*ill_hcksum)->ill_hcksum_txflags = ihck->hcksum_txflags; 2700 ill->ill_capabilities |= ILL_CAPAB_HCKSUM; 2701 ip1dbg(("ill_capability_hcksum_ack: interface %s " 2702 "has enabled hardware checksumming\n ", 2703 ill->ill_name)); 2704 } else if (ihck->hcksum_txflags & CURR_HCKSUM_CAPAB) { 2705 /* 2706 * Enabling hardware checksum offload 2707 * Currently IP supports {TCP,UDP}/IPv4 2708 * partial and full cksum offload and 2709 * IPv4 header checksum offload. 2710 * Allocate new mblk which will 2711 * contain a new capability request 2712 * to enable hardware checksum offload. 2713 */ 2714 uint_t size; 2715 uchar_t *rptr; 2716 2717 size = sizeof (dl_capability_req_t) + 2718 sizeof (dl_capability_sub_t) + isub->dl_length; 2719 2720 if ((nmp = ip_dlpi_alloc(size, DL_CAPABILITY_REQ)) == NULL) { 2721 cmn_err(CE_WARN, "ill_capability_hcksum_ack: " 2722 "could not enable hardware cksum for %s (ENOMEM)\n", 2723 ill->ill_name); 2724 return; 2725 } 2726 2727 rptr = nmp->b_rptr; 2728 /* initialize dl_capability_req_t */ 2729 ocap = (dl_capability_req_t *)nmp->b_rptr; 2730 ocap->dl_sub_offset = 2731 sizeof (dl_capability_req_t); 2732 ocap->dl_sub_length = 2733 sizeof (dl_capability_sub_t) + 2734 isub->dl_length; 2735 nmp->b_rptr += sizeof (dl_capability_req_t); 2736 2737 /* initialize dl_capability_sub_t */ 2738 bcopy(isub, nmp->b_rptr, sizeof (*isub)); 2739 nmp->b_rptr += sizeof (*isub); 2740 2741 /* initialize dl_capab_hcksum_t */ 2742 ohck = (dl_capab_hcksum_t *)nmp->b_rptr; 2743 bcopy(ihck, ohck, sizeof (*ihck)); 2744 2745 nmp->b_rptr = rptr; 2746 ASSERT(nmp->b_wptr == (nmp->b_rptr + size)); 2747 2748 /* Set ENABLE flag */ 2749 ohck->hcksum_txflags &= CURR_HCKSUM_CAPAB; 2750 ohck->hcksum_txflags |= HCKSUM_ENABLE; 2751 2752 /* 2753 * nmp points to a DL_CAPABILITY_REQ message to enable 2754 * hardware checksum acceleration. 2755 */ 2756 ill_capability_send(ill, nmp); 2757 } else { 2758 ip1dbg(("ill_capability_hcksum_ack: interface %s has " 2759 "advertised %x hardware checksum capability flags\n", 2760 ill->ill_name, ihck->hcksum_txflags)); 2761 } 2762 } 2763 2764 static void 2765 ill_capability_hcksum_reset_fill(ill_t *ill, mblk_t *mp) 2766 { 2767 dl_capab_hcksum_t *hck_subcap; 2768 dl_capability_sub_t *dl_subcap; 2769 2770 if (!ILL_HCKSUM_CAPABLE(ill)) 2771 return; 2772 2773 ASSERT(ill->ill_hcksum_capab != NULL); 2774 2775 dl_subcap = (dl_capability_sub_t *)mp->b_wptr; 2776 dl_subcap->dl_cap = DL_CAPAB_HCKSUM; 2777 dl_subcap->dl_length = sizeof (*hck_subcap); 2778 2779 hck_subcap = (dl_capab_hcksum_t *)(dl_subcap + 1); 2780 hck_subcap->hcksum_version = ill->ill_hcksum_capab->ill_hcksum_version; 2781 hck_subcap->hcksum_txflags = 0; 2782 2783 mp->b_wptr += sizeof (*dl_subcap) + sizeof (*hck_subcap); 2784 } 2785 2786 static void 2787 ill_capability_zerocopy_ack(ill_t *ill, mblk_t *mp, dl_capability_sub_t *isub) 2788 { 2789 mblk_t *nmp = NULL; 2790 dl_capability_req_t *oc; 2791 dl_capab_zerocopy_t *zc_ic, *zc_oc; 2792 ill_zerocopy_capab_t **ill_zerocopy_capab; 2793 uint_t sub_dl_cap = isub->dl_cap; 2794 uint8_t *capend; 2795 2796 ASSERT(sub_dl_cap == DL_CAPAB_ZEROCOPY); 2797 2798 ill_zerocopy_capab = (ill_zerocopy_capab_t **)&ill->ill_zerocopy_capab; 2799 2800 /* 2801 * Note: range checks here are not absolutely sufficient to 2802 * make us robust against malformed messages sent by drivers; 2803 * this is in keeping with the rest of IP's dlpi handling. 2804 * (Remember, it's coming from something else in the kernel 2805 * address space) 2806 */ 2807 capend = (uint8_t *)(isub + 1) + isub->dl_length; 2808 if (capend > mp->b_wptr) { 2809 cmn_err(CE_WARN, "ill_capability_zerocopy_ack: " 2810 "malformed sub-capability too long for mblk"); 2811 return; 2812 } 2813 2814 zc_ic = (dl_capab_zerocopy_t *)(isub + 1); 2815 if (zc_ic->zerocopy_version != ZEROCOPY_VERSION_1) { 2816 cmn_err(CE_CONT, "ill_capability_zerocopy_ack: " 2817 "unsupported ZEROCOPY sub-capability (version %d, " 2818 "expected %d)", zc_ic->zerocopy_version, 2819 ZEROCOPY_VERSION_1); 2820 return; 2821 } 2822 2823 if (!dlcapabcheckqid(&zc_ic->zerocopy_mid, ill->ill_lmod_rq)) { 2824 ip1dbg(("ill_capability_zerocopy_ack: mid token for zerocopy " 2825 "capability isn't as expected; pass-thru module(s) " 2826 "detected, discarding capability\n")); 2827 return; 2828 } 2829 2830 if ((zc_ic->zerocopy_flags & DL_CAPAB_VMSAFE_MEM) != 0) { 2831 if (*ill_zerocopy_capab == NULL) { 2832 *ill_zerocopy_capab = 2833 kmem_zalloc(sizeof (ill_zerocopy_capab_t), 2834 KM_NOSLEEP); 2835 2836 if (*ill_zerocopy_capab == NULL) { 2837 cmn_err(CE_WARN, "ill_capability_zerocopy_ack: " 2838 "could not enable Zero-copy version %d " 2839 "for %s (ENOMEM)\n", ZEROCOPY_VERSION_1, 2840 ill->ill_name); 2841 return; 2842 } 2843 } 2844 2845 ip1dbg(("ill_capability_zerocopy_ack: interface %s " 2846 "supports Zero-copy version %d\n", ill->ill_name, 2847 ZEROCOPY_VERSION_1)); 2848 2849 (*ill_zerocopy_capab)->ill_zerocopy_version = 2850 zc_ic->zerocopy_version; 2851 (*ill_zerocopy_capab)->ill_zerocopy_flags = 2852 zc_ic->zerocopy_flags; 2853 2854 ill->ill_capabilities |= ILL_CAPAB_ZEROCOPY; 2855 } else { 2856 uint_t size; 2857 uchar_t *rptr; 2858 2859 size = sizeof (dl_capability_req_t) + 2860 sizeof (dl_capability_sub_t) + 2861 sizeof (dl_capab_zerocopy_t); 2862 2863 if ((nmp = ip_dlpi_alloc(size, DL_CAPABILITY_REQ)) == NULL) { 2864 cmn_err(CE_WARN, "ill_capability_zerocopy_ack: " 2865 "could not enable zerocopy for %s (ENOMEM)\n", 2866 ill->ill_name); 2867 return; 2868 } 2869 2870 rptr = nmp->b_rptr; 2871 /* initialize dl_capability_req_t */ 2872 oc = (dl_capability_req_t *)rptr; 2873 oc->dl_sub_offset = sizeof (dl_capability_req_t); 2874 oc->dl_sub_length = sizeof (dl_capability_sub_t) + 2875 sizeof (dl_capab_zerocopy_t); 2876 rptr += sizeof (dl_capability_req_t); 2877 2878 /* initialize dl_capability_sub_t */ 2879 bcopy(isub, rptr, sizeof (*isub)); 2880 rptr += sizeof (*isub); 2881 2882 /* initialize dl_capab_zerocopy_t */ 2883 zc_oc = (dl_capab_zerocopy_t *)rptr; 2884 *zc_oc = *zc_ic; 2885 2886 ip1dbg(("ill_capability_zerocopy_ack: asking interface %s " 2887 "to enable zero-copy version %d\n", ill->ill_name, 2888 ZEROCOPY_VERSION_1)); 2889 2890 /* set VMSAFE_MEM flag */ 2891 zc_oc->zerocopy_flags |= DL_CAPAB_VMSAFE_MEM; 2892 2893 /* nmp points to a DL_CAPABILITY_REQ message to enable zcopy */ 2894 ill_capability_send(ill, nmp); 2895 } 2896 } 2897 2898 static void 2899 ill_capability_zerocopy_reset_fill(ill_t *ill, mblk_t *mp) 2900 { 2901 dl_capab_zerocopy_t *zerocopy_subcap; 2902 dl_capability_sub_t *dl_subcap; 2903 2904 if (!(ill->ill_capabilities & ILL_CAPAB_ZEROCOPY)) 2905 return; 2906 2907 ASSERT(ill->ill_zerocopy_capab != NULL); 2908 2909 dl_subcap = (dl_capability_sub_t *)mp->b_wptr; 2910 dl_subcap->dl_cap = DL_CAPAB_ZEROCOPY; 2911 dl_subcap->dl_length = sizeof (*zerocopy_subcap); 2912 2913 zerocopy_subcap = (dl_capab_zerocopy_t *)(dl_subcap + 1); 2914 zerocopy_subcap->zerocopy_version = 2915 ill->ill_zerocopy_capab->ill_zerocopy_version; 2916 zerocopy_subcap->zerocopy_flags = 0; 2917 2918 mp->b_wptr += sizeof (*dl_subcap) + sizeof (*zerocopy_subcap); 2919 } 2920 2921 /* 2922 * DLD capability 2923 * Refer to dld.h for more information regarding the purpose and usage 2924 * of this capability. 2925 */ 2926 static void 2927 ill_capability_dld_ack(ill_t *ill, mblk_t *mp, dl_capability_sub_t *isub) 2928 { 2929 dl_capab_dld_t *dld_ic, dld; 2930 uint_t sub_dl_cap = isub->dl_cap; 2931 uint8_t *capend; 2932 ill_dld_capab_t *idc; 2933 2934 ASSERT(IAM_WRITER_ILL(ill)); 2935 ASSERT(sub_dl_cap == DL_CAPAB_DLD); 2936 2937 /* 2938 * Note: range checks here are not absolutely sufficient to 2939 * make us robust against malformed messages sent by drivers; 2940 * this is in keeping with the rest of IP's dlpi handling. 2941 * (Remember, it's coming from something else in the kernel 2942 * address space) 2943 */ 2944 capend = (uint8_t *)(isub + 1) + isub->dl_length; 2945 if (capend > mp->b_wptr) { 2946 cmn_err(CE_WARN, "ill_capability_dld_ack: " 2947 "malformed sub-capability too long for mblk"); 2948 return; 2949 } 2950 dld_ic = (dl_capab_dld_t *)(isub + 1); 2951 if (dld_ic->dld_version != DLD_CURRENT_VERSION) { 2952 cmn_err(CE_CONT, "ill_capability_dld_ack: " 2953 "unsupported DLD sub-capability (version %d, " 2954 "expected %d)", dld_ic->dld_version, 2955 DLD_CURRENT_VERSION); 2956 return; 2957 } 2958 if (!dlcapabcheckqid(&dld_ic->dld_mid, ill->ill_lmod_rq)) { 2959 ip1dbg(("ill_capability_dld_ack: mid token for dld " 2960 "capability isn't as expected; pass-thru module(s) " 2961 "detected, discarding capability\n")); 2962 return; 2963 } 2964 2965 /* 2966 * Copy locally to ensure alignment. 2967 */ 2968 bcopy(dld_ic, &dld, sizeof (dl_capab_dld_t)); 2969 2970 if ((idc = ill->ill_dld_capab) == NULL) { 2971 idc = kmem_zalloc(sizeof (ill_dld_capab_t), KM_NOSLEEP); 2972 if (idc == NULL) { 2973 cmn_err(CE_WARN, "ill_capability_dld_ack: " 2974 "could not enable DLD version %d " 2975 "for %s (ENOMEM)\n", DLD_CURRENT_VERSION, 2976 ill->ill_name); 2977 return; 2978 } 2979 ill->ill_dld_capab = idc; 2980 } 2981 idc->idc_capab_df = (ip_capab_func_t)dld.dld_capab; 2982 idc->idc_capab_dh = (void *)dld.dld_capab_handle; 2983 ip1dbg(("ill_capability_dld_ack: interface %s " 2984 "supports DLD version %d\n", ill->ill_name, DLD_CURRENT_VERSION)); 2985 2986 ill_capability_dld_enable(ill); 2987 } 2988 2989 /* 2990 * Typically capability negotiation between IP and the driver happens via 2991 * DLPI message exchange. However GLD also offers a direct function call 2992 * mechanism to exchange the DLD_DIRECT_CAPAB and DLD_POLL_CAPAB capabilities, 2993 * But arbitrary function calls into IP or GLD are not permitted, since both 2994 * of them are protected by their own perimeter mechanism. The perimeter can 2995 * be viewed as a coarse lock or serialization mechanism. The hierarchy of 2996 * these perimeters is IP -> MAC. Thus for example to enable the squeue 2997 * polling, IP needs to enter its perimeter, then call ill_mac_perim_enter 2998 * to enter the mac perimeter and then do the direct function calls into 2999 * GLD to enable squeue polling. The ring related callbacks from the mac into 3000 * the stack to add, bind, quiesce, restart or cleanup a ring are all 3001 * protected by the mac perimeter. 3002 */ 3003 static void 3004 ill_mac_perim_enter(ill_t *ill, mac_perim_handle_t *mphp) 3005 { 3006 ill_dld_capab_t *idc = ill->ill_dld_capab; 3007 int err; 3008 3009 err = idc->idc_capab_df(idc->idc_capab_dh, DLD_CAPAB_PERIM, mphp, 3010 DLD_ENABLE); 3011 ASSERT(err == 0); 3012 } 3013 3014 static void 3015 ill_mac_perim_exit(ill_t *ill, mac_perim_handle_t mph) 3016 { 3017 ill_dld_capab_t *idc = ill->ill_dld_capab; 3018 int err; 3019 3020 err = idc->idc_capab_df(idc->idc_capab_dh, DLD_CAPAB_PERIM, mph, 3021 DLD_DISABLE); 3022 ASSERT(err == 0); 3023 } 3024 3025 boolean_t 3026 ill_mac_perim_held(ill_t *ill) 3027 { 3028 ill_dld_capab_t *idc = ill->ill_dld_capab; 3029 3030 return (idc->idc_capab_df(idc->idc_capab_dh, DLD_CAPAB_PERIM, NULL, 3031 DLD_QUERY)); 3032 } 3033 3034 static void 3035 ill_capability_direct_enable(ill_t *ill) 3036 { 3037 ill_dld_capab_t *idc = ill->ill_dld_capab; 3038 ill_dld_direct_t *idd = &idc->idc_direct; 3039 dld_capab_direct_t direct; 3040 int rc; 3041 3042 ASSERT(!ill->ill_isv6 && IAM_WRITER_ILL(ill)); 3043 3044 bzero(&direct, sizeof (direct)); 3045 direct.di_rx_cf = (uintptr_t)ip_input; 3046 direct.di_rx_ch = ill; 3047 3048 rc = idc->idc_capab_df(idc->idc_capab_dh, DLD_CAPAB_DIRECT, &direct, 3049 DLD_ENABLE); 3050 if (rc == 0) { 3051 idd->idd_tx_df = (ip_dld_tx_t)direct.di_tx_df; 3052 idd->idd_tx_dh = direct.di_tx_dh; 3053 idd->idd_tx_cb_df = (ip_dld_callb_t)direct.di_tx_cb_df; 3054 idd->idd_tx_cb_dh = direct.di_tx_cb_dh; 3055 idd->idd_tx_fctl_df = (ip_dld_fctl_t)direct.di_tx_fctl_df; 3056 idd->idd_tx_fctl_dh = direct.di_tx_fctl_dh; 3057 /* 3058 * One time registration of flow enable callback function 3059 */ 3060 ill->ill_flownotify_mh = idd->idd_tx_cb_df(idd->idd_tx_cb_dh, 3061 ill_flow_enable, ill); 3062 ill->ill_capabilities |= ILL_CAPAB_DLD_DIRECT; 3063 DTRACE_PROBE1(direct_on, (ill_t *), ill); 3064 } else { 3065 cmn_err(CE_WARN, "warning: could not enable DIRECT " 3066 "capability, rc = %d\n", rc); 3067 DTRACE_PROBE2(direct_off, (ill_t *), ill, (int), rc); 3068 } 3069 } 3070 3071 static void 3072 ill_capability_poll_enable(ill_t *ill) 3073 { 3074 ill_dld_capab_t *idc = ill->ill_dld_capab; 3075 dld_capab_poll_t poll; 3076 int rc; 3077 3078 ASSERT(!ill->ill_isv6 && IAM_WRITER_ILL(ill)); 3079 3080 bzero(&poll, sizeof (poll)); 3081 poll.poll_ring_add_cf = (uintptr_t)ip_squeue_add_ring; 3082 poll.poll_ring_remove_cf = (uintptr_t)ip_squeue_clean_ring; 3083 poll.poll_ring_quiesce_cf = (uintptr_t)ip_squeue_quiesce_ring; 3084 poll.poll_ring_restart_cf = (uintptr_t)ip_squeue_restart_ring; 3085 poll.poll_ring_bind_cf = (uintptr_t)ip_squeue_bind_ring; 3086 poll.poll_ring_ch = ill; 3087 rc = idc->idc_capab_df(idc->idc_capab_dh, DLD_CAPAB_POLL, &poll, 3088 DLD_ENABLE); 3089 if (rc == 0) { 3090 ill->ill_capabilities |= ILL_CAPAB_DLD_POLL; 3091 DTRACE_PROBE1(poll_on, (ill_t *), ill); 3092 } else { 3093 ip1dbg(("warning: could not enable POLL " 3094 "capability, rc = %d\n", rc)); 3095 DTRACE_PROBE2(poll_off, (ill_t *), ill, (int), rc); 3096 } 3097 } 3098 3099 /* 3100 * Enable the LSO capability. 3101 */ 3102 static void 3103 ill_capability_lso_enable(ill_t *ill) 3104 { 3105 ill_dld_capab_t *idc = ill->ill_dld_capab; 3106 dld_capab_lso_t lso; 3107 int rc; 3108 3109 ASSERT(!ill->ill_isv6 && IAM_WRITER_ILL(ill)); 3110 3111 if (ill->ill_lso_capab == NULL) { 3112 ill->ill_lso_capab = kmem_zalloc(sizeof (ill_lso_capab_t), 3113 KM_NOSLEEP); 3114 if (ill->ill_lso_capab == NULL) { 3115 cmn_err(CE_WARN, "ill_capability_lso_enable: " 3116 "could not enable LSO for %s (ENOMEM)\n", 3117 ill->ill_name); 3118 return; 3119 } 3120 } 3121 3122 bzero(&lso, sizeof (lso)); 3123 if ((rc = idc->idc_capab_df(idc->idc_capab_dh, DLD_CAPAB_LSO, &lso, 3124 DLD_ENABLE)) == 0) { 3125 ill->ill_lso_capab->ill_lso_flags = lso.lso_flags; 3126 ill->ill_lso_capab->ill_lso_max = lso.lso_max; 3127 ill->ill_capabilities |= ILL_CAPAB_DLD_LSO; 3128 ip1dbg(("ill_capability_lso_enable: interface %s " 3129 "has enabled LSO\n ", ill->ill_name)); 3130 } else { 3131 kmem_free(ill->ill_lso_capab, sizeof (ill_lso_capab_t)); 3132 ill->ill_lso_capab = NULL; 3133 DTRACE_PROBE2(lso_off, (ill_t *), ill, (int), rc); 3134 } 3135 } 3136 3137 static void 3138 ill_capability_dld_enable(ill_t *ill) 3139 { 3140 mac_perim_handle_t mph; 3141 3142 ASSERT(IAM_WRITER_ILL(ill)); 3143 3144 if (ill->ill_isv6) 3145 return; 3146 3147 ill_mac_perim_enter(ill, &mph); 3148 if (!ill->ill_isv6) { 3149 ill_capability_direct_enable(ill); 3150 ill_capability_poll_enable(ill); 3151 ill_capability_lso_enable(ill); 3152 } 3153 ill->ill_capabilities |= ILL_CAPAB_DLD; 3154 ill_mac_perim_exit(ill, mph); 3155 } 3156 3157 static void 3158 ill_capability_dld_disable(ill_t *ill) 3159 { 3160 ill_dld_capab_t *idc; 3161 ill_dld_direct_t *idd; 3162 mac_perim_handle_t mph; 3163 3164 ASSERT(IAM_WRITER_ILL(ill)); 3165 3166 if (!(ill->ill_capabilities & ILL_CAPAB_DLD)) 3167 return; 3168 3169 ill_mac_perim_enter(ill, &mph); 3170 3171 idc = ill->ill_dld_capab; 3172 if ((ill->ill_capabilities & ILL_CAPAB_DLD_DIRECT) != 0) { 3173 /* 3174 * For performance we avoid locks in the transmit data path 3175 * and don't maintain a count of the number of threads using 3176 * direct calls. Thus some threads could be using direct 3177 * transmit calls to GLD, even after the capability mechanism 3178 * turns it off. This is still safe since the handles used in 3179 * the direct calls continue to be valid until the unplumb is 3180 * completed. Remove the callback that was added (1-time) at 3181 * capab enable time. 3182 */ 3183 mutex_enter(&ill->ill_lock); 3184 ill->ill_capabilities &= ~ILL_CAPAB_DLD_DIRECT; 3185 mutex_exit(&ill->ill_lock); 3186 if (ill->ill_flownotify_mh != NULL) { 3187 idd = &idc->idc_direct; 3188 idd->idd_tx_cb_df(idd->idd_tx_cb_dh, NULL, 3189 ill->ill_flownotify_mh); 3190 ill->ill_flownotify_mh = NULL; 3191 } 3192 (void) idc->idc_capab_df(idc->idc_capab_dh, DLD_CAPAB_DIRECT, 3193 NULL, DLD_DISABLE); 3194 } 3195 3196 if ((ill->ill_capabilities & ILL_CAPAB_DLD_POLL) != 0) { 3197 ill->ill_capabilities &= ~ILL_CAPAB_DLD_POLL; 3198 ip_squeue_clean_all(ill); 3199 (void) idc->idc_capab_df(idc->idc_capab_dh, DLD_CAPAB_POLL, 3200 NULL, DLD_DISABLE); 3201 } 3202 3203 if ((ill->ill_capabilities & ILL_CAPAB_DLD_LSO) != 0) { 3204 ASSERT(ill->ill_lso_capab != NULL); 3205 /* 3206 * Clear the capability flag for LSO but retain the 3207 * ill_lso_capab structure since it's possible that another 3208 * thread is still referring to it. The structure only gets 3209 * deallocated when we destroy the ill. 3210 */ 3211 3212 ill->ill_capabilities &= ~ILL_CAPAB_DLD_LSO; 3213 (void) idc->idc_capab_df(idc->idc_capab_dh, DLD_CAPAB_LSO, 3214 NULL, DLD_DISABLE); 3215 } 3216 3217 ill->ill_capabilities &= ~ILL_CAPAB_DLD; 3218 ill_mac_perim_exit(ill, mph); 3219 } 3220 3221 /* 3222 * Capability Negotiation protocol 3223 * 3224 * We don't wait for DLPI capability operations to finish during interface 3225 * bringup or teardown. Doing so would introduce more asynchrony and the 3226 * interface up/down operations will need multiple return and restarts. 3227 * Instead the 'ipsq_current_ipif' of the ipsq is not cleared as long as 3228 * the 'ill_dlpi_deferred' chain is non-empty. This ensures that the next 3229 * exclusive operation won't start until the DLPI operations of the previous 3230 * exclusive operation complete. 3231 * 3232 * The capability state machine is shown below. 3233 * 3234 * state next state event, action 3235 * 3236 * IDCS_UNKNOWN IDCS_PROBE_SENT ill_capability_probe 3237 * IDCS_PROBE_SENT IDCS_OK ill_capability_ack 3238 * IDCS_PROBE_SENT IDCS_FAILED ip_rput_dlpi_writer (nack) 3239 * IDCS_OK IDCS_RENEG Receipt of DL_NOTE_CAPAB_RENEG 3240 * IDCS_OK IDCS_RESET_SENT ill_capability_reset 3241 * IDCS_RESET_SENT IDCS_UNKNOWN ill_capability_ack_thr 3242 * IDCS_RENEG IDCS_PROBE_SENT ill_capability_ack_thr -> 3243 * ill_capability_probe. 3244 */ 3245 3246 /* 3247 * Dedicated thread started from ip_stack_init that handles capability 3248 * disable. This thread ensures the taskq dispatch does not fail by waiting 3249 * for resources using TQ_SLEEP. The taskq mechanism is used to ensure 3250 * that direct calls to DLD are done in a cv_waitable context. 3251 */ 3252 void 3253 ill_taskq_dispatch(ip_stack_t *ipst) 3254 { 3255 callb_cpr_t cprinfo; 3256 char name[64]; 3257 mblk_t *mp; 3258 3259 (void) snprintf(name, sizeof (name), "ill_taskq_dispatch_%d", 3260 ipst->ips_netstack->netstack_stackid); 3261 CALLB_CPR_INIT(&cprinfo, &ipst->ips_capab_taskq_lock, callb_generic_cpr, 3262 name); 3263 mutex_enter(&ipst->ips_capab_taskq_lock); 3264 3265 for (;;) { 3266 mp = list_head(&ipst->ips_capab_taskq_list); 3267 while (mp != NULL) { 3268 list_remove(&ipst->ips_capab_taskq_list, mp); 3269 mutex_exit(&ipst->ips_capab_taskq_lock); 3270 VERIFY(taskq_dispatch(system_taskq, 3271 ill_capability_ack_thr, mp, TQ_SLEEP) != 0); 3272 mutex_enter(&ipst->ips_capab_taskq_lock); 3273 mp = list_head(&ipst->ips_capab_taskq_list); 3274 } 3275 3276 if (ipst->ips_capab_taskq_quit) 3277 break; 3278 CALLB_CPR_SAFE_BEGIN(&cprinfo); 3279 cv_wait(&ipst->ips_capab_taskq_cv, &ipst->ips_capab_taskq_lock); 3280 CALLB_CPR_SAFE_END(&cprinfo, &ipst->ips_capab_taskq_lock); 3281 } 3282 VERIFY(list_head(&ipst->ips_capab_taskq_list) == NULL); 3283 CALLB_CPR_EXIT(&cprinfo); 3284 thread_exit(); 3285 } 3286 3287 /* 3288 * Consume a new-style hardware capabilities negotiation ack. 3289 * Called via taskq on receipt of DL_CAPABBILITY_ACK. 3290 */ 3291 static void 3292 ill_capability_ack_thr(void *arg) 3293 { 3294 mblk_t *mp = arg; 3295 dl_capability_ack_t *capp; 3296 dl_capability_sub_t *subp, *endp; 3297 ill_t *ill; 3298 boolean_t reneg; 3299 3300 ill = (ill_t *)mp->b_prev; 3301 VERIFY(ipsq_enter(ill, B_FALSE, CUR_OP) == B_TRUE); 3302 3303 if (ill->ill_dlpi_capab_state == IDCS_RESET_SENT || 3304 ill->ill_dlpi_capab_state == IDCS_RENEG) { 3305 /* 3306 * We have received the ack for our DL_CAPAB reset request. 3307 * There isnt' anything in the message that needs processing. 3308 * All message based capabilities have been disabled, now 3309 * do the function call based capability disable. 3310 */ 3311 reneg = ill->ill_dlpi_capab_state == IDCS_RENEG; 3312 ill_capability_dld_disable(ill); 3313 ill->ill_dlpi_capab_state = IDCS_UNKNOWN; 3314 if (reneg) 3315 ill_capability_probe(ill); 3316 goto done; 3317 } 3318 3319 if (ill->ill_dlpi_capab_state == IDCS_PROBE_SENT) 3320 ill->ill_dlpi_capab_state = IDCS_OK; 3321 3322 capp = (dl_capability_ack_t *)mp->b_rptr; 3323 3324 if (capp->dl_sub_length == 0) { 3325 /* no new-style capabilities */ 3326 goto done; 3327 } 3328 3329 /* make sure the driver supplied correct dl_sub_length */ 3330 if ((sizeof (*capp) + capp->dl_sub_length) > MBLKL(mp)) { 3331 ip0dbg(("ill_capability_ack: bad DL_CAPABILITY_ACK, " 3332 "invalid dl_sub_length (%d)\n", capp->dl_sub_length)); 3333 goto done; 3334 } 3335 3336 #define SC(base, offset) (dl_capability_sub_t *)(((uchar_t *)(base))+(offset)) 3337 /* 3338 * There are sub-capabilities. Process the ones we know about. 3339 * Loop until we don't have room for another sub-cap header.. 3340 */ 3341 for (subp = SC(capp, capp->dl_sub_offset), 3342 endp = SC(subp, capp->dl_sub_length - sizeof (*subp)); 3343 subp <= endp; 3344 subp = SC(subp, sizeof (dl_capability_sub_t) + subp->dl_length)) { 3345 3346 switch (subp->dl_cap) { 3347 case DL_CAPAB_ID_WRAPPER: 3348 ill_capability_id_ack(ill, mp, subp); 3349 break; 3350 default: 3351 ill_capability_dispatch(ill, mp, subp, B_FALSE); 3352 break; 3353 } 3354 } 3355 #undef SC 3356 done: 3357 inet_freemsg(mp); 3358 ill_capability_done(ill); 3359 ipsq_exit(ill->ill_phyint->phyint_ipsq); 3360 } 3361 3362 /* 3363 * This needs to be started in a taskq thread to provide a cv_waitable 3364 * context. 3365 */ 3366 void 3367 ill_capability_ack(ill_t *ill, mblk_t *mp) 3368 { 3369 ip_stack_t *ipst = ill->ill_ipst; 3370 3371 mp->b_prev = (mblk_t *)ill; 3372 if (taskq_dispatch(system_taskq, ill_capability_ack_thr, mp, 3373 TQ_NOSLEEP) != 0) 3374 return; 3375 3376 /* 3377 * The taskq dispatch failed. Signal the ill_taskq_dispatch thread 3378 * which will do the dispatch using TQ_SLEEP to guarantee success. 3379 */ 3380 mutex_enter(&ipst->ips_capab_taskq_lock); 3381 list_insert_tail(&ipst->ips_capab_taskq_list, mp); 3382 cv_signal(&ipst->ips_capab_taskq_cv); 3383 mutex_exit(&ipst->ips_capab_taskq_lock); 3384 } 3385 3386 /* 3387 * This routine is called to scan the fragmentation reassembly table for 3388 * the specified ILL for any packets that are starting to smell. 3389 * dead_interval is the maximum time in seconds that will be tolerated. It 3390 * will either be the value specified in ip_g_frag_timeout, or zero if the 3391 * ILL is shutting down and it is time to blow everything off. 3392 * 3393 * It returns the number of seconds (as a time_t) that the next frag timer 3394 * should be scheduled for, 0 meaning that the timer doesn't need to be 3395 * re-started. Note that the method of calculating next_timeout isn't 3396 * entirely accurate since time will flow between the time we grab 3397 * current_time and the time we schedule the next timeout. This isn't a 3398 * big problem since this is the timer for sending an ICMP reassembly time 3399 * exceeded messages, and it doesn't have to be exactly accurate. 3400 * 3401 * This function is 3402 * sometimes called as writer, although this is not required. 3403 */ 3404 time_t 3405 ill_frag_timeout(ill_t *ill, time_t dead_interval) 3406 { 3407 ipfb_t *ipfb; 3408 ipfb_t *endp; 3409 ipf_t *ipf; 3410 ipf_t *ipfnext; 3411 mblk_t *mp; 3412 time_t current_time = gethrestime_sec(); 3413 time_t next_timeout = 0; 3414 uint32_t hdr_length; 3415 mblk_t *send_icmp_head; 3416 mblk_t *send_icmp_head_v6; 3417 zoneid_t zoneid; 3418 ip_stack_t *ipst = ill->ill_ipst; 3419 3420 ipfb = ill->ill_frag_hash_tbl; 3421 if (ipfb == NULL) 3422 return (B_FALSE); 3423 endp = &ipfb[ILL_FRAG_HASH_TBL_COUNT]; 3424 /* Walk the frag hash table. */ 3425 for (; ipfb < endp; ipfb++) { 3426 send_icmp_head = NULL; 3427 send_icmp_head_v6 = NULL; 3428 mutex_enter(&ipfb->ipfb_lock); 3429 while ((ipf = ipfb->ipfb_ipf) != 0) { 3430 time_t frag_time = current_time - ipf->ipf_timestamp; 3431 time_t frag_timeout; 3432 3433 if (frag_time < dead_interval) { 3434 /* 3435 * There are some outstanding fragments 3436 * that will timeout later. Make note of 3437 * the time so that we can reschedule the 3438 * next timeout appropriately. 3439 */ 3440 frag_timeout = dead_interval - frag_time; 3441 if (next_timeout == 0 || 3442 frag_timeout < next_timeout) { 3443 next_timeout = frag_timeout; 3444 } 3445 break; 3446 } 3447 /* Time's up. Get it out of here. */ 3448 hdr_length = ipf->ipf_nf_hdr_len; 3449 ipfnext = ipf->ipf_hash_next; 3450 if (ipfnext) 3451 ipfnext->ipf_ptphn = ipf->ipf_ptphn; 3452 *ipf->ipf_ptphn = ipfnext; 3453 mp = ipf->ipf_mp->b_cont; 3454 for (; mp; mp = mp->b_cont) { 3455 /* Extra points for neatness. */ 3456 IP_REASS_SET_START(mp, 0); 3457 IP_REASS_SET_END(mp, 0); 3458 } 3459 mp = ipf->ipf_mp->b_cont; 3460 atomic_add_32(&ill->ill_frag_count, -ipf->ipf_count); 3461 ASSERT(ipfb->ipfb_count >= ipf->ipf_count); 3462 ipfb->ipfb_count -= ipf->ipf_count; 3463 ASSERT(ipfb->ipfb_frag_pkts > 0); 3464 ipfb->ipfb_frag_pkts--; 3465 /* 3466 * We do not send any icmp message from here because 3467 * we currently are holding the ipfb_lock for this 3468 * hash chain. If we try and send any icmp messages 3469 * from here we may end up via a put back into ip 3470 * trying to get the same lock, causing a recursive 3471 * mutex panic. Instead we build a list and send all 3472 * the icmp messages after we have dropped the lock. 3473 */ 3474 if (ill->ill_isv6) { 3475 if (hdr_length != 0) { 3476 mp->b_next = send_icmp_head_v6; 3477 send_icmp_head_v6 = mp; 3478 } else { 3479 freemsg(mp); 3480 } 3481 } else { 3482 if (hdr_length != 0) { 3483 mp->b_next = send_icmp_head; 3484 send_icmp_head = mp; 3485 } else { 3486 freemsg(mp); 3487 } 3488 } 3489 BUMP_MIB(ill->ill_ip_mib, ipIfStatsReasmFails); 3490 freeb(ipf->ipf_mp); 3491 } 3492 mutex_exit(&ipfb->ipfb_lock); 3493 /* 3494 * Now need to send any icmp messages that we delayed from 3495 * above. 3496 */ 3497 while (send_icmp_head_v6 != NULL) { 3498 ip6_t *ip6h; 3499 3500 mp = send_icmp_head_v6; 3501 send_icmp_head_v6 = send_icmp_head_v6->b_next; 3502 mp->b_next = NULL; 3503 if (mp->b_datap->db_type == M_CTL) 3504 ip6h = (ip6_t *)mp->b_cont->b_rptr; 3505 else 3506 ip6h = (ip6_t *)mp->b_rptr; 3507 zoneid = ipif_lookup_addr_zoneid_v6(&ip6h->ip6_dst, 3508 ill, ipst); 3509 if (zoneid == ALL_ZONES) { 3510 freemsg(mp); 3511 } else { 3512 icmp_time_exceeded_v6(ill->ill_wq, mp, 3513 ICMP_REASSEMBLY_TIME_EXCEEDED, B_FALSE, 3514 B_FALSE, zoneid, ipst); 3515 } 3516 } 3517 while (send_icmp_head != NULL) { 3518 ipaddr_t dst; 3519 3520 mp = send_icmp_head; 3521 send_icmp_head = send_icmp_head->b_next; 3522 mp->b_next = NULL; 3523 3524 if (mp->b_datap->db_type == M_CTL) 3525 dst = ((ipha_t *)mp->b_cont->b_rptr)->ipha_dst; 3526 else 3527 dst = ((ipha_t *)mp->b_rptr)->ipha_dst; 3528 3529 zoneid = ipif_lookup_addr_zoneid(dst, ill, ipst); 3530 if (zoneid == ALL_ZONES) { 3531 freemsg(mp); 3532 } else { 3533 icmp_time_exceeded(ill->ill_wq, mp, 3534 ICMP_REASSEMBLY_TIME_EXCEEDED, zoneid, 3535 ipst); 3536 } 3537 } 3538 } 3539 /* 3540 * A non-dying ILL will use the return value to decide whether to 3541 * restart the frag timer, and for how long. 3542 */ 3543 return (next_timeout); 3544 } 3545 3546 /* 3547 * This routine is called when the approximate count of mblk memory used 3548 * for the specified ILL has exceeded max_count. 3549 */ 3550 void 3551 ill_frag_prune(ill_t *ill, uint_t max_count) 3552 { 3553 ipfb_t *ipfb; 3554 ipf_t *ipf; 3555 size_t count; 3556 3557 /* 3558 * If we are here within ip_min_frag_prune_time msecs remove 3559 * ill_frag_free_num_pkts oldest packets from each bucket and increment 3560 * ill_frag_free_num_pkts. 3561 */ 3562 mutex_enter(&ill->ill_lock); 3563 if (TICK_TO_MSEC(lbolt - ill->ill_last_frag_clean_time) <= 3564 (ip_min_frag_prune_time != 0 ? 3565 ip_min_frag_prune_time : msec_per_tick)) { 3566 3567 ill->ill_frag_free_num_pkts++; 3568 3569 } else { 3570 ill->ill_frag_free_num_pkts = 0; 3571 } 3572 ill->ill_last_frag_clean_time = lbolt; 3573 mutex_exit(&ill->ill_lock); 3574 3575 /* 3576 * free ill_frag_free_num_pkts oldest packets from each bucket. 3577 */ 3578 if (ill->ill_frag_free_num_pkts != 0) { 3579 int ix; 3580 3581 for (ix = 0; ix < ILL_FRAG_HASH_TBL_COUNT; ix++) { 3582 ipfb = &ill->ill_frag_hash_tbl[ix]; 3583 mutex_enter(&ipfb->ipfb_lock); 3584 if (ipfb->ipfb_ipf != NULL) { 3585 ill_frag_free_pkts(ill, ipfb, ipfb->ipfb_ipf, 3586 ill->ill_frag_free_num_pkts); 3587 } 3588 mutex_exit(&ipfb->ipfb_lock); 3589 } 3590 } 3591 /* 3592 * While the reassembly list for this ILL is too big, prune a fragment 3593 * queue by age, oldest first. 3594 */ 3595 while (ill->ill_frag_count > max_count) { 3596 int ix; 3597 ipfb_t *oipfb = NULL; 3598 uint_t oldest = UINT_MAX; 3599 3600 count = 0; 3601 for (ix = 0; ix < ILL_FRAG_HASH_TBL_COUNT; ix++) { 3602 ipfb = &ill->ill_frag_hash_tbl[ix]; 3603 mutex_enter(&ipfb->ipfb_lock); 3604 ipf = ipfb->ipfb_ipf; 3605 if (ipf != NULL && ipf->ipf_gen < oldest) { 3606 oldest = ipf->ipf_gen; 3607 oipfb = ipfb; 3608 } 3609 count += ipfb->ipfb_count; 3610 mutex_exit(&ipfb->ipfb_lock); 3611 } 3612 if (oipfb == NULL) 3613 break; 3614 3615 if (count <= max_count) 3616 return; /* Somebody beat us to it, nothing to do */ 3617 mutex_enter(&oipfb->ipfb_lock); 3618 ipf = oipfb->ipfb_ipf; 3619 if (ipf != NULL) { 3620 ill_frag_free_pkts(ill, oipfb, ipf, 1); 3621 } 3622 mutex_exit(&oipfb->ipfb_lock); 3623 } 3624 } 3625 3626 /* 3627 * free 'free_cnt' fragmented packets starting at ipf. 3628 */ 3629 void 3630 ill_frag_free_pkts(ill_t *ill, ipfb_t *ipfb, ipf_t *ipf, int free_cnt) 3631 { 3632 size_t count; 3633 mblk_t *mp; 3634 mblk_t *tmp; 3635 ipf_t **ipfp = ipf->ipf_ptphn; 3636 3637 ASSERT(MUTEX_HELD(&ipfb->ipfb_lock)); 3638 ASSERT(ipfp != NULL); 3639 ASSERT(ipf != NULL); 3640 3641 while (ipf != NULL && free_cnt-- > 0) { 3642 count = ipf->ipf_count; 3643 mp = ipf->ipf_mp; 3644 ipf = ipf->ipf_hash_next; 3645 for (tmp = mp; tmp; tmp = tmp->b_cont) { 3646 IP_REASS_SET_START(tmp, 0); 3647 IP_REASS_SET_END(tmp, 0); 3648 } 3649 atomic_add_32(&ill->ill_frag_count, -count); 3650 ASSERT(ipfb->ipfb_count >= count); 3651 ipfb->ipfb_count -= count; 3652 ASSERT(ipfb->ipfb_frag_pkts > 0); 3653 ipfb->ipfb_frag_pkts--; 3654 freemsg(mp); 3655 BUMP_MIB(ill->ill_ip_mib, ipIfStatsReasmFails); 3656 } 3657 3658 if (ipf) 3659 ipf->ipf_ptphn = ipfp; 3660 ipfp[0] = ipf; 3661 } 3662 3663 #define ND_FORWARD_WARNING "The <if>:ip*_forwarding ndd variables are " \ 3664 "obsolete and may be removed in a future release of Solaris. Use " \ 3665 "ifconfig(1M) to manipulate the forwarding status of an interface." 3666 3667 /* 3668 * For obsolete per-interface forwarding configuration; 3669 * called in response to ND_GET. 3670 */ 3671 /* ARGSUSED */ 3672 static int 3673 nd_ill_forward_get(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *ioc_cr) 3674 { 3675 ill_t *ill = (ill_t *)cp; 3676 3677 cmn_err(CE_WARN, ND_FORWARD_WARNING); 3678 3679 (void) mi_mpprintf(mp, "%d", (ill->ill_flags & ILLF_ROUTER) != 0); 3680 return (0); 3681 } 3682 3683 /* 3684 * For obsolete per-interface forwarding configuration; 3685 * called in response to ND_SET. 3686 */ 3687 /* ARGSUSED */ 3688 static int 3689 nd_ill_forward_set(queue_t *q, mblk_t *mp, char *valuestr, caddr_t cp, 3690 cred_t *ioc_cr) 3691 { 3692 long value; 3693 int retval; 3694 ip_stack_t *ipst = CONNQ_TO_IPST(q); 3695 3696 cmn_err(CE_WARN, ND_FORWARD_WARNING); 3697 3698 if (ddi_strtol(valuestr, NULL, 10, &value) != 0 || 3699 value < 0 || value > 1) { 3700 return (EINVAL); 3701 } 3702 3703 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 3704 retval = ill_forward_set((ill_t *)cp, (value != 0)); 3705 rw_exit(&ipst->ips_ill_g_lock); 3706 return (retval); 3707 } 3708 3709 /* 3710 * Helper function for ill_forward_set(). 3711 */ 3712 static void 3713 ill_forward_set_on_ill(ill_t *ill, boolean_t enable) 3714 { 3715 ip_stack_t *ipst = ill->ill_ipst; 3716 3717 ASSERT(IAM_WRITER_ILL(ill) || RW_READ_HELD(&ipst->ips_ill_g_lock)); 3718 3719 ip1dbg(("ill_forward_set: %s %s forwarding on %s", 3720 (enable ? "Enabling" : "Disabling"), 3721 (ill->ill_isv6 ? "IPv6" : "IPv4"), ill->ill_name)); 3722 mutex_enter(&ill->ill_lock); 3723 if (enable) 3724 ill->ill_flags |= ILLF_ROUTER; 3725 else 3726 ill->ill_flags &= ~ILLF_ROUTER; 3727 mutex_exit(&ill->ill_lock); 3728 if (ill->ill_isv6) 3729 ill_set_nce_router_flags(ill, enable); 3730 /* Notify routing socket listeners of this change. */ 3731 ip_rts_ifmsg(ill->ill_ipif, RTSQ_DEFAULT); 3732 } 3733 3734 /* 3735 * Set an ill's ILLF_ROUTER flag appropriately. Send up RTS_IFINFO routing 3736 * socket messages for each interface whose flags we change. 3737 */ 3738 int 3739 ill_forward_set(ill_t *ill, boolean_t enable) 3740 { 3741 ipmp_illgrp_t *illg; 3742 ip_stack_t *ipst = ill->ill_ipst; 3743 3744 ASSERT(IAM_WRITER_ILL(ill) || RW_READ_HELD(&ipst->ips_ill_g_lock)); 3745 3746 if ((enable && (ill->ill_flags & ILLF_ROUTER)) || 3747 (!enable && !(ill->ill_flags & ILLF_ROUTER))) 3748 return (0); 3749 3750 if (IS_LOOPBACK(ill)) 3751 return (EINVAL); 3752 3753 if (IS_IPMP(ill) || IS_UNDER_IPMP(ill)) { 3754 /* 3755 * Update all of the interfaces in the group. 3756 */ 3757 illg = ill->ill_grp; 3758 ill = list_head(&illg->ig_if); 3759 for (; ill != NULL; ill = list_next(&illg->ig_if, ill)) 3760 ill_forward_set_on_ill(ill, enable); 3761 3762 /* 3763 * Update the IPMP meta-interface. 3764 */ 3765 ill_forward_set_on_ill(ipmp_illgrp_ipmp_ill(illg), enable); 3766 return (0); 3767 } 3768 3769 ill_forward_set_on_ill(ill, enable); 3770 return (0); 3771 } 3772 3773 /* 3774 * Based on the ILLF_ROUTER flag of an ill, make sure all local nce's for 3775 * addresses assigned to the ill have the NCE_F_ISROUTER flag appropriately 3776 * set or clear. 3777 */ 3778 static void 3779 ill_set_nce_router_flags(ill_t *ill, boolean_t enable) 3780 { 3781 ipif_t *ipif; 3782 nce_t *nce; 3783 3784 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 3785 /* 3786 * NOTE: we match across the illgrp because nce's for 3787 * addresses on IPMP interfaces have an nce_ill that points to 3788 * the bound underlying ill. 3789 */ 3790 nce = ndp_lookup_v6(ill, B_TRUE, &ipif->ipif_v6lcl_addr, 3791 B_FALSE); 3792 if (nce != NULL) { 3793 mutex_enter(&nce->nce_lock); 3794 if (enable) 3795 nce->nce_flags |= NCE_F_ISROUTER; 3796 else 3797 nce->nce_flags &= ~NCE_F_ISROUTER; 3798 mutex_exit(&nce->nce_lock); 3799 NCE_REFRELE(nce); 3800 } 3801 } 3802 } 3803 3804 /* 3805 * Given an ill with a _valid_ name, add the ip_forwarding ndd variable 3806 * for this ill. Make sure the v6/v4 question has been answered about this 3807 * ill. The creation of this ndd variable is only for backwards compatibility. 3808 * The preferred way to control per-interface IP forwarding is through the 3809 * ILLF_ROUTER interface flag. 3810 */ 3811 static int 3812 ill_set_ndd_name(ill_t *ill) 3813 { 3814 char *suffix; 3815 ip_stack_t *ipst = ill->ill_ipst; 3816 3817 ASSERT(IAM_WRITER_ILL(ill)); 3818 3819 if (ill->ill_isv6) 3820 suffix = ipv6_forward_suffix; 3821 else 3822 suffix = ipv4_forward_suffix; 3823 3824 ill->ill_ndd_name = ill->ill_name + ill->ill_name_length; 3825 bcopy(ill->ill_name, ill->ill_ndd_name, ill->ill_name_length - 1); 3826 /* 3827 * Copies over the '\0'. 3828 * Note that strlen(suffix) is always bounded. 3829 */ 3830 bcopy(suffix, ill->ill_ndd_name + ill->ill_name_length - 1, 3831 strlen(suffix) + 1); 3832 3833 /* 3834 * Use of the nd table requires holding the reader lock. 3835 * Modifying the nd table thru nd_load/nd_unload requires 3836 * the writer lock. 3837 */ 3838 rw_enter(&ipst->ips_ip_g_nd_lock, RW_WRITER); 3839 if (!nd_load(&ipst->ips_ip_g_nd, ill->ill_ndd_name, nd_ill_forward_get, 3840 nd_ill_forward_set, (caddr_t)ill)) { 3841 /* 3842 * If the nd_load failed, it only meant that it could not 3843 * allocate a new bunch of room for further NDD expansion. 3844 * Because of that, the ill_ndd_name will be set to 0, and 3845 * this interface is at the mercy of the global ip_forwarding 3846 * variable. 3847 */ 3848 rw_exit(&ipst->ips_ip_g_nd_lock); 3849 ill->ill_ndd_name = NULL; 3850 return (ENOMEM); 3851 } 3852 rw_exit(&ipst->ips_ip_g_nd_lock); 3853 return (0); 3854 } 3855 3856 /* 3857 * Intializes the context structure and returns the first ill in the list 3858 * cuurently start_list and end_list can have values: 3859 * MAX_G_HEADS Traverse both IPV4 and IPV6 lists. 3860 * IP_V4_G_HEAD Traverse IPV4 list only. 3861 * IP_V6_G_HEAD Traverse IPV6 list only. 3862 */ 3863 3864 /* 3865 * We don't check for CONDEMNED ills here. Caller must do that if 3866 * necessary under the ill lock. 3867 */ 3868 ill_t * 3869 ill_first(int start_list, int end_list, ill_walk_context_t *ctx, 3870 ip_stack_t *ipst) 3871 { 3872 ill_if_t *ifp; 3873 ill_t *ill; 3874 avl_tree_t *avl_tree; 3875 3876 ASSERT(RW_LOCK_HELD(&ipst->ips_ill_g_lock)); 3877 ASSERT(end_list <= MAX_G_HEADS && start_list >= 0); 3878 3879 /* 3880 * setup the lists to search 3881 */ 3882 if (end_list != MAX_G_HEADS) { 3883 ctx->ctx_current_list = start_list; 3884 ctx->ctx_last_list = end_list; 3885 } else { 3886 ctx->ctx_last_list = MAX_G_HEADS - 1; 3887 ctx->ctx_current_list = 0; 3888 } 3889 3890 while (ctx->ctx_current_list <= ctx->ctx_last_list) { 3891 ifp = IP_VX_ILL_G_LIST(ctx->ctx_current_list, ipst); 3892 if (ifp != (ill_if_t *) 3893 &IP_VX_ILL_G_LIST(ctx->ctx_current_list, ipst)) { 3894 avl_tree = &ifp->illif_avl_by_ppa; 3895 ill = avl_first(avl_tree); 3896 /* 3897 * ill is guaranteed to be non NULL or ifp should have 3898 * not existed. 3899 */ 3900 ASSERT(ill != NULL); 3901 return (ill); 3902 } 3903 ctx->ctx_current_list++; 3904 } 3905 3906 return (NULL); 3907 } 3908 3909 /* 3910 * returns the next ill in the list. ill_first() must have been called 3911 * before calling ill_next() or bad things will happen. 3912 */ 3913 3914 /* 3915 * We don't check for CONDEMNED ills here. Caller must do that if 3916 * necessary under the ill lock. 3917 */ 3918 ill_t * 3919 ill_next(ill_walk_context_t *ctx, ill_t *lastill) 3920 { 3921 ill_if_t *ifp; 3922 ill_t *ill; 3923 ip_stack_t *ipst = lastill->ill_ipst; 3924 3925 ASSERT(lastill->ill_ifptr != (ill_if_t *) 3926 &IP_VX_ILL_G_LIST(ctx->ctx_current_list, ipst)); 3927 if ((ill = avl_walk(&lastill->ill_ifptr->illif_avl_by_ppa, lastill, 3928 AVL_AFTER)) != NULL) { 3929 return (ill); 3930 } 3931 3932 /* goto next ill_ifp in the list. */ 3933 ifp = lastill->ill_ifptr->illif_next; 3934 3935 /* make sure not at end of circular list */ 3936 while (ifp == 3937 (ill_if_t *)&IP_VX_ILL_G_LIST(ctx->ctx_current_list, ipst)) { 3938 if (++ctx->ctx_current_list > ctx->ctx_last_list) 3939 return (NULL); 3940 ifp = IP_VX_ILL_G_LIST(ctx->ctx_current_list, ipst); 3941 } 3942 3943 return (avl_first(&ifp->illif_avl_by_ppa)); 3944 } 3945 3946 /* 3947 * Check interface name for correct format: [a-zA-Z]+[a-zA-Z0-9._]*[0-9]+ 3948 * The final number (PPA) must not have any leading zeros. Upon success, a 3949 * pointer to the start of the PPA is returned; otherwise NULL is returned. 3950 */ 3951 static char * 3952 ill_get_ppa_ptr(char *name) 3953 { 3954 int namelen = strlen(name); 3955 int end_ndx = namelen - 1; 3956 int ppa_ndx, i; 3957 3958 /* 3959 * Check that the first character is [a-zA-Z], and that the last 3960 * character is [0-9]. 3961 */ 3962 if (namelen == 0 || !isalpha(name[0]) || !isdigit(name[end_ndx])) 3963 return (NULL); 3964 3965 /* 3966 * Set `ppa_ndx' to the PPA start, and check for leading zeroes. 3967 */ 3968 for (ppa_ndx = end_ndx; ppa_ndx > 0; ppa_ndx--) 3969 if (!isdigit(name[ppa_ndx - 1])) 3970 break; 3971 3972 if (name[ppa_ndx] == '0' && ppa_ndx < end_ndx) 3973 return (NULL); 3974 3975 /* 3976 * Check that the intermediate characters are [a-z0-9.] 3977 */ 3978 for (i = 1; i < ppa_ndx; i++) { 3979 if (!isalpha(name[i]) && !isdigit(name[i]) && 3980 name[i] != '.' && name[i] != '_') { 3981 return (NULL); 3982 } 3983 } 3984 3985 return (name + ppa_ndx); 3986 } 3987 3988 /* 3989 * use avl tree to locate the ill. 3990 */ 3991 static ill_t * 3992 ill_find_by_name(char *name, boolean_t isv6, queue_t *q, mblk_t *mp, 3993 ipsq_func_t func, int *error, ip_stack_t *ipst) 3994 { 3995 char *ppa_ptr = NULL; 3996 int len; 3997 uint_t ppa; 3998 ill_t *ill = NULL; 3999 ill_if_t *ifp; 4000 int list; 4001 ipsq_t *ipsq; 4002 4003 if (error != NULL) 4004 *error = 0; 4005 4006 /* 4007 * get ppa ptr 4008 */ 4009 if (isv6) 4010 list = IP_V6_G_HEAD; 4011 else 4012 list = IP_V4_G_HEAD; 4013 4014 if ((ppa_ptr = ill_get_ppa_ptr(name)) == NULL) { 4015 if (error != NULL) 4016 *error = ENXIO; 4017 return (NULL); 4018 } 4019 4020 len = ppa_ptr - name + 1; 4021 4022 ppa = stoi(&ppa_ptr); 4023 4024 ifp = IP_VX_ILL_G_LIST(list, ipst); 4025 4026 while (ifp != (ill_if_t *)&IP_VX_ILL_G_LIST(list, ipst)) { 4027 /* 4028 * match is done on len - 1 as the name is not null 4029 * terminated it contains ppa in addition to the interface 4030 * name. 4031 */ 4032 if ((ifp->illif_name_len == len) && 4033 bcmp(ifp->illif_name, name, len - 1) == 0) { 4034 break; 4035 } else { 4036 ifp = ifp->illif_next; 4037 } 4038 } 4039 4040 if (ifp == (ill_if_t *)&IP_VX_ILL_G_LIST(list, ipst)) { 4041 /* 4042 * Even the interface type does not exist. 4043 */ 4044 if (error != NULL) 4045 *error = ENXIO; 4046 return (NULL); 4047 } 4048 4049 ill = avl_find(&ifp->illif_avl_by_ppa, (void *) &ppa, NULL); 4050 if (ill != NULL) { 4051 /* 4052 * The block comment at the start of ipif_down 4053 * explains the use of the macros used below 4054 */ 4055 GRAB_CONN_LOCK(q); 4056 mutex_enter(&ill->ill_lock); 4057 if (ILL_CAN_LOOKUP(ill)) { 4058 ill_refhold_locked(ill); 4059 mutex_exit(&ill->ill_lock); 4060 RELEASE_CONN_LOCK(q); 4061 return (ill); 4062 } else if (ILL_CAN_WAIT(ill, q)) { 4063 ipsq = ill->ill_phyint->phyint_ipsq; 4064 mutex_enter(&ipsq->ipsq_lock); 4065 mutex_enter(&ipsq->ipsq_xop->ipx_lock); 4066 mutex_exit(&ill->ill_lock); 4067 ipsq_enq(ipsq, q, mp, func, NEW_OP, ill); 4068 mutex_exit(&ipsq->ipsq_xop->ipx_lock); 4069 mutex_exit(&ipsq->ipsq_lock); 4070 RELEASE_CONN_LOCK(q); 4071 if (error != NULL) 4072 *error = EINPROGRESS; 4073 return (NULL); 4074 } 4075 mutex_exit(&ill->ill_lock); 4076 RELEASE_CONN_LOCK(q); 4077 } 4078 if (error != NULL) 4079 *error = ENXIO; 4080 return (NULL); 4081 } 4082 4083 /* 4084 * comparison function for use with avl. 4085 */ 4086 static int 4087 ill_compare_ppa(const void *ppa_ptr, const void *ill_ptr) 4088 { 4089 uint_t ppa; 4090 uint_t ill_ppa; 4091 4092 ASSERT(ppa_ptr != NULL && ill_ptr != NULL); 4093 4094 ppa = *((uint_t *)ppa_ptr); 4095 ill_ppa = ((const ill_t *)ill_ptr)->ill_ppa; 4096 /* 4097 * We want the ill with the lowest ppa to be on the 4098 * top. 4099 */ 4100 if (ill_ppa < ppa) 4101 return (1); 4102 if (ill_ppa > ppa) 4103 return (-1); 4104 return (0); 4105 } 4106 4107 /* 4108 * remove an interface type from the global list. 4109 */ 4110 static void 4111 ill_delete_interface_type(ill_if_t *interface) 4112 { 4113 ASSERT(interface != NULL); 4114 ASSERT(avl_numnodes(&interface->illif_avl_by_ppa) == 0); 4115 4116 avl_destroy(&interface->illif_avl_by_ppa); 4117 if (interface->illif_ppa_arena != NULL) 4118 vmem_destroy(interface->illif_ppa_arena); 4119 4120 remque(interface); 4121 4122 mi_free(interface); 4123 } 4124 4125 /* 4126 * remove ill from the global list. 4127 */ 4128 static void 4129 ill_glist_delete(ill_t *ill) 4130 { 4131 ip_stack_t *ipst; 4132 phyint_t *phyi; 4133 4134 if (ill == NULL) 4135 return; 4136 ipst = ill->ill_ipst; 4137 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 4138 4139 /* 4140 * If the ill was never inserted into the AVL tree 4141 * we skip the if branch. 4142 */ 4143 if (ill->ill_ifptr != NULL) { 4144 /* 4145 * remove from AVL tree and free ppa number 4146 */ 4147 avl_remove(&ill->ill_ifptr->illif_avl_by_ppa, ill); 4148 4149 if (ill->ill_ifptr->illif_ppa_arena != NULL) { 4150 vmem_free(ill->ill_ifptr->illif_ppa_arena, 4151 (void *)(uintptr_t)(ill->ill_ppa+1), 1); 4152 } 4153 if (avl_numnodes(&ill->ill_ifptr->illif_avl_by_ppa) == 0) { 4154 ill_delete_interface_type(ill->ill_ifptr); 4155 } 4156 4157 /* 4158 * Indicate ill is no longer in the list. 4159 */ 4160 ill->ill_ifptr = NULL; 4161 ill->ill_name_length = 0; 4162 ill->ill_name[0] = '\0'; 4163 ill->ill_ppa = UINT_MAX; 4164 } 4165 4166 /* Generate one last event for this ill. */ 4167 ill_nic_event_dispatch(ill, 0, NE_UNPLUMB, ill->ill_name, 4168 ill->ill_name_length); 4169 4170 ASSERT(ill->ill_phyint != NULL); 4171 phyi = ill->ill_phyint; 4172 ill->ill_phyint = NULL; 4173 4174 /* 4175 * ill_init allocates a phyint always to store the copy 4176 * of flags relevant to phyint. At that point in time, we could 4177 * not assign the name and hence phyint_illv4/v6 could not be 4178 * initialized. Later in ipif_set_values, we assign the name to 4179 * the ill, at which point in time we assign phyint_illv4/v6. 4180 * Thus we don't rely on phyint_illv6 to be initialized always. 4181 */ 4182 if (ill->ill_flags & ILLF_IPV6) 4183 phyi->phyint_illv6 = NULL; 4184 else 4185 phyi->phyint_illv4 = NULL; 4186 4187 if (phyi->phyint_illv4 != NULL || phyi->phyint_illv6 != NULL) { 4188 rw_exit(&ipst->ips_ill_g_lock); 4189 return; 4190 } 4191 4192 /* 4193 * There are no ills left on this phyint; pull it out of the phyint 4194 * avl trees, and free it. 4195 */ 4196 if (phyi->phyint_ifindex > 0) { 4197 avl_remove(&ipst->ips_phyint_g_list->phyint_list_avl_by_index, 4198 phyi); 4199 avl_remove(&ipst->ips_phyint_g_list->phyint_list_avl_by_name, 4200 phyi); 4201 } 4202 rw_exit(&ipst->ips_ill_g_lock); 4203 4204 phyint_free(phyi); 4205 } 4206 4207 /* 4208 * allocate a ppa, if the number of plumbed interfaces of this type are 4209 * less than ill_no_arena do a linear search to find a unused ppa. 4210 * When the number goes beyond ill_no_arena switch to using an arena. 4211 * Note: ppa value of zero cannot be allocated from vmem_arena as it 4212 * is the return value for an error condition, so allocation starts at one 4213 * and is decremented by one. 4214 */ 4215 static int 4216 ill_alloc_ppa(ill_if_t *ifp, ill_t *ill) 4217 { 4218 ill_t *tmp_ill; 4219 uint_t start, end; 4220 int ppa; 4221 4222 if (ifp->illif_ppa_arena == NULL && 4223 (avl_numnodes(&ifp->illif_avl_by_ppa) + 1 > ill_no_arena)) { 4224 /* 4225 * Create an arena. 4226 */ 4227 ifp->illif_ppa_arena = vmem_create(ifp->illif_name, 4228 (void *)1, UINT_MAX - 1, 1, NULL, NULL, 4229 NULL, 0, VM_SLEEP | VMC_IDENTIFIER); 4230 /* allocate what has already been assigned */ 4231 for (tmp_ill = avl_first(&ifp->illif_avl_by_ppa); 4232 tmp_ill != NULL; tmp_ill = avl_walk(&ifp->illif_avl_by_ppa, 4233 tmp_ill, AVL_AFTER)) { 4234 ppa = (int)(uintptr_t)vmem_xalloc(ifp->illif_ppa_arena, 4235 1, /* size */ 4236 1, /* align/quantum */ 4237 0, /* phase */ 4238 0, /* nocross */ 4239 /* minaddr */ 4240 (void *)((uintptr_t)tmp_ill->ill_ppa + 1), 4241 /* maxaddr */ 4242 (void *)((uintptr_t)tmp_ill->ill_ppa + 2), 4243 VM_NOSLEEP|VM_FIRSTFIT); 4244 if (ppa == 0) { 4245 ip1dbg(("ill_alloc_ppa: ppa allocation" 4246 " failed while switching")); 4247 vmem_destroy(ifp->illif_ppa_arena); 4248 ifp->illif_ppa_arena = NULL; 4249 break; 4250 } 4251 } 4252 } 4253 4254 if (ifp->illif_ppa_arena != NULL) { 4255 if (ill->ill_ppa == UINT_MAX) { 4256 ppa = (int)(uintptr_t)vmem_alloc(ifp->illif_ppa_arena, 4257 1, VM_NOSLEEP|VM_FIRSTFIT); 4258 if (ppa == 0) 4259 return (EAGAIN); 4260 ill->ill_ppa = --ppa; 4261 } else { 4262 ppa = (int)(uintptr_t)vmem_xalloc(ifp->illif_ppa_arena, 4263 1, /* size */ 4264 1, /* align/quantum */ 4265 0, /* phase */ 4266 0, /* nocross */ 4267 (void *)(uintptr_t)(ill->ill_ppa + 1), /* minaddr */ 4268 (void *)(uintptr_t)(ill->ill_ppa + 2), /* maxaddr */ 4269 VM_NOSLEEP|VM_FIRSTFIT); 4270 /* 4271 * Most likely the allocation failed because 4272 * the requested ppa was in use. 4273 */ 4274 if (ppa == 0) 4275 return (EEXIST); 4276 } 4277 return (0); 4278 } 4279 4280 /* 4281 * No arena is in use and not enough (>ill_no_arena) interfaces have 4282 * been plumbed to create one. Do a linear search to get a unused ppa. 4283 */ 4284 if (ill->ill_ppa == UINT_MAX) { 4285 end = UINT_MAX - 1; 4286 start = 0; 4287 } else { 4288 end = start = ill->ill_ppa; 4289 } 4290 4291 tmp_ill = avl_find(&ifp->illif_avl_by_ppa, (void *)&start, NULL); 4292 while (tmp_ill != NULL && tmp_ill->ill_ppa == start) { 4293 if (start++ >= end) { 4294 if (ill->ill_ppa == UINT_MAX) 4295 return (EAGAIN); 4296 else 4297 return (EEXIST); 4298 } 4299 tmp_ill = avl_walk(&ifp->illif_avl_by_ppa, tmp_ill, AVL_AFTER); 4300 } 4301 ill->ill_ppa = start; 4302 return (0); 4303 } 4304 4305 /* 4306 * Insert ill into the list of configured ill's. Once this function completes, 4307 * the ill is globally visible and is available through lookups. More precisely 4308 * this happens after the caller drops the ill_g_lock. 4309 */ 4310 static int 4311 ill_glist_insert(ill_t *ill, char *name, boolean_t isv6) 4312 { 4313 ill_if_t *ill_interface; 4314 avl_index_t where = 0; 4315 int error; 4316 int name_length; 4317 int index; 4318 boolean_t check_length = B_FALSE; 4319 ip_stack_t *ipst = ill->ill_ipst; 4320 4321 ASSERT(RW_WRITE_HELD(&ipst->ips_ill_g_lock)); 4322 4323 name_length = mi_strlen(name) + 1; 4324 4325 if (isv6) 4326 index = IP_V6_G_HEAD; 4327 else 4328 index = IP_V4_G_HEAD; 4329 4330 ill_interface = IP_VX_ILL_G_LIST(index, ipst); 4331 /* 4332 * Search for interface type based on name 4333 */ 4334 while (ill_interface != (ill_if_t *)&IP_VX_ILL_G_LIST(index, ipst)) { 4335 if ((ill_interface->illif_name_len == name_length) && 4336 (strcmp(ill_interface->illif_name, name) == 0)) { 4337 break; 4338 } 4339 ill_interface = ill_interface->illif_next; 4340 } 4341 4342 /* 4343 * Interface type not found, create one. 4344 */ 4345 if (ill_interface == (ill_if_t *)&IP_VX_ILL_G_LIST(index, ipst)) { 4346 ill_g_head_t ghead; 4347 4348 /* 4349 * allocate ill_if_t structure 4350 */ 4351 ill_interface = (ill_if_t *)mi_zalloc(sizeof (ill_if_t)); 4352 if (ill_interface == NULL) { 4353 return (ENOMEM); 4354 } 4355 4356 (void) strcpy(ill_interface->illif_name, name); 4357 ill_interface->illif_name_len = name_length; 4358 4359 avl_create(&ill_interface->illif_avl_by_ppa, 4360 ill_compare_ppa, sizeof (ill_t), 4361 offsetof(struct ill_s, ill_avl_byppa)); 4362 4363 /* 4364 * link the structure in the back to maintain order 4365 * of configuration for ifconfig output. 4366 */ 4367 ghead = ipst->ips_ill_g_heads[index]; 4368 insque(ill_interface, ghead.ill_g_list_tail); 4369 } 4370 4371 if (ill->ill_ppa == UINT_MAX) 4372 check_length = B_TRUE; 4373 4374 error = ill_alloc_ppa(ill_interface, ill); 4375 if (error != 0) { 4376 if (avl_numnodes(&ill_interface->illif_avl_by_ppa) == 0) 4377 ill_delete_interface_type(ill->ill_ifptr); 4378 return (error); 4379 } 4380 4381 /* 4382 * When the ppa is choosen by the system, check that there is 4383 * enough space to insert ppa. if a specific ppa was passed in this 4384 * check is not required as the interface name passed in will have 4385 * the right ppa in it. 4386 */ 4387 if (check_length) { 4388 /* 4389 * UINT_MAX - 1 should fit in 10 chars, alloc 12 chars. 4390 */ 4391 char buf[sizeof (uint_t) * 3]; 4392 4393 /* 4394 * convert ppa to string to calculate the amount of space 4395 * required for it in the name. 4396 */ 4397 numtos(ill->ill_ppa, buf); 4398 4399 /* Do we have enough space to insert ppa ? */ 4400 4401 if ((mi_strlen(name) + mi_strlen(buf) + 1) > LIFNAMSIZ) { 4402 /* Free ppa and interface type struct */ 4403 if (ill_interface->illif_ppa_arena != NULL) { 4404 vmem_free(ill_interface->illif_ppa_arena, 4405 (void *)(uintptr_t)(ill->ill_ppa+1), 1); 4406 } 4407 if (avl_numnodes(&ill_interface->illif_avl_by_ppa) == 0) 4408 ill_delete_interface_type(ill->ill_ifptr); 4409 4410 return (EINVAL); 4411 } 4412 } 4413 4414 (void) sprintf(ill->ill_name, "%s%u", name, ill->ill_ppa); 4415 ill->ill_name_length = mi_strlen(ill->ill_name) + 1; 4416 4417 (void) avl_find(&ill_interface->illif_avl_by_ppa, &ill->ill_ppa, 4418 &where); 4419 ill->ill_ifptr = ill_interface; 4420 avl_insert(&ill_interface->illif_avl_by_ppa, ill, where); 4421 4422 ill_phyint_reinit(ill); 4423 return (0); 4424 } 4425 4426 /* Initialize the per phyint ipsq used for serialization */ 4427 static boolean_t 4428 ipsq_init(ill_t *ill, boolean_t enter) 4429 { 4430 ipsq_t *ipsq; 4431 ipxop_t *ipx; 4432 4433 if ((ipsq = kmem_zalloc(sizeof (ipsq_t), KM_NOSLEEP)) == NULL) 4434 return (B_FALSE); 4435 4436 ill->ill_phyint->phyint_ipsq = ipsq; 4437 ipx = ipsq->ipsq_xop = &ipsq->ipsq_ownxop; 4438 ipx->ipx_ipsq = ipsq; 4439 ipsq->ipsq_next = ipsq; 4440 ipsq->ipsq_phyint = ill->ill_phyint; 4441 mutex_init(&ipsq->ipsq_lock, NULL, MUTEX_DEFAULT, 0); 4442 mutex_init(&ipx->ipx_lock, NULL, MUTEX_DEFAULT, 0); 4443 ipsq->ipsq_ipst = ill->ill_ipst; /* No netstack_hold */ 4444 if (enter) { 4445 ipx->ipx_writer = curthread; 4446 ipx->ipx_forced = B_FALSE; 4447 ipx->ipx_reentry_cnt = 1; 4448 #ifdef DEBUG 4449 ipx->ipx_depth = getpcstack(ipx->ipx_stack, IPX_STACK_DEPTH); 4450 #endif 4451 } 4452 return (B_TRUE); 4453 } 4454 4455 /* 4456 * ill_init is called by ip_open when a device control stream is opened. 4457 * It does a few initializations, and shoots a DL_INFO_REQ message down 4458 * to the driver. The response is later picked up in ip_rput_dlpi and 4459 * used to set up default mechanisms for talking to the driver. (Always 4460 * called as writer.) 4461 * 4462 * If this function returns error, ip_open will call ip_close which in 4463 * turn will call ill_delete to clean up any memory allocated here that 4464 * is not yet freed. 4465 */ 4466 int 4467 ill_init(queue_t *q, ill_t *ill) 4468 { 4469 int count; 4470 dl_info_req_t *dlir; 4471 mblk_t *info_mp; 4472 uchar_t *frag_ptr; 4473 4474 /* 4475 * The ill is initialized to zero by mi_alloc*(). In addition 4476 * some fields already contain valid values, initialized in 4477 * ip_open(), before we reach here. 4478 */ 4479 mutex_init(&ill->ill_lock, NULL, MUTEX_DEFAULT, 0); 4480 4481 ill->ill_rq = q; 4482 ill->ill_wq = WR(q); 4483 4484 info_mp = allocb(MAX(sizeof (dl_info_req_t), sizeof (dl_info_ack_t)), 4485 BPRI_HI); 4486 if (info_mp == NULL) 4487 return (ENOMEM); 4488 4489 /* 4490 * Allocate sufficient space to contain our fragment hash table and 4491 * the device name. 4492 */ 4493 frag_ptr = (uchar_t *)mi_zalloc(ILL_FRAG_HASH_TBL_SIZE + 4494 2 * LIFNAMSIZ + 5 + strlen(ipv6_forward_suffix)); 4495 if (frag_ptr == NULL) { 4496 freemsg(info_mp); 4497 return (ENOMEM); 4498 } 4499 ill->ill_frag_ptr = frag_ptr; 4500 ill->ill_frag_free_num_pkts = 0; 4501 ill->ill_last_frag_clean_time = 0; 4502 ill->ill_frag_hash_tbl = (ipfb_t *)frag_ptr; 4503 ill->ill_name = (char *)(frag_ptr + ILL_FRAG_HASH_TBL_SIZE); 4504 for (count = 0; count < ILL_FRAG_HASH_TBL_COUNT; count++) { 4505 mutex_init(&ill->ill_frag_hash_tbl[count].ipfb_lock, 4506 NULL, MUTEX_DEFAULT, NULL); 4507 } 4508 4509 ill->ill_phyint = (phyint_t *)mi_zalloc(sizeof (phyint_t)); 4510 if (ill->ill_phyint == NULL) { 4511 freemsg(info_mp); 4512 mi_free(frag_ptr); 4513 return (ENOMEM); 4514 } 4515 4516 mutex_init(&ill->ill_phyint->phyint_lock, NULL, MUTEX_DEFAULT, 0); 4517 /* 4518 * For now pretend this is a v4 ill. We need to set phyint_ill* 4519 * at this point because of the following reason. If we can't 4520 * enter the ipsq at some point and cv_wait, the writer that 4521 * wakes us up tries to locate us using the list of all phyints 4522 * in an ipsq and the ills from the phyint thru the phyint_ill*. 4523 * If we don't set it now, we risk a missed wakeup. 4524 */ 4525 ill->ill_phyint->phyint_illv4 = ill; 4526 ill->ill_ppa = UINT_MAX; 4527 ill->ill_fastpath_list = &ill->ill_fastpath_list; 4528 4529 if (!ipsq_init(ill, B_TRUE)) { 4530 freemsg(info_mp); 4531 mi_free(frag_ptr); 4532 mi_free(ill->ill_phyint); 4533 return (ENOMEM); 4534 } 4535 4536 ill->ill_state_flags |= ILL_LL_SUBNET_PENDING; 4537 4538 /* Frag queue limit stuff */ 4539 ill->ill_frag_count = 0; 4540 ill->ill_ipf_gen = 0; 4541 4542 ill->ill_global_timer = INFINITY; 4543 ill->ill_mcast_v1_time = ill->ill_mcast_v2_time = 0; 4544 ill->ill_mcast_v1_tset = ill->ill_mcast_v2_tset = 0; 4545 ill->ill_mcast_rv = MCAST_DEF_ROBUSTNESS; 4546 ill->ill_mcast_qi = MCAST_DEF_QUERY_INTERVAL; 4547 4548 /* 4549 * Initialize IPv6 configuration variables. The IP module is always 4550 * opened as an IPv4 module. Instead tracking down the cases where 4551 * it switches to do ipv6, we'll just initialize the IPv6 configuration 4552 * here for convenience, this has no effect until the ill is set to do 4553 * IPv6. 4554 */ 4555 ill->ill_reachable_time = ND_REACHABLE_TIME; 4556 ill->ill_reachable_retrans_time = ND_RETRANS_TIMER; 4557 ill->ill_xmit_count = ND_MAX_MULTICAST_SOLICIT; 4558 ill->ill_max_buf = ND_MAX_Q; 4559 ill->ill_refcnt = 0; 4560 4561 /* Send down the Info Request to the driver. */ 4562 info_mp->b_datap->db_type = M_PCPROTO; 4563 dlir = (dl_info_req_t *)info_mp->b_rptr; 4564 info_mp->b_wptr = (uchar_t *)&dlir[1]; 4565 dlir->dl_primitive = DL_INFO_REQ; 4566 4567 ill->ill_dlpi_pending = DL_PRIM_INVAL; 4568 4569 qprocson(q); 4570 ill_dlpi_send(ill, info_mp); 4571 4572 return (0); 4573 } 4574 4575 /* 4576 * ill_dls_info 4577 * creates datalink socket info from the device. 4578 */ 4579 int 4580 ill_dls_info(struct sockaddr_dl *sdl, const ipif_t *ipif) 4581 { 4582 size_t len; 4583 ill_t *ill = ipif->ipif_ill; 4584 4585 sdl->sdl_family = AF_LINK; 4586 sdl->sdl_index = ill->ill_phyint->phyint_ifindex; 4587 sdl->sdl_type = ill->ill_type; 4588 ipif_get_name(ipif, sdl->sdl_data, sizeof (sdl->sdl_data)); 4589 len = strlen(sdl->sdl_data); 4590 ASSERT(len < 256); 4591 sdl->sdl_nlen = (uchar_t)len; 4592 sdl->sdl_alen = ill->ill_phys_addr_length; 4593 sdl->sdl_slen = 0; 4594 if (ill->ill_phys_addr_length != 0 && ill->ill_phys_addr != NULL) 4595 bcopy(ill->ill_phys_addr, &sdl->sdl_data[len], sdl->sdl_alen); 4596 4597 return (sizeof (struct sockaddr_dl)); 4598 } 4599 4600 /* 4601 * ill_xarp_info 4602 * creates xarp info from the device. 4603 */ 4604 static int 4605 ill_xarp_info(struct sockaddr_dl *sdl, ill_t *ill) 4606 { 4607 sdl->sdl_family = AF_LINK; 4608 sdl->sdl_index = ill->ill_phyint->phyint_ifindex; 4609 sdl->sdl_type = ill->ill_type; 4610 ipif_get_name(ill->ill_ipif, sdl->sdl_data, sizeof (sdl->sdl_data)); 4611 sdl->sdl_nlen = (uchar_t)mi_strlen(sdl->sdl_data); 4612 sdl->sdl_alen = ill->ill_phys_addr_length; 4613 sdl->sdl_slen = 0; 4614 return (sdl->sdl_nlen); 4615 } 4616 4617 static int 4618 loopback_kstat_update(kstat_t *ksp, int rw) 4619 { 4620 kstat_named_t *kn; 4621 netstackid_t stackid; 4622 netstack_t *ns; 4623 ip_stack_t *ipst; 4624 4625 if (ksp == NULL || ksp->ks_data == NULL) 4626 return (EIO); 4627 4628 if (rw == KSTAT_WRITE) 4629 return (EACCES); 4630 4631 kn = KSTAT_NAMED_PTR(ksp); 4632 stackid = (zoneid_t)(uintptr_t)ksp->ks_private; 4633 4634 ns = netstack_find_by_stackid(stackid); 4635 if (ns == NULL) 4636 return (-1); 4637 4638 ipst = ns->netstack_ip; 4639 if (ipst == NULL) { 4640 netstack_rele(ns); 4641 return (-1); 4642 } 4643 kn[0].value.ui32 = ipst->ips_loopback_packets; 4644 kn[1].value.ui32 = ipst->ips_loopback_packets; 4645 netstack_rele(ns); 4646 return (0); 4647 } 4648 4649 /* 4650 * Has ifindex been plumbed already? 4651 */ 4652 boolean_t 4653 phyint_exists(uint_t index, ip_stack_t *ipst) 4654 { 4655 ASSERT(index != 0); 4656 ASSERT(RW_LOCK_HELD(&ipst->ips_ill_g_lock)); 4657 4658 return (avl_find(&ipst->ips_phyint_g_list->phyint_list_avl_by_index, 4659 &index, NULL) != NULL); 4660 } 4661 4662 /* Pick a unique ifindex */ 4663 boolean_t 4664 ip_assign_ifindex(uint_t *indexp, ip_stack_t *ipst) 4665 { 4666 uint_t starting_index; 4667 4668 if (!ipst->ips_ill_index_wrap) { 4669 *indexp = ipst->ips_ill_index++; 4670 if (ipst->ips_ill_index == 0) { 4671 /* Reached the uint_t limit Next time wrap */ 4672 ipst->ips_ill_index_wrap = B_TRUE; 4673 } 4674 return (B_TRUE); 4675 } 4676 4677 /* 4678 * Start reusing unused indexes. Note that we hold the ill_g_lock 4679 * at this point and don't want to call any function that attempts 4680 * to get the lock again. 4681 */ 4682 starting_index = ipst->ips_ill_index++; 4683 for (; ipst->ips_ill_index != starting_index; ipst->ips_ill_index++) { 4684 if (ipst->ips_ill_index != 0 && 4685 !phyint_exists(ipst->ips_ill_index, ipst)) { 4686 /* found unused index - use it */ 4687 *indexp = ipst->ips_ill_index; 4688 return (B_TRUE); 4689 } 4690 } 4691 4692 /* 4693 * all interface indicies are inuse. 4694 */ 4695 return (B_FALSE); 4696 } 4697 4698 /* 4699 * Assign a unique interface index for the phyint. 4700 */ 4701 static boolean_t 4702 phyint_assign_ifindex(phyint_t *phyi, ip_stack_t *ipst) 4703 { 4704 ASSERT(phyi->phyint_ifindex == 0); 4705 return (ip_assign_ifindex(&phyi->phyint_ifindex, ipst)); 4706 } 4707 4708 /* 4709 * Return a pointer to the ill which matches the supplied name. Note that 4710 * the ill name length includes the null termination character. (May be 4711 * called as writer.) 4712 * If do_alloc and the interface is "lo0" it will be automatically created. 4713 * Cannot bump up reference on condemned ills. So dup detect can't be done 4714 * using this func. 4715 */ 4716 ill_t * 4717 ill_lookup_on_name(char *name, boolean_t do_alloc, boolean_t isv6, 4718 queue_t *q, mblk_t *mp, ipsq_func_t func, int *error, boolean_t *did_alloc, 4719 ip_stack_t *ipst) 4720 { 4721 ill_t *ill; 4722 ipif_t *ipif; 4723 ipsq_t *ipsq; 4724 kstat_named_t *kn; 4725 boolean_t isloopback; 4726 in6_addr_t ov6addr; 4727 4728 isloopback = mi_strcmp(name, ipif_loopback_name) == 0; 4729 4730 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 4731 ill = ill_find_by_name(name, isv6, q, mp, func, error, ipst); 4732 rw_exit(&ipst->ips_ill_g_lock); 4733 if (ill != NULL || (error != NULL && *error == EINPROGRESS)) 4734 return (ill); 4735 4736 /* 4737 * Couldn't find it. Does this happen to be a lookup for the 4738 * loopback device and are we allowed to allocate it? 4739 */ 4740 if (!isloopback || !do_alloc) 4741 return (NULL); 4742 4743 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 4744 4745 ill = ill_find_by_name(name, isv6, q, mp, func, error, ipst); 4746 if (ill != NULL || (error != NULL && *error == EINPROGRESS)) { 4747 rw_exit(&ipst->ips_ill_g_lock); 4748 return (ill); 4749 } 4750 4751 /* Create the loopback device on demand */ 4752 ill = (ill_t *)(mi_alloc(sizeof (ill_t) + 4753 sizeof (ipif_loopback_name), BPRI_MED)); 4754 if (ill == NULL) 4755 goto done; 4756 4757 *ill = ill_null; 4758 mutex_init(&ill->ill_lock, NULL, MUTEX_DEFAULT, NULL); 4759 ill->ill_ipst = ipst; 4760 netstack_hold(ipst->ips_netstack); 4761 /* 4762 * For exclusive stacks we set the zoneid to zero 4763 * to make IP operate as if in the global zone. 4764 */ 4765 ill->ill_zoneid = GLOBAL_ZONEID; 4766 4767 ill->ill_phyint = (phyint_t *)mi_zalloc(sizeof (phyint_t)); 4768 if (ill->ill_phyint == NULL) 4769 goto done; 4770 4771 if (isv6) 4772 ill->ill_phyint->phyint_illv6 = ill; 4773 else 4774 ill->ill_phyint->phyint_illv4 = ill; 4775 mutex_init(&ill->ill_phyint->phyint_lock, NULL, MUTEX_DEFAULT, 0); 4776 ill->ill_max_frag = IP_LOOPBACK_MTU; 4777 /* Add room for tcp+ip headers */ 4778 if (isv6) { 4779 ill->ill_isv6 = B_TRUE; 4780 ill->ill_max_frag += IPV6_HDR_LEN + 20; /* for TCP */ 4781 } else { 4782 ill->ill_max_frag += IP_SIMPLE_HDR_LENGTH + 20; 4783 } 4784 if (!ill_allocate_mibs(ill)) 4785 goto done; 4786 ill->ill_max_mtu = ill->ill_max_frag; 4787 /* 4788 * ipif_loopback_name can't be pointed at directly because its used 4789 * by both the ipv4 and ipv6 interfaces. When the ill is removed 4790 * from the glist, ill_glist_delete() sets the first character of 4791 * ill_name to '\0'. 4792 */ 4793 ill->ill_name = (char *)ill + sizeof (*ill); 4794 (void) strcpy(ill->ill_name, ipif_loopback_name); 4795 ill->ill_name_length = sizeof (ipif_loopback_name); 4796 /* Set ill_dlpi_pending for ipsq_current_finish() to work properly */ 4797 ill->ill_dlpi_pending = DL_PRIM_INVAL; 4798 4799 ill->ill_global_timer = INFINITY; 4800 ill->ill_mcast_v1_time = ill->ill_mcast_v2_time = 0; 4801 ill->ill_mcast_v1_tset = ill->ill_mcast_v2_tset = 0; 4802 ill->ill_mcast_rv = MCAST_DEF_ROBUSTNESS; 4803 ill->ill_mcast_qi = MCAST_DEF_QUERY_INTERVAL; 4804 4805 /* No resolver here. */ 4806 ill->ill_net_type = IRE_LOOPBACK; 4807 4808 /* Initialize the ipsq */ 4809 if (!ipsq_init(ill, B_FALSE)) 4810 goto done; 4811 4812 ipif = ipif_allocate(ill, 0L, IRE_LOOPBACK, B_TRUE, B_TRUE); 4813 if (ipif == NULL) 4814 goto done; 4815 4816 ill->ill_flags = ILLF_MULTICAST; 4817 4818 ov6addr = ipif->ipif_v6lcl_addr; 4819 /* Set up default loopback address and mask. */ 4820 if (!isv6) { 4821 ipaddr_t inaddr_loopback = htonl(INADDR_LOOPBACK); 4822 4823 IN6_IPADDR_TO_V4MAPPED(inaddr_loopback, &ipif->ipif_v6lcl_addr); 4824 ipif->ipif_v6src_addr = ipif->ipif_v6lcl_addr; 4825 V4MASK_TO_V6(htonl(IN_CLASSA_NET), ipif->ipif_v6net_mask); 4826 V6_MASK_COPY(ipif->ipif_v6lcl_addr, ipif->ipif_v6net_mask, 4827 ipif->ipif_v6subnet); 4828 ill->ill_flags |= ILLF_IPV4; 4829 } else { 4830 ipif->ipif_v6lcl_addr = ipv6_loopback; 4831 ipif->ipif_v6src_addr = ipif->ipif_v6lcl_addr; 4832 ipif->ipif_v6net_mask = ipv6_all_ones; 4833 V6_MASK_COPY(ipif->ipif_v6lcl_addr, ipif->ipif_v6net_mask, 4834 ipif->ipif_v6subnet); 4835 ill->ill_flags |= ILLF_IPV6; 4836 } 4837 4838 /* 4839 * Chain us in at the end of the ill list. hold the ill 4840 * before we make it globally visible. 1 for the lookup. 4841 */ 4842 ill->ill_refcnt = 0; 4843 ill_refhold(ill); 4844 4845 ill->ill_frag_count = 0; 4846 ill->ill_frag_free_num_pkts = 0; 4847 ill->ill_last_frag_clean_time = 0; 4848 4849 ipsq = ill->ill_phyint->phyint_ipsq; 4850 4851 if (ill_glist_insert(ill, "lo", isv6) != 0) 4852 cmn_err(CE_PANIC, "cannot insert loopback interface"); 4853 4854 /* Let SCTP know so that it can add this to its list */ 4855 sctp_update_ill(ill, SCTP_ILL_INSERT); 4856 4857 /* 4858 * We have already assigned ipif_v6lcl_addr above, but we need to 4859 * call sctp_update_ipif_addr() after SCTP_ILL_INSERT, which 4860 * requires to be after ill_glist_insert() since we need the 4861 * ill_index set. Pass on ipv6_loopback as the old address. 4862 */ 4863 sctp_update_ipif_addr(ipif, ov6addr); 4864 4865 /* 4866 * ill_glist_insert() -> ill_phyint_reinit() may have merged IPSQs. 4867 * If so, free our original one. 4868 */ 4869 if (ipsq != ill->ill_phyint->phyint_ipsq) 4870 ipsq_delete(ipsq); 4871 4872 /* 4873 * Delay this till the ipif is allocated as ipif_allocate 4874 * de-references ill_phyint for getting the ifindex. We 4875 * can't do this before ipif_allocate because ill_phyint_reinit 4876 * -> phyint_assign_ifindex expects ipif to be present. 4877 */ 4878 mutex_enter(&ill->ill_phyint->phyint_lock); 4879 ill->ill_phyint->phyint_flags |= PHYI_LOOPBACK | PHYI_VIRTUAL; 4880 mutex_exit(&ill->ill_phyint->phyint_lock); 4881 4882 if (ipst->ips_loopback_ksp == NULL) { 4883 /* Export loopback interface statistics */ 4884 ipst->ips_loopback_ksp = kstat_create_netstack("lo", 0, 4885 ipif_loopback_name, "net", 4886 KSTAT_TYPE_NAMED, 2, 0, 4887 ipst->ips_netstack->netstack_stackid); 4888 if (ipst->ips_loopback_ksp != NULL) { 4889 ipst->ips_loopback_ksp->ks_update = 4890 loopback_kstat_update; 4891 kn = KSTAT_NAMED_PTR(ipst->ips_loopback_ksp); 4892 kstat_named_init(&kn[0], "ipackets", KSTAT_DATA_UINT32); 4893 kstat_named_init(&kn[1], "opackets", KSTAT_DATA_UINT32); 4894 ipst->ips_loopback_ksp->ks_private = 4895 (void *)(uintptr_t)ipst->ips_netstack-> 4896 netstack_stackid; 4897 kstat_install(ipst->ips_loopback_ksp); 4898 } 4899 } 4900 4901 if (error != NULL) 4902 *error = 0; 4903 *did_alloc = B_TRUE; 4904 rw_exit(&ipst->ips_ill_g_lock); 4905 ill_nic_event_dispatch(ill, MAP_IPIF_ID(ill->ill_ipif->ipif_id), 4906 NE_PLUMB, ill->ill_name, ill->ill_name_length); 4907 return (ill); 4908 done: 4909 if (ill != NULL) { 4910 if (ill->ill_phyint != NULL) { 4911 ipsq = ill->ill_phyint->phyint_ipsq; 4912 if (ipsq != NULL) { 4913 ipsq->ipsq_phyint = NULL; 4914 ipsq_delete(ipsq); 4915 } 4916 mi_free(ill->ill_phyint); 4917 } 4918 ill_free_mib(ill); 4919 if (ill->ill_ipst != NULL) 4920 netstack_rele(ill->ill_ipst->ips_netstack); 4921 mi_free(ill); 4922 } 4923 rw_exit(&ipst->ips_ill_g_lock); 4924 if (error != NULL) 4925 *error = ENOMEM; 4926 return (NULL); 4927 } 4928 4929 /* 4930 * For IPP calls - use the ip_stack_t for global stack. 4931 */ 4932 ill_t * 4933 ill_lookup_on_ifindex_global_instance(uint_t index, boolean_t isv6, 4934 queue_t *q, mblk_t *mp, ipsq_func_t func, int *err) 4935 { 4936 ip_stack_t *ipst; 4937 ill_t *ill; 4938 4939 ipst = netstack_find_by_stackid(GLOBAL_NETSTACKID)->netstack_ip; 4940 if (ipst == NULL) { 4941 cmn_err(CE_WARN, "No ip_stack_t for zoneid zero!\n"); 4942 return (NULL); 4943 } 4944 4945 ill = ill_lookup_on_ifindex(index, isv6, q, mp, func, err, ipst); 4946 netstack_rele(ipst->ips_netstack); 4947 return (ill); 4948 } 4949 4950 /* 4951 * Return a pointer to the ill which matches the index and IP version type. 4952 */ 4953 ill_t * 4954 ill_lookup_on_ifindex(uint_t index, boolean_t isv6, queue_t *q, mblk_t *mp, 4955 ipsq_func_t func, int *err, ip_stack_t *ipst) 4956 { 4957 ill_t *ill; 4958 ipsq_t *ipsq; 4959 phyint_t *phyi; 4960 4961 ASSERT((q == NULL && mp == NULL && func == NULL && err == NULL) || 4962 (q != NULL && mp != NULL && func != NULL && err != NULL)); 4963 4964 if (err != NULL) 4965 *err = 0; 4966 4967 /* 4968 * Indexes are stored in the phyint - a common structure 4969 * to both IPv4 and IPv6. 4970 */ 4971 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 4972 phyi = avl_find(&ipst->ips_phyint_g_list->phyint_list_avl_by_index, 4973 (void *) &index, NULL); 4974 if (phyi != NULL) { 4975 ill = isv6 ? phyi->phyint_illv6: phyi->phyint_illv4; 4976 if (ill != NULL) { 4977 /* 4978 * The block comment at the start of ipif_down 4979 * explains the use of the macros used below 4980 */ 4981 GRAB_CONN_LOCK(q); 4982 mutex_enter(&ill->ill_lock); 4983 if (ILL_CAN_LOOKUP(ill)) { 4984 ill_refhold_locked(ill); 4985 mutex_exit(&ill->ill_lock); 4986 RELEASE_CONN_LOCK(q); 4987 rw_exit(&ipst->ips_ill_g_lock); 4988 return (ill); 4989 } else if (ILL_CAN_WAIT(ill, q)) { 4990 ipsq = ill->ill_phyint->phyint_ipsq; 4991 mutex_enter(&ipsq->ipsq_lock); 4992 mutex_enter(&ipsq->ipsq_xop->ipx_lock); 4993 rw_exit(&ipst->ips_ill_g_lock); 4994 mutex_exit(&ill->ill_lock); 4995 ipsq_enq(ipsq, q, mp, func, NEW_OP, ill); 4996 mutex_exit(&ipsq->ipsq_xop->ipx_lock); 4997 mutex_exit(&ipsq->ipsq_lock); 4998 RELEASE_CONN_LOCK(q); 4999 if (err != NULL) 5000 *err = EINPROGRESS; 5001 return (NULL); 5002 } 5003 RELEASE_CONN_LOCK(q); 5004 mutex_exit(&ill->ill_lock); 5005 } 5006 } 5007 rw_exit(&ipst->ips_ill_g_lock); 5008 if (err != NULL) 5009 *err = ENXIO; 5010 return (NULL); 5011 } 5012 5013 /* 5014 * Return the ifindex next in sequence after the passed in ifindex. 5015 * If there is no next ifindex for the given protocol, return 0. 5016 */ 5017 uint_t 5018 ill_get_next_ifindex(uint_t index, boolean_t isv6, ip_stack_t *ipst) 5019 { 5020 phyint_t *phyi; 5021 phyint_t *phyi_initial; 5022 uint_t ifindex; 5023 5024 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 5025 5026 if (index == 0) { 5027 phyi = avl_first( 5028 &ipst->ips_phyint_g_list->phyint_list_avl_by_index); 5029 } else { 5030 phyi = phyi_initial = avl_find( 5031 &ipst->ips_phyint_g_list->phyint_list_avl_by_index, 5032 (void *) &index, NULL); 5033 } 5034 5035 for (; phyi != NULL; 5036 phyi = avl_walk(&ipst->ips_phyint_g_list->phyint_list_avl_by_index, 5037 phyi, AVL_AFTER)) { 5038 /* 5039 * If we're not returning the first interface in the tree 5040 * and we still haven't moved past the phyint_t that 5041 * corresponds to index, avl_walk needs to be called again 5042 */ 5043 if (!((index != 0) && (phyi == phyi_initial))) { 5044 if (isv6) { 5045 if ((phyi->phyint_illv6) && 5046 ILL_CAN_LOOKUP(phyi->phyint_illv6) && 5047 (phyi->phyint_illv6->ill_isv6 == 1)) 5048 break; 5049 } else { 5050 if ((phyi->phyint_illv4) && 5051 ILL_CAN_LOOKUP(phyi->phyint_illv4) && 5052 (phyi->phyint_illv4->ill_isv6 == 0)) 5053 break; 5054 } 5055 } 5056 } 5057 5058 rw_exit(&ipst->ips_ill_g_lock); 5059 5060 if (phyi != NULL) 5061 ifindex = phyi->phyint_ifindex; 5062 else 5063 ifindex = 0; 5064 5065 return (ifindex); 5066 } 5067 5068 /* 5069 * Return the ifindex for the named interface. 5070 * If there is no next ifindex for the interface, return 0. 5071 */ 5072 uint_t 5073 ill_get_ifindex_by_name(char *name, ip_stack_t *ipst) 5074 { 5075 phyint_t *phyi; 5076 avl_index_t where = 0; 5077 uint_t ifindex; 5078 5079 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 5080 5081 if ((phyi = avl_find(&ipst->ips_phyint_g_list->phyint_list_avl_by_name, 5082 name, &where)) == NULL) { 5083 rw_exit(&ipst->ips_ill_g_lock); 5084 return (0); 5085 } 5086 5087 ifindex = phyi->phyint_ifindex; 5088 5089 rw_exit(&ipst->ips_ill_g_lock); 5090 5091 return (ifindex); 5092 } 5093 5094 /* 5095 * Obtain a reference to the ill. The ill_refcnt is a dynamic refcnt 5096 * that gives a running thread a reference to the ill. This reference must be 5097 * released by the thread when it is done accessing the ill and related 5098 * objects. ill_refcnt can not be used to account for static references 5099 * such as other structures pointing to an ill. Callers must generally 5100 * check whether an ill can be refheld by using ILL_CAN_LOOKUP macros 5101 * or be sure that the ill is not being deleted or changing state before 5102 * calling the refhold functions. A non-zero ill_refcnt ensures that the 5103 * ill won't change any of its critical state such as address, netmask etc. 5104 */ 5105 void 5106 ill_refhold(ill_t *ill) 5107 { 5108 mutex_enter(&ill->ill_lock); 5109 ill->ill_refcnt++; 5110 ILL_TRACE_REF(ill); 5111 mutex_exit(&ill->ill_lock); 5112 } 5113 5114 void 5115 ill_refhold_locked(ill_t *ill) 5116 { 5117 ASSERT(MUTEX_HELD(&ill->ill_lock)); 5118 ill->ill_refcnt++; 5119 ILL_TRACE_REF(ill); 5120 } 5121 5122 int 5123 ill_check_and_refhold(ill_t *ill) 5124 { 5125 mutex_enter(&ill->ill_lock); 5126 if (ILL_CAN_LOOKUP(ill)) { 5127 ill_refhold_locked(ill); 5128 mutex_exit(&ill->ill_lock); 5129 return (0); 5130 } 5131 mutex_exit(&ill->ill_lock); 5132 return (ILL_LOOKUP_FAILED); 5133 } 5134 5135 /* 5136 * Must not be called while holding any locks. Otherwise if this is 5137 * the last reference to be released, there is a chance of recursive mutex 5138 * panic due to ill_refrele -> ipif_ill_refrele_tail -> qwriter_ip trying 5139 * to restart an ioctl. 5140 */ 5141 void 5142 ill_refrele(ill_t *ill) 5143 { 5144 mutex_enter(&ill->ill_lock); 5145 ASSERT(ill->ill_refcnt != 0); 5146 ill->ill_refcnt--; 5147 ILL_UNTRACE_REF(ill); 5148 if (ill->ill_refcnt != 0) { 5149 /* Every ire pointing to the ill adds 1 to ill_refcnt */ 5150 mutex_exit(&ill->ill_lock); 5151 return; 5152 } 5153 5154 /* Drops the ill_lock */ 5155 ipif_ill_refrele_tail(ill); 5156 } 5157 5158 /* 5159 * Obtain a weak reference count on the ill. This reference ensures the 5160 * ill won't be freed, but the ill may change any of its critical state 5161 * such as netmask, address etc. Returns an error if the ill has started 5162 * closing. 5163 */ 5164 boolean_t 5165 ill_waiter_inc(ill_t *ill) 5166 { 5167 mutex_enter(&ill->ill_lock); 5168 if (ill->ill_state_flags & ILL_CONDEMNED) { 5169 mutex_exit(&ill->ill_lock); 5170 return (B_FALSE); 5171 } 5172 ill->ill_waiters++; 5173 mutex_exit(&ill->ill_lock); 5174 return (B_TRUE); 5175 } 5176 5177 void 5178 ill_waiter_dcr(ill_t *ill) 5179 { 5180 mutex_enter(&ill->ill_lock); 5181 ill->ill_waiters--; 5182 if (ill->ill_waiters == 0) 5183 cv_broadcast(&ill->ill_cv); 5184 mutex_exit(&ill->ill_lock); 5185 } 5186 5187 /* 5188 * ip_ll_subnet_defaults is called when we get the DL_INFO_ACK back from the 5189 * driver. We construct best guess defaults for lower level information that 5190 * we need. If an interface is brought up without injection of any overriding 5191 * information from outside, we have to be ready to go with these defaults. 5192 * When we get the first DL_INFO_ACK (from ip_open() sending a DL_INFO_REQ) 5193 * we primarely want the dl_provider_style. 5194 * The subsequent DL_INFO_ACK is received after doing a DL_ATTACH and DL_BIND 5195 * at which point we assume the other part of the information is valid. 5196 */ 5197 void 5198 ip_ll_subnet_defaults(ill_t *ill, mblk_t *mp) 5199 { 5200 uchar_t *brdcst_addr; 5201 uint_t brdcst_addr_length, phys_addr_length; 5202 t_scalar_t sap_length; 5203 dl_info_ack_t *dlia; 5204 ip_m_t *ipm; 5205 dl_qos_cl_sel1_t *sel1; 5206 int min_mtu; 5207 5208 ASSERT(IAM_WRITER_ILL(ill)); 5209 5210 /* 5211 * Till the ill is fully up ILL_CHANGING will be set and 5212 * the ill is not globally visible. So no need for a lock. 5213 */ 5214 dlia = (dl_info_ack_t *)mp->b_rptr; 5215 ill->ill_mactype = dlia->dl_mac_type; 5216 5217 ipm = ip_m_lookup(dlia->dl_mac_type); 5218 if (ipm == NULL) { 5219 ipm = ip_m_lookup(DL_OTHER); 5220 ASSERT(ipm != NULL); 5221 } 5222 ill->ill_media = ipm; 5223 5224 /* 5225 * When the new DLPI stuff is ready we'll pull lengths 5226 * from dlia. 5227 */ 5228 if (dlia->dl_version == DL_VERSION_2) { 5229 brdcst_addr_length = dlia->dl_brdcst_addr_length; 5230 brdcst_addr = mi_offset_param(mp, dlia->dl_brdcst_addr_offset, 5231 brdcst_addr_length); 5232 if (brdcst_addr == NULL) { 5233 brdcst_addr_length = 0; 5234 } 5235 sap_length = dlia->dl_sap_length; 5236 phys_addr_length = dlia->dl_addr_length - ABS(sap_length); 5237 ip1dbg(("ip: bcast_len %d, sap_len %d, phys_len %d\n", 5238 brdcst_addr_length, sap_length, phys_addr_length)); 5239 } else { 5240 brdcst_addr_length = 6; 5241 brdcst_addr = ip_six_byte_all_ones; 5242 sap_length = -2; 5243 phys_addr_length = brdcst_addr_length; 5244 } 5245 5246 ill->ill_bcast_addr_length = brdcst_addr_length; 5247 ill->ill_phys_addr_length = phys_addr_length; 5248 ill->ill_sap_length = sap_length; 5249 5250 /* 5251 * Synthetic DLPI types such as SUNW_DL_IPMP specify a zero SDU, 5252 * but we must ensure a minimum IP MTU is used since other bits of 5253 * IP will fly apart otherwise. 5254 */ 5255 min_mtu = ill->ill_isv6 ? IPV6_MIN_MTU : IP_MIN_MTU; 5256 ill->ill_max_frag = MAX(min_mtu, dlia->dl_max_sdu); 5257 ill->ill_max_mtu = ill->ill_max_frag; 5258 5259 ill->ill_type = ipm->ip_m_type; 5260 5261 if (!ill->ill_dlpi_style_set) { 5262 if (dlia->dl_provider_style == DL_STYLE2) 5263 ill->ill_needs_attach = 1; 5264 5265 /* 5266 * Allocate the first ipif on this ill. We don't delay it 5267 * further as ioctl handling assumes atleast one ipif to 5268 * be present. 5269 * 5270 * At this point we don't know whether the ill is v4 or v6. 5271 * We will know this whan the SIOCSLIFNAME happens and 5272 * the correct value for ill_isv6 will be assigned in 5273 * ipif_set_values(). We need to hold the ill lock and 5274 * clear the ILL_LL_SUBNET_PENDING flag and atomically do 5275 * the wakeup. 5276 */ 5277 (void) ipif_allocate(ill, 0, IRE_LOCAL, 5278 dlia->dl_provider_style != DL_STYLE2, B_TRUE); 5279 mutex_enter(&ill->ill_lock); 5280 ASSERT(ill->ill_dlpi_style_set == 0); 5281 ill->ill_dlpi_style_set = 1; 5282 ill->ill_state_flags &= ~ILL_LL_SUBNET_PENDING; 5283 cv_broadcast(&ill->ill_cv); 5284 mutex_exit(&ill->ill_lock); 5285 freemsg(mp); 5286 return; 5287 } 5288 ASSERT(ill->ill_ipif != NULL); 5289 /* 5290 * We know whether it is IPv4 or IPv6 now, as this is the 5291 * second DL_INFO_ACK we are recieving in response to the 5292 * DL_INFO_REQ sent in ipif_set_values. 5293 */ 5294 if (ill->ill_isv6) 5295 ill->ill_sap = IP6_DL_SAP; 5296 else 5297 ill->ill_sap = IP_DL_SAP; 5298 /* 5299 * Set ipif_mtu which is used to set the IRE's 5300 * ire_max_frag value. The driver could have sent 5301 * a different mtu from what it sent last time. No 5302 * need to call ipif_mtu_change because IREs have 5303 * not yet been created. 5304 */ 5305 ill->ill_ipif->ipif_mtu = ill->ill_max_mtu; 5306 /* 5307 * Clear all the flags that were set based on ill_bcast_addr_length 5308 * and ill_phys_addr_length (in ipif_set_values) as these could have 5309 * changed now and we need to re-evaluate. 5310 */ 5311 ill->ill_flags &= ~(ILLF_MULTICAST | ILLF_NONUD | ILLF_NOARP); 5312 ill->ill_ipif->ipif_flags &= ~(IPIF_BROADCAST | IPIF_POINTOPOINT); 5313 5314 /* 5315 * Free ill_resolver_mp and ill_bcast_mp as things could have 5316 * changed now. 5317 * 5318 * NOTE: The IPMP meta-interface is special-cased because it starts 5319 * with no underlying interfaces (and thus an unknown broadcast 5320 * address length), but we enforce that an interface is broadcast- 5321 * capable as part of allowing it to join a group. 5322 */ 5323 if (ill->ill_bcast_addr_length == 0 && !IS_IPMP(ill)) { 5324 if (ill->ill_resolver_mp != NULL) 5325 freemsg(ill->ill_resolver_mp); 5326 if (ill->ill_bcast_mp != NULL) 5327 freemsg(ill->ill_bcast_mp); 5328 if (ill->ill_flags & ILLF_XRESOLV) 5329 ill->ill_net_type = IRE_IF_RESOLVER; 5330 else 5331 ill->ill_net_type = IRE_IF_NORESOLVER; 5332 ill->ill_resolver_mp = ill_dlur_gen(NULL, 5333 ill->ill_phys_addr_length, 5334 ill->ill_sap, 5335 ill->ill_sap_length); 5336 ill->ill_bcast_mp = copymsg(ill->ill_resolver_mp); 5337 5338 if (ill->ill_isv6) 5339 /* 5340 * Note: xresolv interfaces will eventually need NOARP 5341 * set here as well, but that will require those 5342 * external resolvers to have some knowledge of 5343 * that flag and act appropriately. Not to be changed 5344 * at present. 5345 */ 5346 ill->ill_flags |= ILLF_NONUD; 5347 else 5348 ill->ill_flags |= ILLF_NOARP; 5349 5350 if (ill->ill_phys_addr_length == 0) { 5351 if (ill->ill_media->ip_m_mac_type == SUNW_DL_VNI) { 5352 ill->ill_ipif->ipif_flags |= IPIF_NOXMIT; 5353 ill->ill_phyint->phyint_flags |= PHYI_VIRTUAL; 5354 } else { 5355 /* pt-pt supports multicast. */ 5356 ill->ill_flags |= ILLF_MULTICAST; 5357 ill->ill_ipif->ipif_flags |= IPIF_POINTOPOINT; 5358 } 5359 } 5360 } else { 5361 ill->ill_net_type = IRE_IF_RESOLVER; 5362 if (ill->ill_bcast_mp != NULL) 5363 freemsg(ill->ill_bcast_mp); 5364 ill->ill_bcast_mp = ill_dlur_gen(brdcst_addr, 5365 ill->ill_bcast_addr_length, ill->ill_sap, 5366 ill->ill_sap_length); 5367 /* 5368 * Later detect lack of DLPI driver multicast 5369 * capability by catching DL_ENABMULTI errors in 5370 * ip_rput_dlpi. 5371 */ 5372 ill->ill_flags |= ILLF_MULTICAST; 5373 if (!ill->ill_isv6) 5374 ill->ill_ipif->ipif_flags |= IPIF_BROADCAST; 5375 } 5376 5377 /* For IPMP, PHYI_IPMP should already be set by ipif_allocate() */ 5378 if (ill->ill_mactype == SUNW_DL_IPMP) 5379 ASSERT(ill->ill_phyint->phyint_flags & PHYI_IPMP); 5380 5381 /* By default an interface does not support any CoS marking */ 5382 ill->ill_flags &= ~ILLF_COS_ENABLED; 5383 5384 /* 5385 * If we get QoS information in DL_INFO_ACK, the device supports 5386 * some form of CoS marking, set ILLF_COS_ENABLED. 5387 */ 5388 sel1 = (dl_qos_cl_sel1_t *)mi_offset_param(mp, dlia->dl_qos_offset, 5389 dlia->dl_qos_length); 5390 if ((sel1 != NULL) && (sel1->dl_qos_type == DL_QOS_CL_SEL1)) { 5391 ill->ill_flags |= ILLF_COS_ENABLED; 5392 } 5393 5394 /* Clear any previous error indication. */ 5395 ill->ill_error = 0; 5396 freemsg(mp); 5397 } 5398 5399 /* 5400 * Perform various checks to verify that an address would make sense as a 5401 * local, remote, or subnet interface address. 5402 */ 5403 static boolean_t 5404 ip_addr_ok_v4(ipaddr_t addr, ipaddr_t subnet_mask) 5405 { 5406 ipaddr_t net_mask; 5407 5408 /* 5409 * Don't allow all zeroes, or all ones, but allow 5410 * all ones netmask. 5411 */ 5412 if ((net_mask = ip_net_mask(addr)) == 0) 5413 return (B_FALSE); 5414 /* A given netmask overrides the "guess" netmask */ 5415 if (subnet_mask != 0) 5416 net_mask = subnet_mask; 5417 if ((net_mask != ~(ipaddr_t)0) && ((addr == (addr & net_mask)) || 5418 (addr == (addr | ~net_mask)))) { 5419 return (B_FALSE); 5420 } 5421 5422 /* 5423 * Even if the netmask is all ones, we do not allow address to be 5424 * 255.255.255.255 5425 */ 5426 if (addr == INADDR_BROADCAST) 5427 return (B_FALSE); 5428 5429 if (CLASSD(addr)) 5430 return (B_FALSE); 5431 5432 return (B_TRUE); 5433 } 5434 5435 #define V6_IPIF_LINKLOCAL(p) \ 5436 IN6_IS_ADDR_LINKLOCAL(&(p)->ipif_v6lcl_addr) 5437 5438 /* 5439 * Compare two given ipifs and check if the second one is better than 5440 * the first one using the order of preference (not taking deprecated 5441 * into acount) specified in ipif_lookup_multicast(). 5442 */ 5443 static boolean_t 5444 ipif_comp_multi(ipif_t *old_ipif, ipif_t *new_ipif, boolean_t isv6) 5445 { 5446 /* Check the least preferred first. */ 5447 if (IS_LOOPBACK(old_ipif->ipif_ill)) { 5448 /* If both ipifs are the same, use the first one. */ 5449 if (IS_LOOPBACK(new_ipif->ipif_ill)) 5450 return (B_FALSE); 5451 else 5452 return (B_TRUE); 5453 } 5454 5455 /* For IPv6, check for link local address. */ 5456 if (isv6 && V6_IPIF_LINKLOCAL(old_ipif)) { 5457 if (IS_LOOPBACK(new_ipif->ipif_ill) || 5458 V6_IPIF_LINKLOCAL(new_ipif)) { 5459 /* The second one is equal or less preferred. */ 5460 return (B_FALSE); 5461 } else { 5462 return (B_TRUE); 5463 } 5464 } 5465 5466 /* Then check for point to point interface. */ 5467 if (old_ipif->ipif_flags & IPIF_POINTOPOINT) { 5468 if (IS_LOOPBACK(new_ipif->ipif_ill) || 5469 (isv6 && V6_IPIF_LINKLOCAL(new_ipif)) || 5470 (new_ipif->ipif_flags & IPIF_POINTOPOINT)) { 5471 return (B_FALSE); 5472 } else { 5473 return (B_TRUE); 5474 } 5475 } 5476 5477 /* old_ipif is a normal interface, so no need to use the new one. */ 5478 return (B_FALSE); 5479 } 5480 5481 /* 5482 * Find a mulitcast-capable ipif given an IP instance and zoneid. 5483 * The ipif must be up, and its ill must multicast-capable, not 5484 * condemned, not an underlying interface in an IPMP group, and 5485 * not a VNI interface. Order of preference: 5486 * 5487 * 1a. normal 5488 * 1b. normal, but deprecated 5489 * 2a. point to point 5490 * 2b. point to point, but deprecated 5491 * 3a. link local 5492 * 3b. link local, but deprecated 5493 * 4. loopback. 5494 */ 5495 ipif_t * 5496 ipif_lookup_multicast(ip_stack_t *ipst, zoneid_t zoneid, boolean_t isv6) 5497 { 5498 ill_t *ill; 5499 ill_walk_context_t ctx; 5500 ipif_t *ipif; 5501 ipif_t *saved_ipif = NULL; 5502 ipif_t *dep_ipif = NULL; 5503 5504 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 5505 if (isv6) 5506 ill = ILL_START_WALK_V6(&ctx, ipst); 5507 else 5508 ill = ILL_START_WALK_V4(&ctx, ipst); 5509 5510 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 5511 mutex_enter(&ill->ill_lock); 5512 if (IS_VNI(ill) || IS_UNDER_IPMP(ill) || !ILL_CAN_LOOKUP(ill) || 5513 !(ill->ill_flags & ILLF_MULTICAST)) { 5514 mutex_exit(&ill->ill_lock); 5515 continue; 5516 } 5517 for (ipif = ill->ill_ipif; ipif != NULL; 5518 ipif = ipif->ipif_next) { 5519 if (zoneid != ipif->ipif_zoneid && 5520 zoneid != ALL_ZONES && 5521 ipif->ipif_zoneid != ALL_ZONES) { 5522 continue; 5523 } 5524 if (!(ipif->ipif_flags & IPIF_UP) || 5525 !IPIF_CAN_LOOKUP(ipif)) { 5526 continue; 5527 } 5528 5529 /* 5530 * Found one candidate. If it is deprecated, 5531 * remember it in dep_ipif. If it is not deprecated, 5532 * remember it in saved_ipif. 5533 */ 5534 if (ipif->ipif_flags & IPIF_DEPRECATED) { 5535 if (dep_ipif == NULL) { 5536 dep_ipif = ipif; 5537 } else if (ipif_comp_multi(dep_ipif, ipif, 5538 isv6)) { 5539 /* 5540 * If the previous dep_ipif does not 5541 * belong to the same ill, we've done 5542 * a ipif_refhold() on it. So we need 5543 * to release it. 5544 */ 5545 if (dep_ipif->ipif_ill != ill) 5546 ipif_refrele(dep_ipif); 5547 dep_ipif = ipif; 5548 } 5549 continue; 5550 } 5551 if (saved_ipif == NULL) { 5552 saved_ipif = ipif; 5553 } else { 5554 if (ipif_comp_multi(saved_ipif, ipif, isv6)) { 5555 if (saved_ipif->ipif_ill != ill) 5556 ipif_refrele(saved_ipif); 5557 saved_ipif = ipif; 5558 } 5559 } 5560 } 5561 /* 5562 * Before going to the next ill, do a ipif_refhold() on the 5563 * saved ones. 5564 */ 5565 if (saved_ipif != NULL && saved_ipif->ipif_ill == ill) 5566 ipif_refhold_locked(saved_ipif); 5567 if (dep_ipif != NULL && dep_ipif->ipif_ill == ill) 5568 ipif_refhold_locked(dep_ipif); 5569 mutex_exit(&ill->ill_lock); 5570 } 5571 rw_exit(&ipst->ips_ill_g_lock); 5572 5573 /* 5574 * If we have only the saved_ipif, return it. But if we have both 5575 * saved_ipif and dep_ipif, check to see which one is better. 5576 */ 5577 if (saved_ipif != NULL) { 5578 if (dep_ipif != NULL) { 5579 if (ipif_comp_multi(saved_ipif, dep_ipif, isv6)) { 5580 ipif_refrele(saved_ipif); 5581 return (dep_ipif); 5582 } else { 5583 ipif_refrele(dep_ipif); 5584 return (saved_ipif); 5585 } 5586 } 5587 return (saved_ipif); 5588 } else { 5589 return (dep_ipif); 5590 } 5591 } 5592 5593 /* 5594 * This function is called when an application does not specify an interface 5595 * to be used for multicast traffic (joining a group/sending data). It 5596 * calls ire_lookup_multi() to look for an interface route for the 5597 * specified multicast group. Doing this allows the administrator to add 5598 * prefix routes for multicast to indicate which interface to be used for 5599 * multicast traffic in the above scenario. The route could be for all 5600 * multicast (224.0/4), for a single multicast group (a /32 route) or 5601 * anything in between. If there is no such multicast route, we just find 5602 * any multicast capable interface and return it. The returned ipif 5603 * is refhold'ed. 5604 */ 5605 ipif_t * 5606 ipif_lookup_group(ipaddr_t group, zoneid_t zoneid, ip_stack_t *ipst) 5607 { 5608 ire_t *ire; 5609 ipif_t *ipif; 5610 5611 ire = ire_lookup_multi(group, zoneid, ipst); 5612 if (ire != NULL) { 5613 ipif = ire->ire_ipif; 5614 ipif_refhold(ipif); 5615 ire_refrele(ire); 5616 return (ipif); 5617 } 5618 5619 return (ipif_lookup_multicast(ipst, zoneid, B_FALSE)); 5620 } 5621 5622 /* 5623 * Look for an ipif with the specified interface address and destination. 5624 * The destination address is used only for matching point-to-point interfaces. 5625 */ 5626 ipif_t * 5627 ipif_lookup_interface(ipaddr_t if_addr, ipaddr_t dst, queue_t *q, mblk_t *mp, 5628 ipsq_func_t func, int *error, ip_stack_t *ipst) 5629 { 5630 ipif_t *ipif; 5631 ill_t *ill; 5632 ill_walk_context_t ctx; 5633 ipsq_t *ipsq; 5634 5635 if (error != NULL) 5636 *error = 0; 5637 5638 /* 5639 * First match all the point-to-point interfaces 5640 * before looking at non-point-to-point interfaces. 5641 * This is done to avoid returning non-point-to-point 5642 * ipif instead of unnumbered point-to-point ipif. 5643 */ 5644 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 5645 ill = ILL_START_WALK_V4(&ctx, ipst); 5646 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 5647 GRAB_CONN_LOCK(q); 5648 mutex_enter(&ill->ill_lock); 5649 for (ipif = ill->ill_ipif; ipif != NULL; 5650 ipif = ipif->ipif_next) { 5651 /* Allow the ipif to be down */ 5652 if ((ipif->ipif_flags & IPIF_POINTOPOINT) && 5653 (ipif->ipif_lcl_addr == if_addr) && 5654 (ipif->ipif_pp_dst_addr == dst)) { 5655 /* 5656 * The block comment at the start of ipif_down 5657 * explains the use of the macros used below 5658 */ 5659 if (IPIF_CAN_LOOKUP(ipif)) { 5660 ipif_refhold_locked(ipif); 5661 mutex_exit(&ill->ill_lock); 5662 RELEASE_CONN_LOCK(q); 5663 rw_exit(&ipst->ips_ill_g_lock); 5664 return (ipif); 5665 } else if (IPIF_CAN_WAIT(ipif, q)) { 5666 ipsq = ill->ill_phyint->phyint_ipsq; 5667 mutex_enter(&ipsq->ipsq_lock); 5668 mutex_enter(&ipsq->ipsq_xop->ipx_lock); 5669 mutex_exit(&ill->ill_lock); 5670 rw_exit(&ipst->ips_ill_g_lock); 5671 ipsq_enq(ipsq, q, mp, func, NEW_OP, 5672 ill); 5673 mutex_exit(&ipsq->ipsq_xop->ipx_lock); 5674 mutex_exit(&ipsq->ipsq_lock); 5675 RELEASE_CONN_LOCK(q); 5676 if (error != NULL) 5677 *error = EINPROGRESS; 5678 return (NULL); 5679 } 5680 } 5681 } 5682 mutex_exit(&ill->ill_lock); 5683 RELEASE_CONN_LOCK(q); 5684 } 5685 rw_exit(&ipst->ips_ill_g_lock); 5686 5687 /* lookup the ipif based on interface address */ 5688 ipif = ipif_lookup_addr(if_addr, NULL, ALL_ZONES, q, mp, func, error, 5689 ipst); 5690 ASSERT(ipif == NULL || !ipif->ipif_isv6); 5691 return (ipif); 5692 } 5693 5694 /* 5695 * Common function for ipif_lookup_addr() and ipif_lookup_addr_exact(). 5696 */ 5697 static ipif_t * 5698 ipif_lookup_addr_common(ipaddr_t addr, ill_t *match_ill, boolean_t match_illgrp, 5699 zoneid_t zoneid, queue_t *q, mblk_t *mp, ipsq_func_t func, int *error, 5700 ip_stack_t *ipst) 5701 { 5702 ipif_t *ipif; 5703 ill_t *ill; 5704 boolean_t ptp = B_FALSE; 5705 ipsq_t *ipsq; 5706 ill_walk_context_t ctx; 5707 5708 if (error != NULL) 5709 *error = 0; 5710 5711 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 5712 /* 5713 * Repeat twice, first based on local addresses and 5714 * next time for pointopoint. 5715 */ 5716 repeat: 5717 ill = ILL_START_WALK_V4(&ctx, ipst); 5718 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 5719 if (match_ill != NULL && ill != match_ill && 5720 (!match_illgrp || !IS_IN_SAME_ILLGRP(ill, match_ill))) { 5721 continue; 5722 } 5723 GRAB_CONN_LOCK(q); 5724 mutex_enter(&ill->ill_lock); 5725 for (ipif = ill->ill_ipif; ipif != NULL; 5726 ipif = ipif->ipif_next) { 5727 if (zoneid != ALL_ZONES && 5728 zoneid != ipif->ipif_zoneid && 5729 ipif->ipif_zoneid != ALL_ZONES) 5730 continue; 5731 /* Allow the ipif to be down */ 5732 if ((!ptp && (ipif->ipif_lcl_addr == addr) && 5733 ((ipif->ipif_flags & IPIF_UNNUMBERED) == 0)) || 5734 (ptp && (ipif->ipif_flags & IPIF_POINTOPOINT) && 5735 (ipif->ipif_pp_dst_addr == addr))) { 5736 /* 5737 * The block comment at the start of ipif_down 5738 * explains the use of the macros used below 5739 */ 5740 if (IPIF_CAN_LOOKUP(ipif)) { 5741 ipif_refhold_locked(ipif); 5742 mutex_exit(&ill->ill_lock); 5743 RELEASE_CONN_LOCK(q); 5744 rw_exit(&ipst->ips_ill_g_lock); 5745 return (ipif); 5746 } else if (IPIF_CAN_WAIT(ipif, q)) { 5747 ipsq = ill->ill_phyint->phyint_ipsq; 5748 mutex_enter(&ipsq->ipsq_lock); 5749 mutex_enter(&ipsq->ipsq_xop->ipx_lock); 5750 mutex_exit(&ill->ill_lock); 5751 rw_exit(&ipst->ips_ill_g_lock); 5752 ipsq_enq(ipsq, q, mp, func, NEW_OP, 5753 ill); 5754 mutex_exit(&ipsq->ipsq_xop->ipx_lock); 5755 mutex_exit(&ipsq->ipsq_lock); 5756 RELEASE_CONN_LOCK(q); 5757 if (error != NULL) 5758 *error = EINPROGRESS; 5759 return (NULL); 5760 } 5761 } 5762 } 5763 mutex_exit(&ill->ill_lock); 5764 RELEASE_CONN_LOCK(q); 5765 } 5766 5767 /* If we already did the ptp case, then we are done */ 5768 if (ptp) { 5769 rw_exit(&ipst->ips_ill_g_lock); 5770 if (error != NULL) 5771 *error = ENXIO; 5772 return (NULL); 5773 } 5774 ptp = B_TRUE; 5775 goto repeat; 5776 } 5777 5778 /* 5779 * Check if the address exists in the system. 5780 * We don't hold the conn_lock as we will not perform defered ipsqueue 5781 * operation. 5782 */ 5783 boolean_t 5784 ip_addr_exists(ipaddr_t addr, zoneid_t zoneid, ip_stack_t *ipst) 5785 { 5786 ipif_t *ipif; 5787 ill_t *ill; 5788 ill_walk_context_t ctx; 5789 5790 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 5791 5792 ill = ILL_START_WALK_V4(&ctx, ipst); 5793 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 5794 mutex_enter(&ill->ill_lock); 5795 for (ipif = ill->ill_ipif; ipif != NULL; 5796 ipif = ipif->ipif_next) { 5797 if (zoneid != ALL_ZONES && 5798 zoneid != ipif->ipif_zoneid && 5799 ipif->ipif_zoneid != ALL_ZONES) 5800 continue; 5801 /* Allow the ipif to be down */ 5802 /* 5803 * XXX Different from ipif_lookup_addr(), we don't do 5804 * twice lookups. As from bind()'s point of view, we 5805 * may return once we find a match. 5806 */ 5807 if (((ipif->ipif_lcl_addr == addr) && 5808 ((ipif->ipif_flags & IPIF_UNNUMBERED) == 0)) || 5809 ((ipif->ipif_flags & IPIF_POINTOPOINT) && 5810 (ipif->ipif_pp_dst_addr == addr))) { 5811 /* 5812 * Allow bind() to be successful even if the 5813 * ipif is with IPIF_CHANGING bit set. 5814 */ 5815 mutex_exit(&ill->ill_lock); 5816 rw_exit(&ipst->ips_ill_g_lock); 5817 return (B_TRUE); 5818 } 5819 } 5820 mutex_exit(&ill->ill_lock); 5821 } 5822 5823 rw_exit(&ipst->ips_ill_g_lock); 5824 return (B_FALSE); 5825 } 5826 5827 /* 5828 * Lookup an ipif with the specified address. For point-to-point links we 5829 * look for matches on either the destination address or the local address, 5830 * but we skip the local address check if IPIF_UNNUMBERED is set. If the 5831 * `match_ill' argument is non-NULL, the lookup is restricted to that ill 5832 * (or illgrp if `match_ill' is in an IPMP group). 5833 */ 5834 ipif_t * 5835 ipif_lookup_addr(ipaddr_t addr, ill_t *match_ill, zoneid_t zoneid, queue_t *q, 5836 mblk_t *mp, ipsq_func_t func, int *error, ip_stack_t *ipst) 5837 { 5838 return (ipif_lookup_addr_common(addr, match_ill, B_TRUE, zoneid, q, mp, 5839 func, error, ipst)); 5840 } 5841 5842 /* 5843 * Special abbreviated version of ipif_lookup_addr() that doesn't match 5844 * `match_ill' across the IPMP group. This function is only needed in some 5845 * corner-cases; almost everything should use ipif_lookup_addr(). 5846 */ 5847 static ipif_t * 5848 ipif_lookup_addr_exact(ipaddr_t addr, ill_t *match_ill, ip_stack_t *ipst) 5849 { 5850 ASSERT(match_ill != NULL); 5851 return (ipif_lookup_addr_common(addr, match_ill, B_FALSE, ALL_ZONES, 5852 NULL, NULL, NULL, NULL, ipst)); 5853 } 5854 5855 /* 5856 * Look for an ipif with the specified address. For point-point links 5857 * we look for matches on either the destination address and the local 5858 * address, but we ignore the check on the local address if IPIF_UNNUMBERED 5859 * is set. 5860 * If the `match_ill' argument is non-NULL, the lookup is restricted to that 5861 * ill (or illgrp if `match_ill' is in an IPMP group). 5862 * Return the zoneid for the ipif which matches. ALL_ZONES if no match. 5863 */ 5864 zoneid_t 5865 ipif_lookup_addr_zoneid(ipaddr_t addr, ill_t *match_ill, ip_stack_t *ipst) 5866 { 5867 zoneid_t zoneid; 5868 ipif_t *ipif; 5869 ill_t *ill; 5870 boolean_t ptp = B_FALSE; 5871 ill_walk_context_t ctx; 5872 5873 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 5874 /* 5875 * Repeat twice, first based on local addresses and 5876 * next time for pointopoint. 5877 */ 5878 repeat: 5879 ill = ILL_START_WALK_V4(&ctx, ipst); 5880 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 5881 if (match_ill != NULL && ill != match_ill && 5882 !IS_IN_SAME_ILLGRP(ill, match_ill)) { 5883 continue; 5884 } 5885 mutex_enter(&ill->ill_lock); 5886 for (ipif = ill->ill_ipif; ipif != NULL; 5887 ipif = ipif->ipif_next) { 5888 /* Allow the ipif to be down */ 5889 if ((!ptp && (ipif->ipif_lcl_addr == addr) && 5890 ((ipif->ipif_flags & IPIF_UNNUMBERED) == 0)) || 5891 (ptp && (ipif->ipif_flags & IPIF_POINTOPOINT) && 5892 (ipif->ipif_pp_dst_addr == addr)) && 5893 !(ipif->ipif_state_flags & IPIF_CONDEMNED)) { 5894 zoneid = ipif->ipif_zoneid; 5895 mutex_exit(&ill->ill_lock); 5896 rw_exit(&ipst->ips_ill_g_lock); 5897 /* 5898 * If ipif_zoneid was ALL_ZONES then we have 5899 * a trusted extensions shared IP address. 5900 * In that case GLOBAL_ZONEID works to send. 5901 */ 5902 if (zoneid == ALL_ZONES) 5903 zoneid = GLOBAL_ZONEID; 5904 return (zoneid); 5905 } 5906 } 5907 mutex_exit(&ill->ill_lock); 5908 } 5909 5910 /* If we already did the ptp case, then we are done */ 5911 if (ptp) { 5912 rw_exit(&ipst->ips_ill_g_lock); 5913 return (ALL_ZONES); 5914 } 5915 ptp = B_TRUE; 5916 goto repeat; 5917 } 5918 5919 /* 5920 * Look for an ipif that matches the specified remote address i.e. the 5921 * ipif that would receive the specified packet. 5922 * First look for directly connected interfaces and then do a recursive 5923 * IRE lookup and pick the first ipif corresponding to the source address in the 5924 * ire. 5925 * Returns: held ipif 5926 */ 5927 ipif_t * 5928 ipif_lookup_remote(ill_t *ill, ipaddr_t addr, zoneid_t zoneid) 5929 { 5930 ipif_t *ipif; 5931 ire_t *ire; 5932 ip_stack_t *ipst = ill->ill_ipst; 5933 5934 ASSERT(!ill->ill_isv6); 5935 5936 /* 5937 * Someone could be changing this ipif currently or change it 5938 * after we return this. Thus a few packets could use the old 5939 * old values. However structure updates/creates (ire, ilg, ilm etc) 5940 * will atomically be updated or cleaned up with the new value 5941 * Thus we don't need a lock to check the flags or other attrs below. 5942 */ 5943 mutex_enter(&ill->ill_lock); 5944 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 5945 if (!IPIF_CAN_LOOKUP(ipif)) 5946 continue; 5947 if (zoneid != ALL_ZONES && zoneid != ipif->ipif_zoneid && 5948 ipif->ipif_zoneid != ALL_ZONES) 5949 continue; 5950 /* Allow the ipif to be down */ 5951 if (ipif->ipif_flags & IPIF_POINTOPOINT) { 5952 if ((ipif->ipif_pp_dst_addr == addr) || 5953 (!(ipif->ipif_flags & IPIF_UNNUMBERED) && 5954 ipif->ipif_lcl_addr == addr)) { 5955 ipif_refhold_locked(ipif); 5956 mutex_exit(&ill->ill_lock); 5957 return (ipif); 5958 } 5959 } else if (ipif->ipif_subnet == (addr & ipif->ipif_net_mask)) { 5960 ipif_refhold_locked(ipif); 5961 mutex_exit(&ill->ill_lock); 5962 return (ipif); 5963 } 5964 } 5965 mutex_exit(&ill->ill_lock); 5966 ire = ire_route_lookup(addr, 0, 0, 0, NULL, NULL, zoneid, 5967 NULL, MATCH_IRE_RECURSIVE, ipst); 5968 if (ire != NULL) { 5969 /* 5970 * The callers of this function wants to know the 5971 * interface on which they have to send the replies 5972 * back. For IREs that have ire_stq and ire_ipif 5973 * derived from different ills, we really don't care 5974 * what we return here. 5975 */ 5976 ipif = ire->ire_ipif; 5977 if (ipif != NULL) { 5978 ipif_refhold(ipif); 5979 ire_refrele(ire); 5980 return (ipif); 5981 } 5982 ire_refrele(ire); 5983 } 5984 /* Pick the first interface */ 5985 ipif = ipif_get_next_ipif(NULL, ill); 5986 return (ipif); 5987 } 5988 5989 /* 5990 * This func does not prevent refcnt from increasing. But if 5991 * the caller has taken steps to that effect, then this func 5992 * can be used to determine whether the ill has become quiescent 5993 */ 5994 static boolean_t 5995 ill_is_quiescent(ill_t *ill) 5996 { 5997 ipif_t *ipif; 5998 5999 ASSERT(MUTEX_HELD(&ill->ill_lock)); 6000 6001 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 6002 if (ipif->ipif_refcnt != 0 || !IPIF_DOWN_OK(ipif)) { 6003 return (B_FALSE); 6004 } 6005 } 6006 if (!ILL_DOWN_OK(ill) || ill->ill_refcnt != 0) { 6007 return (B_FALSE); 6008 } 6009 return (B_TRUE); 6010 } 6011 6012 boolean_t 6013 ill_is_freeable(ill_t *ill) 6014 { 6015 ipif_t *ipif; 6016 6017 ASSERT(MUTEX_HELD(&ill->ill_lock)); 6018 6019 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 6020 if (ipif->ipif_refcnt != 0 || !IPIF_FREE_OK(ipif)) { 6021 return (B_FALSE); 6022 } 6023 } 6024 if (!ILL_FREE_OK(ill) || ill->ill_refcnt != 0) { 6025 return (B_FALSE); 6026 } 6027 return (B_TRUE); 6028 } 6029 6030 /* 6031 * This func does not prevent refcnt from increasing. But if 6032 * the caller has taken steps to that effect, then this func 6033 * can be used to determine whether the ipif has become quiescent 6034 */ 6035 static boolean_t 6036 ipif_is_quiescent(ipif_t *ipif) 6037 { 6038 ill_t *ill; 6039 6040 ASSERT(MUTEX_HELD(&ipif->ipif_ill->ill_lock)); 6041 6042 if (ipif->ipif_refcnt != 0 || !IPIF_DOWN_OK(ipif)) { 6043 return (B_FALSE); 6044 } 6045 6046 ill = ipif->ipif_ill; 6047 if (ill->ill_ipif_up_count != 0 || ill->ill_ipif_dup_count != 0 || 6048 ill->ill_logical_down) { 6049 return (B_TRUE); 6050 } 6051 6052 /* This is the last ipif going down or being deleted on this ill */ 6053 if (!ILL_DOWN_OK(ill) || ill->ill_refcnt != 0) { 6054 return (B_FALSE); 6055 } 6056 6057 return (B_TRUE); 6058 } 6059 6060 /* 6061 * return true if the ipif can be destroyed: the ipif has to be quiescent 6062 * with zero references from ire/nce/ilm to it. 6063 */ 6064 static boolean_t 6065 ipif_is_freeable(ipif_t *ipif) 6066 { 6067 ASSERT(MUTEX_HELD(&ipif->ipif_ill->ill_lock)); 6068 ASSERT(ipif->ipif_id != 0); 6069 return (ipif->ipif_refcnt == 0 && IPIF_FREE_OK(ipif)); 6070 } 6071 6072 /* 6073 * The ipif/ill/ire has been refreled. Do the tail processing. 6074 * Determine if the ipif or ill in question has become quiescent and if so 6075 * wakeup close and/or restart any queued pending ioctl that is waiting 6076 * for the ipif_down (or ill_down) 6077 */ 6078 void 6079 ipif_ill_refrele_tail(ill_t *ill) 6080 { 6081 mblk_t *mp; 6082 conn_t *connp; 6083 ipsq_t *ipsq; 6084 ipxop_t *ipx; 6085 ipif_t *ipif; 6086 dl_notify_ind_t *dlindp; 6087 6088 ASSERT(MUTEX_HELD(&ill->ill_lock)); 6089 6090 if ((ill->ill_state_flags & ILL_CONDEMNED) && ill_is_freeable(ill)) { 6091 /* ip_modclose() may be waiting */ 6092 cv_broadcast(&ill->ill_cv); 6093 } 6094 6095 ipsq = ill->ill_phyint->phyint_ipsq; 6096 mutex_enter(&ipsq->ipsq_lock); 6097 ipx = ipsq->ipsq_xop; 6098 mutex_enter(&ipx->ipx_lock); 6099 if (ipx->ipx_waitfor == 0) /* no one's waiting; bail */ 6100 goto unlock; 6101 6102 ASSERT(ipx->ipx_pending_mp != NULL && ipx->ipx_pending_ipif != NULL); 6103 6104 ipif = ipx->ipx_pending_ipif; 6105 if (ipif->ipif_ill != ill) /* wait is for another ill; bail */ 6106 goto unlock; 6107 6108 switch (ipx->ipx_waitfor) { 6109 case IPIF_DOWN: 6110 if (!ipif_is_quiescent(ipif)) 6111 goto unlock; 6112 break; 6113 case IPIF_FREE: 6114 if (!ipif_is_freeable(ipif)) 6115 goto unlock; 6116 break; 6117 case ILL_DOWN: 6118 if (!ill_is_quiescent(ill)) 6119 goto unlock; 6120 break; 6121 case ILL_FREE: 6122 /* 6123 * ILL_FREE is only for loopback; normal ill teardown waits 6124 * synchronously in ip_modclose() without using ipx_waitfor, 6125 * handled by the cv_broadcast() at the top of this function. 6126 */ 6127 if (!ill_is_freeable(ill)) 6128 goto unlock; 6129 break; 6130 default: 6131 cmn_err(CE_PANIC, "ipsq: %p unknown ipx_waitfor %d\n", 6132 (void *)ipsq, ipx->ipx_waitfor); 6133 } 6134 6135 ill_refhold_locked(ill); /* for qwriter_ip() call below */ 6136 mutex_exit(&ipx->ipx_lock); 6137 mp = ipsq_pending_mp_get(ipsq, &connp); 6138 mutex_exit(&ipsq->ipsq_lock); 6139 mutex_exit(&ill->ill_lock); 6140 6141 ASSERT(mp != NULL); 6142 /* 6143 * NOTE: all of the qwriter_ip() calls below use CUR_OP since 6144 * we can only get here when the current operation decides it 6145 * it needs to quiesce via ipsq_pending_mp_add(). 6146 */ 6147 switch (mp->b_datap->db_type) { 6148 case M_PCPROTO: 6149 case M_PROTO: 6150 /* 6151 * For now, only DL_NOTIFY_IND messages can use this facility. 6152 */ 6153 dlindp = (dl_notify_ind_t *)mp->b_rptr; 6154 ASSERT(dlindp->dl_primitive == DL_NOTIFY_IND); 6155 6156 switch (dlindp->dl_notification) { 6157 case DL_NOTE_PHYS_ADDR: 6158 qwriter_ip(ill, ill->ill_rq, mp, 6159 ill_set_phys_addr_tail, CUR_OP, B_TRUE); 6160 return; 6161 case DL_NOTE_REPLUMB: 6162 qwriter_ip(ill, ill->ill_rq, mp, 6163 ill_replumb_tail, CUR_OP, B_TRUE); 6164 return; 6165 default: 6166 ASSERT(0); 6167 ill_refrele(ill); 6168 } 6169 break; 6170 6171 case M_ERROR: 6172 case M_HANGUP: 6173 qwriter_ip(ill, ill->ill_rq, mp, ipif_all_down_tail, CUR_OP, 6174 B_TRUE); 6175 return; 6176 6177 case M_IOCTL: 6178 case M_IOCDATA: 6179 qwriter_ip(ill, (connp != NULL ? CONNP_TO_WQ(connp) : 6180 ill->ill_wq), mp, ip_reprocess_ioctl, CUR_OP, B_TRUE); 6181 return; 6182 6183 default: 6184 cmn_err(CE_PANIC, "ipif_ill_refrele_tail mp %p " 6185 "db_type %d\n", (void *)mp, mp->b_datap->db_type); 6186 } 6187 return; 6188 unlock: 6189 mutex_exit(&ipsq->ipsq_lock); 6190 mutex_exit(&ipx->ipx_lock); 6191 mutex_exit(&ill->ill_lock); 6192 } 6193 6194 #ifdef DEBUG 6195 /* Reuse trace buffer from beginning (if reached the end) and record trace */ 6196 static void 6197 th_trace_rrecord(th_trace_t *th_trace) 6198 { 6199 tr_buf_t *tr_buf; 6200 uint_t lastref; 6201 6202 lastref = th_trace->th_trace_lastref; 6203 lastref++; 6204 if (lastref == TR_BUF_MAX) 6205 lastref = 0; 6206 th_trace->th_trace_lastref = lastref; 6207 tr_buf = &th_trace->th_trbuf[lastref]; 6208 tr_buf->tr_time = lbolt; 6209 tr_buf->tr_depth = getpcstack(tr_buf->tr_stack, TR_STACK_DEPTH); 6210 } 6211 6212 static void 6213 th_trace_free(void *value) 6214 { 6215 th_trace_t *th_trace = value; 6216 6217 ASSERT(th_trace->th_refcnt == 0); 6218 kmem_free(th_trace, sizeof (*th_trace)); 6219 } 6220 6221 /* 6222 * Find or create the per-thread hash table used to track object references. 6223 * The ipst argument is NULL if we shouldn't allocate. 6224 * 6225 * Accesses per-thread data, so there's no need to lock here. 6226 */ 6227 static mod_hash_t * 6228 th_trace_gethash(ip_stack_t *ipst) 6229 { 6230 th_hash_t *thh; 6231 6232 if ((thh = tsd_get(ip_thread_data)) == NULL && ipst != NULL) { 6233 mod_hash_t *mh; 6234 char name[256]; 6235 size_t objsize, rshift; 6236 int retv; 6237 6238 if ((thh = kmem_alloc(sizeof (*thh), KM_NOSLEEP)) == NULL) 6239 return (NULL); 6240 (void) snprintf(name, sizeof (name), "th_trace_%p", 6241 (void *)curthread); 6242 6243 /* 6244 * We use mod_hash_create_extended here rather than the more 6245 * obvious mod_hash_create_ptrhash because the latter has a 6246 * hard-coded KM_SLEEP, and we'd prefer to fail rather than 6247 * block. 6248 */ 6249 objsize = MAX(MAX(sizeof (ill_t), sizeof (ipif_t)), 6250 MAX(sizeof (ire_t), sizeof (nce_t))); 6251 rshift = highbit(objsize); 6252 mh = mod_hash_create_extended(name, 64, mod_hash_null_keydtor, 6253 th_trace_free, mod_hash_byptr, (void *)rshift, 6254 mod_hash_ptrkey_cmp, KM_NOSLEEP); 6255 if (mh == NULL) { 6256 kmem_free(thh, sizeof (*thh)); 6257 return (NULL); 6258 } 6259 thh->thh_hash = mh; 6260 thh->thh_ipst = ipst; 6261 /* 6262 * We trace ills, ipifs, ires, and nces. All of these are 6263 * per-IP-stack, so the lock on the thread list is as well. 6264 */ 6265 rw_enter(&ip_thread_rwlock, RW_WRITER); 6266 list_insert_tail(&ip_thread_list, thh); 6267 rw_exit(&ip_thread_rwlock); 6268 retv = tsd_set(ip_thread_data, thh); 6269 ASSERT(retv == 0); 6270 } 6271 return (thh != NULL ? thh->thh_hash : NULL); 6272 } 6273 6274 boolean_t 6275 th_trace_ref(const void *obj, ip_stack_t *ipst) 6276 { 6277 th_trace_t *th_trace; 6278 mod_hash_t *mh; 6279 mod_hash_val_t val; 6280 6281 if ((mh = th_trace_gethash(ipst)) == NULL) 6282 return (B_FALSE); 6283 6284 /* 6285 * Attempt to locate the trace buffer for this obj and thread. 6286 * If it does not exist, then allocate a new trace buffer and 6287 * insert into the hash. 6288 */ 6289 if (mod_hash_find(mh, (mod_hash_key_t)obj, &val) == MH_ERR_NOTFOUND) { 6290 th_trace = kmem_zalloc(sizeof (th_trace_t), KM_NOSLEEP); 6291 if (th_trace == NULL) 6292 return (B_FALSE); 6293 6294 th_trace->th_id = curthread; 6295 if (mod_hash_insert(mh, (mod_hash_key_t)obj, 6296 (mod_hash_val_t)th_trace) != 0) { 6297 kmem_free(th_trace, sizeof (th_trace_t)); 6298 return (B_FALSE); 6299 } 6300 } else { 6301 th_trace = (th_trace_t *)val; 6302 } 6303 6304 ASSERT(th_trace->th_refcnt >= 0 && 6305 th_trace->th_refcnt < TR_BUF_MAX - 1); 6306 6307 th_trace->th_refcnt++; 6308 th_trace_rrecord(th_trace); 6309 return (B_TRUE); 6310 } 6311 6312 /* 6313 * For the purpose of tracing a reference release, we assume that global 6314 * tracing is always on and that the same thread initiated the reference hold 6315 * is releasing. 6316 */ 6317 void 6318 th_trace_unref(const void *obj) 6319 { 6320 int retv; 6321 mod_hash_t *mh; 6322 th_trace_t *th_trace; 6323 mod_hash_val_t val; 6324 6325 mh = th_trace_gethash(NULL); 6326 retv = mod_hash_find(mh, (mod_hash_key_t)obj, &val); 6327 ASSERT(retv == 0); 6328 th_trace = (th_trace_t *)val; 6329 6330 ASSERT(th_trace->th_refcnt > 0); 6331 th_trace->th_refcnt--; 6332 th_trace_rrecord(th_trace); 6333 } 6334 6335 /* 6336 * If tracing has been disabled, then we assume that the reference counts are 6337 * now useless, and we clear them out before destroying the entries. 6338 */ 6339 void 6340 th_trace_cleanup(const void *obj, boolean_t trace_disable) 6341 { 6342 th_hash_t *thh; 6343 mod_hash_t *mh; 6344 mod_hash_val_t val; 6345 th_trace_t *th_trace; 6346 int retv; 6347 6348 rw_enter(&ip_thread_rwlock, RW_READER); 6349 for (thh = list_head(&ip_thread_list); thh != NULL; 6350 thh = list_next(&ip_thread_list, thh)) { 6351 if (mod_hash_find(mh = thh->thh_hash, (mod_hash_key_t)obj, 6352 &val) == 0) { 6353 th_trace = (th_trace_t *)val; 6354 if (trace_disable) 6355 th_trace->th_refcnt = 0; 6356 retv = mod_hash_destroy(mh, (mod_hash_key_t)obj); 6357 ASSERT(retv == 0); 6358 } 6359 } 6360 rw_exit(&ip_thread_rwlock); 6361 } 6362 6363 void 6364 ipif_trace_ref(ipif_t *ipif) 6365 { 6366 ASSERT(MUTEX_HELD(&ipif->ipif_ill->ill_lock)); 6367 6368 if (ipif->ipif_trace_disable) 6369 return; 6370 6371 if (!th_trace_ref(ipif, ipif->ipif_ill->ill_ipst)) { 6372 ipif->ipif_trace_disable = B_TRUE; 6373 ipif_trace_cleanup(ipif); 6374 } 6375 } 6376 6377 void 6378 ipif_untrace_ref(ipif_t *ipif) 6379 { 6380 ASSERT(MUTEX_HELD(&ipif->ipif_ill->ill_lock)); 6381 6382 if (!ipif->ipif_trace_disable) 6383 th_trace_unref(ipif); 6384 } 6385 6386 void 6387 ill_trace_ref(ill_t *ill) 6388 { 6389 ASSERT(MUTEX_HELD(&ill->ill_lock)); 6390 6391 if (ill->ill_trace_disable) 6392 return; 6393 6394 if (!th_trace_ref(ill, ill->ill_ipst)) { 6395 ill->ill_trace_disable = B_TRUE; 6396 ill_trace_cleanup(ill); 6397 } 6398 } 6399 6400 void 6401 ill_untrace_ref(ill_t *ill) 6402 { 6403 ASSERT(MUTEX_HELD(&ill->ill_lock)); 6404 6405 if (!ill->ill_trace_disable) 6406 th_trace_unref(ill); 6407 } 6408 6409 /* 6410 * Called when ipif is unplumbed or when memory alloc fails. Note that on 6411 * failure, ipif_trace_disable is set. 6412 */ 6413 static void 6414 ipif_trace_cleanup(const ipif_t *ipif) 6415 { 6416 th_trace_cleanup(ipif, ipif->ipif_trace_disable); 6417 } 6418 6419 /* 6420 * Called when ill is unplumbed or when memory alloc fails. Note that on 6421 * failure, ill_trace_disable is set. 6422 */ 6423 static void 6424 ill_trace_cleanup(const ill_t *ill) 6425 { 6426 th_trace_cleanup(ill, ill->ill_trace_disable); 6427 } 6428 #endif /* DEBUG */ 6429 6430 void 6431 ipif_refhold_locked(ipif_t *ipif) 6432 { 6433 ASSERT(MUTEX_HELD(&ipif->ipif_ill->ill_lock)); 6434 ipif->ipif_refcnt++; 6435 IPIF_TRACE_REF(ipif); 6436 } 6437 6438 void 6439 ipif_refhold(ipif_t *ipif) 6440 { 6441 ill_t *ill; 6442 6443 ill = ipif->ipif_ill; 6444 mutex_enter(&ill->ill_lock); 6445 ipif->ipif_refcnt++; 6446 IPIF_TRACE_REF(ipif); 6447 mutex_exit(&ill->ill_lock); 6448 } 6449 6450 /* 6451 * Must not be called while holding any locks. Otherwise if this is 6452 * the last reference to be released there is a chance of recursive mutex 6453 * panic due to ipif_refrele -> ipif_ill_refrele_tail -> qwriter_ip trying 6454 * to restart an ioctl. 6455 */ 6456 void 6457 ipif_refrele(ipif_t *ipif) 6458 { 6459 ill_t *ill; 6460 6461 ill = ipif->ipif_ill; 6462 6463 mutex_enter(&ill->ill_lock); 6464 ASSERT(ipif->ipif_refcnt != 0); 6465 ipif->ipif_refcnt--; 6466 IPIF_UNTRACE_REF(ipif); 6467 if (ipif->ipif_refcnt != 0) { 6468 mutex_exit(&ill->ill_lock); 6469 return; 6470 } 6471 6472 /* Drops the ill_lock */ 6473 ipif_ill_refrele_tail(ill); 6474 } 6475 6476 ipif_t * 6477 ipif_get_next_ipif(ipif_t *curr, ill_t *ill) 6478 { 6479 ipif_t *ipif; 6480 6481 mutex_enter(&ill->ill_lock); 6482 for (ipif = (curr == NULL ? ill->ill_ipif : curr->ipif_next); 6483 ipif != NULL; ipif = ipif->ipif_next) { 6484 if (!IPIF_CAN_LOOKUP(ipif)) 6485 continue; 6486 ipif_refhold_locked(ipif); 6487 mutex_exit(&ill->ill_lock); 6488 return (ipif); 6489 } 6490 mutex_exit(&ill->ill_lock); 6491 return (NULL); 6492 } 6493 6494 /* 6495 * TODO: make this table extendible at run time 6496 * Return a pointer to the mac type info for 'mac_type' 6497 */ 6498 static ip_m_t * 6499 ip_m_lookup(t_uscalar_t mac_type) 6500 { 6501 ip_m_t *ipm; 6502 6503 for (ipm = ip_m_tbl; ipm < A_END(ip_m_tbl); ipm++) 6504 if (ipm->ip_m_mac_type == mac_type) 6505 return (ipm); 6506 return (NULL); 6507 } 6508 6509 /* 6510 * ip_rt_add is called to add an IPv4 route to the forwarding table. 6511 * ipif_arg is passed in to associate it with the correct interface. 6512 * We may need to restart this operation if the ipif cannot be looked up 6513 * due to an exclusive operation that is currently in progress. The restart 6514 * entry point is specified by 'func' 6515 */ 6516 int 6517 ip_rt_add(ipaddr_t dst_addr, ipaddr_t mask, ipaddr_t gw_addr, 6518 ipaddr_t src_addr, int flags, ipif_t *ipif_arg, ire_t **ire_arg, 6519 boolean_t ioctl_msg, queue_t *q, mblk_t *mp, ipsq_func_t func, 6520 struct rtsa_s *sp, ip_stack_t *ipst) 6521 { 6522 ire_t *ire; 6523 ire_t *gw_ire = NULL; 6524 ipif_t *ipif = NULL; 6525 boolean_t ipif_refheld = B_FALSE; 6526 uint_t type; 6527 int match_flags = MATCH_IRE_TYPE; 6528 int error; 6529 tsol_gc_t *gc = NULL; 6530 tsol_gcgrp_t *gcgrp = NULL; 6531 boolean_t gcgrp_xtraref = B_FALSE; 6532 6533 ip1dbg(("ip_rt_add:")); 6534 6535 if (ire_arg != NULL) 6536 *ire_arg = NULL; 6537 6538 /* 6539 * If this is the case of RTF_HOST being set, then we set the netmask 6540 * to all ones (regardless if one was supplied). 6541 */ 6542 if (flags & RTF_HOST) 6543 mask = IP_HOST_MASK; 6544 6545 /* 6546 * Prevent routes with a zero gateway from being created (since 6547 * interfaces can currently be plumbed and brought up no assigned 6548 * address). 6549 */ 6550 if (gw_addr == 0) 6551 return (ENETUNREACH); 6552 /* 6553 * Get the ipif, if any, corresponding to the gw_addr 6554 */ 6555 ipif = ipif_lookup_interface(gw_addr, dst_addr, q, mp, func, &error, 6556 ipst); 6557 if (ipif != NULL) { 6558 if (IS_VNI(ipif->ipif_ill)) { 6559 ipif_refrele(ipif); 6560 return (EINVAL); 6561 } 6562 ipif_refheld = B_TRUE; 6563 } else if (error == EINPROGRESS) { 6564 ip1dbg(("ip_rt_add: null and EINPROGRESS")); 6565 return (EINPROGRESS); 6566 } else { 6567 error = 0; 6568 } 6569 6570 if (ipif != NULL) { 6571 ip1dbg(("ip_rt_add: ipif_lookup_interface done ipif nonnull")); 6572 ASSERT(!MUTEX_HELD(&ipif->ipif_ill->ill_lock)); 6573 } else { 6574 ip1dbg(("ip_rt_add: ipif_lookup_interface done ipif is null")); 6575 } 6576 6577 /* 6578 * GateD will attempt to create routes with a loopback interface 6579 * address as the gateway and with RTF_GATEWAY set. We allow 6580 * these routes to be added, but create them as interface routes 6581 * since the gateway is an interface address. 6582 */ 6583 if ((ipif != NULL) && (ipif->ipif_ire_type == IRE_LOOPBACK)) { 6584 flags &= ~RTF_GATEWAY; 6585 if (gw_addr == INADDR_LOOPBACK && dst_addr == INADDR_LOOPBACK && 6586 mask == IP_HOST_MASK) { 6587 ire = ire_ctable_lookup(dst_addr, 0, IRE_LOOPBACK, ipif, 6588 ALL_ZONES, NULL, match_flags, ipst); 6589 if (ire != NULL) { 6590 ire_refrele(ire); 6591 if (ipif_refheld) 6592 ipif_refrele(ipif); 6593 return (EEXIST); 6594 } 6595 ip1dbg(("ipif_up_done: 0x%p creating IRE 0x%x" 6596 "for 0x%x\n", (void *)ipif, 6597 ipif->ipif_ire_type, 6598 ntohl(ipif->ipif_lcl_addr))); 6599 ire = ire_create( 6600 (uchar_t *)&dst_addr, /* dest address */ 6601 (uchar_t *)&mask, /* mask */ 6602 (uchar_t *)&ipif->ipif_src_addr, 6603 NULL, /* no gateway */ 6604 &ipif->ipif_mtu, 6605 NULL, 6606 ipif->ipif_rq, /* recv-from queue */ 6607 NULL, /* no send-to queue */ 6608 ipif->ipif_ire_type, /* LOOPBACK */ 6609 ipif, 6610 0, 6611 0, 6612 0, 6613 (ipif->ipif_flags & IPIF_PRIVATE) ? 6614 RTF_PRIVATE : 0, 6615 &ire_uinfo_null, 6616 NULL, 6617 NULL, 6618 ipst); 6619 6620 if (ire == NULL) { 6621 if (ipif_refheld) 6622 ipif_refrele(ipif); 6623 return (ENOMEM); 6624 } 6625 error = ire_add(&ire, q, mp, func, B_FALSE); 6626 if (error == 0) 6627 goto save_ire; 6628 if (ipif_refheld) 6629 ipif_refrele(ipif); 6630 return (error); 6631 6632 } 6633 } 6634 6635 /* 6636 * Traditionally, interface routes are ones where RTF_GATEWAY isn't set 6637 * and the gateway address provided is one of the system's interface 6638 * addresses. By using the routing socket interface and supplying an 6639 * RTA_IFP sockaddr with an interface index, an alternate method of 6640 * specifying an interface route to be created is available which uses 6641 * the interface index that specifies the outgoing interface rather than 6642 * the address of an outgoing interface (which may not be able to 6643 * uniquely identify an interface). When coupled with the RTF_GATEWAY 6644 * flag, routes can be specified which not only specify the next-hop to 6645 * be used when routing to a certain prefix, but also which outgoing 6646 * interface should be used. 6647 * 6648 * Previously, interfaces would have unique addresses assigned to them 6649 * and so the address assigned to a particular interface could be used 6650 * to identify a particular interface. One exception to this was the 6651 * case of an unnumbered interface (where IPIF_UNNUMBERED was set). 6652 * 6653 * With the advent of IPv6 and its link-local addresses, this 6654 * restriction was relaxed and interfaces could share addresses between 6655 * themselves. In fact, typically all of the link-local interfaces on 6656 * an IPv6 node or router will have the same link-local address. In 6657 * order to differentiate between these interfaces, the use of an 6658 * interface index is necessary and this index can be carried inside a 6659 * RTA_IFP sockaddr (which is actually a sockaddr_dl). One restriction 6660 * of using the interface index, however, is that all of the ipif's that 6661 * are part of an ill have the same index and so the RTA_IFP sockaddr 6662 * cannot be used to differentiate between ipif's (or logical 6663 * interfaces) that belong to the same ill (physical interface). 6664 * 6665 * For example, in the following case involving IPv4 interfaces and 6666 * logical interfaces 6667 * 6668 * 192.0.2.32 255.255.255.224 192.0.2.33 U if0 6669 * 192.0.2.32 255.255.255.224 192.0.2.34 U if0:1 6670 * 192.0.2.32 255.255.255.224 192.0.2.35 U if0:2 6671 * 6672 * the ipif's corresponding to each of these interface routes can be 6673 * uniquely identified by the "gateway" (actually interface address). 6674 * 6675 * In this case involving multiple IPv6 default routes to a particular 6676 * link-local gateway, the use of RTA_IFP is necessary to specify which 6677 * default route is of interest: 6678 * 6679 * default fe80::123:4567:89ab:cdef U if0 6680 * default fe80::123:4567:89ab:cdef U if1 6681 */ 6682 6683 /* RTF_GATEWAY not set */ 6684 if (!(flags & RTF_GATEWAY)) { 6685 queue_t *stq; 6686 6687 if (sp != NULL) { 6688 ip2dbg(("ip_rt_add: gateway security attributes " 6689 "cannot be set with interface route\n")); 6690 if (ipif_refheld) 6691 ipif_refrele(ipif); 6692 return (EINVAL); 6693 } 6694 6695 /* 6696 * As the interface index specified with the RTA_IFP sockaddr is 6697 * the same for all ipif's off of an ill, the matching logic 6698 * below uses MATCH_IRE_ILL if such an index was specified. 6699 * This means that routes sharing the same prefix when added 6700 * using a RTA_IFP sockaddr must have distinct interface 6701 * indices (namely, they must be on distinct ill's). 6702 * 6703 * On the other hand, since the gateway address will usually be 6704 * different for each ipif on the system, the matching logic 6705 * uses MATCH_IRE_IPIF in the case of a traditional interface 6706 * route. This means that interface routes for the same prefix 6707 * can be created if they belong to distinct ipif's and if a 6708 * RTA_IFP sockaddr is not present. 6709 */ 6710 if (ipif_arg != NULL) { 6711 if (ipif_refheld) { 6712 ipif_refrele(ipif); 6713 ipif_refheld = B_FALSE; 6714 } 6715 ipif = ipif_arg; 6716 match_flags |= MATCH_IRE_ILL; 6717 } else { 6718 /* 6719 * Check the ipif corresponding to the gw_addr 6720 */ 6721 if (ipif == NULL) 6722 return (ENETUNREACH); 6723 match_flags |= MATCH_IRE_IPIF; 6724 } 6725 ASSERT(ipif != NULL); 6726 6727 /* 6728 * We check for an existing entry at this point. 6729 * 6730 * Since a netmask isn't passed in via the ioctl interface 6731 * (SIOCADDRT), we don't check for a matching netmask in that 6732 * case. 6733 */ 6734 if (!ioctl_msg) 6735 match_flags |= MATCH_IRE_MASK; 6736 ire = ire_ftable_lookup(dst_addr, mask, 0, IRE_INTERFACE, ipif, 6737 NULL, ALL_ZONES, 0, NULL, match_flags, ipst); 6738 if (ire != NULL) { 6739 ire_refrele(ire); 6740 if (ipif_refheld) 6741 ipif_refrele(ipif); 6742 return (EEXIST); 6743 } 6744 6745 stq = (ipif->ipif_net_type == IRE_IF_RESOLVER) 6746 ? ipif->ipif_rq : ipif->ipif_wq; 6747 6748 /* 6749 * Create a copy of the IRE_LOOPBACK, 6750 * IRE_IF_NORESOLVER or IRE_IF_RESOLVER with 6751 * the modified address and netmask. 6752 */ 6753 ire = ire_create( 6754 (uchar_t *)&dst_addr, 6755 (uint8_t *)&mask, 6756 (uint8_t *)&ipif->ipif_src_addr, 6757 NULL, 6758 &ipif->ipif_mtu, 6759 NULL, 6760 NULL, 6761 stq, 6762 ipif->ipif_net_type, 6763 ipif, 6764 0, 6765 0, 6766 0, 6767 flags, 6768 &ire_uinfo_null, 6769 NULL, 6770 NULL, 6771 ipst); 6772 if (ire == NULL) { 6773 if (ipif_refheld) 6774 ipif_refrele(ipif); 6775 return (ENOMEM); 6776 } 6777 6778 /* 6779 * Some software (for example, GateD and Sun Cluster) attempts 6780 * to create (what amount to) IRE_PREFIX routes with the 6781 * loopback address as the gateway. This is primarily done to 6782 * set up prefixes with the RTF_REJECT flag set (for example, 6783 * when generating aggregate routes.) 6784 * 6785 * If the IRE type (as defined by ipif->ipif_net_type) is 6786 * IRE_LOOPBACK, then we map the request into a 6787 * IRE_IF_NORESOLVER. We also OR in the RTF_BLACKHOLE flag as 6788 * these interface routes, by definition, can only be that. 6789 * 6790 * Needless to say, the real IRE_LOOPBACK is NOT created by this 6791 * routine, but rather using ire_create() directly. 6792 * 6793 */ 6794 if (ipif->ipif_net_type == IRE_LOOPBACK) { 6795 ire->ire_type = IRE_IF_NORESOLVER; 6796 ire->ire_flags |= RTF_BLACKHOLE; 6797 } 6798 6799 error = ire_add(&ire, q, mp, func, B_FALSE); 6800 if (error == 0) 6801 goto save_ire; 6802 6803 /* 6804 * In the result of failure, ire_add() will have already 6805 * deleted the ire in question, so there is no need to 6806 * do that here. 6807 */ 6808 if (ipif_refheld) 6809 ipif_refrele(ipif); 6810 return (error); 6811 } 6812 if (ipif_refheld) { 6813 ipif_refrele(ipif); 6814 ipif_refheld = B_FALSE; 6815 } 6816 6817 /* 6818 * Get an interface IRE for the specified gateway. 6819 * If we don't have an IRE_IF_NORESOLVER or IRE_IF_RESOLVER for the 6820 * gateway, it is currently unreachable and we fail the request 6821 * accordingly. 6822 */ 6823 ipif = ipif_arg; 6824 if (ipif_arg != NULL) 6825 match_flags |= MATCH_IRE_ILL; 6826 again: 6827 gw_ire = ire_ftable_lookup(gw_addr, 0, 0, IRE_INTERFACE, ipif_arg, NULL, 6828 ALL_ZONES, 0, NULL, match_flags, ipst); 6829 if (gw_ire == NULL) { 6830 /* 6831 * With IPMP, we allow host routes to influence in.mpathd's 6832 * target selection. However, if the test addresses are on 6833 * their own network, the above lookup will fail since the 6834 * underlying IRE_INTERFACEs are marked hidden. So allow 6835 * hidden test IREs to be found and try again. 6836 */ 6837 if (!(match_flags & MATCH_IRE_MARK_TESTHIDDEN)) { 6838 match_flags |= MATCH_IRE_MARK_TESTHIDDEN; 6839 goto again; 6840 } 6841 return (ENETUNREACH); 6842 } 6843 6844 /* 6845 * We create one of three types of IREs as a result of this request 6846 * based on the netmask. A netmask of all ones (which is automatically 6847 * assumed when RTF_HOST is set) results in an IRE_HOST being created. 6848 * An all zeroes netmask implies a default route so an IRE_DEFAULT is 6849 * created. Otherwise, an IRE_PREFIX route is created for the 6850 * destination prefix. 6851 */ 6852 if (mask == IP_HOST_MASK) 6853 type = IRE_HOST; 6854 else if (mask == 0) 6855 type = IRE_DEFAULT; 6856 else 6857 type = IRE_PREFIX; 6858 6859 /* check for a duplicate entry */ 6860 ire = ire_ftable_lookup(dst_addr, mask, gw_addr, type, ipif_arg, 6861 NULL, ALL_ZONES, 0, NULL, 6862 match_flags | MATCH_IRE_MASK | MATCH_IRE_GW, ipst); 6863 if (ire != NULL) { 6864 ire_refrele(gw_ire); 6865 ire_refrele(ire); 6866 return (EEXIST); 6867 } 6868 6869 /* Security attribute exists */ 6870 if (sp != NULL) { 6871 tsol_gcgrp_addr_t ga; 6872 6873 /* find or create the gateway credentials group */ 6874 ga.ga_af = AF_INET; 6875 IN6_IPADDR_TO_V4MAPPED(gw_addr, &ga.ga_addr); 6876 6877 /* we hold reference to it upon success */ 6878 gcgrp = gcgrp_lookup(&ga, B_TRUE); 6879 if (gcgrp == NULL) { 6880 ire_refrele(gw_ire); 6881 return (ENOMEM); 6882 } 6883 6884 /* 6885 * Create and add the security attribute to the group; a 6886 * reference to the group is made upon allocating a new 6887 * entry successfully. If it finds an already-existing 6888 * entry for the security attribute in the group, it simply 6889 * returns it and no new reference is made to the group. 6890 */ 6891 gc = gc_create(sp, gcgrp, &gcgrp_xtraref); 6892 if (gc == NULL) { 6893 /* release reference held by gcgrp_lookup */ 6894 GCGRP_REFRELE(gcgrp); 6895 ire_refrele(gw_ire); 6896 return (ENOMEM); 6897 } 6898 } 6899 6900 /* Create the IRE. */ 6901 ire = ire_create( 6902 (uchar_t *)&dst_addr, /* dest address */ 6903 (uchar_t *)&mask, /* mask */ 6904 /* src address assigned by the caller? */ 6905 (uchar_t *)(((src_addr != INADDR_ANY) && 6906 (flags & RTF_SETSRC)) ? &src_addr : NULL), 6907 (uchar_t *)&gw_addr, /* gateway address */ 6908 &gw_ire->ire_max_frag, 6909 NULL, /* no src nce */ 6910 NULL, /* no recv-from queue */ 6911 NULL, /* no send-to queue */ 6912 (ushort_t)type, /* IRE type */ 6913 ipif_arg, 6914 0, 6915 0, 6916 0, 6917 flags, 6918 &gw_ire->ire_uinfo, /* Inherit ULP info from gw */ 6919 gc, /* security attribute */ 6920 NULL, 6921 ipst); 6922 6923 /* 6924 * The ire holds a reference to the 'gc' and the 'gc' holds a 6925 * reference to the 'gcgrp'. We can now release the extra reference 6926 * the 'gcgrp' acquired in the gcgrp_lookup, if it was not used. 6927 */ 6928 if (gcgrp_xtraref) 6929 GCGRP_REFRELE(gcgrp); 6930 if (ire == NULL) { 6931 if (gc != NULL) 6932 GC_REFRELE(gc); 6933 ire_refrele(gw_ire); 6934 return (ENOMEM); 6935 } 6936 6937 /* 6938 * POLICY: should we allow an RTF_HOST with address INADDR_ANY? 6939 * SUN/OS socket stuff does but do we really want to allow 0.0.0.0? 6940 */ 6941 6942 /* Add the new IRE. */ 6943 error = ire_add(&ire, q, mp, func, B_FALSE); 6944 if (error != 0) { 6945 /* 6946 * In the result of failure, ire_add() will have already 6947 * deleted the ire in question, so there is no need to 6948 * do that here. 6949 */ 6950 ire_refrele(gw_ire); 6951 return (error); 6952 } 6953 6954 if (flags & RTF_MULTIRT) { 6955 /* 6956 * Invoke the CGTP (multirouting) filtering module 6957 * to add the dst address in the filtering database. 6958 * Replicated inbound packets coming from that address 6959 * will be filtered to discard the duplicates. 6960 * It is not necessary to call the CGTP filter hook 6961 * when the dst address is a broadcast or multicast, 6962 * because an IP source address cannot be a broadcast 6963 * or a multicast. 6964 */ 6965 ire_t *ire_dst = ire_ctable_lookup(ire->ire_addr, 0, 6966 IRE_BROADCAST, NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 6967 if (ire_dst != NULL) { 6968 ip_cgtp_bcast_add(ire, ire_dst, ipst); 6969 ire_refrele(ire_dst); 6970 goto save_ire; 6971 } 6972 if (ipst->ips_ip_cgtp_filter_ops != NULL && 6973 !CLASSD(ire->ire_addr)) { 6974 int res = ipst->ips_ip_cgtp_filter_ops->cfo_add_dest_v4( 6975 ipst->ips_netstack->netstack_stackid, 6976 ire->ire_addr, 6977 ire->ire_gateway_addr, 6978 ire->ire_src_addr, 6979 gw_ire->ire_src_addr); 6980 if (res != 0) { 6981 ire_refrele(gw_ire); 6982 ire_delete(ire); 6983 return (res); 6984 } 6985 } 6986 } 6987 6988 /* 6989 * Now that the prefix IRE entry has been created, delete any 6990 * existing gateway IRE cache entries as well as any IRE caches 6991 * using the gateway, and force them to be created through 6992 * ip_newroute. 6993 */ 6994 if (gc != NULL) { 6995 ASSERT(gcgrp != NULL); 6996 ire_clookup_delete_cache_gw(gw_addr, ALL_ZONES, ipst); 6997 } 6998 6999 save_ire: 7000 if (gw_ire != NULL) { 7001 ire_refrele(gw_ire); 7002 } 7003 if (ipif != NULL) { 7004 /* 7005 * Save enough information so that we can recreate the IRE if 7006 * the interface goes down and then up. The metrics associated 7007 * with the route will be saved as well when rts_setmetrics() is 7008 * called after the IRE has been created. In the case where 7009 * memory cannot be allocated, none of this information will be 7010 * saved. 7011 */ 7012 ipif_save_ire(ipif, ire); 7013 } 7014 if (ioctl_msg) 7015 ip_rts_rtmsg(RTM_OLDADD, ire, 0, ipst); 7016 if (ire_arg != NULL) { 7017 /* 7018 * Store the ire that was successfully added into where ire_arg 7019 * points to so that callers don't have to look it up 7020 * themselves (but they are responsible for ire_refrele()ing 7021 * the ire when they are finished with it). 7022 */ 7023 *ire_arg = ire; 7024 } else { 7025 ire_refrele(ire); /* Held in ire_add */ 7026 } 7027 if (ipif_refheld) 7028 ipif_refrele(ipif); 7029 return (0); 7030 } 7031 7032 /* 7033 * ip_rt_delete is called to delete an IPv4 route. 7034 * ipif_arg is passed in to associate it with the correct interface. 7035 * We may need to restart this operation if the ipif cannot be looked up 7036 * due to an exclusive operation that is currently in progress. The restart 7037 * entry point is specified by 'func' 7038 */ 7039 /* ARGSUSED4 */ 7040 int 7041 ip_rt_delete(ipaddr_t dst_addr, ipaddr_t mask, ipaddr_t gw_addr, 7042 uint_t rtm_addrs, int flags, ipif_t *ipif_arg, boolean_t ioctl_msg, 7043 queue_t *q, mblk_t *mp, ipsq_func_t func, ip_stack_t *ipst) 7044 { 7045 ire_t *ire = NULL; 7046 ipif_t *ipif; 7047 boolean_t ipif_refheld = B_FALSE; 7048 uint_t type; 7049 uint_t match_flags = MATCH_IRE_TYPE; 7050 int err = 0; 7051 7052 ip1dbg(("ip_rt_delete:")); 7053 /* 7054 * If this is the case of RTF_HOST being set, then we set the netmask 7055 * to all ones. Otherwise, we use the netmask if one was supplied. 7056 */ 7057 if (flags & RTF_HOST) { 7058 mask = IP_HOST_MASK; 7059 match_flags |= MATCH_IRE_MASK; 7060 } else if (rtm_addrs & RTA_NETMASK) { 7061 match_flags |= MATCH_IRE_MASK; 7062 } 7063 7064 /* 7065 * Note that RTF_GATEWAY is never set on a delete, therefore 7066 * we check if the gateway address is one of our interfaces first, 7067 * and fall back on RTF_GATEWAY routes. 7068 * 7069 * This makes it possible to delete an original 7070 * IRE_IF_NORESOLVER/IRE_IF_RESOLVER - consistent with SunOS 4.1. 7071 * 7072 * As the interface index specified with the RTA_IFP sockaddr is the 7073 * same for all ipif's off of an ill, the matching logic below uses 7074 * MATCH_IRE_ILL if such an index was specified. This means a route 7075 * sharing the same prefix and interface index as the the route 7076 * intended to be deleted might be deleted instead if a RTA_IFP sockaddr 7077 * is specified in the request. 7078 * 7079 * On the other hand, since the gateway address will usually be 7080 * different for each ipif on the system, the matching logic 7081 * uses MATCH_IRE_IPIF in the case of a traditional interface 7082 * route. This means that interface routes for the same prefix can be 7083 * uniquely identified if they belong to distinct ipif's and if a 7084 * RTA_IFP sockaddr is not present. 7085 * 7086 * For more detail on specifying routes by gateway address and by 7087 * interface index, see the comments in ip_rt_add(). 7088 */ 7089 ipif = ipif_lookup_interface(gw_addr, dst_addr, q, mp, func, &err, 7090 ipst); 7091 if (ipif != NULL) 7092 ipif_refheld = B_TRUE; 7093 else if (err == EINPROGRESS) 7094 return (err); 7095 else 7096 err = 0; 7097 if (ipif != NULL) { 7098 if (ipif_arg != NULL) { 7099 if (ipif_refheld) { 7100 ipif_refrele(ipif); 7101 ipif_refheld = B_FALSE; 7102 } 7103 ipif = ipif_arg; 7104 match_flags |= MATCH_IRE_ILL; 7105 } else { 7106 match_flags |= MATCH_IRE_IPIF; 7107 } 7108 if (ipif->ipif_ire_type == IRE_LOOPBACK) { 7109 ire = ire_ctable_lookup(dst_addr, 0, IRE_LOOPBACK, ipif, 7110 ALL_ZONES, NULL, match_flags, ipst); 7111 } 7112 if (ire == NULL) { 7113 ire = ire_ftable_lookup(dst_addr, mask, 0, 7114 IRE_INTERFACE, ipif, NULL, ALL_ZONES, 0, NULL, 7115 match_flags, ipst); 7116 } 7117 } 7118 7119 if (ire == NULL) { 7120 /* 7121 * At this point, the gateway address is not one of our own 7122 * addresses or a matching interface route was not found. We 7123 * set the IRE type to lookup based on whether 7124 * this is a host route, a default route or just a prefix. 7125 * 7126 * If an ipif_arg was passed in, then the lookup is based on an 7127 * interface index so MATCH_IRE_ILL is added to match_flags. 7128 * In any case, MATCH_IRE_IPIF is cleared and MATCH_IRE_GW is 7129 * set as the route being looked up is not a traditional 7130 * interface route. 7131 */ 7132 match_flags &= ~MATCH_IRE_IPIF; 7133 match_flags |= MATCH_IRE_GW; 7134 if (ipif_arg != NULL) 7135 match_flags |= MATCH_IRE_ILL; 7136 if (mask == IP_HOST_MASK) 7137 type = IRE_HOST; 7138 else if (mask == 0) 7139 type = IRE_DEFAULT; 7140 else 7141 type = IRE_PREFIX; 7142 ire = ire_ftable_lookup(dst_addr, mask, gw_addr, type, ipif_arg, 7143 NULL, ALL_ZONES, 0, NULL, match_flags, ipst); 7144 } 7145 7146 if (ipif_refheld) 7147 ipif_refrele(ipif); 7148 7149 /* ipif is not refheld anymore */ 7150 if (ire == NULL) 7151 return (ESRCH); 7152 7153 if (ire->ire_flags & RTF_MULTIRT) { 7154 /* 7155 * Invoke the CGTP (multirouting) filtering module 7156 * to remove the dst address from the filtering database. 7157 * Packets coming from that address will no longer be 7158 * filtered to remove duplicates. 7159 */ 7160 if (ipst->ips_ip_cgtp_filter_ops != NULL) { 7161 err = ipst->ips_ip_cgtp_filter_ops->cfo_del_dest_v4( 7162 ipst->ips_netstack->netstack_stackid, 7163 ire->ire_addr, ire->ire_gateway_addr); 7164 } 7165 ip_cgtp_bcast_delete(ire, ipst); 7166 } 7167 7168 ipif = ire->ire_ipif; 7169 if (ipif != NULL) 7170 ipif_remove_ire(ipif, ire); 7171 if (ioctl_msg) 7172 ip_rts_rtmsg(RTM_OLDDEL, ire, 0, ipst); 7173 ire_delete(ire); 7174 ire_refrele(ire); 7175 return (err); 7176 } 7177 7178 /* 7179 * ip_siocaddrt is called to complete processing of an SIOCADDRT IOCTL. 7180 */ 7181 /* ARGSUSED */ 7182 int 7183 ip_siocaddrt(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, 7184 ip_ioctl_cmd_t *ipip, void *dummy_if_req) 7185 { 7186 ipaddr_t dst_addr; 7187 ipaddr_t gw_addr; 7188 ipaddr_t mask; 7189 int error = 0; 7190 mblk_t *mp1; 7191 struct rtentry *rt; 7192 ipif_t *ipif = NULL; 7193 ip_stack_t *ipst; 7194 7195 ASSERT(q->q_next == NULL); 7196 ipst = CONNQ_TO_IPST(q); 7197 7198 ip1dbg(("ip_siocaddrt:")); 7199 /* Existence of mp1 verified in ip_wput_nondata */ 7200 mp1 = mp->b_cont->b_cont; 7201 rt = (struct rtentry *)mp1->b_rptr; 7202 7203 dst_addr = ((sin_t *)&rt->rt_dst)->sin_addr.s_addr; 7204 gw_addr = ((sin_t *)&rt->rt_gateway)->sin_addr.s_addr; 7205 7206 /* 7207 * If the RTF_HOST flag is on, this is a request to assign a gateway 7208 * to a particular host address. In this case, we set the netmask to 7209 * all ones for the particular destination address. Otherwise, 7210 * determine the netmask to be used based on dst_addr and the interfaces 7211 * in use. 7212 */ 7213 if (rt->rt_flags & RTF_HOST) { 7214 mask = IP_HOST_MASK; 7215 } else { 7216 /* 7217 * Note that ip_subnet_mask returns a zero mask in the case of 7218 * default (an all-zeroes address). 7219 */ 7220 mask = ip_subnet_mask(dst_addr, &ipif, ipst); 7221 } 7222 7223 error = ip_rt_add(dst_addr, mask, gw_addr, 0, rt->rt_flags, NULL, NULL, 7224 B_TRUE, q, mp, ip_process_ioctl, NULL, ipst); 7225 if (ipif != NULL) 7226 ipif_refrele(ipif); 7227 return (error); 7228 } 7229 7230 /* 7231 * ip_siocdelrt is called to complete processing of an SIOCDELRT IOCTL. 7232 */ 7233 /* ARGSUSED */ 7234 int 7235 ip_siocdelrt(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, 7236 ip_ioctl_cmd_t *ipip, void *dummy_if_req) 7237 { 7238 ipaddr_t dst_addr; 7239 ipaddr_t gw_addr; 7240 ipaddr_t mask; 7241 int error; 7242 mblk_t *mp1; 7243 struct rtentry *rt; 7244 ipif_t *ipif = NULL; 7245 ip_stack_t *ipst; 7246 7247 ASSERT(q->q_next == NULL); 7248 ipst = CONNQ_TO_IPST(q); 7249 7250 ip1dbg(("ip_siocdelrt:")); 7251 /* Existence of mp1 verified in ip_wput_nondata */ 7252 mp1 = mp->b_cont->b_cont; 7253 rt = (struct rtentry *)mp1->b_rptr; 7254 7255 dst_addr = ((sin_t *)&rt->rt_dst)->sin_addr.s_addr; 7256 gw_addr = ((sin_t *)&rt->rt_gateway)->sin_addr.s_addr; 7257 7258 /* 7259 * If the RTF_HOST flag is on, this is a request to delete a gateway 7260 * to a particular host address. In this case, we set the netmask to 7261 * all ones for the particular destination address. Otherwise, 7262 * determine the netmask to be used based on dst_addr and the interfaces 7263 * in use. 7264 */ 7265 if (rt->rt_flags & RTF_HOST) { 7266 mask = IP_HOST_MASK; 7267 } else { 7268 /* 7269 * Note that ip_subnet_mask returns a zero mask in the case of 7270 * default (an all-zeroes address). 7271 */ 7272 mask = ip_subnet_mask(dst_addr, &ipif, ipst); 7273 } 7274 7275 error = ip_rt_delete(dst_addr, mask, gw_addr, 7276 RTA_DST | RTA_GATEWAY | RTA_NETMASK, rt->rt_flags, NULL, B_TRUE, q, 7277 mp, ip_process_ioctl, ipst); 7278 if (ipif != NULL) 7279 ipif_refrele(ipif); 7280 return (error); 7281 } 7282 7283 /* 7284 * Enqueue the mp onto the ipsq, chained by b_next. 7285 * b_prev stores the function to be executed later, and b_queue the queue 7286 * where this mp originated. 7287 */ 7288 void 7289 ipsq_enq(ipsq_t *ipsq, queue_t *q, mblk_t *mp, ipsq_func_t func, int type, 7290 ill_t *pending_ill) 7291 { 7292 conn_t *connp; 7293 ipxop_t *ipx = ipsq->ipsq_xop; 7294 7295 ASSERT(MUTEX_HELD(&ipsq->ipsq_lock)); 7296 ASSERT(MUTEX_HELD(&ipx->ipx_lock)); 7297 ASSERT(func != NULL); 7298 7299 mp->b_queue = q; 7300 mp->b_prev = (void *)func; 7301 mp->b_next = NULL; 7302 7303 switch (type) { 7304 case CUR_OP: 7305 if (ipx->ipx_mptail != NULL) { 7306 ASSERT(ipx->ipx_mphead != NULL); 7307 ipx->ipx_mptail->b_next = mp; 7308 } else { 7309 ASSERT(ipx->ipx_mphead == NULL); 7310 ipx->ipx_mphead = mp; 7311 } 7312 ipx->ipx_mptail = mp; 7313 break; 7314 7315 case NEW_OP: 7316 if (ipsq->ipsq_xopq_mptail != NULL) { 7317 ASSERT(ipsq->ipsq_xopq_mphead != NULL); 7318 ipsq->ipsq_xopq_mptail->b_next = mp; 7319 } else { 7320 ASSERT(ipsq->ipsq_xopq_mphead == NULL); 7321 ipsq->ipsq_xopq_mphead = mp; 7322 } 7323 ipsq->ipsq_xopq_mptail = mp; 7324 ipx->ipx_ipsq_queued = B_TRUE; 7325 break; 7326 7327 case SWITCH_OP: 7328 ASSERT(ipsq->ipsq_swxop != NULL); 7329 /* only one switch operation is currently allowed */ 7330 ASSERT(ipsq->ipsq_switch_mp == NULL); 7331 ipsq->ipsq_switch_mp = mp; 7332 ipx->ipx_ipsq_queued = B_TRUE; 7333 break; 7334 default: 7335 cmn_err(CE_PANIC, "ipsq_enq %d type \n", type); 7336 } 7337 7338 if (CONN_Q(q) && pending_ill != NULL) { 7339 connp = Q_TO_CONN(q); 7340 ASSERT(MUTEX_HELD(&connp->conn_lock)); 7341 connp->conn_oper_pending_ill = pending_ill; 7342 } 7343 } 7344 7345 /* 7346 * Dequeue the next message that requested exclusive access to this IPSQ's 7347 * xop. Specifically: 7348 * 7349 * 1. If we're still processing the current operation on `ipsq', then 7350 * dequeue the next message for the operation (from ipx_mphead), or 7351 * return NULL if there are no queued messages for the operation. 7352 * These messages are queued via CUR_OP to qwriter_ip() and friends. 7353 * 7354 * 2. If the current operation on `ipsq' has completed (ipx_current_ipif is 7355 * not set) see if the ipsq has requested an xop switch. If so, switch 7356 * `ipsq' to a different xop. Xop switches only happen when joining or 7357 * leaving IPMP groups and require a careful dance -- see the comments 7358 * in-line below for details. If we're leaving a group xop or if we're 7359 * joining a group xop and become writer on it, then we proceed to (3). 7360 * Otherwise, we return NULL and exit the xop. 7361 * 7362 * 3. For each IPSQ in the xop, return any switch operation stored on 7363 * ipsq_switch_mp (set via SWITCH_OP); these must be processed before 7364 * any other messages queued on the IPSQ. Otherwise, dequeue the next 7365 * exclusive operation (queued via NEW_OP) stored on ipsq_xopq_mphead. 7366 * Note that if the phyint tied to `ipsq' is not using IPMP there will 7367 * only be one IPSQ in the xop. Otherwise, there will be one IPSQ for 7368 * each phyint in the group, including the IPMP meta-interface phyint. 7369 */ 7370 static mblk_t * 7371 ipsq_dq(ipsq_t *ipsq) 7372 { 7373 ill_t *illv4, *illv6; 7374 mblk_t *mp; 7375 ipsq_t *xopipsq; 7376 ipsq_t *leftipsq = NULL; 7377 ipxop_t *ipx; 7378 phyint_t *phyi = ipsq->ipsq_phyint; 7379 ip_stack_t *ipst = ipsq->ipsq_ipst; 7380 boolean_t emptied = B_FALSE; 7381 7382 /* 7383 * Grab all the locks we need in the defined order (ill_g_lock -> 7384 * ipsq_lock -> ipx_lock); ill_g_lock is needed to use ipsq_next. 7385 */ 7386 rw_enter(&ipst->ips_ill_g_lock, 7387 ipsq->ipsq_swxop != NULL ? RW_WRITER : RW_READER); 7388 mutex_enter(&ipsq->ipsq_lock); 7389 ipx = ipsq->ipsq_xop; 7390 mutex_enter(&ipx->ipx_lock); 7391 7392 /* 7393 * Dequeue the next message associated with the current exclusive 7394 * operation, if any. 7395 */ 7396 if ((mp = ipx->ipx_mphead) != NULL) { 7397 ipx->ipx_mphead = mp->b_next; 7398 if (ipx->ipx_mphead == NULL) 7399 ipx->ipx_mptail = NULL; 7400 mp->b_next = (void *)ipsq; 7401 goto out; 7402 } 7403 7404 if (ipx->ipx_current_ipif != NULL) 7405 goto empty; 7406 7407 if (ipsq->ipsq_swxop != NULL) { 7408 /* 7409 * The exclusive operation that is now being completed has 7410 * requested a switch to a different xop. This happens 7411 * when an interface joins or leaves an IPMP group. Joins 7412 * happen through SIOCSLIFGROUPNAME (ip_sioctl_groupname()). 7413 * Leaves happen via SIOCSLIFGROUPNAME, interface unplumb 7414 * (phyint_free()), or interface plumb for an ill type 7415 * not in the IPMP group (ip_rput_dlpi_writer()). 7416 * 7417 * Xop switches are not allowed on the IPMP meta-interface. 7418 */ 7419 ASSERT(phyi == NULL || !(phyi->phyint_flags & PHYI_IPMP)); 7420 ASSERT(RW_WRITE_HELD(&ipst->ips_ill_g_lock)); 7421 DTRACE_PROBE1(ipsq__switch, (ipsq_t *), ipsq); 7422 7423 if (ipsq->ipsq_swxop == &ipsq->ipsq_ownxop) { 7424 /* 7425 * We're switching back to our own xop, so we have two 7426 * xop's to drain/exit: our own, and the group xop 7427 * that we are leaving. 7428 * 7429 * First, pull ourselves out of the group ipsq list. 7430 * This is safe since we're writer on ill_g_lock. 7431 */ 7432 ASSERT(ipsq->ipsq_xop != &ipsq->ipsq_ownxop); 7433 7434 xopipsq = ipx->ipx_ipsq; 7435 while (xopipsq->ipsq_next != ipsq) 7436 xopipsq = xopipsq->ipsq_next; 7437 7438 xopipsq->ipsq_next = ipsq->ipsq_next; 7439 ipsq->ipsq_next = ipsq; 7440 ipsq->ipsq_xop = ipsq->ipsq_swxop; 7441 ipsq->ipsq_swxop = NULL; 7442 7443 /* 7444 * Second, prepare to exit the group xop. The actual 7445 * ipsq_exit() is done at the end of this function 7446 * since we cannot hold any locks across ipsq_exit(). 7447 * Note that although we drop the group's ipx_lock, no 7448 * threads can proceed since we're still ipx_writer. 7449 */ 7450 leftipsq = xopipsq; 7451 mutex_exit(&ipx->ipx_lock); 7452 7453 /* 7454 * Third, set ipx to point to our own xop (which was 7455 * inactive and therefore can be entered). 7456 */ 7457 ipx = ipsq->ipsq_xop; 7458 mutex_enter(&ipx->ipx_lock); 7459 ASSERT(ipx->ipx_writer == NULL); 7460 ASSERT(ipx->ipx_current_ipif == NULL); 7461 } else { 7462 /* 7463 * We're switching from our own xop to a group xop. 7464 * The requestor of the switch must ensure that the 7465 * group xop cannot go away (e.g. by ensuring the 7466 * phyint associated with the xop cannot go away). 7467 * 7468 * If we can become writer on our new xop, then we'll 7469 * do the drain. Otherwise, the current writer of our 7470 * new xop will do the drain when it exits. 7471 * 7472 * First, splice ourselves into the group IPSQ list. 7473 * This is safe since we're writer on ill_g_lock. 7474 */ 7475 ASSERT(ipsq->ipsq_xop == &ipsq->ipsq_ownxop); 7476 7477 xopipsq = ipsq->ipsq_swxop->ipx_ipsq; 7478 while (xopipsq->ipsq_next != ipsq->ipsq_swxop->ipx_ipsq) 7479 xopipsq = xopipsq->ipsq_next; 7480 7481 xopipsq->ipsq_next = ipsq; 7482 ipsq->ipsq_next = ipsq->ipsq_swxop->ipx_ipsq; 7483 ipsq->ipsq_xop = ipsq->ipsq_swxop; 7484 ipsq->ipsq_swxop = NULL; 7485 7486 /* 7487 * Second, exit our own xop, since it's now unused. 7488 * This is safe since we've got the only reference. 7489 */ 7490 ASSERT(ipx->ipx_writer == curthread); 7491 ipx->ipx_writer = NULL; 7492 VERIFY(--ipx->ipx_reentry_cnt == 0); 7493 ipx->ipx_ipsq_queued = B_FALSE; 7494 mutex_exit(&ipx->ipx_lock); 7495 7496 /* 7497 * Third, set ipx to point to our new xop, and check 7498 * if we can become writer on it. If we cannot, then 7499 * the current writer will drain the IPSQ group when 7500 * it exits. Our ipsq_xop is guaranteed to be stable 7501 * because we're still holding ipsq_lock. 7502 */ 7503 ipx = ipsq->ipsq_xop; 7504 mutex_enter(&ipx->ipx_lock); 7505 if (ipx->ipx_writer != NULL || 7506 ipx->ipx_current_ipif != NULL) { 7507 goto out; 7508 } 7509 } 7510 7511 /* 7512 * Fourth, become writer on our new ipx before we continue 7513 * with the drain. Note that we never dropped ipsq_lock 7514 * above, so no other thread could've raced with us to 7515 * become writer first. Also, we're holding ipx_lock, so 7516 * no other thread can examine the ipx right now. 7517 */ 7518 ASSERT(ipx->ipx_current_ipif == NULL); 7519 ASSERT(ipx->ipx_mphead == NULL && ipx->ipx_mptail == NULL); 7520 VERIFY(ipx->ipx_reentry_cnt++ == 0); 7521 ipx->ipx_writer = curthread; 7522 ipx->ipx_forced = B_FALSE; 7523 #ifdef DEBUG 7524 ipx->ipx_depth = getpcstack(ipx->ipx_stack, IPX_STACK_DEPTH); 7525 #endif 7526 } 7527 7528 xopipsq = ipsq; 7529 do { 7530 /* 7531 * So that other operations operate on a consistent and 7532 * complete phyint, a switch message on an IPSQ must be 7533 * handled prior to any other operations on that IPSQ. 7534 */ 7535 if ((mp = xopipsq->ipsq_switch_mp) != NULL) { 7536 xopipsq->ipsq_switch_mp = NULL; 7537 ASSERT(mp->b_next == NULL); 7538 mp->b_next = (void *)xopipsq; 7539 goto out; 7540 } 7541 7542 if ((mp = xopipsq->ipsq_xopq_mphead) != NULL) { 7543 xopipsq->ipsq_xopq_mphead = mp->b_next; 7544 if (xopipsq->ipsq_xopq_mphead == NULL) 7545 xopipsq->ipsq_xopq_mptail = NULL; 7546 mp->b_next = (void *)xopipsq; 7547 goto out; 7548 } 7549 } while ((xopipsq = xopipsq->ipsq_next) != ipsq); 7550 empty: 7551 /* 7552 * There are no messages. Further, we are holding ipx_lock, hence no 7553 * new messages can end up on any IPSQ in the xop. 7554 */ 7555 ipx->ipx_writer = NULL; 7556 ipx->ipx_forced = B_FALSE; 7557 VERIFY(--ipx->ipx_reentry_cnt == 0); 7558 ipx->ipx_ipsq_queued = B_FALSE; 7559 emptied = B_TRUE; 7560 #ifdef DEBUG 7561 ipx->ipx_depth = 0; 7562 #endif 7563 out: 7564 mutex_exit(&ipx->ipx_lock); 7565 mutex_exit(&ipsq->ipsq_lock); 7566 7567 /* 7568 * If we completely emptied the xop, then wake up any threads waiting 7569 * to enter any of the IPSQ's associated with it. 7570 */ 7571 if (emptied) { 7572 xopipsq = ipsq; 7573 do { 7574 if ((phyi = xopipsq->ipsq_phyint) == NULL) 7575 continue; 7576 7577 illv4 = phyi->phyint_illv4; 7578 illv6 = phyi->phyint_illv6; 7579 7580 GRAB_ILL_LOCKS(illv4, illv6); 7581 if (illv4 != NULL) 7582 cv_broadcast(&illv4->ill_cv); 7583 if (illv6 != NULL) 7584 cv_broadcast(&illv6->ill_cv); 7585 RELEASE_ILL_LOCKS(illv4, illv6); 7586 } while ((xopipsq = xopipsq->ipsq_next) != ipsq); 7587 } 7588 rw_exit(&ipst->ips_ill_g_lock); 7589 7590 /* 7591 * Now that all locks are dropped, exit the IPSQ we left. 7592 */ 7593 if (leftipsq != NULL) 7594 ipsq_exit(leftipsq); 7595 7596 return (mp); 7597 } 7598 7599 /* 7600 * Enter the ipsq corresponding to ill, by waiting synchronously till 7601 * we can enter the ipsq exclusively. Unless 'force' is used, the ipsq 7602 * will have to drain completely before ipsq_enter returns success. 7603 * ipx_current_ipif will be set if some exclusive op is in progress, 7604 * and the ipsq_exit logic will start the next enqueued op after 7605 * completion of the current op. If 'force' is used, we don't wait 7606 * for the enqueued ops. This is needed when a conn_close wants to 7607 * enter the ipsq and abort an ioctl that is somehow stuck. Unplumb 7608 * of an ill can also use this option. But we dont' use it currently. 7609 */ 7610 #define ENTER_SQ_WAIT_TICKS 100 7611 boolean_t 7612 ipsq_enter(ill_t *ill, boolean_t force, int type) 7613 { 7614 ipsq_t *ipsq; 7615 ipxop_t *ipx; 7616 boolean_t waited_enough = B_FALSE; 7617 7618 /* 7619 * Note that the relationship between ill and ipsq is fixed as long as 7620 * the ill is not ILL_CONDEMNED. Holding ipsq_lock ensures the 7621 * relationship between the IPSQ and xop cannot change. However, 7622 * since we cannot hold ipsq_lock across the cv_wait(), it may change 7623 * while we're waiting. We wait on ill_cv and rely on ipsq_exit() 7624 * waking up all ills in the xop when it becomes available. 7625 */ 7626 mutex_enter(&ill->ill_lock); 7627 for (;;) { 7628 if (ill->ill_state_flags & ILL_CONDEMNED) { 7629 mutex_exit(&ill->ill_lock); 7630 return (B_FALSE); 7631 } 7632 7633 ipsq = ill->ill_phyint->phyint_ipsq; 7634 mutex_enter(&ipsq->ipsq_lock); 7635 ipx = ipsq->ipsq_xop; 7636 mutex_enter(&ipx->ipx_lock); 7637 7638 if (ipx->ipx_writer == NULL && (type == CUR_OP || 7639 ipx->ipx_current_ipif == NULL || waited_enough)) 7640 break; 7641 7642 if (!force || ipx->ipx_writer != NULL) { 7643 mutex_exit(&ipx->ipx_lock); 7644 mutex_exit(&ipsq->ipsq_lock); 7645 cv_wait(&ill->ill_cv, &ill->ill_lock); 7646 } else { 7647 mutex_exit(&ipx->ipx_lock); 7648 mutex_exit(&ipsq->ipsq_lock); 7649 (void) cv_timedwait(&ill->ill_cv, 7650 &ill->ill_lock, lbolt + ENTER_SQ_WAIT_TICKS); 7651 waited_enough = B_TRUE; 7652 } 7653 } 7654 7655 ASSERT(ipx->ipx_mphead == NULL && ipx->ipx_mptail == NULL); 7656 ASSERT(ipx->ipx_reentry_cnt == 0); 7657 ipx->ipx_writer = curthread; 7658 ipx->ipx_forced = (ipx->ipx_current_ipif != NULL); 7659 ipx->ipx_reentry_cnt++; 7660 #ifdef DEBUG 7661 ipx->ipx_depth = getpcstack(ipx->ipx_stack, IPX_STACK_DEPTH); 7662 #endif 7663 mutex_exit(&ipx->ipx_lock); 7664 mutex_exit(&ipsq->ipsq_lock); 7665 mutex_exit(&ill->ill_lock); 7666 return (B_TRUE); 7667 } 7668 7669 boolean_t 7670 ill_perim_enter(ill_t *ill) 7671 { 7672 return (ipsq_enter(ill, B_FALSE, CUR_OP)); 7673 } 7674 7675 void 7676 ill_perim_exit(ill_t *ill) 7677 { 7678 ipsq_exit(ill->ill_phyint->phyint_ipsq); 7679 } 7680 7681 /* 7682 * The ipsq_t (ipsq) is the synchronization data structure used to serialize 7683 * certain critical operations like plumbing (i.e. most set ioctls), multicast 7684 * joins, igmp/mld timers, etc. There is one ipsq per phyint. The ipsq 7685 * serializes exclusive ioctls issued by applications on a per ipsq basis in 7686 * ipsq_xopq_mphead. It also protects against multiple threads executing in 7687 * the ipsq. Responses from the driver pertain to the current ioctl (say a 7688 * DL_BIND_ACK in response to a DL_BIND_REQ initiated as part of bringing 7689 * up the interface) and are enqueued in ipx_mphead. 7690 * 7691 * If a thread does not want to reenter the ipsq when it is already writer, 7692 * it must make sure that the specified reentry point to be called later 7693 * when the ipsq is empty, nor any code path starting from the specified reentry 7694 * point must never ever try to enter the ipsq again. Otherwise it can lead 7695 * to an infinite loop. The reentry point ip_rput_dlpi_writer is an example. 7696 * When the thread that is currently exclusive finishes, it (ipsq_exit) 7697 * dequeues the requests waiting to become exclusive in ipx_mphead and calls 7698 * the reentry point. When the list at ipx_mphead becomes empty ipsq_exit 7699 * proceeds to dequeue the next ioctl in ipsq_xopq_mphead and start the next 7700 * ioctl if the current ioctl has completed. If the current ioctl is still 7701 * in progress it simply returns. The current ioctl could be waiting for 7702 * a response from another module (arp or the driver or could be waiting for 7703 * the ipif/ill/ire refcnts to drop to zero. In such a case the ipx_pending_mp 7704 * and ipx_pending_ipif are set. ipx_current_ipif is set throughout the 7705 * execution of the ioctl and ipsq_exit does not start the next ioctl unless 7706 * ipx_current_ipif is NULL which happens only once the ioctl is complete and 7707 * all associated DLPI operations have completed. 7708 */ 7709 7710 /* 7711 * Try to enter the IPSQ corresponding to `ipif' or `ill' exclusively (`ipif' 7712 * and `ill' cannot both be specified). Returns a pointer to the entered IPSQ 7713 * on success, or NULL on failure. The caller ensures ipif/ill is valid by 7714 * refholding it as necessary. If the IPSQ cannot be entered and `func' is 7715 * non-NULL, then `func' will be called back with `q' and `mp' once the IPSQ 7716 * can be entered. If `func' is NULL, then `q' and `mp' are ignored. 7717 */ 7718 ipsq_t * 7719 ipsq_try_enter(ipif_t *ipif, ill_t *ill, queue_t *q, mblk_t *mp, 7720 ipsq_func_t func, int type, boolean_t reentry_ok) 7721 { 7722 ipsq_t *ipsq; 7723 ipxop_t *ipx; 7724 7725 /* Only 1 of ipif or ill can be specified */ 7726 ASSERT((ipif != NULL) ^ (ill != NULL)); 7727 if (ipif != NULL) 7728 ill = ipif->ipif_ill; 7729 7730 /* 7731 * lock ordering: conn_lock -> ill_lock -> ipsq_lock -> ipx_lock. 7732 * ipx of an ipsq can't change when ipsq_lock is held. 7733 */ 7734 GRAB_CONN_LOCK(q); 7735 mutex_enter(&ill->ill_lock); 7736 ipsq = ill->ill_phyint->phyint_ipsq; 7737 mutex_enter(&ipsq->ipsq_lock); 7738 ipx = ipsq->ipsq_xop; 7739 mutex_enter(&ipx->ipx_lock); 7740 7741 /* 7742 * 1. Enter the ipsq if we are already writer and reentry is ok. 7743 * (Note: If the caller does not specify reentry_ok then neither 7744 * 'func' nor any of its callees must ever attempt to enter the ipsq 7745 * again. Otherwise it can lead to an infinite loop 7746 * 2. Enter the ipsq if there is no current writer and this attempted 7747 * entry is part of the current operation 7748 * 3. Enter the ipsq if there is no current writer and this is a new 7749 * operation and the operation queue is empty and there is no 7750 * operation currently in progress 7751 */ 7752 if ((ipx->ipx_writer == curthread && reentry_ok) || 7753 (ipx->ipx_writer == NULL && (type == CUR_OP || (type == NEW_OP && 7754 !ipx->ipx_ipsq_queued && ipx->ipx_current_ipif == NULL)))) { 7755 /* Success. */ 7756 ipx->ipx_reentry_cnt++; 7757 ipx->ipx_writer = curthread; 7758 ipx->ipx_forced = B_FALSE; 7759 mutex_exit(&ipx->ipx_lock); 7760 mutex_exit(&ipsq->ipsq_lock); 7761 mutex_exit(&ill->ill_lock); 7762 RELEASE_CONN_LOCK(q); 7763 #ifdef DEBUG 7764 ipx->ipx_depth = getpcstack(ipx->ipx_stack, IPX_STACK_DEPTH); 7765 #endif 7766 return (ipsq); 7767 } 7768 7769 if (func != NULL) 7770 ipsq_enq(ipsq, q, mp, func, type, ill); 7771 7772 mutex_exit(&ipx->ipx_lock); 7773 mutex_exit(&ipsq->ipsq_lock); 7774 mutex_exit(&ill->ill_lock); 7775 RELEASE_CONN_LOCK(q); 7776 return (NULL); 7777 } 7778 7779 /* 7780 * Try to enter the IPSQ corresponding to `ill' as writer. The caller ensures 7781 * ill is valid by refholding it if necessary; we will refrele. If the IPSQ 7782 * cannot be entered, the mp is queued for completion. 7783 */ 7784 void 7785 qwriter_ip(ill_t *ill, queue_t *q, mblk_t *mp, ipsq_func_t func, int type, 7786 boolean_t reentry_ok) 7787 { 7788 ipsq_t *ipsq; 7789 7790 ipsq = ipsq_try_enter(NULL, ill, q, mp, func, type, reentry_ok); 7791 7792 /* 7793 * Drop the caller's refhold on the ill. This is safe since we either 7794 * entered the IPSQ (and thus are exclusive), or failed to enter the 7795 * IPSQ, in which case we return without accessing ill anymore. This 7796 * is needed because func needs to see the correct refcount. 7797 * e.g. removeif can work only then. 7798 */ 7799 ill_refrele(ill); 7800 if (ipsq != NULL) { 7801 (*func)(ipsq, q, mp, NULL); 7802 ipsq_exit(ipsq); 7803 } 7804 } 7805 7806 /* 7807 * Exit the specified IPSQ. If this is the final exit on it then drain it 7808 * prior to exiting. Caller must be writer on the specified IPSQ. 7809 */ 7810 void 7811 ipsq_exit(ipsq_t *ipsq) 7812 { 7813 mblk_t *mp; 7814 ipsq_t *mp_ipsq; 7815 queue_t *q; 7816 phyint_t *phyi; 7817 ipsq_func_t func; 7818 7819 ASSERT(IAM_WRITER_IPSQ(ipsq)); 7820 7821 ASSERT(ipsq->ipsq_xop->ipx_reentry_cnt >= 1); 7822 if (ipsq->ipsq_xop->ipx_reentry_cnt != 1) { 7823 ipsq->ipsq_xop->ipx_reentry_cnt--; 7824 return; 7825 } 7826 7827 for (;;) { 7828 phyi = ipsq->ipsq_phyint; 7829 mp = ipsq_dq(ipsq); 7830 mp_ipsq = (mp == NULL) ? NULL : (ipsq_t *)mp->b_next; 7831 7832 /* 7833 * If we've changed to a new IPSQ, and the phyint associated 7834 * with the old one has gone away, free the old IPSQ. Note 7835 * that this cannot happen while the IPSQ is in a group. 7836 */ 7837 if (mp_ipsq != ipsq && phyi == NULL) { 7838 ASSERT(ipsq->ipsq_next == ipsq); 7839 ASSERT(ipsq->ipsq_xop == &ipsq->ipsq_ownxop); 7840 ipsq_delete(ipsq); 7841 } 7842 7843 if (mp == NULL) 7844 break; 7845 7846 q = mp->b_queue; 7847 func = (ipsq_func_t)mp->b_prev; 7848 ipsq = mp_ipsq; 7849 mp->b_next = mp->b_prev = NULL; 7850 mp->b_queue = NULL; 7851 7852 /* 7853 * If 'q' is an conn queue, it is valid, since we did a 7854 * a refhold on the conn at the start of the ioctl. 7855 * If 'q' is an ill queue, it is valid, since close of an 7856 * ill will clean up its IPSQ. 7857 */ 7858 (*func)(ipsq, q, mp, NULL); 7859 } 7860 } 7861 7862 /* 7863 * Start the current exclusive operation on `ipsq'; associate it with `ipif' 7864 * and `ioccmd'. 7865 */ 7866 void 7867 ipsq_current_start(ipsq_t *ipsq, ipif_t *ipif, int ioccmd) 7868 { 7869 ill_t *ill = ipif->ipif_ill; 7870 ipxop_t *ipx = ipsq->ipsq_xop; 7871 7872 ASSERT(IAM_WRITER_IPSQ(ipsq)); 7873 ASSERT(ipx->ipx_current_ipif == NULL); 7874 ASSERT(ipx->ipx_current_ioctl == 0); 7875 7876 ipx->ipx_current_done = B_FALSE; 7877 ipx->ipx_current_ioctl = ioccmd; 7878 mutex_enter(&ipx->ipx_lock); 7879 ipx->ipx_current_ipif = ipif; 7880 mutex_exit(&ipx->ipx_lock); 7881 7882 /* 7883 * Set IPIF_CHANGING on one or more ipifs associated with the 7884 * current exclusive operation. IPIF_CHANGING prevents any new 7885 * references to the ipif (so that the references will eventually 7886 * drop to zero) and also prevents any "get" operations (e.g., 7887 * SIOCGLIFFLAGS) from being able to access the ipif until the 7888 * operation has completed and the ipif is again in a stable state. 7889 * 7890 * For ioctls, IPIF_CHANGING is set on the ipif associated with the 7891 * ioctl. For internal operations (where ioccmd is zero), all ipifs 7892 * on the ill are marked with IPIF_CHANGING since it's unclear which 7893 * ipifs will be affected. 7894 * 7895 * Note that SIOCLIFREMOVEIF is a special case as it sets 7896 * IPIF_CONDEMNED internally after identifying the right ipif to 7897 * operate on. 7898 */ 7899 switch (ioccmd) { 7900 case SIOCLIFREMOVEIF: 7901 break; 7902 case 0: 7903 mutex_enter(&ill->ill_lock); 7904 ipif = ipif->ipif_ill->ill_ipif; 7905 for (; ipif != NULL; ipif = ipif->ipif_next) 7906 ipif->ipif_state_flags |= IPIF_CHANGING; 7907 mutex_exit(&ill->ill_lock); 7908 break; 7909 default: 7910 mutex_enter(&ill->ill_lock); 7911 ipif->ipif_state_flags |= IPIF_CHANGING; 7912 mutex_exit(&ill->ill_lock); 7913 } 7914 } 7915 7916 /* 7917 * Finish the current exclusive operation on `ipsq'. Usually, this will allow 7918 * the next exclusive operation to begin once we ipsq_exit(). However, if 7919 * pending DLPI operations remain, then we will wait for the queue to drain 7920 * before allowing the next exclusive operation to begin. This ensures that 7921 * DLPI operations from one exclusive operation are never improperly processed 7922 * as part of a subsequent exclusive operation. 7923 */ 7924 void 7925 ipsq_current_finish(ipsq_t *ipsq) 7926 { 7927 ipxop_t *ipx = ipsq->ipsq_xop; 7928 t_uscalar_t dlpi_pending = DL_PRIM_INVAL; 7929 ipif_t *ipif = ipx->ipx_current_ipif; 7930 7931 ASSERT(IAM_WRITER_IPSQ(ipsq)); 7932 7933 /* 7934 * For SIOCLIFREMOVEIF, the ipif has been already been blown away 7935 * (but in that case, IPIF_CHANGING will already be clear and no 7936 * pending DLPI messages can remain). 7937 */ 7938 if (ipx->ipx_current_ioctl != SIOCLIFREMOVEIF) { 7939 ill_t *ill = ipif->ipif_ill; 7940 7941 mutex_enter(&ill->ill_lock); 7942 dlpi_pending = ill->ill_dlpi_pending; 7943 if (ipx->ipx_current_ioctl == 0) { 7944 ipif = ill->ill_ipif; 7945 for (; ipif != NULL; ipif = ipif->ipif_next) 7946 ipif->ipif_state_flags &= ~IPIF_CHANGING; 7947 } else { 7948 ipif->ipif_state_flags &= ~IPIF_CHANGING; 7949 } 7950 mutex_exit(&ill->ill_lock); 7951 } 7952 7953 ASSERT(!ipx->ipx_current_done); 7954 ipx->ipx_current_done = B_TRUE; 7955 ipx->ipx_current_ioctl = 0; 7956 if (dlpi_pending == DL_PRIM_INVAL) { 7957 mutex_enter(&ipx->ipx_lock); 7958 ipx->ipx_current_ipif = NULL; 7959 mutex_exit(&ipx->ipx_lock); 7960 } 7961 } 7962 7963 /* 7964 * The ill is closing. Flush all messages on the ipsq that originated 7965 * from this ill. Usually there wont' be any messages on the ipsq_xopq_mphead 7966 * for this ill since ipsq_enter could not have entered until then. 7967 * New messages can't be queued since the CONDEMNED flag is set. 7968 */ 7969 static void 7970 ipsq_flush(ill_t *ill) 7971 { 7972 queue_t *q; 7973 mblk_t *prev; 7974 mblk_t *mp; 7975 mblk_t *mp_next; 7976 ipxop_t *ipx = ill->ill_phyint->phyint_ipsq->ipsq_xop; 7977 7978 ASSERT(IAM_WRITER_ILL(ill)); 7979 7980 /* 7981 * Flush any messages sent up by the driver. 7982 */ 7983 mutex_enter(&ipx->ipx_lock); 7984 for (prev = NULL, mp = ipx->ipx_mphead; mp != NULL; mp = mp_next) { 7985 mp_next = mp->b_next; 7986 q = mp->b_queue; 7987 if (q == ill->ill_rq || q == ill->ill_wq) { 7988 /* dequeue mp */ 7989 if (prev == NULL) 7990 ipx->ipx_mphead = mp->b_next; 7991 else 7992 prev->b_next = mp->b_next; 7993 if (ipx->ipx_mptail == mp) { 7994 ASSERT(mp_next == NULL); 7995 ipx->ipx_mptail = prev; 7996 } 7997 inet_freemsg(mp); 7998 } else { 7999 prev = mp; 8000 } 8001 } 8002 mutex_exit(&ipx->ipx_lock); 8003 (void) ipsq_pending_mp_cleanup(ill, NULL); 8004 ipsq_xopq_mp_cleanup(ill, NULL); 8005 ill_pending_mp_cleanup(ill); 8006 } 8007 8008 /* 8009 * Parse an iftun_req structure coming down SIOC[GS]TUNPARAM ioctls, 8010 * refhold and return the associated ipif 8011 */ 8012 /* ARGSUSED */ 8013 int 8014 ip_extract_tunreq(queue_t *q, mblk_t *mp, const ip_ioctl_cmd_t *ipip, 8015 cmd_info_t *ci, ipsq_func_t func) 8016 { 8017 boolean_t exists; 8018 struct iftun_req *ta; 8019 ipif_t *ipif; 8020 ill_t *ill; 8021 boolean_t isv6; 8022 mblk_t *mp1; 8023 int error; 8024 conn_t *connp; 8025 ip_stack_t *ipst; 8026 8027 /* Existence verified in ip_wput_nondata */ 8028 mp1 = mp->b_cont->b_cont; 8029 ta = (struct iftun_req *)mp1->b_rptr; 8030 /* 8031 * Null terminate the string to protect against buffer 8032 * overrun. String was generated by user code and may not 8033 * be trusted. 8034 */ 8035 ta->ifta_lifr_name[LIFNAMSIZ - 1] = '\0'; 8036 8037 connp = Q_TO_CONN(q); 8038 isv6 = connp->conn_af_isv6; 8039 ipst = connp->conn_netstack->netstack_ip; 8040 8041 /* Disallows implicit create */ 8042 ipif = ipif_lookup_on_name(ta->ifta_lifr_name, 8043 mi_strlen(ta->ifta_lifr_name), B_FALSE, &exists, isv6, 8044 connp->conn_zoneid, CONNP_TO_WQ(connp), mp, func, &error, ipst); 8045 if (ipif == NULL) 8046 return (error); 8047 8048 if (ipif->ipif_id != 0) { 8049 /* 8050 * We really don't want to set/get tunnel parameters 8051 * on virtual tunnel interfaces. Only allow the 8052 * base tunnel to do these. 8053 */ 8054 ipif_refrele(ipif); 8055 return (EINVAL); 8056 } 8057 8058 /* 8059 * Send down to tunnel mod for ioctl processing. 8060 * Will finish ioctl in ip_rput_other(). 8061 */ 8062 ill = ipif->ipif_ill; 8063 if (ill->ill_net_type == IRE_LOOPBACK) { 8064 ipif_refrele(ipif); 8065 return (EOPNOTSUPP); 8066 } 8067 8068 if (ill->ill_wq == NULL) { 8069 ipif_refrele(ipif); 8070 return (ENXIO); 8071 } 8072 /* 8073 * Mark the ioctl as coming from an IPv6 interface for 8074 * tun's convenience. 8075 */ 8076 if (ill->ill_isv6) 8077 ta->ifta_flags |= 0x80000000; 8078 ci->ci_ipif = ipif; 8079 return (0); 8080 } 8081 8082 /* 8083 * Parse an ifreq or lifreq struct coming down ioctls and refhold 8084 * and return the associated ipif. 8085 * Return value: 8086 * Non zero: An error has occurred. ci may not be filled out. 8087 * zero : ci is filled out with the ioctl cmd in ci.ci_name, and 8088 * a held ipif in ci.ci_ipif. 8089 */ 8090 int 8091 ip_extract_lifreq(queue_t *q, mblk_t *mp, const ip_ioctl_cmd_t *ipip, 8092 cmd_info_t *ci, ipsq_func_t func) 8093 { 8094 char *name; 8095 struct ifreq *ifr; 8096 struct lifreq *lifr; 8097 ipif_t *ipif = NULL; 8098 ill_t *ill; 8099 conn_t *connp; 8100 boolean_t isv6; 8101 boolean_t exists; 8102 int err; 8103 mblk_t *mp1; 8104 zoneid_t zoneid; 8105 ip_stack_t *ipst; 8106 8107 if (q->q_next != NULL) { 8108 ill = (ill_t *)q->q_ptr; 8109 isv6 = ill->ill_isv6; 8110 connp = NULL; 8111 zoneid = ALL_ZONES; 8112 ipst = ill->ill_ipst; 8113 } else { 8114 ill = NULL; 8115 connp = Q_TO_CONN(q); 8116 isv6 = connp->conn_af_isv6; 8117 zoneid = connp->conn_zoneid; 8118 if (zoneid == GLOBAL_ZONEID) { 8119 /* global zone can access ipifs in all zones */ 8120 zoneid = ALL_ZONES; 8121 } 8122 ipst = connp->conn_netstack->netstack_ip; 8123 } 8124 8125 /* Has been checked in ip_wput_nondata */ 8126 mp1 = mp->b_cont->b_cont; 8127 8128 if (ipip->ipi_cmd_type == IF_CMD) { 8129 /* This a old style SIOC[GS]IF* command */ 8130 ifr = (struct ifreq *)mp1->b_rptr; 8131 /* 8132 * Null terminate the string to protect against buffer 8133 * overrun. String was generated by user code and may not 8134 * be trusted. 8135 */ 8136 ifr->ifr_name[IFNAMSIZ - 1] = '\0'; 8137 name = ifr->ifr_name; 8138 ci->ci_sin = (sin_t *)&ifr->ifr_addr; 8139 ci->ci_sin6 = NULL; 8140 ci->ci_lifr = (struct lifreq *)ifr; 8141 } else { 8142 /* This a new style SIOC[GS]LIF* command */ 8143 ASSERT(ipip->ipi_cmd_type == LIF_CMD); 8144 lifr = (struct lifreq *)mp1->b_rptr; 8145 /* 8146 * Null terminate the string to protect against buffer 8147 * overrun. String was generated by user code and may not 8148 * be trusted. 8149 */ 8150 lifr->lifr_name[LIFNAMSIZ - 1] = '\0'; 8151 name = lifr->lifr_name; 8152 ci->ci_sin = (sin_t *)&lifr->lifr_addr; 8153 ci->ci_sin6 = (sin6_t *)&lifr->lifr_addr; 8154 ci->ci_lifr = lifr; 8155 } 8156 8157 if (ipip->ipi_cmd == SIOCSLIFNAME) { 8158 /* 8159 * The ioctl will be failed if the ioctl comes down 8160 * an conn stream 8161 */ 8162 if (ill == NULL) { 8163 /* 8164 * Not an ill queue, return EINVAL same as the 8165 * old error code. 8166 */ 8167 return (ENXIO); 8168 } 8169 ipif = ill->ill_ipif; 8170 ipif_refhold(ipif); 8171 } else { 8172 ipif = ipif_lookup_on_name(name, mi_strlen(name), B_FALSE, 8173 &exists, isv6, zoneid, 8174 (connp == NULL) ? q : CONNP_TO_WQ(connp), mp, func, &err, 8175 ipst); 8176 if (ipif == NULL) { 8177 if (err == EINPROGRESS) 8178 return (err); 8179 err = 0; /* Ensure we don't use it below */ 8180 } 8181 } 8182 8183 /* 8184 * Old style [GS]IFCMD does not admit IPv6 ipif 8185 */ 8186 if (ipif != NULL && ipif->ipif_isv6 && ipip->ipi_cmd_type == IF_CMD) { 8187 ipif_refrele(ipif); 8188 return (ENXIO); 8189 } 8190 8191 if (ipif == NULL && ill != NULL && ill->ill_ipif != NULL && 8192 name[0] == '\0') { 8193 /* 8194 * Handle a or a SIOC?IF* with a null name 8195 * during plumb (on the ill queue before the I_PLINK). 8196 */ 8197 ipif = ill->ill_ipif; 8198 ipif_refhold(ipif); 8199 } 8200 8201 if (ipif == NULL) 8202 return (ENXIO); 8203 8204 ci->ci_ipif = ipif; 8205 return (0); 8206 } 8207 8208 /* 8209 * Return the total number of ipifs. 8210 */ 8211 static uint_t 8212 ip_get_numifs(zoneid_t zoneid, ip_stack_t *ipst) 8213 { 8214 uint_t numifs = 0; 8215 ill_t *ill; 8216 ill_walk_context_t ctx; 8217 ipif_t *ipif; 8218 8219 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 8220 ill = ILL_START_WALK_V4(&ctx, ipst); 8221 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 8222 if (IS_UNDER_IPMP(ill)) 8223 continue; 8224 for (ipif = ill->ill_ipif; ipif != NULL; 8225 ipif = ipif->ipif_next) { 8226 if (ipif->ipif_zoneid == zoneid || 8227 ipif->ipif_zoneid == ALL_ZONES) 8228 numifs++; 8229 } 8230 } 8231 rw_exit(&ipst->ips_ill_g_lock); 8232 return (numifs); 8233 } 8234 8235 /* 8236 * Return the total number of ipifs. 8237 */ 8238 static uint_t 8239 ip_get_numlifs(int family, int lifn_flags, zoneid_t zoneid, ip_stack_t *ipst) 8240 { 8241 uint_t numifs = 0; 8242 ill_t *ill; 8243 ipif_t *ipif; 8244 ill_walk_context_t ctx; 8245 8246 ip1dbg(("ip_get_numlifs(%d %u %d)\n", family, lifn_flags, (int)zoneid)); 8247 8248 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 8249 if (family == AF_INET) 8250 ill = ILL_START_WALK_V4(&ctx, ipst); 8251 else if (family == AF_INET6) 8252 ill = ILL_START_WALK_V6(&ctx, ipst); 8253 else 8254 ill = ILL_START_WALK_ALL(&ctx, ipst); 8255 8256 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 8257 if (IS_UNDER_IPMP(ill) && !(lifn_flags & LIFC_UNDER_IPMP)) 8258 continue; 8259 8260 for (ipif = ill->ill_ipif; ipif != NULL; 8261 ipif = ipif->ipif_next) { 8262 if ((ipif->ipif_flags & IPIF_NOXMIT) && 8263 !(lifn_flags & LIFC_NOXMIT)) 8264 continue; 8265 if ((ipif->ipif_flags & IPIF_TEMPORARY) && 8266 !(lifn_flags & LIFC_TEMPORARY)) 8267 continue; 8268 if (((ipif->ipif_flags & 8269 (IPIF_NOXMIT|IPIF_NOLOCAL| 8270 IPIF_DEPRECATED)) || 8271 IS_LOOPBACK(ill) || 8272 !(ipif->ipif_flags & IPIF_UP)) && 8273 (lifn_flags & LIFC_EXTERNAL_SOURCE)) 8274 continue; 8275 8276 if (zoneid != ipif->ipif_zoneid && 8277 ipif->ipif_zoneid != ALL_ZONES && 8278 (zoneid != GLOBAL_ZONEID || 8279 !(lifn_flags & LIFC_ALLZONES))) 8280 continue; 8281 8282 numifs++; 8283 } 8284 } 8285 rw_exit(&ipst->ips_ill_g_lock); 8286 return (numifs); 8287 } 8288 8289 uint_t 8290 ip_get_lifsrcofnum(ill_t *ill) 8291 { 8292 uint_t numifs = 0; 8293 ill_t *ill_head = ill; 8294 ip_stack_t *ipst = ill->ill_ipst; 8295 8296 /* 8297 * ill_g_usesrc_lock protects ill_usesrc_grp_next, for example, some 8298 * other thread may be trying to relink the ILLs in this usesrc group 8299 * and adjusting the ill_usesrc_grp_next pointers 8300 */ 8301 rw_enter(&ipst->ips_ill_g_usesrc_lock, RW_READER); 8302 if ((ill->ill_usesrc_ifindex == 0) && 8303 (ill->ill_usesrc_grp_next != NULL)) { 8304 for (; (ill != NULL) && (ill->ill_usesrc_grp_next != ill_head); 8305 ill = ill->ill_usesrc_grp_next) 8306 numifs++; 8307 } 8308 rw_exit(&ipst->ips_ill_g_usesrc_lock); 8309 8310 return (numifs); 8311 } 8312 8313 /* Null values are passed in for ipif, sin, and ifreq */ 8314 /* ARGSUSED */ 8315 int 8316 ip_sioctl_get_ifnum(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, 8317 mblk_t *mp, ip_ioctl_cmd_t *ipip, void *ifreq) 8318 { 8319 int *nump; 8320 conn_t *connp = Q_TO_CONN(q); 8321 8322 ASSERT(q->q_next == NULL); /* not a valid ioctl for ip as a module */ 8323 8324 /* Existence of b_cont->b_cont checked in ip_wput_nondata */ 8325 nump = (int *)mp->b_cont->b_cont->b_rptr; 8326 8327 *nump = ip_get_numifs(connp->conn_zoneid, 8328 connp->conn_netstack->netstack_ip); 8329 ip1dbg(("ip_sioctl_get_ifnum numifs %d", *nump)); 8330 return (0); 8331 } 8332 8333 /* Null values are passed in for ipif, sin, and ifreq */ 8334 /* ARGSUSED */ 8335 int 8336 ip_sioctl_get_lifnum(ipif_t *dummy_ipif, sin_t *dummy_sin, 8337 queue_t *q, mblk_t *mp, ip_ioctl_cmd_t *ipip, void *ifreq) 8338 { 8339 struct lifnum *lifn; 8340 mblk_t *mp1; 8341 conn_t *connp = Q_TO_CONN(q); 8342 8343 ASSERT(q->q_next == NULL); /* not a valid ioctl for ip as a module */ 8344 8345 /* Existence checked in ip_wput_nondata */ 8346 mp1 = mp->b_cont->b_cont; 8347 8348 lifn = (struct lifnum *)mp1->b_rptr; 8349 switch (lifn->lifn_family) { 8350 case AF_UNSPEC: 8351 case AF_INET: 8352 case AF_INET6: 8353 break; 8354 default: 8355 return (EAFNOSUPPORT); 8356 } 8357 8358 lifn->lifn_count = ip_get_numlifs(lifn->lifn_family, lifn->lifn_flags, 8359 connp->conn_zoneid, connp->conn_netstack->netstack_ip); 8360 ip1dbg(("ip_sioctl_get_lifnum numifs %d", lifn->lifn_count)); 8361 return (0); 8362 } 8363 8364 /* ARGSUSED */ 8365 int 8366 ip_sioctl_get_ifconf(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, 8367 mblk_t *mp, ip_ioctl_cmd_t *ipip, void *ifreq) 8368 { 8369 STRUCT_HANDLE(ifconf, ifc); 8370 mblk_t *mp1; 8371 struct iocblk *iocp; 8372 struct ifreq *ifr; 8373 ill_walk_context_t ctx; 8374 ill_t *ill; 8375 ipif_t *ipif; 8376 struct sockaddr_in *sin; 8377 int32_t ifclen; 8378 zoneid_t zoneid; 8379 ip_stack_t *ipst = CONNQ_TO_IPST(q); 8380 8381 ASSERT(q->q_next == NULL); /* not valid ioctls for ip as a module */ 8382 8383 ip1dbg(("ip_sioctl_get_ifconf")); 8384 /* Existence verified in ip_wput_nondata */ 8385 mp1 = mp->b_cont->b_cont; 8386 iocp = (struct iocblk *)mp->b_rptr; 8387 zoneid = Q_TO_CONN(q)->conn_zoneid; 8388 8389 /* 8390 * The original SIOCGIFCONF passed in a struct ifconf which specified 8391 * the user buffer address and length into which the list of struct 8392 * ifreqs was to be copied. Since AT&T Streams does not seem to 8393 * allow M_COPYOUT to be used in conjunction with I_STR IOCTLS, 8394 * the SIOCGIFCONF operation was redefined to simply provide 8395 * a large output buffer into which we are supposed to jam the ifreq 8396 * array. The same ioctl command code was used, despite the fact that 8397 * both the applications and the kernel code had to change, thus making 8398 * it impossible to support both interfaces. 8399 * 8400 * For reasons not good enough to try to explain, the following 8401 * algorithm is used for deciding what to do with one of these: 8402 * If the IOCTL comes in as an I_STR, it is assumed to be of the new 8403 * form with the output buffer coming down as the continuation message. 8404 * If it arrives as a TRANSPARENT IOCTL, it is assumed to be old style, 8405 * and we have to copy in the ifconf structure to find out how big the 8406 * output buffer is and where to copy out to. Sure no problem... 8407 * 8408 */ 8409 STRUCT_SET_HANDLE(ifc, iocp->ioc_flag, NULL); 8410 if ((mp1->b_wptr - mp1->b_rptr) == STRUCT_SIZE(ifc)) { 8411 int numifs = 0; 8412 size_t ifc_bufsize; 8413 8414 /* 8415 * Must be (better be!) continuation of a TRANSPARENT 8416 * IOCTL. We just copied in the ifconf structure. 8417 */ 8418 STRUCT_SET_HANDLE(ifc, iocp->ioc_flag, 8419 (struct ifconf *)mp1->b_rptr); 8420 8421 /* 8422 * Allocate a buffer to hold requested information. 8423 * 8424 * If ifc_len is larger than what is needed, we only 8425 * allocate what we will use. 8426 * 8427 * If ifc_len is smaller than what is needed, return 8428 * EINVAL. 8429 * 8430 * XXX: the ill_t structure can hava 2 counters, for 8431 * v4 and v6 (not just ill_ipif_up_count) to store the 8432 * number of interfaces for a device, so we don't need 8433 * to count them here... 8434 */ 8435 numifs = ip_get_numifs(zoneid, ipst); 8436 8437 ifclen = STRUCT_FGET(ifc, ifc_len); 8438 ifc_bufsize = numifs * sizeof (struct ifreq); 8439 if (ifc_bufsize > ifclen) { 8440 if (iocp->ioc_cmd == O_SIOCGIFCONF) { 8441 /* old behaviour */ 8442 return (EINVAL); 8443 } else { 8444 ifc_bufsize = ifclen; 8445 } 8446 } 8447 8448 mp1 = mi_copyout_alloc(q, mp, 8449 STRUCT_FGETP(ifc, ifc_buf), ifc_bufsize, B_FALSE); 8450 if (mp1 == NULL) 8451 return (ENOMEM); 8452 8453 mp1->b_wptr = mp1->b_rptr + ifc_bufsize; 8454 } 8455 bzero(mp1->b_rptr, mp1->b_wptr - mp1->b_rptr); 8456 /* 8457 * the SIOCGIFCONF ioctl only knows about 8458 * IPv4 addresses, so don't try to tell 8459 * it about interfaces with IPv6-only 8460 * addresses. (Last parm 'isv6' is B_FALSE) 8461 */ 8462 8463 ifr = (struct ifreq *)mp1->b_rptr; 8464 8465 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 8466 ill = ILL_START_WALK_V4(&ctx, ipst); 8467 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 8468 if (IS_UNDER_IPMP(ill)) 8469 continue; 8470 for (ipif = ill->ill_ipif; ipif != NULL; 8471 ipif = ipif->ipif_next) { 8472 if (zoneid != ipif->ipif_zoneid && 8473 ipif->ipif_zoneid != ALL_ZONES) 8474 continue; 8475 if ((uchar_t *)&ifr[1] > mp1->b_wptr) { 8476 if (iocp->ioc_cmd == O_SIOCGIFCONF) { 8477 /* old behaviour */ 8478 rw_exit(&ipst->ips_ill_g_lock); 8479 return (EINVAL); 8480 } else { 8481 goto if_copydone; 8482 } 8483 } 8484 ipif_get_name(ipif, ifr->ifr_name, 8485 sizeof (ifr->ifr_name)); 8486 sin = (sin_t *)&ifr->ifr_addr; 8487 *sin = sin_null; 8488 sin->sin_family = AF_INET; 8489 sin->sin_addr.s_addr = ipif->ipif_lcl_addr; 8490 ifr++; 8491 } 8492 } 8493 if_copydone: 8494 rw_exit(&ipst->ips_ill_g_lock); 8495 mp1->b_wptr = (uchar_t *)ifr; 8496 8497 if (STRUCT_BUF(ifc) != NULL) { 8498 STRUCT_FSET(ifc, ifc_len, 8499 (int)((uchar_t *)ifr - mp1->b_rptr)); 8500 } 8501 return (0); 8502 } 8503 8504 /* 8505 * Get the interfaces using the address hosted on the interface passed in, 8506 * as a source adddress 8507 */ 8508 /* ARGSUSED */ 8509 int 8510 ip_sioctl_get_lifsrcof(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, 8511 mblk_t *mp, ip_ioctl_cmd_t *ipip, void *ifreq) 8512 { 8513 mblk_t *mp1; 8514 ill_t *ill, *ill_head; 8515 ipif_t *ipif, *orig_ipif; 8516 int numlifs = 0; 8517 size_t lifs_bufsize, lifsmaxlen; 8518 struct lifreq *lifr; 8519 struct iocblk *iocp = (struct iocblk *)mp->b_rptr; 8520 uint_t ifindex; 8521 zoneid_t zoneid; 8522 int err = 0; 8523 boolean_t isv6 = B_FALSE; 8524 struct sockaddr_in *sin; 8525 struct sockaddr_in6 *sin6; 8526 STRUCT_HANDLE(lifsrcof, lifs); 8527 ip_stack_t *ipst; 8528 8529 ipst = CONNQ_TO_IPST(q); 8530 8531 ASSERT(q->q_next == NULL); 8532 8533 zoneid = Q_TO_CONN(q)->conn_zoneid; 8534 8535 /* Existence verified in ip_wput_nondata */ 8536 mp1 = mp->b_cont->b_cont; 8537 8538 /* 8539 * Must be (better be!) continuation of a TRANSPARENT 8540 * IOCTL. We just copied in the lifsrcof structure. 8541 */ 8542 STRUCT_SET_HANDLE(lifs, iocp->ioc_flag, 8543 (struct lifsrcof *)mp1->b_rptr); 8544 8545 if (MBLKL(mp1) != STRUCT_SIZE(lifs)) 8546 return (EINVAL); 8547 8548 ifindex = STRUCT_FGET(lifs, lifs_ifindex); 8549 isv6 = (Q_TO_CONN(q))->conn_af_isv6; 8550 ipif = ipif_lookup_on_ifindex(ifindex, isv6, zoneid, q, mp, 8551 ip_process_ioctl, &err, ipst); 8552 if (ipif == NULL) { 8553 ip1dbg(("ip_sioctl_get_lifsrcof: no ipif for ifindex %d\n", 8554 ifindex)); 8555 return (err); 8556 } 8557 8558 /* Allocate a buffer to hold requested information */ 8559 numlifs = ip_get_lifsrcofnum(ipif->ipif_ill); 8560 lifs_bufsize = numlifs * sizeof (struct lifreq); 8561 lifsmaxlen = STRUCT_FGET(lifs, lifs_maxlen); 8562 /* The actual size needed is always returned in lifs_len */ 8563 STRUCT_FSET(lifs, lifs_len, lifs_bufsize); 8564 8565 /* If the amount we need is more than what is passed in, abort */ 8566 if (lifs_bufsize > lifsmaxlen || lifs_bufsize == 0) { 8567 ipif_refrele(ipif); 8568 return (0); 8569 } 8570 8571 mp1 = mi_copyout_alloc(q, mp, 8572 STRUCT_FGETP(lifs, lifs_buf), lifs_bufsize, B_FALSE); 8573 if (mp1 == NULL) { 8574 ipif_refrele(ipif); 8575 return (ENOMEM); 8576 } 8577 8578 mp1->b_wptr = mp1->b_rptr + lifs_bufsize; 8579 bzero(mp1->b_rptr, lifs_bufsize); 8580 8581 lifr = (struct lifreq *)mp1->b_rptr; 8582 8583 ill = ill_head = ipif->ipif_ill; 8584 orig_ipif = ipif; 8585 8586 /* ill_g_usesrc_lock protects ill_usesrc_grp_next */ 8587 rw_enter(&ipst->ips_ill_g_usesrc_lock, RW_READER); 8588 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 8589 8590 ill = ill->ill_usesrc_grp_next; /* start from next ill */ 8591 for (; (ill != NULL) && (ill != ill_head); 8592 ill = ill->ill_usesrc_grp_next) { 8593 8594 if ((uchar_t *)&lifr[1] > mp1->b_wptr) 8595 break; 8596 8597 ipif = ill->ill_ipif; 8598 ipif_get_name(ipif, lifr->lifr_name, sizeof (lifr->lifr_name)); 8599 if (ipif->ipif_isv6) { 8600 sin6 = (sin6_t *)&lifr->lifr_addr; 8601 *sin6 = sin6_null; 8602 sin6->sin6_family = AF_INET6; 8603 sin6->sin6_addr = ipif->ipif_v6lcl_addr; 8604 lifr->lifr_addrlen = ip_mask_to_plen_v6( 8605 &ipif->ipif_v6net_mask); 8606 } else { 8607 sin = (sin_t *)&lifr->lifr_addr; 8608 *sin = sin_null; 8609 sin->sin_family = AF_INET; 8610 sin->sin_addr.s_addr = ipif->ipif_lcl_addr; 8611 lifr->lifr_addrlen = ip_mask_to_plen( 8612 ipif->ipif_net_mask); 8613 } 8614 lifr++; 8615 } 8616 rw_exit(&ipst->ips_ill_g_usesrc_lock); 8617 rw_exit(&ipst->ips_ill_g_lock); 8618 ipif_refrele(orig_ipif); 8619 mp1->b_wptr = (uchar_t *)lifr; 8620 STRUCT_FSET(lifs, lifs_len, (int)((uchar_t *)lifr - mp1->b_rptr)); 8621 8622 return (0); 8623 } 8624 8625 /* ARGSUSED */ 8626 int 8627 ip_sioctl_get_lifconf(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, 8628 mblk_t *mp, ip_ioctl_cmd_t *ipip, void *ifreq) 8629 { 8630 mblk_t *mp1; 8631 int list; 8632 ill_t *ill; 8633 ipif_t *ipif; 8634 int flags; 8635 int numlifs = 0; 8636 size_t lifc_bufsize; 8637 struct lifreq *lifr; 8638 sa_family_t family; 8639 struct sockaddr_in *sin; 8640 struct sockaddr_in6 *sin6; 8641 ill_walk_context_t ctx; 8642 struct iocblk *iocp = (struct iocblk *)mp->b_rptr; 8643 int32_t lifclen; 8644 zoneid_t zoneid; 8645 STRUCT_HANDLE(lifconf, lifc); 8646 ip_stack_t *ipst = CONNQ_TO_IPST(q); 8647 8648 ip1dbg(("ip_sioctl_get_lifconf")); 8649 8650 ASSERT(q->q_next == NULL); 8651 8652 zoneid = Q_TO_CONN(q)->conn_zoneid; 8653 8654 /* Existence verified in ip_wput_nondata */ 8655 mp1 = mp->b_cont->b_cont; 8656 8657 /* 8658 * An extended version of SIOCGIFCONF that takes an 8659 * additional address family and flags field. 8660 * AF_UNSPEC retrieve both IPv4 and IPv6. 8661 * Unless LIFC_NOXMIT is specified the IPIF_NOXMIT 8662 * interfaces are omitted. 8663 * Similarly, IPIF_TEMPORARY interfaces are omitted 8664 * unless LIFC_TEMPORARY is specified. 8665 * If LIFC_EXTERNAL_SOURCE is specified, IPIF_NOXMIT, 8666 * IPIF_NOLOCAL, PHYI_LOOPBACK, IPIF_DEPRECATED and 8667 * not IPIF_UP interfaces are omitted. LIFC_EXTERNAL_SOURCE 8668 * has priority over LIFC_NOXMIT. 8669 */ 8670 STRUCT_SET_HANDLE(lifc, iocp->ioc_flag, NULL); 8671 8672 if ((mp1->b_wptr - mp1->b_rptr) != STRUCT_SIZE(lifc)) 8673 return (EINVAL); 8674 8675 /* 8676 * Must be (better be!) continuation of a TRANSPARENT 8677 * IOCTL. We just copied in the lifconf structure. 8678 */ 8679 STRUCT_SET_HANDLE(lifc, iocp->ioc_flag, (struct lifconf *)mp1->b_rptr); 8680 8681 family = STRUCT_FGET(lifc, lifc_family); 8682 flags = STRUCT_FGET(lifc, lifc_flags); 8683 8684 switch (family) { 8685 case AF_UNSPEC: 8686 /* 8687 * walk all ILL's. 8688 */ 8689 list = MAX_G_HEADS; 8690 break; 8691 case AF_INET: 8692 /* 8693 * walk only IPV4 ILL's. 8694 */ 8695 list = IP_V4_G_HEAD; 8696 break; 8697 case AF_INET6: 8698 /* 8699 * walk only IPV6 ILL's. 8700 */ 8701 list = IP_V6_G_HEAD; 8702 break; 8703 default: 8704 return (EAFNOSUPPORT); 8705 } 8706 8707 /* 8708 * Allocate a buffer to hold requested information. 8709 * 8710 * If lifc_len is larger than what is needed, we only 8711 * allocate what we will use. 8712 * 8713 * If lifc_len is smaller than what is needed, return 8714 * EINVAL. 8715 */ 8716 numlifs = ip_get_numlifs(family, flags, zoneid, ipst); 8717 lifc_bufsize = numlifs * sizeof (struct lifreq); 8718 lifclen = STRUCT_FGET(lifc, lifc_len); 8719 if (lifc_bufsize > lifclen) { 8720 if (iocp->ioc_cmd == O_SIOCGLIFCONF) 8721 return (EINVAL); 8722 else 8723 lifc_bufsize = lifclen; 8724 } 8725 8726 mp1 = mi_copyout_alloc(q, mp, 8727 STRUCT_FGETP(lifc, lifc_buf), lifc_bufsize, B_FALSE); 8728 if (mp1 == NULL) 8729 return (ENOMEM); 8730 8731 mp1->b_wptr = mp1->b_rptr + lifc_bufsize; 8732 bzero(mp1->b_rptr, mp1->b_wptr - mp1->b_rptr); 8733 8734 lifr = (struct lifreq *)mp1->b_rptr; 8735 8736 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 8737 ill = ill_first(list, list, &ctx, ipst); 8738 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 8739 if (IS_UNDER_IPMP(ill) && !(flags & LIFC_UNDER_IPMP)) 8740 continue; 8741 8742 for (ipif = ill->ill_ipif; ipif != NULL; 8743 ipif = ipif->ipif_next) { 8744 if ((ipif->ipif_flags & IPIF_NOXMIT) && 8745 !(flags & LIFC_NOXMIT)) 8746 continue; 8747 8748 if ((ipif->ipif_flags & IPIF_TEMPORARY) && 8749 !(flags & LIFC_TEMPORARY)) 8750 continue; 8751 8752 if (((ipif->ipif_flags & 8753 (IPIF_NOXMIT|IPIF_NOLOCAL| 8754 IPIF_DEPRECATED)) || 8755 IS_LOOPBACK(ill) || 8756 !(ipif->ipif_flags & IPIF_UP)) && 8757 (flags & LIFC_EXTERNAL_SOURCE)) 8758 continue; 8759 8760 if (zoneid != ipif->ipif_zoneid && 8761 ipif->ipif_zoneid != ALL_ZONES && 8762 (zoneid != GLOBAL_ZONEID || 8763 !(flags & LIFC_ALLZONES))) 8764 continue; 8765 8766 if ((uchar_t *)&lifr[1] > mp1->b_wptr) { 8767 if (iocp->ioc_cmd == O_SIOCGLIFCONF) { 8768 rw_exit(&ipst->ips_ill_g_lock); 8769 return (EINVAL); 8770 } else { 8771 goto lif_copydone; 8772 } 8773 } 8774 8775 ipif_get_name(ipif, lifr->lifr_name, 8776 sizeof (lifr->lifr_name)); 8777 lifr->lifr_type = ill->ill_type; 8778 if (ipif->ipif_isv6) { 8779 sin6 = (sin6_t *)&lifr->lifr_addr; 8780 *sin6 = sin6_null; 8781 sin6->sin6_family = AF_INET6; 8782 sin6->sin6_addr = 8783 ipif->ipif_v6lcl_addr; 8784 lifr->lifr_addrlen = 8785 ip_mask_to_plen_v6( 8786 &ipif->ipif_v6net_mask); 8787 } else { 8788 sin = (sin_t *)&lifr->lifr_addr; 8789 *sin = sin_null; 8790 sin->sin_family = AF_INET; 8791 sin->sin_addr.s_addr = 8792 ipif->ipif_lcl_addr; 8793 lifr->lifr_addrlen = 8794 ip_mask_to_plen( 8795 ipif->ipif_net_mask); 8796 } 8797 lifr++; 8798 } 8799 } 8800 lif_copydone: 8801 rw_exit(&ipst->ips_ill_g_lock); 8802 8803 mp1->b_wptr = (uchar_t *)lifr; 8804 if (STRUCT_BUF(lifc) != NULL) { 8805 STRUCT_FSET(lifc, lifc_len, 8806 (int)((uchar_t *)lifr - mp1->b_rptr)); 8807 } 8808 return (0); 8809 } 8810 8811 static void 8812 ip_sioctl_ip6addrpolicy(queue_t *q, mblk_t *mp) 8813 { 8814 ip6_asp_t *table; 8815 size_t table_size; 8816 mblk_t *data_mp; 8817 struct iocblk *iocp = (struct iocblk *)mp->b_rptr; 8818 ip_stack_t *ipst; 8819 8820 if (q->q_next == NULL) 8821 ipst = CONNQ_TO_IPST(q); 8822 else 8823 ipst = ILLQ_TO_IPST(q); 8824 8825 /* These two ioctls are I_STR only */ 8826 if (iocp->ioc_count == TRANSPARENT) { 8827 miocnak(q, mp, 0, EINVAL); 8828 return; 8829 } 8830 8831 data_mp = mp->b_cont; 8832 if (data_mp == NULL) { 8833 /* The user passed us a NULL argument */ 8834 table = NULL; 8835 table_size = iocp->ioc_count; 8836 } else { 8837 /* 8838 * The user provided a table. The stream head 8839 * may have copied in the user data in chunks, 8840 * so make sure everything is pulled up 8841 * properly. 8842 */ 8843 if (MBLKL(data_mp) < iocp->ioc_count) { 8844 mblk_t *new_data_mp; 8845 if ((new_data_mp = msgpullup(data_mp, -1)) == 8846 NULL) { 8847 miocnak(q, mp, 0, ENOMEM); 8848 return; 8849 } 8850 freemsg(data_mp); 8851 data_mp = new_data_mp; 8852 mp->b_cont = data_mp; 8853 } 8854 table = (ip6_asp_t *)data_mp->b_rptr; 8855 table_size = iocp->ioc_count; 8856 } 8857 8858 switch (iocp->ioc_cmd) { 8859 case SIOCGIP6ADDRPOLICY: 8860 iocp->ioc_rval = ip6_asp_get(table, table_size, ipst); 8861 if (iocp->ioc_rval == -1) 8862 iocp->ioc_error = EINVAL; 8863 #if defined(_SYSCALL32_IMPL) && _LONG_LONG_ALIGNMENT_32 == 4 8864 else if (table != NULL && 8865 (iocp->ioc_flag & IOC_MODELS) == IOC_ILP32) { 8866 ip6_asp_t *src = table; 8867 ip6_asp32_t *dst = (void *)table; 8868 int count = table_size / sizeof (ip6_asp_t); 8869 int i; 8870 8871 /* 8872 * We need to do an in-place shrink of the array 8873 * to match the alignment attributes of the 8874 * 32-bit ABI looking at it. 8875 */ 8876 /* LINTED: logical expression always true: op "||" */ 8877 ASSERT(sizeof (*src) > sizeof (*dst)); 8878 for (i = 1; i < count; i++) 8879 bcopy(src + i, dst + i, sizeof (*dst)); 8880 } 8881 #endif 8882 break; 8883 8884 case SIOCSIP6ADDRPOLICY: 8885 ASSERT(mp->b_prev == NULL); 8886 mp->b_prev = (void *)q; 8887 #if defined(_SYSCALL32_IMPL) && _LONG_LONG_ALIGNMENT_32 == 4 8888 /* 8889 * We pass in the datamodel here so that the ip6_asp_replace() 8890 * routine can handle converting from 32-bit to native formats 8891 * where necessary. 8892 * 8893 * A better way to handle this might be to convert the inbound 8894 * data structure here, and hang it off a new 'mp'; thus the 8895 * ip6_asp_replace() logic would always be dealing with native 8896 * format data structures.. 8897 * 8898 * (An even simpler way to handle these ioctls is to just 8899 * add a 32-bit trailing 'pad' field to the ip6_asp_t structure 8900 * and just recompile everything that depends on it.) 8901 */ 8902 #endif 8903 ip6_asp_replace(mp, table, table_size, B_FALSE, ipst, 8904 iocp->ioc_flag & IOC_MODELS); 8905 return; 8906 } 8907 8908 DB_TYPE(mp) = (iocp->ioc_error == 0) ? M_IOCACK : M_IOCNAK; 8909 qreply(q, mp); 8910 } 8911 8912 static void 8913 ip_sioctl_dstinfo(queue_t *q, mblk_t *mp) 8914 { 8915 mblk_t *data_mp; 8916 struct dstinforeq *dir; 8917 uint8_t *end, *cur; 8918 in6_addr_t *daddr, *saddr; 8919 ipaddr_t v4daddr; 8920 ire_t *ire; 8921 char *slabel, *dlabel; 8922 boolean_t isipv4; 8923 int match_ire; 8924 ill_t *dst_ill; 8925 ipif_t *src_ipif, *ire_ipif; 8926 struct iocblk *iocp = (struct iocblk *)mp->b_rptr; 8927 zoneid_t zoneid; 8928 ip_stack_t *ipst = CONNQ_TO_IPST(q); 8929 8930 ASSERT(q->q_next == NULL); /* this ioctl not allowed if ip is module */ 8931 zoneid = Q_TO_CONN(q)->conn_zoneid; 8932 8933 /* 8934 * This ioctl is I_STR only, and must have a 8935 * data mblk following the M_IOCTL mblk. 8936 */ 8937 data_mp = mp->b_cont; 8938 if (iocp->ioc_count == TRANSPARENT || data_mp == NULL) { 8939 miocnak(q, mp, 0, EINVAL); 8940 return; 8941 } 8942 8943 if (MBLKL(data_mp) < iocp->ioc_count) { 8944 mblk_t *new_data_mp; 8945 8946 if ((new_data_mp = msgpullup(data_mp, -1)) == NULL) { 8947 miocnak(q, mp, 0, ENOMEM); 8948 return; 8949 } 8950 freemsg(data_mp); 8951 data_mp = new_data_mp; 8952 mp->b_cont = data_mp; 8953 } 8954 match_ire = MATCH_IRE_RECURSIVE | MATCH_IRE_DEFAULT | MATCH_IRE_PARENT; 8955 8956 for (cur = data_mp->b_rptr, end = data_mp->b_wptr; 8957 end - cur >= sizeof (struct dstinforeq); 8958 cur += sizeof (struct dstinforeq)) { 8959 dir = (struct dstinforeq *)cur; 8960 daddr = &dir->dir_daddr; 8961 saddr = &dir->dir_saddr; 8962 8963 /* 8964 * ip_addr_scope_v6() and ip6_asp_lookup() handle 8965 * v4 mapped addresses; ire_ftable_lookup[_v6]() 8966 * and ipif_select_source[_v6]() do not. 8967 */ 8968 dir->dir_dscope = ip_addr_scope_v6(daddr); 8969 dlabel = ip6_asp_lookup(daddr, &dir->dir_precedence, ipst); 8970 8971 isipv4 = IN6_IS_ADDR_V4MAPPED(daddr); 8972 if (isipv4) { 8973 IN6_V4MAPPED_TO_IPADDR(daddr, v4daddr); 8974 ire = ire_ftable_lookup(v4daddr, NULL, NULL, 8975 0, NULL, NULL, zoneid, 0, NULL, match_ire, ipst); 8976 } else { 8977 ire = ire_ftable_lookup_v6(daddr, NULL, NULL, 8978 0, NULL, NULL, zoneid, 0, NULL, match_ire, ipst); 8979 } 8980 if (ire == NULL) { 8981 dir->dir_dreachable = 0; 8982 8983 /* move on to next dst addr */ 8984 continue; 8985 } 8986 dir->dir_dreachable = 1; 8987 8988 ire_ipif = ire->ire_ipif; 8989 if (ire_ipif == NULL) 8990 goto next_dst; 8991 8992 /* 8993 * We expect to get back an interface ire or a 8994 * gateway ire cache entry. For both types, the 8995 * output interface is ire_ipif->ipif_ill. 8996 */ 8997 dst_ill = ire_ipif->ipif_ill; 8998 dir->dir_dmactype = dst_ill->ill_mactype; 8999 9000 if (isipv4) { 9001 src_ipif = ipif_select_source(dst_ill, v4daddr, zoneid); 9002 } else { 9003 src_ipif = ipif_select_source_v6(dst_ill, 9004 daddr, B_FALSE, IPV6_PREFER_SRC_DEFAULT, zoneid); 9005 } 9006 if (src_ipif == NULL) 9007 goto next_dst; 9008 9009 *saddr = src_ipif->ipif_v6lcl_addr; 9010 dir->dir_sscope = ip_addr_scope_v6(saddr); 9011 slabel = ip6_asp_lookup(saddr, NULL, ipst); 9012 dir->dir_labelmatch = ip6_asp_labelcmp(dlabel, slabel); 9013 dir->dir_sdeprecated = 9014 (src_ipif->ipif_flags & IPIF_DEPRECATED) ? 1 : 0; 9015 ipif_refrele(src_ipif); 9016 next_dst: 9017 ire_refrele(ire); 9018 } 9019 miocack(q, mp, iocp->ioc_count, 0); 9020 } 9021 9022 /* 9023 * Check if this is an address assigned to this machine. 9024 * Skips interfaces that are down by using ire checks. 9025 * Translates mapped addresses to v4 addresses and then 9026 * treats them as such, returning true if the v4 address 9027 * associated with this mapped address is configured. 9028 * Note: Applications will have to be careful what they do 9029 * with the response; use of mapped addresses limits 9030 * what can be done with the socket, especially with 9031 * respect to socket options and ioctls - neither IPv4 9032 * options nor IPv6 sticky options/ancillary data options 9033 * may be used. 9034 */ 9035 /* ARGSUSED */ 9036 int 9037 ip_sioctl_tmyaddr(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, 9038 ip_ioctl_cmd_t *ipip, void *dummy_ifreq) 9039 { 9040 struct sioc_addrreq *sia; 9041 sin_t *sin; 9042 ire_t *ire; 9043 mblk_t *mp1; 9044 zoneid_t zoneid; 9045 ip_stack_t *ipst; 9046 9047 ip1dbg(("ip_sioctl_tmyaddr")); 9048 9049 ASSERT(q->q_next == NULL); /* this ioctl not allowed if ip is module */ 9050 zoneid = Q_TO_CONN(q)->conn_zoneid; 9051 ipst = CONNQ_TO_IPST(q); 9052 9053 /* Existence verified in ip_wput_nondata */ 9054 mp1 = mp->b_cont->b_cont; 9055 sia = (struct sioc_addrreq *)mp1->b_rptr; 9056 sin = (sin_t *)&sia->sa_addr; 9057 switch (sin->sin_family) { 9058 case AF_INET6: { 9059 sin6_t *sin6 = (sin6_t *)sin; 9060 9061 if (IN6_IS_ADDR_V4MAPPED(&sin6->sin6_addr)) { 9062 ipaddr_t v4_addr; 9063 9064 IN6_V4MAPPED_TO_IPADDR(&sin6->sin6_addr, 9065 v4_addr); 9066 ire = ire_ctable_lookup(v4_addr, 0, 9067 IRE_LOCAL|IRE_LOOPBACK, NULL, zoneid, 9068 NULL, MATCH_IRE_TYPE | MATCH_IRE_ZONEONLY, ipst); 9069 } else { 9070 in6_addr_t v6addr; 9071 9072 v6addr = sin6->sin6_addr; 9073 ire = ire_ctable_lookup_v6(&v6addr, 0, 9074 IRE_LOCAL|IRE_LOOPBACK, NULL, zoneid, 9075 NULL, MATCH_IRE_TYPE | MATCH_IRE_ZONEONLY, ipst); 9076 } 9077 break; 9078 } 9079 case AF_INET: { 9080 ipaddr_t v4addr; 9081 9082 v4addr = sin->sin_addr.s_addr; 9083 ire = ire_ctable_lookup(v4addr, 0, 9084 IRE_LOCAL|IRE_LOOPBACK, NULL, zoneid, 9085 NULL, MATCH_IRE_TYPE | MATCH_IRE_ZONEONLY, ipst); 9086 break; 9087 } 9088 default: 9089 return (EAFNOSUPPORT); 9090 } 9091 if (ire != NULL) { 9092 sia->sa_res = 1; 9093 ire_refrele(ire); 9094 } else { 9095 sia->sa_res = 0; 9096 } 9097 return (0); 9098 } 9099 9100 /* 9101 * Check if this is an address assigned on-link i.e. neighbor, 9102 * and makes sure it's reachable from the current zone. 9103 * Returns true for my addresses as well. 9104 * Translates mapped addresses to v4 addresses and then 9105 * treats them as such, returning true if the v4 address 9106 * associated with this mapped address is configured. 9107 * Note: Applications will have to be careful what they do 9108 * with the response; use of mapped addresses limits 9109 * what can be done with the socket, especially with 9110 * respect to socket options and ioctls - neither IPv4 9111 * options nor IPv6 sticky options/ancillary data options 9112 * may be used. 9113 */ 9114 /* ARGSUSED */ 9115 int 9116 ip_sioctl_tonlink(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, 9117 ip_ioctl_cmd_t *ipip, void *duymmy_ifreq) 9118 { 9119 struct sioc_addrreq *sia; 9120 sin_t *sin; 9121 mblk_t *mp1; 9122 ire_t *ire = NULL; 9123 zoneid_t zoneid; 9124 ip_stack_t *ipst; 9125 9126 ip1dbg(("ip_sioctl_tonlink")); 9127 9128 ASSERT(q->q_next == NULL); /* this ioctl not allowed if ip is module */ 9129 zoneid = Q_TO_CONN(q)->conn_zoneid; 9130 ipst = CONNQ_TO_IPST(q); 9131 9132 /* Existence verified in ip_wput_nondata */ 9133 mp1 = mp->b_cont->b_cont; 9134 sia = (struct sioc_addrreq *)mp1->b_rptr; 9135 sin = (sin_t *)&sia->sa_addr; 9136 9137 /* 9138 * Match addresses with a zero gateway field to avoid 9139 * routes going through a router. 9140 * Exclude broadcast and multicast addresses. 9141 */ 9142 switch (sin->sin_family) { 9143 case AF_INET6: { 9144 sin6_t *sin6 = (sin6_t *)sin; 9145 9146 if (IN6_IS_ADDR_V4MAPPED(&sin6->sin6_addr)) { 9147 ipaddr_t v4_addr; 9148 9149 IN6_V4MAPPED_TO_IPADDR(&sin6->sin6_addr, 9150 v4_addr); 9151 if (!CLASSD(v4_addr)) { 9152 ire = ire_route_lookup(v4_addr, 0, 0, 0, 9153 NULL, NULL, zoneid, NULL, 9154 MATCH_IRE_GW, ipst); 9155 } 9156 } else { 9157 in6_addr_t v6addr; 9158 in6_addr_t v6gw; 9159 9160 v6addr = sin6->sin6_addr; 9161 v6gw = ipv6_all_zeros; 9162 if (!IN6_IS_ADDR_MULTICAST(&v6addr)) { 9163 ire = ire_route_lookup_v6(&v6addr, 0, 9164 &v6gw, 0, NULL, NULL, zoneid, 9165 NULL, MATCH_IRE_GW, ipst); 9166 } 9167 } 9168 break; 9169 } 9170 case AF_INET: { 9171 ipaddr_t v4addr; 9172 9173 v4addr = sin->sin_addr.s_addr; 9174 if (!CLASSD(v4addr)) { 9175 ire = ire_route_lookup(v4addr, 0, 0, 0, 9176 NULL, NULL, zoneid, NULL, 9177 MATCH_IRE_GW, ipst); 9178 } 9179 break; 9180 } 9181 default: 9182 return (EAFNOSUPPORT); 9183 } 9184 sia->sa_res = 0; 9185 if (ire != NULL) { 9186 if (ire->ire_type & (IRE_INTERFACE|IRE_CACHE| 9187 IRE_LOCAL|IRE_LOOPBACK)) { 9188 sia->sa_res = 1; 9189 } 9190 ire_refrele(ire); 9191 } 9192 return (0); 9193 } 9194 9195 /* 9196 * TBD: implement when kernel maintaines a list of site prefixes. 9197 */ 9198 /* ARGSUSED */ 9199 int 9200 ip_sioctl_tmysite(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 9201 ip_ioctl_cmd_t *ipip, void *ifreq) 9202 { 9203 return (ENXIO); 9204 } 9205 9206 /* ARGSUSED */ 9207 int 9208 ip_sioctl_tunparam(ipif_t *ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, 9209 ip_ioctl_cmd_t *ipip, void *dummy_ifreq) 9210 { 9211 ill_t *ill; 9212 mblk_t *mp1; 9213 conn_t *connp; 9214 boolean_t success; 9215 9216 ip1dbg(("ip_sioctl_tunparam(%s:%u %p)\n", 9217 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 9218 /* ioctl comes down on an conn */ 9219 ASSERT(!(q->q_flag & QREADR) && q->q_next == NULL); 9220 connp = Q_TO_CONN(q); 9221 9222 mp->b_datap->db_type = M_IOCTL; 9223 9224 /* 9225 * Send down a copy. (copymsg does not copy b_next/b_prev). 9226 * The original mp contains contaminated b_next values due to 'mi', 9227 * which is needed to do the mi_copy_done. Unfortunately if we 9228 * send down the original mblk itself and if we are popped due to an 9229 * an unplumb before the response comes back from tunnel, 9230 * the streamhead (which does a freemsg) will see this contaminated 9231 * message and the assertion in freemsg about non-null b_next/b_prev 9232 * will panic a DEBUG kernel. 9233 */ 9234 mp1 = copymsg(mp); 9235 if (mp1 == NULL) 9236 return (ENOMEM); 9237 9238 ill = ipif->ipif_ill; 9239 mutex_enter(&connp->conn_lock); 9240 mutex_enter(&ill->ill_lock); 9241 if (ipip->ipi_cmd == SIOCSTUNPARAM || ipip->ipi_cmd == OSIOCSTUNPARAM) { 9242 success = ipsq_pending_mp_add(connp, ipif, CONNP_TO_WQ(connp), 9243 mp, 0); 9244 } else { 9245 success = ill_pending_mp_add(ill, connp, mp); 9246 } 9247 mutex_exit(&ill->ill_lock); 9248 mutex_exit(&connp->conn_lock); 9249 9250 if (success) { 9251 ip1dbg(("sending down tunparam request ")); 9252 putnext(ill->ill_wq, mp1); 9253 return (EINPROGRESS); 9254 } else { 9255 /* The conn has started closing */ 9256 freemsg(mp1); 9257 return (EINTR); 9258 } 9259 } 9260 9261 /* 9262 * ARP IOCTLs. 9263 * How does IP get in the business of fronting ARP configuration/queries? 9264 * Well it's like this, the Berkeley ARP IOCTLs (SIOCGARP, SIOCDARP, SIOCSARP) 9265 * are by tradition passed in through a datagram socket. That lands in IP. 9266 * As it happens, this is just as well since the interface is quite crude in 9267 * that it passes in no information about protocol or hardware types, or 9268 * interface association. After making the protocol assumption, IP is in 9269 * the position to look up the name of the ILL, which ARP will need, and 9270 * format a request that can be handled by ARP. The request is passed up 9271 * stream to ARP, and the original IOCTL is completed by IP when ARP passes 9272 * back a response. ARP supports its own set of more general IOCTLs, in 9273 * case anyone is interested. 9274 */ 9275 /* ARGSUSED */ 9276 int 9277 ip_sioctl_arp(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 9278 ip_ioctl_cmd_t *ipip, void *dummy_ifreq) 9279 { 9280 mblk_t *mp1; 9281 mblk_t *mp2; 9282 mblk_t *pending_mp; 9283 ipaddr_t ipaddr; 9284 area_t *area; 9285 struct iocblk *iocp; 9286 conn_t *connp; 9287 struct arpreq *ar; 9288 struct xarpreq *xar; 9289 int flags, alength; 9290 uchar_t *lladdr; 9291 ire_t *ire; 9292 ip_stack_t *ipst; 9293 ill_t *ill = ipif->ipif_ill; 9294 ill_t *proxy_ill = NULL; 9295 ipmp_arpent_t *entp = NULL; 9296 boolean_t if_arp_ioctl = B_FALSE; 9297 boolean_t proxyarp = B_FALSE; 9298 9299 ASSERT(!(q->q_flag & QREADR) && q->q_next == NULL); 9300 connp = Q_TO_CONN(q); 9301 ipst = connp->conn_netstack->netstack_ip; 9302 9303 if (ipip->ipi_cmd_type == XARP_CMD) { 9304 /* We have a chain - M_IOCTL-->MI_COPY_MBLK-->XARPREQ_MBLK */ 9305 xar = (struct xarpreq *)mp->b_cont->b_cont->b_rptr; 9306 ar = NULL; 9307 9308 flags = xar->xarp_flags; 9309 lladdr = (uchar_t *)LLADDR(&xar->xarp_ha); 9310 if_arp_ioctl = (xar->xarp_ha.sdl_nlen != 0); 9311 /* 9312 * Validate against user's link layer address length 9313 * input and name and addr length limits. 9314 */ 9315 alength = ill->ill_phys_addr_length; 9316 if (ipip->ipi_cmd == SIOCSXARP) { 9317 if (alength != xar->xarp_ha.sdl_alen || 9318 (alength + xar->xarp_ha.sdl_nlen > 9319 sizeof (xar->xarp_ha.sdl_data))) 9320 return (EINVAL); 9321 } 9322 } else { 9323 /* We have a chain - M_IOCTL-->MI_COPY_MBLK-->ARPREQ_MBLK */ 9324 ar = (struct arpreq *)mp->b_cont->b_cont->b_rptr; 9325 xar = NULL; 9326 9327 flags = ar->arp_flags; 9328 lladdr = (uchar_t *)ar->arp_ha.sa_data; 9329 /* 9330 * Theoretically, the sa_family could tell us what link 9331 * layer type this operation is trying to deal with. By 9332 * common usage AF_UNSPEC means ethernet. We'll assume 9333 * any attempt to use the SIOC?ARP ioctls is for ethernet, 9334 * for now. Our new SIOC*XARP ioctls can be used more 9335 * generally. 9336 * 9337 * If the underlying media happens to have a non 6 byte 9338 * address, arp module will fail set/get, but the del 9339 * operation will succeed. 9340 */ 9341 alength = 6; 9342 if ((ipip->ipi_cmd != SIOCDARP) && 9343 (alength != ill->ill_phys_addr_length)) { 9344 return (EINVAL); 9345 } 9346 } 9347 9348 ipaddr = sin->sin_addr.s_addr; 9349 9350 /* 9351 * IPMP ARP special handling: 9352 * 9353 * 1. Since ARP mappings must appear consistent across the group, 9354 * prohibit changing ARP mappings on the underlying interfaces. 9355 * 9356 * 2. Since ARP mappings for IPMP data addresses are maintained by 9357 * IP itself, prohibit changing them. 9358 * 9359 * 3. For proxy ARP, use a functioning hardware address in the group, 9360 * provided one exists. If one doesn't, just add the entry as-is; 9361 * ipmp_illgrp_refresh_arpent() will refresh it if things change. 9362 */ 9363 if (IS_UNDER_IPMP(ill)) { 9364 if (ipip->ipi_cmd != SIOCGARP && ipip->ipi_cmd != SIOCGXARP) 9365 return (EPERM); 9366 } 9367 if (IS_IPMP(ill)) { 9368 ipmp_illgrp_t *illg = ill->ill_grp; 9369 9370 switch (ipip->ipi_cmd) { 9371 case SIOCSARP: 9372 case SIOCSXARP: 9373 proxy_ill = ipmp_illgrp_find_ill(illg, lladdr, alength); 9374 if (proxy_ill != NULL) { 9375 proxyarp = B_TRUE; 9376 if (!ipmp_ill_is_active(proxy_ill)) 9377 proxy_ill = ipmp_illgrp_next_ill(illg); 9378 if (proxy_ill != NULL) 9379 lladdr = proxy_ill->ill_phys_addr; 9380 } 9381 /* FALLTHRU */ 9382 case SIOCDARP: 9383 case SIOCDXARP: 9384 ire = ire_ctable_lookup(ipaddr, 0, IRE_LOCAL, NULL, 9385 ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 9386 if (ire != NULL) { 9387 ire_refrele(ire); 9388 return (EPERM); 9389 } 9390 } 9391 } 9392 9393 /* 9394 * We are going to pass up to ARP a packet chain that looks 9395 * like: 9396 * 9397 * M_IOCTL-->ARP_op_MBLK-->ORIG_M_IOCTL-->MI_COPY_MBLK-->[X]ARPREQ_MBLK 9398 * 9399 * Get a copy of the original IOCTL mblk to head the chain, 9400 * to be sent up (in mp1). Also get another copy to store 9401 * in the ill_pending_mp list, for matching the response 9402 * when it comes back from ARP. 9403 */ 9404 mp1 = copyb(mp); 9405 pending_mp = copymsg(mp); 9406 if (mp1 == NULL || pending_mp == NULL) { 9407 if (mp1 != NULL) 9408 freeb(mp1); 9409 if (pending_mp != NULL) 9410 inet_freemsg(pending_mp); 9411 return (ENOMEM); 9412 } 9413 9414 mp2 = ill_arp_alloc(ill, (uchar_t *)&ip_area_template, 9415 (caddr_t)&ipaddr); 9416 if (mp2 == NULL) { 9417 freeb(mp1); 9418 inet_freemsg(pending_mp); 9419 return (ENOMEM); 9420 } 9421 /* Put together the chain. */ 9422 mp1->b_cont = mp2; 9423 mp1->b_datap->db_type = M_IOCTL; 9424 mp2->b_cont = mp; 9425 mp2->b_datap->db_type = M_DATA; 9426 9427 iocp = (struct iocblk *)mp1->b_rptr; 9428 9429 /* 9430 * An M_IOCDATA's payload (struct copyresp) is mostly the same as an 9431 * M_IOCTL's payload (struct iocblk), but 'struct copyresp' has a 9432 * cp_private field (or cp_rval on 32-bit systems) in place of the 9433 * ioc_count field; set ioc_count to be correct. 9434 */ 9435 iocp->ioc_count = MBLKL(mp1->b_cont); 9436 9437 /* 9438 * Set the proper command in the ARP message. 9439 * Convert the SIOC{G|S|D}ARP calls into our 9440 * AR_ENTRY_xxx calls. 9441 */ 9442 area = (area_t *)mp2->b_rptr; 9443 switch (iocp->ioc_cmd) { 9444 case SIOCDARP: 9445 case SIOCDXARP: 9446 /* 9447 * We defer deleting the corresponding IRE until 9448 * we return from arp. 9449 */ 9450 area->area_cmd = AR_ENTRY_DELETE; 9451 area->area_proto_mask_offset = 0; 9452 break; 9453 case SIOCGARP: 9454 case SIOCGXARP: 9455 area->area_cmd = AR_ENTRY_SQUERY; 9456 area->area_proto_mask_offset = 0; 9457 break; 9458 case SIOCSARP: 9459 case SIOCSXARP: 9460 /* 9461 * Delete the corresponding ire to make sure IP will 9462 * pick up any change from arp. 9463 */ 9464 if (!if_arp_ioctl) { 9465 (void) ip_ire_clookup_and_delete(ipaddr, NULL, ipst); 9466 } else { 9467 ipif_t *ipif = ipif_get_next_ipif(NULL, ill); 9468 if (ipif != NULL) { 9469 (void) ip_ire_clookup_and_delete(ipaddr, ipif, 9470 ipst); 9471 ipif_refrele(ipif); 9472 } 9473 } 9474 break; 9475 } 9476 iocp->ioc_cmd = area->area_cmd; 9477 9478 /* 9479 * Fill in the rest of the ARP operation fields. 9480 */ 9481 area->area_hw_addr_length = alength; 9482 bcopy(lladdr, (char *)area + area->area_hw_addr_offset, alength); 9483 9484 /* Translate the flags. */ 9485 if (flags & ATF_PERM) 9486 area->area_flags |= ACE_F_PERMANENT; 9487 if (flags & ATF_PUBL) 9488 area->area_flags |= ACE_F_PUBLISH; 9489 if (flags & ATF_AUTHORITY) 9490 area->area_flags |= ACE_F_AUTHORITY; 9491 9492 /* 9493 * If this is a permanent AR_ENTRY_ADD on the IPMP interface, track it 9494 * so that IP can update ARP as the active ills in the group change. 9495 */ 9496 if (IS_IPMP(ill) && area->area_cmd == AR_ENTRY_ADD && 9497 (area->area_flags & ACE_F_PERMANENT)) { 9498 entp = ipmp_illgrp_create_arpent(ill->ill_grp, mp2, proxyarp); 9499 9500 /* 9501 * The second part of the conditional below handles a corner 9502 * case: if this is proxy ARP and the IPMP group has no active 9503 * interfaces, we can't send the request to ARP now since it 9504 * won't be able to build an ACE. So we return success and 9505 * notify ARP about the proxy ARP entry once an interface 9506 * becomes active. 9507 */ 9508 if (entp == NULL || (proxyarp && proxy_ill == NULL)) { 9509 mp2->b_cont = NULL; 9510 inet_freemsg(mp1); 9511 inet_freemsg(pending_mp); 9512 return (entp == NULL ? ENOMEM : 0); 9513 } 9514 } 9515 9516 /* 9517 * Before sending 'mp' to ARP, we have to clear the b_next 9518 * and b_prev. Otherwise if STREAMS encounters such a message 9519 * in freemsg(), (because ARP can close any time) it can cause 9520 * a panic. But mi code needs the b_next and b_prev values of 9521 * mp->b_cont, to complete the ioctl. So we store it here 9522 * in pending_mp->bcont, and restore it in ip_sioctl_iocack() 9523 * when the response comes down from ARP. 9524 */ 9525 pending_mp->b_cont->b_next = mp->b_cont->b_next; 9526 pending_mp->b_cont->b_prev = mp->b_cont->b_prev; 9527 mp->b_cont->b_next = NULL; 9528 mp->b_cont->b_prev = NULL; 9529 9530 mutex_enter(&connp->conn_lock); 9531 mutex_enter(&ill->ill_lock); 9532 /* conn has not yet started closing, hence this can't fail */ 9533 if (ipip->ipi_flags & IPI_WR) { 9534 VERIFY(ipsq_pending_mp_add(connp, ipif, CONNP_TO_WQ(connp), 9535 pending_mp, 0) != 0); 9536 } else { 9537 VERIFY(ill_pending_mp_add(ill, connp, pending_mp) != 0); 9538 } 9539 mutex_exit(&ill->ill_lock); 9540 mutex_exit(&connp->conn_lock); 9541 9542 /* 9543 * Up to ARP it goes. The response will come back in ip_wput() as an 9544 * M_IOCACK, and will be handed to ip_sioctl_iocack() for completion. 9545 */ 9546 putnext(ill->ill_rq, mp1); 9547 9548 /* 9549 * If we created an IPMP ARP entry, mark that we've notified ARP. 9550 */ 9551 if (entp != NULL) 9552 ipmp_illgrp_mark_arpent(ill->ill_grp, entp); 9553 9554 return (EINPROGRESS); 9555 } 9556 9557 /* 9558 * Parse an [x]arpreq structure coming down SIOC[GSD][X]ARP ioctls, identify 9559 * the associated sin and refhold and return the associated ipif via `ci'. 9560 */ 9561 int 9562 ip_extract_arpreq(queue_t *q, mblk_t *mp, const ip_ioctl_cmd_t *ipip, 9563 cmd_info_t *ci, ipsq_func_t func) 9564 { 9565 mblk_t *mp1; 9566 int err; 9567 sin_t *sin; 9568 conn_t *connp; 9569 ipif_t *ipif; 9570 ire_t *ire = NULL; 9571 ill_t *ill = NULL; 9572 boolean_t exists; 9573 ip_stack_t *ipst; 9574 struct arpreq *ar; 9575 struct xarpreq *xar; 9576 struct sockaddr_dl *sdl; 9577 9578 /* ioctl comes down on a conn */ 9579 ASSERT(!(q->q_flag & QREADR) && q->q_next == NULL); 9580 connp = Q_TO_CONN(q); 9581 if (connp->conn_af_isv6) 9582 return (ENXIO); 9583 9584 ipst = connp->conn_netstack->netstack_ip; 9585 9586 /* Verified in ip_wput_nondata */ 9587 mp1 = mp->b_cont->b_cont; 9588 9589 if (ipip->ipi_cmd_type == XARP_CMD) { 9590 ASSERT(MBLKL(mp1) >= sizeof (struct xarpreq)); 9591 xar = (struct xarpreq *)mp1->b_rptr; 9592 sin = (sin_t *)&xar->xarp_pa; 9593 sdl = &xar->xarp_ha; 9594 9595 if (sdl->sdl_family != AF_LINK || sin->sin_family != AF_INET) 9596 return (ENXIO); 9597 if (sdl->sdl_nlen >= LIFNAMSIZ) 9598 return (EINVAL); 9599 } else { 9600 ASSERT(ipip->ipi_cmd_type == ARP_CMD); 9601 ASSERT(MBLKL(mp1) >= sizeof (struct arpreq)); 9602 ar = (struct arpreq *)mp1->b_rptr; 9603 sin = (sin_t *)&ar->arp_pa; 9604 } 9605 9606 if (ipip->ipi_cmd_type == XARP_CMD && sdl->sdl_nlen != 0) { 9607 ipif = ipif_lookup_on_name(sdl->sdl_data, sdl->sdl_nlen, 9608 B_FALSE, &exists, B_FALSE, ALL_ZONES, CONNP_TO_WQ(connp), 9609 mp, func, &err, ipst); 9610 if (ipif == NULL) 9611 return (err); 9612 if (ipif->ipif_id != 0) { 9613 ipif_refrele(ipif); 9614 return (ENXIO); 9615 } 9616 } else { 9617 /* 9618 * Either an SIOC[DGS]ARP or an SIOC[DGS]XARP with an sdl_nlen 9619 * of 0: use the IP address to find the ipif. If the IP 9620 * address is an IPMP test address, ire_ftable_lookup() will 9621 * find the wrong ill, so we first do an ipif_lookup_addr(). 9622 */ 9623 ipif = ipif_lookup_addr(sin->sin_addr.s_addr, NULL, ALL_ZONES, 9624 CONNP_TO_WQ(connp), mp, func, &err, ipst); 9625 if (ipif == NULL) { 9626 ire = ire_ftable_lookup(sin->sin_addr.s_addr, 0, 0, 9627 IRE_IF_RESOLVER, NULL, NULL, ALL_ZONES, 0, NULL, 9628 MATCH_IRE_TYPE, ipst); 9629 if (ire == NULL || ((ill = ire_to_ill(ire)) == NULL)) { 9630 if (ire != NULL) 9631 ire_refrele(ire); 9632 return (ENXIO); 9633 } 9634 ipif = ill->ill_ipif; 9635 ipif_refhold(ipif); 9636 ire_refrele(ire); 9637 } 9638 } 9639 9640 if (ipif->ipif_net_type != IRE_IF_RESOLVER) { 9641 ipif_refrele(ipif); 9642 return (ENXIO); 9643 } 9644 9645 ci->ci_sin = sin; 9646 ci->ci_ipif = ipif; 9647 return (0); 9648 } 9649 9650 /* 9651 * Link or unlink the illgrp on IPMP meta-interface `ill' depending on the 9652 * value of `ioccmd'. While an illgrp is linked to an ipmp_grp_t, it is 9653 * accessible from that ipmp_grp_t, which means SIOCSLIFGROUPNAME can look it 9654 * up and thus an ill can join that illgrp. 9655 * 9656 * We use I_PLINK/I_PUNLINK to do the link/unlink operations rather than 9657 * open()/close() primarily because close() is not allowed to fail or block 9658 * forever. On the other hand, I_PUNLINK *can* fail, and there's no reason 9659 * why anyone should ever need to I_PUNLINK an in-use IPMP stream. To ensure 9660 * symmetric behavior (e.g., doing an I_PLINK after and I_PUNLINK undoes the 9661 * I_PUNLINK) we defer linking to I_PLINK. Separately, we also fail attempts 9662 * to I_LINK since I_UNLINK is optional and we'd end up in an inconsistent 9663 * state if I_UNLINK didn't occur. 9664 * 9665 * Note that for each plumb/unplumb operation, we may end up here more than 9666 * once because of the way ifconfig works. However, it's OK to link the same 9667 * illgrp more than once, or unlink an illgrp that's already unlinked. 9668 */ 9669 static int 9670 ip_sioctl_plink_ipmp(ill_t *ill, int ioccmd) 9671 { 9672 int err; 9673 ip_stack_t *ipst = ill->ill_ipst; 9674 9675 ASSERT(IS_IPMP(ill)); 9676 ASSERT(IAM_WRITER_ILL(ill)); 9677 9678 switch (ioccmd) { 9679 case I_LINK: 9680 return (ENOTSUP); 9681 9682 case I_PLINK: 9683 rw_enter(&ipst->ips_ipmp_lock, RW_WRITER); 9684 ipmp_illgrp_link_grp(ill->ill_grp, ill->ill_phyint->phyint_grp); 9685 rw_exit(&ipst->ips_ipmp_lock); 9686 break; 9687 9688 case I_PUNLINK: 9689 /* 9690 * Require all UP ipifs be brought down prior to unlinking the 9691 * illgrp so any associated IREs (and other state) is torched. 9692 */ 9693 if (ill->ill_ipif_up_count + ill->ill_ipif_dup_count > 0) 9694 return (EBUSY); 9695 9696 /* 9697 * NOTE: We hold ipmp_lock across the unlink to prevent a race 9698 * with an SIOCSLIFGROUPNAME request from an ill trying to 9699 * join this group. Specifically: ills trying to join grab 9700 * ipmp_lock and bump a "pending join" counter checked by 9701 * ipmp_illgrp_unlink_grp(). During the unlink no new pending 9702 * joins can occur (since we have ipmp_lock). Once we drop 9703 * ipmp_lock, subsequent SIOCSLIFGROUPNAME requests will not 9704 * find the illgrp (since we unlinked it) and will return 9705 * EAFNOSUPPORT. This will then take them back through the 9706 * IPMP meta-interface plumbing logic in ifconfig, and thus 9707 * back through I_PLINK above. 9708 */ 9709 rw_enter(&ipst->ips_ipmp_lock, RW_WRITER); 9710 err = ipmp_illgrp_unlink_grp(ill->ill_grp); 9711 rw_exit(&ipst->ips_ipmp_lock); 9712 return (err); 9713 default: 9714 break; 9715 } 9716 return (0); 9717 } 9718 9719 /* 9720 * Do I_PLINK/I_LINK or I_PUNLINK/I_UNLINK with consistency checks and also 9721 * atomically set/clear the muxids. Also complete the ioctl by acking or 9722 * naking it. Note that the code is structured such that the link type, 9723 * whether it's persistent or not, is treated equally. ifconfig(1M) and 9724 * its clones use the persistent link, while pppd(1M) and perhaps many 9725 * other daemons may use non-persistent link. When combined with some 9726 * ill_t states, linking and unlinking lower streams may be used as 9727 * indicators of dynamic re-plumbing events [see PSARC/1999/348]. 9728 */ 9729 /* ARGSUSED */ 9730 void 9731 ip_sioctl_plink(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy_arg) 9732 { 9733 mblk_t *mp1, *mp2; 9734 struct linkblk *li; 9735 struct ipmx_s *ipmxp; 9736 ill_t *ill; 9737 int ioccmd = ((struct iocblk *)mp->b_rptr)->ioc_cmd; 9738 int err = 0; 9739 boolean_t entered_ipsq = B_FALSE; 9740 boolean_t islink; 9741 ip_stack_t *ipst; 9742 9743 if (CONN_Q(q)) 9744 ipst = CONNQ_TO_IPST(q); 9745 else 9746 ipst = ILLQ_TO_IPST(q); 9747 9748 ASSERT(ioccmd == I_PLINK || ioccmd == I_PUNLINK || 9749 ioccmd == I_LINK || ioccmd == I_UNLINK); 9750 9751 islink = (ioccmd == I_PLINK || ioccmd == I_LINK); 9752 9753 mp1 = mp->b_cont; /* This is the linkblk info */ 9754 li = (struct linkblk *)mp1->b_rptr; 9755 9756 /* 9757 * ARP has added this special mblk, and the utility is asking us 9758 * to perform consistency checks, and also atomically set the 9759 * muxid. Ifconfig is an example. It achieves this by using 9760 * /dev/arp as the mux to plink the arp stream, and pushes arp on 9761 * to /dev/udp[6] stream for use as the mux when plinking the IP 9762 * stream. SIOCSLIFMUXID is not required. See ifconfig.c, arp.c 9763 * and other comments in this routine for more details. 9764 */ 9765 mp2 = mp1->b_cont; /* This is added by ARP */ 9766 9767 /* 9768 * If I_{P}LINK/I_{P}UNLINK is issued by a utility other than 9769 * ifconfig which didn't push ARP on top of the dummy mux, we won't 9770 * get the special mblk above. For backward compatibility, we 9771 * request ip_sioctl_plink_ipmod() to skip the consistency checks. 9772 * The utility will use SIOCSLIFMUXID to store the muxids. This is 9773 * not atomic, and can leave the streams unplumbable if the utility 9774 * is interrupted before it does the SIOCSLIFMUXID. 9775 */ 9776 if (mp2 == NULL) { 9777 err = ip_sioctl_plink_ipmod(ipsq, q, mp, ioccmd, li, B_FALSE); 9778 if (err == EINPROGRESS) 9779 return; 9780 goto done; 9781 } 9782 9783 /* 9784 * This is an I_{P}LINK sent down by ifconfig through the ARP module; 9785 * ARP has appended this last mblk to tell us whether the lower stream 9786 * is an arp-dev stream or an IP module stream. 9787 */ 9788 ipmxp = (struct ipmx_s *)mp2->b_rptr; 9789 if (ipmxp->ipmx_arpdev_stream) { 9790 /* 9791 * The lower stream is the arp-dev stream. 9792 */ 9793 ill = ill_lookup_on_name(ipmxp->ipmx_name, B_FALSE, B_FALSE, 9794 q, mp, ip_sioctl_plink, &err, NULL, ipst); 9795 if (ill == NULL) { 9796 if (err == EINPROGRESS) 9797 return; 9798 err = EINVAL; 9799 goto done; 9800 } 9801 9802 if (ipsq == NULL) { 9803 ipsq = ipsq_try_enter(NULL, ill, q, mp, ip_sioctl_plink, 9804 NEW_OP, B_FALSE); 9805 if (ipsq == NULL) { 9806 ill_refrele(ill); 9807 return; 9808 } 9809 entered_ipsq = B_TRUE; 9810 } 9811 ASSERT(IAM_WRITER_ILL(ill)); 9812 ill_refrele(ill); 9813 9814 /* 9815 * To ensure consistency between IP and ARP, the following 9816 * LIFO scheme is used in plink/punlink. (IP first, ARP last). 9817 * This is because the muxid's are stored in the IP stream on 9818 * the ill. 9819 * 9820 * I_{P}LINK: ifconfig plinks the IP stream before plinking 9821 * the ARP stream. On an arp-dev stream, IP checks that it is 9822 * not yet plinked, and it also checks that the corresponding 9823 * IP stream is already plinked. 9824 * 9825 * I_{P}UNLINK: ifconfig punlinks the ARP stream before 9826 * punlinking the IP stream. IP does not allow punlink of the 9827 * IP stream unless the arp stream has been punlinked. 9828 */ 9829 if ((islink && 9830 (ill->ill_arp_muxid != 0 || ill->ill_ip_muxid == 0)) || 9831 (!islink && ill->ill_arp_muxid != li->l_index)) { 9832 err = EINVAL; 9833 goto done; 9834 } 9835 9836 if (IS_IPMP(ill) && 9837 (err = ip_sioctl_plink_ipmp(ill, ioccmd)) != 0) 9838 goto done; 9839 9840 ill->ill_arp_muxid = islink ? li->l_index : 0; 9841 } else { 9842 /* 9843 * The lower stream is probably an IP module stream. Do 9844 * consistency checking. 9845 */ 9846 err = ip_sioctl_plink_ipmod(ipsq, q, mp, ioccmd, li, B_TRUE); 9847 if (err == EINPROGRESS) 9848 return; 9849 } 9850 done: 9851 if (err == 0) 9852 miocack(q, mp, 0, 0); 9853 else 9854 miocnak(q, mp, 0, err); 9855 9856 /* Conn was refheld in ip_sioctl_copyin_setup */ 9857 if (CONN_Q(q)) 9858 CONN_OPER_PENDING_DONE(Q_TO_CONN(q)); 9859 if (entered_ipsq) 9860 ipsq_exit(ipsq); 9861 } 9862 9863 /* 9864 * Process I_{P}LINK and I_{P}UNLINK requests named by `ioccmd' and pointed to 9865 * by `mp' and `li' for the IP module stream (if li->q_bot is in fact an IP 9866 * module stream). If `doconsist' is set, then do the extended consistency 9867 * checks requested by ifconfig(1M) and (atomically) set ill_ip_muxid here. 9868 * Returns zero on success, EINPROGRESS if the operation is still pending, or 9869 * an error code on failure. 9870 */ 9871 static int 9872 ip_sioctl_plink_ipmod(ipsq_t *ipsq, queue_t *q, mblk_t *mp, int ioccmd, 9873 struct linkblk *li, boolean_t doconsist) 9874 { 9875 int err = 0; 9876 ill_t *ill; 9877 queue_t *ipwq, *dwq; 9878 const char *name; 9879 struct qinit *qinfo; 9880 boolean_t islink = (ioccmd == I_PLINK || ioccmd == I_LINK); 9881 boolean_t entered_ipsq = B_FALSE; 9882 9883 /* 9884 * Walk the lower stream to verify it's the IP module stream. 9885 * The IP module is identified by its name, wput function, 9886 * and non-NULL q_next. STREAMS ensures that the lower stream 9887 * (li->l_qbot) will not vanish until this ioctl completes. 9888 */ 9889 for (ipwq = li->l_qbot; ipwq != NULL; ipwq = ipwq->q_next) { 9890 qinfo = ipwq->q_qinfo; 9891 name = qinfo->qi_minfo->mi_idname; 9892 if (name != NULL && strcmp(name, ip_mod_info.mi_idname) == 0 && 9893 qinfo->qi_putp != (pfi_t)ip_lwput && ipwq->q_next != NULL) { 9894 break; 9895 } 9896 } 9897 9898 /* 9899 * If this isn't an IP module stream, bail. 9900 */ 9901 if (ipwq == NULL) 9902 return (0); 9903 9904 ill = ipwq->q_ptr; 9905 ASSERT(ill != NULL); 9906 9907 if (ipsq == NULL) { 9908 ipsq = ipsq_try_enter(NULL, ill, q, mp, ip_sioctl_plink, 9909 NEW_OP, B_FALSE); 9910 if (ipsq == NULL) 9911 return (EINPROGRESS); 9912 entered_ipsq = B_TRUE; 9913 } 9914 ASSERT(IAM_WRITER_ILL(ill)); 9915 9916 if (doconsist) { 9917 /* 9918 * Consistency checking requires that I_{P}LINK occurs 9919 * prior to setting ill_ip_muxid, and that I_{P}UNLINK 9920 * occurs prior to clearing ill_arp_muxid. 9921 */ 9922 if ((islink && ill->ill_ip_muxid != 0) || 9923 (!islink && ill->ill_arp_muxid != 0)) { 9924 err = EINVAL; 9925 goto done; 9926 } 9927 } 9928 9929 if (IS_IPMP(ill) && (err = ip_sioctl_plink_ipmp(ill, ioccmd)) != 0) 9930 goto done; 9931 9932 /* 9933 * As part of I_{P}LINKing, stash the number of downstream modules and 9934 * the read queue of the module immediately below IP in the ill. 9935 * These are used during the capability negotiation below. 9936 */ 9937 ill->ill_lmod_rq = NULL; 9938 ill->ill_lmod_cnt = 0; 9939 if (islink && ((dwq = ipwq->q_next) != NULL)) { 9940 ill->ill_lmod_rq = RD(dwq); 9941 for (; dwq != NULL; dwq = dwq->q_next) 9942 ill->ill_lmod_cnt++; 9943 } 9944 9945 if (doconsist) 9946 ill->ill_ip_muxid = islink ? li->l_index : 0; 9947 9948 /* 9949 * Mark the ipsq busy until the capability operations initiated below 9950 * complete. The PLINK/UNLINK ioctl itself completes when our caller 9951 * returns, but the capability operation may complete asynchronously 9952 * much later. 9953 */ 9954 ipsq_current_start(ipsq, ill->ill_ipif, ioccmd); 9955 /* 9956 * If there's at least one up ipif on this ill, then we're bound to 9957 * the underlying driver via DLPI. In that case, renegotiate 9958 * capabilities to account for any possible change in modules 9959 * interposed between IP and the driver. 9960 */ 9961 if (ill->ill_ipif_up_count > 0) { 9962 if (islink) 9963 ill_capability_probe(ill); 9964 else 9965 ill_capability_reset(ill, B_FALSE); 9966 } 9967 ipsq_current_finish(ipsq); 9968 done: 9969 if (entered_ipsq) 9970 ipsq_exit(ipsq); 9971 9972 return (err); 9973 } 9974 9975 /* 9976 * Search the ioctl command in the ioctl tables and return a pointer 9977 * to the ioctl command information. The ioctl command tables are 9978 * static and fully populated at compile time. 9979 */ 9980 ip_ioctl_cmd_t * 9981 ip_sioctl_lookup(int ioc_cmd) 9982 { 9983 int index; 9984 ip_ioctl_cmd_t *ipip; 9985 ip_ioctl_cmd_t *ipip_end; 9986 9987 if (ioc_cmd == IPI_DONTCARE) 9988 return (NULL); 9989 9990 /* 9991 * Do a 2 step search. First search the indexed table 9992 * based on the least significant byte of the ioctl cmd. 9993 * If we don't find a match, then search the misc table 9994 * serially. 9995 */ 9996 index = ioc_cmd & 0xFF; 9997 if (index < ip_ndx_ioctl_count) { 9998 ipip = &ip_ndx_ioctl_table[index]; 9999 if (ipip->ipi_cmd == ioc_cmd) { 10000 /* Found a match in the ndx table */ 10001 return (ipip); 10002 } 10003 } 10004 10005 /* Search the misc table */ 10006 ipip_end = &ip_misc_ioctl_table[ip_misc_ioctl_count]; 10007 for (ipip = ip_misc_ioctl_table; ipip < ipip_end; ipip++) { 10008 if (ipip->ipi_cmd == ioc_cmd) 10009 /* Found a match in the misc table */ 10010 return (ipip); 10011 } 10012 10013 return (NULL); 10014 } 10015 10016 /* 10017 * Wrapper function for resuming deferred ioctl processing 10018 * Used for SIOCGDSTINFO, SIOCGIP6ADDRPOLICY, SIOCGMSFILTER, 10019 * SIOCSMSFILTER, SIOCGIPMSFILTER, and SIOCSIPMSFILTER currently. 10020 */ 10021 /* ARGSUSED */ 10022 void 10023 ip_sioctl_copyin_resume(ipsq_t *dummy_ipsq, queue_t *q, mblk_t *mp, 10024 void *dummy_arg) 10025 { 10026 ip_sioctl_copyin_setup(q, mp); 10027 } 10028 10029 /* 10030 * ip_sioctl_copyin_setup is called by ip_wput with any M_IOCTL message 10031 * that arrives. Most of the IOCTLs are "socket" IOCTLs which we handle 10032 * in either I_STR or TRANSPARENT form, using the mi_copy facility. 10033 * We establish here the size of the block to be copied in. mi_copyin 10034 * arranges for this to happen, an processing continues in ip_wput with 10035 * an M_IOCDATA message. 10036 */ 10037 void 10038 ip_sioctl_copyin_setup(queue_t *q, mblk_t *mp) 10039 { 10040 int copyin_size; 10041 struct iocblk *iocp = (struct iocblk *)mp->b_rptr; 10042 ip_ioctl_cmd_t *ipip; 10043 cred_t *cr; 10044 ip_stack_t *ipst; 10045 10046 if (CONN_Q(q)) 10047 ipst = CONNQ_TO_IPST(q); 10048 else 10049 ipst = ILLQ_TO_IPST(q); 10050 10051 ipip = ip_sioctl_lookup(iocp->ioc_cmd); 10052 if (ipip == NULL) { 10053 /* 10054 * The ioctl is not one we understand or own. 10055 * Pass it along to be processed down stream, 10056 * if this is a module instance of IP, else nak 10057 * the ioctl. 10058 */ 10059 if (q->q_next == NULL) { 10060 goto nak; 10061 } else { 10062 putnext(q, mp); 10063 return; 10064 } 10065 } 10066 10067 /* 10068 * If this is deferred, then we will do all the checks when we 10069 * come back. 10070 */ 10071 if ((iocp->ioc_cmd == SIOCGDSTINFO || 10072 iocp->ioc_cmd == SIOCGIP6ADDRPOLICY) && !ip6_asp_can_lookup(ipst)) { 10073 ip6_asp_pending_op(q, mp, ip_sioctl_copyin_resume); 10074 return; 10075 } 10076 10077 /* 10078 * Only allow a very small subset of IP ioctls on this stream if 10079 * IP is a module and not a driver. Allowing ioctls to be processed 10080 * in this case may cause assert failures or data corruption. 10081 * Typically G[L]IFFLAGS, SLIFNAME/IF_UNITSEL are the only few 10082 * ioctls allowed on an IP module stream, after which this stream 10083 * normally becomes a multiplexor (at which time the stream head 10084 * will fail all ioctls). 10085 */ 10086 if ((q->q_next != NULL) && !(ipip->ipi_flags & IPI_MODOK)) { 10087 if (ipip->ipi_flags & IPI_PASS_DOWN) { 10088 /* 10089 * Pass common Streams ioctls which the IP 10090 * module does not own or consume along to 10091 * be processed down stream. 10092 */ 10093 putnext(q, mp); 10094 return; 10095 } else { 10096 goto nak; 10097 } 10098 } 10099 10100 /* Make sure we have ioctl data to process. */ 10101 if (mp->b_cont == NULL && !(ipip->ipi_flags & IPI_NULL_BCONT)) 10102 goto nak; 10103 10104 /* 10105 * Prefer dblk credential over ioctl credential; some synthesized 10106 * ioctls have kcred set because there's no way to crhold() 10107 * a credential in some contexts. (ioc_cr is not crfree() by 10108 * the framework; the caller of ioctl needs to hold the reference 10109 * for the duration of the call). 10110 */ 10111 cr = msg_getcred(mp, NULL); 10112 if (cr == NULL) 10113 cr = iocp->ioc_cr; 10114 10115 /* Make sure normal users don't send down privileged ioctls */ 10116 if ((ipip->ipi_flags & IPI_PRIV) && 10117 (cr != NULL) && secpolicy_ip_config(cr, B_TRUE) != 0) { 10118 /* We checked the privilege earlier but log it here */ 10119 miocnak(q, mp, 0, secpolicy_ip_config(cr, B_FALSE)); 10120 return; 10121 } 10122 10123 /* 10124 * The ioctl command tables can only encode fixed length 10125 * ioctl data. If the length is variable, the table will 10126 * encode the length as zero. Such special cases are handled 10127 * below in the switch. 10128 */ 10129 if (ipip->ipi_copyin_size != 0) { 10130 mi_copyin(q, mp, NULL, ipip->ipi_copyin_size); 10131 return; 10132 } 10133 10134 switch (iocp->ioc_cmd) { 10135 case O_SIOCGIFCONF: 10136 case SIOCGIFCONF: 10137 /* 10138 * This IOCTL is hilarious. See comments in 10139 * ip_sioctl_get_ifconf for the story. 10140 */ 10141 if (iocp->ioc_count == TRANSPARENT) 10142 copyin_size = SIZEOF_STRUCT(ifconf, 10143 iocp->ioc_flag); 10144 else 10145 copyin_size = iocp->ioc_count; 10146 mi_copyin(q, mp, NULL, copyin_size); 10147 return; 10148 10149 case O_SIOCGLIFCONF: 10150 case SIOCGLIFCONF: 10151 copyin_size = SIZEOF_STRUCT(lifconf, iocp->ioc_flag); 10152 mi_copyin(q, mp, NULL, copyin_size); 10153 return; 10154 10155 case SIOCGLIFSRCOF: 10156 copyin_size = SIZEOF_STRUCT(lifsrcof, iocp->ioc_flag); 10157 mi_copyin(q, mp, NULL, copyin_size); 10158 return; 10159 case SIOCGIP6ADDRPOLICY: 10160 ip_sioctl_ip6addrpolicy(q, mp); 10161 ip6_asp_table_refrele(ipst); 10162 return; 10163 10164 case SIOCSIP6ADDRPOLICY: 10165 ip_sioctl_ip6addrpolicy(q, mp); 10166 return; 10167 10168 case SIOCGDSTINFO: 10169 ip_sioctl_dstinfo(q, mp); 10170 ip6_asp_table_refrele(ipst); 10171 return; 10172 10173 case I_PLINK: 10174 case I_PUNLINK: 10175 case I_LINK: 10176 case I_UNLINK: 10177 /* 10178 * We treat non-persistent link similarly as the persistent 10179 * link case, in terms of plumbing/unplumbing, as well as 10180 * dynamic re-plumbing events indicator. See comments 10181 * in ip_sioctl_plink() for more. 10182 * 10183 * Request can be enqueued in the 'ipsq' while waiting 10184 * to become exclusive. So bump up the conn ref. 10185 */ 10186 if (CONN_Q(q)) 10187 CONN_INC_REF(Q_TO_CONN(q)); 10188 ip_sioctl_plink(NULL, q, mp, NULL); 10189 return; 10190 10191 case ND_GET: 10192 case ND_SET: 10193 /* 10194 * Use of the nd table requires holding the reader lock. 10195 * Modifying the nd table thru nd_load/nd_unload requires 10196 * the writer lock. 10197 */ 10198 rw_enter(&ipst->ips_ip_g_nd_lock, RW_READER); 10199 if (nd_getset(q, ipst->ips_ip_g_nd, mp)) { 10200 rw_exit(&ipst->ips_ip_g_nd_lock); 10201 10202 if (iocp->ioc_error) 10203 iocp->ioc_count = 0; 10204 mp->b_datap->db_type = M_IOCACK; 10205 qreply(q, mp); 10206 return; 10207 } 10208 rw_exit(&ipst->ips_ip_g_nd_lock); 10209 /* 10210 * We don't understand this subioctl of ND_GET / ND_SET. 10211 * Maybe intended for some driver / module below us 10212 */ 10213 if (q->q_next) { 10214 putnext(q, mp); 10215 } else { 10216 iocp->ioc_error = ENOENT; 10217 mp->b_datap->db_type = M_IOCNAK; 10218 iocp->ioc_count = 0; 10219 qreply(q, mp); 10220 } 10221 return; 10222 10223 case IP_IOCTL: 10224 ip_wput_ioctl(q, mp); 10225 return; 10226 default: 10227 cmn_err(CE_PANIC, "should not happen "); 10228 } 10229 nak: 10230 if (mp->b_cont != NULL) { 10231 freemsg(mp->b_cont); 10232 mp->b_cont = NULL; 10233 } 10234 iocp->ioc_error = EINVAL; 10235 mp->b_datap->db_type = M_IOCNAK; 10236 iocp->ioc_count = 0; 10237 qreply(q, mp); 10238 } 10239 10240 /* ip_wput hands off ARP IOCTL responses to us */ 10241 /* ARGSUSED3 */ 10242 void 10243 ip_sioctl_iocack(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy_arg) 10244 { 10245 struct arpreq *ar; 10246 struct xarpreq *xar; 10247 area_t *area; 10248 mblk_t *area_mp; 10249 struct iocblk *iocp; 10250 mblk_t *orig_ioc_mp, *tmp; 10251 struct iocblk *orig_iocp; 10252 ill_t *ill; 10253 conn_t *connp = NULL; 10254 mblk_t *pending_mp; 10255 int x_arp_ioctl = B_FALSE, ifx_arp_ioctl = B_FALSE; 10256 int *flagsp; 10257 char *storage = NULL; 10258 sin_t *sin; 10259 ipaddr_t addr; 10260 int err; 10261 ip_stack_t *ipst; 10262 10263 ASSERT(ipsq == NULL || IAM_WRITER_IPSQ(ipsq)); 10264 ill = q->q_ptr; 10265 ASSERT(ill != NULL); 10266 ipst = ill->ill_ipst; 10267 10268 /* 10269 * We should get back from ARP a packet chain that looks like: 10270 * M_IOCACK-->ARP_op_MBLK-->ORIG_M_IOCTL-->MI_COPY_MBLK-->[X]ARPREQ_MBLK 10271 */ 10272 if (!(area_mp = mp->b_cont) || 10273 (area_mp->b_wptr - area_mp->b_rptr) < sizeof (ip_sock_ar_t) || 10274 !(orig_ioc_mp = area_mp->b_cont) || 10275 !orig_ioc_mp->b_cont || !orig_ioc_mp->b_cont->b_cont) { 10276 freemsg(mp); 10277 return; 10278 } 10279 10280 orig_iocp = (struct iocblk *)orig_ioc_mp->b_rptr; 10281 10282 tmp = (orig_ioc_mp->b_cont)->b_cont; 10283 if ((orig_iocp->ioc_cmd == SIOCGXARP) || 10284 (orig_iocp->ioc_cmd == SIOCSXARP) || 10285 (orig_iocp->ioc_cmd == SIOCDXARP)) { 10286 x_arp_ioctl = B_TRUE; 10287 xar = (struct xarpreq *)tmp->b_rptr; 10288 sin = (sin_t *)&xar->xarp_pa; 10289 flagsp = &xar->xarp_flags; 10290 storage = xar->xarp_ha.sdl_data; 10291 if (xar->xarp_ha.sdl_nlen != 0) 10292 ifx_arp_ioctl = B_TRUE; 10293 } else { 10294 ar = (struct arpreq *)tmp->b_rptr; 10295 sin = (sin_t *)&ar->arp_pa; 10296 flagsp = &ar->arp_flags; 10297 storage = ar->arp_ha.sa_data; 10298 } 10299 10300 iocp = (struct iocblk *)mp->b_rptr; 10301 10302 /* 10303 * Find the pending message; if we're exclusive, it'll be on our IPSQ. 10304 * Otherwise, we can find it from our ioc_id. 10305 */ 10306 if (ipsq != NULL) 10307 pending_mp = ipsq_pending_mp_get(ipsq, &connp); 10308 else 10309 pending_mp = ill_pending_mp_get(ill, &connp, iocp->ioc_id); 10310 10311 if (pending_mp == NULL) { 10312 ASSERT(connp == NULL); 10313 inet_freemsg(mp); 10314 return; 10315 } 10316 ASSERT(connp != NULL); 10317 q = CONNP_TO_WQ(connp); 10318 10319 /* Uncouple the internally generated IOCTL from the original one */ 10320 area = (area_t *)area_mp->b_rptr; 10321 area_mp->b_cont = NULL; 10322 10323 /* 10324 * Restore the b_next and b_prev used by mi code. This is needed 10325 * to complete the ioctl using mi* functions. We stored them in 10326 * the pending mp prior to sending the request to ARP. 10327 */ 10328 orig_ioc_mp->b_cont->b_next = pending_mp->b_cont->b_next; 10329 orig_ioc_mp->b_cont->b_prev = pending_mp->b_cont->b_prev; 10330 inet_freemsg(pending_mp); 10331 10332 /* 10333 * We're done if there was an error or if this is not an SIOCG{X}ARP 10334 * Catch the case where there is an IRE_CACHE by no entry in the 10335 * arp table. 10336 */ 10337 addr = sin->sin_addr.s_addr; 10338 if (iocp->ioc_error && iocp->ioc_cmd == AR_ENTRY_SQUERY) { 10339 ire_t *ire; 10340 dl_unitdata_req_t *dlup; 10341 mblk_t *llmp; 10342 int addr_len; 10343 ill_t *ipsqill = NULL; 10344 10345 if (ifx_arp_ioctl) { 10346 /* 10347 * There's no need to lookup the ill, since 10348 * we've already done that when we started 10349 * processing the ioctl and sent the message 10350 * to ARP on that ill. So use the ill that 10351 * is stored in q->q_ptr. 10352 */ 10353 ipsqill = ill; 10354 ire = ire_ctable_lookup(addr, 0, IRE_CACHE, 10355 ipsqill->ill_ipif, ALL_ZONES, 10356 NULL, MATCH_IRE_TYPE | MATCH_IRE_ILL, ipst); 10357 } else { 10358 ire = ire_ctable_lookup(addr, 0, IRE_CACHE, 10359 NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 10360 if (ire != NULL) 10361 ipsqill = ire_to_ill(ire); 10362 } 10363 10364 if ((x_arp_ioctl) && (ipsqill != NULL)) 10365 storage += ill_xarp_info(&xar->xarp_ha, ipsqill); 10366 10367 if (ire != NULL) { 10368 /* 10369 * Since the ire obtained from cachetable is used for 10370 * mac addr copying below, treat an incomplete ire as if 10371 * as if we never found it. 10372 */ 10373 if (ire->ire_nce != NULL && 10374 ire->ire_nce->nce_state != ND_REACHABLE) { 10375 ire_refrele(ire); 10376 ire = NULL; 10377 ipsqill = NULL; 10378 goto errack; 10379 } 10380 *flagsp = ATF_INUSE; 10381 llmp = (ire->ire_nce != NULL ? 10382 ire->ire_nce->nce_res_mp : NULL); 10383 if (llmp != NULL && ipsqill != NULL) { 10384 uchar_t *macaddr; 10385 10386 addr_len = ipsqill->ill_phys_addr_length; 10387 if (x_arp_ioctl && ((addr_len + 10388 ipsqill->ill_name_length) > 10389 sizeof (xar->xarp_ha.sdl_data))) { 10390 ire_refrele(ire); 10391 freemsg(mp); 10392 ip_ioctl_finish(q, orig_ioc_mp, 10393 EINVAL, NO_COPYOUT, ipsq); 10394 return; 10395 } 10396 *flagsp |= ATF_COM; 10397 dlup = (dl_unitdata_req_t *)llmp->b_rptr; 10398 if (ipsqill->ill_sap_length < 0) 10399 macaddr = llmp->b_rptr + 10400 dlup->dl_dest_addr_offset; 10401 else 10402 macaddr = llmp->b_rptr + 10403 dlup->dl_dest_addr_offset + 10404 ipsqill->ill_sap_length; 10405 /* 10406 * For SIOCGARP, MAC address length 10407 * validation has already been done 10408 * before the ioctl was issued to ARP to 10409 * allow it to progress only on 6 byte 10410 * addressable (ethernet like) media. Thus 10411 * the mac address copying can not overwrite 10412 * the sa_data area below. 10413 */ 10414 bcopy(macaddr, storage, addr_len); 10415 } 10416 /* Ditch the internal IOCTL. */ 10417 freemsg(mp); 10418 ire_refrele(ire); 10419 ip_ioctl_finish(q, orig_ioc_mp, 0, COPYOUT, ipsq); 10420 return; 10421 } 10422 } 10423 10424 /* 10425 * If this was a failed AR_ENTRY_ADD or a successful AR_ENTRY_DELETE 10426 * on the IPMP meta-interface, ensure any ARP entries added in 10427 * ip_sioctl_arp() are deleted. 10428 */ 10429 if (IS_IPMP(ill) && 10430 ((iocp->ioc_error != 0 && iocp->ioc_cmd == AR_ENTRY_ADD) || 10431 ((iocp->ioc_error == 0 && iocp->ioc_cmd == AR_ENTRY_DELETE)))) { 10432 ipmp_illgrp_t *illg = ill->ill_grp; 10433 ipmp_arpent_t *entp; 10434 10435 if ((entp = ipmp_illgrp_lookup_arpent(illg, &addr)) != NULL) 10436 ipmp_illgrp_destroy_arpent(illg, entp); 10437 } 10438 10439 /* 10440 * Delete the coresponding IRE_CACHE if any. 10441 * Reset the error if there was one (in case there was no entry 10442 * in arp.) 10443 */ 10444 if (iocp->ioc_cmd == AR_ENTRY_DELETE) { 10445 ipif_t *ipintf = NULL; 10446 10447 if (ifx_arp_ioctl) { 10448 /* 10449 * There's no need to lookup the ill, since 10450 * we've already done that when we started 10451 * processing the ioctl and sent the message 10452 * to ARP on that ill. So use the ill that 10453 * is stored in q->q_ptr. 10454 */ 10455 ipintf = ill->ill_ipif; 10456 } 10457 if (ip_ire_clookup_and_delete(addr, ipintf, ipst)) { 10458 /* 10459 * The address in "addr" may be an entry for a 10460 * router. If that's true, then any off-net 10461 * IRE_CACHE entries that go through the router 10462 * with address "addr" must be clobbered. Use 10463 * ire_walk to achieve this goal. 10464 */ 10465 if (ifx_arp_ioctl) 10466 ire_walk_ill_v4(MATCH_IRE_ILL, 0, 10467 ire_delete_cache_gw, (char *)&addr, ill); 10468 else 10469 ire_walk_v4(ire_delete_cache_gw, (char *)&addr, 10470 ALL_ZONES, ipst); 10471 iocp->ioc_error = 0; 10472 } 10473 } 10474 errack: 10475 if (iocp->ioc_error || iocp->ioc_cmd != AR_ENTRY_SQUERY) { 10476 err = iocp->ioc_error; 10477 freemsg(mp); 10478 ip_ioctl_finish(q, orig_ioc_mp, err, NO_COPYOUT, ipsq); 10479 return; 10480 } 10481 10482 /* 10483 * Completion of an SIOCG{X}ARP. Translate the information from 10484 * the area_t into the struct {x}arpreq. 10485 */ 10486 if (x_arp_ioctl) { 10487 storage += ill_xarp_info(&xar->xarp_ha, ill); 10488 if ((ill->ill_phys_addr_length + ill->ill_name_length) > 10489 sizeof (xar->xarp_ha.sdl_data)) { 10490 freemsg(mp); 10491 ip_ioctl_finish(q, orig_ioc_mp, EINVAL, NO_COPYOUT, 10492 ipsq); 10493 return; 10494 } 10495 } 10496 *flagsp = ATF_INUSE; 10497 if (area->area_flags & ACE_F_PERMANENT) 10498 *flagsp |= ATF_PERM; 10499 if (area->area_flags & ACE_F_PUBLISH) 10500 *flagsp |= ATF_PUBL; 10501 if (area->area_flags & ACE_F_AUTHORITY) 10502 *flagsp |= ATF_AUTHORITY; 10503 if (area->area_hw_addr_length != 0) { 10504 *flagsp |= ATF_COM; 10505 /* 10506 * For SIOCGARP, MAC address length validation has 10507 * already been done before the ioctl was issued to ARP 10508 * to allow it to progress only on 6 byte addressable 10509 * (ethernet like) media. Thus the mac address copying 10510 * can not overwrite the sa_data area below. 10511 */ 10512 bcopy((char *)area + area->area_hw_addr_offset, 10513 storage, area->area_hw_addr_length); 10514 } 10515 10516 /* Ditch the internal IOCTL. */ 10517 freemsg(mp); 10518 /* Complete the original. */ 10519 ip_ioctl_finish(q, orig_ioc_mp, 0, COPYOUT, ipsq); 10520 } 10521 10522 /* 10523 * Create a new logical interface. If ipif_id is zero (i.e. not a logical 10524 * interface) create the next available logical interface for this 10525 * physical interface. 10526 * If ipif is NULL (i.e. the lookup didn't find one) attempt to create an 10527 * ipif with the specified name. 10528 * 10529 * If the address family is not AF_UNSPEC then set the address as well. 10530 * 10531 * If ip_sioctl_addr returns EINPROGRESS then the ioctl (the copyout) 10532 * is completed when the DL_BIND_ACK arrive in ip_rput_dlpi_writer. 10533 * 10534 * Executed as a writer on the ill. 10535 * So no lock is needed to traverse the ipif chain, or examine the 10536 * phyint flags. 10537 */ 10538 /* ARGSUSED */ 10539 int 10540 ip_sioctl_addif(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, 10541 ip_ioctl_cmd_t *dummy_ipip, void *dummy_ifreq) 10542 { 10543 mblk_t *mp1; 10544 struct lifreq *lifr; 10545 boolean_t isv6; 10546 boolean_t exists; 10547 char *name; 10548 char *endp; 10549 char *cp; 10550 int namelen; 10551 ipif_t *ipif; 10552 long id; 10553 ipsq_t *ipsq; 10554 ill_t *ill; 10555 sin_t *sin; 10556 int err = 0; 10557 boolean_t found_sep = B_FALSE; 10558 conn_t *connp; 10559 zoneid_t zoneid; 10560 ip_stack_t *ipst = CONNQ_TO_IPST(q); 10561 10562 ASSERT(q->q_next == NULL); 10563 ip1dbg(("ip_sioctl_addif\n")); 10564 /* Existence of mp1 has been checked in ip_wput_nondata */ 10565 mp1 = mp->b_cont->b_cont; 10566 /* 10567 * Null terminate the string to protect against buffer 10568 * overrun. String was generated by user code and may not 10569 * be trusted. 10570 */ 10571 lifr = (struct lifreq *)mp1->b_rptr; 10572 lifr->lifr_name[LIFNAMSIZ - 1] = '\0'; 10573 name = lifr->lifr_name; 10574 ASSERT(CONN_Q(q)); 10575 connp = Q_TO_CONN(q); 10576 isv6 = connp->conn_af_isv6; 10577 zoneid = connp->conn_zoneid; 10578 namelen = mi_strlen(name); 10579 if (namelen == 0) 10580 return (EINVAL); 10581 10582 exists = B_FALSE; 10583 if ((namelen + 1 == sizeof (ipif_loopback_name)) && 10584 (mi_strcmp(name, ipif_loopback_name) == 0)) { 10585 /* 10586 * Allow creating lo0 using SIOCLIFADDIF. 10587 * can't be any other writer thread. So can pass null below 10588 * for the last 4 args to ipif_lookup_name. 10589 */ 10590 ipif = ipif_lookup_on_name(lifr->lifr_name, namelen, B_TRUE, 10591 &exists, isv6, zoneid, NULL, NULL, NULL, NULL, ipst); 10592 /* Prevent any further action */ 10593 if (ipif == NULL) { 10594 return (ENOBUFS); 10595 } else if (!exists) { 10596 /* We created the ipif now and as writer */ 10597 ipif_refrele(ipif); 10598 return (0); 10599 } else { 10600 ill = ipif->ipif_ill; 10601 ill_refhold(ill); 10602 ipif_refrele(ipif); 10603 } 10604 } else { 10605 /* Look for a colon in the name. */ 10606 endp = &name[namelen]; 10607 for (cp = endp; --cp > name; ) { 10608 if (*cp == IPIF_SEPARATOR_CHAR) { 10609 found_sep = B_TRUE; 10610 /* 10611 * Reject any non-decimal aliases for plumbing 10612 * of logical interfaces. Aliases with leading 10613 * zeroes are also rejected as they introduce 10614 * ambiguity in the naming of the interfaces. 10615 * Comparing with "0" takes care of all such 10616 * cases. 10617 */ 10618 if ((strncmp("0", cp+1, 1)) == 0) 10619 return (EINVAL); 10620 10621 if (ddi_strtol(cp+1, &endp, 10, &id) != 0 || 10622 id <= 0 || *endp != '\0') { 10623 return (EINVAL); 10624 } 10625 *cp = '\0'; 10626 break; 10627 } 10628 } 10629 ill = ill_lookup_on_name(name, B_FALSE, isv6, 10630 CONNP_TO_WQ(connp), mp, ip_process_ioctl, &err, NULL, ipst); 10631 if (found_sep) 10632 *cp = IPIF_SEPARATOR_CHAR; 10633 if (ill == NULL) 10634 return (err); 10635 } 10636 10637 ipsq = ipsq_try_enter(NULL, ill, q, mp, ip_process_ioctl, NEW_OP, 10638 B_TRUE); 10639 10640 /* 10641 * Release the refhold due to the lookup, now that we are excl 10642 * or we are just returning 10643 */ 10644 ill_refrele(ill); 10645 10646 if (ipsq == NULL) 10647 return (EINPROGRESS); 10648 10649 /* We are now exclusive on the IPSQ */ 10650 ASSERT(IAM_WRITER_ILL(ill)); 10651 10652 if (found_sep) { 10653 /* Now see if there is an IPIF with this unit number. */ 10654 for (ipif = ill->ill_ipif; ipif != NULL; 10655 ipif = ipif->ipif_next) { 10656 if (ipif->ipif_id == id) { 10657 err = EEXIST; 10658 goto done; 10659 } 10660 } 10661 } 10662 10663 /* 10664 * We use IRE_LOCAL for lo0:1 etc. for "receive only" use 10665 * of lo0. Plumbing for lo0:0 happens in ipif_lookup_on_name() 10666 * instead. 10667 */ 10668 if ((ipif = ipif_allocate(ill, found_sep ? id : -1, IRE_LOCAL, 10669 B_TRUE, B_TRUE)) == NULL) { 10670 err = ENOBUFS; 10671 goto done; 10672 } 10673 10674 /* Return created name with ioctl */ 10675 (void) sprintf(lifr->lifr_name, "%s%c%d", ill->ill_name, 10676 IPIF_SEPARATOR_CHAR, ipif->ipif_id); 10677 ip1dbg(("created %s\n", lifr->lifr_name)); 10678 10679 /* Set address */ 10680 sin = (sin_t *)&lifr->lifr_addr; 10681 if (sin->sin_family != AF_UNSPEC) { 10682 err = ip_sioctl_addr(ipif, sin, q, mp, 10683 &ip_ndx_ioctl_table[SIOCLIFADDR_NDX], lifr); 10684 } 10685 10686 done: 10687 ipsq_exit(ipsq); 10688 return (err); 10689 } 10690 10691 /* 10692 * Remove an existing logical interface. If ipif_id is zero (i.e. not a logical 10693 * interface) delete it based on the IP address (on this physical interface). 10694 * Otherwise delete it based on the ipif_id. 10695 * Also, special handling to allow a removeif of lo0. 10696 */ 10697 /* ARGSUSED */ 10698 int 10699 ip_sioctl_removeif(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 10700 ip_ioctl_cmd_t *ipip, void *dummy_if_req) 10701 { 10702 conn_t *connp; 10703 ill_t *ill = ipif->ipif_ill; 10704 boolean_t success; 10705 ip_stack_t *ipst; 10706 10707 ipst = CONNQ_TO_IPST(q); 10708 10709 ASSERT(q->q_next == NULL); 10710 ip1dbg(("ip_sioctl_remove_if(%s:%u %p)\n", 10711 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 10712 ASSERT(IAM_WRITER_IPIF(ipif)); 10713 10714 connp = Q_TO_CONN(q); 10715 /* 10716 * Special case for unplumbing lo0 (the loopback physical interface). 10717 * If unplumbing lo0, the incoming address structure has been 10718 * initialized to all zeros. When unplumbing lo0, all its logical 10719 * interfaces must be removed too. 10720 * 10721 * Note that this interface may be called to remove a specific 10722 * loopback logical interface (eg, lo0:1). But in that case 10723 * ipif->ipif_id != 0 so that the code path for that case is the 10724 * same as any other interface (meaning it skips the code directly 10725 * below). 10726 */ 10727 if (ipif->ipif_id == 0 && ipif->ipif_net_type == IRE_LOOPBACK) { 10728 if (sin->sin_family == AF_UNSPEC && 10729 (IN6_IS_ADDR_UNSPECIFIED(&((sin6_t *)sin)->sin6_addr))) { 10730 /* 10731 * Mark it condemned. No new ref. will be made to ill. 10732 */ 10733 mutex_enter(&ill->ill_lock); 10734 ill->ill_state_flags |= ILL_CONDEMNED; 10735 for (ipif = ill->ill_ipif; ipif != NULL; 10736 ipif = ipif->ipif_next) { 10737 ipif->ipif_state_flags |= IPIF_CONDEMNED; 10738 } 10739 mutex_exit(&ill->ill_lock); 10740 10741 ipif = ill->ill_ipif; 10742 /* unplumb the loopback interface */ 10743 ill_delete(ill); 10744 mutex_enter(&connp->conn_lock); 10745 mutex_enter(&ill->ill_lock); 10746 10747 /* Are any references to this ill active */ 10748 if (ill_is_freeable(ill)) { 10749 mutex_exit(&ill->ill_lock); 10750 mutex_exit(&connp->conn_lock); 10751 ill_delete_tail(ill); 10752 mi_free(ill); 10753 return (0); 10754 } 10755 success = ipsq_pending_mp_add(connp, ipif, 10756 CONNP_TO_WQ(connp), mp, ILL_FREE); 10757 mutex_exit(&connp->conn_lock); 10758 mutex_exit(&ill->ill_lock); 10759 if (success) 10760 return (EINPROGRESS); 10761 else 10762 return (EINTR); 10763 } 10764 } 10765 10766 if (ipif->ipif_id == 0) { 10767 ipsq_t *ipsq; 10768 10769 /* Find based on address */ 10770 if (ipif->ipif_isv6) { 10771 sin6_t *sin6; 10772 10773 if (sin->sin_family != AF_INET6) 10774 return (EAFNOSUPPORT); 10775 10776 sin6 = (sin6_t *)sin; 10777 /* We are a writer, so we should be able to lookup */ 10778 ipif = ipif_lookup_addr_exact_v6(&sin6->sin6_addr, ill, 10779 ipst); 10780 } else { 10781 if (sin->sin_family != AF_INET) 10782 return (EAFNOSUPPORT); 10783 10784 /* We are a writer, so we should be able to lookup */ 10785 ipif = ipif_lookup_addr_exact(sin->sin_addr.s_addr, ill, 10786 ipst); 10787 } 10788 if (ipif == NULL) { 10789 return (EADDRNOTAVAIL); 10790 } 10791 10792 /* 10793 * It is possible for a user to send an SIOCLIFREMOVEIF with 10794 * lifr_name of the physical interface but with an ip address 10795 * lifr_addr of a logical interface plumbed over it. 10796 * So update ipx_current_ipif now that ipif points to the 10797 * correct one. 10798 */ 10799 ipsq = ipif->ipif_ill->ill_phyint->phyint_ipsq; 10800 ipsq->ipsq_xop->ipx_current_ipif = ipif; 10801 10802 /* This is a writer */ 10803 ipif_refrele(ipif); 10804 } 10805 10806 /* 10807 * Can not delete instance zero since it is tied to the ill. 10808 */ 10809 if (ipif->ipif_id == 0) 10810 return (EBUSY); 10811 10812 mutex_enter(&ill->ill_lock); 10813 ipif->ipif_state_flags |= IPIF_CONDEMNED; 10814 mutex_exit(&ill->ill_lock); 10815 10816 ipif_free(ipif); 10817 10818 mutex_enter(&connp->conn_lock); 10819 mutex_enter(&ill->ill_lock); 10820 10821 /* Are any references to this ipif active */ 10822 if (ipif_is_freeable(ipif)) { 10823 mutex_exit(&ill->ill_lock); 10824 mutex_exit(&connp->conn_lock); 10825 ipif_non_duplicate(ipif); 10826 ipif_down_tail(ipif); 10827 ipif_free_tail(ipif); /* frees ipif */ 10828 return (0); 10829 } 10830 success = ipsq_pending_mp_add(connp, ipif, CONNP_TO_WQ(connp), mp, 10831 IPIF_FREE); 10832 mutex_exit(&ill->ill_lock); 10833 mutex_exit(&connp->conn_lock); 10834 if (success) 10835 return (EINPROGRESS); 10836 else 10837 return (EINTR); 10838 } 10839 10840 /* 10841 * Restart the removeif ioctl. The refcnt has gone down to 0. 10842 * The ipif is already condemned. So can't find it thru lookups. 10843 */ 10844 /* ARGSUSED */ 10845 int 10846 ip_sioctl_removeif_restart(ipif_t *ipif, sin_t *dummy_sin, queue_t *q, 10847 mblk_t *mp, ip_ioctl_cmd_t *ipip, void *dummy_if_req) 10848 { 10849 ill_t *ill = ipif->ipif_ill; 10850 10851 ASSERT(IAM_WRITER_IPIF(ipif)); 10852 ASSERT(ipif->ipif_state_flags & IPIF_CONDEMNED); 10853 10854 ip1dbg(("ip_sioctl_removeif_restart(%s:%u %p)\n", 10855 ill->ill_name, ipif->ipif_id, (void *)ipif)); 10856 10857 if (ipif->ipif_id == 0 && ipif->ipif_net_type == IRE_LOOPBACK) { 10858 ASSERT(ill->ill_state_flags & ILL_CONDEMNED); 10859 ill_delete_tail(ill); 10860 mi_free(ill); 10861 return (0); 10862 } 10863 10864 ipif_non_duplicate(ipif); 10865 ipif_down_tail(ipif); 10866 ipif_free_tail(ipif); 10867 10868 ILL_UNMARK_CHANGING(ill); 10869 return (0); 10870 } 10871 10872 /* 10873 * Set the local interface address. 10874 * Allow an address of all zero when the interface is down. 10875 */ 10876 /* ARGSUSED */ 10877 int 10878 ip_sioctl_addr(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 10879 ip_ioctl_cmd_t *dummy_ipip, void *dummy_ifreq) 10880 { 10881 int err = 0; 10882 in6_addr_t v6addr; 10883 boolean_t need_up = B_FALSE; 10884 10885 ip1dbg(("ip_sioctl_addr(%s:%u %p)\n", 10886 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 10887 10888 ASSERT(IAM_WRITER_IPIF(ipif)); 10889 10890 if (ipif->ipif_isv6) { 10891 sin6_t *sin6; 10892 ill_t *ill; 10893 phyint_t *phyi; 10894 10895 if (sin->sin_family != AF_INET6) 10896 return (EAFNOSUPPORT); 10897 10898 sin6 = (sin6_t *)sin; 10899 v6addr = sin6->sin6_addr; 10900 ill = ipif->ipif_ill; 10901 phyi = ill->ill_phyint; 10902 10903 /* 10904 * Enforce that true multicast interfaces have a link-local 10905 * address for logical unit 0. 10906 */ 10907 if (ipif->ipif_id == 0 && 10908 (ill->ill_flags & ILLF_MULTICAST) && 10909 !(ipif->ipif_flags & (IPIF_POINTOPOINT)) && 10910 !(phyi->phyint_flags & (PHYI_LOOPBACK)) && 10911 !IN6_IS_ADDR_LINKLOCAL(&v6addr)) { 10912 return (EADDRNOTAVAIL); 10913 } 10914 10915 /* 10916 * up interfaces shouldn't have the unspecified address 10917 * unless they also have the IPIF_NOLOCAL flags set and 10918 * have a subnet assigned. 10919 */ 10920 if ((ipif->ipif_flags & IPIF_UP) && 10921 IN6_IS_ADDR_UNSPECIFIED(&v6addr) && 10922 (!(ipif->ipif_flags & IPIF_NOLOCAL) || 10923 IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6subnet))) { 10924 return (EADDRNOTAVAIL); 10925 } 10926 10927 if (!ip_local_addr_ok_v6(&v6addr, &ipif->ipif_v6net_mask)) 10928 return (EADDRNOTAVAIL); 10929 } else { 10930 ipaddr_t addr; 10931 10932 if (sin->sin_family != AF_INET) 10933 return (EAFNOSUPPORT); 10934 10935 addr = sin->sin_addr.s_addr; 10936 10937 /* Allow 0 as the local address. */ 10938 if (addr != 0 && !ip_addr_ok_v4(addr, ipif->ipif_net_mask)) 10939 return (EADDRNOTAVAIL); 10940 10941 IN6_IPADDR_TO_V4MAPPED(addr, &v6addr); 10942 } 10943 10944 /* 10945 * Even if there is no change we redo things just to rerun 10946 * ipif_set_default. 10947 */ 10948 if (ipif->ipif_flags & IPIF_UP) { 10949 /* 10950 * Setting a new local address, make sure 10951 * we have net and subnet bcast ire's for 10952 * the old address if we need them. 10953 */ 10954 if (!ipif->ipif_isv6) 10955 ipif_check_bcast_ires(ipif); 10956 /* 10957 * If the interface is already marked up, 10958 * we call ipif_down which will take care 10959 * of ditching any IREs that have been set 10960 * up based on the old interface address. 10961 */ 10962 err = ipif_logical_down(ipif, q, mp); 10963 if (err == EINPROGRESS) 10964 return (err); 10965 ipif_down_tail(ipif); 10966 need_up = 1; 10967 } 10968 10969 err = ip_sioctl_addr_tail(ipif, sin, q, mp, need_up); 10970 return (err); 10971 } 10972 10973 int 10974 ip_sioctl_addr_tail(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 10975 boolean_t need_up) 10976 { 10977 in6_addr_t v6addr; 10978 in6_addr_t ov6addr; 10979 ipaddr_t addr; 10980 sin6_t *sin6; 10981 int sinlen; 10982 int err = 0; 10983 ill_t *ill = ipif->ipif_ill; 10984 boolean_t need_dl_down; 10985 boolean_t need_arp_down; 10986 struct iocblk *iocp; 10987 10988 iocp = (mp != NULL) ? (struct iocblk *)mp->b_rptr : NULL; 10989 10990 ip1dbg(("ip_sioctl_addr_tail(%s:%u %p)\n", 10991 ill->ill_name, ipif->ipif_id, (void *)ipif)); 10992 ASSERT(IAM_WRITER_IPIF(ipif)); 10993 10994 /* Must cancel any pending timer before taking the ill_lock */ 10995 if (ipif->ipif_recovery_id != 0) 10996 (void) untimeout(ipif->ipif_recovery_id); 10997 ipif->ipif_recovery_id = 0; 10998 10999 if (ipif->ipif_isv6) { 11000 sin6 = (sin6_t *)sin; 11001 v6addr = sin6->sin6_addr; 11002 sinlen = sizeof (struct sockaddr_in6); 11003 } else { 11004 addr = sin->sin_addr.s_addr; 11005 IN6_IPADDR_TO_V4MAPPED(addr, &v6addr); 11006 sinlen = sizeof (struct sockaddr_in); 11007 } 11008 mutex_enter(&ill->ill_lock); 11009 ov6addr = ipif->ipif_v6lcl_addr; 11010 ipif->ipif_v6lcl_addr = v6addr; 11011 sctp_update_ipif_addr(ipif, ov6addr); 11012 if (ipif->ipif_flags & (IPIF_ANYCAST | IPIF_NOLOCAL)) { 11013 ipif->ipif_v6src_addr = ipv6_all_zeros; 11014 } else { 11015 ipif->ipif_v6src_addr = v6addr; 11016 } 11017 ipif->ipif_addr_ready = 0; 11018 11019 /* 11020 * If the interface was previously marked as a duplicate, then since 11021 * we've now got a "new" address, it should no longer be considered a 11022 * duplicate -- even if the "new" address is the same as the old one. 11023 * Note that if all ipifs are down, we may have a pending ARP down 11024 * event to handle. This is because we want to recover from duplicates 11025 * and thus delay tearing down ARP until the duplicates have been 11026 * removed or disabled. 11027 */ 11028 need_dl_down = need_arp_down = B_FALSE; 11029 if (ipif->ipif_flags & IPIF_DUPLICATE) { 11030 need_arp_down = !need_up; 11031 ipif->ipif_flags &= ~IPIF_DUPLICATE; 11032 if (--ill->ill_ipif_dup_count == 0 && !need_up && 11033 ill->ill_ipif_up_count == 0 && ill->ill_dl_up) { 11034 need_dl_down = B_TRUE; 11035 } 11036 } 11037 11038 if (ipif->ipif_isv6 && IN6_IS_ADDR_6TO4(&v6addr) && 11039 !ill->ill_is_6to4tun) { 11040 queue_t *wqp = ill->ill_wq; 11041 11042 /* 11043 * The local address of this interface is a 6to4 address, 11044 * check if this interface is in fact a 6to4 tunnel or just 11045 * an interface configured with a 6to4 address. We are only 11046 * interested in the former. 11047 */ 11048 if (wqp != NULL) { 11049 while ((wqp->q_next != NULL) && 11050 (wqp->q_next->q_qinfo != NULL) && 11051 (wqp->q_next->q_qinfo->qi_minfo != NULL)) { 11052 11053 if (wqp->q_next->q_qinfo->qi_minfo->mi_idnum 11054 == TUN6TO4_MODID) { 11055 /* set for use in IP */ 11056 ill->ill_is_6to4tun = 1; 11057 break; 11058 } 11059 wqp = wqp->q_next; 11060 } 11061 } 11062 } 11063 11064 ipif_set_default(ipif); 11065 11066 /* 11067 * When publishing an interface address change event, we only notify 11068 * the event listeners of the new address. It is assumed that if they 11069 * actively care about the addresses assigned that they will have 11070 * already discovered the previous address assigned (if there was one.) 11071 * 11072 * Don't attach nic event message for SIOCLIFADDIF ioctl. 11073 */ 11074 if (iocp != NULL && iocp->ioc_cmd != SIOCLIFADDIF) { 11075 ill_nic_event_dispatch(ill, MAP_IPIF_ID(ipif->ipif_id), 11076 NE_ADDRESS_CHANGE, sin, sinlen); 11077 } 11078 11079 mutex_exit(&ill->ill_lock); 11080 11081 if (need_up) { 11082 /* 11083 * Now bring the interface back up. If this 11084 * is the only IPIF for the ILL, ipif_up 11085 * will have to re-bind to the device, so 11086 * we may get back EINPROGRESS, in which 11087 * case, this IOCTL will get completed in 11088 * ip_rput_dlpi when we see the DL_BIND_ACK. 11089 */ 11090 err = ipif_up(ipif, q, mp); 11091 } 11092 11093 if (need_dl_down) 11094 ill_dl_down(ill); 11095 if (need_arp_down) 11096 ipif_resolver_down(ipif); 11097 11098 return (err); 11099 } 11100 11101 /* 11102 * Restart entry point to restart the address set operation after the 11103 * refcounts have dropped to zero. 11104 */ 11105 /* ARGSUSED */ 11106 int 11107 ip_sioctl_addr_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11108 ip_ioctl_cmd_t *ipip, void *ifreq) 11109 { 11110 ip1dbg(("ip_sioctl_addr_restart(%s:%u %p)\n", 11111 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11112 ASSERT(IAM_WRITER_IPIF(ipif)); 11113 ipif_down_tail(ipif); 11114 return (ip_sioctl_addr_tail(ipif, sin, q, mp, B_TRUE)); 11115 } 11116 11117 /* ARGSUSED */ 11118 int 11119 ip_sioctl_get_addr(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11120 ip_ioctl_cmd_t *ipip, void *if_req) 11121 { 11122 sin6_t *sin6 = (struct sockaddr_in6 *)sin; 11123 struct lifreq *lifr = (struct lifreq *)if_req; 11124 11125 ip1dbg(("ip_sioctl_get_addr(%s:%u %p)\n", 11126 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11127 /* 11128 * The net mask and address can't change since we have a 11129 * reference to the ipif. So no lock is necessary. 11130 */ 11131 if (ipif->ipif_isv6) { 11132 *sin6 = sin6_null; 11133 sin6->sin6_family = AF_INET6; 11134 sin6->sin6_addr = ipif->ipif_v6lcl_addr; 11135 ASSERT(ipip->ipi_cmd_type == LIF_CMD); 11136 lifr->lifr_addrlen = 11137 ip_mask_to_plen_v6(&ipif->ipif_v6net_mask); 11138 } else { 11139 *sin = sin_null; 11140 sin->sin_family = AF_INET; 11141 sin->sin_addr.s_addr = ipif->ipif_lcl_addr; 11142 if (ipip->ipi_cmd_type == LIF_CMD) { 11143 lifr->lifr_addrlen = 11144 ip_mask_to_plen(ipif->ipif_net_mask); 11145 } 11146 } 11147 return (0); 11148 } 11149 11150 /* 11151 * Set the destination address for a pt-pt interface. 11152 */ 11153 /* ARGSUSED */ 11154 int 11155 ip_sioctl_dstaddr(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11156 ip_ioctl_cmd_t *ipip, void *if_req) 11157 { 11158 int err = 0; 11159 in6_addr_t v6addr; 11160 boolean_t need_up = B_FALSE; 11161 11162 ip1dbg(("ip_sioctl_dstaddr(%s:%u %p)\n", 11163 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11164 ASSERT(IAM_WRITER_IPIF(ipif)); 11165 11166 if (ipif->ipif_isv6) { 11167 sin6_t *sin6; 11168 11169 if (sin->sin_family != AF_INET6) 11170 return (EAFNOSUPPORT); 11171 11172 sin6 = (sin6_t *)sin; 11173 v6addr = sin6->sin6_addr; 11174 11175 if (!ip_remote_addr_ok_v6(&v6addr, &ipif->ipif_v6net_mask)) 11176 return (EADDRNOTAVAIL); 11177 } else { 11178 ipaddr_t addr; 11179 11180 if (sin->sin_family != AF_INET) 11181 return (EAFNOSUPPORT); 11182 11183 addr = sin->sin_addr.s_addr; 11184 if (!ip_addr_ok_v4(addr, ipif->ipif_net_mask)) 11185 return (EADDRNOTAVAIL); 11186 11187 IN6_IPADDR_TO_V4MAPPED(addr, &v6addr); 11188 } 11189 11190 if (IN6_ARE_ADDR_EQUAL(&ipif->ipif_v6pp_dst_addr, &v6addr)) 11191 return (0); /* No change */ 11192 11193 if (ipif->ipif_flags & IPIF_UP) { 11194 /* 11195 * If the interface is already marked up, 11196 * we call ipif_down which will take care 11197 * of ditching any IREs that have been set 11198 * up based on the old pp dst address. 11199 */ 11200 err = ipif_logical_down(ipif, q, mp); 11201 if (err == EINPROGRESS) 11202 return (err); 11203 ipif_down_tail(ipif); 11204 need_up = B_TRUE; 11205 } 11206 /* 11207 * could return EINPROGRESS. If so ioctl will complete in 11208 * ip_rput_dlpi_writer 11209 */ 11210 err = ip_sioctl_dstaddr_tail(ipif, sin, q, mp, need_up); 11211 return (err); 11212 } 11213 11214 static int 11215 ip_sioctl_dstaddr_tail(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11216 boolean_t need_up) 11217 { 11218 in6_addr_t v6addr; 11219 ill_t *ill = ipif->ipif_ill; 11220 int err = 0; 11221 boolean_t need_dl_down; 11222 boolean_t need_arp_down; 11223 11224 ip1dbg(("ip_sioctl_dstaddr_tail(%s:%u %p)\n", ill->ill_name, 11225 ipif->ipif_id, (void *)ipif)); 11226 11227 /* Must cancel any pending timer before taking the ill_lock */ 11228 if (ipif->ipif_recovery_id != 0) 11229 (void) untimeout(ipif->ipif_recovery_id); 11230 ipif->ipif_recovery_id = 0; 11231 11232 if (ipif->ipif_isv6) { 11233 sin6_t *sin6; 11234 11235 sin6 = (sin6_t *)sin; 11236 v6addr = sin6->sin6_addr; 11237 } else { 11238 ipaddr_t addr; 11239 11240 addr = sin->sin_addr.s_addr; 11241 IN6_IPADDR_TO_V4MAPPED(addr, &v6addr); 11242 } 11243 mutex_enter(&ill->ill_lock); 11244 /* Set point to point destination address. */ 11245 if ((ipif->ipif_flags & IPIF_POINTOPOINT) == 0) { 11246 /* 11247 * Allow this as a means of creating logical 11248 * pt-pt interfaces on top of e.g. an Ethernet. 11249 * XXX Undocumented HACK for testing. 11250 * pt-pt interfaces are created with NUD disabled. 11251 */ 11252 ipif->ipif_flags |= IPIF_POINTOPOINT; 11253 ipif->ipif_flags &= ~IPIF_BROADCAST; 11254 if (ipif->ipif_isv6) 11255 ill->ill_flags |= ILLF_NONUD; 11256 } 11257 11258 /* 11259 * If the interface was previously marked as a duplicate, then since 11260 * we've now got a "new" address, it should no longer be considered a 11261 * duplicate -- even if the "new" address is the same as the old one. 11262 * Note that if all ipifs are down, we may have a pending ARP down 11263 * event to handle. 11264 */ 11265 need_dl_down = need_arp_down = B_FALSE; 11266 if (ipif->ipif_flags & IPIF_DUPLICATE) { 11267 need_arp_down = !need_up; 11268 ipif->ipif_flags &= ~IPIF_DUPLICATE; 11269 if (--ill->ill_ipif_dup_count == 0 && !need_up && 11270 ill->ill_ipif_up_count == 0 && ill->ill_dl_up) { 11271 need_dl_down = B_TRUE; 11272 } 11273 } 11274 11275 /* Set the new address. */ 11276 ipif->ipif_v6pp_dst_addr = v6addr; 11277 /* Make sure subnet tracks pp_dst */ 11278 ipif->ipif_v6subnet = ipif->ipif_v6pp_dst_addr; 11279 mutex_exit(&ill->ill_lock); 11280 11281 if (need_up) { 11282 /* 11283 * Now bring the interface back up. If this 11284 * is the only IPIF for the ILL, ipif_up 11285 * will have to re-bind to the device, so 11286 * we may get back EINPROGRESS, in which 11287 * case, this IOCTL will get completed in 11288 * ip_rput_dlpi when we see the DL_BIND_ACK. 11289 */ 11290 err = ipif_up(ipif, q, mp); 11291 } 11292 11293 if (need_dl_down) 11294 ill_dl_down(ill); 11295 if (need_arp_down) 11296 ipif_resolver_down(ipif); 11297 11298 return (err); 11299 } 11300 11301 /* 11302 * Restart entry point to restart the dstaddress set operation after the 11303 * refcounts have dropped to zero. 11304 */ 11305 /* ARGSUSED */ 11306 int 11307 ip_sioctl_dstaddr_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11308 ip_ioctl_cmd_t *ipip, void *ifreq) 11309 { 11310 ip1dbg(("ip_sioctl_dstaddr_restart(%s:%u %p)\n", 11311 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11312 ipif_down_tail(ipif); 11313 return (ip_sioctl_dstaddr_tail(ipif, sin, q, mp, B_TRUE)); 11314 } 11315 11316 /* ARGSUSED */ 11317 int 11318 ip_sioctl_get_dstaddr(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11319 ip_ioctl_cmd_t *ipip, void *if_req) 11320 { 11321 sin6_t *sin6 = (struct sockaddr_in6 *)sin; 11322 11323 ip1dbg(("ip_sioctl_get_dstaddr(%s:%u %p)\n", 11324 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11325 /* 11326 * Get point to point destination address. The addresses can't 11327 * change since we hold a reference to the ipif. 11328 */ 11329 if ((ipif->ipif_flags & IPIF_POINTOPOINT) == 0) 11330 return (EADDRNOTAVAIL); 11331 11332 if (ipif->ipif_isv6) { 11333 ASSERT(ipip->ipi_cmd_type == LIF_CMD); 11334 *sin6 = sin6_null; 11335 sin6->sin6_family = AF_INET6; 11336 sin6->sin6_addr = ipif->ipif_v6pp_dst_addr; 11337 } else { 11338 *sin = sin_null; 11339 sin->sin_family = AF_INET; 11340 sin->sin_addr.s_addr = ipif->ipif_pp_dst_addr; 11341 } 11342 return (0); 11343 } 11344 11345 /* 11346 * Set interface flags. Many flags require special handling (e.g., 11347 * bringing the interface down); see below for details. 11348 * 11349 * NOTE : We really don't enforce that ipif_id zero should be used 11350 * for setting any flags other than IFF_LOGINT_FLAGS. This 11351 * is because applications generally does SICGLIFFLAGS and 11352 * ORs in the new flags (that affects the logical) and does a 11353 * SIOCSLIFFLAGS. Thus, "flags" below could contain bits other 11354 * than IFF_LOGINT_FLAGS. One could check whether "turn_on" - the 11355 * flags that will be turned on is correct with respect to 11356 * ipif_id 0. For backward compatibility reasons, it is not done. 11357 */ 11358 /* ARGSUSED */ 11359 int 11360 ip_sioctl_flags(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11361 ip_ioctl_cmd_t *ipip, void *if_req) 11362 { 11363 uint64_t turn_on; 11364 uint64_t turn_off; 11365 int err = 0; 11366 phyint_t *phyi; 11367 ill_t *ill; 11368 uint64_t intf_flags, cantchange_flags; 11369 boolean_t phyint_flags_modified = B_FALSE; 11370 uint64_t flags; 11371 struct ifreq *ifr; 11372 struct lifreq *lifr; 11373 boolean_t set_linklocal = B_FALSE; 11374 boolean_t zero_source = B_FALSE; 11375 11376 ip1dbg(("ip_sioctl_flags(%s:%u %p)\n", 11377 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11378 11379 ASSERT(IAM_WRITER_IPIF(ipif)); 11380 11381 ill = ipif->ipif_ill; 11382 phyi = ill->ill_phyint; 11383 11384 if (ipip->ipi_cmd_type == IF_CMD) { 11385 ifr = (struct ifreq *)if_req; 11386 flags = (uint64_t)(ifr->ifr_flags & 0x0000ffff); 11387 } else { 11388 lifr = (struct lifreq *)if_req; 11389 flags = lifr->lifr_flags; 11390 } 11391 11392 intf_flags = ipif->ipif_flags | ill->ill_flags | phyi->phyint_flags; 11393 11394 /* 11395 * Have the flags been set correctly until now? 11396 */ 11397 ASSERT((phyi->phyint_flags & ~(IFF_PHYINT_FLAGS)) == 0); 11398 ASSERT((ill->ill_flags & ~(IFF_PHYINTINST_FLAGS)) == 0); 11399 ASSERT((ipif->ipif_flags & ~(IFF_LOGINT_FLAGS)) == 0); 11400 /* 11401 * Compare the new flags to the old, and partition 11402 * into those coming on and those going off. 11403 * For the 16 bit command keep the bits above bit 16 unchanged. 11404 */ 11405 if (ipip->ipi_cmd == SIOCSIFFLAGS) 11406 flags |= intf_flags & ~0xFFFF; 11407 11408 /* 11409 * Explicitly fail attempts to change flags that are always invalid on 11410 * an IPMP meta-interface. 11411 */ 11412 if (IS_IPMP(ill) && ((flags ^ intf_flags) & IFF_IPMP_INVALID)) 11413 return (EINVAL); 11414 11415 /* 11416 * Check which flags will change; silently ignore flags which userland 11417 * is not allowed to control. (Because these flags may change between 11418 * SIOCGLIFFLAGS and SIOCSLIFFLAGS, and that's outside of userland's 11419 * control, we need to silently ignore them rather than fail.) 11420 */ 11421 cantchange_flags = IFF_CANTCHANGE; 11422 if (IS_IPMP(ill)) 11423 cantchange_flags |= IFF_IPMP_CANTCHANGE; 11424 11425 turn_on = (flags ^ intf_flags) & ~cantchange_flags; 11426 if (turn_on == 0) 11427 return (0); /* No change */ 11428 11429 turn_off = intf_flags & turn_on; 11430 turn_on ^= turn_off; 11431 11432 /* 11433 * All test addresses must be IFF_DEPRECATED (to ensure source address 11434 * selection avoids them) -- so force IFF_DEPRECATED on, and do not 11435 * allow it to be turned off. 11436 */ 11437 if ((turn_off & (IFF_DEPRECATED|IFF_NOFAILOVER)) == IFF_DEPRECATED && 11438 (turn_on|intf_flags) & IFF_NOFAILOVER) 11439 return (EINVAL); 11440 11441 if (turn_on & IFF_NOFAILOVER) { 11442 turn_on |= IFF_DEPRECATED; 11443 flags |= IFF_DEPRECATED; 11444 } 11445 11446 /* 11447 * On underlying interfaces, only allow applications to manage test 11448 * addresses -- otherwise, they may get confused when the address 11449 * moves as part of being brought up. Likewise, prevent an 11450 * application-managed test address from being converted to a data 11451 * address. To prevent migration of administratively up addresses in 11452 * the kernel, we don't allow them to be converted either. 11453 */ 11454 if (IS_UNDER_IPMP(ill)) { 11455 const uint64_t appflags = IFF_DHCPRUNNING | IFF_ADDRCONF; 11456 11457 if ((turn_on & appflags) && !(flags & IFF_NOFAILOVER)) 11458 return (EINVAL); 11459 11460 if ((turn_off & IFF_NOFAILOVER) && 11461 (flags & (appflags | IFF_UP | IFF_DUPLICATE))) 11462 return (EINVAL); 11463 } 11464 11465 /* 11466 * Only allow the IFF_XRESOLV and IFF_TEMPORARY flags to be set on 11467 * IPv6 interfaces. 11468 */ 11469 if ((turn_on & (IFF_XRESOLV|IFF_TEMPORARY)) && !(ipif->ipif_isv6)) 11470 return (EINVAL); 11471 11472 /* 11473 * cannot turn off IFF_NOXMIT on VNI interfaces. 11474 */ 11475 if ((turn_off & IFF_NOXMIT) && IS_VNI(ipif->ipif_ill)) 11476 return (EINVAL); 11477 11478 /* 11479 * Don't allow the IFF_ROUTER flag to be turned on on loopback 11480 * interfaces. It makes no sense in that context. 11481 */ 11482 if ((turn_on & IFF_ROUTER) && (phyi->phyint_flags & PHYI_LOOPBACK)) 11483 return (EINVAL); 11484 11485 if (flags & (IFF_NOLOCAL|IFF_ANYCAST)) 11486 zero_source = B_TRUE; 11487 11488 /* 11489 * For IPv6 ipif_id 0, don't allow the interface to be up without 11490 * a link local address if IFF_NOLOCAL or IFF_ANYCAST are not set. 11491 * If the link local address isn't set, and can be set, it will get 11492 * set later on in this function. 11493 */ 11494 if (ipif->ipif_id == 0 && ipif->ipif_isv6 && 11495 (flags & IFF_UP) && !zero_source && 11496 IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6lcl_addr)) { 11497 if (ipif_cant_setlinklocal(ipif)) 11498 return (EINVAL); 11499 set_linklocal = B_TRUE; 11500 } 11501 11502 /* 11503 * If we modify physical interface flags, we'll potentially need to 11504 * send up two routing socket messages for the changes (one for the 11505 * IPv4 ill, and another for the IPv6 ill). Note that here. 11506 */ 11507 if ((turn_on|turn_off) & IFF_PHYINT_FLAGS) 11508 phyint_flags_modified = B_TRUE; 11509 11510 /* 11511 * All functioning PHYI_STANDBY interfaces start life PHYI_INACTIVE 11512 * (otherwise, we'd immediately use them, defeating standby). Also, 11513 * since PHYI_INACTIVE has a separate meaning when PHYI_STANDBY is not 11514 * set, don't allow PHYI_STANDBY to be set if PHYI_INACTIVE is already 11515 * set, and clear PHYI_INACTIVE if PHYI_STANDBY is being cleared. We 11516 * also don't allow PHYI_STANDBY if VNI is enabled since its semantics 11517 * will not be honored. 11518 */ 11519 if (turn_on & PHYI_STANDBY) { 11520 /* 11521 * No need to grab ill_g_usesrc_lock here; see the 11522 * synchronization notes in ip.c. 11523 */ 11524 if (ill->ill_usesrc_grp_next != NULL || 11525 intf_flags & PHYI_INACTIVE) 11526 return (EINVAL); 11527 if (!(flags & PHYI_FAILED)) { 11528 flags |= PHYI_INACTIVE; 11529 turn_on |= PHYI_INACTIVE; 11530 } 11531 } 11532 11533 if (turn_off & PHYI_STANDBY) { 11534 flags &= ~PHYI_INACTIVE; 11535 turn_off |= PHYI_INACTIVE; 11536 } 11537 11538 /* 11539 * PHYI_FAILED and PHYI_INACTIVE are mutually exclusive; fail if both 11540 * would end up on. 11541 */ 11542 if ((flags & (PHYI_FAILED | PHYI_INACTIVE)) == 11543 (PHYI_FAILED | PHYI_INACTIVE)) 11544 return (EINVAL); 11545 11546 /* 11547 * If ILLF_ROUTER changes, we need to change the ip forwarding 11548 * status of the interface. 11549 */ 11550 if ((turn_on | turn_off) & ILLF_ROUTER) 11551 (void) ill_forward_set(ill, ((turn_on & ILLF_ROUTER) != 0)); 11552 11553 /* 11554 * If the interface is not UP and we are not going to 11555 * bring it UP, record the flags and return. When the 11556 * interface comes UP later, the right actions will be 11557 * taken. 11558 */ 11559 if (!(ipif->ipif_flags & IPIF_UP) && 11560 !(turn_on & IPIF_UP)) { 11561 /* Record new flags in their respective places. */ 11562 mutex_enter(&ill->ill_lock); 11563 mutex_enter(&ill->ill_phyint->phyint_lock); 11564 ipif->ipif_flags |= (turn_on & IFF_LOGINT_FLAGS); 11565 ipif->ipif_flags &= (~turn_off & IFF_LOGINT_FLAGS); 11566 ill->ill_flags |= (turn_on & IFF_PHYINTINST_FLAGS); 11567 ill->ill_flags &= (~turn_off & IFF_PHYINTINST_FLAGS); 11568 phyi->phyint_flags |= (turn_on & IFF_PHYINT_FLAGS); 11569 phyi->phyint_flags &= (~turn_off & IFF_PHYINT_FLAGS); 11570 mutex_exit(&ill->ill_lock); 11571 mutex_exit(&ill->ill_phyint->phyint_lock); 11572 11573 /* 11574 * PHYI_FAILED, PHYI_INACTIVE, and PHYI_OFFLINE are all the 11575 * same to the kernel: if any of them has been set by 11576 * userland, the interface cannot be used for data traffic. 11577 */ 11578 if ((turn_on|turn_off) & 11579 (PHYI_FAILED | PHYI_INACTIVE | PHYI_OFFLINE)) { 11580 ASSERT(!IS_IPMP(ill)); 11581 /* 11582 * It's possible the ill is part of an "anonymous" 11583 * IPMP group rather than a real group. In that case, 11584 * there are no other interfaces in the group and thus 11585 * no need to call ipmp_phyint_refresh_active(). 11586 */ 11587 if (IS_UNDER_IPMP(ill)) 11588 ipmp_phyint_refresh_active(phyi); 11589 } 11590 11591 if (phyint_flags_modified) { 11592 if (phyi->phyint_illv4 != NULL) { 11593 ip_rts_ifmsg(phyi->phyint_illv4-> 11594 ill_ipif, RTSQ_DEFAULT); 11595 } 11596 if (phyi->phyint_illv6 != NULL) { 11597 ip_rts_ifmsg(phyi->phyint_illv6-> 11598 ill_ipif, RTSQ_DEFAULT); 11599 } 11600 } 11601 return (0); 11602 } else if (set_linklocal || zero_source) { 11603 mutex_enter(&ill->ill_lock); 11604 if (set_linklocal) 11605 ipif->ipif_state_flags |= IPIF_SET_LINKLOCAL; 11606 if (zero_source) 11607 ipif->ipif_state_flags |= IPIF_ZERO_SOURCE; 11608 mutex_exit(&ill->ill_lock); 11609 } 11610 11611 /* 11612 * Disallow IPv6 interfaces coming up that have the unspecified address, 11613 * or point-to-point interfaces with an unspecified destination. We do 11614 * allow the address to be unspecified for IPIF_NOLOCAL interfaces that 11615 * have a subnet assigned, which is how in.ndpd currently manages its 11616 * onlink prefix list when no addresses are configured with those 11617 * prefixes. 11618 */ 11619 if (ipif->ipif_isv6 && 11620 ((IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6lcl_addr) && 11621 (!(ipif->ipif_flags & IPIF_NOLOCAL) && !(turn_on & IPIF_NOLOCAL) || 11622 IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6subnet))) || 11623 ((ipif->ipif_flags & IPIF_POINTOPOINT) && 11624 IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6pp_dst_addr)))) { 11625 return (EINVAL); 11626 } 11627 11628 /* 11629 * Prevent IPv4 point-to-point interfaces with a 0.0.0.0 destination 11630 * from being brought up. 11631 */ 11632 if (!ipif->ipif_isv6 && 11633 ((ipif->ipif_flags & IPIF_POINTOPOINT) && 11634 ipif->ipif_pp_dst_addr == INADDR_ANY)) { 11635 return (EINVAL); 11636 } 11637 11638 /* 11639 * The only flag changes that we currently take specific action on are 11640 * IPIF_UP, IPIF_DEPRECATED, IPIF_NOXMIT, IPIF_NOLOCAL, ILLF_NOARP, 11641 * ILLF_NONUD, IPIF_PRIVATE, IPIF_ANYCAST, IPIF_PREFERRED, and 11642 * IPIF_NOFAILOVER. This is done by bring the ipif down, changing the 11643 * flags and bringing it back up again. For IPIF_NOFAILOVER, the act 11644 * of bringing it back up will trigger the address to be moved. 11645 */ 11646 if ((turn_on|turn_off) & 11647 (IPIF_UP|IPIF_DEPRECATED|IPIF_NOXMIT|IPIF_NOLOCAL|ILLF_NOARP| 11648 ILLF_NONUD|IPIF_PRIVATE|IPIF_ANYCAST|IPIF_PREFERRED| 11649 IPIF_NOFAILOVER)) { 11650 /* 11651 * Taking this ipif down, make sure we have 11652 * valid net and subnet bcast ire's for other 11653 * logical interfaces, if we need them. 11654 */ 11655 if (!ipif->ipif_isv6) 11656 ipif_check_bcast_ires(ipif); 11657 11658 if (((ipif->ipif_flags | turn_on) & IPIF_UP) && 11659 !(turn_off & IPIF_UP)) { 11660 if (ipif->ipif_flags & IPIF_UP) 11661 ill->ill_logical_down = 1; 11662 turn_on &= ~IPIF_UP; 11663 } 11664 err = ipif_down(ipif, q, mp); 11665 ip1dbg(("ipif_down returns %d err ", err)); 11666 if (err == EINPROGRESS) 11667 return (err); 11668 ipif_down_tail(ipif); 11669 } 11670 return (ip_sioctl_flags_tail(ipif, flags, q, mp)); 11671 } 11672 11673 static int 11674 ip_sioctl_flags_tail(ipif_t *ipif, uint64_t flags, queue_t *q, mblk_t *mp) 11675 { 11676 ill_t *ill; 11677 phyint_t *phyi; 11678 uint64_t turn_on, turn_off; 11679 uint64_t intf_flags, cantchange_flags; 11680 boolean_t phyint_flags_modified = B_FALSE; 11681 int err = 0; 11682 boolean_t set_linklocal = B_FALSE; 11683 boolean_t zero_source = B_FALSE; 11684 11685 ip1dbg(("ip_sioctl_flags_tail(%s:%u)\n", 11686 ipif->ipif_ill->ill_name, ipif->ipif_id)); 11687 11688 ASSERT(IAM_WRITER_IPIF(ipif)); 11689 11690 ill = ipif->ipif_ill; 11691 phyi = ill->ill_phyint; 11692 11693 intf_flags = ipif->ipif_flags | ill->ill_flags | phyi->phyint_flags; 11694 cantchange_flags = IFF_CANTCHANGE | IFF_UP; 11695 if (IS_IPMP(ill)) 11696 cantchange_flags |= IFF_IPMP_CANTCHANGE; 11697 11698 turn_on = (flags ^ intf_flags) & ~cantchange_flags; 11699 turn_off = intf_flags & turn_on; 11700 turn_on ^= turn_off; 11701 11702 if ((turn_on|turn_off) & IFF_PHYINT_FLAGS) 11703 phyint_flags_modified = B_TRUE; 11704 11705 /* 11706 * Now we change the flags. Track current value of 11707 * other flags in their respective places. 11708 */ 11709 mutex_enter(&ill->ill_lock); 11710 mutex_enter(&phyi->phyint_lock); 11711 ipif->ipif_flags |= (turn_on & IFF_LOGINT_FLAGS); 11712 ipif->ipif_flags &= (~turn_off & IFF_LOGINT_FLAGS); 11713 ill->ill_flags |= (turn_on & IFF_PHYINTINST_FLAGS); 11714 ill->ill_flags &= (~turn_off & IFF_PHYINTINST_FLAGS); 11715 phyi->phyint_flags |= (turn_on & IFF_PHYINT_FLAGS); 11716 phyi->phyint_flags &= (~turn_off & IFF_PHYINT_FLAGS); 11717 if (ipif->ipif_state_flags & IPIF_SET_LINKLOCAL) { 11718 set_linklocal = B_TRUE; 11719 ipif->ipif_state_flags &= ~IPIF_SET_LINKLOCAL; 11720 } 11721 if (ipif->ipif_state_flags & IPIF_ZERO_SOURCE) { 11722 zero_source = B_TRUE; 11723 ipif->ipif_state_flags &= ~IPIF_ZERO_SOURCE; 11724 } 11725 mutex_exit(&ill->ill_lock); 11726 mutex_exit(&phyi->phyint_lock); 11727 11728 if (set_linklocal) 11729 (void) ipif_setlinklocal(ipif); 11730 11731 if (zero_source) 11732 ipif->ipif_v6src_addr = ipv6_all_zeros; 11733 else 11734 ipif->ipif_v6src_addr = ipif->ipif_v6lcl_addr; 11735 11736 /* 11737 * PHYI_FAILED, PHYI_INACTIVE, and PHYI_OFFLINE are all the same to 11738 * the kernel: if any of them has been set by userland, the interface 11739 * cannot be used for data traffic. 11740 */ 11741 if ((turn_on|turn_off) & (PHYI_FAILED | PHYI_INACTIVE | PHYI_OFFLINE)) { 11742 ASSERT(!IS_IPMP(ill)); 11743 /* 11744 * It's possible the ill is part of an "anonymous" IPMP group 11745 * rather than a real group. In that case, there are no other 11746 * interfaces in the group and thus no need for us to call 11747 * ipmp_phyint_refresh_active(). 11748 */ 11749 if (IS_UNDER_IPMP(ill)) 11750 ipmp_phyint_refresh_active(phyi); 11751 } 11752 11753 if ((flags & IFF_UP) && !(ipif->ipif_flags & IPIF_UP)) { 11754 /* 11755 * XXX ipif_up really does not know whether a phyint flags 11756 * was modified or not. So, it sends up information on 11757 * only one routing sockets message. As we don't bring up 11758 * the interface and also set PHYI_ flags simultaneously 11759 * it should be okay. 11760 */ 11761 err = ipif_up(ipif, q, mp); 11762 } else { 11763 /* 11764 * Make sure routing socket sees all changes to the flags. 11765 * ipif_up_done* handles this when we use ipif_up. 11766 */ 11767 if (phyint_flags_modified) { 11768 if (phyi->phyint_illv4 != NULL) { 11769 ip_rts_ifmsg(phyi->phyint_illv4-> 11770 ill_ipif, RTSQ_DEFAULT); 11771 } 11772 if (phyi->phyint_illv6 != NULL) { 11773 ip_rts_ifmsg(phyi->phyint_illv6-> 11774 ill_ipif, RTSQ_DEFAULT); 11775 } 11776 } else { 11777 ip_rts_ifmsg(ipif, RTSQ_DEFAULT); 11778 } 11779 /* 11780 * Update the flags in SCTP's IPIF list, ipif_up() will do 11781 * this in need_up case. 11782 */ 11783 sctp_update_ipif(ipif, SCTP_IPIF_UPDATE); 11784 } 11785 return (err); 11786 } 11787 11788 /* 11789 * Restart the flags operation now that the refcounts have dropped to zero. 11790 */ 11791 /* ARGSUSED */ 11792 int 11793 ip_sioctl_flags_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11794 ip_ioctl_cmd_t *ipip, void *if_req) 11795 { 11796 uint64_t flags; 11797 struct ifreq *ifr = if_req; 11798 struct lifreq *lifr = if_req; 11799 11800 ip1dbg(("ip_sioctl_flags_restart(%s:%u %p)\n", 11801 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11802 11803 ipif_down_tail(ipif); 11804 if (ipip->ipi_cmd_type == IF_CMD) { 11805 /* cast to uint16_t prevents unwanted sign extension */ 11806 flags = (uint16_t)ifr->ifr_flags; 11807 } else { 11808 flags = lifr->lifr_flags; 11809 } 11810 return (ip_sioctl_flags_tail(ipif, flags, q, mp)); 11811 } 11812 11813 /* 11814 * Can operate on either a module or a driver queue. 11815 */ 11816 /* ARGSUSED */ 11817 int 11818 ip_sioctl_get_flags(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11819 ip_ioctl_cmd_t *ipip, void *if_req) 11820 { 11821 /* 11822 * Has the flags been set correctly till now ? 11823 */ 11824 ill_t *ill = ipif->ipif_ill; 11825 phyint_t *phyi = ill->ill_phyint; 11826 11827 ip1dbg(("ip_sioctl_get_flags(%s:%u %p)\n", 11828 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11829 ASSERT((phyi->phyint_flags & ~(IFF_PHYINT_FLAGS)) == 0); 11830 ASSERT((ill->ill_flags & ~(IFF_PHYINTINST_FLAGS)) == 0); 11831 ASSERT((ipif->ipif_flags & ~(IFF_LOGINT_FLAGS)) == 0); 11832 11833 /* 11834 * Need a lock since some flags can be set even when there are 11835 * references to the ipif. 11836 */ 11837 mutex_enter(&ill->ill_lock); 11838 if (ipip->ipi_cmd_type == IF_CMD) { 11839 struct ifreq *ifr = (struct ifreq *)if_req; 11840 11841 /* Get interface flags (low 16 only). */ 11842 ifr->ifr_flags = ((ipif->ipif_flags | 11843 ill->ill_flags | phyi->phyint_flags) & 0xffff); 11844 } else { 11845 struct lifreq *lifr = (struct lifreq *)if_req; 11846 11847 /* Get interface flags. */ 11848 lifr->lifr_flags = ipif->ipif_flags | 11849 ill->ill_flags | phyi->phyint_flags; 11850 } 11851 mutex_exit(&ill->ill_lock); 11852 return (0); 11853 } 11854 11855 /* ARGSUSED */ 11856 int 11857 ip_sioctl_mtu(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11858 ip_ioctl_cmd_t *ipip, void *if_req) 11859 { 11860 int mtu; 11861 int ip_min_mtu; 11862 struct ifreq *ifr; 11863 struct lifreq *lifr; 11864 ire_t *ire; 11865 ip_stack_t *ipst; 11866 11867 ip1dbg(("ip_sioctl_mtu(%s:%u %p)\n", ipif->ipif_ill->ill_name, 11868 ipif->ipif_id, (void *)ipif)); 11869 if (ipip->ipi_cmd_type == IF_CMD) { 11870 ifr = (struct ifreq *)if_req; 11871 mtu = ifr->ifr_metric; 11872 } else { 11873 lifr = (struct lifreq *)if_req; 11874 mtu = lifr->lifr_mtu; 11875 } 11876 11877 if (ipif->ipif_isv6) 11878 ip_min_mtu = IPV6_MIN_MTU; 11879 else 11880 ip_min_mtu = IP_MIN_MTU; 11881 11882 if (mtu > ipif->ipif_ill->ill_max_frag || mtu < ip_min_mtu) 11883 return (EINVAL); 11884 11885 /* 11886 * Change the MTU size in all relevant ire's. 11887 * Mtu change Vs. new ire creation - protocol below. 11888 * First change ipif_mtu and the ire_max_frag of the 11889 * interface ire. Then do an ire walk and change the 11890 * ire_max_frag of all affected ires. During ire_add 11891 * under the bucket lock, set the ire_max_frag of the 11892 * new ire being created from the ipif/ire from which 11893 * it is being derived. If an mtu change happens after 11894 * the ire is added, the new ire will be cleaned up. 11895 * Conversely if the mtu change happens before the ire 11896 * is added, ire_add will see the new value of the mtu. 11897 */ 11898 ipif->ipif_mtu = mtu; 11899 ipif->ipif_flags |= IPIF_FIXEDMTU; 11900 11901 if (ipif->ipif_isv6) 11902 ire = ipif_to_ire_v6(ipif); 11903 else 11904 ire = ipif_to_ire(ipif); 11905 if (ire != NULL) { 11906 ire->ire_max_frag = ipif->ipif_mtu; 11907 ire_refrele(ire); 11908 } 11909 ipst = ipif->ipif_ill->ill_ipst; 11910 if (ipif->ipif_flags & IPIF_UP) { 11911 if (ipif->ipif_isv6) 11912 ire_walk_v6(ipif_mtu_change, (char *)ipif, ALL_ZONES, 11913 ipst); 11914 else 11915 ire_walk_v4(ipif_mtu_change, (char *)ipif, ALL_ZONES, 11916 ipst); 11917 } 11918 /* Update the MTU in SCTP's list */ 11919 sctp_update_ipif(ipif, SCTP_IPIF_UPDATE); 11920 return (0); 11921 } 11922 11923 /* Get interface MTU. */ 11924 /* ARGSUSED */ 11925 int 11926 ip_sioctl_get_mtu(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11927 ip_ioctl_cmd_t *ipip, void *if_req) 11928 { 11929 struct ifreq *ifr; 11930 struct lifreq *lifr; 11931 11932 ip1dbg(("ip_sioctl_get_mtu(%s:%u %p)\n", 11933 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11934 if (ipip->ipi_cmd_type == IF_CMD) { 11935 ifr = (struct ifreq *)if_req; 11936 ifr->ifr_metric = ipif->ipif_mtu; 11937 } else { 11938 lifr = (struct lifreq *)if_req; 11939 lifr->lifr_mtu = ipif->ipif_mtu; 11940 } 11941 return (0); 11942 } 11943 11944 /* Set interface broadcast address. */ 11945 /* ARGSUSED2 */ 11946 int 11947 ip_sioctl_brdaddr(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11948 ip_ioctl_cmd_t *ipip, void *if_req) 11949 { 11950 ipaddr_t addr; 11951 ire_t *ire; 11952 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; 11953 11954 ip1dbg(("ip_sioctl_brdaddr(%s:%u)\n", ipif->ipif_ill->ill_name, 11955 ipif->ipif_id)); 11956 11957 ASSERT(IAM_WRITER_IPIF(ipif)); 11958 if (!(ipif->ipif_flags & IPIF_BROADCAST)) 11959 return (EADDRNOTAVAIL); 11960 11961 ASSERT(!(ipif->ipif_isv6)); /* No IPv6 broadcast */ 11962 11963 if (sin->sin_family != AF_INET) 11964 return (EAFNOSUPPORT); 11965 11966 addr = sin->sin_addr.s_addr; 11967 if (ipif->ipif_flags & IPIF_UP) { 11968 /* 11969 * If we are already up, make sure the new 11970 * broadcast address makes sense. If it does, 11971 * there should be an IRE for it already. 11972 * Don't match on ipif, only on the ill 11973 * since we are sharing these now. 11974 */ 11975 ire = ire_ctable_lookup(addr, 0, IRE_BROADCAST, 11976 ipif, ALL_ZONES, NULL, 11977 (MATCH_IRE_ILL | MATCH_IRE_TYPE), ipst); 11978 if (ire == NULL) { 11979 return (EINVAL); 11980 } else { 11981 ire_refrele(ire); 11982 } 11983 } 11984 /* 11985 * Changing the broadcast addr for this ipif. 11986 * Make sure we have valid net and subnet bcast 11987 * ire's for other logical interfaces, if needed. 11988 */ 11989 if (addr != ipif->ipif_brd_addr) 11990 ipif_check_bcast_ires(ipif); 11991 IN6_IPADDR_TO_V4MAPPED(addr, &ipif->ipif_v6brd_addr); 11992 return (0); 11993 } 11994 11995 /* Get interface broadcast address. */ 11996 /* ARGSUSED */ 11997 int 11998 ip_sioctl_get_brdaddr(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11999 ip_ioctl_cmd_t *ipip, void *if_req) 12000 { 12001 ip1dbg(("ip_sioctl_get_brdaddr(%s:%u %p)\n", 12002 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12003 if (!(ipif->ipif_flags & IPIF_BROADCAST)) 12004 return (EADDRNOTAVAIL); 12005 12006 /* IPIF_BROADCAST not possible with IPv6 */ 12007 ASSERT(!ipif->ipif_isv6); 12008 *sin = sin_null; 12009 sin->sin_family = AF_INET; 12010 sin->sin_addr.s_addr = ipif->ipif_brd_addr; 12011 return (0); 12012 } 12013 12014 /* 12015 * This routine is called to handle the SIOCS*IFNETMASK IOCTL. 12016 */ 12017 /* ARGSUSED */ 12018 int 12019 ip_sioctl_netmask(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12020 ip_ioctl_cmd_t *ipip, void *if_req) 12021 { 12022 int err = 0; 12023 in6_addr_t v6mask; 12024 12025 ip1dbg(("ip_sioctl_netmask(%s:%u %p)\n", 12026 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12027 12028 ASSERT(IAM_WRITER_IPIF(ipif)); 12029 12030 if (ipif->ipif_isv6) { 12031 sin6_t *sin6; 12032 12033 if (sin->sin_family != AF_INET6) 12034 return (EAFNOSUPPORT); 12035 12036 sin6 = (sin6_t *)sin; 12037 v6mask = sin6->sin6_addr; 12038 } else { 12039 ipaddr_t mask; 12040 12041 if (sin->sin_family != AF_INET) 12042 return (EAFNOSUPPORT); 12043 12044 mask = sin->sin_addr.s_addr; 12045 V4MASK_TO_V6(mask, v6mask); 12046 } 12047 12048 /* 12049 * No big deal if the interface isn't already up, or the mask 12050 * isn't really changing, or this is pt-pt. 12051 */ 12052 if (!(ipif->ipif_flags & IPIF_UP) || 12053 IN6_ARE_ADDR_EQUAL(&v6mask, &ipif->ipif_v6net_mask) || 12054 (ipif->ipif_flags & IPIF_POINTOPOINT)) { 12055 ipif->ipif_v6net_mask = v6mask; 12056 if ((ipif->ipif_flags & IPIF_POINTOPOINT) == 0) { 12057 V6_MASK_COPY(ipif->ipif_v6lcl_addr, 12058 ipif->ipif_v6net_mask, 12059 ipif->ipif_v6subnet); 12060 } 12061 return (0); 12062 } 12063 /* 12064 * Make sure we have valid net and subnet broadcast ire's 12065 * for the old netmask, if needed by other logical interfaces. 12066 */ 12067 if (!ipif->ipif_isv6) 12068 ipif_check_bcast_ires(ipif); 12069 12070 err = ipif_logical_down(ipif, q, mp); 12071 if (err == EINPROGRESS) 12072 return (err); 12073 ipif_down_tail(ipif); 12074 err = ip_sioctl_netmask_tail(ipif, sin, q, mp); 12075 return (err); 12076 } 12077 12078 static int 12079 ip_sioctl_netmask_tail(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp) 12080 { 12081 in6_addr_t v6mask; 12082 int err = 0; 12083 12084 ip1dbg(("ip_sioctl_netmask_tail(%s:%u %p)\n", 12085 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12086 12087 if (ipif->ipif_isv6) { 12088 sin6_t *sin6; 12089 12090 sin6 = (sin6_t *)sin; 12091 v6mask = sin6->sin6_addr; 12092 } else { 12093 ipaddr_t mask; 12094 12095 mask = sin->sin_addr.s_addr; 12096 V4MASK_TO_V6(mask, v6mask); 12097 } 12098 12099 ipif->ipif_v6net_mask = v6mask; 12100 if ((ipif->ipif_flags & IPIF_POINTOPOINT) == 0) { 12101 V6_MASK_COPY(ipif->ipif_v6lcl_addr, ipif->ipif_v6net_mask, 12102 ipif->ipif_v6subnet); 12103 } 12104 err = ipif_up(ipif, q, mp); 12105 12106 if (err == 0 || err == EINPROGRESS) { 12107 /* 12108 * The interface must be DL_BOUND if this packet has to 12109 * go out on the wire. Since we only go through a logical 12110 * down and are bound with the driver during an internal 12111 * down/up that is satisfied. 12112 */ 12113 if (!ipif->ipif_isv6 && ipif->ipif_ill->ill_wq != NULL) { 12114 /* Potentially broadcast an address mask reply. */ 12115 ipif_mask_reply(ipif); 12116 } 12117 } 12118 return (err); 12119 } 12120 12121 /* ARGSUSED */ 12122 int 12123 ip_sioctl_netmask_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12124 ip_ioctl_cmd_t *ipip, void *if_req) 12125 { 12126 ip1dbg(("ip_sioctl_netmask_restart(%s:%u %p)\n", 12127 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12128 ipif_down_tail(ipif); 12129 return (ip_sioctl_netmask_tail(ipif, sin, q, mp)); 12130 } 12131 12132 /* Get interface net mask. */ 12133 /* ARGSUSED */ 12134 int 12135 ip_sioctl_get_netmask(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12136 ip_ioctl_cmd_t *ipip, void *if_req) 12137 { 12138 struct lifreq *lifr = (struct lifreq *)if_req; 12139 struct sockaddr_in6 *sin6 = (sin6_t *)sin; 12140 12141 ip1dbg(("ip_sioctl_get_netmask(%s:%u %p)\n", 12142 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12143 12144 /* 12145 * net mask can't change since we have a reference to the ipif. 12146 */ 12147 if (ipif->ipif_isv6) { 12148 ASSERT(ipip->ipi_cmd_type == LIF_CMD); 12149 *sin6 = sin6_null; 12150 sin6->sin6_family = AF_INET6; 12151 sin6->sin6_addr = ipif->ipif_v6net_mask; 12152 lifr->lifr_addrlen = 12153 ip_mask_to_plen_v6(&ipif->ipif_v6net_mask); 12154 } else { 12155 *sin = sin_null; 12156 sin->sin_family = AF_INET; 12157 sin->sin_addr.s_addr = ipif->ipif_net_mask; 12158 if (ipip->ipi_cmd_type == LIF_CMD) { 12159 lifr->lifr_addrlen = 12160 ip_mask_to_plen(ipif->ipif_net_mask); 12161 } 12162 } 12163 return (0); 12164 } 12165 12166 /* ARGSUSED */ 12167 int 12168 ip_sioctl_metric(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12169 ip_ioctl_cmd_t *ipip, void *if_req) 12170 { 12171 ip1dbg(("ip_sioctl_metric(%s:%u %p)\n", 12172 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12173 12174 /* 12175 * Since no applications should ever be setting metrics on underlying 12176 * interfaces, we explicitly fail to smoke 'em out. 12177 */ 12178 if (IS_UNDER_IPMP(ipif->ipif_ill)) 12179 return (EINVAL); 12180 12181 /* 12182 * Set interface metric. We don't use this for 12183 * anything but we keep track of it in case it is 12184 * important to routing applications or such. 12185 */ 12186 if (ipip->ipi_cmd_type == IF_CMD) { 12187 struct ifreq *ifr; 12188 12189 ifr = (struct ifreq *)if_req; 12190 ipif->ipif_metric = ifr->ifr_metric; 12191 } else { 12192 struct lifreq *lifr; 12193 12194 lifr = (struct lifreq *)if_req; 12195 ipif->ipif_metric = lifr->lifr_metric; 12196 } 12197 return (0); 12198 } 12199 12200 /* ARGSUSED */ 12201 int 12202 ip_sioctl_get_metric(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12203 ip_ioctl_cmd_t *ipip, void *if_req) 12204 { 12205 /* Get interface metric. */ 12206 ip1dbg(("ip_sioctl_get_metric(%s:%u %p)\n", 12207 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12208 12209 if (ipip->ipi_cmd_type == IF_CMD) { 12210 struct ifreq *ifr; 12211 12212 ifr = (struct ifreq *)if_req; 12213 ifr->ifr_metric = ipif->ipif_metric; 12214 } else { 12215 struct lifreq *lifr; 12216 12217 lifr = (struct lifreq *)if_req; 12218 lifr->lifr_metric = ipif->ipif_metric; 12219 } 12220 12221 return (0); 12222 } 12223 12224 /* ARGSUSED */ 12225 int 12226 ip_sioctl_muxid(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12227 ip_ioctl_cmd_t *ipip, void *if_req) 12228 { 12229 12230 ip1dbg(("ip_sioctl_muxid(%s:%u %p)\n", 12231 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12232 /* 12233 * Set the muxid returned from I_PLINK. 12234 */ 12235 if (ipip->ipi_cmd_type == IF_CMD) { 12236 struct ifreq *ifr = (struct ifreq *)if_req; 12237 12238 ipif->ipif_ill->ill_ip_muxid = ifr->ifr_ip_muxid; 12239 ipif->ipif_ill->ill_arp_muxid = ifr->ifr_arp_muxid; 12240 } else { 12241 struct lifreq *lifr = (struct lifreq *)if_req; 12242 12243 ipif->ipif_ill->ill_ip_muxid = lifr->lifr_ip_muxid; 12244 ipif->ipif_ill->ill_arp_muxid = lifr->lifr_arp_muxid; 12245 } 12246 return (0); 12247 } 12248 12249 /* ARGSUSED */ 12250 int 12251 ip_sioctl_get_muxid(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12252 ip_ioctl_cmd_t *ipip, void *if_req) 12253 { 12254 12255 ip1dbg(("ip_sioctl_get_muxid(%s:%u %p)\n", 12256 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12257 /* 12258 * Get the muxid saved in ill for I_PUNLINK. 12259 */ 12260 if (ipip->ipi_cmd_type == IF_CMD) { 12261 struct ifreq *ifr = (struct ifreq *)if_req; 12262 12263 ifr->ifr_ip_muxid = ipif->ipif_ill->ill_ip_muxid; 12264 ifr->ifr_arp_muxid = ipif->ipif_ill->ill_arp_muxid; 12265 } else { 12266 struct lifreq *lifr = (struct lifreq *)if_req; 12267 12268 lifr->lifr_ip_muxid = ipif->ipif_ill->ill_ip_muxid; 12269 lifr->lifr_arp_muxid = ipif->ipif_ill->ill_arp_muxid; 12270 } 12271 return (0); 12272 } 12273 12274 /* 12275 * Set the subnet prefix. Does not modify the broadcast address. 12276 */ 12277 /* ARGSUSED */ 12278 int 12279 ip_sioctl_subnet(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12280 ip_ioctl_cmd_t *ipip, void *if_req) 12281 { 12282 int err = 0; 12283 in6_addr_t v6addr; 12284 in6_addr_t v6mask; 12285 boolean_t need_up = B_FALSE; 12286 int addrlen; 12287 12288 ip1dbg(("ip_sioctl_subnet(%s:%u %p)\n", 12289 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12290 12291 ASSERT(IAM_WRITER_IPIF(ipif)); 12292 addrlen = ((struct lifreq *)if_req)->lifr_addrlen; 12293 12294 if (ipif->ipif_isv6) { 12295 sin6_t *sin6; 12296 12297 if (sin->sin_family != AF_INET6) 12298 return (EAFNOSUPPORT); 12299 12300 sin6 = (sin6_t *)sin; 12301 v6addr = sin6->sin6_addr; 12302 if (!ip_remote_addr_ok_v6(&v6addr, &ipv6_all_ones)) 12303 return (EADDRNOTAVAIL); 12304 } else { 12305 ipaddr_t addr; 12306 12307 if (sin->sin_family != AF_INET) 12308 return (EAFNOSUPPORT); 12309 12310 addr = sin->sin_addr.s_addr; 12311 if (!ip_addr_ok_v4(addr, 0xFFFFFFFF)) 12312 return (EADDRNOTAVAIL); 12313 IN6_IPADDR_TO_V4MAPPED(addr, &v6addr); 12314 /* Add 96 bits */ 12315 addrlen += IPV6_ABITS - IP_ABITS; 12316 } 12317 12318 if (ip_plen_to_mask_v6(addrlen, &v6mask) == NULL) 12319 return (EINVAL); 12320 12321 /* Check if bits in the address is set past the mask */ 12322 if (!V6_MASK_EQ(v6addr, v6mask, v6addr)) 12323 return (EINVAL); 12324 12325 if (IN6_ARE_ADDR_EQUAL(&ipif->ipif_v6subnet, &v6addr) && 12326 IN6_ARE_ADDR_EQUAL(&ipif->ipif_v6net_mask, &v6mask)) 12327 return (0); /* No change */ 12328 12329 if (ipif->ipif_flags & IPIF_UP) { 12330 /* 12331 * If the interface is already marked up, 12332 * we call ipif_down which will take care 12333 * of ditching any IREs that have been set 12334 * up based on the old interface address. 12335 */ 12336 err = ipif_logical_down(ipif, q, mp); 12337 if (err == EINPROGRESS) 12338 return (err); 12339 ipif_down_tail(ipif); 12340 need_up = B_TRUE; 12341 } 12342 12343 err = ip_sioctl_subnet_tail(ipif, v6addr, v6mask, q, mp, need_up); 12344 return (err); 12345 } 12346 12347 static int 12348 ip_sioctl_subnet_tail(ipif_t *ipif, in6_addr_t v6addr, in6_addr_t v6mask, 12349 queue_t *q, mblk_t *mp, boolean_t need_up) 12350 { 12351 ill_t *ill = ipif->ipif_ill; 12352 int err = 0; 12353 12354 ip1dbg(("ip_sioctl_subnet_tail(%s:%u %p)\n", 12355 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12356 12357 /* Set the new address. */ 12358 mutex_enter(&ill->ill_lock); 12359 ipif->ipif_v6net_mask = v6mask; 12360 if ((ipif->ipif_flags & IPIF_POINTOPOINT) == 0) { 12361 V6_MASK_COPY(v6addr, ipif->ipif_v6net_mask, 12362 ipif->ipif_v6subnet); 12363 } 12364 mutex_exit(&ill->ill_lock); 12365 12366 if (need_up) { 12367 /* 12368 * Now bring the interface back up. If this 12369 * is the only IPIF for the ILL, ipif_up 12370 * will have to re-bind to the device, so 12371 * we may get back EINPROGRESS, in which 12372 * case, this IOCTL will get completed in 12373 * ip_rput_dlpi when we see the DL_BIND_ACK. 12374 */ 12375 err = ipif_up(ipif, q, mp); 12376 if (err == EINPROGRESS) 12377 return (err); 12378 } 12379 return (err); 12380 } 12381 12382 /* ARGSUSED */ 12383 int 12384 ip_sioctl_subnet_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12385 ip_ioctl_cmd_t *ipip, void *if_req) 12386 { 12387 int addrlen; 12388 in6_addr_t v6addr; 12389 in6_addr_t v6mask; 12390 struct lifreq *lifr = (struct lifreq *)if_req; 12391 12392 ip1dbg(("ip_sioctl_subnet_restart(%s:%u %p)\n", 12393 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12394 ipif_down_tail(ipif); 12395 12396 addrlen = lifr->lifr_addrlen; 12397 if (ipif->ipif_isv6) { 12398 sin6_t *sin6; 12399 12400 sin6 = (sin6_t *)sin; 12401 v6addr = sin6->sin6_addr; 12402 } else { 12403 ipaddr_t addr; 12404 12405 addr = sin->sin_addr.s_addr; 12406 IN6_IPADDR_TO_V4MAPPED(addr, &v6addr); 12407 addrlen += IPV6_ABITS - IP_ABITS; 12408 } 12409 (void) ip_plen_to_mask_v6(addrlen, &v6mask); 12410 12411 return (ip_sioctl_subnet_tail(ipif, v6addr, v6mask, q, mp, B_TRUE)); 12412 } 12413 12414 /* ARGSUSED */ 12415 int 12416 ip_sioctl_get_subnet(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12417 ip_ioctl_cmd_t *ipip, void *if_req) 12418 { 12419 struct lifreq *lifr = (struct lifreq *)if_req; 12420 struct sockaddr_in6 *sin6 = (struct sockaddr_in6 *)sin; 12421 12422 ip1dbg(("ip_sioctl_get_subnet(%s:%u %p)\n", 12423 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12424 ASSERT(ipip->ipi_cmd_type == LIF_CMD); 12425 12426 if (ipif->ipif_isv6) { 12427 *sin6 = sin6_null; 12428 sin6->sin6_family = AF_INET6; 12429 sin6->sin6_addr = ipif->ipif_v6subnet; 12430 lifr->lifr_addrlen = 12431 ip_mask_to_plen_v6(&ipif->ipif_v6net_mask); 12432 } else { 12433 *sin = sin_null; 12434 sin->sin_family = AF_INET; 12435 sin->sin_addr.s_addr = ipif->ipif_subnet; 12436 lifr->lifr_addrlen = ip_mask_to_plen(ipif->ipif_net_mask); 12437 } 12438 return (0); 12439 } 12440 12441 /* 12442 * Set the IPv6 address token. 12443 */ 12444 /* ARGSUSED */ 12445 int 12446 ip_sioctl_token(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12447 ip_ioctl_cmd_t *ipi, void *if_req) 12448 { 12449 ill_t *ill = ipif->ipif_ill; 12450 int err; 12451 in6_addr_t v6addr; 12452 in6_addr_t v6mask; 12453 boolean_t need_up = B_FALSE; 12454 int i; 12455 sin6_t *sin6 = (sin6_t *)sin; 12456 struct lifreq *lifr = (struct lifreq *)if_req; 12457 int addrlen; 12458 12459 ip1dbg(("ip_sioctl_token(%s:%u %p)\n", 12460 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12461 ASSERT(IAM_WRITER_IPIF(ipif)); 12462 12463 addrlen = lifr->lifr_addrlen; 12464 /* Only allow for logical unit zero i.e. not on "le0:17" */ 12465 if (ipif->ipif_id != 0) 12466 return (EINVAL); 12467 12468 if (!ipif->ipif_isv6) 12469 return (EINVAL); 12470 12471 if (addrlen > IPV6_ABITS) 12472 return (EINVAL); 12473 12474 v6addr = sin6->sin6_addr; 12475 12476 /* 12477 * The length of the token is the length from the end. To get 12478 * the proper mask for this, compute the mask of the bits not 12479 * in the token; ie. the prefix, and then xor to get the mask. 12480 */ 12481 if (ip_plen_to_mask_v6(IPV6_ABITS - addrlen, &v6mask) == NULL) 12482 return (EINVAL); 12483 for (i = 0; i < 4; i++) { 12484 v6mask.s6_addr32[i] ^= (uint32_t)0xffffffff; 12485 } 12486 12487 if (V6_MASK_EQ(v6addr, v6mask, ill->ill_token) && 12488 ill->ill_token_length == addrlen) 12489 return (0); /* No change */ 12490 12491 if (ipif->ipif_flags & IPIF_UP) { 12492 err = ipif_logical_down(ipif, q, mp); 12493 if (err == EINPROGRESS) 12494 return (err); 12495 ipif_down_tail(ipif); 12496 need_up = B_TRUE; 12497 } 12498 err = ip_sioctl_token_tail(ipif, sin6, addrlen, q, mp, need_up); 12499 return (err); 12500 } 12501 12502 static int 12503 ip_sioctl_token_tail(ipif_t *ipif, sin6_t *sin6, int addrlen, queue_t *q, 12504 mblk_t *mp, boolean_t need_up) 12505 { 12506 in6_addr_t v6addr; 12507 in6_addr_t v6mask; 12508 ill_t *ill = ipif->ipif_ill; 12509 int i; 12510 int err = 0; 12511 12512 ip1dbg(("ip_sioctl_token_tail(%s:%u %p)\n", 12513 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12514 v6addr = sin6->sin6_addr; 12515 /* 12516 * The length of the token is the length from the end. To get 12517 * the proper mask for this, compute the mask of the bits not 12518 * in the token; ie. the prefix, and then xor to get the mask. 12519 */ 12520 (void) ip_plen_to_mask_v6(IPV6_ABITS - addrlen, &v6mask); 12521 for (i = 0; i < 4; i++) 12522 v6mask.s6_addr32[i] ^= (uint32_t)0xffffffff; 12523 12524 mutex_enter(&ill->ill_lock); 12525 V6_MASK_COPY(v6addr, v6mask, ill->ill_token); 12526 ill->ill_token_length = addrlen; 12527 mutex_exit(&ill->ill_lock); 12528 12529 if (need_up) { 12530 /* 12531 * Now bring the interface back up. If this 12532 * is the only IPIF for the ILL, ipif_up 12533 * will have to re-bind to the device, so 12534 * we may get back EINPROGRESS, in which 12535 * case, this IOCTL will get completed in 12536 * ip_rput_dlpi when we see the DL_BIND_ACK. 12537 */ 12538 err = ipif_up(ipif, q, mp); 12539 if (err == EINPROGRESS) 12540 return (err); 12541 } 12542 return (err); 12543 } 12544 12545 /* ARGSUSED */ 12546 int 12547 ip_sioctl_get_token(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12548 ip_ioctl_cmd_t *ipi, void *if_req) 12549 { 12550 ill_t *ill; 12551 sin6_t *sin6 = (sin6_t *)sin; 12552 struct lifreq *lifr = (struct lifreq *)if_req; 12553 12554 ip1dbg(("ip_sioctl_get_token(%s:%u %p)\n", 12555 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12556 if (ipif->ipif_id != 0) 12557 return (EINVAL); 12558 12559 ill = ipif->ipif_ill; 12560 if (!ill->ill_isv6) 12561 return (ENXIO); 12562 12563 *sin6 = sin6_null; 12564 sin6->sin6_family = AF_INET6; 12565 ASSERT(!IN6_IS_ADDR_V4MAPPED(&ill->ill_token)); 12566 sin6->sin6_addr = ill->ill_token; 12567 lifr->lifr_addrlen = ill->ill_token_length; 12568 return (0); 12569 } 12570 12571 /* 12572 * Set (hardware) link specific information that might override 12573 * what was acquired through the DL_INFO_ACK. 12574 * The logic is as follows. 12575 * 12576 * become exclusive 12577 * set CHANGING flag 12578 * change mtu on affected IREs 12579 * clear CHANGING flag 12580 * 12581 * An ire add that occurs before the CHANGING flag is set will have its mtu 12582 * changed by the ip_sioctl_lnkinfo. 12583 * 12584 * During the time the CHANGING flag is set, no new ires will be added to the 12585 * bucket, and ire add will fail (due the CHANGING flag). 12586 * 12587 * An ire add that occurs after the CHANGING flag is set will have the right mtu 12588 * before it is added to the bucket. 12589 * 12590 * Obviously only 1 thread can set the CHANGING flag and we need to become 12591 * exclusive to set the flag. 12592 */ 12593 /* ARGSUSED */ 12594 int 12595 ip_sioctl_lnkinfo(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12596 ip_ioctl_cmd_t *ipi, void *if_req) 12597 { 12598 ill_t *ill = ipif->ipif_ill; 12599 ipif_t *nipif; 12600 int ip_min_mtu; 12601 boolean_t mtu_walk = B_FALSE; 12602 struct lifreq *lifr = (struct lifreq *)if_req; 12603 lif_ifinfo_req_t *lir; 12604 ire_t *ire; 12605 12606 ip1dbg(("ip_sioctl_lnkinfo(%s:%u %p)\n", 12607 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12608 lir = &lifr->lifr_ifinfo; 12609 ASSERT(IAM_WRITER_IPIF(ipif)); 12610 12611 /* Only allow for logical unit zero i.e. not on "le0:17" */ 12612 if (ipif->ipif_id != 0) 12613 return (EINVAL); 12614 12615 /* Set interface MTU. */ 12616 if (ipif->ipif_isv6) 12617 ip_min_mtu = IPV6_MIN_MTU; 12618 else 12619 ip_min_mtu = IP_MIN_MTU; 12620 12621 /* 12622 * Verify values before we set anything. Allow zero to 12623 * mean unspecified. 12624 */ 12625 if (lir->lir_maxmtu != 0 && 12626 (lir->lir_maxmtu > ill->ill_max_frag || 12627 lir->lir_maxmtu < ip_min_mtu)) 12628 return (EINVAL); 12629 if (lir->lir_reachtime != 0 && 12630 lir->lir_reachtime > ND_MAX_REACHTIME) 12631 return (EINVAL); 12632 if (lir->lir_reachretrans != 0 && 12633 lir->lir_reachretrans > ND_MAX_REACHRETRANSTIME) 12634 return (EINVAL); 12635 12636 mutex_enter(&ill->ill_lock); 12637 ill->ill_state_flags |= ILL_CHANGING; 12638 for (nipif = ill->ill_ipif; nipif != NULL; 12639 nipif = nipif->ipif_next) { 12640 nipif->ipif_state_flags |= IPIF_CHANGING; 12641 } 12642 12643 if (lir->lir_maxmtu != 0) { 12644 ill->ill_max_mtu = lir->lir_maxmtu; 12645 ill->ill_user_mtu = lir->lir_maxmtu; 12646 mtu_walk = B_TRUE; 12647 } 12648 mutex_exit(&ill->ill_lock); 12649 12650 if (lir->lir_reachtime != 0) 12651 ill->ill_reachable_time = lir->lir_reachtime; 12652 12653 if (lir->lir_reachretrans != 0) 12654 ill->ill_reachable_retrans_time = lir->lir_reachretrans; 12655 12656 ill->ill_max_hops = lir->lir_maxhops; 12657 12658 ill->ill_max_buf = ND_MAX_Q; 12659 12660 if (mtu_walk) { 12661 /* 12662 * Set the MTU on all ipifs associated with this ill except 12663 * for those whose MTU was fixed via SIOCSLIFMTU. 12664 */ 12665 for (nipif = ill->ill_ipif; nipif != NULL; 12666 nipif = nipif->ipif_next) { 12667 if (nipif->ipif_flags & IPIF_FIXEDMTU) 12668 continue; 12669 12670 nipif->ipif_mtu = ill->ill_max_mtu; 12671 12672 if (!(nipif->ipif_flags & IPIF_UP)) 12673 continue; 12674 12675 if (nipif->ipif_isv6) 12676 ire = ipif_to_ire_v6(nipif); 12677 else 12678 ire = ipif_to_ire(nipif); 12679 if (ire != NULL) { 12680 ire->ire_max_frag = ipif->ipif_mtu; 12681 ire_refrele(ire); 12682 } 12683 12684 ire_walk_ill(MATCH_IRE_ILL, 0, ipif_mtu_change, 12685 nipif, ill); 12686 } 12687 } 12688 12689 mutex_enter(&ill->ill_lock); 12690 for (nipif = ill->ill_ipif; nipif != NULL; 12691 nipif = nipif->ipif_next) { 12692 nipif->ipif_state_flags &= ~IPIF_CHANGING; 12693 } 12694 ILL_UNMARK_CHANGING(ill); 12695 mutex_exit(&ill->ill_lock); 12696 12697 /* 12698 * Refresh IPMP meta-interface MTU if necessary. 12699 */ 12700 if (IS_UNDER_IPMP(ill)) 12701 ipmp_illgrp_refresh_mtu(ill->ill_grp); 12702 12703 return (0); 12704 } 12705 12706 /* ARGSUSED */ 12707 int 12708 ip_sioctl_get_lnkinfo(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12709 ip_ioctl_cmd_t *ipi, void *if_req) 12710 { 12711 struct lif_ifinfo_req *lir; 12712 ill_t *ill = ipif->ipif_ill; 12713 12714 ip1dbg(("ip_sioctl_get_lnkinfo(%s:%u %p)\n", 12715 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12716 if (ipif->ipif_id != 0) 12717 return (EINVAL); 12718 12719 lir = &((struct lifreq *)if_req)->lifr_ifinfo; 12720 lir->lir_maxhops = ill->ill_max_hops; 12721 lir->lir_reachtime = ill->ill_reachable_time; 12722 lir->lir_reachretrans = ill->ill_reachable_retrans_time; 12723 lir->lir_maxmtu = ill->ill_max_mtu; 12724 12725 return (0); 12726 } 12727 12728 /* 12729 * Return best guess as to the subnet mask for the specified address. 12730 * Based on the subnet masks for all the configured interfaces. 12731 * 12732 * We end up returning a zero mask in the case of default, multicast or 12733 * experimental. 12734 */ 12735 static ipaddr_t 12736 ip_subnet_mask(ipaddr_t addr, ipif_t **ipifp, ip_stack_t *ipst) 12737 { 12738 ipaddr_t net_mask; 12739 ill_t *ill; 12740 ipif_t *ipif; 12741 ill_walk_context_t ctx; 12742 ipif_t *fallback_ipif = NULL; 12743 12744 net_mask = ip_net_mask(addr); 12745 if (net_mask == 0) { 12746 *ipifp = NULL; 12747 return (0); 12748 } 12749 12750 /* Let's check to see if this is maybe a local subnet route. */ 12751 /* this function only applies to IPv4 interfaces */ 12752 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 12753 ill = ILL_START_WALK_V4(&ctx, ipst); 12754 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 12755 mutex_enter(&ill->ill_lock); 12756 for (ipif = ill->ill_ipif; ipif != NULL; 12757 ipif = ipif->ipif_next) { 12758 if (!IPIF_CAN_LOOKUP(ipif)) 12759 continue; 12760 if (!(ipif->ipif_flags & IPIF_UP)) 12761 continue; 12762 if ((ipif->ipif_subnet & net_mask) == 12763 (addr & net_mask)) { 12764 /* 12765 * Don't trust pt-pt interfaces if there are 12766 * other interfaces. 12767 */ 12768 if (ipif->ipif_flags & IPIF_POINTOPOINT) { 12769 if (fallback_ipif == NULL) { 12770 ipif_refhold_locked(ipif); 12771 fallback_ipif = ipif; 12772 } 12773 continue; 12774 } 12775 12776 /* 12777 * Fine. Just assume the same net mask as the 12778 * directly attached subnet interface is using. 12779 */ 12780 ipif_refhold_locked(ipif); 12781 mutex_exit(&ill->ill_lock); 12782 rw_exit(&ipst->ips_ill_g_lock); 12783 if (fallback_ipif != NULL) 12784 ipif_refrele(fallback_ipif); 12785 *ipifp = ipif; 12786 return (ipif->ipif_net_mask); 12787 } 12788 } 12789 mutex_exit(&ill->ill_lock); 12790 } 12791 rw_exit(&ipst->ips_ill_g_lock); 12792 12793 *ipifp = fallback_ipif; 12794 return ((fallback_ipif != NULL) ? 12795 fallback_ipif->ipif_net_mask : net_mask); 12796 } 12797 12798 /* 12799 * ip_sioctl_copyin_setup calls ip_wput_ioctl to process the IP_IOCTL ioctl. 12800 */ 12801 static void 12802 ip_wput_ioctl(queue_t *q, mblk_t *mp) 12803 { 12804 IOCP iocp; 12805 ipft_t *ipft; 12806 ipllc_t *ipllc; 12807 mblk_t *mp1; 12808 cred_t *cr; 12809 int error = 0; 12810 conn_t *connp; 12811 12812 ip1dbg(("ip_wput_ioctl")); 12813 iocp = (IOCP)mp->b_rptr; 12814 mp1 = mp->b_cont; 12815 if (mp1 == NULL) { 12816 iocp->ioc_error = EINVAL; 12817 mp->b_datap->db_type = M_IOCNAK; 12818 iocp->ioc_count = 0; 12819 qreply(q, mp); 12820 return; 12821 } 12822 12823 /* 12824 * These IOCTLs provide various control capabilities to 12825 * upstream agents such as ULPs and processes. There 12826 * are currently two such IOCTLs implemented. They 12827 * are used by TCP to provide update information for 12828 * existing IREs and to forcibly delete an IRE for a 12829 * host that is not responding, thereby forcing an 12830 * attempt at a new route. 12831 */ 12832 iocp->ioc_error = EINVAL; 12833 if (!pullupmsg(mp1, sizeof (ipllc->ipllc_cmd))) 12834 goto done; 12835 12836 ipllc = (ipllc_t *)mp1->b_rptr; 12837 for (ipft = ip_ioctl_ftbl; ipft->ipft_pfi; ipft++) { 12838 if (ipllc->ipllc_cmd == ipft->ipft_cmd) 12839 break; 12840 } 12841 /* 12842 * prefer credential from mblk over ioctl; 12843 * see ip_sioctl_copyin_setup 12844 */ 12845 cr = msg_getcred(mp, NULL); 12846 if (cr == NULL) 12847 cr = iocp->ioc_cr; 12848 12849 /* 12850 * Refhold the conn in case the request gets queued up in some lookup 12851 */ 12852 ASSERT(CONN_Q(q)); 12853 connp = Q_TO_CONN(q); 12854 CONN_INC_REF(connp); 12855 if (ipft->ipft_pfi && 12856 ((mp1->b_wptr - mp1->b_rptr) >= ipft->ipft_min_size || 12857 pullupmsg(mp1, ipft->ipft_min_size))) { 12858 error = (*ipft->ipft_pfi)(q, 12859 (ipft->ipft_flags & IPFT_F_SELF_REPLY) ? mp : mp1, cr); 12860 } 12861 if (ipft->ipft_flags & IPFT_F_SELF_REPLY) { 12862 /* 12863 * CONN_OPER_PENDING_DONE happens in the function called 12864 * through ipft_pfi above. 12865 */ 12866 return; 12867 } 12868 12869 CONN_OPER_PENDING_DONE(connp); 12870 if (ipft->ipft_flags & IPFT_F_NO_REPLY) { 12871 freemsg(mp); 12872 return; 12873 } 12874 iocp->ioc_error = error; 12875 12876 done: 12877 mp->b_datap->db_type = M_IOCACK; 12878 if (iocp->ioc_error) 12879 iocp->ioc_count = 0; 12880 qreply(q, mp); 12881 } 12882 12883 /* 12884 * Lookup an ipif using the sequence id (ipif_seqid) 12885 */ 12886 ipif_t * 12887 ipif_lookup_seqid(ill_t *ill, uint_t seqid) 12888 { 12889 ipif_t *ipif; 12890 12891 ASSERT(MUTEX_HELD(&ill->ill_lock)); 12892 12893 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 12894 if (ipif->ipif_seqid == seqid && IPIF_CAN_LOOKUP(ipif)) 12895 return (ipif); 12896 } 12897 return (NULL); 12898 } 12899 12900 /* 12901 * Assign a unique id for the ipif. This is used later when we send 12902 * IRES to ARP for resolution where we initialize ire_ipif_seqid 12903 * to the value pointed by ire_ipif->ipif_seqid. Later when the 12904 * IRE is added, we verify that ipif has not disappeared. 12905 */ 12906 12907 static void 12908 ipif_assign_seqid(ipif_t *ipif) 12909 { 12910 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; 12911 12912 ipif->ipif_seqid = atomic_add_64_nv(&ipst->ips_ipif_g_seqid, 1); 12913 } 12914 12915 /* 12916 * Clone the contents of `sipif' to `dipif'. Requires that both ipifs are 12917 * administratively down (i.e., no DAD), of the same type, and locked. Note 12918 * that the clone is complete -- including the seqid -- and the expectation is 12919 * that the caller will either free or overwrite `sipif' before it's unlocked. 12920 */ 12921 static void 12922 ipif_clone(const ipif_t *sipif, ipif_t *dipif) 12923 { 12924 ASSERT(MUTEX_HELD(&sipif->ipif_ill->ill_lock)); 12925 ASSERT(MUTEX_HELD(&dipif->ipif_ill->ill_lock)); 12926 ASSERT(!(sipif->ipif_flags & (IPIF_UP|IPIF_DUPLICATE))); 12927 ASSERT(!(dipif->ipif_flags & (IPIF_UP|IPIF_DUPLICATE))); 12928 ASSERT(sipif->ipif_ire_type == dipif->ipif_ire_type); 12929 ASSERT(sipif->ipif_arp_del_mp == NULL); 12930 ASSERT(dipif->ipif_arp_del_mp == NULL); 12931 ASSERT(sipif->ipif_igmp_rpt == NULL); 12932 ASSERT(dipif->ipif_igmp_rpt == NULL); 12933 ASSERT(sipif->ipif_multicast_up == 0); 12934 ASSERT(dipif->ipif_multicast_up == 0); 12935 ASSERT(sipif->ipif_joined_allhosts == 0); 12936 ASSERT(dipif->ipif_joined_allhosts == 0); 12937 12938 dipif->ipif_mtu = sipif->ipif_mtu; 12939 dipif->ipif_flags = sipif->ipif_flags; 12940 dipif->ipif_metric = sipif->ipif_metric; 12941 dipif->ipif_zoneid = sipif->ipif_zoneid; 12942 dipif->ipif_v6subnet = sipif->ipif_v6subnet; 12943 dipif->ipif_v6lcl_addr = sipif->ipif_v6lcl_addr; 12944 dipif->ipif_v6src_addr = sipif->ipif_v6src_addr; 12945 dipif->ipif_v6net_mask = sipif->ipif_v6net_mask; 12946 dipif->ipif_v6brd_addr = sipif->ipif_v6brd_addr; 12947 dipif->ipif_v6pp_dst_addr = sipif->ipif_v6pp_dst_addr; 12948 12949 /* 12950 * While dipif is down right now, it might've been up before. Since 12951 * it's changing identity, its packet counters need to be reset. 12952 */ 12953 dipif->ipif_ib_pkt_count = 0; 12954 dipif->ipif_ob_pkt_count = 0; 12955 dipif->ipif_fo_pkt_count = 0; 12956 12957 /* 12958 * As per the comment atop the function, we assume that these sipif 12959 * fields will be changed before sipif is unlocked. 12960 */ 12961 dipif->ipif_seqid = sipif->ipif_seqid; 12962 dipif->ipif_saved_ire_mp = sipif->ipif_saved_ire_mp; 12963 dipif->ipif_saved_ire_cnt = sipif->ipif_saved_ire_cnt; 12964 dipif->ipif_state_flags = sipif->ipif_state_flags; 12965 } 12966 12967 /* 12968 * Transfer the contents of `sipif' to `dipif', and then free (if `virgipif' 12969 * is NULL) or overwrite `sipif' with `virgipif', which must be a virgin 12970 * (unreferenced) ipif. Also, if `sipif' is used by the current xop, then 12971 * transfer the xop to `dipif'. Requires that all ipifs are administratively 12972 * down (i.e., no DAD), of the same type, and unlocked. 12973 */ 12974 static void 12975 ipif_transfer(ipif_t *sipif, ipif_t *dipif, ipif_t *virgipif) 12976 { 12977 ipsq_t *ipsq = sipif->ipif_ill->ill_phyint->phyint_ipsq; 12978 ipxop_t *ipx = ipsq->ipsq_xop; 12979 12980 ASSERT(sipif != dipif); 12981 ASSERT(sipif != virgipif); 12982 12983 /* 12984 * Grab all of the locks that protect the ipif in a defined order. 12985 */ 12986 GRAB_ILL_LOCKS(sipif->ipif_ill, dipif->ipif_ill); 12987 if (sipif > dipif) { 12988 mutex_enter(&sipif->ipif_saved_ire_lock); 12989 mutex_enter(&dipif->ipif_saved_ire_lock); 12990 } else { 12991 mutex_enter(&dipif->ipif_saved_ire_lock); 12992 mutex_enter(&sipif->ipif_saved_ire_lock); 12993 } 12994 12995 ipif_clone(sipif, dipif); 12996 if (virgipif != NULL) { 12997 ipif_clone(virgipif, sipif); 12998 mi_free(virgipif); 12999 } 13000 13001 mutex_exit(&sipif->ipif_saved_ire_lock); 13002 mutex_exit(&dipif->ipif_saved_ire_lock); 13003 RELEASE_ILL_LOCKS(sipif->ipif_ill, dipif->ipif_ill); 13004 13005 /* 13006 * Transfer ownership of the current xop, if necessary. 13007 */ 13008 if (ipx->ipx_current_ipif == sipif) { 13009 ASSERT(ipx->ipx_pending_ipif == NULL); 13010 mutex_enter(&ipx->ipx_lock); 13011 ipx->ipx_current_ipif = dipif; 13012 mutex_exit(&ipx->ipx_lock); 13013 } 13014 13015 if (virgipif == NULL) 13016 mi_free(sipif); 13017 } 13018 13019 /* 13020 * Insert the ipif, so that the list of ipifs on the ill will be sorted 13021 * with respect to ipif_id. Note that an ipif with an ipif_id of -1 will 13022 * be inserted into the first space available in the list. The value of 13023 * ipif_id will then be set to the appropriate value for its position. 13024 */ 13025 static int 13026 ipif_insert(ipif_t *ipif, boolean_t acquire_g_lock) 13027 { 13028 ill_t *ill; 13029 ipif_t *tipif; 13030 ipif_t **tipifp; 13031 int id; 13032 ip_stack_t *ipst; 13033 13034 ASSERT(ipif->ipif_ill->ill_net_type == IRE_LOOPBACK || 13035 IAM_WRITER_IPIF(ipif)); 13036 13037 ill = ipif->ipif_ill; 13038 ASSERT(ill != NULL); 13039 ipst = ill->ill_ipst; 13040 13041 /* 13042 * In the case of lo0:0 we already hold the ill_g_lock. 13043 * ill_lookup_on_name (acquires ill_g_lock) -> ipif_allocate -> 13044 * ipif_insert. 13045 */ 13046 if (acquire_g_lock) 13047 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 13048 mutex_enter(&ill->ill_lock); 13049 id = ipif->ipif_id; 13050 tipifp = &(ill->ill_ipif); 13051 if (id == -1) { /* need to find a real id */ 13052 id = 0; 13053 while ((tipif = *tipifp) != NULL) { 13054 ASSERT(tipif->ipif_id >= id); 13055 if (tipif->ipif_id != id) 13056 break; /* non-consecutive id */ 13057 id++; 13058 tipifp = &(tipif->ipif_next); 13059 } 13060 /* limit number of logical interfaces */ 13061 if (id >= ipst->ips_ip_addrs_per_if) { 13062 mutex_exit(&ill->ill_lock); 13063 if (acquire_g_lock) 13064 rw_exit(&ipst->ips_ill_g_lock); 13065 return (-1); 13066 } 13067 ipif->ipif_id = id; /* assign new id */ 13068 } else if (id < ipst->ips_ip_addrs_per_if) { 13069 /* we have a real id; insert ipif in the right place */ 13070 while ((tipif = *tipifp) != NULL) { 13071 ASSERT(tipif->ipif_id != id); 13072 if (tipif->ipif_id > id) 13073 break; /* found correct location */ 13074 tipifp = &(tipif->ipif_next); 13075 } 13076 } else { 13077 mutex_exit(&ill->ill_lock); 13078 if (acquire_g_lock) 13079 rw_exit(&ipst->ips_ill_g_lock); 13080 return (-1); 13081 } 13082 13083 ASSERT(tipifp != &(ill->ill_ipif) || id == 0); 13084 13085 ipif->ipif_next = tipif; 13086 *tipifp = ipif; 13087 mutex_exit(&ill->ill_lock); 13088 if (acquire_g_lock) 13089 rw_exit(&ipst->ips_ill_g_lock); 13090 13091 return (0); 13092 } 13093 13094 static void 13095 ipif_remove(ipif_t *ipif) 13096 { 13097 ipif_t **ipifp; 13098 ill_t *ill = ipif->ipif_ill; 13099 13100 ASSERT(RW_WRITE_HELD(&ill->ill_ipst->ips_ill_g_lock)); 13101 13102 mutex_enter(&ill->ill_lock); 13103 ipifp = &ill->ill_ipif; 13104 for (; *ipifp != NULL; ipifp = &ipifp[0]->ipif_next) { 13105 if (*ipifp == ipif) { 13106 *ipifp = ipif->ipif_next; 13107 break; 13108 } 13109 } 13110 mutex_exit(&ill->ill_lock); 13111 } 13112 13113 /* 13114 * Allocate and initialize a new interface control structure. (Always 13115 * called as writer.) 13116 * When ipif_allocate() is called from ip_ll_subnet_defaults, the ill 13117 * is not part of the global linked list of ills. ipif_seqid is unique 13118 * in the system and to preserve the uniqueness, it is assigned only 13119 * when ill becomes part of the global list. At that point ill will 13120 * have a name. If it doesn't get assigned here, it will get assigned 13121 * in ipif_set_values() as part of SIOCSLIFNAME processing. 13122 * Aditionally, if we come here from ip_ll_subnet_defaults, we don't set 13123 * the interface flags or any other information from the DL_INFO_ACK for 13124 * DL_STYLE2 drivers (initialize == B_FALSE), since we won't have them at 13125 * this point. The flags etc. will be set in ip_ll_subnet_defaults when the 13126 * second DL_INFO_ACK comes in from the driver. 13127 */ 13128 static ipif_t * 13129 ipif_allocate(ill_t *ill, int id, uint_t ire_type, boolean_t initialize, 13130 boolean_t insert) 13131 { 13132 ipif_t *ipif; 13133 phyint_t *phyi = ill->ill_phyint; 13134 ip_stack_t *ipst = ill->ill_ipst; 13135 13136 ip1dbg(("ipif_allocate(%s:%d ill %p)\n", 13137 ill->ill_name, id, (void *)ill)); 13138 ASSERT(ire_type == IRE_LOOPBACK || IAM_WRITER_ILL(ill)); 13139 13140 if ((ipif = (ipif_t *)mi_alloc(sizeof (ipif_t), BPRI_MED)) == NULL) 13141 return (NULL); 13142 *ipif = ipif_zero; /* start clean */ 13143 13144 ipif->ipif_ill = ill; 13145 ipif->ipif_id = id; /* could be -1 */ 13146 /* 13147 * Inherit the zoneid from the ill; for the shared stack instance 13148 * this is always the global zone 13149 */ 13150 ipif->ipif_zoneid = ill->ill_zoneid; 13151 13152 mutex_init(&ipif->ipif_saved_ire_lock, NULL, MUTEX_DEFAULT, NULL); 13153 13154 ipif->ipif_refcnt = 0; 13155 ipif->ipif_saved_ire_cnt = 0; 13156 13157 if (insert) { 13158 if (ipif_insert(ipif, ire_type != IRE_LOOPBACK) != 0) { 13159 mi_free(ipif); 13160 return (NULL); 13161 } 13162 /* -1 id should have been replaced by real id */ 13163 id = ipif->ipif_id; 13164 ASSERT(id >= 0); 13165 } 13166 13167 if (ill->ill_name[0] != '\0') 13168 ipif_assign_seqid(ipif); 13169 13170 /* 13171 * If this is ipif zero, configure ill/phyint-wide information. 13172 * Defer most configuration until we're guaranteed we're attached. 13173 */ 13174 if (id == 0) { 13175 if (ill->ill_mactype == SUNW_DL_IPMP) { 13176 /* 13177 * Set PHYI_IPMP and also set PHYI_FAILED since there 13178 * are no active interfaces. Similarly, PHYI_RUNNING 13179 * isn't set until the group has an active interface. 13180 */ 13181 mutex_enter(&phyi->phyint_lock); 13182 phyi->phyint_flags |= (PHYI_IPMP | PHYI_FAILED); 13183 mutex_exit(&phyi->phyint_lock); 13184 13185 /* 13186 * Create the illgrp (which must not exist yet because 13187 * the zeroth ipif is created once per ill). However, 13188 * do not not link it to the ipmp_grp_t until I_PLINK 13189 * is called; see ip_sioctl_plink_ipmp() for details. 13190 */ 13191 if (ipmp_illgrp_create(ill) == NULL) { 13192 if (insert) { 13193 rw_enter(&ipst->ips_ill_g_lock, 13194 RW_WRITER); 13195 ipif_remove(ipif); 13196 rw_exit(&ipst->ips_ill_g_lock); 13197 } 13198 mi_free(ipif); 13199 return (NULL); 13200 } 13201 } else { 13202 /* 13203 * By default, PHYI_RUNNING is set when the zeroth 13204 * ipif is created. For other ipifs, we don't touch 13205 * it since DLPI notifications may have changed it. 13206 */ 13207 mutex_enter(&phyi->phyint_lock); 13208 phyi->phyint_flags |= PHYI_RUNNING; 13209 mutex_exit(&phyi->phyint_lock); 13210 } 13211 } 13212 13213 /* 13214 * We grab the ill_lock and phyint_lock to protect the flag changes. 13215 * The ipif is still not up and can't be looked up until the 13216 * ioctl completes and the IPIF_CHANGING flag is cleared. 13217 */ 13218 mutex_enter(&ill->ill_lock); 13219 mutex_enter(&phyi->phyint_lock); 13220 13221 ipif->ipif_ire_type = ire_type; 13222 13223 if (ipif->ipif_isv6) { 13224 ill->ill_flags |= ILLF_IPV6; 13225 } else { 13226 ipaddr_t inaddr_any = INADDR_ANY; 13227 13228 ill->ill_flags |= ILLF_IPV4; 13229 13230 /* Keep the IN6_IS_ADDR_V4MAPPED assertions happy */ 13231 IN6_IPADDR_TO_V4MAPPED(inaddr_any, 13232 &ipif->ipif_v6lcl_addr); 13233 IN6_IPADDR_TO_V4MAPPED(inaddr_any, 13234 &ipif->ipif_v6src_addr); 13235 IN6_IPADDR_TO_V4MAPPED(inaddr_any, 13236 &ipif->ipif_v6subnet); 13237 IN6_IPADDR_TO_V4MAPPED(inaddr_any, 13238 &ipif->ipif_v6net_mask); 13239 IN6_IPADDR_TO_V4MAPPED(inaddr_any, 13240 &ipif->ipif_v6brd_addr); 13241 IN6_IPADDR_TO_V4MAPPED(inaddr_any, 13242 &ipif->ipif_v6pp_dst_addr); 13243 } 13244 13245 /* 13246 * Don't set the interface flags etc. now, will do it in 13247 * ip_ll_subnet_defaults. 13248 */ 13249 if (!initialize) 13250 goto out; 13251 13252 ipif->ipif_mtu = ill->ill_max_mtu; 13253 13254 /* 13255 * NOTE: The IPMP meta-interface is special-cased because it starts 13256 * with no underlying interfaces (and thus an unknown broadcast 13257 * address length), but all interfaces that can be placed into an IPMP 13258 * group are required to be broadcast-capable. 13259 */ 13260 if (ill->ill_bcast_addr_length != 0 || IS_IPMP(ill)) { 13261 /* 13262 * Later detect lack of DLPI driver multicast 13263 * capability by catching DL_ENABMULTI errors in 13264 * ip_rput_dlpi. 13265 */ 13266 ill->ill_flags |= ILLF_MULTICAST; 13267 if (!ipif->ipif_isv6) 13268 ipif->ipif_flags |= IPIF_BROADCAST; 13269 } else { 13270 if (ill->ill_net_type != IRE_LOOPBACK) { 13271 if (ipif->ipif_isv6) 13272 /* 13273 * Note: xresolv interfaces will eventually need 13274 * NOARP set here as well, but that will require 13275 * those external resolvers to have some 13276 * knowledge of that flag and act appropriately. 13277 * Not to be changed at present. 13278 */ 13279 ill->ill_flags |= ILLF_NONUD; 13280 else 13281 ill->ill_flags |= ILLF_NOARP; 13282 } 13283 if (ill->ill_phys_addr_length == 0) { 13284 if (ill->ill_mactype == SUNW_DL_VNI) { 13285 ipif->ipif_flags |= IPIF_NOXMIT; 13286 phyi->phyint_flags |= PHYI_VIRTUAL; 13287 } else { 13288 /* pt-pt supports multicast. */ 13289 ill->ill_flags |= ILLF_MULTICAST; 13290 if (ill->ill_net_type == IRE_LOOPBACK) { 13291 phyi->phyint_flags |= 13292 (PHYI_LOOPBACK | PHYI_VIRTUAL); 13293 } else { 13294 ipif->ipif_flags |= IPIF_POINTOPOINT; 13295 } 13296 } 13297 } 13298 } 13299 out: 13300 mutex_exit(&phyi->phyint_lock); 13301 mutex_exit(&ill->ill_lock); 13302 return (ipif); 13303 } 13304 13305 /* 13306 * If appropriate, send a message up to the resolver delete the entry 13307 * for the address of this interface which is going out of business. 13308 * (Always called as writer). 13309 * 13310 * NOTE : We need to check for NULL mps as some of the fields are 13311 * initialized only for some interface types. See ipif_resolver_up() 13312 * for details. 13313 */ 13314 void 13315 ipif_resolver_down(ipif_t *ipif) 13316 { 13317 mblk_t *mp; 13318 ill_t *ill = ipif->ipif_ill; 13319 13320 ip1dbg(("ipif_resolver_down(%s:%u)\n", ill->ill_name, ipif->ipif_id)); 13321 ASSERT(IAM_WRITER_IPIF(ipif)); 13322 13323 if (ill->ill_isv6 && !(ill->ill_flags & ILLF_XRESOLV)) 13324 return; 13325 13326 /* Delete the mapping for the local address */ 13327 mp = ipif->ipif_arp_del_mp; 13328 if (mp != NULL) { 13329 ip1dbg(("ipif_resolver_down: arp cmd %x for %s:%u\n", 13330 *(unsigned *)mp->b_rptr, ill->ill_name, ipif->ipif_id)); 13331 putnext(ill->ill_rq, mp); 13332 ipif->ipif_arp_del_mp = NULL; 13333 } 13334 13335 /* 13336 * Make IPMP aware of the deleted data address. 13337 */ 13338 if (IS_IPMP(ill)) 13339 ipmp_illgrp_del_ipif(ill->ill_grp, ipif); 13340 13341 /* 13342 * If this is the last ipif that is going down and there are no 13343 * duplicate addresses we may yet attempt to re-probe, then we need to 13344 * clean up ARP completely. 13345 */ 13346 if (ill->ill_ipif_up_count == 0 && ill->ill_ipif_dup_count == 0) { 13347 /* 13348 * If this was the last ipif on an IPMP interface, purge any 13349 * IPMP ARP entries associated with it. 13350 */ 13351 if (IS_IPMP(ill)) 13352 ipmp_illgrp_refresh_arpent(ill->ill_grp); 13353 13354 /* Send up AR_INTERFACE_DOWN message */ 13355 mp = ill->ill_arp_down_mp; 13356 if (mp != NULL) { 13357 ip1dbg(("ipif_resolver_down: arp cmd %x for %s:%u\n", 13358 *(unsigned *)mp->b_rptr, ill->ill_name, 13359 ipif->ipif_id)); 13360 putnext(ill->ill_rq, mp); 13361 ill->ill_arp_down_mp = NULL; 13362 } 13363 13364 /* Tell ARP to delete the multicast mappings */ 13365 mp = ill->ill_arp_del_mapping_mp; 13366 if (mp != NULL) { 13367 ip1dbg(("ipif_resolver_down: arp cmd %x for %s:%u\n", 13368 *(unsigned *)mp->b_rptr, ill->ill_name, 13369 ipif->ipif_id)); 13370 putnext(ill->ill_rq, mp); 13371 ill->ill_arp_del_mapping_mp = NULL; 13372 } 13373 } 13374 } 13375 13376 /* 13377 * Set up the multicast mappings for `ipif' in ARP. If `arp_add_mapping_mp' 13378 * is non-NULL, then upon success it will contain an mblk that can be passed 13379 * to ARP to create the mapping. Otherwise, if it's NULL, upon success ARP 13380 * will have already been notified to create the mapping. Returns zero on 13381 * success, -1 upon failure. 13382 */ 13383 int 13384 ipif_arp_setup_multicast(ipif_t *ipif, mblk_t **arp_add_mapping_mp) 13385 { 13386 mblk_t *del_mp = NULL; 13387 mblk_t *add_mp = NULL; 13388 mblk_t *mp; 13389 ill_t *ill = ipif->ipif_ill; 13390 phyint_t *phyi = ill->ill_phyint; 13391 ipaddr_t addr, mask, extract_mask = 0; 13392 arma_t *arma; 13393 uint8_t *maddr, *bphys_addr; 13394 uint32_t hw_start; 13395 dl_unitdata_req_t *dlur; 13396 13397 ASSERT(IAM_WRITER_IPIF(ipif)); 13398 if (ipif->ipif_flags & IPIF_POINTOPOINT) 13399 return (0); 13400 13401 /* 13402 * IPMP meta-interfaces don't have any inherent multicast mappings, 13403 * and instead use the ones on the underlying interfaces. 13404 */ 13405 if (IS_IPMP(ill)) 13406 return (0); 13407 13408 /* 13409 * Delete the existing mapping from ARP. Normally, ipif_down() -> 13410 * ipif_resolver_down() will send this up to ARP, but it may be that 13411 * we are enabling PHYI_MULTI_BCAST via ip_rput_dlpi_writer(). 13412 */ 13413 mp = ill->ill_arp_del_mapping_mp; 13414 if (mp != NULL) { 13415 ip1dbg(("ipif_arp_setup_multicast: arp cmd %x for %s:%u\n", 13416 *(unsigned *)mp->b_rptr, ill->ill_name, ipif->ipif_id)); 13417 putnext(ill->ill_rq, mp); 13418 ill->ill_arp_del_mapping_mp = NULL; 13419 } 13420 13421 if (arp_add_mapping_mp != NULL) 13422 *arp_add_mapping_mp = NULL; 13423 13424 /* 13425 * Check that the address is not to long for the constant 13426 * length reserved in the template arma_t. 13427 */ 13428 if (ill->ill_phys_addr_length > IP_MAX_HW_LEN) 13429 return (-1); 13430 13431 /* Add mapping mblk */ 13432 addr = (ipaddr_t)htonl(INADDR_UNSPEC_GROUP); 13433 mask = (ipaddr_t)htonl(IN_CLASSD_NET); 13434 add_mp = ill_arp_alloc(ill, (uchar_t *)&ip_arma_multi_template, 13435 (caddr_t)&addr); 13436 if (add_mp == NULL) 13437 return (-1); 13438 arma = (arma_t *)add_mp->b_rptr; 13439 maddr = (uint8_t *)arma + arma->arma_hw_addr_offset; 13440 bcopy(&mask, (char *)arma + arma->arma_proto_mask_offset, IP_ADDR_LEN); 13441 arma->arma_hw_addr_length = ill->ill_phys_addr_length; 13442 13443 /* 13444 * Determine the broadcast address. 13445 */ 13446 dlur = (dl_unitdata_req_t *)ill->ill_bcast_mp->b_rptr; 13447 if (ill->ill_sap_length < 0) 13448 bphys_addr = (uchar_t *)dlur + dlur->dl_dest_addr_offset; 13449 else 13450 bphys_addr = (uchar_t *)dlur + 13451 dlur->dl_dest_addr_offset + ill->ill_sap_length; 13452 /* 13453 * Check PHYI_MULTI_BCAST and length of physical 13454 * address to determine if we use the mapping or the 13455 * broadcast address. 13456 */ 13457 if (!(phyi->phyint_flags & PHYI_MULTI_BCAST)) 13458 if (!MEDIA_V4MINFO(ill->ill_media, ill->ill_phys_addr_length, 13459 bphys_addr, maddr, &hw_start, &extract_mask)) 13460 phyi->phyint_flags |= PHYI_MULTI_BCAST; 13461 13462 if ((phyi->phyint_flags & PHYI_MULTI_BCAST) || 13463 (ill->ill_flags & ILLF_MULTICAST)) { 13464 /* Make sure this will not match the "exact" entry. */ 13465 addr = (ipaddr_t)htonl(INADDR_ALLHOSTS_GROUP); 13466 del_mp = ill_arp_alloc(ill, (uchar_t *)&ip_ared_template, 13467 (caddr_t)&addr); 13468 if (del_mp == NULL) { 13469 freemsg(add_mp); 13470 return (-1); 13471 } 13472 bcopy(&extract_mask, (char *)arma + 13473 arma->arma_proto_extract_mask_offset, IP_ADDR_LEN); 13474 if (phyi->phyint_flags & PHYI_MULTI_BCAST) { 13475 /* Use link-layer broadcast address for MULTI_BCAST */ 13476 bcopy(bphys_addr, maddr, ill->ill_phys_addr_length); 13477 ip2dbg(("ipif_arp_setup_multicast: adding" 13478 " MULTI_BCAST ARP setup for %s\n", ill->ill_name)); 13479 } else { 13480 arma->arma_hw_mapping_start = hw_start; 13481 ip2dbg(("ipif_arp_setup_multicast: adding multicast" 13482 " ARP setup for %s\n", ill->ill_name)); 13483 } 13484 } else { 13485 freemsg(add_mp); 13486 ASSERT(del_mp == NULL); 13487 /* It is neither MULTICAST nor MULTI_BCAST */ 13488 return (0); 13489 } 13490 ASSERT(add_mp != NULL && del_mp != NULL); 13491 ASSERT(ill->ill_arp_del_mapping_mp == NULL); 13492 ill->ill_arp_del_mapping_mp = del_mp; 13493 if (arp_add_mapping_mp != NULL) { 13494 /* The caller just wants the mblks allocated */ 13495 *arp_add_mapping_mp = add_mp; 13496 } else { 13497 /* The caller wants us to send it to arp */ 13498 putnext(ill->ill_rq, add_mp); 13499 } 13500 return (0); 13501 } 13502 13503 /* 13504 * Get the resolver set up for a new IP address. (Always called as writer.) 13505 * Called both for IPv4 and IPv6 interfaces, though it only sets up the 13506 * resolver for v6 if it's an ILLF_XRESOLV interface. Honors ILLF_NOARP. 13507 * 13508 * The enumerated value res_act tunes the behavior: 13509 * * Res_act_initial: set up all the resolver structures for a new 13510 * IP address. 13511 * * Res_act_defend: tell ARP that it needs to send a single gratuitous 13512 * ARP message in defense of the address. 13513 * * Res_act_rebind: tell ARP to change the hardware address for an IP 13514 * address (and issue gratuitous ARPs). Used by ipmp_ill_bind_ipif(). 13515 * 13516 * Returns zero on success, or an errno upon failure. 13517 */ 13518 int 13519 ipif_resolver_up(ipif_t *ipif, enum ip_resolver_action res_act) 13520 { 13521 mblk_t *arp_up_mp = NULL; 13522 mblk_t *arp_down_mp = NULL; 13523 mblk_t *arp_add_mp = NULL; 13524 mblk_t *arp_del_mp = NULL; 13525 mblk_t *arp_add_mapping_mp = NULL; 13526 mblk_t *arp_del_mapping_mp = NULL; 13527 ill_t *ill = ipif->ipif_ill; 13528 int err = ENOMEM; 13529 boolean_t added_ipif = B_FALSE; 13530 boolean_t publish; 13531 boolean_t was_dup; 13532 13533 ip1dbg(("ipif_resolver_up(%s:%u) flags 0x%x\n", 13534 ill->ill_name, ipif->ipif_id, (uint_t)ipif->ipif_flags)); 13535 ASSERT(IAM_WRITER_IPIF(ipif)); 13536 13537 was_dup = B_FALSE; 13538 if (res_act == Res_act_initial) { 13539 ipif->ipif_addr_ready = 0; 13540 /* 13541 * We're bringing an interface up here. There's no way that we 13542 * should need to shut down ARP now. 13543 */ 13544 mutex_enter(&ill->ill_lock); 13545 if (ipif->ipif_flags & IPIF_DUPLICATE) { 13546 ipif->ipif_flags &= ~IPIF_DUPLICATE; 13547 ill->ill_ipif_dup_count--; 13548 was_dup = B_TRUE; 13549 } 13550 mutex_exit(&ill->ill_lock); 13551 } 13552 if (ipif->ipif_recovery_id != 0) 13553 (void) untimeout(ipif->ipif_recovery_id); 13554 ipif->ipif_recovery_id = 0; 13555 if (ill->ill_net_type != IRE_IF_RESOLVER) { 13556 ipif->ipif_addr_ready = 1; 13557 return (0); 13558 } 13559 /* NDP will set the ipif_addr_ready flag when it's ready */ 13560 if (ill->ill_isv6 && !(ill->ill_flags & ILLF_XRESOLV)) 13561 return (0); 13562 13563 if (ill->ill_isv6) { 13564 /* 13565 * External resolver for IPv6 13566 */ 13567 ASSERT(res_act == Res_act_initial); 13568 publish = !IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6lcl_addr); 13569 } else { 13570 /* 13571 * IPv4 arp case. If the ARP stream has already started 13572 * closing, fail this request for ARP bringup. Else 13573 * record the fact that an ARP bringup is pending. 13574 */ 13575 mutex_enter(&ill->ill_lock); 13576 if (ill->ill_arp_closing) { 13577 mutex_exit(&ill->ill_lock); 13578 err = EINVAL; 13579 goto failed; 13580 } else { 13581 if (ill->ill_ipif_up_count == 0 && 13582 ill->ill_ipif_dup_count == 0 && !was_dup) 13583 ill->ill_arp_bringup_pending = 1; 13584 mutex_exit(&ill->ill_lock); 13585 } 13586 publish = (ipif->ipif_lcl_addr != INADDR_ANY); 13587 } 13588 13589 if (IS_IPMP(ill) && publish) { 13590 /* 13591 * If we're here via ipif_up(), then the ipif won't be bound 13592 * yet -- add it to the group, which will bind it if possible. 13593 * (We would add it in ipif_up(), but deleting on failure 13594 * there is gruesome.) If we're here via ipmp_ill_bind_ipif(), 13595 * then the ipif has already been added to the group and we 13596 * just need to use the binding. 13597 */ 13598 if (ipmp_ipif_bound_ill(ipif) == NULL) { 13599 if (ipmp_illgrp_add_ipif(ill->ill_grp, ipif) == NULL) { 13600 /* 13601 * We couldn't bind the ipif to an ill yet, 13602 * so we have nothing to publish. 13603 */ 13604 publish = B_FALSE; 13605 } 13606 added_ipif = B_TRUE; 13607 } 13608 } 13609 13610 /* 13611 * Add an entry for the local address in ARP only if it 13612 * is not UNNUMBERED and it is suitable for publishing. 13613 */ 13614 if (!(ipif->ipif_flags & IPIF_UNNUMBERED) && publish) { 13615 if (res_act == Res_act_defend) { 13616 arp_add_mp = ipif_area_alloc(ipif, ACE_F_DEFEND); 13617 if (arp_add_mp == NULL) 13618 goto failed; 13619 /* 13620 * If we're just defending our address now, then 13621 * there's no need to set up ARP multicast mappings. 13622 * The publish command is enough. 13623 */ 13624 goto done; 13625 } 13626 13627 /* 13628 * Allocate an ARP add message and an ARP delete message (the 13629 * latter is saved for use when the address goes down). 13630 */ 13631 if ((arp_add_mp = ipif_area_alloc(ipif, 0)) == NULL) 13632 goto failed; 13633 13634 if ((arp_del_mp = ipif_ared_alloc(ipif)) == NULL) 13635 goto failed; 13636 13637 if (res_act != Res_act_initial) 13638 goto arp_setup_multicast; 13639 } else { 13640 if (res_act != Res_act_initial) 13641 goto done; 13642 } 13643 /* 13644 * Need to bring up ARP or setup multicast mapping only 13645 * when the first interface is coming UP. 13646 */ 13647 if (ill->ill_ipif_up_count + ill->ill_ipif_dup_count > 0 || was_dup) 13648 goto done; 13649 13650 /* 13651 * Allocate an ARP down message (to be saved) and an ARP up message. 13652 */ 13653 arp_down_mp = ill_arp_alloc(ill, (uchar_t *)&ip_ard_template, 0); 13654 if (arp_down_mp == NULL) 13655 goto failed; 13656 13657 arp_up_mp = ill_arp_alloc(ill, (uchar_t *)&ip_aru_template, 0); 13658 if (arp_up_mp == NULL) 13659 goto failed; 13660 13661 if (ipif->ipif_flags & IPIF_POINTOPOINT) 13662 goto done; 13663 13664 arp_setup_multicast: 13665 /* 13666 * Setup the multicast mappings. This function initializes 13667 * ill_arp_del_mapping_mp also. This does not need to be done for 13668 * IPv6, or for the IPMP interface (since it has no link-layer). 13669 */ 13670 if (!ill->ill_isv6 && !IS_IPMP(ill)) { 13671 err = ipif_arp_setup_multicast(ipif, &arp_add_mapping_mp); 13672 if (err != 0) 13673 goto failed; 13674 ASSERT(ill->ill_arp_del_mapping_mp != NULL); 13675 ASSERT(arp_add_mapping_mp != NULL); 13676 } 13677 done: 13678 if (arp_up_mp != NULL) { 13679 ip1dbg(("ipif_resolver_up: ARP_UP for %s:%u\n", 13680 ill->ill_name, ipif->ipif_id)); 13681 putnext(ill->ill_rq, arp_up_mp); 13682 arp_up_mp = NULL; 13683 } 13684 if (arp_add_mp != NULL) { 13685 ip1dbg(("ipif_resolver_up: ARP_ADD for %s:%u\n", 13686 ill->ill_name, ipif->ipif_id)); 13687 /* 13688 * If it's an extended ARP implementation, then we'll wait to 13689 * hear that DAD has finished before using the interface. 13690 */ 13691 if (!ill->ill_arp_extend) 13692 ipif->ipif_addr_ready = 1; 13693 putnext(ill->ill_rq, arp_add_mp); 13694 arp_add_mp = NULL; 13695 } else { 13696 ipif->ipif_addr_ready = 1; 13697 } 13698 if (arp_add_mapping_mp != NULL) { 13699 ip1dbg(("ipif_resolver_up: MAPPING_ADD for %s:%u\n", 13700 ill->ill_name, ipif->ipif_id)); 13701 putnext(ill->ill_rq, arp_add_mapping_mp); 13702 arp_add_mapping_mp = NULL; 13703 } 13704 13705 if (res_act == Res_act_initial) { 13706 if (ill->ill_flags & ILLF_NOARP) 13707 err = ill_arp_off(ill); 13708 else 13709 err = ill_arp_on(ill); 13710 if (err != 0) { 13711 ip0dbg(("ipif_resolver_up: arp_on/off failed %d\n", 13712 err)); 13713 goto failed; 13714 } 13715 } 13716 13717 if (arp_del_mp != NULL) { 13718 ASSERT(ipif->ipif_arp_del_mp == NULL); 13719 ipif->ipif_arp_del_mp = arp_del_mp; 13720 } 13721 if (arp_down_mp != NULL) { 13722 ASSERT(ill->ill_arp_down_mp == NULL); 13723 ill->ill_arp_down_mp = arp_down_mp; 13724 } 13725 if (arp_del_mapping_mp != NULL) { 13726 ASSERT(ill->ill_arp_del_mapping_mp == NULL); 13727 ill->ill_arp_del_mapping_mp = arp_del_mapping_mp; 13728 } 13729 13730 return ((ill->ill_ipif_up_count != 0 || was_dup || 13731 ill->ill_ipif_dup_count != 0) ? 0 : EINPROGRESS); 13732 failed: 13733 ip1dbg(("ipif_resolver_up: FAILED\n")); 13734 if (added_ipif) 13735 ipmp_illgrp_del_ipif(ill->ill_grp, ipif); 13736 freemsg(arp_add_mp); 13737 freemsg(arp_del_mp); 13738 freemsg(arp_add_mapping_mp); 13739 freemsg(arp_up_mp); 13740 freemsg(arp_down_mp); 13741 ill->ill_arp_bringup_pending = 0; 13742 return (err); 13743 } 13744 13745 /* 13746 * This routine restarts IPv4 duplicate address detection (DAD) when a link has 13747 * just gone back up. 13748 */ 13749 static void 13750 ipif_arp_start_dad(ipif_t *ipif) 13751 { 13752 ill_t *ill = ipif->ipif_ill; 13753 mblk_t *arp_add_mp; 13754 13755 /* ACE_F_UNVERIFIED restarts DAD */ 13756 if (ill->ill_net_type != IRE_IF_RESOLVER || ill->ill_arp_closing || 13757 (ipif->ipif_flags & IPIF_UNNUMBERED) || 13758 ipif->ipif_lcl_addr == INADDR_ANY || 13759 (arp_add_mp = ipif_area_alloc(ipif, ACE_F_UNVERIFIED)) == NULL) { 13760 /* 13761 * If we can't contact ARP for some reason, that's not really a 13762 * problem. Just send out the routing socket notification that 13763 * DAD completion would have done, and continue. 13764 */ 13765 ipif_mask_reply(ipif); 13766 ipif_up_notify(ipif); 13767 ipif->ipif_addr_ready = 1; 13768 return; 13769 } 13770 13771 putnext(ill->ill_rq, arp_add_mp); 13772 } 13773 13774 static void 13775 ipif_ndp_start_dad(ipif_t *ipif) 13776 { 13777 nce_t *nce; 13778 13779 nce = ndp_lookup_v6(ipif->ipif_ill, B_TRUE, &ipif->ipif_v6lcl_addr, 13780 B_FALSE); 13781 if (nce == NULL) 13782 return; 13783 13784 if (!ndp_restart_dad(nce)) { 13785 /* 13786 * If we can't restart DAD for some reason, that's not really a 13787 * problem. Just send out the routing socket notification that 13788 * DAD completion would have done, and continue. 13789 */ 13790 ipif_up_notify(ipif); 13791 ipif->ipif_addr_ready = 1; 13792 } 13793 NCE_REFRELE(nce); 13794 } 13795 13796 /* 13797 * Restart duplicate address detection on all interfaces on the given ill. 13798 * 13799 * This is called when an interface transitions from down to up 13800 * (DL_NOTE_LINK_UP) or up to down (DL_NOTE_LINK_DOWN). 13801 * 13802 * Note that since the underlying physical link has transitioned, we must cause 13803 * at least one routing socket message to be sent here, either via DAD 13804 * completion or just by default on the first ipif. (If we don't do this, then 13805 * in.mpathd will see long delays when doing link-based failure recovery.) 13806 */ 13807 void 13808 ill_restart_dad(ill_t *ill, boolean_t went_up) 13809 { 13810 ipif_t *ipif; 13811 13812 if (ill == NULL) 13813 return; 13814 13815 /* 13816 * If layer two doesn't support duplicate address detection, then just 13817 * send the routing socket message now and be done with it. 13818 */ 13819 if ((ill->ill_isv6 && (ill->ill_flags & ILLF_XRESOLV)) || 13820 (!ill->ill_isv6 && !ill->ill_arp_extend)) { 13821 ip_rts_ifmsg(ill->ill_ipif, RTSQ_DEFAULT); 13822 return; 13823 } 13824 13825 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 13826 if (went_up) { 13827 if (ipif->ipif_flags & IPIF_UP) { 13828 if (ill->ill_isv6) 13829 ipif_ndp_start_dad(ipif); 13830 else 13831 ipif_arp_start_dad(ipif); 13832 } else if (ill->ill_isv6 && 13833 (ipif->ipif_flags & IPIF_DUPLICATE)) { 13834 /* 13835 * For IPv4, the ARP module itself will 13836 * automatically start the DAD process when it 13837 * sees DL_NOTE_LINK_UP. We respond to the 13838 * AR_CN_READY at the completion of that task. 13839 * For IPv6, we must kick off the bring-up 13840 * process now. 13841 */ 13842 ndp_do_recovery(ipif); 13843 } else { 13844 /* 13845 * Unfortunately, the first ipif is "special" 13846 * and represents the underlying ill in the 13847 * routing socket messages. Thus, when this 13848 * one ipif is down, we must still notify so 13849 * that the user knows the IFF_RUNNING status 13850 * change. (If the first ipif is up, then 13851 * we'll handle eventual routing socket 13852 * notification via DAD completion.) 13853 */ 13854 if (ipif == ill->ill_ipif) { 13855 ip_rts_ifmsg(ill->ill_ipif, 13856 RTSQ_DEFAULT); 13857 } 13858 } 13859 } else { 13860 /* 13861 * After link down, we'll need to send a new routing 13862 * message when the link comes back, so clear 13863 * ipif_addr_ready. 13864 */ 13865 ipif->ipif_addr_ready = 0; 13866 } 13867 } 13868 13869 /* 13870 * If we've torn down links, then notify the user right away. 13871 */ 13872 if (!went_up) 13873 ip_rts_ifmsg(ill->ill_ipif, RTSQ_DEFAULT); 13874 } 13875 13876 static void 13877 ipsq_delete(ipsq_t *ipsq) 13878 { 13879 ipxop_t *ipx = ipsq->ipsq_xop; 13880 13881 ipsq->ipsq_ipst = NULL; 13882 ASSERT(ipsq->ipsq_phyint == NULL); 13883 ASSERT(ipsq->ipsq_xop != NULL); 13884 ASSERT(ipsq->ipsq_xopq_mphead == NULL && ipx->ipx_mphead == NULL); 13885 ASSERT(ipx->ipx_pending_mp == NULL); 13886 kmem_free(ipsq, sizeof (ipsq_t)); 13887 } 13888 13889 static int 13890 ill_up_ipifs_on_ill(ill_t *ill, queue_t *q, mblk_t *mp) 13891 { 13892 int err; 13893 ipif_t *ipif; 13894 13895 if (ill == NULL) 13896 return (0); 13897 13898 ASSERT(IAM_WRITER_ILL(ill)); 13899 ill->ill_up_ipifs = B_TRUE; 13900 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 13901 if (ipif->ipif_was_up) { 13902 if (!(ipif->ipif_flags & IPIF_UP)) 13903 err = ipif_up(ipif, q, mp); 13904 ipif->ipif_was_up = B_FALSE; 13905 if (err != 0) { 13906 ASSERT(err == EINPROGRESS); 13907 return (err); 13908 } 13909 } 13910 } 13911 mutex_enter(&ill->ill_lock); 13912 ill->ill_state_flags &= ~ILL_CHANGING; 13913 mutex_exit(&ill->ill_lock); 13914 ill->ill_up_ipifs = B_FALSE; 13915 return (0); 13916 } 13917 13918 /* 13919 * This function is called to bring up all the ipifs that were up before 13920 * bringing the ill down via ill_down_ipifs(). 13921 */ 13922 int 13923 ill_up_ipifs(ill_t *ill, queue_t *q, mblk_t *mp) 13924 { 13925 int err; 13926 13927 ASSERT(IAM_WRITER_ILL(ill)); 13928 13929 err = ill_up_ipifs_on_ill(ill->ill_phyint->phyint_illv4, q, mp); 13930 if (err != 0) 13931 return (err); 13932 13933 return (ill_up_ipifs_on_ill(ill->ill_phyint->phyint_illv6, q, mp)); 13934 } 13935 13936 /* 13937 * Bring down any IPIF_UP ipifs on ill. If "logical" is B_TRUE, we bring 13938 * down the ipifs without sending DL_UNBIND_REQ to the driver. 13939 */ 13940 static void 13941 ill_down_ipifs(ill_t *ill, boolean_t logical) 13942 { 13943 ipif_t *ipif; 13944 13945 ASSERT(IAM_WRITER_ILL(ill)); 13946 13947 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 13948 /* 13949 * We go through the ipif_down logic even if the ipif 13950 * is already down, since routes can be added based 13951 * on down ipifs. Going through ipif_down once again 13952 * will delete any IREs created based on these routes. 13953 */ 13954 if (ipif->ipif_flags & IPIF_UP) 13955 ipif->ipif_was_up = B_TRUE; 13956 13957 /* 13958 * Need to re-create net/subnet bcast ires if 13959 * they are dependent on ipif. 13960 */ 13961 if (!ipif->ipif_isv6) 13962 ipif_check_bcast_ires(ipif); 13963 if (logical) { 13964 (void) ipif_logical_down(ipif, NULL, NULL); 13965 ipif_non_duplicate(ipif); 13966 ipif_down_tail(ipif); 13967 } else { 13968 (void) ipif_down(ipif, NULL, NULL); 13969 } 13970 } 13971 } 13972 13973 /* 13974 * Redo source address selection. This is called when a 13975 * non-NOLOCAL/DEPRECATED/ANYCAST ipif comes up. 13976 */ 13977 void 13978 ill_update_source_selection(ill_t *ill) 13979 { 13980 ipif_t *ipif; 13981 13982 ASSERT(IAM_WRITER_ILL(ill)); 13983 13984 /* 13985 * Underlying interfaces are only used for test traffic and thus 13986 * should always send with their (deprecated) source addresses. 13987 */ 13988 if (IS_UNDER_IPMP(ill)) 13989 return; 13990 13991 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 13992 if (ill->ill_isv6) 13993 ipif_recreate_interface_routes_v6(NULL, ipif); 13994 else 13995 ipif_recreate_interface_routes(NULL, ipif); 13996 } 13997 } 13998 13999 /* 14000 * Finish the group join started in ip_sioctl_groupname(). 14001 */ 14002 /* ARGSUSED */ 14003 static void 14004 ip_join_illgrps(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy) 14005 { 14006 ill_t *ill = q->q_ptr; 14007 phyint_t *phyi = ill->ill_phyint; 14008 ipmp_grp_t *grp = phyi->phyint_grp; 14009 ip_stack_t *ipst = ill->ill_ipst; 14010 14011 /* IS_UNDER_IPMP() won't work until ipmp_ill_join_illgrp() is called */ 14012 ASSERT(!IS_IPMP(ill) && grp != NULL); 14013 ASSERT(IAM_WRITER_IPSQ(ipsq)); 14014 14015 if (phyi->phyint_illv4 != NULL) { 14016 rw_enter(&ipst->ips_ipmp_lock, RW_WRITER); 14017 VERIFY(grp->gr_pendv4-- > 0); 14018 rw_exit(&ipst->ips_ipmp_lock); 14019 ipmp_ill_join_illgrp(phyi->phyint_illv4, grp->gr_v4); 14020 } 14021 if (phyi->phyint_illv6 != NULL) { 14022 rw_enter(&ipst->ips_ipmp_lock, RW_WRITER); 14023 VERIFY(grp->gr_pendv6-- > 0); 14024 rw_exit(&ipst->ips_ipmp_lock); 14025 ipmp_ill_join_illgrp(phyi->phyint_illv6, grp->gr_v6); 14026 } 14027 freemsg(mp); 14028 } 14029 14030 /* 14031 * Process an SIOCSLIFGROUPNAME request. 14032 */ 14033 /* ARGSUSED */ 14034 int 14035 ip_sioctl_groupname(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 14036 ip_ioctl_cmd_t *ipip, void *ifreq) 14037 { 14038 struct lifreq *lifr = ifreq; 14039 ill_t *ill = ipif->ipif_ill; 14040 ip_stack_t *ipst = ill->ill_ipst; 14041 phyint_t *phyi = ill->ill_phyint; 14042 ipmp_grp_t *grp = phyi->phyint_grp; 14043 mblk_t *ipsq_mp; 14044 int err = 0; 14045 14046 /* 14047 * Note that phyint_grp can only change here, where we're exclusive. 14048 */ 14049 ASSERT(IAM_WRITER_ILL(ill)); 14050 14051 if (ipif->ipif_id != 0 || ill->ill_usesrc_grp_next != NULL || 14052 (phyi->phyint_flags & PHYI_VIRTUAL)) 14053 return (EINVAL); 14054 14055 lifr->lifr_groupname[LIFGRNAMSIZ - 1] = '\0'; 14056 14057 rw_enter(&ipst->ips_ipmp_lock, RW_WRITER); 14058 14059 /* 14060 * If the name hasn't changed, there's nothing to do. 14061 */ 14062 if (grp != NULL && strcmp(grp->gr_name, lifr->lifr_groupname) == 0) 14063 goto unlock; 14064 14065 /* 14066 * Handle requests to rename an IPMP meta-interface. 14067 * 14068 * Note that creation of the IPMP meta-interface is handled in 14069 * userland through the standard plumbing sequence. As part of the 14070 * plumbing the IPMP meta-interface, its initial groupname is set to 14071 * the name of the interface (see ipif_set_values_tail()). 14072 */ 14073 if (IS_IPMP(ill)) { 14074 err = ipmp_grp_rename(grp, lifr->lifr_groupname); 14075 goto unlock; 14076 } 14077 14078 /* 14079 * Handle requests to add or remove an IP interface from a group. 14080 */ 14081 if (lifr->lifr_groupname[0] != '\0') { /* add */ 14082 /* 14083 * Moves are handled by first removing the interface from 14084 * its existing group, and then adding it to another group. 14085 * So, fail if it's already in a group. 14086 */ 14087 if (IS_UNDER_IPMP(ill)) { 14088 err = EALREADY; 14089 goto unlock; 14090 } 14091 14092 grp = ipmp_grp_lookup(lifr->lifr_groupname, ipst); 14093 if (grp == NULL) { 14094 err = ENOENT; 14095 goto unlock; 14096 } 14097 14098 /* 14099 * Check if the phyint and its ills are suitable for 14100 * inclusion into the group. 14101 */ 14102 if ((err = ipmp_grp_vet_phyint(grp, phyi)) != 0) 14103 goto unlock; 14104 14105 /* 14106 * Checks pass; join the group, and enqueue the remaining 14107 * illgrp joins for when we've become part of the group xop 14108 * and are exclusive across its IPSQs. Since qwriter_ip() 14109 * requires an mblk_t to scribble on, and since `mp' will be 14110 * freed as part of completing the ioctl, allocate another. 14111 */ 14112 if ((ipsq_mp = allocb(0, BPRI_MED)) == NULL) { 14113 err = ENOMEM; 14114 goto unlock; 14115 } 14116 14117 /* 14118 * Before we drop ipmp_lock, bump gr_pend* to ensure that the 14119 * IPMP meta-interface ills needed by `phyi' cannot go away 14120 * before ip_join_illgrps() is called back. See the comments 14121 * in ip_sioctl_plink_ipmp() for more. 14122 */ 14123 if (phyi->phyint_illv4 != NULL) 14124 grp->gr_pendv4++; 14125 if (phyi->phyint_illv6 != NULL) 14126 grp->gr_pendv6++; 14127 14128 rw_exit(&ipst->ips_ipmp_lock); 14129 14130 ipmp_phyint_join_grp(phyi, grp); 14131 ill_refhold(ill); 14132 qwriter_ip(ill, ill->ill_rq, ipsq_mp, ip_join_illgrps, 14133 SWITCH_OP, B_FALSE); 14134 return (0); 14135 } else { 14136 /* 14137 * Request to remove the interface from a group. If the 14138 * interface is not in a group, this trivially succeeds. 14139 */ 14140 rw_exit(&ipst->ips_ipmp_lock); 14141 if (IS_UNDER_IPMP(ill)) 14142 ipmp_phyint_leave_grp(phyi); 14143 return (0); 14144 } 14145 unlock: 14146 rw_exit(&ipst->ips_ipmp_lock); 14147 return (err); 14148 } 14149 14150 /* 14151 * Process an SIOCGLIFBINDING request. 14152 */ 14153 /* ARGSUSED */ 14154 int 14155 ip_sioctl_get_binding(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 14156 ip_ioctl_cmd_t *ipip, void *ifreq) 14157 { 14158 ill_t *ill; 14159 struct lifreq *lifr = ifreq; 14160 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; 14161 14162 if (!IS_IPMP(ipif->ipif_ill)) 14163 return (EINVAL); 14164 14165 rw_enter(&ipst->ips_ipmp_lock, RW_READER); 14166 if ((ill = ipif->ipif_bound_ill) == NULL) 14167 lifr->lifr_binding[0] = '\0'; 14168 else 14169 (void) strlcpy(lifr->lifr_binding, ill->ill_name, LIFNAMSIZ); 14170 rw_exit(&ipst->ips_ipmp_lock); 14171 return (0); 14172 } 14173 14174 /* 14175 * Process an SIOCGLIFGROUPNAME request. 14176 */ 14177 /* ARGSUSED */ 14178 int 14179 ip_sioctl_get_groupname(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 14180 ip_ioctl_cmd_t *ipip, void *ifreq) 14181 { 14182 ipmp_grp_t *grp; 14183 struct lifreq *lifr = ifreq; 14184 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; 14185 14186 rw_enter(&ipst->ips_ipmp_lock, RW_READER); 14187 if ((grp = ipif->ipif_ill->ill_phyint->phyint_grp) == NULL) 14188 lifr->lifr_groupname[0] = '\0'; 14189 else 14190 (void) strlcpy(lifr->lifr_groupname, grp->gr_name, LIFGRNAMSIZ); 14191 rw_exit(&ipst->ips_ipmp_lock); 14192 return (0); 14193 } 14194 14195 /* 14196 * Process an SIOCGLIFGROUPINFO request. 14197 */ 14198 /* ARGSUSED */ 14199 int 14200 ip_sioctl_groupinfo(ipif_t *dummy_ipif, sin_t *sin, queue_t *q, mblk_t *mp, 14201 ip_ioctl_cmd_t *ipip, void *dummy) 14202 { 14203 ipmp_grp_t *grp; 14204 lifgroupinfo_t *lifgr; 14205 ip_stack_t *ipst = CONNQ_TO_IPST(q); 14206 14207 /* ip_wput_nondata() verified mp->b_cont->b_cont */ 14208 lifgr = (lifgroupinfo_t *)mp->b_cont->b_cont->b_rptr; 14209 lifgr->gi_grname[LIFGRNAMSIZ - 1] = '\0'; 14210 14211 rw_enter(&ipst->ips_ipmp_lock, RW_READER); 14212 if ((grp = ipmp_grp_lookup(lifgr->gi_grname, ipst)) == NULL) { 14213 rw_exit(&ipst->ips_ipmp_lock); 14214 return (ENOENT); 14215 } 14216 ipmp_grp_info(grp, lifgr); 14217 rw_exit(&ipst->ips_ipmp_lock); 14218 return (0); 14219 } 14220 14221 static void 14222 ill_dl_down(ill_t *ill) 14223 { 14224 /* 14225 * The ill is down; unbind but stay attached since we're still 14226 * associated with a PPA. If we have negotiated DLPI capabilites 14227 * with the data link service provider (IDS_OK) then reset them. 14228 * The interval between unbinding and rebinding is potentially 14229 * unbounded hence we cannot assume things will be the same. 14230 * The DLPI capabilities will be probed again when the data link 14231 * is brought up. 14232 */ 14233 mblk_t *mp = ill->ill_unbind_mp; 14234 14235 ip1dbg(("ill_dl_down(%s)\n", ill->ill_name)); 14236 14237 ill->ill_unbind_mp = NULL; 14238 if (mp != NULL) { 14239 ip1dbg(("ill_dl_down: %s (%u) for %s\n", 14240 dl_primstr(*(int *)mp->b_rptr), *(int *)mp->b_rptr, 14241 ill->ill_name)); 14242 mutex_enter(&ill->ill_lock); 14243 ill->ill_state_flags |= ILL_DL_UNBIND_IN_PROGRESS; 14244 mutex_exit(&ill->ill_lock); 14245 /* 14246 * ip_rput does not pass up normal (M_PROTO) DLPI messages 14247 * after ILL_CONDEMNED is set. So in the unplumb case, we call 14248 * ill_capability_dld_disable disable rightaway. If this is not 14249 * an unplumb operation then the disable happens on receipt of 14250 * the capab ack via ip_rput_dlpi_writer -> 14251 * ill_capability_ack_thr. In both cases the order of 14252 * the operations seen by DLD is capability disable followed 14253 * by DL_UNBIND. Also the DLD capability disable needs a 14254 * cv_wait'able context. 14255 */ 14256 if (ill->ill_state_flags & ILL_CONDEMNED) 14257 ill_capability_dld_disable(ill); 14258 ill_capability_reset(ill, B_FALSE); 14259 ill_dlpi_send(ill, mp); 14260 } 14261 14262 /* 14263 * Toss all of our multicast memberships. We could keep them, but 14264 * then we'd have to do bookkeeping of any joins and leaves performed 14265 * by the application while the the interface is down (we can't just 14266 * issue them because arp cannot currently process AR_ENTRY_SQUERY's 14267 * on a downed interface). 14268 */ 14269 ill_leave_multicast(ill); 14270 14271 mutex_enter(&ill->ill_lock); 14272 ill->ill_dl_up = 0; 14273 ill_nic_event_dispatch(ill, 0, NE_DOWN, NULL, 0); 14274 mutex_exit(&ill->ill_lock); 14275 } 14276 14277 static void 14278 ill_dlpi_dispatch(ill_t *ill, mblk_t *mp) 14279 { 14280 union DL_primitives *dlp; 14281 t_uscalar_t prim; 14282 boolean_t waitack = B_FALSE; 14283 14284 ASSERT(DB_TYPE(mp) == M_PROTO || DB_TYPE(mp) == M_PCPROTO); 14285 14286 dlp = (union DL_primitives *)mp->b_rptr; 14287 prim = dlp->dl_primitive; 14288 14289 ip1dbg(("ill_dlpi_dispatch: sending %s (%u) to %s\n", 14290 dl_primstr(prim), prim, ill->ill_name)); 14291 14292 switch (prim) { 14293 case DL_PHYS_ADDR_REQ: 14294 { 14295 dl_phys_addr_req_t *dlpap = (dl_phys_addr_req_t *)mp->b_rptr; 14296 ill->ill_phys_addr_pend = dlpap->dl_addr_type; 14297 break; 14298 } 14299 case DL_BIND_REQ: 14300 mutex_enter(&ill->ill_lock); 14301 ill->ill_state_flags &= ~ILL_DL_UNBIND_IN_PROGRESS; 14302 mutex_exit(&ill->ill_lock); 14303 break; 14304 } 14305 14306 /* 14307 * Except for the ACKs for the M_PCPROTO messages, all other ACKs 14308 * are dropped by ip_rput() if ILL_CONDEMNED is set. Therefore 14309 * we only wait for the ACK of the DL_UNBIND_REQ. 14310 */ 14311 mutex_enter(&ill->ill_lock); 14312 if (!(ill->ill_state_flags & ILL_CONDEMNED) || 14313 (prim == DL_UNBIND_REQ)) { 14314 ill->ill_dlpi_pending = prim; 14315 waitack = B_TRUE; 14316 } 14317 14318 mutex_exit(&ill->ill_lock); 14319 putnext(ill->ill_wq, mp); 14320 14321 /* 14322 * There is no ack for DL_NOTIFY_CONF messages 14323 */ 14324 if (waitack && prim == DL_NOTIFY_CONF) 14325 ill_dlpi_done(ill, prim); 14326 } 14327 14328 /* 14329 * Helper function for ill_dlpi_send(). 14330 */ 14331 /* ARGSUSED */ 14332 static void 14333 ill_dlpi_send_writer(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *arg) 14334 { 14335 ill_dlpi_send(q->q_ptr, mp); 14336 } 14337 14338 /* 14339 * Send a DLPI control message to the driver but make sure there 14340 * is only one outstanding message. Uses ill_dlpi_pending to tell 14341 * when it must queue. ip_rput_dlpi_writer calls ill_dlpi_done() 14342 * when an ACK or a NAK is received to process the next queued message. 14343 */ 14344 void 14345 ill_dlpi_send(ill_t *ill, mblk_t *mp) 14346 { 14347 mblk_t **mpp; 14348 14349 ASSERT(DB_TYPE(mp) == M_PROTO || DB_TYPE(mp) == M_PCPROTO); 14350 14351 /* 14352 * To ensure that any DLPI requests for current exclusive operation 14353 * are always completely sent before any DLPI messages for other 14354 * operations, require writer access before enqueuing. 14355 */ 14356 if (!IAM_WRITER_ILL(ill)) { 14357 ill_refhold(ill); 14358 /* qwriter_ip() does the ill_refrele() */ 14359 qwriter_ip(ill, ill->ill_wq, mp, ill_dlpi_send_writer, 14360 NEW_OP, B_TRUE); 14361 return; 14362 } 14363 14364 mutex_enter(&ill->ill_lock); 14365 if (ill->ill_dlpi_pending != DL_PRIM_INVAL) { 14366 /* Must queue message. Tail insertion */ 14367 mpp = &ill->ill_dlpi_deferred; 14368 while (*mpp != NULL) 14369 mpp = &((*mpp)->b_next); 14370 14371 ip1dbg(("ill_dlpi_send: deferring request for %s\n", 14372 ill->ill_name)); 14373 14374 *mpp = mp; 14375 mutex_exit(&ill->ill_lock); 14376 return; 14377 } 14378 mutex_exit(&ill->ill_lock); 14379 ill_dlpi_dispatch(ill, mp); 14380 } 14381 14382 static void 14383 ill_capability_send(ill_t *ill, mblk_t *mp) 14384 { 14385 ill->ill_capab_pending_cnt++; 14386 ill_dlpi_send(ill, mp); 14387 } 14388 14389 void 14390 ill_capability_done(ill_t *ill) 14391 { 14392 ASSERT(ill->ill_capab_pending_cnt != 0); 14393 14394 ill_dlpi_done(ill, DL_CAPABILITY_REQ); 14395 14396 ill->ill_capab_pending_cnt--; 14397 if (ill->ill_capab_pending_cnt == 0 && 14398 ill->ill_dlpi_capab_state == IDCS_OK) 14399 ill_capability_reset_alloc(ill); 14400 } 14401 14402 /* 14403 * Send all deferred DLPI messages without waiting for their ACKs. 14404 */ 14405 void 14406 ill_dlpi_send_deferred(ill_t *ill) 14407 { 14408 mblk_t *mp, *nextmp; 14409 14410 /* 14411 * Clear ill_dlpi_pending so that the message is not queued in 14412 * ill_dlpi_send(). 14413 */ 14414 mutex_enter(&ill->ill_lock); 14415 ill->ill_dlpi_pending = DL_PRIM_INVAL; 14416 mp = ill->ill_dlpi_deferred; 14417 ill->ill_dlpi_deferred = NULL; 14418 mutex_exit(&ill->ill_lock); 14419 14420 for (; mp != NULL; mp = nextmp) { 14421 nextmp = mp->b_next; 14422 mp->b_next = NULL; 14423 ill_dlpi_send(ill, mp); 14424 } 14425 } 14426 14427 /* 14428 * Check if the DLPI primitive `prim' is pending; print a warning if not. 14429 */ 14430 boolean_t 14431 ill_dlpi_pending(ill_t *ill, t_uscalar_t prim) 14432 { 14433 t_uscalar_t pending; 14434 14435 mutex_enter(&ill->ill_lock); 14436 if (ill->ill_dlpi_pending == prim) { 14437 mutex_exit(&ill->ill_lock); 14438 return (B_TRUE); 14439 } 14440 14441 /* 14442 * During teardown, ill_dlpi_dispatch() will send DLPI requests 14443 * without waiting, so don't print any warnings in that case. 14444 */ 14445 if (ill->ill_state_flags & ILL_CONDEMNED) { 14446 mutex_exit(&ill->ill_lock); 14447 return (B_FALSE); 14448 } 14449 pending = ill->ill_dlpi_pending; 14450 mutex_exit(&ill->ill_lock); 14451 14452 if (pending == DL_PRIM_INVAL) { 14453 (void) mi_strlog(ill->ill_rq, 1, SL_CONSOLE|SL_ERROR|SL_TRACE, 14454 "received unsolicited ack for %s on %s\n", 14455 dl_primstr(prim), ill->ill_name); 14456 } else { 14457 (void) mi_strlog(ill->ill_rq, 1, SL_CONSOLE|SL_ERROR|SL_TRACE, 14458 "received unexpected ack for %s on %s (expecting %s)\n", 14459 dl_primstr(prim), ill->ill_name, dl_primstr(pending)); 14460 } 14461 return (B_FALSE); 14462 } 14463 14464 /* 14465 * Complete the current DLPI operation associated with `prim' on `ill' and 14466 * start the next queued DLPI operation (if any). If there are no queued DLPI 14467 * operations and the ill's current exclusive IPSQ operation has finished 14468 * (i.e., ipsq_current_finish() was called), then clear ipsq_current_ipif to 14469 * allow the next exclusive IPSQ operation to begin upon ipsq_exit(). See 14470 * the comments above ipsq_current_finish() for details. 14471 */ 14472 void 14473 ill_dlpi_done(ill_t *ill, t_uscalar_t prim) 14474 { 14475 mblk_t *mp; 14476 ipsq_t *ipsq = ill->ill_phyint->phyint_ipsq; 14477 ipxop_t *ipx = ipsq->ipsq_xop; 14478 14479 ASSERT(IAM_WRITER_IPSQ(ipsq)); 14480 mutex_enter(&ill->ill_lock); 14481 14482 ASSERT(prim != DL_PRIM_INVAL); 14483 ASSERT(ill->ill_dlpi_pending == prim); 14484 14485 ip1dbg(("ill_dlpi_done: %s has completed %s (%u)\n", ill->ill_name, 14486 dl_primstr(ill->ill_dlpi_pending), ill->ill_dlpi_pending)); 14487 14488 if ((mp = ill->ill_dlpi_deferred) == NULL) { 14489 ill->ill_dlpi_pending = DL_PRIM_INVAL; 14490 if (ipx->ipx_current_done) { 14491 mutex_enter(&ipx->ipx_lock); 14492 ipx->ipx_current_ipif = NULL; 14493 mutex_exit(&ipx->ipx_lock); 14494 } 14495 cv_signal(&ill->ill_cv); 14496 mutex_exit(&ill->ill_lock); 14497 return; 14498 } 14499 14500 ill->ill_dlpi_deferred = mp->b_next; 14501 mp->b_next = NULL; 14502 mutex_exit(&ill->ill_lock); 14503 14504 ill_dlpi_dispatch(ill, mp); 14505 } 14506 14507 void 14508 conn_delete_ire(conn_t *connp, caddr_t arg) 14509 { 14510 ipif_t *ipif = (ipif_t *)arg; 14511 ire_t *ire; 14512 14513 /* 14514 * Look at the cached ires on conns which has pointers to ipifs. 14515 * We just call ire_refrele which clears up the reference 14516 * to ire. Called when a conn closes. Also called from ipif_free 14517 * to cleanup indirect references to the stale ipif via the cached ire. 14518 */ 14519 mutex_enter(&connp->conn_lock); 14520 ire = connp->conn_ire_cache; 14521 if (ire != NULL && (ipif == NULL || ire->ire_ipif == ipif)) { 14522 connp->conn_ire_cache = NULL; 14523 mutex_exit(&connp->conn_lock); 14524 IRE_REFRELE_NOTR(ire); 14525 return; 14526 } 14527 mutex_exit(&connp->conn_lock); 14528 14529 } 14530 14531 /* 14532 * Some operations (e.g., ipif_down()) conditionally delete a number 14533 * of IREs. Those IREs may have been previously cached in the conn structure. 14534 * This ipcl_walk() walker function releases all references to such IREs based 14535 * on the condemned flag. 14536 */ 14537 /* ARGSUSED */ 14538 void 14539 conn_cleanup_stale_ire(conn_t *connp, caddr_t arg) 14540 { 14541 ire_t *ire; 14542 14543 mutex_enter(&connp->conn_lock); 14544 ire = connp->conn_ire_cache; 14545 if (ire != NULL && (ire->ire_marks & IRE_MARK_CONDEMNED)) { 14546 connp->conn_ire_cache = NULL; 14547 mutex_exit(&connp->conn_lock); 14548 IRE_REFRELE_NOTR(ire); 14549 return; 14550 } 14551 mutex_exit(&connp->conn_lock); 14552 } 14553 14554 /* 14555 * Take down a specific interface, but don't lose any information about it. 14556 * (Always called as writer.) 14557 * This function goes through the down sequence even if the interface is 14558 * already down. There are 2 reasons. 14559 * a. Currently we permit interface routes that depend on down interfaces 14560 * to be added. This behaviour itself is questionable. However it appears 14561 * that both Solaris and 4.3 BSD have exhibited this behaviour for a long 14562 * time. We go thru the cleanup in order to remove these routes. 14563 * b. The bringup of the interface could fail in ill_dl_up i.e. we get 14564 * DL_ERROR_ACK in response to the the DL_BIND request. The interface is 14565 * down, but we need to cleanup i.e. do ill_dl_down and 14566 * ip_rput_dlpi_writer (DL_ERROR_ACK) -> ipif_down. 14567 * 14568 * IP-MT notes: 14569 * 14570 * Model of reference to interfaces. 14571 * 14572 * The following members in ipif_t track references to the ipif. 14573 * int ipif_refcnt; Active reference count 14574 * uint_t ipif_ire_cnt; Number of ire's referencing this ipif 14575 * uint_t ipif_ilm_cnt; Number of ilms's references this ipif. 14576 * 14577 * The following members in ill_t track references to the ill. 14578 * int ill_refcnt; active refcnt 14579 * uint_t ill_ire_cnt; Number of ires referencing ill 14580 * uint_t ill_nce_cnt; Number of nces referencing ill 14581 * uint_t ill_ilm_cnt; Number of ilms referencing ill 14582 * 14583 * Reference to an ipif or ill can be obtained in any of the following ways. 14584 * 14585 * Through the lookup functions ipif_lookup_* / ill_lookup_* functions 14586 * Pointers to ipif / ill from other data structures viz ire and conn. 14587 * Implicit reference to the ipif / ill by holding a reference to the ire. 14588 * 14589 * The ipif/ill lookup functions return a reference held ipif / ill. 14590 * ipif_refcnt and ill_refcnt track the reference counts respectively. 14591 * This is a purely dynamic reference count associated with threads holding 14592 * references to the ipif / ill. Pointers from other structures do not 14593 * count towards this reference count. 14594 * 14595 * ipif_ire_cnt/ill_ire_cnt is the number of ire's 14596 * associated with the ipif/ill. This is incremented whenever a new 14597 * ire is created referencing the ipif/ill. This is done atomically inside 14598 * ire_add_v[46] where the ire is actually added to the ire hash table. 14599 * The count is decremented in ire_inactive where the ire is destroyed. 14600 * 14601 * nce's reference ill's thru nce_ill and the count of nce's associated with 14602 * an ill is recorded in ill_nce_cnt. This is incremented atomically in 14603 * ndp_add_v4()/ndp_add_v6() where the nce is actually added to the 14604 * table. Similarly it is decremented in ndp_inactive() where the nce 14605 * is destroyed. 14606 * 14607 * ilm's reference to the ipif (for IPv4 ilm's) or the ill (for IPv6 ilm's) 14608 * is incremented in ilm_add_v6() and decremented before the ilm is freed 14609 * in ilm_walker_cleanup() or ilm_delete(). 14610 * 14611 * Flow of ioctls involving interface down/up 14612 * 14613 * The following is the sequence of an attempt to set some critical flags on an 14614 * up interface. 14615 * ip_sioctl_flags 14616 * ipif_down 14617 * wait for ipif to be quiescent 14618 * ipif_down_tail 14619 * ip_sioctl_flags_tail 14620 * 14621 * All set ioctls that involve down/up sequence would have a skeleton similar 14622 * to the above. All the *tail functions are called after the refcounts have 14623 * dropped to the appropriate values. 14624 * 14625 * The mechanism to quiesce an ipif is as follows. 14626 * 14627 * Mark the ipif as IPIF_CHANGING. No more lookups will be allowed 14628 * on the ipif. Callers either pass a flag requesting wait or the lookup 14629 * functions will return NULL. 14630 * 14631 * Delete all ires referencing this ipif 14632 * 14633 * Any thread attempting to do an ipif_refhold on an ipif that has been 14634 * obtained thru a cached pointer will first make sure that 14635 * the ipif can be refheld using the macro IPIF_CAN_LOOKUP and only then 14636 * increment the refcount. 14637 * 14638 * The above guarantees that the ipif refcount will eventually come down to 14639 * zero and the ipif will quiesce, once all threads that currently hold a 14640 * reference to the ipif refrelease the ipif. The ipif is quiescent after the 14641 * ipif_refcount has dropped to zero and all ire's associated with this ipif 14642 * have also been ire_inactive'd. i.e. when ipif_{ire, ill}_cnt and 14643 * ipif_refcnt both drop to zero. See also: comments above IPIF_DOWN_OK() 14644 * in ip.h 14645 * 14646 * Lookups during the IPIF_CHANGING/ILL_CHANGING interval. 14647 * 14648 * Threads trying to lookup an ipif or ill can pass a flag requesting 14649 * wait and restart if the ipif / ill cannot be looked up currently. 14650 * For eg. bind, and route operations (Eg. route add / delete) cannot return 14651 * failure if the ipif is currently undergoing an exclusive operation, and 14652 * hence pass the flag. The mblk is then enqueued in the ipsq and the operation 14653 * is restarted by ipsq_exit() when the current exclusive operation completes. 14654 * The lookup and enqueue is atomic using the ill_lock and ipsq_lock. The 14655 * lookup is done holding the ill_lock. Hence the ill/ipif state flags can't 14656 * change while the ill_lock is held. Before dropping the ill_lock we acquire 14657 * the ipsq_lock and call ipsq_enq. This ensures that ipsq_exit can't finish 14658 * until we release the ipsq_lock, even though the the ill/ipif state flags 14659 * can change after we drop the ill_lock. 14660 * 14661 * An attempt to send out a packet using an ipif that is currently 14662 * IPIF_CHANGING will fail. No attempt is made in this case to enqueue this 14663 * operation and restart it later when the exclusive condition on the ipif ends. 14664 * This is an example of not passing the wait flag to the lookup functions. For 14665 * example an attempt to refhold and use conn->conn_multicast_ipif and send 14666 * out a multicast packet on that ipif will fail while the ipif is 14667 * IPIF_CHANGING. An attempt to create an IRE_CACHE using an ipif that is 14668 * currently IPIF_CHANGING will also fail. 14669 */ 14670 int 14671 ipif_down(ipif_t *ipif, queue_t *q, mblk_t *mp) 14672 { 14673 ill_t *ill = ipif->ipif_ill; 14674 conn_t *connp; 14675 boolean_t success; 14676 boolean_t ipif_was_up = B_FALSE; 14677 ip_stack_t *ipst = ill->ill_ipst; 14678 14679 ASSERT(IAM_WRITER_IPIF(ipif)); 14680 14681 ip1dbg(("ipif_down(%s:%u)\n", ill->ill_name, ipif->ipif_id)); 14682 14683 if (ipif->ipif_flags & IPIF_UP) { 14684 mutex_enter(&ill->ill_lock); 14685 ipif->ipif_flags &= ~IPIF_UP; 14686 ASSERT(ill->ill_ipif_up_count > 0); 14687 --ill->ill_ipif_up_count; 14688 mutex_exit(&ill->ill_lock); 14689 ipif_was_up = B_TRUE; 14690 /* Update status in SCTP's list */ 14691 sctp_update_ipif(ipif, SCTP_IPIF_DOWN); 14692 ill_nic_event_dispatch(ipif->ipif_ill, 14693 MAP_IPIF_ID(ipif->ipif_id), NE_LIF_DOWN, NULL, 0); 14694 } 14695 14696 /* 14697 * Blow away memberships we established in ipif_multicast_up(). 14698 */ 14699 ipif_multicast_down(ipif); 14700 14701 /* 14702 * Remove from the mapping for __sin6_src_id. We insert only 14703 * when the address is not INADDR_ANY. As IPv4 addresses are 14704 * stored as mapped addresses, we need to check for mapped 14705 * INADDR_ANY also. 14706 */ 14707 if (ipif_was_up && !IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6lcl_addr) && 14708 !IN6_IS_ADDR_V4MAPPED_ANY(&ipif->ipif_v6lcl_addr) && 14709 !(ipif->ipif_flags & IPIF_NOLOCAL)) { 14710 int err; 14711 14712 err = ip_srcid_remove(&ipif->ipif_v6lcl_addr, 14713 ipif->ipif_zoneid, ipst); 14714 if (err != 0) { 14715 ip0dbg(("ipif_down: srcid_remove %d\n", err)); 14716 } 14717 } 14718 14719 /* 14720 * Delete all IRE's pointing at this ipif or its source address. 14721 */ 14722 if (ipif->ipif_isv6) { 14723 ire_walk_v6(ipif_down_delete_ire, (char *)ipif, ALL_ZONES, 14724 ipst); 14725 } else { 14726 ire_walk_v4(ipif_down_delete_ire, (char *)ipif, ALL_ZONES, 14727 ipst); 14728 } 14729 14730 if (ipif_was_up && ill->ill_ipif_up_count == 0) { 14731 /* 14732 * Since the interface is now down, it may have just become 14733 * inactive. Note that this needs to be done even for a 14734 * lll_logical_down(), or ARP entries will not get correctly 14735 * restored when the interface comes back up. 14736 */ 14737 if (IS_UNDER_IPMP(ill)) 14738 ipmp_ill_refresh_active(ill); 14739 } 14740 14741 /* 14742 * Cleaning up the conn_ire_cache or conns must be done only after the 14743 * ires have been deleted above. Otherwise a thread could end up 14744 * caching an ire in a conn after we have finished the cleanup of the 14745 * conn. The caching is done after making sure that the ire is not yet 14746 * condemned. Also documented in the block comment above ip_output 14747 */ 14748 ipcl_walk(conn_cleanup_stale_ire, NULL, ipst); 14749 /* Also, delete the ires cached in SCTP */ 14750 sctp_ire_cache_flush(ipif); 14751 14752 /* 14753 * Update any other ipifs which have used "our" local address as 14754 * a source address. This entails removing and recreating IRE_INTERFACE 14755 * entries for such ipifs. 14756 */ 14757 if (ipif->ipif_isv6) 14758 ipif_update_other_ipifs_v6(ipif); 14759 else 14760 ipif_update_other_ipifs(ipif); 14761 14762 /* 14763 * neighbor-discovery or arp entries for this interface. 14764 */ 14765 ipif_ndp_down(ipif); 14766 14767 /* 14768 * If mp is NULL the caller will wait for the appropriate refcnt. 14769 * Eg. ip_sioctl_removeif -> ipif_free -> ipif_down 14770 * and ill_delete -> ipif_free -> ipif_down 14771 */ 14772 if (mp == NULL) { 14773 ASSERT(q == NULL); 14774 return (0); 14775 } 14776 14777 if (CONN_Q(q)) { 14778 connp = Q_TO_CONN(q); 14779 mutex_enter(&connp->conn_lock); 14780 } else { 14781 connp = NULL; 14782 } 14783 mutex_enter(&ill->ill_lock); 14784 /* 14785 * Are there any ire's pointing to this ipif that are still active ? 14786 * If this is the last ipif going down, are there any ire's pointing 14787 * to this ill that are still active ? 14788 */ 14789 if (ipif_is_quiescent(ipif)) { 14790 mutex_exit(&ill->ill_lock); 14791 if (connp != NULL) 14792 mutex_exit(&connp->conn_lock); 14793 return (0); 14794 } 14795 14796 ip1dbg(("ipif_down: need to wait, adding pending mp %s ill %p", 14797 ill->ill_name, (void *)ill)); 14798 /* 14799 * Enqueue the mp atomically in ipsq_pending_mp. When the refcount 14800 * drops down, the operation will be restarted by ipif_ill_refrele_tail 14801 * which in turn is called by the last refrele on the ipif/ill/ire. 14802 */ 14803 success = ipsq_pending_mp_add(connp, ipif, q, mp, IPIF_DOWN); 14804 if (!success) { 14805 /* The conn is closing. So just return */ 14806 ASSERT(connp != NULL); 14807 mutex_exit(&ill->ill_lock); 14808 mutex_exit(&connp->conn_lock); 14809 return (EINTR); 14810 } 14811 14812 mutex_exit(&ill->ill_lock); 14813 if (connp != NULL) 14814 mutex_exit(&connp->conn_lock); 14815 return (EINPROGRESS); 14816 } 14817 14818 void 14819 ipif_down_tail(ipif_t *ipif) 14820 { 14821 ill_t *ill = ipif->ipif_ill; 14822 14823 /* 14824 * Skip any loopback interface (null wq). 14825 * If this is the last logical interface on the ill 14826 * have ill_dl_down tell the driver we are gone (unbind) 14827 * Note that lun 0 can ipif_down even though 14828 * there are other logical units that are up. 14829 * This occurs e.g. when we change a "significant" IFF_ flag. 14830 */ 14831 if (ill->ill_wq != NULL && !ill->ill_logical_down && 14832 ill->ill_ipif_up_count == 0 && ill->ill_ipif_dup_count == 0 && 14833 ill->ill_dl_up) { 14834 ill_dl_down(ill); 14835 } 14836 ill->ill_logical_down = 0; 14837 14838 /* 14839 * Has to be after removing the routes in ipif_down_delete_ire. 14840 */ 14841 ipif_resolver_down(ipif); 14842 14843 ip_rts_ifmsg(ipif, RTSQ_DEFAULT); 14844 ip_rts_newaddrmsg(RTM_DELETE, 0, ipif, RTSQ_DEFAULT); 14845 } 14846 14847 /* 14848 * Bring interface logically down without bringing the physical interface 14849 * down e.g. when the netmask is changed. This avoids long lasting link 14850 * negotiations between an ethernet interface and a certain switches. 14851 */ 14852 static int 14853 ipif_logical_down(ipif_t *ipif, queue_t *q, mblk_t *mp) 14854 { 14855 /* 14856 * The ill_logical_down flag is a transient flag. It is set here 14857 * and is cleared once the down has completed in ipif_down_tail. 14858 * This flag does not indicate whether the ill stream is in the 14859 * DL_BOUND state with the driver. Instead this flag is used by 14860 * ipif_down_tail to determine whether to DL_UNBIND the stream with 14861 * the driver. The state of the ill stream i.e. whether it is 14862 * DL_BOUND with the driver or not is indicated by the ill_dl_up flag. 14863 */ 14864 ipif->ipif_ill->ill_logical_down = 1; 14865 return (ipif_down(ipif, q, mp)); 14866 } 14867 14868 /* 14869 * This is called when the SIOCSLIFUSESRC ioctl is processed in IP. 14870 * If the usesrc client ILL is already part of a usesrc group or not, 14871 * in either case a ire_stq with the matching usesrc client ILL will 14872 * locate the IRE's that need to be deleted. We want IREs to be created 14873 * with the new source address. 14874 */ 14875 static void 14876 ipif_delete_cache_ire(ire_t *ire, char *ill_arg) 14877 { 14878 ill_t *ucill = (ill_t *)ill_arg; 14879 14880 ASSERT(IAM_WRITER_ILL(ucill)); 14881 14882 if (ire->ire_stq == NULL) 14883 return; 14884 14885 if ((ire->ire_type == IRE_CACHE) && 14886 ((ill_t *)ire->ire_stq->q_ptr == ucill)) 14887 ire_delete(ire); 14888 } 14889 14890 /* 14891 * ire_walk routine to delete every IRE dependent on the interface 14892 * address that is going down. (Always called as writer.) 14893 * Works for both v4 and v6. 14894 * In addition for checking for ire_ipif matches it also checks for 14895 * IRE_CACHE entries which have the same source address as the 14896 * disappearing ipif since ipif_select_source might have picked 14897 * that source. Note that ipif_down/ipif_update_other_ipifs takes 14898 * care of any IRE_INTERFACE with the disappearing source address. 14899 */ 14900 static void 14901 ipif_down_delete_ire(ire_t *ire, char *ipif_arg) 14902 { 14903 ipif_t *ipif = (ipif_t *)ipif_arg; 14904 14905 ASSERT(IAM_WRITER_IPIF(ipif)); 14906 if (ire->ire_ipif == NULL) 14907 return; 14908 14909 if (ire->ire_ipif != ipif) { 14910 /* 14911 * Look for a matching source address. 14912 */ 14913 if (ire->ire_type != IRE_CACHE) 14914 return; 14915 if (ipif->ipif_flags & IPIF_NOLOCAL) 14916 return; 14917 14918 if (ire->ire_ipversion == IPV4_VERSION) { 14919 if (ire->ire_src_addr != ipif->ipif_src_addr) 14920 return; 14921 } else { 14922 if (!IN6_ARE_ADDR_EQUAL(&ire->ire_src_addr_v6, 14923 &ipif->ipif_v6lcl_addr)) 14924 return; 14925 } 14926 ire_delete(ire); 14927 return; 14928 } 14929 /* 14930 * ire_delete() will do an ire_flush_cache which will delete 14931 * all ire_ipif matches 14932 */ 14933 ire_delete(ire); 14934 } 14935 14936 /* 14937 * ire_walk_ill function for deleting all IRE_CACHE entries for an ill when 14938 * 1) an ipif (on that ill) changes the IPIF_DEPRECATED flags, or 14939 * 2) when an interface is brought up or down (on that ill). 14940 * This ensures that the IRE_CACHE entries don't retain stale source 14941 * address selection results. 14942 */ 14943 void 14944 ill_ipif_cache_delete(ire_t *ire, char *ill_arg) 14945 { 14946 ill_t *ill = (ill_t *)ill_arg; 14947 14948 ASSERT(IAM_WRITER_ILL(ill)); 14949 ASSERT(ire->ire_type == IRE_CACHE); 14950 14951 /* 14952 * We are called for IRE_CACHEs whose ire_stq or ire_ipif matches 14953 * ill, but we only want to delete the IRE if ire_ipif matches. 14954 */ 14955 ASSERT(ire->ire_ipif != NULL); 14956 if (ill == ire->ire_ipif->ipif_ill) 14957 ire_delete(ire); 14958 } 14959 14960 /* 14961 * Delete all the IREs whose ire_stq's reference `ill_arg'. IPMP uses this 14962 * instead of ill_ipif_cache_delete() because ire_ipif->ipif_ill references 14963 * the IPMP ill. 14964 */ 14965 void 14966 ill_stq_cache_delete(ire_t *ire, char *ill_arg) 14967 { 14968 ill_t *ill = (ill_t *)ill_arg; 14969 14970 ASSERT(IAM_WRITER_ILL(ill)); 14971 ASSERT(ire->ire_type == IRE_CACHE); 14972 14973 /* 14974 * We are called for IRE_CACHEs whose ire_stq or ire_ipif matches 14975 * ill, but we only want to delete the IRE if ire_stq matches. 14976 */ 14977 if (ire->ire_stq->q_ptr == ill_arg) 14978 ire_delete(ire); 14979 } 14980 14981 /* 14982 * Delete all broadcast IREs with a source address on `ill_arg'. 14983 */ 14984 static void 14985 ill_broadcast_delete(ire_t *ire, char *ill_arg) 14986 { 14987 ill_t *ill = (ill_t *)ill_arg; 14988 14989 ASSERT(IAM_WRITER_ILL(ill)); 14990 ASSERT(ire->ire_type == IRE_BROADCAST); 14991 14992 if (ire->ire_ipif->ipif_ill == ill) 14993 ire_delete(ire); 14994 } 14995 14996 /* 14997 * Initiate deallocate of an IPIF. Always called as writer. Called by 14998 * ill_delete or ip_sioctl_removeif. 14999 */ 15000 static void 15001 ipif_free(ipif_t *ipif) 15002 { 15003 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; 15004 15005 ASSERT(IAM_WRITER_IPIF(ipif)); 15006 15007 if (ipif->ipif_recovery_id != 0) 15008 (void) untimeout(ipif->ipif_recovery_id); 15009 ipif->ipif_recovery_id = 0; 15010 15011 /* Remove conn references */ 15012 reset_conn_ipif(ipif); 15013 15014 /* 15015 * Make sure we have valid net and subnet broadcast ire's for the 15016 * other ipif's which share them with this ipif. 15017 */ 15018 if (!ipif->ipif_isv6) 15019 ipif_check_bcast_ires(ipif); 15020 15021 /* 15022 * Take down the interface. We can be called either from ill_delete 15023 * or from ip_sioctl_removeif. 15024 */ 15025 (void) ipif_down(ipif, NULL, NULL); 15026 15027 /* 15028 * Now that the interface is down, there's no chance it can still 15029 * become a duplicate. Cancel any timer that may have been set while 15030 * tearing down. 15031 */ 15032 if (ipif->ipif_recovery_id != 0) 15033 (void) untimeout(ipif->ipif_recovery_id); 15034 ipif->ipif_recovery_id = 0; 15035 15036 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 15037 /* Remove pointers to this ill in the multicast routing tables */ 15038 reset_mrt_vif_ipif(ipif); 15039 /* If necessary, clear the cached source ipif rotor. */ 15040 if (ipif->ipif_ill->ill_src_ipif == ipif) 15041 ipif->ipif_ill->ill_src_ipif = NULL; 15042 rw_exit(&ipst->ips_ill_g_lock); 15043 } 15044 15045 static void 15046 ipif_free_tail(ipif_t *ipif) 15047 { 15048 mblk_t *mp; 15049 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; 15050 15051 /* 15052 * Free state for addition IRE_IF_[NO]RESOLVER ire's. 15053 */ 15054 mutex_enter(&ipif->ipif_saved_ire_lock); 15055 mp = ipif->ipif_saved_ire_mp; 15056 ipif->ipif_saved_ire_mp = NULL; 15057 mutex_exit(&ipif->ipif_saved_ire_lock); 15058 freemsg(mp); 15059 15060 /* 15061 * Need to hold both ill_g_lock and ill_lock while 15062 * inserting or removing an ipif from the linked list 15063 * of ipifs hanging off the ill. 15064 */ 15065 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 15066 15067 ASSERT(ilm_walk_ipif(ipif) == 0); 15068 15069 #ifdef DEBUG 15070 ipif_trace_cleanup(ipif); 15071 #endif 15072 15073 /* Ask SCTP to take it out of it list */ 15074 sctp_update_ipif(ipif, SCTP_IPIF_REMOVE); 15075 15076 /* Get it out of the ILL interface list. */ 15077 ipif_remove(ipif); 15078 rw_exit(&ipst->ips_ill_g_lock); 15079 15080 mutex_destroy(&ipif->ipif_saved_ire_lock); 15081 15082 ASSERT(!(ipif->ipif_flags & (IPIF_UP | IPIF_DUPLICATE))); 15083 ASSERT(ipif->ipif_recovery_id == 0); 15084 15085 /* Free the memory. */ 15086 mi_free(ipif); 15087 } 15088 15089 /* 15090 * Sets `buf' to an ipif name of the form "ill_name:id", or "ill_name" if "id" 15091 * is zero. 15092 */ 15093 void 15094 ipif_get_name(const ipif_t *ipif, char *buf, int len) 15095 { 15096 char lbuf[LIFNAMSIZ]; 15097 char *name; 15098 size_t name_len; 15099 15100 buf[0] = '\0'; 15101 name = ipif->ipif_ill->ill_name; 15102 name_len = ipif->ipif_ill->ill_name_length; 15103 if (ipif->ipif_id != 0) { 15104 (void) sprintf(lbuf, "%s%c%d", name, IPIF_SEPARATOR_CHAR, 15105 ipif->ipif_id); 15106 name = lbuf; 15107 name_len = mi_strlen(name) + 1; 15108 } 15109 len -= 1; 15110 buf[len] = '\0'; 15111 len = MIN(len, name_len); 15112 bcopy(name, buf, len); 15113 } 15114 15115 /* 15116 * Find an IPIF based on the name passed in. Names can be of the 15117 * form <phys> (e.g., le0), <phys>:<#> (e.g., le0:1), 15118 * The <phys> string can have forms like <dev><#> (e.g., le0), 15119 * <dev><#>.<module> (e.g. le0.foo), or <dev>.<module><#> (e.g. ip.tun3). 15120 * When there is no colon, the implied unit id is zero. <phys> must 15121 * correspond to the name of an ILL. (May be called as writer.) 15122 */ 15123 static ipif_t * 15124 ipif_lookup_on_name(char *name, size_t namelen, boolean_t do_alloc, 15125 boolean_t *exists, boolean_t isv6, zoneid_t zoneid, queue_t *q, 15126 mblk_t *mp, ipsq_func_t func, int *error, ip_stack_t *ipst) 15127 { 15128 char *cp; 15129 char *endp; 15130 long id; 15131 ill_t *ill; 15132 ipif_t *ipif; 15133 uint_t ire_type; 15134 boolean_t did_alloc = B_FALSE; 15135 ipsq_t *ipsq; 15136 15137 if (error != NULL) 15138 *error = 0; 15139 15140 /* 15141 * If the caller wants to us to create the ipif, make sure we have a 15142 * valid zoneid 15143 */ 15144 ASSERT(!do_alloc || zoneid != ALL_ZONES); 15145 15146 if (namelen == 0) { 15147 if (error != NULL) 15148 *error = ENXIO; 15149 return (NULL); 15150 } 15151 15152 *exists = B_FALSE; 15153 /* Look for a colon in the name. */ 15154 endp = &name[namelen]; 15155 for (cp = endp; --cp > name; ) { 15156 if (*cp == IPIF_SEPARATOR_CHAR) 15157 break; 15158 } 15159 15160 if (*cp == IPIF_SEPARATOR_CHAR) { 15161 /* 15162 * Reject any non-decimal aliases for logical 15163 * interfaces. Aliases with leading zeroes 15164 * are also rejected as they introduce ambiguity 15165 * in the naming of the interfaces. 15166 * In order to confirm with existing semantics, 15167 * and to not break any programs/script relying 15168 * on that behaviour, if<0>:0 is considered to be 15169 * a valid interface. 15170 * 15171 * If alias has two or more digits and the first 15172 * is zero, fail. 15173 */ 15174 if (&cp[2] < endp && cp[1] == '0') { 15175 if (error != NULL) 15176 *error = EINVAL; 15177 return (NULL); 15178 } 15179 } 15180 15181 if (cp <= name) { 15182 cp = endp; 15183 } else { 15184 *cp = '\0'; 15185 } 15186 15187 /* 15188 * Look up the ILL, based on the portion of the name 15189 * before the slash. ill_lookup_on_name returns a held ill. 15190 * Temporary to check whether ill exists already. If so 15191 * ill_lookup_on_name will clear it. 15192 */ 15193 ill = ill_lookup_on_name(name, do_alloc, isv6, 15194 q, mp, func, error, &did_alloc, ipst); 15195 if (cp != endp) 15196 *cp = IPIF_SEPARATOR_CHAR; 15197 if (ill == NULL) 15198 return (NULL); 15199 15200 /* Establish the unit number in the name. */ 15201 id = 0; 15202 if (cp < endp && *endp == '\0') { 15203 /* If there was a colon, the unit number follows. */ 15204 cp++; 15205 if (ddi_strtol(cp, NULL, 0, &id) != 0) { 15206 ill_refrele(ill); 15207 if (error != NULL) 15208 *error = ENXIO; 15209 return (NULL); 15210 } 15211 } 15212 15213 GRAB_CONN_LOCK(q); 15214 mutex_enter(&ill->ill_lock); 15215 /* Now see if there is an IPIF with this unit number. */ 15216 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 15217 if (ipif->ipif_id == id) { 15218 if (zoneid != ALL_ZONES && 15219 zoneid != ipif->ipif_zoneid && 15220 ipif->ipif_zoneid != ALL_ZONES) { 15221 mutex_exit(&ill->ill_lock); 15222 RELEASE_CONN_LOCK(q); 15223 ill_refrele(ill); 15224 if (error != NULL) 15225 *error = ENXIO; 15226 return (NULL); 15227 } 15228 /* 15229 * The block comment at the start of ipif_down 15230 * explains the use of the macros used below 15231 */ 15232 if (IPIF_CAN_LOOKUP(ipif)) { 15233 ipif_refhold_locked(ipif); 15234 mutex_exit(&ill->ill_lock); 15235 if (!did_alloc) 15236 *exists = B_TRUE; 15237 /* 15238 * Drop locks before calling ill_refrele 15239 * since it can potentially call into 15240 * ipif_ill_refrele_tail which can end up 15241 * in trying to acquire any lock. 15242 */ 15243 RELEASE_CONN_LOCK(q); 15244 ill_refrele(ill); 15245 return (ipif); 15246 } else if (IPIF_CAN_WAIT(ipif, q)) { 15247 ipsq = ill->ill_phyint->phyint_ipsq; 15248 mutex_enter(&ipsq->ipsq_lock); 15249 mutex_enter(&ipsq->ipsq_xop->ipx_lock); 15250 mutex_exit(&ill->ill_lock); 15251 ipsq_enq(ipsq, q, mp, func, NEW_OP, ill); 15252 mutex_exit(&ipsq->ipsq_xop->ipx_lock); 15253 mutex_exit(&ipsq->ipsq_lock); 15254 RELEASE_CONN_LOCK(q); 15255 ill_refrele(ill); 15256 if (error != NULL) 15257 *error = EINPROGRESS; 15258 return (NULL); 15259 } 15260 } 15261 } 15262 RELEASE_CONN_LOCK(q); 15263 15264 if (!do_alloc) { 15265 mutex_exit(&ill->ill_lock); 15266 ill_refrele(ill); 15267 if (error != NULL) 15268 *error = ENXIO; 15269 return (NULL); 15270 } 15271 15272 /* 15273 * If none found, atomically allocate and return a new one. 15274 * Historically, we used IRE_LOOPBACK only for lun 0, and IRE_LOCAL 15275 * to support "receive only" use of lo0:1 etc. as is still done 15276 * below as an initial guess. 15277 * However, this is now likely to be overriden later in ipif_up_done() 15278 * when we know for sure what address has been configured on the 15279 * interface, since we might have more than one loopback interface 15280 * with a loopback address, e.g. in the case of zones, and all the 15281 * interfaces with loopback addresses need to be marked IRE_LOOPBACK. 15282 */ 15283 if (ill->ill_net_type == IRE_LOOPBACK && id == 0) 15284 ire_type = IRE_LOOPBACK; 15285 else 15286 ire_type = IRE_LOCAL; 15287 ipif = ipif_allocate(ill, id, ire_type, B_TRUE, B_TRUE); 15288 if (ipif != NULL) 15289 ipif_refhold_locked(ipif); 15290 else if (error != NULL) 15291 *error = ENOMEM; 15292 mutex_exit(&ill->ill_lock); 15293 ill_refrele(ill); 15294 return (ipif); 15295 } 15296 15297 /* 15298 * This routine is called whenever a new address comes up on an ipif. If 15299 * we are configured to respond to address mask requests, then we are supposed 15300 * to broadcast an address mask reply at this time. This routine is also 15301 * called if we are already up, but a netmask change is made. This is legal 15302 * but might not make the system manager very popular. (May be called 15303 * as writer.) 15304 */ 15305 void 15306 ipif_mask_reply(ipif_t *ipif) 15307 { 15308 icmph_t *icmph; 15309 ipha_t *ipha; 15310 mblk_t *mp; 15311 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; 15312 15313 #define REPLY_LEN (sizeof (icmp_ipha) + sizeof (icmph_t) + IP_ADDR_LEN) 15314 15315 if (!ipst->ips_ip_respond_to_address_mask_broadcast) 15316 return; 15317 15318 /* ICMP mask reply is IPv4 only */ 15319 ASSERT(!ipif->ipif_isv6); 15320 /* ICMP mask reply is not for a loopback interface */ 15321 ASSERT(ipif->ipif_ill->ill_wq != NULL); 15322 15323 mp = allocb(REPLY_LEN, BPRI_HI); 15324 if (mp == NULL) 15325 return; 15326 mp->b_wptr = mp->b_rptr + REPLY_LEN; 15327 15328 ipha = (ipha_t *)mp->b_rptr; 15329 bzero(ipha, REPLY_LEN); 15330 *ipha = icmp_ipha; 15331 ipha->ipha_ttl = ipst->ips_ip_broadcast_ttl; 15332 ipha->ipha_src = ipif->ipif_src_addr; 15333 ipha->ipha_dst = ipif->ipif_brd_addr; 15334 ipha->ipha_length = htons(REPLY_LEN); 15335 ipha->ipha_ident = 0; 15336 15337 icmph = (icmph_t *)&ipha[1]; 15338 icmph->icmph_type = ICMP_ADDRESS_MASK_REPLY; 15339 bcopy(&ipif->ipif_net_mask, &icmph[1], IP_ADDR_LEN); 15340 icmph->icmph_checksum = IP_CSUM(mp, sizeof (ipha_t), 0); 15341 15342 put(ipif->ipif_wq, mp); 15343 15344 #undef REPLY_LEN 15345 } 15346 15347 /* 15348 * When the mtu in the ipif changes, we call this routine through ire_walk 15349 * to update all the relevant IREs. 15350 * Skip IRE_LOCAL and "loopback" IRE_BROADCAST by checking ire_stq. 15351 */ 15352 static void 15353 ipif_mtu_change(ire_t *ire, char *ipif_arg) 15354 { 15355 ipif_t *ipif = (ipif_t *)ipif_arg; 15356 15357 if (ire->ire_stq == NULL || ire->ire_ipif != ipif) 15358 return; 15359 ire->ire_max_frag = MIN(ipif->ipif_mtu, IP_MAXPACKET); 15360 } 15361 15362 /* 15363 * When the mtu in the ill changes, we call this routine through ire_walk 15364 * to update all the relevant IREs. 15365 * Skip IRE_LOCAL and "loopback" IRE_BROADCAST by checking ire_stq. 15366 */ 15367 void 15368 ill_mtu_change(ire_t *ire, char *ill_arg) 15369 { 15370 ill_t *ill = (ill_t *)ill_arg; 15371 15372 if (ire->ire_stq == NULL || ire->ire_ipif->ipif_ill != ill) 15373 return; 15374 ire->ire_max_frag = ire->ire_ipif->ipif_mtu; 15375 } 15376 15377 /* 15378 * Join the ipif specific multicast groups. 15379 * Must be called after a mapping has been set up in the resolver. (Always 15380 * called as writer.) 15381 */ 15382 void 15383 ipif_multicast_up(ipif_t *ipif) 15384 { 15385 int err; 15386 ill_t *ill; 15387 15388 ASSERT(IAM_WRITER_IPIF(ipif)); 15389 15390 ill = ipif->ipif_ill; 15391 15392 ip1dbg(("ipif_multicast_up\n")); 15393 if (!(ill->ill_flags & ILLF_MULTICAST) || ipif->ipif_multicast_up) 15394 return; 15395 15396 if (ipif->ipif_isv6) { 15397 in6_addr_t v6allmc = ipv6_all_hosts_mcast; 15398 in6_addr_t v6solmc = ipv6_solicited_node_mcast; 15399 15400 v6solmc.s6_addr32[3] |= ipif->ipif_v6lcl_addr.s6_addr32[3]; 15401 15402 if (IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6lcl_addr)) 15403 return; 15404 15405 ip1dbg(("ipif_multicast_up - addmulti\n")); 15406 15407 /* 15408 * Join the all hosts multicast address. We skip this for 15409 * underlying IPMP interfaces since they should be invisible. 15410 */ 15411 if (!IS_UNDER_IPMP(ill)) { 15412 err = ip_addmulti_v6(&v6allmc, ill, ipif->ipif_zoneid, 15413 ILGSTAT_NONE, MODE_IS_EXCLUDE, NULL); 15414 if (err != 0) { 15415 ip0dbg(("ipif_multicast_up: " 15416 "all_hosts_mcast failed %d\n", err)); 15417 return; 15418 } 15419 ipif->ipif_joined_allhosts = 1; 15420 } 15421 15422 /* 15423 * Enable multicast for the solicited node multicast address 15424 */ 15425 if (!(ipif->ipif_flags & IPIF_NOLOCAL)) { 15426 err = ip_addmulti_v6(&v6solmc, ill, ipif->ipif_zoneid, 15427 ILGSTAT_NONE, MODE_IS_EXCLUDE, NULL); 15428 if (err != 0) { 15429 ip0dbg(("ipif_multicast_up: solicited MC" 15430 " failed %d\n", err)); 15431 if (ipif->ipif_joined_allhosts) { 15432 (void) ip_delmulti_v6(&v6allmc, ill, 15433 ipif->ipif_zoneid, B_TRUE, B_TRUE); 15434 ipif->ipif_joined_allhosts = 0; 15435 } 15436 return; 15437 } 15438 } 15439 } else { 15440 if (ipif->ipif_lcl_addr == INADDR_ANY || IS_UNDER_IPMP(ill)) 15441 return; 15442 15443 /* Join the all hosts multicast address */ 15444 ip1dbg(("ipif_multicast_up - addmulti\n")); 15445 err = ip_addmulti(htonl(INADDR_ALLHOSTS_GROUP), ipif, 15446 ILGSTAT_NONE, MODE_IS_EXCLUDE, NULL); 15447 if (err) { 15448 ip0dbg(("ipif_multicast_up: failed %d\n", err)); 15449 return; 15450 } 15451 } 15452 ipif->ipif_multicast_up = 1; 15453 } 15454 15455 /* 15456 * Blow away any multicast groups that we joined in ipif_multicast_up(). 15457 * (Explicit memberships are blown away in ill_leave_multicast() when the 15458 * ill is brought down.) 15459 */ 15460 void 15461 ipif_multicast_down(ipif_t *ipif) 15462 { 15463 int err; 15464 15465 ASSERT(IAM_WRITER_IPIF(ipif)); 15466 15467 ip1dbg(("ipif_multicast_down\n")); 15468 if (!ipif->ipif_multicast_up) 15469 return; 15470 15471 ip1dbg(("ipif_multicast_down - delmulti\n")); 15472 15473 if (!ipif->ipif_isv6) { 15474 err = ip_delmulti(htonl(INADDR_ALLHOSTS_GROUP), ipif, B_TRUE, 15475 B_TRUE); 15476 if (err != 0) 15477 ip0dbg(("ipif_multicast_down: failed %d\n", err)); 15478 15479 ipif->ipif_multicast_up = 0; 15480 return; 15481 } 15482 15483 /* 15484 * Leave the all-hosts multicast address. 15485 */ 15486 if (ipif->ipif_joined_allhosts) { 15487 err = ip_delmulti_v6(&ipv6_all_hosts_mcast, ipif->ipif_ill, 15488 ipif->ipif_zoneid, B_TRUE, B_TRUE); 15489 if (err != 0) { 15490 ip0dbg(("ipif_multicast_down: all_hosts_mcast " 15491 "failed %d\n", err)); 15492 } 15493 ipif->ipif_joined_allhosts = 0; 15494 } 15495 15496 /* 15497 * Disable multicast for the solicited node multicast address 15498 */ 15499 if (!(ipif->ipif_flags & IPIF_NOLOCAL)) { 15500 in6_addr_t ipv6_multi = ipv6_solicited_node_mcast; 15501 15502 ipv6_multi.s6_addr32[3] |= 15503 ipif->ipif_v6lcl_addr.s6_addr32[3]; 15504 15505 err = ip_delmulti_v6(&ipv6_multi, ipif->ipif_ill, 15506 ipif->ipif_zoneid, B_TRUE, B_TRUE); 15507 if (err != 0) { 15508 ip0dbg(("ipif_multicast_down: sol MC failed %d\n", 15509 err)); 15510 } 15511 } 15512 15513 ipif->ipif_multicast_up = 0; 15514 } 15515 15516 /* 15517 * Used when an interface comes up to recreate any extra routes on this 15518 * interface. 15519 */ 15520 static ire_t ** 15521 ipif_recover_ire(ipif_t *ipif) 15522 { 15523 mblk_t *mp; 15524 ire_t **ipif_saved_irep; 15525 ire_t **irep; 15526 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; 15527 15528 ip1dbg(("ipif_recover_ire(%s:%u)", ipif->ipif_ill->ill_name, 15529 ipif->ipif_id)); 15530 15531 mutex_enter(&ipif->ipif_saved_ire_lock); 15532 ipif_saved_irep = (ire_t **)kmem_zalloc(sizeof (ire_t *) * 15533 ipif->ipif_saved_ire_cnt, KM_NOSLEEP); 15534 if (ipif_saved_irep == NULL) { 15535 mutex_exit(&ipif->ipif_saved_ire_lock); 15536 return (NULL); 15537 } 15538 15539 irep = ipif_saved_irep; 15540 for (mp = ipif->ipif_saved_ire_mp; mp != NULL; mp = mp->b_cont) { 15541 ire_t *ire; 15542 queue_t *rfq; 15543 queue_t *stq; 15544 ifrt_t *ifrt; 15545 uchar_t *src_addr; 15546 uchar_t *gateway_addr; 15547 ushort_t type; 15548 15549 /* 15550 * When the ire was initially created and then added in 15551 * ip_rt_add(), it was created either using ipif->ipif_net_type 15552 * in the case of a traditional interface route, or as one of 15553 * the IRE_OFFSUBNET types (with the exception of 15554 * IRE_HOST types ire which is created by icmp_redirect() and 15555 * which we don't need to save or recover). In the case where 15556 * ipif->ipif_net_type was IRE_LOOPBACK, ip_rt_add() will update 15557 * the ire_type to IRE_IF_NORESOLVER before calling ire_add() 15558 * to satisfy software like GateD and Sun Cluster which creates 15559 * routes using the the loopback interface's address as a 15560 * gateway. 15561 * 15562 * As ifrt->ifrt_type reflects the already updated ire_type, 15563 * ire_create() will be called in the same way here as 15564 * in ip_rt_add(), namely using ipif->ipif_net_type when 15565 * the route looks like a traditional interface route (where 15566 * ifrt->ifrt_type & IRE_INTERFACE is true) and otherwise using 15567 * the saved ifrt->ifrt_type. This means that in the case where 15568 * ipif->ipif_net_type is IRE_LOOPBACK, the ire created by 15569 * ire_create() will be an IRE_LOOPBACK, it will then be turned 15570 * into an IRE_IF_NORESOLVER and then added by ire_add(). 15571 */ 15572 ifrt = (ifrt_t *)mp->b_rptr; 15573 ASSERT(ifrt->ifrt_type != IRE_CACHE); 15574 if (ifrt->ifrt_type & IRE_INTERFACE) { 15575 rfq = NULL; 15576 stq = (ipif->ipif_net_type == IRE_IF_RESOLVER) 15577 ? ipif->ipif_rq : ipif->ipif_wq; 15578 src_addr = (ifrt->ifrt_flags & RTF_SETSRC) 15579 ? (uint8_t *)&ifrt->ifrt_src_addr 15580 : (uint8_t *)&ipif->ipif_src_addr; 15581 gateway_addr = NULL; 15582 type = ipif->ipif_net_type; 15583 } else if (ifrt->ifrt_type & IRE_BROADCAST) { 15584 /* Recover multiroute broadcast IRE. */ 15585 rfq = ipif->ipif_rq; 15586 stq = ipif->ipif_wq; 15587 src_addr = (ifrt->ifrt_flags & RTF_SETSRC) 15588 ? (uint8_t *)&ifrt->ifrt_src_addr 15589 : (uint8_t *)&ipif->ipif_src_addr; 15590 gateway_addr = (uint8_t *)&ifrt->ifrt_gateway_addr; 15591 type = ifrt->ifrt_type; 15592 } else { 15593 rfq = NULL; 15594 stq = NULL; 15595 src_addr = (ifrt->ifrt_flags & RTF_SETSRC) 15596 ? (uint8_t *)&ifrt->ifrt_src_addr : NULL; 15597 gateway_addr = (uint8_t *)&ifrt->ifrt_gateway_addr; 15598 type = ifrt->ifrt_type; 15599 } 15600 15601 /* 15602 * Create a copy of the IRE with the saved address and netmask. 15603 */ 15604 ip1dbg(("ipif_recover_ire: creating IRE %s (%d) for " 15605 "0x%x/0x%x\n", 15606 ip_nv_lookup(ire_nv_tbl, ifrt->ifrt_type), ifrt->ifrt_type, 15607 ntohl(ifrt->ifrt_addr), 15608 ntohl(ifrt->ifrt_mask))); 15609 ire = ire_create( 15610 (uint8_t *)&ifrt->ifrt_addr, 15611 (uint8_t *)&ifrt->ifrt_mask, 15612 src_addr, 15613 gateway_addr, 15614 &ifrt->ifrt_max_frag, 15615 NULL, 15616 rfq, 15617 stq, 15618 type, 15619 ipif, 15620 0, 15621 0, 15622 0, 15623 ifrt->ifrt_flags, 15624 &ifrt->ifrt_iulp_info, 15625 NULL, 15626 NULL, 15627 ipst); 15628 15629 if (ire == NULL) { 15630 mutex_exit(&ipif->ipif_saved_ire_lock); 15631 kmem_free(ipif_saved_irep, 15632 ipif->ipif_saved_ire_cnt * sizeof (ire_t *)); 15633 return (NULL); 15634 } 15635 15636 /* 15637 * Some software (for example, GateD and Sun Cluster) attempts 15638 * to create (what amount to) IRE_PREFIX routes with the 15639 * loopback address as the gateway. This is primarily done to 15640 * set up prefixes with the RTF_REJECT flag set (for example, 15641 * when generating aggregate routes.) 15642 * 15643 * If the IRE type (as defined by ipif->ipif_net_type) is 15644 * IRE_LOOPBACK, then we map the request into a 15645 * IRE_IF_NORESOLVER. 15646 */ 15647 if (ipif->ipif_net_type == IRE_LOOPBACK) 15648 ire->ire_type = IRE_IF_NORESOLVER; 15649 /* 15650 * ire held by ire_add, will be refreled' towards the 15651 * the end of ipif_up_done 15652 */ 15653 (void) ire_add(&ire, NULL, NULL, NULL, B_FALSE); 15654 *irep = ire; 15655 irep++; 15656 ip1dbg(("ipif_recover_ire: added ire %p\n", (void *)ire)); 15657 } 15658 mutex_exit(&ipif->ipif_saved_ire_lock); 15659 return (ipif_saved_irep); 15660 } 15661 15662 /* 15663 * Used to set the netmask and broadcast address to default values when the 15664 * interface is brought up. (Always called as writer.) 15665 */ 15666 static void 15667 ipif_set_default(ipif_t *ipif) 15668 { 15669 ASSERT(MUTEX_HELD(&ipif->ipif_ill->ill_lock)); 15670 15671 if (!ipif->ipif_isv6) { 15672 /* 15673 * Interface holds an IPv4 address. Default 15674 * mask is the natural netmask. 15675 */ 15676 if (!ipif->ipif_net_mask) { 15677 ipaddr_t v4mask; 15678 15679 v4mask = ip_net_mask(ipif->ipif_lcl_addr); 15680 V4MASK_TO_V6(v4mask, ipif->ipif_v6net_mask); 15681 } 15682 if (ipif->ipif_flags & IPIF_POINTOPOINT) { 15683 /* ipif_subnet is ipif_pp_dst_addr for pt-pt */ 15684 ipif->ipif_v6subnet = ipif->ipif_v6pp_dst_addr; 15685 } else { 15686 V6_MASK_COPY(ipif->ipif_v6lcl_addr, 15687 ipif->ipif_v6net_mask, ipif->ipif_v6subnet); 15688 } 15689 /* 15690 * NOTE: SunOS 4.X does this even if the broadcast address 15691 * has been already set thus we do the same here. 15692 */ 15693 if (ipif->ipif_flags & IPIF_BROADCAST) { 15694 ipaddr_t v4addr; 15695 15696 v4addr = ipif->ipif_subnet | ~ipif->ipif_net_mask; 15697 IN6_IPADDR_TO_V4MAPPED(v4addr, &ipif->ipif_v6brd_addr); 15698 } 15699 } else { 15700 /* 15701 * Interface holds an IPv6-only address. Default 15702 * mask is all-ones. 15703 */ 15704 if (IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6net_mask)) 15705 ipif->ipif_v6net_mask = ipv6_all_ones; 15706 if (ipif->ipif_flags & IPIF_POINTOPOINT) { 15707 /* ipif_subnet is ipif_pp_dst_addr for pt-pt */ 15708 ipif->ipif_v6subnet = ipif->ipif_v6pp_dst_addr; 15709 } else { 15710 V6_MASK_COPY(ipif->ipif_v6lcl_addr, 15711 ipif->ipif_v6net_mask, ipif->ipif_v6subnet); 15712 } 15713 } 15714 } 15715 15716 /* 15717 * Return 0 if this address can be used as local address without causing 15718 * duplicate address problems. Otherwise, return EADDRNOTAVAIL if the address 15719 * is already up on a different ill, and EADDRINUSE if it's up on the same ill. 15720 * Note that the same IPv6 link-local address is allowed as long as the ills 15721 * are not on the same link. 15722 */ 15723 int 15724 ip_addr_availability_check(ipif_t *new_ipif) 15725 { 15726 in6_addr_t our_v6addr; 15727 ill_t *ill; 15728 ipif_t *ipif; 15729 ill_walk_context_t ctx; 15730 ip_stack_t *ipst = new_ipif->ipif_ill->ill_ipst; 15731 15732 ASSERT(IAM_WRITER_IPIF(new_ipif)); 15733 ASSERT(MUTEX_HELD(&ipst->ips_ip_addr_avail_lock)); 15734 ASSERT(RW_READ_HELD(&ipst->ips_ill_g_lock)); 15735 15736 new_ipif->ipif_flags &= ~IPIF_UNNUMBERED; 15737 if (IN6_IS_ADDR_UNSPECIFIED(&new_ipif->ipif_v6lcl_addr) || 15738 IN6_IS_ADDR_V4MAPPED_ANY(&new_ipif->ipif_v6lcl_addr)) 15739 return (0); 15740 15741 our_v6addr = new_ipif->ipif_v6lcl_addr; 15742 15743 if (new_ipif->ipif_isv6) 15744 ill = ILL_START_WALK_V6(&ctx, ipst); 15745 else 15746 ill = ILL_START_WALK_V4(&ctx, ipst); 15747 15748 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 15749 for (ipif = ill->ill_ipif; ipif != NULL; 15750 ipif = ipif->ipif_next) { 15751 if ((ipif == new_ipif) || 15752 !(ipif->ipif_flags & IPIF_UP) || 15753 (ipif->ipif_flags & IPIF_UNNUMBERED) || 15754 !IN6_ARE_ADDR_EQUAL(&ipif->ipif_v6lcl_addr, 15755 &our_v6addr)) 15756 continue; 15757 15758 if (new_ipif->ipif_flags & IPIF_POINTOPOINT) 15759 new_ipif->ipif_flags |= IPIF_UNNUMBERED; 15760 else if (ipif->ipif_flags & IPIF_POINTOPOINT) 15761 ipif->ipif_flags |= IPIF_UNNUMBERED; 15762 else if ((IN6_IS_ADDR_LINKLOCAL(&our_v6addr) || 15763 IN6_IS_ADDR_SITELOCAL(&our_v6addr)) && 15764 !IS_ON_SAME_LAN(ill, new_ipif->ipif_ill)) 15765 continue; 15766 else if (new_ipif->ipif_zoneid != ipif->ipif_zoneid && 15767 ipif->ipif_zoneid != ALL_ZONES && IS_LOOPBACK(ill)) 15768 continue; 15769 else if (new_ipif->ipif_ill == ill) 15770 return (EADDRINUSE); 15771 else 15772 return (EADDRNOTAVAIL); 15773 } 15774 } 15775 15776 return (0); 15777 } 15778 15779 /* 15780 * Bring up an ipif: bring up arp/ndp, bring up the DLPI stream, and add 15781 * IREs for the ipif. 15782 * When the routine returns EINPROGRESS then mp has been consumed and 15783 * the ioctl will be acked from ip_rput_dlpi. 15784 */ 15785 int 15786 ipif_up(ipif_t *ipif, queue_t *q, mblk_t *mp) 15787 { 15788 ill_t *ill = ipif->ipif_ill; 15789 boolean_t isv6 = ipif->ipif_isv6; 15790 int err = 0; 15791 boolean_t success; 15792 uint_t ipif_orig_id; 15793 ip_stack_t *ipst = ill->ill_ipst; 15794 15795 ASSERT(IAM_WRITER_IPIF(ipif)); 15796 15797 ip1dbg(("ipif_up(%s:%u)\n", ill->ill_name, ipif->ipif_id)); 15798 15799 /* Shouldn't get here if it is already up. */ 15800 if (ipif->ipif_flags & IPIF_UP) 15801 return (EALREADY); 15802 15803 /* 15804 * If this is a request to bring up a data address on an interface 15805 * under IPMP, then move the address to its IPMP meta-interface and 15806 * try to bring it up. One complication is that the zeroth ipif for 15807 * an ill is special, in that every ill always has one, and that code 15808 * throughout IP deferences ill->ill_ipif without holding any locks. 15809 */ 15810 if (IS_UNDER_IPMP(ill) && ipmp_ipif_is_dataaddr(ipif) && 15811 (!ipif->ipif_isv6 || !V6_IPIF_LINKLOCAL(ipif))) { 15812 ipif_t *stubipif = NULL, *moveipif = NULL; 15813 ill_t *ipmp_ill = ipmp_illgrp_ipmp_ill(ill->ill_grp); 15814 15815 /* 15816 * The ipif being brought up should be quiesced. If it's not, 15817 * something has gone amiss and we need to bail out. (If it's 15818 * quiesced, we know it will remain so via IPIF_CHANGING.) 15819 */ 15820 mutex_enter(&ill->ill_lock); 15821 if (!ipif_is_quiescent(ipif)) { 15822 mutex_exit(&ill->ill_lock); 15823 return (EINVAL); 15824 } 15825 mutex_exit(&ill->ill_lock); 15826 15827 /* 15828 * If we're going to need to allocate ipifs, do it prior 15829 * to starting the move (and grabbing locks). 15830 */ 15831 if (ipif->ipif_id == 0) { 15832 moveipif = ipif_allocate(ill, 0, IRE_LOCAL, B_TRUE, 15833 B_FALSE); 15834 stubipif = ipif_allocate(ill, 0, IRE_LOCAL, B_TRUE, 15835 B_FALSE); 15836 if (moveipif == NULL || stubipif == NULL) { 15837 mi_free(moveipif); 15838 mi_free(stubipif); 15839 return (ENOMEM); 15840 } 15841 } 15842 15843 /* 15844 * Grab or transfer the ipif to move. During the move, keep 15845 * ill_g_lock held to prevent any ill walker threads from 15846 * seeing things in an inconsistent state. 15847 */ 15848 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 15849 if (ipif->ipif_id != 0) { 15850 ipif_remove(ipif); 15851 } else { 15852 ipif_transfer(ipif, moveipif, stubipif); 15853 ipif = moveipif; 15854 } 15855 15856 /* 15857 * Place the ipif on the IPMP ill. If the zeroth ipif on 15858 * the IPMP ill is a stub (0.0.0.0 down address) then we 15859 * replace that one. Otherwise, pick the next available slot. 15860 */ 15861 ipif->ipif_ill = ipmp_ill; 15862 ipif_orig_id = ipif->ipif_id; 15863 15864 if (ipmp_ipif_is_stubaddr(ipmp_ill->ill_ipif)) { 15865 ipif_transfer(ipif, ipmp_ill->ill_ipif, NULL); 15866 ipif = ipmp_ill->ill_ipif; 15867 } else { 15868 ipif->ipif_id = -1; 15869 if (ipif_insert(ipif, B_FALSE) != 0) { 15870 /* 15871 * No more available ipif_id's -- put it back 15872 * on the original ill and fail the operation. 15873 * Since we're writer on the ill, we can be 15874 * sure our old slot is still available. 15875 */ 15876 ipif->ipif_id = ipif_orig_id; 15877 ipif->ipif_ill = ill; 15878 if (ipif_orig_id == 0) { 15879 ipif_transfer(ipif, ill->ill_ipif, 15880 NULL); 15881 } else { 15882 VERIFY(ipif_insert(ipif, B_FALSE) == 0); 15883 } 15884 rw_exit(&ipst->ips_ill_g_lock); 15885 return (ENOMEM); 15886 } 15887 } 15888 rw_exit(&ipst->ips_ill_g_lock); 15889 15890 /* 15891 * Tell SCTP that the ipif has moved. Note that even if we 15892 * had to allocate a new ipif, the original sequence id was 15893 * preserved and therefore SCTP won't know. 15894 */ 15895 sctp_move_ipif(ipif, ill, ipmp_ill); 15896 15897 /* 15898 * If the ipif being brought up was on slot zero, then we 15899 * first need to bring up the placeholder we stuck there. In 15900 * ip_rput_dlpi_writer(), ip_arp_done(), or the recursive call 15901 * to ipif_up() itself, if we successfully bring up the 15902 * placeholder, we'll check ill_move_ipif and bring it up too. 15903 */ 15904 if (ipif_orig_id == 0) { 15905 ASSERT(ill->ill_move_ipif == NULL); 15906 ill->ill_move_ipif = ipif; 15907 if ((err = ipif_up(ill->ill_ipif, q, mp)) == 0) 15908 ASSERT(ill->ill_move_ipif == NULL); 15909 if (err != EINPROGRESS) 15910 ill->ill_move_ipif = NULL; 15911 return (err); 15912 } 15913 15914 /* 15915 * Bring it up on the IPMP ill. 15916 */ 15917 return (ipif_up(ipif, q, mp)); 15918 } 15919 15920 /* Skip arp/ndp for any loopback interface. */ 15921 if (ill->ill_wq != NULL) { 15922 conn_t *connp = CONN_Q(q) ? Q_TO_CONN(q) : NULL; 15923 ipsq_t *ipsq = ill->ill_phyint->phyint_ipsq; 15924 15925 if (!ill->ill_dl_up) { 15926 /* 15927 * ill_dl_up is not yet set. i.e. we are yet to 15928 * DL_BIND with the driver and this is the first 15929 * logical interface on the ill to become "up". 15930 * Tell the driver to get going (via DL_BIND_REQ). 15931 * Note that changing "significant" IFF_ flags 15932 * address/netmask etc cause a down/up dance, but 15933 * does not cause an unbind (DL_UNBIND) with the driver 15934 */ 15935 return (ill_dl_up(ill, ipif, mp, q)); 15936 } 15937 15938 /* 15939 * ipif_resolver_up may end up sending an 15940 * AR_INTERFACE_UP message to ARP, which would, in 15941 * turn send a DLPI message to the driver. ioctls are 15942 * serialized and so we cannot send more than one 15943 * interface up message at a time. If ipif_resolver_up 15944 * does send an interface up message to ARP, we get 15945 * EINPROGRESS and we will complete in ip_arp_done. 15946 */ 15947 15948 ASSERT(connp != NULL || !CONN_Q(q)); 15949 if (connp != NULL) 15950 mutex_enter(&connp->conn_lock); 15951 mutex_enter(&ill->ill_lock); 15952 success = ipsq_pending_mp_add(connp, ipif, q, mp, 0); 15953 mutex_exit(&ill->ill_lock); 15954 if (connp != NULL) 15955 mutex_exit(&connp->conn_lock); 15956 if (!success) 15957 return (EINTR); 15958 15959 /* 15960 * Crank up the resolver. For IPv6, this cranks up the 15961 * external resolver if one is configured, but even if an 15962 * external resolver isn't configured, it must be called to 15963 * reset DAD state. For IPv6, if an external resolver is not 15964 * being used, ipif_resolver_up() will never return 15965 * EINPROGRESS, so we can always call ipif_ndp_up() here. 15966 * Note that if an external resolver is being used, there's no 15967 * need to call ipif_ndp_up() since it will do nothing. 15968 */ 15969 err = ipif_resolver_up(ipif, Res_act_initial); 15970 if (err == EINPROGRESS) { 15971 /* We will complete it in ip_arp_done() */ 15972 return (err); 15973 } 15974 15975 if (isv6 && err == 0) 15976 err = ipif_ndp_up(ipif, B_TRUE); 15977 15978 ASSERT(err != EINPROGRESS); 15979 mp = ipsq_pending_mp_get(ipsq, &connp); 15980 ASSERT(mp != NULL); 15981 if (err != 0) 15982 return (err); 15983 } else { 15984 /* 15985 * Interfaces without underlying hardware don't do duplicate 15986 * address detection. 15987 */ 15988 ASSERT(!(ipif->ipif_flags & IPIF_DUPLICATE)); 15989 ipif->ipif_addr_ready = 1; 15990 } 15991 15992 err = isv6 ? ipif_up_done_v6(ipif) : ipif_up_done(ipif); 15993 if (err == 0 && ill->ill_move_ipif != NULL) { 15994 ipif = ill->ill_move_ipif; 15995 ill->ill_move_ipif = NULL; 15996 return (ipif_up(ipif, q, mp)); 15997 } 15998 return (err); 15999 } 16000 16001 /* 16002 * Perform a bind for the physical device. 16003 * When the routine returns EINPROGRESS then mp has been consumed and 16004 * the ioctl will be acked from ip_rput_dlpi. 16005 * Allocate an unbind message and save it until ipif_down. 16006 */ 16007 static int 16008 ill_dl_up(ill_t *ill, ipif_t *ipif, mblk_t *mp, queue_t *q) 16009 { 16010 areq_t *areq; 16011 mblk_t *areq_mp = NULL; 16012 mblk_t *bind_mp = NULL; 16013 mblk_t *unbind_mp = NULL; 16014 conn_t *connp; 16015 boolean_t success; 16016 uint16_t sap_addr; 16017 16018 ip1dbg(("ill_dl_up(%s)\n", ill->ill_name)); 16019 ASSERT(IAM_WRITER_ILL(ill)); 16020 ASSERT(mp != NULL); 16021 16022 /* Create a resolver cookie for ARP */ 16023 if (!ill->ill_isv6 && ill->ill_net_type == IRE_IF_RESOLVER) { 16024 areq_mp = ill_arp_alloc(ill, (uchar_t *)&ip_areq_template, 0); 16025 if (areq_mp == NULL) 16026 return (ENOMEM); 16027 16028 freemsg(ill->ill_resolver_mp); 16029 ill->ill_resolver_mp = areq_mp; 16030 areq = (areq_t *)areq_mp->b_rptr; 16031 sap_addr = ill->ill_sap; 16032 bcopy(&sap_addr, areq->areq_sap, sizeof (sap_addr)); 16033 } 16034 bind_mp = ip_dlpi_alloc(sizeof (dl_bind_req_t) + sizeof (long), 16035 DL_BIND_REQ); 16036 if (bind_mp == NULL) 16037 goto bad; 16038 ((dl_bind_req_t *)bind_mp->b_rptr)->dl_sap = ill->ill_sap; 16039 ((dl_bind_req_t *)bind_mp->b_rptr)->dl_service_mode = DL_CLDLS; 16040 16041 unbind_mp = ip_dlpi_alloc(sizeof (dl_unbind_req_t), DL_UNBIND_REQ); 16042 if (unbind_mp == NULL) 16043 goto bad; 16044 16045 /* 16046 * Record state needed to complete this operation when the 16047 * DL_BIND_ACK shows up. Also remember the pre-allocated mblks. 16048 */ 16049 connp = CONN_Q(q) ? Q_TO_CONN(q) : NULL; 16050 ASSERT(connp != NULL || !CONN_Q(q)); 16051 GRAB_CONN_LOCK(q); 16052 mutex_enter(&ipif->ipif_ill->ill_lock); 16053 success = ipsq_pending_mp_add(connp, ipif, q, mp, 0); 16054 mutex_exit(&ipif->ipif_ill->ill_lock); 16055 RELEASE_CONN_LOCK(q); 16056 if (!success) 16057 goto bad; 16058 16059 /* 16060 * Save the unbind message for ill_dl_down(); it will be consumed when 16061 * the interface goes down. 16062 */ 16063 ASSERT(ill->ill_unbind_mp == NULL); 16064 ill->ill_unbind_mp = unbind_mp; 16065 16066 ill_dlpi_send(ill, bind_mp); 16067 /* Send down link-layer capabilities probe if not already done. */ 16068 ill_capability_probe(ill); 16069 16070 /* 16071 * Sysid used to rely on the fact that netboots set domainname 16072 * and the like. Now that miniroot boots aren't strictly netboots 16073 * and miniroot network configuration is driven from userland 16074 * these things still need to be set. This situation can be detected 16075 * by comparing the interface being configured here to the one 16076 * dhcifname was set to reference by the boot loader. Once sysid is 16077 * converted to use dhcp_ipc_getinfo() this call can go away. 16078 */ 16079 if ((ipif->ipif_flags & IPIF_DHCPRUNNING) && 16080 (strcmp(ill->ill_name, dhcifname) == 0) && 16081 (strlen(srpc_domain) == 0)) { 16082 if (dhcpinit() != 0) 16083 cmn_err(CE_WARN, "no cached dhcp response"); 16084 } 16085 16086 /* 16087 * This operation will complete in ip_rput_dlpi with either 16088 * a DL_BIND_ACK or DL_ERROR_ACK. 16089 */ 16090 return (EINPROGRESS); 16091 bad: 16092 ip1dbg(("ill_dl_up(%s) FAILED\n", ill->ill_name)); 16093 16094 freemsg(bind_mp); 16095 freemsg(unbind_mp); 16096 return (ENOMEM); 16097 } 16098 16099 uint_t ip_loopback_mtuplus = IP_LOOPBACK_MTU + IP_SIMPLE_HDR_LENGTH + 20; 16100 16101 /* 16102 * DLPI and ARP is up. 16103 * Create all the IREs associated with an interface bring up multicast. 16104 * Set the interface flag and finish other initialization 16105 * that potentially had to be differed to after DL_BIND_ACK. 16106 */ 16107 int 16108 ipif_up_done(ipif_t *ipif) 16109 { 16110 ire_t *ire_array[20]; 16111 ire_t **irep = ire_array; 16112 ire_t **irep1; 16113 ipaddr_t net_mask = 0; 16114 ipaddr_t subnet_mask, route_mask; 16115 ill_t *ill = ipif->ipif_ill; 16116 queue_t *stq; 16117 ipif_t *src_ipif; 16118 ipif_t *tmp_ipif; 16119 boolean_t flush_ire_cache = B_TRUE; 16120 int err = 0; 16121 ire_t **ipif_saved_irep = NULL; 16122 int ipif_saved_ire_cnt; 16123 int cnt; 16124 boolean_t src_ipif_held = B_FALSE; 16125 boolean_t loopback = B_FALSE; 16126 ip_stack_t *ipst = ill->ill_ipst; 16127 16128 ip1dbg(("ipif_up_done(%s:%u)\n", 16129 ipif->ipif_ill->ill_name, ipif->ipif_id)); 16130 /* Check if this is a loopback interface */ 16131 if (ipif->ipif_ill->ill_wq == NULL) 16132 loopback = B_TRUE; 16133 16134 ASSERT(!MUTEX_HELD(&ipif->ipif_ill->ill_lock)); 16135 /* 16136 * If all other interfaces for this ill are down or DEPRECATED, 16137 * or otherwise unsuitable for source address selection, remove 16138 * any IRE_CACHE entries for this ill to make sure source 16139 * address selection gets to take this new ipif into account. 16140 * No need to hold ill_lock while traversing the ipif list since 16141 * we are writer 16142 */ 16143 for (tmp_ipif = ill->ill_ipif; tmp_ipif; 16144 tmp_ipif = tmp_ipif->ipif_next) { 16145 if (((tmp_ipif->ipif_flags & 16146 (IPIF_NOXMIT|IPIF_ANYCAST|IPIF_NOLOCAL|IPIF_DEPRECATED)) || 16147 !(tmp_ipif->ipif_flags & IPIF_UP)) || 16148 (tmp_ipif == ipif)) 16149 continue; 16150 /* first useable pre-existing interface */ 16151 flush_ire_cache = B_FALSE; 16152 break; 16153 } 16154 if (flush_ire_cache) 16155 ire_walk_ill_v4(MATCH_IRE_ILL | MATCH_IRE_TYPE, 16156 IRE_CACHE, ill_ipif_cache_delete, (char *)ill, ill); 16157 16158 /* 16159 * Figure out which way the send-to queue should go. Only 16160 * IRE_IF_RESOLVER or IRE_IF_NORESOLVER or IRE_LOOPBACK 16161 * should show up here. 16162 */ 16163 switch (ill->ill_net_type) { 16164 case IRE_IF_RESOLVER: 16165 stq = ill->ill_rq; 16166 break; 16167 case IRE_IF_NORESOLVER: 16168 case IRE_LOOPBACK: 16169 stq = ill->ill_wq; 16170 break; 16171 default: 16172 return (EINVAL); 16173 } 16174 16175 if (IS_LOOPBACK(ill)) { 16176 /* 16177 * lo0:1 and subsequent ipifs were marked IRE_LOCAL in 16178 * ipif_lookup_on_name(), but in the case of zones we can have 16179 * several loopback addresses on lo0. So all the interfaces with 16180 * loopback addresses need to be marked IRE_LOOPBACK. 16181 */ 16182 if (V4_PART_OF_V6(ipif->ipif_v6lcl_addr) == 16183 htonl(INADDR_LOOPBACK)) 16184 ipif->ipif_ire_type = IRE_LOOPBACK; 16185 else 16186 ipif->ipif_ire_type = IRE_LOCAL; 16187 } 16188 16189 if (ipif->ipif_flags & (IPIF_NOLOCAL|IPIF_ANYCAST) || 16190 ((ipif->ipif_flags & IPIF_DEPRECATED) && 16191 !(ipif->ipif_flags & IPIF_NOFAILOVER))) { 16192 /* 16193 * Can't use our source address. Select a different 16194 * source address for the IRE_INTERFACE and IRE_LOCAL 16195 */ 16196 src_ipif = ipif_select_source(ipif->ipif_ill, 16197 ipif->ipif_subnet, ipif->ipif_zoneid); 16198 if (src_ipif == NULL) 16199 src_ipif = ipif; /* Last resort */ 16200 else 16201 src_ipif_held = B_TRUE; 16202 } else { 16203 src_ipif = ipif; 16204 } 16205 16206 /* Create all the IREs associated with this interface */ 16207 if ((ipif->ipif_lcl_addr != INADDR_ANY) && 16208 !(ipif->ipif_flags & IPIF_NOLOCAL)) { 16209 16210 /* 16211 * If we're on a labeled system then make sure that zone- 16212 * private addresses have proper remote host database entries. 16213 */ 16214 if (is_system_labeled() && 16215 ipif->ipif_ire_type != IRE_LOOPBACK && 16216 !tsol_check_interface_address(ipif)) 16217 return (EINVAL); 16218 16219 /* Register the source address for __sin6_src_id */ 16220 err = ip_srcid_insert(&ipif->ipif_v6lcl_addr, 16221 ipif->ipif_zoneid, ipst); 16222 if (err != 0) { 16223 ip0dbg(("ipif_up_done: srcid_insert %d\n", err)); 16224 return (err); 16225 } 16226 16227 /* If the interface address is set, create the local IRE. */ 16228 ip1dbg(("ipif_up_done: 0x%p creating IRE 0x%x for 0x%x\n", 16229 (void *)ipif, 16230 ipif->ipif_ire_type, 16231 ntohl(ipif->ipif_lcl_addr))); 16232 *irep++ = ire_create( 16233 (uchar_t *)&ipif->ipif_lcl_addr, /* dest address */ 16234 (uchar_t *)&ip_g_all_ones, /* mask */ 16235 (uchar_t *)&src_ipif->ipif_src_addr, /* source address */ 16236 NULL, /* no gateway */ 16237 &ip_loopback_mtuplus, /* max frag size */ 16238 NULL, 16239 ipif->ipif_rq, /* recv-from queue */ 16240 NULL, /* no send-to queue */ 16241 ipif->ipif_ire_type, /* LOCAL or LOOPBACK */ 16242 ipif, 16243 0, 16244 0, 16245 0, 16246 (ipif->ipif_flags & IPIF_PRIVATE) ? 16247 RTF_PRIVATE : 0, 16248 &ire_uinfo_null, 16249 NULL, 16250 NULL, 16251 ipst); 16252 } else { 16253 ip1dbg(( 16254 "ipif_up_done: not creating IRE %d for 0x%x: flags 0x%x\n", 16255 ipif->ipif_ire_type, 16256 ntohl(ipif->ipif_lcl_addr), 16257 (uint_t)ipif->ipif_flags)); 16258 } 16259 if ((ipif->ipif_lcl_addr != INADDR_ANY) && 16260 !(ipif->ipif_flags & IPIF_NOLOCAL)) { 16261 net_mask = ip_net_mask(ipif->ipif_lcl_addr); 16262 } else { 16263 net_mask = htonl(IN_CLASSA_NET); /* fallback */ 16264 } 16265 16266 subnet_mask = ipif->ipif_net_mask; 16267 16268 /* 16269 * If mask was not specified, use natural netmask of 16270 * interface address. Also, store this mask back into the 16271 * ipif struct. 16272 */ 16273 if (subnet_mask == 0) { 16274 subnet_mask = net_mask; 16275 V4MASK_TO_V6(subnet_mask, ipif->ipif_v6net_mask); 16276 V6_MASK_COPY(ipif->ipif_v6lcl_addr, ipif->ipif_v6net_mask, 16277 ipif->ipif_v6subnet); 16278 } 16279 16280 /* Set up the IRE_IF_RESOLVER or IRE_IF_NORESOLVER, as appropriate. */ 16281 if (stq != NULL && !(ipif->ipif_flags & IPIF_NOXMIT) && 16282 ipif->ipif_subnet != INADDR_ANY) { 16283 /* ipif_subnet is ipif_pp_dst_addr for pt-pt */ 16284 16285 if (ipif->ipif_flags & IPIF_POINTOPOINT) { 16286 route_mask = IP_HOST_MASK; 16287 } else { 16288 route_mask = subnet_mask; 16289 } 16290 16291 ip1dbg(("ipif_up_done: ipif 0x%p ill 0x%p " 16292 "creating if IRE ill_net_type 0x%x for 0x%x\n", 16293 (void *)ipif, (void *)ill, 16294 ill->ill_net_type, 16295 ntohl(ipif->ipif_subnet))); 16296 *irep++ = ire_create( 16297 (uchar_t *)&ipif->ipif_subnet, /* dest address */ 16298 (uchar_t *)&route_mask, /* mask */ 16299 (uchar_t *)&src_ipif->ipif_src_addr, /* src addr */ 16300 NULL, /* no gateway */ 16301 &ipif->ipif_mtu, /* max frag */ 16302 NULL, 16303 NULL, /* no recv queue */ 16304 stq, /* send-to queue */ 16305 ill->ill_net_type, /* IF_[NO]RESOLVER */ 16306 ipif, 16307 0, 16308 0, 16309 0, 16310 (ipif->ipif_flags & IPIF_PRIVATE) ? RTF_PRIVATE: 0, 16311 &ire_uinfo_null, 16312 NULL, 16313 NULL, 16314 ipst); 16315 } 16316 16317 /* 16318 * Create any necessary broadcast IREs. 16319 */ 16320 if (ipif->ipif_flags & IPIF_BROADCAST) 16321 irep = ipif_create_bcast_ires(ipif, irep); 16322 16323 ASSERT(!MUTEX_HELD(&ipif->ipif_ill->ill_lock)); 16324 16325 /* If an earlier ire_create failed, get out now */ 16326 for (irep1 = irep; irep1 > ire_array; ) { 16327 irep1--; 16328 if (*irep1 == NULL) { 16329 ip1dbg(("ipif_up_done: NULL ire found in ire_array\n")); 16330 err = ENOMEM; 16331 goto bad; 16332 } 16333 } 16334 16335 /* 16336 * Need to atomically check for IP address availability under 16337 * ip_addr_avail_lock. ill_g_lock is held as reader to ensure no new 16338 * ills or new ipifs can be added while we are checking availability. 16339 */ 16340 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 16341 mutex_enter(&ipst->ips_ip_addr_avail_lock); 16342 /* Mark it up, and increment counters. */ 16343 ipif->ipif_flags |= IPIF_UP; 16344 ill->ill_ipif_up_count++; 16345 err = ip_addr_availability_check(ipif); 16346 mutex_exit(&ipst->ips_ip_addr_avail_lock); 16347 rw_exit(&ipst->ips_ill_g_lock); 16348 16349 if (err != 0) { 16350 /* 16351 * Our address may already be up on the same ill. In this case, 16352 * the ARP entry for our ipif replaced the one for the other 16353 * ipif. So we don't want to delete it (otherwise the other ipif 16354 * would be unable to send packets). 16355 * ip_addr_availability_check() identifies this case for us and 16356 * returns EADDRINUSE; we need to turn it into EADDRNOTAVAIL 16357 * which is the expected error code. 16358 */ 16359 if (err == EADDRINUSE) { 16360 freemsg(ipif->ipif_arp_del_mp); 16361 ipif->ipif_arp_del_mp = NULL; 16362 err = EADDRNOTAVAIL; 16363 } 16364 ill->ill_ipif_up_count--; 16365 ipif->ipif_flags &= ~IPIF_UP; 16366 goto bad; 16367 } 16368 16369 /* 16370 * Add in all newly created IREs. ire_create_bcast() has 16371 * already checked for duplicates of the IRE_BROADCAST type. 16372 */ 16373 for (irep1 = irep; irep1 > ire_array; ) { 16374 irep1--; 16375 ASSERT(!MUTEX_HELD(&((*irep1)->ire_ipif->ipif_ill->ill_lock))); 16376 /* 16377 * refheld by ire_add. refele towards the end of the func 16378 */ 16379 (void) ire_add(irep1, NULL, NULL, NULL, B_FALSE); 16380 } 16381 16382 /* Recover any additional IRE_IF_[NO]RESOLVER entries for this ipif */ 16383 ipif_saved_ire_cnt = ipif->ipif_saved_ire_cnt; 16384 ipif_saved_irep = ipif_recover_ire(ipif); 16385 16386 if (!loopback) { 16387 /* 16388 * If the broadcast address has been set, make sure it makes 16389 * sense based on the interface address. 16390 * Only match on ill since we are sharing broadcast addresses. 16391 */ 16392 if ((ipif->ipif_brd_addr != INADDR_ANY) && 16393 (ipif->ipif_flags & IPIF_BROADCAST)) { 16394 ire_t *ire; 16395 16396 ire = ire_ctable_lookup(ipif->ipif_brd_addr, 0, 16397 IRE_BROADCAST, ipif, ALL_ZONES, 16398 NULL, (MATCH_IRE_TYPE | MATCH_IRE_ILL), ipst); 16399 16400 if (ire == NULL) { 16401 /* 16402 * If there isn't a matching broadcast IRE, 16403 * revert to the default for this netmask. 16404 */ 16405 ipif->ipif_v6brd_addr = ipv6_all_zeros; 16406 mutex_enter(&ipif->ipif_ill->ill_lock); 16407 ipif_set_default(ipif); 16408 mutex_exit(&ipif->ipif_ill->ill_lock); 16409 } else { 16410 ire_refrele(ire); 16411 } 16412 } 16413 16414 } 16415 16416 if (ill->ill_need_recover_multicast) { 16417 /* 16418 * Need to recover all multicast memberships in the driver. 16419 * This had to be deferred until we had attached. The same 16420 * code exists in ipif_up_done_v6() to recover IPv6 16421 * memberships. 16422 * 16423 * Note that it would be preferable to unconditionally do the 16424 * ill_recover_multicast() in ill_dl_up(), but we cannot do 16425 * that since ill_join_allmulti() depends on ill_dl_up being 16426 * set, and it is not set until we receive a DL_BIND_ACK after 16427 * having called ill_dl_up(). 16428 */ 16429 ill_recover_multicast(ill); 16430 } 16431 16432 if (ill->ill_ipif_up_count == 1) { 16433 /* 16434 * Since the interface is now up, it may now be active. 16435 */ 16436 if (IS_UNDER_IPMP(ill)) 16437 ipmp_ill_refresh_active(ill); 16438 16439 /* 16440 * If this is an IPMP interface, we may now be able to 16441 * establish ARP entries. 16442 */ 16443 if (IS_IPMP(ill)) 16444 ipmp_illgrp_refresh_arpent(ill->ill_grp); 16445 } 16446 16447 /* Join the allhosts multicast address */ 16448 ipif_multicast_up(ipif); 16449 16450 /* 16451 * See if anybody else would benefit from our new ipif. 16452 */ 16453 if (!loopback && 16454 !(ipif->ipif_flags & (IPIF_NOLOCAL|IPIF_ANYCAST|IPIF_DEPRECATED))) { 16455 ill_update_source_selection(ill); 16456 } 16457 16458 for (irep1 = irep; irep1 > ire_array; ) { 16459 irep1--; 16460 if (*irep1 != NULL) { 16461 /* was held in ire_add */ 16462 ire_refrele(*irep1); 16463 } 16464 } 16465 16466 cnt = ipif_saved_ire_cnt; 16467 for (irep1 = ipif_saved_irep; cnt > 0; irep1++, cnt--) { 16468 if (*irep1 != NULL) { 16469 /* was held in ire_add */ 16470 ire_refrele(*irep1); 16471 } 16472 } 16473 16474 if (!loopback && ipif->ipif_addr_ready) { 16475 /* Broadcast an address mask reply. */ 16476 ipif_mask_reply(ipif); 16477 } 16478 if (ipif_saved_irep != NULL) { 16479 kmem_free(ipif_saved_irep, 16480 ipif_saved_ire_cnt * sizeof (ire_t *)); 16481 } 16482 if (src_ipif_held) 16483 ipif_refrele(src_ipif); 16484 16485 /* 16486 * This had to be deferred until we had bound. Tell routing sockets and 16487 * others that this interface is up if it looks like the address has 16488 * been validated. Otherwise, if it isn't ready yet, wait for 16489 * duplicate address detection to do its thing. 16490 */ 16491 if (ipif->ipif_addr_ready) 16492 ipif_up_notify(ipif); 16493 return (0); 16494 16495 bad: 16496 ip1dbg(("ipif_up_done: FAILED \n")); 16497 16498 while (irep > ire_array) { 16499 irep--; 16500 if (*irep != NULL) 16501 ire_delete(*irep); 16502 } 16503 (void) ip_srcid_remove(&ipif->ipif_v6lcl_addr, ipif->ipif_zoneid, ipst); 16504 16505 if (ipif_saved_irep != NULL) { 16506 kmem_free(ipif_saved_irep, 16507 ipif_saved_ire_cnt * sizeof (ire_t *)); 16508 } 16509 if (src_ipif_held) 16510 ipif_refrele(src_ipif); 16511 16512 ipif_resolver_down(ipif); 16513 return (err); 16514 } 16515 16516 /* 16517 * Turn off the ARP with the ILLF_NOARP flag. 16518 */ 16519 static int 16520 ill_arp_off(ill_t *ill) 16521 { 16522 mblk_t *arp_off_mp = NULL; 16523 mblk_t *arp_on_mp = NULL; 16524 16525 ip1dbg(("ill_arp_off(%s)\n", ill->ill_name)); 16526 16527 ASSERT(IAM_WRITER_ILL(ill)); 16528 ASSERT(ill->ill_net_type == IRE_IF_RESOLVER); 16529 16530 /* 16531 * If the on message is still around we've already done 16532 * an arp_off without doing an arp_on thus there is no 16533 * work needed. 16534 */ 16535 if (ill->ill_arp_on_mp != NULL) 16536 return (0); 16537 16538 /* 16539 * Allocate an ARP on message (to be saved) and an ARP off message 16540 */ 16541 arp_off_mp = ill_arp_alloc(ill, (uchar_t *)&ip_aroff_template, 0); 16542 if (!arp_off_mp) 16543 return (ENOMEM); 16544 16545 arp_on_mp = ill_arp_alloc(ill, (uchar_t *)&ip_aron_template, 0); 16546 if (!arp_on_mp) 16547 goto failed; 16548 16549 ASSERT(ill->ill_arp_on_mp == NULL); 16550 ill->ill_arp_on_mp = arp_on_mp; 16551 16552 /* Send an AR_INTERFACE_OFF request */ 16553 putnext(ill->ill_rq, arp_off_mp); 16554 return (0); 16555 failed: 16556 16557 if (arp_off_mp) 16558 freemsg(arp_off_mp); 16559 return (ENOMEM); 16560 } 16561 16562 /* 16563 * Turn on ARP by turning off the ILLF_NOARP flag. 16564 */ 16565 static int 16566 ill_arp_on(ill_t *ill) 16567 { 16568 mblk_t *mp; 16569 16570 ip1dbg(("ipif_arp_on(%s)\n", ill->ill_name)); 16571 16572 ASSERT(ill->ill_net_type == IRE_IF_RESOLVER); 16573 16574 ASSERT(IAM_WRITER_ILL(ill)); 16575 /* 16576 * Send an AR_INTERFACE_ON request if we have already done 16577 * an arp_off (which allocated the message). 16578 */ 16579 if (ill->ill_arp_on_mp != NULL) { 16580 mp = ill->ill_arp_on_mp; 16581 ill->ill_arp_on_mp = NULL; 16582 putnext(ill->ill_rq, mp); 16583 } 16584 return (0); 16585 } 16586 16587 /* 16588 * Checks for availbility of a usable source address (if there is one) when the 16589 * destination ILL has the ill_usesrc_ifindex pointing to another ILL. Note 16590 * this selection is done regardless of the destination. 16591 */ 16592 boolean_t 16593 ipif_usesrc_avail(ill_t *ill, zoneid_t zoneid) 16594 { 16595 uint_t ifindex; 16596 ipif_t *ipif = NULL; 16597 ill_t *uill; 16598 boolean_t isv6; 16599 ip_stack_t *ipst = ill->ill_ipst; 16600 16601 ASSERT(ill != NULL); 16602 16603 isv6 = ill->ill_isv6; 16604 ifindex = ill->ill_usesrc_ifindex; 16605 if (ifindex != 0) { 16606 uill = ill_lookup_on_ifindex(ifindex, isv6, NULL, NULL, NULL, 16607 NULL, ipst); 16608 if (uill == NULL) 16609 return (NULL); 16610 mutex_enter(&uill->ill_lock); 16611 for (ipif = uill->ill_ipif; ipif != NULL; 16612 ipif = ipif->ipif_next) { 16613 if (!IPIF_CAN_LOOKUP(ipif)) 16614 continue; 16615 if (ipif->ipif_flags & (IPIF_NOLOCAL|IPIF_ANYCAST)) 16616 continue; 16617 if (!(ipif->ipif_flags & IPIF_UP)) 16618 continue; 16619 if (ipif->ipif_zoneid != zoneid) 16620 continue; 16621 if ((isv6 && 16622 IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6lcl_addr)) || 16623 (ipif->ipif_lcl_addr == INADDR_ANY)) 16624 continue; 16625 mutex_exit(&uill->ill_lock); 16626 ill_refrele(uill); 16627 return (B_TRUE); 16628 } 16629 mutex_exit(&uill->ill_lock); 16630 ill_refrele(uill); 16631 } 16632 return (B_FALSE); 16633 } 16634 16635 /* 16636 * IP source address type, sorted from worst to best. For a given type, 16637 * always prefer IP addresses on the same subnet. All-zones addresses are 16638 * suboptimal because they pose problems with unlabeled destinations. 16639 */ 16640 typedef enum { 16641 IPIF_NONE, 16642 IPIF_DIFFNET_DEPRECATED, /* deprecated and different subnet */ 16643 IPIF_SAMENET_DEPRECATED, /* deprecated and same subnet */ 16644 IPIF_DIFFNET_ALLZONES, /* allzones and different subnet */ 16645 IPIF_SAMENET_ALLZONES, /* allzones and same subnet */ 16646 IPIF_DIFFNET, /* normal and different subnet */ 16647 IPIF_SAMENET /* normal and same subnet */ 16648 } ipif_type_t; 16649 16650 /* 16651 * Pick the optimal ipif on `ill' for sending to destination `dst' from zone 16652 * `zoneid'. We rate usable ipifs from low -> high as per the ipif_type_t 16653 * enumeration, and return the highest-rated ipif. If there's a tie, we pick 16654 * the first one, unless IPMP is used in which case we round-robin among them; 16655 * see below for more. 16656 * 16657 * Returns NULL if there is no suitable source address for the ill. 16658 * This only occurs when there is no valid source address for the ill. 16659 */ 16660 ipif_t * 16661 ipif_select_source(ill_t *ill, ipaddr_t dst, zoneid_t zoneid) 16662 { 16663 ill_t *usill = NULL; 16664 ill_t *ipmp_ill = NULL; 16665 ipif_t *start_ipif, *next_ipif, *ipif, *best_ipif; 16666 ipif_type_t type, best_type; 16667 tsol_tpc_t *src_rhtp, *dst_rhtp; 16668 ip_stack_t *ipst = ill->ill_ipst; 16669 boolean_t samenet; 16670 16671 if (ill->ill_usesrc_ifindex != 0) { 16672 usill = ill_lookup_on_ifindex(ill->ill_usesrc_ifindex, 16673 B_FALSE, NULL, NULL, NULL, NULL, ipst); 16674 if (usill != NULL) 16675 ill = usill; /* Select source from usesrc ILL */ 16676 else 16677 return (NULL); 16678 } 16679 16680 /* 16681 * Test addresses should never be used for source address selection, 16682 * so if we were passed one, switch to the IPMP meta-interface. 16683 */ 16684 if (IS_UNDER_IPMP(ill)) { 16685 if ((ipmp_ill = ipmp_ill_hold_ipmp_ill(ill)) != NULL) 16686 ill = ipmp_ill; /* Select source from IPMP ill */ 16687 else 16688 return (NULL); 16689 } 16690 16691 /* 16692 * If we're dealing with an unlabeled destination on a labeled system, 16693 * make sure that we ignore source addresses that are incompatible with 16694 * the destination's default label. That destination's default label 16695 * must dominate the minimum label on the source address. 16696 */ 16697 dst_rhtp = NULL; 16698 if (is_system_labeled()) { 16699 dst_rhtp = find_tpc(&dst, IPV4_VERSION, B_FALSE); 16700 if (dst_rhtp == NULL) 16701 return (NULL); 16702 if (dst_rhtp->tpc_tp.host_type != UNLABELED) { 16703 TPC_RELE(dst_rhtp); 16704 dst_rhtp = NULL; 16705 } 16706 } 16707 16708 /* 16709 * Hold the ill_g_lock as reader. This makes sure that no ipif/ill 16710 * can be deleted. But an ipif/ill can get CONDEMNED any time. 16711 * After selecting the right ipif, under ill_lock make sure ipif is 16712 * not condemned, and increment refcnt. If ipif is CONDEMNED, 16713 * we retry. Inside the loop we still need to check for CONDEMNED, 16714 * but not under a lock. 16715 */ 16716 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 16717 retry: 16718 /* 16719 * For source address selection, we treat the ipif list as circular 16720 * and continue until we get back to where we started. This allows 16721 * IPMP to vary source address selection (which improves inbound load 16722 * spreading) by caching its last ending point and starting from 16723 * there. NOTE: we don't have to worry about ill_src_ipif changing 16724 * ills since that can't happen on the IPMP ill. 16725 */ 16726 start_ipif = ill->ill_ipif; 16727 if (IS_IPMP(ill) && ill->ill_src_ipif != NULL) 16728 start_ipif = ill->ill_src_ipif; 16729 16730 ipif = start_ipif; 16731 best_ipif = NULL; 16732 best_type = IPIF_NONE; 16733 do { 16734 if ((next_ipif = ipif->ipif_next) == NULL) 16735 next_ipif = ill->ill_ipif; 16736 16737 if (!IPIF_CAN_LOOKUP(ipif)) 16738 continue; 16739 /* Always skip NOLOCAL and ANYCAST interfaces */ 16740 if (ipif->ipif_flags & (IPIF_NOLOCAL|IPIF_ANYCAST)) 16741 continue; 16742 if (!(ipif->ipif_flags & IPIF_UP) || !ipif->ipif_addr_ready) 16743 continue; 16744 if (ipif->ipif_zoneid != zoneid && 16745 ipif->ipif_zoneid != ALL_ZONES) 16746 continue; 16747 16748 /* 16749 * Interfaces with 0.0.0.0 address are allowed to be UP, but 16750 * are not valid as source addresses. 16751 */ 16752 if (ipif->ipif_lcl_addr == INADDR_ANY) 16753 continue; 16754 16755 /* 16756 * Check compatibility of local address for destination's 16757 * default label if we're on a labeled system. Incompatible 16758 * addresses can't be used at all. 16759 */ 16760 if (dst_rhtp != NULL) { 16761 boolean_t incompat; 16762 16763 src_rhtp = find_tpc(&ipif->ipif_lcl_addr, 16764 IPV4_VERSION, B_FALSE); 16765 if (src_rhtp == NULL) 16766 continue; 16767 incompat = src_rhtp->tpc_tp.host_type != SUN_CIPSO || 16768 src_rhtp->tpc_tp.tp_doi != 16769 dst_rhtp->tpc_tp.tp_doi || 16770 (!_blinrange(&dst_rhtp->tpc_tp.tp_def_label, 16771 &src_rhtp->tpc_tp.tp_sl_range_cipso) && 16772 !blinlset(&dst_rhtp->tpc_tp.tp_def_label, 16773 src_rhtp->tpc_tp.tp_sl_set_cipso)); 16774 TPC_RELE(src_rhtp); 16775 if (incompat) 16776 continue; 16777 } 16778 16779 samenet = ((ipif->ipif_net_mask & dst) == ipif->ipif_subnet); 16780 16781 if (ipif->ipif_flags & IPIF_DEPRECATED) { 16782 type = samenet ? IPIF_SAMENET_DEPRECATED : 16783 IPIF_DIFFNET_DEPRECATED; 16784 } else if (ipif->ipif_zoneid == ALL_ZONES) { 16785 type = samenet ? IPIF_SAMENET_ALLZONES : 16786 IPIF_DIFFNET_ALLZONES; 16787 } else { 16788 type = samenet ? IPIF_SAMENET : IPIF_DIFFNET; 16789 } 16790 16791 if (type > best_type) { 16792 best_type = type; 16793 best_ipif = ipif; 16794 if (best_type == IPIF_SAMENET) 16795 break; /* can't get better */ 16796 } 16797 } while ((ipif = next_ipif) != start_ipif); 16798 16799 if ((ipif = best_ipif) != NULL) { 16800 mutex_enter(&ipif->ipif_ill->ill_lock); 16801 if (!IPIF_CAN_LOOKUP(ipif)) { 16802 mutex_exit(&ipif->ipif_ill->ill_lock); 16803 goto retry; 16804 } 16805 ipif_refhold_locked(ipif); 16806 16807 /* 16808 * For IPMP, update the source ipif rotor to the next ipif, 16809 * provided we can look it up. (We must not use it if it's 16810 * IPIF_CONDEMNED since we may have grabbed ill_g_lock after 16811 * ipif_free() checked ill_src_ipif.) 16812 */ 16813 if (IS_IPMP(ill) && ipif != NULL) { 16814 next_ipif = ipif->ipif_next; 16815 if (next_ipif != NULL && IPIF_CAN_LOOKUP(next_ipif)) 16816 ill->ill_src_ipif = next_ipif; 16817 else 16818 ill->ill_src_ipif = NULL; 16819 } 16820 mutex_exit(&ipif->ipif_ill->ill_lock); 16821 } 16822 16823 rw_exit(&ipst->ips_ill_g_lock); 16824 if (usill != NULL) 16825 ill_refrele(usill); 16826 if (ipmp_ill != NULL) 16827 ill_refrele(ipmp_ill); 16828 if (dst_rhtp != NULL) 16829 TPC_RELE(dst_rhtp); 16830 16831 #ifdef DEBUG 16832 if (ipif == NULL) { 16833 char buf1[INET6_ADDRSTRLEN]; 16834 16835 ip1dbg(("ipif_select_source(%s, %s) -> NULL\n", 16836 ill->ill_name, 16837 inet_ntop(AF_INET, &dst, buf1, sizeof (buf1)))); 16838 } else { 16839 char buf1[INET6_ADDRSTRLEN]; 16840 char buf2[INET6_ADDRSTRLEN]; 16841 16842 ip1dbg(("ipif_select_source(%s, %s) -> %s\n", 16843 ipif->ipif_ill->ill_name, 16844 inet_ntop(AF_INET, &dst, buf1, sizeof (buf1)), 16845 inet_ntop(AF_INET, &ipif->ipif_lcl_addr, 16846 buf2, sizeof (buf2)))); 16847 } 16848 #endif /* DEBUG */ 16849 return (ipif); 16850 } 16851 16852 /* 16853 * If old_ipif is not NULL, see if ipif was derived from old 16854 * ipif and if so, recreate the interface route by re-doing 16855 * source address selection. This happens when ipif_down -> 16856 * ipif_update_other_ipifs calls us. 16857 * 16858 * If old_ipif is NULL, just redo the source address selection 16859 * if needed. This happens when ipif_up_done calls us. 16860 */ 16861 static void 16862 ipif_recreate_interface_routes(ipif_t *old_ipif, ipif_t *ipif) 16863 { 16864 ire_t *ire; 16865 ire_t *ipif_ire; 16866 queue_t *stq; 16867 ipif_t *nipif; 16868 ill_t *ill; 16869 boolean_t need_rele = B_FALSE; 16870 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; 16871 16872 ASSERT(old_ipif == NULL || IAM_WRITER_IPIF(old_ipif)); 16873 ASSERT(IAM_WRITER_IPIF(ipif)); 16874 16875 ill = ipif->ipif_ill; 16876 if (!(ipif->ipif_flags & 16877 (IPIF_NOLOCAL|IPIF_ANYCAST|IPIF_DEPRECATED))) { 16878 /* 16879 * Can't possibly have borrowed the source 16880 * from old_ipif. 16881 */ 16882 return; 16883 } 16884 16885 /* 16886 * Is there any work to be done? No work if the address 16887 * is INADDR_ANY, loopback or NOLOCAL or ANYCAST ( 16888 * ipif_select_source() does not borrow addresses from 16889 * NOLOCAL and ANYCAST interfaces). 16890 */ 16891 if ((old_ipif != NULL) && 16892 ((old_ipif->ipif_lcl_addr == INADDR_ANY) || 16893 (old_ipif->ipif_ill->ill_wq == NULL) || 16894 (old_ipif->ipif_flags & 16895 (IPIF_NOLOCAL|IPIF_ANYCAST)))) { 16896 return; 16897 } 16898 16899 /* 16900 * Perform the same checks as when creating the 16901 * IRE_INTERFACE in ipif_up_done. 16902 */ 16903 if (!(ipif->ipif_flags & IPIF_UP)) 16904 return; 16905 16906 if ((ipif->ipif_flags & IPIF_NOXMIT) || 16907 (ipif->ipif_subnet == INADDR_ANY)) 16908 return; 16909 16910 ipif_ire = ipif_to_ire(ipif); 16911 if (ipif_ire == NULL) 16912 return; 16913 16914 /* 16915 * We know that ipif uses some other source for its 16916 * IRE_INTERFACE. Is it using the source of this 16917 * old_ipif? 16918 */ 16919 if (old_ipif != NULL && 16920 old_ipif->ipif_lcl_addr != ipif_ire->ire_src_addr) { 16921 ire_refrele(ipif_ire); 16922 return; 16923 } 16924 if (ip_debug > 2) { 16925 /* ip1dbg */ 16926 pr_addr_dbg("ipif_recreate_interface_routes: deleting IRE for" 16927 " src %s\n", AF_INET, &ipif_ire->ire_src_addr); 16928 } 16929 16930 stq = ipif_ire->ire_stq; 16931 16932 /* 16933 * Can't use our source address. Select a different 16934 * source address for the IRE_INTERFACE. 16935 */ 16936 nipif = ipif_select_source(ill, ipif->ipif_subnet, ipif->ipif_zoneid); 16937 if (nipif == NULL) { 16938 /* Last resort - all ipif's have IPIF_NOLOCAL */ 16939 nipif = ipif; 16940 } else { 16941 need_rele = B_TRUE; 16942 } 16943 16944 ire = ire_create( 16945 (uchar_t *)&ipif->ipif_subnet, /* dest pref */ 16946 (uchar_t *)&ipif->ipif_net_mask, /* mask */ 16947 (uchar_t *)&nipif->ipif_src_addr, /* src addr */ 16948 NULL, /* no gateway */ 16949 &ipif->ipif_mtu, /* max frag */ 16950 NULL, /* no src nce */ 16951 NULL, /* no recv from queue */ 16952 stq, /* send-to queue */ 16953 ill->ill_net_type, /* IF_[NO]RESOLVER */ 16954 ipif, 16955 0, 16956 0, 16957 0, 16958 0, 16959 &ire_uinfo_null, 16960 NULL, 16961 NULL, 16962 ipst); 16963 16964 if (ire != NULL) { 16965 ire_t *ret_ire; 16966 int error; 16967 16968 /* 16969 * We don't need ipif_ire anymore. We need to delete 16970 * before we add so that ire_add does not detect 16971 * duplicates. 16972 */ 16973 ire_delete(ipif_ire); 16974 ret_ire = ire; 16975 error = ire_add(&ret_ire, NULL, NULL, NULL, B_FALSE); 16976 ASSERT(error == 0); 16977 ASSERT(ire == ret_ire); 16978 /* Held in ire_add */ 16979 ire_refrele(ret_ire); 16980 } 16981 /* 16982 * Either we are falling through from above or could not 16983 * allocate a replacement. 16984 */ 16985 ire_refrele(ipif_ire); 16986 if (need_rele) 16987 ipif_refrele(nipif); 16988 } 16989 16990 /* 16991 * This old_ipif is going away. 16992 * 16993 * Determine if any other ipif's are using our address as 16994 * ipif_lcl_addr (due to those being IPIF_NOLOCAL, IPIF_ANYCAST, or 16995 * IPIF_DEPRECATED). 16996 * Find the IRE_INTERFACE for such ipifs and recreate them 16997 * to use an different source address following the rules in 16998 * ipif_up_done. 16999 */ 17000 static void 17001 ipif_update_other_ipifs(ipif_t *old_ipif) 17002 { 17003 ipif_t *ipif; 17004 ill_t *ill; 17005 char buf[INET6_ADDRSTRLEN]; 17006 17007 ASSERT(IAM_WRITER_IPIF(old_ipif)); 17008 17009 ill = old_ipif->ipif_ill; 17010 17011 ip1dbg(("ipif_update_other_ipifs(%s, %s)\n", ill->ill_name, 17012 inet_ntop(AF_INET, &old_ipif->ipif_lcl_addr, buf, sizeof (buf)))); 17013 17014 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 17015 if (ipif == old_ipif) 17016 continue; 17017 ipif_recreate_interface_routes(old_ipif, ipif); 17018 } 17019 } 17020 17021 /* ARGSUSED */ 17022 int 17023 if_unitsel_restart(ipif_t *ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, 17024 ip_ioctl_cmd_t *ipip, void *dummy_ifreq) 17025 { 17026 /* 17027 * ill_phyint_reinit merged the v4 and v6 into a single 17028 * ipsq. We might not have been able to complete the 17029 * operation in ipif_set_values, if we could not become 17030 * exclusive. If so restart it here. 17031 */ 17032 return (ipif_set_values_tail(ipif->ipif_ill, ipif, mp, q)); 17033 } 17034 17035 /* 17036 * Can operate on either a module or a driver queue. 17037 * Returns an error if not a module queue. 17038 */ 17039 /* ARGSUSED */ 17040 int 17041 if_unitsel(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, 17042 ip_ioctl_cmd_t *ipip, void *dummy_ifreq) 17043 { 17044 queue_t *q1 = q; 17045 char *cp; 17046 char interf_name[LIFNAMSIZ]; 17047 uint_t ppa = *(uint_t *)mp->b_cont->b_cont->b_rptr; 17048 17049 if (q->q_next == NULL) { 17050 ip1dbg(( 17051 "if_unitsel: IF_UNITSEL: no q_next\n")); 17052 return (EINVAL); 17053 } 17054 17055 if (((ill_t *)(q->q_ptr))->ill_name[0] != '\0') 17056 return (EALREADY); 17057 17058 do { 17059 q1 = q1->q_next; 17060 } while (q1->q_next); 17061 cp = q1->q_qinfo->qi_minfo->mi_idname; 17062 (void) sprintf(interf_name, "%s%d", cp, ppa); 17063 17064 /* 17065 * Here we are not going to delay the ioack until after 17066 * ACKs from DL_ATTACH_REQ/DL_BIND_REQ. So no need to save the 17067 * original ioctl message before sending the requests. 17068 */ 17069 return (ipif_set_values(q, mp, interf_name, &ppa)); 17070 } 17071 17072 /* ARGSUSED */ 17073 int 17074 ip_sioctl_sifname(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, 17075 ip_ioctl_cmd_t *ipip, void *dummy_ifreq) 17076 { 17077 return (ENXIO); 17078 } 17079 17080 /* 17081 * Refresh all IRE_BROADCAST entries associated with `ill' to ensure the 17082 * minimum (but complete) set exist. This is necessary when adding or 17083 * removing an interface to/from an IPMP group, since interfaces in an 17084 * IPMP group use the IRE_BROADCAST entries for the IPMP group (whenever 17085 * its test address subnets overlap with IPMP data addresses). It's also 17086 * used to refresh the IRE_BROADCAST entries associated with the IPMP 17087 * interface when the nominated broadcast interface changes. 17088 */ 17089 void 17090 ill_refresh_bcast(ill_t *ill) 17091 { 17092 ire_t *ire_array[12]; /* max ipif_create_bcast_ires() can create */ 17093 ire_t **irep; 17094 ipif_t *ipif; 17095 17096 ASSERT(!ill->ill_isv6); 17097 ASSERT(IAM_WRITER_ILL(ill)); 17098 17099 /* 17100 * Remove any old broadcast IREs. 17101 */ 17102 ire_walk_ill_v4(MATCH_IRE_ILL | MATCH_IRE_TYPE, IRE_BROADCAST, 17103 ill_broadcast_delete, ill, ill); 17104 17105 /* 17106 * Create new ones for any ipifs that are up and broadcast-capable. 17107 */ 17108 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 17109 if ((ipif->ipif_flags & (IPIF_UP|IPIF_BROADCAST)) != 17110 (IPIF_UP|IPIF_BROADCAST)) 17111 continue; 17112 17113 irep = ipif_create_bcast_ires(ipif, ire_array); 17114 while (irep-- > ire_array) { 17115 (void) ire_add(irep, NULL, NULL, NULL, B_FALSE); 17116 if (*irep != NULL) 17117 ire_refrele(*irep); 17118 } 17119 } 17120 } 17121 17122 /* 17123 * Create any IRE_BROADCAST entries for `ipif', and store those entries in 17124 * `irep'. Returns a pointer to the next free `irep' entry (just like 17125 * ire_check_and_create_bcast()). 17126 */ 17127 static ire_t ** 17128 ipif_create_bcast_ires(ipif_t *ipif, ire_t **irep) 17129 { 17130 ipaddr_t addr; 17131 ipaddr_t netmask = ip_net_mask(ipif->ipif_lcl_addr); 17132 ipaddr_t subnetmask = ipif->ipif_net_mask; 17133 int flags = MATCH_IRE_TYPE | MATCH_IRE_ILL; 17134 17135 ip1dbg(("ipif_create_bcast_ires: creating broadcast IREs\n")); 17136 17137 ASSERT(ipif->ipif_flags & IPIF_BROADCAST); 17138 17139 if (ipif->ipif_lcl_addr == INADDR_ANY || 17140 (ipif->ipif_flags & IPIF_NOLOCAL)) 17141 netmask = htonl(IN_CLASSA_NET); /* fallback */ 17142 17143 irep = ire_check_and_create_bcast(ipif, 0, irep, flags); 17144 irep = ire_check_and_create_bcast(ipif, INADDR_BROADCAST, irep, flags); 17145 17146 /* 17147 * For backward compatibility, we create net broadcast IREs based on 17148 * the old "IP address class system", since some old machines only 17149 * respond to these class derived net broadcast. However, we must not 17150 * create these net broadcast IREs if the subnetmask is shorter than 17151 * the IP address class based derived netmask. Otherwise, we may 17152 * create a net broadcast address which is the same as an IP address 17153 * on the subnet -- and then TCP will refuse to talk to that address. 17154 */ 17155 if (netmask < subnetmask) { 17156 addr = netmask & ipif->ipif_subnet; 17157 irep = ire_check_and_create_bcast(ipif, addr, irep, flags); 17158 irep = ire_check_and_create_bcast(ipif, ~netmask | addr, irep, 17159 flags); 17160 } 17161 17162 /* 17163 * Don't create IRE_BROADCAST IREs for the interface if the subnetmask 17164 * is 0xFFFFFFFF, as an IRE_LOCAL for that interface is already 17165 * created. Creating these broadcast IREs will only create confusion 17166 * as `addr' will be the same as the IP address. 17167 */ 17168 if (subnetmask != 0xFFFFFFFF) { 17169 addr = ipif->ipif_subnet; 17170 irep = ire_check_and_create_bcast(ipif, addr, irep, flags); 17171 irep = ire_check_and_create_bcast(ipif, ~subnetmask | addr, 17172 irep, flags); 17173 } 17174 17175 return (irep); 17176 } 17177 17178 /* 17179 * Broadcast IRE info structure used in the functions below. Since we 17180 * allocate BCAST_COUNT of them on the stack, keep the bit layout compact. 17181 */ 17182 typedef struct bcast_ireinfo { 17183 uchar_t bi_type; /* BCAST_* value from below */ 17184 uchar_t bi_willdie:1, /* will this IRE be going away? */ 17185 bi_needrep:1, /* do we need to replace it? */ 17186 bi_haverep:1, /* have we replaced it? */ 17187 bi_pad:5; 17188 ipaddr_t bi_addr; /* IRE address */ 17189 ipif_t *bi_backup; /* last-ditch ipif to replace it on */ 17190 } bcast_ireinfo_t; 17191 17192 enum { BCAST_ALLONES, BCAST_ALLZEROES, BCAST_NET, BCAST_SUBNET, BCAST_COUNT }; 17193 17194 /* 17195 * Check if `ipif' needs the dying broadcast IRE described by `bireinfop', and 17196 * return B_TRUE if it should immediately be used to recreate the IRE. 17197 */ 17198 static boolean_t 17199 ipif_consider_bcast(ipif_t *ipif, bcast_ireinfo_t *bireinfop) 17200 { 17201 ipaddr_t addr; 17202 17203 ASSERT(!bireinfop->bi_haverep && bireinfop->bi_willdie); 17204 17205 switch (bireinfop->bi_type) { 17206 case BCAST_NET: 17207 addr = ipif->ipif_subnet & ip_net_mask(ipif->ipif_subnet); 17208 if (addr != bireinfop->bi_addr) 17209 return (B_FALSE); 17210 break; 17211 case BCAST_SUBNET: 17212 if (ipif->ipif_subnet != bireinfop->bi_addr) 17213 return (B_FALSE); 17214 break; 17215 } 17216 17217 bireinfop->bi_needrep = 1; 17218 if (ipif->ipif_flags & (IPIF_DEPRECATED|IPIF_NOLOCAL|IPIF_ANYCAST)) { 17219 if (bireinfop->bi_backup == NULL) 17220 bireinfop->bi_backup = ipif; 17221 return (B_FALSE); 17222 } 17223 return (B_TRUE); 17224 } 17225 17226 /* 17227 * Create the broadcast IREs described by `bireinfop' on `ipif', and return 17228 * them ala ire_check_and_create_bcast(). 17229 */ 17230 static ire_t ** 17231 ipif_create_bcast(ipif_t *ipif, bcast_ireinfo_t *bireinfop, ire_t **irep) 17232 { 17233 ipaddr_t mask, addr; 17234 17235 ASSERT(!bireinfop->bi_haverep && bireinfop->bi_needrep); 17236 17237 addr = bireinfop->bi_addr; 17238 irep = ire_create_bcast(ipif, addr, irep); 17239 17240 switch (bireinfop->bi_type) { 17241 case BCAST_NET: 17242 mask = ip_net_mask(ipif->ipif_subnet); 17243 irep = ire_create_bcast(ipif, addr | ~mask, irep); 17244 break; 17245 case BCAST_SUBNET: 17246 mask = ipif->ipif_net_mask; 17247 irep = ire_create_bcast(ipif, addr | ~mask, irep); 17248 break; 17249 } 17250 17251 bireinfop->bi_haverep = 1; 17252 return (irep); 17253 } 17254 17255 /* 17256 * Walk through all of the ipifs on `ill' that will be affected by `test_ipif' 17257 * going away, and determine if any of the broadcast IREs (named by `bireinfop') 17258 * that are going away are still needed. If so, have ipif_create_bcast() 17259 * recreate them (except for the deprecated case, as explained below). 17260 */ 17261 static ire_t ** 17262 ill_create_bcast(ill_t *ill, ipif_t *test_ipif, bcast_ireinfo_t *bireinfo, 17263 ire_t **irep) 17264 { 17265 int i; 17266 ipif_t *ipif; 17267 17268 ASSERT(!ill->ill_isv6); 17269 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 17270 /* 17271 * Skip this ipif if it's (a) the one being taken down, (b) 17272 * not in the same zone, or (c) has no valid local address. 17273 */ 17274 if (ipif == test_ipif || 17275 ipif->ipif_zoneid != test_ipif->ipif_zoneid || 17276 ipif->ipif_subnet == 0 || 17277 (ipif->ipif_flags & (IPIF_UP|IPIF_BROADCAST|IPIF_NOXMIT)) != 17278 (IPIF_UP|IPIF_BROADCAST)) 17279 continue; 17280 17281 /* 17282 * For each dying IRE that hasn't yet been replaced, see if 17283 * `ipif' needs it and whether the IRE should be recreated on 17284 * `ipif'. If `ipif' is deprecated, ipif_consider_bcast() 17285 * will return B_FALSE even if `ipif' needs the IRE on the 17286 * hopes that we'll later find a needy non-deprecated ipif. 17287 * However, the ipif is recorded in bi_backup for possible 17288 * subsequent use by ipif_check_bcast_ires(). 17289 */ 17290 for (i = 0; i < BCAST_COUNT; i++) { 17291 if (!bireinfo[i].bi_willdie || bireinfo[i].bi_haverep) 17292 continue; 17293 if (!ipif_consider_bcast(ipif, &bireinfo[i])) 17294 continue; 17295 irep = ipif_create_bcast(ipif, &bireinfo[i], irep); 17296 } 17297 17298 /* 17299 * If we've replaced all of the broadcast IREs that are going 17300 * to be taken down, we know we're done. 17301 */ 17302 for (i = 0; i < BCAST_COUNT; i++) { 17303 if (bireinfo[i].bi_willdie && !bireinfo[i].bi_haverep) 17304 break; 17305 } 17306 if (i == BCAST_COUNT) 17307 break; 17308 } 17309 return (irep); 17310 } 17311 17312 /* 17313 * Check if `test_ipif' (which is going away) is associated with any existing 17314 * broadcast IREs, and whether any other ipifs (e.g., on the same ill) were 17315 * using those broadcast IREs. If so, recreate the broadcast IREs on one or 17316 * more of those other ipifs. (The old IREs will be deleted in ipif_down().) 17317 * 17318 * This is necessary because broadcast IREs are shared. In particular, a 17319 * given ill has one set of all-zeroes and all-ones broadcast IREs (for every 17320 * zone), plus one set of all-subnet-ones, all-subnet-zeroes, all-net-ones, 17321 * and all-net-zeroes for every net/subnet (and every zone) it has IPIF_UP 17322 * ipifs on. Thus, if there are two IPIF_UP ipifs on the same subnet with the 17323 * same zone, they will share the same set of broadcast IREs. 17324 * 17325 * Note: the upper bound of 12 IREs comes from the worst case of replacing all 17326 * six pairs (loopback and non-loopback) of broadcast IREs (all-zeroes, 17327 * all-ones, subnet-zeroes, subnet-ones, net-zeroes, and net-ones). 17328 */ 17329 static void 17330 ipif_check_bcast_ires(ipif_t *test_ipif) 17331 { 17332 ill_t *ill = test_ipif->ipif_ill; 17333 ire_t *ire, *ire_array[12]; /* see note above */ 17334 ire_t **irep1, **irep = &ire_array[0]; 17335 uint_t i, willdie; 17336 ipaddr_t mask = ip_net_mask(test_ipif->ipif_subnet); 17337 bcast_ireinfo_t bireinfo[BCAST_COUNT]; 17338 17339 ASSERT(!test_ipif->ipif_isv6); 17340 ASSERT(IAM_WRITER_IPIF(test_ipif)); 17341 17342 /* 17343 * No broadcast IREs for the LOOPBACK interface 17344 * or others such as point to point and IPIF_NOXMIT. 17345 */ 17346 if (!(test_ipif->ipif_flags & IPIF_BROADCAST) || 17347 (test_ipif->ipif_flags & IPIF_NOXMIT)) 17348 return; 17349 17350 bzero(bireinfo, sizeof (bireinfo)); 17351 bireinfo[0].bi_type = BCAST_ALLZEROES; 17352 bireinfo[0].bi_addr = 0; 17353 17354 bireinfo[1].bi_type = BCAST_ALLONES; 17355 bireinfo[1].bi_addr = INADDR_BROADCAST; 17356 17357 bireinfo[2].bi_type = BCAST_NET; 17358 bireinfo[2].bi_addr = test_ipif->ipif_subnet & mask; 17359 17360 if (test_ipif->ipif_net_mask != 0) 17361 mask = test_ipif->ipif_net_mask; 17362 bireinfo[3].bi_type = BCAST_SUBNET; 17363 bireinfo[3].bi_addr = test_ipif->ipif_subnet & mask; 17364 17365 /* 17366 * Figure out what (if any) broadcast IREs will die as a result of 17367 * `test_ipif' going away. If none will die, we're done. 17368 */ 17369 for (i = 0, willdie = 0; i < BCAST_COUNT; i++) { 17370 ire = ire_ctable_lookup(bireinfo[i].bi_addr, 0, IRE_BROADCAST, 17371 test_ipif, ALL_ZONES, NULL, 17372 (MATCH_IRE_TYPE | MATCH_IRE_IPIF), ill->ill_ipst); 17373 if (ire != NULL) { 17374 willdie++; 17375 bireinfo[i].bi_willdie = 1; 17376 ire_refrele(ire); 17377 } 17378 } 17379 17380 if (willdie == 0) 17381 return; 17382 17383 /* 17384 * Walk through all the ipifs that will be affected by the dying IREs, 17385 * and recreate the IREs as necessary. Note that all interfaces in an 17386 * IPMP illgrp share the same broadcast IREs, and thus the entire 17387 * illgrp must be walked, starting with the IPMP meta-interface (so 17388 * that broadcast IREs end up on it whenever possible). 17389 */ 17390 if (IS_UNDER_IPMP(ill)) 17391 ill = ipmp_illgrp_ipmp_ill(ill->ill_grp); 17392 17393 irep = ill_create_bcast(ill, test_ipif, bireinfo, irep); 17394 17395 if (IS_IPMP(ill) || IS_UNDER_IPMP(ill)) { 17396 ipmp_illgrp_t *illg = ill->ill_grp; 17397 17398 ill = list_head(&illg->ig_if); 17399 for (; ill != NULL; ill = list_next(&illg->ig_if, ill)) { 17400 for (i = 0; i < BCAST_COUNT; i++) { 17401 if (bireinfo[i].bi_willdie && 17402 !bireinfo[i].bi_haverep) 17403 break; 17404 } 17405 if (i == BCAST_COUNT) 17406 break; 17407 17408 irep = ill_create_bcast(ill, test_ipif, bireinfo, irep); 17409 } 17410 } 17411 17412 /* 17413 * Scan through the set of broadcast IREs and see if there are any 17414 * that we need to replace that have not yet been replaced. If so, 17415 * replace them using the appropriate backup ipif. 17416 */ 17417 for (i = 0; i < BCAST_COUNT; i++) { 17418 if (bireinfo[i].bi_needrep && !bireinfo[i].bi_haverep) 17419 irep = ipif_create_bcast(bireinfo[i].bi_backup, 17420 &bireinfo[i], irep); 17421 } 17422 17423 /* 17424 * If we can't create all of them, don't add any of them. (Code in 17425 * ip_wput_ire() and ire_to_ill() assumes that we always have a 17426 * non-loopback copy and loopback copy for a given address.) 17427 */ 17428 for (irep1 = irep; irep1 > ire_array; ) { 17429 irep1--; 17430 if (*irep1 == NULL) { 17431 ip0dbg(("ipif_check_bcast_ires: can't create " 17432 "IRE_BROADCAST, memory allocation failure\n")); 17433 while (irep > ire_array) { 17434 irep--; 17435 if (*irep != NULL) 17436 ire_delete(*irep); 17437 } 17438 return; 17439 } 17440 } 17441 17442 for (irep1 = irep; irep1 > ire_array; ) { 17443 irep1--; 17444 if (ire_add(irep1, NULL, NULL, NULL, B_FALSE) == 0) 17445 ire_refrele(*irep1); /* Held in ire_add */ 17446 } 17447 } 17448 17449 /* 17450 * Extract both the flags (including IFF_CANTCHANGE) such as IFF_IPV* 17451 * from lifr_flags and the name from lifr_name. 17452 * Set IFF_IPV* and ill_isv6 prior to doing the lookup 17453 * since ipif_lookup_on_name uses the _isv6 flags when matching. 17454 * Returns EINPROGRESS when mp has been consumed by queueing it on 17455 * ill_pending_mp and the ioctl will complete in ip_rput. 17456 * 17457 * Can operate on either a module or a driver queue. 17458 * Returns an error if not a module queue. 17459 */ 17460 /* ARGSUSED */ 17461 int 17462 ip_sioctl_slifname(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 17463 ip_ioctl_cmd_t *ipip, void *if_req) 17464 { 17465 ill_t *ill = q->q_ptr; 17466 phyint_t *phyi; 17467 ip_stack_t *ipst; 17468 struct lifreq *lifr = if_req; 17469 17470 ASSERT(ipif != NULL); 17471 ip1dbg(("ip_sioctl_slifname %s\n", lifr->lifr_name)); 17472 17473 if (q->q_next == NULL) { 17474 ip1dbg(("if_sioctl_slifname: SIOCSLIFNAME: no q_next\n")); 17475 return (EINVAL); 17476 } 17477 17478 /* 17479 * If we are not writer on 'q' then this interface exists already 17480 * and previous lookups (ip_extract_lifreq()) found this ipif -- 17481 * so return EALREADY. 17482 */ 17483 if (ill != ipif->ipif_ill) 17484 return (EALREADY); 17485 17486 if (ill->ill_name[0] != '\0') 17487 return (EALREADY); 17488 17489 /* 17490 * Set all the flags. Allows all kinds of override. Provide some 17491 * sanity checking by not allowing IFF_BROADCAST and IFF_MULTICAST 17492 * unless there is either multicast/broadcast support in the driver 17493 * or it is a pt-pt link. 17494 */ 17495 if (lifr->lifr_flags & (IFF_PROMISC|IFF_ALLMULTI)) { 17496 /* Meaningless to IP thus don't allow them to be set. */ 17497 ip1dbg(("ip_setname: EINVAL 1\n")); 17498 return (EINVAL); 17499 } 17500 17501 /* 17502 * If there's another ill already with the requested name, ensure 17503 * that it's of the same type. Otherwise, ill_phyint_reinit() will 17504 * fuse together two unrelated ills, which will cause chaos. 17505 */ 17506 ipst = ill->ill_ipst; 17507 phyi = avl_find(&ipst->ips_phyint_g_list->phyint_list_avl_by_name, 17508 lifr->lifr_name, NULL); 17509 if (phyi != NULL) { 17510 ill_t *ill_mate = phyi->phyint_illv4; 17511 17512 if (ill_mate == NULL) 17513 ill_mate = phyi->phyint_illv6; 17514 ASSERT(ill_mate != NULL); 17515 17516 if (ill_mate->ill_media->ip_m_mac_type != 17517 ill->ill_media->ip_m_mac_type) { 17518 ip1dbg(("if_sioctl_slifname: SIOCSLIFNAME: attempt to " 17519 "use the same ill name on differing media\n")); 17520 return (EINVAL); 17521 } 17522 } 17523 17524 /* 17525 * For a DL_STYLE2 driver (ill_needs_attach), we would not have the 17526 * ill_bcast_addr_length info. 17527 */ 17528 if (!ill->ill_needs_attach && 17529 ((lifr->lifr_flags & IFF_MULTICAST) && 17530 !(lifr->lifr_flags & IFF_POINTOPOINT) && 17531 ill->ill_bcast_addr_length == 0)) { 17532 /* Link not broadcast/pt-pt capable i.e. no multicast */ 17533 ip1dbg(("ip_setname: EINVAL 2\n")); 17534 return (EINVAL); 17535 } 17536 if ((lifr->lifr_flags & IFF_BROADCAST) && 17537 ((lifr->lifr_flags & IFF_IPV6) || 17538 (!ill->ill_needs_attach && ill->ill_bcast_addr_length == 0))) { 17539 /* Link not broadcast capable or IPv6 i.e. no broadcast */ 17540 ip1dbg(("ip_setname: EINVAL 3\n")); 17541 return (EINVAL); 17542 } 17543 if (lifr->lifr_flags & IFF_UP) { 17544 /* Can only be set with SIOCSLIFFLAGS */ 17545 ip1dbg(("ip_setname: EINVAL 4\n")); 17546 return (EINVAL); 17547 } 17548 if ((lifr->lifr_flags & (IFF_IPV6|IFF_IPV4)) != IFF_IPV6 && 17549 (lifr->lifr_flags & (IFF_IPV6|IFF_IPV4)) != IFF_IPV4) { 17550 ip1dbg(("ip_setname: EINVAL 5\n")); 17551 return (EINVAL); 17552 } 17553 /* 17554 * Only allow the IFF_XRESOLV flag to be set on IPv6 interfaces. 17555 */ 17556 if ((lifr->lifr_flags & IFF_XRESOLV) && 17557 !(lifr->lifr_flags & IFF_IPV6) && 17558 !(ipif->ipif_isv6)) { 17559 ip1dbg(("ip_setname: EINVAL 6\n")); 17560 return (EINVAL); 17561 } 17562 17563 /* 17564 * The user has done SIOCGLIFFLAGS prior to this ioctl and hence 17565 * we have all the flags here. So, we assign rather than we OR. 17566 * We can't OR the flags here because we don't want to set 17567 * both IFF_IPV4 and IFF_IPV6. We start off as IFF_IPV4 in 17568 * ipif_allocate and become IFF_IPV4 or IFF_IPV6 here depending 17569 * on lifr_flags value here. 17570 */ 17571 /* 17572 * This ill has not been inserted into the global list. 17573 * So we are still single threaded and don't need any lock 17574 */ 17575 ipif->ipif_flags = lifr->lifr_flags & IFF_LOGINT_FLAGS & ~IFF_DUPLICATE; 17576 ill->ill_flags = lifr->lifr_flags & IFF_PHYINTINST_FLAGS; 17577 ill->ill_phyint->phyint_flags = lifr->lifr_flags & IFF_PHYINT_FLAGS; 17578 17579 /* We started off as V4. */ 17580 if (ill->ill_flags & ILLF_IPV6) { 17581 ill->ill_phyint->phyint_illv6 = ill; 17582 ill->ill_phyint->phyint_illv4 = NULL; 17583 } 17584 17585 return (ipif_set_values(q, mp, lifr->lifr_name, &lifr->lifr_ppa)); 17586 } 17587 17588 /* ARGSUSED */ 17589 int 17590 ip_sioctl_slifname_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 17591 ip_ioctl_cmd_t *ipip, void *if_req) 17592 { 17593 /* 17594 * ill_phyint_reinit merged the v4 and v6 into a single 17595 * ipsq. We might not have been able to complete the 17596 * slifname in ipif_set_values, if we could not become 17597 * exclusive. If so restart it here 17598 */ 17599 return (ipif_set_values_tail(ipif->ipif_ill, ipif, mp, q)); 17600 } 17601 17602 /* 17603 * Return a pointer to the ipif which matches the index, IP version type and 17604 * zoneid. 17605 */ 17606 ipif_t * 17607 ipif_lookup_on_ifindex(uint_t index, boolean_t isv6, zoneid_t zoneid, 17608 queue_t *q, mblk_t *mp, ipsq_func_t func, int *err, ip_stack_t *ipst) 17609 { 17610 ill_t *ill; 17611 ipif_t *ipif = NULL; 17612 17613 ASSERT((q == NULL && mp == NULL && func == NULL && err == NULL) || 17614 (q != NULL && mp != NULL && func != NULL && err != NULL)); 17615 17616 if (err != NULL) 17617 *err = 0; 17618 17619 ill = ill_lookup_on_ifindex(index, isv6, q, mp, func, err, ipst); 17620 if (ill != NULL) { 17621 mutex_enter(&ill->ill_lock); 17622 for (ipif = ill->ill_ipif; ipif != NULL; 17623 ipif = ipif->ipif_next) { 17624 if (IPIF_CAN_LOOKUP(ipif) && (zoneid == ALL_ZONES || 17625 zoneid == ipif->ipif_zoneid || 17626 ipif->ipif_zoneid == ALL_ZONES)) { 17627 ipif_refhold_locked(ipif); 17628 break; 17629 } 17630 } 17631 mutex_exit(&ill->ill_lock); 17632 ill_refrele(ill); 17633 if (ipif == NULL && err != NULL) 17634 *err = ENXIO; 17635 } 17636 return (ipif); 17637 } 17638 17639 /* 17640 * Change an existing physical interface's index. If the new index 17641 * is acceptable we update the index and the phyint_list_avl_by_index tree. 17642 * Finally, we update other systems which may have a dependence on the 17643 * index value. 17644 */ 17645 /* ARGSUSED */ 17646 int 17647 ip_sioctl_slifindex(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 17648 ip_ioctl_cmd_t *ipip, void *ifreq) 17649 { 17650 ill_t *ill; 17651 phyint_t *phyi; 17652 struct ifreq *ifr = (struct ifreq *)ifreq; 17653 struct lifreq *lifr = (struct lifreq *)ifreq; 17654 uint_t old_index, index; 17655 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; 17656 avl_index_t where; 17657 17658 if (ipip->ipi_cmd_type == IF_CMD) 17659 index = ifr->ifr_index; 17660 else 17661 index = lifr->lifr_index; 17662 17663 /* 17664 * Only allow on physical interface. Also, index zero is illegal. 17665 */ 17666 ill = ipif->ipif_ill; 17667 phyi = ill->ill_phyint; 17668 if (ipif->ipif_id != 0 || index == 0) { 17669 return (EINVAL); 17670 } 17671 17672 /* If the index is not changing, no work to do */ 17673 if (phyi->phyint_ifindex == index) 17674 return (0); 17675 17676 /* 17677 * Use phyint_exists() to determine if the new interface index 17678 * is already in use. If the index is unused then we need to 17679 * change the phyint's position in the phyint_list_avl_by_index 17680 * tree. If we do not do this, subsequent lookups (using the new 17681 * index value) will not find the phyint. 17682 */ 17683 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 17684 if (phyint_exists(index, ipst)) { 17685 rw_exit(&ipst->ips_ill_g_lock); 17686 return (EEXIST); 17687 } 17688 17689 /* The new index is unused. Set it in the phyint. */ 17690 old_index = phyi->phyint_ifindex; 17691 phyi->phyint_ifindex = index; 17692 17693 avl_remove(&ipst->ips_phyint_g_list->phyint_list_avl_by_index, phyi); 17694 (void) avl_find(&ipst->ips_phyint_g_list->phyint_list_avl_by_index, 17695 &index, &where); 17696 avl_insert(&ipst->ips_phyint_g_list->phyint_list_avl_by_index, 17697 phyi, where); 17698 rw_exit(&ipst->ips_ill_g_lock); 17699 17700 /* Update SCTP's ILL list */ 17701 sctp_ill_reindex(ill, old_index); 17702 17703 /* Send the routing sockets message */ 17704 ip_rts_ifmsg(ipif, RTSQ_DEFAULT); 17705 if (ILL_OTHER(ill)) 17706 ip_rts_ifmsg(ILL_OTHER(ill)->ill_ipif, RTSQ_DEFAULT); 17707 17708 return (0); 17709 } 17710 17711 /* ARGSUSED */ 17712 int 17713 ip_sioctl_get_lifindex(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 17714 ip_ioctl_cmd_t *ipip, void *ifreq) 17715 { 17716 struct ifreq *ifr = (struct ifreq *)ifreq; 17717 struct lifreq *lifr = (struct lifreq *)ifreq; 17718 17719 ip1dbg(("ip_sioctl_get_lifindex(%s:%u %p)\n", 17720 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 17721 /* Get the interface index */ 17722 if (ipip->ipi_cmd_type == IF_CMD) { 17723 ifr->ifr_index = ipif->ipif_ill->ill_phyint->phyint_ifindex; 17724 } else { 17725 lifr->lifr_index = ipif->ipif_ill->ill_phyint->phyint_ifindex; 17726 } 17727 return (0); 17728 } 17729 17730 /* ARGSUSED */ 17731 int 17732 ip_sioctl_get_lifzone(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 17733 ip_ioctl_cmd_t *ipip, void *ifreq) 17734 { 17735 struct lifreq *lifr = (struct lifreq *)ifreq; 17736 17737 ip1dbg(("ip_sioctl_get_lifzone(%s:%u %p)\n", 17738 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 17739 /* Get the interface zone */ 17740 ASSERT(ipip->ipi_cmd_type == LIF_CMD); 17741 lifr->lifr_zoneid = ipif->ipif_zoneid; 17742 return (0); 17743 } 17744 17745 /* 17746 * Set the zoneid of an interface. 17747 */ 17748 /* ARGSUSED */ 17749 int 17750 ip_sioctl_slifzone(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 17751 ip_ioctl_cmd_t *ipip, void *ifreq) 17752 { 17753 struct lifreq *lifr = (struct lifreq *)ifreq; 17754 int err = 0; 17755 boolean_t need_up = B_FALSE; 17756 zone_t *zptr; 17757 zone_status_t status; 17758 zoneid_t zoneid; 17759 17760 ASSERT(ipip->ipi_cmd_type == LIF_CMD); 17761 if ((zoneid = lifr->lifr_zoneid) == ALL_ZONES) { 17762 if (!is_system_labeled()) 17763 return (ENOTSUP); 17764 zoneid = GLOBAL_ZONEID; 17765 } 17766 17767 /* cannot assign instance zero to a non-global zone */ 17768 if (ipif->ipif_id == 0 && zoneid != GLOBAL_ZONEID) 17769 return (ENOTSUP); 17770 17771 /* 17772 * Cannot assign to a zone that doesn't exist or is shutting down. In 17773 * the event of a race with the zone shutdown processing, since IP 17774 * serializes this ioctl and SIOCGLIFCONF/SIOCLIFREMOVEIF, we know the 17775 * interface will be cleaned up even if the zone is shut down 17776 * immediately after the status check. If the interface can't be brought 17777 * down right away, and the zone is shut down before the restart 17778 * function is called, we resolve the possible races by rechecking the 17779 * zone status in the restart function. 17780 */ 17781 if ((zptr = zone_find_by_id(zoneid)) == NULL) 17782 return (EINVAL); 17783 status = zone_status_get(zptr); 17784 zone_rele(zptr); 17785 17786 if (status != ZONE_IS_READY && status != ZONE_IS_RUNNING) 17787 return (EINVAL); 17788 17789 if (ipif->ipif_flags & IPIF_UP) { 17790 /* 17791 * If the interface is already marked up, 17792 * we call ipif_down which will take care 17793 * of ditching any IREs that have been set 17794 * up based on the old interface address. 17795 */ 17796 err = ipif_logical_down(ipif, q, mp); 17797 if (err == EINPROGRESS) 17798 return (err); 17799 ipif_down_tail(ipif); 17800 need_up = B_TRUE; 17801 } 17802 17803 err = ip_sioctl_slifzone_tail(ipif, lifr->lifr_zoneid, q, mp, need_up); 17804 return (err); 17805 } 17806 17807 static int 17808 ip_sioctl_slifzone_tail(ipif_t *ipif, zoneid_t zoneid, 17809 queue_t *q, mblk_t *mp, boolean_t need_up) 17810 { 17811 int err = 0; 17812 ip_stack_t *ipst; 17813 17814 ip1dbg(("ip_sioctl_zoneid_tail(%s:%u %p)\n", 17815 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 17816 17817 if (CONN_Q(q)) 17818 ipst = CONNQ_TO_IPST(q); 17819 else 17820 ipst = ILLQ_TO_IPST(q); 17821 17822 /* 17823 * For exclusive stacks we don't allow a different zoneid than 17824 * global. 17825 */ 17826 if (ipst->ips_netstack->netstack_stackid != GLOBAL_NETSTACKID && 17827 zoneid != GLOBAL_ZONEID) 17828 return (EINVAL); 17829 17830 /* Set the new zone id. */ 17831 ipif->ipif_zoneid = zoneid; 17832 17833 /* Update sctp list */ 17834 sctp_update_ipif(ipif, SCTP_IPIF_UPDATE); 17835 17836 if (need_up) { 17837 /* 17838 * Now bring the interface back up. If this 17839 * is the only IPIF for the ILL, ipif_up 17840 * will have to re-bind to the device, so 17841 * we may get back EINPROGRESS, in which 17842 * case, this IOCTL will get completed in 17843 * ip_rput_dlpi when we see the DL_BIND_ACK. 17844 */ 17845 err = ipif_up(ipif, q, mp); 17846 } 17847 return (err); 17848 } 17849 17850 /* ARGSUSED */ 17851 int 17852 ip_sioctl_slifzone_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 17853 ip_ioctl_cmd_t *ipip, void *if_req) 17854 { 17855 struct lifreq *lifr = (struct lifreq *)if_req; 17856 zoneid_t zoneid; 17857 zone_t *zptr; 17858 zone_status_t status; 17859 17860 ASSERT(ipif->ipif_id != 0); 17861 ASSERT(ipip->ipi_cmd_type == LIF_CMD); 17862 if ((zoneid = lifr->lifr_zoneid) == ALL_ZONES) 17863 zoneid = GLOBAL_ZONEID; 17864 17865 ip1dbg(("ip_sioctl_slifzone_restart(%s:%u %p)\n", 17866 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 17867 17868 /* 17869 * We recheck the zone status to resolve the following race condition: 17870 * 1) process sends SIOCSLIFZONE to put hme0:1 in zone "myzone"; 17871 * 2) hme0:1 is up and can't be brought down right away; 17872 * ip_sioctl_slifzone() returns EINPROGRESS and the request is queued; 17873 * 3) zone "myzone" is halted; the zone status switches to 17874 * 'shutting_down' and the zones framework sends SIOCGLIFCONF to list 17875 * the interfaces to remove - hme0:1 is not returned because it's not 17876 * yet in "myzone", so it won't be removed; 17877 * 4) the restart function for SIOCSLIFZONE is called; without the 17878 * status check here, we would have hme0:1 in "myzone" after it's been 17879 * destroyed. 17880 * Note that if the status check fails, we need to bring the interface 17881 * back to its state prior to ip_sioctl_slifzone(), hence the call to 17882 * ipif_up_done[_v6](). 17883 */ 17884 status = ZONE_IS_UNINITIALIZED; 17885 if ((zptr = zone_find_by_id(zoneid)) != NULL) { 17886 status = zone_status_get(zptr); 17887 zone_rele(zptr); 17888 } 17889 if (status != ZONE_IS_READY && status != ZONE_IS_RUNNING) { 17890 if (ipif->ipif_isv6) { 17891 (void) ipif_up_done_v6(ipif); 17892 } else { 17893 (void) ipif_up_done(ipif); 17894 } 17895 return (EINVAL); 17896 } 17897 17898 ipif_down_tail(ipif); 17899 17900 return (ip_sioctl_slifzone_tail(ipif, lifr->lifr_zoneid, q, mp, 17901 B_TRUE)); 17902 } 17903 17904 /* 17905 * Return the number of addresses on `ill' with one or more of the values 17906 * in `set' set and all of the values in `clear' clear. 17907 */ 17908 static uint_t 17909 ill_flagaddr_cnt(const ill_t *ill, uint64_t set, uint64_t clear) 17910 { 17911 ipif_t *ipif; 17912 uint_t cnt = 0; 17913 17914 ASSERT(IAM_WRITER_ILL(ill)); 17915 17916 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) 17917 if ((ipif->ipif_flags & set) && !(ipif->ipif_flags & clear)) 17918 cnt++; 17919 17920 return (cnt); 17921 } 17922 17923 /* 17924 * Return the number of migratable addresses on `ill' that are under 17925 * application control. 17926 */ 17927 uint_t 17928 ill_appaddr_cnt(const ill_t *ill) 17929 { 17930 return (ill_flagaddr_cnt(ill, IPIF_DHCPRUNNING | IPIF_ADDRCONF, 17931 IPIF_NOFAILOVER)); 17932 } 17933 17934 /* 17935 * Return the number of point-to-point addresses on `ill'. 17936 */ 17937 uint_t 17938 ill_ptpaddr_cnt(const ill_t *ill) 17939 { 17940 return (ill_flagaddr_cnt(ill, IPIF_POINTOPOINT, 0)); 17941 } 17942 17943 /* ARGSUSED */ 17944 int 17945 ip_sioctl_get_lifusesrc(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 17946 ip_ioctl_cmd_t *ipip, void *ifreq) 17947 { 17948 struct lifreq *lifr = ifreq; 17949 17950 ASSERT(q->q_next == NULL); 17951 ASSERT(CONN_Q(q)); 17952 17953 ip1dbg(("ip_sioctl_get_lifusesrc(%s:%u %p)\n", 17954 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 17955 lifr->lifr_index = ipif->ipif_ill->ill_usesrc_ifindex; 17956 ip1dbg(("ip_sioctl_get_lifusesrc:lifr_index = %d\n", lifr->lifr_index)); 17957 17958 return (0); 17959 } 17960 17961 /* Find the previous ILL in this usesrc group */ 17962 static ill_t * 17963 ill_prev_usesrc(ill_t *uill) 17964 { 17965 ill_t *ill; 17966 17967 for (ill = uill->ill_usesrc_grp_next; 17968 ASSERT(ill), ill->ill_usesrc_grp_next != uill; 17969 ill = ill->ill_usesrc_grp_next) 17970 /* do nothing */; 17971 return (ill); 17972 } 17973 17974 /* 17975 * Release all members of the usesrc group. This routine is called 17976 * from ill_delete when the interface being unplumbed is the 17977 * group head. 17978 */ 17979 static void 17980 ill_disband_usesrc_group(ill_t *uill) 17981 { 17982 ill_t *next_ill, *tmp_ill; 17983 ip_stack_t *ipst = uill->ill_ipst; 17984 17985 ASSERT(RW_WRITE_HELD(&ipst->ips_ill_g_usesrc_lock)); 17986 next_ill = uill->ill_usesrc_grp_next; 17987 17988 do { 17989 ASSERT(next_ill != NULL); 17990 tmp_ill = next_ill->ill_usesrc_grp_next; 17991 ASSERT(tmp_ill != NULL); 17992 next_ill->ill_usesrc_grp_next = NULL; 17993 next_ill->ill_usesrc_ifindex = 0; 17994 next_ill = tmp_ill; 17995 } while (next_ill->ill_usesrc_ifindex != 0); 17996 uill->ill_usesrc_grp_next = NULL; 17997 } 17998 17999 /* 18000 * Remove the client usesrc ILL from the list and relink to a new list 18001 */ 18002 int 18003 ill_relink_usesrc_ills(ill_t *ucill, ill_t *uill, uint_t ifindex) 18004 { 18005 ill_t *ill, *tmp_ill; 18006 ip_stack_t *ipst = ucill->ill_ipst; 18007 18008 ASSERT((ucill != NULL) && (ucill->ill_usesrc_grp_next != NULL) && 18009 (uill != NULL) && RW_WRITE_HELD(&ipst->ips_ill_g_usesrc_lock)); 18010 18011 /* 18012 * Check if the usesrc client ILL passed in is not already 18013 * in use as a usesrc ILL i.e one whose source address is 18014 * in use OR a usesrc ILL is not already in use as a usesrc 18015 * client ILL 18016 */ 18017 if ((ucill->ill_usesrc_ifindex == 0) || 18018 (uill->ill_usesrc_ifindex != 0)) { 18019 return (-1); 18020 } 18021 18022 ill = ill_prev_usesrc(ucill); 18023 ASSERT(ill->ill_usesrc_grp_next != NULL); 18024 18025 /* Remove from the current list */ 18026 if (ill->ill_usesrc_grp_next->ill_usesrc_grp_next == ill) { 18027 /* Only two elements in the list */ 18028 ASSERT(ill->ill_usesrc_ifindex == 0); 18029 ill->ill_usesrc_grp_next = NULL; 18030 } else { 18031 ill->ill_usesrc_grp_next = ucill->ill_usesrc_grp_next; 18032 } 18033 18034 if (ifindex == 0) { 18035 ucill->ill_usesrc_ifindex = 0; 18036 ucill->ill_usesrc_grp_next = NULL; 18037 return (0); 18038 } 18039 18040 ucill->ill_usesrc_ifindex = ifindex; 18041 tmp_ill = uill->ill_usesrc_grp_next; 18042 uill->ill_usesrc_grp_next = ucill; 18043 ucill->ill_usesrc_grp_next = 18044 (tmp_ill != NULL) ? tmp_ill : uill; 18045 return (0); 18046 } 18047 18048 /* 18049 * Set the ill_usesrc and ill_usesrc_head fields. See synchronization notes in 18050 * ip.c for locking details. 18051 */ 18052 /* ARGSUSED */ 18053 int 18054 ip_sioctl_slifusesrc(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 18055 ip_ioctl_cmd_t *ipip, void *ifreq) 18056 { 18057 struct lifreq *lifr = (struct lifreq *)ifreq; 18058 boolean_t isv6 = B_FALSE, reset_flg = B_FALSE, 18059 ill_flag_changed = B_FALSE; 18060 ill_t *usesrc_ill, *usesrc_cli_ill = ipif->ipif_ill; 18061 int err = 0, ret; 18062 uint_t ifindex; 18063 ipsq_t *ipsq = NULL; 18064 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; 18065 18066 ASSERT(IAM_WRITER_IPIF(ipif)); 18067 ASSERT(q->q_next == NULL); 18068 ASSERT(CONN_Q(q)); 18069 18070 isv6 = (Q_TO_CONN(q))->conn_af_isv6; 18071 18072 ifindex = lifr->lifr_index; 18073 if (ifindex == 0) { 18074 if (usesrc_cli_ill->ill_usesrc_grp_next == NULL) { 18075 /* non usesrc group interface, nothing to reset */ 18076 return (0); 18077 } 18078 ifindex = usesrc_cli_ill->ill_usesrc_ifindex; 18079 /* valid reset request */ 18080 reset_flg = B_TRUE; 18081 } 18082 18083 usesrc_ill = ill_lookup_on_ifindex(ifindex, isv6, q, mp, 18084 ip_process_ioctl, &err, ipst); 18085 if (usesrc_ill == NULL) { 18086 return (err); 18087 } 18088 18089 ipsq = ipsq_try_enter(NULL, usesrc_ill, q, mp, ip_process_ioctl, 18090 NEW_OP, B_TRUE); 18091 if (ipsq == NULL) { 18092 err = EINPROGRESS; 18093 /* Operation enqueued on the ipsq of the usesrc ILL */ 18094 goto done; 18095 } 18096 18097 /* USESRC isn't currently supported with IPMP */ 18098 if (IS_IPMP(usesrc_ill) || IS_UNDER_IPMP(usesrc_ill)) { 18099 err = ENOTSUP; 18100 goto done; 18101 } 18102 18103 /* 18104 * USESRC isn't compatible with the STANDBY flag. (STANDBY is only 18105 * used by IPMP underlying interfaces, but someone might think it's 18106 * more general and try to use it independently with VNI.) 18107 */ 18108 if (usesrc_ill->ill_phyint->phyint_flags & PHYI_STANDBY) { 18109 err = ENOTSUP; 18110 goto done; 18111 } 18112 18113 /* 18114 * If the client is already in use as a usesrc_ill or a usesrc_ill is 18115 * already a client then return EINVAL 18116 */ 18117 if (IS_USESRC_ILL(usesrc_cli_ill) || IS_USESRC_CLI_ILL(usesrc_ill)) { 18118 err = EINVAL; 18119 goto done; 18120 } 18121 18122 /* 18123 * If the ill_usesrc_ifindex field is already set to what it needs to 18124 * be then this is a duplicate operation. 18125 */ 18126 if (!reset_flg && usesrc_cli_ill->ill_usesrc_ifindex == ifindex) { 18127 err = 0; 18128 goto done; 18129 } 18130 18131 ip1dbg(("ip_sioctl_slifusesrc: usesrc_cli_ill %s, usesrc_ill %s," 18132 " v6 = %d", usesrc_cli_ill->ill_name, usesrc_ill->ill_name, 18133 usesrc_ill->ill_isv6)); 18134 18135 /* 18136 * The next step ensures that no new ires will be created referencing 18137 * the client ill, until the ILL_CHANGING flag is cleared. Then 18138 * we go through an ire walk deleting all ire caches that reference 18139 * the client ill. New ires referencing the client ill that are added 18140 * to the ire table before the ILL_CHANGING flag is set, will be 18141 * cleaned up by the ire walk below. Attempt to add new ires referencing 18142 * the client ill while the ILL_CHANGING flag is set will be failed 18143 * during the ire_add in ire_atomic_start. ire_atomic_start atomically 18144 * checks (under the ill_g_usesrc_lock) that the ire being added 18145 * is not stale, i.e the ire_stq and ire_ipif are consistent and 18146 * belong to the same usesrc group. 18147 */ 18148 mutex_enter(&usesrc_cli_ill->ill_lock); 18149 usesrc_cli_ill->ill_state_flags |= ILL_CHANGING; 18150 mutex_exit(&usesrc_cli_ill->ill_lock); 18151 ill_flag_changed = B_TRUE; 18152 18153 if (ipif->ipif_isv6) 18154 ire_walk_v6(ipif_delete_cache_ire, (char *)usesrc_cli_ill, 18155 ALL_ZONES, ipst); 18156 else 18157 ire_walk_v4(ipif_delete_cache_ire, (char *)usesrc_cli_ill, 18158 ALL_ZONES, ipst); 18159 18160 /* 18161 * ill_g_usesrc_lock global lock protects the ill_usesrc_grp_next 18162 * and the ill_usesrc_ifindex fields 18163 */ 18164 rw_enter(&ipst->ips_ill_g_usesrc_lock, RW_WRITER); 18165 18166 if (reset_flg) { 18167 ret = ill_relink_usesrc_ills(usesrc_cli_ill, usesrc_ill, 0); 18168 if (ret != 0) { 18169 err = EINVAL; 18170 } 18171 rw_exit(&ipst->ips_ill_g_usesrc_lock); 18172 goto done; 18173 } 18174 18175 /* 18176 * Four possibilities to consider: 18177 * 1. Both usesrc_ill and usesrc_cli_ill are not part of any usesrc grp 18178 * 2. usesrc_ill is part of a group but usesrc_cli_ill isn't 18179 * 3. usesrc_cli_ill is part of a group but usesrc_ill isn't 18180 * 4. Both are part of their respective usesrc groups 18181 */ 18182 if ((usesrc_ill->ill_usesrc_grp_next == NULL) && 18183 (usesrc_cli_ill->ill_usesrc_grp_next == NULL)) { 18184 ASSERT(usesrc_ill->ill_usesrc_ifindex == 0); 18185 usesrc_cli_ill->ill_usesrc_ifindex = ifindex; 18186 usesrc_ill->ill_usesrc_grp_next = usesrc_cli_ill; 18187 usesrc_cli_ill->ill_usesrc_grp_next = usesrc_ill; 18188 } else if ((usesrc_ill->ill_usesrc_grp_next != NULL) && 18189 (usesrc_cli_ill->ill_usesrc_grp_next == NULL)) { 18190 usesrc_cli_ill->ill_usesrc_ifindex = ifindex; 18191 /* Insert at head of list */ 18192 usesrc_cli_ill->ill_usesrc_grp_next = 18193 usesrc_ill->ill_usesrc_grp_next; 18194 usesrc_ill->ill_usesrc_grp_next = usesrc_cli_ill; 18195 } else { 18196 ret = ill_relink_usesrc_ills(usesrc_cli_ill, usesrc_ill, 18197 ifindex); 18198 if (ret != 0) 18199 err = EINVAL; 18200 } 18201 rw_exit(&ipst->ips_ill_g_usesrc_lock); 18202 18203 done: 18204 if (ill_flag_changed) { 18205 mutex_enter(&usesrc_cli_ill->ill_lock); 18206 usesrc_cli_ill->ill_state_flags &= ~ILL_CHANGING; 18207 mutex_exit(&usesrc_cli_ill->ill_lock); 18208 } 18209 if (ipsq != NULL) 18210 ipsq_exit(ipsq); 18211 /* The refrele on the lifr_name ipif is done by ip_process_ioctl */ 18212 ill_refrele(usesrc_ill); 18213 return (err); 18214 } 18215 18216 /* 18217 * comparison function used by avl. 18218 */ 18219 static int 18220 ill_phyint_compare_index(const void *index_ptr, const void *phyip) 18221 { 18222 18223 uint_t index; 18224 18225 ASSERT(phyip != NULL && index_ptr != NULL); 18226 18227 index = *((uint_t *)index_ptr); 18228 /* 18229 * let the phyint with the lowest index be on top. 18230 */ 18231 if (((phyint_t *)phyip)->phyint_ifindex < index) 18232 return (1); 18233 if (((phyint_t *)phyip)->phyint_ifindex > index) 18234 return (-1); 18235 return (0); 18236 } 18237 18238 /* 18239 * comparison function used by avl. 18240 */ 18241 static int 18242 ill_phyint_compare_name(const void *name_ptr, const void *phyip) 18243 { 18244 ill_t *ill; 18245 int res = 0; 18246 18247 ASSERT(phyip != NULL && name_ptr != NULL); 18248 18249 if (((phyint_t *)phyip)->phyint_illv4) 18250 ill = ((phyint_t *)phyip)->phyint_illv4; 18251 else 18252 ill = ((phyint_t *)phyip)->phyint_illv6; 18253 ASSERT(ill != NULL); 18254 18255 res = strcmp(ill->ill_name, (char *)name_ptr); 18256 if (res > 0) 18257 return (1); 18258 else if (res < 0) 18259 return (-1); 18260 return (0); 18261 } 18262 18263 /* 18264 * This function is called on the unplumb path via ill_glist_delete() when 18265 * there are no ills left on the phyint and thus the phyint can be freed. 18266 */ 18267 static void 18268 phyint_free(phyint_t *phyi) 18269 { 18270 ip_stack_t *ipst = PHYINT_TO_IPST(phyi); 18271 18272 ASSERT(phyi->phyint_illv4 == NULL && phyi->phyint_illv6 == NULL); 18273 18274 /* 18275 * If this phyint was an IPMP meta-interface, blow away the group. 18276 * This is safe to do because all of the illgrps have already been 18277 * removed by I_PUNLINK, and thus SIOCSLIFGROUPNAME cannot find us. 18278 * If we're cleaning up as a result of failed initialization, 18279 * phyint_grp may be NULL. 18280 */ 18281 if ((phyi->phyint_flags & PHYI_IPMP) && (phyi->phyint_grp != NULL)) { 18282 rw_enter(&ipst->ips_ipmp_lock, RW_WRITER); 18283 ipmp_grp_destroy(phyi->phyint_grp); 18284 phyi->phyint_grp = NULL; 18285 rw_exit(&ipst->ips_ipmp_lock); 18286 } 18287 18288 /* 18289 * If this interface was under IPMP, take it out of the group. 18290 */ 18291 if (phyi->phyint_grp != NULL) 18292 ipmp_phyint_leave_grp(phyi); 18293 18294 /* 18295 * Delete the phyint and disassociate its ipsq. The ipsq itself 18296 * will be freed in ipsq_exit(). 18297 */ 18298 phyi->phyint_ipsq->ipsq_phyint = NULL; 18299 phyi->phyint_name[0] = '\0'; 18300 18301 mi_free(phyi); 18302 } 18303 18304 /* 18305 * Attach the ill to the phyint structure which can be shared by both 18306 * IPv4 and IPv6 ill. ill_init allocates a phyint to just hold flags. This 18307 * function is called from ipif_set_values and ill_lookup_on_name (for 18308 * loopback) where we know the name of the ill. We lookup the ill and if 18309 * there is one present already with the name use that phyint. Otherwise 18310 * reuse the one allocated by ill_init. 18311 */ 18312 static void 18313 ill_phyint_reinit(ill_t *ill) 18314 { 18315 boolean_t isv6 = ill->ill_isv6; 18316 phyint_t *phyi_old; 18317 phyint_t *phyi; 18318 avl_index_t where = 0; 18319 ill_t *ill_other = NULL; 18320 ip_stack_t *ipst = ill->ill_ipst; 18321 18322 ASSERT(RW_WRITE_HELD(&ipst->ips_ill_g_lock)); 18323 18324 phyi_old = ill->ill_phyint; 18325 ASSERT(isv6 || (phyi_old->phyint_illv4 == ill && 18326 phyi_old->phyint_illv6 == NULL)); 18327 ASSERT(!isv6 || (phyi_old->phyint_illv6 == ill && 18328 phyi_old->phyint_illv4 == NULL)); 18329 ASSERT(phyi_old->phyint_ifindex == 0); 18330 18331 /* 18332 * Now that our ill has a name, set it in the phyint. 18333 */ 18334 (void) strlcpy(ill->ill_phyint->phyint_name, ill->ill_name, LIFNAMSIZ); 18335 18336 phyi = avl_find(&ipst->ips_phyint_g_list->phyint_list_avl_by_name, 18337 ill->ill_name, &where); 18338 18339 /* 18340 * 1. We grabbed the ill_g_lock before inserting this ill into 18341 * the global list of ills. So no other thread could have located 18342 * this ill and hence the ipsq of this ill is guaranteed to be empty. 18343 * 2. Now locate the other protocol instance of this ill. 18344 * 3. Now grab both ill locks in the right order, and the phyint lock of 18345 * the new ipsq. Holding ill locks + ill_g_lock ensures that the ipsq 18346 * of neither ill can change. 18347 * 4. Merge the phyint and thus the ipsq as well of this ill onto the 18348 * other ill. 18349 * 5. Release all locks. 18350 */ 18351 18352 /* 18353 * Look for IPv4 if we are initializing IPv6 or look for IPv6 if 18354 * we are initializing IPv4. 18355 */ 18356 if (phyi != NULL) { 18357 ill_other = (isv6) ? phyi->phyint_illv4 : phyi->phyint_illv6; 18358 ASSERT(ill_other->ill_phyint != NULL); 18359 ASSERT((isv6 && !ill_other->ill_isv6) || 18360 (!isv6 && ill_other->ill_isv6)); 18361 GRAB_ILL_LOCKS(ill, ill_other); 18362 /* 18363 * We are potentially throwing away phyint_flags which 18364 * could be different from the one that we obtain from 18365 * ill_other->ill_phyint. But it is okay as we are assuming 18366 * that the state maintained within IP is correct. 18367 */ 18368 mutex_enter(&phyi->phyint_lock); 18369 if (isv6) { 18370 ASSERT(phyi->phyint_illv6 == NULL); 18371 phyi->phyint_illv6 = ill; 18372 } else { 18373 ASSERT(phyi->phyint_illv4 == NULL); 18374 phyi->phyint_illv4 = ill; 18375 } 18376 18377 /* 18378 * Delete the old phyint and make its ipsq eligible 18379 * to be freed in ipsq_exit(). 18380 */ 18381 phyi_old->phyint_illv4 = NULL; 18382 phyi_old->phyint_illv6 = NULL; 18383 phyi_old->phyint_ipsq->ipsq_phyint = NULL; 18384 phyi_old->phyint_name[0] = '\0'; 18385 mi_free(phyi_old); 18386 } else { 18387 mutex_enter(&ill->ill_lock); 18388 /* 18389 * We don't need to acquire any lock, since 18390 * the ill is not yet visible globally and we 18391 * have not yet released the ill_g_lock. 18392 */ 18393 phyi = phyi_old; 18394 mutex_enter(&phyi->phyint_lock); 18395 /* XXX We need a recovery strategy here. */ 18396 if (!phyint_assign_ifindex(phyi, ipst)) 18397 cmn_err(CE_PANIC, "phyint_assign_ifindex() failed"); 18398 18399 avl_insert(&ipst->ips_phyint_g_list->phyint_list_avl_by_name, 18400 (void *)phyi, where); 18401 18402 (void) avl_find(&ipst->ips_phyint_g_list-> 18403 phyint_list_avl_by_index, 18404 &phyi->phyint_ifindex, &where); 18405 avl_insert(&ipst->ips_phyint_g_list->phyint_list_avl_by_index, 18406 (void *)phyi, where); 18407 } 18408 18409 /* 18410 * Reassigning ill_phyint automatically reassigns the ipsq also. 18411 * pending mp is not affected because that is per ill basis. 18412 */ 18413 ill->ill_phyint = phyi; 18414 18415 /* 18416 * Now that the phyint's ifindex has been assigned, complete the 18417 * remaining 18418 */ 18419 18420 ill->ill_ip_mib->ipIfStatsIfIndex = ill->ill_phyint->phyint_ifindex; 18421 if (ill->ill_isv6) { 18422 ill->ill_icmp6_mib->ipv6IfIcmpIfIndex = 18423 ill->ill_phyint->phyint_ifindex; 18424 ill->ill_mcast_type = ipst->ips_mld_max_version; 18425 } else { 18426 ill->ill_mcast_type = ipst->ips_igmp_max_version; 18427 } 18428 18429 /* 18430 * Generate an event within the hooks framework to indicate that 18431 * a new interface has just been added to IP. For this event to 18432 * be generated, the network interface must, at least, have an 18433 * ifindex assigned to it. 18434 * 18435 * This needs to be run inside the ill_g_lock perimeter to ensure 18436 * that the ordering of delivered events to listeners matches the 18437 * order of them in the kernel. 18438 * 18439 * This function could be called from ill_lookup_on_name. In that case 18440 * the interface is loopback "lo", which will not generate a NIC event. 18441 */ 18442 if (ill->ill_name_length <= 2 || 18443 ill->ill_name[0] != 'l' || ill->ill_name[1] != 'o') { 18444 ill_nic_event_dispatch(ill, 0, NE_PLUMB, ill->ill_name, 18445 ill->ill_name_length); 18446 } 18447 RELEASE_ILL_LOCKS(ill, ill_other); 18448 mutex_exit(&phyi->phyint_lock); 18449 } 18450 18451 /* 18452 * Notify any downstream modules of the name of this interface. 18453 * An M_IOCTL is used even though we don't expect a successful reply. 18454 * Any reply message from the driver (presumably an M_IOCNAK) will 18455 * eventually get discarded somewhere upstream. The message format is 18456 * simply an SIOCSLIFNAME ioctl just as might be sent from ifconfig 18457 * to IP. 18458 */ 18459 static void 18460 ip_ifname_notify(ill_t *ill, queue_t *q) 18461 { 18462 mblk_t *mp1, *mp2; 18463 struct iocblk *iocp; 18464 struct lifreq *lifr; 18465 18466 mp1 = mkiocb(SIOCSLIFNAME); 18467 if (mp1 == NULL) 18468 return; 18469 mp2 = allocb(sizeof (struct lifreq), BPRI_HI); 18470 if (mp2 == NULL) { 18471 freeb(mp1); 18472 return; 18473 } 18474 18475 mp1->b_cont = mp2; 18476 iocp = (struct iocblk *)mp1->b_rptr; 18477 iocp->ioc_count = sizeof (struct lifreq); 18478 18479 lifr = (struct lifreq *)mp2->b_rptr; 18480 mp2->b_wptr += sizeof (struct lifreq); 18481 bzero(lifr, sizeof (struct lifreq)); 18482 18483 (void) strncpy(lifr->lifr_name, ill->ill_name, LIFNAMSIZ); 18484 lifr->lifr_ppa = ill->ill_ppa; 18485 lifr->lifr_flags = (ill->ill_flags & (ILLF_IPV4|ILLF_IPV6)); 18486 18487 putnext(q, mp1); 18488 } 18489 18490 static int 18491 ipif_set_values_tail(ill_t *ill, ipif_t *ipif, mblk_t *mp, queue_t *q) 18492 { 18493 int err; 18494 ip_stack_t *ipst = ill->ill_ipst; 18495 phyint_t *phyi = ill->ill_phyint; 18496 18497 /* Set the obsolete NDD per-interface forwarding name. */ 18498 err = ill_set_ndd_name(ill); 18499 if (err != 0) { 18500 cmn_err(CE_WARN, "ipif_set_values: ill_set_ndd_name (%d)\n", 18501 err); 18502 } 18503 18504 /* 18505 * Now that ill_name is set, the configuration for the IPMP 18506 * meta-interface can be performed. 18507 */ 18508 if (IS_IPMP(ill)) { 18509 rw_enter(&ipst->ips_ipmp_lock, RW_WRITER); 18510 /* 18511 * If phyi->phyint_grp is NULL, then this is the first IPMP 18512 * meta-interface and we need to create the IPMP group. 18513 */ 18514 if (phyi->phyint_grp == NULL) { 18515 /* 18516 * If someone has renamed another IPMP group to have 18517 * the same name as our interface, bail. 18518 */ 18519 if (ipmp_grp_lookup(ill->ill_name, ipst) != NULL) { 18520 rw_exit(&ipst->ips_ipmp_lock); 18521 return (EEXIST); 18522 } 18523 phyi->phyint_grp = ipmp_grp_create(ill->ill_name, phyi); 18524 if (phyi->phyint_grp == NULL) { 18525 rw_exit(&ipst->ips_ipmp_lock); 18526 return (ENOMEM); 18527 } 18528 } 18529 rw_exit(&ipst->ips_ipmp_lock); 18530 } 18531 18532 /* Tell downstream modules where they are. */ 18533 ip_ifname_notify(ill, q); 18534 18535 /* 18536 * ill_dl_phys returns EINPROGRESS in the usual case. 18537 * Error cases are ENOMEM ... 18538 */ 18539 err = ill_dl_phys(ill, ipif, mp, q); 18540 18541 /* 18542 * If there is no IRE expiration timer running, get one started. 18543 * igmp and mld timers will be triggered by the first multicast 18544 */ 18545 if (ipst->ips_ip_ire_expire_id == 0) { 18546 /* 18547 * acquire the lock and check again. 18548 */ 18549 mutex_enter(&ipst->ips_ip_trash_timer_lock); 18550 if (ipst->ips_ip_ire_expire_id == 0) { 18551 ipst->ips_ip_ire_expire_id = timeout( 18552 ip_trash_timer_expire, ipst, 18553 MSEC_TO_TICK(ipst->ips_ip_timer_interval)); 18554 } 18555 mutex_exit(&ipst->ips_ip_trash_timer_lock); 18556 } 18557 18558 if (ill->ill_isv6) { 18559 mutex_enter(&ipst->ips_mld_slowtimeout_lock); 18560 if (ipst->ips_mld_slowtimeout_id == 0) { 18561 ipst->ips_mld_slowtimeout_id = timeout(mld_slowtimo, 18562 (void *)ipst, 18563 MSEC_TO_TICK(MCAST_SLOWTIMO_INTERVAL)); 18564 } 18565 mutex_exit(&ipst->ips_mld_slowtimeout_lock); 18566 } else { 18567 mutex_enter(&ipst->ips_igmp_slowtimeout_lock); 18568 if (ipst->ips_igmp_slowtimeout_id == 0) { 18569 ipst->ips_igmp_slowtimeout_id = timeout(igmp_slowtimo, 18570 (void *)ipst, 18571 MSEC_TO_TICK(MCAST_SLOWTIMO_INTERVAL)); 18572 } 18573 mutex_exit(&ipst->ips_igmp_slowtimeout_lock); 18574 } 18575 18576 return (err); 18577 } 18578 18579 /* 18580 * Common routine for ppa and ifname setting. Should be called exclusive. 18581 * 18582 * Returns EINPROGRESS when mp has been consumed by queueing it on 18583 * ill_pending_mp and the ioctl will complete in ip_rput. 18584 * 18585 * NOTE : If ppa is UNIT_MAX, we assign the next valid ppa and return 18586 * the new name and new ppa in lifr_name and lifr_ppa respectively. 18587 * For SLIFNAME, we pass these values back to the userland. 18588 */ 18589 static int 18590 ipif_set_values(queue_t *q, mblk_t *mp, char *interf_name, uint_t *new_ppa_ptr) 18591 { 18592 ill_t *ill; 18593 ipif_t *ipif; 18594 ipsq_t *ipsq; 18595 char *ppa_ptr; 18596 char *old_ptr; 18597 char old_char; 18598 int error; 18599 ip_stack_t *ipst; 18600 18601 ip1dbg(("ipif_set_values: interface %s\n", interf_name)); 18602 ASSERT(q->q_next != NULL); 18603 ASSERT(interf_name != NULL); 18604 18605 ill = (ill_t *)q->q_ptr; 18606 ipst = ill->ill_ipst; 18607 18608 ASSERT(ill->ill_ipst != NULL); 18609 ASSERT(ill->ill_name[0] == '\0'); 18610 ASSERT(IAM_WRITER_ILL(ill)); 18611 ASSERT((mi_strlen(interf_name) + 1) <= LIFNAMSIZ); 18612 ASSERT(ill->ill_ppa == UINT_MAX); 18613 18614 /* The ppa is sent down by ifconfig or is chosen */ 18615 if ((ppa_ptr = ill_get_ppa_ptr(interf_name)) == NULL) { 18616 return (EINVAL); 18617 } 18618 18619 /* 18620 * make sure ppa passed in is same as ppa in the name. 18621 * This check is not made when ppa == UINT_MAX in that case ppa 18622 * in the name could be anything. System will choose a ppa and 18623 * update new_ppa_ptr and inter_name to contain the choosen ppa. 18624 */ 18625 if (*new_ppa_ptr != UINT_MAX) { 18626 /* stoi changes the pointer */ 18627 old_ptr = ppa_ptr; 18628 /* 18629 * ifconfig passed in 0 for the ppa for DLPI 1 style devices 18630 * (they don't have an externally visible ppa). We assign one 18631 * here so that we can manage the interface. Note that in 18632 * the past this value was always 0 for DLPI 1 drivers. 18633 */ 18634 if (*new_ppa_ptr == 0) 18635 *new_ppa_ptr = stoi(&old_ptr); 18636 else if (*new_ppa_ptr != (uint_t)stoi(&old_ptr)) 18637 return (EINVAL); 18638 } 18639 /* 18640 * terminate string before ppa 18641 * save char at that location. 18642 */ 18643 old_char = ppa_ptr[0]; 18644 ppa_ptr[0] = '\0'; 18645 18646 ill->ill_ppa = *new_ppa_ptr; 18647 /* 18648 * Finish as much work now as possible before calling ill_glist_insert 18649 * which makes the ill globally visible and also merges it with the 18650 * other protocol instance of this phyint. The remaining work is 18651 * done after entering the ipsq which may happen sometime later. 18652 * ill_set_ndd_name occurs after the ill has been made globally visible. 18653 */ 18654 ipif = ill->ill_ipif; 18655 18656 /* We didn't do this when we allocated ipif in ip_ll_subnet_defaults */ 18657 ipif_assign_seqid(ipif); 18658 18659 if (!(ill->ill_flags & (ILLF_IPV4|ILLF_IPV6))) 18660 ill->ill_flags |= ILLF_IPV4; 18661 18662 ASSERT(ipif->ipif_next == NULL); /* Only one ipif on ill */ 18663 ASSERT((ipif->ipif_flags & IPIF_UP) == 0); 18664 18665 if (ill->ill_flags & ILLF_IPV6) { 18666 18667 ill->ill_isv6 = B_TRUE; 18668 if (ill->ill_rq != NULL) { 18669 ill->ill_rq->q_qinfo = &iprinitv6; 18670 ill->ill_wq->q_qinfo = &ipwinitv6; 18671 } 18672 18673 /* Keep the !IN6_IS_ADDR_V4MAPPED assertions happy */ 18674 ipif->ipif_v6lcl_addr = ipv6_all_zeros; 18675 ipif->ipif_v6src_addr = ipv6_all_zeros; 18676 ipif->ipif_v6subnet = ipv6_all_zeros; 18677 ipif->ipif_v6net_mask = ipv6_all_zeros; 18678 ipif->ipif_v6brd_addr = ipv6_all_zeros; 18679 ipif->ipif_v6pp_dst_addr = ipv6_all_zeros; 18680 /* 18681 * point-to-point or Non-mulicast capable 18682 * interfaces won't do NUD unless explicitly 18683 * configured to do so. 18684 */ 18685 if (ipif->ipif_flags & IPIF_POINTOPOINT || 18686 !(ill->ill_flags & ILLF_MULTICAST)) { 18687 ill->ill_flags |= ILLF_NONUD; 18688 } 18689 /* Make sure IPv4 specific flag is not set on IPv6 if */ 18690 if (ill->ill_flags & ILLF_NOARP) { 18691 /* 18692 * Note: xresolv interfaces will eventually need 18693 * NOARP set here as well, but that will require 18694 * those external resolvers to have some 18695 * knowledge of that flag and act appropriately. 18696 * Not to be changed at present. 18697 */ 18698 ill->ill_flags &= ~ILLF_NOARP; 18699 } 18700 /* 18701 * Set the ILLF_ROUTER flag according to the global 18702 * IPv6 forwarding policy. 18703 */ 18704 if (ipst->ips_ipv6_forward != 0) 18705 ill->ill_flags |= ILLF_ROUTER; 18706 } else if (ill->ill_flags & ILLF_IPV4) { 18707 ill->ill_isv6 = B_FALSE; 18708 IN6_IPADDR_TO_V4MAPPED(INADDR_ANY, &ipif->ipif_v6lcl_addr); 18709 IN6_IPADDR_TO_V4MAPPED(INADDR_ANY, &ipif->ipif_v6src_addr); 18710 IN6_IPADDR_TO_V4MAPPED(INADDR_ANY, &ipif->ipif_v6subnet); 18711 IN6_IPADDR_TO_V4MAPPED(INADDR_ANY, &ipif->ipif_v6net_mask); 18712 IN6_IPADDR_TO_V4MAPPED(INADDR_ANY, &ipif->ipif_v6brd_addr); 18713 IN6_IPADDR_TO_V4MAPPED(INADDR_ANY, &ipif->ipif_v6pp_dst_addr); 18714 /* 18715 * Set the ILLF_ROUTER flag according to the global 18716 * IPv4 forwarding policy. 18717 */ 18718 if (ipst->ips_ip_g_forward != 0) 18719 ill->ill_flags |= ILLF_ROUTER; 18720 } 18721 18722 ASSERT(ill->ill_phyint != NULL); 18723 18724 /* 18725 * The ipIfStatsIfindex and ipv6IfIcmpIfIndex assignments will 18726 * be completed in ill_glist_insert -> ill_phyint_reinit 18727 */ 18728 if (!ill_allocate_mibs(ill)) 18729 return (ENOMEM); 18730 18731 /* 18732 * Pick a default sap until we get the DL_INFO_ACK back from 18733 * the driver. 18734 */ 18735 if (ill->ill_sap == 0) { 18736 if (ill->ill_isv6) 18737 ill->ill_sap = IP6_DL_SAP; 18738 else 18739 ill->ill_sap = IP_DL_SAP; 18740 } 18741 18742 ill->ill_ifname_pending = 1; 18743 ill->ill_ifname_pending_err = 0; 18744 18745 /* 18746 * When the first ipif comes up in ipif_up_done(), multicast groups 18747 * that were joined while this ill was not bound to the DLPI link need 18748 * to be recovered by ill_recover_multicast(). 18749 */ 18750 ill->ill_need_recover_multicast = 1; 18751 18752 ill_refhold(ill); 18753 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 18754 if ((error = ill_glist_insert(ill, interf_name, 18755 (ill->ill_flags & ILLF_IPV6) == ILLF_IPV6)) > 0) { 18756 ill->ill_ppa = UINT_MAX; 18757 ill->ill_name[0] = '\0'; 18758 /* 18759 * undo null termination done above. 18760 */ 18761 ppa_ptr[0] = old_char; 18762 rw_exit(&ipst->ips_ill_g_lock); 18763 ill_refrele(ill); 18764 return (error); 18765 } 18766 18767 ASSERT(ill->ill_name_length <= LIFNAMSIZ); 18768 18769 /* 18770 * When we return the buffer pointed to by interf_name should contain 18771 * the same name as in ill_name. 18772 * If a ppa was choosen by the system (ppa passed in was UINT_MAX) 18773 * the buffer pointed to by new_ppa_ptr would not contain the right ppa 18774 * so copy full name and update the ppa ptr. 18775 * When ppa passed in != UINT_MAX all values are correct just undo 18776 * null termination, this saves a bcopy. 18777 */ 18778 if (*new_ppa_ptr == UINT_MAX) { 18779 bcopy(ill->ill_name, interf_name, ill->ill_name_length); 18780 *new_ppa_ptr = ill->ill_ppa; 18781 } else { 18782 /* 18783 * undo null termination done above. 18784 */ 18785 ppa_ptr[0] = old_char; 18786 } 18787 18788 /* Let SCTP know about this ILL */ 18789 sctp_update_ill(ill, SCTP_ILL_INSERT); 18790 18791 ipsq = ipsq_try_enter(NULL, ill, q, mp, ip_reprocess_ioctl, NEW_OP, 18792 B_TRUE); 18793 18794 rw_exit(&ipst->ips_ill_g_lock); 18795 ill_refrele(ill); 18796 if (ipsq == NULL) 18797 return (EINPROGRESS); 18798 18799 /* 18800 * If ill_phyint_reinit() changed our ipsq, then start on the new ipsq. 18801 */ 18802 if (ipsq->ipsq_xop->ipx_current_ipif == NULL) 18803 ipsq_current_start(ipsq, ipif, SIOCSLIFNAME); 18804 else 18805 ASSERT(ipsq->ipsq_xop->ipx_current_ipif == ipif); 18806 18807 error = ipif_set_values_tail(ill, ipif, mp, q); 18808 ipsq_exit(ipsq); 18809 if (error != 0 && error != EINPROGRESS) { 18810 /* 18811 * restore previous values 18812 */ 18813 ill->ill_isv6 = B_FALSE; 18814 } 18815 return (error); 18816 } 18817 18818 void 18819 ipif_init(ip_stack_t *ipst) 18820 { 18821 int i; 18822 18823 for (i = 0; i < MAX_G_HEADS; i++) { 18824 ipst->ips_ill_g_heads[i].ill_g_list_head = 18825 (ill_if_t *)&ipst->ips_ill_g_heads[i]; 18826 ipst->ips_ill_g_heads[i].ill_g_list_tail = 18827 (ill_if_t *)&ipst->ips_ill_g_heads[i]; 18828 } 18829 18830 avl_create(&ipst->ips_phyint_g_list->phyint_list_avl_by_index, 18831 ill_phyint_compare_index, 18832 sizeof (phyint_t), 18833 offsetof(struct phyint, phyint_avl_by_index)); 18834 avl_create(&ipst->ips_phyint_g_list->phyint_list_avl_by_name, 18835 ill_phyint_compare_name, 18836 sizeof (phyint_t), 18837 offsetof(struct phyint, phyint_avl_by_name)); 18838 } 18839 18840 /* 18841 * Lookup the ipif corresponding to the onlink destination address. For 18842 * point-to-point interfaces, it matches with remote endpoint destination 18843 * address. For point-to-multipoint interfaces it only tries to match the 18844 * destination with the interface's subnet address. The longest, most specific 18845 * match is found to take care of such rare network configurations like - 18846 * le0: 129.146.1.1/16 18847 * le1: 129.146.2.2/24 18848 * 18849 * This is used by SO_DONTROUTE and IP_NEXTHOP. Since neither of those are 18850 * supported on underlying interfaces in an IPMP group, underlying interfaces 18851 * are ignored when looking up a match. (If we didn't ignore them, we'd 18852 * risk using a test address as a source for outgoing traffic.) 18853 */ 18854 ipif_t * 18855 ipif_lookup_onlink_addr(ipaddr_t addr, zoneid_t zoneid, ip_stack_t *ipst) 18856 { 18857 ipif_t *ipif, *best_ipif; 18858 ill_t *ill; 18859 ill_walk_context_t ctx; 18860 18861 ASSERT(zoneid != ALL_ZONES); 18862 best_ipif = NULL; 18863 18864 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 18865 ill = ILL_START_WALK_V4(&ctx, ipst); 18866 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 18867 if (IS_UNDER_IPMP(ill)) 18868 continue; 18869 mutex_enter(&ill->ill_lock); 18870 for (ipif = ill->ill_ipif; ipif != NULL; 18871 ipif = ipif->ipif_next) { 18872 if (!IPIF_CAN_LOOKUP(ipif)) 18873 continue; 18874 if (ipif->ipif_zoneid != zoneid && 18875 ipif->ipif_zoneid != ALL_ZONES) 18876 continue; 18877 /* 18878 * Point-to-point case. Look for exact match with 18879 * destination address. 18880 */ 18881 if (ipif->ipif_flags & IPIF_POINTOPOINT) { 18882 if (ipif->ipif_pp_dst_addr == addr) { 18883 ipif_refhold_locked(ipif); 18884 mutex_exit(&ill->ill_lock); 18885 rw_exit(&ipst->ips_ill_g_lock); 18886 if (best_ipif != NULL) 18887 ipif_refrele(best_ipif); 18888 return (ipif); 18889 } 18890 } else if (ipif->ipif_subnet == (addr & 18891 ipif->ipif_net_mask)) { 18892 /* 18893 * Point-to-multipoint case. Looping through to 18894 * find the most specific match. If there are 18895 * multiple best match ipif's then prefer ipif's 18896 * that are UP. If there is only one best match 18897 * ipif and it is DOWN we must still return it. 18898 */ 18899 if ((best_ipif == NULL) || 18900 (ipif->ipif_net_mask > 18901 best_ipif->ipif_net_mask) || 18902 ((ipif->ipif_net_mask == 18903 best_ipif->ipif_net_mask) && 18904 ((ipif->ipif_flags & IPIF_UP) && 18905 (!(best_ipif->ipif_flags & IPIF_UP))))) { 18906 ipif_refhold_locked(ipif); 18907 mutex_exit(&ill->ill_lock); 18908 rw_exit(&ipst->ips_ill_g_lock); 18909 if (best_ipif != NULL) 18910 ipif_refrele(best_ipif); 18911 best_ipif = ipif; 18912 rw_enter(&ipst->ips_ill_g_lock, 18913 RW_READER); 18914 mutex_enter(&ill->ill_lock); 18915 } 18916 } 18917 } 18918 mutex_exit(&ill->ill_lock); 18919 } 18920 rw_exit(&ipst->ips_ill_g_lock); 18921 return (best_ipif); 18922 } 18923 18924 /* 18925 * Save enough information so that we can recreate the IRE if 18926 * the interface goes down and then up. 18927 */ 18928 static void 18929 ipif_save_ire(ipif_t *ipif, ire_t *ire) 18930 { 18931 mblk_t *save_mp; 18932 18933 save_mp = allocb(sizeof (ifrt_t), BPRI_MED); 18934 if (save_mp != NULL) { 18935 ifrt_t *ifrt; 18936 18937 save_mp->b_wptr += sizeof (ifrt_t); 18938 ifrt = (ifrt_t *)save_mp->b_rptr; 18939 bzero(ifrt, sizeof (ifrt_t)); 18940 ifrt->ifrt_type = ire->ire_type; 18941 ifrt->ifrt_addr = ire->ire_addr; 18942 ifrt->ifrt_gateway_addr = ire->ire_gateway_addr; 18943 ifrt->ifrt_src_addr = ire->ire_src_addr; 18944 ifrt->ifrt_mask = ire->ire_mask; 18945 ifrt->ifrt_flags = ire->ire_flags; 18946 ifrt->ifrt_max_frag = ire->ire_max_frag; 18947 mutex_enter(&ipif->ipif_saved_ire_lock); 18948 save_mp->b_cont = ipif->ipif_saved_ire_mp; 18949 ipif->ipif_saved_ire_mp = save_mp; 18950 ipif->ipif_saved_ire_cnt++; 18951 mutex_exit(&ipif->ipif_saved_ire_lock); 18952 } 18953 } 18954 18955 static void 18956 ipif_remove_ire(ipif_t *ipif, ire_t *ire) 18957 { 18958 mblk_t **mpp; 18959 mblk_t *mp; 18960 ifrt_t *ifrt; 18961 18962 /* Remove from ipif_saved_ire_mp list if it is there */ 18963 mutex_enter(&ipif->ipif_saved_ire_lock); 18964 for (mpp = &ipif->ipif_saved_ire_mp; *mpp != NULL; 18965 mpp = &(*mpp)->b_cont) { 18966 /* 18967 * On a given ipif, the triple of address, gateway and 18968 * mask is unique for each saved IRE (in the case of 18969 * ordinary interface routes, the gateway address is 18970 * all-zeroes). 18971 */ 18972 mp = *mpp; 18973 ifrt = (ifrt_t *)mp->b_rptr; 18974 if (ifrt->ifrt_addr == ire->ire_addr && 18975 ifrt->ifrt_gateway_addr == ire->ire_gateway_addr && 18976 ifrt->ifrt_mask == ire->ire_mask) { 18977 *mpp = mp->b_cont; 18978 ipif->ipif_saved_ire_cnt--; 18979 freeb(mp); 18980 break; 18981 } 18982 } 18983 mutex_exit(&ipif->ipif_saved_ire_lock); 18984 } 18985 18986 /* 18987 * IP multirouting broadcast routes handling 18988 * Append CGTP broadcast IREs to regular ones created 18989 * at ifconfig time. 18990 */ 18991 static void 18992 ip_cgtp_bcast_add(ire_t *ire, ire_t *ire_dst, ip_stack_t *ipst) 18993 { 18994 ire_t *ire_prim; 18995 18996 ASSERT(ire != NULL); 18997 ASSERT(ire_dst != NULL); 18998 18999 ire_prim = ire_ctable_lookup(ire->ire_gateway_addr, 0, 19000 IRE_BROADCAST, NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 19001 if (ire_prim != NULL) { 19002 /* 19003 * We are in the special case of broadcasts for 19004 * CGTP. We add an IRE_BROADCAST that holds 19005 * the RTF_MULTIRT flag, the destination 19006 * address of ire_dst and the low level 19007 * info of ire_prim. In other words, CGTP 19008 * broadcast is added to the redundant ipif. 19009 */ 19010 ipif_t *ipif_prim; 19011 ire_t *bcast_ire; 19012 19013 ipif_prim = ire_prim->ire_ipif; 19014 19015 ip2dbg(("ip_cgtp_filter_bcast_add: " 19016 "ire_dst %p, ire_prim %p, ipif_prim %p\n", 19017 (void *)ire_dst, (void *)ire_prim, 19018 (void *)ipif_prim)); 19019 19020 bcast_ire = ire_create( 19021 (uchar_t *)&ire->ire_addr, 19022 (uchar_t *)&ip_g_all_ones, 19023 (uchar_t *)&ire_dst->ire_src_addr, 19024 (uchar_t *)&ire->ire_gateway_addr, 19025 &ipif_prim->ipif_mtu, 19026 NULL, 19027 ipif_prim->ipif_rq, 19028 ipif_prim->ipif_wq, 19029 IRE_BROADCAST, 19030 ipif_prim, 19031 0, 19032 0, 19033 0, 19034 ire->ire_flags, 19035 &ire_uinfo_null, 19036 NULL, 19037 NULL, 19038 ipst); 19039 19040 if (bcast_ire != NULL) { 19041 19042 if (ire_add(&bcast_ire, NULL, NULL, NULL, 19043 B_FALSE) == 0) { 19044 ip2dbg(("ip_cgtp_filter_bcast_add: " 19045 "added bcast_ire %p\n", 19046 (void *)bcast_ire)); 19047 19048 ipif_save_ire(bcast_ire->ire_ipif, 19049 bcast_ire); 19050 ire_refrele(bcast_ire); 19051 } 19052 } 19053 ire_refrele(ire_prim); 19054 } 19055 } 19056 19057 /* 19058 * IP multirouting broadcast routes handling 19059 * Remove the broadcast ire 19060 */ 19061 static void 19062 ip_cgtp_bcast_delete(ire_t *ire, ip_stack_t *ipst) 19063 { 19064 ire_t *ire_dst; 19065 19066 ASSERT(ire != NULL); 19067 ire_dst = ire_ctable_lookup(ire->ire_addr, 0, IRE_BROADCAST, 19068 NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 19069 if (ire_dst != NULL) { 19070 ire_t *ire_prim; 19071 19072 ire_prim = ire_ctable_lookup(ire->ire_gateway_addr, 0, 19073 IRE_BROADCAST, NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 19074 if (ire_prim != NULL) { 19075 ipif_t *ipif_prim; 19076 ire_t *bcast_ire; 19077 19078 ipif_prim = ire_prim->ire_ipif; 19079 19080 ip2dbg(("ip_cgtp_filter_bcast_delete: " 19081 "ire_dst %p, ire_prim %p, ipif_prim %p\n", 19082 (void *)ire_dst, (void *)ire_prim, 19083 (void *)ipif_prim)); 19084 19085 bcast_ire = ire_ctable_lookup(ire->ire_addr, 19086 ire->ire_gateway_addr, 19087 IRE_BROADCAST, 19088 ipif_prim, ALL_ZONES, 19089 NULL, 19090 MATCH_IRE_TYPE | MATCH_IRE_GW | MATCH_IRE_IPIF | 19091 MATCH_IRE_MASK, ipst); 19092 19093 if (bcast_ire != NULL) { 19094 ip2dbg(("ip_cgtp_filter_bcast_delete: " 19095 "looked up bcast_ire %p\n", 19096 (void *)bcast_ire)); 19097 ipif_remove_ire(bcast_ire->ire_ipif, 19098 bcast_ire); 19099 ire_delete(bcast_ire); 19100 ire_refrele(bcast_ire); 19101 } 19102 ire_refrele(ire_prim); 19103 } 19104 ire_refrele(ire_dst); 19105 } 19106 } 19107 19108 /* 19109 * IPsec hardware acceleration capabilities related functions. 19110 */ 19111 19112 /* 19113 * Free a per-ill IPsec capabilities structure. 19114 */ 19115 static void 19116 ill_ipsec_capab_free(ill_ipsec_capab_t *capab) 19117 { 19118 if (capab->auth_hw_algs != NULL) 19119 kmem_free(capab->auth_hw_algs, capab->algs_size); 19120 if (capab->encr_hw_algs != NULL) 19121 kmem_free(capab->encr_hw_algs, capab->algs_size); 19122 if (capab->encr_algparm != NULL) 19123 kmem_free(capab->encr_algparm, capab->encr_algparm_size); 19124 kmem_free(capab, sizeof (ill_ipsec_capab_t)); 19125 } 19126 19127 /* 19128 * Allocate a new per-ill IPsec capabilities structure. This structure 19129 * is specific to an IPsec protocol (AH or ESP). It is implemented as 19130 * an array which specifies, for each algorithm, whether this algorithm 19131 * is supported by the ill or not. 19132 */ 19133 static ill_ipsec_capab_t * 19134 ill_ipsec_capab_alloc(void) 19135 { 19136 ill_ipsec_capab_t *capab; 19137 uint_t nelems; 19138 19139 capab = kmem_zalloc(sizeof (ill_ipsec_capab_t), KM_NOSLEEP); 19140 if (capab == NULL) 19141 return (NULL); 19142 19143 /* we need one bit per algorithm */ 19144 nelems = MAX_IPSEC_ALGS / BITS(ipsec_capab_elem_t); 19145 capab->algs_size = nelems * sizeof (ipsec_capab_elem_t); 19146 19147 /* allocate memory to store algorithm flags */ 19148 capab->encr_hw_algs = kmem_zalloc(capab->algs_size, KM_NOSLEEP); 19149 if (capab->encr_hw_algs == NULL) 19150 goto nomem; 19151 capab->auth_hw_algs = kmem_zalloc(capab->algs_size, KM_NOSLEEP); 19152 if (capab->auth_hw_algs == NULL) 19153 goto nomem; 19154 /* 19155 * Leave encr_algparm NULL for now since we won't need it half 19156 * the time 19157 */ 19158 return (capab); 19159 19160 nomem: 19161 ill_ipsec_capab_free(capab); 19162 return (NULL); 19163 } 19164 19165 /* 19166 * Resize capability array. Since we're exclusive, this is OK. 19167 */ 19168 static boolean_t 19169 ill_ipsec_capab_resize_algparm(ill_ipsec_capab_t *capab, int algid) 19170 { 19171 ipsec_capab_algparm_t *nalp, *oalp; 19172 uint32_t olen, nlen; 19173 19174 oalp = capab->encr_algparm; 19175 olen = capab->encr_algparm_size; 19176 19177 if (oalp != NULL) { 19178 if (algid < capab->encr_algparm_end) 19179 return (B_TRUE); 19180 } 19181 19182 nlen = (algid + 1) * sizeof (*nalp); 19183 nalp = kmem_zalloc(nlen, KM_NOSLEEP); 19184 if (nalp == NULL) 19185 return (B_FALSE); 19186 19187 if (oalp != NULL) { 19188 bcopy(oalp, nalp, olen); 19189 kmem_free(oalp, olen); 19190 } 19191 capab->encr_algparm = nalp; 19192 capab->encr_algparm_size = nlen; 19193 capab->encr_algparm_end = algid + 1; 19194 19195 return (B_TRUE); 19196 } 19197 19198 /* 19199 * Compare the capabilities of the specified ill with the protocol 19200 * and algorithms specified by the SA passed as argument. 19201 * If they match, returns B_TRUE, B_FALSE if they do not match. 19202 * 19203 * The ill can be passed as a pointer to it, or by specifying its index 19204 * and whether it is an IPv6 ill (ill_index and ill_isv6 arguments). 19205 * 19206 * Called by ipsec_out_is_accelerated() do decide whether an outbound 19207 * packet is eligible for hardware acceleration, and by 19208 * ill_ipsec_capab_send_all() to decide whether a SA must be sent down 19209 * to a particular ill. 19210 */ 19211 boolean_t 19212 ipsec_capab_match(ill_t *ill, uint_t ill_index, boolean_t ill_isv6, 19213 ipsa_t *sa, netstack_t *ns) 19214 { 19215 boolean_t sa_isv6; 19216 uint_t algid; 19217 struct ill_ipsec_capab_s *cpp; 19218 boolean_t need_refrele = B_FALSE; 19219 ip_stack_t *ipst = ns->netstack_ip; 19220 19221 if (ill == NULL) { 19222 ill = ill_lookup_on_ifindex(ill_index, ill_isv6, NULL, 19223 NULL, NULL, NULL, ipst); 19224 if (ill == NULL) { 19225 ip0dbg(("ipsec_capab_match: ill doesn't exist\n")); 19226 return (B_FALSE); 19227 } 19228 need_refrele = B_TRUE; 19229 } 19230 19231 /* 19232 * Use the address length specified by the SA to determine 19233 * if it corresponds to a IPv6 address, and fail the matching 19234 * if the isv6 flag passed as argument does not match. 19235 * Note: this check is used for SADB capability checking before 19236 * sending SA information to an ill. 19237 */ 19238 sa_isv6 = (sa->ipsa_addrfam == AF_INET6); 19239 if (sa_isv6 != ill_isv6) 19240 /* protocol mismatch */ 19241 goto done; 19242 19243 /* 19244 * Check if the ill supports the protocol, algorithm(s) and 19245 * key size(s) specified by the SA, and get the pointers to 19246 * the algorithms supported by the ill. 19247 */ 19248 switch (sa->ipsa_type) { 19249 19250 case SADB_SATYPE_ESP: 19251 if (!(ill->ill_capabilities & ILL_CAPAB_ESP)) 19252 /* ill does not support ESP acceleration */ 19253 goto done; 19254 cpp = ill->ill_ipsec_capab_esp; 19255 algid = sa->ipsa_auth_alg; 19256 if (!IPSEC_ALG_IS_ENABLED(algid, cpp->auth_hw_algs)) 19257 goto done; 19258 algid = sa->ipsa_encr_alg; 19259 if (!IPSEC_ALG_IS_ENABLED(algid, cpp->encr_hw_algs)) 19260 goto done; 19261 if (algid < cpp->encr_algparm_end) { 19262 ipsec_capab_algparm_t *alp = &cpp->encr_algparm[algid]; 19263 if (sa->ipsa_encrkeybits < alp->minkeylen) 19264 goto done; 19265 if (sa->ipsa_encrkeybits > alp->maxkeylen) 19266 goto done; 19267 } 19268 break; 19269 19270 case SADB_SATYPE_AH: 19271 if (!(ill->ill_capabilities & ILL_CAPAB_AH)) 19272 /* ill does not support AH acceleration */ 19273 goto done; 19274 if (!IPSEC_ALG_IS_ENABLED(sa->ipsa_auth_alg, 19275 ill->ill_ipsec_capab_ah->auth_hw_algs)) 19276 goto done; 19277 break; 19278 } 19279 19280 if (need_refrele) 19281 ill_refrele(ill); 19282 return (B_TRUE); 19283 done: 19284 if (need_refrele) 19285 ill_refrele(ill); 19286 return (B_FALSE); 19287 } 19288 19289 /* 19290 * Add a new ill to the list of IPsec capable ills. 19291 * Called from ill_capability_ipsec_ack() when an ACK was received 19292 * indicating that IPsec hardware processing was enabled for an ill. 19293 * 19294 * ill must point to the ill for which acceleration was enabled. 19295 * dl_cap must be set to DL_CAPAB_IPSEC_AH or DL_CAPAB_IPSEC_ESP. 19296 */ 19297 static void 19298 ill_ipsec_capab_add(ill_t *ill, uint_t dl_cap, boolean_t sadb_resync) 19299 { 19300 ipsec_capab_ill_t **ills, *cur_ill, *new_ill; 19301 uint_t sa_type; 19302 uint_t ipproto; 19303 ip_stack_t *ipst = ill->ill_ipst; 19304 19305 ASSERT((dl_cap == DL_CAPAB_IPSEC_AH) || 19306 (dl_cap == DL_CAPAB_IPSEC_ESP)); 19307 19308 switch (dl_cap) { 19309 case DL_CAPAB_IPSEC_AH: 19310 sa_type = SADB_SATYPE_AH; 19311 ills = &ipst->ips_ipsec_capab_ills_ah; 19312 ipproto = IPPROTO_AH; 19313 break; 19314 case DL_CAPAB_IPSEC_ESP: 19315 sa_type = SADB_SATYPE_ESP; 19316 ills = &ipst->ips_ipsec_capab_ills_esp; 19317 ipproto = IPPROTO_ESP; 19318 break; 19319 } 19320 19321 rw_enter(&ipst->ips_ipsec_capab_ills_lock, RW_WRITER); 19322 19323 /* 19324 * Add ill index to list of hardware accelerators. If 19325 * already in list, do nothing. 19326 */ 19327 for (cur_ill = *ills; cur_ill != NULL && 19328 (cur_ill->ill_index != ill->ill_phyint->phyint_ifindex || 19329 cur_ill->ill_isv6 != ill->ill_isv6); cur_ill = cur_ill->next) 19330 ; 19331 19332 if (cur_ill == NULL) { 19333 /* if this is a new entry for this ill */ 19334 new_ill = kmem_zalloc(sizeof (ipsec_capab_ill_t), KM_NOSLEEP); 19335 if (new_ill == NULL) { 19336 rw_exit(&ipst->ips_ipsec_capab_ills_lock); 19337 return; 19338 } 19339 19340 new_ill->ill_index = ill->ill_phyint->phyint_ifindex; 19341 new_ill->ill_isv6 = ill->ill_isv6; 19342 new_ill->next = *ills; 19343 *ills = new_ill; 19344 } else if (!sadb_resync) { 19345 /* not resync'ing SADB and an entry exists for this ill */ 19346 rw_exit(&ipst->ips_ipsec_capab_ills_lock); 19347 return; 19348 } 19349 19350 rw_exit(&ipst->ips_ipsec_capab_ills_lock); 19351 19352 if (ipst->ips_ipcl_proto_fanout_v6[ipproto].connf_head != NULL) 19353 /* 19354 * IPsec module for protocol loaded, initiate dump 19355 * of the SADB to this ill. 19356 */ 19357 sadb_ill_download(ill, sa_type); 19358 } 19359 19360 /* 19361 * Remove an ill from the list of IPsec capable ills. 19362 */ 19363 static void 19364 ill_ipsec_capab_delete(ill_t *ill, uint_t dl_cap) 19365 { 19366 ipsec_capab_ill_t **ills, *cur_ill, *prev_ill; 19367 ip_stack_t *ipst = ill->ill_ipst; 19368 19369 ASSERT(dl_cap == DL_CAPAB_IPSEC_AH || 19370 dl_cap == DL_CAPAB_IPSEC_ESP); 19371 19372 ills = (dl_cap == DL_CAPAB_IPSEC_AH) ? &ipst->ips_ipsec_capab_ills_ah : 19373 &ipst->ips_ipsec_capab_ills_esp; 19374 19375 rw_enter(&ipst->ips_ipsec_capab_ills_lock, RW_WRITER); 19376 19377 prev_ill = NULL; 19378 for (cur_ill = *ills; cur_ill != NULL && (cur_ill->ill_index != 19379 ill->ill_phyint->phyint_ifindex || cur_ill->ill_isv6 != 19380 ill->ill_isv6); prev_ill = cur_ill, cur_ill = cur_ill->next) 19381 ; 19382 if (cur_ill == NULL) { 19383 /* entry not found */ 19384 rw_exit(&ipst->ips_ipsec_capab_ills_lock); 19385 return; 19386 } 19387 if (prev_ill == NULL) { 19388 /* entry at front of list */ 19389 *ills = NULL; 19390 } else { 19391 prev_ill->next = cur_ill->next; 19392 } 19393 kmem_free(cur_ill, sizeof (ipsec_capab_ill_t)); 19394 rw_exit(&ipst->ips_ipsec_capab_ills_lock); 19395 } 19396 19397 /* 19398 * Called by SADB to send a DL_CONTROL_REQ message to every ill 19399 * supporting the specified IPsec protocol acceleration. 19400 * sa_type must be SADB_SATYPE_AH or SADB_SATYPE_ESP. 19401 * We free the mblk and, if sa is non-null, release the held referece. 19402 */ 19403 void 19404 ill_ipsec_capab_send_all(uint_t sa_type, mblk_t *mp, ipsa_t *sa, 19405 netstack_t *ns) 19406 { 19407 ipsec_capab_ill_t *ici, *cur_ici; 19408 ill_t *ill; 19409 mblk_t *nmp, *mp_ship_list = NULL, *next_mp; 19410 ip_stack_t *ipst = ns->netstack_ip; 19411 19412 ici = (sa_type == SADB_SATYPE_AH) ? ipst->ips_ipsec_capab_ills_ah : 19413 ipst->ips_ipsec_capab_ills_esp; 19414 19415 rw_enter(&ipst->ips_ipsec_capab_ills_lock, RW_READER); 19416 19417 for (cur_ici = ici; cur_ici != NULL; cur_ici = cur_ici->next) { 19418 ill = ill_lookup_on_ifindex(cur_ici->ill_index, 19419 cur_ici->ill_isv6, NULL, NULL, NULL, NULL, ipst); 19420 19421 /* 19422 * Handle the case where the ill goes away while the SADB is 19423 * attempting to send messages. If it's going away, it's 19424 * nuking its shadow SADB, so we don't care.. 19425 */ 19426 19427 if (ill == NULL) 19428 continue; 19429 19430 if (sa != NULL) { 19431 /* 19432 * Make sure capabilities match before 19433 * sending SA to ill. 19434 */ 19435 if (!ipsec_capab_match(ill, cur_ici->ill_index, 19436 cur_ici->ill_isv6, sa, ipst->ips_netstack)) { 19437 ill_refrele(ill); 19438 continue; 19439 } 19440 19441 mutex_enter(&sa->ipsa_lock); 19442 sa->ipsa_flags |= IPSA_F_HW; 19443 mutex_exit(&sa->ipsa_lock); 19444 } 19445 19446 /* 19447 * Copy template message, and add it to the front 19448 * of the mblk ship list. We want to avoid holding 19449 * the ipsec_capab_ills_lock while sending the 19450 * message to the ills. 19451 * 19452 * The b_next and b_prev are temporarily used 19453 * to build a list of mblks to be sent down, and to 19454 * save the ill to which they must be sent. 19455 */ 19456 nmp = copymsg(mp); 19457 if (nmp == NULL) { 19458 ill_refrele(ill); 19459 continue; 19460 } 19461 ASSERT(nmp->b_next == NULL && nmp->b_prev == NULL); 19462 nmp->b_next = mp_ship_list; 19463 mp_ship_list = nmp; 19464 nmp->b_prev = (mblk_t *)ill; 19465 } 19466 19467 rw_exit(&ipst->ips_ipsec_capab_ills_lock); 19468 19469 for (nmp = mp_ship_list; nmp != NULL; nmp = next_mp) { 19470 /* restore the mblk to a sane state */ 19471 next_mp = nmp->b_next; 19472 nmp->b_next = NULL; 19473 ill = (ill_t *)nmp->b_prev; 19474 nmp->b_prev = NULL; 19475 19476 ill_dlpi_send(ill, nmp); 19477 ill_refrele(ill); 19478 } 19479 19480 if (sa != NULL) 19481 IPSA_REFRELE(sa); 19482 freemsg(mp); 19483 } 19484 19485 /* 19486 * Derive an interface id from the link layer address. 19487 * Knows about IEEE 802 and IEEE EUI-64 mappings. 19488 */ 19489 static boolean_t 19490 ip_ether_v6intfid(ill_t *ill, in6_addr_t *v6addr) 19491 { 19492 char *addr; 19493 19494 if (ill->ill_phys_addr_length != ETHERADDRL) 19495 return (B_FALSE); 19496 19497 /* Form EUI-64 like address */ 19498 addr = (char *)&v6addr->s6_addr32[2]; 19499 bcopy(ill->ill_phys_addr, addr, 3); 19500 addr[0] ^= 0x2; /* Toggle Universal/Local bit */ 19501 addr[3] = (char)0xff; 19502 addr[4] = (char)0xfe; 19503 bcopy(ill->ill_phys_addr + 3, addr + 5, 3); 19504 return (B_TRUE); 19505 } 19506 19507 /* ARGSUSED */ 19508 static boolean_t 19509 ip_nodef_v6intfid(ill_t *ill, in6_addr_t *v6addr) 19510 { 19511 return (B_FALSE); 19512 } 19513 19514 typedef struct ipmp_ifcookie { 19515 uint32_t ic_hostid; 19516 char ic_ifname[LIFNAMSIZ]; 19517 char ic_zonename[ZONENAME_MAX]; 19518 } ipmp_ifcookie_t; 19519 19520 /* 19521 * Construct a pseudo-random interface ID for the IPMP interface that's both 19522 * predictable and (almost) guaranteed to be unique. 19523 */ 19524 static boolean_t 19525 ip_ipmp_v6intfid(ill_t *ill, in6_addr_t *v6addr) 19526 { 19527 zone_t *zp; 19528 uint8_t *addr; 19529 uchar_t hash[16]; 19530 ulong_t hostid; 19531 MD5_CTX ctx; 19532 ipmp_ifcookie_t ic = { 0 }; 19533 19534 ASSERT(IS_IPMP(ill)); 19535 19536 (void) ddi_strtoul(hw_serial, NULL, 10, &hostid); 19537 ic.ic_hostid = htonl((uint32_t)hostid); 19538 19539 (void) strlcpy(ic.ic_ifname, ill->ill_name, LIFNAMSIZ); 19540 19541 if ((zp = zone_find_by_id(ill->ill_zoneid)) != NULL) { 19542 (void) strlcpy(ic.ic_zonename, zp->zone_name, ZONENAME_MAX); 19543 zone_rele(zp); 19544 } 19545 19546 MD5Init(&ctx); 19547 MD5Update(&ctx, &ic, sizeof (ic)); 19548 MD5Final(hash, &ctx); 19549 19550 /* 19551 * Map the hash to an interface ID per the basic approach in RFC3041. 19552 */ 19553 addr = &v6addr->s6_addr8[8]; 19554 bcopy(hash + 8, addr, sizeof (uint64_t)); 19555 addr[0] &= ~0x2; /* set local bit */ 19556 19557 return (B_TRUE); 19558 } 19559 19560 /* ARGSUSED */ 19561 static boolean_t 19562 ip_ether_v6mapinfo(uint_t lla_length, uint8_t *bphys_addr, uint8_t *maddr, 19563 uint32_t *hw_start, in6_addr_t *v6_extract_mask) 19564 { 19565 /* 19566 * Multicast address mappings used over Ethernet/802.X. 19567 * This address is used as a base for mappings. 19568 */ 19569 static uint8_t ipv6_g_phys_multi_addr[] = {0x33, 0x33, 0x00, 19570 0x00, 0x00, 0x00}; 19571 19572 /* 19573 * Extract low order 32 bits from IPv6 multicast address. 19574 * Or that into the link layer address, starting from the 19575 * second byte. 19576 */ 19577 *hw_start = 2; 19578 v6_extract_mask->s6_addr32[0] = 0; 19579 v6_extract_mask->s6_addr32[1] = 0; 19580 v6_extract_mask->s6_addr32[2] = 0; 19581 v6_extract_mask->s6_addr32[3] = 0xffffffffU; 19582 bcopy(ipv6_g_phys_multi_addr, maddr, lla_length); 19583 return (B_TRUE); 19584 } 19585 19586 /* 19587 * Indicate by return value whether multicast is supported. If not, 19588 * this code should not touch/change any parameters. 19589 */ 19590 /* ARGSUSED */ 19591 static boolean_t 19592 ip_ether_v4mapinfo(uint_t phys_length, uint8_t *bphys_addr, uint8_t *maddr, 19593 uint32_t *hw_start, ipaddr_t *extract_mask) 19594 { 19595 /* 19596 * Multicast address mappings used over Ethernet/802.X. 19597 * This address is used as a base for mappings. 19598 */ 19599 static uint8_t ip_g_phys_multi_addr[] = { 0x01, 0x00, 0x5e, 19600 0x00, 0x00, 0x00 }; 19601 19602 if (phys_length != ETHERADDRL) 19603 return (B_FALSE); 19604 19605 *extract_mask = htonl(0x007fffff); 19606 *hw_start = 2; 19607 bcopy(ip_g_phys_multi_addr, maddr, ETHERADDRL); 19608 return (B_TRUE); 19609 } 19610 19611 /* 19612 * Derive IPoIB interface id from the link layer address. 19613 */ 19614 static boolean_t 19615 ip_ib_v6intfid(ill_t *ill, in6_addr_t *v6addr) 19616 { 19617 char *addr; 19618 19619 if (ill->ill_phys_addr_length != 20) 19620 return (B_FALSE); 19621 addr = (char *)&v6addr->s6_addr32[2]; 19622 bcopy(ill->ill_phys_addr + 12, addr, 8); 19623 /* 19624 * In IBA 1.1 timeframe, some vendors erroneously set the u/l bit 19625 * in the globally assigned EUI-64 GUID to 1, in violation of IEEE 19626 * rules. In these cases, the IBA considers these GUIDs to be in 19627 * "Modified EUI-64" format, and thus toggling the u/l bit is not 19628 * required; vendors are required not to assign global EUI-64's 19629 * that differ only in u/l bit values, thus guaranteeing uniqueness 19630 * of the interface identifier. Whether the GUID is in modified 19631 * or proper EUI-64 format, the ipv6 identifier must have the u/l 19632 * bit set to 1. 19633 */ 19634 addr[0] |= 2; /* Set Universal/Local bit to 1 */ 19635 return (B_TRUE); 19636 } 19637 19638 /* 19639 * Note on mapping from multicast IP addresses to IPoIB multicast link 19640 * addresses. IPoIB multicast link addresses are based on IBA link addresses. 19641 * The format of an IPoIB multicast address is: 19642 * 19643 * 4 byte QPN Scope Sign. Pkey 19644 * +--------------------------------------------+ 19645 * | 00FFFFFF | FF | 1X | X01B | Pkey | GroupID | 19646 * +--------------------------------------------+ 19647 * 19648 * The Scope and Pkey components are properties of the IBA port and 19649 * network interface. They can be ascertained from the broadcast address. 19650 * The Sign. part is the signature, and is 401B for IPv4 and 601B for IPv6. 19651 */ 19652 19653 static boolean_t 19654 ip_ib_v6mapinfo(uint_t lla_length, uint8_t *bphys_addr, uint8_t *maddr, 19655 uint32_t *hw_start, in6_addr_t *v6_extract_mask) 19656 { 19657 /* 19658 * Base IPoIB IPv6 multicast address used for mappings. 19659 * Does not contain the IBA scope/Pkey values. 19660 */ 19661 static uint8_t ipv6_g_phys_ibmulti_addr[] = { 0x00, 0xff, 0xff, 0xff, 19662 0xff, 0x10, 0x60, 0x1b, 0x00, 0x00, 0x00, 0x00, 19663 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 }; 19664 19665 /* 19666 * Extract low order 80 bits from IPv6 multicast address. 19667 * Or that into the link layer address, starting from the 19668 * sixth byte. 19669 */ 19670 *hw_start = 6; 19671 bcopy(ipv6_g_phys_ibmulti_addr, maddr, lla_length); 19672 19673 /* 19674 * Now fill in the IBA scope/Pkey values from the broadcast address. 19675 */ 19676 *(maddr + 5) = *(bphys_addr + 5); 19677 *(maddr + 8) = *(bphys_addr + 8); 19678 *(maddr + 9) = *(bphys_addr + 9); 19679 19680 v6_extract_mask->s6_addr32[0] = 0; 19681 v6_extract_mask->s6_addr32[1] = htonl(0x0000ffff); 19682 v6_extract_mask->s6_addr32[2] = 0xffffffffU; 19683 v6_extract_mask->s6_addr32[3] = 0xffffffffU; 19684 return (B_TRUE); 19685 } 19686 19687 static boolean_t 19688 ip_ib_v4mapinfo(uint_t phys_length, uint8_t *bphys_addr, uint8_t *maddr, 19689 uint32_t *hw_start, ipaddr_t *extract_mask) 19690 { 19691 /* 19692 * Base IPoIB IPv4 multicast address used for mappings. 19693 * Does not contain the IBA scope/Pkey values. 19694 */ 19695 static uint8_t ipv4_g_phys_ibmulti_addr[] = { 0x00, 0xff, 0xff, 0xff, 19696 0xff, 0x10, 0x40, 0x1b, 0x00, 0x00, 0x00, 0x00, 19697 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 }; 19698 19699 if (phys_length != sizeof (ipv4_g_phys_ibmulti_addr)) 19700 return (B_FALSE); 19701 19702 /* 19703 * Extract low order 28 bits from IPv4 multicast address. 19704 * Or that into the link layer address, starting from the 19705 * sixteenth byte. 19706 */ 19707 *extract_mask = htonl(0x0fffffff); 19708 *hw_start = 16; 19709 bcopy(ipv4_g_phys_ibmulti_addr, maddr, phys_length); 19710 19711 /* 19712 * Now fill in the IBA scope/Pkey values from the broadcast address. 19713 */ 19714 *(maddr + 5) = *(bphys_addr + 5); 19715 *(maddr + 8) = *(bphys_addr + 8); 19716 *(maddr + 9) = *(bphys_addr + 9); 19717 return (B_TRUE); 19718 } 19719 19720 /* 19721 * Returns B_TRUE if an ipif is present in the given zone, matching some flags 19722 * (typically IPIF_UP). If ipifp is non-null, the held ipif is returned there. 19723 * This works for both IPv4 and IPv6; if the passed-in ill is v6, the ipif with 19724 * the link-local address is preferred. 19725 */ 19726 boolean_t 19727 ipif_lookup_zoneid(ill_t *ill, zoneid_t zoneid, int flags, ipif_t **ipifp) 19728 { 19729 ipif_t *ipif; 19730 ipif_t *maybe_ipif = NULL; 19731 19732 mutex_enter(&ill->ill_lock); 19733 if (ill->ill_state_flags & ILL_CONDEMNED) { 19734 mutex_exit(&ill->ill_lock); 19735 if (ipifp != NULL) 19736 *ipifp = NULL; 19737 return (B_FALSE); 19738 } 19739 19740 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 19741 if (!IPIF_CAN_LOOKUP(ipif)) 19742 continue; 19743 if (zoneid != ALL_ZONES && ipif->ipif_zoneid != zoneid && 19744 ipif->ipif_zoneid != ALL_ZONES) 19745 continue; 19746 if ((ipif->ipif_flags & flags) != flags) 19747 continue; 19748 19749 if (ipifp == NULL) { 19750 mutex_exit(&ill->ill_lock); 19751 ASSERT(maybe_ipif == NULL); 19752 return (B_TRUE); 19753 } 19754 if (!ill->ill_isv6 || 19755 IN6_IS_ADDR_LINKLOCAL(&ipif->ipif_v6src_addr)) { 19756 ipif_refhold_locked(ipif); 19757 mutex_exit(&ill->ill_lock); 19758 *ipifp = ipif; 19759 return (B_TRUE); 19760 } 19761 if (maybe_ipif == NULL) 19762 maybe_ipif = ipif; 19763 } 19764 if (ipifp != NULL) { 19765 if (maybe_ipif != NULL) 19766 ipif_refhold_locked(maybe_ipif); 19767 *ipifp = maybe_ipif; 19768 } 19769 mutex_exit(&ill->ill_lock); 19770 return (maybe_ipif != NULL); 19771 } 19772 19773 /* 19774 * Return a pointer to an ipif_t given a combination of (ill_idx,ipif_id) 19775 * If a pointer to an ipif_t is returned then the caller will need to do 19776 * an ill_refrele(). 19777 */ 19778 ipif_t * 19779 ipif_getby_indexes(uint_t ifindex, uint_t lifidx, boolean_t isv6, 19780 ip_stack_t *ipst) 19781 { 19782 ipif_t *ipif; 19783 ill_t *ill; 19784 19785 ill = ill_lookup_on_ifindex(ifindex, isv6, NULL, NULL, NULL, NULL, 19786 ipst); 19787 if (ill == NULL) 19788 return (NULL); 19789 19790 mutex_enter(&ill->ill_lock); 19791 if (ill->ill_state_flags & ILL_CONDEMNED) { 19792 mutex_exit(&ill->ill_lock); 19793 ill_refrele(ill); 19794 return (NULL); 19795 } 19796 19797 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 19798 if (!IPIF_CAN_LOOKUP(ipif)) 19799 continue; 19800 if (lifidx == ipif->ipif_id) { 19801 ipif_refhold_locked(ipif); 19802 break; 19803 } 19804 } 19805 19806 mutex_exit(&ill->ill_lock); 19807 ill_refrele(ill); 19808 return (ipif); 19809 } 19810 19811 /* 19812 * Flush the fastpath by deleting any nce's that are waiting for the fastpath, 19813 * There is one exceptions IRE_BROADCAST are difficult to recreate, 19814 * so instead we just nuke their nce_fp_mp's; see ndp_fastpath_flush() 19815 * for details. 19816 */ 19817 void 19818 ill_fastpath_flush(ill_t *ill) 19819 { 19820 ip_stack_t *ipst = ill->ill_ipst; 19821 19822 nce_fastpath_list_dispatch(ill, NULL, NULL); 19823 ndp_walk_common((ill->ill_isv6 ? ipst->ips_ndp6 : ipst->ips_ndp4), 19824 ill, (pfi_t)ndp_fastpath_flush, NULL, B_TRUE); 19825 } 19826 19827 /* 19828 * Set the physical address information for `ill' to the contents of the 19829 * dl_notify_ind_t pointed to by `mp'. Must be called as writer, and will be 19830 * asynchronous if `ill' cannot immediately be quiesced -- in which case 19831 * EINPROGRESS will be returned. 19832 */ 19833 int 19834 ill_set_phys_addr(ill_t *ill, mblk_t *mp) 19835 { 19836 ipsq_t *ipsq = ill->ill_phyint->phyint_ipsq; 19837 dl_notify_ind_t *dlindp = (dl_notify_ind_t *)mp->b_rptr; 19838 19839 ASSERT(IAM_WRITER_IPSQ(ipsq)); 19840 19841 if (dlindp->dl_data != DL_IPV6_LINK_LAYER_ADDR && 19842 dlindp->dl_data != DL_CURR_PHYS_ADDR) { 19843 /* Changing DL_IPV6_TOKEN is not yet supported */ 19844 return (0); 19845 } 19846 19847 /* 19848 * We need to store up to two copies of `mp' in `ill'. Due to the 19849 * design of ipsq_pending_mp_add(), we can't pass them as separate 19850 * arguments to ill_set_phys_addr_tail(). Instead, chain them 19851 * together here, then pull 'em apart in ill_set_phys_addr_tail(). 19852 */ 19853 if ((mp = copyb(mp)) == NULL || (mp->b_cont = copyb(mp)) == NULL) { 19854 freemsg(mp); 19855 return (ENOMEM); 19856 } 19857 19858 ipsq_current_start(ipsq, ill->ill_ipif, 0); 19859 19860 /* 19861 * If we can quiesce the ill, then set the address. If not, then 19862 * ill_set_phys_addr_tail() will be called from ipif_ill_refrele_tail(). 19863 */ 19864 ill_down_ipifs(ill, B_TRUE); 19865 mutex_enter(&ill->ill_lock); 19866 if (!ill_is_quiescent(ill)) { 19867 /* call cannot fail since `conn_t *' argument is NULL */ 19868 (void) ipsq_pending_mp_add(NULL, ill->ill_ipif, ill->ill_rq, 19869 mp, ILL_DOWN); 19870 mutex_exit(&ill->ill_lock); 19871 return (EINPROGRESS); 19872 } 19873 mutex_exit(&ill->ill_lock); 19874 19875 ill_set_phys_addr_tail(ipsq, ill->ill_rq, mp, NULL); 19876 return (0); 19877 } 19878 19879 /* 19880 * Once the ill associated with `q' has quiesced, set its physical address 19881 * information to the values in `addrmp'. Note that two copies of `addrmp' 19882 * are passed (linked by b_cont), since we sometimes need to save two distinct 19883 * copies in the ill_t, and our context doesn't permit sleeping or allocation 19884 * failure (we'll free the other copy if it's not needed). Since the ill_t 19885 * is quiesced, we know any stale IREs with the old address information have 19886 * already been removed, so we don't need to call ill_fastpath_flush(). 19887 */ 19888 /* ARGSUSED */ 19889 static void 19890 ill_set_phys_addr_tail(ipsq_t *ipsq, queue_t *q, mblk_t *addrmp, void *dummy) 19891 { 19892 ill_t *ill = q->q_ptr; 19893 mblk_t *addrmp2 = unlinkb(addrmp); 19894 dl_notify_ind_t *dlindp = (dl_notify_ind_t *)addrmp->b_rptr; 19895 uint_t addrlen, addroff; 19896 19897 ASSERT(IAM_WRITER_IPSQ(ipsq)); 19898 19899 addroff = dlindp->dl_addr_offset; 19900 addrlen = dlindp->dl_addr_length - ABS(ill->ill_sap_length); 19901 19902 switch (dlindp->dl_data) { 19903 case DL_IPV6_LINK_LAYER_ADDR: 19904 ill_set_ndmp(ill, addrmp, addroff, addrlen); 19905 freemsg(addrmp2); 19906 break; 19907 19908 case DL_CURR_PHYS_ADDR: 19909 freemsg(ill->ill_phys_addr_mp); 19910 ill->ill_phys_addr = addrmp->b_rptr + addroff; 19911 ill->ill_phys_addr_mp = addrmp; 19912 ill->ill_phys_addr_length = addrlen; 19913 19914 if (ill->ill_isv6 && !(ill->ill_flags & ILLF_XRESOLV)) 19915 ill_set_ndmp(ill, addrmp2, addroff, addrlen); 19916 else 19917 freemsg(addrmp2); 19918 break; 19919 default: 19920 ASSERT(0); 19921 } 19922 19923 /* 19924 * If there are ipifs to bring up, ill_up_ipifs() will return 19925 * EINPROGRESS, and ipsq_current_finish() will be called by 19926 * ip_rput_dlpi_writer() or ip_arp_done() when the last ipif is 19927 * brought up. 19928 */ 19929 if (ill_up_ipifs(ill, q, addrmp) != EINPROGRESS) 19930 ipsq_current_finish(ipsq); 19931 } 19932 19933 /* 19934 * Helper routine for setting the ill_nd_lla fields. 19935 */ 19936 void 19937 ill_set_ndmp(ill_t *ill, mblk_t *ndmp, uint_t addroff, uint_t addrlen) 19938 { 19939 freemsg(ill->ill_nd_lla_mp); 19940 ill->ill_nd_lla = ndmp->b_rptr + addroff; 19941 ill->ill_nd_lla_mp = ndmp; 19942 ill->ill_nd_lla_len = addrlen; 19943 } 19944 19945 /* 19946 * Replumb the ill. 19947 */ 19948 int 19949 ill_replumb(ill_t *ill, mblk_t *mp) 19950 { 19951 ipsq_t *ipsq = ill->ill_phyint->phyint_ipsq; 19952 19953 ASSERT(IAM_WRITER_IPSQ(ipsq)); 19954 19955 ipsq_current_start(ipsq, ill->ill_ipif, 0); 19956 19957 /* 19958 * If we can quiesce the ill, then continue. If not, then 19959 * ill_replumb_tail() will be called from ipif_ill_refrele_tail(). 19960 */ 19961 ill_down_ipifs(ill, B_FALSE); 19962 19963 mutex_enter(&ill->ill_lock); 19964 if (!ill_is_quiescent(ill)) { 19965 /* call cannot fail since `conn_t *' argument is NULL */ 19966 (void) ipsq_pending_mp_add(NULL, ill->ill_ipif, ill->ill_rq, 19967 mp, ILL_DOWN); 19968 mutex_exit(&ill->ill_lock); 19969 return (EINPROGRESS); 19970 } 19971 mutex_exit(&ill->ill_lock); 19972 19973 ill_replumb_tail(ipsq, ill->ill_rq, mp, NULL); 19974 return (0); 19975 } 19976 19977 /* ARGSUSED */ 19978 static void 19979 ill_replumb_tail(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy) 19980 { 19981 ill_t *ill = q->q_ptr; 19982 19983 ASSERT(IAM_WRITER_IPSQ(ipsq)); 19984 19985 ill_down_ipifs_tail(ill); 19986 19987 freemsg(ill->ill_replumb_mp); 19988 ill->ill_replumb_mp = copyb(mp); 19989 19990 /* 19991 * Successfully quiesced and brought down the interface, now we send 19992 * the DL_NOTE_REPLUMB_DONE message down to the driver. Reuse the 19993 * DL_NOTE_REPLUMB message. 19994 */ 19995 mp = mexchange(NULL, mp, sizeof (dl_notify_conf_t), M_PROTO, 19996 DL_NOTIFY_CONF); 19997 ASSERT(mp != NULL); 19998 ((dl_notify_conf_t *)mp->b_rptr)->dl_notification = 19999 DL_NOTE_REPLUMB_DONE; 20000 ill_dlpi_send(ill, mp); 20001 20002 /* 20003 * If there are ipifs to bring up, ill_up_ipifs() will return 20004 * EINPROGRESS, and ipsq_current_finish() will be called by 20005 * ip_rput_dlpi_writer() or ip_arp_done() when the last ipif is 20006 * brought up. 20007 */ 20008 if (ill->ill_replumb_mp == NULL || 20009 ill_up_ipifs(ill, q, ill->ill_replumb_mp) != EINPROGRESS) { 20010 ipsq_current_finish(ipsq); 20011 } 20012 } 20013 20014 major_t IP_MAJ; 20015 #define IP "ip" 20016 20017 #define UDP6DEV "/devices/pseudo/udp6@0:udp6" 20018 #define UDPDEV "/devices/pseudo/udp@0:udp" 20019 20020 /* 20021 * Issue REMOVEIF ioctls to have the loopback interfaces 20022 * go away. Other interfaces are either I_LINKed or I_PLINKed; 20023 * the former going away when the user-level processes in the zone 20024 * are killed * and the latter are cleaned up by the stream head 20025 * str_stack_shutdown callback that undoes all I_PLINKs. 20026 */ 20027 void 20028 ip_loopback_cleanup(ip_stack_t *ipst) 20029 { 20030 int error; 20031 ldi_handle_t lh = NULL; 20032 ldi_ident_t li = NULL; 20033 int rval; 20034 cred_t *cr; 20035 struct strioctl iocb; 20036 struct lifreq lifreq; 20037 20038 IP_MAJ = ddi_name_to_major(IP); 20039 20040 #ifdef NS_DEBUG 20041 (void) printf("ip_loopback_cleanup() stackid %d\n", 20042 ipst->ips_netstack->netstack_stackid); 20043 #endif 20044 20045 bzero(&lifreq, sizeof (lifreq)); 20046 (void) strcpy(lifreq.lifr_name, ipif_loopback_name); 20047 20048 error = ldi_ident_from_major(IP_MAJ, &li); 20049 if (error) { 20050 #ifdef DEBUG 20051 printf("ip_loopback_cleanup: lyr ident get failed error %d\n", 20052 error); 20053 #endif 20054 return; 20055 } 20056 20057 cr = zone_get_kcred(netstackid_to_zoneid( 20058 ipst->ips_netstack->netstack_stackid)); 20059 ASSERT(cr != NULL); 20060 error = ldi_open_by_name(UDP6DEV, FREAD|FWRITE, cr, &lh, li); 20061 if (error) { 20062 #ifdef DEBUG 20063 printf("ip_loopback_cleanup: open of UDP6DEV failed error %d\n", 20064 error); 20065 #endif 20066 goto out; 20067 } 20068 iocb.ic_cmd = SIOCLIFREMOVEIF; 20069 iocb.ic_timout = 15; 20070 iocb.ic_len = sizeof (lifreq); 20071 iocb.ic_dp = (char *)&lifreq; 20072 20073 error = ldi_ioctl(lh, I_STR, (intptr_t)&iocb, FKIOCTL, cr, &rval); 20074 /* LINTED - statement has no consequent */ 20075 if (error) { 20076 #ifdef NS_DEBUG 20077 printf("ip_loopback_cleanup: ioctl SIOCLIFREMOVEIF failed on " 20078 "UDP6 error %d\n", error); 20079 #endif 20080 } 20081 (void) ldi_close(lh, FREAD|FWRITE, cr); 20082 lh = NULL; 20083 20084 error = ldi_open_by_name(UDPDEV, FREAD|FWRITE, cr, &lh, li); 20085 if (error) { 20086 #ifdef NS_DEBUG 20087 printf("ip_loopback_cleanup: open of UDPDEV failed error %d\n", 20088 error); 20089 #endif 20090 goto out; 20091 } 20092 20093 iocb.ic_cmd = SIOCLIFREMOVEIF; 20094 iocb.ic_timout = 15; 20095 iocb.ic_len = sizeof (lifreq); 20096 iocb.ic_dp = (char *)&lifreq; 20097 20098 error = ldi_ioctl(lh, I_STR, (intptr_t)&iocb, FKIOCTL, cr, &rval); 20099 /* LINTED - statement has no consequent */ 20100 if (error) { 20101 #ifdef NS_DEBUG 20102 printf("ip_loopback_cleanup: ioctl SIOCLIFREMOVEIF failed on " 20103 "UDP error %d\n", error); 20104 #endif 20105 } 20106 (void) ldi_close(lh, FREAD|FWRITE, cr); 20107 lh = NULL; 20108 20109 out: 20110 /* Close layered handles */ 20111 if (lh) 20112 (void) ldi_close(lh, FREAD|FWRITE, cr); 20113 if (li) 20114 ldi_ident_release(li); 20115 20116 crfree(cr); 20117 } 20118 20119 /* 20120 * This needs to be in-sync with nic_event_t definition 20121 */ 20122 static const char * 20123 ill_hook_event2str(nic_event_t event) 20124 { 20125 switch (event) { 20126 case NE_PLUMB: 20127 return ("PLUMB"); 20128 case NE_UNPLUMB: 20129 return ("UNPLUMB"); 20130 case NE_UP: 20131 return ("UP"); 20132 case NE_DOWN: 20133 return ("DOWN"); 20134 case NE_ADDRESS_CHANGE: 20135 return ("ADDRESS_CHANGE"); 20136 case NE_LIF_UP: 20137 return ("LIF_UP"); 20138 case NE_LIF_DOWN: 20139 return ("LIF_DOWN"); 20140 default: 20141 return ("UNKNOWN"); 20142 } 20143 } 20144 20145 void 20146 ill_nic_event_dispatch(ill_t *ill, lif_if_t lif, nic_event_t event, 20147 nic_event_data_t data, size_t datalen) 20148 { 20149 ip_stack_t *ipst = ill->ill_ipst; 20150 hook_nic_event_int_t *info; 20151 const char *str = NULL; 20152 20153 /* create a new nic event info */ 20154 if ((info = kmem_alloc(sizeof (*info), KM_NOSLEEP)) == NULL) 20155 goto fail; 20156 20157 info->hnei_event.hne_nic = ill->ill_phyint->phyint_ifindex; 20158 info->hnei_event.hne_lif = lif; 20159 info->hnei_event.hne_event = event; 20160 info->hnei_event.hne_protocol = ill->ill_isv6 ? 20161 ipst->ips_ipv6_net_data : ipst->ips_ipv4_net_data; 20162 info->hnei_event.hne_data = NULL; 20163 info->hnei_event.hne_datalen = 0; 20164 info->hnei_stackid = ipst->ips_netstack->netstack_stackid; 20165 20166 if (data != NULL && datalen != 0) { 20167 info->hnei_event.hne_data = kmem_alloc(datalen, KM_NOSLEEP); 20168 if (info->hnei_event.hne_data == NULL) 20169 goto fail; 20170 bcopy(data, info->hnei_event.hne_data, datalen); 20171 info->hnei_event.hne_datalen = datalen; 20172 } 20173 20174 if (ddi_taskq_dispatch(eventq_queue_nic, ip_ne_queue_func, info, 20175 DDI_NOSLEEP) == DDI_SUCCESS) 20176 return; 20177 20178 fail: 20179 if (info != NULL) { 20180 if (info->hnei_event.hne_data != NULL) { 20181 kmem_free(info->hnei_event.hne_data, 20182 info->hnei_event.hne_datalen); 20183 } 20184 kmem_free(info, sizeof (hook_nic_event_t)); 20185 } 20186 str = ill_hook_event2str(event); 20187 ip2dbg(("ill_nic_event_dispatch: could not dispatch %s nic event " 20188 "information for %s (ENOMEM)\n", str, ill->ill_name)); 20189 } 20190 20191 void 20192 ipif_up_notify(ipif_t *ipif) 20193 { 20194 ip_rts_ifmsg(ipif, RTSQ_DEFAULT); 20195 ip_rts_newaddrmsg(RTM_ADD, 0, ipif, RTSQ_DEFAULT); 20196 sctp_update_ipif(ipif, SCTP_IPIF_UP); 20197 ill_nic_event_dispatch(ipif->ipif_ill, MAP_IPIF_ID(ipif->ipif_id), 20198 NE_LIF_UP, NULL, 0); 20199 } 20200