xref: /titanic_51/usr/src/uts/common/inet/ip/ip_if.c (revision 3929e1952bab7b01feb2d352f78fc6ebeda2d052)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2009 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  */
25 /* Copyright (c) 1990 Mentat Inc. */
26 
27 /*
28  * This file contains the interface control functions for IP.
29  */
30 
31 #include <sys/types.h>
32 #include <sys/stream.h>
33 #include <sys/dlpi.h>
34 #include <sys/stropts.h>
35 #include <sys/strsun.h>
36 #include <sys/sysmacros.h>
37 #include <sys/strsubr.h>
38 #include <sys/strlog.h>
39 #include <sys/ddi.h>
40 #include <sys/sunddi.h>
41 #include <sys/cmn_err.h>
42 #include <sys/kstat.h>
43 #include <sys/debug.h>
44 #include <sys/zone.h>
45 #include <sys/sunldi.h>
46 #include <sys/file.h>
47 #include <sys/bitmap.h>
48 #include <sys/cpuvar.h>
49 #include <sys/time.h>
50 #include <sys/ctype.h>
51 #include <sys/kmem.h>
52 #include <sys/systm.h>
53 #include <sys/param.h>
54 #include <sys/socket.h>
55 #include <sys/isa_defs.h>
56 #include <net/if.h>
57 #include <net/if_arp.h>
58 #include <net/if_types.h>
59 #include <net/if_dl.h>
60 #include <net/route.h>
61 #include <sys/sockio.h>
62 #include <netinet/in.h>
63 #include <netinet/ip6.h>
64 #include <netinet/icmp6.h>
65 #include <netinet/igmp_var.h>
66 #include <sys/policy.h>
67 #include <sys/ethernet.h>
68 #include <sys/callb.h>
69 #include <sys/md5.h>
70 
71 #include <inet/common.h>   /* for various inet/mi.h and inet/nd.h needs */
72 #include <inet/mi.h>
73 #include <inet/nd.h>
74 #include <inet/arp.h>
75 #include <inet/mib2.h>
76 #include <inet/ip.h>
77 #include <inet/ip6.h>
78 #include <inet/ip6_asp.h>
79 #include <inet/tcp.h>
80 #include <inet/ip_multi.h>
81 #include <inet/ip_ire.h>
82 #include <inet/ip_ftable.h>
83 #include <inet/ip_rts.h>
84 #include <inet/ip_ndp.h>
85 #include <inet/ip_if.h>
86 #include <inet/ip_impl.h>
87 #include <inet/sctp_ip.h>
88 #include <inet/ip_netinfo.h>
89 #include <inet/ilb_ip.h>
90 
91 #include <net/pfkeyv2.h>
92 #include <inet/ipsec_info.h>
93 #include <inet/sadb.h>
94 #include <inet/ipsec_impl.h>
95 #include <sys/iphada.h>
96 
97 #include <netinet/igmp.h>
98 #include <inet/ip_listutils.h>
99 #include <inet/ipclassifier.h>
100 #include <sys/mac_client.h>
101 #include <sys/dld.h>
102 
103 #include <sys/systeminfo.h>
104 #include <sys/bootconf.h>
105 
106 #include <sys/tsol/tndb.h>
107 #include <sys/tsol/tnet.h>
108 
109 /* The character which tells where the ill_name ends */
110 #define	IPIF_SEPARATOR_CHAR	':'
111 
112 /* IP ioctl function table entry */
113 typedef struct ipft_s {
114 	int	ipft_cmd;
115 	pfi_t	ipft_pfi;
116 	int	ipft_min_size;
117 	int	ipft_flags;
118 } ipft_t;
119 #define	IPFT_F_NO_REPLY		0x1	/* IP ioctl does not expect any reply */
120 #define	IPFT_F_SELF_REPLY	0x2	/* ioctl callee does the ioctl reply */
121 
122 typedef struct ip_sock_ar_s {
123 	union {
124 		area_t	ip_sock_area;
125 		ared_t	ip_sock_ared;
126 		areq_t	ip_sock_areq;
127 	} ip_sock_ar_u;
128 	queue_t	*ip_sock_ar_q;
129 } ip_sock_ar_t;
130 
131 static int	nd_ill_forward_get(queue_t *, mblk_t *, caddr_t, cred_t *);
132 static int	nd_ill_forward_set(queue_t *q, mblk_t *mp,
133 		    char *value, caddr_t cp, cred_t *ioc_cr);
134 
135 static boolean_t ill_is_quiescent(ill_t *);
136 static boolean_t ip_addr_ok_v4(ipaddr_t addr, ipaddr_t subnet_mask);
137 static ip_m_t	*ip_m_lookup(t_uscalar_t mac_type);
138 static int	ip_sioctl_addr_tail(ipif_t *ipif, sin_t *sin, queue_t *q,
139     mblk_t *mp, boolean_t need_up);
140 static int	ip_sioctl_dstaddr_tail(ipif_t *ipif, sin_t *sin, queue_t *q,
141     mblk_t *mp, boolean_t need_up);
142 static int	ip_sioctl_slifzone_tail(ipif_t *ipif, zoneid_t zoneid,
143     queue_t *q, mblk_t *mp, boolean_t need_up);
144 static int	ip_sioctl_flags_tail(ipif_t *ipif, uint64_t flags, queue_t *q,
145     mblk_t *mp);
146 static int	ip_sioctl_netmask_tail(ipif_t *ipif, sin_t *sin, queue_t *q,
147     mblk_t *mp);
148 static int	ip_sioctl_subnet_tail(ipif_t *ipif, in6_addr_t, in6_addr_t,
149     queue_t *q, mblk_t *mp, boolean_t need_up);
150 static int	ip_sioctl_plink_ipmod(ipsq_t *ipsq, queue_t *q, mblk_t *mp,
151     int ioccmd, struct linkblk *li, boolean_t doconsist);
152 static ipaddr_t	ip_subnet_mask(ipaddr_t addr, ipif_t **, ip_stack_t *);
153 static void	ip_wput_ioctl(queue_t *q, mblk_t *mp);
154 static void	ipsq_flush(ill_t *ill);
155 
156 static	int	ip_sioctl_token_tail(ipif_t *ipif, sin6_t *sin6, int addrlen,
157     queue_t *q, mblk_t *mp, boolean_t need_up);
158 static void	ipsq_delete(ipsq_t *);
159 
160 static ipif_t	*ipif_allocate(ill_t *ill, int id, uint_t ire_type,
161     boolean_t initialize, boolean_t insert);
162 static void	ipif_check_bcast_ires(ipif_t *test_ipif);
163 static ire_t	**ipif_create_bcast_ires(ipif_t *ipif, ire_t **irep);
164 static boolean_t ipif_comp_multi(ipif_t *old_ipif, ipif_t *new_ipif,
165 		    boolean_t isv6);
166 static void	ipif_down_delete_ire(ire_t *ire, char *ipif);
167 static void	ipif_delete_cache_ire(ire_t *, char *);
168 static int	ipif_logical_down(ipif_t *ipif, queue_t *q, mblk_t *mp);
169 static void	ipif_free(ipif_t *ipif);
170 static void	ipif_free_tail(ipif_t *ipif);
171 static void	ipif_mtu_change(ire_t *ire, char *ipif_arg);
172 static void	ipif_recreate_interface_routes(ipif_t *old_ipif, ipif_t *ipif);
173 static void	ipif_set_default(ipif_t *ipif);
174 static int	ipif_set_values(queue_t *q, mblk_t *mp,
175     char *interf_name, uint_t *ppa);
176 static int	ipif_set_values_tail(ill_t *ill, ipif_t *ipif, mblk_t *mp,
177     queue_t *q);
178 static ipif_t	*ipif_lookup_on_name(char *name, size_t namelen,
179     boolean_t do_alloc, boolean_t *exists, boolean_t isv6, zoneid_t zoneid,
180     queue_t *q, mblk_t *mp, ipsq_func_t func, int *error, ip_stack_t *);
181 static void	ipif_update_other_ipifs(ipif_t *old_ipif);
182 
183 static int	ill_alloc_ppa(ill_if_t *, ill_t *);
184 static int	ill_arp_off(ill_t *ill);
185 static int	ill_arp_on(ill_t *ill);
186 static void	ill_delete_interface_type(ill_if_t *);
187 static int	ill_dl_up(ill_t *ill, ipif_t *ipif, mblk_t *mp, queue_t *q);
188 static void	ill_dl_down(ill_t *ill);
189 static void	ill_down(ill_t *ill);
190 static void	ill_downi(ire_t *ire, char *ill_arg);
191 static void	ill_free_mib(ill_t *ill);
192 static void	ill_glist_delete(ill_t *);
193 static void	ill_phyint_reinit(ill_t *ill);
194 static void	ill_set_nce_router_flags(ill_t *, boolean_t);
195 static void	ill_set_phys_addr_tail(ipsq_t *, queue_t *, mblk_t *, void *);
196 static void	ill_replumb_tail(ipsq_t *, queue_t *, mblk_t *, void *);
197 
198 static ip_v6intfid_func_t ip_ether_v6intfid, ip_ib_v6intfid;
199 static ip_v6intfid_func_t ip_ipv4_v6intfid, ip_ipv6_v6intfid;
200 static ip_v6intfid_func_t ip_ipmp_v6intfid, ip_nodef_v6intfid;
201 static ip_v6intfid_func_t ip_ipv4_v6destintfid, ip_ipv6_v6destintfid;
202 static ip_v6mapinfo_func_t ip_ether_v6mapinfo, ip_ib_v6mapinfo;
203 static ip_v6mapinfo_func_t ip_nodef_v6mapinfo;
204 static ip_v4mapinfo_func_t ip_ether_v4mapinfo, ip_ib_v4mapinfo;
205 static ip_v4mapinfo_func_t ip_nodef_v4mapinfo;
206 static void	ipif_save_ire(ipif_t *, ire_t *);
207 static void	ipif_remove_ire(ipif_t *, ire_t *);
208 static void 	ip_cgtp_bcast_add(ire_t *, ire_t *, ip_stack_t *);
209 static void 	ip_cgtp_bcast_delete(ire_t *, ip_stack_t *);
210 static void	phyint_free(phyint_t *);
211 
212 /*
213  * Per-ill IPsec capabilities management.
214  */
215 static ill_ipsec_capab_t *ill_ipsec_capab_alloc(void);
216 static void	ill_ipsec_capab_free(ill_ipsec_capab_t *);
217 static void	ill_ipsec_capab_add(ill_t *, uint_t, boolean_t);
218 static void	ill_ipsec_capab_delete(ill_t *, uint_t);
219 static boolean_t ill_ipsec_capab_resize_algparm(ill_ipsec_capab_t *, int);
220 static void ill_capability_dispatch(ill_t *, mblk_t *, dl_capability_sub_t *,
221     boolean_t);
222 static void ill_capability_id_ack(ill_t *, mblk_t *, dl_capability_sub_t *);
223 static void ill_capability_mdt_ack(ill_t *, mblk_t *, dl_capability_sub_t *);
224 static void ill_capability_mdt_reset_fill(ill_t *, mblk_t *);
225 static void ill_capability_ipsec_ack(ill_t *, mblk_t *, dl_capability_sub_t *);
226 static void ill_capability_ipsec_reset_fill(ill_t *, mblk_t *);
227 static void ill_capability_hcksum_ack(ill_t *, mblk_t *, dl_capability_sub_t *);
228 static void ill_capability_hcksum_reset_fill(ill_t *, mblk_t *);
229 static void ill_capability_zerocopy_ack(ill_t *, mblk_t *,
230     dl_capability_sub_t *);
231 static void ill_capability_zerocopy_reset_fill(ill_t *, mblk_t *);
232 static int  ill_capability_ipsec_reset_size(ill_t *, int *, int *, int *,
233     int *);
234 static void	ill_capability_dld_reset_fill(ill_t *, mblk_t *);
235 static void	ill_capability_dld_ack(ill_t *, mblk_t *,
236 		    dl_capability_sub_t *);
237 static void	ill_capability_dld_enable(ill_t *);
238 static void	ill_capability_ack_thr(void *);
239 static void	ill_capability_lso_enable(ill_t *);
240 static void	ill_capability_send(ill_t *, mblk_t *);
241 
242 static ill_t	*ill_prev_usesrc(ill_t *);
243 static int	ill_relink_usesrc_ills(ill_t *, ill_t *, uint_t);
244 static void	ill_disband_usesrc_group(ill_t *);
245 static void	conn_cleanup_stale_ire(conn_t *, caddr_t);
246 
247 #ifdef DEBUG
248 static  void    ill_trace_cleanup(const ill_t *);
249 static  void    ipif_trace_cleanup(const ipif_t *);
250 #endif
251 
252 /*
253  * if we go over the memory footprint limit more than once in this msec
254  * interval, we'll start pruning aggressively.
255  */
256 int ip_min_frag_prune_time = 0;
257 
258 /*
259  * max # of IPsec algorithms supported.  Limited to 1 byte by PF_KEY
260  * and the IPsec DOI
261  */
262 #define	MAX_IPSEC_ALGS	256
263 
264 #define	BITSPERBYTE	8
265 #define	BITS(type)	(BITSPERBYTE * (long)sizeof (type))
266 
267 #define	IPSEC_ALG_ENABLE(algs, algid) \
268 		((algs)[(algid) / BITS(ipsec_capab_elem_t)] |= \
269 		(1 << ((algid) % BITS(ipsec_capab_elem_t))))
270 
271 #define	IPSEC_ALG_IS_ENABLED(algid, algs) \
272 		((algs)[(algid) / BITS(ipsec_capab_elem_t)] & \
273 		(1 << ((algid) % BITS(ipsec_capab_elem_t))))
274 
275 typedef uint8_t ipsec_capab_elem_t;
276 
277 /*
278  * Per-algorithm parameters.  Note that at present, only encryption
279  * algorithms have variable keysize (IKE does not provide a way to negotiate
280  * auth algorithm keysize).
281  *
282  * All sizes here are in bits.
283  */
284 typedef struct
285 {
286 	uint16_t	minkeylen;
287 	uint16_t	maxkeylen;
288 } ipsec_capab_algparm_t;
289 
290 /*
291  * Per-ill capabilities.
292  */
293 struct ill_ipsec_capab_s {
294 	ipsec_capab_elem_t *encr_hw_algs;
295 	ipsec_capab_elem_t *auth_hw_algs;
296 	uint32_t algs_size;	/* size of _hw_algs in bytes */
297 	/* algorithm key lengths */
298 	ipsec_capab_algparm_t *encr_algparm;
299 	uint32_t encr_algparm_size;
300 	uint32_t encr_algparm_end;
301 };
302 
303 /*
304  * The field values are larger than strictly necessary for simple
305  * AR_ENTRY_ADDs but the padding lets us accomodate the socket ioctls.
306  */
307 static area_t	ip_area_template = {
308 	AR_ENTRY_ADD,			/* area_cmd */
309 	sizeof (ip_sock_ar_t) + (IP_ADDR_LEN*2) + sizeof (struct sockaddr_dl),
310 					/* area_name_offset */
311 	/* area_name_length temporarily holds this structure length */
312 	sizeof (area_t),			/* area_name_length */
313 	IP_ARP_PROTO_TYPE,		/* area_proto */
314 	sizeof (ip_sock_ar_t),		/* area_proto_addr_offset */
315 	IP_ADDR_LEN,			/* area_proto_addr_length */
316 	sizeof (ip_sock_ar_t) + IP_ADDR_LEN,
317 					/* area_proto_mask_offset */
318 	0,				/* area_flags */
319 	sizeof (ip_sock_ar_t) + IP_ADDR_LEN + IP_ADDR_LEN,
320 					/* area_hw_addr_offset */
321 	/* Zero length hw_addr_length means 'use your idea of the address' */
322 	0				/* area_hw_addr_length */
323 };
324 
325 /*
326  * AR_ENTRY_ADD/DELETE templates have been added for IPv6 external resolver
327  * support
328  */
329 static area_t	ip6_area_template = {
330 	AR_ENTRY_ADD,			/* area_cmd */
331 	sizeof (ip_sock_ar_t) + (IPV6_ADDR_LEN*2) + sizeof (sin6_t),
332 					/* area_name_offset */
333 	/* area_name_length temporarily holds this structure length */
334 	sizeof (area_t),			/* area_name_length */
335 	IP_ARP_PROTO_TYPE,		/* area_proto */
336 	sizeof (ip_sock_ar_t),		/* area_proto_addr_offset */
337 	IPV6_ADDR_LEN,			/* area_proto_addr_length */
338 	sizeof (ip_sock_ar_t) + IPV6_ADDR_LEN,
339 					/* area_proto_mask_offset */
340 	0,				/* area_flags */
341 	sizeof (ip_sock_ar_t) + IPV6_ADDR_LEN + IPV6_ADDR_LEN,
342 					/* area_hw_addr_offset */
343 	/* Zero length hw_addr_length means 'use your idea of the address' */
344 	0				/* area_hw_addr_length */
345 };
346 
347 static ared_t	ip_ared_template = {
348 	AR_ENTRY_DELETE,
349 	sizeof (ared_t) + IP_ADDR_LEN,
350 	sizeof (ared_t),
351 	IP_ARP_PROTO_TYPE,
352 	sizeof (ared_t),
353 	IP_ADDR_LEN,
354 	0
355 };
356 
357 static ared_t	ip6_ared_template = {
358 	AR_ENTRY_DELETE,
359 	sizeof (ared_t) + IPV6_ADDR_LEN,
360 	sizeof (ared_t),
361 	IP_ARP_PROTO_TYPE,
362 	sizeof (ared_t),
363 	IPV6_ADDR_LEN,
364 	0
365 };
366 
367 /*
368  * A template for an IPv6 AR_ENTRY_QUERY template has not been created, as
369  * as the areq doesn't include an IP address in ill_dl_up() (the only place a
370  * areq is used).
371  */
372 static areq_t	ip_areq_template = {
373 	AR_ENTRY_QUERY,			/* cmd */
374 	sizeof (areq_t)+(2*IP_ADDR_LEN),	/* name offset */
375 	sizeof (areq_t),	/* name len (filled by ill_arp_alloc) */
376 	IP_ARP_PROTO_TYPE,		/* protocol, from arps perspective */
377 	sizeof (areq_t),			/* target addr offset */
378 	IP_ADDR_LEN,			/* target addr_length */
379 	0,				/* flags */
380 	sizeof (areq_t) + IP_ADDR_LEN,	/* sender addr offset */
381 	IP_ADDR_LEN,			/* sender addr length */
382 	AR_EQ_DEFAULT_XMIT_COUNT,	/* xmit_count */
383 	AR_EQ_DEFAULT_XMIT_INTERVAL,	/* (re)xmit_interval in milliseconds */
384 	AR_EQ_DEFAULT_MAX_BUFFERED	/* max # of requests to buffer */
385 	/* anything else filled in by the code */
386 };
387 
388 static arc_t	ip_aru_template = {
389 	AR_INTERFACE_UP,
390 	sizeof (arc_t),		/* Name offset */
391 	sizeof (arc_t)		/* Name length (set by ill_arp_alloc) */
392 };
393 
394 static arc_t	ip_ard_template = {
395 	AR_INTERFACE_DOWN,
396 	sizeof (arc_t),		/* Name offset */
397 	sizeof (arc_t)		/* Name length (set by ill_arp_alloc) */
398 };
399 
400 static arc_t	ip_aron_template = {
401 	AR_INTERFACE_ON,
402 	sizeof (arc_t),		/* Name offset */
403 	sizeof (arc_t)		/* Name length (set by ill_arp_alloc) */
404 };
405 
406 static arc_t	ip_aroff_template = {
407 	AR_INTERFACE_OFF,
408 	sizeof (arc_t),		/* Name offset */
409 	sizeof (arc_t)		/* Name length (set by ill_arp_alloc) */
410 };
411 
412 static arma_t	ip_arma_multi_template = {
413 	AR_MAPPING_ADD,
414 	sizeof (arma_t) + 3*IP_ADDR_LEN + IP_MAX_HW_LEN,
415 				/* Name offset */
416 	sizeof (arma_t),	/* Name length (set by ill_arp_alloc) */
417 	IP_ARP_PROTO_TYPE,
418 	sizeof (arma_t),			/* proto_addr_offset */
419 	IP_ADDR_LEN,				/* proto_addr_length */
420 	sizeof (arma_t) + IP_ADDR_LEN,		/* proto_mask_offset */
421 	sizeof (arma_t) + 2*IP_ADDR_LEN,	/* proto_extract_mask_offset */
422 	ACE_F_PERMANENT | ACE_F_MAPPING,	/* flags */
423 	sizeof (arma_t) + 3*IP_ADDR_LEN,	/* hw_addr_offset */
424 	IP_MAX_HW_LEN,				/* hw_addr_length */
425 	0,					/* hw_mapping_start */
426 };
427 
428 static ipft_t	ip_ioctl_ftbl[] = {
429 	{ IP_IOC_IRE_DELETE, ip_ire_delete, sizeof (ipid_t), 0 },
430 	{ IP_IOC_IRE_DELETE_NO_REPLY, ip_ire_delete, sizeof (ipid_t),
431 		IPFT_F_NO_REPLY },
432 	{ IP_IOC_IRE_ADVISE_NO_REPLY, ip_ire_advise, sizeof (ipic_t),
433 		IPFT_F_NO_REPLY },
434 	{ IP_IOC_RTS_REQUEST, ip_rts_request, 0, IPFT_F_SELF_REPLY },
435 	{ 0 }
436 };
437 
438 /* Simple ICMP IP Header Template */
439 static ipha_t icmp_ipha = {
440 	IP_SIMPLE_HDR_VERSION, 0, 0, 0, 0, 0, IPPROTO_ICMP
441 };
442 
443 static uchar_t	ip_six_byte_all_ones[] = { 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF };
444 
445 static ip_m_t   ip_m_tbl[] = {
446 	{ DL_ETHER, IFT_ETHER, ETHERTYPE_IP, ETHERTYPE_IPV6,
447 	    ip_ether_v4mapinfo, ip_ether_v6mapinfo, ip_ether_v6intfid,
448 	    ip_nodef_v6intfid },
449 	{ DL_CSMACD, IFT_ISO88023, ETHERTYPE_IP, ETHERTYPE_IPV6,
450 	    ip_ether_v4mapinfo, ip_ether_v6mapinfo, ip_nodef_v6intfid,
451 	    ip_nodef_v6intfid },
452 	{ DL_TPB, IFT_ISO88024, ETHERTYPE_IP, ETHERTYPE_IPV6,
453 	    ip_ether_v4mapinfo, ip_ether_v6mapinfo, ip_nodef_v6intfid,
454 	    ip_nodef_v6intfid },
455 	{ DL_TPR, IFT_ISO88025, ETHERTYPE_IP, ETHERTYPE_IPV6,
456 	    ip_ether_v4mapinfo, ip_ether_v6mapinfo, ip_nodef_v6intfid,
457 	    ip_nodef_v6intfid },
458 	{ DL_FDDI, IFT_FDDI, ETHERTYPE_IP, ETHERTYPE_IPV6,
459 	    ip_ether_v4mapinfo, ip_ether_v6mapinfo, ip_ether_v6intfid,
460 	    ip_nodef_v6intfid },
461 	{ DL_IB, IFT_IB, ETHERTYPE_IP, ETHERTYPE_IPV6,
462 	    ip_ib_v4mapinfo, ip_ib_v6mapinfo, ip_ib_v6intfid,
463 	    ip_nodef_v6intfid },
464 	{ DL_IPV4, IFT_IPV4, IPPROTO_ENCAP, IPPROTO_IPV6, ip_nodef_v4mapinfo,
465 	    ip_nodef_v6mapinfo, ip_ipv4_v6intfid, ip_ipv4_v6destintfid },
466 	{ DL_IPV6, IFT_IPV6, IPPROTO_ENCAP, IPPROTO_IPV6, ip_nodef_v4mapinfo,
467 	    ip_nodef_v6mapinfo, ip_ipv6_v6intfid, ip_ipv6_v6destintfid },
468 	{ DL_6TO4, IFT_6TO4, IPPROTO_ENCAP, IPPROTO_IPV6, ip_nodef_v4mapinfo,
469 	    ip_nodef_v6mapinfo, ip_ipv4_v6intfid, ip_nodef_v6intfid },
470 	{ SUNW_DL_VNI, IFT_OTHER, ETHERTYPE_IP, ETHERTYPE_IPV6,
471 	    NULL, NULL, ip_nodef_v6intfid, ip_nodef_v6intfid },
472 	{ SUNW_DL_IPMP, IFT_OTHER, ETHERTYPE_IP, ETHERTYPE_IPV6,
473 	    NULL, NULL, ip_ipmp_v6intfid, ip_nodef_v6intfid },
474 	{ DL_OTHER, IFT_OTHER, ETHERTYPE_IP, ETHERTYPE_IPV6,
475 	    ip_ether_v4mapinfo, ip_ether_v6mapinfo, ip_nodef_v6intfid,
476 	    ip_nodef_v6intfid }
477 };
478 
479 static ill_t	ill_null;		/* Empty ILL for init. */
480 char	ipif_loopback_name[] = "lo0";
481 static char *ipv4_forward_suffix = ":ip_forwarding";
482 static char *ipv6_forward_suffix = ":ip6_forwarding";
483 static	sin6_t	sin6_null;	/* Zero address for quick clears */
484 static	sin_t	sin_null;	/* Zero address for quick clears */
485 
486 /* When set search for unused ipif_seqid */
487 static ipif_t	ipif_zero;
488 
489 /*
490  * ppa arena is created after these many
491  * interfaces have been plumbed.
492  */
493 uint_t	ill_no_arena = 12;	/* Setable in /etc/system */
494 
495 /*
496  * Allocate per-interface mibs.
497  * Returns true if ok. False otherwise.
498  *  ipsq  may not yet be allocated (loopback case ).
499  */
500 static boolean_t
501 ill_allocate_mibs(ill_t *ill)
502 {
503 	/* Already allocated? */
504 	if (ill->ill_ip_mib != NULL) {
505 		if (ill->ill_isv6)
506 			ASSERT(ill->ill_icmp6_mib != NULL);
507 		return (B_TRUE);
508 	}
509 
510 	ill->ill_ip_mib = kmem_zalloc(sizeof (*ill->ill_ip_mib),
511 	    KM_NOSLEEP);
512 	if (ill->ill_ip_mib == NULL) {
513 		return (B_FALSE);
514 	}
515 
516 	/* Setup static information */
517 	SET_MIB(ill->ill_ip_mib->ipIfStatsEntrySize,
518 	    sizeof (mib2_ipIfStatsEntry_t));
519 	if (ill->ill_isv6) {
520 		ill->ill_ip_mib->ipIfStatsIPVersion = MIB2_INETADDRESSTYPE_ipv6;
521 		SET_MIB(ill->ill_ip_mib->ipIfStatsAddrEntrySize,
522 		    sizeof (mib2_ipv6AddrEntry_t));
523 		SET_MIB(ill->ill_ip_mib->ipIfStatsRouteEntrySize,
524 		    sizeof (mib2_ipv6RouteEntry_t));
525 		SET_MIB(ill->ill_ip_mib->ipIfStatsNetToMediaEntrySize,
526 		    sizeof (mib2_ipv6NetToMediaEntry_t));
527 		SET_MIB(ill->ill_ip_mib->ipIfStatsMemberEntrySize,
528 		    sizeof (ipv6_member_t));
529 		SET_MIB(ill->ill_ip_mib->ipIfStatsGroupSourceEntrySize,
530 		    sizeof (ipv6_grpsrc_t));
531 	} else {
532 		ill->ill_ip_mib->ipIfStatsIPVersion = MIB2_INETADDRESSTYPE_ipv4;
533 		SET_MIB(ill->ill_ip_mib->ipIfStatsAddrEntrySize,
534 		    sizeof (mib2_ipAddrEntry_t));
535 		SET_MIB(ill->ill_ip_mib->ipIfStatsRouteEntrySize,
536 		    sizeof (mib2_ipRouteEntry_t));
537 		SET_MIB(ill->ill_ip_mib->ipIfStatsNetToMediaEntrySize,
538 		    sizeof (mib2_ipNetToMediaEntry_t));
539 		SET_MIB(ill->ill_ip_mib->ipIfStatsMemberEntrySize,
540 		    sizeof (ip_member_t));
541 		SET_MIB(ill->ill_ip_mib->ipIfStatsGroupSourceEntrySize,
542 		    sizeof (ip_grpsrc_t));
543 
544 		/*
545 		 * For a v4 ill, we are done at this point, because per ill
546 		 * icmp mibs are only used for v6.
547 		 */
548 		return (B_TRUE);
549 	}
550 
551 	ill->ill_icmp6_mib = kmem_zalloc(sizeof (*ill->ill_icmp6_mib),
552 	    KM_NOSLEEP);
553 	if (ill->ill_icmp6_mib == NULL) {
554 		kmem_free(ill->ill_ip_mib, sizeof (*ill->ill_ip_mib));
555 		ill->ill_ip_mib = NULL;
556 		return (B_FALSE);
557 	}
558 	/* static icmp info */
559 	ill->ill_icmp6_mib->ipv6IfIcmpEntrySize =
560 	    sizeof (mib2_ipv6IfIcmpEntry_t);
561 	/*
562 	 * The ipIfStatsIfindex and ipv6IfIcmpIndex will be assigned later
563 	 * after the phyint merge occurs in ipif_set_values -> ill_glist_insert
564 	 * -> ill_phyint_reinit
565 	 */
566 	return (B_TRUE);
567 }
568 
569 /*
570  * Common code for preparation of ARP commands.  Two points to remember:
571  * 	1) The ill_name is tacked on at the end of the allocated space so
572  *	   the templates name_offset field must contain the total space
573  *	   to allocate less the name length.
574  *
575  *	2) The templates name_length field should contain the *template*
576  *	   length.  We use it as a parameter to bcopy() and then write
577  *	   the real ill_name_length into the name_length field of the copy.
578  * (Always called as writer.)
579  */
580 mblk_t *
581 ill_arp_alloc(ill_t *ill, const uchar_t *template, caddr_t addr)
582 {
583 	arc_t	*arc = (arc_t *)template;
584 	char	*cp;
585 	int	len;
586 	mblk_t	*mp;
587 	uint_t	name_length = ill->ill_name_length;
588 	uint_t	template_len = arc->arc_name_length;
589 
590 	len = arc->arc_name_offset + name_length;
591 	mp = allocb(len, BPRI_HI);
592 	if (mp == NULL)
593 		return (NULL);
594 	cp = (char *)mp->b_rptr;
595 	mp->b_wptr = (uchar_t *)&cp[len];
596 	if (template_len)
597 		bcopy(template, cp, template_len);
598 	if (len > template_len)
599 		bzero(&cp[template_len], len - template_len);
600 	mp->b_datap->db_type = M_PROTO;
601 
602 	arc = (arc_t *)cp;
603 	arc->arc_name_length = name_length;
604 	cp = (char *)arc + arc->arc_name_offset;
605 	bcopy(ill->ill_name, cp, name_length);
606 
607 	if (addr) {
608 		area_t	*area = (area_t *)mp->b_rptr;
609 
610 		cp = (char *)area + area->area_proto_addr_offset;
611 		bcopy(addr, cp, area->area_proto_addr_length);
612 		if (area->area_cmd == AR_ENTRY_ADD) {
613 			cp = (char *)area;
614 			len = area->area_proto_addr_length;
615 			if (area->area_proto_mask_offset)
616 				cp += area->area_proto_mask_offset;
617 			else
618 				cp += area->area_proto_addr_offset + len;
619 			while (len-- > 0)
620 				*cp++ = (char)~0;
621 		}
622 	}
623 	return (mp);
624 }
625 
626 mblk_t *
627 ipif_area_alloc(ipif_t *ipif, uint_t optflags)
628 {
629 	caddr_t	addr;
630 	mblk_t 	*mp;
631 	area_t	*area;
632 	uchar_t	*areap;
633 	ill_t	*ill = ipif->ipif_ill;
634 
635 	if (ill->ill_isv6) {
636 		ASSERT(ill->ill_flags & ILLF_XRESOLV);
637 		addr = (caddr_t)&ipif->ipif_v6lcl_addr;
638 		areap = (uchar_t *)&ip6_area_template;
639 	} else {
640 		addr = (caddr_t)&ipif->ipif_lcl_addr;
641 		areap = (uchar_t *)&ip_area_template;
642 	}
643 
644 	if ((mp = ill_arp_alloc(ill, areap, addr)) == NULL)
645 		return (NULL);
646 
647 	/*
648 	 * IPMP requires that the hardware address be included in all
649 	 * AR_ENTRY_ADD requests so that ARP can deduce the arl to send on.
650 	 * If there are no active underlying ills in the group (and thus no
651 	 * hardware address, DAD will be deferred until an underlying ill
652 	 * becomes active.
653 	 */
654 	if (IS_IPMP(ill)) {
655 		if ((ill = ipmp_ipif_hold_bound_ill(ipif)) == NULL) {
656 			freemsg(mp);
657 			return (NULL);
658 		}
659 	} else {
660 		ill_refhold(ill);
661 	}
662 
663 	area = (area_t *)mp->b_rptr;
664 	area->area_flags = ACE_F_PERMANENT | ACE_F_PUBLISH | ACE_F_MYADDR;
665 	area->area_flags |= optflags;
666 	area->area_hw_addr_length = ill->ill_phys_addr_length;
667 	bcopy(ill->ill_phys_addr, mp->b_rptr + area->area_hw_addr_offset,
668 	    area->area_hw_addr_length);
669 
670 	ill_refrele(ill);
671 	return (mp);
672 }
673 
674 mblk_t *
675 ipif_ared_alloc(ipif_t *ipif)
676 {
677 	caddr_t	addr;
678 	uchar_t	*aredp;
679 
680 	if (ipif->ipif_ill->ill_isv6) {
681 		ASSERT(ipif->ipif_ill->ill_flags & ILLF_XRESOLV);
682 		addr = (caddr_t)&ipif->ipif_v6lcl_addr;
683 		aredp = (uchar_t *)&ip6_ared_template;
684 	} else {
685 		addr = (caddr_t)&ipif->ipif_lcl_addr;
686 		aredp = (uchar_t *)&ip_ared_template;
687 	}
688 
689 	return (ill_arp_alloc(ipif->ipif_ill, aredp, addr));
690 }
691 
692 mblk_t *
693 ill_ared_alloc(ill_t *ill, ipaddr_t addr)
694 {
695 	return (ill_arp_alloc(ill, (uchar_t *)&ip_ared_template,
696 	    (char *)&addr));
697 }
698 
699 mblk_t *
700 ill_arie_alloc(ill_t *ill, const char *grifname, const void *template)
701 {
702 	mblk_t	*mp = ill_arp_alloc(ill, template, 0);
703 	arie_t	*arie;
704 
705 	if (mp != NULL) {
706 		arie = (arie_t *)mp->b_rptr;
707 		(void) strlcpy(arie->arie_grifname, grifname, LIFNAMSIZ);
708 	}
709 	return (mp);
710 }
711 
712 /*
713  * Completely vaporize a lower level tap and all associated interfaces.
714  * ill_delete is called only out of ip_close when the device control
715  * stream is being closed.
716  */
717 void
718 ill_delete(ill_t *ill)
719 {
720 	ipif_t	*ipif;
721 	ill_t	*prev_ill;
722 	ip_stack_t	*ipst = ill->ill_ipst;
723 
724 	/*
725 	 * ill_delete may be forcibly entering the ipsq. The previous
726 	 * ioctl may not have completed and may need to be aborted.
727 	 * ipsq_flush takes care of it. If we don't need to enter the
728 	 * the ipsq forcibly, the 2nd invocation of ipsq_flush in
729 	 * ill_delete_tail is sufficient.
730 	 */
731 	ipsq_flush(ill);
732 
733 	/*
734 	 * Nuke all interfaces.  ipif_free will take down the interface,
735 	 * remove it from the list, and free the data structure.
736 	 * Walk down the ipif list and remove the logical interfaces
737 	 * first before removing the main ipif. We can't unplumb
738 	 * zeroth interface first in the case of IPv6 as reset_conn_ill
739 	 * -> ip_ll_delmulti_v6 de-references ill_ipif for checking
740 	 * POINTOPOINT.
741 	 *
742 	 * If ill_ipif was not properly initialized (i.e low on memory),
743 	 * then no interfaces to clean up. In this case just clean up the
744 	 * ill.
745 	 */
746 	for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next)
747 		ipif_free(ipif);
748 
749 	/*
750 	 * Used only by ill_arp_on and ill_arp_off, which are writers.
751 	 * So nobody can be using this mp now. Free the mp allocated for
752 	 * honoring ILLF_NOARP
753 	 */
754 	freemsg(ill->ill_arp_on_mp);
755 	ill->ill_arp_on_mp = NULL;
756 
757 	/* Clean up msgs on pending upcalls for mrouted */
758 	reset_mrt_ill(ill);
759 
760 	/*
761 	 * ipif_free -> reset_conn_ipif will remove all multicast
762 	 * references for IPv4. For IPv6, we need to do it here as
763 	 * it points only at ills.
764 	 */
765 	reset_conn_ill(ill);
766 
767 	/*
768 	 * Remove multicast references added as a result of calls to
769 	 * ip_join_allmulti().
770 	 */
771 	ip_purge_allmulti(ill);
772 
773 	/*
774 	 * If the ill being deleted is under IPMP, boot it out of the illgrp.
775 	 */
776 	if (IS_UNDER_IPMP(ill))
777 		ipmp_ill_leave_illgrp(ill);
778 
779 	/*
780 	 * ill_down will arrange to blow off any IRE's dependent on this
781 	 * ILL, and shut down fragmentation reassembly.
782 	 */
783 	ill_down(ill);
784 
785 	/* Let SCTP know, so that it can remove this from its list. */
786 	sctp_update_ill(ill, SCTP_ILL_REMOVE);
787 
788 	/*
789 	 * If an address on this ILL is being used as a source address then
790 	 * clear out the pointers in other ILLs that point to this ILL.
791 	 */
792 	rw_enter(&ipst->ips_ill_g_usesrc_lock, RW_WRITER);
793 	if (ill->ill_usesrc_grp_next != NULL) {
794 		if (ill->ill_usesrc_ifindex == 0) { /* usesrc ILL ? */
795 			ill_disband_usesrc_group(ill);
796 		} else {	/* consumer of the usesrc ILL */
797 			prev_ill = ill_prev_usesrc(ill);
798 			prev_ill->ill_usesrc_grp_next =
799 			    ill->ill_usesrc_grp_next;
800 		}
801 	}
802 	rw_exit(&ipst->ips_ill_g_usesrc_lock);
803 }
804 
805 static void
806 ipif_non_duplicate(ipif_t *ipif)
807 {
808 	ill_t *ill = ipif->ipif_ill;
809 	mutex_enter(&ill->ill_lock);
810 	if (ipif->ipif_flags & IPIF_DUPLICATE) {
811 		ipif->ipif_flags &= ~IPIF_DUPLICATE;
812 		ASSERT(ill->ill_ipif_dup_count > 0);
813 		ill->ill_ipif_dup_count--;
814 	}
815 	mutex_exit(&ill->ill_lock);
816 }
817 
818 /*
819  * ill_delete_tail is called from ip_modclose after all references
820  * to the closing ill are gone. The wait is done in ip_modclose
821  */
822 void
823 ill_delete_tail(ill_t *ill)
824 {
825 	mblk_t	**mpp;
826 	ipif_t	*ipif;
827 	ip_stack_t	*ipst = ill->ill_ipst;
828 
829 	for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) {
830 		ipif_non_duplicate(ipif);
831 		ipif_down_tail(ipif);
832 	}
833 
834 	ASSERT(ill->ill_ipif_dup_count == 0 &&
835 	    ill->ill_arp_down_mp == NULL &&
836 	    ill->ill_arp_del_mapping_mp == NULL);
837 
838 	/*
839 	 * If polling capability is enabled (which signifies direct
840 	 * upcall into IP and driver has ill saved as a handle),
841 	 * we need to make sure that unbind has completed before we
842 	 * let the ill disappear and driver no longer has any reference
843 	 * to this ill.
844 	 */
845 	mutex_enter(&ill->ill_lock);
846 	while (ill->ill_state_flags & ILL_DL_UNBIND_IN_PROGRESS)
847 		cv_wait(&ill->ill_cv, &ill->ill_lock);
848 	mutex_exit(&ill->ill_lock);
849 	ASSERT(!(ill->ill_capabilities &
850 	    (ILL_CAPAB_DLD | ILL_CAPAB_DLD_POLL | ILL_CAPAB_DLD_DIRECT)));
851 
852 	if (ill->ill_net_type != IRE_LOOPBACK)
853 		qprocsoff(ill->ill_rq);
854 
855 	/*
856 	 * We do an ipsq_flush once again now. New messages could have
857 	 * landed up from below (M_ERROR or M_HANGUP). Similarly ioctls
858 	 * could also have landed up if an ioctl thread had looked up
859 	 * the ill before we set the ILL_CONDEMNED flag, but not yet
860 	 * enqueued the ioctl when we did the ipsq_flush last time.
861 	 */
862 	ipsq_flush(ill);
863 
864 	/*
865 	 * Free capabilities.
866 	 */
867 	if (ill->ill_ipsec_capab_ah != NULL) {
868 		ill_ipsec_capab_delete(ill, DL_CAPAB_IPSEC_AH);
869 		ill_ipsec_capab_free(ill->ill_ipsec_capab_ah);
870 		ill->ill_ipsec_capab_ah = NULL;
871 	}
872 
873 	if (ill->ill_ipsec_capab_esp != NULL) {
874 		ill_ipsec_capab_delete(ill, DL_CAPAB_IPSEC_ESP);
875 		ill_ipsec_capab_free(ill->ill_ipsec_capab_esp);
876 		ill->ill_ipsec_capab_esp = NULL;
877 	}
878 
879 	if (ill->ill_mdt_capab != NULL) {
880 		kmem_free(ill->ill_mdt_capab, sizeof (ill_mdt_capab_t));
881 		ill->ill_mdt_capab = NULL;
882 	}
883 
884 	if (ill->ill_hcksum_capab != NULL) {
885 		kmem_free(ill->ill_hcksum_capab, sizeof (ill_hcksum_capab_t));
886 		ill->ill_hcksum_capab = NULL;
887 	}
888 
889 	if (ill->ill_zerocopy_capab != NULL) {
890 		kmem_free(ill->ill_zerocopy_capab,
891 		    sizeof (ill_zerocopy_capab_t));
892 		ill->ill_zerocopy_capab = NULL;
893 	}
894 
895 	if (ill->ill_lso_capab != NULL) {
896 		kmem_free(ill->ill_lso_capab, sizeof (ill_lso_capab_t));
897 		ill->ill_lso_capab = NULL;
898 	}
899 
900 	if (ill->ill_dld_capab != NULL) {
901 		kmem_free(ill->ill_dld_capab, sizeof (ill_dld_capab_t));
902 		ill->ill_dld_capab = NULL;
903 	}
904 
905 	while (ill->ill_ipif != NULL)
906 		ipif_free_tail(ill->ill_ipif);
907 
908 	/*
909 	 * We have removed all references to ilm from conn and the ones joined
910 	 * within the kernel.
911 	 *
912 	 * We don't walk conns, mrts and ires because
913 	 *
914 	 * 1) reset_conn_ill and reset_mrt_ill cleans up conns and mrts.
915 	 * 2) ill_down ->ill_downi walks all the ires and cleans up
916 	 *    ill references.
917 	 */
918 	ASSERT(ilm_walk_ill(ill) == 0);
919 
920 	/*
921 	 * If this ill is an IPMP meta-interface, blow away the illgrp.  This
922 	 * is safe to do because the illgrp has already been unlinked from the
923 	 * group by I_PUNLINK, and thus SIOCSLIFGROUPNAME cannot find it.
924 	 */
925 	if (IS_IPMP(ill)) {
926 		ipmp_illgrp_destroy(ill->ill_grp);
927 		ill->ill_grp = NULL;
928 	}
929 
930 	/*
931 	 * Take us out of the list of ILLs. ill_glist_delete -> phyint_free
932 	 * could free the phyint. No more reference to the phyint after this
933 	 * point.
934 	 */
935 	(void) ill_glist_delete(ill);
936 
937 	rw_enter(&ipst->ips_ip_g_nd_lock, RW_WRITER);
938 	if (ill->ill_ndd_name != NULL)
939 		nd_unload(&ipst->ips_ip_g_nd, ill->ill_ndd_name);
940 	rw_exit(&ipst->ips_ip_g_nd_lock);
941 
942 	if (ill->ill_frag_ptr != NULL) {
943 		uint_t count;
944 
945 		for (count = 0; count < ILL_FRAG_HASH_TBL_COUNT; count++) {
946 			mutex_destroy(&ill->ill_frag_hash_tbl[count].ipfb_lock);
947 		}
948 		mi_free(ill->ill_frag_ptr);
949 		ill->ill_frag_ptr = NULL;
950 		ill->ill_frag_hash_tbl = NULL;
951 	}
952 
953 	freemsg(ill->ill_nd_lla_mp);
954 	/* Free all retained control messages. */
955 	mpp = &ill->ill_first_mp_to_free;
956 	do {
957 		while (mpp[0]) {
958 			mblk_t  *mp;
959 			mblk_t  *mp1;
960 
961 			mp = mpp[0];
962 			mpp[0] = mp->b_next;
963 			for (mp1 = mp; mp1 != NULL; mp1 = mp1->b_cont) {
964 				mp1->b_next = NULL;
965 				mp1->b_prev = NULL;
966 			}
967 			freemsg(mp);
968 		}
969 	} while (mpp++ != &ill->ill_last_mp_to_free);
970 
971 	ill_free_mib(ill);
972 
973 #ifdef DEBUG
974 	ill_trace_cleanup(ill);
975 #endif
976 
977 	/* Drop refcnt here */
978 	netstack_rele(ill->ill_ipst->ips_netstack);
979 	ill->ill_ipst = NULL;
980 }
981 
982 static void
983 ill_free_mib(ill_t *ill)
984 {
985 	ip_stack_t *ipst = ill->ill_ipst;
986 
987 	/*
988 	 * MIB statistics must not be lost, so when an interface
989 	 * goes away the counter values will be added to the global
990 	 * MIBs.
991 	 */
992 	if (ill->ill_ip_mib != NULL) {
993 		if (ill->ill_isv6) {
994 			ip_mib2_add_ip_stats(&ipst->ips_ip6_mib,
995 			    ill->ill_ip_mib);
996 		} else {
997 			ip_mib2_add_ip_stats(&ipst->ips_ip_mib,
998 			    ill->ill_ip_mib);
999 		}
1000 
1001 		kmem_free(ill->ill_ip_mib, sizeof (*ill->ill_ip_mib));
1002 		ill->ill_ip_mib = NULL;
1003 	}
1004 	if (ill->ill_icmp6_mib != NULL) {
1005 		ip_mib2_add_icmp6_stats(&ipst->ips_icmp6_mib,
1006 		    ill->ill_icmp6_mib);
1007 		kmem_free(ill->ill_icmp6_mib, sizeof (*ill->ill_icmp6_mib));
1008 		ill->ill_icmp6_mib = NULL;
1009 	}
1010 }
1011 
1012 /*
1013  * Concatenate together a physical address and a sap.
1014  *
1015  * Sap_lengths are interpreted as follows:
1016  *   sap_length == 0	==>	no sap
1017  *   sap_length > 0	==>	sap is at the head of the dlpi address
1018  *   sap_length < 0	==>	sap is at the tail of the dlpi address
1019  */
1020 static void
1021 ill_dlur_copy_address(uchar_t *phys_src, uint_t phys_length,
1022     t_scalar_t sap_src, t_scalar_t sap_length, uchar_t *dst)
1023 {
1024 	uint16_t sap_addr = (uint16_t)sap_src;
1025 
1026 	if (sap_length == 0) {
1027 		if (phys_src == NULL)
1028 			bzero(dst, phys_length);
1029 		else
1030 			bcopy(phys_src, dst, phys_length);
1031 	} else if (sap_length < 0) {
1032 		if (phys_src == NULL)
1033 			bzero(dst, phys_length);
1034 		else
1035 			bcopy(phys_src, dst, phys_length);
1036 		bcopy(&sap_addr, (char *)dst + phys_length, sizeof (sap_addr));
1037 	} else {
1038 		bcopy(&sap_addr, dst, sizeof (sap_addr));
1039 		if (phys_src == NULL)
1040 			bzero((char *)dst + sap_length, phys_length);
1041 		else
1042 			bcopy(phys_src, (char *)dst + sap_length, phys_length);
1043 	}
1044 }
1045 
1046 /*
1047  * Generate a dl_unitdata_req mblk for the device and address given.
1048  * addr_length is the length of the physical portion of the address.
1049  * If addr is NULL include an all zero address of the specified length.
1050  * TRUE? In any case, addr_length is taken to be the entire length of the
1051  * dlpi address, including the absolute value of sap_length.
1052  */
1053 mblk_t *
1054 ill_dlur_gen(uchar_t *addr, uint_t addr_length, t_uscalar_t sap,
1055 		t_scalar_t sap_length)
1056 {
1057 	dl_unitdata_req_t *dlur;
1058 	mblk_t	*mp;
1059 	t_scalar_t	abs_sap_length;		/* absolute value */
1060 
1061 	abs_sap_length = ABS(sap_length);
1062 	mp = ip_dlpi_alloc(sizeof (*dlur) + addr_length + abs_sap_length,
1063 	    DL_UNITDATA_REQ);
1064 	if (mp == NULL)
1065 		return (NULL);
1066 	dlur = (dl_unitdata_req_t *)mp->b_rptr;
1067 	/* HACK: accomodate incompatible DLPI drivers */
1068 	if (addr_length == 8)
1069 		addr_length = 6;
1070 	dlur->dl_dest_addr_length = addr_length + abs_sap_length;
1071 	dlur->dl_dest_addr_offset = sizeof (*dlur);
1072 	dlur->dl_priority.dl_min = 0;
1073 	dlur->dl_priority.dl_max = 0;
1074 	ill_dlur_copy_address(addr, addr_length, sap, sap_length,
1075 	    (uchar_t *)&dlur[1]);
1076 	return (mp);
1077 }
1078 
1079 /*
1080  * Add the 'mp' to the list of pending mp's headed by ill_pending_mp.  Return
1081  * an error if we already have 1 or more ioctls in progress.  This is only
1082  * needed for SIOCG*ARP.
1083  */
1084 boolean_t
1085 ill_pending_mp_add(ill_t *ill, conn_t *connp, mblk_t *add_mp)
1086 {
1087 	ASSERT(MUTEX_HELD(&ill->ill_lock));
1088 	ASSERT((add_mp->b_next == NULL) && (add_mp->b_prev == NULL));
1089 	/* We should only see M_IOCDATA arp ioctls here. */
1090 	ASSERT(add_mp->b_datap->db_type == M_IOCDATA);
1091 
1092 	ASSERT(MUTEX_HELD(&connp->conn_lock));
1093 	/*
1094 	 * Return error if the conn has started closing. The conn
1095 	 * could have finished cleaning up the pending mp list,
1096 	 * If so we should not add another mp to the list negating
1097 	 * the cleanup.
1098 	 */
1099 	if (connp->conn_state_flags & CONN_CLOSING)
1100 		return (B_FALSE);
1101 	/*
1102 	 * Add the pending mp to the head of the list, chained by b_next.
1103 	 * Note down the conn on which the ioctl request came, in b_prev.
1104 	 * This will be used to later get the conn, when we get a response
1105 	 * on the ill queue, from some other module (typically arp)
1106 	 */
1107 	add_mp->b_next = (void *)ill->ill_pending_mp;
1108 	add_mp->b_queue = CONNP_TO_WQ(connp);
1109 	ill->ill_pending_mp = add_mp;
1110 	if (connp != NULL)
1111 		connp->conn_oper_pending_ill = ill;
1112 	return (B_TRUE);
1113 }
1114 
1115 /*
1116  * Retrieve the ill_pending_mp and return it. We have to walk the list
1117  * of mblks starting at ill_pending_mp, and match based on the ioc_id.
1118  */
1119 mblk_t *
1120 ill_pending_mp_get(ill_t *ill, conn_t **connpp, uint_t ioc_id)
1121 {
1122 	mblk_t	*prev = NULL;
1123 	mblk_t	*curr = NULL;
1124 	uint_t	id;
1125 	conn_t	*connp;
1126 
1127 	/*
1128 	 * When the conn closes, conn_ioctl_cleanup needs to clean
1129 	 * up the pending mp, but it does not know the ioc_id and
1130 	 * passes in a zero for it.
1131 	 */
1132 	mutex_enter(&ill->ill_lock);
1133 	if (ioc_id != 0)
1134 		*connpp = NULL;
1135 
1136 	/* Search the list for the appropriate ioctl based on ioc_id */
1137 	for (prev = NULL, curr = ill->ill_pending_mp; curr != NULL;
1138 	    prev = curr, curr = curr->b_next) {
1139 		id = ((struct iocblk *)curr->b_rptr)->ioc_id;
1140 		connp = Q_TO_CONN(curr->b_queue);
1141 		/* Match based on the ioc_id or based on the conn */
1142 		if ((id == ioc_id) || (ioc_id == 0 && connp == *connpp))
1143 			break;
1144 	}
1145 
1146 	if (curr != NULL) {
1147 		/* Unlink the mblk from the pending mp list */
1148 		if (prev != NULL) {
1149 			prev->b_next = curr->b_next;
1150 		} else {
1151 			ASSERT(ill->ill_pending_mp == curr);
1152 			ill->ill_pending_mp = curr->b_next;
1153 		}
1154 
1155 		/*
1156 		 * conn refcnt must have been bumped up at the start of
1157 		 * the ioctl. So we can safely access the conn.
1158 		 */
1159 		ASSERT(CONN_Q(curr->b_queue));
1160 		*connpp = Q_TO_CONN(curr->b_queue);
1161 		curr->b_next = NULL;
1162 		curr->b_queue = NULL;
1163 	}
1164 
1165 	mutex_exit(&ill->ill_lock);
1166 
1167 	return (curr);
1168 }
1169 
1170 /*
1171  * Add the pending mp to the list. There can be only 1 pending mp
1172  * in the list. Any exclusive ioctl that needs to wait for a response
1173  * from another module or driver needs to use this function to set
1174  * the ipx_pending_mp to the ioctl mblk and wait for the response from
1175  * the other module/driver. This is also used while waiting for the
1176  * ipif/ill/ire refcnts to drop to zero in bringing down an ipif.
1177  */
1178 boolean_t
1179 ipsq_pending_mp_add(conn_t *connp, ipif_t *ipif, queue_t *q, mblk_t *add_mp,
1180     int waitfor)
1181 {
1182 	ipxop_t	*ipx = ipif->ipif_ill->ill_phyint->phyint_ipsq->ipsq_xop;
1183 
1184 	ASSERT(IAM_WRITER_IPIF(ipif));
1185 	ASSERT(MUTEX_HELD(&ipif->ipif_ill->ill_lock));
1186 	ASSERT((add_mp->b_next == NULL) && (add_mp->b_prev == NULL));
1187 	ASSERT(ipx->ipx_pending_mp == NULL);
1188 	/*
1189 	 * The caller may be using a different ipif than the one passed into
1190 	 * ipsq_current_start() (e.g., suppose an ioctl that came in on the V4
1191 	 * ill needs to wait for the V6 ill to quiesce).  So we can't ASSERT
1192 	 * that `ipx_current_ipif == ipif'.
1193 	 */
1194 	ASSERT(ipx->ipx_current_ipif != NULL);
1195 
1196 	/*
1197 	 * M_IOCDATA from ioctls, M_ERROR/M_HANGUP/M_PROTO/M_PCPROTO from the
1198 	 * driver.
1199 	 */
1200 	ASSERT((DB_TYPE(add_mp) == M_IOCDATA) || (DB_TYPE(add_mp) == M_ERROR) ||
1201 	    (DB_TYPE(add_mp) == M_HANGUP) || (DB_TYPE(add_mp) == M_PROTO) ||
1202 	    (DB_TYPE(add_mp) == M_PCPROTO));
1203 
1204 	if (connp != NULL) {
1205 		ASSERT(MUTEX_HELD(&connp->conn_lock));
1206 		/*
1207 		 * Return error if the conn has started closing. The conn
1208 		 * could have finished cleaning up the pending mp list,
1209 		 * If so we should not add another mp to the list negating
1210 		 * the cleanup.
1211 		 */
1212 		if (connp->conn_state_flags & CONN_CLOSING)
1213 			return (B_FALSE);
1214 	}
1215 	mutex_enter(&ipx->ipx_lock);
1216 	ipx->ipx_pending_ipif = ipif;
1217 	/*
1218 	 * Note down the queue in b_queue. This will be returned by
1219 	 * ipsq_pending_mp_get. Caller will then use these values to restart
1220 	 * the processing
1221 	 */
1222 	add_mp->b_next = NULL;
1223 	add_mp->b_queue = q;
1224 	ipx->ipx_pending_mp = add_mp;
1225 	ipx->ipx_waitfor = waitfor;
1226 	mutex_exit(&ipx->ipx_lock);
1227 
1228 	if (connp != NULL)
1229 		connp->conn_oper_pending_ill = ipif->ipif_ill;
1230 
1231 	return (B_TRUE);
1232 }
1233 
1234 /*
1235  * Retrieve the ipx_pending_mp and return it. There can be only 1 mp
1236  * queued in the list.
1237  */
1238 mblk_t *
1239 ipsq_pending_mp_get(ipsq_t *ipsq, conn_t **connpp)
1240 {
1241 	mblk_t	*curr = NULL;
1242 	ipxop_t	*ipx = ipsq->ipsq_xop;
1243 
1244 	*connpp = NULL;
1245 	mutex_enter(&ipx->ipx_lock);
1246 	if (ipx->ipx_pending_mp == NULL) {
1247 		mutex_exit(&ipx->ipx_lock);
1248 		return (NULL);
1249 	}
1250 
1251 	/* There can be only 1 such excl message */
1252 	curr = ipx->ipx_pending_mp;
1253 	ASSERT(curr->b_next == NULL);
1254 	ipx->ipx_pending_ipif = NULL;
1255 	ipx->ipx_pending_mp = NULL;
1256 	ipx->ipx_waitfor = 0;
1257 	mutex_exit(&ipx->ipx_lock);
1258 
1259 	if (CONN_Q(curr->b_queue)) {
1260 		/*
1261 		 * This mp did a refhold on the conn, at the start of the ioctl.
1262 		 * So we can safely return a pointer to the conn to the caller.
1263 		 */
1264 		*connpp = Q_TO_CONN(curr->b_queue);
1265 	} else {
1266 		*connpp = NULL;
1267 	}
1268 	curr->b_next = NULL;
1269 	curr->b_prev = NULL;
1270 	return (curr);
1271 }
1272 
1273 /*
1274  * Cleanup the ioctl mp queued in ipx_pending_mp
1275  * - Called in the ill_delete path
1276  * - Called in the M_ERROR or M_HANGUP path on the ill.
1277  * - Called in the conn close path.
1278  */
1279 boolean_t
1280 ipsq_pending_mp_cleanup(ill_t *ill, conn_t *connp)
1281 {
1282 	mblk_t	*mp;
1283 	ipxop_t	*ipx;
1284 	queue_t	*q;
1285 	ipif_t	*ipif;
1286 
1287 	ASSERT(IAM_WRITER_ILL(ill));
1288 	ipx = ill->ill_phyint->phyint_ipsq->ipsq_xop;
1289 
1290 	/*
1291 	 * If connp is null, unconditionally clean up the ipx_pending_mp.
1292 	 * This happens in M_ERROR/M_HANGUP. We need to abort the current ioctl
1293 	 * even if it is meant for another ill, since we have to enqueue
1294 	 * a new mp now in ipx_pending_mp to complete the ipif_down.
1295 	 * If connp is non-null we are called from the conn close path.
1296 	 */
1297 	mutex_enter(&ipx->ipx_lock);
1298 	mp = ipx->ipx_pending_mp;
1299 	if (mp == NULL || (connp != NULL &&
1300 	    mp->b_queue != CONNP_TO_WQ(connp))) {
1301 		mutex_exit(&ipx->ipx_lock);
1302 		return (B_FALSE);
1303 	}
1304 	/* Now remove from the ipx_pending_mp */
1305 	ipx->ipx_pending_mp = NULL;
1306 	q = mp->b_queue;
1307 	mp->b_next = NULL;
1308 	mp->b_prev = NULL;
1309 	mp->b_queue = NULL;
1310 
1311 	ipif = ipx->ipx_pending_ipif;
1312 	ipx->ipx_pending_ipif = NULL;
1313 	ipx->ipx_waitfor = 0;
1314 	ipx->ipx_current_ipif = NULL;
1315 	ipx->ipx_current_ioctl = 0;
1316 	ipx->ipx_current_done = B_TRUE;
1317 	mutex_exit(&ipx->ipx_lock);
1318 
1319 	if (DB_TYPE(mp) == M_IOCTL || DB_TYPE(mp) == M_IOCDATA) {
1320 		if (connp == NULL) {
1321 			ip_ioctl_finish(q, mp, ENXIO, NO_COPYOUT, NULL);
1322 		} else {
1323 			ip_ioctl_finish(q, mp, ENXIO, CONN_CLOSE, NULL);
1324 			mutex_enter(&ipif->ipif_ill->ill_lock);
1325 			ipif->ipif_state_flags &= ~IPIF_CHANGING;
1326 			mutex_exit(&ipif->ipif_ill->ill_lock);
1327 		}
1328 	} else {
1329 		/*
1330 		 * IP-MT XXX In the case of TLI/XTI bind / optmgmt this can't
1331 		 * be just inet_freemsg. we have to restart it
1332 		 * otherwise the thread will be stuck.
1333 		 */
1334 		inet_freemsg(mp);
1335 	}
1336 	return (B_TRUE);
1337 }
1338 
1339 /*
1340  * The ill is closing. Cleanup all the pending mps. Called exclusively
1341  * towards the end of ill_delete. The refcount has gone to 0. So nobody
1342  * knows this ill, and hence nobody can add an mp to this list
1343  */
1344 static void
1345 ill_pending_mp_cleanup(ill_t *ill)
1346 {
1347 	mblk_t	*mp;
1348 	queue_t	*q;
1349 
1350 	ASSERT(IAM_WRITER_ILL(ill));
1351 
1352 	mutex_enter(&ill->ill_lock);
1353 	/*
1354 	 * Every mp on the pending mp list originating from an ioctl
1355 	 * added 1 to the conn refcnt, at the start of the ioctl.
1356 	 * So bump it down now.  See comments in ip_wput_nondata()
1357 	 */
1358 	while (ill->ill_pending_mp != NULL) {
1359 		mp = ill->ill_pending_mp;
1360 		ill->ill_pending_mp = mp->b_next;
1361 		mutex_exit(&ill->ill_lock);
1362 
1363 		q = mp->b_queue;
1364 		ASSERT(CONN_Q(q));
1365 		mp->b_next = NULL;
1366 		mp->b_prev = NULL;
1367 		mp->b_queue = NULL;
1368 		ip_ioctl_finish(q, mp, ENXIO, NO_COPYOUT, NULL);
1369 		mutex_enter(&ill->ill_lock);
1370 	}
1371 	ill->ill_pending_ipif = NULL;
1372 
1373 	mutex_exit(&ill->ill_lock);
1374 }
1375 
1376 /*
1377  * Called in the conn close path and ill delete path
1378  */
1379 static void
1380 ipsq_xopq_mp_cleanup(ill_t *ill, conn_t *connp)
1381 {
1382 	ipsq_t	*ipsq;
1383 	mblk_t	*prev;
1384 	mblk_t	*curr;
1385 	mblk_t	*next;
1386 	queue_t	*q;
1387 	mblk_t	*tmp_list = NULL;
1388 
1389 	ASSERT(IAM_WRITER_ILL(ill));
1390 	if (connp != NULL)
1391 		q = CONNP_TO_WQ(connp);
1392 	else
1393 		q = ill->ill_wq;
1394 
1395 	ipsq = ill->ill_phyint->phyint_ipsq;
1396 	/*
1397 	 * Cleanup the ioctl mp's queued in ipsq_xopq_pending_mp if any.
1398 	 * In the case of ioctl from a conn, there can be only 1 mp
1399 	 * queued on the ipsq. If an ill is being unplumbed, only messages
1400 	 * related to this ill are flushed, like M_ERROR or M_HANGUP message.
1401 	 * ioctls meant for this ill form conn's are not flushed. They will
1402 	 * be processed during ipsq_exit and will not find the ill and will
1403 	 * return error.
1404 	 */
1405 	mutex_enter(&ipsq->ipsq_lock);
1406 	for (prev = NULL, curr = ipsq->ipsq_xopq_mphead; curr != NULL;
1407 	    curr = next) {
1408 		next = curr->b_next;
1409 		if (curr->b_queue == q || curr->b_queue == RD(q)) {
1410 			/* Unlink the mblk from the pending mp list */
1411 			if (prev != NULL) {
1412 				prev->b_next = curr->b_next;
1413 			} else {
1414 				ASSERT(ipsq->ipsq_xopq_mphead == curr);
1415 				ipsq->ipsq_xopq_mphead = curr->b_next;
1416 			}
1417 			if (ipsq->ipsq_xopq_mptail == curr)
1418 				ipsq->ipsq_xopq_mptail = prev;
1419 			/*
1420 			 * Create a temporary list and release the ipsq lock
1421 			 * New elements are added to the head of the tmp_list
1422 			 */
1423 			curr->b_next = tmp_list;
1424 			tmp_list = curr;
1425 		} else {
1426 			prev = curr;
1427 		}
1428 	}
1429 	mutex_exit(&ipsq->ipsq_lock);
1430 
1431 	while (tmp_list != NULL) {
1432 		curr = tmp_list;
1433 		tmp_list = curr->b_next;
1434 		curr->b_next = NULL;
1435 		curr->b_prev = NULL;
1436 		curr->b_queue = NULL;
1437 		if (DB_TYPE(curr) == M_IOCTL || DB_TYPE(curr) == M_IOCDATA) {
1438 			ip_ioctl_finish(q, curr, ENXIO, connp != NULL ?
1439 			    CONN_CLOSE : NO_COPYOUT, NULL);
1440 		} else {
1441 			/*
1442 			 * IP-MT XXX In the case of TLI/XTI bind / optmgmt
1443 			 * this can't be just inet_freemsg. we have to
1444 			 * restart it otherwise the thread will be stuck.
1445 			 */
1446 			inet_freemsg(curr);
1447 		}
1448 	}
1449 }
1450 
1451 /*
1452  * This conn has started closing. Cleanup any pending ioctl from this conn.
1453  * STREAMS ensures that there can be at most 1 ioctl pending on a stream.
1454  */
1455 void
1456 conn_ioctl_cleanup(conn_t *connp)
1457 {
1458 	mblk_t *curr;
1459 	ipsq_t	*ipsq;
1460 	ill_t	*ill;
1461 	boolean_t refheld;
1462 
1463 	/*
1464 	 * Is any exclusive ioctl pending ? If so clean it up. If the
1465 	 * ioctl has not yet started, the mp is pending in the list headed by
1466 	 * ipsq_xopq_head. If the ioctl has started the mp could be present in
1467 	 * ipx_pending_mp. If the ioctl timed out in the streamhead but
1468 	 * is currently executing now the mp is not queued anywhere but
1469 	 * conn_oper_pending_ill is null. The conn close will wait
1470 	 * till the conn_ref drops to zero.
1471 	 */
1472 	mutex_enter(&connp->conn_lock);
1473 	ill = connp->conn_oper_pending_ill;
1474 	if (ill == NULL) {
1475 		mutex_exit(&connp->conn_lock);
1476 		return;
1477 	}
1478 
1479 	curr = ill_pending_mp_get(ill, &connp, 0);
1480 	if (curr != NULL) {
1481 		mutex_exit(&connp->conn_lock);
1482 		CONN_DEC_REF(connp);
1483 		inet_freemsg(curr);
1484 		return;
1485 	}
1486 	/*
1487 	 * We may not be able to refhold the ill if the ill/ipif
1488 	 * is changing. But we need to make sure that the ill will
1489 	 * not vanish. So we just bump up the ill_waiter count.
1490 	 */
1491 	refheld = ill_waiter_inc(ill);
1492 	mutex_exit(&connp->conn_lock);
1493 	if (refheld) {
1494 		if (ipsq_enter(ill, B_TRUE, NEW_OP)) {
1495 			ill_waiter_dcr(ill);
1496 			/*
1497 			 * Check whether this ioctl has started and is
1498 			 * pending. If it is not found there then check
1499 			 * whether this ioctl has not even started and is in
1500 			 * the ipsq_xopq list.
1501 			 */
1502 			if (!ipsq_pending_mp_cleanup(ill, connp))
1503 				ipsq_xopq_mp_cleanup(ill, connp);
1504 			ipsq = ill->ill_phyint->phyint_ipsq;
1505 			ipsq_exit(ipsq);
1506 			return;
1507 		}
1508 	}
1509 
1510 	/*
1511 	 * The ill is also closing and we could not bump up the
1512 	 * ill_waiter_count or we could not enter the ipsq. Leave
1513 	 * the cleanup to ill_delete
1514 	 */
1515 	mutex_enter(&connp->conn_lock);
1516 	while (connp->conn_oper_pending_ill != NULL)
1517 		cv_wait(&connp->conn_refcv, &connp->conn_lock);
1518 	mutex_exit(&connp->conn_lock);
1519 	if (refheld)
1520 		ill_waiter_dcr(ill);
1521 }
1522 
1523 /*
1524  * ipcl_walk function for cleaning up conn_*_ill fields.
1525  */
1526 static void
1527 conn_cleanup_ill(conn_t *connp, caddr_t arg)
1528 {
1529 	ill_t	*ill = (ill_t *)arg;
1530 	ire_t	*ire;
1531 
1532 	mutex_enter(&connp->conn_lock);
1533 	if (connp->conn_multicast_ill == ill) {
1534 		/* Revert to late binding */
1535 		connp->conn_multicast_ill = NULL;
1536 	}
1537 	if (connp->conn_incoming_ill == ill)
1538 		connp->conn_incoming_ill = NULL;
1539 	if (connp->conn_outgoing_ill == ill)
1540 		connp->conn_outgoing_ill = NULL;
1541 	if (connp->conn_dhcpinit_ill == ill) {
1542 		connp->conn_dhcpinit_ill = NULL;
1543 		ASSERT(ill->ill_dhcpinit != 0);
1544 		atomic_dec_32(&ill->ill_dhcpinit);
1545 	}
1546 	if (connp->conn_ire_cache != NULL) {
1547 		ire = connp->conn_ire_cache;
1548 		/*
1549 		 * Source address selection makes it possible for IRE_CACHE
1550 		 * entries to be created with ire_stq coming from interface X
1551 		 * and ipif coming from interface Y.  Thus whenever interface
1552 		 * X goes down, remove all references to it by checking both
1553 		 * on ire_ipif and ire_stq.
1554 		 */
1555 		if ((ire->ire_ipif != NULL && ire->ire_ipif->ipif_ill == ill) ||
1556 		    (ire->ire_type == IRE_CACHE &&
1557 		    ire->ire_stq == ill->ill_wq)) {
1558 			connp->conn_ire_cache = NULL;
1559 			mutex_exit(&connp->conn_lock);
1560 			ire_refrele_notr(ire);
1561 			return;
1562 		}
1563 	}
1564 	mutex_exit(&connp->conn_lock);
1565 }
1566 
1567 static void
1568 ill_down_ipifs_tail(ill_t *ill)
1569 {
1570 	ipif_t	*ipif;
1571 
1572 	ASSERT(IAM_WRITER_ILL(ill));
1573 	for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) {
1574 		ipif_non_duplicate(ipif);
1575 		ipif_down_tail(ipif);
1576 	}
1577 }
1578 
1579 /* ARGSUSED */
1580 void
1581 ipif_all_down_tail(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy_arg)
1582 {
1583 	ASSERT(IAM_WRITER_IPSQ(ipsq));
1584 	ill_down_ipifs_tail(q->q_ptr);
1585 	freemsg(mp);
1586 	ipsq_current_finish(ipsq);
1587 }
1588 
1589 /*
1590  * ill_down_start is called when we want to down this ill and bring it up again
1591  * It is called when we receive an M_ERROR / M_HANGUP. In this case we shut down
1592  * all interfaces, but don't tear down any plumbing.
1593  */
1594 boolean_t
1595 ill_down_start(queue_t *q, mblk_t *mp)
1596 {
1597 	ill_t	*ill = q->q_ptr;
1598 	ipif_t	*ipif;
1599 
1600 	ASSERT(IAM_WRITER_ILL(ill));
1601 
1602 	for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next)
1603 		(void) ipif_down(ipif, NULL, NULL);
1604 
1605 	ill_down(ill);
1606 
1607 	(void) ipsq_pending_mp_cleanup(ill, NULL);
1608 
1609 	ipsq_current_start(ill->ill_phyint->phyint_ipsq, ill->ill_ipif, 0);
1610 
1611 	/*
1612 	 * Atomically test and add the pending mp if references are active.
1613 	 */
1614 	mutex_enter(&ill->ill_lock);
1615 	if (!ill_is_quiescent(ill)) {
1616 		/* call cannot fail since `conn_t *' argument is NULL */
1617 		(void) ipsq_pending_mp_add(NULL, ill->ill_ipif, ill->ill_rq,
1618 		    mp, ILL_DOWN);
1619 		mutex_exit(&ill->ill_lock);
1620 		return (B_FALSE);
1621 	}
1622 	mutex_exit(&ill->ill_lock);
1623 	return (B_TRUE);
1624 }
1625 
1626 static void
1627 ill_down(ill_t *ill)
1628 {
1629 	ip_stack_t	*ipst = ill->ill_ipst;
1630 
1631 	/* Blow off any IREs dependent on this ILL. */
1632 	ire_walk(ill_downi, ill, ipst);
1633 
1634 	/* Remove any conn_*_ill depending on this ill */
1635 	ipcl_walk(conn_cleanup_ill, (caddr_t)ill, ipst);
1636 }
1637 
1638 /*
1639  * ire_walk routine used to delete every IRE that depends on queues
1640  * associated with 'ill'.  (Always called as writer.)
1641  */
1642 static void
1643 ill_downi(ire_t *ire, char *ill_arg)
1644 {
1645 	ill_t	*ill = (ill_t *)ill_arg;
1646 
1647 	/*
1648 	 * Source address selection makes it possible for IRE_CACHE
1649 	 * entries to be created with ire_stq coming from interface X
1650 	 * and ipif coming from interface Y.  Thus whenever interface
1651 	 * X goes down, remove all references to it by checking both
1652 	 * on ire_ipif and ire_stq.
1653 	 */
1654 	if ((ire->ire_ipif != NULL && ire->ire_ipif->ipif_ill == ill) ||
1655 	    (ire->ire_type == IRE_CACHE && ire->ire_stq == ill->ill_wq)) {
1656 		ire_delete(ire);
1657 	}
1658 }
1659 
1660 /*
1661  * Remove ire/nce from the fastpath list.
1662  */
1663 void
1664 ill_fastpath_nack(ill_t *ill)
1665 {
1666 	nce_fastpath_list_dispatch(ill, NULL, NULL);
1667 }
1668 
1669 /* Consume an M_IOCACK of the fastpath probe. */
1670 void
1671 ill_fastpath_ack(ill_t *ill, mblk_t *mp)
1672 {
1673 	mblk_t	*mp1 = mp;
1674 
1675 	/*
1676 	 * If this was the first attempt turn on the fastpath probing.
1677 	 */
1678 	mutex_enter(&ill->ill_lock);
1679 	if (ill->ill_dlpi_fastpath_state == IDS_INPROGRESS)
1680 		ill->ill_dlpi_fastpath_state = IDS_OK;
1681 	mutex_exit(&ill->ill_lock);
1682 
1683 	/* Free the M_IOCACK mblk, hold on to the data */
1684 	mp = mp->b_cont;
1685 	freeb(mp1);
1686 	if (mp == NULL)
1687 		return;
1688 	if (mp->b_cont != NULL) {
1689 		/*
1690 		 * Update all IRE's or NCE's that are waiting for
1691 		 * fastpath update.
1692 		 */
1693 		nce_fastpath_list_dispatch(ill, ndp_fastpath_update, mp);
1694 		mp1 = mp->b_cont;
1695 		freeb(mp);
1696 		mp = mp1;
1697 	} else {
1698 		ip0dbg(("ill_fastpath_ack:  no b_cont\n"));
1699 	}
1700 
1701 	freeb(mp);
1702 }
1703 
1704 /*
1705  * Throw an M_IOCTL message downstream asking "do you know fastpath?"
1706  * The data portion of the request is a dl_unitdata_req_t template for
1707  * what we would send downstream in the absence of a fastpath confirmation.
1708  */
1709 int
1710 ill_fastpath_probe(ill_t *ill, mblk_t *dlur_mp)
1711 {
1712 	struct iocblk	*ioc;
1713 	mblk_t	*mp;
1714 
1715 	if (dlur_mp == NULL)
1716 		return (EINVAL);
1717 
1718 	mutex_enter(&ill->ill_lock);
1719 	switch (ill->ill_dlpi_fastpath_state) {
1720 	case IDS_FAILED:
1721 		/*
1722 		 * Driver NAKed the first fastpath ioctl - assume it doesn't
1723 		 * support it.
1724 		 */
1725 		mutex_exit(&ill->ill_lock);
1726 		return (ENOTSUP);
1727 	case IDS_UNKNOWN:
1728 		/* This is the first probe */
1729 		ill->ill_dlpi_fastpath_state = IDS_INPROGRESS;
1730 		break;
1731 	default:
1732 		break;
1733 	}
1734 	mutex_exit(&ill->ill_lock);
1735 
1736 	if ((mp = mkiocb(DL_IOC_HDR_INFO)) == NULL)
1737 		return (EAGAIN);
1738 
1739 	mp->b_cont = copyb(dlur_mp);
1740 	if (mp->b_cont == NULL) {
1741 		freeb(mp);
1742 		return (EAGAIN);
1743 	}
1744 
1745 	ioc = (struct iocblk *)mp->b_rptr;
1746 	ioc->ioc_count = msgdsize(mp->b_cont);
1747 
1748 	putnext(ill->ill_wq, mp);
1749 	return (0);
1750 }
1751 
1752 void
1753 ill_capability_probe(ill_t *ill)
1754 {
1755 	mblk_t	*mp;
1756 
1757 	ASSERT(IAM_WRITER_ILL(ill));
1758 
1759 	if (ill->ill_dlpi_capab_state != IDCS_UNKNOWN &&
1760 	    ill->ill_dlpi_capab_state != IDCS_FAILED)
1761 		return;
1762 
1763 	/*
1764 	 * We are starting a new cycle of capability negotiation.
1765 	 * Free up the capab reset messages of any previous incarnation.
1766 	 * We will do a fresh allocation when we get the response to our probe
1767 	 */
1768 	if (ill->ill_capab_reset_mp != NULL) {
1769 		freemsg(ill->ill_capab_reset_mp);
1770 		ill->ill_capab_reset_mp = NULL;
1771 	}
1772 
1773 	ip1dbg(("ill_capability_probe: starting capability negotiation\n"));
1774 
1775 	mp = ip_dlpi_alloc(sizeof (dl_capability_req_t), DL_CAPABILITY_REQ);
1776 	if (mp == NULL)
1777 		return;
1778 
1779 	ill_capability_send(ill, mp);
1780 	ill->ill_dlpi_capab_state = IDCS_PROBE_SENT;
1781 }
1782 
1783 void
1784 ill_capability_reset(ill_t *ill, boolean_t reneg)
1785 {
1786 	ASSERT(IAM_WRITER_ILL(ill));
1787 
1788 	if (ill->ill_dlpi_capab_state != IDCS_OK)
1789 		return;
1790 
1791 	ill->ill_dlpi_capab_state = reneg ? IDCS_RENEG : IDCS_RESET_SENT;
1792 
1793 	ill_capability_send(ill, ill->ill_capab_reset_mp);
1794 	ill->ill_capab_reset_mp = NULL;
1795 	/*
1796 	 * We turn off all capabilities except those pertaining to
1797 	 * direct function call capabilities viz. ILL_CAPAB_DLD*
1798 	 * which will be turned off by the corresponding reset functions.
1799 	 */
1800 	ill->ill_capabilities &= ~(ILL_CAPAB_MDT | ILL_CAPAB_HCKSUM  |
1801 	    ILL_CAPAB_ZEROCOPY | ILL_CAPAB_AH | ILL_CAPAB_ESP);
1802 }
1803 
1804 static void
1805 ill_capability_reset_alloc(ill_t *ill)
1806 {
1807 	mblk_t *mp;
1808 	size_t	size = 0;
1809 	int	err;
1810 	dl_capability_req_t	*capb;
1811 
1812 	ASSERT(IAM_WRITER_ILL(ill));
1813 	ASSERT(ill->ill_capab_reset_mp == NULL);
1814 
1815 	if (ILL_MDT_CAPABLE(ill))
1816 		size += sizeof (dl_capability_sub_t) + sizeof (dl_capab_mdt_t);
1817 
1818 	if (ILL_HCKSUM_CAPABLE(ill)) {
1819 		size += sizeof (dl_capability_sub_t) +
1820 		    sizeof (dl_capab_hcksum_t);
1821 	}
1822 
1823 	if (ill->ill_capabilities & ILL_CAPAB_ZEROCOPY) {
1824 		size += sizeof (dl_capability_sub_t) +
1825 		    sizeof (dl_capab_zerocopy_t);
1826 	}
1827 
1828 	if (ill->ill_capabilities & (ILL_CAPAB_AH | ILL_CAPAB_ESP)) {
1829 		size += sizeof (dl_capability_sub_t);
1830 		size += ill_capability_ipsec_reset_size(ill, NULL, NULL,
1831 		    NULL, NULL);
1832 	}
1833 
1834 	if (ill->ill_capabilities & ILL_CAPAB_DLD) {
1835 		size += sizeof (dl_capability_sub_t) +
1836 		    sizeof (dl_capab_dld_t);
1837 	}
1838 
1839 	mp = allocb_wait(size + sizeof (dl_capability_req_t), BPRI_MED,
1840 	    STR_NOSIG, &err);
1841 
1842 	mp->b_datap->db_type = M_PROTO;
1843 	bzero(mp->b_rptr, size + sizeof (dl_capability_req_t));
1844 
1845 	capb = (dl_capability_req_t *)mp->b_rptr;
1846 	capb->dl_primitive = DL_CAPABILITY_REQ;
1847 	capb->dl_sub_offset = sizeof (dl_capability_req_t);
1848 	capb->dl_sub_length = size;
1849 
1850 	mp->b_wptr += sizeof (dl_capability_req_t);
1851 
1852 	/*
1853 	 * Each handler fills in the corresponding dl_capability_sub_t
1854 	 * inside the mblk,
1855 	 */
1856 	ill_capability_mdt_reset_fill(ill, mp);
1857 	ill_capability_hcksum_reset_fill(ill, mp);
1858 	ill_capability_zerocopy_reset_fill(ill, mp);
1859 	ill_capability_ipsec_reset_fill(ill, mp);
1860 	ill_capability_dld_reset_fill(ill, mp);
1861 
1862 	ill->ill_capab_reset_mp = mp;
1863 }
1864 
1865 static void
1866 ill_capability_id_ack(ill_t *ill, mblk_t *mp, dl_capability_sub_t *outers)
1867 {
1868 	dl_capab_id_t *id_ic;
1869 	uint_t sub_dl_cap = outers->dl_cap;
1870 	dl_capability_sub_t *inners;
1871 	uint8_t *capend;
1872 
1873 	ASSERT(sub_dl_cap == DL_CAPAB_ID_WRAPPER);
1874 
1875 	/*
1876 	 * Note: range checks here are not absolutely sufficient to
1877 	 * make us robust against malformed messages sent by drivers;
1878 	 * this is in keeping with the rest of IP's dlpi handling.
1879 	 * (Remember, it's coming from something else in the kernel
1880 	 * address space)
1881 	 */
1882 
1883 	capend = (uint8_t *)(outers + 1) + outers->dl_length;
1884 	if (capend > mp->b_wptr) {
1885 		cmn_err(CE_WARN, "ill_capability_id_ack: "
1886 		    "malformed sub-capability too long for mblk");
1887 		return;
1888 	}
1889 
1890 	id_ic = (dl_capab_id_t *)(outers + 1);
1891 
1892 	if (outers->dl_length < sizeof (*id_ic) ||
1893 	    (inners = &id_ic->id_subcap,
1894 	    inners->dl_length > (outers->dl_length - sizeof (*inners)))) {
1895 		cmn_err(CE_WARN, "ill_capability_id_ack: malformed "
1896 		    "encapsulated capab type %d too long for mblk",
1897 		    inners->dl_cap);
1898 		return;
1899 	}
1900 
1901 	if (!dlcapabcheckqid(&id_ic->id_mid, ill->ill_lmod_rq)) {
1902 		ip1dbg(("ill_capability_id_ack: mid token for capab type %d "
1903 		    "isn't as expected; pass-thru module(s) detected, "
1904 		    "discarding capability\n", inners->dl_cap));
1905 		return;
1906 	}
1907 
1908 	/* Process the encapsulated sub-capability */
1909 	ill_capability_dispatch(ill, mp, inners, B_TRUE);
1910 }
1911 
1912 /*
1913  * Process Multidata Transmit capability negotiation ack received from a
1914  * DLS Provider.  isub must point to the sub-capability (DL_CAPAB_MDT) of a
1915  * DL_CAPABILITY_ACK message.
1916  */
1917 static void
1918 ill_capability_mdt_ack(ill_t *ill, mblk_t *mp, dl_capability_sub_t *isub)
1919 {
1920 	mblk_t *nmp = NULL;
1921 	dl_capability_req_t *oc;
1922 	dl_capab_mdt_t *mdt_ic, *mdt_oc;
1923 	ill_mdt_capab_t **ill_mdt_capab;
1924 	uint_t sub_dl_cap = isub->dl_cap;
1925 	uint8_t *capend;
1926 
1927 	ASSERT(sub_dl_cap == DL_CAPAB_MDT);
1928 
1929 	ill_mdt_capab = (ill_mdt_capab_t **)&ill->ill_mdt_capab;
1930 
1931 	/*
1932 	 * Note: range checks here are not absolutely sufficient to
1933 	 * make us robust against malformed messages sent by drivers;
1934 	 * this is in keeping with the rest of IP's dlpi handling.
1935 	 * (Remember, it's coming from something else in the kernel
1936 	 * address space)
1937 	 */
1938 
1939 	capend = (uint8_t *)(isub + 1) + isub->dl_length;
1940 	if (capend > mp->b_wptr) {
1941 		cmn_err(CE_WARN, "ill_capability_mdt_ack: "
1942 		    "malformed sub-capability too long for mblk");
1943 		return;
1944 	}
1945 
1946 	mdt_ic = (dl_capab_mdt_t *)(isub + 1);
1947 
1948 	if (mdt_ic->mdt_version != MDT_VERSION_2) {
1949 		cmn_err(CE_CONT, "ill_capability_mdt_ack: "
1950 		    "unsupported MDT sub-capability (version %d, expected %d)",
1951 		    mdt_ic->mdt_version, MDT_VERSION_2);
1952 		return;
1953 	}
1954 
1955 	if (!dlcapabcheckqid(&mdt_ic->mdt_mid, ill->ill_lmod_rq)) {
1956 		ip1dbg(("ill_capability_mdt_ack: mid token for MDT "
1957 		    "capability isn't as expected; pass-thru module(s) "
1958 		    "detected, discarding capability\n"));
1959 		return;
1960 	}
1961 
1962 	if (mdt_ic->mdt_flags & DL_CAPAB_MDT_ENABLE) {
1963 
1964 		if (*ill_mdt_capab == NULL) {
1965 			*ill_mdt_capab = kmem_zalloc(sizeof (ill_mdt_capab_t),
1966 			    KM_NOSLEEP);
1967 			if (*ill_mdt_capab == NULL) {
1968 				cmn_err(CE_WARN, "ill_capability_mdt_ack: "
1969 				    "could not enable MDT version %d "
1970 				    "for %s (ENOMEM)\n", MDT_VERSION_2,
1971 				    ill->ill_name);
1972 				return;
1973 			}
1974 		}
1975 
1976 		ip1dbg(("ill_capability_mdt_ack: interface %s supports "
1977 		    "MDT version %d (%d bytes leading, %d bytes trailing "
1978 		    "header spaces, %d max pld bufs, %d span limit)\n",
1979 		    ill->ill_name, MDT_VERSION_2,
1980 		    mdt_ic->mdt_hdr_head, mdt_ic->mdt_hdr_tail,
1981 		    mdt_ic->mdt_max_pld, mdt_ic->mdt_span_limit));
1982 
1983 		(*ill_mdt_capab)->ill_mdt_version = MDT_VERSION_2;
1984 		(*ill_mdt_capab)->ill_mdt_on = 1;
1985 		/*
1986 		 * Round the following values to the nearest 32-bit; ULP
1987 		 * may further adjust them to accomodate for additional
1988 		 * protocol headers.  We pass these values to ULP during
1989 		 * bind time.
1990 		 */
1991 		(*ill_mdt_capab)->ill_mdt_hdr_head =
1992 		    roundup(mdt_ic->mdt_hdr_head, 4);
1993 		(*ill_mdt_capab)->ill_mdt_hdr_tail =
1994 		    roundup(mdt_ic->mdt_hdr_tail, 4);
1995 		(*ill_mdt_capab)->ill_mdt_max_pld = mdt_ic->mdt_max_pld;
1996 		(*ill_mdt_capab)->ill_mdt_span_limit = mdt_ic->mdt_span_limit;
1997 
1998 		ill->ill_capabilities |= ILL_CAPAB_MDT;
1999 	} else {
2000 		uint_t size;
2001 		uchar_t *rptr;
2002 
2003 		size = sizeof (dl_capability_req_t) +
2004 		    sizeof (dl_capability_sub_t) + sizeof (dl_capab_mdt_t);
2005 
2006 		if ((nmp = ip_dlpi_alloc(size, DL_CAPABILITY_REQ)) == NULL) {
2007 			cmn_err(CE_WARN, "ill_capability_mdt_ack: "
2008 			    "could not enable MDT for %s (ENOMEM)\n",
2009 			    ill->ill_name);
2010 			return;
2011 		}
2012 
2013 		rptr = nmp->b_rptr;
2014 		/* initialize dl_capability_req_t */
2015 		oc = (dl_capability_req_t *)nmp->b_rptr;
2016 		oc->dl_sub_offset = sizeof (dl_capability_req_t);
2017 		oc->dl_sub_length = sizeof (dl_capability_sub_t) +
2018 		    sizeof (dl_capab_mdt_t);
2019 		nmp->b_rptr += sizeof (dl_capability_req_t);
2020 
2021 		/* initialize dl_capability_sub_t */
2022 		bcopy(isub, nmp->b_rptr, sizeof (*isub));
2023 		nmp->b_rptr += sizeof (*isub);
2024 
2025 		/* initialize dl_capab_mdt_t */
2026 		mdt_oc = (dl_capab_mdt_t *)nmp->b_rptr;
2027 		bcopy(mdt_ic, mdt_oc, sizeof (*mdt_ic));
2028 
2029 		nmp->b_rptr = rptr;
2030 
2031 		ip1dbg(("ill_capability_mdt_ack: asking interface %s "
2032 		    "to enable MDT version %d\n", ill->ill_name,
2033 		    MDT_VERSION_2));
2034 
2035 		/* set ENABLE flag */
2036 		mdt_oc->mdt_flags |= DL_CAPAB_MDT_ENABLE;
2037 
2038 		/* nmp points to a DL_CAPABILITY_REQ message to enable MDT */
2039 		ill_capability_send(ill, nmp);
2040 	}
2041 }
2042 
2043 static void
2044 ill_capability_mdt_reset_fill(ill_t *ill, mblk_t *mp)
2045 {
2046 	dl_capab_mdt_t *mdt_subcap;
2047 	dl_capability_sub_t *dl_subcap;
2048 
2049 	if (!ILL_MDT_CAPABLE(ill))
2050 		return;
2051 
2052 	ASSERT(ill->ill_mdt_capab != NULL);
2053 
2054 	dl_subcap = (dl_capability_sub_t *)mp->b_wptr;
2055 	dl_subcap->dl_cap = DL_CAPAB_MDT;
2056 	dl_subcap->dl_length = sizeof (*mdt_subcap);
2057 
2058 	mdt_subcap = (dl_capab_mdt_t *)(dl_subcap + 1);
2059 	mdt_subcap->mdt_version = ill->ill_mdt_capab->ill_mdt_version;
2060 	mdt_subcap->mdt_flags = 0;
2061 	mdt_subcap->mdt_hdr_head = 0;
2062 	mdt_subcap->mdt_hdr_tail = 0;
2063 
2064 	mp->b_wptr += sizeof (*dl_subcap) + sizeof (*mdt_subcap);
2065 }
2066 
2067 static void
2068 ill_capability_dld_reset_fill(ill_t *ill, mblk_t *mp)
2069 {
2070 	dl_capability_sub_t *dl_subcap;
2071 
2072 	if (!(ill->ill_capabilities & ILL_CAPAB_DLD))
2073 		return;
2074 
2075 	/*
2076 	 * The dl_capab_dld_t that follows the dl_capability_sub_t is not
2077 	 * initialized below since it is not used by DLD.
2078 	 */
2079 	dl_subcap = (dl_capability_sub_t *)mp->b_wptr;
2080 	dl_subcap->dl_cap = DL_CAPAB_DLD;
2081 	dl_subcap->dl_length = sizeof (dl_capab_dld_t);
2082 
2083 	mp->b_wptr += sizeof (dl_capability_sub_t) + sizeof (dl_capab_dld_t);
2084 }
2085 
2086 /*
2087  * Allocate an IPsec capability request which will be filled by our
2088  * caller to turn on support for one or more algorithms.
2089  */
2090 /* ARGSUSED */
2091 static mblk_t *
2092 ill_alloc_ipsec_cap_req(ill_t *ill, dl_capability_sub_t *isub)
2093 {
2094 	mblk_t *nmp;
2095 	dl_capability_req_t	*ocap;
2096 	dl_capab_ipsec_t	*ocip;
2097 	dl_capab_ipsec_t	*icip;
2098 	uint8_t			*ptr;
2099 	icip = (dl_capab_ipsec_t *)(isub + 1);
2100 
2101 	/*
2102 	 * Allocate new mblk which will contain a new capability
2103 	 * request to enable the capabilities.
2104 	 */
2105 
2106 	nmp = ip_dlpi_alloc(sizeof (dl_capability_req_t) +
2107 	    sizeof (dl_capability_sub_t) + isub->dl_length, DL_CAPABILITY_REQ);
2108 	if (nmp == NULL)
2109 		return (NULL);
2110 
2111 	ptr = nmp->b_rptr;
2112 
2113 	/* initialize dl_capability_req_t */
2114 	ocap = (dl_capability_req_t *)ptr;
2115 	ocap->dl_sub_offset = sizeof (dl_capability_req_t);
2116 	ocap->dl_sub_length = sizeof (dl_capability_sub_t) + isub->dl_length;
2117 	ptr += sizeof (dl_capability_req_t);
2118 
2119 	/* initialize dl_capability_sub_t */
2120 	bcopy(isub, ptr, sizeof (*isub));
2121 	ptr += sizeof (*isub);
2122 
2123 	/* initialize dl_capab_ipsec_t */
2124 	ocip = (dl_capab_ipsec_t *)ptr;
2125 	bcopy(icip, ocip, sizeof (*icip));
2126 
2127 	nmp->b_wptr = (uchar_t *)(&ocip->cip_data[0]);
2128 	return (nmp);
2129 }
2130 
2131 /*
2132  * Process an IPsec capability negotiation ack received from a DLS Provider.
2133  * isub must point to the sub-capability (DL_CAPAB_IPSEC_AH or
2134  * DL_CAPAB_IPSEC_ESP) of a DL_CAPABILITY_ACK message.
2135  */
2136 static void
2137 ill_capability_ipsec_ack(ill_t *ill, mblk_t *mp, dl_capability_sub_t *isub)
2138 {
2139 	dl_capab_ipsec_t	*icip;
2140 	dl_capab_ipsec_alg_t	*ialg;	/* ptr to input alg spec. */
2141 	dl_capab_ipsec_alg_t	*oalg;	/* ptr to output alg spec. */
2142 	uint_t cipher, nciphers;
2143 	mblk_t *nmp;
2144 	uint_t alg_len;
2145 	boolean_t need_sadb_dump;
2146 	uint_t sub_dl_cap = isub->dl_cap;
2147 	ill_ipsec_capab_t **ill_capab;
2148 	uint64_t ill_capab_flag;
2149 	uint8_t *capend, *ciphend;
2150 	boolean_t sadb_resync;
2151 
2152 	ASSERT(sub_dl_cap == DL_CAPAB_IPSEC_AH ||
2153 	    sub_dl_cap == DL_CAPAB_IPSEC_ESP);
2154 
2155 	if (sub_dl_cap == DL_CAPAB_IPSEC_AH) {
2156 		ill_capab = (ill_ipsec_capab_t **)&ill->ill_ipsec_capab_ah;
2157 		ill_capab_flag = ILL_CAPAB_AH;
2158 	} else {
2159 		ill_capab = (ill_ipsec_capab_t **)&ill->ill_ipsec_capab_esp;
2160 		ill_capab_flag = ILL_CAPAB_ESP;
2161 	}
2162 
2163 	/*
2164 	 * If the ill capability structure exists, then this incoming
2165 	 * DL_CAPABILITY_ACK is a response to a "renegotiation" cycle.
2166 	 * If this is so, then we'd need to resynchronize the SADB
2167 	 * after re-enabling the offloaded ciphers.
2168 	 */
2169 	sadb_resync = (*ill_capab != NULL);
2170 
2171 	/*
2172 	 * Note: range checks here are not absolutely sufficient to
2173 	 * make us robust against malformed messages sent by drivers;
2174 	 * this is in keeping with the rest of IP's dlpi handling.
2175 	 * (Remember, it's coming from something else in the kernel
2176 	 * address space)
2177 	 */
2178 
2179 	capend = (uint8_t *)(isub + 1) + isub->dl_length;
2180 	if (capend > mp->b_wptr) {
2181 		cmn_err(CE_WARN, "ill_capability_ipsec_ack: "
2182 		    "malformed sub-capability too long for mblk");
2183 		return;
2184 	}
2185 
2186 	/*
2187 	 * There are two types of acks we process here:
2188 	 * 1. acks in reply to a (first form) generic capability req
2189 	 *    (no ENABLE flag set)
2190 	 * 2. acks in reply to a ENABLE capability req.
2191 	 *    (ENABLE flag set)
2192 	 *
2193 	 * We process the subcapability passed as argument as follows:
2194 	 * 1 do initializations
2195 	 *   1.1 initialize nmp = NULL
2196 	 *   1.2 set need_sadb_dump to B_FALSE
2197 	 * 2 for each cipher in subcapability:
2198 	 *   2.1 if ENABLE flag is set:
2199 	 *	2.1.1 update per-ill ipsec capabilities info
2200 	 *	2.1.2 set need_sadb_dump to B_TRUE
2201 	 *   2.2 if ENABLE flag is not set:
2202 	 *	2.2.1 if nmp is NULL:
2203 	 *		2.2.1.1 allocate and initialize nmp
2204 	 *		2.2.1.2 init current pos in nmp
2205 	 *	2.2.2 copy current cipher to current pos in nmp
2206 	 *	2.2.3 set ENABLE flag in nmp
2207 	 *	2.2.4 update current pos
2208 	 * 3 if nmp is not equal to NULL, send enable request
2209 	 *   3.1 send capability request
2210 	 * 4 if need_sadb_dump is B_TRUE
2211 	 *   4.1 enable promiscuous on/off notifications
2212 	 *   4.2 call ill_dlpi_send(isub->dlcap) to send all
2213 	 *	AH or ESP SA's to interface.
2214 	 */
2215 
2216 	nmp = NULL;
2217 	oalg = NULL;
2218 	need_sadb_dump = B_FALSE;
2219 	icip = (dl_capab_ipsec_t *)(isub + 1);
2220 	ialg = (dl_capab_ipsec_alg_t *)(&icip->cip_data[0]);
2221 
2222 	nciphers = icip->cip_nciphers;
2223 	ciphend = (uint8_t *)(ialg + icip->cip_nciphers);
2224 
2225 	if (ciphend > capend) {
2226 		cmn_err(CE_WARN, "ill_capability_ipsec_ack: "
2227 		    "too many ciphers for sub-capability len");
2228 		return;
2229 	}
2230 
2231 	for (cipher = 0; cipher < nciphers; cipher++) {
2232 		alg_len = sizeof (dl_capab_ipsec_alg_t);
2233 
2234 		if (ialg->alg_flag & DL_CAPAB_ALG_ENABLE) {
2235 			/*
2236 			 * TBD: when we provide a way to disable capabilities
2237 			 * from above, need to manage the request-pending state
2238 			 * and fail if we were not expecting this ACK.
2239 			 */
2240 			IPSECHW_DEBUG(IPSECHW_CAPAB,
2241 			    ("ill_capability_ipsec_ack: got ENABLE ACK\n"));
2242 
2243 			/*
2244 			 * Update IPsec capabilities for this ill
2245 			 */
2246 
2247 			if (*ill_capab == NULL) {
2248 				IPSECHW_DEBUG(IPSECHW_CAPAB,
2249 				    ("ill_capability_ipsec_ack: "
2250 				    "allocating ipsec_capab for ill\n"));
2251 				*ill_capab = ill_ipsec_capab_alloc();
2252 
2253 				if (*ill_capab == NULL) {
2254 					cmn_err(CE_WARN,
2255 					    "ill_capability_ipsec_ack: "
2256 					    "could not enable IPsec Hardware "
2257 					    "acceleration for %s (ENOMEM)\n",
2258 					    ill->ill_name);
2259 					return;
2260 				}
2261 			}
2262 
2263 			ASSERT(ialg->alg_type == DL_CAPAB_IPSEC_ALG_AUTH ||
2264 			    ialg->alg_type == DL_CAPAB_IPSEC_ALG_ENCR);
2265 
2266 			if (ialg->alg_prim >= MAX_IPSEC_ALGS) {
2267 				cmn_err(CE_WARN,
2268 				    "ill_capability_ipsec_ack: "
2269 				    "malformed IPsec algorithm id %d",
2270 				    ialg->alg_prim);
2271 				continue;
2272 			}
2273 
2274 			if (ialg->alg_type == DL_CAPAB_IPSEC_ALG_AUTH) {
2275 				IPSEC_ALG_ENABLE((*ill_capab)->auth_hw_algs,
2276 				    ialg->alg_prim);
2277 			} else {
2278 				ipsec_capab_algparm_t *alp;
2279 
2280 				IPSEC_ALG_ENABLE((*ill_capab)->encr_hw_algs,
2281 				    ialg->alg_prim);
2282 				if (!ill_ipsec_capab_resize_algparm(*ill_capab,
2283 				    ialg->alg_prim)) {
2284 					cmn_err(CE_WARN,
2285 					    "ill_capability_ipsec_ack: "
2286 					    "no space for IPsec alg id %d",
2287 					    ialg->alg_prim);
2288 					continue;
2289 				}
2290 				alp = &((*ill_capab)->encr_algparm[
2291 				    ialg->alg_prim]);
2292 				alp->minkeylen = ialg->alg_minbits;
2293 				alp->maxkeylen = ialg->alg_maxbits;
2294 			}
2295 			ill->ill_capabilities |= ill_capab_flag;
2296 			/*
2297 			 * indicate that a capability was enabled, which
2298 			 * will be used below to kick off a SADB dump
2299 			 * to the ill.
2300 			 */
2301 			need_sadb_dump = B_TRUE;
2302 		} else {
2303 			IPSECHW_DEBUG(IPSECHW_CAPAB,
2304 			    ("ill_capability_ipsec_ack: enabling alg 0x%x\n",
2305 			    ialg->alg_prim));
2306 
2307 			if (nmp == NULL) {
2308 				nmp = ill_alloc_ipsec_cap_req(ill, isub);
2309 				if (nmp == NULL) {
2310 					/*
2311 					 * Sending the PROMISC_ON/OFF
2312 					 * notification request failed.
2313 					 * We cannot enable the algorithms
2314 					 * since the Provider will not
2315 					 * notify IP of promiscous mode
2316 					 * changes, which could lead
2317 					 * to leakage of packets.
2318 					 */
2319 					cmn_err(CE_WARN,
2320 					    "ill_capability_ipsec_ack: "
2321 					    "could not enable IPsec Hardware "
2322 					    "acceleration for %s (ENOMEM)\n",
2323 					    ill->ill_name);
2324 					return;
2325 				}
2326 				/* ptr to current output alg specifier */
2327 				oalg = (dl_capab_ipsec_alg_t *)nmp->b_wptr;
2328 			}
2329 
2330 			/*
2331 			 * Copy current alg specifier, set ENABLE
2332 			 * flag, and advance to next output alg.
2333 			 * For now we enable all IPsec capabilities.
2334 			 */
2335 			ASSERT(oalg != NULL);
2336 			bcopy(ialg, oalg, alg_len);
2337 			oalg->alg_flag |= DL_CAPAB_ALG_ENABLE;
2338 			nmp->b_wptr += alg_len;
2339 			oalg = (dl_capab_ipsec_alg_t *)nmp->b_wptr;
2340 		}
2341 
2342 		/* move to next input algorithm specifier */
2343 		ialg = (dl_capab_ipsec_alg_t *)
2344 		    ((char *)ialg + alg_len);
2345 	}
2346 
2347 	if (nmp != NULL)
2348 		/*
2349 		 * nmp points to a DL_CAPABILITY_REQ message to enable
2350 		 * IPsec hardware acceleration.
2351 		 */
2352 		ill_capability_send(ill, nmp);
2353 
2354 	if (need_sadb_dump)
2355 		/*
2356 		 * An acknowledgement corresponding to a request to
2357 		 * enable acceleration was received, notify SADB.
2358 		 */
2359 		ill_ipsec_capab_add(ill, sub_dl_cap, sadb_resync);
2360 }
2361 
2362 /*
2363  * Given an mblk with enough space in it, create sub-capability entries for
2364  * DL_CAPAB_IPSEC_{AH,ESP} types which consist of previously-advertised
2365  * offloaded ciphers (both AUTH and ENCR) with their enable flags cleared,
2366  * in preparation for the reset the DL_CAPABILITY_REQ message.
2367  */
2368 static void
2369 ill_fill_ipsec_reset(uint_t nciphers, int stype, uint_t slen,
2370     ill_ipsec_capab_t *ill_cap, mblk_t *mp)
2371 {
2372 	dl_capab_ipsec_t *oipsec;
2373 	dl_capab_ipsec_alg_t *oalg;
2374 	dl_capability_sub_t *dl_subcap;
2375 	int i, k;
2376 
2377 	ASSERT(nciphers > 0);
2378 	ASSERT(ill_cap != NULL);
2379 	ASSERT(mp != NULL);
2380 	ASSERT(MBLKTAIL(mp) >= sizeof (*dl_subcap) + sizeof (*oipsec) + slen);
2381 
2382 	/* dl_capability_sub_t for "stype" */
2383 	dl_subcap = (dl_capability_sub_t *)mp->b_wptr;
2384 	dl_subcap->dl_cap = stype;
2385 	dl_subcap->dl_length = sizeof (dl_capab_ipsec_t) + slen;
2386 	mp->b_wptr += sizeof (dl_capability_sub_t);
2387 
2388 	/* dl_capab_ipsec_t for "stype" */
2389 	oipsec = (dl_capab_ipsec_t *)mp->b_wptr;
2390 	oipsec->cip_version = 1;
2391 	oipsec->cip_nciphers = nciphers;
2392 	mp->b_wptr = (uchar_t *)&oipsec->cip_data[0];
2393 
2394 	/* create entries for "stype" AUTH ciphers */
2395 	for (i = 0; i < ill_cap->algs_size; i++) {
2396 		for (k = 0; k < BITSPERBYTE; k++) {
2397 			if ((ill_cap->auth_hw_algs[i] & (1 << k)) == 0)
2398 				continue;
2399 
2400 			oalg = (dl_capab_ipsec_alg_t *)mp->b_wptr;
2401 			bzero((void *)oalg, sizeof (*oalg));
2402 			oalg->alg_type = DL_CAPAB_IPSEC_ALG_AUTH;
2403 			oalg->alg_prim = k + (BITSPERBYTE * i);
2404 			mp->b_wptr += sizeof (dl_capab_ipsec_alg_t);
2405 		}
2406 	}
2407 	/* create entries for "stype" ENCR ciphers */
2408 	for (i = 0; i < ill_cap->algs_size; i++) {
2409 		for (k = 0; k < BITSPERBYTE; k++) {
2410 			if ((ill_cap->encr_hw_algs[i] & (1 << k)) == 0)
2411 				continue;
2412 
2413 			oalg = (dl_capab_ipsec_alg_t *)mp->b_wptr;
2414 			bzero((void *)oalg, sizeof (*oalg));
2415 			oalg->alg_type = DL_CAPAB_IPSEC_ALG_ENCR;
2416 			oalg->alg_prim = k + (BITSPERBYTE * i);
2417 			mp->b_wptr += sizeof (dl_capab_ipsec_alg_t);
2418 		}
2419 	}
2420 }
2421 
2422 /*
2423  * Macro to count number of 1s in a byte (8-bit word).  The total count is
2424  * accumulated into the passed-in argument (sum).  We could use SPARCv9's
2425  * POPC instruction, but our macro is more flexible for an arbitrary length
2426  * of bytes, such as {auth,encr}_hw_algs.  These variables are currently
2427  * 256-bits long (MAX_IPSEC_ALGS), so if we know for sure that the length
2428  * stays that way, we can reduce the number of iterations required.
2429  */
2430 #define	COUNT_1S(val, sum) {					\
2431 	uint8_t x = val & 0xff;					\
2432 	x = (x & 0x55) + ((x >> 1) & 0x55);			\
2433 	x = (x & 0x33) + ((x >> 2) & 0x33);			\
2434 	sum += (x & 0xf) + ((x >> 4) & 0xf);			\
2435 }
2436 
2437 /* ARGSUSED */
2438 static int
2439 ill_capability_ipsec_reset_size(ill_t *ill, int *ah_cntp, int *ah_lenp,
2440     int *esp_cntp, int *esp_lenp)
2441 {
2442 	ill_ipsec_capab_t *cap_ah = ill->ill_ipsec_capab_ah;
2443 	ill_ipsec_capab_t *cap_esp = ill->ill_ipsec_capab_esp;
2444 	uint64_t ill_capabilities = ill->ill_capabilities;
2445 	int ah_cnt = 0, esp_cnt = 0;
2446 	int ah_len = 0, esp_len = 0;
2447 	int i, size = 0;
2448 
2449 	if (!(ill_capabilities & (ILL_CAPAB_AH | ILL_CAPAB_ESP)))
2450 		return (0);
2451 
2452 	ASSERT(cap_ah != NULL || !(ill_capabilities & ILL_CAPAB_AH));
2453 	ASSERT(cap_esp != NULL || !(ill_capabilities & ILL_CAPAB_ESP));
2454 
2455 	/* Find out the number of ciphers for AH */
2456 	if (cap_ah != NULL) {
2457 		for (i = 0; i < cap_ah->algs_size; i++) {
2458 			COUNT_1S(cap_ah->auth_hw_algs[i], ah_cnt);
2459 			COUNT_1S(cap_ah->encr_hw_algs[i], ah_cnt);
2460 		}
2461 		if (ah_cnt > 0) {
2462 			size += sizeof (dl_capability_sub_t) +
2463 			    sizeof (dl_capab_ipsec_t);
2464 			/* dl_capab_ipsec_t contains one dl_capab_ipsec_alg_t */
2465 			ah_len = (ah_cnt - 1) * sizeof (dl_capab_ipsec_alg_t);
2466 			size += ah_len;
2467 		}
2468 	}
2469 
2470 	/* Find out the number of ciphers for ESP */
2471 	if (cap_esp != NULL) {
2472 		for (i = 0; i < cap_esp->algs_size; i++) {
2473 			COUNT_1S(cap_esp->auth_hw_algs[i], esp_cnt);
2474 			COUNT_1S(cap_esp->encr_hw_algs[i], esp_cnt);
2475 		}
2476 		if (esp_cnt > 0) {
2477 			size += sizeof (dl_capability_sub_t) +
2478 			    sizeof (dl_capab_ipsec_t);
2479 			/* dl_capab_ipsec_t contains one dl_capab_ipsec_alg_t */
2480 			esp_len = (esp_cnt - 1) * sizeof (dl_capab_ipsec_alg_t);
2481 			size += esp_len;
2482 		}
2483 	}
2484 
2485 	if (ah_cntp != NULL)
2486 		*ah_cntp = ah_cnt;
2487 	if (ah_lenp != NULL)
2488 		*ah_lenp = ah_len;
2489 	if (esp_cntp != NULL)
2490 		*esp_cntp = esp_cnt;
2491 	if (esp_lenp != NULL)
2492 		*esp_lenp = esp_len;
2493 
2494 	return (size);
2495 }
2496 
2497 /* ARGSUSED */
2498 static void
2499 ill_capability_ipsec_reset_fill(ill_t *ill, mblk_t *mp)
2500 {
2501 	ill_ipsec_capab_t *cap_ah = ill->ill_ipsec_capab_ah;
2502 	ill_ipsec_capab_t *cap_esp = ill->ill_ipsec_capab_esp;
2503 	int ah_cnt = 0, esp_cnt = 0;
2504 	int ah_len = 0, esp_len = 0;
2505 	int size;
2506 
2507 	size = ill_capability_ipsec_reset_size(ill, &ah_cnt, &ah_len,
2508 	    &esp_cnt, &esp_len);
2509 	if (size == 0)
2510 		return;
2511 
2512 	/*
2513 	 * Clear the capability flags for IPsec HA but retain the ill
2514 	 * capability structures since it's possible that another thread
2515 	 * is still referring to them.  The structures only get deallocated
2516 	 * when we destroy the ill.
2517 	 *
2518 	 * Various places check the flags to see if the ill is capable of
2519 	 * hardware acceleration, and by clearing them we ensure that new
2520 	 * outbound IPsec packets are sent down encrypted.
2521 	 */
2522 
2523 	/* Fill in DL_CAPAB_IPSEC_AH sub-capability entries */
2524 	if (ah_cnt > 0) {
2525 		ill_fill_ipsec_reset(ah_cnt, DL_CAPAB_IPSEC_AH, ah_len,
2526 		    cap_ah, mp);
2527 	}
2528 
2529 	/* Fill in DL_CAPAB_IPSEC_ESP sub-capability entries */
2530 	if (esp_cnt > 0) {
2531 		ill_fill_ipsec_reset(esp_cnt, DL_CAPAB_IPSEC_ESP, esp_len,
2532 		    cap_esp, mp);
2533 	}
2534 
2535 	/*
2536 	 * At this point we've composed a bunch of sub-capabilities to be
2537 	 * encapsulated in a DL_CAPABILITY_REQ and later sent downstream
2538 	 * by the caller.  Upon receiving this reset message, the driver
2539 	 * must stop inbound decryption (by destroying all inbound SAs)
2540 	 * and let the corresponding packets come in encrypted.
2541 	 */
2542 }
2543 
2544 static void
2545 ill_capability_dispatch(ill_t *ill, mblk_t *mp, dl_capability_sub_t *subp,
2546     boolean_t encapsulated)
2547 {
2548 	boolean_t legacy = B_FALSE;
2549 
2550 	/*
2551 	 * Note that only the following two sub-capabilities may be
2552 	 * considered as "legacy", since their original definitions
2553 	 * do not incorporate the dl_mid_t module ID token, and hence
2554 	 * may require the use of the wrapper sub-capability.
2555 	 */
2556 	switch (subp->dl_cap) {
2557 	case DL_CAPAB_IPSEC_AH:
2558 	case DL_CAPAB_IPSEC_ESP:
2559 		legacy = B_TRUE;
2560 		break;
2561 	}
2562 
2563 	/*
2564 	 * For legacy sub-capabilities which don't incorporate a queue_t
2565 	 * pointer in their structures, discard them if we detect that
2566 	 * there are intermediate modules in between IP and the driver.
2567 	 */
2568 	if (!encapsulated && legacy && ill->ill_lmod_cnt > 1) {
2569 		ip1dbg(("ill_capability_dispatch: unencapsulated capab type "
2570 		    "%d discarded; %d module(s) present below IP\n",
2571 		    subp->dl_cap, ill->ill_lmod_cnt));
2572 		return;
2573 	}
2574 
2575 	switch (subp->dl_cap) {
2576 	case DL_CAPAB_IPSEC_AH:
2577 	case DL_CAPAB_IPSEC_ESP:
2578 		ill_capability_ipsec_ack(ill, mp, subp);
2579 		break;
2580 	case DL_CAPAB_MDT:
2581 		ill_capability_mdt_ack(ill, mp, subp);
2582 		break;
2583 	case DL_CAPAB_HCKSUM:
2584 		ill_capability_hcksum_ack(ill, mp, subp);
2585 		break;
2586 	case DL_CAPAB_ZEROCOPY:
2587 		ill_capability_zerocopy_ack(ill, mp, subp);
2588 		break;
2589 	case DL_CAPAB_DLD:
2590 		ill_capability_dld_ack(ill, mp, subp);
2591 		break;
2592 	default:
2593 		ip1dbg(("ill_capability_dispatch: unknown capab type %d\n",
2594 		    subp->dl_cap));
2595 	}
2596 }
2597 
2598 /*
2599  * Process a hardware checksum offload capability negotiation ack received
2600  * from a DLS Provider.isub must point to the sub-capability (DL_CAPAB_HCKSUM)
2601  * of a DL_CAPABILITY_ACK message.
2602  */
2603 static void
2604 ill_capability_hcksum_ack(ill_t *ill, mblk_t *mp, dl_capability_sub_t *isub)
2605 {
2606 	dl_capability_req_t	*ocap;
2607 	dl_capab_hcksum_t	*ihck, *ohck;
2608 	ill_hcksum_capab_t	**ill_hcksum;
2609 	mblk_t			*nmp = NULL;
2610 	uint_t			sub_dl_cap = isub->dl_cap;
2611 	uint8_t			*capend;
2612 
2613 	ASSERT(sub_dl_cap == DL_CAPAB_HCKSUM);
2614 
2615 	ill_hcksum = (ill_hcksum_capab_t **)&ill->ill_hcksum_capab;
2616 
2617 	/*
2618 	 * Note: range checks here are not absolutely sufficient to
2619 	 * make us robust against malformed messages sent by drivers;
2620 	 * this is in keeping with the rest of IP's dlpi handling.
2621 	 * (Remember, it's coming from something else in the kernel
2622 	 * address space)
2623 	 */
2624 	capend = (uint8_t *)(isub + 1) + isub->dl_length;
2625 	if (capend > mp->b_wptr) {
2626 		cmn_err(CE_WARN, "ill_capability_hcksum_ack: "
2627 		    "malformed sub-capability too long for mblk");
2628 		return;
2629 	}
2630 
2631 	/*
2632 	 * There are two types of acks we process here:
2633 	 * 1. acks in reply to a (first form) generic capability req
2634 	 *    (no ENABLE flag set)
2635 	 * 2. acks in reply to a ENABLE capability req.
2636 	 *    (ENABLE flag set)
2637 	 */
2638 	ihck = (dl_capab_hcksum_t *)(isub + 1);
2639 
2640 	if (ihck->hcksum_version != HCKSUM_VERSION_1) {
2641 		cmn_err(CE_CONT, "ill_capability_hcksum_ack: "
2642 		    "unsupported hardware checksum "
2643 		    "sub-capability (version %d, expected %d)",
2644 		    ihck->hcksum_version, HCKSUM_VERSION_1);
2645 		return;
2646 	}
2647 
2648 	if (!dlcapabcheckqid(&ihck->hcksum_mid, ill->ill_lmod_rq)) {
2649 		ip1dbg(("ill_capability_hcksum_ack: mid token for hardware "
2650 		    "checksum capability isn't as expected; pass-thru "
2651 		    "module(s) detected, discarding capability\n"));
2652 		return;
2653 	}
2654 
2655 #define	CURR_HCKSUM_CAPAB				\
2656 	(HCKSUM_INET_PARTIAL | HCKSUM_INET_FULL_V4 |	\
2657 	HCKSUM_INET_FULL_V6 | HCKSUM_IPHDRCKSUM)
2658 
2659 	if ((ihck->hcksum_txflags & HCKSUM_ENABLE) &&
2660 	    (ihck->hcksum_txflags & CURR_HCKSUM_CAPAB)) {
2661 		/* do ENABLE processing */
2662 		if (*ill_hcksum == NULL) {
2663 			*ill_hcksum = kmem_zalloc(sizeof (ill_hcksum_capab_t),
2664 			    KM_NOSLEEP);
2665 
2666 			if (*ill_hcksum == NULL) {
2667 				cmn_err(CE_WARN, "ill_capability_hcksum_ack: "
2668 				    "could not enable hcksum version %d "
2669 				    "for %s (ENOMEM)\n", HCKSUM_CURRENT_VERSION,
2670 				    ill->ill_name);
2671 				return;
2672 			}
2673 		}
2674 
2675 		(*ill_hcksum)->ill_hcksum_version = ihck->hcksum_version;
2676 		(*ill_hcksum)->ill_hcksum_txflags = ihck->hcksum_txflags;
2677 		ill->ill_capabilities |= ILL_CAPAB_HCKSUM;
2678 		ip1dbg(("ill_capability_hcksum_ack: interface %s "
2679 		    "has enabled hardware checksumming\n ",
2680 		    ill->ill_name));
2681 	} else if (ihck->hcksum_txflags & CURR_HCKSUM_CAPAB) {
2682 		/*
2683 		 * Enabling hardware checksum offload
2684 		 * Currently IP supports {TCP,UDP}/IPv4
2685 		 * partial and full cksum offload and
2686 		 * IPv4 header checksum offload.
2687 		 * Allocate new mblk which will
2688 		 * contain a new capability request
2689 		 * to enable hardware checksum offload.
2690 		 */
2691 		uint_t	size;
2692 		uchar_t	*rptr;
2693 
2694 		size = sizeof (dl_capability_req_t) +
2695 		    sizeof (dl_capability_sub_t) + isub->dl_length;
2696 
2697 		if ((nmp = ip_dlpi_alloc(size, DL_CAPABILITY_REQ)) == NULL) {
2698 			cmn_err(CE_WARN, "ill_capability_hcksum_ack: "
2699 			    "could not enable hardware cksum for %s (ENOMEM)\n",
2700 			    ill->ill_name);
2701 			return;
2702 		}
2703 
2704 		rptr = nmp->b_rptr;
2705 		/* initialize dl_capability_req_t */
2706 		ocap = (dl_capability_req_t *)nmp->b_rptr;
2707 		ocap->dl_sub_offset =
2708 		    sizeof (dl_capability_req_t);
2709 		ocap->dl_sub_length =
2710 		    sizeof (dl_capability_sub_t) +
2711 		    isub->dl_length;
2712 		nmp->b_rptr += sizeof (dl_capability_req_t);
2713 
2714 		/* initialize dl_capability_sub_t */
2715 		bcopy(isub, nmp->b_rptr, sizeof (*isub));
2716 		nmp->b_rptr += sizeof (*isub);
2717 
2718 		/* initialize dl_capab_hcksum_t */
2719 		ohck = (dl_capab_hcksum_t *)nmp->b_rptr;
2720 		bcopy(ihck, ohck, sizeof (*ihck));
2721 
2722 		nmp->b_rptr = rptr;
2723 		ASSERT(nmp->b_wptr == (nmp->b_rptr + size));
2724 
2725 		/* Set ENABLE flag */
2726 		ohck->hcksum_txflags &= CURR_HCKSUM_CAPAB;
2727 		ohck->hcksum_txflags |= HCKSUM_ENABLE;
2728 
2729 		/*
2730 		 * nmp points to a DL_CAPABILITY_REQ message to enable
2731 		 * hardware checksum acceleration.
2732 		 */
2733 		ill_capability_send(ill, nmp);
2734 	} else {
2735 		ip1dbg(("ill_capability_hcksum_ack: interface %s has "
2736 		    "advertised %x hardware checksum capability flags\n",
2737 		    ill->ill_name, ihck->hcksum_txflags));
2738 	}
2739 }
2740 
2741 static void
2742 ill_capability_hcksum_reset_fill(ill_t *ill, mblk_t *mp)
2743 {
2744 	dl_capab_hcksum_t *hck_subcap;
2745 	dl_capability_sub_t *dl_subcap;
2746 
2747 	if (!ILL_HCKSUM_CAPABLE(ill))
2748 		return;
2749 
2750 	ASSERT(ill->ill_hcksum_capab != NULL);
2751 
2752 	dl_subcap = (dl_capability_sub_t *)mp->b_wptr;
2753 	dl_subcap->dl_cap = DL_CAPAB_HCKSUM;
2754 	dl_subcap->dl_length = sizeof (*hck_subcap);
2755 
2756 	hck_subcap = (dl_capab_hcksum_t *)(dl_subcap + 1);
2757 	hck_subcap->hcksum_version = ill->ill_hcksum_capab->ill_hcksum_version;
2758 	hck_subcap->hcksum_txflags = 0;
2759 
2760 	mp->b_wptr += sizeof (*dl_subcap) + sizeof (*hck_subcap);
2761 }
2762 
2763 static void
2764 ill_capability_zerocopy_ack(ill_t *ill, mblk_t *mp, dl_capability_sub_t *isub)
2765 {
2766 	mblk_t *nmp = NULL;
2767 	dl_capability_req_t *oc;
2768 	dl_capab_zerocopy_t *zc_ic, *zc_oc;
2769 	ill_zerocopy_capab_t **ill_zerocopy_capab;
2770 	uint_t sub_dl_cap = isub->dl_cap;
2771 	uint8_t *capend;
2772 
2773 	ASSERT(sub_dl_cap == DL_CAPAB_ZEROCOPY);
2774 
2775 	ill_zerocopy_capab = (ill_zerocopy_capab_t **)&ill->ill_zerocopy_capab;
2776 
2777 	/*
2778 	 * Note: range checks here are not absolutely sufficient to
2779 	 * make us robust against malformed messages sent by drivers;
2780 	 * this is in keeping with the rest of IP's dlpi handling.
2781 	 * (Remember, it's coming from something else in the kernel
2782 	 * address space)
2783 	 */
2784 	capend = (uint8_t *)(isub + 1) + isub->dl_length;
2785 	if (capend > mp->b_wptr) {
2786 		cmn_err(CE_WARN, "ill_capability_zerocopy_ack: "
2787 		    "malformed sub-capability too long for mblk");
2788 		return;
2789 	}
2790 
2791 	zc_ic = (dl_capab_zerocopy_t *)(isub + 1);
2792 	if (zc_ic->zerocopy_version != ZEROCOPY_VERSION_1) {
2793 		cmn_err(CE_CONT, "ill_capability_zerocopy_ack: "
2794 		    "unsupported ZEROCOPY sub-capability (version %d, "
2795 		    "expected %d)", zc_ic->zerocopy_version,
2796 		    ZEROCOPY_VERSION_1);
2797 		return;
2798 	}
2799 
2800 	if (!dlcapabcheckqid(&zc_ic->zerocopy_mid, ill->ill_lmod_rq)) {
2801 		ip1dbg(("ill_capability_zerocopy_ack: mid token for zerocopy "
2802 		    "capability isn't as expected; pass-thru module(s) "
2803 		    "detected, discarding capability\n"));
2804 		return;
2805 	}
2806 
2807 	if ((zc_ic->zerocopy_flags & DL_CAPAB_VMSAFE_MEM) != 0) {
2808 		if (*ill_zerocopy_capab == NULL) {
2809 			*ill_zerocopy_capab =
2810 			    kmem_zalloc(sizeof (ill_zerocopy_capab_t),
2811 			    KM_NOSLEEP);
2812 
2813 			if (*ill_zerocopy_capab == NULL) {
2814 				cmn_err(CE_WARN, "ill_capability_zerocopy_ack: "
2815 				    "could not enable Zero-copy version %d "
2816 				    "for %s (ENOMEM)\n", ZEROCOPY_VERSION_1,
2817 				    ill->ill_name);
2818 				return;
2819 			}
2820 		}
2821 
2822 		ip1dbg(("ill_capability_zerocopy_ack: interface %s "
2823 		    "supports Zero-copy version %d\n", ill->ill_name,
2824 		    ZEROCOPY_VERSION_1));
2825 
2826 		(*ill_zerocopy_capab)->ill_zerocopy_version =
2827 		    zc_ic->zerocopy_version;
2828 		(*ill_zerocopy_capab)->ill_zerocopy_flags =
2829 		    zc_ic->zerocopy_flags;
2830 
2831 		ill->ill_capabilities |= ILL_CAPAB_ZEROCOPY;
2832 	} else {
2833 		uint_t size;
2834 		uchar_t *rptr;
2835 
2836 		size = sizeof (dl_capability_req_t) +
2837 		    sizeof (dl_capability_sub_t) +
2838 		    sizeof (dl_capab_zerocopy_t);
2839 
2840 		if ((nmp = ip_dlpi_alloc(size, DL_CAPABILITY_REQ)) == NULL) {
2841 			cmn_err(CE_WARN, "ill_capability_zerocopy_ack: "
2842 			    "could not enable zerocopy for %s (ENOMEM)\n",
2843 			    ill->ill_name);
2844 			return;
2845 		}
2846 
2847 		rptr = nmp->b_rptr;
2848 		/* initialize dl_capability_req_t */
2849 		oc = (dl_capability_req_t *)rptr;
2850 		oc->dl_sub_offset = sizeof (dl_capability_req_t);
2851 		oc->dl_sub_length = sizeof (dl_capability_sub_t) +
2852 		    sizeof (dl_capab_zerocopy_t);
2853 		rptr += sizeof (dl_capability_req_t);
2854 
2855 		/* initialize dl_capability_sub_t */
2856 		bcopy(isub, rptr, sizeof (*isub));
2857 		rptr += sizeof (*isub);
2858 
2859 		/* initialize dl_capab_zerocopy_t */
2860 		zc_oc = (dl_capab_zerocopy_t *)rptr;
2861 		*zc_oc = *zc_ic;
2862 
2863 		ip1dbg(("ill_capability_zerocopy_ack: asking interface %s "
2864 		    "to enable zero-copy version %d\n", ill->ill_name,
2865 		    ZEROCOPY_VERSION_1));
2866 
2867 		/* set VMSAFE_MEM flag */
2868 		zc_oc->zerocopy_flags |= DL_CAPAB_VMSAFE_MEM;
2869 
2870 		/* nmp points to a DL_CAPABILITY_REQ message to enable zcopy */
2871 		ill_capability_send(ill, nmp);
2872 	}
2873 }
2874 
2875 static void
2876 ill_capability_zerocopy_reset_fill(ill_t *ill, mblk_t *mp)
2877 {
2878 	dl_capab_zerocopy_t *zerocopy_subcap;
2879 	dl_capability_sub_t *dl_subcap;
2880 
2881 	if (!(ill->ill_capabilities & ILL_CAPAB_ZEROCOPY))
2882 		return;
2883 
2884 	ASSERT(ill->ill_zerocopy_capab != NULL);
2885 
2886 	dl_subcap = (dl_capability_sub_t *)mp->b_wptr;
2887 	dl_subcap->dl_cap = DL_CAPAB_ZEROCOPY;
2888 	dl_subcap->dl_length = sizeof (*zerocopy_subcap);
2889 
2890 	zerocopy_subcap = (dl_capab_zerocopy_t *)(dl_subcap + 1);
2891 	zerocopy_subcap->zerocopy_version =
2892 	    ill->ill_zerocopy_capab->ill_zerocopy_version;
2893 	zerocopy_subcap->zerocopy_flags = 0;
2894 
2895 	mp->b_wptr += sizeof (*dl_subcap) + sizeof (*zerocopy_subcap);
2896 }
2897 
2898 /*
2899  * DLD capability
2900  * Refer to dld.h for more information regarding the purpose and usage
2901  * of this capability.
2902  */
2903 static void
2904 ill_capability_dld_ack(ill_t *ill, mblk_t *mp, dl_capability_sub_t *isub)
2905 {
2906 	dl_capab_dld_t		*dld_ic, dld;
2907 	uint_t			sub_dl_cap = isub->dl_cap;
2908 	uint8_t			*capend;
2909 	ill_dld_capab_t		*idc;
2910 
2911 	ASSERT(IAM_WRITER_ILL(ill));
2912 	ASSERT(sub_dl_cap == DL_CAPAB_DLD);
2913 
2914 	/*
2915 	 * Note: range checks here are not absolutely sufficient to
2916 	 * make us robust against malformed messages sent by drivers;
2917 	 * this is in keeping with the rest of IP's dlpi handling.
2918 	 * (Remember, it's coming from something else in the kernel
2919 	 * address space)
2920 	 */
2921 	capend = (uint8_t *)(isub + 1) + isub->dl_length;
2922 	if (capend > mp->b_wptr) {
2923 		cmn_err(CE_WARN, "ill_capability_dld_ack: "
2924 		    "malformed sub-capability too long for mblk");
2925 		return;
2926 	}
2927 	dld_ic = (dl_capab_dld_t *)(isub + 1);
2928 	if (dld_ic->dld_version != DLD_CURRENT_VERSION) {
2929 		cmn_err(CE_CONT, "ill_capability_dld_ack: "
2930 		    "unsupported DLD sub-capability (version %d, "
2931 		    "expected %d)", dld_ic->dld_version,
2932 		    DLD_CURRENT_VERSION);
2933 		return;
2934 	}
2935 	if (!dlcapabcheckqid(&dld_ic->dld_mid, ill->ill_lmod_rq)) {
2936 		ip1dbg(("ill_capability_dld_ack: mid token for dld "
2937 		    "capability isn't as expected; pass-thru module(s) "
2938 		    "detected, discarding capability\n"));
2939 		return;
2940 	}
2941 
2942 	/*
2943 	 * Copy locally to ensure alignment.
2944 	 */
2945 	bcopy(dld_ic, &dld, sizeof (dl_capab_dld_t));
2946 
2947 	if ((idc = ill->ill_dld_capab) == NULL) {
2948 		idc = kmem_zalloc(sizeof (ill_dld_capab_t), KM_NOSLEEP);
2949 		if (idc == NULL) {
2950 			cmn_err(CE_WARN, "ill_capability_dld_ack: "
2951 			    "could not enable DLD version %d "
2952 			    "for %s (ENOMEM)\n", DLD_CURRENT_VERSION,
2953 			    ill->ill_name);
2954 			return;
2955 		}
2956 		ill->ill_dld_capab = idc;
2957 	}
2958 	idc->idc_capab_df = (ip_capab_func_t)dld.dld_capab;
2959 	idc->idc_capab_dh = (void *)dld.dld_capab_handle;
2960 	ip1dbg(("ill_capability_dld_ack: interface %s "
2961 	    "supports DLD version %d\n", ill->ill_name, DLD_CURRENT_VERSION));
2962 
2963 	ill_capability_dld_enable(ill);
2964 }
2965 
2966 /*
2967  * Typically capability negotiation between IP and the driver happens via
2968  * DLPI message exchange. However GLD also offers a direct function call
2969  * mechanism to exchange the DLD_DIRECT_CAPAB and DLD_POLL_CAPAB capabilities,
2970  * But arbitrary function calls into IP or GLD are not permitted, since both
2971  * of them are protected by their own perimeter mechanism. The perimeter can
2972  * be viewed as a coarse lock or serialization mechanism. The hierarchy of
2973  * these perimeters is IP -> MAC. Thus for example to enable the squeue
2974  * polling, IP needs to enter its perimeter, then call ill_mac_perim_enter
2975  * to enter the mac perimeter and then do the direct function calls into
2976  * GLD to enable squeue polling. The ring related callbacks from the mac into
2977  * the stack to add, bind, quiesce, restart or cleanup a ring are all
2978  * protected by the mac perimeter.
2979  */
2980 static void
2981 ill_mac_perim_enter(ill_t *ill, mac_perim_handle_t *mphp)
2982 {
2983 	ill_dld_capab_t		*idc = ill->ill_dld_capab;
2984 	int			err;
2985 
2986 	err = idc->idc_capab_df(idc->idc_capab_dh, DLD_CAPAB_PERIM, mphp,
2987 	    DLD_ENABLE);
2988 	ASSERT(err == 0);
2989 }
2990 
2991 static void
2992 ill_mac_perim_exit(ill_t *ill, mac_perim_handle_t mph)
2993 {
2994 	ill_dld_capab_t		*idc = ill->ill_dld_capab;
2995 	int			err;
2996 
2997 	err = idc->idc_capab_df(idc->idc_capab_dh, DLD_CAPAB_PERIM, mph,
2998 	    DLD_DISABLE);
2999 	ASSERT(err == 0);
3000 }
3001 
3002 boolean_t
3003 ill_mac_perim_held(ill_t *ill)
3004 {
3005 	ill_dld_capab_t		*idc = ill->ill_dld_capab;
3006 
3007 	return (idc->idc_capab_df(idc->idc_capab_dh, DLD_CAPAB_PERIM, NULL,
3008 	    DLD_QUERY));
3009 }
3010 
3011 static void
3012 ill_capability_direct_enable(ill_t *ill)
3013 {
3014 	ill_dld_capab_t		*idc = ill->ill_dld_capab;
3015 	ill_dld_direct_t	*idd = &idc->idc_direct;
3016 	dld_capab_direct_t	direct;
3017 	int			rc;
3018 
3019 	ASSERT(!ill->ill_isv6 && IAM_WRITER_ILL(ill));
3020 
3021 	bzero(&direct, sizeof (direct));
3022 	direct.di_rx_cf = (uintptr_t)ip_input;
3023 	direct.di_rx_ch = ill;
3024 
3025 	rc = idc->idc_capab_df(idc->idc_capab_dh, DLD_CAPAB_DIRECT, &direct,
3026 	    DLD_ENABLE);
3027 	if (rc == 0) {
3028 		idd->idd_tx_df = (ip_dld_tx_t)direct.di_tx_df;
3029 		idd->idd_tx_dh = direct.di_tx_dh;
3030 		idd->idd_tx_cb_df = (ip_dld_callb_t)direct.di_tx_cb_df;
3031 		idd->idd_tx_cb_dh = direct.di_tx_cb_dh;
3032 		idd->idd_tx_fctl_df = (ip_dld_fctl_t)direct.di_tx_fctl_df;
3033 		idd->idd_tx_fctl_dh = direct.di_tx_fctl_dh;
3034 		ASSERT(idd->idd_tx_cb_df != NULL);
3035 		ASSERT(idd->idd_tx_fctl_df != NULL);
3036 		ASSERT(idd->idd_tx_df != NULL);
3037 		/*
3038 		 * One time registration of flow enable callback function
3039 		 */
3040 		ill->ill_flownotify_mh = idd->idd_tx_cb_df(idd->idd_tx_cb_dh,
3041 		    ill_flow_enable, ill);
3042 		ill->ill_capabilities |= ILL_CAPAB_DLD_DIRECT;
3043 		DTRACE_PROBE1(direct_on, (ill_t *), ill);
3044 	} else {
3045 		cmn_err(CE_WARN, "warning: could not enable DIRECT "
3046 		    "capability, rc = %d\n", rc);
3047 		DTRACE_PROBE2(direct_off, (ill_t *), ill, (int), rc);
3048 	}
3049 }
3050 
3051 static void
3052 ill_capability_poll_enable(ill_t *ill)
3053 {
3054 	ill_dld_capab_t		*idc = ill->ill_dld_capab;
3055 	dld_capab_poll_t	poll;
3056 	int			rc;
3057 
3058 	ASSERT(!ill->ill_isv6 && IAM_WRITER_ILL(ill));
3059 
3060 	bzero(&poll, sizeof (poll));
3061 	poll.poll_ring_add_cf = (uintptr_t)ip_squeue_add_ring;
3062 	poll.poll_ring_remove_cf = (uintptr_t)ip_squeue_clean_ring;
3063 	poll.poll_ring_quiesce_cf = (uintptr_t)ip_squeue_quiesce_ring;
3064 	poll.poll_ring_restart_cf = (uintptr_t)ip_squeue_restart_ring;
3065 	poll.poll_ring_bind_cf = (uintptr_t)ip_squeue_bind_ring;
3066 	poll.poll_ring_ch = ill;
3067 	rc = idc->idc_capab_df(idc->idc_capab_dh, DLD_CAPAB_POLL, &poll,
3068 	    DLD_ENABLE);
3069 	if (rc == 0) {
3070 		ill->ill_capabilities |= ILL_CAPAB_DLD_POLL;
3071 		DTRACE_PROBE1(poll_on, (ill_t *), ill);
3072 	} else {
3073 		ip1dbg(("warning: could not enable POLL "
3074 		    "capability, rc = %d\n", rc));
3075 		DTRACE_PROBE2(poll_off, (ill_t *), ill, (int), rc);
3076 	}
3077 }
3078 
3079 /*
3080  * Enable the LSO capability.
3081  */
3082 static void
3083 ill_capability_lso_enable(ill_t *ill)
3084 {
3085 	ill_dld_capab_t	*idc = ill->ill_dld_capab;
3086 	dld_capab_lso_t	lso;
3087 	int rc;
3088 
3089 	ASSERT(!ill->ill_isv6 && IAM_WRITER_ILL(ill));
3090 
3091 	if (ill->ill_lso_capab == NULL) {
3092 		ill->ill_lso_capab = kmem_zalloc(sizeof (ill_lso_capab_t),
3093 		    KM_NOSLEEP);
3094 		if (ill->ill_lso_capab == NULL) {
3095 			cmn_err(CE_WARN, "ill_capability_lso_enable: "
3096 			    "could not enable LSO for %s (ENOMEM)\n",
3097 			    ill->ill_name);
3098 			return;
3099 		}
3100 	}
3101 
3102 	bzero(&lso, sizeof (lso));
3103 	if ((rc = idc->idc_capab_df(idc->idc_capab_dh, DLD_CAPAB_LSO, &lso,
3104 	    DLD_ENABLE)) == 0) {
3105 		ill->ill_lso_capab->ill_lso_flags = lso.lso_flags;
3106 		ill->ill_lso_capab->ill_lso_max = lso.lso_max;
3107 		ill->ill_capabilities |= ILL_CAPAB_DLD_LSO;
3108 		ip1dbg(("ill_capability_lso_enable: interface %s "
3109 		    "has enabled LSO\n ", ill->ill_name));
3110 	} else {
3111 		kmem_free(ill->ill_lso_capab, sizeof (ill_lso_capab_t));
3112 		ill->ill_lso_capab = NULL;
3113 		DTRACE_PROBE2(lso_off, (ill_t *), ill, (int), rc);
3114 	}
3115 }
3116 
3117 static void
3118 ill_capability_dld_enable(ill_t *ill)
3119 {
3120 	mac_perim_handle_t mph;
3121 
3122 	ASSERT(IAM_WRITER_ILL(ill));
3123 
3124 	if (ill->ill_isv6)
3125 		return;
3126 
3127 	ill_mac_perim_enter(ill, &mph);
3128 	if (!ill->ill_isv6) {
3129 		ill_capability_direct_enable(ill);
3130 		ill_capability_poll_enable(ill);
3131 		ill_capability_lso_enable(ill);
3132 	}
3133 	ill->ill_capabilities |= ILL_CAPAB_DLD;
3134 	ill_mac_perim_exit(ill, mph);
3135 }
3136 
3137 static void
3138 ill_capability_dld_disable(ill_t *ill)
3139 {
3140 	ill_dld_capab_t	*idc;
3141 	ill_dld_direct_t *idd;
3142 	mac_perim_handle_t	mph;
3143 
3144 	ASSERT(IAM_WRITER_ILL(ill));
3145 
3146 	if (!(ill->ill_capabilities & ILL_CAPAB_DLD))
3147 		return;
3148 
3149 	ill_mac_perim_enter(ill, &mph);
3150 
3151 	idc = ill->ill_dld_capab;
3152 	if ((ill->ill_capabilities & ILL_CAPAB_DLD_DIRECT) != 0) {
3153 		/*
3154 		 * For performance we avoid locks in the transmit data path
3155 		 * and don't maintain a count of the number of threads using
3156 		 * direct calls. Thus some threads could be using direct
3157 		 * transmit calls to GLD, even after the capability mechanism
3158 		 * turns it off. This is still safe since the handles used in
3159 		 * the direct calls continue to be valid until the unplumb is
3160 		 * completed. Remove the callback that was added (1-time) at
3161 		 * capab enable time.
3162 		 */
3163 		mutex_enter(&ill->ill_lock);
3164 		ill->ill_capabilities &= ~ILL_CAPAB_DLD_DIRECT;
3165 		mutex_exit(&ill->ill_lock);
3166 		if (ill->ill_flownotify_mh != NULL) {
3167 			idd = &idc->idc_direct;
3168 			idd->idd_tx_cb_df(idd->idd_tx_cb_dh, NULL,
3169 			    ill->ill_flownotify_mh);
3170 			ill->ill_flownotify_mh = NULL;
3171 		}
3172 		(void) idc->idc_capab_df(idc->idc_capab_dh, DLD_CAPAB_DIRECT,
3173 		    NULL, DLD_DISABLE);
3174 	}
3175 
3176 	if ((ill->ill_capabilities & ILL_CAPAB_DLD_POLL) != 0) {
3177 		ill->ill_capabilities &= ~ILL_CAPAB_DLD_POLL;
3178 		ip_squeue_clean_all(ill);
3179 		(void) idc->idc_capab_df(idc->idc_capab_dh, DLD_CAPAB_POLL,
3180 		    NULL, DLD_DISABLE);
3181 	}
3182 
3183 	if ((ill->ill_capabilities & ILL_CAPAB_DLD_LSO) != 0) {
3184 		ASSERT(ill->ill_lso_capab != NULL);
3185 		/*
3186 		 * Clear the capability flag for LSO but retain the
3187 		 * ill_lso_capab structure since it's possible that another
3188 		 * thread is still referring to it.  The structure only gets
3189 		 * deallocated when we destroy the ill.
3190 		 */
3191 
3192 		ill->ill_capabilities &= ~ILL_CAPAB_DLD_LSO;
3193 		(void) idc->idc_capab_df(idc->idc_capab_dh, DLD_CAPAB_LSO,
3194 		    NULL, DLD_DISABLE);
3195 	}
3196 
3197 	ill->ill_capabilities &= ~ILL_CAPAB_DLD;
3198 	ill_mac_perim_exit(ill, mph);
3199 }
3200 
3201 /*
3202  * Capability Negotiation protocol
3203  *
3204  * We don't wait for DLPI capability operations to finish during interface
3205  * bringup or teardown. Doing so would introduce more asynchrony and the
3206  * interface up/down operations will need multiple return and restarts.
3207  * Instead the 'ipsq_current_ipif' of the ipsq is not cleared as long as
3208  * the 'ill_dlpi_deferred' chain is non-empty. This ensures that the next
3209  * exclusive operation won't start until the DLPI operations of the previous
3210  * exclusive operation complete.
3211  *
3212  * The capability state machine is shown below.
3213  *
3214  * state		next state		event, action
3215  *
3216  * IDCS_UNKNOWN 	IDCS_PROBE_SENT		ill_capability_probe
3217  * IDCS_PROBE_SENT	IDCS_OK			ill_capability_ack
3218  * IDCS_PROBE_SENT	IDCS_FAILED		ip_rput_dlpi_writer (nack)
3219  * IDCS_OK		IDCS_RENEG		Receipt of DL_NOTE_CAPAB_RENEG
3220  * IDCS_OK		IDCS_RESET_SENT		ill_capability_reset
3221  * IDCS_RESET_SENT	IDCS_UNKNOWN		ill_capability_ack_thr
3222  * IDCS_RENEG		IDCS_PROBE_SENT		ill_capability_ack_thr ->
3223  *						    ill_capability_probe.
3224  */
3225 
3226 /*
3227  * Dedicated thread started from ip_stack_init that handles capability
3228  * disable. This thread ensures the taskq dispatch does not fail by waiting
3229  * for resources using TQ_SLEEP. The taskq mechanism is used to ensure
3230  * that direct calls to DLD are done in a cv_waitable context.
3231  */
3232 void
3233 ill_taskq_dispatch(ip_stack_t *ipst)
3234 {
3235 	callb_cpr_t cprinfo;
3236 	char 	name[64];
3237 	mblk_t	*mp;
3238 
3239 	(void) snprintf(name, sizeof (name), "ill_taskq_dispatch_%d",
3240 	    ipst->ips_netstack->netstack_stackid);
3241 	CALLB_CPR_INIT(&cprinfo, &ipst->ips_capab_taskq_lock, callb_generic_cpr,
3242 	    name);
3243 	mutex_enter(&ipst->ips_capab_taskq_lock);
3244 
3245 	for (;;) {
3246 		mp = ipst->ips_capab_taskq_head;
3247 		while (mp != NULL) {
3248 			ipst->ips_capab_taskq_head = mp->b_next;
3249 			if (ipst->ips_capab_taskq_head == NULL)
3250 				ipst->ips_capab_taskq_tail = NULL;
3251 			mutex_exit(&ipst->ips_capab_taskq_lock);
3252 			mp->b_next = NULL;
3253 
3254 			VERIFY(taskq_dispatch(system_taskq,
3255 			    ill_capability_ack_thr, mp, TQ_SLEEP) != 0);
3256 			mutex_enter(&ipst->ips_capab_taskq_lock);
3257 			mp = ipst->ips_capab_taskq_head;
3258 		}
3259 
3260 		if (ipst->ips_capab_taskq_quit)
3261 			break;
3262 		CALLB_CPR_SAFE_BEGIN(&cprinfo);
3263 		cv_wait(&ipst->ips_capab_taskq_cv, &ipst->ips_capab_taskq_lock);
3264 		CALLB_CPR_SAFE_END(&cprinfo, &ipst->ips_capab_taskq_lock);
3265 	}
3266 	VERIFY(ipst->ips_capab_taskq_head == NULL);
3267 	VERIFY(ipst->ips_capab_taskq_tail == NULL);
3268 	CALLB_CPR_EXIT(&cprinfo);
3269 	thread_exit();
3270 }
3271 
3272 /*
3273  * Consume a new-style hardware capabilities negotiation ack.
3274  * Called via taskq on receipt of DL_CAPABBILITY_ACK.
3275  */
3276 static void
3277 ill_capability_ack_thr(void *arg)
3278 {
3279 	mblk_t	*mp = arg;
3280 	dl_capability_ack_t *capp;
3281 	dl_capability_sub_t *subp, *endp;
3282 	ill_t	*ill;
3283 	boolean_t reneg;
3284 
3285 	ill = (ill_t *)mp->b_prev;
3286 	mp->b_prev = NULL;
3287 
3288 	VERIFY(ipsq_enter(ill, B_FALSE, CUR_OP) == B_TRUE);
3289 
3290 	if (ill->ill_dlpi_capab_state == IDCS_RESET_SENT ||
3291 	    ill->ill_dlpi_capab_state == IDCS_RENEG) {
3292 		/*
3293 		 * We have received the ack for our DL_CAPAB reset request.
3294 		 * There isnt' anything in the message that needs processing.
3295 		 * All message based capabilities have been disabled, now
3296 		 * do the function call based capability disable.
3297 		 */
3298 		reneg = ill->ill_dlpi_capab_state == IDCS_RENEG;
3299 		ill_capability_dld_disable(ill);
3300 		ill->ill_dlpi_capab_state = IDCS_UNKNOWN;
3301 		if (reneg)
3302 			ill_capability_probe(ill);
3303 		goto done;
3304 	}
3305 
3306 	if (ill->ill_dlpi_capab_state == IDCS_PROBE_SENT)
3307 		ill->ill_dlpi_capab_state = IDCS_OK;
3308 
3309 	capp = (dl_capability_ack_t *)mp->b_rptr;
3310 
3311 	if (capp->dl_sub_length == 0) {
3312 		/* no new-style capabilities */
3313 		goto done;
3314 	}
3315 
3316 	/* make sure the driver supplied correct dl_sub_length */
3317 	if ((sizeof (*capp) + capp->dl_sub_length) > MBLKL(mp)) {
3318 		ip0dbg(("ill_capability_ack: bad DL_CAPABILITY_ACK, "
3319 		    "invalid dl_sub_length (%d)\n", capp->dl_sub_length));
3320 		goto done;
3321 	}
3322 
3323 #define	SC(base, offset) (dl_capability_sub_t *)(((uchar_t *)(base))+(offset))
3324 	/*
3325 	 * There are sub-capabilities. Process the ones we know about.
3326 	 * Loop until we don't have room for another sub-cap header..
3327 	 */
3328 	for (subp = SC(capp, capp->dl_sub_offset),
3329 	    endp = SC(subp, capp->dl_sub_length - sizeof (*subp));
3330 	    subp <= endp;
3331 	    subp = SC(subp, sizeof (dl_capability_sub_t) + subp->dl_length)) {
3332 
3333 		switch (subp->dl_cap) {
3334 		case DL_CAPAB_ID_WRAPPER:
3335 			ill_capability_id_ack(ill, mp, subp);
3336 			break;
3337 		default:
3338 			ill_capability_dispatch(ill, mp, subp, B_FALSE);
3339 			break;
3340 		}
3341 	}
3342 #undef SC
3343 done:
3344 	inet_freemsg(mp);
3345 	ill_capability_done(ill);
3346 	ipsq_exit(ill->ill_phyint->phyint_ipsq);
3347 }
3348 
3349 /*
3350  * This needs to be started in a taskq thread to provide a cv_waitable
3351  * context.
3352  */
3353 void
3354 ill_capability_ack(ill_t *ill, mblk_t *mp)
3355 {
3356 	ip_stack_t	*ipst = ill->ill_ipst;
3357 
3358 	mp->b_prev = (mblk_t *)ill;
3359 	ASSERT(mp->b_next == NULL);
3360 
3361 	if (taskq_dispatch(system_taskq, ill_capability_ack_thr, mp,
3362 	    TQ_NOSLEEP) != 0)
3363 		return;
3364 
3365 	/*
3366 	 * The taskq dispatch failed. Signal the ill_taskq_dispatch thread
3367 	 * which will do the dispatch using TQ_SLEEP to guarantee success.
3368 	 */
3369 	mutex_enter(&ipst->ips_capab_taskq_lock);
3370 	if (ipst->ips_capab_taskq_head == NULL) {
3371 		ASSERT(ipst->ips_capab_taskq_tail == NULL);
3372 		ipst->ips_capab_taskq_head = mp;
3373 	} else {
3374 		ipst->ips_capab_taskq_tail->b_next = mp;
3375 	}
3376 	ipst->ips_capab_taskq_tail = mp;
3377 
3378 	cv_signal(&ipst->ips_capab_taskq_cv);
3379 	mutex_exit(&ipst->ips_capab_taskq_lock);
3380 }
3381 
3382 /*
3383  * This routine is called to scan the fragmentation reassembly table for
3384  * the specified ILL for any packets that are starting to smell.
3385  * dead_interval is the maximum time in seconds that will be tolerated.  It
3386  * will either be the value specified in ip_g_frag_timeout, or zero if the
3387  * ILL is shutting down and it is time to blow everything off.
3388  *
3389  * It returns the number of seconds (as a time_t) that the next frag timer
3390  * should be scheduled for, 0 meaning that the timer doesn't need to be
3391  * re-started.  Note that the method of calculating next_timeout isn't
3392  * entirely accurate since time will flow between the time we grab
3393  * current_time and the time we schedule the next timeout.  This isn't a
3394  * big problem since this is the timer for sending an ICMP reassembly time
3395  * exceeded messages, and it doesn't have to be exactly accurate.
3396  *
3397  * This function is
3398  * sometimes called as writer, although this is not required.
3399  */
3400 time_t
3401 ill_frag_timeout(ill_t *ill, time_t dead_interval)
3402 {
3403 	ipfb_t	*ipfb;
3404 	ipfb_t	*endp;
3405 	ipf_t	*ipf;
3406 	ipf_t	*ipfnext;
3407 	mblk_t	*mp;
3408 	time_t	current_time = gethrestime_sec();
3409 	time_t	next_timeout = 0;
3410 	uint32_t	hdr_length;
3411 	mblk_t	*send_icmp_head;
3412 	mblk_t	*send_icmp_head_v6;
3413 	zoneid_t zoneid;
3414 	ip_stack_t *ipst = ill->ill_ipst;
3415 
3416 	ipfb = ill->ill_frag_hash_tbl;
3417 	if (ipfb == NULL)
3418 		return (B_FALSE);
3419 	endp = &ipfb[ILL_FRAG_HASH_TBL_COUNT];
3420 	/* Walk the frag hash table. */
3421 	for (; ipfb < endp; ipfb++) {
3422 		send_icmp_head = NULL;
3423 		send_icmp_head_v6 = NULL;
3424 		mutex_enter(&ipfb->ipfb_lock);
3425 		while ((ipf = ipfb->ipfb_ipf) != 0) {
3426 			time_t frag_time = current_time - ipf->ipf_timestamp;
3427 			time_t frag_timeout;
3428 
3429 			if (frag_time < dead_interval) {
3430 				/*
3431 				 * There are some outstanding fragments
3432 				 * that will timeout later.  Make note of
3433 				 * the time so that we can reschedule the
3434 				 * next timeout appropriately.
3435 				 */
3436 				frag_timeout = dead_interval - frag_time;
3437 				if (next_timeout == 0 ||
3438 				    frag_timeout < next_timeout) {
3439 					next_timeout = frag_timeout;
3440 				}
3441 				break;
3442 			}
3443 			/* Time's up.  Get it out of here. */
3444 			hdr_length = ipf->ipf_nf_hdr_len;
3445 			ipfnext = ipf->ipf_hash_next;
3446 			if (ipfnext)
3447 				ipfnext->ipf_ptphn = ipf->ipf_ptphn;
3448 			*ipf->ipf_ptphn = ipfnext;
3449 			mp = ipf->ipf_mp->b_cont;
3450 			for (; mp; mp = mp->b_cont) {
3451 				/* Extra points for neatness. */
3452 				IP_REASS_SET_START(mp, 0);
3453 				IP_REASS_SET_END(mp, 0);
3454 			}
3455 			mp = ipf->ipf_mp->b_cont;
3456 			atomic_add_32(&ill->ill_frag_count, -ipf->ipf_count);
3457 			ASSERT(ipfb->ipfb_count >= ipf->ipf_count);
3458 			ipfb->ipfb_count -= ipf->ipf_count;
3459 			ASSERT(ipfb->ipfb_frag_pkts > 0);
3460 			ipfb->ipfb_frag_pkts--;
3461 			/*
3462 			 * We do not send any icmp message from here because
3463 			 * we currently are holding the ipfb_lock for this
3464 			 * hash chain. If we try and send any icmp messages
3465 			 * from here we may end up via a put back into ip
3466 			 * trying to get the same lock, causing a recursive
3467 			 * mutex panic. Instead we build a list and send all
3468 			 * the icmp messages after we have dropped the lock.
3469 			 */
3470 			if (ill->ill_isv6) {
3471 				if (hdr_length != 0) {
3472 					mp->b_next = send_icmp_head_v6;
3473 					send_icmp_head_v6 = mp;
3474 				} else {
3475 					freemsg(mp);
3476 				}
3477 			} else {
3478 				if (hdr_length != 0) {
3479 					mp->b_next = send_icmp_head;
3480 					send_icmp_head = mp;
3481 				} else {
3482 					freemsg(mp);
3483 				}
3484 			}
3485 			BUMP_MIB(ill->ill_ip_mib, ipIfStatsReasmFails);
3486 			freeb(ipf->ipf_mp);
3487 		}
3488 		mutex_exit(&ipfb->ipfb_lock);
3489 		/*
3490 		 * Now need to send any icmp messages that we delayed from
3491 		 * above.
3492 		 */
3493 		while (send_icmp_head_v6 != NULL) {
3494 			ip6_t *ip6h;
3495 
3496 			mp = send_icmp_head_v6;
3497 			send_icmp_head_v6 = send_icmp_head_v6->b_next;
3498 			mp->b_next = NULL;
3499 			if (mp->b_datap->db_type == M_CTL)
3500 				ip6h = (ip6_t *)mp->b_cont->b_rptr;
3501 			else
3502 				ip6h = (ip6_t *)mp->b_rptr;
3503 			zoneid = ipif_lookup_addr_zoneid_v6(&ip6h->ip6_dst,
3504 			    ill, ipst);
3505 			if (zoneid == ALL_ZONES) {
3506 				freemsg(mp);
3507 			} else {
3508 				icmp_time_exceeded_v6(ill->ill_wq, mp,
3509 				    ICMP_REASSEMBLY_TIME_EXCEEDED, B_FALSE,
3510 				    B_FALSE, zoneid, ipst);
3511 			}
3512 		}
3513 		while (send_icmp_head != NULL) {
3514 			ipaddr_t dst;
3515 
3516 			mp = send_icmp_head;
3517 			send_icmp_head = send_icmp_head->b_next;
3518 			mp->b_next = NULL;
3519 
3520 			if (mp->b_datap->db_type == M_CTL)
3521 				dst = ((ipha_t *)mp->b_cont->b_rptr)->ipha_dst;
3522 			else
3523 				dst = ((ipha_t *)mp->b_rptr)->ipha_dst;
3524 
3525 			zoneid = ipif_lookup_addr_zoneid(dst, ill, ipst);
3526 			if (zoneid == ALL_ZONES) {
3527 				freemsg(mp);
3528 			} else {
3529 				icmp_time_exceeded(ill->ill_wq, mp,
3530 				    ICMP_REASSEMBLY_TIME_EXCEEDED, zoneid,
3531 				    ipst);
3532 			}
3533 		}
3534 	}
3535 	/*
3536 	 * A non-dying ILL will use the return value to decide whether to
3537 	 * restart the frag timer, and for how long.
3538 	 */
3539 	return (next_timeout);
3540 }
3541 
3542 /*
3543  * This routine is called when the approximate count of mblk memory used
3544  * for the specified ILL has exceeded max_count.
3545  */
3546 void
3547 ill_frag_prune(ill_t *ill, uint_t max_count)
3548 {
3549 	ipfb_t	*ipfb;
3550 	ipf_t	*ipf;
3551 	size_t	count;
3552 
3553 	/*
3554 	 * If we are here within ip_min_frag_prune_time msecs remove
3555 	 * ill_frag_free_num_pkts oldest packets from each bucket and increment
3556 	 * ill_frag_free_num_pkts.
3557 	 */
3558 	mutex_enter(&ill->ill_lock);
3559 	if (TICK_TO_MSEC(lbolt - ill->ill_last_frag_clean_time) <=
3560 	    (ip_min_frag_prune_time != 0 ?
3561 	    ip_min_frag_prune_time : msec_per_tick)) {
3562 
3563 		ill->ill_frag_free_num_pkts++;
3564 
3565 	} else {
3566 		ill->ill_frag_free_num_pkts = 0;
3567 	}
3568 	ill->ill_last_frag_clean_time = lbolt;
3569 	mutex_exit(&ill->ill_lock);
3570 
3571 	/*
3572 	 * free ill_frag_free_num_pkts oldest packets from each bucket.
3573 	 */
3574 	if (ill->ill_frag_free_num_pkts != 0) {
3575 		int ix;
3576 
3577 		for (ix = 0; ix < ILL_FRAG_HASH_TBL_COUNT; ix++) {
3578 			ipfb = &ill->ill_frag_hash_tbl[ix];
3579 			mutex_enter(&ipfb->ipfb_lock);
3580 			if (ipfb->ipfb_ipf != NULL) {
3581 				ill_frag_free_pkts(ill, ipfb, ipfb->ipfb_ipf,
3582 				    ill->ill_frag_free_num_pkts);
3583 			}
3584 			mutex_exit(&ipfb->ipfb_lock);
3585 		}
3586 	}
3587 	/*
3588 	 * While the reassembly list for this ILL is too big, prune a fragment
3589 	 * queue by age, oldest first.
3590 	 */
3591 	while (ill->ill_frag_count > max_count) {
3592 		int	ix;
3593 		ipfb_t	*oipfb = NULL;
3594 		uint_t	oldest = UINT_MAX;
3595 
3596 		count = 0;
3597 		for (ix = 0; ix < ILL_FRAG_HASH_TBL_COUNT; ix++) {
3598 			ipfb = &ill->ill_frag_hash_tbl[ix];
3599 			mutex_enter(&ipfb->ipfb_lock);
3600 			ipf = ipfb->ipfb_ipf;
3601 			if (ipf != NULL && ipf->ipf_gen < oldest) {
3602 				oldest = ipf->ipf_gen;
3603 				oipfb = ipfb;
3604 			}
3605 			count += ipfb->ipfb_count;
3606 			mutex_exit(&ipfb->ipfb_lock);
3607 		}
3608 		if (oipfb == NULL)
3609 			break;
3610 
3611 		if (count <= max_count)
3612 			return;	/* Somebody beat us to it, nothing to do */
3613 		mutex_enter(&oipfb->ipfb_lock);
3614 		ipf = oipfb->ipfb_ipf;
3615 		if (ipf != NULL) {
3616 			ill_frag_free_pkts(ill, oipfb, ipf, 1);
3617 		}
3618 		mutex_exit(&oipfb->ipfb_lock);
3619 	}
3620 }
3621 
3622 /*
3623  * free 'free_cnt' fragmented packets starting at ipf.
3624  */
3625 void
3626 ill_frag_free_pkts(ill_t *ill, ipfb_t *ipfb, ipf_t *ipf, int free_cnt)
3627 {
3628 	size_t	count;
3629 	mblk_t	*mp;
3630 	mblk_t	*tmp;
3631 	ipf_t **ipfp = ipf->ipf_ptphn;
3632 
3633 	ASSERT(MUTEX_HELD(&ipfb->ipfb_lock));
3634 	ASSERT(ipfp != NULL);
3635 	ASSERT(ipf != NULL);
3636 
3637 	while (ipf != NULL && free_cnt-- > 0) {
3638 		count = ipf->ipf_count;
3639 		mp = ipf->ipf_mp;
3640 		ipf = ipf->ipf_hash_next;
3641 		for (tmp = mp; tmp; tmp = tmp->b_cont) {
3642 			IP_REASS_SET_START(tmp, 0);
3643 			IP_REASS_SET_END(tmp, 0);
3644 		}
3645 		atomic_add_32(&ill->ill_frag_count, -count);
3646 		ASSERT(ipfb->ipfb_count >= count);
3647 		ipfb->ipfb_count -= count;
3648 		ASSERT(ipfb->ipfb_frag_pkts > 0);
3649 		ipfb->ipfb_frag_pkts--;
3650 		freemsg(mp);
3651 		BUMP_MIB(ill->ill_ip_mib, ipIfStatsReasmFails);
3652 	}
3653 
3654 	if (ipf)
3655 		ipf->ipf_ptphn = ipfp;
3656 	ipfp[0] = ipf;
3657 }
3658 
3659 #define	ND_FORWARD_WARNING	"The <if>:ip*_forwarding ndd variables are " \
3660 	"obsolete and may be removed in a future release of Solaris.  Use " \
3661 	"ifconfig(1M) to manipulate the forwarding status of an interface."
3662 
3663 /*
3664  * For obsolete per-interface forwarding configuration;
3665  * called in response to ND_GET.
3666  */
3667 /* ARGSUSED */
3668 static int
3669 nd_ill_forward_get(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *ioc_cr)
3670 {
3671 	ill_t *ill = (ill_t *)cp;
3672 
3673 	cmn_err(CE_WARN, ND_FORWARD_WARNING);
3674 
3675 	(void) mi_mpprintf(mp, "%d", (ill->ill_flags & ILLF_ROUTER) != 0);
3676 	return (0);
3677 }
3678 
3679 /*
3680  * For obsolete per-interface forwarding configuration;
3681  * called in response to ND_SET.
3682  */
3683 /* ARGSUSED */
3684 static int
3685 nd_ill_forward_set(queue_t *q, mblk_t *mp, char *valuestr, caddr_t cp,
3686     cred_t *ioc_cr)
3687 {
3688 	long value;
3689 	int retval;
3690 	ip_stack_t *ipst = CONNQ_TO_IPST(q);
3691 
3692 	cmn_err(CE_WARN, ND_FORWARD_WARNING);
3693 
3694 	if (ddi_strtol(valuestr, NULL, 10, &value) != 0 ||
3695 	    value < 0 || value > 1) {
3696 		return (EINVAL);
3697 	}
3698 
3699 	rw_enter(&ipst->ips_ill_g_lock, RW_READER);
3700 	retval = ill_forward_set((ill_t *)cp, (value != 0));
3701 	rw_exit(&ipst->ips_ill_g_lock);
3702 	return (retval);
3703 }
3704 
3705 /*
3706  * Helper function for ill_forward_set().
3707  */
3708 static void
3709 ill_forward_set_on_ill(ill_t *ill, boolean_t enable)
3710 {
3711 	ip_stack_t	*ipst = ill->ill_ipst;
3712 
3713 	ASSERT(IAM_WRITER_ILL(ill) || RW_READ_HELD(&ipst->ips_ill_g_lock));
3714 
3715 	ip1dbg(("ill_forward_set: %s %s forwarding on %s",
3716 	    (enable ? "Enabling" : "Disabling"),
3717 	    (ill->ill_isv6 ? "IPv6" : "IPv4"), ill->ill_name));
3718 	mutex_enter(&ill->ill_lock);
3719 	if (enable)
3720 		ill->ill_flags |= ILLF_ROUTER;
3721 	else
3722 		ill->ill_flags &= ~ILLF_ROUTER;
3723 	mutex_exit(&ill->ill_lock);
3724 	if (ill->ill_isv6)
3725 		ill_set_nce_router_flags(ill, enable);
3726 	/* Notify routing socket listeners of this change. */
3727 	if (ill->ill_ipif != NULL)
3728 		ip_rts_ifmsg(ill->ill_ipif, RTSQ_DEFAULT);
3729 }
3730 
3731 /*
3732  * Set an ill's ILLF_ROUTER flag appropriately.  Send up RTS_IFINFO routing
3733  * socket messages for each interface whose flags we change.
3734  */
3735 int
3736 ill_forward_set(ill_t *ill, boolean_t enable)
3737 {
3738 	ipmp_illgrp_t *illg;
3739 	ip_stack_t *ipst = ill->ill_ipst;
3740 
3741 	ASSERT(IAM_WRITER_ILL(ill) || RW_READ_HELD(&ipst->ips_ill_g_lock));
3742 
3743 	if ((enable && (ill->ill_flags & ILLF_ROUTER)) ||
3744 	    (!enable && !(ill->ill_flags & ILLF_ROUTER)))
3745 		return (0);
3746 
3747 	if (IS_LOOPBACK(ill))
3748 		return (EINVAL);
3749 
3750 	if (IS_IPMP(ill) || IS_UNDER_IPMP(ill)) {
3751 		/*
3752 		 * Update all of the interfaces in the group.
3753 		 */
3754 		illg = ill->ill_grp;
3755 		ill = list_head(&illg->ig_if);
3756 		for (; ill != NULL; ill = list_next(&illg->ig_if, ill))
3757 			ill_forward_set_on_ill(ill, enable);
3758 
3759 		/*
3760 		 * Update the IPMP meta-interface.
3761 		 */
3762 		ill_forward_set_on_ill(ipmp_illgrp_ipmp_ill(illg), enable);
3763 		return (0);
3764 	}
3765 
3766 	ill_forward_set_on_ill(ill, enable);
3767 	return (0);
3768 }
3769 
3770 /*
3771  * Based on the ILLF_ROUTER flag of an ill, make sure all local nce's for
3772  * addresses assigned to the ill have the NCE_F_ISROUTER flag appropriately
3773  * set or clear.
3774  */
3775 static void
3776 ill_set_nce_router_flags(ill_t *ill, boolean_t enable)
3777 {
3778 	ipif_t *ipif;
3779 	nce_t *nce;
3780 
3781 	for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) {
3782 		/*
3783 		 * NOTE: we match across the illgrp because nce's for
3784 		 * addresses on IPMP interfaces have an nce_ill that points to
3785 		 * the bound underlying ill.
3786 		 */
3787 		nce = ndp_lookup_v6(ill, B_TRUE, &ipif->ipif_v6lcl_addr,
3788 		    B_FALSE);
3789 		if (nce != NULL) {
3790 			mutex_enter(&nce->nce_lock);
3791 			if (enable)
3792 				nce->nce_flags |= NCE_F_ISROUTER;
3793 			else
3794 				nce->nce_flags &= ~NCE_F_ISROUTER;
3795 			mutex_exit(&nce->nce_lock);
3796 			NCE_REFRELE(nce);
3797 		}
3798 	}
3799 }
3800 
3801 /*
3802  * Given an ill with a _valid_ name, add the ip_forwarding ndd variable
3803  * for this ill.  Make sure the v6/v4 question has been answered about this
3804  * ill.  The creation of this ndd variable is only for backwards compatibility.
3805  * The preferred way to control per-interface IP forwarding is through the
3806  * ILLF_ROUTER interface flag.
3807  */
3808 static int
3809 ill_set_ndd_name(ill_t *ill)
3810 {
3811 	char *suffix;
3812 	ip_stack_t	*ipst = ill->ill_ipst;
3813 
3814 	ASSERT(IAM_WRITER_ILL(ill));
3815 
3816 	if (ill->ill_isv6)
3817 		suffix = ipv6_forward_suffix;
3818 	else
3819 		suffix = ipv4_forward_suffix;
3820 
3821 	ill->ill_ndd_name = ill->ill_name + ill->ill_name_length;
3822 	bcopy(ill->ill_name, ill->ill_ndd_name, ill->ill_name_length - 1);
3823 	/*
3824 	 * Copies over the '\0'.
3825 	 * Note that strlen(suffix) is always bounded.
3826 	 */
3827 	bcopy(suffix, ill->ill_ndd_name + ill->ill_name_length - 1,
3828 	    strlen(suffix) + 1);
3829 
3830 	/*
3831 	 * Use of the nd table requires holding the reader lock.
3832 	 * Modifying the nd table thru nd_load/nd_unload requires
3833 	 * the writer lock.
3834 	 */
3835 	rw_enter(&ipst->ips_ip_g_nd_lock, RW_WRITER);
3836 	if (!nd_load(&ipst->ips_ip_g_nd, ill->ill_ndd_name, nd_ill_forward_get,
3837 	    nd_ill_forward_set, (caddr_t)ill)) {
3838 		/*
3839 		 * If the nd_load failed, it only meant that it could not
3840 		 * allocate a new bunch of room for further NDD expansion.
3841 		 * Because of that, the ill_ndd_name will be set to 0, and
3842 		 * this interface is at the mercy of the global ip_forwarding
3843 		 * variable.
3844 		 */
3845 		rw_exit(&ipst->ips_ip_g_nd_lock);
3846 		ill->ill_ndd_name = NULL;
3847 		return (ENOMEM);
3848 	}
3849 	rw_exit(&ipst->ips_ip_g_nd_lock);
3850 	return (0);
3851 }
3852 
3853 /*
3854  * Intializes the context structure and returns the first ill in the list
3855  * cuurently start_list and end_list can have values:
3856  * MAX_G_HEADS		Traverse both IPV4 and IPV6 lists.
3857  * IP_V4_G_HEAD		Traverse IPV4 list only.
3858  * IP_V6_G_HEAD		Traverse IPV6 list only.
3859  */
3860 
3861 /*
3862  * We don't check for CONDEMNED ills here. Caller must do that if
3863  * necessary under the ill lock.
3864  */
3865 ill_t *
3866 ill_first(int start_list, int end_list, ill_walk_context_t *ctx,
3867     ip_stack_t *ipst)
3868 {
3869 	ill_if_t *ifp;
3870 	ill_t *ill;
3871 	avl_tree_t *avl_tree;
3872 
3873 	ASSERT(RW_LOCK_HELD(&ipst->ips_ill_g_lock));
3874 	ASSERT(end_list <= MAX_G_HEADS && start_list >= 0);
3875 
3876 	/*
3877 	 * setup the lists to search
3878 	 */
3879 	if (end_list != MAX_G_HEADS) {
3880 		ctx->ctx_current_list = start_list;
3881 		ctx->ctx_last_list = end_list;
3882 	} else {
3883 		ctx->ctx_last_list = MAX_G_HEADS - 1;
3884 		ctx->ctx_current_list = 0;
3885 	}
3886 
3887 	while (ctx->ctx_current_list <= ctx->ctx_last_list) {
3888 		ifp = IP_VX_ILL_G_LIST(ctx->ctx_current_list, ipst);
3889 		if (ifp != (ill_if_t *)
3890 		    &IP_VX_ILL_G_LIST(ctx->ctx_current_list, ipst)) {
3891 			avl_tree = &ifp->illif_avl_by_ppa;
3892 			ill = avl_first(avl_tree);
3893 			/*
3894 			 * ill is guaranteed to be non NULL or ifp should have
3895 			 * not existed.
3896 			 */
3897 			ASSERT(ill != NULL);
3898 			return (ill);
3899 		}
3900 		ctx->ctx_current_list++;
3901 	}
3902 
3903 	return (NULL);
3904 }
3905 
3906 /*
3907  * returns the next ill in the list. ill_first() must have been called
3908  * before calling ill_next() or bad things will happen.
3909  */
3910 
3911 /*
3912  * We don't check for CONDEMNED ills here. Caller must do that if
3913  * necessary under the ill lock.
3914  */
3915 ill_t *
3916 ill_next(ill_walk_context_t *ctx, ill_t *lastill)
3917 {
3918 	ill_if_t *ifp;
3919 	ill_t *ill;
3920 	ip_stack_t	*ipst = lastill->ill_ipst;
3921 
3922 	ASSERT(lastill->ill_ifptr != (ill_if_t *)
3923 	    &IP_VX_ILL_G_LIST(ctx->ctx_current_list, ipst));
3924 	if ((ill = avl_walk(&lastill->ill_ifptr->illif_avl_by_ppa, lastill,
3925 	    AVL_AFTER)) != NULL) {
3926 		return (ill);
3927 	}
3928 
3929 	/* goto next ill_ifp in the list. */
3930 	ifp = lastill->ill_ifptr->illif_next;
3931 
3932 	/* make sure not at end of circular list */
3933 	while (ifp ==
3934 	    (ill_if_t *)&IP_VX_ILL_G_LIST(ctx->ctx_current_list, ipst)) {
3935 		if (++ctx->ctx_current_list > ctx->ctx_last_list)
3936 			return (NULL);
3937 		ifp = IP_VX_ILL_G_LIST(ctx->ctx_current_list, ipst);
3938 	}
3939 
3940 	return (avl_first(&ifp->illif_avl_by_ppa));
3941 }
3942 
3943 /*
3944  * Check interface name for correct format: [a-zA-Z]+[a-zA-Z0-9._]*[0-9]+
3945  * The final number (PPA) must not have any leading zeros.  Upon success, a
3946  * pointer to the start of the PPA is returned; otherwise NULL is returned.
3947  */
3948 static char *
3949 ill_get_ppa_ptr(char *name)
3950 {
3951 	int namelen = strlen(name);
3952 	int end_ndx = namelen - 1;
3953 	int ppa_ndx, i;
3954 
3955 	/*
3956 	 * Check that the first character is [a-zA-Z], and that the last
3957 	 * character is [0-9].
3958 	 */
3959 	if (namelen == 0 || !isalpha(name[0]) || !isdigit(name[end_ndx]))
3960 		return (NULL);
3961 
3962 	/*
3963 	 * Set `ppa_ndx' to the PPA start, and check for leading zeroes.
3964 	 */
3965 	for (ppa_ndx = end_ndx; ppa_ndx > 0; ppa_ndx--)
3966 		if (!isdigit(name[ppa_ndx - 1]))
3967 			break;
3968 
3969 	if (name[ppa_ndx] == '0' && ppa_ndx < end_ndx)
3970 		return (NULL);
3971 
3972 	/*
3973 	 * Check that the intermediate characters are [a-z0-9.]
3974 	 */
3975 	for (i = 1; i < ppa_ndx; i++) {
3976 		if (!isalpha(name[i]) && !isdigit(name[i]) &&
3977 		    name[i] != '.' && name[i] != '_') {
3978 			return (NULL);
3979 		}
3980 	}
3981 
3982 	return (name + ppa_ndx);
3983 }
3984 
3985 /*
3986  * use avl tree to locate the ill.
3987  */
3988 static ill_t *
3989 ill_find_by_name(char *name, boolean_t isv6, queue_t *q, mblk_t *mp,
3990     ipsq_func_t func, int *error, ip_stack_t *ipst)
3991 {
3992 	char *ppa_ptr = NULL;
3993 	int len;
3994 	uint_t ppa;
3995 	ill_t *ill = NULL;
3996 	ill_if_t *ifp;
3997 	int list;
3998 	ipsq_t *ipsq;
3999 
4000 	if (error != NULL)
4001 		*error = 0;
4002 
4003 	/*
4004 	 * get ppa ptr
4005 	 */
4006 	if (isv6)
4007 		list = IP_V6_G_HEAD;
4008 	else
4009 		list = IP_V4_G_HEAD;
4010 
4011 	if ((ppa_ptr = ill_get_ppa_ptr(name)) == NULL) {
4012 		if (error != NULL)
4013 			*error = ENXIO;
4014 		return (NULL);
4015 	}
4016 
4017 	len = ppa_ptr - name + 1;
4018 
4019 	ppa = stoi(&ppa_ptr);
4020 
4021 	ifp = IP_VX_ILL_G_LIST(list, ipst);
4022 
4023 	while (ifp != (ill_if_t *)&IP_VX_ILL_G_LIST(list, ipst)) {
4024 		/*
4025 		 * match is done on len - 1 as the name is not null
4026 		 * terminated it contains ppa in addition to the interface
4027 		 * name.
4028 		 */
4029 		if ((ifp->illif_name_len == len) &&
4030 		    bcmp(ifp->illif_name, name, len - 1) == 0) {
4031 			break;
4032 		} else {
4033 			ifp = ifp->illif_next;
4034 		}
4035 	}
4036 
4037 	if (ifp == (ill_if_t *)&IP_VX_ILL_G_LIST(list, ipst)) {
4038 		/*
4039 		 * Even the interface type does not exist.
4040 		 */
4041 		if (error != NULL)
4042 			*error = ENXIO;
4043 		return (NULL);
4044 	}
4045 
4046 	ill = avl_find(&ifp->illif_avl_by_ppa, (void *) &ppa, NULL);
4047 	if (ill != NULL) {
4048 		/*
4049 		 * The block comment at the start of ipif_down
4050 		 * explains the use of the macros used below
4051 		 */
4052 		GRAB_CONN_LOCK(q);
4053 		mutex_enter(&ill->ill_lock);
4054 		if (ILL_CAN_LOOKUP(ill)) {
4055 			ill_refhold_locked(ill);
4056 			mutex_exit(&ill->ill_lock);
4057 			RELEASE_CONN_LOCK(q);
4058 			return (ill);
4059 		} else if (ILL_CAN_WAIT(ill, q)) {
4060 			ipsq = ill->ill_phyint->phyint_ipsq;
4061 			mutex_enter(&ipsq->ipsq_lock);
4062 			mutex_enter(&ipsq->ipsq_xop->ipx_lock);
4063 			mutex_exit(&ill->ill_lock);
4064 			ipsq_enq(ipsq, q, mp, func, NEW_OP, ill);
4065 			mutex_exit(&ipsq->ipsq_xop->ipx_lock);
4066 			mutex_exit(&ipsq->ipsq_lock);
4067 			RELEASE_CONN_LOCK(q);
4068 			if (error != NULL)
4069 				*error = EINPROGRESS;
4070 			return (NULL);
4071 		}
4072 		mutex_exit(&ill->ill_lock);
4073 		RELEASE_CONN_LOCK(q);
4074 	}
4075 	if (error != NULL)
4076 		*error = ENXIO;
4077 	return (NULL);
4078 }
4079 
4080 /*
4081  * comparison function for use with avl.
4082  */
4083 static int
4084 ill_compare_ppa(const void *ppa_ptr, const void *ill_ptr)
4085 {
4086 	uint_t ppa;
4087 	uint_t ill_ppa;
4088 
4089 	ASSERT(ppa_ptr != NULL && ill_ptr != NULL);
4090 
4091 	ppa = *((uint_t *)ppa_ptr);
4092 	ill_ppa = ((const ill_t *)ill_ptr)->ill_ppa;
4093 	/*
4094 	 * We want the ill with the lowest ppa to be on the
4095 	 * top.
4096 	 */
4097 	if (ill_ppa < ppa)
4098 		return (1);
4099 	if (ill_ppa > ppa)
4100 		return (-1);
4101 	return (0);
4102 }
4103 
4104 /*
4105  * remove an interface type from the global list.
4106  */
4107 static void
4108 ill_delete_interface_type(ill_if_t *interface)
4109 {
4110 	ASSERT(interface != NULL);
4111 	ASSERT(avl_numnodes(&interface->illif_avl_by_ppa) == 0);
4112 
4113 	avl_destroy(&interface->illif_avl_by_ppa);
4114 	if (interface->illif_ppa_arena != NULL)
4115 		vmem_destroy(interface->illif_ppa_arena);
4116 
4117 	remque(interface);
4118 
4119 	mi_free(interface);
4120 }
4121 
4122 /*
4123  * remove ill from the global list.
4124  */
4125 static void
4126 ill_glist_delete(ill_t *ill)
4127 {
4128 	ip_stack_t	*ipst;
4129 	phyint_t	*phyi;
4130 
4131 	if (ill == NULL)
4132 		return;
4133 	ipst = ill->ill_ipst;
4134 	rw_enter(&ipst->ips_ill_g_lock, RW_WRITER);
4135 
4136 	/*
4137 	 * If the ill was never inserted into the AVL tree
4138 	 * we skip the if branch.
4139 	 */
4140 	if (ill->ill_ifptr != NULL) {
4141 		/*
4142 		 * remove from AVL tree and free ppa number
4143 		 */
4144 		avl_remove(&ill->ill_ifptr->illif_avl_by_ppa, ill);
4145 
4146 		if (ill->ill_ifptr->illif_ppa_arena != NULL) {
4147 			vmem_free(ill->ill_ifptr->illif_ppa_arena,
4148 			    (void *)(uintptr_t)(ill->ill_ppa+1), 1);
4149 		}
4150 		if (avl_numnodes(&ill->ill_ifptr->illif_avl_by_ppa) == 0) {
4151 			ill_delete_interface_type(ill->ill_ifptr);
4152 		}
4153 
4154 		/*
4155 		 * Indicate ill is no longer in the list.
4156 		 */
4157 		ill->ill_ifptr = NULL;
4158 		ill->ill_name_length = 0;
4159 		ill->ill_name[0] = '\0';
4160 		ill->ill_ppa = UINT_MAX;
4161 	}
4162 
4163 	/* Generate one last event for this ill. */
4164 	ill_nic_event_dispatch(ill, 0, NE_UNPLUMB, ill->ill_name,
4165 	    ill->ill_name_length);
4166 
4167 	ASSERT(ill->ill_phyint != NULL);
4168 	phyi = ill->ill_phyint;
4169 	ill->ill_phyint = NULL;
4170 
4171 	/*
4172 	 * ill_init allocates a phyint always to store the copy
4173 	 * of flags relevant to phyint. At that point in time, we could
4174 	 * not assign the name and hence phyint_illv4/v6 could not be
4175 	 * initialized. Later in ipif_set_values, we assign the name to
4176 	 * the ill, at which point in time we assign phyint_illv4/v6.
4177 	 * Thus we don't rely on phyint_illv6 to be initialized always.
4178 	 */
4179 	if (ill->ill_flags & ILLF_IPV6)
4180 		phyi->phyint_illv6 = NULL;
4181 	else
4182 		phyi->phyint_illv4 = NULL;
4183 
4184 	if (phyi->phyint_illv4 != NULL || phyi->phyint_illv6 != NULL) {
4185 		rw_exit(&ipst->ips_ill_g_lock);
4186 		return;
4187 	}
4188 
4189 	/*
4190 	 * There are no ills left on this phyint; pull it out of the phyint
4191 	 * avl trees, and free it.
4192 	 */
4193 	if (phyi->phyint_ifindex > 0) {
4194 		avl_remove(&ipst->ips_phyint_g_list->phyint_list_avl_by_index,
4195 		    phyi);
4196 		avl_remove(&ipst->ips_phyint_g_list->phyint_list_avl_by_name,
4197 		    phyi);
4198 	}
4199 	rw_exit(&ipst->ips_ill_g_lock);
4200 
4201 	phyint_free(phyi);
4202 }
4203 
4204 /*
4205  * allocate a ppa, if the number of plumbed interfaces of this type are
4206  * less than ill_no_arena do a linear search to find a unused ppa.
4207  * When the number goes beyond ill_no_arena switch to using an arena.
4208  * Note: ppa value of zero cannot be allocated from vmem_arena as it
4209  * is the return value for an error condition, so allocation starts at one
4210  * and is decremented by one.
4211  */
4212 static int
4213 ill_alloc_ppa(ill_if_t *ifp, ill_t *ill)
4214 {
4215 	ill_t *tmp_ill;
4216 	uint_t start, end;
4217 	int ppa;
4218 
4219 	if (ifp->illif_ppa_arena == NULL &&
4220 	    (avl_numnodes(&ifp->illif_avl_by_ppa) + 1 > ill_no_arena)) {
4221 		/*
4222 		 * Create an arena.
4223 		 */
4224 		ifp->illif_ppa_arena = vmem_create(ifp->illif_name,
4225 		    (void *)1, UINT_MAX - 1, 1, NULL, NULL,
4226 		    NULL, 0, VM_SLEEP | VMC_IDENTIFIER);
4227 			/* allocate what has already been assigned */
4228 		for (tmp_ill = avl_first(&ifp->illif_avl_by_ppa);
4229 		    tmp_ill != NULL; tmp_ill = avl_walk(&ifp->illif_avl_by_ppa,
4230 		    tmp_ill, AVL_AFTER)) {
4231 			ppa = (int)(uintptr_t)vmem_xalloc(ifp->illif_ppa_arena,
4232 			    1,		/* size */
4233 			    1,		/* align/quantum */
4234 			    0,		/* phase */
4235 			    0,		/* nocross */
4236 			    /* minaddr */
4237 			    (void *)((uintptr_t)tmp_ill->ill_ppa + 1),
4238 			    /* maxaddr */
4239 			    (void *)((uintptr_t)tmp_ill->ill_ppa + 2),
4240 			    VM_NOSLEEP|VM_FIRSTFIT);
4241 			if (ppa == 0) {
4242 				ip1dbg(("ill_alloc_ppa: ppa allocation"
4243 				    " failed while switching"));
4244 				vmem_destroy(ifp->illif_ppa_arena);
4245 				ifp->illif_ppa_arena = NULL;
4246 				break;
4247 			}
4248 		}
4249 	}
4250 
4251 	if (ifp->illif_ppa_arena != NULL) {
4252 		if (ill->ill_ppa == UINT_MAX) {
4253 			ppa = (int)(uintptr_t)vmem_alloc(ifp->illif_ppa_arena,
4254 			    1, VM_NOSLEEP|VM_FIRSTFIT);
4255 			if (ppa == 0)
4256 				return (EAGAIN);
4257 			ill->ill_ppa = --ppa;
4258 		} else {
4259 			ppa = (int)(uintptr_t)vmem_xalloc(ifp->illif_ppa_arena,
4260 			    1, 		/* size */
4261 			    1, 		/* align/quantum */
4262 			    0, 		/* phase */
4263 			    0, 		/* nocross */
4264 			    (void *)(uintptr_t)(ill->ill_ppa + 1), /* minaddr */
4265 			    (void *)(uintptr_t)(ill->ill_ppa + 2), /* maxaddr */
4266 			    VM_NOSLEEP|VM_FIRSTFIT);
4267 			/*
4268 			 * Most likely the allocation failed because
4269 			 * the requested ppa was in use.
4270 			 */
4271 			if (ppa == 0)
4272 				return (EEXIST);
4273 		}
4274 		return (0);
4275 	}
4276 
4277 	/*
4278 	 * No arena is in use and not enough (>ill_no_arena) interfaces have
4279 	 * been plumbed to create one. Do a linear search to get a unused ppa.
4280 	 */
4281 	if (ill->ill_ppa == UINT_MAX) {
4282 		end = UINT_MAX - 1;
4283 		start = 0;
4284 	} else {
4285 		end = start = ill->ill_ppa;
4286 	}
4287 
4288 	tmp_ill = avl_find(&ifp->illif_avl_by_ppa, (void *)&start, NULL);
4289 	while (tmp_ill != NULL && tmp_ill->ill_ppa == start) {
4290 		if (start++ >= end) {
4291 			if (ill->ill_ppa == UINT_MAX)
4292 				return (EAGAIN);
4293 			else
4294 				return (EEXIST);
4295 		}
4296 		tmp_ill = avl_walk(&ifp->illif_avl_by_ppa, tmp_ill, AVL_AFTER);
4297 	}
4298 	ill->ill_ppa = start;
4299 	return (0);
4300 }
4301 
4302 /*
4303  * Insert ill into the list of configured ill's. Once this function completes,
4304  * the ill is globally visible and is available through lookups. More precisely
4305  * this happens after the caller drops the ill_g_lock.
4306  */
4307 static int
4308 ill_glist_insert(ill_t *ill, char *name, boolean_t isv6)
4309 {
4310 	ill_if_t *ill_interface;
4311 	avl_index_t where = 0;
4312 	int error;
4313 	int name_length;
4314 	int index;
4315 	boolean_t check_length = B_FALSE;
4316 	ip_stack_t	*ipst = ill->ill_ipst;
4317 
4318 	ASSERT(RW_WRITE_HELD(&ipst->ips_ill_g_lock));
4319 
4320 	name_length = mi_strlen(name) + 1;
4321 
4322 	if (isv6)
4323 		index = IP_V6_G_HEAD;
4324 	else
4325 		index = IP_V4_G_HEAD;
4326 
4327 	ill_interface = IP_VX_ILL_G_LIST(index, ipst);
4328 	/*
4329 	 * Search for interface type based on name
4330 	 */
4331 	while (ill_interface != (ill_if_t *)&IP_VX_ILL_G_LIST(index, ipst)) {
4332 		if ((ill_interface->illif_name_len == name_length) &&
4333 		    (strcmp(ill_interface->illif_name, name) == 0)) {
4334 			break;
4335 		}
4336 		ill_interface = ill_interface->illif_next;
4337 	}
4338 
4339 	/*
4340 	 * Interface type not found, create one.
4341 	 */
4342 	if (ill_interface == (ill_if_t *)&IP_VX_ILL_G_LIST(index, ipst)) {
4343 		ill_g_head_t ghead;
4344 
4345 		/*
4346 		 * allocate ill_if_t structure
4347 		 */
4348 		ill_interface = (ill_if_t *)mi_zalloc(sizeof (ill_if_t));
4349 		if (ill_interface == NULL) {
4350 			return (ENOMEM);
4351 		}
4352 
4353 		(void) strcpy(ill_interface->illif_name, name);
4354 		ill_interface->illif_name_len = name_length;
4355 
4356 		avl_create(&ill_interface->illif_avl_by_ppa,
4357 		    ill_compare_ppa, sizeof (ill_t),
4358 		    offsetof(struct ill_s, ill_avl_byppa));
4359 
4360 		/*
4361 		 * link the structure in the back to maintain order
4362 		 * of configuration for ifconfig output.
4363 		 */
4364 		ghead = ipst->ips_ill_g_heads[index];
4365 		insque(ill_interface, ghead.ill_g_list_tail);
4366 	}
4367 
4368 	if (ill->ill_ppa == UINT_MAX)
4369 		check_length = B_TRUE;
4370 
4371 	error = ill_alloc_ppa(ill_interface, ill);
4372 	if (error != 0) {
4373 		if (avl_numnodes(&ill_interface->illif_avl_by_ppa) == 0)
4374 			ill_delete_interface_type(ill->ill_ifptr);
4375 		return (error);
4376 	}
4377 
4378 	/*
4379 	 * When the ppa is choosen by the system, check that there is
4380 	 * enough space to insert ppa. if a specific ppa was passed in this
4381 	 * check is not required as the interface name passed in will have
4382 	 * the right ppa in it.
4383 	 */
4384 	if (check_length) {
4385 		/*
4386 		 * UINT_MAX - 1 should fit in 10 chars, alloc 12 chars.
4387 		 */
4388 		char buf[sizeof (uint_t) * 3];
4389 
4390 		/*
4391 		 * convert ppa to string to calculate the amount of space
4392 		 * required for it in the name.
4393 		 */
4394 		numtos(ill->ill_ppa, buf);
4395 
4396 		/* Do we have enough space to insert ppa ? */
4397 
4398 		if ((mi_strlen(name) + mi_strlen(buf) + 1) > LIFNAMSIZ) {
4399 			/* Free ppa and interface type struct */
4400 			if (ill_interface->illif_ppa_arena != NULL) {
4401 				vmem_free(ill_interface->illif_ppa_arena,
4402 				    (void *)(uintptr_t)(ill->ill_ppa+1), 1);
4403 			}
4404 			if (avl_numnodes(&ill_interface->illif_avl_by_ppa) == 0)
4405 				ill_delete_interface_type(ill->ill_ifptr);
4406 
4407 			return (EINVAL);
4408 		}
4409 	}
4410 
4411 	(void) sprintf(ill->ill_name, "%s%u", name, ill->ill_ppa);
4412 	ill->ill_name_length = mi_strlen(ill->ill_name) + 1;
4413 
4414 	(void) avl_find(&ill_interface->illif_avl_by_ppa, &ill->ill_ppa,
4415 	    &where);
4416 	ill->ill_ifptr = ill_interface;
4417 	avl_insert(&ill_interface->illif_avl_by_ppa, ill, where);
4418 
4419 	ill_phyint_reinit(ill);
4420 	return (0);
4421 }
4422 
4423 /* Initialize the per phyint ipsq used for serialization */
4424 static boolean_t
4425 ipsq_init(ill_t *ill, boolean_t enter)
4426 {
4427 	ipsq_t  *ipsq;
4428 	ipxop_t	*ipx;
4429 
4430 	if ((ipsq = kmem_zalloc(sizeof (ipsq_t), KM_NOSLEEP)) == NULL)
4431 		return (B_FALSE);
4432 
4433 	ill->ill_phyint->phyint_ipsq = ipsq;
4434 	ipx = ipsq->ipsq_xop = &ipsq->ipsq_ownxop;
4435 	ipx->ipx_ipsq = ipsq;
4436 	ipsq->ipsq_next = ipsq;
4437 	ipsq->ipsq_phyint = ill->ill_phyint;
4438 	mutex_init(&ipsq->ipsq_lock, NULL, MUTEX_DEFAULT, 0);
4439 	mutex_init(&ipx->ipx_lock, NULL, MUTEX_DEFAULT, 0);
4440 	ipsq->ipsq_ipst = ill->ill_ipst;	/* No netstack_hold */
4441 	if (enter) {
4442 		ipx->ipx_writer = curthread;
4443 		ipx->ipx_forced = B_FALSE;
4444 		ipx->ipx_reentry_cnt = 1;
4445 #ifdef DEBUG
4446 		ipx->ipx_depth = getpcstack(ipx->ipx_stack, IPX_STACK_DEPTH);
4447 #endif
4448 	}
4449 	return (B_TRUE);
4450 }
4451 
4452 /*
4453  * ill_init is called by ip_open when a device control stream is opened.
4454  * It does a few initializations, and shoots a DL_INFO_REQ message down
4455  * to the driver.  The response is later picked up in ip_rput_dlpi and
4456  * used to set up default mechanisms for talking to the driver.  (Always
4457  * called as writer.)
4458  *
4459  * If this function returns error, ip_open will call ip_close which in
4460  * turn will call ill_delete to clean up any memory allocated here that
4461  * is not yet freed.
4462  */
4463 int
4464 ill_init(queue_t *q, ill_t *ill)
4465 {
4466 	int	count;
4467 	dl_info_req_t	*dlir;
4468 	mblk_t	*info_mp;
4469 	uchar_t *frag_ptr;
4470 
4471 	/*
4472 	 * The ill is initialized to zero by mi_alloc*(). In addition
4473 	 * some fields already contain valid values, initialized in
4474 	 * ip_open(), before we reach here.
4475 	 */
4476 	mutex_init(&ill->ill_lock, NULL, MUTEX_DEFAULT, 0);
4477 
4478 	ill->ill_rq = q;
4479 	ill->ill_wq = WR(q);
4480 
4481 	info_mp = allocb(MAX(sizeof (dl_info_req_t), sizeof (dl_info_ack_t)),
4482 	    BPRI_HI);
4483 	if (info_mp == NULL)
4484 		return (ENOMEM);
4485 
4486 	/*
4487 	 * Allocate sufficient space to contain our fragment hash table and
4488 	 * the device name.
4489 	 */
4490 	frag_ptr = (uchar_t *)mi_zalloc(ILL_FRAG_HASH_TBL_SIZE +
4491 	    2 * LIFNAMSIZ + 5 + strlen(ipv6_forward_suffix));
4492 	if (frag_ptr == NULL) {
4493 		freemsg(info_mp);
4494 		return (ENOMEM);
4495 	}
4496 	ill->ill_frag_ptr = frag_ptr;
4497 	ill->ill_frag_free_num_pkts = 0;
4498 	ill->ill_last_frag_clean_time = 0;
4499 	ill->ill_frag_hash_tbl = (ipfb_t *)frag_ptr;
4500 	ill->ill_name = (char *)(frag_ptr + ILL_FRAG_HASH_TBL_SIZE);
4501 	for (count = 0; count < ILL_FRAG_HASH_TBL_COUNT; count++) {
4502 		mutex_init(&ill->ill_frag_hash_tbl[count].ipfb_lock,
4503 		    NULL, MUTEX_DEFAULT, NULL);
4504 	}
4505 
4506 	ill->ill_phyint = (phyint_t *)mi_zalloc(sizeof (phyint_t));
4507 	if (ill->ill_phyint == NULL) {
4508 		freemsg(info_mp);
4509 		mi_free(frag_ptr);
4510 		return (ENOMEM);
4511 	}
4512 
4513 	mutex_init(&ill->ill_phyint->phyint_lock, NULL, MUTEX_DEFAULT, 0);
4514 	/*
4515 	 * For now pretend this is a v4 ill. We need to set phyint_ill*
4516 	 * at this point because of the following reason. If we can't
4517 	 * enter the ipsq at some point and cv_wait, the writer that
4518 	 * wakes us up tries to locate us using the list of all phyints
4519 	 * in an ipsq and the ills from the phyint thru the phyint_ill*.
4520 	 * If we don't set it now, we risk a missed wakeup.
4521 	 */
4522 	ill->ill_phyint->phyint_illv4 = ill;
4523 	ill->ill_ppa = UINT_MAX;
4524 	ill->ill_fastpath_list = &ill->ill_fastpath_list;
4525 
4526 	if (!ipsq_init(ill, B_TRUE)) {
4527 		freemsg(info_mp);
4528 		mi_free(frag_ptr);
4529 		mi_free(ill->ill_phyint);
4530 		return (ENOMEM);
4531 	}
4532 
4533 	ill->ill_state_flags |= ILL_LL_SUBNET_PENDING;
4534 
4535 	/* Frag queue limit stuff */
4536 	ill->ill_frag_count = 0;
4537 	ill->ill_ipf_gen = 0;
4538 
4539 	ill->ill_global_timer = INFINITY;
4540 	ill->ill_mcast_v1_time = ill->ill_mcast_v2_time = 0;
4541 	ill->ill_mcast_v1_tset = ill->ill_mcast_v2_tset = 0;
4542 	ill->ill_mcast_rv = MCAST_DEF_ROBUSTNESS;
4543 	ill->ill_mcast_qi = MCAST_DEF_QUERY_INTERVAL;
4544 
4545 	/*
4546 	 * Initialize IPv6 configuration variables.  The IP module is always
4547 	 * opened as an IPv4 module.  Instead tracking down the cases where
4548 	 * it switches to do ipv6, we'll just initialize the IPv6 configuration
4549 	 * here for convenience, this has no effect until the ill is set to do
4550 	 * IPv6.
4551 	 */
4552 	ill->ill_reachable_time = ND_REACHABLE_TIME;
4553 	ill->ill_reachable_retrans_time = ND_RETRANS_TIMER;
4554 	ill->ill_xmit_count = ND_MAX_MULTICAST_SOLICIT;
4555 	ill->ill_max_buf = ND_MAX_Q;
4556 	ill->ill_refcnt = 0;
4557 
4558 	/* Send down the Info Request to the driver. */
4559 	info_mp->b_datap->db_type = M_PCPROTO;
4560 	dlir = (dl_info_req_t *)info_mp->b_rptr;
4561 	info_mp->b_wptr = (uchar_t *)&dlir[1];
4562 	dlir->dl_primitive = DL_INFO_REQ;
4563 
4564 	ill->ill_dlpi_pending = DL_PRIM_INVAL;
4565 
4566 	qprocson(q);
4567 	ill_dlpi_send(ill, info_mp);
4568 
4569 	return (0);
4570 }
4571 
4572 /*
4573  * ill_dls_info
4574  * creates datalink socket info from the device.
4575  */
4576 int
4577 ill_dls_info(struct sockaddr_dl *sdl, const ipif_t *ipif)
4578 {
4579 	size_t	len;
4580 	ill_t	*ill = ipif->ipif_ill;
4581 
4582 	sdl->sdl_family = AF_LINK;
4583 	sdl->sdl_index = ill->ill_phyint->phyint_ifindex;
4584 	sdl->sdl_type = ill->ill_type;
4585 	ipif_get_name(ipif, sdl->sdl_data, sizeof (sdl->sdl_data));
4586 	len = strlen(sdl->sdl_data);
4587 	ASSERT(len < 256);
4588 	sdl->sdl_nlen = (uchar_t)len;
4589 	sdl->sdl_alen = ill->ill_phys_addr_length;
4590 	sdl->sdl_slen = 0;
4591 	if (ill->ill_phys_addr_length != 0 && ill->ill_phys_addr != NULL)
4592 		bcopy(ill->ill_phys_addr, &sdl->sdl_data[len], sdl->sdl_alen);
4593 
4594 	return (sizeof (struct sockaddr_dl));
4595 }
4596 
4597 /*
4598  * ill_xarp_info
4599  * creates xarp info from the device.
4600  */
4601 static int
4602 ill_xarp_info(struct sockaddr_dl *sdl, ill_t *ill)
4603 {
4604 	sdl->sdl_family = AF_LINK;
4605 	sdl->sdl_index = ill->ill_phyint->phyint_ifindex;
4606 	sdl->sdl_type = ill->ill_type;
4607 	ipif_get_name(ill->ill_ipif, sdl->sdl_data, sizeof (sdl->sdl_data));
4608 	sdl->sdl_nlen = (uchar_t)mi_strlen(sdl->sdl_data);
4609 	sdl->sdl_alen = ill->ill_phys_addr_length;
4610 	sdl->sdl_slen = 0;
4611 	return (sdl->sdl_nlen);
4612 }
4613 
4614 static int
4615 loopback_kstat_update(kstat_t *ksp, int rw)
4616 {
4617 	kstat_named_t *kn;
4618 	netstackid_t	stackid;
4619 	netstack_t	*ns;
4620 	ip_stack_t	*ipst;
4621 
4622 	if (ksp == NULL || ksp->ks_data == NULL)
4623 		return (EIO);
4624 
4625 	if (rw == KSTAT_WRITE)
4626 		return (EACCES);
4627 
4628 	kn = KSTAT_NAMED_PTR(ksp);
4629 	stackid = (zoneid_t)(uintptr_t)ksp->ks_private;
4630 
4631 	ns = netstack_find_by_stackid(stackid);
4632 	if (ns == NULL)
4633 		return (-1);
4634 
4635 	ipst = ns->netstack_ip;
4636 	if (ipst == NULL) {
4637 		netstack_rele(ns);
4638 		return (-1);
4639 	}
4640 	kn[0].value.ui32 = ipst->ips_loopback_packets;
4641 	kn[1].value.ui32 = ipst->ips_loopback_packets;
4642 	netstack_rele(ns);
4643 	return (0);
4644 }
4645 
4646 /*
4647  * Has ifindex been plumbed already?
4648  */
4649 boolean_t
4650 phyint_exists(uint_t index, ip_stack_t *ipst)
4651 {
4652 	ASSERT(index != 0);
4653 	ASSERT(RW_LOCK_HELD(&ipst->ips_ill_g_lock));
4654 
4655 	return (avl_find(&ipst->ips_phyint_g_list->phyint_list_avl_by_index,
4656 	    &index, NULL) != NULL);
4657 }
4658 
4659 /* Pick a unique ifindex */
4660 boolean_t
4661 ip_assign_ifindex(uint_t *indexp, ip_stack_t *ipst)
4662 {
4663 	uint_t starting_index;
4664 
4665 	if (!ipst->ips_ill_index_wrap) {
4666 		*indexp = ipst->ips_ill_index++;
4667 		if (ipst->ips_ill_index == 0) {
4668 			/* Reached the uint_t limit Next time wrap  */
4669 			ipst->ips_ill_index_wrap = B_TRUE;
4670 		}
4671 		return (B_TRUE);
4672 	}
4673 
4674 	/*
4675 	 * Start reusing unused indexes. Note that we hold the ill_g_lock
4676 	 * at this point and don't want to call any function that attempts
4677 	 * to get the lock again.
4678 	 */
4679 	starting_index = ipst->ips_ill_index++;
4680 	for (; ipst->ips_ill_index != starting_index; ipst->ips_ill_index++) {
4681 		if (ipst->ips_ill_index != 0 &&
4682 		    !phyint_exists(ipst->ips_ill_index, ipst)) {
4683 			/* found unused index - use it */
4684 			*indexp = ipst->ips_ill_index;
4685 			return (B_TRUE);
4686 		}
4687 	}
4688 
4689 	/*
4690 	 * all interface indicies are inuse.
4691 	 */
4692 	return (B_FALSE);
4693 }
4694 
4695 /*
4696  * Assign a unique interface index for the phyint.
4697  */
4698 static boolean_t
4699 phyint_assign_ifindex(phyint_t *phyi, ip_stack_t *ipst)
4700 {
4701 	ASSERT(phyi->phyint_ifindex == 0);
4702 	return (ip_assign_ifindex(&phyi->phyint_ifindex, ipst));
4703 }
4704 
4705 /*
4706  * Initialize the flags on `phyi' as per the provided mactype.
4707  */
4708 static void
4709 phyint_flags_init(phyint_t *phyi, t_uscalar_t mactype)
4710 {
4711 	uint64_t flags = 0;
4712 
4713 	/*
4714 	 * Initialize PHYI_RUNNING and PHYI_FAILED.  For non-IPMP interfaces,
4715 	 * we always presume the underlying hardware is working and set
4716 	 * PHYI_RUNNING (if it's not, the driver will subsequently send a
4717 	 * DL_NOTE_LINK_DOWN message).  For IPMP interfaces, at initialization
4718 	 * there are no active interfaces in the group so we set PHYI_FAILED.
4719 	 */
4720 	if (mactype == SUNW_DL_IPMP)
4721 		flags |= PHYI_FAILED;
4722 	else
4723 		flags |= PHYI_RUNNING;
4724 
4725 	switch (mactype) {
4726 	case SUNW_DL_VNI:
4727 		flags |= PHYI_VIRTUAL;
4728 		break;
4729 	case SUNW_DL_IPMP:
4730 		flags |= PHYI_IPMP;
4731 		break;
4732 	case DL_LOOP:
4733 		flags |= (PHYI_LOOPBACK | PHYI_VIRTUAL);
4734 		break;
4735 	}
4736 
4737 	mutex_enter(&phyi->phyint_lock);
4738 	phyi->phyint_flags |= flags;
4739 	mutex_exit(&phyi->phyint_lock);
4740 }
4741 
4742 /*
4743  * Return a pointer to the ill which matches the supplied name.  Note that
4744  * the ill name length includes the null termination character.  (May be
4745  * called as writer.)
4746  * If do_alloc and the interface is "lo0" it will be automatically created.
4747  * Cannot bump up reference on condemned ills. So dup detect can't be done
4748  * using this func.
4749  */
4750 ill_t *
4751 ill_lookup_on_name(char *name, boolean_t do_alloc, boolean_t isv6,
4752     queue_t *q, mblk_t *mp, ipsq_func_t func, int *error, boolean_t *did_alloc,
4753     ip_stack_t *ipst)
4754 {
4755 	ill_t	*ill;
4756 	ipif_t	*ipif;
4757 	ipsq_t	*ipsq;
4758 	kstat_named_t	*kn;
4759 	boolean_t isloopback;
4760 	in6_addr_t ov6addr;
4761 
4762 	isloopback = mi_strcmp(name, ipif_loopback_name) == 0;
4763 
4764 	rw_enter(&ipst->ips_ill_g_lock, RW_READER);
4765 	ill = ill_find_by_name(name, isv6, q, mp, func, error, ipst);
4766 	rw_exit(&ipst->ips_ill_g_lock);
4767 	if (ill != NULL || (error != NULL && *error == EINPROGRESS))
4768 		return (ill);
4769 
4770 	/*
4771 	 * Couldn't find it.  Does this happen to be a lookup for the
4772 	 * loopback device and are we allowed to allocate it?
4773 	 */
4774 	if (!isloopback || !do_alloc)
4775 		return (NULL);
4776 
4777 	rw_enter(&ipst->ips_ill_g_lock, RW_WRITER);
4778 
4779 	ill = ill_find_by_name(name, isv6, q, mp, func, error, ipst);
4780 	if (ill != NULL || (error != NULL && *error == EINPROGRESS)) {
4781 		rw_exit(&ipst->ips_ill_g_lock);
4782 		return (ill);
4783 	}
4784 
4785 	/* Create the loopback device on demand */
4786 	ill = (ill_t *)(mi_alloc(sizeof (ill_t) +
4787 	    sizeof (ipif_loopback_name), BPRI_MED));
4788 	if (ill == NULL)
4789 		goto done;
4790 
4791 	*ill = ill_null;
4792 	mutex_init(&ill->ill_lock, NULL, MUTEX_DEFAULT, NULL);
4793 	ill->ill_ipst = ipst;
4794 	netstack_hold(ipst->ips_netstack);
4795 	/*
4796 	 * For exclusive stacks we set the zoneid to zero
4797 	 * to make IP operate as if in the global zone.
4798 	 */
4799 	ill->ill_zoneid = GLOBAL_ZONEID;
4800 
4801 	ill->ill_phyint = (phyint_t *)mi_zalloc(sizeof (phyint_t));
4802 	if (ill->ill_phyint == NULL)
4803 		goto done;
4804 
4805 	if (isv6)
4806 		ill->ill_phyint->phyint_illv6 = ill;
4807 	else
4808 		ill->ill_phyint->phyint_illv4 = ill;
4809 	mutex_init(&ill->ill_phyint->phyint_lock, NULL, MUTEX_DEFAULT, 0);
4810 	phyint_flags_init(ill->ill_phyint, DL_LOOP);
4811 
4812 	ill->ill_max_frag = IP_LOOPBACK_MTU;
4813 	/* Add room for tcp+ip headers */
4814 	if (isv6) {
4815 		ill->ill_isv6 = B_TRUE;
4816 		ill->ill_max_frag += IPV6_HDR_LEN + 20;	/* for TCP */
4817 	} else {
4818 		ill->ill_max_frag += IP_SIMPLE_HDR_LENGTH + 20;
4819 	}
4820 	if (!ill_allocate_mibs(ill))
4821 		goto done;
4822 	ill->ill_max_mtu = ill->ill_max_frag;
4823 	/*
4824 	 * ipif_loopback_name can't be pointed at directly because its used
4825 	 * by both the ipv4 and ipv6 interfaces.  When the ill is removed
4826 	 * from the glist, ill_glist_delete() sets the first character of
4827 	 * ill_name to '\0'.
4828 	 */
4829 	ill->ill_name = (char *)ill + sizeof (*ill);
4830 	(void) strcpy(ill->ill_name, ipif_loopback_name);
4831 	ill->ill_name_length = sizeof (ipif_loopback_name);
4832 	/* Set ill_dlpi_pending for ipsq_current_finish() to work properly */
4833 	ill->ill_dlpi_pending = DL_PRIM_INVAL;
4834 
4835 	ill->ill_global_timer = INFINITY;
4836 	ill->ill_mcast_v1_time = ill->ill_mcast_v2_time = 0;
4837 	ill->ill_mcast_v1_tset = ill->ill_mcast_v2_tset = 0;
4838 	ill->ill_mcast_rv = MCAST_DEF_ROBUSTNESS;
4839 	ill->ill_mcast_qi = MCAST_DEF_QUERY_INTERVAL;
4840 
4841 	/* No resolver here. */
4842 	ill->ill_net_type = IRE_LOOPBACK;
4843 
4844 	/* Initialize the ipsq */
4845 	if (!ipsq_init(ill, B_FALSE))
4846 		goto done;
4847 
4848 	ipif = ipif_allocate(ill, 0L, IRE_LOOPBACK, B_TRUE, B_TRUE);
4849 	if (ipif == NULL)
4850 		goto done;
4851 
4852 	ill->ill_flags = ILLF_MULTICAST;
4853 
4854 	ov6addr = ipif->ipif_v6lcl_addr;
4855 	/* Set up default loopback address and mask. */
4856 	if (!isv6) {
4857 		ipaddr_t inaddr_loopback = htonl(INADDR_LOOPBACK);
4858 
4859 		IN6_IPADDR_TO_V4MAPPED(inaddr_loopback, &ipif->ipif_v6lcl_addr);
4860 		ipif->ipif_v6src_addr = ipif->ipif_v6lcl_addr;
4861 		V4MASK_TO_V6(htonl(IN_CLASSA_NET), ipif->ipif_v6net_mask);
4862 		V6_MASK_COPY(ipif->ipif_v6lcl_addr, ipif->ipif_v6net_mask,
4863 		    ipif->ipif_v6subnet);
4864 		ill->ill_flags |= ILLF_IPV4;
4865 	} else {
4866 		ipif->ipif_v6lcl_addr = ipv6_loopback;
4867 		ipif->ipif_v6src_addr = ipif->ipif_v6lcl_addr;
4868 		ipif->ipif_v6net_mask = ipv6_all_ones;
4869 		V6_MASK_COPY(ipif->ipif_v6lcl_addr, ipif->ipif_v6net_mask,
4870 		    ipif->ipif_v6subnet);
4871 		ill->ill_flags |= ILLF_IPV6;
4872 	}
4873 
4874 	/*
4875 	 * Chain us in at the end of the ill list. hold the ill
4876 	 * before we make it globally visible. 1 for the lookup.
4877 	 */
4878 	ill->ill_refcnt = 0;
4879 	ill_refhold(ill);
4880 
4881 	ill->ill_frag_count = 0;
4882 	ill->ill_frag_free_num_pkts = 0;
4883 	ill->ill_last_frag_clean_time = 0;
4884 
4885 	ipsq = ill->ill_phyint->phyint_ipsq;
4886 
4887 	if (ill_glist_insert(ill, "lo", isv6) != 0)
4888 		cmn_err(CE_PANIC, "cannot insert loopback interface");
4889 
4890 	/* Let SCTP know so that it can add this to its list */
4891 	sctp_update_ill(ill, SCTP_ILL_INSERT);
4892 
4893 	/*
4894 	 * We have already assigned ipif_v6lcl_addr above, but we need to
4895 	 * call sctp_update_ipif_addr() after SCTP_ILL_INSERT, which
4896 	 * requires to be after ill_glist_insert() since we need the
4897 	 * ill_index set. Pass on ipv6_loopback as the old address.
4898 	 */
4899 	sctp_update_ipif_addr(ipif, ov6addr);
4900 
4901 	/*
4902 	 * ill_glist_insert() -> ill_phyint_reinit() may have merged IPSQs.
4903 	 * If so, free our original one.
4904 	 */
4905 	if (ipsq != ill->ill_phyint->phyint_ipsq)
4906 		ipsq_delete(ipsq);
4907 
4908 	if (ipst->ips_loopback_ksp == NULL) {
4909 		/* Export loopback interface statistics */
4910 		ipst->ips_loopback_ksp = kstat_create_netstack("lo", 0,
4911 		    ipif_loopback_name, "net",
4912 		    KSTAT_TYPE_NAMED, 2, 0,
4913 		    ipst->ips_netstack->netstack_stackid);
4914 		if (ipst->ips_loopback_ksp != NULL) {
4915 			ipst->ips_loopback_ksp->ks_update =
4916 			    loopback_kstat_update;
4917 			kn = KSTAT_NAMED_PTR(ipst->ips_loopback_ksp);
4918 			kstat_named_init(&kn[0], "ipackets", KSTAT_DATA_UINT32);
4919 			kstat_named_init(&kn[1], "opackets", KSTAT_DATA_UINT32);
4920 			ipst->ips_loopback_ksp->ks_private =
4921 			    (void *)(uintptr_t)ipst->ips_netstack->
4922 			    netstack_stackid;
4923 			kstat_install(ipst->ips_loopback_ksp);
4924 		}
4925 	}
4926 
4927 	if (error != NULL)
4928 		*error = 0;
4929 	*did_alloc = B_TRUE;
4930 	rw_exit(&ipst->ips_ill_g_lock);
4931 	ill_nic_event_dispatch(ill, MAP_IPIF_ID(ill->ill_ipif->ipif_id),
4932 	    NE_PLUMB, ill->ill_name, ill->ill_name_length);
4933 	return (ill);
4934 done:
4935 	if (ill != NULL) {
4936 		if (ill->ill_phyint != NULL) {
4937 			ipsq = ill->ill_phyint->phyint_ipsq;
4938 			if (ipsq != NULL) {
4939 				ipsq->ipsq_phyint = NULL;
4940 				ipsq_delete(ipsq);
4941 			}
4942 			mi_free(ill->ill_phyint);
4943 		}
4944 		ill_free_mib(ill);
4945 		if (ill->ill_ipst != NULL)
4946 			netstack_rele(ill->ill_ipst->ips_netstack);
4947 		mi_free(ill);
4948 	}
4949 	rw_exit(&ipst->ips_ill_g_lock);
4950 	if (error != NULL)
4951 		*error = ENOMEM;
4952 	return (NULL);
4953 }
4954 
4955 /*
4956  * For IPP calls - use the ip_stack_t for global stack.
4957  */
4958 ill_t *
4959 ill_lookup_on_ifindex_global_instance(uint_t index, boolean_t isv6,
4960     queue_t *q, mblk_t *mp, ipsq_func_t func, int *err)
4961 {
4962 	ip_stack_t	*ipst;
4963 	ill_t		*ill;
4964 
4965 	ipst = netstack_find_by_stackid(GLOBAL_NETSTACKID)->netstack_ip;
4966 	if (ipst == NULL) {
4967 		cmn_err(CE_WARN, "No ip_stack_t for zoneid zero!\n");
4968 		return (NULL);
4969 	}
4970 
4971 	ill = ill_lookup_on_ifindex(index, isv6, q, mp, func, err, ipst);
4972 	netstack_rele(ipst->ips_netstack);
4973 	return (ill);
4974 }
4975 
4976 /*
4977  * Return a pointer to the ill which matches the index and IP version type.
4978  */
4979 ill_t *
4980 ill_lookup_on_ifindex(uint_t index, boolean_t isv6, queue_t *q, mblk_t *mp,
4981     ipsq_func_t func, int *err, ip_stack_t *ipst)
4982 {
4983 	ill_t	*ill;
4984 	ipsq_t  *ipsq;
4985 	phyint_t *phyi;
4986 
4987 	ASSERT((q == NULL && mp == NULL && func == NULL && err == NULL) ||
4988 	    (q != NULL && mp != NULL && func != NULL && err != NULL));
4989 
4990 	if (err != NULL)
4991 		*err = 0;
4992 
4993 	/*
4994 	 * Indexes are stored in the phyint - a common structure
4995 	 * to both IPv4 and IPv6.
4996 	 */
4997 	rw_enter(&ipst->ips_ill_g_lock, RW_READER);
4998 	phyi = avl_find(&ipst->ips_phyint_g_list->phyint_list_avl_by_index,
4999 	    (void *) &index, NULL);
5000 	if (phyi != NULL) {
5001 		ill = isv6 ? phyi->phyint_illv6: phyi->phyint_illv4;
5002 		if (ill != NULL) {
5003 			/*
5004 			 * The block comment at the start of ipif_down
5005 			 * explains the use of the macros used below
5006 			 */
5007 			GRAB_CONN_LOCK(q);
5008 			mutex_enter(&ill->ill_lock);
5009 			if (ILL_CAN_LOOKUP(ill)) {
5010 				ill_refhold_locked(ill);
5011 				mutex_exit(&ill->ill_lock);
5012 				RELEASE_CONN_LOCK(q);
5013 				rw_exit(&ipst->ips_ill_g_lock);
5014 				return (ill);
5015 			} else if (ILL_CAN_WAIT(ill, q)) {
5016 				ipsq = ill->ill_phyint->phyint_ipsq;
5017 				mutex_enter(&ipsq->ipsq_lock);
5018 				mutex_enter(&ipsq->ipsq_xop->ipx_lock);
5019 				rw_exit(&ipst->ips_ill_g_lock);
5020 				mutex_exit(&ill->ill_lock);
5021 				ipsq_enq(ipsq, q, mp, func, NEW_OP, ill);
5022 				mutex_exit(&ipsq->ipsq_xop->ipx_lock);
5023 				mutex_exit(&ipsq->ipsq_lock);
5024 				RELEASE_CONN_LOCK(q);
5025 				if (err != NULL)
5026 					*err = EINPROGRESS;
5027 				return (NULL);
5028 			}
5029 			RELEASE_CONN_LOCK(q);
5030 			mutex_exit(&ill->ill_lock);
5031 		}
5032 	}
5033 	rw_exit(&ipst->ips_ill_g_lock);
5034 	if (err != NULL)
5035 		*err = ENXIO;
5036 	return (NULL);
5037 }
5038 
5039 /*
5040  * Return the ifindex next in sequence after the passed in ifindex.
5041  * If there is no next ifindex for the given protocol, return 0.
5042  */
5043 uint_t
5044 ill_get_next_ifindex(uint_t index, boolean_t isv6, ip_stack_t *ipst)
5045 {
5046 	phyint_t *phyi;
5047 	phyint_t *phyi_initial;
5048 	uint_t   ifindex;
5049 
5050 	rw_enter(&ipst->ips_ill_g_lock, RW_READER);
5051 
5052 	if (index == 0) {
5053 		phyi = avl_first(
5054 		    &ipst->ips_phyint_g_list->phyint_list_avl_by_index);
5055 	} else {
5056 		phyi = phyi_initial = avl_find(
5057 		    &ipst->ips_phyint_g_list->phyint_list_avl_by_index,
5058 		    (void *) &index, NULL);
5059 	}
5060 
5061 	for (; phyi != NULL;
5062 	    phyi = avl_walk(&ipst->ips_phyint_g_list->phyint_list_avl_by_index,
5063 	    phyi, AVL_AFTER)) {
5064 		/*
5065 		 * If we're not returning the first interface in the tree
5066 		 * and we still haven't moved past the phyint_t that
5067 		 * corresponds to index, avl_walk needs to be called again
5068 		 */
5069 		if (!((index != 0) && (phyi == phyi_initial))) {
5070 			if (isv6) {
5071 				if ((phyi->phyint_illv6) &&
5072 				    ILL_CAN_LOOKUP(phyi->phyint_illv6) &&
5073 				    (phyi->phyint_illv6->ill_isv6 == 1))
5074 					break;
5075 			} else {
5076 				if ((phyi->phyint_illv4) &&
5077 				    ILL_CAN_LOOKUP(phyi->phyint_illv4) &&
5078 				    (phyi->phyint_illv4->ill_isv6 == 0))
5079 					break;
5080 			}
5081 		}
5082 	}
5083 
5084 	rw_exit(&ipst->ips_ill_g_lock);
5085 
5086 	if (phyi != NULL)
5087 		ifindex = phyi->phyint_ifindex;
5088 	else
5089 		ifindex = 0;
5090 
5091 	return (ifindex);
5092 }
5093 
5094 /*
5095  * Return the ifindex for the named interface.
5096  * If there is no next ifindex for the interface, return 0.
5097  */
5098 uint_t
5099 ill_get_ifindex_by_name(char *name, ip_stack_t *ipst)
5100 {
5101 	phyint_t	*phyi;
5102 	avl_index_t	where = 0;
5103 	uint_t		ifindex;
5104 
5105 	rw_enter(&ipst->ips_ill_g_lock, RW_READER);
5106 
5107 	if ((phyi = avl_find(&ipst->ips_phyint_g_list->phyint_list_avl_by_name,
5108 	    name, &where)) == NULL) {
5109 		rw_exit(&ipst->ips_ill_g_lock);
5110 		return (0);
5111 	}
5112 
5113 	ifindex = phyi->phyint_ifindex;
5114 
5115 	rw_exit(&ipst->ips_ill_g_lock);
5116 
5117 	return (ifindex);
5118 }
5119 
5120 /*
5121  * Obtain a reference to the ill. The ill_refcnt is a dynamic refcnt
5122  * that gives a running thread a reference to the ill. This reference must be
5123  * released by the thread when it is done accessing the ill and related
5124  * objects. ill_refcnt can not be used to account for static references
5125  * such as other structures pointing to an ill. Callers must generally
5126  * check whether an ill can be refheld by using ILL_CAN_LOOKUP macros
5127  * or be sure that the ill is not being deleted or changing state before
5128  * calling the refhold functions. A non-zero ill_refcnt ensures that the
5129  * ill won't change any of its critical state such as address, netmask etc.
5130  */
5131 void
5132 ill_refhold(ill_t *ill)
5133 {
5134 	mutex_enter(&ill->ill_lock);
5135 	ill->ill_refcnt++;
5136 	ILL_TRACE_REF(ill);
5137 	mutex_exit(&ill->ill_lock);
5138 }
5139 
5140 void
5141 ill_refhold_locked(ill_t *ill)
5142 {
5143 	ASSERT(MUTEX_HELD(&ill->ill_lock));
5144 	ill->ill_refcnt++;
5145 	ILL_TRACE_REF(ill);
5146 }
5147 
5148 int
5149 ill_check_and_refhold(ill_t *ill)
5150 {
5151 	mutex_enter(&ill->ill_lock);
5152 	if (ILL_CAN_LOOKUP(ill)) {
5153 		ill_refhold_locked(ill);
5154 		mutex_exit(&ill->ill_lock);
5155 		return (0);
5156 	}
5157 	mutex_exit(&ill->ill_lock);
5158 	return (ILL_LOOKUP_FAILED);
5159 }
5160 
5161 /*
5162  * Must not be called while holding any locks. Otherwise if this is
5163  * the last reference to be released, there is a chance of recursive mutex
5164  * panic due to ill_refrele -> ipif_ill_refrele_tail -> qwriter_ip trying
5165  * to restart an ioctl.
5166  */
5167 void
5168 ill_refrele(ill_t *ill)
5169 {
5170 	mutex_enter(&ill->ill_lock);
5171 	ASSERT(ill->ill_refcnt != 0);
5172 	ill->ill_refcnt--;
5173 	ILL_UNTRACE_REF(ill);
5174 	if (ill->ill_refcnt != 0) {
5175 		/* Every ire pointing to the ill adds 1 to ill_refcnt */
5176 		mutex_exit(&ill->ill_lock);
5177 		return;
5178 	}
5179 
5180 	/* Drops the ill_lock */
5181 	ipif_ill_refrele_tail(ill);
5182 }
5183 
5184 /*
5185  * Obtain a weak reference count on the ill. This reference ensures the
5186  * ill won't be freed, but the ill may change any of its critical state
5187  * such as netmask, address etc. Returns an error if the ill has started
5188  * closing.
5189  */
5190 boolean_t
5191 ill_waiter_inc(ill_t *ill)
5192 {
5193 	mutex_enter(&ill->ill_lock);
5194 	if (ill->ill_state_flags & ILL_CONDEMNED) {
5195 		mutex_exit(&ill->ill_lock);
5196 		return (B_FALSE);
5197 	}
5198 	ill->ill_waiters++;
5199 	mutex_exit(&ill->ill_lock);
5200 	return (B_TRUE);
5201 }
5202 
5203 void
5204 ill_waiter_dcr(ill_t *ill)
5205 {
5206 	mutex_enter(&ill->ill_lock);
5207 	ill->ill_waiters--;
5208 	if (ill->ill_waiters == 0)
5209 		cv_broadcast(&ill->ill_cv);
5210 	mutex_exit(&ill->ill_lock);
5211 }
5212 
5213 /*
5214  * ip_ll_subnet_defaults is called when we get the DL_INFO_ACK back from the
5215  * driver.  We construct best guess defaults for lower level information that
5216  * we need.  If an interface is brought up without injection of any overriding
5217  * information from outside, we have to be ready to go with these defaults.
5218  * When we get the first DL_INFO_ACK (from ip_open() sending a DL_INFO_REQ)
5219  * we primarely want the dl_provider_style.
5220  * The subsequent DL_INFO_ACK is received after doing a DL_ATTACH and DL_BIND
5221  * at which point we assume the other part of the information is valid.
5222  */
5223 void
5224 ip_ll_subnet_defaults(ill_t *ill, mblk_t *mp)
5225 {
5226 	uchar_t		*brdcst_addr;
5227 	uint_t		brdcst_addr_length, phys_addr_length;
5228 	t_scalar_t	sap_length;
5229 	dl_info_ack_t	*dlia;
5230 	ip_m_t		*ipm;
5231 	dl_qos_cl_sel1_t *sel1;
5232 	int		min_mtu;
5233 
5234 	ASSERT(IAM_WRITER_ILL(ill));
5235 
5236 	/*
5237 	 * Till the ill is fully up ILL_CHANGING will be set and
5238 	 * the ill is not globally visible. So no need for a lock.
5239 	 */
5240 	dlia = (dl_info_ack_t *)mp->b_rptr;
5241 	ill->ill_mactype = dlia->dl_mac_type;
5242 
5243 	ipm = ip_m_lookup(dlia->dl_mac_type);
5244 	if (ipm == NULL) {
5245 		ipm = ip_m_lookup(DL_OTHER);
5246 		ASSERT(ipm != NULL);
5247 	}
5248 	ill->ill_media = ipm;
5249 
5250 	/*
5251 	 * When the new DLPI stuff is ready we'll pull lengths
5252 	 * from dlia.
5253 	 */
5254 	if (dlia->dl_version == DL_VERSION_2) {
5255 		brdcst_addr_length = dlia->dl_brdcst_addr_length;
5256 		brdcst_addr = mi_offset_param(mp, dlia->dl_brdcst_addr_offset,
5257 		    brdcst_addr_length);
5258 		if (brdcst_addr == NULL) {
5259 			brdcst_addr_length = 0;
5260 		}
5261 		sap_length = dlia->dl_sap_length;
5262 		phys_addr_length = dlia->dl_addr_length - ABS(sap_length);
5263 		ip1dbg(("ip: bcast_len %d, sap_len %d, phys_len %d\n",
5264 		    brdcst_addr_length, sap_length, phys_addr_length));
5265 	} else {
5266 		brdcst_addr_length = 6;
5267 		brdcst_addr = ip_six_byte_all_ones;
5268 		sap_length = -2;
5269 		phys_addr_length = brdcst_addr_length;
5270 	}
5271 
5272 	ill->ill_bcast_addr_length = brdcst_addr_length;
5273 	ill->ill_phys_addr_length = phys_addr_length;
5274 	ill->ill_sap_length = sap_length;
5275 
5276 	/*
5277 	 * Synthetic DLPI types such as SUNW_DL_IPMP specify a zero SDU,
5278 	 * but we must ensure a minimum IP MTU is used since other bits of
5279 	 * IP will fly apart otherwise.
5280 	 */
5281 	min_mtu = ill->ill_isv6 ? IPV6_MIN_MTU : IP_MIN_MTU;
5282 	ill->ill_max_frag  = MAX(min_mtu, dlia->dl_max_sdu);
5283 	ill->ill_max_mtu = ill->ill_max_frag;
5284 
5285 	ill->ill_type = ipm->ip_m_type;
5286 
5287 	if (!ill->ill_dlpi_style_set) {
5288 		if (dlia->dl_provider_style == DL_STYLE2)
5289 			ill->ill_needs_attach = 1;
5290 
5291 		phyint_flags_init(ill->ill_phyint, ill->ill_mactype);
5292 
5293 		/*
5294 		 * Allocate the first ipif on this ill.  We don't delay it
5295 		 * further as ioctl handling assumes at least one ipif exists.
5296 		 *
5297 		 * At this point we don't know whether the ill is v4 or v6.
5298 		 * We will know this whan the SIOCSLIFNAME happens and
5299 		 * the correct value for ill_isv6 will be assigned in
5300 		 * ipif_set_values(). We need to hold the ill lock and
5301 		 * clear the ILL_LL_SUBNET_PENDING flag and atomically do
5302 		 * the wakeup.
5303 		 */
5304 		(void) ipif_allocate(ill, 0, IRE_LOCAL,
5305 		    dlia->dl_provider_style != DL_STYLE2, B_TRUE);
5306 		mutex_enter(&ill->ill_lock);
5307 		ASSERT(ill->ill_dlpi_style_set == 0);
5308 		ill->ill_dlpi_style_set = 1;
5309 		ill->ill_state_flags &= ~ILL_LL_SUBNET_PENDING;
5310 		cv_broadcast(&ill->ill_cv);
5311 		mutex_exit(&ill->ill_lock);
5312 		freemsg(mp);
5313 		return;
5314 	}
5315 	ASSERT(ill->ill_ipif != NULL);
5316 	/*
5317 	 * We know whether it is IPv4 or IPv6 now, as this is the
5318 	 * second DL_INFO_ACK we are recieving in response to the
5319 	 * DL_INFO_REQ sent in ipif_set_values.
5320 	 */
5321 	ill->ill_sap = (ill->ill_isv6) ? ipm->ip_m_ipv6sap : ipm->ip_m_ipv4sap;
5322 	/*
5323 	 * Set ipif_mtu which is used to set the IRE's
5324 	 * ire_max_frag value. The driver could have sent
5325 	 * a different mtu from what it sent last time. No
5326 	 * need to call ipif_mtu_change because IREs have
5327 	 * not yet been created.
5328 	 */
5329 	ill->ill_ipif->ipif_mtu = ill->ill_max_mtu;
5330 	/*
5331 	 * Clear all the flags that were set based on ill_bcast_addr_length
5332 	 * and ill_phys_addr_length (in ipif_set_values) as these could have
5333 	 * changed now and we need to re-evaluate.
5334 	 */
5335 	ill->ill_flags &= ~(ILLF_MULTICAST | ILLF_NONUD | ILLF_NOARP);
5336 	ill->ill_ipif->ipif_flags &= ~(IPIF_BROADCAST | IPIF_POINTOPOINT);
5337 
5338 	/*
5339 	 * Free ill_resolver_mp and ill_bcast_mp as things could have
5340 	 * changed now.
5341 	 *
5342 	 * NOTE: The IPMP meta-interface is special-cased because it starts
5343 	 * with no underlying interfaces (and thus an unknown broadcast
5344 	 * address length), but we enforce that an interface is broadcast-
5345 	 * capable as part of allowing it to join a group.
5346 	 */
5347 	if (ill->ill_bcast_addr_length == 0 && !IS_IPMP(ill)) {
5348 		if (ill->ill_resolver_mp != NULL)
5349 			freemsg(ill->ill_resolver_mp);
5350 		if (ill->ill_bcast_mp != NULL)
5351 			freemsg(ill->ill_bcast_mp);
5352 		if (ill->ill_flags & ILLF_XRESOLV)
5353 			ill->ill_net_type = IRE_IF_RESOLVER;
5354 		else
5355 			ill->ill_net_type = IRE_IF_NORESOLVER;
5356 		ill->ill_resolver_mp = ill_dlur_gen(NULL,
5357 		    ill->ill_phys_addr_length,
5358 		    ill->ill_sap,
5359 		    ill->ill_sap_length);
5360 		ill->ill_bcast_mp = copymsg(ill->ill_resolver_mp);
5361 
5362 		if (ill->ill_isv6)
5363 			/*
5364 			 * Note: xresolv interfaces will eventually need NOARP
5365 			 * set here as well, but that will require those
5366 			 * external resolvers to have some knowledge of
5367 			 * that flag and act appropriately. Not to be changed
5368 			 * at present.
5369 			 */
5370 			ill->ill_flags |= ILLF_NONUD;
5371 		else
5372 			ill->ill_flags |= ILLF_NOARP;
5373 
5374 		if (ill->ill_mactype == SUNW_DL_VNI) {
5375 			ill->ill_ipif->ipif_flags |= IPIF_NOXMIT;
5376 		} else if (ill->ill_phys_addr_length == 0 ||
5377 		    ill->ill_mactype == DL_IPV4 ||
5378 		    ill->ill_mactype == DL_IPV6) {
5379 			/*
5380 			 * The underying link is point-to-point, so mark the
5381 			 * interface as such.  We can do IP multicast over
5382 			 * such a link since it transmits all network-layer
5383 			 * packets to the remote side the same way.
5384 			 */
5385 			ill->ill_flags |= ILLF_MULTICAST;
5386 			ill->ill_ipif->ipif_flags |= IPIF_POINTOPOINT;
5387 		}
5388 	} else {
5389 		ill->ill_net_type = IRE_IF_RESOLVER;
5390 		if (ill->ill_bcast_mp != NULL)
5391 			freemsg(ill->ill_bcast_mp);
5392 		ill->ill_bcast_mp = ill_dlur_gen(brdcst_addr,
5393 		    ill->ill_bcast_addr_length, ill->ill_sap,
5394 		    ill->ill_sap_length);
5395 		/*
5396 		 * Later detect lack of DLPI driver multicast
5397 		 * capability by catching DL_ENABMULTI errors in
5398 		 * ip_rput_dlpi.
5399 		 */
5400 		ill->ill_flags |= ILLF_MULTICAST;
5401 		if (!ill->ill_isv6)
5402 			ill->ill_ipif->ipif_flags |= IPIF_BROADCAST;
5403 	}
5404 
5405 	/* For IPMP, PHYI_IPMP should already be set by phyint_flags_init() */
5406 	if (ill->ill_mactype == SUNW_DL_IPMP)
5407 		ASSERT(ill->ill_phyint->phyint_flags & PHYI_IPMP);
5408 
5409 	/* By default an interface does not support any CoS marking */
5410 	ill->ill_flags &= ~ILLF_COS_ENABLED;
5411 
5412 	/*
5413 	 * If we get QoS information in DL_INFO_ACK, the device supports
5414 	 * some form of CoS marking, set ILLF_COS_ENABLED.
5415 	 */
5416 	sel1 = (dl_qos_cl_sel1_t *)mi_offset_param(mp, dlia->dl_qos_offset,
5417 	    dlia->dl_qos_length);
5418 	if ((sel1 != NULL) && (sel1->dl_qos_type == DL_QOS_CL_SEL1)) {
5419 		ill->ill_flags |= ILLF_COS_ENABLED;
5420 	}
5421 
5422 	/* Clear any previous error indication. */
5423 	ill->ill_error = 0;
5424 	freemsg(mp);
5425 }
5426 
5427 /*
5428  * Perform various checks to verify that an address would make sense as a
5429  * local, remote, or subnet interface address.
5430  */
5431 static boolean_t
5432 ip_addr_ok_v4(ipaddr_t addr, ipaddr_t subnet_mask)
5433 {
5434 	ipaddr_t	net_mask;
5435 
5436 	/*
5437 	 * Don't allow all zeroes, or all ones, but allow
5438 	 * all ones netmask.
5439 	 */
5440 	if ((net_mask = ip_net_mask(addr)) == 0)
5441 		return (B_FALSE);
5442 	/* A given netmask overrides the "guess" netmask */
5443 	if (subnet_mask != 0)
5444 		net_mask = subnet_mask;
5445 	if ((net_mask != ~(ipaddr_t)0) && ((addr == (addr & net_mask)) ||
5446 	    (addr == (addr | ~net_mask)))) {
5447 		return (B_FALSE);
5448 	}
5449 
5450 	/*
5451 	 * Even if the netmask is all ones, we do not allow address to be
5452 	 * 255.255.255.255
5453 	 */
5454 	if (addr == INADDR_BROADCAST)
5455 		return (B_FALSE);
5456 
5457 	if (CLASSD(addr))
5458 		return (B_FALSE);
5459 
5460 	return (B_TRUE);
5461 }
5462 
5463 #define	V6_IPIF_LINKLOCAL(p)	\
5464 	IN6_IS_ADDR_LINKLOCAL(&(p)->ipif_v6lcl_addr)
5465 
5466 /*
5467  * Compare two given ipifs and check if the second one is better than
5468  * the first one using the order of preference (not taking deprecated
5469  * into acount) specified in ipif_lookup_multicast().
5470  */
5471 static boolean_t
5472 ipif_comp_multi(ipif_t *old_ipif, ipif_t *new_ipif, boolean_t isv6)
5473 {
5474 	/* Check the least preferred first. */
5475 	if (IS_LOOPBACK(old_ipif->ipif_ill)) {
5476 		/* If both ipifs are the same, use the first one. */
5477 		if (IS_LOOPBACK(new_ipif->ipif_ill))
5478 			return (B_FALSE);
5479 		else
5480 			return (B_TRUE);
5481 	}
5482 
5483 	/* For IPv6, check for link local address. */
5484 	if (isv6 && V6_IPIF_LINKLOCAL(old_ipif)) {
5485 		if (IS_LOOPBACK(new_ipif->ipif_ill) ||
5486 		    V6_IPIF_LINKLOCAL(new_ipif)) {
5487 			/* The second one is equal or less preferred. */
5488 			return (B_FALSE);
5489 		} else {
5490 			return (B_TRUE);
5491 		}
5492 	}
5493 
5494 	/* Then check for point to point interface. */
5495 	if (old_ipif->ipif_flags & IPIF_POINTOPOINT) {
5496 		if (IS_LOOPBACK(new_ipif->ipif_ill) ||
5497 		    (isv6 && V6_IPIF_LINKLOCAL(new_ipif)) ||
5498 		    (new_ipif->ipif_flags & IPIF_POINTOPOINT)) {
5499 			return (B_FALSE);
5500 		} else {
5501 			return (B_TRUE);
5502 		}
5503 	}
5504 
5505 	/* old_ipif is a normal interface, so no need to use the new one. */
5506 	return (B_FALSE);
5507 }
5508 
5509 /*
5510  * Find a mulitcast-capable ipif given an IP instance and zoneid.
5511  * The ipif must be up, and its ill must multicast-capable, not
5512  * condemned, not an underlying interface in an IPMP group, and
5513  * not a VNI interface.  Order of preference:
5514  *
5515  * 	1a. normal
5516  * 	1b. normal, but deprecated
5517  * 	2a. point to point
5518  * 	2b. point to point, but deprecated
5519  * 	3a. link local
5520  * 	3b. link local, but deprecated
5521  * 	4. loopback.
5522  */
5523 ipif_t *
5524 ipif_lookup_multicast(ip_stack_t *ipst, zoneid_t zoneid, boolean_t isv6)
5525 {
5526 	ill_t			*ill;
5527 	ill_walk_context_t	ctx;
5528 	ipif_t			*ipif;
5529 	ipif_t			*saved_ipif = NULL;
5530 	ipif_t			*dep_ipif = NULL;
5531 
5532 	rw_enter(&ipst->ips_ill_g_lock, RW_READER);
5533 	if (isv6)
5534 		ill = ILL_START_WALK_V6(&ctx, ipst);
5535 	else
5536 		ill = ILL_START_WALK_V4(&ctx, ipst);
5537 
5538 	for (; ill != NULL; ill = ill_next(&ctx, ill)) {
5539 		mutex_enter(&ill->ill_lock);
5540 		if (IS_VNI(ill) || IS_UNDER_IPMP(ill) || !ILL_CAN_LOOKUP(ill) ||
5541 		    !(ill->ill_flags & ILLF_MULTICAST)) {
5542 			mutex_exit(&ill->ill_lock);
5543 			continue;
5544 		}
5545 		for (ipif = ill->ill_ipif; ipif != NULL;
5546 		    ipif = ipif->ipif_next) {
5547 			if (zoneid != ipif->ipif_zoneid &&
5548 			    zoneid != ALL_ZONES &&
5549 			    ipif->ipif_zoneid != ALL_ZONES) {
5550 				continue;
5551 			}
5552 			if (!(ipif->ipif_flags & IPIF_UP) ||
5553 			    !IPIF_CAN_LOOKUP(ipif)) {
5554 				continue;
5555 			}
5556 
5557 			/*
5558 			 * Found one candidate.  If it is deprecated,
5559 			 * remember it in dep_ipif.  If it is not deprecated,
5560 			 * remember it in saved_ipif.
5561 			 */
5562 			if (ipif->ipif_flags & IPIF_DEPRECATED) {
5563 				if (dep_ipif == NULL) {
5564 					dep_ipif = ipif;
5565 				} else if (ipif_comp_multi(dep_ipif, ipif,
5566 				    isv6)) {
5567 					/*
5568 					 * If the previous dep_ipif does not
5569 					 * belong to the same ill, we've done
5570 					 * a ipif_refhold() on it.  So we need
5571 					 * to release it.
5572 					 */
5573 					if (dep_ipif->ipif_ill != ill)
5574 						ipif_refrele(dep_ipif);
5575 					dep_ipif = ipif;
5576 				}
5577 				continue;
5578 			}
5579 			if (saved_ipif == NULL) {
5580 				saved_ipif = ipif;
5581 			} else {
5582 				if (ipif_comp_multi(saved_ipif, ipif, isv6)) {
5583 					if (saved_ipif->ipif_ill != ill)
5584 						ipif_refrele(saved_ipif);
5585 					saved_ipif = ipif;
5586 				}
5587 			}
5588 		}
5589 		/*
5590 		 * Before going to the next ill, do a ipif_refhold() on the
5591 		 * saved ones.
5592 		 */
5593 		if (saved_ipif != NULL && saved_ipif->ipif_ill == ill)
5594 			ipif_refhold_locked(saved_ipif);
5595 		if (dep_ipif != NULL && dep_ipif->ipif_ill == ill)
5596 			ipif_refhold_locked(dep_ipif);
5597 		mutex_exit(&ill->ill_lock);
5598 	}
5599 	rw_exit(&ipst->ips_ill_g_lock);
5600 
5601 	/*
5602 	 * If we have only the saved_ipif, return it.  But if we have both
5603 	 * saved_ipif and dep_ipif, check to see which one is better.
5604 	 */
5605 	if (saved_ipif != NULL) {
5606 		if (dep_ipif != NULL) {
5607 			if (ipif_comp_multi(saved_ipif, dep_ipif, isv6)) {
5608 				ipif_refrele(saved_ipif);
5609 				return (dep_ipif);
5610 			} else {
5611 				ipif_refrele(dep_ipif);
5612 				return (saved_ipif);
5613 			}
5614 		}
5615 		return (saved_ipif);
5616 	} else {
5617 		return (dep_ipif);
5618 	}
5619 }
5620 
5621 /*
5622  * This function is called when an application does not specify an interface
5623  * to be used for multicast traffic (joining a group/sending data).  It
5624  * calls ire_lookup_multi() to look for an interface route for the
5625  * specified multicast group.  Doing this allows the administrator to add
5626  * prefix routes for multicast to indicate which interface to be used for
5627  * multicast traffic in the above scenario.  The route could be for all
5628  * multicast (224.0/4), for a single multicast group (a /32 route) or
5629  * anything in between.  If there is no such multicast route, we just find
5630  * any multicast capable interface and return it.  The returned ipif
5631  * is refhold'ed.
5632  */
5633 ipif_t *
5634 ipif_lookup_group(ipaddr_t group, zoneid_t zoneid, ip_stack_t *ipst)
5635 {
5636 	ire_t			*ire;
5637 	ipif_t			*ipif;
5638 
5639 	ire = ire_lookup_multi(group, zoneid, ipst);
5640 	if (ire != NULL) {
5641 		ipif = ire->ire_ipif;
5642 		ipif_refhold(ipif);
5643 		ire_refrele(ire);
5644 		return (ipif);
5645 	}
5646 
5647 	return (ipif_lookup_multicast(ipst, zoneid, B_FALSE));
5648 }
5649 
5650 /*
5651  * Look for an ipif with the specified interface address and destination.
5652  * The destination address is used only for matching point-to-point interfaces.
5653  */
5654 ipif_t *
5655 ipif_lookup_interface(ipaddr_t if_addr, ipaddr_t dst, queue_t *q, mblk_t *mp,
5656     ipsq_func_t func, int *error, ip_stack_t *ipst)
5657 {
5658 	ipif_t	*ipif;
5659 	ill_t	*ill;
5660 	ill_walk_context_t ctx;
5661 	ipsq_t	*ipsq;
5662 
5663 	if (error != NULL)
5664 		*error = 0;
5665 
5666 	/*
5667 	 * First match all the point-to-point interfaces
5668 	 * before looking at non-point-to-point interfaces.
5669 	 * This is done to avoid returning non-point-to-point
5670 	 * ipif instead of unnumbered point-to-point ipif.
5671 	 */
5672 	rw_enter(&ipst->ips_ill_g_lock, RW_READER);
5673 	ill = ILL_START_WALK_V4(&ctx, ipst);
5674 	for (; ill != NULL; ill = ill_next(&ctx, ill)) {
5675 		GRAB_CONN_LOCK(q);
5676 		mutex_enter(&ill->ill_lock);
5677 		for (ipif = ill->ill_ipif; ipif != NULL;
5678 		    ipif = ipif->ipif_next) {
5679 			/* Allow the ipif to be down */
5680 			if ((ipif->ipif_flags & IPIF_POINTOPOINT) &&
5681 			    (ipif->ipif_lcl_addr == if_addr) &&
5682 			    (ipif->ipif_pp_dst_addr == dst)) {
5683 				/*
5684 				 * The block comment at the start of ipif_down
5685 				 * explains the use of the macros used below
5686 				 */
5687 				if (IPIF_CAN_LOOKUP(ipif)) {
5688 					ipif_refhold_locked(ipif);
5689 					mutex_exit(&ill->ill_lock);
5690 					RELEASE_CONN_LOCK(q);
5691 					rw_exit(&ipst->ips_ill_g_lock);
5692 					return (ipif);
5693 				} else if (IPIF_CAN_WAIT(ipif, q)) {
5694 					ipsq = ill->ill_phyint->phyint_ipsq;
5695 					mutex_enter(&ipsq->ipsq_lock);
5696 					mutex_enter(&ipsq->ipsq_xop->ipx_lock);
5697 					mutex_exit(&ill->ill_lock);
5698 					rw_exit(&ipst->ips_ill_g_lock);
5699 					ipsq_enq(ipsq, q, mp, func, NEW_OP,
5700 					    ill);
5701 					mutex_exit(&ipsq->ipsq_xop->ipx_lock);
5702 					mutex_exit(&ipsq->ipsq_lock);
5703 					RELEASE_CONN_LOCK(q);
5704 					if (error != NULL)
5705 						*error = EINPROGRESS;
5706 					return (NULL);
5707 				}
5708 			}
5709 		}
5710 		mutex_exit(&ill->ill_lock);
5711 		RELEASE_CONN_LOCK(q);
5712 	}
5713 	rw_exit(&ipst->ips_ill_g_lock);
5714 
5715 	/* lookup the ipif based on interface address */
5716 	ipif = ipif_lookup_addr(if_addr, NULL, ALL_ZONES, q, mp, func, error,
5717 	    ipst);
5718 	ASSERT(ipif == NULL || !ipif->ipif_isv6);
5719 	return (ipif);
5720 }
5721 
5722 /*
5723  * Common function for ipif_lookup_addr() and ipif_lookup_addr_exact().
5724  */
5725 static ipif_t *
5726 ipif_lookup_addr_common(ipaddr_t addr, ill_t *match_ill, boolean_t match_illgrp,
5727     zoneid_t zoneid, queue_t *q, mblk_t *mp, ipsq_func_t func, int *error,
5728     ip_stack_t *ipst)
5729 {
5730 	ipif_t  *ipif;
5731 	ill_t   *ill;
5732 	boolean_t ptp = B_FALSE;
5733 	ipsq_t	*ipsq;
5734 	ill_walk_context_t	ctx;
5735 
5736 	if (error != NULL)
5737 		*error = 0;
5738 
5739 	rw_enter(&ipst->ips_ill_g_lock, RW_READER);
5740 	/*
5741 	 * Repeat twice, first based on local addresses and
5742 	 * next time for pointopoint.
5743 	 */
5744 repeat:
5745 	ill = ILL_START_WALK_V4(&ctx, ipst);
5746 	for (; ill != NULL; ill = ill_next(&ctx, ill)) {
5747 		if (match_ill != NULL && ill != match_ill &&
5748 		    (!match_illgrp || !IS_IN_SAME_ILLGRP(ill, match_ill))) {
5749 			continue;
5750 		}
5751 		GRAB_CONN_LOCK(q);
5752 		mutex_enter(&ill->ill_lock);
5753 		for (ipif = ill->ill_ipif; ipif != NULL;
5754 		    ipif = ipif->ipif_next) {
5755 			if (zoneid != ALL_ZONES &&
5756 			    zoneid != ipif->ipif_zoneid &&
5757 			    ipif->ipif_zoneid != ALL_ZONES)
5758 				continue;
5759 			/* Allow the ipif to be down */
5760 			if ((!ptp && (ipif->ipif_lcl_addr == addr) &&
5761 			    ((ipif->ipif_flags & IPIF_UNNUMBERED) == 0)) ||
5762 			    (ptp && (ipif->ipif_flags & IPIF_POINTOPOINT) &&
5763 			    (ipif->ipif_pp_dst_addr == addr))) {
5764 				/*
5765 				 * The block comment at the start of ipif_down
5766 				 * explains the use of the macros used below
5767 				 */
5768 				if (IPIF_CAN_LOOKUP(ipif)) {
5769 					ipif_refhold_locked(ipif);
5770 					mutex_exit(&ill->ill_lock);
5771 					RELEASE_CONN_LOCK(q);
5772 					rw_exit(&ipst->ips_ill_g_lock);
5773 					return (ipif);
5774 				} else if (IPIF_CAN_WAIT(ipif, q)) {
5775 					ipsq = ill->ill_phyint->phyint_ipsq;
5776 					mutex_enter(&ipsq->ipsq_lock);
5777 					mutex_enter(&ipsq->ipsq_xop->ipx_lock);
5778 					mutex_exit(&ill->ill_lock);
5779 					rw_exit(&ipst->ips_ill_g_lock);
5780 					ipsq_enq(ipsq, q, mp, func, NEW_OP,
5781 					    ill);
5782 					mutex_exit(&ipsq->ipsq_xop->ipx_lock);
5783 					mutex_exit(&ipsq->ipsq_lock);
5784 					RELEASE_CONN_LOCK(q);
5785 					if (error != NULL)
5786 						*error = EINPROGRESS;
5787 					return (NULL);
5788 				}
5789 			}
5790 		}
5791 		mutex_exit(&ill->ill_lock);
5792 		RELEASE_CONN_LOCK(q);
5793 	}
5794 
5795 	/* If we already did the ptp case, then we are done */
5796 	if (ptp) {
5797 		rw_exit(&ipst->ips_ill_g_lock);
5798 		if (error != NULL)
5799 			*error = ENXIO;
5800 		return (NULL);
5801 	}
5802 	ptp = B_TRUE;
5803 	goto repeat;
5804 }
5805 
5806 /*
5807  * Check if the address exists in the system.
5808  * We don't hold the conn_lock as we will not perform defered ipsqueue
5809  * operation.
5810  */
5811 boolean_t
5812 ip_addr_exists(ipaddr_t addr, zoneid_t zoneid, ip_stack_t *ipst)
5813 {
5814 	ipif_t  *ipif;
5815 	ill_t   *ill;
5816 	ill_walk_context_t	ctx;
5817 
5818 	rw_enter(&ipst->ips_ill_g_lock, RW_READER);
5819 
5820 	ill = ILL_START_WALK_V4(&ctx, ipst);
5821 	for (; ill != NULL; ill = ill_next(&ctx, ill)) {
5822 		mutex_enter(&ill->ill_lock);
5823 		for (ipif = ill->ill_ipif; ipif != NULL;
5824 		    ipif = ipif->ipif_next) {
5825 			if (zoneid != ALL_ZONES &&
5826 			    zoneid != ipif->ipif_zoneid &&
5827 			    ipif->ipif_zoneid != ALL_ZONES)
5828 				continue;
5829 			/* Allow the ipif to be down */
5830 			/*
5831 			 * XXX Different from ipif_lookup_addr(), we don't do
5832 			 * twice lookups. As from bind()'s point of view, we
5833 			 * may return once we find a match.
5834 			 */
5835 			if (((ipif->ipif_lcl_addr == addr) &&
5836 			    ((ipif->ipif_flags & IPIF_UNNUMBERED) == 0)) ||
5837 			    ((ipif->ipif_flags & IPIF_POINTOPOINT) &&
5838 			    (ipif->ipif_pp_dst_addr == addr))) {
5839 				/*
5840 				 * Allow bind() to be successful even if the
5841 				 * ipif is with IPIF_CHANGING bit set.
5842 				 */
5843 				mutex_exit(&ill->ill_lock);
5844 				rw_exit(&ipst->ips_ill_g_lock);
5845 				return (B_TRUE);
5846 			}
5847 		}
5848 		mutex_exit(&ill->ill_lock);
5849 	}
5850 
5851 	rw_exit(&ipst->ips_ill_g_lock);
5852 	return (B_FALSE);
5853 }
5854 
5855 /*
5856  * Lookup an ipif with the specified address.  For point-to-point links we
5857  * look for matches on either the destination address or the local address,
5858  * but we skip the local address check if IPIF_UNNUMBERED is set.  If the
5859  * `match_ill' argument is non-NULL, the lookup is restricted to that ill
5860  * (or illgrp if `match_ill' is in an IPMP group).
5861  */
5862 ipif_t *
5863 ipif_lookup_addr(ipaddr_t addr, ill_t *match_ill, zoneid_t zoneid, queue_t *q,
5864     mblk_t *mp, ipsq_func_t func, int *error, ip_stack_t *ipst)
5865 {
5866 	return (ipif_lookup_addr_common(addr, match_ill, B_TRUE, zoneid, q, mp,
5867 	    func, error, ipst));
5868 }
5869 
5870 /*
5871  * Special abbreviated version of ipif_lookup_addr() that doesn't match
5872  * `match_ill' across the IPMP group.  This function is only needed in some
5873  * corner-cases; almost everything should use ipif_lookup_addr().
5874  */
5875 static ipif_t *
5876 ipif_lookup_addr_exact(ipaddr_t addr, ill_t *match_ill, ip_stack_t *ipst)
5877 {
5878 	ASSERT(match_ill != NULL);
5879 	return (ipif_lookup_addr_common(addr, match_ill, B_FALSE, ALL_ZONES,
5880 	    NULL, NULL, NULL, NULL, ipst));
5881 }
5882 
5883 /*
5884  * Look for an ipif with the specified address. For point-point links
5885  * we look for matches on either the destination address and the local
5886  * address, but we ignore the check on the local address if IPIF_UNNUMBERED
5887  * is set.
5888  * If the `match_ill' argument is non-NULL, the lookup is restricted to that
5889  * ill (or illgrp if `match_ill' is in an IPMP group).
5890  * Return the zoneid for the ipif which matches. ALL_ZONES if no match.
5891  */
5892 zoneid_t
5893 ipif_lookup_addr_zoneid(ipaddr_t addr, ill_t *match_ill, ip_stack_t *ipst)
5894 {
5895 	zoneid_t zoneid;
5896 	ipif_t  *ipif;
5897 	ill_t   *ill;
5898 	boolean_t ptp = B_FALSE;
5899 	ill_walk_context_t	ctx;
5900 
5901 	rw_enter(&ipst->ips_ill_g_lock, RW_READER);
5902 	/*
5903 	 * Repeat twice, first based on local addresses and
5904 	 * next time for pointopoint.
5905 	 */
5906 repeat:
5907 	ill = ILL_START_WALK_V4(&ctx, ipst);
5908 	for (; ill != NULL; ill = ill_next(&ctx, ill)) {
5909 		if (match_ill != NULL && ill != match_ill &&
5910 		    !IS_IN_SAME_ILLGRP(ill, match_ill)) {
5911 			continue;
5912 		}
5913 		mutex_enter(&ill->ill_lock);
5914 		for (ipif = ill->ill_ipif; ipif != NULL;
5915 		    ipif = ipif->ipif_next) {
5916 			/* Allow the ipif to be down */
5917 			if ((!ptp && (ipif->ipif_lcl_addr == addr) &&
5918 			    ((ipif->ipif_flags & IPIF_UNNUMBERED) == 0)) ||
5919 			    (ptp && (ipif->ipif_flags & IPIF_POINTOPOINT) &&
5920 			    (ipif->ipif_pp_dst_addr == addr)) &&
5921 			    !(ipif->ipif_state_flags & IPIF_CONDEMNED)) {
5922 				zoneid = ipif->ipif_zoneid;
5923 				mutex_exit(&ill->ill_lock);
5924 				rw_exit(&ipst->ips_ill_g_lock);
5925 				/*
5926 				 * If ipif_zoneid was ALL_ZONES then we have
5927 				 * a trusted extensions shared IP address.
5928 				 * In that case GLOBAL_ZONEID works to send.
5929 				 */
5930 				if (zoneid == ALL_ZONES)
5931 					zoneid = GLOBAL_ZONEID;
5932 				return (zoneid);
5933 			}
5934 		}
5935 		mutex_exit(&ill->ill_lock);
5936 	}
5937 
5938 	/* If we already did the ptp case, then we are done */
5939 	if (ptp) {
5940 		rw_exit(&ipst->ips_ill_g_lock);
5941 		return (ALL_ZONES);
5942 	}
5943 	ptp = B_TRUE;
5944 	goto repeat;
5945 }
5946 
5947 /*
5948  * Look for an ipif that matches the specified remote address i.e. the
5949  * ipif that would receive the specified packet.
5950  * First look for directly connected interfaces and then do a recursive
5951  * IRE lookup and pick the first ipif corresponding to the source address in the
5952  * ire.
5953  * Returns: held ipif
5954  */
5955 ipif_t *
5956 ipif_lookup_remote(ill_t *ill, ipaddr_t addr, zoneid_t zoneid)
5957 {
5958 	ipif_t	*ipif;
5959 	ire_t	*ire;
5960 	ip_stack_t	*ipst = ill->ill_ipst;
5961 
5962 	ASSERT(!ill->ill_isv6);
5963 
5964 	/*
5965 	 * Someone could be changing this ipif currently or change it
5966 	 * after we return this. Thus  a few packets could use the old
5967 	 * old values. However structure updates/creates (ire, ilg, ilm etc)
5968 	 * will atomically be updated or cleaned up with the new value
5969 	 * Thus we don't need a lock to check the flags or other attrs below.
5970 	 */
5971 	mutex_enter(&ill->ill_lock);
5972 	for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) {
5973 		if (!IPIF_CAN_LOOKUP(ipif))
5974 			continue;
5975 		if (zoneid != ALL_ZONES && zoneid != ipif->ipif_zoneid &&
5976 		    ipif->ipif_zoneid != ALL_ZONES)
5977 			continue;
5978 		/* Allow the ipif to be down */
5979 		if (ipif->ipif_flags & IPIF_POINTOPOINT) {
5980 			if ((ipif->ipif_pp_dst_addr == addr) ||
5981 			    (!(ipif->ipif_flags & IPIF_UNNUMBERED) &&
5982 			    ipif->ipif_lcl_addr == addr)) {
5983 				ipif_refhold_locked(ipif);
5984 				mutex_exit(&ill->ill_lock);
5985 				return (ipif);
5986 			}
5987 		} else if (ipif->ipif_subnet == (addr & ipif->ipif_net_mask)) {
5988 			ipif_refhold_locked(ipif);
5989 			mutex_exit(&ill->ill_lock);
5990 			return (ipif);
5991 		}
5992 	}
5993 	mutex_exit(&ill->ill_lock);
5994 	ire = ire_route_lookup(addr, 0, 0, 0, NULL, NULL, zoneid,
5995 	    NULL, MATCH_IRE_RECURSIVE, ipst);
5996 	if (ire != NULL) {
5997 		/*
5998 		 * The callers of this function wants to know the
5999 		 * interface on which they have to send the replies
6000 		 * back. For IREs that have ire_stq and ire_ipif
6001 		 * derived from different ills, we really don't care
6002 		 * what we return here.
6003 		 */
6004 		ipif = ire->ire_ipif;
6005 		if (ipif != NULL) {
6006 			ipif_refhold(ipif);
6007 			ire_refrele(ire);
6008 			return (ipif);
6009 		}
6010 		ire_refrele(ire);
6011 	}
6012 	/* Pick the first interface */
6013 	ipif = ipif_get_next_ipif(NULL, ill);
6014 	return (ipif);
6015 }
6016 
6017 /*
6018  * This func does not prevent refcnt from increasing. But if
6019  * the caller has taken steps to that effect, then this func
6020  * can be used to determine whether the ill has become quiescent
6021  */
6022 static boolean_t
6023 ill_is_quiescent(ill_t *ill)
6024 {
6025 	ipif_t	*ipif;
6026 
6027 	ASSERT(MUTEX_HELD(&ill->ill_lock));
6028 
6029 	for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) {
6030 		if (ipif->ipif_refcnt != 0 || !IPIF_DOWN_OK(ipif)) {
6031 			return (B_FALSE);
6032 		}
6033 	}
6034 	if (!ILL_DOWN_OK(ill) || ill->ill_refcnt != 0) {
6035 		return (B_FALSE);
6036 	}
6037 	return (B_TRUE);
6038 }
6039 
6040 boolean_t
6041 ill_is_freeable(ill_t *ill)
6042 {
6043 	ipif_t	*ipif;
6044 
6045 	ASSERT(MUTEX_HELD(&ill->ill_lock));
6046 
6047 	for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) {
6048 		if (ipif->ipif_refcnt != 0 || !IPIF_FREE_OK(ipif)) {
6049 			return (B_FALSE);
6050 		}
6051 	}
6052 	if (!ILL_FREE_OK(ill) || ill->ill_refcnt != 0) {
6053 		return (B_FALSE);
6054 	}
6055 	return (B_TRUE);
6056 }
6057 
6058 /*
6059  * This func does not prevent refcnt from increasing. But if
6060  * the caller has taken steps to that effect, then this func
6061  * can be used to determine whether the ipif has become quiescent
6062  */
6063 static boolean_t
6064 ipif_is_quiescent(ipif_t *ipif)
6065 {
6066 	ill_t *ill;
6067 
6068 	ASSERT(MUTEX_HELD(&ipif->ipif_ill->ill_lock));
6069 
6070 	if (ipif->ipif_refcnt != 0 || !IPIF_DOWN_OK(ipif)) {
6071 		return (B_FALSE);
6072 	}
6073 
6074 	ill = ipif->ipif_ill;
6075 	if (ill->ill_ipif_up_count != 0 || ill->ill_ipif_dup_count != 0 ||
6076 	    ill->ill_logical_down) {
6077 		return (B_TRUE);
6078 	}
6079 
6080 	/* This is the last ipif going down or being deleted on this ill */
6081 	if (!ILL_DOWN_OK(ill) || ill->ill_refcnt != 0) {
6082 		return (B_FALSE);
6083 	}
6084 
6085 	return (B_TRUE);
6086 }
6087 
6088 /*
6089  * return true if the ipif can be destroyed: the ipif has to be quiescent
6090  * with zero references from ire/nce/ilm to it.
6091  */
6092 static boolean_t
6093 ipif_is_freeable(ipif_t *ipif)
6094 {
6095 	ASSERT(MUTEX_HELD(&ipif->ipif_ill->ill_lock));
6096 	ASSERT(ipif->ipif_id != 0);
6097 	return (ipif->ipif_refcnt == 0 && IPIF_FREE_OK(ipif));
6098 }
6099 
6100 /*
6101  * The ipif/ill/ire has been refreled. Do the tail processing.
6102  * Determine if the ipif or ill in question has become quiescent and if so
6103  * wakeup close and/or restart any queued pending ioctl that is waiting
6104  * for the ipif_down (or ill_down)
6105  */
6106 void
6107 ipif_ill_refrele_tail(ill_t *ill)
6108 {
6109 	mblk_t	*mp;
6110 	conn_t	*connp;
6111 	ipsq_t	*ipsq;
6112 	ipxop_t	*ipx;
6113 	ipif_t	*ipif;
6114 	dl_notify_ind_t *dlindp;
6115 
6116 	ASSERT(MUTEX_HELD(&ill->ill_lock));
6117 
6118 	if ((ill->ill_state_flags & ILL_CONDEMNED) && ill_is_freeable(ill)) {
6119 		/* ip_modclose() may be waiting */
6120 		cv_broadcast(&ill->ill_cv);
6121 	}
6122 
6123 	ipsq = ill->ill_phyint->phyint_ipsq;
6124 	mutex_enter(&ipsq->ipsq_lock);
6125 	ipx = ipsq->ipsq_xop;
6126 	mutex_enter(&ipx->ipx_lock);
6127 	if (ipx->ipx_waitfor == 0)	/* no one's waiting; bail */
6128 		goto unlock;
6129 
6130 	ASSERT(ipx->ipx_pending_mp != NULL && ipx->ipx_pending_ipif != NULL);
6131 
6132 	ipif = ipx->ipx_pending_ipif;
6133 	if (ipif->ipif_ill != ill) 	/* wait is for another ill; bail */
6134 		goto unlock;
6135 
6136 	switch (ipx->ipx_waitfor) {
6137 	case IPIF_DOWN:
6138 		if (!ipif_is_quiescent(ipif))
6139 			goto unlock;
6140 		break;
6141 	case IPIF_FREE:
6142 		if (!ipif_is_freeable(ipif))
6143 			goto unlock;
6144 		break;
6145 	case ILL_DOWN:
6146 		if (!ill_is_quiescent(ill))
6147 			goto unlock;
6148 		break;
6149 	case ILL_FREE:
6150 		/*
6151 		 * ILL_FREE is only for loopback; normal ill teardown waits
6152 		 * synchronously in ip_modclose() without using ipx_waitfor,
6153 		 * handled by the cv_broadcast() at the top of this function.
6154 		 */
6155 		if (!ill_is_freeable(ill))
6156 			goto unlock;
6157 		break;
6158 	default:
6159 		cmn_err(CE_PANIC, "ipsq: %p unknown ipx_waitfor %d\n",
6160 		    (void *)ipsq, ipx->ipx_waitfor);
6161 	}
6162 
6163 	ill_refhold_locked(ill);	/* for qwriter_ip() call below */
6164 	mutex_exit(&ipx->ipx_lock);
6165 	mp = ipsq_pending_mp_get(ipsq, &connp);
6166 	mutex_exit(&ipsq->ipsq_lock);
6167 	mutex_exit(&ill->ill_lock);
6168 
6169 	ASSERT(mp != NULL);
6170 	/*
6171 	 * NOTE: all of the qwriter_ip() calls below use CUR_OP since
6172 	 * we can only get here when the current operation decides it
6173 	 * it needs to quiesce via ipsq_pending_mp_add().
6174 	 */
6175 	switch (mp->b_datap->db_type) {
6176 	case M_PCPROTO:
6177 	case M_PROTO:
6178 		/*
6179 		 * For now, only DL_NOTIFY_IND messages can use this facility.
6180 		 */
6181 		dlindp = (dl_notify_ind_t *)mp->b_rptr;
6182 		ASSERT(dlindp->dl_primitive == DL_NOTIFY_IND);
6183 
6184 		switch (dlindp->dl_notification) {
6185 		case DL_NOTE_PHYS_ADDR:
6186 			qwriter_ip(ill, ill->ill_rq, mp,
6187 			    ill_set_phys_addr_tail, CUR_OP, B_TRUE);
6188 			return;
6189 		case DL_NOTE_REPLUMB:
6190 			qwriter_ip(ill, ill->ill_rq, mp,
6191 			    ill_replumb_tail, CUR_OP, B_TRUE);
6192 			return;
6193 		default:
6194 			ASSERT(0);
6195 			ill_refrele(ill);
6196 		}
6197 		break;
6198 
6199 	case M_ERROR:
6200 	case M_HANGUP:
6201 		qwriter_ip(ill, ill->ill_rq, mp, ipif_all_down_tail, CUR_OP,
6202 		    B_TRUE);
6203 		return;
6204 
6205 	case M_IOCTL:
6206 	case M_IOCDATA:
6207 		qwriter_ip(ill, (connp != NULL ? CONNP_TO_WQ(connp) :
6208 		    ill->ill_wq), mp, ip_reprocess_ioctl, CUR_OP, B_TRUE);
6209 		return;
6210 
6211 	default:
6212 		cmn_err(CE_PANIC, "ipif_ill_refrele_tail mp %p "
6213 		    "db_type %d\n", (void *)mp, mp->b_datap->db_type);
6214 	}
6215 	return;
6216 unlock:
6217 	mutex_exit(&ipsq->ipsq_lock);
6218 	mutex_exit(&ipx->ipx_lock);
6219 	mutex_exit(&ill->ill_lock);
6220 }
6221 
6222 #ifdef DEBUG
6223 /* Reuse trace buffer from beginning (if reached the end) and record trace */
6224 static void
6225 th_trace_rrecord(th_trace_t *th_trace)
6226 {
6227 	tr_buf_t *tr_buf;
6228 	uint_t lastref;
6229 
6230 	lastref = th_trace->th_trace_lastref;
6231 	lastref++;
6232 	if (lastref == TR_BUF_MAX)
6233 		lastref = 0;
6234 	th_trace->th_trace_lastref = lastref;
6235 	tr_buf = &th_trace->th_trbuf[lastref];
6236 	tr_buf->tr_time = lbolt;
6237 	tr_buf->tr_depth = getpcstack(tr_buf->tr_stack, TR_STACK_DEPTH);
6238 }
6239 
6240 static void
6241 th_trace_free(void *value)
6242 {
6243 	th_trace_t *th_trace = value;
6244 
6245 	ASSERT(th_trace->th_refcnt == 0);
6246 	kmem_free(th_trace, sizeof (*th_trace));
6247 }
6248 
6249 /*
6250  * Find or create the per-thread hash table used to track object references.
6251  * The ipst argument is NULL if we shouldn't allocate.
6252  *
6253  * Accesses per-thread data, so there's no need to lock here.
6254  */
6255 static mod_hash_t *
6256 th_trace_gethash(ip_stack_t *ipst)
6257 {
6258 	th_hash_t *thh;
6259 
6260 	if ((thh = tsd_get(ip_thread_data)) == NULL && ipst != NULL) {
6261 		mod_hash_t *mh;
6262 		char name[256];
6263 		size_t objsize, rshift;
6264 		int retv;
6265 
6266 		if ((thh = kmem_alloc(sizeof (*thh), KM_NOSLEEP)) == NULL)
6267 			return (NULL);
6268 		(void) snprintf(name, sizeof (name), "th_trace_%p",
6269 		    (void *)curthread);
6270 
6271 		/*
6272 		 * We use mod_hash_create_extended here rather than the more
6273 		 * obvious mod_hash_create_ptrhash because the latter has a
6274 		 * hard-coded KM_SLEEP, and we'd prefer to fail rather than
6275 		 * block.
6276 		 */
6277 		objsize = MAX(MAX(sizeof (ill_t), sizeof (ipif_t)),
6278 		    MAX(sizeof (ire_t), sizeof (nce_t)));
6279 		rshift = highbit(objsize);
6280 		mh = mod_hash_create_extended(name, 64, mod_hash_null_keydtor,
6281 		    th_trace_free, mod_hash_byptr, (void *)rshift,
6282 		    mod_hash_ptrkey_cmp, KM_NOSLEEP);
6283 		if (mh == NULL) {
6284 			kmem_free(thh, sizeof (*thh));
6285 			return (NULL);
6286 		}
6287 		thh->thh_hash = mh;
6288 		thh->thh_ipst = ipst;
6289 		/*
6290 		 * We trace ills, ipifs, ires, and nces.  All of these are
6291 		 * per-IP-stack, so the lock on the thread list is as well.
6292 		 */
6293 		rw_enter(&ip_thread_rwlock, RW_WRITER);
6294 		list_insert_tail(&ip_thread_list, thh);
6295 		rw_exit(&ip_thread_rwlock);
6296 		retv = tsd_set(ip_thread_data, thh);
6297 		ASSERT(retv == 0);
6298 	}
6299 	return (thh != NULL ? thh->thh_hash : NULL);
6300 }
6301 
6302 boolean_t
6303 th_trace_ref(const void *obj, ip_stack_t *ipst)
6304 {
6305 	th_trace_t *th_trace;
6306 	mod_hash_t *mh;
6307 	mod_hash_val_t val;
6308 
6309 	if ((mh = th_trace_gethash(ipst)) == NULL)
6310 		return (B_FALSE);
6311 
6312 	/*
6313 	 * Attempt to locate the trace buffer for this obj and thread.
6314 	 * If it does not exist, then allocate a new trace buffer and
6315 	 * insert into the hash.
6316 	 */
6317 	if (mod_hash_find(mh, (mod_hash_key_t)obj, &val) == MH_ERR_NOTFOUND) {
6318 		th_trace = kmem_zalloc(sizeof (th_trace_t), KM_NOSLEEP);
6319 		if (th_trace == NULL)
6320 			return (B_FALSE);
6321 
6322 		th_trace->th_id = curthread;
6323 		if (mod_hash_insert(mh, (mod_hash_key_t)obj,
6324 		    (mod_hash_val_t)th_trace) != 0) {
6325 			kmem_free(th_trace, sizeof (th_trace_t));
6326 			return (B_FALSE);
6327 		}
6328 	} else {
6329 		th_trace = (th_trace_t *)val;
6330 	}
6331 
6332 	ASSERT(th_trace->th_refcnt >= 0 &&
6333 	    th_trace->th_refcnt < TR_BUF_MAX - 1);
6334 
6335 	th_trace->th_refcnt++;
6336 	th_trace_rrecord(th_trace);
6337 	return (B_TRUE);
6338 }
6339 
6340 /*
6341  * For the purpose of tracing a reference release, we assume that global
6342  * tracing is always on and that the same thread initiated the reference hold
6343  * is releasing.
6344  */
6345 void
6346 th_trace_unref(const void *obj)
6347 {
6348 	int retv;
6349 	mod_hash_t *mh;
6350 	th_trace_t *th_trace;
6351 	mod_hash_val_t val;
6352 
6353 	mh = th_trace_gethash(NULL);
6354 	retv = mod_hash_find(mh, (mod_hash_key_t)obj, &val);
6355 	ASSERT(retv == 0);
6356 	th_trace = (th_trace_t *)val;
6357 
6358 	ASSERT(th_trace->th_refcnt > 0);
6359 	th_trace->th_refcnt--;
6360 	th_trace_rrecord(th_trace);
6361 }
6362 
6363 /*
6364  * If tracing has been disabled, then we assume that the reference counts are
6365  * now useless, and we clear them out before destroying the entries.
6366  */
6367 void
6368 th_trace_cleanup(const void *obj, boolean_t trace_disable)
6369 {
6370 	th_hash_t	*thh;
6371 	mod_hash_t	*mh;
6372 	mod_hash_val_t	val;
6373 	th_trace_t	*th_trace;
6374 	int		retv;
6375 
6376 	rw_enter(&ip_thread_rwlock, RW_READER);
6377 	for (thh = list_head(&ip_thread_list); thh != NULL;
6378 	    thh = list_next(&ip_thread_list, thh)) {
6379 		if (mod_hash_find(mh = thh->thh_hash, (mod_hash_key_t)obj,
6380 		    &val) == 0) {
6381 			th_trace = (th_trace_t *)val;
6382 			if (trace_disable)
6383 				th_trace->th_refcnt = 0;
6384 			retv = mod_hash_destroy(mh, (mod_hash_key_t)obj);
6385 			ASSERT(retv == 0);
6386 		}
6387 	}
6388 	rw_exit(&ip_thread_rwlock);
6389 }
6390 
6391 void
6392 ipif_trace_ref(ipif_t *ipif)
6393 {
6394 	ASSERT(MUTEX_HELD(&ipif->ipif_ill->ill_lock));
6395 
6396 	if (ipif->ipif_trace_disable)
6397 		return;
6398 
6399 	if (!th_trace_ref(ipif, ipif->ipif_ill->ill_ipst)) {
6400 		ipif->ipif_trace_disable = B_TRUE;
6401 		ipif_trace_cleanup(ipif);
6402 	}
6403 }
6404 
6405 void
6406 ipif_untrace_ref(ipif_t *ipif)
6407 {
6408 	ASSERT(MUTEX_HELD(&ipif->ipif_ill->ill_lock));
6409 
6410 	if (!ipif->ipif_trace_disable)
6411 		th_trace_unref(ipif);
6412 }
6413 
6414 void
6415 ill_trace_ref(ill_t *ill)
6416 {
6417 	ASSERT(MUTEX_HELD(&ill->ill_lock));
6418 
6419 	if (ill->ill_trace_disable)
6420 		return;
6421 
6422 	if (!th_trace_ref(ill, ill->ill_ipst)) {
6423 		ill->ill_trace_disable = B_TRUE;
6424 		ill_trace_cleanup(ill);
6425 	}
6426 }
6427 
6428 void
6429 ill_untrace_ref(ill_t *ill)
6430 {
6431 	ASSERT(MUTEX_HELD(&ill->ill_lock));
6432 
6433 	if (!ill->ill_trace_disable)
6434 		th_trace_unref(ill);
6435 }
6436 
6437 /*
6438  * Called when ipif is unplumbed or when memory alloc fails.  Note that on
6439  * failure, ipif_trace_disable is set.
6440  */
6441 static void
6442 ipif_trace_cleanup(const ipif_t *ipif)
6443 {
6444 	th_trace_cleanup(ipif, ipif->ipif_trace_disable);
6445 }
6446 
6447 /*
6448  * Called when ill is unplumbed or when memory alloc fails.  Note that on
6449  * failure, ill_trace_disable is set.
6450  */
6451 static void
6452 ill_trace_cleanup(const ill_t *ill)
6453 {
6454 	th_trace_cleanup(ill, ill->ill_trace_disable);
6455 }
6456 #endif /* DEBUG */
6457 
6458 void
6459 ipif_refhold_locked(ipif_t *ipif)
6460 {
6461 	ASSERT(MUTEX_HELD(&ipif->ipif_ill->ill_lock));
6462 	ipif->ipif_refcnt++;
6463 	IPIF_TRACE_REF(ipif);
6464 }
6465 
6466 void
6467 ipif_refhold(ipif_t *ipif)
6468 {
6469 	ill_t	*ill;
6470 
6471 	ill = ipif->ipif_ill;
6472 	mutex_enter(&ill->ill_lock);
6473 	ipif->ipif_refcnt++;
6474 	IPIF_TRACE_REF(ipif);
6475 	mutex_exit(&ill->ill_lock);
6476 }
6477 
6478 /*
6479  * Must not be called while holding any locks. Otherwise if this is
6480  * the last reference to be released there is a chance of recursive mutex
6481  * panic due to ipif_refrele -> ipif_ill_refrele_tail -> qwriter_ip trying
6482  * to restart an ioctl.
6483  */
6484 void
6485 ipif_refrele(ipif_t *ipif)
6486 {
6487 	ill_t	*ill;
6488 
6489 	ill = ipif->ipif_ill;
6490 
6491 	mutex_enter(&ill->ill_lock);
6492 	ASSERT(ipif->ipif_refcnt != 0);
6493 	ipif->ipif_refcnt--;
6494 	IPIF_UNTRACE_REF(ipif);
6495 	if (ipif->ipif_refcnt != 0) {
6496 		mutex_exit(&ill->ill_lock);
6497 		return;
6498 	}
6499 
6500 	/* Drops the ill_lock */
6501 	ipif_ill_refrele_tail(ill);
6502 }
6503 
6504 ipif_t *
6505 ipif_get_next_ipif(ipif_t *curr, ill_t *ill)
6506 {
6507 	ipif_t	*ipif;
6508 
6509 	mutex_enter(&ill->ill_lock);
6510 	for (ipif = (curr == NULL ? ill->ill_ipif : curr->ipif_next);
6511 	    ipif != NULL; ipif = ipif->ipif_next) {
6512 		if (!IPIF_CAN_LOOKUP(ipif))
6513 			continue;
6514 		ipif_refhold_locked(ipif);
6515 		mutex_exit(&ill->ill_lock);
6516 		return (ipif);
6517 	}
6518 	mutex_exit(&ill->ill_lock);
6519 	return (NULL);
6520 }
6521 
6522 /*
6523  * TODO: make this table extendible at run time
6524  * Return a pointer to the mac type info for 'mac_type'
6525  */
6526 static ip_m_t *
6527 ip_m_lookup(t_uscalar_t mac_type)
6528 {
6529 	ip_m_t	*ipm;
6530 
6531 	for (ipm = ip_m_tbl; ipm < A_END(ip_m_tbl); ipm++)
6532 		if (ipm->ip_m_mac_type == mac_type)
6533 			return (ipm);
6534 	return (NULL);
6535 }
6536 
6537 /*
6538  * ip_rt_add is called to add an IPv4 route to the forwarding table.
6539  * ipif_arg is passed in to associate it with the correct interface.
6540  * We may need to restart this operation if the ipif cannot be looked up
6541  * due to an exclusive operation that is currently in progress. The restart
6542  * entry point is specified by 'func'
6543  */
6544 int
6545 ip_rt_add(ipaddr_t dst_addr, ipaddr_t mask, ipaddr_t gw_addr,
6546     ipaddr_t src_addr, int flags, ipif_t *ipif_arg, ire_t **ire_arg,
6547     boolean_t ioctl_msg, queue_t *q, mblk_t *mp, ipsq_func_t func,
6548     struct rtsa_s *sp, ip_stack_t *ipst)
6549 {
6550 	ire_t	*ire;
6551 	ire_t	*gw_ire = NULL;
6552 	ipif_t	*ipif = NULL;
6553 	boolean_t ipif_refheld = B_FALSE;
6554 	uint_t	type;
6555 	int	match_flags = MATCH_IRE_TYPE;
6556 	int	error;
6557 	tsol_gc_t *gc = NULL;
6558 	tsol_gcgrp_t *gcgrp = NULL;
6559 	boolean_t gcgrp_xtraref = B_FALSE;
6560 
6561 	ip1dbg(("ip_rt_add:"));
6562 
6563 	if (ire_arg != NULL)
6564 		*ire_arg = NULL;
6565 
6566 	/*
6567 	 * If this is the case of RTF_HOST being set, then we set the netmask
6568 	 * to all ones (regardless if one was supplied).
6569 	 */
6570 	if (flags & RTF_HOST)
6571 		mask = IP_HOST_MASK;
6572 
6573 	/*
6574 	 * Prevent routes with a zero gateway from being created (since
6575 	 * interfaces can currently be plumbed and brought up no assigned
6576 	 * address).
6577 	 */
6578 	if (gw_addr == 0)
6579 		return (ENETUNREACH);
6580 	/*
6581 	 * Get the ipif, if any, corresponding to the gw_addr
6582 	 */
6583 	ipif = ipif_lookup_interface(gw_addr, dst_addr, q, mp, func, &error,
6584 	    ipst);
6585 	if (ipif != NULL) {
6586 		if (IS_VNI(ipif->ipif_ill)) {
6587 			ipif_refrele(ipif);
6588 			return (EINVAL);
6589 		}
6590 		ipif_refheld = B_TRUE;
6591 	} else if (error == EINPROGRESS) {
6592 		ip1dbg(("ip_rt_add: null and EINPROGRESS"));
6593 		return (EINPROGRESS);
6594 	} else {
6595 		error = 0;
6596 	}
6597 
6598 	if (ipif != NULL) {
6599 		ip1dbg(("ip_rt_add: ipif_lookup_interface done ipif nonnull"));
6600 		ASSERT(!MUTEX_HELD(&ipif->ipif_ill->ill_lock));
6601 	} else {
6602 		ip1dbg(("ip_rt_add: ipif_lookup_interface done ipif is null"));
6603 	}
6604 
6605 	/*
6606 	 * GateD will attempt to create routes with a loopback interface
6607 	 * address as the gateway and with RTF_GATEWAY set.  We allow
6608 	 * these routes to be added, but create them as interface routes
6609 	 * since the gateway is an interface address.
6610 	 */
6611 	if ((ipif != NULL) && (ipif->ipif_ire_type == IRE_LOOPBACK)) {
6612 		flags &= ~RTF_GATEWAY;
6613 		if (gw_addr == INADDR_LOOPBACK && dst_addr == INADDR_LOOPBACK &&
6614 		    mask == IP_HOST_MASK) {
6615 			ire = ire_ctable_lookup(dst_addr, 0, IRE_LOOPBACK, ipif,
6616 			    ALL_ZONES, NULL, match_flags, ipst);
6617 			if (ire != NULL) {
6618 				ire_refrele(ire);
6619 				if (ipif_refheld)
6620 					ipif_refrele(ipif);
6621 				return (EEXIST);
6622 			}
6623 			ip1dbg(("ip_rt_add: 0x%p creating IRE 0x%x"
6624 			    "for 0x%x\n", (void *)ipif,
6625 			    ipif->ipif_ire_type,
6626 			    ntohl(ipif->ipif_lcl_addr)));
6627 			ire = ire_create(
6628 			    (uchar_t *)&dst_addr,	/* dest address */
6629 			    (uchar_t *)&mask,		/* mask */
6630 			    (uchar_t *)&ipif->ipif_src_addr,
6631 			    NULL,			/* no gateway */
6632 			    &ipif->ipif_mtu,
6633 			    NULL,
6634 			    ipif->ipif_rq,		/* recv-from queue */
6635 			    NULL,			/* no send-to queue */
6636 			    ipif->ipif_ire_type,	/* LOOPBACK */
6637 			    ipif,
6638 			    0,
6639 			    0,
6640 			    0,
6641 			    (ipif->ipif_flags & IPIF_PRIVATE) ?
6642 			    RTF_PRIVATE : 0,
6643 			    &ire_uinfo_null,
6644 			    NULL,
6645 			    NULL,
6646 			    ipst);
6647 
6648 			if (ire == NULL) {
6649 				if (ipif_refheld)
6650 					ipif_refrele(ipif);
6651 				return (ENOMEM);
6652 			}
6653 			error = ire_add(&ire, q, mp, func, B_FALSE);
6654 			if (error == 0)
6655 				goto save_ire;
6656 			if (ipif_refheld)
6657 				ipif_refrele(ipif);
6658 			return (error);
6659 
6660 		}
6661 	}
6662 
6663 	/*
6664 	 * Traditionally, interface routes are ones where RTF_GATEWAY isn't set
6665 	 * and the gateway address provided is one of the system's interface
6666 	 * addresses.  By using the routing socket interface and supplying an
6667 	 * RTA_IFP sockaddr with an interface index, an alternate method of
6668 	 * specifying an interface route to be created is available which uses
6669 	 * the interface index that specifies the outgoing interface rather than
6670 	 * the address of an outgoing interface (which may not be able to
6671 	 * uniquely identify an interface).  When coupled with the RTF_GATEWAY
6672 	 * flag, routes can be specified which not only specify the next-hop to
6673 	 * be used when routing to a certain prefix, but also which outgoing
6674 	 * interface should be used.
6675 	 *
6676 	 * Previously, interfaces would have unique addresses assigned to them
6677 	 * and so the address assigned to a particular interface could be used
6678 	 * to identify a particular interface.  One exception to this was the
6679 	 * case of an unnumbered interface (where IPIF_UNNUMBERED was set).
6680 	 *
6681 	 * With the advent of IPv6 and its link-local addresses, this
6682 	 * restriction was relaxed and interfaces could share addresses between
6683 	 * themselves.  In fact, typically all of the link-local interfaces on
6684 	 * an IPv6 node or router will have the same link-local address.  In
6685 	 * order to differentiate between these interfaces, the use of an
6686 	 * interface index is necessary and this index can be carried inside a
6687 	 * RTA_IFP sockaddr (which is actually a sockaddr_dl).  One restriction
6688 	 * of using the interface index, however, is that all of the ipif's that
6689 	 * are part of an ill have the same index and so the RTA_IFP sockaddr
6690 	 * cannot be used to differentiate between ipif's (or logical
6691 	 * interfaces) that belong to the same ill (physical interface).
6692 	 *
6693 	 * For example, in the following case involving IPv4 interfaces and
6694 	 * logical interfaces
6695 	 *
6696 	 *	192.0.2.32	255.255.255.224	192.0.2.33	U	if0
6697 	 *	192.0.2.32	255.255.255.224	192.0.2.34	U	if0:1
6698 	 *	192.0.2.32	255.255.255.224	192.0.2.35	U	if0:2
6699 	 *
6700 	 * the ipif's corresponding to each of these interface routes can be
6701 	 * uniquely identified by the "gateway" (actually interface address).
6702 	 *
6703 	 * In this case involving multiple IPv6 default routes to a particular
6704 	 * link-local gateway, the use of RTA_IFP is necessary to specify which
6705 	 * default route is of interest:
6706 	 *
6707 	 *	default		fe80::123:4567:89ab:cdef	U	if0
6708 	 *	default		fe80::123:4567:89ab:cdef	U	if1
6709 	 */
6710 
6711 	/* RTF_GATEWAY not set */
6712 	if (!(flags & RTF_GATEWAY)) {
6713 		queue_t	*stq;
6714 
6715 		if (sp != NULL) {
6716 			ip2dbg(("ip_rt_add: gateway security attributes "
6717 			    "cannot be set with interface route\n"));
6718 			if (ipif_refheld)
6719 				ipif_refrele(ipif);
6720 			return (EINVAL);
6721 		}
6722 
6723 		/*
6724 		 * As the interface index specified with the RTA_IFP sockaddr is
6725 		 * the same for all ipif's off of an ill, the matching logic
6726 		 * below uses MATCH_IRE_ILL if such an index was specified.
6727 		 * This means that routes sharing the same prefix when added
6728 		 * using a RTA_IFP sockaddr must have distinct interface
6729 		 * indices (namely, they must be on distinct ill's).
6730 		 *
6731 		 * On the other hand, since the gateway address will usually be
6732 		 * different for each ipif on the system, the matching logic
6733 		 * uses MATCH_IRE_IPIF in the case of a traditional interface
6734 		 * route.  This means that interface routes for the same prefix
6735 		 * can be created if they belong to distinct ipif's and if a
6736 		 * RTA_IFP sockaddr is not present.
6737 		 */
6738 		if (ipif_arg != NULL) {
6739 			if (ipif_refheld)  {
6740 				ipif_refrele(ipif);
6741 				ipif_refheld = B_FALSE;
6742 			}
6743 			ipif = ipif_arg;
6744 			match_flags |= MATCH_IRE_ILL;
6745 		} else {
6746 			/*
6747 			 * Check the ipif corresponding to the gw_addr
6748 			 */
6749 			if (ipif == NULL)
6750 				return (ENETUNREACH);
6751 			match_flags |= MATCH_IRE_IPIF;
6752 		}
6753 		ASSERT(ipif != NULL);
6754 
6755 		/*
6756 		 * We check for an existing entry at this point.
6757 		 *
6758 		 * Since a netmask isn't passed in via the ioctl interface
6759 		 * (SIOCADDRT), we don't check for a matching netmask in that
6760 		 * case.
6761 		 */
6762 		if (!ioctl_msg)
6763 			match_flags |= MATCH_IRE_MASK;
6764 		ire = ire_ftable_lookup(dst_addr, mask, 0, IRE_INTERFACE, ipif,
6765 		    NULL, ALL_ZONES, 0, NULL, match_flags, ipst);
6766 		if (ire != NULL) {
6767 			ire_refrele(ire);
6768 			if (ipif_refheld)
6769 				ipif_refrele(ipif);
6770 			return (EEXIST);
6771 		}
6772 
6773 		stq = (ipif->ipif_net_type == IRE_IF_RESOLVER)
6774 		    ? ipif->ipif_rq : ipif->ipif_wq;
6775 
6776 		/*
6777 		 * Create a copy of the IRE_LOOPBACK,
6778 		 * IRE_IF_NORESOLVER or IRE_IF_RESOLVER with
6779 		 * the modified address and netmask.
6780 		 */
6781 		ire = ire_create(
6782 		    (uchar_t *)&dst_addr,
6783 		    (uint8_t *)&mask,
6784 		    (uint8_t *)&ipif->ipif_src_addr,
6785 		    NULL,
6786 		    &ipif->ipif_mtu,
6787 		    NULL,
6788 		    NULL,
6789 		    stq,
6790 		    ipif->ipif_net_type,
6791 		    ipif,
6792 		    0,
6793 		    0,
6794 		    0,
6795 		    flags,
6796 		    &ire_uinfo_null,
6797 		    NULL,
6798 		    NULL,
6799 		    ipst);
6800 		if (ire == NULL) {
6801 			if (ipif_refheld)
6802 				ipif_refrele(ipif);
6803 			return (ENOMEM);
6804 		}
6805 
6806 		/*
6807 		 * Some software (for example, GateD and Sun Cluster) attempts
6808 		 * to create (what amount to) IRE_PREFIX routes with the
6809 		 * loopback address as the gateway.  This is primarily done to
6810 		 * set up prefixes with the RTF_REJECT flag set (for example,
6811 		 * when generating aggregate routes.)
6812 		 *
6813 		 * If the IRE type (as defined by ipif->ipif_net_type) is
6814 		 * IRE_LOOPBACK, then we map the request into a
6815 		 * IRE_IF_NORESOLVER. We also OR in the RTF_BLACKHOLE flag as
6816 		 * these interface routes, by definition, can only be that.
6817 		 *
6818 		 * Needless to say, the real IRE_LOOPBACK is NOT created by this
6819 		 * routine, but rather using ire_create() directly.
6820 		 *
6821 		 */
6822 		if (ipif->ipif_net_type == IRE_LOOPBACK) {
6823 			ire->ire_type = IRE_IF_NORESOLVER;
6824 			ire->ire_flags |= RTF_BLACKHOLE;
6825 		}
6826 
6827 		error = ire_add(&ire, q, mp, func, B_FALSE);
6828 		if (error == 0)
6829 			goto save_ire;
6830 
6831 		/*
6832 		 * In the result of failure, ire_add() will have already
6833 		 * deleted the ire in question, so there is no need to
6834 		 * do that here.
6835 		 */
6836 		if (ipif_refheld)
6837 			ipif_refrele(ipif);
6838 		return (error);
6839 	}
6840 	if (ipif_refheld) {
6841 		ipif_refrele(ipif);
6842 		ipif_refheld = B_FALSE;
6843 	}
6844 
6845 	/*
6846 	 * Get an interface IRE for the specified gateway.
6847 	 * If we don't have an IRE_IF_NORESOLVER or IRE_IF_RESOLVER for the
6848 	 * gateway, it is currently unreachable and we fail the request
6849 	 * accordingly.
6850 	 */
6851 	ipif = ipif_arg;
6852 	if (ipif_arg != NULL)
6853 		match_flags |= MATCH_IRE_ILL;
6854 again:
6855 	gw_ire = ire_ftable_lookup(gw_addr, 0, 0, IRE_INTERFACE, ipif_arg, NULL,
6856 	    ALL_ZONES, 0, NULL, match_flags, ipst);
6857 	if (gw_ire == NULL) {
6858 		/*
6859 		 * With IPMP, we allow host routes to influence in.mpathd's
6860 		 * target selection.  However, if the test addresses are on
6861 		 * their own network, the above lookup will fail since the
6862 		 * underlying IRE_INTERFACEs are marked hidden.  So allow
6863 		 * hidden test IREs to be found and try again.
6864 		 */
6865 		if (!(match_flags & MATCH_IRE_MARK_TESTHIDDEN))  {
6866 			match_flags |= MATCH_IRE_MARK_TESTHIDDEN;
6867 			goto again;
6868 		}
6869 		return (ENETUNREACH);
6870 	}
6871 
6872 	/*
6873 	 * We create one of three types of IREs as a result of this request
6874 	 * based on the netmask.  A netmask of all ones (which is automatically
6875 	 * assumed when RTF_HOST is set) results in an IRE_HOST being created.
6876 	 * An all zeroes netmask implies a default route so an IRE_DEFAULT is
6877 	 * created.  Otherwise, an IRE_PREFIX route is created for the
6878 	 * destination prefix.
6879 	 */
6880 	if (mask == IP_HOST_MASK)
6881 		type = IRE_HOST;
6882 	else if (mask == 0)
6883 		type = IRE_DEFAULT;
6884 	else
6885 		type = IRE_PREFIX;
6886 
6887 	/* check for a duplicate entry */
6888 	ire = ire_ftable_lookup(dst_addr, mask, gw_addr, type, ipif_arg,
6889 	    NULL, ALL_ZONES, 0, NULL,
6890 	    match_flags | MATCH_IRE_MASK | MATCH_IRE_GW, ipst);
6891 	if (ire != NULL) {
6892 		ire_refrele(gw_ire);
6893 		ire_refrele(ire);
6894 		return (EEXIST);
6895 	}
6896 
6897 	/* Security attribute exists */
6898 	if (sp != NULL) {
6899 		tsol_gcgrp_addr_t ga;
6900 
6901 		/* find or create the gateway credentials group */
6902 		ga.ga_af = AF_INET;
6903 		IN6_IPADDR_TO_V4MAPPED(gw_addr, &ga.ga_addr);
6904 
6905 		/* we hold reference to it upon success */
6906 		gcgrp = gcgrp_lookup(&ga, B_TRUE);
6907 		if (gcgrp == NULL) {
6908 			ire_refrele(gw_ire);
6909 			return (ENOMEM);
6910 		}
6911 
6912 		/*
6913 		 * Create and add the security attribute to the group; a
6914 		 * reference to the group is made upon allocating a new
6915 		 * entry successfully.  If it finds an already-existing
6916 		 * entry for the security attribute in the group, it simply
6917 		 * returns it and no new reference is made to the group.
6918 		 */
6919 		gc = gc_create(sp, gcgrp, &gcgrp_xtraref);
6920 		if (gc == NULL) {
6921 			/* release reference held by gcgrp_lookup */
6922 			GCGRP_REFRELE(gcgrp);
6923 			ire_refrele(gw_ire);
6924 			return (ENOMEM);
6925 		}
6926 	}
6927 
6928 	/* Create the IRE. */
6929 	ire = ire_create(
6930 	    (uchar_t *)&dst_addr,		/* dest address */
6931 	    (uchar_t *)&mask,			/* mask */
6932 	    /* src address assigned by the caller? */
6933 	    (uchar_t *)(((src_addr != INADDR_ANY) &&
6934 	    (flags & RTF_SETSRC)) ?  &src_addr : NULL),
6935 	    (uchar_t *)&gw_addr,		/* gateway address */
6936 	    &gw_ire->ire_max_frag,
6937 	    NULL,				/* no src nce */
6938 	    NULL,				/* no recv-from queue */
6939 	    NULL,				/* no send-to queue */
6940 	    (ushort_t)type,			/* IRE type */
6941 	    ipif_arg,
6942 	    0,
6943 	    0,
6944 	    0,
6945 	    flags,
6946 	    &gw_ire->ire_uinfo,			/* Inherit ULP info from gw */
6947 	    gc,					/* security attribute */
6948 	    NULL,
6949 	    ipst);
6950 
6951 	/*
6952 	 * The ire holds a reference to the 'gc' and the 'gc' holds a
6953 	 * reference to the 'gcgrp'. We can now release the extra reference
6954 	 * the 'gcgrp' acquired in the gcgrp_lookup, if it was not used.
6955 	 */
6956 	if (gcgrp_xtraref)
6957 		GCGRP_REFRELE(gcgrp);
6958 	if (ire == NULL) {
6959 		if (gc != NULL)
6960 			GC_REFRELE(gc);
6961 		ire_refrele(gw_ire);
6962 		return (ENOMEM);
6963 	}
6964 
6965 	/*
6966 	 * POLICY: should we allow an RTF_HOST with address INADDR_ANY?
6967 	 * SUN/OS socket stuff does but do we really want to allow 0.0.0.0?
6968 	 */
6969 
6970 	/* Add the new IRE. */
6971 	error = ire_add(&ire, q, mp, func, B_FALSE);
6972 	if (error != 0) {
6973 		/*
6974 		 * In the result of failure, ire_add() will have already
6975 		 * deleted the ire in question, so there is no need to
6976 		 * do that here.
6977 		 */
6978 		ire_refrele(gw_ire);
6979 		return (error);
6980 	}
6981 
6982 	if (flags & RTF_MULTIRT) {
6983 		/*
6984 		 * Invoke the CGTP (multirouting) filtering module
6985 		 * to add the dst address in the filtering database.
6986 		 * Replicated inbound packets coming from that address
6987 		 * will be filtered to discard the duplicates.
6988 		 * It is not necessary to call the CGTP filter hook
6989 		 * when the dst address is a broadcast or multicast,
6990 		 * because an IP source address cannot be a broadcast
6991 		 * or a multicast.
6992 		 */
6993 		ire_t *ire_dst = ire_ctable_lookup(ire->ire_addr, 0,
6994 		    IRE_BROADCAST, NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst);
6995 		if (ire_dst != NULL) {
6996 			ip_cgtp_bcast_add(ire, ire_dst, ipst);
6997 			ire_refrele(ire_dst);
6998 			goto save_ire;
6999 		}
7000 		if (ipst->ips_ip_cgtp_filter_ops != NULL &&
7001 		    !CLASSD(ire->ire_addr)) {
7002 			int res = ipst->ips_ip_cgtp_filter_ops->cfo_add_dest_v4(
7003 			    ipst->ips_netstack->netstack_stackid,
7004 			    ire->ire_addr,
7005 			    ire->ire_gateway_addr,
7006 			    ire->ire_src_addr,
7007 			    gw_ire->ire_src_addr);
7008 			if (res != 0) {
7009 				ire_refrele(gw_ire);
7010 				ire_delete(ire);
7011 				return (res);
7012 			}
7013 		}
7014 	}
7015 
7016 	/*
7017 	 * Now that the prefix IRE entry has been created, delete any
7018 	 * existing gateway IRE cache entries as well as any IRE caches
7019 	 * using the gateway, and force them to be created through
7020 	 * ip_newroute.
7021 	 */
7022 	if (gc != NULL) {
7023 		ASSERT(gcgrp != NULL);
7024 		ire_clookup_delete_cache_gw(gw_addr, ALL_ZONES, ipst);
7025 	}
7026 
7027 save_ire:
7028 	if (gw_ire != NULL) {
7029 		ire_refrele(gw_ire);
7030 	}
7031 	if (ipif != NULL) {
7032 		/*
7033 		 * Save enough information so that we can recreate the IRE if
7034 		 * the interface goes down and then up.  The metrics associated
7035 		 * with the route will be saved as well when rts_setmetrics() is
7036 		 * called after the IRE has been created.  In the case where
7037 		 * memory cannot be allocated, none of this information will be
7038 		 * saved.
7039 		 */
7040 		ipif_save_ire(ipif, ire);
7041 	}
7042 	if (ioctl_msg)
7043 		ip_rts_rtmsg(RTM_OLDADD, ire, 0, ipst);
7044 	if (ire_arg != NULL) {
7045 		/*
7046 		 * Store the ire that was successfully added into where ire_arg
7047 		 * points to so that callers don't have to look it up
7048 		 * themselves (but they are responsible for ire_refrele()ing
7049 		 * the ire when they are finished with it).
7050 		 */
7051 		*ire_arg = ire;
7052 	} else {
7053 		ire_refrele(ire);		/* Held in ire_add */
7054 	}
7055 	if (ipif_refheld)
7056 		ipif_refrele(ipif);
7057 	return (0);
7058 }
7059 
7060 /*
7061  * ip_rt_delete is called to delete an IPv4 route.
7062  * ipif_arg is passed in to associate it with the correct interface.
7063  * We may need to restart this operation if the ipif cannot be looked up
7064  * due to an exclusive operation that is currently in progress. The restart
7065  * entry point is specified by 'func'
7066  */
7067 /* ARGSUSED4 */
7068 int
7069 ip_rt_delete(ipaddr_t dst_addr, ipaddr_t mask, ipaddr_t gw_addr,
7070     uint_t rtm_addrs, int flags, ipif_t *ipif_arg, boolean_t ioctl_msg,
7071     queue_t *q, mblk_t *mp, ipsq_func_t func, ip_stack_t *ipst)
7072 {
7073 	ire_t	*ire = NULL;
7074 	ipif_t	*ipif;
7075 	boolean_t ipif_refheld = B_FALSE;
7076 	uint_t	type;
7077 	uint_t	match_flags = MATCH_IRE_TYPE;
7078 	int	err = 0;
7079 
7080 	ip1dbg(("ip_rt_delete:"));
7081 	/*
7082 	 * If this is the case of RTF_HOST being set, then we set the netmask
7083 	 * to all ones.  Otherwise, we use the netmask if one was supplied.
7084 	 */
7085 	if (flags & RTF_HOST) {
7086 		mask = IP_HOST_MASK;
7087 		match_flags |= MATCH_IRE_MASK;
7088 	} else if (rtm_addrs & RTA_NETMASK) {
7089 		match_flags |= MATCH_IRE_MASK;
7090 	}
7091 
7092 	/*
7093 	 * Note that RTF_GATEWAY is never set on a delete, therefore
7094 	 * we check if the gateway address is one of our interfaces first,
7095 	 * and fall back on RTF_GATEWAY routes.
7096 	 *
7097 	 * This makes it possible to delete an original
7098 	 * IRE_IF_NORESOLVER/IRE_IF_RESOLVER - consistent with SunOS 4.1.
7099 	 *
7100 	 * As the interface index specified with the RTA_IFP sockaddr is the
7101 	 * same for all ipif's off of an ill, the matching logic below uses
7102 	 * MATCH_IRE_ILL if such an index was specified.  This means a route
7103 	 * sharing the same prefix and interface index as the the route
7104 	 * intended to be deleted might be deleted instead if a RTA_IFP sockaddr
7105 	 * is specified in the request.
7106 	 *
7107 	 * On the other hand, since the gateway address will usually be
7108 	 * different for each ipif on the system, the matching logic
7109 	 * uses MATCH_IRE_IPIF in the case of a traditional interface
7110 	 * route.  This means that interface routes for the same prefix can be
7111 	 * uniquely identified if they belong to distinct ipif's and if a
7112 	 * RTA_IFP sockaddr is not present.
7113 	 *
7114 	 * For more detail on specifying routes by gateway address and by
7115 	 * interface index, see the comments in ip_rt_add().
7116 	 */
7117 	ipif = ipif_lookup_interface(gw_addr, dst_addr, q, mp, func, &err,
7118 	    ipst);
7119 	if (ipif != NULL)
7120 		ipif_refheld = B_TRUE;
7121 	else if (err == EINPROGRESS)
7122 		return (err);
7123 	else
7124 		err = 0;
7125 	if (ipif != NULL) {
7126 		if (ipif_arg != NULL) {
7127 			if (ipif_refheld) {
7128 				ipif_refrele(ipif);
7129 				ipif_refheld = B_FALSE;
7130 			}
7131 			ipif = ipif_arg;
7132 			match_flags |= MATCH_IRE_ILL;
7133 		} else {
7134 			match_flags |= MATCH_IRE_IPIF;
7135 		}
7136 		if (ipif->ipif_ire_type == IRE_LOOPBACK) {
7137 			ire = ire_ctable_lookup(dst_addr, 0, IRE_LOOPBACK, ipif,
7138 			    ALL_ZONES, NULL, match_flags, ipst);
7139 		}
7140 		if (ire == NULL) {
7141 			ire = ire_ftable_lookup(dst_addr, mask, 0,
7142 			    IRE_INTERFACE, ipif, NULL, ALL_ZONES, 0, NULL,
7143 			    match_flags, ipst);
7144 		}
7145 	}
7146 
7147 	if (ire == NULL) {
7148 		/*
7149 		 * At this point, the gateway address is not one of our own
7150 		 * addresses or a matching interface route was not found.  We
7151 		 * set the IRE type to lookup based on whether
7152 		 * this is a host route, a default route or just a prefix.
7153 		 *
7154 		 * If an ipif_arg was passed in, then the lookup is based on an
7155 		 * interface index so MATCH_IRE_ILL is added to match_flags.
7156 		 * In any case, MATCH_IRE_IPIF is cleared and MATCH_IRE_GW is
7157 		 * set as the route being looked up is not a traditional
7158 		 * interface route.
7159 		 */
7160 		match_flags &= ~MATCH_IRE_IPIF;
7161 		match_flags |= MATCH_IRE_GW;
7162 		if (ipif_arg != NULL)
7163 			match_flags |= MATCH_IRE_ILL;
7164 		if (mask == IP_HOST_MASK)
7165 			type = IRE_HOST;
7166 		else if (mask == 0)
7167 			type = IRE_DEFAULT;
7168 		else
7169 			type = IRE_PREFIX;
7170 		ire = ire_ftable_lookup(dst_addr, mask, gw_addr, type, ipif_arg,
7171 		    NULL, ALL_ZONES, 0, NULL, match_flags, ipst);
7172 	}
7173 
7174 	if (ipif_refheld)
7175 		ipif_refrele(ipif);
7176 
7177 	/* ipif is not refheld anymore */
7178 	if (ire == NULL)
7179 		return (ESRCH);
7180 
7181 	if (ire->ire_flags & RTF_MULTIRT) {
7182 		/*
7183 		 * Invoke the CGTP (multirouting) filtering module
7184 		 * to remove the dst address from the filtering database.
7185 		 * Packets coming from that address will no longer be
7186 		 * filtered to remove duplicates.
7187 		 */
7188 		if (ipst->ips_ip_cgtp_filter_ops != NULL) {
7189 			err = ipst->ips_ip_cgtp_filter_ops->cfo_del_dest_v4(
7190 			    ipst->ips_netstack->netstack_stackid,
7191 			    ire->ire_addr, ire->ire_gateway_addr);
7192 		}
7193 		ip_cgtp_bcast_delete(ire, ipst);
7194 	}
7195 
7196 	ipif = ire->ire_ipif;
7197 	if (ipif != NULL)
7198 		ipif_remove_ire(ipif, ire);
7199 	if (ioctl_msg)
7200 		ip_rts_rtmsg(RTM_OLDDEL, ire, 0, ipst);
7201 	ire_delete(ire);
7202 	ire_refrele(ire);
7203 	return (err);
7204 }
7205 
7206 /*
7207  * ip_siocaddrt is called to complete processing of an SIOCADDRT IOCTL.
7208  */
7209 /* ARGSUSED */
7210 int
7211 ip_siocaddrt(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp,
7212     ip_ioctl_cmd_t *ipip, void *dummy_if_req)
7213 {
7214 	ipaddr_t dst_addr;
7215 	ipaddr_t gw_addr;
7216 	ipaddr_t mask;
7217 	int error = 0;
7218 	mblk_t *mp1;
7219 	struct rtentry *rt;
7220 	ipif_t *ipif = NULL;
7221 	ip_stack_t	*ipst;
7222 
7223 	ASSERT(q->q_next == NULL);
7224 	ipst = CONNQ_TO_IPST(q);
7225 
7226 	ip1dbg(("ip_siocaddrt:"));
7227 	/* Existence of mp1 verified in ip_wput_nondata */
7228 	mp1 = mp->b_cont->b_cont;
7229 	rt = (struct rtentry *)mp1->b_rptr;
7230 
7231 	dst_addr = ((sin_t *)&rt->rt_dst)->sin_addr.s_addr;
7232 	gw_addr = ((sin_t *)&rt->rt_gateway)->sin_addr.s_addr;
7233 
7234 	/*
7235 	 * If the RTF_HOST flag is on, this is a request to assign a gateway
7236 	 * to a particular host address.  In this case, we set the netmask to
7237 	 * all ones for the particular destination address.  Otherwise,
7238 	 * determine the netmask to be used based on dst_addr and the interfaces
7239 	 * in use.
7240 	 */
7241 	if (rt->rt_flags & RTF_HOST) {
7242 		mask = IP_HOST_MASK;
7243 	} else {
7244 		/*
7245 		 * Note that ip_subnet_mask returns a zero mask in the case of
7246 		 * default (an all-zeroes address).
7247 		 */
7248 		mask = ip_subnet_mask(dst_addr, &ipif, ipst);
7249 	}
7250 
7251 	error = ip_rt_add(dst_addr, mask, gw_addr, 0, rt->rt_flags, NULL, NULL,
7252 	    B_TRUE, q, mp, ip_process_ioctl, NULL, ipst);
7253 	if (ipif != NULL)
7254 		ipif_refrele(ipif);
7255 	return (error);
7256 }
7257 
7258 /*
7259  * ip_siocdelrt is called to complete processing of an SIOCDELRT IOCTL.
7260  */
7261 /* ARGSUSED */
7262 int
7263 ip_siocdelrt(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp,
7264     ip_ioctl_cmd_t *ipip, void *dummy_if_req)
7265 {
7266 	ipaddr_t dst_addr;
7267 	ipaddr_t gw_addr;
7268 	ipaddr_t mask;
7269 	int error;
7270 	mblk_t *mp1;
7271 	struct rtentry *rt;
7272 	ipif_t *ipif = NULL;
7273 	ip_stack_t	*ipst;
7274 
7275 	ASSERT(q->q_next == NULL);
7276 	ipst = CONNQ_TO_IPST(q);
7277 
7278 	ip1dbg(("ip_siocdelrt:"));
7279 	/* Existence of mp1 verified in ip_wput_nondata */
7280 	mp1 = mp->b_cont->b_cont;
7281 	rt = (struct rtentry *)mp1->b_rptr;
7282 
7283 	dst_addr = ((sin_t *)&rt->rt_dst)->sin_addr.s_addr;
7284 	gw_addr = ((sin_t *)&rt->rt_gateway)->sin_addr.s_addr;
7285 
7286 	/*
7287 	 * If the RTF_HOST flag is on, this is a request to delete a gateway
7288 	 * to a particular host address.  In this case, we set the netmask to
7289 	 * all ones for the particular destination address.  Otherwise,
7290 	 * determine the netmask to be used based on dst_addr and the interfaces
7291 	 * in use.
7292 	 */
7293 	if (rt->rt_flags & RTF_HOST) {
7294 		mask = IP_HOST_MASK;
7295 	} else {
7296 		/*
7297 		 * Note that ip_subnet_mask returns a zero mask in the case of
7298 		 * default (an all-zeroes address).
7299 		 */
7300 		mask = ip_subnet_mask(dst_addr, &ipif, ipst);
7301 	}
7302 
7303 	error = ip_rt_delete(dst_addr, mask, gw_addr,
7304 	    RTA_DST | RTA_GATEWAY | RTA_NETMASK, rt->rt_flags, NULL, B_TRUE, q,
7305 	    mp, ip_process_ioctl, ipst);
7306 	if (ipif != NULL)
7307 		ipif_refrele(ipif);
7308 	return (error);
7309 }
7310 
7311 /*
7312  * Enqueue the mp onto the ipsq, chained by b_next.
7313  * b_prev stores the function to be executed later, and b_queue the queue
7314  * where this mp originated.
7315  */
7316 void
7317 ipsq_enq(ipsq_t *ipsq, queue_t *q, mblk_t *mp, ipsq_func_t func, int type,
7318     ill_t *pending_ill)
7319 {
7320 	conn_t	*connp;
7321 	ipxop_t *ipx = ipsq->ipsq_xop;
7322 
7323 	ASSERT(MUTEX_HELD(&ipsq->ipsq_lock));
7324 	ASSERT(MUTEX_HELD(&ipx->ipx_lock));
7325 	ASSERT(func != NULL);
7326 
7327 	mp->b_queue = q;
7328 	mp->b_prev = (void *)func;
7329 	mp->b_next = NULL;
7330 
7331 	switch (type) {
7332 	case CUR_OP:
7333 		if (ipx->ipx_mptail != NULL) {
7334 			ASSERT(ipx->ipx_mphead != NULL);
7335 			ipx->ipx_mptail->b_next = mp;
7336 		} else {
7337 			ASSERT(ipx->ipx_mphead == NULL);
7338 			ipx->ipx_mphead = mp;
7339 		}
7340 		ipx->ipx_mptail = mp;
7341 		break;
7342 
7343 	case NEW_OP:
7344 		if (ipsq->ipsq_xopq_mptail != NULL) {
7345 			ASSERT(ipsq->ipsq_xopq_mphead != NULL);
7346 			ipsq->ipsq_xopq_mptail->b_next = mp;
7347 		} else {
7348 			ASSERT(ipsq->ipsq_xopq_mphead == NULL);
7349 			ipsq->ipsq_xopq_mphead = mp;
7350 		}
7351 		ipsq->ipsq_xopq_mptail = mp;
7352 		ipx->ipx_ipsq_queued = B_TRUE;
7353 		break;
7354 
7355 	case SWITCH_OP:
7356 		ASSERT(ipsq->ipsq_swxop != NULL);
7357 		/* only one switch operation is currently allowed */
7358 		ASSERT(ipsq->ipsq_switch_mp == NULL);
7359 		ipsq->ipsq_switch_mp = mp;
7360 		ipx->ipx_ipsq_queued = B_TRUE;
7361 		break;
7362 	default:
7363 		cmn_err(CE_PANIC, "ipsq_enq %d type \n", type);
7364 	}
7365 
7366 	if (CONN_Q(q) && pending_ill != NULL) {
7367 		connp = Q_TO_CONN(q);
7368 		ASSERT(MUTEX_HELD(&connp->conn_lock));
7369 		connp->conn_oper_pending_ill = pending_ill;
7370 	}
7371 }
7372 
7373 /*
7374  * Dequeue the next message that requested exclusive access to this IPSQ's
7375  * xop.  Specifically:
7376  *
7377  *  1. If we're still processing the current operation on `ipsq', then
7378  *     dequeue the next message for the operation (from ipx_mphead), or
7379  *     return NULL if there are no queued messages for the operation.
7380  *     These messages are queued via CUR_OP to qwriter_ip() and friends.
7381  *
7382  *  2. If the current operation on `ipsq' has completed (ipx_current_ipif is
7383  *     not set) see if the ipsq has requested an xop switch.  If so, switch
7384  *     `ipsq' to a different xop.  Xop switches only happen when joining or
7385  *     leaving IPMP groups and require a careful dance -- see the comments
7386  *     in-line below for details.  If we're leaving a group xop or if we're
7387  *     joining a group xop and become writer on it, then we proceed to (3).
7388  *     Otherwise, we return NULL and exit the xop.
7389  *
7390  *  3. For each IPSQ in the xop, return any switch operation stored on
7391  *     ipsq_switch_mp (set via SWITCH_OP); these must be processed before
7392  *     any other messages queued on the IPSQ.  Otherwise, dequeue the next
7393  *     exclusive operation (queued via NEW_OP) stored on ipsq_xopq_mphead.
7394  *     Note that if the phyint tied to `ipsq' is not using IPMP there will
7395  *     only be one IPSQ in the xop.  Otherwise, there will be one IPSQ for
7396  *     each phyint in the group, including the IPMP meta-interface phyint.
7397  */
7398 static mblk_t *
7399 ipsq_dq(ipsq_t *ipsq)
7400 {
7401 	ill_t	*illv4, *illv6;
7402 	mblk_t	*mp;
7403 	ipsq_t	*xopipsq;
7404 	ipsq_t	*leftipsq = NULL;
7405 	ipxop_t *ipx;
7406 	phyint_t *phyi = ipsq->ipsq_phyint;
7407 	ip_stack_t *ipst = ipsq->ipsq_ipst;
7408 	boolean_t emptied = B_FALSE;
7409 
7410 	/*
7411 	 * Grab all the locks we need in the defined order (ill_g_lock ->
7412 	 * ipsq_lock -> ipx_lock); ill_g_lock is needed to use ipsq_next.
7413 	 */
7414 	rw_enter(&ipst->ips_ill_g_lock,
7415 	    ipsq->ipsq_swxop != NULL ? RW_WRITER : RW_READER);
7416 	mutex_enter(&ipsq->ipsq_lock);
7417 	ipx = ipsq->ipsq_xop;
7418 	mutex_enter(&ipx->ipx_lock);
7419 
7420 	/*
7421 	 * Dequeue the next message associated with the current exclusive
7422 	 * operation, if any.
7423 	 */
7424 	if ((mp = ipx->ipx_mphead) != NULL) {
7425 		ipx->ipx_mphead = mp->b_next;
7426 		if (ipx->ipx_mphead == NULL)
7427 			ipx->ipx_mptail = NULL;
7428 		mp->b_next = (void *)ipsq;
7429 		goto out;
7430 	}
7431 
7432 	if (ipx->ipx_current_ipif != NULL)
7433 		goto empty;
7434 
7435 	if (ipsq->ipsq_swxop != NULL) {
7436 		/*
7437 		 * The exclusive operation that is now being completed has
7438 		 * requested a switch to a different xop.  This happens
7439 		 * when an interface joins or leaves an IPMP group.  Joins
7440 		 * happen through SIOCSLIFGROUPNAME (ip_sioctl_groupname()).
7441 		 * Leaves happen via SIOCSLIFGROUPNAME, interface unplumb
7442 		 * (phyint_free()), or interface plumb for an ill type
7443 		 * not in the IPMP group (ip_rput_dlpi_writer()).
7444 		 *
7445 		 * Xop switches are not allowed on the IPMP meta-interface.
7446 		 */
7447 		ASSERT(phyi == NULL || !(phyi->phyint_flags & PHYI_IPMP));
7448 		ASSERT(RW_WRITE_HELD(&ipst->ips_ill_g_lock));
7449 		DTRACE_PROBE1(ipsq__switch, (ipsq_t *), ipsq);
7450 
7451 		if (ipsq->ipsq_swxop == &ipsq->ipsq_ownxop) {
7452 			/*
7453 			 * We're switching back to our own xop, so we have two
7454 			 * xop's to drain/exit: our own, and the group xop
7455 			 * that we are leaving.
7456 			 *
7457 			 * First, pull ourselves out of the group ipsq list.
7458 			 * This is safe since we're writer on ill_g_lock.
7459 			 */
7460 			ASSERT(ipsq->ipsq_xop != &ipsq->ipsq_ownxop);
7461 
7462 			xopipsq = ipx->ipx_ipsq;
7463 			while (xopipsq->ipsq_next != ipsq)
7464 				xopipsq = xopipsq->ipsq_next;
7465 
7466 			xopipsq->ipsq_next = ipsq->ipsq_next;
7467 			ipsq->ipsq_next = ipsq;
7468 			ipsq->ipsq_xop = ipsq->ipsq_swxop;
7469 			ipsq->ipsq_swxop = NULL;
7470 
7471 			/*
7472 			 * Second, prepare to exit the group xop.  The actual
7473 			 * ipsq_exit() is done at the end of this function
7474 			 * since we cannot hold any locks across ipsq_exit().
7475 			 * Note that although we drop the group's ipx_lock, no
7476 			 * threads can proceed since we're still ipx_writer.
7477 			 */
7478 			leftipsq = xopipsq;
7479 			mutex_exit(&ipx->ipx_lock);
7480 
7481 			/*
7482 			 * Third, set ipx to point to our own xop (which was
7483 			 * inactive and therefore can be entered).
7484 			 */
7485 			ipx = ipsq->ipsq_xop;
7486 			mutex_enter(&ipx->ipx_lock);
7487 			ASSERT(ipx->ipx_writer == NULL);
7488 			ASSERT(ipx->ipx_current_ipif == NULL);
7489 		} else {
7490 			/*
7491 			 * We're switching from our own xop to a group xop.
7492 			 * The requestor of the switch must ensure that the
7493 			 * group xop cannot go away (e.g. by ensuring the
7494 			 * phyint associated with the xop cannot go away).
7495 			 *
7496 			 * If we can become writer on our new xop, then we'll
7497 			 * do the drain.  Otherwise, the current writer of our
7498 			 * new xop will do the drain when it exits.
7499 			 *
7500 			 * First, splice ourselves into the group IPSQ list.
7501 			 * This is safe since we're writer on ill_g_lock.
7502 			 */
7503 			ASSERT(ipsq->ipsq_xop == &ipsq->ipsq_ownxop);
7504 
7505 			xopipsq = ipsq->ipsq_swxop->ipx_ipsq;
7506 			while (xopipsq->ipsq_next != ipsq->ipsq_swxop->ipx_ipsq)
7507 				xopipsq = xopipsq->ipsq_next;
7508 
7509 			xopipsq->ipsq_next = ipsq;
7510 			ipsq->ipsq_next = ipsq->ipsq_swxop->ipx_ipsq;
7511 			ipsq->ipsq_xop = ipsq->ipsq_swxop;
7512 			ipsq->ipsq_swxop = NULL;
7513 
7514 			/*
7515 			 * Second, exit our own xop, since it's now unused.
7516 			 * This is safe since we've got the only reference.
7517 			 */
7518 			ASSERT(ipx->ipx_writer == curthread);
7519 			ipx->ipx_writer = NULL;
7520 			VERIFY(--ipx->ipx_reentry_cnt == 0);
7521 			ipx->ipx_ipsq_queued = B_FALSE;
7522 			mutex_exit(&ipx->ipx_lock);
7523 
7524 			/*
7525 			 * Third, set ipx to point to our new xop, and check
7526 			 * if we can become writer on it.  If we cannot, then
7527 			 * the current writer will drain the IPSQ group when
7528 			 * it exits.  Our ipsq_xop is guaranteed to be stable
7529 			 * because we're still holding ipsq_lock.
7530 			 */
7531 			ipx = ipsq->ipsq_xop;
7532 			mutex_enter(&ipx->ipx_lock);
7533 			if (ipx->ipx_writer != NULL ||
7534 			    ipx->ipx_current_ipif != NULL) {
7535 				goto out;
7536 			}
7537 		}
7538 
7539 		/*
7540 		 * Fourth, become writer on our new ipx before we continue
7541 		 * with the drain.  Note that we never dropped ipsq_lock
7542 		 * above, so no other thread could've raced with us to
7543 		 * become writer first.  Also, we're holding ipx_lock, so
7544 		 * no other thread can examine the ipx right now.
7545 		 */
7546 		ASSERT(ipx->ipx_current_ipif == NULL);
7547 		ASSERT(ipx->ipx_mphead == NULL && ipx->ipx_mptail == NULL);
7548 		VERIFY(ipx->ipx_reentry_cnt++ == 0);
7549 		ipx->ipx_writer = curthread;
7550 		ipx->ipx_forced = B_FALSE;
7551 #ifdef DEBUG
7552 		ipx->ipx_depth = getpcstack(ipx->ipx_stack, IPX_STACK_DEPTH);
7553 #endif
7554 	}
7555 
7556 	xopipsq = ipsq;
7557 	do {
7558 		/*
7559 		 * So that other operations operate on a consistent and
7560 		 * complete phyint, a switch message on an IPSQ must be
7561 		 * handled prior to any other operations on that IPSQ.
7562 		 */
7563 		if ((mp = xopipsq->ipsq_switch_mp) != NULL) {
7564 			xopipsq->ipsq_switch_mp = NULL;
7565 			ASSERT(mp->b_next == NULL);
7566 			mp->b_next = (void *)xopipsq;
7567 			goto out;
7568 		}
7569 
7570 		if ((mp = xopipsq->ipsq_xopq_mphead) != NULL) {
7571 			xopipsq->ipsq_xopq_mphead = mp->b_next;
7572 			if (xopipsq->ipsq_xopq_mphead == NULL)
7573 				xopipsq->ipsq_xopq_mptail = NULL;
7574 			mp->b_next = (void *)xopipsq;
7575 			goto out;
7576 		}
7577 	} while ((xopipsq = xopipsq->ipsq_next) != ipsq);
7578 empty:
7579 	/*
7580 	 * There are no messages.  Further, we are holding ipx_lock, hence no
7581 	 * new messages can end up on any IPSQ in the xop.
7582 	 */
7583 	ipx->ipx_writer = NULL;
7584 	ipx->ipx_forced = B_FALSE;
7585 	VERIFY(--ipx->ipx_reentry_cnt == 0);
7586 	ipx->ipx_ipsq_queued = B_FALSE;
7587 	emptied = B_TRUE;
7588 #ifdef	DEBUG
7589 	ipx->ipx_depth = 0;
7590 #endif
7591 out:
7592 	mutex_exit(&ipx->ipx_lock);
7593 	mutex_exit(&ipsq->ipsq_lock);
7594 
7595 	/*
7596 	 * If we completely emptied the xop, then wake up any threads waiting
7597 	 * to enter any of the IPSQ's associated with it.
7598 	 */
7599 	if (emptied) {
7600 		xopipsq = ipsq;
7601 		do {
7602 			if ((phyi = xopipsq->ipsq_phyint) == NULL)
7603 				continue;
7604 
7605 			illv4 = phyi->phyint_illv4;
7606 			illv6 = phyi->phyint_illv6;
7607 
7608 			GRAB_ILL_LOCKS(illv4, illv6);
7609 			if (illv4 != NULL)
7610 				cv_broadcast(&illv4->ill_cv);
7611 			if (illv6 != NULL)
7612 				cv_broadcast(&illv6->ill_cv);
7613 			RELEASE_ILL_LOCKS(illv4, illv6);
7614 		} while ((xopipsq = xopipsq->ipsq_next) != ipsq);
7615 	}
7616 	rw_exit(&ipst->ips_ill_g_lock);
7617 
7618 	/*
7619 	 * Now that all locks are dropped, exit the IPSQ we left.
7620 	 */
7621 	if (leftipsq != NULL)
7622 		ipsq_exit(leftipsq);
7623 
7624 	return (mp);
7625 }
7626 
7627 /*
7628  * Return completion status of previously initiated DLPI operations on
7629  * ills in the purview of an ipsq.
7630  */
7631 static boolean_t
7632 ipsq_dlpi_done(ipsq_t *ipsq)
7633 {
7634 	ipsq_t		*ipsq_start;
7635 	phyint_t	*phyi;
7636 	ill_t		*ill;
7637 
7638 	ASSERT(RW_LOCK_HELD(&ipsq->ipsq_ipst->ips_ill_g_lock));
7639 	ipsq_start = ipsq;
7640 
7641 	do {
7642 		/*
7643 		 * The only current users of this function are ipsq_try_enter
7644 		 * and ipsq_enter which have made sure that ipsq_writer is
7645 		 * NULL before we reach here. ill_dlpi_pending is modified
7646 		 * only by an ipsq writer
7647 		 */
7648 		ASSERT(ipsq->ipsq_xop->ipx_writer == NULL);
7649 		phyi = ipsq->ipsq_phyint;
7650 		/*
7651 		 * phyi could be NULL if a phyint that is part of an
7652 		 * IPMP group is being unplumbed. A more detailed
7653 		 * comment is in ipmp_grp_update_kstats()
7654 		 */
7655 		if (phyi != NULL) {
7656 			ill = phyi->phyint_illv4;
7657 			if (ill != NULL &&
7658 			    ill->ill_dlpi_pending != DL_PRIM_INVAL)
7659 				return (B_FALSE);
7660 
7661 			ill = phyi->phyint_illv6;
7662 			if (ill != NULL &&
7663 			    ill->ill_dlpi_pending != DL_PRIM_INVAL)
7664 				return (B_FALSE);
7665 		}
7666 
7667 	} while ((ipsq = ipsq->ipsq_next) != ipsq_start);
7668 
7669 	return (B_TRUE);
7670 }
7671 
7672 /*
7673  * Enter the ipsq corresponding to ill, by waiting synchronously till
7674  * we can enter the ipsq exclusively. Unless 'force' is used, the ipsq
7675  * will have to drain completely before ipsq_enter returns success.
7676  * ipx_current_ipif will be set if some exclusive op is in progress,
7677  * and the ipsq_exit logic will start the next enqueued op after
7678  * completion of the current op. If 'force' is used, we don't wait
7679  * for the enqueued ops. This is needed when a conn_close wants to
7680  * enter the ipsq and abort an ioctl that is somehow stuck. Unplumb
7681  * of an ill can also use this option. But we dont' use it currently.
7682  */
7683 #define	ENTER_SQ_WAIT_TICKS 100
7684 boolean_t
7685 ipsq_enter(ill_t *ill, boolean_t force, int type)
7686 {
7687 	ipsq_t	*ipsq;
7688 	ipxop_t *ipx;
7689 	boolean_t waited_enough = B_FALSE;
7690 	ip_stack_t *ipst = ill->ill_ipst;
7691 
7692 	/*
7693 	 * Note that the relationship between ill and ipsq is fixed as long as
7694 	 * the ill is not ILL_CONDEMNED.  Holding ipsq_lock ensures the
7695 	 * relationship between the IPSQ and xop cannot change.  However,
7696 	 * since we cannot hold ipsq_lock across the cv_wait(), it may change
7697 	 * while we're waiting.  We wait on ill_cv and rely on ipsq_exit()
7698 	 * waking up all ills in the xop when it becomes available.
7699 	 */
7700 	for (;;) {
7701 		rw_enter(&ipst->ips_ill_g_lock, RW_READER);
7702 		mutex_enter(&ill->ill_lock);
7703 		if (ill->ill_state_flags & ILL_CONDEMNED) {
7704 			mutex_exit(&ill->ill_lock);
7705 			rw_exit(&ipst->ips_ill_g_lock);
7706 			return (B_FALSE);
7707 		}
7708 
7709 		ipsq = ill->ill_phyint->phyint_ipsq;
7710 		mutex_enter(&ipsq->ipsq_lock);
7711 		ipx = ipsq->ipsq_xop;
7712 		mutex_enter(&ipx->ipx_lock);
7713 
7714 		if (ipx->ipx_writer == NULL && (type == CUR_OP ||
7715 		    (ipx->ipx_current_ipif == NULL && ipsq_dlpi_done(ipsq)) ||
7716 		    waited_enough))
7717 			break;
7718 
7719 		rw_exit(&ipst->ips_ill_g_lock);
7720 
7721 		if (!force || ipx->ipx_writer != NULL) {
7722 			mutex_exit(&ipx->ipx_lock);
7723 			mutex_exit(&ipsq->ipsq_lock);
7724 			cv_wait(&ill->ill_cv, &ill->ill_lock);
7725 		} else {
7726 			mutex_exit(&ipx->ipx_lock);
7727 			mutex_exit(&ipsq->ipsq_lock);
7728 			(void) cv_timedwait(&ill->ill_cv,
7729 			    &ill->ill_lock, lbolt + ENTER_SQ_WAIT_TICKS);
7730 			waited_enough = B_TRUE;
7731 		}
7732 		mutex_exit(&ill->ill_lock);
7733 	}
7734 
7735 	ASSERT(ipx->ipx_mphead == NULL && ipx->ipx_mptail == NULL);
7736 	ASSERT(ipx->ipx_reentry_cnt == 0);
7737 	ipx->ipx_writer = curthread;
7738 	ipx->ipx_forced = (ipx->ipx_current_ipif != NULL);
7739 	ipx->ipx_reentry_cnt++;
7740 #ifdef DEBUG
7741 	ipx->ipx_depth = getpcstack(ipx->ipx_stack, IPX_STACK_DEPTH);
7742 #endif
7743 	mutex_exit(&ipx->ipx_lock);
7744 	mutex_exit(&ipsq->ipsq_lock);
7745 	mutex_exit(&ill->ill_lock);
7746 	rw_exit(&ipst->ips_ill_g_lock);
7747 
7748 	return (B_TRUE);
7749 }
7750 
7751 /*
7752  * ipif_set_values() has a constraint that it cannot drop the ips_ill_g_lock
7753  * across the call to the core interface ipsq_try_enter() and hence calls this
7754  * function directly. This is explained more fully in ipif_set_values().
7755  * In order to support the above constraint, ipsq_try_enter is implemented as
7756  * a wrapper that grabs the ips_ill_g_lock and calls this function subsequently
7757  */
7758 static ipsq_t *
7759 ipsq_try_enter_internal(ill_t *ill, queue_t *q, mblk_t *mp, ipsq_func_t func,
7760     int type, boolean_t reentry_ok)
7761 {
7762 	ipsq_t	*ipsq;
7763 	ipxop_t	*ipx;
7764 	ip_stack_t *ipst = ill->ill_ipst;
7765 
7766 	/*
7767 	 * lock ordering:
7768 	 * ill_g_lock -> conn_lock -> ill_lock -> ipsq_lock -> ipx_lock.
7769 	 *
7770 	 * ipx of an ipsq can't change when ipsq_lock is held.
7771 	 */
7772 	ASSERT(RW_LOCK_HELD(&ipst->ips_ill_g_lock));
7773 	GRAB_CONN_LOCK(q);
7774 	mutex_enter(&ill->ill_lock);
7775 	ipsq = ill->ill_phyint->phyint_ipsq;
7776 	mutex_enter(&ipsq->ipsq_lock);
7777 	ipx = ipsq->ipsq_xop;
7778 	mutex_enter(&ipx->ipx_lock);
7779 
7780 	/*
7781 	 * 1. Enter the ipsq if we are already writer and reentry is ok.
7782 	 *    (Note: If the caller does not specify reentry_ok then neither
7783 	 *    'func' nor any of its callees must ever attempt to enter the ipsq
7784 	 *    again. Otherwise it can lead to an infinite loop
7785 	 * 2. Enter the ipsq if there is no current writer and this attempted
7786 	 *    entry is part of the current operation
7787 	 * 3. Enter the ipsq if there is no current writer and this is a new
7788 	 *    operation and the operation queue is empty and there is no
7789 	 *    operation currently in progress and if all previously initiated
7790 	 *    DLPI operations have completed.
7791 	 */
7792 	if ((ipx->ipx_writer == curthread && reentry_ok) ||
7793 	    (ipx->ipx_writer == NULL && (type == CUR_OP || (type == NEW_OP &&
7794 	    !ipx->ipx_ipsq_queued && ipx->ipx_current_ipif == NULL &&
7795 	    ipsq_dlpi_done(ipsq))))) {
7796 		/* Success. */
7797 		ipx->ipx_reentry_cnt++;
7798 		ipx->ipx_writer = curthread;
7799 		ipx->ipx_forced = B_FALSE;
7800 		mutex_exit(&ipx->ipx_lock);
7801 		mutex_exit(&ipsq->ipsq_lock);
7802 		mutex_exit(&ill->ill_lock);
7803 		RELEASE_CONN_LOCK(q);
7804 #ifdef DEBUG
7805 		ipx->ipx_depth = getpcstack(ipx->ipx_stack, IPX_STACK_DEPTH);
7806 #endif
7807 		return (ipsq);
7808 	}
7809 
7810 	if (func != NULL)
7811 		ipsq_enq(ipsq, q, mp, func, type, ill);
7812 
7813 	mutex_exit(&ipx->ipx_lock);
7814 	mutex_exit(&ipsq->ipsq_lock);
7815 	mutex_exit(&ill->ill_lock);
7816 	RELEASE_CONN_LOCK(q);
7817 	return (NULL);
7818 }
7819 
7820 /*
7821  * The ipsq_t (ipsq) is the synchronization data structure used to serialize
7822  * certain critical operations like plumbing (i.e. most set ioctls), multicast
7823  * joins, igmp/mld timers, etc.  There is one ipsq per phyint. The ipsq
7824  * serializes exclusive ioctls issued by applications on a per ipsq basis in
7825  * ipsq_xopq_mphead. It also protects against multiple threads executing in
7826  * the ipsq. Responses from the driver pertain to the current ioctl (say a
7827  * DL_BIND_ACK in response to a DL_BIND_REQ initiated as part of bringing
7828  * up the interface) and are enqueued in ipx_mphead.
7829  *
7830  * If a thread does not want to reenter the ipsq when it is already writer,
7831  * it must make sure that the specified reentry point to be called later
7832  * when the ipsq is empty, nor any code path starting from the specified reentry
7833  * point must never ever try to enter the ipsq again. Otherwise it can lead
7834  * to an infinite loop. The reentry point ip_rput_dlpi_writer is an example.
7835  * When the thread that is currently exclusive finishes, it (ipsq_exit)
7836  * dequeues the requests waiting to become exclusive in ipx_mphead and calls
7837  * the reentry point. When the list at ipx_mphead becomes empty ipsq_exit
7838  * proceeds to dequeue the next ioctl in ipsq_xopq_mphead and start the next
7839  * ioctl if the current ioctl has completed. If the current ioctl is still
7840  * in progress it simply returns. The current ioctl could be waiting for
7841  * a response from another module (arp or the driver or could be waiting for
7842  * the ipif/ill/ire refcnts to drop to zero. In such a case the ipx_pending_mp
7843  * and ipx_pending_ipif are set. ipx_current_ipif is set throughout the
7844  * execution of the ioctl and ipsq_exit does not start the next ioctl unless
7845  * ipx_current_ipif is NULL which happens only once the ioctl is complete and
7846  * all associated DLPI operations have completed.
7847  */
7848 
7849 /*
7850  * Try to enter the IPSQ corresponding to `ipif' or `ill' exclusively (`ipif'
7851  * and `ill' cannot both be specified).  Returns a pointer to the entered IPSQ
7852  * on success, or NULL on failure.  The caller ensures ipif/ill is valid by
7853  * refholding it as necessary.  If the IPSQ cannot be entered and `func' is
7854  * non-NULL, then `func' will be called back with `q' and `mp' once the IPSQ
7855  * can be entered.  If `func' is NULL, then `q' and `mp' are ignored.
7856  */
7857 ipsq_t *
7858 ipsq_try_enter(ipif_t *ipif, ill_t *ill, queue_t *q, mblk_t *mp,
7859     ipsq_func_t func, int type, boolean_t reentry_ok)
7860 {
7861 	ip_stack_t	*ipst;
7862 	ipsq_t		*ipsq;
7863 
7864 	/* Only 1 of ipif or ill can be specified */
7865 	ASSERT((ipif != NULL) ^ (ill != NULL));
7866 
7867 	if (ipif != NULL)
7868 		ill = ipif->ipif_ill;
7869 	ipst = ill->ill_ipst;
7870 
7871 	rw_enter(&ipst->ips_ill_g_lock, RW_READER);
7872 	ipsq = ipsq_try_enter_internal(ill, q, mp, func, type, reentry_ok);
7873 	rw_exit(&ipst->ips_ill_g_lock);
7874 
7875 	return (ipsq);
7876 }
7877 
7878 /*
7879  * Try to enter the IPSQ corresponding to `ill' as writer.  The caller ensures
7880  * ill is valid by refholding it if necessary; we will refrele.  If the IPSQ
7881  * cannot be entered, the mp is queued for completion.
7882  */
7883 void
7884 qwriter_ip(ill_t *ill, queue_t *q, mblk_t *mp, ipsq_func_t func, int type,
7885     boolean_t reentry_ok)
7886 {
7887 	ipsq_t	*ipsq;
7888 
7889 	ipsq = ipsq_try_enter(NULL, ill, q, mp, func, type, reentry_ok);
7890 
7891 	/*
7892 	 * Drop the caller's refhold on the ill.  This is safe since we either
7893 	 * entered the IPSQ (and thus are exclusive), or failed to enter the
7894 	 * IPSQ, in which case we return without accessing ill anymore.  This
7895 	 * is needed because func needs to see the correct refcount.
7896 	 * e.g. removeif can work only then.
7897 	 */
7898 	ill_refrele(ill);
7899 	if (ipsq != NULL) {
7900 		(*func)(ipsq, q, mp, NULL);
7901 		ipsq_exit(ipsq);
7902 	}
7903 }
7904 
7905 /*
7906  * Exit the specified IPSQ.  If this is the final exit on it then drain it
7907  * prior to exiting.  Caller must be writer on the specified IPSQ.
7908  */
7909 void
7910 ipsq_exit(ipsq_t *ipsq)
7911 {
7912 	mblk_t *mp;
7913 	ipsq_t *mp_ipsq;
7914 	queue_t	*q;
7915 	phyint_t *phyi;
7916 	ipsq_func_t func;
7917 
7918 	ASSERT(IAM_WRITER_IPSQ(ipsq));
7919 
7920 	ASSERT(ipsq->ipsq_xop->ipx_reentry_cnt >= 1);
7921 	if (ipsq->ipsq_xop->ipx_reentry_cnt != 1) {
7922 		ipsq->ipsq_xop->ipx_reentry_cnt--;
7923 		return;
7924 	}
7925 
7926 	for (;;) {
7927 		phyi = ipsq->ipsq_phyint;
7928 		mp = ipsq_dq(ipsq);
7929 		mp_ipsq = (mp == NULL) ? NULL : (ipsq_t *)mp->b_next;
7930 
7931 		/*
7932 		 * If we've changed to a new IPSQ, and the phyint associated
7933 		 * with the old one has gone away, free the old IPSQ.  Note
7934 		 * that this cannot happen while the IPSQ is in a group.
7935 		 */
7936 		if (mp_ipsq != ipsq && phyi == NULL) {
7937 			ASSERT(ipsq->ipsq_next == ipsq);
7938 			ASSERT(ipsq->ipsq_xop == &ipsq->ipsq_ownxop);
7939 			ipsq_delete(ipsq);
7940 		}
7941 
7942 		if (mp == NULL)
7943 			break;
7944 
7945 		q = mp->b_queue;
7946 		func = (ipsq_func_t)mp->b_prev;
7947 		ipsq = mp_ipsq;
7948 		mp->b_next = mp->b_prev = NULL;
7949 		mp->b_queue = NULL;
7950 
7951 		/*
7952 		 * If 'q' is an conn queue, it is valid, since we did a
7953 		 * a refhold on the conn at the start of the ioctl.
7954 		 * If 'q' is an ill queue, it is valid, since close of an
7955 		 * ill will clean up its IPSQ.
7956 		 */
7957 		(*func)(ipsq, q, mp, NULL);
7958 	}
7959 }
7960 
7961 /*
7962  * Start the current exclusive operation on `ipsq'; associate it with `ipif'
7963  * and `ioccmd'.
7964  */
7965 void
7966 ipsq_current_start(ipsq_t *ipsq, ipif_t *ipif, int ioccmd)
7967 {
7968 	ill_t *ill = ipif->ipif_ill;
7969 	ipxop_t *ipx = ipsq->ipsq_xop;
7970 
7971 	ASSERT(IAM_WRITER_IPSQ(ipsq));
7972 	ASSERT(ipx->ipx_current_ipif == NULL);
7973 	ASSERT(ipx->ipx_current_ioctl == 0);
7974 
7975 	ipx->ipx_current_done = B_FALSE;
7976 	ipx->ipx_current_ioctl = ioccmd;
7977 	mutex_enter(&ipx->ipx_lock);
7978 	ipx->ipx_current_ipif = ipif;
7979 	mutex_exit(&ipx->ipx_lock);
7980 
7981 	/*
7982 	 * Set IPIF_CHANGING on one or more ipifs associated with the
7983 	 * current exclusive operation.  IPIF_CHANGING prevents any new
7984 	 * references to the ipif (so that the references will eventually
7985 	 * drop to zero) and also prevents any "get" operations (e.g.,
7986 	 * SIOCGLIFFLAGS) from being able to access the ipif until the
7987 	 * operation has completed and the ipif is again in a stable state.
7988 	 *
7989 	 * For ioctls, IPIF_CHANGING is set on the ipif associated with the
7990 	 * ioctl.  For internal operations (where ioccmd is zero), all ipifs
7991 	 * on the ill are marked with IPIF_CHANGING since it's unclear which
7992 	 * ipifs will be affected.
7993 	 *
7994 	 * Note that SIOCLIFREMOVEIF is a special case as it sets
7995 	 * IPIF_CONDEMNED internally after identifying the right ipif to
7996 	 * operate on.
7997 	 */
7998 	switch (ioccmd) {
7999 	case SIOCLIFREMOVEIF:
8000 		break;
8001 	case 0:
8002 		mutex_enter(&ill->ill_lock);
8003 		ipif = ipif->ipif_ill->ill_ipif;
8004 		for (; ipif != NULL; ipif = ipif->ipif_next)
8005 			ipif->ipif_state_flags |= IPIF_CHANGING;
8006 		mutex_exit(&ill->ill_lock);
8007 		break;
8008 	default:
8009 		mutex_enter(&ill->ill_lock);
8010 		ipif->ipif_state_flags |= IPIF_CHANGING;
8011 		mutex_exit(&ill->ill_lock);
8012 	}
8013 }
8014 
8015 /*
8016  * Finish the current exclusive operation on `ipsq'.  Usually, this will allow
8017  * the next exclusive operation to begin once we ipsq_exit().  However, if
8018  * pending DLPI operations remain, then we will wait for the queue to drain
8019  * before allowing the next exclusive operation to begin.  This ensures that
8020  * DLPI operations from one exclusive operation are never improperly processed
8021  * as part of a subsequent exclusive operation.
8022  */
8023 void
8024 ipsq_current_finish(ipsq_t *ipsq)
8025 {
8026 	ipxop_t	*ipx = ipsq->ipsq_xop;
8027 	t_uscalar_t dlpi_pending = DL_PRIM_INVAL;
8028 	ipif_t	*ipif = ipx->ipx_current_ipif;
8029 
8030 	ASSERT(IAM_WRITER_IPSQ(ipsq));
8031 
8032 	/*
8033 	 * For SIOCLIFREMOVEIF, the ipif has been already been blown away
8034 	 * (but in that case, IPIF_CHANGING will already be clear and no
8035 	 * pending DLPI messages can remain).
8036 	 */
8037 	if (ipx->ipx_current_ioctl != SIOCLIFREMOVEIF) {
8038 		ill_t *ill = ipif->ipif_ill;
8039 
8040 		mutex_enter(&ill->ill_lock);
8041 		dlpi_pending = ill->ill_dlpi_pending;
8042 		if (ipx->ipx_current_ioctl == 0) {
8043 			ipif = ill->ill_ipif;
8044 			for (; ipif != NULL; ipif = ipif->ipif_next)
8045 				ipif->ipif_state_flags &= ~IPIF_CHANGING;
8046 		} else {
8047 			ipif->ipif_state_flags &= ~IPIF_CHANGING;
8048 		}
8049 		mutex_exit(&ill->ill_lock);
8050 	}
8051 
8052 	ASSERT(!ipx->ipx_current_done);
8053 	ipx->ipx_current_done = B_TRUE;
8054 	ipx->ipx_current_ioctl = 0;
8055 	if (dlpi_pending == DL_PRIM_INVAL) {
8056 		mutex_enter(&ipx->ipx_lock);
8057 		ipx->ipx_current_ipif = NULL;
8058 		mutex_exit(&ipx->ipx_lock);
8059 	}
8060 }
8061 
8062 /*
8063  * The ill is closing. Flush all messages on the ipsq that originated
8064  * from this ill. Usually there wont' be any messages on the ipsq_xopq_mphead
8065  * for this ill since ipsq_enter could not have entered until then.
8066  * New messages can't be queued since the CONDEMNED flag is set.
8067  */
8068 static void
8069 ipsq_flush(ill_t *ill)
8070 {
8071 	queue_t	*q;
8072 	mblk_t	*prev;
8073 	mblk_t	*mp;
8074 	mblk_t	*mp_next;
8075 	ipxop_t	*ipx = ill->ill_phyint->phyint_ipsq->ipsq_xop;
8076 
8077 	ASSERT(IAM_WRITER_ILL(ill));
8078 
8079 	/*
8080 	 * Flush any messages sent up by the driver.
8081 	 */
8082 	mutex_enter(&ipx->ipx_lock);
8083 	for (prev = NULL, mp = ipx->ipx_mphead; mp != NULL; mp = mp_next) {
8084 		mp_next = mp->b_next;
8085 		q = mp->b_queue;
8086 		if (q == ill->ill_rq || q == ill->ill_wq) {
8087 			/* dequeue mp */
8088 			if (prev == NULL)
8089 				ipx->ipx_mphead = mp->b_next;
8090 			else
8091 				prev->b_next = mp->b_next;
8092 			if (ipx->ipx_mptail == mp) {
8093 				ASSERT(mp_next == NULL);
8094 				ipx->ipx_mptail = prev;
8095 			}
8096 			inet_freemsg(mp);
8097 		} else {
8098 			prev = mp;
8099 		}
8100 	}
8101 	mutex_exit(&ipx->ipx_lock);
8102 	(void) ipsq_pending_mp_cleanup(ill, NULL);
8103 	ipsq_xopq_mp_cleanup(ill, NULL);
8104 	ill_pending_mp_cleanup(ill);
8105 }
8106 
8107 /*
8108  * Parse an ifreq or lifreq struct coming down ioctls and refhold
8109  * and return the associated ipif.
8110  * Return value:
8111  *	Non zero: An error has occurred. ci may not be filled out.
8112  *	zero : ci is filled out with the ioctl cmd in ci.ci_name, and
8113  *	a held ipif in ci.ci_ipif.
8114  */
8115 int
8116 ip_extract_lifreq(queue_t *q, mblk_t *mp, const ip_ioctl_cmd_t *ipip,
8117     cmd_info_t *ci, ipsq_func_t func)
8118 {
8119 	char		*name;
8120 	struct ifreq    *ifr;
8121 	struct lifreq    *lifr;
8122 	ipif_t		*ipif = NULL;
8123 	ill_t		*ill;
8124 	conn_t		*connp;
8125 	boolean_t	isv6;
8126 	boolean_t	exists;
8127 	int		err;
8128 	mblk_t		*mp1;
8129 	zoneid_t	zoneid;
8130 	ip_stack_t	*ipst;
8131 
8132 	if (q->q_next != NULL) {
8133 		ill = (ill_t *)q->q_ptr;
8134 		isv6 = ill->ill_isv6;
8135 		connp = NULL;
8136 		zoneid = ALL_ZONES;
8137 		ipst = ill->ill_ipst;
8138 	} else {
8139 		ill = NULL;
8140 		connp = Q_TO_CONN(q);
8141 		isv6 = connp->conn_af_isv6;
8142 		zoneid = connp->conn_zoneid;
8143 		if (zoneid == GLOBAL_ZONEID) {
8144 			/* global zone can access ipifs in all zones */
8145 			zoneid = ALL_ZONES;
8146 		}
8147 		ipst = connp->conn_netstack->netstack_ip;
8148 	}
8149 
8150 	/* Has been checked in ip_wput_nondata */
8151 	mp1 = mp->b_cont->b_cont;
8152 
8153 	if (ipip->ipi_cmd_type == IF_CMD) {
8154 		/* This a old style SIOC[GS]IF* command */
8155 		ifr = (struct ifreq *)mp1->b_rptr;
8156 		/*
8157 		 * Null terminate the string to protect against buffer
8158 		 * overrun. String was generated by user code and may not
8159 		 * be trusted.
8160 		 */
8161 		ifr->ifr_name[IFNAMSIZ - 1] = '\0';
8162 		name = ifr->ifr_name;
8163 		ci->ci_sin = (sin_t *)&ifr->ifr_addr;
8164 		ci->ci_sin6 = NULL;
8165 		ci->ci_lifr = (struct lifreq *)ifr;
8166 	} else {
8167 		/* This a new style SIOC[GS]LIF* command */
8168 		ASSERT(ipip->ipi_cmd_type == LIF_CMD);
8169 		lifr = (struct lifreq *)mp1->b_rptr;
8170 		/*
8171 		 * Null terminate the string to protect against buffer
8172 		 * overrun. String was generated by user code and may not
8173 		 * be trusted.
8174 		 */
8175 		lifr->lifr_name[LIFNAMSIZ - 1] = '\0';
8176 		name = lifr->lifr_name;
8177 		ci->ci_sin = (sin_t *)&lifr->lifr_addr;
8178 		ci->ci_sin6 = (sin6_t *)&lifr->lifr_addr;
8179 		ci->ci_lifr = lifr;
8180 	}
8181 
8182 	if (ipip->ipi_cmd == SIOCSLIFNAME) {
8183 		/*
8184 		 * The ioctl will be failed if the ioctl comes down
8185 		 * an conn stream
8186 		 */
8187 		if (ill == NULL) {
8188 			/*
8189 			 * Not an ill queue, return EINVAL same as the
8190 			 * old error code.
8191 			 */
8192 			return (ENXIO);
8193 		}
8194 		ipif = ill->ill_ipif;
8195 		ipif_refhold(ipif);
8196 	} else {
8197 		ipif = ipif_lookup_on_name(name, mi_strlen(name), B_FALSE,
8198 		    &exists, isv6, zoneid,
8199 		    (connp == NULL) ? q : CONNP_TO_WQ(connp), mp, func, &err,
8200 		    ipst);
8201 		if (ipif == NULL) {
8202 			if (err == EINPROGRESS)
8203 				return (err);
8204 			err = 0;	/* Ensure we don't use it below */
8205 		}
8206 	}
8207 
8208 	/*
8209 	 * Old style [GS]IFCMD does not admit IPv6 ipif
8210 	 */
8211 	if (ipif != NULL && ipif->ipif_isv6 && ipip->ipi_cmd_type == IF_CMD) {
8212 		ipif_refrele(ipif);
8213 		return (ENXIO);
8214 	}
8215 
8216 	if (ipif == NULL && ill != NULL && ill->ill_ipif != NULL &&
8217 	    name[0] == '\0') {
8218 		/*
8219 		 * Handle a or a SIOC?IF* with a null name
8220 		 * during plumb (on the ill queue before the I_PLINK).
8221 		 */
8222 		ipif = ill->ill_ipif;
8223 		ipif_refhold(ipif);
8224 	}
8225 
8226 	if (ipif == NULL)
8227 		return (ENXIO);
8228 
8229 	ci->ci_ipif = ipif;
8230 	return (0);
8231 }
8232 
8233 /*
8234  * Return the total number of ipifs.
8235  */
8236 static uint_t
8237 ip_get_numifs(zoneid_t zoneid, ip_stack_t *ipst)
8238 {
8239 	uint_t numifs = 0;
8240 	ill_t	*ill;
8241 	ill_walk_context_t	ctx;
8242 	ipif_t	*ipif;
8243 
8244 	rw_enter(&ipst->ips_ill_g_lock, RW_READER);
8245 	ill = ILL_START_WALK_V4(&ctx, ipst);
8246 	for (; ill != NULL; ill = ill_next(&ctx, ill)) {
8247 		if (IS_UNDER_IPMP(ill))
8248 			continue;
8249 		for (ipif = ill->ill_ipif; ipif != NULL;
8250 		    ipif = ipif->ipif_next) {
8251 			if (ipif->ipif_zoneid == zoneid ||
8252 			    ipif->ipif_zoneid == ALL_ZONES)
8253 				numifs++;
8254 		}
8255 	}
8256 	rw_exit(&ipst->ips_ill_g_lock);
8257 	return (numifs);
8258 }
8259 
8260 /*
8261  * Return the total number of ipifs.
8262  */
8263 static uint_t
8264 ip_get_numlifs(int family, int lifn_flags, zoneid_t zoneid, ip_stack_t *ipst)
8265 {
8266 	uint_t numifs = 0;
8267 	ill_t	*ill;
8268 	ipif_t	*ipif;
8269 	ill_walk_context_t	ctx;
8270 
8271 	ip1dbg(("ip_get_numlifs(%d %u %d)\n", family, lifn_flags, (int)zoneid));
8272 
8273 	rw_enter(&ipst->ips_ill_g_lock, RW_READER);
8274 	if (family == AF_INET)
8275 		ill = ILL_START_WALK_V4(&ctx, ipst);
8276 	else if (family == AF_INET6)
8277 		ill = ILL_START_WALK_V6(&ctx, ipst);
8278 	else
8279 		ill = ILL_START_WALK_ALL(&ctx, ipst);
8280 
8281 	for (; ill != NULL; ill = ill_next(&ctx, ill)) {
8282 		if (IS_UNDER_IPMP(ill) && !(lifn_flags & LIFC_UNDER_IPMP))
8283 			continue;
8284 
8285 		for (ipif = ill->ill_ipif; ipif != NULL;
8286 		    ipif = ipif->ipif_next) {
8287 			if ((ipif->ipif_flags & IPIF_NOXMIT) &&
8288 			    !(lifn_flags & LIFC_NOXMIT))
8289 				continue;
8290 			if ((ipif->ipif_flags & IPIF_TEMPORARY) &&
8291 			    !(lifn_flags & LIFC_TEMPORARY))
8292 				continue;
8293 			if (((ipif->ipif_flags &
8294 			    (IPIF_NOXMIT|IPIF_NOLOCAL|
8295 			    IPIF_DEPRECATED)) ||
8296 			    IS_LOOPBACK(ill) ||
8297 			    !(ipif->ipif_flags & IPIF_UP)) &&
8298 			    (lifn_flags & LIFC_EXTERNAL_SOURCE))
8299 				continue;
8300 
8301 			if (zoneid != ipif->ipif_zoneid &&
8302 			    ipif->ipif_zoneid != ALL_ZONES &&
8303 			    (zoneid != GLOBAL_ZONEID ||
8304 			    !(lifn_flags & LIFC_ALLZONES)))
8305 				continue;
8306 
8307 			numifs++;
8308 		}
8309 	}
8310 	rw_exit(&ipst->ips_ill_g_lock);
8311 	return (numifs);
8312 }
8313 
8314 uint_t
8315 ip_get_lifsrcofnum(ill_t *ill)
8316 {
8317 	uint_t numifs = 0;
8318 	ill_t	*ill_head = ill;
8319 	ip_stack_t	*ipst = ill->ill_ipst;
8320 
8321 	/*
8322 	 * ill_g_usesrc_lock protects ill_usesrc_grp_next, for example, some
8323 	 * other thread may be trying to relink the ILLs in this usesrc group
8324 	 * and adjusting the ill_usesrc_grp_next pointers
8325 	 */
8326 	rw_enter(&ipst->ips_ill_g_usesrc_lock, RW_READER);
8327 	if ((ill->ill_usesrc_ifindex == 0) &&
8328 	    (ill->ill_usesrc_grp_next != NULL)) {
8329 		for (; (ill != NULL) && (ill->ill_usesrc_grp_next != ill_head);
8330 		    ill = ill->ill_usesrc_grp_next)
8331 			numifs++;
8332 	}
8333 	rw_exit(&ipst->ips_ill_g_usesrc_lock);
8334 
8335 	return (numifs);
8336 }
8337 
8338 /* Null values are passed in for ipif, sin, and ifreq */
8339 /* ARGSUSED */
8340 int
8341 ip_sioctl_get_ifnum(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q,
8342     mblk_t *mp, ip_ioctl_cmd_t *ipip, void *ifreq)
8343 {
8344 	int *nump;
8345 	conn_t *connp = Q_TO_CONN(q);
8346 
8347 	ASSERT(q->q_next == NULL); /* not a valid ioctl for ip as a module */
8348 
8349 	/* Existence of b_cont->b_cont checked in ip_wput_nondata */
8350 	nump = (int *)mp->b_cont->b_cont->b_rptr;
8351 
8352 	*nump = ip_get_numifs(connp->conn_zoneid,
8353 	    connp->conn_netstack->netstack_ip);
8354 	ip1dbg(("ip_sioctl_get_ifnum numifs %d", *nump));
8355 	return (0);
8356 }
8357 
8358 /* Null values are passed in for ipif, sin, and ifreq */
8359 /* ARGSUSED */
8360 int
8361 ip_sioctl_get_lifnum(ipif_t *dummy_ipif, sin_t *dummy_sin,
8362     queue_t *q, mblk_t *mp, ip_ioctl_cmd_t *ipip, void *ifreq)
8363 {
8364 	struct lifnum *lifn;
8365 	mblk_t	*mp1;
8366 	conn_t *connp = Q_TO_CONN(q);
8367 
8368 	ASSERT(q->q_next == NULL); /* not a valid ioctl for ip as a module */
8369 
8370 	/* Existence checked in ip_wput_nondata */
8371 	mp1 = mp->b_cont->b_cont;
8372 
8373 	lifn = (struct lifnum *)mp1->b_rptr;
8374 	switch (lifn->lifn_family) {
8375 	case AF_UNSPEC:
8376 	case AF_INET:
8377 	case AF_INET6:
8378 		break;
8379 	default:
8380 		return (EAFNOSUPPORT);
8381 	}
8382 
8383 	lifn->lifn_count = ip_get_numlifs(lifn->lifn_family, lifn->lifn_flags,
8384 	    connp->conn_zoneid, connp->conn_netstack->netstack_ip);
8385 	ip1dbg(("ip_sioctl_get_lifnum numifs %d", lifn->lifn_count));
8386 	return (0);
8387 }
8388 
8389 /* ARGSUSED */
8390 int
8391 ip_sioctl_get_ifconf(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q,
8392     mblk_t *mp, ip_ioctl_cmd_t *ipip, void *ifreq)
8393 {
8394 	STRUCT_HANDLE(ifconf, ifc);
8395 	mblk_t *mp1;
8396 	struct iocblk *iocp;
8397 	struct ifreq *ifr;
8398 	ill_walk_context_t	ctx;
8399 	ill_t	*ill;
8400 	ipif_t	*ipif;
8401 	struct sockaddr_in *sin;
8402 	int32_t	ifclen;
8403 	zoneid_t zoneid;
8404 	ip_stack_t *ipst = CONNQ_TO_IPST(q);
8405 
8406 	ASSERT(q->q_next == NULL); /* not valid ioctls for ip as a module */
8407 
8408 	ip1dbg(("ip_sioctl_get_ifconf"));
8409 	/* Existence verified in ip_wput_nondata */
8410 	mp1 = mp->b_cont->b_cont;
8411 	iocp = (struct iocblk *)mp->b_rptr;
8412 	zoneid = Q_TO_CONN(q)->conn_zoneid;
8413 
8414 	/*
8415 	 * The original SIOCGIFCONF passed in a struct ifconf which specified
8416 	 * the user buffer address and length into which the list of struct
8417 	 * ifreqs was to be copied.  Since AT&T Streams does not seem to
8418 	 * allow M_COPYOUT to be used in conjunction with I_STR IOCTLS,
8419 	 * the SIOCGIFCONF operation was redefined to simply provide
8420 	 * a large output buffer into which we are supposed to jam the ifreq
8421 	 * array.  The same ioctl command code was used, despite the fact that
8422 	 * both the applications and the kernel code had to change, thus making
8423 	 * it impossible to support both interfaces.
8424 	 *
8425 	 * For reasons not good enough to try to explain, the following
8426 	 * algorithm is used for deciding what to do with one of these:
8427 	 * If the IOCTL comes in as an I_STR, it is assumed to be of the new
8428 	 * form with the output buffer coming down as the continuation message.
8429 	 * If it arrives as a TRANSPARENT IOCTL, it is assumed to be old style,
8430 	 * and we have to copy in the ifconf structure to find out how big the
8431 	 * output buffer is and where to copy out to.  Sure no problem...
8432 	 *
8433 	 */
8434 	STRUCT_SET_HANDLE(ifc, iocp->ioc_flag, NULL);
8435 	if ((mp1->b_wptr - mp1->b_rptr) == STRUCT_SIZE(ifc)) {
8436 		int numifs = 0;
8437 		size_t ifc_bufsize;
8438 
8439 		/*
8440 		 * Must be (better be!) continuation of a TRANSPARENT
8441 		 * IOCTL.  We just copied in the ifconf structure.
8442 		 */
8443 		STRUCT_SET_HANDLE(ifc, iocp->ioc_flag,
8444 		    (struct ifconf *)mp1->b_rptr);
8445 
8446 		/*
8447 		 * Allocate a buffer to hold requested information.
8448 		 *
8449 		 * If ifc_len is larger than what is needed, we only
8450 		 * allocate what we will use.
8451 		 *
8452 		 * If ifc_len is smaller than what is needed, return
8453 		 * EINVAL.
8454 		 *
8455 		 * XXX: the ill_t structure can hava 2 counters, for
8456 		 * v4 and v6 (not just ill_ipif_up_count) to store the
8457 		 * number of interfaces for a device, so we don't need
8458 		 * to count them here...
8459 		 */
8460 		numifs = ip_get_numifs(zoneid, ipst);
8461 
8462 		ifclen = STRUCT_FGET(ifc, ifc_len);
8463 		ifc_bufsize = numifs * sizeof (struct ifreq);
8464 		if (ifc_bufsize > ifclen) {
8465 			if (iocp->ioc_cmd == O_SIOCGIFCONF) {
8466 				/* old behaviour */
8467 				return (EINVAL);
8468 			} else {
8469 				ifc_bufsize = ifclen;
8470 			}
8471 		}
8472 
8473 		mp1 = mi_copyout_alloc(q, mp,
8474 		    STRUCT_FGETP(ifc, ifc_buf), ifc_bufsize, B_FALSE);
8475 		if (mp1 == NULL)
8476 			return (ENOMEM);
8477 
8478 		mp1->b_wptr = mp1->b_rptr + ifc_bufsize;
8479 	}
8480 	bzero(mp1->b_rptr, mp1->b_wptr - mp1->b_rptr);
8481 	/*
8482 	 * the SIOCGIFCONF ioctl only knows about
8483 	 * IPv4 addresses, so don't try to tell
8484 	 * it about interfaces with IPv6-only
8485 	 * addresses. (Last parm 'isv6' is B_FALSE)
8486 	 */
8487 
8488 	ifr = (struct ifreq *)mp1->b_rptr;
8489 
8490 	rw_enter(&ipst->ips_ill_g_lock, RW_READER);
8491 	ill = ILL_START_WALK_V4(&ctx, ipst);
8492 	for (; ill != NULL; ill = ill_next(&ctx, ill)) {
8493 		if (IS_UNDER_IPMP(ill))
8494 			continue;
8495 		for (ipif = ill->ill_ipif; ipif != NULL;
8496 		    ipif = ipif->ipif_next) {
8497 			if (zoneid != ipif->ipif_zoneid &&
8498 			    ipif->ipif_zoneid != ALL_ZONES)
8499 				continue;
8500 			if ((uchar_t *)&ifr[1] > mp1->b_wptr) {
8501 				if (iocp->ioc_cmd == O_SIOCGIFCONF) {
8502 					/* old behaviour */
8503 					rw_exit(&ipst->ips_ill_g_lock);
8504 					return (EINVAL);
8505 				} else {
8506 					goto if_copydone;
8507 				}
8508 			}
8509 			ipif_get_name(ipif, ifr->ifr_name,
8510 			    sizeof (ifr->ifr_name));
8511 			sin = (sin_t *)&ifr->ifr_addr;
8512 			*sin = sin_null;
8513 			sin->sin_family = AF_INET;
8514 			sin->sin_addr.s_addr = ipif->ipif_lcl_addr;
8515 			ifr++;
8516 		}
8517 	}
8518 if_copydone:
8519 	rw_exit(&ipst->ips_ill_g_lock);
8520 	mp1->b_wptr = (uchar_t *)ifr;
8521 
8522 	if (STRUCT_BUF(ifc) != NULL) {
8523 		STRUCT_FSET(ifc, ifc_len,
8524 		    (int)((uchar_t *)ifr - mp1->b_rptr));
8525 	}
8526 	return (0);
8527 }
8528 
8529 /*
8530  * Get the interfaces using the address hosted on the interface passed in,
8531  * as a source adddress
8532  */
8533 /* ARGSUSED */
8534 int
8535 ip_sioctl_get_lifsrcof(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q,
8536     mblk_t *mp, ip_ioctl_cmd_t *ipip, void *ifreq)
8537 {
8538 	mblk_t *mp1;
8539 	ill_t	*ill, *ill_head;
8540 	ipif_t	*ipif, *orig_ipif;
8541 	int	numlifs = 0;
8542 	size_t	lifs_bufsize, lifsmaxlen;
8543 	struct	lifreq *lifr;
8544 	struct iocblk *iocp = (struct iocblk *)mp->b_rptr;
8545 	uint_t	ifindex;
8546 	zoneid_t zoneid;
8547 	int err = 0;
8548 	boolean_t isv6 = B_FALSE;
8549 	struct	sockaddr_in	*sin;
8550 	struct	sockaddr_in6	*sin6;
8551 	STRUCT_HANDLE(lifsrcof, lifs);
8552 	ip_stack_t		*ipst;
8553 
8554 	ipst = CONNQ_TO_IPST(q);
8555 
8556 	ASSERT(q->q_next == NULL);
8557 
8558 	zoneid = Q_TO_CONN(q)->conn_zoneid;
8559 
8560 	/* Existence verified in ip_wput_nondata */
8561 	mp1 = mp->b_cont->b_cont;
8562 
8563 	/*
8564 	 * Must be (better be!) continuation of a TRANSPARENT
8565 	 * IOCTL.  We just copied in the lifsrcof structure.
8566 	 */
8567 	STRUCT_SET_HANDLE(lifs, iocp->ioc_flag,
8568 	    (struct lifsrcof *)mp1->b_rptr);
8569 
8570 	if (MBLKL(mp1) != STRUCT_SIZE(lifs))
8571 		return (EINVAL);
8572 
8573 	ifindex = STRUCT_FGET(lifs, lifs_ifindex);
8574 	isv6 = (Q_TO_CONN(q))->conn_af_isv6;
8575 	ipif = ipif_lookup_on_ifindex(ifindex, isv6, zoneid, q, mp,
8576 	    ip_process_ioctl, &err, ipst);
8577 	if (ipif == NULL) {
8578 		ip1dbg(("ip_sioctl_get_lifsrcof: no ipif for ifindex %d\n",
8579 		    ifindex));
8580 		return (err);
8581 	}
8582 
8583 	/* Allocate a buffer to hold requested information */
8584 	numlifs = ip_get_lifsrcofnum(ipif->ipif_ill);
8585 	lifs_bufsize = numlifs * sizeof (struct lifreq);
8586 	lifsmaxlen =  STRUCT_FGET(lifs, lifs_maxlen);
8587 	/* The actual size needed is always returned in lifs_len */
8588 	STRUCT_FSET(lifs, lifs_len, lifs_bufsize);
8589 
8590 	/* If the amount we need is more than what is passed in, abort */
8591 	if (lifs_bufsize > lifsmaxlen || lifs_bufsize == 0) {
8592 		ipif_refrele(ipif);
8593 		return (0);
8594 	}
8595 
8596 	mp1 = mi_copyout_alloc(q, mp,
8597 	    STRUCT_FGETP(lifs, lifs_buf), lifs_bufsize, B_FALSE);
8598 	if (mp1 == NULL) {
8599 		ipif_refrele(ipif);
8600 		return (ENOMEM);
8601 	}
8602 
8603 	mp1->b_wptr = mp1->b_rptr + lifs_bufsize;
8604 	bzero(mp1->b_rptr, lifs_bufsize);
8605 
8606 	lifr = (struct lifreq *)mp1->b_rptr;
8607 
8608 	ill = ill_head = ipif->ipif_ill;
8609 	orig_ipif = ipif;
8610 
8611 	/* ill_g_usesrc_lock protects ill_usesrc_grp_next */
8612 	rw_enter(&ipst->ips_ill_g_usesrc_lock, RW_READER);
8613 	rw_enter(&ipst->ips_ill_g_lock, RW_READER);
8614 
8615 	ill = ill->ill_usesrc_grp_next; /* start from next ill */
8616 	for (; (ill != NULL) && (ill != ill_head);
8617 	    ill = ill->ill_usesrc_grp_next) {
8618 
8619 		if ((uchar_t *)&lifr[1] > mp1->b_wptr)
8620 			break;
8621 
8622 		ipif = ill->ill_ipif;
8623 		ipif_get_name(ipif, lifr->lifr_name, sizeof (lifr->lifr_name));
8624 		if (ipif->ipif_isv6) {
8625 			sin6 = (sin6_t *)&lifr->lifr_addr;
8626 			*sin6 = sin6_null;
8627 			sin6->sin6_family = AF_INET6;
8628 			sin6->sin6_addr = ipif->ipif_v6lcl_addr;
8629 			lifr->lifr_addrlen = ip_mask_to_plen_v6(
8630 			    &ipif->ipif_v6net_mask);
8631 		} else {
8632 			sin = (sin_t *)&lifr->lifr_addr;
8633 			*sin = sin_null;
8634 			sin->sin_family = AF_INET;
8635 			sin->sin_addr.s_addr = ipif->ipif_lcl_addr;
8636 			lifr->lifr_addrlen = ip_mask_to_plen(
8637 			    ipif->ipif_net_mask);
8638 		}
8639 		lifr++;
8640 	}
8641 	rw_exit(&ipst->ips_ill_g_usesrc_lock);
8642 	rw_exit(&ipst->ips_ill_g_lock);
8643 	ipif_refrele(orig_ipif);
8644 	mp1->b_wptr = (uchar_t *)lifr;
8645 	STRUCT_FSET(lifs, lifs_len, (int)((uchar_t *)lifr - mp1->b_rptr));
8646 
8647 	return (0);
8648 }
8649 
8650 /* ARGSUSED */
8651 int
8652 ip_sioctl_get_lifconf(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q,
8653     mblk_t *mp, ip_ioctl_cmd_t *ipip, void *ifreq)
8654 {
8655 	mblk_t *mp1;
8656 	int	list;
8657 	ill_t	*ill;
8658 	ipif_t	*ipif;
8659 	int	flags;
8660 	int	numlifs = 0;
8661 	size_t	lifc_bufsize;
8662 	struct	lifreq *lifr;
8663 	sa_family_t	family;
8664 	struct	sockaddr_in	*sin;
8665 	struct	sockaddr_in6	*sin6;
8666 	ill_walk_context_t	ctx;
8667 	struct iocblk *iocp = (struct iocblk *)mp->b_rptr;
8668 	int32_t	lifclen;
8669 	zoneid_t zoneid;
8670 	STRUCT_HANDLE(lifconf, lifc);
8671 	ip_stack_t *ipst = CONNQ_TO_IPST(q);
8672 
8673 	ip1dbg(("ip_sioctl_get_lifconf"));
8674 
8675 	ASSERT(q->q_next == NULL);
8676 
8677 	zoneid = Q_TO_CONN(q)->conn_zoneid;
8678 
8679 	/* Existence verified in ip_wput_nondata */
8680 	mp1 = mp->b_cont->b_cont;
8681 
8682 	/*
8683 	 * An extended version of SIOCGIFCONF that takes an
8684 	 * additional address family and flags field.
8685 	 * AF_UNSPEC retrieve both IPv4 and IPv6.
8686 	 * Unless LIFC_NOXMIT is specified the IPIF_NOXMIT
8687 	 * interfaces are omitted.
8688 	 * Similarly, IPIF_TEMPORARY interfaces are omitted
8689 	 * unless LIFC_TEMPORARY is specified.
8690 	 * If LIFC_EXTERNAL_SOURCE is specified, IPIF_NOXMIT,
8691 	 * IPIF_NOLOCAL, PHYI_LOOPBACK, IPIF_DEPRECATED and
8692 	 * not IPIF_UP interfaces are omitted. LIFC_EXTERNAL_SOURCE
8693 	 * has priority over LIFC_NOXMIT.
8694 	 */
8695 	STRUCT_SET_HANDLE(lifc, iocp->ioc_flag, NULL);
8696 
8697 	if ((mp1->b_wptr - mp1->b_rptr) != STRUCT_SIZE(lifc))
8698 		return (EINVAL);
8699 
8700 	/*
8701 	 * Must be (better be!) continuation of a TRANSPARENT
8702 	 * IOCTL.  We just copied in the lifconf structure.
8703 	 */
8704 	STRUCT_SET_HANDLE(lifc, iocp->ioc_flag, (struct lifconf *)mp1->b_rptr);
8705 
8706 	family = STRUCT_FGET(lifc, lifc_family);
8707 	flags = STRUCT_FGET(lifc, lifc_flags);
8708 
8709 	switch (family) {
8710 	case AF_UNSPEC:
8711 		/*
8712 		 * walk all ILL's.
8713 		 */
8714 		list = MAX_G_HEADS;
8715 		break;
8716 	case AF_INET:
8717 		/*
8718 		 * walk only IPV4 ILL's.
8719 		 */
8720 		list = IP_V4_G_HEAD;
8721 		break;
8722 	case AF_INET6:
8723 		/*
8724 		 * walk only IPV6 ILL's.
8725 		 */
8726 		list = IP_V6_G_HEAD;
8727 		break;
8728 	default:
8729 		return (EAFNOSUPPORT);
8730 	}
8731 
8732 	/*
8733 	 * Allocate a buffer to hold requested information.
8734 	 *
8735 	 * If lifc_len is larger than what is needed, we only
8736 	 * allocate what we will use.
8737 	 *
8738 	 * If lifc_len is smaller than what is needed, return
8739 	 * EINVAL.
8740 	 */
8741 	numlifs = ip_get_numlifs(family, flags, zoneid, ipst);
8742 	lifc_bufsize = numlifs * sizeof (struct lifreq);
8743 	lifclen = STRUCT_FGET(lifc, lifc_len);
8744 	if (lifc_bufsize > lifclen) {
8745 		if (iocp->ioc_cmd == O_SIOCGLIFCONF)
8746 			return (EINVAL);
8747 		else
8748 			lifc_bufsize = lifclen;
8749 	}
8750 
8751 	mp1 = mi_copyout_alloc(q, mp,
8752 	    STRUCT_FGETP(lifc, lifc_buf), lifc_bufsize, B_FALSE);
8753 	if (mp1 == NULL)
8754 		return (ENOMEM);
8755 
8756 	mp1->b_wptr = mp1->b_rptr + lifc_bufsize;
8757 	bzero(mp1->b_rptr, mp1->b_wptr - mp1->b_rptr);
8758 
8759 	lifr = (struct lifreq *)mp1->b_rptr;
8760 
8761 	rw_enter(&ipst->ips_ill_g_lock, RW_READER);
8762 	ill = ill_first(list, list, &ctx, ipst);
8763 	for (; ill != NULL; ill = ill_next(&ctx, ill)) {
8764 		if (IS_UNDER_IPMP(ill) && !(flags & LIFC_UNDER_IPMP))
8765 			continue;
8766 
8767 		for (ipif = ill->ill_ipif; ipif != NULL;
8768 		    ipif = ipif->ipif_next) {
8769 			if ((ipif->ipif_flags & IPIF_NOXMIT) &&
8770 			    !(flags & LIFC_NOXMIT))
8771 				continue;
8772 
8773 			if ((ipif->ipif_flags & IPIF_TEMPORARY) &&
8774 			    !(flags & LIFC_TEMPORARY))
8775 				continue;
8776 
8777 			if (((ipif->ipif_flags &
8778 			    (IPIF_NOXMIT|IPIF_NOLOCAL|
8779 			    IPIF_DEPRECATED)) ||
8780 			    IS_LOOPBACK(ill) ||
8781 			    !(ipif->ipif_flags & IPIF_UP)) &&
8782 			    (flags & LIFC_EXTERNAL_SOURCE))
8783 				continue;
8784 
8785 			if (zoneid != ipif->ipif_zoneid &&
8786 			    ipif->ipif_zoneid != ALL_ZONES &&
8787 			    (zoneid != GLOBAL_ZONEID ||
8788 			    !(flags & LIFC_ALLZONES)))
8789 				continue;
8790 
8791 			if ((uchar_t *)&lifr[1] > mp1->b_wptr) {
8792 				if (iocp->ioc_cmd == O_SIOCGLIFCONF) {
8793 					rw_exit(&ipst->ips_ill_g_lock);
8794 					return (EINVAL);
8795 				} else {
8796 					goto lif_copydone;
8797 				}
8798 			}
8799 
8800 			ipif_get_name(ipif, lifr->lifr_name,
8801 			    sizeof (lifr->lifr_name));
8802 			lifr->lifr_type = ill->ill_type;
8803 			if (ipif->ipif_isv6) {
8804 				sin6 = (sin6_t *)&lifr->lifr_addr;
8805 				*sin6 = sin6_null;
8806 				sin6->sin6_family = AF_INET6;
8807 				sin6->sin6_addr =
8808 				    ipif->ipif_v6lcl_addr;
8809 				lifr->lifr_addrlen =
8810 				    ip_mask_to_plen_v6(
8811 				    &ipif->ipif_v6net_mask);
8812 			} else {
8813 				sin = (sin_t *)&lifr->lifr_addr;
8814 				*sin = sin_null;
8815 				sin->sin_family = AF_INET;
8816 				sin->sin_addr.s_addr =
8817 				    ipif->ipif_lcl_addr;
8818 				lifr->lifr_addrlen =
8819 				    ip_mask_to_plen(
8820 				    ipif->ipif_net_mask);
8821 			}
8822 			lifr++;
8823 		}
8824 	}
8825 lif_copydone:
8826 	rw_exit(&ipst->ips_ill_g_lock);
8827 
8828 	mp1->b_wptr = (uchar_t *)lifr;
8829 	if (STRUCT_BUF(lifc) != NULL) {
8830 		STRUCT_FSET(lifc, lifc_len,
8831 		    (int)((uchar_t *)lifr - mp1->b_rptr));
8832 	}
8833 	return (0);
8834 }
8835 
8836 static void
8837 ip_sioctl_ip6addrpolicy(queue_t *q, mblk_t *mp)
8838 {
8839 	ip6_asp_t *table;
8840 	size_t table_size;
8841 	mblk_t *data_mp;
8842 	struct iocblk *iocp = (struct iocblk *)mp->b_rptr;
8843 	ip_stack_t	*ipst;
8844 
8845 	if (q->q_next == NULL)
8846 		ipst = CONNQ_TO_IPST(q);
8847 	else
8848 		ipst = ILLQ_TO_IPST(q);
8849 
8850 	/* These two ioctls are I_STR only */
8851 	if (iocp->ioc_count == TRANSPARENT) {
8852 		miocnak(q, mp, 0, EINVAL);
8853 		return;
8854 	}
8855 
8856 	data_mp = mp->b_cont;
8857 	if (data_mp == NULL) {
8858 		/* The user passed us a NULL argument */
8859 		table = NULL;
8860 		table_size = iocp->ioc_count;
8861 	} else {
8862 		/*
8863 		 * The user provided a table.  The stream head
8864 		 * may have copied in the user data in chunks,
8865 		 * so make sure everything is pulled up
8866 		 * properly.
8867 		 */
8868 		if (MBLKL(data_mp) < iocp->ioc_count) {
8869 			mblk_t *new_data_mp;
8870 			if ((new_data_mp = msgpullup(data_mp, -1)) ==
8871 			    NULL) {
8872 				miocnak(q, mp, 0, ENOMEM);
8873 				return;
8874 			}
8875 			freemsg(data_mp);
8876 			data_mp = new_data_mp;
8877 			mp->b_cont = data_mp;
8878 		}
8879 		table = (ip6_asp_t *)data_mp->b_rptr;
8880 		table_size = iocp->ioc_count;
8881 	}
8882 
8883 	switch (iocp->ioc_cmd) {
8884 	case SIOCGIP6ADDRPOLICY:
8885 		iocp->ioc_rval = ip6_asp_get(table, table_size, ipst);
8886 		if (iocp->ioc_rval == -1)
8887 			iocp->ioc_error = EINVAL;
8888 #if defined(_SYSCALL32_IMPL) && _LONG_LONG_ALIGNMENT_32 == 4
8889 		else if (table != NULL &&
8890 		    (iocp->ioc_flag & IOC_MODELS) == IOC_ILP32) {
8891 			ip6_asp_t *src = table;
8892 			ip6_asp32_t *dst = (void *)table;
8893 			int count = table_size / sizeof (ip6_asp_t);
8894 			int i;
8895 
8896 			/*
8897 			 * We need to do an in-place shrink of the array
8898 			 * to match the alignment attributes of the
8899 			 * 32-bit ABI looking at it.
8900 			 */
8901 			/* LINTED: logical expression always true: op "||" */
8902 			ASSERT(sizeof (*src) > sizeof (*dst));
8903 			for (i = 1; i < count; i++)
8904 				bcopy(src + i, dst + i, sizeof (*dst));
8905 		}
8906 #endif
8907 		break;
8908 
8909 	case SIOCSIP6ADDRPOLICY:
8910 		ASSERT(mp->b_prev == NULL);
8911 		mp->b_prev = (void *)q;
8912 #if defined(_SYSCALL32_IMPL) && _LONG_LONG_ALIGNMENT_32 == 4
8913 		/*
8914 		 * We pass in the datamodel here so that the ip6_asp_replace()
8915 		 * routine can handle converting from 32-bit to native formats
8916 		 * where necessary.
8917 		 *
8918 		 * A better way to handle this might be to convert the inbound
8919 		 * data structure here, and hang it off a new 'mp'; thus the
8920 		 * ip6_asp_replace() logic would always be dealing with native
8921 		 * format data structures..
8922 		 *
8923 		 * (An even simpler way to handle these ioctls is to just
8924 		 * add a 32-bit trailing 'pad' field to the ip6_asp_t structure
8925 		 * and just recompile everything that depends on it.)
8926 		 */
8927 #endif
8928 		ip6_asp_replace(mp, table, table_size, B_FALSE, ipst,
8929 		    iocp->ioc_flag & IOC_MODELS);
8930 		return;
8931 	}
8932 
8933 	DB_TYPE(mp) =  (iocp->ioc_error == 0) ? M_IOCACK : M_IOCNAK;
8934 	qreply(q, mp);
8935 }
8936 
8937 static void
8938 ip_sioctl_dstinfo(queue_t *q, mblk_t *mp)
8939 {
8940 	mblk_t 		*data_mp;
8941 	struct dstinforeq	*dir;
8942 	uint8_t		*end, *cur;
8943 	in6_addr_t	*daddr, *saddr;
8944 	ipaddr_t	v4daddr;
8945 	ire_t		*ire;
8946 	char		*slabel, *dlabel;
8947 	boolean_t	isipv4;
8948 	int		match_ire;
8949 	ill_t		*dst_ill;
8950 	ipif_t		*src_ipif, *ire_ipif;
8951 	struct iocblk *iocp = (struct iocblk *)mp->b_rptr;
8952 	zoneid_t	zoneid;
8953 	ip_stack_t	*ipst = CONNQ_TO_IPST(q);
8954 
8955 	ASSERT(q->q_next == NULL); /* this ioctl not allowed if ip is module */
8956 	zoneid = Q_TO_CONN(q)->conn_zoneid;
8957 
8958 	/*
8959 	 * This ioctl is I_STR only, and must have a
8960 	 * data mblk following the M_IOCTL mblk.
8961 	 */
8962 	data_mp = mp->b_cont;
8963 	if (iocp->ioc_count == TRANSPARENT || data_mp == NULL) {
8964 		miocnak(q, mp, 0, EINVAL);
8965 		return;
8966 	}
8967 
8968 	if (MBLKL(data_mp) < iocp->ioc_count) {
8969 		mblk_t *new_data_mp;
8970 
8971 		if ((new_data_mp = msgpullup(data_mp, -1)) == NULL) {
8972 			miocnak(q, mp, 0, ENOMEM);
8973 			return;
8974 		}
8975 		freemsg(data_mp);
8976 		data_mp = new_data_mp;
8977 		mp->b_cont = data_mp;
8978 	}
8979 	match_ire = MATCH_IRE_RECURSIVE | MATCH_IRE_DEFAULT | MATCH_IRE_PARENT;
8980 
8981 	for (cur = data_mp->b_rptr, end = data_mp->b_wptr;
8982 	    end - cur >= sizeof (struct dstinforeq);
8983 	    cur += sizeof (struct dstinforeq)) {
8984 		dir = (struct dstinforeq *)cur;
8985 		daddr = &dir->dir_daddr;
8986 		saddr = &dir->dir_saddr;
8987 
8988 		/*
8989 		 * ip_addr_scope_v6() and ip6_asp_lookup() handle
8990 		 * v4 mapped addresses; ire_ftable_lookup[_v6]()
8991 		 * and ipif_select_source[_v6]() do not.
8992 		 */
8993 		dir->dir_dscope = ip_addr_scope_v6(daddr);
8994 		dlabel = ip6_asp_lookup(daddr, &dir->dir_precedence, ipst);
8995 
8996 		isipv4 = IN6_IS_ADDR_V4MAPPED(daddr);
8997 		if (isipv4) {
8998 			IN6_V4MAPPED_TO_IPADDR(daddr, v4daddr);
8999 			ire = ire_ftable_lookup(v4daddr, NULL, NULL,
9000 			    0, NULL, NULL, zoneid, 0, NULL, match_ire, ipst);
9001 		} else {
9002 			ire = ire_ftable_lookup_v6(daddr, NULL, NULL,
9003 			    0, NULL, NULL, zoneid, 0, NULL, match_ire, ipst);
9004 		}
9005 		if (ire == NULL) {
9006 			dir->dir_dreachable = 0;
9007 
9008 			/* move on to next dst addr */
9009 			continue;
9010 		}
9011 		dir->dir_dreachable = 1;
9012 
9013 		ire_ipif = ire->ire_ipif;
9014 		if (ire_ipif == NULL)
9015 			goto next_dst;
9016 
9017 		/*
9018 		 * We expect to get back an interface ire or a
9019 		 * gateway ire cache entry.  For both types, the
9020 		 * output interface is ire_ipif->ipif_ill.
9021 		 */
9022 		dst_ill = ire_ipif->ipif_ill;
9023 		dir->dir_dmactype = dst_ill->ill_mactype;
9024 
9025 		if (isipv4) {
9026 			src_ipif = ipif_select_source(dst_ill, v4daddr, zoneid);
9027 		} else {
9028 			src_ipif = ipif_select_source_v6(dst_ill,
9029 			    daddr, B_FALSE, IPV6_PREFER_SRC_DEFAULT, zoneid);
9030 		}
9031 		if (src_ipif == NULL)
9032 			goto next_dst;
9033 
9034 		*saddr = src_ipif->ipif_v6lcl_addr;
9035 		dir->dir_sscope = ip_addr_scope_v6(saddr);
9036 		slabel = ip6_asp_lookup(saddr, NULL, ipst);
9037 		dir->dir_labelmatch = ip6_asp_labelcmp(dlabel, slabel);
9038 		dir->dir_sdeprecated =
9039 		    (src_ipif->ipif_flags & IPIF_DEPRECATED) ? 1 : 0;
9040 		ipif_refrele(src_ipif);
9041 next_dst:
9042 		ire_refrele(ire);
9043 	}
9044 	miocack(q, mp, iocp->ioc_count, 0);
9045 }
9046 
9047 /*
9048  * Check if this is an address assigned to this machine.
9049  * Skips interfaces that are down by using ire checks.
9050  * Translates mapped addresses to v4 addresses and then
9051  * treats them as such, returning true if the v4 address
9052  * associated with this mapped address is configured.
9053  * Note: Applications will have to be careful what they do
9054  * with the response; use of mapped addresses limits
9055  * what can be done with the socket, especially with
9056  * respect to socket options and ioctls - neither IPv4
9057  * options nor IPv6 sticky options/ancillary data options
9058  * may be used.
9059  */
9060 /* ARGSUSED */
9061 int
9062 ip_sioctl_tmyaddr(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp,
9063     ip_ioctl_cmd_t *ipip, void *dummy_ifreq)
9064 {
9065 	struct sioc_addrreq *sia;
9066 	sin_t *sin;
9067 	ire_t *ire;
9068 	mblk_t *mp1;
9069 	zoneid_t zoneid;
9070 	ip_stack_t	*ipst;
9071 
9072 	ip1dbg(("ip_sioctl_tmyaddr"));
9073 
9074 	ASSERT(q->q_next == NULL); /* this ioctl not allowed if ip is module */
9075 	zoneid = Q_TO_CONN(q)->conn_zoneid;
9076 	ipst = CONNQ_TO_IPST(q);
9077 
9078 	/* Existence verified in ip_wput_nondata */
9079 	mp1 = mp->b_cont->b_cont;
9080 	sia = (struct sioc_addrreq *)mp1->b_rptr;
9081 	sin = (sin_t *)&sia->sa_addr;
9082 	switch (sin->sin_family) {
9083 	case AF_INET6: {
9084 		sin6_t *sin6 = (sin6_t *)sin;
9085 
9086 		if (IN6_IS_ADDR_V4MAPPED(&sin6->sin6_addr)) {
9087 			ipaddr_t v4_addr;
9088 
9089 			IN6_V4MAPPED_TO_IPADDR(&sin6->sin6_addr,
9090 			    v4_addr);
9091 			ire = ire_ctable_lookup(v4_addr, 0,
9092 			    IRE_LOCAL|IRE_LOOPBACK, NULL, zoneid,
9093 			    NULL, MATCH_IRE_TYPE | MATCH_IRE_ZONEONLY, ipst);
9094 		} else {
9095 			in6_addr_t v6addr;
9096 
9097 			v6addr = sin6->sin6_addr;
9098 			ire = ire_ctable_lookup_v6(&v6addr, 0,
9099 			    IRE_LOCAL|IRE_LOOPBACK, NULL, zoneid,
9100 			    NULL, MATCH_IRE_TYPE | MATCH_IRE_ZONEONLY, ipst);
9101 		}
9102 		break;
9103 	}
9104 	case AF_INET: {
9105 		ipaddr_t v4addr;
9106 
9107 		v4addr = sin->sin_addr.s_addr;
9108 		ire = ire_ctable_lookup(v4addr, 0,
9109 		    IRE_LOCAL|IRE_LOOPBACK, NULL, zoneid,
9110 		    NULL, MATCH_IRE_TYPE | MATCH_IRE_ZONEONLY, ipst);
9111 		break;
9112 	}
9113 	default:
9114 		return (EAFNOSUPPORT);
9115 	}
9116 	if (ire != NULL) {
9117 		sia->sa_res = 1;
9118 		ire_refrele(ire);
9119 	} else {
9120 		sia->sa_res = 0;
9121 	}
9122 	return (0);
9123 }
9124 
9125 /*
9126  * Check if this is an address assigned on-link i.e. neighbor,
9127  * and makes sure it's reachable from the current zone.
9128  * Returns true for my addresses as well.
9129  * Translates mapped addresses to v4 addresses and then
9130  * treats them as such, returning true if the v4 address
9131  * associated with this mapped address is configured.
9132  * Note: Applications will have to be careful what they do
9133  * with the response; use of mapped addresses limits
9134  * what can be done with the socket, especially with
9135  * respect to socket options and ioctls - neither IPv4
9136  * options nor IPv6 sticky options/ancillary data options
9137  * may be used.
9138  */
9139 /* ARGSUSED */
9140 int
9141 ip_sioctl_tonlink(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp,
9142     ip_ioctl_cmd_t *ipip, void *duymmy_ifreq)
9143 {
9144 	struct sioc_addrreq *sia;
9145 	sin_t *sin;
9146 	mblk_t	*mp1;
9147 	ire_t *ire = NULL;
9148 	zoneid_t zoneid;
9149 	ip_stack_t	*ipst;
9150 
9151 	ip1dbg(("ip_sioctl_tonlink"));
9152 
9153 	ASSERT(q->q_next == NULL); /* this ioctl not allowed if ip is module */
9154 	zoneid = Q_TO_CONN(q)->conn_zoneid;
9155 	ipst = CONNQ_TO_IPST(q);
9156 
9157 	/* Existence verified in ip_wput_nondata */
9158 	mp1 = mp->b_cont->b_cont;
9159 	sia = (struct sioc_addrreq *)mp1->b_rptr;
9160 	sin = (sin_t *)&sia->sa_addr;
9161 
9162 	/*
9163 	 * Match addresses with a zero gateway field to avoid
9164 	 * routes going through a router.
9165 	 * Exclude broadcast and multicast addresses.
9166 	 */
9167 	switch (sin->sin_family) {
9168 	case AF_INET6: {
9169 		sin6_t *sin6 = (sin6_t *)sin;
9170 
9171 		if (IN6_IS_ADDR_V4MAPPED(&sin6->sin6_addr)) {
9172 			ipaddr_t v4_addr;
9173 
9174 			IN6_V4MAPPED_TO_IPADDR(&sin6->sin6_addr,
9175 			    v4_addr);
9176 			if (!CLASSD(v4_addr)) {
9177 				ire = ire_route_lookup(v4_addr, 0, 0, 0,
9178 				    NULL, NULL, zoneid, NULL,
9179 				    MATCH_IRE_GW, ipst);
9180 			}
9181 		} else {
9182 			in6_addr_t v6addr;
9183 			in6_addr_t v6gw;
9184 
9185 			v6addr = sin6->sin6_addr;
9186 			v6gw = ipv6_all_zeros;
9187 			if (!IN6_IS_ADDR_MULTICAST(&v6addr)) {
9188 				ire = ire_route_lookup_v6(&v6addr, 0,
9189 				    &v6gw, 0, NULL, NULL, zoneid,
9190 				    NULL, MATCH_IRE_GW, ipst);
9191 			}
9192 		}
9193 		break;
9194 	}
9195 	case AF_INET: {
9196 		ipaddr_t v4addr;
9197 
9198 		v4addr = sin->sin_addr.s_addr;
9199 		if (!CLASSD(v4addr)) {
9200 			ire = ire_route_lookup(v4addr, 0, 0, 0,
9201 			    NULL, NULL, zoneid, NULL,
9202 			    MATCH_IRE_GW, ipst);
9203 		}
9204 		break;
9205 	}
9206 	default:
9207 		return (EAFNOSUPPORT);
9208 	}
9209 	sia->sa_res = 0;
9210 	if (ire != NULL) {
9211 		if (ire->ire_type & (IRE_INTERFACE|IRE_CACHE|
9212 		    IRE_LOCAL|IRE_LOOPBACK)) {
9213 			sia->sa_res = 1;
9214 		}
9215 		ire_refrele(ire);
9216 	}
9217 	return (0);
9218 }
9219 
9220 /*
9221  * TBD: implement when kernel maintaines a list of site prefixes.
9222  */
9223 /* ARGSUSED */
9224 int
9225 ip_sioctl_tmysite(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
9226     ip_ioctl_cmd_t *ipip, void *ifreq)
9227 {
9228 	return (ENXIO);
9229 }
9230 
9231 /*
9232  * ARP IOCTLs.
9233  * How does IP get in the business of fronting ARP configuration/queries?
9234  * Well it's like this, the Berkeley ARP IOCTLs (SIOCGARP, SIOCDARP, SIOCSARP)
9235  * are by tradition passed in through a datagram socket.  That lands in IP.
9236  * As it happens, this is just as well since the interface is quite crude in
9237  * that it passes in no information about protocol or hardware types, or
9238  * interface association.  After making the protocol assumption, IP is in
9239  * the position to look up the name of the ILL, which ARP will need, and
9240  * format a request that can be handled by ARP.  The request is passed up
9241  * stream to ARP, and the original IOCTL is completed by IP when ARP passes
9242  * back a response.  ARP supports its own set of more general IOCTLs, in
9243  * case anyone is interested.
9244  */
9245 /* ARGSUSED */
9246 int
9247 ip_sioctl_arp(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
9248     ip_ioctl_cmd_t *ipip, void *dummy_ifreq)
9249 {
9250 	mblk_t *mp1;
9251 	mblk_t *mp2;
9252 	mblk_t *pending_mp;
9253 	ipaddr_t ipaddr;
9254 	area_t *area;
9255 	struct iocblk *iocp;
9256 	conn_t *connp;
9257 	struct arpreq *ar;
9258 	struct xarpreq *xar;
9259 	int flags, alength;
9260 	uchar_t *lladdr;
9261 	ire_t *ire;
9262 	ip_stack_t *ipst;
9263 	ill_t *ill = ipif->ipif_ill;
9264 	ill_t *proxy_ill = NULL;
9265 	ipmp_arpent_t *entp = NULL;
9266 	boolean_t if_arp_ioctl = B_FALSE;
9267 	boolean_t proxyarp = B_FALSE;
9268 
9269 	ASSERT(!(q->q_flag & QREADR) && q->q_next == NULL);
9270 	connp = Q_TO_CONN(q);
9271 	ipst = connp->conn_netstack->netstack_ip;
9272 
9273 	if (ipip->ipi_cmd_type == XARP_CMD) {
9274 		/* We have a chain - M_IOCTL-->MI_COPY_MBLK-->XARPREQ_MBLK */
9275 		xar = (struct xarpreq *)mp->b_cont->b_cont->b_rptr;
9276 		ar = NULL;
9277 
9278 		flags = xar->xarp_flags;
9279 		lladdr = (uchar_t *)LLADDR(&xar->xarp_ha);
9280 		if_arp_ioctl = (xar->xarp_ha.sdl_nlen != 0);
9281 		/*
9282 		 * Validate against user's link layer address length
9283 		 * input and name and addr length limits.
9284 		 */
9285 		alength = ill->ill_phys_addr_length;
9286 		if (ipip->ipi_cmd == SIOCSXARP) {
9287 			if (alength != xar->xarp_ha.sdl_alen ||
9288 			    (alength + xar->xarp_ha.sdl_nlen >
9289 			    sizeof (xar->xarp_ha.sdl_data)))
9290 				return (EINVAL);
9291 		}
9292 	} else {
9293 		/* We have a chain - M_IOCTL-->MI_COPY_MBLK-->ARPREQ_MBLK */
9294 		ar = (struct arpreq *)mp->b_cont->b_cont->b_rptr;
9295 		xar = NULL;
9296 
9297 		flags = ar->arp_flags;
9298 		lladdr = (uchar_t *)ar->arp_ha.sa_data;
9299 		/*
9300 		 * Theoretically, the sa_family could tell us what link
9301 		 * layer type this operation is trying to deal with. By
9302 		 * common usage AF_UNSPEC means ethernet. We'll assume
9303 		 * any attempt to use the SIOC?ARP ioctls is for ethernet,
9304 		 * for now. Our new SIOC*XARP ioctls can be used more
9305 		 * generally.
9306 		 *
9307 		 * If the underlying media happens to have a non 6 byte
9308 		 * address, arp module will fail set/get, but the del
9309 		 * operation will succeed.
9310 		 */
9311 		alength = 6;
9312 		if ((ipip->ipi_cmd != SIOCDARP) &&
9313 		    (alength != ill->ill_phys_addr_length)) {
9314 			return (EINVAL);
9315 		}
9316 	}
9317 
9318 	ipaddr = sin->sin_addr.s_addr;
9319 
9320 	/*
9321 	 * IPMP ARP special handling:
9322 	 *
9323 	 * 1. Since ARP mappings must appear consistent across the group,
9324 	 *    prohibit changing ARP mappings on the underlying interfaces.
9325 	 *
9326 	 * 2. Since ARP mappings for IPMP data addresses are maintained by
9327 	 *    IP itself, prohibit changing them.
9328 	 *
9329 	 * 3. For proxy ARP, use a functioning hardware address in the group,
9330 	 *    provided one exists.  If one doesn't, just add the entry as-is;
9331 	 *    ipmp_illgrp_refresh_arpent() will refresh it if things change.
9332 	 */
9333 	if (IS_UNDER_IPMP(ill)) {
9334 		if (ipip->ipi_cmd != SIOCGARP && ipip->ipi_cmd != SIOCGXARP)
9335 			return (EPERM);
9336 	}
9337 	if (IS_IPMP(ill)) {
9338 		ipmp_illgrp_t *illg = ill->ill_grp;
9339 
9340 		switch (ipip->ipi_cmd) {
9341 		case SIOCSARP:
9342 		case SIOCSXARP:
9343 			proxy_ill = ipmp_illgrp_find_ill(illg, lladdr, alength);
9344 			if (proxy_ill != NULL) {
9345 				proxyarp = B_TRUE;
9346 				if (!ipmp_ill_is_active(proxy_ill))
9347 					proxy_ill = ipmp_illgrp_next_ill(illg);
9348 				if (proxy_ill != NULL)
9349 					lladdr = proxy_ill->ill_phys_addr;
9350 			}
9351 			/* FALLTHRU */
9352 		case SIOCDARP:
9353 		case SIOCDXARP:
9354 			ire = ire_ctable_lookup(ipaddr, 0, IRE_LOCAL, NULL,
9355 			    ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst);
9356 			if (ire != NULL) {
9357 				ire_refrele(ire);
9358 				return (EPERM);
9359 			}
9360 		}
9361 	}
9362 
9363 	/*
9364 	 * We are going to pass up to ARP a packet chain that looks
9365 	 * like:
9366 	 *
9367 	 * M_IOCTL-->ARP_op_MBLK-->ORIG_M_IOCTL-->MI_COPY_MBLK-->[X]ARPREQ_MBLK
9368 	 *
9369 	 * Get a copy of the original IOCTL mblk to head the chain,
9370 	 * to be sent up (in mp1). Also get another copy to store
9371 	 * in the ill_pending_mp list, for matching the response
9372 	 * when it comes back from ARP.
9373 	 */
9374 	mp1 = copyb(mp);
9375 	pending_mp = copymsg(mp);
9376 	if (mp1 == NULL || pending_mp == NULL) {
9377 		if (mp1 != NULL)
9378 			freeb(mp1);
9379 		if (pending_mp != NULL)
9380 			inet_freemsg(pending_mp);
9381 		return (ENOMEM);
9382 	}
9383 
9384 	mp2 = ill_arp_alloc(ill, (uchar_t *)&ip_area_template,
9385 	    (caddr_t)&ipaddr);
9386 	if (mp2 == NULL) {
9387 		freeb(mp1);
9388 		inet_freemsg(pending_mp);
9389 		return (ENOMEM);
9390 	}
9391 	/* Put together the chain. */
9392 	mp1->b_cont = mp2;
9393 	mp1->b_datap->db_type = M_IOCTL;
9394 	mp2->b_cont = mp;
9395 	mp2->b_datap->db_type = M_DATA;
9396 
9397 	iocp = (struct iocblk *)mp1->b_rptr;
9398 
9399 	/*
9400 	 * An M_IOCDATA's payload (struct copyresp) is mostly the same as an
9401 	 * M_IOCTL's payload (struct iocblk), but 'struct copyresp' has a
9402 	 * cp_private field (or cp_rval on 32-bit systems) in place of the
9403 	 * ioc_count field; set ioc_count to be correct.
9404 	 */
9405 	iocp->ioc_count = MBLKL(mp1->b_cont);
9406 
9407 	/*
9408 	 * Set the proper command in the ARP message.
9409 	 * Convert the SIOC{G|S|D}ARP calls into our
9410 	 * AR_ENTRY_xxx calls.
9411 	 */
9412 	area = (area_t *)mp2->b_rptr;
9413 	switch (iocp->ioc_cmd) {
9414 	case SIOCDARP:
9415 	case SIOCDXARP:
9416 		/*
9417 		 * We defer deleting the corresponding IRE until
9418 		 * we return from arp.
9419 		 */
9420 		area->area_cmd = AR_ENTRY_DELETE;
9421 		area->area_proto_mask_offset = 0;
9422 		break;
9423 	case SIOCGARP:
9424 	case SIOCGXARP:
9425 		area->area_cmd = AR_ENTRY_SQUERY;
9426 		area->area_proto_mask_offset = 0;
9427 		break;
9428 	case SIOCSARP:
9429 	case SIOCSXARP:
9430 		/*
9431 		 * Delete the corresponding ire to make sure IP will
9432 		 * pick up any change from arp.
9433 		 */
9434 		if (!if_arp_ioctl) {
9435 			(void) ip_ire_clookup_and_delete(ipaddr, NULL, ipst);
9436 		} else {
9437 			ipif_t *ipif = ipif_get_next_ipif(NULL, ill);
9438 			if (ipif != NULL) {
9439 				(void) ip_ire_clookup_and_delete(ipaddr, ipif,
9440 				    ipst);
9441 				ipif_refrele(ipif);
9442 			}
9443 		}
9444 		break;
9445 	}
9446 	iocp->ioc_cmd = area->area_cmd;
9447 
9448 	/*
9449 	 * Fill in the rest of the ARP operation fields.
9450 	 */
9451 	area->area_hw_addr_length = alength;
9452 	bcopy(lladdr, (char *)area + area->area_hw_addr_offset, alength);
9453 
9454 	/* Translate the flags. */
9455 	if (flags & ATF_PERM)
9456 		area->area_flags |= ACE_F_PERMANENT;
9457 	if (flags & ATF_PUBL)
9458 		area->area_flags |= ACE_F_PUBLISH;
9459 	if (flags & ATF_AUTHORITY)
9460 		area->area_flags |= ACE_F_AUTHORITY;
9461 
9462 	/*
9463 	 * If this is a permanent AR_ENTRY_ADD on the IPMP interface, track it
9464 	 * so that IP can update ARP as the active ills in the group change.
9465 	 */
9466 	if (IS_IPMP(ill) && area->area_cmd == AR_ENTRY_ADD &&
9467 	    (area->area_flags & ACE_F_PERMANENT)) {
9468 		entp = ipmp_illgrp_create_arpent(ill->ill_grp, mp2, proxyarp);
9469 
9470 		/*
9471 		 * The second part of the conditional below handles a corner
9472 		 * case: if this is proxy ARP and the IPMP group has no active
9473 		 * interfaces, we can't send the request to ARP now since it
9474 		 * won't be able to build an ACE.  So we return success and
9475 		 * notify ARP about the proxy ARP entry once an interface
9476 		 * becomes active.
9477 		 */
9478 		if (entp == NULL || (proxyarp && proxy_ill == NULL)) {
9479 			mp2->b_cont = NULL;
9480 			inet_freemsg(mp1);
9481 			inet_freemsg(pending_mp);
9482 			return (entp == NULL ? ENOMEM : 0);
9483 		}
9484 	}
9485 
9486 	/*
9487 	 * Before sending 'mp' to ARP, we have to clear the b_next
9488 	 * and b_prev. Otherwise if STREAMS encounters such a message
9489 	 * in freemsg(), (because ARP can close any time) it can cause
9490 	 * a panic. But mi code needs the b_next and b_prev values of
9491 	 * mp->b_cont, to complete the ioctl. So we store it here
9492 	 * in pending_mp->bcont, and restore it in ip_sioctl_iocack()
9493 	 * when the response comes down from ARP.
9494 	 */
9495 	pending_mp->b_cont->b_next = mp->b_cont->b_next;
9496 	pending_mp->b_cont->b_prev = mp->b_cont->b_prev;
9497 	mp->b_cont->b_next = NULL;
9498 	mp->b_cont->b_prev = NULL;
9499 
9500 	mutex_enter(&connp->conn_lock);
9501 	mutex_enter(&ill->ill_lock);
9502 	/* conn has not yet started closing, hence this can't fail */
9503 	if (ipip->ipi_flags & IPI_WR) {
9504 		VERIFY(ipsq_pending_mp_add(connp, ipif, CONNP_TO_WQ(connp),
9505 		    pending_mp, 0) != 0);
9506 	} else {
9507 		VERIFY(ill_pending_mp_add(ill, connp, pending_mp) != 0);
9508 	}
9509 	mutex_exit(&ill->ill_lock);
9510 	mutex_exit(&connp->conn_lock);
9511 
9512 	/*
9513 	 * Up to ARP it goes.  The response will come back in ip_wput() as an
9514 	 * M_IOCACK, and will be handed to ip_sioctl_iocack() for completion.
9515 	 */
9516 	putnext(ill->ill_rq, mp1);
9517 
9518 	/*
9519 	 * If we created an IPMP ARP entry, mark that we've notified ARP.
9520 	 */
9521 	if (entp != NULL)
9522 		ipmp_illgrp_mark_arpent(ill->ill_grp, entp);
9523 
9524 	return (EINPROGRESS);
9525 }
9526 
9527 /*
9528  * Parse an [x]arpreq structure coming down SIOC[GSD][X]ARP ioctls, identify
9529  * the associated sin and refhold and return the associated ipif via `ci'.
9530  */
9531 int
9532 ip_extract_arpreq(queue_t *q, mblk_t *mp, const ip_ioctl_cmd_t *ipip,
9533     cmd_info_t *ci, ipsq_func_t func)
9534 {
9535 	mblk_t	*mp1;
9536 	int	err;
9537 	sin_t	*sin;
9538 	conn_t	*connp;
9539 	ipif_t	*ipif;
9540 	ire_t	*ire = NULL;
9541 	ill_t	*ill = NULL;
9542 	boolean_t exists;
9543 	ip_stack_t *ipst;
9544 	struct arpreq *ar;
9545 	struct xarpreq *xar;
9546 	struct sockaddr_dl *sdl;
9547 
9548 	/* ioctl comes down on a conn */
9549 	ASSERT(!(q->q_flag & QREADR) && q->q_next == NULL);
9550 	connp = Q_TO_CONN(q);
9551 	if (connp->conn_af_isv6)
9552 		return (ENXIO);
9553 
9554 	ipst = connp->conn_netstack->netstack_ip;
9555 
9556 	/* Verified in ip_wput_nondata */
9557 	mp1 = mp->b_cont->b_cont;
9558 
9559 	if (ipip->ipi_cmd_type == XARP_CMD) {
9560 		ASSERT(MBLKL(mp1) >= sizeof (struct xarpreq));
9561 		xar = (struct xarpreq *)mp1->b_rptr;
9562 		sin = (sin_t *)&xar->xarp_pa;
9563 		sdl = &xar->xarp_ha;
9564 
9565 		if (sdl->sdl_family != AF_LINK || sin->sin_family != AF_INET)
9566 			return (ENXIO);
9567 		if (sdl->sdl_nlen >= LIFNAMSIZ)
9568 			return (EINVAL);
9569 	} else {
9570 		ASSERT(ipip->ipi_cmd_type == ARP_CMD);
9571 		ASSERT(MBLKL(mp1) >= sizeof (struct arpreq));
9572 		ar = (struct arpreq *)mp1->b_rptr;
9573 		sin = (sin_t *)&ar->arp_pa;
9574 	}
9575 
9576 	if (ipip->ipi_cmd_type == XARP_CMD && sdl->sdl_nlen != 0) {
9577 		ipif = ipif_lookup_on_name(sdl->sdl_data, sdl->sdl_nlen,
9578 		    B_FALSE, &exists, B_FALSE, ALL_ZONES, CONNP_TO_WQ(connp),
9579 		    mp, func, &err, ipst);
9580 		if (ipif == NULL)
9581 			return (err);
9582 		if (ipif->ipif_id != 0) {
9583 			ipif_refrele(ipif);
9584 			return (ENXIO);
9585 		}
9586 	} else {
9587 		/*
9588 		 * Either an SIOC[DGS]ARP or an SIOC[DGS]XARP with an sdl_nlen
9589 		 * of 0: use the IP address to find the ipif.  If the IP
9590 		 * address is an IPMP test address, ire_ftable_lookup() will
9591 		 * find the wrong ill, so we first do an ipif_lookup_addr().
9592 		 */
9593 		ipif = ipif_lookup_addr(sin->sin_addr.s_addr, NULL, ALL_ZONES,
9594 		    CONNP_TO_WQ(connp), mp, func, &err, ipst);
9595 		if (ipif == NULL) {
9596 			ire = ire_ftable_lookup(sin->sin_addr.s_addr, 0, 0,
9597 			    IRE_IF_RESOLVER, NULL, NULL, ALL_ZONES, 0, NULL,
9598 			    MATCH_IRE_TYPE, ipst);
9599 			if (ire == NULL || ((ill = ire_to_ill(ire)) == NULL)) {
9600 				if (ire != NULL)
9601 					ire_refrele(ire);
9602 				return (ENXIO);
9603 			}
9604 			ipif = ill->ill_ipif;
9605 			ipif_refhold(ipif);
9606 			ire_refrele(ire);
9607 		}
9608 	}
9609 
9610 	if (ipif->ipif_net_type != IRE_IF_RESOLVER) {
9611 		ipif_refrele(ipif);
9612 		return (ENXIO);
9613 	}
9614 
9615 	ci->ci_sin = sin;
9616 	ci->ci_ipif = ipif;
9617 	return (0);
9618 }
9619 
9620 /*
9621  * Link or unlink the illgrp on IPMP meta-interface `ill' depending on the
9622  * value of `ioccmd'.  While an illgrp is linked to an ipmp_grp_t, it is
9623  * accessible from that ipmp_grp_t, which means SIOCSLIFGROUPNAME can look it
9624  * up and thus an ill can join that illgrp.
9625  *
9626  * We use I_PLINK/I_PUNLINK to do the link/unlink operations rather than
9627  * open()/close() primarily because close() is not allowed to fail or block
9628  * forever.  On the other hand, I_PUNLINK *can* fail, and there's no reason
9629  * why anyone should ever need to I_PUNLINK an in-use IPMP stream.  To ensure
9630  * symmetric behavior (e.g., doing an I_PLINK after and I_PUNLINK undoes the
9631  * I_PUNLINK) we defer linking to I_PLINK.  Separately, we also fail attempts
9632  * to I_LINK since I_UNLINK is optional and we'd end up in an inconsistent
9633  * state if I_UNLINK didn't occur.
9634  *
9635  * Note that for each plumb/unplumb operation, we may end up here more than
9636  * once because of the way ifconfig works.  However, it's OK to link the same
9637  * illgrp more than once, or unlink an illgrp that's already unlinked.
9638  */
9639 static int
9640 ip_sioctl_plink_ipmp(ill_t *ill, int ioccmd)
9641 {
9642 	int err;
9643 	ip_stack_t *ipst = ill->ill_ipst;
9644 
9645 	ASSERT(IS_IPMP(ill));
9646 	ASSERT(IAM_WRITER_ILL(ill));
9647 
9648 	switch (ioccmd) {
9649 	case I_LINK:
9650 		return (ENOTSUP);
9651 
9652 	case I_PLINK:
9653 		rw_enter(&ipst->ips_ipmp_lock, RW_WRITER);
9654 		ipmp_illgrp_link_grp(ill->ill_grp, ill->ill_phyint->phyint_grp);
9655 		rw_exit(&ipst->ips_ipmp_lock);
9656 		break;
9657 
9658 	case I_PUNLINK:
9659 		/*
9660 		 * Require all UP ipifs be brought down prior to unlinking the
9661 		 * illgrp so any associated IREs (and other state) is torched.
9662 		 */
9663 		if (ill->ill_ipif_up_count + ill->ill_ipif_dup_count > 0)
9664 			return (EBUSY);
9665 
9666 		/*
9667 		 * NOTE: We hold ipmp_lock across the unlink to prevent a race
9668 		 * with an SIOCSLIFGROUPNAME request from an ill trying to
9669 		 * join this group.  Specifically: ills trying to join grab
9670 		 * ipmp_lock and bump a "pending join" counter checked by
9671 		 * ipmp_illgrp_unlink_grp().  During the unlink no new pending
9672 		 * joins can occur (since we have ipmp_lock).  Once we drop
9673 		 * ipmp_lock, subsequent SIOCSLIFGROUPNAME requests will not
9674 		 * find the illgrp (since we unlinked it) and will return
9675 		 * EAFNOSUPPORT.  This will then take them back through the
9676 		 * IPMP meta-interface plumbing logic in ifconfig, and thus
9677 		 * back through I_PLINK above.
9678 		 */
9679 		rw_enter(&ipst->ips_ipmp_lock, RW_WRITER);
9680 		err = ipmp_illgrp_unlink_grp(ill->ill_grp);
9681 		rw_exit(&ipst->ips_ipmp_lock);
9682 		return (err);
9683 	default:
9684 		break;
9685 	}
9686 	return (0);
9687 }
9688 
9689 /*
9690  * Do I_PLINK/I_LINK or I_PUNLINK/I_UNLINK with consistency checks and also
9691  * atomically set/clear the muxids. Also complete the ioctl by acking or
9692  * naking it.  Note that the code is structured such that the link type,
9693  * whether it's persistent or not, is treated equally.  ifconfig(1M) and
9694  * its clones use the persistent link, while pppd(1M) and perhaps many
9695  * other daemons may use non-persistent link.  When combined with some
9696  * ill_t states, linking and unlinking lower streams may be used as
9697  * indicators of dynamic re-plumbing events [see PSARC/1999/348].
9698  */
9699 /* ARGSUSED */
9700 void
9701 ip_sioctl_plink(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy_arg)
9702 {
9703 	mblk_t		*mp1, *mp2;
9704 	struct linkblk	*li;
9705 	struct ipmx_s	*ipmxp;
9706 	ill_t		*ill;
9707 	int		ioccmd = ((struct iocblk *)mp->b_rptr)->ioc_cmd;
9708 	int		err = 0;
9709 	boolean_t	entered_ipsq = B_FALSE;
9710 	boolean_t	islink;
9711 	ip_stack_t	*ipst;
9712 
9713 	if (CONN_Q(q))
9714 		ipst = CONNQ_TO_IPST(q);
9715 	else
9716 		ipst = ILLQ_TO_IPST(q);
9717 
9718 	ASSERT(ioccmd == I_PLINK || ioccmd == I_PUNLINK ||
9719 	    ioccmd == I_LINK || ioccmd == I_UNLINK);
9720 
9721 	islink = (ioccmd == I_PLINK || ioccmd == I_LINK);
9722 
9723 	mp1 = mp->b_cont;	/* This is the linkblk info */
9724 	li = (struct linkblk *)mp1->b_rptr;
9725 
9726 	/*
9727 	 * ARP has added this special mblk, and the utility is asking us
9728 	 * to perform consistency checks, and also atomically set the
9729 	 * muxid. Ifconfig is an example.  It achieves this by using
9730 	 * /dev/arp as the mux to plink the arp stream, and pushes arp on
9731 	 * to /dev/udp[6] stream for use as the mux when plinking the IP
9732 	 * stream. SIOCSLIFMUXID is not required.  See ifconfig.c, arp.c
9733 	 * and other comments in this routine for more details.
9734 	 */
9735 	mp2 = mp1->b_cont;	/* This is added by ARP */
9736 
9737 	/*
9738 	 * If I_{P}LINK/I_{P}UNLINK is issued by a utility other than
9739 	 * ifconfig which didn't push ARP on top of the dummy mux, we won't
9740 	 * get the special mblk above.  For backward compatibility, we
9741 	 * request ip_sioctl_plink_ipmod() to skip the consistency checks.
9742 	 * The utility will use SIOCSLIFMUXID to store the muxids.  This is
9743 	 * not atomic, and can leave the streams unplumbable if the utility
9744 	 * is interrupted before it does the SIOCSLIFMUXID.
9745 	 */
9746 	if (mp2 == NULL) {
9747 		err = ip_sioctl_plink_ipmod(ipsq, q, mp, ioccmd, li, B_FALSE);
9748 		if (err == EINPROGRESS)
9749 			return;
9750 		goto done;
9751 	}
9752 
9753 	/*
9754 	 * This is an I_{P}LINK sent down by ifconfig through the ARP module;
9755 	 * ARP has appended this last mblk to tell us whether the lower stream
9756 	 * is an arp-dev stream or an IP module stream.
9757 	 */
9758 	ipmxp = (struct ipmx_s *)mp2->b_rptr;
9759 	if (ipmxp->ipmx_arpdev_stream) {
9760 		/*
9761 		 * The lower stream is the arp-dev stream.
9762 		 */
9763 		ill = ill_lookup_on_name(ipmxp->ipmx_name, B_FALSE, B_FALSE,
9764 		    q, mp, ip_sioctl_plink, &err, NULL, ipst);
9765 		if (ill == NULL) {
9766 			if (err == EINPROGRESS)
9767 				return;
9768 			err = EINVAL;
9769 			goto done;
9770 		}
9771 
9772 		if (ipsq == NULL) {
9773 			ipsq = ipsq_try_enter(NULL, ill, q, mp, ip_sioctl_plink,
9774 			    NEW_OP, B_FALSE);
9775 			if (ipsq == NULL) {
9776 				ill_refrele(ill);
9777 				return;
9778 			}
9779 			entered_ipsq = B_TRUE;
9780 		}
9781 		ASSERT(IAM_WRITER_ILL(ill));
9782 		ill_refrele(ill);
9783 
9784 		/*
9785 		 * To ensure consistency between IP and ARP, the following
9786 		 * LIFO scheme is used in plink/punlink. (IP first, ARP last).
9787 		 * This is because the muxid's are stored in the IP stream on
9788 		 * the ill.
9789 		 *
9790 		 * I_{P}LINK: ifconfig plinks the IP stream before plinking
9791 		 * the ARP stream. On an arp-dev stream, IP checks that it is
9792 		 * not yet plinked, and it also checks that the corresponding
9793 		 * IP stream is already plinked.
9794 		 *
9795 		 * I_{P}UNLINK: ifconfig punlinks the ARP stream before
9796 		 * punlinking the IP stream. IP does not allow punlink of the
9797 		 * IP stream unless the arp stream has been punlinked.
9798 		 */
9799 		if ((islink &&
9800 		    (ill->ill_arp_muxid != 0 || ill->ill_ip_muxid == 0)) ||
9801 		    (!islink && ill->ill_arp_muxid != li->l_index)) {
9802 			err = EINVAL;
9803 			goto done;
9804 		}
9805 
9806 		if (IS_IPMP(ill) &&
9807 		    (err = ip_sioctl_plink_ipmp(ill, ioccmd)) != 0)
9808 			goto done;
9809 
9810 		ill->ill_arp_muxid = islink ? li->l_index : 0;
9811 	} else {
9812 		/*
9813 		 * The lower stream is probably an IP module stream.  Do
9814 		 * consistency checking.
9815 		 */
9816 		err = ip_sioctl_plink_ipmod(ipsq, q, mp, ioccmd, li, B_TRUE);
9817 		if (err == EINPROGRESS)
9818 			return;
9819 	}
9820 done:
9821 	if (err == 0)
9822 		miocack(q, mp, 0, 0);
9823 	else
9824 		miocnak(q, mp, 0, err);
9825 
9826 	/* Conn was refheld in ip_sioctl_copyin_setup */
9827 	if (CONN_Q(q))
9828 		CONN_OPER_PENDING_DONE(Q_TO_CONN(q));
9829 	if (entered_ipsq)
9830 		ipsq_exit(ipsq);
9831 }
9832 
9833 /*
9834  * Process I_{P}LINK and I_{P}UNLINK requests named by `ioccmd' and pointed to
9835  * by `mp' and `li' for the IP module stream (if li->q_bot is in fact an IP
9836  * module stream).  If `doconsist' is set, then do the extended consistency
9837  * checks requested by ifconfig(1M) and (atomically) set ill_ip_muxid here.
9838  * Returns zero on success, EINPROGRESS if the operation is still pending, or
9839  * an error code on failure.
9840  */
9841 static int
9842 ip_sioctl_plink_ipmod(ipsq_t *ipsq, queue_t *q, mblk_t *mp, int ioccmd,
9843     struct linkblk *li, boolean_t doconsist)
9844 {
9845 	int		err = 0;
9846 	ill_t  		*ill;
9847 	queue_t		*ipwq, *dwq;
9848 	const char	*name;
9849 	struct qinit	*qinfo;
9850 	boolean_t	islink = (ioccmd == I_PLINK || ioccmd == I_LINK);
9851 	boolean_t	entered_ipsq = B_FALSE;
9852 
9853 	/*
9854 	 * Walk the lower stream to verify it's the IP module stream.
9855 	 * The IP module is identified by its name, wput function,
9856 	 * and non-NULL q_next.  STREAMS ensures that the lower stream
9857 	 * (li->l_qbot) will not vanish until this ioctl completes.
9858 	 */
9859 	for (ipwq = li->l_qbot; ipwq != NULL; ipwq = ipwq->q_next) {
9860 		qinfo = ipwq->q_qinfo;
9861 		name = qinfo->qi_minfo->mi_idname;
9862 		if (name != NULL && strcmp(name, ip_mod_info.mi_idname) == 0 &&
9863 		    qinfo->qi_putp != (pfi_t)ip_lwput && ipwq->q_next != NULL) {
9864 			break;
9865 		}
9866 	}
9867 
9868 	/*
9869 	 * If this isn't an IP module stream, bail.
9870 	 */
9871 	if (ipwq == NULL)
9872 		return (0);
9873 
9874 	ill = ipwq->q_ptr;
9875 	ASSERT(ill != NULL);
9876 
9877 	if (ipsq == NULL) {
9878 		ipsq = ipsq_try_enter(NULL, ill, q, mp, ip_sioctl_plink,
9879 		    NEW_OP, B_FALSE);
9880 		if (ipsq == NULL)
9881 			return (EINPROGRESS);
9882 		entered_ipsq = B_TRUE;
9883 	}
9884 	ASSERT(IAM_WRITER_ILL(ill));
9885 
9886 	if (doconsist) {
9887 		/*
9888 		 * Consistency checking requires that I_{P}LINK occurs
9889 		 * prior to setting ill_ip_muxid, and that I_{P}UNLINK
9890 		 * occurs prior to clearing ill_arp_muxid.
9891 		 */
9892 		if ((islink && ill->ill_ip_muxid != 0) ||
9893 		    (!islink && ill->ill_arp_muxid != 0)) {
9894 			err = EINVAL;
9895 			goto done;
9896 		}
9897 	}
9898 
9899 	if (IS_IPMP(ill) && (err = ip_sioctl_plink_ipmp(ill, ioccmd)) != 0)
9900 		goto done;
9901 
9902 	/*
9903 	 * As part of I_{P}LINKing, stash the number of downstream modules and
9904 	 * the read queue of the module immediately below IP in the ill.
9905 	 * These are used during the capability negotiation below.
9906 	 */
9907 	ill->ill_lmod_rq = NULL;
9908 	ill->ill_lmod_cnt = 0;
9909 	if (islink && ((dwq = ipwq->q_next) != NULL)) {
9910 		ill->ill_lmod_rq = RD(dwq);
9911 		for (; dwq != NULL; dwq = dwq->q_next)
9912 			ill->ill_lmod_cnt++;
9913 	}
9914 
9915 	if (doconsist)
9916 		ill->ill_ip_muxid = islink ? li->l_index : 0;
9917 
9918 	/*
9919 	 * Mark the ipsq busy until the capability operations initiated below
9920 	 * complete. The PLINK/UNLINK ioctl itself completes when our caller
9921 	 * returns, but the capability operation may complete asynchronously
9922 	 * much later.
9923 	 */
9924 	ipsq_current_start(ipsq, ill->ill_ipif, ioccmd);
9925 	/*
9926 	 * If there's at least one up ipif on this ill, then we're bound to
9927 	 * the underlying driver via DLPI.  In that case, renegotiate
9928 	 * capabilities to account for any possible change in modules
9929 	 * interposed between IP and the driver.
9930 	 */
9931 	if (ill->ill_ipif_up_count > 0) {
9932 		if (islink)
9933 			ill_capability_probe(ill);
9934 		else
9935 			ill_capability_reset(ill, B_FALSE);
9936 	}
9937 	ipsq_current_finish(ipsq);
9938 done:
9939 	if (entered_ipsq)
9940 		ipsq_exit(ipsq);
9941 
9942 	return (err);
9943 }
9944 
9945 /*
9946  * Search the ioctl command in the ioctl tables and return a pointer
9947  * to the ioctl command information. The ioctl command tables are
9948  * static and fully populated at compile time.
9949  */
9950 ip_ioctl_cmd_t *
9951 ip_sioctl_lookup(int ioc_cmd)
9952 {
9953 	int index;
9954 	ip_ioctl_cmd_t *ipip;
9955 	ip_ioctl_cmd_t *ipip_end;
9956 
9957 	if (ioc_cmd == IPI_DONTCARE)
9958 		return (NULL);
9959 
9960 	/*
9961 	 * Do a 2 step search. First search the indexed table
9962 	 * based on the least significant byte of the ioctl cmd.
9963 	 * If we don't find a match, then search the misc table
9964 	 * serially.
9965 	 */
9966 	index = ioc_cmd & 0xFF;
9967 	if (index < ip_ndx_ioctl_count) {
9968 		ipip = &ip_ndx_ioctl_table[index];
9969 		if (ipip->ipi_cmd == ioc_cmd) {
9970 			/* Found a match in the ndx table */
9971 			return (ipip);
9972 		}
9973 	}
9974 
9975 	/* Search the misc table */
9976 	ipip_end = &ip_misc_ioctl_table[ip_misc_ioctl_count];
9977 	for (ipip = ip_misc_ioctl_table; ipip < ipip_end; ipip++) {
9978 		if (ipip->ipi_cmd == ioc_cmd)
9979 			/* Found a match in the misc table */
9980 			return (ipip);
9981 	}
9982 
9983 	return (NULL);
9984 }
9985 
9986 /*
9987  * Wrapper function for resuming deferred ioctl processing
9988  * Used for SIOCGDSTINFO, SIOCGIP6ADDRPOLICY, SIOCGMSFILTER,
9989  * SIOCSMSFILTER, SIOCGIPMSFILTER, and SIOCSIPMSFILTER currently.
9990  */
9991 /* ARGSUSED */
9992 void
9993 ip_sioctl_copyin_resume(ipsq_t *dummy_ipsq, queue_t *q, mblk_t *mp,
9994     void *dummy_arg)
9995 {
9996 	ip_sioctl_copyin_setup(q, mp);
9997 }
9998 
9999 /*
10000  * ip_sioctl_copyin_setup is called by ip_wput with any M_IOCTL message
10001  * that arrives.  Most of the IOCTLs are "socket" IOCTLs which we handle
10002  * in either I_STR or TRANSPARENT form, using the mi_copy facility.
10003  * We establish here the size of the block to be copied in.  mi_copyin
10004  * arranges for this to happen, an processing continues in ip_wput with
10005  * an M_IOCDATA message.
10006  */
10007 void
10008 ip_sioctl_copyin_setup(queue_t *q, mblk_t *mp)
10009 {
10010 	int	copyin_size;
10011 	struct iocblk *iocp = (struct iocblk *)mp->b_rptr;
10012 	ip_ioctl_cmd_t *ipip;
10013 	cred_t *cr;
10014 	ip_stack_t	*ipst;
10015 
10016 	if (CONN_Q(q))
10017 		ipst = CONNQ_TO_IPST(q);
10018 	else
10019 		ipst = ILLQ_TO_IPST(q);
10020 
10021 	ipip = ip_sioctl_lookup(iocp->ioc_cmd);
10022 	if (ipip == NULL) {
10023 		/*
10024 		 * The ioctl is not one we understand or own.
10025 		 * Pass it along to be processed down stream,
10026 		 * if this is a module instance of IP, else nak
10027 		 * the ioctl.
10028 		 */
10029 		if (q->q_next == NULL) {
10030 			goto nak;
10031 		} else {
10032 			putnext(q, mp);
10033 			return;
10034 		}
10035 	}
10036 
10037 	/*
10038 	 * If this is deferred, then we will do all the checks when we
10039 	 * come back.
10040 	 */
10041 	if ((iocp->ioc_cmd == SIOCGDSTINFO ||
10042 	    iocp->ioc_cmd == SIOCGIP6ADDRPOLICY) && !ip6_asp_can_lookup(ipst)) {
10043 		ip6_asp_pending_op(q, mp, ip_sioctl_copyin_resume);
10044 		return;
10045 	}
10046 
10047 	/*
10048 	 * Only allow a very small subset of IP ioctls on this stream if
10049 	 * IP is a module and not a driver. Allowing ioctls to be processed
10050 	 * in this case may cause assert failures or data corruption.
10051 	 * Typically G[L]IFFLAGS, SLIFNAME/IF_UNITSEL are the only few
10052 	 * ioctls allowed on an IP module stream, after which this stream
10053 	 * normally becomes a multiplexor (at which time the stream head
10054 	 * will fail all ioctls).
10055 	 */
10056 	if ((q->q_next != NULL) && !(ipip->ipi_flags & IPI_MODOK)) {
10057 		if (ipip->ipi_flags & IPI_PASS_DOWN) {
10058 			/*
10059 			 * Pass common Streams ioctls which the IP
10060 			 * module does not own or consume along to
10061 			 * be processed down stream.
10062 			 */
10063 			putnext(q, mp);
10064 			return;
10065 		} else {
10066 			goto nak;
10067 		}
10068 	}
10069 
10070 	/* Make sure we have ioctl data to process. */
10071 	if (mp->b_cont == NULL && !(ipip->ipi_flags & IPI_NULL_BCONT))
10072 		goto nak;
10073 
10074 	/*
10075 	 * Prefer dblk credential over ioctl credential; some synthesized
10076 	 * ioctls have kcred set because there's no way to crhold()
10077 	 * a credential in some contexts.  (ioc_cr is not crfree() by
10078 	 * the framework; the caller of ioctl needs to hold the reference
10079 	 * for the duration of the call).
10080 	 */
10081 	cr = msg_getcred(mp, NULL);
10082 	if (cr == NULL)
10083 		cr = iocp->ioc_cr;
10084 
10085 	/* Make sure normal users don't send down privileged ioctls */
10086 	if ((ipip->ipi_flags & IPI_PRIV) &&
10087 	    (cr != NULL) && secpolicy_ip_config(cr, B_TRUE) != 0) {
10088 		/* We checked the privilege earlier but log it here */
10089 		miocnak(q, mp, 0, secpolicy_ip_config(cr, B_FALSE));
10090 		return;
10091 	}
10092 
10093 	/*
10094 	 * The ioctl command tables can only encode fixed length
10095 	 * ioctl data. If the length is variable, the table will
10096 	 * encode the length as zero. Such special cases are handled
10097 	 * below in the switch.
10098 	 */
10099 	if (ipip->ipi_copyin_size != 0) {
10100 		mi_copyin(q, mp, NULL, ipip->ipi_copyin_size);
10101 		return;
10102 	}
10103 
10104 	switch (iocp->ioc_cmd) {
10105 	case O_SIOCGIFCONF:
10106 	case SIOCGIFCONF:
10107 		/*
10108 		 * This IOCTL is hilarious.  See comments in
10109 		 * ip_sioctl_get_ifconf for the story.
10110 		 */
10111 		if (iocp->ioc_count == TRANSPARENT)
10112 			copyin_size = SIZEOF_STRUCT(ifconf,
10113 			    iocp->ioc_flag);
10114 		else
10115 			copyin_size = iocp->ioc_count;
10116 		mi_copyin(q, mp, NULL, copyin_size);
10117 		return;
10118 
10119 	case O_SIOCGLIFCONF:
10120 	case SIOCGLIFCONF:
10121 		copyin_size = SIZEOF_STRUCT(lifconf, iocp->ioc_flag);
10122 		mi_copyin(q, mp, NULL, copyin_size);
10123 		return;
10124 
10125 	case SIOCGLIFSRCOF:
10126 		copyin_size = SIZEOF_STRUCT(lifsrcof, iocp->ioc_flag);
10127 		mi_copyin(q, mp, NULL, copyin_size);
10128 		return;
10129 	case SIOCGIP6ADDRPOLICY:
10130 		ip_sioctl_ip6addrpolicy(q, mp);
10131 		ip6_asp_table_refrele(ipst);
10132 		return;
10133 
10134 	case SIOCSIP6ADDRPOLICY:
10135 		ip_sioctl_ip6addrpolicy(q, mp);
10136 		return;
10137 
10138 	case SIOCGDSTINFO:
10139 		ip_sioctl_dstinfo(q, mp);
10140 		ip6_asp_table_refrele(ipst);
10141 		return;
10142 
10143 	case I_PLINK:
10144 	case I_PUNLINK:
10145 	case I_LINK:
10146 	case I_UNLINK:
10147 		/*
10148 		 * We treat non-persistent link similarly as the persistent
10149 		 * link case, in terms of plumbing/unplumbing, as well as
10150 		 * dynamic re-plumbing events indicator.  See comments
10151 		 * in ip_sioctl_plink() for more.
10152 		 *
10153 		 * Request can be enqueued in the 'ipsq' while waiting
10154 		 * to become exclusive. So bump up the conn ref.
10155 		 */
10156 		if (CONN_Q(q))
10157 			CONN_INC_REF(Q_TO_CONN(q));
10158 		ip_sioctl_plink(NULL, q, mp, NULL);
10159 		return;
10160 
10161 	case ND_GET:
10162 	case ND_SET:
10163 		/*
10164 		 * Use of the nd table requires holding the reader lock.
10165 		 * Modifying the nd table thru nd_load/nd_unload requires
10166 		 * the writer lock.
10167 		 */
10168 		rw_enter(&ipst->ips_ip_g_nd_lock, RW_READER);
10169 		if (nd_getset(q, ipst->ips_ip_g_nd, mp)) {
10170 			rw_exit(&ipst->ips_ip_g_nd_lock);
10171 
10172 			if (iocp->ioc_error)
10173 				iocp->ioc_count = 0;
10174 			mp->b_datap->db_type = M_IOCACK;
10175 			qreply(q, mp);
10176 			return;
10177 		}
10178 		rw_exit(&ipst->ips_ip_g_nd_lock);
10179 		/*
10180 		 * We don't understand this subioctl of ND_GET / ND_SET.
10181 		 * Maybe intended for some driver / module below us
10182 		 */
10183 		if (q->q_next) {
10184 			putnext(q, mp);
10185 		} else {
10186 			iocp->ioc_error = ENOENT;
10187 			mp->b_datap->db_type = M_IOCNAK;
10188 			iocp->ioc_count = 0;
10189 			qreply(q, mp);
10190 		}
10191 		return;
10192 
10193 	case IP_IOCTL:
10194 		ip_wput_ioctl(q, mp);
10195 		return;
10196 
10197 	case SIOCILB:
10198 		/* The ioctl length varies depending on the ILB command. */
10199 		copyin_size = iocp->ioc_count;
10200 		if (copyin_size < sizeof (ilb_cmd_t))
10201 			goto nak;
10202 		mi_copyin(q, mp, NULL, copyin_size);
10203 		return;
10204 
10205 	default:
10206 		cmn_err(CE_PANIC, "should not happen ");
10207 	}
10208 nak:
10209 	if (mp->b_cont != NULL) {
10210 		freemsg(mp->b_cont);
10211 		mp->b_cont = NULL;
10212 	}
10213 	iocp->ioc_error = EINVAL;
10214 	mp->b_datap->db_type = M_IOCNAK;
10215 	iocp->ioc_count = 0;
10216 	qreply(q, mp);
10217 }
10218 
10219 /* ip_wput hands off ARP IOCTL responses to us */
10220 /* ARGSUSED3 */
10221 void
10222 ip_sioctl_iocack(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy_arg)
10223 {
10224 	struct arpreq *ar;
10225 	struct xarpreq *xar;
10226 	area_t	*area;
10227 	mblk_t	*area_mp;
10228 	struct iocblk *iocp;
10229 	mblk_t	*orig_ioc_mp, *tmp;
10230 	struct iocblk	*orig_iocp;
10231 	ill_t *ill;
10232 	conn_t *connp = NULL;
10233 	mblk_t *pending_mp;
10234 	int x_arp_ioctl = B_FALSE, ifx_arp_ioctl = B_FALSE;
10235 	int *flagsp;
10236 	char *storage = NULL;
10237 	sin_t *sin;
10238 	ipaddr_t addr;
10239 	int err;
10240 	ip_stack_t *ipst;
10241 
10242 	ASSERT(ipsq == NULL || IAM_WRITER_IPSQ(ipsq));
10243 	ill = q->q_ptr;
10244 	ASSERT(ill != NULL);
10245 	ipst = ill->ill_ipst;
10246 
10247 	/*
10248 	 * We should get back from ARP a packet chain that looks like:
10249 	 * M_IOCACK-->ARP_op_MBLK-->ORIG_M_IOCTL-->MI_COPY_MBLK-->[X]ARPREQ_MBLK
10250 	 */
10251 	if (!(area_mp = mp->b_cont) ||
10252 	    (area_mp->b_wptr - area_mp->b_rptr) < sizeof (ip_sock_ar_t) ||
10253 	    !(orig_ioc_mp = area_mp->b_cont) ||
10254 	    !orig_ioc_mp->b_cont || !orig_ioc_mp->b_cont->b_cont) {
10255 		freemsg(mp);
10256 		return;
10257 	}
10258 
10259 	orig_iocp = (struct iocblk *)orig_ioc_mp->b_rptr;
10260 
10261 	tmp = (orig_ioc_mp->b_cont)->b_cont;
10262 	if ((orig_iocp->ioc_cmd == SIOCGXARP) ||
10263 	    (orig_iocp->ioc_cmd == SIOCSXARP) ||
10264 	    (orig_iocp->ioc_cmd == SIOCDXARP)) {
10265 		x_arp_ioctl = B_TRUE;
10266 		xar = (struct xarpreq *)tmp->b_rptr;
10267 		sin = (sin_t *)&xar->xarp_pa;
10268 		flagsp = &xar->xarp_flags;
10269 		storage = xar->xarp_ha.sdl_data;
10270 		if (xar->xarp_ha.sdl_nlen != 0)
10271 			ifx_arp_ioctl = B_TRUE;
10272 	} else {
10273 		ar = (struct arpreq *)tmp->b_rptr;
10274 		sin = (sin_t *)&ar->arp_pa;
10275 		flagsp = &ar->arp_flags;
10276 		storage = ar->arp_ha.sa_data;
10277 	}
10278 
10279 	iocp = (struct iocblk *)mp->b_rptr;
10280 
10281 	/*
10282 	 * Find the pending message; if we're exclusive, it'll be on our IPSQ.
10283 	 * Otherwise, we can find it from our ioc_id.
10284 	 */
10285 	if (ipsq != NULL)
10286 		pending_mp = ipsq_pending_mp_get(ipsq, &connp);
10287 	else
10288 		pending_mp = ill_pending_mp_get(ill, &connp, iocp->ioc_id);
10289 
10290 	if (pending_mp == NULL) {
10291 		ASSERT(connp == NULL);
10292 		inet_freemsg(mp);
10293 		return;
10294 	}
10295 	ASSERT(connp != NULL);
10296 	q = CONNP_TO_WQ(connp);
10297 
10298 	/* Uncouple the internally generated IOCTL from the original one */
10299 	area = (area_t *)area_mp->b_rptr;
10300 	area_mp->b_cont = NULL;
10301 
10302 	/*
10303 	 * Restore the b_next and b_prev used by mi code. This is needed
10304 	 * to complete the ioctl using mi* functions. We stored them in
10305 	 * the pending mp prior to sending the request to ARP.
10306 	 */
10307 	orig_ioc_mp->b_cont->b_next = pending_mp->b_cont->b_next;
10308 	orig_ioc_mp->b_cont->b_prev = pending_mp->b_cont->b_prev;
10309 	inet_freemsg(pending_mp);
10310 
10311 	/*
10312 	 * We're done if there was an error or if this is not an SIOCG{X}ARP
10313 	 * Catch the case where there is an IRE_CACHE by no entry in the
10314 	 * arp table.
10315 	 */
10316 	addr = sin->sin_addr.s_addr;
10317 	if (iocp->ioc_error && iocp->ioc_cmd == AR_ENTRY_SQUERY) {
10318 		ire_t			*ire;
10319 		dl_unitdata_req_t	*dlup;
10320 		mblk_t			*llmp;
10321 		int			addr_len;
10322 		ill_t			*ipsqill = NULL;
10323 
10324 		if (ifx_arp_ioctl) {
10325 			/*
10326 			 * There's no need to lookup the ill, since
10327 			 * we've already done that when we started
10328 			 * processing the ioctl and sent the message
10329 			 * to ARP on that ill.  So use the ill that
10330 			 * is stored in q->q_ptr.
10331 			 */
10332 			ipsqill = ill;
10333 			ire = ire_ctable_lookup(addr, 0, IRE_CACHE,
10334 			    ipsqill->ill_ipif, ALL_ZONES,
10335 			    NULL, MATCH_IRE_TYPE | MATCH_IRE_ILL, ipst);
10336 		} else {
10337 			ire = ire_ctable_lookup(addr, 0, IRE_CACHE,
10338 			    NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst);
10339 			if (ire != NULL)
10340 				ipsqill = ire_to_ill(ire);
10341 		}
10342 
10343 		if ((x_arp_ioctl) && (ipsqill != NULL))
10344 			storage += ill_xarp_info(&xar->xarp_ha, ipsqill);
10345 
10346 		if (ire != NULL) {
10347 			/*
10348 			 * Since the ire obtained from cachetable is used for
10349 			 * mac addr copying below, treat an incomplete ire as if
10350 			 * as if we never found it.
10351 			 */
10352 			if (ire->ire_nce != NULL &&
10353 			    ire->ire_nce->nce_state != ND_REACHABLE) {
10354 				ire_refrele(ire);
10355 				ire = NULL;
10356 				ipsqill = NULL;
10357 				goto errack;
10358 			}
10359 			*flagsp = ATF_INUSE;
10360 			llmp = (ire->ire_nce != NULL ?
10361 			    ire->ire_nce->nce_res_mp : NULL);
10362 			if (llmp != NULL && ipsqill != NULL) {
10363 				uchar_t *macaddr;
10364 
10365 				addr_len = ipsqill->ill_phys_addr_length;
10366 				if (x_arp_ioctl && ((addr_len +
10367 				    ipsqill->ill_name_length) >
10368 				    sizeof (xar->xarp_ha.sdl_data))) {
10369 					ire_refrele(ire);
10370 					freemsg(mp);
10371 					ip_ioctl_finish(q, orig_ioc_mp,
10372 					    EINVAL, NO_COPYOUT, ipsq);
10373 					return;
10374 				}
10375 				*flagsp |= ATF_COM;
10376 				dlup = (dl_unitdata_req_t *)llmp->b_rptr;
10377 				if (ipsqill->ill_sap_length < 0)
10378 					macaddr = llmp->b_rptr +
10379 					    dlup->dl_dest_addr_offset;
10380 				else
10381 					macaddr = llmp->b_rptr +
10382 					    dlup->dl_dest_addr_offset +
10383 					    ipsqill->ill_sap_length;
10384 				/*
10385 				 * For SIOCGARP, MAC address length
10386 				 * validation has already been done
10387 				 * before the ioctl was issued to ARP to
10388 				 * allow it to progress only on 6 byte
10389 				 * addressable (ethernet like) media. Thus
10390 				 * the mac address copying can not overwrite
10391 				 * the sa_data area below.
10392 				 */
10393 				bcopy(macaddr, storage, addr_len);
10394 			}
10395 			/* Ditch the internal IOCTL. */
10396 			freemsg(mp);
10397 			ire_refrele(ire);
10398 			ip_ioctl_finish(q, orig_ioc_mp, 0, COPYOUT, ipsq);
10399 			return;
10400 		}
10401 	}
10402 
10403 	/*
10404 	 * If this was a failed AR_ENTRY_ADD or a successful AR_ENTRY_DELETE
10405 	 * on the IPMP meta-interface, ensure any ARP entries added in
10406 	 * ip_sioctl_arp() are deleted.
10407 	 */
10408 	if (IS_IPMP(ill) &&
10409 	    ((iocp->ioc_error != 0 && iocp->ioc_cmd == AR_ENTRY_ADD) ||
10410 	    ((iocp->ioc_error == 0 && iocp->ioc_cmd == AR_ENTRY_DELETE)))) {
10411 		ipmp_illgrp_t *illg = ill->ill_grp;
10412 		ipmp_arpent_t *entp;
10413 
10414 		if ((entp = ipmp_illgrp_lookup_arpent(illg, &addr)) != NULL)
10415 			ipmp_illgrp_destroy_arpent(illg, entp);
10416 	}
10417 
10418 	/*
10419 	 * Delete the coresponding IRE_CACHE if any.
10420 	 * Reset the error if there was one (in case there was no entry
10421 	 * in arp.)
10422 	 */
10423 	if (iocp->ioc_cmd == AR_ENTRY_DELETE) {
10424 		ipif_t *ipintf = NULL;
10425 
10426 		if (ifx_arp_ioctl) {
10427 			/*
10428 			 * There's no need to lookup the ill, since
10429 			 * we've already done that when we started
10430 			 * processing the ioctl and sent the message
10431 			 * to ARP on that ill.  So use the ill that
10432 			 * is stored in q->q_ptr.
10433 			 */
10434 			ipintf = ill->ill_ipif;
10435 		}
10436 		if (ip_ire_clookup_and_delete(addr, ipintf, ipst)) {
10437 			/*
10438 			 * The address in "addr" may be an entry for a
10439 			 * router. If that's true, then any off-net
10440 			 * IRE_CACHE entries that go through the router
10441 			 * with address "addr" must be clobbered. Use
10442 			 * ire_walk to achieve this goal.
10443 			 */
10444 			if (ifx_arp_ioctl)
10445 				ire_walk_ill_v4(MATCH_IRE_ILL, 0,
10446 				    ire_delete_cache_gw, (char *)&addr, ill);
10447 			else
10448 				ire_walk_v4(ire_delete_cache_gw, (char *)&addr,
10449 				    ALL_ZONES, ipst);
10450 			iocp->ioc_error = 0;
10451 		}
10452 	}
10453 errack:
10454 	if (iocp->ioc_error || iocp->ioc_cmd != AR_ENTRY_SQUERY) {
10455 		err = iocp->ioc_error;
10456 		freemsg(mp);
10457 		ip_ioctl_finish(q, orig_ioc_mp, err, NO_COPYOUT, ipsq);
10458 		return;
10459 	}
10460 
10461 	/*
10462 	 * Completion of an SIOCG{X}ARP.  Translate the information from
10463 	 * the area_t into the struct {x}arpreq.
10464 	 */
10465 	if (x_arp_ioctl) {
10466 		storage += ill_xarp_info(&xar->xarp_ha, ill);
10467 		if ((ill->ill_phys_addr_length + ill->ill_name_length) >
10468 		    sizeof (xar->xarp_ha.sdl_data)) {
10469 			freemsg(mp);
10470 			ip_ioctl_finish(q, orig_ioc_mp, EINVAL, NO_COPYOUT,
10471 			    ipsq);
10472 			return;
10473 		}
10474 	}
10475 	*flagsp = ATF_INUSE;
10476 	if (area->area_flags & ACE_F_PERMANENT)
10477 		*flagsp |= ATF_PERM;
10478 	if (area->area_flags & ACE_F_PUBLISH)
10479 		*flagsp |= ATF_PUBL;
10480 	if (area->area_flags & ACE_F_AUTHORITY)
10481 		*flagsp |= ATF_AUTHORITY;
10482 	if (area->area_hw_addr_length != 0) {
10483 		*flagsp |= ATF_COM;
10484 		/*
10485 		 * For SIOCGARP, MAC address length validation has
10486 		 * already been done before the ioctl was issued to ARP
10487 		 * to allow it to progress only on 6 byte addressable
10488 		 * (ethernet like) media. Thus the mac address copying
10489 		 * can not overwrite the sa_data area below.
10490 		 */
10491 		bcopy((char *)area + area->area_hw_addr_offset,
10492 		    storage, area->area_hw_addr_length);
10493 	}
10494 
10495 	/* Ditch the internal IOCTL. */
10496 	freemsg(mp);
10497 	/* Complete the original. */
10498 	ip_ioctl_finish(q, orig_ioc_mp, 0, COPYOUT, ipsq);
10499 }
10500 
10501 /*
10502  * Create a new logical interface. If ipif_id is zero (i.e. not a logical
10503  * interface) create the next available logical interface for this
10504  * physical interface.
10505  * If ipif is NULL (i.e. the lookup didn't find one) attempt to create an
10506  * ipif with the specified name.
10507  *
10508  * If the address family is not AF_UNSPEC then set the address as well.
10509  *
10510  * If ip_sioctl_addr returns EINPROGRESS then the ioctl (the copyout)
10511  * is completed when the DL_BIND_ACK arrive in ip_rput_dlpi_writer.
10512  *
10513  * Executed as a writer on the ill.
10514  * So no lock is needed to traverse the ipif chain, or examine the
10515  * phyint flags.
10516  */
10517 /* ARGSUSED */
10518 int
10519 ip_sioctl_addif(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp,
10520     ip_ioctl_cmd_t *dummy_ipip, void *dummy_ifreq)
10521 {
10522 	mblk_t	*mp1;
10523 	struct lifreq *lifr;
10524 	boolean_t	isv6;
10525 	boolean_t	exists;
10526 	char 	*name;
10527 	char	*endp;
10528 	char	*cp;
10529 	int	namelen;
10530 	ipif_t	*ipif;
10531 	long	id;
10532 	ipsq_t	*ipsq;
10533 	ill_t	*ill;
10534 	sin_t	*sin;
10535 	int	err = 0;
10536 	boolean_t found_sep = B_FALSE;
10537 	conn_t	*connp;
10538 	zoneid_t zoneid;
10539 	ip_stack_t *ipst = CONNQ_TO_IPST(q);
10540 
10541 	ASSERT(q->q_next == NULL);
10542 	ip1dbg(("ip_sioctl_addif\n"));
10543 	/* Existence of mp1 has been checked in ip_wput_nondata */
10544 	mp1 = mp->b_cont->b_cont;
10545 	/*
10546 	 * Null terminate the string to protect against buffer
10547 	 * overrun. String was generated by user code and may not
10548 	 * be trusted.
10549 	 */
10550 	lifr = (struct lifreq *)mp1->b_rptr;
10551 	lifr->lifr_name[LIFNAMSIZ - 1] = '\0';
10552 	name = lifr->lifr_name;
10553 	ASSERT(CONN_Q(q));
10554 	connp = Q_TO_CONN(q);
10555 	isv6 = connp->conn_af_isv6;
10556 	zoneid = connp->conn_zoneid;
10557 	namelen = mi_strlen(name);
10558 	if (namelen == 0)
10559 		return (EINVAL);
10560 
10561 	exists = B_FALSE;
10562 	if ((namelen + 1 == sizeof (ipif_loopback_name)) &&
10563 	    (mi_strcmp(name, ipif_loopback_name) == 0)) {
10564 		/*
10565 		 * Allow creating lo0 using SIOCLIFADDIF.
10566 		 * can't be any other writer thread. So can pass null below
10567 		 * for the last 4 args to ipif_lookup_name.
10568 		 */
10569 		ipif = ipif_lookup_on_name(lifr->lifr_name, namelen, B_TRUE,
10570 		    &exists, isv6, zoneid, NULL, NULL, NULL, NULL, ipst);
10571 		/* Prevent any further action */
10572 		if (ipif == NULL) {
10573 			return (ENOBUFS);
10574 		} else if (!exists) {
10575 			/* We created the ipif now and as writer */
10576 			ipif_refrele(ipif);
10577 			return (0);
10578 		} else {
10579 			ill = ipif->ipif_ill;
10580 			ill_refhold(ill);
10581 			ipif_refrele(ipif);
10582 		}
10583 	} else {
10584 		/* Look for a colon in the name. */
10585 		endp = &name[namelen];
10586 		for (cp = endp; --cp > name; ) {
10587 			if (*cp == IPIF_SEPARATOR_CHAR) {
10588 				found_sep = B_TRUE;
10589 				/*
10590 				 * Reject any non-decimal aliases for plumbing
10591 				 * of logical interfaces. Aliases with leading
10592 				 * zeroes are also rejected as they introduce
10593 				 * ambiguity in the naming of the interfaces.
10594 				 * Comparing with "0" takes care of all such
10595 				 * cases.
10596 				 */
10597 				if ((strncmp("0", cp+1, 1)) == 0)
10598 					return (EINVAL);
10599 
10600 				if (ddi_strtol(cp+1, &endp, 10, &id) != 0 ||
10601 				    id <= 0 || *endp != '\0') {
10602 					return (EINVAL);
10603 				}
10604 				*cp = '\0';
10605 				break;
10606 			}
10607 		}
10608 		ill = ill_lookup_on_name(name, B_FALSE, isv6,
10609 		    CONNP_TO_WQ(connp), mp, ip_process_ioctl, &err, NULL, ipst);
10610 		if (found_sep)
10611 			*cp = IPIF_SEPARATOR_CHAR;
10612 		if (ill == NULL)
10613 			return (err);
10614 	}
10615 
10616 	ipsq = ipsq_try_enter(NULL, ill, q, mp, ip_process_ioctl, NEW_OP,
10617 	    B_TRUE);
10618 
10619 	/*
10620 	 * Release the refhold due to the lookup, now that we are excl
10621 	 * or we are just returning
10622 	 */
10623 	ill_refrele(ill);
10624 
10625 	if (ipsq == NULL)
10626 		return (EINPROGRESS);
10627 
10628 	/* We are now exclusive on the IPSQ */
10629 	ASSERT(IAM_WRITER_ILL(ill));
10630 
10631 	if (found_sep) {
10632 		/* Now see if there is an IPIF with this unit number. */
10633 		for (ipif = ill->ill_ipif; ipif != NULL;
10634 		    ipif = ipif->ipif_next) {
10635 			if (ipif->ipif_id == id) {
10636 				err = EEXIST;
10637 				goto done;
10638 			}
10639 		}
10640 	}
10641 
10642 	/*
10643 	 * We use IRE_LOCAL for lo0:1 etc. for "receive only" use
10644 	 * of lo0.  Plumbing for lo0:0 happens in ipif_lookup_on_name()
10645 	 * instead.
10646 	 */
10647 	if ((ipif = ipif_allocate(ill, found_sep ? id : -1, IRE_LOCAL,
10648 	    B_TRUE, B_TRUE)) == NULL) {
10649 		err = ENOBUFS;
10650 		goto done;
10651 	}
10652 
10653 	/* Return created name with ioctl */
10654 	(void) sprintf(lifr->lifr_name, "%s%c%d", ill->ill_name,
10655 	    IPIF_SEPARATOR_CHAR, ipif->ipif_id);
10656 	ip1dbg(("created %s\n", lifr->lifr_name));
10657 
10658 	/* Set address */
10659 	sin = (sin_t *)&lifr->lifr_addr;
10660 	if (sin->sin_family != AF_UNSPEC) {
10661 		err = ip_sioctl_addr(ipif, sin, q, mp,
10662 		    &ip_ndx_ioctl_table[SIOCLIFADDR_NDX], lifr);
10663 	}
10664 
10665 done:
10666 	ipsq_exit(ipsq);
10667 	return (err);
10668 }
10669 
10670 /*
10671  * Remove an existing logical interface. If ipif_id is zero (i.e. not a logical
10672  * interface) delete it based on the IP address (on this physical interface).
10673  * Otherwise delete it based on the ipif_id.
10674  * Also, special handling to allow a removeif of lo0.
10675  */
10676 /* ARGSUSED */
10677 int
10678 ip_sioctl_removeif(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
10679     ip_ioctl_cmd_t *ipip, void *dummy_if_req)
10680 {
10681 	conn_t		*connp;
10682 	ill_t		*ill = ipif->ipif_ill;
10683 	boolean_t	 success;
10684 	ip_stack_t	*ipst;
10685 
10686 	ipst = CONNQ_TO_IPST(q);
10687 
10688 	ASSERT(q->q_next == NULL);
10689 	ip1dbg(("ip_sioctl_remove_if(%s:%u %p)\n",
10690 	    ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
10691 	ASSERT(IAM_WRITER_IPIF(ipif));
10692 
10693 	connp = Q_TO_CONN(q);
10694 	/*
10695 	 * Special case for unplumbing lo0 (the loopback physical interface).
10696 	 * If unplumbing lo0, the incoming address structure has been
10697 	 * initialized to all zeros. When unplumbing lo0, all its logical
10698 	 * interfaces must be removed too.
10699 	 *
10700 	 * Note that this interface may be called to remove a specific
10701 	 * loopback logical interface (eg, lo0:1). But in that case
10702 	 * ipif->ipif_id != 0 so that the code path for that case is the
10703 	 * same as any other interface (meaning it skips the code directly
10704 	 * below).
10705 	 */
10706 	if (ipif->ipif_id == 0 && ipif->ipif_net_type == IRE_LOOPBACK) {
10707 		if (sin->sin_family == AF_UNSPEC &&
10708 		    (IN6_IS_ADDR_UNSPECIFIED(&((sin6_t *)sin)->sin6_addr))) {
10709 			/*
10710 			 * Mark it condemned. No new ref. will be made to ill.
10711 			 */
10712 			mutex_enter(&ill->ill_lock);
10713 			ill->ill_state_flags |= ILL_CONDEMNED;
10714 			for (ipif = ill->ill_ipif; ipif != NULL;
10715 			    ipif = ipif->ipif_next) {
10716 				ipif->ipif_state_flags |= IPIF_CONDEMNED;
10717 			}
10718 			mutex_exit(&ill->ill_lock);
10719 
10720 			ipif = ill->ill_ipif;
10721 			/* unplumb the loopback interface */
10722 			ill_delete(ill);
10723 			mutex_enter(&connp->conn_lock);
10724 			mutex_enter(&ill->ill_lock);
10725 
10726 			/* Are any references to this ill active */
10727 			if (ill_is_freeable(ill)) {
10728 				mutex_exit(&ill->ill_lock);
10729 				mutex_exit(&connp->conn_lock);
10730 				ill_delete_tail(ill);
10731 				mi_free(ill);
10732 				return (0);
10733 			}
10734 			success = ipsq_pending_mp_add(connp, ipif,
10735 			    CONNP_TO_WQ(connp), mp, ILL_FREE);
10736 			mutex_exit(&connp->conn_lock);
10737 			mutex_exit(&ill->ill_lock);
10738 			if (success)
10739 				return (EINPROGRESS);
10740 			else
10741 				return (EINTR);
10742 		}
10743 	}
10744 
10745 	if (ipif->ipif_id == 0) {
10746 		ipsq_t *ipsq;
10747 
10748 		/* Find based on address */
10749 		if (ipif->ipif_isv6) {
10750 			sin6_t *sin6;
10751 
10752 			if (sin->sin_family != AF_INET6)
10753 				return (EAFNOSUPPORT);
10754 
10755 			sin6 = (sin6_t *)sin;
10756 			/* We are a writer, so we should be able to lookup */
10757 			ipif = ipif_lookup_addr_exact_v6(&sin6->sin6_addr, ill,
10758 			    ipst);
10759 		} else {
10760 			if (sin->sin_family != AF_INET)
10761 				return (EAFNOSUPPORT);
10762 
10763 			/* We are a writer, so we should be able to lookup */
10764 			ipif = ipif_lookup_addr_exact(sin->sin_addr.s_addr, ill,
10765 			    ipst);
10766 		}
10767 		if (ipif == NULL) {
10768 			return (EADDRNOTAVAIL);
10769 		}
10770 
10771 		/*
10772 		 * It is possible for a user to send an SIOCLIFREMOVEIF with
10773 		 * lifr_name of the physical interface but with an ip address
10774 		 * lifr_addr of a logical interface plumbed over it.
10775 		 * So update ipx_current_ipif now that ipif points to the
10776 		 * correct one.
10777 		 */
10778 		ipsq = ipif->ipif_ill->ill_phyint->phyint_ipsq;
10779 		ipsq->ipsq_xop->ipx_current_ipif = ipif;
10780 
10781 		/* This is a writer */
10782 		ipif_refrele(ipif);
10783 	}
10784 
10785 	/*
10786 	 * Can not delete instance zero since it is tied to the ill.
10787 	 */
10788 	if (ipif->ipif_id == 0)
10789 		return (EBUSY);
10790 
10791 	mutex_enter(&ill->ill_lock);
10792 	ipif->ipif_state_flags |= IPIF_CONDEMNED;
10793 	mutex_exit(&ill->ill_lock);
10794 
10795 	ipif_free(ipif);
10796 
10797 	mutex_enter(&connp->conn_lock);
10798 	mutex_enter(&ill->ill_lock);
10799 
10800 	/* Are any references to this ipif active */
10801 	if (ipif_is_freeable(ipif)) {
10802 		mutex_exit(&ill->ill_lock);
10803 		mutex_exit(&connp->conn_lock);
10804 		ipif_non_duplicate(ipif);
10805 		ipif_down_tail(ipif);
10806 		ipif_free_tail(ipif); /* frees ipif */
10807 		return (0);
10808 	}
10809 	success = ipsq_pending_mp_add(connp, ipif, CONNP_TO_WQ(connp), mp,
10810 	    IPIF_FREE);
10811 	mutex_exit(&ill->ill_lock);
10812 	mutex_exit(&connp->conn_lock);
10813 	if (success)
10814 		return (EINPROGRESS);
10815 	else
10816 		return (EINTR);
10817 }
10818 
10819 /*
10820  * Restart the removeif ioctl. The refcnt has gone down to 0.
10821  * The ipif is already condemned. So can't find it thru lookups.
10822  */
10823 /* ARGSUSED */
10824 int
10825 ip_sioctl_removeif_restart(ipif_t *ipif, sin_t *dummy_sin, queue_t *q,
10826     mblk_t *mp, ip_ioctl_cmd_t *ipip, void *dummy_if_req)
10827 {
10828 	ill_t *ill = ipif->ipif_ill;
10829 
10830 	ASSERT(IAM_WRITER_IPIF(ipif));
10831 	ASSERT(ipif->ipif_state_flags & IPIF_CONDEMNED);
10832 
10833 	ip1dbg(("ip_sioctl_removeif_restart(%s:%u %p)\n",
10834 	    ill->ill_name, ipif->ipif_id, (void *)ipif));
10835 
10836 	if (ipif->ipif_id == 0 && ipif->ipif_net_type == IRE_LOOPBACK) {
10837 		ASSERT(ill->ill_state_flags & ILL_CONDEMNED);
10838 		ill_delete_tail(ill);
10839 		mi_free(ill);
10840 		return (0);
10841 	}
10842 
10843 	ipif_non_duplicate(ipif);
10844 	ipif_down_tail(ipif);
10845 	ipif_free_tail(ipif);
10846 
10847 	ILL_UNMARK_CHANGING(ill);
10848 	return (0);
10849 }
10850 
10851 /*
10852  * Set the local interface address.
10853  * Allow an address of all zero when the interface is down.
10854  */
10855 /* ARGSUSED */
10856 int
10857 ip_sioctl_addr(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
10858     ip_ioctl_cmd_t *dummy_ipip, void *dummy_ifreq)
10859 {
10860 	int err = 0;
10861 	in6_addr_t v6addr;
10862 	boolean_t need_up = B_FALSE;
10863 
10864 	ip1dbg(("ip_sioctl_addr(%s:%u %p)\n",
10865 	    ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
10866 
10867 	ASSERT(IAM_WRITER_IPIF(ipif));
10868 
10869 	if (ipif->ipif_isv6) {
10870 		sin6_t *sin6;
10871 		ill_t *ill;
10872 		phyint_t *phyi;
10873 
10874 		if (sin->sin_family != AF_INET6)
10875 			return (EAFNOSUPPORT);
10876 
10877 		sin6 = (sin6_t *)sin;
10878 		v6addr = sin6->sin6_addr;
10879 		ill = ipif->ipif_ill;
10880 		phyi = ill->ill_phyint;
10881 
10882 		/*
10883 		 * Enforce that true multicast interfaces have a link-local
10884 		 * address for logical unit 0.
10885 		 */
10886 		if (ipif->ipif_id == 0 &&
10887 		    (ill->ill_flags & ILLF_MULTICAST) &&
10888 		    !(ipif->ipif_flags & (IPIF_POINTOPOINT)) &&
10889 		    !(phyi->phyint_flags & (PHYI_LOOPBACK)) &&
10890 		    !IN6_IS_ADDR_LINKLOCAL(&v6addr)) {
10891 			return (EADDRNOTAVAIL);
10892 		}
10893 
10894 		/*
10895 		 * up interfaces shouldn't have the unspecified address
10896 		 * unless they also have the IPIF_NOLOCAL flags set and
10897 		 * have a subnet assigned.
10898 		 */
10899 		if ((ipif->ipif_flags & IPIF_UP) &&
10900 		    IN6_IS_ADDR_UNSPECIFIED(&v6addr) &&
10901 		    (!(ipif->ipif_flags & IPIF_NOLOCAL) ||
10902 		    IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6subnet))) {
10903 			return (EADDRNOTAVAIL);
10904 		}
10905 
10906 		if (!ip_local_addr_ok_v6(&v6addr, &ipif->ipif_v6net_mask))
10907 			return (EADDRNOTAVAIL);
10908 	} else {
10909 		ipaddr_t addr;
10910 
10911 		if (sin->sin_family != AF_INET)
10912 			return (EAFNOSUPPORT);
10913 
10914 		addr = sin->sin_addr.s_addr;
10915 
10916 		/* Allow 0 as the local address. */
10917 		if (addr != 0 && !ip_addr_ok_v4(addr, ipif->ipif_net_mask))
10918 			return (EADDRNOTAVAIL);
10919 
10920 		IN6_IPADDR_TO_V4MAPPED(addr, &v6addr);
10921 	}
10922 
10923 	/*
10924 	 * Even if there is no change we redo things just to rerun
10925 	 * ipif_set_default.
10926 	 */
10927 	if (ipif->ipif_flags & IPIF_UP) {
10928 		/*
10929 		 * Setting a new local address, make sure
10930 		 * we have net and subnet bcast ire's for
10931 		 * the old address if we need them.
10932 		 */
10933 		if (!ipif->ipif_isv6)
10934 			ipif_check_bcast_ires(ipif);
10935 		/*
10936 		 * If the interface is already marked up,
10937 		 * we call ipif_down which will take care
10938 		 * of ditching any IREs that have been set
10939 		 * up based on the old interface address.
10940 		 */
10941 		err = ipif_logical_down(ipif, q, mp);
10942 		if (err == EINPROGRESS)
10943 			return (err);
10944 		ipif_down_tail(ipif);
10945 		need_up = 1;
10946 	}
10947 
10948 	err = ip_sioctl_addr_tail(ipif, sin, q, mp, need_up);
10949 	return (err);
10950 }
10951 
10952 int
10953 ip_sioctl_addr_tail(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
10954     boolean_t need_up)
10955 {
10956 	in6_addr_t v6addr;
10957 	in6_addr_t ov6addr;
10958 	ipaddr_t addr;
10959 	sin6_t	*sin6;
10960 	int	sinlen;
10961 	int	err = 0;
10962 	ill_t	*ill = ipif->ipif_ill;
10963 	boolean_t need_dl_down;
10964 	boolean_t need_arp_down;
10965 	struct iocblk *iocp;
10966 
10967 	iocp = (mp != NULL) ? (struct iocblk *)mp->b_rptr : NULL;
10968 
10969 	ip1dbg(("ip_sioctl_addr_tail(%s:%u %p)\n",
10970 	    ill->ill_name, ipif->ipif_id, (void *)ipif));
10971 	ASSERT(IAM_WRITER_IPIF(ipif));
10972 
10973 	/* Must cancel any pending timer before taking the ill_lock */
10974 	if (ipif->ipif_recovery_id != 0)
10975 		(void) untimeout(ipif->ipif_recovery_id);
10976 	ipif->ipif_recovery_id = 0;
10977 
10978 	if (ipif->ipif_isv6) {
10979 		sin6 = (sin6_t *)sin;
10980 		v6addr = sin6->sin6_addr;
10981 		sinlen = sizeof (struct sockaddr_in6);
10982 	} else {
10983 		addr = sin->sin_addr.s_addr;
10984 		IN6_IPADDR_TO_V4MAPPED(addr, &v6addr);
10985 		sinlen = sizeof (struct sockaddr_in);
10986 	}
10987 	mutex_enter(&ill->ill_lock);
10988 	ov6addr = ipif->ipif_v6lcl_addr;
10989 	ipif->ipif_v6lcl_addr = v6addr;
10990 	sctp_update_ipif_addr(ipif, ov6addr);
10991 	if (ipif->ipif_flags & (IPIF_ANYCAST | IPIF_NOLOCAL)) {
10992 		ipif->ipif_v6src_addr = ipv6_all_zeros;
10993 	} else {
10994 		ipif->ipif_v6src_addr = v6addr;
10995 	}
10996 	ipif->ipif_addr_ready = 0;
10997 
10998 	/*
10999 	 * If the interface was previously marked as a duplicate, then since
11000 	 * we've now got a "new" address, it should no longer be considered a
11001 	 * duplicate -- even if the "new" address is the same as the old one.
11002 	 * Note that if all ipifs are down, we may have a pending ARP down
11003 	 * event to handle.  This is because we want to recover from duplicates
11004 	 * and thus delay tearing down ARP until the duplicates have been
11005 	 * removed or disabled.
11006 	 */
11007 	need_dl_down = need_arp_down = B_FALSE;
11008 	if (ipif->ipif_flags & IPIF_DUPLICATE) {
11009 		need_arp_down = !need_up;
11010 		ipif->ipif_flags &= ~IPIF_DUPLICATE;
11011 		if (--ill->ill_ipif_dup_count == 0 && !need_up &&
11012 		    ill->ill_ipif_up_count == 0 && ill->ill_dl_up) {
11013 			need_dl_down = B_TRUE;
11014 		}
11015 	}
11016 
11017 	ipif_set_default(ipif);
11018 
11019 	/*
11020 	 * If we've just manually set the IPv6 link-local address (0th ipif),
11021 	 * tag the ill so that future updates to the interface ID don't result
11022 	 * in this address getting automatically reconfigured from under the
11023 	 * administrator.
11024 	 */
11025 	if (ipif->ipif_isv6 && ipif->ipif_id == 0)
11026 		ill->ill_manual_linklocal = 1;
11027 
11028 	/*
11029 	 * When publishing an interface address change event, we only notify
11030 	 * the event listeners of the new address.  It is assumed that if they
11031 	 * actively care about the addresses assigned that they will have
11032 	 * already discovered the previous address assigned (if there was one.)
11033 	 *
11034 	 * Don't attach nic event message for SIOCLIFADDIF ioctl.
11035 	 */
11036 	if (iocp != NULL && iocp->ioc_cmd != SIOCLIFADDIF) {
11037 		ill_nic_event_dispatch(ill, MAP_IPIF_ID(ipif->ipif_id),
11038 		    NE_ADDRESS_CHANGE, sin, sinlen);
11039 	}
11040 
11041 	mutex_exit(&ill->ill_lock);
11042 
11043 	if (need_up) {
11044 		/*
11045 		 * Now bring the interface back up.  If this
11046 		 * is the only IPIF for the ILL, ipif_up
11047 		 * will have to re-bind to the device, so
11048 		 * we may get back EINPROGRESS, in which
11049 		 * case, this IOCTL will get completed in
11050 		 * ip_rput_dlpi when we see the DL_BIND_ACK.
11051 		 */
11052 		err = ipif_up(ipif, q, mp);
11053 	}
11054 
11055 	if (need_dl_down)
11056 		ill_dl_down(ill);
11057 	if (need_arp_down)
11058 		ipif_resolver_down(ipif);
11059 
11060 	return (err);
11061 }
11062 
11063 /*
11064  * Restart entry point to restart the address set operation after the
11065  * refcounts have dropped to zero.
11066  */
11067 /* ARGSUSED */
11068 int
11069 ip_sioctl_addr_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
11070     ip_ioctl_cmd_t *ipip, void *ifreq)
11071 {
11072 	ip1dbg(("ip_sioctl_addr_restart(%s:%u %p)\n",
11073 	    ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
11074 	ASSERT(IAM_WRITER_IPIF(ipif));
11075 	ipif_down_tail(ipif);
11076 	return (ip_sioctl_addr_tail(ipif, sin, q, mp, B_TRUE));
11077 }
11078 
11079 /* ARGSUSED */
11080 int
11081 ip_sioctl_get_addr(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
11082     ip_ioctl_cmd_t *ipip, void *if_req)
11083 {
11084 	sin6_t *sin6 = (struct sockaddr_in6 *)sin;
11085 	struct lifreq *lifr = (struct lifreq *)if_req;
11086 
11087 	ip1dbg(("ip_sioctl_get_addr(%s:%u %p)\n",
11088 	    ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
11089 	/*
11090 	 * The net mask and address can't change since we have a
11091 	 * reference to the ipif. So no lock is necessary.
11092 	 */
11093 	if (ipif->ipif_isv6) {
11094 		*sin6 = sin6_null;
11095 		sin6->sin6_family = AF_INET6;
11096 		sin6->sin6_addr = ipif->ipif_v6lcl_addr;
11097 		ASSERT(ipip->ipi_cmd_type == LIF_CMD);
11098 		lifr->lifr_addrlen =
11099 		    ip_mask_to_plen_v6(&ipif->ipif_v6net_mask);
11100 	} else {
11101 		*sin = sin_null;
11102 		sin->sin_family = AF_INET;
11103 		sin->sin_addr.s_addr = ipif->ipif_lcl_addr;
11104 		if (ipip->ipi_cmd_type == LIF_CMD) {
11105 			lifr->lifr_addrlen =
11106 			    ip_mask_to_plen(ipif->ipif_net_mask);
11107 		}
11108 	}
11109 	return (0);
11110 }
11111 
11112 /*
11113  * Set the destination address for a pt-pt interface.
11114  */
11115 /* ARGSUSED */
11116 int
11117 ip_sioctl_dstaddr(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
11118     ip_ioctl_cmd_t *ipip, void *if_req)
11119 {
11120 	int err = 0;
11121 	in6_addr_t v6addr;
11122 	boolean_t need_up = B_FALSE;
11123 
11124 	ip1dbg(("ip_sioctl_dstaddr(%s:%u %p)\n",
11125 	    ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
11126 	ASSERT(IAM_WRITER_IPIF(ipif));
11127 
11128 	if (ipif->ipif_isv6) {
11129 		sin6_t *sin6;
11130 
11131 		if (sin->sin_family != AF_INET6)
11132 			return (EAFNOSUPPORT);
11133 
11134 		sin6 = (sin6_t *)sin;
11135 		v6addr = sin6->sin6_addr;
11136 
11137 		if (!ip_remote_addr_ok_v6(&v6addr, &ipif->ipif_v6net_mask))
11138 			return (EADDRNOTAVAIL);
11139 	} else {
11140 		ipaddr_t addr;
11141 
11142 		if (sin->sin_family != AF_INET)
11143 			return (EAFNOSUPPORT);
11144 
11145 		addr = sin->sin_addr.s_addr;
11146 		if (!ip_addr_ok_v4(addr, ipif->ipif_net_mask))
11147 			return (EADDRNOTAVAIL);
11148 
11149 		IN6_IPADDR_TO_V4MAPPED(addr, &v6addr);
11150 	}
11151 
11152 	if (IN6_ARE_ADDR_EQUAL(&ipif->ipif_v6pp_dst_addr, &v6addr))
11153 		return (0);	/* No change */
11154 
11155 	if (ipif->ipif_flags & IPIF_UP) {
11156 		/*
11157 		 * If the interface is already marked up,
11158 		 * we call ipif_down which will take care
11159 		 * of ditching any IREs that have been set
11160 		 * up based on the old pp dst address.
11161 		 */
11162 		err = ipif_logical_down(ipif, q, mp);
11163 		if (err == EINPROGRESS)
11164 			return (err);
11165 		ipif_down_tail(ipif);
11166 		need_up = B_TRUE;
11167 	}
11168 	/*
11169 	 * could return EINPROGRESS. If so ioctl will complete in
11170 	 * ip_rput_dlpi_writer
11171 	 */
11172 	err = ip_sioctl_dstaddr_tail(ipif, sin, q, mp, need_up);
11173 	return (err);
11174 }
11175 
11176 static int
11177 ip_sioctl_dstaddr_tail(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
11178     boolean_t need_up)
11179 {
11180 	in6_addr_t v6addr;
11181 	ill_t	*ill = ipif->ipif_ill;
11182 	int	err = 0;
11183 	boolean_t need_dl_down;
11184 	boolean_t need_arp_down;
11185 
11186 	ip1dbg(("ip_sioctl_dstaddr_tail(%s:%u %p)\n", ill->ill_name,
11187 	    ipif->ipif_id, (void *)ipif));
11188 
11189 	/* Must cancel any pending timer before taking the ill_lock */
11190 	if (ipif->ipif_recovery_id != 0)
11191 		(void) untimeout(ipif->ipif_recovery_id);
11192 	ipif->ipif_recovery_id = 0;
11193 
11194 	if (ipif->ipif_isv6) {
11195 		sin6_t *sin6;
11196 
11197 		sin6 = (sin6_t *)sin;
11198 		v6addr = sin6->sin6_addr;
11199 	} else {
11200 		ipaddr_t addr;
11201 
11202 		addr = sin->sin_addr.s_addr;
11203 		IN6_IPADDR_TO_V4MAPPED(addr, &v6addr);
11204 	}
11205 	mutex_enter(&ill->ill_lock);
11206 	/* Set point to point destination address. */
11207 	if ((ipif->ipif_flags & IPIF_POINTOPOINT) == 0) {
11208 		/*
11209 		 * Allow this as a means of creating logical
11210 		 * pt-pt interfaces on top of e.g. an Ethernet.
11211 		 * XXX Undocumented HACK for testing.
11212 		 * pt-pt interfaces are created with NUD disabled.
11213 		 */
11214 		ipif->ipif_flags |= IPIF_POINTOPOINT;
11215 		ipif->ipif_flags &= ~IPIF_BROADCAST;
11216 		if (ipif->ipif_isv6)
11217 			ill->ill_flags |= ILLF_NONUD;
11218 	}
11219 
11220 	/*
11221 	 * If the interface was previously marked as a duplicate, then since
11222 	 * we've now got a "new" address, it should no longer be considered a
11223 	 * duplicate -- even if the "new" address is the same as the old one.
11224 	 * Note that if all ipifs are down, we may have a pending ARP down
11225 	 * event to handle.
11226 	 */
11227 	need_dl_down = need_arp_down = B_FALSE;
11228 	if (ipif->ipif_flags & IPIF_DUPLICATE) {
11229 		need_arp_down = !need_up;
11230 		ipif->ipif_flags &= ~IPIF_DUPLICATE;
11231 		if (--ill->ill_ipif_dup_count == 0 && !need_up &&
11232 		    ill->ill_ipif_up_count == 0 && ill->ill_dl_up) {
11233 			need_dl_down = B_TRUE;
11234 		}
11235 	}
11236 
11237 	/* Set the new address. */
11238 	ipif->ipif_v6pp_dst_addr = v6addr;
11239 	/* Make sure subnet tracks pp_dst */
11240 	ipif->ipif_v6subnet = ipif->ipif_v6pp_dst_addr;
11241 	mutex_exit(&ill->ill_lock);
11242 
11243 	if (need_up) {
11244 		/*
11245 		 * Now bring the interface back up.  If this
11246 		 * is the only IPIF for the ILL, ipif_up
11247 		 * will have to re-bind to the device, so
11248 		 * we may get back EINPROGRESS, in which
11249 		 * case, this IOCTL will get completed in
11250 		 * ip_rput_dlpi when we see the DL_BIND_ACK.
11251 		 */
11252 		err = ipif_up(ipif, q, mp);
11253 	}
11254 
11255 	if (need_dl_down)
11256 		ill_dl_down(ill);
11257 	if (need_arp_down)
11258 		ipif_resolver_down(ipif);
11259 
11260 	return (err);
11261 }
11262 
11263 /*
11264  * Restart entry point to restart the dstaddress set operation after the
11265  * refcounts have dropped to zero.
11266  */
11267 /* ARGSUSED */
11268 int
11269 ip_sioctl_dstaddr_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
11270     ip_ioctl_cmd_t *ipip, void *ifreq)
11271 {
11272 	ip1dbg(("ip_sioctl_dstaddr_restart(%s:%u %p)\n",
11273 	    ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
11274 	ipif_down_tail(ipif);
11275 	return (ip_sioctl_dstaddr_tail(ipif, sin, q, mp, B_TRUE));
11276 }
11277 
11278 /* ARGSUSED */
11279 int
11280 ip_sioctl_get_dstaddr(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
11281     ip_ioctl_cmd_t *ipip, void *if_req)
11282 {
11283 	sin6_t	*sin6 = (struct sockaddr_in6 *)sin;
11284 
11285 	ip1dbg(("ip_sioctl_get_dstaddr(%s:%u %p)\n",
11286 	    ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
11287 	/*
11288 	 * Get point to point destination address. The addresses can't
11289 	 * change since we hold a reference to the ipif.
11290 	 */
11291 	if ((ipif->ipif_flags & IPIF_POINTOPOINT) == 0)
11292 		return (EADDRNOTAVAIL);
11293 
11294 	if (ipif->ipif_isv6) {
11295 		ASSERT(ipip->ipi_cmd_type == LIF_CMD);
11296 		*sin6 = sin6_null;
11297 		sin6->sin6_family = AF_INET6;
11298 		sin6->sin6_addr = ipif->ipif_v6pp_dst_addr;
11299 	} else {
11300 		*sin = sin_null;
11301 		sin->sin_family = AF_INET;
11302 		sin->sin_addr.s_addr = ipif->ipif_pp_dst_addr;
11303 	}
11304 	return (0);
11305 }
11306 
11307 /*
11308  * Set interface flags.  Many flags require special handling (e.g.,
11309  * bringing the interface down); see below for details.
11310  *
11311  * NOTE : We really don't enforce that ipif_id zero should be used
11312  *	  for setting any flags other than IFF_LOGINT_FLAGS. This
11313  *	  is because applications generally does SICGLIFFLAGS and
11314  *	  ORs in the new flags (that affects the logical) and does a
11315  *	  SIOCSLIFFLAGS. Thus, "flags" below could contain bits other
11316  *	  than IFF_LOGINT_FLAGS. One could check whether "turn_on" - the
11317  *	  flags that will be turned on is correct with respect to
11318  *	  ipif_id 0. For backward compatibility reasons, it is not done.
11319  */
11320 /* ARGSUSED */
11321 int
11322 ip_sioctl_flags(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
11323     ip_ioctl_cmd_t *ipip, void *if_req)
11324 {
11325 	uint64_t turn_on;
11326 	uint64_t turn_off;
11327 	int	err = 0;
11328 	phyint_t *phyi;
11329 	ill_t *ill;
11330 	uint64_t intf_flags, cantchange_flags;
11331 	boolean_t phyint_flags_modified = B_FALSE;
11332 	uint64_t flags;
11333 	struct ifreq *ifr;
11334 	struct lifreq *lifr;
11335 	boolean_t set_linklocal = B_FALSE;
11336 	boolean_t zero_source = B_FALSE;
11337 
11338 	ip1dbg(("ip_sioctl_flags(%s:%u %p)\n",
11339 	    ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
11340 
11341 	ASSERT(IAM_WRITER_IPIF(ipif));
11342 
11343 	ill = ipif->ipif_ill;
11344 	phyi = ill->ill_phyint;
11345 
11346 	if (ipip->ipi_cmd_type == IF_CMD) {
11347 		ifr = (struct ifreq *)if_req;
11348 		flags = (uint64_t)(ifr->ifr_flags & 0x0000ffff);
11349 	} else {
11350 		lifr = (struct lifreq *)if_req;
11351 		flags = lifr->lifr_flags;
11352 	}
11353 
11354 	intf_flags = ipif->ipif_flags | ill->ill_flags | phyi->phyint_flags;
11355 
11356 	/*
11357 	 * Have the flags been set correctly until now?
11358 	 */
11359 	ASSERT((phyi->phyint_flags & ~(IFF_PHYINT_FLAGS)) == 0);
11360 	ASSERT((ill->ill_flags & ~(IFF_PHYINTINST_FLAGS)) == 0);
11361 	ASSERT((ipif->ipif_flags & ~(IFF_LOGINT_FLAGS)) == 0);
11362 	/*
11363 	 * Compare the new flags to the old, and partition
11364 	 * into those coming on and those going off.
11365 	 * For the 16 bit command keep the bits above bit 16 unchanged.
11366 	 */
11367 	if (ipip->ipi_cmd == SIOCSIFFLAGS)
11368 		flags |= intf_flags & ~0xFFFF;
11369 
11370 	/*
11371 	 * Explicitly fail attempts to change flags that are always invalid on
11372 	 * an IPMP meta-interface.
11373 	 */
11374 	if (IS_IPMP(ill) && ((flags ^ intf_flags) & IFF_IPMP_INVALID))
11375 		return (EINVAL);
11376 
11377 	/*
11378 	 * Check which flags will change; silently ignore flags which userland
11379 	 * is not allowed to control.  (Because these flags may change between
11380 	 * SIOCGLIFFLAGS and SIOCSLIFFLAGS, and that's outside of userland's
11381 	 * control, we need to silently ignore them rather than fail.)
11382 	 */
11383 	cantchange_flags = IFF_CANTCHANGE;
11384 	if (IS_IPMP(ill))
11385 		cantchange_flags |= IFF_IPMP_CANTCHANGE;
11386 
11387 	turn_on = (flags ^ intf_flags) & ~cantchange_flags;
11388 	if (turn_on == 0)
11389 		return (0);	/* No change */
11390 
11391 	turn_off = intf_flags & turn_on;
11392 	turn_on ^= turn_off;
11393 
11394 	/*
11395 	 * All test addresses must be IFF_DEPRECATED (to ensure source address
11396 	 * selection avoids them) -- so force IFF_DEPRECATED on, and do not
11397 	 * allow it to be turned off.
11398 	 */
11399 	if ((turn_off & (IFF_DEPRECATED|IFF_NOFAILOVER)) == IFF_DEPRECATED &&
11400 	    (turn_on|intf_flags) & IFF_NOFAILOVER)
11401 		return (EINVAL);
11402 
11403 	if (turn_on & IFF_NOFAILOVER) {
11404 		turn_on |= IFF_DEPRECATED;
11405 		flags |= IFF_DEPRECATED;
11406 	}
11407 
11408 	/*
11409 	 * On underlying interfaces, only allow applications to manage test
11410 	 * addresses -- otherwise, they may get confused when the address
11411 	 * moves as part of being brought up.  Likewise, prevent an
11412 	 * application-managed test address from being converted to a data
11413 	 * address.  To prevent migration of administratively up addresses in
11414 	 * the kernel, we don't allow them to be converted either.
11415 	 */
11416 	if (IS_UNDER_IPMP(ill)) {
11417 		const uint64_t appflags = IFF_DHCPRUNNING | IFF_ADDRCONF;
11418 
11419 		if ((turn_on & appflags) && !(flags & IFF_NOFAILOVER))
11420 			return (EINVAL);
11421 
11422 		if ((turn_off & IFF_NOFAILOVER) &&
11423 		    (flags & (appflags | IFF_UP | IFF_DUPLICATE)))
11424 			return (EINVAL);
11425 	}
11426 
11427 	/*
11428 	 * Only allow the IFF_XRESOLV and IFF_TEMPORARY flags to be set on
11429 	 * IPv6 interfaces.
11430 	 */
11431 	if ((turn_on & (IFF_XRESOLV|IFF_TEMPORARY)) && !(ipif->ipif_isv6))
11432 		return (EINVAL);
11433 
11434 	/*
11435 	 * cannot turn off IFF_NOXMIT on  VNI interfaces.
11436 	 */
11437 	if ((turn_off & IFF_NOXMIT) && IS_VNI(ipif->ipif_ill))
11438 		return (EINVAL);
11439 
11440 	/*
11441 	 * Don't allow the IFF_ROUTER flag to be turned on on loopback
11442 	 * interfaces.  It makes no sense in that context.
11443 	 */
11444 	if ((turn_on & IFF_ROUTER) && (phyi->phyint_flags & PHYI_LOOPBACK))
11445 		return (EINVAL);
11446 
11447 	if (flags & (IFF_NOLOCAL|IFF_ANYCAST))
11448 		zero_source = B_TRUE;
11449 
11450 	/*
11451 	 * For IPv6 ipif_id 0, don't allow the interface to be up without
11452 	 * a link local address if IFF_NOLOCAL or IFF_ANYCAST are not set.
11453 	 * If the link local address isn't set, and can be set, it will get
11454 	 * set later on in this function.
11455 	 */
11456 	if (ipif->ipif_id == 0 && ipif->ipif_isv6 &&
11457 	    (flags & IFF_UP) && !zero_source &&
11458 	    IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6lcl_addr)) {
11459 		if (ipif_cant_setlinklocal(ipif))
11460 			return (EINVAL);
11461 		set_linklocal = B_TRUE;
11462 	}
11463 
11464 	/*
11465 	 * If we modify physical interface flags, we'll potentially need to
11466 	 * send up two routing socket messages for the changes (one for the
11467 	 * IPv4 ill, and another for the IPv6 ill).  Note that here.
11468 	 */
11469 	if ((turn_on|turn_off) & IFF_PHYINT_FLAGS)
11470 		phyint_flags_modified = B_TRUE;
11471 
11472 	/*
11473 	 * All functioning PHYI_STANDBY interfaces start life PHYI_INACTIVE
11474 	 * (otherwise, we'd immediately use them, defeating standby).  Also,
11475 	 * since PHYI_INACTIVE has a separate meaning when PHYI_STANDBY is not
11476 	 * set, don't allow PHYI_STANDBY to be set if PHYI_INACTIVE is already
11477 	 * set, and clear PHYI_INACTIVE if PHYI_STANDBY is being cleared.  We
11478 	 * also don't allow PHYI_STANDBY if VNI is enabled since its semantics
11479 	 * will not be honored.
11480 	 */
11481 	if (turn_on & PHYI_STANDBY) {
11482 		/*
11483 		 * No need to grab ill_g_usesrc_lock here; see the
11484 		 * synchronization notes in ip.c.
11485 		 */
11486 		if (ill->ill_usesrc_grp_next != NULL ||
11487 		    intf_flags & PHYI_INACTIVE)
11488 			return (EINVAL);
11489 		if (!(flags & PHYI_FAILED)) {
11490 			flags |= PHYI_INACTIVE;
11491 			turn_on |= PHYI_INACTIVE;
11492 		}
11493 	}
11494 
11495 	if (turn_off & PHYI_STANDBY) {
11496 		flags &= ~PHYI_INACTIVE;
11497 		turn_off |= PHYI_INACTIVE;
11498 	}
11499 
11500 	/*
11501 	 * PHYI_FAILED and PHYI_INACTIVE are mutually exclusive; fail if both
11502 	 * would end up on.
11503 	 */
11504 	if ((flags & (PHYI_FAILED | PHYI_INACTIVE)) ==
11505 	    (PHYI_FAILED | PHYI_INACTIVE))
11506 		return (EINVAL);
11507 
11508 	/*
11509 	 * If ILLF_ROUTER changes, we need to change the ip forwarding
11510 	 * status of the interface.
11511 	 */
11512 	if ((turn_on | turn_off) & ILLF_ROUTER)
11513 		(void) ill_forward_set(ill, ((turn_on & ILLF_ROUTER) != 0));
11514 
11515 	/*
11516 	 * If the interface is not UP and we are not going to
11517 	 * bring it UP, record the flags and return. When the
11518 	 * interface comes UP later, the right actions will be
11519 	 * taken.
11520 	 */
11521 	if (!(ipif->ipif_flags & IPIF_UP) &&
11522 	    !(turn_on & IPIF_UP)) {
11523 		/* Record new flags in their respective places. */
11524 		mutex_enter(&ill->ill_lock);
11525 		mutex_enter(&ill->ill_phyint->phyint_lock);
11526 		ipif->ipif_flags |= (turn_on & IFF_LOGINT_FLAGS);
11527 		ipif->ipif_flags &= (~turn_off & IFF_LOGINT_FLAGS);
11528 		ill->ill_flags |= (turn_on & IFF_PHYINTINST_FLAGS);
11529 		ill->ill_flags &= (~turn_off & IFF_PHYINTINST_FLAGS);
11530 		phyi->phyint_flags |= (turn_on & IFF_PHYINT_FLAGS);
11531 		phyi->phyint_flags &= (~turn_off & IFF_PHYINT_FLAGS);
11532 		mutex_exit(&ill->ill_lock);
11533 		mutex_exit(&ill->ill_phyint->phyint_lock);
11534 
11535 		/*
11536 		 * PHYI_FAILED, PHYI_INACTIVE, and PHYI_OFFLINE are all the
11537 		 * same to the kernel: if any of them has been set by
11538 		 * userland, the interface cannot be used for data traffic.
11539 		 */
11540 		if ((turn_on|turn_off) &
11541 		    (PHYI_FAILED | PHYI_INACTIVE | PHYI_OFFLINE)) {
11542 			ASSERT(!IS_IPMP(ill));
11543 			/*
11544 			 * It's possible the ill is part of an "anonymous"
11545 			 * IPMP group rather than a real group.  In that case,
11546 			 * there are no other interfaces in the group and thus
11547 			 * no need to call ipmp_phyint_refresh_active().
11548 			 */
11549 			if (IS_UNDER_IPMP(ill))
11550 				ipmp_phyint_refresh_active(phyi);
11551 		}
11552 
11553 		if (phyint_flags_modified) {
11554 			if (phyi->phyint_illv4 != NULL) {
11555 				ip_rts_ifmsg(phyi->phyint_illv4->
11556 				    ill_ipif, RTSQ_DEFAULT);
11557 			}
11558 			if (phyi->phyint_illv6 != NULL) {
11559 				ip_rts_ifmsg(phyi->phyint_illv6->
11560 				    ill_ipif, RTSQ_DEFAULT);
11561 			}
11562 		}
11563 		return (0);
11564 	} else if (set_linklocal || zero_source) {
11565 		mutex_enter(&ill->ill_lock);
11566 		if (set_linklocal)
11567 			ipif->ipif_state_flags |= IPIF_SET_LINKLOCAL;
11568 		if (zero_source)
11569 			ipif->ipif_state_flags |= IPIF_ZERO_SOURCE;
11570 		mutex_exit(&ill->ill_lock);
11571 	}
11572 
11573 	/*
11574 	 * Disallow IPv6 interfaces coming up that have the unspecified address,
11575 	 * or point-to-point interfaces with an unspecified destination. We do
11576 	 * allow the address to be unspecified for IPIF_NOLOCAL interfaces that
11577 	 * have a subnet assigned, which is how in.ndpd currently manages its
11578 	 * onlink prefix list when no addresses are configured with those
11579 	 * prefixes.
11580 	 */
11581 	if (ipif->ipif_isv6 &&
11582 	    ((IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6lcl_addr) &&
11583 	    (!(ipif->ipif_flags & IPIF_NOLOCAL) && !(turn_on & IPIF_NOLOCAL) ||
11584 	    IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6subnet))) ||
11585 	    ((ipif->ipif_flags & IPIF_POINTOPOINT) &&
11586 	    IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6pp_dst_addr)))) {
11587 		return (EINVAL);
11588 	}
11589 
11590 	/*
11591 	 * Prevent IPv4 point-to-point interfaces with a 0.0.0.0 destination
11592 	 * from being brought up.
11593 	 */
11594 	if (!ipif->ipif_isv6 &&
11595 	    ((ipif->ipif_flags & IPIF_POINTOPOINT) &&
11596 	    ipif->ipif_pp_dst_addr == INADDR_ANY)) {
11597 		return (EINVAL);
11598 	}
11599 
11600 	/*
11601 	 * The only flag changes that we currently take specific action on are
11602 	 * IPIF_UP, IPIF_DEPRECATED, IPIF_NOXMIT, IPIF_NOLOCAL, ILLF_NOARP,
11603 	 * ILLF_NONUD, IPIF_PRIVATE, IPIF_ANYCAST, IPIF_PREFERRED, and
11604 	 * IPIF_NOFAILOVER.  This is done by bring the ipif down, changing the
11605 	 * flags and bringing it back up again.  For IPIF_NOFAILOVER, the act
11606 	 * of bringing it back up will trigger the address to be moved.
11607 	 */
11608 	if ((turn_on|turn_off) &
11609 	    (IPIF_UP|IPIF_DEPRECATED|IPIF_NOXMIT|IPIF_NOLOCAL|ILLF_NOARP|
11610 	    ILLF_NONUD|IPIF_PRIVATE|IPIF_ANYCAST|IPIF_PREFERRED|
11611 	    IPIF_NOFAILOVER)) {
11612 		/*
11613 		 * Taking this ipif down, make sure we have
11614 		 * valid net and subnet bcast ire's for other
11615 		 * logical interfaces, if we need them.
11616 		 */
11617 		if (!ipif->ipif_isv6)
11618 			ipif_check_bcast_ires(ipif);
11619 
11620 		if (((ipif->ipif_flags | turn_on) & IPIF_UP) &&
11621 		    !(turn_off & IPIF_UP)) {
11622 			if (ipif->ipif_flags & IPIF_UP)
11623 				ill->ill_logical_down = 1;
11624 			turn_on &= ~IPIF_UP;
11625 		}
11626 		err = ipif_down(ipif, q, mp);
11627 		ip1dbg(("ipif_down returns %d err ", err));
11628 		if (err == EINPROGRESS)
11629 			return (err);
11630 		ipif_down_tail(ipif);
11631 	}
11632 	return (ip_sioctl_flags_tail(ipif, flags, q, mp));
11633 }
11634 
11635 static int
11636 ip_sioctl_flags_tail(ipif_t *ipif, uint64_t flags, queue_t *q, mblk_t *mp)
11637 {
11638 	ill_t	*ill;
11639 	phyint_t *phyi;
11640 	uint64_t turn_on, turn_off;
11641 	uint64_t intf_flags, cantchange_flags;
11642 	boolean_t phyint_flags_modified = B_FALSE;
11643 	int	err = 0;
11644 	boolean_t set_linklocal = B_FALSE;
11645 	boolean_t zero_source = B_FALSE;
11646 
11647 	ip1dbg(("ip_sioctl_flags_tail(%s:%u)\n",
11648 	    ipif->ipif_ill->ill_name, ipif->ipif_id));
11649 
11650 	ASSERT(IAM_WRITER_IPIF(ipif));
11651 
11652 	ill = ipif->ipif_ill;
11653 	phyi = ill->ill_phyint;
11654 
11655 	intf_flags = ipif->ipif_flags | ill->ill_flags | phyi->phyint_flags;
11656 	cantchange_flags = IFF_CANTCHANGE | IFF_UP;
11657 	if (IS_IPMP(ill))
11658 		cantchange_flags |= IFF_IPMP_CANTCHANGE;
11659 
11660 	turn_on = (flags ^ intf_flags) & ~cantchange_flags;
11661 	turn_off = intf_flags & turn_on;
11662 	turn_on ^= turn_off;
11663 
11664 	if ((turn_on|turn_off) & IFF_PHYINT_FLAGS)
11665 		phyint_flags_modified = B_TRUE;
11666 
11667 	/*
11668 	 * Now we change the flags. Track current value of
11669 	 * other flags in their respective places.
11670 	 */
11671 	mutex_enter(&ill->ill_lock);
11672 	mutex_enter(&phyi->phyint_lock);
11673 	ipif->ipif_flags |= (turn_on & IFF_LOGINT_FLAGS);
11674 	ipif->ipif_flags &= (~turn_off & IFF_LOGINT_FLAGS);
11675 	ill->ill_flags |= (turn_on & IFF_PHYINTINST_FLAGS);
11676 	ill->ill_flags &= (~turn_off & IFF_PHYINTINST_FLAGS);
11677 	phyi->phyint_flags |= (turn_on & IFF_PHYINT_FLAGS);
11678 	phyi->phyint_flags &= (~turn_off & IFF_PHYINT_FLAGS);
11679 	if (ipif->ipif_state_flags & IPIF_SET_LINKLOCAL) {
11680 		set_linklocal = B_TRUE;
11681 		ipif->ipif_state_flags &= ~IPIF_SET_LINKLOCAL;
11682 	}
11683 	if (ipif->ipif_state_flags & IPIF_ZERO_SOURCE) {
11684 		zero_source = B_TRUE;
11685 		ipif->ipif_state_flags &= ~IPIF_ZERO_SOURCE;
11686 	}
11687 	mutex_exit(&ill->ill_lock);
11688 	mutex_exit(&phyi->phyint_lock);
11689 
11690 	if (set_linklocal)
11691 		(void) ipif_setlinklocal(ipif);
11692 
11693 	if (zero_source)
11694 		ipif->ipif_v6src_addr = ipv6_all_zeros;
11695 	else
11696 		ipif->ipif_v6src_addr = ipif->ipif_v6lcl_addr;
11697 
11698 	/*
11699 	 * PHYI_FAILED, PHYI_INACTIVE, and PHYI_OFFLINE are all the same to
11700 	 * the kernel: if any of them has been set by userland, the interface
11701 	 * cannot be used for data traffic.
11702 	 */
11703 	if ((turn_on|turn_off) & (PHYI_FAILED | PHYI_INACTIVE | PHYI_OFFLINE)) {
11704 		ASSERT(!IS_IPMP(ill));
11705 		/*
11706 		 * It's possible the ill is part of an "anonymous" IPMP group
11707 		 * rather than a real group.  In that case, there are no other
11708 		 * interfaces in the group and thus no need for us to call
11709 		 * ipmp_phyint_refresh_active().
11710 		 */
11711 		if (IS_UNDER_IPMP(ill))
11712 			ipmp_phyint_refresh_active(phyi);
11713 	}
11714 
11715 	if ((flags & IFF_UP) && !(ipif->ipif_flags & IPIF_UP)) {
11716 		/*
11717 		 * XXX ipif_up really does not know whether a phyint flags
11718 		 * was modified or not. So, it sends up information on
11719 		 * only one routing sockets message. As we don't bring up
11720 		 * the interface and also set PHYI_ flags simultaneously
11721 		 * it should be okay.
11722 		 */
11723 		err = ipif_up(ipif, q, mp);
11724 	} else {
11725 		/*
11726 		 * Make sure routing socket sees all changes to the flags.
11727 		 * ipif_up_done* handles this when we use ipif_up.
11728 		 */
11729 		if (phyint_flags_modified) {
11730 			if (phyi->phyint_illv4 != NULL) {
11731 				ip_rts_ifmsg(phyi->phyint_illv4->
11732 				    ill_ipif, RTSQ_DEFAULT);
11733 			}
11734 			if (phyi->phyint_illv6 != NULL) {
11735 				ip_rts_ifmsg(phyi->phyint_illv6->
11736 				    ill_ipif, RTSQ_DEFAULT);
11737 			}
11738 		} else {
11739 			ip_rts_ifmsg(ipif, RTSQ_DEFAULT);
11740 		}
11741 		/*
11742 		 * Update the flags in SCTP's IPIF list, ipif_up() will do
11743 		 * this in need_up case.
11744 		 */
11745 		sctp_update_ipif(ipif, SCTP_IPIF_UPDATE);
11746 	}
11747 	return (err);
11748 }
11749 
11750 /*
11751  * Restart the flags operation now that the refcounts have dropped to zero.
11752  */
11753 /* ARGSUSED */
11754 int
11755 ip_sioctl_flags_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
11756     ip_ioctl_cmd_t *ipip, void *if_req)
11757 {
11758 	uint64_t flags;
11759 	struct ifreq *ifr = if_req;
11760 	struct lifreq *lifr = if_req;
11761 
11762 	ip1dbg(("ip_sioctl_flags_restart(%s:%u %p)\n",
11763 	    ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
11764 
11765 	ipif_down_tail(ipif);
11766 	if (ipip->ipi_cmd_type == IF_CMD) {
11767 		/* cast to uint16_t prevents unwanted sign extension */
11768 		flags = (uint16_t)ifr->ifr_flags;
11769 	} else {
11770 		flags = lifr->lifr_flags;
11771 	}
11772 	return (ip_sioctl_flags_tail(ipif, flags, q, mp));
11773 }
11774 
11775 /*
11776  * Can operate on either a module or a driver queue.
11777  */
11778 /* ARGSUSED */
11779 int
11780 ip_sioctl_get_flags(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
11781     ip_ioctl_cmd_t *ipip, void *if_req)
11782 {
11783 	/*
11784 	 * Has the flags been set correctly till now ?
11785 	 */
11786 	ill_t *ill = ipif->ipif_ill;
11787 	phyint_t *phyi = ill->ill_phyint;
11788 
11789 	ip1dbg(("ip_sioctl_get_flags(%s:%u %p)\n",
11790 	    ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
11791 	ASSERT((phyi->phyint_flags & ~(IFF_PHYINT_FLAGS)) == 0);
11792 	ASSERT((ill->ill_flags & ~(IFF_PHYINTINST_FLAGS)) == 0);
11793 	ASSERT((ipif->ipif_flags & ~(IFF_LOGINT_FLAGS)) == 0);
11794 
11795 	/*
11796 	 * Need a lock since some flags can be set even when there are
11797 	 * references to the ipif.
11798 	 */
11799 	mutex_enter(&ill->ill_lock);
11800 	if (ipip->ipi_cmd_type == IF_CMD) {
11801 		struct ifreq *ifr = (struct ifreq *)if_req;
11802 
11803 		/* Get interface flags (low 16 only). */
11804 		ifr->ifr_flags = ((ipif->ipif_flags |
11805 		    ill->ill_flags | phyi->phyint_flags) & 0xffff);
11806 	} else {
11807 		struct lifreq *lifr = (struct lifreq *)if_req;
11808 
11809 		/* Get interface flags. */
11810 		lifr->lifr_flags = ipif->ipif_flags |
11811 		    ill->ill_flags | phyi->phyint_flags;
11812 	}
11813 	mutex_exit(&ill->ill_lock);
11814 	return (0);
11815 }
11816 
11817 /* ARGSUSED */
11818 int
11819 ip_sioctl_mtu(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
11820     ip_ioctl_cmd_t *ipip, void *if_req)
11821 {
11822 	int mtu;
11823 	int ip_min_mtu;
11824 	struct ifreq	*ifr;
11825 	struct lifreq *lifr;
11826 	ire_t	*ire;
11827 	ip_stack_t *ipst;
11828 
11829 	ip1dbg(("ip_sioctl_mtu(%s:%u %p)\n", ipif->ipif_ill->ill_name,
11830 	    ipif->ipif_id, (void *)ipif));
11831 	if (ipip->ipi_cmd_type == IF_CMD) {
11832 		ifr = (struct ifreq *)if_req;
11833 		mtu = ifr->ifr_metric;
11834 	} else {
11835 		lifr = (struct lifreq *)if_req;
11836 		mtu = lifr->lifr_mtu;
11837 	}
11838 
11839 	if (ipif->ipif_isv6)
11840 		ip_min_mtu = IPV6_MIN_MTU;
11841 	else
11842 		ip_min_mtu = IP_MIN_MTU;
11843 
11844 	if (mtu > ipif->ipif_ill->ill_max_frag || mtu < ip_min_mtu)
11845 		return (EINVAL);
11846 
11847 	/*
11848 	 * Change the MTU size in all relevant ire's.
11849 	 * Mtu change Vs. new ire creation - protocol below.
11850 	 * First change ipif_mtu and the ire_max_frag of the
11851 	 * interface ire. Then do an ire walk and change the
11852 	 * ire_max_frag of all affected ires. During ire_add
11853 	 * under the bucket lock, set the ire_max_frag of the
11854 	 * new ire being created from the ipif/ire from which
11855 	 * it is being derived. If an mtu change happens after
11856 	 * the ire is added, the new ire will be cleaned up.
11857 	 * Conversely if the mtu change happens before the ire
11858 	 * is added, ire_add will see the new value of the mtu.
11859 	 */
11860 	ipif->ipif_mtu = mtu;
11861 	ipif->ipif_flags |= IPIF_FIXEDMTU;
11862 
11863 	if (ipif->ipif_isv6)
11864 		ire = ipif_to_ire_v6(ipif);
11865 	else
11866 		ire = ipif_to_ire(ipif);
11867 	if (ire != NULL) {
11868 		ire->ire_max_frag = ipif->ipif_mtu;
11869 		ire_refrele(ire);
11870 	}
11871 	ipst = ipif->ipif_ill->ill_ipst;
11872 	if (ipif->ipif_flags & IPIF_UP) {
11873 		if (ipif->ipif_isv6)
11874 			ire_walk_v6(ipif_mtu_change, (char *)ipif, ALL_ZONES,
11875 			    ipst);
11876 		else
11877 			ire_walk_v4(ipif_mtu_change, (char *)ipif, ALL_ZONES,
11878 			    ipst);
11879 	}
11880 	/* Update the MTU in SCTP's list */
11881 	sctp_update_ipif(ipif, SCTP_IPIF_UPDATE);
11882 	return (0);
11883 }
11884 
11885 /* Get interface MTU. */
11886 /* ARGSUSED */
11887 int
11888 ip_sioctl_get_mtu(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
11889 	ip_ioctl_cmd_t *ipip, void *if_req)
11890 {
11891 	struct ifreq	*ifr;
11892 	struct lifreq	*lifr;
11893 
11894 	ip1dbg(("ip_sioctl_get_mtu(%s:%u %p)\n",
11895 	    ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
11896 	if (ipip->ipi_cmd_type == IF_CMD) {
11897 		ifr = (struct ifreq *)if_req;
11898 		ifr->ifr_metric = ipif->ipif_mtu;
11899 	} else {
11900 		lifr = (struct lifreq *)if_req;
11901 		lifr->lifr_mtu = ipif->ipif_mtu;
11902 	}
11903 	return (0);
11904 }
11905 
11906 /* Set interface broadcast address. */
11907 /* ARGSUSED2 */
11908 int
11909 ip_sioctl_brdaddr(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
11910 	ip_ioctl_cmd_t *ipip, void *if_req)
11911 {
11912 	ipaddr_t addr;
11913 	ire_t	*ire;
11914 	ip_stack_t	*ipst = ipif->ipif_ill->ill_ipst;
11915 
11916 	ip1dbg(("ip_sioctl_brdaddr(%s:%u)\n", ipif->ipif_ill->ill_name,
11917 	    ipif->ipif_id));
11918 
11919 	ASSERT(IAM_WRITER_IPIF(ipif));
11920 	if (!(ipif->ipif_flags & IPIF_BROADCAST))
11921 		return (EADDRNOTAVAIL);
11922 
11923 	ASSERT(!(ipif->ipif_isv6));	/* No IPv6 broadcast */
11924 
11925 	if (sin->sin_family != AF_INET)
11926 		return (EAFNOSUPPORT);
11927 
11928 	addr = sin->sin_addr.s_addr;
11929 	if (ipif->ipif_flags & IPIF_UP) {
11930 		/*
11931 		 * If we are already up, make sure the new
11932 		 * broadcast address makes sense.  If it does,
11933 		 * there should be an IRE for it already.
11934 		 * Don't match on ipif, only on the ill
11935 		 * since we are sharing these now.
11936 		 */
11937 		ire = ire_ctable_lookup(addr, 0, IRE_BROADCAST,
11938 		    ipif, ALL_ZONES, NULL,
11939 		    (MATCH_IRE_ILL | MATCH_IRE_TYPE), ipst);
11940 		if (ire == NULL) {
11941 			return (EINVAL);
11942 		} else {
11943 			ire_refrele(ire);
11944 		}
11945 	}
11946 	/*
11947 	 * Changing the broadcast addr for this ipif.
11948 	 * Make sure we have valid net and subnet bcast
11949 	 * ire's for other logical interfaces, if needed.
11950 	 */
11951 	if (addr != ipif->ipif_brd_addr)
11952 		ipif_check_bcast_ires(ipif);
11953 	IN6_IPADDR_TO_V4MAPPED(addr, &ipif->ipif_v6brd_addr);
11954 	return (0);
11955 }
11956 
11957 /* Get interface broadcast address. */
11958 /* ARGSUSED */
11959 int
11960 ip_sioctl_get_brdaddr(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
11961     ip_ioctl_cmd_t *ipip, void *if_req)
11962 {
11963 	ip1dbg(("ip_sioctl_get_brdaddr(%s:%u %p)\n",
11964 	    ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
11965 	if (!(ipif->ipif_flags & IPIF_BROADCAST))
11966 		return (EADDRNOTAVAIL);
11967 
11968 	/* IPIF_BROADCAST not possible with IPv6 */
11969 	ASSERT(!ipif->ipif_isv6);
11970 	*sin = sin_null;
11971 	sin->sin_family = AF_INET;
11972 	sin->sin_addr.s_addr = ipif->ipif_brd_addr;
11973 	return (0);
11974 }
11975 
11976 /*
11977  * This routine is called to handle the SIOCS*IFNETMASK IOCTL.
11978  */
11979 /* ARGSUSED */
11980 int
11981 ip_sioctl_netmask(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
11982     ip_ioctl_cmd_t *ipip, void *if_req)
11983 {
11984 	int err = 0;
11985 	in6_addr_t v6mask;
11986 
11987 	ip1dbg(("ip_sioctl_netmask(%s:%u %p)\n",
11988 	    ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
11989 
11990 	ASSERT(IAM_WRITER_IPIF(ipif));
11991 
11992 	if (ipif->ipif_isv6) {
11993 		sin6_t *sin6;
11994 
11995 		if (sin->sin_family != AF_INET6)
11996 			return (EAFNOSUPPORT);
11997 
11998 		sin6 = (sin6_t *)sin;
11999 		v6mask = sin6->sin6_addr;
12000 	} else {
12001 		ipaddr_t mask;
12002 
12003 		if (sin->sin_family != AF_INET)
12004 			return (EAFNOSUPPORT);
12005 
12006 		mask = sin->sin_addr.s_addr;
12007 		V4MASK_TO_V6(mask, v6mask);
12008 	}
12009 
12010 	/*
12011 	 * No big deal if the interface isn't already up, or the mask
12012 	 * isn't really changing, or this is pt-pt.
12013 	 */
12014 	if (!(ipif->ipif_flags & IPIF_UP) ||
12015 	    IN6_ARE_ADDR_EQUAL(&v6mask, &ipif->ipif_v6net_mask) ||
12016 	    (ipif->ipif_flags & IPIF_POINTOPOINT)) {
12017 		ipif->ipif_v6net_mask = v6mask;
12018 		if ((ipif->ipif_flags & IPIF_POINTOPOINT) == 0) {
12019 			V6_MASK_COPY(ipif->ipif_v6lcl_addr,
12020 			    ipif->ipif_v6net_mask,
12021 			    ipif->ipif_v6subnet);
12022 		}
12023 		return (0);
12024 	}
12025 	/*
12026 	 * Make sure we have valid net and subnet broadcast ire's
12027 	 * for the old netmask, if needed by other logical interfaces.
12028 	 */
12029 	if (!ipif->ipif_isv6)
12030 		ipif_check_bcast_ires(ipif);
12031 
12032 	err = ipif_logical_down(ipif, q, mp);
12033 	if (err == EINPROGRESS)
12034 		return (err);
12035 	ipif_down_tail(ipif);
12036 	err = ip_sioctl_netmask_tail(ipif, sin, q, mp);
12037 	return (err);
12038 }
12039 
12040 static int
12041 ip_sioctl_netmask_tail(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp)
12042 {
12043 	in6_addr_t v6mask;
12044 	int err = 0;
12045 
12046 	ip1dbg(("ip_sioctl_netmask_tail(%s:%u %p)\n",
12047 	    ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
12048 
12049 	if (ipif->ipif_isv6) {
12050 		sin6_t *sin6;
12051 
12052 		sin6 = (sin6_t *)sin;
12053 		v6mask = sin6->sin6_addr;
12054 	} else {
12055 		ipaddr_t mask;
12056 
12057 		mask = sin->sin_addr.s_addr;
12058 		V4MASK_TO_V6(mask, v6mask);
12059 	}
12060 
12061 	ipif->ipif_v6net_mask = v6mask;
12062 	if ((ipif->ipif_flags & IPIF_POINTOPOINT) == 0) {
12063 		V6_MASK_COPY(ipif->ipif_v6lcl_addr, ipif->ipif_v6net_mask,
12064 		    ipif->ipif_v6subnet);
12065 	}
12066 	err = ipif_up(ipif, q, mp);
12067 
12068 	if (err == 0 || err == EINPROGRESS) {
12069 		/*
12070 		 * The interface must be DL_BOUND if this packet has to
12071 		 * go out on the wire. Since we only go through a logical
12072 		 * down and are bound with the driver during an internal
12073 		 * down/up that is satisfied.
12074 		 */
12075 		if (!ipif->ipif_isv6 && ipif->ipif_ill->ill_wq != NULL) {
12076 			/* Potentially broadcast an address mask reply. */
12077 			ipif_mask_reply(ipif);
12078 		}
12079 	}
12080 	return (err);
12081 }
12082 
12083 /* ARGSUSED */
12084 int
12085 ip_sioctl_netmask_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
12086     ip_ioctl_cmd_t *ipip, void *if_req)
12087 {
12088 	ip1dbg(("ip_sioctl_netmask_restart(%s:%u %p)\n",
12089 	    ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
12090 	ipif_down_tail(ipif);
12091 	return (ip_sioctl_netmask_tail(ipif, sin, q, mp));
12092 }
12093 
12094 /* Get interface net mask. */
12095 /* ARGSUSED */
12096 int
12097 ip_sioctl_get_netmask(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
12098     ip_ioctl_cmd_t *ipip, void *if_req)
12099 {
12100 	struct lifreq *lifr = (struct lifreq *)if_req;
12101 	struct sockaddr_in6 *sin6 = (sin6_t *)sin;
12102 
12103 	ip1dbg(("ip_sioctl_get_netmask(%s:%u %p)\n",
12104 	    ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
12105 
12106 	/*
12107 	 * net mask can't change since we have a reference to the ipif.
12108 	 */
12109 	if (ipif->ipif_isv6) {
12110 		ASSERT(ipip->ipi_cmd_type == LIF_CMD);
12111 		*sin6 = sin6_null;
12112 		sin6->sin6_family = AF_INET6;
12113 		sin6->sin6_addr = ipif->ipif_v6net_mask;
12114 		lifr->lifr_addrlen =
12115 		    ip_mask_to_plen_v6(&ipif->ipif_v6net_mask);
12116 	} else {
12117 		*sin = sin_null;
12118 		sin->sin_family = AF_INET;
12119 		sin->sin_addr.s_addr = ipif->ipif_net_mask;
12120 		if (ipip->ipi_cmd_type == LIF_CMD) {
12121 			lifr->lifr_addrlen =
12122 			    ip_mask_to_plen(ipif->ipif_net_mask);
12123 		}
12124 	}
12125 	return (0);
12126 }
12127 
12128 /* ARGSUSED */
12129 int
12130 ip_sioctl_metric(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
12131     ip_ioctl_cmd_t *ipip, void *if_req)
12132 {
12133 	ip1dbg(("ip_sioctl_metric(%s:%u %p)\n",
12134 	    ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
12135 
12136 	/*
12137 	 * Since no applications should ever be setting metrics on underlying
12138 	 * interfaces, we explicitly fail to smoke 'em out.
12139 	 */
12140 	if (IS_UNDER_IPMP(ipif->ipif_ill))
12141 		return (EINVAL);
12142 
12143 	/*
12144 	 * Set interface metric.  We don't use this for
12145 	 * anything but we keep track of it in case it is
12146 	 * important to routing applications or such.
12147 	 */
12148 	if (ipip->ipi_cmd_type == IF_CMD) {
12149 		struct ifreq    *ifr;
12150 
12151 		ifr = (struct ifreq *)if_req;
12152 		ipif->ipif_metric = ifr->ifr_metric;
12153 	} else {
12154 		struct lifreq   *lifr;
12155 
12156 		lifr = (struct lifreq *)if_req;
12157 		ipif->ipif_metric = lifr->lifr_metric;
12158 	}
12159 	return (0);
12160 }
12161 
12162 /* ARGSUSED */
12163 int
12164 ip_sioctl_get_metric(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
12165     ip_ioctl_cmd_t *ipip, void *if_req)
12166 {
12167 	/* Get interface metric. */
12168 	ip1dbg(("ip_sioctl_get_metric(%s:%u %p)\n",
12169 	    ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
12170 
12171 	if (ipip->ipi_cmd_type == IF_CMD) {
12172 		struct ifreq    *ifr;
12173 
12174 		ifr = (struct ifreq *)if_req;
12175 		ifr->ifr_metric = ipif->ipif_metric;
12176 	} else {
12177 		struct lifreq   *lifr;
12178 
12179 		lifr = (struct lifreq *)if_req;
12180 		lifr->lifr_metric = ipif->ipif_metric;
12181 	}
12182 
12183 	return (0);
12184 }
12185 
12186 /* ARGSUSED */
12187 int
12188 ip_sioctl_muxid(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
12189     ip_ioctl_cmd_t *ipip, void *if_req)
12190 {
12191 
12192 	ip1dbg(("ip_sioctl_muxid(%s:%u %p)\n",
12193 	    ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
12194 	/*
12195 	 * Set the muxid returned from I_PLINK.
12196 	 */
12197 	if (ipip->ipi_cmd_type == IF_CMD) {
12198 		struct ifreq *ifr = (struct ifreq *)if_req;
12199 
12200 		ipif->ipif_ill->ill_ip_muxid = ifr->ifr_ip_muxid;
12201 		ipif->ipif_ill->ill_arp_muxid = ifr->ifr_arp_muxid;
12202 	} else {
12203 		struct lifreq *lifr = (struct lifreq *)if_req;
12204 
12205 		ipif->ipif_ill->ill_ip_muxid = lifr->lifr_ip_muxid;
12206 		ipif->ipif_ill->ill_arp_muxid = lifr->lifr_arp_muxid;
12207 	}
12208 	return (0);
12209 }
12210 
12211 /* ARGSUSED */
12212 int
12213 ip_sioctl_get_muxid(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
12214     ip_ioctl_cmd_t *ipip, void *if_req)
12215 {
12216 
12217 	ip1dbg(("ip_sioctl_get_muxid(%s:%u %p)\n",
12218 	    ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
12219 	/*
12220 	 * Get the muxid saved in ill for I_PUNLINK.
12221 	 */
12222 	if (ipip->ipi_cmd_type == IF_CMD) {
12223 		struct ifreq *ifr = (struct ifreq *)if_req;
12224 
12225 		ifr->ifr_ip_muxid = ipif->ipif_ill->ill_ip_muxid;
12226 		ifr->ifr_arp_muxid = ipif->ipif_ill->ill_arp_muxid;
12227 	} else {
12228 		struct lifreq *lifr = (struct lifreq *)if_req;
12229 
12230 		lifr->lifr_ip_muxid = ipif->ipif_ill->ill_ip_muxid;
12231 		lifr->lifr_arp_muxid = ipif->ipif_ill->ill_arp_muxid;
12232 	}
12233 	return (0);
12234 }
12235 
12236 /*
12237  * Set the subnet prefix. Does not modify the broadcast address.
12238  */
12239 /* ARGSUSED */
12240 int
12241 ip_sioctl_subnet(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
12242     ip_ioctl_cmd_t *ipip, void *if_req)
12243 {
12244 	int err = 0;
12245 	in6_addr_t v6addr;
12246 	in6_addr_t v6mask;
12247 	boolean_t need_up = B_FALSE;
12248 	int addrlen;
12249 
12250 	ip1dbg(("ip_sioctl_subnet(%s:%u %p)\n",
12251 	    ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
12252 
12253 	ASSERT(IAM_WRITER_IPIF(ipif));
12254 	addrlen = ((struct lifreq *)if_req)->lifr_addrlen;
12255 
12256 	if (ipif->ipif_isv6) {
12257 		sin6_t *sin6;
12258 
12259 		if (sin->sin_family != AF_INET6)
12260 			return (EAFNOSUPPORT);
12261 
12262 		sin6 = (sin6_t *)sin;
12263 		v6addr = sin6->sin6_addr;
12264 		if (!ip_remote_addr_ok_v6(&v6addr, &ipv6_all_ones))
12265 			return (EADDRNOTAVAIL);
12266 	} else {
12267 		ipaddr_t addr;
12268 
12269 		if (sin->sin_family != AF_INET)
12270 			return (EAFNOSUPPORT);
12271 
12272 		addr = sin->sin_addr.s_addr;
12273 		if (!ip_addr_ok_v4(addr, 0xFFFFFFFF))
12274 			return (EADDRNOTAVAIL);
12275 		IN6_IPADDR_TO_V4MAPPED(addr, &v6addr);
12276 		/* Add 96 bits */
12277 		addrlen += IPV6_ABITS - IP_ABITS;
12278 	}
12279 
12280 	if (ip_plen_to_mask_v6(addrlen, &v6mask) == NULL)
12281 		return (EINVAL);
12282 
12283 	/* Check if bits in the address is set past the mask */
12284 	if (!V6_MASK_EQ(v6addr, v6mask, v6addr))
12285 		return (EINVAL);
12286 
12287 	if (IN6_ARE_ADDR_EQUAL(&ipif->ipif_v6subnet, &v6addr) &&
12288 	    IN6_ARE_ADDR_EQUAL(&ipif->ipif_v6net_mask, &v6mask))
12289 		return (0);	/* No change */
12290 
12291 	if (ipif->ipif_flags & IPIF_UP) {
12292 		/*
12293 		 * If the interface is already marked up,
12294 		 * we call ipif_down which will take care
12295 		 * of ditching any IREs that have been set
12296 		 * up based on the old interface address.
12297 		 */
12298 		err = ipif_logical_down(ipif, q, mp);
12299 		if (err == EINPROGRESS)
12300 			return (err);
12301 		ipif_down_tail(ipif);
12302 		need_up = B_TRUE;
12303 	}
12304 
12305 	err = ip_sioctl_subnet_tail(ipif, v6addr, v6mask, q, mp, need_up);
12306 	return (err);
12307 }
12308 
12309 static int
12310 ip_sioctl_subnet_tail(ipif_t *ipif, in6_addr_t v6addr, in6_addr_t v6mask,
12311     queue_t *q, mblk_t *mp, boolean_t need_up)
12312 {
12313 	ill_t	*ill = ipif->ipif_ill;
12314 	int	err = 0;
12315 
12316 	ip1dbg(("ip_sioctl_subnet_tail(%s:%u %p)\n",
12317 	    ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
12318 
12319 	/* Set the new address. */
12320 	mutex_enter(&ill->ill_lock);
12321 	ipif->ipif_v6net_mask = v6mask;
12322 	if ((ipif->ipif_flags & IPIF_POINTOPOINT) == 0) {
12323 		V6_MASK_COPY(v6addr, ipif->ipif_v6net_mask,
12324 		    ipif->ipif_v6subnet);
12325 	}
12326 	mutex_exit(&ill->ill_lock);
12327 
12328 	if (need_up) {
12329 		/*
12330 		 * Now bring the interface back up.  If this
12331 		 * is the only IPIF for the ILL, ipif_up
12332 		 * will have to re-bind to the device, so
12333 		 * we may get back EINPROGRESS, in which
12334 		 * case, this IOCTL will get completed in
12335 		 * ip_rput_dlpi when we see the DL_BIND_ACK.
12336 		 */
12337 		err = ipif_up(ipif, q, mp);
12338 		if (err == EINPROGRESS)
12339 			return (err);
12340 	}
12341 	return (err);
12342 }
12343 
12344 /* ARGSUSED */
12345 int
12346 ip_sioctl_subnet_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
12347     ip_ioctl_cmd_t *ipip, void *if_req)
12348 {
12349 	int	addrlen;
12350 	in6_addr_t v6addr;
12351 	in6_addr_t v6mask;
12352 	struct lifreq *lifr = (struct lifreq *)if_req;
12353 
12354 	ip1dbg(("ip_sioctl_subnet_restart(%s:%u %p)\n",
12355 	    ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
12356 	ipif_down_tail(ipif);
12357 
12358 	addrlen = lifr->lifr_addrlen;
12359 	if (ipif->ipif_isv6) {
12360 		sin6_t *sin6;
12361 
12362 		sin6 = (sin6_t *)sin;
12363 		v6addr = sin6->sin6_addr;
12364 	} else {
12365 		ipaddr_t addr;
12366 
12367 		addr = sin->sin_addr.s_addr;
12368 		IN6_IPADDR_TO_V4MAPPED(addr, &v6addr);
12369 		addrlen += IPV6_ABITS - IP_ABITS;
12370 	}
12371 	(void) ip_plen_to_mask_v6(addrlen, &v6mask);
12372 
12373 	return (ip_sioctl_subnet_tail(ipif, v6addr, v6mask, q, mp, B_TRUE));
12374 }
12375 
12376 /* ARGSUSED */
12377 int
12378 ip_sioctl_get_subnet(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
12379     ip_ioctl_cmd_t *ipip, void *if_req)
12380 {
12381 	struct lifreq *lifr = (struct lifreq *)if_req;
12382 	struct sockaddr_in6 *sin6 = (struct sockaddr_in6 *)sin;
12383 
12384 	ip1dbg(("ip_sioctl_get_subnet(%s:%u %p)\n",
12385 	    ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
12386 	ASSERT(ipip->ipi_cmd_type == LIF_CMD);
12387 
12388 	if (ipif->ipif_isv6) {
12389 		*sin6 = sin6_null;
12390 		sin6->sin6_family = AF_INET6;
12391 		sin6->sin6_addr = ipif->ipif_v6subnet;
12392 		lifr->lifr_addrlen =
12393 		    ip_mask_to_plen_v6(&ipif->ipif_v6net_mask);
12394 	} else {
12395 		*sin = sin_null;
12396 		sin->sin_family = AF_INET;
12397 		sin->sin_addr.s_addr = ipif->ipif_subnet;
12398 		lifr->lifr_addrlen = ip_mask_to_plen(ipif->ipif_net_mask);
12399 	}
12400 	return (0);
12401 }
12402 
12403 /*
12404  * Set the IPv6 address token.
12405  */
12406 /* ARGSUSED */
12407 int
12408 ip_sioctl_token(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
12409     ip_ioctl_cmd_t *ipi, void *if_req)
12410 {
12411 	ill_t *ill = ipif->ipif_ill;
12412 	int err;
12413 	in6_addr_t v6addr;
12414 	in6_addr_t v6mask;
12415 	boolean_t need_up = B_FALSE;
12416 	int i;
12417 	sin6_t *sin6 = (sin6_t *)sin;
12418 	struct lifreq *lifr = (struct lifreq *)if_req;
12419 	int addrlen;
12420 
12421 	ip1dbg(("ip_sioctl_token(%s:%u %p)\n",
12422 	    ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
12423 	ASSERT(IAM_WRITER_IPIF(ipif));
12424 
12425 	addrlen = lifr->lifr_addrlen;
12426 	/* Only allow for logical unit zero i.e. not on "le0:17" */
12427 	if (ipif->ipif_id != 0)
12428 		return (EINVAL);
12429 
12430 	if (!ipif->ipif_isv6)
12431 		return (EINVAL);
12432 
12433 	if (addrlen > IPV6_ABITS)
12434 		return (EINVAL);
12435 
12436 	v6addr = sin6->sin6_addr;
12437 
12438 	/*
12439 	 * The length of the token is the length from the end.  To get
12440 	 * the proper mask for this, compute the mask of the bits not
12441 	 * in the token; ie. the prefix, and then xor to get the mask.
12442 	 */
12443 	if (ip_plen_to_mask_v6(IPV6_ABITS - addrlen, &v6mask) == NULL)
12444 		return (EINVAL);
12445 	for (i = 0; i < 4; i++) {
12446 		v6mask.s6_addr32[i] ^= (uint32_t)0xffffffff;
12447 	}
12448 
12449 	if (V6_MASK_EQ(v6addr, v6mask, ill->ill_token) &&
12450 	    ill->ill_token_length == addrlen)
12451 		return (0);	/* No change */
12452 
12453 	if (ipif->ipif_flags & IPIF_UP) {
12454 		err = ipif_logical_down(ipif, q, mp);
12455 		if (err == EINPROGRESS)
12456 			return (err);
12457 		ipif_down_tail(ipif);
12458 		need_up = B_TRUE;
12459 	}
12460 	err = ip_sioctl_token_tail(ipif, sin6, addrlen, q, mp, need_up);
12461 	return (err);
12462 }
12463 
12464 static int
12465 ip_sioctl_token_tail(ipif_t *ipif, sin6_t *sin6, int addrlen, queue_t *q,
12466     mblk_t *mp, boolean_t need_up)
12467 {
12468 	in6_addr_t v6addr;
12469 	in6_addr_t v6mask;
12470 	ill_t	*ill = ipif->ipif_ill;
12471 	int	i;
12472 	int	err = 0;
12473 
12474 	ip1dbg(("ip_sioctl_token_tail(%s:%u %p)\n",
12475 	    ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
12476 	v6addr = sin6->sin6_addr;
12477 	/*
12478 	 * The length of the token is the length from the end.  To get
12479 	 * the proper mask for this, compute the mask of the bits not
12480 	 * in the token; ie. the prefix, and then xor to get the mask.
12481 	 */
12482 	(void) ip_plen_to_mask_v6(IPV6_ABITS - addrlen, &v6mask);
12483 	for (i = 0; i < 4; i++)
12484 		v6mask.s6_addr32[i] ^= (uint32_t)0xffffffff;
12485 
12486 	mutex_enter(&ill->ill_lock);
12487 	V6_MASK_COPY(v6addr, v6mask, ill->ill_token);
12488 	ill->ill_token_length = addrlen;
12489 	ill->ill_manual_token = 1;
12490 
12491 	/* Reconfigure the link-local address based on this new token */
12492 	ipif_setlinklocal(ill->ill_ipif);
12493 
12494 	mutex_exit(&ill->ill_lock);
12495 
12496 	if (need_up) {
12497 		/*
12498 		 * Now bring the interface back up.  If this
12499 		 * is the only IPIF for the ILL, ipif_up
12500 		 * will have to re-bind to the device, so
12501 		 * we may get back EINPROGRESS, in which
12502 		 * case, this IOCTL will get completed in
12503 		 * ip_rput_dlpi when we see the DL_BIND_ACK.
12504 		 */
12505 		err = ipif_up(ipif, q, mp);
12506 		if (err == EINPROGRESS)
12507 			return (err);
12508 	}
12509 	return (err);
12510 }
12511 
12512 /* ARGSUSED */
12513 int
12514 ip_sioctl_get_token(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
12515     ip_ioctl_cmd_t *ipi, void *if_req)
12516 {
12517 	ill_t *ill;
12518 	sin6_t *sin6 = (sin6_t *)sin;
12519 	struct lifreq *lifr = (struct lifreq *)if_req;
12520 
12521 	ip1dbg(("ip_sioctl_get_token(%s:%u %p)\n",
12522 	    ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
12523 	if (ipif->ipif_id != 0)
12524 		return (EINVAL);
12525 
12526 	ill = ipif->ipif_ill;
12527 	if (!ill->ill_isv6)
12528 		return (ENXIO);
12529 
12530 	*sin6 = sin6_null;
12531 	sin6->sin6_family = AF_INET6;
12532 	ASSERT(!IN6_IS_ADDR_V4MAPPED(&ill->ill_token));
12533 	sin6->sin6_addr = ill->ill_token;
12534 	lifr->lifr_addrlen = ill->ill_token_length;
12535 	return (0);
12536 }
12537 
12538 /*
12539  * Set (hardware) link specific information that might override
12540  * what was acquired through the DL_INFO_ACK.
12541  * The logic is as follows.
12542  *
12543  * become exclusive
12544  * set CHANGING flag
12545  * change mtu on affected IREs
12546  * clear CHANGING flag
12547  *
12548  * An ire add that occurs before the CHANGING flag is set will have its mtu
12549  * changed by the ip_sioctl_lnkinfo.
12550  *
12551  * During the time the CHANGING flag is set, no new ires will be added to the
12552  * bucket, and ire add will fail (due the CHANGING flag).
12553  *
12554  * An ire add that occurs after the CHANGING flag is set will have the right mtu
12555  * before it is added to the bucket.
12556  *
12557  * Obviously only 1 thread can set the CHANGING flag and we need to become
12558  * exclusive to set the flag.
12559  */
12560 /* ARGSUSED */
12561 int
12562 ip_sioctl_lnkinfo(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
12563     ip_ioctl_cmd_t *ipi, void *if_req)
12564 {
12565 	ill_t		*ill = ipif->ipif_ill;
12566 	ipif_t		*nipif;
12567 	int		ip_min_mtu;
12568 	boolean_t	mtu_walk = B_FALSE;
12569 	struct lifreq	*lifr = (struct lifreq *)if_req;
12570 	lif_ifinfo_req_t *lir;
12571 	ire_t		*ire;
12572 
12573 	ip1dbg(("ip_sioctl_lnkinfo(%s:%u %p)\n",
12574 	    ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
12575 	lir = &lifr->lifr_ifinfo;
12576 	ASSERT(IAM_WRITER_IPIF(ipif));
12577 
12578 	/* Only allow for logical unit zero i.e. not on "le0:17" */
12579 	if (ipif->ipif_id != 0)
12580 		return (EINVAL);
12581 
12582 	/* Set interface MTU. */
12583 	if (ipif->ipif_isv6)
12584 		ip_min_mtu = IPV6_MIN_MTU;
12585 	else
12586 		ip_min_mtu = IP_MIN_MTU;
12587 
12588 	/*
12589 	 * Verify values before we set anything. Allow zero to
12590 	 * mean unspecified.
12591 	 */
12592 	if (lir->lir_maxmtu != 0 &&
12593 	    (lir->lir_maxmtu > ill->ill_max_frag ||
12594 	    lir->lir_maxmtu < ip_min_mtu))
12595 		return (EINVAL);
12596 	if (lir->lir_reachtime != 0 &&
12597 	    lir->lir_reachtime > ND_MAX_REACHTIME)
12598 		return (EINVAL);
12599 	if (lir->lir_reachretrans != 0 &&
12600 	    lir->lir_reachretrans > ND_MAX_REACHRETRANSTIME)
12601 		return (EINVAL);
12602 
12603 	mutex_enter(&ill->ill_lock);
12604 	ill->ill_state_flags |= ILL_CHANGING;
12605 	for (nipif = ill->ill_ipif; nipif != NULL;
12606 	    nipif = nipif->ipif_next) {
12607 		nipif->ipif_state_flags |= IPIF_CHANGING;
12608 	}
12609 
12610 	if (lir->lir_maxmtu != 0) {
12611 		ill->ill_max_mtu = lir->lir_maxmtu;
12612 		ill->ill_user_mtu = lir->lir_maxmtu;
12613 		mtu_walk = B_TRUE;
12614 	}
12615 	mutex_exit(&ill->ill_lock);
12616 
12617 	if (lir->lir_reachtime != 0)
12618 		ill->ill_reachable_time = lir->lir_reachtime;
12619 
12620 	if (lir->lir_reachretrans != 0)
12621 		ill->ill_reachable_retrans_time = lir->lir_reachretrans;
12622 
12623 	ill->ill_max_hops = lir->lir_maxhops;
12624 
12625 	ill->ill_max_buf = ND_MAX_Q;
12626 
12627 	if (mtu_walk) {
12628 		/*
12629 		 * Set the MTU on all ipifs associated with this ill except
12630 		 * for those whose MTU was fixed via SIOCSLIFMTU.
12631 		 */
12632 		for (nipif = ill->ill_ipif; nipif != NULL;
12633 		    nipif = nipif->ipif_next) {
12634 			if (nipif->ipif_flags & IPIF_FIXEDMTU)
12635 				continue;
12636 
12637 			nipif->ipif_mtu = ill->ill_max_mtu;
12638 
12639 			if (!(nipif->ipif_flags & IPIF_UP))
12640 				continue;
12641 
12642 			if (nipif->ipif_isv6)
12643 				ire = ipif_to_ire_v6(nipif);
12644 			else
12645 				ire = ipif_to_ire(nipif);
12646 			if (ire != NULL) {
12647 				ire->ire_max_frag = ipif->ipif_mtu;
12648 				ire_refrele(ire);
12649 			}
12650 
12651 			ire_walk_ill(MATCH_IRE_ILL, 0, ipif_mtu_change,
12652 			    nipif, ill);
12653 		}
12654 	}
12655 
12656 	mutex_enter(&ill->ill_lock);
12657 	for (nipif = ill->ill_ipif; nipif != NULL;
12658 	    nipif = nipif->ipif_next) {
12659 		nipif->ipif_state_flags &= ~IPIF_CHANGING;
12660 	}
12661 	ILL_UNMARK_CHANGING(ill);
12662 	mutex_exit(&ill->ill_lock);
12663 
12664 	/*
12665 	 * Refresh IPMP meta-interface MTU if necessary.
12666 	 */
12667 	if (IS_UNDER_IPMP(ill))
12668 		ipmp_illgrp_refresh_mtu(ill->ill_grp);
12669 
12670 	return (0);
12671 }
12672 
12673 /* ARGSUSED */
12674 int
12675 ip_sioctl_get_lnkinfo(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
12676     ip_ioctl_cmd_t *ipi, void *if_req)
12677 {
12678 	struct lif_ifinfo_req *lir;
12679 	ill_t *ill = ipif->ipif_ill;
12680 
12681 	ip1dbg(("ip_sioctl_get_lnkinfo(%s:%u %p)\n",
12682 	    ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
12683 	if (ipif->ipif_id != 0)
12684 		return (EINVAL);
12685 
12686 	lir = &((struct lifreq *)if_req)->lifr_ifinfo;
12687 	lir->lir_maxhops = ill->ill_max_hops;
12688 	lir->lir_reachtime = ill->ill_reachable_time;
12689 	lir->lir_reachretrans = ill->ill_reachable_retrans_time;
12690 	lir->lir_maxmtu = ill->ill_max_mtu;
12691 
12692 	return (0);
12693 }
12694 
12695 /*
12696  * Return best guess as to the subnet mask for the specified address.
12697  * Based on the subnet masks for all the configured interfaces.
12698  *
12699  * We end up returning a zero mask in the case of default, multicast or
12700  * experimental.
12701  */
12702 static ipaddr_t
12703 ip_subnet_mask(ipaddr_t addr, ipif_t **ipifp, ip_stack_t *ipst)
12704 {
12705 	ipaddr_t net_mask;
12706 	ill_t	*ill;
12707 	ipif_t	*ipif;
12708 	ill_walk_context_t ctx;
12709 	ipif_t	*fallback_ipif = NULL;
12710 
12711 	net_mask = ip_net_mask(addr);
12712 	if (net_mask == 0) {
12713 		*ipifp = NULL;
12714 		return (0);
12715 	}
12716 
12717 	/* Let's check to see if this is maybe a local subnet route. */
12718 	/* this function only applies to IPv4 interfaces */
12719 	rw_enter(&ipst->ips_ill_g_lock, RW_READER);
12720 	ill = ILL_START_WALK_V4(&ctx, ipst);
12721 	for (; ill != NULL; ill = ill_next(&ctx, ill)) {
12722 		mutex_enter(&ill->ill_lock);
12723 		for (ipif = ill->ill_ipif; ipif != NULL;
12724 		    ipif = ipif->ipif_next) {
12725 			if (!IPIF_CAN_LOOKUP(ipif))
12726 				continue;
12727 			if (!(ipif->ipif_flags & IPIF_UP))
12728 				continue;
12729 			if ((ipif->ipif_subnet & net_mask) ==
12730 			    (addr & net_mask)) {
12731 				/*
12732 				 * Don't trust pt-pt interfaces if there are
12733 				 * other interfaces.
12734 				 */
12735 				if (ipif->ipif_flags & IPIF_POINTOPOINT) {
12736 					if (fallback_ipif == NULL) {
12737 						ipif_refhold_locked(ipif);
12738 						fallback_ipif = ipif;
12739 					}
12740 					continue;
12741 				}
12742 
12743 				/*
12744 				 * Fine. Just assume the same net mask as the
12745 				 * directly attached subnet interface is using.
12746 				 */
12747 				ipif_refhold_locked(ipif);
12748 				mutex_exit(&ill->ill_lock);
12749 				rw_exit(&ipst->ips_ill_g_lock);
12750 				if (fallback_ipif != NULL)
12751 					ipif_refrele(fallback_ipif);
12752 				*ipifp = ipif;
12753 				return (ipif->ipif_net_mask);
12754 			}
12755 		}
12756 		mutex_exit(&ill->ill_lock);
12757 	}
12758 	rw_exit(&ipst->ips_ill_g_lock);
12759 
12760 	*ipifp = fallback_ipif;
12761 	return ((fallback_ipif != NULL) ?
12762 	    fallback_ipif->ipif_net_mask : net_mask);
12763 }
12764 
12765 /*
12766  * ip_sioctl_copyin_setup calls ip_wput_ioctl to process the IP_IOCTL ioctl.
12767  */
12768 static void
12769 ip_wput_ioctl(queue_t *q, mblk_t *mp)
12770 {
12771 	IOCP	iocp;
12772 	ipft_t	*ipft;
12773 	ipllc_t	*ipllc;
12774 	mblk_t	*mp1;
12775 	cred_t	*cr;
12776 	int	error = 0;
12777 	conn_t	*connp;
12778 
12779 	ip1dbg(("ip_wput_ioctl"));
12780 	iocp = (IOCP)mp->b_rptr;
12781 	mp1 = mp->b_cont;
12782 	if (mp1 == NULL) {
12783 		iocp->ioc_error = EINVAL;
12784 		mp->b_datap->db_type = M_IOCNAK;
12785 		iocp->ioc_count = 0;
12786 		qreply(q, mp);
12787 		return;
12788 	}
12789 
12790 	/*
12791 	 * These IOCTLs provide various control capabilities to
12792 	 * upstream agents such as ULPs and processes.	There
12793 	 * are currently two such IOCTLs implemented.  They
12794 	 * are used by TCP to provide update information for
12795 	 * existing IREs and to forcibly delete an IRE for a
12796 	 * host that is not responding, thereby forcing an
12797 	 * attempt at a new route.
12798 	 */
12799 	iocp->ioc_error = EINVAL;
12800 	if (!pullupmsg(mp1, sizeof (ipllc->ipllc_cmd)))
12801 		goto done;
12802 
12803 	ipllc = (ipllc_t *)mp1->b_rptr;
12804 	for (ipft = ip_ioctl_ftbl; ipft->ipft_pfi; ipft++) {
12805 		if (ipllc->ipllc_cmd == ipft->ipft_cmd)
12806 			break;
12807 	}
12808 	/*
12809 	 * prefer credential from mblk over ioctl;
12810 	 * see ip_sioctl_copyin_setup
12811 	 */
12812 	cr = msg_getcred(mp, NULL);
12813 	if (cr == NULL)
12814 		cr = iocp->ioc_cr;
12815 
12816 	/*
12817 	 * Refhold the conn in case the request gets queued up in some lookup
12818 	 */
12819 	ASSERT(CONN_Q(q));
12820 	connp = Q_TO_CONN(q);
12821 	CONN_INC_REF(connp);
12822 	if (ipft->ipft_pfi &&
12823 	    ((mp1->b_wptr - mp1->b_rptr) >= ipft->ipft_min_size ||
12824 	    pullupmsg(mp1, ipft->ipft_min_size))) {
12825 		error = (*ipft->ipft_pfi)(q,
12826 		    (ipft->ipft_flags & IPFT_F_SELF_REPLY) ? mp : mp1, cr);
12827 	}
12828 	if (ipft->ipft_flags & IPFT_F_SELF_REPLY) {
12829 		/*
12830 		 * CONN_OPER_PENDING_DONE happens in the function called
12831 		 * through ipft_pfi above.
12832 		 */
12833 		return;
12834 	}
12835 
12836 	CONN_OPER_PENDING_DONE(connp);
12837 	if (ipft->ipft_flags & IPFT_F_NO_REPLY) {
12838 		freemsg(mp);
12839 		return;
12840 	}
12841 	iocp->ioc_error = error;
12842 
12843 done:
12844 	mp->b_datap->db_type = M_IOCACK;
12845 	if (iocp->ioc_error)
12846 		iocp->ioc_count = 0;
12847 	qreply(q, mp);
12848 }
12849 
12850 /*
12851  * Lookup an ipif using the sequence id (ipif_seqid)
12852  */
12853 ipif_t *
12854 ipif_lookup_seqid(ill_t *ill, uint_t seqid)
12855 {
12856 	ipif_t *ipif;
12857 
12858 	ASSERT(MUTEX_HELD(&ill->ill_lock));
12859 
12860 	for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) {
12861 		if (ipif->ipif_seqid == seqid && IPIF_CAN_LOOKUP(ipif))
12862 			return (ipif);
12863 	}
12864 	return (NULL);
12865 }
12866 
12867 /*
12868  * Assign a unique id for the ipif. This is used later when we send
12869  * IRES to ARP for resolution where we initialize ire_ipif_seqid
12870  * to the value pointed by ire_ipif->ipif_seqid. Later when the
12871  * IRE is added, we verify that ipif has not disappeared.
12872  */
12873 
12874 static void
12875 ipif_assign_seqid(ipif_t *ipif)
12876 {
12877 	ip_stack_t	*ipst = ipif->ipif_ill->ill_ipst;
12878 
12879 	ipif->ipif_seqid = atomic_add_64_nv(&ipst->ips_ipif_g_seqid, 1);
12880 }
12881 
12882 /*
12883  * Clone the contents of `sipif' to `dipif'.  Requires that both ipifs are
12884  * administratively down (i.e., no DAD), of the same type, and locked.  Note
12885  * that the clone is complete -- including the seqid -- and the expectation is
12886  * that the caller will either free or overwrite `sipif' before it's unlocked.
12887  */
12888 static void
12889 ipif_clone(const ipif_t *sipif, ipif_t *dipif)
12890 {
12891 	ASSERT(MUTEX_HELD(&sipif->ipif_ill->ill_lock));
12892 	ASSERT(MUTEX_HELD(&dipif->ipif_ill->ill_lock));
12893 	ASSERT(!(sipif->ipif_flags & (IPIF_UP|IPIF_DUPLICATE)));
12894 	ASSERT(!(dipif->ipif_flags & (IPIF_UP|IPIF_DUPLICATE)));
12895 	ASSERT(sipif->ipif_ire_type == dipif->ipif_ire_type);
12896 	ASSERT(sipif->ipif_arp_del_mp == NULL);
12897 	ASSERT(dipif->ipif_arp_del_mp == NULL);
12898 	ASSERT(sipif->ipif_igmp_rpt == NULL);
12899 	ASSERT(dipif->ipif_igmp_rpt == NULL);
12900 	ASSERT(sipif->ipif_multicast_up == 0);
12901 	ASSERT(dipif->ipif_multicast_up == 0);
12902 	ASSERT(sipif->ipif_joined_allhosts == 0);
12903 	ASSERT(dipif->ipif_joined_allhosts == 0);
12904 
12905 	dipif->ipif_mtu = sipif->ipif_mtu;
12906 	dipif->ipif_flags = sipif->ipif_flags;
12907 	dipif->ipif_metric = sipif->ipif_metric;
12908 	dipif->ipif_zoneid = sipif->ipif_zoneid;
12909 	dipif->ipif_v6subnet = sipif->ipif_v6subnet;
12910 	dipif->ipif_v6lcl_addr = sipif->ipif_v6lcl_addr;
12911 	dipif->ipif_v6src_addr = sipif->ipif_v6src_addr;
12912 	dipif->ipif_v6net_mask = sipif->ipif_v6net_mask;
12913 	dipif->ipif_v6brd_addr = sipif->ipif_v6brd_addr;
12914 	dipif->ipif_v6pp_dst_addr = sipif->ipif_v6pp_dst_addr;
12915 
12916 	/*
12917 	 * While dipif is down right now, it might've been up before.  Since
12918 	 * it's changing identity, its packet counters need to be reset.
12919 	 */
12920 	dipif->ipif_ib_pkt_count = 0;
12921 	dipif->ipif_ob_pkt_count = 0;
12922 	dipif->ipif_fo_pkt_count = 0;
12923 
12924 	/*
12925 	 * As per the comment atop the function, we assume that these sipif
12926 	 * fields will be changed before sipif is unlocked.
12927 	 */
12928 	dipif->ipif_seqid = sipif->ipif_seqid;
12929 	dipif->ipif_saved_ire_mp = sipif->ipif_saved_ire_mp;
12930 	dipif->ipif_saved_ire_cnt = sipif->ipif_saved_ire_cnt;
12931 	dipif->ipif_state_flags = sipif->ipif_state_flags;
12932 }
12933 
12934 /*
12935  * Transfer the contents of `sipif' to `dipif', and then free (if `virgipif'
12936  * is NULL) or overwrite `sipif' with `virgipif', which must be a virgin
12937  * (unreferenced) ipif.  Also, if `sipif' is used by the current xop, then
12938  * transfer the xop to `dipif'.  Requires that all ipifs are administratively
12939  * down (i.e., no DAD), of the same type, and unlocked.
12940  */
12941 static void
12942 ipif_transfer(ipif_t *sipif, ipif_t *dipif, ipif_t *virgipif)
12943 {
12944 	ipsq_t *ipsq = sipif->ipif_ill->ill_phyint->phyint_ipsq;
12945 	ipxop_t *ipx = ipsq->ipsq_xop;
12946 
12947 	ASSERT(sipif != dipif);
12948 	ASSERT(sipif != virgipif);
12949 
12950 	/*
12951 	 * Grab all of the locks that protect the ipif in a defined order.
12952 	 */
12953 	GRAB_ILL_LOCKS(sipif->ipif_ill, dipif->ipif_ill);
12954 	if (sipif > dipif) {
12955 		mutex_enter(&sipif->ipif_saved_ire_lock);
12956 		mutex_enter(&dipif->ipif_saved_ire_lock);
12957 	} else {
12958 		mutex_enter(&dipif->ipif_saved_ire_lock);
12959 		mutex_enter(&sipif->ipif_saved_ire_lock);
12960 	}
12961 
12962 	ipif_clone(sipif, dipif);
12963 	if (virgipif != NULL) {
12964 		ipif_clone(virgipif, sipif);
12965 		mi_free(virgipif);
12966 	}
12967 
12968 	mutex_exit(&sipif->ipif_saved_ire_lock);
12969 	mutex_exit(&dipif->ipif_saved_ire_lock);
12970 	RELEASE_ILL_LOCKS(sipif->ipif_ill, dipif->ipif_ill);
12971 
12972 	/*
12973 	 * Transfer ownership of the current xop, if necessary.
12974 	 */
12975 	if (ipx->ipx_current_ipif == sipif) {
12976 		ASSERT(ipx->ipx_pending_ipif == NULL);
12977 		mutex_enter(&ipx->ipx_lock);
12978 		ipx->ipx_current_ipif = dipif;
12979 		mutex_exit(&ipx->ipx_lock);
12980 	}
12981 
12982 	if (virgipif == NULL)
12983 		mi_free(sipif);
12984 }
12985 
12986 /*
12987  * Insert the ipif, so that the list of ipifs on the ill will be sorted
12988  * with respect to ipif_id. Note that an ipif with an ipif_id of -1 will
12989  * be inserted into the first space available in the list. The value of
12990  * ipif_id will then be set to the appropriate value for its position.
12991  */
12992 static int
12993 ipif_insert(ipif_t *ipif, boolean_t acquire_g_lock)
12994 {
12995 	ill_t *ill;
12996 	ipif_t *tipif;
12997 	ipif_t **tipifp;
12998 	int id;
12999 	ip_stack_t	*ipst;
13000 
13001 	ASSERT(ipif->ipif_ill->ill_net_type == IRE_LOOPBACK ||
13002 	    IAM_WRITER_IPIF(ipif));
13003 
13004 	ill = ipif->ipif_ill;
13005 	ASSERT(ill != NULL);
13006 	ipst = ill->ill_ipst;
13007 
13008 	/*
13009 	 * In the case of lo0:0 we already hold the ill_g_lock.
13010 	 * ill_lookup_on_name (acquires ill_g_lock) -> ipif_allocate ->
13011 	 * ipif_insert.
13012 	 */
13013 	if (acquire_g_lock)
13014 		rw_enter(&ipst->ips_ill_g_lock, RW_WRITER);
13015 	mutex_enter(&ill->ill_lock);
13016 	id = ipif->ipif_id;
13017 	tipifp = &(ill->ill_ipif);
13018 	if (id == -1) {	/* need to find a real id */
13019 		id = 0;
13020 		while ((tipif = *tipifp) != NULL) {
13021 			ASSERT(tipif->ipif_id >= id);
13022 			if (tipif->ipif_id != id)
13023 				break; /* non-consecutive id */
13024 			id++;
13025 			tipifp = &(tipif->ipif_next);
13026 		}
13027 		/* limit number of logical interfaces */
13028 		if (id >= ipst->ips_ip_addrs_per_if) {
13029 			mutex_exit(&ill->ill_lock);
13030 			if (acquire_g_lock)
13031 				rw_exit(&ipst->ips_ill_g_lock);
13032 			return (-1);
13033 		}
13034 		ipif->ipif_id = id; /* assign new id */
13035 	} else if (id < ipst->ips_ip_addrs_per_if) {
13036 		/* we have a real id; insert ipif in the right place */
13037 		while ((tipif = *tipifp) != NULL) {
13038 			ASSERT(tipif->ipif_id != id);
13039 			if (tipif->ipif_id > id)
13040 				break; /* found correct location */
13041 			tipifp = &(tipif->ipif_next);
13042 		}
13043 	} else {
13044 		mutex_exit(&ill->ill_lock);
13045 		if (acquire_g_lock)
13046 			rw_exit(&ipst->ips_ill_g_lock);
13047 		return (-1);
13048 	}
13049 
13050 	ASSERT(tipifp != &(ill->ill_ipif) || id == 0);
13051 
13052 	ipif->ipif_next = tipif;
13053 	*tipifp = ipif;
13054 	mutex_exit(&ill->ill_lock);
13055 	if (acquire_g_lock)
13056 		rw_exit(&ipst->ips_ill_g_lock);
13057 
13058 	return (0);
13059 }
13060 
13061 static void
13062 ipif_remove(ipif_t *ipif)
13063 {
13064 	ipif_t	**ipifp;
13065 	ill_t	*ill = ipif->ipif_ill;
13066 
13067 	ASSERT(RW_WRITE_HELD(&ill->ill_ipst->ips_ill_g_lock));
13068 
13069 	mutex_enter(&ill->ill_lock);
13070 	ipifp = &ill->ill_ipif;
13071 	for (; *ipifp != NULL; ipifp = &ipifp[0]->ipif_next) {
13072 		if (*ipifp == ipif) {
13073 			*ipifp = ipif->ipif_next;
13074 			break;
13075 		}
13076 	}
13077 	mutex_exit(&ill->ill_lock);
13078 }
13079 
13080 /*
13081  * Allocate and initialize a new interface control structure.  (Always
13082  * called as writer.)
13083  * When ipif_allocate() is called from ip_ll_subnet_defaults, the ill
13084  * is not part of the global linked list of ills. ipif_seqid is unique
13085  * in the system and to preserve the uniqueness, it is assigned only
13086  * when ill becomes part of the global list. At that point ill will
13087  * have a name. If it doesn't get assigned here, it will get assigned
13088  * in ipif_set_values() as part of SIOCSLIFNAME processing.
13089  * Aditionally, if we come here from ip_ll_subnet_defaults, we don't set
13090  * the interface flags or any other information from the DL_INFO_ACK for
13091  * DL_STYLE2 drivers (initialize == B_FALSE), since we won't have them at
13092  * this point. The flags etc. will be set in ip_ll_subnet_defaults when the
13093  * second DL_INFO_ACK comes in from the driver.
13094  */
13095 static ipif_t *
13096 ipif_allocate(ill_t *ill, int id, uint_t ire_type, boolean_t initialize,
13097     boolean_t insert)
13098 {
13099 	ipif_t	*ipif;
13100 	ip_stack_t *ipst = ill->ill_ipst;
13101 
13102 	ip1dbg(("ipif_allocate(%s:%d ill %p)\n",
13103 	    ill->ill_name, id, (void *)ill));
13104 	ASSERT(ire_type == IRE_LOOPBACK || IAM_WRITER_ILL(ill));
13105 
13106 	if ((ipif = (ipif_t *)mi_alloc(sizeof (ipif_t), BPRI_MED)) == NULL)
13107 		return (NULL);
13108 	*ipif = ipif_zero;	/* start clean */
13109 
13110 	ipif->ipif_ill = ill;
13111 	ipif->ipif_id = id;	/* could be -1 */
13112 	/*
13113 	 * Inherit the zoneid from the ill; for the shared stack instance
13114 	 * this is always the global zone
13115 	 */
13116 	ipif->ipif_zoneid = ill->ill_zoneid;
13117 
13118 	mutex_init(&ipif->ipif_saved_ire_lock, NULL, MUTEX_DEFAULT, NULL);
13119 
13120 	ipif->ipif_refcnt = 0;
13121 	ipif->ipif_saved_ire_cnt = 0;
13122 
13123 	if (insert) {
13124 		if (ipif_insert(ipif, ire_type != IRE_LOOPBACK) != 0) {
13125 			mi_free(ipif);
13126 			return (NULL);
13127 		}
13128 		/* -1 id should have been replaced by real id */
13129 		id = ipif->ipif_id;
13130 		ASSERT(id >= 0);
13131 	}
13132 
13133 	if (ill->ill_name[0] != '\0')
13134 		ipif_assign_seqid(ipif);
13135 
13136 	/*
13137 	 * If this is the zeroth ipif on the IPMP ill, create the illgrp
13138 	 * (which must not exist yet because the zeroth ipif is created once
13139 	 * per ill).  However, do not not link it to the ipmp_grp_t until
13140 	 * I_PLINK is called; see ip_sioctl_plink_ipmp() for details.
13141 	 */
13142 	if (id == 0 && IS_IPMP(ill)) {
13143 		if (ipmp_illgrp_create(ill) == NULL) {
13144 			if (insert) {
13145 				rw_enter(&ipst->ips_ill_g_lock, RW_WRITER);
13146 				ipif_remove(ipif);
13147 				rw_exit(&ipst->ips_ill_g_lock);
13148 			}
13149 			mi_free(ipif);
13150 			return (NULL);
13151 		}
13152 	}
13153 
13154 	/*
13155 	 * We grab ill_lock to protect the flag changes.  The ipif is still
13156 	 * not up and can't be looked up until the ioctl completes and the
13157 	 * IPIF_CHANGING flag is cleared.
13158 	 */
13159 	mutex_enter(&ill->ill_lock);
13160 
13161 	ipif->ipif_ire_type = ire_type;
13162 
13163 	if (ipif->ipif_isv6) {
13164 		ill->ill_flags |= ILLF_IPV6;
13165 	} else {
13166 		ipaddr_t inaddr_any = INADDR_ANY;
13167 
13168 		ill->ill_flags |= ILLF_IPV4;
13169 
13170 		/* Keep the IN6_IS_ADDR_V4MAPPED assertions happy */
13171 		IN6_IPADDR_TO_V4MAPPED(inaddr_any,
13172 		    &ipif->ipif_v6lcl_addr);
13173 		IN6_IPADDR_TO_V4MAPPED(inaddr_any,
13174 		    &ipif->ipif_v6src_addr);
13175 		IN6_IPADDR_TO_V4MAPPED(inaddr_any,
13176 		    &ipif->ipif_v6subnet);
13177 		IN6_IPADDR_TO_V4MAPPED(inaddr_any,
13178 		    &ipif->ipif_v6net_mask);
13179 		IN6_IPADDR_TO_V4MAPPED(inaddr_any,
13180 		    &ipif->ipif_v6brd_addr);
13181 		IN6_IPADDR_TO_V4MAPPED(inaddr_any,
13182 		    &ipif->ipif_v6pp_dst_addr);
13183 	}
13184 
13185 	/*
13186 	 * Don't set the interface flags etc. now, will do it in
13187 	 * ip_ll_subnet_defaults.
13188 	 */
13189 	if (!initialize)
13190 		goto out;
13191 
13192 	ipif->ipif_mtu = ill->ill_max_mtu;
13193 
13194 	/*
13195 	 * NOTE: The IPMP meta-interface is special-cased because it starts
13196 	 * with no underlying interfaces (and thus an unknown broadcast
13197 	 * address length), but all interfaces that can be placed into an IPMP
13198 	 * group are required to be broadcast-capable.
13199 	 */
13200 	if (ill->ill_bcast_addr_length != 0 || IS_IPMP(ill)) {
13201 		/*
13202 		 * Later detect lack of DLPI driver multicast capability by
13203 		 * catching DL_ENABMULTI_REQ errors in ip_rput_dlpi().
13204 		 */
13205 		ill->ill_flags |= ILLF_MULTICAST;
13206 		if (!ipif->ipif_isv6)
13207 			ipif->ipif_flags |= IPIF_BROADCAST;
13208 	} else {
13209 		if (ill->ill_net_type != IRE_LOOPBACK) {
13210 			if (ipif->ipif_isv6)
13211 				/*
13212 				 * Note: xresolv interfaces will eventually need
13213 				 * NOARP set here as well, but that will require
13214 				 * those external resolvers to have some
13215 				 * knowledge of that flag and act appropriately.
13216 				 * Not to be changed at present.
13217 				 */
13218 				ill->ill_flags |= ILLF_NONUD;
13219 			else
13220 				ill->ill_flags |= ILLF_NOARP;
13221 		}
13222 		if (ill->ill_phys_addr_length == 0) {
13223 			if (IS_VNI(ill)) {
13224 				ipif->ipif_flags |= IPIF_NOXMIT;
13225 			} else {
13226 				/* pt-pt supports multicast. */
13227 				ill->ill_flags |= ILLF_MULTICAST;
13228 				if (ill->ill_net_type != IRE_LOOPBACK)
13229 					ipif->ipif_flags |= IPIF_POINTOPOINT;
13230 			}
13231 		}
13232 	}
13233 out:
13234 	mutex_exit(&ill->ill_lock);
13235 	return (ipif);
13236 }
13237 
13238 /*
13239  * If appropriate, send a message up to the resolver delete the entry
13240  * for the address of this interface which is going out of business.
13241  * (Always called as writer).
13242  *
13243  * NOTE : We need to check for NULL mps as some of the fields are
13244  *	  initialized only for some interface types. See ipif_resolver_up()
13245  *	  for details.
13246  */
13247 void
13248 ipif_resolver_down(ipif_t *ipif)
13249 {
13250 	mblk_t	*mp;
13251 	ill_t	*ill = ipif->ipif_ill;
13252 
13253 	ip1dbg(("ipif_resolver_down(%s:%u)\n", ill->ill_name, ipif->ipif_id));
13254 	ASSERT(IAM_WRITER_IPIF(ipif));
13255 
13256 	if (ill->ill_isv6 && !(ill->ill_flags & ILLF_XRESOLV))
13257 		return;
13258 
13259 	/* Delete the mapping for the local address */
13260 	mp = ipif->ipif_arp_del_mp;
13261 	if (mp != NULL) {
13262 		ip1dbg(("ipif_resolver_down: arp cmd %x for %s:%u\n",
13263 		    *(unsigned *)mp->b_rptr, ill->ill_name, ipif->ipif_id));
13264 		putnext(ill->ill_rq, mp);
13265 		ipif->ipif_arp_del_mp = NULL;
13266 	}
13267 
13268 	/*
13269 	 * Make IPMP aware of the deleted data address.
13270 	 */
13271 	if (IS_IPMP(ill))
13272 		ipmp_illgrp_del_ipif(ill->ill_grp, ipif);
13273 
13274 	/*
13275 	 * If this is the last ipif that is going down and there are no
13276 	 * duplicate addresses we may yet attempt to re-probe, then we need to
13277 	 * clean up ARP completely.
13278 	 */
13279 	if (ill->ill_ipif_up_count == 0 && ill->ill_ipif_dup_count == 0) {
13280 		/*
13281 		 * If this was the last ipif on an IPMP interface, purge any
13282 		 * IPMP ARP entries associated with it.
13283 		 */
13284 		if (IS_IPMP(ill))
13285 			ipmp_illgrp_refresh_arpent(ill->ill_grp);
13286 
13287 		/* Send up AR_INTERFACE_DOWN message */
13288 		mp = ill->ill_arp_down_mp;
13289 		if (mp != NULL) {
13290 			ip1dbg(("ipif_resolver_down: arp cmd %x for %s:%u\n",
13291 			    *(unsigned *)mp->b_rptr, ill->ill_name,
13292 			    ipif->ipif_id));
13293 			putnext(ill->ill_rq, mp);
13294 			ill->ill_arp_down_mp = NULL;
13295 		}
13296 
13297 		/* Tell ARP to delete the multicast mappings */
13298 		mp = ill->ill_arp_del_mapping_mp;
13299 		if (mp != NULL) {
13300 			ip1dbg(("ipif_resolver_down: arp cmd %x for %s:%u\n",
13301 			    *(unsigned *)mp->b_rptr, ill->ill_name,
13302 			    ipif->ipif_id));
13303 			putnext(ill->ill_rq, mp);
13304 			ill->ill_arp_del_mapping_mp = NULL;
13305 		}
13306 	}
13307 }
13308 
13309 /*
13310  * Set up the multicast mappings for `ipif' in ARP.  If `arp_add_mapping_mp'
13311  * is non-NULL, then upon success it will contain an mblk that can be passed
13312  * to ARP to create the mapping.  Otherwise, if it's NULL, upon success ARP
13313  * will have already been notified to create the mapping.  Returns zero on
13314  * success, -1 upon failure.
13315  */
13316 int
13317 ipif_arp_setup_multicast(ipif_t *ipif, mblk_t **arp_add_mapping_mp)
13318 {
13319 	mblk_t	*del_mp = NULL;
13320 	mblk_t *add_mp = NULL;
13321 	mblk_t *mp;
13322 	ill_t	*ill = ipif->ipif_ill;
13323 	phyint_t *phyi = ill->ill_phyint;
13324 	ipaddr_t addr, mask, extract_mask = 0;
13325 	arma_t	*arma;
13326 	uint8_t *maddr, *bphys_addr;
13327 	uint32_t hw_start;
13328 	dl_unitdata_req_t *dlur;
13329 
13330 	ASSERT(IAM_WRITER_IPIF(ipif));
13331 	if (ipif->ipif_flags & IPIF_POINTOPOINT)
13332 		return (0);
13333 
13334 	/*
13335 	 * IPMP meta-interfaces don't have any inherent multicast mappings,
13336 	 * and instead use the ones on the underlying interfaces.
13337 	 */
13338 	if (IS_IPMP(ill))
13339 		return (0);
13340 
13341 	/*
13342 	 * Delete the existing mapping from ARP.  Normally, ipif_down() ->
13343 	 * ipif_resolver_down() will send this up to ARP, but it may be that
13344 	 * we are enabling PHYI_MULTI_BCAST via ip_rput_dlpi_writer().
13345 	 */
13346 	mp = ill->ill_arp_del_mapping_mp;
13347 	if (mp != NULL) {
13348 		ip1dbg(("ipif_arp_setup_multicast: arp cmd %x for %s:%u\n",
13349 		    *(unsigned *)mp->b_rptr, ill->ill_name, ipif->ipif_id));
13350 		putnext(ill->ill_rq, mp);
13351 		ill->ill_arp_del_mapping_mp = NULL;
13352 	}
13353 
13354 	if (arp_add_mapping_mp != NULL)
13355 		*arp_add_mapping_mp = NULL;
13356 
13357 	/*
13358 	 * Check that the address is not to long for the constant
13359 	 * length reserved in the template arma_t.
13360 	 */
13361 	if (ill->ill_phys_addr_length > IP_MAX_HW_LEN)
13362 		return (-1);
13363 
13364 	/* Add mapping mblk */
13365 	addr = (ipaddr_t)htonl(INADDR_UNSPEC_GROUP);
13366 	mask = (ipaddr_t)htonl(IN_CLASSD_NET);
13367 	add_mp = ill_arp_alloc(ill, (uchar_t *)&ip_arma_multi_template,
13368 	    (caddr_t)&addr);
13369 	if (add_mp == NULL)
13370 		return (-1);
13371 	arma = (arma_t *)add_mp->b_rptr;
13372 	maddr = (uint8_t *)arma + arma->arma_hw_addr_offset;
13373 	bcopy(&mask, (char *)arma + arma->arma_proto_mask_offset, IP_ADDR_LEN);
13374 	arma->arma_hw_addr_length = ill->ill_phys_addr_length;
13375 
13376 	/*
13377 	 * Determine the broadcast address.
13378 	 */
13379 	dlur = (dl_unitdata_req_t *)ill->ill_bcast_mp->b_rptr;
13380 	if (ill->ill_sap_length < 0)
13381 		bphys_addr = (uchar_t *)dlur + dlur->dl_dest_addr_offset;
13382 	else
13383 		bphys_addr = (uchar_t *)dlur +
13384 		    dlur->dl_dest_addr_offset + ill->ill_sap_length;
13385 	/*
13386 	 * Check PHYI_MULTI_BCAST and length of physical
13387 	 * address to determine if we use the mapping or the
13388 	 * broadcast address.
13389 	 */
13390 	if (!(phyi->phyint_flags & PHYI_MULTI_BCAST))
13391 		if (!MEDIA_V4MINFO(ill->ill_media, ill->ill_phys_addr_length,
13392 		    bphys_addr, maddr, &hw_start, &extract_mask))
13393 			phyi->phyint_flags |= PHYI_MULTI_BCAST;
13394 
13395 	if ((phyi->phyint_flags & PHYI_MULTI_BCAST) ||
13396 	    (ill->ill_flags & ILLF_MULTICAST)) {
13397 		/* Make sure this will not match the "exact" entry. */
13398 		addr = (ipaddr_t)htonl(INADDR_ALLHOSTS_GROUP);
13399 		del_mp = ill_arp_alloc(ill, (uchar_t *)&ip_ared_template,
13400 		    (caddr_t)&addr);
13401 		if (del_mp == NULL) {
13402 			freemsg(add_mp);
13403 			return (-1);
13404 		}
13405 		bcopy(&extract_mask, (char *)arma +
13406 		    arma->arma_proto_extract_mask_offset, IP_ADDR_LEN);
13407 		if (phyi->phyint_flags & PHYI_MULTI_BCAST) {
13408 			/* Use link-layer broadcast address for MULTI_BCAST */
13409 			bcopy(bphys_addr, maddr, ill->ill_phys_addr_length);
13410 			ip2dbg(("ipif_arp_setup_multicast: adding"
13411 			    " MULTI_BCAST ARP setup for %s\n", ill->ill_name));
13412 		} else {
13413 			arma->arma_hw_mapping_start = hw_start;
13414 			ip2dbg(("ipif_arp_setup_multicast: adding multicast"
13415 			    " ARP setup for %s\n", ill->ill_name));
13416 		}
13417 	} else {
13418 		freemsg(add_mp);
13419 		ASSERT(del_mp == NULL);
13420 		/* It is neither MULTICAST nor MULTI_BCAST */
13421 		return (0);
13422 	}
13423 	ASSERT(add_mp != NULL && del_mp != NULL);
13424 	ASSERT(ill->ill_arp_del_mapping_mp == NULL);
13425 	ill->ill_arp_del_mapping_mp = del_mp;
13426 	if (arp_add_mapping_mp != NULL) {
13427 		/* The caller just wants the mblks allocated */
13428 		*arp_add_mapping_mp = add_mp;
13429 	} else {
13430 		/* The caller wants us to send it to arp */
13431 		putnext(ill->ill_rq, add_mp);
13432 	}
13433 	return (0);
13434 }
13435 
13436 /*
13437  * Get the resolver set up for a new IP address.  (Always called as writer.)
13438  * Called both for IPv4 and IPv6 interfaces, though it only sets up the
13439  * resolver for v6 if it's an ILLF_XRESOLV interface.  Honors ILLF_NOARP.
13440  *
13441  * The enumerated value res_act tunes the behavior:
13442  * 	* Res_act_initial: set up all the resolver structures for a new
13443  *	  IP address.
13444  *	* Res_act_defend: tell ARP that it needs to send a single gratuitous
13445  *	  ARP message in defense of the address.
13446  *	* Res_act_rebind: tell ARP to change the hardware address for an IP
13447  *	  address (and issue gratuitous ARPs).  Used by ipmp_ill_bind_ipif().
13448  *
13449  * Returns zero on success, or an errno upon failure.
13450  */
13451 int
13452 ipif_resolver_up(ipif_t *ipif, enum ip_resolver_action res_act)
13453 {
13454 	mblk_t	*arp_up_mp = NULL;
13455 	mblk_t	*arp_down_mp = NULL;
13456 	mblk_t	*arp_add_mp = NULL;
13457 	mblk_t	*arp_del_mp = NULL;
13458 	mblk_t	*arp_add_mapping_mp = NULL;
13459 	mblk_t	*arp_del_mapping_mp = NULL;
13460 	ill_t	*ill = ipif->ipif_ill;
13461 	int	err = ENOMEM;
13462 	boolean_t added_ipif = B_FALSE;
13463 	boolean_t publish;
13464 	boolean_t was_dup;
13465 
13466 	ip1dbg(("ipif_resolver_up(%s:%u) flags 0x%x\n",
13467 	    ill->ill_name, ipif->ipif_id, (uint_t)ipif->ipif_flags));
13468 	ASSERT(IAM_WRITER_IPIF(ipif));
13469 
13470 	was_dup = B_FALSE;
13471 	if (res_act == Res_act_initial) {
13472 		ipif->ipif_addr_ready = 0;
13473 		/*
13474 		 * We're bringing an interface up here.  There's no way that we
13475 		 * should need to shut down ARP now.
13476 		 */
13477 		mutex_enter(&ill->ill_lock);
13478 		if (ipif->ipif_flags & IPIF_DUPLICATE) {
13479 			ipif->ipif_flags &= ~IPIF_DUPLICATE;
13480 			ill->ill_ipif_dup_count--;
13481 			was_dup = B_TRUE;
13482 		}
13483 		mutex_exit(&ill->ill_lock);
13484 	}
13485 	if (ipif->ipif_recovery_id != 0)
13486 		(void) untimeout(ipif->ipif_recovery_id);
13487 	ipif->ipif_recovery_id = 0;
13488 	if (ill->ill_net_type != IRE_IF_RESOLVER) {
13489 		ipif->ipif_addr_ready = 1;
13490 		return (0);
13491 	}
13492 	/* NDP will set the ipif_addr_ready flag when it's ready */
13493 	if (ill->ill_isv6 && !(ill->ill_flags & ILLF_XRESOLV))
13494 		return (0);
13495 
13496 	if (ill->ill_isv6) {
13497 		/*
13498 		 * External resolver for IPv6
13499 		 */
13500 		ASSERT(res_act == Res_act_initial);
13501 		publish = !IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6lcl_addr);
13502 	} else {
13503 		/*
13504 		 * IPv4 arp case. If the ARP stream has already started
13505 		 * closing, fail this request for ARP bringup. Else
13506 		 * record the fact that an ARP bringup is pending.
13507 		 */
13508 		mutex_enter(&ill->ill_lock);
13509 		if (ill->ill_arp_closing) {
13510 			mutex_exit(&ill->ill_lock);
13511 			err = EINVAL;
13512 			goto failed;
13513 		} else {
13514 			if (ill->ill_ipif_up_count == 0 &&
13515 			    ill->ill_ipif_dup_count == 0 && !was_dup)
13516 				ill->ill_arp_bringup_pending = 1;
13517 			mutex_exit(&ill->ill_lock);
13518 		}
13519 		publish = (ipif->ipif_lcl_addr != INADDR_ANY);
13520 	}
13521 
13522 	if (IS_IPMP(ill) && publish) {
13523 		/*
13524 		 * If we're here via ipif_up(), then the ipif won't be bound
13525 		 * yet -- add it to the group, which will bind it if possible.
13526 		 * (We would add it in ipif_up(), but deleting on failure
13527 		 * there is gruesome.)  If we're here via ipmp_ill_bind_ipif(),
13528 		 * then the ipif has already been added to the group and we
13529 		 * just need to use the binding.
13530 		 */
13531 		if (ipmp_ipif_bound_ill(ipif) == NULL) {
13532 			if (ipmp_illgrp_add_ipif(ill->ill_grp, ipif) == NULL) {
13533 				/*
13534 				 * We couldn't bind the ipif to an ill yet,
13535 				 * so we have nothing to publish.
13536 				 */
13537 				publish = B_FALSE;
13538 			}
13539 			added_ipif = B_TRUE;
13540 		}
13541 	}
13542 
13543 	/*
13544 	 * Add an entry for the local address in ARP only if it
13545 	 * is not UNNUMBERED and it is suitable for publishing.
13546 	 */
13547 	if (!(ipif->ipif_flags & IPIF_UNNUMBERED) && publish) {
13548 		if (res_act == Res_act_defend) {
13549 			arp_add_mp = ipif_area_alloc(ipif, ACE_F_DEFEND);
13550 			if (arp_add_mp == NULL)
13551 				goto failed;
13552 			/*
13553 			 * If we're just defending our address now, then
13554 			 * there's no need to set up ARP multicast mappings.
13555 			 * The publish command is enough.
13556 			 */
13557 			goto done;
13558 		}
13559 
13560 		/*
13561 		 * Allocate an ARP add message and an ARP delete message (the
13562 		 * latter is saved for use when the address goes down).
13563 		 */
13564 		if ((arp_add_mp = ipif_area_alloc(ipif, 0)) == NULL)
13565 			goto failed;
13566 
13567 		if ((arp_del_mp = ipif_ared_alloc(ipif)) == NULL)
13568 			goto failed;
13569 
13570 		if (res_act != Res_act_initial)
13571 			goto arp_setup_multicast;
13572 	} else {
13573 		if (res_act != Res_act_initial)
13574 			goto done;
13575 	}
13576 	/*
13577 	 * Need to bring up ARP or setup multicast mapping only
13578 	 * when the first interface is coming UP.
13579 	 */
13580 	if (ill->ill_ipif_up_count + ill->ill_ipif_dup_count > 0 || was_dup)
13581 		goto done;
13582 
13583 	/*
13584 	 * Allocate an ARP down message (to be saved) and an ARP up message.
13585 	 */
13586 	arp_down_mp = ill_arp_alloc(ill, (uchar_t *)&ip_ard_template, 0);
13587 	if (arp_down_mp == NULL)
13588 		goto failed;
13589 
13590 	arp_up_mp = ill_arp_alloc(ill, (uchar_t *)&ip_aru_template, 0);
13591 	if (arp_up_mp == NULL)
13592 		goto failed;
13593 
13594 	if (ipif->ipif_flags & IPIF_POINTOPOINT)
13595 		goto done;
13596 
13597 arp_setup_multicast:
13598 	/*
13599 	 * Setup the multicast mappings. This function initializes
13600 	 * ill_arp_del_mapping_mp also. This does not need to be done for
13601 	 * IPv6, or for the IPMP interface (since it has no link-layer).
13602 	 */
13603 	if (!ill->ill_isv6 && !IS_IPMP(ill)) {
13604 		err = ipif_arp_setup_multicast(ipif, &arp_add_mapping_mp);
13605 		if (err != 0)
13606 			goto failed;
13607 		ASSERT(ill->ill_arp_del_mapping_mp != NULL);
13608 		ASSERT(arp_add_mapping_mp != NULL);
13609 	}
13610 done:
13611 	if (arp_up_mp != NULL) {
13612 		ip1dbg(("ipif_resolver_up: ARP_UP for %s:%u\n",
13613 		    ill->ill_name, ipif->ipif_id));
13614 		putnext(ill->ill_rq, arp_up_mp);
13615 		arp_up_mp = NULL;
13616 	}
13617 	if (arp_add_mp != NULL) {
13618 		ip1dbg(("ipif_resolver_up: ARP_ADD for %s:%u\n",
13619 		    ill->ill_name, ipif->ipif_id));
13620 		/*
13621 		 * If it's an extended ARP implementation, then we'll wait to
13622 		 * hear that DAD has finished before using the interface.
13623 		 */
13624 		if (!ill->ill_arp_extend)
13625 			ipif->ipif_addr_ready = 1;
13626 		putnext(ill->ill_rq, arp_add_mp);
13627 		arp_add_mp = NULL;
13628 	} else {
13629 		ipif->ipif_addr_ready = 1;
13630 	}
13631 	if (arp_add_mapping_mp != NULL) {
13632 		ip1dbg(("ipif_resolver_up: MAPPING_ADD for %s:%u\n",
13633 		    ill->ill_name, ipif->ipif_id));
13634 		putnext(ill->ill_rq, arp_add_mapping_mp);
13635 		arp_add_mapping_mp = NULL;
13636 	}
13637 
13638 	if (res_act == Res_act_initial) {
13639 		if (ill->ill_flags & ILLF_NOARP)
13640 			err = ill_arp_off(ill);
13641 		else
13642 			err = ill_arp_on(ill);
13643 		if (err != 0) {
13644 			ip0dbg(("ipif_resolver_up: arp_on/off failed %d\n",
13645 			    err));
13646 			goto failed;
13647 		}
13648 	}
13649 
13650 	if (arp_del_mp != NULL) {
13651 		ASSERT(ipif->ipif_arp_del_mp == NULL);
13652 		ipif->ipif_arp_del_mp = arp_del_mp;
13653 	}
13654 	if (arp_down_mp != NULL) {
13655 		ASSERT(ill->ill_arp_down_mp == NULL);
13656 		ill->ill_arp_down_mp = arp_down_mp;
13657 	}
13658 	if (arp_del_mapping_mp != NULL) {
13659 		ASSERT(ill->ill_arp_del_mapping_mp == NULL);
13660 		ill->ill_arp_del_mapping_mp = arp_del_mapping_mp;
13661 	}
13662 
13663 	return ((ill->ill_ipif_up_count != 0 || was_dup ||
13664 	    ill->ill_ipif_dup_count != 0) ? 0 : EINPROGRESS);
13665 failed:
13666 	ip1dbg(("ipif_resolver_up: FAILED\n"));
13667 	if (added_ipif)
13668 		ipmp_illgrp_del_ipif(ill->ill_grp, ipif);
13669 	freemsg(arp_add_mp);
13670 	freemsg(arp_del_mp);
13671 	freemsg(arp_add_mapping_mp);
13672 	freemsg(arp_up_mp);
13673 	freemsg(arp_down_mp);
13674 	ill->ill_arp_bringup_pending = 0;
13675 	return (err);
13676 }
13677 
13678 /*
13679  * This routine restarts IPv4 duplicate address detection (DAD) when a link has
13680  * just gone back up.
13681  */
13682 static void
13683 ipif_arp_start_dad(ipif_t *ipif)
13684 {
13685 	ill_t *ill = ipif->ipif_ill;
13686 	mblk_t *arp_add_mp;
13687 
13688 	/* ACE_F_UNVERIFIED restarts DAD */
13689 	if (ill->ill_net_type != IRE_IF_RESOLVER || ill->ill_arp_closing ||
13690 	    (ipif->ipif_flags & IPIF_UNNUMBERED) ||
13691 	    ipif->ipif_lcl_addr == INADDR_ANY ||
13692 	    (arp_add_mp = ipif_area_alloc(ipif, ACE_F_UNVERIFIED)) == NULL) {
13693 		/*
13694 		 * If we can't contact ARP for some reason, that's not really a
13695 		 * problem.  Just send out the routing socket notification that
13696 		 * DAD completion would have done, and continue.
13697 		 */
13698 		ipif_mask_reply(ipif);
13699 		ipif_up_notify(ipif);
13700 		ipif->ipif_addr_ready = 1;
13701 		return;
13702 	}
13703 
13704 	putnext(ill->ill_rq, arp_add_mp);
13705 }
13706 
13707 static void
13708 ipif_ndp_start_dad(ipif_t *ipif)
13709 {
13710 	nce_t *nce;
13711 
13712 	nce = ndp_lookup_v6(ipif->ipif_ill, B_TRUE, &ipif->ipif_v6lcl_addr,
13713 	    B_FALSE);
13714 	if (nce == NULL)
13715 		return;
13716 
13717 	if (!ndp_restart_dad(nce)) {
13718 		/*
13719 		 * If we can't restart DAD for some reason, that's not really a
13720 		 * problem.  Just send out the routing socket notification that
13721 		 * DAD completion would have done, and continue.
13722 		 */
13723 		ipif_up_notify(ipif);
13724 		ipif->ipif_addr_ready = 1;
13725 	}
13726 	NCE_REFRELE(nce);
13727 }
13728 
13729 /*
13730  * Restart duplicate address detection on all interfaces on the given ill.
13731  *
13732  * This is called when an interface transitions from down to up
13733  * (DL_NOTE_LINK_UP) or up to down (DL_NOTE_LINK_DOWN).
13734  *
13735  * Note that since the underlying physical link has transitioned, we must cause
13736  * at least one routing socket message to be sent here, either via DAD
13737  * completion or just by default on the first ipif.  (If we don't do this, then
13738  * in.mpathd will see long delays when doing link-based failure recovery.)
13739  */
13740 void
13741 ill_restart_dad(ill_t *ill, boolean_t went_up)
13742 {
13743 	ipif_t *ipif;
13744 
13745 	if (ill == NULL)
13746 		return;
13747 
13748 	/*
13749 	 * If layer two doesn't support duplicate address detection, then just
13750 	 * send the routing socket message now and be done with it.
13751 	 */
13752 	if ((ill->ill_isv6 && (ill->ill_flags & ILLF_XRESOLV)) ||
13753 	    (!ill->ill_isv6 && !ill->ill_arp_extend)) {
13754 		ip_rts_ifmsg(ill->ill_ipif, RTSQ_DEFAULT);
13755 		return;
13756 	}
13757 
13758 	for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) {
13759 		if (went_up) {
13760 			if (ipif->ipif_flags & IPIF_UP) {
13761 				if (ill->ill_isv6)
13762 					ipif_ndp_start_dad(ipif);
13763 				else
13764 					ipif_arp_start_dad(ipif);
13765 			} else if (ill->ill_isv6 &&
13766 			    (ipif->ipif_flags & IPIF_DUPLICATE)) {
13767 				/*
13768 				 * For IPv4, the ARP module itself will
13769 				 * automatically start the DAD process when it
13770 				 * sees DL_NOTE_LINK_UP.  We respond to the
13771 				 * AR_CN_READY at the completion of that task.
13772 				 * For IPv6, we must kick off the bring-up
13773 				 * process now.
13774 				 */
13775 				ndp_do_recovery(ipif);
13776 			} else {
13777 				/*
13778 				 * Unfortunately, the first ipif is "special"
13779 				 * and represents the underlying ill in the
13780 				 * routing socket messages.  Thus, when this
13781 				 * one ipif is down, we must still notify so
13782 				 * that the user knows the IFF_RUNNING status
13783 				 * change.  (If the first ipif is up, then
13784 				 * we'll handle eventual routing socket
13785 				 * notification via DAD completion.)
13786 				 */
13787 				if (ipif == ill->ill_ipif) {
13788 					ip_rts_ifmsg(ill->ill_ipif,
13789 					    RTSQ_DEFAULT);
13790 				}
13791 			}
13792 		} else {
13793 			/*
13794 			 * After link down, we'll need to send a new routing
13795 			 * message when the link comes back, so clear
13796 			 * ipif_addr_ready.
13797 			 */
13798 			ipif->ipif_addr_ready = 0;
13799 		}
13800 	}
13801 
13802 	/*
13803 	 * If we've torn down links, then notify the user right away.
13804 	 */
13805 	if (!went_up)
13806 		ip_rts_ifmsg(ill->ill_ipif, RTSQ_DEFAULT);
13807 }
13808 
13809 static void
13810 ipsq_delete(ipsq_t *ipsq)
13811 {
13812 	ipxop_t *ipx = ipsq->ipsq_xop;
13813 
13814 	ipsq->ipsq_ipst = NULL;
13815 	ASSERT(ipsq->ipsq_phyint == NULL);
13816 	ASSERT(ipsq->ipsq_xop != NULL);
13817 	ASSERT(ipsq->ipsq_xopq_mphead == NULL && ipx->ipx_mphead == NULL);
13818 	ASSERT(ipx->ipx_pending_mp == NULL);
13819 	kmem_free(ipsq, sizeof (ipsq_t));
13820 }
13821 
13822 static int
13823 ill_up_ipifs_on_ill(ill_t *ill, queue_t *q, mblk_t *mp)
13824 {
13825 	int err;
13826 	ipif_t *ipif;
13827 
13828 	if (ill == NULL)
13829 		return (0);
13830 
13831 	ASSERT(IAM_WRITER_ILL(ill));
13832 	ill->ill_up_ipifs = B_TRUE;
13833 	for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) {
13834 		if (ipif->ipif_was_up) {
13835 			if (!(ipif->ipif_flags & IPIF_UP))
13836 				err = ipif_up(ipif, q, mp);
13837 			ipif->ipif_was_up = B_FALSE;
13838 			if (err != 0) {
13839 				ASSERT(err == EINPROGRESS);
13840 				return (err);
13841 			}
13842 		}
13843 	}
13844 	mutex_enter(&ill->ill_lock);
13845 	ill->ill_state_flags &= ~ILL_CHANGING;
13846 	mutex_exit(&ill->ill_lock);
13847 	ill->ill_up_ipifs = B_FALSE;
13848 	return (0);
13849 }
13850 
13851 /*
13852  * This function is called to bring up all the ipifs that were up before
13853  * bringing the ill down via ill_down_ipifs().
13854  */
13855 int
13856 ill_up_ipifs(ill_t *ill, queue_t *q, mblk_t *mp)
13857 {
13858 	int err;
13859 
13860 	ASSERT(IAM_WRITER_ILL(ill));
13861 
13862 	err = ill_up_ipifs_on_ill(ill->ill_phyint->phyint_illv4, q, mp);
13863 	if (err != 0)
13864 		return (err);
13865 
13866 	return (ill_up_ipifs_on_ill(ill->ill_phyint->phyint_illv6, q, mp));
13867 }
13868 
13869 /*
13870  * Bring down any IPIF_UP ipifs on ill. If "logical" is B_TRUE, we bring
13871  * down the ipifs without sending DL_UNBIND_REQ to the driver.
13872  */
13873 static void
13874 ill_down_ipifs(ill_t *ill, boolean_t logical)
13875 {
13876 	ipif_t *ipif;
13877 
13878 	ASSERT(IAM_WRITER_ILL(ill));
13879 
13880 	for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) {
13881 		/*
13882 		 * We go through the ipif_down logic even if the ipif
13883 		 * is already down, since routes can be added based
13884 		 * on down ipifs. Going through ipif_down once again
13885 		 * will delete any IREs created based on these routes.
13886 		 */
13887 		if (ipif->ipif_flags & IPIF_UP)
13888 			ipif->ipif_was_up = B_TRUE;
13889 
13890 		/*
13891 		 * Need to re-create net/subnet bcast ires if
13892 		 * they are dependent on ipif.
13893 		 */
13894 		if (!ipif->ipif_isv6)
13895 			ipif_check_bcast_ires(ipif);
13896 		if (logical) {
13897 			(void) ipif_logical_down(ipif, NULL, NULL);
13898 			ipif_non_duplicate(ipif);
13899 			ipif_down_tail(ipif);
13900 		} else {
13901 			(void) ipif_down(ipif, NULL, NULL);
13902 		}
13903 	}
13904 }
13905 
13906 /*
13907  * Redo source address selection.  This is called when a
13908  * non-NOLOCAL/DEPRECATED/ANYCAST ipif comes up.
13909  */
13910 void
13911 ill_update_source_selection(ill_t *ill)
13912 {
13913 	ipif_t *ipif;
13914 
13915 	ASSERT(IAM_WRITER_ILL(ill));
13916 
13917 	/*
13918 	 * Underlying interfaces are only used for test traffic and thus
13919 	 * should always send with their (deprecated) source addresses.
13920 	 */
13921 	if (IS_UNDER_IPMP(ill))
13922 		return;
13923 
13924 	for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) {
13925 		if (ill->ill_isv6)
13926 			ipif_recreate_interface_routes_v6(NULL, ipif);
13927 		else
13928 			ipif_recreate_interface_routes(NULL, ipif);
13929 	}
13930 }
13931 
13932 /*
13933  * Finish the group join started in ip_sioctl_groupname().
13934  */
13935 /* ARGSUSED */
13936 static void
13937 ip_join_illgrps(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy)
13938 {
13939 	ill_t		*ill = q->q_ptr;
13940 	phyint_t	*phyi = ill->ill_phyint;
13941 	ipmp_grp_t	*grp = phyi->phyint_grp;
13942 	ip_stack_t	*ipst = ill->ill_ipst;
13943 
13944 	/* IS_UNDER_IPMP() won't work until ipmp_ill_join_illgrp() is called */
13945 	ASSERT(!IS_IPMP(ill) && grp != NULL);
13946 	ASSERT(IAM_WRITER_IPSQ(ipsq));
13947 
13948 	if (phyi->phyint_illv4 != NULL) {
13949 		rw_enter(&ipst->ips_ipmp_lock, RW_WRITER);
13950 		VERIFY(grp->gr_pendv4-- > 0);
13951 		rw_exit(&ipst->ips_ipmp_lock);
13952 		ipmp_ill_join_illgrp(phyi->phyint_illv4, grp->gr_v4);
13953 	}
13954 	if (phyi->phyint_illv6 != NULL) {
13955 		rw_enter(&ipst->ips_ipmp_lock, RW_WRITER);
13956 		VERIFY(grp->gr_pendv6-- > 0);
13957 		rw_exit(&ipst->ips_ipmp_lock);
13958 		ipmp_ill_join_illgrp(phyi->phyint_illv6, grp->gr_v6);
13959 	}
13960 	freemsg(mp);
13961 }
13962 
13963 /*
13964  * Process an SIOCSLIFGROUPNAME request.
13965  */
13966 /* ARGSUSED */
13967 int
13968 ip_sioctl_groupname(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
13969     ip_ioctl_cmd_t *ipip, void *ifreq)
13970 {
13971 	struct lifreq	*lifr = ifreq;
13972 	ill_t		*ill = ipif->ipif_ill;
13973 	ip_stack_t	*ipst = ill->ill_ipst;
13974 	phyint_t	*phyi = ill->ill_phyint;
13975 	ipmp_grp_t	*grp = phyi->phyint_grp;
13976 	mblk_t		*ipsq_mp;
13977 	int		err = 0;
13978 
13979 	/*
13980 	 * Note that phyint_grp can only change here, where we're exclusive.
13981 	 */
13982 	ASSERT(IAM_WRITER_ILL(ill));
13983 
13984 	if (ipif->ipif_id != 0 || ill->ill_usesrc_grp_next != NULL ||
13985 	    (phyi->phyint_flags & PHYI_VIRTUAL))
13986 		return (EINVAL);
13987 
13988 	lifr->lifr_groupname[LIFGRNAMSIZ - 1] = '\0';
13989 
13990 	rw_enter(&ipst->ips_ipmp_lock, RW_WRITER);
13991 
13992 	/*
13993 	 * If the name hasn't changed, there's nothing to do.
13994 	 */
13995 	if (grp != NULL && strcmp(grp->gr_name, lifr->lifr_groupname) == 0)
13996 		goto unlock;
13997 
13998 	/*
13999 	 * Handle requests to rename an IPMP meta-interface.
14000 	 *
14001 	 * Note that creation of the IPMP meta-interface is handled in
14002 	 * userland through the standard plumbing sequence.  As part of the
14003 	 * plumbing the IPMP meta-interface, its initial groupname is set to
14004 	 * the name of the interface (see ipif_set_values_tail()).
14005 	 */
14006 	if (IS_IPMP(ill)) {
14007 		err = ipmp_grp_rename(grp, lifr->lifr_groupname);
14008 		goto unlock;
14009 	}
14010 
14011 	/*
14012 	 * Handle requests to add or remove an IP interface from a group.
14013 	 */
14014 	if (lifr->lifr_groupname[0] != '\0') {			/* add */
14015 		/*
14016 		 * Moves are handled by first removing the interface from
14017 		 * its existing group, and then adding it to another group.
14018 		 * So, fail if it's already in a group.
14019 		 */
14020 		if (IS_UNDER_IPMP(ill)) {
14021 			err = EALREADY;
14022 			goto unlock;
14023 		}
14024 
14025 		grp = ipmp_grp_lookup(lifr->lifr_groupname, ipst);
14026 		if (grp == NULL) {
14027 			err = ENOENT;
14028 			goto unlock;
14029 		}
14030 
14031 		/*
14032 		 * Check if the phyint and its ills are suitable for
14033 		 * inclusion into the group.
14034 		 */
14035 		if ((err = ipmp_grp_vet_phyint(grp, phyi)) != 0)
14036 			goto unlock;
14037 
14038 		/*
14039 		 * Checks pass; join the group, and enqueue the remaining
14040 		 * illgrp joins for when we've become part of the group xop
14041 		 * and are exclusive across its IPSQs.  Since qwriter_ip()
14042 		 * requires an mblk_t to scribble on, and since `mp' will be
14043 		 * freed as part of completing the ioctl, allocate another.
14044 		 */
14045 		if ((ipsq_mp = allocb(0, BPRI_MED)) == NULL) {
14046 			err = ENOMEM;
14047 			goto unlock;
14048 		}
14049 
14050 		/*
14051 		 * Before we drop ipmp_lock, bump gr_pend* to ensure that the
14052 		 * IPMP meta-interface ills needed by `phyi' cannot go away
14053 		 * before ip_join_illgrps() is called back.  See the comments
14054 		 * in ip_sioctl_plink_ipmp() for more.
14055 		 */
14056 		if (phyi->phyint_illv4 != NULL)
14057 			grp->gr_pendv4++;
14058 		if (phyi->phyint_illv6 != NULL)
14059 			grp->gr_pendv6++;
14060 
14061 		rw_exit(&ipst->ips_ipmp_lock);
14062 
14063 		ipmp_phyint_join_grp(phyi, grp);
14064 		ill_refhold(ill);
14065 		qwriter_ip(ill, ill->ill_rq, ipsq_mp, ip_join_illgrps,
14066 		    SWITCH_OP, B_FALSE);
14067 		return (0);
14068 	} else {
14069 		/*
14070 		 * Request to remove the interface from a group.  If the
14071 		 * interface is not in a group, this trivially succeeds.
14072 		 */
14073 		rw_exit(&ipst->ips_ipmp_lock);
14074 		if (IS_UNDER_IPMP(ill))
14075 			ipmp_phyint_leave_grp(phyi);
14076 		return (0);
14077 	}
14078 unlock:
14079 	rw_exit(&ipst->ips_ipmp_lock);
14080 	return (err);
14081 }
14082 
14083 /*
14084  * Process an SIOCGLIFBINDING request.
14085  */
14086 /* ARGSUSED */
14087 int
14088 ip_sioctl_get_binding(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
14089     ip_ioctl_cmd_t *ipip, void *ifreq)
14090 {
14091 	ill_t		*ill;
14092 	struct lifreq	*lifr = ifreq;
14093 	ip_stack_t	*ipst = ipif->ipif_ill->ill_ipst;
14094 
14095 	if (!IS_IPMP(ipif->ipif_ill))
14096 		return (EINVAL);
14097 
14098 	rw_enter(&ipst->ips_ipmp_lock, RW_READER);
14099 	if ((ill = ipif->ipif_bound_ill) == NULL)
14100 		lifr->lifr_binding[0] = '\0';
14101 	else
14102 		(void) strlcpy(lifr->lifr_binding, ill->ill_name, LIFNAMSIZ);
14103 	rw_exit(&ipst->ips_ipmp_lock);
14104 	return (0);
14105 }
14106 
14107 /*
14108  * Process an SIOCGLIFGROUPNAME request.
14109  */
14110 /* ARGSUSED */
14111 int
14112 ip_sioctl_get_groupname(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
14113     ip_ioctl_cmd_t *ipip, void *ifreq)
14114 {
14115 	ipmp_grp_t	*grp;
14116 	struct lifreq	*lifr = ifreq;
14117 	ip_stack_t	*ipst = ipif->ipif_ill->ill_ipst;
14118 
14119 	rw_enter(&ipst->ips_ipmp_lock, RW_READER);
14120 	if ((grp = ipif->ipif_ill->ill_phyint->phyint_grp) == NULL)
14121 		lifr->lifr_groupname[0] = '\0';
14122 	else
14123 		(void) strlcpy(lifr->lifr_groupname, grp->gr_name, LIFGRNAMSIZ);
14124 	rw_exit(&ipst->ips_ipmp_lock);
14125 	return (0);
14126 }
14127 
14128 /*
14129  * Process an SIOCGLIFGROUPINFO request.
14130  */
14131 /* ARGSUSED */
14132 int
14133 ip_sioctl_groupinfo(ipif_t *dummy_ipif, sin_t *sin, queue_t *q, mblk_t *mp,
14134     ip_ioctl_cmd_t *ipip, void *dummy)
14135 {
14136 	ipmp_grp_t	*grp;
14137 	lifgroupinfo_t	*lifgr;
14138 	ip_stack_t	*ipst = CONNQ_TO_IPST(q);
14139 
14140 	/* ip_wput_nondata() verified mp->b_cont->b_cont */
14141 	lifgr = (lifgroupinfo_t *)mp->b_cont->b_cont->b_rptr;
14142 	lifgr->gi_grname[LIFGRNAMSIZ - 1] = '\0';
14143 
14144 	rw_enter(&ipst->ips_ipmp_lock, RW_READER);
14145 	if ((grp = ipmp_grp_lookup(lifgr->gi_grname, ipst)) == NULL) {
14146 		rw_exit(&ipst->ips_ipmp_lock);
14147 		return (ENOENT);
14148 	}
14149 	ipmp_grp_info(grp, lifgr);
14150 	rw_exit(&ipst->ips_ipmp_lock);
14151 	return (0);
14152 }
14153 
14154 static void
14155 ill_dl_down(ill_t *ill)
14156 {
14157 	/*
14158 	 * The ill is down; unbind but stay attached since we're still
14159 	 * associated with a PPA. If we have negotiated DLPI capabilites
14160 	 * with the data link service provider (IDS_OK) then reset them.
14161 	 * The interval between unbinding and rebinding is potentially
14162 	 * unbounded hence we cannot assume things will be the same.
14163 	 * The DLPI capabilities will be probed again when the data link
14164 	 * is brought up.
14165 	 */
14166 	mblk_t	*mp = ill->ill_unbind_mp;
14167 
14168 	ip1dbg(("ill_dl_down(%s)\n", ill->ill_name));
14169 
14170 	ill->ill_unbind_mp = NULL;
14171 	if (mp != NULL) {
14172 		ip1dbg(("ill_dl_down: %s (%u) for %s\n",
14173 		    dl_primstr(*(int *)mp->b_rptr), *(int *)mp->b_rptr,
14174 		    ill->ill_name));
14175 		mutex_enter(&ill->ill_lock);
14176 		ill->ill_state_flags |= ILL_DL_UNBIND_IN_PROGRESS;
14177 		mutex_exit(&ill->ill_lock);
14178 		/*
14179 		 * ip_rput does not pass up normal (M_PROTO) DLPI messages
14180 		 * after ILL_CONDEMNED is set. So in the unplumb case, we call
14181 		 * ill_capability_dld_disable disable rightaway. If this is not
14182 		 * an unplumb operation then the disable happens on receipt of
14183 		 * the capab ack via ip_rput_dlpi_writer ->
14184 		 * ill_capability_ack_thr. In both cases the order of
14185 		 * the operations seen by DLD is capability disable followed
14186 		 * by DL_UNBIND. Also the DLD capability disable needs a
14187 		 * cv_wait'able context.
14188 		 */
14189 		if (ill->ill_state_flags & ILL_CONDEMNED)
14190 			ill_capability_dld_disable(ill);
14191 		ill_capability_reset(ill, B_FALSE);
14192 		ill_dlpi_send(ill, mp);
14193 	}
14194 
14195 	/*
14196 	 * Toss all of our multicast memberships.  We could keep them, but
14197 	 * then we'd have to do bookkeeping of any joins and leaves performed
14198 	 * by the application while the the interface is down (we can't just
14199 	 * issue them because arp cannot currently process AR_ENTRY_SQUERY's
14200 	 * on a downed interface).
14201 	 */
14202 	ill_leave_multicast(ill);
14203 
14204 	mutex_enter(&ill->ill_lock);
14205 	ill->ill_dl_up = 0;
14206 	ill_nic_event_dispatch(ill, 0, NE_DOWN, NULL, 0);
14207 	mutex_exit(&ill->ill_lock);
14208 }
14209 
14210 static void
14211 ill_dlpi_dispatch(ill_t *ill, mblk_t *mp)
14212 {
14213 	union DL_primitives *dlp;
14214 	t_uscalar_t prim;
14215 	boolean_t waitack = B_FALSE;
14216 
14217 	ASSERT(DB_TYPE(mp) == M_PROTO || DB_TYPE(mp) == M_PCPROTO);
14218 
14219 	dlp = (union DL_primitives *)mp->b_rptr;
14220 	prim = dlp->dl_primitive;
14221 
14222 	ip1dbg(("ill_dlpi_dispatch: sending %s (%u) to %s\n",
14223 	    dl_primstr(prim), prim, ill->ill_name));
14224 
14225 	switch (prim) {
14226 	case DL_PHYS_ADDR_REQ:
14227 	{
14228 		dl_phys_addr_req_t *dlpap = (dl_phys_addr_req_t *)mp->b_rptr;
14229 		ill->ill_phys_addr_pend = dlpap->dl_addr_type;
14230 		break;
14231 	}
14232 	case DL_BIND_REQ:
14233 		mutex_enter(&ill->ill_lock);
14234 		ill->ill_state_flags &= ~ILL_DL_UNBIND_IN_PROGRESS;
14235 		mutex_exit(&ill->ill_lock);
14236 		break;
14237 	}
14238 
14239 	/*
14240 	 * Except for the ACKs for the M_PCPROTO messages, all other ACKs
14241 	 * are dropped by ip_rput() if ILL_CONDEMNED is set. Therefore
14242 	 * we only wait for the ACK of the DL_UNBIND_REQ.
14243 	 */
14244 	mutex_enter(&ill->ill_lock);
14245 	if (!(ill->ill_state_flags & ILL_CONDEMNED) ||
14246 	    (prim == DL_UNBIND_REQ)) {
14247 		ill->ill_dlpi_pending = prim;
14248 		waitack = B_TRUE;
14249 	}
14250 
14251 	mutex_exit(&ill->ill_lock);
14252 	putnext(ill->ill_wq, mp);
14253 
14254 	/*
14255 	 * There is no ack for DL_NOTIFY_CONF messages
14256 	 */
14257 	if (waitack && prim == DL_NOTIFY_CONF)
14258 		ill_dlpi_done(ill, prim);
14259 }
14260 
14261 /*
14262  * Helper function for ill_dlpi_send().
14263  */
14264 /* ARGSUSED */
14265 static void
14266 ill_dlpi_send_writer(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *arg)
14267 {
14268 	ill_dlpi_send(q->q_ptr, mp);
14269 }
14270 
14271 /*
14272  * Send a DLPI control message to the driver but make sure there
14273  * is only one outstanding message. Uses ill_dlpi_pending to tell
14274  * when it must queue. ip_rput_dlpi_writer calls ill_dlpi_done()
14275  * when an ACK or a NAK is received to process the next queued message.
14276  */
14277 void
14278 ill_dlpi_send(ill_t *ill, mblk_t *mp)
14279 {
14280 	mblk_t **mpp;
14281 
14282 	ASSERT(DB_TYPE(mp) == M_PROTO || DB_TYPE(mp) == M_PCPROTO);
14283 
14284 	/*
14285 	 * To ensure that any DLPI requests for current exclusive operation
14286 	 * are always completely sent before any DLPI messages for other
14287 	 * operations, require writer access before enqueuing.
14288 	 */
14289 	if (!IAM_WRITER_ILL(ill)) {
14290 		ill_refhold(ill);
14291 		/* qwriter_ip() does the ill_refrele() */
14292 		qwriter_ip(ill, ill->ill_wq, mp, ill_dlpi_send_writer,
14293 		    NEW_OP, B_TRUE);
14294 		return;
14295 	}
14296 
14297 	mutex_enter(&ill->ill_lock);
14298 	if (ill->ill_dlpi_pending != DL_PRIM_INVAL) {
14299 		/* Must queue message. Tail insertion */
14300 		mpp = &ill->ill_dlpi_deferred;
14301 		while (*mpp != NULL)
14302 			mpp = &((*mpp)->b_next);
14303 
14304 		ip1dbg(("ill_dlpi_send: deferring request for %s\n",
14305 		    ill->ill_name));
14306 
14307 		*mpp = mp;
14308 		mutex_exit(&ill->ill_lock);
14309 		return;
14310 	}
14311 	mutex_exit(&ill->ill_lock);
14312 	ill_dlpi_dispatch(ill, mp);
14313 }
14314 
14315 static void
14316 ill_capability_send(ill_t *ill, mblk_t *mp)
14317 {
14318 	ill->ill_capab_pending_cnt++;
14319 	ill_dlpi_send(ill, mp);
14320 }
14321 
14322 void
14323 ill_capability_done(ill_t *ill)
14324 {
14325 	ASSERT(ill->ill_capab_pending_cnt != 0);
14326 
14327 	ill_dlpi_done(ill, DL_CAPABILITY_REQ);
14328 
14329 	ill->ill_capab_pending_cnt--;
14330 	if (ill->ill_capab_pending_cnt == 0 &&
14331 	    ill->ill_dlpi_capab_state == IDCS_OK)
14332 		ill_capability_reset_alloc(ill);
14333 }
14334 
14335 /*
14336  * Send all deferred DLPI messages without waiting for their ACKs.
14337  */
14338 void
14339 ill_dlpi_send_deferred(ill_t *ill)
14340 {
14341 	mblk_t *mp, *nextmp;
14342 
14343 	/*
14344 	 * Clear ill_dlpi_pending so that the message is not queued in
14345 	 * ill_dlpi_send().
14346 	 */
14347 	mutex_enter(&ill->ill_lock);
14348 	ill->ill_dlpi_pending = DL_PRIM_INVAL;
14349 	mp = ill->ill_dlpi_deferred;
14350 	ill->ill_dlpi_deferred = NULL;
14351 	mutex_exit(&ill->ill_lock);
14352 
14353 	for (; mp != NULL; mp = nextmp) {
14354 		nextmp = mp->b_next;
14355 		mp->b_next = NULL;
14356 		ill_dlpi_send(ill, mp);
14357 	}
14358 }
14359 
14360 /*
14361  * Check if the DLPI primitive `prim' is pending; print a warning if not.
14362  */
14363 boolean_t
14364 ill_dlpi_pending(ill_t *ill, t_uscalar_t prim)
14365 {
14366 	t_uscalar_t pending;
14367 
14368 	mutex_enter(&ill->ill_lock);
14369 	if (ill->ill_dlpi_pending == prim) {
14370 		mutex_exit(&ill->ill_lock);
14371 		return (B_TRUE);
14372 	}
14373 
14374 	/*
14375 	 * During teardown, ill_dlpi_dispatch() will send DLPI requests
14376 	 * without waiting, so don't print any warnings in that case.
14377 	 */
14378 	if (ill->ill_state_flags & ILL_CONDEMNED) {
14379 		mutex_exit(&ill->ill_lock);
14380 		return (B_FALSE);
14381 	}
14382 	pending = ill->ill_dlpi_pending;
14383 	mutex_exit(&ill->ill_lock);
14384 
14385 	if (pending == DL_PRIM_INVAL) {
14386 		(void) mi_strlog(ill->ill_rq, 1, SL_CONSOLE|SL_ERROR|SL_TRACE,
14387 		    "received unsolicited ack for %s on %s\n",
14388 		    dl_primstr(prim), ill->ill_name);
14389 	} else {
14390 		(void) mi_strlog(ill->ill_rq, 1, SL_CONSOLE|SL_ERROR|SL_TRACE,
14391 		    "received unexpected ack for %s on %s (expecting %s)\n",
14392 		    dl_primstr(prim), ill->ill_name, dl_primstr(pending));
14393 	}
14394 	return (B_FALSE);
14395 }
14396 
14397 /*
14398  * Complete the current DLPI operation associated with `prim' on `ill' and
14399  * start the next queued DLPI operation (if any).  If there are no queued DLPI
14400  * operations and the ill's current exclusive IPSQ operation has finished
14401  * (i.e., ipsq_current_finish() was called), then clear ipsq_current_ipif to
14402  * allow the next exclusive IPSQ operation to begin upon ipsq_exit().  See
14403  * the comments above ipsq_current_finish() for details.
14404  */
14405 void
14406 ill_dlpi_done(ill_t *ill, t_uscalar_t prim)
14407 {
14408 	mblk_t *mp;
14409 	ipsq_t *ipsq = ill->ill_phyint->phyint_ipsq;
14410 	ipxop_t *ipx = ipsq->ipsq_xop;
14411 
14412 	ASSERT(IAM_WRITER_IPSQ(ipsq));
14413 	mutex_enter(&ill->ill_lock);
14414 
14415 	ASSERT(prim != DL_PRIM_INVAL);
14416 	ASSERT(ill->ill_dlpi_pending == prim);
14417 
14418 	ip1dbg(("ill_dlpi_done: %s has completed %s (%u)\n", ill->ill_name,
14419 	    dl_primstr(ill->ill_dlpi_pending), ill->ill_dlpi_pending));
14420 
14421 	if ((mp = ill->ill_dlpi_deferred) == NULL) {
14422 		ill->ill_dlpi_pending = DL_PRIM_INVAL;
14423 		if (ipx->ipx_current_done) {
14424 			mutex_enter(&ipx->ipx_lock);
14425 			ipx->ipx_current_ipif = NULL;
14426 			mutex_exit(&ipx->ipx_lock);
14427 		}
14428 		cv_signal(&ill->ill_cv);
14429 		mutex_exit(&ill->ill_lock);
14430 		return;
14431 	}
14432 
14433 	ill->ill_dlpi_deferred = mp->b_next;
14434 	mp->b_next = NULL;
14435 	mutex_exit(&ill->ill_lock);
14436 
14437 	ill_dlpi_dispatch(ill, mp);
14438 }
14439 
14440 void
14441 conn_delete_ire(conn_t *connp, caddr_t arg)
14442 {
14443 	ipif_t	*ipif = (ipif_t *)arg;
14444 	ire_t	*ire;
14445 
14446 	/*
14447 	 * Look at the cached ires on conns which has pointers to ipifs.
14448 	 * We just call ire_refrele which clears up the reference
14449 	 * to ire. Called when a conn closes. Also called from ipif_free
14450 	 * to cleanup indirect references to the stale ipif via the cached ire.
14451 	 */
14452 	mutex_enter(&connp->conn_lock);
14453 	ire = connp->conn_ire_cache;
14454 	if (ire != NULL && (ipif == NULL || ire->ire_ipif == ipif)) {
14455 		connp->conn_ire_cache = NULL;
14456 		mutex_exit(&connp->conn_lock);
14457 		IRE_REFRELE_NOTR(ire);
14458 		return;
14459 	}
14460 	mutex_exit(&connp->conn_lock);
14461 
14462 }
14463 
14464 /*
14465  * Some operations (e.g., ipif_down()) conditionally delete a number
14466  * of IREs. Those IREs may have been previously cached in the conn structure.
14467  * This ipcl_walk() walker function releases all references to such IREs based
14468  * on the condemned flag.
14469  */
14470 /* ARGSUSED */
14471 void
14472 conn_cleanup_stale_ire(conn_t *connp, caddr_t arg)
14473 {
14474 	ire_t	*ire;
14475 
14476 	mutex_enter(&connp->conn_lock);
14477 	ire = connp->conn_ire_cache;
14478 	if (ire != NULL && (ire->ire_marks & IRE_MARK_CONDEMNED)) {
14479 		connp->conn_ire_cache = NULL;
14480 		mutex_exit(&connp->conn_lock);
14481 		IRE_REFRELE_NOTR(ire);
14482 		return;
14483 	}
14484 	mutex_exit(&connp->conn_lock);
14485 }
14486 
14487 /*
14488  * Take down a specific interface, but don't lose any information about it.
14489  * (Always called as writer.)
14490  * This function goes through the down sequence even if the interface is
14491  * already down. There are 2 reasons.
14492  * a. Currently we permit interface routes that depend on down interfaces
14493  *    to be added. This behaviour itself is questionable. However it appears
14494  *    that both Solaris and 4.3 BSD have exhibited this behaviour for a long
14495  *    time. We go thru the cleanup in order to remove these routes.
14496  * b. The bringup of the interface could fail in ill_dl_up i.e. we get
14497  *    DL_ERROR_ACK in response to the the DL_BIND request. The interface is
14498  *    down, but we need to cleanup i.e. do ill_dl_down and
14499  *    ip_rput_dlpi_writer (DL_ERROR_ACK) -> ipif_down.
14500  *
14501  * IP-MT notes:
14502  *
14503  * Model of reference to interfaces.
14504  *
14505  * The following members in ipif_t track references to the ipif.
14506  *	int     ipif_refcnt;    Active reference count
14507  *	uint_t  ipif_ire_cnt;   Number of ire's referencing this ipif
14508  *	uint_t  ipif_ilm_cnt;   Number of ilms's references this ipif.
14509  *
14510  * The following members in ill_t track references to the ill.
14511  *	int             ill_refcnt;     active refcnt
14512  *	uint_t          ill_ire_cnt;	Number of ires referencing ill
14513  *	uint_t          ill_nce_cnt;	Number of nces referencing ill
14514  *	uint_t          ill_ilm_cnt;	Number of ilms referencing ill
14515  *
14516  * Reference to an ipif or ill can be obtained in any of the following ways.
14517  *
14518  * Through the lookup functions ipif_lookup_* / ill_lookup_* functions
14519  * Pointers to ipif / ill from other data structures viz ire and conn.
14520  * Implicit reference to the ipif / ill by holding a reference to the ire.
14521  *
14522  * The ipif/ill lookup functions return a reference held ipif / ill.
14523  * ipif_refcnt and ill_refcnt track the reference counts respectively.
14524  * This is a purely dynamic reference count associated with threads holding
14525  * references to the ipif / ill. Pointers from other structures do not
14526  * count towards this reference count.
14527  *
14528  * ipif_ire_cnt/ill_ire_cnt is the number of ire's
14529  * associated with the ipif/ill. This is incremented whenever a new
14530  * ire is created referencing the ipif/ill. This is done atomically inside
14531  * ire_add_v[46] where the ire is actually added to the ire hash table.
14532  * The count is decremented in ire_inactive where the ire is destroyed.
14533  *
14534  * nce's reference ill's thru nce_ill and the count of nce's associated with
14535  * an ill is recorded in ill_nce_cnt. This is incremented atomically in
14536  * ndp_add_v4()/ndp_add_v6() where the nce is actually added to the
14537  * table. Similarly it is decremented in ndp_inactive() where the nce
14538  * is destroyed.
14539  *
14540  * ilm's reference to the ipif (for IPv4 ilm's) or the ill (for IPv6 ilm's)
14541  * is incremented in ilm_add_v6() and decremented before the ilm is freed
14542  * in ilm_walker_cleanup() or ilm_delete().
14543  *
14544  * Flow of ioctls involving interface down/up
14545  *
14546  * The following is the sequence of an attempt to set some critical flags on an
14547  * up interface.
14548  * ip_sioctl_flags
14549  * ipif_down
14550  * wait for ipif to be quiescent
14551  * ipif_down_tail
14552  * ip_sioctl_flags_tail
14553  *
14554  * All set ioctls that involve down/up sequence would have a skeleton similar
14555  * to the above. All the *tail functions are called after the refcounts have
14556  * dropped to the appropriate values.
14557  *
14558  * The mechanism to quiesce an ipif is as follows.
14559  *
14560  * Mark the ipif as IPIF_CHANGING. No more lookups will be allowed
14561  * on the ipif. Callers either pass a flag requesting wait or the lookup
14562  *  functions will return NULL.
14563  *
14564  * Delete all ires referencing this ipif
14565  *
14566  * Any thread attempting to do an ipif_refhold on an ipif that has been
14567  * obtained thru a cached pointer will first make sure that
14568  * the ipif can be refheld using the macro IPIF_CAN_LOOKUP and only then
14569  * increment the refcount.
14570  *
14571  * The above guarantees that the ipif refcount will eventually come down to
14572  * zero and the ipif will quiesce, once all threads that currently hold a
14573  * reference to the ipif refrelease the ipif. The ipif is quiescent after the
14574  * ipif_refcount has dropped to zero and all ire's associated with this ipif
14575  * have also been ire_inactive'd. i.e. when ipif_{ire, ill}_cnt and
14576  * ipif_refcnt both drop to zero. See also: comments above IPIF_DOWN_OK()
14577  * in ip.h
14578  *
14579  * Lookups during the IPIF_CHANGING/ILL_CHANGING interval.
14580  *
14581  * Threads trying to lookup an ipif or ill can pass a flag requesting
14582  * wait and restart if the ipif / ill cannot be looked up currently.
14583  * For eg. bind, and route operations (Eg. route add / delete) cannot return
14584  * failure if the ipif is currently undergoing an exclusive operation, and
14585  * hence pass the flag. The mblk is then enqueued in the ipsq and the operation
14586  * is restarted by ipsq_exit() when the current exclusive operation completes.
14587  * The lookup and enqueue is atomic using the ill_lock and ipsq_lock. The
14588  * lookup is done holding the ill_lock. Hence the ill/ipif state flags can't
14589  * change while the ill_lock is held. Before dropping the ill_lock we acquire
14590  * the ipsq_lock and call ipsq_enq. This ensures that ipsq_exit can't finish
14591  * until we release the ipsq_lock, even though the the ill/ipif state flags
14592  * can change after we drop the ill_lock.
14593  *
14594  * An attempt to send out a packet using an ipif that is currently
14595  * IPIF_CHANGING will fail. No attempt is made in this case to enqueue this
14596  * operation and restart it later when the exclusive condition on the ipif ends.
14597  * This is an example of not passing the wait flag to the lookup functions. For
14598  * example an attempt to refhold and use conn->conn_multicast_ipif and send
14599  * out a multicast packet on that ipif will fail while the ipif is
14600  * IPIF_CHANGING. An attempt to create an IRE_CACHE using an ipif that is
14601  * currently IPIF_CHANGING will also fail.
14602  */
14603 int
14604 ipif_down(ipif_t *ipif, queue_t *q, mblk_t *mp)
14605 {
14606 	ill_t		*ill = ipif->ipif_ill;
14607 	conn_t		*connp;
14608 	boolean_t	success;
14609 	boolean_t	ipif_was_up = B_FALSE;
14610 	ip_stack_t	*ipst = ill->ill_ipst;
14611 
14612 	ASSERT(IAM_WRITER_IPIF(ipif));
14613 
14614 	ip1dbg(("ipif_down(%s:%u)\n", ill->ill_name, ipif->ipif_id));
14615 
14616 	if (ipif->ipif_flags & IPIF_UP) {
14617 		mutex_enter(&ill->ill_lock);
14618 		ipif->ipif_flags &= ~IPIF_UP;
14619 		ASSERT(ill->ill_ipif_up_count > 0);
14620 		--ill->ill_ipif_up_count;
14621 		mutex_exit(&ill->ill_lock);
14622 		ipif_was_up = B_TRUE;
14623 		/* Update status in SCTP's list */
14624 		sctp_update_ipif(ipif, SCTP_IPIF_DOWN);
14625 		ill_nic_event_dispatch(ipif->ipif_ill,
14626 		    MAP_IPIF_ID(ipif->ipif_id), NE_LIF_DOWN, NULL, 0);
14627 	}
14628 
14629 	/*
14630 	 * Blow away memberships we established in ipif_multicast_up().
14631 	 */
14632 	ipif_multicast_down(ipif);
14633 
14634 	/*
14635 	 * Remove from the mapping for __sin6_src_id. We insert only
14636 	 * when the address is not INADDR_ANY. As IPv4 addresses are
14637 	 * stored as mapped addresses, we need to check for mapped
14638 	 * INADDR_ANY also.
14639 	 */
14640 	if (ipif_was_up && !IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6lcl_addr) &&
14641 	    !IN6_IS_ADDR_V4MAPPED_ANY(&ipif->ipif_v6lcl_addr) &&
14642 	    !(ipif->ipif_flags & IPIF_NOLOCAL)) {
14643 		int err;
14644 
14645 		err = ip_srcid_remove(&ipif->ipif_v6lcl_addr,
14646 		    ipif->ipif_zoneid, ipst);
14647 		if (err != 0) {
14648 			ip0dbg(("ipif_down: srcid_remove %d\n", err));
14649 		}
14650 	}
14651 
14652 	/*
14653 	 * Delete all IRE's pointing at this ipif or its source address.
14654 	 */
14655 	if (ipif->ipif_isv6) {
14656 		ire_walk_v6(ipif_down_delete_ire, (char *)ipif, ALL_ZONES,
14657 		    ipst);
14658 	} else {
14659 		ire_walk_v4(ipif_down_delete_ire, (char *)ipif, ALL_ZONES,
14660 		    ipst);
14661 	}
14662 
14663 	if (ipif_was_up && ill->ill_ipif_up_count == 0) {
14664 		/*
14665 		 * Since the interface is now down, it may have just become
14666 		 * inactive.  Note that this needs to be done even for a
14667 		 * lll_logical_down(), or ARP entries will not get correctly
14668 		 * restored when the interface comes back up.
14669 		 */
14670 		if (IS_UNDER_IPMP(ill))
14671 			ipmp_ill_refresh_active(ill);
14672 	}
14673 
14674 	/*
14675 	 * Cleaning up the conn_ire_cache or conns must be done only after the
14676 	 * ires have been deleted above. Otherwise a thread could end up
14677 	 * caching an ire in a conn after we have finished the cleanup of the
14678 	 * conn. The caching is done after making sure that the ire is not yet
14679 	 * condemned. Also documented in the block comment above ip_output
14680 	 */
14681 	ipcl_walk(conn_cleanup_stale_ire, NULL, ipst);
14682 	/* Also, delete the ires cached in SCTP */
14683 	sctp_ire_cache_flush(ipif);
14684 
14685 	/*
14686 	 * Update any other ipifs which have used "our" local address as
14687 	 * a source address. This entails removing and recreating IRE_INTERFACE
14688 	 * entries for such ipifs.
14689 	 */
14690 	if (ipif->ipif_isv6)
14691 		ipif_update_other_ipifs_v6(ipif);
14692 	else
14693 		ipif_update_other_ipifs(ipif);
14694 
14695 	/*
14696 	 * neighbor-discovery or arp entries for this interface.
14697 	 */
14698 	ipif_ndp_down(ipif);
14699 
14700 	/*
14701 	 * If mp is NULL the caller will wait for the appropriate refcnt.
14702 	 * Eg. ip_sioctl_removeif -> ipif_free  -> ipif_down
14703 	 * and ill_delete -> ipif_free -> ipif_down
14704 	 */
14705 	if (mp == NULL) {
14706 		ASSERT(q == NULL);
14707 		return (0);
14708 	}
14709 
14710 	if (CONN_Q(q)) {
14711 		connp = Q_TO_CONN(q);
14712 		mutex_enter(&connp->conn_lock);
14713 	} else {
14714 		connp = NULL;
14715 	}
14716 	mutex_enter(&ill->ill_lock);
14717 	/*
14718 	 * Are there any ire's pointing to this ipif that are still active ?
14719 	 * If this is the last ipif going down, are there any ire's pointing
14720 	 * to this ill that are still active ?
14721 	 */
14722 	if (ipif_is_quiescent(ipif)) {
14723 		mutex_exit(&ill->ill_lock);
14724 		if (connp != NULL)
14725 			mutex_exit(&connp->conn_lock);
14726 		return (0);
14727 	}
14728 
14729 	ip1dbg(("ipif_down: need to wait, adding pending mp %s ill %p",
14730 	    ill->ill_name, (void *)ill));
14731 	/*
14732 	 * Enqueue the mp atomically in ipsq_pending_mp. When the refcount
14733 	 * drops down, the operation will be restarted by ipif_ill_refrele_tail
14734 	 * which in turn is called by the last refrele on the ipif/ill/ire.
14735 	 */
14736 	success = ipsq_pending_mp_add(connp, ipif, q, mp, IPIF_DOWN);
14737 	if (!success) {
14738 		/* The conn is closing. So just return */
14739 		ASSERT(connp != NULL);
14740 		mutex_exit(&ill->ill_lock);
14741 		mutex_exit(&connp->conn_lock);
14742 		return (EINTR);
14743 	}
14744 
14745 	mutex_exit(&ill->ill_lock);
14746 	if (connp != NULL)
14747 		mutex_exit(&connp->conn_lock);
14748 	return (EINPROGRESS);
14749 }
14750 
14751 void
14752 ipif_down_tail(ipif_t *ipif)
14753 {
14754 	ill_t	*ill = ipif->ipif_ill;
14755 
14756 	/*
14757 	 * Skip any loopback interface (null wq).
14758 	 * If this is the last logical interface on the ill
14759 	 * have ill_dl_down tell the driver we are gone (unbind)
14760 	 * Note that lun 0 can ipif_down even though
14761 	 * there are other logical units that are up.
14762 	 * This occurs e.g. when we change a "significant" IFF_ flag.
14763 	 */
14764 	if (ill->ill_wq != NULL && !ill->ill_logical_down &&
14765 	    ill->ill_ipif_up_count == 0 && ill->ill_ipif_dup_count == 0 &&
14766 	    ill->ill_dl_up) {
14767 		ill_dl_down(ill);
14768 	}
14769 	ill->ill_logical_down = 0;
14770 
14771 	/*
14772 	 * Has to be after removing the routes in ipif_down_delete_ire.
14773 	 */
14774 	ipif_resolver_down(ipif);
14775 
14776 	ip_rts_ifmsg(ipif, RTSQ_DEFAULT);
14777 	ip_rts_newaddrmsg(RTM_DELETE, 0, ipif, RTSQ_DEFAULT);
14778 }
14779 
14780 /*
14781  * Bring interface logically down without bringing the physical interface
14782  * down e.g. when the netmask is changed. This avoids long lasting link
14783  * negotiations between an ethernet interface and a certain switches.
14784  */
14785 static int
14786 ipif_logical_down(ipif_t *ipif, queue_t *q, mblk_t *mp)
14787 {
14788 	/*
14789 	 * The ill_logical_down flag is a transient flag. It is set here
14790 	 * and is cleared once the down has completed in ipif_down_tail.
14791 	 * This flag does not indicate whether the ill stream is in the
14792 	 * DL_BOUND state with the driver. Instead this flag is used by
14793 	 * ipif_down_tail to determine whether to DL_UNBIND the stream with
14794 	 * the driver. The state of the ill stream i.e. whether it is
14795 	 * DL_BOUND with the driver or not is indicated by the ill_dl_up flag.
14796 	 */
14797 	ipif->ipif_ill->ill_logical_down = 1;
14798 	return (ipif_down(ipif, q, mp));
14799 }
14800 
14801 /*
14802  * This is called when the SIOCSLIFUSESRC ioctl is processed in IP.
14803  * If the usesrc client ILL is already part of a usesrc group or not,
14804  * in either case a ire_stq with the matching usesrc client ILL will
14805  * locate the IRE's that need to be deleted. We want IREs to be created
14806  * with the new source address.
14807  */
14808 static void
14809 ipif_delete_cache_ire(ire_t *ire, char *ill_arg)
14810 {
14811 	ill_t	*ucill = (ill_t *)ill_arg;
14812 
14813 	ASSERT(IAM_WRITER_ILL(ucill));
14814 
14815 	if (ire->ire_stq == NULL)
14816 		return;
14817 
14818 	if ((ire->ire_type == IRE_CACHE) &&
14819 	    ((ill_t *)ire->ire_stq->q_ptr == ucill))
14820 		ire_delete(ire);
14821 }
14822 
14823 /*
14824  * ire_walk routine to delete every IRE dependent on the interface
14825  * address that is going down.	(Always called as writer.)
14826  * Works for both v4 and v6.
14827  * In addition for checking for ire_ipif matches it also checks for
14828  * IRE_CACHE entries which have the same source address as the
14829  * disappearing ipif since ipif_select_source might have picked
14830  * that source. Note that ipif_down/ipif_update_other_ipifs takes
14831  * care of any IRE_INTERFACE with the disappearing source address.
14832  */
14833 static void
14834 ipif_down_delete_ire(ire_t *ire, char *ipif_arg)
14835 {
14836 	ipif_t	*ipif = (ipif_t *)ipif_arg;
14837 
14838 	ASSERT(IAM_WRITER_IPIF(ipif));
14839 	if (ire->ire_ipif == NULL)
14840 		return;
14841 
14842 	if (ire->ire_ipif != ipif) {
14843 		/*
14844 		 * Look for a matching source address.
14845 		 */
14846 		if (ire->ire_type != IRE_CACHE)
14847 			return;
14848 		if (ipif->ipif_flags & IPIF_NOLOCAL)
14849 			return;
14850 
14851 		if (ire->ire_ipversion == IPV4_VERSION) {
14852 			if (ire->ire_src_addr != ipif->ipif_src_addr)
14853 				return;
14854 		} else {
14855 			if (!IN6_ARE_ADDR_EQUAL(&ire->ire_src_addr_v6,
14856 			    &ipif->ipif_v6lcl_addr))
14857 				return;
14858 		}
14859 		ire_delete(ire);
14860 		return;
14861 	}
14862 	/*
14863 	 * ire_delete() will do an ire_flush_cache which will delete
14864 	 * all ire_ipif matches
14865 	 */
14866 	ire_delete(ire);
14867 }
14868 
14869 /*
14870  * ire_walk_ill function for deleting all IRE_CACHE entries for an ill when
14871  * 1) an ipif (on that ill) changes the IPIF_DEPRECATED flags, or
14872  * 2) when an interface is brought up or down (on that ill).
14873  * This ensures that the IRE_CACHE entries don't retain stale source
14874  * address selection results.
14875  */
14876 void
14877 ill_ipif_cache_delete(ire_t *ire, char *ill_arg)
14878 {
14879 	ill_t	*ill = (ill_t *)ill_arg;
14880 
14881 	ASSERT(IAM_WRITER_ILL(ill));
14882 	ASSERT(ire->ire_type == IRE_CACHE);
14883 
14884 	/*
14885 	 * We are called for IRE_CACHEs whose ire_stq or ire_ipif matches
14886 	 * ill, but we only want to delete the IRE if ire_ipif matches.
14887 	 */
14888 	ASSERT(ire->ire_ipif != NULL);
14889 	if (ill == ire->ire_ipif->ipif_ill)
14890 		ire_delete(ire);
14891 }
14892 
14893 /*
14894  * Delete all the IREs whose ire_stq's reference `ill_arg'.  IPMP uses this
14895  * instead of ill_ipif_cache_delete() because ire_ipif->ipif_ill references
14896  * the IPMP ill.
14897  */
14898 void
14899 ill_stq_cache_delete(ire_t *ire, char *ill_arg)
14900 {
14901 	ill_t	*ill = (ill_t *)ill_arg;
14902 
14903 	ASSERT(IAM_WRITER_ILL(ill));
14904 	ASSERT(ire->ire_type == IRE_CACHE);
14905 
14906 	/*
14907 	 * We are called for IRE_CACHEs whose ire_stq or ire_ipif matches
14908 	 * ill, but we only want to delete the IRE if ire_stq matches.
14909 	 */
14910 	if (ire->ire_stq->q_ptr == ill_arg)
14911 		ire_delete(ire);
14912 }
14913 
14914 /*
14915  * Delete all the IREs whose ire_stq's reference any ill in the same IPMP
14916  * group as `ill_arg'.  Used by ipmp_ill_deactivate() to flush all IRE_CACHE
14917  * entries for the illgrp.
14918  */
14919 void
14920 ill_grp_cache_delete(ire_t *ire, char *ill_arg)
14921 {
14922 	ill_t	*ill = (ill_t *)ill_arg;
14923 
14924 	ASSERT(IAM_WRITER_ILL(ill));
14925 
14926 	if (ire->ire_type == IRE_CACHE &&
14927 	    IS_IN_SAME_ILLGRP((ill_t *)ire->ire_stq->q_ptr, ill)) {
14928 		ire_delete(ire);
14929 	}
14930 }
14931 
14932 /*
14933  * Delete all broadcast IREs with a source address on `ill_arg'.
14934  */
14935 static void
14936 ill_broadcast_delete(ire_t *ire, char *ill_arg)
14937 {
14938 	ill_t *ill = (ill_t *)ill_arg;
14939 
14940 	ASSERT(IAM_WRITER_ILL(ill));
14941 	ASSERT(ire->ire_type == IRE_BROADCAST);
14942 
14943 	if (ire->ire_ipif->ipif_ill == ill)
14944 		ire_delete(ire);
14945 }
14946 
14947 /*
14948  * Initiate deallocate of an IPIF. Always called as writer. Called by
14949  * ill_delete or ip_sioctl_removeif.
14950  */
14951 static void
14952 ipif_free(ipif_t *ipif)
14953 {
14954 	ip_stack_t	*ipst = ipif->ipif_ill->ill_ipst;
14955 
14956 	ASSERT(IAM_WRITER_IPIF(ipif));
14957 
14958 	if (ipif->ipif_recovery_id != 0)
14959 		(void) untimeout(ipif->ipif_recovery_id);
14960 	ipif->ipif_recovery_id = 0;
14961 
14962 	/* Remove conn references */
14963 	reset_conn_ipif(ipif);
14964 
14965 	/*
14966 	 * Make sure we have valid net and subnet broadcast ire's for the
14967 	 * other ipif's which share them with this ipif.
14968 	 */
14969 	if (!ipif->ipif_isv6)
14970 		ipif_check_bcast_ires(ipif);
14971 
14972 	/*
14973 	 * Take down the interface. We can be called either from ill_delete
14974 	 * or from ip_sioctl_removeif.
14975 	 */
14976 	(void) ipif_down(ipif, NULL, NULL);
14977 
14978 	/*
14979 	 * Now that the interface is down, there's no chance it can still
14980 	 * become a duplicate.  Cancel any timer that may have been set while
14981 	 * tearing down.
14982 	 */
14983 	if (ipif->ipif_recovery_id != 0)
14984 		(void) untimeout(ipif->ipif_recovery_id);
14985 	ipif->ipif_recovery_id = 0;
14986 
14987 	rw_enter(&ipst->ips_ill_g_lock, RW_WRITER);
14988 	/* Remove pointers to this ill in the multicast routing tables */
14989 	reset_mrt_vif_ipif(ipif);
14990 	/* If necessary, clear the cached source ipif rotor. */
14991 	if (ipif->ipif_ill->ill_src_ipif == ipif)
14992 		ipif->ipif_ill->ill_src_ipif = NULL;
14993 	rw_exit(&ipst->ips_ill_g_lock);
14994 }
14995 
14996 static void
14997 ipif_free_tail(ipif_t *ipif)
14998 {
14999 	mblk_t	*mp;
15000 	ip_stack_t *ipst = ipif->ipif_ill->ill_ipst;
15001 
15002 	/*
15003 	 * Free state for addition IRE_IF_[NO]RESOLVER ire's.
15004 	 */
15005 	mutex_enter(&ipif->ipif_saved_ire_lock);
15006 	mp = ipif->ipif_saved_ire_mp;
15007 	ipif->ipif_saved_ire_mp = NULL;
15008 	mutex_exit(&ipif->ipif_saved_ire_lock);
15009 	freemsg(mp);
15010 
15011 	/*
15012 	 * Need to hold both ill_g_lock and ill_lock while
15013 	 * inserting or removing an ipif from the linked list
15014 	 * of ipifs hanging off the ill.
15015 	 */
15016 	rw_enter(&ipst->ips_ill_g_lock, RW_WRITER);
15017 
15018 	ASSERT(ilm_walk_ipif(ipif) == 0);
15019 
15020 #ifdef DEBUG
15021 	ipif_trace_cleanup(ipif);
15022 #endif
15023 
15024 	/* Ask SCTP to take it out of it list */
15025 	sctp_update_ipif(ipif, SCTP_IPIF_REMOVE);
15026 
15027 	/* Get it out of the ILL interface list. */
15028 	ipif_remove(ipif);
15029 	rw_exit(&ipst->ips_ill_g_lock);
15030 
15031 	mutex_destroy(&ipif->ipif_saved_ire_lock);
15032 
15033 	ASSERT(!(ipif->ipif_flags & (IPIF_UP | IPIF_DUPLICATE)));
15034 	ASSERT(ipif->ipif_recovery_id == 0);
15035 
15036 	/* Free the memory. */
15037 	mi_free(ipif);
15038 }
15039 
15040 /*
15041  * Sets `buf' to an ipif name of the form "ill_name:id", or "ill_name" if "id"
15042  * is zero.
15043  */
15044 void
15045 ipif_get_name(const ipif_t *ipif, char *buf, int len)
15046 {
15047 	char	lbuf[LIFNAMSIZ];
15048 	char	*name;
15049 	size_t	name_len;
15050 
15051 	buf[0] = '\0';
15052 	name = ipif->ipif_ill->ill_name;
15053 	name_len = ipif->ipif_ill->ill_name_length;
15054 	if (ipif->ipif_id != 0) {
15055 		(void) sprintf(lbuf, "%s%c%d", name, IPIF_SEPARATOR_CHAR,
15056 		    ipif->ipif_id);
15057 		name = lbuf;
15058 		name_len = mi_strlen(name) + 1;
15059 	}
15060 	len -= 1;
15061 	buf[len] = '\0';
15062 	len = MIN(len, name_len);
15063 	bcopy(name, buf, len);
15064 }
15065 
15066 /*
15067  * Find an IPIF based on the name passed in.  Names can be of the form <phys>
15068  * (e.g., le0) or <phys>:<#> (e.g., le0:1).  When there is no colon, the
15069  * implied unit id is zero. <phys> must correspond to the name of an ILL.
15070  * (May be called as writer.)
15071  */
15072 static ipif_t *
15073 ipif_lookup_on_name(char *name, size_t namelen, boolean_t do_alloc,
15074     boolean_t *exists, boolean_t isv6, zoneid_t zoneid, queue_t *q,
15075     mblk_t *mp, ipsq_func_t func, int *error, ip_stack_t *ipst)
15076 {
15077 	char	*cp;
15078 	char	*endp;
15079 	long	id;
15080 	ill_t	*ill;
15081 	ipif_t	*ipif;
15082 	uint_t	ire_type;
15083 	boolean_t did_alloc = B_FALSE;
15084 	ipsq_t	*ipsq;
15085 
15086 	if (error != NULL)
15087 		*error = 0;
15088 
15089 	/*
15090 	 * If the caller wants to us to create the ipif, make sure we have a
15091 	 * valid zoneid
15092 	 */
15093 	ASSERT(!do_alloc || zoneid != ALL_ZONES);
15094 
15095 	if (namelen == 0) {
15096 		if (error != NULL)
15097 			*error = ENXIO;
15098 		return (NULL);
15099 	}
15100 
15101 	*exists = B_FALSE;
15102 	/* Look for a colon in the name. */
15103 	endp = &name[namelen];
15104 	for (cp = endp; --cp > name; ) {
15105 		if (*cp == IPIF_SEPARATOR_CHAR)
15106 			break;
15107 	}
15108 
15109 	if (*cp == IPIF_SEPARATOR_CHAR) {
15110 		/*
15111 		 * Reject any non-decimal aliases for logical
15112 		 * interfaces. Aliases with leading zeroes
15113 		 * are also rejected as they introduce ambiguity
15114 		 * in the naming of the interfaces.
15115 		 * In order to confirm with existing semantics,
15116 		 * and to not break any programs/script relying
15117 		 * on that behaviour, if<0>:0 is considered to be
15118 		 * a valid interface.
15119 		 *
15120 		 * If alias has two or more digits and the first
15121 		 * is zero, fail.
15122 		 */
15123 		if (&cp[2] < endp && cp[1] == '0') {
15124 			if (error != NULL)
15125 				*error = EINVAL;
15126 			return (NULL);
15127 		}
15128 	}
15129 
15130 	if (cp <= name) {
15131 		cp = endp;
15132 	} else {
15133 		*cp = '\0';
15134 	}
15135 
15136 	/*
15137 	 * Look up the ILL, based on the portion of the name
15138 	 * before the slash. ill_lookup_on_name returns a held ill.
15139 	 * Temporary to check whether ill exists already. If so
15140 	 * ill_lookup_on_name will clear it.
15141 	 */
15142 	ill = ill_lookup_on_name(name, do_alloc, isv6,
15143 	    q, mp, func, error, &did_alloc, ipst);
15144 	if (cp != endp)
15145 		*cp = IPIF_SEPARATOR_CHAR;
15146 	if (ill == NULL)
15147 		return (NULL);
15148 
15149 	/* Establish the unit number in the name. */
15150 	id = 0;
15151 	if (cp < endp && *endp == '\0') {
15152 		/* If there was a colon, the unit number follows. */
15153 		cp++;
15154 		if (ddi_strtol(cp, NULL, 0, &id) != 0) {
15155 			ill_refrele(ill);
15156 			if (error != NULL)
15157 				*error = ENXIO;
15158 			return (NULL);
15159 		}
15160 	}
15161 
15162 	GRAB_CONN_LOCK(q);
15163 	mutex_enter(&ill->ill_lock);
15164 	/* Now see if there is an IPIF with this unit number. */
15165 	for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) {
15166 		if (ipif->ipif_id == id) {
15167 			if (zoneid != ALL_ZONES &&
15168 			    zoneid != ipif->ipif_zoneid &&
15169 			    ipif->ipif_zoneid != ALL_ZONES) {
15170 				mutex_exit(&ill->ill_lock);
15171 				RELEASE_CONN_LOCK(q);
15172 				ill_refrele(ill);
15173 				if (error != NULL)
15174 					*error = ENXIO;
15175 				return (NULL);
15176 			}
15177 			/*
15178 			 * The block comment at the start of ipif_down
15179 			 * explains the use of the macros used below
15180 			 */
15181 			if (IPIF_CAN_LOOKUP(ipif)) {
15182 				ipif_refhold_locked(ipif);
15183 				mutex_exit(&ill->ill_lock);
15184 				if (!did_alloc)
15185 					*exists = B_TRUE;
15186 				/*
15187 				 * Drop locks before calling ill_refrele
15188 				 * since it can potentially call into
15189 				 * ipif_ill_refrele_tail which can end up
15190 				 * in trying to acquire any lock.
15191 				 */
15192 				RELEASE_CONN_LOCK(q);
15193 				ill_refrele(ill);
15194 				return (ipif);
15195 			} else if (IPIF_CAN_WAIT(ipif, q)) {
15196 				ipsq = ill->ill_phyint->phyint_ipsq;
15197 				mutex_enter(&ipsq->ipsq_lock);
15198 				mutex_enter(&ipsq->ipsq_xop->ipx_lock);
15199 				mutex_exit(&ill->ill_lock);
15200 				ipsq_enq(ipsq, q, mp, func, NEW_OP, ill);
15201 				mutex_exit(&ipsq->ipsq_xop->ipx_lock);
15202 				mutex_exit(&ipsq->ipsq_lock);
15203 				RELEASE_CONN_LOCK(q);
15204 				ill_refrele(ill);
15205 				if (error != NULL)
15206 					*error = EINPROGRESS;
15207 				return (NULL);
15208 			}
15209 		}
15210 	}
15211 	RELEASE_CONN_LOCK(q);
15212 
15213 	if (!do_alloc) {
15214 		mutex_exit(&ill->ill_lock);
15215 		ill_refrele(ill);
15216 		if (error != NULL)
15217 			*error = ENXIO;
15218 		return (NULL);
15219 	}
15220 
15221 	/*
15222 	 * If none found, atomically allocate and return a new one.
15223 	 * Historically, we used IRE_LOOPBACK only for lun 0, and IRE_LOCAL
15224 	 * to support "receive only" use of lo0:1 etc. as is still done
15225 	 * below as an initial guess.
15226 	 * However, this is now likely to be overriden later in ipif_up_done()
15227 	 * when we know for sure what address has been configured on the
15228 	 * interface, since we might have more than one loopback interface
15229 	 * with a loopback address, e.g. in the case of zones, and all the
15230 	 * interfaces with loopback addresses need to be marked IRE_LOOPBACK.
15231 	 */
15232 	if (ill->ill_net_type == IRE_LOOPBACK && id == 0)
15233 		ire_type = IRE_LOOPBACK;
15234 	else
15235 		ire_type = IRE_LOCAL;
15236 	ipif = ipif_allocate(ill, id, ire_type, B_TRUE, B_TRUE);
15237 	if (ipif != NULL)
15238 		ipif_refhold_locked(ipif);
15239 	else if (error != NULL)
15240 		*error = ENOMEM;
15241 	mutex_exit(&ill->ill_lock);
15242 	ill_refrele(ill);
15243 	return (ipif);
15244 }
15245 
15246 /*
15247  * This routine is called whenever a new address comes up on an ipif.  If
15248  * we are configured to respond to address mask requests, then we are supposed
15249  * to broadcast an address mask reply at this time.  This routine is also
15250  * called if we are already up, but a netmask change is made.  This is legal
15251  * but might not make the system manager very popular.	(May be called
15252  * as writer.)
15253  */
15254 void
15255 ipif_mask_reply(ipif_t *ipif)
15256 {
15257 	icmph_t	*icmph;
15258 	ipha_t	*ipha;
15259 	mblk_t	*mp;
15260 	ip_stack_t	*ipst = ipif->ipif_ill->ill_ipst;
15261 
15262 #define	REPLY_LEN	(sizeof (icmp_ipha) + sizeof (icmph_t) + IP_ADDR_LEN)
15263 
15264 	if (!ipst->ips_ip_respond_to_address_mask_broadcast)
15265 		return;
15266 
15267 	/* ICMP mask reply is IPv4 only */
15268 	ASSERT(!ipif->ipif_isv6);
15269 	/* ICMP mask reply is not for a loopback interface */
15270 	ASSERT(ipif->ipif_ill->ill_wq != NULL);
15271 
15272 	mp = allocb(REPLY_LEN, BPRI_HI);
15273 	if (mp == NULL)
15274 		return;
15275 	mp->b_wptr = mp->b_rptr + REPLY_LEN;
15276 
15277 	ipha = (ipha_t *)mp->b_rptr;
15278 	bzero(ipha, REPLY_LEN);
15279 	*ipha = icmp_ipha;
15280 	ipha->ipha_ttl = ipst->ips_ip_broadcast_ttl;
15281 	ipha->ipha_src = ipif->ipif_src_addr;
15282 	ipha->ipha_dst = ipif->ipif_brd_addr;
15283 	ipha->ipha_length = htons(REPLY_LEN);
15284 	ipha->ipha_ident = 0;
15285 
15286 	icmph = (icmph_t *)&ipha[1];
15287 	icmph->icmph_type = ICMP_ADDRESS_MASK_REPLY;
15288 	bcopy(&ipif->ipif_net_mask, &icmph[1], IP_ADDR_LEN);
15289 	icmph->icmph_checksum = IP_CSUM(mp, sizeof (ipha_t), 0);
15290 
15291 	put(ipif->ipif_wq, mp);
15292 
15293 #undef	REPLY_LEN
15294 }
15295 
15296 /*
15297  * When the mtu in the ipif changes, we call this routine through ire_walk
15298  * to update all the relevant IREs.
15299  * Skip IRE_LOCAL and "loopback" IRE_BROADCAST by checking ire_stq.
15300  */
15301 static void
15302 ipif_mtu_change(ire_t *ire, char *ipif_arg)
15303 {
15304 	ipif_t *ipif = (ipif_t *)ipif_arg;
15305 
15306 	if (ire->ire_stq == NULL || ire->ire_ipif != ipif)
15307 		return;
15308 
15309 	mutex_enter(&ire->ire_lock);
15310 	if (ire->ire_marks & IRE_MARK_PMTU) {
15311 		/* Avoid increasing the PMTU */
15312 		ire->ire_max_frag = MIN(ipif->ipif_mtu, ire->ire_max_frag);
15313 		if (ire->ire_max_frag == ipif->ipif_mtu)
15314 			ire->ire_marks &= ~IRE_MARK_PMTU;
15315 	} else {
15316 		ire->ire_max_frag = MIN(ipif->ipif_mtu, IP_MAXPACKET);
15317 	}
15318 	mutex_exit(&ire->ire_lock);
15319 }
15320 
15321 /*
15322  * When the mtu in the ill changes, we call this routine through ire_walk
15323  * to update all the relevant IREs.
15324  * Skip IRE_LOCAL and "loopback" IRE_BROADCAST by checking ire_stq.
15325  */
15326 void
15327 ill_mtu_change(ire_t *ire, char *ill_arg)
15328 {
15329 	ill_t	*ill = (ill_t *)ill_arg;
15330 
15331 	if (ire->ire_stq == NULL || ire->ire_ipif->ipif_ill != ill)
15332 		return;
15333 
15334 	mutex_enter(&ire->ire_lock);
15335 	if (ire->ire_marks & IRE_MARK_PMTU) {
15336 		/* Avoid increasing the PMTU */
15337 		ire->ire_max_frag = MIN(ire->ire_ipif->ipif_mtu,
15338 		    ire->ire_max_frag);
15339 		if (ire->ire_max_frag == ire->ire_ipif->ipif_mtu) {
15340 			ire->ire_marks &= ~IRE_MARK_PMTU;
15341 		}
15342 	} else {
15343 		ire->ire_max_frag = MIN(ire->ire_ipif->ipif_mtu, IP_MAXPACKET);
15344 	}
15345 	mutex_exit(&ire->ire_lock);
15346 }
15347 
15348 /*
15349  * Join the ipif specific multicast groups.
15350  * Must be called after a mapping has been set up in the resolver.  (Always
15351  * called as writer.)
15352  */
15353 void
15354 ipif_multicast_up(ipif_t *ipif)
15355 {
15356 	int err;
15357 	ill_t *ill;
15358 
15359 	ASSERT(IAM_WRITER_IPIF(ipif));
15360 
15361 	ill = ipif->ipif_ill;
15362 
15363 	ip1dbg(("ipif_multicast_up\n"));
15364 	if (!(ill->ill_flags & ILLF_MULTICAST) || ipif->ipif_multicast_up)
15365 		return;
15366 
15367 	if (ipif->ipif_isv6) {
15368 		in6_addr_t v6allmc = ipv6_all_hosts_mcast;
15369 		in6_addr_t v6solmc = ipv6_solicited_node_mcast;
15370 
15371 		v6solmc.s6_addr32[3] |= ipif->ipif_v6lcl_addr.s6_addr32[3];
15372 
15373 		if (IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6lcl_addr))
15374 			return;
15375 
15376 		ip1dbg(("ipif_multicast_up - addmulti\n"));
15377 
15378 		/*
15379 		 * Join the all hosts multicast address.  We skip this for
15380 		 * underlying IPMP interfaces since they should be invisible.
15381 		 */
15382 		if (!IS_UNDER_IPMP(ill)) {
15383 			err = ip_addmulti_v6(&v6allmc, ill, ipif->ipif_zoneid,
15384 			    ILGSTAT_NONE, MODE_IS_EXCLUDE, NULL);
15385 			if (err != 0) {
15386 				ip0dbg(("ipif_multicast_up: "
15387 				    "all_hosts_mcast failed %d\n", err));
15388 				return;
15389 			}
15390 			ipif->ipif_joined_allhosts = 1;
15391 		}
15392 
15393 		/*
15394 		 * Enable multicast for the solicited node multicast address
15395 		 */
15396 		if (!(ipif->ipif_flags & IPIF_NOLOCAL)) {
15397 			err = ip_addmulti_v6(&v6solmc, ill, ipif->ipif_zoneid,
15398 			    ILGSTAT_NONE, MODE_IS_EXCLUDE, NULL);
15399 			if (err != 0) {
15400 				ip0dbg(("ipif_multicast_up: solicited MC"
15401 				    " failed %d\n", err));
15402 				if (ipif->ipif_joined_allhosts) {
15403 					(void) ip_delmulti_v6(&v6allmc, ill,
15404 					    ipif->ipif_zoneid, B_TRUE, B_TRUE);
15405 					ipif->ipif_joined_allhosts = 0;
15406 				}
15407 				return;
15408 			}
15409 		}
15410 	} else {
15411 		if (ipif->ipif_lcl_addr == INADDR_ANY || IS_UNDER_IPMP(ill))
15412 			return;
15413 
15414 		/* Join the all hosts multicast address */
15415 		ip1dbg(("ipif_multicast_up - addmulti\n"));
15416 		err = ip_addmulti(htonl(INADDR_ALLHOSTS_GROUP), ipif,
15417 		    ILGSTAT_NONE, MODE_IS_EXCLUDE, NULL);
15418 		if (err) {
15419 			ip0dbg(("ipif_multicast_up: failed %d\n", err));
15420 			return;
15421 		}
15422 	}
15423 	ipif->ipif_multicast_up = 1;
15424 }
15425 
15426 /*
15427  * Blow away any multicast groups that we joined in ipif_multicast_up().
15428  * (Explicit memberships are blown away in ill_leave_multicast() when the
15429  * ill is brought down.)
15430  */
15431 void
15432 ipif_multicast_down(ipif_t *ipif)
15433 {
15434 	int err;
15435 
15436 	ASSERT(IAM_WRITER_IPIF(ipif));
15437 
15438 	ip1dbg(("ipif_multicast_down\n"));
15439 	if (!ipif->ipif_multicast_up)
15440 		return;
15441 
15442 	ip1dbg(("ipif_multicast_down - delmulti\n"));
15443 
15444 	if (!ipif->ipif_isv6) {
15445 		err = ip_delmulti(htonl(INADDR_ALLHOSTS_GROUP), ipif, B_TRUE,
15446 		    B_TRUE);
15447 		if (err != 0)
15448 			ip0dbg(("ipif_multicast_down: failed %d\n", err));
15449 
15450 		ipif->ipif_multicast_up = 0;
15451 		return;
15452 	}
15453 
15454 	/*
15455 	 * Leave the all-hosts multicast address.
15456 	 */
15457 	if (ipif->ipif_joined_allhosts) {
15458 		err = ip_delmulti_v6(&ipv6_all_hosts_mcast, ipif->ipif_ill,
15459 		    ipif->ipif_zoneid, B_TRUE, B_TRUE);
15460 		if (err != 0) {
15461 			ip0dbg(("ipif_multicast_down: all_hosts_mcast "
15462 			    "failed %d\n", err));
15463 		}
15464 		ipif->ipif_joined_allhosts = 0;
15465 	}
15466 
15467 	/*
15468 	 * Disable multicast for the solicited node multicast address
15469 	 */
15470 	if (!(ipif->ipif_flags & IPIF_NOLOCAL)) {
15471 		in6_addr_t ipv6_multi = ipv6_solicited_node_mcast;
15472 
15473 		ipv6_multi.s6_addr32[3] |=
15474 		    ipif->ipif_v6lcl_addr.s6_addr32[3];
15475 
15476 		err = ip_delmulti_v6(&ipv6_multi, ipif->ipif_ill,
15477 		    ipif->ipif_zoneid, B_TRUE, B_TRUE);
15478 		if (err != 0) {
15479 			ip0dbg(("ipif_multicast_down: sol MC failed %d\n",
15480 			    err));
15481 		}
15482 	}
15483 
15484 	ipif->ipif_multicast_up = 0;
15485 }
15486 
15487 /*
15488  * Used when an interface comes up to recreate any extra routes on this
15489  * interface.
15490  */
15491 static ire_t **
15492 ipif_recover_ire(ipif_t *ipif)
15493 {
15494 	mblk_t	*mp;
15495 	ire_t	**ipif_saved_irep;
15496 	ire_t	**irep;
15497 	ip_stack_t	*ipst = ipif->ipif_ill->ill_ipst;
15498 
15499 	ip1dbg(("ipif_recover_ire(%s:%u)", ipif->ipif_ill->ill_name,
15500 	    ipif->ipif_id));
15501 
15502 	mutex_enter(&ipif->ipif_saved_ire_lock);
15503 	ipif_saved_irep = (ire_t **)kmem_zalloc(sizeof (ire_t *) *
15504 	    ipif->ipif_saved_ire_cnt, KM_NOSLEEP);
15505 	if (ipif_saved_irep == NULL) {
15506 		mutex_exit(&ipif->ipif_saved_ire_lock);
15507 		return (NULL);
15508 	}
15509 
15510 	irep = ipif_saved_irep;
15511 	for (mp = ipif->ipif_saved_ire_mp; mp != NULL; mp = mp->b_cont) {
15512 		ire_t		*ire;
15513 		queue_t		*rfq;
15514 		queue_t		*stq;
15515 		ifrt_t		*ifrt;
15516 		uchar_t		*src_addr;
15517 		uchar_t		*gateway_addr;
15518 		ushort_t	type;
15519 
15520 		/*
15521 		 * When the ire was initially created and then added in
15522 		 * ip_rt_add(), it was created either using ipif->ipif_net_type
15523 		 * in the case of a traditional interface route, or as one of
15524 		 * the IRE_OFFSUBNET types (with the exception of
15525 		 * IRE_HOST types ire which is created by icmp_redirect() and
15526 		 * which we don't need to save or recover).  In the case where
15527 		 * ipif->ipif_net_type was IRE_LOOPBACK, ip_rt_add() will update
15528 		 * the ire_type to IRE_IF_NORESOLVER before calling ire_add()
15529 		 * to satisfy software like GateD and Sun Cluster which creates
15530 		 * routes using the the loopback interface's address as a
15531 		 * gateway.
15532 		 *
15533 		 * As ifrt->ifrt_type reflects the already updated ire_type,
15534 		 * ire_create() will be called in the same way here as
15535 		 * in ip_rt_add(), namely using ipif->ipif_net_type when
15536 		 * the route looks like a traditional interface route (where
15537 		 * ifrt->ifrt_type & IRE_INTERFACE is true) and otherwise using
15538 		 * the saved ifrt->ifrt_type.  This means that in the case where
15539 		 * ipif->ipif_net_type is IRE_LOOPBACK, the ire created by
15540 		 * ire_create() will be an IRE_LOOPBACK, it will then be turned
15541 		 * into an IRE_IF_NORESOLVER and then added by ire_add().
15542 		 */
15543 		ifrt = (ifrt_t *)mp->b_rptr;
15544 		ASSERT(ifrt->ifrt_type != IRE_CACHE);
15545 		if (ifrt->ifrt_type & IRE_INTERFACE) {
15546 			rfq = NULL;
15547 			stq = (ipif->ipif_net_type == IRE_IF_RESOLVER)
15548 			    ? ipif->ipif_rq : ipif->ipif_wq;
15549 			src_addr = (ifrt->ifrt_flags & RTF_SETSRC)
15550 			    ? (uint8_t *)&ifrt->ifrt_src_addr
15551 			    : (uint8_t *)&ipif->ipif_src_addr;
15552 			gateway_addr = NULL;
15553 			type = ipif->ipif_net_type;
15554 		} else if (ifrt->ifrt_type & IRE_BROADCAST) {
15555 			/* Recover multiroute broadcast IRE. */
15556 			rfq = ipif->ipif_rq;
15557 			stq = ipif->ipif_wq;
15558 			src_addr = (ifrt->ifrt_flags & RTF_SETSRC)
15559 			    ? (uint8_t *)&ifrt->ifrt_src_addr
15560 			    : (uint8_t *)&ipif->ipif_src_addr;
15561 			gateway_addr = (uint8_t *)&ifrt->ifrt_gateway_addr;
15562 			type = ifrt->ifrt_type;
15563 		} else {
15564 			rfq = NULL;
15565 			stq = NULL;
15566 			src_addr = (ifrt->ifrt_flags & RTF_SETSRC)
15567 			    ? (uint8_t *)&ifrt->ifrt_src_addr : NULL;
15568 			gateway_addr = (uint8_t *)&ifrt->ifrt_gateway_addr;
15569 			type = ifrt->ifrt_type;
15570 		}
15571 
15572 		/*
15573 		 * Create a copy of the IRE with the saved address and netmask.
15574 		 */
15575 		ip1dbg(("ipif_recover_ire: creating IRE %s (%d) for "
15576 		    "0x%x/0x%x\n",
15577 		    ip_nv_lookup(ire_nv_tbl, ifrt->ifrt_type), ifrt->ifrt_type,
15578 		    ntohl(ifrt->ifrt_addr),
15579 		    ntohl(ifrt->ifrt_mask)));
15580 		ire = ire_create(
15581 		    (uint8_t *)&ifrt->ifrt_addr,
15582 		    (uint8_t *)&ifrt->ifrt_mask,
15583 		    src_addr,
15584 		    gateway_addr,
15585 		    &ifrt->ifrt_max_frag,
15586 		    NULL,
15587 		    rfq,
15588 		    stq,
15589 		    type,
15590 		    ipif,
15591 		    0,
15592 		    0,
15593 		    0,
15594 		    ifrt->ifrt_flags,
15595 		    &ifrt->ifrt_iulp_info,
15596 		    NULL,
15597 		    NULL,
15598 		    ipst);
15599 
15600 		if (ire == NULL) {
15601 			mutex_exit(&ipif->ipif_saved_ire_lock);
15602 			kmem_free(ipif_saved_irep,
15603 			    ipif->ipif_saved_ire_cnt * sizeof (ire_t *));
15604 			return (NULL);
15605 		}
15606 
15607 		/*
15608 		 * Some software (for example, GateD and Sun Cluster) attempts
15609 		 * to create (what amount to) IRE_PREFIX routes with the
15610 		 * loopback address as the gateway.  This is primarily done to
15611 		 * set up prefixes with the RTF_REJECT flag set (for example,
15612 		 * when generating aggregate routes.)
15613 		 *
15614 		 * If the IRE type (as defined by ipif->ipif_net_type) is
15615 		 * IRE_LOOPBACK, then we map the request into a
15616 		 * IRE_IF_NORESOLVER.
15617 		 */
15618 		if (ipif->ipif_net_type == IRE_LOOPBACK)
15619 			ire->ire_type = IRE_IF_NORESOLVER;
15620 		/*
15621 		 * ire held by ire_add, will be refreled' towards the
15622 		 * the end of ipif_up_done
15623 		 */
15624 		(void) ire_add(&ire, NULL, NULL, NULL, B_FALSE);
15625 		*irep = ire;
15626 		irep++;
15627 		ip1dbg(("ipif_recover_ire: added ire %p\n", (void *)ire));
15628 	}
15629 	mutex_exit(&ipif->ipif_saved_ire_lock);
15630 	return (ipif_saved_irep);
15631 }
15632 
15633 /*
15634  * Used to set the netmask and broadcast address to default values when the
15635  * interface is brought up.  (Always called as writer.)
15636  */
15637 static void
15638 ipif_set_default(ipif_t *ipif)
15639 {
15640 	ASSERT(MUTEX_HELD(&ipif->ipif_ill->ill_lock));
15641 
15642 	if (!ipif->ipif_isv6) {
15643 		/*
15644 		 * Interface holds an IPv4 address. Default
15645 		 * mask is the natural netmask.
15646 		 */
15647 		if (!ipif->ipif_net_mask) {
15648 			ipaddr_t	v4mask;
15649 
15650 			v4mask = ip_net_mask(ipif->ipif_lcl_addr);
15651 			V4MASK_TO_V6(v4mask, ipif->ipif_v6net_mask);
15652 		}
15653 		if (ipif->ipif_flags & IPIF_POINTOPOINT) {
15654 			/* ipif_subnet is ipif_pp_dst_addr for pt-pt */
15655 			ipif->ipif_v6subnet = ipif->ipif_v6pp_dst_addr;
15656 		} else {
15657 			V6_MASK_COPY(ipif->ipif_v6lcl_addr,
15658 			    ipif->ipif_v6net_mask, ipif->ipif_v6subnet);
15659 		}
15660 		/*
15661 		 * NOTE: SunOS 4.X does this even if the broadcast address
15662 		 * has been already set thus we do the same here.
15663 		 */
15664 		if (ipif->ipif_flags & IPIF_BROADCAST) {
15665 			ipaddr_t	v4addr;
15666 
15667 			v4addr = ipif->ipif_subnet | ~ipif->ipif_net_mask;
15668 			IN6_IPADDR_TO_V4MAPPED(v4addr, &ipif->ipif_v6brd_addr);
15669 		}
15670 	} else {
15671 		/*
15672 		 * Interface holds an IPv6-only address.  Default
15673 		 * mask is all-ones.
15674 		 */
15675 		if (IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6net_mask))
15676 			ipif->ipif_v6net_mask = ipv6_all_ones;
15677 		if (ipif->ipif_flags & IPIF_POINTOPOINT) {
15678 			/* ipif_subnet is ipif_pp_dst_addr for pt-pt */
15679 			ipif->ipif_v6subnet = ipif->ipif_v6pp_dst_addr;
15680 		} else {
15681 			V6_MASK_COPY(ipif->ipif_v6lcl_addr,
15682 			    ipif->ipif_v6net_mask, ipif->ipif_v6subnet);
15683 		}
15684 	}
15685 }
15686 
15687 /*
15688  * Return 0 if this address can be used as local address without causing
15689  * duplicate address problems. Otherwise, return EADDRNOTAVAIL if the address
15690  * is already up on a different ill, and EADDRINUSE if it's up on the same ill.
15691  * Note that the same IPv6 link-local address is allowed as long as the ills
15692  * are not on the same link.
15693  */
15694 int
15695 ip_addr_availability_check(ipif_t *new_ipif)
15696 {
15697 	in6_addr_t our_v6addr;
15698 	ill_t *ill;
15699 	ipif_t *ipif;
15700 	ill_walk_context_t ctx;
15701 	ip_stack_t	*ipst = new_ipif->ipif_ill->ill_ipst;
15702 
15703 	ASSERT(IAM_WRITER_IPIF(new_ipif));
15704 	ASSERT(MUTEX_HELD(&ipst->ips_ip_addr_avail_lock));
15705 	ASSERT(RW_READ_HELD(&ipst->ips_ill_g_lock));
15706 
15707 	new_ipif->ipif_flags &= ~IPIF_UNNUMBERED;
15708 	if (IN6_IS_ADDR_UNSPECIFIED(&new_ipif->ipif_v6lcl_addr) ||
15709 	    IN6_IS_ADDR_V4MAPPED_ANY(&new_ipif->ipif_v6lcl_addr))
15710 		return (0);
15711 
15712 	our_v6addr = new_ipif->ipif_v6lcl_addr;
15713 
15714 	if (new_ipif->ipif_isv6)
15715 		ill = ILL_START_WALK_V6(&ctx, ipst);
15716 	else
15717 		ill = ILL_START_WALK_V4(&ctx, ipst);
15718 
15719 	for (; ill != NULL; ill = ill_next(&ctx, ill)) {
15720 		for (ipif = ill->ill_ipif; ipif != NULL;
15721 		    ipif = ipif->ipif_next) {
15722 			if ((ipif == new_ipif) ||
15723 			    !(ipif->ipif_flags & IPIF_UP) ||
15724 			    (ipif->ipif_flags & IPIF_UNNUMBERED) ||
15725 			    !IN6_ARE_ADDR_EQUAL(&ipif->ipif_v6lcl_addr,
15726 			    &our_v6addr))
15727 				continue;
15728 
15729 			if (new_ipif->ipif_flags & IPIF_POINTOPOINT)
15730 				new_ipif->ipif_flags |= IPIF_UNNUMBERED;
15731 			else if (ipif->ipif_flags & IPIF_POINTOPOINT)
15732 				ipif->ipif_flags |= IPIF_UNNUMBERED;
15733 			else if ((IN6_IS_ADDR_LINKLOCAL(&our_v6addr) ||
15734 			    IN6_IS_ADDR_SITELOCAL(&our_v6addr)) &&
15735 			    !IS_ON_SAME_LAN(ill, new_ipif->ipif_ill))
15736 				continue;
15737 			else if (new_ipif->ipif_zoneid != ipif->ipif_zoneid &&
15738 			    ipif->ipif_zoneid != ALL_ZONES && IS_LOOPBACK(ill))
15739 				continue;
15740 			else if (new_ipif->ipif_ill == ill)
15741 				return (EADDRINUSE);
15742 			else
15743 				return (EADDRNOTAVAIL);
15744 		}
15745 	}
15746 
15747 	return (0);
15748 }
15749 
15750 /*
15751  * Bring up an ipif: bring up arp/ndp, bring up the DLPI stream, and add
15752  * IREs for the ipif.
15753  * When the routine returns EINPROGRESS then mp has been consumed and
15754  * the ioctl will be acked from ip_rput_dlpi.
15755  */
15756 int
15757 ipif_up(ipif_t *ipif, queue_t *q, mblk_t *mp)
15758 {
15759 	ill_t		*ill = ipif->ipif_ill;
15760 	boolean_t 	isv6 = ipif->ipif_isv6;
15761 	int		err = 0;
15762 	boolean_t	success;
15763 	uint_t		ipif_orig_id;
15764 	ip_stack_t	*ipst = ill->ill_ipst;
15765 
15766 	ASSERT(IAM_WRITER_IPIF(ipif));
15767 
15768 	ip1dbg(("ipif_up(%s:%u)\n", ill->ill_name, ipif->ipif_id));
15769 
15770 	/* Shouldn't get here if it is already up. */
15771 	if (ipif->ipif_flags & IPIF_UP)
15772 		return (EALREADY);
15773 
15774 	/*
15775 	 * If this is a request to bring up a data address on an interface
15776 	 * under IPMP, then move the address to its IPMP meta-interface and
15777 	 * try to bring it up.  One complication is that the zeroth ipif for
15778 	 * an ill is special, in that every ill always has one, and that code
15779 	 * throughout IP deferences ill->ill_ipif without holding any locks.
15780 	 */
15781 	if (IS_UNDER_IPMP(ill) && ipmp_ipif_is_dataaddr(ipif) &&
15782 	    (!ipif->ipif_isv6 || !V6_IPIF_LINKLOCAL(ipif))) {
15783 		ipif_t	*stubipif = NULL, *moveipif = NULL;
15784 		ill_t	*ipmp_ill = ipmp_illgrp_ipmp_ill(ill->ill_grp);
15785 
15786 		/*
15787 		 * The ipif being brought up should be quiesced.  If it's not,
15788 		 * something has gone amiss and we need to bail out.  (If it's
15789 		 * quiesced, we know it will remain so via IPIF_CHANGING.)
15790 		 */
15791 		mutex_enter(&ill->ill_lock);
15792 		if (!ipif_is_quiescent(ipif)) {
15793 			mutex_exit(&ill->ill_lock);
15794 			return (EINVAL);
15795 		}
15796 		mutex_exit(&ill->ill_lock);
15797 
15798 		/*
15799 		 * If we're going to need to allocate ipifs, do it prior
15800 		 * to starting the move (and grabbing locks).
15801 		 */
15802 		if (ipif->ipif_id == 0) {
15803 			moveipif = ipif_allocate(ill, 0, IRE_LOCAL, B_TRUE,
15804 			    B_FALSE);
15805 			stubipif = ipif_allocate(ill, 0, IRE_LOCAL, B_TRUE,
15806 			    B_FALSE);
15807 			if (moveipif == NULL || stubipif == NULL) {
15808 				mi_free(moveipif);
15809 				mi_free(stubipif);
15810 				return (ENOMEM);
15811 			}
15812 		}
15813 
15814 		/*
15815 		 * Grab or transfer the ipif to move.  During the move, keep
15816 		 * ill_g_lock held to prevent any ill walker threads from
15817 		 * seeing things in an inconsistent state.
15818 		 */
15819 		rw_enter(&ipst->ips_ill_g_lock, RW_WRITER);
15820 		if (ipif->ipif_id != 0) {
15821 			ipif_remove(ipif);
15822 		} else {
15823 			ipif_transfer(ipif, moveipif, stubipif);
15824 			ipif = moveipif;
15825 		}
15826 
15827 		/*
15828 		 * Place the ipif on the IPMP ill.  If the zeroth ipif on
15829 		 * the IPMP ill is a stub (0.0.0.0 down address) then we
15830 		 * replace that one.  Otherwise, pick the next available slot.
15831 		 */
15832 		ipif->ipif_ill = ipmp_ill;
15833 		ipif_orig_id = ipif->ipif_id;
15834 
15835 		if (ipmp_ipif_is_stubaddr(ipmp_ill->ill_ipif)) {
15836 			ipif_transfer(ipif, ipmp_ill->ill_ipif, NULL);
15837 			ipif = ipmp_ill->ill_ipif;
15838 		} else {
15839 			ipif->ipif_id = -1;
15840 			if (ipif_insert(ipif, B_FALSE) != 0) {
15841 				/*
15842 				 * No more available ipif_id's -- put it back
15843 				 * on the original ill and fail the operation.
15844 				 * Since we're writer on the ill, we can be
15845 				 * sure our old slot is still available.
15846 				 */
15847 				ipif->ipif_id = ipif_orig_id;
15848 				ipif->ipif_ill = ill;
15849 				if (ipif_orig_id == 0) {
15850 					ipif_transfer(ipif, ill->ill_ipif,
15851 					    NULL);
15852 				} else {
15853 					VERIFY(ipif_insert(ipif, B_FALSE) == 0);
15854 				}
15855 				rw_exit(&ipst->ips_ill_g_lock);
15856 				return (ENOMEM);
15857 			}
15858 		}
15859 		rw_exit(&ipst->ips_ill_g_lock);
15860 
15861 		/*
15862 		 * Tell SCTP that the ipif has moved.  Note that even if we
15863 		 * had to allocate a new ipif, the original sequence id was
15864 		 * preserved and therefore SCTP won't know.
15865 		 */
15866 		sctp_move_ipif(ipif, ill, ipmp_ill);
15867 
15868 		/*
15869 		 * If the ipif being brought up was on slot zero, then we
15870 		 * first need to bring up the placeholder we stuck there.  In
15871 		 * ip_rput_dlpi_writer(), ip_arp_done(), or the recursive call
15872 		 * to ipif_up() itself, if we successfully bring up the
15873 		 * placeholder, we'll check ill_move_ipif and bring it up too.
15874 		 */
15875 		if (ipif_orig_id == 0) {
15876 			ASSERT(ill->ill_move_ipif == NULL);
15877 			ill->ill_move_ipif = ipif;
15878 			if ((err = ipif_up(ill->ill_ipif, q, mp)) == 0)
15879 				ASSERT(ill->ill_move_ipif == NULL);
15880 			if (err != EINPROGRESS)
15881 				ill->ill_move_ipif = NULL;
15882 			return (err);
15883 		}
15884 
15885 		/*
15886 		 * Bring it up on the IPMP ill.
15887 		 */
15888 		return (ipif_up(ipif, q, mp));
15889 	}
15890 
15891 	/* Skip arp/ndp for any loopback interface. */
15892 	if (ill->ill_wq != NULL) {
15893 		conn_t *connp = CONN_Q(q) ? Q_TO_CONN(q) : NULL;
15894 		ipsq_t	*ipsq = ill->ill_phyint->phyint_ipsq;
15895 
15896 		if (!ill->ill_dl_up) {
15897 			/*
15898 			 * ill_dl_up is not yet set. i.e. we are yet to
15899 			 * DL_BIND with the driver and this is the first
15900 			 * logical interface on the ill to become "up".
15901 			 * Tell the driver to get going (via DL_BIND_REQ).
15902 			 * Note that changing "significant" IFF_ flags
15903 			 * address/netmask etc cause a down/up dance, but
15904 			 * does not cause an unbind (DL_UNBIND) with the driver
15905 			 */
15906 			return (ill_dl_up(ill, ipif, mp, q));
15907 		}
15908 
15909 		/*
15910 		 * ipif_resolver_up may end up sending an
15911 		 * AR_INTERFACE_UP message to ARP, which would, in
15912 		 * turn send a DLPI message to the driver. ioctls are
15913 		 * serialized and so we cannot send more than one
15914 		 * interface up message at a time. If ipif_resolver_up
15915 		 * does send an interface up message to ARP, we get
15916 		 * EINPROGRESS and we will complete in ip_arp_done.
15917 		 */
15918 
15919 		ASSERT(connp != NULL || !CONN_Q(q));
15920 		if (connp != NULL)
15921 			mutex_enter(&connp->conn_lock);
15922 		mutex_enter(&ill->ill_lock);
15923 		success = ipsq_pending_mp_add(connp, ipif, q, mp, 0);
15924 		mutex_exit(&ill->ill_lock);
15925 		if (connp != NULL)
15926 			mutex_exit(&connp->conn_lock);
15927 		if (!success)
15928 			return (EINTR);
15929 
15930 		/*
15931 		 * Crank up the resolver.  For IPv6, this cranks up the
15932 		 * external resolver if one is configured, but even if an
15933 		 * external resolver isn't configured, it must be called to
15934 		 * reset DAD state.  For IPv6, if an external resolver is not
15935 		 * being used, ipif_resolver_up() will never return
15936 		 * EINPROGRESS, so we can always call ipif_ndp_up() here.
15937 		 * Note that if an external resolver is being used, there's no
15938 		 * need to call ipif_ndp_up() since it will do nothing.
15939 		 */
15940 		err = ipif_resolver_up(ipif, Res_act_initial);
15941 		if (err == EINPROGRESS) {
15942 			/* We will complete it in ip_arp_done() */
15943 			return (err);
15944 		}
15945 
15946 		if (isv6 && err == 0)
15947 			err = ipif_ndp_up(ipif, B_TRUE);
15948 
15949 		ASSERT(err != EINPROGRESS);
15950 		mp = ipsq_pending_mp_get(ipsq, &connp);
15951 		ASSERT(mp != NULL);
15952 		if (err != 0)
15953 			return (err);
15954 	} else {
15955 		/*
15956 		 * Interfaces without underlying hardware don't do duplicate
15957 		 * address detection.
15958 		 */
15959 		ASSERT(!(ipif->ipif_flags & IPIF_DUPLICATE));
15960 		ipif->ipif_addr_ready = 1;
15961 	}
15962 
15963 	err = isv6 ? ipif_up_done_v6(ipif) : ipif_up_done(ipif);
15964 	if (err == 0 && ill->ill_move_ipif != NULL) {
15965 		ipif = ill->ill_move_ipif;
15966 		ill->ill_move_ipif = NULL;
15967 		return (ipif_up(ipif, q, mp));
15968 	}
15969 	return (err);
15970 }
15971 
15972 /*
15973  * Perform a bind for the physical device.
15974  * When the routine returns EINPROGRESS then mp has been consumed and
15975  * the ioctl will be acked from ip_rput_dlpi.
15976  * Allocate an unbind message and save it until ipif_down.
15977  */
15978 static int
15979 ill_dl_up(ill_t *ill, ipif_t *ipif, mblk_t *mp, queue_t *q)
15980 {
15981 	areq_t	*areq;
15982 	mblk_t	*areq_mp = NULL;
15983 	mblk_t	*bind_mp = NULL;
15984 	mblk_t	*unbind_mp = NULL;
15985 	conn_t	*connp;
15986 	boolean_t success;
15987 	uint16_t sap_addr;
15988 
15989 	ip1dbg(("ill_dl_up(%s)\n", ill->ill_name));
15990 	ASSERT(IAM_WRITER_ILL(ill));
15991 	ASSERT(mp != NULL);
15992 
15993 	/* Create a resolver cookie for ARP */
15994 	if (!ill->ill_isv6 && ill->ill_net_type == IRE_IF_RESOLVER) {
15995 		areq_mp = ill_arp_alloc(ill, (uchar_t *)&ip_areq_template, 0);
15996 		if (areq_mp == NULL)
15997 			return (ENOMEM);
15998 
15999 		freemsg(ill->ill_resolver_mp);
16000 		ill->ill_resolver_mp = areq_mp;
16001 		areq = (areq_t *)areq_mp->b_rptr;
16002 		sap_addr = ill->ill_sap;
16003 		bcopy(&sap_addr, areq->areq_sap, sizeof (sap_addr));
16004 	}
16005 	bind_mp = ip_dlpi_alloc(sizeof (dl_bind_req_t) + sizeof (long),
16006 	    DL_BIND_REQ);
16007 	if (bind_mp == NULL)
16008 		goto bad;
16009 	((dl_bind_req_t *)bind_mp->b_rptr)->dl_sap = ill->ill_sap;
16010 	((dl_bind_req_t *)bind_mp->b_rptr)->dl_service_mode = DL_CLDLS;
16011 
16012 	unbind_mp = ip_dlpi_alloc(sizeof (dl_unbind_req_t), DL_UNBIND_REQ);
16013 	if (unbind_mp == NULL)
16014 		goto bad;
16015 
16016 	/*
16017 	 * Record state needed to complete this operation when the
16018 	 * DL_BIND_ACK shows up.  Also remember the pre-allocated mblks.
16019 	 */
16020 	connp = CONN_Q(q) ? Q_TO_CONN(q) : NULL;
16021 	ASSERT(connp != NULL || !CONN_Q(q));
16022 	GRAB_CONN_LOCK(q);
16023 	mutex_enter(&ipif->ipif_ill->ill_lock);
16024 	success = ipsq_pending_mp_add(connp, ipif, q, mp, 0);
16025 	mutex_exit(&ipif->ipif_ill->ill_lock);
16026 	RELEASE_CONN_LOCK(q);
16027 	if (!success)
16028 		goto bad;
16029 
16030 	/*
16031 	 * Save the unbind message for ill_dl_down(); it will be consumed when
16032 	 * the interface goes down.
16033 	 */
16034 	ASSERT(ill->ill_unbind_mp == NULL);
16035 	ill->ill_unbind_mp = unbind_mp;
16036 
16037 	ill_dlpi_send(ill, bind_mp);
16038 	/* Send down link-layer capabilities probe if not already done. */
16039 	ill_capability_probe(ill);
16040 
16041 	/*
16042 	 * Sysid used to rely on the fact that netboots set domainname
16043 	 * and the like. Now that miniroot boots aren't strictly netboots
16044 	 * and miniroot network configuration is driven from userland
16045 	 * these things still need to be set. This situation can be detected
16046 	 * by comparing the interface being configured here to the one
16047 	 * dhcifname was set to reference by the boot loader. Once sysid is
16048 	 * converted to use dhcp_ipc_getinfo() this call can go away.
16049 	 */
16050 	if ((ipif->ipif_flags & IPIF_DHCPRUNNING) &&
16051 	    (strcmp(ill->ill_name, dhcifname) == 0) &&
16052 	    (strlen(srpc_domain) == 0)) {
16053 		if (dhcpinit() != 0)
16054 			cmn_err(CE_WARN, "no cached dhcp response");
16055 	}
16056 
16057 	/*
16058 	 * This operation will complete in ip_rput_dlpi with either
16059 	 * a DL_BIND_ACK or DL_ERROR_ACK.
16060 	 */
16061 	return (EINPROGRESS);
16062 bad:
16063 	ip1dbg(("ill_dl_up(%s) FAILED\n", ill->ill_name));
16064 
16065 	freemsg(bind_mp);
16066 	freemsg(unbind_mp);
16067 	return (ENOMEM);
16068 }
16069 
16070 uint_t ip_loopback_mtuplus = IP_LOOPBACK_MTU + IP_SIMPLE_HDR_LENGTH + 20;
16071 
16072 /*
16073  * DLPI and ARP is up.
16074  * Create all the IREs associated with an interface bring up multicast.
16075  * Set the interface flag and finish other initialization
16076  * that potentially had to be differed to after DL_BIND_ACK.
16077  */
16078 int
16079 ipif_up_done(ipif_t *ipif)
16080 {
16081 	ire_t	*ire_array[20];
16082 	ire_t	**irep = ire_array;
16083 	ire_t	**irep1;
16084 	ipaddr_t net_mask = 0;
16085 	ipaddr_t subnet_mask, route_mask;
16086 	ill_t	*ill = ipif->ipif_ill;
16087 	queue_t	*stq;
16088 	ipif_t	 *src_ipif;
16089 	ipif_t   *tmp_ipif;
16090 	boolean_t	flush_ire_cache = B_TRUE;
16091 	int	err = 0;
16092 	ire_t	**ipif_saved_irep = NULL;
16093 	int ipif_saved_ire_cnt;
16094 	int	cnt;
16095 	boolean_t	src_ipif_held = B_FALSE;
16096 	boolean_t	loopback = B_FALSE;
16097 	ip_stack_t	*ipst = ill->ill_ipst;
16098 
16099 	ip1dbg(("ipif_up_done(%s:%u)\n",
16100 	    ipif->ipif_ill->ill_name, ipif->ipif_id));
16101 	/* Check if this is a loopback interface */
16102 	if (ipif->ipif_ill->ill_wq == NULL)
16103 		loopback = B_TRUE;
16104 
16105 	ASSERT(!MUTEX_HELD(&ipif->ipif_ill->ill_lock));
16106 	/*
16107 	 * If all other interfaces for this ill are down or DEPRECATED,
16108 	 * or otherwise unsuitable for source address selection, remove
16109 	 * any IRE_CACHE entries for this ill to make sure source
16110 	 * address selection gets to take this new ipif into account.
16111 	 * No need to hold ill_lock while traversing the ipif list since
16112 	 * we are writer
16113 	 */
16114 	for (tmp_ipif = ill->ill_ipif; tmp_ipif;
16115 	    tmp_ipif = tmp_ipif->ipif_next) {
16116 		if (((tmp_ipif->ipif_flags &
16117 		    (IPIF_NOXMIT|IPIF_ANYCAST|IPIF_NOLOCAL|IPIF_DEPRECATED)) ||
16118 		    !(tmp_ipif->ipif_flags & IPIF_UP)) ||
16119 		    (tmp_ipif == ipif))
16120 			continue;
16121 		/* first useable pre-existing interface */
16122 		flush_ire_cache = B_FALSE;
16123 		break;
16124 	}
16125 	if (flush_ire_cache)
16126 		ire_walk_ill_v4(MATCH_IRE_ILL | MATCH_IRE_TYPE,
16127 		    IRE_CACHE, ill_ipif_cache_delete, (char *)ill, ill);
16128 
16129 	/*
16130 	 * Figure out which way the send-to queue should go.  Only
16131 	 * IRE_IF_RESOLVER or IRE_IF_NORESOLVER or IRE_LOOPBACK
16132 	 * should show up here.
16133 	 */
16134 	switch (ill->ill_net_type) {
16135 	case IRE_IF_RESOLVER:
16136 		stq = ill->ill_rq;
16137 		break;
16138 	case IRE_IF_NORESOLVER:
16139 	case IRE_LOOPBACK:
16140 		stq = ill->ill_wq;
16141 		break;
16142 	default:
16143 		return (EINVAL);
16144 	}
16145 
16146 	if (IS_LOOPBACK(ill)) {
16147 		/*
16148 		 * lo0:1 and subsequent ipifs were marked IRE_LOCAL in
16149 		 * ipif_lookup_on_name(), but in the case of zones we can have
16150 		 * several loopback addresses on lo0. So all the interfaces with
16151 		 * loopback addresses need to be marked IRE_LOOPBACK.
16152 		 */
16153 		if (V4_PART_OF_V6(ipif->ipif_v6lcl_addr) ==
16154 		    htonl(INADDR_LOOPBACK))
16155 			ipif->ipif_ire_type = IRE_LOOPBACK;
16156 		else
16157 			ipif->ipif_ire_type = IRE_LOCAL;
16158 	}
16159 
16160 	if (ipif->ipif_flags & (IPIF_NOLOCAL|IPIF_ANYCAST) ||
16161 	    ((ipif->ipif_flags & IPIF_DEPRECATED) &&
16162 	    !(ipif->ipif_flags & IPIF_NOFAILOVER))) {
16163 		/*
16164 		 * Can't use our source address. Select a different
16165 		 * source address for the IRE_INTERFACE and IRE_LOCAL
16166 		 */
16167 		src_ipif = ipif_select_source(ipif->ipif_ill,
16168 		    ipif->ipif_subnet, ipif->ipif_zoneid);
16169 		if (src_ipif == NULL)
16170 			src_ipif = ipif;	/* Last resort */
16171 		else
16172 			src_ipif_held = B_TRUE;
16173 	} else {
16174 		src_ipif = ipif;
16175 	}
16176 
16177 	/* Create all the IREs associated with this interface */
16178 	if ((ipif->ipif_lcl_addr != INADDR_ANY) &&
16179 	    !(ipif->ipif_flags & IPIF_NOLOCAL)) {
16180 
16181 		/*
16182 		 * If we're on a labeled system then make sure that zone-
16183 		 * private addresses have proper remote host database entries.
16184 		 */
16185 		if (is_system_labeled() &&
16186 		    ipif->ipif_ire_type != IRE_LOOPBACK &&
16187 		    !tsol_check_interface_address(ipif))
16188 			return (EINVAL);
16189 
16190 		/* Register the source address for __sin6_src_id */
16191 		err = ip_srcid_insert(&ipif->ipif_v6lcl_addr,
16192 		    ipif->ipif_zoneid, ipst);
16193 		if (err != 0) {
16194 			ip0dbg(("ipif_up_done: srcid_insert %d\n", err));
16195 			return (err);
16196 		}
16197 
16198 		/* If the interface address is set, create the local IRE. */
16199 		ip1dbg(("ipif_up_done: 0x%p creating IRE 0x%x for 0x%x\n",
16200 		    (void *)ipif,
16201 		    ipif->ipif_ire_type,
16202 		    ntohl(ipif->ipif_lcl_addr)));
16203 		*irep++ = ire_create(
16204 		    (uchar_t *)&ipif->ipif_lcl_addr,	/* dest address */
16205 		    (uchar_t *)&ip_g_all_ones,		/* mask */
16206 		    (uchar_t *)&src_ipif->ipif_src_addr, /* source address */
16207 		    NULL,				/* no gateway */
16208 		    &ip_loopback_mtuplus,		/* max frag size */
16209 		    NULL,
16210 		    ipif->ipif_rq,			/* recv-from queue */
16211 		    NULL,				/* no send-to queue */
16212 		    ipif->ipif_ire_type,		/* LOCAL or LOOPBACK */
16213 		    ipif,
16214 		    0,
16215 		    0,
16216 		    0,
16217 		    (ipif->ipif_flags & IPIF_PRIVATE) ?
16218 		    RTF_PRIVATE : 0,
16219 		    &ire_uinfo_null,
16220 		    NULL,
16221 		    NULL,
16222 		    ipst);
16223 	} else {
16224 		ip1dbg((
16225 		    "ipif_up_done: not creating IRE %d for 0x%x: flags 0x%x\n",
16226 		    ipif->ipif_ire_type,
16227 		    ntohl(ipif->ipif_lcl_addr),
16228 		    (uint_t)ipif->ipif_flags));
16229 	}
16230 	if ((ipif->ipif_lcl_addr != INADDR_ANY) &&
16231 	    !(ipif->ipif_flags & IPIF_NOLOCAL)) {
16232 		net_mask = ip_net_mask(ipif->ipif_lcl_addr);
16233 	} else {
16234 		net_mask = htonl(IN_CLASSA_NET);	/* fallback */
16235 	}
16236 
16237 	subnet_mask = ipif->ipif_net_mask;
16238 
16239 	/*
16240 	 * If mask was not specified, use natural netmask of
16241 	 * interface address. Also, store this mask back into the
16242 	 * ipif struct.
16243 	 */
16244 	if (subnet_mask == 0) {
16245 		subnet_mask = net_mask;
16246 		V4MASK_TO_V6(subnet_mask, ipif->ipif_v6net_mask);
16247 		V6_MASK_COPY(ipif->ipif_v6lcl_addr, ipif->ipif_v6net_mask,
16248 		    ipif->ipif_v6subnet);
16249 	}
16250 
16251 	/* Set up the IRE_IF_RESOLVER or IRE_IF_NORESOLVER, as appropriate. */
16252 	if (stq != NULL && !(ipif->ipif_flags & IPIF_NOXMIT) &&
16253 	    ipif->ipif_subnet != INADDR_ANY) {
16254 		/* ipif_subnet is ipif_pp_dst_addr for pt-pt */
16255 
16256 		if (ipif->ipif_flags & IPIF_POINTOPOINT) {
16257 			route_mask = IP_HOST_MASK;
16258 		} else {
16259 			route_mask = subnet_mask;
16260 		}
16261 
16262 		ip1dbg(("ipif_up_done: ipif 0x%p ill 0x%p "
16263 		    "creating if IRE ill_net_type 0x%x for 0x%x\n",
16264 		    (void *)ipif, (void *)ill,
16265 		    ill->ill_net_type,
16266 		    ntohl(ipif->ipif_subnet)));
16267 		*irep++ = ire_create(
16268 		    (uchar_t *)&ipif->ipif_subnet,	/* dest address */
16269 		    (uchar_t *)&route_mask,		/* mask */
16270 		    (uchar_t *)&src_ipif->ipif_src_addr, /* src addr */
16271 		    NULL,				/* no gateway */
16272 		    &ipif->ipif_mtu,			/* max frag */
16273 		    NULL,
16274 		    NULL,				/* no recv queue */
16275 		    stq,				/* send-to queue */
16276 		    ill->ill_net_type,			/* IF_[NO]RESOLVER */
16277 		    ipif,
16278 		    0,
16279 		    0,
16280 		    0,
16281 		    (ipif->ipif_flags & IPIF_PRIVATE) ? RTF_PRIVATE: 0,
16282 		    &ire_uinfo_null,
16283 		    NULL,
16284 		    NULL,
16285 		    ipst);
16286 	}
16287 
16288 	/*
16289 	 * Create any necessary broadcast IREs.
16290 	 */
16291 	if (ipif->ipif_flags & IPIF_BROADCAST)
16292 		irep = ipif_create_bcast_ires(ipif, irep);
16293 
16294 	ASSERT(!MUTEX_HELD(&ipif->ipif_ill->ill_lock));
16295 
16296 	/* If an earlier ire_create failed, get out now */
16297 	for (irep1 = irep; irep1 > ire_array; ) {
16298 		irep1--;
16299 		if (*irep1 == NULL) {
16300 			ip1dbg(("ipif_up_done: NULL ire found in ire_array\n"));
16301 			err = ENOMEM;
16302 			goto bad;
16303 		}
16304 	}
16305 
16306 	/*
16307 	 * Need to atomically check for IP address availability under
16308 	 * ip_addr_avail_lock.  ill_g_lock is held as reader to ensure no new
16309 	 * ills or new ipifs can be added while we are checking availability.
16310 	 */
16311 	rw_enter(&ipst->ips_ill_g_lock, RW_READER);
16312 	mutex_enter(&ipst->ips_ip_addr_avail_lock);
16313 	/* Mark it up, and increment counters. */
16314 	ipif->ipif_flags |= IPIF_UP;
16315 	ill->ill_ipif_up_count++;
16316 	err = ip_addr_availability_check(ipif);
16317 	mutex_exit(&ipst->ips_ip_addr_avail_lock);
16318 	rw_exit(&ipst->ips_ill_g_lock);
16319 
16320 	if (err != 0) {
16321 		/*
16322 		 * Our address may already be up on the same ill. In this case,
16323 		 * the ARP entry for our ipif replaced the one for the other
16324 		 * ipif. So we don't want to delete it (otherwise the other ipif
16325 		 * would be unable to send packets).
16326 		 * ip_addr_availability_check() identifies this case for us and
16327 		 * returns EADDRINUSE; we need to turn it into EADDRNOTAVAIL
16328 		 * which is the expected error code.
16329 		 */
16330 		if (err == EADDRINUSE) {
16331 			freemsg(ipif->ipif_arp_del_mp);
16332 			ipif->ipif_arp_del_mp = NULL;
16333 			err = EADDRNOTAVAIL;
16334 		}
16335 		ill->ill_ipif_up_count--;
16336 		ipif->ipif_flags &= ~IPIF_UP;
16337 		goto bad;
16338 	}
16339 
16340 	/*
16341 	 * Add in all newly created IREs.  ire_create_bcast() has
16342 	 * already checked for duplicates of the IRE_BROADCAST type.
16343 	 */
16344 	for (irep1 = irep; irep1 > ire_array; ) {
16345 		irep1--;
16346 		ASSERT(!MUTEX_HELD(&((*irep1)->ire_ipif->ipif_ill->ill_lock)));
16347 		/*
16348 		 * refheld by ire_add. refele towards the end of the func
16349 		 */
16350 		(void) ire_add(irep1, NULL, NULL, NULL, B_FALSE);
16351 	}
16352 
16353 	/* Recover any additional IRE_IF_[NO]RESOLVER entries for this ipif */
16354 	ipif_saved_ire_cnt = ipif->ipif_saved_ire_cnt;
16355 	ipif_saved_irep = ipif_recover_ire(ipif);
16356 
16357 	if (!loopback) {
16358 		/*
16359 		 * If the broadcast address has been set, make sure it makes
16360 		 * sense based on the interface address.
16361 		 * Only match on ill since we are sharing broadcast addresses.
16362 		 */
16363 		if ((ipif->ipif_brd_addr != INADDR_ANY) &&
16364 		    (ipif->ipif_flags & IPIF_BROADCAST)) {
16365 			ire_t	*ire;
16366 
16367 			ire = ire_ctable_lookup(ipif->ipif_brd_addr, 0,
16368 			    IRE_BROADCAST, ipif, ALL_ZONES,
16369 			    NULL, (MATCH_IRE_TYPE | MATCH_IRE_ILL), ipst);
16370 
16371 			if (ire == NULL) {
16372 				/*
16373 				 * If there isn't a matching broadcast IRE,
16374 				 * revert to the default for this netmask.
16375 				 */
16376 				ipif->ipif_v6brd_addr = ipv6_all_zeros;
16377 				mutex_enter(&ipif->ipif_ill->ill_lock);
16378 				ipif_set_default(ipif);
16379 				mutex_exit(&ipif->ipif_ill->ill_lock);
16380 			} else {
16381 				ire_refrele(ire);
16382 			}
16383 		}
16384 
16385 	}
16386 
16387 	if (ill->ill_need_recover_multicast) {
16388 		/*
16389 		 * Need to recover all multicast memberships in the driver.
16390 		 * This had to be deferred until we had attached.  The same
16391 		 * code exists in ipif_up_done_v6() to recover IPv6
16392 		 * memberships.
16393 		 *
16394 		 * Note that it would be preferable to unconditionally do the
16395 		 * ill_recover_multicast() in ill_dl_up(), but we cannot do
16396 		 * that since ill_join_allmulti() depends on ill_dl_up being
16397 		 * set, and it is not set until we receive a DL_BIND_ACK after
16398 		 * having called ill_dl_up().
16399 		 */
16400 		ill_recover_multicast(ill);
16401 	}
16402 
16403 	if (ill->ill_ipif_up_count == 1) {
16404 		/*
16405 		 * Since the interface is now up, it may now be active.
16406 		 */
16407 		if (IS_UNDER_IPMP(ill))
16408 			ipmp_ill_refresh_active(ill);
16409 
16410 		/*
16411 		 * If this is an IPMP interface, we may now be able to
16412 		 * establish ARP entries.
16413 		 */
16414 		if (IS_IPMP(ill))
16415 			ipmp_illgrp_refresh_arpent(ill->ill_grp);
16416 	}
16417 
16418 	/* Join the allhosts multicast address */
16419 	ipif_multicast_up(ipif);
16420 
16421 	/*
16422 	 * See if anybody else would benefit from our new ipif.
16423 	 */
16424 	if (!loopback &&
16425 	    !(ipif->ipif_flags & (IPIF_NOLOCAL|IPIF_ANYCAST|IPIF_DEPRECATED))) {
16426 		ill_update_source_selection(ill);
16427 	}
16428 
16429 	for (irep1 = irep; irep1 > ire_array; ) {
16430 		irep1--;
16431 		if (*irep1 != NULL) {
16432 			/* was held in ire_add */
16433 			ire_refrele(*irep1);
16434 		}
16435 	}
16436 
16437 	cnt = ipif_saved_ire_cnt;
16438 	for (irep1 = ipif_saved_irep; cnt > 0; irep1++, cnt--) {
16439 		if (*irep1 != NULL) {
16440 			/* was held in ire_add */
16441 			ire_refrele(*irep1);
16442 		}
16443 	}
16444 
16445 	if (!loopback && ipif->ipif_addr_ready) {
16446 		/* Broadcast an address mask reply. */
16447 		ipif_mask_reply(ipif);
16448 	}
16449 	if (ipif_saved_irep != NULL) {
16450 		kmem_free(ipif_saved_irep,
16451 		    ipif_saved_ire_cnt * sizeof (ire_t *));
16452 	}
16453 	if (src_ipif_held)
16454 		ipif_refrele(src_ipif);
16455 
16456 	/*
16457 	 * This had to be deferred until we had bound.  Tell routing sockets and
16458 	 * others that this interface is up if it looks like the address has
16459 	 * been validated.  Otherwise, if it isn't ready yet, wait for
16460 	 * duplicate address detection to do its thing.
16461 	 */
16462 	if (ipif->ipif_addr_ready)
16463 		ipif_up_notify(ipif);
16464 	return (0);
16465 
16466 bad:
16467 	ip1dbg(("ipif_up_done: FAILED \n"));
16468 
16469 	while (irep > ire_array) {
16470 		irep--;
16471 		if (*irep != NULL)
16472 			ire_delete(*irep);
16473 	}
16474 	(void) ip_srcid_remove(&ipif->ipif_v6lcl_addr, ipif->ipif_zoneid, ipst);
16475 
16476 	if (ipif_saved_irep != NULL) {
16477 		kmem_free(ipif_saved_irep,
16478 		    ipif_saved_ire_cnt * sizeof (ire_t *));
16479 	}
16480 	if (src_ipif_held)
16481 		ipif_refrele(src_ipif);
16482 
16483 	ipif_resolver_down(ipif);
16484 	return (err);
16485 }
16486 
16487 /*
16488  * Turn off the ARP with the ILLF_NOARP flag.
16489  */
16490 static int
16491 ill_arp_off(ill_t *ill)
16492 {
16493 	mblk_t	*arp_off_mp = NULL;
16494 	mblk_t	*arp_on_mp = NULL;
16495 
16496 	ip1dbg(("ill_arp_off(%s)\n", ill->ill_name));
16497 
16498 	ASSERT(IAM_WRITER_ILL(ill));
16499 	ASSERT(ill->ill_net_type == IRE_IF_RESOLVER);
16500 
16501 	/*
16502 	 * If the on message is still around we've already done
16503 	 * an arp_off without doing an arp_on thus there is no
16504 	 * work needed.
16505 	 */
16506 	if (ill->ill_arp_on_mp != NULL)
16507 		return (0);
16508 
16509 	/*
16510 	 * Allocate an ARP on message (to be saved) and an ARP off message
16511 	 */
16512 	arp_off_mp = ill_arp_alloc(ill, (uchar_t *)&ip_aroff_template, 0);
16513 	if (!arp_off_mp)
16514 		return (ENOMEM);
16515 
16516 	arp_on_mp = ill_arp_alloc(ill, (uchar_t *)&ip_aron_template, 0);
16517 	if (!arp_on_mp)
16518 		goto failed;
16519 
16520 	ASSERT(ill->ill_arp_on_mp == NULL);
16521 	ill->ill_arp_on_mp = arp_on_mp;
16522 
16523 	/* Send an AR_INTERFACE_OFF request */
16524 	putnext(ill->ill_rq, arp_off_mp);
16525 	return (0);
16526 failed:
16527 
16528 	if (arp_off_mp)
16529 		freemsg(arp_off_mp);
16530 	return (ENOMEM);
16531 }
16532 
16533 /*
16534  * Turn on ARP by turning off the ILLF_NOARP flag.
16535  */
16536 static int
16537 ill_arp_on(ill_t *ill)
16538 {
16539 	mblk_t	*mp;
16540 
16541 	ip1dbg(("ipif_arp_on(%s)\n", ill->ill_name));
16542 
16543 	ASSERT(ill->ill_net_type == IRE_IF_RESOLVER);
16544 
16545 	ASSERT(IAM_WRITER_ILL(ill));
16546 	/*
16547 	 * Send an AR_INTERFACE_ON request if we have already done
16548 	 * an arp_off (which allocated the message).
16549 	 */
16550 	if (ill->ill_arp_on_mp != NULL) {
16551 		mp = ill->ill_arp_on_mp;
16552 		ill->ill_arp_on_mp = NULL;
16553 		putnext(ill->ill_rq, mp);
16554 	}
16555 	return (0);
16556 }
16557 
16558 /*
16559  * Checks for availbility of a usable source address (if there is one) when the
16560  * destination ILL has the ill_usesrc_ifindex pointing to another ILL. Note
16561  * this selection is done regardless of the destination.
16562  */
16563 boolean_t
16564 ipif_usesrc_avail(ill_t *ill, zoneid_t zoneid)
16565 {
16566 	uint_t	ifindex;
16567 	ipif_t	*ipif = NULL;
16568 	ill_t	*uill;
16569 	boolean_t isv6;
16570 	ip_stack_t	*ipst = ill->ill_ipst;
16571 
16572 	ASSERT(ill != NULL);
16573 
16574 	isv6 = ill->ill_isv6;
16575 	ifindex = ill->ill_usesrc_ifindex;
16576 	if (ifindex != 0) {
16577 		uill = ill_lookup_on_ifindex(ifindex, isv6, NULL, NULL, NULL,
16578 		    NULL, ipst);
16579 		if (uill == NULL)
16580 			return (B_FALSE);
16581 		mutex_enter(&uill->ill_lock);
16582 		for (ipif = uill->ill_ipif; ipif != NULL;
16583 		    ipif = ipif->ipif_next) {
16584 			if (!IPIF_CAN_LOOKUP(ipif))
16585 				continue;
16586 			if (ipif->ipif_flags & (IPIF_NOLOCAL|IPIF_ANYCAST))
16587 				continue;
16588 			if (!(ipif->ipif_flags & IPIF_UP))
16589 				continue;
16590 			if (ipif->ipif_zoneid != zoneid)
16591 				continue;
16592 			if ((isv6 &&
16593 			    IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6lcl_addr)) ||
16594 			    (ipif->ipif_lcl_addr == INADDR_ANY))
16595 				continue;
16596 			mutex_exit(&uill->ill_lock);
16597 			ill_refrele(uill);
16598 			return (B_TRUE);
16599 		}
16600 		mutex_exit(&uill->ill_lock);
16601 		ill_refrele(uill);
16602 	}
16603 	return (B_FALSE);
16604 }
16605 
16606 /*
16607  * IP source address type, sorted from worst to best.  For a given type,
16608  * always prefer IP addresses on the same subnet.  All-zones addresses are
16609  * suboptimal because they pose problems with unlabeled destinations.
16610  */
16611 typedef enum {
16612 	IPIF_NONE,
16613 	IPIF_DIFFNET_DEPRECATED, 	/* deprecated and different subnet */
16614 	IPIF_SAMENET_DEPRECATED, 	/* deprecated and same subnet */
16615 	IPIF_DIFFNET_ALLZONES,		/* allzones and different subnet */
16616 	IPIF_SAMENET_ALLZONES,		/* allzones and same subnet */
16617 	IPIF_DIFFNET,			/* normal and different subnet */
16618 	IPIF_SAMENET			/* normal and same subnet */
16619 } ipif_type_t;
16620 
16621 /*
16622  * Pick the optimal ipif on `ill' for sending to destination `dst' from zone
16623  * `zoneid'.  We rate usable ipifs from low -> high as per the ipif_type_t
16624  * enumeration, and return the highest-rated ipif.  If there's a tie, we pick
16625  * the first one, unless IPMP is used in which case we round-robin among them;
16626  * see below for more.
16627  *
16628  * Returns NULL if there is no suitable source address for the ill.
16629  * This only occurs when there is no valid source address for the ill.
16630  */
16631 ipif_t *
16632 ipif_select_source(ill_t *ill, ipaddr_t dst, zoneid_t zoneid)
16633 {
16634 	ill_t	*usill = NULL;
16635 	ill_t	*ipmp_ill = NULL;
16636 	ipif_t	*start_ipif, *next_ipif, *ipif, *best_ipif;
16637 	ipif_type_t type, best_type;
16638 	tsol_tpc_t *src_rhtp, *dst_rhtp;
16639 	ip_stack_t *ipst = ill->ill_ipst;
16640 	boolean_t samenet;
16641 
16642 	if (ill->ill_usesrc_ifindex != 0) {
16643 		usill = ill_lookup_on_ifindex(ill->ill_usesrc_ifindex,
16644 		    B_FALSE, NULL, NULL, NULL, NULL, ipst);
16645 		if (usill != NULL)
16646 			ill = usill;	/* Select source from usesrc ILL */
16647 		else
16648 			return (NULL);
16649 	}
16650 
16651 	/*
16652 	 * Test addresses should never be used for source address selection,
16653 	 * so if we were passed one, switch to the IPMP meta-interface.
16654 	 */
16655 	if (IS_UNDER_IPMP(ill)) {
16656 		if ((ipmp_ill = ipmp_ill_hold_ipmp_ill(ill)) != NULL)
16657 			ill = ipmp_ill;	/* Select source from IPMP ill */
16658 		else
16659 			return (NULL);
16660 	}
16661 
16662 	/*
16663 	 * If we're dealing with an unlabeled destination on a labeled system,
16664 	 * make sure that we ignore source addresses that are incompatible with
16665 	 * the destination's default label.  That destination's default label
16666 	 * must dominate the minimum label on the source address.
16667 	 */
16668 	dst_rhtp = NULL;
16669 	if (is_system_labeled()) {
16670 		dst_rhtp = find_tpc(&dst, IPV4_VERSION, B_FALSE);
16671 		if (dst_rhtp == NULL)
16672 			return (NULL);
16673 		if (dst_rhtp->tpc_tp.host_type != UNLABELED) {
16674 			TPC_RELE(dst_rhtp);
16675 			dst_rhtp = NULL;
16676 		}
16677 	}
16678 
16679 	/*
16680 	 * Hold the ill_g_lock as reader. This makes sure that no ipif/ill
16681 	 * can be deleted. But an ipif/ill can get CONDEMNED any time.
16682 	 * After selecting the right ipif, under ill_lock make sure ipif is
16683 	 * not condemned, and increment refcnt. If ipif is CONDEMNED,
16684 	 * we retry. Inside the loop we still need to check for CONDEMNED,
16685 	 * but not under a lock.
16686 	 */
16687 	rw_enter(&ipst->ips_ill_g_lock, RW_READER);
16688 retry:
16689 	/*
16690 	 * For source address selection, we treat the ipif list as circular
16691 	 * and continue until we get back to where we started.  This allows
16692 	 * IPMP to vary source address selection (which improves inbound load
16693 	 * spreading) by caching its last ending point and starting from
16694 	 * there.  NOTE: we don't have to worry about ill_src_ipif changing
16695 	 * ills since that can't happen on the IPMP ill.
16696 	 */
16697 	start_ipif = ill->ill_ipif;
16698 	if (IS_IPMP(ill) && ill->ill_src_ipif != NULL)
16699 		start_ipif = ill->ill_src_ipif;
16700 
16701 	ipif = start_ipif;
16702 	best_ipif = NULL;
16703 	best_type = IPIF_NONE;
16704 	do {
16705 		if ((next_ipif = ipif->ipif_next) == NULL)
16706 			next_ipif = ill->ill_ipif;
16707 
16708 		if (!IPIF_CAN_LOOKUP(ipif))
16709 			continue;
16710 		/* Always skip NOLOCAL and ANYCAST interfaces */
16711 		if (ipif->ipif_flags & (IPIF_NOLOCAL|IPIF_ANYCAST))
16712 			continue;
16713 		if (!(ipif->ipif_flags & IPIF_UP) || !ipif->ipif_addr_ready)
16714 			continue;
16715 		if (ipif->ipif_zoneid != zoneid &&
16716 		    ipif->ipif_zoneid != ALL_ZONES)
16717 			continue;
16718 
16719 		/*
16720 		 * Interfaces with 0.0.0.0 address are allowed to be UP, but
16721 		 * are not valid as source addresses.
16722 		 */
16723 		if (ipif->ipif_lcl_addr == INADDR_ANY)
16724 			continue;
16725 
16726 		/*
16727 		 * Check compatibility of local address for destination's
16728 		 * default label if we're on a labeled system.	Incompatible
16729 		 * addresses can't be used at all.
16730 		 */
16731 		if (dst_rhtp != NULL) {
16732 			boolean_t incompat;
16733 
16734 			src_rhtp = find_tpc(&ipif->ipif_lcl_addr,
16735 			    IPV4_VERSION, B_FALSE);
16736 			if (src_rhtp == NULL)
16737 				continue;
16738 			incompat = src_rhtp->tpc_tp.host_type != SUN_CIPSO ||
16739 			    src_rhtp->tpc_tp.tp_doi !=
16740 			    dst_rhtp->tpc_tp.tp_doi ||
16741 			    (!_blinrange(&dst_rhtp->tpc_tp.tp_def_label,
16742 			    &src_rhtp->tpc_tp.tp_sl_range_cipso) &&
16743 			    !blinlset(&dst_rhtp->tpc_tp.tp_def_label,
16744 			    src_rhtp->tpc_tp.tp_sl_set_cipso));
16745 			TPC_RELE(src_rhtp);
16746 			if (incompat)
16747 				continue;
16748 		}
16749 
16750 		samenet = ((ipif->ipif_net_mask & dst) == ipif->ipif_subnet);
16751 
16752 		if (ipif->ipif_flags & IPIF_DEPRECATED) {
16753 			type = samenet ? IPIF_SAMENET_DEPRECATED :
16754 			    IPIF_DIFFNET_DEPRECATED;
16755 		} else if (ipif->ipif_zoneid == ALL_ZONES) {
16756 			type = samenet ? IPIF_SAMENET_ALLZONES :
16757 			    IPIF_DIFFNET_ALLZONES;
16758 		} else {
16759 			type = samenet ? IPIF_SAMENET : IPIF_DIFFNET;
16760 		}
16761 
16762 		if (type > best_type) {
16763 			best_type = type;
16764 			best_ipif = ipif;
16765 			if (best_type == IPIF_SAMENET)
16766 				break; /* can't get better */
16767 		}
16768 	} while ((ipif = next_ipif) != start_ipif);
16769 
16770 	if ((ipif = best_ipif) != NULL) {
16771 		mutex_enter(&ipif->ipif_ill->ill_lock);
16772 		if (!IPIF_CAN_LOOKUP(ipif)) {
16773 			mutex_exit(&ipif->ipif_ill->ill_lock);
16774 			goto retry;
16775 		}
16776 		ipif_refhold_locked(ipif);
16777 
16778 		/*
16779 		 * For IPMP, update the source ipif rotor to the next ipif,
16780 		 * provided we can look it up.  (We must not use it if it's
16781 		 * IPIF_CONDEMNED since we may have grabbed ill_g_lock after
16782 		 * ipif_free() checked ill_src_ipif.)
16783 		 */
16784 		if (IS_IPMP(ill) && ipif != NULL) {
16785 			next_ipif = ipif->ipif_next;
16786 			if (next_ipif != NULL && IPIF_CAN_LOOKUP(next_ipif))
16787 				ill->ill_src_ipif = next_ipif;
16788 			else
16789 				ill->ill_src_ipif = NULL;
16790 		}
16791 		mutex_exit(&ipif->ipif_ill->ill_lock);
16792 	}
16793 
16794 	rw_exit(&ipst->ips_ill_g_lock);
16795 	if (usill != NULL)
16796 		ill_refrele(usill);
16797 	if (ipmp_ill != NULL)
16798 		ill_refrele(ipmp_ill);
16799 	if (dst_rhtp != NULL)
16800 		TPC_RELE(dst_rhtp);
16801 
16802 #ifdef DEBUG
16803 	if (ipif == NULL) {
16804 		char buf1[INET6_ADDRSTRLEN];
16805 
16806 		ip1dbg(("ipif_select_source(%s, %s) -> NULL\n",
16807 		    ill->ill_name,
16808 		    inet_ntop(AF_INET, &dst, buf1, sizeof (buf1))));
16809 	} else {
16810 		char buf1[INET6_ADDRSTRLEN];
16811 		char buf2[INET6_ADDRSTRLEN];
16812 
16813 		ip1dbg(("ipif_select_source(%s, %s) -> %s\n",
16814 		    ipif->ipif_ill->ill_name,
16815 		    inet_ntop(AF_INET, &dst, buf1, sizeof (buf1)),
16816 		    inet_ntop(AF_INET, &ipif->ipif_lcl_addr,
16817 		    buf2, sizeof (buf2))));
16818 	}
16819 #endif /* DEBUG */
16820 	return (ipif);
16821 }
16822 
16823 /*
16824  * If old_ipif is not NULL, see if ipif was derived from old
16825  * ipif and if so, recreate the interface route by re-doing
16826  * source address selection. This happens when ipif_down ->
16827  * ipif_update_other_ipifs calls us.
16828  *
16829  * If old_ipif is NULL, just redo the source address selection
16830  * if needed. This happens when ipif_up_done calls us.
16831  */
16832 static void
16833 ipif_recreate_interface_routes(ipif_t *old_ipif, ipif_t *ipif)
16834 {
16835 	ire_t *ire;
16836 	ire_t *ipif_ire;
16837 	queue_t *stq;
16838 	ipif_t *nipif;
16839 	ill_t *ill;
16840 	boolean_t need_rele = B_FALSE;
16841 	ip_stack_t	*ipst = ipif->ipif_ill->ill_ipst;
16842 
16843 	ASSERT(old_ipif == NULL || IAM_WRITER_IPIF(old_ipif));
16844 	ASSERT(IAM_WRITER_IPIF(ipif));
16845 
16846 	ill = ipif->ipif_ill;
16847 	if (!(ipif->ipif_flags &
16848 	    (IPIF_NOLOCAL|IPIF_ANYCAST|IPIF_DEPRECATED))) {
16849 		/*
16850 		 * Can't possibly have borrowed the source
16851 		 * from old_ipif.
16852 		 */
16853 		return;
16854 	}
16855 
16856 	/*
16857 	 * Is there any work to be done? No work if the address
16858 	 * is INADDR_ANY, loopback or NOLOCAL or ANYCAST (
16859 	 * ipif_select_source() does not borrow addresses from
16860 	 * NOLOCAL and ANYCAST interfaces).
16861 	 */
16862 	if ((old_ipif != NULL) &&
16863 	    ((old_ipif->ipif_lcl_addr == INADDR_ANY) ||
16864 	    (old_ipif->ipif_ill->ill_wq == NULL) ||
16865 	    (old_ipif->ipif_flags &
16866 	    (IPIF_NOLOCAL|IPIF_ANYCAST)))) {
16867 		return;
16868 	}
16869 
16870 	/*
16871 	 * Perform the same checks as when creating the
16872 	 * IRE_INTERFACE in ipif_up_done.
16873 	 */
16874 	if (!(ipif->ipif_flags & IPIF_UP))
16875 		return;
16876 
16877 	if ((ipif->ipif_flags & IPIF_NOXMIT) ||
16878 	    (ipif->ipif_subnet == INADDR_ANY))
16879 		return;
16880 
16881 	ipif_ire = ipif_to_ire(ipif);
16882 	if (ipif_ire == NULL)
16883 		return;
16884 
16885 	/*
16886 	 * We know that ipif uses some other source for its
16887 	 * IRE_INTERFACE. Is it using the source of this
16888 	 * old_ipif?
16889 	 */
16890 	if (old_ipif != NULL &&
16891 	    old_ipif->ipif_lcl_addr != ipif_ire->ire_src_addr) {
16892 		ire_refrele(ipif_ire);
16893 		return;
16894 	}
16895 	if (ip_debug > 2) {
16896 		/* ip1dbg */
16897 		pr_addr_dbg("ipif_recreate_interface_routes: deleting IRE for"
16898 		    " src %s\n", AF_INET, &ipif_ire->ire_src_addr);
16899 	}
16900 
16901 	stq = ipif_ire->ire_stq;
16902 
16903 	/*
16904 	 * Can't use our source address. Select a different
16905 	 * source address for the IRE_INTERFACE.
16906 	 */
16907 	nipif = ipif_select_source(ill, ipif->ipif_subnet, ipif->ipif_zoneid);
16908 	if (nipif == NULL) {
16909 		/* Last resort - all ipif's have IPIF_NOLOCAL */
16910 		nipif = ipif;
16911 	} else {
16912 		need_rele = B_TRUE;
16913 	}
16914 
16915 	ire = ire_create(
16916 	    (uchar_t *)&ipif->ipif_subnet,	/* dest pref */
16917 	    (uchar_t *)&ipif->ipif_net_mask,	/* mask */
16918 	    (uchar_t *)&nipif->ipif_src_addr,	/* src addr */
16919 	    NULL,				/* no gateway */
16920 	    &ipif->ipif_mtu,			/* max frag */
16921 	    NULL,				/* no src nce */
16922 	    NULL,				/* no recv from queue */
16923 	    stq,				/* send-to queue */
16924 	    ill->ill_net_type,			/* IF_[NO]RESOLVER */
16925 	    ipif,
16926 	    0,
16927 	    0,
16928 	    0,
16929 	    0,
16930 	    &ire_uinfo_null,
16931 	    NULL,
16932 	    NULL,
16933 	    ipst);
16934 
16935 	if (ire != NULL) {
16936 		ire_t *ret_ire;
16937 		int error;
16938 
16939 		/*
16940 		 * We don't need ipif_ire anymore. We need to delete
16941 		 * before we add so that ire_add does not detect
16942 		 * duplicates.
16943 		 */
16944 		ire_delete(ipif_ire);
16945 		ret_ire = ire;
16946 		error = ire_add(&ret_ire, NULL, NULL, NULL, B_FALSE);
16947 		ASSERT(error == 0);
16948 		ASSERT(ire == ret_ire);
16949 		/* Held in ire_add */
16950 		ire_refrele(ret_ire);
16951 	}
16952 	/*
16953 	 * Either we are falling through from above or could not
16954 	 * allocate a replacement.
16955 	 */
16956 	ire_refrele(ipif_ire);
16957 	if (need_rele)
16958 		ipif_refrele(nipif);
16959 }
16960 
16961 /*
16962  * This old_ipif is going away.
16963  *
16964  * Determine if any other ipif's are using our address as
16965  * ipif_lcl_addr (due to those being IPIF_NOLOCAL, IPIF_ANYCAST, or
16966  * IPIF_DEPRECATED).
16967  * Find the IRE_INTERFACE for such ipifs and recreate them
16968  * to use an different source address following the rules in
16969  * ipif_up_done.
16970  */
16971 static void
16972 ipif_update_other_ipifs(ipif_t *old_ipif)
16973 {
16974 	ipif_t	*ipif;
16975 	ill_t	*ill;
16976 	char	buf[INET6_ADDRSTRLEN];
16977 
16978 	ASSERT(IAM_WRITER_IPIF(old_ipif));
16979 
16980 	ill = old_ipif->ipif_ill;
16981 
16982 	ip1dbg(("ipif_update_other_ipifs(%s, %s)\n", ill->ill_name,
16983 	    inet_ntop(AF_INET, &old_ipif->ipif_lcl_addr, buf, sizeof (buf))));
16984 
16985 	for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) {
16986 		if (ipif == old_ipif)
16987 			continue;
16988 		ipif_recreate_interface_routes(old_ipif, ipif);
16989 	}
16990 }
16991 
16992 /* ARGSUSED */
16993 int
16994 if_unitsel_restart(ipif_t *ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp,
16995 	ip_ioctl_cmd_t *ipip, void *dummy_ifreq)
16996 {
16997 	/*
16998 	 * ill_phyint_reinit merged the v4 and v6 into a single
16999 	 * ipsq.  We might not have been able to complete the
17000 	 * operation in ipif_set_values, if we could not become
17001 	 * exclusive.  If so restart it here.
17002 	 */
17003 	return (ipif_set_values_tail(ipif->ipif_ill, ipif, mp, q));
17004 }
17005 
17006 /*
17007  * Can operate on either a module or a driver queue.
17008  * Returns an error if not a module queue.
17009  */
17010 /* ARGSUSED */
17011 int
17012 if_unitsel(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp,
17013     ip_ioctl_cmd_t *ipip, void *dummy_ifreq)
17014 {
17015 	queue_t		*q1 = q;
17016 	char 		*cp;
17017 	char		interf_name[LIFNAMSIZ];
17018 	uint_t		ppa = *(uint_t *)mp->b_cont->b_cont->b_rptr;
17019 
17020 	if (q->q_next == NULL) {
17021 		ip1dbg((
17022 		    "if_unitsel: IF_UNITSEL: no q_next\n"));
17023 		return (EINVAL);
17024 	}
17025 
17026 	if (((ill_t *)(q->q_ptr))->ill_name[0] != '\0')
17027 		return (EALREADY);
17028 
17029 	do {
17030 		q1 = q1->q_next;
17031 	} while (q1->q_next);
17032 	cp = q1->q_qinfo->qi_minfo->mi_idname;
17033 	(void) sprintf(interf_name, "%s%d", cp, ppa);
17034 
17035 	/*
17036 	 * Here we are not going to delay the ioack until after
17037 	 * ACKs from DL_ATTACH_REQ/DL_BIND_REQ. So no need to save the
17038 	 * original ioctl message before sending the requests.
17039 	 */
17040 	return (ipif_set_values(q, mp, interf_name, &ppa));
17041 }
17042 
17043 /* ARGSUSED */
17044 int
17045 ip_sioctl_sifname(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp,
17046     ip_ioctl_cmd_t *ipip, void *dummy_ifreq)
17047 {
17048 	return (ENXIO);
17049 }
17050 
17051 /*
17052  * Refresh all IRE_BROADCAST entries associated with `ill' to ensure the
17053  * minimum (but complete) set exist.  This is necessary when adding or
17054  * removing an interface to/from an IPMP group, since interfaces in an
17055  * IPMP group use the IRE_BROADCAST entries for the IPMP group (whenever
17056  * its test address subnets overlap with IPMP data addresses).	It's also
17057  * used to refresh the IRE_BROADCAST entries associated with the IPMP
17058  * interface when the nominated broadcast interface changes.
17059  */
17060 void
17061 ill_refresh_bcast(ill_t *ill)
17062 {
17063 	ire_t *ire_array[12];	/* max ipif_create_bcast_ires() can create */
17064 	ire_t **irep;
17065 	ipif_t *ipif;
17066 
17067 	ASSERT(!ill->ill_isv6);
17068 	ASSERT(IAM_WRITER_ILL(ill));
17069 
17070 	/*
17071 	 * Remove any old broadcast IREs.
17072 	 */
17073 	ire_walk_ill_v4(MATCH_IRE_ILL | MATCH_IRE_TYPE, IRE_BROADCAST,
17074 	    ill_broadcast_delete, ill, ill);
17075 
17076 	/*
17077 	 * Create new ones for any ipifs that are up and broadcast-capable.
17078 	 */
17079 	for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) {
17080 		if ((ipif->ipif_flags & (IPIF_UP|IPIF_BROADCAST)) !=
17081 		    (IPIF_UP|IPIF_BROADCAST))
17082 			continue;
17083 
17084 		irep = ipif_create_bcast_ires(ipif, ire_array);
17085 		while (irep-- > ire_array) {
17086 			(void) ire_add(irep, NULL, NULL, NULL, B_FALSE);
17087 			if (*irep != NULL)
17088 				ire_refrele(*irep);
17089 		}
17090 	}
17091 }
17092 
17093 /*
17094  * Create any IRE_BROADCAST entries for `ipif', and store those entries in
17095  * `irep'.  Returns a pointer to the next free `irep' entry (just like
17096  * ire_check_and_create_bcast()).
17097  */
17098 static ire_t **
17099 ipif_create_bcast_ires(ipif_t *ipif, ire_t **irep)
17100 {
17101 	ipaddr_t addr;
17102 	ipaddr_t netmask = ip_net_mask(ipif->ipif_lcl_addr);
17103 	ipaddr_t subnetmask = ipif->ipif_net_mask;
17104 	int flags = MATCH_IRE_TYPE | MATCH_IRE_ILL;
17105 
17106 	ip1dbg(("ipif_create_bcast_ires: creating broadcast IREs\n"));
17107 
17108 	ASSERT(ipif->ipif_flags & IPIF_BROADCAST);
17109 
17110 	if (ipif->ipif_lcl_addr == INADDR_ANY ||
17111 	    (ipif->ipif_flags & IPIF_NOLOCAL))
17112 		netmask = htonl(IN_CLASSA_NET);		/* fallback */
17113 
17114 	irep = ire_check_and_create_bcast(ipif, 0, irep, flags);
17115 	irep = ire_check_and_create_bcast(ipif, INADDR_BROADCAST, irep, flags);
17116 
17117 	/*
17118 	 * For backward compatibility, we create net broadcast IREs based on
17119 	 * the old "IP address class system", since some old machines only
17120 	 * respond to these class derived net broadcast.  However, we must not
17121 	 * create these net broadcast IREs if the subnetmask is shorter than
17122 	 * the IP address class based derived netmask.  Otherwise, we may
17123 	 * create a net broadcast address which is the same as an IP address
17124 	 * on the subnet -- and then TCP will refuse to talk to that address.
17125 	 */
17126 	if (netmask < subnetmask) {
17127 		addr = netmask & ipif->ipif_subnet;
17128 		irep = ire_check_and_create_bcast(ipif, addr, irep, flags);
17129 		irep = ire_check_and_create_bcast(ipif, ~netmask | addr, irep,
17130 		    flags);
17131 	}
17132 
17133 	/*
17134 	 * Don't create IRE_BROADCAST IREs for the interface if the subnetmask
17135 	 * is 0xFFFFFFFF, as an IRE_LOCAL for that interface is already
17136 	 * created.  Creating these broadcast IREs will only create confusion
17137 	 * as `addr' will be the same as the IP address.
17138 	 */
17139 	if (subnetmask != 0xFFFFFFFF) {
17140 		addr = ipif->ipif_subnet;
17141 		irep = ire_check_and_create_bcast(ipif, addr, irep, flags);
17142 		irep = ire_check_and_create_bcast(ipif, ~subnetmask | addr,
17143 		    irep, flags);
17144 	}
17145 
17146 	return (irep);
17147 }
17148 
17149 /*
17150  * Broadcast IRE info structure used in the functions below.  Since we
17151  * allocate BCAST_COUNT of them on the stack, keep the bit layout compact.
17152  */
17153 typedef struct bcast_ireinfo {
17154 	uchar_t		bi_type;	/* BCAST_* value from below */
17155 	uchar_t		bi_willdie:1, 	/* will this IRE be going away? */
17156 			bi_needrep:1,	/* do we need to replace it? */
17157 			bi_haverep:1,	/* have we replaced it? */
17158 			bi_pad:5;
17159 	ipaddr_t	bi_addr;	/* IRE address */
17160 	ipif_t		*bi_backup;	/* last-ditch ipif to replace it on */
17161 } bcast_ireinfo_t;
17162 
17163 enum { BCAST_ALLONES, BCAST_ALLZEROES, BCAST_NET, BCAST_SUBNET, BCAST_COUNT };
17164 
17165 /*
17166  * Check if `ipif' needs the dying broadcast IRE described by `bireinfop', and
17167  * return B_TRUE if it should immediately be used to recreate the IRE.
17168  */
17169 static boolean_t
17170 ipif_consider_bcast(ipif_t *ipif, bcast_ireinfo_t *bireinfop)
17171 {
17172 	ipaddr_t addr;
17173 
17174 	ASSERT(!bireinfop->bi_haverep && bireinfop->bi_willdie);
17175 
17176 	switch (bireinfop->bi_type) {
17177 	case BCAST_NET:
17178 		addr = ipif->ipif_subnet & ip_net_mask(ipif->ipif_subnet);
17179 		if (addr != bireinfop->bi_addr)
17180 			return (B_FALSE);
17181 		break;
17182 	case BCAST_SUBNET:
17183 		if (ipif->ipif_subnet != bireinfop->bi_addr)
17184 			return (B_FALSE);
17185 		break;
17186 	}
17187 
17188 	bireinfop->bi_needrep = 1;
17189 	if (ipif->ipif_flags & (IPIF_DEPRECATED|IPIF_NOLOCAL|IPIF_ANYCAST)) {
17190 		if (bireinfop->bi_backup == NULL)
17191 			bireinfop->bi_backup = ipif;
17192 		return (B_FALSE);
17193 	}
17194 	return (B_TRUE);
17195 }
17196 
17197 /*
17198  * Create the broadcast IREs described by `bireinfop' on `ipif', and return
17199  * them ala ire_check_and_create_bcast().
17200  */
17201 static ire_t **
17202 ipif_create_bcast(ipif_t *ipif, bcast_ireinfo_t *bireinfop, ire_t **irep)
17203 {
17204 	ipaddr_t mask, addr;
17205 
17206 	ASSERT(!bireinfop->bi_haverep && bireinfop->bi_needrep);
17207 
17208 	addr = bireinfop->bi_addr;
17209 	irep = ire_create_bcast(ipif, addr, irep);
17210 
17211 	switch (bireinfop->bi_type) {
17212 	case BCAST_NET:
17213 		mask = ip_net_mask(ipif->ipif_subnet);
17214 		irep = ire_create_bcast(ipif, addr | ~mask, irep);
17215 		break;
17216 	case BCAST_SUBNET:
17217 		mask = ipif->ipif_net_mask;
17218 		irep = ire_create_bcast(ipif, addr | ~mask, irep);
17219 		break;
17220 	}
17221 
17222 	bireinfop->bi_haverep = 1;
17223 	return (irep);
17224 }
17225 
17226 /*
17227  * Walk through all of the ipifs on `ill' that will be affected by `test_ipif'
17228  * going away, and determine if any of the broadcast IREs (named by `bireinfop')
17229  * that are going away are still needed.  If so, have ipif_create_bcast()
17230  * recreate them (except for the deprecated case, as explained below).
17231  */
17232 static ire_t **
17233 ill_create_bcast(ill_t *ill, ipif_t *test_ipif, bcast_ireinfo_t *bireinfo,
17234     ire_t **irep)
17235 {
17236 	int i;
17237 	ipif_t *ipif;
17238 
17239 	ASSERT(!ill->ill_isv6);
17240 	for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) {
17241 		/*
17242 		 * Skip this ipif if it's (a) the one being taken down, (b)
17243 		 * not in the same zone, or (c) has no valid local address.
17244 		 */
17245 		if (ipif == test_ipif ||
17246 		    ipif->ipif_zoneid != test_ipif->ipif_zoneid ||
17247 		    ipif->ipif_subnet == 0 ||
17248 		    (ipif->ipif_flags & (IPIF_UP|IPIF_BROADCAST|IPIF_NOXMIT)) !=
17249 		    (IPIF_UP|IPIF_BROADCAST))
17250 			continue;
17251 
17252 		/*
17253 		 * For each dying IRE that hasn't yet been replaced, see if
17254 		 * `ipif' needs it and whether the IRE should be recreated on
17255 		 * `ipif'.  If `ipif' is deprecated, ipif_consider_bcast()
17256 		 * will return B_FALSE even if `ipif' needs the IRE on the
17257 		 * hopes that we'll later find a needy non-deprecated ipif.
17258 		 * However, the ipif is recorded in bi_backup for possible
17259 		 * subsequent use by ipif_check_bcast_ires().
17260 		 */
17261 		for (i = 0; i < BCAST_COUNT; i++) {
17262 			if (!bireinfo[i].bi_willdie || bireinfo[i].bi_haverep)
17263 				continue;
17264 			if (!ipif_consider_bcast(ipif, &bireinfo[i]))
17265 				continue;
17266 			irep = ipif_create_bcast(ipif, &bireinfo[i], irep);
17267 		}
17268 
17269 		/*
17270 		 * If we've replaced all of the broadcast IREs that are going
17271 		 * to be taken down, we know we're done.
17272 		 */
17273 		for (i = 0; i < BCAST_COUNT; i++) {
17274 			if (bireinfo[i].bi_willdie && !bireinfo[i].bi_haverep)
17275 				break;
17276 		}
17277 		if (i == BCAST_COUNT)
17278 			break;
17279 	}
17280 	return (irep);
17281 }
17282 
17283 /*
17284  * Check if `test_ipif' (which is going away) is associated with any existing
17285  * broadcast IREs, and whether any other ipifs (e.g., on the same ill) were
17286  * using those broadcast IREs.  If so, recreate the broadcast IREs on one or
17287  * more of those other ipifs.  (The old IREs will be deleted in ipif_down().)
17288  *
17289  * This is necessary because broadcast IREs are shared.  In particular, a
17290  * given ill has one set of all-zeroes and all-ones broadcast IREs (for every
17291  * zone), plus one set of all-subnet-ones, all-subnet-zeroes, all-net-ones,
17292  * and all-net-zeroes for every net/subnet (and every zone) it has IPIF_UP
17293  * ipifs on.  Thus, if there are two IPIF_UP ipifs on the same subnet with the
17294  * same zone, they will share the same set of broadcast IREs.
17295  *
17296  * Note: the upper bound of 12 IREs comes from the worst case of replacing all
17297  * six pairs (loopback and non-loopback) of broadcast IREs (all-zeroes,
17298  * all-ones, subnet-zeroes, subnet-ones, net-zeroes, and net-ones).
17299  */
17300 static void
17301 ipif_check_bcast_ires(ipif_t *test_ipif)
17302 {
17303 	ill_t		*ill = test_ipif->ipif_ill;
17304 	ire_t		*ire, *ire_array[12]; 		/* see note above */
17305 	ire_t		**irep1, **irep = &ire_array[0];
17306 	uint_t 		i, willdie;
17307 	ipaddr_t	mask = ip_net_mask(test_ipif->ipif_subnet);
17308 	bcast_ireinfo_t	bireinfo[BCAST_COUNT];
17309 
17310 	ASSERT(!test_ipif->ipif_isv6);
17311 	ASSERT(IAM_WRITER_IPIF(test_ipif));
17312 
17313 	/*
17314 	 * No broadcast IREs for the LOOPBACK interface
17315 	 * or others such as point to point and IPIF_NOXMIT.
17316 	 */
17317 	if (!(test_ipif->ipif_flags & IPIF_BROADCAST) ||
17318 	    (test_ipif->ipif_flags & IPIF_NOXMIT))
17319 		return;
17320 
17321 	bzero(bireinfo, sizeof (bireinfo));
17322 	bireinfo[0].bi_type = BCAST_ALLZEROES;
17323 	bireinfo[0].bi_addr = 0;
17324 
17325 	bireinfo[1].bi_type = BCAST_ALLONES;
17326 	bireinfo[1].bi_addr = INADDR_BROADCAST;
17327 
17328 	bireinfo[2].bi_type = BCAST_NET;
17329 	bireinfo[2].bi_addr = test_ipif->ipif_subnet & mask;
17330 
17331 	if (test_ipif->ipif_net_mask != 0)
17332 		mask = test_ipif->ipif_net_mask;
17333 	bireinfo[3].bi_type = BCAST_SUBNET;
17334 	bireinfo[3].bi_addr = test_ipif->ipif_subnet & mask;
17335 
17336 	/*
17337 	 * Figure out what (if any) broadcast IREs will die as a result of
17338 	 * `test_ipif' going away.  If none will die, we're done.
17339 	 */
17340 	for (i = 0, willdie = 0; i < BCAST_COUNT; i++) {
17341 		ire = ire_ctable_lookup(bireinfo[i].bi_addr, 0, IRE_BROADCAST,
17342 		    test_ipif, ALL_ZONES, NULL,
17343 		    (MATCH_IRE_TYPE | MATCH_IRE_IPIF), ill->ill_ipst);
17344 		if (ire != NULL) {
17345 			willdie++;
17346 			bireinfo[i].bi_willdie = 1;
17347 			ire_refrele(ire);
17348 		}
17349 	}
17350 
17351 	if (willdie == 0)
17352 		return;
17353 
17354 	/*
17355 	 * Walk through all the ipifs that will be affected by the dying IREs,
17356 	 * and recreate the IREs as necessary. Note that all interfaces in an
17357 	 * IPMP illgrp share the same broadcast IREs, and thus the entire
17358 	 * illgrp must be walked, starting with the IPMP meta-interface (so
17359 	 * that broadcast IREs end up on it whenever possible).
17360 	 */
17361 	if (IS_UNDER_IPMP(ill))
17362 		ill = ipmp_illgrp_ipmp_ill(ill->ill_grp);
17363 
17364 	irep = ill_create_bcast(ill, test_ipif, bireinfo, irep);
17365 
17366 	if (IS_IPMP(ill) || IS_UNDER_IPMP(ill)) {
17367 		ipmp_illgrp_t *illg = ill->ill_grp;
17368 
17369 		ill = list_head(&illg->ig_if);
17370 		for (; ill != NULL; ill = list_next(&illg->ig_if, ill)) {
17371 			for (i = 0; i < BCAST_COUNT; i++) {
17372 				if (bireinfo[i].bi_willdie &&
17373 				    !bireinfo[i].bi_haverep)
17374 					break;
17375 			}
17376 			if (i == BCAST_COUNT)
17377 				break;
17378 
17379 			irep = ill_create_bcast(ill, test_ipif, bireinfo, irep);
17380 		}
17381 	}
17382 
17383 	/*
17384 	 * Scan through the set of broadcast IREs and see if there are any
17385 	 * that we need to replace that have not yet been replaced.  If so,
17386 	 * replace them using the appropriate backup ipif.
17387 	 */
17388 	for (i = 0; i < BCAST_COUNT; i++) {
17389 		if (bireinfo[i].bi_needrep && !bireinfo[i].bi_haverep)
17390 			irep = ipif_create_bcast(bireinfo[i].bi_backup,
17391 			    &bireinfo[i], irep);
17392 	}
17393 
17394 	/*
17395 	 * If we can't create all of them, don't add any of them.  (Code in
17396 	 * ip_wput_ire() and ire_to_ill() assumes that we always have a
17397 	 * non-loopback copy and loopback copy for a given address.)
17398 	 */
17399 	for (irep1 = irep; irep1 > ire_array; ) {
17400 		irep1--;
17401 		if (*irep1 == NULL) {
17402 			ip0dbg(("ipif_check_bcast_ires: can't create "
17403 			    "IRE_BROADCAST, memory allocation failure\n"));
17404 			while (irep > ire_array) {
17405 				irep--;
17406 				if (*irep != NULL)
17407 					ire_delete(*irep);
17408 			}
17409 			return;
17410 		}
17411 	}
17412 
17413 	for (irep1 = irep; irep1 > ire_array; ) {
17414 		irep1--;
17415 		if (ire_add(irep1, NULL, NULL, NULL, B_FALSE) == 0)
17416 			ire_refrele(*irep1);		/* Held in ire_add */
17417 	}
17418 }
17419 
17420 /*
17421  * Extract both the flags (including IFF_CANTCHANGE) such as IFF_IPV*
17422  * from lifr_flags and the name from lifr_name.
17423  * Set IFF_IPV* and ill_isv6 prior to doing the lookup
17424  * since ipif_lookup_on_name uses the _isv6 flags when matching.
17425  * Returns EINPROGRESS when mp has been consumed by queueing it on
17426  * ill_pending_mp and the ioctl will complete in ip_rput.
17427  *
17428  * Can operate on either a module or a driver queue.
17429  * Returns an error if not a module queue.
17430  */
17431 /* ARGSUSED */
17432 int
17433 ip_sioctl_slifname(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
17434     ip_ioctl_cmd_t *ipip, void *if_req)
17435 {
17436 	ill_t	*ill = q->q_ptr;
17437 	phyint_t *phyi;
17438 	ip_stack_t *ipst;
17439 	struct lifreq *lifr = if_req;
17440 	uint64_t new_flags;
17441 
17442 	ASSERT(ipif != NULL);
17443 	ip1dbg(("ip_sioctl_slifname %s\n", lifr->lifr_name));
17444 
17445 	if (q->q_next == NULL) {
17446 		ip1dbg(("if_sioctl_slifname: SIOCSLIFNAME: no q_next\n"));
17447 		return (EINVAL);
17448 	}
17449 
17450 	/*
17451 	 * If we are not writer on 'q' then this interface exists already
17452 	 * and previous lookups (ip_extract_lifreq()) found this ipif --
17453 	 * so return EALREADY.
17454 	 */
17455 	if (ill != ipif->ipif_ill)
17456 		return (EALREADY);
17457 
17458 	if (ill->ill_name[0] != '\0')
17459 		return (EALREADY);
17460 
17461 	/*
17462 	 * If there's another ill already with the requested name, ensure
17463 	 * that it's of the same type.  Otherwise, ill_phyint_reinit() will
17464 	 * fuse together two unrelated ills, which will cause chaos.
17465 	 */
17466 	ipst = ill->ill_ipst;
17467 	phyi = avl_find(&ipst->ips_phyint_g_list->phyint_list_avl_by_name,
17468 	    lifr->lifr_name, NULL);
17469 	if (phyi != NULL) {
17470 		ill_t *ill_mate = phyi->phyint_illv4;
17471 
17472 		if (ill_mate == NULL)
17473 			ill_mate = phyi->phyint_illv6;
17474 		ASSERT(ill_mate != NULL);
17475 
17476 		if (ill_mate->ill_media->ip_m_mac_type !=
17477 		    ill->ill_media->ip_m_mac_type) {
17478 			ip1dbg(("if_sioctl_slifname: SIOCSLIFNAME: attempt to "
17479 			    "use the same ill name on differing media\n"));
17480 			return (EINVAL);
17481 		}
17482 	}
17483 
17484 	/*
17485 	 * We start off as IFF_IPV4 in ipif_allocate and become
17486 	 * IFF_IPV4 or IFF_IPV6 here depending  on lifr_flags value.
17487 	 * The only flags that we read from user space are IFF_IPV4,
17488 	 * IFF_IPV6, IFF_XRESOLV and IFF_BROADCAST.
17489 	 *
17490 	 * This ill has not been inserted into the global list.
17491 	 * So we are still single threaded and don't need any lock
17492 	 *
17493 	 * Saniy check the flags.
17494 	 */
17495 
17496 	if ((lifr->lifr_flags & IFF_BROADCAST) &&
17497 	    ((lifr->lifr_flags & IFF_IPV6) ||
17498 	    (!ill->ill_needs_attach && ill->ill_bcast_addr_length == 0))) {
17499 		ip1dbg(("ip_sioctl_slifname: link not broadcast capable "
17500 		    "or IPv6 i.e., no broadcast \n"));
17501 		return (EINVAL);
17502 	}
17503 
17504 	new_flags =
17505 	    lifr->lifr_flags & (IFF_IPV6|IFF_IPV4|IFF_XRESOLV|IFF_BROADCAST);
17506 
17507 	if ((new_flags ^ (IFF_IPV6|IFF_IPV4)) == 0) {
17508 		ip1dbg(("ip_sioctl_slifname: flags must be exactly one of "
17509 		    "IFF_IPV4 or IFF_IPV6\n"));
17510 		return (EINVAL);
17511 	}
17512 	/*
17513 	 * Only allow the IFF_XRESOLV flag to be set on IPv6 interfaces.
17514 	 */
17515 	if ((new_flags & IFF_XRESOLV) && !(new_flags & IFF_IPV6) &&
17516 	    !(ipif->ipif_isv6)) {
17517 		ip1dbg(("ip_sioctl_slifname: XRESOLV only allowed on "
17518 		    "IPv6 interface\n"));
17519 		return (EINVAL);
17520 	}
17521 
17522 	/*
17523 	 * We always start off as IPv4, so only need to check for IPv6.
17524 	 */
17525 	if ((new_flags & IFF_IPV6) != 0) {
17526 		ill->ill_flags |= ILLF_IPV6;
17527 		ill->ill_flags &= ~ILLF_IPV4;
17528 	}
17529 
17530 	if ((new_flags & IFF_BROADCAST) != 0)
17531 		ipif->ipif_flags |= IPIF_BROADCAST;
17532 	else
17533 		ipif->ipif_flags &= ~IPIF_BROADCAST;
17534 
17535 	if ((new_flags & IFF_XRESOLV) != 0)
17536 		ill->ill_flags |= ILLF_XRESOLV;
17537 	else
17538 		ill->ill_flags &= ~ILLF_XRESOLV;
17539 
17540 	/* We started off as V4. */
17541 	if (ill->ill_flags & ILLF_IPV6) {
17542 		ill->ill_phyint->phyint_illv6 = ill;
17543 		ill->ill_phyint->phyint_illv4 = NULL;
17544 	}
17545 
17546 	return (ipif_set_values(q, mp, lifr->lifr_name, &lifr->lifr_ppa));
17547 }
17548 
17549 /* ARGSUSED */
17550 int
17551 ip_sioctl_slifname_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
17552     ip_ioctl_cmd_t *ipip, void *if_req)
17553 {
17554 	/*
17555 	 * ill_phyint_reinit merged the v4 and v6 into a single
17556 	 * ipsq.  We might not have been able to complete the
17557 	 * slifname in ipif_set_values, if we could not become
17558 	 * exclusive.  If so restart it here
17559 	 */
17560 	return (ipif_set_values_tail(ipif->ipif_ill, ipif, mp, q));
17561 }
17562 
17563 /*
17564  * Return a pointer to the ipif which matches the index, IP version type and
17565  * zoneid.
17566  */
17567 ipif_t *
17568 ipif_lookup_on_ifindex(uint_t index, boolean_t isv6, zoneid_t zoneid,
17569     queue_t *q, mblk_t *mp, ipsq_func_t func, int *err, ip_stack_t *ipst)
17570 {
17571 	ill_t	*ill;
17572 	ipif_t	*ipif = NULL;
17573 
17574 	ASSERT((q == NULL && mp == NULL && func == NULL && err == NULL) ||
17575 	    (q != NULL && mp != NULL && func != NULL && err != NULL));
17576 
17577 	if (err != NULL)
17578 		*err = 0;
17579 
17580 	ill = ill_lookup_on_ifindex(index, isv6, q, mp, func, err, ipst);
17581 	if (ill != NULL) {
17582 		mutex_enter(&ill->ill_lock);
17583 		for (ipif = ill->ill_ipif; ipif != NULL;
17584 		    ipif = ipif->ipif_next) {
17585 			if (IPIF_CAN_LOOKUP(ipif) && (zoneid == ALL_ZONES ||
17586 			    zoneid == ipif->ipif_zoneid ||
17587 			    ipif->ipif_zoneid == ALL_ZONES)) {
17588 				ipif_refhold_locked(ipif);
17589 				break;
17590 			}
17591 		}
17592 		mutex_exit(&ill->ill_lock);
17593 		ill_refrele(ill);
17594 		if (ipif == NULL && err != NULL)
17595 			*err = ENXIO;
17596 	}
17597 	return (ipif);
17598 }
17599 
17600 /*
17601  * Change an existing physical interface's index. If the new index
17602  * is acceptable we update the index and the phyint_list_avl_by_index tree.
17603  * Finally, we update other systems which may have a dependence on the
17604  * index value.
17605  */
17606 /* ARGSUSED */
17607 int
17608 ip_sioctl_slifindex(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
17609     ip_ioctl_cmd_t *ipip, void *ifreq)
17610 {
17611 	ill_t		*ill;
17612 	phyint_t	*phyi;
17613 	struct ifreq	*ifr = (struct ifreq *)ifreq;
17614 	struct lifreq	*lifr = (struct lifreq *)ifreq;
17615 	uint_t	old_index, index;
17616 	ip_stack_t	*ipst = ipif->ipif_ill->ill_ipst;
17617 	avl_index_t	where;
17618 
17619 	if (ipip->ipi_cmd_type == IF_CMD)
17620 		index = ifr->ifr_index;
17621 	else
17622 		index = lifr->lifr_index;
17623 
17624 	/*
17625 	 * Only allow on physical interface. Also, index zero is illegal.
17626 	 */
17627 	ill = ipif->ipif_ill;
17628 	phyi = ill->ill_phyint;
17629 	if (ipif->ipif_id != 0 || index == 0) {
17630 		return (EINVAL);
17631 	}
17632 
17633 	/* If the index is not changing, no work to do */
17634 	if (phyi->phyint_ifindex == index)
17635 		return (0);
17636 
17637 	/*
17638 	 * Use phyint_exists() to determine if the new interface index
17639 	 * is already in use. If the index is unused then we need to
17640 	 * change the phyint's position in the phyint_list_avl_by_index
17641 	 * tree. If we do not do this, subsequent lookups (using the new
17642 	 * index value) will not find the phyint.
17643 	 */
17644 	rw_enter(&ipst->ips_ill_g_lock, RW_WRITER);
17645 	if (phyint_exists(index, ipst)) {
17646 		rw_exit(&ipst->ips_ill_g_lock);
17647 		return (EEXIST);
17648 	}
17649 
17650 	/*
17651 	 * The new index is unused. Set it in the phyint. However we must not
17652 	 * forget to trigger NE_IFINDEX_CHANGE event before the ifindex
17653 	 * changes. The event must be bound to old ifindex value.
17654 	 */
17655 	ill_nic_event_dispatch(ill, 0, NE_IFINDEX_CHANGE,
17656 	    &index, sizeof (index));
17657 
17658 	old_index = phyi->phyint_ifindex;
17659 	phyi->phyint_ifindex = index;
17660 
17661 	avl_remove(&ipst->ips_phyint_g_list->phyint_list_avl_by_index, phyi);
17662 	(void) avl_find(&ipst->ips_phyint_g_list->phyint_list_avl_by_index,
17663 	    &index, &where);
17664 	avl_insert(&ipst->ips_phyint_g_list->phyint_list_avl_by_index,
17665 	    phyi, where);
17666 	rw_exit(&ipst->ips_ill_g_lock);
17667 
17668 	/* Update SCTP's ILL list */
17669 	sctp_ill_reindex(ill, old_index);
17670 
17671 	/* Send the routing sockets message */
17672 	ip_rts_ifmsg(ipif, RTSQ_DEFAULT);
17673 	if (ILL_OTHER(ill))
17674 		ip_rts_ifmsg(ILL_OTHER(ill)->ill_ipif, RTSQ_DEFAULT);
17675 
17676 	return (0);
17677 }
17678 
17679 /* ARGSUSED */
17680 int
17681 ip_sioctl_get_lifindex(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
17682     ip_ioctl_cmd_t *ipip, void *ifreq)
17683 {
17684 	struct ifreq	*ifr = (struct ifreq *)ifreq;
17685 	struct lifreq	*lifr = (struct lifreq *)ifreq;
17686 
17687 	ip1dbg(("ip_sioctl_get_lifindex(%s:%u %p)\n",
17688 	    ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
17689 	/* Get the interface index */
17690 	if (ipip->ipi_cmd_type == IF_CMD) {
17691 		ifr->ifr_index = ipif->ipif_ill->ill_phyint->phyint_ifindex;
17692 	} else {
17693 		lifr->lifr_index = ipif->ipif_ill->ill_phyint->phyint_ifindex;
17694 	}
17695 	return (0);
17696 }
17697 
17698 /* ARGSUSED */
17699 int
17700 ip_sioctl_get_lifzone(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
17701     ip_ioctl_cmd_t *ipip, void *ifreq)
17702 {
17703 	struct lifreq	*lifr = (struct lifreq *)ifreq;
17704 
17705 	ip1dbg(("ip_sioctl_get_lifzone(%s:%u %p)\n",
17706 	    ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
17707 	/* Get the interface zone */
17708 	ASSERT(ipip->ipi_cmd_type == LIF_CMD);
17709 	lifr->lifr_zoneid = ipif->ipif_zoneid;
17710 	return (0);
17711 }
17712 
17713 /*
17714  * Set the zoneid of an interface.
17715  */
17716 /* ARGSUSED */
17717 int
17718 ip_sioctl_slifzone(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
17719     ip_ioctl_cmd_t *ipip, void *ifreq)
17720 {
17721 	struct lifreq	*lifr = (struct lifreq *)ifreq;
17722 	int err = 0;
17723 	boolean_t need_up = B_FALSE;
17724 	zone_t *zptr;
17725 	zone_status_t status;
17726 	zoneid_t zoneid;
17727 
17728 	ASSERT(ipip->ipi_cmd_type == LIF_CMD);
17729 	if ((zoneid = lifr->lifr_zoneid) == ALL_ZONES) {
17730 		if (!is_system_labeled())
17731 			return (ENOTSUP);
17732 		zoneid = GLOBAL_ZONEID;
17733 	}
17734 
17735 	/* cannot assign instance zero to a non-global zone */
17736 	if (ipif->ipif_id == 0 && zoneid != GLOBAL_ZONEID)
17737 		return (ENOTSUP);
17738 
17739 	/*
17740 	 * Cannot assign to a zone that doesn't exist or is shutting down.  In
17741 	 * the event of a race with the zone shutdown processing, since IP
17742 	 * serializes this ioctl and SIOCGLIFCONF/SIOCLIFREMOVEIF, we know the
17743 	 * interface will be cleaned up even if the zone is shut down
17744 	 * immediately after the status check. If the interface can't be brought
17745 	 * down right away, and the zone is shut down before the restart
17746 	 * function is called, we resolve the possible races by rechecking the
17747 	 * zone status in the restart function.
17748 	 */
17749 	if ((zptr = zone_find_by_id(zoneid)) == NULL)
17750 		return (EINVAL);
17751 	status = zone_status_get(zptr);
17752 	zone_rele(zptr);
17753 
17754 	if (status != ZONE_IS_READY && status != ZONE_IS_RUNNING)
17755 		return (EINVAL);
17756 
17757 	if (ipif->ipif_flags & IPIF_UP) {
17758 		/*
17759 		 * If the interface is already marked up,
17760 		 * we call ipif_down which will take care
17761 		 * of ditching any IREs that have been set
17762 		 * up based on the old interface address.
17763 		 */
17764 		err = ipif_logical_down(ipif, q, mp);
17765 		if (err == EINPROGRESS)
17766 			return (err);
17767 		ipif_down_tail(ipif);
17768 		need_up = B_TRUE;
17769 	}
17770 
17771 	err = ip_sioctl_slifzone_tail(ipif, lifr->lifr_zoneid, q, mp, need_up);
17772 	return (err);
17773 }
17774 
17775 static int
17776 ip_sioctl_slifzone_tail(ipif_t *ipif, zoneid_t zoneid,
17777     queue_t *q, mblk_t *mp, boolean_t need_up)
17778 {
17779 	int	err = 0;
17780 	ip_stack_t	*ipst;
17781 
17782 	ip1dbg(("ip_sioctl_zoneid_tail(%s:%u %p)\n",
17783 	    ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
17784 
17785 	if (CONN_Q(q))
17786 		ipst = CONNQ_TO_IPST(q);
17787 	else
17788 		ipst = ILLQ_TO_IPST(q);
17789 
17790 	/*
17791 	 * For exclusive stacks we don't allow a different zoneid than
17792 	 * global.
17793 	 */
17794 	if (ipst->ips_netstack->netstack_stackid != GLOBAL_NETSTACKID &&
17795 	    zoneid != GLOBAL_ZONEID)
17796 		return (EINVAL);
17797 
17798 	/* Set the new zone id. */
17799 	ipif->ipif_zoneid = zoneid;
17800 
17801 	/* Update sctp list */
17802 	sctp_update_ipif(ipif, SCTP_IPIF_UPDATE);
17803 
17804 	if (need_up) {
17805 		/*
17806 		 * Now bring the interface back up.  If this
17807 		 * is the only IPIF for the ILL, ipif_up
17808 		 * will have to re-bind to the device, so
17809 		 * we may get back EINPROGRESS, in which
17810 		 * case, this IOCTL will get completed in
17811 		 * ip_rput_dlpi when we see the DL_BIND_ACK.
17812 		 */
17813 		err = ipif_up(ipif, q, mp);
17814 	}
17815 	return (err);
17816 }
17817 
17818 /* ARGSUSED */
17819 int
17820 ip_sioctl_slifzone_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
17821     ip_ioctl_cmd_t *ipip, void *if_req)
17822 {
17823 	struct lifreq *lifr = (struct lifreq *)if_req;
17824 	zoneid_t zoneid;
17825 	zone_t *zptr;
17826 	zone_status_t status;
17827 
17828 	ASSERT(ipif->ipif_id != 0);
17829 	ASSERT(ipip->ipi_cmd_type == LIF_CMD);
17830 	if ((zoneid = lifr->lifr_zoneid) == ALL_ZONES)
17831 		zoneid = GLOBAL_ZONEID;
17832 
17833 	ip1dbg(("ip_sioctl_slifzone_restart(%s:%u %p)\n",
17834 	    ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
17835 
17836 	/*
17837 	 * We recheck the zone status to resolve the following race condition:
17838 	 * 1) process sends SIOCSLIFZONE to put hme0:1 in zone "myzone";
17839 	 * 2) hme0:1 is up and can't be brought down right away;
17840 	 * ip_sioctl_slifzone() returns EINPROGRESS and the request is queued;
17841 	 * 3) zone "myzone" is halted; the zone status switches to
17842 	 * 'shutting_down' and the zones framework sends SIOCGLIFCONF to list
17843 	 * the interfaces to remove - hme0:1 is not returned because it's not
17844 	 * yet in "myzone", so it won't be removed;
17845 	 * 4) the restart function for SIOCSLIFZONE is called; without the
17846 	 * status check here, we would have hme0:1 in "myzone" after it's been
17847 	 * destroyed.
17848 	 * Note that if the status check fails, we need to bring the interface
17849 	 * back to its state prior to ip_sioctl_slifzone(), hence the call to
17850 	 * ipif_up_done[_v6]().
17851 	 */
17852 	status = ZONE_IS_UNINITIALIZED;
17853 	if ((zptr = zone_find_by_id(zoneid)) != NULL) {
17854 		status = zone_status_get(zptr);
17855 		zone_rele(zptr);
17856 	}
17857 	if (status != ZONE_IS_READY && status != ZONE_IS_RUNNING) {
17858 		if (ipif->ipif_isv6) {
17859 			(void) ipif_up_done_v6(ipif);
17860 		} else {
17861 			(void) ipif_up_done(ipif);
17862 		}
17863 		return (EINVAL);
17864 	}
17865 
17866 	ipif_down_tail(ipif);
17867 
17868 	return (ip_sioctl_slifzone_tail(ipif, lifr->lifr_zoneid, q, mp,
17869 	    B_TRUE));
17870 }
17871 
17872 /*
17873  * Return the number of addresses on `ill' with one or more of the values
17874  * in `set' set and all of the values in `clear' clear.
17875  */
17876 static uint_t
17877 ill_flagaddr_cnt(const ill_t *ill, uint64_t set, uint64_t clear)
17878 {
17879 	ipif_t	*ipif;
17880 	uint_t	cnt = 0;
17881 
17882 	ASSERT(IAM_WRITER_ILL(ill));
17883 
17884 	for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next)
17885 		if ((ipif->ipif_flags & set) && !(ipif->ipif_flags & clear))
17886 			cnt++;
17887 
17888 	return (cnt);
17889 }
17890 
17891 /*
17892  * Return the number of migratable addresses on `ill' that are under
17893  * application control.
17894  */
17895 uint_t
17896 ill_appaddr_cnt(const ill_t *ill)
17897 {
17898 	return (ill_flagaddr_cnt(ill, IPIF_DHCPRUNNING | IPIF_ADDRCONF,
17899 	    IPIF_NOFAILOVER));
17900 }
17901 
17902 /*
17903  * Return the number of point-to-point addresses on `ill'.
17904  */
17905 uint_t
17906 ill_ptpaddr_cnt(const ill_t *ill)
17907 {
17908 	return (ill_flagaddr_cnt(ill, IPIF_POINTOPOINT, 0));
17909 }
17910 
17911 /* ARGSUSED */
17912 int
17913 ip_sioctl_get_lifusesrc(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
17914 	ip_ioctl_cmd_t *ipip, void *ifreq)
17915 {
17916 	struct lifreq	*lifr = ifreq;
17917 
17918 	ASSERT(q->q_next == NULL);
17919 	ASSERT(CONN_Q(q));
17920 
17921 	ip1dbg(("ip_sioctl_get_lifusesrc(%s:%u %p)\n",
17922 	    ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif));
17923 	lifr->lifr_index = ipif->ipif_ill->ill_usesrc_ifindex;
17924 	ip1dbg(("ip_sioctl_get_lifusesrc:lifr_index = %d\n", lifr->lifr_index));
17925 
17926 	return (0);
17927 }
17928 
17929 /* Find the previous ILL in this usesrc group */
17930 static ill_t *
17931 ill_prev_usesrc(ill_t *uill)
17932 {
17933 	ill_t *ill;
17934 
17935 	for (ill = uill->ill_usesrc_grp_next;
17936 	    ASSERT(ill), ill->ill_usesrc_grp_next != uill;
17937 	    ill = ill->ill_usesrc_grp_next)
17938 		/* do nothing */;
17939 	return (ill);
17940 }
17941 
17942 /*
17943  * Release all members of the usesrc group. This routine is called
17944  * from ill_delete when the interface being unplumbed is the
17945  * group head.
17946  */
17947 static void
17948 ill_disband_usesrc_group(ill_t *uill)
17949 {
17950 	ill_t *next_ill, *tmp_ill;
17951 	ip_stack_t	*ipst = uill->ill_ipst;
17952 
17953 	ASSERT(RW_WRITE_HELD(&ipst->ips_ill_g_usesrc_lock));
17954 	next_ill = uill->ill_usesrc_grp_next;
17955 
17956 	do {
17957 		ASSERT(next_ill != NULL);
17958 		tmp_ill = next_ill->ill_usesrc_grp_next;
17959 		ASSERT(tmp_ill != NULL);
17960 		next_ill->ill_usesrc_grp_next = NULL;
17961 		next_ill->ill_usesrc_ifindex = 0;
17962 		next_ill = tmp_ill;
17963 	} while (next_ill->ill_usesrc_ifindex != 0);
17964 	uill->ill_usesrc_grp_next = NULL;
17965 }
17966 
17967 /*
17968  * Remove the client usesrc ILL from the list and relink to a new list
17969  */
17970 int
17971 ill_relink_usesrc_ills(ill_t *ucill, ill_t *uill, uint_t ifindex)
17972 {
17973 	ill_t *ill, *tmp_ill;
17974 	ip_stack_t	*ipst = ucill->ill_ipst;
17975 
17976 	ASSERT((ucill != NULL) && (ucill->ill_usesrc_grp_next != NULL) &&
17977 	    (uill != NULL) && RW_WRITE_HELD(&ipst->ips_ill_g_usesrc_lock));
17978 
17979 	/*
17980 	 * Check if the usesrc client ILL passed in is not already
17981 	 * in use as a usesrc ILL i.e one whose source address is
17982 	 * in use OR a usesrc ILL is not already in use as a usesrc
17983 	 * client ILL
17984 	 */
17985 	if ((ucill->ill_usesrc_ifindex == 0) ||
17986 	    (uill->ill_usesrc_ifindex != 0)) {
17987 		return (-1);
17988 	}
17989 
17990 	ill = ill_prev_usesrc(ucill);
17991 	ASSERT(ill->ill_usesrc_grp_next != NULL);
17992 
17993 	/* Remove from the current list */
17994 	if (ill->ill_usesrc_grp_next->ill_usesrc_grp_next == ill) {
17995 		/* Only two elements in the list */
17996 		ASSERT(ill->ill_usesrc_ifindex == 0);
17997 		ill->ill_usesrc_grp_next = NULL;
17998 	} else {
17999 		ill->ill_usesrc_grp_next = ucill->ill_usesrc_grp_next;
18000 	}
18001 
18002 	if (ifindex == 0) {
18003 		ucill->ill_usesrc_ifindex = 0;
18004 		ucill->ill_usesrc_grp_next = NULL;
18005 		return (0);
18006 	}
18007 
18008 	ucill->ill_usesrc_ifindex = ifindex;
18009 	tmp_ill = uill->ill_usesrc_grp_next;
18010 	uill->ill_usesrc_grp_next = ucill;
18011 	ucill->ill_usesrc_grp_next =
18012 	    (tmp_ill != NULL) ? tmp_ill : uill;
18013 	return (0);
18014 }
18015 
18016 /*
18017  * Set the ill_usesrc and ill_usesrc_head fields. See synchronization notes in
18018  * ip.c for locking details.
18019  */
18020 /* ARGSUSED */
18021 int
18022 ip_sioctl_slifusesrc(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
18023     ip_ioctl_cmd_t *ipip, void *ifreq)
18024 {
18025 	struct lifreq *lifr = (struct lifreq *)ifreq;
18026 	boolean_t isv6 = B_FALSE, reset_flg = B_FALSE,
18027 	    ill_flag_changed = B_FALSE;
18028 	ill_t *usesrc_ill, *usesrc_cli_ill = ipif->ipif_ill;
18029 	int err = 0, ret;
18030 	uint_t ifindex;
18031 	ipsq_t *ipsq = NULL;
18032 	ip_stack_t	*ipst = ipif->ipif_ill->ill_ipst;
18033 
18034 	ASSERT(IAM_WRITER_IPIF(ipif));
18035 	ASSERT(q->q_next == NULL);
18036 	ASSERT(CONN_Q(q));
18037 
18038 	isv6 = (Q_TO_CONN(q))->conn_af_isv6;
18039 
18040 	ifindex = lifr->lifr_index;
18041 	if (ifindex == 0) {
18042 		if (usesrc_cli_ill->ill_usesrc_grp_next == NULL) {
18043 			/* non usesrc group interface, nothing to reset */
18044 			return (0);
18045 		}
18046 		ifindex = usesrc_cli_ill->ill_usesrc_ifindex;
18047 		/* valid reset request */
18048 		reset_flg = B_TRUE;
18049 	}
18050 
18051 	usesrc_ill = ill_lookup_on_ifindex(ifindex, isv6, q, mp,
18052 	    ip_process_ioctl, &err, ipst);
18053 	if (usesrc_ill == NULL) {
18054 		return (err);
18055 	}
18056 
18057 	ipsq = ipsq_try_enter(NULL, usesrc_ill, q, mp, ip_process_ioctl,
18058 	    NEW_OP, B_TRUE);
18059 	if (ipsq == NULL) {
18060 		err = EINPROGRESS;
18061 		/* Operation enqueued on the ipsq of the usesrc ILL */
18062 		goto done;
18063 	}
18064 
18065 	/* USESRC isn't currently supported with IPMP */
18066 	if (IS_IPMP(usesrc_ill) || IS_UNDER_IPMP(usesrc_ill)) {
18067 		err = ENOTSUP;
18068 		goto done;
18069 	}
18070 
18071 	/*
18072 	 * USESRC isn't compatible with the STANDBY flag.  (STANDBY is only
18073 	 * used by IPMP underlying interfaces, but someone might think it's
18074 	 * more general and try to use it independently with VNI.)
18075 	 */
18076 	if (usesrc_ill->ill_phyint->phyint_flags & PHYI_STANDBY) {
18077 		err = ENOTSUP;
18078 		goto done;
18079 	}
18080 
18081 	/*
18082 	 * If the client is already in use as a usesrc_ill or a usesrc_ill is
18083 	 * already a client then return EINVAL
18084 	 */
18085 	if (IS_USESRC_ILL(usesrc_cli_ill) || IS_USESRC_CLI_ILL(usesrc_ill)) {
18086 		err = EINVAL;
18087 		goto done;
18088 	}
18089 
18090 	/*
18091 	 * If the ill_usesrc_ifindex field is already set to what it needs to
18092 	 * be then this is a duplicate operation.
18093 	 */
18094 	if (!reset_flg && usesrc_cli_ill->ill_usesrc_ifindex == ifindex) {
18095 		err = 0;
18096 		goto done;
18097 	}
18098 
18099 	ip1dbg(("ip_sioctl_slifusesrc: usesrc_cli_ill %s, usesrc_ill %s,"
18100 	    " v6 = %d", usesrc_cli_ill->ill_name, usesrc_ill->ill_name,
18101 	    usesrc_ill->ill_isv6));
18102 
18103 	/*
18104 	 * The next step ensures that no new ires will be created referencing
18105 	 * the client ill, until the ILL_CHANGING flag is cleared. Then
18106 	 * we go through an ire walk deleting all ire caches that reference
18107 	 * the client ill. New ires referencing the client ill that are added
18108 	 * to the ire table before the ILL_CHANGING flag is set, will be
18109 	 * cleaned up by the ire walk below. Attempt to add new ires referencing
18110 	 * the client ill while the ILL_CHANGING flag is set will be failed
18111 	 * during the ire_add in ire_atomic_start. ire_atomic_start atomically
18112 	 * checks (under the ill_g_usesrc_lock) that the ire being added
18113 	 * is not stale, i.e the ire_stq and ire_ipif are consistent and
18114 	 * belong to the same usesrc group.
18115 	 */
18116 	mutex_enter(&usesrc_cli_ill->ill_lock);
18117 	usesrc_cli_ill->ill_state_flags |= ILL_CHANGING;
18118 	mutex_exit(&usesrc_cli_ill->ill_lock);
18119 	ill_flag_changed = B_TRUE;
18120 
18121 	if (ipif->ipif_isv6)
18122 		ire_walk_v6(ipif_delete_cache_ire, (char *)usesrc_cli_ill,
18123 		    ALL_ZONES, ipst);
18124 	else
18125 		ire_walk_v4(ipif_delete_cache_ire, (char *)usesrc_cli_ill,
18126 		    ALL_ZONES, ipst);
18127 
18128 	/*
18129 	 * ill_g_usesrc_lock global lock protects the ill_usesrc_grp_next
18130 	 * and the ill_usesrc_ifindex fields
18131 	 */
18132 	rw_enter(&ipst->ips_ill_g_usesrc_lock, RW_WRITER);
18133 
18134 	if (reset_flg) {
18135 		ret = ill_relink_usesrc_ills(usesrc_cli_ill, usesrc_ill, 0);
18136 		if (ret != 0) {
18137 			err = EINVAL;
18138 		}
18139 		rw_exit(&ipst->ips_ill_g_usesrc_lock);
18140 		goto done;
18141 	}
18142 
18143 	/*
18144 	 * Four possibilities to consider:
18145 	 * 1. Both usesrc_ill and usesrc_cli_ill are not part of any usesrc grp
18146 	 * 2. usesrc_ill is part of a group but usesrc_cli_ill isn't
18147 	 * 3. usesrc_cli_ill is part of a group but usesrc_ill isn't
18148 	 * 4. Both are part of their respective usesrc groups
18149 	 */
18150 	if ((usesrc_ill->ill_usesrc_grp_next == NULL) &&
18151 	    (usesrc_cli_ill->ill_usesrc_grp_next == NULL)) {
18152 		ASSERT(usesrc_ill->ill_usesrc_ifindex == 0);
18153 		usesrc_cli_ill->ill_usesrc_ifindex = ifindex;
18154 		usesrc_ill->ill_usesrc_grp_next = usesrc_cli_ill;
18155 		usesrc_cli_ill->ill_usesrc_grp_next = usesrc_ill;
18156 	} else if ((usesrc_ill->ill_usesrc_grp_next != NULL) &&
18157 	    (usesrc_cli_ill->ill_usesrc_grp_next == NULL)) {
18158 		usesrc_cli_ill->ill_usesrc_ifindex = ifindex;
18159 		/* Insert at head of list */
18160 		usesrc_cli_ill->ill_usesrc_grp_next =
18161 		    usesrc_ill->ill_usesrc_grp_next;
18162 		usesrc_ill->ill_usesrc_grp_next = usesrc_cli_ill;
18163 	} else {
18164 		ret = ill_relink_usesrc_ills(usesrc_cli_ill, usesrc_ill,
18165 		    ifindex);
18166 		if (ret != 0)
18167 			err = EINVAL;
18168 	}
18169 	rw_exit(&ipst->ips_ill_g_usesrc_lock);
18170 
18171 done:
18172 	if (ill_flag_changed) {
18173 		mutex_enter(&usesrc_cli_ill->ill_lock);
18174 		usesrc_cli_ill->ill_state_flags &= ~ILL_CHANGING;
18175 		mutex_exit(&usesrc_cli_ill->ill_lock);
18176 	}
18177 	if (ipsq != NULL)
18178 		ipsq_exit(ipsq);
18179 	/* The refrele on the lifr_name ipif is done by ip_process_ioctl */
18180 	ill_refrele(usesrc_ill);
18181 	return (err);
18182 }
18183 
18184 /*
18185  * comparison function used by avl.
18186  */
18187 static int
18188 ill_phyint_compare_index(const void *index_ptr, const void *phyip)
18189 {
18190 
18191 	uint_t index;
18192 
18193 	ASSERT(phyip != NULL && index_ptr != NULL);
18194 
18195 	index = *((uint_t *)index_ptr);
18196 	/*
18197 	 * let the phyint with the lowest index be on top.
18198 	 */
18199 	if (((phyint_t *)phyip)->phyint_ifindex < index)
18200 		return (1);
18201 	if (((phyint_t *)phyip)->phyint_ifindex > index)
18202 		return (-1);
18203 	return (0);
18204 }
18205 
18206 /*
18207  * comparison function used by avl.
18208  */
18209 static int
18210 ill_phyint_compare_name(const void *name_ptr, const void *phyip)
18211 {
18212 	ill_t *ill;
18213 	int res = 0;
18214 
18215 	ASSERT(phyip != NULL && name_ptr != NULL);
18216 
18217 	if (((phyint_t *)phyip)->phyint_illv4)
18218 		ill = ((phyint_t *)phyip)->phyint_illv4;
18219 	else
18220 		ill = ((phyint_t *)phyip)->phyint_illv6;
18221 	ASSERT(ill != NULL);
18222 
18223 	res = strcmp(ill->ill_name, (char *)name_ptr);
18224 	if (res > 0)
18225 		return (1);
18226 	else if (res < 0)
18227 		return (-1);
18228 	return (0);
18229 }
18230 
18231 /*
18232  * This function is called on the unplumb path via ill_glist_delete() when
18233  * there are no ills left on the phyint and thus the phyint can be freed.
18234  */
18235 static void
18236 phyint_free(phyint_t *phyi)
18237 {
18238 	ip_stack_t *ipst = PHYINT_TO_IPST(phyi);
18239 
18240 	ASSERT(phyi->phyint_illv4 == NULL && phyi->phyint_illv6 == NULL);
18241 
18242 	/*
18243 	 * If this phyint was an IPMP meta-interface, blow away the group.
18244 	 * This is safe to do because all of the illgrps have already been
18245 	 * removed by I_PUNLINK, and thus SIOCSLIFGROUPNAME cannot find us.
18246 	 * If we're cleaning up as a result of failed initialization,
18247 	 * phyint_grp may be NULL.
18248 	 */
18249 	if ((phyi->phyint_flags & PHYI_IPMP) && (phyi->phyint_grp != NULL)) {
18250 		rw_enter(&ipst->ips_ipmp_lock, RW_WRITER);
18251 		ipmp_grp_destroy(phyi->phyint_grp);
18252 		phyi->phyint_grp = NULL;
18253 		rw_exit(&ipst->ips_ipmp_lock);
18254 	}
18255 
18256 	/*
18257 	 * If this interface was under IPMP, take it out of the group.
18258 	 */
18259 	if (phyi->phyint_grp != NULL)
18260 		ipmp_phyint_leave_grp(phyi);
18261 
18262 	/*
18263 	 * Delete the phyint and disassociate its ipsq.  The ipsq itself
18264 	 * will be freed in ipsq_exit().
18265 	 */
18266 	phyi->phyint_ipsq->ipsq_phyint = NULL;
18267 	phyi->phyint_name[0] = '\0';
18268 
18269 	mi_free(phyi);
18270 }
18271 
18272 /*
18273  * Attach the ill to the phyint structure which can be shared by both
18274  * IPv4 and IPv6 ill. ill_init allocates a phyint to just hold flags. This
18275  * function is called from ipif_set_values and ill_lookup_on_name (for
18276  * loopback) where we know the name of the ill. We lookup the ill and if
18277  * there is one present already with the name use that phyint. Otherwise
18278  * reuse the one allocated by ill_init.
18279  */
18280 static void
18281 ill_phyint_reinit(ill_t *ill)
18282 {
18283 	boolean_t isv6 = ill->ill_isv6;
18284 	phyint_t *phyi_old;
18285 	phyint_t *phyi;
18286 	avl_index_t where = 0;
18287 	ill_t	*ill_other = NULL;
18288 	ip_stack_t	*ipst = ill->ill_ipst;
18289 
18290 	ASSERT(RW_WRITE_HELD(&ipst->ips_ill_g_lock));
18291 
18292 	phyi_old = ill->ill_phyint;
18293 	ASSERT(isv6 || (phyi_old->phyint_illv4 == ill &&
18294 	    phyi_old->phyint_illv6 == NULL));
18295 	ASSERT(!isv6 || (phyi_old->phyint_illv6 == ill &&
18296 	    phyi_old->phyint_illv4 == NULL));
18297 	ASSERT(phyi_old->phyint_ifindex == 0);
18298 
18299 	/*
18300 	 * Now that our ill has a name, set it in the phyint.
18301 	 */
18302 	(void) strlcpy(ill->ill_phyint->phyint_name, ill->ill_name, LIFNAMSIZ);
18303 
18304 	phyi = avl_find(&ipst->ips_phyint_g_list->phyint_list_avl_by_name,
18305 	    ill->ill_name, &where);
18306 
18307 	/*
18308 	 * 1. We grabbed the ill_g_lock before inserting this ill into
18309 	 *    the global list of ills. So no other thread could have located
18310 	 *    this ill and hence the ipsq of this ill is guaranteed to be empty.
18311 	 * 2. Now locate the other protocol instance of this ill.
18312 	 * 3. Now grab both ill locks in the right order, and the phyint lock of
18313 	 *    the new ipsq. Holding ill locks + ill_g_lock ensures that the ipsq
18314 	 *    of neither ill can change.
18315 	 * 4. Merge the phyint and thus the ipsq as well of this ill onto the
18316 	 *    other ill.
18317 	 * 5. Release all locks.
18318 	 */
18319 
18320 	/*
18321 	 * Look for IPv4 if we are initializing IPv6 or look for IPv6 if
18322 	 * we are initializing IPv4.
18323 	 */
18324 	if (phyi != NULL) {
18325 		ill_other = (isv6) ? phyi->phyint_illv4 : phyi->phyint_illv6;
18326 		ASSERT(ill_other->ill_phyint != NULL);
18327 		ASSERT((isv6 && !ill_other->ill_isv6) ||
18328 		    (!isv6 && ill_other->ill_isv6));
18329 		GRAB_ILL_LOCKS(ill, ill_other);
18330 		/*
18331 		 * We are potentially throwing away phyint_flags which
18332 		 * could be different from the one that we obtain from
18333 		 * ill_other->ill_phyint. But it is okay as we are assuming
18334 		 * that the state maintained within IP is correct.
18335 		 */
18336 		mutex_enter(&phyi->phyint_lock);
18337 		if (isv6) {
18338 			ASSERT(phyi->phyint_illv6 == NULL);
18339 			phyi->phyint_illv6 = ill;
18340 		} else {
18341 			ASSERT(phyi->phyint_illv4 == NULL);
18342 			phyi->phyint_illv4 = ill;
18343 		}
18344 
18345 		/*
18346 		 * Delete the old phyint and make its ipsq eligible
18347 		 * to be freed in ipsq_exit().
18348 		 */
18349 		phyi_old->phyint_illv4 = NULL;
18350 		phyi_old->phyint_illv6 = NULL;
18351 		phyi_old->phyint_ipsq->ipsq_phyint = NULL;
18352 		phyi_old->phyint_name[0] = '\0';
18353 		mi_free(phyi_old);
18354 	} else {
18355 		mutex_enter(&ill->ill_lock);
18356 		/*
18357 		 * We don't need to acquire any lock, since
18358 		 * the ill is not yet visible globally  and we
18359 		 * have not yet released the ill_g_lock.
18360 		 */
18361 		phyi = phyi_old;
18362 		mutex_enter(&phyi->phyint_lock);
18363 		/* XXX We need a recovery strategy here. */
18364 		if (!phyint_assign_ifindex(phyi, ipst))
18365 			cmn_err(CE_PANIC, "phyint_assign_ifindex() failed");
18366 
18367 		avl_insert(&ipst->ips_phyint_g_list->phyint_list_avl_by_name,
18368 		    (void *)phyi, where);
18369 
18370 		(void) avl_find(&ipst->ips_phyint_g_list->
18371 		    phyint_list_avl_by_index,
18372 		    &phyi->phyint_ifindex, &where);
18373 		avl_insert(&ipst->ips_phyint_g_list->phyint_list_avl_by_index,
18374 		    (void *)phyi, where);
18375 	}
18376 
18377 	/*
18378 	 * Reassigning ill_phyint automatically reassigns the ipsq also.
18379 	 * pending mp is not affected because that is per ill basis.
18380 	 */
18381 	ill->ill_phyint = phyi;
18382 
18383 	/*
18384 	 * Now that the phyint's ifindex has been assigned, complete the
18385 	 * remaining
18386 	 */
18387 
18388 	ill->ill_ip_mib->ipIfStatsIfIndex = ill->ill_phyint->phyint_ifindex;
18389 	if (ill->ill_isv6) {
18390 		ill->ill_icmp6_mib->ipv6IfIcmpIfIndex =
18391 		    ill->ill_phyint->phyint_ifindex;
18392 		ill->ill_mcast_type = ipst->ips_mld_max_version;
18393 	} else {
18394 		ill->ill_mcast_type = ipst->ips_igmp_max_version;
18395 	}
18396 
18397 	/*
18398 	 * Generate an event within the hooks framework to indicate that
18399 	 * a new interface has just been added to IP.  For this event to
18400 	 * be generated, the network interface must, at least, have an
18401 	 * ifindex assigned to it.  (We don't generate the event for
18402 	 * loopback since ill_lookup_on_name() has its own NE_PLUMB event.)
18403 	 *
18404 	 * This needs to be run inside the ill_g_lock perimeter to ensure
18405 	 * that the ordering of delivered events to listeners matches the
18406 	 * order of them in the kernel.
18407 	 */
18408 	if (!IS_LOOPBACK(ill)) {
18409 		ill_nic_event_dispatch(ill, 0, NE_PLUMB, ill->ill_name,
18410 		    ill->ill_name_length);
18411 	}
18412 	RELEASE_ILL_LOCKS(ill, ill_other);
18413 	mutex_exit(&phyi->phyint_lock);
18414 }
18415 
18416 /*
18417  * Notify any downstream modules of the name of this interface.
18418  * An M_IOCTL is used even though we don't expect a successful reply.
18419  * Any reply message from the driver (presumably an M_IOCNAK) will
18420  * eventually get discarded somewhere upstream.  The message format is
18421  * simply an SIOCSLIFNAME ioctl just as might be sent from ifconfig
18422  * to IP.
18423  */
18424 static void
18425 ip_ifname_notify(ill_t *ill, queue_t *q)
18426 {
18427 	mblk_t *mp1, *mp2;
18428 	struct iocblk *iocp;
18429 	struct lifreq *lifr;
18430 
18431 	mp1 = mkiocb(SIOCSLIFNAME);
18432 	if (mp1 == NULL)
18433 		return;
18434 	mp2 = allocb(sizeof (struct lifreq), BPRI_HI);
18435 	if (mp2 == NULL) {
18436 		freeb(mp1);
18437 		return;
18438 	}
18439 
18440 	mp1->b_cont = mp2;
18441 	iocp = (struct iocblk *)mp1->b_rptr;
18442 	iocp->ioc_count = sizeof (struct lifreq);
18443 
18444 	lifr = (struct lifreq *)mp2->b_rptr;
18445 	mp2->b_wptr += sizeof (struct lifreq);
18446 	bzero(lifr, sizeof (struct lifreq));
18447 
18448 	(void) strncpy(lifr->lifr_name, ill->ill_name, LIFNAMSIZ);
18449 	lifr->lifr_ppa = ill->ill_ppa;
18450 	lifr->lifr_flags = (ill->ill_flags & (ILLF_IPV4|ILLF_IPV6));
18451 
18452 	putnext(q, mp1);
18453 }
18454 
18455 static int
18456 ipif_set_values_tail(ill_t *ill, ipif_t *ipif, mblk_t *mp, queue_t *q)
18457 {
18458 	int		err;
18459 	ip_stack_t	*ipst = ill->ill_ipst;
18460 	phyint_t	*phyi = ill->ill_phyint;
18461 
18462 	/* Set the obsolete NDD per-interface forwarding name. */
18463 	err = ill_set_ndd_name(ill);
18464 	if (err != 0) {
18465 		cmn_err(CE_WARN, "ipif_set_values: ill_set_ndd_name (%d)\n",
18466 		    err);
18467 	}
18468 
18469 	/*
18470 	 * Now that ill_name is set, the configuration for the IPMP
18471 	 * meta-interface can be performed.
18472 	 */
18473 	if (IS_IPMP(ill)) {
18474 		rw_enter(&ipst->ips_ipmp_lock, RW_WRITER);
18475 		/*
18476 		 * If phyi->phyint_grp is NULL, then this is the first IPMP
18477 		 * meta-interface and we need to create the IPMP group.
18478 		 */
18479 		if (phyi->phyint_grp == NULL) {
18480 			/*
18481 			 * If someone has renamed another IPMP group to have
18482 			 * the same name as our interface, bail.
18483 			 */
18484 			if (ipmp_grp_lookup(ill->ill_name, ipst) != NULL) {
18485 				rw_exit(&ipst->ips_ipmp_lock);
18486 				return (EEXIST);
18487 			}
18488 			phyi->phyint_grp = ipmp_grp_create(ill->ill_name, phyi);
18489 			if (phyi->phyint_grp == NULL) {
18490 				rw_exit(&ipst->ips_ipmp_lock);
18491 				return (ENOMEM);
18492 			}
18493 		}
18494 		rw_exit(&ipst->ips_ipmp_lock);
18495 	}
18496 
18497 	/* Tell downstream modules where they are. */
18498 	ip_ifname_notify(ill, q);
18499 
18500 	/*
18501 	 * ill_dl_phys returns EINPROGRESS in the usual case.
18502 	 * Error cases are ENOMEM ...
18503 	 */
18504 	err = ill_dl_phys(ill, ipif, mp, q);
18505 
18506 	/*
18507 	 * If there is no IRE expiration timer running, get one started.
18508 	 * igmp and mld timers will be triggered by the first multicast
18509 	 */
18510 	if (ipst->ips_ip_ire_expire_id == 0) {
18511 		/*
18512 		 * acquire the lock and check again.
18513 		 */
18514 		mutex_enter(&ipst->ips_ip_trash_timer_lock);
18515 		if (ipst->ips_ip_ire_expire_id == 0) {
18516 			ipst->ips_ip_ire_expire_id = timeout(
18517 			    ip_trash_timer_expire, ipst,
18518 			    MSEC_TO_TICK(ipst->ips_ip_timer_interval));
18519 		}
18520 		mutex_exit(&ipst->ips_ip_trash_timer_lock);
18521 	}
18522 
18523 	if (ill->ill_isv6) {
18524 		mutex_enter(&ipst->ips_mld_slowtimeout_lock);
18525 		if (ipst->ips_mld_slowtimeout_id == 0) {
18526 			ipst->ips_mld_slowtimeout_id = timeout(mld_slowtimo,
18527 			    (void *)ipst,
18528 			    MSEC_TO_TICK(MCAST_SLOWTIMO_INTERVAL));
18529 		}
18530 		mutex_exit(&ipst->ips_mld_slowtimeout_lock);
18531 	} else {
18532 		mutex_enter(&ipst->ips_igmp_slowtimeout_lock);
18533 		if (ipst->ips_igmp_slowtimeout_id == 0) {
18534 			ipst->ips_igmp_slowtimeout_id = timeout(igmp_slowtimo,
18535 			    (void *)ipst,
18536 			    MSEC_TO_TICK(MCAST_SLOWTIMO_INTERVAL));
18537 		}
18538 		mutex_exit(&ipst->ips_igmp_slowtimeout_lock);
18539 	}
18540 
18541 	return (err);
18542 }
18543 
18544 /*
18545  * Common routine for ppa and ifname setting. Should be called exclusive.
18546  *
18547  * Returns EINPROGRESS when mp has been consumed by queueing it on
18548  * ill_pending_mp and the ioctl will complete in ip_rput.
18549  *
18550  * NOTE : If ppa is UNIT_MAX, we assign the next valid ppa and return
18551  * the new name and new ppa in lifr_name and lifr_ppa respectively.
18552  * For SLIFNAME, we pass these values back to the userland.
18553  */
18554 static int
18555 ipif_set_values(queue_t *q, mblk_t *mp, char *interf_name, uint_t *new_ppa_ptr)
18556 {
18557 	ill_t	*ill;
18558 	ipif_t	*ipif;
18559 	ipsq_t	*ipsq;
18560 	char	*ppa_ptr;
18561 	char	*old_ptr;
18562 	char	old_char;
18563 	int	error;
18564 	ip_stack_t	*ipst;
18565 
18566 	ip1dbg(("ipif_set_values: interface %s\n", interf_name));
18567 	ASSERT(q->q_next != NULL);
18568 	ASSERT(interf_name != NULL);
18569 
18570 	ill = (ill_t *)q->q_ptr;
18571 	ipst = ill->ill_ipst;
18572 
18573 	ASSERT(ill->ill_ipst != NULL);
18574 	ASSERT(ill->ill_name[0] == '\0');
18575 	ASSERT(IAM_WRITER_ILL(ill));
18576 	ASSERT((mi_strlen(interf_name) + 1) <= LIFNAMSIZ);
18577 	ASSERT(ill->ill_ppa == UINT_MAX);
18578 
18579 	/* The ppa is sent down by ifconfig or is chosen */
18580 	if ((ppa_ptr = ill_get_ppa_ptr(interf_name)) == NULL) {
18581 		return (EINVAL);
18582 	}
18583 
18584 	/*
18585 	 * make sure ppa passed in is same as ppa in the name.
18586 	 * This check is not made when ppa == UINT_MAX in that case ppa
18587 	 * in the name could be anything. System will choose a ppa and
18588 	 * update new_ppa_ptr and inter_name to contain the choosen ppa.
18589 	 */
18590 	if (*new_ppa_ptr != UINT_MAX) {
18591 		/* stoi changes the pointer */
18592 		old_ptr = ppa_ptr;
18593 		/*
18594 		 * ifconfig passed in 0 for the ppa for DLPI 1 style devices
18595 		 * (they don't have an externally visible ppa).  We assign one
18596 		 * here so that we can manage the interface.  Note that in
18597 		 * the past this value was always 0 for DLPI 1 drivers.
18598 		 */
18599 		if (*new_ppa_ptr == 0)
18600 			*new_ppa_ptr = stoi(&old_ptr);
18601 		else if (*new_ppa_ptr != (uint_t)stoi(&old_ptr))
18602 			return (EINVAL);
18603 	}
18604 	/*
18605 	 * terminate string before ppa
18606 	 * save char at that location.
18607 	 */
18608 	old_char = ppa_ptr[0];
18609 	ppa_ptr[0] = '\0';
18610 
18611 	ill->ill_ppa = *new_ppa_ptr;
18612 	/*
18613 	 * Finish as much work now as possible before calling ill_glist_insert
18614 	 * which makes the ill globally visible and also merges it with the
18615 	 * other protocol instance of this phyint. The remaining work is
18616 	 * done after entering the ipsq which may happen sometime later.
18617 	 * ill_set_ndd_name occurs after the ill has been made globally visible.
18618 	 */
18619 	ipif = ill->ill_ipif;
18620 
18621 	/* We didn't do this when we allocated ipif in ip_ll_subnet_defaults */
18622 	ipif_assign_seqid(ipif);
18623 
18624 	if (!(ill->ill_flags & (ILLF_IPV4|ILLF_IPV6)))
18625 		ill->ill_flags |= ILLF_IPV4;
18626 
18627 	ASSERT(ipif->ipif_next == NULL);	/* Only one ipif on ill */
18628 	ASSERT((ipif->ipif_flags & IPIF_UP) == 0);
18629 
18630 	if (ill->ill_flags & ILLF_IPV6) {
18631 
18632 		ill->ill_isv6 = B_TRUE;
18633 		if (ill->ill_rq != NULL) {
18634 			ill->ill_rq->q_qinfo = &iprinitv6;
18635 			ill->ill_wq->q_qinfo = &ipwinitv6;
18636 		}
18637 
18638 		/* Keep the !IN6_IS_ADDR_V4MAPPED assertions happy */
18639 		ipif->ipif_v6lcl_addr = ipv6_all_zeros;
18640 		ipif->ipif_v6src_addr = ipv6_all_zeros;
18641 		ipif->ipif_v6subnet = ipv6_all_zeros;
18642 		ipif->ipif_v6net_mask = ipv6_all_zeros;
18643 		ipif->ipif_v6brd_addr = ipv6_all_zeros;
18644 		ipif->ipif_v6pp_dst_addr = ipv6_all_zeros;
18645 		/*
18646 		 * point-to-point or Non-mulicast capable
18647 		 * interfaces won't do NUD unless explicitly
18648 		 * configured to do so.
18649 		 */
18650 		if (ipif->ipif_flags & IPIF_POINTOPOINT ||
18651 		    !(ill->ill_flags & ILLF_MULTICAST)) {
18652 			ill->ill_flags |= ILLF_NONUD;
18653 		}
18654 		/* Make sure IPv4 specific flag is not set on IPv6 if */
18655 		if (ill->ill_flags & ILLF_NOARP) {
18656 			/*
18657 			 * Note: xresolv interfaces will eventually need
18658 			 * NOARP set here as well, but that will require
18659 			 * those external resolvers to have some
18660 			 * knowledge of that flag and act appropriately.
18661 			 * Not to be changed at present.
18662 			 */
18663 			ill->ill_flags &= ~ILLF_NOARP;
18664 		}
18665 		/*
18666 		 * Set the ILLF_ROUTER flag according to the global
18667 		 * IPv6 forwarding policy.
18668 		 */
18669 		if (ipst->ips_ipv6_forward != 0)
18670 			ill->ill_flags |= ILLF_ROUTER;
18671 	} else if (ill->ill_flags & ILLF_IPV4) {
18672 		ill->ill_isv6 = B_FALSE;
18673 		IN6_IPADDR_TO_V4MAPPED(INADDR_ANY, &ipif->ipif_v6lcl_addr);
18674 		IN6_IPADDR_TO_V4MAPPED(INADDR_ANY, &ipif->ipif_v6src_addr);
18675 		IN6_IPADDR_TO_V4MAPPED(INADDR_ANY, &ipif->ipif_v6subnet);
18676 		IN6_IPADDR_TO_V4MAPPED(INADDR_ANY, &ipif->ipif_v6net_mask);
18677 		IN6_IPADDR_TO_V4MAPPED(INADDR_ANY, &ipif->ipif_v6brd_addr);
18678 		IN6_IPADDR_TO_V4MAPPED(INADDR_ANY, &ipif->ipif_v6pp_dst_addr);
18679 		/*
18680 		 * Set the ILLF_ROUTER flag according to the global
18681 		 * IPv4 forwarding policy.
18682 		 */
18683 		if (ipst->ips_ip_g_forward != 0)
18684 			ill->ill_flags |= ILLF_ROUTER;
18685 	}
18686 
18687 	ASSERT(ill->ill_phyint != NULL);
18688 
18689 	/*
18690 	 * The ipIfStatsIfindex and ipv6IfIcmpIfIndex assignments will
18691 	 * be completed in ill_glist_insert -> ill_phyint_reinit
18692 	 */
18693 	if (!ill_allocate_mibs(ill))
18694 		return (ENOMEM);
18695 
18696 	/*
18697 	 * Pick a default sap until we get the DL_INFO_ACK back from
18698 	 * the driver.
18699 	 */
18700 	ill->ill_sap = (ill->ill_isv6) ? ill->ill_media->ip_m_ipv6sap :
18701 	    ill->ill_media->ip_m_ipv4sap;
18702 
18703 	ill->ill_ifname_pending = 1;
18704 	ill->ill_ifname_pending_err = 0;
18705 
18706 	/*
18707 	 * When the first ipif comes up in ipif_up_done(), multicast groups
18708 	 * that were joined while this ill was not bound to the DLPI link need
18709 	 * to be recovered by ill_recover_multicast().
18710 	 */
18711 	ill->ill_need_recover_multicast = 1;
18712 
18713 	ill_refhold(ill);
18714 	rw_enter(&ipst->ips_ill_g_lock, RW_WRITER);
18715 	if ((error = ill_glist_insert(ill, interf_name,
18716 	    (ill->ill_flags & ILLF_IPV6) == ILLF_IPV6)) > 0) {
18717 		ill->ill_ppa = UINT_MAX;
18718 		ill->ill_name[0] = '\0';
18719 		/*
18720 		 * undo null termination done above.
18721 		 */
18722 		ppa_ptr[0] = old_char;
18723 		rw_exit(&ipst->ips_ill_g_lock);
18724 		ill_refrele(ill);
18725 		return (error);
18726 	}
18727 
18728 	ASSERT(ill->ill_name_length <= LIFNAMSIZ);
18729 
18730 	/*
18731 	 * When we return the buffer pointed to by interf_name should contain
18732 	 * the same name as in ill_name.
18733 	 * If a ppa was choosen by the system (ppa passed in was UINT_MAX)
18734 	 * the buffer pointed to by new_ppa_ptr would not contain the right ppa
18735 	 * so copy full name and update the ppa ptr.
18736 	 * When ppa passed in != UINT_MAX all values are correct just undo
18737 	 * null termination, this saves a bcopy.
18738 	 */
18739 	if (*new_ppa_ptr == UINT_MAX) {
18740 		bcopy(ill->ill_name, interf_name, ill->ill_name_length);
18741 		*new_ppa_ptr = ill->ill_ppa;
18742 	} else {
18743 		/*
18744 		 * undo null termination done above.
18745 		 */
18746 		ppa_ptr[0] = old_char;
18747 	}
18748 
18749 	/* Let SCTP know about this ILL */
18750 	sctp_update_ill(ill, SCTP_ILL_INSERT);
18751 
18752 	/*
18753 	 * ill_glist_insert has made the ill visible globally, and
18754 	 * ill_phyint_reinit could have changed the ipsq. At this point,
18755 	 * we need to hold the ips_ill_g_lock across the call to enter the
18756 	 * ipsq to enforce atomicity and prevent reordering. In the event
18757 	 * the ipsq has changed, and if the new ipsq is currently busy,
18758 	 * we need to make sure that this half-completed ioctl is ahead of
18759 	 * any subsequent ioctl. We achieve this by not dropping the
18760 	 * ips_ill_g_lock which prevents any ill lookup itself thereby
18761 	 * ensuring that new ioctls can't start.
18762 	 */
18763 	ipsq = ipsq_try_enter_internal(ill, q, mp, ip_reprocess_ioctl, NEW_OP,
18764 	    B_TRUE);
18765 
18766 	rw_exit(&ipst->ips_ill_g_lock);
18767 	ill_refrele(ill);
18768 	if (ipsq == NULL)
18769 		return (EINPROGRESS);
18770 
18771 	/*
18772 	 * If ill_phyint_reinit() changed our ipsq, then start on the new ipsq.
18773 	 */
18774 	if (ipsq->ipsq_xop->ipx_current_ipif == NULL)
18775 		ipsq_current_start(ipsq, ipif, SIOCSLIFNAME);
18776 	else
18777 		ASSERT(ipsq->ipsq_xop->ipx_current_ipif == ipif);
18778 
18779 	error = ipif_set_values_tail(ill, ipif, mp, q);
18780 	ipsq_exit(ipsq);
18781 	if (error != 0 && error != EINPROGRESS) {
18782 		/*
18783 		 * restore previous values
18784 		 */
18785 		ill->ill_isv6 = B_FALSE;
18786 	}
18787 	return (error);
18788 }
18789 
18790 void
18791 ipif_init(ip_stack_t *ipst)
18792 {
18793 	int i;
18794 
18795 	for (i = 0; i < MAX_G_HEADS; i++) {
18796 		ipst->ips_ill_g_heads[i].ill_g_list_head =
18797 		    (ill_if_t *)&ipst->ips_ill_g_heads[i];
18798 		ipst->ips_ill_g_heads[i].ill_g_list_tail =
18799 		    (ill_if_t *)&ipst->ips_ill_g_heads[i];
18800 	}
18801 
18802 	avl_create(&ipst->ips_phyint_g_list->phyint_list_avl_by_index,
18803 	    ill_phyint_compare_index,
18804 	    sizeof (phyint_t),
18805 	    offsetof(struct phyint, phyint_avl_by_index));
18806 	avl_create(&ipst->ips_phyint_g_list->phyint_list_avl_by_name,
18807 	    ill_phyint_compare_name,
18808 	    sizeof (phyint_t),
18809 	    offsetof(struct phyint, phyint_avl_by_name));
18810 }
18811 
18812 /*
18813  * Lookup the ipif corresponding to the onlink destination address. For
18814  * point-to-point interfaces, it matches with remote endpoint destination
18815  * address. For point-to-multipoint interfaces it only tries to match the
18816  * destination with the interface's subnet address. The longest, most specific
18817  * match is found to take care of such rare network configurations like -
18818  * le0: 129.146.1.1/16
18819  * le1: 129.146.2.2/24
18820  *
18821  * This is used by SO_DONTROUTE and IP_NEXTHOP.  Since neither of those are
18822  * supported on underlying interfaces in an IPMP group, underlying interfaces
18823  * are ignored when looking up a match.  (If we didn't ignore them, we'd
18824  * risk using a test address as a source for outgoing traffic.)
18825  */
18826 ipif_t *
18827 ipif_lookup_onlink_addr(ipaddr_t addr, zoneid_t zoneid, ip_stack_t *ipst)
18828 {
18829 	ipif_t	*ipif, *best_ipif;
18830 	ill_t	*ill;
18831 	ill_walk_context_t ctx;
18832 
18833 	ASSERT(zoneid != ALL_ZONES);
18834 	best_ipif = NULL;
18835 
18836 	rw_enter(&ipst->ips_ill_g_lock, RW_READER);
18837 	ill = ILL_START_WALK_V4(&ctx, ipst);
18838 	for (; ill != NULL; ill = ill_next(&ctx, ill)) {
18839 		if (IS_UNDER_IPMP(ill))
18840 			continue;
18841 		mutex_enter(&ill->ill_lock);
18842 		for (ipif = ill->ill_ipif; ipif != NULL;
18843 		    ipif = ipif->ipif_next) {
18844 			if (!IPIF_CAN_LOOKUP(ipif))
18845 				continue;
18846 			if (ipif->ipif_zoneid != zoneid &&
18847 			    ipif->ipif_zoneid != ALL_ZONES)
18848 				continue;
18849 			/*
18850 			 * Point-to-point case. Look for exact match with
18851 			 * destination address.
18852 			 */
18853 			if (ipif->ipif_flags & IPIF_POINTOPOINT) {
18854 				if (ipif->ipif_pp_dst_addr == addr) {
18855 					ipif_refhold_locked(ipif);
18856 					mutex_exit(&ill->ill_lock);
18857 					rw_exit(&ipst->ips_ill_g_lock);
18858 					if (best_ipif != NULL)
18859 						ipif_refrele(best_ipif);
18860 					return (ipif);
18861 				}
18862 			} else if (ipif->ipif_subnet == (addr &
18863 			    ipif->ipif_net_mask)) {
18864 				/*
18865 				 * Point-to-multipoint case. Looping through to
18866 				 * find the most specific match. If there are
18867 				 * multiple best match ipif's then prefer ipif's
18868 				 * that are UP. If there is only one best match
18869 				 * ipif and it is DOWN we must still return it.
18870 				 */
18871 				if ((best_ipif == NULL) ||
18872 				    (ipif->ipif_net_mask >
18873 				    best_ipif->ipif_net_mask) ||
18874 				    ((ipif->ipif_net_mask ==
18875 				    best_ipif->ipif_net_mask) &&
18876 				    ((ipif->ipif_flags & IPIF_UP) &&
18877 				    (!(best_ipif->ipif_flags & IPIF_UP))))) {
18878 					ipif_refhold_locked(ipif);
18879 					mutex_exit(&ill->ill_lock);
18880 					rw_exit(&ipst->ips_ill_g_lock);
18881 					if (best_ipif != NULL)
18882 						ipif_refrele(best_ipif);
18883 					best_ipif = ipif;
18884 					rw_enter(&ipst->ips_ill_g_lock,
18885 					    RW_READER);
18886 					mutex_enter(&ill->ill_lock);
18887 				}
18888 			}
18889 		}
18890 		mutex_exit(&ill->ill_lock);
18891 	}
18892 	rw_exit(&ipst->ips_ill_g_lock);
18893 	return (best_ipif);
18894 }
18895 
18896 /*
18897  * Save enough information so that we can recreate the IRE if
18898  * the interface goes down and then up.
18899  */
18900 static void
18901 ipif_save_ire(ipif_t *ipif, ire_t *ire)
18902 {
18903 	mblk_t	*save_mp;
18904 
18905 	save_mp = allocb(sizeof (ifrt_t), BPRI_MED);
18906 	if (save_mp != NULL) {
18907 		ifrt_t	*ifrt;
18908 
18909 		save_mp->b_wptr += sizeof (ifrt_t);
18910 		ifrt = (ifrt_t *)save_mp->b_rptr;
18911 		bzero(ifrt, sizeof (ifrt_t));
18912 		ifrt->ifrt_type = ire->ire_type;
18913 		ifrt->ifrt_addr = ire->ire_addr;
18914 		ifrt->ifrt_gateway_addr = ire->ire_gateway_addr;
18915 		ifrt->ifrt_src_addr = ire->ire_src_addr;
18916 		ifrt->ifrt_mask = ire->ire_mask;
18917 		ifrt->ifrt_flags = ire->ire_flags;
18918 		ifrt->ifrt_max_frag = ire->ire_max_frag;
18919 		mutex_enter(&ipif->ipif_saved_ire_lock);
18920 		save_mp->b_cont = ipif->ipif_saved_ire_mp;
18921 		ipif->ipif_saved_ire_mp = save_mp;
18922 		ipif->ipif_saved_ire_cnt++;
18923 		mutex_exit(&ipif->ipif_saved_ire_lock);
18924 	}
18925 }
18926 
18927 static void
18928 ipif_remove_ire(ipif_t *ipif, ire_t *ire)
18929 {
18930 	mblk_t	**mpp;
18931 	mblk_t	*mp;
18932 	ifrt_t	*ifrt;
18933 
18934 	/* Remove from ipif_saved_ire_mp list if it is there */
18935 	mutex_enter(&ipif->ipif_saved_ire_lock);
18936 	for (mpp = &ipif->ipif_saved_ire_mp; *mpp != NULL;
18937 	    mpp = &(*mpp)->b_cont) {
18938 		/*
18939 		 * On a given ipif, the triple of address, gateway and
18940 		 * mask is unique for each saved IRE (in the case of
18941 		 * ordinary interface routes, the gateway address is
18942 		 * all-zeroes).
18943 		 */
18944 		mp = *mpp;
18945 		ifrt = (ifrt_t *)mp->b_rptr;
18946 		if (ifrt->ifrt_addr == ire->ire_addr &&
18947 		    ifrt->ifrt_gateway_addr == ire->ire_gateway_addr &&
18948 		    ifrt->ifrt_mask == ire->ire_mask) {
18949 			*mpp = mp->b_cont;
18950 			ipif->ipif_saved_ire_cnt--;
18951 			freeb(mp);
18952 			break;
18953 		}
18954 	}
18955 	mutex_exit(&ipif->ipif_saved_ire_lock);
18956 }
18957 
18958 /*
18959  * IP multirouting broadcast routes handling
18960  * Append CGTP broadcast IREs to regular ones created
18961  * at ifconfig time.
18962  */
18963 static void
18964 ip_cgtp_bcast_add(ire_t *ire, ire_t *ire_dst, ip_stack_t *ipst)
18965 {
18966 	ire_t *ire_prim;
18967 
18968 	ASSERT(ire != NULL);
18969 	ASSERT(ire_dst != NULL);
18970 
18971 	ire_prim = ire_ctable_lookup(ire->ire_gateway_addr, 0,
18972 	    IRE_BROADCAST, NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst);
18973 	if (ire_prim != NULL) {
18974 		/*
18975 		 * We are in the special case of broadcasts for
18976 		 * CGTP. We add an IRE_BROADCAST that holds
18977 		 * the RTF_MULTIRT flag, the destination
18978 		 * address of ire_dst and the low level
18979 		 * info of ire_prim. In other words, CGTP
18980 		 * broadcast is added to the redundant ipif.
18981 		 */
18982 		ipif_t *ipif_prim;
18983 		ire_t  *bcast_ire;
18984 
18985 		ipif_prim = ire_prim->ire_ipif;
18986 
18987 		ip2dbg(("ip_cgtp_filter_bcast_add: "
18988 		    "ire_dst %p, ire_prim %p, ipif_prim %p\n",
18989 		    (void *)ire_dst, (void *)ire_prim,
18990 		    (void *)ipif_prim));
18991 
18992 		bcast_ire = ire_create(
18993 		    (uchar_t *)&ire->ire_addr,
18994 		    (uchar_t *)&ip_g_all_ones,
18995 		    (uchar_t *)&ire_dst->ire_src_addr,
18996 		    (uchar_t *)&ire->ire_gateway_addr,
18997 		    &ipif_prim->ipif_mtu,
18998 		    NULL,
18999 		    ipif_prim->ipif_rq,
19000 		    ipif_prim->ipif_wq,
19001 		    IRE_BROADCAST,
19002 		    ipif_prim,
19003 		    0,
19004 		    0,
19005 		    0,
19006 		    ire->ire_flags,
19007 		    &ire_uinfo_null,
19008 		    NULL,
19009 		    NULL,
19010 		    ipst);
19011 
19012 		if (bcast_ire != NULL) {
19013 
19014 			if (ire_add(&bcast_ire, NULL, NULL, NULL,
19015 			    B_FALSE) == 0) {
19016 				ip2dbg(("ip_cgtp_filter_bcast_add: "
19017 				    "added bcast_ire %p\n",
19018 				    (void *)bcast_ire));
19019 
19020 				ipif_save_ire(bcast_ire->ire_ipif,
19021 				    bcast_ire);
19022 				ire_refrele(bcast_ire);
19023 			}
19024 		}
19025 		ire_refrele(ire_prim);
19026 	}
19027 }
19028 
19029 /*
19030  * IP multirouting broadcast routes handling
19031  * Remove the broadcast ire
19032  */
19033 static void
19034 ip_cgtp_bcast_delete(ire_t *ire, ip_stack_t *ipst)
19035 {
19036 	ire_t *ire_dst;
19037 
19038 	ASSERT(ire != NULL);
19039 	ire_dst = ire_ctable_lookup(ire->ire_addr, 0, IRE_BROADCAST,
19040 	    NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst);
19041 	if (ire_dst != NULL) {
19042 		ire_t *ire_prim;
19043 
19044 		ire_prim = ire_ctable_lookup(ire->ire_gateway_addr, 0,
19045 		    IRE_BROADCAST, NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst);
19046 		if (ire_prim != NULL) {
19047 			ipif_t *ipif_prim;
19048 			ire_t  *bcast_ire;
19049 
19050 			ipif_prim = ire_prim->ire_ipif;
19051 
19052 			ip2dbg(("ip_cgtp_filter_bcast_delete: "
19053 			    "ire_dst %p, ire_prim %p, ipif_prim %p\n",
19054 			    (void *)ire_dst, (void *)ire_prim,
19055 			    (void *)ipif_prim));
19056 
19057 			bcast_ire = ire_ctable_lookup(ire->ire_addr,
19058 			    ire->ire_gateway_addr,
19059 			    IRE_BROADCAST,
19060 			    ipif_prim, ALL_ZONES,
19061 			    NULL,
19062 			    MATCH_IRE_TYPE | MATCH_IRE_GW | MATCH_IRE_IPIF |
19063 			    MATCH_IRE_MASK, ipst);
19064 
19065 			if (bcast_ire != NULL) {
19066 				ip2dbg(("ip_cgtp_filter_bcast_delete: "
19067 				    "looked up bcast_ire %p\n",
19068 				    (void *)bcast_ire));
19069 				ipif_remove_ire(bcast_ire->ire_ipif,
19070 				    bcast_ire);
19071 				ire_delete(bcast_ire);
19072 				ire_refrele(bcast_ire);
19073 			}
19074 			ire_refrele(ire_prim);
19075 		}
19076 		ire_refrele(ire_dst);
19077 	}
19078 }
19079 
19080 /*
19081  * IPsec hardware acceleration capabilities related functions.
19082  */
19083 
19084 /*
19085  * Free a per-ill IPsec capabilities structure.
19086  */
19087 static void
19088 ill_ipsec_capab_free(ill_ipsec_capab_t *capab)
19089 {
19090 	if (capab->auth_hw_algs != NULL)
19091 		kmem_free(capab->auth_hw_algs, capab->algs_size);
19092 	if (capab->encr_hw_algs != NULL)
19093 		kmem_free(capab->encr_hw_algs, capab->algs_size);
19094 	if (capab->encr_algparm != NULL)
19095 		kmem_free(capab->encr_algparm, capab->encr_algparm_size);
19096 	kmem_free(capab, sizeof (ill_ipsec_capab_t));
19097 }
19098 
19099 /*
19100  * Allocate a new per-ill IPsec capabilities structure. This structure
19101  * is specific to an IPsec protocol (AH or ESP). It is implemented as
19102  * an array which specifies, for each algorithm, whether this algorithm
19103  * is supported by the ill or not.
19104  */
19105 static ill_ipsec_capab_t *
19106 ill_ipsec_capab_alloc(void)
19107 {
19108 	ill_ipsec_capab_t *capab;
19109 	uint_t nelems;
19110 
19111 	capab = kmem_zalloc(sizeof (ill_ipsec_capab_t), KM_NOSLEEP);
19112 	if (capab == NULL)
19113 		return (NULL);
19114 
19115 	/* we need one bit per algorithm */
19116 	nelems = MAX_IPSEC_ALGS / BITS(ipsec_capab_elem_t);
19117 	capab->algs_size = nelems * sizeof (ipsec_capab_elem_t);
19118 
19119 	/* allocate memory to store algorithm flags */
19120 	capab->encr_hw_algs = kmem_zalloc(capab->algs_size, KM_NOSLEEP);
19121 	if (capab->encr_hw_algs == NULL)
19122 		goto nomem;
19123 	capab->auth_hw_algs = kmem_zalloc(capab->algs_size, KM_NOSLEEP);
19124 	if (capab->auth_hw_algs == NULL)
19125 		goto nomem;
19126 	/*
19127 	 * Leave encr_algparm NULL for now since we won't need it half
19128 	 * the time
19129 	 */
19130 	return (capab);
19131 
19132 nomem:
19133 	ill_ipsec_capab_free(capab);
19134 	return (NULL);
19135 }
19136 
19137 /*
19138  * Resize capability array.  Since we're exclusive, this is OK.
19139  */
19140 static boolean_t
19141 ill_ipsec_capab_resize_algparm(ill_ipsec_capab_t *capab, int algid)
19142 {
19143 	ipsec_capab_algparm_t *nalp, *oalp;
19144 	uint32_t olen, nlen;
19145 
19146 	oalp = capab->encr_algparm;
19147 	olen = capab->encr_algparm_size;
19148 
19149 	if (oalp != NULL) {
19150 		if (algid < capab->encr_algparm_end)
19151 			return (B_TRUE);
19152 	}
19153 
19154 	nlen = (algid + 1) * sizeof (*nalp);
19155 	nalp = kmem_zalloc(nlen, KM_NOSLEEP);
19156 	if (nalp == NULL)
19157 		return (B_FALSE);
19158 
19159 	if (oalp != NULL) {
19160 		bcopy(oalp, nalp, olen);
19161 		kmem_free(oalp, olen);
19162 	}
19163 	capab->encr_algparm = nalp;
19164 	capab->encr_algparm_size = nlen;
19165 	capab->encr_algparm_end = algid + 1;
19166 
19167 	return (B_TRUE);
19168 }
19169 
19170 /*
19171  * Compare the capabilities of the specified ill with the protocol
19172  * and algorithms specified by the SA passed as argument.
19173  * If they match, returns B_TRUE, B_FALSE if they do not match.
19174  *
19175  * The ill can be passed as a pointer to it, or by specifying its index
19176  * and whether it is an IPv6 ill (ill_index and ill_isv6 arguments).
19177  *
19178  * Called by ipsec_out_is_accelerated() do decide whether an outbound
19179  * packet is eligible for hardware acceleration, and by
19180  * ill_ipsec_capab_send_all() to decide whether a SA must be sent down
19181  * to a particular ill.
19182  */
19183 boolean_t
19184 ipsec_capab_match(ill_t *ill, uint_t ill_index, boolean_t ill_isv6,
19185     ipsa_t *sa, netstack_t *ns)
19186 {
19187 	boolean_t sa_isv6;
19188 	uint_t algid;
19189 	struct ill_ipsec_capab_s *cpp;
19190 	boolean_t need_refrele = B_FALSE;
19191 	ip_stack_t	*ipst = ns->netstack_ip;
19192 
19193 	if (ill == NULL) {
19194 		ill = ill_lookup_on_ifindex(ill_index, ill_isv6, NULL,
19195 		    NULL, NULL, NULL, ipst);
19196 		if (ill == NULL) {
19197 			ip0dbg(("ipsec_capab_match: ill doesn't exist\n"));
19198 			return (B_FALSE);
19199 		}
19200 		need_refrele = B_TRUE;
19201 	}
19202 
19203 	/*
19204 	 * Use the address length specified by the SA to determine
19205 	 * if it corresponds to a IPv6 address, and fail the matching
19206 	 * if the isv6 flag passed as argument does not match.
19207 	 * Note: this check is used for SADB capability checking before
19208 	 * sending SA information to an ill.
19209 	 */
19210 	sa_isv6 = (sa->ipsa_addrfam == AF_INET6);
19211 	if (sa_isv6 != ill_isv6)
19212 		/* protocol mismatch */
19213 		goto done;
19214 
19215 	/*
19216 	 * Check if the ill supports the protocol, algorithm(s) and
19217 	 * key size(s) specified by the SA, and get the pointers to
19218 	 * the algorithms supported by the ill.
19219 	 */
19220 	switch (sa->ipsa_type) {
19221 
19222 	case SADB_SATYPE_ESP:
19223 		if (!(ill->ill_capabilities & ILL_CAPAB_ESP))
19224 			/* ill does not support ESP acceleration */
19225 			goto done;
19226 		cpp = ill->ill_ipsec_capab_esp;
19227 		algid = sa->ipsa_auth_alg;
19228 		if (!IPSEC_ALG_IS_ENABLED(algid, cpp->auth_hw_algs))
19229 			goto done;
19230 		algid = sa->ipsa_encr_alg;
19231 		if (!IPSEC_ALG_IS_ENABLED(algid, cpp->encr_hw_algs))
19232 			goto done;
19233 		if (algid < cpp->encr_algparm_end) {
19234 			ipsec_capab_algparm_t *alp = &cpp->encr_algparm[algid];
19235 			if (sa->ipsa_encrkeybits < alp->minkeylen)
19236 				goto done;
19237 			if (sa->ipsa_encrkeybits > alp->maxkeylen)
19238 				goto done;
19239 		}
19240 		break;
19241 
19242 	case SADB_SATYPE_AH:
19243 		if (!(ill->ill_capabilities & ILL_CAPAB_AH))
19244 			/* ill does not support AH acceleration */
19245 			goto done;
19246 		if (!IPSEC_ALG_IS_ENABLED(sa->ipsa_auth_alg,
19247 		    ill->ill_ipsec_capab_ah->auth_hw_algs))
19248 			goto done;
19249 		break;
19250 	}
19251 
19252 	if (need_refrele)
19253 		ill_refrele(ill);
19254 	return (B_TRUE);
19255 done:
19256 	if (need_refrele)
19257 		ill_refrele(ill);
19258 	return (B_FALSE);
19259 }
19260 
19261 /*
19262  * Add a new ill to the list of IPsec capable ills.
19263  * Called from ill_capability_ipsec_ack() when an ACK was received
19264  * indicating that IPsec hardware processing was enabled for an ill.
19265  *
19266  * ill must point to the ill for which acceleration was enabled.
19267  * dl_cap must be set to DL_CAPAB_IPSEC_AH or DL_CAPAB_IPSEC_ESP.
19268  */
19269 static void
19270 ill_ipsec_capab_add(ill_t *ill, uint_t dl_cap, boolean_t sadb_resync)
19271 {
19272 	ipsec_capab_ill_t **ills, *cur_ill, *new_ill;
19273 	uint_t sa_type;
19274 	uint_t ipproto;
19275 	ip_stack_t	*ipst = ill->ill_ipst;
19276 
19277 	ASSERT((dl_cap == DL_CAPAB_IPSEC_AH) ||
19278 	    (dl_cap == DL_CAPAB_IPSEC_ESP));
19279 
19280 	switch (dl_cap) {
19281 	case DL_CAPAB_IPSEC_AH:
19282 		sa_type = SADB_SATYPE_AH;
19283 		ills = &ipst->ips_ipsec_capab_ills_ah;
19284 		ipproto = IPPROTO_AH;
19285 		break;
19286 	case DL_CAPAB_IPSEC_ESP:
19287 		sa_type = SADB_SATYPE_ESP;
19288 		ills = &ipst->ips_ipsec_capab_ills_esp;
19289 		ipproto = IPPROTO_ESP;
19290 		break;
19291 	}
19292 
19293 	rw_enter(&ipst->ips_ipsec_capab_ills_lock, RW_WRITER);
19294 
19295 	/*
19296 	 * Add ill index to list of hardware accelerators. If
19297 	 * already in list, do nothing.
19298 	 */
19299 	for (cur_ill = *ills; cur_ill != NULL &&
19300 	    (cur_ill->ill_index != ill->ill_phyint->phyint_ifindex ||
19301 	    cur_ill->ill_isv6 != ill->ill_isv6); cur_ill = cur_ill->next)
19302 		;
19303 
19304 	if (cur_ill == NULL) {
19305 		/* if this is a new entry for this ill */
19306 		new_ill = kmem_zalloc(sizeof (ipsec_capab_ill_t), KM_NOSLEEP);
19307 		if (new_ill == NULL) {
19308 			rw_exit(&ipst->ips_ipsec_capab_ills_lock);
19309 			return;
19310 		}
19311 
19312 		new_ill->ill_index = ill->ill_phyint->phyint_ifindex;
19313 		new_ill->ill_isv6 = ill->ill_isv6;
19314 		new_ill->next = *ills;
19315 		*ills = new_ill;
19316 	} else if (!sadb_resync) {
19317 		/* not resync'ing SADB and an entry exists for this ill */
19318 		rw_exit(&ipst->ips_ipsec_capab_ills_lock);
19319 		return;
19320 	}
19321 
19322 	rw_exit(&ipst->ips_ipsec_capab_ills_lock);
19323 
19324 	if (ipst->ips_ipcl_proto_fanout_v6[ipproto].connf_head != NULL)
19325 		/*
19326 		 * IPsec module for protocol loaded, initiate dump
19327 		 * of the SADB to this ill.
19328 		 */
19329 		sadb_ill_download(ill, sa_type);
19330 }
19331 
19332 /*
19333  * Remove an ill from the list of IPsec capable ills.
19334  */
19335 static void
19336 ill_ipsec_capab_delete(ill_t *ill, uint_t dl_cap)
19337 {
19338 	ipsec_capab_ill_t **ills, *cur_ill, *prev_ill;
19339 	ip_stack_t	*ipst = ill->ill_ipst;
19340 
19341 	ASSERT(dl_cap == DL_CAPAB_IPSEC_AH ||
19342 	    dl_cap == DL_CAPAB_IPSEC_ESP);
19343 
19344 	ills = (dl_cap == DL_CAPAB_IPSEC_AH) ? &ipst->ips_ipsec_capab_ills_ah :
19345 	    &ipst->ips_ipsec_capab_ills_esp;
19346 
19347 	rw_enter(&ipst->ips_ipsec_capab_ills_lock, RW_WRITER);
19348 
19349 	prev_ill = NULL;
19350 	for (cur_ill = *ills; cur_ill != NULL && (cur_ill->ill_index !=
19351 	    ill->ill_phyint->phyint_ifindex || cur_ill->ill_isv6 !=
19352 	    ill->ill_isv6); prev_ill = cur_ill, cur_ill = cur_ill->next)
19353 		;
19354 	if (cur_ill == NULL) {
19355 		/* entry not found */
19356 		rw_exit(&ipst->ips_ipsec_capab_ills_lock);
19357 		return;
19358 	}
19359 	if (prev_ill == NULL) {
19360 		/* entry at front of list */
19361 		*ills = NULL;
19362 	} else {
19363 		prev_ill->next = cur_ill->next;
19364 	}
19365 	kmem_free(cur_ill, sizeof (ipsec_capab_ill_t));
19366 	rw_exit(&ipst->ips_ipsec_capab_ills_lock);
19367 }
19368 
19369 /*
19370  * Called by SADB to send a DL_CONTROL_REQ message to every ill
19371  * supporting the specified IPsec protocol acceleration.
19372  * sa_type must be SADB_SATYPE_AH or SADB_SATYPE_ESP.
19373  * We free the mblk and, if sa is non-null, release the held referece.
19374  */
19375 void
19376 ill_ipsec_capab_send_all(uint_t sa_type, mblk_t *mp, ipsa_t *sa,
19377     netstack_t *ns)
19378 {
19379 	ipsec_capab_ill_t *ici, *cur_ici;
19380 	ill_t *ill;
19381 	mblk_t *nmp, *mp_ship_list = NULL, *next_mp;
19382 	ip_stack_t	*ipst = ns->netstack_ip;
19383 
19384 	ici = (sa_type == SADB_SATYPE_AH) ? ipst->ips_ipsec_capab_ills_ah :
19385 	    ipst->ips_ipsec_capab_ills_esp;
19386 
19387 	rw_enter(&ipst->ips_ipsec_capab_ills_lock, RW_READER);
19388 
19389 	for (cur_ici = ici; cur_ici != NULL; cur_ici = cur_ici->next) {
19390 		ill = ill_lookup_on_ifindex(cur_ici->ill_index,
19391 		    cur_ici->ill_isv6, NULL, NULL, NULL, NULL, ipst);
19392 
19393 		/*
19394 		 * Handle the case where the ill goes away while the SADB is
19395 		 * attempting to send messages.  If it's going away, it's
19396 		 * nuking its shadow SADB, so we don't care..
19397 		 */
19398 
19399 		if (ill == NULL)
19400 			continue;
19401 
19402 		if (sa != NULL) {
19403 			/*
19404 			 * Make sure capabilities match before
19405 			 * sending SA to ill.
19406 			 */
19407 			if (!ipsec_capab_match(ill, cur_ici->ill_index,
19408 			    cur_ici->ill_isv6, sa, ipst->ips_netstack)) {
19409 				ill_refrele(ill);
19410 				continue;
19411 			}
19412 
19413 			mutex_enter(&sa->ipsa_lock);
19414 			sa->ipsa_flags |= IPSA_F_HW;
19415 			mutex_exit(&sa->ipsa_lock);
19416 		}
19417 
19418 		/*
19419 		 * Copy template message, and add it to the front
19420 		 * of the mblk ship list. We want to avoid holding
19421 		 * the ipsec_capab_ills_lock while sending the
19422 		 * message to the ills.
19423 		 *
19424 		 * The b_next and b_prev are temporarily used
19425 		 * to build a list of mblks to be sent down, and to
19426 		 * save the ill to which they must be sent.
19427 		 */
19428 		nmp = copymsg(mp);
19429 		if (nmp == NULL) {
19430 			ill_refrele(ill);
19431 			continue;
19432 		}
19433 		ASSERT(nmp->b_next == NULL && nmp->b_prev == NULL);
19434 		nmp->b_next = mp_ship_list;
19435 		mp_ship_list = nmp;
19436 		nmp->b_prev = (mblk_t *)ill;
19437 	}
19438 
19439 	rw_exit(&ipst->ips_ipsec_capab_ills_lock);
19440 
19441 	for (nmp = mp_ship_list; nmp != NULL; nmp = next_mp) {
19442 		/* restore the mblk to a sane state */
19443 		next_mp = nmp->b_next;
19444 		nmp->b_next = NULL;
19445 		ill = (ill_t *)nmp->b_prev;
19446 		nmp->b_prev = NULL;
19447 
19448 		ill_dlpi_send(ill, nmp);
19449 		ill_refrele(ill);
19450 	}
19451 
19452 	if (sa != NULL)
19453 		IPSA_REFRELE(sa);
19454 	freemsg(mp);
19455 }
19456 
19457 /*
19458  * Derive an interface id from the link layer address.
19459  * Knows about IEEE 802 and IEEE EUI-64 mappings.
19460  */
19461 static void
19462 ip_ether_v6intfid(ill_t *ill, in6_addr_t *v6addr)
19463 {
19464 	char		*addr;
19465 
19466 	/*
19467 	 * Note that some IPv6 interfaces get plumbed over links that claim to
19468 	 * be DL_ETHER, but don't actually have Ethernet MAC addresses (e.g.
19469 	 * PPP links).  The ETHERADDRL check here ensures that we only set the
19470 	 * interface ID on IPv6 interfaces above links that actually have real
19471 	 * Ethernet addresses.
19472 	 */
19473 	if (ill->ill_phys_addr_length == ETHERADDRL) {
19474 		/* Form EUI-64 like address */
19475 		addr = (char *)&v6addr->s6_addr32[2];
19476 		bcopy(ill->ill_phys_addr, addr, 3);
19477 		addr[0] ^= 0x2;		/* Toggle Universal/Local bit */
19478 		addr[3] = (char)0xff;
19479 		addr[4] = (char)0xfe;
19480 		bcopy(ill->ill_phys_addr + 3, addr + 5, 3);
19481 	}
19482 }
19483 
19484 /* ARGSUSED */
19485 static void
19486 ip_nodef_v6intfid(ill_t *ill, in6_addr_t *v6addr)
19487 {
19488 }
19489 
19490 typedef struct ipmp_ifcookie {
19491 	uint32_t	ic_hostid;
19492 	char		ic_ifname[LIFNAMSIZ];
19493 	char		ic_zonename[ZONENAME_MAX];
19494 } ipmp_ifcookie_t;
19495 
19496 /*
19497  * Construct a pseudo-random interface ID for the IPMP interface that's both
19498  * predictable and (almost) guaranteed to be unique.
19499  */
19500 static void
19501 ip_ipmp_v6intfid(ill_t *ill, in6_addr_t *v6addr)
19502 {
19503 	zone_t		*zp;
19504 	uint8_t		*addr;
19505 	uchar_t		hash[16];
19506 	ulong_t 	hostid;
19507 	MD5_CTX		ctx;
19508 	ipmp_ifcookie_t	ic = { 0 };
19509 
19510 	ASSERT(IS_IPMP(ill));
19511 
19512 	(void) ddi_strtoul(hw_serial, NULL, 10, &hostid);
19513 	ic.ic_hostid = htonl((uint32_t)hostid);
19514 
19515 	(void) strlcpy(ic.ic_ifname, ill->ill_name, LIFNAMSIZ);
19516 
19517 	if ((zp = zone_find_by_id(ill->ill_zoneid)) != NULL) {
19518 		(void) strlcpy(ic.ic_zonename, zp->zone_name, ZONENAME_MAX);
19519 		zone_rele(zp);
19520 	}
19521 
19522 	MD5Init(&ctx);
19523 	MD5Update(&ctx, &ic, sizeof (ic));
19524 	MD5Final(hash, &ctx);
19525 
19526 	/*
19527 	 * Map the hash to an interface ID per the basic approach in RFC3041.
19528 	 */
19529 	addr = &v6addr->s6_addr8[8];
19530 	bcopy(hash + 8, addr, sizeof (uint64_t));
19531 	addr[0] &= ~0x2;				/* set local bit */
19532 }
19533 
19534 /* ARGSUSED */
19535 static boolean_t
19536 ip_ether_v6mapinfo(uint_t lla_length, uint8_t *bphys_addr, uint8_t *maddr,
19537     uint32_t *hw_start, in6_addr_t *v6_extract_mask)
19538 {
19539 	/*
19540 	 * Multicast address mappings used over Ethernet/802.X.
19541 	 * This address is used as a base for mappings.
19542 	 */
19543 	static uint8_t ipv6_g_phys_multi_addr[] = {0x33, 0x33, 0x00,
19544 	    0x00, 0x00, 0x00};
19545 
19546 	/*
19547 	 * Extract low order 32 bits from IPv6 multicast address.
19548 	 * Or that into the link layer address, starting from the
19549 	 * second byte.
19550 	 */
19551 	*hw_start = 2;
19552 	v6_extract_mask->s6_addr32[0] = 0;
19553 	v6_extract_mask->s6_addr32[1] = 0;
19554 	v6_extract_mask->s6_addr32[2] = 0;
19555 	v6_extract_mask->s6_addr32[3] = 0xffffffffU;
19556 	bcopy(ipv6_g_phys_multi_addr, maddr, lla_length);
19557 	return (B_TRUE);
19558 }
19559 
19560 /*
19561  * Indicate by return value whether multicast is supported. If not,
19562  * this code should not touch/change any parameters.
19563  */
19564 /* ARGSUSED */
19565 static boolean_t
19566 ip_ether_v4mapinfo(uint_t phys_length, uint8_t *bphys_addr, uint8_t *maddr,
19567     uint32_t *hw_start, ipaddr_t *extract_mask)
19568 {
19569 	/*
19570 	 * Multicast address mappings used over Ethernet/802.X.
19571 	 * This address is used as a base for mappings.
19572 	 */
19573 	static uint8_t ip_g_phys_multi_addr[] = { 0x01, 0x00, 0x5e,
19574 	    0x00, 0x00, 0x00 };
19575 
19576 	if (phys_length != ETHERADDRL)
19577 		return (B_FALSE);
19578 
19579 	*extract_mask = htonl(0x007fffff);
19580 	*hw_start = 2;
19581 	bcopy(ip_g_phys_multi_addr, maddr, ETHERADDRL);
19582 	return (B_TRUE);
19583 }
19584 
19585 /* ARGSUSED */
19586 static boolean_t
19587 ip_nodef_v4mapinfo(uint_t phys_length, uint8_t *bphys_addr, uint8_t *maddr,
19588     uint32_t *hw_start, ipaddr_t *extract_mask)
19589 {
19590 	return (B_FALSE);
19591 }
19592 
19593 /* ARGSUSED */
19594 static boolean_t
19595 ip_nodef_v6mapinfo(uint_t lla_length, uint8_t *bphys_addr, uint8_t *maddr,
19596     uint32_t *hw_start, in6_addr_t *v6_extract_mask)
19597 {
19598 	return (B_FALSE);
19599 }
19600 
19601 /*
19602  * Derive IPoIB interface id from the link layer address.
19603  */
19604 static void
19605 ip_ib_v6intfid(ill_t *ill, in6_addr_t *v6addr)
19606 {
19607 	char		*addr;
19608 
19609 	ASSERT(ill->ill_phys_addr_length == 20);
19610 	addr = (char *)&v6addr->s6_addr32[2];
19611 	bcopy(ill->ill_phys_addr + 12, addr, 8);
19612 	/*
19613 	 * In IBA 1.1 timeframe, some vendors erroneously set the u/l bit
19614 	 * in the globally assigned EUI-64 GUID to 1, in violation of IEEE
19615 	 * rules. In these cases, the IBA considers these GUIDs to be in
19616 	 * "Modified EUI-64" format, and thus toggling the u/l bit is not
19617 	 * required; vendors are required not to assign global EUI-64's
19618 	 * that differ only in u/l bit values, thus guaranteeing uniqueness
19619 	 * of the interface identifier. Whether the GUID is in modified
19620 	 * or proper EUI-64 format, the ipv6 identifier must have the u/l
19621 	 * bit set to 1.
19622 	 */
19623 	addr[0] |= 2;			/* Set Universal/Local bit to 1 */
19624 }
19625 
19626 /*
19627  * Note on mapping from multicast IP addresses to IPoIB multicast link
19628  * addresses. IPoIB multicast link addresses are based on IBA link addresses.
19629  * The format of an IPoIB multicast address is:
19630  *
19631  *  4 byte QPN      Scope Sign.  Pkey
19632  * +--------------------------------------------+
19633  * | 00FFFFFF | FF | 1X | X01B | Pkey | GroupID |
19634  * +--------------------------------------------+
19635  *
19636  * The Scope and Pkey components are properties of the IBA port and
19637  * network interface. They can be ascertained from the broadcast address.
19638  * The Sign. part is the signature, and is 401B for IPv4 and 601B for IPv6.
19639  */
19640 
19641 static boolean_t
19642 ip_ib_v6mapinfo(uint_t lla_length, uint8_t *bphys_addr, uint8_t *maddr,
19643     uint32_t *hw_start, in6_addr_t *v6_extract_mask)
19644 {
19645 	/*
19646 	 * Base IPoIB IPv6 multicast address used for mappings.
19647 	 * Does not contain the IBA scope/Pkey values.
19648 	 */
19649 	static uint8_t ipv6_g_phys_ibmulti_addr[] = { 0x00, 0xff, 0xff, 0xff,
19650 	    0xff, 0x10, 0x60, 0x1b, 0x00, 0x00, 0x00, 0x00,
19651 	    0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 };
19652 
19653 	/*
19654 	 * Extract low order 80 bits from IPv6 multicast address.
19655 	 * Or that into the link layer address, starting from the
19656 	 * sixth byte.
19657 	 */
19658 	*hw_start = 6;
19659 	bcopy(ipv6_g_phys_ibmulti_addr, maddr, lla_length);
19660 
19661 	/*
19662 	 * Now fill in the IBA scope/Pkey values from the broadcast address.
19663 	 */
19664 	*(maddr + 5) = *(bphys_addr + 5);
19665 	*(maddr + 8) = *(bphys_addr + 8);
19666 	*(maddr + 9) = *(bphys_addr + 9);
19667 
19668 	v6_extract_mask->s6_addr32[0] = 0;
19669 	v6_extract_mask->s6_addr32[1] = htonl(0x0000ffff);
19670 	v6_extract_mask->s6_addr32[2] = 0xffffffffU;
19671 	v6_extract_mask->s6_addr32[3] = 0xffffffffU;
19672 	return (B_TRUE);
19673 }
19674 
19675 static boolean_t
19676 ip_ib_v4mapinfo(uint_t phys_length, uint8_t *bphys_addr, uint8_t *maddr,
19677     uint32_t *hw_start, ipaddr_t *extract_mask)
19678 {
19679 	/*
19680 	 * Base IPoIB IPv4 multicast address used for mappings.
19681 	 * Does not contain the IBA scope/Pkey values.
19682 	 */
19683 	static uint8_t ipv4_g_phys_ibmulti_addr[] = { 0x00, 0xff, 0xff, 0xff,
19684 	    0xff, 0x10, 0x40, 0x1b, 0x00, 0x00, 0x00, 0x00,
19685 	    0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 };
19686 
19687 	if (phys_length != sizeof (ipv4_g_phys_ibmulti_addr))
19688 		return (B_FALSE);
19689 
19690 	/*
19691 	 * Extract low order 28 bits from IPv4 multicast address.
19692 	 * Or that into the link layer address, starting from the
19693 	 * sixteenth byte.
19694 	 */
19695 	*extract_mask = htonl(0x0fffffff);
19696 	*hw_start = 16;
19697 	bcopy(ipv4_g_phys_ibmulti_addr, maddr, phys_length);
19698 
19699 	/*
19700 	 * Now fill in the IBA scope/Pkey values from the broadcast address.
19701 	 */
19702 	*(maddr + 5) = *(bphys_addr + 5);
19703 	*(maddr + 8) = *(bphys_addr + 8);
19704 	*(maddr + 9) = *(bphys_addr + 9);
19705 	return (B_TRUE);
19706 }
19707 
19708 /*
19709  * Derive IPv6 interface id from an IPv4 link-layer address (e.g. from an IPv4
19710  * tunnel).  The IPv4 address simply get placed in the lower 4 bytes of the
19711  * IPv6 interface id.  This is a suggested mechanism described in section 3.7
19712  * of RFC4213.
19713  */
19714 static void
19715 ip_ipv4_genv6intfid(ill_t *ill, uint8_t *physaddr, in6_addr_t *v6addr)
19716 {
19717 	ASSERT(ill->ill_phys_addr_length == sizeof (ipaddr_t));
19718 	v6addr->s6_addr32[2] = 0;
19719 	bcopy(physaddr, &v6addr->s6_addr32[3], sizeof (ipaddr_t));
19720 }
19721 
19722 /*
19723  * Derive IPv6 interface id from an IPv6 link-layer address (e.g. from an IPv6
19724  * tunnel).  The lower 8 bytes of the IPv6 address simply become the interface
19725  * id.
19726  */
19727 static void
19728 ip_ipv6_genv6intfid(ill_t *ill, uint8_t *physaddr, in6_addr_t *v6addr)
19729 {
19730 	in6_addr_t *v6lladdr = (in6_addr_t *)physaddr;
19731 
19732 	ASSERT(ill->ill_phys_addr_length == sizeof (in6_addr_t));
19733 	bcopy(&v6lladdr->s6_addr32[2], &v6addr->s6_addr32[2], 8);
19734 }
19735 
19736 static void
19737 ip_ipv6_v6intfid(ill_t *ill, in6_addr_t *v6addr)
19738 {
19739 	ip_ipv6_genv6intfid(ill, ill->ill_phys_addr, v6addr);
19740 }
19741 
19742 static void
19743 ip_ipv6_v6destintfid(ill_t *ill, in6_addr_t *v6addr)
19744 {
19745 	ip_ipv6_genv6intfid(ill, ill->ill_dest_addr, v6addr);
19746 }
19747 
19748 static void
19749 ip_ipv4_v6intfid(ill_t *ill, in6_addr_t *v6addr)
19750 {
19751 	ip_ipv4_genv6intfid(ill, ill->ill_phys_addr, v6addr);
19752 }
19753 
19754 static void
19755 ip_ipv4_v6destintfid(ill_t *ill, in6_addr_t *v6addr)
19756 {
19757 	ip_ipv4_genv6intfid(ill, ill->ill_dest_addr, v6addr);
19758 }
19759 
19760 /*
19761  * Returns B_TRUE if an ipif is present in the given zone, matching some flags
19762  * (typically IPIF_UP). If ipifp is non-null, the held ipif is returned there.
19763  * This works for both IPv4 and IPv6; if the passed-in ill is v6, the ipif with
19764  * the link-local address is preferred.
19765  */
19766 boolean_t
19767 ipif_lookup_zoneid(ill_t *ill, zoneid_t zoneid, int flags, ipif_t **ipifp)
19768 {
19769 	ipif_t	*ipif;
19770 	ipif_t	*maybe_ipif = NULL;
19771 
19772 	mutex_enter(&ill->ill_lock);
19773 	if (ill->ill_state_flags & ILL_CONDEMNED) {
19774 		mutex_exit(&ill->ill_lock);
19775 		if (ipifp != NULL)
19776 			*ipifp = NULL;
19777 		return (B_FALSE);
19778 	}
19779 
19780 	for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) {
19781 		if (!IPIF_CAN_LOOKUP(ipif))
19782 			continue;
19783 		if (zoneid != ALL_ZONES && ipif->ipif_zoneid != zoneid &&
19784 		    ipif->ipif_zoneid != ALL_ZONES)
19785 			continue;
19786 		if ((ipif->ipif_flags & flags) != flags)
19787 			continue;
19788 
19789 		if (ipifp == NULL) {
19790 			mutex_exit(&ill->ill_lock);
19791 			ASSERT(maybe_ipif == NULL);
19792 			return (B_TRUE);
19793 		}
19794 		if (!ill->ill_isv6 ||
19795 		    IN6_IS_ADDR_LINKLOCAL(&ipif->ipif_v6src_addr)) {
19796 			ipif_refhold_locked(ipif);
19797 			mutex_exit(&ill->ill_lock);
19798 			*ipifp = ipif;
19799 			return (B_TRUE);
19800 		}
19801 		if (maybe_ipif == NULL)
19802 			maybe_ipif = ipif;
19803 	}
19804 	if (ipifp != NULL) {
19805 		if (maybe_ipif != NULL)
19806 			ipif_refhold_locked(maybe_ipif);
19807 		*ipifp = maybe_ipif;
19808 	}
19809 	mutex_exit(&ill->ill_lock);
19810 	return (maybe_ipif != NULL);
19811 }
19812 
19813 /*
19814  * Return a pointer to an ipif_t given a combination of (ill_idx,ipif_id)
19815  * If a pointer to an ipif_t is returned then the caller will need to do
19816  * an ill_refrele().
19817  */
19818 ipif_t *
19819 ipif_getby_indexes(uint_t ifindex, uint_t lifidx, boolean_t isv6,
19820     ip_stack_t *ipst)
19821 {
19822 	ipif_t *ipif;
19823 	ill_t *ill;
19824 
19825 	ill = ill_lookup_on_ifindex(ifindex, isv6, NULL, NULL, NULL, NULL,
19826 	    ipst);
19827 	if (ill == NULL)
19828 		return (NULL);
19829 
19830 	mutex_enter(&ill->ill_lock);
19831 	if (ill->ill_state_flags & ILL_CONDEMNED) {
19832 		mutex_exit(&ill->ill_lock);
19833 		ill_refrele(ill);
19834 		return (NULL);
19835 	}
19836 
19837 	for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) {
19838 		if (!IPIF_CAN_LOOKUP(ipif))
19839 			continue;
19840 		if (lifidx == ipif->ipif_id) {
19841 			ipif_refhold_locked(ipif);
19842 			break;
19843 		}
19844 	}
19845 
19846 	mutex_exit(&ill->ill_lock);
19847 	ill_refrele(ill);
19848 	return (ipif);
19849 }
19850 
19851 /*
19852  * Flush the fastpath by deleting any nce's that are waiting for the fastpath,
19853  * There is one exceptions IRE_BROADCAST are difficult to recreate,
19854  * so instead we just nuke their nce_fp_mp's; see ndp_fastpath_flush()
19855  * for details.
19856  */
19857 void
19858 ill_fastpath_flush(ill_t *ill)
19859 {
19860 	ip_stack_t *ipst = ill->ill_ipst;
19861 
19862 	nce_fastpath_list_dispatch(ill, NULL, NULL);
19863 	ndp_walk_common((ill->ill_isv6 ? ipst->ips_ndp6 : ipst->ips_ndp4),
19864 	    ill, (pfi_t)ndp_fastpath_flush, NULL, B_TRUE);
19865 }
19866 
19867 /*
19868  * Set the physical address information for `ill' to the contents of the
19869  * dl_notify_ind_t pointed to by `mp'.  Must be called as writer, and will be
19870  * asynchronous if `ill' cannot immediately be quiesced -- in which case
19871  * EINPROGRESS will be returned.
19872  */
19873 int
19874 ill_set_phys_addr(ill_t *ill, mblk_t *mp)
19875 {
19876 	ipsq_t *ipsq = ill->ill_phyint->phyint_ipsq;
19877 	dl_notify_ind_t	*dlindp = (dl_notify_ind_t *)mp->b_rptr;
19878 
19879 	ASSERT(IAM_WRITER_IPSQ(ipsq));
19880 
19881 	if (dlindp->dl_data != DL_IPV6_LINK_LAYER_ADDR &&
19882 	    dlindp->dl_data != DL_CURR_DEST_ADDR &&
19883 	    dlindp->dl_data != DL_CURR_PHYS_ADDR) {
19884 		/* Changing DL_IPV6_TOKEN is not yet supported */
19885 		return (0);
19886 	}
19887 
19888 	/*
19889 	 * We need to store up to two copies of `mp' in `ill'.  Due to the
19890 	 * design of ipsq_pending_mp_add(), we can't pass them as separate
19891 	 * arguments to ill_set_phys_addr_tail().  Instead, chain them
19892 	 * together here, then pull 'em apart in ill_set_phys_addr_tail().
19893 	 */
19894 	if ((mp = copyb(mp)) == NULL || (mp->b_cont = copyb(mp)) == NULL) {
19895 		freemsg(mp);
19896 		return (ENOMEM);
19897 	}
19898 
19899 	ipsq_current_start(ipsq, ill->ill_ipif, 0);
19900 
19901 	/*
19902 	 * If we can quiesce the ill, then set the address.  If not, then
19903 	 * ill_set_phys_addr_tail() will be called from ipif_ill_refrele_tail().
19904 	 */
19905 	ill_down_ipifs(ill, B_TRUE);
19906 	mutex_enter(&ill->ill_lock);
19907 	if (!ill_is_quiescent(ill)) {
19908 		/* call cannot fail since `conn_t *' argument is NULL */
19909 		(void) ipsq_pending_mp_add(NULL, ill->ill_ipif, ill->ill_rq,
19910 		    mp, ILL_DOWN);
19911 		mutex_exit(&ill->ill_lock);
19912 		return (EINPROGRESS);
19913 	}
19914 	mutex_exit(&ill->ill_lock);
19915 
19916 	ill_set_phys_addr_tail(ipsq, ill->ill_rq, mp, NULL);
19917 	return (0);
19918 }
19919 
19920 /*
19921  * Once the ill associated with `q' has quiesced, set its physical address
19922  * information to the values in `addrmp'.  Note that two copies of `addrmp'
19923  * are passed (linked by b_cont), since we sometimes need to save two distinct
19924  * copies in the ill_t, and our context doesn't permit sleeping or allocation
19925  * failure (we'll free the other copy if it's not needed).  Since the ill_t
19926  * is quiesced, we know any stale IREs with the old address information have
19927  * already been removed, so we don't need to call ill_fastpath_flush().
19928  */
19929 /* ARGSUSED */
19930 static void
19931 ill_set_phys_addr_tail(ipsq_t *ipsq, queue_t *q, mblk_t *addrmp, void *dummy)
19932 {
19933 	ill_t		*ill = q->q_ptr;
19934 	mblk_t		*addrmp2 = unlinkb(addrmp);
19935 	dl_notify_ind_t	*dlindp = (dl_notify_ind_t *)addrmp->b_rptr;
19936 	uint_t		addrlen, addroff;
19937 
19938 	ASSERT(IAM_WRITER_IPSQ(ipsq));
19939 
19940 	addroff	= dlindp->dl_addr_offset;
19941 	addrlen = dlindp->dl_addr_length - ABS(ill->ill_sap_length);
19942 
19943 	switch (dlindp->dl_data) {
19944 	case DL_IPV6_LINK_LAYER_ADDR:
19945 		ill_set_ndmp(ill, addrmp, addroff, addrlen);
19946 		freemsg(addrmp2);
19947 		break;
19948 
19949 	case DL_CURR_DEST_ADDR:
19950 		freemsg(ill->ill_dest_addr_mp);
19951 		ill->ill_dest_addr = addrmp->b_rptr + addroff;
19952 		ill->ill_dest_addr_mp = addrmp;
19953 		if (ill->ill_isv6) {
19954 			ill_setdesttoken(ill);
19955 			ipif_setdestlinklocal(ill->ill_ipif);
19956 		}
19957 		freemsg(addrmp2);
19958 		break;
19959 
19960 	case DL_CURR_PHYS_ADDR:
19961 		freemsg(ill->ill_phys_addr_mp);
19962 		ill->ill_phys_addr = addrmp->b_rptr + addroff;
19963 		ill->ill_phys_addr_mp = addrmp;
19964 		ill->ill_phys_addr_length = addrlen;
19965 		if (ill->ill_isv6 && !(ill->ill_flags & ILLF_XRESOLV))
19966 			ill_set_ndmp(ill, addrmp2, addroff, addrlen);
19967 		else
19968 			freemsg(addrmp2);
19969 		if (ill->ill_isv6) {
19970 			ill_setdefaulttoken(ill);
19971 			ipif_setlinklocal(ill->ill_ipif);
19972 		}
19973 		break;
19974 	default:
19975 		ASSERT(0);
19976 	}
19977 
19978 	/*
19979 	 * If there are ipifs to bring up, ill_up_ipifs() will return
19980 	 * EINPROGRESS, and ipsq_current_finish() will be called by
19981 	 * ip_rput_dlpi_writer() or ip_arp_done() when the last ipif is
19982 	 * brought up.
19983 	 */
19984 	if (ill_up_ipifs(ill, q, addrmp) != EINPROGRESS)
19985 		ipsq_current_finish(ipsq);
19986 }
19987 
19988 /*
19989  * Helper routine for setting the ill_nd_lla fields.
19990  */
19991 void
19992 ill_set_ndmp(ill_t *ill, mblk_t *ndmp, uint_t addroff, uint_t addrlen)
19993 {
19994 	freemsg(ill->ill_nd_lla_mp);
19995 	ill->ill_nd_lla = ndmp->b_rptr + addroff;
19996 	ill->ill_nd_lla_mp = ndmp;
19997 	ill->ill_nd_lla_len = addrlen;
19998 }
19999 
20000 /*
20001  * Replumb the ill.
20002  */
20003 int
20004 ill_replumb(ill_t *ill, mblk_t *mp)
20005 {
20006 	ipsq_t *ipsq = ill->ill_phyint->phyint_ipsq;
20007 
20008 	ASSERT(IAM_WRITER_IPSQ(ipsq));
20009 
20010 	ipsq_current_start(ipsq, ill->ill_ipif, 0);
20011 
20012 	/*
20013 	 * If we can quiesce the ill, then continue.  If not, then
20014 	 * ill_replumb_tail() will be called from ipif_ill_refrele_tail().
20015 	 */
20016 	ill_down_ipifs(ill, B_FALSE);
20017 
20018 	mutex_enter(&ill->ill_lock);
20019 	if (!ill_is_quiescent(ill)) {
20020 		/* call cannot fail since `conn_t *' argument is NULL */
20021 		(void) ipsq_pending_mp_add(NULL, ill->ill_ipif, ill->ill_rq,
20022 		    mp, ILL_DOWN);
20023 		mutex_exit(&ill->ill_lock);
20024 		return (EINPROGRESS);
20025 	}
20026 	mutex_exit(&ill->ill_lock);
20027 
20028 	ill_replumb_tail(ipsq, ill->ill_rq, mp, NULL);
20029 	return (0);
20030 }
20031 
20032 /* ARGSUSED */
20033 static void
20034 ill_replumb_tail(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy)
20035 {
20036 	ill_t *ill = q->q_ptr;
20037 
20038 	ASSERT(IAM_WRITER_IPSQ(ipsq));
20039 
20040 	ill_down_ipifs_tail(ill);
20041 
20042 	freemsg(ill->ill_replumb_mp);
20043 	ill->ill_replumb_mp = copyb(mp);
20044 
20045 	/*
20046 	 * Successfully quiesced and brought down the interface, now we send
20047 	 * the DL_NOTE_REPLUMB_DONE message down to the driver. Reuse the
20048 	 * DL_NOTE_REPLUMB message.
20049 	 */
20050 	mp = mexchange(NULL, mp, sizeof (dl_notify_conf_t), M_PROTO,
20051 	    DL_NOTIFY_CONF);
20052 	ASSERT(mp != NULL);
20053 	((dl_notify_conf_t *)mp->b_rptr)->dl_notification =
20054 	    DL_NOTE_REPLUMB_DONE;
20055 	ill_dlpi_send(ill, mp);
20056 
20057 	/*
20058 	 * If there are ipifs to bring up, ill_up_ipifs() will return
20059 	 * EINPROGRESS, and ipsq_current_finish() will be called by
20060 	 * ip_rput_dlpi_writer() or ip_arp_done() when the last ipif is
20061 	 * brought up.
20062 	 */
20063 	if (ill->ill_replumb_mp == NULL ||
20064 	    ill_up_ipifs(ill, q, ill->ill_replumb_mp) != EINPROGRESS) {
20065 		ipsq_current_finish(ipsq);
20066 	}
20067 }
20068 
20069 /*
20070  * Issue ioctl `cmd' on `lh'; caller provides the initial payload in `buf'
20071  * which is `bufsize' bytes.  On success, zero is returned and `buf' updated
20072  * as per the ioctl.  On failure, an errno is returned.
20073  */
20074 static int
20075 ip_ioctl(ldi_handle_t lh, int cmd, void *buf, uint_t bufsize, cred_t *cr)
20076 {
20077 	int rval;
20078 	struct strioctl iocb;
20079 
20080 	iocb.ic_cmd = cmd;
20081 	iocb.ic_timout = 15;
20082 	iocb.ic_len = bufsize;
20083 	iocb.ic_dp = buf;
20084 
20085 	return (ldi_ioctl(lh, I_STR, (intptr_t)&iocb, FKIOCTL, cr, &rval));
20086 }
20087 
20088 /*
20089  * Issue an SIOCGLIFCONF for address family `af' and store the result into a
20090  * dynamically-allocated `lifcp' that will be `bufsizep' bytes on success.
20091  */
20092 static int
20093 ip_lifconf_ioctl(ldi_handle_t lh, int af, struct lifconf *lifcp,
20094     uint_t *bufsizep, cred_t *cr)
20095 {
20096 	int err;
20097 	struct lifnum lifn;
20098 
20099 	bzero(&lifn, sizeof (lifn));
20100 	lifn.lifn_family = af;
20101 	lifn.lifn_flags = LIFC_UNDER_IPMP;
20102 
20103 	if ((err = ip_ioctl(lh, SIOCGLIFNUM, &lifn, sizeof (lifn), cr)) != 0)
20104 		return (err);
20105 
20106 	/*
20107 	 * Pad the interface count to account for additional interfaces that
20108 	 * may have been configured between the SIOCGLIFNUM and SIOCGLIFCONF.
20109 	 */
20110 	lifn.lifn_count += 4;
20111 	bzero(lifcp, sizeof (*lifcp));
20112 	lifcp->lifc_flags = LIFC_UNDER_IPMP;
20113 	lifcp->lifc_family = af;
20114 	lifcp->lifc_len = *bufsizep = lifn.lifn_count * sizeof (struct lifreq);
20115 	lifcp->lifc_buf = kmem_zalloc(*bufsizep, KM_SLEEP);
20116 
20117 	err = ip_ioctl(lh, SIOCGLIFCONF, lifcp, sizeof (*lifcp), cr);
20118 	if (err != 0) {
20119 		kmem_free(lifcp->lifc_buf, *bufsizep);
20120 		return (err);
20121 	}
20122 
20123 	return (0);
20124 }
20125 
20126 /*
20127  * Helper for ip_interface_cleanup() that removes the loopback interface.
20128  */
20129 static void
20130 ip_loopback_removeif(ldi_handle_t lh, boolean_t isv6, cred_t *cr)
20131 {
20132 	int err;
20133 	struct lifreq lifr;
20134 
20135 	bzero(&lifr, sizeof (lifr));
20136 	(void) strcpy(lifr.lifr_name, ipif_loopback_name);
20137 
20138 	err = ip_ioctl(lh, SIOCLIFREMOVEIF, &lifr, sizeof (lifr), cr);
20139 	if (err != 0) {
20140 		ip0dbg(("ip_loopback_removeif: IP%s SIOCLIFREMOVEIF failed: "
20141 		    "error %d\n", isv6 ? "v6" : "v4", err));
20142 	}
20143 }
20144 
20145 /*
20146  * Helper for ip_interface_cleanup() that ensures no IP interfaces are in IPMP
20147  * groups and that IPMP data addresses are down.  These conditions must be met
20148  * so that IPMP interfaces can be I_PUNLINK'd, as per ip_sioctl_plink_ipmp().
20149  */
20150 static void
20151 ip_ipmp_cleanup(ldi_handle_t lh, boolean_t isv6, cred_t *cr)
20152 {
20153 	int af = isv6 ? AF_INET6 : AF_INET;
20154 	int i, nifs;
20155 	int err;
20156 	uint_t bufsize;
20157 	uint_t lifrsize = sizeof (struct lifreq);
20158 	struct lifconf lifc;
20159 	struct lifreq *lifrp;
20160 
20161 	if ((err = ip_lifconf_ioctl(lh, af, &lifc, &bufsize, cr)) != 0) {
20162 		cmn_err(CE_WARN, "ip_ipmp_cleanup: cannot get interface list "
20163 		    "(error %d); any IPMP interfaces cannot be shutdown", err);
20164 		return;
20165 	}
20166 
20167 	nifs = lifc.lifc_len / lifrsize;
20168 	for (lifrp = lifc.lifc_req, i = 0; i < nifs; i++, lifrp++) {
20169 		err = ip_ioctl(lh, SIOCGLIFFLAGS, lifrp, lifrsize, cr);
20170 		if (err != 0) {
20171 			cmn_err(CE_WARN, "ip_ipmp_cleanup: %s: cannot get "
20172 			    "flags: error %d", lifrp->lifr_name, err);
20173 			continue;
20174 		}
20175 
20176 		if (lifrp->lifr_flags & IFF_IPMP) {
20177 			if ((lifrp->lifr_flags & (IFF_UP|IFF_DUPLICATE)) == 0)
20178 				continue;
20179 
20180 			lifrp->lifr_flags &= ~IFF_UP;
20181 			err = ip_ioctl(lh, SIOCSLIFFLAGS, lifrp, lifrsize, cr);
20182 			if (err != 0) {
20183 				cmn_err(CE_WARN, "ip_ipmp_cleanup: %s: cannot "
20184 				    "bring down (error %d); IPMP interface may "
20185 				    "not be shutdown", lifrp->lifr_name, err);
20186 			}
20187 
20188 			/*
20189 			 * Check if IFF_DUPLICATE is still set -- and if so,
20190 			 * reset the address to clear it.
20191 			 */
20192 			err = ip_ioctl(lh, SIOCGLIFFLAGS, lifrp, lifrsize, cr);
20193 			if (err != 0 || !(lifrp->lifr_flags & IFF_DUPLICATE))
20194 				continue;
20195 
20196 			err = ip_ioctl(lh, SIOCGLIFADDR, lifrp, lifrsize, cr);
20197 			if (err != 0 || (err = ip_ioctl(lh, SIOCGLIFADDR,
20198 			    lifrp, lifrsize, cr)) != 0) {
20199 				cmn_err(CE_WARN, "ip_ipmp_cleanup: %s: cannot "
20200 				    "reset DAD (error %d); IPMP interface may "
20201 				    "not be shutdown", lifrp->lifr_name, err);
20202 			}
20203 			continue;
20204 		}
20205 
20206 		lifrp->lifr_groupname[0] = '\0';
20207 		err = ip_ioctl(lh, SIOCSLIFGROUPNAME, lifrp, lifrsize, cr);
20208 		if (err != 0) {
20209 			cmn_err(CE_WARN, "ip_ipmp_cleanup: %s: cannot leave "
20210 			    "IPMP group (error %d); associated IPMP interface "
20211 			    "may not be shutdown", lifrp->lifr_name, err);
20212 			continue;
20213 		}
20214 	}
20215 
20216 	kmem_free(lifc.lifc_buf, bufsize);
20217 }
20218 
20219 #define	UDPDEV		"/devices/pseudo/udp@0:udp"
20220 #define	UDP6DEV		"/devices/pseudo/udp6@0:udp6"
20221 
20222 /*
20223  * Remove the loopback interfaces and prep the IPMP interfaces to be torn down.
20224  * Non-loopback interfaces are either I_LINK'd or I_PLINK'd; the former go away
20225  * when the user-level processes in the zone are killed and the latter are
20226  * cleaned up by str_stack_shutdown().
20227  */
20228 void
20229 ip_interface_cleanup(ip_stack_t *ipst)
20230 {
20231 	ldi_handle_t	lh;
20232 	ldi_ident_t	li;
20233 	cred_t		*cr;
20234 	int		err;
20235 	int		i;
20236 	char		*devs[] = { UDP6DEV, UDPDEV };
20237 	netstackid_t	stackid = ipst->ips_netstack->netstack_stackid;
20238 
20239 	if ((err = ldi_ident_from_major(ddi_name_to_major("ip"), &li)) != 0) {
20240 		cmn_err(CE_WARN, "ip_interface_cleanup: cannot get ldi ident:"
20241 		    " error %d", err);
20242 		return;
20243 	}
20244 
20245 	cr = zone_get_kcred(netstackid_to_zoneid(stackid));
20246 	ASSERT(cr != NULL);
20247 
20248 	/*
20249 	 * NOTE: loop executes exactly twice and is hardcoded to know that the
20250 	 * first iteration is IPv6.  (Unrolling yields repetitious code, hence
20251 	 * the loop.)
20252 	 */
20253 	for (i = 0; i < 2; i++) {
20254 		err = ldi_open_by_name(devs[i], FREAD|FWRITE, cr, &lh, li);
20255 		if (err != 0) {
20256 			cmn_err(CE_WARN, "ip_interface_cleanup: cannot open %s:"
20257 			    " error %d", devs[i], err);
20258 			continue;
20259 		}
20260 
20261 		ip_loopback_removeif(lh, i == 0, cr);
20262 		ip_ipmp_cleanup(lh, i == 0, cr);
20263 
20264 		(void) ldi_close(lh, FREAD|FWRITE, cr);
20265 	}
20266 
20267 	ldi_ident_release(li);
20268 	crfree(cr);
20269 }
20270 
20271 /*
20272  * This needs to be in-sync with nic_event_t definition
20273  */
20274 static const char *
20275 ill_hook_event2str(nic_event_t event)
20276 {
20277 	switch (event) {
20278 	case NE_PLUMB:
20279 		return ("PLUMB");
20280 	case NE_UNPLUMB:
20281 		return ("UNPLUMB");
20282 	case NE_UP:
20283 		return ("UP");
20284 	case NE_DOWN:
20285 		return ("DOWN");
20286 	case NE_ADDRESS_CHANGE:
20287 		return ("ADDRESS_CHANGE");
20288 	case NE_LIF_UP:
20289 		return ("LIF_UP");
20290 	case NE_LIF_DOWN:
20291 		return ("LIF_DOWN");
20292 	case NE_IFINDEX_CHANGE:
20293 		return ("IFINDEX_CHANGE");
20294 	default:
20295 		return ("UNKNOWN");
20296 	}
20297 }
20298 
20299 void
20300 ill_nic_event_dispatch(ill_t *ill, lif_if_t lif, nic_event_t event,
20301     nic_event_data_t data, size_t datalen)
20302 {
20303 	ip_stack_t		*ipst = ill->ill_ipst;
20304 	hook_nic_event_int_t	*info;
20305 	const char		*str = NULL;
20306 
20307 	/* create a new nic event info */
20308 	if ((info = kmem_alloc(sizeof (*info), KM_NOSLEEP)) == NULL)
20309 		goto fail;
20310 
20311 	info->hnei_event.hne_nic = ill->ill_phyint->phyint_ifindex;
20312 	info->hnei_event.hne_lif = lif;
20313 	info->hnei_event.hne_event = event;
20314 	info->hnei_event.hne_protocol = ill->ill_isv6 ?
20315 	    ipst->ips_ipv6_net_data : ipst->ips_ipv4_net_data;
20316 	info->hnei_event.hne_data = NULL;
20317 	info->hnei_event.hne_datalen = 0;
20318 	info->hnei_stackid = ipst->ips_netstack->netstack_stackid;
20319 
20320 	if (data != NULL && datalen != 0) {
20321 		info->hnei_event.hne_data = kmem_alloc(datalen, KM_NOSLEEP);
20322 		if (info->hnei_event.hne_data == NULL)
20323 			goto fail;
20324 		bcopy(data, info->hnei_event.hne_data, datalen);
20325 		info->hnei_event.hne_datalen = datalen;
20326 	}
20327 
20328 	if (ddi_taskq_dispatch(eventq_queue_nic, ip_ne_queue_func, info,
20329 	    DDI_NOSLEEP) == DDI_SUCCESS)
20330 		return;
20331 
20332 fail:
20333 	if (info != NULL) {
20334 		if (info->hnei_event.hne_data != NULL) {
20335 			kmem_free(info->hnei_event.hne_data,
20336 			    info->hnei_event.hne_datalen);
20337 		}
20338 		kmem_free(info, sizeof (hook_nic_event_t));
20339 	}
20340 	str = ill_hook_event2str(event);
20341 	ip2dbg(("ill_nic_event_dispatch: could not dispatch %s nic event "
20342 	    "information for %s (ENOMEM)\n", str, ill->ill_name));
20343 }
20344 
20345 void
20346 ipif_up_notify(ipif_t *ipif)
20347 {
20348 	ip_rts_ifmsg(ipif, RTSQ_DEFAULT);
20349 	ip_rts_newaddrmsg(RTM_ADD, 0, ipif, RTSQ_DEFAULT);
20350 	sctp_update_ipif(ipif, SCTP_IPIF_UP);
20351 	ill_nic_event_dispatch(ipif->ipif_ill, MAP_IPIF_ID(ipif->ipif_id),
20352 	    NE_LIF_UP, NULL, 0);
20353 }
20354 
20355 /*
20356  * ILB ioctl uses cv_wait (such as deleting a rule or adding a server) and
20357  * this assumes the context is cv_wait'able.  Hence it shouldnt' be used on
20358  * TPI end points with STREAMS modules pushed above.  This is assured by not
20359  * having the IPI_MODOK flag for the ioctl.  And IP ensures the ILB ioctl
20360  * never ends up on an ipsq, otherwise we may end up processing the ioctl
20361  * while unwinding from the ispq and that could be a thread from the bottom.
20362  */
20363 /* ARGSUSED */
20364 int
20365 ip_sioctl_ilb_cmd(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp,
20366     ip_ioctl_cmd_t *ipip, void *arg)
20367 {
20368 	mblk_t *cmd_mp = mp->b_cont->b_cont;
20369 	ilb_cmd_t command = *((ilb_cmd_t *)cmd_mp->b_rptr);
20370 	int ret = 0;
20371 	int i;
20372 	size_t size;
20373 	ip_stack_t *ipst;
20374 	zoneid_t zoneid;
20375 	ilb_stack_t *ilbs;
20376 
20377 	ipst = CONNQ_TO_IPST(q);
20378 	ilbs = ipst->ips_netstack->netstack_ilb;
20379 	zoneid = Q_TO_CONN(q)->conn_zoneid;
20380 
20381 	switch (command) {
20382 	case ILB_CREATE_RULE: {
20383 		ilb_rule_cmd_t *cmd = (ilb_rule_cmd_t *)cmd_mp->b_rptr;
20384 
20385 		if (MBLKL(cmd_mp) != sizeof (ilb_rule_cmd_t)) {
20386 			ret = EINVAL;
20387 			break;
20388 		}
20389 
20390 		ret = ilb_rule_add(ilbs, zoneid, cmd);
20391 		break;
20392 	}
20393 	case ILB_DESTROY_RULE:
20394 	case ILB_ENABLE_RULE:
20395 	case ILB_DISABLE_RULE: {
20396 		ilb_name_cmd_t *cmd = (ilb_name_cmd_t *)cmd_mp->b_rptr;
20397 
20398 		if (MBLKL(cmd_mp) != sizeof (ilb_name_cmd_t)) {
20399 			ret = EINVAL;
20400 			break;
20401 		}
20402 
20403 		if (cmd->flags & ILB_RULE_ALLRULES) {
20404 			if (command == ILB_DESTROY_RULE) {
20405 				ilb_rule_del_all(ilbs, zoneid);
20406 				break;
20407 			} else if (command == ILB_ENABLE_RULE) {
20408 				ilb_rule_enable_all(ilbs, zoneid);
20409 				break;
20410 			} else if (command == ILB_DISABLE_RULE) {
20411 				ilb_rule_disable_all(ilbs, zoneid);
20412 				break;
20413 			}
20414 		} else {
20415 			if (command == ILB_DESTROY_RULE) {
20416 				ret = ilb_rule_del(ilbs, zoneid, cmd->name);
20417 			} else if (command == ILB_ENABLE_RULE) {
20418 				ret = ilb_rule_enable(ilbs, zoneid, cmd->name,
20419 				    NULL);
20420 			} else if (command == ILB_DISABLE_RULE) {
20421 				ret = ilb_rule_disable(ilbs, zoneid, cmd->name,
20422 				    NULL);
20423 			}
20424 		}
20425 		break;
20426 	}
20427 	case ILB_NUM_RULES: {
20428 		ilb_num_rules_cmd_t *cmd;
20429 
20430 		if (MBLKL(cmd_mp) != sizeof (ilb_num_rules_cmd_t)) {
20431 			ret = EINVAL;
20432 			break;
20433 		}
20434 		cmd = (ilb_num_rules_cmd_t *)cmd_mp->b_rptr;
20435 		ilb_get_num_rules(ilbs, zoneid, &(cmd->num));
20436 		break;
20437 	}
20438 	case ILB_RULE_NAMES: {
20439 		ilb_rule_names_cmd_t *cmd;
20440 
20441 		cmd = (ilb_rule_names_cmd_t *)cmd_mp->b_rptr;
20442 		if (MBLKL(cmd_mp) < sizeof (ilb_rule_names_cmd_t) ||
20443 		    cmd->num_names == 0) {
20444 			ret = EINVAL;
20445 			break;
20446 		}
20447 		size = cmd->num_names * ILB_RULE_NAMESZ;
20448 		if (cmd_mp->b_rptr + offsetof(ilb_rule_names_cmd_t, buf) +
20449 		    size != cmd_mp->b_wptr) {
20450 			ret = EINVAL;
20451 			break;
20452 		}
20453 		ilb_get_rulenames(ilbs, zoneid, &cmd->num_names, cmd->buf);
20454 		break;
20455 	}
20456 	case ILB_NUM_SERVERS: {
20457 		ilb_num_servers_cmd_t *cmd;
20458 
20459 		if (MBLKL(cmd_mp) != sizeof (ilb_num_servers_cmd_t)) {
20460 			ret = EINVAL;
20461 			break;
20462 		}
20463 		cmd = (ilb_num_servers_cmd_t *)cmd_mp->b_rptr;
20464 		ret = ilb_get_num_servers(ilbs, zoneid, cmd->name,
20465 		    &(cmd->num));
20466 		break;
20467 	}
20468 	case ILB_LIST_RULE: {
20469 		ilb_rule_cmd_t *cmd = (ilb_rule_cmd_t *)cmd_mp->b_rptr;
20470 
20471 		if (MBLKL(cmd_mp) != sizeof (ilb_rule_cmd_t)) {
20472 			ret = EINVAL;
20473 			break;
20474 		}
20475 		ret = ilb_rule_list(ilbs, zoneid, cmd);
20476 		break;
20477 	}
20478 	case ILB_LIST_SERVERS: {
20479 		ilb_servers_info_cmd_t *cmd;
20480 
20481 		cmd = (ilb_servers_info_cmd_t *)cmd_mp->b_rptr;
20482 		if (MBLKL(cmd_mp) < sizeof (ilb_servers_info_cmd_t) ||
20483 		    cmd->num_servers == 0) {
20484 			ret = EINVAL;
20485 			break;
20486 		}
20487 		size = cmd->num_servers * sizeof (ilb_server_info_t);
20488 		if (cmd_mp->b_rptr + offsetof(ilb_servers_info_cmd_t, servers) +
20489 		    size != cmd_mp->b_wptr) {
20490 			ret = EINVAL;
20491 			break;
20492 		}
20493 
20494 		ret = ilb_get_servers(ilbs, zoneid, cmd->name, cmd->servers,
20495 		    &cmd->num_servers);
20496 		break;
20497 	}
20498 	case ILB_ADD_SERVERS: {
20499 		ilb_servers_info_cmd_t *cmd;
20500 		ilb_rule_t *rule;
20501 
20502 		cmd = (ilb_servers_info_cmd_t *)cmd_mp->b_rptr;
20503 		if (MBLKL(cmd_mp) < sizeof (ilb_servers_info_cmd_t)) {
20504 			ret = EINVAL;
20505 			break;
20506 		}
20507 		size = cmd->num_servers * sizeof (ilb_server_info_t);
20508 		if (cmd_mp->b_rptr + offsetof(ilb_servers_info_cmd_t, servers) +
20509 		    size != cmd_mp->b_wptr) {
20510 			ret = EINVAL;
20511 			break;
20512 		}
20513 		rule = ilb_find_rule(ilbs, zoneid, cmd->name, &ret);
20514 		if (rule == NULL) {
20515 			ASSERT(ret != 0);
20516 			break;
20517 		}
20518 		for (i = 0; i < cmd->num_servers; i++) {
20519 			ilb_server_info_t *s;
20520 
20521 			s = &cmd->servers[i];
20522 			s->err = ilb_server_add(ilbs, rule, s);
20523 		}
20524 		ILB_RULE_REFRELE(rule);
20525 		break;
20526 	}
20527 	case ILB_DEL_SERVERS:
20528 	case ILB_ENABLE_SERVERS:
20529 	case ILB_DISABLE_SERVERS: {
20530 		ilb_servers_cmd_t *cmd;
20531 		ilb_rule_t *rule;
20532 		int (*f)();
20533 
20534 		cmd = (ilb_servers_cmd_t *)cmd_mp->b_rptr;
20535 		if (MBLKL(cmd_mp) < sizeof (ilb_servers_cmd_t)) {
20536 			ret = EINVAL;
20537 			break;
20538 		}
20539 		size = cmd->num_servers * sizeof (ilb_server_arg_t);
20540 		if (cmd_mp->b_rptr + offsetof(ilb_servers_cmd_t, servers) +
20541 		    size != cmd_mp->b_wptr) {
20542 			ret = EINVAL;
20543 			break;
20544 		}
20545 
20546 		if (command == ILB_DEL_SERVERS)
20547 			f = ilb_server_del;
20548 		else if (command == ILB_ENABLE_SERVERS)
20549 			f = ilb_server_enable;
20550 		else if (command == ILB_DISABLE_SERVERS)
20551 			f = ilb_server_disable;
20552 
20553 		rule = ilb_find_rule(ilbs, zoneid, cmd->name, &ret);
20554 		if (rule == NULL) {
20555 			ASSERT(ret != 0);
20556 			break;
20557 		}
20558 
20559 		for (i = 0; i < cmd->num_servers; i++) {
20560 			ilb_server_arg_t *s;
20561 
20562 			s = &cmd->servers[i];
20563 			s->err = f(ilbs, zoneid, NULL, rule, &s->addr);
20564 		}
20565 		ILB_RULE_REFRELE(rule);
20566 		break;
20567 	}
20568 	case ILB_LIST_NAT_TABLE: {
20569 		ilb_list_nat_cmd_t *cmd;
20570 
20571 		cmd = (ilb_list_nat_cmd_t *)cmd_mp->b_rptr;
20572 		if (MBLKL(cmd_mp) < sizeof (ilb_list_nat_cmd_t)) {
20573 			ret = EINVAL;
20574 			break;
20575 		}
20576 		size = cmd->num_nat * sizeof (ilb_nat_entry_t);
20577 		if (cmd_mp->b_rptr + offsetof(ilb_list_nat_cmd_t, entries) +
20578 		    size != cmd_mp->b_wptr) {
20579 			ret = EINVAL;
20580 			break;
20581 		}
20582 
20583 		ret = ilb_list_nat(ilbs, zoneid, cmd->entries, &cmd->num_nat,
20584 		    &cmd->flags);
20585 		break;
20586 	}
20587 	case ILB_LIST_STICKY_TABLE: {
20588 		ilb_list_sticky_cmd_t *cmd;
20589 
20590 		cmd = (ilb_list_sticky_cmd_t *)cmd_mp->b_rptr;
20591 		if (MBLKL(cmd_mp) < sizeof (ilb_list_sticky_cmd_t)) {
20592 			ret = EINVAL;
20593 			break;
20594 		}
20595 		size = cmd->num_sticky * sizeof (ilb_sticky_entry_t);
20596 		if (cmd_mp->b_rptr + offsetof(ilb_list_sticky_cmd_t, entries) +
20597 		    size != cmd_mp->b_wptr) {
20598 			ret = EINVAL;
20599 			break;
20600 		}
20601 
20602 		ret = ilb_list_sticky(ilbs, zoneid, cmd->entries,
20603 		    &cmd->num_sticky, &cmd->flags);
20604 		break;
20605 	}
20606 	default:
20607 		ret = EINVAL;
20608 		break;
20609 	}
20610 done:
20611 	return (ret);
20612 }
20613