1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2009 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 /* Copyright (c) 1990 Mentat Inc. */ 26 27 /* 28 * This file contains the interface control functions for IP. 29 */ 30 31 #include <sys/types.h> 32 #include <sys/stream.h> 33 #include <sys/dlpi.h> 34 #include <sys/stropts.h> 35 #include <sys/strsun.h> 36 #include <sys/sysmacros.h> 37 #include <sys/strlog.h> 38 #include <sys/ddi.h> 39 #include <sys/sunddi.h> 40 #include <sys/cmn_err.h> 41 #include <sys/kstat.h> 42 #include <sys/debug.h> 43 #include <sys/zone.h> 44 #include <sys/sunldi.h> 45 #include <sys/file.h> 46 #include <sys/bitmap.h> 47 #include <sys/cpuvar.h> 48 #include <sys/time.h> 49 #include <sys/ctype.h> 50 #include <sys/kmem.h> 51 #include <sys/systm.h> 52 #include <sys/param.h> 53 #include <sys/socket.h> 54 #include <sys/isa_defs.h> 55 #include <net/if.h> 56 #include <net/if_arp.h> 57 #include <net/if_types.h> 58 #include <net/if_dl.h> 59 #include <net/route.h> 60 #include <sys/sockio.h> 61 #include <netinet/in.h> 62 #include <netinet/ip6.h> 63 #include <netinet/icmp6.h> 64 #include <netinet/igmp_var.h> 65 #include <sys/policy.h> 66 #include <sys/ethernet.h> 67 #include <sys/callb.h> 68 #include <sys/md5.h> 69 70 #include <inet/common.h> /* for various inet/mi.h and inet/nd.h needs */ 71 #include <inet/mi.h> 72 #include <inet/nd.h> 73 #include <inet/arp.h> 74 #include <inet/mib2.h> 75 #include <inet/ip.h> 76 #include <inet/ip6.h> 77 #include <inet/ip6_asp.h> 78 #include <inet/tcp.h> 79 #include <inet/ip_multi.h> 80 #include <inet/ip_ire.h> 81 #include <inet/ip_ftable.h> 82 #include <inet/ip_rts.h> 83 #include <inet/ip_ndp.h> 84 #include <inet/ip_if.h> 85 #include <inet/ip_impl.h> 86 #include <inet/tun.h> 87 #include <inet/sctp_ip.h> 88 #include <inet/ip_netinfo.h> 89 90 #include <net/pfkeyv2.h> 91 #include <inet/ipsec_info.h> 92 #include <inet/sadb.h> 93 #include <inet/ipsec_impl.h> 94 #include <sys/iphada.h> 95 96 #include <netinet/igmp.h> 97 #include <inet/ip_listutils.h> 98 #include <inet/ipclassifier.h> 99 #include <sys/mac_client.h> 100 #include <sys/dld.h> 101 102 #include <sys/systeminfo.h> 103 #include <sys/bootconf.h> 104 105 #include <sys/tsol/tndb.h> 106 #include <sys/tsol/tnet.h> 107 108 /* The character which tells where the ill_name ends */ 109 #define IPIF_SEPARATOR_CHAR ':' 110 111 /* IP ioctl function table entry */ 112 typedef struct ipft_s { 113 int ipft_cmd; 114 pfi_t ipft_pfi; 115 int ipft_min_size; 116 int ipft_flags; 117 } ipft_t; 118 #define IPFT_F_NO_REPLY 0x1 /* IP ioctl does not expect any reply */ 119 #define IPFT_F_SELF_REPLY 0x2 /* ioctl callee does the ioctl reply */ 120 121 typedef struct ip_sock_ar_s { 122 union { 123 area_t ip_sock_area; 124 ared_t ip_sock_ared; 125 areq_t ip_sock_areq; 126 } ip_sock_ar_u; 127 queue_t *ip_sock_ar_q; 128 } ip_sock_ar_t; 129 130 static int nd_ill_forward_get(queue_t *, mblk_t *, caddr_t, cred_t *); 131 static int nd_ill_forward_set(queue_t *q, mblk_t *mp, 132 char *value, caddr_t cp, cred_t *ioc_cr); 133 134 static boolean_t ill_is_quiescent(ill_t *); 135 static boolean_t ip_addr_ok_v4(ipaddr_t addr, ipaddr_t subnet_mask); 136 static ip_m_t *ip_m_lookup(t_uscalar_t mac_type); 137 static int ip_sioctl_addr_tail(ipif_t *ipif, sin_t *sin, queue_t *q, 138 mblk_t *mp, boolean_t need_up); 139 static int ip_sioctl_dstaddr_tail(ipif_t *ipif, sin_t *sin, queue_t *q, 140 mblk_t *mp, boolean_t need_up); 141 static int ip_sioctl_slifzone_tail(ipif_t *ipif, zoneid_t zoneid, 142 queue_t *q, mblk_t *mp, boolean_t need_up); 143 static int ip_sioctl_flags_tail(ipif_t *ipif, uint64_t flags, queue_t *q, 144 mblk_t *mp); 145 static int ip_sioctl_netmask_tail(ipif_t *ipif, sin_t *sin, queue_t *q, 146 mblk_t *mp); 147 static int ip_sioctl_subnet_tail(ipif_t *ipif, in6_addr_t, in6_addr_t, 148 queue_t *q, mblk_t *mp, boolean_t need_up); 149 static int ip_sioctl_plink_ipmod(ipsq_t *ipsq, queue_t *q, mblk_t *mp, 150 int ioccmd, struct linkblk *li, boolean_t doconsist); 151 static ipaddr_t ip_subnet_mask(ipaddr_t addr, ipif_t **, ip_stack_t *); 152 static void ip_wput_ioctl(queue_t *q, mblk_t *mp); 153 static void ipsq_flush(ill_t *ill); 154 155 static int ip_sioctl_token_tail(ipif_t *ipif, sin6_t *sin6, int addrlen, 156 queue_t *q, mblk_t *mp, boolean_t need_up); 157 static void ipsq_delete(ipsq_t *); 158 159 static ipif_t *ipif_allocate(ill_t *ill, int id, uint_t ire_type, 160 boolean_t initialize, boolean_t insert); 161 static void ipif_check_bcast_ires(ipif_t *test_ipif); 162 static ire_t **ipif_create_bcast_ires(ipif_t *ipif, ire_t **irep); 163 static boolean_t ipif_comp_multi(ipif_t *old_ipif, ipif_t *new_ipif, 164 boolean_t isv6); 165 static void ipif_down_delete_ire(ire_t *ire, char *ipif); 166 static void ipif_delete_cache_ire(ire_t *, char *); 167 static int ipif_logical_down(ipif_t *ipif, queue_t *q, mblk_t *mp); 168 static void ipif_free(ipif_t *ipif); 169 static void ipif_free_tail(ipif_t *ipif); 170 static void ipif_mtu_change(ire_t *ire, char *ipif_arg); 171 static void ipif_recreate_interface_routes(ipif_t *old_ipif, ipif_t *ipif); 172 static void ipif_set_default(ipif_t *ipif); 173 static int ipif_set_values(queue_t *q, mblk_t *mp, 174 char *interf_name, uint_t *ppa); 175 static int ipif_set_values_tail(ill_t *ill, ipif_t *ipif, mblk_t *mp, 176 queue_t *q); 177 static ipif_t *ipif_lookup_on_name(char *name, size_t namelen, 178 boolean_t do_alloc, boolean_t *exists, boolean_t isv6, zoneid_t zoneid, 179 queue_t *q, mblk_t *mp, ipsq_func_t func, int *error, ip_stack_t *); 180 static void ipif_update_other_ipifs(ipif_t *old_ipif); 181 182 static int ill_alloc_ppa(ill_if_t *, ill_t *); 183 static int ill_arp_off(ill_t *ill); 184 static int ill_arp_on(ill_t *ill); 185 static void ill_delete_interface_type(ill_if_t *); 186 static int ill_dl_up(ill_t *ill, ipif_t *ipif, mblk_t *mp, queue_t *q); 187 static void ill_dl_down(ill_t *ill); 188 static void ill_down(ill_t *ill); 189 static void ill_downi(ire_t *ire, char *ill_arg); 190 static void ill_free_mib(ill_t *ill); 191 static void ill_glist_delete(ill_t *); 192 static void ill_phyint_reinit(ill_t *ill); 193 static void ill_set_nce_router_flags(ill_t *, boolean_t); 194 static void ill_set_phys_addr_tail(ipsq_t *, queue_t *, mblk_t *, void *); 195 static ip_v6intfid_func_t ip_ether_v6intfid, ip_ib_v6intfid; 196 static ip_v6intfid_func_t ip_ipmp_v6intfid, ip_nodef_v6intfid; 197 static ip_v6mapinfo_func_t ip_ether_v6mapinfo, ip_ib_v6mapinfo; 198 static ip_v4mapinfo_func_t ip_ether_v4mapinfo, ip_ib_v4mapinfo; 199 static void ipif_save_ire(ipif_t *, ire_t *); 200 static void ipif_remove_ire(ipif_t *, ire_t *); 201 static void ip_cgtp_bcast_add(ire_t *, ire_t *, ip_stack_t *); 202 static void ip_cgtp_bcast_delete(ire_t *, ip_stack_t *); 203 static void phyint_free(phyint_t *); 204 205 /* 206 * Per-ill IPsec capabilities management. 207 */ 208 static ill_ipsec_capab_t *ill_ipsec_capab_alloc(void); 209 static void ill_ipsec_capab_free(ill_ipsec_capab_t *); 210 static void ill_ipsec_capab_add(ill_t *, uint_t, boolean_t); 211 static void ill_ipsec_capab_delete(ill_t *, uint_t); 212 static boolean_t ill_ipsec_capab_resize_algparm(ill_ipsec_capab_t *, int); 213 static void ill_capability_dispatch(ill_t *, mblk_t *, dl_capability_sub_t *, 214 boolean_t); 215 static void ill_capability_id_ack(ill_t *, mblk_t *, dl_capability_sub_t *); 216 static void ill_capability_mdt_ack(ill_t *, mblk_t *, dl_capability_sub_t *); 217 static void ill_capability_mdt_reset_fill(ill_t *, mblk_t *); 218 static void ill_capability_ipsec_ack(ill_t *, mblk_t *, dl_capability_sub_t *); 219 static void ill_capability_ipsec_reset_fill(ill_t *, mblk_t *); 220 static void ill_capability_hcksum_ack(ill_t *, mblk_t *, dl_capability_sub_t *); 221 static void ill_capability_hcksum_reset_fill(ill_t *, mblk_t *); 222 static void ill_capability_zerocopy_ack(ill_t *, mblk_t *, 223 dl_capability_sub_t *); 224 static void ill_capability_zerocopy_reset_fill(ill_t *, mblk_t *); 225 static int ill_capability_ipsec_reset_size(ill_t *, int *, int *, int *, 226 int *); 227 static void ill_capability_dld_reset_fill(ill_t *, mblk_t *); 228 static void ill_capability_dld_ack(ill_t *, mblk_t *, 229 dl_capability_sub_t *); 230 static void ill_capability_dld_enable(ill_t *); 231 static void ill_capability_ack_thr(void *); 232 static void ill_capability_lso_enable(ill_t *); 233 static void ill_capability_send(ill_t *, mblk_t *); 234 235 static ill_t *ill_prev_usesrc(ill_t *); 236 static int ill_relink_usesrc_ills(ill_t *, ill_t *, uint_t); 237 static void ill_disband_usesrc_group(ill_t *); 238 static void conn_cleanup_stale_ire(conn_t *, caddr_t); 239 240 #ifdef DEBUG 241 static void ill_trace_cleanup(const ill_t *); 242 static void ipif_trace_cleanup(const ipif_t *); 243 #endif 244 245 /* 246 * if we go over the memory footprint limit more than once in this msec 247 * interval, we'll start pruning aggressively. 248 */ 249 int ip_min_frag_prune_time = 0; 250 251 /* 252 * max # of IPsec algorithms supported. Limited to 1 byte by PF_KEY 253 * and the IPsec DOI 254 */ 255 #define MAX_IPSEC_ALGS 256 256 257 #define BITSPERBYTE 8 258 #define BITS(type) (BITSPERBYTE * (long)sizeof (type)) 259 260 #define IPSEC_ALG_ENABLE(algs, algid) \ 261 ((algs)[(algid) / BITS(ipsec_capab_elem_t)] |= \ 262 (1 << ((algid) % BITS(ipsec_capab_elem_t)))) 263 264 #define IPSEC_ALG_IS_ENABLED(algid, algs) \ 265 ((algs)[(algid) / BITS(ipsec_capab_elem_t)] & \ 266 (1 << ((algid) % BITS(ipsec_capab_elem_t)))) 267 268 typedef uint8_t ipsec_capab_elem_t; 269 270 /* 271 * Per-algorithm parameters. Note that at present, only encryption 272 * algorithms have variable keysize (IKE does not provide a way to negotiate 273 * auth algorithm keysize). 274 * 275 * All sizes here are in bits. 276 */ 277 typedef struct 278 { 279 uint16_t minkeylen; 280 uint16_t maxkeylen; 281 } ipsec_capab_algparm_t; 282 283 /* 284 * Per-ill capabilities. 285 */ 286 struct ill_ipsec_capab_s { 287 ipsec_capab_elem_t *encr_hw_algs; 288 ipsec_capab_elem_t *auth_hw_algs; 289 uint32_t algs_size; /* size of _hw_algs in bytes */ 290 /* algorithm key lengths */ 291 ipsec_capab_algparm_t *encr_algparm; 292 uint32_t encr_algparm_size; 293 uint32_t encr_algparm_end; 294 }; 295 296 /* 297 * The field values are larger than strictly necessary for simple 298 * AR_ENTRY_ADDs but the padding lets us accomodate the socket ioctls. 299 */ 300 static area_t ip_area_template = { 301 AR_ENTRY_ADD, /* area_cmd */ 302 sizeof (ip_sock_ar_t) + (IP_ADDR_LEN*2) + sizeof (struct sockaddr_dl), 303 /* area_name_offset */ 304 /* area_name_length temporarily holds this structure length */ 305 sizeof (area_t), /* area_name_length */ 306 IP_ARP_PROTO_TYPE, /* area_proto */ 307 sizeof (ip_sock_ar_t), /* area_proto_addr_offset */ 308 IP_ADDR_LEN, /* area_proto_addr_length */ 309 sizeof (ip_sock_ar_t) + IP_ADDR_LEN, 310 /* area_proto_mask_offset */ 311 0, /* area_flags */ 312 sizeof (ip_sock_ar_t) + IP_ADDR_LEN + IP_ADDR_LEN, 313 /* area_hw_addr_offset */ 314 /* Zero length hw_addr_length means 'use your idea of the address' */ 315 0 /* area_hw_addr_length */ 316 }; 317 318 /* 319 * AR_ENTRY_ADD/DELETE templates have been added for IPv6 external resolver 320 * support 321 */ 322 static area_t ip6_area_template = { 323 AR_ENTRY_ADD, /* area_cmd */ 324 sizeof (ip_sock_ar_t) + (IPV6_ADDR_LEN*2) + sizeof (sin6_t), 325 /* area_name_offset */ 326 /* area_name_length temporarily holds this structure length */ 327 sizeof (area_t), /* area_name_length */ 328 IP_ARP_PROTO_TYPE, /* area_proto */ 329 sizeof (ip_sock_ar_t), /* area_proto_addr_offset */ 330 IPV6_ADDR_LEN, /* area_proto_addr_length */ 331 sizeof (ip_sock_ar_t) + IPV6_ADDR_LEN, 332 /* area_proto_mask_offset */ 333 0, /* area_flags */ 334 sizeof (ip_sock_ar_t) + IPV6_ADDR_LEN + IPV6_ADDR_LEN, 335 /* area_hw_addr_offset */ 336 /* Zero length hw_addr_length means 'use your idea of the address' */ 337 0 /* area_hw_addr_length */ 338 }; 339 340 static ared_t ip_ared_template = { 341 AR_ENTRY_DELETE, 342 sizeof (ared_t) + IP_ADDR_LEN, 343 sizeof (ared_t), 344 IP_ARP_PROTO_TYPE, 345 sizeof (ared_t), 346 IP_ADDR_LEN, 347 0 348 }; 349 350 static ared_t ip6_ared_template = { 351 AR_ENTRY_DELETE, 352 sizeof (ared_t) + IPV6_ADDR_LEN, 353 sizeof (ared_t), 354 IP_ARP_PROTO_TYPE, 355 sizeof (ared_t), 356 IPV6_ADDR_LEN, 357 0 358 }; 359 360 /* 361 * A template for an IPv6 AR_ENTRY_QUERY template has not been created, as 362 * as the areq doesn't include an IP address in ill_dl_up() (the only place a 363 * areq is used). 364 */ 365 static areq_t ip_areq_template = { 366 AR_ENTRY_QUERY, /* cmd */ 367 sizeof (areq_t)+(2*IP_ADDR_LEN), /* name offset */ 368 sizeof (areq_t), /* name len (filled by ill_arp_alloc) */ 369 IP_ARP_PROTO_TYPE, /* protocol, from arps perspective */ 370 sizeof (areq_t), /* target addr offset */ 371 IP_ADDR_LEN, /* target addr_length */ 372 0, /* flags */ 373 sizeof (areq_t) + IP_ADDR_LEN, /* sender addr offset */ 374 IP_ADDR_LEN, /* sender addr length */ 375 AR_EQ_DEFAULT_XMIT_COUNT, /* xmit_count */ 376 AR_EQ_DEFAULT_XMIT_INTERVAL, /* (re)xmit_interval in milliseconds */ 377 AR_EQ_DEFAULT_MAX_BUFFERED /* max # of requests to buffer */ 378 /* anything else filled in by the code */ 379 }; 380 381 static arc_t ip_aru_template = { 382 AR_INTERFACE_UP, 383 sizeof (arc_t), /* Name offset */ 384 sizeof (arc_t) /* Name length (set by ill_arp_alloc) */ 385 }; 386 387 static arc_t ip_ard_template = { 388 AR_INTERFACE_DOWN, 389 sizeof (arc_t), /* Name offset */ 390 sizeof (arc_t) /* Name length (set by ill_arp_alloc) */ 391 }; 392 393 static arc_t ip_aron_template = { 394 AR_INTERFACE_ON, 395 sizeof (arc_t), /* Name offset */ 396 sizeof (arc_t) /* Name length (set by ill_arp_alloc) */ 397 }; 398 399 static arc_t ip_aroff_template = { 400 AR_INTERFACE_OFF, 401 sizeof (arc_t), /* Name offset */ 402 sizeof (arc_t) /* Name length (set by ill_arp_alloc) */ 403 }; 404 405 static arma_t ip_arma_multi_template = { 406 AR_MAPPING_ADD, 407 sizeof (arma_t) + 3*IP_ADDR_LEN + IP_MAX_HW_LEN, 408 /* Name offset */ 409 sizeof (arma_t), /* Name length (set by ill_arp_alloc) */ 410 IP_ARP_PROTO_TYPE, 411 sizeof (arma_t), /* proto_addr_offset */ 412 IP_ADDR_LEN, /* proto_addr_length */ 413 sizeof (arma_t) + IP_ADDR_LEN, /* proto_mask_offset */ 414 sizeof (arma_t) + 2*IP_ADDR_LEN, /* proto_extract_mask_offset */ 415 ACE_F_PERMANENT | ACE_F_MAPPING, /* flags */ 416 sizeof (arma_t) + 3*IP_ADDR_LEN, /* hw_addr_offset */ 417 IP_MAX_HW_LEN, /* hw_addr_length */ 418 0, /* hw_mapping_start */ 419 }; 420 421 static ipft_t ip_ioctl_ftbl[] = { 422 { IP_IOC_IRE_DELETE, ip_ire_delete, sizeof (ipid_t), 0 }, 423 { IP_IOC_IRE_DELETE_NO_REPLY, ip_ire_delete, sizeof (ipid_t), 424 IPFT_F_NO_REPLY }, 425 { IP_IOC_IRE_ADVISE_NO_REPLY, ip_ire_advise, sizeof (ipic_t), 426 IPFT_F_NO_REPLY }, 427 { IP_IOC_RTS_REQUEST, ip_rts_request, 0, IPFT_F_SELF_REPLY }, 428 { 0 } 429 }; 430 431 /* Simple ICMP IP Header Template */ 432 static ipha_t icmp_ipha = { 433 IP_SIMPLE_HDR_VERSION, 0, 0, 0, 0, 0, IPPROTO_ICMP 434 }; 435 436 /* Flag descriptors for ip_ipif_report */ 437 static nv_t ipif_nv_tbl[] = { 438 { IPIF_UP, "UP" }, 439 { IPIF_BROADCAST, "BROADCAST" }, 440 { ILLF_DEBUG, "DEBUG" }, 441 { PHYI_LOOPBACK, "LOOPBACK" }, 442 { IPIF_POINTOPOINT, "POINTOPOINT" }, 443 { ILLF_NOTRAILERS, "NOTRAILERS" }, 444 { PHYI_RUNNING, "RUNNING" }, 445 { ILLF_NOARP, "NOARP" }, 446 { PHYI_PROMISC, "PROMISC" }, 447 { PHYI_ALLMULTI, "ALLMULTI" }, 448 { PHYI_INTELLIGENT, "INTELLIGENT" }, 449 { ILLF_MULTICAST, "MULTICAST" }, 450 { PHYI_MULTI_BCAST, "MULTI_BCAST" }, 451 { IPIF_UNNUMBERED, "UNNUMBERED" }, 452 { IPIF_DHCPRUNNING, "DHCP" }, 453 { IPIF_PRIVATE, "PRIVATE" }, 454 { IPIF_NOXMIT, "NOXMIT" }, 455 { IPIF_NOLOCAL, "NOLOCAL" }, 456 { IPIF_DEPRECATED, "DEPRECATED" }, 457 { IPIF_PREFERRED, "PREFERRED" }, 458 { IPIF_TEMPORARY, "TEMPORARY" }, 459 { IPIF_ADDRCONF, "ADDRCONF" }, 460 { PHYI_VIRTUAL, "VIRTUAL" }, 461 { ILLF_ROUTER, "ROUTER" }, 462 { ILLF_NONUD, "NONUD" }, 463 { IPIF_ANYCAST, "ANYCAST" }, 464 { ILLF_NORTEXCH, "NORTEXCH" }, 465 { ILLF_IPV4, "IPV4" }, 466 { ILLF_IPV6, "IPV6" }, 467 { IPIF_NOFAILOVER, "NOFAILOVER" }, 468 { PHYI_FAILED, "FAILED" }, 469 { PHYI_STANDBY, "STANDBY" }, 470 { PHYI_INACTIVE, "INACTIVE" }, 471 { PHYI_OFFLINE, "OFFLINE" }, 472 { PHYI_IPMP, "IPMP" } 473 }; 474 475 static uchar_t ip_six_byte_all_ones[] = { 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF }; 476 477 static ip_m_t ip_m_tbl[] = { 478 { DL_ETHER, IFT_ETHER, ip_ether_v4mapinfo, ip_ether_v6mapinfo, 479 ip_ether_v6intfid }, 480 { DL_CSMACD, IFT_ISO88023, ip_ether_v4mapinfo, ip_ether_v6mapinfo, 481 ip_nodef_v6intfid }, 482 { DL_TPB, IFT_ISO88024, ip_ether_v4mapinfo, ip_ether_v6mapinfo, 483 ip_nodef_v6intfid }, 484 { DL_TPR, IFT_ISO88025, ip_ether_v4mapinfo, ip_ether_v6mapinfo, 485 ip_nodef_v6intfid }, 486 { DL_FDDI, IFT_FDDI, ip_ether_v4mapinfo, ip_ether_v6mapinfo, 487 ip_ether_v6intfid }, 488 { DL_IB, IFT_IB, ip_ib_v4mapinfo, ip_ib_v6mapinfo, 489 ip_ib_v6intfid }, 490 { SUNW_DL_VNI, IFT_OTHER, NULL, NULL, NULL }, 491 { SUNW_DL_IPMP, IFT_OTHER, NULL, NULL, ip_ipmp_v6intfid }, 492 { DL_OTHER, IFT_OTHER, ip_ether_v4mapinfo, ip_ether_v6mapinfo, 493 ip_nodef_v6intfid } 494 }; 495 496 static ill_t ill_null; /* Empty ILL for init. */ 497 char ipif_loopback_name[] = "lo0"; 498 static char *ipv4_forward_suffix = ":ip_forwarding"; 499 static char *ipv6_forward_suffix = ":ip6_forwarding"; 500 static sin6_t sin6_null; /* Zero address for quick clears */ 501 static sin_t sin_null; /* Zero address for quick clears */ 502 503 /* When set search for unused ipif_seqid */ 504 static ipif_t ipif_zero; 505 506 /* 507 * ppa arena is created after these many 508 * interfaces have been plumbed. 509 */ 510 uint_t ill_no_arena = 12; /* Setable in /etc/system */ 511 512 /* 513 * Allocate per-interface mibs. 514 * Returns true if ok. False otherwise. 515 * ipsq may not yet be allocated (loopback case ). 516 */ 517 static boolean_t 518 ill_allocate_mibs(ill_t *ill) 519 { 520 /* Already allocated? */ 521 if (ill->ill_ip_mib != NULL) { 522 if (ill->ill_isv6) 523 ASSERT(ill->ill_icmp6_mib != NULL); 524 return (B_TRUE); 525 } 526 527 ill->ill_ip_mib = kmem_zalloc(sizeof (*ill->ill_ip_mib), 528 KM_NOSLEEP); 529 if (ill->ill_ip_mib == NULL) { 530 return (B_FALSE); 531 } 532 533 /* Setup static information */ 534 SET_MIB(ill->ill_ip_mib->ipIfStatsEntrySize, 535 sizeof (mib2_ipIfStatsEntry_t)); 536 if (ill->ill_isv6) { 537 ill->ill_ip_mib->ipIfStatsIPVersion = MIB2_INETADDRESSTYPE_ipv6; 538 SET_MIB(ill->ill_ip_mib->ipIfStatsAddrEntrySize, 539 sizeof (mib2_ipv6AddrEntry_t)); 540 SET_MIB(ill->ill_ip_mib->ipIfStatsRouteEntrySize, 541 sizeof (mib2_ipv6RouteEntry_t)); 542 SET_MIB(ill->ill_ip_mib->ipIfStatsNetToMediaEntrySize, 543 sizeof (mib2_ipv6NetToMediaEntry_t)); 544 SET_MIB(ill->ill_ip_mib->ipIfStatsMemberEntrySize, 545 sizeof (ipv6_member_t)); 546 SET_MIB(ill->ill_ip_mib->ipIfStatsGroupSourceEntrySize, 547 sizeof (ipv6_grpsrc_t)); 548 } else { 549 ill->ill_ip_mib->ipIfStatsIPVersion = MIB2_INETADDRESSTYPE_ipv4; 550 SET_MIB(ill->ill_ip_mib->ipIfStatsAddrEntrySize, 551 sizeof (mib2_ipAddrEntry_t)); 552 SET_MIB(ill->ill_ip_mib->ipIfStatsRouteEntrySize, 553 sizeof (mib2_ipRouteEntry_t)); 554 SET_MIB(ill->ill_ip_mib->ipIfStatsNetToMediaEntrySize, 555 sizeof (mib2_ipNetToMediaEntry_t)); 556 SET_MIB(ill->ill_ip_mib->ipIfStatsMemberEntrySize, 557 sizeof (ip_member_t)); 558 SET_MIB(ill->ill_ip_mib->ipIfStatsGroupSourceEntrySize, 559 sizeof (ip_grpsrc_t)); 560 561 /* 562 * For a v4 ill, we are done at this point, because per ill 563 * icmp mibs are only used for v6. 564 */ 565 return (B_TRUE); 566 } 567 568 ill->ill_icmp6_mib = kmem_zalloc(sizeof (*ill->ill_icmp6_mib), 569 KM_NOSLEEP); 570 if (ill->ill_icmp6_mib == NULL) { 571 kmem_free(ill->ill_ip_mib, sizeof (*ill->ill_ip_mib)); 572 ill->ill_ip_mib = NULL; 573 return (B_FALSE); 574 } 575 /* static icmp info */ 576 ill->ill_icmp6_mib->ipv6IfIcmpEntrySize = 577 sizeof (mib2_ipv6IfIcmpEntry_t); 578 /* 579 * The ipIfStatsIfindex and ipv6IfIcmpIndex will be assigned later 580 * after the phyint merge occurs in ipif_set_values -> ill_glist_insert 581 * -> ill_phyint_reinit 582 */ 583 return (B_TRUE); 584 } 585 586 /* 587 * Common code for preparation of ARP commands. Two points to remember: 588 * 1) The ill_name is tacked on at the end of the allocated space so 589 * the templates name_offset field must contain the total space 590 * to allocate less the name length. 591 * 592 * 2) The templates name_length field should contain the *template* 593 * length. We use it as a parameter to bcopy() and then write 594 * the real ill_name_length into the name_length field of the copy. 595 * (Always called as writer.) 596 */ 597 mblk_t * 598 ill_arp_alloc(ill_t *ill, const uchar_t *template, caddr_t addr) 599 { 600 arc_t *arc = (arc_t *)template; 601 char *cp; 602 int len; 603 mblk_t *mp; 604 uint_t name_length = ill->ill_name_length; 605 uint_t template_len = arc->arc_name_length; 606 607 len = arc->arc_name_offset + name_length; 608 mp = allocb(len, BPRI_HI); 609 if (mp == NULL) 610 return (NULL); 611 cp = (char *)mp->b_rptr; 612 mp->b_wptr = (uchar_t *)&cp[len]; 613 if (template_len) 614 bcopy(template, cp, template_len); 615 if (len > template_len) 616 bzero(&cp[template_len], len - template_len); 617 mp->b_datap->db_type = M_PROTO; 618 619 arc = (arc_t *)cp; 620 arc->arc_name_length = name_length; 621 cp = (char *)arc + arc->arc_name_offset; 622 bcopy(ill->ill_name, cp, name_length); 623 624 if (addr) { 625 area_t *area = (area_t *)mp->b_rptr; 626 627 cp = (char *)area + area->area_proto_addr_offset; 628 bcopy(addr, cp, area->area_proto_addr_length); 629 if (area->area_cmd == AR_ENTRY_ADD) { 630 cp = (char *)area; 631 len = area->area_proto_addr_length; 632 if (area->area_proto_mask_offset) 633 cp += area->area_proto_mask_offset; 634 else 635 cp += area->area_proto_addr_offset + len; 636 while (len-- > 0) 637 *cp++ = (char)~0; 638 } 639 } 640 return (mp); 641 } 642 643 mblk_t * 644 ipif_area_alloc(ipif_t *ipif, uint_t optflags) 645 { 646 caddr_t addr; 647 mblk_t *mp; 648 area_t *area; 649 uchar_t *areap; 650 ill_t *ill = ipif->ipif_ill; 651 652 if (ill->ill_isv6) { 653 ASSERT(ill->ill_flags & ILLF_XRESOLV); 654 addr = (caddr_t)&ipif->ipif_v6lcl_addr; 655 areap = (uchar_t *)&ip6_area_template; 656 } else { 657 addr = (caddr_t)&ipif->ipif_lcl_addr; 658 areap = (uchar_t *)&ip_area_template; 659 } 660 661 if ((mp = ill_arp_alloc(ill, areap, addr)) == NULL) 662 return (NULL); 663 664 /* 665 * IPMP requires that the hardware address be included in all 666 * AR_ENTRY_ADD requests so that ARP can deduce the arl to send on. 667 * If there are no active underlying ills in the group (and thus no 668 * hardware address, DAD will be deferred until an underlying ill 669 * becomes active. 670 */ 671 if (IS_IPMP(ill)) { 672 if ((ill = ipmp_ipif_hold_bound_ill(ipif)) == NULL) { 673 freemsg(mp); 674 return (NULL); 675 } 676 } else { 677 ill_refhold(ill); 678 } 679 680 area = (area_t *)mp->b_rptr; 681 area->area_flags = ACE_F_PERMANENT | ACE_F_PUBLISH | ACE_F_MYADDR; 682 area->area_flags |= optflags; 683 area->area_hw_addr_length = ill->ill_phys_addr_length; 684 bcopy(ill->ill_phys_addr, mp->b_rptr + area->area_hw_addr_offset, 685 area->area_hw_addr_length); 686 687 ill_refrele(ill); 688 return (mp); 689 } 690 691 mblk_t * 692 ipif_ared_alloc(ipif_t *ipif) 693 { 694 caddr_t addr; 695 uchar_t *aredp; 696 697 if (ipif->ipif_ill->ill_isv6) { 698 ASSERT(ipif->ipif_ill->ill_flags & ILLF_XRESOLV); 699 addr = (caddr_t)&ipif->ipif_v6lcl_addr; 700 aredp = (uchar_t *)&ip6_ared_template; 701 } else { 702 addr = (caddr_t)&ipif->ipif_lcl_addr; 703 aredp = (uchar_t *)&ip_ared_template; 704 } 705 706 return (ill_arp_alloc(ipif->ipif_ill, aredp, addr)); 707 } 708 709 mblk_t * 710 ill_ared_alloc(ill_t *ill, ipaddr_t addr) 711 { 712 return (ill_arp_alloc(ill, (uchar_t *)&ip_ared_template, 713 (char *)&addr)); 714 } 715 716 mblk_t * 717 ill_arie_alloc(ill_t *ill, const char *grifname, const void *template) 718 { 719 mblk_t *mp = ill_arp_alloc(ill, template, 0); 720 arie_t *arie; 721 722 if (mp != NULL) { 723 arie = (arie_t *)mp->b_rptr; 724 (void) strlcpy(arie->arie_grifname, grifname, LIFNAMSIZ); 725 } 726 return (mp); 727 } 728 729 /* 730 * Completely vaporize a lower level tap and all associated interfaces. 731 * ill_delete is called only out of ip_close when the device control 732 * stream is being closed. 733 */ 734 void 735 ill_delete(ill_t *ill) 736 { 737 ipif_t *ipif; 738 ill_t *prev_ill; 739 ip_stack_t *ipst = ill->ill_ipst; 740 741 /* 742 * ill_delete may be forcibly entering the ipsq. The previous 743 * ioctl may not have completed and may need to be aborted. 744 * ipsq_flush takes care of it. If we don't need to enter the 745 * the ipsq forcibly, the 2nd invocation of ipsq_flush in 746 * ill_delete_tail is sufficient. 747 */ 748 ipsq_flush(ill); 749 750 /* 751 * Nuke all interfaces. ipif_free will take down the interface, 752 * remove it from the list, and free the data structure. 753 * Walk down the ipif list and remove the logical interfaces 754 * first before removing the main ipif. We can't unplumb 755 * zeroth interface first in the case of IPv6 as reset_conn_ill 756 * -> ip_ll_delmulti_v6 de-references ill_ipif for checking 757 * POINTOPOINT. 758 * 759 * If ill_ipif was not properly initialized (i.e low on memory), 760 * then no interfaces to clean up. In this case just clean up the 761 * ill. 762 */ 763 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) 764 ipif_free(ipif); 765 766 /* 767 * Used only by ill_arp_on and ill_arp_off, which are writers. 768 * So nobody can be using this mp now. Free the mp allocated for 769 * honoring ILLF_NOARP 770 */ 771 freemsg(ill->ill_arp_on_mp); 772 ill->ill_arp_on_mp = NULL; 773 774 /* Clean up msgs on pending upcalls for mrouted */ 775 reset_mrt_ill(ill); 776 777 /* 778 * ipif_free -> reset_conn_ipif will remove all multicast 779 * references for IPv4. For IPv6, we need to do it here as 780 * it points only at ills. 781 */ 782 reset_conn_ill(ill); 783 784 /* 785 * Remove multicast references added as a result of calls to 786 * ip_join_allmulti(). 787 */ 788 ip_purge_allmulti(ill); 789 790 /* 791 * If the ill being deleted is under IPMP, boot it out of the illgrp. 792 */ 793 if (IS_UNDER_IPMP(ill)) 794 ipmp_ill_leave_illgrp(ill); 795 796 /* 797 * ill_down will arrange to blow off any IRE's dependent on this 798 * ILL, and shut down fragmentation reassembly. 799 */ 800 ill_down(ill); 801 802 /* Let SCTP know, so that it can remove this from its list. */ 803 sctp_update_ill(ill, SCTP_ILL_REMOVE); 804 805 /* 806 * If an address on this ILL is being used as a source address then 807 * clear out the pointers in other ILLs that point to this ILL. 808 */ 809 rw_enter(&ipst->ips_ill_g_usesrc_lock, RW_WRITER); 810 if (ill->ill_usesrc_grp_next != NULL) { 811 if (ill->ill_usesrc_ifindex == 0) { /* usesrc ILL ? */ 812 ill_disband_usesrc_group(ill); 813 } else { /* consumer of the usesrc ILL */ 814 prev_ill = ill_prev_usesrc(ill); 815 prev_ill->ill_usesrc_grp_next = 816 ill->ill_usesrc_grp_next; 817 } 818 } 819 rw_exit(&ipst->ips_ill_g_usesrc_lock); 820 } 821 822 static void 823 ipif_non_duplicate(ipif_t *ipif) 824 { 825 ill_t *ill = ipif->ipif_ill; 826 mutex_enter(&ill->ill_lock); 827 if (ipif->ipif_flags & IPIF_DUPLICATE) { 828 ipif->ipif_flags &= ~IPIF_DUPLICATE; 829 ASSERT(ill->ill_ipif_dup_count > 0); 830 ill->ill_ipif_dup_count--; 831 } 832 mutex_exit(&ill->ill_lock); 833 } 834 835 /* 836 * ill_delete_tail is called from ip_modclose after all references 837 * to the closing ill are gone. The wait is done in ip_modclose 838 */ 839 void 840 ill_delete_tail(ill_t *ill) 841 { 842 mblk_t **mpp; 843 ipif_t *ipif; 844 ip_stack_t *ipst = ill->ill_ipst; 845 846 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 847 ipif_non_duplicate(ipif); 848 ipif_down_tail(ipif); 849 } 850 851 ASSERT(ill->ill_ipif_dup_count == 0 && 852 ill->ill_arp_down_mp == NULL && 853 ill->ill_arp_del_mapping_mp == NULL); 854 855 /* 856 * If polling capability is enabled (which signifies direct 857 * upcall into IP and driver has ill saved as a handle), 858 * we need to make sure that unbind has completed before we 859 * let the ill disappear and driver no longer has any reference 860 * to this ill. 861 */ 862 mutex_enter(&ill->ill_lock); 863 while (ill->ill_state_flags & ILL_DL_UNBIND_IN_PROGRESS) 864 cv_wait(&ill->ill_cv, &ill->ill_lock); 865 mutex_exit(&ill->ill_lock); 866 ASSERT(!(ill->ill_capabilities & 867 (ILL_CAPAB_DLD | ILL_CAPAB_DLD_POLL | ILL_CAPAB_DLD_DIRECT))); 868 869 if (ill->ill_net_type != IRE_LOOPBACK) 870 qprocsoff(ill->ill_rq); 871 872 /* 873 * We do an ipsq_flush once again now. New messages could have 874 * landed up from below (M_ERROR or M_HANGUP). Similarly ioctls 875 * could also have landed up if an ioctl thread had looked up 876 * the ill before we set the ILL_CONDEMNED flag, but not yet 877 * enqueued the ioctl when we did the ipsq_flush last time. 878 */ 879 ipsq_flush(ill); 880 881 /* 882 * Free capabilities. 883 */ 884 if (ill->ill_ipsec_capab_ah != NULL) { 885 ill_ipsec_capab_delete(ill, DL_CAPAB_IPSEC_AH); 886 ill_ipsec_capab_free(ill->ill_ipsec_capab_ah); 887 ill->ill_ipsec_capab_ah = NULL; 888 } 889 890 if (ill->ill_ipsec_capab_esp != NULL) { 891 ill_ipsec_capab_delete(ill, DL_CAPAB_IPSEC_ESP); 892 ill_ipsec_capab_free(ill->ill_ipsec_capab_esp); 893 ill->ill_ipsec_capab_esp = NULL; 894 } 895 896 if (ill->ill_mdt_capab != NULL) { 897 kmem_free(ill->ill_mdt_capab, sizeof (ill_mdt_capab_t)); 898 ill->ill_mdt_capab = NULL; 899 } 900 901 if (ill->ill_hcksum_capab != NULL) { 902 kmem_free(ill->ill_hcksum_capab, sizeof (ill_hcksum_capab_t)); 903 ill->ill_hcksum_capab = NULL; 904 } 905 906 if (ill->ill_zerocopy_capab != NULL) { 907 kmem_free(ill->ill_zerocopy_capab, 908 sizeof (ill_zerocopy_capab_t)); 909 ill->ill_zerocopy_capab = NULL; 910 } 911 912 if (ill->ill_lso_capab != NULL) { 913 kmem_free(ill->ill_lso_capab, sizeof (ill_lso_capab_t)); 914 ill->ill_lso_capab = NULL; 915 } 916 917 if (ill->ill_dld_capab != NULL) { 918 kmem_free(ill->ill_dld_capab, sizeof (ill_dld_capab_t)); 919 ill->ill_dld_capab = NULL; 920 } 921 922 while (ill->ill_ipif != NULL) 923 ipif_free_tail(ill->ill_ipif); 924 925 /* 926 * We have removed all references to ilm from conn and the ones joined 927 * within the kernel. 928 * 929 * We don't walk conns, mrts and ires because 930 * 931 * 1) reset_conn_ill and reset_mrt_ill cleans up conns and mrts. 932 * 2) ill_down ->ill_downi walks all the ires and cleans up 933 * ill references. 934 */ 935 ASSERT(ilm_walk_ill(ill) == 0); 936 937 /* 938 * If this ill is an IPMP meta-interface, blow away the illgrp. This 939 * is safe to do because the illgrp has already been unlinked from the 940 * group by I_PUNLINK, and thus SIOCSLIFGROUPNAME cannot find it. 941 */ 942 if (IS_IPMP(ill)) { 943 ipmp_illgrp_destroy(ill->ill_grp); 944 ill->ill_grp = NULL; 945 } 946 947 /* 948 * Take us out of the list of ILLs. ill_glist_delete -> phyint_free 949 * could free the phyint. No more reference to the phyint after this 950 * point. 951 */ 952 (void) ill_glist_delete(ill); 953 954 rw_enter(&ipst->ips_ip_g_nd_lock, RW_WRITER); 955 if (ill->ill_ndd_name != NULL) 956 nd_unload(&ipst->ips_ip_g_nd, ill->ill_ndd_name); 957 rw_exit(&ipst->ips_ip_g_nd_lock); 958 959 if (ill->ill_frag_ptr != NULL) { 960 uint_t count; 961 962 for (count = 0; count < ILL_FRAG_HASH_TBL_COUNT; count++) { 963 mutex_destroy(&ill->ill_frag_hash_tbl[count].ipfb_lock); 964 } 965 mi_free(ill->ill_frag_ptr); 966 ill->ill_frag_ptr = NULL; 967 ill->ill_frag_hash_tbl = NULL; 968 } 969 970 freemsg(ill->ill_nd_lla_mp); 971 /* Free all retained control messages. */ 972 mpp = &ill->ill_first_mp_to_free; 973 do { 974 while (mpp[0]) { 975 mblk_t *mp; 976 mblk_t *mp1; 977 978 mp = mpp[0]; 979 mpp[0] = mp->b_next; 980 for (mp1 = mp; mp1 != NULL; mp1 = mp1->b_cont) { 981 mp1->b_next = NULL; 982 mp1->b_prev = NULL; 983 } 984 freemsg(mp); 985 } 986 } while (mpp++ != &ill->ill_last_mp_to_free); 987 988 ill_free_mib(ill); 989 990 #ifdef DEBUG 991 ill_trace_cleanup(ill); 992 #endif 993 994 /* Drop refcnt here */ 995 netstack_rele(ill->ill_ipst->ips_netstack); 996 ill->ill_ipst = NULL; 997 } 998 999 static void 1000 ill_free_mib(ill_t *ill) 1001 { 1002 ip_stack_t *ipst = ill->ill_ipst; 1003 1004 /* 1005 * MIB statistics must not be lost, so when an interface 1006 * goes away the counter values will be added to the global 1007 * MIBs. 1008 */ 1009 if (ill->ill_ip_mib != NULL) { 1010 if (ill->ill_isv6) { 1011 ip_mib2_add_ip_stats(&ipst->ips_ip6_mib, 1012 ill->ill_ip_mib); 1013 } else { 1014 ip_mib2_add_ip_stats(&ipst->ips_ip_mib, 1015 ill->ill_ip_mib); 1016 } 1017 1018 kmem_free(ill->ill_ip_mib, sizeof (*ill->ill_ip_mib)); 1019 ill->ill_ip_mib = NULL; 1020 } 1021 if (ill->ill_icmp6_mib != NULL) { 1022 ip_mib2_add_icmp6_stats(&ipst->ips_icmp6_mib, 1023 ill->ill_icmp6_mib); 1024 kmem_free(ill->ill_icmp6_mib, sizeof (*ill->ill_icmp6_mib)); 1025 ill->ill_icmp6_mib = NULL; 1026 } 1027 } 1028 1029 /* 1030 * Concatenate together a physical address and a sap. 1031 * 1032 * Sap_lengths are interpreted as follows: 1033 * sap_length == 0 ==> no sap 1034 * sap_length > 0 ==> sap is at the head of the dlpi address 1035 * sap_length < 0 ==> sap is at the tail of the dlpi address 1036 */ 1037 static void 1038 ill_dlur_copy_address(uchar_t *phys_src, uint_t phys_length, 1039 t_scalar_t sap_src, t_scalar_t sap_length, uchar_t *dst) 1040 { 1041 uint16_t sap_addr = (uint16_t)sap_src; 1042 1043 if (sap_length == 0) { 1044 if (phys_src == NULL) 1045 bzero(dst, phys_length); 1046 else 1047 bcopy(phys_src, dst, phys_length); 1048 } else if (sap_length < 0) { 1049 if (phys_src == NULL) 1050 bzero(dst, phys_length); 1051 else 1052 bcopy(phys_src, dst, phys_length); 1053 bcopy(&sap_addr, (char *)dst + phys_length, sizeof (sap_addr)); 1054 } else { 1055 bcopy(&sap_addr, dst, sizeof (sap_addr)); 1056 if (phys_src == NULL) 1057 bzero((char *)dst + sap_length, phys_length); 1058 else 1059 bcopy(phys_src, (char *)dst + sap_length, phys_length); 1060 } 1061 } 1062 1063 /* 1064 * Generate a dl_unitdata_req mblk for the device and address given. 1065 * addr_length is the length of the physical portion of the address. 1066 * If addr is NULL include an all zero address of the specified length. 1067 * TRUE? In any case, addr_length is taken to be the entire length of the 1068 * dlpi address, including the absolute value of sap_length. 1069 */ 1070 mblk_t * 1071 ill_dlur_gen(uchar_t *addr, uint_t addr_length, t_uscalar_t sap, 1072 t_scalar_t sap_length) 1073 { 1074 dl_unitdata_req_t *dlur; 1075 mblk_t *mp; 1076 t_scalar_t abs_sap_length; /* absolute value */ 1077 1078 abs_sap_length = ABS(sap_length); 1079 mp = ip_dlpi_alloc(sizeof (*dlur) + addr_length + abs_sap_length, 1080 DL_UNITDATA_REQ); 1081 if (mp == NULL) 1082 return (NULL); 1083 dlur = (dl_unitdata_req_t *)mp->b_rptr; 1084 /* HACK: accomodate incompatible DLPI drivers */ 1085 if (addr_length == 8) 1086 addr_length = 6; 1087 dlur->dl_dest_addr_length = addr_length + abs_sap_length; 1088 dlur->dl_dest_addr_offset = sizeof (*dlur); 1089 dlur->dl_priority.dl_min = 0; 1090 dlur->dl_priority.dl_max = 0; 1091 ill_dlur_copy_address(addr, addr_length, sap, sap_length, 1092 (uchar_t *)&dlur[1]); 1093 return (mp); 1094 } 1095 1096 /* 1097 * Add the 'mp' to the list of pending mp's headed by ill_pending_mp 1098 * Return an error if we already have 1 or more ioctls in progress. 1099 * This is used only for non-exclusive ioctls. Currently this is used 1100 * for SIOC*ARP and SIOCGTUNPARAM ioctls. Most set ioctls are exclusive 1101 * and thus need to use ipsq_pending_mp_add. 1102 */ 1103 boolean_t 1104 ill_pending_mp_add(ill_t *ill, conn_t *connp, mblk_t *add_mp) 1105 { 1106 ASSERT(MUTEX_HELD(&ill->ill_lock)); 1107 ASSERT((add_mp->b_next == NULL) && (add_mp->b_prev == NULL)); 1108 /* 1109 * M_IOCDATA from ioctls, M_IOCTL from tunnel ioctls. 1110 */ 1111 ASSERT((add_mp->b_datap->db_type == M_IOCDATA) || 1112 (add_mp->b_datap->db_type == M_IOCTL)); 1113 1114 ASSERT(MUTEX_HELD(&connp->conn_lock)); 1115 /* 1116 * Return error if the conn has started closing. The conn 1117 * could have finished cleaning up the pending mp list, 1118 * If so we should not add another mp to the list negating 1119 * the cleanup. 1120 */ 1121 if (connp->conn_state_flags & CONN_CLOSING) 1122 return (B_FALSE); 1123 /* 1124 * Add the pending mp to the head of the list, chained by b_next. 1125 * Note down the conn on which the ioctl request came, in b_prev. 1126 * This will be used to later get the conn, when we get a response 1127 * on the ill queue, from some other module (typically arp) 1128 */ 1129 add_mp->b_next = (void *)ill->ill_pending_mp; 1130 add_mp->b_queue = CONNP_TO_WQ(connp); 1131 ill->ill_pending_mp = add_mp; 1132 if (connp != NULL) 1133 connp->conn_oper_pending_ill = ill; 1134 return (B_TRUE); 1135 } 1136 1137 /* 1138 * Retrieve the ill_pending_mp and return it. We have to walk the list 1139 * of mblks starting at ill_pending_mp, and match based on the ioc_id. 1140 */ 1141 mblk_t * 1142 ill_pending_mp_get(ill_t *ill, conn_t **connpp, uint_t ioc_id) 1143 { 1144 mblk_t *prev = NULL; 1145 mblk_t *curr = NULL; 1146 uint_t id; 1147 conn_t *connp; 1148 1149 /* 1150 * When the conn closes, conn_ioctl_cleanup needs to clean 1151 * up the pending mp, but it does not know the ioc_id and 1152 * passes in a zero for it. 1153 */ 1154 mutex_enter(&ill->ill_lock); 1155 if (ioc_id != 0) 1156 *connpp = NULL; 1157 1158 /* Search the list for the appropriate ioctl based on ioc_id */ 1159 for (prev = NULL, curr = ill->ill_pending_mp; curr != NULL; 1160 prev = curr, curr = curr->b_next) { 1161 id = ((struct iocblk *)curr->b_rptr)->ioc_id; 1162 connp = Q_TO_CONN(curr->b_queue); 1163 /* Match based on the ioc_id or based on the conn */ 1164 if ((id == ioc_id) || (ioc_id == 0 && connp == *connpp)) 1165 break; 1166 } 1167 1168 if (curr != NULL) { 1169 /* Unlink the mblk from the pending mp list */ 1170 if (prev != NULL) { 1171 prev->b_next = curr->b_next; 1172 } else { 1173 ASSERT(ill->ill_pending_mp == curr); 1174 ill->ill_pending_mp = curr->b_next; 1175 } 1176 1177 /* 1178 * conn refcnt must have been bumped up at the start of 1179 * the ioctl. So we can safely access the conn. 1180 */ 1181 ASSERT(CONN_Q(curr->b_queue)); 1182 *connpp = Q_TO_CONN(curr->b_queue); 1183 curr->b_next = NULL; 1184 curr->b_queue = NULL; 1185 } 1186 1187 mutex_exit(&ill->ill_lock); 1188 1189 return (curr); 1190 } 1191 1192 /* 1193 * Add the pending mp to the list. There can be only 1 pending mp 1194 * in the list. Any exclusive ioctl that needs to wait for a response 1195 * from another module or driver needs to use this function to set 1196 * the ipx_pending_mp to the ioctl mblk and wait for the response from 1197 * the other module/driver. This is also used while waiting for the 1198 * ipif/ill/ire refcnts to drop to zero in bringing down an ipif. 1199 */ 1200 boolean_t 1201 ipsq_pending_mp_add(conn_t *connp, ipif_t *ipif, queue_t *q, mblk_t *add_mp, 1202 int waitfor) 1203 { 1204 ipxop_t *ipx = ipif->ipif_ill->ill_phyint->phyint_ipsq->ipsq_xop; 1205 1206 ASSERT(IAM_WRITER_IPIF(ipif)); 1207 ASSERT(MUTEX_HELD(&ipif->ipif_ill->ill_lock)); 1208 ASSERT((add_mp->b_next == NULL) && (add_mp->b_prev == NULL)); 1209 ASSERT(ipx->ipx_pending_mp == NULL); 1210 /* 1211 * The caller may be using a different ipif than the one passed into 1212 * ipsq_current_start() (e.g., suppose an ioctl that came in on the V4 1213 * ill needs to wait for the V6 ill to quiesce). So we can't ASSERT 1214 * that `ipx_current_ipif == ipif'. 1215 */ 1216 ASSERT(ipx->ipx_current_ipif != NULL); 1217 1218 /* 1219 * M_IOCDATA from ioctls, M_IOCTL from tunnel ioctls, 1220 * M_ERROR/M_HANGUP/M_PROTO/M_PCPROTO from the driver. 1221 */ 1222 ASSERT((DB_TYPE(add_mp) == M_IOCDATA) || (DB_TYPE(add_mp) == M_IOCTL) || 1223 (DB_TYPE(add_mp) == M_ERROR) || (DB_TYPE(add_mp) == M_HANGUP) || 1224 (DB_TYPE(add_mp) == M_PROTO) || (DB_TYPE(add_mp) == M_PCPROTO)); 1225 1226 if (connp != NULL) { 1227 ASSERT(MUTEX_HELD(&connp->conn_lock)); 1228 /* 1229 * Return error if the conn has started closing. The conn 1230 * could have finished cleaning up the pending mp list, 1231 * If so we should not add another mp to the list negating 1232 * the cleanup. 1233 */ 1234 if (connp->conn_state_flags & CONN_CLOSING) 1235 return (B_FALSE); 1236 } 1237 mutex_enter(&ipx->ipx_lock); 1238 ipx->ipx_pending_ipif = ipif; 1239 /* 1240 * Note down the queue in b_queue. This will be returned by 1241 * ipsq_pending_mp_get. Caller will then use these values to restart 1242 * the processing 1243 */ 1244 add_mp->b_next = NULL; 1245 add_mp->b_queue = q; 1246 ipx->ipx_pending_mp = add_mp; 1247 ipx->ipx_waitfor = waitfor; 1248 mutex_exit(&ipx->ipx_lock); 1249 1250 if (connp != NULL) 1251 connp->conn_oper_pending_ill = ipif->ipif_ill; 1252 1253 return (B_TRUE); 1254 } 1255 1256 /* 1257 * Retrieve the ipx_pending_mp and return it. There can be only 1 mp 1258 * queued in the list. 1259 */ 1260 mblk_t * 1261 ipsq_pending_mp_get(ipsq_t *ipsq, conn_t **connpp) 1262 { 1263 mblk_t *curr = NULL; 1264 ipxop_t *ipx = ipsq->ipsq_xop; 1265 1266 *connpp = NULL; 1267 mutex_enter(&ipx->ipx_lock); 1268 if (ipx->ipx_pending_mp == NULL) { 1269 mutex_exit(&ipx->ipx_lock); 1270 return (NULL); 1271 } 1272 1273 /* There can be only 1 such excl message */ 1274 curr = ipx->ipx_pending_mp; 1275 ASSERT(curr->b_next == NULL); 1276 ipx->ipx_pending_ipif = NULL; 1277 ipx->ipx_pending_mp = NULL; 1278 ipx->ipx_waitfor = 0; 1279 mutex_exit(&ipx->ipx_lock); 1280 1281 if (CONN_Q(curr->b_queue)) { 1282 /* 1283 * This mp did a refhold on the conn, at the start of the ioctl. 1284 * So we can safely return a pointer to the conn to the caller. 1285 */ 1286 *connpp = Q_TO_CONN(curr->b_queue); 1287 } else { 1288 *connpp = NULL; 1289 } 1290 curr->b_next = NULL; 1291 curr->b_prev = NULL; 1292 return (curr); 1293 } 1294 1295 /* 1296 * Cleanup the ioctl mp queued in ipx_pending_mp 1297 * - Called in the ill_delete path 1298 * - Called in the M_ERROR or M_HANGUP path on the ill. 1299 * - Called in the conn close path. 1300 */ 1301 boolean_t 1302 ipsq_pending_mp_cleanup(ill_t *ill, conn_t *connp) 1303 { 1304 mblk_t *mp; 1305 ipxop_t *ipx; 1306 queue_t *q; 1307 ipif_t *ipif; 1308 1309 ASSERT(IAM_WRITER_ILL(ill)); 1310 ipx = ill->ill_phyint->phyint_ipsq->ipsq_xop; 1311 1312 /* 1313 * If connp is null, unconditionally clean up the ipx_pending_mp. 1314 * This happens in M_ERROR/M_HANGUP. We need to abort the current ioctl 1315 * even if it is meant for another ill, since we have to enqueue 1316 * a new mp now in ipx_pending_mp to complete the ipif_down. 1317 * If connp is non-null we are called from the conn close path. 1318 */ 1319 mutex_enter(&ipx->ipx_lock); 1320 mp = ipx->ipx_pending_mp; 1321 if (mp == NULL || (connp != NULL && 1322 mp->b_queue != CONNP_TO_WQ(connp))) { 1323 mutex_exit(&ipx->ipx_lock); 1324 return (B_FALSE); 1325 } 1326 /* Now remove from the ipx_pending_mp */ 1327 ipx->ipx_pending_mp = NULL; 1328 q = mp->b_queue; 1329 mp->b_next = NULL; 1330 mp->b_prev = NULL; 1331 mp->b_queue = NULL; 1332 1333 ipif = ipx->ipx_pending_ipif; 1334 ipx->ipx_pending_ipif = NULL; 1335 ipx->ipx_waitfor = 0; 1336 ipx->ipx_current_ipif = NULL; 1337 ipx->ipx_current_ioctl = 0; 1338 ipx->ipx_current_done = B_TRUE; 1339 mutex_exit(&ipx->ipx_lock); 1340 1341 if (DB_TYPE(mp) == M_IOCTL || DB_TYPE(mp) == M_IOCDATA) { 1342 if (connp == NULL) { 1343 ip_ioctl_finish(q, mp, ENXIO, NO_COPYOUT, NULL); 1344 } else { 1345 ip_ioctl_finish(q, mp, ENXIO, CONN_CLOSE, NULL); 1346 mutex_enter(&ipif->ipif_ill->ill_lock); 1347 ipif->ipif_state_flags &= ~IPIF_CHANGING; 1348 mutex_exit(&ipif->ipif_ill->ill_lock); 1349 } 1350 } else { 1351 /* 1352 * IP-MT XXX In the case of TLI/XTI bind / optmgmt this can't 1353 * be just inet_freemsg. we have to restart it 1354 * otherwise the thread will be stuck. 1355 */ 1356 inet_freemsg(mp); 1357 } 1358 return (B_TRUE); 1359 } 1360 1361 /* 1362 * The ill is closing. Cleanup all the pending mps. Called exclusively 1363 * towards the end of ill_delete. The refcount has gone to 0. So nobody 1364 * knows this ill, and hence nobody can add an mp to this list 1365 */ 1366 static void 1367 ill_pending_mp_cleanup(ill_t *ill) 1368 { 1369 mblk_t *mp; 1370 queue_t *q; 1371 1372 ASSERT(IAM_WRITER_ILL(ill)); 1373 1374 mutex_enter(&ill->ill_lock); 1375 /* 1376 * Every mp on the pending mp list originating from an ioctl 1377 * added 1 to the conn refcnt, at the start of the ioctl. 1378 * So bump it down now. See comments in ip_wput_nondata() 1379 */ 1380 while (ill->ill_pending_mp != NULL) { 1381 mp = ill->ill_pending_mp; 1382 ill->ill_pending_mp = mp->b_next; 1383 mutex_exit(&ill->ill_lock); 1384 1385 q = mp->b_queue; 1386 ASSERT(CONN_Q(q)); 1387 mp->b_next = NULL; 1388 mp->b_prev = NULL; 1389 mp->b_queue = NULL; 1390 ip_ioctl_finish(q, mp, ENXIO, NO_COPYOUT, NULL); 1391 mutex_enter(&ill->ill_lock); 1392 } 1393 ill->ill_pending_ipif = NULL; 1394 1395 mutex_exit(&ill->ill_lock); 1396 } 1397 1398 /* 1399 * Called in the conn close path and ill delete path 1400 */ 1401 static void 1402 ipsq_xopq_mp_cleanup(ill_t *ill, conn_t *connp) 1403 { 1404 ipsq_t *ipsq; 1405 mblk_t *prev; 1406 mblk_t *curr; 1407 mblk_t *next; 1408 queue_t *q; 1409 mblk_t *tmp_list = NULL; 1410 1411 ASSERT(IAM_WRITER_ILL(ill)); 1412 if (connp != NULL) 1413 q = CONNP_TO_WQ(connp); 1414 else 1415 q = ill->ill_wq; 1416 1417 ipsq = ill->ill_phyint->phyint_ipsq; 1418 /* 1419 * Cleanup the ioctl mp's queued in ipsq_xopq_pending_mp if any. 1420 * In the case of ioctl from a conn, there can be only 1 mp 1421 * queued on the ipsq. If an ill is being unplumbed, only messages 1422 * related to this ill are flushed, like M_ERROR or M_HANGUP message. 1423 * ioctls meant for this ill form conn's are not flushed. They will 1424 * be processed during ipsq_exit and will not find the ill and will 1425 * return error. 1426 */ 1427 mutex_enter(&ipsq->ipsq_lock); 1428 for (prev = NULL, curr = ipsq->ipsq_xopq_mphead; curr != NULL; 1429 curr = next) { 1430 next = curr->b_next; 1431 if (curr->b_queue == q || curr->b_queue == RD(q)) { 1432 /* Unlink the mblk from the pending mp list */ 1433 if (prev != NULL) { 1434 prev->b_next = curr->b_next; 1435 } else { 1436 ASSERT(ipsq->ipsq_xopq_mphead == curr); 1437 ipsq->ipsq_xopq_mphead = curr->b_next; 1438 } 1439 if (ipsq->ipsq_xopq_mptail == curr) 1440 ipsq->ipsq_xopq_mptail = prev; 1441 /* 1442 * Create a temporary list and release the ipsq lock 1443 * New elements are added to the head of the tmp_list 1444 */ 1445 curr->b_next = tmp_list; 1446 tmp_list = curr; 1447 } else { 1448 prev = curr; 1449 } 1450 } 1451 mutex_exit(&ipsq->ipsq_lock); 1452 1453 while (tmp_list != NULL) { 1454 curr = tmp_list; 1455 tmp_list = curr->b_next; 1456 curr->b_next = NULL; 1457 curr->b_prev = NULL; 1458 curr->b_queue = NULL; 1459 if (DB_TYPE(curr) == M_IOCTL || DB_TYPE(curr) == M_IOCDATA) { 1460 ip_ioctl_finish(q, curr, ENXIO, connp != NULL ? 1461 CONN_CLOSE : NO_COPYOUT, NULL); 1462 } else { 1463 /* 1464 * IP-MT XXX In the case of TLI/XTI bind / optmgmt 1465 * this can't be just inet_freemsg. we have to 1466 * restart it otherwise the thread will be stuck. 1467 */ 1468 inet_freemsg(curr); 1469 } 1470 } 1471 } 1472 1473 /* 1474 * This conn has started closing. Cleanup any pending ioctl from this conn. 1475 * STREAMS ensures that there can be at most 1 ioctl pending on a stream. 1476 */ 1477 void 1478 conn_ioctl_cleanup(conn_t *connp) 1479 { 1480 mblk_t *curr; 1481 ipsq_t *ipsq; 1482 ill_t *ill; 1483 boolean_t refheld; 1484 1485 /* 1486 * Is any exclusive ioctl pending ? If so clean it up. If the 1487 * ioctl has not yet started, the mp is pending in the list headed by 1488 * ipsq_xopq_head. If the ioctl has started the mp could be present in 1489 * ipx_pending_mp. If the ioctl timed out in the streamhead but 1490 * is currently executing now the mp is not queued anywhere but 1491 * conn_oper_pending_ill is null. The conn close will wait 1492 * till the conn_ref drops to zero. 1493 */ 1494 mutex_enter(&connp->conn_lock); 1495 ill = connp->conn_oper_pending_ill; 1496 if (ill == NULL) { 1497 mutex_exit(&connp->conn_lock); 1498 return; 1499 } 1500 1501 curr = ill_pending_mp_get(ill, &connp, 0); 1502 if (curr != NULL) { 1503 mutex_exit(&connp->conn_lock); 1504 CONN_DEC_REF(connp); 1505 inet_freemsg(curr); 1506 return; 1507 } 1508 /* 1509 * We may not be able to refhold the ill if the ill/ipif 1510 * is changing. But we need to make sure that the ill will 1511 * not vanish. So we just bump up the ill_waiter count. 1512 */ 1513 refheld = ill_waiter_inc(ill); 1514 mutex_exit(&connp->conn_lock); 1515 if (refheld) { 1516 if (ipsq_enter(ill, B_TRUE, NEW_OP)) { 1517 ill_waiter_dcr(ill); 1518 /* 1519 * Check whether this ioctl has started and is 1520 * pending. If it is not found there then check 1521 * whether this ioctl has not even started and is in 1522 * the ipsq_xopq list. 1523 */ 1524 if (!ipsq_pending_mp_cleanup(ill, connp)) 1525 ipsq_xopq_mp_cleanup(ill, connp); 1526 ipsq = ill->ill_phyint->phyint_ipsq; 1527 ipsq_exit(ipsq); 1528 return; 1529 } 1530 } 1531 1532 /* 1533 * The ill is also closing and we could not bump up the 1534 * ill_waiter_count or we could not enter the ipsq. Leave 1535 * the cleanup to ill_delete 1536 */ 1537 mutex_enter(&connp->conn_lock); 1538 while (connp->conn_oper_pending_ill != NULL) 1539 cv_wait(&connp->conn_refcv, &connp->conn_lock); 1540 mutex_exit(&connp->conn_lock); 1541 if (refheld) 1542 ill_waiter_dcr(ill); 1543 } 1544 1545 /* 1546 * ipcl_walk function for cleaning up conn_*_ill fields. 1547 */ 1548 static void 1549 conn_cleanup_ill(conn_t *connp, caddr_t arg) 1550 { 1551 ill_t *ill = (ill_t *)arg; 1552 ire_t *ire; 1553 1554 mutex_enter(&connp->conn_lock); 1555 if (connp->conn_multicast_ill == ill) { 1556 /* Revert to late binding */ 1557 connp->conn_multicast_ill = NULL; 1558 } 1559 if (connp->conn_incoming_ill == ill) 1560 connp->conn_incoming_ill = NULL; 1561 if (connp->conn_outgoing_ill == ill) 1562 connp->conn_outgoing_ill = NULL; 1563 if (connp->conn_dhcpinit_ill == ill) { 1564 connp->conn_dhcpinit_ill = NULL; 1565 ASSERT(ill->ill_dhcpinit != 0); 1566 atomic_dec_32(&ill->ill_dhcpinit); 1567 } 1568 if (connp->conn_ire_cache != NULL) { 1569 ire = connp->conn_ire_cache; 1570 /* 1571 * Source address selection makes it possible for IRE_CACHE 1572 * entries to be created with ire_stq coming from interface X 1573 * and ipif coming from interface Y. Thus whenever interface 1574 * X goes down, remove all references to it by checking both 1575 * on ire_ipif and ire_stq. 1576 */ 1577 if ((ire->ire_ipif != NULL && ire->ire_ipif->ipif_ill == ill) || 1578 (ire->ire_type == IRE_CACHE && 1579 ire->ire_stq == ill->ill_wq)) { 1580 connp->conn_ire_cache = NULL; 1581 mutex_exit(&connp->conn_lock); 1582 ire_refrele_notr(ire); 1583 return; 1584 } 1585 } 1586 mutex_exit(&connp->conn_lock); 1587 } 1588 1589 /* ARGSUSED */ 1590 void 1591 ipif_all_down_tail(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy_arg) 1592 { 1593 ill_t *ill = q->q_ptr; 1594 ipif_t *ipif; 1595 1596 ASSERT(IAM_WRITER_IPSQ(ipsq)); 1597 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 1598 ipif_non_duplicate(ipif); 1599 ipif_down_tail(ipif); 1600 } 1601 freemsg(mp); 1602 ipsq_current_finish(ipsq); 1603 } 1604 1605 /* 1606 * ill_down_start is called when we want to down this ill and bring it up again 1607 * It is called when we receive an M_ERROR / M_HANGUP. In this case we shut down 1608 * all interfaces, but don't tear down any plumbing. 1609 */ 1610 boolean_t 1611 ill_down_start(queue_t *q, mblk_t *mp) 1612 { 1613 ill_t *ill = q->q_ptr; 1614 ipif_t *ipif; 1615 1616 ASSERT(IAM_WRITER_ILL(ill)); 1617 1618 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) 1619 (void) ipif_down(ipif, NULL, NULL); 1620 1621 ill_down(ill); 1622 1623 (void) ipsq_pending_mp_cleanup(ill, NULL); 1624 1625 ipsq_current_start(ill->ill_phyint->phyint_ipsq, ill->ill_ipif, 0); 1626 1627 /* 1628 * Atomically test and add the pending mp if references are active. 1629 */ 1630 mutex_enter(&ill->ill_lock); 1631 if (!ill_is_quiescent(ill)) { 1632 /* call cannot fail since `conn_t *' argument is NULL */ 1633 (void) ipsq_pending_mp_add(NULL, ill->ill_ipif, ill->ill_rq, 1634 mp, ILL_DOWN); 1635 mutex_exit(&ill->ill_lock); 1636 return (B_FALSE); 1637 } 1638 mutex_exit(&ill->ill_lock); 1639 return (B_TRUE); 1640 } 1641 1642 static void 1643 ill_down(ill_t *ill) 1644 { 1645 ip_stack_t *ipst = ill->ill_ipst; 1646 1647 /* Blow off any IREs dependent on this ILL. */ 1648 ire_walk(ill_downi, ill, ipst); 1649 1650 /* Remove any conn_*_ill depending on this ill */ 1651 ipcl_walk(conn_cleanup_ill, (caddr_t)ill, ipst); 1652 } 1653 1654 /* 1655 * ire_walk routine used to delete every IRE that depends on queues 1656 * associated with 'ill'. (Always called as writer.) 1657 */ 1658 static void 1659 ill_downi(ire_t *ire, char *ill_arg) 1660 { 1661 ill_t *ill = (ill_t *)ill_arg; 1662 1663 /* 1664 * Source address selection makes it possible for IRE_CACHE 1665 * entries to be created with ire_stq coming from interface X 1666 * and ipif coming from interface Y. Thus whenever interface 1667 * X goes down, remove all references to it by checking both 1668 * on ire_ipif and ire_stq. 1669 */ 1670 if ((ire->ire_ipif != NULL && ire->ire_ipif->ipif_ill == ill) || 1671 (ire->ire_type == IRE_CACHE && ire->ire_stq == ill->ill_wq)) { 1672 ire_delete(ire); 1673 } 1674 } 1675 1676 /* 1677 * Remove ire/nce from the fastpath list. 1678 */ 1679 void 1680 ill_fastpath_nack(ill_t *ill) 1681 { 1682 nce_fastpath_list_dispatch(ill, NULL, NULL); 1683 } 1684 1685 /* Consume an M_IOCACK of the fastpath probe. */ 1686 void 1687 ill_fastpath_ack(ill_t *ill, mblk_t *mp) 1688 { 1689 mblk_t *mp1 = mp; 1690 1691 /* 1692 * If this was the first attempt turn on the fastpath probing. 1693 */ 1694 mutex_enter(&ill->ill_lock); 1695 if (ill->ill_dlpi_fastpath_state == IDS_INPROGRESS) 1696 ill->ill_dlpi_fastpath_state = IDS_OK; 1697 mutex_exit(&ill->ill_lock); 1698 1699 /* Free the M_IOCACK mblk, hold on to the data */ 1700 mp = mp->b_cont; 1701 freeb(mp1); 1702 if (mp == NULL) 1703 return; 1704 if (mp->b_cont != NULL) { 1705 /* 1706 * Update all IRE's or NCE's that are waiting for 1707 * fastpath update. 1708 */ 1709 nce_fastpath_list_dispatch(ill, ndp_fastpath_update, mp); 1710 mp1 = mp->b_cont; 1711 freeb(mp); 1712 mp = mp1; 1713 } else { 1714 ip0dbg(("ill_fastpath_ack: no b_cont\n")); 1715 } 1716 1717 freeb(mp); 1718 } 1719 1720 /* 1721 * Throw an M_IOCTL message downstream asking "do you know fastpath?" 1722 * The data portion of the request is a dl_unitdata_req_t template for 1723 * what we would send downstream in the absence of a fastpath confirmation. 1724 */ 1725 int 1726 ill_fastpath_probe(ill_t *ill, mblk_t *dlur_mp) 1727 { 1728 struct iocblk *ioc; 1729 mblk_t *mp; 1730 1731 if (dlur_mp == NULL) 1732 return (EINVAL); 1733 1734 mutex_enter(&ill->ill_lock); 1735 switch (ill->ill_dlpi_fastpath_state) { 1736 case IDS_FAILED: 1737 /* 1738 * Driver NAKed the first fastpath ioctl - assume it doesn't 1739 * support it. 1740 */ 1741 mutex_exit(&ill->ill_lock); 1742 return (ENOTSUP); 1743 case IDS_UNKNOWN: 1744 /* This is the first probe */ 1745 ill->ill_dlpi_fastpath_state = IDS_INPROGRESS; 1746 break; 1747 default: 1748 break; 1749 } 1750 mutex_exit(&ill->ill_lock); 1751 1752 if ((mp = mkiocb(DL_IOC_HDR_INFO)) == NULL) 1753 return (EAGAIN); 1754 1755 mp->b_cont = copyb(dlur_mp); 1756 if (mp->b_cont == NULL) { 1757 freeb(mp); 1758 return (EAGAIN); 1759 } 1760 1761 ioc = (struct iocblk *)mp->b_rptr; 1762 ioc->ioc_count = msgdsize(mp->b_cont); 1763 1764 putnext(ill->ill_wq, mp); 1765 return (0); 1766 } 1767 1768 void 1769 ill_capability_probe(ill_t *ill) 1770 { 1771 mblk_t *mp; 1772 1773 ASSERT(IAM_WRITER_ILL(ill)); 1774 1775 if (ill->ill_dlpi_capab_state != IDCS_UNKNOWN && 1776 ill->ill_dlpi_capab_state != IDCS_FAILED) 1777 return; 1778 1779 /* 1780 * We are starting a new cycle of capability negotiation. 1781 * Free up the capab reset messages of any previous incarnation. 1782 * We will do a fresh allocation when we get the response to our probe 1783 */ 1784 if (ill->ill_capab_reset_mp != NULL) { 1785 freemsg(ill->ill_capab_reset_mp); 1786 ill->ill_capab_reset_mp = NULL; 1787 } 1788 1789 ip1dbg(("ill_capability_probe: starting capability negotiation\n")); 1790 1791 mp = ip_dlpi_alloc(sizeof (dl_capability_req_t), DL_CAPABILITY_REQ); 1792 if (mp == NULL) 1793 return; 1794 1795 ill_capability_send(ill, mp); 1796 ill->ill_dlpi_capab_state = IDCS_PROBE_SENT; 1797 } 1798 1799 void 1800 ill_capability_reset(ill_t *ill, boolean_t reneg) 1801 { 1802 ASSERT(IAM_WRITER_ILL(ill)); 1803 1804 if (ill->ill_dlpi_capab_state != IDCS_OK) 1805 return; 1806 1807 ill->ill_dlpi_capab_state = reneg ? IDCS_RENEG : IDCS_RESET_SENT; 1808 1809 ill_capability_send(ill, ill->ill_capab_reset_mp); 1810 ill->ill_capab_reset_mp = NULL; 1811 /* 1812 * We turn off all capabilities except those pertaining to 1813 * direct function call capabilities viz. ILL_CAPAB_DLD* 1814 * which will be turned off by the corresponding reset functions. 1815 */ 1816 ill->ill_capabilities &= ~(ILL_CAPAB_MDT | ILL_CAPAB_HCKSUM | 1817 ILL_CAPAB_ZEROCOPY | ILL_CAPAB_AH | ILL_CAPAB_ESP); 1818 } 1819 1820 static void 1821 ill_capability_reset_alloc(ill_t *ill) 1822 { 1823 mblk_t *mp; 1824 size_t size = 0; 1825 int err; 1826 dl_capability_req_t *capb; 1827 1828 ASSERT(IAM_WRITER_ILL(ill)); 1829 ASSERT(ill->ill_capab_reset_mp == NULL); 1830 1831 if (ILL_MDT_CAPABLE(ill)) 1832 size += sizeof (dl_capability_sub_t) + sizeof (dl_capab_mdt_t); 1833 1834 if (ILL_HCKSUM_CAPABLE(ill)) { 1835 size += sizeof (dl_capability_sub_t) + 1836 sizeof (dl_capab_hcksum_t); 1837 } 1838 1839 if (ill->ill_capabilities & ILL_CAPAB_ZEROCOPY) { 1840 size += sizeof (dl_capability_sub_t) + 1841 sizeof (dl_capab_zerocopy_t); 1842 } 1843 1844 if (ill->ill_capabilities & (ILL_CAPAB_AH | ILL_CAPAB_ESP)) { 1845 size += sizeof (dl_capability_sub_t); 1846 size += ill_capability_ipsec_reset_size(ill, NULL, NULL, 1847 NULL, NULL); 1848 } 1849 1850 if (ill->ill_capabilities & ILL_CAPAB_DLD) { 1851 size += sizeof (dl_capability_sub_t) + 1852 sizeof (dl_capab_dld_t); 1853 } 1854 1855 mp = allocb_wait(size + sizeof (dl_capability_req_t), BPRI_MED, 1856 STR_NOSIG, &err); 1857 1858 mp->b_datap->db_type = M_PROTO; 1859 bzero(mp->b_rptr, size + sizeof (dl_capability_req_t)); 1860 1861 capb = (dl_capability_req_t *)mp->b_rptr; 1862 capb->dl_primitive = DL_CAPABILITY_REQ; 1863 capb->dl_sub_offset = sizeof (dl_capability_req_t); 1864 capb->dl_sub_length = size; 1865 1866 mp->b_wptr += sizeof (dl_capability_req_t); 1867 1868 /* 1869 * Each handler fills in the corresponding dl_capability_sub_t 1870 * inside the mblk, 1871 */ 1872 ill_capability_mdt_reset_fill(ill, mp); 1873 ill_capability_hcksum_reset_fill(ill, mp); 1874 ill_capability_zerocopy_reset_fill(ill, mp); 1875 ill_capability_ipsec_reset_fill(ill, mp); 1876 ill_capability_dld_reset_fill(ill, mp); 1877 1878 ill->ill_capab_reset_mp = mp; 1879 } 1880 1881 static void 1882 ill_capability_id_ack(ill_t *ill, mblk_t *mp, dl_capability_sub_t *outers) 1883 { 1884 dl_capab_id_t *id_ic; 1885 uint_t sub_dl_cap = outers->dl_cap; 1886 dl_capability_sub_t *inners; 1887 uint8_t *capend; 1888 1889 ASSERT(sub_dl_cap == DL_CAPAB_ID_WRAPPER); 1890 1891 /* 1892 * Note: range checks here are not absolutely sufficient to 1893 * make us robust against malformed messages sent by drivers; 1894 * this is in keeping with the rest of IP's dlpi handling. 1895 * (Remember, it's coming from something else in the kernel 1896 * address space) 1897 */ 1898 1899 capend = (uint8_t *)(outers + 1) + outers->dl_length; 1900 if (capend > mp->b_wptr) { 1901 cmn_err(CE_WARN, "ill_capability_id_ack: " 1902 "malformed sub-capability too long for mblk"); 1903 return; 1904 } 1905 1906 id_ic = (dl_capab_id_t *)(outers + 1); 1907 1908 if (outers->dl_length < sizeof (*id_ic) || 1909 (inners = &id_ic->id_subcap, 1910 inners->dl_length > (outers->dl_length - sizeof (*inners)))) { 1911 cmn_err(CE_WARN, "ill_capability_id_ack: malformed " 1912 "encapsulated capab type %d too long for mblk", 1913 inners->dl_cap); 1914 return; 1915 } 1916 1917 if (!dlcapabcheckqid(&id_ic->id_mid, ill->ill_lmod_rq)) { 1918 ip1dbg(("ill_capability_id_ack: mid token for capab type %d " 1919 "isn't as expected; pass-thru module(s) detected, " 1920 "discarding capability\n", inners->dl_cap)); 1921 return; 1922 } 1923 1924 /* Process the encapsulated sub-capability */ 1925 ill_capability_dispatch(ill, mp, inners, B_TRUE); 1926 } 1927 1928 /* 1929 * Process Multidata Transmit capability negotiation ack received from a 1930 * DLS Provider. isub must point to the sub-capability (DL_CAPAB_MDT) of a 1931 * DL_CAPABILITY_ACK message. 1932 */ 1933 static void 1934 ill_capability_mdt_ack(ill_t *ill, mblk_t *mp, dl_capability_sub_t *isub) 1935 { 1936 mblk_t *nmp = NULL; 1937 dl_capability_req_t *oc; 1938 dl_capab_mdt_t *mdt_ic, *mdt_oc; 1939 ill_mdt_capab_t **ill_mdt_capab; 1940 uint_t sub_dl_cap = isub->dl_cap; 1941 uint8_t *capend; 1942 1943 ASSERT(sub_dl_cap == DL_CAPAB_MDT); 1944 1945 ill_mdt_capab = (ill_mdt_capab_t **)&ill->ill_mdt_capab; 1946 1947 /* 1948 * Note: range checks here are not absolutely sufficient to 1949 * make us robust against malformed messages sent by drivers; 1950 * this is in keeping with the rest of IP's dlpi handling. 1951 * (Remember, it's coming from something else in the kernel 1952 * address space) 1953 */ 1954 1955 capend = (uint8_t *)(isub + 1) + isub->dl_length; 1956 if (capend > mp->b_wptr) { 1957 cmn_err(CE_WARN, "ill_capability_mdt_ack: " 1958 "malformed sub-capability too long for mblk"); 1959 return; 1960 } 1961 1962 mdt_ic = (dl_capab_mdt_t *)(isub + 1); 1963 1964 if (mdt_ic->mdt_version != MDT_VERSION_2) { 1965 cmn_err(CE_CONT, "ill_capability_mdt_ack: " 1966 "unsupported MDT sub-capability (version %d, expected %d)", 1967 mdt_ic->mdt_version, MDT_VERSION_2); 1968 return; 1969 } 1970 1971 if (!dlcapabcheckqid(&mdt_ic->mdt_mid, ill->ill_lmod_rq)) { 1972 ip1dbg(("ill_capability_mdt_ack: mid token for MDT " 1973 "capability isn't as expected; pass-thru module(s) " 1974 "detected, discarding capability\n")); 1975 return; 1976 } 1977 1978 if (mdt_ic->mdt_flags & DL_CAPAB_MDT_ENABLE) { 1979 1980 if (*ill_mdt_capab == NULL) { 1981 *ill_mdt_capab = kmem_zalloc(sizeof (ill_mdt_capab_t), 1982 KM_NOSLEEP); 1983 if (*ill_mdt_capab == NULL) { 1984 cmn_err(CE_WARN, "ill_capability_mdt_ack: " 1985 "could not enable MDT version %d " 1986 "for %s (ENOMEM)\n", MDT_VERSION_2, 1987 ill->ill_name); 1988 return; 1989 } 1990 } 1991 1992 ip1dbg(("ill_capability_mdt_ack: interface %s supports " 1993 "MDT version %d (%d bytes leading, %d bytes trailing " 1994 "header spaces, %d max pld bufs, %d span limit)\n", 1995 ill->ill_name, MDT_VERSION_2, 1996 mdt_ic->mdt_hdr_head, mdt_ic->mdt_hdr_tail, 1997 mdt_ic->mdt_max_pld, mdt_ic->mdt_span_limit)); 1998 1999 (*ill_mdt_capab)->ill_mdt_version = MDT_VERSION_2; 2000 (*ill_mdt_capab)->ill_mdt_on = 1; 2001 /* 2002 * Round the following values to the nearest 32-bit; ULP 2003 * may further adjust them to accomodate for additional 2004 * protocol headers. We pass these values to ULP during 2005 * bind time. 2006 */ 2007 (*ill_mdt_capab)->ill_mdt_hdr_head = 2008 roundup(mdt_ic->mdt_hdr_head, 4); 2009 (*ill_mdt_capab)->ill_mdt_hdr_tail = 2010 roundup(mdt_ic->mdt_hdr_tail, 4); 2011 (*ill_mdt_capab)->ill_mdt_max_pld = mdt_ic->mdt_max_pld; 2012 (*ill_mdt_capab)->ill_mdt_span_limit = mdt_ic->mdt_span_limit; 2013 2014 ill->ill_capabilities |= ILL_CAPAB_MDT; 2015 } else { 2016 uint_t size; 2017 uchar_t *rptr; 2018 2019 size = sizeof (dl_capability_req_t) + 2020 sizeof (dl_capability_sub_t) + sizeof (dl_capab_mdt_t); 2021 2022 if ((nmp = ip_dlpi_alloc(size, DL_CAPABILITY_REQ)) == NULL) { 2023 cmn_err(CE_WARN, "ill_capability_mdt_ack: " 2024 "could not enable MDT for %s (ENOMEM)\n", 2025 ill->ill_name); 2026 return; 2027 } 2028 2029 rptr = nmp->b_rptr; 2030 /* initialize dl_capability_req_t */ 2031 oc = (dl_capability_req_t *)nmp->b_rptr; 2032 oc->dl_sub_offset = sizeof (dl_capability_req_t); 2033 oc->dl_sub_length = sizeof (dl_capability_sub_t) + 2034 sizeof (dl_capab_mdt_t); 2035 nmp->b_rptr += sizeof (dl_capability_req_t); 2036 2037 /* initialize dl_capability_sub_t */ 2038 bcopy(isub, nmp->b_rptr, sizeof (*isub)); 2039 nmp->b_rptr += sizeof (*isub); 2040 2041 /* initialize dl_capab_mdt_t */ 2042 mdt_oc = (dl_capab_mdt_t *)nmp->b_rptr; 2043 bcopy(mdt_ic, mdt_oc, sizeof (*mdt_ic)); 2044 2045 nmp->b_rptr = rptr; 2046 2047 ip1dbg(("ill_capability_mdt_ack: asking interface %s " 2048 "to enable MDT version %d\n", ill->ill_name, 2049 MDT_VERSION_2)); 2050 2051 /* set ENABLE flag */ 2052 mdt_oc->mdt_flags |= DL_CAPAB_MDT_ENABLE; 2053 2054 /* nmp points to a DL_CAPABILITY_REQ message to enable MDT */ 2055 ill_capability_send(ill, nmp); 2056 } 2057 } 2058 2059 static void 2060 ill_capability_mdt_reset_fill(ill_t *ill, mblk_t *mp) 2061 { 2062 dl_capab_mdt_t *mdt_subcap; 2063 dl_capability_sub_t *dl_subcap; 2064 2065 if (!ILL_MDT_CAPABLE(ill)) 2066 return; 2067 2068 ASSERT(ill->ill_mdt_capab != NULL); 2069 2070 dl_subcap = (dl_capability_sub_t *)mp->b_wptr; 2071 dl_subcap->dl_cap = DL_CAPAB_MDT; 2072 dl_subcap->dl_length = sizeof (*mdt_subcap); 2073 2074 mdt_subcap = (dl_capab_mdt_t *)(dl_subcap + 1); 2075 mdt_subcap->mdt_version = ill->ill_mdt_capab->ill_mdt_version; 2076 mdt_subcap->mdt_flags = 0; 2077 mdt_subcap->mdt_hdr_head = 0; 2078 mdt_subcap->mdt_hdr_tail = 0; 2079 2080 mp->b_wptr += sizeof (*dl_subcap) + sizeof (*mdt_subcap); 2081 } 2082 2083 static void 2084 ill_capability_dld_reset_fill(ill_t *ill, mblk_t *mp) 2085 { 2086 dl_capability_sub_t *dl_subcap; 2087 2088 if (!(ill->ill_capabilities & ILL_CAPAB_DLD)) 2089 return; 2090 2091 /* 2092 * The dl_capab_dld_t that follows the dl_capability_sub_t is not 2093 * initialized below since it is not used by DLD. 2094 */ 2095 dl_subcap = (dl_capability_sub_t *)mp->b_wptr; 2096 dl_subcap->dl_cap = DL_CAPAB_DLD; 2097 dl_subcap->dl_length = sizeof (dl_capab_dld_t); 2098 2099 mp->b_wptr += sizeof (dl_capability_sub_t) + sizeof (dl_capab_dld_t); 2100 } 2101 2102 /* 2103 * Send a DL_NOTIFY_REQ to the specified ill to enable 2104 * DL_NOTE_PROMISC_ON/OFF_PHYS notifications. 2105 * Invoked by ill_capability_ipsec_ack() before enabling IPsec hardware 2106 * acceleration. 2107 * Returns B_TRUE on success, B_FALSE if the message could not be sent. 2108 */ 2109 static boolean_t 2110 ill_enable_promisc_notify(ill_t *ill) 2111 { 2112 mblk_t *mp; 2113 dl_notify_req_t *req; 2114 2115 IPSECHW_DEBUG(IPSECHW_PKT, ("ill_enable_promisc_notify:\n")); 2116 2117 mp = ip_dlpi_alloc(sizeof (dl_notify_req_t), DL_NOTIFY_REQ); 2118 if (mp == NULL) 2119 return (B_FALSE); 2120 2121 req = (dl_notify_req_t *)mp->b_rptr; 2122 req->dl_notifications = DL_NOTE_PROMISC_ON_PHYS | 2123 DL_NOTE_PROMISC_OFF_PHYS; 2124 2125 ill_dlpi_send(ill, mp); 2126 2127 return (B_TRUE); 2128 } 2129 2130 /* 2131 * Allocate an IPsec capability request which will be filled by our 2132 * caller to turn on support for one or more algorithms. 2133 */ 2134 static mblk_t * 2135 ill_alloc_ipsec_cap_req(ill_t *ill, dl_capability_sub_t *isub) 2136 { 2137 mblk_t *nmp; 2138 dl_capability_req_t *ocap; 2139 dl_capab_ipsec_t *ocip; 2140 dl_capab_ipsec_t *icip; 2141 uint8_t *ptr; 2142 icip = (dl_capab_ipsec_t *)(isub + 1); 2143 2144 /* 2145 * The first time around, we send a DL_NOTIFY_REQ to enable 2146 * PROMISC_ON/OFF notification from the provider. We need to 2147 * do this before enabling the algorithms to avoid leakage of 2148 * cleartext packets. 2149 */ 2150 2151 if (!ill_enable_promisc_notify(ill)) 2152 return (NULL); 2153 2154 /* 2155 * Allocate new mblk which will contain a new capability 2156 * request to enable the capabilities. 2157 */ 2158 2159 nmp = ip_dlpi_alloc(sizeof (dl_capability_req_t) + 2160 sizeof (dl_capability_sub_t) + isub->dl_length, DL_CAPABILITY_REQ); 2161 if (nmp == NULL) 2162 return (NULL); 2163 2164 ptr = nmp->b_rptr; 2165 2166 /* initialize dl_capability_req_t */ 2167 ocap = (dl_capability_req_t *)ptr; 2168 ocap->dl_sub_offset = sizeof (dl_capability_req_t); 2169 ocap->dl_sub_length = sizeof (dl_capability_sub_t) + isub->dl_length; 2170 ptr += sizeof (dl_capability_req_t); 2171 2172 /* initialize dl_capability_sub_t */ 2173 bcopy(isub, ptr, sizeof (*isub)); 2174 ptr += sizeof (*isub); 2175 2176 /* initialize dl_capab_ipsec_t */ 2177 ocip = (dl_capab_ipsec_t *)ptr; 2178 bcopy(icip, ocip, sizeof (*icip)); 2179 2180 nmp->b_wptr = (uchar_t *)(&ocip->cip_data[0]); 2181 return (nmp); 2182 } 2183 2184 /* 2185 * Process an IPsec capability negotiation ack received from a DLS Provider. 2186 * isub must point to the sub-capability (DL_CAPAB_IPSEC_AH or 2187 * DL_CAPAB_IPSEC_ESP) of a DL_CAPABILITY_ACK message. 2188 */ 2189 static void 2190 ill_capability_ipsec_ack(ill_t *ill, mblk_t *mp, dl_capability_sub_t *isub) 2191 { 2192 dl_capab_ipsec_t *icip; 2193 dl_capab_ipsec_alg_t *ialg; /* ptr to input alg spec. */ 2194 dl_capab_ipsec_alg_t *oalg; /* ptr to output alg spec. */ 2195 uint_t cipher, nciphers; 2196 mblk_t *nmp; 2197 uint_t alg_len; 2198 boolean_t need_sadb_dump; 2199 uint_t sub_dl_cap = isub->dl_cap; 2200 ill_ipsec_capab_t **ill_capab; 2201 uint64_t ill_capab_flag; 2202 uint8_t *capend, *ciphend; 2203 boolean_t sadb_resync; 2204 2205 ASSERT(sub_dl_cap == DL_CAPAB_IPSEC_AH || 2206 sub_dl_cap == DL_CAPAB_IPSEC_ESP); 2207 2208 if (sub_dl_cap == DL_CAPAB_IPSEC_AH) { 2209 ill_capab = (ill_ipsec_capab_t **)&ill->ill_ipsec_capab_ah; 2210 ill_capab_flag = ILL_CAPAB_AH; 2211 } else { 2212 ill_capab = (ill_ipsec_capab_t **)&ill->ill_ipsec_capab_esp; 2213 ill_capab_flag = ILL_CAPAB_ESP; 2214 } 2215 2216 /* 2217 * If the ill capability structure exists, then this incoming 2218 * DL_CAPABILITY_ACK is a response to a "renegotiation" cycle. 2219 * If this is so, then we'd need to resynchronize the SADB 2220 * after re-enabling the offloaded ciphers. 2221 */ 2222 sadb_resync = (*ill_capab != NULL); 2223 2224 /* 2225 * Note: range checks here are not absolutely sufficient to 2226 * make us robust against malformed messages sent by drivers; 2227 * this is in keeping with the rest of IP's dlpi handling. 2228 * (Remember, it's coming from something else in the kernel 2229 * address space) 2230 */ 2231 2232 capend = (uint8_t *)(isub + 1) + isub->dl_length; 2233 if (capend > mp->b_wptr) { 2234 cmn_err(CE_WARN, "ill_capability_ipsec_ack: " 2235 "malformed sub-capability too long for mblk"); 2236 return; 2237 } 2238 2239 /* 2240 * There are two types of acks we process here: 2241 * 1. acks in reply to a (first form) generic capability req 2242 * (no ENABLE flag set) 2243 * 2. acks in reply to a ENABLE capability req. 2244 * (ENABLE flag set) 2245 * 2246 * We process the subcapability passed as argument as follows: 2247 * 1 do initializations 2248 * 1.1 initialize nmp = NULL 2249 * 1.2 set need_sadb_dump to B_FALSE 2250 * 2 for each cipher in subcapability: 2251 * 2.1 if ENABLE flag is set: 2252 * 2.1.1 update per-ill ipsec capabilities info 2253 * 2.1.2 set need_sadb_dump to B_TRUE 2254 * 2.2 if ENABLE flag is not set: 2255 * 2.2.1 if nmp is NULL: 2256 * 2.2.1.1 allocate and initialize nmp 2257 * 2.2.1.2 init current pos in nmp 2258 * 2.2.2 copy current cipher to current pos in nmp 2259 * 2.2.3 set ENABLE flag in nmp 2260 * 2.2.4 update current pos 2261 * 3 if nmp is not equal to NULL, send enable request 2262 * 3.1 send capability request 2263 * 4 if need_sadb_dump is B_TRUE 2264 * 4.1 enable promiscuous on/off notifications 2265 * 4.2 call ill_dlpi_send(isub->dlcap) to send all 2266 * AH or ESP SA's to interface. 2267 */ 2268 2269 nmp = NULL; 2270 oalg = NULL; 2271 need_sadb_dump = B_FALSE; 2272 icip = (dl_capab_ipsec_t *)(isub + 1); 2273 ialg = (dl_capab_ipsec_alg_t *)(&icip->cip_data[0]); 2274 2275 nciphers = icip->cip_nciphers; 2276 ciphend = (uint8_t *)(ialg + icip->cip_nciphers); 2277 2278 if (ciphend > capend) { 2279 cmn_err(CE_WARN, "ill_capability_ipsec_ack: " 2280 "too many ciphers for sub-capability len"); 2281 return; 2282 } 2283 2284 for (cipher = 0; cipher < nciphers; cipher++) { 2285 alg_len = sizeof (dl_capab_ipsec_alg_t); 2286 2287 if (ialg->alg_flag & DL_CAPAB_ALG_ENABLE) { 2288 /* 2289 * TBD: when we provide a way to disable capabilities 2290 * from above, need to manage the request-pending state 2291 * and fail if we were not expecting this ACK. 2292 */ 2293 IPSECHW_DEBUG(IPSECHW_CAPAB, 2294 ("ill_capability_ipsec_ack: got ENABLE ACK\n")); 2295 2296 /* 2297 * Update IPsec capabilities for this ill 2298 */ 2299 2300 if (*ill_capab == NULL) { 2301 IPSECHW_DEBUG(IPSECHW_CAPAB, 2302 ("ill_capability_ipsec_ack: " 2303 "allocating ipsec_capab for ill\n")); 2304 *ill_capab = ill_ipsec_capab_alloc(); 2305 2306 if (*ill_capab == NULL) { 2307 cmn_err(CE_WARN, 2308 "ill_capability_ipsec_ack: " 2309 "could not enable IPsec Hardware " 2310 "acceleration for %s (ENOMEM)\n", 2311 ill->ill_name); 2312 return; 2313 } 2314 } 2315 2316 ASSERT(ialg->alg_type == DL_CAPAB_IPSEC_ALG_AUTH || 2317 ialg->alg_type == DL_CAPAB_IPSEC_ALG_ENCR); 2318 2319 if (ialg->alg_prim >= MAX_IPSEC_ALGS) { 2320 cmn_err(CE_WARN, 2321 "ill_capability_ipsec_ack: " 2322 "malformed IPsec algorithm id %d", 2323 ialg->alg_prim); 2324 continue; 2325 } 2326 2327 if (ialg->alg_type == DL_CAPAB_IPSEC_ALG_AUTH) { 2328 IPSEC_ALG_ENABLE((*ill_capab)->auth_hw_algs, 2329 ialg->alg_prim); 2330 } else { 2331 ipsec_capab_algparm_t *alp; 2332 2333 IPSEC_ALG_ENABLE((*ill_capab)->encr_hw_algs, 2334 ialg->alg_prim); 2335 if (!ill_ipsec_capab_resize_algparm(*ill_capab, 2336 ialg->alg_prim)) { 2337 cmn_err(CE_WARN, 2338 "ill_capability_ipsec_ack: " 2339 "no space for IPsec alg id %d", 2340 ialg->alg_prim); 2341 continue; 2342 } 2343 alp = &((*ill_capab)->encr_algparm[ 2344 ialg->alg_prim]); 2345 alp->minkeylen = ialg->alg_minbits; 2346 alp->maxkeylen = ialg->alg_maxbits; 2347 } 2348 ill->ill_capabilities |= ill_capab_flag; 2349 /* 2350 * indicate that a capability was enabled, which 2351 * will be used below to kick off a SADB dump 2352 * to the ill. 2353 */ 2354 need_sadb_dump = B_TRUE; 2355 } else { 2356 IPSECHW_DEBUG(IPSECHW_CAPAB, 2357 ("ill_capability_ipsec_ack: enabling alg 0x%x\n", 2358 ialg->alg_prim)); 2359 2360 if (nmp == NULL) { 2361 nmp = ill_alloc_ipsec_cap_req(ill, isub); 2362 if (nmp == NULL) { 2363 /* 2364 * Sending the PROMISC_ON/OFF 2365 * notification request failed. 2366 * We cannot enable the algorithms 2367 * since the Provider will not 2368 * notify IP of promiscous mode 2369 * changes, which could lead 2370 * to leakage of packets. 2371 */ 2372 cmn_err(CE_WARN, 2373 "ill_capability_ipsec_ack: " 2374 "could not enable IPsec Hardware " 2375 "acceleration for %s (ENOMEM)\n", 2376 ill->ill_name); 2377 return; 2378 } 2379 /* ptr to current output alg specifier */ 2380 oalg = (dl_capab_ipsec_alg_t *)nmp->b_wptr; 2381 } 2382 2383 /* 2384 * Copy current alg specifier, set ENABLE 2385 * flag, and advance to next output alg. 2386 * For now we enable all IPsec capabilities. 2387 */ 2388 ASSERT(oalg != NULL); 2389 bcopy(ialg, oalg, alg_len); 2390 oalg->alg_flag |= DL_CAPAB_ALG_ENABLE; 2391 nmp->b_wptr += alg_len; 2392 oalg = (dl_capab_ipsec_alg_t *)nmp->b_wptr; 2393 } 2394 2395 /* move to next input algorithm specifier */ 2396 ialg = (dl_capab_ipsec_alg_t *) 2397 ((char *)ialg + alg_len); 2398 } 2399 2400 if (nmp != NULL) 2401 /* 2402 * nmp points to a DL_CAPABILITY_REQ message to enable 2403 * IPsec hardware acceleration. 2404 */ 2405 ill_capability_send(ill, nmp); 2406 2407 if (need_sadb_dump) 2408 /* 2409 * An acknowledgement corresponding to a request to 2410 * enable acceleration was received, notify SADB. 2411 */ 2412 ill_ipsec_capab_add(ill, sub_dl_cap, sadb_resync); 2413 } 2414 2415 /* 2416 * Given an mblk with enough space in it, create sub-capability entries for 2417 * DL_CAPAB_IPSEC_{AH,ESP} types which consist of previously-advertised 2418 * offloaded ciphers (both AUTH and ENCR) with their enable flags cleared, 2419 * in preparation for the reset the DL_CAPABILITY_REQ message. 2420 */ 2421 static void 2422 ill_fill_ipsec_reset(uint_t nciphers, int stype, uint_t slen, 2423 ill_ipsec_capab_t *ill_cap, mblk_t *mp) 2424 { 2425 dl_capab_ipsec_t *oipsec; 2426 dl_capab_ipsec_alg_t *oalg; 2427 dl_capability_sub_t *dl_subcap; 2428 int i, k; 2429 2430 ASSERT(nciphers > 0); 2431 ASSERT(ill_cap != NULL); 2432 ASSERT(mp != NULL); 2433 ASSERT(MBLKTAIL(mp) >= sizeof (*dl_subcap) + sizeof (*oipsec) + slen); 2434 2435 /* dl_capability_sub_t for "stype" */ 2436 dl_subcap = (dl_capability_sub_t *)mp->b_wptr; 2437 dl_subcap->dl_cap = stype; 2438 dl_subcap->dl_length = sizeof (dl_capab_ipsec_t) + slen; 2439 mp->b_wptr += sizeof (dl_capability_sub_t); 2440 2441 /* dl_capab_ipsec_t for "stype" */ 2442 oipsec = (dl_capab_ipsec_t *)mp->b_wptr; 2443 oipsec->cip_version = 1; 2444 oipsec->cip_nciphers = nciphers; 2445 mp->b_wptr = (uchar_t *)&oipsec->cip_data[0]; 2446 2447 /* create entries for "stype" AUTH ciphers */ 2448 for (i = 0; i < ill_cap->algs_size; i++) { 2449 for (k = 0; k < BITSPERBYTE; k++) { 2450 if ((ill_cap->auth_hw_algs[i] & (1 << k)) == 0) 2451 continue; 2452 2453 oalg = (dl_capab_ipsec_alg_t *)mp->b_wptr; 2454 bzero((void *)oalg, sizeof (*oalg)); 2455 oalg->alg_type = DL_CAPAB_IPSEC_ALG_AUTH; 2456 oalg->alg_prim = k + (BITSPERBYTE * i); 2457 mp->b_wptr += sizeof (dl_capab_ipsec_alg_t); 2458 } 2459 } 2460 /* create entries for "stype" ENCR ciphers */ 2461 for (i = 0; i < ill_cap->algs_size; i++) { 2462 for (k = 0; k < BITSPERBYTE; k++) { 2463 if ((ill_cap->encr_hw_algs[i] & (1 << k)) == 0) 2464 continue; 2465 2466 oalg = (dl_capab_ipsec_alg_t *)mp->b_wptr; 2467 bzero((void *)oalg, sizeof (*oalg)); 2468 oalg->alg_type = DL_CAPAB_IPSEC_ALG_ENCR; 2469 oalg->alg_prim = k + (BITSPERBYTE * i); 2470 mp->b_wptr += sizeof (dl_capab_ipsec_alg_t); 2471 } 2472 } 2473 } 2474 2475 /* 2476 * Macro to count number of 1s in a byte (8-bit word). The total count is 2477 * accumulated into the passed-in argument (sum). We could use SPARCv9's 2478 * POPC instruction, but our macro is more flexible for an arbitrary length 2479 * of bytes, such as {auth,encr}_hw_algs. These variables are currently 2480 * 256-bits long (MAX_IPSEC_ALGS), so if we know for sure that the length 2481 * stays that way, we can reduce the number of iterations required. 2482 */ 2483 #define COUNT_1S(val, sum) { \ 2484 uint8_t x = val & 0xff; \ 2485 x = (x & 0x55) + ((x >> 1) & 0x55); \ 2486 x = (x & 0x33) + ((x >> 2) & 0x33); \ 2487 sum += (x & 0xf) + ((x >> 4) & 0xf); \ 2488 } 2489 2490 /* ARGSUSED */ 2491 static int 2492 ill_capability_ipsec_reset_size(ill_t *ill, int *ah_cntp, int *ah_lenp, 2493 int *esp_cntp, int *esp_lenp) 2494 { 2495 ill_ipsec_capab_t *cap_ah = ill->ill_ipsec_capab_ah; 2496 ill_ipsec_capab_t *cap_esp = ill->ill_ipsec_capab_esp; 2497 uint64_t ill_capabilities = ill->ill_capabilities; 2498 int ah_cnt = 0, esp_cnt = 0; 2499 int ah_len = 0, esp_len = 0; 2500 int i, size = 0; 2501 2502 if (!(ill_capabilities & (ILL_CAPAB_AH | ILL_CAPAB_ESP))) 2503 return (0); 2504 2505 ASSERT(cap_ah != NULL || !(ill_capabilities & ILL_CAPAB_AH)); 2506 ASSERT(cap_esp != NULL || !(ill_capabilities & ILL_CAPAB_ESP)); 2507 2508 /* Find out the number of ciphers for AH */ 2509 if (cap_ah != NULL) { 2510 for (i = 0; i < cap_ah->algs_size; i++) { 2511 COUNT_1S(cap_ah->auth_hw_algs[i], ah_cnt); 2512 COUNT_1S(cap_ah->encr_hw_algs[i], ah_cnt); 2513 } 2514 if (ah_cnt > 0) { 2515 size += sizeof (dl_capability_sub_t) + 2516 sizeof (dl_capab_ipsec_t); 2517 /* dl_capab_ipsec_t contains one dl_capab_ipsec_alg_t */ 2518 ah_len = (ah_cnt - 1) * sizeof (dl_capab_ipsec_alg_t); 2519 size += ah_len; 2520 } 2521 } 2522 2523 /* Find out the number of ciphers for ESP */ 2524 if (cap_esp != NULL) { 2525 for (i = 0; i < cap_esp->algs_size; i++) { 2526 COUNT_1S(cap_esp->auth_hw_algs[i], esp_cnt); 2527 COUNT_1S(cap_esp->encr_hw_algs[i], esp_cnt); 2528 } 2529 if (esp_cnt > 0) { 2530 size += sizeof (dl_capability_sub_t) + 2531 sizeof (dl_capab_ipsec_t); 2532 /* dl_capab_ipsec_t contains one dl_capab_ipsec_alg_t */ 2533 esp_len = (esp_cnt - 1) * sizeof (dl_capab_ipsec_alg_t); 2534 size += esp_len; 2535 } 2536 } 2537 2538 if (ah_cntp != NULL) 2539 *ah_cntp = ah_cnt; 2540 if (ah_lenp != NULL) 2541 *ah_lenp = ah_len; 2542 if (esp_cntp != NULL) 2543 *esp_cntp = esp_cnt; 2544 if (esp_lenp != NULL) 2545 *esp_lenp = esp_len; 2546 2547 return (size); 2548 } 2549 2550 /* ARGSUSED */ 2551 static void 2552 ill_capability_ipsec_reset_fill(ill_t *ill, mblk_t *mp) 2553 { 2554 ill_ipsec_capab_t *cap_ah = ill->ill_ipsec_capab_ah; 2555 ill_ipsec_capab_t *cap_esp = ill->ill_ipsec_capab_esp; 2556 int ah_cnt = 0, esp_cnt = 0; 2557 int ah_len = 0, esp_len = 0; 2558 int size; 2559 2560 size = ill_capability_ipsec_reset_size(ill, &ah_cnt, &ah_len, 2561 &esp_cnt, &esp_len); 2562 if (size == 0) 2563 return; 2564 2565 /* 2566 * Clear the capability flags for IPsec HA but retain the ill 2567 * capability structures since it's possible that another thread 2568 * is still referring to them. The structures only get deallocated 2569 * when we destroy the ill. 2570 * 2571 * Various places check the flags to see if the ill is capable of 2572 * hardware acceleration, and by clearing them we ensure that new 2573 * outbound IPsec packets are sent down encrypted. 2574 */ 2575 2576 /* Fill in DL_CAPAB_IPSEC_AH sub-capability entries */ 2577 if (ah_cnt > 0) { 2578 ill_fill_ipsec_reset(ah_cnt, DL_CAPAB_IPSEC_AH, ah_len, 2579 cap_ah, mp); 2580 } 2581 2582 /* Fill in DL_CAPAB_IPSEC_ESP sub-capability entries */ 2583 if (esp_cnt > 0) { 2584 ill_fill_ipsec_reset(esp_cnt, DL_CAPAB_IPSEC_ESP, esp_len, 2585 cap_esp, mp); 2586 } 2587 2588 /* 2589 * At this point we've composed a bunch of sub-capabilities to be 2590 * encapsulated in a DL_CAPABILITY_REQ and later sent downstream 2591 * by the caller. Upon receiving this reset message, the driver 2592 * must stop inbound decryption (by destroying all inbound SAs) 2593 * and let the corresponding packets come in encrypted. 2594 */ 2595 } 2596 2597 static void 2598 ill_capability_dispatch(ill_t *ill, mblk_t *mp, dl_capability_sub_t *subp, 2599 boolean_t encapsulated) 2600 { 2601 boolean_t legacy = B_FALSE; 2602 2603 /* 2604 * Note that only the following two sub-capabilities may be 2605 * considered as "legacy", since their original definitions 2606 * do not incorporate the dl_mid_t module ID token, and hence 2607 * may require the use of the wrapper sub-capability. 2608 */ 2609 switch (subp->dl_cap) { 2610 case DL_CAPAB_IPSEC_AH: 2611 case DL_CAPAB_IPSEC_ESP: 2612 legacy = B_TRUE; 2613 break; 2614 } 2615 2616 /* 2617 * For legacy sub-capabilities which don't incorporate a queue_t 2618 * pointer in their structures, discard them if we detect that 2619 * there are intermediate modules in between IP and the driver. 2620 */ 2621 if (!encapsulated && legacy && ill->ill_lmod_cnt > 1) { 2622 ip1dbg(("ill_capability_dispatch: unencapsulated capab type " 2623 "%d discarded; %d module(s) present below IP\n", 2624 subp->dl_cap, ill->ill_lmod_cnt)); 2625 return; 2626 } 2627 2628 switch (subp->dl_cap) { 2629 case DL_CAPAB_IPSEC_AH: 2630 case DL_CAPAB_IPSEC_ESP: 2631 ill_capability_ipsec_ack(ill, mp, subp); 2632 break; 2633 case DL_CAPAB_MDT: 2634 ill_capability_mdt_ack(ill, mp, subp); 2635 break; 2636 case DL_CAPAB_HCKSUM: 2637 ill_capability_hcksum_ack(ill, mp, subp); 2638 break; 2639 case DL_CAPAB_ZEROCOPY: 2640 ill_capability_zerocopy_ack(ill, mp, subp); 2641 break; 2642 case DL_CAPAB_DLD: 2643 ill_capability_dld_ack(ill, mp, subp); 2644 break; 2645 default: 2646 ip1dbg(("ill_capability_dispatch: unknown capab type %d\n", 2647 subp->dl_cap)); 2648 } 2649 } 2650 2651 /* 2652 * Process a hardware checksum offload capability negotiation ack received 2653 * from a DLS Provider.isub must point to the sub-capability (DL_CAPAB_HCKSUM) 2654 * of a DL_CAPABILITY_ACK message. 2655 */ 2656 static void 2657 ill_capability_hcksum_ack(ill_t *ill, mblk_t *mp, dl_capability_sub_t *isub) 2658 { 2659 dl_capability_req_t *ocap; 2660 dl_capab_hcksum_t *ihck, *ohck; 2661 ill_hcksum_capab_t **ill_hcksum; 2662 mblk_t *nmp = NULL; 2663 uint_t sub_dl_cap = isub->dl_cap; 2664 uint8_t *capend; 2665 2666 ASSERT(sub_dl_cap == DL_CAPAB_HCKSUM); 2667 2668 ill_hcksum = (ill_hcksum_capab_t **)&ill->ill_hcksum_capab; 2669 2670 /* 2671 * Note: range checks here are not absolutely sufficient to 2672 * make us robust against malformed messages sent by drivers; 2673 * this is in keeping with the rest of IP's dlpi handling. 2674 * (Remember, it's coming from something else in the kernel 2675 * address space) 2676 */ 2677 capend = (uint8_t *)(isub + 1) + isub->dl_length; 2678 if (capend > mp->b_wptr) { 2679 cmn_err(CE_WARN, "ill_capability_hcksum_ack: " 2680 "malformed sub-capability too long for mblk"); 2681 return; 2682 } 2683 2684 /* 2685 * There are two types of acks we process here: 2686 * 1. acks in reply to a (first form) generic capability req 2687 * (no ENABLE flag set) 2688 * 2. acks in reply to a ENABLE capability req. 2689 * (ENABLE flag set) 2690 */ 2691 ihck = (dl_capab_hcksum_t *)(isub + 1); 2692 2693 if (ihck->hcksum_version != HCKSUM_VERSION_1) { 2694 cmn_err(CE_CONT, "ill_capability_hcksum_ack: " 2695 "unsupported hardware checksum " 2696 "sub-capability (version %d, expected %d)", 2697 ihck->hcksum_version, HCKSUM_VERSION_1); 2698 return; 2699 } 2700 2701 if (!dlcapabcheckqid(&ihck->hcksum_mid, ill->ill_lmod_rq)) { 2702 ip1dbg(("ill_capability_hcksum_ack: mid token for hardware " 2703 "checksum capability isn't as expected; pass-thru " 2704 "module(s) detected, discarding capability\n")); 2705 return; 2706 } 2707 2708 #define CURR_HCKSUM_CAPAB \ 2709 (HCKSUM_INET_PARTIAL | HCKSUM_INET_FULL_V4 | \ 2710 HCKSUM_INET_FULL_V6 | HCKSUM_IPHDRCKSUM) 2711 2712 if ((ihck->hcksum_txflags & HCKSUM_ENABLE) && 2713 (ihck->hcksum_txflags & CURR_HCKSUM_CAPAB)) { 2714 /* do ENABLE processing */ 2715 if (*ill_hcksum == NULL) { 2716 *ill_hcksum = kmem_zalloc(sizeof (ill_hcksum_capab_t), 2717 KM_NOSLEEP); 2718 2719 if (*ill_hcksum == NULL) { 2720 cmn_err(CE_WARN, "ill_capability_hcksum_ack: " 2721 "could not enable hcksum version %d " 2722 "for %s (ENOMEM)\n", HCKSUM_CURRENT_VERSION, 2723 ill->ill_name); 2724 return; 2725 } 2726 } 2727 2728 (*ill_hcksum)->ill_hcksum_version = ihck->hcksum_version; 2729 (*ill_hcksum)->ill_hcksum_txflags = ihck->hcksum_txflags; 2730 ill->ill_capabilities |= ILL_CAPAB_HCKSUM; 2731 ip1dbg(("ill_capability_hcksum_ack: interface %s " 2732 "has enabled hardware checksumming\n ", 2733 ill->ill_name)); 2734 } else if (ihck->hcksum_txflags & CURR_HCKSUM_CAPAB) { 2735 /* 2736 * Enabling hardware checksum offload 2737 * Currently IP supports {TCP,UDP}/IPv4 2738 * partial and full cksum offload and 2739 * IPv4 header checksum offload. 2740 * Allocate new mblk which will 2741 * contain a new capability request 2742 * to enable hardware checksum offload. 2743 */ 2744 uint_t size; 2745 uchar_t *rptr; 2746 2747 size = sizeof (dl_capability_req_t) + 2748 sizeof (dl_capability_sub_t) + isub->dl_length; 2749 2750 if ((nmp = ip_dlpi_alloc(size, DL_CAPABILITY_REQ)) == NULL) { 2751 cmn_err(CE_WARN, "ill_capability_hcksum_ack: " 2752 "could not enable hardware cksum for %s (ENOMEM)\n", 2753 ill->ill_name); 2754 return; 2755 } 2756 2757 rptr = nmp->b_rptr; 2758 /* initialize dl_capability_req_t */ 2759 ocap = (dl_capability_req_t *)nmp->b_rptr; 2760 ocap->dl_sub_offset = 2761 sizeof (dl_capability_req_t); 2762 ocap->dl_sub_length = 2763 sizeof (dl_capability_sub_t) + 2764 isub->dl_length; 2765 nmp->b_rptr += sizeof (dl_capability_req_t); 2766 2767 /* initialize dl_capability_sub_t */ 2768 bcopy(isub, nmp->b_rptr, sizeof (*isub)); 2769 nmp->b_rptr += sizeof (*isub); 2770 2771 /* initialize dl_capab_hcksum_t */ 2772 ohck = (dl_capab_hcksum_t *)nmp->b_rptr; 2773 bcopy(ihck, ohck, sizeof (*ihck)); 2774 2775 nmp->b_rptr = rptr; 2776 ASSERT(nmp->b_wptr == (nmp->b_rptr + size)); 2777 2778 /* Set ENABLE flag */ 2779 ohck->hcksum_txflags &= CURR_HCKSUM_CAPAB; 2780 ohck->hcksum_txflags |= HCKSUM_ENABLE; 2781 2782 /* 2783 * nmp points to a DL_CAPABILITY_REQ message to enable 2784 * hardware checksum acceleration. 2785 */ 2786 ill_capability_send(ill, nmp); 2787 } else { 2788 ip1dbg(("ill_capability_hcksum_ack: interface %s has " 2789 "advertised %x hardware checksum capability flags\n", 2790 ill->ill_name, ihck->hcksum_txflags)); 2791 } 2792 } 2793 2794 static void 2795 ill_capability_hcksum_reset_fill(ill_t *ill, mblk_t *mp) 2796 { 2797 dl_capab_hcksum_t *hck_subcap; 2798 dl_capability_sub_t *dl_subcap; 2799 2800 if (!ILL_HCKSUM_CAPABLE(ill)) 2801 return; 2802 2803 ASSERT(ill->ill_hcksum_capab != NULL); 2804 2805 dl_subcap = (dl_capability_sub_t *)mp->b_wptr; 2806 dl_subcap->dl_cap = DL_CAPAB_HCKSUM; 2807 dl_subcap->dl_length = sizeof (*hck_subcap); 2808 2809 hck_subcap = (dl_capab_hcksum_t *)(dl_subcap + 1); 2810 hck_subcap->hcksum_version = ill->ill_hcksum_capab->ill_hcksum_version; 2811 hck_subcap->hcksum_txflags = 0; 2812 2813 mp->b_wptr += sizeof (*dl_subcap) + sizeof (*hck_subcap); 2814 } 2815 2816 static void 2817 ill_capability_zerocopy_ack(ill_t *ill, mblk_t *mp, dl_capability_sub_t *isub) 2818 { 2819 mblk_t *nmp = NULL; 2820 dl_capability_req_t *oc; 2821 dl_capab_zerocopy_t *zc_ic, *zc_oc; 2822 ill_zerocopy_capab_t **ill_zerocopy_capab; 2823 uint_t sub_dl_cap = isub->dl_cap; 2824 uint8_t *capend; 2825 2826 ASSERT(sub_dl_cap == DL_CAPAB_ZEROCOPY); 2827 2828 ill_zerocopy_capab = (ill_zerocopy_capab_t **)&ill->ill_zerocopy_capab; 2829 2830 /* 2831 * Note: range checks here are not absolutely sufficient to 2832 * make us robust against malformed messages sent by drivers; 2833 * this is in keeping with the rest of IP's dlpi handling. 2834 * (Remember, it's coming from something else in the kernel 2835 * address space) 2836 */ 2837 capend = (uint8_t *)(isub + 1) + isub->dl_length; 2838 if (capend > mp->b_wptr) { 2839 cmn_err(CE_WARN, "ill_capability_zerocopy_ack: " 2840 "malformed sub-capability too long for mblk"); 2841 return; 2842 } 2843 2844 zc_ic = (dl_capab_zerocopy_t *)(isub + 1); 2845 if (zc_ic->zerocopy_version != ZEROCOPY_VERSION_1) { 2846 cmn_err(CE_CONT, "ill_capability_zerocopy_ack: " 2847 "unsupported ZEROCOPY sub-capability (version %d, " 2848 "expected %d)", zc_ic->zerocopy_version, 2849 ZEROCOPY_VERSION_1); 2850 return; 2851 } 2852 2853 if (!dlcapabcheckqid(&zc_ic->zerocopy_mid, ill->ill_lmod_rq)) { 2854 ip1dbg(("ill_capability_zerocopy_ack: mid token for zerocopy " 2855 "capability isn't as expected; pass-thru module(s) " 2856 "detected, discarding capability\n")); 2857 return; 2858 } 2859 2860 if ((zc_ic->zerocopy_flags & DL_CAPAB_VMSAFE_MEM) != 0) { 2861 if (*ill_zerocopy_capab == NULL) { 2862 *ill_zerocopy_capab = 2863 kmem_zalloc(sizeof (ill_zerocopy_capab_t), 2864 KM_NOSLEEP); 2865 2866 if (*ill_zerocopy_capab == NULL) { 2867 cmn_err(CE_WARN, "ill_capability_zerocopy_ack: " 2868 "could not enable Zero-copy version %d " 2869 "for %s (ENOMEM)\n", ZEROCOPY_VERSION_1, 2870 ill->ill_name); 2871 return; 2872 } 2873 } 2874 2875 ip1dbg(("ill_capability_zerocopy_ack: interface %s " 2876 "supports Zero-copy version %d\n", ill->ill_name, 2877 ZEROCOPY_VERSION_1)); 2878 2879 (*ill_zerocopy_capab)->ill_zerocopy_version = 2880 zc_ic->zerocopy_version; 2881 (*ill_zerocopy_capab)->ill_zerocopy_flags = 2882 zc_ic->zerocopy_flags; 2883 2884 ill->ill_capabilities |= ILL_CAPAB_ZEROCOPY; 2885 } else { 2886 uint_t size; 2887 uchar_t *rptr; 2888 2889 size = sizeof (dl_capability_req_t) + 2890 sizeof (dl_capability_sub_t) + 2891 sizeof (dl_capab_zerocopy_t); 2892 2893 if ((nmp = ip_dlpi_alloc(size, DL_CAPABILITY_REQ)) == NULL) { 2894 cmn_err(CE_WARN, "ill_capability_zerocopy_ack: " 2895 "could not enable zerocopy for %s (ENOMEM)\n", 2896 ill->ill_name); 2897 return; 2898 } 2899 2900 rptr = nmp->b_rptr; 2901 /* initialize dl_capability_req_t */ 2902 oc = (dl_capability_req_t *)rptr; 2903 oc->dl_sub_offset = sizeof (dl_capability_req_t); 2904 oc->dl_sub_length = sizeof (dl_capability_sub_t) + 2905 sizeof (dl_capab_zerocopy_t); 2906 rptr += sizeof (dl_capability_req_t); 2907 2908 /* initialize dl_capability_sub_t */ 2909 bcopy(isub, rptr, sizeof (*isub)); 2910 rptr += sizeof (*isub); 2911 2912 /* initialize dl_capab_zerocopy_t */ 2913 zc_oc = (dl_capab_zerocopy_t *)rptr; 2914 *zc_oc = *zc_ic; 2915 2916 ip1dbg(("ill_capability_zerocopy_ack: asking interface %s " 2917 "to enable zero-copy version %d\n", ill->ill_name, 2918 ZEROCOPY_VERSION_1)); 2919 2920 /* set VMSAFE_MEM flag */ 2921 zc_oc->zerocopy_flags |= DL_CAPAB_VMSAFE_MEM; 2922 2923 /* nmp points to a DL_CAPABILITY_REQ message to enable zcopy */ 2924 ill_capability_send(ill, nmp); 2925 } 2926 } 2927 2928 static void 2929 ill_capability_zerocopy_reset_fill(ill_t *ill, mblk_t *mp) 2930 { 2931 dl_capab_zerocopy_t *zerocopy_subcap; 2932 dl_capability_sub_t *dl_subcap; 2933 2934 if (!(ill->ill_capabilities & ILL_CAPAB_ZEROCOPY)) 2935 return; 2936 2937 ASSERT(ill->ill_zerocopy_capab != NULL); 2938 2939 dl_subcap = (dl_capability_sub_t *)mp->b_wptr; 2940 dl_subcap->dl_cap = DL_CAPAB_ZEROCOPY; 2941 dl_subcap->dl_length = sizeof (*zerocopy_subcap); 2942 2943 zerocopy_subcap = (dl_capab_zerocopy_t *)(dl_subcap + 1); 2944 zerocopy_subcap->zerocopy_version = 2945 ill->ill_zerocopy_capab->ill_zerocopy_version; 2946 zerocopy_subcap->zerocopy_flags = 0; 2947 2948 mp->b_wptr += sizeof (*dl_subcap) + sizeof (*zerocopy_subcap); 2949 } 2950 2951 /* 2952 * DLD capability 2953 * Refer to dld.h for more information regarding the purpose and usage 2954 * of this capability. 2955 */ 2956 static void 2957 ill_capability_dld_ack(ill_t *ill, mblk_t *mp, dl_capability_sub_t *isub) 2958 { 2959 dl_capab_dld_t *dld_ic, dld; 2960 uint_t sub_dl_cap = isub->dl_cap; 2961 uint8_t *capend; 2962 ill_dld_capab_t *idc; 2963 2964 ASSERT(IAM_WRITER_ILL(ill)); 2965 ASSERT(sub_dl_cap == DL_CAPAB_DLD); 2966 2967 /* 2968 * Note: range checks here are not absolutely sufficient to 2969 * make us robust against malformed messages sent by drivers; 2970 * this is in keeping with the rest of IP's dlpi handling. 2971 * (Remember, it's coming from something else in the kernel 2972 * address space) 2973 */ 2974 capend = (uint8_t *)(isub + 1) + isub->dl_length; 2975 if (capend > mp->b_wptr) { 2976 cmn_err(CE_WARN, "ill_capability_dld_ack: " 2977 "malformed sub-capability too long for mblk"); 2978 return; 2979 } 2980 dld_ic = (dl_capab_dld_t *)(isub + 1); 2981 if (dld_ic->dld_version != DLD_CURRENT_VERSION) { 2982 cmn_err(CE_CONT, "ill_capability_dld_ack: " 2983 "unsupported DLD sub-capability (version %d, " 2984 "expected %d)", dld_ic->dld_version, 2985 DLD_CURRENT_VERSION); 2986 return; 2987 } 2988 if (!dlcapabcheckqid(&dld_ic->dld_mid, ill->ill_lmod_rq)) { 2989 ip1dbg(("ill_capability_dld_ack: mid token for dld " 2990 "capability isn't as expected; pass-thru module(s) " 2991 "detected, discarding capability\n")); 2992 return; 2993 } 2994 2995 /* 2996 * Copy locally to ensure alignment. 2997 */ 2998 bcopy(dld_ic, &dld, sizeof (dl_capab_dld_t)); 2999 3000 if ((idc = ill->ill_dld_capab) == NULL) { 3001 idc = kmem_zalloc(sizeof (ill_dld_capab_t), KM_NOSLEEP); 3002 if (idc == NULL) { 3003 cmn_err(CE_WARN, "ill_capability_dld_ack: " 3004 "could not enable DLD version %d " 3005 "for %s (ENOMEM)\n", DLD_CURRENT_VERSION, 3006 ill->ill_name); 3007 return; 3008 } 3009 idc->idc_capab_df = (ip_capab_func_t)dld.dld_capab; 3010 idc->idc_capab_dh = (void *)dld.dld_capab_handle; 3011 ill->ill_dld_capab = idc; 3012 } 3013 ip1dbg(("ill_capability_dld_ack: interface %s " 3014 "supports DLD version %d\n", ill->ill_name, DLD_CURRENT_VERSION)); 3015 3016 ill_capability_dld_enable(ill); 3017 } 3018 3019 /* 3020 * Typically capability negotiation between IP and the driver happens via 3021 * DLPI message exchange. However GLD also offers a direct function call 3022 * mechanism to exchange the DLD_DIRECT_CAPAB and DLD_POLL_CAPAB capabilities, 3023 * But arbitrary function calls into IP or GLD are not permitted, since both 3024 * of them are protected by their own perimeter mechanism. The perimeter can 3025 * be viewed as a coarse lock or serialization mechanism. The hierarchy of 3026 * these perimeters is IP -> MAC. Thus for example to enable the squeue 3027 * polling, IP needs to enter its perimeter, then call ill_mac_perim_enter 3028 * to enter the mac perimeter and then do the direct function calls into 3029 * GLD to enable squeue polling. The ring related callbacks from the mac into 3030 * the stack to add, bind, quiesce, restart or cleanup a ring are all 3031 * protected by the mac perimeter. 3032 */ 3033 static void 3034 ill_mac_perim_enter(ill_t *ill, mac_perim_handle_t *mphp) 3035 { 3036 ill_dld_capab_t *idc = ill->ill_dld_capab; 3037 int err; 3038 3039 err = idc->idc_capab_df(idc->idc_capab_dh, DLD_CAPAB_PERIM, mphp, 3040 DLD_ENABLE); 3041 ASSERT(err == 0); 3042 } 3043 3044 static void 3045 ill_mac_perim_exit(ill_t *ill, mac_perim_handle_t mph) 3046 { 3047 ill_dld_capab_t *idc = ill->ill_dld_capab; 3048 int err; 3049 3050 err = idc->idc_capab_df(idc->idc_capab_dh, DLD_CAPAB_PERIM, mph, 3051 DLD_DISABLE); 3052 ASSERT(err == 0); 3053 } 3054 3055 boolean_t 3056 ill_mac_perim_held(ill_t *ill) 3057 { 3058 ill_dld_capab_t *idc = ill->ill_dld_capab; 3059 3060 return (idc->idc_capab_df(idc->idc_capab_dh, DLD_CAPAB_PERIM, NULL, 3061 DLD_QUERY)); 3062 } 3063 3064 static void 3065 ill_capability_direct_enable(ill_t *ill) 3066 { 3067 ill_dld_capab_t *idc = ill->ill_dld_capab; 3068 ill_dld_direct_t *idd = &idc->idc_direct; 3069 dld_capab_direct_t direct; 3070 int rc; 3071 3072 ASSERT(!ill->ill_isv6 && IAM_WRITER_ILL(ill)); 3073 3074 bzero(&direct, sizeof (direct)); 3075 direct.di_rx_cf = (uintptr_t)ip_input; 3076 direct.di_rx_ch = ill; 3077 3078 rc = idc->idc_capab_df(idc->idc_capab_dh, DLD_CAPAB_DIRECT, &direct, 3079 DLD_ENABLE); 3080 if (rc == 0) { 3081 idd->idd_tx_df = (ip_dld_tx_t)direct.di_tx_df; 3082 idd->idd_tx_dh = direct.di_tx_dh; 3083 idd->idd_tx_cb_df = (ip_dld_callb_t)direct.di_tx_cb_df; 3084 idd->idd_tx_cb_dh = direct.di_tx_cb_dh; 3085 /* 3086 * One time registration of flow enable callback function 3087 */ 3088 ill->ill_flownotify_mh = idd->idd_tx_cb_df(idd->idd_tx_cb_dh, 3089 ill_flow_enable, ill); 3090 ill->ill_capabilities |= ILL_CAPAB_DLD_DIRECT; 3091 DTRACE_PROBE1(direct_on, (ill_t *), ill); 3092 } else { 3093 cmn_err(CE_WARN, "warning: could not enable DIRECT " 3094 "capability, rc = %d\n", rc); 3095 DTRACE_PROBE2(direct_off, (ill_t *), ill, (int), rc); 3096 } 3097 } 3098 3099 static void 3100 ill_capability_poll_enable(ill_t *ill) 3101 { 3102 ill_dld_capab_t *idc = ill->ill_dld_capab; 3103 dld_capab_poll_t poll; 3104 int rc; 3105 3106 ASSERT(!ill->ill_isv6 && IAM_WRITER_ILL(ill)); 3107 3108 bzero(&poll, sizeof (poll)); 3109 poll.poll_ring_add_cf = (uintptr_t)ip_squeue_add_ring; 3110 poll.poll_ring_remove_cf = (uintptr_t)ip_squeue_clean_ring; 3111 poll.poll_ring_quiesce_cf = (uintptr_t)ip_squeue_quiesce_ring; 3112 poll.poll_ring_restart_cf = (uintptr_t)ip_squeue_restart_ring; 3113 poll.poll_ring_bind_cf = (uintptr_t)ip_squeue_bind_ring; 3114 poll.poll_ring_ch = ill; 3115 rc = idc->idc_capab_df(idc->idc_capab_dh, DLD_CAPAB_POLL, &poll, 3116 DLD_ENABLE); 3117 if (rc == 0) { 3118 ill->ill_capabilities |= ILL_CAPAB_DLD_POLL; 3119 DTRACE_PROBE1(poll_on, (ill_t *), ill); 3120 } else { 3121 ip1dbg(("warning: could not enable POLL " 3122 "capability, rc = %d\n", rc)); 3123 DTRACE_PROBE2(poll_off, (ill_t *), ill, (int), rc); 3124 } 3125 } 3126 3127 /* 3128 * Enable the LSO capability. 3129 */ 3130 static void 3131 ill_capability_lso_enable(ill_t *ill) 3132 { 3133 ill_dld_capab_t *idc = ill->ill_dld_capab; 3134 dld_capab_lso_t lso; 3135 int rc; 3136 3137 ASSERT(!ill->ill_isv6 && IAM_WRITER_ILL(ill)); 3138 3139 if (ill->ill_lso_capab == NULL) { 3140 ill->ill_lso_capab = kmem_zalloc(sizeof (ill_lso_capab_t), 3141 KM_NOSLEEP); 3142 if (ill->ill_lso_capab == NULL) { 3143 cmn_err(CE_WARN, "ill_capability_lso_enable: " 3144 "could not enable LSO for %s (ENOMEM)\n", 3145 ill->ill_name); 3146 return; 3147 } 3148 } 3149 3150 bzero(&lso, sizeof (lso)); 3151 if ((rc = idc->idc_capab_df(idc->idc_capab_dh, DLD_CAPAB_LSO, &lso, 3152 DLD_ENABLE)) == 0) { 3153 ill->ill_lso_capab->ill_lso_flags = lso.lso_flags; 3154 ill->ill_lso_capab->ill_lso_max = lso.lso_max; 3155 ill->ill_capabilities |= ILL_CAPAB_DLD_LSO; 3156 ip1dbg(("ill_capability_lso_enable: interface %s " 3157 "has enabled LSO\n ", ill->ill_name)); 3158 } else { 3159 kmem_free(ill->ill_lso_capab, sizeof (ill_lso_capab_t)); 3160 ill->ill_lso_capab = NULL; 3161 DTRACE_PROBE2(lso_off, (ill_t *), ill, (int), rc); 3162 } 3163 } 3164 3165 static void 3166 ill_capability_dld_enable(ill_t *ill) 3167 { 3168 mac_perim_handle_t mph; 3169 3170 ASSERT(IAM_WRITER_ILL(ill)); 3171 3172 if (ill->ill_isv6) 3173 return; 3174 3175 ill_mac_perim_enter(ill, &mph); 3176 if (!ill->ill_isv6) { 3177 ill_capability_direct_enable(ill); 3178 ill_capability_poll_enable(ill); 3179 ill_capability_lso_enable(ill); 3180 } 3181 ill->ill_capabilities |= ILL_CAPAB_DLD; 3182 ill_mac_perim_exit(ill, mph); 3183 } 3184 3185 static void 3186 ill_capability_dld_disable(ill_t *ill) 3187 { 3188 ill_dld_capab_t *idc; 3189 ill_dld_direct_t *idd; 3190 mac_perim_handle_t mph; 3191 3192 ASSERT(IAM_WRITER_ILL(ill)); 3193 3194 if (!(ill->ill_capabilities & ILL_CAPAB_DLD)) 3195 return; 3196 3197 ill_mac_perim_enter(ill, &mph); 3198 3199 idc = ill->ill_dld_capab; 3200 if ((ill->ill_capabilities & ILL_CAPAB_DLD_DIRECT) != 0) { 3201 /* 3202 * For performance we avoid locks in the transmit data path 3203 * and don't maintain a count of the number of threads using 3204 * direct calls. Thus some threads could be using direct 3205 * transmit calls to GLD, even after the capability mechanism 3206 * turns it off. This is still safe since the handles used in 3207 * the direct calls continue to be valid until the unplumb is 3208 * completed. Remove the callback that was added (1-time) at 3209 * capab enable time. 3210 */ 3211 mutex_enter(&ill->ill_lock); 3212 ill->ill_capabilities &= ~ILL_CAPAB_DLD_DIRECT; 3213 mutex_exit(&ill->ill_lock); 3214 if (ill->ill_flownotify_mh != NULL) { 3215 idd = &idc->idc_direct; 3216 idd->idd_tx_cb_df(idd->idd_tx_cb_dh, NULL, 3217 ill->ill_flownotify_mh); 3218 ill->ill_flownotify_mh = NULL; 3219 } 3220 (void) idc->idc_capab_df(idc->idc_capab_dh, DLD_CAPAB_DIRECT, 3221 NULL, DLD_DISABLE); 3222 } 3223 3224 if ((ill->ill_capabilities & ILL_CAPAB_DLD_POLL) != 0) { 3225 ill->ill_capabilities &= ~ILL_CAPAB_DLD_POLL; 3226 ip_squeue_clean_all(ill); 3227 (void) idc->idc_capab_df(idc->idc_capab_dh, DLD_CAPAB_POLL, 3228 NULL, DLD_DISABLE); 3229 } 3230 3231 if ((ill->ill_capabilities & ILL_CAPAB_DLD_LSO) != 0) { 3232 ASSERT(ill->ill_lso_capab != NULL); 3233 /* 3234 * Clear the capability flag for LSO but retain the 3235 * ill_lso_capab structure since it's possible that another 3236 * thread is still referring to it. The structure only gets 3237 * deallocated when we destroy the ill. 3238 */ 3239 3240 ill->ill_capabilities &= ~ILL_CAPAB_DLD_LSO; 3241 (void) idc->idc_capab_df(idc->idc_capab_dh, DLD_CAPAB_LSO, 3242 NULL, DLD_DISABLE); 3243 } 3244 3245 ill->ill_capabilities &= ~ILL_CAPAB_DLD; 3246 ill_mac_perim_exit(ill, mph); 3247 } 3248 3249 /* 3250 * Capability Negotiation protocol 3251 * 3252 * We don't wait for DLPI capability operations to finish during interface 3253 * bringup or teardown. Doing so would introduce more asynchrony and the 3254 * interface up/down operations will need multiple return and restarts. 3255 * Instead the 'ipsq_current_ipif' of the ipsq is not cleared as long as 3256 * the 'ill_dlpi_deferred' chain is non-empty. This ensures that the next 3257 * exclusive operation won't start until the DLPI operations of the previous 3258 * exclusive operation complete. 3259 * 3260 * The capability state machine is shown below. 3261 * 3262 * state next state event, action 3263 * 3264 * IDCS_UNKNOWN IDCS_PROBE_SENT ill_capability_probe 3265 * IDCS_PROBE_SENT IDCS_OK ill_capability_ack 3266 * IDCS_PROBE_SENT IDCS_FAILED ip_rput_dlpi_writer (nack) 3267 * IDCS_OK IDCS_RENEG Receipt of DL_NOTE_CAPAB_RENEG 3268 * IDCS_OK IDCS_RESET_SENT ill_capability_reset 3269 * IDCS_RESET_SENT IDCS_UNKNOWN ill_capability_ack_thr 3270 * IDCS_RENEG IDCS_PROBE_SENT ill_capability_ack_thr -> 3271 * ill_capability_probe. 3272 */ 3273 3274 /* 3275 * Dedicated thread started from ip_stack_init that handles capability 3276 * disable. This thread ensures the taskq dispatch does not fail by waiting 3277 * for resources using TQ_SLEEP. The taskq mechanism is used to ensure 3278 * that direct calls to DLD are done in a cv_waitable context. 3279 */ 3280 void 3281 ill_taskq_dispatch(ip_stack_t *ipst) 3282 { 3283 callb_cpr_t cprinfo; 3284 char name[64]; 3285 mblk_t *mp; 3286 3287 (void) snprintf(name, sizeof (name), "ill_taskq_dispatch_%d", 3288 ipst->ips_netstack->netstack_stackid); 3289 CALLB_CPR_INIT(&cprinfo, &ipst->ips_capab_taskq_lock, callb_generic_cpr, 3290 name); 3291 mutex_enter(&ipst->ips_capab_taskq_lock); 3292 3293 for (;;) { 3294 mp = list_head(&ipst->ips_capab_taskq_list); 3295 while (mp != NULL) { 3296 list_remove(&ipst->ips_capab_taskq_list, mp); 3297 mutex_exit(&ipst->ips_capab_taskq_lock); 3298 VERIFY(taskq_dispatch(system_taskq, 3299 ill_capability_ack_thr, mp, TQ_SLEEP) != 0); 3300 mutex_enter(&ipst->ips_capab_taskq_lock); 3301 mp = list_head(&ipst->ips_capab_taskq_list); 3302 } 3303 3304 if (ipst->ips_capab_taskq_quit) 3305 break; 3306 CALLB_CPR_SAFE_BEGIN(&cprinfo); 3307 cv_wait(&ipst->ips_capab_taskq_cv, &ipst->ips_capab_taskq_lock); 3308 CALLB_CPR_SAFE_END(&cprinfo, &ipst->ips_capab_taskq_lock); 3309 } 3310 VERIFY(list_head(&ipst->ips_capab_taskq_list) == NULL); 3311 CALLB_CPR_EXIT(&cprinfo); 3312 thread_exit(); 3313 } 3314 3315 /* 3316 * Consume a new-style hardware capabilities negotiation ack. 3317 * Called via taskq on receipt of DL_CAPABBILITY_ACK. 3318 */ 3319 static void 3320 ill_capability_ack_thr(void *arg) 3321 { 3322 mblk_t *mp = arg; 3323 dl_capability_ack_t *capp; 3324 dl_capability_sub_t *subp, *endp; 3325 ill_t *ill; 3326 boolean_t reneg; 3327 3328 ill = (ill_t *)mp->b_prev; 3329 VERIFY(ipsq_enter(ill, B_FALSE, CUR_OP) == B_TRUE); 3330 3331 if (ill->ill_dlpi_capab_state == IDCS_RESET_SENT || 3332 ill->ill_dlpi_capab_state == IDCS_RENEG) { 3333 /* 3334 * We have received the ack for our DL_CAPAB reset request. 3335 * There isnt' anything in the message that needs processing. 3336 * All message based capabilities have been disabled, now 3337 * do the function call based capability disable. 3338 */ 3339 reneg = ill->ill_dlpi_capab_state == IDCS_RENEG; 3340 ill_capability_dld_disable(ill); 3341 ill->ill_dlpi_capab_state = IDCS_UNKNOWN; 3342 if (reneg) 3343 ill_capability_probe(ill); 3344 goto done; 3345 } 3346 3347 if (ill->ill_dlpi_capab_state == IDCS_PROBE_SENT) 3348 ill->ill_dlpi_capab_state = IDCS_OK; 3349 3350 capp = (dl_capability_ack_t *)mp->b_rptr; 3351 3352 if (capp->dl_sub_length == 0) { 3353 /* no new-style capabilities */ 3354 goto done; 3355 } 3356 3357 /* make sure the driver supplied correct dl_sub_length */ 3358 if ((sizeof (*capp) + capp->dl_sub_length) > MBLKL(mp)) { 3359 ip0dbg(("ill_capability_ack: bad DL_CAPABILITY_ACK, " 3360 "invalid dl_sub_length (%d)\n", capp->dl_sub_length)); 3361 goto done; 3362 } 3363 3364 3365 #define SC(base, offset) (dl_capability_sub_t *)(((uchar_t *)(base))+(offset)) 3366 /* 3367 * There are sub-capabilities. Process the ones we know about. 3368 * Loop until we don't have room for another sub-cap header.. 3369 */ 3370 for (subp = SC(capp, capp->dl_sub_offset), 3371 endp = SC(subp, capp->dl_sub_length - sizeof (*subp)); 3372 subp <= endp; 3373 subp = SC(subp, sizeof (dl_capability_sub_t) + subp->dl_length)) { 3374 3375 switch (subp->dl_cap) { 3376 case DL_CAPAB_ID_WRAPPER: 3377 ill_capability_id_ack(ill, mp, subp); 3378 break; 3379 default: 3380 ill_capability_dispatch(ill, mp, subp, B_FALSE); 3381 break; 3382 } 3383 } 3384 #undef SC 3385 done: 3386 inet_freemsg(mp); 3387 ill_capability_done(ill); 3388 ipsq_exit(ill->ill_phyint->phyint_ipsq); 3389 } 3390 3391 /* 3392 * This needs to be started in a taskq thread to provide a cv_waitable 3393 * context. 3394 */ 3395 void 3396 ill_capability_ack(ill_t *ill, mblk_t *mp) 3397 { 3398 ip_stack_t *ipst = ill->ill_ipst; 3399 3400 mp->b_prev = (mblk_t *)ill; 3401 if (taskq_dispatch(system_taskq, ill_capability_ack_thr, mp, 3402 TQ_NOSLEEP) != 0) 3403 return; 3404 3405 /* 3406 * The taskq dispatch failed. Signal the ill_taskq_dispatch thread 3407 * which will do the dispatch using TQ_SLEEP to guarantee success. 3408 */ 3409 mutex_enter(&ipst->ips_capab_taskq_lock); 3410 list_insert_tail(&ipst->ips_capab_taskq_list, mp); 3411 cv_signal(&ipst->ips_capab_taskq_cv); 3412 mutex_exit(&ipst->ips_capab_taskq_lock); 3413 } 3414 3415 /* 3416 * This routine is called to scan the fragmentation reassembly table for 3417 * the specified ILL for any packets that are starting to smell. 3418 * dead_interval is the maximum time in seconds that will be tolerated. It 3419 * will either be the value specified in ip_g_frag_timeout, or zero if the 3420 * ILL is shutting down and it is time to blow everything off. 3421 * 3422 * It returns the number of seconds (as a time_t) that the next frag timer 3423 * should be scheduled for, 0 meaning that the timer doesn't need to be 3424 * re-started. Note that the method of calculating next_timeout isn't 3425 * entirely accurate since time will flow between the time we grab 3426 * current_time and the time we schedule the next timeout. This isn't a 3427 * big problem since this is the timer for sending an ICMP reassembly time 3428 * exceeded messages, and it doesn't have to be exactly accurate. 3429 * 3430 * This function is 3431 * sometimes called as writer, although this is not required. 3432 */ 3433 time_t 3434 ill_frag_timeout(ill_t *ill, time_t dead_interval) 3435 { 3436 ipfb_t *ipfb; 3437 ipfb_t *endp; 3438 ipf_t *ipf; 3439 ipf_t *ipfnext; 3440 mblk_t *mp; 3441 time_t current_time = gethrestime_sec(); 3442 time_t next_timeout = 0; 3443 uint32_t hdr_length; 3444 mblk_t *send_icmp_head; 3445 mblk_t *send_icmp_head_v6; 3446 zoneid_t zoneid; 3447 ip_stack_t *ipst = ill->ill_ipst; 3448 3449 ipfb = ill->ill_frag_hash_tbl; 3450 if (ipfb == NULL) 3451 return (B_FALSE); 3452 endp = &ipfb[ILL_FRAG_HASH_TBL_COUNT]; 3453 /* Walk the frag hash table. */ 3454 for (; ipfb < endp; ipfb++) { 3455 send_icmp_head = NULL; 3456 send_icmp_head_v6 = NULL; 3457 mutex_enter(&ipfb->ipfb_lock); 3458 while ((ipf = ipfb->ipfb_ipf) != 0) { 3459 time_t frag_time = current_time - ipf->ipf_timestamp; 3460 time_t frag_timeout; 3461 3462 if (frag_time < dead_interval) { 3463 /* 3464 * There are some outstanding fragments 3465 * that will timeout later. Make note of 3466 * the time so that we can reschedule the 3467 * next timeout appropriately. 3468 */ 3469 frag_timeout = dead_interval - frag_time; 3470 if (next_timeout == 0 || 3471 frag_timeout < next_timeout) { 3472 next_timeout = frag_timeout; 3473 } 3474 break; 3475 } 3476 /* Time's up. Get it out of here. */ 3477 hdr_length = ipf->ipf_nf_hdr_len; 3478 ipfnext = ipf->ipf_hash_next; 3479 if (ipfnext) 3480 ipfnext->ipf_ptphn = ipf->ipf_ptphn; 3481 *ipf->ipf_ptphn = ipfnext; 3482 mp = ipf->ipf_mp->b_cont; 3483 for (; mp; mp = mp->b_cont) { 3484 /* Extra points for neatness. */ 3485 IP_REASS_SET_START(mp, 0); 3486 IP_REASS_SET_END(mp, 0); 3487 } 3488 mp = ipf->ipf_mp->b_cont; 3489 atomic_add_32(&ill->ill_frag_count, -ipf->ipf_count); 3490 ASSERT(ipfb->ipfb_count >= ipf->ipf_count); 3491 ipfb->ipfb_count -= ipf->ipf_count; 3492 ASSERT(ipfb->ipfb_frag_pkts > 0); 3493 ipfb->ipfb_frag_pkts--; 3494 /* 3495 * We do not send any icmp message from here because 3496 * we currently are holding the ipfb_lock for this 3497 * hash chain. If we try and send any icmp messages 3498 * from here we may end up via a put back into ip 3499 * trying to get the same lock, causing a recursive 3500 * mutex panic. Instead we build a list and send all 3501 * the icmp messages after we have dropped the lock. 3502 */ 3503 if (ill->ill_isv6) { 3504 if (hdr_length != 0) { 3505 mp->b_next = send_icmp_head_v6; 3506 send_icmp_head_v6 = mp; 3507 } else { 3508 freemsg(mp); 3509 } 3510 } else { 3511 if (hdr_length != 0) { 3512 mp->b_next = send_icmp_head; 3513 send_icmp_head = mp; 3514 } else { 3515 freemsg(mp); 3516 } 3517 } 3518 BUMP_MIB(ill->ill_ip_mib, ipIfStatsReasmFails); 3519 freeb(ipf->ipf_mp); 3520 } 3521 mutex_exit(&ipfb->ipfb_lock); 3522 /* 3523 * Now need to send any icmp messages that we delayed from 3524 * above. 3525 */ 3526 while (send_icmp_head_v6 != NULL) { 3527 ip6_t *ip6h; 3528 3529 mp = send_icmp_head_v6; 3530 send_icmp_head_v6 = send_icmp_head_v6->b_next; 3531 mp->b_next = NULL; 3532 if (mp->b_datap->db_type == M_CTL) 3533 ip6h = (ip6_t *)mp->b_cont->b_rptr; 3534 else 3535 ip6h = (ip6_t *)mp->b_rptr; 3536 zoneid = ipif_lookup_addr_zoneid_v6(&ip6h->ip6_dst, 3537 ill, ipst); 3538 if (zoneid == ALL_ZONES) { 3539 freemsg(mp); 3540 } else { 3541 icmp_time_exceeded_v6(ill->ill_wq, mp, 3542 ICMP_REASSEMBLY_TIME_EXCEEDED, B_FALSE, 3543 B_FALSE, zoneid, ipst); 3544 } 3545 } 3546 while (send_icmp_head != NULL) { 3547 ipaddr_t dst; 3548 3549 mp = send_icmp_head; 3550 send_icmp_head = send_icmp_head->b_next; 3551 mp->b_next = NULL; 3552 3553 if (mp->b_datap->db_type == M_CTL) 3554 dst = ((ipha_t *)mp->b_cont->b_rptr)->ipha_dst; 3555 else 3556 dst = ((ipha_t *)mp->b_rptr)->ipha_dst; 3557 3558 zoneid = ipif_lookup_addr_zoneid(dst, ill, ipst); 3559 if (zoneid == ALL_ZONES) { 3560 freemsg(mp); 3561 } else { 3562 icmp_time_exceeded(ill->ill_wq, mp, 3563 ICMP_REASSEMBLY_TIME_EXCEEDED, zoneid, 3564 ipst); 3565 } 3566 } 3567 } 3568 /* 3569 * A non-dying ILL will use the return value to decide whether to 3570 * restart the frag timer, and for how long. 3571 */ 3572 return (next_timeout); 3573 } 3574 3575 /* 3576 * This routine is called when the approximate count of mblk memory used 3577 * for the specified ILL has exceeded max_count. 3578 */ 3579 void 3580 ill_frag_prune(ill_t *ill, uint_t max_count) 3581 { 3582 ipfb_t *ipfb; 3583 ipf_t *ipf; 3584 size_t count; 3585 3586 /* 3587 * If we are here within ip_min_frag_prune_time msecs remove 3588 * ill_frag_free_num_pkts oldest packets from each bucket and increment 3589 * ill_frag_free_num_pkts. 3590 */ 3591 mutex_enter(&ill->ill_lock); 3592 if (TICK_TO_MSEC(lbolt - ill->ill_last_frag_clean_time) <= 3593 (ip_min_frag_prune_time != 0 ? 3594 ip_min_frag_prune_time : msec_per_tick)) { 3595 3596 ill->ill_frag_free_num_pkts++; 3597 3598 } else { 3599 ill->ill_frag_free_num_pkts = 0; 3600 } 3601 ill->ill_last_frag_clean_time = lbolt; 3602 mutex_exit(&ill->ill_lock); 3603 3604 /* 3605 * free ill_frag_free_num_pkts oldest packets from each bucket. 3606 */ 3607 if (ill->ill_frag_free_num_pkts != 0) { 3608 int ix; 3609 3610 for (ix = 0; ix < ILL_FRAG_HASH_TBL_COUNT; ix++) { 3611 ipfb = &ill->ill_frag_hash_tbl[ix]; 3612 mutex_enter(&ipfb->ipfb_lock); 3613 if (ipfb->ipfb_ipf != NULL) { 3614 ill_frag_free_pkts(ill, ipfb, ipfb->ipfb_ipf, 3615 ill->ill_frag_free_num_pkts); 3616 } 3617 mutex_exit(&ipfb->ipfb_lock); 3618 } 3619 } 3620 /* 3621 * While the reassembly list for this ILL is too big, prune a fragment 3622 * queue by age, oldest first. 3623 */ 3624 while (ill->ill_frag_count > max_count) { 3625 int ix; 3626 ipfb_t *oipfb = NULL; 3627 uint_t oldest = UINT_MAX; 3628 3629 count = 0; 3630 for (ix = 0; ix < ILL_FRAG_HASH_TBL_COUNT; ix++) { 3631 ipfb = &ill->ill_frag_hash_tbl[ix]; 3632 mutex_enter(&ipfb->ipfb_lock); 3633 ipf = ipfb->ipfb_ipf; 3634 if (ipf != NULL && ipf->ipf_gen < oldest) { 3635 oldest = ipf->ipf_gen; 3636 oipfb = ipfb; 3637 } 3638 count += ipfb->ipfb_count; 3639 mutex_exit(&ipfb->ipfb_lock); 3640 } 3641 if (oipfb == NULL) 3642 break; 3643 3644 if (count <= max_count) 3645 return; /* Somebody beat us to it, nothing to do */ 3646 mutex_enter(&oipfb->ipfb_lock); 3647 ipf = oipfb->ipfb_ipf; 3648 if (ipf != NULL) { 3649 ill_frag_free_pkts(ill, oipfb, ipf, 1); 3650 } 3651 mutex_exit(&oipfb->ipfb_lock); 3652 } 3653 } 3654 3655 /* 3656 * free 'free_cnt' fragmented packets starting at ipf. 3657 */ 3658 void 3659 ill_frag_free_pkts(ill_t *ill, ipfb_t *ipfb, ipf_t *ipf, int free_cnt) 3660 { 3661 size_t count; 3662 mblk_t *mp; 3663 mblk_t *tmp; 3664 ipf_t **ipfp = ipf->ipf_ptphn; 3665 3666 ASSERT(MUTEX_HELD(&ipfb->ipfb_lock)); 3667 ASSERT(ipfp != NULL); 3668 ASSERT(ipf != NULL); 3669 3670 while (ipf != NULL && free_cnt-- > 0) { 3671 count = ipf->ipf_count; 3672 mp = ipf->ipf_mp; 3673 ipf = ipf->ipf_hash_next; 3674 for (tmp = mp; tmp; tmp = tmp->b_cont) { 3675 IP_REASS_SET_START(tmp, 0); 3676 IP_REASS_SET_END(tmp, 0); 3677 } 3678 atomic_add_32(&ill->ill_frag_count, -count); 3679 ASSERT(ipfb->ipfb_count >= count); 3680 ipfb->ipfb_count -= count; 3681 ASSERT(ipfb->ipfb_frag_pkts > 0); 3682 ipfb->ipfb_frag_pkts--; 3683 freemsg(mp); 3684 BUMP_MIB(ill->ill_ip_mib, ipIfStatsReasmFails); 3685 } 3686 3687 if (ipf) 3688 ipf->ipf_ptphn = ipfp; 3689 ipfp[0] = ipf; 3690 } 3691 3692 #define ND_FORWARD_WARNING "The <if>:ip*_forwarding ndd variables are " \ 3693 "obsolete and may be removed in a future release of Solaris. Use " \ 3694 "ifconfig(1M) to manipulate the forwarding status of an interface." 3695 3696 /* 3697 * For obsolete per-interface forwarding configuration; 3698 * called in response to ND_GET. 3699 */ 3700 /* ARGSUSED */ 3701 static int 3702 nd_ill_forward_get(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *ioc_cr) 3703 { 3704 ill_t *ill = (ill_t *)cp; 3705 3706 cmn_err(CE_WARN, ND_FORWARD_WARNING); 3707 3708 (void) mi_mpprintf(mp, "%d", (ill->ill_flags & ILLF_ROUTER) != 0); 3709 return (0); 3710 } 3711 3712 /* 3713 * For obsolete per-interface forwarding configuration; 3714 * called in response to ND_SET. 3715 */ 3716 /* ARGSUSED */ 3717 static int 3718 nd_ill_forward_set(queue_t *q, mblk_t *mp, char *valuestr, caddr_t cp, 3719 cred_t *ioc_cr) 3720 { 3721 long value; 3722 int retval; 3723 ip_stack_t *ipst = CONNQ_TO_IPST(q); 3724 3725 cmn_err(CE_WARN, ND_FORWARD_WARNING); 3726 3727 if (ddi_strtol(valuestr, NULL, 10, &value) != 0 || 3728 value < 0 || value > 1) { 3729 return (EINVAL); 3730 } 3731 3732 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 3733 retval = ill_forward_set((ill_t *)cp, (value != 0)); 3734 rw_exit(&ipst->ips_ill_g_lock); 3735 return (retval); 3736 } 3737 3738 /* 3739 * Helper function for ill_forward_set(). 3740 */ 3741 static void 3742 ill_forward_set_on_ill(ill_t *ill, boolean_t enable) 3743 { 3744 ip_stack_t *ipst = ill->ill_ipst; 3745 3746 ASSERT(IAM_WRITER_ILL(ill) || RW_READ_HELD(&ipst->ips_ill_g_lock)); 3747 3748 ip1dbg(("ill_forward_set: %s %s forwarding on %s", 3749 (enable ? "Enabling" : "Disabling"), 3750 (ill->ill_isv6 ? "IPv6" : "IPv4"), ill->ill_name)); 3751 mutex_enter(&ill->ill_lock); 3752 if (enable) 3753 ill->ill_flags |= ILLF_ROUTER; 3754 else 3755 ill->ill_flags &= ~ILLF_ROUTER; 3756 mutex_exit(&ill->ill_lock); 3757 if (ill->ill_isv6) 3758 ill_set_nce_router_flags(ill, enable); 3759 /* Notify routing socket listeners of this change. */ 3760 ip_rts_ifmsg(ill->ill_ipif, RTSQ_DEFAULT); 3761 } 3762 3763 /* 3764 * Set an ill's ILLF_ROUTER flag appropriately. Send up RTS_IFINFO routing 3765 * socket messages for each interface whose flags we change. 3766 */ 3767 int 3768 ill_forward_set(ill_t *ill, boolean_t enable) 3769 { 3770 ipmp_illgrp_t *illg; 3771 ip_stack_t *ipst = ill->ill_ipst; 3772 3773 ASSERT(IAM_WRITER_ILL(ill) || RW_READ_HELD(&ipst->ips_ill_g_lock)); 3774 3775 if ((enable && (ill->ill_flags & ILLF_ROUTER)) || 3776 (!enable && !(ill->ill_flags & ILLF_ROUTER))) 3777 return (0); 3778 3779 if (IS_LOOPBACK(ill)) 3780 return (EINVAL); 3781 3782 if (IS_IPMP(ill) || IS_UNDER_IPMP(ill)) { 3783 /* 3784 * Update all of the interfaces in the group. 3785 */ 3786 illg = ill->ill_grp; 3787 ill = list_head(&illg->ig_if); 3788 for (; ill != NULL; ill = list_next(&illg->ig_if, ill)) 3789 ill_forward_set_on_ill(ill, enable); 3790 3791 /* 3792 * Update the IPMP meta-interface. 3793 */ 3794 ill_forward_set_on_ill(ipmp_illgrp_ipmp_ill(illg), enable); 3795 return (0); 3796 } 3797 3798 ill_forward_set_on_ill(ill, enable); 3799 return (0); 3800 } 3801 3802 /* 3803 * Based on the ILLF_ROUTER flag of an ill, make sure all local nce's for 3804 * addresses assigned to the ill have the NCE_F_ISROUTER flag appropriately 3805 * set or clear. 3806 */ 3807 static void 3808 ill_set_nce_router_flags(ill_t *ill, boolean_t enable) 3809 { 3810 ipif_t *ipif; 3811 nce_t *nce; 3812 3813 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 3814 /* 3815 * NOTE: we match across the illgrp because nce's for 3816 * addresses on IPMP interfaces have an nce_ill that points to 3817 * the bound underlying ill. 3818 */ 3819 nce = ndp_lookup_v6(ill, B_TRUE, &ipif->ipif_v6lcl_addr, 3820 B_FALSE); 3821 if (nce != NULL) { 3822 mutex_enter(&nce->nce_lock); 3823 if (enable) 3824 nce->nce_flags |= NCE_F_ISROUTER; 3825 else 3826 nce->nce_flags &= ~NCE_F_ISROUTER; 3827 mutex_exit(&nce->nce_lock); 3828 NCE_REFRELE(nce); 3829 } 3830 } 3831 } 3832 3833 /* 3834 * Given an ill with a _valid_ name, add the ip_forwarding ndd variable 3835 * for this ill. Make sure the v6/v4 question has been answered about this 3836 * ill. The creation of this ndd variable is only for backwards compatibility. 3837 * The preferred way to control per-interface IP forwarding is through the 3838 * ILLF_ROUTER interface flag. 3839 */ 3840 static int 3841 ill_set_ndd_name(ill_t *ill) 3842 { 3843 char *suffix; 3844 ip_stack_t *ipst = ill->ill_ipst; 3845 3846 ASSERT(IAM_WRITER_ILL(ill)); 3847 3848 if (ill->ill_isv6) 3849 suffix = ipv6_forward_suffix; 3850 else 3851 suffix = ipv4_forward_suffix; 3852 3853 ill->ill_ndd_name = ill->ill_name + ill->ill_name_length; 3854 bcopy(ill->ill_name, ill->ill_ndd_name, ill->ill_name_length - 1); 3855 /* 3856 * Copies over the '\0'. 3857 * Note that strlen(suffix) is always bounded. 3858 */ 3859 bcopy(suffix, ill->ill_ndd_name + ill->ill_name_length - 1, 3860 strlen(suffix) + 1); 3861 3862 /* 3863 * Use of the nd table requires holding the reader lock. 3864 * Modifying the nd table thru nd_load/nd_unload requires 3865 * the writer lock. 3866 */ 3867 rw_enter(&ipst->ips_ip_g_nd_lock, RW_WRITER); 3868 if (!nd_load(&ipst->ips_ip_g_nd, ill->ill_ndd_name, nd_ill_forward_get, 3869 nd_ill_forward_set, (caddr_t)ill)) { 3870 /* 3871 * If the nd_load failed, it only meant that it could not 3872 * allocate a new bunch of room for further NDD expansion. 3873 * Because of that, the ill_ndd_name will be set to 0, and 3874 * this interface is at the mercy of the global ip_forwarding 3875 * variable. 3876 */ 3877 rw_exit(&ipst->ips_ip_g_nd_lock); 3878 ill->ill_ndd_name = NULL; 3879 return (ENOMEM); 3880 } 3881 rw_exit(&ipst->ips_ip_g_nd_lock); 3882 return (0); 3883 } 3884 3885 /* 3886 * Intializes the context structure and returns the first ill in the list 3887 * cuurently start_list and end_list can have values: 3888 * MAX_G_HEADS Traverse both IPV4 and IPV6 lists. 3889 * IP_V4_G_HEAD Traverse IPV4 list only. 3890 * IP_V6_G_HEAD Traverse IPV6 list only. 3891 */ 3892 3893 /* 3894 * We don't check for CONDEMNED ills here. Caller must do that if 3895 * necessary under the ill lock. 3896 */ 3897 ill_t * 3898 ill_first(int start_list, int end_list, ill_walk_context_t *ctx, 3899 ip_stack_t *ipst) 3900 { 3901 ill_if_t *ifp; 3902 ill_t *ill; 3903 avl_tree_t *avl_tree; 3904 3905 ASSERT(RW_LOCK_HELD(&ipst->ips_ill_g_lock)); 3906 ASSERT(end_list <= MAX_G_HEADS && start_list >= 0); 3907 3908 /* 3909 * setup the lists to search 3910 */ 3911 if (end_list != MAX_G_HEADS) { 3912 ctx->ctx_current_list = start_list; 3913 ctx->ctx_last_list = end_list; 3914 } else { 3915 ctx->ctx_last_list = MAX_G_HEADS - 1; 3916 ctx->ctx_current_list = 0; 3917 } 3918 3919 while (ctx->ctx_current_list <= ctx->ctx_last_list) { 3920 ifp = IP_VX_ILL_G_LIST(ctx->ctx_current_list, ipst); 3921 if (ifp != (ill_if_t *) 3922 &IP_VX_ILL_G_LIST(ctx->ctx_current_list, ipst)) { 3923 avl_tree = &ifp->illif_avl_by_ppa; 3924 ill = avl_first(avl_tree); 3925 /* 3926 * ill is guaranteed to be non NULL or ifp should have 3927 * not existed. 3928 */ 3929 ASSERT(ill != NULL); 3930 return (ill); 3931 } 3932 ctx->ctx_current_list++; 3933 } 3934 3935 return (NULL); 3936 } 3937 3938 /* 3939 * returns the next ill in the list. ill_first() must have been called 3940 * before calling ill_next() or bad things will happen. 3941 */ 3942 3943 /* 3944 * We don't check for CONDEMNED ills here. Caller must do that if 3945 * necessary under the ill lock. 3946 */ 3947 ill_t * 3948 ill_next(ill_walk_context_t *ctx, ill_t *lastill) 3949 { 3950 ill_if_t *ifp; 3951 ill_t *ill; 3952 ip_stack_t *ipst = lastill->ill_ipst; 3953 3954 ASSERT(lastill->ill_ifptr != (ill_if_t *) 3955 &IP_VX_ILL_G_LIST(ctx->ctx_current_list, ipst)); 3956 if ((ill = avl_walk(&lastill->ill_ifptr->illif_avl_by_ppa, lastill, 3957 AVL_AFTER)) != NULL) { 3958 return (ill); 3959 } 3960 3961 /* goto next ill_ifp in the list. */ 3962 ifp = lastill->ill_ifptr->illif_next; 3963 3964 /* make sure not at end of circular list */ 3965 while (ifp == 3966 (ill_if_t *)&IP_VX_ILL_G_LIST(ctx->ctx_current_list, ipst)) { 3967 if (++ctx->ctx_current_list > ctx->ctx_last_list) 3968 return (NULL); 3969 ifp = IP_VX_ILL_G_LIST(ctx->ctx_current_list, ipst); 3970 } 3971 3972 return (avl_first(&ifp->illif_avl_by_ppa)); 3973 } 3974 3975 /* 3976 * Check interface name for correct format: [a-zA-Z]+[a-zA-Z0-9._]*[0-9]+ 3977 * The final number (PPA) must not have any leading zeros. Upon success, a 3978 * pointer to the start of the PPA is returned; otherwise NULL is returned. 3979 */ 3980 static char * 3981 ill_get_ppa_ptr(char *name) 3982 { 3983 int namelen = strlen(name); 3984 int end_ndx = namelen - 1; 3985 int ppa_ndx, i; 3986 3987 /* 3988 * Check that the first character is [a-zA-Z], and that the last 3989 * character is [0-9]. 3990 */ 3991 if (namelen == 0 || !isalpha(name[0]) || !isdigit(name[end_ndx])) 3992 return (NULL); 3993 3994 /* 3995 * Set `ppa_ndx' to the PPA start, and check for leading zeroes. 3996 */ 3997 for (ppa_ndx = end_ndx; ppa_ndx > 0; ppa_ndx--) 3998 if (!isdigit(name[ppa_ndx - 1])) 3999 break; 4000 4001 if (name[ppa_ndx] == '0' && ppa_ndx < end_ndx) 4002 return (NULL); 4003 4004 /* 4005 * Check that the intermediate characters are [a-z0-9.] 4006 */ 4007 for (i = 1; i < ppa_ndx; i++) { 4008 if (!isalpha(name[i]) && !isdigit(name[i]) && 4009 name[i] != '.' && name[i] != '_') { 4010 return (NULL); 4011 } 4012 } 4013 4014 return (name + ppa_ndx); 4015 } 4016 4017 /* 4018 * use avl tree to locate the ill. 4019 */ 4020 static ill_t * 4021 ill_find_by_name(char *name, boolean_t isv6, queue_t *q, mblk_t *mp, 4022 ipsq_func_t func, int *error, ip_stack_t *ipst) 4023 { 4024 char *ppa_ptr = NULL; 4025 int len; 4026 uint_t ppa; 4027 ill_t *ill = NULL; 4028 ill_if_t *ifp; 4029 int list; 4030 ipsq_t *ipsq; 4031 4032 if (error != NULL) 4033 *error = 0; 4034 4035 /* 4036 * get ppa ptr 4037 */ 4038 if (isv6) 4039 list = IP_V6_G_HEAD; 4040 else 4041 list = IP_V4_G_HEAD; 4042 4043 if ((ppa_ptr = ill_get_ppa_ptr(name)) == NULL) { 4044 if (error != NULL) 4045 *error = ENXIO; 4046 return (NULL); 4047 } 4048 4049 len = ppa_ptr - name + 1; 4050 4051 ppa = stoi(&ppa_ptr); 4052 4053 ifp = IP_VX_ILL_G_LIST(list, ipst); 4054 4055 while (ifp != (ill_if_t *)&IP_VX_ILL_G_LIST(list, ipst)) { 4056 /* 4057 * match is done on len - 1 as the name is not null 4058 * terminated it contains ppa in addition to the interface 4059 * name. 4060 */ 4061 if ((ifp->illif_name_len == len) && 4062 bcmp(ifp->illif_name, name, len - 1) == 0) { 4063 break; 4064 } else { 4065 ifp = ifp->illif_next; 4066 } 4067 } 4068 4069 if (ifp == (ill_if_t *)&IP_VX_ILL_G_LIST(list, ipst)) { 4070 /* 4071 * Even the interface type does not exist. 4072 */ 4073 if (error != NULL) 4074 *error = ENXIO; 4075 return (NULL); 4076 } 4077 4078 ill = avl_find(&ifp->illif_avl_by_ppa, (void *) &ppa, NULL); 4079 if (ill != NULL) { 4080 /* 4081 * The block comment at the start of ipif_down 4082 * explains the use of the macros used below 4083 */ 4084 GRAB_CONN_LOCK(q); 4085 mutex_enter(&ill->ill_lock); 4086 if (ILL_CAN_LOOKUP(ill)) { 4087 ill_refhold_locked(ill); 4088 mutex_exit(&ill->ill_lock); 4089 RELEASE_CONN_LOCK(q); 4090 return (ill); 4091 } else if (ILL_CAN_WAIT(ill, q)) { 4092 ipsq = ill->ill_phyint->phyint_ipsq; 4093 mutex_enter(&ipsq->ipsq_lock); 4094 mutex_enter(&ipsq->ipsq_xop->ipx_lock); 4095 mutex_exit(&ill->ill_lock); 4096 ipsq_enq(ipsq, q, mp, func, NEW_OP, ill); 4097 mutex_exit(&ipsq->ipsq_xop->ipx_lock); 4098 mutex_exit(&ipsq->ipsq_lock); 4099 RELEASE_CONN_LOCK(q); 4100 if (error != NULL) 4101 *error = EINPROGRESS; 4102 return (NULL); 4103 } 4104 mutex_exit(&ill->ill_lock); 4105 RELEASE_CONN_LOCK(q); 4106 } 4107 if (error != NULL) 4108 *error = ENXIO; 4109 return (NULL); 4110 } 4111 4112 /* 4113 * comparison function for use with avl. 4114 */ 4115 static int 4116 ill_compare_ppa(const void *ppa_ptr, const void *ill_ptr) 4117 { 4118 uint_t ppa; 4119 uint_t ill_ppa; 4120 4121 ASSERT(ppa_ptr != NULL && ill_ptr != NULL); 4122 4123 ppa = *((uint_t *)ppa_ptr); 4124 ill_ppa = ((const ill_t *)ill_ptr)->ill_ppa; 4125 /* 4126 * We want the ill with the lowest ppa to be on the 4127 * top. 4128 */ 4129 if (ill_ppa < ppa) 4130 return (1); 4131 if (ill_ppa > ppa) 4132 return (-1); 4133 return (0); 4134 } 4135 4136 /* 4137 * remove an interface type from the global list. 4138 */ 4139 static void 4140 ill_delete_interface_type(ill_if_t *interface) 4141 { 4142 ASSERT(interface != NULL); 4143 ASSERT(avl_numnodes(&interface->illif_avl_by_ppa) == 0); 4144 4145 avl_destroy(&interface->illif_avl_by_ppa); 4146 if (interface->illif_ppa_arena != NULL) 4147 vmem_destroy(interface->illif_ppa_arena); 4148 4149 remque(interface); 4150 4151 mi_free(interface); 4152 } 4153 4154 /* 4155 * remove ill from the global list. 4156 */ 4157 static void 4158 ill_glist_delete(ill_t *ill) 4159 { 4160 ip_stack_t *ipst; 4161 phyint_t *phyi; 4162 4163 if (ill == NULL) 4164 return; 4165 ipst = ill->ill_ipst; 4166 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 4167 4168 /* 4169 * If the ill was never inserted into the AVL tree 4170 * we skip the if branch. 4171 */ 4172 if (ill->ill_ifptr != NULL) { 4173 /* 4174 * remove from AVL tree and free ppa number 4175 */ 4176 avl_remove(&ill->ill_ifptr->illif_avl_by_ppa, ill); 4177 4178 if (ill->ill_ifptr->illif_ppa_arena != NULL) { 4179 vmem_free(ill->ill_ifptr->illif_ppa_arena, 4180 (void *)(uintptr_t)(ill->ill_ppa+1), 1); 4181 } 4182 if (avl_numnodes(&ill->ill_ifptr->illif_avl_by_ppa) == 0) { 4183 ill_delete_interface_type(ill->ill_ifptr); 4184 } 4185 4186 /* 4187 * Indicate ill is no longer in the list. 4188 */ 4189 ill->ill_ifptr = NULL; 4190 ill->ill_name_length = 0; 4191 ill->ill_name[0] = '\0'; 4192 ill->ill_ppa = UINT_MAX; 4193 } 4194 4195 /* Generate one last event for this ill. */ 4196 ill_nic_event_dispatch(ill, 0, NE_UNPLUMB, ill->ill_name, 4197 ill->ill_name_length); 4198 4199 ASSERT(ill->ill_phyint != NULL); 4200 phyi = ill->ill_phyint; 4201 ill->ill_phyint = NULL; 4202 4203 /* 4204 * ill_init allocates a phyint always to store the copy 4205 * of flags relevant to phyint. At that point in time, we could 4206 * not assign the name and hence phyint_illv4/v6 could not be 4207 * initialized. Later in ipif_set_values, we assign the name to 4208 * the ill, at which point in time we assign phyint_illv4/v6. 4209 * Thus we don't rely on phyint_illv6 to be initialized always. 4210 */ 4211 if (ill->ill_flags & ILLF_IPV6) 4212 phyi->phyint_illv6 = NULL; 4213 else 4214 phyi->phyint_illv4 = NULL; 4215 4216 if (phyi->phyint_illv4 != NULL || phyi->phyint_illv6 != NULL) { 4217 rw_exit(&ipst->ips_ill_g_lock); 4218 return; 4219 } 4220 4221 /* 4222 * There are no ills left on this phyint; pull it out of the phyint 4223 * avl trees, and free it. 4224 */ 4225 if (phyi->phyint_ifindex > 0) { 4226 avl_remove(&ipst->ips_phyint_g_list->phyint_list_avl_by_index, 4227 phyi); 4228 avl_remove(&ipst->ips_phyint_g_list->phyint_list_avl_by_name, 4229 phyi); 4230 } 4231 rw_exit(&ipst->ips_ill_g_lock); 4232 4233 phyint_free(phyi); 4234 } 4235 4236 /* 4237 * allocate a ppa, if the number of plumbed interfaces of this type are 4238 * less than ill_no_arena do a linear search to find a unused ppa. 4239 * When the number goes beyond ill_no_arena switch to using an arena. 4240 * Note: ppa value of zero cannot be allocated from vmem_arena as it 4241 * is the return value for an error condition, so allocation starts at one 4242 * and is decremented by one. 4243 */ 4244 static int 4245 ill_alloc_ppa(ill_if_t *ifp, ill_t *ill) 4246 { 4247 ill_t *tmp_ill; 4248 uint_t start, end; 4249 int ppa; 4250 4251 if (ifp->illif_ppa_arena == NULL && 4252 (avl_numnodes(&ifp->illif_avl_by_ppa) + 1 > ill_no_arena)) { 4253 /* 4254 * Create an arena. 4255 */ 4256 ifp->illif_ppa_arena = vmem_create(ifp->illif_name, 4257 (void *)1, UINT_MAX - 1, 1, NULL, NULL, 4258 NULL, 0, VM_SLEEP | VMC_IDENTIFIER); 4259 /* allocate what has already been assigned */ 4260 for (tmp_ill = avl_first(&ifp->illif_avl_by_ppa); 4261 tmp_ill != NULL; tmp_ill = avl_walk(&ifp->illif_avl_by_ppa, 4262 tmp_ill, AVL_AFTER)) { 4263 ppa = (int)(uintptr_t)vmem_xalloc(ifp->illif_ppa_arena, 4264 1, /* size */ 4265 1, /* align/quantum */ 4266 0, /* phase */ 4267 0, /* nocross */ 4268 /* minaddr */ 4269 (void *)((uintptr_t)tmp_ill->ill_ppa + 1), 4270 /* maxaddr */ 4271 (void *)((uintptr_t)tmp_ill->ill_ppa + 2), 4272 VM_NOSLEEP|VM_FIRSTFIT); 4273 if (ppa == 0) { 4274 ip1dbg(("ill_alloc_ppa: ppa allocation" 4275 " failed while switching")); 4276 vmem_destroy(ifp->illif_ppa_arena); 4277 ifp->illif_ppa_arena = NULL; 4278 break; 4279 } 4280 } 4281 } 4282 4283 if (ifp->illif_ppa_arena != NULL) { 4284 if (ill->ill_ppa == UINT_MAX) { 4285 ppa = (int)(uintptr_t)vmem_alloc(ifp->illif_ppa_arena, 4286 1, VM_NOSLEEP|VM_FIRSTFIT); 4287 if (ppa == 0) 4288 return (EAGAIN); 4289 ill->ill_ppa = --ppa; 4290 } else { 4291 ppa = (int)(uintptr_t)vmem_xalloc(ifp->illif_ppa_arena, 4292 1, /* size */ 4293 1, /* align/quantum */ 4294 0, /* phase */ 4295 0, /* nocross */ 4296 (void *)(uintptr_t)(ill->ill_ppa + 1), /* minaddr */ 4297 (void *)(uintptr_t)(ill->ill_ppa + 2), /* maxaddr */ 4298 VM_NOSLEEP|VM_FIRSTFIT); 4299 /* 4300 * Most likely the allocation failed because 4301 * the requested ppa was in use. 4302 */ 4303 if (ppa == 0) 4304 return (EEXIST); 4305 } 4306 return (0); 4307 } 4308 4309 /* 4310 * No arena is in use and not enough (>ill_no_arena) interfaces have 4311 * been plumbed to create one. Do a linear search to get a unused ppa. 4312 */ 4313 if (ill->ill_ppa == UINT_MAX) { 4314 end = UINT_MAX - 1; 4315 start = 0; 4316 } else { 4317 end = start = ill->ill_ppa; 4318 } 4319 4320 tmp_ill = avl_find(&ifp->illif_avl_by_ppa, (void *)&start, NULL); 4321 while (tmp_ill != NULL && tmp_ill->ill_ppa == start) { 4322 if (start++ >= end) { 4323 if (ill->ill_ppa == UINT_MAX) 4324 return (EAGAIN); 4325 else 4326 return (EEXIST); 4327 } 4328 tmp_ill = avl_walk(&ifp->illif_avl_by_ppa, tmp_ill, AVL_AFTER); 4329 } 4330 ill->ill_ppa = start; 4331 return (0); 4332 } 4333 4334 /* 4335 * Insert ill into the list of configured ill's. Once this function completes, 4336 * the ill is globally visible and is available through lookups. More precisely 4337 * this happens after the caller drops the ill_g_lock. 4338 */ 4339 static int 4340 ill_glist_insert(ill_t *ill, char *name, boolean_t isv6) 4341 { 4342 ill_if_t *ill_interface; 4343 avl_index_t where = 0; 4344 int error; 4345 int name_length; 4346 int index; 4347 boolean_t check_length = B_FALSE; 4348 ip_stack_t *ipst = ill->ill_ipst; 4349 4350 ASSERT(RW_WRITE_HELD(&ipst->ips_ill_g_lock)); 4351 4352 name_length = mi_strlen(name) + 1; 4353 4354 if (isv6) 4355 index = IP_V6_G_HEAD; 4356 else 4357 index = IP_V4_G_HEAD; 4358 4359 ill_interface = IP_VX_ILL_G_LIST(index, ipst); 4360 /* 4361 * Search for interface type based on name 4362 */ 4363 while (ill_interface != (ill_if_t *)&IP_VX_ILL_G_LIST(index, ipst)) { 4364 if ((ill_interface->illif_name_len == name_length) && 4365 (strcmp(ill_interface->illif_name, name) == 0)) { 4366 break; 4367 } 4368 ill_interface = ill_interface->illif_next; 4369 } 4370 4371 /* 4372 * Interface type not found, create one. 4373 */ 4374 if (ill_interface == (ill_if_t *)&IP_VX_ILL_G_LIST(index, ipst)) { 4375 4376 ill_g_head_t ghead; 4377 4378 /* 4379 * allocate ill_if_t structure 4380 */ 4381 4382 ill_interface = (ill_if_t *)mi_zalloc(sizeof (ill_if_t)); 4383 if (ill_interface == NULL) { 4384 return (ENOMEM); 4385 } 4386 4387 4388 4389 (void) strcpy(ill_interface->illif_name, name); 4390 ill_interface->illif_name_len = name_length; 4391 4392 avl_create(&ill_interface->illif_avl_by_ppa, 4393 ill_compare_ppa, sizeof (ill_t), 4394 offsetof(struct ill_s, ill_avl_byppa)); 4395 4396 /* 4397 * link the structure in the back to maintain order 4398 * of configuration for ifconfig output. 4399 */ 4400 ghead = ipst->ips_ill_g_heads[index]; 4401 insque(ill_interface, ghead.ill_g_list_tail); 4402 4403 } 4404 4405 if (ill->ill_ppa == UINT_MAX) 4406 check_length = B_TRUE; 4407 4408 error = ill_alloc_ppa(ill_interface, ill); 4409 if (error != 0) { 4410 if (avl_numnodes(&ill_interface->illif_avl_by_ppa) == 0) 4411 ill_delete_interface_type(ill->ill_ifptr); 4412 return (error); 4413 } 4414 4415 /* 4416 * When the ppa is choosen by the system, check that there is 4417 * enough space to insert ppa. if a specific ppa was passed in this 4418 * check is not required as the interface name passed in will have 4419 * the right ppa in it. 4420 */ 4421 if (check_length) { 4422 /* 4423 * UINT_MAX - 1 should fit in 10 chars, alloc 12 chars. 4424 */ 4425 char buf[sizeof (uint_t) * 3]; 4426 4427 /* 4428 * convert ppa to string to calculate the amount of space 4429 * required for it in the name. 4430 */ 4431 numtos(ill->ill_ppa, buf); 4432 4433 /* Do we have enough space to insert ppa ? */ 4434 4435 if ((mi_strlen(name) + mi_strlen(buf) + 1) > LIFNAMSIZ) { 4436 /* Free ppa and interface type struct */ 4437 if (ill_interface->illif_ppa_arena != NULL) { 4438 vmem_free(ill_interface->illif_ppa_arena, 4439 (void *)(uintptr_t)(ill->ill_ppa+1), 1); 4440 } 4441 if (avl_numnodes(&ill_interface->illif_avl_by_ppa) == 0) 4442 ill_delete_interface_type(ill->ill_ifptr); 4443 4444 return (EINVAL); 4445 } 4446 } 4447 4448 (void) sprintf(ill->ill_name, "%s%u", name, ill->ill_ppa); 4449 ill->ill_name_length = mi_strlen(ill->ill_name) + 1; 4450 4451 (void) avl_find(&ill_interface->illif_avl_by_ppa, &ill->ill_ppa, 4452 &where); 4453 ill->ill_ifptr = ill_interface; 4454 avl_insert(&ill_interface->illif_avl_by_ppa, ill, where); 4455 4456 ill_phyint_reinit(ill); 4457 return (0); 4458 } 4459 4460 /* Initialize the per phyint ipsq used for serialization */ 4461 static boolean_t 4462 ipsq_init(ill_t *ill, boolean_t enter) 4463 { 4464 ipsq_t *ipsq; 4465 ipxop_t *ipx; 4466 4467 if ((ipsq = kmem_zalloc(sizeof (ipsq_t), KM_NOSLEEP)) == NULL) 4468 return (B_FALSE); 4469 4470 ill->ill_phyint->phyint_ipsq = ipsq; 4471 ipx = ipsq->ipsq_xop = &ipsq->ipsq_ownxop; 4472 ipx->ipx_ipsq = ipsq; 4473 ipsq->ipsq_next = ipsq; 4474 ipsq->ipsq_phyint = ill->ill_phyint; 4475 mutex_init(&ipsq->ipsq_lock, NULL, MUTEX_DEFAULT, 0); 4476 mutex_init(&ipx->ipx_lock, NULL, MUTEX_DEFAULT, 0); 4477 ipsq->ipsq_ipst = ill->ill_ipst; /* No netstack_hold */ 4478 if (enter) { 4479 ipx->ipx_writer = curthread; 4480 ipx->ipx_forced = B_FALSE; 4481 ipx->ipx_reentry_cnt = 1; 4482 #ifdef DEBUG 4483 ipx->ipx_depth = getpcstack(ipx->ipx_stack, IPX_STACK_DEPTH); 4484 #endif 4485 } 4486 return (B_TRUE); 4487 } 4488 4489 /* 4490 * ill_init is called by ip_open when a device control stream is opened. 4491 * It does a few initializations, and shoots a DL_INFO_REQ message down 4492 * to the driver. The response is later picked up in ip_rput_dlpi and 4493 * used to set up default mechanisms for talking to the driver. (Always 4494 * called as writer.) 4495 * 4496 * If this function returns error, ip_open will call ip_close which in 4497 * turn will call ill_delete to clean up any memory allocated here that 4498 * is not yet freed. 4499 */ 4500 int 4501 ill_init(queue_t *q, ill_t *ill) 4502 { 4503 int count; 4504 dl_info_req_t *dlir; 4505 mblk_t *info_mp; 4506 uchar_t *frag_ptr; 4507 4508 /* 4509 * The ill is initialized to zero by mi_alloc*(). In addition 4510 * some fields already contain valid values, initialized in 4511 * ip_open(), before we reach here. 4512 */ 4513 mutex_init(&ill->ill_lock, NULL, MUTEX_DEFAULT, 0); 4514 4515 ill->ill_rq = q; 4516 ill->ill_wq = WR(q); 4517 4518 info_mp = allocb(MAX(sizeof (dl_info_req_t), sizeof (dl_info_ack_t)), 4519 BPRI_HI); 4520 if (info_mp == NULL) 4521 return (ENOMEM); 4522 4523 /* 4524 * Allocate sufficient space to contain our fragment hash table and 4525 * the device name. 4526 */ 4527 frag_ptr = (uchar_t *)mi_zalloc(ILL_FRAG_HASH_TBL_SIZE + 4528 2 * LIFNAMSIZ + 5 + strlen(ipv6_forward_suffix)); 4529 if (frag_ptr == NULL) { 4530 freemsg(info_mp); 4531 return (ENOMEM); 4532 } 4533 ill->ill_frag_ptr = frag_ptr; 4534 ill->ill_frag_free_num_pkts = 0; 4535 ill->ill_last_frag_clean_time = 0; 4536 ill->ill_frag_hash_tbl = (ipfb_t *)frag_ptr; 4537 ill->ill_name = (char *)(frag_ptr + ILL_FRAG_HASH_TBL_SIZE); 4538 for (count = 0; count < ILL_FRAG_HASH_TBL_COUNT; count++) { 4539 mutex_init(&ill->ill_frag_hash_tbl[count].ipfb_lock, 4540 NULL, MUTEX_DEFAULT, NULL); 4541 } 4542 4543 ill->ill_phyint = (phyint_t *)mi_zalloc(sizeof (phyint_t)); 4544 if (ill->ill_phyint == NULL) { 4545 freemsg(info_mp); 4546 mi_free(frag_ptr); 4547 return (ENOMEM); 4548 } 4549 4550 mutex_init(&ill->ill_phyint->phyint_lock, NULL, MUTEX_DEFAULT, 0); 4551 /* 4552 * For now pretend this is a v4 ill. We need to set phyint_ill* 4553 * at this point because of the following reason. If we can't 4554 * enter the ipsq at some point and cv_wait, the writer that 4555 * wakes us up tries to locate us using the list of all phyints 4556 * in an ipsq and the ills from the phyint thru the phyint_ill*. 4557 * If we don't set it now, we risk a missed wakeup. 4558 */ 4559 ill->ill_phyint->phyint_illv4 = ill; 4560 ill->ill_ppa = UINT_MAX; 4561 ill->ill_fastpath_list = &ill->ill_fastpath_list; 4562 4563 if (!ipsq_init(ill, B_TRUE)) { 4564 freemsg(info_mp); 4565 mi_free(frag_ptr); 4566 mi_free(ill->ill_phyint); 4567 return (ENOMEM); 4568 } 4569 4570 ill->ill_state_flags |= ILL_LL_SUBNET_PENDING; 4571 4572 /* Frag queue limit stuff */ 4573 ill->ill_frag_count = 0; 4574 ill->ill_ipf_gen = 0; 4575 4576 ill->ill_global_timer = INFINITY; 4577 ill->ill_mcast_v1_time = ill->ill_mcast_v2_time = 0; 4578 ill->ill_mcast_v1_tset = ill->ill_mcast_v2_tset = 0; 4579 ill->ill_mcast_rv = MCAST_DEF_ROBUSTNESS; 4580 ill->ill_mcast_qi = MCAST_DEF_QUERY_INTERVAL; 4581 4582 /* 4583 * Initialize IPv6 configuration variables. The IP module is always 4584 * opened as an IPv4 module. Instead tracking down the cases where 4585 * it switches to do ipv6, we'll just initialize the IPv6 configuration 4586 * here for convenience, this has no effect until the ill is set to do 4587 * IPv6. 4588 */ 4589 ill->ill_reachable_time = ND_REACHABLE_TIME; 4590 ill->ill_reachable_retrans_time = ND_RETRANS_TIMER; 4591 ill->ill_xmit_count = ND_MAX_MULTICAST_SOLICIT; 4592 ill->ill_max_buf = ND_MAX_Q; 4593 ill->ill_refcnt = 0; 4594 4595 /* Send down the Info Request to the driver. */ 4596 info_mp->b_datap->db_type = M_PCPROTO; 4597 dlir = (dl_info_req_t *)info_mp->b_rptr; 4598 info_mp->b_wptr = (uchar_t *)&dlir[1]; 4599 dlir->dl_primitive = DL_INFO_REQ; 4600 4601 ill->ill_dlpi_pending = DL_PRIM_INVAL; 4602 4603 qprocson(q); 4604 ill_dlpi_send(ill, info_mp); 4605 4606 return (0); 4607 } 4608 4609 /* 4610 * ill_dls_info 4611 * creates datalink socket info from the device. 4612 */ 4613 int 4614 ill_dls_info(struct sockaddr_dl *sdl, const ipif_t *ipif) 4615 { 4616 size_t len; 4617 ill_t *ill = ipif->ipif_ill; 4618 4619 sdl->sdl_family = AF_LINK; 4620 sdl->sdl_index = ill->ill_phyint->phyint_ifindex; 4621 sdl->sdl_type = ill->ill_type; 4622 ipif_get_name(ipif, sdl->sdl_data, sizeof (sdl->sdl_data)); 4623 len = strlen(sdl->sdl_data); 4624 ASSERT(len < 256); 4625 sdl->sdl_nlen = (uchar_t)len; 4626 sdl->sdl_alen = ill->ill_phys_addr_length; 4627 sdl->sdl_slen = 0; 4628 if (ill->ill_phys_addr_length != 0 && ill->ill_phys_addr != NULL) 4629 bcopy(ill->ill_phys_addr, &sdl->sdl_data[len], sdl->sdl_alen); 4630 4631 return (sizeof (struct sockaddr_dl)); 4632 } 4633 4634 /* 4635 * ill_xarp_info 4636 * creates xarp info from the device. 4637 */ 4638 static int 4639 ill_xarp_info(struct sockaddr_dl *sdl, ill_t *ill) 4640 { 4641 sdl->sdl_family = AF_LINK; 4642 sdl->sdl_index = ill->ill_phyint->phyint_ifindex; 4643 sdl->sdl_type = ill->ill_type; 4644 ipif_get_name(ill->ill_ipif, sdl->sdl_data, sizeof (sdl->sdl_data)); 4645 sdl->sdl_nlen = (uchar_t)mi_strlen(sdl->sdl_data); 4646 sdl->sdl_alen = ill->ill_phys_addr_length; 4647 sdl->sdl_slen = 0; 4648 return (sdl->sdl_nlen); 4649 } 4650 4651 static int 4652 loopback_kstat_update(kstat_t *ksp, int rw) 4653 { 4654 kstat_named_t *kn; 4655 netstackid_t stackid; 4656 netstack_t *ns; 4657 ip_stack_t *ipst; 4658 4659 if (ksp == NULL || ksp->ks_data == NULL) 4660 return (EIO); 4661 4662 if (rw == KSTAT_WRITE) 4663 return (EACCES); 4664 4665 kn = KSTAT_NAMED_PTR(ksp); 4666 stackid = (zoneid_t)(uintptr_t)ksp->ks_private; 4667 4668 ns = netstack_find_by_stackid(stackid); 4669 if (ns == NULL) 4670 return (-1); 4671 4672 ipst = ns->netstack_ip; 4673 if (ipst == NULL) { 4674 netstack_rele(ns); 4675 return (-1); 4676 } 4677 kn[0].value.ui32 = ipst->ips_loopback_packets; 4678 kn[1].value.ui32 = ipst->ips_loopback_packets; 4679 netstack_rele(ns); 4680 return (0); 4681 } 4682 4683 /* 4684 * Has ifindex been plumbed already? 4685 */ 4686 static boolean_t 4687 phyint_exists(uint_t index, ip_stack_t *ipst) 4688 { 4689 ASSERT(index != 0); 4690 ASSERT(RW_LOCK_HELD(&ipst->ips_ill_g_lock)); 4691 4692 return (avl_find(&ipst->ips_phyint_g_list->phyint_list_avl_by_index, 4693 &index, NULL) != NULL); 4694 } 4695 4696 /* Pick a unique ifindex */ 4697 boolean_t 4698 ip_assign_ifindex(uint_t *indexp, ip_stack_t *ipst) 4699 { 4700 uint_t starting_index; 4701 4702 if (!ipst->ips_ill_index_wrap) { 4703 *indexp = ipst->ips_ill_index++; 4704 if (ipst->ips_ill_index == 0) { 4705 /* Reached the uint_t limit Next time wrap */ 4706 ipst->ips_ill_index_wrap = B_TRUE; 4707 } 4708 return (B_TRUE); 4709 } 4710 4711 /* 4712 * Start reusing unused indexes. Note that we hold the ill_g_lock 4713 * at this point and don't want to call any function that attempts 4714 * to get the lock again. 4715 */ 4716 starting_index = ipst->ips_ill_index++; 4717 for (; ipst->ips_ill_index != starting_index; ipst->ips_ill_index++) { 4718 if (ipst->ips_ill_index != 0 && 4719 !phyint_exists(ipst->ips_ill_index, ipst)) { 4720 /* found unused index - use it */ 4721 *indexp = ipst->ips_ill_index; 4722 return (B_TRUE); 4723 } 4724 } 4725 4726 /* 4727 * all interface indicies are inuse. 4728 */ 4729 return (B_FALSE); 4730 } 4731 4732 /* 4733 * Assign a unique interface index for the phyint. 4734 */ 4735 static boolean_t 4736 phyint_assign_ifindex(phyint_t *phyi, ip_stack_t *ipst) 4737 { 4738 ASSERT(phyi->phyint_ifindex == 0); 4739 return (ip_assign_ifindex(&phyi->phyint_ifindex, ipst)); 4740 } 4741 4742 /* 4743 * Return a pointer to the ill which matches the supplied name. Note that 4744 * the ill name length includes the null termination character. (May be 4745 * called as writer.) 4746 * If do_alloc and the interface is "lo0" it will be automatically created. 4747 * Cannot bump up reference on condemned ills. So dup detect can't be done 4748 * using this func. 4749 */ 4750 ill_t * 4751 ill_lookup_on_name(char *name, boolean_t do_alloc, boolean_t isv6, 4752 queue_t *q, mblk_t *mp, ipsq_func_t func, int *error, boolean_t *did_alloc, 4753 ip_stack_t *ipst) 4754 { 4755 ill_t *ill; 4756 ipif_t *ipif; 4757 ipsq_t *ipsq; 4758 kstat_named_t *kn; 4759 boolean_t isloopback; 4760 in6_addr_t ov6addr; 4761 4762 isloopback = mi_strcmp(name, ipif_loopback_name) == 0; 4763 4764 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 4765 ill = ill_find_by_name(name, isv6, q, mp, func, error, ipst); 4766 rw_exit(&ipst->ips_ill_g_lock); 4767 if (ill != NULL || (error != NULL && *error == EINPROGRESS)) 4768 return (ill); 4769 4770 /* 4771 * Couldn't find it. Does this happen to be a lookup for the 4772 * loopback device and are we allowed to allocate it? 4773 */ 4774 if (!isloopback || !do_alloc) 4775 return (NULL); 4776 4777 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 4778 4779 ill = ill_find_by_name(name, isv6, q, mp, func, error, ipst); 4780 if (ill != NULL || (error != NULL && *error == EINPROGRESS)) { 4781 rw_exit(&ipst->ips_ill_g_lock); 4782 return (ill); 4783 } 4784 4785 /* Create the loopback device on demand */ 4786 ill = (ill_t *)(mi_alloc(sizeof (ill_t) + 4787 sizeof (ipif_loopback_name), BPRI_MED)); 4788 if (ill == NULL) 4789 goto done; 4790 4791 *ill = ill_null; 4792 mutex_init(&ill->ill_lock, NULL, MUTEX_DEFAULT, NULL); 4793 ill->ill_ipst = ipst; 4794 netstack_hold(ipst->ips_netstack); 4795 /* 4796 * For exclusive stacks we set the zoneid to zero 4797 * to make IP operate as if in the global zone. 4798 */ 4799 ill->ill_zoneid = GLOBAL_ZONEID; 4800 4801 ill->ill_phyint = (phyint_t *)mi_zalloc(sizeof (phyint_t)); 4802 if (ill->ill_phyint == NULL) 4803 goto done; 4804 4805 if (isv6) 4806 ill->ill_phyint->phyint_illv6 = ill; 4807 else 4808 ill->ill_phyint->phyint_illv4 = ill; 4809 mutex_init(&ill->ill_phyint->phyint_lock, NULL, MUTEX_DEFAULT, 0); 4810 ill->ill_max_frag = IP_LOOPBACK_MTU; 4811 /* Add room for tcp+ip headers */ 4812 if (isv6) { 4813 ill->ill_isv6 = B_TRUE; 4814 ill->ill_max_frag += IPV6_HDR_LEN + 20; /* for TCP */ 4815 } else { 4816 ill->ill_max_frag += IP_SIMPLE_HDR_LENGTH + 20; 4817 } 4818 if (!ill_allocate_mibs(ill)) 4819 goto done; 4820 ill->ill_max_mtu = ill->ill_max_frag; 4821 /* 4822 * ipif_loopback_name can't be pointed at directly because its used 4823 * by both the ipv4 and ipv6 interfaces. When the ill is removed 4824 * from the glist, ill_glist_delete() sets the first character of 4825 * ill_name to '\0'. 4826 */ 4827 ill->ill_name = (char *)ill + sizeof (*ill); 4828 (void) strcpy(ill->ill_name, ipif_loopback_name); 4829 ill->ill_name_length = sizeof (ipif_loopback_name); 4830 /* Set ill_dlpi_pending for ipsq_current_finish() to work properly */ 4831 ill->ill_dlpi_pending = DL_PRIM_INVAL; 4832 4833 ill->ill_global_timer = INFINITY; 4834 ill->ill_mcast_v1_time = ill->ill_mcast_v2_time = 0; 4835 ill->ill_mcast_v1_tset = ill->ill_mcast_v2_tset = 0; 4836 ill->ill_mcast_rv = MCAST_DEF_ROBUSTNESS; 4837 ill->ill_mcast_qi = MCAST_DEF_QUERY_INTERVAL; 4838 4839 /* No resolver here. */ 4840 ill->ill_net_type = IRE_LOOPBACK; 4841 4842 /* Initialize the ipsq */ 4843 if (!ipsq_init(ill, B_FALSE)) 4844 goto done; 4845 4846 ipif = ipif_allocate(ill, 0L, IRE_LOOPBACK, B_TRUE, B_TRUE); 4847 if (ipif == NULL) 4848 goto done; 4849 4850 ill->ill_flags = ILLF_MULTICAST; 4851 4852 ov6addr = ipif->ipif_v6lcl_addr; 4853 /* Set up default loopback address and mask. */ 4854 if (!isv6) { 4855 ipaddr_t inaddr_loopback = htonl(INADDR_LOOPBACK); 4856 4857 IN6_IPADDR_TO_V4MAPPED(inaddr_loopback, &ipif->ipif_v6lcl_addr); 4858 ipif->ipif_v6src_addr = ipif->ipif_v6lcl_addr; 4859 V4MASK_TO_V6(htonl(IN_CLASSA_NET), ipif->ipif_v6net_mask); 4860 V6_MASK_COPY(ipif->ipif_v6lcl_addr, ipif->ipif_v6net_mask, 4861 ipif->ipif_v6subnet); 4862 ill->ill_flags |= ILLF_IPV4; 4863 } else { 4864 ipif->ipif_v6lcl_addr = ipv6_loopback; 4865 ipif->ipif_v6src_addr = ipif->ipif_v6lcl_addr; 4866 ipif->ipif_v6net_mask = ipv6_all_ones; 4867 V6_MASK_COPY(ipif->ipif_v6lcl_addr, ipif->ipif_v6net_mask, 4868 ipif->ipif_v6subnet); 4869 ill->ill_flags |= ILLF_IPV6; 4870 } 4871 4872 /* 4873 * Chain us in at the end of the ill list. hold the ill 4874 * before we make it globally visible. 1 for the lookup. 4875 */ 4876 ill->ill_refcnt = 0; 4877 ill_refhold(ill); 4878 4879 ill->ill_frag_count = 0; 4880 ill->ill_frag_free_num_pkts = 0; 4881 ill->ill_last_frag_clean_time = 0; 4882 4883 ipsq = ill->ill_phyint->phyint_ipsq; 4884 4885 if (ill_glist_insert(ill, "lo", isv6) != 0) 4886 cmn_err(CE_PANIC, "cannot insert loopback interface"); 4887 4888 /* Let SCTP know so that it can add this to its list */ 4889 sctp_update_ill(ill, SCTP_ILL_INSERT); 4890 4891 /* 4892 * We have already assigned ipif_v6lcl_addr above, but we need to 4893 * call sctp_update_ipif_addr() after SCTP_ILL_INSERT, which 4894 * requires to be after ill_glist_insert() since we need the 4895 * ill_index set. Pass on ipv6_loopback as the old address. 4896 */ 4897 sctp_update_ipif_addr(ipif, ov6addr); 4898 4899 /* 4900 * ill_glist_insert() -> ill_phyint_reinit() may have merged IPSQs. 4901 * If so, free our original one. 4902 */ 4903 if (ipsq != ill->ill_phyint->phyint_ipsq) 4904 ipsq_delete(ipsq); 4905 4906 /* 4907 * Delay this till the ipif is allocated as ipif_allocate 4908 * de-references ill_phyint for getting the ifindex. We 4909 * can't do this before ipif_allocate because ill_phyint_reinit 4910 * -> phyint_assign_ifindex expects ipif to be present. 4911 */ 4912 mutex_enter(&ill->ill_phyint->phyint_lock); 4913 ill->ill_phyint->phyint_flags |= PHYI_LOOPBACK | PHYI_VIRTUAL; 4914 mutex_exit(&ill->ill_phyint->phyint_lock); 4915 4916 if (ipst->ips_loopback_ksp == NULL) { 4917 /* Export loopback interface statistics */ 4918 ipst->ips_loopback_ksp = kstat_create_netstack("lo", 0, 4919 ipif_loopback_name, "net", 4920 KSTAT_TYPE_NAMED, 2, 0, 4921 ipst->ips_netstack->netstack_stackid); 4922 if (ipst->ips_loopback_ksp != NULL) { 4923 ipst->ips_loopback_ksp->ks_update = 4924 loopback_kstat_update; 4925 kn = KSTAT_NAMED_PTR(ipst->ips_loopback_ksp); 4926 kstat_named_init(&kn[0], "ipackets", KSTAT_DATA_UINT32); 4927 kstat_named_init(&kn[1], "opackets", KSTAT_DATA_UINT32); 4928 ipst->ips_loopback_ksp->ks_private = 4929 (void *)(uintptr_t)ipst->ips_netstack-> 4930 netstack_stackid; 4931 kstat_install(ipst->ips_loopback_ksp); 4932 } 4933 } 4934 4935 if (error != NULL) 4936 *error = 0; 4937 *did_alloc = B_TRUE; 4938 rw_exit(&ipst->ips_ill_g_lock); 4939 ill_nic_event_dispatch(ill, MAP_IPIF_ID(ill->ill_ipif->ipif_id), 4940 NE_PLUMB, ill->ill_name, ill->ill_name_length); 4941 return (ill); 4942 done: 4943 if (ill != NULL) { 4944 if (ill->ill_phyint != NULL) { 4945 ipsq = ill->ill_phyint->phyint_ipsq; 4946 if (ipsq != NULL) { 4947 ipsq->ipsq_phyint = NULL; 4948 ipsq_delete(ipsq); 4949 } 4950 mi_free(ill->ill_phyint); 4951 } 4952 ill_free_mib(ill); 4953 if (ill->ill_ipst != NULL) 4954 netstack_rele(ill->ill_ipst->ips_netstack); 4955 mi_free(ill); 4956 } 4957 rw_exit(&ipst->ips_ill_g_lock); 4958 if (error != NULL) 4959 *error = ENOMEM; 4960 return (NULL); 4961 } 4962 4963 /* 4964 * For IPP calls - use the ip_stack_t for global stack. 4965 */ 4966 ill_t * 4967 ill_lookup_on_ifindex_global_instance(uint_t index, boolean_t isv6, 4968 queue_t *q, mblk_t *mp, ipsq_func_t func, int *err) 4969 { 4970 ip_stack_t *ipst; 4971 ill_t *ill; 4972 4973 ipst = netstack_find_by_stackid(GLOBAL_NETSTACKID)->netstack_ip; 4974 if (ipst == NULL) { 4975 cmn_err(CE_WARN, "No ip_stack_t for zoneid zero!\n"); 4976 return (NULL); 4977 } 4978 4979 ill = ill_lookup_on_ifindex(index, isv6, q, mp, func, err, ipst); 4980 netstack_rele(ipst->ips_netstack); 4981 return (ill); 4982 } 4983 4984 /* 4985 * Return a pointer to the ill which matches the index and IP version type. 4986 */ 4987 ill_t * 4988 ill_lookup_on_ifindex(uint_t index, boolean_t isv6, queue_t *q, mblk_t *mp, 4989 ipsq_func_t func, int *err, ip_stack_t *ipst) 4990 { 4991 ill_t *ill; 4992 ipsq_t *ipsq; 4993 phyint_t *phyi; 4994 4995 ASSERT((q == NULL && mp == NULL && func == NULL && err == NULL) || 4996 (q != NULL && mp != NULL && func != NULL && err != NULL)); 4997 4998 if (err != NULL) 4999 *err = 0; 5000 5001 /* 5002 * Indexes are stored in the phyint - a common structure 5003 * to both IPv4 and IPv6. 5004 */ 5005 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 5006 phyi = avl_find(&ipst->ips_phyint_g_list->phyint_list_avl_by_index, 5007 (void *) &index, NULL); 5008 if (phyi != NULL) { 5009 ill = isv6 ? phyi->phyint_illv6: phyi->phyint_illv4; 5010 if (ill != NULL) { 5011 /* 5012 * The block comment at the start of ipif_down 5013 * explains the use of the macros used below 5014 */ 5015 GRAB_CONN_LOCK(q); 5016 mutex_enter(&ill->ill_lock); 5017 if (ILL_CAN_LOOKUP(ill)) { 5018 ill_refhold_locked(ill); 5019 mutex_exit(&ill->ill_lock); 5020 RELEASE_CONN_LOCK(q); 5021 rw_exit(&ipst->ips_ill_g_lock); 5022 return (ill); 5023 } else if (ILL_CAN_WAIT(ill, q)) { 5024 ipsq = ill->ill_phyint->phyint_ipsq; 5025 mutex_enter(&ipsq->ipsq_lock); 5026 mutex_enter(&ipsq->ipsq_xop->ipx_lock); 5027 rw_exit(&ipst->ips_ill_g_lock); 5028 mutex_exit(&ill->ill_lock); 5029 ipsq_enq(ipsq, q, mp, func, NEW_OP, ill); 5030 mutex_exit(&ipsq->ipsq_xop->ipx_lock); 5031 mutex_exit(&ipsq->ipsq_lock); 5032 RELEASE_CONN_LOCK(q); 5033 if (err != NULL) 5034 *err = EINPROGRESS; 5035 return (NULL); 5036 } 5037 RELEASE_CONN_LOCK(q); 5038 mutex_exit(&ill->ill_lock); 5039 } 5040 } 5041 rw_exit(&ipst->ips_ill_g_lock); 5042 if (err != NULL) 5043 *err = ENXIO; 5044 return (NULL); 5045 } 5046 5047 /* 5048 * Return the ifindex next in sequence after the passed in ifindex. 5049 * If there is no next ifindex for the given protocol, return 0. 5050 */ 5051 uint_t 5052 ill_get_next_ifindex(uint_t index, boolean_t isv6, ip_stack_t *ipst) 5053 { 5054 phyint_t *phyi; 5055 phyint_t *phyi_initial; 5056 uint_t ifindex; 5057 5058 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 5059 5060 if (index == 0) { 5061 phyi = avl_first( 5062 &ipst->ips_phyint_g_list->phyint_list_avl_by_index); 5063 } else { 5064 phyi = phyi_initial = avl_find( 5065 &ipst->ips_phyint_g_list->phyint_list_avl_by_index, 5066 (void *) &index, NULL); 5067 } 5068 5069 for (; phyi != NULL; 5070 phyi = avl_walk(&ipst->ips_phyint_g_list->phyint_list_avl_by_index, 5071 phyi, AVL_AFTER)) { 5072 /* 5073 * If we're not returning the first interface in the tree 5074 * and we still haven't moved past the phyint_t that 5075 * corresponds to index, avl_walk needs to be called again 5076 */ 5077 if (!((index != 0) && (phyi == phyi_initial))) { 5078 if (isv6) { 5079 if ((phyi->phyint_illv6) && 5080 ILL_CAN_LOOKUP(phyi->phyint_illv6) && 5081 (phyi->phyint_illv6->ill_isv6 == 1)) 5082 break; 5083 } else { 5084 if ((phyi->phyint_illv4) && 5085 ILL_CAN_LOOKUP(phyi->phyint_illv4) && 5086 (phyi->phyint_illv4->ill_isv6 == 0)) 5087 break; 5088 } 5089 } 5090 } 5091 5092 rw_exit(&ipst->ips_ill_g_lock); 5093 5094 if (phyi != NULL) 5095 ifindex = phyi->phyint_ifindex; 5096 else 5097 ifindex = 0; 5098 5099 return (ifindex); 5100 } 5101 5102 /* 5103 * Return the ifindex for the named interface. 5104 * If there is no next ifindex for the interface, return 0. 5105 */ 5106 uint_t 5107 ill_get_ifindex_by_name(char *name, ip_stack_t *ipst) 5108 { 5109 phyint_t *phyi; 5110 avl_index_t where = 0; 5111 uint_t ifindex; 5112 5113 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 5114 5115 if ((phyi = avl_find(&ipst->ips_phyint_g_list->phyint_list_avl_by_name, 5116 name, &where)) == NULL) { 5117 rw_exit(&ipst->ips_ill_g_lock); 5118 return (0); 5119 } 5120 5121 ifindex = phyi->phyint_ifindex; 5122 5123 rw_exit(&ipst->ips_ill_g_lock); 5124 5125 return (ifindex); 5126 } 5127 5128 /* 5129 * Obtain a reference to the ill. The ill_refcnt is a dynamic refcnt 5130 * that gives a running thread a reference to the ill. This reference must be 5131 * released by the thread when it is done accessing the ill and related 5132 * objects. ill_refcnt can not be used to account for static references 5133 * such as other structures pointing to an ill. Callers must generally 5134 * check whether an ill can be refheld by using ILL_CAN_LOOKUP macros 5135 * or be sure that the ill is not being deleted or changing state before 5136 * calling the refhold functions. A non-zero ill_refcnt ensures that the 5137 * ill won't change any of its critical state such as address, netmask etc. 5138 */ 5139 void 5140 ill_refhold(ill_t *ill) 5141 { 5142 mutex_enter(&ill->ill_lock); 5143 ill->ill_refcnt++; 5144 ILL_TRACE_REF(ill); 5145 mutex_exit(&ill->ill_lock); 5146 } 5147 5148 void 5149 ill_refhold_locked(ill_t *ill) 5150 { 5151 ASSERT(MUTEX_HELD(&ill->ill_lock)); 5152 ill->ill_refcnt++; 5153 ILL_TRACE_REF(ill); 5154 } 5155 5156 int 5157 ill_check_and_refhold(ill_t *ill) 5158 { 5159 mutex_enter(&ill->ill_lock); 5160 if (ILL_CAN_LOOKUP(ill)) { 5161 ill_refhold_locked(ill); 5162 mutex_exit(&ill->ill_lock); 5163 return (0); 5164 } 5165 mutex_exit(&ill->ill_lock); 5166 return (ILL_LOOKUP_FAILED); 5167 } 5168 5169 /* 5170 * Must not be called while holding any locks. Otherwise if this is 5171 * the last reference to be released, there is a chance of recursive mutex 5172 * panic due to ill_refrele -> ipif_ill_refrele_tail -> qwriter_ip trying 5173 * to restart an ioctl. 5174 */ 5175 void 5176 ill_refrele(ill_t *ill) 5177 { 5178 mutex_enter(&ill->ill_lock); 5179 ASSERT(ill->ill_refcnt != 0); 5180 ill->ill_refcnt--; 5181 ILL_UNTRACE_REF(ill); 5182 if (ill->ill_refcnt != 0) { 5183 /* Every ire pointing to the ill adds 1 to ill_refcnt */ 5184 mutex_exit(&ill->ill_lock); 5185 return; 5186 } 5187 5188 /* Drops the ill_lock */ 5189 ipif_ill_refrele_tail(ill); 5190 } 5191 5192 /* 5193 * Obtain a weak reference count on the ill. This reference ensures the 5194 * ill won't be freed, but the ill may change any of its critical state 5195 * such as netmask, address etc. Returns an error if the ill has started 5196 * closing. 5197 */ 5198 boolean_t 5199 ill_waiter_inc(ill_t *ill) 5200 { 5201 mutex_enter(&ill->ill_lock); 5202 if (ill->ill_state_flags & ILL_CONDEMNED) { 5203 mutex_exit(&ill->ill_lock); 5204 return (B_FALSE); 5205 } 5206 ill->ill_waiters++; 5207 mutex_exit(&ill->ill_lock); 5208 return (B_TRUE); 5209 } 5210 5211 void 5212 ill_waiter_dcr(ill_t *ill) 5213 { 5214 mutex_enter(&ill->ill_lock); 5215 ill->ill_waiters--; 5216 if (ill->ill_waiters == 0) 5217 cv_broadcast(&ill->ill_cv); 5218 mutex_exit(&ill->ill_lock); 5219 } 5220 5221 /* 5222 * Named Dispatch routine to produce a formatted report on all ILLs. 5223 * This report is accessed by using the ndd utility to "get" ND variable 5224 * "ip_ill_status". 5225 */ 5226 /* ARGSUSED */ 5227 int 5228 ip_ill_report(queue_t *q, mblk_t *mp, caddr_t arg, cred_t *ioc_cr) 5229 { 5230 ill_t *ill; 5231 ill_walk_context_t ctx; 5232 ip_stack_t *ipst; 5233 5234 ipst = CONNQ_TO_IPST(q); 5235 5236 (void) mi_mpprintf(mp, 5237 "ILL " MI_COL_HDRPAD_STR 5238 /* 01234567[89ABCDEF] */ 5239 "rq " MI_COL_HDRPAD_STR 5240 /* 01234567[89ABCDEF] */ 5241 "wq " MI_COL_HDRPAD_STR 5242 /* 01234567[89ABCDEF] */ 5243 "upcnt mxfrg err name"); 5244 /* 12345 12345 123 xxxxxxxx */ 5245 5246 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 5247 ill = ILL_START_WALK_ALL(&ctx, ipst); 5248 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 5249 (void) mi_mpprintf(mp, 5250 MI_COL_PTRFMT_STR MI_COL_PTRFMT_STR MI_COL_PTRFMT_STR 5251 "%05u %05u %03d %s", 5252 (void *)ill, (void *)ill->ill_rq, (void *)ill->ill_wq, 5253 ill->ill_ipif_up_count, 5254 ill->ill_max_frag, ill->ill_error, ill->ill_name); 5255 } 5256 rw_exit(&ipst->ips_ill_g_lock); 5257 5258 return (0); 5259 } 5260 5261 /* 5262 * Named Dispatch routine to produce a formatted report on all IPIFs. 5263 * This report is accessed by using the ndd utility to "get" ND variable 5264 * "ip_ipif_status". 5265 */ 5266 /* ARGSUSED */ 5267 int 5268 ip_ipif_report(queue_t *q, mblk_t *mp, caddr_t arg, cred_t *ioc_cr) 5269 { 5270 char buf1[INET6_ADDRSTRLEN]; 5271 char buf2[INET6_ADDRSTRLEN]; 5272 char buf3[INET6_ADDRSTRLEN]; 5273 char buf4[INET6_ADDRSTRLEN]; 5274 char buf5[INET6_ADDRSTRLEN]; 5275 char buf6[INET6_ADDRSTRLEN]; 5276 char buf[LIFNAMSIZ]; 5277 ill_t *ill; 5278 ipif_t *ipif; 5279 nv_t *nvp; 5280 uint64_t flags; 5281 zoneid_t zoneid; 5282 ill_walk_context_t ctx; 5283 ip_stack_t *ipst = CONNQ_TO_IPST(q); 5284 5285 (void) mi_mpprintf(mp, 5286 "IPIF metric mtu in/out/forward name zone flags...\n" 5287 "\tlocal address\n" 5288 "\tsrc address\n" 5289 "\tsubnet\n" 5290 "\tmask\n" 5291 "\tbroadcast\n" 5292 "\tp-p-dst"); 5293 5294 ASSERT(q->q_next == NULL); 5295 zoneid = Q_TO_CONN(q)->conn_zoneid; /* IP is a driver */ 5296 5297 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 5298 ill = ILL_START_WALK_ALL(&ctx, ipst); 5299 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 5300 for (ipif = ill->ill_ipif; ipif != NULL; 5301 ipif = ipif->ipif_next) { 5302 if (zoneid != GLOBAL_ZONEID && 5303 zoneid != ipif->ipif_zoneid && 5304 ipif->ipif_zoneid != ALL_ZONES) 5305 continue; 5306 5307 ipif_get_name(ipif, buf, sizeof (buf)); 5308 (void) mi_mpprintf(mp, 5309 MI_COL_PTRFMT_STR 5310 "%04u %05u %u/%u/%u %s %d", 5311 (void *)ipif, 5312 ipif->ipif_metric, ipif->ipif_mtu, 5313 ipif->ipif_ib_pkt_count, 5314 ipif->ipif_ob_pkt_count, 5315 ipif->ipif_fo_pkt_count, 5316 buf, 5317 ipif->ipif_zoneid); 5318 5319 flags = ipif->ipif_flags | ipif->ipif_ill->ill_flags | 5320 ipif->ipif_ill->ill_phyint->phyint_flags; 5321 5322 /* Tack on text strings for any flags. */ 5323 nvp = ipif_nv_tbl; 5324 for (; nvp < A_END(ipif_nv_tbl); nvp++) { 5325 if (nvp->nv_value & flags) 5326 (void) mi_mpprintf_nr(mp, " %s", 5327 nvp->nv_name); 5328 } 5329 (void) mi_mpprintf(mp, 5330 "\t%s\n\t%s\n\t%s\n\t%s\n\t%s\n\t%s", 5331 inet_ntop(AF_INET6, 5332 &ipif->ipif_v6lcl_addr, buf1, sizeof (buf1)), 5333 inet_ntop(AF_INET6, 5334 &ipif->ipif_v6src_addr, buf2, sizeof (buf2)), 5335 inet_ntop(AF_INET6, 5336 &ipif->ipif_v6subnet, buf3, sizeof (buf3)), 5337 inet_ntop(AF_INET6, 5338 &ipif->ipif_v6net_mask, buf4, sizeof (buf4)), 5339 inet_ntop(AF_INET6, 5340 &ipif->ipif_v6brd_addr, buf5, sizeof (buf5)), 5341 inet_ntop(AF_INET6, 5342 &ipif->ipif_v6pp_dst_addr, buf6, sizeof (buf6))); 5343 } 5344 } 5345 rw_exit(&ipst->ips_ill_g_lock); 5346 return (0); 5347 } 5348 5349 /* 5350 * ip_ll_subnet_defaults is called when we get the DL_INFO_ACK back from the 5351 * driver. We construct best guess defaults for lower level information that 5352 * we need. If an interface is brought up without injection of any overriding 5353 * information from outside, we have to be ready to go with these defaults. 5354 * When we get the first DL_INFO_ACK (from ip_open() sending a DL_INFO_REQ) 5355 * we primarely want the dl_provider_style. 5356 * The subsequent DL_INFO_ACK is received after doing a DL_ATTACH and DL_BIND 5357 * at which point we assume the other part of the information is valid. 5358 */ 5359 void 5360 ip_ll_subnet_defaults(ill_t *ill, mblk_t *mp) 5361 { 5362 uchar_t *brdcst_addr; 5363 uint_t brdcst_addr_length, phys_addr_length; 5364 t_scalar_t sap_length; 5365 dl_info_ack_t *dlia; 5366 ip_m_t *ipm; 5367 dl_qos_cl_sel1_t *sel1; 5368 int min_mtu; 5369 5370 ASSERT(IAM_WRITER_ILL(ill)); 5371 5372 /* 5373 * Till the ill is fully up ILL_CHANGING will be set and 5374 * the ill is not globally visible. So no need for a lock. 5375 */ 5376 dlia = (dl_info_ack_t *)mp->b_rptr; 5377 ill->ill_mactype = dlia->dl_mac_type; 5378 5379 ipm = ip_m_lookup(dlia->dl_mac_type); 5380 if (ipm == NULL) { 5381 ipm = ip_m_lookup(DL_OTHER); 5382 ASSERT(ipm != NULL); 5383 } 5384 ill->ill_media = ipm; 5385 5386 /* 5387 * When the new DLPI stuff is ready we'll pull lengths 5388 * from dlia. 5389 */ 5390 if (dlia->dl_version == DL_VERSION_2) { 5391 brdcst_addr_length = dlia->dl_brdcst_addr_length; 5392 brdcst_addr = mi_offset_param(mp, dlia->dl_brdcst_addr_offset, 5393 brdcst_addr_length); 5394 if (brdcst_addr == NULL) { 5395 brdcst_addr_length = 0; 5396 } 5397 sap_length = dlia->dl_sap_length; 5398 phys_addr_length = dlia->dl_addr_length - ABS(sap_length); 5399 ip1dbg(("ip: bcast_len %d, sap_len %d, phys_len %d\n", 5400 brdcst_addr_length, sap_length, phys_addr_length)); 5401 } else { 5402 brdcst_addr_length = 6; 5403 brdcst_addr = ip_six_byte_all_ones; 5404 sap_length = -2; 5405 phys_addr_length = brdcst_addr_length; 5406 } 5407 5408 ill->ill_bcast_addr_length = brdcst_addr_length; 5409 ill->ill_phys_addr_length = phys_addr_length; 5410 ill->ill_sap_length = sap_length; 5411 5412 /* 5413 * Synthetic DLPI types such as SUNW_DL_IPMP specify a zero SDU, 5414 * but we must ensure a minimum IP MTU is used since other bits of 5415 * IP will fly apart otherwise. 5416 */ 5417 min_mtu = ill->ill_isv6 ? IPV6_MIN_MTU : IP_MIN_MTU; 5418 ill->ill_max_frag = MAX(min_mtu, dlia->dl_max_sdu); 5419 ill->ill_max_mtu = ill->ill_max_frag; 5420 5421 ill->ill_type = ipm->ip_m_type; 5422 5423 if (!ill->ill_dlpi_style_set) { 5424 if (dlia->dl_provider_style == DL_STYLE2) 5425 ill->ill_needs_attach = 1; 5426 5427 /* 5428 * Allocate the first ipif on this ill. We don't delay it 5429 * further as ioctl handling assumes atleast one ipif to 5430 * be present. 5431 * 5432 * At this point we don't know whether the ill is v4 or v6. 5433 * We will know this whan the SIOCSLIFNAME happens and 5434 * the correct value for ill_isv6 will be assigned in 5435 * ipif_set_values(). We need to hold the ill lock and 5436 * clear the ILL_LL_SUBNET_PENDING flag and atomically do 5437 * the wakeup. 5438 */ 5439 (void) ipif_allocate(ill, 0, IRE_LOCAL, 5440 dlia->dl_provider_style != DL_STYLE2, B_TRUE); 5441 mutex_enter(&ill->ill_lock); 5442 ASSERT(ill->ill_dlpi_style_set == 0); 5443 ill->ill_dlpi_style_set = 1; 5444 ill->ill_state_flags &= ~ILL_LL_SUBNET_PENDING; 5445 cv_broadcast(&ill->ill_cv); 5446 mutex_exit(&ill->ill_lock); 5447 freemsg(mp); 5448 return; 5449 } 5450 ASSERT(ill->ill_ipif != NULL); 5451 /* 5452 * We know whether it is IPv4 or IPv6 now, as this is the 5453 * second DL_INFO_ACK we are recieving in response to the 5454 * DL_INFO_REQ sent in ipif_set_values. 5455 */ 5456 if (ill->ill_isv6) 5457 ill->ill_sap = IP6_DL_SAP; 5458 else 5459 ill->ill_sap = IP_DL_SAP; 5460 /* 5461 * Set ipif_mtu which is used to set the IRE's 5462 * ire_max_frag value. The driver could have sent 5463 * a different mtu from what it sent last time. No 5464 * need to call ipif_mtu_change because IREs have 5465 * not yet been created. 5466 */ 5467 ill->ill_ipif->ipif_mtu = ill->ill_max_mtu; 5468 /* 5469 * Clear all the flags that were set based on ill_bcast_addr_length 5470 * and ill_phys_addr_length (in ipif_set_values) as these could have 5471 * changed now and we need to re-evaluate. 5472 */ 5473 ill->ill_flags &= ~(ILLF_MULTICAST | ILLF_NONUD | ILLF_NOARP); 5474 ill->ill_ipif->ipif_flags &= ~(IPIF_BROADCAST | IPIF_POINTOPOINT); 5475 5476 /* 5477 * Free ill_resolver_mp and ill_bcast_mp as things could have 5478 * changed now. 5479 * 5480 * NOTE: The IPMP meta-interface is special-cased because it starts 5481 * with no underlying interfaces (and thus an unknown broadcast 5482 * address length), but we enforce that an interface is broadcast- 5483 * capable as part of allowing it to join a group. 5484 */ 5485 if (ill->ill_bcast_addr_length == 0 && !IS_IPMP(ill)) { 5486 if (ill->ill_resolver_mp != NULL) 5487 freemsg(ill->ill_resolver_mp); 5488 if (ill->ill_bcast_mp != NULL) 5489 freemsg(ill->ill_bcast_mp); 5490 if (ill->ill_flags & ILLF_XRESOLV) 5491 ill->ill_net_type = IRE_IF_RESOLVER; 5492 else 5493 ill->ill_net_type = IRE_IF_NORESOLVER; 5494 ill->ill_resolver_mp = ill_dlur_gen(NULL, 5495 ill->ill_phys_addr_length, 5496 ill->ill_sap, 5497 ill->ill_sap_length); 5498 ill->ill_bcast_mp = copymsg(ill->ill_resolver_mp); 5499 5500 if (ill->ill_isv6) 5501 /* 5502 * Note: xresolv interfaces will eventually need NOARP 5503 * set here as well, but that will require those 5504 * external resolvers to have some knowledge of 5505 * that flag and act appropriately. Not to be changed 5506 * at present. 5507 */ 5508 ill->ill_flags |= ILLF_NONUD; 5509 else 5510 ill->ill_flags |= ILLF_NOARP; 5511 5512 if (ill->ill_phys_addr_length == 0) { 5513 if (ill->ill_media->ip_m_mac_type == SUNW_DL_VNI) { 5514 ill->ill_ipif->ipif_flags |= IPIF_NOXMIT; 5515 ill->ill_phyint->phyint_flags |= PHYI_VIRTUAL; 5516 } else { 5517 /* pt-pt supports multicast. */ 5518 ill->ill_flags |= ILLF_MULTICAST; 5519 ill->ill_ipif->ipif_flags |= IPIF_POINTOPOINT; 5520 } 5521 } 5522 } else { 5523 ill->ill_net_type = IRE_IF_RESOLVER; 5524 if (ill->ill_bcast_mp != NULL) 5525 freemsg(ill->ill_bcast_mp); 5526 ill->ill_bcast_mp = ill_dlur_gen(brdcst_addr, 5527 ill->ill_bcast_addr_length, ill->ill_sap, 5528 ill->ill_sap_length); 5529 /* 5530 * Later detect lack of DLPI driver multicast 5531 * capability by catching DL_ENABMULTI errors in 5532 * ip_rput_dlpi. 5533 */ 5534 ill->ill_flags |= ILLF_MULTICAST; 5535 if (!ill->ill_isv6) 5536 ill->ill_ipif->ipif_flags |= IPIF_BROADCAST; 5537 } 5538 5539 /* For IPMP, PHYI_IPMP should already be set by ipif_allocate() */ 5540 if (ill->ill_mactype == SUNW_DL_IPMP) 5541 ASSERT(ill->ill_phyint->phyint_flags & PHYI_IPMP); 5542 5543 /* By default an interface does not support any CoS marking */ 5544 ill->ill_flags &= ~ILLF_COS_ENABLED; 5545 5546 /* 5547 * If we get QoS information in DL_INFO_ACK, the device supports 5548 * some form of CoS marking, set ILLF_COS_ENABLED. 5549 */ 5550 sel1 = (dl_qos_cl_sel1_t *)mi_offset_param(mp, dlia->dl_qos_offset, 5551 dlia->dl_qos_length); 5552 if ((sel1 != NULL) && (sel1->dl_qos_type == DL_QOS_CL_SEL1)) { 5553 ill->ill_flags |= ILLF_COS_ENABLED; 5554 } 5555 5556 /* Clear any previous error indication. */ 5557 ill->ill_error = 0; 5558 freemsg(mp); 5559 } 5560 5561 /* 5562 * Perform various checks to verify that an address would make sense as a 5563 * local, remote, or subnet interface address. 5564 */ 5565 static boolean_t 5566 ip_addr_ok_v4(ipaddr_t addr, ipaddr_t subnet_mask) 5567 { 5568 ipaddr_t net_mask; 5569 5570 /* 5571 * Don't allow all zeroes, or all ones, but allow 5572 * all ones netmask. 5573 */ 5574 if ((net_mask = ip_net_mask(addr)) == 0) 5575 return (B_FALSE); 5576 /* A given netmask overrides the "guess" netmask */ 5577 if (subnet_mask != 0) 5578 net_mask = subnet_mask; 5579 if ((net_mask != ~(ipaddr_t)0) && ((addr == (addr & net_mask)) || 5580 (addr == (addr | ~net_mask)))) { 5581 return (B_FALSE); 5582 } 5583 5584 /* 5585 * Even if the netmask is all ones, we do not allow address to be 5586 * 255.255.255.255 5587 */ 5588 if (addr == INADDR_BROADCAST) 5589 return (B_FALSE); 5590 5591 if (CLASSD(addr)) 5592 return (B_FALSE); 5593 5594 return (B_TRUE); 5595 } 5596 5597 #define V6_IPIF_LINKLOCAL(p) \ 5598 IN6_IS_ADDR_LINKLOCAL(&(p)->ipif_v6lcl_addr) 5599 5600 /* 5601 * Compare two given ipifs and check if the second one is better than 5602 * the first one using the order of preference (not taking deprecated 5603 * into acount) specified in ipif_lookup_multicast(). 5604 */ 5605 static boolean_t 5606 ipif_comp_multi(ipif_t *old_ipif, ipif_t *new_ipif, boolean_t isv6) 5607 { 5608 /* Check the least preferred first. */ 5609 if (IS_LOOPBACK(old_ipif->ipif_ill)) { 5610 /* If both ipifs are the same, use the first one. */ 5611 if (IS_LOOPBACK(new_ipif->ipif_ill)) 5612 return (B_FALSE); 5613 else 5614 return (B_TRUE); 5615 } 5616 5617 /* For IPv6, check for link local address. */ 5618 if (isv6 && V6_IPIF_LINKLOCAL(old_ipif)) { 5619 if (IS_LOOPBACK(new_ipif->ipif_ill) || 5620 V6_IPIF_LINKLOCAL(new_ipif)) { 5621 /* The second one is equal or less preferred. */ 5622 return (B_FALSE); 5623 } else { 5624 return (B_TRUE); 5625 } 5626 } 5627 5628 /* Then check for point to point interface. */ 5629 if (old_ipif->ipif_flags & IPIF_POINTOPOINT) { 5630 if (IS_LOOPBACK(new_ipif->ipif_ill) || 5631 (isv6 && V6_IPIF_LINKLOCAL(new_ipif)) || 5632 (new_ipif->ipif_flags & IPIF_POINTOPOINT)) { 5633 return (B_FALSE); 5634 } else { 5635 return (B_TRUE); 5636 } 5637 } 5638 5639 /* old_ipif is a normal interface, so no need to use the new one. */ 5640 return (B_FALSE); 5641 } 5642 5643 /* 5644 * Find a mulitcast-capable ipif given an IP instance and zoneid. 5645 * The ipif must be up, and its ill must multicast-capable, not 5646 * condemned, not an underlying interface in an IPMP group, and 5647 * not a VNI interface. Order of preference: 5648 * 5649 * 1a. normal 5650 * 1b. normal, but deprecated 5651 * 2a. point to point 5652 * 2b. point to point, but deprecated 5653 * 3a. link local 5654 * 3b. link local, but deprecated 5655 * 4. loopback. 5656 */ 5657 ipif_t * 5658 ipif_lookup_multicast(ip_stack_t *ipst, zoneid_t zoneid, boolean_t isv6) 5659 { 5660 ill_t *ill; 5661 ill_walk_context_t ctx; 5662 ipif_t *ipif; 5663 ipif_t *saved_ipif = NULL; 5664 ipif_t *dep_ipif = NULL; 5665 5666 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 5667 if (isv6) 5668 ill = ILL_START_WALK_V6(&ctx, ipst); 5669 else 5670 ill = ILL_START_WALK_V4(&ctx, ipst); 5671 5672 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 5673 mutex_enter(&ill->ill_lock); 5674 if (IS_VNI(ill) || IS_UNDER_IPMP(ill) || !ILL_CAN_LOOKUP(ill) || 5675 !(ill->ill_flags & ILLF_MULTICAST)) { 5676 mutex_exit(&ill->ill_lock); 5677 continue; 5678 } 5679 for (ipif = ill->ill_ipif; ipif != NULL; 5680 ipif = ipif->ipif_next) { 5681 if (zoneid != ipif->ipif_zoneid && 5682 zoneid != ALL_ZONES && 5683 ipif->ipif_zoneid != ALL_ZONES) { 5684 continue; 5685 } 5686 if (!(ipif->ipif_flags & IPIF_UP) || 5687 !IPIF_CAN_LOOKUP(ipif)) { 5688 continue; 5689 } 5690 5691 /* 5692 * Found one candidate. If it is deprecated, 5693 * remember it in dep_ipif. If it is not deprecated, 5694 * remember it in saved_ipif. 5695 */ 5696 if (ipif->ipif_flags & IPIF_DEPRECATED) { 5697 if (dep_ipif == NULL) { 5698 dep_ipif = ipif; 5699 } else if (ipif_comp_multi(dep_ipif, ipif, 5700 isv6)) { 5701 /* 5702 * If the previous dep_ipif does not 5703 * belong to the same ill, we've done 5704 * a ipif_refhold() on it. So we need 5705 * to release it. 5706 */ 5707 if (dep_ipif->ipif_ill != ill) 5708 ipif_refrele(dep_ipif); 5709 dep_ipif = ipif; 5710 } 5711 continue; 5712 } 5713 if (saved_ipif == NULL) { 5714 saved_ipif = ipif; 5715 } else { 5716 if (ipif_comp_multi(saved_ipif, ipif, isv6)) { 5717 if (saved_ipif->ipif_ill != ill) 5718 ipif_refrele(saved_ipif); 5719 saved_ipif = ipif; 5720 } 5721 } 5722 } 5723 /* 5724 * Before going to the next ill, do a ipif_refhold() on the 5725 * saved ones. 5726 */ 5727 if (saved_ipif != NULL && saved_ipif->ipif_ill == ill) 5728 ipif_refhold_locked(saved_ipif); 5729 if (dep_ipif != NULL && dep_ipif->ipif_ill == ill) 5730 ipif_refhold_locked(dep_ipif); 5731 mutex_exit(&ill->ill_lock); 5732 } 5733 rw_exit(&ipst->ips_ill_g_lock); 5734 5735 /* 5736 * If we have only the saved_ipif, return it. But if we have both 5737 * saved_ipif and dep_ipif, check to see which one is better. 5738 */ 5739 if (saved_ipif != NULL) { 5740 if (dep_ipif != NULL) { 5741 if (ipif_comp_multi(saved_ipif, dep_ipif, isv6)) { 5742 ipif_refrele(saved_ipif); 5743 return (dep_ipif); 5744 } else { 5745 ipif_refrele(dep_ipif); 5746 return (saved_ipif); 5747 } 5748 } 5749 return (saved_ipif); 5750 } else { 5751 return (dep_ipif); 5752 } 5753 } 5754 5755 /* 5756 * This function is called when an application does not specify an interface 5757 * to be used for multicast traffic (joining a group/sending data). It 5758 * calls ire_lookup_multi() to look for an interface route for the 5759 * specified multicast group. Doing this allows the administrator to add 5760 * prefix routes for multicast to indicate which interface to be used for 5761 * multicast traffic in the above scenario. The route could be for all 5762 * multicast (224.0/4), for a single multicast group (a /32 route) or 5763 * anything in between. If there is no such multicast route, we just find 5764 * any multicast capable interface and return it. The returned ipif 5765 * is refhold'ed. 5766 */ 5767 ipif_t * 5768 ipif_lookup_group(ipaddr_t group, zoneid_t zoneid, ip_stack_t *ipst) 5769 { 5770 ire_t *ire; 5771 ipif_t *ipif; 5772 5773 ire = ire_lookup_multi(group, zoneid, ipst); 5774 if (ire != NULL) { 5775 ipif = ire->ire_ipif; 5776 ipif_refhold(ipif); 5777 ire_refrele(ire); 5778 return (ipif); 5779 } 5780 5781 return (ipif_lookup_multicast(ipst, zoneid, B_FALSE)); 5782 } 5783 5784 /* 5785 * Look for an ipif with the specified interface address and destination. 5786 * The destination address is used only for matching point-to-point interfaces. 5787 */ 5788 ipif_t * 5789 ipif_lookup_interface(ipaddr_t if_addr, ipaddr_t dst, queue_t *q, mblk_t *mp, 5790 ipsq_func_t func, int *error, ip_stack_t *ipst) 5791 { 5792 ipif_t *ipif; 5793 ill_t *ill; 5794 ill_walk_context_t ctx; 5795 ipsq_t *ipsq; 5796 5797 if (error != NULL) 5798 *error = 0; 5799 5800 /* 5801 * First match all the point-to-point interfaces 5802 * before looking at non-point-to-point interfaces. 5803 * This is done to avoid returning non-point-to-point 5804 * ipif instead of unnumbered point-to-point ipif. 5805 */ 5806 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 5807 ill = ILL_START_WALK_V4(&ctx, ipst); 5808 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 5809 GRAB_CONN_LOCK(q); 5810 mutex_enter(&ill->ill_lock); 5811 for (ipif = ill->ill_ipif; ipif != NULL; 5812 ipif = ipif->ipif_next) { 5813 /* Allow the ipif to be down */ 5814 if ((ipif->ipif_flags & IPIF_POINTOPOINT) && 5815 (ipif->ipif_lcl_addr == if_addr) && 5816 (ipif->ipif_pp_dst_addr == dst)) { 5817 /* 5818 * The block comment at the start of ipif_down 5819 * explains the use of the macros used below 5820 */ 5821 if (IPIF_CAN_LOOKUP(ipif)) { 5822 ipif_refhold_locked(ipif); 5823 mutex_exit(&ill->ill_lock); 5824 RELEASE_CONN_LOCK(q); 5825 rw_exit(&ipst->ips_ill_g_lock); 5826 return (ipif); 5827 } else if (IPIF_CAN_WAIT(ipif, q)) { 5828 ipsq = ill->ill_phyint->phyint_ipsq; 5829 mutex_enter(&ipsq->ipsq_lock); 5830 mutex_enter(&ipsq->ipsq_xop->ipx_lock); 5831 mutex_exit(&ill->ill_lock); 5832 rw_exit(&ipst->ips_ill_g_lock); 5833 ipsq_enq(ipsq, q, mp, func, NEW_OP, 5834 ill); 5835 mutex_exit(&ipsq->ipsq_xop->ipx_lock); 5836 mutex_exit(&ipsq->ipsq_lock); 5837 RELEASE_CONN_LOCK(q); 5838 if (error != NULL) 5839 *error = EINPROGRESS; 5840 return (NULL); 5841 } 5842 } 5843 } 5844 mutex_exit(&ill->ill_lock); 5845 RELEASE_CONN_LOCK(q); 5846 } 5847 rw_exit(&ipst->ips_ill_g_lock); 5848 5849 /* lookup the ipif based on interface address */ 5850 ipif = ipif_lookup_addr(if_addr, NULL, ALL_ZONES, q, mp, func, error, 5851 ipst); 5852 ASSERT(ipif == NULL || !ipif->ipif_isv6); 5853 return (ipif); 5854 } 5855 5856 /* 5857 * Common function for ipif_lookup_addr() and ipif_lookup_addr_exact(). 5858 */ 5859 static ipif_t * 5860 ipif_lookup_addr_common(ipaddr_t addr, ill_t *match_ill, boolean_t match_illgrp, 5861 zoneid_t zoneid, queue_t *q, mblk_t *mp, ipsq_func_t func, int *error, 5862 ip_stack_t *ipst) 5863 { 5864 ipif_t *ipif; 5865 ill_t *ill; 5866 boolean_t ptp = B_FALSE; 5867 ipsq_t *ipsq; 5868 ill_walk_context_t ctx; 5869 5870 if (error != NULL) 5871 *error = 0; 5872 5873 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 5874 /* 5875 * Repeat twice, first based on local addresses and 5876 * next time for pointopoint. 5877 */ 5878 repeat: 5879 ill = ILL_START_WALK_V4(&ctx, ipst); 5880 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 5881 if (match_ill != NULL && ill != match_ill && 5882 (!match_illgrp || !IS_IN_SAME_ILLGRP(ill, match_ill))) { 5883 continue; 5884 } 5885 GRAB_CONN_LOCK(q); 5886 mutex_enter(&ill->ill_lock); 5887 for (ipif = ill->ill_ipif; ipif != NULL; 5888 ipif = ipif->ipif_next) { 5889 if (zoneid != ALL_ZONES && 5890 zoneid != ipif->ipif_zoneid && 5891 ipif->ipif_zoneid != ALL_ZONES) 5892 continue; 5893 /* Allow the ipif to be down */ 5894 if ((!ptp && (ipif->ipif_lcl_addr == addr) && 5895 ((ipif->ipif_flags & IPIF_UNNUMBERED) == 0)) || 5896 (ptp && (ipif->ipif_flags & IPIF_POINTOPOINT) && 5897 (ipif->ipif_pp_dst_addr == addr))) { 5898 /* 5899 * The block comment at the start of ipif_down 5900 * explains the use of the macros used below 5901 */ 5902 if (IPIF_CAN_LOOKUP(ipif)) { 5903 ipif_refhold_locked(ipif); 5904 mutex_exit(&ill->ill_lock); 5905 RELEASE_CONN_LOCK(q); 5906 rw_exit(&ipst->ips_ill_g_lock); 5907 return (ipif); 5908 } else if (IPIF_CAN_WAIT(ipif, q)) { 5909 ipsq = ill->ill_phyint->phyint_ipsq; 5910 mutex_enter(&ipsq->ipsq_lock); 5911 mutex_enter(&ipsq->ipsq_xop->ipx_lock); 5912 mutex_exit(&ill->ill_lock); 5913 rw_exit(&ipst->ips_ill_g_lock); 5914 ipsq_enq(ipsq, q, mp, func, NEW_OP, 5915 ill); 5916 mutex_exit(&ipsq->ipsq_xop->ipx_lock); 5917 mutex_exit(&ipsq->ipsq_lock); 5918 RELEASE_CONN_LOCK(q); 5919 if (error != NULL) 5920 *error = EINPROGRESS; 5921 return (NULL); 5922 } 5923 } 5924 } 5925 mutex_exit(&ill->ill_lock); 5926 RELEASE_CONN_LOCK(q); 5927 } 5928 5929 /* If we already did the ptp case, then we are done */ 5930 if (ptp) { 5931 rw_exit(&ipst->ips_ill_g_lock); 5932 if (error != NULL) 5933 *error = ENXIO; 5934 return (NULL); 5935 } 5936 ptp = B_TRUE; 5937 goto repeat; 5938 } 5939 5940 /* 5941 * Check if the address exists in the system. 5942 * We don't hold the conn_lock as we will not perform defered ipsqueue 5943 * operation. 5944 */ 5945 boolean_t 5946 ip_addr_exists(ipaddr_t addr, zoneid_t zoneid, ip_stack_t *ipst) 5947 { 5948 ipif_t *ipif; 5949 ill_t *ill; 5950 ill_walk_context_t ctx; 5951 5952 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 5953 5954 ill = ILL_START_WALK_V4(&ctx, ipst); 5955 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 5956 mutex_enter(&ill->ill_lock); 5957 for (ipif = ill->ill_ipif; ipif != NULL; 5958 ipif = ipif->ipif_next) { 5959 if (zoneid != ALL_ZONES && 5960 zoneid != ipif->ipif_zoneid && 5961 ipif->ipif_zoneid != ALL_ZONES) 5962 continue; 5963 /* Allow the ipif to be down */ 5964 /* 5965 * XXX Different from ipif_lookup_addr(), we don't do 5966 * twice lookups. As from bind()'s point of view, we 5967 * may return once we find a match. 5968 */ 5969 if (((ipif->ipif_lcl_addr == addr) && 5970 ((ipif->ipif_flags & IPIF_UNNUMBERED) == 0)) || 5971 ((ipif->ipif_flags & IPIF_POINTOPOINT) && 5972 (ipif->ipif_pp_dst_addr == addr))) { 5973 /* 5974 * Allow bind() to be successful even if the 5975 * ipif is with IPIF_CHANGING bit set. 5976 */ 5977 mutex_exit(&ill->ill_lock); 5978 rw_exit(&ipst->ips_ill_g_lock); 5979 return (B_TRUE); 5980 } 5981 } 5982 mutex_exit(&ill->ill_lock); 5983 } 5984 5985 rw_exit(&ipst->ips_ill_g_lock); 5986 return (B_FALSE); 5987 } 5988 5989 /* 5990 * Lookup an ipif with the specified address. For point-to-point links we 5991 * look for matches on either the destination address or the local address, 5992 * but we skip the local address check if IPIF_UNNUMBERED is set. If the 5993 * `match_ill' argument is non-NULL, the lookup is restricted to that ill 5994 * (or illgrp if `match_ill' is in an IPMP group). 5995 */ 5996 ipif_t * 5997 ipif_lookup_addr(ipaddr_t addr, ill_t *match_ill, zoneid_t zoneid, queue_t *q, 5998 mblk_t *mp, ipsq_func_t func, int *error, ip_stack_t *ipst) 5999 { 6000 return (ipif_lookup_addr_common(addr, match_ill, B_TRUE, zoneid, q, mp, 6001 func, error, ipst)); 6002 } 6003 6004 /* 6005 * Special abbreviated version of ipif_lookup_addr() that doesn't match 6006 * `match_ill' across the IPMP group. This function is only needed in some 6007 * corner-cases; almost everything should use ipif_lookup_addr(). 6008 */ 6009 static ipif_t * 6010 ipif_lookup_addr_exact(ipaddr_t addr, ill_t *match_ill, ip_stack_t *ipst) 6011 { 6012 ASSERT(match_ill != NULL); 6013 return (ipif_lookup_addr_common(addr, match_ill, B_FALSE, ALL_ZONES, 6014 NULL, NULL, NULL, NULL, ipst)); 6015 } 6016 6017 /* 6018 * Look for an ipif with the specified address. For point-point links 6019 * we look for matches on either the destination address and the local 6020 * address, but we ignore the check on the local address if IPIF_UNNUMBERED 6021 * is set. 6022 * If the `match_ill' argument is non-NULL, the lookup is restricted to that 6023 * ill (or illgrp if `match_ill' is in an IPMP group). 6024 * Return the zoneid for the ipif which matches. ALL_ZONES if no match. 6025 */ 6026 zoneid_t 6027 ipif_lookup_addr_zoneid(ipaddr_t addr, ill_t *match_ill, ip_stack_t *ipst) 6028 { 6029 zoneid_t zoneid; 6030 ipif_t *ipif; 6031 ill_t *ill; 6032 boolean_t ptp = B_FALSE; 6033 ill_walk_context_t ctx; 6034 6035 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 6036 /* 6037 * Repeat twice, first based on local addresses and 6038 * next time for pointopoint. 6039 */ 6040 repeat: 6041 ill = ILL_START_WALK_V4(&ctx, ipst); 6042 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 6043 if (match_ill != NULL && ill != match_ill && 6044 !IS_IN_SAME_ILLGRP(ill, match_ill)) { 6045 continue; 6046 } 6047 mutex_enter(&ill->ill_lock); 6048 for (ipif = ill->ill_ipif; ipif != NULL; 6049 ipif = ipif->ipif_next) { 6050 /* Allow the ipif to be down */ 6051 if ((!ptp && (ipif->ipif_lcl_addr == addr) && 6052 ((ipif->ipif_flags & IPIF_UNNUMBERED) == 0)) || 6053 (ptp && (ipif->ipif_flags & IPIF_POINTOPOINT) && 6054 (ipif->ipif_pp_dst_addr == addr)) && 6055 !(ipif->ipif_state_flags & IPIF_CONDEMNED)) { 6056 zoneid = ipif->ipif_zoneid; 6057 mutex_exit(&ill->ill_lock); 6058 rw_exit(&ipst->ips_ill_g_lock); 6059 /* 6060 * If ipif_zoneid was ALL_ZONES then we have 6061 * a trusted extensions shared IP address. 6062 * In that case GLOBAL_ZONEID works to send. 6063 */ 6064 if (zoneid == ALL_ZONES) 6065 zoneid = GLOBAL_ZONEID; 6066 return (zoneid); 6067 } 6068 } 6069 mutex_exit(&ill->ill_lock); 6070 } 6071 6072 /* If we already did the ptp case, then we are done */ 6073 if (ptp) { 6074 rw_exit(&ipst->ips_ill_g_lock); 6075 return (ALL_ZONES); 6076 } 6077 ptp = B_TRUE; 6078 goto repeat; 6079 } 6080 6081 /* 6082 * Look for an ipif that matches the specified remote address i.e. the 6083 * ipif that would receive the specified packet. 6084 * First look for directly connected interfaces and then do a recursive 6085 * IRE lookup and pick the first ipif corresponding to the source address in the 6086 * ire. 6087 * Returns: held ipif 6088 */ 6089 ipif_t * 6090 ipif_lookup_remote(ill_t *ill, ipaddr_t addr, zoneid_t zoneid) 6091 { 6092 ipif_t *ipif; 6093 ire_t *ire; 6094 ip_stack_t *ipst = ill->ill_ipst; 6095 6096 ASSERT(!ill->ill_isv6); 6097 6098 /* 6099 * Someone could be changing this ipif currently or change it 6100 * after we return this. Thus a few packets could use the old 6101 * old values. However structure updates/creates (ire, ilg, ilm etc) 6102 * will atomically be updated or cleaned up with the new value 6103 * Thus we don't need a lock to check the flags or other attrs below. 6104 */ 6105 mutex_enter(&ill->ill_lock); 6106 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 6107 if (!IPIF_CAN_LOOKUP(ipif)) 6108 continue; 6109 if (zoneid != ALL_ZONES && zoneid != ipif->ipif_zoneid && 6110 ipif->ipif_zoneid != ALL_ZONES) 6111 continue; 6112 /* Allow the ipif to be down */ 6113 if (ipif->ipif_flags & IPIF_POINTOPOINT) { 6114 if ((ipif->ipif_pp_dst_addr == addr) || 6115 (!(ipif->ipif_flags & IPIF_UNNUMBERED) && 6116 ipif->ipif_lcl_addr == addr)) { 6117 ipif_refhold_locked(ipif); 6118 mutex_exit(&ill->ill_lock); 6119 return (ipif); 6120 } 6121 } else if (ipif->ipif_subnet == (addr & ipif->ipif_net_mask)) { 6122 ipif_refhold_locked(ipif); 6123 mutex_exit(&ill->ill_lock); 6124 return (ipif); 6125 } 6126 } 6127 mutex_exit(&ill->ill_lock); 6128 ire = ire_route_lookup(addr, 0, 0, 0, NULL, NULL, zoneid, 6129 NULL, MATCH_IRE_RECURSIVE, ipst); 6130 if (ire != NULL) { 6131 /* 6132 * The callers of this function wants to know the 6133 * interface on which they have to send the replies 6134 * back. For IREs that have ire_stq and ire_ipif 6135 * derived from different ills, we really don't care 6136 * what we return here. 6137 */ 6138 ipif = ire->ire_ipif; 6139 if (ipif != NULL) { 6140 ipif_refhold(ipif); 6141 ire_refrele(ire); 6142 return (ipif); 6143 } 6144 ire_refrele(ire); 6145 } 6146 /* Pick the first interface */ 6147 ipif = ipif_get_next_ipif(NULL, ill); 6148 return (ipif); 6149 } 6150 6151 /* 6152 * This func does not prevent refcnt from increasing. But if 6153 * the caller has taken steps to that effect, then this func 6154 * can be used to determine whether the ill has become quiescent 6155 */ 6156 static boolean_t 6157 ill_is_quiescent(ill_t *ill) 6158 { 6159 ipif_t *ipif; 6160 6161 ASSERT(MUTEX_HELD(&ill->ill_lock)); 6162 6163 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 6164 if (ipif->ipif_refcnt != 0 || !IPIF_DOWN_OK(ipif)) { 6165 return (B_FALSE); 6166 } 6167 } 6168 if (!ILL_DOWN_OK(ill) || ill->ill_refcnt != 0) { 6169 return (B_FALSE); 6170 } 6171 return (B_TRUE); 6172 } 6173 6174 boolean_t 6175 ill_is_freeable(ill_t *ill) 6176 { 6177 ipif_t *ipif; 6178 6179 ASSERT(MUTEX_HELD(&ill->ill_lock)); 6180 6181 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 6182 if (ipif->ipif_refcnt != 0 || !IPIF_FREE_OK(ipif)) { 6183 return (B_FALSE); 6184 } 6185 } 6186 if (!ILL_FREE_OK(ill) || ill->ill_refcnt != 0) { 6187 return (B_FALSE); 6188 } 6189 return (B_TRUE); 6190 } 6191 6192 /* 6193 * This func does not prevent refcnt from increasing. But if 6194 * the caller has taken steps to that effect, then this func 6195 * can be used to determine whether the ipif has become quiescent 6196 */ 6197 static boolean_t 6198 ipif_is_quiescent(ipif_t *ipif) 6199 { 6200 ill_t *ill; 6201 6202 ASSERT(MUTEX_HELD(&ipif->ipif_ill->ill_lock)); 6203 6204 if (ipif->ipif_refcnt != 0 || !IPIF_DOWN_OK(ipif)) { 6205 return (B_FALSE); 6206 } 6207 6208 ill = ipif->ipif_ill; 6209 if (ill->ill_ipif_up_count != 0 || ill->ill_ipif_dup_count != 0 || 6210 ill->ill_logical_down) { 6211 return (B_TRUE); 6212 } 6213 6214 /* This is the last ipif going down or being deleted on this ill */ 6215 if (!ILL_DOWN_OK(ill) || ill->ill_refcnt != 0) { 6216 return (B_FALSE); 6217 } 6218 6219 return (B_TRUE); 6220 } 6221 6222 /* 6223 * return true if the ipif can be destroyed: the ipif has to be quiescent 6224 * with zero references from ire/nce/ilm to it. 6225 */ 6226 static boolean_t 6227 ipif_is_freeable(ipif_t *ipif) 6228 { 6229 ASSERT(MUTEX_HELD(&ipif->ipif_ill->ill_lock)); 6230 ASSERT(ipif->ipif_id != 0); 6231 return (ipif->ipif_refcnt == 0 && IPIF_FREE_OK(ipif)); 6232 } 6233 6234 /* 6235 * The ipif/ill/ire has been refreled. Do the tail processing. 6236 * Determine if the ipif or ill in question has become quiescent and if so 6237 * wakeup close and/or restart any queued pending ioctl that is waiting 6238 * for the ipif_down (or ill_down) 6239 */ 6240 void 6241 ipif_ill_refrele_tail(ill_t *ill) 6242 { 6243 mblk_t *mp; 6244 conn_t *connp; 6245 ipsq_t *ipsq; 6246 ipxop_t *ipx; 6247 ipif_t *ipif; 6248 dl_notify_ind_t *dlindp; 6249 6250 ASSERT(MUTEX_HELD(&ill->ill_lock)); 6251 6252 if ((ill->ill_state_flags & ILL_CONDEMNED) && ill_is_freeable(ill)) { 6253 /* ip_modclose() may be waiting */ 6254 cv_broadcast(&ill->ill_cv); 6255 } 6256 6257 ipsq = ill->ill_phyint->phyint_ipsq; 6258 mutex_enter(&ipsq->ipsq_lock); 6259 ipx = ipsq->ipsq_xop; 6260 mutex_enter(&ipx->ipx_lock); 6261 if (ipx->ipx_waitfor == 0) /* no one's waiting; bail */ 6262 goto unlock; 6263 6264 ASSERT(ipx->ipx_pending_mp != NULL && ipx->ipx_pending_ipif != NULL); 6265 6266 ipif = ipx->ipx_pending_ipif; 6267 if (ipif->ipif_ill != ill) /* wait is for another ill; bail */ 6268 goto unlock; 6269 6270 switch (ipx->ipx_waitfor) { 6271 case IPIF_DOWN: 6272 if (!ipif_is_quiescent(ipif)) 6273 goto unlock; 6274 break; 6275 case IPIF_FREE: 6276 if (!ipif_is_freeable(ipif)) 6277 goto unlock; 6278 break; 6279 case ILL_DOWN: 6280 if (!ill_is_quiescent(ill)) 6281 goto unlock; 6282 break; 6283 case ILL_FREE: 6284 /* 6285 * ILL_FREE is only for loopback; normal ill teardown waits 6286 * synchronously in ip_modclose() without using ipx_waitfor, 6287 * handled by the cv_broadcast() at the top of this function. 6288 */ 6289 if (!ill_is_freeable(ill)) 6290 goto unlock; 6291 break; 6292 default: 6293 cmn_err(CE_PANIC, "ipsq: %p unknown ipx_waitfor %d\n", 6294 (void *)ipsq, ipx->ipx_waitfor); 6295 } 6296 6297 ill_refhold_locked(ill); /* for qwriter_ip() call below */ 6298 mutex_exit(&ipx->ipx_lock); 6299 mp = ipsq_pending_mp_get(ipsq, &connp); 6300 mutex_exit(&ipsq->ipsq_lock); 6301 mutex_exit(&ill->ill_lock); 6302 6303 ASSERT(mp != NULL); 6304 /* 6305 * NOTE: all of the qwriter_ip() calls below use CUR_OP since 6306 * we can only get here when the current operation decides it 6307 * it needs to quiesce via ipsq_pending_mp_add(). 6308 */ 6309 switch (mp->b_datap->db_type) { 6310 case M_PCPROTO: 6311 case M_PROTO: 6312 /* 6313 * For now, only DL_NOTIFY_IND messages can use this facility. 6314 */ 6315 dlindp = (dl_notify_ind_t *)mp->b_rptr; 6316 ASSERT(dlindp->dl_primitive == DL_NOTIFY_IND); 6317 6318 switch (dlindp->dl_notification) { 6319 case DL_NOTE_PHYS_ADDR: 6320 qwriter_ip(ill, ill->ill_rq, mp, 6321 ill_set_phys_addr_tail, CUR_OP, B_TRUE); 6322 return; 6323 default: 6324 ASSERT(0); 6325 ill_refrele(ill); 6326 } 6327 break; 6328 6329 case M_ERROR: 6330 case M_HANGUP: 6331 qwriter_ip(ill, ill->ill_rq, mp, ipif_all_down_tail, CUR_OP, 6332 B_TRUE); 6333 return; 6334 6335 case M_IOCTL: 6336 case M_IOCDATA: 6337 qwriter_ip(ill, (connp != NULL ? CONNP_TO_WQ(connp) : 6338 ill->ill_wq), mp, ip_reprocess_ioctl, CUR_OP, B_TRUE); 6339 return; 6340 6341 default: 6342 cmn_err(CE_PANIC, "ipif_ill_refrele_tail mp %p " 6343 "db_type %d\n", (void *)mp, mp->b_datap->db_type); 6344 } 6345 return; 6346 unlock: 6347 mutex_exit(&ipsq->ipsq_lock); 6348 mutex_exit(&ipx->ipx_lock); 6349 mutex_exit(&ill->ill_lock); 6350 } 6351 6352 #ifdef DEBUG 6353 /* Reuse trace buffer from beginning (if reached the end) and record trace */ 6354 static void 6355 th_trace_rrecord(th_trace_t *th_trace) 6356 { 6357 tr_buf_t *tr_buf; 6358 uint_t lastref; 6359 6360 lastref = th_trace->th_trace_lastref; 6361 lastref++; 6362 if (lastref == TR_BUF_MAX) 6363 lastref = 0; 6364 th_trace->th_trace_lastref = lastref; 6365 tr_buf = &th_trace->th_trbuf[lastref]; 6366 tr_buf->tr_time = lbolt; 6367 tr_buf->tr_depth = getpcstack(tr_buf->tr_stack, TR_STACK_DEPTH); 6368 } 6369 6370 static void 6371 th_trace_free(void *value) 6372 { 6373 th_trace_t *th_trace = value; 6374 6375 ASSERT(th_trace->th_refcnt == 0); 6376 kmem_free(th_trace, sizeof (*th_trace)); 6377 } 6378 6379 /* 6380 * Find or create the per-thread hash table used to track object references. 6381 * The ipst argument is NULL if we shouldn't allocate. 6382 * 6383 * Accesses per-thread data, so there's no need to lock here. 6384 */ 6385 static mod_hash_t * 6386 th_trace_gethash(ip_stack_t *ipst) 6387 { 6388 th_hash_t *thh; 6389 6390 if ((thh = tsd_get(ip_thread_data)) == NULL && ipst != NULL) { 6391 mod_hash_t *mh; 6392 char name[256]; 6393 size_t objsize, rshift; 6394 int retv; 6395 6396 if ((thh = kmem_alloc(sizeof (*thh), KM_NOSLEEP)) == NULL) 6397 return (NULL); 6398 (void) snprintf(name, sizeof (name), "th_trace_%p", 6399 (void *)curthread); 6400 6401 /* 6402 * We use mod_hash_create_extended here rather than the more 6403 * obvious mod_hash_create_ptrhash because the latter has a 6404 * hard-coded KM_SLEEP, and we'd prefer to fail rather than 6405 * block. 6406 */ 6407 objsize = MAX(MAX(sizeof (ill_t), sizeof (ipif_t)), 6408 MAX(sizeof (ire_t), sizeof (nce_t))); 6409 rshift = highbit(objsize); 6410 mh = mod_hash_create_extended(name, 64, mod_hash_null_keydtor, 6411 th_trace_free, mod_hash_byptr, (void *)rshift, 6412 mod_hash_ptrkey_cmp, KM_NOSLEEP); 6413 if (mh == NULL) { 6414 kmem_free(thh, sizeof (*thh)); 6415 return (NULL); 6416 } 6417 thh->thh_hash = mh; 6418 thh->thh_ipst = ipst; 6419 /* 6420 * We trace ills, ipifs, ires, and nces. All of these are 6421 * per-IP-stack, so the lock on the thread list is as well. 6422 */ 6423 rw_enter(&ip_thread_rwlock, RW_WRITER); 6424 list_insert_tail(&ip_thread_list, thh); 6425 rw_exit(&ip_thread_rwlock); 6426 retv = tsd_set(ip_thread_data, thh); 6427 ASSERT(retv == 0); 6428 } 6429 return (thh != NULL ? thh->thh_hash : NULL); 6430 } 6431 6432 boolean_t 6433 th_trace_ref(const void *obj, ip_stack_t *ipst) 6434 { 6435 th_trace_t *th_trace; 6436 mod_hash_t *mh; 6437 mod_hash_val_t val; 6438 6439 if ((mh = th_trace_gethash(ipst)) == NULL) 6440 return (B_FALSE); 6441 6442 /* 6443 * Attempt to locate the trace buffer for this obj and thread. 6444 * If it does not exist, then allocate a new trace buffer and 6445 * insert into the hash. 6446 */ 6447 if (mod_hash_find(mh, (mod_hash_key_t)obj, &val) == MH_ERR_NOTFOUND) { 6448 th_trace = kmem_zalloc(sizeof (th_trace_t), KM_NOSLEEP); 6449 if (th_trace == NULL) 6450 return (B_FALSE); 6451 6452 th_trace->th_id = curthread; 6453 if (mod_hash_insert(mh, (mod_hash_key_t)obj, 6454 (mod_hash_val_t)th_trace) != 0) { 6455 kmem_free(th_trace, sizeof (th_trace_t)); 6456 return (B_FALSE); 6457 } 6458 } else { 6459 th_trace = (th_trace_t *)val; 6460 } 6461 6462 ASSERT(th_trace->th_refcnt >= 0 && 6463 th_trace->th_refcnt < TR_BUF_MAX - 1); 6464 6465 th_trace->th_refcnt++; 6466 th_trace_rrecord(th_trace); 6467 return (B_TRUE); 6468 } 6469 6470 /* 6471 * For the purpose of tracing a reference release, we assume that global 6472 * tracing is always on and that the same thread initiated the reference hold 6473 * is releasing. 6474 */ 6475 void 6476 th_trace_unref(const void *obj) 6477 { 6478 int retv; 6479 mod_hash_t *mh; 6480 th_trace_t *th_trace; 6481 mod_hash_val_t val; 6482 6483 mh = th_trace_gethash(NULL); 6484 retv = mod_hash_find(mh, (mod_hash_key_t)obj, &val); 6485 ASSERT(retv == 0); 6486 th_trace = (th_trace_t *)val; 6487 6488 ASSERT(th_trace->th_refcnt > 0); 6489 th_trace->th_refcnt--; 6490 th_trace_rrecord(th_trace); 6491 } 6492 6493 /* 6494 * If tracing has been disabled, then we assume that the reference counts are 6495 * now useless, and we clear them out before destroying the entries. 6496 */ 6497 void 6498 th_trace_cleanup(const void *obj, boolean_t trace_disable) 6499 { 6500 th_hash_t *thh; 6501 mod_hash_t *mh; 6502 mod_hash_val_t val; 6503 th_trace_t *th_trace; 6504 int retv; 6505 6506 rw_enter(&ip_thread_rwlock, RW_READER); 6507 for (thh = list_head(&ip_thread_list); thh != NULL; 6508 thh = list_next(&ip_thread_list, thh)) { 6509 if (mod_hash_find(mh = thh->thh_hash, (mod_hash_key_t)obj, 6510 &val) == 0) { 6511 th_trace = (th_trace_t *)val; 6512 if (trace_disable) 6513 th_trace->th_refcnt = 0; 6514 retv = mod_hash_destroy(mh, (mod_hash_key_t)obj); 6515 ASSERT(retv == 0); 6516 } 6517 } 6518 rw_exit(&ip_thread_rwlock); 6519 } 6520 6521 void 6522 ipif_trace_ref(ipif_t *ipif) 6523 { 6524 ASSERT(MUTEX_HELD(&ipif->ipif_ill->ill_lock)); 6525 6526 if (ipif->ipif_trace_disable) 6527 return; 6528 6529 if (!th_trace_ref(ipif, ipif->ipif_ill->ill_ipst)) { 6530 ipif->ipif_trace_disable = B_TRUE; 6531 ipif_trace_cleanup(ipif); 6532 } 6533 } 6534 6535 void 6536 ipif_untrace_ref(ipif_t *ipif) 6537 { 6538 ASSERT(MUTEX_HELD(&ipif->ipif_ill->ill_lock)); 6539 6540 if (!ipif->ipif_trace_disable) 6541 th_trace_unref(ipif); 6542 } 6543 6544 void 6545 ill_trace_ref(ill_t *ill) 6546 { 6547 ASSERT(MUTEX_HELD(&ill->ill_lock)); 6548 6549 if (ill->ill_trace_disable) 6550 return; 6551 6552 if (!th_trace_ref(ill, ill->ill_ipst)) { 6553 ill->ill_trace_disable = B_TRUE; 6554 ill_trace_cleanup(ill); 6555 } 6556 } 6557 6558 void 6559 ill_untrace_ref(ill_t *ill) 6560 { 6561 ASSERT(MUTEX_HELD(&ill->ill_lock)); 6562 6563 if (!ill->ill_trace_disable) 6564 th_trace_unref(ill); 6565 } 6566 6567 /* 6568 * Called when ipif is unplumbed or when memory alloc fails. Note that on 6569 * failure, ipif_trace_disable is set. 6570 */ 6571 static void 6572 ipif_trace_cleanup(const ipif_t *ipif) 6573 { 6574 th_trace_cleanup(ipif, ipif->ipif_trace_disable); 6575 } 6576 6577 /* 6578 * Called when ill is unplumbed or when memory alloc fails. Note that on 6579 * failure, ill_trace_disable is set. 6580 */ 6581 static void 6582 ill_trace_cleanup(const ill_t *ill) 6583 { 6584 th_trace_cleanup(ill, ill->ill_trace_disable); 6585 } 6586 #endif /* DEBUG */ 6587 6588 void 6589 ipif_refhold_locked(ipif_t *ipif) 6590 { 6591 ASSERT(MUTEX_HELD(&ipif->ipif_ill->ill_lock)); 6592 ipif->ipif_refcnt++; 6593 IPIF_TRACE_REF(ipif); 6594 } 6595 6596 void 6597 ipif_refhold(ipif_t *ipif) 6598 { 6599 ill_t *ill; 6600 6601 ill = ipif->ipif_ill; 6602 mutex_enter(&ill->ill_lock); 6603 ipif->ipif_refcnt++; 6604 IPIF_TRACE_REF(ipif); 6605 mutex_exit(&ill->ill_lock); 6606 } 6607 6608 /* 6609 * Must not be called while holding any locks. Otherwise if this is 6610 * the last reference to be released there is a chance of recursive mutex 6611 * panic due to ipif_refrele -> ipif_ill_refrele_tail -> qwriter_ip trying 6612 * to restart an ioctl. 6613 */ 6614 void 6615 ipif_refrele(ipif_t *ipif) 6616 { 6617 ill_t *ill; 6618 6619 ill = ipif->ipif_ill; 6620 6621 mutex_enter(&ill->ill_lock); 6622 ASSERT(ipif->ipif_refcnt != 0); 6623 ipif->ipif_refcnt--; 6624 IPIF_UNTRACE_REF(ipif); 6625 if (ipif->ipif_refcnt != 0) { 6626 mutex_exit(&ill->ill_lock); 6627 return; 6628 } 6629 6630 /* Drops the ill_lock */ 6631 ipif_ill_refrele_tail(ill); 6632 } 6633 6634 ipif_t * 6635 ipif_get_next_ipif(ipif_t *curr, ill_t *ill) 6636 { 6637 ipif_t *ipif; 6638 6639 mutex_enter(&ill->ill_lock); 6640 for (ipif = (curr == NULL ? ill->ill_ipif : curr->ipif_next); 6641 ipif != NULL; ipif = ipif->ipif_next) { 6642 if (!IPIF_CAN_LOOKUP(ipif)) 6643 continue; 6644 ipif_refhold_locked(ipif); 6645 mutex_exit(&ill->ill_lock); 6646 return (ipif); 6647 } 6648 mutex_exit(&ill->ill_lock); 6649 return (NULL); 6650 } 6651 6652 /* 6653 * TODO: make this table extendible at run time 6654 * Return a pointer to the mac type info for 'mac_type' 6655 */ 6656 static ip_m_t * 6657 ip_m_lookup(t_uscalar_t mac_type) 6658 { 6659 ip_m_t *ipm; 6660 6661 for (ipm = ip_m_tbl; ipm < A_END(ip_m_tbl); ipm++) 6662 if (ipm->ip_m_mac_type == mac_type) 6663 return (ipm); 6664 return (NULL); 6665 } 6666 6667 /* 6668 * ip_rt_add is called to add an IPv4 route to the forwarding table. 6669 * ipif_arg is passed in to associate it with the correct interface. 6670 * We may need to restart this operation if the ipif cannot be looked up 6671 * due to an exclusive operation that is currently in progress. The restart 6672 * entry point is specified by 'func' 6673 */ 6674 int 6675 ip_rt_add(ipaddr_t dst_addr, ipaddr_t mask, ipaddr_t gw_addr, 6676 ipaddr_t src_addr, int flags, ipif_t *ipif_arg, ire_t **ire_arg, 6677 boolean_t ioctl_msg, queue_t *q, mblk_t *mp, ipsq_func_t func, 6678 struct rtsa_s *sp, ip_stack_t *ipst) 6679 { 6680 ire_t *ire; 6681 ire_t *gw_ire = NULL; 6682 ipif_t *ipif = NULL; 6683 boolean_t ipif_refheld = B_FALSE; 6684 uint_t type; 6685 int match_flags = MATCH_IRE_TYPE; 6686 int error; 6687 tsol_gc_t *gc = NULL; 6688 tsol_gcgrp_t *gcgrp = NULL; 6689 boolean_t gcgrp_xtraref = B_FALSE; 6690 6691 ip1dbg(("ip_rt_add:")); 6692 6693 if (ire_arg != NULL) 6694 *ire_arg = NULL; 6695 6696 /* 6697 * If this is the case of RTF_HOST being set, then we set the netmask 6698 * to all ones (regardless if one was supplied). 6699 */ 6700 if (flags & RTF_HOST) 6701 mask = IP_HOST_MASK; 6702 6703 /* 6704 * Prevent routes with a zero gateway from being created (since 6705 * interfaces can currently be plumbed and brought up no assigned 6706 * address). 6707 */ 6708 if (gw_addr == 0) 6709 return (ENETUNREACH); 6710 /* 6711 * Get the ipif, if any, corresponding to the gw_addr 6712 */ 6713 ipif = ipif_lookup_interface(gw_addr, dst_addr, q, mp, func, &error, 6714 ipst); 6715 if (ipif != NULL) { 6716 if (IS_VNI(ipif->ipif_ill)) { 6717 ipif_refrele(ipif); 6718 return (EINVAL); 6719 } 6720 ipif_refheld = B_TRUE; 6721 } else if (error == EINPROGRESS) { 6722 ip1dbg(("ip_rt_add: null and EINPROGRESS")); 6723 return (EINPROGRESS); 6724 } else { 6725 error = 0; 6726 } 6727 6728 if (ipif != NULL) { 6729 ip1dbg(("ip_rt_add: ipif_lookup_interface done ipif nonnull")); 6730 ASSERT(!MUTEX_HELD(&ipif->ipif_ill->ill_lock)); 6731 } else { 6732 ip1dbg(("ip_rt_add: ipif_lookup_interface done ipif is null")); 6733 } 6734 6735 /* 6736 * GateD will attempt to create routes with a loopback interface 6737 * address as the gateway and with RTF_GATEWAY set. We allow 6738 * these routes to be added, but create them as interface routes 6739 * since the gateway is an interface address. 6740 */ 6741 if ((ipif != NULL) && (ipif->ipif_ire_type == IRE_LOOPBACK)) { 6742 flags &= ~RTF_GATEWAY; 6743 if (gw_addr == INADDR_LOOPBACK && dst_addr == INADDR_LOOPBACK && 6744 mask == IP_HOST_MASK) { 6745 ire = ire_ctable_lookup(dst_addr, 0, IRE_LOOPBACK, ipif, 6746 ALL_ZONES, NULL, match_flags, ipst); 6747 if (ire != NULL) { 6748 ire_refrele(ire); 6749 if (ipif_refheld) 6750 ipif_refrele(ipif); 6751 return (EEXIST); 6752 } 6753 ip1dbg(("ipif_up_done: 0x%p creating IRE 0x%x" 6754 "for 0x%x\n", (void *)ipif, 6755 ipif->ipif_ire_type, 6756 ntohl(ipif->ipif_lcl_addr))); 6757 ire = ire_create( 6758 (uchar_t *)&dst_addr, /* dest address */ 6759 (uchar_t *)&mask, /* mask */ 6760 (uchar_t *)&ipif->ipif_src_addr, 6761 NULL, /* no gateway */ 6762 &ipif->ipif_mtu, 6763 NULL, 6764 ipif->ipif_rq, /* recv-from queue */ 6765 NULL, /* no send-to queue */ 6766 ipif->ipif_ire_type, /* LOOPBACK */ 6767 ipif, 6768 0, 6769 0, 6770 0, 6771 (ipif->ipif_flags & IPIF_PRIVATE) ? 6772 RTF_PRIVATE : 0, 6773 &ire_uinfo_null, 6774 NULL, 6775 NULL, 6776 ipst); 6777 6778 if (ire == NULL) { 6779 if (ipif_refheld) 6780 ipif_refrele(ipif); 6781 return (ENOMEM); 6782 } 6783 error = ire_add(&ire, q, mp, func, B_FALSE); 6784 if (error == 0) 6785 goto save_ire; 6786 if (ipif_refheld) 6787 ipif_refrele(ipif); 6788 return (error); 6789 6790 } 6791 } 6792 6793 /* 6794 * Traditionally, interface routes are ones where RTF_GATEWAY isn't set 6795 * and the gateway address provided is one of the system's interface 6796 * addresses. By using the routing socket interface and supplying an 6797 * RTA_IFP sockaddr with an interface index, an alternate method of 6798 * specifying an interface route to be created is available which uses 6799 * the interface index that specifies the outgoing interface rather than 6800 * the address of an outgoing interface (which may not be able to 6801 * uniquely identify an interface). When coupled with the RTF_GATEWAY 6802 * flag, routes can be specified which not only specify the next-hop to 6803 * be used when routing to a certain prefix, but also which outgoing 6804 * interface should be used. 6805 * 6806 * Previously, interfaces would have unique addresses assigned to them 6807 * and so the address assigned to a particular interface could be used 6808 * to identify a particular interface. One exception to this was the 6809 * case of an unnumbered interface (where IPIF_UNNUMBERED was set). 6810 * 6811 * With the advent of IPv6 and its link-local addresses, this 6812 * restriction was relaxed and interfaces could share addresses between 6813 * themselves. In fact, typically all of the link-local interfaces on 6814 * an IPv6 node or router will have the same link-local address. In 6815 * order to differentiate between these interfaces, the use of an 6816 * interface index is necessary and this index can be carried inside a 6817 * RTA_IFP sockaddr (which is actually a sockaddr_dl). One restriction 6818 * of using the interface index, however, is that all of the ipif's that 6819 * are part of an ill have the same index and so the RTA_IFP sockaddr 6820 * cannot be used to differentiate between ipif's (or logical 6821 * interfaces) that belong to the same ill (physical interface). 6822 * 6823 * For example, in the following case involving IPv4 interfaces and 6824 * logical interfaces 6825 * 6826 * 192.0.2.32 255.255.255.224 192.0.2.33 U if0 6827 * 192.0.2.32 255.255.255.224 192.0.2.34 U if0:1 6828 * 192.0.2.32 255.255.255.224 192.0.2.35 U if0:2 6829 * 6830 * the ipif's corresponding to each of these interface routes can be 6831 * uniquely identified by the "gateway" (actually interface address). 6832 * 6833 * In this case involving multiple IPv6 default routes to a particular 6834 * link-local gateway, the use of RTA_IFP is necessary to specify which 6835 * default route is of interest: 6836 * 6837 * default fe80::123:4567:89ab:cdef U if0 6838 * default fe80::123:4567:89ab:cdef U if1 6839 */ 6840 6841 /* RTF_GATEWAY not set */ 6842 if (!(flags & RTF_GATEWAY)) { 6843 queue_t *stq; 6844 6845 if (sp != NULL) { 6846 ip2dbg(("ip_rt_add: gateway security attributes " 6847 "cannot be set with interface route\n")); 6848 if (ipif_refheld) 6849 ipif_refrele(ipif); 6850 return (EINVAL); 6851 } 6852 6853 /* 6854 * As the interface index specified with the RTA_IFP sockaddr is 6855 * the same for all ipif's off of an ill, the matching logic 6856 * below uses MATCH_IRE_ILL if such an index was specified. 6857 * This means that routes sharing the same prefix when added 6858 * using a RTA_IFP sockaddr must have distinct interface 6859 * indices (namely, they must be on distinct ill's). 6860 * 6861 * On the other hand, since the gateway address will usually be 6862 * different for each ipif on the system, the matching logic 6863 * uses MATCH_IRE_IPIF in the case of a traditional interface 6864 * route. This means that interface routes for the same prefix 6865 * can be created if they belong to distinct ipif's and if a 6866 * RTA_IFP sockaddr is not present. 6867 */ 6868 if (ipif_arg != NULL) { 6869 if (ipif_refheld) { 6870 ipif_refrele(ipif); 6871 ipif_refheld = B_FALSE; 6872 } 6873 ipif = ipif_arg; 6874 match_flags |= MATCH_IRE_ILL; 6875 } else { 6876 /* 6877 * Check the ipif corresponding to the gw_addr 6878 */ 6879 if (ipif == NULL) 6880 return (ENETUNREACH); 6881 match_flags |= MATCH_IRE_IPIF; 6882 } 6883 ASSERT(ipif != NULL); 6884 6885 /* 6886 * We check for an existing entry at this point. 6887 * 6888 * Since a netmask isn't passed in via the ioctl interface 6889 * (SIOCADDRT), we don't check for a matching netmask in that 6890 * case. 6891 */ 6892 if (!ioctl_msg) 6893 match_flags |= MATCH_IRE_MASK; 6894 ire = ire_ftable_lookup(dst_addr, mask, 0, IRE_INTERFACE, ipif, 6895 NULL, ALL_ZONES, 0, NULL, match_flags, ipst); 6896 if (ire != NULL) { 6897 ire_refrele(ire); 6898 if (ipif_refheld) 6899 ipif_refrele(ipif); 6900 return (EEXIST); 6901 } 6902 6903 stq = (ipif->ipif_net_type == IRE_IF_RESOLVER) 6904 ? ipif->ipif_rq : ipif->ipif_wq; 6905 6906 /* 6907 * Create a copy of the IRE_LOOPBACK, 6908 * IRE_IF_NORESOLVER or IRE_IF_RESOLVER with 6909 * the modified address and netmask. 6910 */ 6911 ire = ire_create( 6912 (uchar_t *)&dst_addr, 6913 (uint8_t *)&mask, 6914 (uint8_t *)&ipif->ipif_src_addr, 6915 NULL, 6916 &ipif->ipif_mtu, 6917 NULL, 6918 NULL, 6919 stq, 6920 ipif->ipif_net_type, 6921 ipif, 6922 0, 6923 0, 6924 0, 6925 flags, 6926 &ire_uinfo_null, 6927 NULL, 6928 NULL, 6929 ipst); 6930 if (ire == NULL) { 6931 if (ipif_refheld) 6932 ipif_refrele(ipif); 6933 return (ENOMEM); 6934 } 6935 6936 /* 6937 * Some software (for example, GateD and Sun Cluster) attempts 6938 * to create (what amount to) IRE_PREFIX routes with the 6939 * loopback address as the gateway. This is primarily done to 6940 * set up prefixes with the RTF_REJECT flag set (for example, 6941 * when generating aggregate routes.) 6942 * 6943 * If the IRE type (as defined by ipif->ipif_net_type) is 6944 * IRE_LOOPBACK, then we map the request into a 6945 * IRE_IF_NORESOLVER. We also OR in the RTF_BLACKHOLE flag as 6946 * these interface routes, by definition, can only be that. 6947 * 6948 * Needless to say, the real IRE_LOOPBACK is NOT created by this 6949 * routine, but rather using ire_create() directly. 6950 * 6951 */ 6952 if (ipif->ipif_net_type == IRE_LOOPBACK) { 6953 ire->ire_type = IRE_IF_NORESOLVER; 6954 ire->ire_flags |= RTF_BLACKHOLE; 6955 } 6956 6957 error = ire_add(&ire, q, mp, func, B_FALSE); 6958 if (error == 0) 6959 goto save_ire; 6960 6961 /* 6962 * In the result of failure, ire_add() will have already 6963 * deleted the ire in question, so there is no need to 6964 * do that here. 6965 */ 6966 if (ipif_refheld) 6967 ipif_refrele(ipif); 6968 return (error); 6969 } 6970 if (ipif_refheld) { 6971 ipif_refrele(ipif); 6972 ipif_refheld = B_FALSE; 6973 } 6974 6975 /* 6976 * Get an interface IRE for the specified gateway. 6977 * If we don't have an IRE_IF_NORESOLVER or IRE_IF_RESOLVER for the 6978 * gateway, it is currently unreachable and we fail the request 6979 * accordingly. 6980 */ 6981 ipif = ipif_arg; 6982 if (ipif_arg != NULL) 6983 match_flags |= MATCH_IRE_ILL; 6984 again: 6985 gw_ire = ire_ftable_lookup(gw_addr, 0, 0, IRE_INTERFACE, ipif_arg, NULL, 6986 ALL_ZONES, 0, NULL, match_flags, ipst); 6987 if (gw_ire == NULL) { 6988 /* 6989 * With IPMP, we allow host routes to influence in.mpathd's 6990 * target selection. However, if the test addresses are on 6991 * their own network, the above lookup will fail since the 6992 * underlying IRE_INTERFACEs are marked hidden. So allow 6993 * hidden test IREs to be found and try again. 6994 */ 6995 if (!(match_flags & MATCH_IRE_MARK_TESTHIDDEN)) { 6996 match_flags |= MATCH_IRE_MARK_TESTHIDDEN; 6997 goto again; 6998 } 6999 return (ENETUNREACH); 7000 } 7001 7002 /* 7003 * We create one of three types of IREs as a result of this request 7004 * based on the netmask. A netmask of all ones (which is automatically 7005 * assumed when RTF_HOST is set) results in an IRE_HOST being created. 7006 * An all zeroes netmask implies a default route so an IRE_DEFAULT is 7007 * created. Otherwise, an IRE_PREFIX route is created for the 7008 * destination prefix. 7009 */ 7010 if (mask == IP_HOST_MASK) 7011 type = IRE_HOST; 7012 else if (mask == 0) 7013 type = IRE_DEFAULT; 7014 else 7015 type = IRE_PREFIX; 7016 7017 /* check for a duplicate entry */ 7018 ire = ire_ftable_lookup(dst_addr, mask, gw_addr, type, ipif_arg, 7019 NULL, ALL_ZONES, 0, NULL, 7020 match_flags | MATCH_IRE_MASK | MATCH_IRE_GW, ipst); 7021 if (ire != NULL) { 7022 ire_refrele(gw_ire); 7023 ire_refrele(ire); 7024 return (EEXIST); 7025 } 7026 7027 /* Security attribute exists */ 7028 if (sp != NULL) { 7029 tsol_gcgrp_addr_t ga; 7030 7031 /* find or create the gateway credentials group */ 7032 ga.ga_af = AF_INET; 7033 IN6_IPADDR_TO_V4MAPPED(gw_addr, &ga.ga_addr); 7034 7035 /* we hold reference to it upon success */ 7036 gcgrp = gcgrp_lookup(&ga, B_TRUE); 7037 if (gcgrp == NULL) { 7038 ire_refrele(gw_ire); 7039 return (ENOMEM); 7040 } 7041 7042 /* 7043 * Create and add the security attribute to the group; a 7044 * reference to the group is made upon allocating a new 7045 * entry successfully. If it finds an already-existing 7046 * entry for the security attribute in the group, it simply 7047 * returns it and no new reference is made to the group. 7048 */ 7049 gc = gc_create(sp, gcgrp, &gcgrp_xtraref); 7050 if (gc == NULL) { 7051 /* release reference held by gcgrp_lookup */ 7052 GCGRP_REFRELE(gcgrp); 7053 ire_refrele(gw_ire); 7054 return (ENOMEM); 7055 } 7056 } 7057 7058 /* Create the IRE. */ 7059 ire = ire_create( 7060 (uchar_t *)&dst_addr, /* dest address */ 7061 (uchar_t *)&mask, /* mask */ 7062 /* src address assigned by the caller? */ 7063 (uchar_t *)(((src_addr != INADDR_ANY) && 7064 (flags & RTF_SETSRC)) ? &src_addr : NULL), 7065 (uchar_t *)&gw_addr, /* gateway address */ 7066 &gw_ire->ire_max_frag, 7067 NULL, /* no src nce */ 7068 NULL, /* no recv-from queue */ 7069 NULL, /* no send-to queue */ 7070 (ushort_t)type, /* IRE type */ 7071 ipif_arg, 7072 0, 7073 0, 7074 0, 7075 flags, 7076 &gw_ire->ire_uinfo, /* Inherit ULP info from gw */ 7077 gc, /* security attribute */ 7078 NULL, 7079 ipst); 7080 7081 /* 7082 * The ire holds a reference to the 'gc' and the 'gc' holds a 7083 * reference to the 'gcgrp'. We can now release the extra reference 7084 * the 'gcgrp' acquired in the gcgrp_lookup, if it was not used. 7085 */ 7086 if (gcgrp_xtraref) 7087 GCGRP_REFRELE(gcgrp); 7088 if (ire == NULL) { 7089 if (gc != NULL) 7090 GC_REFRELE(gc); 7091 ire_refrele(gw_ire); 7092 return (ENOMEM); 7093 } 7094 7095 /* 7096 * POLICY: should we allow an RTF_HOST with address INADDR_ANY? 7097 * SUN/OS socket stuff does but do we really want to allow 0.0.0.0? 7098 */ 7099 7100 /* Add the new IRE. */ 7101 error = ire_add(&ire, q, mp, func, B_FALSE); 7102 if (error != 0) { 7103 /* 7104 * In the result of failure, ire_add() will have already 7105 * deleted the ire in question, so there is no need to 7106 * do that here. 7107 */ 7108 ire_refrele(gw_ire); 7109 return (error); 7110 } 7111 7112 if (flags & RTF_MULTIRT) { 7113 /* 7114 * Invoke the CGTP (multirouting) filtering module 7115 * to add the dst address in the filtering database. 7116 * Replicated inbound packets coming from that address 7117 * will be filtered to discard the duplicates. 7118 * It is not necessary to call the CGTP filter hook 7119 * when the dst address is a broadcast or multicast, 7120 * because an IP source address cannot be a broadcast 7121 * or a multicast. 7122 */ 7123 ire_t *ire_dst = ire_ctable_lookup(ire->ire_addr, 0, 7124 IRE_BROADCAST, NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 7125 if (ire_dst != NULL) { 7126 ip_cgtp_bcast_add(ire, ire_dst, ipst); 7127 ire_refrele(ire_dst); 7128 goto save_ire; 7129 } 7130 if (ipst->ips_ip_cgtp_filter_ops != NULL && 7131 !CLASSD(ire->ire_addr)) { 7132 int res = ipst->ips_ip_cgtp_filter_ops->cfo_add_dest_v4( 7133 ipst->ips_netstack->netstack_stackid, 7134 ire->ire_addr, 7135 ire->ire_gateway_addr, 7136 ire->ire_src_addr, 7137 gw_ire->ire_src_addr); 7138 if (res != 0) { 7139 ire_refrele(gw_ire); 7140 ire_delete(ire); 7141 return (res); 7142 } 7143 } 7144 } 7145 7146 /* 7147 * Now that the prefix IRE entry has been created, delete any 7148 * existing gateway IRE cache entries as well as any IRE caches 7149 * using the gateway, and force them to be created through 7150 * ip_newroute. 7151 */ 7152 if (gc != NULL) { 7153 ASSERT(gcgrp != NULL); 7154 ire_clookup_delete_cache_gw(gw_addr, ALL_ZONES, ipst); 7155 } 7156 7157 save_ire: 7158 if (gw_ire != NULL) { 7159 ire_refrele(gw_ire); 7160 } 7161 if (ipif != NULL) { 7162 /* 7163 * Save enough information so that we can recreate the IRE if 7164 * the interface goes down and then up. The metrics associated 7165 * with the route will be saved as well when rts_setmetrics() is 7166 * called after the IRE has been created. In the case where 7167 * memory cannot be allocated, none of this information will be 7168 * saved. 7169 */ 7170 ipif_save_ire(ipif, ire); 7171 } 7172 if (ioctl_msg) 7173 ip_rts_rtmsg(RTM_OLDADD, ire, 0, ipst); 7174 if (ire_arg != NULL) { 7175 /* 7176 * Store the ire that was successfully added into where ire_arg 7177 * points to so that callers don't have to look it up 7178 * themselves (but they are responsible for ire_refrele()ing 7179 * the ire when they are finished with it). 7180 */ 7181 *ire_arg = ire; 7182 } else { 7183 ire_refrele(ire); /* Held in ire_add */ 7184 } 7185 if (ipif_refheld) 7186 ipif_refrele(ipif); 7187 return (0); 7188 } 7189 7190 /* 7191 * ip_rt_delete is called to delete an IPv4 route. 7192 * ipif_arg is passed in to associate it with the correct interface. 7193 * We may need to restart this operation if the ipif cannot be looked up 7194 * due to an exclusive operation that is currently in progress. The restart 7195 * entry point is specified by 'func' 7196 */ 7197 /* ARGSUSED4 */ 7198 int 7199 ip_rt_delete(ipaddr_t dst_addr, ipaddr_t mask, ipaddr_t gw_addr, 7200 uint_t rtm_addrs, int flags, ipif_t *ipif_arg, boolean_t ioctl_msg, 7201 queue_t *q, mblk_t *mp, ipsq_func_t func, ip_stack_t *ipst) 7202 { 7203 ire_t *ire = NULL; 7204 ipif_t *ipif; 7205 boolean_t ipif_refheld = B_FALSE; 7206 uint_t type; 7207 uint_t match_flags = MATCH_IRE_TYPE; 7208 int err = 0; 7209 7210 ip1dbg(("ip_rt_delete:")); 7211 /* 7212 * If this is the case of RTF_HOST being set, then we set the netmask 7213 * to all ones. Otherwise, we use the netmask if one was supplied. 7214 */ 7215 if (flags & RTF_HOST) { 7216 mask = IP_HOST_MASK; 7217 match_flags |= MATCH_IRE_MASK; 7218 } else if (rtm_addrs & RTA_NETMASK) { 7219 match_flags |= MATCH_IRE_MASK; 7220 } 7221 7222 /* 7223 * Note that RTF_GATEWAY is never set on a delete, therefore 7224 * we check if the gateway address is one of our interfaces first, 7225 * and fall back on RTF_GATEWAY routes. 7226 * 7227 * This makes it possible to delete an original 7228 * IRE_IF_NORESOLVER/IRE_IF_RESOLVER - consistent with SunOS 4.1. 7229 * 7230 * As the interface index specified with the RTA_IFP sockaddr is the 7231 * same for all ipif's off of an ill, the matching logic below uses 7232 * MATCH_IRE_ILL if such an index was specified. This means a route 7233 * sharing the same prefix and interface index as the the route 7234 * intended to be deleted might be deleted instead if a RTA_IFP sockaddr 7235 * is specified in the request. 7236 * 7237 * On the other hand, since the gateway address will usually be 7238 * different for each ipif on the system, the matching logic 7239 * uses MATCH_IRE_IPIF in the case of a traditional interface 7240 * route. This means that interface routes for the same prefix can be 7241 * uniquely identified if they belong to distinct ipif's and if a 7242 * RTA_IFP sockaddr is not present. 7243 * 7244 * For more detail on specifying routes by gateway address and by 7245 * interface index, see the comments in ip_rt_add(). 7246 */ 7247 ipif = ipif_lookup_interface(gw_addr, dst_addr, q, mp, func, &err, 7248 ipst); 7249 if (ipif != NULL) 7250 ipif_refheld = B_TRUE; 7251 else if (err == EINPROGRESS) 7252 return (err); 7253 else 7254 err = 0; 7255 if (ipif != NULL) { 7256 if (ipif_arg != NULL) { 7257 if (ipif_refheld) { 7258 ipif_refrele(ipif); 7259 ipif_refheld = B_FALSE; 7260 } 7261 ipif = ipif_arg; 7262 match_flags |= MATCH_IRE_ILL; 7263 } else { 7264 match_flags |= MATCH_IRE_IPIF; 7265 } 7266 if (ipif->ipif_ire_type == IRE_LOOPBACK) { 7267 ire = ire_ctable_lookup(dst_addr, 0, IRE_LOOPBACK, ipif, 7268 ALL_ZONES, NULL, match_flags, ipst); 7269 } 7270 if (ire == NULL) { 7271 ire = ire_ftable_lookup(dst_addr, mask, 0, 7272 IRE_INTERFACE, ipif, NULL, ALL_ZONES, 0, NULL, 7273 match_flags, ipst); 7274 } 7275 } 7276 7277 if (ire == NULL) { 7278 /* 7279 * At this point, the gateway address is not one of our own 7280 * addresses or a matching interface route was not found. We 7281 * set the IRE type to lookup based on whether 7282 * this is a host route, a default route or just a prefix. 7283 * 7284 * If an ipif_arg was passed in, then the lookup is based on an 7285 * interface index so MATCH_IRE_ILL is added to match_flags. 7286 * In any case, MATCH_IRE_IPIF is cleared and MATCH_IRE_GW is 7287 * set as the route being looked up is not a traditional 7288 * interface route. 7289 */ 7290 match_flags &= ~MATCH_IRE_IPIF; 7291 match_flags |= MATCH_IRE_GW; 7292 if (ipif_arg != NULL) 7293 match_flags |= MATCH_IRE_ILL; 7294 if (mask == IP_HOST_MASK) 7295 type = IRE_HOST; 7296 else if (mask == 0) 7297 type = IRE_DEFAULT; 7298 else 7299 type = IRE_PREFIX; 7300 ire = ire_ftable_lookup(dst_addr, mask, gw_addr, type, ipif_arg, 7301 NULL, ALL_ZONES, 0, NULL, match_flags, ipst); 7302 } 7303 7304 if (ipif_refheld) 7305 ipif_refrele(ipif); 7306 7307 /* ipif is not refheld anymore */ 7308 if (ire == NULL) 7309 return (ESRCH); 7310 7311 if (ire->ire_flags & RTF_MULTIRT) { 7312 /* 7313 * Invoke the CGTP (multirouting) filtering module 7314 * to remove the dst address from the filtering database. 7315 * Packets coming from that address will no longer be 7316 * filtered to remove duplicates. 7317 */ 7318 if (ipst->ips_ip_cgtp_filter_ops != NULL) { 7319 err = ipst->ips_ip_cgtp_filter_ops->cfo_del_dest_v4( 7320 ipst->ips_netstack->netstack_stackid, 7321 ire->ire_addr, ire->ire_gateway_addr); 7322 } 7323 ip_cgtp_bcast_delete(ire, ipst); 7324 } 7325 7326 ipif = ire->ire_ipif; 7327 if (ipif != NULL) 7328 ipif_remove_ire(ipif, ire); 7329 if (ioctl_msg) 7330 ip_rts_rtmsg(RTM_OLDDEL, ire, 0, ipst); 7331 ire_delete(ire); 7332 ire_refrele(ire); 7333 return (err); 7334 } 7335 7336 /* 7337 * ip_siocaddrt is called to complete processing of an SIOCADDRT IOCTL. 7338 */ 7339 /* ARGSUSED */ 7340 int 7341 ip_siocaddrt(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, 7342 ip_ioctl_cmd_t *ipip, void *dummy_if_req) 7343 { 7344 ipaddr_t dst_addr; 7345 ipaddr_t gw_addr; 7346 ipaddr_t mask; 7347 int error = 0; 7348 mblk_t *mp1; 7349 struct rtentry *rt; 7350 ipif_t *ipif = NULL; 7351 ip_stack_t *ipst; 7352 7353 ASSERT(q->q_next == NULL); 7354 ipst = CONNQ_TO_IPST(q); 7355 7356 ip1dbg(("ip_siocaddrt:")); 7357 /* Existence of mp1 verified in ip_wput_nondata */ 7358 mp1 = mp->b_cont->b_cont; 7359 rt = (struct rtentry *)mp1->b_rptr; 7360 7361 dst_addr = ((sin_t *)&rt->rt_dst)->sin_addr.s_addr; 7362 gw_addr = ((sin_t *)&rt->rt_gateway)->sin_addr.s_addr; 7363 7364 /* 7365 * If the RTF_HOST flag is on, this is a request to assign a gateway 7366 * to a particular host address. In this case, we set the netmask to 7367 * all ones for the particular destination address. Otherwise, 7368 * determine the netmask to be used based on dst_addr and the interfaces 7369 * in use. 7370 */ 7371 if (rt->rt_flags & RTF_HOST) { 7372 mask = IP_HOST_MASK; 7373 } else { 7374 /* 7375 * Note that ip_subnet_mask returns a zero mask in the case of 7376 * default (an all-zeroes address). 7377 */ 7378 mask = ip_subnet_mask(dst_addr, &ipif, ipst); 7379 } 7380 7381 error = ip_rt_add(dst_addr, mask, gw_addr, 0, rt->rt_flags, NULL, NULL, 7382 B_TRUE, q, mp, ip_process_ioctl, NULL, ipst); 7383 if (ipif != NULL) 7384 ipif_refrele(ipif); 7385 return (error); 7386 } 7387 7388 /* 7389 * ip_siocdelrt is called to complete processing of an SIOCDELRT IOCTL. 7390 */ 7391 /* ARGSUSED */ 7392 int 7393 ip_siocdelrt(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, 7394 ip_ioctl_cmd_t *ipip, void *dummy_if_req) 7395 { 7396 ipaddr_t dst_addr; 7397 ipaddr_t gw_addr; 7398 ipaddr_t mask; 7399 int error; 7400 mblk_t *mp1; 7401 struct rtentry *rt; 7402 ipif_t *ipif = NULL; 7403 ip_stack_t *ipst; 7404 7405 ASSERT(q->q_next == NULL); 7406 ipst = CONNQ_TO_IPST(q); 7407 7408 ip1dbg(("ip_siocdelrt:")); 7409 /* Existence of mp1 verified in ip_wput_nondata */ 7410 mp1 = mp->b_cont->b_cont; 7411 rt = (struct rtentry *)mp1->b_rptr; 7412 7413 dst_addr = ((sin_t *)&rt->rt_dst)->sin_addr.s_addr; 7414 gw_addr = ((sin_t *)&rt->rt_gateway)->sin_addr.s_addr; 7415 7416 /* 7417 * If the RTF_HOST flag is on, this is a request to delete a gateway 7418 * to a particular host address. In this case, we set the netmask to 7419 * all ones for the particular destination address. Otherwise, 7420 * determine the netmask to be used based on dst_addr and the interfaces 7421 * in use. 7422 */ 7423 if (rt->rt_flags & RTF_HOST) { 7424 mask = IP_HOST_MASK; 7425 } else { 7426 /* 7427 * Note that ip_subnet_mask returns a zero mask in the case of 7428 * default (an all-zeroes address). 7429 */ 7430 mask = ip_subnet_mask(dst_addr, &ipif, ipst); 7431 } 7432 7433 error = ip_rt_delete(dst_addr, mask, gw_addr, 7434 RTA_DST | RTA_GATEWAY | RTA_NETMASK, rt->rt_flags, NULL, B_TRUE, q, 7435 mp, ip_process_ioctl, ipst); 7436 if (ipif != NULL) 7437 ipif_refrele(ipif); 7438 return (error); 7439 } 7440 7441 /* 7442 * Enqueue the mp onto the ipsq, chained by b_next. 7443 * b_prev stores the function to be executed later, and b_queue the queue 7444 * where this mp originated. 7445 */ 7446 void 7447 ipsq_enq(ipsq_t *ipsq, queue_t *q, mblk_t *mp, ipsq_func_t func, int type, 7448 ill_t *pending_ill) 7449 { 7450 conn_t *connp; 7451 ipxop_t *ipx = ipsq->ipsq_xop; 7452 7453 ASSERT(MUTEX_HELD(&ipsq->ipsq_lock)); 7454 ASSERT(MUTEX_HELD(&ipx->ipx_lock)); 7455 ASSERT(func != NULL); 7456 7457 mp->b_queue = q; 7458 mp->b_prev = (void *)func; 7459 mp->b_next = NULL; 7460 7461 switch (type) { 7462 case CUR_OP: 7463 if (ipx->ipx_mptail != NULL) { 7464 ASSERT(ipx->ipx_mphead != NULL); 7465 ipx->ipx_mptail->b_next = mp; 7466 } else { 7467 ASSERT(ipx->ipx_mphead == NULL); 7468 ipx->ipx_mphead = mp; 7469 } 7470 ipx->ipx_mptail = mp; 7471 break; 7472 7473 case NEW_OP: 7474 if (ipsq->ipsq_xopq_mptail != NULL) { 7475 ASSERT(ipsq->ipsq_xopq_mphead != NULL); 7476 ipsq->ipsq_xopq_mptail->b_next = mp; 7477 } else { 7478 ASSERT(ipsq->ipsq_xopq_mphead == NULL); 7479 ipsq->ipsq_xopq_mphead = mp; 7480 } 7481 ipsq->ipsq_xopq_mptail = mp; 7482 ipx->ipx_ipsq_queued = B_TRUE; 7483 break; 7484 7485 case SWITCH_OP: 7486 ASSERT(ipsq->ipsq_swxop != NULL); 7487 /* only one switch operation is currently allowed */ 7488 ASSERT(ipsq->ipsq_switch_mp == NULL); 7489 ipsq->ipsq_switch_mp = mp; 7490 ipx->ipx_ipsq_queued = B_TRUE; 7491 break; 7492 default: 7493 cmn_err(CE_PANIC, "ipsq_enq %d type \n", type); 7494 } 7495 7496 if (CONN_Q(q) && pending_ill != NULL) { 7497 connp = Q_TO_CONN(q); 7498 ASSERT(MUTEX_HELD(&connp->conn_lock)); 7499 connp->conn_oper_pending_ill = pending_ill; 7500 } 7501 } 7502 7503 /* 7504 * Dequeue the next message that requested exclusive access to this IPSQ's 7505 * xop. Specifically: 7506 * 7507 * 1. If we're still processing the current operation on `ipsq', then 7508 * dequeue the next message for the operation (from ipx_mphead), or 7509 * return NULL if there are no queued messages for the operation. 7510 * These messages are queued via CUR_OP to qwriter_ip() and friends. 7511 * 7512 * 2. If the current operation on `ipsq' has completed (ipx_current_ipif is 7513 * not set) see if the ipsq has requested an xop switch. If so, switch 7514 * `ipsq' to a different xop. Xop switches only happen when joining or 7515 * leaving IPMP groups and require a careful dance -- see the comments 7516 * in-line below for details. If we're leaving a group xop or if we're 7517 * joining a group xop and become writer on it, then we proceed to (3). 7518 * Otherwise, we return NULL and exit the xop. 7519 * 7520 * 3. For each IPSQ in the xop, return any switch operation stored on 7521 * ipsq_switch_mp (set via SWITCH_OP); these must be processed before 7522 * any other messages queued on the IPSQ. Otherwise, dequeue the next 7523 * exclusive operation (queued via NEW_OP) stored on ipsq_xopq_mphead. 7524 * Note that if the phyint tied to `ipsq' is not using IPMP there will 7525 * only be one IPSQ in the xop. Otherwise, there will be one IPSQ for 7526 * each phyint in the group, including the IPMP meta-interface phyint. 7527 */ 7528 static mblk_t * 7529 ipsq_dq(ipsq_t *ipsq) 7530 { 7531 ill_t *illv4, *illv6; 7532 mblk_t *mp; 7533 ipsq_t *xopipsq; 7534 ipsq_t *leftipsq = NULL; 7535 ipxop_t *ipx; 7536 phyint_t *phyi = ipsq->ipsq_phyint; 7537 ip_stack_t *ipst = ipsq->ipsq_ipst; 7538 boolean_t emptied = B_FALSE; 7539 7540 /* 7541 * Grab all the locks we need in the defined order (ill_g_lock -> 7542 * ipsq_lock -> ipx_lock); ill_g_lock is needed to use ipsq_next. 7543 */ 7544 rw_enter(&ipst->ips_ill_g_lock, 7545 ipsq->ipsq_swxop != NULL ? RW_WRITER : RW_READER); 7546 mutex_enter(&ipsq->ipsq_lock); 7547 ipx = ipsq->ipsq_xop; 7548 mutex_enter(&ipx->ipx_lock); 7549 7550 /* 7551 * Dequeue the next message associated with the current exclusive 7552 * operation, if any. 7553 */ 7554 if ((mp = ipx->ipx_mphead) != NULL) { 7555 ipx->ipx_mphead = mp->b_next; 7556 if (ipx->ipx_mphead == NULL) 7557 ipx->ipx_mptail = NULL; 7558 mp->b_next = (void *)ipsq; 7559 goto out; 7560 } 7561 7562 if (ipx->ipx_current_ipif != NULL) 7563 goto empty; 7564 7565 if (ipsq->ipsq_swxop != NULL) { 7566 /* 7567 * The exclusive operation that is now being completed has 7568 * requested a switch to a different xop. This happens 7569 * when an interface joins or leaves an IPMP group. Joins 7570 * happen through SIOCSLIFGROUPNAME (ip_sioctl_groupname()). 7571 * Leaves happen via SIOCSLIFGROUPNAME, interface unplumb 7572 * (phyint_free()), or interface plumb for an ill type 7573 * not in the IPMP group (ip_rput_dlpi_writer()). 7574 * 7575 * Xop switches are not allowed on the IPMP meta-interface. 7576 */ 7577 ASSERT(phyi == NULL || !(phyi->phyint_flags & PHYI_IPMP)); 7578 ASSERT(RW_WRITE_HELD(&ipst->ips_ill_g_lock)); 7579 DTRACE_PROBE1(ipsq__switch, (ipsq_t *), ipsq); 7580 7581 if (ipsq->ipsq_swxop == &ipsq->ipsq_ownxop) { 7582 /* 7583 * We're switching back to our own xop, so we have two 7584 * xop's to drain/exit: our own, and the group xop 7585 * that we are leaving. 7586 * 7587 * First, pull ourselves out of the group ipsq list. 7588 * This is safe since we're writer on ill_g_lock. 7589 */ 7590 ASSERT(ipsq->ipsq_xop != &ipsq->ipsq_ownxop); 7591 7592 xopipsq = ipx->ipx_ipsq; 7593 while (xopipsq->ipsq_next != ipsq) 7594 xopipsq = xopipsq->ipsq_next; 7595 7596 xopipsq->ipsq_next = ipsq->ipsq_next; 7597 ipsq->ipsq_next = ipsq; 7598 ipsq->ipsq_xop = ipsq->ipsq_swxop; 7599 ipsq->ipsq_swxop = NULL; 7600 7601 /* 7602 * Second, prepare to exit the group xop. The actual 7603 * ipsq_exit() is done at the end of this function 7604 * since we cannot hold any locks across ipsq_exit(). 7605 * Note that although we drop the group's ipx_lock, no 7606 * threads can proceed since we're still ipx_writer. 7607 */ 7608 leftipsq = xopipsq; 7609 mutex_exit(&ipx->ipx_lock); 7610 7611 /* 7612 * Third, set ipx to point to our own xop (which was 7613 * inactive and therefore can be entered). 7614 */ 7615 ipx = ipsq->ipsq_xop; 7616 mutex_enter(&ipx->ipx_lock); 7617 ASSERT(ipx->ipx_writer == NULL); 7618 ASSERT(ipx->ipx_current_ipif == NULL); 7619 } else { 7620 /* 7621 * We're switching from our own xop to a group xop. 7622 * The requestor of the switch must ensure that the 7623 * group xop cannot go away (e.g. by ensuring the 7624 * phyint associated with the xop cannot go away). 7625 * 7626 * If we can become writer on our new xop, then we'll 7627 * do the drain. Otherwise, the current writer of our 7628 * new xop will do the drain when it exits. 7629 * 7630 * First, splice ourselves into the group IPSQ list. 7631 * This is safe since we're writer on ill_g_lock. 7632 */ 7633 ASSERT(ipsq->ipsq_xop == &ipsq->ipsq_ownxop); 7634 7635 xopipsq = ipsq->ipsq_swxop->ipx_ipsq; 7636 while (xopipsq->ipsq_next != ipsq->ipsq_swxop->ipx_ipsq) 7637 xopipsq = xopipsq->ipsq_next; 7638 7639 xopipsq->ipsq_next = ipsq; 7640 ipsq->ipsq_next = ipsq->ipsq_swxop->ipx_ipsq; 7641 ipsq->ipsq_xop = ipsq->ipsq_swxop; 7642 ipsq->ipsq_swxop = NULL; 7643 7644 /* 7645 * Second, exit our own xop, since it's now unused. 7646 * This is safe since we've got the only reference. 7647 */ 7648 ASSERT(ipx->ipx_writer == curthread); 7649 ipx->ipx_writer = NULL; 7650 VERIFY(--ipx->ipx_reentry_cnt == 0); 7651 ipx->ipx_ipsq_queued = B_FALSE; 7652 mutex_exit(&ipx->ipx_lock); 7653 7654 /* 7655 * Third, set ipx to point to our new xop, and check 7656 * if we can become writer on it. If we cannot, then 7657 * the current writer will drain the IPSQ group when 7658 * it exits. Our ipsq_xop is guaranteed to be stable 7659 * because we're still holding ipsq_lock. 7660 */ 7661 ipx = ipsq->ipsq_xop; 7662 mutex_enter(&ipx->ipx_lock); 7663 if (ipx->ipx_writer != NULL || 7664 ipx->ipx_current_ipif != NULL) { 7665 goto out; 7666 } 7667 } 7668 7669 /* 7670 * Fourth, become writer on our new ipx before we continue 7671 * with the drain. Note that we never dropped ipsq_lock 7672 * above, so no other thread could've raced with us to 7673 * become writer first. Also, we're holding ipx_lock, so 7674 * no other thread can examine the ipx right now. 7675 */ 7676 ASSERT(ipx->ipx_current_ipif == NULL); 7677 ASSERT(ipx->ipx_mphead == NULL && ipx->ipx_mptail == NULL); 7678 VERIFY(ipx->ipx_reentry_cnt++ == 0); 7679 ipx->ipx_writer = curthread; 7680 ipx->ipx_forced = B_FALSE; 7681 #ifdef DEBUG 7682 ipx->ipx_depth = getpcstack(ipx->ipx_stack, IPX_STACK_DEPTH); 7683 #endif 7684 } 7685 7686 xopipsq = ipsq; 7687 do { 7688 /* 7689 * So that other operations operate on a consistent and 7690 * complete phyint, a switch message on an IPSQ must be 7691 * handled prior to any other operations on that IPSQ. 7692 */ 7693 if ((mp = xopipsq->ipsq_switch_mp) != NULL) { 7694 xopipsq->ipsq_switch_mp = NULL; 7695 ASSERT(mp->b_next == NULL); 7696 mp->b_next = (void *)xopipsq; 7697 goto out; 7698 } 7699 7700 if ((mp = xopipsq->ipsq_xopq_mphead) != NULL) { 7701 xopipsq->ipsq_xopq_mphead = mp->b_next; 7702 if (xopipsq->ipsq_xopq_mphead == NULL) 7703 xopipsq->ipsq_xopq_mptail = NULL; 7704 mp->b_next = (void *)xopipsq; 7705 goto out; 7706 } 7707 } while ((xopipsq = xopipsq->ipsq_next) != ipsq); 7708 empty: 7709 /* 7710 * There are no messages. Further, we are holding ipx_lock, hence no 7711 * new messages can end up on any IPSQ in the xop. 7712 */ 7713 ipx->ipx_writer = NULL; 7714 ipx->ipx_forced = B_FALSE; 7715 VERIFY(--ipx->ipx_reentry_cnt == 0); 7716 ipx->ipx_ipsq_queued = B_FALSE; 7717 emptied = B_TRUE; 7718 #ifdef DEBUG 7719 ipx->ipx_depth = 0; 7720 #endif 7721 out: 7722 mutex_exit(&ipx->ipx_lock); 7723 mutex_exit(&ipsq->ipsq_lock); 7724 7725 /* 7726 * If we completely emptied the xop, then wake up any threads waiting 7727 * to enter any of the IPSQ's associated with it. 7728 */ 7729 if (emptied) { 7730 xopipsq = ipsq; 7731 do { 7732 if ((phyi = xopipsq->ipsq_phyint) == NULL) 7733 continue; 7734 7735 illv4 = phyi->phyint_illv4; 7736 illv6 = phyi->phyint_illv6; 7737 7738 GRAB_ILL_LOCKS(illv4, illv6); 7739 if (illv4 != NULL) 7740 cv_broadcast(&illv4->ill_cv); 7741 if (illv6 != NULL) 7742 cv_broadcast(&illv6->ill_cv); 7743 RELEASE_ILL_LOCKS(illv4, illv6); 7744 } while ((xopipsq = xopipsq->ipsq_next) != ipsq); 7745 } 7746 rw_exit(&ipst->ips_ill_g_lock); 7747 7748 /* 7749 * Now that all locks are dropped, exit the IPSQ we left. 7750 */ 7751 if (leftipsq != NULL) 7752 ipsq_exit(leftipsq); 7753 7754 return (mp); 7755 } 7756 7757 /* 7758 * Enter the ipsq corresponding to ill, by waiting synchronously till 7759 * we can enter the ipsq exclusively. Unless 'force' is used, the ipsq 7760 * will have to drain completely before ipsq_enter returns success. 7761 * ipx_current_ipif will be set if some exclusive op is in progress, 7762 * and the ipsq_exit logic will start the next enqueued op after 7763 * completion of the current op. If 'force' is used, we don't wait 7764 * for the enqueued ops. This is needed when a conn_close wants to 7765 * enter the ipsq and abort an ioctl that is somehow stuck. Unplumb 7766 * of an ill can also use this option. But we dont' use it currently. 7767 */ 7768 #define ENTER_SQ_WAIT_TICKS 100 7769 boolean_t 7770 ipsq_enter(ill_t *ill, boolean_t force, int type) 7771 { 7772 ipsq_t *ipsq; 7773 ipxop_t *ipx; 7774 boolean_t waited_enough = B_FALSE; 7775 7776 /* 7777 * Note that the relationship between ill and ipsq is fixed as long as 7778 * the ill is not ILL_CONDEMNED. Holding ipsq_lock ensures the 7779 * relationship between the IPSQ and xop cannot change. However, 7780 * since we cannot hold ipsq_lock across the cv_wait(), it may change 7781 * while we're waiting. We wait on ill_cv and rely on ipsq_exit() 7782 * waking up all ills in the xop when it becomes available. 7783 */ 7784 mutex_enter(&ill->ill_lock); 7785 for (;;) { 7786 if (ill->ill_state_flags & ILL_CONDEMNED) { 7787 mutex_exit(&ill->ill_lock); 7788 return (B_FALSE); 7789 } 7790 7791 ipsq = ill->ill_phyint->phyint_ipsq; 7792 mutex_enter(&ipsq->ipsq_lock); 7793 ipx = ipsq->ipsq_xop; 7794 mutex_enter(&ipx->ipx_lock); 7795 7796 if (ipx->ipx_writer == NULL && (type == CUR_OP || 7797 ipx->ipx_current_ipif == NULL || waited_enough)) 7798 break; 7799 7800 if (!force || ipx->ipx_writer != NULL) { 7801 mutex_exit(&ipx->ipx_lock); 7802 mutex_exit(&ipsq->ipsq_lock); 7803 cv_wait(&ill->ill_cv, &ill->ill_lock); 7804 } else { 7805 mutex_exit(&ipx->ipx_lock); 7806 mutex_exit(&ipsq->ipsq_lock); 7807 (void) cv_timedwait(&ill->ill_cv, 7808 &ill->ill_lock, lbolt + ENTER_SQ_WAIT_TICKS); 7809 waited_enough = B_TRUE; 7810 } 7811 } 7812 7813 ASSERT(ipx->ipx_mphead == NULL && ipx->ipx_mptail == NULL); 7814 ASSERT(ipx->ipx_reentry_cnt == 0); 7815 ipx->ipx_writer = curthread; 7816 ipx->ipx_forced = (ipx->ipx_current_ipif != NULL); 7817 ipx->ipx_reentry_cnt++; 7818 #ifdef DEBUG 7819 ipx->ipx_depth = getpcstack(ipx->ipx_stack, IPX_STACK_DEPTH); 7820 #endif 7821 mutex_exit(&ipx->ipx_lock); 7822 mutex_exit(&ipsq->ipsq_lock); 7823 mutex_exit(&ill->ill_lock); 7824 return (B_TRUE); 7825 } 7826 7827 boolean_t 7828 ill_perim_enter(ill_t *ill) 7829 { 7830 return (ipsq_enter(ill, B_FALSE, CUR_OP)); 7831 } 7832 7833 void 7834 ill_perim_exit(ill_t *ill) 7835 { 7836 ipsq_exit(ill->ill_phyint->phyint_ipsq); 7837 } 7838 7839 /* 7840 * The ipsq_t (ipsq) is the synchronization data structure used to serialize 7841 * certain critical operations like plumbing (i.e. most set ioctls), multicast 7842 * joins, igmp/mld timers, etc. There is one ipsq per phyint. The ipsq 7843 * serializes exclusive ioctls issued by applications on a per ipsq basis in 7844 * ipsq_xopq_mphead. It also protects against multiple threads executing in 7845 * the ipsq. Responses from the driver pertain to the current ioctl (say a 7846 * DL_BIND_ACK in response to a DL_BIND_REQ initiated as part of bringing 7847 * up the interface) and are enqueued in ipx_mphead. 7848 * 7849 * If a thread does not want to reenter the ipsq when it is already writer, 7850 * it must make sure that the specified reentry point to be called later 7851 * when the ipsq is empty, nor any code path starting from the specified reentry 7852 * point must never ever try to enter the ipsq again. Otherwise it can lead 7853 * to an infinite loop. The reentry point ip_rput_dlpi_writer is an example. 7854 * When the thread that is currently exclusive finishes, it (ipsq_exit) 7855 * dequeues the requests waiting to become exclusive in ipx_mphead and calls 7856 * the reentry point. When the list at ipx_mphead becomes empty ipsq_exit 7857 * proceeds to dequeue the next ioctl in ipsq_xopq_mphead and start the next 7858 * ioctl if the current ioctl has completed. If the current ioctl is still 7859 * in progress it simply returns. The current ioctl could be waiting for 7860 * a response from another module (arp or the driver or could be waiting for 7861 * the ipif/ill/ire refcnts to drop to zero. In such a case the ipx_pending_mp 7862 * and ipx_pending_ipif are set. ipx_current_ipif is set throughout the 7863 * execution of the ioctl and ipsq_exit does not start the next ioctl unless 7864 * ipx_current_ipif is NULL which happens only once the ioctl is complete and 7865 * all associated DLPI operations have completed. 7866 */ 7867 7868 /* 7869 * Try to enter the IPSQ corresponding to `ipif' or `ill' exclusively (`ipif' 7870 * and `ill' cannot both be specified). Returns a pointer to the entered IPSQ 7871 * on success, or NULL on failure. The caller ensures ipif/ill is valid by 7872 * refholding it as necessary. If the IPSQ cannot be entered and `func' is 7873 * non-NULL, then `func' will be called back with `q' and `mp' once the IPSQ 7874 * can be entered. If `func' is NULL, then `q' and `mp' are ignored. 7875 */ 7876 ipsq_t * 7877 ipsq_try_enter(ipif_t *ipif, ill_t *ill, queue_t *q, mblk_t *mp, 7878 ipsq_func_t func, int type, boolean_t reentry_ok) 7879 { 7880 ipsq_t *ipsq; 7881 ipxop_t *ipx; 7882 7883 /* Only 1 of ipif or ill can be specified */ 7884 ASSERT((ipif != NULL) ^ (ill != NULL)); 7885 if (ipif != NULL) 7886 ill = ipif->ipif_ill; 7887 7888 /* 7889 * lock ordering: conn_lock -> ill_lock -> ipsq_lock -> ipx_lock. 7890 * ipx of an ipsq can't change when ipsq_lock is held. 7891 */ 7892 GRAB_CONN_LOCK(q); 7893 mutex_enter(&ill->ill_lock); 7894 ipsq = ill->ill_phyint->phyint_ipsq; 7895 mutex_enter(&ipsq->ipsq_lock); 7896 ipx = ipsq->ipsq_xop; 7897 mutex_enter(&ipx->ipx_lock); 7898 7899 /* 7900 * 1. Enter the ipsq if we are already writer and reentry is ok. 7901 * (Note: If the caller does not specify reentry_ok then neither 7902 * 'func' nor any of its callees must ever attempt to enter the ipsq 7903 * again. Otherwise it can lead to an infinite loop 7904 * 2. Enter the ipsq if there is no current writer and this attempted 7905 * entry is part of the current operation 7906 * 3. Enter the ipsq if there is no current writer and this is a new 7907 * operation and the operation queue is empty and there is no 7908 * operation currently in progress 7909 */ 7910 if ((ipx->ipx_writer == curthread && reentry_ok) || 7911 (ipx->ipx_writer == NULL && (type == CUR_OP || (type == NEW_OP && 7912 !ipx->ipx_ipsq_queued && ipx->ipx_current_ipif == NULL)))) { 7913 /* Success. */ 7914 ipx->ipx_reentry_cnt++; 7915 ipx->ipx_writer = curthread; 7916 ipx->ipx_forced = B_FALSE; 7917 mutex_exit(&ipx->ipx_lock); 7918 mutex_exit(&ipsq->ipsq_lock); 7919 mutex_exit(&ill->ill_lock); 7920 RELEASE_CONN_LOCK(q); 7921 #ifdef DEBUG 7922 ipx->ipx_depth = getpcstack(ipx->ipx_stack, IPX_STACK_DEPTH); 7923 #endif 7924 return (ipsq); 7925 } 7926 7927 if (func != NULL) 7928 ipsq_enq(ipsq, q, mp, func, type, ill); 7929 7930 mutex_exit(&ipx->ipx_lock); 7931 mutex_exit(&ipsq->ipsq_lock); 7932 mutex_exit(&ill->ill_lock); 7933 RELEASE_CONN_LOCK(q); 7934 return (NULL); 7935 } 7936 7937 /* 7938 * Try to enter the IPSQ corresponding to `ill' as writer. The caller ensures 7939 * ill is valid by refholding it if necessary; we will refrele. If the IPSQ 7940 * cannot be entered, the mp is queued for completion. 7941 */ 7942 void 7943 qwriter_ip(ill_t *ill, queue_t *q, mblk_t *mp, ipsq_func_t func, int type, 7944 boolean_t reentry_ok) 7945 { 7946 ipsq_t *ipsq; 7947 7948 ipsq = ipsq_try_enter(NULL, ill, q, mp, func, type, reentry_ok); 7949 7950 /* 7951 * Drop the caller's refhold on the ill. This is safe since we either 7952 * entered the IPSQ (and thus are exclusive), or failed to enter the 7953 * IPSQ, in which case we return without accessing ill anymore. This 7954 * is needed because func needs to see the correct refcount. 7955 * e.g. removeif can work only then. 7956 */ 7957 ill_refrele(ill); 7958 if (ipsq != NULL) { 7959 (*func)(ipsq, q, mp, NULL); 7960 ipsq_exit(ipsq); 7961 } 7962 } 7963 7964 /* 7965 * Exit the specified IPSQ. If this is the final exit on it then drain it 7966 * prior to exiting. Caller must be writer on the specified IPSQ. 7967 */ 7968 void 7969 ipsq_exit(ipsq_t *ipsq) 7970 { 7971 mblk_t *mp; 7972 ipsq_t *mp_ipsq; 7973 queue_t *q; 7974 phyint_t *phyi; 7975 ipsq_func_t func; 7976 7977 ASSERT(IAM_WRITER_IPSQ(ipsq)); 7978 7979 ASSERT(ipsq->ipsq_xop->ipx_reentry_cnt >= 1); 7980 if (ipsq->ipsq_xop->ipx_reentry_cnt != 1) { 7981 ipsq->ipsq_xop->ipx_reentry_cnt--; 7982 return; 7983 } 7984 7985 for (;;) { 7986 phyi = ipsq->ipsq_phyint; 7987 mp = ipsq_dq(ipsq); 7988 mp_ipsq = (mp == NULL) ? NULL : (ipsq_t *)mp->b_next; 7989 7990 /* 7991 * If we've changed to a new IPSQ, and the phyint associated 7992 * with the old one has gone away, free the old IPSQ. Note 7993 * that this cannot happen while the IPSQ is in a group. 7994 */ 7995 if (mp_ipsq != ipsq && phyi == NULL) { 7996 ASSERT(ipsq->ipsq_next == ipsq); 7997 ASSERT(ipsq->ipsq_xop == &ipsq->ipsq_ownxop); 7998 ipsq_delete(ipsq); 7999 } 8000 8001 if (mp == NULL) 8002 break; 8003 8004 q = mp->b_queue; 8005 func = (ipsq_func_t)mp->b_prev; 8006 ipsq = mp_ipsq; 8007 mp->b_next = mp->b_prev = NULL; 8008 mp->b_queue = NULL; 8009 8010 /* 8011 * If 'q' is an conn queue, it is valid, since we did a 8012 * a refhold on the conn at the start of the ioctl. 8013 * If 'q' is an ill queue, it is valid, since close of an 8014 * ill will clean up its IPSQ. 8015 */ 8016 (*func)(ipsq, q, mp, NULL); 8017 } 8018 } 8019 8020 /* 8021 * Start the current exclusive operation on `ipsq'; associate it with `ipif' 8022 * and `ioccmd'. 8023 */ 8024 void 8025 ipsq_current_start(ipsq_t *ipsq, ipif_t *ipif, int ioccmd) 8026 { 8027 ipxop_t *ipx = ipsq->ipsq_xop; 8028 8029 ASSERT(IAM_WRITER_IPSQ(ipsq)); 8030 ASSERT(ipx->ipx_current_ipif == NULL); 8031 ASSERT(ipx->ipx_current_ioctl == 0); 8032 8033 ipx->ipx_current_done = B_FALSE; 8034 ipx->ipx_current_ioctl = ioccmd; 8035 mutex_enter(&ipx->ipx_lock); 8036 ipx->ipx_current_ipif = ipif; 8037 mutex_exit(&ipx->ipx_lock); 8038 } 8039 8040 /* 8041 * Finish the current exclusive operation on `ipsq'. Usually, this will allow 8042 * the next exclusive operation to begin once we ipsq_exit(). However, if 8043 * pending DLPI operations remain, then we will wait for the queue to drain 8044 * before allowing the next exclusive operation to begin. This ensures that 8045 * DLPI operations from one exclusive operation are never improperly processed 8046 * as part of a subsequent exclusive operation. 8047 */ 8048 void 8049 ipsq_current_finish(ipsq_t *ipsq) 8050 { 8051 ipxop_t *ipx = ipsq->ipsq_xop; 8052 t_uscalar_t dlpi_pending = DL_PRIM_INVAL; 8053 ipif_t *ipif = ipx->ipx_current_ipif; 8054 8055 ASSERT(IAM_WRITER_IPSQ(ipsq)); 8056 8057 /* 8058 * For SIOCLIFREMOVEIF, the ipif has been already been blown away 8059 * (but in that case, IPIF_CHANGING will already be clear and no 8060 * pending DLPI messages can remain). 8061 */ 8062 if (ipx->ipx_current_ioctl != SIOCLIFREMOVEIF) { 8063 ill_t *ill = ipif->ipif_ill; 8064 8065 mutex_enter(&ill->ill_lock); 8066 dlpi_pending = ill->ill_dlpi_pending; 8067 ipif->ipif_state_flags &= ~IPIF_CHANGING; 8068 mutex_exit(&ill->ill_lock); 8069 } 8070 8071 ASSERT(!ipx->ipx_current_done); 8072 ipx->ipx_current_done = B_TRUE; 8073 ipx->ipx_current_ioctl = 0; 8074 if (dlpi_pending == DL_PRIM_INVAL) { 8075 mutex_enter(&ipx->ipx_lock); 8076 ipx->ipx_current_ipif = NULL; 8077 mutex_exit(&ipx->ipx_lock); 8078 } 8079 } 8080 8081 /* 8082 * The ill is closing. Flush all messages on the ipsq that originated 8083 * from this ill. Usually there wont' be any messages on the ipsq_xopq_mphead 8084 * for this ill since ipsq_enter could not have entered until then. 8085 * New messages can't be queued since the CONDEMNED flag is set. 8086 */ 8087 static void 8088 ipsq_flush(ill_t *ill) 8089 { 8090 queue_t *q; 8091 mblk_t *prev; 8092 mblk_t *mp; 8093 mblk_t *mp_next; 8094 ipxop_t *ipx = ill->ill_phyint->phyint_ipsq->ipsq_xop; 8095 8096 ASSERT(IAM_WRITER_ILL(ill)); 8097 8098 /* 8099 * Flush any messages sent up by the driver. 8100 */ 8101 mutex_enter(&ipx->ipx_lock); 8102 for (prev = NULL, mp = ipx->ipx_mphead; mp != NULL; mp = mp_next) { 8103 mp_next = mp->b_next; 8104 q = mp->b_queue; 8105 if (q == ill->ill_rq || q == ill->ill_wq) { 8106 /* dequeue mp */ 8107 if (prev == NULL) 8108 ipx->ipx_mphead = mp->b_next; 8109 else 8110 prev->b_next = mp->b_next; 8111 if (ipx->ipx_mptail == mp) { 8112 ASSERT(mp_next == NULL); 8113 ipx->ipx_mptail = prev; 8114 } 8115 inet_freemsg(mp); 8116 } else { 8117 prev = mp; 8118 } 8119 } 8120 mutex_exit(&ipx->ipx_lock); 8121 (void) ipsq_pending_mp_cleanup(ill, NULL); 8122 ipsq_xopq_mp_cleanup(ill, NULL); 8123 ill_pending_mp_cleanup(ill); 8124 } 8125 8126 /* 8127 * Parse an iftun_req structure coming down SIOC[GS]TUNPARAM ioctls, 8128 * refhold and return the associated ipif 8129 */ 8130 /* ARGSUSED */ 8131 int 8132 ip_extract_tunreq(queue_t *q, mblk_t *mp, const ip_ioctl_cmd_t *ipip, 8133 cmd_info_t *ci, ipsq_func_t func) 8134 { 8135 boolean_t exists; 8136 struct iftun_req *ta; 8137 ipif_t *ipif; 8138 ill_t *ill; 8139 boolean_t isv6; 8140 mblk_t *mp1; 8141 int error; 8142 conn_t *connp; 8143 ip_stack_t *ipst; 8144 8145 /* Existence verified in ip_wput_nondata */ 8146 mp1 = mp->b_cont->b_cont; 8147 ta = (struct iftun_req *)mp1->b_rptr; 8148 /* 8149 * Null terminate the string to protect against buffer 8150 * overrun. String was generated by user code and may not 8151 * be trusted. 8152 */ 8153 ta->ifta_lifr_name[LIFNAMSIZ - 1] = '\0'; 8154 8155 connp = Q_TO_CONN(q); 8156 isv6 = connp->conn_af_isv6; 8157 ipst = connp->conn_netstack->netstack_ip; 8158 8159 /* Disallows implicit create */ 8160 ipif = ipif_lookup_on_name(ta->ifta_lifr_name, 8161 mi_strlen(ta->ifta_lifr_name), B_FALSE, &exists, isv6, 8162 connp->conn_zoneid, CONNP_TO_WQ(connp), mp, func, &error, ipst); 8163 if (ipif == NULL) 8164 return (error); 8165 8166 if (ipif->ipif_id != 0) { 8167 /* 8168 * We really don't want to set/get tunnel parameters 8169 * on virtual tunnel interfaces. Only allow the 8170 * base tunnel to do these. 8171 */ 8172 ipif_refrele(ipif); 8173 return (EINVAL); 8174 } 8175 8176 /* 8177 * Send down to tunnel mod for ioctl processing. 8178 * Will finish ioctl in ip_rput_other(). 8179 */ 8180 ill = ipif->ipif_ill; 8181 if (ill->ill_net_type == IRE_LOOPBACK) { 8182 ipif_refrele(ipif); 8183 return (EOPNOTSUPP); 8184 } 8185 8186 if (ill->ill_wq == NULL) { 8187 ipif_refrele(ipif); 8188 return (ENXIO); 8189 } 8190 /* 8191 * Mark the ioctl as coming from an IPv6 interface for 8192 * tun's convenience. 8193 */ 8194 if (ill->ill_isv6) 8195 ta->ifta_flags |= 0x80000000; 8196 ci->ci_ipif = ipif; 8197 return (0); 8198 } 8199 8200 /* 8201 * Parse an ifreq or lifreq struct coming down ioctls and refhold 8202 * and return the associated ipif. 8203 * Return value: 8204 * Non zero: An error has occurred. ci may not be filled out. 8205 * zero : ci is filled out with the ioctl cmd in ci.ci_name, and 8206 * a held ipif in ci.ci_ipif. 8207 */ 8208 int 8209 ip_extract_lifreq(queue_t *q, mblk_t *mp, const ip_ioctl_cmd_t *ipip, 8210 cmd_info_t *ci, ipsq_func_t func) 8211 { 8212 char *name; 8213 struct ifreq *ifr; 8214 struct lifreq *lifr; 8215 ipif_t *ipif = NULL; 8216 ill_t *ill; 8217 conn_t *connp; 8218 boolean_t isv6; 8219 boolean_t exists; 8220 int err; 8221 mblk_t *mp1; 8222 zoneid_t zoneid; 8223 ip_stack_t *ipst; 8224 8225 if (q->q_next != NULL) { 8226 ill = (ill_t *)q->q_ptr; 8227 isv6 = ill->ill_isv6; 8228 connp = NULL; 8229 zoneid = ALL_ZONES; 8230 ipst = ill->ill_ipst; 8231 } else { 8232 ill = NULL; 8233 connp = Q_TO_CONN(q); 8234 isv6 = connp->conn_af_isv6; 8235 zoneid = connp->conn_zoneid; 8236 if (zoneid == GLOBAL_ZONEID) { 8237 /* global zone can access ipifs in all zones */ 8238 zoneid = ALL_ZONES; 8239 } 8240 ipst = connp->conn_netstack->netstack_ip; 8241 } 8242 8243 /* Has been checked in ip_wput_nondata */ 8244 mp1 = mp->b_cont->b_cont; 8245 8246 if (ipip->ipi_cmd_type == IF_CMD) { 8247 /* This a old style SIOC[GS]IF* command */ 8248 ifr = (struct ifreq *)mp1->b_rptr; 8249 /* 8250 * Null terminate the string to protect against buffer 8251 * overrun. String was generated by user code and may not 8252 * be trusted. 8253 */ 8254 ifr->ifr_name[IFNAMSIZ - 1] = '\0'; 8255 name = ifr->ifr_name; 8256 ci->ci_sin = (sin_t *)&ifr->ifr_addr; 8257 ci->ci_sin6 = NULL; 8258 ci->ci_lifr = (struct lifreq *)ifr; 8259 } else { 8260 /* This a new style SIOC[GS]LIF* command */ 8261 ASSERT(ipip->ipi_cmd_type == LIF_CMD); 8262 lifr = (struct lifreq *)mp1->b_rptr; 8263 /* 8264 * Null terminate the string to protect against buffer 8265 * overrun. String was generated by user code and may not 8266 * be trusted. 8267 */ 8268 lifr->lifr_name[LIFNAMSIZ - 1] = '\0'; 8269 name = lifr->lifr_name; 8270 ci->ci_sin = (sin_t *)&lifr->lifr_addr; 8271 ci->ci_sin6 = (sin6_t *)&lifr->lifr_addr; 8272 ci->ci_lifr = lifr; 8273 } 8274 8275 if (ipip->ipi_cmd == SIOCSLIFNAME) { 8276 /* 8277 * The ioctl will be failed if the ioctl comes down 8278 * an conn stream 8279 */ 8280 if (ill == NULL) { 8281 /* 8282 * Not an ill queue, return EINVAL same as the 8283 * old error code. 8284 */ 8285 return (ENXIO); 8286 } 8287 ipif = ill->ill_ipif; 8288 ipif_refhold(ipif); 8289 } else { 8290 ipif = ipif_lookup_on_name(name, mi_strlen(name), B_FALSE, 8291 &exists, isv6, zoneid, 8292 (connp == NULL) ? q : CONNP_TO_WQ(connp), mp, func, &err, 8293 ipst); 8294 if (ipif == NULL) { 8295 if (err == EINPROGRESS) 8296 return (err); 8297 err = 0; /* Ensure we don't use it below */ 8298 } 8299 } 8300 8301 /* 8302 * Old style [GS]IFCMD does not admit IPv6 ipif 8303 */ 8304 if (ipif != NULL && ipif->ipif_isv6 && ipip->ipi_cmd_type == IF_CMD) { 8305 ipif_refrele(ipif); 8306 return (ENXIO); 8307 } 8308 8309 if (ipif == NULL && ill != NULL && ill->ill_ipif != NULL && 8310 name[0] == '\0') { 8311 /* 8312 * Handle a or a SIOC?IF* with a null name 8313 * during plumb (on the ill queue before the I_PLINK). 8314 */ 8315 ipif = ill->ill_ipif; 8316 ipif_refhold(ipif); 8317 } 8318 8319 if (ipif == NULL) 8320 return (ENXIO); 8321 8322 ci->ci_ipif = ipif; 8323 return (0); 8324 } 8325 8326 /* 8327 * Return the total number of ipifs. 8328 */ 8329 static uint_t 8330 ip_get_numifs(zoneid_t zoneid, ip_stack_t *ipst) 8331 { 8332 uint_t numifs = 0; 8333 ill_t *ill; 8334 ill_walk_context_t ctx; 8335 ipif_t *ipif; 8336 8337 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 8338 ill = ILL_START_WALK_V4(&ctx, ipst); 8339 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 8340 if (IS_UNDER_IPMP(ill)) 8341 continue; 8342 for (ipif = ill->ill_ipif; ipif != NULL; 8343 ipif = ipif->ipif_next) { 8344 if (ipif->ipif_zoneid == zoneid || 8345 ipif->ipif_zoneid == ALL_ZONES) 8346 numifs++; 8347 } 8348 } 8349 rw_exit(&ipst->ips_ill_g_lock); 8350 return (numifs); 8351 } 8352 8353 /* 8354 * Return the total number of ipifs. 8355 */ 8356 static uint_t 8357 ip_get_numlifs(int family, int lifn_flags, zoneid_t zoneid, ip_stack_t *ipst) 8358 { 8359 uint_t numifs = 0; 8360 ill_t *ill; 8361 ipif_t *ipif; 8362 ill_walk_context_t ctx; 8363 8364 ip1dbg(("ip_get_numlifs(%d %u %d)\n", family, lifn_flags, (int)zoneid)); 8365 8366 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 8367 if (family == AF_INET) 8368 ill = ILL_START_WALK_V4(&ctx, ipst); 8369 else if (family == AF_INET6) 8370 ill = ILL_START_WALK_V6(&ctx, ipst); 8371 else 8372 ill = ILL_START_WALK_ALL(&ctx, ipst); 8373 8374 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 8375 if (IS_UNDER_IPMP(ill) && !(lifn_flags & LIFC_UNDER_IPMP)) 8376 continue; 8377 8378 for (ipif = ill->ill_ipif; ipif != NULL; 8379 ipif = ipif->ipif_next) { 8380 if ((ipif->ipif_flags & IPIF_NOXMIT) && 8381 !(lifn_flags & LIFC_NOXMIT)) 8382 continue; 8383 if ((ipif->ipif_flags & IPIF_TEMPORARY) && 8384 !(lifn_flags & LIFC_TEMPORARY)) 8385 continue; 8386 if (((ipif->ipif_flags & 8387 (IPIF_NOXMIT|IPIF_NOLOCAL| 8388 IPIF_DEPRECATED)) || 8389 IS_LOOPBACK(ill) || 8390 !(ipif->ipif_flags & IPIF_UP)) && 8391 (lifn_flags & LIFC_EXTERNAL_SOURCE)) 8392 continue; 8393 8394 if (zoneid != ipif->ipif_zoneid && 8395 ipif->ipif_zoneid != ALL_ZONES && 8396 (zoneid != GLOBAL_ZONEID || 8397 !(lifn_flags & LIFC_ALLZONES))) 8398 continue; 8399 8400 numifs++; 8401 } 8402 } 8403 rw_exit(&ipst->ips_ill_g_lock); 8404 return (numifs); 8405 } 8406 8407 uint_t 8408 ip_get_lifsrcofnum(ill_t *ill) 8409 { 8410 uint_t numifs = 0; 8411 ill_t *ill_head = ill; 8412 ip_stack_t *ipst = ill->ill_ipst; 8413 8414 /* 8415 * ill_g_usesrc_lock protects ill_usesrc_grp_next, for example, some 8416 * other thread may be trying to relink the ILLs in this usesrc group 8417 * and adjusting the ill_usesrc_grp_next pointers 8418 */ 8419 rw_enter(&ipst->ips_ill_g_usesrc_lock, RW_READER); 8420 if ((ill->ill_usesrc_ifindex == 0) && 8421 (ill->ill_usesrc_grp_next != NULL)) { 8422 for (; (ill != NULL) && (ill->ill_usesrc_grp_next != ill_head); 8423 ill = ill->ill_usesrc_grp_next) 8424 numifs++; 8425 } 8426 rw_exit(&ipst->ips_ill_g_usesrc_lock); 8427 8428 return (numifs); 8429 } 8430 8431 /* Null values are passed in for ipif, sin, and ifreq */ 8432 /* ARGSUSED */ 8433 int 8434 ip_sioctl_get_ifnum(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, 8435 mblk_t *mp, ip_ioctl_cmd_t *ipip, void *ifreq) 8436 { 8437 int *nump; 8438 conn_t *connp = Q_TO_CONN(q); 8439 8440 ASSERT(q->q_next == NULL); /* not a valid ioctl for ip as a module */ 8441 8442 /* Existence of b_cont->b_cont checked in ip_wput_nondata */ 8443 nump = (int *)mp->b_cont->b_cont->b_rptr; 8444 8445 *nump = ip_get_numifs(connp->conn_zoneid, 8446 connp->conn_netstack->netstack_ip); 8447 ip1dbg(("ip_sioctl_get_ifnum numifs %d", *nump)); 8448 return (0); 8449 } 8450 8451 /* Null values are passed in for ipif, sin, and ifreq */ 8452 /* ARGSUSED */ 8453 int 8454 ip_sioctl_get_lifnum(ipif_t *dummy_ipif, sin_t *dummy_sin, 8455 queue_t *q, mblk_t *mp, ip_ioctl_cmd_t *ipip, void *ifreq) 8456 { 8457 struct lifnum *lifn; 8458 mblk_t *mp1; 8459 conn_t *connp = Q_TO_CONN(q); 8460 8461 ASSERT(q->q_next == NULL); /* not a valid ioctl for ip as a module */ 8462 8463 /* Existence checked in ip_wput_nondata */ 8464 mp1 = mp->b_cont->b_cont; 8465 8466 lifn = (struct lifnum *)mp1->b_rptr; 8467 switch (lifn->lifn_family) { 8468 case AF_UNSPEC: 8469 case AF_INET: 8470 case AF_INET6: 8471 break; 8472 default: 8473 return (EAFNOSUPPORT); 8474 } 8475 8476 lifn->lifn_count = ip_get_numlifs(lifn->lifn_family, lifn->lifn_flags, 8477 connp->conn_zoneid, connp->conn_netstack->netstack_ip); 8478 ip1dbg(("ip_sioctl_get_lifnum numifs %d", lifn->lifn_count)); 8479 return (0); 8480 } 8481 8482 /* ARGSUSED */ 8483 int 8484 ip_sioctl_get_ifconf(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, 8485 mblk_t *mp, ip_ioctl_cmd_t *ipip, void *ifreq) 8486 { 8487 STRUCT_HANDLE(ifconf, ifc); 8488 mblk_t *mp1; 8489 struct iocblk *iocp; 8490 struct ifreq *ifr; 8491 ill_walk_context_t ctx; 8492 ill_t *ill; 8493 ipif_t *ipif; 8494 struct sockaddr_in *sin; 8495 int32_t ifclen; 8496 zoneid_t zoneid; 8497 ip_stack_t *ipst = CONNQ_TO_IPST(q); 8498 8499 ASSERT(q->q_next == NULL); /* not valid ioctls for ip as a module */ 8500 8501 ip1dbg(("ip_sioctl_get_ifconf")); 8502 /* Existence verified in ip_wput_nondata */ 8503 mp1 = mp->b_cont->b_cont; 8504 iocp = (struct iocblk *)mp->b_rptr; 8505 zoneid = Q_TO_CONN(q)->conn_zoneid; 8506 8507 /* 8508 * The original SIOCGIFCONF passed in a struct ifconf which specified 8509 * the user buffer address and length into which the list of struct 8510 * ifreqs was to be copied. Since AT&T Streams does not seem to 8511 * allow M_COPYOUT to be used in conjunction with I_STR IOCTLS, 8512 * the SIOCGIFCONF operation was redefined to simply provide 8513 * a large output buffer into which we are supposed to jam the ifreq 8514 * array. The same ioctl command code was used, despite the fact that 8515 * both the applications and the kernel code had to change, thus making 8516 * it impossible to support both interfaces. 8517 * 8518 * For reasons not good enough to try to explain, the following 8519 * algorithm is used for deciding what to do with one of these: 8520 * If the IOCTL comes in as an I_STR, it is assumed to be of the new 8521 * form with the output buffer coming down as the continuation message. 8522 * If it arrives as a TRANSPARENT IOCTL, it is assumed to be old style, 8523 * and we have to copy in the ifconf structure to find out how big the 8524 * output buffer is and where to copy out to. Sure no problem... 8525 * 8526 */ 8527 STRUCT_SET_HANDLE(ifc, iocp->ioc_flag, NULL); 8528 if ((mp1->b_wptr - mp1->b_rptr) == STRUCT_SIZE(ifc)) { 8529 int numifs = 0; 8530 size_t ifc_bufsize; 8531 8532 /* 8533 * Must be (better be!) continuation of a TRANSPARENT 8534 * IOCTL. We just copied in the ifconf structure. 8535 */ 8536 STRUCT_SET_HANDLE(ifc, iocp->ioc_flag, 8537 (struct ifconf *)mp1->b_rptr); 8538 8539 /* 8540 * Allocate a buffer to hold requested information. 8541 * 8542 * If ifc_len is larger than what is needed, we only 8543 * allocate what we will use. 8544 * 8545 * If ifc_len is smaller than what is needed, return 8546 * EINVAL. 8547 * 8548 * XXX: the ill_t structure can hava 2 counters, for 8549 * v4 and v6 (not just ill_ipif_up_count) to store the 8550 * number of interfaces for a device, so we don't need 8551 * to count them here... 8552 */ 8553 numifs = ip_get_numifs(zoneid, ipst); 8554 8555 ifclen = STRUCT_FGET(ifc, ifc_len); 8556 ifc_bufsize = numifs * sizeof (struct ifreq); 8557 if (ifc_bufsize > ifclen) { 8558 if (iocp->ioc_cmd == O_SIOCGIFCONF) { 8559 /* old behaviour */ 8560 return (EINVAL); 8561 } else { 8562 ifc_bufsize = ifclen; 8563 } 8564 } 8565 8566 mp1 = mi_copyout_alloc(q, mp, 8567 STRUCT_FGETP(ifc, ifc_buf), ifc_bufsize, B_FALSE); 8568 if (mp1 == NULL) 8569 return (ENOMEM); 8570 8571 mp1->b_wptr = mp1->b_rptr + ifc_bufsize; 8572 } 8573 bzero(mp1->b_rptr, mp1->b_wptr - mp1->b_rptr); 8574 /* 8575 * the SIOCGIFCONF ioctl only knows about 8576 * IPv4 addresses, so don't try to tell 8577 * it about interfaces with IPv6-only 8578 * addresses. (Last parm 'isv6' is B_FALSE) 8579 */ 8580 8581 ifr = (struct ifreq *)mp1->b_rptr; 8582 8583 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 8584 ill = ILL_START_WALK_V4(&ctx, ipst); 8585 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 8586 if (IS_UNDER_IPMP(ill)) 8587 continue; 8588 for (ipif = ill->ill_ipif; ipif != NULL; 8589 ipif = ipif->ipif_next) { 8590 if (zoneid != ipif->ipif_zoneid && 8591 ipif->ipif_zoneid != ALL_ZONES) 8592 continue; 8593 if ((uchar_t *)&ifr[1] > mp1->b_wptr) { 8594 if (iocp->ioc_cmd == O_SIOCGIFCONF) { 8595 /* old behaviour */ 8596 rw_exit(&ipst->ips_ill_g_lock); 8597 return (EINVAL); 8598 } else { 8599 goto if_copydone; 8600 } 8601 } 8602 ipif_get_name(ipif, ifr->ifr_name, 8603 sizeof (ifr->ifr_name)); 8604 sin = (sin_t *)&ifr->ifr_addr; 8605 *sin = sin_null; 8606 sin->sin_family = AF_INET; 8607 sin->sin_addr.s_addr = ipif->ipif_lcl_addr; 8608 ifr++; 8609 } 8610 } 8611 if_copydone: 8612 rw_exit(&ipst->ips_ill_g_lock); 8613 mp1->b_wptr = (uchar_t *)ifr; 8614 8615 if (STRUCT_BUF(ifc) != NULL) { 8616 STRUCT_FSET(ifc, ifc_len, 8617 (int)((uchar_t *)ifr - mp1->b_rptr)); 8618 } 8619 return (0); 8620 } 8621 8622 /* 8623 * Get the interfaces using the address hosted on the interface passed in, 8624 * as a source adddress 8625 */ 8626 /* ARGSUSED */ 8627 int 8628 ip_sioctl_get_lifsrcof(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, 8629 mblk_t *mp, ip_ioctl_cmd_t *ipip, void *ifreq) 8630 { 8631 mblk_t *mp1; 8632 ill_t *ill, *ill_head; 8633 ipif_t *ipif, *orig_ipif; 8634 int numlifs = 0; 8635 size_t lifs_bufsize, lifsmaxlen; 8636 struct lifreq *lifr; 8637 struct iocblk *iocp = (struct iocblk *)mp->b_rptr; 8638 uint_t ifindex; 8639 zoneid_t zoneid; 8640 int err = 0; 8641 boolean_t isv6 = B_FALSE; 8642 struct sockaddr_in *sin; 8643 struct sockaddr_in6 *sin6; 8644 STRUCT_HANDLE(lifsrcof, lifs); 8645 ip_stack_t *ipst; 8646 8647 ipst = CONNQ_TO_IPST(q); 8648 8649 ASSERT(q->q_next == NULL); 8650 8651 zoneid = Q_TO_CONN(q)->conn_zoneid; 8652 8653 /* Existence verified in ip_wput_nondata */ 8654 mp1 = mp->b_cont->b_cont; 8655 8656 /* 8657 * Must be (better be!) continuation of a TRANSPARENT 8658 * IOCTL. We just copied in the lifsrcof structure. 8659 */ 8660 STRUCT_SET_HANDLE(lifs, iocp->ioc_flag, 8661 (struct lifsrcof *)mp1->b_rptr); 8662 8663 if (MBLKL(mp1) != STRUCT_SIZE(lifs)) 8664 return (EINVAL); 8665 8666 ifindex = STRUCT_FGET(lifs, lifs_ifindex); 8667 isv6 = (Q_TO_CONN(q))->conn_af_isv6; 8668 ipif = ipif_lookup_on_ifindex(ifindex, isv6, zoneid, q, mp, 8669 ip_process_ioctl, &err, ipst); 8670 if (ipif == NULL) { 8671 ip1dbg(("ip_sioctl_get_lifsrcof: no ipif for ifindex %d\n", 8672 ifindex)); 8673 return (err); 8674 } 8675 8676 /* Allocate a buffer to hold requested information */ 8677 numlifs = ip_get_lifsrcofnum(ipif->ipif_ill); 8678 lifs_bufsize = numlifs * sizeof (struct lifreq); 8679 lifsmaxlen = STRUCT_FGET(lifs, lifs_maxlen); 8680 /* The actual size needed is always returned in lifs_len */ 8681 STRUCT_FSET(lifs, lifs_len, lifs_bufsize); 8682 8683 /* If the amount we need is more than what is passed in, abort */ 8684 if (lifs_bufsize > lifsmaxlen || lifs_bufsize == 0) { 8685 ipif_refrele(ipif); 8686 return (0); 8687 } 8688 8689 mp1 = mi_copyout_alloc(q, mp, 8690 STRUCT_FGETP(lifs, lifs_buf), lifs_bufsize, B_FALSE); 8691 if (mp1 == NULL) { 8692 ipif_refrele(ipif); 8693 return (ENOMEM); 8694 } 8695 8696 mp1->b_wptr = mp1->b_rptr + lifs_bufsize; 8697 bzero(mp1->b_rptr, lifs_bufsize); 8698 8699 lifr = (struct lifreq *)mp1->b_rptr; 8700 8701 ill = ill_head = ipif->ipif_ill; 8702 orig_ipif = ipif; 8703 8704 /* ill_g_usesrc_lock protects ill_usesrc_grp_next */ 8705 rw_enter(&ipst->ips_ill_g_usesrc_lock, RW_READER); 8706 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 8707 8708 ill = ill->ill_usesrc_grp_next; /* start from next ill */ 8709 for (; (ill != NULL) && (ill != ill_head); 8710 ill = ill->ill_usesrc_grp_next) { 8711 8712 if ((uchar_t *)&lifr[1] > mp1->b_wptr) 8713 break; 8714 8715 ipif = ill->ill_ipif; 8716 ipif_get_name(ipif, lifr->lifr_name, sizeof (lifr->lifr_name)); 8717 if (ipif->ipif_isv6) { 8718 sin6 = (sin6_t *)&lifr->lifr_addr; 8719 *sin6 = sin6_null; 8720 sin6->sin6_family = AF_INET6; 8721 sin6->sin6_addr = ipif->ipif_v6lcl_addr; 8722 lifr->lifr_addrlen = ip_mask_to_plen_v6( 8723 &ipif->ipif_v6net_mask); 8724 } else { 8725 sin = (sin_t *)&lifr->lifr_addr; 8726 *sin = sin_null; 8727 sin->sin_family = AF_INET; 8728 sin->sin_addr.s_addr = ipif->ipif_lcl_addr; 8729 lifr->lifr_addrlen = ip_mask_to_plen( 8730 ipif->ipif_net_mask); 8731 } 8732 lifr++; 8733 } 8734 rw_exit(&ipst->ips_ill_g_usesrc_lock); 8735 rw_exit(&ipst->ips_ill_g_lock); 8736 ipif_refrele(orig_ipif); 8737 mp1->b_wptr = (uchar_t *)lifr; 8738 STRUCT_FSET(lifs, lifs_len, (int)((uchar_t *)lifr - mp1->b_rptr)); 8739 8740 return (0); 8741 } 8742 8743 /* ARGSUSED */ 8744 int 8745 ip_sioctl_get_lifconf(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, 8746 mblk_t *mp, ip_ioctl_cmd_t *ipip, void *ifreq) 8747 { 8748 mblk_t *mp1; 8749 int list; 8750 ill_t *ill; 8751 ipif_t *ipif; 8752 int flags; 8753 int numlifs = 0; 8754 size_t lifc_bufsize; 8755 struct lifreq *lifr; 8756 sa_family_t family; 8757 struct sockaddr_in *sin; 8758 struct sockaddr_in6 *sin6; 8759 ill_walk_context_t ctx; 8760 struct iocblk *iocp = (struct iocblk *)mp->b_rptr; 8761 int32_t lifclen; 8762 zoneid_t zoneid; 8763 STRUCT_HANDLE(lifconf, lifc); 8764 ip_stack_t *ipst = CONNQ_TO_IPST(q); 8765 8766 ip1dbg(("ip_sioctl_get_lifconf")); 8767 8768 ASSERT(q->q_next == NULL); 8769 8770 zoneid = Q_TO_CONN(q)->conn_zoneid; 8771 8772 /* Existence verified in ip_wput_nondata */ 8773 mp1 = mp->b_cont->b_cont; 8774 8775 /* 8776 * An extended version of SIOCGIFCONF that takes an 8777 * additional address family and flags field. 8778 * AF_UNSPEC retrieve both IPv4 and IPv6. 8779 * Unless LIFC_NOXMIT is specified the IPIF_NOXMIT 8780 * interfaces are omitted. 8781 * Similarly, IPIF_TEMPORARY interfaces are omitted 8782 * unless LIFC_TEMPORARY is specified. 8783 * If LIFC_EXTERNAL_SOURCE is specified, IPIF_NOXMIT, 8784 * IPIF_NOLOCAL, PHYI_LOOPBACK, IPIF_DEPRECATED and 8785 * not IPIF_UP interfaces are omitted. LIFC_EXTERNAL_SOURCE 8786 * has priority over LIFC_NOXMIT. 8787 */ 8788 STRUCT_SET_HANDLE(lifc, iocp->ioc_flag, NULL); 8789 8790 if ((mp1->b_wptr - mp1->b_rptr) != STRUCT_SIZE(lifc)) 8791 return (EINVAL); 8792 8793 /* 8794 * Must be (better be!) continuation of a TRANSPARENT 8795 * IOCTL. We just copied in the lifconf structure. 8796 */ 8797 STRUCT_SET_HANDLE(lifc, iocp->ioc_flag, (struct lifconf *)mp1->b_rptr); 8798 8799 family = STRUCT_FGET(lifc, lifc_family); 8800 flags = STRUCT_FGET(lifc, lifc_flags); 8801 8802 switch (family) { 8803 case AF_UNSPEC: 8804 /* 8805 * walk all ILL's. 8806 */ 8807 list = MAX_G_HEADS; 8808 break; 8809 case AF_INET: 8810 /* 8811 * walk only IPV4 ILL's. 8812 */ 8813 list = IP_V4_G_HEAD; 8814 break; 8815 case AF_INET6: 8816 /* 8817 * walk only IPV6 ILL's. 8818 */ 8819 list = IP_V6_G_HEAD; 8820 break; 8821 default: 8822 return (EAFNOSUPPORT); 8823 } 8824 8825 /* 8826 * Allocate a buffer to hold requested information. 8827 * 8828 * If lifc_len is larger than what is needed, we only 8829 * allocate what we will use. 8830 * 8831 * If lifc_len is smaller than what is needed, return 8832 * EINVAL. 8833 */ 8834 numlifs = ip_get_numlifs(family, flags, zoneid, ipst); 8835 lifc_bufsize = numlifs * sizeof (struct lifreq); 8836 lifclen = STRUCT_FGET(lifc, lifc_len); 8837 if (lifc_bufsize > lifclen) { 8838 if (iocp->ioc_cmd == O_SIOCGLIFCONF) 8839 return (EINVAL); 8840 else 8841 lifc_bufsize = lifclen; 8842 } 8843 8844 mp1 = mi_copyout_alloc(q, mp, 8845 STRUCT_FGETP(lifc, lifc_buf), lifc_bufsize, B_FALSE); 8846 if (mp1 == NULL) 8847 return (ENOMEM); 8848 8849 mp1->b_wptr = mp1->b_rptr + lifc_bufsize; 8850 bzero(mp1->b_rptr, mp1->b_wptr - mp1->b_rptr); 8851 8852 lifr = (struct lifreq *)mp1->b_rptr; 8853 8854 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 8855 ill = ill_first(list, list, &ctx, ipst); 8856 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 8857 if (IS_UNDER_IPMP(ill) && !(flags & LIFC_UNDER_IPMP)) 8858 continue; 8859 8860 for (ipif = ill->ill_ipif; ipif != NULL; 8861 ipif = ipif->ipif_next) { 8862 if ((ipif->ipif_flags & IPIF_NOXMIT) && 8863 !(flags & LIFC_NOXMIT)) 8864 continue; 8865 8866 if ((ipif->ipif_flags & IPIF_TEMPORARY) && 8867 !(flags & LIFC_TEMPORARY)) 8868 continue; 8869 8870 if (((ipif->ipif_flags & 8871 (IPIF_NOXMIT|IPIF_NOLOCAL| 8872 IPIF_DEPRECATED)) || 8873 IS_LOOPBACK(ill) || 8874 !(ipif->ipif_flags & IPIF_UP)) && 8875 (flags & LIFC_EXTERNAL_SOURCE)) 8876 continue; 8877 8878 if (zoneid != ipif->ipif_zoneid && 8879 ipif->ipif_zoneid != ALL_ZONES && 8880 (zoneid != GLOBAL_ZONEID || 8881 !(flags & LIFC_ALLZONES))) 8882 continue; 8883 8884 if ((uchar_t *)&lifr[1] > mp1->b_wptr) { 8885 if (iocp->ioc_cmd == O_SIOCGLIFCONF) { 8886 rw_exit(&ipst->ips_ill_g_lock); 8887 return (EINVAL); 8888 } else { 8889 goto lif_copydone; 8890 } 8891 } 8892 8893 ipif_get_name(ipif, lifr->lifr_name, 8894 sizeof (lifr->lifr_name)); 8895 lifr->lifr_type = ill->ill_type; 8896 if (ipif->ipif_isv6) { 8897 sin6 = (sin6_t *)&lifr->lifr_addr; 8898 *sin6 = sin6_null; 8899 sin6->sin6_family = AF_INET6; 8900 sin6->sin6_addr = 8901 ipif->ipif_v6lcl_addr; 8902 lifr->lifr_addrlen = 8903 ip_mask_to_plen_v6( 8904 &ipif->ipif_v6net_mask); 8905 } else { 8906 sin = (sin_t *)&lifr->lifr_addr; 8907 *sin = sin_null; 8908 sin->sin_family = AF_INET; 8909 sin->sin_addr.s_addr = 8910 ipif->ipif_lcl_addr; 8911 lifr->lifr_addrlen = 8912 ip_mask_to_plen( 8913 ipif->ipif_net_mask); 8914 } 8915 lifr++; 8916 } 8917 } 8918 lif_copydone: 8919 rw_exit(&ipst->ips_ill_g_lock); 8920 8921 mp1->b_wptr = (uchar_t *)lifr; 8922 if (STRUCT_BUF(lifc) != NULL) { 8923 STRUCT_FSET(lifc, lifc_len, 8924 (int)((uchar_t *)lifr - mp1->b_rptr)); 8925 } 8926 return (0); 8927 } 8928 8929 static void 8930 ip_sioctl_ip6addrpolicy(queue_t *q, mblk_t *mp) 8931 { 8932 ip6_asp_t *table; 8933 size_t table_size; 8934 mblk_t *data_mp; 8935 struct iocblk *iocp = (struct iocblk *)mp->b_rptr; 8936 ip_stack_t *ipst; 8937 8938 if (q->q_next == NULL) 8939 ipst = CONNQ_TO_IPST(q); 8940 else 8941 ipst = ILLQ_TO_IPST(q); 8942 8943 /* These two ioctls are I_STR only */ 8944 if (iocp->ioc_count == TRANSPARENT) { 8945 miocnak(q, mp, 0, EINVAL); 8946 return; 8947 } 8948 8949 data_mp = mp->b_cont; 8950 if (data_mp == NULL) { 8951 /* The user passed us a NULL argument */ 8952 table = NULL; 8953 table_size = iocp->ioc_count; 8954 } else { 8955 /* 8956 * The user provided a table. The stream head 8957 * may have copied in the user data in chunks, 8958 * so make sure everything is pulled up 8959 * properly. 8960 */ 8961 if (MBLKL(data_mp) < iocp->ioc_count) { 8962 mblk_t *new_data_mp; 8963 if ((new_data_mp = msgpullup(data_mp, -1)) == 8964 NULL) { 8965 miocnak(q, mp, 0, ENOMEM); 8966 return; 8967 } 8968 freemsg(data_mp); 8969 data_mp = new_data_mp; 8970 mp->b_cont = data_mp; 8971 } 8972 table = (ip6_asp_t *)data_mp->b_rptr; 8973 table_size = iocp->ioc_count; 8974 } 8975 8976 switch (iocp->ioc_cmd) { 8977 case SIOCGIP6ADDRPOLICY: 8978 iocp->ioc_rval = ip6_asp_get(table, table_size, ipst); 8979 if (iocp->ioc_rval == -1) 8980 iocp->ioc_error = EINVAL; 8981 #if defined(_SYSCALL32_IMPL) && _LONG_LONG_ALIGNMENT_32 == 4 8982 else if (table != NULL && 8983 (iocp->ioc_flag & IOC_MODELS) == IOC_ILP32) { 8984 ip6_asp_t *src = table; 8985 ip6_asp32_t *dst = (void *)table; 8986 int count = table_size / sizeof (ip6_asp_t); 8987 int i; 8988 8989 /* 8990 * We need to do an in-place shrink of the array 8991 * to match the alignment attributes of the 8992 * 32-bit ABI looking at it. 8993 */ 8994 /* LINTED: logical expression always true: op "||" */ 8995 ASSERT(sizeof (*src) > sizeof (*dst)); 8996 for (i = 1; i < count; i++) 8997 bcopy(src + i, dst + i, sizeof (*dst)); 8998 } 8999 #endif 9000 break; 9001 9002 case SIOCSIP6ADDRPOLICY: 9003 ASSERT(mp->b_prev == NULL); 9004 mp->b_prev = (void *)q; 9005 #if defined(_SYSCALL32_IMPL) && _LONG_LONG_ALIGNMENT_32 == 4 9006 /* 9007 * We pass in the datamodel here so that the ip6_asp_replace() 9008 * routine can handle converting from 32-bit to native formats 9009 * where necessary. 9010 * 9011 * A better way to handle this might be to convert the inbound 9012 * data structure here, and hang it off a new 'mp'; thus the 9013 * ip6_asp_replace() logic would always be dealing with native 9014 * format data structures.. 9015 * 9016 * (An even simpler way to handle these ioctls is to just 9017 * add a 32-bit trailing 'pad' field to the ip6_asp_t structure 9018 * and just recompile everything that depends on it.) 9019 */ 9020 #endif 9021 ip6_asp_replace(mp, table, table_size, B_FALSE, ipst, 9022 iocp->ioc_flag & IOC_MODELS); 9023 return; 9024 } 9025 9026 DB_TYPE(mp) = (iocp->ioc_error == 0) ? M_IOCACK : M_IOCNAK; 9027 qreply(q, mp); 9028 } 9029 9030 static void 9031 ip_sioctl_dstinfo(queue_t *q, mblk_t *mp) 9032 { 9033 mblk_t *data_mp; 9034 struct dstinforeq *dir; 9035 uint8_t *end, *cur; 9036 in6_addr_t *daddr, *saddr; 9037 ipaddr_t v4daddr; 9038 ire_t *ire; 9039 char *slabel, *dlabel; 9040 boolean_t isipv4; 9041 int match_ire; 9042 ill_t *dst_ill; 9043 ipif_t *src_ipif, *ire_ipif; 9044 struct iocblk *iocp = (struct iocblk *)mp->b_rptr; 9045 zoneid_t zoneid; 9046 ip_stack_t *ipst = CONNQ_TO_IPST(q); 9047 9048 ASSERT(q->q_next == NULL); /* this ioctl not allowed if ip is module */ 9049 zoneid = Q_TO_CONN(q)->conn_zoneid; 9050 9051 /* 9052 * This ioctl is I_STR only, and must have a 9053 * data mblk following the M_IOCTL mblk. 9054 */ 9055 data_mp = mp->b_cont; 9056 if (iocp->ioc_count == TRANSPARENT || data_mp == NULL) { 9057 miocnak(q, mp, 0, EINVAL); 9058 return; 9059 } 9060 9061 if (MBLKL(data_mp) < iocp->ioc_count) { 9062 mblk_t *new_data_mp; 9063 9064 if ((new_data_mp = msgpullup(data_mp, -1)) == NULL) { 9065 miocnak(q, mp, 0, ENOMEM); 9066 return; 9067 } 9068 freemsg(data_mp); 9069 data_mp = new_data_mp; 9070 mp->b_cont = data_mp; 9071 } 9072 match_ire = MATCH_IRE_RECURSIVE | MATCH_IRE_DEFAULT | MATCH_IRE_PARENT; 9073 9074 for (cur = data_mp->b_rptr, end = data_mp->b_wptr; 9075 end - cur >= sizeof (struct dstinforeq); 9076 cur += sizeof (struct dstinforeq)) { 9077 dir = (struct dstinforeq *)cur; 9078 daddr = &dir->dir_daddr; 9079 saddr = &dir->dir_saddr; 9080 9081 /* 9082 * ip_addr_scope_v6() and ip6_asp_lookup() handle 9083 * v4 mapped addresses; ire_ftable_lookup[_v6]() 9084 * and ipif_select_source[_v6]() do not. 9085 */ 9086 dir->dir_dscope = ip_addr_scope_v6(daddr); 9087 dlabel = ip6_asp_lookup(daddr, &dir->dir_precedence, ipst); 9088 9089 isipv4 = IN6_IS_ADDR_V4MAPPED(daddr); 9090 if (isipv4) { 9091 IN6_V4MAPPED_TO_IPADDR(daddr, v4daddr); 9092 ire = ire_ftable_lookup(v4daddr, NULL, NULL, 9093 0, NULL, NULL, zoneid, 0, NULL, match_ire, ipst); 9094 } else { 9095 ire = ire_ftable_lookup_v6(daddr, NULL, NULL, 9096 0, NULL, NULL, zoneid, 0, NULL, match_ire, ipst); 9097 } 9098 if (ire == NULL) { 9099 dir->dir_dreachable = 0; 9100 9101 /* move on to next dst addr */ 9102 continue; 9103 } 9104 dir->dir_dreachable = 1; 9105 9106 ire_ipif = ire->ire_ipif; 9107 if (ire_ipif == NULL) 9108 goto next_dst; 9109 9110 /* 9111 * We expect to get back an interface ire or a 9112 * gateway ire cache entry. For both types, the 9113 * output interface is ire_ipif->ipif_ill. 9114 */ 9115 dst_ill = ire_ipif->ipif_ill; 9116 dir->dir_dmactype = dst_ill->ill_mactype; 9117 9118 if (isipv4) { 9119 src_ipif = ipif_select_source(dst_ill, v4daddr, zoneid); 9120 } else { 9121 src_ipif = ipif_select_source_v6(dst_ill, 9122 daddr, B_FALSE, IPV6_PREFER_SRC_DEFAULT, zoneid); 9123 } 9124 if (src_ipif == NULL) 9125 goto next_dst; 9126 9127 *saddr = src_ipif->ipif_v6lcl_addr; 9128 dir->dir_sscope = ip_addr_scope_v6(saddr); 9129 slabel = ip6_asp_lookup(saddr, NULL, ipst); 9130 dir->dir_labelmatch = ip6_asp_labelcmp(dlabel, slabel); 9131 dir->dir_sdeprecated = 9132 (src_ipif->ipif_flags & IPIF_DEPRECATED) ? 1 : 0; 9133 ipif_refrele(src_ipif); 9134 next_dst: 9135 ire_refrele(ire); 9136 } 9137 miocack(q, mp, iocp->ioc_count, 0); 9138 } 9139 9140 /* 9141 * Check if this is an address assigned to this machine. 9142 * Skips interfaces that are down by using ire checks. 9143 * Translates mapped addresses to v4 addresses and then 9144 * treats them as such, returning true if the v4 address 9145 * associated with this mapped address is configured. 9146 * Note: Applications will have to be careful what they do 9147 * with the response; use of mapped addresses limits 9148 * what can be done with the socket, especially with 9149 * respect to socket options and ioctls - neither IPv4 9150 * options nor IPv6 sticky options/ancillary data options 9151 * may be used. 9152 */ 9153 /* ARGSUSED */ 9154 int 9155 ip_sioctl_tmyaddr(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, 9156 ip_ioctl_cmd_t *ipip, void *dummy_ifreq) 9157 { 9158 struct sioc_addrreq *sia; 9159 sin_t *sin; 9160 ire_t *ire; 9161 mblk_t *mp1; 9162 zoneid_t zoneid; 9163 ip_stack_t *ipst; 9164 9165 ip1dbg(("ip_sioctl_tmyaddr")); 9166 9167 ASSERT(q->q_next == NULL); /* this ioctl not allowed if ip is module */ 9168 zoneid = Q_TO_CONN(q)->conn_zoneid; 9169 ipst = CONNQ_TO_IPST(q); 9170 9171 /* Existence verified in ip_wput_nondata */ 9172 mp1 = mp->b_cont->b_cont; 9173 sia = (struct sioc_addrreq *)mp1->b_rptr; 9174 sin = (sin_t *)&sia->sa_addr; 9175 switch (sin->sin_family) { 9176 case AF_INET6: { 9177 sin6_t *sin6 = (sin6_t *)sin; 9178 9179 if (IN6_IS_ADDR_V4MAPPED(&sin6->sin6_addr)) { 9180 ipaddr_t v4_addr; 9181 9182 IN6_V4MAPPED_TO_IPADDR(&sin6->sin6_addr, 9183 v4_addr); 9184 ire = ire_ctable_lookup(v4_addr, 0, 9185 IRE_LOCAL|IRE_LOOPBACK, NULL, zoneid, 9186 NULL, MATCH_IRE_TYPE | MATCH_IRE_ZONEONLY, ipst); 9187 } else { 9188 in6_addr_t v6addr; 9189 9190 v6addr = sin6->sin6_addr; 9191 ire = ire_ctable_lookup_v6(&v6addr, 0, 9192 IRE_LOCAL|IRE_LOOPBACK, NULL, zoneid, 9193 NULL, MATCH_IRE_TYPE | MATCH_IRE_ZONEONLY, ipst); 9194 } 9195 break; 9196 } 9197 case AF_INET: { 9198 ipaddr_t v4addr; 9199 9200 v4addr = sin->sin_addr.s_addr; 9201 ire = ire_ctable_lookup(v4addr, 0, 9202 IRE_LOCAL|IRE_LOOPBACK, NULL, zoneid, 9203 NULL, MATCH_IRE_TYPE | MATCH_IRE_ZONEONLY, ipst); 9204 break; 9205 } 9206 default: 9207 return (EAFNOSUPPORT); 9208 } 9209 if (ire != NULL) { 9210 sia->sa_res = 1; 9211 ire_refrele(ire); 9212 } else { 9213 sia->sa_res = 0; 9214 } 9215 return (0); 9216 } 9217 9218 /* 9219 * Check if this is an address assigned on-link i.e. neighbor, 9220 * and makes sure it's reachable from the current zone. 9221 * Returns true for my addresses as well. 9222 * Translates mapped addresses to v4 addresses and then 9223 * treats them as such, returning true if the v4 address 9224 * associated with this mapped address is configured. 9225 * Note: Applications will have to be careful what they do 9226 * with the response; use of mapped addresses limits 9227 * what can be done with the socket, especially with 9228 * respect to socket options and ioctls - neither IPv4 9229 * options nor IPv6 sticky options/ancillary data options 9230 * may be used. 9231 */ 9232 /* ARGSUSED */ 9233 int 9234 ip_sioctl_tonlink(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, 9235 ip_ioctl_cmd_t *ipip, void *duymmy_ifreq) 9236 { 9237 struct sioc_addrreq *sia; 9238 sin_t *sin; 9239 mblk_t *mp1; 9240 ire_t *ire = NULL; 9241 zoneid_t zoneid; 9242 ip_stack_t *ipst; 9243 9244 ip1dbg(("ip_sioctl_tonlink")); 9245 9246 ASSERT(q->q_next == NULL); /* this ioctl not allowed if ip is module */ 9247 zoneid = Q_TO_CONN(q)->conn_zoneid; 9248 ipst = CONNQ_TO_IPST(q); 9249 9250 /* Existence verified in ip_wput_nondata */ 9251 mp1 = mp->b_cont->b_cont; 9252 sia = (struct sioc_addrreq *)mp1->b_rptr; 9253 sin = (sin_t *)&sia->sa_addr; 9254 9255 /* 9256 * Match addresses with a zero gateway field to avoid 9257 * routes going through a router. 9258 * Exclude broadcast and multicast addresses. 9259 */ 9260 switch (sin->sin_family) { 9261 case AF_INET6: { 9262 sin6_t *sin6 = (sin6_t *)sin; 9263 9264 if (IN6_IS_ADDR_V4MAPPED(&sin6->sin6_addr)) { 9265 ipaddr_t v4_addr; 9266 9267 IN6_V4MAPPED_TO_IPADDR(&sin6->sin6_addr, 9268 v4_addr); 9269 if (!CLASSD(v4_addr)) { 9270 ire = ire_route_lookup(v4_addr, 0, 0, 0, 9271 NULL, NULL, zoneid, NULL, 9272 MATCH_IRE_GW, ipst); 9273 } 9274 } else { 9275 in6_addr_t v6addr; 9276 in6_addr_t v6gw; 9277 9278 v6addr = sin6->sin6_addr; 9279 v6gw = ipv6_all_zeros; 9280 if (!IN6_IS_ADDR_MULTICAST(&v6addr)) { 9281 ire = ire_route_lookup_v6(&v6addr, 0, 9282 &v6gw, 0, NULL, NULL, zoneid, 9283 NULL, MATCH_IRE_GW, ipst); 9284 } 9285 } 9286 break; 9287 } 9288 case AF_INET: { 9289 ipaddr_t v4addr; 9290 9291 v4addr = sin->sin_addr.s_addr; 9292 if (!CLASSD(v4addr)) { 9293 ire = ire_route_lookup(v4addr, 0, 0, 0, 9294 NULL, NULL, zoneid, NULL, 9295 MATCH_IRE_GW, ipst); 9296 } 9297 break; 9298 } 9299 default: 9300 return (EAFNOSUPPORT); 9301 } 9302 sia->sa_res = 0; 9303 if (ire != NULL) { 9304 if (ire->ire_type & (IRE_INTERFACE|IRE_CACHE| 9305 IRE_LOCAL|IRE_LOOPBACK)) { 9306 sia->sa_res = 1; 9307 } 9308 ire_refrele(ire); 9309 } 9310 return (0); 9311 } 9312 9313 /* 9314 * TBD: implement when kernel maintaines a list of site prefixes. 9315 */ 9316 /* ARGSUSED */ 9317 int 9318 ip_sioctl_tmysite(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 9319 ip_ioctl_cmd_t *ipip, void *ifreq) 9320 { 9321 return (ENXIO); 9322 } 9323 9324 /* ARGSUSED */ 9325 int 9326 ip_sioctl_tunparam(ipif_t *ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, 9327 ip_ioctl_cmd_t *ipip, void *dummy_ifreq) 9328 { 9329 ill_t *ill; 9330 mblk_t *mp1; 9331 conn_t *connp; 9332 boolean_t success; 9333 9334 ip1dbg(("ip_sioctl_tunparam(%s:%u %p)\n", 9335 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 9336 /* ioctl comes down on an conn */ 9337 ASSERT(!(q->q_flag & QREADR) && q->q_next == NULL); 9338 connp = Q_TO_CONN(q); 9339 9340 mp->b_datap->db_type = M_IOCTL; 9341 9342 /* 9343 * Send down a copy. (copymsg does not copy b_next/b_prev). 9344 * The original mp contains contaminated b_next values due to 'mi', 9345 * which is needed to do the mi_copy_done. Unfortunately if we 9346 * send down the original mblk itself and if we are popped due to an 9347 * an unplumb before the response comes back from tunnel, 9348 * the streamhead (which does a freemsg) will see this contaminated 9349 * message and the assertion in freemsg about non-null b_next/b_prev 9350 * will panic a DEBUG kernel. 9351 */ 9352 mp1 = copymsg(mp); 9353 if (mp1 == NULL) 9354 return (ENOMEM); 9355 9356 ill = ipif->ipif_ill; 9357 mutex_enter(&connp->conn_lock); 9358 mutex_enter(&ill->ill_lock); 9359 if (ipip->ipi_cmd == SIOCSTUNPARAM || ipip->ipi_cmd == OSIOCSTUNPARAM) { 9360 success = ipsq_pending_mp_add(connp, ipif, CONNP_TO_WQ(connp), 9361 mp, 0); 9362 } else { 9363 success = ill_pending_mp_add(ill, connp, mp); 9364 } 9365 mutex_exit(&ill->ill_lock); 9366 mutex_exit(&connp->conn_lock); 9367 9368 if (success) { 9369 ip1dbg(("sending down tunparam request ")); 9370 putnext(ill->ill_wq, mp1); 9371 return (EINPROGRESS); 9372 } else { 9373 /* The conn has started closing */ 9374 freemsg(mp1); 9375 return (EINTR); 9376 } 9377 } 9378 9379 /* 9380 * ARP IOCTLs. 9381 * How does IP get in the business of fronting ARP configuration/queries? 9382 * Well it's like this, the Berkeley ARP IOCTLs (SIOCGARP, SIOCDARP, SIOCSARP) 9383 * are by tradition passed in through a datagram socket. That lands in IP. 9384 * As it happens, this is just as well since the interface is quite crude in 9385 * that it passes in no information about protocol or hardware types, or 9386 * interface association. After making the protocol assumption, IP is in 9387 * the position to look up the name of the ILL, which ARP will need, and 9388 * format a request that can be handled by ARP. The request is passed up 9389 * stream to ARP, and the original IOCTL is completed by IP when ARP passes 9390 * back a response. ARP supports its own set of more general IOCTLs, in 9391 * case anyone is interested. 9392 */ 9393 /* ARGSUSED */ 9394 int 9395 ip_sioctl_arp(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 9396 ip_ioctl_cmd_t *ipip, void *dummy_ifreq) 9397 { 9398 mblk_t *mp1; 9399 mblk_t *mp2; 9400 mblk_t *pending_mp; 9401 ipaddr_t ipaddr; 9402 area_t *area; 9403 struct iocblk *iocp; 9404 conn_t *connp; 9405 struct arpreq *ar; 9406 struct xarpreq *xar; 9407 int flags, alength; 9408 uchar_t *lladdr; 9409 ire_t *ire; 9410 ip_stack_t *ipst; 9411 ill_t *ill = ipif->ipif_ill; 9412 ill_t *proxy_ill = NULL; 9413 ipmp_arpent_t *entp = NULL; 9414 boolean_t if_arp_ioctl = B_FALSE; 9415 boolean_t proxyarp = B_FALSE; 9416 9417 ASSERT(!(q->q_flag & QREADR) && q->q_next == NULL); 9418 connp = Q_TO_CONN(q); 9419 ipst = connp->conn_netstack->netstack_ip; 9420 9421 if (ipip->ipi_cmd_type == XARP_CMD) { 9422 /* We have a chain - M_IOCTL-->MI_COPY_MBLK-->XARPREQ_MBLK */ 9423 xar = (struct xarpreq *)mp->b_cont->b_cont->b_rptr; 9424 ar = NULL; 9425 9426 flags = xar->xarp_flags; 9427 lladdr = (uchar_t *)LLADDR(&xar->xarp_ha); 9428 if_arp_ioctl = (xar->xarp_ha.sdl_nlen != 0); 9429 /* 9430 * Validate against user's link layer address length 9431 * input and name and addr length limits. 9432 */ 9433 alength = ill->ill_phys_addr_length; 9434 if (ipip->ipi_cmd == SIOCSXARP) { 9435 if (alength != xar->xarp_ha.sdl_alen || 9436 (alength + xar->xarp_ha.sdl_nlen > 9437 sizeof (xar->xarp_ha.sdl_data))) 9438 return (EINVAL); 9439 } 9440 } else { 9441 /* We have a chain - M_IOCTL-->MI_COPY_MBLK-->ARPREQ_MBLK */ 9442 ar = (struct arpreq *)mp->b_cont->b_cont->b_rptr; 9443 xar = NULL; 9444 9445 flags = ar->arp_flags; 9446 lladdr = (uchar_t *)ar->arp_ha.sa_data; 9447 /* 9448 * Theoretically, the sa_family could tell us what link 9449 * layer type this operation is trying to deal with. By 9450 * common usage AF_UNSPEC means ethernet. We'll assume 9451 * any attempt to use the SIOC?ARP ioctls is for ethernet, 9452 * for now. Our new SIOC*XARP ioctls can be used more 9453 * generally. 9454 * 9455 * If the underlying media happens to have a non 6 byte 9456 * address, arp module will fail set/get, but the del 9457 * operation will succeed. 9458 */ 9459 alength = 6; 9460 if ((ipip->ipi_cmd != SIOCDARP) && 9461 (alength != ill->ill_phys_addr_length)) { 9462 return (EINVAL); 9463 } 9464 } 9465 9466 ipaddr = sin->sin_addr.s_addr; 9467 9468 /* 9469 * IPMP ARP special handling: 9470 * 9471 * 1. Since ARP mappings must appear consistent across the group, 9472 * prohibit changing ARP mappings on the underlying interfaces. 9473 * 9474 * 2. Since ARP mappings for IPMP data addresses are maintained by 9475 * IP itself, prohibit changing them. 9476 * 9477 * 3. For proxy ARP, use a functioning hardware address in the group, 9478 * provided one exists. If one doesn't, just add the entry as-is; 9479 * ipmp_illgrp_refresh_arpent() will refresh it if things change. 9480 */ 9481 if (IS_UNDER_IPMP(ill)) { 9482 if (ipip->ipi_cmd != SIOCGARP && ipip->ipi_cmd != SIOCGXARP) 9483 return (EPERM); 9484 } 9485 if (IS_IPMP(ill)) { 9486 ipmp_illgrp_t *illg = ill->ill_grp; 9487 9488 switch (ipip->ipi_cmd) { 9489 case SIOCSARP: 9490 case SIOCSXARP: 9491 proxy_ill = ipmp_illgrp_find_ill(illg, lladdr, alength); 9492 if (proxy_ill != NULL) { 9493 proxyarp = B_TRUE; 9494 if (!ipmp_ill_is_active(proxy_ill)) 9495 proxy_ill = ipmp_illgrp_next_ill(illg); 9496 if (proxy_ill != NULL) 9497 lladdr = proxy_ill->ill_phys_addr; 9498 } 9499 /* FALLTHRU */ 9500 case SIOCDARP: 9501 case SIOCDXARP: 9502 ire = ire_ctable_lookup(ipaddr, 0, IRE_LOCAL, NULL, 9503 ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 9504 if (ire != NULL) { 9505 ire_refrele(ire); 9506 return (EPERM); 9507 } 9508 } 9509 } 9510 9511 /* 9512 * We are going to pass up to ARP a packet chain that looks 9513 * like: 9514 * 9515 * M_IOCTL-->ARP_op_MBLK-->ORIG_M_IOCTL-->MI_COPY_MBLK-->[X]ARPREQ_MBLK 9516 * 9517 * Get a copy of the original IOCTL mblk to head the chain, 9518 * to be sent up (in mp1). Also get another copy to store 9519 * in the ill_pending_mp list, for matching the response 9520 * when it comes back from ARP. 9521 */ 9522 mp1 = copyb(mp); 9523 pending_mp = copymsg(mp); 9524 if (mp1 == NULL || pending_mp == NULL) { 9525 if (mp1 != NULL) 9526 freeb(mp1); 9527 if (pending_mp != NULL) 9528 inet_freemsg(pending_mp); 9529 return (ENOMEM); 9530 } 9531 9532 mp2 = ill_arp_alloc(ill, (uchar_t *)&ip_area_template, 9533 (caddr_t)&ipaddr); 9534 if (mp2 == NULL) { 9535 freeb(mp1); 9536 inet_freemsg(pending_mp); 9537 return (ENOMEM); 9538 } 9539 /* Put together the chain. */ 9540 mp1->b_cont = mp2; 9541 mp1->b_datap->db_type = M_IOCTL; 9542 mp2->b_cont = mp; 9543 mp2->b_datap->db_type = M_DATA; 9544 9545 iocp = (struct iocblk *)mp1->b_rptr; 9546 9547 /* 9548 * An M_IOCDATA's payload (struct copyresp) is mostly the same as an 9549 * M_IOCTL's payload (struct iocblk), but 'struct copyresp' has a 9550 * cp_private field (or cp_rval on 32-bit systems) in place of the 9551 * ioc_count field; set ioc_count to be correct. 9552 */ 9553 iocp->ioc_count = MBLKL(mp1->b_cont); 9554 9555 /* 9556 * Set the proper command in the ARP message. 9557 * Convert the SIOC{G|S|D}ARP calls into our 9558 * AR_ENTRY_xxx calls. 9559 */ 9560 area = (area_t *)mp2->b_rptr; 9561 switch (iocp->ioc_cmd) { 9562 case SIOCDARP: 9563 case SIOCDXARP: 9564 /* 9565 * We defer deleting the corresponding IRE until 9566 * we return from arp. 9567 */ 9568 area->area_cmd = AR_ENTRY_DELETE; 9569 area->area_proto_mask_offset = 0; 9570 break; 9571 case SIOCGARP: 9572 case SIOCGXARP: 9573 area->area_cmd = AR_ENTRY_SQUERY; 9574 area->area_proto_mask_offset = 0; 9575 break; 9576 case SIOCSARP: 9577 case SIOCSXARP: 9578 /* 9579 * Delete the corresponding ire to make sure IP will 9580 * pick up any change from arp. 9581 */ 9582 if (!if_arp_ioctl) { 9583 (void) ip_ire_clookup_and_delete(ipaddr, NULL, ipst); 9584 } else { 9585 ipif_t *ipif = ipif_get_next_ipif(NULL, ill); 9586 if (ipif != NULL) { 9587 (void) ip_ire_clookup_and_delete(ipaddr, ipif, 9588 ipst); 9589 ipif_refrele(ipif); 9590 } 9591 } 9592 break; 9593 } 9594 iocp->ioc_cmd = area->area_cmd; 9595 9596 /* 9597 * Fill in the rest of the ARP operation fields. 9598 */ 9599 area->area_hw_addr_length = alength; 9600 bcopy(lladdr, (char *)area + area->area_hw_addr_offset, alength); 9601 9602 /* Translate the flags. */ 9603 if (flags & ATF_PERM) 9604 area->area_flags |= ACE_F_PERMANENT; 9605 if (flags & ATF_PUBL) 9606 area->area_flags |= ACE_F_PUBLISH; 9607 if (flags & ATF_AUTHORITY) 9608 area->area_flags |= ACE_F_AUTHORITY; 9609 9610 /* 9611 * If this is a permanent AR_ENTRY_ADD on the IPMP interface, track it 9612 * so that IP can update ARP as the active ills in the group change. 9613 */ 9614 if (IS_IPMP(ill) && area->area_cmd == AR_ENTRY_ADD && 9615 (area->area_flags & ACE_F_PERMANENT)) { 9616 entp = ipmp_illgrp_create_arpent(ill->ill_grp, mp2, proxyarp); 9617 9618 /* 9619 * The second part of the conditional below handles a corner 9620 * case: if this is proxy ARP and the IPMP group has no active 9621 * interfaces, we can't send the request to ARP now since it 9622 * won't be able to build an ACE. So we return success and 9623 * notify ARP about the proxy ARP entry once an interface 9624 * becomes active. 9625 */ 9626 if (entp == NULL || (proxyarp && proxy_ill == NULL)) { 9627 mp2->b_cont = NULL; 9628 inet_freemsg(mp1); 9629 inet_freemsg(pending_mp); 9630 return (entp == NULL ? ENOMEM : 0); 9631 } 9632 } 9633 9634 /* 9635 * Before sending 'mp' to ARP, we have to clear the b_next 9636 * and b_prev. Otherwise if STREAMS encounters such a message 9637 * in freemsg(), (because ARP can close any time) it can cause 9638 * a panic. But mi code needs the b_next and b_prev values of 9639 * mp->b_cont, to complete the ioctl. So we store it here 9640 * in pending_mp->bcont, and restore it in ip_sioctl_iocack() 9641 * when the response comes down from ARP. 9642 */ 9643 pending_mp->b_cont->b_next = mp->b_cont->b_next; 9644 pending_mp->b_cont->b_prev = mp->b_cont->b_prev; 9645 mp->b_cont->b_next = NULL; 9646 mp->b_cont->b_prev = NULL; 9647 9648 mutex_enter(&connp->conn_lock); 9649 mutex_enter(&ill->ill_lock); 9650 /* conn has not yet started closing, hence this can't fail */ 9651 if (ipip->ipi_flags & IPI_WR) { 9652 VERIFY(ipsq_pending_mp_add(connp, ipif, CONNP_TO_WQ(connp), 9653 pending_mp, 0) != 0); 9654 } else { 9655 VERIFY(ill_pending_mp_add(ill, connp, pending_mp) != 0); 9656 } 9657 mutex_exit(&ill->ill_lock); 9658 mutex_exit(&connp->conn_lock); 9659 9660 /* 9661 * Up to ARP it goes. The response will come back in ip_wput() as an 9662 * M_IOCACK, and will be handed to ip_sioctl_iocack() for completion. 9663 */ 9664 putnext(ill->ill_rq, mp1); 9665 9666 /* 9667 * If we created an IPMP ARP entry, mark that we've notified ARP. 9668 */ 9669 if (entp != NULL) 9670 ipmp_illgrp_mark_arpent(ill->ill_grp, entp); 9671 9672 return (EINPROGRESS); 9673 } 9674 9675 /* 9676 * Parse an [x]arpreq structure coming down SIOC[GSD][X]ARP ioctls, identify 9677 * the associated sin and refhold and return the associated ipif via `ci'. 9678 */ 9679 int 9680 ip_extract_arpreq(queue_t *q, mblk_t *mp, const ip_ioctl_cmd_t *ipip, 9681 cmd_info_t *ci, ipsq_func_t func) 9682 { 9683 mblk_t *mp1; 9684 int err; 9685 sin_t *sin; 9686 conn_t *connp; 9687 ipif_t *ipif; 9688 ire_t *ire = NULL; 9689 ill_t *ill = NULL; 9690 boolean_t exists; 9691 ip_stack_t *ipst; 9692 struct arpreq *ar; 9693 struct xarpreq *xar; 9694 struct sockaddr_dl *sdl; 9695 9696 /* ioctl comes down on a conn */ 9697 ASSERT(!(q->q_flag & QREADR) && q->q_next == NULL); 9698 connp = Q_TO_CONN(q); 9699 if (connp->conn_af_isv6) 9700 return (ENXIO); 9701 9702 ipst = connp->conn_netstack->netstack_ip; 9703 9704 /* Verified in ip_wput_nondata */ 9705 mp1 = mp->b_cont->b_cont; 9706 9707 if (ipip->ipi_cmd_type == XARP_CMD) { 9708 ASSERT(MBLKL(mp1) >= sizeof (struct xarpreq)); 9709 xar = (struct xarpreq *)mp1->b_rptr; 9710 sin = (sin_t *)&xar->xarp_pa; 9711 sdl = &xar->xarp_ha; 9712 9713 if (sdl->sdl_family != AF_LINK || sin->sin_family != AF_INET) 9714 return (ENXIO); 9715 if (sdl->sdl_nlen >= LIFNAMSIZ) 9716 return (EINVAL); 9717 } else { 9718 ASSERT(ipip->ipi_cmd_type == ARP_CMD); 9719 ASSERT(MBLKL(mp1) >= sizeof (struct arpreq)); 9720 ar = (struct arpreq *)mp1->b_rptr; 9721 sin = (sin_t *)&ar->arp_pa; 9722 } 9723 9724 if (ipip->ipi_cmd_type == XARP_CMD && sdl->sdl_nlen != 0) { 9725 ipif = ipif_lookup_on_name(sdl->sdl_data, sdl->sdl_nlen, 9726 B_FALSE, &exists, B_FALSE, ALL_ZONES, CONNP_TO_WQ(connp), 9727 mp, func, &err, ipst); 9728 if (ipif == NULL) 9729 return (err); 9730 if (ipif->ipif_id != 0) { 9731 ipif_refrele(ipif); 9732 return (ENXIO); 9733 } 9734 } else { 9735 /* 9736 * Either an SIOC[DGS]ARP or an SIOC[DGS]XARP with an sdl_nlen 9737 * of 0: use the IP address to find the ipif. If the IP 9738 * address is an IPMP test address, ire_ftable_lookup() will 9739 * find the wrong ill, so we first do an ipif_lookup_addr(). 9740 */ 9741 ipif = ipif_lookup_addr(sin->sin_addr.s_addr, NULL, ALL_ZONES, 9742 CONNP_TO_WQ(connp), mp, func, &err, ipst); 9743 if (ipif == NULL) { 9744 ire = ire_ftable_lookup(sin->sin_addr.s_addr, 0, 0, 9745 IRE_IF_RESOLVER, NULL, NULL, ALL_ZONES, 0, NULL, 9746 MATCH_IRE_TYPE, ipst); 9747 if (ire == NULL || ((ill = ire_to_ill(ire)) == NULL)) { 9748 if (ire != NULL) 9749 ire_refrele(ire); 9750 return (ENXIO); 9751 } 9752 ipif = ill->ill_ipif; 9753 ipif_refhold(ipif); 9754 ire_refrele(ire); 9755 } 9756 } 9757 9758 if (ipif->ipif_net_type != IRE_IF_RESOLVER) { 9759 ipif_refrele(ipif); 9760 return (ENXIO); 9761 } 9762 9763 ci->ci_sin = sin; 9764 ci->ci_ipif = ipif; 9765 return (0); 9766 } 9767 9768 /* 9769 * Link or unlink the illgrp on IPMP meta-interface `ill' depending on the 9770 * value of `ioccmd'. While an illgrp is linked to an ipmp_grp_t, it is 9771 * accessible from that ipmp_grp_t, which means SIOCSLIFGROUPNAME can look it 9772 * up and thus an ill can join that illgrp. 9773 * 9774 * We use I_PLINK/I_PUNLINK to do the link/unlink operations rather than 9775 * open()/close() primarily because close() is not allowed to fail or block 9776 * forever. On the other hand, I_PUNLINK *can* fail, and there's no reason 9777 * why anyone should ever need to I_PUNLINK an in-use IPMP stream. To ensure 9778 * symmetric behavior (e.g., doing an I_PLINK after and I_PUNLINK undoes the 9779 * I_PUNLINK) we defer linking to I_PLINK. Separately, we also fail attempts 9780 * to I_LINK since I_UNLINK is optional and we'd end up in an inconsistent 9781 * state if I_UNLINK didn't occur. 9782 * 9783 * Note that for each plumb/unplumb operation, we may end up here more than 9784 * once because of the way ifconfig works. However, it's OK to link the same 9785 * illgrp more than once, or unlink an illgrp that's already unlinked. 9786 */ 9787 static int 9788 ip_sioctl_plink_ipmp(ill_t *ill, int ioccmd) 9789 { 9790 int err; 9791 ip_stack_t *ipst = ill->ill_ipst; 9792 9793 ASSERT(IS_IPMP(ill)); 9794 ASSERT(IAM_WRITER_ILL(ill)); 9795 9796 switch (ioccmd) { 9797 case I_LINK: 9798 return (ENOTSUP); 9799 9800 case I_PLINK: 9801 rw_enter(&ipst->ips_ipmp_lock, RW_WRITER); 9802 ipmp_illgrp_link_grp(ill->ill_grp, ill->ill_phyint->phyint_grp); 9803 rw_exit(&ipst->ips_ipmp_lock); 9804 break; 9805 9806 case I_PUNLINK: 9807 /* 9808 * Require all UP ipifs be brought down prior to unlinking the 9809 * illgrp so any associated IREs (and other state) is torched. 9810 */ 9811 if (ill->ill_ipif_up_count + ill->ill_ipif_dup_count > 0) 9812 return (EBUSY); 9813 9814 /* 9815 * NOTE: We hold ipmp_lock across the unlink to prevent a race 9816 * with an SIOCSLIFGROUPNAME request from an ill trying to 9817 * join this group. Specifically: ills trying to join grab 9818 * ipmp_lock and bump a "pending join" counter checked by 9819 * ipmp_illgrp_unlink_grp(). During the unlink no new pending 9820 * joins can occur (since we have ipmp_lock). Once we drop 9821 * ipmp_lock, subsequent SIOCSLIFGROUPNAME requests will not 9822 * find the illgrp (since we unlinked it) and will return 9823 * EAFNOSUPPORT. This will then take them back through the 9824 * IPMP meta-interface plumbing logic in ifconfig, and thus 9825 * back through I_PLINK above. 9826 */ 9827 rw_enter(&ipst->ips_ipmp_lock, RW_WRITER); 9828 err = ipmp_illgrp_unlink_grp(ill->ill_grp); 9829 rw_exit(&ipst->ips_ipmp_lock); 9830 return (err); 9831 default: 9832 break; 9833 } 9834 return (0); 9835 } 9836 9837 /* 9838 * Do I_PLINK/I_LINK or I_PUNLINK/I_UNLINK with consistency checks and also 9839 * atomically set/clear the muxids. Also complete the ioctl by acking or 9840 * naking it. Note that the code is structured such that the link type, 9841 * whether it's persistent or not, is treated equally. ifconfig(1M) and 9842 * its clones use the persistent link, while pppd(1M) and perhaps many 9843 * other daemons may use non-persistent link. When combined with some 9844 * ill_t states, linking and unlinking lower streams may be used as 9845 * indicators of dynamic re-plumbing events [see PSARC/1999/348]. 9846 */ 9847 /* ARGSUSED */ 9848 void 9849 ip_sioctl_plink(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy_arg) 9850 { 9851 mblk_t *mp1, *mp2; 9852 struct linkblk *li; 9853 struct ipmx_s *ipmxp; 9854 ill_t *ill; 9855 int ioccmd = ((struct iocblk *)mp->b_rptr)->ioc_cmd; 9856 int err = 0; 9857 boolean_t entered_ipsq = B_FALSE; 9858 boolean_t islink; 9859 ip_stack_t *ipst; 9860 9861 if (CONN_Q(q)) 9862 ipst = CONNQ_TO_IPST(q); 9863 else 9864 ipst = ILLQ_TO_IPST(q); 9865 9866 ASSERT(ioccmd == I_PLINK || ioccmd == I_PUNLINK || 9867 ioccmd == I_LINK || ioccmd == I_UNLINK); 9868 9869 islink = (ioccmd == I_PLINK || ioccmd == I_LINK); 9870 9871 mp1 = mp->b_cont; /* This is the linkblk info */ 9872 li = (struct linkblk *)mp1->b_rptr; 9873 9874 /* 9875 * ARP has added this special mblk, and the utility is asking us 9876 * to perform consistency checks, and also atomically set the 9877 * muxid. Ifconfig is an example. It achieves this by using 9878 * /dev/arp as the mux to plink the arp stream, and pushes arp on 9879 * to /dev/udp[6] stream for use as the mux when plinking the IP 9880 * stream. SIOCSLIFMUXID is not required. See ifconfig.c, arp.c 9881 * and other comments in this routine for more details. 9882 */ 9883 mp2 = mp1->b_cont; /* This is added by ARP */ 9884 9885 /* 9886 * If I_{P}LINK/I_{P}UNLINK is issued by a utility other than 9887 * ifconfig which didn't push ARP on top of the dummy mux, we won't 9888 * get the special mblk above. For backward compatibility, we 9889 * request ip_sioctl_plink_ipmod() to skip the consistency checks. 9890 * The utility will use SIOCSLIFMUXID to store the muxids. This is 9891 * not atomic, and can leave the streams unplumbable if the utility 9892 * is interrupted before it does the SIOCSLIFMUXID. 9893 */ 9894 if (mp2 == NULL) { 9895 err = ip_sioctl_plink_ipmod(ipsq, q, mp, ioccmd, li, B_FALSE); 9896 if (err == EINPROGRESS) 9897 return; 9898 goto done; 9899 } 9900 9901 /* 9902 * This is an I_{P}LINK sent down by ifconfig through the ARP module; 9903 * ARP has appended this last mblk to tell us whether the lower stream 9904 * is an arp-dev stream or an IP module stream. 9905 */ 9906 ipmxp = (struct ipmx_s *)mp2->b_rptr; 9907 if (ipmxp->ipmx_arpdev_stream) { 9908 /* 9909 * The lower stream is the arp-dev stream. 9910 */ 9911 ill = ill_lookup_on_name(ipmxp->ipmx_name, B_FALSE, B_FALSE, 9912 q, mp, ip_sioctl_plink, &err, NULL, ipst); 9913 if (ill == NULL) { 9914 if (err == EINPROGRESS) 9915 return; 9916 err = EINVAL; 9917 goto done; 9918 } 9919 9920 if (ipsq == NULL) { 9921 ipsq = ipsq_try_enter(NULL, ill, q, mp, ip_sioctl_plink, 9922 NEW_OP, B_FALSE); 9923 if (ipsq == NULL) { 9924 ill_refrele(ill); 9925 return; 9926 } 9927 entered_ipsq = B_TRUE; 9928 } 9929 ASSERT(IAM_WRITER_ILL(ill)); 9930 ill_refrele(ill); 9931 9932 /* 9933 * To ensure consistency between IP and ARP, the following 9934 * LIFO scheme is used in plink/punlink. (IP first, ARP last). 9935 * This is because the muxid's are stored in the IP stream on 9936 * the ill. 9937 * 9938 * I_{P}LINK: ifconfig plinks the IP stream before plinking 9939 * the ARP stream. On an arp-dev stream, IP checks that it is 9940 * not yet plinked, and it also checks that the corresponding 9941 * IP stream is already plinked. 9942 * 9943 * I_{P}UNLINK: ifconfig punlinks the ARP stream before 9944 * punlinking the IP stream. IP does not allow punlink of the 9945 * IP stream unless the arp stream has been punlinked. 9946 */ 9947 if ((islink && 9948 (ill->ill_arp_muxid != 0 || ill->ill_ip_muxid == 0)) || 9949 (!islink && ill->ill_arp_muxid != li->l_index)) { 9950 err = EINVAL; 9951 goto done; 9952 } 9953 9954 if (IS_IPMP(ill) && 9955 (err = ip_sioctl_plink_ipmp(ill, ioccmd)) != 0) 9956 goto done; 9957 9958 ill->ill_arp_muxid = islink ? li->l_index : 0; 9959 } else { 9960 /* 9961 * The lower stream is probably an IP module stream. Do 9962 * consistency checking. 9963 */ 9964 err = ip_sioctl_plink_ipmod(ipsq, q, mp, ioccmd, li, B_TRUE); 9965 if (err == EINPROGRESS) 9966 return; 9967 } 9968 done: 9969 if (err == 0) 9970 miocack(q, mp, 0, 0); 9971 else 9972 miocnak(q, mp, 0, err); 9973 9974 /* Conn was refheld in ip_sioctl_copyin_setup */ 9975 if (CONN_Q(q)) 9976 CONN_OPER_PENDING_DONE(Q_TO_CONN(q)); 9977 if (entered_ipsq) 9978 ipsq_exit(ipsq); 9979 } 9980 9981 /* 9982 * Process I_{P}LINK and I_{P}UNLINK requests named by `ioccmd' and pointed to 9983 * by `mp' and `li' for the IP module stream (if li->q_bot is in fact an IP 9984 * module stream). If `doconsist' is set, then do the extended consistency 9985 * checks requested by ifconfig(1M) and (atomically) set ill_ip_muxid here. 9986 * Returns zero on success, EINPROGRESS if the operation is still pending, or 9987 * an error code on failure. 9988 */ 9989 static int 9990 ip_sioctl_plink_ipmod(ipsq_t *ipsq, queue_t *q, mblk_t *mp, int ioccmd, 9991 struct linkblk *li, boolean_t doconsist) 9992 { 9993 int err = 0; 9994 ill_t *ill; 9995 queue_t *ipwq, *dwq; 9996 const char *name; 9997 struct qinit *qinfo; 9998 boolean_t islink = (ioccmd == I_PLINK || ioccmd == I_LINK); 9999 boolean_t entered_ipsq = B_FALSE; 10000 10001 /* 10002 * Walk the lower stream to verify it's the IP module stream. 10003 * The IP module is identified by its name, wput function, 10004 * and non-NULL q_next. STREAMS ensures that the lower stream 10005 * (li->l_qbot) will not vanish until this ioctl completes. 10006 */ 10007 for (ipwq = li->l_qbot; ipwq != NULL; ipwq = ipwq->q_next) { 10008 qinfo = ipwq->q_qinfo; 10009 name = qinfo->qi_minfo->mi_idname; 10010 if (name != NULL && strcmp(name, ip_mod_info.mi_idname) == 0 && 10011 qinfo->qi_putp != (pfi_t)ip_lwput && ipwq->q_next != NULL) { 10012 break; 10013 } 10014 } 10015 10016 /* 10017 * If this isn't an IP module stream, bail. 10018 */ 10019 if (ipwq == NULL) 10020 return (0); 10021 10022 ill = ipwq->q_ptr; 10023 ASSERT(ill != NULL); 10024 10025 if (ipsq == NULL) { 10026 ipsq = ipsq_try_enter(NULL, ill, q, mp, ip_sioctl_plink, 10027 NEW_OP, B_FALSE); 10028 if (ipsq == NULL) 10029 return (EINPROGRESS); 10030 entered_ipsq = B_TRUE; 10031 } 10032 ASSERT(IAM_WRITER_ILL(ill)); 10033 10034 if (doconsist) { 10035 /* 10036 * Consistency checking requires that I_{P}LINK occurs 10037 * prior to setting ill_ip_muxid, and that I_{P}UNLINK 10038 * occurs prior to clearing ill_arp_muxid. 10039 */ 10040 if ((islink && ill->ill_ip_muxid != 0) || 10041 (!islink && ill->ill_arp_muxid != 0)) { 10042 err = EINVAL; 10043 goto done; 10044 } 10045 } 10046 10047 if (IS_IPMP(ill) && (err = ip_sioctl_plink_ipmp(ill, ioccmd)) != 0) 10048 goto done; 10049 10050 /* 10051 * As part of I_{P}LINKing, stash the number of downstream modules and 10052 * the read queue of the module immediately below IP in the ill. 10053 * These are used during the capability negotiation below. 10054 */ 10055 ill->ill_lmod_rq = NULL; 10056 ill->ill_lmod_cnt = 0; 10057 if (islink && ((dwq = ipwq->q_next) != NULL)) { 10058 ill->ill_lmod_rq = RD(dwq); 10059 for (; dwq != NULL; dwq = dwq->q_next) 10060 ill->ill_lmod_cnt++; 10061 } 10062 10063 if (doconsist) 10064 ill->ill_ip_muxid = islink ? li->l_index : 0; 10065 10066 /* 10067 * Mark the ipsq busy until the capability operations initiated below 10068 * complete. The PLINK/UNLINK ioctl itself completes when our caller 10069 * returns, but the capability operation may complete asynchronously 10070 * much later. 10071 */ 10072 ipsq_current_start(ipsq, ill->ill_ipif, ioccmd); 10073 /* 10074 * If there's at least one up ipif on this ill, then we're bound to 10075 * the underlying driver via DLPI. In that case, renegotiate 10076 * capabilities to account for any possible change in modules 10077 * interposed between IP and the driver. 10078 */ 10079 if (ill->ill_ipif_up_count > 0) { 10080 if (islink) 10081 ill_capability_probe(ill); 10082 else 10083 ill_capability_reset(ill, B_FALSE); 10084 } 10085 ipsq_current_finish(ipsq); 10086 done: 10087 if (entered_ipsq) 10088 ipsq_exit(ipsq); 10089 10090 return (err); 10091 } 10092 10093 /* 10094 * Search the ioctl command in the ioctl tables and return a pointer 10095 * to the ioctl command information. The ioctl command tables are 10096 * static and fully populated at compile time. 10097 */ 10098 ip_ioctl_cmd_t * 10099 ip_sioctl_lookup(int ioc_cmd) 10100 { 10101 int index; 10102 ip_ioctl_cmd_t *ipip; 10103 ip_ioctl_cmd_t *ipip_end; 10104 10105 if (ioc_cmd == IPI_DONTCARE) 10106 return (NULL); 10107 10108 /* 10109 * Do a 2 step search. First search the indexed table 10110 * based on the least significant byte of the ioctl cmd. 10111 * If we don't find a match, then search the misc table 10112 * serially. 10113 */ 10114 index = ioc_cmd & 0xFF; 10115 if (index < ip_ndx_ioctl_count) { 10116 ipip = &ip_ndx_ioctl_table[index]; 10117 if (ipip->ipi_cmd == ioc_cmd) { 10118 /* Found a match in the ndx table */ 10119 return (ipip); 10120 } 10121 } 10122 10123 /* Search the misc table */ 10124 ipip_end = &ip_misc_ioctl_table[ip_misc_ioctl_count]; 10125 for (ipip = ip_misc_ioctl_table; ipip < ipip_end; ipip++) { 10126 if (ipip->ipi_cmd == ioc_cmd) 10127 /* Found a match in the misc table */ 10128 return (ipip); 10129 } 10130 10131 return (NULL); 10132 } 10133 10134 /* 10135 * Wrapper function for resuming deferred ioctl processing 10136 * Used for SIOCGDSTINFO, SIOCGIP6ADDRPOLICY, SIOCGMSFILTER, 10137 * SIOCSMSFILTER, SIOCGIPMSFILTER, and SIOCSIPMSFILTER currently. 10138 */ 10139 /* ARGSUSED */ 10140 void 10141 ip_sioctl_copyin_resume(ipsq_t *dummy_ipsq, queue_t *q, mblk_t *mp, 10142 void *dummy_arg) 10143 { 10144 ip_sioctl_copyin_setup(q, mp); 10145 } 10146 10147 /* 10148 * ip_sioctl_copyin_setup is called by ip_wput with any M_IOCTL message 10149 * that arrives. Most of the IOCTLs are "socket" IOCTLs which we handle 10150 * in either I_STR or TRANSPARENT form, using the mi_copy facility. 10151 * We establish here the size of the block to be copied in. mi_copyin 10152 * arranges for this to happen, an processing continues in ip_wput with 10153 * an M_IOCDATA message. 10154 */ 10155 void 10156 ip_sioctl_copyin_setup(queue_t *q, mblk_t *mp) 10157 { 10158 int copyin_size; 10159 struct iocblk *iocp = (struct iocblk *)mp->b_rptr; 10160 ip_ioctl_cmd_t *ipip; 10161 cred_t *cr; 10162 ip_stack_t *ipst; 10163 10164 if (CONN_Q(q)) 10165 ipst = CONNQ_TO_IPST(q); 10166 else 10167 ipst = ILLQ_TO_IPST(q); 10168 10169 ipip = ip_sioctl_lookup(iocp->ioc_cmd); 10170 if (ipip == NULL) { 10171 /* 10172 * The ioctl is not one we understand or own. 10173 * Pass it along to be processed down stream, 10174 * if this is a module instance of IP, else nak 10175 * the ioctl. 10176 */ 10177 if (q->q_next == NULL) { 10178 goto nak; 10179 } else { 10180 putnext(q, mp); 10181 return; 10182 } 10183 } 10184 10185 /* 10186 * If this is deferred, then we will do all the checks when we 10187 * come back. 10188 */ 10189 if ((iocp->ioc_cmd == SIOCGDSTINFO || 10190 iocp->ioc_cmd == SIOCGIP6ADDRPOLICY) && !ip6_asp_can_lookup(ipst)) { 10191 ip6_asp_pending_op(q, mp, ip_sioctl_copyin_resume); 10192 return; 10193 } 10194 10195 /* 10196 * Only allow a very small subset of IP ioctls on this stream if 10197 * IP is a module and not a driver. Allowing ioctls to be processed 10198 * in this case may cause assert failures or data corruption. 10199 * Typically G[L]IFFLAGS, SLIFNAME/IF_UNITSEL are the only few 10200 * ioctls allowed on an IP module stream, after which this stream 10201 * normally becomes a multiplexor (at which time the stream head 10202 * will fail all ioctls). 10203 */ 10204 if ((q->q_next != NULL) && !(ipip->ipi_flags & IPI_MODOK)) { 10205 if (ipip->ipi_flags & IPI_PASS_DOWN) { 10206 /* 10207 * Pass common Streams ioctls which the IP 10208 * module does not own or consume along to 10209 * be processed down stream. 10210 */ 10211 putnext(q, mp); 10212 return; 10213 } else { 10214 goto nak; 10215 } 10216 } 10217 10218 /* Make sure we have ioctl data to process. */ 10219 if (mp->b_cont == NULL && !(ipip->ipi_flags & IPI_NULL_BCONT)) 10220 goto nak; 10221 10222 /* 10223 * Prefer dblk credential over ioctl credential; some synthesized 10224 * ioctls have kcred set because there's no way to crhold() 10225 * a credential in some contexts. (ioc_cr is not crfree() by 10226 * the framework; the caller of ioctl needs to hold the reference 10227 * for the duration of the call). 10228 */ 10229 cr = DB_CREDDEF(mp, iocp->ioc_cr); 10230 10231 /* Make sure normal users don't send down privileged ioctls */ 10232 if ((ipip->ipi_flags & IPI_PRIV) && 10233 (cr != NULL) && secpolicy_ip_config(cr, B_TRUE) != 0) { 10234 /* We checked the privilege earlier but log it here */ 10235 miocnak(q, mp, 0, secpolicy_ip_config(cr, B_FALSE)); 10236 return; 10237 } 10238 10239 /* 10240 * The ioctl command tables can only encode fixed length 10241 * ioctl data. If the length is variable, the table will 10242 * encode the length as zero. Such special cases are handled 10243 * below in the switch. 10244 */ 10245 if (ipip->ipi_copyin_size != 0) { 10246 mi_copyin(q, mp, NULL, ipip->ipi_copyin_size); 10247 return; 10248 } 10249 10250 switch (iocp->ioc_cmd) { 10251 case O_SIOCGIFCONF: 10252 case SIOCGIFCONF: 10253 /* 10254 * This IOCTL is hilarious. See comments in 10255 * ip_sioctl_get_ifconf for the story. 10256 */ 10257 if (iocp->ioc_count == TRANSPARENT) 10258 copyin_size = SIZEOF_STRUCT(ifconf, 10259 iocp->ioc_flag); 10260 else 10261 copyin_size = iocp->ioc_count; 10262 mi_copyin(q, mp, NULL, copyin_size); 10263 return; 10264 10265 case O_SIOCGLIFCONF: 10266 case SIOCGLIFCONF: 10267 copyin_size = SIZEOF_STRUCT(lifconf, iocp->ioc_flag); 10268 mi_copyin(q, mp, NULL, copyin_size); 10269 return; 10270 10271 case SIOCGLIFSRCOF: 10272 copyin_size = SIZEOF_STRUCT(lifsrcof, iocp->ioc_flag); 10273 mi_copyin(q, mp, NULL, copyin_size); 10274 return; 10275 case SIOCGIP6ADDRPOLICY: 10276 ip_sioctl_ip6addrpolicy(q, mp); 10277 ip6_asp_table_refrele(ipst); 10278 return; 10279 10280 case SIOCSIP6ADDRPOLICY: 10281 ip_sioctl_ip6addrpolicy(q, mp); 10282 return; 10283 10284 case SIOCGDSTINFO: 10285 ip_sioctl_dstinfo(q, mp); 10286 ip6_asp_table_refrele(ipst); 10287 return; 10288 10289 case I_PLINK: 10290 case I_PUNLINK: 10291 case I_LINK: 10292 case I_UNLINK: 10293 /* 10294 * We treat non-persistent link similarly as the persistent 10295 * link case, in terms of plumbing/unplumbing, as well as 10296 * dynamic re-plumbing events indicator. See comments 10297 * in ip_sioctl_plink() for more. 10298 * 10299 * Request can be enqueued in the 'ipsq' while waiting 10300 * to become exclusive. So bump up the conn ref. 10301 */ 10302 if (CONN_Q(q)) 10303 CONN_INC_REF(Q_TO_CONN(q)); 10304 ip_sioctl_plink(NULL, q, mp, NULL); 10305 return; 10306 10307 case ND_GET: 10308 case ND_SET: 10309 /* 10310 * Use of the nd table requires holding the reader lock. 10311 * Modifying the nd table thru nd_load/nd_unload requires 10312 * the writer lock. 10313 */ 10314 rw_enter(&ipst->ips_ip_g_nd_lock, RW_READER); 10315 if (nd_getset(q, ipst->ips_ip_g_nd, mp)) { 10316 rw_exit(&ipst->ips_ip_g_nd_lock); 10317 10318 if (iocp->ioc_error) 10319 iocp->ioc_count = 0; 10320 mp->b_datap->db_type = M_IOCACK; 10321 qreply(q, mp); 10322 return; 10323 } 10324 rw_exit(&ipst->ips_ip_g_nd_lock); 10325 /* 10326 * We don't understand this subioctl of ND_GET / ND_SET. 10327 * Maybe intended for some driver / module below us 10328 */ 10329 if (q->q_next) { 10330 putnext(q, mp); 10331 } else { 10332 iocp->ioc_error = ENOENT; 10333 mp->b_datap->db_type = M_IOCNAK; 10334 iocp->ioc_count = 0; 10335 qreply(q, mp); 10336 } 10337 return; 10338 10339 case IP_IOCTL: 10340 ip_wput_ioctl(q, mp); 10341 return; 10342 default: 10343 cmn_err(CE_PANIC, "should not happen "); 10344 } 10345 nak: 10346 if (mp->b_cont != NULL) { 10347 freemsg(mp->b_cont); 10348 mp->b_cont = NULL; 10349 } 10350 iocp->ioc_error = EINVAL; 10351 mp->b_datap->db_type = M_IOCNAK; 10352 iocp->ioc_count = 0; 10353 qreply(q, mp); 10354 } 10355 10356 /* ip_wput hands off ARP IOCTL responses to us */ 10357 /* ARGSUSED3 */ 10358 void 10359 ip_sioctl_iocack(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy_arg) 10360 { 10361 struct arpreq *ar; 10362 struct xarpreq *xar; 10363 area_t *area; 10364 mblk_t *area_mp; 10365 struct iocblk *iocp; 10366 mblk_t *orig_ioc_mp, *tmp; 10367 struct iocblk *orig_iocp; 10368 ill_t *ill; 10369 conn_t *connp = NULL; 10370 mblk_t *pending_mp; 10371 int x_arp_ioctl = B_FALSE, ifx_arp_ioctl = B_FALSE; 10372 int *flagsp; 10373 char *storage = NULL; 10374 sin_t *sin; 10375 ipaddr_t addr; 10376 int err; 10377 ip_stack_t *ipst; 10378 10379 ASSERT(ipsq == NULL || IAM_WRITER_IPSQ(ipsq)); 10380 ill = q->q_ptr; 10381 ASSERT(ill != NULL); 10382 ipst = ill->ill_ipst; 10383 10384 /* 10385 * We should get back from ARP a packet chain that looks like: 10386 * M_IOCACK-->ARP_op_MBLK-->ORIG_M_IOCTL-->MI_COPY_MBLK-->[X]ARPREQ_MBLK 10387 */ 10388 if (!(area_mp = mp->b_cont) || 10389 (area_mp->b_wptr - area_mp->b_rptr) < sizeof (ip_sock_ar_t) || 10390 !(orig_ioc_mp = area_mp->b_cont) || 10391 !orig_ioc_mp->b_cont || !orig_ioc_mp->b_cont->b_cont) { 10392 freemsg(mp); 10393 return; 10394 } 10395 10396 orig_iocp = (struct iocblk *)orig_ioc_mp->b_rptr; 10397 10398 tmp = (orig_ioc_mp->b_cont)->b_cont; 10399 if ((orig_iocp->ioc_cmd == SIOCGXARP) || 10400 (orig_iocp->ioc_cmd == SIOCSXARP) || 10401 (orig_iocp->ioc_cmd == SIOCDXARP)) { 10402 x_arp_ioctl = B_TRUE; 10403 xar = (struct xarpreq *)tmp->b_rptr; 10404 sin = (sin_t *)&xar->xarp_pa; 10405 flagsp = &xar->xarp_flags; 10406 storage = xar->xarp_ha.sdl_data; 10407 if (xar->xarp_ha.sdl_nlen != 0) 10408 ifx_arp_ioctl = B_TRUE; 10409 } else { 10410 ar = (struct arpreq *)tmp->b_rptr; 10411 sin = (sin_t *)&ar->arp_pa; 10412 flagsp = &ar->arp_flags; 10413 storage = ar->arp_ha.sa_data; 10414 } 10415 10416 iocp = (struct iocblk *)mp->b_rptr; 10417 10418 /* 10419 * Find the pending message; if we're exclusive, it'll be on our IPSQ. 10420 * Otherwise, we can find it from our ioc_id. 10421 */ 10422 if (ipsq != NULL) 10423 pending_mp = ipsq_pending_mp_get(ipsq, &connp); 10424 else 10425 pending_mp = ill_pending_mp_get(ill, &connp, iocp->ioc_id); 10426 10427 if (pending_mp == NULL) { 10428 ASSERT(connp == NULL); 10429 inet_freemsg(mp); 10430 return; 10431 } 10432 ASSERT(connp != NULL); 10433 q = CONNP_TO_WQ(connp); 10434 10435 /* Uncouple the internally generated IOCTL from the original one */ 10436 area = (area_t *)area_mp->b_rptr; 10437 area_mp->b_cont = NULL; 10438 10439 /* 10440 * Restore the b_next and b_prev used by mi code. This is needed 10441 * to complete the ioctl using mi* functions. We stored them in 10442 * the pending mp prior to sending the request to ARP. 10443 */ 10444 orig_ioc_mp->b_cont->b_next = pending_mp->b_cont->b_next; 10445 orig_ioc_mp->b_cont->b_prev = pending_mp->b_cont->b_prev; 10446 inet_freemsg(pending_mp); 10447 10448 /* 10449 * We're done if there was an error or if this is not an SIOCG{X}ARP 10450 * Catch the case where there is an IRE_CACHE by no entry in the 10451 * arp table. 10452 */ 10453 addr = sin->sin_addr.s_addr; 10454 if (iocp->ioc_error && iocp->ioc_cmd == AR_ENTRY_SQUERY) { 10455 ire_t *ire; 10456 dl_unitdata_req_t *dlup; 10457 mblk_t *llmp; 10458 int addr_len; 10459 ill_t *ipsqill = NULL; 10460 10461 if (ifx_arp_ioctl) { 10462 /* 10463 * There's no need to lookup the ill, since 10464 * we've already done that when we started 10465 * processing the ioctl and sent the message 10466 * to ARP on that ill. So use the ill that 10467 * is stored in q->q_ptr. 10468 */ 10469 ipsqill = ill; 10470 ire = ire_ctable_lookup(addr, 0, IRE_CACHE, 10471 ipsqill->ill_ipif, ALL_ZONES, 10472 NULL, MATCH_IRE_TYPE | MATCH_IRE_ILL, ipst); 10473 } else { 10474 ire = ire_ctable_lookup(addr, 0, IRE_CACHE, 10475 NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 10476 if (ire != NULL) 10477 ipsqill = ire_to_ill(ire); 10478 } 10479 10480 if ((x_arp_ioctl) && (ipsqill != NULL)) 10481 storage += ill_xarp_info(&xar->xarp_ha, ipsqill); 10482 10483 if (ire != NULL) { 10484 /* 10485 * Since the ire obtained from cachetable is used for 10486 * mac addr copying below, treat an incomplete ire as if 10487 * as if we never found it. 10488 */ 10489 if (ire->ire_nce != NULL && 10490 ire->ire_nce->nce_state != ND_REACHABLE) { 10491 ire_refrele(ire); 10492 ire = NULL; 10493 ipsqill = NULL; 10494 goto errack; 10495 } 10496 *flagsp = ATF_INUSE; 10497 llmp = (ire->ire_nce != NULL ? 10498 ire->ire_nce->nce_res_mp : NULL); 10499 if (llmp != NULL && ipsqill != NULL) { 10500 uchar_t *macaddr; 10501 10502 addr_len = ipsqill->ill_phys_addr_length; 10503 if (x_arp_ioctl && ((addr_len + 10504 ipsqill->ill_name_length) > 10505 sizeof (xar->xarp_ha.sdl_data))) { 10506 ire_refrele(ire); 10507 freemsg(mp); 10508 ip_ioctl_finish(q, orig_ioc_mp, 10509 EINVAL, NO_COPYOUT, ipsq); 10510 return; 10511 } 10512 *flagsp |= ATF_COM; 10513 dlup = (dl_unitdata_req_t *)llmp->b_rptr; 10514 if (ipsqill->ill_sap_length < 0) 10515 macaddr = llmp->b_rptr + 10516 dlup->dl_dest_addr_offset; 10517 else 10518 macaddr = llmp->b_rptr + 10519 dlup->dl_dest_addr_offset + 10520 ipsqill->ill_sap_length; 10521 /* 10522 * For SIOCGARP, MAC address length 10523 * validation has already been done 10524 * before the ioctl was issued to ARP to 10525 * allow it to progress only on 6 byte 10526 * addressable (ethernet like) media. Thus 10527 * the mac address copying can not overwrite 10528 * the sa_data area below. 10529 */ 10530 bcopy(macaddr, storage, addr_len); 10531 } 10532 /* Ditch the internal IOCTL. */ 10533 freemsg(mp); 10534 ire_refrele(ire); 10535 ip_ioctl_finish(q, orig_ioc_mp, 0, COPYOUT, ipsq); 10536 return; 10537 } 10538 } 10539 10540 /* 10541 * If this was a failed AR_ENTRY_ADD or a successful AR_ENTRY_DELETE 10542 * on the IPMP meta-interface, ensure any ARP entries added in 10543 * ip_sioctl_arp() are deleted. 10544 */ 10545 if (IS_IPMP(ill) && 10546 ((iocp->ioc_error != 0 && iocp->ioc_cmd == AR_ENTRY_ADD) || 10547 ((iocp->ioc_error == 0 && iocp->ioc_cmd == AR_ENTRY_DELETE)))) { 10548 ipmp_illgrp_t *illg = ill->ill_grp; 10549 ipmp_arpent_t *entp; 10550 10551 if ((entp = ipmp_illgrp_lookup_arpent(illg, &addr)) != NULL) 10552 ipmp_illgrp_destroy_arpent(illg, entp); 10553 } 10554 10555 /* 10556 * Delete the coresponding IRE_CACHE if any. 10557 * Reset the error if there was one (in case there was no entry 10558 * in arp.) 10559 */ 10560 if (iocp->ioc_cmd == AR_ENTRY_DELETE) { 10561 ipif_t *ipintf = NULL; 10562 10563 if (ifx_arp_ioctl) { 10564 /* 10565 * There's no need to lookup the ill, since 10566 * we've already done that when we started 10567 * processing the ioctl and sent the message 10568 * to ARP on that ill. So use the ill that 10569 * is stored in q->q_ptr. 10570 */ 10571 ipintf = ill->ill_ipif; 10572 } 10573 if (ip_ire_clookup_and_delete(addr, ipintf, ipst)) { 10574 /* 10575 * The address in "addr" may be an entry for a 10576 * router. If that's true, then any off-net 10577 * IRE_CACHE entries that go through the router 10578 * with address "addr" must be clobbered. Use 10579 * ire_walk to achieve this goal. 10580 */ 10581 if (ifx_arp_ioctl) 10582 ire_walk_ill_v4(MATCH_IRE_ILL, 0, 10583 ire_delete_cache_gw, (char *)&addr, ill); 10584 else 10585 ire_walk_v4(ire_delete_cache_gw, (char *)&addr, 10586 ALL_ZONES, ipst); 10587 iocp->ioc_error = 0; 10588 } 10589 } 10590 errack: 10591 if (iocp->ioc_error || iocp->ioc_cmd != AR_ENTRY_SQUERY) { 10592 err = iocp->ioc_error; 10593 freemsg(mp); 10594 ip_ioctl_finish(q, orig_ioc_mp, err, NO_COPYOUT, ipsq); 10595 return; 10596 } 10597 10598 /* 10599 * Completion of an SIOCG{X}ARP. Translate the information from 10600 * the area_t into the struct {x}arpreq. 10601 */ 10602 if (x_arp_ioctl) { 10603 storage += ill_xarp_info(&xar->xarp_ha, ill); 10604 if ((ill->ill_phys_addr_length + ill->ill_name_length) > 10605 sizeof (xar->xarp_ha.sdl_data)) { 10606 freemsg(mp); 10607 ip_ioctl_finish(q, orig_ioc_mp, EINVAL, NO_COPYOUT, 10608 ipsq); 10609 return; 10610 } 10611 } 10612 *flagsp = ATF_INUSE; 10613 if (area->area_flags & ACE_F_PERMANENT) 10614 *flagsp |= ATF_PERM; 10615 if (area->area_flags & ACE_F_PUBLISH) 10616 *flagsp |= ATF_PUBL; 10617 if (area->area_flags & ACE_F_AUTHORITY) 10618 *flagsp |= ATF_AUTHORITY; 10619 if (area->area_hw_addr_length != 0) { 10620 *flagsp |= ATF_COM; 10621 /* 10622 * For SIOCGARP, MAC address length validation has 10623 * already been done before the ioctl was issued to ARP 10624 * to allow it to progress only on 6 byte addressable 10625 * (ethernet like) media. Thus the mac address copying 10626 * can not overwrite the sa_data area below. 10627 */ 10628 bcopy((char *)area + area->area_hw_addr_offset, 10629 storage, area->area_hw_addr_length); 10630 } 10631 10632 /* Ditch the internal IOCTL. */ 10633 freemsg(mp); 10634 /* Complete the original. */ 10635 ip_ioctl_finish(q, orig_ioc_mp, 0, COPYOUT, ipsq); 10636 } 10637 10638 /* 10639 * Create a new logical interface. If ipif_id is zero (i.e. not a logical 10640 * interface) create the next available logical interface for this 10641 * physical interface. 10642 * If ipif is NULL (i.e. the lookup didn't find one) attempt to create an 10643 * ipif with the specified name. 10644 * 10645 * If the address family is not AF_UNSPEC then set the address as well. 10646 * 10647 * If ip_sioctl_addr returns EINPROGRESS then the ioctl (the copyout) 10648 * is completed when the DL_BIND_ACK arrive in ip_rput_dlpi_writer. 10649 * 10650 * Executed as a writer on the ill. 10651 * So no lock is needed to traverse the ipif chain, or examine the 10652 * phyint flags. 10653 */ 10654 /* ARGSUSED */ 10655 int 10656 ip_sioctl_addif(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, 10657 ip_ioctl_cmd_t *dummy_ipip, void *dummy_ifreq) 10658 { 10659 mblk_t *mp1; 10660 struct lifreq *lifr; 10661 boolean_t isv6; 10662 boolean_t exists; 10663 char *name; 10664 char *endp; 10665 char *cp; 10666 int namelen; 10667 ipif_t *ipif; 10668 long id; 10669 ipsq_t *ipsq; 10670 ill_t *ill; 10671 sin_t *sin; 10672 int err = 0; 10673 boolean_t found_sep = B_FALSE; 10674 conn_t *connp; 10675 zoneid_t zoneid; 10676 ip_stack_t *ipst = CONNQ_TO_IPST(q); 10677 10678 ASSERT(q->q_next == NULL); 10679 ip1dbg(("ip_sioctl_addif\n")); 10680 /* Existence of mp1 has been checked in ip_wput_nondata */ 10681 mp1 = mp->b_cont->b_cont; 10682 /* 10683 * Null terminate the string to protect against buffer 10684 * overrun. String was generated by user code and may not 10685 * be trusted. 10686 */ 10687 lifr = (struct lifreq *)mp1->b_rptr; 10688 lifr->lifr_name[LIFNAMSIZ - 1] = '\0'; 10689 name = lifr->lifr_name; 10690 ASSERT(CONN_Q(q)); 10691 connp = Q_TO_CONN(q); 10692 isv6 = connp->conn_af_isv6; 10693 zoneid = connp->conn_zoneid; 10694 namelen = mi_strlen(name); 10695 if (namelen == 0) 10696 return (EINVAL); 10697 10698 exists = B_FALSE; 10699 if ((namelen + 1 == sizeof (ipif_loopback_name)) && 10700 (mi_strcmp(name, ipif_loopback_name) == 0)) { 10701 /* 10702 * Allow creating lo0 using SIOCLIFADDIF. 10703 * can't be any other writer thread. So can pass null below 10704 * for the last 4 args to ipif_lookup_name. 10705 */ 10706 ipif = ipif_lookup_on_name(lifr->lifr_name, namelen, B_TRUE, 10707 &exists, isv6, zoneid, NULL, NULL, NULL, NULL, ipst); 10708 /* Prevent any further action */ 10709 if (ipif == NULL) { 10710 return (ENOBUFS); 10711 } else if (!exists) { 10712 /* We created the ipif now and as writer */ 10713 ipif_refrele(ipif); 10714 return (0); 10715 } else { 10716 ill = ipif->ipif_ill; 10717 ill_refhold(ill); 10718 ipif_refrele(ipif); 10719 } 10720 } else { 10721 /* Look for a colon in the name. */ 10722 endp = &name[namelen]; 10723 for (cp = endp; --cp > name; ) { 10724 if (*cp == IPIF_SEPARATOR_CHAR) { 10725 found_sep = B_TRUE; 10726 /* 10727 * Reject any non-decimal aliases for plumbing 10728 * of logical interfaces. Aliases with leading 10729 * zeroes are also rejected as they introduce 10730 * ambiguity in the naming of the interfaces. 10731 * Comparing with "0" takes care of all such 10732 * cases. 10733 */ 10734 if ((strncmp("0", cp+1, 1)) == 0) 10735 return (EINVAL); 10736 10737 if (ddi_strtol(cp+1, &endp, 10, &id) != 0 || 10738 id <= 0 || *endp != '\0') { 10739 return (EINVAL); 10740 } 10741 *cp = '\0'; 10742 break; 10743 } 10744 } 10745 ill = ill_lookup_on_name(name, B_FALSE, isv6, 10746 CONNP_TO_WQ(connp), mp, ip_process_ioctl, &err, NULL, ipst); 10747 if (found_sep) 10748 *cp = IPIF_SEPARATOR_CHAR; 10749 if (ill == NULL) 10750 return (err); 10751 } 10752 10753 ipsq = ipsq_try_enter(NULL, ill, q, mp, ip_process_ioctl, NEW_OP, 10754 B_TRUE); 10755 10756 /* 10757 * Release the refhold due to the lookup, now that we are excl 10758 * or we are just returning 10759 */ 10760 ill_refrele(ill); 10761 10762 if (ipsq == NULL) 10763 return (EINPROGRESS); 10764 10765 /* We are now exclusive on the IPSQ */ 10766 ASSERT(IAM_WRITER_ILL(ill)); 10767 10768 if (found_sep) { 10769 /* Now see if there is an IPIF with this unit number. */ 10770 for (ipif = ill->ill_ipif; ipif != NULL; 10771 ipif = ipif->ipif_next) { 10772 if (ipif->ipif_id == id) { 10773 err = EEXIST; 10774 goto done; 10775 } 10776 } 10777 } 10778 10779 /* 10780 * We use IRE_LOCAL for lo0:1 etc. for "receive only" use 10781 * of lo0. Plumbing for lo0:0 happens in ipif_lookup_on_name() 10782 * instead. 10783 */ 10784 if ((ipif = ipif_allocate(ill, found_sep ? id : -1, IRE_LOCAL, 10785 B_TRUE, B_TRUE)) == NULL) { 10786 err = ENOBUFS; 10787 goto done; 10788 } 10789 10790 /* Return created name with ioctl */ 10791 (void) sprintf(lifr->lifr_name, "%s%c%d", ill->ill_name, 10792 IPIF_SEPARATOR_CHAR, ipif->ipif_id); 10793 ip1dbg(("created %s\n", lifr->lifr_name)); 10794 10795 /* Set address */ 10796 sin = (sin_t *)&lifr->lifr_addr; 10797 if (sin->sin_family != AF_UNSPEC) { 10798 err = ip_sioctl_addr(ipif, sin, q, mp, 10799 &ip_ndx_ioctl_table[SIOCLIFADDR_NDX], lifr); 10800 } 10801 10802 done: 10803 ipsq_exit(ipsq); 10804 return (err); 10805 } 10806 10807 /* 10808 * Remove an existing logical interface. If ipif_id is zero (i.e. not a logical 10809 * interface) delete it based on the IP address (on this physical interface). 10810 * Otherwise delete it based on the ipif_id. 10811 * Also, special handling to allow a removeif of lo0. 10812 */ 10813 /* ARGSUSED */ 10814 int 10815 ip_sioctl_removeif(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 10816 ip_ioctl_cmd_t *ipip, void *dummy_if_req) 10817 { 10818 conn_t *connp; 10819 ill_t *ill = ipif->ipif_ill; 10820 boolean_t success; 10821 ip_stack_t *ipst; 10822 10823 ipst = CONNQ_TO_IPST(q); 10824 10825 ASSERT(q->q_next == NULL); 10826 ip1dbg(("ip_sioctl_remove_if(%s:%u %p)\n", 10827 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 10828 ASSERT(IAM_WRITER_IPIF(ipif)); 10829 10830 connp = Q_TO_CONN(q); 10831 /* 10832 * Special case for unplumbing lo0 (the loopback physical interface). 10833 * If unplumbing lo0, the incoming address structure has been 10834 * initialized to all zeros. When unplumbing lo0, all its logical 10835 * interfaces must be removed too. 10836 * 10837 * Note that this interface may be called to remove a specific 10838 * loopback logical interface (eg, lo0:1). But in that case 10839 * ipif->ipif_id != 0 so that the code path for that case is the 10840 * same as any other interface (meaning it skips the code directly 10841 * below). 10842 */ 10843 if (ipif->ipif_id == 0 && ipif->ipif_net_type == IRE_LOOPBACK) { 10844 if (sin->sin_family == AF_UNSPEC && 10845 (IN6_IS_ADDR_UNSPECIFIED(&((sin6_t *)sin)->sin6_addr))) { 10846 /* 10847 * Mark it condemned. No new ref. will be made to ill. 10848 */ 10849 mutex_enter(&ill->ill_lock); 10850 ill->ill_state_flags |= ILL_CONDEMNED; 10851 for (ipif = ill->ill_ipif; ipif != NULL; 10852 ipif = ipif->ipif_next) { 10853 ipif->ipif_state_flags |= IPIF_CONDEMNED; 10854 } 10855 mutex_exit(&ill->ill_lock); 10856 10857 ipif = ill->ill_ipif; 10858 /* unplumb the loopback interface */ 10859 ill_delete(ill); 10860 mutex_enter(&connp->conn_lock); 10861 mutex_enter(&ill->ill_lock); 10862 10863 /* Are any references to this ill active */ 10864 if (ill_is_freeable(ill)) { 10865 mutex_exit(&ill->ill_lock); 10866 mutex_exit(&connp->conn_lock); 10867 ill_delete_tail(ill); 10868 mi_free(ill); 10869 return (0); 10870 } 10871 success = ipsq_pending_mp_add(connp, ipif, 10872 CONNP_TO_WQ(connp), mp, ILL_FREE); 10873 mutex_exit(&connp->conn_lock); 10874 mutex_exit(&ill->ill_lock); 10875 if (success) 10876 return (EINPROGRESS); 10877 else 10878 return (EINTR); 10879 } 10880 } 10881 10882 if (ipif->ipif_id == 0) { 10883 ipsq_t *ipsq; 10884 10885 /* Find based on address */ 10886 if (ipif->ipif_isv6) { 10887 sin6_t *sin6; 10888 10889 if (sin->sin_family != AF_INET6) 10890 return (EAFNOSUPPORT); 10891 10892 sin6 = (sin6_t *)sin; 10893 /* We are a writer, so we should be able to lookup */ 10894 ipif = ipif_lookup_addr_exact_v6(&sin6->sin6_addr, ill, 10895 ipst); 10896 } else { 10897 if (sin->sin_family != AF_INET) 10898 return (EAFNOSUPPORT); 10899 10900 /* We are a writer, so we should be able to lookup */ 10901 ipif = ipif_lookup_addr_exact(sin->sin_addr.s_addr, ill, 10902 ipst); 10903 } 10904 if (ipif == NULL) { 10905 return (EADDRNOTAVAIL); 10906 } 10907 10908 /* 10909 * It is possible for a user to send an SIOCLIFREMOVEIF with 10910 * lifr_name of the physical interface but with an ip address 10911 * lifr_addr of a logical interface plumbed over it. 10912 * So update ipx_current_ipif now that ipif points to the 10913 * correct one. 10914 */ 10915 ipsq = ipif->ipif_ill->ill_phyint->phyint_ipsq; 10916 ipsq->ipsq_xop->ipx_current_ipif = ipif; 10917 10918 /* This is a writer */ 10919 ipif_refrele(ipif); 10920 } 10921 10922 /* 10923 * Can not delete instance zero since it is tied to the ill. 10924 */ 10925 if (ipif->ipif_id == 0) 10926 return (EBUSY); 10927 10928 mutex_enter(&ill->ill_lock); 10929 ipif->ipif_state_flags |= IPIF_CONDEMNED; 10930 mutex_exit(&ill->ill_lock); 10931 10932 ipif_free(ipif); 10933 10934 mutex_enter(&connp->conn_lock); 10935 mutex_enter(&ill->ill_lock); 10936 10937 10938 /* Are any references to this ipif active */ 10939 if (ipif_is_freeable(ipif)) { 10940 mutex_exit(&ill->ill_lock); 10941 mutex_exit(&connp->conn_lock); 10942 ipif_non_duplicate(ipif); 10943 ipif_down_tail(ipif); 10944 ipif_free_tail(ipif); /* frees ipif */ 10945 return (0); 10946 } 10947 success = ipsq_pending_mp_add(connp, ipif, CONNP_TO_WQ(connp), mp, 10948 IPIF_FREE); 10949 mutex_exit(&ill->ill_lock); 10950 mutex_exit(&connp->conn_lock); 10951 if (success) 10952 return (EINPROGRESS); 10953 else 10954 return (EINTR); 10955 } 10956 10957 /* 10958 * Restart the removeif ioctl. The refcnt has gone down to 0. 10959 * The ipif is already condemned. So can't find it thru lookups. 10960 */ 10961 /* ARGSUSED */ 10962 int 10963 ip_sioctl_removeif_restart(ipif_t *ipif, sin_t *dummy_sin, queue_t *q, 10964 mblk_t *mp, ip_ioctl_cmd_t *ipip, void *dummy_if_req) 10965 { 10966 ill_t *ill = ipif->ipif_ill; 10967 10968 ASSERT(IAM_WRITER_IPIF(ipif)); 10969 ASSERT(ipif->ipif_state_flags & IPIF_CONDEMNED); 10970 10971 ip1dbg(("ip_sioctl_removeif_restart(%s:%u %p)\n", 10972 ill->ill_name, ipif->ipif_id, (void *)ipif)); 10973 10974 if (ipif->ipif_id == 0 && ipif->ipif_net_type == IRE_LOOPBACK) { 10975 ASSERT(ill->ill_state_flags & ILL_CONDEMNED); 10976 ill_delete_tail(ill); 10977 mi_free(ill); 10978 return (0); 10979 } 10980 10981 ipif_non_duplicate(ipif); 10982 ipif_down_tail(ipif); 10983 ipif_free_tail(ipif); 10984 10985 ILL_UNMARK_CHANGING(ill); 10986 return (0); 10987 } 10988 10989 /* 10990 * Set the local interface address. 10991 * Allow an address of all zero when the interface is down. 10992 */ 10993 /* ARGSUSED */ 10994 int 10995 ip_sioctl_addr(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 10996 ip_ioctl_cmd_t *dummy_ipip, void *dummy_ifreq) 10997 { 10998 int err = 0; 10999 in6_addr_t v6addr; 11000 boolean_t need_up = B_FALSE; 11001 11002 ip1dbg(("ip_sioctl_addr(%s:%u %p)\n", 11003 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11004 11005 ASSERT(IAM_WRITER_IPIF(ipif)); 11006 11007 if (ipif->ipif_isv6) { 11008 sin6_t *sin6; 11009 ill_t *ill; 11010 phyint_t *phyi; 11011 11012 if (sin->sin_family != AF_INET6) 11013 return (EAFNOSUPPORT); 11014 11015 sin6 = (sin6_t *)sin; 11016 v6addr = sin6->sin6_addr; 11017 ill = ipif->ipif_ill; 11018 phyi = ill->ill_phyint; 11019 11020 /* 11021 * Enforce that true multicast interfaces have a link-local 11022 * address for logical unit 0. 11023 */ 11024 if (ipif->ipif_id == 0 && 11025 (ill->ill_flags & ILLF_MULTICAST) && 11026 !(ipif->ipif_flags & (IPIF_POINTOPOINT)) && 11027 !(phyi->phyint_flags & (PHYI_LOOPBACK)) && 11028 !IN6_IS_ADDR_LINKLOCAL(&v6addr)) { 11029 return (EADDRNOTAVAIL); 11030 } 11031 11032 /* 11033 * up interfaces shouldn't have the unspecified address 11034 * unless they also have the IPIF_NOLOCAL flags set and 11035 * have a subnet assigned. 11036 */ 11037 if ((ipif->ipif_flags & IPIF_UP) && 11038 IN6_IS_ADDR_UNSPECIFIED(&v6addr) && 11039 (!(ipif->ipif_flags & IPIF_NOLOCAL) || 11040 IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6subnet))) { 11041 return (EADDRNOTAVAIL); 11042 } 11043 11044 if (!ip_local_addr_ok_v6(&v6addr, &ipif->ipif_v6net_mask)) 11045 return (EADDRNOTAVAIL); 11046 } else { 11047 ipaddr_t addr; 11048 11049 if (sin->sin_family != AF_INET) 11050 return (EAFNOSUPPORT); 11051 11052 addr = sin->sin_addr.s_addr; 11053 11054 /* Allow 0 as the local address. */ 11055 if (addr != 0 && !ip_addr_ok_v4(addr, ipif->ipif_net_mask)) 11056 return (EADDRNOTAVAIL); 11057 11058 IN6_IPADDR_TO_V4MAPPED(addr, &v6addr); 11059 } 11060 11061 /* 11062 * Even if there is no change we redo things just to rerun 11063 * ipif_set_default. 11064 */ 11065 if (ipif->ipif_flags & IPIF_UP) { 11066 /* 11067 * Setting a new local address, make sure 11068 * we have net and subnet bcast ire's for 11069 * the old address if we need them. 11070 */ 11071 if (!ipif->ipif_isv6) 11072 ipif_check_bcast_ires(ipif); 11073 /* 11074 * If the interface is already marked up, 11075 * we call ipif_down which will take care 11076 * of ditching any IREs that have been set 11077 * up based on the old interface address. 11078 */ 11079 err = ipif_logical_down(ipif, q, mp); 11080 if (err == EINPROGRESS) 11081 return (err); 11082 ipif_down_tail(ipif); 11083 need_up = 1; 11084 } 11085 11086 err = ip_sioctl_addr_tail(ipif, sin, q, mp, need_up); 11087 return (err); 11088 } 11089 11090 int 11091 ip_sioctl_addr_tail(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11092 boolean_t need_up) 11093 { 11094 in6_addr_t v6addr; 11095 in6_addr_t ov6addr; 11096 ipaddr_t addr; 11097 sin6_t *sin6; 11098 int sinlen; 11099 int err = 0; 11100 ill_t *ill = ipif->ipif_ill; 11101 boolean_t need_dl_down; 11102 boolean_t need_arp_down; 11103 struct iocblk *iocp; 11104 11105 iocp = (mp != NULL) ? (struct iocblk *)mp->b_rptr : NULL; 11106 11107 ip1dbg(("ip_sioctl_addr_tail(%s:%u %p)\n", 11108 ill->ill_name, ipif->ipif_id, (void *)ipif)); 11109 ASSERT(IAM_WRITER_IPIF(ipif)); 11110 11111 /* Must cancel any pending timer before taking the ill_lock */ 11112 if (ipif->ipif_recovery_id != 0) 11113 (void) untimeout(ipif->ipif_recovery_id); 11114 ipif->ipif_recovery_id = 0; 11115 11116 if (ipif->ipif_isv6) { 11117 sin6 = (sin6_t *)sin; 11118 v6addr = sin6->sin6_addr; 11119 sinlen = sizeof (struct sockaddr_in6); 11120 } else { 11121 addr = sin->sin_addr.s_addr; 11122 IN6_IPADDR_TO_V4MAPPED(addr, &v6addr); 11123 sinlen = sizeof (struct sockaddr_in); 11124 } 11125 mutex_enter(&ill->ill_lock); 11126 ov6addr = ipif->ipif_v6lcl_addr; 11127 ipif->ipif_v6lcl_addr = v6addr; 11128 sctp_update_ipif_addr(ipif, ov6addr); 11129 if (ipif->ipif_flags & (IPIF_ANYCAST | IPIF_NOLOCAL)) { 11130 ipif->ipif_v6src_addr = ipv6_all_zeros; 11131 } else { 11132 ipif->ipif_v6src_addr = v6addr; 11133 } 11134 ipif->ipif_addr_ready = 0; 11135 11136 /* 11137 * If the interface was previously marked as a duplicate, then since 11138 * we've now got a "new" address, it should no longer be considered a 11139 * duplicate -- even if the "new" address is the same as the old one. 11140 * Note that if all ipifs are down, we may have a pending ARP down 11141 * event to handle. This is because we want to recover from duplicates 11142 * and thus delay tearing down ARP until the duplicates have been 11143 * removed or disabled. 11144 */ 11145 need_dl_down = need_arp_down = B_FALSE; 11146 if (ipif->ipif_flags & IPIF_DUPLICATE) { 11147 need_arp_down = !need_up; 11148 ipif->ipif_flags &= ~IPIF_DUPLICATE; 11149 if (--ill->ill_ipif_dup_count == 0 && !need_up && 11150 ill->ill_ipif_up_count == 0 && ill->ill_dl_up) { 11151 need_dl_down = B_TRUE; 11152 } 11153 } 11154 11155 if (ipif->ipif_isv6 && IN6_IS_ADDR_6TO4(&v6addr) && 11156 !ill->ill_is_6to4tun) { 11157 queue_t *wqp = ill->ill_wq; 11158 11159 /* 11160 * The local address of this interface is a 6to4 address, 11161 * check if this interface is in fact a 6to4 tunnel or just 11162 * an interface configured with a 6to4 address. We are only 11163 * interested in the former. 11164 */ 11165 if (wqp != NULL) { 11166 while ((wqp->q_next != NULL) && 11167 (wqp->q_next->q_qinfo != NULL) && 11168 (wqp->q_next->q_qinfo->qi_minfo != NULL)) { 11169 11170 if (wqp->q_next->q_qinfo->qi_minfo->mi_idnum 11171 == TUN6TO4_MODID) { 11172 /* set for use in IP */ 11173 ill->ill_is_6to4tun = 1; 11174 break; 11175 } 11176 wqp = wqp->q_next; 11177 } 11178 } 11179 } 11180 11181 ipif_set_default(ipif); 11182 11183 /* 11184 * When publishing an interface address change event, we only notify 11185 * the event listeners of the new address. It is assumed that if they 11186 * actively care about the addresses assigned that they will have 11187 * already discovered the previous address assigned (if there was one.) 11188 * 11189 * Don't attach nic event message for SIOCLIFADDIF ioctl. 11190 */ 11191 if (iocp != NULL && iocp->ioc_cmd != SIOCLIFADDIF) { 11192 ill_nic_event_dispatch(ill, MAP_IPIF_ID(ipif->ipif_id), 11193 NE_ADDRESS_CHANGE, sin, sinlen); 11194 } 11195 11196 mutex_exit(&ill->ill_lock); 11197 11198 if (need_up) { 11199 /* 11200 * Now bring the interface back up. If this 11201 * is the only IPIF for the ILL, ipif_up 11202 * will have to re-bind to the device, so 11203 * we may get back EINPROGRESS, in which 11204 * case, this IOCTL will get completed in 11205 * ip_rput_dlpi when we see the DL_BIND_ACK. 11206 */ 11207 err = ipif_up(ipif, q, mp); 11208 } 11209 11210 if (need_dl_down) 11211 ill_dl_down(ill); 11212 if (need_arp_down) 11213 ipif_resolver_down(ipif); 11214 11215 return (err); 11216 } 11217 11218 11219 /* 11220 * Restart entry point to restart the address set operation after the 11221 * refcounts have dropped to zero. 11222 */ 11223 /* ARGSUSED */ 11224 int 11225 ip_sioctl_addr_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11226 ip_ioctl_cmd_t *ipip, void *ifreq) 11227 { 11228 ip1dbg(("ip_sioctl_addr_restart(%s:%u %p)\n", 11229 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11230 ASSERT(IAM_WRITER_IPIF(ipif)); 11231 ipif_down_tail(ipif); 11232 return (ip_sioctl_addr_tail(ipif, sin, q, mp, B_TRUE)); 11233 } 11234 11235 /* ARGSUSED */ 11236 int 11237 ip_sioctl_get_addr(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11238 ip_ioctl_cmd_t *ipip, void *if_req) 11239 { 11240 sin6_t *sin6 = (struct sockaddr_in6 *)sin; 11241 struct lifreq *lifr = (struct lifreq *)if_req; 11242 11243 ip1dbg(("ip_sioctl_get_addr(%s:%u %p)\n", 11244 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11245 /* 11246 * The net mask and address can't change since we have a 11247 * reference to the ipif. So no lock is necessary. 11248 */ 11249 if (ipif->ipif_isv6) { 11250 *sin6 = sin6_null; 11251 sin6->sin6_family = AF_INET6; 11252 sin6->sin6_addr = ipif->ipif_v6lcl_addr; 11253 ASSERT(ipip->ipi_cmd_type == LIF_CMD); 11254 lifr->lifr_addrlen = 11255 ip_mask_to_plen_v6(&ipif->ipif_v6net_mask); 11256 } else { 11257 *sin = sin_null; 11258 sin->sin_family = AF_INET; 11259 sin->sin_addr.s_addr = ipif->ipif_lcl_addr; 11260 if (ipip->ipi_cmd_type == LIF_CMD) { 11261 lifr->lifr_addrlen = 11262 ip_mask_to_plen(ipif->ipif_net_mask); 11263 } 11264 } 11265 return (0); 11266 } 11267 11268 /* 11269 * Set the destination address for a pt-pt interface. 11270 */ 11271 /* ARGSUSED */ 11272 int 11273 ip_sioctl_dstaddr(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11274 ip_ioctl_cmd_t *ipip, void *if_req) 11275 { 11276 int err = 0; 11277 in6_addr_t v6addr; 11278 boolean_t need_up = B_FALSE; 11279 11280 ip1dbg(("ip_sioctl_dstaddr(%s:%u %p)\n", 11281 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11282 ASSERT(IAM_WRITER_IPIF(ipif)); 11283 11284 if (ipif->ipif_isv6) { 11285 sin6_t *sin6; 11286 11287 if (sin->sin_family != AF_INET6) 11288 return (EAFNOSUPPORT); 11289 11290 sin6 = (sin6_t *)sin; 11291 v6addr = sin6->sin6_addr; 11292 11293 if (!ip_remote_addr_ok_v6(&v6addr, &ipif->ipif_v6net_mask)) 11294 return (EADDRNOTAVAIL); 11295 } else { 11296 ipaddr_t addr; 11297 11298 if (sin->sin_family != AF_INET) 11299 return (EAFNOSUPPORT); 11300 11301 addr = sin->sin_addr.s_addr; 11302 if (!ip_addr_ok_v4(addr, ipif->ipif_net_mask)) 11303 return (EADDRNOTAVAIL); 11304 11305 IN6_IPADDR_TO_V4MAPPED(addr, &v6addr); 11306 } 11307 11308 if (IN6_ARE_ADDR_EQUAL(&ipif->ipif_v6pp_dst_addr, &v6addr)) 11309 return (0); /* No change */ 11310 11311 if (ipif->ipif_flags & IPIF_UP) { 11312 /* 11313 * If the interface is already marked up, 11314 * we call ipif_down which will take care 11315 * of ditching any IREs that have been set 11316 * up based on the old pp dst address. 11317 */ 11318 err = ipif_logical_down(ipif, q, mp); 11319 if (err == EINPROGRESS) 11320 return (err); 11321 ipif_down_tail(ipif); 11322 need_up = B_TRUE; 11323 } 11324 /* 11325 * could return EINPROGRESS. If so ioctl will complete in 11326 * ip_rput_dlpi_writer 11327 */ 11328 err = ip_sioctl_dstaddr_tail(ipif, sin, q, mp, need_up); 11329 return (err); 11330 } 11331 11332 static int 11333 ip_sioctl_dstaddr_tail(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11334 boolean_t need_up) 11335 { 11336 in6_addr_t v6addr; 11337 ill_t *ill = ipif->ipif_ill; 11338 int err = 0; 11339 boolean_t need_dl_down; 11340 boolean_t need_arp_down; 11341 11342 ip1dbg(("ip_sioctl_dstaddr_tail(%s:%u %p)\n", ill->ill_name, 11343 ipif->ipif_id, (void *)ipif)); 11344 11345 /* Must cancel any pending timer before taking the ill_lock */ 11346 if (ipif->ipif_recovery_id != 0) 11347 (void) untimeout(ipif->ipif_recovery_id); 11348 ipif->ipif_recovery_id = 0; 11349 11350 if (ipif->ipif_isv6) { 11351 sin6_t *sin6; 11352 11353 sin6 = (sin6_t *)sin; 11354 v6addr = sin6->sin6_addr; 11355 } else { 11356 ipaddr_t addr; 11357 11358 addr = sin->sin_addr.s_addr; 11359 IN6_IPADDR_TO_V4MAPPED(addr, &v6addr); 11360 } 11361 mutex_enter(&ill->ill_lock); 11362 /* Set point to point destination address. */ 11363 if ((ipif->ipif_flags & IPIF_POINTOPOINT) == 0) { 11364 /* 11365 * Allow this as a means of creating logical 11366 * pt-pt interfaces on top of e.g. an Ethernet. 11367 * XXX Undocumented HACK for testing. 11368 * pt-pt interfaces are created with NUD disabled. 11369 */ 11370 ipif->ipif_flags |= IPIF_POINTOPOINT; 11371 ipif->ipif_flags &= ~IPIF_BROADCAST; 11372 if (ipif->ipif_isv6) 11373 ill->ill_flags |= ILLF_NONUD; 11374 } 11375 11376 /* 11377 * If the interface was previously marked as a duplicate, then since 11378 * we've now got a "new" address, it should no longer be considered a 11379 * duplicate -- even if the "new" address is the same as the old one. 11380 * Note that if all ipifs are down, we may have a pending ARP down 11381 * event to handle. 11382 */ 11383 need_dl_down = need_arp_down = B_FALSE; 11384 if (ipif->ipif_flags & IPIF_DUPLICATE) { 11385 need_arp_down = !need_up; 11386 ipif->ipif_flags &= ~IPIF_DUPLICATE; 11387 if (--ill->ill_ipif_dup_count == 0 && !need_up && 11388 ill->ill_ipif_up_count == 0 && ill->ill_dl_up) { 11389 need_dl_down = B_TRUE; 11390 } 11391 } 11392 11393 /* Set the new address. */ 11394 ipif->ipif_v6pp_dst_addr = v6addr; 11395 /* Make sure subnet tracks pp_dst */ 11396 ipif->ipif_v6subnet = ipif->ipif_v6pp_dst_addr; 11397 mutex_exit(&ill->ill_lock); 11398 11399 if (need_up) { 11400 /* 11401 * Now bring the interface back up. If this 11402 * is the only IPIF for the ILL, ipif_up 11403 * will have to re-bind to the device, so 11404 * we may get back EINPROGRESS, in which 11405 * case, this IOCTL will get completed in 11406 * ip_rput_dlpi when we see the DL_BIND_ACK. 11407 */ 11408 err = ipif_up(ipif, q, mp); 11409 } 11410 11411 if (need_dl_down) 11412 ill_dl_down(ill); 11413 if (need_arp_down) 11414 ipif_resolver_down(ipif); 11415 11416 return (err); 11417 } 11418 11419 /* 11420 * Restart entry point to restart the dstaddress set operation after the 11421 * refcounts have dropped to zero. 11422 */ 11423 /* ARGSUSED */ 11424 int 11425 ip_sioctl_dstaddr_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11426 ip_ioctl_cmd_t *ipip, void *ifreq) 11427 { 11428 ip1dbg(("ip_sioctl_dstaddr_restart(%s:%u %p)\n", 11429 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11430 ipif_down_tail(ipif); 11431 return (ip_sioctl_dstaddr_tail(ipif, sin, q, mp, B_TRUE)); 11432 } 11433 11434 /* ARGSUSED */ 11435 int 11436 ip_sioctl_get_dstaddr(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11437 ip_ioctl_cmd_t *ipip, void *if_req) 11438 { 11439 sin6_t *sin6 = (struct sockaddr_in6 *)sin; 11440 11441 ip1dbg(("ip_sioctl_get_dstaddr(%s:%u %p)\n", 11442 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11443 /* 11444 * Get point to point destination address. The addresses can't 11445 * change since we hold a reference to the ipif. 11446 */ 11447 if ((ipif->ipif_flags & IPIF_POINTOPOINT) == 0) 11448 return (EADDRNOTAVAIL); 11449 11450 if (ipif->ipif_isv6) { 11451 ASSERT(ipip->ipi_cmd_type == LIF_CMD); 11452 *sin6 = sin6_null; 11453 sin6->sin6_family = AF_INET6; 11454 sin6->sin6_addr = ipif->ipif_v6pp_dst_addr; 11455 } else { 11456 *sin = sin_null; 11457 sin->sin_family = AF_INET; 11458 sin->sin_addr.s_addr = ipif->ipif_pp_dst_addr; 11459 } 11460 return (0); 11461 } 11462 11463 /* 11464 * Set interface flags. Many flags require special handling (e.g., 11465 * bringing the interface down); see below for details. 11466 * 11467 * NOTE : We really don't enforce that ipif_id zero should be used 11468 * for setting any flags other than IFF_LOGINT_FLAGS. This 11469 * is because applications generally does SICGLIFFLAGS and 11470 * ORs in the new flags (that affects the logical) and does a 11471 * SIOCSLIFFLAGS. Thus, "flags" below could contain bits other 11472 * than IFF_LOGINT_FLAGS. One could check whether "turn_on" - the 11473 * flags that will be turned on is correct with respect to 11474 * ipif_id 0. For backward compatibility reasons, it is not done. 11475 */ 11476 /* ARGSUSED */ 11477 int 11478 ip_sioctl_flags(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11479 ip_ioctl_cmd_t *ipip, void *if_req) 11480 { 11481 uint64_t turn_on; 11482 uint64_t turn_off; 11483 int err = 0; 11484 phyint_t *phyi; 11485 ill_t *ill; 11486 uint64_t intf_flags, cantchange_flags; 11487 boolean_t phyint_flags_modified = B_FALSE; 11488 uint64_t flags; 11489 struct ifreq *ifr; 11490 struct lifreq *lifr; 11491 boolean_t set_linklocal = B_FALSE; 11492 boolean_t zero_source = B_FALSE; 11493 11494 ip1dbg(("ip_sioctl_flags(%s:%u %p)\n", 11495 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11496 11497 ASSERT(IAM_WRITER_IPIF(ipif)); 11498 11499 ill = ipif->ipif_ill; 11500 phyi = ill->ill_phyint; 11501 11502 if (ipip->ipi_cmd_type == IF_CMD) { 11503 ifr = (struct ifreq *)if_req; 11504 flags = (uint64_t)(ifr->ifr_flags & 0x0000ffff); 11505 } else { 11506 lifr = (struct lifreq *)if_req; 11507 flags = lifr->lifr_flags; 11508 } 11509 11510 intf_flags = ipif->ipif_flags | ill->ill_flags | phyi->phyint_flags; 11511 11512 /* 11513 * Have the flags been set correctly until now? 11514 */ 11515 ASSERT((phyi->phyint_flags & ~(IFF_PHYINT_FLAGS)) == 0); 11516 ASSERT((ill->ill_flags & ~(IFF_PHYINTINST_FLAGS)) == 0); 11517 ASSERT((ipif->ipif_flags & ~(IFF_LOGINT_FLAGS)) == 0); 11518 /* 11519 * Compare the new flags to the old, and partition 11520 * into those coming on and those going off. 11521 * For the 16 bit command keep the bits above bit 16 unchanged. 11522 */ 11523 if (ipip->ipi_cmd == SIOCSIFFLAGS) 11524 flags |= intf_flags & ~0xFFFF; 11525 11526 /* 11527 * Explicitly fail attempts to change flags that are always invalid on 11528 * an IPMP meta-interface. 11529 */ 11530 if (IS_IPMP(ill) && ((flags ^ intf_flags) & IFF_IPMP_INVALID)) 11531 return (EINVAL); 11532 11533 /* 11534 * Check which flags will change; silently ignore flags which userland 11535 * is not allowed to control. (Because these flags may change between 11536 * SIOCGLIFFLAGS and SIOCSLIFFLAGS, and that's outside of userland's 11537 * control, we need to silently ignore them rather than fail.) 11538 */ 11539 cantchange_flags = IFF_CANTCHANGE; 11540 if (IS_IPMP(ill)) 11541 cantchange_flags |= IFF_IPMP_CANTCHANGE; 11542 11543 turn_on = (flags ^ intf_flags) & ~cantchange_flags; 11544 if (turn_on == 0) 11545 return (0); /* No change */ 11546 11547 turn_off = intf_flags & turn_on; 11548 turn_on ^= turn_off; 11549 11550 /* 11551 * All test addresses must be IFF_DEPRECATED (to ensure source address 11552 * selection avoids them) -- so force IFF_DEPRECATED on, and do not 11553 * allow it to be turned off. 11554 */ 11555 if ((turn_off & (IFF_DEPRECATED|IFF_NOFAILOVER)) == IFF_DEPRECATED && 11556 (turn_on|intf_flags) & IFF_NOFAILOVER) 11557 return (EINVAL); 11558 11559 if (turn_on & IFF_NOFAILOVER) { 11560 turn_on |= IFF_DEPRECATED; 11561 flags |= IFF_DEPRECATED; 11562 } 11563 11564 /* 11565 * On underlying interfaces, only allow applications to manage test 11566 * addresses -- otherwise, they may get confused when the address 11567 * moves as part of being brought up. Likewise, prevent an 11568 * application-managed test address from being converted to a data 11569 * address. To prevent migration of administratively up addresses in 11570 * the kernel, we don't allow them to be converted either. 11571 */ 11572 if (IS_UNDER_IPMP(ill)) { 11573 const uint64_t appflags = IFF_DHCPRUNNING | IFF_ADDRCONF; 11574 11575 if ((turn_on & appflags) && !(flags & IFF_NOFAILOVER)) 11576 return (EINVAL); 11577 11578 if ((turn_off & IFF_NOFAILOVER) && 11579 (flags & (appflags | IFF_UP | IFF_DUPLICATE))) 11580 return (EINVAL); 11581 } 11582 11583 /* 11584 * Only allow the IFF_XRESOLV and IFF_TEMPORARY flags to be set on 11585 * IPv6 interfaces. 11586 */ 11587 if ((turn_on & (IFF_XRESOLV|IFF_TEMPORARY)) && !(ipif->ipif_isv6)) 11588 return (EINVAL); 11589 11590 /* 11591 * cannot turn off IFF_NOXMIT on VNI interfaces. 11592 */ 11593 if ((turn_off & IFF_NOXMIT) && IS_VNI(ipif->ipif_ill)) 11594 return (EINVAL); 11595 11596 /* 11597 * Don't allow the IFF_ROUTER flag to be turned on on loopback 11598 * interfaces. It makes no sense in that context. 11599 */ 11600 if ((turn_on & IFF_ROUTER) && (phyi->phyint_flags & PHYI_LOOPBACK)) 11601 return (EINVAL); 11602 11603 if (flags & (IFF_NOLOCAL|IFF_ANYCAST)) 11604 zero_source = B_TRUE; 11605 11606 /* 11607 * For IPv6 ipif_id 0, don't allow the interface to be up without 11608 * a link local address if IFF_NOLOCAL or IFF_ANYCAST are not set. 11609 * If the link local address isn't set, and can be set, it will get 11610 * set later on in this function. 11611 */ 11612 if (ipif->ipif_id == 0 && ipif->ipif_isv6 && 11613 (flags & IFF_UP) && !zero_source && 11614 IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6lcl_addr)) { 11615 if (ipif_cant_setlinklocal(ipif)) 11616 return (EINVAL); 11617 set_linklocal = B_TRUE; 11618 } 11619 11620 /* 11621 * If we modify physical interface flags, we'll potentially need to 11622 * send up two routing socket messages for the changes (one for the 11623 * IPv4 ill, and another for the IPv6 ill). Note that here. 11624 */ 11625 if ((turn_on|turn_off) & IFF_PHYINT_FLAGS) 11626 phyint_flags_modified = B_TRUE; 11627 11628 /* 11629 * All functioning PHYI_STANDBY interfaces start life PHYI_INACTIVE 11630 * (otherwise, we'd immediately use them, defeating standby). Also, 11631 * since PHYI_INACTIVE has a separate meaning when PHYI_STANDBY is not 11632 * set, don't allow PHYI_STANDBY to be set if PHYI_INACTIVE is already 11633 * set, and clear PHYI_INACTIVE if PHYI_STANDBY is being cleared. We 11634 * also don't allow PHYI_STANDBY if VNI is enabled since its semantics 11635 * will not be honored. 11636 */ 11637 if (turn_on & PHYI_STANDBY) { 11638 /* 11639 * No need to grab ill_g_usesrc_lock here; see the 11640 * synchronization notes in ip.c. 11641 */ 11642 if (ill->ill_usesrc_grp_next != NULL || 11643 intf_flags & PHYI_INACTIVE) 11644 return (EINVAL); 11645 if (!(flags & PHYI_FAILED)) { 11646 flags |= PHYI_INACTIVE; 11647 turn_on |= PHYI_INACTIVE; 11648 } 11649 } 11650 11651 if (turn_off & PHYI_STANDBY) { 11652 flags &= ~PHYI_INACTIVE; 11653 turn_off |= PHYI_INACTIVE; 11654 } 11655 11656 /* 11657 * PHYI_FAILED and PHYI_INACTIVE are mutually exclusive; fail if both 11658 * would end up on. 11659 */ 11660 if ((flags & (PHYI_FAILED | PHYI_INACTIVE)) == 11661 (PHYI_FAILED | PHYI_INACTIVE)) 11662 return (EINVAL); 11663 11664 /* 11665 * If ILLF_ROUTER changes, we need to change the ip forwarding 11666 * status of the interface. 11667 */ 11668 if ((turn_on | turn_off) & ILLF_ROUTER) 11669 (void) ill_forward_set(ill, ((turn_on & ILLF_ROUTER) != 0)); 11670 11671 /* 11672 * If the interface is not UP and we are not going to 11673 * bring it UP, record the flags and return. When the 11674 * interface comes UP later, the right actions will be 11675 * taken. 11676 */ 11677 if (!(ipif->ipif_flags & IPIF_UP) && 11678 !(turn_on & IPIF_UP)) { 11679 /* Record new flags in their respective places. */ 11680 mutex_enter(&ill->ill_lock); 11681 mutex_enter(&ill->ill_phyint->phyint_lock); 11682 ipif->ipif_flags |= (turn_on & IFF_LOGINT_FLAGS); 11683 ipif->ipif_flags &= (~turn_off & IFF_LOGINT_FLAGS); 11684 ill->ill_flags |= (turn_on & IFF_PHYINTINST_FLAGS); 11685 ill->ill_flags &= (~turn_off & IFF_PHYINTINST_FLAGS); 11686 phyi->phyint_flags |= (turn_on & IFF_PHYINT_FLAGS); 11687 phyi->phyint_flags &= (~turn_off & IFF_PHYINT_FLAGS); 11688 mutex_exit(&ill->ill_lock); 11689 mutex_exit(&ill->ill_phyint->phyint_lock); 11690 11691 /* 11692 * PHYI_FAILED, PHYI_INACTIVE, and PHYI_OFFLINE are all the 11693 * same to the kernel: if any of them has been set by 11694 * userland, the interface cannot be used for data traffic. 11695 */ 11696 if ((turn_on|turn_off) & 11697 (PHYI_FAILED | PHYI_INACTIVE | PHYI_OFFLINE)) { 11698 ASSERT(!IS_IPMP(ill)); 11699 /* 11700 * It's possible the ill is part of an "anonymous" 11701 * IPMP group rather than a real group. In that case, 11702 * there are no other interfaces in the group and thus 11703 * no need to call ipmp_phyint_refresh_active(). 11704 */ 11705 if (IS_UNDER_IPMP(ill)) 11706 ipmp_phyint_refresh_active(phyi); 11707 } 11708 11709 if (phyint_flags_modified) { 11710 if (phyi->phyint_illv4 != NULL) { 11711 ip_rts_ifmsg(phyi->phyint_illv4-> 11712 ill_ipif, RTSQ_DEFAULT); 11713 } 11714 if (phyi->phyint_illv6 != NULL) { 11715 ip_rts_ifmsg(phyi->phyint_illv6-> 11716 ill_ipif, RTSQ_DEFAULT); 11717 } 11718 } 11719 return (0); 11720 } else if (set_linklocal || zero_source) { 11721 mutex_enter(&ill->ill_lock); 11722 if (set_linklocal) 11723 ipif->ipif_state_flags |= IPIF_SET_LINKLOCAL; 11724 if (zero_source) 11725 ipif->ipif_state_flags |= IPIF_ZERO_SOURCE; 11726 mutex_exit(&ill->ill_lock); 11727 } 11728 11729 /* 11730 * Disallow IPv6 interfaces coming up that have the unspecified address, 11731 * or point-to-point interfaces with an unspecified destination. We do 11732 * allow the address to be unspecified for IPIF_NOLOCAL interfaces that 11733 * have a subnet assigned, which is how in.ndpd currently manages its 11734 * onlink prefix list when no addresses are configured with those 11735 * prefixes. 11736 */ 11737 if (ipif->ipif_isv6 && 11738 ((IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6lcl_addr) && 11739 (!(ipif->ipif_flags & IPIF_NOLOCAL) && !(turn_on & IPIF_NOLOCAL) || 11740 IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6subnet))) || 11741 ((ipif->ipif_flags & IPIF_POINTOPOINT) && 11742 IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6pp_dst_addr)))) { 11743 return (EINVAL); 11744 } 11745 11746 /* 11747 * Prevent IPv4 point-to-point interfaces with a 0.0.0.0 destination 11748 * from being brought up. 11749 */ 11750 if (!ipif->ipif_isv6 && 11751 ((ipif->ipif_flags & IPIF_POINTOPOINT) && 11752 ipif->ipif_pp_dst_addr == INADDR_ANY)) { 11753 return (EINVAL); 11754 } 11755 11756 /* 11757 * The only flag changes that we currently take specific action on are 11758 * IPIF_UP, IPIF_DEPRECATED, IPIF_NOXMIT, IPIF_NOLOCAL, ILLF_NOARP, 11759 * ILLF_NONUD, IPIF_PRIVATE, IPIF_ANYCAST, IPIF_PREFERRED, and 11760 * IPIF_NOFAILOVER. This is done by bring the ipif down, changing the 11761 * flags and bringing it back up again. For IPIF_NOFAILOVER, the act 11762 * of bringing it back up will trigger the address to be moved. 11763 */ 11764 if ((turn_on|turn_off) & 11765 (IPIF_UP|IPIF_DEPRECATED|IPIF_NOXMIT|IPIF_NOLOCAL|ILLF_NOARP| 11766 ILLF_NONUD|IPIF_PRIVATE|IPIF_ANYCAST|IPIF_PREFERRED| 11767 IPIF_NOFAILOVER)) { 11768 /* 11769 * Taking this ipif down, make sure we have 11770 * valid net and subnet bcast ire's for other 11771 * logical interfaces, if we need them. 11772 */ 11773 if (!ipif->ipif_isv6) 11774 ipif_check_bcast_ires(ipif); 11775 11776 if (((ipif->ipif_flags | turn_on) & IPIF_UP) && 11777 !(turn_off & IPIF_UP)) { 11778 if (ipif->ipif_flags & IPIF_UP) 11779 ill->ill_logical_down = 1; 11780 turn_on &= ~IPIF_UP; 11781 } 11782 err = ipif_down(ipif, q, mp); 11783 ip1dbg(("ipif_down returns %d err ", err)); 11784 if (err == EINPROGRESS) 11785 return (err); 11786 ipif_down_tail(ipif); 11787 } 11788 return (ip_sioctl_flags_tail(ipif, flags, q, mp)); 11789 } 11790 11791 static int 11792 ip_sioctl_flags_tail(ipif_t *ipif, uint64_t flags, queue_t *q, mblk_t *mp) 11793 { 11794 ill_t *ill; 11795 phyint_t *phyi; 11796 uint64_t turn_on, turn_off; 11797 uint64_t intf_flags, cantchange_flags; 11798 boolean_t phyint_flags_modified = B_FALSE; 11799 int err = 0; 11800 boolean_t set_linklocal = B_FALSE; 11801 boolean_t zero_source = B_FALSE; 11802 11803 ip1dbg(("ip_sioctl_flags_tail(%s:%u)\n", 11804 ipif->ipif_ill->ill_name, ipif->ipif_id)); 11805 11806 ASSERT(IAM_WRITER_IPIF(ipif)); 11807 11808 ill = ipif->ipif_ill; 11809 phyi = ill->ill_phyint; 11810 11811 intf_flags = ipif->ipif_flags | ill->ill_flags | phyi->phyint_flags; 11812 cantchange_flags = IFF_CANTCHANGE | IFF_UP; 11813 if (IS_IPMP(ill)) 11814 cantchange_flags |= IFF_IPMP_CANTCHANGE; 11815 11816 turn_on = (flags ^ intf_flags) & ~cantchange_flags; 11817 turn_off = intf_flags & turn_on; 11818 turn_on ^= turn_off; 11819 11820 if ((turn_on|turn_off) & IFF_PHYINT_FLAGS) 11821 phyint_flags_modified = B_TRUE; 11822 11823 /* 11824 * Now we change the flags. Track current value of 11825 * other flags in their respective places. 11826 */ 11827 mutex_enter(&ill->ill_lock); 11828 mutex_enter(&phyi->phyint_lock); 11829 ipif->ipif_flags |= (turn_on & IFF_LOGINT_FLAGS); 11830 ipif->ipif_flags &= (~turn_off & IFF_LOGINT_FLAGS); 11831 ill->ill_flags |= (turn_on & IFF_PHYINTINST_FLAGS); 11832 ill->ill_flags &= (~turn_off & IFF_PHYINTINST_FLAGS); 11833 phyi->phyint_flags |= (turn_on & IFF_PHYINT_FLAGS); 11834 phyi->phyint_flags &= (~turn_off & IFF_PHYINT_FLAGS); 11835 if (ipif->ipif_state_flags & IPIF_SET_LINKLOCAL) { 11836 set_linklocal = B_TRUE; 11837 ipif->ipif_state_flags &= ~IPIF_SET_LINKLOCAL; 11838 } 11839 if (ipif->ipif_state_flags & IPIF_ZERO_SOURCE) { 11840 zero_source = B_TRUE; 11841 ipif->ipif_state_flags &= ~IPIF_ZERO_SOURCE; 11842 } 11843 mutex_exit(&ill->ill_lock); 11844 mutex_exit(&phyi->phyint_lock); 11845 11846 if (set_linklocal) 11847 (void) ipif_setlinklocal(ipif); 11848 11849 if (zero_source) 11850 ipif->ipif_v6src_addr = ipv6_all_zeros; 11851 else 11852 ipif->ipif_v6src_addr = ipif->ipif_v6lcl_addr; 11853 11854 /* 11855 * PHYI_FAILED, PHYI_INACTIVE, and PHYI_OFFLINE are all the same to 11856 * the kernel: if any of them has been set by userland, the interface 11857 * cannot be used for data traffic. 11858 */ 11859 if ((turn_on|turn_off) & (PHYI_FAILED | PHYI_INACTIVE | PHYI_OFFLINE)) { 11860 ASSERT(!IS_IPMP(ill)); 11861 /* 11862 * It's possible the ill is part of an "anonymous" IPMP group 11863 * rather than a real group. In that case, there are no other 11864 * interfaces in the group and thus no need for us to call 11865 * ipmp_phyint_refresh_active(). 11866 */ 11867 if (IS_UNDER_IPMP(ill)) 11868 ipmp_phyint_refresh_active(phyi); 11869 } 11870 11871 if ((flags & IFF_UP) && !(ipif->ipif_flags & IPIF_UP)) { 11872 /* 11873 * XXX ipif_up really does not know whether a phyint flags 11874 * was modified or not. So, it sends up information on 11875 * only one routing sockets message. As we don't bring up 11876 * the interface and also set PHYI_ flags simultaneously 11877 * it should be okay. 11878 */ 11879 err = ipif_up(ipif, q, mp); 11880 } else { 11881 /* 11882 * Make sure routing socket sees all changes to the flags. 11883 * ipif_up_done* handles this when we use ipif_up. 11884 */ 11885 if (phyint_flags_modified) { 11886 if (phyi->phyint_illv4 != NULL) { 11887 ip_rts_ifmsg(phyi->phyint_illv4-> 11888 ill_ipif, RTSQ_DEFAULT); 11889 } 11890 if (phyi->phyint_illv6 != NULL) { 11891 ip_rts_ifmsg(phyi->phyint_illv6-> 11892 ill_ipif, RTSQ_DEFAULT); 11893 } 11894 } else { 11895 ip_rts_ifmsg(ipif, RTSQ_DEFAULT); 11896 } 11897 /* 11898 * Update the flags in SCTP's IPIF list, ipif_up() will do 11899 * this in need_up case. 11900 */ 11901 sctp_update_ipif(ipif, SCTP_IPIF_UPDATE); 11902 } 11903 return (err); 11904 } 11905 11906 /* 11907 * Restart the flags operation now that the refcounts have dropped to zero. 11908 */ 11909 /* ARGSUSED */ 11910 int 11911 ip_sioctl_flags_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11912 ip_ioctl_cmd_t *ipip, void *if_req) 11913 { 11914 uint64_t flags; 11915 struct ifreq *ifr = if_req; 11916 struct lifreq *lifr = if_req; 11917 11918 ip1dbg(("ip_sioctl_flags_restart(%s:%u %p)\n", 11919 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11920 11921 ipif_down_tail(ipif); 11922 if (ipip->ipi_cmd_type == IF_CMD) { 11923 /* cast to uint16_t prevents unwanted sign extension */ 11924 flags = (uint16_t)ifr->ifr_flags; 11925 } else { 11926 flags = lifr->lifr_flags; 11927 } 11928 return (ip_sioctl_flags_tail(ipif, flags, q, mp)); 11929 } 11930 11931 /* 11932 * Can operate on either a module or a driver queue. 11933 */ 11934 /* ARGSUSED */ 11935 int 11936 ip_sioctl_get_flags(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11937 ip_ioctl_cmd_t *ipip, void *if_req) 11938 { 11939 /* 11940 * Has the flags been set correctly till now ? 11941 */ 11942 ill_t *ill = ipif->ipif_ill; 11943 phyint_t *phyi = ill->ill_phyint; 11944 11945 ip1dbg(("ip_sioctl_get_flags(%s:%u %p)\n", 11946 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11947 ASSERT((phyi->phyint_flags & ~(IFF_PHYINT_FLAGS)) == 0); 11948 ASSERT((ill->ill_flags & ~(IFF_PHYINTINST_FLAGS)) == 0); 11949 ASSERT((ipif->ipif_flags & ~(IFF_LOGINT_FLAGS)) == 0); 11950 11951 /* 11952 * Need a lock since some flags can be set even when there are 11953 * references to the ipif. 11954 */ 11955 mutex_enter(&ill->ill_lock); 11956 if (ipip->ipi_cmd_type == IF_CMD) { 11957 struct ifreq *ifr = (struct ifreq *)if_req; 11958 11959 /* Get interface flags (low 16 only). */ 11960 ifr->ifr_flags = ((ipif->ipif_flags | 11961 ill->ill_flags | phyi->phyint_flags) & 0xffff); 11962 } else { 11963 struct lifreq *lifr = (struct lifreq *)if_req; 11964 11965 /* Get interface flags. */ 11966 lifr->lifr_flags = ipif->ipif_flags | 11967 ill->ill_flags | phyi->phyint_flags; 11968 } 11969 mutex_exit(&ill->ill_lock); 11970 return (0); 11971 } 11972 11973 /* ARGSUSED */ 11974 int 11975 ip_sioctl_mtu(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11976 ip_ioctl_cmd_t *ipip, void *if_req) 11977 { 11978 int mtu; 11979 int ip_min_mtu; 11980 struct ifreq *ifr; 11981 struct lifreq *lifr; 11982 ire_t *ire; 11983 ip_stack_t *ipst; 11984 11985 ip1dbg(("ip_sioctl_mtu(%s:%u %p)\n", ipif->ipif_ill->ill_name, 11986 ipif->ipif_id, (void *)ipif)); 11987 if (ipip->ipi_cmd_type == IF_CMD) { 11988 ifr = (struct ifreq *)if_req; 11989 mtu = ifr->ifr_metric; 11990 } else { 11991 lifr = (struct lifreq *)if_req; 11992 mtu = lifr->lifr_mtu; 11993 } 11994 11995 if (ipif->ipif_isv6) 11996 ip_min_mtu = IPV6_MIN_MTU; 11997 else 11998 ip_min_mtu = IP_MIN_MTU; 11999 12000 if (mtu > ipif->ipif_ill->ill_max_frag || mtu < ip_min_mtu) 12001 return (EINVAL); 12002 12003 /* 12004 * Change the MTU size in all relevant ire's. 12005 * Mtu change Vs. new ire creation - protocol below. 12006 * First change ipif_mtu and the ire_max_frag of the 12007 * interface ire. Then do an ire walk and change the 12008 * ire_max_frag of all affected ires. During ire_add 12009 * under the bucket lock, set the ire_max_frag of the 12010 * new ire being created from the ipif/ire from which 12011 * it is being derived. If an mtu change happens after 12012 * the ire is added, the new ire will be cleaned up. 12013 * Conversely if the mtu change happens before the ire 12014 * is added, ire_add will see the new value of the mtu. 12015 */ 12016 ipif->ipif_mtu = mtu; 12017 ipif->ipif_flags |= IPIF_FIXEDMTU; 12018 12019 if (ipif->ipif_isv6) 12020 ire = ipif_to_ire_v6(ipif); 12021 else 12022 ire = ipif_to_ire(ipif); 12023 if (ire != NULL) { 12024 ire->ire_max_frag = ipif->ipif_mtu; 12025 ire_refrele(ire); 12026 } 12027 ipst = ipif->ipif_ill->ill_ipst; 12028 if (ipif->ipif_flags & IPIF_UP) { 12029 if (ipif->ipif_isv6) 12030 ire_walk_v6(ipif_mtu_change, (char *)ipif, ALL_ZONES, 12031 ipst); 12032 else 12033 ire_walk_v4(ipif_mtu_change, (char *)ipif, ALL_ZONES, 12034 ipst); 12035 } 12036 /* Update the MTU in SCTP's list */ 12037 sctp_update_ipif(ipif, SCTP_IPIF_UPDATE); 12038 return (0); 12039 } 12040 12041 /* Get interface MTU. */ 12042 /* ARGSUSED */ 12043 int 12044 ip_sioctl_get_mtu(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12045 ip_ioctl_cmd_t *ipip, void *if_req) 12046 { 12047 struct ifreq *ifr; 12048 struct lifreq *lifr; 12049 12050 ip1dbg(("ip_sioctl_get_mtu(%s:%u %p)\n", 12051 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12052 if (ipip->ipi_cmd_type == IF_CMD) { 12053 ifr = (struct ifreq *)if_req; 12054 ifr->ifr_metric = ipif->ipif_mtu; 12055 } else { 12056 lifr = (struct lifreq *)if_req; 12057 lifr->lifr_mtu = ipif->ipif_mtu; 12058 } 12059 return (0); 12060 } 12061 12062 /* Set interface broadcast address. */ 12063 /* ARGSUSED2 */ 12064 int 12065 ip_sioctl_brdaddr(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12066 ip_ioctl_cmd_t *ipip, void *if_req) 12067 { 12068 ipaddr_t addr; 12069 ire_t *ire; 12070 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; 12071 12072 ip1dbg(("ip_sioctl_brdaddr(%s:%u)\n", ipif->ipif_ill->ill_name, 12073 ipif->ipif_id)); 12074 12075 ASSERT(IAM_WRITER_IPIF(ipif)); 12076 if (!(ipif->ipif_flags & IPIF_BROADCAST)) 12077 return (EADDRNOTAVAIL); 12078 12079 ASSERT(!(ipif->ipif_isv6)); /* No IPv6 broadcast */ 12080 12081 if (sin->sin_family != AF_INET) 12082 return (EAFNOSUPPORT); 12083 12084 addr = sin->sin_addr.s_addr; 12085 if (ipif->ipif_flags & IPIF_UP) { 12086 /* 12087 * If we are already up, make sure the new 12088 * broadcast address makes sense. If it does, 12089 * there should be an IRE for it already. 12090 * Don't match on ipif, only on the ill 12091 * since we are sharing these now. 12092 */ 12093 ire = ire_ctable_lookup(addr, 0, IRE_BROADCAST, 12094 ipif, ALL_ZONES, NULL, 12095 (MATCH_IRE_ILL | MATCH_IRE_TYPE), ipst); 12096 if (ire == NULL) { 12097 return (EINVAL); 12098 } else { 12099 ire_refrele(ire); 12100 } 12101 } 12102 /* 12103 * Changing the broadcast addr for this ipif. 12104 * Make sure we have valid net and subnet bcast 12105 * ire's for other logical interfaces, if needed. 12106 */ 12107 if (addr != ipif->ipif_brd_addr) 12108 ipif_check_bcast_ires(ipif); 12109 IN6_IPADDR_TO_V4MAPPED(addr, &ipif->ipif_v6brd_addr); 12110 return (0); 12111 } 12112 12113 /* Get interface broadcast address. */ 12114 /* ARGSUSED */ 12115 int 12116 ip_sioctl_get_brdaddr(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12117 ip_ioctl_cmd_t *ipip, void *if_req) 12118 { 12119 ip1dbg(("ip_sioctl_get_brdaddr(%s:%u %p)\n", 12120 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12121 if (!(ipif->ipif_flags & IPIF_BROADCAST)) 12122 return (EADDRNOTAVAIL); 12123 12124 /* IPIF_BROADCAST not possible with IPv6 */ 12125 ASSERT(!ipif->ipif_isv6); 12126 *sin = sin_null; 12127 sin->sin_family = AF_INET; 12128 sin->sin_addr.s_addr = ipif->ipif_brd_addr; 12129 return (0); 12130 } 12131 12132 /* 12133 * This routine is called to handle the SIOCS*IFNETMASK IOCTL. 12134 */ 12135 /* ARGSUSED */ 12136 int 12137 ip_sioctl_netmask(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12138 ip_ioctl_cmd_t *ipip, void *if_req) 12139 { 12140 int err = 0; 12141 in6_addr_t v6mask; 12142 12143 ip1dbg(("ip_sioctl_netmask(%s:%u %p)\n", 12144 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12145 12146 ASSERT(IAM_WRITER_IPIF(ipif)); 12147 12148 if (ipif->ipif_isv6) { 12149 sin6_t *sin6; 12150 12151 if (sin->sin_family != AF_INET6) 12152 return (EAFNOSUPPORT); 12153 12154 sin6 = (sin6_t *)sin; 12155 v6mask = sin6->sin6_addr; 12156 } else { 12157 ipaddr_t mask; 12158 12159 if (sin->sin_family != AF_INET) 12160 return (EAFNOSUPPORT); 12161 12162 mask = sin->sin_addr.s_addr; 12163 V4MASK_TO_V6(mask, v6mask); 12164 } 12165 12166 /* 12167 * No big deal if the interface isn't already up, or the mask 12168 * isn't really changing, or this is pt-pt. 12169 */ 12170 if (!(ipif->ipif_flags & IPIF_UP) || 12171 IN6_ARE_ADDR_EQUAL(&v6mask, &ipif->ipif_v6net_mask) || 12172 (ipif->ipif_flags & IPIF_POINTOPOINT)) { 12173 ipif->ipif_v6net_mask = v6mask; 12174 if ((ipif->ipif_flags & IPIF_POINTOPOINT) == 0) { 12175 V6_MASK_COPY(ipif->ipif_v6lcl_addr, 12176 ipif->ipif_v6net_mask, 12177 ipif->ipif_v6subnet); 12178 } 12179 return (0); 12180 } 12181 /* 12182 * Make sure we have valid net and subnet broadcast ire's 12183 * for the old netmask, if needed by other logical interfaces. 12184 */ 12185 if (!ipif->ipif_isv6) 12186 ipif_check_bcast_ires(ipif); 12187 12188 err = ipif_logical_down(ipif, q, mp); 12189 if (err == EINPROGRESS) 12190 return (err); 12191 ipif_down_tail(ipif); 12192 err = ip_sioctl_netmask_tail(ipif, sin, q, mp); 12193 return (err); 12194 } 12195 12196 static int 12197 ip_sioctl_netmask_tail(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp) 12198 { 12199 in6_addr_t v6mask; 12200 int err = 0; 12201 12202 ip1dbg(("ip_sioctl_netmask_tail(%s:%u %p)\n", 12203 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12204 12205 if (ipif->ipif_isv6) { 12206 sin6_t *sin6; 12207 12208 sin6 = (sin6_t *)sin; 12209 v6mask = sin6->sin6_addr; 12210 } else { 12211 ipaddr_t mask; 12212 12213 mask = sin->sin_addr.s_addr; 12214 V4MASK_TO_V6(mask, v6mask); 12215 } 12216 12217 ipif->ipif_v6net_mask = v6mask; 12218 if ((ipif->ipif_flags & IPIF_POINTOPOINT) == 0) { 12219 V6_MASK_COPY(ipif->ipif_v6lcl_addr, ipif->ipif_v6net_mask, 12220 ipif->ipif_v6subnet); 12221 } 12222 err = ipif_up(ipif, q, mp); 12223 12224 if (err == 0 || err == EINPROGRESS) { 12225 /* 12226 * The interface must be DL_BOUND if this packet has to 12227 * go out on the wire. Since we only go through a logical 12228 * down and are bound with the driver during an internal 12229 * down/up that is satisfied. 12230 */ 12231 if (!ipif->ipif_isv6 && ipif->ipif_ill->ill_wq != NULL) { 12232 /* Potentially broadcast an address mask reply. */ 12233 ipif_mask_reply(ipif); 12234 } 12235 } 12236 return (err); 12237 } 12238 12239 /* ARGSUSED */ 12240 int 12241 ip_sioctl_netmask_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12242 ip_ioctl_cmd_t *ipip, void *if_req) 12243 { 12244 ip1dbg(("ip_sioctl_netmask_restart(%s:%u %p)\n", 12245 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12246 ipif_down_tail(ipif); 12247 return (ip_sioctl_netmask_tail(ipif, sin, q, mp)); 12248 } 12249 12250 /* Get interface net mask. */ 12251 /* ARGSUSED */ 12252 int 12253 ip_sioctl_get_netmask(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12254 ip_ioctl_cmd_t *ipip, void *if_req) 12255 { 12256 struct lifreq *lifr = (struct lifreq *)if_req; 12257 struct sockaddr_in6 *sin6 = (sin6_t *)sin; 12258 12259 ip1dbg(("ip_sioctl_get_netmask(%s:%u %p)\n", 12260 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12261 12262 /* 12263 * net mask can't change since we have a reference to the ipif. 12264 */ 12265 if (ipif->ipif_isv6) { 12266 ASSERT(ipip->ipi_cmd_type == LIF_CMD); 12267 *sin6 = sin6_null; 12268 sin6->sin6_family = AF_INET6; 12269 sin6->sin6_addr = ipif->ipif_v6net_mask; 12270 lifr->lifr_addrlen = 12271 ip_mask_to_plen_v6(&ipif->ipif_v6net_mask); 12272 } else { 12273 *sin = sin_null; 12274 sin->sin_family = AF_INET; 12275 sin->sin_addr.s_addr = ipif->ipif_net_mask; 12276 if (ipip->ipi_cmd_type == LIF_CMD) { 12277 lifr->lifr_addrlen = 12278 ip_mask_to_plen(ipif->ipif_net_mask); 12279 } 12280 } 12281 return (0); 12282 } 12283 12284 /* ARGSUSED */ 12285 int 12286 ip_sioctl_metric(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12287 ip_ioctl_cmd_t *ipip, void *if_req) 12288 { 12289 ip1dbg(("ip_sioctl_metric(%s:%u %p)\n", 12290 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12291 12292 /* 12293 * Since no applications should ever be setting metrics on underlying 12294 * interfaces, we explicitly fail to smoke 'em out. 12295 */ 12296 if (IS_UNDER_IPMP(ipif->ipif_ill)) 12297 return (EINVAL); 12298 12299 /* 12300 * Set interface metric. We don't use this for 12301 * anything but we keep track of it in case it is 12302 * important to routing applications or such. 12303 */ 12304 if (ipip->ipi_cmd_type == IF_CMD) { 12305 struct ifreq *ifr; 12306 12307 ifr = (struct ifreq *)if_req; 12308 ipif->ipif_metric = ifr->ifr_metric; 12309 } else { 12310 struct lifreq *lifr; 12311 12312 lifr = (struct lifreq *)if_req; 12313 ipif->ipif_metric = lifr->lifr_metric; 12314 } 12315 return (0); 12316 } 12317 12318 /* ARGSUSED */ 12319 int 12320 ip_sioctl_get_metric(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12321 ip_ioctl_cmd_t *ipip, void *if_req) 12322 { 12323 /* Get interface metric. */ 12324 ip1dbg(("ip_sioctl_get_metric(%s:%u %p)\n", 12325 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12326 12327 if (ipip->ipi_cmd_type == IF_CMD) { 12328 struct ifreq *ifr; 12329 12330 ifr = (struct ifreq *)if_req; 12331 ifr->ifr_metric = ipif->ipif_metric; 12332 } else { 12333 struct lifreq *lifr; 12334 12335 lifr = (struct lifreq *)if_req; 12336 lifr->lifr_metric = ipif->ipif_metric; 12337 } 12338 12339 return (0); 12340 } 12341 12342 /* ARGSUSED */ 12343 int 12344 ip_sioctl_muxid(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12345 ip_ioctl_cmd_t *ipip, void *if_req) 12346 { 12347 12348 ip1dbg(("ip_sioctl_muxid(%s:%u %p)\n", 12349 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12350 /* 12351 * Set the muxid returned from I_PLINK. 12352 */ 12353 if (ipip->ipi_cmd_type == IF_CMD) { 12354 struct ifreq *ifr = (struct ifreq *)if_req; 12355 12356 ipif->ipif_ill->ill_ip_muxid = ifr->ifr_ip_muxid; 12357 ipif->ipif_ill->ill_arp_muxid = ifr->ifr_arp_muxid; 12358 } else { 12359 struct lifreq *lifr = (struct lifreq *)if_req; 12360 12361 ipif->ipif_ill->ill_ip_muxid = lifr->lifr_ip_muxid; 12362 ipif->ipif_ill->ill_arp_muxid = lifr->lifr_arp_muxid; 12363 } 12364 return (0); 12365 } 12366 12367 /* ARGSUSED */ 12368 int 12369 ip_sioctl_get_muxid(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12370 ip_ioctl_cmd_t *ipip, void *if_req) 12371 { 12372 12373 ip1dbg(("ip_sioctl_get_muxid(%s:%u %p)\n", 12374 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12375 /* 12376 * Get the muxid saved in ill for I_PUNLINK. 12377 */ 12378 if (ipip->ipi_cmd_type == IF_CMD) { 12379 struct ifreq *ifr = (struct ifreq *)if_req; 12380 12381 ifr->ifr_ip_muxid = ipif->ipif_ill->ill_ip_muxid; 12382 ifr->ifr_arp_muxid = ipif->ipif_ill->ill_arp_muxid; 12383 } else { 12384 struct lifreq *lifr = (struct lifreq *)if_req; 12385 12386 lifr->lifr_ip_muxid = ipif->ipif_ill->ill_ip_muxid; 12387 lifr->lifr_arp_muxid = ipif->ipif_ill->ill_arp_muxid; 12388 } 12389 return (0); 12390 } 12391 12392 /* 12393 * Set the subnet prefix. Does not modify the broadcast address. 12394 */ 12395 /* ARGSUSED */ 12396 int 12397 ip_sioctl_subnet(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12398 ip_ioctl_cmd_t *ipip, void *if_req) 12399 { 12400 int err = 0; 12401 in6_addr_t v6addr; 12402 in6_addr_t v6mask; 12403 boolean_t need_up = B_FALSE; 12404 int addrlen; 12405 12406 ip1dbg(("ip_sioctl_subnet(%s:%u %p)\n", 12407 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12408 12409 ASSERT(IAM_WRITER_IPIF(ipif)); 12410 addrlen = ((struct lifreq *)if_req)->lifr_addrlen; 12411 12412 if (ipif->ipif_isv6) { 12413 sin6_t *sin6; 12414 12415 if (sin->sin_family != AF_INET6) 12416 return (EAFNOSUPPORT); 12417 12418 sin6 = (sin6_t *)sin; 12419 v6addr = sin6->sin6_addr; 12420 if (!ip_remote_addr_ok_v6(&v6addr, &ipv6_all_ones)) 12421 return (EADDRNOTAVAIL); 12422 } else { 12423 ipaddr_t addr; 12424 12425 if (sin->sin_family != AF_INET) 12426 return (EAFNOSUPPORT); 12427 12428 addr = sin->sin_addr.s_addr; 12429 if (!ip_addr_ok_v4(addr, 0xFFFFFFFF)) 12430 return (EADDRNOTAVAIL); 12431 IN6_IPADDR_TO_V4MAPPED(addr, &v6addr); 12432 /* Add 96 bits */ 12433 addrlen += IPV6_ABITS - IP_ABITS; 12434 } 12435 12436 if (ip_plen_to_mask_v6(addrlen, &v6mask) == NULL) 12437 return (EINVAL); 12438 12439 /* Check if bits in the address is set past the mask */ 12440 if (!V6_MASK_EQ(v6addr, v6mask, v6addr)) 12441 return (EINVAL); 12442 12443 if (IN6_ARE_ADDR_EQUAL(&ipif->ipif_v6subnet, &v6addr) && 12444 IN6_ARE_ADDR_EQUAL(&ipif->ipif_v6net_mask, &v6mask)) 12445 return (0); /* No change */ 12446 12447 if (ipif->ipif_flags & IPIF_UP) { 12448 /* 12449 * If the interface is already marked up, 12450 * we call ipif_down which will take care 12451 * of ditching any IREs that have been set 12452 * up based on the old interface address. 12453 */ 12454 err = ipif_logical_down(ipif, q, mp); 12455 if (err == EINPROGRESS) 12456 return (err); 12457 ipif_down_tail(ipif); 12458 need_up = B_TRUE; 12459 } 12460 12461 err = ip_sioctl_subnet_tail(ipif, v6addr, v6mask, q, mp, need_up); 12462 return (err); 12463 } 12464 12465 static int 12466 ip_sioctl_subnet_tail(ipif_t *ipif, in6_addr_t v6addr, in6_addr_t v6mask, 12467 queue_t *q, mblk_t *mp, boolean_t need_up) 12468 { 12469 ill_t *ill = ipif->ipif_ill; 12470 int err = 0; 12471 12472 ip1dbg(("ip_sioctl_subnet_tail(%s:%u %p)\n", 12473 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12474 12475 /* Set the new address. */ 12476 mutex_enter(&ill->ill_lock); 12477 ipif->ipif_v6net_mask = v6mask; 12478 if ((ipif->ipif_flags & IPIF_POINTOPOINT) == 0) { 12479 V6_MASK_COPY(v6addr, ipif->ipif_v6net_mask, 12480 ipif->ipif_v6subnet); 12481 } 12482 mutex_exit(&ill->ill_lock); 12483 12484 if (need_up) { 12485 /* 12486 * Now bring the interface back up. If this 12487 * is the only IPIF for the ILL, ipif_up 12488 * will have to re-bind to the device, so 12489 * we may get back EINPROGRESS, in which 12490 * case, this IOCTL will get completed in 12491 * ip_rput_dlpi when we see the DL_BIND_ACK. 12492 */ 12493 err = ipif_up(ipif, q, mp); 12494 if (err == EINPROGRESS) 12495 return (err); 12496 } 12497 return (err); 12498 } 12499 12500 /* ARGSUSED */ 12501 int 12502 ip_sioctl_subnet_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12503 ip_ioctl_cmd_t *ipip, void *if_req) 12504 { 12505 int addrlen; 12506 in6_addr_t v6addr; 12507 in6_addr_t v6mask; 12508 struct lifreq *lifr = (struct lifreq *)if_req; 12509 12510 ip1dbg(("ip_sioctl_subnet_restart(%s:%u %p)\n", 12511 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12512 ipif_down_tail(ipif); 12513 12514 addrlen = lifr->lifr_addrlen; 12515 if (ipif->ipif_isv6) { 12516 sin6_t *sin6; 12517 12518 sin6 = (sin6_t *)sin; 12519 v6addr = sin6->sin6_addr; 12520 } else { 12521 ipaddr_t addr; 12522 12523 addr = sin->sin_addr.s_addr; 12524 IN6_IPADDR_TO_V4MAPPED(addr, &v6addr); 12525 addrlen += IPV6_ABITS - IP_ABITS; 12526 } 12527 (void) ip_plen_to_mask_v6(addrlen, &v6mask); 12528 12529 return (ip_sioctl_subnet_tail(ipif, v6addr, v6mask, q, mp, B_TRUE)); 12530 } 12531 12532 /* ARGSUSED */ 12533 int 12534 ip_sioctl_get_subnet(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12535 ip_ioctl_cmd_t *ipip, void *if_req) 12536 { 12537 struct lifreq *lifr = (struct lifreq *)if_req; 12538 struct sockaddr_in6 *sin6 = (struct sockaddr_in6 *)sin; 12539 12540 ip1dbg(("ip_sioctl_get_subnet(%s:%u %p)\n", 12541 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12542 ASSERT(ipip->ipi_cmd_type == LIF_CMD); 12543 12544 if (ipif->ipif_isv6) { 12545 *sin6 = sin6_null; 12546 sin6->sin6_family = AF_INET6; 12547 sin6->sin6_addr = ipif->ipif_v6subnet; 12548 lifr->lifr_addrlen = 12549 ip_mask_to_plen_v6(&ipif->ipif_v6net_mask); 12550 } else { 12551 *sin = sin_null; 12552 sin->sin_family = AF_INET; 12553 sin->sin_addr.s_addr = ipif->ipif_subnet; 12554 lifr->lifr_addrlen = ip_mask_to_plen(ipif->ipif_net_mask); 12555 } 12556 return (0); 12557 } 12558 12559 /* 12560 * Set the IPv6 address token. 12561 */ 12562 /* ARGSUSED */ 12563 int 12564 ip_sioctl_token(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12565 ip_ioctl_cmd_t *ipi, void *if_req) 12566 { 12567 ill_t *ill = ipif->ipif_ill; 12568 int err; 12569 in6_addr_t v6addr; 12570 in6_addr_t v6mask; 12571 boolean_t need_up = B_FALSE; 12572 int i; 12573 sin6_t *sin6 = (sin6_t *)sin; 12574 struct lifreq *lifr = (struct lifreq *)if_req; 12575 int addrlen; 12576 12577 ip1dbg(("ip_sioctl_token(%s:%u %p)\n", 12578 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12579 ASSERT(IAM_WRITER_IPIF(ipif)); 12580 12581 addrlen = lifr->lifr_addrlen; 12582 /* Only allow for logical unit zero i.e. not on "le0:17" */ 12583 if (ipif->ipif_id != 0) 12584 return (EINVAL); 12585 12586 if (!ipif->ipif_isv6) 12587 return (EINVAL); 12588 12589 if (addrlen > IPV6_ABITS) 12590 return (EINVAL); 12591 12592 v6addr = sin6->sin6_addr; 12593 12594 /* 12595 * The length of the token is the length from the end. To get 12596 * the proper mask for this, compute the mask of the bits not 12597 * in the token; ie. the prefix, and then xor to get the mask. 12598 */ 12599 if (ip_plen_to_mask_v6(IPV6_ABITS - addrlen, &v6mask) == NULL) 12600 return (EINVAL); 12601 for (i = 0; i < 4; i++) { 12602 v6mask.s6_addr32[i] ^= (uint32_t)0xffffffff; 12603 } 12604 12605 if (V6_MASK_EQ(v6addr, v6mask, ill->ill_token) && 12606 ill->ill_token_length == addrlen) 12607 return (0); /* No change */ 12608 12609 if (ipif->ipif_flags & IPIF_UP) { 12610 err = ipif_logical_down(ipif, q, mp); 12611 if (err == EINPROGRESS) 12612 return (err); 12613 ipif_down_tail(ipif); 12614 need_up = B_TRUE; 12615 } 12616 err = ip_sioctl_token_tail(ipif, sin6, addrlen, q, mp, need_up); 12617 return (err); 12618 } 12619 12620 static int 12621 ip_sioctl_token_tail(ipif_t *ipif, sin6_t *sin6, int addrlen, queue_t *q, 12622 mblk_t *mp, boolean_t need_up) 12623 { 12624 in6_addr_t v6addr; 12625 in6_addr_t v6mask; 12626 ill_t *ill = ipif->ipif_ill; 12627 int i; 12628 int err = 0; 12629 12630 ip1dbg(("ip_sioctl_token_tail(%s:%u %p)\n", 12631 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12632 v6addr = sin6->sin6_addr; 12633 /* 12634 * The length of the token is the length from the end. To get 12635 * the proper mask for this, compute the mask of the bits not 12636 * in the token; ie. the prefix, and then xor to get the mask. 12637 */ 12638 (void) ip_plen_to_mask_v6(IPV6_ABITS - addrlen, &v6mask); 12639 for (i = 0; i < 4; i++) 12640 v6mask.s6_addr32[i] ^= (uint32_t)0xffffffff; 12641 12642 mutex_enter(&ill->ill_lock); 12643 V6_MASK_COPY(v6addr, v6mask, ill->ill_token); 12644 ill->ill_token_length = addrlen; 12645 mutex_exit(&ill->ill_lock); 12646 12647 if (need_up) { 12648 /* 12649 * Now bring the interface back up. If this 12650 * is the only IPIF for the ILL, ipif_up 12651 * will have to re-bind to the device, so 12652 * we may get back EINPROGRESS, in which 12653 * case, this IOCTL will get completed in 12654 * ip_rput_dlpi when we see the DL_BIND_ACK. 12655 */ 12656 err = ipif_up(ipif, q, mp); 12657 if (err == EINPROGRESS) 12658 return (err); 12659 } 12660 return (err); 12661 } 12662 12663 /* ARGSUSED */ 12664 int 12665 ip_sioctl_get_token(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12666 ip_ioctl_cmd_t *ipi, void *if_req) 12667 { 12668 ill_t *ill; 12669 sin6_t *sin6 = (sin6_t *)sin; 12670 struct lifreq *lifr = (struct lifreq *)if_req; 12671 12672 ip1dbg(("ip_sioctl_get_token(%s:%u %p)\n", 12673 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12674 if (ipif->ipif_id != 0) 12675 return (EINVAL); 12676 12677 ill = ipif->ipif_ill; 12678 if (!ill->ill_isv6) 12679 return (ENXIO); 12680 12681 *sin6 = sin6_null; 12682 sin6->sin6_family = AF_INET6; 12683 ASSERT(!IN6_IS_ADDR_V4MAPPED(&ill->ill_token)); 12684 sin6->sin6_addr = ill->ill_token; 12685 lifr->lifr_addrlen = ill->ill_token_length; 12686 return (0); 12687 } 12688 12689 /* 12690 * Set (hardware) link specific information that might override 12691 * what was acquired through the DL_INFO_ACK. 12692 * The logic is as follows. 12693 * 12694 * become exclusive 12695 * set CHANGING flag 12696 * change mtu on affected IREs 12697 * clear CHANGING flag 12698 * 12699 * An ire add that occurs before the CHANGING flag is set will have its mtu 12700 * changed by the ip_sioctl_lnkinfo. 12701 * 12702 * During the time the CHANGING flag is set, no new ires will be added to the 12703 * bucket, and ire add will fail (due the CHANGING flag). 12704 * 12705 * An ire add that occurs after the CHANGING flag is set will have the right mtu 12706 * before it is added to the bucket. 12707 * 12708 * Obviously only 1 thread can set the CHANGING flag and we need to become 12709 * exclusive to set the flag. 12710 */ 12711 /* ARGSUSED */ 12712 int 12713 ip_sioctl_lnkinfo(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12714 ip_ioctl_cmd_t *ipi, void *if_req) 12715 { 12716 ill_t *ill = ipif->ipif_ill; 12717 ipif_t *nipif; 12718 int ip_min_mtu; 12719 boolean_t mtu_walk = B_FALSE; 12720 struct lifreq *lifr = (struct lifreq *)if_req; 12721 lif_ifinfo_req_t *lir; 12722 ire_t *ire; 12723 12724 ip1dbg(("ip_sioctl_lnkinfo(%s:%u %p)\n", 12725 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12726 lir = &lifr->lifr_ifinfo; 12727 ASSERT(IAM_WRITER_IPIF(ipif)); 12728 12729 /* Only allow for logical unit zero i.e. not on "le0:17" */ 12730 if (ipif->ipif_id != 0) 12731 return (EINVAL); 12732 12733 /* Set interface MTU. */ 12734 if (ipif->ipif_isv6) 12735 ip_min_mtu = IPV6_MIN_MTU; 12736 else 12737 ip_min_mtu = IP_MIN_MTU; 12738 12739 /* 12740 * Verify values before we set anything. Allow zero to 12741 * mean unspecified. 12742 */ 12743 if (lir->lir_maxmtu != 0 && 12744 (lir->lir_maxmtu > ill->ill_max_frag || 12745 lir->lir_maxmtu < ip_min_mtu)) 12746 return (EINVAL); 12747 if (lir->lir_reachtime != 0 && 12748 lir->lir_reachtime > ND_MAX_REACHTIME) 12749 return (EINVAL); 12750 if (lir->lir_reachretrans != 0 && 12751 lir->lir_reachretrans > ND_MAX_REACHRETRANSTIME) 12752 return (EINVAL); 12753 12754 mutex_enter(&ill->ill_lock); 12755 ill->ill_state_flags |= ILL_CHANGING; 12756 for (nipif = ill->ill_ipif; nipif != NULL; 12757 nipif = nipif->ipif_next) { 12758 nipif->ipif_state_flags |= IPIF_CHANGING; 12759 } 12760 12761 if (lir->lir_maxmtu != 0) { 12762 ill->ill_max_mtu = lir->lir_maxmtu; 12763 ill->ill_user_mtu = lir->lir_maxmtu; 12764 mtu_walk = B_TRUE; 12765 } 12766 mutex_exit(&ill->ill_lock); 12767 12768 if (lir->lir_reachtime != 0) 12769 ill->ill_reachable_time = lir->lir_reachtime; 12770 12771 if (lir->lir_reachretrans != 0) 12772 ill->ill_reachable_retrans_time = lir->lir_reachretrans; 12773 12774 ill->ill_max_hops = lir->lir_maxhops; 12775 12776 ill->ill_max_buf = ND_MAX_Q; 12777 12778 if (mtu_walk) { 12779 /* 12780 * Set the MTU on all ipifs associated with this ill except 12781 * for those whose MTU was fixed via SIOCSLIFMTU. 12782 */ 12783 for (nipif = ill->ill_ipif; nipif != NULL; 12784 nipif = nipif->ipif_next) { 12785 if (nipif->ipif_flags & IPIF_FIXEDMTU) 12786 continue; 12787 12788 nipif->ipif_mtu = ill->ill_max_mtu; 12789 12790 if (!(nipif->ipif_flags & IPIF_UP)) 12791 continue; 12792 12793 if (nipif->ipif_isv6) 12794 ire = ipif_to_ire_v6(nipif); 12795 else 12796 ire = ipif_to_ire(nipif); 12797 if (ire != NULL) { 12798 ire->ire_max_frag = ipif->ipif_mtu; 12799 ire_refrele(ire); 12800 } 12801 12802 ire_walk_ill(MATCH_IRE_ILL, 0, ipif_mtu_change, 12803 nipif, ill); 12804 } 12805 } 12806 12807 mutex_enter(&ill->ill_lock); 12808 for (nipif = ill->ill_ipif; nipif != NULL; 12809 nipif = nipif->ipif_next) { 12810 nipif->ipif_state_flags &= ~IPIF_CHANGING; 12811 } 12812 ILL_UNMARK_CHANGING(ill); 12813 mutex_exit(&ill->ill_lock); 12814 12815 /* 12816 * Refresh IPMP meta-interface MTU if necessary. 12817 */ 12818 if (IS_UNDER_IPMP(ill)) 12819 ipmp_illgrp_refresh_mtu(ill->ill_grp); 12820 12821 return (0); 12822 } 12823 12824 /* ARGSUSED */ 12825 int 12826 ip_sioctl_get_lnkinfo(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12827 ip_ioctl_cmd_t *ipi, void *if_req) 12828 { 12829 struct lif_ifinfo_req *lir; 12830 ill_t *ill = ipif->ipif_ill; 12831 12832 ip1dbg(("ip_sioctl_get_lnkinfo(%s:%u %p)\n", 12833 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12834 if (ipif->ipif_id != 0) 12835 return (EINVAL); 12836 12837 lir = &((struct lifreq *)if_req)->lifr_ifinfo; 12838 lir->lir_maxhops = ill->ill_max_hops; 12839 lir->lir_reachtime = ill->ill_reachable_time; 12840 lir->lir_reachretrans = ill->ill_reachable_retrans_time; 12841 lir->lir_maxmtu = ill->ill_max_mtu; 12842 12843 return (0); 12844 } 12845 12846 /* 12847 * Return best guess as to the subnet mask for the specified address. 12848 * Based on the subnet masks for all the configured interfaces. 12849 * 12850 * We end up returning a zero mask in the case of default, multicast or 12851 * experimental. 12852 */ 12853 static ipaddr_t 12854 ip_subnet_mask(ipaddr_t addr, ipif_t **ipifp, ip_stack_t *ipst) 12855 { 12856 ipaddr_t net_mask; 12857 ill_t *ill; 12858 ipif_t *ipif; 12859 ill_walk_context_t ctx; 12860 ipif_t *fallback_ipif = NULL; 12861 12862 net_mask = ip_net_mask(addr); 12863 if (net_mask == 0) { 12864 *ipifp = NULL; 12865 return (0); 12866 } 12867 12868 /* Let's check to see if this is maybe a local subnet route. */ 12869 /* this function only applies to IPv4 interfaces */ 12870 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 12871 ill = ILL_START_WALK_V4(&ctx, ipst); 12872 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 12873 mutex_enter(&ill->ill_lock); 12874 for (ipif = ill->ill_ipif; ipif != NULL; 12875 ipif = ipif->ipif_next) { 12876 if (!IPIF_CAN_LOOKUP(ipif)) 12877 continue; 12878 if (!(ipif->ipif_flags & IPIF_UP)) 12879 continue; 12880 if ((ipif->ipif_subnet & net_mask) == 12881 (addr & net_mask)) { 12882 /* 12883 * Don't trust pt-pt interfaces if there are 12884 * other interfaces. 12885 */ 12886 if (ipif->ipif_flags & IPIF_POINTOPOINT) { 12887 if (fallback_ipif == NULL) { 12888 ipif_refhold_locked(ipif); 12889 fallback_ipif = ipif; 12890 } 12891 continue; 12892 } 12893 12894 /* 12895 * Fine. Just assume the same net mask as the 12896 * directly attached subnet interface is using. 12897 */ 12898 ipif_refhold_locked(ipif); 12899 mutex_exit(&ill->ill_lock); 12900 rw_exit(&ipst->ips_ill_g_lock); 12901 if (fallback_ipif != NULL) 12902 ipif_refrele(fallback_ipif); 12903 *ipifp = ipif; 12904 return (ipif->ipif_net_mask); 12905 } 12906 } 12907 mutex_exit(&ill->ill_lock); 12908 } 12909 rw_exit(&ipst->ips_ill_g_lock); 12910 12911 *ipifp = fallback_ipif; 12912 return ((fallback_ipif != NULL) ? 12913 fallback_ipif->ipif_net_mask : net_mask); 12914 } 12915 12916 /* 12917 * ip_sioctl_copyin_setup calls ip_wput_ioctl to process the IP_IOCTL ioctl. 12918 */ 12919 static void 12920 ip_wput_ioctl(queue_t *q, mblk_t *mp) 12921 { 12922 IOCP iocp; 12923 ipft_t *ipft; 12924 ipllc_t *ipllc; 12925 mblk_t *mp1; 12926 cred_t *cr; 12927 int error = 0; 12928 conn_t *connp; 12929 12930 ip1dbg(("ip_wput_ioctl")); 12931 iocp = (IOCP)mp->b_rptr; 12932 mp1 = mp->b_cont; 12933 if (mp1 == NULL) { 12934 iocp->ioc_error = EINVAL; 12935 mp->b_datap->db_type = M_IOCNAK; 12936 iocp->ioc_count = 0; 12937 qreply(q, mp); 12938 return; 12939 } 12940 12941 /* 12942 * These IOCTLs provide various control capabilities to 12943 * upstream agents such as ULPs and processes. There 12944 * are currently two such IOCTLs implemented. They 12945 * are used by TCP to provide update information for 12946 * existing IREs and to forcibly delete an IRE for a 12947 * host that is not responding, thereby forcing an 12948 * attempt at a new route. 12949 */ 12950 iocp->ioc_error = EINVAL; 12951 if (!pullupmsg(mp1, sizeof (ipllc->ipllc_cmd))) 12952 goto done; 12953 12954 ipllc = (ipllc_t *)mp1->b_rptr; 12955 for (ipft = ip_ioctl_ftbl; ipft->ipft_pfi; ipft++) { 12956 if (ipllc->ipllc_cmd == ipft->ipft_cmd) 12957 break; 12958 } 12959 /* 12960 * prefer credential from mblk over ioctl; 12961 * see ip_sioctl_copyin_setup 12962 */ 12963 cr = DB_CREDDEF(mp, iocp->ioc_cr); 12964 12965 /* 12966 * Refhold the conn in case the request gets queued up in some lookup 12967 */ 12968 ASSERT(CONN_Q(q)); 12969 connp = Q_TO_CONN(q); 12970 CONN_INC_REF(connp); 12971 if (ipft->ipft_pfi && 12972 ((mp1->b_wptr - mp1->b_rptr) >= ipft->ipft_min_size || 12973 pullupmsg(mp1, ipft->ipft_min_size))) { 12974 error = (*ipft->ipft_pfi)(q, 12975 (ipft->ipft_flags & IPFT_F_SELF_REPLY) ? mp : mp1, cr); 12976 } 12977 if (ipft->ipft_flags & IPFT_F_SELF_REPLY) { 12978 /* 12979 * CONN_OPER_PENDING_DONE happens in the function called 12980 * through ipft_pfi above. 12981 */ 12982 return; 12983 } 12984 12985 CONN_OPER_PENDING_DONE(connp); 12986 if (ipft->ipft_flags & IPFT_F_NO_REPLY) { 12987 freemsg(mp); 12988 return; 12989 } 12990 iocp->ioc_error = error; 12991 12992 done: 12993 mp->b_datap->db_type = M_IOCACK; 12994 if (iocp->ioc_error) 12995 iocp->ioc_count = 0; 12996 qreply(q, mp); 12997 } 12998 12999 /* 13000 * Lookup an ipif using the sequence id (ipif_seqid) 13001 */ 13002 ipif_t * 13003 ipif_lookup_seqid(ill_t *ill, uint_t seqid) 13004 { 13005 ipif_t *ipif; 13006 13007 ASSERT(MUTEX_HELD(&ill->ill_lock)); 13008 13009 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 13010 if (ipif->ipif_seqid == seqid && IPIF_CAN_LOOKUP(ipif)) 13011 return (ipif); 13012 } 13013 return (NULL); 13014 } 13015 13016 /* 13017 * Assign a unique id for the ipif. This is used later when we send 13018 * IRES to ARP for resolution where we initialize ire_ipif_seqid 13019 * to the value pointed by ire_ipif->ipif_seqid. Later when the 13020 * IRE is added, we verify that ipif has not disappeared. 13021 */ 13022 13023 static void 13024 ipif_assign_seqid(ipif_t *ipif) 13025 { 13026 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; 13027 13028 ipif->ipif_seqid = atomic_add_64_nv(&ipst->ips_ipif_g_seqid, 1); 13029 } 13030 13031 /* 13032 * Clone the contents of `sipif' to `dipif'. Requires that both ipifs are 13033 * administratively down (i.e., no DAD), of the same type, and locked. Note 13034 * that the clone is complete -- including the seqid -- and the expectation is 13035 * that the caller will either free or overwrite `sipif' before it's unlocked. 13036 */ 13037 static void 13038 ipif_clone(const ipif_t *sipif, ipif_t *dipif) 13039 { 13040 ASSERT(MUTEX_HELD(&sipif->ipif_ill->ill_lock)); 13041 ASSERT(MUTEX_HELD(&dipif->ipif_ill->ill_lock)); 13042 ASSERT(!(sipif->ipif_flags & (IPIF_UP|IPIF_DUPLICATE))); 13043 ASSERT(!(dipif->ipif_flags & (IPIF_UP|IPIF_DUPLICATE))); 13044 ASSERT(sipif->ipif_ire_type == dipif->ipif_ire_type); 13045 ASSERT(sipif->ipif_arp_del_mp == NULL); 13046 ASSERT(dipif->ipif_arp_del_mp == NULL); 13047 ASSERT(sipif->ipif_igmp_rpt == NULL); 13048 ASSERT(dipif->ipif_igmp_rpt == NULL); 13049 ASSERT(sipif->ipif_multicast_up == 0); 13050 ASSERT(dipif->ipif_multicast_up == 0); 13051 ASSERT(sipif->ipif_joined_allhosts == 0); 13052 ASSERT(dipif->ipif_joined_allhosts == 0); 13053 13054 dipif->ipif_mtu = sipif->ipif_mtu; 13055 dipif->ipif_flags = sipif->ipif_flags; 13056 dipif->ipif_metric = sipif->ipif_metric; 13057 dipif->ipif_zoneid = sipif->ipif_zoneid; 13058 dipif->ipif_v6subnet = sipif->ipif_v6subnet; 13059 dipif->ipif_v6lcl_addr = sipif->ipif_v6lcl_addr; 13060 dipif->ipif_v6src_addr = sipif->ipif_v6src_addr; 13061 dipif->ipif_v6net_mask = sipif->ipif_v6net_mask; 13062 dipif->ipif_v6brd_addr = sipif->ipif_v6brd_addr; 13063 dipif->ipif_v6pp_dst_addr = sipif->ipif_v6pp_dst_addr; 13064 13065 /* 13066 * While dipif is down right now, it might've been up before. Since 13067 * it's changing identity, its packet counters need to be reset. 13068 */ 13069 dipif->ipif_ib_pkt_count = 0; 13070 dipif->ipif_ob_pkt_count = 0; 13071 dipif->ipif_fo_pkt_count = 0; 13072 13073 /* 13074 * As per the comment atop the function, we assume that these sipif 13075 * fields will be changed before sipif is unlocked. 13076 */ 13077 dipif->ipif_seqid = sipif->ipif_seqid; 13078 dipif->ipif_saved_ire_mp = sipif->ipif_saved_ire_mp; 13079 dipif->ipif_saved_ire_cnt = sipif->ipif_saved_ire_cnt; 13080 dipif->ipif_state_flags = sipif->ipif_state_flags; 13081 } 13082 13083 /* 13084 * Transfer the contents of `sipif' to `dipif', and then free (if `virgipif' 13085 * is NULL) or overwrite `sipif' with `virgipif', which must be a virgin 13086 * (unreferenced) ipif. Also, if `sipif' is used by the current xop, then 13087 * transfer the xop to `dipif'. Requires that all ipifs are administratively 13088 * down (i.e., no DAD), of the same type, and unlocked. 13089 */ 13090 static void 13091 ipif_transfer(ipif_t *sipif, ipif_t *dipif, ipif_t *virgipif) 13092 { 13093 ipsq_t *ipsq = sipif->ipif_ill->ill_phyint->phyint_ipsq; 13094 int ipx_current_ioctl; 13095 13096 ASSERT(sipif != dipif); 13097 ASSERT(sipif != virgipif); 13098 13099 /* 13100 * Grab all of the locks that protect the ipif in a defined order. 13101 */ 13102 GRAB_ILL_LOCKS(sipif->ipif_ill, dipif->ipif_ill); 13103 if (sipif > dipif) { 13104 mutex_enter(&sipif->ipif_saved_ire_lock); 13105 mutex_enter(&dipif->ipif_saved_ire_lock); 13106 } else { 13107 mutex_enter(&dipif->ipif_saved_ire_lock); 13108 mutex_enter(&sipif->ipif_saved_ire_lock); 13109 } 13110 13111 ipif_clone(sipif, dipif); 13112 if (virgipif != NULL) { 13113 ipif_clone(virgipif, sipif); 13114 mi_free(virgipif); 13115 } 13116 13117 mutex_exit(&sipif->ipif_saved_ire_lock); 13118 mutex_exit(&dipif->ipif_saved_ire_lock); 13119 RELEASE_ILL_LOCKS(sipif->ipif_ill, dipif->ipif_ill); 13120 13121 /* 13122 * Transfer ownership of the current xop, if necessary. 13123 */ 13124 if (ipsq->ipsq_xop->ipx_current_ipif == sipif) { 13125 ASSERT(ipsq->ipsq_xop->ipx_pending_ipif == NULL); 13126 ipx_current_ioctl = ipsq->ipsq_xop->ipx_current_ioctl; 13127 ipsq_current_finish(ipsq); 13128 ipsq_current_start(ipsq, dipif, ipx_current_ioctl); 13129 } 13130 13131 if (virgipif == NULL) 13132 mi_free(sipif); 13133 } 13134 13135 /* 13136 * Insert the ipif, so that the list of ipifs on the ill will be sorted 13137 * with respect to ipif_id. Note that an ipif with an ipif_id of -1 will 13138 * be inserted into the first space available in the list. The value of 13139 * ipif_id will then be set to the appropriate value for its position. 13140 */ 13141 static int 13142 ipif_insert(ipif_t *ipif, boolean_t acquire_g_lock) 13143 { 13144 ill_t *ill; 13145 ipif_t *tipif; 13146 ipif_t **tipifp; 13147 int id; 13148 ip_stack_t *ipst; 13149 13150 ASSERT(ipif->ipif_ill->ill_net_type == IRE_LOOPBACK || 13151 IAM_WRITER_IPIF(ipif)); 13152 13153 ill = ipif->ipif_ill; 13154 ASSERT(ill != NULL); 13155 ipst = ill->ill_ipst; 13156 13157 /* 13158 * In the case of lo0:0 we already hold the ill_g_lock. 13159 * ill_lookup_on_name (acquires ill_g_lock) -> ipif_allocate -> 13160 * ipif_insert. 13161 */ 13162 if (acquire_g_lock) 13163 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 13164 mutex_enter(&ill->ill_lock); 13165 id = ipif->ipif_id; 13166 tipifp = &(ill->ill_ipif); 13167 if (id == -1) { /* need to find a real id */ 13168 id = 0; 13169 while ((tipif = *tipifp) != NULL) { 13170 ASSERT(tipif->ipif_id >= id); 13171 if (tipif->ipif_id != id) 13172 break; /* non-consecutive id */ 13173 id++; 13174 tipifp = &(tipif->ipif_next); 13175 } 13176 /* limit number of logical interfaces */ 13177 if (id >= ipst->ips_ip_addrs_per_if) { 13178 mutex_exit(&ill->ill_lock); 13179 if (acquire_g_lock) 13180 rw_exit(&ipst->ips_ill_g_lock); 13181 return (-1); 13182 } 13183 ipif->ipif_id = id; /* assign new id */ 13184 } else if (id < ipst->ips_ip_addrs_per_if) { 13185 /* we have a real id; insert ipif in the right place */ 13186 while ((tipif = *tipifp) != NULL) { 13187 ASSERT(tipif->ipif_id != id); 13188 if (tipif->ipif_id > id) 13189 break; /* found correct location */ 13190 tipifp = &(tipif->ipif_next); 13191 } 13192 } else { 13193 mutex_exit(&ill->ill_lock); 13194 if (acquire_g_lock) 13195 rw_exit(&ipst->ips_ill_g_lock); 13196 return (-1); 13197 } 13198 13199 ASSERT(tipifp != &(ill->ill_ipif) || id == 0); 13200 13201 ipif->ipif_next = tipif; 13202 *tipifp = ipif; 13203 mutex_exit(&ill->ill_lock); 13204 if (acquire_g_lock) 13205 rw_exit(&ipst->ips_ill_g_lock); 13206 13207 return (0); 13208 } 13209 13210 static void 13211 ipif_remove(ipif_t *ipif) 13212 { 13213 ipif_t **ipifp; 13214 ill_t *ill = ipif->ipif_ill; 13215 13216 ASSERT(RW_WRITE_HELD(&ill->ill_ipst->ips_ill_g_lock)); 13217 13218 mutex_enter(&ill->ill_lock); 13219 ipifp = &ill->ill_ipif; 13220 for (; *ipifp != NULL; ipifp = &ipifp[0]->ipif_next) { 13221 if (*ipifp == ipif) { 13222 *ipifp = ipif->ipif_next; 13223 break; 13224 } 13225 } 13226 mutex_exit(&ill->ill_lock); 13227 } 13228 13229 /* 13230 * Allocate and initialize a new interface control structure. (Always 13231 * called as writer.) 13232 * When ipif_allocate() is called from ip_ll_subnet_defaults, the ill 13233 * is not part of the global linked list of ills. ipif_seqid is unique 13234 * in the system and to preserve the uniqueness, it is assigned only 13235 * when ill becomes part of the global list. At that point ill will 13236 * have a name. If it doesn't get assigned here, it will get assigned 13237 * in ipif_set_values() as part of SIOCSLIFNAME processing. 13238 * Aditionally, if we come here from ip_ll_subnet_defaults, we don't set 13239 * the interface flags or any other information from the DL_INFO_ACK for 13240 * DL_STYLE2 drivers (initialize == B_FALSE), since we won't have them at 13241 * this point. The flags etc. will be set in ip_ll_subnet_defaults when the 13242 * second DL_INFO_ACK comes in from the driver. 13243 */ 13244 static ipif_t * 13245 ipif_allocate(ill_t *ill, int id, uint_t ire_type, boolean_t initialize, 13246 boolean_t insert) 13247 { 13248 ipif_t *ipif; 13249 phyint_t *phyi = ill->ill_phyint; 13250 ip_stack_t *ipst = ill->ill_ipst; 13251 13252 ip1dbg(("ipif_allocate(%s:%d ill %p)\n", 13253 ill->ill_name, id, (void *)ill)); 13254 ASSERT(ire_type == IRE_LOOPBACK || IAM_WRITER_ILL(ill)); 13255 13256 if ((ipif = (ipif_t *)mi_alloc(sizeof (ipif_t), BPRI_MED)) == NULL) 13257 return (NULL); 13258 *ipif = ipif_zero; /* start clean */ 13259 13260 ipif->ipif_ill = ill; 13261 ipif->ipif_id = id; /* could be -1 */ 13262 /* 13263 * Inherit the zoneid from the ill; for the shared stack instance 13264 * this is always the global zone 13265 */ 13266 ipif->ipif_zoneid = ill->ill_zoneid; 13267 13268 mutex_init(&ipif->ipif_saved_ire_lock, NULL, MUTEX_DEFAULT, NULL); 13269 13270 ipif->ipif_refcnt = 0; 13271 ipif->ipif_saved_ire_cnt = 0; 13272 13273 if (insert) { 13274 if (ipif_insert(ipif, ire_type != IRE_LOOPBACK) != 0) { 13275 mi_free(ipif); 13276 return (NULL); 13277 } 13278 /* -1 id should have been replaced by real id */ 13279 id = ipif->ipif_id; 13280 ASSERT(id >= 0); 13281 } 13282 13283 if (ill->ill_name[0] != '\0') 13284 ipif_assign_seqid(ipif); 13285 13286 /* 13287 * If this is ipif zero, configure ill/phyint-wide information. 13288 * Defer most configuration until we're guaranteed we're attached. 13289 */ 13290 if (id == 0) { 13291 if (ill->ill_mactype == SUNW_DL_IPMP) { 13292 /* 13293 * Set PHYI_IPMP and also set PHYI_FAILED since there 13294 * are no active interfaces. Similarly, PHYI_RUNNING 13295 * isn't set until the group has an active interface. 13296 */ 13297 mutex_enter(&phyi->phyint_lock); 13298 phyi->phyint_flags |= (PHYI_IPMP | PHYI_FAILED); 13299 mutex_exit(&phyi->phyint_lock); 13300 13301 /* 13302 * Create the illgrp (which must not exist yet because 13303 * the zeroth ipif is created once per ill). However, 13304 * do not not link it to the ipmp_grp_t until I_PLINK 13305 * is called; see ip_sioctl_plink_ipmp() for details. 13306 */ 13307 if (ipmp_illgrp_create(ill) == NULL) { 13308 if (insert) { 13309 rw_enter(&ipst->ips_ill_g_lock, 13310 RW_WRITER); 13311 ipif_remove(ipif); 13312 rw_exit(&ipst->ips_ill_g_lock); 13313 } 13314 mi_free(ipif); 13315 return (NULL); 13316 } 13317 } else { 13318 /* 13319 * By default, PHYI_RUNNING is set when the zeroth 13320 * ipif is created. For other ipifs, we don't touch 13321 * it since DLPI notifications may have changed it. 13322 */ 13323 mutex_enter(&phyi->phyint_lock); 13324 phyi->phyint_flags |= PHYI_RUNNING; 13325 mutex_exit(&phyi->phyint_lock); 13326 } 13327 } 13328 13329 /* 13330 * We grab the ill_lock and phyint_lock to protect the flag changes. 13331 * The ipif is still not up and can't be looked up until the 13332 * ioctl completes and the IPIF_CHANGING flag is cleared. 13333 */ 13334 mutex_enter(&ill->ill_lock); 13335 mutex_enter(&phyi->phyint_lock); 13336 13337 ipif->ipif_ire_type = ire_type; 13338 13339 if (ipif->ipif_isv6) { 13340 ill->ill_flags |= ILLF_IPV6; 13341 } else { 13342 ipaddr_t inaddr_any = INADDR_ANY; 13343 13344 ill->ill_flags |= ILLF_IPV4; 13345 13346 /* Keep the IN6_IS_ADDR_V4MAPPED assertions happy */ 13347 IN6_IPADDR_TO_V4MAPPED(inaddr_any, 13348 &ipif->ipif_v6lcl_addr); 13349 IN6_IPADDR_TO_V4MAPPED(inaddr_any, 13350 &ipif->ipif_v6src_addr); 13351 IN6_IPADDR_TO_V4MAPPED(inaddr_any, 13352 &ipif->ipif_v6subnet); 13353 IN6_IPADDR_TO_V4MAPPED(inaddr_any, 13354 &ipif->ipif_v6net_mask); 13355 IN6_IPADDR_TO_V4MAPPED(inaddr_any, 13356 &ipif->ipif_v6brd_addr); 13357 IN6_IPADDR_TO_V4MAPPED(inaddr_any, 13358 &ipif->ipif_v6pp_dst_addr); 13359 } 13360 13361 /* 13362 * Don't set the interface flags etc. now, will do it in 13363 * ip_ll_subnet_defaults. 13364 */ 13365 if (!initialize) 13366 goto out; 13367 13368 ipif->ipif_mtu = ill->ill_max_mtu; 13369 13370 /* 13371 * NOTE: The IPMP meta-interface is special-cased because it starts 13372 * with no underlying interfaces (and thus an unknown broadcast 13373 * address length), but all interfaces that can be placed into an IPMP 13374 * group are required to be broadcast-capable. 13375 */ 13376 if (ill->ill_bcast_addr_length != 0 || IS_IPMP(ill)) { 13377 /* 13378 * Later detect lack of DLPI driver multicast 13379 * capability by catching DL_ENABMULTI errors in 13380 * ip_rput_dlpi. 13381 */ 13382 ill->ill_flags |= ILLF_MULTICAST; 13383 if (!ipif->ipif_isv6) 13384 ipif->ipif_flags |= IPIF_BROADCAST; 13385 } else { 13386 if (ill->ill_net_type != IRE_LOOPBACK) { 13387 if (ipif->ipif_isv6) 13388 /* 13389 * Note: xresolv interfaces will eventually need 13390 * NOARP set here as well, but that will require 13391 * those external resolvers to have some 13392 * knowledge of that flag and act appropriately. 13393 * Not to be changed at present. 13394 */ 13395 ill->ill_flags |= ILLF_NONUD; 13396 else 13397 ill->ill_flags |= ILLF_NOARP; 13398 } 13399 if (ill->ill_phys_addr_length == 0) { 13400 if (ill->ill_mactype == SUNW_DL_VNI) { 13401 ipif->ipif_flags |= IPIF_NOXMIT; 13402 phyi->phyint_flags |= PHYI_VIRTUAL; 13403 } else { 13404 /* pt-pt supports multicast. */ 13405 ill->ill_flags |= ILLF_MULTICAST; 13406 if (ill->ill_net_type == IRE_LOOPBACK) { 13407 phyi->phyint_flags |= 13408 (PHYI_LOOPBACK | PHYI_VIRTUAL); 13409 } else { 13410 ipif->ipif_flags |= IPIF_POINTOPOINT; 13411 } 13412 } 13413 } 13414 } 13415 out: 13416 mutex_exit(&phyi->phyint_lock); 13417 mutex_exit(&ill->ill_lock); 13418 return (ipif); 13419 } 13420 13421 /* 13422 * If appropriate, send a message up to the resolver delete the entry 13423 * for the address of this interface which is going out of business. 13424 * (Always called as writer). 13425 * 13426 * NOTE : We need to check for NULL mps as some of the fields are 13427 * initialized only for some interface types. See ipif_resolver_up() 13428 * for details. 13429 */ 13430 void 13431 ipif_resolver_down(ipif_t *ipif) 13432 { 13433 mblk_t *mp; 13434 ill_t *ill = ipif->ipif_ill; 13435 13436 ip1dbg(("ipif_resolver_down(%s:%u)\n", ill->ill_name, ipif->ipif_id)); 13437 ASSERT(IAM_WRITER_IPIF(ipif)); 13438 13439 if (ill->ill_isv6 && !(ill->ill_flags & ILLF_XRESOLV)) 13440 return; 13441 13442 /* Delete the mapping for the local address */ 13443 mp = ipif->ipif_arp_del_mp; 13444 if (mp != NULL) { 13445 ip1dbg(("ipif_resolver_down: arp cmd %x for %s:%u\n", 13446 *(unsigned *)mp->b_rptr, ill->ill_name, ipif->ipif_id)); 13447 putnext(ill->ill_rq, mp); 13448 ipif->ipif_arp_del_mp = NULL; 13449 } 13450 13451 /* 13452 * Make IPMP aware of the deleted data address. 13453 */ 13454 if (IS_IPMP(ill)) 13455 ipmp_illgrp_del_ipif(ill->ill_grp, ipif); 13456 13457 /* 13458 * If this is the last ipif that is going down and there are no 13459 * duplicate addresses we may yet attempt to re-probe, then we need to 13460 * clean up ARP completely. 13461 */ 13462 if (ill->ill_ipif_up_count == 0 && ill->ill_ipif_dup_count == 0) { 13463 /* 13464 * If this was the last ipif on an IPMP interface, purge any 13465 * IPMP ARP entries associated with it. 13466 */ 13467 if (IS_IPMP(ill)) 13468 ipmp_illgrp_refresh_arpent(ill->ill_grp); 13469 13470 /* Send up AR_INTERFACE_DOWN message */ 13471 mp = ill->ill_arp_down_mp; 13472 if (mp != NULL) { 13473 ip1dbg(("ipif_resolver_down: arp cmd %x for %s:%u\n", 13474 *(unsigned *)mp->b_rptr, ill->ill_name, 13475 ipif->ipif_id)); 13476 putnext(ill->ill_rq, mp); 13477 ill->ill_arp_down_mp = NULL; 13478 } 13479 13480 /* Tell ARP to delete the multicast mappings */ 13481 mp = ill->ill_arp_del_mapping_mp; 13482 if (mp != NULL) { 13483 ip1dbg(("ipif_resolver_down: arp cmd %x for %s:%u\n", 13484 *(unsigned *)mp->b_rptr, ill->ill_name, 13485 ipif->ipif_id)); 13486 putnext(ill->ill_rq, mp); 13487 ill->ill_arp_del_mapping_mp = NULL; 13488 } 13489 } 13490 } 13491 13492 /* 13493 * This function sets up the multicast mappings in ARP. When ipif_resolver_up 13494 * calls this function, it passes a non-NULL arp_add_mapping_mp indicating 13495 * that it wants the add_mp allocated in this function to be returned 13496 * wihtout sending it to arp. When ip_rput_dlpi_writer calls this to 13497 * just re-do the multicast, it wants us to send the add_mp to ARP also. 13498 * ipif_resolver_up does not want us to do the "add" i.e sending to ARP, 13499 * as it does a ipif_arp_down after calling this function - which will 13500 * remove what we add here. 13501 * 13502 * Returns -1 on failures and 0 on success. 13503 */ 13504 int 13505 ipif_arp_setup_multicast(ipif_t *ipif, mblk_t **arp_add_mapping_mp) 13506 { 13507 mblk_t *del_mp = NULL; 13508 mblk_t *add_mp = NULL; 13509 mblk_t *mp; 13510 ill_t *ill = ipif->ipif_ill; 13511 phyint_t *phyi = ill->ill_phyint; 13512 ipaddr_t addr, mask, extract_mask = 0; 13513 arma_t *arma; 13514 uint8_t *maddr, *bphys_addr; 13515 uint32_t hw_start; 13516 dl_unitdata_req_t *dlur; 13517 13518 ASSERT(IAM_WRITER_IPIF(ipif)); 13519 if (ipif->ipif_flags & IPIF_POINTOPOINT) 13520 return (0); 13521 13522 /* 13523 * IPMP meta-interfaces don't have any inherent multicast mappings, 13524 * and instead use the ones on the underlying interfaces. 13525 */ 13526 if (IS_IPMP(ill)) 13527 return (0); 13528 13529 /* 13530 * Delete the existing mapping from ARP. Normally ipif_down 13531 * -> ipif_arp_down should send this up to ARP. The only 13532 * reason we would find this when we are switching from 13533 * Multicast to Broadcast where we did not do a down. 13534 */ 13535 mp = ill->ill_arp_del_mapping_mp; 13536 if (mp != NULL) { 13537 ip1dbg(("ipif_arp_down: arp cmd %x for %s:%u\n", 13538 *(unsigned *)mp->b_rptr, ill->ill_name, ipif->ipif_id)); 13539 putnext(ill->ill_rq, mp); 13540 ill->ill_arp_del_mapping_mp = NULL; 13541 } 13542 13543 if (arp_add_mapping_mp != NULL) 13544 *arp_add_mapping_mp = NULL; 13545 13546 /* 13547 * Check that the address is not to long for the constant 13548 * length reserved in the template arma_t. 13549 */ 13550 if (ill->ill_phys_addr_length > IP_MAX_HW_LEN) 13551 return (-1); 13552 13553 /* Add mapping mblk */ 13554 addr = (ipaddr_t)htonl(INADDR_UNSPEC_GROUP); 13555 mask = (ipaddr_t)htonl(IN_CLASSD_NET); 13556 add_mp = ill_arp_alloc(ill, (uchar_t *)&ip_arma_multi_template, 13557 (caddr_t)&addr); 13558 if (add_mp == NULL) 13559 return (-1); 13560 arma = (arma_t *)add_mp->b_rptr; 13561 maddr = (uint8_t *)arma + arma->arma_hw_addr_offset; 13562 bcopy(&mask, (char *)arma + arma->arma_proto_mask_offset, IP_ADDR_LEN); 13563 arma->arma_hw_addr_length = ill->ill_phys_addr_length; 13564 13565 /* 13566 * Determine the broadcast address. 13567 */ 13568 dlur = (dl_unitdata_req_t *)ill->ill_bcast_mp->b_rptr; 13569 if (ill->ill_sap_length < 0) 13570 bphys_addr = (uchar_t *)dlur + dlur->dl_dest_addr_offset; 13571 else 13572 bphys_addr = (uchar_t *)dlur + 13573 dlur->dl_dest_addr_offset + ill->ill_sap_length; 13574 /* 13575 * Check PHYI_MULTI_BCAST and length of physical 13576 * address to determine if we use the mapping or the 13577 * broadcast address. 13578 */ 13579 if (!(phyi->phyint_flags & PHYI_MULTI_BCAST)) 13580 if (!MEDIA_V4MINFO(ill->ill_media, ill->ill_phys_addr_length, 13581 bphys_addr, maddr, &hw_start, &extract_mask)) 13582 phyi->phyint_flags |= PHYI_MULTI_BCAST; 13583 13584 if ((phyi->phyint_flags & PHYI_MULTI_BCAST) || 13585 (ill->ill_flags & ILLF_MULTICAST)) { 13586 /* Make sure this will not match the "exact" entry. */ 13587 addr = (ipaddr_t)htonl(INADDR_ALLHOSTS_GROUP); 13588 del_mp = ill_arp_alloc(ill, (uchar_t *)&ip_ared_template, 13589 (caddr_t)&addr); 13590 if (del_mp == NULL) { 13591 freemsg(add_mp); 13592 return (-1); 13593 } 13594 bcopy(&extract_mask, (char *)arma + 13595 arma->arma_proto_extract_mask_offset, IP_ADDR_LEN); 13596 if (phyi->phyint_flags & PHYI_MULTI_BCAST) { 13597 /* Use link-layer broadcast address for MULTI_BCAST */ 13598 bcopy(bphys_addr, maddr, ill->ill_phys_addr_length); 13599 ip2dbg(("ipif_arp_setup_multicast: adding" 13600 " MULTI_BCAST ARP setup for %s\n", ill->ill_name)); 13601 } else { 13602 arma->arma_hw_mapping_start = hw_start; 13603 ip2dbg(("ipif_arp_setup_multicast: adding multicast" 13604 " ARP setup for %s\n", ill->ill_name)); 13605 } 13606 } else { 13607 freemsg(add_mp); 13608 ASSERT(del_mp == NULL); 13609 /* It is neither MULTICAST nor MULTI_BCAST */ 13610 return (0); 13611 } 13612 ASSERT(add_mp != NULL && del_mp != NULL); 13613 ASSERT(ill->ill_arp_del_mapping_mp == NULL); 13614 ill->ill_arp_del_mapping_mp = del_mp; 13615 if (arp_add_mapping_mp != NULL) { 13616 /* The caller just wants the mblks allocated */ 13617 *arp_add_mapping_mp = add_mp; 13618 } else { 13619 /* The caller wants us to send it to arp */ 13620 putnext(ill->ill_rq, add_mp); 13621 } 13622 return (0); 13623 } 13624 13625 /* 13626 * Get the resolver set up for a new IP address. (Always called as writer.) 13627 * Called both for IPv4 and IPv6 interfaces, though it only sets up the 13628 * resolver for v6 if it's an ILLF_XRESOLV interface. Honors ILLF_NOARP. 13629 * 13630 * The enumerated value res_act tunes the behavior: 13631 * * Res_act_initial: set up all the resolver structures for a new 13632 * IP address. 13633 * * Res_act_defend: tell ARP that it needs to send a single gratuitous 13634 * ARP message in defense of the address. 13635 * * Res_act_rebind: tell ARP to change the hardware address for an IP 13636 * address (and issue gratuitous ARPs). Used by ipmp_ill_bind_ipif(). 13637 * 13638 * Returns error on failure. 13639 */ 13640 int 13641 ipif_resolver_up(ipif_t *ipif, enum ip_resolver_action res_act) 13642 { 13643 mblk_t *arp_up_mp = NULL; 13644 mblk_t *arp_down_mp = NULL; 13645 mblk_t *arp_add_mp = NULL; 13646 mblk_t *arp_del_mp = NULL; 13647 mblk_t *arp_add_mapping_mp = NULL; 13648 mblk_t *arp_del_mapping_mp = NULL; 13649 ill_t *ill = ipif->ipif_ill; 13650 int err = ENOMEM; 13651 boolean_t added_ipif = B_FALSE; 13652 boolean_t publish; 13653 boolean_t was_dup; 13654 13655 ip1dbg(("ipif_resolver_up(%s:%u) flags 0x%x\n", 13656 ill->ill_name, ipif->ipif_id, (uint_t)ipif->ipif_flags)); 13657 ASSERT(IAM_WRITER_IPIF(ipif)); 13658 13659 was_dup = B_FALSE; 13660 if (res_act == Res_act_initial) { 13661 ipif->ipif_addr_ready = 0; 13662 /* 13663 * We're bringing an interface up here. There's no way that we 13664 * should need to shut down ARP now. 13665 */ 13666 mutex_enter(&ill->ill_lock); 13667 if (ipif->ipif_flags & IPIF_DUPLICATE) { 13668 ipif->ipif_flags &= ~IPIF_DUPLICATE; 13669 ill->ill_ipif_dup_count--; 13670 was_dup = B_TRUE; 13671 } 13672 mutex_exit(&ill->ill_lock); 13673 } 13674 if (ipif->ipif_recovery_id != 0) 13675 (void) untimeout(ipif->ipif_recovery_id); 13676 ipif->ipif_recovery_id = 0; 13677 if (ill->ill_net_type != IRE_IF_RESOLVER) { 13678 ipif->ipif_addr_ready = 1; 13679 return (0); 13680 } 13681 /* NDP will set the ipif_addr_ready flag when it's ready */ 13682 if (ill->ill_isv6 && !(ill->ill_flags & ILLF_XRESOLV)) 13683 return (0); 13684 13685 if (ill->ill_isv6) { 13686 /* 13687 * External resolver for IPv6 13688 */ 13689 ASSERT(res_act == Res_act_initial); 13690 publish = !IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6lcl_addr); 13691 } else { 13692 /* 13693 * IPv4 arp case. If the ARP stream has already started 13694 * closing, fail this request for ARP bringup. Else 13695 * record the fact that an ARP bringup is pending. 13696 */ 13697 mutex_enter(&ill->ill_lock); 13698 if (ill->ill_arp_closing) { 13699 mutex_exit(&ill->ill_lock); 13700 err = EINVAL; 13701 goto failed; 13702 } else { 13703 if (ill->ill_ipif_up_count == 0 && 13704 ill->ill_ipif_dup_count == 0 && !was_dup) 13705 ill->ill_arp_bringup_pending = 1; 13706 mutex_exit(&ill->ill_lock); 13707 } 13708 publish = (ipif->ipif_lcl_addr != INADDR_ANY); 13709 } 13710 13711 if (IS_IPMP(ill) && publish) { 13712 /* 13713 * If we're here via ipif_up(), then the ipif won't be bound 13714 * yet -- add it to the group, which will bind it if possible. 13715 * (We would add it in ipif_up(), but deleting on failure 13716 * there is gruesome.) If we're here via ipmp_ill_bind_ipif(), 13717 * then the ipif has already been added to the group and we 13718 * just need to use the binding. 13719 */ 13720 if (ipmp_ipif_bound_ill(ipif) == NULL) { 13721 if (ipmp_illgrp_add_ipif(ill->ill_grp, ipif) == NULL) { 13722 /* 13723 * We couldn't bind the ipif to an ill yet, 13724 * so we have nothing to publish. 13725 */ 13726 publish = B_FALSE; 13727 } 13728 added_ipif = B_TRUE; 13729 } 13730 } 13731 13732 /* 13733 * Add an entry for the local address in ARP only if it 13734 * is not UNNUMBERED and it is suitable for publishing. 13735 */ 13736 if (!(ipif->ipif_flags & IPIF_UNNUMBERED) && publish) { 13737 if (res_act == Res_act_defend) { 13738 arp_add_mp = ipif_area_alloc(ipif, ACE_F_DEFEND); 13739 if (arp_add_mp == NULL) 13740 goto failed; 13741 /* 13742 * If we're just defending our address now, then 13743 * there's no need to set up ARP multicast mappings. 13744 * The publish command is enough. 13745 */ 13746 goto done; 13747 } 13748 13749 /* 13750 * Allocate an ARP add message and an ARP delete message (the 13751 * latter is saved for use when the address goes down). 13752 */ 13753 if ((arp_add_mp = ipif_area_alloc(ipif, 0)) == NULL) 13754 goto failed; 13755 13756 if ((arp_del_mp = ipif_ared_alloc(ipif)) == NULL) 13757 goto failed; 13758 13759 if (res_act != Res_act_initial) 13760 goto arp_setup_multicast; 13761 } else { 13762 if (res_act != Res_act_initial) 13763 goto done; 13764 } 13765 /* 13766 * Need to bring up ARP or setup multicast mapping only 13767 * when the first interface is coming UP. 13768 */ 13769 if (ill->ill_ipif_up_count + ill->ill_ipif_dup_count > 0 || was_dup) 13770 goto done; 13771 13772 /* 13773 * Allocate an ARP down message (to be saved) and an ARP up message. 13774 */ 13775 arp_down_mp = ill_arp_alloc(ill, (uchar_t *)&ip_ard_template, 0); 13776 if (arp_down_mp == NULL) 13777 goto failed; 13778 13779 arp_up_mp = ill_arp_alloc(ill, (uchar_t *)&ip_aru_template, 0); 13780 if (arp_up_mp == NULL) 13781 goto failed; 13782 13783 if (ipif->ipif_flags & IPIF_POINTOPOINT) 13784 goto done; 13785 13786 arp_setup_multicast: 13787 /* 13788 * Setup the multicast mappings. This function initializes 13789 * ill_arp_del_mapping_mp also. This does not need to be done for 13790 * IPv6, or for the IPMP interface (since it has no link-layer). 13791 */ 13792 if (!ill->ill_isv6 && !IS_IPMP(ill)) { 13793 err = ipif_arp_setup_multicast(ipif, &arp_add_mapping_mp); 13794 if (err != 0) 13795 goto failed; 13796 ASSERT(ill->ill_arp_del_mapping_mp != NULL); 13797 ASSERT(arp_add_mapping_mp != NULL); 13798 } 13799 done: 13800 if (arp_up_mp != NULL) { 13801 ip1dbg(("ipif_resolver_up: ARP_UP for %s:%u\n", 13802 ill->ill_name, ipif->ipif_id)); 13803 putnext(ill->ill_rq, arp_up_mp); 13804 arp_up_mp = NULL; 13805 } 13806 if (arp_add_mp != NULL) { 13807 ip1dbg(("ipif_resolver_up: ARP_ADD for %s:%u\n", 13808 ill->ill_name, ipif->ipif_id)); 13809 /* 13810 * If it's an extended ARP implementation, then we'll wait to 13811 * hear that DAD has finished before using the interface. 13812 */ 13813 if (!ill->ill_arp_extend) 13814 ipif->ipif_addr_ready = 1; 13815 putnext(ill->ill_rq, arp_add_mp); 13816 arp_add_mp = NULL; 13817 } else { 13818 ipif->ipif_addr_ready = 1; 13819 } 13820 if (arp_add_mapping_mp != NULL) { 13821 ip1dbg(("ipif_resolver_up: MAPPING_ADD for %s:%u\n", 13822 ill->ill_name, ipif->ipif_id)); 13823 putnext(ill->ill_rq, arp_add_mapping_mp); 13824 arp_add_mapping_mp = NULL; 13825 } 13826 13827 if (res_act == Res_act_initial) { 13828 if (ill->ill_flags & ILLF_NOARP) 13829 err = ill_arp_off(ill); 13830 else 13831 err = ill_arp_on(ill); 13832 if (err != 0) { 13833 ip0dbg(("ipif_resolver_up: arp_on/off failed %d\n", 13834 err)); 13835 goto failed; 13836 } 13837 } 13838 13839 if (arp_del_mp != NULL) { 13840 ASSERT(ipif->ipif_arp_del_mp == NULL); 13841 ipif->ipif_arp_del_mp = arp_del_mp; 13842 } 13843 if (arp_down_mp != NULL) { 13844 ASSERT(ill->ill_arp_down_mp == NULL); 13845 ill->ill_arp_down_mp = arp_down_mp; 13846 } 13847 if (arp_del_mapping_mp != NULL) { 13848 ASSERT(ill->ill_arp_del_mapping_mp == NULL); 13849 ill->ill_arp_del_mapping_mp = arp_del_mapping_mp; 13850 } 13851 13852 return ((ill->ill_ipif_up_count != 0 || was_dup || 13853 ill->ill_ipif_dup_count != 0) ? 0 : EINPROGRESS); 13854 failed: 13855 ip1dbg(("ipif_resolver_up: FAILED\n")); 13856 if (added_ipif) 13857 ipmp_illgrp_del_ipif(ill->ill_grp, ipif); 13858 freemsg(arp_add_mp); 13859 freemsg(arp_del_mp); 13860 freemsg(arp_add_mapping_mp); 13861 freemsg(arp_up_mp); 13862 freemsg(arp_down_mp); 13863 ill->ill_arp_bringup_pending = 0; 13864 return (err); 13865 } 13866 13867 /* 13868 * This routine restarts IPv4 duplicate address detection (DAD) when a link has 13869 * just gone back up. 13870 */ 13871 static void 13872 ipif_arp_start_dad(ipif_t *ipif) 13873 { 13874 ill_t *ill = ipif->ipif_ill; 13875 mblk_t *arp_add_mp; 13876 13877 /* ACE_F_UNVERIFIED restarts DAD */ 13878 if (ill->ill_net_type != IRE_IF_RESOLVER || ill->ill_arp_closing || 13879 (ipif->ipif_flags & IPIF_UNNUMBERED) || 13880 ipif->ipif_lcl_addr == INADDR_ANY || 13881 (arp_add_mp = ipif_area_alloc(ipif, ACE_F_UNVERIFIED)) == NULL) { 13882 /* 13883 * If we can't contact ARP for some reason, that's not really a 13884 * problem. Just send out the routing socket notification that 13885 * DAD completion would have done, and continue. 13886 */ 13887 ipif_mask_reply(ipif); 13888 ipif_up_notify(ipif); 13889 ipif->ipif_addr_ready = 1; 13890 return; 13891 } 13892 13893 putnext(ill->ill_rq, arp_add_mp); 13894 } 13895 13896 static void 13897 ipif_ndp_start_dad(ipif_t *ipif) 13898 { 13899 nce_t *nce; 13900 13901 nce = ndp_lookup_v6(ipif->ipif_ill, B_TRUE, &ipif->ipif_v6lcl_addr, 13902 B_FALSE); 13903 if (nce == NULL) 13904 return; 13905 13906 if (!ndp_restart_dad(nce)) { 13907 /* 13908 * If we can't restart DAD for some reason, that's not really a 13909 * problem. Just send out the routing socket notification that 13910 * DAD completion would have done, and continue. 13911 */ 13912 ipif_up_notify(ipif); 13913 ipif->ipif_addr_ready = 1; 13914 } 13915 NCE_REFRELE(nce); 13916 } 13917 13918 /* 13919 * Restart duplicate address detection on all interfaces on the given ill. 13920 * 13921 * This is called when an interface transitions from down to up 13922 * (DL_NOTE_LINK_UP) or up to down (DL_NOTE_LINK_DOWN). 13923 * 13924 * Note that since the underlying physical link has transitioned, we must cause 13925 * at least one routing socket message to be sent here, either via DAD 13926 * completion or just by default on the first ipif. (If we don't do this, then 13927 * in.mpathd will see long delays when doing link-based failure recovery.) 13928 */ 13929 void 13930 ill_restart_dad(ill_t *ill, boolean_t went_up) 13931 { 13932 ipif_t *ipif; 13933 13934 if (ill == NULL) 13935 return; 13936 13937 /* 13938 * If layer two doesn't support duplicate address detection, then just 13939 * send the routing socket message now and be done with it. 13940 */ 13941 if ((ill->ill_isv6 && (ill->ill_flags & ILLF_XRESOLV)) || 13942 (!ill->ill_isv6 && !ill->ill_arp_extend)) { 13943 ip_rts_ifmsg(ill->ill_ipif, RTSQ_DEFAULT); 13944 return; 13945 } 13946 13947 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 13948 if (went_up) { 13949 if (ipif->ipif_flags & IPIF_UP) { 13950 if (ill->ill_isv6) 13951 ipif_ndp_start_dad(ipif); 13952 else 13953 ipif_arp_start_dad(ipif); 13954 } else if (ill->ill_isv6 && 13955 (ipif->ipif_flags & IPIF_DUPLICATE)) { 13956 /* 13957 * For IPv4, the ARP module itself will 13958 * automatically start the DAD process when it 13959 * sees DL_NOTE_LINK_UP. We respond to the 13960 * AR_CN_READY at the completion of that task. 13961 * For IPv6, we must kick off the bring-up 13962 * process now. 13963 */ 13964 ndp_do_recovery(ipif); 13965 } else { 13966 /* 13967 * Unfortunately, the first ipif is "special" 13968 * and represents the underlying ill in the 13969 * routing socket messages. Thus, when this 13970 * one ipif is down, we must still notify so 13971 * that the user knows the IFF_RUNNING status 13972 * change. (If the first ipif is up, then 13973 * we'll handle eventual routing socket 13974 * notification via DAD completion.) 13975 */ 13976 if (ipif == ill->ill_ipif) { 13977 ip_rts_ifmsg(ill->ill_ipif, 13978 RTSQ_DEFAULT); 13979 } 13980 } 13981 } else { 13982 /* 13983 * After link down, we'll need to send a new routing 13984 * message when the link comes back, so clear 13985 * ipif_addr_ready. 13986 */ 13987 ipif->ipif_addr_ready = 0; 13988 } 13989 } 13990 13991 /* 13992 * If we've torn down links, then notify the user right away. 13993 */ 13994 if (!went_up) 13995 ip_rts_ifmsg(ill->ill_ipif, RTSQ_DEFAULT); 13996 } 13997 13998 static void 13999 ipsq_delete(ipsq_t *ipsq) 14000 { 14001 ipxop_t *ipx = ipsq->ipsq_xop; 14002 14003 ipsq->ipsq_ipst = NULL; 14004 ASSERT(ipsq->ipsq_phyint == NULL); 14005 ASSERT(ipsq->ipsq_xop != NULL); 14006 ASSERT(ipsq->ipsq_xopq_mphead == NULL && ipx->ipx_mphead == NULL); 14007 ASSERT(ipx->ipx_pending_mp == NULL); 14008 kmem_free(ipsq, sizeof (ipsq_t)); 14009 } 14010 14011 static int 14012 ill_up_ipifs_on_ill(ill_t *ill, queue_t *q, mblk_t *mp) 14013 { 14014 int err; 14015 ipif_t *ipif; 14016 14017 if (ill == NULL) 14018 return (0); 14019 14020 /* 14021 * Except for ipif_state_flags and ill_state_flags the other 14022 * fields of the ipif/ill that are modified below are protected 14023 * implicitly since we are a writer. We would have tried to down 14024 * even an ipif that was already down, in ill_down_ipifs. So we 14025 * just blindly clear the IPIF_CHANGING flag here on all ipifs. 14026 */ 14027 ASSERT(IAM_WRITER_ILL(ill)); 14028 14029 ill->ill_up_ipifs = B_TRUE; 14030 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 14031 mutex_enter(&ill->ill_lock); 14032 ipif->ipif_state_flags &= ~IPIF_CHANGING; 14033 mutex_exit(&ill->ill_lock); 14034 if (ipif->ipif_was_up) { 14035 if (!(ipif->ipif_flags & IPIF_UP)) 14036 err = ipif_up(ipif, q, mp); 14037 ipif->ipif_was_up = B_FALSE; 14038 if (err != 0) { 14039 ASSERT(err == EINPROGRESS); 14040 return (err); 14041 } 14042 } 14043 } 14044 mutex_enter(&ill->ill_lock); 14045 ill->ill_state_flags &= ~ILL_CHANGING; 14046 mutex_exit(&ill->ill_lock); 14047 ill->ill_up_ipifs = B_FALSE; 14048 return (0); 14049 } 14050 14051 /* 14052 * This function is called to bring up all the ipifs that were up before 14053 * bringing the ill down via ill_down_ipifs(). 14054 */ 14055 int 14056 ill_up_ipifs(ill_t *ill, queue_t *q, mblk_t *mp) 14057 { 14058 int err; 14059 14060 ASSERT(IAM_WRITER_ILL(ill)); 14061 14062 err = ill_up_ipifs_on_ill(ill->ill_phyint->phyint_illv4, q, mp); 14063 if (err != 0) 14064 return (err); 14065 14066 return (ill_up_ipifs_on_ill(ill->ill_phyint->phyint_illv6, q, mp)); 14067 } 14068 14069 /* 14070 * Bring down any IPIF_UP ipifs on ill. 14071 */ 14072 static void 14073 ill_down_ipifs(ill_t *ill) 14074 { 14075 ipif_t *ipif; 14076 14077 ASSERT(IAM_WRITER_ILL(ill)); 14078 14079 /* 14080 * Except for ipif_state_flags the other fields of the ipif/ill that 14081 * are modified below are protected implicitly since we are a writer 14082 */ 14083 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 14084 /* 14085 * We go through the ipif_down logic even if the ipif 14086 * is already down, since routes can be added based 14087 * on down ipifs. Going through ipif_down once again 14088 * will delete any IREs created based on these routes. 14089 */ 14090 if (ipif->ipif_flags & IPIF_UP) 14091 ipif->ipif_was_up = B_TRUE; 14092 14093 mutex_enter(&ill->ill_lock); 14094 ipif->ipif_state_flags |= IPIF_CHANGING; 14095 mutex_exit(&ill->ill_lock); 14096 14097 /* 14098 * Need to re-create net/subnet bcast ires if 14099 * they are dependent on ipif. 14100 */ 14101 if (!ipif->ipif_isv6) 14102 ipif_check_bcast_ires(ipif); 14103 (void) ipif_logical_down(ipif, NULL, NULL); 14104 ipif_non_duplicate(ipif); 14105 ipif_down_tail(ipif); 14106 } 14107 } 14108 14109 void 14110 ill_lock_ills(ill_t **list, int cnt) 14111 { 14112 int i; 14113 14114 if (cnt > 1) { 14115 boolean_t try_again; 14116 do { 14117 try_again = B_FALSE; 14118 for (i = 0; i < cnt - 1; i++) { 14119 if (list[i] < list[i + 1]) { 14120 ill_t *tmp; 14121 14122 /* swap the elements */ 14123 tmp = list[i]; 14124 list[i] = list[i + 1]; 14125 list[i + 1] = tmp; 14126 try_again = B_TRUE; 14127 } 14128 } 14129 } while (try_again); 14130 } 14131 14132 for (i = 0; i < cnt; i++) { 14133 if (i == 0) { 14134 if (list[i] != NULL) 14135 mutex_enter(&list[i]->ill_lock); 14136 else 14137 return; 14138 } else if ((list[i-1] != list[i]) && (list[i] != NULL)) { 14139 mutex_enter(&list[i]->ill_lock); 14140 } 14141 } 14142 } 14143 14144 void 14145 ill_unlock_ills(ill_t **list, int cnt) 14146 { 14147 int i; 14148 14149 for (i = 0; i < cnt; i++) { 14150 if ((i == 0) && (list[i] != NULL)) { 14151 mutex_exit(&list[i]->ill_lock); 14152 } else if ((list[i-1] != list[i]) && (list[i] != NULL)) { 14153 mutex_exit(&list[i]->ill_lock); 14154 } 14155 } 14156 } 14157 14158 /* 14159 * Redo source address selection. This is called when a 14160 * non-NOLOCAL/DEPRECATED/ANYCAST ipif comes up. 14161 */ 14162 void 14163 ill_update_source_selection(ill_t *ill) 14164 { 14165 ipif_t *ipif; 14166 14167 ASSERT(IAM_WRITER_ILL(ill)); 14168 14169 /* 14170 * Underlying interfaces are only used for test traffic and thus 14171 * should always send with their (deprecated) source addresses. 14172 */ 14173 if (IS_UNDER_IPMP(ill)) 14174 return; 14175 14176 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 14177 if (ill->ill_isv6) 14178 ipif_recreate_interface_routes_v6(NULL, ipif); 14179 else 14180 ipif_recreate_interface_routes(NULL, ipif); 14181 } 14182 } 14183 14184 /* 14185 * Finish the group join started in ip_sioctl_groupname(). 14186 */ 14187 /* ARGSUSED */ 14188 static void 14189 ip_join_illgrps(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy) 14190 { 14191 ill_t *ill = q->q_ptr; 14192 phyint_t *phyi = ill->ill_phyint; 14193 ipmp_grp_t *grp = phyi->phyint_grp; 14194 ip_stack_t *ipst = ill->ill_ipst; 14195 14196 /* IS_UNDER_IPMP() won't work until ipmp_ill_join_illgrp() is called */ 14197 ASSERT(!IS_IPMP(ill) && grp != NULL); 14198 ASSERT(IAM_WRITER_IPSQ(ipsq)); 14199 14200 if (phyi->phyint_illv4 != NULL) { 14201 rw_enter(&ipst->ips_ipmp_lock, RW_WRITER); 14202 VERIFY(grp->gr_pendv4-- > 0); 14203 rw_exit(&ipst->ips_ipmp_lock); 14204 ipmp_ill_join_illgrp(phyi->phyint_illv4, grp->gr_v4); 14205 } 14206 if (phyi->phyint_illv6 != NULL) { 14207 rw_enter(&ipst->ips_ipmp_lock, RW_WRITER); 14208 VERIFY(grp->gr_pendv6-- > 0); 14209 rw_exit(&ipst->ips_ipmp_lock); 14210 ipmp_ill_join_illgrp(phyi->phyint_illv6, grp->gr_v6); 14211 } 14212 freemsg(mp); 14213 } 14214 14215 /* 14216 * Process an SIOCSLIFGROUPNAME request. 14217 */ 14218 /* ARGSUSED */ 14219 int 14220 ip_sioctl_groupname(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 14221 ip_ioctl_cmd_t *ipip, void *ifreq) 14222 { 14223 struct lifreq *lifr = ifreq; 14224 ill_t *ill = ipif->ipif_ill; 14225 ip_stack_t *ipst = ill->ill_ipst; 14226 phyint_t *phyi = ill->ill_phyint; 14227 ipmp_grp_t *grp = phyi->phyint_grp; 14228 mblk_t *ipsq_mp; 14229 int err = 0; 14230 14231 /* 14232 * Note that phyint_grp can only change here, where we're exclusive. 14233 */ 14234 ASSERT(IAM_WRITER_ILL(ill)); 14235 14236 if (ipif->ipif_id != 0 || ill->ill_usesrc_grp_next != NULL || 14237 (phyi->phyint_flags & PHYI_VIRTUAL)) 14238 return (EINVAL); 14239 14240 lifr->lifr_groupname[LIFGRNAMSIZ - 1] = '\0'; 14241 14242 rw_enter(&ipst->ips_ipmp_lock, RW_WRITER); 14243 14244 /* 14245 * If the name hasn't changed, there's nothing to do. 14246 */ 14247 if (grp != NULL && strcmp(grp->gr_name, lifr->lifr_groupname) == 0) 14248 goto unlock; 14249 14250 /* 14251 * Handle requests to rename an IPMP meta-interface. 14252 * 14253 * Note that creation of the IPMP meta-interface is handled in 14254 * userland through the standard plumbing sequence. As part of the 14255 * plumbing the IPMP meta-interface, its initial groupname is set to 14256 * the name of the interface (see ipif_set_values_tail()). 14257 */ 14258 if (IS_IPMP(ill)) { 14259 err = ipmp_grp_rename(grp, lifr->lifr_groupname); 14260 goto unlock; 14261 } 14262 14263 /* 14264 * Handle requests to add or remove an IP interface from a group. 14265 */ 14266 if (lifr->lifr_groupname[0] != '\0') { /* add */ 14267 /* 14268 * Moves are handled by first removing the interface from 14269 * its existing group, and then adding it to another group. 14270 * So, fail if it's already in a group. 14271 */ 14272 if (IS_UNDER_IPMP(ill)) { 14273 err = EALREADY; 14274 goto unlock; 14275 } 14276 14277 grp = ipmp_grp_lookup(lifr->lifr_groupname, ipst); 14278 if (grp == NULL) { 14279 err = ENOENT; 14280 goto unlock; 14281 } 14282 14283 /* 14284 * Check if the phyint and its ills are suitable for 14285 * inclusion into the group. 14286 */ 14287 if ((err = ipmp_grp_vet_phyint(grp, phyi)) != 0) 14288 goto unlock; 14289 14290 /* 14291 * Checks pass; join the group, and enqueue the remaining 14292 * illgrp joins for when we've become part of the group xop 14293 * and are exclusive across its IPSQs. Since qwriter_ip() 14294 * requires an mblk_t to scribble on, and since `mp' will be 14295 * freed as part of completing the ioctl, allocate another. 14296 */ 14297 if ((ipsq_mp = allocb(0, BPRI_MED)) == NULL) { 14298 err = ENOMEM; 14299 goto unlock; 14300 } 14301 14302 /* 14303 * Before we drop ipmp_lock, bump gr_pend* to ensure that the 14304 * IPMP meta-interface ills needed by `phyi' cannot go away 14305 * before ip_join_illgrps() is called back. See the comments 14306 * in ip_sioctl_plink_ipmp() for more. 14307 */ 14308 if (phyi->phyint_illv4 != NULL) 14309 grp->gr_pendv4++; 14310 if (phyi->phyint_illv6 != NULL) 14311 grp->gr_pendv6++; 14312 14313 rw_exit(&ipst->ips_ipmp_lock); 14314 14315 ipmp_phyint_join_grp(phyi, grp); 14316 ill_refhold(ill); 14317 qwriter_ip(ill, ill->ill_rq, ipsq_mp, ip_join_illgrps, 14318 SWITCH_OP, B_FALSE); 14319 return (0); 14320 } else { 14321 /* 14322 * Request to remove the interface from a group. If the 14323 * interface is not in a group, this trivially succeeds. 14324 */ 14325 rw_exit(&ipst->ips_ipmp_lock); 14326 if (IS_UNDER_IPMP(ill)) 14327 ipmp_phyint_leave_grp(phyi); 14328 return (0); 14329 } 14330 unlock: 14331 rw_exit(&ipst->ips_ipmp_lock); 14332 return (err); 14333 } 14334 14335 /* 14336 * Process an SIOCGLIFBINDING request. 14337 */ 14338 /* ARGSUSED */ 14339 int 14340 ip_sioctl_get_binding(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 14341 ip_ioctl_cmd_t *ipip, void *ifreq) 14342 { 14343 ill_t *bound_ill; 14344 struct lifreq *lifr = ifreq; 14345 14346 if (!IS_IPMP(ipif->ipif_ill)) 14347 return (EINVAL); 14348 14349 if ((bound_ill = ipmp_ipif_hold_bound_ill(ipif)) == NULL) { 14350 lifr->lifr_binding[0] = '\0'; 14351 return (0); 14352 } 14353 14354 (void) strlcpy(lifr->lifr_binding, bound_ill->ill_name, LIFNAMSIZ); 14355 ill_refrele(bound_ill); 14356 return (0); 14357 } 14358 14359 /* 14360 * Process an SIOCGLIFGROUPNAME request. 14361 */ 14362 /* ARGSUSED */ 14363 int 14364 ip_sioctl_get_groupname(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 14365 ip_ioctl_cmd_t *ipip, void *ifreq) 14366 { 14367 ipmp_grp_t *grp; 14368 struct lifreq *lifr = ifreq; 14369 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; 14370 14371 rw_enter(&ipst->ips_ipmp_lock, RW_READER); 14372 if ((grp = ipif->ipif_ill->ill_phyint->phyint_grp) == NULL) 14373 lifr->lifr_groupname[0] = '\0'; 14374 else 14375 (void) strlcpy(lifr->lifr_groupname, grp->gr_name, LIFGRNAMSIZ); 14376 rw_exit(&ipst->ips_ipmp_lock); 14377 return (0); 14378 } 14379 14380 /* 14381 * Process an SIOCGLIFGROUPINFO request. 14382 */ 14383 /* ARGSUSED */ 14384 int 14385 ip_sioctl_groupinfo(ipif_t *dummy_ipif, sin_t *sin, queue_t *q, mblk_t *mp, 14386 ip_ioctl_cmd_t *ipip, void *dummy) 14387 { 14388 lifgroupinfo_t *lifgr; 14389 ipmp_grp_t *grp; 14390 ip_stack_t *ipst = CONNQ_TO_IPST(q); 14391 14392 /* ip_wput_nondata() verified mp->b_cont->b_cont */ 14393 lifgr = (lifgroupinfo_t *)mp->b_cont->b_cont->b_rptr; 14394 lifgr->gi_grname[LIFGRNAMSIZ - 1] = '\0'; 14395 14396 rw_enter(&ipst->ips_ipmp_lock, RW_READER); 14397 if ((grp = ipmp_grp_lookup(lifgr->gi_grname, ipst)) == NULL) { 14398 rw_exit(&ipst->ips_ipmp_lock); 14399 return (ENOENT); 14400 } 14401 ipmp_grp_info(grp, lifgr); 14402 rw_exit(&ipst->ips_ipmp_lock); 14403 return (0); 14404 } 14405 14406 static void 14407 ill_dl_down(ill_t *ill) 14408 { 14409 /* 14410 * The ill is down; unbind but stay attached since we're still 14411 * associated with a PPA. If we have negotiated DLPI capabilites 14412 * with the data link service provider (IDS_OK) then reset them. 14413 * The interval between unbinding and rebinding is potentially 14414 * unbounded hence we cannot assume things will be the same. 14415 * The DLPI capabilities will be probed again when the data link 14416 * is brought up. 14417 */ 14418 mblk_t *mp = ill->ill_unbind_mp; 14419 14420 ip1dbg(("ill_dl_down(%s)\n", ill->ill_name)); 14421 14422 ill->ill_unbind_mp = NULL; 14423 if (mp != NULL) { 14424 ip1dbg(("ill_dl_down: %s (%u) for %s\n", 14425 dl_primstr(*(int *)mp->b_rptr), *(int *)mp->b_rptr, 14426 ill->ill_name)); 14427 mutex_enter(&ill->ill_lock); 14428 ill->ill_state_flags |= ILL_DL_UNBIND_IN_PROGRESS; 14429 mutex_exit(&ill->ill_lock); 14430 /* 14431 * ip_rput does not pass up normal (M_PROTO) DLPI messages 14432 * after ILL_CONDEMNED is set. So in the unplumb case, we call 14433 * ill_capability_dld_disable disable rightaway. If this is not 14434 * an unplumb operation then the disable happens on receipt of 14435 * the capab ack via ip_rput_dlpi_writer -> 14436 * ill_capability_ack_thr. In both cases the order of 14437 * the operations seen by DLD is capability disable followed 14438 * by DL_UNBIND. Also the DLD capability disable needs a 14439 * cv_wait'able context. 14440 */ 14441 if (ill->ill_state_flags & ILL_CONDEMNED) 14442 ill_capability_dld_disable(ill); 14443 ill_capability_reset(ill, B_FALSE); 14444 ill_dlpi_send(ill, mp); 14445 } 14446 14447 /* 14448 * Toss all of our multicast memberships. We could keep them, but 14449 * then we'd have to do bookkeeping of any joins and leaves performed 14450 * by the application while the the interface is down (we can't just 14451 * issue them because arp cannot currently process AR_ENTRY_SQUERY's 14452 * on a downed interface). 14453 */ 14454 ill_leave_multicast(ill); 14455 14456 mutex_enter(&ill->ill_lock); 14457 ill->ill_dl_up = 0; 14458 ill_nic_event_dispatch(ill, 0, NE_DOWN, NULL, 0); 14459 mutex_exit(&ill->ill_lock); 14460 } 14461 14462 static void 14463 ill_dlpi_dispatch(ill_t *ill, mblk_t *mp) 14464 { 14465 union DL_primitives *dlp; 14466 t_uscalar_t prim; 14467 14468 ASSERT(DB_TYPE(mp) == M_PROTO || DB_TYPE(mp) == M_PCPROTO); 14469 14470 dlp = (union DL_primitives *)mp->b_rptr; 14471 prim = dlp->dl_primitive; 14472 14473 ip1dbg(("ill_dlpi_dispatch: sending %s (%u) to %s\n", 14474 dl_primstr(prim), prim, ill->ill_name)); 14475 14476 switch (prim) { 14477 case DL_PHYS_ADDR_REQ: 14478 { 14479 dl_phys_addr_req_t *dlpap = (dl_phys_addr_req_t *)mp->b_rptr; 14480 ill->ill_phys_addr_pend = dlpap->dl_addr_type; 14481 break; 14482 } 14483 case DL_BIND_REQ: 14484 mutex_enter(&ill->ill_lock); 14485 ill->ill_state_flags &= ~ILL_DL_UNBIND_IN_PROGRESS; 14486 mutex_exit(&ill->ill_lock); 14487 break; 14488 } 14489 14490 /* 14491 * Except for the ACKs for the M_PCPROTO messages, all other ACKs 14492 * are dropped by ip_rput() if ILL_CONDEMNED is set. Therefore 14493 * we only wait for the ACK of the DL_UNBIND_REQ. 14494 */ 14495 mutex_enter(&ill->ill_lock); 14496 if (!(ill->ill_state_flags & ILL_CONDEMNED) || (prim == DL_UNBIND_REQ)) 14497 ill->ill_dlpi_pending = prim; 14498 14499 mutex_exit(&ill->ill_lock); 14500 putnext(ill->ill_wq, mp); 14501 } 14502 14503 /* 14504 * Helper function for ill_dlpi_send(). 14505 */ 14506 /* ARGSUSED */ 14507 static void 14508 ill_dlpi_send_writer(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *arg) 14509 { 14510 ill_dlpi_send(q->q_ptr, mp); 14511 } 14512 14513 /* 14514 * Send a DLPI control message to the driver but make sure there 14515 * is only one outstanding message. Uses ill_dlpi_pending to tell 14516 * when it must queue. ip_rput_dlpi_writer calls ill_dlpi_done() 14517 * when an ACK or a NAK is received to process the next queued message. 14518 */ 14519 void 14520 ill_dlpi_send(ill_t *ill, mblk_t *mp) 14521 { 14522 mblk_t **mpp; 14523 14524 ASSERT(DB_TYPE(mp) == M_PROTO || DB_TYPE(mp) == M_PCPROTO); 14525 14526 /* 14527 * To ensure that any DLPI requests for current exclusive operation 14528 * are always completely sent before any DLPI messages for other 14529 * operations, require writer access before enqueuing. 14530 */ 14531 if (!IAM_WRITER_ILL(ill)) { 14532 ill_refhold(ill); 14533 /* qwriter_ip() does the ill_refrele() */ 14534 qwriter_ip(ill, ill->ill_wq, mp, ill_dlpi_send_writer, 14535 NEW_OP, B_TRUE); 14536 return; 14537 } 14538 14539 mutex_enter(&ill->ill_lock); 14540 if (ill->ill_dlpi_pending != DL_PRIM_INVAL) { 14541 /* Must queue message. Tail insertion */ 14542 mpp = &ill->ill_dlpi_deferred; 14543 while (*mpp != NULL) 14544 mpp = &((*mpp)->b_next); 14545 14546 ip1dbg(("ill_dlpi_send: deferring request for %s\n", 14547 ill->ill_name)); 14548 14549 *mpp = mp; 14550 mutex_exit(&ill->ill_lock); 14551 return; 14552 } 14553 mutex_exit(&ill->ill_lock); 14554 ill_dlpi_dispatch(ill, mp); 14555 } 14556 14557 static void 14558 ill_capability_send(ill_t *ill, mblk_t *mp) 14559 { 14560 ill->ill_capab_pending_cnt++; 14561 ill_dlpi_send(ill, mp); 14562 } 14563 14564 void 14565 ill_capability_done(ill_t *ill) 14566 { 14567 ASSERT(ill->ill_capab_pending_cnt != 0); 14568 14569 ill_dlpi_done(ill, DL_CAPABILITY_REQ); 14570 14571 ill->ill_capab_pending_cnt--; 14572 if (ill->ill_capab_pending_cnt == 0 && 14573 ill->ill_dlpi_capab_state == IDCS_OK) 14574 ill_capability_reset_alloc(ill); 14575 } 14576 14577 /* 14578 * Send all deferred DLPI messages without waiting for their ACKs. 14579 */ 14580 void 14581 ill_dlpi_send_deferred(ill_t *ill) 14582 { 14583 mblk_t *mp, *nextmp; 14584 14585 /* 14586 * Clear ill_dlpi_pending so that the message is not queued in 14587 * ill_dlpi_send(). 14588 */ 14589 mutex_enter(&ill->ill_lock); 14590 ill->ill_dlpi_pending = DL_PRIM_INVAL; 14591 mp = ill->ill_dlpi_deferred; 14592 ill->ill_dlpi_deferred = NULL; 14593 mutex_exit(&ill->ill_lock); 14594 14595 for (; mp != NULL; mp = nextmp) { 14596 nextmp = mp->b_next; 14597 mp->b_next = NULL; 14598 ill_dlpi_send(ill, mp); 14599 } 14600 } 14601 14602 /* 14603 * Check if the DLPI primitive `prim' is pending; print a warning if not. 14604 */ 14605 boolean_t 14606 ill_dlpi_pending(ill_t *ill, t_uscalar_t prim) 14607 { 14608 t_uscalar_t pending; 14609 14610 mutex_enter(&ill->ill_lock); 14611 if (ill->ill_dlpi_pending == prim) { 14612 mutex_exit(&ill->ill_lock); 14613 return (B_TRUE); 14614 } 14615 14616 /* 14617 * During teardown, ill_dlpi_dispatch() will send DLPI requests 14618 * without waiting, so don't print any warnings in that case. 14619 */ 14620 if (ill->ill_state_flags & ILL_CONDEMNED) { 14621 mutex_exit(&ill->ill_lock); 14622 return (B_FALSE); 14623 } 14624 pending = ill->ill_dlpi_pending; 14625 mutex_exit(&ill->ill_lock); 14626 14627 if (pending == DL_PRIM_INVAL) { 14628 (void) mi_strlog(ill->ill_rq, 1, SL_CONSOLE|SL_ERROR|SL_TRACE, 14629 "received unsolicited ack for %s on %s\n", 14630 dl_primstr(prim), ill->ill_name); 14631 } else { 14632 (void) mi_strlog(ill->ill_rq, 1, SL_CONSOLE|SL_ERROR|SL_TRACE, 14633 "received unexpected ack for %s on %s (expecting %s)\n", 14634 dl_primstr(prim), ill->ill_name, dl_primstr(pending)); 14635 } 14636 return (B_FALSE); 14637 } 14638 14639 /* 14640 * Complete the current DLPI operation associated with `prim' on `ill' and 14641 * start the next queued DLPI operation (if any). If there are no queued DLPI 14642 * operations and the ill's current exclusive IPSQ operation has finished 14643 * (i.e., ipsq_current_finish() was called), then clear ipsq_current_ipif to 14644 * allow the next exclusive IPSQ operation to begin upon ipsq_exit(). See 14645 * the comments above ipsq_current_finish() for details. 14646 */ 14647 void 14648 ill_dlpi_done(ill_t *ill, t_uscalar_t prim) 14649 { 14650 mblk_t *mp; 14651 ipsq_t *ipsq = ill->ill_phyint->phyint_ipsq; 14652 ipxop_t *ipx = ipsq->ipsq_xop; 14653 14654 ASSERT(IAM_WRITER_IPSQ(ipsq)); 14655 mutex_enter(&ill->ill_lock); 14656 14657 ASSERT(prim != DL_PRIM_INVAL); 14658 ASSERT(ill->ill_dlpi_pending == prim); 14659 14660 ip1dbg(("ill_dlpi_done: %s has completed %s (%u)\n", ill->ill_name, 14661 dl_primstr(ill->ill_dlpi_pending), ill->ill_dlpi_pending)); 14662 14663 if ((mp = ill->ill_dlpi_deferred) == NULL) { 14664 ill->ill_dlpi_pending = DL_PRIM_INVAL; 14665 if (ipx->ipx_current_done) { 14666 mutex_enter(&ipx->ipx_lock); 14667 ipx->ipx_current_ipif = NULL; 14668 mutex_exit(&ipx->ipx_lock); 14669 } 14670 cv_signal(&ill->ill_cv); 14671 mutex_exit(&ill->ill_lock); 14672 return; 14673 } 14674 14675 ill->ill_dlpi_deferred = mp->b_next; 14676 mp->b_next = NULL; 14677 mutex_exit(&ill->ill_lock); 14678 14679 ill_dlpi_dispatch(ill, mp); 14680 } 14681 14682 void 14683 conn_delete_ire(conn_t *connp, caddr_t arg) 14684 { 14685 ipif_t *ipif = (ipif_t *)arg; 14686 ire_t *ire; 14687 14688 /* 14689 * Look at the cached ires on conns which has pointers to ipifs. 14690 * We just call ire_refrele which clears up the reference 14691 * to ire. Called when a conn closes. Also called from ipif_free 14692 * to cleanup indirect references to the stale ipif via the cached ire. 14693 */ 14694 mutex_enter(&connp->conn_lock); 14695 ire = connp->conn_ire_cache; 14696 if (ire != NULL && (ipif == NULL || ire->ire_ipif == ipif)) { 14697 connp->conn_ire_cache = NULL; 14698 mutex_exit(&connp->conn_lock); 14699 IRE_REFRELE_NOTR(ire); 14700 return; 14701 } 14702 mutex_exit(&connp->conn_lock); 14703 14704 } 14705 14706 /* 14707 * Some operations (e.g., ipif_down()) conditionally delete a number 14708 * of IREs. Those IREs may have been previously cached in the conn structure. 14709 * This ipcl_walk() walker function releases all references to such IREs based 14710 * on the condemned flag. 14711 */ 14712 /* ARGSUSED */ 14713 void 14714 conn_cleanup_stale_ire(conn_t *connp, caddr_t arg) 14715 { 14716 ire_t *ire; 14717 14718 mutex_enter(&connp->conn_lock); 14719 ire = connp->conn_ire_cache; 14720 if (ire != NULL && (ire->ire_marks & IRE_MARK_CONDEMNED)) { 14721 connp->conn_ire_cache = NULL; 14722 mutex_exit(&connp->conn_lock); 14723 IRE_REFRELE_NOTR(ire); 14724 return; 14725 } 14726 mutex_exit(&connp->conn_lock); 14727 } 14728 14729 /* 14730 * Take down a specific interface, but don't lose any information about it. 14731 * (Always called as writer.) 14732 * This function goes through the down sequence even if the interface is 14733 * already down. There are 2 reasons. 14734 * a. Currently we permit interface routes that depend on down interfaces 14735 * to be added. This behaviour itself is questionable. However it appears 14736 * that both Solaris and 4.3 BSD have exhibited this behaviour for a long 14737 * time. We go thru the cleanup in order to remove these routes. 14738 * b. The bringup of the interface could fail in ill_dl_up i.e. we get 14739 * DL_ERROR_ACK in response to the the DL_BIND request. The interface is 14740 * down, but we need to cleanup i.e. do ill_dl_down and 14741 * ip_rput_dlpi_writer (DL_ERROR_ACK) -> ipif_down. 14742 * 14743 * IP-MT notes: 14744 * 14745 * Model of reference to interfaces. 14746 * 14747 * The following members in ipif_t track references to the ipif. 14748 * int ipif_refcnt; Active reference count 14749 * uint_t ipif_ire_cnt; Number of ire's referencing this ipif 14750 * uint_t ipif_ilm_cnt; Number of ilms's references this ipif. 14751 * 14752 * The following members in ill_t track references to the ill. 14753 * int ill_refcnt; active refcnt 14754 * uint_t ill_ire_cnt; Number of ires referencing ill 14755 * uint_t ill_nce_cnt; Number of nces referencing ill 14756 * uint_t ill_ilm_cnt; Number of ilms referencing ill 14757 * 14758 * Reference to an ipif or ill can be obtained in any of the following ways. 14759 * 14760 * Through the lookup functions ipif_lookup_* / ill_lookup_* functions 14761 * Pointers to ipif / ill from other data structures viz ire and conn. 14762 * Implicit reference to the ipif / ill by holding a reference to the ire. 14763 * 14764 * The ipif/ill lookup functions return a reference held ipif / ill. 14765 * ipif_refcnt and ill_refcnt track the reference counts respectively. 14766 * This is a purely dynamic reference count associated with threads holding 14767 * references to the ipif / ill. Pointers from other structures do not 14768 * count towards this reference count. 14769 * 14770 * ipif_ire_cnt/ill_ire_cnt is the number of ire's 14771 * associated with the ipif/ill. This is incremented whenever a new 14772 * ire is created referencing the ipif/ill. This is done atomically inside 14773 * ire_add_v[46] where the ire is actually added to the ire hash table. 14774 * The count is decremented in ire_inactive where the ire is destroyed. 14775 * 14776 * nce's reference ill's thru nce_ill and the count of nce's associated with 14777 * an ill is recorded in ill_nce_cnt. This is incremented atomically in 14778 * ndp_add_v4()/ndp_add_v6() where the nce is actually added to the 14779 * table. Similarly it is decremented in ndp_inactive() where the nce 14780 * is destroyed. 14781 * 14782 * ilm's reference to the ipif (for IPv4 ilm's) or the ill (for IPv6 ilm's) 14783 * is incremented in ilm_add_v6() and decremented before the ilm is freed 14784 * in ilm_walker_cleanup() or ilm_delete(). 14785 * 14786 * Flow of ioctls involving interface down/up 14787 * 14788 * The following is the sequence of an attempt to set some critical flags on an 14789 * up interface. 14790 * ip_sioctl_flags 14791 * ipif_down 14792 * wait for ipif to be quiescent 14793 * ipif_down_tail 14794 * ip_sioctl_flags_tail 14795 * 14796 * All set ioctls that involve down/up sequence would have a skeleton similar 14797 * to the above. All the *tail functions are called after the refcounts have 14798 * dropped to the appropriate values. 14799 * 14800 * The mechanism to quiesce an ipif is as follows. 14801 * 14802 * Mark the ipif as IPIF_CHANGING. No more lookups will be allowed 14803 * on the ipif. Callers either pass a flag requesting wait or the lookup 14804 * functions will return NULL. 14805 * 14806 * Delete all ires referencing this ipif 14807 * 14808 * Any thread attempting to do an ipif_refhold on an ipif that has been 14809 * obtained thru a cached pointer will first make sure that 14810 * the ipif can be refheld using the macro IPIF_CAN_LOOKUP and only then 14811 * increment the refcount. 14812 * 14813 * The above guarantees that the ipif refcount will eventually come down to 14814 * zero and the ipif will quiesce, once all threads that currently hold a 14815 * reference to the ipif refrelease the ipif. The ipif is quiescent after the 14816 * ipif_refcount has dropped to zero and all ire's associated with this ipif 14817 * have also been ire_inactive'd. i.e. when ipif_{ire, ill}_cnt and 14818 * ipif_refcnt both drop to zero. See also: comments above IPIF_DOWN_OK() 14819 * in ip.h 14820 * 14821 * Lookups during the IPIF_CHANGING/ILL_CHANGING interval. 14822 * 14823 * Threads trying to lookup an ipif or ill can pass a flag requesting 14824 * wait and restart if the ipif / ill cannot be looked up currently. 14825 * For eg. bind, and route operations (Eg. route add / delete) cannot return 14826 * failure if the ipif is currently undergoing an exclusive operation, and 14827 * hence pass the flag. The mblk is then enqueued in the ipsq and the operation 14828 * is restarted by ipsq_exit() when the current exclusive operation completes. 14829 * The lookup and enqueue is atomic using the ill_lock and ipsq_lock. The 14830 * lookup is done holding the ill_lock. Hence the ill/ipif state flags can't 14831 * change while the ill_lock is held. Before dropping the ill_lock we acquire 14832 * the ipsq_lock and call ipsq_enq. This ensures that ipsq_exit can't finish 14833 * until we release the ipsq_lock, even though the the ill/ipif state flags 14834 * can change after we drop the ill_lock. 14835 * 14836 * An attempt to send out a packet using an ipif that is currently 14837 * IPIF_CHANGING will fail. No attempt is made in this case to enqueue this 14838 * operation and restart it later when the exclusive condition on the ipif ends. 14839 * This is an example of not passing the wait flag to the lookup functions. For 14840 * example an attempt to refhold and use conn->conn_multicast_ipif and send 14841 * out a multicast packet on that ipif will fail while the ipif is 14842 * IPIF_CHANGING. An attempt to create an IRE_CACHE using an ipif that is 14843 * currently IPIF_CHANGING will also fail. 14844 */ 14845 int 14846 ipif_down(ipif_t *ipif, queue_t *q, mblk_t *mp) 14847 { 14848 ill_t *ill = ipif->ipif_ill; 14849 conn_t *connp; 14850 boolean_t success; 14851 boolean_t ipif_was_up = B_FALSE; 14852 ip_stack_t *ipst = ill->ill_ipst; 14853 14854 ASSERT(IAM_WRITER_IPIF(ipif)); 14855 14856 ip1dbg(("ipif_down(%s:%u)\n", ill->ill_name, ipif->ipif_id)); 14857 14858 if (ipif->ipif_flags & IPIF_UP) { 14859 mutex_enter(&ill->ill_lock); 14860 ipif->ipif_flags &= ~IPIF_UP; 14861 ASSERT(ill->ill_ipif_up_count > 0); 14862 --ill->ill_ipif_up_count; 14863 mutex_exit(&ill->ill_lock); 14864 ipif_was_up = B_TRUE; 14865 /* Update status in SCTP's list */ 14866 sctp_update_ipif(ipif, SCTP_IPIF_DOWN); 14867 ill_nic_event_dispatch(ipif->ipif_ill, 14868 MAP_IPIF_ID(ipif->ipif_id), NE_LIF_DOWN, NULL, 0); 14869 } 14870 14871 /* 14872 * Blow away memberships we established in ipif_multicast_up(). 14873 */ 14874 ipif_multicast_down(ipif); 14875 14876 /* 14877 * Remove from the mapping for __sin6_src_id. We insert only 14878 * when the address is not INADDR_ANY. As IPv4 addresses are 14879 * stored as mapped addresses, we need to check for mapped 14880 * INADDR_ANY also. 14881 */ 14882 if (ipif_was_up && !IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6lcl_addr) && 14883 !IN6_IS_ADDR_V4MAPPED_ANY(&ipif->ipif_v6lcl_addr) && 14884 !(ipif->ipif_flags & IPIF_NOLOCAL)) { 14885 int err; 14886 14887 err = ip_srcid_remove(&ipif->ipif_v6lcl_addr, 14888 ipif->ipif_zoneid, ipst); 14889 if (err != 0) { 14890 ip0dbg(("ipif_down: srcid_remove %d\n", err)); 14891 } 14892 } 14893 14894 /* 14895 * Delete all IRE's pointing at this ipif or its source address. 14896 */ 14897 if (ipif->ipif_isv6) { 14898 ire_walk_v6(ipif_down_delete_ire, (char *)ipif, ALL_ZONES, 14899 ipst); 14900 } else { 14901 ire_walk_v4(ipif_down_delete_ire, (char *)ipif, ALL_ZONES, 14902 ipst); 14903 } 14904 14905 if (ipif_was_up && ill->ill_ipif_up_count == 0) { 14906 /* 14907 * Since the interface is now down, it may have just become 14908 * inactive. Note that this needs to be done even for a 14909 * lll_logical_down(), or ARP entries will not get correctly 14910 * restored when the interface comes back up. 14911 */ 14912 if (IS_UNDER_IPMP(ill)) 14913 ipmp_ill_refresh_active(ill); 14914 } 14915 14916 /* 14917 * Cleaning up the conn_ire_cache or conns must be done only after the 14918 * ires have been deleted above. Otherwise a thread could end up 14919 * caching an ire in a conn after we have finished the cleanup of the 14920 * conn. The caching is done after making sure that the ire is not yet 14921 * condemned. Also documented in the block comment above ip_output 14922 */ 14923 ipcl_walk(conn_cleanup_stale_ire, NULL, ipst); 14924 /* Also, delete the ires cached in SCTP */ 14925 sctp_ire_cache_flush(ipif); 14926 14927 /* 14928 * Update any other ipifs which have used "our" local address as 14929 * a source address. This entails removing and recreating IRE_INTERFACE 14930 * entries for such ipifs. 14931 */ 14932 if (ipif->ipif_isv6) 14933 ipif_update_other_ipifs_v6(ipif); 14934 else 14935 ipif_update_other_ipifs(ipif); 14936 14937 /* 14938 * neighbor-discovery or arp entries for this interface. 14939 */ 14940 ipif_ndp_down(ipif); 14941 14942 /* 14943 * If mp is NULL the caller will wait for the appropriate refcnt. 14944 * Eg. ip_sioctl_removeif -> ipif_free -> ipif_down 14945 * and ill_delete -> ipif_free -> ipif_down 14946 */ 14947 if (mp == NULL) { 14948 ASSERT(q == NULL); 14949 return (0); 14950 } 14951 14952 if (CONN_Q(q)) { 14953 connp = Q_TO_CONN(q); 14954 mutex_enter(&connp->conn_lock); 14955 } else { 14956 connp = NULL; 14957 } 14958 mutex_enter(&ill->ill_lock); 14959 /* 14960 * Are there any ire's pointing to this ipif that are still active ? 14961 * If this is the last ipif going down, are there any ire's pointing 14962 * to this ill that are still active ? 14963 */ 14964 if (ipif_is_quiescent(ipif)) { 14965 mutex_exit(&ill->ill_lock); 14966 if (connp != NULL) 14967 mutex_exit(&connp->conn_lock); 14968 return (0); 14969 } 14970 14971 ip1dbg(("ipif_down: need to wait, adding pending mp %s ill %p", 14972 ill->ill_name, (void *)ill)); 14973 /* 14974 * Enqueue the mp atomically in ipsq_pending_mp. When the refcount 14975 * drops down, the operation will be restarted by ipif_ill_refrele_tail 14976 * which in turn is called by the last refrele on the ipif/ill/ire. 14977 */ 14978 success = ipsq_pending_mp_add(connp, ipif, q, mp, IPIF_DOWN); 14979 if (!success) { 14980 /* The conn is closing. So just return */ 14981 ASSERT(connp != NULL); 14982 mutex_exit(&ill->ill_lock); 14983 mutex_exit(&connp->conn_lock); 14984 return (EINTR); 14985 } 14986 14987 mutex_exit(&ill->ill_lock); 14988 if (connp != NULL) 14989 mutex_exit(&connp->conn_lock); 14990 return (EINPROGRESS); 14991 } 14992 14993 void 14994 ipif_down_tail(ipif_t *ipif) 14995 { 14996 ill_t *ill = ipif->ipif_ill; 14997 14998 /* 14999 * Skip any loopback interface (null wq). 15000 * If this is the last logical interface on the ill 15001 * have ill_dl_down tell the driver we are gone (unbind) 15002 * Note that lun 0 can ipif_down even though 15003 * there are other logical units that are up. 15004 * This occurs e.g. when we change a "significant" IFF_ flag. 15005 */ 15006 if (ill->ill_wq != NULL && !ill->ill_logical_down && 15007 ill->ill_ipif_up_count == 0 && ill->ill_ipif_dup_count == 0 && 15008 ill->ill_dl_up) { 15009 ill_dl_down(ill); 15010 } 15011 ill->ill_logical_down = 0; 15012 15013 /* 15014 * Has to be after removing the routes in ipif_down_delete_ire. 15015 */ 15016 ipif_resolver_down(ipif); 15017 15018 ip_rts_ifmsg(ipif, RTSQ_DEFAULT); 15019 ip_rts_newaddrmsg(RTM_DELETE, 0, ipif, RTSQ_DEFAULT); 15020 } 15021 15022 /* 15023 * Bring interface logically down without bringing the physical interface 15024 * down e.g. when the netmask is changed. This avoids long lasting link 15025 * negotiations between an ethernet interface and a certain switches. 15026 */ 15027 static int 15028 ipif_logical_down(ipif_t *ipif, queue_t *q, mblk_t *mp) 15029 { 15030 /* 15031 * The ill_logical_down flag is a transient flag. It is set here 15032 * and is cleared once the down has completed in ipif_down_tail. 15033 * This flag does not indicate whether the ill stream is in the 15034 * DL_BOUND state with the driver. Instead this flag is used by 15035 * ipif_down_tail to determine whether to DL_UNBIND the stream with 15036 * the driver. The state of the ill stream i.e. whether it is 15037 * DL_BOUND with the driver or not is indicated by the ill_dl_up flag. 15038 */ 15039 ipif->ipif_ill->ill_logical_down = 1; 15040 return (ipif_down(ipif, q, mp)); 15041 } 15042 15043 /* 15044 * This is called when the SIOCSLIFUSESRC ioctl is processed in IP. 15045 * If the usesrc client ILL is already part of a usesrc group or not, 15046 * in either case a ire_stq with the matching usesrc client ILL will 15047 * locate the IRE's that need to be deleted. We want IREs to be created 15048 * with the new source address. 15049 */ 15050 static void 15051 ipif_delete_cache_ire(ire_t *ire, char *ill_arg) 15052 { 15053 ill_t *ucill = (ill_t *)ill_arg; 15054 15055 ASSERT(IAM_WRITER_ILL(ucill)); 15056 15057 if (ire->ire_stq == NULL) 15058 return; 15059 15060 if ((ire->ire_type == IRE_CACHE) && 15061 ((ill_t *)ire->ire_stq->q_ptr == ucill)) 15062 ire_delete(ire); 15063 } 15064 15065 /* 15066 * ire_walk routine to delete every IRE dependent on the interface 15067 * address that is going down. (Always called as writer.) 15068 * Works for both v4 and v6. 15069 * In addition for checking for ire_ipif matches it also checks for 15070 * IRE_CACHE entries which have the same source address as the 15071 * disappearing ipif since ipif_select_source might have picked 15072 * that source. Note that ipif_down/ipif_update_other_ipifs takes 15073 * care of any IRE_INTERFACE with the disappearing source address. 15074 */ 15075 static void 15076 ipif_down_delete_ire(ire_t *ire, char *ipif_arg) 15077 { 15078 ipif_t *ipif = (ipif_t *)ipif_arg; 15079 15080 ASSERT(IAM_WRITER_IPIF(ipif)); 15081 if (ire->ire_ipif == NULL) 15082 return; 15083 15084 if (ire->ire_ipif != ipif) { 15085 /* 15086 * Look for a matching source address. 15087 */ 15088 if (ire->ire_type != IRE_CACHE) 15089 return; 15090 if (ipif->ipif_flags & IPIF_NOLOCAL) 15091 return; 15092 15093 if (ire->ire_ipversion == IPV4_VERSION) { 15094 if (ire->ire_src_addr != ipif->ipif_src_addr) 15095 return; 15096 } else { 15097 if (!IN6_ARE_ADDR_EQUAL(&ire->ire_src_addr_v6, 15098 &ipif->ipif_v6lcl_addr)) 15099 return; 15100 } 15101 ire_delete(ire); 15102 return; 15103 } 15104 /* 15105 * ire_delete() will do an ire_flush_cache which will delete 15106 * all ire_ipif matches 15107 */ 15108 ire_delete(ire); 15109 } 15110 15111 /* 15112 * ire_walk_ill function for deleting all IRE_CACHE entries for an ill when 15113 * 1) an ipif (on that ill) changes the IPIF_DEPRECATED flags, or 15114 * 2) when an interface is brought up or down (on that ill). 15115 * This ensures that the IRE_CACHE entries don't retain stale source 15116 * address selection results. 15117 */ 15118 void 15119 ill_ipif_cache_delete(ire_t *ire, char *ill_arg) 15120 { 15121 ill_t *ill = (ill_t *)ill_arg; 15122 15123 ASSERT(IAM_WRITER_ILL(ill)); 15124 ASSERT(ire->ire_type == IRE_CACHE); 15125 15126 /* 15127 * We are called for IRE_CACHEs whose ire_stq or ire_ipif matches 15128 * ill, but we only want to delete the IRE if ire_ipif matches. 15129 */ 15130 ASSERT(ire->ire_ipif != NULL); 15131 if (ill == ire->ire_ipif->ipif_ill) 15132 ire_delete(ire); 15133 } 15134 15135 /* 15136 * Delete all the IREs whose ire_stq's reference `ill_arg'. IPMP uses this 15137 * instead of ill_ipif_cache_delete() because ire_ipif->ipif_ill references 15138 * the IPMP ill. 15139 */ 15140 void 15141 ill_stq_cache_delete(ire_t *ire, char *ill_arg) 15142 { 15143 ill_t *ill = (ill_t *)ill_arg; 15144 15145 ASSERT(IAM_WRITER_ILL(ill)); 15146 ASSERT(ire->ire_type == IRE_CACHE); 15147 15148 /* 15149 * We are called for IRE_CACHEs whose ire_stq or ire_ipif matches 15150 * ill, but we only want to delete the IRE if ire_stq matches. 15151 */ 15152 if (ire->ire_stq->q_ptr == ill_arg) 15153 ire_delete(ire); 15154 } 15155 15156 /* 15157 * Delete all broadcast IREs with a source address on `ill_arg'. 15158 */ 15159 static void 15160 ill_broadcast_delete(ire_t *ire, char *ill_arg) 15161 { 15162 ill_t *ill = (ill_t *)ill_arg; 15163 15164 ASSERT(IAM_WRITER_ILL(ill)); 15165 ASSERT(ire->ire_type == IRE_BROADCAST); 15166 15167 if (ire->ire_ipif->ipif_ill == ill) 15168 ire_delete(ire); 15169 } 15170 15171 /* 15172 * Initiate deallocate of an IPIF. Always called as writer. Called by 15173 * ill_delete or ip_sioctl_removeif. 15174 */ 15175 static void 15176 ipif_free(ipif_t *ipif) 15177 { 15178 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; 15179 15180 ASSERT(IAM_WRITER_IPIF(ipif)); 15181 15182 if (ipif->ipif_recovery_id != 0) 15183 (void) untimeout(ipif->ipif_recovery_id); 15184 ipif->ipif_recovery_id = 0; 15185 15186 /* Remove conn references */ 15187 reset_conn_ipif(ipif); 15188 15189 /* 15190 * Make sure we have valid net and subnet broadcast ire's for the 15191 * other ipif's which share them with this ipif. 15192 */ 15193 if (!ipif->ipif_isv6) 15194 ipif_check_bcast_ires(ipif); 15195 15196 /* 15197 * Take down the interface. We can be called either from ill_delete 15198 * or from ip_sioctl_removeif. 15199 */ 15200 (void) ipif_down(ipif, NULL, NULL); 15201 15202 /* 15203 * Now that the interface is down, there's no chance it can still 15204 * become a duplicate. Cancel any timer that may have been set while 15205 * tearing down. 15206 */ 15207 if (ipif->ipif_recovery_id != 0) 15208 (void) untimeout(ipif->ipif_recovery_id); 15209 ipif->ipif_recovery_id = 0; 15210 15211 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 15212 /* Remove pointers to this ill in the multicast routing tables */ 15213 reset_mrt_vif_ipif(ipif); 15214 /* If necessary, clear the cached source ipif rotor. */ 15215 if (ipif->ipif_ill->ill_src_ipif == ipif) 15216 ipif->ipif_ill->ill_src_ipif = NULL; 15217 rw_exit(&ipst->ips_ill_g_lock); 15218 } 15219 15220 static void 15221 ipif_free_tail(ipif_t *ipif) 15222 { 15223 mblk_t *mp; 15224 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; 15225 15226 /* 15227 * Free state for addition IRE_IF_[NO]RESOLVER ire's. 15228 */ 15229 mutex_enter(&ipif->ipif_saved_ire_lock); 15230 mp = ipif->ipif_saved_ire_mp; 15231 ipif->ipif_saved_ire_mp = NULL; 15232 mutex_exit(&ipif->ipif_saved_ire_lock); 15233 freemsg(mp); 15234 15235 /* 15236 * Need to hold both ill_g_lock and ill_lock while 15237 * inserting or removing an ipif from the linked list 15238 * of ipifs hanging off the ill. 15239 */ 15240 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 15241 15242 ASSERT(ilm_walk_ipif(ipif) == 0); 15243 15244 #ifdef DEBUG 15245 ipif_trace_cleanup(ipif); 15246 #endif 15247 15248 /* Ask SCTP to take it out of it list */ 15249 sctp_update_ipif(ipif, SCTP_IPIF_REMOVE); 15250 15251 /* Get it out of the ILL interface list. */ 15252 ipif_remove(ipif); 15253 rw_exit(&ipst->ips_ill_g_lock); 15254 15255 mutex_destroy(&ipif->ipif_saved_ire_lock); 15256 15257 ASSERT(!(ipif->ipif_flags & (IPIF_UP | IPIF_DUPLICATE))); 15258 ASSERT(ipif->ipif_recovery_id == 0); 15259 15260 /* Free the memory. */ 15261 mi_free(ipif); 15262 } 15263 15264 /* 15265 * Sets `buf' to an ipif name of the form "ill_name:id", or "ill_name" if "id" 15266 * is zero. 15267 */ 15268 void 15269 ipif_get_name(const ipif_t *ipif, char *buf, int len) 15270 { 15271 char lbuf[LIFNAMSIZ]; 15272 char *name; 15273 size_t name_len; 15274 15275 buf[0] = '\0'; 15276 name = ipif->ipif_ill->ill_name; 15277 name_len = ipif->ipif_ill->ill_name_length; 15278 if (ipif->ipif_id != 0) { 15279 (void) sprintf(lbuf, "%s%c%d", name, IPIF_SEPARATOR_CHAR, 15280 ipif->ipif_id); 15281 name = lbuf; 15282 name_len = mi_strlen(name) + 1; 15283 } 15284 len -= 1; 15285 buf[len] = '\0'; 15286 len = MIN(len, name_len); 15287 bcopy(name, buf, len); 15288 } 15289 15290 /* 15291 * Find an IPIF based on the name passed in. Names can be of the 15292 * form <phys> (e.g., le0), <phys>:<#> (e.g., le0:1), 15293 * The <phys> string can have forms like <dev><#> (e.g., le0), 15294 * <dev><#>.<module> (e.g. le0.foo), or <dev>.<module><#> (e.g. ip.tun3). 15295 * When there is no colon, the implied unit id is zero. <phys> must 15296 * correspond to the name of an ILL. (May be called as writer.) 15297 */ 15298 static ipif_t * 15299 ipif_lookup_on_name(char *name, size_t namelen, boolean_t do_alloc, 15300 boolean_t *exists, boolean_t isv6, zoneid_t zoneid, queue_t *q, 15301 mblk_t *mp, ipsq_func_t func, int *error, ip_stack_t *ipst) 15302 { 15303 char *cp; 15304 char *endp; 15305 long id; 15306 ill_t *ill; 15307 ipif_t *ipif; 15308 uint_t ire_type; 15309 boolean_t did_alloc = B_FALSE; 15310 ipsq_t *ipsq; 15311 15312 if (error != NULL) 15313 *error = 0; 15314 15315 /* 15316 * If the caller wants to us to create the ipif, make sure we have a 15317 * valid zoneid 15318 */ 15319 ASSERT(!do_alloc || zoneid != ALL_ZONES); 15320 15321 if (namelen == 0) { 15322 if (error != NULL) 15323 *error = ENXIO; 15324 return (NULL); 15325 } 15326 15327 *exists = B_FALSE; 15328 /* Look for a colon in the name. */ 15329 endp = &name[namelen]; 15330 for (cp = endp; --cp > name; ) { 15331 if (*cp == IPIF_SEPARATOR_CHAR) 15332 break; 15333 } 15334 15335 if (*cp == IPIF_SEPARATOR_CHAR) { 15336 /* 15337 * Reject any non-decimal aliases for logical 15338 * interfaces. Aliases with leading zeroes 15339 * are also rejected as they introduce ambiguity 15340 * in the naming of the interfaces. 15341 * In order to confirm with existing semantics, 15342 * and to not break any programs/script relying 15343 * on that behaviour, if<0>:0 is considered to be 15344 * a valid interface. 15345 * 15346 * If alias has two or more digits and the first 15347 * is zero, fail. 15348 */ 15349 if (&cp[2] < endp && cp[1] == '0') { 15350 if (error != NULL) 15351 *error = EINVAL; 15352 return (NULL); 15353 } 15354 } 15355 15356 if (cp <= name) { 15357 cp = endp; 15358 } else { 15359 *cp = '\0'; 15360 } 15361 15362 /* 15363 * Look up the ILL, based on the portion of the name 15364 * before the slash. ill_lookup_on_name returns a held ill. 15365 * Temporary to check whether ill exists already. If so 15366 * ill_lookup_on_name will clear it. 15367 */ 15368 ill = ill_lookup_on_name(name, do_alloc, isv6, 15369 q, mp, func, error, &did_alloc, ipst); 15370 if (cp != endp) 15371 *cp = IPIF_SEPARATOR_CHAR; 15372 if (ill == NULL) 15373 return (NULL); 15374 15375 /* Establish the unit number in the name. */ 15376 id = 0; 15377 if (cp < endp && *endp == '\0') { 15378 /* If there was a colon, the unit number follows. */ 15379 cp++; 15380 if (ddi_strtol(cp, NULL, 0, &id) != 0) { 15381 ill_refrele(ill); 15382 if (error != NULL) 15383 *error = ENXIO; 15384 return (NULL); 15385 } 15386 } 15387 15388 GRAB_CONN_LOCK(q); 15389 mutex_enter(&ill->ill_lock); 15390 /* Now see if there is an IPIF with this unit number. */ 15391 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 15392 if (ipif->ipif_id == id) { 15393 if (zoneid != ALL_ZONES && 15394 zoneid != ipif->ipif_zoneid && 15395 ipif->ipif_zoneid != ALL_ZONES) { 15396 mutex_exit(&ill->ill_lock); 15397 RELEASE_CONN_LOCK(q); 15398 ill_refrele(ill); 15399 if (error != NULL) 15400 *error = ENXIO; 15401 return (NULL); 15402 } 15403 /* 15404 * The block comment at the start of ipif_down 15405 * explains the use of the macros used below 15406 */ 15407 if (IPIF_CAN_LOOKUP(ipif)) { 15408 ipif_refhold_locked(ipif); 15409 mutex_exit(&ill->ill_lock); 15410 if (!did_alloc) 15411 *exists = B_TRUE; 15412 /* 15413 * Drop locks before calling ill_refrele 15414 * since it can potentially call into 15415 * ipif_ill_refrele_tail which can end up 15416 * in trying to acquire any lock. 15417 */ 15418 RELEASE_CONN_LOCK(q); 15419 ill_refrele(ill); 15420 return (ipif); 15421 } else if (IPIF_CAN_WAIT(ipif, q)) { 15422 ipsq = ill->ill_phyint->phyint_ipsq; 15423 mutex_enter(&ipsq->ipsq_lock); 15424 mutex_enter(&ipsq->ipsq_xop->ipx_lock); 15425 mutex_exit(&ill->ill_lock); 15426 ipsq_enq(ipsq, q, mp, func, NEW_OP, ill); 15427 mutex_exit(&ipsq->ipsq_xop->ipx_lock); 15428 mutex_exit(&ipsq->ipsq_lock); 15429 RELEASE_CONN_LOCK(q); 15430 ill_refrele(ill); 15431 if (error != NULL) 15432 *error = EINPROGRESS; 15433 return (NULL); 15434 } 15435 } 15436 } 15437 RELEASE_CONN_LOCK(q); 15438 15439 if (!do_alloc) { 15440 mutex_exit(&ill->ill_lock); 15441 ill_refrele(ill); 15442 if (error != NULL) 15443 *error = ENXIO; 15444 return (NULL); 15445 } 15446 15447 /* 15448 * If none found, atomically allocate and return a new one. 15449 * Historically, we used IRE_LOOPBACK only for lun 0, and IRE_LOCAL 15450 * to support "receive only" use of lo0:1 etc. as is still done 15451 * below as an initial guess. 15452 * However, this is now likely to be overriden later in ipif_up_done() 15453 * when we know for sure what address has been configured on the 15454 * interface, since we might have more than one loopback interface 15455 * with a loopback address, e.g. in the case of zones, and all the 15456 * interfaces with loopback addresses need to be marked IRE_LOOPBACK. 15457 */ 15458 if (ill->ill_net_type == IRE_LOOPBACK && id == 0) 15459 ire_type = IRE_LOOPBACK; 15460 else 15461 ire_type = IRE_LOCAL; 15462 ipif = ipif_allocate(ill, id, ire_type, B_TRUE, B_TRUE); 15463 if (ipif != NULL) 15464 ipif_refhold_locked(ipif); 15465 else if (error != NULL) 15466 *error = ENOMEM; 15467 mutex_exit(&ill->ill_lock); 15468 ill_refrele(ill); 15469 return (ipif); 15470 } 15471 15472 /* 15473 * This routine is called whenever a new address comes up on an ipif. If 15474 * we are configured to respond to address mask requests, then we are supposed 15475 * to broadcast an address mask reply at this time. This routine is also 15476 * called if we are already up, but a netmask change is made. This is legal 15477 * but might not make the system manager very popular. (May be called 15478 * as writer.) 15479 */ 15480 void 15481 ipif_mask_reply(ipif_t *ipif) 15482 { 15483 icmph_t *icmph; 15484 ipha_t *ipha; 15485 mblk_t *mp; 15486 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; 15487 15488 #define REPLY_LEN (sizeof (icmp_ipha) + sizeof (icmph_t) + IP_ADDR_LEN) 15489 15490 if (!ipst->ips_ip_respond_to_address_mask_broadcast) 15491 return; 15492 15493 /* ICMP mask reply is IPv4 only */ 15494 ASSERT(!ipif->ipif_isv6); 15495 /* ICMP mask reply is not for a loopback interface */ 15496 ASSERT(ipif->ipif_ill->ill_wq != NULL); 15497 15498 mp = allocb(REPLY_LEN, BPRI_HI); 15499 if (mp == NULL) 15500 return; 15501 mp->b_wptr = mp->b_rptr + REPLY_LEN; 15502 15503 ipha = (ipha_t *)mp->b_rptr; 15504 bzero(ipha, REPLY_LEN); 15505 *ipha = icmp_ipha; 15506 ipha->ipha_ttl = ipst->ips_ip_broadcast_ttl; 15507 ipha->ipha_src = ipif->ipif_src_addr; 15508 ipha->ipha_dst = ipif->ipif_brd_addr; 15509 ipha->ipha_length = htons(REPLY_LEN); 15510 ipha->ipha_ident = 0; 15511 15512 icmph = (icmph_t *)&ipha[1]; 15513 icmph->icmph_type = ICMP_ADDRESS_MASK_REPLY; 15514 bcopy(&ipif->ipif_net_mask, &icmph[1], IP_ADDR_LEN); 15515 icmph->icmph_checksum = IP_CSUM(mp, sizeof (ipha_t), 0); 15516 15517 put(ipif->ipif_wq, mp); 15518 15519 #undef REPLY_LEN 15520 } 15521 15522 /* 15523 * When the mtu in the ipif changes, we call this routine through ire_walk 15524 * to update all the relevant IREs. 15525 * Skip IRE_LOCAL and "loopback" IRE_BROADCAST by checking ire_stq. 15526 */ 15527 static void 15528 ipif_mtu_change(ire_t *ire, char *ipif_arg) 15529 { 15530 ipif_t *ipif = (ipif_t *)ipif_arg; 15531 15532 if (ire->ire_stq == NULL || ire->ire_ipif != ipif) 15533 return; 15534 ire->ire_max_frag = MIN(ipif->ipif_mtu, IP_MAXPACKET); 15535 } 15536 15537 /* 15538 * When the mtu in the ill changes, we call this routine through ire_walk 15539 * to update all the relevant IREs. 15540 * Skip IRE_LOCAL and "loopback" IRE_BROADCAST by checking ire_stq. 15541 */ 15542 void 15543 ill_mtu_change(ire_t *ire, char *ill_arg) 15544 { 15545 ill_t *ill = (ill_t *)ill_arg; 15546 15547 if (ire->ire_stq == NULL || ire->ire_ipif->ipif_ill != ill) 15548 return; 15549 ire->ire_max_frag = ire->ire_ipif->ipif_mtu; 15550 } 15551 15552 /* 15553 * Join the ipif specific multicast groups. 15554 * Must be called after a mapping has been set up in the resolver. (Always 15555 * called as writer.) 15556 */ 15557 void 15558 ipif_multicast_up(ipif_t *ipif) 15559 { 15560 int err; 15561 ill_t *ill; 15562 15563 ASSERT(IAM_WRITER_IPIF(ipif)); 15564 15565 ill = ipif->ipif_ill; 15566 15567 ip1dbg(("ipif_multicast_up\n")); 15568 if (!(ill->ill_flags & ILLF_MULTICAST) || ipif->ipif_multicast_up) 15569 return; 15570 15571 if (ipif->ipif_isv6) { 15572 in6_addr_t v6allmc = ipv6_all_hosts_mcast; 15573 in6_addr_t v6solmc = ipv6_solicited_node_mcast; 15574 15575 v6solmc.s6_addr32[3] |= ipif->ipif_v6lcl_addr.s6_addr32[3]; 15576 15577 if (IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6lcl_addr)) 15578 return; 15579 15580 ip1dbg(("ipif_multicast_up - addmulti\n")); 15581 15582 /* 15583 * Join the all hosts multicast address. We skip this for 15584 * underlying IPMP interfaces since they should be invisible. 15585 */ 15586 if (!IS_UNDER_IPMP(ill)) { 15587 err = ip_addmulti_v6(&v6allmc, ill, ipif->ipif_zoneid, 15588 ILGSTAT_NONE, MODE_IS_EXCLUDE, NULL); 15589 if (err != 0) { 15590 ip0dbg(("ipif_multicast_up: " 15591 "all_hosts_mcast failed %d\n", err)); 15592 return; 15593 } 15594 ipif->ipif_joined_allhosts = 1; 15595 } 15596 15597 /* 15598 * Enable multicast for the solicited node multicast address 15599 */ 15600 if (!(ipif->ipif_flags & IPIF_NOLOCAL)) { 15601 err = ip_addmulti_v6(&v6solmc, ill, ipif->ipif_zoneid, 15602 ILGSTAT_NONE, MODE_IS_EXCLUDE, NULL); 15603 if (err != 0) { 15604 ip0dbg(("ipif_multicast_up: solicited MC" 15605 " failed %d\n", err)); 15606 if (ipif->ipif_joined_allhosts) { 15607 (void) ip_delmulti_v6(&v6allmc, ill, 15608 ipif->ipif_zoneid, B_TRUE, B_TRUE); 15609 ipif->ipif_joined_allhosts = 0; 15610 } 15611 return; 15612 } 15613 } 15614 } else { 15615 if (ipif->ipif_lcl_addr == INADDR_ANY || IS_UNDER_IPMP(ill)) 15616 return; 15617 15618 /* Join the all hosts multicast address */ 15619 ip1dbg(("ipif_multicast_up - addmulti\n")); 15620 err = ip_addmulti(htonl(INADDR_ALLHOSTS_GROUP), ipif, 15621 ILGSTAT_NONE, MODE_IS_EXCLUDE, NULL); 15622 if (err) { 15623 ip0dbg(("ipif_multicast_up: failed %d\n", err)); 15624 return; 15625 } 15626 } 15627 ipif->ipif_multicast_up = 1; 15628 } 15629 15630 /* 15631 * Blow away any multicast groups that we joined in ipif_multicast_up(). 15632 * (Explicit memberships are blown away in ill_leave_multicast() when the 15633 * ill is brought down.) 15634 */ 15635 void 15636 ipif_multicast_down(ipif_t *ipif) 15637 { 15638 int err; 15639 15640 ASSERT(IAM_WRITER_IPIF(ipif)); 15641 15642 ip1dbg(("ipif_multicast_down\n")); 15643 if (!ipif->ipif_multicast_up) 15644 return; 15645 15646 ip1dbg(("ipif_multicast_down - delmulti\n")); 15647 15648 if (!ipif->ipif_isv6) { 15649 err = ip_delmulti(htonl(INADDR_ALLHOSTS_GROUP), ipif, B_TRUE, 15650 B_TRUE); 15651 if (err != 0) 15652 ip0dbg(("ipif_multicast_down: failed %d\n", err)); 15653 15654 ipif->ipif_multicast_up = 0; 15655 return; 15656 } 15657 15658 /* 15659 * Leave the all-hosts multicast address. 15660 */ 15661 if (ipif->ipif_joined_allhosts) { 15662 err = ip_delmulti_v6(&ipv6_all_hosts_mcast, ipif->ipif_ill, 15663 ipif->ipif_zoneid, B_TRUE, B_TRUE); 15664 if (err != 0) { 15665 ip0dbg(("ipif_multicast_down: all_hosts_mcast " 15666 "failed %d\n", err)); 15667 } 15668 ipif->ipif_joined_allhosts = 0; 15669 } 15670 15671 /* 15672 * Disable multicast for the solicited node multicast address 15673 */ 15674 if (!(ipif->ipif_flags & IPIF_NOLOCAL)) { 15675 in6_addr_t ipv6_multi = ipv6_solicited_node_mcast; 15676 15677 ipv6_multi.s6_addr32[3] |= 15678 ipif->ipif_v6lcl_addr.s6_addr32[3]; 15679 15680 err = ip_delmulti_v6(&ipv6_multi, ipif->ipif_ill, 15681 ipif->ipif_zoneid, B_TRUE, B_TRUE); 15682 if (err != 0) { 15683 ip0dbg(("ipif_multicast_down: sol MC failed %d\n", 15684 err)); 15685 } 15686 } 15687 15688 ipif->ipif_multicast_up = 0; 15689 } 15690 15691 /* 15692 * Used when an interface comes up to recreate any extra routes on this 15693 * interface. 15694 */ 15695 static ire_t ** 15696 ipif_recover_ire(ipif_t *ipif) 15697 { 15698 mblk_t *mp; 15699 ire_t **ipif_saved_irep; 15700 ire_t **irep; 15701 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; 15702 15703 ip1dbg(("ipif_recover_ire(%s:%u)", ipif->ipif_ill->ill_name, 15704 ipif->ipif_id)); 15705 15706 mutex_enter(&ipif->ipif_saved_ire_lock); 15707 ipif_saved_irep = (ire_t **)kmem_zalloc(sizeof (ire_t *) * 15708 ipif->ipif_saved_ire_cnt, KM_NOSLEEP); 15709 if (ipif_saved_irep == NULL) { 15710 mutex_exit(&ipif->ipif_saved_ire_lock); 15711 return (NULL); 15712 } 15713 15714 irep = ipif_saved_irep; 15715 for (mp = ipif->ipif_saved_ire_mp; mp != NULL; mp = mp->b_cont) { 15716 ire_t *ire; 15717 queue_t *rfq; 15718 queue_t *stq; 15719 ifrt_t *ifrt; 15720 uchar_t *src_addr; 15721 uchar_t *gateway_addr; 15722 ushort_t type; 15723 15724 /* 15725 * When the ire was initially created and then added in 15726 * ip_rt_add(), it was created either using ipif->ipif_net_type 15727 * in the case of a traditional interface route, or as one of 15728 * the IRE_OFFSUBNET types (with the exception of 15729 * IRE_HOST types ire which is created by icmp_redirect() and 15730 * which we don't need to save or recover). In the case where 15731 * ipif->ipif_net_type was IRE_LOOPBACK, ip_rt_add() will update 15732 * the ire_type to IRE_IF_NORESOLVER before calling ire_add() 15733 * to satisfy software like GateD and Sun Cluster which creates 15734 * routes using the the loopback interface's address as a 15735 * gateway. 15736 * 15737 * As ifrt->ifrt_type reflects the already updated ire_type, 15738 * ire_create() will be called in the same way here as 15739 * in ip_rt_add(), namely using ipif->ipif_net_type when 15740 * the route looks like a traditional interface route (where 15741 * ifrt->ifrt_type & IRE_INTERFACE is true) and otherwise using 15742 * the saved ifrt->ifrt_type. This means that in the case where 15743 * ipif->ipif_net_type is IRE_LOOPBACK, the ire created by 15744 * ire_create() will be an IRE_LOOPBACK, it will then be turned 15745 * into an IRE_IF_NORESOLVER and then added by ire_add(). 15746 */ 15747 ifrt = (ifrt_t *)mp->b_rptr; 15748 ASSERT(ifrt->ifrt_type != IRE_CACHE); 15749 if (ifrt->ifrt_type & IRE_INTERFACE) { 15750 rfq = NULL; 15751 stq = (ipif->ipif_net_type == IRE_IF_RESOLVER) 15752 ? ipif->ipif_rq : ipif->ipif_wq; 15753 src_addr = (ifrt->ifrt_flags & RTF_SETSRC) 15754 ? (uint8_t *)&ifrt->ifrt_src_addr 15755 : (uint8_t *)&ipif->ipif_src_addr; 15756 gateway_addr = NULL; 15757 type = ipif->ipif_net_type; 15758 } else if (ifrt->ifrt_type & IRE_BROADCAST) { 15759 /* Recover multiroute broadcast IRE. */ 15760 rfq = ipif->ipif_rq; 15761 stq = ipif->ipif_wq; 15762 src_addr = (ifrt->ifrt_flags & RTF_SETSRC) 15763 ? (uint8_t *)&ifrt->ifrt_src_addr 15764 : (uint8_t *)&ipif->ipif_src_addr; 15765 gateway_addr = (uint8_t *)&ifrt->ifrt_gateway_addr; 15766 type = ifrt->ifrt_type; 15767 } else { 15768 rfq = NULL; 15769 stq = NULL; 15770 src_addr = (ifrt->ifrt_flags & RTF_SETSRC) 15771 ? (uint8_t *)&ifrt->ifrt_src_addr : NULL; 15772 gateway_addr = (uint8_t *)&ifrt->ifrt_gateway_addr; 15773 type = ifrt->ifrt_type; 15774 } 15775 15776 /* 15777 * Create a copy of the IRE with the saved address and netmask. 15778 */ 15779 ip1dbg(("ipif_recover_ire: creating IRE %s (%d) for " 15780 "0x%x/0x%x\n", 15781 ip_nv_lookup(ire_nv_tbl, ifrt->ifrt_type), ifrt->ifrt_type, 15782 ntohl(ifrt->ifrt_addr), 15783 ntohl(ifrt->ifrt_mask))); 15784 ire = ire_create( 15785 (uint8_t *)&ifrt->ifrt_addr, 15786 (uint8_t *)&ifrt->ifrt_mask, 15787 src_addr, 15788 gateway_addr, 15789 &ifrt->ifrt_max_frag, 15790 NULL, 15791 rfq, 15792 stq, 15793 type, 15794 ipif, 15795 0, 15796 0, 15797 0, 15798 ifrt->ifrt_flags, 15799 &ifrt->ifrt_iulp_info, 15800 NULL, 15801 NULL, 15802 ipst); 15803 15804 if (ire == NULL) { 15805 mutex_exit(&ipif->ipif_saved_ire_lock); 15806 kmem_free(ipif_saved_irep, 15807 ipif->ipif_saved_ire_cnt * sizeof (ire_t *)); 15808 return (NULL); 15809 } 15810 15811 /* 15812 * Some software (for example, GateD and Sun Cluster) attempts 15813 * to create (what amount to) IRE_PREFIX routes with the 15814 * loopback address as the gateway. This is primarily done to 15815 * set up prefixes with the RTF_REJECT flag set (for example, 15816 * when generating aggregate routes.) 15817 * 15818 * If the IRE type (as defined by ipif->ipif_net_type) is 15819 * IRE_LOOPBACK, then we map the request into a 15820 * IRE_IF_NORESOLVER. 15821 */ 15822 if (ipif->ipif_net_type == IRE_LOOPBACK) 15823 ire->ire_type = IRE_IF_NORESOLVER; 15824 /* 15825 * ire held by ire_add, will be refreled' towards the 15826 * the end of ipif_up_done 15827 */ 15828 (void) ire_add(&ire, NULL, NULL, NULL, B_FALSE); 15829 *irep = ire; 15830 irep++; 15831 ip1dbg(("ipif_recover_ire: added ire %p\n", (void *)ire)); 15832 } 15833 mutex_exit(&ipif->ipif_saved_ire_lock); 15834 return (ipif_saved_irep); 15835 } 15836 15837 /* 15838 * Used to set the netmask and broadcast address to default values when the 15839 * interface is brought up. (Always called as writer.) 15840 */ 15841 static void 15842 ipif_set_default(ipif_t *ipif) 15843 { 15844 ASSERT(MUTEX_HELD(&ipif->ipif_ill->ill_lock)); 15845 15846 if (!ipif->ipif_isv6) { 15847 /* 15848 * Interface holds an IPv4 address. Default 15849 * mask is the natural netmask. 15850 */ 15851 if (!ipif->ipif_net_mask) { 15852 ipaddr_t v4mask; 15853 15854 v4mask = ip_net_mask(ipif->ipif_lcl_addr); 15855 V4MASK_TO_V6(v4mask, ipif->ipif_v6net_mask); 15856 } 15857 if (ipif->ipif_flags & IPIF_POINTOPOINT) { 15858 /* ipif_subnet is ipif_pp_dst_addr for pt-pt */ 15859 ipif->ipif_v6subnet = ipif->ipif_v6pp_dst_addr; 15860 } else { 15861 V6_MASK_COPY(ipif->ipif_v6lcl_addr, 15862 ipif->ipif_v6net_mask, ipif->ipif_v6subnet); 15863 } 15864 /* 15865 * NOTE: SunOS 4.X does this even if the broadcast address 15866 * has been already set thus we do the same here. 15867 */ 15868 if (ipif->ipif_flags & IPIF_BROADCAST) { 15869 ipaddr_t v4addr; 15870 15871 v4addr = ipif->ipif_subnet | ~ipif->ipif_net_mask; 15872 IN6_IPADDR_TO_V4MAPPED(v4addr, &ipif->ipif_v6brd_addr); 15873 } 15874 } else { 15875 /* 15876 * Interface holds an IPv6-only address. Default 15877 * mask is all-ones. 15878 */ 15879 if (IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6net_mask)) 15880 ipif->ipif_v6net_mask = ipv6_all_ones; 15881 if (ipif->ipif_flags & IPIF_POINTOPOINT) { 15882 /* ipif_subnet is ipif_pp_dst_addr for pt-pt */ 15883 ipif->ipif_v6subnet = ipif->ipif_v6pp_dst_addr; 15884 } else { 15885 V6_MASK_COPY(ipif->ipif_v6lcl_addr, 15886 ipif->ipif_v6net_mask, ipif->ipif_v6subnet); 15887 } 15888 } 15889 } 15890 15891 /* 15892 * Return 0 if this address can be used as local address without causing 15893 * duplicate address problems. Otherwise, return EADDRNOTAVAIL if the address 15894 * is already up on a different ill, and EADDRINUSE if it's up on the same ill. 15895 * Note that the same IPv6 link-local address is allowed as long as the ills 15896 * are not on the same link. 15897 */ 15898 int 15899 ip_addr_availability_check(ipif_t *new_ipif) 15900 { 15901 in6_addr_t our_v6addr; 15902 ill_t *ill; 15903 ipif_t *ipif; 15904 ill_walk_context_t ctx; 15905 ip_stack_t *ipst = new_ipif->ipif_ill->ill_ipst; 15906 15907 ASSERT(IAM_WRITER_IPIF(new_ipif)); 15908 ASSERT(MUTEX_HELD(&ipst->ips_ip_addr_avail_lock)); 15909 ASSERT(RW_READ_HELD(&ipst->ips_ill_g_lock)); 15910 15911 new_ipif->ipif_flags &= ~IPIF_UNNUMBERED; 15912 if (IN6_IS_ADDR_UNSPECIFIED(&new_ipif->ipif_v6lcl_addr) || 15913 IN6_IS_ADDR_V4MAPPED_ANY(&new_ipif->ipif_v6lcl_addr)) 15914 return (0); 15915 15916 our_v6addr = new_ipif->ipif_v6lcl_addr; 15917 15918 if (new_ipif->ipif_isv6) 15919 ill = ILL_START_WALK_V6(&ctx, ipst); 15920 else 15921 ill = ILL_START_WALK_V4(&ctx, ipst); 15922 15923 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 15924 for (ipif = ill->ill_ipif; ipif != NULL; 15925 ipif = ipif->ipif_next) { 15926 if ((ipif == new_ipif) || 15927 !(ipif->ipif_flags & IPIF_UP) || 15928 (ipif->ipif_flags & IPIF_UNNUMBERED) || 15929 !IN6_ARE_ADDR_EQUAL(&ipif->ipif_v6lcl_addr, 15930 &our_v6addr)) 15931 continue; 15932 15933 if (new_ipif->ipif_flags & IPIF_POINTOPOINT) 15934 new_ipif->ipif_flags |= IPIF_UNNUMBERED; 15935 else if (ipif->ipif_flags & IPIF_POINTOPOINT) 15936 ipif->ipif_flags |= IPIF_UNNUMBERED; 15937 else if ((IN6_IS_ADDR_LINKLOCAL(&our_v6addr) || 15938 IN6_IS_ADDR_SITELOCAL(&our_v6addr)) && 15939 !IS_ON_SAME_LAN(ill, new_ipif->ipif_ill)) 15940 continue; 15941 else if (new_ipif->ipif_zoneid != ipif->ipif_zoneid && 15942 ipif->ipif_zoneid != ALL_ZONES && IS_LOOPBACK(ill)) 15943 continue; 15944 else if (new_ipif->ipif_ill == ill) 15945 return (EADDRINUSE); 15946 else 15947 return (EADDRNOTAVAIL); 15948 } 15949 } 15950 15951 return (0); 15952 } 15953 15954 /* 15955 * Bring up an ipif: bring up arp/ndp, bring up the DLPI stream, and add 15956 * IREs for the ipif. 15957 * When the routine returns EINPROGRESS then mp has been consumed and 15958 * the ioctl will be acked from ip_rput_dlpi. 15959 */ 15960 int 15961 ipif_up(ipif_t *ipif, queue_t *q, mblk_t *mp) 15962 { 15963 ill_t *ill = ipif->ipif_ill; 15964 boolean_t isv6 = ipif->ipif_isv6; 15965 int err = 0; 15966 boolean_t success; 15967 uint_t ipif_orig_id; 15968 ip_stack_t *ipst = ill->ill_ipst; 15969 15970 ASSERT(IAM_WRITER_IPIF(ipif)); 15971 15972 ip1dbg(("ipif_up(%s:%u)\n", ill->ill_name, ipif->ipif_id)); 15973 15974 /* Shouldn't get here if it is already up. */ 15975 if (ipif->ipif_flags & IPIF_UP) 15976 return (EALREADY); 15977 15978 /* 15979 * If this is a request to bring up a data address on an interface 15980 * under IPMP, then move the address to its IPMP meta-interface and 15981 * try to bring it up. One complication is that the zeroth ipif for 15982 * an ill is special, in that every ill always has one, and that code 15983 * throughout IP deferences ill->ill_ipif without holding any locks. 15984 */ 15985 if (IS_UNDER_IPMP(ill) && ipmp_ipif_is_dataaddr(ipif) && 15986 (!ipif->ipif_isv6 || !V6_IPIF_LINKLOCAL(ipif))) { 15987 ipif_t *stubipif = NULL, *moveipif = NULL; 15988 ill_t *ipmp_ill = ipmp_illgrp_ipmp_ill(ill->ill_grp); 15989 15990 /* 15991 * The ipif being brought up should be quiesced. If it's not, 15992 * something has gone amiss and we need to bail out. (If it's 15993 * quiesced, we know it will remain so via IPIF_CHANGING.) 15994 */ 15995 mutex_enter(&ill->ill_lock); 15996 if (!ipif_is_quiescent(ipif)) { 15997 mutex_exit(&ill->ill_lock); 15998 return (EINVAL); 15999 } 16000 mutex_exit(&ill->ill_lock); 16001 16002 /* 16003 * If we're going to need to allocate ipifs, do it prior 16004 * to starting the move (and grabbing locks). 16005 */ 16006 if (ipif->ipif_id == 0) { 16007 moveipif = ipif_allocate(ill, 0, IRE_LOCAL, B_TRUE, 16008 B_FALSE); 16009 stubipif = ipif_allocate(ill, 0, IRE_LOCAL, B_TRUE, 16010 B_FALSE); 16011 if (moveipif == NULL || stubipif == NULL) { 16012 mi_free(moveipif); 16013 mi_free(stubipif); 16014 return (ENOMEM); 16015 } 16016 } 16017 16018 /* 16019 * Grab or transfer the ipif to move. During the move, keep 16020 * ill_g_lock held to prevent any ill walker threads from 16021 * seeing things in an inconsistent state. 16022 */ 16023 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 16024 if (ipif->ipif_id != 0) { 16025 ipif_remove(ipif); 16026 } else { 16027 ipif_transfer(ipif, moveipif, stubipif); 16028 ipif = moveipif; 16029 } 16030 16031 /* 16032 * Place the ipif on the IPMP ill. If the zeroth ipif on 16033 * the IPMP ill is a stub (0.0.0.0 down address) then we 16034 * replace that one. Otherwise, pick the next available slot. 16035 */ 16036 ipif->ipif_ill = ipmp_ill; 16037 ipif_orig_id = ipif->ipif_id; 16038 16039 if (ipmp_ipif_is_stubaddr(ipmp_ill->ill_ipif)) { 16040 ipif_transfer(ipif, ipmp_ill->ill_ipif, NULL); 16041 ipif = ipmp_ill->ill_ipif; 16042 } else { 16043 ipif->ipif_id = -1; 16044 if (ipif_insert(ipif, B_FALSE) != 0) { 16045 /* 16046 * No more available ipif_id's -- put it back 16047 * on the original ill and fail the operation. 16048 * Since we're writer on the ill, we can be 16049 * sure our old slot is still available. 16050 */ 16051 ipif->ipif_id = ipif_orig_id; 16052 ipif->ipif_ill = ill; 16053 if (ipif_orig_id == 0) { 16054 ipif_transfer(ipif, ill->ill_ipif, 16055 NULL); 16056 } else { 16057 VERIFY(ipif_insert(ipif, B_FALSE) == 0); 16058 } 16059 rw_exit(&ipst->ips_ill_g_lock); 16060 return (ENOMEM); 16061 } 16062 } 16063 rw_exit(&ipst->ips_ill_g_lock); 16064 16065 /* 16066 * Tell SCTP that the ipif has moved. Note that even if we 16067 * had to allocate a new ipif, the original sequence id was 16068 * preserved and therefore SCTP won't know. 16069 */ 16070 sctp_move_ipif(ipif, ill, ipmp_ill); 16071 16072 /* 16073 * If the ipif being brought up was on slot zero, then we 16074 * first need to bring up the placeholder we stuck there. In 16075 * ip_rput_dlpi_writer(), ip_arp_done(), or the recursive call 16076 * to ipif_up() itself, if we successfully bring up the 16077 * placeholder, we'll check ill_move_ipif and bring it up too. 16078 */ 16079 if (ipif_orig_id == 0) { 16080 ASSERT(ill->ill_move_ipif == NULL); 16081 ill->ill_move_ipif = ipif; 16082 if ((err = ipif_up(ill->ill_ipif, q, mp)) == 0) 16083 ASSERT(ill->ill_move_ipif == NULL); 16084 if (err != EINPROGRESS) 16085 ill->ill_move_ipif = NULL; 16086 return (err); 16087 } 16088 16089 /* 16090 * Bring it up on the IPMP ill. 16091 */ 16092 return (ipif_up(ipif, q, mp)); 16093 } 16094 16095 /* Skip arp/ndp for any loopback interface. */ 16096 if (ill->ill_wq != NULL) { 16097 conn_t *connp = CONN_Q(q) ? Q_TO_CONN(q) : NULL; 16098 ipsq_t *ipsq = ill->ill_phyint->phyint_ipsq; 16099 16100 if (!ill->ill_dl_up) { 16101 /* 16102 * ill_dl_up is not yet set. i.e. we are yet to 16103 * DL_BIND with the driver and this is the first 16104 * logical interface on the ill to become "up". 16105 * Tell the driver to get going (via DL_BIND_REQ). 16106 * Note that changing "significant" IFF_ flags 16107 * address/netmask etc cause a down/up dance, but 16108 * does not cause an unbind (DL_UNBIND) with the driver 16109 */ 16110 return (ill_dl_up(ill, ipif, mp, q)); 16111 } 16112 16113 /* 16114 * ipif_resolver_up may end up sending an 16115 * AR_INTERFACE_UP message to ARP, which would, in 16116 * turn send a DLPI message to the driver. ioctls are 16117 * serialized and so we cannot send more than one 16118 * interface up message at a time. If ipif_resolver_up 16119 * does send an interface up message to ARP, we get 16120 * EINPROGRESS and we will complete in ip_arp_done. 16121 */ 16122 16123 ASSERT(connp != NULL || !CONN_Q(q)); 16124 if (connp != NULL) 16125 mutex_enter(&connp->conn_lock); 16126 mutex_enter(&ill->ill_lock); 16127 success = ipsq_pending_mp_add(connp, ipif, q, mp, 0); 16128 mutex_exit(&ill->ill_lock); 16129 if (connp != NULL) 16130 mutex_exit(&connp->conn_lock); 16131 if (!success) 16132 return (EINTR); 16133 16134 /* 16135 * Crank up the resolver. For IPv6, this cranks up the 16136 * external resolver if one is configured, but even if an 16137 * external resolver isn't configured, it must be called to 16138 * reset DAD state. For IPv6, if an external resolver is not 16139 * being used, ipif_resolver_up() will never return 16140 * EINPROGRESS, so we can always call ipif_ndp_up() here. 16141 * Note that if an external resolver is being used, there's no 16142 * need to call ipif_ndp_up() since it will do nothing. 16143 */ 16144 err = ipif_resolver_up(ipif, Res_act_initial); 16145 if (err == EINPROGRESS) { 16146 /* We will complete it in ip_arp_done() */ 16147 return (err); 16148 } 16149 16150 if (isv6 && err == 0) 16151 err = ipif_ndp_up(ipif, B_TRUE); 16152 16153 ASSERT(err != EINPROGRESS); 16154 mp = ipsq_pending_mp_get(ipsq, &connp); 16155 ASSERT(mp != NULL); 16156 if (err != 0) 16157 return (err); 16158 } else { 16159 /* 16160 * Interfaces without underlying hardware don't do duplicate 16161 * address detection. 16162 */ 16163 ASSERT(!(ipif->ipif_flags & IPIF_DUPLICATE)); 16164 ipif->ipif_addr_ready = 1; 16165 } 16166 16167 err = isv6 ? ipif_up_done_v6(ipif) : ipif_up_done(ipif); 16168 if (err == 0 && ill->ill_move_ipif != NULL) { 16169 ipif = ill->ill_move_ipif; 16170 ill->ill_move_ipif = NULL; 16171 return (ipif_up(ipif, q, mp)); 16172 } 16173 return (err); 16174 } 16175 16176 /* 16177 * Perform a bind for the physical device. 16178 * When the routine returns EINPROGRESS then mp has been consumed and 16179 * the ioctl will be acked from ip_rput_dlpi. 16180 * Allocate an unbind message and save it until ipif_down. 16181 */ 16182 static int 16183 ill_dl_up(ill_t *ill, ipif_t *ipif, mblk_t *mp, queue_t *q) 16184 { 16185 areq_t *areq; 16186 mblk_t *areq_mp = NULL; 16187 mblk_t *bind_mp = NULL; 16188 mblk_t *unbind_mp = NULL; 16189 conn_t *connp; 16190 boolean_t success; 16191 uint16_t sap_addr; 16192 16193 ip1dbg(("ill_dl_up(%s)\n", ill->ill_name)); 16194 ASSERT(IAM_WRITER_ILL(ill)); 16195 ASSERT(mp != NULL); 16196 16197 /* Create a resolver cookie for ARP */ 16198 if (!ill->ill_isv6 && ill->ill_net_type == IRE_IF_RESOLVER) { 16199 areq_mp = ill_arp_alloc(ill, (uchar_t *)&ip_areq_template, 0); 16200 if (areq_mp == NULL) 16201 return (ENOMEM); 16202 16203 freemsg(ill->ill_resolver_mp); 16204 ill->ill_resolver_mp = areq_mp; 16205 areq = (areq_t *)areq_mp->b_rptr; 16206 sap_addr = ill->ill_sap; 16207 bcopy(&sap_addr, areq->areq_sap, sizeof (sap_addr)); 16208 } 16209 bind_mp = ip_dlpi_alloc(sizeof (dl_bind_req_t) + sizeof (long), 16210 DL_BIND_REQ); 16211 if (bind_mp == NULL) 16212 goto bad; 16213 ((dl_bind_req_t *)bind_mp->b_rptr)->dl_sap = ill->ill_sap; 16214 ((dl_bind_req_t *)bind_mp->b_rptr)->dl_service_mode = DL_CLDLS; 16215 16216 unbind_mp = ip_dlpi_alloc(sizeof (dl_unbind_req_t), DL_UNBIND_REQ); 16217 if (unbind_mp == NULL) 16218 goto bad; 16219 16220 /* 16221 * Record state needed to complete this operation when the 16222 * DL_BIND_ACK shows up. Also remember the pre-allocated mblks. 16223 */ 16224 ASSERT(WR(q)->q_next == NULL); 16225 connp = Q_TO_CONN(q); 16226 16227 mutex_enter(&connp->conn_lock); 16228 mutex_enter(&ipif->ipif_ill->ill_lock); 16229 success = ipsq_pending_mp_add(connp, ipif, q, mp, 0); 16230 mutex_exit(&ipif->ipif_ill->ill_lock); 16231 mutex_exit(&connp->conn_lock); 16232 if (!success) 16233 goto bad; 16234 16235 /* 16236 * Save the unbind message for ill_dl_down(); it will be consumed when 16237 * the interface goes down. 16238 */ 16239 ASSERT(ill->ill_unbind_mp == NULL); 16240 ill->ill_unbind_mp = unbind_mp; 16241 16242 ill_dlpi_send(ill, bind_mp); 16243 /* Send down link-layer capabilities probe if not already done. */ 16244 ill_capability_probe(ill); 16245 16246 /* 16247 * Sysid used to rely on the fact that netboots set domainname 16248 * and the like. Now that miniroot boots aren't strictly netboots 16249 * and miniroot network configuration is driven from userland 16250 * these things still need to be set. This situation can be detected 16251 * by comparing the interface being configured here to the one 16252 * dhcifname was set to reference by the boot loader. Once sysid is 16253 * converted to use dhcp_ipc_getinfo() this call can go away. 16254 */ 16255 if ((ipif->ipif_flags & IPIF_DHCPRUNNING) && 16256 (strcmp(ill->ill_name, dhcifname) == 0) && 16257 (strlen(srpc_domain) == 0)) { 16258 if (dhcpinit() != 0) 16259 cmn_err(CE_WARN, "no cached dhcp response"); 16260 } 16261 16262 /* 16263 * This operation will complete in ip_rput_dlpi with either 16264 * a DL_BIND_ACK or DL_ERROR_ACK. 16265 */ 16266 return (EINPROGRESS); 16267 bad: 16268 ip1dbg(("ill_dl_up(%s) FAILED\n", ill->ill_name)); 16269 16270 freemsg(bind_mp); 16271 freemsg(unbind_mp); 16272 return (ENOMEM); 16273 } 16274 16275 uint_t ip_loopback_mtuplus = IP_LOOPBACK_MTU + IP_SIMPLE_HDR_LENGTH + 20; 16276 16277 /* 16278 * DLPI and ARP is up. 16279 * Create all the IREs associated with an interface bring up multicast. 16280 * Set the interface flag and finish other initialization 16281 * that potentially had to be differed to after DL_BIND_ACK. 16282 */ 16283 int 16284 ipif_up_done(ipif_t *ipif) 16285 { 16286 ire_t *ire_array[20]; 16287 ire_t **irep = ire_array; 16288 ire_t **irep1; 16289 ipaddr_t net_mask = 0; 16290 ipaddr_t subnet_mask, route_mask; 16291 ill_t *ill = ipif->ipif_ill; 16292 queue_t *stq; 16293 ipif_t *src_ipif; 16294 ipif_t *tmp_ipif; 16295 boolean_t flush_ire_cache = B_TRUE; 16296 int err = 0; 16297 ire_t **ipif_saved_irep = NULL; 16298 int ipif_saved_ire_cnt; 16299 int cnt; 16300 boolean_t src_ipif_held = B_FALSE; 16301 boolean_t loopback = B_FALSE; 16302 ip_stack_t *ipst = ill->ill_ipst; 16303 16304 ip1dbg(("ipif_up_done(%s:%u)\n", 16305 ipif->ipif_ill->ill_name, ipif->ipif_id)); 16306 /* Check if this is a loopback interface */ 16307 if (ipif->ipif_ill->ill_wq == NULL) 16308 loopback = B_TRUE; 16309 16310 ASSERT(!MUTEX_HELD(&ipif->ipif_ill->ill_lock)); 16311 /* 16312 * If all other interfaces for this ill are down or DEPRECATED, 16313 * or otherwise unsuitable for source address selection, remove 16314 * any IRE_CACHE entries for this ill to make sure source 16315 * address selection gets to take this new ipif into account. 16316 * No need to hold ill_lock while traversing the ipif list since 16317 * we are writer 16318 */ 16319 for (tmp_ipif = ill->ill_ipif; tmp_ipif; 16320 tmp_ipif = tmp_ipif->ipif_next) { 16321 if (((tmp_ipif->ipif_flags & 16322 (IPIF_NOXMIT|IPIF_ANYCAST|IPIF_NOLOCAL|IPIF_DEPRECATED)) || 16323 !(tmp_ipif->ipif_flags & IPIF_UP)) || 16324 (tmp_ipif == ipif)) 16325 continue; 16326 /* first useable pre-existing interface */ 16327 flush_ire_cache = B_FALSE; 16328 break; 16329 } 16330 if (flush_ire_cache) 16331 ire_walk_ill_v4(MATCH_IRE_ILL | MATCH_IRE_TYPE, 16332 IRE_CACHE, ill_ipif_cache_delete, (char *)ill, ill); 16333 16334 /* 16335 * Figure out which way the send-to queue should go. Only 16336 * IRE_IF_RESOLVER or IRE_IF_NORESOLVER or IRE_LOOPBACK 16337 * should show up here. 16338 */ 16339 switch (ill->ill_net_type) { 16340 case IRE_IF_RESOLVER: 16341 stq = ill->ill_rq; 16342 break; 16343 case IRE_IF_NORESOLVER: 16344 case IRE_LOOPBACK: 16345 stq = ill->ill_wq; 16346 break; 16347 default: 16348 return (EINVAL); 16349 } 16350 16351 if (IS_LOOPBACK(ill)) { 16352 /* 16353 * lo0:1 and subsequent ipifs were marked IRE_LOCAL in 16354 * ipif_lookup_on_name(), but in the case of zones we can have 16355 * several loopback addresses on lo0. So all the interfaces with 16356 * loopback addresses need to be marked IRE_LOOPBACK. 16357 */ 16358 if (V4_PART_OF_V6(ipif->ipif_v6lcl_addr) == 16359 htonl(INADDR_LOOPBACK)) 16360 ipif->ipif_ire_type = IRE_LOOPBACK; 16361 else 16362 ipif->ipif_ire_type = IRE_LOCAL; 16363 } 16364 16365 if (ipif->ipif_flags & (IPIF_NOLOCAL|IPIF_ANYCAST) || 16366 ((ipif->ipif_flags & IPIF_DEPRECATED) && 16367 !(ipif->ipif_flags & IPIF_NOFAILOVER))) { 16368 /* 16369 * Can't use our source address. Select a different 16370 * source address for the IRE_INTERFACE and IRE_LOCAL 16371 */ 16372 src_ipif = ipif_select_source(ipif->ipif_ill, 16373 ipif->ipif_subnet, ipif->ipif_zoneid); 16374 if (src_ipif == NULL) 16375 src_ipif = ipif; /* Last resort */ 16376 else 16377 src_ipif_held = B_TRUE; 16378 } else { 16379 src_ipif = ipif; 16380 } 16381 16382 /* Create all the IREs associated with this interface */ 16383 if ((ipif->ipif_lcl_addr != INADDR_ANY) && 16384 !(ipif->ipif_flags & IPIF_NOLOCAL)) { 16385 16386 /* 16387 * If we're on a labeled system then make sure that zone- 16388 * private addresses have proper remote host database entries. 16389 */ 16390 if (is_system_labeled() && 16391 ipif->ipif_ire_type != IRE_LOOPBACK && 16392 !tsol_check_interface_address(ipif)) 16393 return (EINVAL); 16394 16395 /* Register the source address for __sin6_src_id */ 16396 err = ip_srcid_insert(&ipif->ipif_v6lcl_addr, 16397 ipif->ipif_zoneid, ipst); 16398 if (err != 0) { 16399 ip0dbg(("ipif_up_done: srcid_insert %d\n", err)); 16400 return (err); 16401 } 16402 16403 /* If the interface address is set, create the local IRE. */ 16404 ip1dbg(("ipif_up_done: 0x%p creating IRE 0x%x for 0x%x\n", 16405 (void *)ipif, 16406 ipif->ipif_ire_type, 16407 ntohl(ipif->ipif_lcl_addr))); 16408 *irep++ = ire_create( 16409 (uchar_t *)&ipif->ipif_lcl_addr, /* dest address */ 16410 (uchar_t *)&ip_g_all_ones, /* mask */ 16411 (uchar_t *)&src_ipif->ipif_src_addr, /* source address */ 16412 NULL, /* no gateway */ 16413 &ip_loopback_mtuplus, /* max frag size */ 16414 NULL, 16415 ipif->ipif_rq, /* recv-from queue */ 16416 NULL, /* no send-to queue */ 16417 ipif->ipif_ire_type, /* LOCAL or LOOPBACK */ 16418 ipif, 16419 0, 16420 0, 16421 0, 16422 (ipif->ipif_flags & IPIF_PRIVATE) ? 16423 RTF_PRIVATE : 0, 16424 &ire_uinfo_null, 16425 NULL, 16426 NULL, 16427 ipst); 16428 } else { 16429 ip1dbg(( 16430 "ipif_up_done: not creating IRE %d for 0x%x: flags 0x%x\n", 16431 ipif->ipif_ire_type, 16432 ntohl(ipif->ipif_lcl_addr), 16433 (uint_t)ipif->ipif_flags)); 16434 } 16435 if ((ipif->ipif_lcl_addr != INADDR_ANY) && 16436 !(ipif->ipif_flags & IPIF_NOLOCAL)) { 16437 net_mask = ip_net_mask(ipif->ipif_lcl_addr); 16438 } else { 16439 net_mask = htonl(IN_CLASSA_NET); /* fallback */ 16440 } 16441 16442 subnet_mask = ipif->ipif_net_mask; 16443 16444 /* 16445 * If mask was not specified, use natural netmask of 16446 * interface address. Also, store this mask back into the 16447 * ipif struct. 16448 */ 16449 if (subnet_mask == 0) { 16450 subnet_mask = net_mask; 16451 V4MASK_TO_V6(subnet_mask, ipif->ipif_v6net_mask); 16452 V6_MASK_COPY(ipif->ipif_v6lcl_addr, ipif->ipif_v6net_mask, 16453 ipif->ipif_v6subnet); 16454 } 16455 16456 /* Set up the IRE_IF_RESOLVER or IRE_IF_NORESOLVER, as appropriate. */ 16457 if (stq != NULL && !(ipif->ipif_flags & IPIF_NOXMIT) && 16458 ipif->ipif_subnet != INADDR_ANY) { 16459 /* ipif_subnet is ipif_pp_dst_addr for pt-pt */ 16460 16461 if (ipif->ipif_flags & IPIF_POINTOPOINT) { 16462 route_mask = IP_HOST_MASK; 16463 } else { 16464 route_mask = subnet_mask; 16465 } 16466 16467 ip1dbg(("ipif_up_done: ipif 0x%p ill 0x%p " 16468 "creating if IRE ill_net_type 0x%x for 0x%x\n", 16469 (void *)ipif, (void *)ill, 16470 ill->ill_net_type, 16471 ntohl(ipif->ipif_subnet))); 16472 *irep++ = ire_create( 16473 (uchar_t *)&ipif->ipif_subnet, /* dest address */ 16474 (uchar_t *)&route_mask, /* mask */ 16475 (uchar_t *)&src_ipif->ipif_src_addr, /* src addr */ 16476 NULL, /* no gateway */ 16477 &ipif->ipif_mtu, /* max frag */ 16478 NULL, 16479 NULL, /* no recv queue */ 16480 stq, /* send-to queue */ 16481 ill->ill_net_type, /* IF_[NO]RESOLVER */ 16482 ipif, 16483 0, 16484 0, 16485 0, 16486 (ipif->ipif_flags & IPIF_PRIVATE) ? RTF_PRIVATE: 0, 16487 &ire_uinfo_null, 16488 NULL, 16489 NULL, 16490 ipst); 16491 } 16492 16493 /* 16494 * Create any necessary broadcast IREs. 16495 */ 16496 if (ipif->ipif_flags & IPIF_BROADCAST) 16497 irep = ipif_create_bcast_ires(ipif, irep); 16498 16499 ASSERT(!MUTEX_HELD(&ipif->ipif_ill->ill_lock)); 16500 16501 /* If an earlier ire_create failed, get out now */ 16502 for (irep1 = irep; irep1 > ire_array; ) { 16503 irep1--; 16504 if (*irep1 == NULL) { 16505 ip1dbg(("ipif_up_done: NULL ire found in ire_array\n")); 16506 err = ENOMEM; 16507 goto bad; 16508 } 16509 } 16510 16511 /* 16512 * Need to atomically check for IP address availability under 16513 * ip_addr_avail_lock. ill_g_lock is held as reader to ensure no new 16514 * ills or new ipifs can be added while we are checking availability. 16515 */ 16516 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 16517 mutex_enter(&ipst->ips_ip_addr_avail_lock); 16518 /* Mark it up, and increment counters. */ 16519 ipif->ipif_flags |= IPIF_UP; 16520 ill->ill_ipif_up_count++; 16521 err = ip_addr_availability_check(ipif); 16522 mutex_exit(&ipst->ips_ip_addr_avail_lock); 16523 rw_exit(&ipst->ips_ill_g_lock); 16524 16525 if (err != 0) { 16526 /* 16527 * Our address may already be up on the same ill. In this case, 16528 * the ARP entry for our ipif replaced the one for the other 16529 * ipif. So we don't want to delete it (otherwise the other ipif 16530 * would be unable to send packets). 16531 * ip_addr_availability_check() identifies this case for us and 16532 * returns EADDRINUSE; we need to turn it into EADDRNOTAVAIL 16533 * which is the expected error code. 16534 */ 16535 if (err == EADDRINUSE) { 16536 freemsg(ipif->ipif_arp_del_mp); 16537 ipif->ipif_arp_del_mp = NULL; 16538 err = EADDRNOTAVAIL; 16539 } 16540 ill->ill_ipif_up_count--; 16541 ipif->ipif_flags &= ~IPIF_UP; 16542 goto bad; 16543 } 16544 16545 /* 16546 * Add in all newly created IREs. ire_create_bcast() has 16547 * already checked for duplicates of the IRE_BROADCAST type. 16548 */ 16549 for (irep1 = irep; irep1 > ire_array; ) { 16550 irep1--; 16551 ASSERT(!MUTEX_HELD(&((*irep1)->ire_ipif->ipif_ill->ill_lock))); 16552 /* 16553 * refheld by ire_add. refele towards the end of the func 16554 */ 16555 (void) ire_add(irep1, NULL, NULL, NULL, B_FALSE); 16556 } 16557 16558 /* Recover any additional IRE_IF_[NO]RESOLVER entries for this ipif */ 16559 ipif_saved_ire_cnt = ipif->ipif_saved_ire_cnt; 16560 ipif_saved_irep = ipif_recover_ire(ipif); 16561 16562 if (!loopback) { 16563 /* 16564 * If the broadcast address has been set, make sure it makes 16565 * sense based on the interface address. 16566 * Only match on ill since we are sharing broadcast addresses. 16567 */ 16568 if ((ipif->ipif_brd_addr != INADDR_ANY) && 16569 (ipif->ipif_flags & IPIF_BROADCAST)) { 16570 ire_t *ire; 16571 16572 ire = ire_ctable_lookup(ipif->ipif_brd_addr, 0, 16573 IRE_BROADCAST, ipif, ALL_ZONES, 16574 NULL, (MATCH_IRE_TYPE | MATCH_IRE_ILL), ipst); 16575 16576 if (ire == NULL) { 16577 /* 16578 * If there isn't a matching broadcast IRE, 16579 * revert to the default for this netmask. 16580 */ 16581 ipif->ipif_v6brd_addr = ipv6_all_zeros; 16582 mutex_enter(&ipif->ipif_ill->ill_lock); 16583 ipif_set_default(ipif); 16584 mutex_exit(&ipif->ipif_ill->ill_lock); 16585 } else { 16586 ire_refrele(ire); 16587 } 16588 } 16589 16590 } 16591 16592 if (ill->ill_need_recover_multicast) { 16593 /* 16594 * Need to recover all multicast memberships in the driver. 16595 * This had to be deferred until we had attached. The same 16596 * code exists in ipif_up_done_v6() to recover IPv6 16597 * memberships. 16598 * 16599 * Note that it would be preferable to unconditionally do the 16600 * ill_recover_multicast() in ill_dl_up(), but we cannot do 16601 * that since ill_join_allmulti() depends on ill_dl_up being 16602 * set, and it is not set until we receive a DL_BIND_ACK after 16603 * having called ill_dl_up(). 16604 */ 16605 ill_recover_multicast(ill); 16606 } 16607 16608 if (ill->ill_ipif_up_count == 1) { 16609 /* 16610 * Since the interface is now up, it may now be active. 16611 */ 16612 if (IS_UNDER_IPMP(ill)) 16613 ipmp_ill_refresh_active(ill); 16614 16615 /* 16616 * If this is an IPMP interface, we may now be able to 16617 * establish ARP entries. 16618 */ 16619 if (IS_IPMP(ill)) 16620 ipmp_illgrp_refresh_arpent(ill->ill_grp); 16621 } 16622 16623 /* Join the allhosts multicast address */ 16624 ipif_multicast_up(ipif); 16625 16626 /* 16627 * See if anybody else would benefit from our new ipif. 16628 */ 16629 if (!loopback && 16630 !(ipif->ipif_flags & (IPIF_NOLOCAL|IPIF_ANYCAST|IPIF_DEPRECATED))) { 16631 ill_update_source_selection(ill); 16632 } 16633 16634 for (irep1 = irep; irep1 > ire_array; ) { 16635 irep1--; 16636 if (*irep1 != NULL) { 16637 /* was held in ire_add */ 16638 ire_refrele(*irep1); 16639 } 16640 } 16641 16642 cnt = ipif_saved_ire_cnt; 16643 for (irep1 = ipif_saved_irep; cnt > 0; irep1++, cnt--) { 16644 if (*irep1 != NULL) { 16645 /* was held in ire_add */ 16646 ire_refrele(*irep1); 16647 } 16648 } 16649 16650 if (!loopback && ipif->ipif_addr_ready) { 16651 /* Broadcast an address mask reply. */ 16652 ipif_mask_reply(ipif); 16653 } 16654 if (ipif_saved_irep != NULL) { 16655 kmem_free(ipif_saved_irep, 16656 ipif_saved_ire_cnt * sizeof (ire_t *)); 16657 } 16658 if (src_ipif_held) 16659 ipif_refrele(src_ipif); 16660 16661 /* 16662 * This had to be deferred until we had bound. Tell routing sockets and 16663 * others that this interface is up if it looks like the address has 16664 * been validated. Otherwise, if it isn't ready yet, wait for 16665 * duplicate address detection to do its thing. 16666 */ 16667 if (ipif->ipif_addr_ready) 16668 ipif_up_notify(ipif); 16669 return (0); 16670 16671 bad: 16672 ip1dbg(("ipif_up_done: FAILED \n")); 16673 16674 while (irep > ire_array) { 16675 irep--; 16676 if (*irep != NULL) 16677 ire_delete(*irep); 16678 } 16679 (void) ip_srcid_remove(&ipif->ipif_v6lcl_addr, ipif->ipif_zoneid, ipst); 16680 16681 if (ipif_saved_irep != NULL) { 16682 kmem_free(ipif_saved_irep, 16683 ipif_saved_ire_cnt * sizeof (ire_t *)); 16684 } 16685 if (src_ipif_held) 16686 ipif_refrele(src_ipif); 16687 16688 ipif_resolver_down(ipif); 16689 return (err); 16690 } 16691 16692 /* 16693 * Turn off the ARP with the ILLF_NOARP flag. 16694 */ 16695 static int 16696 ill_arp_off(ill_t *ill) 16697 { 16698 mblk_t *arp_off_mp = NULL; 16699 mblk_t *arp_on_mp = NULL; 16700 16701 ip1dbg(("ill_arp_off(%s)\n", ill->ill_name)); 16702 16703 ASSERT(IAM_WRITER_ILL(ill)); 16704 ASSERT(ill->ill_net_type == IRE_IF_RESOLVER); 16705 16706 /* 16707 * If the on message is still around we've already done 16708 * an arp_off without doing an arp_on thus there is no 16709 * work needed. 16710 */ 16711 if (ill->ill_arp_on_mp != NULL) 16712 return (0); 16713 16714 /* 16715 * Allocate an ARP on message (to be saved) and an ARP off message 16716 */ 16717 arp_off_mp = ill_arp_alloc(ill, (uchar_t *)&ip_aroff_template, 0); 16718 if (!arp_off_mp) 16719 return (ENOMEM); 16720 16721 arp_on_mp = ill_arp_alloc(ill, (uchar_t *)&ip_aron_template, 0); 16722 if (!arp_on_mp) 16723 goto failed; 16724 16725 ASSERT(ill->ill_arp_on_mp == NULL); 16726 ill->ill_arp_on_mp = arp_on_mp; 16727 16728 /* Send an AR_INTERFACE_OFF request */ 16729 putnext(ill->ill_rq, arp_off_mp); 16730 return (0); 16731 failed: 16732 16733 if (arp_off_mp) 16734 freemsg(arp_off_mp); 16735 return (ENOMEM); 16736 } 16737 16738 /* 16739 * Turn on ARP by turning off the ILLF_NOARP flag. 16740 */ 16741 static int 16742 ill_arp_on(ill_t *ill) 16743 { 16744 mblk_t *mp; 16745 16746 ip1dbg(("ipif_arp_on(%s)\n", ill->ill_name)); 16747 16748 ASSERT(ill->ill_net_type == IRE_IF_RESOLVER); 16749 16750 ASSERT(IAM_WRITER_ILL(ill)); 16751 /* 16752 * Send an AR_INTERFACE_ON request if we have already done 16753 * an arp_off (which allocated the message). 16754 */ 16755 if (ill->ill_arp_on_mp != NULL) { 16756 mp = ill->ill_arp_on_mp; 16757 ill->ill_arp_on_mp = NULL; 16758 putnext(ill->ill_rq, mp); 16759 } 16760 return (0); 16761 } 16762 16763 /* 16764 * Checks for availbility of a usable source address (if there is one) when the 16765 * destination ILL has the ill_usesrc_ifindex pointing to another ILL. Note 16766 * this selection is done regardless of the destination. 16767 */ 16768 boolean_t 16769 ipif_usesrc_avail(ill_t *ill, zoneid_t zoneid) 16770 { 16771 uint_t ifindex; 16772 ipif_t *ipif = NULL; 16773 ill_t *uill; 16774 boolean_t isv6; 16775 ip_stack_t *ipst = ill->ill_ipst; 16776 16777 ASSERT(ill != NULL); 16778 16779 isv6 = ill->ill_isv6; 16780 ifindex = ill->ill_usesrc_ifindex; 16781 if (ifindex != 0) { 16782 uill = ill_lookup_on_ifindex(ifindex, isv6, NULL, NULL, NULL, 16783 NULL, ipst); 16784 if (uill == NULL) 16785 return (NULL); 16786 mutex_enter(&uill->ill_lock); 16787 for (ipif = uill->ill_ipif; ipif != NULL; 16788 ipif = ipif->ipif_next) { 16789 if (!IPIF_CAN_LOOKUP(ipif)) 16790 continue; 16791 if (ipif->ipif_flags & (IPIF_NOLOCAL|IPIF_ANYCAST)) 16792 continue; 16793 if (!(ipif->ipif_flags & IPIF_UP)) 16794 continue; 16795 if (ipif->ipif_zoneid != zoneid) 16796 continue; 16797 if ((isv6 && 16798 IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6lcl_addr)) || 16799 (ipif->ipif_lcl_addr == INADDR_ANY)) 16800 continue; 16801 mutex_exit(&uill->ill_lock); 16802 ill_refrele(uill); 16803 return (B_TRUE); 16804 } 16805 mutex_exit(&uill->ill_lock); 16806 ill_refrele(uill); 16807 } 16808 return (B_FALSE); 16809 } 16810 16811 /* 16812 * IP source address type, sorted from worst to best. For a given type, 16813 * always prefer IP addresses on the same subnet. All-zones addresses are 16814 * suboptimal because they pose problems with unlabeled destinations. 16815 */ 16816 typedef enum { 16817 IPIF_NONE, 16818 IPIF_DIFFNET_DEPRECATED, /* deprecated and different subnet */ 16819 IPIF_SAMENET_DEPRECATED, /* deprecated and same subnet */ 16820 IPIF_DIFFNET_ALLZONES, /* allzones and different subnet */ 16821 IPIF_SAMENET_ALLZONES, /* allzones and same subnet */ 16822 IPIF_DIFFNET, /* normal and different subnet */ 16823 IPIF_SAMENET /* normal and same subnet */ 16824 } ipif_type_t; 16825 16826 /* 16827 * Pick the optimal ipif on `ill' for sending to destination `dst' from zone 16828 * `zoneid'. We rate usable ipifs from low -> high as per the ipif_type_t 16829 * enumeration, and return the highest-rated ipif. If there's a tie, we pick 16830 * the first one, unless IPMP is used in which case we round-robin among them; 16831 * see below for more. 16832 * 16833 * Returns NULL if there is no suitable source address for the ill. 16834 * This only occurs when there is no valid source address for the ill. 16835 */ 16836 ipif_t * 16837 ipif_select_source(ill_t *ill, ipaddr_t dst, zoneid_t zoneid) 16838 { 16839 ill_t *usill = NULL; 16840 ill_t *ipmp_ill = NULL; 16841 ipif_t *start_ipif, *next_ipif, *ipif, *best_ipif; 16842 ipif_type_t type, best_type; 16843 tsol_tpc_t *src_rhtp, *dst_rhtp; 16844 ip_stack_t *ipst = ill->ill_ipst; 16845 boolean_t samenet; 16846 16847 if (ill->ill_usesrc_ifindex != 0) { 16848 usill = ill_lookup_on_ifindex(ill->ill_usesrc_ifindex, 16849 B_FALSE, NULL, NULL, NULL, NULL, ipst); 16850 if (usill != NULL) 16851 ill = usill; /* Select source from usesrc ILL */ 16852 else 16853 return (NULL); 16854 } 16855 16856 /* 16857 * Test addresses should never be used for source address selection, 16858 * so if we were passed one, switch to the IPMP meta-interface. 16859 */ 16860 if (IS_UNDER_IPMP(ill)) { 16861 if ((ipmp_ill = ipmp_ill_hold_ipmp_ill(ill)) != NULL) 16862 ill = ipmp_ill; /* Select source from IPMP ill */ 16863 else 16864 return (NULL); 16865 } 16866 16867 /* 16868 * If we're dealing with an unlabeled destination on a labeled system, 16869 * make sure that we ignore source addresses that are incompatible with 16870 * the destination's default label. That destination's default label 16871 * must dominate the minimum label on the source address. 16872 */ 16873 dst_rhtp = NULL; 16874 if (is_system_labeled()) { 16875 dst_rhtp = find_tpc(&dst, IPV4_VERSION, B_FALSE); 16876 if (dst_rhtp == NULL) 16877 return (NULL); 16878 if (dst_rhtp->tpc_tp.host_type != UNLABELED) { 16879 TPC_RELE(dst_rhtp); 16880 dst_rhtp = NULL; 16881 } 16882 } 16883 16884 /* 16885 * Hold the ill_g_lock as reader. This makes sure that no ipif/ill 16886 * can be deleted. But an ipif/ill can get CONDEMNED any time. 16887 * After selecting the right ipif, under ill_lock make sure ipif is 16888 * not condemned, and increment refcnt. If ipif is CONDEMNED, 16889 * we retry. Inside the loop we still need to check for CONDEMNED, 16890 * but not under a lock. 16891 */ 16892 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 16893 retry: 16894 /* 16895 * For source address selection, we treat the ipif list as circular 16896 * and continue until we get back to where we started. This allows 16897 * IPMP to vary source address selection (which improves inbound load 16898 * spreading) by caching its last ending point and starting from 16899 * there. NOTE: we don't have to worry about ill_src_ipif changing 16900 * ills since that can't happen on the IPMP ill. 16901 */ 16902 start_ipif = ill->ill_ipif; 16903 if (IS_IPMP(ill) && ill->ill_src_ipif != NULL) 16904 start_ipif = ill->ill_src_ipif; 16905 16906 ipif = start_ipif; 16907 best_ipif = NULL; 16908 best_type = IPIF_NONE; 16909 do { 16910 if ((next_ipif = ipif->ipif_next) == NULL) 16911 next_ipif = ill->ill_ipif; 16912 16913 if (!IPIF_CAN_LOOKUP(ipif)) 16914 continue; 16915 /* Always skip NOLOCAL and ANYCAST interfaces */ 16916 if (ipif->ipif_flags & (IPIF_NOLOCAL|IPIF_ANYCAST)) 16917 continue; 16918 if (!(ipif->ipif_flags & IPIF_UP) || !ipif->ipif_addr_ready) 16919 continue; 16920 if (ipif->ipif_zoneid != zoneid && 16921 ipif->ipif_zoneid != ALL_ZONES) 16922 continue; 16923 16924 /* 16925 * Interfaces with 0.0.0.0 address are allowed to be UP, but 16926 * are not valid as source addresses. 16927 */ 16928 if (ipif->ipif_lcl_addr == INADDR_ANY) 16929 continue; 16930 16931 /* 16932 * Check compatibility of local address for destination's 16933 * default label if we're on a labeled system. Incompatible 16934 * addresses can't be used at all. 16935 */ 16936 if (dst_rhtp != NULL) { 16937 boolean_t incompat; 16938 16939 src_rhtp = find_tpc(&ipif->ipif_lcl_addr, 16940 IPV4_VERSION, B_FALSE); 16941 if (src_rhtp == NULL) 16942 continue; 16943 incompat = src_rhtp->tpc_tp.host_type != SUN_CIPSO || 16944 src_rhtp->tpc_tp.tp_doi != 16945 dst_rhtp->tpc_tp.tp_doi || 16946 (!_blinrange(&dst_rhtp->tpc_tp.tp_def_label, 16947 &src_rhtp->tpc_tp.tp_sl_range_cipso) && 16948 !blinlset(&dst_rhtp->tpc_tp.tp_def_label, 16949 src_rhtp->tpc_tp.tp_sl_set_cipso)); 16950 TPC_RELE(src_rhtp); 16951 if (incompat) 16952 continue; 16953 } 16954 16955 samenet = ((ipif->ipif_net_mask & dst) == ipif->ipif_subnet); 16956 16957 if (ipif->ipif_flags & IPIF_DEPRECATED) { 16958 type = samenet ? IPIF_SAMENET_DEPRECATED : 16959 IPIF_DIFFNET_DEPRECATED; 16960 } else if (ipif->ipif_zoneid == ALL_ZONES) { 16961 type = samenet ? IPIF_SAMENET_ALLZONES : 16962 IPIF_DIFFNET_ALLZONES; 16963 } else { 16964 type = samenet ? IPIF_SAMENET : IPIF_DIFFNET; 16965 } 16966 16967 if (type > best_type) { 16968 best_type = type; 16969 best_ipif = ipif; 16970 if (best_type == IPIF_SAMENET) 16971 break; /* can't get better */ 16972 } 16973 } while ((ipif = next_ipif) != start_ipif); 16974 16975 if ((ipif = best_ipif) != NULL) { 16976 mutex_enter(&ipif->ipif_ill->ill_lock); 16977 if (!IPIF_CAN_LOOKUP(ipif)) { 16978 mutex_exit(&ipif->ipif_ill->ill_lock); 16979 goto retry; 16980 } 16981 ipif_refhold_locked(ipif); 16982 16983 /* 16984 * For IPMP, update the source ipif rotor to the next ipif, 16985 * provided we can look it up. (We must not use it if it's 16986 * IPIF_CONDEMNED since we may have grabbed ill_g_lock after 16987 * ipif_free() checked ill_src_ipif.) 16988 */ 16989 if (IS_IPMP(ill) && ipif != NULL) { 16990 next_ipif = ipif->ipif_next; 16991 if (next_ipif != NULL && IPIF_CAN_LOOKUP(next_ipif)) 16992 ill->ill_src_ipif = next_ipif; 16993 else 16994 ill->ill_src_ipif = NULL; 16995 } 16996 mutex_exit(&ipif->ipif_ill->ill_lock); 16997 } 16998 16999 rw_exit(&ipst->ips_ill_g_lock); 17000 if (usill != NULL) 17001 ill_refrele(usill); 17002 if (ipmp_ill != NULL) 17003 ill_refrele(ipmp_ill); 17004 if (dst_rhtp != NULL) 17005 TPC_RELE(dst_rhtp); 17006 17007 #ifdef DEBUG 17008 if (ipif == NULL) { 17009 char buf1[INET6_ADDRSTRLEN]; 17010 17011 ip1dbg(("ipif_select_source(%s, %s) -> NULL\n", 17012 ill->ill_name, 17013 inet_ntop(AF_INET, &dst, buf1, sizeof (buf1)))); 17014 } else { 17015 char buf1[INET6_ADDRSTRLEN]; 17016 char buf2[INET6_ADDRSTRLEN]; 17017 17018 ip1dbg(("ipif_select_source(%s, %s) -> %s\n", 17019 ipif->ipif_ill->ill_name, 17020 inet_ntop(AF_INET, &dst, buf1, sizeof (buf1)), 17021 inet_ntop(AF_INET, &ipif->ipif_lcl_addr, 17022 buf2, sizeof (buf2)))); 17023 } 17024 #endif /* DEBUG */ 17025 return (ipif); 17026 } 17027 17028 17029 /* 17030 * If old_ipif is not NULL, see if ipif was derived from old 17031 * ipif and if so, recreate the interface route by re-doing 17032 * source address selection. This happens when ipif_down -> 17033 * ipif_update_other_ipifs calls us. 17034 * 17035 * If old_ipif is NULL, just redo the source address selection 17036 * if needed. This happens when ipif_up_done calls us. 17037 */ 17038 static void 17039 ipif_recreate_interface_routes(ipif_t *old_ipif, ipif_t *ipif) 17040 { 17041 ire_t *ire; 17042 ire_t *ipif_ire; 17043 queue_t *stq; 17044 ipif_t *nipif; 17045 ill_t *ill; 17046 boolean_t need_rele = B_FALSE; 17047 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; 17048 17049 ASSERT(old_ipif == NULL || IAM_WRITER_IPIF(old_ipif)); 17050 ASSERT(IAM_WRITER_IPIF(ipif)); 17051 17052 ill = ipif->ipif_ill; 17053 if (!(ipif->ipif_flags & 17054 (IPIF_NOLOCAL|IPIF_ANYCAST|IPIF_DEPRECATED))) { 17055 /* 17056 * Can't possibly have borrowed the source 17057 * from old_ipif. 17058 */ 17059 return; 17060 } 17061 17062 /* 17063 * Is there any work to be done? No work if the address 17064 * is INADDR_ANY, loopback or NOLOCAL or ANYCAST ( 17065 * ipif_select_source() does not borrow addresses from 17066 * NOLOCAL and ANYCAST interfaces). 17067 */ 17068 if ((old_ipif != NULL) && 17069 ((old_ipif->ipif_lcl_addr == INADDR_ANY) || 17070 (old_ipif->ipif_ill->ill_wq == NULL) || 17071 (old_ipif->ipif_flags & 17072 (IPIF_NOLOCAL|IPIF_ANYCAST)))) { 17073 return; 17074 } 17075 17076 /* 17077 * Perform the same checks as when creating the 17078 * IRE_INTERFACE in ipif_up_done. 17079 */ 17080 if (!(ipif->ipif_flags & IPIF_UP)) 17081 return; 17082 17083 if ((ipif->ipif_flags & IPIF_NOXMIT) || 17084 (ipif->ipif_subnet == INADDR_ANY)) 17085 return; 17086 17087 ipif_ire = ipif_to_ire(ipif); 17088 if (ipif_ire == NULL) 17089 return; 17090 17091 /* 17092 * We know that ipif uses some other source for its 17093 * IRE_INTERFACE. Is it using the source of this 17094 * old_ipif? 17095 */ 17096 if (old_ipif != NULL && 17097 old_ipif->ipif_lcl_addr != ipif_ire->ire_src_addr) { 17098 ire_refrele(ipif_ire); 17099 return; 17100 } 17101 if (ip_debug > 2) { 17102 /* ip1dbg */ 17103 pr_addr_dbg("ipif_recreate_interface_routes: deleting IRE for" 17104 " src %s\n", AF_INET, &ipif_ire->ire_src_addr); 17105 } 17106 17107 stq = ipif_ire->ire_stq; 17108 17109 /* 17110 * Can't use our source address. Select a different 17111 * source address for the IRE_INTERFACE. 17112 */ 17113 nipif = ipif_select_source(ill, ipif->ipif_subnet, ipif->ipif_zoneid); 17114 if (nipif == NULL) { 17115 /* Last resort - all ipif's have IPIF_NOLOCAL */ 17116 nipif = ipif; 17117 } else { 17118 need_rele = B_TRUE; 17119 } 17120 17121 ire = ire_create( 17122 (uchar_t *)&ipif->ipif_subnet, /* dest pref */ 17123 (uchar_t *)&ipif->ipif_net_mask, /* mask */ 17124 (uchar_t *)&nipif->ipif_src_addr, /* src addr */ 17125 NULL, /* no gateway */ 17126 &ipif->ipif_mtu, /* max frag */ 17127 NULL, /* no src nce */ 17128 NULL, /* no recv from queue */ 17129 stq, /* send-to queue */ 17130 ill->ill_net_type, /* IF_[NO]RESOLVER */ 17131 ipif, 17132 0, 17133 0, 17134 0, 17135 0, 17136 &ire_uinfo_null, 17137 NULL, 17138 NULL, 17139 ipst); 17140 17141 if (ire != NULL) { 17142 ire_t *ret_ire; 17143 int error; 17144 17145 /* 17146 * We don't need ipif_ire anymore. We need to delete 17147 * before we add so that ire_add does not detect 17148 * duplicates. 17149 */ 17150 ire_delete(ipif_ire); 17151 ret_ire = ire; 17152 error = ire_add(&ret_ire, NULL, NULL, NULL, B_FALSE); 17153 ASSERT(error == 0); 17154 ASSERT(ire == ret_ire); 17155 /* Held in ire_add */ 17156 ire_refrele(ret_ire); 17157 } 17158 /* 17159 * Either we are falling through from above or could not 17160 * allocate a replacement. 17161 */ 17162 ire_refrele(ipif_ire); 17163 if (need_rele) 17164 ipif_refrele(nipif); 17165 } 17166 17167 /* 17168 * This old_ipif is going away. 17169 * 17170 * Determine if any other ipif's are using our address as 17171 * ipif_lcl_addr (due to those being IPIF_NOLOCAL, IPIF_ANYCAST, or 17172 * IPIF_DEPRECATED). 17173 * Find the IRE_INTERFACE for such ipifs and recreate them 17174 * to use an different source address following the rules in 17175 * ipif_up_done. 17176 */ 17177 static void 17178 ipif_update_other_ipifs(ipif_t *old_ipif) 17179 { 17180 ipif_t *ipif; 17181 ill_t *ill; 17182 char buf[INET6_ADDRSTRLEN]; 17183 17184 ASSERT(IAM_WRITER_IPIF(old_ipif)); 17185 17186 ill = old_ipif->ipif_ill; 17187 17188 ip1dbg(("ipif_update_other_ipifs(%s, %s)\n", ill->ill_name, 17189 inet_ntop(AF_INET, &old_ipif->ipif_lcl_addr, buf, sizeof (buf)))); 17190 17191 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 17192 if (ipif == old_ipif) 17193 continue; 17194 ipif_recreate_interface_routes(old_ipif, ipif); 17195 } 17196 } 17197 17198 /* ARGSUSED */ 17199 int 17200 if_unitsel_restart(ipif_t *ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, 17201 ip_ioctl_cmd_t *ipip, void *dummy_ifreq) 17202 { 17203 /* 17204 * ill_phyint_reinit merged the v4 and v6 into a single 17205 * ipsq. We might not have been able to complete the 17206 * operation in ipif_set_values, if we could not become 17207 * exclusive. If so restart it here. 17208 */ 17209 return (ipif_set_values_tail(ipif->ipif_ill, ipif, mp, q)); 17210 } 17211 17212 /* 17213 * Can operate on either a module or a driver queue. 17214 * Returns an error if not a module queue. 17215 */ 17216 /* ARGSUSED */ 17217 int 17218 if_unitsel(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, 17219 ip_ioctl_cmd_t *ipip, void *dummy_ifreq) 17220 { 17221 queue_t *q1 = q; 17222 char *cp; 17223 char interf_name[LIFNAMSIZ]; 17224 uint_t ppa = *(uint_t *)mp->b_cont->b_cont->b_rptr; 17225 17226 if (q->q_next == NULL) { 17227 ip1dbg(( 17228 "if_unitsel: IF_UNITSEL: no q_next\n")); 17229 return (EINVAL); 17230 } 17231 17232 if (((ill_t *)(q->q_ptr))->ill_name[0] != '\0') 17233 return (EALREADY); 17234 17235 do { 17236 q1 = q1->q_next; 17237 } while (q1->q_next); 17238 cp = q1->q_qinfo->qi_minfo->mi_idname; 17239 (void) sprintf(interf_name, "%s%d", cp, ppa); 17240 17241 /* 17242 * Here we are not going to delay the ioack until after 17243 * ACKs from DL_ATTACH_REQ/DL_BIND_REQ. So no need to save the 17244 * original ioctl message before sending the requests. 17245 */ 17246 return (ipif_set_values(q, mp, interf_name, &ppa)); 17247 } 17248 17249 /* ARGSUSED */ 17250 int 17251 ip_sioctl_sifname(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, 17252 ip_ioctl_cmd_t *ipip, void *dummy_ifreq) 17253 { 17254 return (ENXIO); 17255 } 17256 17257 /* 17258 * Refresh all IRE_BROADCAST entries associated with `ill' to ensure the 17259 * minimum (but complete) set exist. This is necessary when adding or 17260 * removing an interface to/from an IPMP group, since interfaces in an 17261 * IPMP group use the IRE_BROADCAST entries for the IPMP group (whenever 17262 * its test address subnets overlap with IPMP data addresses). It's also 17263 * used to refresh the IRE_BROADCAST entries associated with the IPMP 17264 * interface when the nominated broadcast interface changes. 17265 */ 17266 void 17267 ill_refresh_bcast(ill_t *ill) 17268 { 17269 ire_t *ire_array[12]; /* max ipif_create_bcast_ires() can create */ 17270 ire_t **irep; 17271 ipif_t *ipif; 17272 17273 ASSERT(!ill->ill_isv6); 17274 ASSERT(IAM_WRITER_ILL(ill)); 17275 17276 /* 17277 * Remove any old broadcast IREs. 17278 */ 17279 ire_walk_ill_v4(MATCH_IRE_ILL | MATCH_IRE_TYPE, IRE_BROADCAST, 17280 ill_broadcast_delete, ill, ill); 17281 17282 /* 17283 * Create new ones for any ipifs that are up and broadcast-capable. 17284 */ 17285 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 17286 if ((ipif->ipif_flags & (IPIF_UP|IPIF_BROADCAST)) != 17287 (IPIF_UP|IPIF_BROADCAST)) 17288 continue; 17289 17290 irep = ipif_create_bcast_ires(ipif, ire_array); 17291 while (irep-- > ire_array) { 17292 (void) ire_add(irep, NULL, NULL, NULL, B_FALSE); 17293 if (*irep != NULL) 17294 ire_refrele(*irep); 17295 } 17296 } 17297 } 17298 17299 /* 17300 * Create any IRE_BROADCAST entries for `ipif', and store those entries in 17301 * `irep'. Returns a pointer to the next free `irep' entry (just like 17302 * ire_check_and_create_bcast()). 17303 */ 17304 static ire_t ** 17305 ipif_create_bcast_ires(ipif_t *ipif, ire_t **irep) 17306 { 17307 ipaddr_t addr; 17308 ipaddr_t netmask = ip_net_mask(ipif->ipif_lcl_addr); 17309 ipaddr_t subnetmask = ipif->ipif_net_mask; 17310 int flags = MATCH_IRE_TYPE | MATCH_IRE_ILL; 17311 17312 ip1dbg(("ipif_create_bcast_ires: creating broadcast IREs\n")); 17313 17314 ASSERT(ipif->ipif_flags & IPIF_BROADCAST); 17315 17316 if (ipif->ipif_lcl_addr == INADDR_ANY || 17317 (ipif->ipif_flags & IPIF_NOLOCAL)) 17318 netmask = htonl(IN_CLASSA_NET); /* fallback */ 17319 17320 irep = ire_check_and_create_bcast(ipif, 0, irep, flags); 17321 irep = ire_check_and_create_bcast(ipif, INADDR_BROADCAST, irep, flags); 17322 17323 /* 17324 * For backward compatibility, we create net broadcast IREs based on 17325 * the old "IP address class system", since some old machines only 17326 * respond to these class derived net broadcast. However, we must not 17327 * create these net broadcast IREs if the subnetmask is shorter than 17328 * the IP address class based derived netmask. Otherwise, we may 17329 * create a net broadcast address which is the same as an IP address 17330 * on the subnet -- and then TCP will refuse to talk to that address. 17331 */ 17332 if (netmask < subnetmask) { 17333 addr = netmask & ipif->ipif_subnet; 17334 irep = ire_check_and_create_bcast(ipif, addr, irep, flags); 17335 irep = ire_check_and_create_bcast(ipif, ~netmask | addr, irep, 17336 flags); 17337 } 17338 17339 /* 17340 * Don't create IRE_BROADCAST IREs for the interface if the subnetmask 17341 * is 0xFFFFFFFF, as an IRE_LOCAL for that interface is already 17342 * created. Creating these broadcast IREs will only create confusion 17343 * as `addr' will be the same as the IP address. 17344 */ 17345 if (subnetmask != 0xFFFFFFFF) { 17346 addr = ipif->ipif_subnet; 17347 irep = ire_check_and_create_bcast(ipif, addr, irep, flags); 17348 irep = ire_check_and_create_bcast(ipif, ~subnetmask | addr, 17349 irep, flags); 17350 } 17351 17352 return (irep); 17353 } 17354 17355 /* 17356 * Broadcast IRE info structure used in the functions below. Since we 17357 * allocate BCAST_COUNT of them on the stack, keep the bit layout compact. 17358 */ 17359 typedef struct bcast_ireinfo { 17360 uchar_t bi_type; /* BCAST_* value from below */ 17361 uchar_t bi_willdie:1, /* will this IRE be going away? */ 17362 bi_needrep:1, /* do we need to replace it? */ 17363 bi_haverep:1, /* have we replaced it? */ 17364 bi_pad:5; 17365 ipaddr_t bi_addr; /* IRE address */ 17366 ipif_t *bi_backup; /* last-ditch ipif to replace it on */ 17367 } bcast_ireinfo_t; 17368 17369 enum { BCAST_ALLONES, BCAST_ALLZEROES, BCAST_NET, BCAST_SUBNET, BCAST_COUNT }; 17370 17371 /* 17372 * Check if `ipif' needs the dying broadcast IRE described by `bireinfop', and 17373 * return B_TRUE if it should immediately be used to recreate the IRE. 17374 */ 17375 static boolean_t 17376 ipif_consider_bcast(ipif_t *ipif, bcast_ireinfo_t *bireinfop) 17377 { 17378 ipaddr_t addr; 17379 17380 ASSERT(!bireinfop->bi_haverep && bireinfop->bi_willdie); 17381 17382 switch (bireinfop->bi_type) { 17383 case BCAST_NET: 17384 addr = ipif->ipif_subnet & ip_net_mask(ipif->ipif_subnet); 17385 if (addr != bireinfop->bi_addr) 17386 return (B_FALSE); 17387 break; 17388 case BCAST_SUBNET: 17389 if (ipif->ipif_subnet != bireinfop->bi_addr) 17390 return (B_FALSE); 17391 break; 17392 } 17393 17394 bireinfop->bi_needrep = 1; 17395 if (ipif->ipif_flags & (IPIF_DEPRECATED|IPIF_NOLOCAL|IPIF_ANYCAST)) { 17396 if (bireinfop->bi_backup == NULL) 17397 bireinfop->bi_backup = ipif; 17398 return (B_FALSE); 17399 } 17400 return (B_TRUE); 17401 } 17402 17403 /* 17404 * Create the broadcast IREs described by `bireinfop' on `ipif', and return 17405 * them ala ire_check_and_create_bcast(). 17406 */ 17407 static ire_t ** 17408 ipif_create_bcast(ipif_t *ipif, bcast_ireinfo_t *bireinfop, ire_t **irep) 17409 { 17410 ipaddr_t mask, addr; 17411 17412 ASSERT(!bireinfop->bi_haverep && bireinfop->bi_needrep); 17413 17414 addr = bireinfop->bi_addr; 17415 irep = ire_create_bcast(ipif, addr, irep); 17416 17417 switch (bireinfop->bi_type) { 17418 case BCAST_NET: 17419 mask = ip_net_mask(ipif->ipif_subnet); 17420 irep = ire_create_bcast(ipif, addr | ~mask, irep); 17421 break; 17422 case BCAST_SUBNET: 17423 mask = ipif->ipif_net_mask; 17424 irep = ire_create_bcast(ipif, addr | ~mask, irep); 17425 break; 17426 } 17427 17428 bireinfop->bi_haverep = 1; 17429 return (irep); 17430 } 17431 17432 /* 17433 * Walk through all of the ipifs on `ill' that will be affected by `test_ipif' 17434 * going away, and determine if any of the broadcast IREs (named by `bireinfop') 17435 * that are going away are still needed. If so, have ipif_create_bcast() 17436 * recreate them (except for the deprecated case, as explained below). 17437 */ 17438 static ire_t ** 17439 ill_create_bcast(ill_t *ill, ipif_t *test_ipif, bcast_ireinfo_t *bireinfo, 17440 ire_t **irep) 17441 { 17442 int i; 17443 ipif_t *ipif; 17444 17445 ASSERT(!ill->ill_isv6); 17446 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 17447 /* 17448 * Skip this ipif if it's (a) the one being taken down, (b) 17449 * not in the same zone, or (c) has no valid local address. 17450 */ 17451 if (ipif == test_ipif || 17452 ipif->ipif_zoneid != test_ipif->ipif_zoneid || 17453 ipif->ipif_subnet == 0 || 17454 (ipif->ipif_flags & (IPIF_UP|IPIF_BROADCAST|IPIF_NOXMIT)) != 17455 (IPIF_UP|IPIF_BROADCAST)) 17456 continue; 17457 17458 /* 17459 * For each dying IRE that hasn't yet been replaced, see if 17460 * `ipif' needs it and whether the IRE should be recreated on 17461 * `ipif'. If `ipif' is deprecated, ipif_consider_bcast() 17462 * will return B_FALSE even if `ipif' needs the IRE on the 17463 * hopes that we'll later find a needy non-deprecated ipif. 17464 * However, the ipif is recorded in bi_backup for possible 17465 * subsequent use by ipif_check_bcast_ires(). 17466 */ 17467 for (i = 0; i < BCAST_COUNT; i++) { 17468 if (!bireinfo[i].bi_willdie || bireinfo[i].bi_haverep) 17469 continue; 17470 if (!ipif_consider_bcast(ipif, &bireinfo[i])) 17471 continue; 17472 irep = ipif_create_bcast(ipif, &bireinfo[i], irep); 17473 } 17474 17475 /* 17476 * If we've replaced all of the broadcast IREs that are going 17477 * to be taken down, we know we're done. 17478 */ 17479 for (i = 0; i < BCAST_COUNT; i++) { 17480 if (bireinfo[i].bi_willdie && !bireinfo[i].bi_haverep) 17481 break; 17482 } 17483 if (i == BCAST_COUNT) 17484 break; 17485 } 17486 return (irep); 17487 } 17488 17489 /* 17490 * Check if `test_ipif' (which is going away) is associated with any existing 17491 * broadcast IREs, and whether any other ipifs (e.g., on the same ill) were 17492 * using those broadcast IREs. If so, recreate the broadcast IREs on one or 17493 * more of those other ipifs. (The old IREs will be deleted in ipif_down().) 17494 * 17495 * This is necessary because broadcast IREs are shared. In particular, a 17496 * given ill has one set of all-zeroes and all-ones broadcast IREs (for every 17497 * zone), plus one set of all-subnet-ones, all-subnet-zeroes, all-net-ones, 17498 * and all-net-zeroes for every net/subnet (and every zone) it has IPIF_UP 17499 * ipifs on. Thus, if there are two IPIF_UP ipifs on the same subnet with the 17500 * same zone, they will share the same set of broadcast IREs. 17501 * 17502 * Note: the upper bound of 12 IREs comes from the worst case of replacing all 17503 * six pairs (loopback and non-loopback) of broadcast IREs (all-zeroes, 17504 * all-ones, subnet-zeroes, subnet-ones, net-zeroes, and net-ones). 17505 */ 17506 static void 17507 ipif_check_bcast_ires(ipif_t *test_ipif) 17508 { 17509 ill_t *ill = test_ipif->ipif_ill; 17510 ire_t *ire, *ire_array[12]; /* see note above */ 17511 ire_t **irep1, **irep = &ire_array[0]; 17512 uint_t i, willdie; 17513 ipaddr_t mask = ip_net_mask(test_ipif->ipif_subnet); 17514 bcast_ireinfo_t bireinfo[BCAST_COUNT]; 17515 17516 ASSERT(!test_ipif->ipif_isv6); 17517 ASSERT(IAM_WRITER_IPIF(test_ipif)); 17518 17519 /* 17520 * No broadcast IREs for the LOOPBACK interface 17521 * or others such as point to point and IPIF_NOXMIT. 17522 */ 17523 if (!(test_ipif->ipif_flags & IPIF_BROADCAST) || 17524 (test_ipif->ipif_flags & IPIF_NOXMIT)) 17525 return; 17526 17527 bzero(bireinfo, sizeof (bireinfo)); 17528 bireinfo[0].bi_type = BCAST_ALLZEROES; 17529 bireinfo[0].bi_addr = 0; 17530 17531 bireinfo[1].bi_type = BCAST_ALLONES; 17532 bireinfo[1].bi_addr = INADDR_BROADCAST; 17533 17534 bireinfo[2].bi_type = BCAST_NET; 17535 bireinfo[2].bi_addr = test_ipif->ipif_subnet & mask; 17536 17537 if (test_ipif->ipif_net_mask != 0) 17538 mask = test_ipif->ipif_net_mask; 17539 bireinfo[3].bi_type = BCAST_SUBNET; 17540 bireinfo[3].bi_addr = test_ipif->ipif_subnet & mask; 17541 17542 /* 17543 * Figure out what (if any) broadcast IREs will die as a result of 17544 * `test_ipif' going away. If none will die, we're done. 17545 */ 17546 for (i = 0, willdie = 0; i < BCAST_COUNT; i++) { 17547 ire = ire_ctable_lookup(bireinfo[i].bi_addr, 0, IRE_BROADCAST, 17548 test_ipif, ALL_ZONES, NULL, 17549 (MATCH_IRE_TYPE | MATCH_IRE_IPIF), ill->ill_ipst); 17550 if (ire != NULL) { 17551 willdie++; 17552 bireinfo[i].bi_willdie = 1; 17553 ire_refrele(ire); 17554 } 17555 } 17556 17557 if (willdie == 0) 17558 return; 17559 17560 /* 17561 * Walk through all the ipifs that will be affected by the dying IREs, 17562 * and recreate the IREs as necessary. Note that all interfaces in an 17563 * IPMP illgrp share the same broadcast IREs, and thus the entire 17564 * illgrp must be walked, starting with the IPMP meta-interface (so 17565 * that broadcast IREs end up on it whenever possible). 17566 */ 17567 if (IS_UNDER_IPMP(ill)) 17568 ill = ipmp_illgrp_ipmp_ill(ill->ill_grp); 17569 17570 irep = ill_create_bcast(ill, test_ipif, bireinfo, irep); 17571 17572 if (IS_IPMP(ill) || IS_UNDER_IPMP(ill)) { 17573 ipmp_illgrp_t *illg = ill->ill_grp; 17574 17575 ill = list_head(&illg->ig_if); 17576 for (; ill != NULL; ill = list_next(&illg->ig_if, ill)) { 17577 for (i = 0; i < BCAST_COUNT; i++) { 17578 if (bireinfo[i].bi_willdie && 17579 !bireinfo[i].bi_haverep) 17580 break; 17581 } 17582 if (i == BCAST_COUNT) 17583 break; 17584 17585 irep = ill_create_bcast(ill, test_ipif, bireinfo, irep); 17586 } 17587 } 17588 17589 /* 17590 * Scan through the set of broadcast IREs and see if there are any 17591 * that we need to replace that have not yet been replaced. If so, 17592 * replace them using the appropriate backup ipif. 17593 */ 17594 for (i = 0; i < BCAST_COUNT; i++) { 17595 if (bireinfo[i].bi_needrep && !bireinfo[i].bi_haverep) 17596 irep = ipif_create_bcast(bireinfo[i].bi_backup, 17597 &bireinfo[i], irep); 17598 } 17599 17600 /* 17601 * If we can't create all of them, don't add any of them. (Code in 17602 * ip_wput_ire() and ire_to_ill() assumes that we always have a 17603 * non-loopback copy and loopback copy for a given address.) 17604 */ 17605 for (irep1 = irep; irep1 > ire_array; ) { 17606 irep1--; 17607 if (*irep1 == NULL) { 17608 ip0dbg(("ipif_check_bcast_ires: can't create " 17609 "IRE_BROADCAST, memory allocation failure\n")); 17610 while (irep > ire_array) { 17611 irep--; 17612 if (*irep != NULL) 17613 ire_delete(*irep); 17614 } 17615 return; 17616 } 17617 } 17618 17619 for (irep1 = irep; irep1 > ire_array; ) { 17620 irep1--; 17621 if (ire_add(irep1, NULL, NULL, NULL, B_FALSE) == 0) 17622 ire_refrele(*irep1); /* Held in ire_add */ 17623 } 17624 } 17625 17626 /* 17627 * Extract both the flags (including IFF_CANTCHANGE) such as IFF_IPV* 17628 * from lifr_flags and the name from lifr_name. 17629 * Set IFF_IPV* and ill_isv6 prior to doing the lookup 17630 * since ipif_lookup_on_name uses the _isv6 flags when matching. 17631 * Returns EINPROGRESS when mp has been consumed by queueing it on 17632 * ill_pending_mp and the ioctl will complete in ip_rput. 17633 * 17634 * Can operate on either a module or a driver queue. 17635 * Returns an error if not a module queue. 17636 */ 17637 /* ARGSUSED */ 17638 int 17639 ip_sioctl_slifname(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 17640 ip_ioctl_cmd_t *ipip, void *if_req) 17641 { 17642 ill_t *ill = q->q_ptr; 17643 phyint_t *phyi; 17644 ip_stack_t *ipst; 17645 struct lifreq *lifr = if_req; 17646 17647 ASSERT(ipif != NULL); 17648 ip1dbg(("ip_sioctl_slifname %s\n", lifr->lifr_name)); 17649 17650 if (q->q_next == NULL) { 17651 ip1dbg(("if_sioctl_slifname: SIOCSLIFNAME: no q_next\n")); 17652 return (EINVAL); 17653 } 17654 17655 /* 17656 * If we are not writer on 'q' then this interface exists already 17657 * and previous lookups (ip_extract_lifreq()) found this ipif -- 17658 * so return EALREADY. 17659 */ 17660 if (ill != ipif->ipif_ill) 17661 return (EALREADY); 17662 17663 if (ill->ill_name[0] != '\0') 17664 return (EALREADY); 17665 17666 /* 17667 * Set all the flags. Allows all kinds of override. Provide some 17668 * sanity checking by not allowing IFF_BROADCAST and IFF_MULTICAST 17669 * unless there is either multicast/broadcast support in the driver 17670 * or it is a pt-pt link. 17671 */ 17672 if (lifr->lifr_flags & (IFF_PROMISC|IFF_ALLMULTI)) { 17673 /* Meaningless to IP thus don't allow them to be set. */ 17674 ip1dbg(("ip_setname: EINVAL 1\n")); 17675 return (EINVAL); 17676 } 17677 17678 /* 17679 * If there's another ill already with the requested name, ensure 17680 * that it's of the same type. Otherwise, ill_phyint_reinit() will 17681 * fuse together two unrelated ills, which will cause chaos. 17682 */ 17683 ipst = ill->ill_ipst; 17684 phyi = avl_find(&ipst->ips_phyint_g_list->phyint_list_avl_by_name, 17685 lifr->lifr_name, NULL); 17686 if (phyi != NULL) { 17687 ill_t *ill_mate = phyi->phyint_illv4; 17688 17689 if (ill_mate == NULL) 17690 ill_mate = phyi->phyint_illv6; 17691 ASSERT(ill_mate != NULL); 17692 17693 if (ill_mate->ill_media->ip_m_mac_type != 17694 ill->ill_media->ip_m_mac_type) { 17695 ip1dbg(("if_sioctl_slifname: SIOCSLIFNAME: attempt to " 17696 "use the same ill name on differing media\n")); 17697 return (EINVAL); 17698 } 17699 } 17700 17701 /* 17702 * For a DL_STYLE2 driver (ill_needs_attach), we would not have the 17703 * ill_bcast_addr_length info. 17704 */ 17705 if (!ill->ill_needs_attach && 17706 ((lifr->lifr_flags & IFF_MULTICAST) && 17707 !(lifr->lifr_flags & IFF_POINTOPOINT) && 17708 ill->ill_bcast_addr_length == 0)) { 17709 /* Link not broadcast/pt-pt capable i.e. no multicast */ 17710 ip1dbg(("ip_setname: EINVAL 2\n")); 17711 return (EINVAL); 17712 } 17713 if ((lifr->lifr_flags & IFF_BROADCAST) && 17714 ((lifr->lifr_flags & IFF_IPV6) || 17715 (!ill->ill_needs_attach && ill->ill_bcast_addr_length == 0))) { 17716 /* Link not broadcast capable or IPv6 i.e. no broadcast */ 17717 ip1dbg(("ip_setname: EINVAL 3\n")); 17718 return (EINVAL); 17719 } 17720 if (lifr->lifr_flags & IFF_UP) { 17721 /* Can only be set with SIOCSLIFFLAGS */ 17722 ip1dbg(("ip_setname: EINVAL 4\n")); 17723 return (EINVAL); 17724 } 17725 if ((lifr->lifr_flags & (IFF_IPV6|IFF_IPV4)) != IFF_IPV6 && 17726 (lifr->lifr_flags & (IFF_IPV6|IFF_IPV4)) != IFF_IPV4) { 17727 ip1dbg(("ip_setname: EINVAL 5\n")); 17728 return (EINVAL); 17729 } 17730 /* 17731 * Only allow the IFF_XRESOLV flag to be set on IPv6 interfaces. 17732 */ 17733 if ((lifr->lifr_flags & IFF_XRESOLV) && 17734 !(lifr->lifr_flags & IFF_IPV6) && 17735 !(ipif->ipif_isv6)) { 17736 ip1dbg(("ip_setname: EINVAL 6\n")); 17737 return (EINVAL); 17738 } 17739 17740 /* 17741 * The user has done SIOCGLIFFLAGS prior to this ioctl and hence 17742 * we have all the flags here. So, we assign rather than we OR. 17743 * We can't OR the flags here because we don't want to set 17744 * both IFF_IPV4 and IFF_IPV6. We start off as IFF_IPV4 in 17745 * ipif_allocate and become IFF_IPV4 or IFF_IPV6 here depending 17746 * on lifr_flags value here. 17747 */ 17748 /* 17749 * This ill has not been inserted into the global list. 17750 * So we are still single threaded and don't need any lock 17751 */ 17752 ipif->ipif_flags = lifr->lifr_flags & IFF_LOGINT_FLAGS & ~IFF_DUPLICATE; 17753 ill->ill_flags = lifr->lifr_flags & IFF_PHYINTINST_FLAGS; 17754 ill->ill_phyint->phyint_flags = lifr->lifr_flags & IFF_PHYINT_FLAGS; 17755 17756 /* We started off as V4. */ 17757 if (ill->ill_flags & ILLF_IPV6) { 17758 ill->ill_phyint->phyint_illv6 = ill; 17759 ill->ill_phyint->phyint_illv4 = NULL; 17760 } 17761 17762 return (ipif_set_values(q, mp, lifr->lifr_name, &lifr->lifr_ppa)); 17763 } 17764 17765 /* ARGSUSED */ 17766 int 17767 ip_sioctl_slifname_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 17768 ip_ioctl_cmd_t *ipip, void *if_req) 17769 { 17770 /* 17771 * ill_phyint_reinit merged the v4 and v6 into a single 17772 * ipsq. We might not have been able to complete the 17773 * slifname in ipif_set_values, if we could not become 17774 * exclusive. If so restart it here 17775 */ 17776 return (ipif_set_values_tail(ipif->ipif_ill, ipif, mp, q)); 17777 } 17778 17779 /* 17780 * Return a pointer to the ipif which matches the index, IP version type and 17781 * zoneid. 17782 */ 17783 ipif_t * 17784 ipif_lookup_on_ifindex(uint_t index, boolean_t isv6, zoneid_t zoneid, 17785 queue_t *q, mblk_t *mp, ipsq_func_t func, int *err, ip_stack_t *ipst) 17786 { 17787 ill_t *ill; 17788 ipif_t *ipif = NULL; 17789 17790 ASSERT((q == NULL && mp == NULL && func == NULL && err == NULL) || 17791 (q != NULL && mp != NULL && func != NULL && err != NULL)); 17792 17793 if (err != NULL) 17794 *err = 0; 17795 17796 ill = ill_lookup_on_ifindex(index, isv6, q, mp, func, err, ipst); 17797 if (ill != NULL) { 17798 mutex_enter(&ill->ill_lock); 17799 for (ipif = ill->ill_ipif; ipif != NULL; 17800 ipif = ipif->ipif_next) { 17801 if (IPIF_CAN_LOOKUP(ipif) && (zoneid == ALL_ZONES || 17802 zoneid == ipif->ipif_zoneid || 17803 ipif->ipif_zoneid == ALL_ZONES)) { 17804 ipif_refhold_locked(ipif); 17805 break; 17806 } 17807 } 17808 mutex_exit(&ill->ill_lock); 17809 ill_refrele(ill); 17810 if (ipif == NULL && err != NULL) 17811 *err = ENXIO; 17812 } 17813 return (ipif); 17814 } 17815 17816 /* 17817 * We first need to ensure that the new index is unique, and 17818 * then carry the change across both v4 and v6 ill representation 17819 * of the physical interface. 17820 */ 17821 /* ARGSUSED */ 17822 int 17823 ip_sioctl_slifindex(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 17824 ip_ioctl_cmd_t *ipip, void *ifreq) 17825 { 17826 ill_t *ill; 17827 phyint_t *phyi; 17828 struct ifreq *ifr = (struct ifreq *)ifreq; 17829 struct lifreq *lifr = (struct lifreq *)ifreq; 17830 uint_t old_index, index; 17831 ill_t *ill_v4; 17832 ill_t *ill_v6; 17833 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; 17834 17835 if (ipip->ipi_cmd_type == IF_CMD) 17836 index = ifr->ifr_index; 17837 else 17838 index = lifr->lifr_index; 17839 17840 /* 17841 * Only allow on physical interface. Also, index zero is illegal. 17842 */ 17843 ill = ipif->ipif_ill; 17844 phyi = ill->ill_phyint; 17845 if (ipif->ipif_id != 0 || index == 0) { 17846 return (EINVAL); 17847 } 17848 17849 /* If the index is not changing, no work to do */ 17850 if (phyi->phyint_ifindex == index) 17851 return (0); 17852 17853 /* 17854 * Use ill_lookup_on_ifindex to determine if the 17855 * new index is unused and if so allow the change. 17856 */ 17857 ill_v6 = ill_lookup_on_ifindex(index, B_TRUE, NULL, NULL, NULL, NULL, 17858 ipst); 17859 ill_v4 = ill_lookup_on_ifindex(index, B_FALSE, NULL, NULL, NULL, NULL, 17860 ipst); 17861 if (ill_v6 != NULL || ill_v4 != NULL) { 17862 if (ill_v4 != NULL) 17863 ill_refrele(ill_v4); 17864 if (ill_v6 != NULL) 17865 ill_refrele(ill_v6); 17866 return (EBUSY); 17867 } 17868 17869 /* The new index is unused. Set it in the phyint. */ 17870 old_index = phyi->phyint_ifindex; 17871 phyi->phyint_ifindex = index; 17872 17873 /* Update SCTP's ILL list */ 17874 sctp_ill_reindex(ill, old_index); 17875 17876 /* Send the routing sockets message */ 17877 ip_rts_ifmsg(ipif, RTSQ_DEFAULT); 17878 if (ILL_OTHER(ill)) 17879 ip_rts_ifmsg(ILL_OTHER(ill)->ill_ipif, RTSQ_DEFAULT); 17880 17881 return (0); 17882 } 17883 17884 /* ARGSUSED */ 17885 int 17886 ip_sioctl_get_lifindex(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 17887 ip_ioctl_cmd_t *ipip, void *ifreq) 17888 { 17889 struct ifreq *ifr = (struct ifreq *)ifreq; 17890 struct lifreq *lifr = (struct lifreq *)ifreq; 17891 17892 ip1dbg(("ip_sioctl_get_lifindex(%s:%u %p)\n", 17893 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 17894 /* Get the interface index */ 17895 if (ipip->ipi_cmd_type == IF_CMD) { 17896 ifr->ifr_index = ipif->ipif_ill->ill_phyint->phyint_ifindex; 17897 } else { 17898 lifr->lifr_index = ipif->ipif_ill->ill_phyint->phyint_ifindex; 17899 } 17900 return (0); 17901 } 17902 17903 /* ARGSUSED */ 17904 int 17905 ip_sioctl_get_lifzone(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 17906 ip_ioctl_cmd_t *ipip, void *ifreq) 17907 { 17908 struct lifreq *lifr = (struct lifreq *)ifreq; 17909 17910 ip1dbg(("ip_sioctl_get_lifzone(%s:%u %p)\n", 17911 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 17912 /* Get the interface zone */ 17913 ASSERT(ipip->ipi_cmd_type == LIF_CMD); 17914 lifr->lifr_zoneid = ipif->ipif_zoneid; 17915 return (0); 17916 } 17917 17918 /* 17919 * Set the zoneid of an interface. 17920 */ 17921 /* ARGSUSED */ 17922 int 17923 ip_sioctl_slifzone(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 17924 ip_ioctl_cmd_t *ipip, void *ifreq) 17925 { 17926 struct lifreq *lifr = (struct lifreq *)ifreq; 17927 int err = 0; 17928 boolean_t need_up = B_FALSE; 17929 zone_t *zptr; 17930 zone_status_t status; 17931 zoneid_t zoneid; 17932 17933 ASSERT(ipip->ipi_cmd_type == LIF_CMD); 17934 if ((zoneid = lifr->lifr_zoneid) == ALL_ZONES) { 17935 if (!is_system_labeled()) 17936 return (ENOTSUP); 17937 zoneid = GLOBAL_ZONEID; 17938 } 17939 17940 /* cannot assign instance zero to a non-global zone */ 17941 if (ipif->ipif_id == 0 && zoneid != GLOBAL_ZONEID) 17942 return (ENOTSUP); 17943 17944 /* 17945 * Cannot assign to a zone that doesn't exist or is shutting down. In 17946 * the event of a race with the zone shutdown processing, since IP 17947 * serializes this ioctl and SIOCGLIFCONF/SIOCLIFREMOVEIF, we know the 17948 * interface will be cleaned up even if the zone is shut down 17949 * immediately after the status check. If the interface can't be brought 17950 * down right away, and the zone is shut down before the restart 17951 * function is called, we resolve the possible races by rechecking the 17952 * zone status in the restart function. 17953 */ 17954 if ((zptr = zone_find_by_id(zoneid)) == NULL) 17955 return (EINVAL); 17956 status = zone_status_get(zptr); 17957 zone_rele(zptr); 17958 17959 if (status != ZONE_IS_READY && status != ZONE_IS_RUNNING) 17960 return (EINVAL); 17961 17962 if (ipif->ipif_flags & IPIF_UP) { 17963 /* 17964 * If the interface is already marked up, 17965 * we call ipif_down which will take care 17966 * of ditching any IREs that have been set 17967 * up based on the old interface address. 17968 */ 17969 err = ipif_logical_down(ipif, q, mp); 17970 if (err == EINPROGRESS) 17971 return (err); 17972 ipif_down_tail(ipif); 17973 need_up = B_TRUE; 17974 } 17975 17976 err = ip_sioctl_slifzone_tail(ipif, lifr->lifr_zoneid, q, mp, need_up); 17977 return (err); 17978 } 17979 17980 static int 17981 ip_sioctl_slifzone_tail(ipif_t *ipif, zoneid_t zoneid, 17982 queue_t *q, mblk_t *mp, boolean_t need_up) 17983 { 17984 int err = 0; 17985 ip_stack_t *ipst; 17986 17987 ip1dbg(("ip_sioctl_zoneid_tail(%s:%u %p)\n", 17988 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 17989 17990 if (CONN_Q(q)) 17991 ipst = CONNQ_TO_IPST(q); 17992 else 17993 ipst = ILLQ_TO_IPST(q); 17994 17995 /* 17996 * For exclusive stacks we don't allow a different zoneid than 17997 * global. 17998 */ 17999 if (ipst->ips_netstack->netstack_stackid != GLOBAL_NETSTACKID && 18000 zoneid != GLOBAL_ZONEID) 18001 return (EINVAL); 18002 18003 /* Set the new zone id. */ 18004 ipif->ipif_zoneid = zoneid; 18005 18006 /* Update sctp list */ 18007 sctp_update_ipif(ipif, SCTP_IPIF_UPDATE); 18008 18009 if (need_up) { 18010 /* 18011 * Now bring the interface back up. If this 18012 * is the only IPIF for the ILL, ipif_up 18013 * will have to re-bind to the device, so 18014 * we may get back EINPROGRESS, in which 18015 * case, this IOCTL will get completed in 18016 * ip_rput_dlpi when we see the DL_BIND_ACK. 18017 */ 18018 err = ipif_up(ipif, q, mp); 18019 } 18020 return (err); 18021 } 18022 18023 /* ARGSUSED */ 18024 int 18025 ip_sioctl_slifzone_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 18026 ip_ioctl_cmd_t *ipip, void *if_req) 18027 { 18028 struct lifreq *lifr = (struct lifreq *)if_req; 18029 zoneid_t zoneid; 18030 zone_t *zptr; 18031 zone_status_t status; 18032 18033 ASSERT(ipif->ipif_id != 0); 18034 ASSERT(ipip->ipi_cmd_type == LIF_CMD); 18035 if ((zoneid = lifr->lifr_zoneid) == ALL_ZONES) 18036 zoneid = GLOBAL_ZONEID; 18037 18038 ip1dbg(("ip_sioctl_slifzone_restart(%s:%u %p)\n", 18039 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 18040 18041 /* 18042 * We recheck the zone status to resolve the following race condition: 18043 * 1) process sends SIOCSLIFZONE to put hme0:1 in zone "myzone"; 18044 * 2) hme0:1 is up and can't be brought down right away; 18045 * ip_sioctl_slifzone() returns EINPROGRESS and the request is queued; 18046 * 3) zone "myzone" is halted; the zone status switches to 18047 * 'shutting_down' and the zones framework sends SIOCGLIFCONF to list 18048 * the interfaces to remove - hme0:1 is not returned because it's not 18049 * yet in "myzone", so it won't be removed; 18050 * 4) the restart function for SIOCSLIFZONE is called; without the 18051 * status check here, we would have hme0:1 in "myzone" after it's been 18052 * destroyed. 18053 * Note that if the status check fails, we need to bring the interface 18054 * back to its state prior to ip_sioctl_slifzone(), hence the call to 18055 * ipif_up_done[_v6](). 18056 */ 18057 status = ZONE_IS_UNINITIALIZED; 18058 if ((zptr = zone_find_by_id(zoneid)) != NULL) { 18059 status = zone_status_get(zptr); 18060 zone_rele(zptr); 18061 } 18062 if (status != ZONE_IS_READY && status != ZONE_IS_RUNNING) { 18063 if (ipif->ipif_isv6) { 18064 (void) ipif_up_done_v6(ipif); 18065 } else { 18066 (void) ipif_up_done(ipif); 18067 } 18068 return (EINVAL); 18069 } 18070 18071 ipif_down_tail(ipif); 18072 18073 return (ip_sioctl_slifzone_tail(ipif, lifr->lifr_zoneid, q, mp, 18074 B_TRUE)); 18075 } 18076 18077 /* 18078 * Return the number of addresses on `ill' with one or more of the values 18079 * in `set' set and all of the values in `clear' clear. 18080 */ 18081 static uint_t 18082 ill_flagaddr_cnt(const ill_t *ill, uint64_t set, uint64_t clear) 18083 { 18084 ipif_t *ipif; 18085 uint_t cnt = 0; 18086 18087 ASSERT(IAM_WRITER_ILL(ill)); 18088 18089 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) 18090 if ((ipif->ipif_flags & set) && !(ipif->ipif_flags & clear)) 18091 cnt++; 18092 18093 return (cnt); 18094 } 18095 18096 /* 18097 * Return the number of migratable addresses on `ill' that are under 18098 * application control. 18099 */ 18100 uint_t 18101 ill_appaddr_cnt(const ill_t *ill) 18102 { 18103 return (ill_flagaddr_cnt(ill, IPIF_DHCPRUNNING | IPIF_ADDRCONF, 18104 IPIF_NOFAILOVER)); 18105 } 18106 18107 /* 18108 * Return the number of point-to-point addresses on `ill'. 18109 */ 18110 uint_t 18111 ill_ptpaddr_cnt(const ill_t *ill) 18112 { 18113 return (ill_flagaddr_cnt(ill, IPIF_POINTOPOINT, 0)); 18114 } 18115 18116 /* ARGSUSED */ 18117 int 18118 ip_sioctl_get_lifusesrc(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 18119 ip_ioctl_cmd_t *ipip, void *ifreq) 18120 { 18121 struct lifreq *lifr = ifreq; 18122 18123 ASSERT(q->q_next == NULL); 18124 ASSERT(CONN_Q(q)); 18125 18126 ip1dbg(("ip_sioctl_get_lifusesrc(%s:%u %p)\n", 18127 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 18128 lifr->lifr_index = ipif->ipif_ill->ill_usesrc_ifindex; 18129 ip1dbg(("ip_sioctl_get_lifusesrc:lifr_index = %d\n", lifr->lifr_index)); 18130 18131 return (0); 18132 } 18133 18134 /* Find the previous ILL in this usesrc group */ 18135 static ill_t * 18136 ill_prev_usesrc(ill_t *uill) 18137 { 18138 ill_t *ill; 18139 18140 for (ill = uill->ill_usesrc_grp_next; 18141 ASSERT(ill), ill->ill_usesrc_grp_next != uill; 18142 ill = ill->ill_usesrc_grp_next) 18143 /* do nothing */; 18144 return (ill); 18145 } 18146 18147 /* 18148 * Release all members of the usesrc group. This routine is called 18149 * from ill_delete when the interface being unplumbed is the 18150 * group head. 18151 */ 18152 static void 18153 ill_disband_usesrc_group(ill_t *uill) 18154 { 18155 ill_t *next_ill, *tmp_ill; 18156 ip_stack_t *ipst = uill->ill_ipst; 18157 18158 ASSERT(RW_WRITE_HELD(&ipst->ips_ill_g_usesrc_lock)); 18159 next_ill = uill->ill_usesrc_grp_next; 18160 18161 do { 18162 ASSERT(next_ill != NULL); 18163 tmp_ill = next_ill->ill_usesrc_grp_next; 18164 ASSERT(tmp_ill != NULL); 18165 next_ill->ill_usesrc_grp_next = NULL; 18166 next_ill->ill_usesrc_ifindex = 0; 18167 next_ill = tmp_ill; 18168 } while (next_ill->ill_usesrc_ifindex != 0); 18169 uill->ill_usesrc_grp_next = NULL; 18170 } 18171 18172 /* 18173 * Remove the client usesrc ILL from the list and relink to a new list 18174 */ 18175 int 18176 ill_relink_usesrc_ills(ill_t *ucill, ill_t *uill, uint_t ifindex) 18177 { 18178 ill_t *ill, *tmp_ill; 18179 ip_stack_t *ipst = ucill->ill_ipst; 18180 18181 ASSERT((ucill != NULL) && (ucill->ill_usesrc_grp_next != NULL) && 18182 (uill != NULL) && RW_WRITE_HELD(&ipst->ips_ill_g_usesrc_lock)); 18183 18184 /* 18185 * Check if the usesrc client ILL passed in is not already 18186 * in use as a usesrc ILL i.e one whose source address is 18187 * in use OR a usesrc ILL is not already in use as a usesrc 18188 * client ILL 18189 */ 18190 if ((ucill->ill_usesrc_ifindex == 0) || 18191 (uill->ill_usesrc_ifindex != 0)) { 18192 return (-1); 18193 } 18194 18195 ill = ill_prev_usesrc(ucill); 18196 ASSERT(ill->ill_usesrc_grp_next != NULL); 18197 18198 /* Remove from the current list */ 18199 if (ill->ill_usesrc_grp_next->ill_usesrc_grp_next == ill) { 18200 /* Only two elements in the list */ 18201 ASSERT(ill->ill_usesrc_ifindex == 0); 18202 ill->ill_usesrc_grp_next = NULL; 18203 } else { 18204 ill->ill_usesrc_grp_next = ucill->ill_usesrc_grp_next; 18205 } 18206 18207 if (ifindex == 0) { 18208 ucill->ill_usesrc_ifindex = 0; 18209 ucill->ill_usesrc_grp_next = NULL; 18210 return (0); 18211 } 18212 18213 ucill->ill_usesrc_ifindex = ifindex; 18214 tmp_ill = uill->ill_usesrc_grp_next; 18215 uill->ill_usesrc_grp_next = ucill; 18216 ucill->ill_usesrc_grp_next = 18217 (tmp_ill != NULL) ? tmp_ill : uill; 18218 return (0); 18219 } 18220 18221 /* 18222 * Set the ill_usesrc and ill_usesrc_head fields. See synchronization notes in 18223 * ip.c for locking details. 18224 */ 18225 /* ARGSUSED */ 18226 int 18227 ip_sioctl_slifusesrc(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 18228 ip_ioctl_cmd_t *ipip, void *ifreq) 18229 { 18230 struct lifreq *lifr = (struct lifreq *)ifreq; 18231 boolean_t isv6 = B_FALSE, reset_flg = B_FALSE, 18232 ill_flag_changed = B_FALSE; 18233 ill_t *usesrc_ill, *usesrc_cli_ill = ipif->ipif_ill; 18234 int err = 0, ret; 18235 uint_t ifindex; 18236 ipsq_t *ipsq = NULL; 18237 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; 18238 18239 ASSERT(IAM_WRITER_IPIF(ipif)); 18240 ASSERT(q->q_next == NULL); 18241 ASSERT(CONN_Q(q)); 18242 18243 isv6 = (Q_TO_CONN(q))->conn_af_isv6; 18244 18245 ifindex = lifr->lifr_index; 18246 if (ifindex == 0) { 18247 if (usesrc_cli_ill->ill_usesrc_grp_next == NULL) { 18248 /* non usesrc group interface, nothing to reset */ 18249 return (0); 18250 } 18251 ifindex = usesrc_cli_ill->ill_usesrc_ifindex; 18252 /* valid reset request */ 18253 reset_flg = B_TRUE; 18254 } 18255 18256 usesrc_ill = ill_lookup_on_ifindex(ifindex, isv6, q, mp, 18257 ip_process_ioctl, &err, ipst); 18258 if (usesrc_ill == NULL) { 18259 return (err); 18260 } 18261 18262 ipsq = ipsq_try_enter(NULL, usesrc_ill, q, mp, ip_process_ioctl, 18263 NEW_OP, B_TRUE); 18264 if (ipsq == NULL) { 18265 err = EINPROGRESS; 18266 /* Operation enqueued on the ipsq of the usesrc ILL */ 18267 goto done; 18268 } 18269 18270 /* USESRC isn't currently supported with IPMP */ 18271 if (IS_IPMP(usesrc_ill) || IS_UNDER_IPMP(usesrc_ill)) { 18272 err = ENOTSUP; 18273 goto done; 18274 } 18275 18276 /* 18277 * USESRC isn't compatible with the STANDBY flag. (STANDBY is only 18278 * used by IPMP underlying interfaces, but someone might think it's 18279 * more general and try to use it independently with VNI.) 18280 */ 18281 if (usesrc_ill->ill_phyint->phyint_flags & PHYI_STANDBY) { 18282 err = ENOTSUP; 18283 goto done; 18284 } 18285 18286 /* 18287 * If the client is already in use as a usesrc_ill or a usesrc_ill is 18288 * already a client then return EINVAL 18289 */ 18290 if (IS_USESRC_ILL(usesrc_cli_ill) || IS_USESRC_CLI_ILL(usesrc_ill)) { 18291 err = EINVAL; 18292 goto done; 18293 } 18294 18295 /* 18296 * If the ill_usesrc_ifindex field is already set to what it needs to 18297 * be then this is a duplicate operation. 18298 */ 18299 if (!reset_flg && usesrc_cli_ill->ill_usesrc_ifindex == ifindex) { 18300 err = 0; 18301 goto done; 18302 } 18303 18304 ip1dbg(("ip_sioctl_slifusesrc: usesrc_cli_ill %s, usesrc_ill %s," 18305 " v6 = %d", usesrc_cli_ill->ill_name, usesrc_ill->ill_name, 18306 usesrc_ill->ill_isv6)); 18307 18308 /* 18309 * The next step ensures that no new ires will be created referencing 18310 * the client ill, until the ILL_CHANGING flag is cleared. Then 18311 * we go through an ire walk deleting all ire caches that reference 18312 * the client ill. New ires referencing the client ill that are added 18313 * to the ire table before the ILL_CHANGING flag is set, will be 18314 * cleaned up by the ire walk below. Attempt to add new ires referencing 18315 * the client ill while the ILL_CHANGING flag is set will be failed 18316 * during the ire_add in ire_atomic_start. ire_atomic_start atomically 18317 * checks (under the ill_g_usesrc_lock) that the ire being added 18318 * is not stale, i.e the ire_stq and ire_ipif are consistent and 18319 * belong to the same usesrc group. 18320 */ 18321 mutex_enter(&usesrc_cli_ill->ill_lock); 18322 usesrc_cli_ill->ill_state_flags |= ILL_CHANGING; 18323 mutex_exit(&usesrc_cli_ill->ill_lock); 18324 ill_flag_changed = B_TRUE; 18325 18326 if (ipif->ipif_isv6) 18327 ire_walk_v6(ipif_delete_cache_ire, (char *)usesrc_cli_ill, 18328 ALL_ZONES, ipst); 18329 else 18330 ire_walk_v4(ipif_delete_cache_ire, (char *)usesrc_cli_ill, 18331 ALL_ZONES, ipst); 18332 18333 /* 18334 * ill_g_usesrc_lock global lock protects the ill_usesrc_grp_next 18335 * and the ill_usesrc_ifindex fields 18336 */ 18337 rw_enter(&ipst->ips_ill_g_usesrc_lock, RW_WRITER); 18338 18339 if (reset_flg) { 18340 ret = ill_relink_usesrc_ills(usesrc_cli_ill, usesrc_ill, 0); 18341 if (ret != 0) { 18342 err = EINVAL; 18343 } 18344 rw_exit(&ipst->ips_ill_g_usesrc_lock); 18345 goto done; 18346 } 18347 18348 /* 18349 * Four possibilities to consider: 18350 * 1. Both usesrc_ill and usesrc_cli_ill are not part of any usesrc grp 18351 * 2. usesrc_ill is part of a group but usesrc_cli_ill isn't 18352 * 3. usesrc_cli_ill is part of a group but usesrc_ill isn't 18353 * 4. Both are part of their respective usesrc groups 18354 */ 18355 if ((usesrc_ill->ill_usesrc_grp_next == NULL) && 18356 (usesrc_cli_ill->ill_usesrc_grp_next == NULL)) { 18357 ASSERT(usesrc_ill->ill_usesrc_ifindex == 0); 18358 usesrc_cli_ill->ill_usesrc_ifindex = ifindex; 18359 usesrc_ill->ill_usesrc_grp_next = usesrc_cli_ill; 18360 usesrc_cli_ill->ill_usesrc_grp_next = usesrc_ill; 18361 } else if ((usesrc_ill->ill_usesrc_grp_next != NULL) && 18362 (usesrc_cli_ill->ill_usesrc_grp_next == NULL)) { 18363 usesrc_cli_ill->ill_usesrc_ifindex = ifindex; 18364 /* Insert at head of list */ 18365 usesrc_cli_ill->ill_usesrc_grp_next = 18366 usesrc_ill->ill_usesrc_grp_next; 18367 usesrc_ill->ill_usesrc_grp_next = usesrc_cli_ill; 18368 } else { 18369 ret = ill_relink_usesrc_ills(usesrc_cli_ill, usesrc_ill, 18370 ifindex); 18371 if (ret != 0) 18372 err = EINVAL; 18373 } 18374 rw_exit(&ipst->ips_ill_g_usesrc_lock); 18375 18376 done: 18377 if (ill_flag_changed) { 18378 mutex_enter(&usesrc_cli_ill->ill_lock); 18379 usesrc_cli_ill->ill_state_flags &= ~ILL_CHANGING; 18380 mutex_exit(&usesrc_cli_ill->ill_lock); 18381 } 18382 if (ipsq != NULL) 18383 ipsq_exit(ipsq); 18384 /* The refrele on the lifr_name ipif is done by ip_process_ioctl */ 18385 ill_refrele(usesrc_ill); 18386 return (err); 18387 } 18388 18389 /* 18390 * comparison function used by avl. 18391 */ 18392 static int 18393 ill_phyint_compare_index(const void *index_ptr, const void *phyip) 18394 { 18395 18396 uint_t index; 18397 18398 ASSERT(phyip != NULL && index_ptr != NULL); 18399 18400 index = *((uint_t *)index_ptr); 18401 /* 18402 * let the phyint with the lowest index be on top. 18403 */ 18404 if (((phyint_t *)phyip)->phyint_ifindex < index) 18405 return (1); 18406 if (((phyint_t *)phyip)->phyint_ifindex > index) 18407 return (-1); 18408 return (0); 18409 } 18410 18411 /* 18412 * comparison function used by avl. 18413 */ 18414 static int 18415 ill_phyint_compare_name(const void *name_ptr, const void *phyip) 18416 { 18417 ill_t *ill; 18418 int res = 0; 18419 18420 ASSERT(phyip != NULL && name_ptr != NULL); 18421 18422 if (((phyint_t *)phyip)->phyint_illv4) 18423 ill = ((phyint_t *)phyip)->phyint_illv4; 18424 else 18425 ill = ((phyint_t *)phyip)->phyint_illv6; 18426 ASSERT(ill != NULL); 18427 18428 res = strcmp(ill->ill_name, (char *)name_ptr); 18429 if (res > 0) 18430 return (1); 18431 else if (res < 0) 18432 return (-1); 18433 return (0); 18434 } 18435 18436 /* 18437 * This function is called on the unplumb path via ill_glist_delete() when 18438 * there are no ills left on the phyint and thus the phyint can be freed. 18439 */ 18440 static void 18441 phyint_free(phyint_t *phyi) 18442 { 18443 ip_stack_t *ipst = PHYINT_TO_IPST(phyi); 18444 18445 ASSERT(phyi->phyint_illv4 == NULL && phyi->phyint_illv6 == NULL); 18446 18447 /* 18448 * If this phyint was an IPMP meta-interface, blow away the group. 18449 * This is safe to do because all of the illgrps have already been 18450 * removed by I_PUNLINK, and thus SIOCSLIFGROUPNAME cannot find us. 18451 * If we're cleaning up as a result of failed initialization, 18452 * phyint_grp may be NULL. 18453 */ 18454 if ((phyi->phyint_flags & PHYI_IPMP) && (phyi->phyint_grp != NULL)) { 18455 rw_enter(&ipst->ips_ipmp_lock, RW_WRITER); 18456 ipmp_grp_destroy(phyi->phyint_grp); 18457 phyi->phyint_grp = NULL; 18458 rw_exit(&ipst->ips_ipmp_lock); 18459 } 18460 18461 /* 18462 * If this interface was under IPMP, take it out of the group. 18463 */ 18464 if (phyi->phyint_grp != NULL) 18465 ipmp_phyint_leave_grp(phyi); 18466 18467 /* 18468 * Delete the phyint and disassociate its ipsq. The ipsq itself 18469 * will be freed in ipsq_exit(). 18470 */ 18471 phyi->phyint_ipsq->ipsq_phyint = NULL; 18472 phyi->phyint_name[0] = '\0'; 18473 18474 mi_free(phyi); 18475 } 18476 18477 /* 18478 * Attach the ill to the phyint structure which can be shared by both 18479 * IPv4 and IPv6 ill. ill_init allocates a phyint to just hold flags. This 18480 * function is called from ipif_set_values and ill_lookup_on_name (for 18481 * loopback) where we know the name of the ill. We lookup the ill and if 18482 * there is one present already with the name use that phyint. Otherwise 18483 * reuse the one allocated by ill_init. 18484 */ 18485 static void 18486 ill_phyint_reinit(ill_t *ill) 18487 { 18488 boolean_t isv6 = ill->ill_isv6; 18489 phyint_t *phyi_old; 18490 phyint_t *phyi; 18491 avl_index_t where = 0; 18492 ill_t *ill_other = NULL; 18493 ip_stack_t *ipst = ill->ill_ipst; 18494 18495 ASSERT(RW_WRITE_HELD(&ipst->ips_ill_g_lock)); 18496 18497 phyi_old = ill->ill_phyint; 18498 ASSERT(isv6 || (phyi_old->phyint_illv4 == ill && 18499 phyi_old->phyint_illv6 == NULL)); 18500 ASSERT(!isv6 || (phyi_old->phyint_illv6 == ill && 18501 phyi_old->phyint_illv4 == NULL)); 18502 ASSERT(phyi_old->phyint_ifindex == 0); 18503 18504 /* 18505 * Now that our ill has a name, set it in the phyint. 18506 */ 18507 (void) strlcpy(ill->ill_phyint->phyint_name, ill->ill_name, LIFNAMSIZ); 18508 18509 phyi = avl_find(&ipst->ips_phyint_g_list->phyint_list_avl_by_name, 18510 ill->ill_name, &where); 18511 18512 /* 18513 * 1. We grabbed the ill_g_lock before inserting this ill into 18514 * the global list of ills. So no other thread could have located 18515 * this ill and hence the ipsq of this ill is guaranteed to be empty. 18516 * 2. Now locate the other protocol instance of this ill. 18517 * 3. Now grab both ill locks in the right order, and the phyint lock of 18518 * the new ipsq. Holding ill locks + ill_g_lock ensures that the ipsq 18519 * of neither ill can change. 18520 * 4. Merge the phyint and thus the ipsq as well of this ill onto the 18521 * other ill. 18522 * 5. Release all locks. 18523 */ 18524 18525 /* 18526 * Look for IPv4 if we are initializing IPv6 or look for IPv6 if 18527 * we are initializing IPv4. 18528 */ 18529 if (phyi != NULL) { 18530 ill_other = (isv6) ? phyi->phyint_illv4 : phyi->phyint_illv6; 18531 ASSERT(ill_other->ill_phyint != NULL); 18532 ASSERT((isv6 && !ill_other->ill_isv6) || 18533 (!isv6 && ill_other->ill_isv6)); 18534 GRAB_ILL_LOCKS(ill, ill_other); 18535 /* 18536 * We are potentially throwing away phyint_flags which 18537 * could be different from the one that we obtain from 18538 * ill_other->ill_phyint. But it is okay as we are assuming 18539 * that the state maintained within IP is correct. 18540 */ 18541 mutex_enter(&phyi->phyint_lock); 18542 if (isv6) { 18543 ASSERT(phyi->phyint_illv6 == NULL); 18544 phyi->phyint_illv6 = ill; 18545 } else { 18546 ASSERT(phyi->phyint_illv4 == NULL); 18547 phyi->phyint_illv4 = ill; 18548 } 18549 18550 /* 18551 * Delete the old phyint and make its ipsq eligible 18552 * to be freed in ipsq_exit(). 18553 */ 18554 phyi_old->phyint_illv4 = NULL; 18555 phyi_old->phyint_illv6 = NULL; 18556 phyi_old->phyint_ipsq->ipsq_phyint = NULL; 18557 phyi_old->phyint_name[0] = '\0'; 18558 mi_free(phyi_old); 18559 } else { 18560 mutex_enter(&ill->ill_lock); 18561 /* 18562 * We don't need to acquire any lock, since 18563 * the ill is not yet visible globally and we 18564 * have not yet released the ill_g_lock. 18565 */ 18566 phyi = phyi_old; 18567 mutex_enter(&phyi->phyint_lock); 18568 /* XXX We need a recovery strategy here. */ 18569 if (!phyint_assign_ifindex(phyi, ipst)) 18570 cmn_err(CE_PANIC, "phyint_assign_ifindex() failed"); 18571 18572 avl_insert(&ipst->ips_phyint_g_list->phyint_list_avl_by_name, 18573 (void *)phyi, where); 18574 18575 (void) avl_find(&ipst->ips_phyint_g_list-> 18576 phyint_list_avl_by_index, 18577 &phyi->phyint_ifindex, &where); 18578 avl_insert(&ipst->ips_phyint_g_list->phyint_list_avl_by_index, 18579 (void *)phyi, where); 18580 } 18581 18582 /* 18583 * Reassigning ill_phyint automatically reassigns the ipsq also. 18584 * pending mp is not affected because that is per ill basis. 18585 */ 18586 ill->ill_phyint = phyi; 18587 18588 /* 18589 * Now that the phyint's ifindex has been assigned, complete the 18590 * remaining 18591 */ 18592 18593 ill->ill_ip_mib->ipIfStatsIfIndex = ill->ill_phyint->phyint_ifindex; 18594 if (ill->ill_isv6) { 18595 ill->ill_icmp6_mib->ipv6IfIcmpIfIndex = 18596 ill->ill_phyint->phyint_ifindex; 18597 ill->ill_mcast_type = ipst->ips_mld_max_version; 18598 } else { 18599 ill->ill_mcast_type = ipst->ips_igmp_max_version; 18600 } 18601 18602 /* 18603 * Generate an event within the hooks framework to indicate that 18604 * a new interface has just been added to IP. For this event to 18605 * be generated, the network interface must, at least, have an 18606 * ifindex assigned to it. 18607 * 18608 * This needs to be run inside the ill_g_lock perimeter to ensure 18609 * that the ordering of delivered events to listeners matches the 18610 * order of them in the kernel. 18611 * 18612 * This function could be called from ill_lookup_on_name. In that case 18613 * the interface is loopback "lo", which will not generate a NIC event. 18614 */ 18615 if (ill->ill_name_length <= 2 || 18616 ill->ill_name[0] != 'l' || ill->ill_name[1] != 'o') { 18617 ill_nic_event_dispatch(ill, 0, NE_PLUMB, ill->ill_name, 18618 ill->ill_name_length); 18619 } 18620 RELEASE_ILL_LOCKS(ill, ill_other); 18621 mutex_exit(&phyi->phyint_lock); 18622 } 18623 18624 /* 18625 * Notify any downstream modules of the name of this interface. 18626 * An M_IOCTL is used even though we don't expect a successful reply. 18627 * Any reply message from the driver (presumably an M_IOCNAK) will 18628 * eventually get discarded somewhere upstream. The message format is 18629 * simply an SIOCSLIFNAME ioctl just as might be sent from ifconfig 18630 * to IP. 18631 */ 18632 static void 18633 ip_ifname_notify(ill_t *ill, queue_t *q) 18634 { 18635 mblk_t *mp1, *mp2; 18636 struct iocblk *iocp; 18637 struct lifreq *lifr; 18638 18639 mp1 = mkiocb(SIOCSLIFNAME); 18640 if (mp1 == NULL) 18641 return; 18642 mp2 = allocb(sizeof (struct lifreq), BPRI_HI); 18643 if (mp2 == NULL) { 18644 freeb(mp1); 18645 return; 18646 } 18647 18648 mp1->b_cont = mp2; 18649 iocp = (struct iocblk *)mp1->b_rptr; 18650 iocp->ioc_count = sizeof (struct lifreq); 18651 18652 lifr = (struct lifreq *)mp2->b_rptr; 18653 mp2->b_wptr += sizeof (struct lifreq); 18654 bzero(lifr, sizeof (struct lifreq)); 18655 18656 (void) strncpy(lifr->lifr_name, ill->ill_name, LIFNAMSIZ); 18657 lifr->lifr_ppa = ill->ill_ppa; 18658 lifr->lifr_flags = (ill->ill_flags & (ILLF_IPV4|ILLF_IPV6)); 18659 18660 putnext(q, mp1); 18661 } 18662 18663 static int 18664 ipif_set_values_tail(ill_t *ill, ipif_t *ipif, mblk_t *mp, queue_t *q) 18665 { 18666 int err; 18667 ip_stack_t *ipst = ill->ill_ipst; 18668 phyint_t *phyi = ill->ill_phyint; 18669 18670 /* Set the obsolete NDD per-interface forwarding name. */ 18671 err = ill_set_ndd_name(ill); 18672 if (err != 0) { 18673 cmn_err(CE_WARN, "ipif_set_values: ill_set_ndd_name (%d)\n", 18674 err); 18675 } 18676 18677 /* 18678 * Now that ill_name is set, the configuration for the IPMP 18679 * meta-interface can be performed. 18680 */ 18681 if (IS_IPMP(ill)) { 18682 rw_enter(&ipst->ips_ipmp_lock, RW_WRITER); 18683 /* 18684 * If phyi->phyint_grp is NULL, then this is the first IPMP 18685 * meta-interface and we need to create the IPMP group. 18686 */ 18687 if (phyi->phyint_grp == NULL) { 18688 /* 18689 * If someone has renamed another IPMP group to have 18690 * the same name as our interface, bail. 18691 */ 18692 if (ipmp_grp_lookup(ill->ill_name, ipst) != NULL) { 18693 rw_exit(&ipst->ips_ipmp_lock); 18694 return (EEXIST); 18695 } 18696 phyi->phyint_grp = ipmp_grp_create(ill->ill_name, phyi); 18697 if (phyi->phyint_grp == NULL) { 18698 rw_exit(&ipst->ips_ipmp_lock); 18699 return (ENOMEM); 18700 } 18701 } 18702 rw_exit(&ipst->ips_ipmp_lock); 18703 } 18704 18705 /* Tell downstream modules where they are. */ 18706 ip_ifname_notify(ill, q); 18707 18708 /* 18709 * ill_dl_phys returns EINPROGRESS in the usual case. 18710 * Error cases are ENOMEM ... 18711 */ 18712 err = ill_dl_phys(ill, ipif, mp, q); 18713 18714 /* 18715 * If there is no IRE expiration timer running, get one started. 18716 * igmp and mld timers will be triggered by the first multicast 18717 */ 18718 if (ipst->ips_ip_ire_expire_id == 0) { 18719 /* 18720 * acquire the lock and check again. 18721 */ 18722 mutex_enter(&ipst->ips_ip_trash_timer_lock); 18723 if (ipst->ips_ip_ire_expire_id == 0) { 18724 ipst->ips_ip_ire_expire_id = timeout( 18725 ip_trash_timer_expire, ipst, 18726 MSEC_TO_TICK(ipst->ips_ip_timer_interval)); 18727 } 18728 mutex_exit(&ipst->ips_ip_trash_timer_lock); 18729 } 18730 18731 if (ill->ill_isv6) { 18732 mutex_enter(&ipst->ips_mld_slowtimeout_lock); 18733 if (ipst->ips_mld_slowtimeout_id == 0) { 18734 ipst->ips_mld_slowtimeout_id = timeout(mld_slowtimo, 18735 (void *)ipst, 18736 MSEC_TO_TICK(MCAST_SLOWTIMO_INTERVAL)); 18737 } 18738 mutex_exit(&ipst->ips_mld_slowtimeout_lock); 18739 } else { 18740 mutex_enter(&ipst->ips_igmp_slowtimeout_lock); 18741 if (ipst->ips_igmp_slowtimeout_id == 0) { 18742 ipst->ips_igmp_slowtimeout_id = timeout(igmp_slowtimo, 18743 (void *)ipst, 18744 MSEC_TO_TICK(MCAST_SLOWTIMO_INTERVAL)); 18745 } 18746 mutex_exit(&ipst->ips_igmp_slowtimeout_lock); 18747 } 18748 18749 return (err); 18750 } 18751 18752 /* 18753 * Common routine for ppa and ifname setting. Should be called exclusive. 18754 * 18755 * Returns EINPROGRESS when mp has been consumed by queueing it on 18756 * ill_pending_mp and the ioctl will complete in ip_rput. 18757 * 18758 * NOTE : If ppa is UNIT_MAX, we assign the next valid ppa and return 18759 * the new name and new ppa in lifr_name and lifr_ppa respectively. 18760 * For SLIFNAME, we pass these values back to the userland. 18761 */ 18762 static int 18763 ipif_set_values(queue_t *q, mblk_t *mp, char *interf_name, uint_t *new_ppa_ptr) 18764 { 18765 ill_t *ill; 18766 ipif_t *ipif; 18767 ipsq_t *ipsq; 18768 char *ppa_ptr; 18769 char *old_ptr; 18770 char old_char; 18771 int error; 18772 ip_stack_t *ipst; 18773 18774 ip1dbg(("ipif_set_values: interface %s\n", interf_name)); 18775 ASSERT(q->q_next != NULL); 18776 ASSERT(interf_name != NULL); 18777 18778 ill = (ill_t *)q->q_ptr; 18779 ipst = ill->ill_ipst; 18780 18781 ASSERT(ill->ill_ipst != NULL); 18782 ASSERT(ill->ill_name[0] == '\0'); 18783 ASSERT(IAM_WRITER_ILL(ill)); 18784 ASSERT((mi_strlen(interf_name) + 1) <= LIFNAMSIZ); 18785 ASSERT(ill->ill_ppa == UINT_MAX); 18786 18787 /* The ppa is sent down by ifconfig or is chosen */ 18788 if ((ppa_ptr = ill_get_ppa_ptr(interf_name)) == NULL) { 18789 return (EINVAL); 18790 } 18791 18792 /* 18793 * make sure ppa passed in is same as ppa in the name. 18794 * This check is not made when ppa == UINT_MAX in that case ppa 18795 * in the name could be anything. System will choose a ppa and 18796 * update new_ppa_ptr and inter_name to contain the choosen ppa. 18797 */ 18798 if (*new_ppa_ptr != UINT_MAX) { 18799 /* stoi changes the pointer */ 18800 old_ptr = ppa_ptr; 18801 /* 18802 * ifconfig passed in 0 for the ppa for DLPI 1 style devices 18803 * (they don't have an externally visible ppa). We assign one 18804 * here so that we can manage the interface. Note that in 18805 * the past this value was always 0 for DLPI 1 drivers. 18806 */ 18807 if (*new_ppa_ptr == 0) 18808 *new_ppa_ptr = stoi(&old_ptr); 18809 else if (*new_ppa_ptr != (uint_t)stoi(&old_ptr)) 18810 return (EINVAL); 18811 } 18812 /* 18813 * terminate string before ppa 18814 * save char at that location. 18815 */ 18816 old_char = ppa_ptr[0]; 18817 ppa_ptr[0] = '\0'; 18818 18819 ill->ill_ppa = *new_ppa_ptr; 18820 /* 18821 * Finish as much work now as possible before calling ill_glist_insert 18822 * which makes the ill globally visible and also merges it with the 18823 * other protocol instance of this phyint. The remaining work is 18824 * done after entering the ipsq which may happen sometime later. 18825 * ill_set_ndd_name occurs after the ill has been made globally visible. 18826 */ 18827 ipif = ill->ill_ipif; 18828 18829 /* We didn't do this when we allocated ipif in ip_ll_subnet_defaults */ 18830 ipif_assign_seqid(ipif); 18831 18832 if (!(ill->ill_flags & (ILLF_IPV4|ILLF_IPV6))) 18833 ill->ill_flags |= ILLF_IPV4; 18834 18835 ASSERT(ipif->ipif_next == NULL); /* Only one ipif on ill */ 18836 ASSERT((ipif->ipif_flags & IPIF_UP) == 0); 18837 18838 if (ill->ill_flags & ILLF_IPV6) { 18839 18840 ill->ill_isv6 = B_TRUE; 18841 if (ill->ill_rq != NULL) { 18842 ill->ill_rq->q_qinfo = &iprinitv6; 18843 ill->ill_wq->q_qinfo = &ipwinitv6; 18844 } 18845 18846 /* Keep the !IN6_IS_ADDR_V4MAPPED assertions happy */ 18847 ipif->ipif_v6lcl_addr = ipv6_all_zeros; 18848 ipif->ipif_v6src_addr = ipv6_all_zeros; 18849 ipif->ipif_v6subnet = ipv6_all_zeros; 18850 ipif->ipif_v6net_mask = ipv6_all_zeros; 18851 ipif->ipif_v6brd_addr = ipv6_all_zeros; 18852 ipif->ipif_v6pp_dst_addr = ipv6_all_zeros; 18853 /* 18854 * point-to-point or Non-mulicast capable 18855 * interfaces won't do NUD unless explicitly 18856 * configured to do so. 18857 */ 18858 if (ipif->ipif_flags & IPIF_POINTOPOINT || 18859 !(ill->ill_flags & ILLF_MULTICAST)) { 18860 ill->ill_flags |= ILLF_NONUD; 18861 } 18862 /* Make sure IPv4 specific flag is not set on IPv6 if */ 18863 if (ill->ill_flags & ILLF_NOARP) { 18864 /* 18865 * Note: xresolv interfaces will eventually need 18866 * NOARP set here as well, but that will require 18867 * those external resolvers to have some 18868 * knowledge of that flag and act appropriately. 18869 * Not to be changed at present. 18870 */ 18871 ill->ill_flags &= ~ILLF_NOARP; 18872 } 18873 /* 18874 * Set the ILLF_ROUTER flag according to the global 18875 * IPv6 forwarding policy. 18876 */ 18877 if (ipst->ips_ipv6_forward != 0) 18878 ill->ill_flags |= ILLF_ROUTER; 18879 } else if (ill->ill_flags & ILLF_IPV4) { 18880 ill->ill_isv6 = B_FALSE; 18881 IN6_IPADDR_TO_V4MAPPED(INADDR_ANY, &ipif->ipif_v6lcl_addr); 18882 IN6_IPADDR_TO_V4MAPPED(INADDR_ANY, &ipif->ipif_v6src_addr); 18883 IN6_IPADDR_TO_V4MAPPED(INADDR_ANY, &ipif->ipif_v6subnet); 18884 IN6_IPADDR_TO_V4MAPPED(INADDR_ANY, &ipif->ipif_v6net_mask); 18885 IN6_IPADDR_TO_V4MAPPED(INADDR_ANY, &ipif->ipif_v6brd_addr); 18886 IN6_IPADDR_TO_V4MAPPED(INADDR_ANY, &ipif->ipif_v6pp_dst_addr); 18887 /* 18888 * Set the ILLF_ROUTER flag according to the global 18889 * IPv4 forwarding policy. 18890 */ 18891 if (ipst->ips_ip_g_forward != 0) 18892 ill->ill_flags |= ILLF_ROUTER; 18893 } 18894 18895 ASSERT(ill->ill_phyint != NULL); 18896 18897 /* 18898 * The ipIfStatsIfindex and ipv6IfIcmpIfIndex assignments will 18899 * be completed in ill_glist_insert -> ill_phyint_reinit 18900 */ 18901 if (!ill_allocate_mibs(ill)) 18902 return (ENOMEM); 18903 18904 /* 18905 * Pick a default sap until we get the DL_INFO_ACK back from 18906 * the driver. 18907 */ 18908 if (ill->ill_sap == 0) { 18909 if (ill->ill_isv6) 18910 ill->ill_sap = IP6_DL_SAP; 18911 else 18912 ill->ill_sap = IP_DL_SAP; 18913 } 18914 18915 ill->ill_ifname_pending = 1; 18916 ill->ill_ifname_pending_err = 0; 18917 18918 /* 18919 * When the first ipif comes up in ipif_up_done(), multicast groups 18920 * that were joined while this ill was not bound to the DLPI link need 18921 * to be recovered by ill_recover_multicast(). 18922 */ 18923 ill->ill_need_recover_multicast = 1; 18924 18925 ill_refhold(ill); 18926 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 18927 if ((error = ill_glist_insert(ill, interf_name, 18928 (ill->ill_flags & ILLF_IPV6) == ILLF_IPV6)) > 0) { 18929 ill->ill_ppa = UINT_MAX; 18930 ill->ill_name[0] = '\0'; 18931 /* 18932 * undo null termination done above. 18933 */ 18934 ppa_ptr[0] = old_char; 18935 rw_exit(&ipst->ips_ill_g_lock); 18936 ill_refrele(ill); 18937 return (error); 18938 } 18939 18940 ASSERT(ill->ill_name_length <= LIFNAMSIZ); 18941 18942 /* 18943 * When we return the buffer pointed to by interf_name should contain 18944 * the same name as in ill_name. 18945 * If a ppa was choosen by the system (ppa passed in was UINT_MAX) 18946 * the buffer pointed to by new_ppa_ptr would not contain the right ppa 18947 * so copy full name and update the ppa ptr. 18948 * When ppa passed in != UINT_MAX all values are correct just undo 18949 * null termination, this saves a bcopy. 18950 */ 18951 if (*new_ppa_ptr == UINT_MAX) { 18952 bcopy(ill->ill_name, interf_name, ill->ill_name_length); 18953 *new_ppa_ptr = ill->ill_ppa; 18954 } else { 18955 /* 18956 * undo null termination done above. 18957 */ 18958 ppa_ptr[0] = old_char; 18959 } 18960 18961 /* Let SCTP know about this ILL */ 18962 sctp_update_ill(ill, SCTP_ILL_INSERT); 18963 18964 ipsq = ipsq_try_enter(NULL, ill, q, mp, ip_reprocess_ioctl, NEW_OP, 18965 B_TRUE); 18966 18967 rw_exit(&ipst->ips_ill_g_lock); 18968 ill_refrele(ill); 18969 if (ipsq == NULL) 18970 return (EINPROGRESS); 18971 18972 /* 18973 * If ill_phyint_reinit() changed our ipsq, then start on the new ipsq. 18974 */ 18975 if (ipsq->ipsq_xop->ipx_current_ipif == NULL) 18976 ipsq_current_start(ipsq, ipif, SIOCSLIFNAME); 18977 else 18978 ASSERT(ipsq->ipsq_xop->ipx_current_ipif == ipif); 18979 18980 error = ipif_set_values_tail(ill, ipif, mp, q); 18981 ipsq_exit(ipsq); 18982 if (error != 0 && error != EINPROGRESS) { 18983 /* 18984 * restore previous values 18985 */ 18986 ill->ill_isv6 = B_FALSE; 18987 } 18988 return (error); 18989 } 18990 18991 18992 void 18993 ipif_init(ip_stack_t *ipst) 18994 { 18995 int i; 18996 18997 for (i = 0; i < MAX_G_HEADS; i++) { 18998 ipst->ips_ill_g_heads[i].ill_g_list_head = 18999 (ill_if_t *)&ipst->ips_ill_g_heads[i]; 19000 ipst->ips_ill_g_heads[i].ill_g_list_tail = 19001 (ill_if_t *)&ipst->ips_ill_g_heads[i]; 19002 } 19003 19004 avl_create(&ipst->ips_phyint_g_list->phyint_list_avl_by_index, 19005 ill_phyint_compare_index, 19006 sizeof (phyint_t), 19007 offsetof(struct phyint, phyint_avl_by_index)); 19008 avl_create(&ipst->ips_phyint_g_list->phyint_list_avl_by_name, 19009 ill_phyint_compare_name, 19010 sizeof (phyint_t), 19011 offsetof(struct phyint, phyint_avl_by_name)); 19012 } 19013 19014 /* 19015 * Lookup the ipif corresponding to the onlink destination address. For 19016 * point-to-point interfaces, it matches with remote endpoint destination 19017 * address. For point-to-multipoint interfaces it only tries to match the 19018 * destination with the interface's subnet address. The longest, most specific 19019 * match is found to take care of such rare network configurations like - 19020 * le0: 129.146.1.1/16 19021 * le1: 129.146.2.2/24 19022 * 19023 * This is used by SO_DONTROUTE and IP_NEXTHOP. Since neither of those are 19024 * supported on underlying interfaces in an IPMP group, underlying interfaces 19025 * are ignored when looking up a match. (If we didn't ignore them, we'd 19026 * risk using a test address as a source for outgoing traffic.) 19027 */ 19028 ipif_t * 19029 ipif_lookup_onlink_addr(ipaddr_t addr, zoneid_t zoneid, ip_stack_t *ipst) 19030 { 19031 ipif_t *ipif, *best_ipif; 19032 ill_t *ill; 19033 ill_walk_context_t ctx; 19034 19035 ASSERT(zoneid != ALL_ZONES); 19036 best_ipif = NULL; 19037 19038 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 19039 ill = ILL_START_WALK_V4(&ctx, ipst); 19040 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 19041 if (IS_UNDER_IPMP(ill)) 19042 continue; 19043 mutex_enter(&ill->ill_lock); 19044 for (ipif = ill->ill_ipif; ipif != NULL; 19045 ipif = ipif->ipif_next) { 19046 if (!IPIF_CAN_LOOKUP(ipif)) 19047 continue; 19048 if (ipif->ipif_zoneid != zoneid && 19049 ipif->ipif_zoneid != ALL_ZONES) 19050 continue; 19051 /* 19052 * Point-to-point case. Look for exact match with 19053 * destination address. 19054 */ 19055 if (ipif->ipif_flags & IPIF_POINTOPOINT) { 19056 if (ipif->ipif_pp_dst_addr == addr) { 19057 ipif_refhold_locked(ipif); 19058 mutex_exit(&ill->ill_lock); 19059 rw_exit(&ipst->ips_ill_g_lock); 19060 if (best_ipif != NULL) 19061 ipif_refrele(best_ipif); 19062 return (ipif); 19063 } 19064 } else if (ipif->ipif_subnet == (addr & 19065 ipif->ipif_net_mask)) { 19066 /* 19067 * Point-to-multipoint case. Looping through to 19068 * find the most specific match. If there are 19069 * multiple best match ipif's then prefer ipif's 19070 * that are UP. If there is only one best match 19071 * ipif and it is DOWN we must still return it. 19072 */ 19073 if ((best_ipif == NULL) || 19074 (ipif->ipif_net_mask > 19075 best_ipif->ipif_net_mask) || 19076 ((ipif->ipif_net_mask == 19077 best_ipif->ipif_net_mask) && 19078 ((ipif->ipif_flags & IPIF_UP) && 19079 (!(best_ipif->ipif_flags & IPIF_UP))))) { 19080 ipif_refhold_locked(ipif); 19081 mutex_exit(&ill->ill_lock); 19082 rw_exit(&ipst->ips_ill_g_lock); 19083 if (best_ipif != NULL) 19084 ipif_refrele(best_ipif); 19085 best_ipif = ipif; 19086 rw_enter(&ipst->ips_ill_g_lock, 19087 RW_READER); 19088 mutex_enter(&ill->ill_lock); 19089 } 19090 } 19091 } 19092 mutex_exit(&ill->ill_lock); 19093 } 19094 rw_exit(&ipst->ips_ill_g_lock); 19095 return (best_ipif); 19096 } 19097 19098 /* 19099 * Save enough information so that we can recreate the IRE if 19100 * the interface goes down and then up. 19101 */ 19102 static void 19103 ipif_save_ire(ipif_t *ipif, ire_t *ire) 19104 { 19105 mblk_t *save_mp; 19106 19107 save_mp = allocb(sizeof (ifrt_t), BPRI_MED); 19108 if (save_mp != NULL) { 19109 ifrt_t *ifrt; 19110 19111 save_mp->b_wptr += sizeof (ifrt_t); 19112 ifrt = (ifrt_t *)save_mp->b_rptr; 19113 bzero(ifrt, sizeof (ifrt_t)); 19114 ifrt->ifrt_type = ire->ire_type; 19115 ifrt->ifrt_addr = ire->ire_addr; 19116 ifrt->ifrt_gateway_addr = ire->ire_gateway_addr; 19117 ifrt->ifrt_src_addr = ire->ire_src_addr; 19118 ifrt->ifrt_mask = ire->ire_mask; 19119 ifrt->ifrt_flags = ire->ire_flags; 19120 ifrt->ifrt_max_frag = ire->ire_max_frag; 19121 mutex_enter(&ipif->ipif_saved_ire_lock); 19122 save_mp->b_cont = ipif->ipif_saved_ire_mp; 19123 ipif->ipif_saved_ire_mp = save_mp; 19124 ipif->ipif_saved_ire_cnt++; 19125 mutex_exit(&ipif->ipif_saved_ire_lock); 19126 } 19127 } 19128 19129 static void 19130 ipif_remove_ire(ipif_t *ipif, ire_t *ire) 19131 { 19132 mblk_t **mpp; 19133 mblk_t *mp; 19134 ifrt_t *ifrt; 19135 19136 /* Remove from ipif_saved_ire_mp list if it is there */ 19137 mutex_enter(&ipif->ipif_saved_ire_lock); 19138 for (mpp = &ipif->ipif_saved_ire_mp; *mpp != NULL; 19139 mpp = &(*mpp)->b_cont) { 19140 /* 19141 * On a given ipif, the triple of address, gateway and 19142 * mask is unique for each saved IRE (in the case of 19143 * ordinary interface routes, the gateway address is 19144 * all-zeroes). 19145 */ 19146 mp = *mpp; 19147 ifrt = (ifrt_t *)mp->b_rptr; 19148 if (ifrt->ifrt_addr == ire->ire_addr && 19149 ifrt->ifrt_gateway_addr == ire->ire_gateway_addr && 19150 ifrt->ifrt_mask == ire->ire_mask) { 19151 *mpp = mp->b_cont; 19152 ipif->ipif_saved_ire_cnt--; 19153 freeb(mp); 19154 break; 19155 } 19156 } 19157 mutex_exit(&ipif->ipif_saved_ire_lock); 19158 } 19159 19160 /* 19161 * IP multirouting broadcast routes handling 19162 * Append CGTP broadcast IREs to regular ones created 19163 * at ifconfig time. 19164 */ 19165 static void 19166 ip_cgtp_bcast_add(ire_t *ire, ire_t *ire_dst, ip_stack_t *ipst) 19167 { 19168 ire_t *ire_prim; 19169 19170 ASSERT(ire != NULL); 19171 ASSERT(ire_dst != NULL); 19172 19173 ire_prim = ire_ctable_lookup(ire->ire_gateway_addr, 0, 19174 IRE_BROADCAST, NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 19175 if (ire_prim != NULL) { 19176 /* 19177 * We are in the special case of broadcasts for 19178 * CGTP. We add an IRE_BROADCAST that holds 19179 * the RTF_MULTIRT flag, the destination 19180 * address of ire_dst and the low level 19181 * info of ire_prim. In other words, CGTP 19182 * broadcast is added to the redundant ipif. 19183 */ 19184 ipif_t *ipif_prim; 19185 ire_t *bcast_ire; 19186 19187 ipif_prim = ire_prim->ire_ipif; 19188 19189 ip2dbg(("ip_cgtp_filter_bcast_add: " 19190 "ire_dst %p, ire_prim %p, ipif_prim %p\n", 19191 (void *)ire_dst, (void *)ire_prim, 19192 (void *)ipif_prim)); 19193 19194 bcast_ire = ire_create( 19195 (uchar_t *)&ire->ire_addr, 19196 (uchar_t *)&ip_g_all_ones, 19197 (uchar_t *)&ire_dst->ire_src_addr, 19198 (uchar_t *)&ire->ire_gateway_addr, 19199 &ipif_prim->ipif_mtu, 19200 NULL, 19201 ipif_prim->ipif_rq, 19202 ipif_prim->ipif_wq, 19203 IRE_BROADCAST, 19204 ipif_prim, 19205 0, 19206 0, 19207 0, 19208 ire->ire_flags, 19209 &ire_uinfo_null, 19210 NULL, 19211 NULL, 19212 ipst); 19213 19214 if (bcast_ire != NULL) { 19215 19216 if (ire_add(&bcast_ire, NULL, NULL, NULL, 19217 B_FALSE) == 0) { 19218 ip2dbg(("ip_cgtp_filter_bcast_add: " 19219 "added bcast_ire %p\n", 19220 (void *)bcast_ire)); 19221 19222 ipif_save_ire(bcast_ire->ire_ipif, 19223 bcast_ire); 19224 ire_refrele(bcast_ire); 19225 } 19226 } 19227 ire_refrele(ire_prim); 19228 } 19229 } 19230 19231 19232 /* 19233 * IP multirouting broadcast routes handling 19234 * Remove the broadcast ire 19235 */ 19236 static void 19237 ip_cgtp_bcast_delete(ire_t *ire, ip_stack_t *ipst) 19238 { 19239 ire_t *ire_dst; 19240 19241 ASSERT(ire != NULL); 19242 ire_dst = ire_ctable_lookup(ire->ire_addr, 0, IRE_BROADCAST, 19243 NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 19244 if (ire_dst != NULL) { 19245 ire_t *ire_prim; 19246 19247 ire_prim = ire_ctable_lookup(ire->ire_gateway_addr, 0, 19248 IRE_BROADCAST, NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 19249 if (ire_prim != NULL) { 19250 ipif_t *ipif_prim; 19251 ire_t *bcast_ire; 19252 19253 ipif_prim = ire_prim->ire_ipif; 19254 19255 ip2dbg(("ip_cgtp_filter_bcast_delete: " 19256 "ire_dst %p, ire_prim %p, ipif_prim %p\n", 19257 (void *)ire_dst, (void *)ire_prim, 19258 (void *)ipif_prim)); 19259 19260 bcast_ire = ire_ctable_lookup(ire->ire_addr, 19261 ire->ire_gateway_addr, 19262 IRE_BROADCAST, 19263 ipif_prim, ALL_ZONES, 19264 NULL, 19265 MATCH_IRE_TYPE | MATCH_IRE_GW | MATCH_IRE_IPIF | 19266 MATCH_IRE_MASK, ipst); 19267 19268 if (bcast_ire != NULL) { 19269 ip2dbg(("ip_cgtp_filter_bcast_delete: " 19270 "looked up bcast_ire %p\n", 19271 (void *)bcast_ire)); 19272 ipif_remove_ire(bcast_ire->ire_ipif, 19273 bcast_ire); 19274 ire_delete(bcast_ire); 19275 ire_refrele(bcast_ire); 19276 } 19277 ire_refrele(ire_prim); 19278 } 19279 ire_refrele(ire_dst); 19280 } 19281 } 19282 19283 /* 19284 * IPsec hardware acceleration capabilities related functions. 19285 */ 19286 19287 /* 19288 * Free a per-ill IPsec capabilities structure. 19289 */ 19290 static void 19291 ill_ipsec_capab_free(ill_ipsec_capab_t *capab) 19292 { 19293 if (capab->auth_hw_algs != NULL) 19294 kmem_free(capab->auth_hw_algs, capab->algs_size); 19295 if (capab->encr_hw_algs != NULL) 19296 kmem_free(capab->encr_hw_algs, capab->algs_size); 19297 if (capab->encr_algparm != NULL) 19298 kmem_free(capab->encr_algparm, capab->encr_algparm_size); 19299 kmem_free(capab, sizeof (ill_ipsec_capab_t)); 19300 } 19301 19302 /* 19303 * Allocate a new per-ill IPsec capabilities structure. This structure 19304 * is specific to an IPsec protocol (AH or ESP). It is implemented as 19305 * an array which specifies, for each algorithm, whether this algorithm 19306 * is supported by the ill or not. 19307 */ 19308 static ill_ipsec_capab_t * 19309 ill_ipsec_capab_alloc(void) 19310 { 19311 ill_ipsec_capab_t *capab; 19312 uint_t nelems; 19313 19314 capab = kmem_zalloc(sizeof (ill_ipsec_capab_t), KM_NOSLEEP); 19315 if (capab == NULL) 19316 return (NULL); 19317 19318 /* we need one bit per algorithm */ 19319 nelems = MAX_IPSEC_ALGS / BITS(ipsec_capab_elem_t); 19320 capab->algs_size = nelems * sizeof (ipsec_capab_elem_t); 19321 19322 /* allocate memory to store algorithm flags */ 19323 capab->encr_hw_algs = kmem_zalloc(capab->algs_size, KM_NOSLEEP); 19324 if (capab->encr_hw_algs == NULL) 19325 goto nomem; 19326 capab->auth_hw_algs = kmem_zalloc(capab->algs_size, KM_NOSLEEP); 19327 if (capab->auth_hw_algs == NULL) 19328 goto nomem; 19329 /* 19330 * Leave encr_algparm NULL for now since we won't need it half 19331 * the time 19332 */ 19333 return (capab); 19334 19335 nomem: 19336 ill_ipsec_capab_free(capab); 19337 return (NULL); 19338 } 19339 19340 /* 19341 * Resize capability array. Since we're exclusive, this is OK. 19342 */ 19343 static boolean_t 19344 ill_ipsec_capab_resize_algparm(ill_ipsec_capab_t *capab, int algid) 19345 { 19346 ipsec_capab_algparm_t *nalp, *oalp; 19347 uint32_t olen, nlen; 19348 19349 oalp = capab->encr_algparm; 19350 olen = capab->encr_algparm_size; 19351 19352 if (oalp != NULL) { 19353 if (algid < capab->encr_algparm_end) 19354 return (B_TRUE); 19355 } 19356 19357 nlen = (algid + 1) * sizeof (*nalp); 19358 nalp = kmem_zalloc(nlen, KM_NOSLEEP); 19359 if (nalp == NULL) 19360 return (B_FALSE); 19361 19362 if (oalp != NULL) { 19363 bcopy(oalp, nalp, olen); 19364 kmem_free(oalp, olen); 19365 } 19366 capab->encr_algparm = nalp; 19367 capab->encr_algparm_size = nlen; 19368 capab->encr_algparm_end = algid + 1; 19369 19370 return (B_TRUE); 19371 } 19372 19373 /* 19374 * Compare the capabilities of the specified ill with the protocol 19375 * and algorithms specified by the SA passed as argument. 19376 * If they match, returns B_TRUE, B_FALSE if they do not match. 19377 * 19378 * The ill can be passed as a pointer to it, or by specifying its index 19379 * and whether it is an IPv6 ill (ill_index and ill_isv6 arguments). 19380 * 19381 * Called by ipsec_out_is_accelerated() do decide whether an outbound 19382 * packet is eligible for hardware acceleration, and by 19383 * ill_ipsec_capab_send_all() to decide whether a SA must be sent down 19384 * to a particular ill. 19385 */ 19386 boolean_t 19387 ipsec_capab_match(ill_t *ill, uint_t ill_index, boolean_t ill_isv6, 19388 ipsa_t *sa, netstack_t *ns) 19389 { 19390 boolean_t sa_isv6; 19391 uint_t algid; 19392 struct ill_ipsec_capab_s *cpp; 19393 boolean_t need_refrele = B_FALSE; 19394 ip_stack_t *ipst = ns->netstack_ip; 19395 19396 if (ill == NULL) { 19397 ill = ill_lookup_on_ifindex(ill_index, ill_isv6, NULL, 19398 NULL, NULL, NULL, ipst); 19399 if (ill == NULL) { 19400 ip0dbg(("ipsec_capab_match: ill doesn't exist\n")); 19401 return (B_FALSE); 19402 } 19403 need_refrele = B_TRUE; 19404 } 19405 19406 /* 19407 * Use the address length specified by the SA to determine 19408 * if it corresponds to a IPv6 address, and fail the matching 19409 * if the isv6 flag passed as argument does not match. 19410 * Note: this check is used for SADB capability checking before 19411 * sending SA information to an ill. 19412 */ 19413 sa_isv6 = (sa->ipsa_addrfam == AF_INET6); 19414 if (sa_isv6 != ill_isv6) 19415 /* protocol mismatch */ 19416 goto done; 19417 19418 /* 19419 * Check if the ill supports the protocol, algorithm(s) and 19420 * key size(s) specified by the SA, and get the pointers to 19421 * the algorithms supported by the ill. 19422 */ 19423 switch (sa->ipsa_type) { 19424 19425 case SADB_SATYPE_ESP: 19426 if (!(ill->ill_capabilities & ILL_CAPAB_ESP)) 19427 /* ill does not support ESP acceleration */ 19428 goto done; 19429 cpp = ill->ill_ipsec_capab_esp; 19430 algid = sa->ipsa_auth_alg; 19431 if (!IPSEC_ALG_IS_ENABLED(algid, cpp->auth_hw_algs)) 19432 goto done; 19433 algid = sa->ipsa_encr_alg; 19434 if (!IPSEC_ALG_IS_ENABLED(algid, cpp->encr_hw_algs)) 19435 goto done; 19436 if (algid < cpp->encr_algparm_end) { 19437 ipsec_capab_algparm_t *alp = &cpp->encr_algparm[algid]; 19438 if (sa->ipsa_encrkeybits < alp->minkeylen) 19439 goto done; 19440 if (sa->ipsa_encrkeybits > alp->maxkeylen) 19441 goto done; 19442 } 19443 break; 19444 19445 case SADB_SATYPE_AH: 19446 if (!(ill->ill_capabilities & ILL_CAPAB_AH)) 19447 /* ill does not support AH acceleration */ 19448 goto done; 19449 if (!IPSEC_ALG_IS_ENABLED(sa->ipsa_auth_alg, 19450 ill->ill_ipsec_capab_ah->auth_hw_algs)) 19451 goto done; 19452 break; 19453 } 19454 19455 if (need_refrele) 19456 ill_refrele(ill); 19457 return (B_TRUE); 19458 done: 19459 if (need_refrele) 19460 ill_refrele(ill); 19461 return (B_FALSE); 19462 } 19463 19464 /* 19465 * Add a new ill to the list of IPsec capable ills. 19466 * Called from ill_capability_ipsec_ack() when an ACK was received 19467 * indicating that IPsec hardware processing was enabled for an ill. 19468 * 19469 * ill must point to the ill for which acceleration was enabled. 19470 * dl_cap must be set to DL_CAPAB_IPSEC_AH or DL_CAPAB_IPSEC_ESP. 19471 */ 19472 static void 19473 ill_ipsec_capab_add(ill_t *ill, uint_t dl_cap, boolean_t sadb_resync) 19474 { 19475 ipsec_capab_ill_t **ills, *cur_ill, *new_ill; 19476 uint_t sa_type; 19477 uint_t ipproto; 19478 ip_stack_t *ipst = ill->ill_ipst; 19479 19480 ASSERT((dl_cap == DL_CAPAB_IPSEC_AH) || 19481 (dl_cap == DL_CAPAB_IPSEC_ESP)); 19482 19483 switch (dl_cap) { 19484 case DL_CAPAB_IPSEC_AH: 19485 sa_type = SADB_SATYPE_AH; 19486 ills = &ipst->ips_ipsec_capab_ills_ah; 19487 ipproto = IPPROTO_AH; 19488 break; 19489 case DL_CAPAB_IPSEC_ESP: 19490 sa_type = SADB_SATYPE_ESP; 19491 ills = &ipst->ips_ipsec_capab_ills_esp; 19492 ipproto = IPPROTO_ESP; 19493 break; 19494 } 19495 19496 rw_enter(&ipst->ips_ipsec_capab_ills_lock, RW_WRITER); 19497 19498 /* 19499 * Add ill index to list of hardware accelerators. If 19500 * already in list, do nothing. 19501 */ 19502 for (cur_ill = *ills; cur_ill != NULL && 19503 (cur_ill->ill_index != ill->ill_phyint->phyint_ifindex || 19504 cur_ill->ill_isv6 != ill->ill_isv6); cur_ill = cur_ill->next) 19505 ; 19506 19507 if (cur_ill == NULL) { 19508 /* if this is a new entry for this ill */ 19509 new_ill = kmem_zalloc(sizeof (ipsec_capab_ill_t), KM_NOSLEEP); 19510 if (new_ill == NULL) { 19511 rw_exit(&ipst->ips_ipsec_capab_ills_lock); 19512 return; 19513 } 19514 19515 new_ill->ill_index = ill->ill_phyint->phyint_ifindex; 19516 new_ill->ill_isv6 = ill->ill_isv6; 19517 new_ill->next = *ills; 19518 *ills = new_ill; 19519 } else if (!sadb_resync) { 19520 /* not resync'ing SADB and an entry exists for this ill */ 19521 rw_exit(&ipst->ips_ipsec_capab_ills_lock); 19522 return; 19523 } 19524 19525 rw_exit(&ipst->ips_ipsec_capab_ills_lock); 19526 19527 if (ipst->ips_ipcl_proto_fanout_v6[ipproto].connf_head != NULL) 19528 /* 19529 * IPsec module for protocol loaded, initiate dump 19530 * of the SADB to this ill. 19531 */ 19532 sadb_ill_download(ill, sa_type); 19533 } 19534 19535 /* 19536 * Remove an ill from the list of IPsec capable ills. 19537 */ 19538 static void 19539 ill_ipsec_capab_delete(ill_t *ill, uint_t dl_cap) 19540 { 19541 ipsec_capab_ill_t **ills, *cur_ill, *prev_ill; 19542 ip_stack_t *ipst = ill->ill_ipst; 19543 19544 ASSERT(dl_cap == DL_CAPAB_IPSEC_AH || 19545 dl_cap == DL_CAPAB_IPSEC_ESP); 19546 19547 ills = (dl_cap == DL_CAPAB_IPSEC_AH) ? &ipst->ips_ipsec_capab_ills_ah : 19548 &ipst->ips_ipsec_capab_ills_esp; 19549 19550 rw_enter(&ipst->ips_ipsec_capab_ills_lock, RW_WRITER); 19551 19552 prev_ill = NULL; 19553 for (cur_ill = *ills; cur_ill != NULL && (cur_ill->ill_index != 19554 ill->ill_phyint->phyint_ifindex || cur_ill->ill_isv6 != 19555 ill->ill_isv6); prev_ill = cur_ill, cur_ill = cur_ill->next) 19556 ; 19557 if (cur_ill == NULL) { 19558 /* entry not found */ 19559 rw_exit(&ipst->ips_ipsec_capab_ills_lock); 19560 return; 19561 } 19562 if (prev_ill == NULL) { 19563 /* entry at front of list */ 19564 *ills = NULL; 19565 } else { 19566 prev_ill->next = cur_ill->next; 19567 } 19568 kmem_free(cur_ill, sizeof (ipsec_capab_ill_t)); 19569 rw_exit(&ipst->ips_ipsec_capab_ills_lock); 19570 } 19571 19572 /* 19573 * Called by SADB to send a DL_CONTROL_REQ message to every ill 19574 * supporting the specified IPsec protocol acceleration. 19575 * sa_type must be SADB_SATYPE_AH or SADB_SATYPE_ESP. 19576 * We free the mblk and, if sa is non-null, release the held referece. 19577 */ 19578 void 19579 ill_ipsec_capab_send_all(uint_t sa_type, mblk_t *mp, ipsa_t *sa, 19580 netstack_t *ns) 19581 { 19582 ipsec_capab_ill_t *ici, *cur_ici; 19583 ill_t *ill; 19584 mblk_t *nmp, *mp_ship_list = NULL, *next_mp; 19585 ip_stack_t *ipst = ns->netstack_ip; 19586 19587 ici = (sa_type == SADB_SATYPE_AH) ? ipst->ips_ipsec_capab_ills_ah : 19588 ipst->ips_ipsec_capab_ills_esp; 19589 19590 rw_enter(&ipst->ips_ipsec_capab_ills_lock, RW_READER); 19591 19592 for (cur_ici = ici; cur_ici != NULL; cur_ici = cur_ici->next) { 19593 ill = ill_lookup_on_ifindex(cur_ici->ill_index, 19594 cur_ici->ill_isv6, NULL, NULL, NULL, NULL, ipst); 19595 19596 /* 19597 * Handle the case where the ill goes away while the SADB is 19598 * attempting to send messages. If it's going away, it's 19599 * nuking its shadow SADB, so we don't care.. 19600 */ 19601 19602 if (ill == NULL) 19603 continue; 19604 19605 if (sa != NULL) { 19606 /* 19607 * Make sure capabilities match before 19608 * sending SA to ill. 19609 */ 19610 if (!ipsec_capab_match(ill, cur_ici->ill_index, 19611 cur_ici->ill_isv6, sa, ipst->ips_netstack)) { 19612 ill_refrele(ill); 19613 continue; 19614 } 19615 19616 mutex_enter(&sa->ipsa_lock); 19617 sa->ipsa_flags |= IPSA_F_HW; 19618 mutex_exit(&sa->ipsa_lock); 19619 } 19620 19621 /* 19622 * Copy template message, and add it to the front 19623 * of the mblk ship list. We want to avoid holding 19624 * the ipsec_capab_ills_lock while sending the 19625 * message to the ills. 19626 * 19627 * The b_next and b_prev are temporarily used 19628 * to build a list of mblks to be sent down, and to 19629 * save the ill to which they must be sent. 19630 */ 19631 nmp = copymsg(mp); 19632 if (nmp == NULL) { 19633 ill_refrele(ill); 19634 continue; 19635 } 19636 ASSERT(nmp->b_next == NULL && nmp->b_prev == NULL); 19637 nmp->b_next = mp_ship_list; 19638 mp_ship_list = nmp; 19639 nmp->b_prev = (mblk_t *)ill; 19640 } 19641 19642 rw_exit(&ipst->ips_ipsec_capab_ills_lock); 19643 19644 for (nmp = mp_ship_list; nmp != NULL; nmp = next_mp) { 19645 /* restore the mblk to a sane state */ 19646 next_mp = nmp->b_next; 19647 nmp->b_next = NULL; 19648 ill = (ill_t *)nmp->b_prev; 19649 nmp->b_prev = NULL; 19650 19651 ill_dlpi_send(ill, nmp); 19652 ill_refrele(ill); 19653 } 19654 19655 if (sa != NULL) 19656 IPSA_REFRELE(sa); 19657 freemsg(mp); 19658 } 19659 19660 /* 19661 * Derive an interface id from the link layer address. 19662 * Knows about IEEE 802 and IEEE EUI-64 mappings. 19663 */ 19664 static boolean_t 19665 ip_ether_v6intfid(ill_t *ill, in6_addr_t *v6addr) 19666 { 19667 char *addr; 19668 19669 if (ill->ill_phys_addr_length != ETHERADDRL) 19670 return (B_FALSE); 19671 19672 /* Form EUI-64 like address */ 19673 addr = (char *)&v6addr->s6_addr32[2]; 19674 bcopy(ill->ill_phys_addr, addr, 3); 19675 addr[0] ^= 0x2; /* Toggle Universal/Local bit */ 19676 addr[3] = (char)0xff; 19677 addr[4] = (char)0xfe; 19678 bcopy(ill->ill_phys_addr + 3, addr + 5, 3); 19679 return (B_TRUE); 19680 } 19681 19682 /* ARGSUSED */ 19683 static boolean_t 19684 ip_nodef_v6intfid(ill_t *ill, in6_addr_t *v6addr) 19685 { 19686 return (B_FALSE); 19687 } 19688 19689 typedef struct ipmp_ifcookie { 19690 uint32_t ic_hostid; 19691 char ic_ifname[LIFNAMSIZ]; 19692 char ic_zonename[ZONENAME_MAX]; 19693 } ipmp_ifcookie_t; 19694 19695 /* 19696 * Construct a pseudo-random interface ID for the IPMP interface that's both 19697 * predictable and (almost) guaranteed to be unique. 19698 */ 19699 static boolean_t 19700 ip_ipmp_v6intfid(ill_t *ill, in6_addr_t *v6addr) 19701 { 19702 zone_t *zp; 19703 uint8_t *addr; 19704 uchar_t hash[16]; 19705 ulong_t hostid; 19706 MD5_CTX ctx; 19707 ipmp_ifcookie_t ic = { 0 }; 19708 19709 ASSERT(IS_IPMP(ill)); 19710 19711 (void) ddi_strtoul(hw_serial, NULL, 10, &hostid); 19712 ic.ic_hostid = htonl((uint32_t)hostid); 19713 19714 (void) strlcpy(ic.ic_ifname, ill->ill_name, LIFNAMSIZ); 19715 19716 if ((zp = zone_find_by_id(ill->ill_zoneid)) != NULL) { 19717 (void) strlcpy(ic.ic_zonename, zp->zone_name, ZONENAME_MAX); 19718 zone_rele(zp); 19719 } 19720 19721 MD5Init(&ctx); 19722 MD5Update(&ctx, &ic, sizeof (ic)); 19723 MD5Final(hash, &ctx); 19724 19725 /* 19726 * Map the hash to an interface ID per the basic approach in RFC3041. 19727 */ 19728 addr = &v6addr->s6_addr8[8]; 19729 bcopy(hash + 8, addr, sizeof (uint64_t)); 19730 addr[0] &= ~0x2; /* set local bit */ 19731 19732 return (B_TRUE); 19733 } 19734 19735 /* ARGSUSED */ 19736 static boolean_t 19737 ip_ether_v6mapinfo(uint_t lla_length, uint8_t *bphys_addr, uint8_t *maddr, 19738 uint32_t *hw_start, in6_addr_t *v6_extract_mask) 19739 { 19740 /* 19741 * Multicast address mappings used over Ethernet/802.X. 19742 * This address is used as a base for mappings. 19743 */ 19744 static uint8_t ipv6_g_phys_multi_addr[] = {0x33, 0x33, 0x00, 19745 0x00, 0x00, 0x00}; 19746 19747 /* 19748 * Extract low order 32 bits from IPv6 multicast address. 19749 * Or that into the link layer address, starting from the 19750 * second byte. 19751 */ 19752 *hw_start = 2; 19753 v6_extract_mask->s6_addr32[0] = 0; 19754 v6_extract_mask->s6_addr32[1] = 0; 19755 v6_extract_mask->s6_addr32[2] = 0; 19756 v6_extract_mask->s6_addr32[3] = 0xffffffffU; 19757 bcopy(ipv6_g_phys_multi_addr, maddr, lla_length); 19758 return (B_TRUE); 19759 } 19760 19761 /* 19762 * Indicate by return value whether multicast is supported. If not, 19763 * this code should not touch/change any parameters. 19764 */ 19765 /* ARGSUSED */ 19766 static boolean_t 19767 ip_ether_v4mapinfo(uint_t phys_length, uint8_t *bphys_addr, uint8_t *maddr, 19768 uint32_t *hw_start, ipaddr_t *extract_mask) 19769 { 19770 /* 19771 * Multicast address mappings used over Ethernet/802.X. 19772 * This address is used as a base for mappings. 19773 */ 19774 static uint8_t ip_g_phys_multi_addr[] = { 0x01, 0x00, 0x5e, 19775 0x00, 0x00, 0x00 }; 19776 19777 if (phys_length != ETHERADDRL) 19778 return (B_FALSE); 19779 19780 *extract_mask = htonl(0x007fffff); 19781 *hw_start = 2; 19782 bcopy(ip_g_phys_multi_addr, maddr, ETHERADDRL); 19783 return (B_TRUE); 19784 } 19785 19786 /* 19787 * Derive IPoIB interface id from the link layer address. 19788 */ 19789 static boolean_t 19790 ip_ib_v6intfid(ill_t *ill, in6_addr_t *v6addr) 19791 { 19792 char *addr; 19793 19794 if (ill->ill_phys_addr_length != 20) 19795 return (B_FALSE); 19796 addr = (char *)&v6addr->s6_addr32[2]; 19797 bcopy(ill->ill_phys_addr + 12, addr, 8); 19798 /* 19799 * In IBA 1.1 timeframe, some vendors erroneously set the u/l bit 19800 * in the globally assigned EUI-64 GUID to 1, in violation of IEEE 19801 * rules. In these cases, the IBA considers these GUIDs to be in 19802 * "Modified EUI-64" format, and thus toggling the u/l bit is not 19803 * required; vendors are required not to assign global EUI-64's 19804 * that differ only in u/l bit values, thus guaranteeing uniqueness 19805 * of the interface identifier. Whether the GUID is in modified 19806 * or proper EUI-64 format, the ipv6 identifier must have the u/l 19807 * bit set to 1. 19808 */ 19809 addr[0] |= 2; /* Set Universal/Local bit to 1 */ 19810 return (B_TRUE); 19811 } 19812 19813 /* 19814 * Note on mapping from multicast IP addresses to IPoIB multicast link 19815 * addresses. IPoIB multicast link addresses are based on IBA link addresses. 19816 * The format of an IPoIB multicast address is: 19817 * 19818 * 4 byte QPN Scope Sign. Pkey 19819 * +--------------------------------------------+ 19820 * | 00FFFFFF | FF | 1X | X01B | Pkey | GroupID | 19821 * +--------------------------------------------+ 19822 * 19823 * The Scope and Pkey components are properties of the IBA port and 19824 * network interface. They can be ascertained from the broadcast address. 19825 * The Sign. part is the signature, and is 401B for IPv4 and 601B for IPv6. 19826 */ 19827 19828 static boolean_t 19829 ip_ib_v6mapinfo(uint_t lla_length, uint8_t *bphys_addr, uint8_t *maddr, 19830 uint32_t *hw_start, in6_addr_t *v6_extract_mask) 19831 { 19832 /* 19833 * Base IPoIB IPv6 multicast address used for mappings. 19834 * Does not contain the IBA scope/Pkey values. 19835 */ 19836 static uint8_t ipv6_g_phys_ibmulti_addr[] = { 0x00, 0xff, 0xff, 0xff, 19837 0xff, 0x10, 0x60, 0x1b, 0x00, 0x00, 0x00, 0x00, 19838 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 }; 19839 19840 /* 19841 * Extract low order 80 bits from IPv6 multicast address. 19842 * Or that into the link layer address, starting from the 19843 * sixth byte. 19844 */ 19845 *hw_start = 6; 19846 bcopy(ipv6_g_phys_ibmulti_addr, maddr, lla_length); 19847 19848 /* 19849 * Now fill in the IBA scope/Pkey values from the broadcast address. 19850 */ 19851 *(maddr + 5) = *(bphys_addr + 5); 19852 *(maddr + 8) = *(bphys_addr + 8); 19853 *(maddr + 9) = *(bphys_addr + 9); 19854 19855 v6_extract_mask->s6_addr32[0] = 0; 19856 v6_extract_mask->s6_addr32[1] = htonl(0x0000ffff); 19857 v6_extract_mask->s6_addr32[2] = 0xffffffffU; 19858 v6_extract_mask->s6_addr32[3] = 0xffffffffU; 19859 return (B_TRUE); 19860 } 19861 19862 static boolean_t 19863 ip_ib_v4mapinfo(uint_t phys_length, uint8_t *bphys_addr, uint8_t *maddr, 19864 uint32_t *hw_start, ipaddr_t *extract_mask) 19865 { 19866 /* 19867 * Base IPoIB IPv4 multicast address used for mappings. 19868 * Does not contain the IBA scope/Pkey values. 19869 */ 19870 static uint8_t ipv4_g_phys_ibmulti_addr[] = { 0x00, 0xff, 0xff, 0xff, 19871 0xff, 0x10, 0x40, 0x1b, 0x00, 0x00, 0x00, 0x00, 19872 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 }; 19873 19874 if (phys_length != sizeof (ipv4_g_phys_ibmulti_addr)) 19875 return (B_FALSE); 19876 19877 /* 19878 * Extract low order 28 bits from IPv4 multicast address. 19879 * Or that into the link layer address, starting from the 19880 * sixteenth byte. 19881 */ 19882 *extract_mask = htonl(0x0fffffff); 19883 *hw_start = 16; 19884 bcopy(ipv4_g_phys_ibmulti_addr, maddr, phys_length); 19885 19886 /* 19887 * Now fill in the IBA scope/Pkey values from the broadcast address. 19888 */ 19889 *(maddr + 5) = *(bphys_addr + 5); 19890 *(maddr + 8) = *(bphys_addr + 8); 19891 *(maddr + 9) = *(bphys_addr + 9); 19892 return (B_TRUE); 19893 } 19894 19895 /* 19896 * Returns B_TRUE if an ipif is present in the given zone, matching some flags 19897 * (typically IPIF_UP). If ipifp is non-null, the held ipif is returned there. 19898 * This works for both IPv4 and IPv6; if the passed-in ill is v6, the ipif with 19899 * the link-local address is preferred. 19900 */ 19901 boolean_t 19902 ipif_lookup_zoneid(ill_t *ill, zoneid_t zoneid, int flags, ipif_t **ipifp) 19903 { 19904 ipif_t *ipif; 19905 ipif_t *maybe_ipif = NULL; 19906 19907 mutex_enter(&ill->ill_lock); 19908 if (ill->ill_state_flags & ILL_CONDEMNED) { 19909 mutex_exit(&ill->ill_lock); 19910 if (ipifp != NULL) 19911 *ipifp = NULL; 19912 return (B_FALSE); 19913 } 19914 19915 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 19916 if (!IPIF_CAN_LOOKUP(ipif)) 19917 continue; 19918 if (zoneid != ALL_ZONES && ipif->ipif_zoneid != zoneid && 19919 ipif->ipif_zoneid != ALL_ZONES) 19920 continue; 19921 if ((ipif->ipif_flags & flags) != flags) 19922 continue; 19923 19924 if (ipifp == NULL) { 19925 mutex_exit(&ill->ill_lock); 19926 ASSERT(maybe_ipif == NULL); 19927 return (B_TRUE); 19928 } 19929 if (!ill->ill_isv6 || 19930 IN6_IS_ADDR_LINKLOCAL(&ipif->ipif_v6src_addr)) { 19931 ipif_refhold_locked(ipif); 19932 mutex_exit(&ill->ill_lock); 19933 *ipifp = ipif; 19934 return (B_TRUE); 19935 } 19936 if (maybe_ipif == NULL) 19937 maybe_ipif = ipif; 19938 } 19939 if (ipifp != NULL) { 19940 if (maybe_ipif != NULL) 19941 ipif_refhold_locked(maybe_ipif); 19942 *ipifp = maybe_ipif; 19943 } 19944 mutex_exit(&ill->ill_lock); 19945 return (maybe_ipif != NULL); 19946 } 19947 19948 /* 19949 * Return a pointer to an ipif_t given a combination of (ill_idx,ipif_id) 19950 * If a pointer to an ipif_t is returned then the caller will need to do 19951 * an ill_refrele(). 19952 */ 19953 ipif_t * 19954 ipif_getby_indexes(uint_t ifindex, uint_t lifidx, boolean_t isv6, 19955 ip_stack_t *ipst) 19956 { 19957 ipif_t *ipif; 19958 ill_t *ill; 19959 19960 ill = ill_lookup_on_ifindex(ifindex, isv6, NULL, NULL, NULL, NULL, 19961 ipst); 19962 if (ill == NULL) 19963 return (NULL); 19964 19965 mutex_enter(&ill->ill_lock); 19966 if (ill->ill_state_flags & ILL_CONDEMNED) { 19967 mutex_exit(&ill->ill_lock); 19968 ill_refrele(ill); 19969 return (NULL); 19970 } 19971 19972 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 19973 if (!IPIF_CAN_LOOKUP(ipif)) 19974 continue; 19975 if (lifidx == ipif->ipif_id) { 19976 ipif_refhold_locked(ipif); 19977 break; 19978 } 19979 } 19980 19981 mutex_exit(&ill->ill_lock); 19982 ill_refrele(ill); 19983 return (ipif); 19984 } 19985 19986 /* 19987 * Flush the fastpath by deleting any nce's that are waiting for the fastpath, 19988 * There is one exceptions IRE_BROADCAST are difficult to recreate, 19989 * so instead we just nuke their nce_fp_mp's; see ndp_fastpath_flush() 19990 * for details. 19991 */ 19992 void 19993 ill_fastpath_flush(ill_t *ill) 19994 { 19995 ip_stack_t *ipst = ill->ill_ipst; 19996 19997 nce_fastpath_list_dispatch(ill, NULL, NULL); 19998 ndp_walk_common((ill->ill_isv6 ? ipst->ips_ndp6 : ipst->ips_ndp4), 19999 ill, (pfi_t)ndp_fastpath_flush, NULL, B_TRUE); 20000 } 20001 20002 /* 20003 * Set the physical address information for `ill' to the contents of the 20004 * dl_notify_ind_t pointed to by `mp'. Must be called as writer, and will be 20005 * asynchronous if `ill' cannot immediately be quiesced -- in which case 20006 * EINPROGRESS will be returned. 20007 */ 20008 int 20009 ill_set_phys_addr(ill_t *ill, mblk_t *mp) 20010 { 20011 ipsq_t *ipsq = ill->ill_phyint->phyint_ipsq; 20012 dl_notify_ind_t *dlindp = (dl_notify_ind_t *)mp->b_rptr; 20013 20014 ASSERT(IAM_WRITER_IPSQ(ipsq)); 20015 20016 if (dlindp->dl_data != DL_IPV6_LINK_LAYER_ADDR && 20017 dlindp->dl_data != DL_CURR_PHYS_ADDR) { 20018 /* Changing DL_IPV6_TOKEN is not yet supported */ 20019 return (0); 20020 } 20021 20022 /* 20023 * We need to store up to two copies of `mp' in `ill'. Due to the 20024 * design of ipsq_pending_mp_add(), we can't pass them as separate 20025 * arguments to ill_set_phys_addr_tail(). Instead, chain them 20026 * together here, then pull 'em apart in ill_set_phys_addr_tail(). 20027 */ 20028 if ((mp = copyb(mp)) == NULL || (mp->b_cont = copyb(mp)) == NULL) { 20029 freemsg(mp); 20030 return (ENOMEM); 20031 } 20032 20033 ipsq_current_start(ipsq, ill->ill_ipif, 0); 20034 20035 /* 20036 * If we can quiesce the ill, then set the address. If not, then 20037 * ill_set_phys_addr_tail() will be called from ipif_ill_refrele_tail(). 20038 */ 20039 ill_down_ipifs(ill); 20040 mutex_enter(&ill->ill_lock); 20041 if (!ill_is_quiescent(ill)) { 20042 /* call cannot fail since `conn_t *' argument is NULL */ 20043 (void) ipsq_pending_mp_add(NULL, ill->ill_ipif, ill->ill_rq, 20044 mp, ILL_DOWN); 20045 mutex_exit(&ill->ill_lock); 20046 return (EINPROGRESS); 20047 } 20048 mutex_exit(&ill->ill_lock); 20049 20050 ill_set_phys_addr_tail(ipsq, ill->ill_rq, mp, NULL); 20051 return (0); 20052 } 20053 20054 /* 20055 * Once the ill associated with `q' has quiesced, set its physical address 20056 * information to the values in `addrmp'. Note that two copies of `addrmp' 20057 * are passed (linked by b_cont), since we sometimes need to save two distinct 20058 * copies in the ill_t, and our context doesn't permit sleeping or allocation 20059 * failure (we'll free the other copy if it's not needed). Since the ill_t 20060 * is quiesced, we know any stale IREs with the old address information have 20061 * already been removed, so we don't need to call ill_fastpath_flush(). 20062 */ 20063 /* ARGSUSED */ 20064 static void 20065 ill_set_phys_addr_tail(ipsq_t *ipsq, queue_t *q, mblk_t *addrmp, void *dummy) 20066 { 20067 ill_t *ill = q->q_ptr; 20068 mblk_t *addrmp2 = unlinkb(addrmp); 20069 dl_notify_ind_t *dlindp = (dl_notify_ind_t *)addrmp->b_rptr; 20070 uint_t addrlen, addroff; 20071 20072 ASSERT(IAM_WRITER_IPSQ(ipsq)); 20073 20074 addroff = dlindp->dl_addr_offset; 20075 addrlen = dlindp->dl_addr_length - ABS(ill->ill_sap_length); 20076 20077 switch (dlindp->dl_data) { 20078 case DL_IPV6_LINK_LAYER_ADDR: 20079 ill_set_ndmp(ill, addrmp, addroff, addrlen); 20080 freemsg(addrmp2); 20081 break; 20082 20083 case DL_CURR_PHYS_ADDR: 20084 freemsg(ill->ill_phys_addr_mp); 20085 ill->ill_phys_addr = addrmp->b_rptr + addroff; 20086 ill->ill_phys_addr_mp = addrmp; 20087 ill->ill_phys_addr_length = addrlen; 20088 20089 if (ill->ill_isv6 && !(ill->ill_flags & ILLF_XRESOLV)) 20090 ill_set_ndmp(ill, addrmp2, addroff, addrlen); 20091 else 20092 freemsg(addrmp2); 20093 break; 20094 default: 20095 ASSERT(0); 20096 } 20097 20098 /* 20099 * If there are ipifs to bring up, ill_up_ipifs() will return 20100 * EINPROGRESS, and ipsq_current_finish() will be called by 20101 * ip_rput_dlpi_writer() or ip_arp_done() when the last ipif is 20102 * brought up. 20103 */ 20104 if (ill_up_ipifs(ill, q, addrmp) != EINPROGRESS) 20105 ipsq_current_finish(ipsq); 20106 } 20107 20108 /* 20109 * Helper routine for setting the ill_nd_lla fields. 20110 */ 20111 void 20112 ill_set_ndmp(ill_t *ill, mblk_t *ndmp, uint_t addroff, uint_t addrlen) 20113 { 20114 freemsg(ill->ill_nd_lla_mp); 20115 ill->ill_nd_lla = ndmp->b_rptr + addroff; 20116 ill->ill_nd_lla_mp = ndmp; 20117 ill->ill_nd_lla_len = addrlen; 20118 } 20119 20120 major_t IP_MAJ; 20121 #define IP "ip" 20122 20123 #define UDP6DEV "/devices/pseudo/udp6@0:udp6" 20124 #define UDPDEV "/devices/pseudo/udp@0:udp" 20125 20126 /* 20127 * Issue REMOVEIF ioctls to have the loopback interfaces 20128 * go away. Other interfaces are either I_LINKed or I_PLINKed; 20129 * the former going away when the user-level processes in the zone 20130 * are killed * and the latter are cleaned up by the stream head 20131 * str_stack_shutdown callback that undoes all I_PLINKs. 20132 */ 20133 void 20134 ip_loopback_cleanup(ip_stack_t *ipst) 20135 { 20136 int error; 20137 ldi_handle_t lh = NULL; 20138 ldi_ident_t li = NULL; 20139 int rval; 20140 cred_t *cr; 20141 struct strioctl iocb; 20142 struct lifreq lifreq; 20143 20144 IP_MAJ = ddi_name_to_major(IP); 20145 20146 #ifdef NS_DEBUG 20147 (void) printf("ip_loopback_cleanup() stackid %d\n", 20148 ipst->ips_netstack->netstack_stackid); 20149 #endif 20150 20151 bzero(&lifreq, sizeof (lifreq)); 20152 (void) strcpy(lifreq.lifr_name, ipif_loopback_name); 20153 20154 error = ldi_ident_from_major(IP_MAJ, &li); 20155 if (error) { 20156 #ifdef DEBUG 20157 printf("ip_loopback_cleanup: lyr ident get failed error %d\n", 20158 error); 20159 #endif 20160 return; 20161 } 20162 20163 cr = zone_get_kcred(netstackid_to_zoneid( 20164 ipst->ips_netstack->netstack_stackid)); 20165 ASSERT(cr != NULL); 20166 error = ldi_open_by_name(UDP6DEV, FREAD|FWRITE, cr, &lh, li); 20167 if (error) { 20168 #ifdef DEBUG 20169 printf("ip_loopback_cleanup: open of UDP6DEV failed error %d\n", 20170 error); 20171 #endif 20172 goto out; 20173 } 20174 iocb.ic_cmd = SIOCLIFREMOVEIF; 20175 iocb.ic_timout = 15; 20176 iocb.ic_len = sizeof (lifreq); 20177 iocb.ic_dp = (char *)&lifreq; 20178 20179 error = ldi_ioctl(lh, I_STR, (intptr_t)&iocb, FKIOCTL, cr, &rval); 20180 /* LINTED - statement has no consequent */ 20181 if (error) { 20182 #ifdef NS_DEBUG 20183 printf("ip_loopback_cleanup: ioctl SIOCLIFREMOVEIF failed on " 20184 "UDP6 error %d\n", error); 20185 #endif 20186 } 20187 (void) ldi_close(lh, FREAD|FWRITE, cr); 20188 lh = NULL; 20189 20190 error = ldi_open_by_name(UDPDEV, FREAD|FWRITE, cr, &lh, li); 20191 if (error) { 20192 #ifdef NS_DEBUG 20193 printf("ip_loopback_cleanup: open of UDPDEV failed error %d\n", 20194 error); 20195 #endif 20196 goto out; 20197 } 20198 20199 iocb.ic_cmd = SIOCLIFREMOVEIF; 20200 iocb.ic_timout = 15; 20201 iocb.ic_len = sizeof (lifreq); 20202 iocb.ic_dp = (char *)&lifreq; 20203 20204 error = ldi_ioctl(lh, I_STR, (intptr_t)&iocb, FKIOCTL, cr, &rval); 20205 /* LINTED - statement has no consequent */ 20206 if (error) { 20207 #ifdef NS_DEBUG 20208 printf("ip_loopback_cleanup: ioctl SIOCLIFREMOVEIF failed on " 20209 "UDP error %d\n", error); 20210 #endif 20211 } 20212 (void) ldi_close(lh, FREAD|FWRITE, cr); 20213 lh = NULL; 20214 20215 out: 20216 /* Close layered handles */ 20217 if (lh) 20218 (void) ldi_close(lh, FREAD|FWRITE, cr); 20219 if (li) 20220 ldi_ident_release(li); 20221 20222 crfree(cr); 20223 } 20224 20225 /* 20226 * This needs to be in-sync with nic_event_t definition 20227 */ 20228 static const char * 20229 ill_hook_event2str(nic_event_t event) 20230 { 20231 switch (event) { 20232 case NE_PLUMB: 20233 return ("PLUMB"); 20234 case NE_UNPLUMB: 20235 return ("UNPLUMB"); 20236 case NE_UP: 20237 return ("UP"); 20238 case NE_DOWN: 20239 return ("DOWN"); 20240 case NE_ADDRESS_CHANGE: 20241 return ("ADDRESS_CHANGE"); 20242 case NE_LIF_UP: 20243 return ("LIF_UP"); 20244 case NE_LIF_DOWN: 20245 return ("LIF_DOWN"); 20246 default: 20247 return ("UNKNOWN"); 20248 } 20249 } 20250 20251 void 20252 ill_nic_event_dispatch(ill_t *ill, lif_if_t lif, nic_event_t event, 20253 nic_event_data_t data, size_t datalen) 20254 { 20255 ip_stack_t *ipst = ill->ill_ipst; 20256 hook_nic_event_int_t *info; 20257 const char *str = NULL; 20258 20259 /* create a new nic event info */ 20260 if ((info = kmem_alloc(sizeof (*info), KM_NOSLEEP)) == NULL) 20261 goto fail; 20262 20263 info->hnei_event.hne_nic = ill->ill_phyint->phyint_ifindex; 20264 info->hnei_event.hne_lif = lif; 20265 info->hnei_event.hne_event = event; 20266 info->hnei_event.hne_protocol = ill->ill_isv6 ? 20267 ipst->ips_ipv6_net_data : ipst->ips_ipv4_net_data; 20268 info->hnei_event.hne_data = NULL; 20269 info->hnei_event.hne_datalen = 0; 20270 info->hnei_stackid = ipst->ips_netstack->netstack_stackid; 20271 20272 if (data != NULL && datalen != 0) { 20273 info->hnei_event.hne_data = kmem_alloc(datalen, KM_NOSLEEP); 20274 if (info->hnei_event.hne_data == NULL) 20275 goto fail; 20276 bcopy(data, info->hnei_event.hne_data, datalen); 20277 info->hnei_event.hne_datalen = datalen; 20278 } 20279 20280 if (ddi_taskq_dispatch(eventq_queue_nic, ip_ne_queue_func, info, 20281 DDI_NOSLEEP) == DDI_SUCCESS) 20282 return; 20283 20284 fail: 20285 if (info != NULL) { 20286 if (info->hnei_event.hne_data != NULL) { 20287 kmem_free(info->hnei_event.hne_data, 20288 info->hnei_event.hne_datalen); 20289 } 20290 kmem_free(info, sizeof (hook_nic_event_t)); 20291 } 20292 str = ill_hook_event2str(event); 20293 ip2dbg(("ill_nic_event_dispatch: could not dispatch %s nic event " 20294 "information for %s (ENOMEM)\n", str, ill->ill_name)); 20295 } 20296 20297 void 20298 ipif_up_notify(ipif_t *ipif) 20299 { 20300 ip_rts_ifmsg(ipif, RTSQ_DEFAULT); 20301 ip_rts_newaddrmsg(RTM_ADD, 0, ipif, RTSQ_DEFAULT); 20302 sctp_update_ipif(ipif, SCTP_IPIF_UP); 20303 ill_nic_event_dispatch(ipif->ipif_ill, MAP_IPIF_ID(ipif->ipif_id), 20304 NE_LIF_UP, NULL, 0); 20305 } 20306