1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2007 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 /* Copyright (c) 1990 Mentat Inc. */ 26 27 #pragma ident "%Z%%M% %I% %E% SMI" 28 29 /* 30 * This file contains the interface control functions for IP. 31 */ 32 33 #include <sys/types.h> 34 #include <sys/stream.h> 35 #include <sys/dlpi.h> 36 #include <sys/stropts.h> 37 #include <sys/strsun.h> 38 #include <sys/sysmacros.h> 39 #include <sys/strlog.h> 40 #include <sys/ddi.h> 41 #include <sys/sunddi.h> 42 #include <sys/cmn_err.h> 43 #include <sys/kstat.h> 44 #include <sys/debug.h> 45 #include <sys/zone.h> 46 #include <sys/sunldi.h> 47 #include <sys/file.h> 48 49 #include <sys/kmem.h> 50 #include <sys/systm.h> 51 #include <sys/param.h> 52 #include <sys/socket.h> 53 #include <sys/isa_defs.h> 54 #include <net/if.h> 55 #include <net/if_arp.h> 56 #include <net/if_types.h> 57 #include <net/if_dl.h> 58 #include <net/route.h> 59 #include <sys/sockio.h> 60 #include <netinet/in.h> 61 #include <netinet/ip6.h> 62 #include <netinet/icmp6.h> 63 #include <netinet/igmp_var.h> 64 #include <sys/strsun.h> 65 #include <sys/policy.h> 66 #include <sys/ethernet.h> 67 68 #include <inet/common.h> /* for various inet/mi.h and inet/nd.h needs */ 69 #include <inet/mi.h> 70 #include <inet/nd.h> 71 #include <inet/arp.h> 72 #include <inet/mib2.h> 73 #include <inet/ip.h> 74 #include <inet/ip6.h> 75 #include <inet/ip6_asp.h> 76 #include <inet/tcp.h> 77 #include <inet/ip_multi.h> 78 #include <inet/ip_ire.h> 79 #include <inet/ip_ftable.h> 80 #include <inet/ip_rts.h> 81 #include <inet/ip_ndp.h> 82 #include <inet/ip_if.h> 83 #include <inet/ip_impl.h> 84 #include <inet/tun.h> 85 #include <inet/sctp_ip.h> 86 #include <inet/ip_netinfo.h> 87 #include <inet/mib2.h> 88 89 #include <net/pfkeyv2.h> 90 #include <inet/ipsec_info.h> 91 #include <inet/sadb.h> 92 #include <inet/ipsec_impl.h> 93 #include <sys/iphada.h> 94 95 96 #include <netinet/igmp.h> 97 #include <inet/ip_listutils.h> 98 #include <inet/ipclassifier.h> 99 #include <sys/mac.h> 100 101 #include <sys/systeminfo.h> 102 #include <sys/bootconf.h> 103 104 #include <sys/tsol/tndb.h> 105 #include <sys/tsol/tnet.h> 106 107 /* The character which tells where the ill_name ends */ 108 #define IPIF_SEPARATOR_CHAR ':' 109 110 /* IP ioctl function table entry */ 111 typedef struct ipft_s { 112 int ipft_cmd; 113 pfi_t ipft_pfi; 114 int ipft_min_size; 115 int ipft_flags; 116 } ipft_t; 117 #define IPFT_F_NO_REPLY 0x1 /* IP ioctl does not expect any reply */ 118 #define IPFT_F_SELF_REPLY 0x2 /* ioctl callee does the ioctl reply */ 119 120 typedef struct ip_sock_ar_s { 121 union { 122 area_t ip_sock_area; 123 ared_t ip_sock_ared; 124 areq_t ip_sock_areq; 125 } ip_sock_ar_u; 126 queue_t *ip_sock_ar_q; 127 } ip_sock_ar_t; 128 129 static int nd_ill_forward_get(queue_t *, mblk_t *, caddr_t, cred_t *); 130 static int nd_ill_forward_set(queue_t *q, mblk_t *mp, 131 char *value, caddr_t cp, cred_t *ioc_cr); 132 133 static boolean_t ip_addr_ok_v4(ipaddr_t addr, ipaddr_t subnet_mask); 134 static ip_m_t *ip_m_lookup(t_uscalar_t mac_type); 135 static int ip_sioctl_addr_tail(ipif_t *ipif, sin_t *sin, queue_t *q, 136 mblk_t *mp, boolean_t need_up); 137 static int ip_sioctl_dstaddr_tail(ipif_t *ipif, sin_t *sin, queue_t *q, 138 mblk_t *mp, boolean_t need_up); 139 static int ip_sioctl_slifzone_tail(ipif_t *ipif, zoneid_t zoneid, 140 queue_t *q, mblk_t *mp, boolean_t need_up); 141 static int ip_sioctl_flags_tail(ipif_t *ipif, uint64_t flags, queue_t *q, 142 mblk_t *mp, boolean_t need_up); 143 static int ip_sioctl_netmask_tail(ipif_t *ipif, sin_t *sin, queue_t *q, 144 mblk_t *mp); 145 static int ip_sioctl_subnet_tail(ipif_t *ipif, in6_addr_t, in6_addr_t, 146 queue_t *q, mblk_t *mp, boolean_t need_up); 147 static int ip_sioctl_arp_common(ill_t *ill, queue_t *q, mblk_t *mp, 148 sin_t *sin, boolean_t x_arp_ioctl, boolean_t if_arp_ioctl); 149 static ipaddr_t ip_subnet_mask(ipaddr_t addr, ipif_t **, ip_stack_t *); 150 static void ip_wput_ioctl(queue_t *q, mblk_t *mp); 151 static void ipsq_flush(ill_t *ill); 152 static void ipsq_clean_all(ill_t *ill); 153 static void ipsq_clean_ring(ill_t *ill, ill_rx_ring_t *rx_ring); 154 static int ip_sioctl_token_tail(ipif_t *ipif, sin6_t *sin6, int addrlen, 155 queue_t *q, mblk_t *mp, boolean_t need_up); 156 static void ipsq_delete(ipsq_t *); 157 158 static ipif_t *ipif_allocate(ill_t *ill, int id, uint_t ire_type, 159 boolean_t initialize); 160 static void ipif_check_bcast_ires(ipif_t *test_ipif); 161 static void ipif_down_delete_ire(ire_t *ire, char *ipif); 162 static void ipif_delete_cache_ire(ire_t *, char *); 163 static int ipif_logical_down(ipif_t *ipif, queue_t *q, mblk_t *mp); 164 static void ipif_free(ipif_t *ipif); 165 static void ipif_free_tail(ipif_t *ipif); 166 static void ipif_mtu_change(ire_t *ire, char *ipif_arg); 167 static void ipif_multicast_down(ipif_t *ipif); 168 static void ipif_recreate_interface_routes(ipif_t *old_ipif, ipif_t *ipif); 169 static void ipif_set_default(ipif_t *ipif); 170 static int ipif_set_values(queue_t *q, mblk_t *mp, 171 char *interf_name, uint_t *ppa); 172 static int ipif_set_values_tail(ill_t *ill, ipif_t *ipif, mblk_t *mp, 173 queue_t *q); 174 static ipif_t *ipif_lookup_on_name(char *name, size_t namelen, 175 boolean_t do_alloc, boolean_t *exists, boolean_t isv6, zoneid_t zoneid, 176 queue_t *q, mblk_t *mp, ipsq_func_t func, int *error, ip_stack_t *); 177 static int ipif_up(ipif_t *ipif, queue_t *q, mblk_t *mp); 178 static void ipif_update_other_ipifs(ipif_t *old_ipif, ill_group_t *illgrp); 179 180 static int ill_alloc_ppa(ill_if_t *, ill_t *); 181 static int ill_arp_off(ill_t *ill); 182 static int ill_arp_on(ill_t *ill); 183 static void ill_delete_interface_type(ill_if_t *); 184 static int ill_dl_up(ill_t *ill, ipif_t *ipif, mblk_t *mp, queue_t *q); 185 static void ill_dl_down(ill_t *ill); 186 static void ill_down(ill_t *ill); 187 static void ill_downi(ire_t *ire, char *ill_arg); 188 static void ill_downi_mrtun_srcif(ire_t *ire, char *ill_arg); 189 static void ill_down_tail(ill_t *ill); 190 static void ill_free_mib(ill_t *ill); 191 static void ill_glist_delete(ill_t *); 192 static boolean_t ill_has_usable_ipif(ill_t *); 193 static int ill_lock_ipsq_ills(ipsq_t *sq, ill_t **list, int); 194 static void ill_nominate_bcast_rcv(ill_group_t *illgrp); 195 static void ill_phyint_free(ill_t *ill); 196 static void ill_phyint_reinit(ill_t *ill); 197 static void ill_set_nce_router_flags(ill_t *, boolean_t); 198 static void ill_set_phys_addr_tail(ipsq_t *, queue_t *, mblk_t *, void *); 199 static void ill_signal_ipsq_ills(ipsq_t *, boolean_t); 200 static boolean_t ill_split_ipsq(ipsq_t *cur_sq); 201 static void ill_stq_cache_delete(ire_t *, char *); 202 203 static boolean_t ip_ether_v6intfid(uint_t, uint8_t *, in6_addr_t *); 204 static boolean_t ip_nodef_v6intfid(uint_t, uint8_t *, in6_addr_t *); 205 static boolean_t ip_ether_v6mapinfo(uint_t, uint8_t *, uint8_t *, uint32_t *, 206 in6_addr_t *); 207 static boolean_t ip_ether_v4mapinfo(uint_t, uint8_t *, uint8_t *, uint32_t *, 208 ipaddr_t *); 209 static boolean_t ip_ib_v6intfid(uint_t, uint8_t *, in6_addr_t *); 210 static boolean_t ip_ib_v6mapinfo(uint_t, uint8_t *, uint8_t *, uint32_t *, 211 in6_addr_t *); 212 static boolean_t ip_ib_v4mapinfo(uint_t, uint8_t *, uint8_t *, uint32_t *, 213 ipaddr_t *); 214 215 static void ipif_save_ire(ipif_t *, ire_t *); 216 static void ipif_remove_ire(ipif_t *, ire_t *); 217 static void ip_cgtp_bcast_add(ire_t *, ire_t *, ip_stack_t *); 218 static void ip_cgtp_bcast_delete(ire_t *, ip_stack_t *); 219 220 /* 221 * Per-ill IPsec capabilities management. 222 */ 223 static ill_ipsec_capab_t *ill_ipsec_capab_alloc(void); 224 static void ill_ipsec_capab_free(ill_ipsec_capab_t *); 225 static void ill_ipsec_capab_add(ill_t *, uint_t, boolean_t); 226 static void ill_ipsec_capab_delete(ill_t *, uint_t); 227 static boolean_t ill_ipsec_capab_resize_algparm(ill_ipsec_capab_t *, int); 228 static void ill_capability_proto(ill_t *, int, mblk_t *); 229 static void ill_capability_dispatch(ill_t *, mblk_t *, dl_capability_sub_t *, 230 boolean_t); 231 static void ill_capability_id_ack(ill_t *, mblk_t *, dl_capability_sub_t *); 232 static void ill_capability_mdt_ack(ill_t *, mblk_t *, dl_capability_sub_t *); 233 static void ill_capability_mdt_reset(ill_t *, mblk_t **); 234 static void ill_capability_ipsec_ack(ill_t *, mblk_t *, dl_capability_sub_t *); 235 static void ill_capability_ipsec_reset(ill_t *, mblk_t **); 236 static void ill_capability_hcksum_ack(ill_t *, mblk_t *, dl_capability_sub_t *); 237 static void ill_capability_hcksum_reset(ill_t *, mblk_t **); 238 static void ill_capability_zerocopy_ack(ill_t *, mblk_t *, 239 dl_capability_sub_t *); 240 static void ill_capability_zerocopy_reset(ill_t *, mblk_t **); 241 static void ill_capability_lso_ack(ill_t *, mblk_t *, dl_capability_sub_t *); 242 static void ill_capability_lso_reset(ill_t *, mblk_t **); 243 static void ill_capability_dls_ack(ill_t *, mblk_t *, dl_capability_sub_t *); 244 static mac_resource_handle_t ill_ring_add(void *, mac_resource_t *); 245 static void ill_capability_dls_reset(ill_t *, mblk_t **); 246 static void ill_capability_dls_disable(ill_t *); 247 248 static void illgrp_cache_delete(ire_t *, char *); 249 static void illgrp_delete(ill_t *ill); 250 static void illgrp_reset_schednext(ill_t *ill); 251 252 static ill_t *ill_prev_usesrc(ill_t *); 253 static int ill_relink_usesrc_ills(ill_t *, ill_t *, uint_t); 254 static void ill_disband_usesrc_group(ill_t *); 255 256 static void conn_cleanup_stale_ire(conn_t *, caddr_t); 257 258 /* 259 * if we go over the memory footprint limit more than once in this msec 260 * interval, we'll start pruning aggressively. 261 */ 262 int ip_min_frag_prune_time = 0; 263 264 /* 265 * max # of IPsec algorithms supported. Limited to 1 byte by PF_KEY 266 * and the IPsec DOI 267 */ 268 #define MAX_IPSEC_ALGS 256 269 270 #define BITSPERBYTE 8 271 #define BITS(type) (BITSPERBYTE * (long)sizeof (type)) 272 273 #define IPSEC_ALG_ENABLE(algs, algid) \ 274 ((algs)[(algid) / BITS(ipsec_capab_elem_t)] |= \ 275 (1 << ((algid) % BITS(ipsec_capab_elem_t)))) 276 277 #define IPSEC_ALG_IS_ENABLED(algid, algs) \ 278 ((algs)[(algid) / BITS(ipsec_capab_elem_t)] & \ 279 (1 << ((algid) % BITS(ipsec_capab_elem_t)))) 280 281 typedef uint8_t ipsec_capab_elem_t; 282 283 /* 284 * Per-algorithm parameters. Note that at present, only encryption 285 * algorithms have variable keysize (IKE does not provide a way to negotiate 286 * auth algorithm keysize). 287 * 288 * All sizes here are in bits. 289 */ 290 typedef struct 291 { 292 uint16_t minkeylen; 293 uint16_t maxkeylen; 294 } ipsec_capab_algparm_t; 295 296 /* 297 * Per-ill capabilities. 298 */ 299 struct ill_ipsec_capab_s { 300 ipsec_capab_elem_t *encr_hw_algs; 301 ipsec_capab_elem_t *auth_hw_algs; 302 uint32_t algs_size; /* size of _hw_algs in bytes */ 303 /* algorithm key lengths */ 304 ipsec_capab_algparm_t *encr_algparm; 305 uint32_t encr_algparm_size; 306 uint32_t encr_algparm_end; 307 }; 308 309 /* 310 * The field values are larger than strictly necessary for simple 311 * AR_ENTRY_ADDs but the padding lets us accomodate the socket ioctls. 312 */ 313 static area_t ip_area_template = { 314 AR_ENTRY_ADD, /* area_cmd */ 315 sizeof (ip_sock_ar_t) + (IP_ADDR_LEN*2) + sizeof (struct sockaddr_dl), 316 /* area_name_offset */ 317 /* area_name_length temporarily holds this structure length */ 318 sizeof (area_t), /* area_name_length */ 319 IP_ARP_PROTO_TYPE, /* area_proto */ 320 sizeof (ip_sock_ar_t), /* area_proto_addr_offset */ 321 IP_ADDR_LEN, /* area_proto_addr_length */ 322 sizeof (ip_sock_ar_t) + IP_ADDR_LEN, 323 /* area_proto_mask_offset */ 324 0, /* area_flags */ 325 sizeof (ip_sock_ar_t) + IP_ADDR_LEN + IP_ADDR_LEN, 326 /* area_hw_addr_offset */ 327 /* Zero length hw_addr_length means 'use your idea of the address' */ 328 0 /* area_hw_addr_length */ 329 }; 330 331 /* 332 * AR_ENTRY_ADD/DELETE templates have been added for IPv6 external resolver 333 * support 334 */ 335 static area_t ip6_area_template = { 336 AR_ENTRY_ADD, /* area_cmd */ 337 sizeof (ip_sock_ar_t) + (IPV6_ADDR_LEN*2) + sizeof (sin6_t), 338 /* area_name_offset */ 339 /* area_name_length temporarily holds this structure length */ 340 sizeof (area_t), /* area_name_length */ 341 IP_ARP_PROTO_TYPE, /* area_proto */ 342 sizeof (ip_sock_ar_t), /* area_proto_addr_offset */ 343 IPV6_ADDR_LEN, /* area_proto_addr_length */ 344 sizeof (ip_sock_ar_t) + IPV6_ADDR_LEN, 345 /* area_proto_mask_offset */ 346 0, /* area_flags */ 347 sizeof (ip_sock_ar_t) + IPV6_ADDR_LEN + IPV6_ADDR_LEN, 348 /* area_hw_addr_offset */ 349 /* Zero length hw_addr_length means 'use your idea of the address' */ 350 0 /* area_hw_addr_length */ 351 }; 352 353 static ared_t ip_ared_template = { 354 AR_ENTRY_DELETE, 355 sizeof (ared_t) + IP_ADDR_LEN, 356 sizeof (ared_t), 357 IP_ARP_PROTO_TYPE, 358 sizeof (ared_t), 359 IP_ADDR_LEN 360 }; 361 362 static ared_t ip6_ared_template = { 363 AR_ENTRY_DELETE, 364 sizeof (ared_t) + IPV6_ADDR_LEN, 365 sizeof (ared_t), 366 IP_ARP_PROTO_TYPE, 367 sizeof (ared_t), 368 IPV6_ADDR_LEN 369 }; 370 371 /* 372 * A template for an IPv6 AR_ENTRY_QUERY template has not been created, as 373 * as the areq doesn't include an IP address in ill_dl_up() (the only place a 374 * areq is used). 375 */ 376 static areq_t ip_areq_template = { 377 AR_ENTRY_QUERY, /* cmd */ 378 sizeof (areq_t)+(2*IP_ADDR_LEN), /* name offset */ 379 sizeof (areq_t), /* name len (filled by ill_arp_alloc) */ 380 IP_ARP_PROTO_TYPE, /* protocol, from arps perspective */ 381 sizeof (areq_t), /* target addr offset */ 382 IP_ADDR_LEN, /* target addr_length */ 383 0, /* flags */ 384 sizeof (areq_t) + IP_ADDR_LEN, /* sender addr offset */ 385 IP_ADDR_LEN, /* sender addr length */ 386 AR_EQ_DEFAULT_XMIT_COUNT, /* xmit_count */ 387 AR_EQ_DEFAULT_XMIT_INTERVAL, /* (re)xmit_interval in milliseconds */ 388 AR_EQ_DEFAULT_MAX_BUFFERED /* max # of requests to buffer */ 389 /* anything else filled in by the code */ 390 }; 391 392 static arc_t ip_aru_template = { 393 AR_INTERFACE_UP, 394 sizeof (arc_t), /* Name offset */ 395 sizeof (arc_t) /* Name length (set by ill_arp_alloc) */ 396 }; 397 398 static arc_t ip_ard_template = { 399 AR_INTERFACE_DOWN, 400 sizeof (arc_t), /* Name offset */ 401 sizeof (arc_t) /* Name length (set by ill_arp_alloc) */ 402 }; 403 404 static arc_t ip_aron_template = { 405 AR_INTERFACE_ON, 406 sizeof (arc_t), /* Name offset */ 407 sizeof (arc_t) /* Name length (set by ill_arp_alloc) */ 408 }; 409 410 static arc_t ip_aroff_template = { 411 AR_INTERFACE_OFF, 412 sizeof (arc_t), /* Name offset */ 413 sizeof (arc_t) /* Name length (set by ill_arp_alloc) */ 414 }; 415 416 417 static arma_t ip_arma_multi_template = { 418 AR_MAPPING_ADD, 419 sizeof (arma_t) + 3*IP_ADDR_LEN + IP_MAX_HW_LEN, 420 /* Name offset */ 421 sizeof (arma_t), /* Name length (set by ill_arp_alloc) */ 422 IP_ARP_PROTO_TYPE, 423 sizeof (arma_t), /* proto_addr_offset */ 424 IP_ADDR_LEN, /* proto_addr_length */ 425 sizeof (arma_t) + IP_ADDR_LEN, /* proto_mask_offset */ 426 sizeof (arma_t) + 2*IP_ADDR_LEN, /* proto_extract_mask_offset */ 427 ACE_F_PERMANENT | ACE_F_MAPPING, /* flags */ 428 sizeof (arma_t) + 3*IP_ADDR_LEN, /* hw_addr_offset */ 429 IP_MAX_HW_LEN, /* hw_addr_length */ 430 0, /* hw_mapping_start */ 431 }; 432 433 static ipft_t ip_ioctl_ftbl[] = { 434 { IP_IOC_IRE_DELETE, ip_ire_delete, sizeof (ipid_t), 0 }, 435 { IP_IOC_IRE_DELETE_NO_REPLY, ip_ire_delete, sizeof (ipid_t), 436 IPFT_F_NO_REPLY }, 437 { IP_IOC_IRE_ADVISE_NO_REPLY, ip_ire_advise, sizeof (ipic_t), 438 IPFT_F_NO_REPLY }, 439 { IP_IOC_RTS_REQUEST, ip_rts_request, 0, IPFT_F_SELF_REPLY }, 440 { 0 } 441 }; 442 443 /* Simple ICMP IP Header Template */ 444 static ipha_t icmp_ipha = { 445 IP_SIMPLE_HDR_VERSION, 0, 0, 0, 0, 0, IPPROTO_ICMP 446 }; 447 448 /* Flag descriptors for ip_ipif_report */ 449 static nv_t ipif_nv_tbl[] = { 450 { IPIF_UP, "UP" }, 451 { IPIF_BROADCAST, "BROADCAST" }, 452 { ILLF_DEBUG, "DEBUG" }, 453 { PHYI_LOOPBACK, "LOOPBACK" }, 454 { IPIF_POINTOPOINT, "POINTOPOINT" }, 455 { ILLF_NOTRAILERS, "NOTRAILERS" }, 456 { PHYI_RUNNING, "RUNNING" }, 457 { ILLF_NOARP, "NOARP" }, 458 { PHYI_PROMISC, "PROMISC" }, 459 { PHYI_ALLMULTI, "ALLMULTI" }, 460 { PHYI_INTELLIGENT, "INTELLIGENT" }, 461 { ILLF_MULTICAST, "MULTICAST" }, 462 { PHYI_MULTI_BCAST, "MULTI_BCAST" }, 463 { IPIF_UNNUMBERED, "UNNUMBERED" }, 464 { IPIF_DHCPRUNNING, "DHCP" }, 465 { IPIF_PRIVATE, "PRIVATE" }, 466 { IPIF_NOXMIT, "NOXMIT" }, 467 { IPIF_NOLOCAL, "NOLOCAL" }, 468 { IPIF_DEPRECATED, "DEPRECATED" }, 469 { IPIF_PREFERRED, "PREFERRED" }, 470 { IPIF_TEMPORARY, "TEMPORARY" }, 471 { IPIF_ADDRCONF, "ADDRCONF" }, 472 { PHYI_VIRTUAL, "VIRTUAL" }, 473 { ILLF_ROUTER, "ROUTER" }, 474 { ILLF_NONUD, "NONUD" }, 475 { IPIF_ANYCAST, "ANYCAST" }, 476 { ILLF_NORTEXCH, "NORTEXCH" }, 477 { ILLF_IPV4, "IPV4" }, 478 { ILLF_IPV6, "IPV6" }, 479 { IPIF_MIPRUNNING, "MIP" }, 480 { IPIF_NOFAILOVER, "NOFAILOVER" }, 481 { PHYI_FAILED, "FAILED" }, 482 { PHYI_STANDBY, "STANDBY" }, 483 { PHYI_INACTIVE, "INACTIVE" }, 484 { PHYI_OFFLINE, "OFFLINE" }, 485 }; 486 487 static uchar_t ip_six_byte_all_ones[] = { 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF }; 488 489 static ip_m_t ip_m_tbl[] = { 490 { DL_ETHER, IFT_ETHER, ip_ether_v4mapinfo, ip_ether_v6mapinfo, 491 ip_ether_v6intfid }, 492 { DL_CSMACD, IFT_ISO88023, ip_ether_v4mapinfo, ip_ether_v6mapinfo, 493 ip_nodef_v6intfid }, 494 { DL_TPB, IFT_ISO88024, ip_ether_v4mapinfo, ip_ether_v6mapinfo, 495 ip_nodef_v6intfid }, 496 { DL_TPR, IFT_ISO88025, ip_ether_v4mapinfo, ip_ether_v6mapinfo, 497 ip_nodef_v6intfid }, 498 { DL_FDDI, IFT_FDDI, ip_ether_v4mapinfo, ip_ether_v6mapinfo, 499 ip_ether_v6intfid }, 500 { DL_IB, IFT_IB, ip_ib_v4mapinfo, ip_ib_v6mapinfo, 501 ip_ib_v6intfid }, 502 { SUNW_DL_VNI, IFT_OTHER, NULL, NULL, NULL}, 503 { DL_OTHER, IFT_OTHER, ip_ether_v4mapinfo, ip_ether_v6mapinfo, 504 ip_nodef_v6intfid } 505 }; 506 507 static ill_t ill_null; /* Empty ILL for init. */ 508 char ipif_loopback_name[] = "lo0"; 509 static char *ipv4_forward_suffix = ":ip_forwarding"; 510 static char *ipv6_forward_suffix = ":ip6_forwarding"; 511 static sin6_t sin6_null; /* Zero address for quick clears */ 512 static sin_t sin_null; /* Zero address for quick clears */ 513 514 /* When set search for unused ipif_seqid */ 515 static ipif_t ipif_zero; 516 517 /* 518 * ppa arena is created after these many 519 * interfaces have been plumbed. 520 */ 521 uint_t ill_no_arena = 12; /* Setable in /etc/system */ 522 523 /* 524 * Enable soft rings if ip_squeue_soft_ring or ip_squeue_fanout 525 * is set and ip_soft_rings_cnt > 0. ip_squeue_soft_ring is 526 * set through platform specific code (Niagara/Ontario). 527 */ 528 #define SOFT_RINGS_ENABLED() (ip_soft_rings_cnt ? \ 529 (ip_squeue_soft_ring || ip_squeue_fanout) : B_FALSE) 530 531 #define ILL_CAPAB_DLS (ILL_CAPAB_SOFT_RING | ILL_CAPAB_POLL) 532 533 static uint_t 534 ipif_rand(ip_stack_t *ipst) 535 { 536 ipst->ips_ipif_src_random = ipst->ips_ipif_src_random * 1103515245 + 537 12345; 538 return ((ipst->ips_ipif_src_random >> 16) & 0x7fff); 539 } 540 541 /* 542 * Allocate per-interface mibs. 543 * Returns true if ok. False otherwise. 544 * ipsq may not yet be allocated (loopback case ). 545 */ 546 static boolean_t 547 ill_allocate_mibs(ill_t *ill) 548 { 549 /* Already allocated? */ 550 if (ill->ill_ip_mib != NULL) { 551 if (ill->ill_isv6) 552 ASSERT(ill->ill_icmp6_mib != NULL); 553 return (B_TRUE); 554 } 555 556 ill->ill_ip_mib = kmem_zalloc(sizeof (*ill->ill_ip_mib), 557 KM_NOSLEEP); 558 if (ill->ill_ip_mib == NULL) { 559 return (B_FALSE); 560 } 561 562 /* Setup static information */ 563 SET_MIB(ill->ill_ip_mib->ipIfStatsEntrySize, 564 sizeof (mib2_ipIfStatsEntry_t)); 565 if (ill->ill_isv6) { 566 ill->ill_ip_mib->ipIfStatsIPVersion = MIB2_INETADDRESSTYPE_ipv6; 567 SET_MIB(ill->ill_ip_mib->ipIfStatsAddrEntrySize, 568 sizeof (mib2_ipv6AddrEntry_t)); 569 SET_MIB(ill->ill_ip_mib->ipIfStatsRouteEntrySize, 570 sizeof (mib2_ipv6RouteEntry_t)); 571 SET_MIB(ill->ill_ip_mib->ipIfStatsNetToMediaEntrySize, 572 sizeof (mib2_ipv6NetToMediaEntry_t)); 573 SET_MIB(ill->ill_ip_mib->ipIfStatsMemberEntrySize, 574 sizeof (ipv6_member_t)); 575 SET_MIB(ill->ill_ip_mib->ipIfStatsGroupSourceEntrySize, 576 sizeof (ipv6_grpsrc_t)); 577 } else { 578 ill->ill_ip_mib->ipIfStatsIPVersion = MIB2_INETADDRESSTYPE_ipv4; 579 SET_MIB(ill->ill_ip_mib->ipIfStatsAddrEntrySize, 580 sizeof (mib2_ipAddrEntry_t)); 581 SET_MIB(ill->ill_ip_mib->ipIfStatsRouteEntrySize, 582 sizeof (mib2_ipRouteEntry_t)); 583 SET_MIB(ill->ill_ip_mib->ipIfStatsNetToMediaEntrySize, 584 sizeof (mib2_ipNetToMediaEntry_t)); 585 SET_MIB(ill->ill_ip_mib->ipIfStatsMemberEntrySize, 586 sizeof (ip_member_t)); 587 SET_MIB(ill->ill_ip_mib->ipIfStatsGroupSourceEntrySize, 588 sizeof (ip_grpsrc_t)); 589 590 /* 591 * For a v4 ill, we are done at this point, because per ill 592 * icmp mibs are only used for v6. 593 */ 594 return (B_TRUE); 595 } 596 597 ill->ill_icmp6_mib = kmem_zalloc(sizeof (*ill->ill_icmp6_mib), 598 KM_NOSLEEP); 599 if (ill->ill_icmp6_mib == NULL) { 600 kmem_free(ill->ill_ip_mib, sizeof (*ill->ill_ip_mib)); 601 ill->ill_ip_mib = NULL; 602 return (B_FALSE); 603 } 604 /* static icmp info */ 605 ill->ill_icmp6_mib->ipv6IfIcmpEntrySize = 606 sizeof (mib2_ipv6IfIcmpEntry_t); 607 /* 608 * The ipIfStatsIfindex and ipv6IfIcmpIndex will be assigned later 609 * after the phyint merge occurs in ipif_set_values -> ill_glist_insert 610 * -> ill_phyint_reinit 611 */ 612 return (B_TRUE); 613 } 614 615 /* 616 * Common code for preparation of ARP commands. Two points to remember: 617 * 1) The ill_name is tacked on at the end of the allocated space so 618 * the templates name_offset field must contain the total space 619 * to allocate less the name length. 620 * 621 * 2) The templates name_length field should contain the *template* 622 * length. We use it as a parameter to bcopy() and then write 623 * the real ill_name_length into the name_length field of the copy. 624 * (Always called as writer.) 625 */ 626 mblk_t * 627 ill_arp_alloc(ill_t *ill, uchar_t *template, caddr_t addr) 628 { 629 arc_t *arc = (arc_t *)template; 630 char *cp; 631 int len; 632 mblk_t *mp; 633 uint_t name_length = ill->ill_name_length; 634 uint_t template_len = arc->arc_name_length; 635 636 len = arc->arc_name_offset + name_length; 637 mp = allocb(len, BPRI_HI); 638 if (mp == NULL) 639 return (NULL); 640 cp = (char *)mp->b_rptr; 641 mp->b_wptr = (uchar_t *)&cp[len]; 642 if (template_len) 643 bcopy(template, cp, template_len); 644 if (len > template_len) 645 bzero(&cp[template_len], len - template_len); 646 mp->b_datap->db_type = M_PROTO; 647 648 arc = (arc_t *)cp; 649 arc->arc_name_length = name_length; 650 cp = (char *)arc + arc->arc_name_offset; 651 bcopy(ill->ill_name, cp, name_length); 652 653 if (addr) { 654 area_t *area = (area_t *)mp->b_rptr; 655 656 cp = (char *)area + area->area_proto_addr_offset; 657 bcopy(addr, cp, area->area_proto_addr_length); 658 if (area->area_cmd == AR_ENTRY_ADD) { 659 cp = (char *)area; 660 len = area->area_proto_addr_length; 661 if (area->area_proto_mask_offset) 662 cp += area->area_proto_mask_offset; 663 else 664 cp += area->area_proto_addr_offset + len; 665 while (len-- > 0) 666 *cp++ = (char)~0; 667 } 668 } 669 return (mp); 670 } 671 672 mblk_t * 673 ipif_area_alloc(ipif_t *ipif) 674 { 675 return (ill_arp_alloc(ipif->ipif_ill, (uchar_t *)&ip_area_template, 676 (char *)&ipif->ipif_lcl_addr)); 677 } 678 679 mblk_t * 680 ipif_ared_alloc(ipif_t *ipif) 681 { 682 return (ill_arp_alloc(ipif->ipif_ill, (uchar_t *)&ip_ared_template, 683 (char *)&ipif->ipif_lcl_addr)); 684 } 685 686 mblk_t * 687 ill_ared_alloc(ill_t *ill, ipaddr_t addr) 688 { 689 return (ill_arp_alloc(ill, (uchar_t *)&ip_ared_template, 690 (char *)&addr)); 691 } 692 693 /* 694 * Completely vaporize a lower level tap and all associated interfaces. 695 * ill_delete is called only out of ip_close when the device control 696 * stream is being closed. 697 */ 698 void 699 ill_delete(ill_t *ill) 700 { 701 ipif_t *ipif; 702 ill_t *prev_ill; 703 ip_stack_t *ipst = ill->ill_ipst; 704 705 /* 706 * ill_delete may be forcibly entering the ipsq. The previous 707 * ioctl may not have completed and may need to be aborted. 708 * ipsq_flush takes care of it. If we don't need to enter the 709 * the ipsq forcibly, the 2nd invocation of ipsq_flush in 710 * ill_delete_tail is sufficient. 711 */ 712 ipsq_flush(ill); 713 714 /* 715 * Nuke all interfaces. ipif_free will take down the interface, 716 * remove it from the list, and free the data structure. 717 * Walk down the ipif list and remove the logical interfaces 718 * first before removing the main ipif. We can't unplumb 719 * zeroth interface first in the case of IPv6 as reset_conn_ill 720 * -> ip_ll_delmulti_v6 de-references ill_ipif for checking 721 * POINTOPOINT. 722 * 723 * If ill_ipif was not properly initialized (i.e low on memory), 724 * then no interfaces to clean up. In this case just clean up the 725 * ill. 726 */ 727 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) 728 ipif_free(ipif); 729 730 /* 731 * Used only by ill_arp_on and ill_arp_off, which are writers. 732 * So nobody can be using this mp now. Free the mp allocated for 733 * honoring ILLF_NOARP 734 */ 735 freemsg(ill->ill_arp_on_mp); 736 ill->ill_arp_on_mp = NULL; 737 738 /* Clean up msgs on pending upcalls for mrouted */ 739 reset_mrt_ill(ill); 740 741 /* 742 * ipif_free -> reset_conn_ipif will remove all multicast 743 * references for IPv4. For IPv6, we need to do it here as 744 * it points only at ills. 745 */ 746 reset_conn_ill(ill); 747 748 /* 749 * ill_down will arrange to blow off any IRE's dependent on this 750 * ILL, and shut down fragmentation reassembly. 751 */ 752 ill_down(ill); 753 754 /* Let SCTP know, so that it can remove this from its list. */ 755 sctp_update_ill(ill, SCTP_ILL_REMOVE); 756 757 /* 758 * If an address on this ILL is being used as a source address then 759 * clear out the pointers in other ILLs that point to this ILL. 760 */ 761 rw_enter(&ipst->ips_ill_g_usesrc_lock, RW_WRITER); 762 if (ill->ill_usesrc_grp_next != NULL) { 763 if (ill->ill_usesrc_ifindex == 0) { /* usesrc ILL ? */ 764 ill_disband_usesrc_group(ill); 765 } else { /* consumer of the usesrc ILL */ 766 prev_ill = ill_prev_usesrc(ill); 767 prev_ill->ill_usesrc_grp_next = 768 ill->ill_usesrc_grp_next; 769 } 770 } 771 rw_exit(&ipst->ips_ill_g_usesrc_lock); 772 } 773 774 static void 775 ipif_non_duplicate(ipif_t *ipif) 776 { 777 ill_t *ill = ipif->ipif_ill; 778 mutex_enter(&ill->ill_lock); 779 if (ipif->ipif_flags & IPIF_DUPLICATE) { 780 ipif->ipif_flags &= ~IPIF_DUPLICATE; 781 ASSERT(ill->ill_ipif_dup_count > 0); 782 ill->ill_ipif_dup_count--; 783 } 784 mutex_exit(&ill->ill_lock); 785 } 786 787 /* 788 * Send all deferred messages without waiting for their ACKs. 789 */ 790 void 791 ill_send_all_deferred_mp(ill_t *ill) 792 { 793 mblk_t *mp, *next; 794 795 /* 796 * Clear ill_dlpi_pending so that the message is not queued in 797 * ill_dlpi_send(). 798 */ 799 ill->ill_dlpi_pending = DL_PRIM_INVAL; 800 801 for (mp = ill->ill_dlpi_deferred; mp != NULL; mp = next) { 802 next = mp->b_next; 803 mp->b_next = NULL; 804 ill_dlpi_send(ill, mp); 805 } 806 ill->ill_dlpi_deferred = NULL; 807 } 808 809 /* 810 * ill_delete_tail is called from ip_modclose after all references 811 * to the closing ill are gone. The wait is done in ip_modclose 812 */ 813 void 814 ill_delete_tail(ill_t *ill) 815 { 816 mblk_t **mpp; 817 ipif_t *ipif; 818 ip_stack_t *ipst = ill->ill_ipst; 819 820 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 821 ipif_non_duplicate(ipif); 822 ipif_down_tail(ipif); 823 } 824 825 ASSERT(ill->ill_ipif_dup_count == 0 && 826 ill->ill_arp_down_mp == NULL && 827 ill->ill_arp_del_mapping_mp == NULL); 828 829 /* 830 * If polling capability is enabled (which signifies direct 831 * upcall into IP and driver has ill saved as a handle), 832 * we need to make sure that unbind has completed before we 833 * let the ill disappear and driver no longer has any reference 834 * to this ill. 835 */ 836 mutex_enter(&ill->ill_lock); 837 while (ill->ill_state_flags & ILL_DL_UNBIND_IN_PROGRESS) 838 cv_wait(&ill->ill_cv, &ill->ill_lock); 839 mutex_exit(&ill->ill_lock); 840 841 /* 842 * Clean up polling and soft ring capabilities 843 */ 844 if (ill->ill_capabilities & (ILL_CAPAB_POLL|ILL_CAPAB_SOFT_RING)) 845 ill_capability_dls_disable(ill); 846 847 /* 848 * Send the detach if there's one to send (i.e., if we're above a 849 * style 2 DLPI driver). 850 */ 851 if (ill->ill_detach_mp != NULL) { 852 ill_dlpi_send(ill, ill->ill_detach_mp); 853 ill->ill_detach_mp = NULL; 854 } 855 856 if (ill->ill_net_type != IRE_LOOPBACK) 857 qprocsoff(ill->ill_rq); 858 859 /* 860 * We do an ipsq_flush once again now. New messages could have 861 * landed up from below (M_ERROR or M_HANGUP). Similarly ioctls 862 * could also have landed up if an ioctl thread had looked up 863 * the ill before we set the ILL_CONDEMNED flag, but not yet 864 * enqueued the ioctl when we did the ipsq_flush last time. 865 */ 866 ipsq_flush(ill); 867 868 /* 869 * Free capabilities. 870 */ 871 if (ill->ill_ipsec_capab_ah != NULL) { 872 ill_ipsec_capab_delete(ill, DL_CAPAB_IPSEC_AH); 873 ill_ipsec_capab_free(ill->ill_ipsec_capab_ah); 874 ill->ill_ipsec_capab_ah = NULL; 875 } 876 877 if (ill->ill_ipsec_capab_esp != NULL) { 878 ill_ipsec_capab_delete(ill, DL_CAPAB_IPSEC_ESP); 879 ill_ipsec_capab_free(ill->ill_ipsec_capab_esp); 880 ill->ill_ipsec_capab_esp = NULL; 881 } 882 883 if (ill->ill_mdt_capab != NULL) { 884 kmem_free(ill->ill_mdt_capab, sizeof (ill_mdt_capab_t)); 885 ill->ill_mdt_capab = NULL; 886 } 887 888 if (ill->ill_hcksum_capab != NULL) { 889 kmem_free(ill->ill_hcksum_capab, sizeof (ill_hcksum_capab_t)); 890 ill->ill_hcksum_capab = NULL; 891 } 892 893 if (ill->ill_zerocopy_capab != NULL) { 894 kmem_free(ill->ill_zerocopy_capab, 895 sizeof (ill_zerocopy_capab_t)); 896 ill->ill_zerocopy_capab = NULL; 897 } 898 899 if (ill->ill_lso_capab != NULL) { 900 kmem_free(ill->ill_lso_capab, sizeof (ill_lso_capab_t)); 901 ill->ill_lso_capab = NULL; 902 } 903 904 if (ill->ill_dls_capab != NULL) { 905 CONN_DEC_REF(ill->ill_dls_capab->ill_unbind_conn); 906 ill->ill_dls_capab->ill_unbind_conn = NULL; 907 kmem_free(ill->ill_dls_capab, 908 sizeof (ill_dls_capab_t) + 909 (sizeof (ill_rx_ring_t) * ILL_MAX_RINGS)); 910 ill->ill_dls_capab = NULL; 911 } 912 913 ASSERT(!(ill->ill_capabilities & ILL_CAPAB_POLL)); 914 915 while (ill->ill_ipif != NULL) 916 ipif_free_tail(ill->ill_ipif); 917 918 ill_down_tail(ill); 919 920 /* 921 * We have removed all references to ilm from conn and the ones joined 922 * within the kernel. 923 * 924 * We don't walk conns, mrts and ires because 925 * 926 * 1) reset_conn_ill and reset_mrt_ill cleans up conns and mrts. 927 * 2) ill_down ->ill_downi walks all the ires and cleans up 928 * ill references. 929 */ 930 ASSERT(ilm_walk_ill(ill) == 0); 931 /* 932 * Take us out of the list of ILLs. ill_glist_delete -> ill_phyint_free 933 * could free the phyint. No more reference to the phyint after this 934 * point. 935 */ 936 (void) ill_glist_delete(ill); 937 938 rw_enter(&ipst->ips_ip_g_nd_lock, RW_WRITER); 939 if (ill->ill_ndd_name != NULL) 940 nd_unload(&ipst->ips_ip_g_nd, ill->ill_ndd_name); 941 rw_exit(&ipst->ips_ip_g_nd_lock); 942 943 944 if (ill->ill_frag_ptr != NULL) { 945 uint_t count; 946 947 for (count = 0; count < ILL_FRAG_HASH_TBL_COUNT; count++) { 948 mutex_destroy(&ill->ill_frag_hash_tbl[count].ipfb_lock); 949 } 950 mi_free(ill->ill_frag_ptr); 951 ill->ill_frag_ptr = NULL; 952 ill->ill_frag_hash_tbl = NULL; 953 } 954 955 freemsg(ill->ill_nd_lla_mp); 956 /* Free all retained control messages. */ 957 mpp = &ill->ill_first_mp_to_free; 958 do { 959 while (mpp[0]) { 960 mblk_t *mp; 961 mblk_t *mp1; 962 963 mp = mpp[0]; 964 mpp[0] = mp->b_next; 965 for (mp1 = mp; mp1 != NULL; mp1 = mp1->b_cont) { 966 mp1->b_next = NULL; 967 mp1->b_prev = NULL; 968 } 969 freemsg(mp); 970 } 971 } while (mpp++ != &ill->ill_last_mp_to_free); 972 973 ill_free_mib(ill); 974 /* Drop refcnt here */ 975 netstack_rele(ill->ill_ipst->ips_netstack); 976 ill->ill_ipst = NULL; 977 978 ILL_TRACE_CLEANUP(ill); 979 } 980 981 static void 982 ill_free_mib(ill_t *ill) 983 { 984 ip_stack_t *ipst = ill->ill_ipst; 985 986 /* 987 * MIB statistics must not be lost, so when an interface 988 * goes away the counter values will be added to the global 989 * MIBs. 990 */ 991 if (ill->ill_ip_mib != NULL) { 992 if (ill->ill_isv6) { 993 ip_mib2_add_ip_stats(&ipst->ips_ip6_mib, 994 ill->ill_ip_mib); 995 } else { 996 ip_mib2_add_ip_stats(&ipst->ips_ip_mib, 997 ill->ill_ip_mib); 998 } 999 1000 kmem_free(ill->ill_ip_mib, sizeof (*ill->ill_ip_mib)); 1001 ill->ill_ip_mib = NULL; 1002 } 1003 if (ill->ill_icmp6_mib != NULL) { 1004 ip_mib2_add_icmp6_stats(&ipst->ips_icmp6_mib, 1005 ill->ill_icmp6_mib); 1006 kmem_free(ill->ill_icmp6_mib, sizeof (*ill->ill_icmp6_mib)); 1007 ill->ill_icmp6_mib = NULL; 1008 } 1009 } 1010 1011 /* 1012 * Concatenate together a physical address and a sap. 1013 * 1014 * Sap_lengths are interpreted as follows: 1015 * sap_length == 0 ==> no sap 1016 * sap_length > 0 ==> sap is at the head of the dlpi address 1017 * sap_length < 0 ==> sap is at the tail of the dlpi address 1018 */ 1019 static void 1020 ill_dlur_copy_address(uchar_t *phys_src, uint_t phys_length, 1021 t_scalar_t sap_src, t_scalar_t sap_length, uchar_t *dst) 1022 { 1023 uint16_t sap_addr = (uint16_t)sap_src; 1024 1025 if (sap_length == 0) { 1026 if (phys_src == NULL) 1027 bzero(dst, phys_length); 1028 else 1029 bcopy(phys_src, dst, phys_length); 1030 } else if (sap_length < 0) { 1031 if (phys_src == NULL) 1032 bzero(dst, phys_length); 1033 else 1034 bcopy(phys_src, dst, phys_length); 1035 bcopy(&sap_addr, (char *)dst + phys_length, sizeof (sap_addr)); 1036 } else { 1037 bcopy(&sap_addr, dst, sizeof (sap_addr)); 1038 if (phys_src == NULL) 1039 bzero((char *)dst + sap_length, phys_length); 1040 else 1041 bcopy(phys_src, (char *)dst + sap_length, phys_length); 1042 } 1043 } 1044 1045 /* 1046 * Generate a dl_unitdata_req mblk for the device and address given. 1047 * addr_length is the length of the physical portion of the address. 1048 * If addr is NULL include an all zero address of the specified length. 1049 * TRUE? In any case, addr_length is taken to be the entire length of the 1050 * dlpi address, including the absolute value of sap_length. 1051 */ 1052 mblk_t * 1053 ill_dlur_gen(uchar_t *addr, uint_t addr_length, t_uscalar_t sap, 1054 t_scalar_t sap_length) 1055 { 1056 dl_unitdata_req_t *dlur; 1057 mblk_t *mp; 1058 t_scalar_t abs_sap_length; /* absolute value */ 1059 1060 abs_sap_length = ABS(sap_length); 1061 mp = ip_dlpi_alloc(sizeof (*dlur) + addr_length + abs_sap_length, 1062 DL_UNITDATA_REQ); 1063 if (mp == NULL) 1064 return (NULL); 1065 dlur = (dl_unitdata_req_t *)mp->b_rptr; 1066 /* HACK: accomodate incompatible DLPI drivers */ 1067 if (addr_length == 8) 1068 addr_length = 6; 1069 dlur->dl_dest_addr_length = addr_length + abs_sap_length; 1070 dlur->dl_dest_addr_offset = sizeof (*dlur); 1071 dlur->dl_priority.dl_min = 0; 1072 dlur->dl_priority.dl_max = 0; 1073 ill_dlur_copy_address(addr, addr_length, sap, sap_length, 1074 (uchar_t *)&dlur[1]); 1075 return (mp); 1076 } 1077 1078 /* 1079 * Add the 'mp' to the list of pending mp's headed by ill_pending_mp 1080 * Return an error if we already have 1 or more ioctls in progress. 1081 * This is used only for non-exclusive ioctls. Currently this is used 1082 * for SIOC*ARP and SIOCGTUNPARAM ioctls. Most set ioctls are exclusive 1083 * and thus need to use ipsq_pending_mp_add. 1084 */ 1085 boolean_t 1086 ill_pending_mp_add(ill_t *ill, conn_t *connp, mblk_t *add_mp) 1087 { 1088 ASSERT(MUTEX_HELD(&ill->ill_lock)); 1089 ASSERT((add_mp->b_next == NULL) && (add_mp->b_prev == NULL)); 1090 /* 1091 * M_IOCDATA from ioctls, M_IOCTL from tunnel ioctls. 1092 */ 1093 ASSERT((add_mp->b_datap->db_type == M_IOCDATA) || 1094 (add_mp->b_datap->db_type == M_IOCTL)); 1095 1096 ASSERT(MUTEX_HELD(&connp->conn_lock)); 1097 /* 1098 * Return error if the conn has started closing. The conn 1099 * could have finished cleaning up the pending mp list, 1100 * If so we should not add another mp to the list negating 1101 * the cleanup. 1102 */ 1103 if (connp->conn_state_flags & CONN_CLOSING) 1104 return (B_FALSE); 1105 /* 1106 * Add the pending mp to the head of the list, chained by b_next. 1107 * Note down the conn on which the ioctl request came, in b_prev. 1108 * This will be used to later get the conn, when we get a response 1109 * on the ill queue, from some other module (typically arp) 1110 */ 1111 add_mp->b_next = (void *)ill->ill_pending_mp; 1112 add_mp->b_queue = CONNP_TO_WQ(connp); 1113 ill->ill_pending_mp = add_mp; 1114 if (connp != NULL) 1115 connp->conn_oper_pending_ill = ill; 1116 return (B_TRUE); 1117 } 1118 1119 /* 1120 * Retrieve the ill_pending_mp and return it. We have to walk the list 1121 * of mblks starting at ill_pending_mp, and match based on the ioc_id. 1122 */ 1123 mblk_t * 1124 ill_pending_mp_get(ill_t *ill, conn_t **connpp, uint_t ioc_id) 1125 { 1126 mblk_t *prev = NULL; 1127 mblk_t *curr = NULL; 1128 uint_t id; 1129 conn_t *connp; 1130 1131 /* 1132 * When the conn closes, conn_ioctl_cleanup needs to clean 1133 * up the pending mp, but it does not know the ioc_id and 1134 * passes in a zero for it. 1135 */ 1136 mutex_enter(&ill->ill_lock); 1137 if (ioc_id != 0) 1138 *connpp = NULL; 1139 1140 /* Search the list for the appropriate ioctl based on ioc_id */ 1141 for (prev = NULL, curr = ill->ill_pending_mp; curr != NULL; 1142 prev = curr, curr = curr->b_next) { 1143 id = ((struct iocblk *)curr->b_rptr)->ioc_id; 1144 connp = Q_TO_CONN(curr->b_queue); 1145 /* Match based on the ioc_id or based on the conn */ 1146 if ((id == ioc_id) || (ioc_id == 0 && connp == *connpp)) 1147 break; 1148 } 1149 1150 if (curr != NULL) { 1151 /* Unlink the mblk from the pending mp list */ 1152 if (prev != NULL) { 1153 prev->b_next = curr->b_next; 1154 } else { 1155 ASSERT(ill->ill_pending_mp == curr); 1156 ill->ill_pending_mp = curr->b_next; 1157 } 1158 1159 /* 1160 * conn refcnt must have been bumped up at the start of 1161 * the ioctl. So we can safely access the conn. 1162 */ 1163 ASSERT(CONN_Q(curr->b_queue)); 1164 *connpp = Q_TO_CONN(curr->b_queue); 1165 curr->b_next = NULL; 1166 curr->b_queue = NULL; 1167 } 1168 1169 mutex_exit(&ill->ill_lock); 1170 1171 return (curr); 1172 } 1173 1174 /* 1175 * Add the pending mp to the list. There can be only 1 pending mp 1176 * in the list. Any exclusive ioctl that needs to wait for a response 1177 * from another module or driver needs to use this function to set 1178 * the ipsq_pending_mp to the ioctl mblk and wait for the response from 1179 * the other module/driver. This is also used while waiting for the 1180 * ipif/ill/ire refcnts to drop to zero in bringing down an ipif. 1181 */ 1182 boolean_t 1183 ipsq_pending_mp_add(conn_t *connp, ipif_t *ipif, queue_t *q, mblk_t *add_mp, 1184 int waitfor) 1185 { 1186 ipsq_t *ipsq = ipif->ipif_ill->ill_phyint->phyint_ipsq; 1187 1188 ASSERT(IAM_WRITER_IPIF(ipif)); 1189 ASSERT(MUTEX_HELD(&ipif->ipif_ill->ill_lock)); 1190 ASSERT((add_mp->b_next == NULL) && (add_mp->b_prev == NULL)); 1191 ASSERT(ipsq->ipsq_pending_mp == NULL); 1192 /* 1193 * The caller may be using a different ipif than the one passed into 1194 * ipsq_current_start() (e.g., suppose an ioctl that came in on the V4 1195 * ill needs to wait for the V6 ill to quiesce). So we can't ASSERT 1196 * that `ipsq_current_ipif == ipif'. 1197 */ 1198 ASSERT(ipsq->ipsq_current_ipif != NULL); 1199 1200 /* 1201 * M_IOCDATA from ioctls, M_IOCTL from tunnel ioctls, 1202 * M_ERROR/M_HANGUP/M_PROTO/M_PCPROTO from the driver. 1203 */ 1204 ASSERT((DB_TYPE(add_mp) == M_IOCDATA) || (DB_TYPE(add_mp) == M_IOCTL) || 1205 (DB_TYPE(add_mp) == M_ERROR) || (DB_TYPE(add_mp) == M_HANGUP) || 1206 (DB_TYPE(add_mp) == M_PROTO) || (DB_TYPE(add_mp) == M_PCPROTO)); 1207 1208 if (connp != NULL) { 1209 ASSERT(MUTEX_HELD(&connp->conn_lock)); 1210 /* 1211 * Return error if the conn has started closing. The conn 1212 * could have finished cleaning up the pending mp list, 1213 * If so we should not add another mp to the list negating 1214 * the cleanup. 1215 */ 1216 if (connp->conn_state_flags & CONN_CLOSING) 1217 return (B_FALSE); 1218 } 1219 mutex_enter(&ipsq->ipsq_lock); 1220 ipsq->ipsq_pending_ipif = ipif; 1221 /* 1222 * Note down the queue in b_queue. This will be returned by 1223 * ipsq_pending_mp_get. Caller will then use these values to restart 1224 * the processing 1225 */ 1226 add_mp->b_next = NULL; 1227 add_mp->b_queue = q; 1228 ipsq->ipsq_pending_mp = add_mp; 1229 ipsq->ipsq_waitfor = waitfor; 1230 1231 if (connp != NULL) 1232 connp->conn_oper_pending_ill = ipif->ipif_ill; 1233 mutex_exit(&ipsq->ipsq_lock); 1234 return (B_TRUE); 1235 } 1236 1237 /* 1238 * Retrieve the ipsq_pending_mp and return it. There can be only 1 mp 1239 * queued in the list. 1240 */ 1241 mblk_t * 1242 ipsq_pending_mp_get(ipsq_t *ipsq, conn_t **connpp) 1243 { 1244 mblk_t *curr = NULL; 1245 1246 mutex_enter(&ipsq->ipsq_lock); 1247 *connpp = NULL; 1248 if (ipsq->ipsq_pending_mp == NULL) { 1249 mutex_exit(&ipsq->ipsq_lock); 1250 return (NULL); 1251 } 1252 1253 /* There can be only 1 such excl message */ 1254 curr = ipsq->ipsq_pending_mp; 1255 ASSERT(curr != NULL && curr->b_next == NULL); 1256 ipsq->ipsq_pending_ipif = NULL; 1257 ipsq->ipsq_pending_mp = NULL; 1258 ipsq->ipsq_waitfor = 0; 1259 mutex_exit(&ipsq->ipsq_lock); 1260 1261 if (CONN_Q(curr->b_queue)) { 1262 /* 1263 * This mp did a refhold on the conn, at the start of the ioctl. 1264 * So we can safely return a pointer to the conn to the caller. 1265 */ 1266 *connpp = Q_TO_CONN(curr->b_queue); 1267 } else { 1268 *connpp = NULL; 1269 } 1270 curr->b_next = NULL; 1271 curr->b_prev = NULL; 1272 return (curr); 1273 } 1274 1275 /* 1276 * Cleanup the ioctl mp queued in ipsq_pending_mp 1277 * - Called in the ill_delete path 1278 * - Called in the M_ERROR or M_HANGUP path on the ill. 1279 * - Called in the conn close path. 1280 */ 1281 boolean_t 1282 ipsq_pending_mp_cleanup(ill_t *ill, conn_t *connp) 1283 { 1284 mblk_t *mp; 1285 ipsq_t *ipsq; 1286 queue_t *q; 1287 ipif_t *ipif; 1288 1289 ASSERT(IAM_WRITER_ILL(ill)); 1290 ipsq = ill->ill_phyint->phyint_ipsq; 1291 mutex_enter(&ipsq->ipsq_lock); 1292 /* 1293 * If connp is null, unconditionally clean up the ipsq_pending_mp. 1294 * This happens in M_ERROR/M_HANGUP. We need to abort the current ioctl 1295 * even if it is meant for another ill, since we have to enqueue 1296 * a new mp now in ipsq_pending_mp to complete the ipif_down. 1297 * If connp is non-null we are called from the conn close path. 1298 */ 1299 mp = ipsq->ipsq_pending_mp; 1300 if (mp == NULL || (connp != NULL && 1301 mp->b_queue != CONNP_TO_WQ(connp))) { 1302 mutex_exit(&ipsq->ipsq_lock); 1303 return (B_FALSE); 1304 } 1305 /* Now remove from the ipsq_pending_mp */ 1306 ipsq->ipsq_pending_mp = NULL; 1307 q = mp->b_queue; 1308 mp->b_next = NULL; 1309 mp->b_prev = NULL; 1310 mp->b_queue = NULL; 1311 1312 /* If MOVE was in progress, clear the move_in_progress fields also. */ 1313 ill = ipsq->ipsq_pending_ipif->ipif_ill; 1314 if (ill->ill_move_in_progress) { 1315 ILL_CLEAR_MOVE(ill); 1316 } else if (ill->ill_up_ipifs) { 1317 ill_group_cleanup(ill); 1318 } 1319 1320 ipif = ipsq->ipsq_pending_ipif; 1321 ipsq->ipsq_pending_ipif = NULL; 1322 ipsq->ipsq_waitfor = 0; 1323 ipsq->ipsq_current_ipif = NULL; 1324 ipsq->ipsq_current_ioctl = 0; 1325 mutex_exit(&ipsq->ipsq_lock); 1326 1327 if (DB_TYPE(mp) == M_IOCTL || DB_TYPE(mp) == M_IOCDATA) { 1328 if (connp == NULL) { 1329 ip_ioctl_finish(q, mp, ENXIO, NO_COPYOUT, NULL); 1330 } else { 1331 ip_ioctl_finish(q, mp, ENXIO, CONN_CLOSE, NULL); 1332 mutex_enter(&ipif->ipif_ill->ill_lock); 1333 ipif->ipif_state_flags &= ~IPIF_CHANGING; 1334 mutex_exit(&ipif->ipif_ill->ill_lock); 1335 } 1336 } else { 1337 /* 1338 * IP-MT XXX In the case of TLI/XTI bind / optmgmt this can't 1339 * be just inet_freemsg. we have to restart it 1340 * otherwise the thread will be stuck. 1341 */ 1342 inet_freemsg(mp); 1343 } 1344 return (B_TRUE); 1345 } 1346 1347 /* 1348 * The ill is closing. Cleanup all the pending mps. Called exclusively 1349 * towards the end of ill_delete. The refcount has gone to 0. So nobody 1350 * knows this ill, and hence nobody can add an mp to this list 1351 */ 1352 static void 1353 ill_pending_mp_cleanup(ill_t *ill) 1354 { 1355 mblk_t *mp; 1356 queue_t *q; 1357 1358 ASSERT(IAM_WRITER_ILL(ill)); 1359 1360 mutex_enter(&ill->ill_lock); 1361 /* 1362 * Every mp on the pending mp list originating from an ioctl 1363 * added 1 to the conn refcnt, at the start of the ioctl. 1364 * So bump it down now. See comments in ip_wput_nondata() 1365 */ 1366 while (ill->ill_pending_mp != NULL) { 1367 mp = ill->ill_pending_mp; 1368 ill->ill_pending_mp = mp->b_next; 1369 mutex_exit(&ill->ill_lock); 1370 1371 q = mp->b_queue; 1372 ASSERT(CONN_Q(q)); 1373 mp->b_next = NULL; 1374 mp->b_prev = NULL; 1375 mp->b_queue = NULL; 1376 ip_ioctl_finish(q, mp, ENXIO, NO_COPYOUT, NULL); 1377 mutex_enter(&ill->ill_lock); 1378 } 1379 ill->ill_pending_ipif = NULL; 1380 1381 mutex_exit(&ill->ill_lock); 1382 } 1383 1384 /* 1385 * Called in the conn close path and ill delete path 1386 */ 1387 static void 1388 ipsq_xopq_mp_cleanup(ill_t *ill, conn_t *connp) 1389 { 1390 ipsq_t *ipsq; 1391 mblk_t *prev; 1392 mblk_t *curr; 1393 mblk_t *next; 1394 queue_t *q; 1395 mblk_t *tmp_list = NULL; 1396 1397 ASSERT(IAM_WRITER_ILL(ill)); 1398 if (connp != NULL) 1399 q = CONNP_TO_WQ(connp); 1400 else 1401 q = ill->ill_wq; 1402 1403 ipsq = ill->ill_phyint->phyint_ipsq; 1404 /* 1405 * Cleanup the ioctl mp's queued in ipsq_xopq_pending_mp if any. 1406 * In the case of ioctl from a conn, there can be only 1 mp 1407 * queued on the ipsq. If an ill is being unplumbed, only messages 1408 * related to this ill are flushed, like M_ERROR or M_HANGUP message. 1409 * ioctls meant for this ill form conn's are not flushed. They will 1410 * be processed during ipsq_exit and will not find the ill and will 1411 * return error. 1412 */ 1413 mutex_enter(&ipsq->ipsq_lock); 1414 for (prev = NULL, curr = ipsq->ipsq_xopq_mphead; curr != NULL; 1415 curr = next) { 1416 next = curr->b_next; 1417 if (curr->b_queue == q || curr->b_queue == RD(q)) { 1418 /* Unlink the mblk from the pending mp list */ 1419 if (prev != NULL) { 1420 prev->b_next = curr->b_next; 1421 } else { 1422 ASSERT(ipsq->ipsq_xopq_mphead == curr); 1423 ipsq->ipsq_xopq_mphead = curr->b_next; 1424 } 1425 if (ipsq->ipsq_xopq_mptail == curr) 1426 ipsq->ipsq_xopq_mptail = prev; 1427 /* 1428 * Create a temporary list and release the ipsq lock 1429 * New elements are added to the head of the tmp_list 1430 */ 1431 curr->b_next = tmp_list; 1432 tmp_list = curr; 1433 } else { 1434 prev = curr; 1435 } 1436 } 1437 mutex_exit(&ipsq->ipsq_lock); 1438 1439 while (tmp_list != NULL) { 1440 curr = tmp_list; 1441 tmp_list = curr->b_next; 1442 curr->b_next = NULL; 1443 curr->b_prev = NULL; 1444 curr->b_queue = NULL; 1445 if (DB_TYPE(curr) == M_IOCTL || DB_TYPE(curr) == M_IOCDATA) { 1446 ip_ioctl_finish(q, curr, ENXIO, connp != NULL ? 1447 CONN_CLOSE : NO_COPYOUT, NULL); 1448 } else { 1449 /* 1450 * IP-MT XXX In the case of TLI/XTI bind / optmgmt 1451 * this can't be just inet_freemsg. we have to 1452 * restart it otherwise the thread will be stuck. 1453 */ 1454 inet_freemsg(curr); 1455 } 1456 } 1457 } 1458 1459 /* 1460 * This conn has started closing. Cleanup any pending ioctl from this conn. 1461 * STREAMS ensures that there can be at most 1 ioctl pending on a stream. 1462 */ 1463 void 1464 conn_ioctl_cleanup(conn_t *connp) 1465 { 1466 mblk_t *curr; 1467 ipsq_t *ipsq; 1468 ill_t *ill; 1469 boolean_t refheld; 1470 1471 /* 1472 * Is any exclusive ioctl pending ? If so clean it up. If the 1473 * ioctl has not yet started, the mp is pending in the list headed by 1474 * ipsq_xopq_head. If the ioctl has started the mp could be present in 1475 * ipsq_pending_mp. If the ioctl timed out in the streamhead but 1476 * is currently executing now the mp is not queued anywhere but 1477 * conn_oper_pending_ill is null. The conn close will wait 1478 * till the conn_ref drops to zero. 1479 */ 1480 mutex_enter(&connp->conn_lock); 1481 ill = connp->conn_oper_pending_ill; 1482 if (ill == NULL) { 1483 mutex_exit(&connp->conn_lock); 1484 return; 1485 } 1486 1487 curr = ill_pending_mp_get(ill, &connp, 0); 1488 if (curr != NULL) { 1489 mutex_exit(&connp->conn_lock); 1490 CONN_DEC_REF(connp); 1491 inet_freemsg(curr); 1492 return; 1493 } 1494 /* 1495 * We may not be able to refhold the ill if the ill/ipif 1496 * is changing. But we need to make sure that the ill will 1497 * not vanish. So we just bump up the ill_waiter count. 1498 */ 1499 refheld = ill_waiter_inc(ill); 1500 mutex_exit(&connp->conn_lock); 1501 if (refheld) { 1502 if (ipsq_enter(ill, B_TRUE)) { 1503 ill_waiter_dcr(ill); 1504 /* 1505 * Check whether this ioctl has started and is 1506 * pending now in ipsq_pending_mp. If it is not 1507 * found there then check whether this ioctl has 1508 * not even started and is in the ipsq_xopq list. 1509 */ 1510 if (!ipsq_pending_mp_cleanup(ill, connp)) 1511 ipsq_xopq_mp_cleanup(ill, connp); 1512 ipsq = ill->ill_phyint->phyint_ipsq; 1513 ipsq_exit(ipsq, B_TRUE, B_TRUE); 1514 return; 1515 } 1516 } 1517 1518 /* 1519 * The ill is also closing and we could not bump up the 1520 * ill_waiter_count or we could not enter the ipsq. Leave 1521 * the cleanup to ill_delete 1522 */ 1523 mutex_enter(&connp->conn_lock); 1524 while (connp->conn_oper_pending_ill != NULL) 1525 cv_wait(&connp->conn_refcv, &connp->conn_lock); 1526 mutex_exit(&connp->conn_lock); 1527 if (refheld) 1528 ill_waiter_dcr(ill); 1529 } 1530 1531 /* 1532 * ipcl_walk function for cleaning up conn_*_ill fields. 1533 */ 1534 static void 1535 conn_cleanup_ill(conn_t *connp, caddr_t arg) 1536 { 1537 ill_t *ill = (ill_t *)arg; 1538 ire_t *ire; 1539 1540 mutex_enter(&connp->conn_lock); 1541 if (connp->conn_multicast_ill == ill) { 1542 /* Revert to late binding */ 1543 connp->conn_multicast_ill = NULL; 1544 connp->conn_orig_multicast_ifindex = 0; 1545 } 1546 if (connp->conn_incoming_ill == ill) 1547 connp->conn_incoming_ill = NULL; 1548 if (connp->conn_outgoing_ill == ill) 1549 connp->conn_outgoing_ill = NULL; 1550 if (connp->conn_outgoing_pill == ill) 1551 connp->conn_outgoing_pill = NULL; 1552 if (connp->conn_nofailover_ill == ill) 1553 connp->conn_nofailover_ill = NULL; 1554 if (connp->conn_xmit_if_ill == ill) 1555 connp->conn_xmit_if_ill = NULL; 1556 if (connp->conn_ire_cache != NULL) { 1557 ire = connp->conn_ire_cache; 1558 /* 1559 * ip_newroute creates IRE_CACHE with ire_stq coming from 1560 * interface X and ipif coming from interface Y, if interface 1561 * X and Y are part of the same IPMPgroup. Thus whenever 1562 * interface X goes down, remove all references to it by 1563 * checking both on ire_ipif and ire_stq. 1564 */ 1565 if ((ire->ire_ipif != NULL && ire->ire_ipif->ipif_ill == ill) || 1566 (ire->ire_type == IRE_CACHE && 1567 ire->ire_stq == ill->ill_wq)) { 1568 connp->conn_ire_cache = NULL; 1569 mutex_exit(&connp->conn_lock); 1570 ire_refrele_notr(ire); 1571 return; 1572 } 1573 } 1574 mutex_exit(&connp->conn_lock); 1575 1576 } 1577 1578 /* ARGSUSED */ 1579 void 1580 ipif_all_down_tail(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy_arg) 1581 { 1582 ill_t *ill = q->q_ptr; 1583 ipif_t *ipif; 1584 1585 ASSERT(IAM_WRITER_IPSQ(ipsq)); 1586 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 1587 ipif_non_duplicate(ipif); 1588 ipif_down_tail(ipif); 1589 } 1590 ill_down_tail(ill); 1591 freemsg(mp); 1592 ipsq_current_finish(ipsq); 1593 } 1594 1595 /* 1596 * ill_down_start is called when we want to down this ill and bring it up again 1597 * It is called when we receive an M_ERROR / M_HANGUP. In this case we shut down 1598 * all interfaces, but don't tear down any plumbing. 1599 */ 1600 boolean_t 1601 ill_down_start(queue_t *q, mblk_t *mp) 1602 { 1603 ill_t *ill = q->q_ptr; 1604 ipif_t *ipif; 1605 1606 ASSERT(IAM_WRITER_ILL(ill)); 1607 1608 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) 1609 (void) ipif_down(ipif, NULL, NULL); 1610 1611 ill_down(ill); 1612 1613 (void) ipsq_pending_mp_cleanup(ill, NULL); 1614 1615 ipsq_current_start(ill->ill_phyint->phyint_ipsq, ill->ill_ipif, 0); 1616 1617 /* 1618 * Atomically test and add the pending mp if references are active. 1619 */ 1620 mutex_enter(&ill->ill_lock); 1621 if (!ill_is_quiescent(ill)) { 1622 /* call cannot fail since `conn_t *' argument is NULL */ 1623 (void) ipsq_pending_mp_add(NULL, ill->ill_ipif, ill->ill_rq, 1624 mp, ILL_DOWN); 1625 mutex_exit(&ill->ill_lock); 1626 return (B_FALSE); 1627 } 1628 mutex_exit(&ill->ill_lock); 1629 return (B_TRUE); 1630 } 1631 1632 static void 1633 ill_down(ill_t *ill) 1634 { 1635 ip_stack_t *ipst = ill->ill_ipst; 1636 1637 /* Blow off any IREs dependent on this ILL. */ 1638 ire_walk(ill_downi, (char *)ill, ipst); 1639 1640 mutex_enter(&ipst->ips_ire_mrtun_lock); 1641 if (ipst->ips_ire_mrtun_count != 0) { 1642 mutex_exit(&ipst->ips_ire_mrtun_lock); 1643 ire_walk_ill_mrtun(0, 0, ill_downi_mrtun_srcif, 1644 (char *)ill, NULL, ipst); 1645 } else { 1646 mutex_exit(&ipst->ips_ire_mrtun_lock); 1647 } 1648 1649 /* 1650 * If any interface based forwarding table exists 1651 * Blow off the ires there dependent on this ill 1652 */ 1653 mutex_enter(&ipst->ips_ire_srcif_table_lock); 1654 if (ipst->ips_ire_srcif_table_count > 0) { 1655 mutex_exit(&ipst->ips_ire_srcif_table_lock); 1656 ire_walk_srcif_table_v4(ill_downi_mrtun_srcif, (char *)ill, 1657 ipst); 1658 } else { 1659 mutex_exit(&ipst->ips_ire_srcif_table_lock); 1660 } 1661 1662 /* Remove any conn_*_ill depending on this ill */ 1663 ipcl_walk(conn_cleanup_ill, (caddr_t)ill, ipst); 1664 1665 if (ill->ill_group != NULL) { 1666 illgrp_delete(ill); 1667 } 1668 } 1669 1670 static void 1671 ill_down_tail(ill_t *ill) 1672 { 1673 int i; 1674 1675 /* Destroy ill_srcif_table if it exists */ 1676 /* Lock not reqd really because nobody should be able to access */ 1677 mutex_enter(&ill->ill_lock); 1678 if (ill->ill_srcif_table != NULL) { 1679 ill->ill_srcif_refcnt = 0; 1680 for (i = 0; i < IP_SRCIF_TABLE_SIZE; i++) { 1681 rw_destroy(&ill->ill_srcif_table[i].irb_lock); 1682 } 1683 kmem_free(ill->ill_srcif_table, 1684 IP_SRCIF_TABLE_SIZE * sizeof (irb_t)); 1685 ill->ill_srcif_table = NULL; 1686 ill->ill_srcif_refcnt = 0; 1687 ill->ill_mrtun_refcnt = 0; 1688 } 1689 mutex_exit(&ill->ill_lock); 1690 } 1691 1692 /* 1693 * ire_walk routine used to delete every IRE that depends on queues 1694 * associated with 'ill'. (Always called as writer.) 1695 */ 1696 static void 1697 ill_downi(ire_t *ire, char *ill_arg) 1698 { 1699 ill_t *ill = (ill_t *)ill_arg; 1700 1701 /* 1702 * ip_newroute creates IRE_CACHE with ire_stq coming from 1703 * interface X and ipif coming from interface Y, if interface 1704 * X and Y are part of the same IPMP group. Thus whenever interface 1705 * X goes down, remove all references to it by checking both 1706 * on ire_ipif and ire_stq. 1707 */ 1708 if ((ire->ire_ipif != NULL && ire->ire_ipif->ipif_ill == ill) || 1709 (ire->ire_type == IRE_CACHE && ire->ire_stq == ill->ill_wq)) { 1710 ire_delete(ire); 1711 } 1712 } 1713 1714 /* 1715 * A seperate routine for deleting revtun and srcif based routes 1716 * are needed because the ires only deleted when the interface 1717 * is unplumbed. Also these ires have ire_in_ill non-null as well. 1718 * we want to keep mobile IP specific code separate. 1719 */ 1720 static void 1721 ill_downi_mrtun_srcif(ire_t *ire, char *ill_arg) 1722 { 1723 ill_t *ill = (ill_t *)ill_arg; 1724 1725 ASSERT(ire->ire_in_ill != NULL); 1726 1727 if ((ire->ire_in_ill != NULL && ire->ire_in_ill == ill) || 1728 (ire->ire_stq == ill->ill_wq) || (ire->ire_stq == ill->ill_rq)) { 1729 ire_delete(ire); 1730 } 1731 } 1732 1733 /* 1734 * Remove ire/nce from the fastpath list. 1735 */ 1736 void 1737 ill_fastpath_nack(ill_t *ill) 1738 { 1739 nce_fastpath_list_dispatch(ill, NULL, NULL); 1740 } 1741 1742 /* Consume an M_IOCACK of the fastpath probe. */ 1743 void 1744 ill_fastpath_ack(ill_t *ill, mblk_t *mp) 1745 { 1746 mblk_t *mp1 = mp; 1747 1748 /* 1749 * If this was the first attempt turn on the fastpath probing. 1750 */ 1751 mutex_enter(&ill->ill_lock); 1752 if (ill->ill_dlpi_fastpath_state == IDS_INPROGRESS) 1753 ill->ill_dlpi_fastpath_state = IDS_OK; 1754 mutex_exit(&ill->ill_lock); 1755 1756 /* Free the M_IOCACK mblk, hold on to the data */ 1757 mp = mp->b_cont; 1758 freeb(mp1); 1759 if (mp == NULL) 1760 return; 1761 if (mp->b_cont != NULL) { 1762 /* 1763 * Update all IRE's or NCE's that are waiting for 1764 * fastpath update. 1765 */ 1766 nce_fastpath_list_dispatch(ill, ndp_fastpath_update, mp); 1767 mp1 = mp->b_cont; 1768 freeb(mp); 1769 mp = mp1; 1770 } else { 1771 ip0dbg(("ill_fastpath_ack: no b_cont\n")); 1772 } 1773 1774 freeb(mp); 1775 } 1776 1777 /* 1778 * Throw an M_IOCTL message downstream asking "do you know fastpath?" 1779 * The data portion of the request is a dl_unitdata_req_t template for 1780 * what we would send downstream in the absence of a fastpath confirmation. 1781 */ 1782 int 1783 ill_fastpath_probe(ill_t *ill, mblk_t *dlur_mp) 1784 { 1785 struct iocblk *ioc; 1786 mblk_t *mp; 1787 1788 if (dlur_mp == NULL) 1789 return (EINVAL); 1790 1791 mutex_enter(&ill->ill_lock); 1792 switch (ill->ill_dlpi_fastpath_state) { 1793 case IDS_FAILED: 1794 /* 1795 * Driver NAKed the first fastpath ioctl - assume it doesn't 1796 * support it. 1797 */ 1798 mutex_exit(&ill->ill_lock); 1799 return (ENOTSUP); 1800 case IDS_UNKNOWN: 1801 /* This is the first probe */ 1802 ill->ill_dlpi_fastpath_state = IDS_INPROGRESS; 1803 break; 1804 default: 1805 break; 1806 } 1807 mutex_exit(&ill->ill_lock); 1808 1809 if ((mp = mkiocb(DL_IOC_HDR_INFO)) == NULL) 1810 return (EAGAIN); 1811 1812 mp->b_cont = copyb(dlur_mp); 1813 if (mp->b_cont == NULL) { 1814 freeb(mp); 1815 return (EAGAIN); 1816 } 1817 1818 ioc = (struct iocblk *)mp->b_rptr; 1819 ioc->ioc_count = msgdsize(mp->b_cont); 1820 1821 putnext(ill->ill_wq, mp); 1822 return (0); 1823 } 1824 1825 void 1826 ill_capability_probe(ill_t *ill) 1827 { 1828 /* 1829 * Do so only if negotiation is enabled, capabilities are unknown, 1830 * and a capability negotiation is not already in progress. 1831 */ 1832 if (ill->ill_dlpi_capab_state != IDS_UNKNOWN && 1833 ill->ill_dlpi_capab_state != IDS_RENEG) 1834 return; 1835 1836 ill->ill_dlpi_capab_state = IDS_INPROGRESS; 1837 ip1dbg(("ill_capability_probe: starting capability negotiation\n")); 1838 ill_capability_proto(ill, DL_CAPABILITY_REQ, NULL); 1839 } 1840 1841 void 1842 ill_capability_reset(ill_t *ill) 1843 { 1844 mblk_t *sc_mp = NULL; 1845 mblk_t *tmp; 1846 1847 /* 1848 * Note here that we reset the state to UNKNOWN, and later send 1849 * down the DL_CAPABILITY_REQ without first setting the state to 1850 * INPROGRESS. We do this in order to distinguish the 1851 * DL_CAPABILITY_ACK response which may come back in response to 1852 * a "reset" apart from the "probe" DL_CAPABILITY_REQ. This would 1853 * also handle the case where the driver doesn't send us back 1854 * a DL_CAPABILITY_ACK in response, since the "probe" routine 1855 * requires the state to be in UNKNOWN anyway. In any case, all 1856 * features are turned off until the state reaches IDS_OK. 1857 */ 1858 ill->ill_dlpi_capab_state = IDS_UNKNOWN; 1859 1860 /* 1861 * Disable sub-capabilities and request a list of sub-capability 1862 * messages which will be sent down to the driver. Each handler 1863 * allocates the corresponding dl_capability_sub_t inside an 1864 * mblk, and links it to the existing sc_mp mblk, or return it 1865 * as sc_mp if it's the first sub-capability (the passed in 1866 * sc_mp is NULL). Upon returning from all capability handlers, 1867 * sc_mp will be pulled-up, before passing it downstream. 1868 */ 1869 ill_capability_mdt_reset(ill, &sc_mp); 1870 ill_capability_hcksum_reset(ill, &sc_mp); 1871 ill_capability_zerocopy_reset(ill, &sc_mp); 1872 ill_capability_ipsec_reset(ill, &sc_mp); 1873 ill_capability_dls_reset(ill, &sc_mp); 1874 ill_capability_lso_reset(ill, &sc_mp); 1875 1876 /* Nothing to send down in order to disable the capabilities? */ 1877 if (sc_mp == NULL) 1878 return; 1879 1880 tmp = msgpullup(sc_mp, -1); 1881 freemsg(sc_mp); 1882 if ((sc_mp = tmp) == NULL) { 1883 cmn_err(CE_WARN, "ill_capability_reset: unable to send down " 1884 "DL_CAPABILITY_REQ (ENOMEM)\n"); 1885 return; 1886 } 1887 1888 ip1dbg(("ill_capability_reset: resetting negotiated capabilities\n")); 1889 ill_capability_proto(ill, DL_CAPABILITY_REQ, sc_mp); 1890 } 1891 1892 /* 1893 * Request or set new-style hardware capabilities supported by DLS provider. 1894 */ 1895 static void 1896 ill_capability_proto(ill_t *ill, int type, mblk_t *reqp) 1897 { 1898 mblk_t *mp; 1899 dl_capability_req_t *capb; 1900 size_t size = 0; 1901 uint8_t *ptr; 1902 1903 if (reqp != NULL) 1904 size = MBLKL(reqp); 1905 1906 mp = ip_dlpi_alloc(sizeof (dl_capability_req_t) + size, type); 1907 if (mp == NULL) { 1908 freemsg(reqp); 1909 return; 1910 } 1911 ptr = mp->b_rptr; 1912 1913 capb = (dl_capability_req_t *)ptr; 1914 ptr += sizeof (dl_capability_req_t); 1915 1916 if (reqp != NULL) { 1917 capb->dl_sub_offset = sizeof (dl_capability_req_t); 1918 capb->dl_sub_length = size; 1919 bcopy(reqp->b_rptr, ptr, size); 1920 ptr += size; 1921 mp->b_cont = reqp->b_cont; 1922 freeb(reqp); 1923 } 1924 ASSERT(ptr == mp->b_wptr); 1925 1926 ill_dlpi_send(ill, mp); 1927 } 1928 1929 static void 1930 ill_capability_id_ack(ill_t *ill, mblk_t *mp, dl_capability_sub_t *outers) 1931 { 1932 dl_capab_id_t *id_ic; 1933 uint_t sub_dl_cap = outers->dl_cap; 1934 dl_capability_sub_t *inners; 1935 uint8_t *capend; 1936 1937 ASSERT(sub_dl_cap == DL_CAPAB_ID_WRAPPER); 1938 1939 /* 1940 * Note: range checks here are not absolutely sufficient to 1941 * make us robust against malformed messages sent by drivers; 1942 * this is in keeping with the rest of IP's dlpi handling. 1943 * (Remember, it's coming from something else in the kernel 1944 * address space) 1945 */ 1946 1947 capend = (uint8_t *)(outers + 1) + outers->dl_length; 1948 if (capend > mp->b_wptr) { 1949 cmn_err(CE_WARN, "ill_capability_id_ack: " 1950 "malformed sub-capability too long for mblk"); 1951 return; 1952 } 1953 1954 id_ic = (dl_capab_id_t *)(outers + 1); 1955 1956 if (outers->dl_length < sizeof (*id_ic) || 1957 (inners = &id_ic->id_subcap, 1958 inners->dl_length > (outers->dl_length - sizeof (*inners)))) { 1959 cmn_err(CE_WARN, "ill_capability_id_ack: malformed " 1960 "encapsulated capab type %d too long for mblk", 1961 inners->dl_cap); 1962 return; 1963 } 1964 1965 if (!dlcapabcheckqid(&id_ic->id_mid, ill->ill_lmod_rq)) { 1966 ip1dbg(("ill_capability_id_ack: mid token for capab type %d " 1967 "isn't as expected; pass-thru module(s) detected, " 1968 "discarding capability\n", inners->dl_cap)); 1969 return; 1970 } 1971 1972 /* Process the encapsulated sub-capability */ 1973 ill_capability_dispatch(ill, mp, inners, B_TRUE); 1974 } 1975 1976 /* 1977 * Process Multidata Transmit capability negotiation ack received from a 1978 * DLS Provider. isub must point to the sub-capability (DL_CAPAB_MDT) of a 1979 * DL_CAPABILITY_ACK message. 1980 */ 1981 static void 1982 ill_capability_mdt_ack(ill_t *ill, mblk_t *mp, dl_capability_sub_t *isub) 1983 { 1984 mblk_t *nmp = NULL; 1985 dl_capability_req_t *oc; 1986 dl_capab_mdt_t *mdt_ic, *mdt_oc; 1987 ill_mdt_capab_t **ill_mdt_capab; 1988 uint_t sub_dl_cap = isub->dl_cap; 1989 uint8_t *capend; 1990 1991 ASSERT(sub_dl_cap == DL_CAPAB_MDT); 1992 1993 ill_mdt_capab = (ill_mdt_capab_t **)&ill->ill_mdt_capab; 1994 1995 /* 1996 * Note: range checks here are not absolutely sufficient to 1997 * make us robust against malformed messages sent by drivers; 1998 * this is in keeping with the rest of IP's dlpi handling. 1999 * (Remember, it's coming from something else in the kernel 2000 * address space) 2001 */ 2002 2003 capend = (uint8_t *)(isub + 1) + isub->dl_length; 2004 if (capend > mp->b_wptr) { 2005 cmn_err(CE_WARN, "ill_capability_mdt_ack: " 2006 "malformed sub-capability too long for mblk"); 2007 return; 2008 } 2009 2010 mdt_ic = (dl_capab_mdt_t *)(isub + 1); 2011 2012 if (mdt_ic->mdt_version != MDT_VERSION_2) { 2013 cmn_err(CE_CONT, "ill_capability_mdt_ack: " 2014 "unsupported MDT sub-capability (version %d, expected %d)", 2015 mdt_ic->mdt_version, MDT_VERSION_2); 2016 return; 2017 } 2018 2019 if (!dlcapabcheckqid(&mdt_ic->mdt_mid, ill->ill_lmod_rq)) { 2020 ip1dbg(("ill_capability_mdt_ack: mid token for MDT " 2021 "capability isn't as expected; pass-thru module(s) " 2022 "detected, discarding capability\n")); 2023 return; 2024 } 2025 2026 if (mdt_ic->mdt_flags & DL_CAPAB_MDT_ENABLE) { 2027 2028 if (*ill_mdt_capab == NULL) { 2029 *ill_mdt_capab = kmem_zalloc(sizeof (ill_mdt_capab_t), 2030 KM_NOSLEEP); 2031 2032 if (*ill_mdt_capab == NULL) { 2033 cmn_err(CE_WARN, "ill_capability_mdt_ack: " 2034 "could not enable MDT version %d " 2035 "for %s (ENOMEM)\n", MDT_VERSION_2, 2036 ill->ill_name); 2037 return; 2038 } 2039 } 2040 2041 ip1dbg(("ill_capability_mdt_ack: interface %s supports " 2042 "MDT version %d (%d bytes leading, %d bytes trailing " 2043 "header spaces, %d max pld bufs, %d span limit)\n", 2044 ill->ill_name, MDT_VERSION_2, 2045 mdt_ic->mdt_hdr_head, mdt_ic->mdt_hdr_tail, 2046 mdt_ic->mdt_max_pld, mdt_ic->mdt_span_limit)); 2047 2048 (*ill_mdt_capab)->ill_mdt_version = MDT_VERSION_2; 2049 (*ill_mdt_capab)->ill_mdt_on = 1; 2050 /* 2051 * Round the following values to the nearest 32-bit; ULP 2052 * may further adjust them to accomodate for additional 2053 * protocol headers. We pass these values to ULP during 2054 * bind time. 2055 */ 2056 (*ill_mdt_capab)->ill_mdt_hdr_head = 2057 roundup(mdt_ic->mdt_hdr_head, 4); 2058 (*ill_mdt_capab)->ill_mdt_hdr_tail = 2059 roundup(mdt_ic->mdt_hdr_tail, 4); 2060 (*ill_mdt_capab)->ill_mdt_max_pld = mdt_ic->mdt_max_pld; 2061 (*ill_mdt_capab)->ill_mdt_span_limit = mdt_ic->mdt_span_limit; 2062 2063 ill->ill_capabilities |= ILL_CAPAB_MDT; 2064 } else { 2065 uint_t size; 2066 uchar_t *rptr; 2067 2068 size = sizeof (dl_capability_req_t) + 2069 sizeof (dl_capability_sub_t) + sizeof (dl_capab_mdt_t); 2070 2071 if ((nmp = ip_dlpi_alloc(size, DL_CAPABILITY_REQ)) == NULL) { 2072 cmn_err(CE_WARN, "ill_capability_mdt_ack: " 2073 "could not enable MDT for %s (ENOMEM)\n", 2074 ill->ill_name); 2075 return; 2076 } 2077 2078 rptr = nmp->b_rptr; 2079 /* initialize dl_capability_req_t */ 2080 oc = (dl_capability_req_t *)nmp->b_rptr; 2081 oc->dl_sub_offset = sizeof (dl_capability_req_t); 2082 oc->dl_sub_length = sizeof (dl_capability_sub_t) + 2083 sizeof (dl_capab_mdt_t); 2084 nmp->b_rptr += sizeof (dl_capability_req_t); 2085 2086 /* initialize dl_capability_sub_t */ 2087 bcopy(isub, nmp->b_rptr, sizeof (*isub)); 2088 nmp->b_rptr += sizeof (*isub); 2089 2090 /* initialize dl_capab_mdt_t */ 2091 mdt_oc = (dl_capab_mdt_t *)nmp->b_rptr; 2092 bcopy(mdt_ic, mdt_oc, sizeof (*mdt_ic)); 2093 2094 nmp->b_rptr = rptr; 2095 2096 ip1dbg(("ill_capability_mdt_ack: asking interface %s " 2097 "to enable MDT version %d\n", ill->ill_name, 2098 MDT_VERSION_2)); 2099 2100 /* set ENABLE flag */ 2101 mdt_oc->mdt_flags |= DL_CAPAB_MDT_ENABLE; 2102 2103 /* nmp points to a DL_CAPABILITY_REQ message to enable MDT */ 2104 ill_dlpi_send(ill, nmp); 2105 } 2106 } 2107 2108 static void 2109 ill_capability_mdt_reset(ill_t *ill, mblk_t **sc_mp) 2110 { 2111 mblk_t *mp; 2112 dl_capab_mdt_t *mdt_subcap; 2113 dl_capability_sub_t *dl_subcap; 2114 int size; 2115 2116 if (!ILL_MDT_CAPABLE(ill)) 2117 return; 2118 2119 ASSERT(ill->ill_mdt_capab != NULL); 2120 /* 2121 * Clear the capability flag for MDT but retain the ill_mdt_capab 2122 * structure since it's possible that another thread is still 2123 * referring to it. The structure only gets deallocated when 2124 * we destroy the ill. 2125 */ 2126 ill->ill_capabilities &= ~ILL_CAPAB_MDT; 2127 2128 size = sizeof (*dl_subcap) + sizeof (*mdt_subcap); 2129 2130 mp = allocb(size, BPRI_HI); 2131 if (mp == NULL) { 2132 ip1dbg(("ill_capability_mdt_reset: unable to allocate " 2133 "request to disable MDT\n")); 2134 return; 2135 } 2136 2137 mp->b_wptr = mp->b_rptr + size; 2138 2139 dl_subcap = (dl_capability_sub_t *)mp->b_rptr; 2140 dl_subcap->dl_cap = DL_CAPAB_MDT; 2141 dl_subcap->dl_length = sizeof (*mdt_subcap); 2142 2143 mdt_subcap = (dl_capab_mdt_t *)(dl_subcap + 1); 2144 mdt_subcap->mdt_version = ill->ill_mdt_capab->ill_mdt_version; 2145 mdt_subcap->mdt_flags = 0; 2146 mdt_subcap->mdt_hdr_head = 0; 2147 mdt_subcap->mdt_hdr_tail = 0; 2148 2149 if (*sc_mp != NULL) 2150 linkb(*sc_mp, mp); 2151 else 2152 *sc_mp = mp; 2153 } 2154 2155 /* 2156 * Send a DL_NOTIFY_REQ to the specified ill to enable 2157 * DL_NOTE_PROMISC_ON/OFF_PHYS notifications. 2158 * Invoked by ill_capability_ipsec_ack() before enabling IPsec hardware 2159 * acceleration. 2160 * Returns B_TRUE on success, B_FALSE if the message could not be sent. 2161 */ 2162 static boolean_t 2163 ill_enable_promisc_notify(ill_t *ill) 2164 { 2165 mblk_t *mp; 2166 dl_notify_req_t *req; 2167 2168 IPSECHW_DEBUG(IPSECHW_PKT, ("ill_enable_promisc_notify:\n")); 2169 2170 mp = ip_dlpi_alloc(sizeof (dl_notify_req_t), DL_NOTIFY_REQ); 2171 if (mp == NULL) 2172 return (B_FALSE); 2173 2174 req = (dl_notify_req_t *)mp->b_rptr; 2175 req->dl_notifications = DL_NOTE_PROMISC_ON_PHYS | 2176 DL_NOTE_PROMISC_OFF_PHYS; 2177 2178 ill_dlpi_send(ill, mp); 2179 2180 return (B_TRUE); 2181 } 2182 2183 2184 /* 2185 * Allocate an IPsec capability request which will be filled by our 2186 * caller to turn on support for one or more algorithms. 2187 */ 2188 static mblk_t * 2189 ill_alloc_ipsec_cap_req(ill_t *ill, dl_capability_sub_t *isub) 2190 { 2191 mblk_t *nmp; 2192 dl_capability_req_t *ocap; 2193 dl_capab_ipsec_t *ocip; 2194 dl_capab_ipsec_t *icip; 2195 uint8_t *ptr; 2196 icip = (dl_capab_ipsec_t *)(isub + 1); 2197 2198 /* 2199 * The first time around, we send a DL_NOTIFY_REQ to enable 2200 * PROMISC_ON/OFF notification from the provider. We need to 2201 * do this before enabling the algorithms to avoid leakage of 2202 * cleartext packets. 2203 */ 2204 2205 if (!ill_enable_promisc_notify(ill)) 2206 return (NULL); 2207 2208 /* 2209 * Allocate new mblk which will contain a new capability 2210 * request to enable the capabilities. 2211 */ 2212 2213 nmp = ip_dlpi_alloc(sizeof (dl_capability_req_t) + 2214 sizeof (dl_capability_sub_t) + isub->dl_length, DL_CAPABILITY_REQ); 2215 if (nmp == NULL) 2216 return (NULL); 2217 2218 ptr = nmp->b_rptr; 2219 2220 /* initialize dl_capability_req_t */ 2221 ocap = (dl_capability_req_t *)ptr; 2222 ocap->dl_sub_offset = sizeof (dl_capability_req_t); 2223 ocap->dl_sub_length = sizeof (dl_capability_sub_t) + isub->dl_length; 2224 ptr += sizeof (dl_capability_req_t); 2225 2226 /* initialize dl_capability_sub_t */ 2227 bcopy(isub, ptr, sizeof (*isub)); 2228 ptr += sizeof (*isub); 2229 2230 /* initialize dl_capab_ipsec_t */ 2231 ocip = (dl_capab_ipsec_t *)ptr; 2232 bcopy(icip, ocip, sizeof (*icip)); 2233 2234 nmp->b_wptr = (uchar_t *)(&ocip->cip_data[0]); 2235 return (nmp); 2236 } 2237 2238 /* 2239 * Process an IPsec capability negotiation ack received from a DLS Provider. 2240 * isub must point to the sub-capability (DL_CAPAB_IPSEC_AH or 2241 * DL_CAPAB_IPSEC_ESP) of a DL_CAPABILITY_ACK message. 2242 */ 2243 static void 2244 ill_capability_ipsec_ack(ill_t *ill, mblk_t *mp, dl_capability_sub_t *isub) 2245 { 2246 dl_capab_ipsec_t *icip; 2247 dl_capab_ipsec_alg_t *ialg; /* ptr to input alg spec. */ 2248 dl_capab_ipsec_alg_t *oalg; /* ptr to output alg spec. */ 2249 uint_t cipher, nciphers; 2250 mblk_t *nmp; 2251 uint_t alg_len; 2252 boolean_t need_sadb_dump; 2253 uint_t sub_dl_cap = isub->dl_cap; 2254 ill_ipsec_capab_t **ill_capab; 2255 uint64_t ill_capab_flag; 2256 uint8_t *capend, *ciphend; 2257 boolean_t sadb_resync; 2258 2259 ASSERT(sub_dl_cap == DL_CAPAB_IPSEC_AH || 2260 sub_dl_cap == DL_CAPAB_IPSEC_ESP); 2261 2262 if (sub_dl_cap == DL_CAPAB_IPSEC_AH) { 2263 ill_capab = (ill_ipsec_capab_t **)&ill->ill_ipsec_capab_ah; 2264 ill_capab_flag = ILL_CAPAB_AH; 2265 } else { 2266 ill_capab = (ill_ipsec_capab_t **)&ill->ill_ipsec_capab_esp; 2267 ill_capab_flag = ILL_CAPAB_ESP; 2268 } 2269 2270 /* 2271 * If the ill capability structure exists, then this incoming 2272 * DL_CAPABILITY_ACK is a response to a "renegotiation" cycle. 2273 * If this is so, then we'd need to resynchronize the SADB 2274 * after re-enabling the offloaded ciphers. 2275 */ 2276 sadb_resync = (*ill_capab != NULL); 2277 2278 /* 2279 * Note: range checks here are not absolutely sufficient to 2280 * make us robust against malformed messages sent by drivers; 2281 * this is in keeping with the rest of IP's dlpi handling. 2282 * (Remember, it's coming from something else in the kernel 2283 * address space) 2284 */ 2285 2286 capend = (uint8_t *)(isub + 1) + isub->dl_length; 2287 if (capend > mp->b_wptr) { 2288 cmn_err(CE_WARN, "ill_capability_ipsec_ack: " 2289 "malformed sub-capability too long for mblk"); 2290 return; 2291 } 2292 2293 /* 2294 * There are two types of acks we process here: 2295 * 1. acks in reply to a (first form) generic capability req 2296 * (no ENABLE flag set) 2297 * 2. acks in reply to a ENABLE capability req. 2298 * (ENABLE flag set) 2299 * 2300 * We process the subcapability passed as argument as follows: 2301 * 1 do initializations 2302 * 1.1 initialize nmp = NULL 2303 * 1.2 set need_sadb_dump to B_FALSE 2304 * 2 for each cipher in subcapability: 2305 * 2.1 if ENABLE flag is set: 2306 * 2.1.1 update per-ill ipsec capabilities info 2307 * 2.1.2 set need_sadb_dump to B_TRUE 2308 * 2.2 if ENABLE flag is not set: 2309 * 2.2.1 if nmp is NULL: 2310 * 2.2.1.1 allocate and initialize nmp 2311 * 2.2.1.2 init current pos in nmp 2312 * 2.2.2 copy current cipher to current pos in nmp 2313 * 2.2.3 set ENABLE flag in nmp 2314 * 2.2.4 update current pos 2315 * 3 if nmp is not equal to NULL, send enable request 2316 * 3.1 send capability request 2317 * 4 if need_sadb_dump is B_TRUE 2318 * 4.1 enable promiscuous on/off notifications 2319 * 4.2 call ill_dlpi_send(isub->dlcap) to send all 2320 * AH or ESP SA's to interface. 2321 */ 2322 2323 nmp = NULL; 2324 oalg = NULL; 2325 need_sadb_dump = B_FALSE; 2326 icip = (dl_capab_ipsec_t *)(isub + 1); 2327 ialg = (dl_capab_ipsec_alg_t *)(&icip->cip_data[0]); 2328 2329 nciphers = icip->cip_nciphers; 2330 ciphend = (uint8_t *)(ialg + icip->cip_nciphers); 2331 2332 if (ciphend > capend) { 2333 cmn_err(CE_WARN, "ill_capability_ipsec_ack: " 2334 "too many ciphers for sub-capability len"); 2335 return; 2336 } 2337 2338 for (cipher = 0; cipher < nciphers; cipher++) { 2339 alg_len = sizeof (dl_capab_ipsec_alg_t); 2340 2341 if (ialg->alg_flag & DL_CAPAB_ALG_ENABLE) { 2342 /* 2343 * TBD: when we provide a way to disable capabilities 2344 * from above, need to manage the request-pending state 2345 * and fail if we were not expecting this ACK. 2346 */ 2347 IPSECHW_DEBUG(IPSECHW_CAPAB, 2348 ("ill_capability_ipsec_ack: got ENABLE ACK\n")); 2349 2350 /* 2351 * Update IPsec capabilities for this ill 2352 */ 2353 2354 if (*ill_capab == NULL) { 2355 IPSECHW_DEBUG(IPSECHW_CAPAB, 2356 ("ill_capability_ipsec_ack: " 2357 "allocating ipsec_capab for ill\n")); 2358 *ill_capab = ill_ipsec_capab_alloc(); 2359 2360 if (*ill_capab == NULL) { 2361 cmn_err(CE_WARN, 2362 "ill_capability_ipsec_ack: " 2363 "could not enable IPsec Hardware " 2364 "acceleration for %s (ENOMEM)\n", 2365 ill->ill_name); 2366 return; 2367 } 2368 } 2369 2370 ASSERT(ialg->alg_type == DL_CAPAB_IPSEC_ALG_AUTH || 2371 ialg->alg_type == DL_CAPAB_IPSEC_ALG_ENCR); 2372 2373 if (ialg->alg_prim >= MAX_IPSEC_ALGS) { 2374 cmn_err(CE_WARN, 2375 "ill_capability_ipsec_ack: " 2376 "malformed IPsec algorithm id %d", 2377 ialg->alg_prim); 2378 continue; 2379 } 2380 2381 if (ialg->alg_type == DL_CAPAB_IPSEC_ALG_AUTH) { 2382 IPSEC_ALG_ENABLE((*ill_capab)->auth_hw_algs, 2383 ialg->alg_prim); 2384 } else { 2385 ipsec_capab_algparm_t *alp; 2386 2387 IPSEC_ALG_ENABLE((*ill_capab)->encr_hw_algs, 2388 ialg->alg_prim); 2389 if (!ill_ipsec_capab_resize_algparm(*ill_capab, 2390 ialg->alg_prim)) { 2391 cmn_err(CE_WARN, 2392 "ill_capability_ipsec_ack: " 2393 "no space for IPsec alg id %d", 2394 ialg->alg_prim); 2395 continue; 2396 } 2397 alp = &((*ill_capab)->encr_algparm[ 2398 ialg->alg_prim]); 2399 alp->minkeylen = ialg->alg_minbits; 2400 alp->maxkeylen = ialg->alg_maxbits; 2401 } 2402 ill->ill_capabilities |= ill_capab_flag; 2403 /* 2404 * indicate that a capability was enabled, which 2405 * will be used below to kick off a SADB dump 2406 * to the ill. 2407 */ 2408 need_sadb_dump = B_TRUE; 2409 } else { 2410 IPSECHW_DEBUG(IPSECHW_CAPAB, 2411 ("ill_capability_ipsec_ack: enabling alg 0x%x\n", 2412 ialg->alg_prim)); 2413 2414 if (nmp == NULL) { 2415 nmp = ill_alloc_ipsec_cap_req(ill, isub); 2416 if (nmp == NULL) { 2417 /* 2418 * Sending the PROMISC_ON/OFF 2419 * notification request failed. 2420 * We cannot enable the algorithms 2421 * since the Provider will not 2422 * notify IP of promiscous mode 2423 * changes, which could lead 2424 * to leakage of packets. 2425 */ 2426 cmn_err(CE_WARN, 2427 "ill_capability_ipsec_ack: " 2428 "could not enable IPsec Hardware " 2429 "acceleration for %s (ENOMEM)\n", 2430 ill->ill_name); 2431 return; 2432 } 2433 /* ptr to current output alg specifier */ 2434 oalg = (dl_capab_ipsec_alg_t *)nmp->b_wptr; 2435 } 2436 2437 /* 2438 * Copy current alg specifier, set ENABLE 2439 * flag, and advance to next output alg. 2440 * For now we enable all IPsec capabilities. 2441 */ 2442 ASSERT(oalg != NULL); 2443 bcopy(ialg, oalg, alg_len); 2444 oalg->alg_flag |= DL_CAPAB_ALG_ENABLE; 2445 nmp->b_wptr += alg_len; 2446 oalg = (dl_capab_ipsec_alg_t *)nmp->b_wptr; 2447 } 2448 2449 /* move to next input algorithm specifier */ 2450 ialg = (dl_capab_ipsec_alg_t *) 2451 ((char *)ialg + alg_len); 2452 } 2453 2454 if (nmp != NULL) 2455 /* 2456 * nmp points to a DL_CAPABILITY_REQ message to enable 2457 * IPsec hardware acceleration. 2458 */ 2459 ill_dlpi_send(ill, nmp); 2460 2461 if (need_sadb_dump) 2462 /* 2463 * An acknowledgement corresponding to a request to 2464 * enable acceleration was received, notify SADB. 2465 */ 2466 ill_ipsec_capab_add(ill, sub_dl_cap, sadb_resync); 2467 } 2468 2469 /* 2470 * Given an mblk with enough space in it, create sub-capability entries for 2471 * DL_CAPAB_IPSEC_{AH,ESP} types which consist of previously-advertised 2472 * offloaded ciphers (both AUTH and ENCR) with their enable flags cleared, 2473 * in preparation for the reset the DL_CAPABILITY_REQ message. 2474 */ 2475 static void 2476 ill_fill_ipsec_reset(uint_t nciphers, int stype, uint_t slen, 2477 ill_ipsec_capab_t *ill_cap, mblk_t *mp) 2478 { 2479 dl_capab_ipsec_t *oipsec; 2480 dl_capab_ipsec_alg_t *oalg; 2481 dl_capability_sub_t *dl_subcap; 2482 int i, k; 2483 2484 ASSERT(nciphers > 0); 2485 ASSERT(ill_cap != NULL); 2486 ASSERT(mp != NULL); 2487 ASSERT(MBLKTAIL(mp) >= sizeof (*dl_subcap) + sizeof (*oipsec) + slen); 2488 2489 /* dl_capability_sub_t for "stype" */ 2490 dl_subcap = (dl_capability_sub_t *)mp->b_wptr; 2491 dl_subcap->dl_cap = stype; 2492 dl_subcap->dl_length = sizeof (dl_capab_ipsec_t) + slen; 2493 mp->b_wptr += sizeof (dl_capability_sub_t); 2494 2495 /* dl_capab_ipsec_t for "stype" */ 2496 oipsec = (dl_capab_ipsec_t *)mp->b_wptr; 2497 oipsec->cip_version = 1; 2498 oipsec->cip_nciphers = nciphers; 2499 mp->b_wptr = (uchar_t *)&oipsec->cip_data[0]; 2500 2501 /* create entries for "stype" AUTH ciphers */ 2502 for (i = 0; i < ill_cap->algs_size; i++) { 2503 for (k = 0; k < BITSPERBYTE; k++) { 2504 if ((ill_cap->auth_hw_algs[i] & (1 << k)) == 0) 2505 continue; 2506 2507 oalg = (dl_capab_ipsec_alg_t *)mp->b_wptr; 2508 bzero((void *)oalg, sizeof (*oalg)); 2509 oalg->alg_type = DL_CAPAB_IPSEC_ALG_AUTH; 2510 oalg->alg_prim = k + (BITSPERBYTE * i); 2511 mp->b_wptr += sizeof (dl_capab_ipsec_alg_t); 2512 } 2513 } 2514 /* create entries for "stype" ENCR ciphers */ 2515 for (i = 0; i < ill_cap->algs_size; i++) { 2516 for (k = 0; k < BITSPERBYTE; k++) { 2517 if ((ill_cap->encr_hw_algs[i] & (1 << k)) == 0) 2518 continue; 2519 2520 oalg = (dl_capab_ipsec_alg_t *)mp->b_wptr; 2521 bzero((void *)oalg, sizeof (*oalg)); 2522 oalg->alg_type = DL_CAPAB_IPSEC_ALG_ENCR; 2523 oalg->alg_prim = k + (BITSPERBYTE * i); 2524 mp->b_wptr += sizeof (dl_capab_ipsec_alg_t); 2525 } 2526 } 2527 } 2528 2529 /* 2530 * Macro to count number of 1s in a byte (8-bit word). The total count is 2531 * accumulated into the passed-in argument (sum). We could use SPARCv9's 2532 * POPC instruction, but our macro is more flexible for an arbitrary length 2533 * of bytes, such as {auth,encr}_hw_algs. These variables are currently 2534 * 256-bits long (MAX_IPSEC_ALGS), so if we know for sure that the length 2535 * stays that way, we can reduce the number of iterations required. 2536 */ 2537 #define COUNT_1S(val, sum) { \ 2538 uint8_t x = val & 0xff; \ 2539 x = (x & 0x55) + ((x >> 1) & 0x55); \ 2540 x = (x & 0x33) + ((x >> 2) & 0x33); \ 2541 sum += (x & 0xf) + ((x >> 4) & 0xf); \ 2542 } 2543 2544 /* ARGSUSED */ 2545 static void 2546 ill_capability_ipsec_reset(ill_t *ill, mblk_t **sc_mp) 2547 { 2548 mblk_t *mp; 2549 ill_ipsec_capab_t *cap_ah = ill->ill_ipsec_capab_ah; 2550 ill_ipsec_capab_t *cap_esp = ill->ill_ipsec_capab_esp; 2551 uint64_t ill_capabilities = ill->ill_capabilities; 2552 int ah_cnt = 0, esp_cnt = 0; 2553 int ah_len = 0, esp_len = 0; 2554 int i, size = 0; 2555 2556 if (!(ill_capabilities & (ILL_CAPAB_AH | ILL_CAPAB_ESP))) 2557 return; 2558 2559 ASSERT(cap_ah != NULL || !(ill_capabilities & ILL_CAPAB_AH)); 2560 ASSERT(cap_esp != NULL || !(ill_capabilities & ILL_CAPAB_ESP)); 2561 2562 /* Find out the number of ciphers for AH */ 2563 if (cap_ah != NULL) { 2564 for (i = 0; i < cap_ah->algs_size; i++) { 2565 COUNT_1S(cap_ah->auth_hw_algs[i], ah_cnt); 2566 COUNT_1S(cap_ah->encr_hw_algs[i], ah_cnt); 2567 } 2568 if (ah_cnt > 0) { 2569 size += sizeof (dl_capability_sub_t) + 2570 sizeof (dl_capab_ipsec_t); 2571 /* dl_capab_ipsec_t contains one dl_capab_ipsec_alg_t */ 2572 ah_len = (ah_cnt - 1) * sizeof (dl_capab_ipsec_alg_t); 2573 size += ah_len; 2574 } 2575 } 2576 2577 /* Find out the number of ciphers for ESP */ 2578 if (cap_esp != NULL) { 2579 for (i = 0; i < cap_esp->algs_size; i++) { 2580 COUNT_1S(cap_esp->auth_hw_algs[i], esp_cnt); 2581 COUNT_1S(cap_esp->encr_hw_algs[i], esp_cnt); 2582 } 2583 if (esp_cnt > 0) { 2584 size += sizeof (dl_capability_sub_t) + 2585 sizeof (dl_capab_ipsec_t); 2586 /* dl_capab_ipsec_t contains one dl_capab_ipsec_alg_t */ 2587 esp_len = (esp_cnt - 1) * sizeof (dl_capab_ipsec_alg_t); 2588 size += esp_len; 2589 } 2590 } 2591 2592 if (size == 0) { 2593 ip1dbg(("ill_capability_ipsec_reset: capabilities exist but " 2594 "there's nothing to reset\n")); 2595 return; 2596 } 2597 2598 mp = allocb(size, BPRI_HI); 2599 if (mp == NULL) { 2600 ip1dbg(("ill_capability_ipsec_reset: unable to allocate " 2601 "request to disable IPSEC Hardware Acceleration\n")); 2602 return; 2603 } 2604 2605 /* 2606 * Clear the capability flags for IPSec HA but retain the ill 2607 * capability structures since it's possible that another thread 2608 * is still referring to them. The structures only get deallocated 2609 * when we destroy the ill. 2610 * 2611 * Various places check the flags to see if the ill is capable of 2612 * hardware acceleration, and by clearing them we ensure that new 2613 * outbound IPSec packets are sent down encrypted. 2614 */ 2615 ill->ill_capabilities &= ~(ILL_CAPAB_AH | ILL_CAPAB_ESP); 2616 2617 /* Fill in DL_CAPAB_IPSEC_AH sub-capability entries */ 2618 if (ah_cnt > 0) { 2619 ill_fill_ipsec_reset(ah_cnt, DL_CAPAB_IPSEC_AH, ah_len, 2620 cap_ah, mp); 2621 ASSERT(mp->b_rptr + size >= mp->b_wptr); 2622 } 2623 2624 /* Fill in DL_CAPAB_IPSEC_ESP sub-capability entries */ 2625 if (esp_cnt > 0) { 2626 ill_fill_ipsec_reset(esp_cnt, DL_CAPAB_IPSEC_ESP, esp_len, 2627 cap_esp, mp); 2628 ASSERT(mp->b_rptr + size >= mp->b_wptr); 2629 } 2630 2631 /* 2632 * At this point we've composed a bunch of sub-capabilities to be 2633 * encapsulated in a DL_CAPABILITY_REQ and later sent downstream 2634 * by the caller. Upon receiving this reset message, the driver 2635 * must stop inbound decryption (by destroying all inbound SAs) 2636 * and let the corresponding packets come in encrypted. 2637 */ 2638 2639 if (*sc_mp != NULL) 2640 linkb(*sc_mp, mp); 2641 else 2642 *sc_mp = mp; 2643 } 2644 2645 static void 2646 ill_capability_dispatch(ill_t *ill, mblk_t *mp, dl_capability_sub_t *subp, 2647 boolean_t encapsulated) 2648 { 2649 boolean_t legacy = B_FALSE; 2650 2651 /* 2652 * If this DL_CAPABILITY_ACK came in as a response to our "reset" 2653 * DL_CAPABILITY_REQ, ignore it during this cycle. We've just 2654 * instructed the driver to disable its advertised capabilities, 2655 * so there's no point in accepting any response at this moment. 2656 */ 2657 if (ill->ill_dlpi_capab_state == IDS_UNKNOWN) 2658 return; 2659 2660 /* 2661 * Note that only the following two sub-capabilities may be 2662 * considered as "legacy", since their original definitions 2663 * do not incorporate the dl_mid_t module ID token, and hence 2664 * may require the use of the wrapper sub-capability. 2665 */ 2666 switch (subp->dl_cap) { 2667 case DL_CAPAB_IPSEC_AH: 2668 case DL_CAPAB_IPSEC_ESP: 2669 legacy = B_TRUE; 2670 break; 2671 } 2672 2673 /* 2674 * For legacy sub-capabilities which don't incorporate a queue_t 2675 * pointer in their structures, discard them if we detect that 2676 * there are intermediate modules in between IP and the driver. 2677 */ 2678 if (!encapsulated && legacy && ill->ill_lmod_cnt > 1) { 2679 ip1dbg(("ill_capability_dispatch: unencapsulated capab type " 2680 "%d discarded; %d module(s) present below IP\n", 2681 subp->dl_cap, ill->ill_lmod_cnt)); 2682 return; 2683 } 2684 2685 switch (subp->dl_cap) { 2686 case DL_CAPAB_IPSEC_AH: 2687 case DL_CAPAB_IPSEC_ESP: 2688 ill_capability_ipsec_ack(ill, mp, subp); 2689 break; 2690 case DL_CAPAB_MDT: 2691 ill_capability_mdt_ack(ill, mp, subp); 2692 break; 2693 case DL_CAPAB_HCKSUM: 2694 ill_capability_hcksum_ack(ill, mp, subp); 2695 break; 2696 case DL_CAPAB_ZEROCOPY: 2697 ill_capability_zerocopy_ack(ill, mp, subp); 2698 break; 2699 case DL_CAPAB_POLL: 2700 if (!SOFT_RINGS_ENABLED()) 2701 ill_capability_dls_ack(ill, mp, subp); 2702 break; 2703 case DL_CAPAB_SOFT_RING: 2704 if (SOFT_RINGS_ENABLED()) 2705 ill_capability_dls_ack(ill, mp, subp); 2706 break; 2707 case DL_CAPAB_LSO: 2708 ill_capability_lso_ack(ill, mp, subp); 2709 break; 2710 default: 2711 ip1dbg(("ill_capability_dispatch: unknown capab type %d\n", 2712 subp->dl_cap)); 2713 } 2714 } 2715 2716 /* 2717 * As part of negotiating polling capability, the driver tells us 2718 * the default (or normal) blanking interval and packet threshold 2719 * (the receive timer fires if blanking interval is reached or 2720 * the packet threshold is reached). 2721 * 2722 * As part of manipulating the polling interval, we always use our 2723 * estimated interval (avg service time * number of packets queued 2724 * on the squeue) but we try to blank for a minimum of 2725 * rr_normal_blank_time * rr_max_blank_ratio. We disable the 2726 * packet threshold during this time. When we are not in polling mode 2727 * we set the blank interval typically lower, rr_normal_pkt_cnt * 2728 * rr_min_blank_ratio but up the packet cnt by a ratio of 2729 * rr_min_pkt_cnt_ratio so that we are still getting chains if 2730 * possible although for a shorter interval. 2731 */ 2732 #define RR_MAX_BLANK_RATIO 20 2733 #define RR_MIN_BLANK_RATIO 10 2734 #define RR_MAX_PKT_CNT_RATIO 3 2735 #define RR_MIN_PKT_CNT_RATIO 3 2736 2737 /* 2738 * These can be tuned via /etc/system. 2739 */ 2740 int rr_max_blank_ratio = RR_MAX_BLANK_RATIO; 2741 int rr_min_blank_ratio = RR_MIN_BLANK_RATIO; 2742 int rr_max_pkt_cnt_ratio = RR_MAX_PKT_CNT_RATIO; 2743 int rr_min_pkt_cnt_ratio = RR_MIN_PKT_CNT_RATIO; 2744 2745 static mac_resource_handle_t 2746 ill_ring_add(void *arg, mac_resource_t *mrp) 2747 { 2748 ill_t *ill = (ill_t *)arg; 2749 mac_rx_fifo_t *mrfp = (mac_rx_fifo_t *)mrp; 2750 ill_rx_ring_t *rx_ring; 2751 int ip_rx_index; 2752 2753 ASSERT(mrp != NULL); 2754 if (mrp->mr_type != MAC_RX_FIFO) { 2755 return (NULL); 2756 } 2757 ASSERT(ill != NULL); 2758 ASSERT(ill->ill_dls_capab != NULL); 2759 2760 mutex_enter(&ill->ill_lock); 2761 for (ip_rx_index = 0; ip_rx_index < ILL_MAX_RINGS; ip_rx_index++) { 2762 rx_ring = &ill->ill_dls_capab->ill_ring_tbl[ip_rx_index]; 2763 ASSERT(rx_ring != NULL); 2764 2765 if (rx_ring->rr_ring_state == ILL_RING_FREE) { 2766 time_t normal_blank_time = 2767 mrfp->mrf_normal_blank_time; 2768 uint_t normal_pkt_cnt = 2769 mrfp->mrf_normal_pkt_count; 2770 2771 bzero(rx_ring, sizeof (ill_rx_ring_t)); 2772 2773 rx_ring->rr_blank = mrfp->mrf_blank; 2774 rx_ring->rr_handle = mrfp->mrf_arg; 2775 rx_ring->rr_ill = ill; 2776 rx_ring->rr_normal_blank_time = normal_blank_time; 2777 rx_ring->rr_normal_pkt_cnt = normal_pkt_cnt; 2778 2779 rx_ring->rr_max_blank_time = 2780 normal_blank_time * rr_max_blank_ratio; 2781 rx_ring->rr_min_blank_time = 2782 normal_blank_time * rr_min_blank_ratio; 2783 rx_ring->rr_max_pkt_cnt = 2784 normal_pkt_cnt * rr_max_pkt_cnt_ratio; 2785 rx_ring->rr_min_pkt_cnt = 2786 normal_pkt_cnt * rr_min_pkt_cnt_ratio; 2787 2788 rx_ring->rr_ring_state = ILL_RING_INUSE; 2789 mutex_exit(&ill->ill_lock); 2790 2791 DTRACE_PROBE2(ill__ring__add, (void *), ill, 2792 (int), ip_rx_index); 2793 return ((mac_resource_handle_t)rx_ring); 2794 } 2795 } 2796 2797 /* 2798 * We ran out of ILL_MAX_RINGS worth rx_ring structures. If 2799 * we have devices which can overwhelm this limit, ILL_MAX_RING 2800 * should be made configurable. Meanwhile it cause no panic because 2801 * driver will pass ip_input a NULL handle which will make 2802 * IP allocate the default squeue and Polling mode will not 2803 * be used for this ring. 2804 */ 2805 cmn_err(CE_NOTE, "Reached maximum number of receiving rings (%d) " 2806 "for %s\n", ILL_MAX_RINGS, ill->ill_name); 2807 2808 mutex_exit(&ill->ill_lock); 2809 return (NULL); 2810 } 2811 2812 static boolean_t 2813 ill_capability_dls_init(ill_t *ill) 2814 { 2815 ill_dls_capab_t *ill_dls = ill->ill_dls_capab; 2816 conn_t *connp; 2817 size_t sz; 2818 ip_stack_t *ipst = ill->ill_ipst; 2819 2820 if (ill->ill_capabilities & ILL_CAPAB_SOFT_RING) { 2821 if (ill_dls == NULL) { 2822 cmn_err(CE_PANIC, "ill_capability_dls_init: " 2823 "soft_ring enabled for ill=%s (%p) but data " 2824 "structs uninitialized\n", ill->ill_name, 2825 (void *)ill); 2826 } 2827 return (B_TRUE); 2828 } else if (ill->ill_capabilities & ILL_CAPAB_POLL) { 2829 if (ill_dls == NULL) { 2830 cmn_err(CE_PANIC, "ill_capability_dls_init: " 2831 "polling enabled for ill=%s (%p) but data " 2832 "structs uninitialized\n", ill->ill_name, 2833 (void *)ill); 2834 } 2835 return (B_TRUE); 2836 } 2837 2838 if (ill_dls != NULL) { 2839 ill_rx_ring_t *rx_ring = ill_dls->ill_ring_tbl; 2840 /* Soft_Ring or polling is being re-enabled */ 2841 2842 connp = ill_dls->ill_unbind_conn; 2843 ASSERT(rx_ring != NULL); 2844 bzero((void *)ill_dls, sizeof (ill_dls_capab_t)); 2845 bzero((void *)rx_ring, 2846 sizeof (ill_rx_ring_t) * ILL_MAX_RINGS); 2847 ill_dls->ill_ring_tbl = rx_ring; 2848 ill_dls->ill_unbind_conn = connp; 2849 return (B_TRUE); 2850 } 2851 2852 if ((connp = ipcl_conn_create(IPCL_TCPCONN, KM_NOSLEEP, 2853 ipst->ips_netstack)) == NULL) 2854 return (B_FALSE); 2855 2856 sz = sizeof (ill_dls_capab_t); 2857 sz += sizeof (ill_rx_ring_t) * ILL_MAX_RINGS; 2858 2859 ill_dls = kmem_zalloc(sz, KM_NOSLEEP); 2860 if (ill_dls == NULL) { 2861 cmn_err(CE_WARN, "ill_capability_dls_init: could not " 2862 "allocate dls_capab for %s (%p)\n", ill->ill_name, 2863 (void *)ill); 2864 CONN_DEC_REF(connp); 2865 return (B_FALSE); 2866 } 2867 2868 /* Allocate space to hold ring table */ 2869 ill_dls->ill_ring_tbl = (ill_rx_ring_t *)&ill_dls[1]; 2870 ill->ill_dls_capab = ill_dls; 2871 ill_dls->ill_unbind_conn = connp; 2872 return (B_TRUE); 2873 } 2874 2875 /* 2876 * ill_capability_dls_disable: disable soft_ring and/or polling 2877 * capability. Since any of the rings might already be in use, need 2878 * to call ipsq_clean_all() which gets behind the squeue to disable 2879 * direct calls if necessary. 2880 */ 2881 static void 2882 ill_capability_dls_disable(ill_t *ill) 2883 { 2884 ill_dls_capab_t *ill_dls = ill->ill_dls_capab; 2885 2886 if (ill->ill_capabilities & ILL_CAPAB_DLS) { 2887 ipsq_clean_all(ill); 2888 ill_dls->ill_tx = NULL; 2889 ill_dls->ill_tx_handle = NULL; 2890 ill_dls->ill_dls_change_status = NULL; 2891 ill_dls->ill_dls_bind = NULL; 2892 ill_dls->ill_dls_unbind = NULL; 2893 } 2894 2895 ASSERT(!(ill->ill_capabilities & ILL_CAPAB_DLS)); 2896 } 2897 2898 static void 2899 ill_capability_dls_capable(ill_t *ill, dl_capab_dls_t *idls, 2900 dl_capability_sub_t *isub) 2901 { 2902 uint_t size; 2903 uchar_t *rptr; 2904 dl_capab_dls_t dls, *odls; 2905 ill_dls_capab_t *ill_dls; 2906 mblk_t *nmp = NULL; 2907 dl_capability_req_t *ocap; 2908 uint_t sub_dl_cap = isub->dl_cap; 2909 2910 if (!ill_capability_dls_init(ill)) 2911 return; 2912 ill_dls = ill->ill_dls_capab; 2913 2914 /* Copy locally to get the members aligned */ 2915 bcopy((void *)idls, (void *)&dls, 2916 sizeof (dl_capab_dls_t)); 2917 2918 /* Get the tx function and handle from dld */ 2919 ill_dls->ill_tx = (ip_dld_tx_t)dls.dls_tx; 2920 ill_dls->ill_tx_handle = (void *)dls.dls_tx_handle; 2921 2922 if (sub_dl_cap == DL_CAPAB_SOFT_RING) { 2923 ill_dls->ill_dls_change_status = 2924 (ip_dls_chg_soft_ring_t)dls.dls_ring_change_status; 2925 ill_dls->ill_dls_bind = (ip_dls_bind_t)dls.dls_ring_bind; 2926 ill_dls->ill_dls_unbind = 2927 (ip_dls_unbind_t)dls.dls_ring_unbind; 2928 ill_dls->ill_dls_soft_ring_cnt = ip_soft_rings_cnt; 2929 } 2930 2931 size = sizeof (dl_capability_req_t) + sizeof (dl_capability_sub_t) + 2932 isub->dl_length; 2933 2934 if ((nmp = ip_dlpi_alloc(size, DL_CAPABILITY_REQ)) == NULL) { 2935 cmn_err(CE_WARN, "ill_capability_dls_capable: could " 2936 "not allocate memory for CAPAB_REQ for %s (%p)\n", 2937 ill->ill_name, (void *)ill); 2938 return; 2939 } 2940 2941 /* initialize dl_capability_req_t */ 2942 rptr = nmp->b_rptr; 2943 ocap = (dl_capability_req_t *)rptr; 2944 ocap->dl_sub_offset = sizeof (dl_capability_req_t); 2945 ocap->dl_sub_length = sizeof (dl_capability_sub_t) + isub->dl_length; 2946 rptr += sizeof (dl_capability_req_t); 2947 2948 /* initialize dl_capability_sub_t */ 2949 bcopy(isub, rptr, sizeof (*isub)); 2950 rptr += sizeof (*isub); 2951 2952 odls = (dl_capab_dls_t *)rptr; 2953 rptr += sizeof (dl_capab_dls_t); 2954 2955 /* initialize dl_capab_dls_t to be sent down */ 2956 dls.dls_rx_handle = (uintptr_t)ill; 2957 dls.dls_rx = (uintptr_t)ip_input; 2958 dls.dls_ring_add = (uintptr_t)ill_ring_add; 2959 2960 if (sub_dl_cap == DL_CAPAB_SOFT_RING) { 2961 dls.dls_ring_cnt = ip_soft_rings_cnt; 2962 dls.dls_ring_assign = (uintptr_t)ip_soft_ring_assignment; 2963 dls.dls_flags = SOFT_RING_ENABLE; 2964 } else { 2965 dls.dls_flags = POLL_ENABLE; 2966 ip1dbg(("ill_capability_dls_capable: asking interface %s " 2967 "to enable polling\n", ill->ill_name)); 2968 } 2969 bcopy((void *)&dls, (void *)odls, 2970 sizeof (dl_capab_dls_t)); 2971 ASSERT(nmp->b_wptr == (nmp->b_rptr + size)); 2972 /* 2973 * nmp points to a DL_CAPABILITY_REQ message to 2974 * enable either soft_ring or polling 2975 */ 2976 ill_dlpi_send(ill, nmp); 2977 } 2978 2979 static void 2980 ill_capability_dls_reset(ill_t *ill, mblk_t **sc_mp) 2981 { 2982 mblk_t *mp; 2983 dl_capab_dls_t *idls; 2984 dl_capability_sub_t *dl_subcap; 2985 int size; 2986 2987 if (!(ill->ill_capabilities & ILL_CAPAB_DLS)) 2988 return; 2989 2990 ASSERT(ill->ill_dls_capab != NULL); 2991 2992 size = sizeof (*dl_subcap) + sizeof (*idls); 2993 2994 mp = allocb(size, BPRI_HI); 2995 if (mp == NULL) { 2996 ip1dbg(("ill_capability_dls_reset: unable to allocate " 2997 "request to disable soft_ring\n")); 2998 return; 2999 } 3000 3001 mp->b_wptr = mp->b_rptr + size; 3002 3003 dl_subcap = (dl_capability_sub_t *)mp->b_rptr; 3004 dl_subcap->dl_length = sizeof (*idls); 3005 if (ill->ill_capabilities & ILL_CAPAB_SOFT_RING) 3006 dl_subcap->dl_cap = DL_CAPAB_SOFT_RING; 3007 else 3008 dl_subcap->dl_cap = DL_CAPAB_POLL; 3009 3010 idls = (dl_capab_dls_t *)(dl_subcap + 1); 3011 if (ill->ill_capabilities & ILL_CAPAB_SOFT_RING) 3012 idls->dls_flags = SOFT_RING_DISABLE; 3013 else 3014 idls->dls_flags = POLL_DISABLE; 3015 3016 if (*sc_mp != NULL) 3017 linkb(*sc_mp, mp); 3018 else 3019 *sc_mp = mp; 3020 } 3021 3022 /* 3023 * Process a soft_ring/poll capability negotiation ack received 3024 * from a DLS Provider.isub must point to the sub-capability 3025 * (DL_CAPAB_SOFT_RING/DL_CAPAB_POLL) of a DL_CAPABILITY_ACK message. 3026 */ 3027 static void 3028 ill_capability_dls_ack(ill_t *ill, mblk_t *mp, dl_capability_sub_t *isub) 3029 { 3030 dl_capab_dls_t *idls; 3031 uint_t sub_dl_cap = isub->dl_cap; 3032 uint8_t *capend; 3033 3034 ASSERT(sub_dl_cap == DL_CAPAB_SOFT_RING || 3035 sub_dl_cap == DL_CAPAB_POLL); 3036 3037 if (ill->ill_isv6) 3038 return; 3039 3040 /* 3041 * Note: range checks here are not absolutely sufficient to 3042 * make us robust against malformed messages sent by drivers; 3043 * this is in keeping with the rest of IP's dlpi handling. 3044 * (Remember, it's coming from something else in the kernel 3045 * address space) 3046 */ 3047 capend = (uint8_t *)(isub + 1) + isub->dl_length; 3048 if (capend > mp->b_wptr) { 3049 cmn_err(CE_WARN, "ill_capability_dls_ack: " 3050 "malformed sub-capability too long for mblk"); 3051 return; 3052 } 3053 3054 /* 3055 * There are two types of acks we process here: 3056 * 1. acks in reply to a (first form) generic capability req 3057 * (dls_flag will be set to SOFT_RING_CAPABLE or POLL_CAPABLE) 3058 * 2. acks in reply to a SOFT_RING_ENABLE or POLL_ENABLE 3059 * capability req. 3060 */ 3061 idls = (dl_capab_dls_t *)(isub + 1); 3062 3063 if (!dlcapabcheckqid(&idls->dls_mid, ill->ill_lmod_rq)) { 3064 ip1dbg(("ill_capability_dls_ack: mid token for dls " 3065 "capability isn't as expected; pass-thru " 3066 "module(s) detected, discarding capability\n")); 3067 if (ill->ill_capabilities & ILL_CAPAB_DLS) { 3068 /* 3069 * This is a capability renegotitation case. 3070 * The interface better be unusable at this 3071 * point other wise bad things will happen 3072 * if we disable direct calls on a running 3073 * and up interface. 3074 */ 3075 ill_capability_dls_disable(ill); 3076 } 3077 return; 3078 } 3079 3080 switch (idls->dls_flags) { 3081 default: 3082 /* Disable if unknown flag */ 3083 case SOFT_RING_DISABLE: 3084 case POLL_DISABLE: 3085 ill_capability_dls_disable(ill); 3086 break; 3087 case SOFT_RING_CAPABLE: 3088 case POLL_CAPABLE: 3089 /* 3090 * If the capability was already enabled, its safe 3091 * to disable it first to get rid of stale information 3092 * and then start enabling it again. 3093 */ 3094 ill_capability_dls_disable(ill); 3095 ill_capability_dls_capable(ill, idls, isub); 3096 break; 3097 case SOFT_RING_ENABLE: 3098 case POLL_ENABLE: 3099 mutex_enter(&ill->ill_lock); 3100 if (sub_dl_cap == DL_CAPAB_SOFT_RING && 3101 !(ill->ill_capabilities & ILL_CAPAB_SOFT_RING)) { 3102 ASSERT(ill->ill_dls_capab != NULL); 3103 ill->ill_capabilities |= ILL_CAPAB_SOFT_RING; 3104 } 3105 if (sub_dl_cap == DL_CAPAB_POLL && 3106 !(ill->ill_capabilities & ILL_CAPAB_POLL)) { 3107 ASSERT(ill->ill_dls_capab != NULL); 3108 ill->ill_capabilities |= ILL_CAPAB_POLL; 3109 ip1dbg(("ill_capability_dls_ack: interface %s " 3110 "has enabled polling\n", ill->ill_name)); 3111 } 3112 mutex_exit(&ill->ill_lock); 3113 break; 3114 } 3115 } 3116 3117 /* 3118 * Process a hardware checksum offload capability negotiation ack received 3119 * from a DLS Provider.isub must point to the sub-capability (DL_CAPAB_HCKSUM) 3120 * of a DL_CAPABILITY_ACK message. 3121 */ 3122 static void 3123 ill_capability_hcksum_ack(ill_t *ill, mblk_t *mp, dl_capability_sub_t *isub) 3124 { 3125 dl_capability_req_t *ocap; 3126 dl_capab_hcksum_t *ihck, *ohck; 3127 ill_hcksum_capab_t **ill_hcksum; 3128 mblk_t *nmp = NULL; 3129 uint_t sub_dl_cap = isub->dl_cap; 3130 uint8_t *capend; 3131 3132 ASSERT(sub_dl_cap == DL_CAPAB_HCKSUM); 3133 3134 ill_hcksum = (ill_hcksum_capab_t **)&ill->ill_hcksum_capab; 3135 3136 /* 3137 * Note: range checks here are not absolutely sufficient to 3138 * make us robust against malformed messages sent by drivers; 3139 * this is in keeping with the rest of IP's dlpi handling. 3140 * (Remember, it's coming from something else in the kernel 3141 * address space) 3142 */ 3143 capend = (uint8_t *)(isub + 1) + isub->dl_length; 3144 if (capend > mp->b_wptr) { 3145 cmn_err(CE_WARN, "ill_capability_hcksum_ack: " 3146 "malformed sub-capability too long for mblk"); 3147 return; 3148 } 3149 3150 /* 3151 * There are two types of acks we process here: 3152 * 1. acks in reply to a (first form) generic capability req 3153 * (no ENABLE flag set) 3154 * 2. acks in reply to a ENABLE capability req. 3155 * (ENABLE flag set) 3156 */ 3157 ihck = (dl_capab_hcksum_t *)(isub + 1); 3158 3159 if (ihck->hcksum_version != HCKSUM_VERSION_1) { 3160 cmn_err(CE_CONT, "ill_capability_hcksum_ack: " 3161 "unsupported hardware checksum " 3162 "sub-capability (version %d, expected %d)", 3163 ihck->hcksum_version, HCKSUM_VERSION_1); 3164 return; 3165 } 3166 3167 if (!dlcapabcheckqid(&ihck->hcksum_mid, ill->ill_lmod_rq)) { 3168 ip1dbg(("ill_capability_hcksum_ack: mid token for hardware " 3169 "checksum capability isn't as expected; pass-thru " 3170 "module(s) detected, discarding capability\n")); 3171 return; 3172 } 3173 3174 #define CURR_HCKSUM_CAPAB \ 3175 (HCKSUM_INET_PARTIAL | HCKSUM_INET_FULL_V4 | \ 3176 HCKSUM_INET_FULL_V6 | HCKSUM_IPHDRCKSUM) 3177 3178 if ((ihck->hcksum_txflags & HCKSUM_ENABLE) && 3179 (ihck->hcksum_txflags & CURR_HCKSUM_CAPAB)) { 3180 /* do ENABLE processing */ 3181 if (*ill_hcksum == NULL) { 3182 *ill_hcksum = kmem_zalloc(sizeof (ill_hcksum_capab_t), 3183 KM_NOSLEEP); 3184 3185 if (*ill_hcksum == NULL) { 3186 cmn_err(CE_WARN, "ill_capability_hcksum_ack: " 3187 "could not enable hcksum version %d " 3188 "for %s (ENOMEM)\n", HCKSUM_CURRENT_VERSION, 3189 ill->ill_name); 3190 return; 3191 } 3192 } 3193 3194 (*ill_hcksum)->ill_hcksum_version = ihck->hcksum_version; 3195 (*ill_hcksum)->ill_hcksum_txflags = ihck->hcksum_txflags; 3196 ill->ill_capabilities |= ILL_CAPAB_HCKSUM; 3197 ip1dbg(("ill_capability_hcksum_ack: interface %s " 3198 "has enabled hardware checksumming\n ", 3199 ill->ill_name)); 3200 } else if (ihck->hcksum_txflags & CURR_HCKSUM_CAPAB) { 3201 /* 3202 * Enabling hardware checksum offload 3203 * Currently IP supports {TCP,UDP}/IPv4 3204 * partial and full cksum offload and 3205 * IPv4 header checksum offload. 3206 * Allocate new mblk which will 3207 * contain a new capability request 3208 * to enable hardware checksum offload. 3209 */ 3210 uint_t size; 3211 uchar_t *rptr; 3212 3213 size = sizeof (dl_capability_req_t) + 3214 sizeof (dl_capability_sub_t) + isub->dl_length; 3215 3216 if ((nmp = ip_dlpi_alloc(size, DL_CAPABILITY_REQ)) == NULL) { 3217 cmn_err(CE_WARN, "ill_capability_hcksum_ack: " 3218 "could not enable hardware cksum for %s (ENOMEM)\n", 3219 ill->ill_name); 3220 return; 3221 } 3222 3223 rptr = nmp->b_rptr; 3224 /* initialize dl_capability_req_t */ 3225 ocap = (dl_capability_req_t *)nmp->b_rptr; 3226 ocap->dl_sub_offset = 3227 sizeof (dl_capability_req_t); 3228 ocap->dl_sub_length = 3229 sizeof (dl_capability_sub_t) + 3230 isub->dl_length; 3231 nmp->b_rptr += sizeof (dl_capability_req_t); 3232 3233 /* initialize dl_capability_sub_t */ 3234 bcopy(isub, nmp->b_rptr, sizeof (*isub)); 3235 nmp->b_rptr += sizeof (*isub); 3236 3237 /* initialize dl_capab_hcksum_t */ 3238 ohck = (dl_capab_hcksum_t *)nmp->b_rptr; 3239 bcopy(ihck, ohck, sizeof (*ihck)); 3240 3241 nmp->b_rptr = rptr; 3242 ASSERT(nmp->b_wptr == (nmp->b_rptr + size)); 3243 3244 /* Set ENABLE flag */ 3245 ohck->hcksum_txflags &= CURR_HCKSUM_CAPAB; 3246 ohck->hcksum_txflags |= HCKSUM_ENABLE; 3247 3248 /* 3249 * nmp points to a DL_CAPABILITY_REQ message to enable 3250 * hardware checksum acceleration. 3251 */ 3252 ill_dlpi_send(ill, nmp); 3253 } else { 3254 ip1dbg(("ill_capability_hcksum_ack: interface %s has " 3255 "advertised %x hardware checksum capability flags\n", 3256 ill->ill_name, ihck->hcksum_txflags)); 3257 } 3258 } 3259 3260 static void 3261 ill_capability_hcksum_reset(ill_t *ill, mblk_t **sc_mp) 3262 { 3263 mblk_t *mp; 3264 dl_capab_hcksum_t *hck_subcap; 3265 dl_capability_sub_t *dl_subcap; 3266 int size; 3267 3268 if (!ILL_HCKSUM_CAPABLE(ill)) 3269 return; 3270 3271 ASSERT(ill->ill_hcksum_capab != NULL); 3272 /* 3273 * Clear the capability flag for hardware checksum offload but 3274 * retain the ill_hcksum_capab structure since it's possible that 3275 * another thread is still referring to it. The structure only 3276 * gets deallocated when we destroy the ill. 3277 */ 3278 ill->ill_capabilities &= ~ILL_CAPAB_HCKSUM; 3279 3280 size = sizeof (*dl_subcap) + sizeof (*hck_subcap); 3281 3282 mp = allocb(size, BPRI_HI); 3283 if (mp == NULL) { 3284 ip1dbg(("ill_capability_hcksum_reset: unable to allocate " 3285 "request to disable hardware checksum offload\n")); 3286 return; 3287 } 3288 3289 mp->b_wptr = mp->b_rptr + size; 3290 3291 dl_subcap = (dl_capability_sub_t *)mp->b_rptr; 3292 dl_subcap->dl_cap = DL_CAPAB_HCKSUM; 3293 dl_subcap->dl_length = sizeof (*hck_subcap); 3294 3295 hck_subcap = (dl_capab_hcksum_t *)(dl_subcap + 1); 3296 hck_subcap->hcksum_version = ill->ill_hcksum_capab->ill_hcksum_version; 3297 hck_subcap->hcksum_txflags = 0; 3298 3299 if (*sc_mp != NULL) 3300 linkb(*sc_mp, mp); 3301 else 3302 *sc_mp = mp; 3303 } 3304 3305 static void 3306 ill_capability_zerocopy_ack(ill_t *ill, mblk_t *mp, dl_capability_sub_t *isub) 3307 { 3308 mblk_t *nmp = NULL; 3309 dl_capability_req_t *oc; 3310 dl_capab_zerocopy_t *zc_ic, *zc_oc; 3311 ill_zerocopy_capab_t **ill_zerocopy_capab; 3312 uint_t sub_dl_cap = isub->dl_cap; 3313 uint8_t *capend; 3314 3315 ASSERT(sub_dl_cap == DL_CAPAB_ZEROCOPY); 3316 3317 ill_zerocopy_capab = (ill_zerocopy_capab_t **)&ill->ill_zerocopy_capab; 3318 3319 /* 3320 * Note: range checks here are not absolutely sufficient to 3321 * make us robust against malformed messages sent by drivers; 3322 * this is in keeping with the rest of IP's dlpi handling. 3323 * (Remember, it's coming from something else in the kernel 3324 * address space) 3325 */ 3326 capend = (uint8_t *)(isub + 1) + isub->dl_length; 3327 if (capend > mp->b_wptr) { 3328 cmn_err(CE_WARN, "ill_capability_zerocopy_ack: " 3329 "malformed sub-capability too long for mblk"); 3330 return; 3331 } 3332 3333 zc_ic = (dl_capab_zerocopy_t *)(isub + 1); 3334 if (zc_ic->zerocopy_version != ZEROCOPY_VERSION_1) { 3335 cmn_err(CE_CONT, "ill_capability_zerocopy_ack: " 3336 "unsupported ZEROCOPY sub-capability (version %d, " 3337 "expected %d)", zc_ic->zerocopy_version, 3338 ZEROCOPY_VERSION_1); 3339 return; 3340 } 3341 3342 if (!dlcapabcheckqid(&zc_ic->zerocopy_mid, ill->ill_lmod_rq)) { 3343 ip1dbg(("ill_capability_zerocopy_ack: mid token for zerocopy " 3344 "capability isn't as expected; pass-thru module(s) " 3345 "detected, discarding capability\n")); 3346 return; 3347 } 3348 3349 if ((zc_ic->zerocopy_flags & DL_CAPAB_VMSAFE_MEM) != 0) { 3350 if (*ill_zerocopy_capab == NULL) { 3351 *ill_zerocopy_capab = 3352 kmem_zalloc(sizeof (ill_zerocopy_capab_t), 3353 KM_NOSLEEP); 3354 3355 if (*ill_zerocopy_capab == NULL) { 3356 cmn_err(CE_WARN, "ill_capability_zerocopy_ack: " 3357 "could not enable Zero-copy version %d " 3358 "for %s (ENOMEM)\n", ZEROCOPY_VERSION_1, 3359 ill->ill_name); 3360 return; 3361 } 3362 } 3363 3364 ip1dbg(("ill_capability_zerocopy_ack: interface %s " 3365 "supports Zero-copy version %d\n", ill->ill_name, 3366 ZEROCOPY_VERSION_1)); 3367 3368 (*ill_zerocopy_capab)->ill_zerocopy_version = 3369 zc_ic->zerocopy_version; 3370 (*ill_zerocopy_capab)->ill_zerocopy_flags = 3371 zc_ic->zerocopy_flags; 3372 3373 ill->ill_capabilities |= ILL_CAPAB_ZEROCOPY; 3374 } else { 3375 uint_t size; 3376 uchar_t *rptr; 3377 3378 size = sizeof (dl_capability_req_t) + 3379 sizeof (dl_capability_sub_t) + 3380 sizeof (dl_capab_zerocopy_t); 3381 3382 if ((nmp = ip_dlpi_alloc(size, DL_CAPABILITY_REQ)) == NULL) { 3383 cmn_err(CE_WARN, "ill_capability_zerocopy_ack: " 3384 "could not enable zerocopy for %s (ENOMEM)\n", 3385 ill->ill_name); 3386 return; 3387 } 3388 3389 rptr = nmp->b_rptr; 3390 /* initialize dl_capability_req_t */ 3391 oc = (dl_capability_req_t *)rptr; 3392 oc->dl_sub_offset = sizeof (dl_capability_req_t); 3393 oc->dl_sub_length = sizeof (dl_capability_sub_t) + 3394 sizeof (dl_capab_zerocopy_t); 3395 rptr += sizeof (dl_capability_req_t); 3396 3397 /* initialize dl_capability_sub_t */ 3398 bcopy(isub, rptr, sizeof (*isub)); 3399 rptr += sizeof (*isub); 3400 3401 /* initialize dl_capab_zerocopy_t */ 3402 zc_oc = (dl_capab_zerocopy_t *)rptr; 3403 *zc_oc = *zc_ic; 3404 3405 ip1dbg(("ill_capability_zerocopy_ack: asking interface %s " 3406 "to enable zero-copy version %d\n", ill->ill_name, 3407 ZEROCOPY_VERSION_1)); 3408 3409 /* set VMSAFE_MEM flag */ 3410 zc_oc->zerocopy_flags |= DL_CAPAB_VMSAFE_MEM; 3411 3412 /* nmp points to a DL_CAPABILITY_REQ message to enable zcopy */ 3413 ill_dlpi_send(ill, nmp); 3414 } 3415 } 3416 3417 static void 3418 ill_capability_zerocopy_reset(ill_t *ill, mblk_t **sc_mp) 3419 { 3420 mblk_t *mp; 3421 dl_capab_zerocopy_t *zerocopy_subcap; 3422 dl_capability_sub_t *dl_subcap; 3423 int size; 3424 3425 if (!(ill->ill_capabilities & ILL_CAPAB_ZEROCOPY)) 3426 return; 3427 3428 ASSERT(ill->ill_zerocopy_capab != NULL); 3429 /* 3430 * Clear the capability flag for Zero-copy but retain the 3431 * ill_zerocopy_capab structure since it's possible that another 3432 * thread is still referring to it. The structure only gets 3433 * deallocated when we destroy the ill. 3434 */ 3435 ill->ill_capabilities &= ~ILL_CAPAB_ZEROCOPY; 3436 3437 size = sizeof (*dl_subcap) + sizeof (*zerocopy_subcap); 3438 3439 mp = allocb(size, BPRI_HI); 3440 if (mp == NULL) { 3441 ip1dbg(("ill_capability_zerocopy_reset: unable to allocate " 3442 "request to disable Zero-copy\n")); 3443 return; 3444 } 3445 3446 mp->b_wptr = mp->b_rptr + size; 3447 3448 dl_subcap = (dl_capability_sub_t *)mp->b_rptr; 3449 dl_subcap->dl_cap = DL_CAPAB_ZEROCOPY; 3450 dl_subcap->dl_length = sizeof (*zerocopy_subcap); 3451 3452 zerocopy_subcap = (dl_capab_zerocopy_t *)(dl_subcap + 1); 3453 zerocopy_subcap->zerocopy_version = 3454 ill->ill_zerocopy_capab->ill_zerocopy_version; 3455 zerocopy_subcap->zerocopy_flags = 0; 3456 3457 if (*sc_mp != NULL) 3458 linkb(*sc_mp, mp); 3459 else 3460 *sc_mp = mp; 3461 } 3462 3463 /* 3464 * Process Large Segment Offload capability negotiation ack received from a 3465 * DLS Provider. isub must point to the sub-capability (DL_CAPAB_LSO) of a 3466 * DL_CAPABILITY_ACK message. 3467 */ 3468 static void 3469 ill_capability_lso_ack(ill_t *ill, mblk_t *mp, dl_capability_sub_t *isub) 3470 { 3471 mblk_t *nmp = NULL; 3472 dl_capability_req_t *oc; 3473 dl_capab_lso_t *lso_ic, *lso_oc; 3474 ill_lso_capab_t **ill_lso_capab; 3475 uint_t sub_dl_cap = isub->dl_cap; 3476 uint8_t *capend; 3477 3478 ASSERT(sub_dl_cap == DL_CAPAB_LSO); 3479 3480 ill_lso_capab = (ill_lso_capab_t **)&ill->ill_lso_capab; 3481 3482 /* 3483 * Note: range checks here are not absolutely sufficient to 3484 * make us robust against malformed messages sent by drivers; 3485 * this is in keeping with the rest of IP's dlpi handling. 3486 * (Remember, it's coming from something else in the kernel 3487 * address space) 3488 */ 3489 capend = (uint8_t *)(isub + 1) + isub->dl_length; 3490 if (capend > mp->b_wptr) { 3491 cmn_err(CE_WARN, "ill_capability_lso_ack: " 3492 "malformed sub-capability too long for mblk"); 3493 return; 3494 } 3495 3496 lso_ic = (dl_capab_lso_t *)(isub + 1); 3497 3498 if (lso_ic->lso_version != LSO_VERSION_1) { 3499 cmn_err(CE_CONT, "ill_capability_lso_ack: " 3500 "unsupported LSO sub-capability (version %d, expected %d)", 3501 lso_ic->lso_version, LSO_VERSION_1); 3502 return; 3503 } 3504 3505 if (!dlcapabcheckqid(&lso_ic->lso_mid, ill->ill_lmod_rq)) { 3506 ip1dbg(("ill_capability_lso_ack: mid token for LSO " 3507 "capability isn't as expected; pass-thru module(s) " 3508 "detected, discarding capability\n")); 3509 return; 3510 } 3511 3512 if ((lso_ic->lso_flags & LSO_TX_ENABLE) && 3513 (lso_ic->lso_flags & LSO_TX_BASIC_TCP_IPV4)) { 3514 if (*ill_lso_capab == NULL) { 3515 *ill_lso_capab = kmem_zalloc(sizeof (ill_lso_capab_t), 3516 KM_NOSLEEP); 3517 3518 if (*ill_lso_capab == NULL) { 3519 cmn_err(CE_WARN, "ill_capability_lso_ack: " 3520 "could not enable LSO version %d " 3521 "for %s (ENOMEM)\n", LSO_VERSION_1, 3522 ill->ill_name); 3523 return; 3524 } 3525 } 3526 3527 (*ill_lso_capab)->ill_lso_version = lso_ic->lso_version; 3528 (*ill_lso_capab)->ill_lso_flags = lso_ic->lso_flags; 3529 (*ill_lso_capab)->ill_lso_max = lso_ic->lso_max; 3530 ill->ill_capabilities |= ILL_CAPAB_LSO; 3531 3532 ip1dbg(("ill_capability_lso_ack: interface %s " 3533 "has enabled LSO\n ", ill->ill_name)); 3534 } else if (lso_ic->lso_flags & LSO_TX_BASIC_TCP_IPV4) { 3535 uint_t size; 3536 uchar_t *rptr; 3537 3538 size = sizeof (dl_capability_req_t) + 3539 sizeof (dl_capability_sub_t) + sizeof (dl_capab_lso_t); 3540 3541 if ((nmp = ip_dlpi_alloc(size, DL_CAPABILITY_REQ)) == NULL) { 3542 cmn_err(CE_WARN, "ill_capability_lso_ack: " 3543 "could not enable LSO for %s (ENOMEM)\n", 3544 ill->ill_name); 3545 return; 3546 } 3547 3548 rptr = nmp->b_rptr; 3549 /* initialize dl_capability_req_t */ 3550 oc = (dl_capability_req_t *)nmp->b_rptr; 3551 oc->dl_sub_offset = sizeof (dl_capability_req_t); 3552 oc->dl_sub_length = sizeof (dl_capability_sub_t) + 3553 sizeof (dl_capab_lso_t); 3554 nmp->b_rptr += sizeof (dl_capability_req_t); 3555 3556 /* initialize dl_capability_sub_t */ 3557 bcopy(isub, nmp->b_rptr, sizeof (*isub)); 3558 nmp->b_rptr += sizeof (*isub); 3559 3560 /* initialize dl_capab_lso_t */ 3561 lso_oc = (dl_capab_lso_t *)nmp->b_rptr; 3562 bcopy(lso_ic, lso_oc, sizeof (*lso_ic)); 3563 3564 nmp->b_rptr = rptr; 3565 ASSERT(nmp->b_wptr == (nmp->b_rptr + size)); 3566 3567 /* set ENABLE flag */ 3568 lso_oc->lso_flags |= LSO_TX_ENABLE; 3569 3570 /* nmp points to a DL_CAPABILITY_REQ message to enable LSO */ 3571 ill_dlpi_send(ill, nmp); 3572 } else { 3573 ip1dbg(("ill_capability_lso_ack: interface %s has " 3574 "advertised %x LSO capability flags\n", 3575 ill->ill_name, lso_ic->lso_flags)); 3576 } 3577 } 3578 3579 3580 static void 3581 ill_capability_lso_reset(ill_t *ill, mblk_t **sc_mp) 3582 { 3583 mblk_t *mp; 3584 dl_capab_lso_t *lso_subcap; 3585 dl_capability_sub_t *dl_subcap; 3586 int size; 3587 3588 if (!(ill->ill_capabilities & ILL_CAPAB_LSO)) 3589 return; 3590 3591 ASSERT(ill->ill_lso_capab != NULL); 3592 /* 3593 * Clear the capability flag for LSO but retain the 3594 * ill_lso_capab structure since it's possible that another 3595 * thread is still referring to it. The structure only gets 3596 * deallocated when we destroy the ill. 3597 */ 3598 ill->ill_capabilities &= ~ILL_CAPAB_LSO; 3599 3600 size = sizeof (*dl_subcap) + sizeof (*lso_subcap); 3601 3602 mp = allocb(size, BPRI_HI); 3603 if (mp == NULL) { 3604 ip1dbg(("ill_capability_lso_reset: unable to allocate " 3605 "request to disable LSO\n")); 3606 return; 3607 } 3608 3609 mp->b_wptr = mp->b_rptr + size; 3610 3611 dl_subcap = (dl_capability_sub_t *)mp->b_rptr; 3612 dl_subcap->dl_cap = DL_CAPAB_LSO; 3613 dl_subcap->dl_length = sizeof (*lso_subcap); 3614 3615 lso_subcap = (dl_capab_lso_t *)(dl_subcap + 1); 3616 lso_subcap->lso_version = ill->ill_lso_capab->ill_lso_version; 3617 lso_subcap->lso_flags = 0; 3618 3619 if (*sc_mp != NULL) 3620 linkb(*sc_mp, mp); 3621 else 3622 *sc_mp = mp; 3623 } 3624 3625 /* 3626 * Consume a new-style hardware capabilities negotiation ack. 3627 * Called from ip_rput_dlpi_writer(). 3628 */ 3629 void 3630 ill_capability_ack(ill_t *ill, mblk_t *mp) 3631 { 3632 dl_capability_ack_t *capp; 3633 dl_capability_sub_t *subp, *endp; 3634 3635 if (ill->ill_dlpi_capab_state == IDS_INPROGRESS) 3636 ill->ill_dlpi_capab_state = IDS_OK; 3637 3638 capp = (dl_capability_ack_t *)mp->b_rptr; 3639 3640 if (capp->dl_sub_length == 0) 3641 /* no new-style capabilities */ 3642 return; 3643 3644 /* make sure the driver supplied correct dl_sub_length */ 3645 if ((sizeof (*capp) + capp->dl_sub_length) > MBLKL(mp)) { 3646 ip0dbg(("ill_capability_ack: bad DL_CAPABILITY_ACK, " 3647 "invalid dl_sub_length (%d)\n", capp->dl_sub_length)); 3648 return; 3649 } 3650 3651 #define SC(base, offset) (dl_capability_sub_t *)(((uchar_t *)(base))+(offset)) 3652 /* 3653 * There are sub-capabilities. Process the ones we know about. 3654 * Loop until we don't have room for another sub-cap header.. 3655 */ 3656 for (subp = SC(capp, capp->dl_sub_offset), 3657 endp = SC(subp, capp->dl_sub_length - sizeof (*subp)); 3658 subp <= endp; 3659 subp = SC(subp, sizeof (dl_capability_sub_t) + subp->dl_length)) { 3660 3661 switch (subp->dl_cap) { 3662 case DL_CAPAB_ID_WRAPPER: 3663 ill_capability_id_ack(ill, mp, subp); 3664 break; 3665 default: 3666 ill_capability_dispatch(ill, mp, subp, B_FALSE); 3667 break; 3668 } 3669 } 3670 #undef SC 3671 } 3672 3673 /* 3674 * This routine is called to scan the fragmentation reassembly table for 3675 * the specified ILL for any packets that are starting to smell. 3676 * dead_interval is the maximum time in seconds that will be tolerated. It 3677 * will either be the value specified in ip_g_frag_timeout, or zero if the 3678 * ILL is shutting down and it is time to blow everything off. 3679 * 3680 * It returns the number of seconds (as a time_t) that the next frag timer 3681 * should be scheduled for, 0 meaning that the timer doesn't need to be 3682 * re-started. Note that the method of calculating next_timeout isn't 3683 * entirely accurate since time will flow between the time we grab 3684 * current_time and the time we schedule the next timeout. This isn't a 3685 * big problem since this is the timer for sending an ICMP reassembly time 3686 * exceeded messages, and it doesn't have to be exactly accurate. 3687 * 3688 * This function is 3689 * sometimes called as writer, although this is not required. 3690 */ 3691 time_t 3692 ill_frag_timeout(ill_t *ill, time_t dead_interval) 3693 { 3694 ipfb_t *ipfb; 3695 ipfb_t *endp; 3696 ipf_t *ipf; 3697 ipf_t *ipfnext; 3698 mblk_t *mp; 3699 time_t current_time = gethrestime_sec(); 3700 time_t next_timeout = 0; 3701 uint32_t hdr_length; 3702 mblk_t *send_icmp_head; 3703 mblk_t *send_icmp_head_v6; 3704 zoneid_t zoneid; 3705 ip_stack_t *ipst = ill->ill_ipst; 3706 3707 ipfb = ill->ill_frag_hash_tbl; 3708 if (ipfb == NULL) 3709 return (B_FALSE); 3710 endp = &ipfb[ILL_FRAG_HASH_TBL_COUNT]; 3711 /* Walk the frag hash table. */ 3712 for (; ipfb < endp; ipfb++) { 3713 send_icmp_head = NULL; 3714 send_icmp_head_v6 = NULL; 3715 mutex_enter(&ipfb->ipfb_lock); 3716 while ((ipf = ipfb->ipfb_ipf) != 0) { 3717 time_t frag_time = current_time - ipf->ipf_timestamp; 3718 time_t frag_timeout; 3719 3720 if (frag_time < dead_interval) { 3721 /* 3722 * There are some outstanding fragments 3723 * that will timeout later. Make note of 3724 * the time so that we can reschedule the 3725 * next timeout appropriately. 3726 */ 3727 frag_timeout = dead_interval - frag_time; 3728 if (next_timeout == 0 || 3729 frag_timeout < next_timeout) { 3730 next_timeout = frag_timeout; 3731 } 3732 break; 3733 } 3734 /* Time's up. Get it out of here. */ 3735 hdr_length = ipf->ipf_nf_hdr_len; 3736 ipfnext = ipf->ipf_hash_next; 3737 if (ipfnext) 3738 ipfnext->ipf_ptphn = ipf->ipf_ptphn; 3739 *ipf->ipf_ptphn = ipfnext; 3740 mp = ipf->ipf_mp->b_cont; 3741 for (; mp; mp = mp->b_cont) { 3742 /* Extra points for neatness. */ 3743 IP_REASS_SET_START(mp, 0); 3744 IP_REASS_SET_END(mp, 0); 3745 } 3746 mp = ipf->ipf_mp->b_cont; 3747 ill->ill_frag_count -= ipf->ipf_count; 3748 ASSERT(ipfb->ipfb_count >= ipf->ipf_count); 3749 ipfb->ipfb_count -= ipf->ipf_count; 3750 ASSERT(ipfb->ipfb_frag_pkts > 0); 3751 ipfb->ipfb_frag_pkts--; 3752 /* 3753 * We do not send any icmp message from here because 3754 * we currently are holding the ipfb_lock for this 3755 * hash chain. If we try and send any icmp messages 3756 * from here we may end up via a put back into ip 3757 * trying to get the same lock, causing a recursive 3758 * mutex panic. Instead we build a list and send all 3759 * the icmp messages after we have dropped the lock. 3760 */ 3761 if (ill->ill_isv6) { 3762 if (hdr_length != 0) { 3763 mp->b_next = send_icmp_head_v6; 3764 send_icmp_head_v6 = mp; 3765 } else { 3766 freemsg(mp); 3767 } 3768 } else { 3769 if (hdr_length != 0) { 3770 mp->b_next = send_icmp_head; 3771 send_icmp_head = mp; 3772 } else { 3773 freemsg(mp); 3774 } 3775 } 3776 BUMP_MIB(ill->ill_ip_mib, ipIfStatsReasmFails); 3777 freeb(ipf->ipf_mp); 3778 } 3779 mutex_exit(&ipfb->ipfb_lock); 3780 /* 3781 * Now need to send any icmp messages that we delayed from 3782 * above. 3783 */ 3784 while (send_icmp_head_v6 != NULL) { 3785 ip6_t *ip6h; 3786 3787 mp = send_icmp_head_v6; 3788 send_icmp_head_v6 = send_icmp_head_v6->b_next; 3789 mp->b_next = NULL; 3790 if (mp->b_datap->db_type == M_CTL) 3791 ip6h = (ip6_t *)mp->b_cont->b_rptr; 3792 else 3793 ip6h = (ip6_t *)mp->b_rptr; 3794 zoneid = ipif_lookup_addr_zoneid_v6(&ip6h->ip6_dst, 3795 ill, ipst); 3796 if (zoneid == ALL_ZONES) { 3797 freemsg(mp); 3798 } else { 3799 icmp_time_exceeded_v6(ill->ill_wq, mp, 3800 ICMP_REASSEMBLY_TIME_EXCEEDED, B_FALSE, 3801 B_FALSE, zoneid, ipst); 3802 } 3803 } 3804 while (send_icmp_head != NULL) { 3805 ipaddr_t dst; 3806 3807 mp = send_icmp_head; 3808 send_icmp_head = send_icmp_head->b_next; 3809 mp->b_next = NULL; 3810 3811 if (mp->b_datap->db_type == M_CTL) 3812 dst = ((ipha_t *)mp->b_cont->b_rptr)->ipha_dst; 3813 else 3814 dst = ((ipha_t *)mp->b_rptr)->ipha_dst; 3815 3816 zoneid = ipif_lookup_addr_zoneid(dst, ill, ipst); 3817 if (zoneid == ALL_ZONES) { 3818 freemsg(mp); 3819 } else { 3820 icmp_time_exceeded(ill->ill_wq, mp, 3821 ICMP_REASSEMBLY_TIME_EXCEEDED, zoneid, 3822 ipst); 3823 } 3824 } 3825 } 3826 /* 3827 * A non-dying ILL will use the return value to decide whether to 3828 * restart the frag timer, and for how long. 3829 */ 3830 return (next_timeout); 3831 } 3832 3833 /* 3834 * This routine is called when the approximate count of mblk memory used 3835 * for the specified ILL has exceeded max_count. 3836 */ 3837 void 3838 ill_frag_prune(ill_t *ill, uint_t max_count) 3839 { 3840 ipfb_t *ipfb; 3841 ipf_t *ipf; 3842 size_t count; 3843 3844 /* 3845 * If we are here within ip_min_frag_prune_time msecs remove 3846 * ill_frag_free_num_pkts oldest packets from each bucket and increment 3847 * ill_frag_free_num_pkts. 3848 */ 3849 mutex_enter(&ill->ill_lock); 3850 if (TICK_TO_MSEC(lbolt - ill->ill_last_frag_clean_time) <= 3851 (ip_min_frag_prune_time != 0 ? 3852 ip_min_frag_prune_time : msec_per_tick)) { 3853 3854 ill->ill_frag_free_num_pkts++; 3855 3856 } else { 3857 ill->ill_frag_free_num_pkts = 0; 3858 } 3859 ill->ill_last_frag_clean_time = lbolt; 3860 mutex_exit(&ill->ill_lock); 3861 3862 /* 3863 * free ill_frag_free_num_pkts oldest packets from each bucket. 3864 */ 3865 if (ill->ill_frag_free_num_pkts != 0) { 3866 int ix; 3867 3868 for (ix = 0; ix < ILL_FRAG_HASH_TBL_COUNT; ix++) { 3869 ipfb = &ill->ill_frag_hash_tbl[ix]; 3870 mutex_enter(&ipfb->ipfb_lock); 3871 if (ipfb->ipfb_ipf != NULL) { 3872 ill_frag_free_pkts(ill, ipfb, ipfb->ipfb_ipf, 3873 ill->ill_frag_free_num_pkts); 3874 } 3875 mutex_exit(&ipfb->ipfb_lock); 3876 } 3877 } 3878 /* 3879 * While the reassembly list for this ILL is too big, prune a fragment 3880 * queue by age, oldest first. Note that the per ILL count is 3881 * approximate, while the per frag hash bucket counts are accurate. 3882 */ 3883 while (ill->ill_frag_count > max_count) { 3884 int ix; 3885 ipfb_t *oipfb = NULL; 3886 uint_t oldest = UINT_MAX; 3887 3888 count = 0; 3889 for (ix = 0; ix < ILL_FRAG_HASH_TBL_COUNT; ix++) { 3890 ipfb = &ill->ill_frag_hash_tbl[ix]; 3891 mutex_enter(&ipfb->ipfb_lock); 3892 ipf = ipfb->ipfb_ipf; 3893 if (ipf != NULL && ipf->ipf_gen < oldest) { 3894 oldest = ipf->ipf_gen; 3895 oipfb = ipfb; 3896 } 3897 count += ipfb->ipfb_count; 3898 mutex_exit(&ipfb->ipfb_lock); 3899 } 3900 /* Refresh the per ILL count */ 3901 ill->ill_frag_count = count; 3902 if (oipfb == NULL) { 3903 ill->ill_frag_count = 0; 3904 break; 3905 } 3906 if (count <= max_count) 3907 return; /* Somebody beat us to it, nothing to do */ 3908 mutex_enter(&oipfb->ipfb_lock); 3909 ipf = oipfb->ipfb_ipf; 3910 if (ipf != NULL) { 3911 ill_frag_free_pkts(ill, oipfb, ipf, 1); 3912 } 3913 mutex_exit(&oipfb->ipfb_lock); 3914 } 3915 } 3916 3917 /* 3918 * free 'free_cnt' fragmented packets starting at ipf. 3919 */ 3920 void 3921 ill_frag_free_pkts(ill_t *ill, ipfb_t *ipfb, ipf_t *ipf, int free_cnt) 3922 { 3923 size_t count; 3924 mblk_t *mp; 3925 mblk_t *tmp; 3926 ipf_t **ipfp = ipf->ipf_ptphn; 3927 3928 ASSERT(MUTEX_HELD(&ipfb->ipfb_lock)); 3929 ASSERT(ipfp != NULL); 3930 ASSERT(ipf != NULL); 3931 3932 while (ipf != NULL && free_cnt-- > 0) { 3933 count = ipf->ipf_count; 3934 mp = ipf->ipf_mp; 3935 ipf = ipf->ipf_hash_next; 3936 for (tmp = mp; tmp; tmp = tmp->b_cont) { 3937 IP_REASS_SET_START(tmp, 0); 3938 IP_REASS_SET_END(tmp, 0); 3939 } 3940 ill->ill_frag_count -= count; 3941 ASSERT(ipfb->ipfb_count >= count); 3942 ipfb->ipfb_count -= count; 3943 ASSERT(ipfb->ipfb_frag_pkts > 0); 3944 ipfb->ipfb_frag_pkts--; 3945 freemsg(mp); 3946 BUMP_MIB(ill->ill_ip_mib, ipIfStatsReasmFails); 3947 } 3948 3949 if (ipf) 3950 ipf->ipf_ptphn = ipfp; 3951 ipfp[0] = ipf; 3952 } 3953 3954 #define ND_FORWARD_WARNING "The <if>:ip*_forwarding ndd variables are " \ 3955 "obsolete and may be removed in a future release of Solaris. Use " \ 3956 "ifconfig(1M) to manipulate the forwarding status of an interface." 3957 3958 /* 3959 * For obsolete per-interface forwarding configuration; 3960 * called in response to ND_GET. 3961 */ 3962 /* ARGSUSED */ 3963 static int 3964 nd_ill_forward_get(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *ioc_cr) 3965 { 3966 ill_t *ill = (ill_t *)cp; 3967 3968 cmn_err(CE_WARN, ND_FORWARD_WARNING); 3969 3970 (void) mi_mpprintf(mp, "%d", (ill->ill_flags & ILLF_ROUTER) != 0); 3971 return (0); 3972 } 3973 3974 /* 3975 * For obsolete per-interface forwarding configuration; 3976 * called in response to ND_SET. 3977 */ 3978 /* ARGSUSED */ 3979 static int 3980 nd_ill_forward_set(queue_t *q, mblk_t *mp, char *valuestr, caddr_t cp, 3981 cred_t *ioc_cr) 3982 { 3983 long value; 3984 int retval; 3985 ip_stack_t *ipst = CONNQ_TO_IPST(q); 3986 3987 cmn_err(CE_WARN, ND_FORWARD_WARNING); 3988 3989 if (ddi_strtol(valuestr, NULL, 10, &value) != 0 || 3990 value < 0 || value > 1) { 3991 return (EINVAL); 3992 } 3993 3994 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 3995 retval = ill_forward_set(q, mp, (value != 0), cp); 3996 rw_exit(&ipst->ips_ill_g_lock); 3997 return (retval); 3998 } 3999 4000 /* 4001 * Set an ill's ILLF_ROUTER flag appropriately. If the ill is part of an 4002 * IPMP group, make sure all ill's in the group adopt the new policy. Send 4003 * up RTS_IFINFO routing socket messages for each interface whose flags we 4004 * change. 4005 */ 4006 /* ARGSUSED */ 4007 int 4008 ill_forward_set(queue_t *q, mblk_t *mp, boolean_t enable, caddr_t cp) 4009 { 4010 ill_t *ill = (ill_t *)cp; 4011 ill_group_t *illgrp; 4012 ip_stack_t *ipst = ill->ill_ipst; 4013 4014 ASSERT(IAM_WRITER_ILL(ill) || RW_READ_HELD(&ipst->ips_ill_g_lock)); 4015 4016 if ((enable && (ill->ill_flags & ILLF_ROUTER)) || 4017 (!enable && !(ill->ill_flags & ILLF_ROUTER)) || 4018 (ill->ill_phyint->phyint_flags & PHYI_LOOPBACK)) 4019 return (EINVAL); 4020 4021 /* 4022 * If the ill is in an IPMP group, set the forwarding policy on all 4023 * members of the group to the same value. 4024 */ 4025 illgrp = ill->ill_group; 4026 if (illgrp != NULL) { 4027 ill_t *tmp_ill; 4028 4029 for (tmp_ill = illgrp->illgrp_ill; tmp_ill != NULL; 4030 tmp_ill = tmp_ill->ill_group_next) { 4031 ip1dbg(("ill_forward_set: %s %s forwarding on %s", 4032 (enable ? "Enabling" : "Disabling"), 4033 (tmp_ill->ill_isv6 ? "IPv6" : "IPv4"), 4034 tmp_ill->ill_name)); 4035 mutex_enter(&tmp_ill->ill_lock); 4036 if (enable) 4037 tmp_ill->ill_flags |= ILLF_ROUTER; 4038 else 4039 tmp_ill->ill_flags &= ~ILLF_ROUTER; 4040 mutex_exit(&tmp_ill->ill_lock); 4041 if (tmp_ill->ill_isv6) 4042 ill_set_nce_router_flags(tmp_ill, enable); 4043 /* Notify routing socket listeners of this change. */ 4044 ip_rts_ifmsg(tmp_ill->ill_ipif); 4045 } 4046 } else { 4047 ip1dbg(("ill_forward_set: %s %s forwarding on %s", 4048 (enable ? "Enabling" : "Disabling"), 4049 (ill->ill_isv6 ? "IPv6" : "IPv4"), ill->ill_name)); 4050 mutex_enter(&ill->ill_lock); 4051 if (enable) 4052 ill->ill_flags |= ILLF_ROUTER; 4053 else 4054 ill->ill_flags &= ~ILLF_ROUTER; 4055 mutex_exit(&ill->ill_lock); 4056 if (ill->ill_isv6) 4057 ill_set_nce_router_flags(ill, enable); 4058 /* Notify routing socket listeners of this change. */ 4059 ip_rts_ifmsg(ill->ill_ipif); 4060 } 4061 4062 return (0); 4063 } 4064 4065 /* 4066 * Based on the ILLF_ROUTER flag of an ill, make sure all local nce's for 4067 * addresses assigned to the ill have the NCE_F_ISROUTER flag appropriately 4068 * set or clear. 4069 */ 4070 static void 4071 ill_set_nce_router_flags(ill_t *ill, boolean_t enable) 4072 { 4073 ipif_t *ipif; 4074 nce_t *nce; 4075 4076 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 4077 nce = ndp_lookup_v6(ill, &ipif->ipif_v6lcl_addr, B_FALSE); 4078 if (nce != NULL) { 4079 mutex_enter(&nce->nce_lock); 4080 if (enable) 4081 nce->nce_flags |= NCE_F_ISROUTER; 4082 else 4083 nce->nce_flags &= ~NCE_F_ISROUTER; 4084 mutex_exit(&nce->nce_lock); 4085 NCE_REFRELE(nce); 4086 } 4087 } 4088 } 4089 4090 /* 4091 * Given an ill with a _valid_ name, add the ip_forwarding ndd variable 4092 * for this ill. Make sure the v6/v4 question has been answered about this 4093 * ill. The creation of this ndd variable is only for backwards compatibility. 4094 * The preferred way to control per-interface IP forwarding is through the 4095 * ILLF_ROUTER interface flag. 4096 */ 4097 static int 4098 ill_set_ndd_name(ill_t *ill) 4099 { 4100 char *suffix; 4101 ip_stack_t *ipst = ill->ill_ipst; 4102 4103 ASSERT(IAM_WRITER_ILL(ill)); 4104 4105 if (ill->ill_isv6) 4106 suffix = ipv6_forward_suffix; 4107 else 4108 suffix = ipv4_forward_suffix; 4109 4110 ill->ill_ndd_name = ill->ill_name + ill->ill_name_length; 4111 bcopy(ill->ill_name, ill->ill_ndd_name, ill->ill_name_length - 1); 4112 /* 4113 * Copies over the '\0'. 4114 * Note that strlen(suffix) is always bounded. 4115 */ 4116 bcopy(suffix, ill->ill_ndd_name + ill->ill_name_length - 1, 4117 strlen(suffix) + 1); 4118 4119 /* 4120 * Use of the nd table requires holding the reader lock. 4121 * Modifying the nd table thru nd_load/nd_unload requires 4122 * the writer lock. 4123 */ 4124 rw_enter(&ipst->ips_ip_g_nd_lock, RW_WRITER); 4125 if (!nd_load(&ipst->ips_ip_g_nd, ill->ill_ndd_name, nd_ill_forward_get, 4126 nd_ill_forward_set, (caddr_t)ill)) { 4127 /* 4128 * If the nd_load failed, it only meant that it could not 4129 * allocate a new bunch of room for further NDD expansion. 4130 * Because of that, the ill_ndd_name will be set to 0, and 4131 * this interface is at the mercy of the global ip_forwarding 4132 * variable. 4133 */ 4134 rw_exit(&ipst->ips_ip_g_nd_lock); 4135 ill->ill_ndd_name = NULL; 4136 return (ENOMEM); 4137 } 4138 rw_exit(&ipst->ips_ip_g_nd_lock); 4139 return (0); 4140 } 4141 4142 /* 4143 * Intializes the context structure and returns the first ill in the list 4144 * cuurently start_list and end_list can have values: 4145 * MAX_G_HEADS Traverse both IPV4 and IPV6 lists. 4146 * IP_V4_G_HEAD Traverse IPV4 list only. 4147 * IP_V6_G_HEAD Traverse IPV6 list only. 4148 */ 4149 4150 /* 4151 * We don't check for CONDEMNED ills here. Caller must do that if 4152 * necessary under the ill lock. 4153 */ 4154 ill_t * 4155 ill_first(int start_list, int end_list, ill_walk_context_t *ctx, 4156 ip_stack_t *ipst) 4157 { 4158 ill_if_t *ifp; 4159 ill_t *ill; 4160 avl_tree_t *avl_tree; 4161 4162 ASSERT(RW_LOCK_HELD(&ipst->ips_ill_g_lock)); 4163 ASSERT(end_list <= MAX_G_HEADS && start_list >= 0); 4164 4165 /* 4166 * setup the lists to search 4167 */ 4168 if (end_list != MAX_G_HEADS) { 4169 ctx->ctx_current_list = start_list; 4170 ctx->ctx_last_list = end_list; 4171 } else { 4172 ctx->ctx_last_list = MAX_G_HEADS - 1; 4173 ctx->ctx_current_list = 0; 4174 } 4175 4176 while (ctx->ctx_current_list <= ctx->ctx_last_list) { 4177 ifp = IP_VX_ILL_G_LIST(ctx->ctx_current_list, ipst); 4178 if (ifp != (ill_if_t *) 4179 &IP_VX_ILL_G_LIST(ctx->ctx_current_list, ipst)) { 4180 avl_tree = &ifp->illif_avl_by_ppa; 4181 ill = avl_first(avl_tree); 4182 /* 4183 * ill is guaranteed to be non NULL or ifp should have 4184 * not existed. 4185 */ 4186 ASSERT(ill != NULL); 4187 return (ill); 4188 } 4189 ctx->ctx_current_list++; 4190 } 4191 4192 return (NULL); 4193 } 4194 4195 /* 4196 * returns the next ill in the list. ill_first() must have been called 4197 * before calling ill_next() or bad things will happen. 4198 */ 4199 4200 /* 4201 * We don't check for CONDEMNED ills here. Caller must do that if 4202 * necessary under the ill lock. 4203 */ 4204 ill_t * 4205 ill_next(ill_walk_context_t *ctx, ill_t *lastill) 4206 { 4207 ill_if_t *ifp; 4208 ill_t *ill; 4209 ip_stack_t *ipst = lastill->ill_ipst; 4210 4211 ASSERT(lastill->ill_ifptr != (ill_if_t *) 4212 &IP_VX_ILL_G_LIST(ctx->ctx_current_list, ipst)); 4213 if ((ill = avl_walk(&lastill->ill_ifptr->illif_avl_by_ppa, lastill, 4214 AVL_AFTER)) != NULL) { 4215 return (ill); 4216 } 4217 4218 /* goto next ill_ifp in the list. */ 4219 ifp = lastill->ill_ifptr->illif_next; 4220 4221 /* make sure not at end of circular list */ 4222 while (ifp == 4223 (ill_if_t *)&IP_VX_ILL_G_LIST(ctx->ctx_current_list, ipst)) { 4224 if (++ctx->ctx_current_list > ctx->ctx_last_list) 4225 return (NULL); 4226 ifp = IP_VX_ILL_G_LIST(ctx->ctx_current_list, ipst); 4227 } 4228 4229 return (avl_first(&ifp->illif_avl_by_ppa)); 4230 } 4231 4232 /* 4233 * Check interface name for correct format which is name+ppa. 4234 * name can contain characters and digits, the right most digits 4235 * make up the ppa number. use of octal is not allowed, name must contain 4236 * a ppa, return pointer to the start of ppa. 4237 * In case of error return NULL. 4238 */ 4239 static char * 4240 ill_get_ppa_ptr(char *name) 4241 { 4242 int namelen = mi_strlen(name); 4243 4244 int len = namelen; 4245 4246 name += len; 4247 while (len > 0) { 4248 name--; 4249 if (*name < '0' || *name > '9') 4250 break; 4251 len--; 4252 } 4253 4254 /* empty string, all digits, or no trailing digits */ 4255 if (len == 0 || len == (int)namelen) 4256 return (NULL); 4257 4258 name++; 4259 /* check for attempted use of octal */ 4260 if (*name == '0' && len != (int)namelen - 1) 4261 return (NULL); 4262 return (name); 4263 } 4264 4265 /* 4266 * use avl tree to locate the ill. 4267 */ 4268 static ill_t * 4269 ill_find_by_name(char *name, boolean_t isv6, queue_t *q, mblk_t *mp, 4270 ipsq_func_t func, int *error, ip_stack_t *ipst) 4271 { 4272 char *ppa_ptr = NULL; 4273 int len; 4274 uint_t ppa; 4275 ill_t *ill = NULL; 4276 ill_if_t *ifp; 4277 int list; 4278 ipsq_t *ipsq; 4279 4280 if (error != NULL) 4281 *error = 0; 4282 4283 /* 4284 * get ppa ptr 4285 */ 4286 if (isv6) 4287 list = IP_V6_G_HEAD; 4288 else 4289 list = IP_V4_G_HEAD; 4290 4291 if ((ppa_ptr = ill_get_ppa_ptr(name)) == NULL) { 4292 if (error != NULL) 4293 *error = ENXIO; 4294 return (NULL); 4295 } 4296 4297 len = ppa_ptr - name + 1; 4298 4299 ppa = stoi(&ppa_ptr); 4300 4301 ifp = IP_VX_ILL_G_LIST(list, ipst); 4302 4303 while (ifp != (ill_if_t *)&IP_VX_ILL_G_LIST(list, ipst)) { 4304 /* 4305 * match is done on len - 1 as the name is not null 4306 * terminated it contains ppa in addition to the interface 4307 * name. 4308 */ 4309 if ((ifp->illif_name_len == len) && 4310 bcmp(ifp->illif_name, name, len - 1) == 0) { 4311 break; 4312 } else { 4313 ifp = ifp->illif_next; 4314 } 4315 } 4316 4317 4318 if (ifp == (ill_if_t *)&IP_VX_ILL_G_LIST(list, ipst)) { 4319 /* 4320 * Even the interface type does not exist. 4321 */ 4322 if (error != NULL) 4323 *error = ENXIO; 4324 return (NULL); 4325 } 4326 4327 ill = avl_find(&ifp->illif_avl_by_ppa, (void *) &ppa, NULL); 4328 if (ill != NULL) { 4329 /* 4330 * The block comment at the start of ipif_down 4331 * explains the use of the macros used below 4332 */ 4333 GRAB_CONN_LOCK(q); 4334 mutex_enter(&ill->ill_lock); 4335 if (ILL_CAN_LOOKUP(ill)) { 4336 ill_refhold_locked(ill); 4337 mutex_exit(&ill->ill_lock); 4338 RELEASE_CONN_LOCK(q); 4339 return (ill); 4340 } else if (ILL_CAN_WAIT(ill, q)) { 4341 ipsq = ill->ill_phyint->phyint_ipsq; 4342 mutex_enter(&ipsq->ipsq_lock); 4343 mutex_exit(&ill->ill_lock); 4344 ipsq_enq(ipsq, q, mp, func, NEW_OP, ill); 4345 mutex_exit(&ipsq->ipsq_lock); 4346 RELEASE_CONN_LOCK(q); 4347 *error = EINPROGRESS; 4348 return (NULL); 4349 } 4350 mutex_exit(&ill->ill_lock); 4351 RELEASE_CONN_LOCK(q); 4352 } 4353 if (error != NULL) 4354 *error = ENXIO; 4355 return (NULL); 4356 } 4357 4358 /* 4359 * comparison function for use with avl. 4360 */ 4361 static int 4362 ill_compare_ppa(const void *ppa_ptr, const void *ill_ptr) 4363 { 4364 uint_t ppa; 4365 uint_t ill_ppa; 4366 4367 ASSERT(ppa_ptr != NULL && ill_ptr != NULL); 4368 4369 ppa = *((uint_t *)ppa_ptr); 4370 ill_ppa = ((const ill_t *)ill_ptr)->ill_ppa; 4371 /* 4372 * We want the ill with the lowest ppa to be on the 4373 * top. 4374 */ 4375 if (ill_ppa < ppa) 4376 return (1); 4377 if (ill_ppa > ppa) 4378 return (-1); 4379 return (0); 4380 } 4381 4382 /* 4383 * remove an interface type from the global list. 4384 */ 4385 static void 4386 ill_delete_interface_type(ill_if_t *interface) 4387 { 4388 ASSERT(interface != NULL); 4389 ASSERT(avl_numnodes(&interface->illif_avl_by_ppa) == 0); 4390 4391 avl_destroy(&interface->illif_avl_by_ppa); 4392 if (interface->illif_ppa_arena != NULL) 4393 vmem_destroy(interface->illif_ppa_arena); 4394 4395 remque(interface); 4396 4397 mi_free(interface); 4398 } 4399 4400 /* Defined in ip_netinfo.c */ 4401 extern ddi_taskq_t *eventq_queue_nic; 4402 4403 /* 4404 * remove ill from the global list. 4405 */ 4406 static void 4407 ill_glist_delete(ill_t *ill) 4408 { 4409 char *nicname; 4410 size_t nicnamelen; 4411 hook_nic_event_t *info; 4412 ip_stack_t *ipst; 4413 4414 if (ill == NULL) 4415 return; 4416 ipst = ill->ill_ipst; 4417 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 4418 4419 if (ill->ill_name != NULL) { 4420 nicname = kmem_alloc(ill->ill_name_length, KM_NOSLEEP); 4421 if (nicname != NULL) { 4422 bcopy(ill->ill_name, nicname, ill->ill_name_length); 4423 nicnamelen = ill->ill_name_length; 4424 } 4425 } else { 4426 nicname = NULL; 4427 nicnamelen = 0; 4428 } 4429 4430 /* 4431 * If the ill was never inserted into the AVL tree 4432 * we skip the if branch. 4433 */ 4434 if (ill->ill_ifptr != NULL) { 4435 /* 4436 * remove from AVL tree and free ppa number 4437 */ 4438 avl_remove(&ill->ill_ifptr->illif_avl_by_ppa, ill); 4439 4440 if (ill->ill_ifptr->illif_ppa_arena != NULL) { 4441 vmem_free(ill->ill_ifptr->illif_ppa_arena, 4442 (void *)(uintptr_t)(ill->ill_ppa+1), 1); 4443 } 4444 if (avl_numnodes(&ill->ill_ifptr->illif_avl_by_ppa) == 0) { 4445 ill_delete_interface_type(ill->ill_ifptr); 4446 } 4447 4448 /* 4449 * Indicate ill is no longer in the list. 4450 */ 4451 ill->ill_ifptr = NULL; 4452 ill->ill_name_length = 0; 4453 ill->ill_name[0] = '\0'; 4454 ill->ill_ppa = UINT_MAX; 4455 } 4456 4457 /* 4458 * Run the unplumb hook after the NIC has disappeared from being 4459 * visible so that attempts to revalidate its existance will fail. 4460 * 4461 * This needs to be run inside the ill_g_lock perimeter to ensure 4462 * that the ordering of delivered events to listeners matches the 4463 * order of them in the kernel. 4464 */ 4465 if ((info = ill->ill_nic_event_info) != NULL) { 4466 if (info->hne_event != NE_DOWN) { 4467 ip2dbg(("ill_glist_delete: unexpected nic event %d " 4468 "attached for %s\n", info->hne_event, 4469 ill->ill_name)); 4470 if (info->hne_data != NULL) 4471 kmem_free(info->hne_data, info->hne_datalen); 4472 kmem_free(info, sizeof (hook_nic_event_t)); 4473 } else { 4474 if (ddi_taskq_dispatch(eventq_queue_nic, 4475 ip_ne_queue_func, (void *)info, DDI_SLEEP) 4476 == DDI_FAILURE) { 4477 ip2dbg(("ill_glist_delete: ddi_taskq_dispatch " 4478 "failed\n")); 4479 if (info->hne_data != NULL) 4480 kmem_free(info->hne_data, 4481 info->hne_datalen); 4482 kmem_free(info, sizeof (hook_nic_event_t)); 4483 } 4484 } 4485 } 4486 4487 /* Generate NE_UNPLUMB event for ill_name. */ 4488 info = kmem_alloc(sizeof (hook_nic_event_t), KM_NOSLEEP); 4489 if (info != NULL) { 4490 info->hne_nic = ill->ill_phyint->phyint_ifindex; 4491 info->hne_lif = 0; 4492 info->hne_event = NE_UNPLUMB; 4493 info->hne_data = nicname; 4494 info->hne_datalen = nicnamelen; 4495 info->hne_family = ill->ill_isv6 ? 4496 ipst->ips_ipv6_net_data : ipst->ips_ipv4_net_data; 4497 } else { 4498 ip2dbg(("ill_glist_delete: could not attach UNPLUMB nic event " 4499 "information for %s (ENOMEM)\n", ill->ill_name)); 4500 if (nicname != NULL) 4501 kmem_free(nicname, nicnamelen); 4502 } 4503 4504 ill->ill_nic_event_info = info; 4505 4506 ill_phyint_free(ill); 4507 rw_exit(&ipst->ips_ill_g_lock); 4508 } 4509 4510 /* 4511 * allocate a ppa, if the number of plumbed interfaces of this type are 4512 * less than ill_no_arena do a linear search to find a unused ppa. 4513 * When the number goes beyond ill_no_arena switch to using an arena. 4514 * Note: ppa value of zero cannot be allocated from vmem_arena as it 4515 * is the return value for an error condition, so allocation starts at one 4516 * and is decremented by one. 4517 */ 4518 static int 4519 ill_alloc_ppa(ill_if_t *ifp, ill_t *ill) 4520 { 4521 ill_t *tmp_ill; 4522 uint_t start, end; 4523 int ppa; 4524 4525 if (ifp->illif_ppa_arena == NULL && 4526 (avl_numnodes(&ifp->illif_avl_by_ppa) + 1 > ill_no_arena)) { 4527 /* 4528 * Create an arena. 4529 */ 4530 ifp->illif_ppa_arena = vmem_create(ifp->illif_name, 4531 (void *)1, UINT_MAX - 1, 1, NULL, NULL, 4532 NULL, 0, VM_SLEEP | VMC_IDENTIFIER); 4533 /* allocate what has already been assigned */ 4534 for (tmp_ill = avl_first(&ifp->illif_avl_by_ppa); 4535 tmp_ill != NULL; tmp_ill = avl_walk(&ifp->illif_avl_by_ppa, 4536 tmp_ill, AVL_AFTER)) { 4537 ppa = (int)(uintptr_t)vmem_xalloc(ifp->illif_ppa_arena, 4538 1, /* size */ 4539 1, /* align/quantum */ 4540 0, /* phase */ 4541 0, /* nocross */ 4542 (void *)((uintptr_t)tmp_ill->ill_ppa + 1), /* minaddr */ 4543 (void *)((uintptr_t)tmp_ill->ill_ppa + 2), /* maxaddr */ 4544 VM_NOSLEEP|VM_FIRSTFIT); 4545 if (ppa == 0) { 4546 ip1dbg(("ill_alloc_ppa: ppa allocation" 4547 " failed while switching")); 4548 vmem_destroy(ifp->illif_ppa_arena); 4549 ifp->illif_ppa_arena = NULL; 4550 break; 4551 } 4552 } 4553 } 4554 4555 if (ifp->illif_ppa_arena != NULL) { 4556 if (ill->ill_ppa == UINT_MAX) { 4557 ppa = (int)(uintptr_t)vmem_alloc(ifp->illif_ppa_arena, 4558 1, VM_NOSLEEP|VM_FIRSTFIT); 4559 if (ppa == 0) 4560 return (EAGAIN); 4561 ill->ill_ppa = --ppa; 4562 } else { 4563 ppa = (int)(uintptr_t)vmem_xalloc(ifp->illif_ppa_arena, 4564 1, /* size */ 4565 1, /* align/quantum */ 4566 0, /* phase */ 4567 0, /* nocross */ 4568 (void *)(uintptr_t)(ill->ill_ppa + 1), /* minaddr */ 4569 (void *)(uintptr_t)(ill->ill_ppa + 2), /* maxaddr */ 4570 VM_NOSLEEP|VM_FIRSTFIT); 4571 /* 4572 * Most likely the allocation failed because 4573 * the requested ppa was in use. 4574 */ 4575 if (ppa == 0) 4576 return (EEXIST); 4577 } 4578 return (0); 4579 } 4580 4581 /* 4582 * No arena is in use and not enough (>ill_no_arena) interfaces have 4583 * been plumbed to create one. Do a linear search to get a unused ppa. 4584 */ 4585 if (ill->ill_ppa == UINT_MAX) { 4586 end = UINT_MAX - 1; 4587 start = 0; 4588 } else { 4589 end = start = ill->ill_ppa; 4590 } 4591 4592 tmp_ill = avl_find(&ifp->illif_avl_by_ppa, (void *)&start, NULL); 4593 while (tmp_ill != NULL && tmp_ill->ill_ppa == start) { 4594 if (start++ >= end) { 4595 if (ill->ill_ppa == UINT_MAX) 4596 return (EAGAIN); 4597 else 4598 return (EEXIST); 4599 } 4600 tmp_ill = avl_walk(&ifp->illif_avl_by_ppa, tmp_ill, AVL_AFTER); 4601 } 4602 ill->ill_ppa = start; 4603 return (0); 4604 } 4605 4606 /* 4607 * Insert ill into the list of configured ill's. Once this function completes, 4608 * the ill is globally visible and is available through lookups. More precisely 4609 * this happens after the caller drops the ill_g_lock. 4610 */ 4611 static int 4612 ill_glist_insert(ill_t *ill, char *name, boolean_t isv6) 4613 { 4614 ill_if_t *ill_interface; 4615 avl_index_t where = 0; 4616 int error; 4617 int name_length; 4618 int index; 4619 boolean_t check_length = B_FALSE; 4620 ip_stack_t *ipst = ill->ill_ipst; 4621 4622 ASSERT(RW_WRITE_HELD(&ipst->ips_ill_g_lock)); 4623 4624 name_length = mi_strlen(name) + 1; 4625 4626 if (isv6) 4627 index = IP_V6_G_HEAD; 4628 else 4629 index = IP_V4_G_HEAD; 4630 4631 ill_interface = IP_VX_ILL_G_LIST(index, ipst); 4632 /* 4633 * Search for interface type based on name 4634 */ 4635 while (ill_interface != (ill_if_t *)&IP_VX_ILL_G_LIST(index, ipst)) { 4636 if ((ill_interface->illif_name_len == name_length) && 4637 (strcmp(ill_interface->illif_name, name) == 0)) { 4638 break; 4639 } 4640 ill_interface = ill_interface->illif_next; 4641 } 4642 4643 /* 4644 * Interface type not found, create one. 4645 */ 4646 if (ill_interface == (ill_if_t *)&IP_VX_ILL_G_LIST(index, ipst)) { 4647 4648 ill_g_head_t ghead; 4649 4650 /* 4651 * allocate ill_if_t structure 4652 */ 4653 4654 ill_interface = (ill_if_t *)mi_zalloc(sizeof (ill_if_t)); 4655 if (ill_interface == NULL) { 4656 return (ENOMEM); 4657 } 4658 4659 4660 4661 (void) strcpy(ill_interface->illif_name, name); 4662 ill_interface->illif_name_len = name_length; 4663 4664 avl_create(&ill_interface->illif_avl_by_ppa, 4665 ill_compare_ppa, sizeof (ill_t), 4666 offsetof(struct ill_s, ill_avl_byppa)); 4667 4668 /* 4669 * link the structure in the back to maintain order 4670 * of configuration for ifconfig output. 4671 */ 4672 ghead = ipst->ips_ill_g_heads[index]; 4673 insque(ill_interface, ghead.ill_g_list_tail); 4674 4675 } 4676 4677 if (ill->ill_ppa == UINT_MAX) 4678 check_length = B_TRUE; 4679 4680 error = ill_alloc_ppa(ill_interface, ill); 4681 if (error != 0) { 4682 if (avl_numnodes(&ill_interface->illif_avl_by_ppa) == 0) 4683 ill_delete_interface_type(ill->ill_ifptr); 4684 return (error); 4685 } 4686 4687 /* 4688 * When the ppa is choosen by the system, check that there is 4689 * enough space to insert ppa. if a specific ppa was passed in this 4690 * check is not required as the interface name passed in will have 4691 * the right ppa in it. 4692 */ 4693 if (check_length) { 4694 /* 4695 * UINT_MAX - 1 should fit in 10 chars, alloc 12 chars. 4696 */ 4697 char buf[sizeof (uint_t) * 3]; 4698 4699 /* 4700 * convert ppa to string to calculate the amount of space 4701 * required for it in the name. 4702 */ 4703 numtos(ill->ill_ppa, buf); 4704 4705 /* Do we have enough space to insert ppa ? */ 4706 4707 if ((mi_strlen(name) + mi_strlen(buf) + 1) > LIFNAMSIZ) { 4708 /* Free ppa and interface type struct */ 4709 if (ill_interface->illif_ppa_arena != NULL) { 4710 vmem_free(ill_interface->illif_ppa_arena, 4711 (void *)(uintptr_t)(ill->ill_ppa+1), 1); 4712 } 4713 if (avl_numnodes(&ill_interface->illif_avl_by_ppa) == 4714 0) { 4715 ill_delete_interface_type(ill->ill_ifptr); 4716 } 4717 4718 return (EINVAL); 4719 } 4720 } 4721 4722 (void) sprintf(ill->ill_name, "%s%u", name, ill->ill_ppa); 4723 ill->ill_name_length = mi_strlen(ill->ill_name) + 1; 4724 4725 (void) avl_find(&ill_interface->illif_avl_by_ppa, &ill->ill_ppa, 4726 &where); 4727 ill->ill_ifptr = ill_interface; 4728 avl_insert(&ill_interface->illif_avl_by_ppa, ill, where); 4729 4730 ill_phyint_reinit(ill); 4731 return (0); 4732 } 4733 4734 /* Initialize the per phyint (per IPMP group) ipsq used for serialization */ 4735 static boolean_t 4736 ipsq_init(ill_t *ill) 4737 { 4738 ipsq_t *ipsq; 4739 4740 /* Init the ipsq and impicitly enter as writer */ 4741 ill->ill_phyint->phyint_ipsq = 4742 kmem_zalloc(sizeof (ipsq_t), KM_NOSLEEP); 4743 if (ill->ill_phyint->phyint_ipsq == NULL) 4744 return (B_FALSE); 4745 ipsq = ill->ill_phyint->phyint_ipsq; 4746 ipsq->ipsq_phyint_list = ill->ill_phyint; 4747 ill->ill_phyint->phyint_ipsq_next = NULL; 4748 mutex_init(&ipsq->ipsq_lock, NULL, MUTEX_DEFAULT, 0); 4749 ipsq->ipsq_refs = 1; 4750 ipsq->ipsq_writer = curthread; 4751 ipsq->ipsq_reentry_cnt = 1; 4752 ipsq->ipsq_ipst = ill->ill_ipst; /* No netstack_hold */ 4753 #ifdef ILL_DEBUG 4754 ipsq->ipsq_depth = getpcstack((pc_t *)ipsq->ipsq_stack, IP_STACK_DEPTH); 4755 #endif 4756 (void) strcpy(ipsq->ipsq_name, ill->ill_name); 4757 return (B_TRUE); 4758 } 4759 4760 /* 4761 * ill_init is called by ip_open when a device control stream is opened. 4762 * It does a few initializations, and shoots a DL_INFO_REQ message down 4763 * to the driver. The response is later picked up in ip_rput_dlpi and 4764 * used to set up default mechanisms for talking to the driver. (Always 4765 * called as writer.) 4766 * 4767 * If this function returns error, ip_open will call ip_close which in 4768 * turn will call ill_delete to clean up any memory allocated here that 4769 * is not yet freed. 4770 */ 4771 int 4772 ill_init(queue_t *q, ill_t *ill) 4773 { 4774 int count; 4775 dl_info_req_t *dlir; 4776 mblk_t *info_mp; 4777 uchar_t *frag_ptr; 4778 4779 /* 4780 * The ill is initialized to zero by mi_alloc*(). In addition 4781 * some fields already contain valid values, initialized in 4782 * ip_open(), before we reach here. 4783 */ 4784 mutex_init(&ill->ill_lock, NULL, MUTEX_DEFAULT, 0); 4785 4786 ill->ill_rq = q; 4787 ill->ill_wq = WR(q); 4788 4789 info_mp = allocb(MAX(sizeof (dl_info_req_t), sizeof (dl_info_ack_t)), 4790 BPRI_HI); 4791 if (info_mp == NULL) 4792 return (ENOMEM); 4793 4794 /* 4795 * Allocate sufficient space to contain our fragment hash table and 4796 * the device name. 4797 */ 4798 frag_ptr = (uchar_t *)mi_zalloc(ILL_FRAG_HASH_TBL_SIZE + 4799 2 * LIFNAMSIZ + 5 + strlen(ipv6_forward_suffix)); 4800 if (frag_ptr == NULL) { 4801 freemsg(info_mp); 4802 return (ENOMEM); 4803 } 4804 ill->ill_frag_ptr = frag_ptr; 4805 ill->ill_frag_free_num_pkts = 0; 4806 ill->ill_last_frag_clean_time = 0; 4807 ill->ill_frag_hash_tbl = (ipfb_t *)frag_ptr; 4808 ill->ill_name = (char *)(frag_ptr + ILL_FRAG_HASH_TBL_SIZE); 4809 for (count = 0; count < ILL_FRAG_HASH_TBL_COUNT; count++) { 4810 mutex_init(&ill->ill_frag_hash_tbl[count].ipfb_lock, 4811 NULL, MUTEX_DEFAULT, NULL); 4812 } 4813 4814 ill->ill_phyint = (phyint_t *)mi_zalloc(sizeof (phyint_t)); 4815 if (ill->ill_phyint == NULL) { 4816 freemsg(info_mp); 4817 mi_free(frag_ptr); 4818 return (ENOMEM); 4819 } 4820 4821 mutex_init(&ill->ill_phyint->phyint_lock, NULL, MUTEX_DEFAULT, 0); 4822 /* 4823 * For now pretend this is a v4 ill. We need to set phyint_ill* 4824 * at this point because of the following reason. If we can't 4825 * enter the ipsq at some point and cv_wait, the writer that 4826 * wakes us up tries to locate us using the list of all phyints 4827 * in an ipsq and the ills from the phyint thru the phyint_ill*. 4828 * If we don't set it now, we risk a missed wakeup. 4829 */ 4830 ill->ill_phyint->phyint_illv4 = ill; 4831 ill->ill_ppa = UINT_MAX; 4832 ill->ill_fastpath_list = &ill->ill_fastpath_list; 4833 4834 if (!ipsq_init(ill)) { 4835 freemsg(info_mp); 4836 mi_free(frag_ptr); 4837 mi_free(ill->ill_phyint); 4838 return (ENOMEM); 4839 } 4840 4841 ill->ill_state_flags |= ILL_LL_SUBNET_PENDING; 4842 4843 4844 /* Frag queue limit stuff */ 4845 ill->ill_frag_count = 0; 4846 ill->ill_ipf_gen = 0; 4847 4848 ill->ill_global_timer = INFINITY; 4849 ill->ill_mcast_type = IGMP_V3_ROUTER; /* == MLD_V2_ROUTER */ 4850 ill->ill_mcast_v1_time = ill->ill_mcast_v2_time = 0; 4851 ill->ill_mcast_v1_tset = ill->ill_mcast_v2_tset = 0; 4852 ill->ill_mcast_rv = MCAST_DEF_ROBUSTNESS; 4853 ill->ill_mcast_qi = MCAST_DEF_QUERY_INTERVAL; 4854 4855 /* 4856 * Initialize IPv6 configuration variables. The IP module is always 4857 * opened as an IPv4 module. Instead tracking down the cases where 4858 * it switches to do ipv6, we'll just initialize the IPv6 configuration 4859 * here for convenience, this has no effect until the ill is set to do 4860 * IPv6. 4861 */ 4862 ill->ill_reachable_time = ND_REACHABLE_TIME; 4863 ill->ill_reachable_retrans_time = ND_RETRANS_TIMER; 4864 ill->ill_xmit_count = ND_MAX_MULTICAST_SOLICIT; 4865 ill->ill_max_buf = ND_MAX_Q; 4866 ill->ill_refcnt = 0; 4867 4868 /* Send down the Info Request to the driver. */ 4869 info_mp->b_datap->db_type = M_PCPROTO; 4870 dlir = (dl_info_req_t *)info_mp->b_rptr; 4871 info_mp->b_wptr = (uchar_t *)&dlir[1]; 4872 dlir->dl_primitive = DL_INFO_REQ; 4873 4874 ill->ill_dlpi_pending = DL_PRIM_INVAL; 4875 4876 qprocson(q); 4877 ill_dlpi_send(ill, info_mp); 4878 4879 return (0); 4880 } 4881 4882 /* 4883 * ill_dls_info 4884 * creates datalink socket info from the device. 4885 */ 4886 int 4887 ill_dls_info(struct sockaddr_dl *sdl, const ipif_t *ipif) 4888 { 4889 size_t len; 4890 ill_t *ill = ipif->ipif_ill; 4891 4892 sdl->sdl_family = AF_LINK; 4893 sdl->sdl_index = ill->ill_phyint->phyint_ifindex; 4894 sdl->sdl_type = ill->ill_type; 4895 (void) ipif_get_name(ipif, sdl->sdl_data, sizeof (sdl->sdl_data)); 4896 len = strlen(sdl->sdl_data); 4897 ASSERT(len < 256); 4898 sdl->sdl_nlen = (uchar_t)len; 4899 sdl->sdl_alen = ill->ill_phys_addr_length; 4900 sdl->sdl_slen = 0; 4901 if (ill->ill_phys_addr_length != 0 && ill->ill_phys_addr != NULL) 4902 bcopy(ill->ill_phys_addr, &sdl->sdl_data[len], sdl->sdl_alen); 4903 4904 return (sizeof (struct sockaddr_dl)); 4905 } 4906 4907 /* 4908 * ill_xarp_info 4909 * creates xarp info from the device. 4910 */ 4911 static int 4912 ill_xarp_info(struct sockaddr_dl *sdl, ill_t *ill) 4913 { 4914 sdl->sdl_family = AF_LINK; 4915 sdl->sdl_index = ill->ill_phyint->phyint_ifindex; 4916 sdl->sdl_type = ill->ill_type; 4917 (void) ipif_get_name(ill->ill_ipif, sdl->sdl_data, 4918 sizeof (sdl->sdl_data)); 4919 sdl->sdl_nlen = (uchar_t)mi_strlen(sdl->sdl_data); 4920 sdl->sdl_alen = ill->ill_phys_addr_length; 4921 sdl->sdl_slen = 0; 4922 return (sdl->sdl_nlen); 4923 } 4924 4925 static int 4926 loopback_kstat_update(kstat_t *ksp, int rw) 4927 { 4928 kstat_named_t *kn; 4929 netstackid_t stackid; 4930 netstack_t *ns; 4931 ip_stack_t *ipst; 4932 4933 if (ksp == NULL || ksp->ks_data == NULL) 4934 return (EIO); 4935 4936 if (rw == KSTAT_WRITE) 4937 return (EACCES); 4938 4939 kn = KSTAT_NAMED_PTR(ksp); 4940 stackid = (zoneid_t)(uintptr_t)ksp->ks_private; 4941 4942 ns = netstack_find_by_stackid(stackid); 4943 if (ns == NULL) 4944 return (-1); 4945 4946 ipst = ns->netstack_ip; 4947 if (ipst == NULL) { 4948 netstack_rele(ns); 4949 return (-1); 4950 } 4951 kn[0].value.ui32 = ipst->ips_loopback_packets; 4952 kn[1].value.ui32 = ipst->ips_loopback_packets; 4953 netstack_rele(ns); 4954 return (0); 4955 } 4956 4957 4958 /* 4959 * Has ifindex been plumbed already. 4960 * Compares both phyint_ifindex and phyint_group_ifindex. 4961 */ 4962 static boolean_t 4963 phyint_exists(uint_t index, ip_stack_t *ipst) 4964 { 4965 phyint_t *phyi; 4966 4967 ASSERT(index != 0); 4968 ASSERT(RW_LOCK_HELD(&ipst->ips_ill_g_lock)); 4969 /* 4970 * Indexes are stored in the phyint - a common structure 4971 * to both IPv4 and IPv6. 4972 */ 4973 phyi = avl_first(&ipst->ips_phyint_g_list->phyint_list_avl_by_index); 4974 for (; phyi != NULL; 4975 phyi = avl_walk(&ipst->ips_phyint_g_list->phyint_list_avl_by_index, 4976 phyi, AVL_AFTER)) { 4977 if (phyi->phyint_ifindex == index || 4978 phyi->phyint_group_ifindex == index) 4979 return (B_TRUE); 4980 } 4981 return (B_FALSE); 4982 } 4983 4984 /* Pick a unique ifindex */ 4985 boolean_t 4986 ip_assign_ifindex(uint_t *indexp, ip_stack_t *ipst) 4987 { 4988 uint_t starting_index; 4989 4990 if (!ipst->ips_ill_index_wrap) { 4991 *indexp = ipst->ips_ill_index++; 4992 if (ipst->ips_ill_index == 0) { 4993 /* Reached the uint_t limit Next time wrap */ 4994 ipst->ips_ill_index_wrap = B_TRUE; 4995 } 4996 return (B_TRUE); 4997 } 4998 4999 /* 5000 * Start reusing unused indexes. Note that we hold the ill_g_lock 5001 * at this point and don't want to call any function that attempts 5002 * to get the lock again. 5003 */ 5004 starting_index = ipst->ips_ill_index++; 5005 for (; ipst->ips_ill_index != starting_index; ipst->ips_ill_index++) { 5006 if (ipst->ips_ill_index != 0 && 5007 !phyint_exists(ipst->ips_ill_index, ipst)) { 5008 /* found unused index - use it */ 5009 *indexp = ipst->ips_ill_index; 5010 return (B_TRUE); 5011 } 5012 } 5013 5014 /* 5015 * all interface indicies are inuse. 5016 */ 5017 return (B_FALSE); 5018 } 5019 5020 /* 5021 * Assign a unique interface index for the phyint. 5022 */ 5023 static boolean_t 5024 phyint_assign_ifindex(phyint_t *phyi, ip_stack_t *ipst) 5025 { 5026 ASSERT(phyi->phyint_ifindex == 0); 5027 return (ip_assign_ifindex(&phyi->phyint_ifindex, ipst)); 5028 } 5029 5030 /* 5031 * Return a pointer to the ill which matches the supplied name. Note that 5032 * the ill name length includes the null termination character. (May be 5033 * called as writer.) 5034 * If do_alloc and the interface is "lo0" it will be automatically created. 5035 * Cannot bump up reference on condemned ills. So dup detect can't be done 5036 * using this func. 5037 */ 5038 ill_t * 5039 ill_lookup_on_name(char *name, boolean_t do_alloc, boolean_t isv6, 5040 queue_t *q, mblk_t *mp, ipsq_func_t func, int *error, boolean_t *did_alloc, 5041 ip_stack_t *ipst) 5042 { 5043 ill_t *ill; 5044 ipif_t *ipif; 5045 kstat_named_t *kn; 5046 boolean_t isloopback; 5047 ipsq_t *old_ipsq; 5048 in6_addr_t ov6addr; 5049 5050 isloopback = mi_strcmp(name, ipif_loopback_name) == 0; 5051 5052 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 5053 ill = ill_find_by_name(name, isv6, q, mp, func, error, ipst); 5054 rw_exit(&ipst->ips_ill_g_lock); 5055 if (ill != NULL || (error != NULL && *error == EINPROGRESS)) 5056 return (ill); 5057 5058 /* 5059 * Couldn't find it. Does this happen to be a lookup for the 5060 * loopback device and are we allowed to allocate it? 5061 */ 5062 if (!isloopback || !do_alloc) 5063 return (NULL); 5064 5065 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 5066 5067 ill = ill_find_by_name(name, isv6, q, mp, func, error, ipst); 5068 if (ill != NULL || (error != NULL && *error == EINPROGRESS)) { 5069 rw_exit(&ipst->ips_ill_g_lock); 5070 return (ill); 5071 } 5072 5073 /* Create the loopback device on demand */ 5074 ill = (ill_t *)(mi_alloc(sizeof (ill_t) + 5075 sizeof (ipif_loopback_name), BPRI_MED)); 5076 if (ill == NULL) 5077 goto done; 5078 5079 *ill = ill_null; 5080 mutex_init(&ill->ill_lock, NULL, MUTEX_DEFAULT, NULL); 5081 ill->ill_ipst = ipst; 5082 netstack_hold(ipst->ips_netstack); 5083 /* 5084 * For exclusive stacks we set the zoneid to zero 5085 * to make IP operate as if in the global zone. 5086 */ 5087 ill->ill_zoneid = GLOBAL_ZONEID; 5088 5089 ill->ill_phyint = (phyint_t *)mi_zalloc(sizeof (phyint_t)); 5090 if (ill->ill_phyint == NULL) 5091 goto done; 5092 5093 if (isv6) 5094 ill->ill_phyint->phyint_illv6 = ill; 5095 else 5096 ill->ill_phyint->phyint_illv4 = ill; 5097 mutex_init(&ill->ill_phyint->phyint_lock, NULL, MUTEX_DEFAULT, 0); 5098 ill->ill_max_frag = IP_LOOPBACK_MTU; 5099 /* Add room for tcp+ip headers */ 5100 if (isv6) { 5101 ill->ill_isv6 = B_TRUE; 5102 ill->ill_max_frag += IPV6_HDR_LEN + 20; /* for TCP */ 5103 } else { 5104 ill->ill_max_frag += IP_SIMPLE_HDR_LENGTH + 20; 5105 } 5106 if (!ill_allocate_mibs(ill)) 5107 goto done; 5108 ill->ill_max_mtu = ill->ill_max_frag; 5109 /* 5110 * ipif_loopback_name can't be pointed at directly because its used 5111 * by both the ipv4 and ipv6 interfaces. When the ill is removed 5112 * from the glist, ill_glist_delete() sets the first character of 5113 * ill_name to '\0'. 5114 */ 5115 ill->ill_name = (char *)ill + sizeof (*ill); 5116 (void) strcpy(ill->ill_name, ipif_loopback_name); 5117 ill->ill_name_length = sizeof (ipif_loopback_name); 5118 /* Set ill_name_set for ill_phyint_reinit to work properly */ 5119 5120 ill->ill_global_timer = INFINITY; 5121 ill->ill_mcast_type = IGMP_V3_ROUTER; /* == MLD_V2_ROUTER */ 5122 ill->ill_mcast_v1_time = ill->ill_mcast_v2_time = 0; 5123 ill->ill_mcast_v1_tset = ill->ill_mcast_v2_tset = 0; 5124 ill->ill_mcast_rv = MCAST_DEF_ROBUSTNESS; 5125 ill->ill_mcast_qi = MCAST_DEF_QUERY_INTERVAL; 5126 5127 /* No resolver here. */ 5128 ill->ill_net_type = IRE_LOOPBACK; 5129 5130 /* Initialize the ipsq */ 5131 if (!ipsq_init(ill)) 5132 goto done; 5133 5134 ill->ill_phyint->phyint_ipsq->ipsq_writer = NULL; 5135 ill->ill_phyint->phyint_ipsq->ipsq_reentry_cnt--; 5136 ASSERT(ill->ill_phyint->phyint_ipsq->ipsq_reentry_cnt == 0); 5137 #ifdef ILL_DEBUG 5138 ill->ill_phyint->phyint_ipsq->ipsq_depth = 0; 5139 #endif 5140 ipif = ipif_allocate(ill, 0L, IRE_LOOPBACK, B_TRUE); 5141 if (ipif == NULL) 5142 goto done; 5143 5144 ill->ill_flags = ILLF_MULTICAST; 5145 5146 ov6addr = ipif->ipif_v6lcl_addr; 5147 /* Set up default loopback address and mask. */ 5148 if (!isv6) { 5149 ipaddr_t inaddr_loopback = htonl(INADDR_LOOPBACK); 5150 5151 IN6_IPADDR_TO_V4MAPPED(inaddr_loopback, &ipif->ipif_v6lcl_addr); 5152 ipif->ipif_v6src_addr = ipif->ipif_v6lcl_addr; 5153 V4MASK_TO_V6(htonl(IN_CLASSA_NET), ipif->ipif_v6net_mask); 5154 V6_MASK_COPY(ipif->ipif_v6lcl_addr, ipif->ipif_v6net_mask, 5155 ipif->ipif_v6subnet); 5156 ill->ill_flags |= ILLF_IPV4; 5157 } else { 5158 ipif->ipif_v6lcl_addr = ipv6_loopback; 5159 ipif->ipif_v6src_addr = ipif->ipif_v6lcl_addr; 5160 ipif->ipif_v6net_mask = ipv6_all_ones; 5161 V6_MASK_COPY(ipif->ipif_v6lcl_addr, ipif->ipif_v6net_mask, 5162 ipif->ipif_v6subnet); 5163 ill->ill_flags |= ILLF_IPV6; 5164 } 5165 5166 /* 5167 * Chain us in at the end of the ill list. hold the ill 5168 * before we make it globally visible. 1 for the lookup. 5169 */ 5170 ill->ill_refcnt = 0; 5171 ill_refhold(ill); 5172 5173 ill->ill_frag_count = 0; 5174 ill->ill_frag_free_num_pkts = 0; 5175 ill->ill_last_frag_clean_time = 0; 5176 5177 old_ipsq = ill->ill_phyint->phyint_ipsq; 5178 5179 if (ill_glist_insert(ill, "lo", isv6) != 0) 5180 cmn_err(CE_PANIC, "cannot insert loopback interface"); 5181 5182 /* Let SCTP know so that it can add this to its list */ 5183 sctp_update_ill(ill, SCTP_ILL_INSERT); 5184 5185 /* 5186 * We have already assigned ipif_v6lcl_addr above, but we need to 5187 * call sctp_update_ipif_addr() after SCTP_ILL_INSERT, which 5188 * requires to be after ill_glist_insert() since we need the 5189 * ill_index set. Pass on ipv6_loopback as the old address. 5190 */ 5191 sctp_update_ipif_addr(ipif, ov6addr); 5192 5193 /* 5194 * If the ipsq was changed in ill_phyint_reinit free the old ipsq. 5195 */ 5196 if (old_ipsq != ill->ill_phyint->phyint_ipsq) { 5197 /* Loopback ills aren't in any IPMP group */ 5198 ASSERT(!(old_ipsq->ipsq_flags & IPSQ_GROUP)); 5199 ipsq_delete(old_ipsq); 5200 } 5201 5202 /* 5203 * Delay this till the ipif is allocated as ipif_allocate 5204 * de-references ill_phyint for getting the ifindex. We 5205 * can't do this before ipif_allocate because ill_phyint_reinit 5206 * -> phyint_assign_ifindex expects ipif to be present. 5207 */ 5208 mutex_enter(&ill->ill_phyint->phyint_lock); 5209 ill->ill_phyint->phyint_flags |= PHYI_LOOPBACK | PHYI_VIRTUAL; 5210 mutex_exit(&ill->ill_phyint->phyint_lock); 5211 5212 if (ipst->ips_loopback_ksp == NULL) { 5213 /* Export loopback interface statistics */ 5214 ipst->ips_loopback_ksp = kstat_create_netstack("lo", 0, 5215 ipif_loopback_name, "net", 5216 KSTAT_TYPE_NAMED, 2, 0, 5217 ipst->ips_netstack->netstack_stackid); 5218 if (ipst->ips_loopback_ksp != NULL) { 5219 ipst->ips_loopback_ksp->ks_update = 5220 loopback_kstat_update; 5221 kn = KSTAT_NAMED_PTR(ipst->ips_loopback_ksp); 5222 kstat_named_init(&kn[0], "ipackets", KSTAT_DATA_UINT32); 5223 kstat_named_init(&kn[1], "opackets", KSTAT_DATA_UINT32); 5224 ipst->ips_loopback_ksp->ks_private = 5225 (void *)(uintptr_t)ipst->ips_netstack-> 5226 netstack_stackid; 5227 kstat_install(ipst->ips_loopback_ksp); 5228 } 5229 } 5230 5231 if (error != NULL) 5232 *error = 0; 5233 *did_alloc = B_TRUE; 5234 rw_exit(&ipst->ips_ill_g_lock); 5235 return (ill); 5236 done: 5237 if (ill != NULL) { 5238 if (ill->ill_phyint != NULL) { 5239 ipsq_t *ipsq; 5240 5241 ipsq = ill->ill_phyint->phyint_ipsq; 5242 if (ipsq != NULL) { 5243 ipsq->ipsq_ipst = NULL; 5244 kmem_free(ipsq, sizeof (ipsq_t)); 5245 } 5246 mi_free(ill->ill_phyint); 5247 } 5248 ill_free_mib(ill); 5249 if (ill->ill_ipst != NULL) 5250 netstack_rele(ill->ill_ipst->ips_netstack); 5251 mi_free(ill); 5252 } 5253 rw_exit(&ipst->ips_ill_g_lock); 5254 if (error != NULL) 5255 *error = ENOMEM; 5256 return (NULL); 5257 } 5258 5259 /* 5260 * For IPP calls - use the ip_stack_t for global stack. 5261 */ 5262 ill_t * 5263 ill_lookup_on_ifindex_global_instance(uint_t index, boolean_t isv6, 5264 queue_t *q, mblk_t *mp, ipsq_func_t func, int *err) 5265 { 5266 ip_stack_t *ipst; 5267 ill_t *ill; 5268 5269 ipst = netstack_find_by_stackid(GLOBAL_NETSTACKID)->netstack_ip; 5270 if (ipst == NULL) { 5271 cmn_err(CE_WARN, "No ip_stack_t for zoneid zero!\n"); 5272 return (NULL); 5273 } 5274 5275 ill = ill_lookup_on_ifindex(index, isv6, q, mp, func, err, ipst); 5276 netstack_rele(ipst->ips_netstack); 5277 return (ill); 5278 } 5279 5280 /* 5281 * Return a pointer to the ill which matches the index and IP version type. 5282 */ 5283 ill_t * 5284 ill_lookup_on_ifindex(uint_t index, boolean_t isv6, queue_t *q, mblk_t *mp, 5285 ipsq_func_t func, int *err, ip_stack_t *ipst) 5286 { 5287 ill_t *ill; 5288 ipsq_t *ipsq; 5289 phyint_t *phyi; 5290 5291 ASSERT((q == NULL && mp == NULL && func == NULL && err == NULL) || 5292 (q != NULL && mp != NULL && func != NULL && err != NULL)); 5293 5294 if (err != NULL) 5295 *err = 0; 5296 5297 /* 5298 * Indexes are stored in the phyint - a common structure 5299 * to both IPv4 and IPv6. 5300 */ 5301 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 5302 phyi = avl_find(&ipst->ips_phyint_g_list->phyint_list_avl_by_index, 5303 (void *) &index, NULL); 5304 if (phyi != NULL) { 5305 ill = isv6 ? phyi->phyint_illv6: phyi->phyint_illv4; 5306 if (ill != NULL) { 5307 /* 5308 * The block comment at the start of ipif_down 5309 * explains the use of the macros used below 5310 */ 5311 GRAB_CONN_LOCK(q); 5312 mutex_enter(&ill->ill_lock); 5313 if (ILL_CAN_LOOKUP(ill)) { 5314 ill_refhold_locked(ill); 5315 mutex_exit(&ill->ill_lock); 5316 RELEASE_CONN_LOCK(q); 5317 rw_exit(&ipst->ips_ill_g_lock); 5318 return (ill); 5319 } else if (ILL_CAN_WAIT(ill, q)) { 5320 ipsq = ill->ill_phyint->phyint_ipsq; 5321 mutex_enter(&ipsq->ipsq_lock); 5322 rw_exit(&ipst->ips_ill_g_lock); 5323 mutex_exit(&ill->ill_lock); 5324 ipsq_enq(ipsq, q, mp, func, NEW_OP, ill); 5325 mutex_exit(&ipsq->ipsq_lock); 5326 RELEASE_CONN_LOCK(q); 5327 *err = EINPROGRESS; 5328 return (NULL); 5329 } 5330 RELEASE_CONN_LOCK(q); 5331 mutex_exit(&ill->ill_lock); 5332 } 5333 } 5334 rw_exit(&ipst->ips_ill_g_lock); 5335 if (err != NULL) 5336 *err = ENXIO; 5337 return (NULL); 5338 } 5339 5340 /* 5341 * Return the ifindex next in sequence after the passed in ifindex. 5342 * If there is no next ifindex for the given protocol, return 0. 5343 */ 5344 uint_t 5345 ill_get_next_ifindex(uint_t index, boolean_t isv6, ip_stack_t *ipst) 5346 { 5347 phyint_t *phyi; 5348 phyint_t *phyi_initial; 5349 uint_t ifindex; 5350 5351 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 5352 5353 if (index == 0) { 5354 phyi = avl_first( 5355 &ipst->ips_phyint_g_list->phyint_list_avl_by_index); 5356 } else { 5357 phyi = phyi_initial = avl_find( 5358 &ipst->ips_phyint_g_list->phyint_list_avl_by_index, 5359 (void *) &index, NULL); 5360 } 5361 5362 for (; phyi != NULL; 5363 phyi = avl_walk(&ipst->ips_phyint_g_list->phyint_list_avl_by_index, 5364 phyi, AVL_AFTER)) { 5365 /* 5366 * If we're not returning the first interface in the tree 5367 * and we still haven't moved past the phyint_t that 5368 * corresponds to index, avl_walk needs to be called again 5369 */ 5370 if (!((index != 0) && (phyi == phyi_initial))) { 5371 if (isv6) { 5372 if ((phyi->phyint_illv6) && 5373 ILL_CAN_LOOKUP(phyi->phyint_illv6) && 5374 (phyi->phyint_illv6->ill_isv6 == 1)) 5375 break; 5376 } else { 5377 if ((phyi->phyint_illv4) && 5378 ILL_CAN_LOOKUP(phyi->phyint_illv4) && 5379 (phyi->phyint_illv4->ill_isv6 == 0)) 5380 break; 5381 } 5382 } 5383 } 5384 5385 rw_exit(&ipst->ips_ill_g_lock); 5386 5387 if (phyi != NULL) 5388 ifindex = phyi->phyint_ifindex; 5389 else 5390 ifindex = 0; 5391 5392 return (ifindex); 5393 } 5394 5395 5396 /* 5397 * Return the ifindex for the named interface. 5398 * If there is no next ifindex for the interface, return 0. 5399 */ 5400 uint_t 5401 ill_get_ifindex_by_name(char *name, ip_stack_t *ipst) 5402 { 5403 phyint_t *phyi; 5404 avl_index_t where = 0; 5405 uint_t ifindex; 5406 5407 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 5408 5409 if ((phyi = avl_find(&ipst->ips_phyint_g_list->phyint_list_avl_by_name, 5410 name, &where)) == NULL) { 5411 rw_exit(&ipst->ips_ill_g_lock); 5412 return (0); 5413 } 5414 5415 ifindex = phyi->phyint_ifindex; 5416 5417 rw_exit(&ipst->ips_ill_g_lock); 5418 5419 return (ifindex); 5420 } 5421 5422 5423 /* 5424 * Obtain a reference to the ill. The ill_refcnt is a dynamic refcnt 5425 * that gives a running thread a reference to the ill. This reference must be 5426 * released by the thread when it is done accessing the ill and related 5427 * objects. ill_refcnt can not be used to account for static references 5428 * such as other structures pointing to an ill. Callers must generally 5429 * check whether an ill can be refheld by using ILL_CAN_LOOKUP macros 5430 * or be sure that the ill is not being deleted or changing state before 5431 * calling the refhold functions. A non-zero ill_refcnt ensures that the 5432 * ill won't change any of its critical state such as address, netmask etc. 5433 */ 5434 void 5435 ill_refhold(ill_t *ill) 5436 { 5437 mutex_enter(&ill->ill_lock); 5438 ill->ill_refcnt++; 5439 ILL_TRACE_REF(ill); 5440 mutex_exit(&ill->ill_lock); 5441 } 5442 5443 void 5444 ill_refhold_locked(ill_t *ill) 5445 { 5446 ASSERT(MUTEX_HELD(&ill->ill_lock)); 5447 ill->ill_refcnt++; 5448 ILL_TRACE_REF(ill); 5449 } 5450 5451 int 5452 ill_check_and_refhold(ill_t *ill) 5453 { 5454 mutex_enter(&ill->ill_lock); 5455 if (ILL_CAN_LOOKUP(ill)) { 5456 ill_refhold_locked(ill); 5457 mutex_exit(&ill->ill_lock); 5458 return (0); 5459 } 5460 mutex_exit(&ill->ill_lock); 5461 return (ILL_LOOKUP_FAILED); 5462 } 5463 5464 /* 5465 * Must not be called while holding any locks. Otherwise if this is 5466 * the last reference to be released, there is a chance of recursive mutex 5467 * panic due to ill_refrele -> ipif_ill_refrele_tail -> qwriter_ip trying 5468 * to restart an ioctl. 5469 */ 5470 void 5471 ill_refrele(ill_t *ill) 5472 { 5473 mutex_enter(&ill->ill_lock); 5474 ASSERT(ill->ill_refcnt != 0); 5475 ill->ill_refcnt--; 5476 ILL_UNTRACE_REF(ill); 5477 if (ill->ill_refcnt != 0) { 5478 /* Every ire pointing to the ill adds 1 to ill_refcnt */ 5479 mutex_exit(&ill->ill_lock); 5480 return; 5481 } 5482 5483 /* Drops the ill_lock */ 5484 ipif_ill_refrele_tail(ill); 5485 } 5486 5487 /* 5488 * Obtain a weak reference count on the ill. This reference ensures the 5489 * ill won't be freed, but the ill may change any of its critical state 5490 * such as netmask, address etc. Returns an error if the ill has started 5491 * closing. 5492 */ 5493 boolean_t 5494 ill_waiter_inc(ill_t *ill) 5495 { 5496 mutex_enter(&ill->ill_lock); 5497 if (ill->ill_state_flags & ILL_CONDEMNED) { 5498 mutex_exit(&ill->ill_lock); 5499 return (B_FALSE); 5500 } 5501 ill->ill_waiters++; 5502 mutex_exit(&ill->ill_lock); 5503 return (B_TRUE); 5504 } 5505 5506 void 5507 ill_waiter_dcr(ill_t *ill) 5508 { 5509 mutex_enter(&ill->ill_lock); 5510 ill->ill_waiters--; 5511 if (ill->ill_waiters == 0) 5512 cv_broadcast(&ill->ill_cv); 5513 mutex_exit(&ill->ill_lock); 5514 } 5515 5516 /* 5517 * Named Dispatch routine to produce a formatted report on all ILLs. 5518 * This report is accessed by using the ndd utility to "get" ND variable 5519 * "ip_ill_status". 5520 */ 5521 /* ARGSUSED */ 5522 int 5523 ip_ill_report(queue_t *q, mblk_t *mp, caddr_t arg, cred_t *ioc_cr) 5524 { 5525 ill_t *ill; 5526 ill_walk_context_t ctx; 5527 ip_stack_t *ipst; 5528 5529 ipst = CONNQ_TO_IPST(q); 5530 5531 (void) mi_mpprintf(mp, 5532 "ILL " MI_COL_HDRPAD_STR 5533 /* 01234567[89ABCDEF] */ 5534 "rq " MI_COL_HDRPAD_STR 5535 /* 01234567[89ABCDEF] */ 5536 "wq " MI_COL_HDRPAD_STR 5537 /* 01234567[89ABCDEF] */ 5538 "upcnt mxfrg err name"); 5539 /* 12345 12345 123 xxxxxxxx */ 5540 5541 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 5542 ill = ILL_START_WALK_ALL(&ctx, ipst); 5543 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 5544 (void) mi_mpprintf(mp, 5545 MI_COL_PTRFMT_STR MI_COL_PTRFMT_STR MI_COL_PTRFMT_STR 5546 "%05u %05u %03d %s", 5547 (void *)ill, (void *)ill->ill_rq, (void *)ill->ill_wq, 5548 ill->ill_ipif_up_count, 5549 ill->ill_max_frag, ill->ill_error, ill->ill_name); 5550 } 5551 rw_exit(&ipst->ips_ill_g_lock); 5552 5553 return (0); 5554 } 5555 5556 /* 5557 * Named Dispatch routine to produce a formatted report on all IPIFs. 5558 * This report is accessed by using the ndd utility to "get" ND variable 5559 * "ip_ipif_status". 5560 */ 5561 /* ARGSUSED */ 5562 int 5563 ip_ipif_report(queue_t *q, mblk_t *mp, caddr_t arg, cred_t *ioc_cr) 5564 { 5565 char buf1[INET6_ADDRSTRLEN]; 5566 char buf2[INET6_ADDRSTRLEN]; 5567 char buf3[INET6_ADDRSTRLEN]; 5568 char buf4[INET6_ADDRSTRLEN]; 5569 char buf5[INET6_ADDRSTRLEN]; 5570 char buf6[INET6_ADDRSTRLEN]; 5571 char buf[LIFNAMSIZ]; 5572 ill_t *ill; 5573 ipif_t *ipif; 5574 nv_t *nvp; 5575 uint64_t flags; 5576 zoneid_t zoneid; 5577 ill_walk_context_t ctx; 5578 ip_stack_t *ipst = CONNQ_TO_IPST(q); 5579 5580 (void) mi_mpprintf(mp, 5581 "IPIF metric mtu in/out/forward name zone flags...\n" 5582 "\tlocal address\n" 5583 "\tsrc address\n" 5584 "\tsubnet\n" 5585 "\tmask\n" 5586 "\tbroadcast\n" 5587 "\tp-p-dst"); 5588 5589 ASSERT(q->q_next == NULL); 5590 zoneid = Q_TO_CONN(q)->conn_zoneid; /* IP is a driver */ 5591 5592 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 5593 ill = ILL_START_WALK_ALL(&ctx, ipst); 5594 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 5595 for (ipif = ill->ill_ipif; ipif != NULL; 5596 ipif = ipif->ipif_next) { 5597 if (zoneid != GLOBAL_ZONEID && 5598 zoneid != ipif->ipif_zoneid && 5599 ipif->ipif_zoneid != ALL_ZONES) 5600 continue; 5601 (void) mi_mpprintf(mp, 5602 MI_COL_PTRFMT_STR 5603 "%04u %05u %u/%u/%u %s %d", 5604 (void *)ipif, 5605 ipif->ipif_metric, ipif->ipif_mtu, 5606 ipif->ipif_ib_pkt_count, 5607 ipif->ipif_ob_pkt_count, 5608 ipif->ipif_fo_pkt_count, 5609 ipif_get_name(ipif, buf, sizeof (buf)), 5610 ipif->ipif_zoneid); 5611 5612 flags = ipif->ipif_flags | ipif->ipif_ill->ill_flags | 5613 ipif->ipif_ill->ill_phyint->phyint_flags; 5614 5615 /* Tack on text strings for any flags. */ 5616 nvp = ipif_nv_tbl; 5617 for (; nvp < A_END(ipif_nv_tbl); nvp++) { 5618 if (nvp->nv_value & flags) 5619 (void) mi_mpprintf_nr(mp, " %s", 5620 nvp->nv_name); 5621 } 5622 (void) mi_mpprintf(mp, 5623 "\t%s\n\t%s\n\t%s\n\t%s\n\t%s\n\t%s", 5624 inet_ntop(AF_INET6, 5625 &ipif->ipif_v6lcl_addr, buf1, sizeof (buf1)), 5626 inet_ntop(AF_INET6, 5627 &ipif->ipif_v6src_addr, buf2, sizeof (buf2)), 5628 inet_ntop(AF_INET6, 5629 &ipif->ipif_v6subnet, buf3, sizeof (buf3)), 5630 inet_ntop(AF_INET6, 5631 &ipif->ipif_v6net_mask, buf4, sizeof (buf4)), 5632 inet_ntop(AF_INET6, 5633 &ipif->ipif_v6brd_addr, buf5, sizeof (buf5)), 5634 inet_ntop(AF_INET6, 5635 &ipif->ipif_v6pp_dst_addr, 5636 buf6, sizeof (buf6))); 5637 } 5638 } 5639 rw_exit(&ipst->ips_ill_g_lock); 5640 return (0); 5641 } 5642 5643 /* 5644 * ip_ll_subnet_defaults is called when we get the DL_INFO_ACK back from the 5645 * driver. We construct best guess defaults for lower level information that 5646 * we need. If an interface is brought up without injection of any overriding 5647 * information from outside, we have to be ready to go with these defaults. 5648 * When we get the first DL_INFO_ACK (from ip_open() sending a DL_INFO_REQ) 5649 * we primarely want the dl_provider_style. 5650 * The subsequent DL_INFO_ACK is received after doing a DL_ATTACH and DL_BIND 5651 * at which point we assume the other part of the information is valid. 5652 */ 5653 void 5654 ip_ll_subnet_defaults(ill_t *ill, mblk_t *mp) 5655 { 5656 uchar_t *brdcst_addr; 5657 uint_t brdcst_addr_length, phys_addr_length; 5658 t_scalar_t sap_length; 5659 dl_info_ack_t *dlia; 5660 ip_m_t *ipm; 5661 dl_qos_cl_sel1_t *sel1; 5662 5663 ASSERT(IAM_WRITER_ILL(ill)); 5664 5665 /* 5666 * Till the ill is fully up ILL_CHANGING will be set and 5667 * the ill is not globally visible. So no need for a lock. 5668 */ 5669 dlia = (dl_info_ack_t *)mp->b_rptr; 5670 ill->ill_mactype = dlia->dl_mac_type; 5671 5672 ipm = ip_m_lookup(dlia->dl_mac_type); 5673 if (ipm == NULL) { 5674 ipm = ip_m_lookup(DL_OTHER); 5675 ASSERT(ipm != NULL); 5676 } 5677 ill->ill_media = ipm; 5678 5679 /* 5680 * When the new DLPI stuff is ready we'll pull lengths 5681 * from dlia. 5682 */ 5683 if (dlia->dl_version == DL_VERSION_2) { 5684 brdcst_addr_length = dlia->dl_brdcst_addr_length; 5685 brdcst_addr = mi_offset_param(mp, dlia->dl_brdcst_addr_offset, 5686 brdcst_addr_length); 5687 if (brdcst_addr == NULL) { 5688 brdcst_addr_length = 0; 5689 } 5690 sap_length = dlia->dl_sap_length; 5691 phys_addr_length = dlia->dl_addr_length - ABS(sap_length); 5692 ip1dbg(("ip: bcast_len %d, sap_len %d, phys_len %d\n", 5693 brdcst_addr_length, sap_length, phys_addr_length)); 5694 } else { 5695 brdcst_addr_length = 6; 5696 brdcst_addr = ip_six_byte_all_ones; 5697 sap_length = -2; 5698 phys_addr_length = brdcst_addr_length; 5699 } 5700 5701 ill->ill_bcast_addr_length = brdcst_addr_length; 5702 ill->ill_phys_addr_length = phys_addr_length; 5703 ill->ill_sap_length = sap_length; 5704 ill->ill_max_frag = dlia->dl_max_sdu; 5705 ill->ill_max_mtu = ill->ill_max_frag; 5706 5707 ill->ill_type = ipm->ip_m_type; 5708 5709 if (!ill->ill_dlpi_style_set) { 5710 if (dlia->dl_provider_style == DL_STYLE2) 5711 ill->ill_needs_attach = 1; 5712 5713 /* 5714 * Allocate the first ipif on this ill. We don't delay it 5715 * further as ioctl handling assumes atleast one ipif to 5716 * be present. 5717 * 5718 * At this point we don't know whether the ill is v4 or v6. 5719 * We will know this whan the SIOCSLIFNAME happens and 5720 * the correct value for ill_isv6 will be assigned in 5721 * ipif_set_values(). We need to hold the ill lock and 5722 * clear the ILL_LL_SUBNET_PENDING flag and atomically do 5723 * the wakeup. 5724 */ 5725 (void) ipif_allocate(ill, 0, IRE_LOCAL, 5726 dlia->dl_provider_style == DL_STYLE2 ? B_FALSE : B_TRUE); 5727 mutex_enter(&ill->ill_lock); 5728 ASSERT(ill->ill_dlpi_style_set == 0); 5729 ill->ill_dlpi_style_set = 1; 5730 ill->ill_state_flags &= ~ILL_LL_SUBNET_PENDING; 5731 cv_broadcast(&ill->ill_cv); 5732 mutex_exit(&ill->ill_lock); 5733 freemsg(mp); 5734 return; 5735 } 5736 ASSERT(ill->ill_ipif != NULL); 5737 /* 5738 * We know whether it is IPv4 or IPv6 now, as this is the 5739 * second DL_INFO_ACK we are recieving in response to the 5740 * DL_INFO_REQ sent in ipif_set_values. 5741 */ 5742 if (ill->ill_isv6) 5743 ill->ill_sap = IP6_DL_SAP; 5744 else 5745 ill->ill_sap = IP_DL_SAP; 5746 /* 5747 * Set ipif_mtu which is used to set the IRE's 5748 * ire_max_frag value. The driver could have sent 5749 * a different mtu from what it sent last time. No 5750 * need to call ipif_mtu_change because IREs have 5751 * not yet been created. 5752 */ 5753 ill->ill_ipif->ipif_mtu = ill->ill_max_mtu; 5754 /* 5755 * Clear all the flags that were set based on ill_bcast_addr_length 5756 * and ill_phys_addr_length (in ipif_set_values) as these could have 5757 * changed now and we need to re-evaluate. 5758 */ 5759 ill->ill_flags &= ~(ILLF_MULTICAST | ILLF_NONUD | ILLF_NOARP); 5760 ill->ill_ipif->ipif_flags &= ~(IPIF_BROADCAST | IPIF_POINTOPOINT); 5761 5762 /* 5763 * Free ill_resolver_mp and ill_bcast_mp as things could have 5764 * changed now. 5765 */ 5766 if (ill->ill_bcast_addr_length == 0) { 5767 if (ill->ill_resolver_mp != NULL) 5768 freemsg(ill->ill_resolver_mp); 5769 if (ill->ill_bcast_mp != NULL) 5770 freemsg(ill->ill_bcast_mp); 5771 if (ill->ill_flags & ILLF_XRESOLV) 5772 ill->ill_net_type = IRE_IF_RESOLVER; 5773 else 5774 ill->ill_net_type = IRE_IF_NORESOLVER; 5775 ill->ill_resolver_mp = ill_dlur_gen(NULL, 5776 ill->ill_phys_addr_length, 5777 ill->ill_sap, 5778 ill->ill_sap_length); 5779 ill->ill_bcast_mp = copymsg(ill->ill_resolver_mp); 5780 5781 if (ill->ill_isv6) 5782 /* 5783 * Note: xresolv interfaces will eventually need NOARP 5784 * set here as well, but that will require those 5785 * external resolvers to have some knowledge of 5786 * that flag and act appropriately. Not to be changed 5787 * at present. 5788 */ 5789 ill->ill_flags |= ILLF_NONUD; 5790 else 5791 ill->ill_flags |= ILLF_NOARP; 5792 5793 if (ill->ill_phys_addr_length == 0) { 5794 if (ill->ill_media->ip_m_mac_type == SUNW_DL_VNI) { 5795 ill->ill_ipif->ipif_flags |= IPIF_NOXMIT; 5796 ill->ill_phyint->phyint_flags |= PHYI_VIRTUAL; 5797 } else { 5798 /* pt-pt supports multicast. */ 5799 ill->ill_flags |= ILLF_MULTICAST; 5800 ill->ill_ipif->ipif_flags |= IPIF_POINTOPOINT; 5801 } 5802 } 5803 } else { 5804 ill->ill_net_type = IRE_IF_RESOLVER; 5805 if (ill->ill_bcast_mp != NULL) 5806 freemsg(ill->ill_bcast_mp); 5807 ill->ill_bcast_mp = ill_dlur_gen(brdcst_addr, 5808 ill->ill_bcast_addr_length, ill->ill_sap, 5809 ill->ill_sap_length); 5810 /* 5811 * Later detect lack of DLPI driver multicast 5812 * capability by catching DL_ENABMULTI errors in 5813 * ip_rput_dlpi. 5814 */ 5815 ill->ill_flags |= ILLF_MULTICAST; 5816 if (!ill->ill_isv6) 5817 ill->ill_ipif->ipif_flags |= IPIF_BROADCAST; 5818 } 5819 /* By default an interface does not support any CoS marking */ 5820 ill->ill_flags &= ~ILLF_COS_ENABLED; 5821 5822 /* 5823 * If we get QoS information in DL_INFO_ACK, the device supports 5824 * some form of CoS marking, set ILLF_COS_ENABLED. 5825 */ 5826 sel1 = (dl_qos_cl_sel1_t *)mi_offset_param(mp, dlia->dl_qos_offset, 5827 dlia->dl_qos_length); 5828 if ((sel1 != NULL) && (sel1->dl_qos_type == DL_QOS_CL_SEL1)) { 5829 ill->ill_flags |= ILLF_COS_ENABLED; 5830 } 5831 5832 /* Clear any previous error indication. */ 5833 ill->ill_error = 0; 5834 freemsg(mp); 5835 } 5836 5837 /* 5838 * Perform various checks to verify that an address would make sense as a 5839 * local, remote, or subnet interface address. 5840 */ 5841 static boolean_t 5842 ip_addr_ok_v4(ipaddr_t addr, ipaddr_t subnet_mask) 5843 { 5844 ipaddr_t net_mask; 5845 5846 /* 5847 * Don't allow all zeroes, all ones or experimental address, but allow 5848 * all ones netmask. 5849 */ 5850 if ((net_mask = ip_net_mask(addr)) == 0) 5851 return (B_FALSE); 5852 /* A given netmask overrides the "guess" netmask */ 5853 if (subnet_mask != 0) 5854 net_mask = subnet_mask; 5855 if ((net_mask != ~(ipaddr_t)0) && ((addr == (addr & net_mask)) || 5856 (addr == (addr | ~net_mask)))) { 5857 return (B_FALSE); 5858 } 5859 if (CLASSD(addr)) 5860 return (B_FALSE); 5861 5862 return (B_TRUE); 5863 } 5864 5865 /* 5866 * ipif_lookup_group 5867 * Returns held ipif 5868 */ 5869 ipif_t * 5870 ipif_lookup_group(ipaddr_t group, zoneid_t zoneid, ip_stack_t *ipst) 5871 { 5872 ire_t *ire; 5873 ipif_t *ipif; 5874 5875 ire = ire_lookup_multi(group, zoneid, ipst); 5876 if (ire == NULL) 5877 return (NULL); 5878 ipif = ire->ire_ipif; 5879 ipif_refhold(ipif); 5880 ire_refrele(ire); 5881 return (ipif); 5882 } 5883 5884 /* 5885 * Look for an ipif with the specified interface address and destination. 5886 * The destination address is used only for matching point-to-point interfaces. 5887 */ 5888 ipif_t * 5889 ipif_lookup_interface(ipaddr_t if_addr, ipaddr_t dst, queue_t *q, mblk_t *mp, 5890 ipsq_func_t func, int *error, ip_stack_t *ipst) 5891 { 5892 ipif_t *ipif; 5893 ill_t *ill; 5894 ill_walk_context_t ctx; 5895 ipsq_t *ipsq; 5896 5897 if (error != NULL) 5898 *error = 0; 5899 5900 /* 5901 * First match all the point-to-point interfaces 5902 * before looking at non-point-to-point interfaces. 5903 * This is done to avoid returning non-point-to-point 5904 * ipif instead of unnumbered point-to-point ipif. 5905 */ 5906 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 5907 ill = ILL_START_WALK_V4(&ctx, ipst); 5908 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 5909 GRAB_CONN_LOCK(q); 5910 mutex_enter(&ill->ill_lock); 5911 for (ipif = ill->ill_ipif; ipif != NULL; 5912 ipif = ipif->ipif_next) { 5913 /* Allow the ipif to be down */ 5914 if ((ipif->ipif_flags & IPIF_POINTOPOINT) && 5915 (ipif->ipif_lcl_addr == if_addr) && 5916 (ipif->ipif_pp_dst_addr == dst)) { 5917 /* 5918 * The block comment at the start of ipif_down 5919 * explains the use of the macros used below 5920 */ 5921 if (IPIF_CAN_LOOKUP(ipif)) { 5922 ipif_refhold_locked(ipif); 5923 mutex_exit(&ill->ill_lock); 5924 RELEASE_CONN_LOCK(q); 5925 rw_exit(&ipst->ips_ill_g_lock); 5926 return (ipif); 5927 } else if (IPIF_CAN_WAIT(ipif, q)) { 5928 ipsq = ill->ill_phyint->phyint_ipsq; 5929 mutex_enter(&ipsq->ipsq_lock); 5930 mutex_exit(&ill->ill_lock); 5931 rw_exit(&ipst->ips_ill_g_lock); 5932 ipsq_enq(ipsq, q, mp, func, NEW_OP, 5933 ill); 5934 mutex_exit(&ipsq->ipsq_lock); 5935 RELEASE_CONN_LOCK(q); 5936 *error = EINPROGRESS; 5937 return (NULL); 5938 } 5939 } 5940 } 5941 mutex_exit(&ill->ill_lock); 5942 RELEASE_CONN_LOCK(q); 5943 } 5944 rw_exit(&ipst->ips_ill_g_lock); 5945 5946 /* lookup the ipif based on interface address */ 5947 ipif = ipif_lookup_addr(if_addr, NULL, ALL_ZONES, q, mp, func, error, 5948 ipst); 5949 ASSERT(ipif == NULL || !ipif->ipif_isv6); 5950 return (ipif); 5951 } 5952 5953 /* 5954 * Look for an ipif with the specified address. For point-point links 5955 * we look for matches on either the destination address and the local 5956 * address, but we ignore the check on the local address if IPIF_UNNUMBERED 5957 * is set. 5958 * Matches on a specific ill if match_ill is set. 5959 */ 5960 ipif_t * 5961 ipif_lookup_addr(ipaddr_t addr, ill_t *match_ill, zoneid_t zoneid, queue_t *q, 5962 mblk_t *mp, ipsq_func_t func, int *error, ip_stack_t *ipst) 5963 { 5964 ipif_t *ipif; 5965 ill_t *ill; 5966 boolean_t ptp = B_FALSE; 5967 ipsq_t *ipsq; 5968 ill_walk_context_t ctx; 5969 5970 if (error != NULL) 5971 *error = 0; 5972 5973 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 5974 /* 5975 * Repeat twice, first based on local addresses and 5976 * next time for pointopoint. 5977 */ 5978 repeat: 5979 ill = ILL_START_WALK_V4(&ctx, ipst); 5980 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 5981 if (match_ill != NULL && ill != match_ill) { 5982 continue; 5983 } 5984 GRAB_CONN_LOCK(q); 5985 mutex_enter(&ill->ill_lock); 5986 for (ipif = ill->ill_ipif; ipif != NULL; 5987 ipif = ipif->ipif_next) { 5988 if (zoneid != ALL_ZONES && 5989 zoneid != ipif->ipif_zoneid && 5990 ipif->ipif_zoneid != ALL_ZONES) 5991 continue; 5992 /* Allow the ipif to be down */ 5993 if ((!ptp && (ipif->ipif_lcl_addr == addr) && 5994 ((ipif->ipif_flags & IPIF_UNNUMBERED) == 0)) || 5995 (ptp && (ipif->ipif_flags & IPIF_POINTOPOINT) && 5996 (ipif->ipif_pp_dst_addr == addr))) { 5997 /* 5998 * The block comment at the start of ipif_down 5999 * explains the use of the macros used below 6000 */ 6001 if (IPIF_CAN_LOOKUP(ipif)) { 6002 ipif_refhold_locked(ipif); 6003 mutex_exit(&ill->ill_lock); 6004 RELEASE_CONN_LOCK(q); 6005 rw_exit(&ipst->ips_ill_g_lock); 6006 return (ipif); 6007 } else if (IPIF_CAN_WAIT(ipif, q)) { 6008 ipsq = ill->ill_phyint->phyint_ipsq; 6009 mutex_enter(&ipsq->ipsq_lock); 6010 mutex_exit(&ill->ill_lock); 6011 rw_exit(&ipst->ips_ill_g_lock); 6012 ipsq_enq(ipsq, q, mp, func, NEW_OP, 6013 ill); 6014 mutex_exit(&ipsq->ipsq_lock); 6015 RELEASE_CONN_LOCK(q); 6016 *error = EINPROGRESS; 6017 return (NULL); 6018 } 6019 } 6020 } 6021 mutex_exit(&ill->ill_lock); 6022 RELEASE_CONN_LOCK(q); 6023 } 6024 6025 /* If we already did the ptp case, then we are done */ 6026 if (ptp) { 6027 rw_exit(&ipst->ips_ill_g_lock); 6028 if (error != NULL) 6029 *error = ENXIO; 6030 return (NULL); 6031 } 6032 ptp = B_TRUE; 6033 goto repeat; 6034 } 6035 6036 /* 6037 * Look for an ipif with the specified address. For point-point links 6038 * we look for matches on either the destination address and the local 6039 * address, but we ignore the check on the local address if IPIF_UNNUMBERED 6040 * is set. 6041 * Matches on a specific ill if match_ill is set. 6042 * Return the zoneid for the ipif which matches. ALL_ZONES if no match. 6043 */ 6044 zoneid_t 6045 ipif_lookup_addr_zoneid(ipaddr_t addr, ill_t *match_ill, ip_stack_t *ipst) 6046 { 6047 zoneid_t zoneid; 6048 ipif_t *ipif; 6049 ill_t *ill; 6050 boolean_t ptp = B_FALSE; 6051 ill_walk_context_t ctx; 6052 6053 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 6054 /* 6055 * Repeat twice, first based on local addresses and 6056 * next time for pointopoint. 6057 */ 6058 repeat: 6059 ill = ILL_START_WALK_V4(&ctx, ipst); 6060 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 6061 if (match_ill != NULL && ill != match_ill) { 6062 continue; 6063 } 6064 mutex_enter(&ill->ill_lock); 6065 for (ipif = ill->ill_ipif; ipif != NULL; 6066 ipif = ipif->ipif_next) { 6067 /* Allow the ipif to be down */ 6068 if ((!ptp && (ipif->ipif_lcl_addr == addr) && 6069 ((ipif->ipif_flags & IPIF_UNNUMBERED) == 0)) || 6070 (ptp && (ipif->ipif_flags & IPIF_POINTOPOINT) && 6071 (ipif->ipif_pp_dst_addr == addr)) && 6072 !(ipif->ipif_state_flags & IPIF_CONDEMNED)) { 6073 zoneid = ipif->ipif_zoneid; 6074 mutex_exit(&ill->ill_lock); 6075 rw_exit(&ipst->ips_ill_g_lock); 6076 /* 6077 * If ipif_zoneid was ALL_ZONES then we have 6078 * a trusted extensions shared IP address. 6079 * In that case GLOBAL_ZONEID works to send. 6080 */ 6081 if (zoneid == ALL_ZONES) 6082 zoneid = GLOBAL_ZONEID; 6083 return (zoneid); 6084 } 6085 } 6086 mutex_exit(&ill->ill_lock); 6087 } 6088 6089 /* If we already did the ptp case, then we are done */ 6090 if (ptp) { 6091 rw_exit(&ipst->ips_ill_g_lock); 6092 return (ALL_ZONES); 6093 } 6094 ptp = B_TRUE; 6095 goto repeat; 6096 } 6097 6098 /* 6099 * Look for an ipif that matches the specified remote address i.e. the 6100 * ipif that would receive the specified packet. 6101 * First look for directly connected interfaces and then do a recursive 6102 * IRE lookup and pick the first ipif corresponding to the source address in the 6103 * ire. 6104 * Returns: held ipif 6105 */ 6106 ipif_t * 6107 ipif_lookup_remote(ill_t *ill, ipaddr_t addr, zoneid_t zoneid) 6108 { 6109 ipif_t *ipif; 6110 ire_t *ire; 6111 ip_stack_t *ipst = ill->ill_ipst; 6112 6113 ASSERT(!ill->ill_isv6); 6114 6115 /* 6116 * Someone could be changing this ipif currently or change it 6117 * after we return this. Thus a few packets could use the old 6118 * old values. However structure updates/creates (ire, ilg, ilm etc) 6119 * will atomically be updated or cleaned up with the new value 6120 * Thus we don't need a lock to check the flags or other attrs below. 6121 */ 6122 mutex_enter(&ill->ill_lock); 6123 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 6124 if (!IPIF_CAN_LOOKUP(ipif)) 6125 continue; 6126 if (zoneid != ALL_ZONES && zoneid != ipif->ipif_zoneid && 6127 ipif->ipif_zoneid != ALL_ZONES) 6128 continue; 6129 /* Allow the ipif to be down */ 6130 if (ipif->ipif_flags & IPIF_POINTOPOINT) { 6131 if ((ipif->ipif_pp_dst_addr == addr) || 6132 (!(ipif->ipif_flags & IPIF_UNNUMBERED) && 6133 ipif->ipif_lcl_addr == addr)) { 6134 ipif_refhold_locked(ipif); 6135 mutex_exit(&ill->ill_lock); 6136 return (ipif); 6137 } 6138 } else if (ipif->ipif_subnet == (addr & ipif->ipif_net_mask)) { 6139 ipif_refhold_locked(ipif); 6140 mutex_exit(&ill->ill_lock); 6141 return (ipif); 6142 } 6143 } 6144 mutex_exit(&ill->ill_lock); 6145 ire = ire_route_lookup(addr, 0, 0, 0, NULL, NULL, zoneid, 6146 NULL, MATCH_IRE_RECURSIVE, ipst); 6147 if (ire != NULL) { 6148 /* 6149 * The callers of this function wants to know the 6150 * interface on which they have to send the replies 6151 * back. For IRE_CACHES that have ire_stq and ire_ipif 6152 * derived from different ills, we really don't care 6153 * what we return here. 6154 */ 6155 ipif = ire->ire_ipif; 6156 if (ipif != NULL) { 6157 ipif_refhold(ipif); 6158 ire_refrele(ire); 6159 return (ipif); 6160 } 6161 ire_refrele(ire); 6162 } 6163 /* Pick the first interface */ 6164 ipif = ipif_get_next_ipif(NULL, ill); 6165 return (ipif); 6166 } 6167 6168 /* 6169 * This func does not prevent refcnt from increasing. But if 6170 * the caller has taken steps to that effect, then this func 6171 * can be used to determine whether the ill has become quiescent 6172 */ 6173 boolean_t 6174 ill_is_quiescent(ill_t *ill) 6175 { 6176 ipif_t *ipif; 6177 6178 ASSERT(MUTEX_HELD(&ill->ill_lock)); 6179 6180 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 6181 if (ipif->ipif_refcnt != 0 || ipif->ipif_ire_cnt != 0) { 6182 return (B_FALSE); 6183 } 6184 } 6185 if (ill->ill_ire_cnt != 0 || ill->ill_refcnt != 0 || 6186 ill->ill_nce_cnt != 0 || ill->ill_srcif_refcnt != 0 || 6187 ill->ill_mrtun_refcnt != 0) { 6188 return (B_FALSE); 6189 } 6190 return (B_TRUE); 6191 } 6192 6193 /* 6194 * This func does not prevent refcnt from increasing. But if 6195 * the caller has taken steps to that effect, then this func 6196 * can be used to determine whether the ipif has become quiescent 6197 */ 6198 static boolean_t 6199 ipif_is_quiescent(ipif_t *ipif) 6200 { 6201 ill_t *ill; 6202 6203 ASSERT(MUTEX_HELD(&ipif->ipif_ill->ill_lock)); 6204 6205 if (ipif->ipif_refcnt != 0 || ipif->ipif_ire_cnt != 0) { 6206 return (B_FALSE); 6207 } 6208 6209 ill = ipif->ipif_ill; 6210 if (ill->ill_ipif_up_count != 0 || ill->ill_ipif_dup_count != 0 || 6211 ill->ill_logical_down) { 6212 return (B_TRUE); 6213 } 6214 6215 /* This is the last ipif going down or being deleted on this ill */ 6216 if (ill->ill_ire_cnt != 0 || ill->ill_refcnt != 0) { 6217 return (B_FALSE); 6218 } 6219 6220 return (B_TRUE); 6221 } 6222 6223 /* 6224 * This func does not prevent refcnt from increasing. But if 6225 * the caller has taken steps to that effect, then this func 6226 * can be used to determine whether the ipifs marked with IPIF_MOVING 6227 * have become quiescent and can be moved in a failover/failback. 6228 */ 6229 static ipif_t * 6230 ill_quiescent_to_move(ill_t *ill) 6231 { 6232 ipif_t *ipif; 6233 6234 ASSERT(MUTEX_HELD(&ill->ill_lock)); 6235 6236 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 6237 if (ipif->ipif_state_flags & IPIF_MOVING) { 6238 if (ipif->ipif_refcnt != 0 || ipif->ipif_ire_cnt != 0) { 6239 return (ipif); 6240 } 6241 } 6242 } 6243 return (NULL); 6244 } 6245 6246 /* 6247 * The ipif/ill/ire has been refreled. Do the tail processing. 6248 * Determine if the ipif or ill in question has become quiescent and if so 6249 * wakeup close and/or restart any queued pending ioctl that is waiting 6250 * for the ipif_down (or ill_down) 6251 */ 6252 void 6253 ipif_ill_refrele_tail(ill_t *ill) 6254 { 6255 mblk_t *mp; 6256 conn_t *connp; 6257 ipsq_t *ipsq; 6258 ipif_t *ipif; 6259 dl_notify_ind_t *dlindp; 6260 6261 ASSERT(MUTEX_HELD(&ill->ill_lock)); 6262 6263 if ((ill->ill_state_flags & ILL_CONDEMNED) && 6264 ill_is_quiescent(ill)) { 6265 /* ill_close may be waiting */ 6266 cv_broadcast(&ill->ill_cv); 6267 } 6268 6269 /* ipsq can't change because ill_lock is held */ 6270 ipsq = ill->ill_phyint->phyint_ipsq; 6271 if (ipsq->ipsq_waitfor == 0) { 6272 /* Not waiting for anything, just return. */ 6273 mutex_exit(&ill->ill_lock); 6274 return; 6275 } 6276 ASSERT(ipsq->ipsq_pending_mp != NULL && 6277 ipsq->ipsq_pending_ipif != NULL); 6278 /* 6279 * ipif->ipif_refcnt must go down to zero for restarting REMOVEIF. 6280 * Last ipif going down needs to down the ill, so ill_ire_cnt must 6281 * be zero for restarting an ioctl that ends up downing the ill. 6282 */ 6283 ipif = ipsq->ipsq_pending_ipif; 6284 if (ipif->ipif_ill != ill) { 6285 /* The ioctl is pending on some other ill. */ 6286 mutex_exit(&ill->ill_lock); 6287 return; 6288 } 6289 6290 switch (ipsq->ipsq_waitfor) { 6291 case IPIF_DOWN: 6292 case IPIF_FREE: 6293 if (!ipif_is_quiescent(ipif)) { 6294 mutex_exit(&ill->ill_lock); 6295 return; 6296 } 6297 break; 6298 6299 case ILL_DOWN: 6300 case ILL_FREE: 6301 /* 6302 * case ILL_FREE arises only for loopback. otherwise ill_delete 6303 * waits synchronously in ip_close, and no message is queued in 6304 * ipsq_pending_mp at all in this case 6305 */ 6306 if (!ill_is_quiescent(ill)) { 6307 mutex_exit(&ill->ill_lock); 6308 return; 6309 } 6310 6311 break; 6312 6313 case ILL_MOVE_OK: 6314 if (ill_quiescent_to_move(ill) != NULL) { 6315 mutex_exit(&ill->ill_lock); 6316 return; 6317 } 6318 6319 break; 6320 default: 6321 cmn_err(CE_PANIC, "ipsq: %p unknown ipsq_waitfor %d\n", 6322 (void *)ipsq, ipsq->ipsq_waitfor); 6323 } 6324 6325 /* 6326 * Incr refcnt for the qwriter_ip call below which 6327 * does a refrele 6328 */ 6329 ill_refhold_locked(ill); 6330 mutex_exit(&ill->ill_lock); 6331 6332 mp = ipsq_pending_mp_get(ipsq, &connp); 6333 ASSERT(mp != NULL); 6334 6335 switch (mp->b_datap->db_type) { 6336 case M_PCPROTO: 6337 case M_PROTO: 6338 /* 6339 * For now, only DL_NOTIFY_IND messages can use this facility. 6340 */ 6341 dlindp = (dl_notify_ind_t *)mp->b_rptr; 6342 ASSERT(dlindp->dl_primitive == DL_NOTIFY_IND); 6343 6344 switch (dlindp->dl_notification) { 6345 case DL_NOTE_PHYS_ADDR: 6346 qwriter_ip(NULL, ill, ill->ill_rq, mp, 6347 ill_set_phys_addr_tail, CUR_OP, B_TRUE); 6348 return; 6349 default: 6350 ASSERT(0); 6351 } 6352 break; 6353 6354 case M_ERROR: 6355 case M_HANGUP: 6356 qwriter_ip(NULL, ill, ill->ill_rq, mp, ipif_all_down_tail, 6357 CUR_OP, B_TRUE); 6358 return; 6359 6360 case M_IOCTL: 6361 case M_IOCDATA: 6362 qwriter_ip(NULL, ill, (connp != NULL ? CONNP_TO_WQ(connp) : 6363 ill->ill_wq), mp, ip_reprocess_ioctl, CUR_OP, B_TRUE); 6364 return; 6365 6366 default: 6367 cmn_err(CE_PANIC, "ipif_ill_refrele_tail mp %p " 6368 "db_type %d\n", (void *)mp, mp->b_datap->db_type); 6369 } 6370 } 6371 6372 #ifdef ILL_DEBUG 6373 /* Reuse trace buffer from beginning (if reached the end) and record trace */ 6374 void 6375 th_trace_rrecord(th_trace_t *th_trace) 6376 { 6377 tr_buf_t *tr_buf; 6378 uint_t lastref; 6379 6380 lastref = th_trace->th_trace_lastref; 6381 lastref++; 6382 if (lastref == TR_BUF_MAX) 6383 lastref = 0; 6384 th_trace->th_trace_lastref = lastref; 6385 tr_buf = &th_trace->th_trbuf[lastref]; 6386 tr_buf->tr_depth = getpcstack(tr_buf->tr_stack, IP_STACK_DEPTH); 6387 } 6388 6389 th_trace_t * 6390 th_trace_ipif_lookup(ipif_t *ipif) 6391 { 6392 int bucket_id; 6393 th_trace_t *th_trace; 6394 6395 ASSERT(MUTEX_HELD(&ipif->ipif_ill->ill_lock)); 6396 6397 bucket_id = IP_TR_HASH(curthread); 6398 ASSERT(bucket_id < IP_TR_HASH_MAX); 6399 6400 for (th_trace = ipif->ipif_trace[bucket_id]; th_trace != NULL; 6401 th_trace = th_trace->th_next) { 6402 if (th_trace->th_id == curthread) 6403 return (th_trace); 6404 } 6405 return (NULL); 6406 } 6407 6408 void 6409 ipif_trace_ref(ipif_t *ipif) 6410 { 6411 int bucket_id; 6412 th_trace_t *th_trace; 6413 6414 ASSERT(MUTEX_HELD(&ipif->ipif_ill->ill_lock)); 6415 6416 if (ipif->ipif_trace_disable) 6417 return; 6418 6419 /* 6420 * Attempt to locate the trace buffer for the curthread. 6421 * If it does not exist, then allocate a new trace buffer 6422 * and link it in list of trace bufs for this ipif, at the head 6423 */ 6424 th_trace = th_trace_ipif_lookup(ipif); 6425 if (th_trace == NULL) { 6426 bucket_id = IP_TR_HASH(curthread); 6427 th_trace = (th_trace_t *)kmem_zalloc(sizeof (th_trace_t), 6428 KM_NOSLEEP); 6429 if (th_trace == NULL) { 6430 ipif->ipif_trace_disable = B_TRUE; 6431 ipif_trace_cleanup(ipif); 6432 return; 6433 } 6434 th_trace->th_id = curthread; 6435 th_trace->th_next = ipif->ipif_trace[bucket_id]; 6436 th_trace->th_prev = &ipif->ipif_trace[bucket_id]; 6437 if (th_trace->th_next != NULL) 6438 th_trace->th_next->th_prev = &th_trace->th_next; 6439 ipif->ipif_trace[bucket_id] = th_trace; 6440 } 6441 ASSERT(th_trace->th_refcnt >= 0 && 6442 th_trace->th_refcnt < TR_BUF_MAX -1); 6443 th_trace->th_refcnt++; 6444 th_trace_rrecord(th_trace); 6445 } 6446 6447 void 6448 ipif_untrace_ref(ipif_t *ipif) 6449 { 6450 th_trace_t *th_trace; 6451 6452 ASSERT(MUTEX_HELD(&ipif->ipif_ill->ill_lock)); 6453 6454 if (ipif->ipif_trace_disable) 6455 return; 6456 th_trace = th_trace_ipif_lookup(ipif); 6457 ASSERT(th_trace != NULL); 6458 ASSERT(th_trace->th_refcnt > 0); 6459 6460 th_trace->th_refcnt--; 6461 th_trace_rrecord(th_trace); 6462 } 6463 6464 th_trace_t * 6465 th_trace_ill_lookup(ill_t *ill) 6466 { 6467 th_trace_t *th_trace; 6468 int bucket_id; 6469 6470 ASSERT(MUTEX_HELD(&ill->ill_lock)); 6471 6472 bucket_id = IP_TR_HASH(curthread); 6473 ASSERT(bucket_id < IP_TR_HASH_MAX); 6474 6475 for (th_trace = ill->ill_trace[bucket_id]; th_trace != NULL; 6476 th_trace = th_trace->th_next) { 6477 if (th_trace->th_id == curthread) 6478 return (th_trace); 6479 } 6480 return (NULL); 6481 } 6482 6483 void 6484 ill_trace_ref(ill_t *ill) 6485 { 6486 int bucket_id; 6487 th_trace_t *th_trace; 6488 6489 ASSERT(MUTEX_HELD(&ill->ill_lock)); 6490 if (ill->ill_trace_disable) 6491 return; 6492 /* 6493 * Attempt to locate the trace buffer for the curthread. 6494 * If it does not exist, then allocate a new trace buffer 6495 * and link it in list of trace bufs for this ill, at the head 6496 */ 6497 th_trace = th_trace_ill_lookup(ill); 6498 if (th_trace == NULL) { 6499 bucket_id = IP_TR_HASH(curthread); 6500 th_trace = (th_trace_t *)kmem_zalloc(sizeof (th_trace_t), 6501 KM_NOSLEEP); 6502 if (th_trace == NULL) { 6503 ill->ill_trace_disable = B_TRUE; 6504 ill_trace_cleanup(ill); 6505 return; 6506 } 6507 th_trace->th_id = curthread; 6508 th_trace->th_next = ill->ill_trace[bucket_id]; 6509 th_trace->th_prev = &ill->ill_trace[bucket_id]; 6510 if (th_trace->th_next != NULL) 6511 th_trace->th_next->th_prev = &th_trace->th_next; 6512 ill->ill_trace[bucket_id] = th_trace; 6513 } 6514 ASSERT(th_trace->th_refcnt >= 0 && 6515 th_trace->th_refcnt < TR_BUF_MAX - 1); 6516 6517 th_trace->th_refcnt++; 6518 th_trace_rrecord(th_trace); 6519 } 6520 6521 void 6522 ill_untrace_ref(ill_t *ill) 6523 { 6524 th_trace_t *th_trace; 6525 6526 ASSERT(MUTEX_HELD(&ill->ill_lock)); 6527 6528 if (ill->ill_trace_disable) 6529 return; 6530 th_trace = th_trace_ill_lookup(ill); 6531 ASSERT(th_trace != NULL); 6532 ASSERT(th_trace->th_refcnt > 0); 6533 6534 th_trace->th_refcnt--; 6535 th_trace_rrecord(th_trace); 6536 } 6537 6538 /* 6539 * Verify that this thread has no refs to the ipif and free 6540 * the trace buffers 6541 */ 6542 /* ARGSUSED */ 6543 void 6544 ipif_thread_exit(ipif_t *ipif, void *dummy) 6545 { 6546 th_trace_t *th_trace; 6547 6548 mutex_enter(&ipif->ipif_ill->ill_lock); 6549 6550 th_trace = th_trace_ipif_lookup(ipif); 6551 if (th_trace == NULL) { 6552 mutex_exit(&ipif->ipif_ill->ill_lock); 6553 return; 6554 } 6555 ASSERT(th_trace->th_refcnt == 0); 6556 /* unlink th_trace and free it */ 6557 *th_trace->th_prev = th_trace->th_next; 6558 if (th_trace->th_next != NULL) 6559 th_trace->th_next->th_prev = th_trace->th_prev; 6560 th_trace->th_next = NULL; 6561 th_trace->th_prev = NULL; 6562 kmem_free(th_trace, sizeof (th_trace_t)); 6563 6564 mutex_exit(&ipif->ipif_ill->ill_lock); 6565 } 6566 6567 /* 6568 * Verify that this thread has no refs to the ill and free 6569 * the trace buffers 6570 */ 6571 /* ARGSUSED */ 6572 void 6573 ill_thread_exit(ill_t *ill, void *dummy) 6574 { 6575 th_trace_t *th_trace; 6576 6577 mutex_enter(&ill->ill_lock); 6578 6579 th_trace = th_trace_ill_lookup(ill); 6580 if (th_trace == NULL) { 6581 mutex_exit(&ill->ill_lock); 6582 return; 6583 } 6584 ASSERT(th_trace->th_refcnt == 0); 6585 /* unlink th_trace and free it */ 6586 *th_trace->th_prev = th_trace->th_next; 6587 if (th_trace->th_next != NULL) 6588 th_trace->th_next->th_prev = th_trace->th_prev; 6589 th_trace->th_next = NULL; 6590 th_trace->th_prev = NULL; 6591 kmem_free(th_trace, sizeof (th_trace_t)); 6592 6593 mutex_exit(&ill->ill_lock); 6594 } 6595 #endif 6596 6597 #ifdef ILL_DEBUG 6598 void 6599 ip_thread_exit_stack(ip_stack_t *ipst) 6600 { 6601 ill_t *ill; 6602 ipif_t *ipif; 6603 ill_walk_context_t ctx; 6604 6605 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 6606 ill = ILL_START_WALK_ALL(&ctx, ipst); 6607 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 6608 for (ipif = ill->ill_ipif; ipif != NULL; 6609 ipif = ipif->ipif_next) { 6610 ipif_thread_exit(ipif, NULL); 6611 } 6612 ill_thread_exit(ill, NULL); 6613 } 6614 rw_exit(&ipst->ips_ill_g_lock); 6615 6616 ire_walk(ire_thread_exit, NULL, ipst); 6617 ndp_walk_common(ipst->ips_ndp4, NULL, nce_thread_exit, NULL, B_FALSE); 6618 ndp_walk_common(ipst->ips_ndp6, NULL, nce_thread_exit, NULL, B_FALSE); 6619 } 6620 6621 /* 6622 * This is a function which is called from thread_exit 6623 * that can be used to debug reference count issues in IP. See comment in 6624 * <inet/ip.h> on how it is used. 6625 */ 6626 void 6627 ip_thread_exit(void) 6628 { 6629 netstack_t *ns; 6630 6631 ns = netstack_get_current(); 6632 if (ns != NULL) { 6633 ip_thread_exit_stack(ns->netstack_ip); 6634 netstack_rele(ns); 6635 } 6636 } 6637 6638 /* 6639 * Called when ipif is unplumbed or when memory alloc fails 6640 */ 6641 void 6642 ipif_trace_cleanup(ipif_t *ipif) 6643 { 6644 int i; 6645 th_trace_t *th_trace; 6646 th_trace_t *th_trace_next; 6647 6648 for (i = 0; i < IP_TR_HASH_MAX; i++) { 6649 for (th_trace = ipif->ipif_trace[i]; th_trace != NULL; 6650 th_trace = th_trace_next) { 6651 th_trace_next = th_trace->th_next; 6652 kmem_free(th_trace, sizeof (th_trace_t)); 6653 } 6654 ipif->ipif_trace[i] = NULL; 6655 } 6656 } 6657 6658 /* 6659 * Called when ill is unplumbed or when memory alloc fails 6660 */ 6661 void 6662 ill_trace_cleanup(ill_t *ill) 6663 { 6664 int i; 6665 th_trace_t *th_trace; 6666 th_trace_t *th_trace_next; 6667 6668 for (i = 0; i < IP_TR_HASH_MAX; i++) { 6669 for (th_trace = ill->ill_trace[i]; th_trace != NULL; 6670 th_trace = th_trace_next) { 6671 th_trace_next = th_trace->th_next; 6672 kmem_free(th_trace, sizeof (th_trace_t)); 6673 } 6674 ill->ill_trace[i] = NULL; 6675 } 6676 } 6677 6678 #else 6679 void ip_thread_exit(void) {} 6680 #endif 6681 6682 void 6683 ipif_refhold_locked(ipif_t *ipif) 6684 { 6685 ASSERT(MUTEX_HELD(&ipif->ipif_ill->ill_lock)); 6686 ipif->ipif_refcnt++; 6687 IPIF_TRACE_REF(ipif); 6688 } 6689 6690 void 6691 ipif_refhold(ipif_t *ipif) 6692 { 6693 ill_t *ill; 6694 6695 ill = ipif->ipif_ill; 6696 mutex_enter(&ill->ill_lock); 6697 ipif->ipif_refcnt++; 6698 IPIF_TRACE_REF(ipif); 6699 mutex_exit(&ill->ill_lock); 6700 } 6701 6702 /* 6703 * Must not be called while holding any locks. Otherwise if this is 6704 * the last reference to be released there is a chance of recursive mutex 6705 * panic due to ipif_refrele -> ipif_ill_refrele_tail -> qwriter_ip trying 6706 * to restart an ioctl. 6707 */ 6708 void 6709 ipif_refrele(ipif_t *ipif) 6710 { 6711 ill_t *ill; 6712 6713 ill = ipif->ipif_ill; 6714 6715 mutex_enter(&ill->ill_lock); 6716 ASSERT(ipif->ipif_refcnt != 0); 6717 ipif->ipif_refcnt--; 6718 IPIF_UNTRACE_REF(ipif); 6719 if (ipif->ipif_refcnt != 0) { 6720 mutex_exit(&ill->ill_lock); 6721 return; 6722 } 6723 6724 /* Drops the ill_lock */ 6725 ipif_ill_refrele_tail(ill); 6726 } 6727 6728 ipif_t * 6729 ipif_get_next_ipif(ipif_t *curr, ill_t *ill) 6730 { 6731 ipif_t *ipif; 6732 6733 mutex_enter(&ill->ill_lock); 6734 for (ipif = (curr == NULL ? ill->ill_ipif : curr->ipif_next); 6735 ipif != NULL; ipif = ipif->ipif_next) { 6736 if (!IPIF_CAN_LOOKUP(ipif)) 6737 continue; 6738 ipif_refhold_locked(ipif); 6739 mutex_exit(&ill->ill_lock); 6740 return (ipif); 6741 } 6742 mutex_exit(&ill->ill_lock); 6743 return (NULL); 6744 } 6745 6746 /* 6747 * TODO: make this table extendible at run time 6748 * Return a pointer to the mac type info for 'mac_type' 6749 */ 6750 static ip_m_t * 6751 ip_m_lookup(t_uscalar_t mac_type) 6752 { 6753 ip_m_t *ipm; 6754 6755 for (ipm = ip_m_tbl; ipm < A_END(ip_m_tbl); ipm++) 6756 if (ipm->ip_m_mac_type == mac_type) 6757 return (ipm); 6758 return (NULL); 6759 } 6760 6761 /* 6762 * ip_rt_add is called to add an IPv4 route to the forwarding table. 6763 * ipif_arg is passed in to associate it with the correct interface. 6764 * We may need to restart this operation if the ipif cannot be looked up 6765 * due to an exclusive operation that is currently in progress. The restart 6766 * entry point is specified by 'func' 6767 */ 6768 int 6769 ip_rt_add(ipaddr_t dst_addr, ipaddr_t mask, ipaddr_t gw_addr, 6770 ipaddr_t src_addr, int flags, ipif_t *ipif_arg, ipif_t *src_ipif, 6771 ire_t **ire_arg, boolean_t ioctl_msg, queue_t *q, mblk_t *mp, 6772 ipsq_func_t func, struct rtsa_s *sp, ip_stack_t *ipst) 6773 { 6774 ire_t *ire; 6775 ire_t *gw_ire = NULL; 6776 ipif_t *ipif = NULL; 6777 boolean_t ipif_refheld = B_FALSE; 6778 uint_t type; 6779 int match_flags = MATCH_IRE_TYPE; 6780 int error; 6781 tsol_gc_t *gc = NULL; 6782 tsol_gcgrp_t *gcgrp = NULL; 6783 boolean_t gcgrp_xtraref = B_FALSE; 6784 6785 ip1dbg(("ip_rt_add:")); 6786 6787 if (ire_arg != NULL) 6788 *ire_arg = NULL; 6789 6790 /* 6791 * If this is the case of RTF_HOST being set, then we set the netmask 6792 * to all ones (regardless if one was supplied). 6793 */ 6794 if (flags & RTF_HOST) 6795 mask = IP_HOST_MASK; 6796 6797 /* 6798 * Prevent routes with a zero gateway from being created (since 6799 * interfaces can currently be plumbed and brought up no assigned 6800 * address). 6801 * For routes with RTA_SRCIFP, the gateway address can be 0.0.0.0. 6802 */ 6803 if (gw_addr == 0 && src_ipif == NULL) 6804 return (ENETUNREACH); 6805 /* 6806 * Get the ipif, if any, corresponding to the gw_addr 6807 */ 6808 if (gw_addr != 0) { 6809 ipif = ipif_lookup_interface(gw_addr, dst_addr, q, mp, func, 6810 &error, ipst); 6811 if (ipif != NULL) { 6812 if (IS_VNI(ipif->ipif_ill)) { 6813 ipif_refrele(ipif); 6814 return (EINVAL); 6815 } 6816 ipif_refheld = B_TRUE; 6817 } else if (error == EINPROGRESS) { 6818 ip1dbg(("ip_rt_add: null and EINPROGRESS")); 6819 return (EINPROGRESS); 6820 } else { 6821 error = 0; 6822 } 6823 } 6824 6825 if (ipif != NULL) { 6826 ip1dbg(("ip_rt_add: ipif_lookup_interface done ipif nonnull")); 6827 ASSERT(!MUTEX_HELD(&ipif->ipif_ill->ill_lock)); 6828 } else { 6829 ip1dbg(("ip_rt_add: ipif_lookup_interface done ipif is null")); 6830 } 6831 6832 /* 6833 * GateD will attempt to create routes with a loopback interface 6834 * address as the gateway and with RTF_GATEWAY set. We allow 6835 * these routes to be added, but create them as interface routes 6836 * since the gateway is an interface address. 6837 */ 6838 if ((ipif != NULL) && (ipif->ipif_ire_type == IRE_LOOPBACK)) { 6839 flags &= ~RTF_GATEWAY; 6840 if (gw_addr == INADDR_LOOPBACK && dst_addr == INADDR_LOOPBACK && 6841 mask == IP_HOST_MASK) { 6842 ire = ire_ctable_lookup(dst_addr, 0, IRE_LOOPBACK, ipif, 6843 ALL_ZONES, NULL, match_flags, ipst); 6844 if (ire != NULL) { 6845 ire_refrele(ire); 6846 if (ipif_refheld) 6847 ipif_refrele(ipif); 6848 return (EEXIST); 6849 } 6850 ip1dbg(("ipif_up_done: 0x%p creating IRE 0x%x" 6851 "for 0x%x\n", (void *)ipif, 6852 ipif->ipif_ire_type, 6853 ntohl(ipif->ipif_lcl_addr))); 6854 ire = ire_create( 6855 (uchar_t *)&dst_addr, /* dest address */ 6856 (uchar_t *)&mask, /* mask */ 6857 (uchar_t *)&ipif->ipif_src_addr, 6858 NULL, /* no gateway */ 6859 NULL, 6860 &ipif->ipif_mtu, 6861 NULL, 6862 ipif->ipif_rq, /* recv-from queue */ 6863 NULL, /* no send-to queue */ 6864 ipif->ipif_ire_type, /* LOOPBACK */ 6865 NULL, 6866 ipif, 6867 NULL, 6868 0, 6869 0, 6870 0, 6871 (ipif->ipif_flags & IPIF_PRIVATE) ? 6872 RTF_PRIVATE : 0, 6873 &ire_uinfo_null, 6874 NULL, 6875 NULL, 6876 ipst); 6877 6878 if (ire == NULL) { 6879 if (ipif_refheld) 6880 ipif_refrele(ipif); 6881 return (ENOMEM); 6882 } 6883 error = ire_add(&ire, q, mp, func, B_FALSE); 6884 if (error == 0) 6885 goto save_ire; 6886 if (ipif_refheld) 6887 ipif_refrele(ipif); 6888 return (error); 6889 6890 } 6891 } 6892 6893 /* 6894 * Traditionally, interface routes are ones where RTF_GATEWAY isn't set 6895 * and the gateway address provided is one of the system's interface 6896 * addresses. By using the routing socket interface and supplying an 6897 * RTA_IFP sockaddr with an interface index, an alternate method of 6898 * specifying an interface route to be created is available which uses 6899 * the interface index that specifies the outgoing interface rather than 6900 * the address of an outgoing interface (which may not be able to 6901 * uniquely identify an interface). When coupled with the RTF_GATEWAY 6902 * flag, routes can be specified which not only specify the next-hop to 6903 * be used when routing to a certain prefix, but also which outgoing 6904 * interface should be used. 6905 * 6906 * Previously, interfaces would have unique addresses assigned to them 6907 * and so the address assigned to a particular interface could be used 6908 * to identify a particular interface. One exception to this was the 6909 * case of an unnumbered interface (where IPIF_UNNUMBERED was set). 6910 * 6911 * With the advent of IPv6 and its link-local addresses, this 6912 * restriction was relaxed and interfaces could share addresses between 6913 * themselves. In fact, typically all of the link-local interfaces on 6914 * an IPv6 node or router will have the same link-local address. In 6915 * order to differentiate between these interfaces, the use of an 6916 * interface index is necessary and this index can be carried inside a 6917 * RTA_IFP sockaddr (which is actually a sockaddr_dl). One restriction 6918 * of using the interface index, however, is that all of the ipif's that 6919 * are part of an ill have the same index and so the RTA_IFP sockaddr 6920 * cannot be used to differentiate between ipif's (or logical 6921 * interfaces) that belong to the same ill (physical interface). 6922 * 6923 * For example, in the following case involving IPv4 interfaces and 6924 * logical interfaces 6925 * 6926 * 192.0.2.32 255.255.255.224 192.0.2.33 U if0 6927 * 192.0.2.32 255.255.255.224 192.0.2.34 U if0:1 6928 * 192.0.2.32 255.255.255.224 192.0.2.35 U if0:2 6929 * 6930 * the ipif's corresponding to each of these interface routes can be 6931 * uniquely identified by the "gateway" (actually interface address). 6932 * 6933 * In this case involving multiple IPv6 default routes to a particular 6934 * link-local gateway, the use of RTA_IFP is necessary to specify which 6935 * default route is of interest: 6936 * 6937 * default fe80::123:4567:89ab:cdef U if0 6938 * default fe80::123:4567:89ab:cdef U if1 6939 */ 6940 6941 /* RTF_GATEWAY not set */ 6942 if (!(flags & RTF_GATEWAY)) { 6943 queue_t *stq; 6944 queue_t *rfq = NULL; 6945 ill_t *in_ill = NULL; 6946 6947 if (sp != NULL) { 6948 ip2dbg(("ip_rt_add: gateway security attributes " 6949 "cannot be set with interface route\n")); 6950 if (ipif_refheld) 6951 ipif_refrele(ipif); 6952 return (EINVAL); 6953 } 6954 6955 /* 6956 * As the interface index specified with the RTA_IFP sockaddr is 6957 * the same for all ipif's off of an ill, the matching logic 6958 * below uses MATCH_IRE_ILL if such an index was specified. 6959 * This means that routes sharing the same prefix when added 6960 * using a RTA_IFP sockaddr must have distinct interface 6961 * indices (namely, they must be on distinct ill's). 6962 * 6963 * On the other hand, since the gateway address will usually be 6964 * different for each ipif on the system, the matching logic 6965 * uses MATCH_IRE_IPIF in the case of a traditional interface 6966 * route. This means that interface routes for the same prefix 6967 * can be created if they belong to distinct ipif's and if a 6968 * RTA_IFP sockaddr is not present. 6969 */ 6970 if (ipif_arg != NULL) { 6971 if (ipif_refheld) { 6972 ipif_refrele(ipif); 6973 ipif_refheld = B_FALSE; 6974 } 6975 ipif = ipif_arg; 6976 match_flags |= MATCH_IRE_ILL; 6977 } else { 6978 /* 6979 * Check the ipif corresponding to the gw_addr 6980 */ 6981 if (ipif == NULL) 6982 return (ENETUNREACH); 6983 match_flags |= MATCH_IRE_IPIF; 6984 } 6985 ASSERT(ipif != NULL); 6986 /* 6987 * If src_ipif is not NULL, we have to create 6988 * an ire with non-null ire_in_ill value 6989 */ 6990 if (src_ipif != NULL) { 6991 in_ill = src_ipif->ipif_ill; 6992 } 6993 6994 /* 6995 * We check for an existing entry at this point. 6996 * 6997 * Since a netmask isn't passed in via the ioctl interface 6998 * (SIOCADDRT), we don't check for a matching netmask in that 6999 * case. 7000 */ 7001 if (!ioctl_msg) 7002 match_flags |= MATCH_IRE_MASK; 7003 if (src_ipif != NULL) { 7004 /* Look up in the special table */ 7005 ire = ire_srcif_table_lookup(dst_addr, IRE_INTERFACE, 7006 ipif, src_ipif->ipif_ill, match_flags); 7007 } else { 7008 ire = ire_ftable_lookup(dst_addr, mask, 0, 7009 IRE_INTERFACE, ipif, NULL, ALL_ZONES, 0, 7010 NULL, match_flags, ipst); 7011 } 7012 if (ire != NULL) { 7013 ire_refrele(ire); 7014 if (ipif_refheld) 7015 ipif_refrele(ipif); 7016 return (EEXIST); 7017 } 7018 7019 if (src_ipif != NULL) { 7020 /* 7021 * Create the special ire for the IRE table 7022 * which hangs out of ire_in_ill. This ire 7023 * is in-between IRE_CACHE and IRE_INTERFACE. 7024 * Thus rfq is non-NULL. 7025 */ 7026 rfq = ipif->ipif_rq; 7027 } 7028 /* Create the usual interface ires */ 7029 7030 stq = (ipif->ipif_net_type == IRE_IF_RESOLVER) 7031 ? ipif->ipif_rq : ipif->ipif_wq; 7032 7033 /* 7034 * Create a copy of the IRE_LOOPBACK, 7035 * IRE_IF_NORESOLVER or IRE_IF_RESOLVER with 7036 * the modified address and netmask. 7037 */ 7038 ire = ire_create( 7039 (uchar_t *)&dst_addr, 7040 (uint8_t *)&mask, 7041 (uint8_t *)&ipif->ipif_src_addr, 7042 NULL, 7043 NULL, 7044 &ipif->ipif_mtu, 7045 NULL, 7046 rfq, 7047 stq, 7048 ipif->ipif_net_type, 7049 ipif->ipif_resolver_mp, 7050 ipif, 7051 in_ill, 7052 0, 7053 0, 7054 0, 7055 flags, 7056 &ire_uinfo_null, 7057 NULL, 7058 NULL, 7059 ipst); 7060 if (ire == NULL) { 7061 if (ipif_refheld) 7062 ipif_refrele(ipif); 7063 return (ENOMEM); 7064 } 7065 7066 /* 7067 * Some software (for example, GateD and Sun Cluster) attempts 7068 * to create (what amount to) IRE_PREFIX routes with the 7069 * loopback address as the gateway. This is primarily done to 7070 * set up prefixes with the RTF_REJECT flag set (for example, 7071 * when generating aggregate routes.) 7072 * 7073 * If the IRE type (as defined by ipif->ipif_net_type) is 7074 * IRE_LOOPBACK, then we map the request into a 7075 * IRE_IF_NORESOLVER. 7076 * 7077 * Needless to say, the real IRE_LOOPBACK is NOT created by this 7078 * routine, but rather using ire_create() directly. 7079 * 7080 */ 7081 if (ipif->ipif_net_type == IRE_LOOPBACK) 7082 ire->ire_type = IRE_IF_NORESOLVER; 7083 7084 error = ire_add(&ire, q, mp, func, B_FALSE); 7085 if (error == 0) 7086 goto save_ire; 7087 7088 /* 7089 * In the result of failure, ire_add() will have already 7090 * deleted the ire in question, so there is no need to 7091 * do that here. 7092 */ 7093 if (ipif_refheld) 7094 ipif_refrele(ipif); 7095 return (error); 7096 } 7097 if (ipif_refheld) { 7098 ipif_refrele(ipif); 7099 ipif_refheld = B_FALSE; 7100 } 7101 7102 if (src_ipif != NULL) { 7103 /* RTA_SRCIFP is not supported on RTF_GATEWAY */ 7104 ip2dbg(("ip_rt_add: SRCIF cannot be set with gateway route\n")); 7105 return (EINVAL); 7106 } 7107 /* 7108 * Get an interface IRE for the specified gateway. 7109 * If we don't have an IRE_IF_NORESOLVER or IRE_IF_RESOLVER for the 7110 * gateway, it is currently unreachable and we fail the request 7111 * accordingly. 7112 */ 7113 ipif = ipif_arg; 7114 if (ipif_arg != NULL) 7115 match_flags |= MATCH_IRE_ILL; 7116 gw_ire = ire_ftable_lookup(gw_addr, 0, 0, IRE_INTERFACE, ipif_arg, NULL, 7117 ALL_ZONES, 0, NULL, match_flags, ipst); 7118 if (gw_ire == NULL) 7119 return (ENETUNREACH); 7120 7121 /* 7122 * We create one of three types of IREs as a result of this request 7123 * based on the netmask. A netmask of all ones (which is automatically 7124 * assumed when RTF_HOST is set) results in an IRE_HOST being created. 7125 * An all zeroes netmask implies a default route so an IRE_DEFAULT is 7126 * created. Otherwise, an IRE_PREFIX route is created for the 7127 * destination prefix. 7128 */ 7129 if (mask == IP_HOST_MASK) 7130 type = IRE_HOST; 7131 else if (mask == 0) 7132 type = IRE_DEFAULT; 7133 else 7134 type = IRE_PREFIX; 7135 7136 /* check for a duplicate entry */ 7137 ire = ire_ftable_lookup(dst_addr, mask, gw_addr, type, ipif_arg, 7138 NULL, ALL_ZONES, 0, NULL, 7139 match_flags | MATCH_IRE_MASK | MATCH_IRE_GW, ipst); 7140 if (ire != NULL) { 7141 ire_refrele(gw_ire); 7142 ire_refrele(ire); 7143 return (EEXIST); 7144 } 7145 7146 /* Security attribute exists */ 7147 if (sp != NULL) { 7148 tsol_gcgrp_addr_t ga; 7149 7150 /* find or create the gateway credentials group */ 7151 ga.ga_af = AF_INET; 7152 IN6_IPADDR_TO_V4MAPPED(gw_addr, &ga.ga_addr); 7153 7154 /* we hold reference to it upon success */ 7155 gcgrp = gcgrp_lookup(&ga, B_TRUE); 7156 if (gcgrp == NULL) { 7157 ire_refrele(gw_ire); 7158 return (ENOMEM); 7159 } 7160 7161 /* 7162 * Create and add the security attribute to the group; a 7163 * reference to the group is made upon allocating a new 7164 * entry successfully. If it finds an already-existing 7165 * entry for the security attribute in the group, it simply 7166 * returns it and no new reference is made to the group. 7167 */ 7168 gc = gc_create(sp, gcgrp, &gcgrp_xtraref); 7169 if (gc == NULL) { 7170 /* release reference held by gcgrp_lookup */ 7171 GCGRP_REFRELE(gcgrp); 7172 ire_refrele(gw_ire); 7173 return (ENOMEM); 7174 } 7175 } 7176 7177 /* Create the IRE. */ 7178 ire = ire_create( 7179 (uchar_t *)&dst_addr, /* dest address */ 7180 (uchar_t *)&mask, /* mask */ 7181 /* src address assigned by the caller? */ 7182 (uchar_t *)(((src_addr != INADDR_ANY) && 7183 (flags & RTF_SETSRC)) ? &src_addr : NULL), 7184 (uchar_t *)&gw_addr, /* gateway address */ 7185 NULL, /* no in-srcaddress */ 7186 &gw_ire->ire_max_frag, 7187 NULL, /* no Fast Path header */ 7188 NULL, /* no recv-from queue */ 7189 NULL, /* no send-to queue */ 7190 (ushort_t)type, /* IRE type */ 7191 NULL, 7192 ipif_arg, 7193 NULL, 7194 0, 7195 0, 7196 0, 7197 flags, 7198 &gw_ire->ire_uinfo, /* Inherit ULP info from gw */ 7199 gc, /* security attribute */ 7200 NULL, 7201 ipst); 7202 7203 /* 7204 * The ire holds a reference to the 'gc' and the 'gc' holds a 7205 * reference to the 'gcgrp'. We can now release the extra reference 7206 * the 'gcgrp' acquired in the gcgrp_lookup, if it was not used. 7207 */ 7208 if (gcgrp_xtraref) 7209 GCGRP_REFRELE(gcgrp); 7210 if (ire == NULL) { 7211 if (gc != NULL) 7212 GC_REFRELE(gc); 7213 ire_refrele(gw_ire); 7214 return (ENOMEM); 7215 } 7216 7217 /* 7218 * POLICY: should we allow an RTF_HOST with address INADDR_ANY? 7219 * SUN/OS socket stuff does but do we really want to allow 0.0.0.0? 7220 */ 7221 7222 /* Add the new IRE. */ 7223 error = ire_add(&ire, q, mp, func, B_FALSE); 7224 if (error != 0) { 7225 /* 7226 * In the result of failure, ire_add() will have already 7227 * deleted the ire in question, so there is no need to 7228 * do that here. 7229 */ 7230 ire_refrele(gw_ire); 7231 return (error); 7232 } 7233 7234 if (flags & RTF_MULTIRT) { 7235 /* 7236 * Invoke the CGTP (multirouting) filtering module 7237 * to add the dst address in the filtering database. 7238 * Replicated inbound packets coming from that address 7239 * will be filtered to discard the duplicates. 7240 * It is not necessary to call the CGTP filter hook 7241 * when the dst address is a broadcast or multicast, 7242 * because an IP source address cannot be a broadcast 7243 * or a multicast. 7244 */ 7245 ire_t *ire_dst = ire_ctable_lookup(ire->ire_addr, 0, 7246 IRE_BROADCAST, NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 7247 if (ire_dst != NULL) { 7248 ip_cgtp_bcast_add(ire, ire_dst, ipst); 7249 ire_refrele(ire_dst); 7250 goto save_ire; 7251 } 7252 if ((ip_cgtp_filter_ops != NULL) && !CLASSD(ire->ire_addr) && 7253 ipst->ips_netstack->netstack_stackid == GLOBAL_NETSTACKID) { 7254 int res = ip_cgtp_filter_ops->cfo_add_dest_v4( 7255 ire->ire_addr, 7256 ire->ire_gateway_addr, 7257 ire->ire_src_addr, 7258 gw_ire->ire_src_addr); 7259 if (res != 0) { 7260 ire_refrele(gw_ire); 7261 ire_delete(ire); 7262 return (res); 7263 } 7264 } 7265 } 7266 7267 /* 7268 * Now that the prefix IRE entry has been created, delete any 7269 * existing gateway IRE cache entries as well as any IRE caches 7270 * using the gateway, and force them to be created through 7271 * ip_newroute. 7272 */ 7273 if (gc != NULL) { 7274 ASSERT(gcgrp != NULL); 7275 ire_clookup_delete_cache_gw(gw_addr, ALL_ZONES, ipst); 7276 } 7277 7278 save_ire: 7279 if (gw_ire != NULL) { 7280 ire_refrele(gw_ire); 7281 } 7282 /* 7283 * We do not do save_ire for the routes added with RTA_SRCIFP 7284 * flag. This route is only added and deleted by mipagent. 7285 * So, for simplicity of design, we refrain from saving 7286 * ires that are created with srcif value. This may change 7287 * in future if we find more usage of srcifp feature. 7288 */ 7289 if (ipif != NULL && src_ipif == NULL) { 7290 /* 7291 * Save enough information so that we can recreate the IRE if 7292 * the interface goes down and then up. The metrics associated 7293 * with the route will be saved as well when rts_setmetrics() is 7294 * called after the IRE has been created. In the case where 7295 * memory cannot be allocated, none of this information will be 7296 * saved. 7297 */ 7298 ipif_save_ire(ipif, ire); 7299 } 7300 if (ioctl_msg) 7301 ip_rts_rtmsg(RTM_OLDADD, ire, 0, ipst); 7302 if (ire_arg != NULL) { 7303 /* 7304 * Store the ire that was successfully added into where ire_arg 7305 * points to so that callers don't have to look it up 7306 * themselves (but they are responsible for ire_refrele()ing 7307 * the ire when they are finished with it). 7308 */ 7309 *ire_arg = ire; 7310 } else { 7311 ire_refrele(ire); /* Held in ire_add */ 7312 } 7313 if (ipif_refheld) 7314 ipif_refrele(ipif); 7315 return (0); 7316 } 7317 7318 /* 7319 * ip_rt_delete is called to delete an IPv4 route. 7320 * ipif_arg is passed in to associate it with the correct interface. 7321 * src_ipif is passed to associate the incoming interface of the packet. 7322 * We may need to restart this operation if the ipif cannot be looked up 7323 * due to an exclusive operation that is currently in progress. The restart 7324 * entry point is specified by 'func' 7325 */ 7326 /* ARGSUSED4 */ 7327 int 7328 ip_rt_delete(ipaddr_t dst_addr, ipaddr_t mask, ipaddr_t gw_addr, 7329 uint_t rtm_addrs, int flags, ipif_t *ipif_arg, ipif_t *src_ipif, 7330 boolean_t ioctl_msg, queue_t *q, mblk_t *mp, ipsq_func_t func, 7331 ip_stack_t *ipst) 7332 { 7333 ire_t *ire = NULL; 7334 ipif_t *ipif; 7335 boolean_t ipif_refheld = B_FALSE; 7336 uint_t type; 7337 uint_t match_flags = MATCH_IRE_TYPE; 7338 int err = 0; 7339 7340 ip1dbg(("ip_rt_delete:")); 7341 /* 7342 * If this is the case of RTF_HOST being set, then we set the netmask 7343 * to all ones. Otherwise, we use the netmask if one was supplied. 7344 */ 7345 if (flags & RTF_HOST) { 7346 mask = IP_HOST_MASK; 7347 match_flags |= MATCH_IRE_MASK; 7348 } else if (rtm_addrs & RTA_NETMASK) { 7349 match_flags |= MATCH_IRE_MASK; 7350 } 7351 7352 /* 7353 * Note that RTF_GATEWAY is never set on a delete, therefore 7354 * we check if the gateway address is one of our interfaces first, 7355 * and fall back on RTF_GATEWAY routes. 7356 * 7357 * This makes it possible to delete an original 7358 * IRE_IF_NORESOLVER/IRE_IF_RESOLVER - consistent with SunOS 4.1. 7359 * 7360 * As the interface index specified with the RTA_IFP sockaddr is the 7361 * same for all ipif's off of an ill, the matching logic below uses 7362 * MATCH_IRE_ILL if such an index was specified. This means a route 7363 * sharing the same prefix and interface index as the the route 7364 * intended to be deleted might be deleted instead if a RTA_IFP sockaddr 7365 * is specified in the request. 7366 * 7367 * On the other hand, since the gateway address will usually be 7368 * different for each ipif on the system, the matching logic 7369 * uses MATCH_IRE_IPIF in the case of a traditional interface 7370 * route. This means that interface routes for the same prefix can be 7371 * uniquely identified if they belong to distinct ipif's and if a 7372 * RTA_IFP sockaddr is not present. 7373 * 7374 * For more detail on specifying routes by gateway address and by 7375 * interface index, see the comments in ip_rt_add(). 7376 * gw_addr could be zero in some cases when both RTA_SRCIFP and 7377 * RTA_IFP are specified. If RTA_SRCIFP is specified and both 7378 * RTA_IFP and gateway_addr are NULL/zero, then delete will not 7379 * succeed. 7380 */ 7381 if (src_ipif != NULL) { 7382 if (ipif_arg == NULL && gw_addr != 0) { 7383 ipif_arg = ipif_lookup_interface(gw_addr, dst_addr, 7384 q, mp, func, &err, ipst); 7385 if (ipif_arg != NULL) 7386 ipif_refheld = B_TRUE; 7387 } 7388 if (ipif_arg == NULL) { 7389 err = (err == EINPROGRESS) ? err : ESRCH; 7390 return (err); 7391 } 7392 ipif = ipif_arg; 7393 } else { 7394 ipif = ipif_lookup_interface(gw_addr, dst_addr, 7395 q, mp, func, &err, ipst); 7396 if (ipif != NULL) 7397 ipif_refheld = B_TRUE; 7398 else if (err == EINPROGRESS) 7399 return (err); 7400 else 7401 err = 0; 7402 } 7403 if (ipif != NULL) { 7404 if (ipif_arg != NULL) { 7405 if (ipif_refheld) { 7406 ipif_refrele(ipif); 7407 ipif_refheld = B_FALSE; 7408 } 7409 ipif = ipif_arg; 7410 match_flags |= MATCH_IRE_ILL; 7411 } else { 7412 match_flags |= MATCH_IRE_IPIF; 7413 } 7414 if (src_ipif != NULL) { 7415 ire = ire_srcif_table_lookup(dst_addr, IRE_INTERFACE, 7416 ipif, src_ipif->ipif_ill, match_flags); 7417 } else { 7418 if (ipif->ipif_ire_type == IRE_LOOPBACK) { 7419 ire = ire_ctable_lookup(dst_addr, 0, 7420 IRE_LOOPBACK, ipif, ALL_ZONES, NULL, 7421 match_flags, ipst); 7422 } 7423 if (ire == NULL) { 7424 ire = ire_ftable_lookup(dst_addr, mask, 0, 7425 IRE_INTERFACE, ipif, NULL, ALL_ZONES, 0, 7426 NULL, match_flags, ipst); 7427 } 7428 } 7429 } 7430 7431 if (ire == NULL) { 7432 /* 7433 * At this point, the gateway address is not one of our own 7434 * addresses or a matching interface route was not found. We 7435 * set the IRE type to lookup based on whether 7436 * this is a host route, a default route or just a prefix. 7437 * 7438 * If an ipif_arg was passed in, then the lookup is based on an 7439 * interface index so MATCH_IRE_ILL is added to match_flags. 7440 * In any case, MATCH_IRE_IPIF is cleared and MATCH_IRE_GW is 7441 * set as the route being looked up is not a traditional 7442 * interface route. 7443 * Since we do not add gateway route with srcipif, we don't 7444 * expect to find it either. 7445 */ 7446 if (src_ipif != NULL) { 7447 if (ipif_refheld) 7448 ipif_refrele(ipif); 7449 return (ESRCH); 7450 } else { 7451 match_flags &= ~MATCH_IRE_IPIF; 7452 match_flags |= MATCH_IRE_GW; 7453 if (ipif_arg != NULL) 7454 match_flags |= MATCH_IRE_ILL; 7455 if (mask == IP_HOST_MASK) 7456 type = IRE_HOST; 7457 else if (mask == 0) 7458 type = IRE_DEFAULT; 7459 else 7460 type = IRE_PREFIX; 7461 ire = ire_ftable_lookup(dst_addr, mask, gw_addr, type, 7462 ipif_arg, NULL, ALL_ZONES, 0, NULL, match_flags, 7463 ipst); 7464 } 7465 } 7466 7467 if (ipif_refheld) 7468 ipif_refrele(ipif); 7469 7470 /* ipif is not refheld anymore */ 7471 if (ire == NULL) 7472 return (ESRCH); 7473 7474 if (ire->ire_flags & RTF_MULTIRT) { 7475 /* 7476 * Invoke the CGTP (multirouting) filtering module 7477 * to remove the dst address from the filtering database. 7478 * Packets coming from that address will no longer be 7479 * filtered to remove duplicates. 7480 */ 7481 if (ip_cgtp_filter_ops != NULL && 7482 ipst->ips_netstack->netstack_stackid == GLOBAL_NETSTACKID) { 7483 err = ip_cgtp_filter_ops->cfo_del_dest_v4( 7484 ire->ire_addr, ire->ire_gateway_addr); 7485 } 7486 ip_cgtp_bcast_delete(ire, ipst); 7487 } 7488 7489 ipif = ire->ire_ipif; 7490 /* 7491 * Removing from ipif_saved_ire_mp is not necessary 7492 * when src_ipif being non-NULL. ip_rt_add does not 7493 * save the ires which src_ipif being non-NULL. 7494 */ 7495 if (ipif != NULL && src_ipif == NULL) { 7496 ipif_remove_ire(ipif, ire); 7497 } 7498 if (ioctl_msg) 7499 ip_rts_rtmsg(RTM_OLDDEL, ire, 0, ipst); 7500 ire_delete(ire); 7501 ire_refrele(ire); 7502 return (err); 7503 } 7504 7505 /* 7506 * ip_siocaddrt is called to complete processing of an SIOCADDRT IOCTL. 7507 */ 7508 /* ARGSUSED */ 7509 int 7510 ip_siocaddrt(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, 7511 ip_ioctl_cmd_t *ipip, void *dummy_if_req) 7512 { 7513 ipaddr_t dst_addr; 7514 ipaddr_t gw_addr; 7515 ipaddr_t mask; 7516 int error = 0; 7517 mblk_t *mp1; 7518 struct rtentry *rt; 7519 ipif_t *ipif = NULL; 7520 ip_stack_t *ipst; 7521 7522 ASSERT(q->q_next == NULL); 7523 ipst = CONNQ_TO_IPST(q); 7524 7525 ip1dbg(("ip_siocaddrt:")); 7526 /* Existence of mp1 verified in ip_wput_nondata */ 7527 mp1 = mp->b_cont->b_cont; 7528 rt = (struct rtentry *)mp1->b_rptr; 7529 7530 dst_addr = ((sin_t *)&rt->rt_dst)->sin_addr.s_addr; 7531 gw_addr = ((sin_t *)&rt->rt_gateway)->sin_addr.s_addr; 7532 7533 /* 7534 * If the RTF_HOST flag is on, this is a request to assign a gateway 7535 * to a particular host address. In this case, we set the netmask to 7536 * all ones for the particular destination address. Otherwise, 7537 * determine the netmask to be used based on dst_addr and the interfaces 7538 * in use. 7539 */ 7540 if (rt->rt_flags & RTF_HOST) { 7541 mask = IP_HOST_MASK; 7542 } else { 7543 /* 7544 * Note that ip_subnet_mask returns a zero mask in the case of 7545 * default (an all-zeroes address). 7546 */ 7547 mask = ip_subnet_mask(dst_addr, &ipif, ipst); 7548 } 7549 7550 error = ip_rt_add(dst_addr, mask, gw_addr, 0, rt->rt_flags, NULL, NULL, 7551 NULL, B_TRUE, q, mp, ip_process_ioctl, NULL, ipst); 7552 if (ipif != NULL) 7553 ipif_refrele(ipif); 7554 return (error); 7555 } 7556 7557 /* 7558 * ip_siocdelrt is called to complete processing of an SIOCDELRT IOCTL. 7559 */ 7560 /* ARGSUSED */ 7561 int 7562 ip_siocdelrt(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, 7563 ip_ioctl_cmd_t *ipip, void *dummy_if_req) 7564 { 7565 ipaddr_t dst_addr; 7566 ipaddr_t gw_addr; 7567 ipaddr_t mask; 7568 int error; 7569 mblk_t *mp1; 7570 struct rtentry *rt; 7571 ipif_t *ipif = NULL; 7572 ip_stack_t *ipst; 7573 7574 ASSERT(q->q_next == NULL); 7575 ipst = CONNQ_TO_IPST(q); 7576 7577 ip1dbg(("ip_siocdelrt:")); 7578 /* Existence of mp1 verified in ip_wput_nondata */ 7579 mp1 = mp->b_cont->b_cont; 7580 rt = (struct rtentry *)mp1->b_rptr; 7581 7582 dst_addr = ((sin_t *)&rt->rt_dst)->sin_addr.s_addr; 7583 gw_addr = ((sin_t *)&rt->rt_gateway)->sin_addr.s_addr; 7584 7585 /* 7586 * If the RTF_HOST flag is on, this is a request to delete a gateway 7587 * to a particular host address. In this case, we set the netmask to 7588 * all ones for the particular destination address. Otherwise, 7589 * determine the netmask to be used based on dst_addr and the interfaces 7590 * in use. 7591 */ 7592 if (rt->rt_flags & RTF_HOST) { 7593 mask = IP_HOST_MASK; 7594 } else { 7595 /* 7596 * Note that ip_subnet_mask returns a zero mask in the case of 7597 * default (an all-zeroes address). 7598 */ 7599 mask = ip_subnet_mask(dst_addr, &ipif, ipst); 7600 } 7601 7602 error = ip_rt_delete(dst_addr, mask, gw_addr, 7603 RTA_DST | RTA_GATEWAY | RTA_NETMASK, rt->rt_flags, NULL, NULL, 7604 B_TRUE, q, mp, ip_process_ioctl, ipst); 7605 if (ipif != NULL) 7606 ipif_refrele(ipif); 7607 return (error); 7608 } 7609 7610 /* 7611 * Enqueue the mp onto the ipsq, chained by b_next. 7612 * b_prev stores the function to be executed later, and b_queue the queue 7613 * where this mp originated. 7614 */ 7615 void 7616 ipsq_enq(ipsq_t *ipsq, queue_t *q, mblk_t *mp, ipsq_func_t func, int type, 7617 ill_t *pending_ill) 7618 { 7619 conn_t *connp = NULL; 7620 7621 ASSERT(MUTEX_HELD(&ipsq->ipsq_lock)); 7622 ASSERT(func != NULL); 7623 7624 mp->b_queue = q; 7625 mp->b_prev = (void *)func; 7626 mp->b_next = NULL; 7627 7628 switch (type) { 7629 case CUR_OP: 7630 if (ipsq->ipsq_mptail != NULL) { 7631 ASSERT(ipsq->ipsq_mphead != NULL); 7632 ipsq->ipsq_mptail->b_next = mp; 7633 } else { 7634 ASSERT(ipsq->ipsq_mphead == NULL); 7635 ipsq->ipsq_mphead = mp; 7636 } 7637 ipsq->ipsq_mptail = mp; 7638 break; 7639 7640 case NEW_OP: 7641 if (ipsq->ipsq_xopq_mptail != NULL) { 7642 ASSERT(ipsq->ipsq_xopq_mphead != NULL); 7643 ipsq->ipsq_xopq_mptail->b_next = mp; 7644 } else { 7645 ASSERT(ipsq->ipsq_xopq_mphead == NULL); 7646 ipsq->ipsq_xopq_mphead = mp; 7647 } 7648 ipsq->ipsq_xopq_mptail = mp; 7649 break; 7650 default: 7651 cmn_err(CE_PANIC, "ipsq_enq %d type \n", type); 7652 } 7653 7654 if (CONN_Q(q) && pending_ill != NULL) { 7655 connp = Q_TO_CONN(q); 7656 7657 ASSERT(MUTEX_HELD(&connp->conn_lock)); 7658 connp->conn_oper_pending_ill = pending_ill; 7659 } 7660 } 7661 7662 /* 7663 * Return the mp at the head of the ipsq. After emptying the ipsq 7664 * look at the next ioctl, if this ioctl is complete. Otherwise 7665 * return, we will resume when we complete the current ioctl. 7666 * The current ioctl will wait till it gets a response from the 7667 * driver below. 7668 */ 7669 static mblk_t * 7670 ipsq_dq(ipsq_t *ipsq) 7671 { 7672 mblk_t *mp; 7673 7674 ASSERT(MUTEX_HELD(&ipsq->ipsq_lock)); 7675 7676 mp = ipsq->ipsq_mphead; 7677 if (mp != NULL) { 7678 ipsq->ipsq_mphead = mp->b_next; 7679 if (ipsq->ipsq_mphead == NULL) 7680 ipsq->ipsq_mptail = NULL; 7681 mp->b_next = NULL; 7682 return (mp); 7683 } 7684 if (ipsq->ipsq_current_ipif != NULL) 7685 return (NULL); 7686 mp = ipsq->ipsq_xopq_mphead; 7687 if (mp != NULL) { 7688 ipsq->ipsq_xopq_mphead = mp->b_next; 7689 if (ipsq->ipsq_xopq_mphead == NULL) 7690 ipsq->ipsq_xopq_mptail = NULL; 7691 mp->b_next = NULL; 7692 return (mp); 7693 } 7694 return (NULL); 7695 } 7696 7697 /* 7698 * Enter the ipsq corresponding to ill, by waiting synchronously till 7699 * we can enter the ipsq exclusively. Unless 'force' is used, the ipsq 7700 * will have to drain completely before ipsq_enter returns success. 7701 * ipsq_current_ipif will be set if some exclusive ioctl is in progress, 7702 * and the ipsq_exit logic will start the next enqueued ioctl after 7703 * completion of the current ioctl. If 'force' is used, we don't wait 7704 * for the enqueued ioctls. This is needed when a conn_close wants to 7705 * enter the ipsq and abort an ioctl that is somehow stuck. Unplumb 7706 * of an ill can also use this option. But we dont' use it currently. 7707 */ 7708 #define ENTER_SQ_WAIT_TICKS 100 7709 boolean_t 7710 ipsq_enter(ill_t *ill, boolean_t force) 7711 { 7712 ipsq_t *ipsq; 7713 boolean_t waited_enough = B_FALSE; 7714 7715 /* 7716 * Holding the ill_lock prevents <ill-ipsq> assocs from changing. 7717 * Since the <ill-ipsq> assocs could change while we wait for the 7718 * writer, it is easier to wait on a fixed global rather than try to 7719 * cv_wait on a changing ipsq. 7720 */ 7721 mutex_enter(&ill->ill_lock); 7722 for (;;) { 7723 if (ill->ill_state_flags & ILL_CONDEMNED) { 7724 mutex_exit(&ill->ill_lock); 7725 return (B_FALSE); 7726 } 7727 7728 ipsq = ill->ill_phyint->phyint_ipsq; 7729 mutex_enter(&ipsq->ipsq_lock); 7730 if (ipsq->ipsq_writer == NULL && 7731 (ipsq->ipsq_current_ipif == NULL || waited_enough)) { 7732 break; 7733 } else if (ipsq->ipsq_writer != NULL) { 7734 mutex_exit(&ipsq->ipsq_lock); 7735 cv_wait(&ill->ill_cv, &ill->ill_lock); 7736 } else { 7737 mutex_exit(&ipsq->ipsq_lock); 7738 if (force) { 7739 (void) cv_timedwait(&ill->ill_cv, 7740 &ill->ill_lock, 7741 lbolt + ENTER_SQ_WAIT_TICKS); 7742 waited_enough = B_TRUE; 7743 continue; 7744 } else { 7745 cv_wait(&ill->ill_cv, &ill->ill_lock); 7746 } 7747 } 7748 } 7749 7750 ASSERT(ipsq->ipsq_mphead == NULL && ipsq->ipsq_mptail == NULL); 7751 ASSERT(ipsq->ipsq_reentry_cnt == 0); 7752 ipsq->ipsq_writer = curthread; 7753 ipsq->ipsq_reentry_cnt++; 7754 #ifdef ILL_DEBUG 7755 ipsq->ipsq_depth = getpcstack(ipsq->ipsq_stack, IP_STACK_DEPTH); 7756 #endif 7757 mutex_exit(&ipsq->ipsq_lock); 7758 mutex_exit(&ill->ill_lock); 7759 return (B_TRUE); 7760 } 7761 7762 /* 7763 * The ipsq_t (ipsq) is the synchronization data structure used to serialize 7764 * certain critical operations like plumbing (i.e. most set ioctls), 7765 * multicast joins, igmp/mld timers, IPMP operations etc. On a non-IPMP 7766 * system there is 1 ipsq per phyint. On an IPMP system there is 1 ipsq per 7767 * IPMP group. The ipsq serializes exclusive ioctls issued by applications 7768 * on a per ipsq basis in ipsq_xopq_mphead. It also protects against multiple 7769 * threads executing in the ipsq. Responses from the driver pertain to the 7770 * current ioctl (say a DL_BIND_ACK in response to a DL_BIND_REQUEST initiated 7771 * as part of bringing up the interface) and are enqueued in ipsq_mphead. 7772 * 7773 * If a thread does not want to reenter the ipsq when it is already writer, 7774 * it must make sure that the specified reentry point to be called later 7775 * when the ipsq is empty, nor any code path starting from the specified reentry 7776 * point must never ever try to enter the ipsq again. Otherwise it can lead 7777 * to an infinite loop. The reentry point ip_rput_dlpi_writer is an example. 7778 * When the thread that is currently exclusive finishes, it (ipsq_exit) 7779 * dequeues the requests waiting to become exclusive in ipsq_mphead and calls 7780 * the reentry point. When the list at ipsq_mphead becomes empty ipsq_exit 7781 * proceeds to dequeue the next ioctl in ipsq_xopq_mphead and start the next 7782 * ioctl if the current ioctl has completed. If the current ioctl is still 7783 * in progress it simply returns. The current ioctl could be waiting for 7784 * a response from another module (arp_ or the driver or could be waiting for 7785 * the ipif/ill/ire refcnts to drop to zero. In such a case the ipsq_pending_mp 7786 * and ipsq_pending_ipif are set. ipsq_current_ipif is set throughout the 7787 * execution of the ioctl and ipsq_exit does not start the next ioctl unless 7788 * ipsq_current_ipif is clear which happens only on ioctl completion. 7789 */ 7790 7791 /* 7792 * Try to enter the ipsq exclusively, corresponding to ipif or ill. (only 1 of 7793 * ipif or ill can be specified). The caller ensures ipif or ill is valid by 7794 * ref-holding it if necessary. If the ipsq cannot be entered, the mp is queued 7795 * completion. 7796 */ 7797 ipsq_t * 7798 ipsq_try_enter(ipif_t *ipif, ill_t *ill, queue_t *q, mblk_t *mp, 7799 ipsq_func_t func, int type, boolean_t reentry_ok) 7800 { 7801 ipsq_t *ipsq; 7802 7803 /* Only 1 of ipif or ill can be specified */ 7804 ASSERT((ipif != NULL) ^ (ill != NULL)); 7805 if (ipif != NULL) 7806 ill = ipif->ipif_ill; 7807 7808 /* 7809 * lock ordering ill_g_lock -> conn_lock -> ill_lock -> ipsq_lock 7810 * ipsq of an ill can't change when ill_lock is held. 7811 */ 7812 GRAB_CONN_LOCK(q); 7813 mutex_enter(&ill->ill_lock); 7814 ipsq = ill->ill_phyint->phyint_ipsq; 7815 mutex_enter(&ipsq->ipsq_lock); 7816 7817 /* 7818 * 1. Enter the ipsq if we are already writer and reentry is ok. 7819 * (Note: If the caller does not specify reentry_ok then neither 7820 * 'func' nor any of its callees must ever attempt to enter the ipsq 7821 * again. Otherwise it can lead to an infinite loop 7822 * 2. Enter the ipsq if there is no current writer and this attempted 7823 * entry is part of the current ioctl or operation 7824 * 3. Enter the ipsq if there is no current writer and this is a new 7825 * ioctl (or operation) and the ioctl (or operation) queue is 7826 * empty and there is no ioctl (or operation) currently in progress 7827 */ 7828 if ((ipsq->ipsq_writer == NULL && ((type == CUR_OP) || 7829 (type == NEW_OP && ipsq->ipsq_xopq_mphead == NULL && 7830 ipsq->ipsq_current_ipif == NULL))) || 7831 (ipsq->ipsq_writer == curthread && reentry_ok)) { 7832 /* Success. */ 7833 ipsq->ipsq_reentry_cnt++; 7834 ipsq->ipsq_writer = curthread; 7835 mutex_exit(&ipsq->ipsq_lock); 7836 mutex_exit(&ill->ill_lock); 7837 RELEASE_CONN_LOCK(q); 7838 #ifdef ILL_DEBUG 7839 ipsq->ipsq_depth = getpcstack(ipsq->ipsq_stack, IP_STACK_DEPTH); 7840 #endif 7841 return (ipsq); 7842 } 7843 7844 ipsq_enq(ipsq, q, mp, func, type, ill); 7845 7846 mutex_exit(&ipsq->ipsq_lock); 7847 mutex_exit(&ill->ill_lock); 7848 RELEASE_CONN_LOCK(q); 7849 return (NULL); 7850 } 7851 7852 /* 7853 * Try to enter the ipsq exclusively, corresponding to ipif or ill. (only 1 of 7854 * ipif or ill can be specified). The caller ensures ipif or ill is valid by 7855 * ref-holding it if necessary. If the ipsq cannot be entered, the mp is queued 7856 * completion. 7857 * 7858 * This function does a refrele on the ipif/ill. 7859 */ 7860 void 7861 qwriter_ip(ipif_t *ipif, ill_t *ill, queue_t *q, mblk_t *mp, 7862 ipsq_func_t func, int type, boolean_t reentry_ok) 7863 { 7864 ipsq_t *ipsq; 7865 7866 ipsq = ipsq_try_enter(ipif, ill, q, mp, func, type, reentry_ok); 7867 /* 7868 * Caller must have done a refhold on the ipif. ipif_refrele 7869 * happens on the passed ipif. We can do this since we are 7870 * already exclusive, or we won't access ipif henceforth, Both 7871 * this func and caller will just return if we ipsq_try_enter 7872 * fails above. This is needed because func needs to 7873 * see the correct refcount. Eg. removeif can work only then. 7874 */ 7875 if (ipif != NULL) 7876 ipif_refrele(ipif); 7877 else 7878 ill_refrele(ill); 7879 if (ipsq != NULL) { 7880 (*func)(ipsq, q, mp, NULL); 7881 ipsq_exit(ipsq, B_TRUE, B_TRUE); 7882 } 7883 } 7884 7885 /* 7886 * If there are more than ILL_GRP_CNT ills in a group, 7887 * we use kmem alloc'd buffers, else use the stack 7888 */ 7889 #define ILL_GRP_CNT 14 7890 /* 7891 * Drain the ipsq, if there are messages on it, and then leave the ipsq. 7892 * Called by a thread that is currently exclusive on this ipsq. 7893 */ 7894 void 7895 ipsq_exit(ipsq_t *ipsq, boolean_t start_igmp_timer, boolean_t start_mld_timer) 7896 { 7897 queue_t *q; 7898 mblk_t *mp; 7899 ipsq_func_t func; 7900 int next; 7901 ill_t **ill_list = NULL; 7902 size_t ill_list_size = 0; 7903 int cnt = 0; 7904 boolean_t need_ipsq_free = B_FALSE; 7905 ip_stack_t *ipst = ipsq->ipsq_ipst; 7906 7907 ASSERT(IAM_WRITER_IPSQ(ipsq)); 7908 mutex_enter(&ipsq->ipsq_lock); 7909 ASSERT(ipsq->ipsq_reentry_cnt >= 1); 7910 if (ipsq->ipsq_reentry_cnt != 1) { 7911 ipsq->ipsq_reentry_cnt--; 7912 mutex_exit(&ipsq->ipsq_lock); 7913 return; 7914 } 7915 7916 mp = ipsq_dq(ipsq); 7917 while (mp != NULL) { 7918 again: 7919 mutex_exit(&ipsq->ipsq_lock); 7920 func = (ipsq_func_t)mp->b_prev; 7921 q = (queue_t *)mp->b_queue; 7922 mp->b_prev = NULL; 7923 mp->b_queue = NULL; 7924 7925 /* 7926 * If 'q' is an conn queue, it is valid, since we did a 7927 * a refhold on the connp, at the start of the ioctl. 7928 * If 'q' is an ill queue, it is valid, since close of an 7929 * ill will clean up the 'ipsq'. 7930 */ 7931 (*func)(ipsq, q, mp, NULL); 7932 7933 mutex_enter(&ipsq->ipsq_lock); 7934 mp = ipsq_dq(ipsq); 7935 } 7936 7937 mutex_exit(&ipsq->ipsq_lock); 7938 7939 /* 7940 * Need to grab the locks in the right order. Need to 7941 * atomically check (under ipsq_lock) that there are no 7942 * messages before relinquishing the ipsq. Also need to 7943 * atomically wakeup waiters on ill_cv while holding ill_lock. 7944 * Holding ill_g_lock ensures that ipsq list of ills is stable. 7945 * If we need to call ill_split_ipsq and change <ill-ipsq> we need 7946 * to grab ill_g_lock as writer. 7947 */ 7948 rw_enter(&ipst->ips_ill_g_lock, 7949 ipsq->ipsq_split ? RW_WRITER : RW_READER); 7950 7951 /* ipsq_refs can't change while ill_g_lock is held as reader */ 7952 if (ipsq->ipsq_refs != 0) { 7953 /* At most 2 ills v4/v6 per phyint */ 7954 cnt = ipsq->ipsq_refs << 1; 7955 ill_list_size = cnt * sizeof (ill_t *); 7956 /* 7957 * If memory allocation fails, we will do the split 7958 * the next time ipsq_exit is called for whatever reason. 7959 * As long as the ipsq_split flag is set the need to 7960 * split is remembered. 7961 */ 7962 ill_list = kmem_zalloc(ill_list_size, KM_NOSLEEP); 7963 if (ill_list != NULL) 7964 cnt = ill_lock_ipsq_ills(ipsq, ill_list, cnt); 7965 } 7966 mutex_enter(&ipsq->ipsq_lock); 7967 mp = ipsq_dq(ipsq); 7968 if (mp != NULL) { 7969 /* oops, some message has landed up, we can't get out */ 7970 if (ill_list != NULL) 7971 ill_unlock_ills(ill_list, cnt); 7972 rw_exit(&ipst->ips_ill_g_lock); 7973 if (ill_list != NULL) 7974 kmem_free(ill_list, ill_list_size); 7975 ill_list = NULL; 7976 ill_list_size = 0; 7977 cnt = 0; 7978 goto again; 7979 } 7980 7981 /* 7982 * Split only if no ioctl is pending and if memory alloc succeeded 7983 * above. 7984 */ 7985 if (ipsq->ipsq_split && ipsq->ipsq_current_ipif == NULL && 7986 ill_list != NULL) { 7987 /* 7988 * No new ill can join this ipsq since we are holding the 7989 * ill_g_lock. Hence ill_split_ipsq can safely traverse the 7990 * ipsq. ill_split_ipsq may fail due to memory shortage. 7991 * If so we will retry on the next ipsq_exit. 7992 */ 7993 ipsq->ipsq_split = ill_split_ipsq(ipsq); 7994 } 7995 7996 /* 7997 * We are holding the ipsq lock, hence no new messages can 7998 * land up on the ipsq, and there are no messages currently. 7999 * Now safe to get out. Wake up waiters and relinquish ipsq 8000 * atomically while holding ill locks. 8001 */ 8002 ipsq->ipsq_writer = NULL; 8003 ipsq->ipsq_reentry_cnt--; 8004 ASSERT(ipsq->ipsq_reentry_cnt == 0); 8005 #ifdef ILL_DEBUG 8006 ipsq->ipsq_depth = 0; 8007 #endif 8008 mutex_exit(&ipsq->ipsq_lock); 8009 /* 8010 * For IPMP this should wake up all ills in this ipsq. 8011 * We need to hold the ill_lock while waking up waiters to 8012 * avoid missed wakeups. But there is no need to acquire all 8013 * the ill locks and then wakeup. If we have not acquired all 8014 * the locks (due to memory failure above) ill_signal_ipsq_ills 8015 * wakes up ills one at a time after getting the right ill_lock 8016 */ 8017 ill_signal_ipsq_ills(ipsq, ill_list != NULL); 8018 if (ill_list != NULL) 8019 ill_unlock_ills(ill_list, cnt); 8020 if (ipsq->ipsq_refs == 0) 8021 need_ipsq_free = B_TRUE; 8022 rw_exit(&ipst->ips_ill_g_lock); 8023 if (ill_list != 0) 8024 kmem_free(ill_list, ill_list_size); 8025 8026 if (need_ipsq_free) { 8027 /* 8028 * Free the ipsq. ipsq_refs can't increase because ipsq can't be 8029 * looked up. ipsq can be looked up only thru ill or phyint 8030 * and there are no ills/phyint on this ipsq. 8031 */ 8032 ipsq_delete(ipsq); 8033 } 8034 /* 8035 * Now start any igmp or mld timers that could not be started 8036 * while inside the ipsq. The timers can't be started while inside 8037 * the ipsq, since igmp_start_timers may need to call untimeout() 8038 * which can't be done while holding a lock i.e. the ipsq. Otherwise 8039 * there could be a deadlock since the timeout handlers 8040 * mld_timeout_handler / igmp_timeout_handler also synchronously 8041 * wait in ipsq_enter() trying to get the ipsq. 8042 * 8043 * However there is one exception to the above. If this thread is 8044 * itself the igmp/mld timeout handler thread, then we don't want 8045 * to start any new timer until the current handler is done. The 8046 * handler thread passes in B_FALSE for start_igmp/mld_timers, while 8047 * all others pass B_TRUE. 8048 */ 8049 if (start_igmp_timer) { 8050 mutex_enter(&ipst->ips_igmp_timer_lock); 8051 next = ipst->ips_igmp_deferred_next; 8052 ipst->ips_igmp_deferred_next = INFINITY; 8053 mutex_exit(&ipst->ips_igmp_timer_lock); 8054 8055 if (next != INFINITY) 8056 igmp_start_timers(next, ipst); 8057 } 8058 8059 if (start_mld_timer) { 8060 mutex_enter(&ipst->ips_mld_timer_lock); 8061 next = ipst->ips_mld_deferred_next; 8062 ipst->ips_mld_deferred_next = INFINITY; 8063 mutex_exit(&ipst->ips_mld_timer_lock); 8064 8065 if (next != INFINITY) 8066 mld_start_timers(next, ipst); 8067 } 8068 } 8069 8070 /* 8071 * Start the current exclusive operation on `ipsq'; associate it with `ipif' 8072 * and `ioccmd'. 8073 */ 8074 void 8075 ipsq_current_start(ipsq_t *ipsq, ipif_t *ipif, int ioccmd) 8076 { 8077 ASSERT(IAM_WRITER_IPSQ(ipsq)); 8078 8079 mutex_enter(&ipsq->ipsq_lock); 8080 ASSERT(ipsq->ipsq_current_ipif == NULL); 8081 ASSERT(ipsq->ipsq_current_ioctl == 0); 8082 ipsq->ipsq_current_ipif = ipif; 8083 ipsq->ipsq_current_ioctl = ioccmd; 8084 mutex_exit(&ipsq->ipsq_lock); 8085 } 8086 8087 /* 8088 * Finish the current exclusive operation on `ipsq'. Note that other 8089 * operations will not be able to proceed until an ipsq_exit() is done. 8090 */ 8091 void 8092 ipsq_current_finish(ipsq_t *ipsq) 8093 { 8094 ipif_t *ipif = ipsq->ipsq_current_ipif; 8095 8096 ASSERT(IAM_WRITER_IPSQ(ipsq)); 8097 8098 /* 8099 * For SIOCSLIFREMOVEIF, the ipif has been already been blown away 8100 * (but we're careful to never set IPIF_CHANGING in that case). 8101 */ 8102 if (ipsq->ipsq_current_ioctl != SIOCLIFREMOVEIF) { 8103 mutex_enter(&ipif->ipif_ill->ill_lock); 8104 ipif->ipif_state_flags &= ~IPIF_CHANGING; 8105 8106 /* Send any queued event */ 8107 ill_nic_info_dispatch(ipif->ipif_ill); 8108 mutex_exit(&ipif->ipif_ill->ill_lock); 8109 } 8110 8111 mutex_enter(&ipsq->ipsq_lock); 8112 ASSERT(ipsq->ipsq_current_ipif != NULL); 8113 ipsq->ipsq_current_ipif = NULL; 8114 ipsq->ipsq_current_ioctl = 0; 8115 mutex_exit(&ipsq->ipsq_lock); 8116 } 8117 8118 /* 8119 * The ill is closing. Flush all messages on the ipsq that originated 8120 * from this ill. Usually there wont' be any messages on the ipsq_xopq_mphead 8121 * for this ill since ipsq_enter could not have entered until then. 8122 * New messages can't be queued since the CONDEMNED flag is set. 8123 */ 8124 static void 8125 ipsq_flush(ill_t *ill) 8126 { 8127 queue_t *q; 8128 mblk_t *prev; 8129 mblk_t *mp; 8130 mblk_t *mp_next; 8131 ipsq_t *ipsq; 8132 8133 ASSERT(IAM_WRITER_ILL(ill)); 8134 ipsq = ill->ill_phyint->phyint_ipsq; 8135 /* 8136 * Flush any messages sent up by the driver. 8137 */ 8138 mutex_enter(&ipsq->ipsq_lock); 8139 for (prev = NULL, mp = ipsq->ipsq_mphead; mp != NULL; mp = mp_next) { 8140 mp_next = mp->b_next; 8141 q = mp->b_queue; 8142 if (q == ill->ill_rq || q == ill->ill_wq) { 8143 /* Remove the mp from the ipsq */ 8144 if (prev == NULL) 8145 ipsq->ipsq_mphead = mp->b_next; 8146 else 8147 prev->b_next = mp->b_next; 8148 if (ipsq->ipsq_mptail == mp) { 8149 ASSERT(mp_next == NULL); 8150 ipsq->ipsq_mptail = prev; 8151 } 8152 inet_freemsg(mp); 8153 } else { 8154 prev = mp; 8155 } 8156 } 8157 mutex_exit(&ipsq->ipsq_lock); 8158 (void) ipsq_pending_mp_cleanup(ill, NULL); 8159 ipsq_xopq_mp_cleanup(ill, NULL); 8160 ill_pending_mp_cleanup(ill); 8161 } 8162 8163 /* 8164 * Clean up one squeue element. ill_inuse_ref is protected by ill_lock. 8165 * The real cleanup happens behind the squeue via ip_squeue_clean function but 8166 * we need to protect ourselfs from 2 threads trying to cleanup at the same 8167 * time (possible with one port going down for aggr and someone tearing down the 8168 * entire aggr simultaneously. So we use ill_inuse_ref protected by ill_lock 8169 * to indicate when the cleanup has started (1 ref) and when the cleanup 8170 * is done (0 ref). When a new ring gets assigned to squeue, we start by 8171 * putting 2 ref on ill_inuse_ref. 8172 */ 8173 static void 8174 ipsq_clean_ring(ill_t *ill, ill_rx_ring_t *rx_ring) 8175 { 8176 conn_t *connp; 8177 squeue_t *sqp; 8178 mblk_t *mp; 8179 8180 ASSERT(rx_ring != NULL); 8181 8182 /* Just clean one squeue */ 8183 mutex_enter(&ill->ill_lock); 8184 /* 8185 * Reset the ILL_SOFT_RING_ASSIGN bit so that 8186 * ip_squeue_soft_ring_affinty() will not go 8187 * ahead with assigning rings. 8188 */ 8189 ill->ill_state_flags &= ~ILL_SOFT_RING_ASSIGN; 8190 while (rx_ring->rr_ring_state == ILL_RING_INPROC) 8191 /* Some operations pending on the ring. Wait */ 8192 cv_wait(&ill->ill_cv, &ill->ill_lock); 8193 8194 if (rx_ring->rr_ring_state != ILL_RING_INUSE) { 8195 /* 8196 * Someone already trying to clean 8197 * this squeue or its already been cleaned. 8198 */ 8199 mutex_exit(&ill->ill_lock); 8200 return; 8201 } 8202 sqp = rx_ring->rr_sqp; 8203 8204 if (sqp == NULL) { 8205 /* 8206 * The rx_ring never had a squeue assigned to it. 8207 * We are under ill_lock so we can clean it up 8208 * here itself since no one can get to it. 8209 */ 8210 rx_ring->rr_blank = NULL; 8211 rx_ring->rr_handle = NULL; 8212 rx_ring->rr_sqp = NULL; 8213 rx_ring->rr_ring_state = ILL_RING_FREE; 8214 mutex_exit(&ill->ill_lock); 8215 return; 8216 } 8217 8218 /* Set the state that its being cleaned */ 8219 rx_ring->rr_ring_state = ILL_RING_BEING_FREED; 8220 ASSERT(sqp != NULL); 8221 mutex_exit(&ill->ill_lock); 8222 8223 /* 8224 * Use the preallocated ill_unbind_conn for this purpose 8225 */ 8226 connp = ill->ill_dls_capab->ill_unbind_conn; 8227 8228 if (connp->conn_tcp->tcp_closemp.b_prev == NULL) 8229 connp->conn_tcp->tcp_closemp_used = B_TRUE; 8230 else 8231 cmn_err(CE_PANIC, "ipsq_clean_ring: " 8232 "concurrent use of tcp_closemp_used: connp %p tcp %p\n", 8233 (void *)connp, (void *)connp->conn_tcp); 8234 8235 TCP_DEBUG_GETPCSTACK(connp->conn_tcp->tcmp_stk, 15); 8236 mp = &connp->conn_tcp->tcp_closemp; 8237 CONN_INC_REF(connp); 8238 squeue_enter(sqp, mp, ip_squeue_clean, connp, NULL); 8239 8240 mutex_enter(&ill->ill_lock); 8241 while (rx_ring->rr_ring_state != ILL_RING_FREE) 8242 cv_wait(&ill->ill_cv, &ill->ill_lock); 8243 8244 mutex_exit(&ill->ill_lock); 8245 } 8246 8247 static void 8248 ipsq_clean_all(ill_t *ill) 8249 { 8250 int idx; 8251 8252 /* 8253 * No need to clean if poll_capab isn't set for this ill 8254 */ 8255 if (!(ill->ill_capabilities & (ILL_CAPAB_POLL|ILL_CAPAB_SOFT_RING))) 8256 return; 8257 8258 for (idx = 0; idx < ILL_MAX_RINGS; idx++) { 8259 ill_rx_ring_t *ipr = &ill->ill_dls_capab->ill_ring_tbl[idx]; 8260 ipsq_clean_ring(ill, ipr); 8261 } 8262 8263 ill->ill_capabilities &= ~(ILL_CAPAB_POLL|ILL_CAPAB_SOFT_RING); 8264 } 8265 8266 /* ARGSUSED */ 8267 int 8268 ip_sioctl_slifoindex(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 8269 ip_ioctl_cmd_t *ipip, void *ifreq) 8270 { 8271 ill_t *ill; 8272 struct lifreq *lifr = (struct lifreq *)ifreq; 8273 boolean_t isv6; 8274 conn_t *connp; 8275 ip_stack_t *ipst; 8276 8277 connp = Q_TO_CONN(q); 8278 ipst = connp->conn_netstack->netstack_ip; 8279 isv6 = connp->conn_af_isv6; 8280 /* 8281 * Set original index. 8282 * Failover and failback move logical interfaces 8283 * from one physical interface to another. The 8284 * original index indicates the parent of a logical 8285 * interface, in other words, the physical interface 8286 * the logical interface will be moved back to on 8287 * failback. 8288 */ 8289 8290 /* 8291 * Don't allow the original index to be changed 8292 * for non-failover addresses, autoconfigured 8293 * addresses, or IPv6 link local addresses. 8294 */ 8295 if (((ipif->ipif_flags & (IPIF_NOFAILOVER | IPIF_ADDRCONF)) != NULL) || 8296 (isv6 && IN6_IS_ADDR_LINKLOCAL(&ipif->ipif_v6lcl_addr))) { 8297 return (EINVAL); 8298 } 8299 /* 8300 * The new original index must be in use by some 8301 * physical interface. 8302 */ 8303 ill = ill_lookup_on_ifindex(lifr->lifr_index, isv6, NULL, NULL, 8304 NULL, NULL, ipst); 8305 if (ill == NULL) 8306 return (ENXIO); 8307 ill_refrele(ill); 8308 8309 ipif->ipif_orig_ifindex = lifr->lifr_index; 8310 /* 8311 * When this ipif gets failed back, don't 8312 * preserve the original id, as it is no 8313 * longer applicable. 8314 */ 8315 ipif->ipif_orig_ipifid = 0; 8316 /* 8317 * For IPv4, change the original index of any 8318 * multicast addresses associated with the 8319 * ipif to the new value. 8320 */ 8321 if (!isv6) { 8322 ilm_t *ilm; 8323 8324 mutex_enter(&ipif->ipif_ill->ill_lock); 8325 for (ilm = ipif->ipif_ill->ill_ilm; ilm != NULL; 8326 ilm = ilm->ilm_next) { 8327 if (ilm->ilm_ipif == ipif) { 8328 ilm->ilm_orig_ifindex = lifr->lifr_index; 8329 } 8330 } 8331 mutex_exit(&ipif->ipif_ill->ill_lock); 8332 } 8333 return (0); 8334 } 8335 8336 /* ARGSUSED */ 8337 int 8338 ip_sioctl_get_oindex(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 8339 ip_ioctl_cmd_t *ipip, void *ifreq) 8340 { 8341 struct lifreq *lifr = (struct lifreq *)ifreq; 8342 8343 /* 8344 * Get the original interface index i.e the one 8345 * before FAILOVER if it ever happened. 8346 */ 8347 lifr->lifr_index = ipif->ipif_orig_ifindex; 8348 return (0); 8349 } 8350 8351 /* 8352 * Parse an iftun_req structure coming down SIOC[GS]TUNPARAM ioctls, 8353 * refhold and return the associated ipif 8354 */ 8355 int 8356 ip_extract_tunreq(queue_t *q, mblk_t *mp, ipif_t **ipifp, ipsq_func_t func) 8357 { 8358 boolean_t exists; 8359 struct iftun_req *ta; 8360 ipif_t *ipif; 8361 ill_t *ill; 8362 boolean_t isv6; 8363 mblk_t *mp1; 8364 int error; 8365 conn_t *connp; 8366 ip_stack_t *ipst; 8367 8368 /* Existence verified in ip_wput_nondata */ 8369 mp1 = mp->b_cont->b_cont; 8370 ta = (struct iftun_req *)mp1->b_rptr; 8371 /* 8372 * Null terminate the string to protect against buffer 8373 * overrun. String was generated by user code and may not 8374 * be trusted. 8375 */ 8376 ta->ifta_lifr_name[LIFNAMSIZ - 1] = '\0'; 8377 8378 connp = Q_TO_CONN(q); 8379 isv6 = connp->conn_af_isv6; 8380 ipst = connp->conn_netstack->netstack_ip; 8381 8382 /* Disallows implicit create */ 8383 ipif = ipif_lookup_on_name(ta->ifta_lifr_name, 8384 mi_strlen(ta->ifta_lifr_name), B_FALSE, &exists, isv6, 8385 connp->conn_zoneid, CONNP_TO_WQ(connp), mp, func, &error, ipst); 8386 if (ipif == NULL) 8387 return (error); 8388 8389 if (ipif->ipif_id != 0) { 8390 /* 8391 * We really don't want to set/get tunnel parameters 8392 * on virtual tunnel interfaces. Only allow the 8393 * base tunnel to do these. 8394 */ 8395 ipif_refrele(ipif); 8396 return (EINVAL); 8397 } 8398 8399 /* 8400 * Send down to tunnel mod for ioctl processing. 8401 * Will finish ioctl in ip_rput_other(). 8402 */ 8403 ill = ipif->ipif_ill; 8404 if (ill->ill_net_type == IRE_LOOPBACK) { 8405 ipif_refrele(ipif); 8406 return (EOPNOTSUPP); 8407 } 8408 8409 if (ill->ill_wq == NULL) { 8410 ipif_refrele(ipif); 8411 return (ENXIO); 8412 } 8413 /* 8414 * Mark the ioctl as coming from an IPv6 interface for 8415 * tun's convenience. 8416 */ 8417 if (ill->ill_isv6) 8418 ta->ifta_flags |= 0x80000000; 8419 *ipifp = ipif; 8420 return (0); 8421 } 8422 8423 /* 8424 * Parse an ifreq or lifreq struct coming down ioctls and refhold 8425 * and return the associated ipif. 8426 * Return value: 8427 * Non zero: An error has occurred. ci may not be filled out. 8428 * zero : ci is filled out with the ioctl cmd in ci.ci_name, and 8429 * a held ipif in ci.ci_ipif. 8430 */ 8431 int 8432 ip_extract_lifreq_cmn(queue_t *q, mblk_t *mp, int cmd_type, int flags, 8433 cmd_info_t *ci, ipsq_func_t func) 8434 { 8435 sin_t *sin; 8436 sin6_t *sin6; 8437 char *name; 8438 struct ifreq *ifr; 8439 struct lifreq *lifr; 8440 ipif_t *ipif = NULL; 8441 ill_t *ill; 8442 conn_t *connp; 8443 boolean_t isv6; 8444 struct iocblk *iocp = (struct iocblk *)mp->b_rptr; 8445 boolean_t exists; 8446 int err; 8447 mblk_t *mp1; 8448 zoneid_t zoneid; 8449 ip_stack_t *ipst; 8450 8451 if (q->q_next != NULL) { 8452 ill = (ill_t *)q->q_ptr; 8453 isv6 = ill->ill_isv6; 8454 connp = NULL; 8455 zoneid = ALL_ZONES; 8456 ipst = ill->ill_ipst; 8457 } else { 8458 ill = NULL; 8459 connp = Q_TO_CONN(q); 8460 isv6 = connp->conn_af_isv6; 8461 zoneid = connp->conn_zoneid; 8462 if (zoneid == GLOBAL_ZONEID) { 8463 /* global zone can access ipifs in all zones */ 8464 zoneid = ALL_ZONES; 8465 } 8466 ipst = connp->conn_netstack->netstack_ip; 8467 } 8468 8469 /* Has been checked in ip_wput_nondata */ 8470 mp1 = mp->b_cont->b_cont; 8471 8472 8473 if (cmd_type == IF_CMD) { 8474 /* This a old style SIOC[GS]IF* command */ 8475 ifr = (struct ifreq *)mp1->b_rptr; 8476 /* 8477 * Null terminate the string to protect against buffer 8478 * overrun. String was generated by user code and may not 8479 * be trusted. 8480 */ 8481 ifr->ifr_name[IFNAMSIZ - 1] = '\0'; 8482 sin = (sin_t *)&ifr->ifr_addr; 8483 name = ifr->ifr_name; 8484 ci->ci_sin = sin; 8485 ci->ci_sin6 = NULL; 8486 ci->ci_lifr = (struct lifreq *)ifr; 8487 } else { 8488 /* This a new style SIOC[GS]LIF* command */ 8489 ASSERT(cmd_type == LIF_CMD); 8490 lifr = (struct lifreq *)mp1->b_rptr; 8491 /* 8492 * Null terminate the string to protect against buffer 8493 * overrun. String was generated by user code and may not 8494 * be trusted. 8495 */ 8496 lifr->lifr_name[LIFNAMSIZ - 1] = '\0'; 8497 name = lifr->lifr_name; 8498 sin = (sin_t *)&lifr->lifr_addr; 8499 sin6 = (sin6_t *)&lifr->lifr_addr; 8500 if (iocp->ioc_cmd == SIOCSLIFGROUPNAME) { 8501 (void) strncpy(ci->ci_groupname, lifr->lifr_groupname, 8502 LIFNAMSIZ); 8503 } 8504 ci->ci_sin = sin; 8505 ci->ci_sin6 = sin6; 8506 ci->ci_lifr = lifr; 8507 } 8508 8509 if (iocp->ioc_cmd == SIOCSLIFNAME) { 8510 /* 8511 * The ioctl will be failed if the ioctl comes down 8512 * an conn stream 8513 */ 8514 if (ill == NULL) { 8515 /* 8516 * Not an ill queue, return EINVAL same as the 8517 * old error code. 8518 */ 8519 return (ENXIO); 8520 } 8521 ipif = ill->ill_ipif; 8522 ipif_refhold(ipif); 8523 } else { 8524 ipif = ipif_lookup_on_name(name, mi_strlen(name), B_FALSE, 8525 &exists, isv6, zoneid, 8526 (connp == NULL) ? q : CONNP_TO_WQ(connp), mp, func, &err, 8527 ipst); 8528 if (ipif == NULL) { 8529 if (err == EINPROGRESS) 8530 return (err); 8531 if (iocp->ioc_cmd == SIOCLIFFAILOVER || 8532 iocp->ioc_cmd == SIOCLIFFAILBACK) { 8533 /* 8534 * Need to try both v4 and v6 since this 8535 * ioctl can come down either v4 or v6 8536 * socket. The lifreq.lifr_family passed 8537 * down by this ioctl is AF_UNSPEC. 8538 */ 8539 ipif = ipif_lookup_on_name(name, 8540 mi_strlen(name), B_FALSE, &exists, !isv6, 8541 zoneid, (connp == NULL) ? q : 8542 CONNP_TO_WQ(connp), mp, func, &err, ipst); 8543 if (err == EINPROGRESS) 8544 return (err); 8545 } 8546 err = 0; /* Ensure we don't use it below */ 8547 } 8548 } 8549 8550 /* 8551 * Old style [GS]IFCMD does not admit IPv6 ipif 8552 */ 8553 if (ipif != NULL && ipif->ipif_isv6 && cmd_type == IF_CMD) { 8554 ipif_refrele(ipif); 8555 return (ENXIO); 8556 } 8557 8558 if (ipif == NULL && ill != NULL && ill->ill_ipif != NULL && 8559 name[0] == '\0') { 8560 /* 8561 * Handle a or a SIOC?IF* with a null name 8562 * during plumb (on the ill queue before the I_PLINK). 8563 */ 8564 ipif = ill->ill_ipif; 8565 ipif_refhold(ipif); 8566 } 8567 8568 if (ipif == NULL) 8569 return (ENXIO); 8570 8571 /* 8572 * Allow only GET operations if this ipif has been created 8573 * temporarily due to a MOVE operation. 8574 */ 8575 if (ipif->ipif_replace_zero && !(flags & IPI_REPL)) { 8576 ipif_refrele(ipif); 8577 return (EINVAL); 8578 } 8579 8580 ci->ci_ipif = ipif; 8581 return (0); 8582 } 8583 8584 /* 8585 * Return the total number of ipifs. 8586 */ 8587 static uint_t 8588 ip_get_numifs(zoneid_t zoneid, ip_stack_t *ipst) 8589 { 8590 uint_t numifs = 0; 8591 ill_t *ill; 8592 ill_walk_context_t ctx; 8593 ipif_t *ipif; 8594 8595 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 8596 ill = ILL_START_WALK_V4(&ctx, ipst); 8597 8598 while (ill != NULL) { 8599 for (ipif = ill->ill_ipif; ipif != NULL; 8600 ipif = ipif->ipif_next) { 8601 if (ipif->ipif_zoneid == zoneid || 8602 ipif->ipif_zoneid == ALL_ZONES) 8603 numifs++; 8604 } 8605 ill = ill_next(&ctx, ill); 8606 } 8607 rw_exit(&ipst->ips_ill_g_lock); 8608 return (numifs); 8609 } 8610 8611 /* 8612 * Return the total number of ipifs. 8613 */ 8614 static uint_t 8615 ip_get_numlifs(int family, int lifn_flags, zoneid_t zoneid, ip_stack_t *ipst) 8616 { 8617 uint_t numifs = 0; 8618 ill_t *ill; 8619 ipif_t *ipif; 8620 ill_walk_context_t ctx; 8621 8622 ip1dbg(("ip_get_numlifs(%d %u %d)\n", family, lifn_flags, (int)zoneid)); 8623 8624 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 8625 if (family == AF_INET) 8626 ill = ILL_START_WALK_V4(&ctx, ipst); 8627 else if (family == AF_INET6) 8628 ill = ILL_START_WALK_V6(&ctx, ipst); 8629 else 8630 ill = ILL_START_WALK_ALL(&ctx, ipst); 8631 8632 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 8633 for (ipif = ill->ill_ipif; ipif != NULL; 8634 ipif = ipif->ipif_next) { 8635 if ((ipif->ipif_flags & IPIF_NOXMIT) && 8636 !(lifn_flags & LIFC_NOXMIT)) 8637 continue; 8638 if ((ipif->ipif_flags & IPIF_TEMPORARY) && 8639 !(lifn_flags & LIFC_TEMPORARY)) 8640 continue; 8641 if (((ipif->ipif_flags & 8642 (IPIF_NOXMIT|IPIF_NOLOCAL| 8643 IPIF_DEPRECATED)) || 8644 (ill->ill_phyint->phyint_flags & 8645 PHYI_LOOPBACK) || 8646 !(ipif->ipif_flags & IPIF_UP)) && 8647 (lifn_flags & LIFC_EXTERNAL_SOURCE)) 8648 continue; 8649 8650 if (zoneid != ipif->ipif_zoneid && 8651 ipif->ipif_zoneid != ALL_ZONES && 8652 (zoneid != GLOBAL_ZONEID || 8653 !(lifn_flags & LIFC_ALLZONES))) 8654 continue; 8655 8656 numifs++; 8657 } 8658 } 8659 rw_exit(&ipst->ips_ill_g_lock); 8660 return (numifs); 8661 } 8662 8663 uint_t 8664 ip_get_lifsrcofnum(ill_t *ill) 8665 { 8666 uint_t numifs = 0; 8667 ill_t *ill_head = ill; 8668 ip_stack_t *ipst = ill->ill_ipst; 8669 8670 /* 8671 * ill_g_usesrc_lock protects ill_usesrc_grp_next, for example, some 8672 * other thread may be trying to relink the ILLs in this usesrc group 8673 * and adjusting the ill_usesrc_grp_next pointers 8674 */ 8675 rw_enter(&ipst->ips_ill_g_usesrc_lock, RW_READER); 8676 if ((ill->ill_usesrc_ifindex == 0) && 8677 (ill->ill_usesrc_grp_next != NULL)) { 8678 for (; (ill != NULL) && (ill->ill_usesrc_grp_next != ill_head); 8679 ill = ill->ill_usesrc_grp_next) 8680 numifs++; 8681 } 8682 rw_exit(&ipst->ips_ill_g_usesrc_lock); 8683 8684 return (numifs); 8685 } 8686 8687 /* Null values are passed in for ipif, sin, and ifreq */ 8688 /* ARGSUSED */ 8689 int 8690 ip_sioctl_get_ifnum(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, 8691 mblk_t *mp, ip_ioctl_cmd_t *ipip, void *ifreq) 8692 { 8693 int *nump; 8694 conn_t *connp = Q_TO_CONN(q); 8695 8696 ASSERT(q->q_next == NULL); /* not a valid ioctl for ip as a module */ 8697 8698 /* Existence of b_cont->b_cont checked in ip_wput_nondata */ 8699 nump = (int *)mp->b_cont->b_cont->b_rptr; 8700 8701 *nump = ip_get_numifs(connp->conn_zoneid, 8702 connp->conn_netstack->netstack_ip); 8703 ip1dbg(("ip_sioctl_get_ifnum numifs %d", *nump)); 8704 return (0); 8705 } 8706 8707 /* Null values are passed in for ipif, sin, and ifreq */ 8708 /* ARGSUSED */ 8709 int 8710 ip_sioctl_get_lifnum(ipif_t *dummy_ipif, sin_t *dummy_sin, 8711 queue_t *q, mblk_t *mp, ip_ioctl_cmd_t *ipip, void *ifreq) 8712 { 8713 struct lifnum *lifn; 8714 mblk_t *mp1; 8715 conn_t *connp = Q_TO_CONN(q); 8716 8717 ASSERT(q->q_next == NULL); /* not a valid ioctl for ip as a module */ 8718 8719 /* Existence checked in ip_wput_nondata */ 8720 mp1 = mp->b_cont->b_cont; 8721 8722 lifn = (struct lifnum *)mp1->b_rptr; 8723 switch (lifn->lifn_family) { 8724 case AF_UNSPEC: 8725 case AF_INET: 8726 case AF_INET6: 8727 break; 8728 default: 8729 return (EAFNOSUPPORT); 8730 } 8731 8732 lifn->lifn_count = ip_get_numlifs(lifn->lifn_family, lifn->lifn_flags, 8733 connp->conn_zoneid, connp->conn_netstack->netstack_ip); 8734 ip1dbg(("ip_sioctl_get_lifnum numifs %d", lifn->lifn_count)); 8735 return (0); 8736 } 8737 8738 /* ARGSUSED */ 8739 int 8740 ip_sioctl_get_ifconf(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, 8741 mblk_t *mp, ip_ioctl_cmd_t *ipip, void *ifreq) 8742 { 8743 STRUCT_HANDLE(ifconf, ifc); 8744 mblk_t *mp1; 8745 struct iocblk *iocp; 8746 struct ifreq *ifr; 8747 ill_walk_context_t ctx; 8748 ill_t *ill; 8749 ipif_t *ipif; 8750 struct sockaddr_in *sin; 8751 int32_t ifclen; 8752 zoneid_t zoneid; 8753 ip_stack_t *ipst = CONNQ_TO_IPST(q); 8754 8755 ASSERT(q->q_next == NULL); /* not valid ioctls for ip as a module */ 8756 8757 ip1dbg(("ip_sioctl_get_ifconf")); 8758 /* Existence verified in ip_wput_nondata */ 8759 mp1 = mp->b_cont->b_cont; 8760 iocp = (struct iocblk *)mp->b_rptr; 8761 zoneid = Q_TO_CONN(q)->conn_zoneid; 8762 8763 /* 8764 * The original SIOCGIFCONF passed in a struct ifconf which specified 8765 * the user buffer address and length into which the list of struct 8766 * ifreqs was to be copied. Since AT&T Streams does not seem to 8767 * allow M_COPYOUT to be used in conjunction with I_STR IOCTLS, 8768 * the SIOCGIFCONF operation was redefined to simply provide 8769 * a large output buffer into which we are supposed to jam the ifreq 8770 * array. The same ioctl command code was used, despite the fact that 8771 * both the applications and the kernel code had to change, thus making 8772 * it impossible to support both interfaces. 8773 * 8774 * For reasons not good enough to try to explain, the following 8775 * algorithm is used for deciding what to do with one of these: 8776 * If the IOCTL comes in as an I_STR, it is assumed to be of the new 8777 * form with the output buffer coming down as the continuation message. 8778 * If it arrives as a TRANSPARENT IOCTL, it is assumed to be old style, 8779 * and we have to copy in the ifconf structure to find out how big the 8780 * output buffer is and where to copy out to. Sure no problem... 8781 * 8782 */ 8783 STRUCT_SET_HANDLE(ifc, iocp->ioc_flag, NULL); 8784 if ((mp1->b_wptr - mp1->b_rptr) == STRUCT_SIZE(ifc)) { 8785 int numifs = 0; 8786 size_t ifc_bufsize; 8787 8788 /* 8789 * Must be (better be!) continuation of a TRANSPARENT 8790 * IOCTL. We just copied in the ifconf structure. 8791 */ 8792 STRUCT_SET_HANDLE(ifc, iocp->ioc_flag, 8793 (struct ifconf *)mp1->b_rptr); 8794 8795 /* 8796 * Allocate a buffer to hold requested information. 8797 * 8798 * If ifc_len is larger than what is needed, we only 8799 * allocate what we will use. 8800 * 8801 * If ifc_len is smaller than what is needed, return 8802 * EINVAL. 8803 * 8804 * XXX: the ill_t structure can hava 2 counters, for 8805 * v4 and v6 (not just ill_ipif_up_count) to store the 8806 * number of interfaces for a device, so we don't need 8807 * to count them here... 8808 */ 8809 numifs = ip_get_numifs(zoneid, ipst); 8810 8811 ifclen = STRUCT_FGET(ifc, ifc_len); 8812 ifc_bufsize = numifs * sizeof (struct ifreq); 8813 if (ifc_bufsize > ifclen) { 8814 if (iocp->ioc_cmd == O_SIOCGIFCONF) { 8815 /* old behaviour */ 8816 return (EINVAL); 8817 } else { 8818 ifc_bufsize = ifclen; 8819 } 8820 } 8821 8822 mp1 = mi_copyout_alloc(q, mp, 8823 STRUCT_FGETP(ifc, ifc_buf), ifc_bufsize, B_FALSE); 8824 if (mp1 == NULL) 8825 return (ENOMEM); 8826 8827 mp1->b_wptr = mp1->b_rptr + ifc_bufsize; 8828 } 8829 bzero(mp1->b_rptr, mp1->b_wptr - mp1->b_rptr); 8830 /* 8831 * the SIOCGIFCONF ioctl only knows about 8832 * IPv4 addresses, so don't try to tell 8833 * it about interfaces with IPv6-only 8834 * addresses. (Last parm 'isv6' is B_FALSE) 8835 */ 8836 8837 ifr = (struct ifreq *)mp1->b_rptr; 8838 8839 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 8840 ill = ILL_START_WALK_V4(&ctx, ipst); 8841 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 8842 for (ipif = ill->ill_ipif; ipif != NULL; 8843 ipif = ipif->ipif_next) { 8844 if (zoneid != ipif->ipif_zoneid && 8845 ipif->ipif_zoneid != ALL_ZONES) 8846 continue; 8847 if ((uchar_t *)&ifr[1] > mp1->b_wptr) { 8848 if (iocp->ioc_cmd == O_SIOCGIFCONF) { 8849 /* old behaviour */ 8850 rw_exit(&ipst->ips_ill_g_lock); 8851 return (EINVAL); 8852 } else { 8853 goto if_copydone; 8854 } 8855 } 8856 (void) ipif_get_name(ipif, 8857 ifr->ifr_name, 8858 sizeof (ifr->ifr_name)); 8859 sin = (sin_t *)&ifr->ifr_addr; 8860 *sin = sin_null; 8861 sin->sin_family = AF_INET; 8862 sin->sin_addr.s_addr = ipif->ipif_lcl_addr; 8863 ifr++; 8864 } 8865 } 8866 if_copydone: 8867 rw_exit(&ipst->ips_ill_g_lock); 8868 mp1->b_wptr = (uchar_t *)ifr; 8869 8870 if (STRUCT_BUF(ifc) != NULL) { 8871 STRUCT_FSET(ifc, ifc_len, 8872 (int)((uchar_t *)ifr - mp1->b_rptr)); 8873 } 8874 return (0); 8875 } 8876 8877 /* 8878 * Get the interfaces using the address hosted on the interface passed in, 8879 * as a source adddress 8880 */ 8881 /* ARGSUSED */ 8882 int 8883 ip_sioctl_get_lifsrcof(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, 8884 mblk_t *mp, ip_ioctl_cmd_t *ipip, void *ifreq) 8885 { 8886 mblk_t *mp1; 8887 ill_t *ill, *ill_head; 8888 ipif_t *ipif, *orig_ipif; 8889 int numlifs = 0; 8890 size_t lifs_bufsize, lifsmaxlen; 8891 struct lifreq *lifr; 8892 struct iocblk *iocp = (struct iocblk *)mp->b_rptr; 8893 uint_t ifindex; 8894 zoneid_t zoneid; 8895 int err = 0; 8896 boolean_t isv6 = B_FALSE; 8897 struct sockaddr_in *sin; 8898 struct sockaddr_in6 *sin6; 8899 STRUCT_HANDLE(lifsrcof, lifs); 8900 ip_stack_t *ipst; 8901 8902 ipst = CONNQ_TO_IPST(q); 8903 8904 ASSERT(q->q_next == NULL); 8905 8906 zoneid = Q_TO_CONN(q)->conn_zoneid; 8907 8908 /* Existence verified in ip_wput_nondata */ 8909 mp1 = mp->b_cont->b_cont; 8910 8911 /* 8912 * Must be (better be!) continuation of a TRANSPARENT 8913 * IOCTL. We just copied in the lifsrcof structure. 8914 */ 8915 STRUCT_SET_HANDLE(lifs, iocp->ioc_flag, 8916 (struct lifsrcof *)mp1->b_rptr); 8917 8918 if (MBLKL(mp1) != STRUCT_SIZE(lifs)) 8919 return (EINVAL); 8920 8921 ifindex = STRUCT_FGET(lifs, lifs_ifindex); 8922 isv6 = (Q_TO_CONN(q))->conn_af_isv6; 8923 ipif = ipif_lookup_on_ifindex(ifindex, isv6, zoneid, q, mp, 8924 ip_process_ioctl, &err, ipst); 8925 if (ipif == NULL) { 8926 ip1dbg(("ip_sioctl_get_lifsrcof: no ipif for ifindex %d\n", 8927 ifindex)); 8928 return (err); 8929 } 8930 8931 8932 /* Allocate a buffer to hold requested information */ 8933 numlifs = ip_get_lifsrcofnum(ipif->ipif_ill); 8934 lifs_bufsize = numlifs * sizeof (struct lifreq); 8935 lifsmaxlen = STRUCT_FGET(lifs, lifs_maxlen); 8936 /* The actual size needed is always returned in lifs_len */ 8937 STRUCT_FSET(lifs, lifs_len, lifs_bufsize); 8938 8939 /* If the amount we need is more than what is passed in, abort */ 8940 if (lifs_bufsize > lifsmaxlen || lifs_bufsize == 0) { 8941 ipif_refrele(ipif); 8942 return (0); 8943 } 8944 8945 mp1 = mi_copyout_alloc(q, mp, 8946 STRUCT_FGETP(lifs, lifs_buf), lifs_bufsize, B_FALSE); 8947 if (mp1 == NULL) { 8948 ipif_refrele(ipif); 8949 return (ENOMEM); 8950 } 8951 8952 mp1->b_wptr = mp1->b_rptr + lifs_bufsize; 8953 bzero(mp1->b_rptr, lifs_bufsize); 8954 8955 lifr = (struct lifreq *)mp1->b_rptr; 8956 8957 ill = ill_head = ipif->ipif_ill; 8958 orig_ipif = ipif; 8959 8960 /* ill_g_usesrc_lock protects ill_usesrc_grp_next */ 8961 rw_enter(&ipst->ips_ill_g_usesrc_lock, RW_READER); 8962 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 8963 8964 ill = ill->ill_usesrc_grp_next; /* start from next ill */ 8965 for (; (ill != NULL) && (ill != ill_head); 8966 ill = ill->ill_usesrc_grp_next) { 8967 8968 if ((uchar_t *)&lifr[1] > mp1->b_wptr) 8969 break; 8970 8971 ipif = ill->ill_ipif; 8972 (void) ipif_get_name(ipif, 8973 lifr->lifr_name, sizeof (lifr->lifr_name)); 8974 if (ipif->ipif_isv6) { 8975 sin6 = (sin6_t *)&lifr->lifr_addr; 8976 *sin6 = sin6_null; 8977 sin6->sin6_family = AF_INET6; 8978 sin6->sin6_addr = ipif->ipif_v6lcl_addr; 8979 lifr->lifr_addrlen = ip_mask_to_plen_v6( 8980 &ipif->ipif_v6net_mask); 8981 } else { 8982 sin = (sin_t *)&lifr->lifr_addr; 8983 *sin = sin_null; 8984 sin->sin_family = AF_INET; 8985 sin->sin_addr.s_addr = ipif->ipif_lcl_addr; 8986 lifr->lifr_addrlen = ip_mask_to_plen( 8987 ipif->ipif_net_mask); 8988 } 8989 lifr++; 8990 } 8991 rw_exit(&ipst->ips_ill_g_usesrc_lock); 8992 rw_exit(&ipst->ips_ill_g_lock); 8993 ipif_refrele(orig_ipif); 8994 mp1->b_wptr = (uchar_t *)lifr; 8995 STRUCT_FSET(lifs, lifs_len, (int)((uchar_t *)lifr - mp1->b_rptr)); 8996 8997 return (0); 8998 } 8999 9000 /* ARGSUSED */ 9001 int 9002 ip_sioctl_get_lifconf(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, 9003 mblk_t *mp, ip_ioctl_cmd_t *ipip, void *ifreq) 9004 { 9005 mblk_t *mp1; 9006 int list; 9007 ill_t *ill; 9008 ipif_t *ipif; 9009 int flags; 9010 int numlifs = 0; 9011 size_t lifc_bufsize; 9012 struct lifreq *lifr; 9013 sa_family_t family; 9014 struct sockaddr_in *sin; 9015 struct sockaddr_in6 *sin6; 9016 ill_walk_context_t ctx; 9017 struct iocblk *iocp = (struct iocblk *)mp->b_rptr; 9018 int32_t lifclen; 9019 zoneid_t zoneid; 9020 STRUCT_HANDLE(lifconf, lifc); 9021 ip_stack_t *ipst = CONNQ_TO_IPST(q); 9022 9023 ip1dbg(("ip_sioctl_get_lifconf")); 9024 9025 ASSERT(q->q_next == NULL); 9026 9027 zoneid = Q_TO_CONN(q)->conn_zoneid; 9028 9029 /* Existence verified in ip_wput_nondata */ 9030 mp1 = mp->b_cont->b_cont; 9031 9032 /* 9033 * An extended version of SIOCGIFCONF that takes an 9034 * additional address family and flags field. 9035 * AF_UNSPEC retrieve both IPv4 and IPv6. 9036 * Unless LIFC_NOXMIT is specified the IPIF_NOXMIT 9037 * interfaces are omitted. 9038 * Similarly, IPIF_TEMPORARY interfaces are omitted 9039 * unless LIFC_TEMPORARY is specified. 9040 * If LIFC_EXTERNAL_SOURCE is specified, IPIF_NOXMIT, 9041 * IPIF_NOLOCAL, PHYI_LOOPBACK, IPIF_DEPRECATED and 9042 * not IPIF_UP interfaces are omitted. LIFC_EXTERNAL_SOURCE 9043 * has priority over LIFC_NOXMIT. 9044 */ 9045 STRUCT_SET_HANDLE(lifc, iocp->ioc_flag, NULL); 9046 9047 if ((mp1->b_wptr - mp1->b_rptr) != STRUCT_SIZE(lifc)) 9048 return (EINVAL); 9049 9050 /* 9051 * Must be (better be!) continuation of a TRANSPARENT 9052 * IOCTL. We just copied in the lifconf structure. 9053 */ 9054 STRUCT_SET_HANDLE(lifc, iocp->ioc_flag, (struct lifconf *)mp1->b_rptr); 9055 9056 family = STRUCT_FGET(lifc, lifc_family); 9057 flags = STRUCT_FGET(lifc, lifc_flags); 9058 9059 switch (family) { 9060 case AF_UNSPEC: 9061 /* 9062 * walk all ILL's. 9063 */ 9064 list = MAX_G_HEADS; 9065 break; 9066 case AF_INET: 9067 /* 9068 * walk only IPV4 ILL's. 9069 */ 9070 list = IP_V4_G_HEAD; 9071 break; 9072 case AF_INET6: 9073 /* 9074 * walk only IPV6 ILL's. 9075 */ 9076 list = IP_V6_G_HEAD; 9077 break; 9078 default: 9079 return (EAFNOSUPPORT); 9080 } 9081 9082 /* 9083 * Allocate a buffer to hold requested information. 9084 * 9085 * If lifc_len is larger than what is needed, we only 9086 * allocate what we will use. 9087 * 9088 * If lifc_len is smaller than what is needed, return 9089 * EINVAL. 9090 */ 9091 numlifs = ip_get_numlifs(family, flags, zoneid, ipst); 9092 lifc_bufsize = numlifs * sizeof (struct lifreq); 9093 lifclen = STRUCT_FGET(lifc, lifc_len); 9094 if (lifc_bufsize > lifclen) { 9095 if (iocp->ioc_cmd == O_SIOCGLIFCONF) 9096 return (EINVAL); 9097 else 9098 lifc_bufsize = lifclen; 9099 } 9100 9101 mp1 = mi_copyout_alloc(q, mp, 9102 STRUCT_FGETP(lifc, lifc_buf), lifc_bufsize, B_FALSE); 9103 if (mp1 == NULL) 9104 return (ENOMEM); 9105 9106 mp1->b_wptr = mp1->b_rptr + lifc_bufsize; 9107 bzero(mp1->b_rptr, mp1->b_wptr - mp1->b_rptr); 9108 9109 lifr = (struct lifreq *)mp1->b_rptr; 9110 9111 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 9112 ill = ill_first(list, list, &ctx, ipst); 9113 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 9114 for (ipif = ill->ill_ipif; ipif != NULL; 9115 ipif = ipif->ipif_next) { 9116 if ((ipif->ipif_flags & IPIF_NOXMIT) && 9117 !(flags & LIFC_NOXMIT)) 9118 continue; 9119 9120 if ((ipif->ipif_flags & IPIF_TEMPORARY) && 9121 !(flags & LIFC_TEMPORARY)) 9122 continue; 9123 9124 if (((ipif->ipif_flags & 9125 (IPIF_NOXMIT|IPIF_NOLOCAL| 9126 IPIF_DEPRECATED)) || 9127 (ill->ill_phyint->phyint_flags & 9128 PHYI_LOOPBACK) || 9129 !(ipif->ipif_flags & IPIF_UP)) && 9130 (flags & LIFC_EXTERNAL_SOURCE)) 9131 continue; 9132 9133 if (zoneid != ipif->ipif_zoneid && 9134 ipif->ipif_zoneid != ALL_ZONES && 9135 (zoneid != GLOBAL_ZONEID || 9136 !(flags & LIFC_ALLZONES))) 9137 continue; 9138 9139 if ((uchar_t *)&lifr[1] > mp1->b_wptr) { 9140 if (iocp->ioc_cmd == O_SIOCGLIFCONF) { 9141 rw_exit(&ipst->ips_ill_g_lock); 9142 return (EINVAL); 9143 } else { 9144 goto lif_copydone; 9145 } 9146 } 9147 9148 (void) ipif_get_name(ipif, 9149 lifr->lifr_name, 9150 sizeof (lifr->lifr_name)); 9151 if (ipif->ipif_isv6) { 9152 sin6 = (sin6_t *)&lifr->lifr_addr; 9153 *sin6 = sin6_null; 9154 sin6->sin6_family = AF_INET6; 9155 sin6->sin6_addr = 9156 ipif->ipif_v6lcl_addr; 9157 lifr->lifr_addrlen = 9158 ip_mask_to_plen_v6( 9159 &ipif->ipif_v6net_mask); 9160 } else { 9161 sin = (sin_t *)&lifr->lifr_addr; 9162 *sin = sin_null; 9163 sin->sin_family = AF_INET; 9164 sin->sin_addr.s_addr = 9165 ipif->ipif_lcl_addr; 9166 lifr->lifr_addrlen = 9167 ip_mask_to_plen( 9168 ipif->ipif_net_mask); 9169 } 9170 lifr++; 9171 } 9172 } 9173 lif_copydone: 9174 rw_exit(&ipst->ips_ill_g_lock); 9175 9176 mp1->b_wptr = (uchar_t *)lifr; 9177 if (STRUCT_BUF(lifc) != NULL) { 9178 STRUCT_FSET(lifc, lifc_len, 9179 (int)((uchar_t *)lifr - mp1->b_rptr)); 9180 } 9181 return (0); 9182 } 9183 9184 /* ARGSUSED */ 9185 int 9186 ip_sioctl_set_ipmpfailback(ipif_t *dummy_ipif, sin_t *dummy_sin, 9187 queue_t *q, mblk_t *mp, ip_ioctl_cmd_t *ipip, void *ifreq) 9188 { 9189 ip_stack_t *ipst; 9190 9191 if (q->q_next == NULL) 9192 ipst = CONNQ_TO_IPST(q); 9193 else 9194 ipst = ILLQ_TO_IPST(q); 9195 9196 /* Existence of b_cont->b_cont checked in ip_wput_nondata */ 9197 ipst->ips_ipmp_enable_failback = *(int *)mp->b_cont->b_cont->b_rptr; 9198 return (0); 9199 } 9200 9201 static void 9202 ip_sioctl_ip6addrpolicy(queue_t *q, mblk_t *mp) 9203 { 9204 ip6_asp_t *table; 9205 size_t table_size; 9206 mblk_t *data_mp; 9207 struct iocblk *iocp = (struct iocblk *)mp->b_rptr; 9208 ip_stack_t *ipst; 9209 9210 if (q->q_next == NULL) 9211 ipst = CONNQ_TO_IPST(q); 9212 else 9213 ipst = ILLQ_TO_IPST(q); 9214 9215 /* These two ioctls are I_STR only */ 9216 if (iocp->ioc_count == TRANSPARENT) { 9217 miocnak(q, mp, 0, EINVAL); 9218 return; 9219 } 9220 9221 data_mp = mp->b_cont; 9222 if (data_mp == NULL) { 9223 /* The user passed us a NULL argument */ 9224 table = NULL; 9225 table_size = iocp->ioc_count; 9226 } else { 9227 /* 9228 * The user provided a table. The stream head 9229 * may have copied in the user data in chunks, 9230 * so make sure everything is pulled up 9231 * properly. 9232 */ 9233 if (MBLKL(data_mp) < iocp->ioc_count) { 9234 mblk_t *new_data_mp; 9235 if ((new_data_mp = msgpullup(data_mp, -1)) == 9236 NULL) { 9237 miocnak(q, mp, 0, ENOMEM); 9238 return; 9239 } 9240 freemsg(data_mp); 9241 data_mp = new_data_mp; 9242 mp->b_cont = data_mp; 9243 } 9244 table = (ip6_asp_t *)data_mp->b_rptr; 9245 table_size = iocp->ioc_count; 9246 } 9247 9248 switch (iocp->ioc_cmd) { 9249 case SIOCGIP6ADDRPOLICY: 9250 iocp->ioc_rval = ip6_asp_get(table, table_size, ipst); 9251 if (iocp->ioc_rval == -1) 9252 iocp->ioc_error = EINVAL; 9253 #if defined(_SYSCALL32_IMPL) && _LONG_LONG_ALIGNMENT_32 == 4 9254 else if (table != NULL && 9255 (iocp->ioc_flag & IOC_MODELS) == IOC_ILP32) { 9256 ip6_asp_t *src = table; 9257 ip6_asp32_t *dst = (void *)table; 9258 int count = table_size / sizeof (ip6_asp_t); 9259 int i; 9260 9261 /* 9262 * We need to do an in-place shrink of the array 9263 * to match the alignment attributes of the 9264 * 32-bit ABI looking at it. 9265 */ 9266 /* LINTED: logical expression always true: op "||" */ 9267 ASSERT(sizeof (*src) > sizeof (*dst)); 9268 for (i = 1; i < count; i++) 9269 bcopy(src + i, dst + i, sizeof (*dst)); 9270 } 9271 #endif 9272 break; 9273 9274 case SIOCSIP6ADDRPOLICY: 9275 ASSERT(mp->b_prev == NULL); 9276 mp->b_prev = (void *)q; 9277 #if defined(_SYSCALL32_IMPL) && _LONG_LONG_ALIGNMENT_32 == 4 9278 /* 9279 * We pass in the datamodel here so that the ip6_asp_replace() 9280 * routine can handle converting from 32-bit to native formats 9281 * where necessary. 9282 * 9283 * A better way to handle this might be to convert the inbound 9284 * data structure here, and hang it off a new 'mp'; thus the 9285 * ip6_asp_replace() logic would always be dealing with native 9286 * format data structures.. 9287 * 9288 * (An even simpler way to handle these ioctls is to just 9289 * add a 32-bit trailing 'pad' field to the ip6_asp_t structure 9290 * and just recompile everything that depends on it.) 9291 */ 9292 #endif 9293 ip6_asp_replace(mp, table, table_size, B_FALSE, ipst, 9294 iocp->ioc_flag & IOC_MODELS); 9295 return; 9296 } 9297 9298 DB_TYPE(mp) = (iocp->ioc_error == 0) ? M_IOCACK : M_IOCNAK; 9299 qreply(q, mp); 9300 } 9301 9302 static void 9303 ip_sioctl_dstinfo(queue_t *q, mblk_t *mp) 9304 { 9305 mblk_t *data_mp; 9306 struct dstinforeq *dir; 9307 uint8_t *end, *cur; 9308 in6_addr_t *daddr, *saddr; 9309 ipaddr_t v4daddr; 9310 ire_t *ire; 9311 char *slabel, *dlabel; 9312 boolean_t isipv4; 9313 int match_ire; 9314 ill_t *dst_ill; 9315 ipif_t *src_ipif, *ire_ipif; 9316 struct iocblk *iocp = (struct iocblk *)mp->b_rptr; 9317 zoneid_t zoneid; 9318 ip_stack_t *ipst = CONNQ_TO_IPST(q); 9319 9320 ASSERT(q->q_next == NULL); /* this ioctl not allowed if ip is module */ 9321 zoneid = Q_TO_CONN(q)->conn_zoneid; 9322 9323 /* 9324 * This ioctl is I_STR only, and must have a 9325 * data mblk following the M_IOCTL mblk. 9326 */ 9327 data_mp = mp->b_cont; 9328 if (iocp->ioc_count == TRANSPARENT || data_mp == NULL) { 9329 miocnak(q, mp, 0, EINVAL); 9330 return; 9331 } 9332 9333 if (MBLKL(data_mp) < iocp->ioc_count) { 9334 mblk_t *new_data_mp; 9335 9336 if ((new_data_mp = msgpullup(data_mp, -1)) == NULL) { 9337 miocnak(q, mp, 0, ENOMEM); 9338 return; 9339 } 9340 freemsg(data_mp); 9341 data_mp = new_data_mp; 9342 mp->b_cont = data_mp; 9343 } 9344 match_ire = MATCH_IRE_RECURSIVE | MATCH_IRE_DEFAULT | MATCH_IRE_PARENT; 9345 9346 for (cur = data_mp->b_rptr, end = data_mp->b_wptr; 9347 end - cur >= sizeof (struct dstinforeq); 9348 cur += sizeof (struct dstinforeq)) { 9349 dir = (struct dstinforeq *)cur; 9350 daddr = &dir->dir_daddr; 9351 saddr = &dir->dir_saddr; 9352 9353 /* 9354 * ip_addr_scope_v6() and ip6_asp_lookup() handle 9355 * v4 mapped addresses; ire_ftable_lookup[_v6]() 9356 * and ipif_select_source[_v6]() do not. 9357 */ 9358 dir->dir_dscope = ip_addr_scope_v6(daddr); 9359 dlabel = ip6_asp_lookup(daddr, &dir->dir_precedence, ipst); 9360 9361 isipv4 = IN6_IS_ADDR_V4MAPPED(daddr); 9362 if (isipv4) { 9363 IN6_V4MAPPED_TO_IPADDR(daddr, v4daddr); 9364 ire = ire_ftable_lookup(v4daddr, NULL, NULL, 9365 0, NULL, NULL, zoneid, 0, NULL, match_ire, ipst); 9366 } else { 9367 ire = ire_ftable_lookup_v6(daddr, NULL, NULL, 9368 0, NULL, NULL, zoneid, 0, NULL, match_ire, ipst); 9369 } 9370 if (ire == NULL) { 9371 dir->dir_dreachable = 0; 9372 9373 /* move on to next dst addr */ 9374 continue; 9375 } 9376 dir->dir_dreachable = 1; 9377 9378 ire_ipif = ire->ire_ipif; 9379 if (ire_ipif == NULL) 9380 goto next_dst; 9381 9382 /* 9383 * We expect to get back an interface ire or a 9384 * gateway ire cache entry. For both types, the 9385 * output interface is ire_ipif->ipif_ill. 9386 */ 9387 dst_ill = ire_ipif->ipif_ill; 9388 dir->dir_dmactype = dst_ill->ill_mactype; 9389 9390 if (isipv4) { 9391 src_ipif = ipif_select_source(dst_ill, v4daddr, zoneid); 9392 } else { 9393 src_ipif = ipif_select_source_v6(dst_ill, 9394 daddr, RESTRICT_TO_NONE, IPV6_PREFER_SRC_DEFAULT, 9395 zoneid); 9396 } 9397 if (src_ipif == NULL) 9398 goto next_dst; 9399 9400 *saddr = src_ipif->ipif_v6lcl_addr; 9401 dir->dir_sscope = ip_addr_scope_v6(saddr); 9402 slabel = ip6_asp_lookup(saddr, NULL, ipst); 9403 dir->dir_labelmatch = ip6_asp_labelcmp(dlabel, slabel); 9404 dir->dir_sdeprecated = 9405 (src_ipif->ipif_flags & IPIF_DEPRECATED) ? 1 : 0; 9406 ipif_refrele(src_ipif); 9407 next_dst: 9408 ire_refrele(ire); 9409 } 9410 miocack(q, mp, iocp->ioc_count, 0); 9411 } 9412 9413 9414 /* 9415 * Check if this is an address assigned to this machine. 9416 * Skips interfaces that are down by using ire checks. 9417 * Translates mapped addresses to v4 addresses and then 9418 * treats them as such, returning true if the v4 address 9419 * associated with this mapped address is configured. 9420 * Note: Applications will have to be careful what they do 9421 * with the response; use of mapped addresses limits 9422 * what can be done with the socket, especially with 9423 * respect to socket options and ioctls - neither IPv4 9424 * options nor IPv6 sticky options/ancillary data options 9425 * may be used. 9426 */ 9427 /* ARGSUSED */ 9428 int 9429 ip_sioctl_tmyaddr(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, 9430 ip_ioctl_cmd_t *ipip, void *dummy_ifreq) 9431 { 9432 struct sioc_addrreq *sia; 9433 sin_t *sin; 9434 ire_t *ire; 9435 mblk_t *mp1; 9436 zoneid_t zoneid; 9437 ip_stack_t *ipst; 9438 9439 ip1dbg(("ip_sioctl_tmyaddr")); 9440 9441 ASSERT(q->q_next == NULL); /* this ioctl not allowed if ip is module */ 9442 zoneid = Q_TO_CONN(q)->conn_zoneid; 9443 ipst = CONNQ_TO_IPST(q); 9444 9445 /* Existence verified in ip_wput_nondata */ 9446 mp1 = mp->b_cont->b_cont; 9447 sia = (struct sioc_addrreq *)mp1->b_rptr; 9448 sin = (sin_t *)&sia->sa_addr; 9449 switch (sin->sin_family) { 9450 case AF_INET6: { 9451 sin6_t *sin6 = (sin6_t *)sin; 9452 9453 if (IN6_IS_ADDR_V4MAPPED(&sin6->sin6_addr)) { 9454 ipaddr_t v4_addr; 9455 9456 IN6_V4MAPPED_TO_IPADDR(&sin6->sin6_addr, 9457 v4_addr); 9458 ire = ire_ctable_lookup(v4_addr, 0, 9459 IRE_LOCAL|IRE_LOOPBACK, NULL, zoneid, 9460 NULL, MATCH_IRE_TYPE | MATCH_IRE_ZONEONLY, ipst); 9461 } else { 9462 in6_addr_t v6addr; 9463 9464 v6addr = sin6->sin6_addr; 9465 ire = ire_ctable_lookup_v6(&v6addr, 0, 9466 IRE_LOCAL|IRE_LOOPBACK, NULL, zoneid, 9467 NULL, MATCH_IRE_TYPE | MATCH_IRE_ZONEONLY, ipst); 9468 } 9469 break; 9470 } 9471 case AF_INET: { 9472 ipaddr_t v4addr; 9473 9474 v4addr = sin->sin_addr.s_addr; 9475 ire = ire_ctable_lookup(v4addr, 0, 9476 IRE_LOCAL|IRE_LOOPBACK, NULL, zoneid, 9477 NULL, MATCH_IRE_TYPE | MATCH_IRE_ZONEONLY, ipst); 9478 break; 9479 } 9480 default: 9481 return (EAFNOSUPPORT); 9482 } 9483 if (ire != NULL) { 9484 sia->sa_res = 1; 9485 ire_refrele(ire); 9486 } else { 9487 sia->sa_res = 0; 9488 } 9489 return (0); 9490 } 9491 9492 /* 9493 * Check if this is an address assigned on-link i.e. neighbor, 9494 * and makes sure it's reachable from the current zone. 9495 * Returns true for my addresses as well. 9496 * Translates mapped addresses to v4 addresses and then 9497 * treats them as such, returning true if the v4 address 9498 * associated with this mapped address is configured. 9499 * Note: Applications will have to be careful what they do 9500 * with the response; use of mapped addresses limits 9501 * what can be done with the socket, especially with 9502 * respect to socket options and ioctls - neither IPv4 9503 * options nor IPv6 sticky options/ancillary data options 9504 * may be used. 9505 */ 9506 /* ARGSUSED */ 9507 int 9508 ip_sioctl_tonlink(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, 9509 ip_ioctl_cmd_t *ipip, void *duymmy_ifreq) 9510 { 9511 struct sioc_addrreq *sia; 9512 sin_t *sin; 9513 mblk_t *mp1; 9514 ire_t *ire = NULL; 9515 zoneid_t zoneid; 9516 ip_stack_t *ipst; 9517 9518 ip1dbg(("ip_sioctl_tonlink")); 9519 9520 ASSERT(q->q_next == NULL); /* this ioctl not allowed if ip is module */ 9521 zoneid = Q_TO_CONN(q)->conn_zoneid; 9522 ipst = CONNQ_TO_IPST(q); 9523 9524 /* Existence verified in ip_wput_nondata */ 9525 mp1 = mp->b_cont->b_cont; 9526 sia = (struct sioc_addrreq *)mp1->b_rptr; 9527 sin = (sin_t *)&sia->sa_addr; 9528 9529 /* 9530 * Match addresses with a zero gateway field to avoid 9531 * routes going through a router. 9532 * Exclude broadcast and multicast addresses. 9533 */ 9534 switch (sin->sin_family) { 9535 case AF_INET6: { 9536 sin6_t *sin6 = (sin6_t *)sin; 9537 9538 if (IN6_IS_ADDR_V4MAPPED(&sin6->sin6_addr)) { 9539 ipaddr_t v4_addr; 9540 9541 IN6_V4MAPPED_TO_IPADDR(&sin6->sin6_addr, 9542 v4_addr); 9543 if (!CLASSD(v4_addr)) { 9544 ire = ire_route_lookup(v4_addr, 0, 0, 0, 9545 NULL, NULL, zoneid, NULL, 9546 MATCH_IRE_GW, ipst); 9547 } 9548 } else { 9549 in6_addr_t v6addr; 9550 in6_addr_t v6gw; 9551 9552 v6addr = sin6->sin6_addr; 9553 v6gw = ipv6_all_zeros; 9554 if (!IN6_IS_ADDR_MULTICAST(&v6addr)) { 9555 ire = ire_route_lookup_v6(&v6addr, 0, 9556 &v6gw, 0, NULL, NULL, zoneid, 9557 NULL, MATCH_IRE_GW, ipst); 9558 } 9559 } 9560 break; 9561 } 9562 case AF_INET: { 9563 ipaddr_t v4addr; 9564 9565 v4addr = sin->sin_addr.s_addr; 9566 if (!CLASSD(v4addr)) { 9567 ire = ire_route_lookup(v4addr, 0, 0, 0, 9568 NULL, NULL, zoneid, NULL, 9569 MATCH_IRE_GW, ipst); 9570 } 9571 break; 9572 } 9573 default: 9574 return (EAFNOSUPPORT); 9575 } 9576 sia->sa_res = 0; 9577 if (ire != NULL) { 9578 if (ire->ire_type & (IRE_INTERFACE|IRE_CACHE| 9579 IRE_LOCAL|IRE_LOOPBACK)) { 9580 sia->sa_res = 1; 9581 } 9582 ire_refrele(ire); 9583 } 9584 return (0); 9585 } 9586 9587 /* 9588 * TBD: implement when kernel maintaines a list of site prefixes. 9589 */ 9590 /* ARGSUSED */ 9591 int 9592 ip_sioctl_tmysite(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 9593 ip_ioctl_cmd_t *ipip, void *ifreq) 9594 { 9595 return (ENXIO); 9596 } 9597 9598 /* ARGSUSED */ 9599 int 9600 ip_sioctl_tunparam(ipif_t *ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, 9601 ip_ioctl_cmd_t *ipip, void *dummy_ifreq) 9602 { 9603 ill_t *ill; 9604 mblk_t *mp1; 9605 conn_t *connp; 9606 boolean_t success; 9607 9608 ip1dbg(("ip_sioctl_tunparam(%s:%u %p)\n", 9609 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 9610 /* ioctl comes down on an conn */ 9611 ASSERT(!(q->q_flag & QREADR) && q->q_next == NULL); 9612 connp = Q_TO_CONN(q); 9613 9614 mp->b_datap->db_type = M_IOCTL; 9615 9616 /* 9617 * Send down a copy. (copymsg does not copy b_next/b_prev). 9618 * The original mp contains contaminated b_next values due to 'mi', 9619 * which is needed to do the mi_copy_done. Unfortunately if we 9620 * send down the original mblk itself and if we are popped due to an 9621 * an unplumb before the response comes back from tunnel, 9622 * the streamhead (which does a freemsg) will see this contaminated 9623 * message and the assertion in freemsg about non-null b_next/b_prev 9624 * will panic a DEBUG kernel. 9625 */ 9626 mp1 = copymsg(mp); 9627 if (mp1 == NULL) 9628 return (ENOMEM); 9629 9630 ill = ipif->ipif_ill; 9631 mutex_enter(&connp->conn_lock); 9632 mutex_enter(&ill->ill_lock); 9633 if (ipip->ipi_cmd == SIOCSTUNPARAM || ipip->ipi_cmd == OSIOCSTUNPARAM) { 9634 success = ipsq_pending_mp_add(connp, ipif, CONNP_TO_WQ(connp), 9635 mp, 0); 9636 } else { 9637 success = ill_pending_mp_add(ill, connp, mp); 9638 } 9639 mutex_exit(&ill->ill_lock); 9640 mutex_exit(&connp->conn_lock); 9641 9642 if (success) { 9643 ip1dbg(("sending down tunparam request ")); 9644 putnext(ill->ill_wq, mp1); 9645 return (EINPROGRESS); 9646 } else { 9647 /* The conn has started closing */ 9648 freemsg(mp1); 9649 return (EINTR); 9650 } 9651 } 9652 9653 static int 9654 ip_sioctl_arp_common(ill_t *ill, queue_t *q, mblk_t *mp, sin_t *sin, 9655 boolean_t x_arp_ioctl, boolean_t if_arp_ioctl) 9656 { 9657 mblk_t *mp1; 9658 mblk_t *mp2; 9659 mblk_t *pending_mp; 9660 ipaddr_t ipaddr; 9661 area_t *area; 9662 struct iocblk *iocp; 9663 conn_t *connp; 9664 struct arpreq *ar; 9665 struct xarpreq *xar; 9666 boolean_t success; 9667 int flags, alength; 9668 char *lladdr; 9669 ip_stack_t *ipst; 9670 9671 ASSERT(!(q->q_flag & QREADR) && q->q_next == NULL); 9672 connp = Q_TO_CONN(q); 9673 ipst = connp->conn_netstack->netstack_ip; 9674 9675 iocp = (struct iocblk *)mp->b_rptr; 9676 /* 9677 * ill has already been set depending on whether 9678 * bsd style or interface style ioctl. 9679 */ 9680 ASSERT(ill != NULL); 9681 9682 /* 9683 * Is this one of the new SIOC*XARP ioctls? 9684 */ 9685 if (x_arp_ioctl) { 9686 /* We have a chain - M_IOCTL-->MI_COPY_MBLK-->XARPREQ_MBLK */ 9687 xar = (struct xarpreq *)mp->b_cont->b_cont->b_rptr; 9688 ar = NULL; 9689 9690 flags = xar->xarp_flags; 9691 lladdr = LLADDR(&xar->xarp_ha); 9692 /* 9693 * Validate against user's link layer address length 9694 * input and name and addr length limits. 9695 */ 9696 alength = ill->ill_phys_addr_length; 9697 if (iocp->ioc_cmd == SIOCSXARP) { 9698 if (alength != xar->xarp_ha.sdl_alen || 9699 (alength + xar->xarp_ha.sdl_nlen > 9700 sizeof (xar->xarp_ha.sdl_data))) 9701 return (EINVAL); 9702 } 9703 } else { 9704 /* We have a chain - M_IOCTL-->MI_COPY_MBLK-->ARPREQ_MBLK */ 9705 ar = (struct arpreq *)mp->b_cont->b_cont->b_rptr; 9706 xar = NULL; 9707 9708 flags = ar->arp_flags; 9709 lladdr = ar->arp_ha.sa_data; 9710 /* 9711 * Theoretically, the sa_family could tell us what link 9712 * layer type this operation is trying to deal with. By 9713 * common usage AF_UNSPEC means ethernet. We'll assume 9714 * any attempt to use the SIOC?ARP ioctls is for ethernet, 9715 * for now. Our new SIOC*XARP ioctls can be used more 9716 * generally. 9717 * 9718 * If the underlying media happens to have a non 6 byte 9719 * address, arp module will fail set/get, but the del 9720 * operation will succeed. 9721 */ 9722 alength = 6; 9723 if ((iocp->ioc_cmd != SIOCDARP) && 9724 (alength != ill->ill_phys_addr_length)) { 9725 return (EINVAL); 9726 } 9727 } 9728 9729 /* 9730 * We are going to pass up to ARP a packet chain that looks 9731 * like: 9732 * 9733 * M_IOCTL-->ARP_op_MBLK-->ORIG_M_IOCTL-->MI_COPY_MBLK-->[X]ARPREQ_MBLK 9734 * 9735 * Get a copy of the original IOCTL mblk to head the chain, 9736 * to be sent up (in mp1). Also get another copy to store 9737 * in the ill_pending_mp list, for matching the response 9738 * when it comes back from ARP. 9739 */ 9740 mp1 = copyb(mp); 9741 pending_mp = copymsg(mp); 9742 if (mp1 == NULL || pending_mp == NULL) { 9743 if (mp1 != NULL) 9744 freeb(mp1); 9745 if (pending_mp != NULL) 9746 inet_freemsg(pending_mp); 9747 return (ENOMEM); 9748 } 9749 9750 ipaddr = sin->sin_addr.s_addr; 9751 9752 mp2 = ill_arp_alloc(ill, (uchar_t *)&ip_area_template, 9753 (caddr_t)&ipaddr); 9754 if (mp2 == NULL) { 9755 freeb(mp1); 9756 inet_freemsg(pending_mp); 9757 return (ENOMEM); 9758 } 9759 /* Put together the chain. */ 9760 mp1->b_cont = mp2; 9761 mp1->b_datap->db_type = M_IOCTL; 9762 mp2->b_cont = mp; 9763 mp2->b_datap->db_type = M_DATA; 9764 9765 iocp = (struct iocblk *)mp1->b_rptr; 9766 9767 /* 9768 * An M_IOCDATA's payload (struct copyresp) is mostly the same as an 9769 * M_IOCTL's payload (struct iocblk), but 'struct copyresp' has a 9770 * cp_private field (or cp_rval on 32-bit systems) in place of the 9771 * ioc_count field; set ioc_count to be correct. 9772 */ 9773 iocp->ioc_count = MBLKL(mp1->b_cont); 9774 9775 /* 9776 * Set the proper command in the ARP message. 9777 * Convert the SIOC{G|S|D}ARP calls into our 9778 * AR_ENTRY_xxx calls. 9779 */ 9780 area = (area_t *)mp2->b_rptr; 9781 switch (iocp->ioc_cmd) { 9782 case SIOCDARP: 9783 case SIOCDXARP: 9784 /* 9785 * We defer deleting the corresponding IRE until 9786 * we return from arp. 9787 */ 9788 area->area_cmd = AR_ENTRY_DELETE; 9789 area->area_proto_mask_offset = 0; 9790 break; 9791 case SIOCGARP: 9792 case SIOCGXARP: 9793 area->area_cmd = AR_ENTRY_SQUERY; 9794 area->area_proto_mask_offset = 0; 9795 break; 9796 case SIOCSARP: 9797 case SIOCSXARP: { 9798 /* 9799 * Delete the corresponding ire to make sure IP will 9800 * pick up any change from arp. 9801 */ 9802 if (!if_arp_ioctl) { 9803 (void) ip_ire_clookup_and_delete(ipaddr, NULL, ipst); 9804 break; 9805 } else { 9806 ipif_t *ipif = ipif_get_next_ipif(NULL, ill); 9807 if (ipif != NULL) { 9808 (void) ip_ire_clookup_and_delete(ipaddr, ipif, 9809 ipst); 9810 ipif_refrele(ipif); 9811 } 9812 break; 9813 } 9814 } 9815 } 9816 iocp->ioc_cmd = area->area_cmd; 9817 9818 /* 9819 * Before sending 'mp' to ARP, we have to clear the b_next 9820 * and b_prev. Otherwise if STREAMS encounters such a message 9821 * in freemsg(), (because ARP can close any time) it can cause 9822 * a panic. But mi code needs the b_next and b_prev values of 9823 * mp->b_cont, to complete the ioctl. So we store it here 9824 * in pending_mp->bcont, and restore it in ip_sioctl_iocack() 9825 * when the response comes down from ARP. 9826 */ 9827 pending_mp->b_cont->b_next = mp->b_cont->b_next; 9828 pending_mp->b_cont->b_prev = mp->b_cont->b_prev; 9829 mp->b_cont->b_next = NULL; 9830 mp->b_cont->b_prev = NULL; 9831 9832 mutex_enter(&connp->conn_lock); 9833 mutex_enter(&ill->ill_lock); 9834 /* conn has not yet started closing, hence this can't fail */ 9835 success = ill_pending_mp_add(ill, connp, pending_mp); 9836 ASSERT(success); 9837 mutex_exit(&ill->ill_lock); 9838 mutex_exit(&connp->conn_lock); 9839 9840 /* 9841 * Fill in the rest of the ARP operation fields. 9842 */ 9843 area->area_hw_addr_length = alength; 9844 bcopy(lladdr, 9845 (char *)area + area->area_hw_addr_offset, 9846 area->area_hw_addr_length); 9847 /* Translate the flags. */ 9848 if (flags & ATF_PERM) 9849 area->area_flags |= ACE_F_PERMANENT; 9850 if (flags & ATF_PUBL) 9851 area->area_flags |= ACE_F_PUBLISH; 9852 if (flags & ATF_AUTHORITY) 9853 area->area_flags |= ACE_F_AUTHORITY; 9854 9855 /* 9856 * Up to ARP it goes. The response will come 9857 * back in ip_wput as an M_IOCACK message, and 9858 * will be handed to ip_sioctl_iocack for 9859 * completion. 9860 */ 9861 putnext(ill->ill_rq, mp1); 9862 return (EINPROGRESS); 9863 } 9864 9865 /* ARGSUSED */ 9866 int 9867 ip_sioctl_xarp(ipif_t *ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, 9868 ip_ioctl_cmd_t *ipip, void *ifreq) 9869 { 9870 struct xarpreq *xar; 9871 boolean_t isv6; 9872 mblk_t *mp1; 9873 int err; 9874 conn_t *connp; 9875 int ifnamelen; 9876 ire_t *ire = NULL; 9877 ill_t *ill = NULL; 9878 struct sockaddr_in *sin; 9879 boolean_t if_arp_ioctl = B_FALSE; 9880 ip_stack_t *ipst; 9881 9882 /* ioctl comes down on an conn */ 9883 ASSERT(!(q->q_flag & QREADR) && q->q_next == NULL); 9884 connp = Q_TO_CONN(q); 9885 isv6 = connp->conn_af_isv6; 9886 ipst = connp->conn_netstack->netstack_ip; 9887 9888 /* Existance verified in ip_wput_nondata */ 9889 mp1 = mp->b_cont->b_cont; 9890 9891 ASSERT(MBLKL(mp1) >= sizeof (*xar)); 9892 xar = (struct xarpreq *)mp1->b_rptr; 9893 sin = (sin_t *)&xar->xarp_pa; 9894 9895 if (isv6 || (xar->xarp_ha.sdl_family != AF_LINK) || 9896 (xar->xarp_pa.ss_family != AF_INET)) 9897 return (ENXIO); 9898 9899 ifnamelen = xar->xarp_ha.sdl_nlen; 9900 if (ifnamelen != 0) { 9901 char *cptr, cval; 9902 9903 if (ifnamelen >= LIFNAMSIZ) 9904 return (EINVAL); 9905 9906 /* 9907 * Instead of bcopying a bunch of bytes, 9908 * null-terminate the string in-situ. 9909 */ 9910 cptr = xar->xarp_ha.sdl_data + ifnamelen; 9911 cval = *cptr; 9912 *cptr = '\0'; 9913 ill = ill_lookup_on_name(xar->xarp_ha.sdl_data, 9914 B_FALSE, isv6, CONNP_TO_WQ(connp), mp, ip_process_ioctl, 9915 &err, NULL, ipst); 9916 *cptr = cval; 9917 if (ill == NULL) 9918 return (err); 9919 if (ill->ill_net_type != IRE_IF_RESOLVER) { 9920 ill_refrele(ill); 9921 return (ENXIO); 9922 } 9923 9924 if_arp_ioctl = B_TRUE; 9925 } else { 9926 /* 9927 * PSARC 2003/088 states that if sdl_nlen == 0, it behaves 9928 * as an extended BSD ioctl. The kernel uses the IP address 9929 * to figure out the network interface. 9930 */ 9931 ire = ire_cache_lookup(sin->sin_addr.s_addr, ALL_ZONES, NULL, 9932 ipst); 9933 if ((ire == NULL) || (ire->ire_type == IRE_LOOPBACK) || 9934 ((ill = ire_to_ill(ire)) == NULL) || 9935 (ill->ill_net_type != IRE_IF_RESOLVER)) { 9936 if (ire != NULL) 9937 ire_refrele(ire); 9938 ire = ire_ftable_lookup(sin->sin_addr.s_addr, 9939 0, 0, IRE_IF_RESOLVER, NULL, NULL, ALL_ZONES, 0, 9940 NULL, MATCH_IRE_TYPE, ipst); 9941 if ((ire == NULL) || 9942 ((ill = ire_to_ill(ire)) == NULL)) { 9943 if (ire != NULL) 9944 ire_refrele(ire); 9945 return (ENXIO); 9946 } 9947 } 9948 ASSERT(ire != NULL && ill != NULL); 9949 } 9950 9951 err = ip_sioctl_arp_common(ill, q, mp, sin, B_TRUE, if_arp_ioctl); 9952 if (if_arp_ioctl) 9953 ill_refrele(ill); 9954 if (ire != NULL) 9955 ire_refrele(ire); 9956 9957 return (err); 9958 } 9959 9960 /* 9961 * ARP IOCTLs. 9962 * How does IP get in the business of fronting ARP configuration/queries? 9963 * Well its like this, the Berkeley ARP IOCTLs (SIOCGARP, SIOCDARP, SIOCSARP) 9964 * are by tradition passed in through a datagram socket. That lands in IP. 9965 * As it happens, this is just as well since the interface is quite crude in 9966 * that it passes in no information about protocol or hardware types, or 9967 * interface association. After making the protocol assumption, IP is in 9968 * the position to look up the name of the ILL, which ARP will need, and 9969 * format a request that can be handled by ARP. The request is passed up 9970 * stream to ARP, and the original IOCTL is completed by IP when ARP passes 9971 * back a response. ARP supports its own set of more general IOCTLs, in 9972 * case anyone is interested. 9973 */ 9974 /* ARGSUSED */ 9975 int 9976 ip_sioctl_arp(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, 9977 ip_ioctl_cmd_t *ipip, void *dummy_ifreq) 9978 { 9979 struct arpreq *ar; 9980 struct sockaddr_in *sin; 9981 ire_t *ire; 9982 boolean_t isv6; 9983 mblk_t *mp1; 9984 int err; 9985 conn_t *connp; 9986 ill_t *ill; 9987 ip_stack_t *ipst; 9988 9989 /* ioctl comes down on an conn */ 9990 ASSERT(!(q->q_flag & QREADR) && q->q_next == NULL); 9991 connp = Q_TO_CONN(q); 9992 ipst = CONNQ_TO_IPST(q); 9993 isv6 = connp->conn_af_isv6; 9994 if (isv6) 9995 return (ENXIO); 9996 9997 /* Existance verified in ip_wput_nondata */ 9998 mp1 = mp->b_cont->b_cont; 9999 10000 ar = (struct arpreq *)mp1->b_rptr; 10001 sin = (sin_t *)&ar->arp_pa; 10002 10003 /* 10004 * We need to let ARP know on which interface the IP 10005 * address has an ARP mapping. In the IPMP case, a 10006 * simple forwarding table lookup will return the 10007 * IRE_IF_RESOLVER for the first interface in the group, 10008 * which might not be the interface on which the 10009 * requested IP address was resolved due to the ill 10010 * selection algorithm (see ip_newroute_get_dst_ill()). 10011 * So we do a cache table lookup first: if the IRE cache 10012 * entry for the IP address is still there, it will 10013 * contain the ill pointer for the right interface, so 10014 * we use that. If the cache entry has been flushed, we 10015 * fall back to the forwarding table lookup. This should 10016 * be rare enough since IRE cache entries have a longer 10017 * life expectancy than ARP cache entries. 10018 */ 10019 ire = ire_cache_lookup(sin->sin_addr.s_addr, ALL_ZONES, NULL, ipst); 10020 if ((ire == NULL) || (ire->ire_type == IRE_LOOPBACK) || 10021 ((ill = ire_to_ill(ire)) == NULL)) { 10022 if (ire != NULL) 10023 ire_refrele(ire); 10024 ire = ire_ftable_lookup(sin->sin_addr.s_addr, 10025 0, 0, IRE_IF_RESOLVER, NULL, NULL, ALL_ZONES, 0, 10026 NULL, MATCH_IRE_TYPE, ipst); 10027 if ((ire == NULL) || ((ill = ire_to_ill(ire)) == NULL)) { 10028 if (ire != NULL) 10029 ire_refrele(ire); 10030 return (ENXIO); 10031 } 10032 } 10033 ASSERT(ire != NULL && ill != NULL); 10034 10035 err = ip_sioctl_arp_common(ill, q, mp, sin, B_FALSE, B_FALSE); 10036 ire_refrele(ire); 10037 return (err); 10038 } 10039 10040 /* 10041 * Do I_PLINK/I_LINK or I_PUNLINK/I_UNLINK with consistency checks and also 10042 * atomically set/clear the muxids. Also complete the ioctl by acking or 10043 * naking it. Note that the code is structured such that the link type, 10044 * whether it's persistent or not, is treated equally. ifconfig(1M) and 10045 * its clones use the persistent link, while pppd(1M) and perhaps many 10046 * other daemons may use non-persistent link. When combined with some 10047 * ill_t states, linking and unlinking lower streams may be used as 10048 * indicators of dynamic re-plumbing events [see PSARC/1999/348]. 10049 */ 10050 /* ARGSUSED */ 10051 void 10052 ip_sioctl_plink(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy_arg) 10053 { 10054 mblk_t *mp1; 10055 mblk_t *mp2; 10056 struct linkblk *li; 10057 queue_t *ipwq; 10058 char *name; 10059 struct qinit *qinfo; 10060 struct ipmx_s *ipmxp; 10061 ill_t *ill = NULL; 10062 struct iocblk *iocp = (struct iocblk *)mp->b_rptr; 10063 int err = 0; 10064 boolean_t entered_ipsq = B_FALSE; 10065 boolean_t islink; 10066 queue_t *dwq = NULL; 10067 ip_stack_t *ipst; 10068 10069 if (CONN_Q(q)) 10070 ipst = CONNQ_TO_IPST(q); 10071 else 10072 ipst = ILLQ_TO_IPST(q); 10073 10074 ASSERT(iocp->ioc_cmd == I_PLINK || iocp->ioc_cmd == I_PUNLINK || 10075 iocp->ioc_cmd == I_LINK || iocp->ioc_cmd == I_UNLINK); 10076 10077 islink = (iocp->ioc_cmd == I_PLINK || iocp->ioc_cmd == I_LINK) ? 10078 B_TRUE : B_FALSE; 10079 10080 mp1 = mp->b_cont; /* This is the linkblk info */ 10081 li = (struct linkblk *)mp1->b_rptr; 10082 10083 /* 10084 * ARP has added this special mblk, and the utility is asking us 10085 * to perform consistency checks, and also atomically set the 10086 * muxid. Ifconfig is an example. It achieves this by using 10087 * /dev/arp as the mux to plink the arp stream, and pushes arp on 10088 * to /dev/udp[6] stream for use as the mux when plinking the IP 10089 * stream. SIOCSLIFMUXID is not required. See ifconfig.c, arp.c 10090 * and other comments in this routine for more details. 10091 */ 10092 mp2 = mp1->b_cont; /* This is added by ARP */ 10093 10094 /* 10095 * If I_{P}LINK/I_{P}UNLINK is issued by a utility other than 10096 * ifconfig which didn't push ARP on top of the dummy mux, we won't 10097 * get the special mblk above. For backward compatibility, we just 10098 * return success. The utility will use SIOCSLIFMUXID to store 10099 * the muxids. This is not atomic, and can leave the streams 10100 * unplumbable if the utility is interrrupted, before it does the 10101 * SIOCSLIFMUXID. 10102 */ 10103 if (mp2 == NULL) { 10104 /* 10105 * At this point we don't know whether or not this is the 10106 * IP module stream or the ARP device stream. We need to 10107 * walk the lower stream in order to find this out, since 10108 * the capability negotiation is done only on the IP module 10109 * stream. IP module instance is identified by the module 10110 * name IP, non-null q_next, and it's wput not being ip_lwput. 10111 * STREAMS ensures that the lower stream (l_qbot) will not 10112 * vanish until this ioctl completes. So we can safely walk 10113 * the stream or refer to the q_ptr. 10114 */ 10115 ipwq = li->l_qbot; 10116 while (ipwq != NULL) { 10117 qinfo = ipwq->q_qinfo; 10118 name = qinfo->qi_minfo->mi_idname; 10119 if (name != NULL && name[0] != NULL && 10120 (strcmp(name, ip_mod_info.mi_idname) == 0) && 10121 ((void *)(qinfo->qi_putp) != (void *)ip_lwput) && 10122 (ipwq->q_next != NULL)) { 10123 break; 10124 } 10125 ipwq = ipwq->q_next; 10126 } 10127 /* 10128 * This looks like an IP module stream, so trigger 10129 * the capability reset or re-negotiation if necessary. 10130 */ 10131 if (ipwq != NULL) { 10132 ill = ipwq->q_ptr; 10133 ASSERT(ill != NULL); 10134 10135 if (ipsq == NULL) { 10136 ipsq = ipsq_try_enter(NULL, ill, q, mp, 10137 ip_sioctl_plink, NEW_OP, B_TRUE); 10138 if (ipsq == NULL) 10139 return; 10140 entered_ipsq = B_TRUE; 10141 } 10142 ASSERT(IAM_WRITER_ILL(ill)); 10143 /* 10144 * Store the upper read queue of the module 10145 * immediately below IP, and count the total 10146 * number of lower modules. Do this only 10147 * for I_PLINK or I_LINK event. 10148 */ 10149 ill->ill_lmod_rq = NULL; 10150 ill->ill_lmod_cnt = 0; 10151 if (islink && (dwq = ipwq->q_next) != NULL) { 10152 ill->ill_lmod_rq = RD(dwq); 10153 10154 while (dwq != NULL) { 10155 ill->ill_lmod_cnt++; 10156 dwq = dwq->q_next; 10157 } 10158 } 10159 /* 10160 * There's no point in resetting or re-negotiating if 10161 * we are not bound to the driver, so only do this if 10162 * the DLPI state is idle (up); we assume such state 10163 * since ill_ipif_up_count gets incremented in 10164 * ipif_up_done(), which is after we are bound to the 10165 * driver. Note that in the case of logical 10166 * interfaces, IP won't rebind to the driver unless 10167 * the ill_ipif_up_count is 0, meaning that all other 10168 * IP interfaces (including the main ipif) are in the 10169 * down state. Because of this, we use such counter 10170 * as an indicator, instead of relying on the IPIF_UP 10171 * flag, which is per ipif instance. 10172 */ 10173 if (ill->ill_ipif_up_count > 0) { 10174 if (islink) 10175 ill_capability_probe(ill); 10176 else 10177 ill_capability_reset(ill); 10178 } 10179 } 10180 goto done; 10181 } 10182 10183 /* 10184 * This is an I_{P}LINK sent down by ifconfig on 10185 * /dev/arp. ARP has appended this last (3rd) mblk, 10186 * giving more info. STREAMS ensures that the lower 10187 * stream (l_qbot) will not vanish until this ioctl 10188 * completes. So we can safely walk the stream or refer 10189 * to the q_ptr. 10190 */ 10191 ipmxp = (struct ipmx_s *)mp2->b_rptr; 10192 if (ipmxp->ipmx_arpdev_stream) { 10193 /* 10194 * The operation is occuring on the arp-device 10195 * stream. 10196 */ 10197 ill = ill_lookup_on_name(ipmxp->ipmx_name, B_FALSE, B_FALSE, 10198 q, mp, ip_sioctl_plink, &err, NULL, ipst); 10199 if (ill == NULL) { 10200 if (err == EINPROGRESS) { 10201 return; 10202 } else { 10203 err = EINVAL; 10204 goto done; 10205 } 10206 } 10207 10208 if (ipsq == NULL) { 10209 ipsq = ipsq_try_enter(NULL, ill, q, mp, ip_sioctl_plink, 10210 NEW_OP, B_TRUE); 10211 if (ipsq == NULL) { 10212 ill_refrele(ill); 10213 return; 10214 } 10215 entered_ipsq = B_TRUE; 10216 } 10217 ASSERT(IAM_WRITER_ILL(ill)); 10218 ill_refrele(ill); 10219 /* 10220 * To ensure consistency between IP and ARP, 10221 * the following LIFO scheme is used in 10222 * plink/punlink. (IP first, ARP last). 10223 * This is because the muxid's are stored 10224 * in the IP stream on the ill. 10225 * 10226 * I_{P}LINK: ifconfig plinks the IP stream before 10227 * plinking the ARP stream. On an arp-dev 10228 * stream, IP checks that it is not yet 10229 * plinked, and it also checks that the 10230 * corresponding IP stream is already plinked. 10231 * 10232 * I_{P}UNLINK: ifconfig punlinks the ARP stream 10233 * before punlinking the IP stream. IP does 10234 * not allow punlink of the IP stream unless 10235 * the arp stream has been punlinked. 10236 * 10237 */ 10238 if ((islink && 10239 (ill->ill_arp_muxid != 0 || ill->ill_ip_muxid == 0)) || 10240 (!islink && 10241 ill->ill_arp_muxid != li->l_index)) { 10242 err = EINVAL; 10243 goto done; 10244 } 10245 if (islink) { 10246 ill->ill_arp_muxid = li->l_index; 10247 } else { 10248 ill->ill_arp_muxid = 0; 10249 } 10250 } else { 10251 /* 10252 * This must be the IP module stream with or 10253 * without arp. Walk the stream and locate the 10254 * IP module. An IP module instance is 10255 * identified by the module name IP, non-null 10256 * q_next, and it's wput not being ip_lwput. 10257 */ 10258 ipwq = li->l_qbot; 10259 while (ipwq != NULL) { 10260 qinfo = ipwq->q_qinfo; 10261 name = qinfo->qi_minfo->mi_idname; 10262 if (name != NULL && name[0] != NULL && 10263 (strcmp(name, ip_mod_info.mi_idname) == 0) && 10264 ((void *)(qinfo->qi_putp) != (void *)ip_lwput) && 10265 (ipwq->q_next != NULL)) { 10266 break; 10267 } 10268 ipwq = ipwq->q_next; 10269 } 10270 if (ipwq != NULL) { 10271 ill = ipwq->q_ptr; 10272 ASSERT(ill != NULL); 10273 10274 if (ipsq == NULL) { 10275 ipsq = ipsq_try_enter(NULL, ill, q, mp, 10276 ip_sioctl_plink, NEW_OP, B_TRUE); 10277 if (ipsq == NULL) 10278 return; 10279 entered_ipsq = B_TRUE; 10280 } 10281 ASSERT(IAM_WRITER_ILL(ill)); 10282 /* 10283 * Return error if the ip_mux_id is 10284 * non-zero and command is I_{P}LINK. 10285 * If command is I_{P}UNLINK, return 10286 * error if the arp-devstr is not 10287 * yet punlinked. 10288 */ 10289 if ((islink && ill->ill_ip_muxid != 0) || 10290 (!islink && ill->ill_arp_muxid != 0)) { 10291 err = EINVAL; 10292 goto done; 10293 } 10294 ill->ill_lmod_rq = NULL; 10295 ill->ill_lmod_cnt = 0; 10296 if (islink) { 10297 /* 10298 * Store the upper read queue of the module 10299 * immediately below IP, and count the total 10300 * number of lower modules. 10301 */ 10302 if ((dwq = ipwq->q_next) != NULL) { 10303 ill->ill_lmod_rq = RD(dwq); 10304 10305 while (dwq != NULL) { 10306 ill->ill_lmod_cnt++; 10307 dwq = dwq->q_next; 10308 } 10309 } 10310 ill->ill_ip_muxid = li->l_index; 10311 } else { 10312 ill->ill_ip_muxid = 0; 10313 } 10314 10315 /* 10316 * See comments above about resetting/re- 10317 * negotiating driver sub-capabilities. 10318 */ 10319 if (ill->ill_ipif_up_count > 0) { 10320 if (islink) 10321 ill_capability_probe(ill); 10322 else 10323 ill_capability_reset(ill); 10324 } 10325 } 10326 } 10327 done: 10328 iocp->ioc_count = 0; 10329 iocp->ioc_error = err; 10330 if (err == 0) 10331 mp->b_datap->db_type = M_IOCACK; 10332 else 10333 mp->b_datap->db_type = M_IOCNAK; 10334 qreply(q, mp); 10335 10336 /* Conn was refheld in ip_sioctl_copyin_setup */ 10337 if (CONN_Q(q)) 10338 CONN_OPER_PENDING_DONE(Q_TO_CONN(q)); 10339 if (entered_ipsq) 10340 ipsq_exit(ipsq, B_TRUE, B_TRUE); 10341 } 10342 10343 /* 10344 * Search the ioctl command in the ioctl tables and return a pointer 10345 * to the ioctl command information. The ioctl command tables are 10346 * static and fully populated at compile time. 10347 */ 10348 ip_ioctl_cmd_t * 10349 ip_sioctl_lookup(int ioc_cmd) 10350 { 10351 int index; 10352 ip_ioctl_cmd_t *ipip; 10353 ip_ioctl_cmd_t *ipip_end; 10354 10355 if (ioc_cmd == IPI_DONTCARE) 10356 return (NULL); 10357 10358 /* 10359 * Do a 2 step search. First search the indexed table 10360 * based on the least significant byte of the ioctl cmd. 10361 * If we don't find a match, then search the misc table 10362 * serially. 10363 */ 10364 index = ioc_cmd & 0xFF; 10365 if (index < ip_ndx_ioctl_count) { 10366 ipip = &ip_ndx_ioctl_table[index]; 10367 if (ipip->ipi_cmd == ioc_cmd) { 10368 /* Found a match in the ndx table */ 10369 return (ipip); 10370 } 10371 } 10372 10373 /* Search the misc table */ 10374 ipip_end = &ip_misc_ioctl_table[ip_misc_ioctl_count]; 10375 for (ipip = ip_misc_ioctl_table; ipip < ipip_end; ipip++) { 10376 if (ipip->ipi_cmd == ioc_cmd) 10377 /* Found a match in the misc table */ 10378 return (ipip); 10379 } 10380 10381 return (NULL); 10382 } 10383 10384 /* 10385 * Wrapper function for resuming deferred ioctl processing 10386 * Used for SIOCGDSTINFO, SIOCGIP6ADDRPOLICY, SIOCGMSFILTER, 10387 * SIOCSMSFILTER, SIOCGIPMSFILTER, and SIOCSIPMSFILTER currently. 10388 */ 10389 /* ARGSUSED */ 10390 void 10391 ip_sioctl_copyin_resume(ipsq_t *dummy_ipsq, queue_t *q, mblk_t *mp, 10392 void *dummy_arg) 10393 { 10394 ip_sioctl_copyin_setup(q, mp); 10395 } 10396 10397 /* 10398 * ip_sioctl_copyin_setup is called by ip_wput with any M_IOCTL message 10399 * that arrives. Most of the IOCTLs are "socket" IOCTLs which we handle 10400 * in either I_STR or TRANSPARENT form, using the mi_copy facility. 10401 * We establish here the size of the block to be copied in. mi_copyin 10402 * arranges for this to happen, an processing continues in ip_wput with 10403 * an M_IOCDATA message. 10404 */ 10405 void 10406 ip_sioctl_copyin_setup(queue_t *q, mblk_t *mp) 10407 { 10408 int copyin_size; 10409 struct iocblk *iocp = (struct iocblk *)mp->b_rptr; 10410 ip_ioctl_cmd_t *ipip; 10411 cred_t *cr; 10412 ip_stack_t *ipst; 10413 10414 if (CONN_Q(q)) 10415 ipst = CONNQ_TO_IPST(q); 10416 else 10417 ipst = ILLQ_TO_IPST(q); 10418 10419 ipip = ip_sioctl_lookup(iocp->ioc_cmd); 10420 if (ipip == NULL) { 10421 /* 10422 * The ioctl is not one we understand or own. 10423 * Pass it along to be processed down stream, 10424 * if this is a module instance of IP, else nak 10425 * the ioctl. 10426 */ 10427 if (q->q_next == NULL) { 10428 goto nak; 10429 } else { 10430 putnext(q, mp); 10431 return; 10432 } 10433 } 10434 10435 /* 10436 * If this is deferred, then we will do all the checks when we 10437 * come back. 10438 */ 10439 if ((iocp->ioc_cmd == SIOCGDSTINFO || 10440 iocp->ioc_cmd == SIOCGIP6ADDRPOLICY) && !ip6_asp_can_lookup(ipst)) { 10441 ip6_asp_pending_op(q, mp, ip_sioctl_copyin_resume); 10442 return; 10443 } 10444 10445 /* 10446 * Only allow a very small subset of IP ioctls on this stream if 10447 * IP is a module and not a driver. Allowing ioctls to be processed 10448 * in this case may cause assert failures or data corruption. 10449 * Typically G[L]IFFLAGS, SLIFNAME/IF_UNITSEL are the only few 10450 * ioctls allowed on an IP module stream, after which this stream 10451 * normally becomes a multiplexor (at which time the stream head 10452 * will fail all ioctls). 10453 */ 10454 if ((q->q_next != NULL) && !(ipip->ipi_flags & IPI_MODOK)) { 10455 if (ipip->ipi_flags & IPI_PASS_DOWN) { 10456 /* 10457 * Pass common Streams ioctls which the IP 10458 * module does not own or consume along to 10459 * be processed down stream. 10460 */ 10461 putnext(q, mp); 10462 return; 10463 } else { 10464 goto nak; 10465 } 10466 } 10467 10468 /* Make sure we have ioctl data to process. */ 10469 if (mp->b_cont == NULL && !(ipip->ipi_flags & IPI_NULL_BCONT)) 10470 goto nak; 10471 10472 /* 10473 * Prefer dblk credential over ioctl credential; some synthesized 10474 * ioctls have kcred set because there's no way to crhold() 10475 * a credential in some contexts. (ioc_cr is not crfree() by 10476 * the framework; the caller of ioctl needs to hold the reference 10477 * for the duration of the call). 10478 */ 10479 cr = DB_CREDDEF(mp, iocp->ioc_cr); 10480 10481 /* Make sure normal users don't send down privileged ioctls */ 10482 if ((ipip->ipi_flags & IPI_PRIV) && 10483 (cr != NULL) && secpolicy_ip_config(cr, B_TRUE) != 0) { 10484 /* We checked the privilege earlier but log it here */ 10485 miocnak(q, mp, 0, secpolicy_ip_config(cr, B_FALSE)); 10486 return; 10487 } 10488 10489 /* 10490 * The ioctl command tables can only encode fixed length 10491 * ioctl data. If the length is variable, the table will 10492 * encode the length as zero. Such special cases are handled 10493 * below in the switch. 10494 */ 10495 if (ipip->ipi_copyin_size != 0) { 10496 mi_copyin(q, mp, NULL, ipip->ipi_copyin_size); 10497 return; 10498 } 10499 10500 switch (iocp->ioc_cmd) { 10501 case O_SIOCGIFCONF: 10502 case SIOCGIFCONF: 10503 /* 10504 * This IOCTL is hilarious. See comments in 10505 * ip_sioctl_get_ifconf for the story. 10506 */ 10507 if (iocp->ioc_count == TRANSPARENT) 10508 copyin_size = SIZEOF_STRUCT(ifconf, 10509 iocp->ioc_flag); 10510 else 10511 copyin_size = iocp->ioc_count; 10512 mi_copyin(q, mp, NULL, copyin_size); 10513 return; 10514 10515 case O_SIOCGLIFCONF: 10516 case SIOCGLIFCONF: 10517 copyin_size = SIZEOF_STRUCT(lifconf, iocp->ioc_flag); 10518 mi_copyin(q, mp, NULL, copyin_size); 10519 return; 10520 10521 case SIOCGLIFSRCOF: 10522 copyin_size = SIZEOF_STRUCT(lifsrcof, iocp->ioc_flag); 10523 mi_copyin(q, mp, NULL, copyin_size); 10524 return; 10525 case SIOCGIP6ADDRPOLICY: 10526 ip_sioctl_ip6addrpolicy(q, mp); 10527 ip6_asp_table_refrele(ipst); 10528 return; 10529 10530 case SIOCSIP6ADDRPOLICY: 10531 ip_sioctl_ip6addrpolicy(q, mp); 10532 return; 10533 10534 case SIOCGDSTINFO: 10535 ip_sioctl_dstinfo(q, mp); 10536 ip6_asp_table_refrele(ipst); 10537 return; 10538 10539 case I_PLINK: 10540 case I_PUNLINK: 10541 case I_LINK: 10542 case I_UNLINK: 10543 /* 10544 * We treat non-persistent link similarly as the persistent 10545 * link case, in terms of plumbing/unplumbing, as well as 10546 * dynamic re-plumbing events indicator. See comments 10547 * in ip_sioctl_plink() for more. 10548 * 10549 * Request can be enqueued in the 'ipsq' while waiting 10550 * to become exclusive. So bump up the conn ref. 10551 */ 10552 if (CONN_Q(q)) 10553 CONN_INC_REF(Q_TO_CONN(q)); 10554 ip_sioctl_plink(NULL, q, mp, NULL); 10555 return; 10556 10557 case ND_GET: 10558 case ND_SET: 10559 /* 10560 * Use of the nd table requires holding the reader lock. 10561 * Modifying the nd table thru nd_load/nd_unload requires 10562 * the writer lock. 10563 */ 10564 rw_enter(&ipst->ips_ip_g_nd_lock, RW_READER); 10565 if (nd_getset(q, ipst->ips_ip_g_nd, mp)) { 10566 rw_exit(&ipst->ips_ip_g_nd_lock); 10567 10568 if (iocp->ioc_error) 10569 iocp->ioc_count = 0; 10570 mp->b_datap->db_type = M_IOCACK; 10571 qreply(q, mp); 10572 return; 10573 } 10574 rw_exit(&ipst->ips_ip_g_nd_lock); 10575 /* 10576 * We don't understand this subioctl of ND_GET / ND_SET. 10577 * Maybe intended for some driver / module below us 10578 */ 10579 if (q->q_next) { 10580 putnext(q, mp); 10581 } else { 10582 iocp->ioc_error = ENOENT; 10583 mp->b_datap->db_type = M_IOCNAK; 10584 iocp->ioc_count = 0; 10585 qreply(q, mp); 10586 } 10587 return; 10588 10589 case IP_IOCTL: 10590 ip_wput_ioctl(q, mp); 10591 return; 10592 default: 10593 cmn_err(CE_PANIC, "should not happen "); 10594 } 10595 nak: 10596 if (mp->b_cont != NULL) { 10597 freemsg(mp->b_cont); 10598 mp->b_cont = NULL; 10599 } 10600 iocp->ioc_error = EINVAL; 10601 mp->b_datap->db_type = M_IOCNAK; 10602 iocp->ioc_count = 0; 10603 qreply(q, mp); 10604 } 10605 10606 /* ip_wput hands off ARP IOCTL responses to us */ 10607 void 10608 ip_sioctl_iocack(queue_t *q, mblk_t *mp) 10609 { 10610 struct arpreq *ar; 10611 struct xarpreq *xar; 10612 area_t *area; 10613 mblk_t *area_mp; 10614 struct iocblk *iocp; 10615 mblk_t *orig_ioc_mp, *tmp; 10616 struct iocblk *orig_iocp; 10617 ill_t *ill; 10618 conn_t *connp = NULL; 10619 uint_t ioc_id; 10620 mblk_t *pending_mp; 10621 int x_arp_ioctl = B_FALSE, ifx_arp_ioctl = B_FALSE; 10622 int *flagsp; 10623 char *storage = NULL; 10624 sin_t *sin; 10625 ipaddr_t addr; 10626 int err; 10627 ip_stack_t *ipst; 10628 10629 ill = q->q_ptr; 10630 ASSERT(ill != NULL); 10631 ipst = ill->ill_ipst; 10632 10633 /* 10634 * We should get back from ARP a packet chain that looks like: 10635 * M_IOCACK-->ARP_op_MBLK-->ORIG_M_IOCTL-->MI_COPY_MBLK-->[X]ARPREQ_MBLK 10636 */ 10637 if (!(area_mp = mp->b_cont) || 10638 (area_mp->b_wptr - area_mp->b_rptr) < sizeof (ip_sock_ar_t) || 10639 !(orig_ioc_mp = area_mp->b_cont) || 10640 !orig_ioc_mp->b_cont || !orig_ioc_mp->b_cont->b_cont) { 10641 freemsg(mp); 10642 return; 10643 } 10644 10645 orig_iocp = (struct iocblk *)orig_ioc_mp->b_rptr; 10646 10647 tmp = (orig_ioc_mp->b_cont)->b_cont; 10648 if ((orig_iocp->ioc_cmd == SIOCGXARP) || 10649 (orig_iocp->ioc_cmd == SIOCSXARP) || 10650 (orig_iocp->ioc_cmd == SIOCDXARP)) { 10651 x_arp_ioctl = B_TRUE; 10652 xar = (struct xarpreq *)tmp->b_rptr; 10653 sin = (sin_t *)&xar->xarp_pa; 10654 flagsp = &xar->xarp_flags; 10655 storage = xar->xarp_ha.sdl_data; 10656 if (xar->xarp_ha.sdl_nlen != 0) 10657 ifx_arp_ioctl = B_TRUE; 10658 } else { 10659 ar = (struct arpreq *)tmp->b_rptr; 10660 sin = (sin_t *)&ar->arp_pa; 10661 flagsp = &ar->arp_flags; 10662 storage = ar->arp_ha.sa_data; 10663 } 10664 10665 iocp = (struct iocblk *)mp->b_rptr; 10666 10667 /* 10668 * Pick out the originating queue based on the ioc_id. 10669 */ 10670 ioc_id = iocp->ioc_id; 10671 pending_mp = ill_pending_mp_get(ill, &connp, ioc_id); 10672 if (pending_mp == NULL) { 10673 ASSERT(connp == NULL); 10674 inet_freemsg(mp); 10675 return; 10676 } 10677 ASSERT(connp != NULL); 10678 q = CONNP_TO_WQ(connp); 10679 10680 /* Uncouple the internally generated IOCTL from the original one */ 10681 area = (area_t *)area_mp->b_rptr; 10682 area_mp->b_cont = NULL; 10683 10684 /* 10685 * Restore the b_next and b_prev used by mi code. This is needed 10686 * to complete the ioctl using mi* functions. We stored them in 10687 * the pending mp prior to sending the request to ARP. 10688 */ 10689 orig_ioc_mp->b_cont->b_next = pending_mp->b_cont->b_next; 10690 orig_ioc_mp->b_cont->b_prev = pending_mp->b_cont->b_prev; 10691 inet_freemsg(pending_mp); 10692 10693 /* 10694 * We're done if there was an error or if this is not an SIOCG{X}ARP 10695 * Catch the case where there is an IRE_CACHE by no entry in the 10696 * arp table. 10697 */ 10698 addr = sin->sin_addr.s_addr; 10699 if (iocp->ioc_error && iocp->ioc_cmd == AR_ENTRY_SQUERY) { 10700 ire_t *ire; 10701 dl_unitdata_req_t *dlup; 10702 mblk_t *llmp; 10703 int addr_len; 10704 ill_t *ipsqill = NULL; 10705 10706 if (ifx_arp_ioctl) { 10707 /* 10708 * There's no need to lookup the ill, since 10709 * we've already done that when we started 10710 * processing the ioctl and sent the message 10711 * to ARP on that ill. So use the ill that 10712 * is stored in q->q_ptr. 10713 */ 10714 ipsqill = ill; 10715 ire = ire_ctable_lookup(addr, 0, IRE_CACHE, 10716 ipsqill->ill_ipif, ALL_ZONES, 10717 NULL, MATCH_IRE_TYPE | MATCH_IRE_ILL, ipst); 10718 } else { 10719 ire = ire_ctable_lookup(addr, 0, IRE_CACHE, 10720 NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 10721 if (ire != NULL) 10722 ipsqill = ire_to_ill(ire); 10723 } 10724 10725 if ((x_arp_ioctl) && (ipsqill != NULL)) 10726 storage += ill_xarp_info(&xar->xarp_ha, ipsqill); 10727 10728 if (ire != NULL) { 10729 /* 10730 * Since the ire obtained from cachetable is used for 10731 * mac addr copying below, treat an incomplete ire as if 10732 * as if we never found it. 10733 */ 10734 if (ire->ire_nce != NULL && 10735 ire->ire_nce->nce_state != ND_REACHABLE) { 10736 ire_refrele(ire); 10737 ire = NULL; 10738 ipsqill = NULL; 10739 goto errack; 10740 } 10741 *flagsp = ATF_INUSE; 10742 llmp = (ire->ire_nce != NULL ? 10743 ire->ire_nce->nce_res_mp : NULL); 10744 if (llmp != NULL && ipsqill != NULL) { 10745 uchar_t *macaddr; 10746 10747 addr_len = ipsqill->ill_phys_addr_length; 10748 if (x_arp_ioctl && ((addr_len + 10749 ipsqill->ill_name_length) > 10750 sizeof (xar->xarp_ha.sdl_data))) { 10751 ire_refrele(ire); 10752 freemsg(mp); 10753 ip_ioctl_finish(q, orig_ioc_mp, 10754 EINVAL, NO_COPYOUT, NULL); 10755 return; 10756 } 10757 *flagsp |= ATF_COM; 10758 dlup = (dl_unitdata_req_t *)llmp->b_rptr; 10759 if (ipsqill->ill_sap_length < 0) 10760 macaddr = llmp->b_rptr + 10761 dlup->dl_dest_addr_offset; 10762 else 10763 macaddr = llmp->b_rptr + 10764 dlup->dl_dest_addr_offset + 10765 ipsqill->ill_sap_length; 10766 /* 10767 * For SIOCGARP, MAC address length 10768 * validation has already been done 10769 * before the ioctl was issued to ARP to 10770 * allow it to progress only on 6 byte 10771 * addressable (ethernet like) media. Thus 10772 * the mac address copying can not overwrite 10773 * the sa_data area below. 10774 */ 10775 bcopy(macaddr, storage, addr_len); 10776 } 10777 /* Ditch the internal IOCTL. */ 10778 freemsg(mp); 10779 ire_refrele(ire); 10780 ip_ioctl_finish(q, orig_ioc_mp, 0, COPYOUT, NULL); 10781 return; 10782 } 10783 } 10784 10785 /* 10786 * Delete the coresponding IRE_CACHE if any. 10787 * Reset the error if there was one (in case there was no entry 10788 * in arp.) 10789 */ 10790 if (iocp->ioc_cmd == AR_ENTRY_DELETE) { 10791 ipif_t *ipintf = NULL; 10792 10793 if (ifx_arp_ioctl) { 10794 /* 10795 * There's no need to lookup the ill, since 10796 * we've already done that when we started 10797 * processing the ioctl and sent the message 10798 * to ARP on that ill. So use the ill that 10799 * is stored in q->q_ptr. 10800 */ 10801 ipintf = ill->ill_ipif; 10802 } 10803 if (ip_ire_clookup_and_delete(addr, ipintf, ipst)) { 10804 /* 10805 * The address in "addr" may be an entry for a 10806 * router. If that's true, then any off-net 10807 * IRE_CACHE entries that go through the router 10808 * with address "addr" must be clobbered. Use 10809 * ire_walk to achieve this goal. 10810 */ 10811 if (ifx_arp_ioctl) 10812 ire_walk_ill_v4(MATCH_IRE_ILL, 0, 10813 ire_delete_cache_gw, (char *)&addr, ill); 10814 else 10815 ire_walk_v4(ire_delete_cache_gw, (char *)&addr, 10816 ALL_ZONES, ipst); 10817 iocp->ioc_error = 0; 10818 } 10819 } 10820 errack: 10821 if (iocp->ioc_error || iocp->ioc_cmd != AR_ENTRY_SQUERY) { 10822 err = iocp->ioc_error; 10823 freemsg(mp); 10824 ip_ioctl_finish(q, orig_ioc_mp, err, NO_COPYOUT, NULL); 10825 return; 10826 } 10827 10828 /* 10829 * Completion of an SIOCG{X}ARP. Translate the information from 10830 * the area_t into the struct {x}arpreq. 10831 */ 10832 if (x_arp_ioctl) { 10833 storage += ill_xarp_info(&xar->xarp_ha, ill); 10834 if ((ill->ill_phys_addr_length + ill->ill_name_length) > 10835 sizeof (xar->xarp_ha.sdl_data)) { 10836 freemsg(mp); 10837 ip_ioctl_finish(q, orig_ioc_mp, EINVAL, NO_COPYOUT, 10838 NULL); 10839 return; 10840 } 10841 } 10842 *flagsp = ATF_INUSE; 10843 if (area->area_flags & ACE_F_PERMANENT) 10844 *flagsp |= ATF_PERM; 10845 if (area->area_flags & ACE_F_PUBLISH) 10846 *flagsp |= ATF_PUBL; 10847 if (area->area_flags & ACE_F_AUTHORITY) 10848 *flagsp |= ATF_AUTHORITY; 10849 if (area->area_hw_addr_length != 0) { 10850 *flagsp |= ATF_COM; 10851 /* 10852 * For SIOCGARP, MAC address length validation has 10853 * already been done before the ioctl was issued to ARP 10854 * to allow it to progress only on 6 byte addressable 10855 * (ethernet like) media. Thus the mac address copying 10856 * can not overwrite the sa_data area below. 10857 */ 10858 bcopy((char *)area + area->area_hw_addr_offset, 10859 storage, area->area_hw_addr_length); 10860 } 10861 10862 /* Ditch the internal IOCTL. */ 10863 freemsg(mp); 10864 /* Complete the original. */ 10865 ip_ioctl_finish(q, orig_ioc_mp, 0, COPYOUT, NULL); 10866 } 10867 10868 /* 10869 * Create a new logical interface. If ipif_id is zero (i.e. not a logical 10870 * interface) create the next available logical interface for this 10871 * physical interface. 10872 * If ipif is NULL (i.e. the lookup didn't find one) attempt to create an 10873 * ipif with the specified name. 10874 * 10875 * If the address family is not AF_UNSPEC then set the address as well. 10876 * 10877 * If ip_sioctl_addr returns EINPROGRESS then the ioctl (the copyout) 10878 * is completed when the DL_BIND_ACK arrive in ip_rput_dlpi_writer. 10879 * 10880 * Executed as a writer on the ill or ill group. 10881 * So no lock is needed to traverse the ipif chain, or examine the 10882 * phyint flags. 10883 */ 10884 /* ARGSUSED */ 10885 int 10886 ip_sioctl_addif(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, 10887 ip_ioctl_cmd_t *dummy_ipip, void *dummy_ifreq) 10888 { 10889 mblk_t *mp1; 10890 struct lifreq *lifr; 10891 boolean_t isv6; 10892 boolean_t exists; 10893 char *name; 10894 char *endp; 10895 char *cp; 10896 int namelen; 10897 ipif_t *ipif; 10898 long id; 10899 ipsq_t *ipsq; 10900 ill_t *ill; 10901 sin_t *sin; 10902 int err = 0; 10903 boolean_t found_sep = B_FALSE; 10904 conn_t *connp; 10905 zoneid_t zoneid; 10906 int orig_ifindex = 0; 10907 ip_stack_t *ipst = CONNQ_TO_IPST(q); 10908 10909 ASSERT(q->q_next == NULL); 10910 ip1dbg(("ip_sioctl_addif\n")); 10911 /* Existence of mp1 has been checked in ip_wput_nondata */ 10912 mp1 = mp->b_cont->b_cont; 10913 /* 10914 * Null terminate the string to protect against buffer 10915 * overrun. String was generated by user code and may not 10916 * be trusted. 10917 */ 10918 lifr = (struct lifreq *)mp1->b_rptr; 10919 lifr->lifr_name[LIFNAMSIZ - 1] = '\0'; 10920 name = lifr->lifr_name; 10921 ASSERT(CONN_Q(q)); 10922 connp = Q_TO_CONN(q); 10923 isv6 = connp->conn_af_isv6; 10924 zoneid = connp->conn_zoneid; 10925 namelen = mi_strlen(name); 10926 if (namelen == 0) 10927 return (EINVAL); 10928 10929 exists = B_FALSE; 10930 if ((namelen + 1 == sizeof (ipif_loopback_name)) && 10931 (mi_strcmp(name, ipif_loopback_name) == 0)) { 10932 /* 10933 * Allow creating lo0 using SIOCLIFADDIF. 10934 * can't be any other writer thread. So can pass null below 10935 * for the last 4 args to ipif_lookup_name. 10936 */ 10937 ipif = ipif_lookup_on_name(lifr->lifr_name, namelen, B_TRUE, 10938 &exists, isv6, zoneid, NULL, NULL, NULL, NULL, ipst); 10939 /* Prevent any further action */ 10940 if (ipif == NULL) { 10941 return (ENOBUFS); 10942 } else if (!exists) { 10943 /* We created the ipif now and as writer */ 10944 ipif_refrele(ipif); 10945 return (0); 10946 } else { 10947 ill = ipif->ipif_ill; 10948 ill_refhold(ill); 10949 ipif_refrele(ipif); 10950 } 10951 } else { 10952 /* Look for a colon in the name. */ 10953 endp = &name[namelen]; 10954 for (cp = endp; --cp > name; ) { 10955 if (*cp == IPIF_SEPARATOR_CHAR) { 10956 found_sep = B_TRUE; 10957 /* 10958 * Reject any non-decimal aliases for plumbing 10959 * of logical interfaces. Aliases with leading 10960 * zeroes are also rejected as they introduce 10961 * ambiguity in the naming of the interfaces. 10962 * Comparing with "0" takes care of all such 10963 * cases. 10964 */ 10965 if ((strncmp("0", cp+1, 1)) == 0) 10966 return (EINVAL); 10967 10968 if (ddi_strtol(cp+1, &endp, 10, &id) != 0 || 10969 id <= 0 || *endp != '\0') { 10970 return (EINVAL); 10971 } 10972 *cp = '\0'; 10973 break; 10974 } 10975 } 10976 ill = ill_lookup_on_name(name, B_FALSE, isv6, 10977 CONNP_TO_WQ(connp), mp, ip_process_ioctl, &err, NULL, ipst); 10978 if (found_sep) 10979 *cp = IPIF_SEPARATOR_CHAR; 10980 if (ill == NULL) 10981 return (err); 10982 } 10983 10984 ipsq = ipsq_try_enter(NULL, ill, q, mp, ip_process_ioctl, NEW_OP, 10985 B_TRUE); 10986 10987 /* 10988 * Release the refhold due to the lookup, now that we are excl 10989 * or we are just returning 10990 */ 10991 ill_refrele(ill); 10992 10993 if (ipsq == NULL) 10994 return (EINPROGRESS); 10995 10996 /* 10997 * If the interface is failed, inactive or offlined, look for a working 10998 * interface in the ill group and create the ipif there. If we can't 10999 * find a good interface, create the ipif anyway so that in.mpathd can 11000 * move it to the first repaired interface. 11001 */ 11002 if ((ill->ill_phyint->phyint_flags & 11003 (PHYI_FAILED|PHYI_INACTIVE|PHYI_OFFLINE)) && 11004 ill->ill_phyint->phyint_groupname_len != 0) { 11005 phyint_t *phyi; 11006 char *groupname = ill->ill_phyint->phyint_groupname; 11007 11008 /* 11009 * We're looking for a working interface, but it doesn't matter 11010 * if it's up or down; so instead of following the group lists, 11011 * we look at each physical interface and compare the groupname. 11012 * We're only interested in interfaces with IPv4 (resp. IPv6) 11013 * plumbed when we're adding an IPv4 (resp. IPv6) ipif. 11014 * Otherwise we create the ipif on the failed interface. 11015 */ 11016 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 11017 phyi = avl_first(&ipst->ips_phyint_g_list-> 11018 phyint_list_avl_by_index); 11019 for (; phyi != NULL; 11020 phyi = avl_walk(&ipst->ips_phyint_g_list-> 11021 phyint_list_avl_by_index, 11022 phyi, AVL_AFTER)) { 11023 if (phyi->phyint_groupname_len == 0) 11024 continue; 11025 ASSERT(phyi->phyint_groupname != NULL); 11026 if (mi_strcmp(groupname, phyi->phyint_groupname) == 0 && 11027 !(phyi->phyint_flags & 11028 (PHYI_FAILED|PHYI_INACTIVE|PHYI_OFFLINE)) && 11029 (ill->ill_isv6 ? (phyi->phyint_illv6 != NULL) : 11030 (phyi->phyint_illv4 != NULL))) { 11031 break; 11032 } 11033 } 11034 rw_exit(&ipst->ips_ill_g_lock); 11035 11036 if (phyi != NULL) { 11037 orig_ifindex = ill->ill_phyint->phyint_ifindex; 11038 ill = (ill->ill_isv6 ? phyi->phyint_illv6 : 11039 phyi->phyint_illv4); 11040 } 11041 } 11042 11043 /* 11044 * We are now exclusive on the ipsq, so an ill move will be serialized 11045 * before or after us. 11046 */ 11047 ASSERT(IAM_WRITER_ILL(ill)); 11048 ASSERT(ill->ill_move_in_progress == B_FALSE); 11049 11050 if (found_sep && orig_ifindex == 0) { 11051 /* Now see if there is an IPIF with this unit number. */ 11052 for (ipif = ill->ill_ipif; ipif != NULL; 11053 ipif = ipif->ipif_next) { 11054 if (ipif->ipif_id == id) { 11055 err = EEXIST; 11056 goto done; 11057 } 11058 } 11059 } 11060 11061 /* 11062 * We use IRE_LOCAL for lo0:1 etc. for "receive only" use 11063 * of lo0. We never come here when we plumb lo0:0. It 11064 * happens in ipif_lookup_on_name. 11065 * The specified unit number is ignored when we create the ipif on a 11066 * different interface. However, we save it in ipif_orig_ipifid below so 11067 * that the ipif fails back to the right position. 11068 */ 11069 if ((ipif = ipif_allocate(ill, (found_sep && orig_ifindex == 0) ? 11070 id : -1, IRE_LOCAL, B_TRUE)) == NULL) { 11071 err = ENOBUFS; 11072 goto done; 11073 } 11074 11075 /* Return created name with ioctl */ 11076 (void) sprintf(lifr->lifr_name, "%s%c%d", ill->ill_name, 11077 IPIF_SEPARATOR_CHAR, ipif->ipif_id); 11078 ip1dbg(("created %s\n", lifr->lifr_name)); 11079 11080 /* Set address */ 11081 sin = (sin_t *)&lifr->lifr_addr; 11082 if (sin->sin_family != AF_UNSPEC) { 11083 err = ip_sioctl_addr(ipif, sin, q, mp, 11084 &ip_ndx_ioctl_table[SIOCLIFADDR_NDX], lifr); 11085 } 11086 11087 /* Set ifindex and unit number for failback */ 11088 if (err == 0 && orig_ifindex != 0) { 11089 ipif->ipif_orig_ifindex = orig_ifindex; 11090 if (found_sep) { 11091 ipif->ipif_orig_ipifid = id; 11092 } 11093 } 11094 11095 done: 11096 ipsq_exit(ipsq, B_TRUE, B_TRUE); 11097 return (err); 11098 } 11099 11100 /* 11101 * Remove an existing logical interface. If ipif_id is zero (i.e. not a logical 11102 * interface) delete it based on the IP address (on this physical interface). 11103 * Otherwise delete it based on the ipif_id. 11104 * Also, special handling to allow a removeif of lo0. 11105 */ 11106 /* ARGSUSED */ 11107 int 11108 ip_sioctl_removeif(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11109 ip_ioctl_cmd_t *ipip, void *dummy_if_req) 11110 { 11111 conn_t *connp; 11112 ill_t *ill = ipif->ipif_ill; 11113 boolean_t success; 11114 ip_stack_t *ipst; 11115 11116 ipst = CONNQ_TO_IPST(q); 11117 11118 ASSERT(q->q_next == NULL); 11119 ip1dbg(("ip_sioctl_remove_if(%s:%u %p)\n", 11120 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11121 ASSERT(IAM_WRITER_IPIF(ipif)); 11122 11123 connp = Q_TO_CONN(q); 11124 /* 11125 * Special case for unplumbing lo0 (the loopback physical interface). 11126 * If unplumbing lo0, the incoming address structure has been 11127 * initialized to all zeros. When unplumbing lo0, all its logical 11128 * interfaces must be removed too. 11129 * 11130 * Note that this interface may be called to remove a specific 11131 * loopback logical interface (eg, lo0:1). But in that case 11132 * ipif->ipif_id != 0 so that the code path for that case is the 11133 * same as any other interface (meaning it skips the code directly 11134 * below). 11135 */ 11136 if (ipif->ipif_id == 0 && ipif->ipif_net_type == IRE_LOOPBACK) { 11137 if (sin->sin_family == AF_UNSPEC && 11138 (IN6_IS_ADDR_UNSPECIFIED(&((sin6_t *)sin)->sin6_addr))) { 11139 /* 11140 * Mark it condemned. No new ref. will be made to ill. 11141 */ 11142 mutex_enter(&ill->ill_lock); 11143 ill->ill_state_flags |= ILL_CONDEMNED; 11144 for (ipif = ill->ill_ipif; ipif != NULL; 11145 ipif = ipif->ipif_next) { 11146 ipif->ipif_state_flags |= IPIF_CONDEMNED; 11147 } 11148 mutex_exit(&ill->ill_lock); 11149 11150 ipif = ill->ill_ipif; 11151 /* unplumb the loopback interface */ 11152 ill_delete(ill); 11153 mutex_enter(&connp->conn_lock); 11154 mutex_enter(&ill->ill_lock); 11155 ASSERT(ill->ill_group == NULL); 11156 11157 /* Are any references to this ill active */ 11158 if (ill_is_quiescent(ill)) { 11159 mutex_exit(&ill->ill_lock); 11160 mutex_exit(&connp->conn_lock); 11161 ill_delete_tail(ill); 11162 mi_free(ill); 11163 return (0); 11164 } 11165 success = ipsq_pending_mp_add(connp, ipif, 11166 CONNP_TO_WQ(connp), mp, ILL_FREE); 11167 mutex_exit(&connp->conn_lock); 11168 mutex_exit(&ill->ill_lock); 11169 if (success) 11170 return (EINPROGRESS); 11171 else 11172 return (EINTR); 11173 } 11174 } 11175 11176 /* 11177 * We are exclusive on the ipsq, so an ill move will be serialized 11178 * before or after us. 11179 */ 11180 ASSERT(ill->ill_move_in_progress == B_FALSE); 11181 11182 if (ipif->ipif_id == 0) { 11183 /* Find based on address */ 11184 if (ipif->ipif_isv6) { 11185 sin6_t *sin6; 11186 11187 if (sin->sin_family != AF_INET6) 11188 return (EAFNOSUPPORT); 11189 11190 sin6 = (sin6_t *)sin; 11191 /* We are a writer, so we should be able to lookup */ 11192 ipif = ipif_lookup_addr_v6(&sin6->sin6_addr, 11193 ill, ALL_ZONES, NULL, NULL, NULL, NULL, ipst); 11194 if (ipif == NULL) { 11195 /* 11196 * Maybe the address in on another interface in 11197 * the same IPMP group? We check this below. 11198 */ 11199 ipif = ipif_lookup_addr_v6(&sin6->sin6_addr, 11200 NULL, ALL_ZONES, NULL, NULL, NULL, NULL, 11201 ipst); 11202 } 11203 } else { 11204 ipaddr_t addr; 11205 11206 if (sin->sin_family != AF_INET) 11207 return (EAFNOSUPPORT); 11208 11209 addr = sin->sin_addr.s_addr; 11210 /* We are a writer, so we should be able to lookup */ 11211 ipif = ipif_lookup_addr(addr, ill, ALL_ZONES, NULL, 11212 NULL, NULL, NULL, ipst); 11213 if (ipif == NULL) { 11214 /* 11215 * Maybe the address in on another interface in 11216 * the same IPMP group? We check this below. 11217 */ 11218 ipif = ipif_lookup_addr(addr, NULL, ALL_ZONES, 11219 NULL, NULL, NULL, NULL, ipst); 11220 } 11221 } 11222 if (ipif == NULL) { 11223 return (EADDRNOTAVAIL); 11224 } 11225 /* 11226 * When the address to be removed is hosted on a different 11227 * interface, we check if the interface is in the same IPMP 11228 * group as the specified one; if so we proceed with the 11229 * removal. 11230 * ill->ill_group is NULL when the ill is down, so we have to 11231 * compare the group names instead. 11232 */ 11233 if (ipif->ipif_ill != ill && 11234 (ipif->ipif_ill->ill_phyint->phyint_groupname_len == 0 || 11235 ill->ill_phyint->phyint_groupname_len == 0 || 11236 mi_strcmp(ipif->ipif_ill->ill_phyint->phyint_groupname, 11237 ill->ill_phyint->phyint_groupname) != 0)) { 11238 ipif_refrele(ipif); 11239 return (EADDRNOTAVAIL); 11240 } 11241 11242 /* This is a writer */ 11243 ipif_refrele(ipif); 11244 } 11245 11246 /* 11247 * Can not delete instance zero since it is tied to the ill. 11248 */ 11249 if (ipif->ipif_id == 0) 11250 return (EBUSY); 11251 11252 mutex_enter(&ill->ill_lock); 11253 ipif->ipif_state_flags |= IPIF_CONDEMNED; 11254 mutex_exit(&ill->ill_lock); 11255 11256 ipif_free(ipif); 11257 11258 mutex_enter(&connp->conn_lock); 11259 mutex_enter(&ill->ill_lock); 11260 11261 /* Are any references to this ipif active */ 11262 if (ipif->ipif_refcnt == 0 && ipif->ipif_ire_cnt == 0) { 11263 mutex_exit(&ill->ill_lock); 11264 mutex_exit(&connp->conn_lock); 11265 ipif_non_duplicate(ipif); 11266 ipif_down_tail(ipif); 11267 ipif_free_tail(ipif); 11268 return (0); 11269 } 11270 success = ipsq_pending_mp_add(connp, ipif, CONNP_TO_WQ(connp), mp, 11271 IPIF_FREE); 11272 mutex_exit(&ill->ill_lock); 11273 mutex_exit(&connp->conn_lock); 11274 if (success) 11275 return (EINPROGRESS); 11276 else 11277 return (EINTR); 11278 } 11279 11280 /* 11281 * Restart the removeif ioctl. The refcnt has gone down to 0. 11282 * The ipif is already condemned. So can't find it thru lookups. 11283 */ 11284 /* ARGSUSED */ 11285 int 11286 ip_sioctl_removeif_restart(ipif_t *ipif, sin_t *dummy_sin, queue_t *q, 11287 mblk_t *mp, ip_ioctl_cmd_t *ipip, void *dummy_if_req) 11288 { 11289 ill_t *ill; 11290 11291 ip1dbg(("ip_sioctl_removeif_restart(%s:%u %p)\n", 11292 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11293 if (ipif->ipif_id == 0 && ipif->ipif_net_type == IRE_LOOPBACK) { 11294 ill = ipif->ipif_ill; 11295 ASSERT(IAM_WRITER_ILL(ill)); 11296 ASSERT((ipif->ipif_state_flags & IPIF_CONDEMNED) && 11297 (ill->ill_state_flags & IPIF_CONDEMNED)); 11298 ill_delete_tail(ill); 11299 mi_free(ill); 11300 return (0); 11301 } 11302 11303 ill = ipif->ipif_ill; 11304 ASSERT(IAM_WRITER_IPIF(ipif)); 11305 ASSERT(ipif->ipif_state_flags & IPIF_CONDEMNED); 11306 11307 ipif_non_duplicate(ipif); 11308 ipif_down_tail(ipif); 11309 ipif_free_tail(ipif); 11310 11311 ILL_UNMARK_CHANGING(ill); 11312 return (0); 11313 } 11314 11315 /* 11316 * Set the local interface address. 11317 * Allow an address of all zero when the interface is down. 11318 */ 11319 /* ARGSUSED */ 11320 int 11321 ip_sioctl_addr(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11322 ip_ioctl_cmd_t *dummy_ipip, void *dummy_ifreq) 11323 { 11324 int err = 0; 11325 in6_addr_t v6addr; 11326 boolean_t need_up = B_FALSE; 11327 11328 ip1dbg(("ip_sioctl_addr(%s:%u %p)\n", 11329 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11330 11331 ASSERT(IAM_WRITER_IPIF(ipif)); 11332 11333 if (ipif->ipif_isv6) { 11334 sin6_t *sin6; 11335 ill_t *ill; 11336 phyint_t *phyi; 11337 11338 if (sin->sin_family != AF_INET6) 11339 return (EAFNOSUPPORT); 11340 11341 sin6 = (sin6_t *)sin; 11342 v6addr = sin6->sin6_addr; 11343 ill = ipif->ipif_ill; 11344 phyi = ill->ill_phyint; 11345 11346 /* 11347 * Enforce that true multicast interfaces have a link-local 11348 * address for logical unit 0. 11349 */ 11350 if (ipif->ipif_id == 0 && 11351 (ill->ill_flags & ILLF_MULTICAST) && 11352 !(ipif->ipif_flags & (IPIF_POINTOPOINT)) && 11353 !(phyi->phyint_flags & (PHYI_LOOPBACK)) && 11354 !IN6_IS_ADDR_LINKLOCAL(&v6addr)) { 11355 return (EADDRNOTAVAIL); 11356 } 11357 11358 /* 11359 * up interfaces shouldn't have the unspecified address 11360 * unless they also have the IPIF_NOLOCAL flags set and 11361 * have a subnet assigned. 11362 */ 11363 if ((ipif->ipif_flags & IPIF_UP) && 11364 IN6_IS_ADDR_UNSPECIFIED(&v6addr) && 11365 (!(ipif->ipif_flags & IPIF_NOLOCAL) || 11366 IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6subnet))) { 11367 return (EADDRNOTAVAIL); 11368 } 11369 11370 if (!ip_local_addr_ok_v6(&v6addr, &ipif->ipif_v6net_mask)) 11371 return (EADDRNOTAVAIL); 11372 } else { 11373 ipaddr_t addr; 11374 11375 if (sin->sin_family != AF_INET) 11376 return (EAFNOSUPPORT); 11377 11378 addr = sin->sin_addr.s_addr; 11379 11380 /* Allow 0 as the local address. */ 11381 if (addr != 0 && !ip_addr_ok_v4(addr, ipif->ipif_net_mask)) 11382 return (EADDRNOTAVAIL); 11383 11384 IN6_IPADDR_TO_V4MAPPED(addr, &v6addr); 11385 } 11386 11387 11388 /* 11389 * Even if there is no change we redo things just to rerun 11390 * ipif_set_default. 11391 */ 11392 if (ipif->ipif_flags & IPIF_UP) { 11393 /* 11394 * Setting a new local address, make sure 11395 * we have net and subnet bcast ire's for 11396 * the old address if we need them. 11397 */ 11398 if (!ipif->ipif_isv6) 11399 ipif_check_bcast_ires(ipif); 11400 /* 11401 * If the interface is already marked up, 11402 * we call ipif_down which will take care 11403 * of ditching any IREs that have been set 11404 * up based on the old interface address. 11405 */ 11406 err = ipif_logical_down(ipif, q, mp); 11407 if (err == EINPROGRESS) 11408 return (err); 11409 ipif_down_tail(ipif); 11410 need_up = 1; 11411 } 11412 11413 err = ip_sioctl_addr_tail(ipif, sin, q, mp, need_up); 11414 return (err); 11415 } 11416 11417 int 11418 ip_sioctl_addr_tail(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11419 boolean_t need_up) 11420 { 11421 in6_addr_t v6addr; 11422 in6_addr_t ov6addr; 11423 ipaddr_t addr; 11424 sin6_t *sin6; 11425 int sinlen; 11426 int err = 0; 11427 ill_t *ill = ipif->ipif_ill; 11428 boolean_t need_dl_down; 11429 boolean_t need_arp_down; 11430 struct iocblk *iocp; 11431 11432 iocp = (mp != NULL) ? (struct iocblk *)mp->b_rptr : NULL; 11433 11434 ip1dbg(("ip_sioctl_addr_tail(%s:%u %p)\n", 11435 ill->ill_name, ipif->ipif_id, (void *)ipif)); 11436 ASSERT(IAM_WRITER_IPIF(ipif)); 11437 11438 /* Must cancel any pending timer before taking the ill_lock */ 11439 if (ipif->ipif_recovery_id != 0) 11440 (void) untimeout(ipif->ipif_recovery_id); 11441 ipif->ipif_recovery_id = 0; 11442 11443 if (ipif->ipif_isv6) { 11444 sin6 = (sin6_t *)sin; 11445 v6addr = sin6->sin6_addr; 11446 sinlen = sizeof (struct sockaddr_in6); 11447 } else { 11448 addr = sin->sin_addr.s_addr; 11449 IN6_IPADDR_TO_V4MAPPED(addr, &v6addr); 11450 sinlen = sizeof (struct sockaddr_in); 11451 } 11452 mutex_enter(&ill->ill_lock); 11453 ov6addr = ipif->ipif_v6lcl_addr; 11454 ipif->ipif_v6lcl_addr = v6addr; 11455 sctp_update_ipif_addr(ipif, ov6addr); 11456 if (ipif->ipif_flags & (IPIF_ANYCAST | IPIF_NOLOCAL)) { 11457 ipif->ipif_v6src_addr = ipv6_all_zeros; 11458 } else { 11459 ipif->ipif_v6src_addr = v6addr; 11460 } 11461 ipif->ipif_addr_ready = 0; 11462 11463 /* 11464 * If the interface was previously marked as a duplicate, then since 11465 * we've now got a "new" address, it should no longer be considered a 11466 * duplicate -- even if the "new" address is the same as the old one. 11467 * Note that if all ipifs are down, we may have a pending ARP down 11468 * event to handle. This is because we want to recover from duplicates 11469 * and thus delay tearing down ARP until the duplicates have been 11470 * removed or disabled. 11471 */ 11472 need_dl_down = need_arp_down = B_FALSE; 11473 if (ipif->ipif_flags & IPIF_DUPLICATE) { 11474 need_arp_down = !need_up; 11475 ipif->ipif_flags &= ~IPIF_DUPLICATE; 11476 if (--ill->ill_ipif_dup_count == 0 && !need_up && 11477 ill->ill_ipif_up_count == 0 && ill->ill_dl_up) { 11478 need_dl_down = B_TRUE; 11479 } 11480 } 11481 11482 if (ipif->ipif_isv6 && IN6_IS_ADDR_6TO4(&v6addr) && 11483 !ill->ill_is_6to4tun) { 11484 queue_t *wqp = ill->ill_wq; 11485 11486 /* 11487 * The local address of this interface is a 6to4 address, 11488 * check if this interface is in fact a 6to4 tunnel or just 11489 * an interface configured with a 6to4 address. We are only 11490 * interested in the former. 11491 */ 11492 if (wqp != NULL) { 11493 while ((wqp->q_next != NULL) && 11494 (wqp->q_next->q_qinfo != NULL) && 11495 (wqp->q_next->q_qinfo->qi_minfo != NULL)) { 11496 11497 if (wqp->q_next->q_qinfo->qi_minfo->mi_idnum 11498 == TUN6TO4_MODID) { 11499 /* set for use in IP */ 11500 ill->ill_is_6to4tun = 1; 11501 break; 11502 } 11503 wqp = wqp->q_next; 11504 } 11505 } 11506 } 11507 11508 ipif_set_default(ipif); 11509 11510 /* 11511 * When publishing an interface address change event, we only notify 11512 * the event listeners of the new address. It is assumed that if they 11513 * actively care about the addresses assigned that they will have 11514 * already discovered the previous address assigned (if there was one.) 11515 * 11516 * Don't attach nic event message for SIOCLIFADDIF ioctl. 11517 */ 11518 if (iocp != NULL && iocp->ioc_cmd != SIOCLIFADDIF) { 11519 hook_nic_event_t *info; 11520 if ((info = ipif->ipif_ill->ill_nic_event_info) != NULL) { 11521 ip2dbg(("ip_sioctl_addr_tail: unexpected nic event %d " 11522 "attached for %s\n", info->hne_event, 11523 ill->ill_name)); 11524 if (info->hne_data != NULL) 11525 kmem_free(info->hne_data, info->hne_datalen); 11526 kmem_free(info, sizeof (hook_nic_event_t)); 11527 } 11528 11529 info = kmem_alloc(sizeof (hook_nic_event_t), KM_NOSLEEP); 11530 if (info != NULL) { 11531 ip_stack_t *ipst = ill->ill_ipst; 11532 11533 info->hne_nic = 11534 ipif->ipif_ill->ill_phyint->phyint_hook_ifindex; 11535 info->hne_lif = MAP_IPIF_ID(ipif->ipif_id); 11536 info->hne_event = NE_ADDRESS_CHANGE; 11537 info->hne_family = ipif->ipif_isv6 ? 11538 ipst->ips_ipv6_net_data : ipst->ips_ipv4_net_data; 11539 info->hne_data = kmem_alloc(sinlen, KM_NOSLEEP); 11540 if (info->hne_data != NULL) { 11541 info->hne_datalen = sinlen; 11542 bcopy(sin, info->hne_data, sinlen); 11543 } else { 11544 ip2dbg(("ip_sioctl_addr_tail: could not attach " 11545 "address information for ADDRESS_CHANGE nic" 11546 " event of %s (ENOMEM)\n", 11547 ipif->ipif_ill->ill_name)); 11548 kmem_free(info, sizeof (hook_nic_event_t)); 11549 } 11550 } else 11551 ip2dbg(("ip_sioctl_addr_tail: could not attach " 11552 "ADDRESS_CHANGE nic event information for %s " 11553 "(ENOMEM)\n", ipif->ipif_ill->ill_name)); 11554 11555 ipif->ipif_ill->ill_nic_event_info = info; 11556 } 11557 11558 mutex_exit(&ill->ill_lock); 11559 11560 if (need_up) { 11561 /* 11562 * Now bring the interface back up. If this 11563 * is the only IPIF for the ILL, ipif_up 11564 * will have to re-bind to the device, so 11565 * we may get back EINPROGRESS, in which 11566 * case, this IOCTL will get completed in 11567 * ip_rput_dlpi when we see the DL_BIND_ACK. 11568 */ 11569 err = ipif_up(ipif, q, mp); 11570 } 11571 11572 if (need_dl_down) 11573 ill_dl_down(ill); 11574 if (need_arp_down) 11575 ipif_arp_down(ipif); 11576 11577 return (err); 11578 } 11579 11580 11581 /* 11582 * Restart entry point to restart the address set operation after the 11583 * refcounts have dropped to zero. 11584 */ 11585 /* ARGSUSED */ 11586 int 11587 ip_sioctl_addr_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11588 ip_ioctl_cmd_t *ipip, void *ifreq) 11589 { 11590 ip1dbg(("ip_sioctl_addr_restart(%s:%u %p)\n", 11591 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11592 ASSERT(IAM_WRITER_IPIF(ipif)); 11593 ipif_down_tail(ipif); 11594 return (ip_sioctl_addr_tail(ipif, sin, q, mp, B_TRUE)); 11595 } 11596 11597 /* ARGSUSED */ 11598 int 11599 ip_sioctl_get_addr(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11600 ip_ioctl_cmd_t *ipip, void *if_req) 11601 { 11602 sin6_t *sin6 = (struct sockaddr_in6 *)sin; 11603 struct lifreq *lifr = (struct lifreq *)if_req; 11604 11605 ip1dbg(("ip_sioctl_get_addr(%s:%u %p)\n", 11606 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11607 /* 11608 * The net mask and address can't change since we have a 11609 * reference to the ipif. So no lock is necessary. 11610 */ 11611 if (ipif->ipif_isv6) { 11612 *sin6 = sin6_null; 11613 sin6->sin6_family = AF_INET6; 11614 sin6->sin6_addr = ipif->ipif_v6lcl_addr; 11615 ASSERT(ipip->ipi_cmd_type == LIF_CMD); 11616 lifr->lifr_addrlen = 11617 ip_mask_to_plen_v6(&ipif->ipif_v6net_mask); 11618 } else { 11619 *sin = sin_null; 11620 sin->sin_family = AF_INET; 11621 sin->sin_addr.s_addr = ipif->ipif_lcl_addr; 11622 if (ipip->ipi_cmd_type == LIF_CMD) { 11623 lifr->lifr_addrlen = 11624 ip_mask_to_plen(ipif->ipif_net_mask); 11625 } 11626 } 11627 return (0); 11628 } 11629 11630 /* 11631 * Set the destination address for a pt-pt interface. 11632 */ 11633 /* ARGSUSED */ 11634 int 11635 ip_sioctl_dstaddr(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11636 ip_ioctl_cmd_t *ipip, void *if_req) 11637 { 11638 int err = 0; 11639 in6_addr_t v6addr; 11640 boolean_t need_up = B_FALSE; 11641 11642 ip1dbg(("ip_sioctl_dstaddr(%s:%u %p)\n", 11643 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11644 ASSERT(IAM_WRITER_IPIF(ipif)); 11645 11646 if (ipif->ipif_isv6) { 11647 sin6_t *sin6; 11648 11649 if (sin->sin_family != AF_INET6) 11650 return (EAFNOSUPPORT); 11651 11652 sin6 = (sin6_t *)sin; 11653 v6addr = sin6->sin6_addr; 11654 11655 if (!ip_remote_addr_ok_v6(&v6addr, &ipif->ipif_v6net_mask)) 11656 return (EADDRNOTAVAIL); 11657 } else { 11658 ipaddr_t addr; 11659 11660 if (sin->sin_family != AF_INET) 11661 return (EAFNOSUPPORT); 11662 11663 addr = sin->sin_addr.s_addr; 11664 if (!ip_addr_ok_v4(addr, ipif->ipif_net_mask)) 11665 return (EADDRNOTAVAIL); 11666 11667 IN6_IPADDR_TO_V4MAPPED(addr, &v6addr); 11668 } 11669 11670 if (IN6_ARE_ADDR_EQUAL(&ipif->ipif_v6pp_dst_addr, &v6addr)) 11671 return (0); /* No change */ 11672 11673 if (ipif->ipif_flags & IPIF_UP) { 11674 /* 11675 * If the interface is already marked up, 11676 * we call ipif_down which will take care 11677 * of ditching any IREs that have been set 11678 * up based on the old pp dst address. 11679 */ 11680 err = ipif_logical_down(ipif, q, mp); 11681 if (err == EINPROGRESS) 11682 return (err); 11683 ipif_down_tail(ipif); 11684 need_up = B_TRUE; 11685 } 11686 /* 11687 * could return EINPROGRESS. If so ioctl will complete in 11688 * ip_rput_dlpi_writer 11689 */ 11690 err = ip_sioctl_dstaddr_tail(ipif, sin, q, mp, need_up); 11691 return (err); 11692 } 11693 11694 static int 11695 ip_sioctl_dstaddr_tail(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11696 boolean_t need_up) 11697 { 11698 in6_addr_t v6addr; 11699 ill_t *ill = ipif->ipif_ill; 11700 int err = 0; 11701 boolean_t need_dl_down; 11702 boolean_t need_arp_down; 11703 11704 ip1dbg(("ip_sioctl_dstaddr_tail(%s:%u %p)\n", ill->ill_name, 11705 ipif->ipif_id, (void *)ipif)); 11706 11707 /* Must cancel any pending timer before taking the ill_lock */ 11708 if (ipif->ipif_recovery_id != 0) 11709 (void) untimeout(ipif->ipif_recovery_id); 11710 ipif->ipif_recovery_id = 0; 11711 11712 if (ipif->ipif_isv6) { 11713 sin6_t *sin6; 11714 11715 sin6 = (sin6_t *)sin; 11716 v6addr = sin6->sin6_addr; 11717 } else { 11718 ipaddr_t addr; 11719 11720 addr = sin->sin_addr.s_addr; 11721 IN6_IPADDR_TO_V4MAPPED(addr, &v6addr); 11722 } 11723 mutex_enter(&ill->ill_lock); 11724 /* Set point to point destination address. */ 11725 if ((ipif->ipif_flags & IPIF_POINTOPOINT) == 0) { 11726 /* 11727 * Allow this as a means of creating logical 11728 * pt-pt interfaces on top of e.g. an Ethernet. 11729 * XXX Undocumented HACK for testing. 11730 * pt-pt interfaces are created with NUD disabled. 11731 */ 11732 ipif->ipif_flags |= IPIF_POINTOPOINT; 11733 ipif->ipif_flags &= ~IPIF_BROADCAST; 11734 if (ipif->ipif_isv6) 11735 ill->ill_flags |= ILLF_NONUD; 11736 } 11737 11738 /* 11739 * If the interface was previously marked as a duplicate, then since 11740 * we've now got a "new" address, it should no longer be considered a 11741 * duplicate -- even if the "new" address is the same as the old one. 11742 * Note that if all ipifs are down, we may have a pending ARP down 11743 * event to handle. 11744 */ 11745 need_dl_down = need_arp_down = B_FALSE; 11746 if (ipif->ipif_flags & IPIF_DUPLICATE) { 11747 need_arp_down = !need_up; 11748 ipif->ipif_flags &= ~IPIF_DUPLICATE; 11749 if (--ill->ill_ipif_dup_count == 0 && !need_up && 11750 ill->ill_ipif_up_count == 0 && ill->ill_dl_up) { 11751 need_dl_down = B_TRUE; 11752 } 11753 } 11754 11755 /* Set the new address. */ 11756 ipif->ipif_v6pp_dst_addr = v6addr; 11757 /* Make sure subnet tracks pp_dst */ 11758 ipif->ipif_v6subnet = ipif->ipif_v6pp_dst_addr; 11759 mutex_exit(&ill->ill_lock); 11760 11761 if (need_up) { 11762 /* 11763 * Now bring the interface back up. If this 11764 * is the only IPIF for the ILL, ipif_up 11765 * will have to re-bind to the device, so 11766 * we may get back EINPROGRESS, in which 11767 * case, this IOCTL will get completed in 11768 * ip_rput_dlpi when we see the DL_BIND_ACK. 11769 */ 11770 err = ipif_up(ipif, q, mp); 11771 } 11772 11773 if (need_dl_down) 11774 ill_dl_down(ill); 11775 11776 if (need_arp_down) 11777 ipif_arp_down(ipif); 11778 return (err); 11779 } 11780 11781 /* 11782 * Restart entry point to restart the dstaddress set operation after the 11783 * refcounts have dropped to zero. 11784 */ 11785 /* ARGSUSED */ 11786 int 11787 ip_sioctl_dstaddr_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11788 ip_ioctl_cmd_t *ipip, void *ifreq) 11789 { 11790 ip1dbg(("ip_sioctl_dstaddr_restart(%s:%u %p)\n", 11791 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11792 ipif_down_tail(ipif); 11793 return (ip_sioctl_dstaddr_tail(ipif, sin, q, mp, B_TRUE)); 11794 } 11795 11796 /* ARGSUSED */ 11797 int 11798 ip_sioctl_get_dstaddr(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11799 ip_ioctl_cmd_t *ipip, void *if_req) 11800 { 11801 sin6_t *sin6 = (struct sockaddr_in6 *)sin; 11802 11803 ip1dbg(("ip_sioctl_get_dstaddr(%s:%u %p)\n", 11804 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11805 /* 11806 * Get point to point destination address. The addresses can't 11807 * change since we hold a reference to the ipif. 11808 */ 11809 if ((ipif->ipif_flags & IPIF_POINTOPOINT) == 0) 11810 return (EADDRNOTAVAIL); 11811 11812 if (ipif->ipif_isv6) { 11813 ASSERT(ipip->ipi_cmd_type == LIF_CMD); 11814 *sin6 = sin6_null; 11815 sin6->sin6_family = AF_INET6; 11816 sin6->sin6_addr = ipif->ipif_v6pp_dst_addr; 11817 } else { 11818 *sin = sin_null; 11819 sin->sin_family = AF_INET; 11820 sin->sin_addr.s_addr = ipif->ipif_pp_dst_addr; 11821 } 11822 return (0); 11823 } 11824 11825 /* 11826 * part of ipmp, make this func return the active/inactive state and 11827 * caller can set once atomically instead of multiple mutex_enter/mutex_exit 11828 */ 11829 /* 11830 * This function either sets or clears the IFF_INACTIVE flag. 11831 * 11832 * As long as there are some addresses or multicast memberships on the 11833 * IPv4 or IPv6 interface of the "phyi" that does not belong in here, we 11834 * will consider it to be ACTIVE (clear IFF_INACTIVE) i.e the interface 11835 * will be used for outbound packets. 11836 * 11837 * Caller needs to verify the validity of setting IFF_INACTIVE. 11838 */ 11839 static void 11840 phyint_inactive(phyint_t *phyi) 11841 { 11842 ill_t *ill_v4; 11843 ill_t *ill_v6; 11844 ipif_t *ipif; 11845 ilm_t *ilm; 11846 11847 ill_v4 = phyi->phyint_illv4; 11848 ill_v6 = phyi->phyint_illv6; 11849 11850 /* 11851 * No need for a lock while traversing the list since iam 11852 * a writer 11853 */ 11854 if (ill_v4 != NULL) { 11855 ASSERT(IAM_WRITER_ILL(ill_v4)); 11856 for (ipif = ill_v4->ill_ipif; ipif != NULL; 11857 ipif = ipif->ipif_next) { 11858 if (ipif->ipif_orig_ifindex != phyi->phyint_ifindex) { 11859 mutex_enter(&phyi->phyint_lock); 11860 phyi->phyint_flags &= ~PHYI_INACTIVE; 11861 mutex_exit(&phyi->phyint_lock); 11862 return; 11863 } 11864 } 11865 for (ilm = ill_v4->ill_ilm; ilm != NULL; 11866 ilm = ilm->ilm_next) { 11867 if (ilm->ilm_orig_ifindex != phyi->phyint_ifindex) { 11868 mutex_enter(&phyi->phyint_lock); 11869 phyi->phyint_flags &= ~PHYI_INACTIVE; 11870 mutex_exit(&phyi->phyint_lock); 11871 return; 11872 } 11873 } 11874 } 11875 if (ill_v6 != NULL) { 11876 ill_v6 = phyi->phyint_illv6; 11877 for (ipif = ill_v6->ill_ipif; ipif != NULL; 11878 ipif = ipif->ipif_next) { 11879 if (ipif->ipif_orig_ifindex != phyi->phyint_ifindex) { 11880 mutex_enter(&phyi->phyint_lock); 11881 phyi->phyint_flags &= ~PHYI_INACTIVE; 11882 mutex_exit(&phyi->phyint_lock); 11883 return; 11884 } 11885 } 11886 for (ilm = ill_v6->ill_ilm; ilm != NULL; 11887 ilm = ilm->ilm_next) { 11888 if (ilm->ilm_orig_ifindex != phyi->phyint_ifindex) { 11889 mutex_enter(&phyi->phyint_lock); 11890 phyi->phyint_flags &= ~PHYI_INACTIVE; 11891 mutex_exit(&phyi->phyint_lock); 11892 return; 11893 } 11894 } 11895 } 11896 mutex_enter(&phyi->phyint_lock); 11897 phyi->phyint_flags |= PHYI_INACTIVE; 11898 mutex_exit(&phyi->phyint_lock); 11899 } 11900 11901 /* 11902 * This function is called only when the phyint flags change. Currently 11903 * called from ip_sioctl_flags. We re-do the broadcast nomination so 11904 * that we can select a good ill. 11905 */ 11906 static void 11907 ip_redo_nomination(phyint_t *phyi) 11908 { 11909 ill_t *ill_v4; 11910 11911 ill_v4 = phyi->phyint_illv4; 11912 11913 if (ill_v4 != NULL && ill_v4->ill_group != NULL) { 11914 ASSERT(IAM_WRITER_ILL(ill_v4)); 11915 if (ill_v4->ill_group->illgrp_ill_count > 1) 11916 ill_nominate_bcast_rcv(ill_v4->ill_group); 11917 } 11918 } 11919 11920 /* 11921 * Heuristic to check if ill is INACTIVE. 11922 * Checks if ill has an ipif with an usable ip address. 11923 * 11924 * Return values: 11925 * B_TRUE - ill is INACTIVE; has no usable ipif 11926 * B_FALSE - ill is not INACTIVE; ill has at least one usable ipif 11927 */ 11928 static boolean_t 11929 ill_is_inactive(ill_t *ill) 11930 { 11931 ipif_t *ipif; 11932 11933 /* Check whether it is in an IPMP group */ 11934 if (ill->ill_phyint->phyint_groupname == NULL) 11935 return (B_FALSE); 11936 11937 if (ill->ill_ipif_up_count == 0) 11938 return (B_TRUE); 11939 11940 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 11941 uint64_t flags = ipif->ipif_flags; 11942 11943 /* 11944 * This ipif is usable if it is IPIF_UP and not a 11945 * dedicated test address. A dedicated test address 11946 * is marked IPIF_NOFAILOVER *and* IPIF_DEPRECATED 11947 * (note in particular that V6 test addresses are 11948 * link-local data addresses and thus are marked 11949 * IPIF_NOFAILOVER but not IPIF_DEPRECATED). 11950 */ 11951 if ((flags & IPIF_UP) && 11952 ((flags & (IPIF_DEPRECATED|IPIF_NOFAILOVER)) != 11953 (IPIF_DEPRECATED|IPIF_NOFAILOVER))) 11954 return (B_FALSE); 11955 } 11956 return (B_TRUE); 11957 } 11958 11959 /* 11960 * Set interface flags. 11961 * Need to do special action for IPIF_UP, IPIF_DEPRECATED, IPIF_NOXMIT, 11962 * IPIF_NOLOCAL, ILLF_NONUD, ILLF_NOARP, IPIF_PRIVATE, IPIF_ANYCAST, 11963 * IPIF_PREFERRED, PHYI_STANDBY, PHYI_FAILED and PHYI_OFFLINE. 11964 * 11965 * NOTE : We really don't enforce that ipif_id zero should be used 11966 * for setting any flags other than IFF_LOGINT_FLAGS. This 11967 * is because applications generally does SICGLIFFLAGS and 11968 * ORs in the new flags (that affects the logical) and does a 11969 * SIOCSLIFFLAGS. Thus, "flags" below could contain bits other 11970 * than IFF_LOGINT_FLAGS. One could check whether "turn_on" - the 11971 * flags that will be turned on is correct with respect to 11972 * ipif_id 0. For backward compatibility reasons, it is not done. 11973 */ 11974 /* ARGSUSED */ 11975 int 11976 ip_sioctl_flags(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11977 ip_ioctl_cmd_t *ipip, void *if_req) 11978 { 11979 uint64_t turn_on; 11980 uint64_t turn_off; 11981 int err; 11982 boolean_t need_up = B_FALSE; 11983 phyint_t *phyi; 11984 ill_t *ill; 11985 uint64_t intf_flags; 11986 boolean_t phyint_flags_modified = B_FALSE; 11987 uint64_t flags; 11988 struct ifreq *ifr; 11989 struct lifreq *lifr; 11990 boolean_t set_linklocal = B_FALSE; 11991 boolean_t zero_source = B_FALSE; 11992 ip_stack_t *ipst; 11993 11994 ip1dbg(("ip_sioctl_flags(%s:%u %p)\n", 11995 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11996 11997 ASSERT(IAM_WRITER_IPIF(ipif)); 11998 11999 ill = ipif->ipif_ill; 12000 phyi = ill->ill_phyint; 12001 ipst = ill->ill_ipst; 12002 12003 if (ipip->ipi_cmd_type == IF_CMD) { 12004 ifr = (struct ifreq *)if_req; 12005 flags = (uint64_t)(ifr->ifr_flags & 0x0000ffff); 12006 } else { 12007 lifr = (struct lifreq *)if_req; 12008 flags = lifr->lifr_flags; 12009 } 12010 12011 intf_flags = ipif->ipif_flags | ill->ill_flags | phyi->phyint_flags; 12012 12013 /* 12014 * Has the flags been set correctly till now ? 12015 */ 12016 ASSERT((phyi->phyint_flags & ~(IFF_PHYINT_FLAGS)) == 0); 12017 ASSERT((ill->ill_flags & ~(IFF_PHYINTINST_FLAGS)) == 0); 12018 ASSERT((ipif->ipif_flags & ~(IFF_LOGINT_FLAGS)) == 0); 12019 /* 12020 * Compare the new flags to the old, and partition 12021 * into those coming on and those going off. 12022 * For the 16 bit command keep the bits above bit 16 unchanged. 12023 */ 12024 if (ipip->ipi_cmd == SIOCSIFFLAGS) 12025 flags |= intf_flags & ~0xFFFF; 12026 12027 /* 12028 * First check which bits will change and then which will 12029 * go on and off 12030 */ 12031 turn_on = (flags ^ intf_flags) & ~IFF_CANTCHANGE; 12032 if (!turn_on) 12033 return (0); /* No change */ 12034 12035 turn_off = intf_flags & turn_on; 12036 turn_on ^= turn_off; 12037 err = 0; 12038 12039 /* 12040 * Don't allow any bits belonging to the logical interface 12041 * to be set or cleared on the replacement ipif that was 12042 * created temporarily during a MOVE. 12043 */ 12044 if (ipif->ipif_replace_zero && 12045 ((turn_on|turn_off) & IFF_LOGINT_FLAGS) != 0) { 12046 return (EINVAL); 12047 } 12048 12049 /* 12050 * Only allow the IFF_XRESOLV and IFF_TEMPORARY flags to be set on 12051 * IPv6 interfaces. 12052 */ 12053 if ((turn_on & (IFF_XRESOLV|IFF_TEMPORARY)) && !(ipif->ipif_isv6)) 12054 return (EINVAL); 12055 12056 /* 12057 * Don't allow the IFF_ROUTER flag to be turned on on loopback 12058 * interfaces. It makes no sense in that context. 12059 */ 12060 if ((turn_on & IFF_ROUTER) && (phyi->phyint_flags & PHYI_LOOPBACK)) 12061 return (EINVAL); 12062 12063 if (flags & (IFF_NOLOCAL|IFF_ANYCAST)) 12064 zero_source = B_TRUE; 12065 12066 /* 12067 * For IPv6 ipif_id 0, don't allow the interface to be up without 12068 * a link local address if IFF_NOLOCAL or IFF_ANYCAST are not set. 12069 * If the link local address isn't set, and can be set, it will get 12070 * set later on in this function. 12071 */ 12072 if (ipif->ipif_id == 0 && ipif->ipif_isv6 && 12073 (flags & IFF_UP) && !zero_source && 12074 IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6lcl_addr)) { 12075 if (ipif_cant_setlinklocal(ipif)) 12076 return (EINVAL); 12077 set_linklocal = B_TRUE; 12078 } 12079 12080 /* 12081 * ILL cannot be part of a usesrc group and and IPMP group at the 12082 * same time. No need to grab ill_g_usesrc_lock here, see 12083 * synchronization notes in ip.c 12084 */ 12085 if (turn_on & PHYI_STANDBY && 12086 ipif->ipif_ill->ill_usesrc_grp_next != NULL) { 12087 return (EINVAL); 12088 } 12089 12090 /* 12091 * If we modify physical interface flags, we'll potentially need to 12092 * send up two routing socket messages for the changes (one for the 12093 * IPv4 ill, and another for the IPv6 ill). Note that here. 12094 */ 12095 if ((turn_on|turn_off) & IFF_PHYINT_FLAGS) 12096 phyint_flags_modified = B_TRUE; 12097 12098 /* 12099 * If we are setting or clearing FAILED or STANDBY or OFFLINE, 12100 * we need to flush the IRE_CACHES belonging to this ill. 12101 * We handle this case here without doing the DOWN/UP dance 12102 * like it is done for other flags. If some other flags are 12103 * being turned on/off with FAILED/STANDBY/OFFLINE, the code 12104 * below will handle it by bringing it down and then 12105 * bringing it UP. 12106 */ 12107 if ((turn_on|turn_off) & (PHYI_FAILED|PHYI_STANDBY|PHYI_OFFLINE)) { 12108 ill_t *ill_v4, *ill_v6; 12109 12110 ill_v4 = phyi->phyint_illv4; 12111 ill_v6 = phyi->phyint_illv6; 12112 12113 /* 12114 * First set the INACTIVE flag if needed. Then delete the ires. 12115 * ire_add will atomically prevent creating new IRE_CACHEs 12116 * unless hidden flag is set. 12117 * PHYI_FAILED and PHYI_INACTIVE are exclusive 12118 */ 12119 if ((turn_on & PHYI_FAILED) && 12120 ((intf_flags & PHYI_STANDBY) || 12121 !ipst->ips_ipmp_enable_failback)) { 12122 /* Reset PHYI_INACTIVE when PHYI_FAILED is being set */ 12123 phyi->phyint_flags &= ~PHYI_INACTIVE; 12124 } 12125 if ((turn_off & PHYI_FAILED) && 12126 ((intf_flags & PHYI_STANDBY) || 12127 (!ipst->ips_ipmp_enable_failback && 12128 ill_is_inactive(ill)))) { 12129 phyint_inactive(phyi); 12130 } 12131 12132 if (turn_on & PHYI_STANDBY) { 12133 /* 12134 * We implicitly set INACTIVE only when STANDBY is set. 12135 * INACTIVE is also set on non-STANDBY phyint when user 12136 * disables FAILBACK using configuration file. 12137 * Do not allow STANDBY to be set on such INACTIVE 12138 * phyint 12139 */ 12140 if (phyi->phyint_flags & PHYI_INACTIVE) 12141 return (EINVAL); 12142 if (!(phyi->phyint_flags & PHYI_FAILED)) 12143 phyint_inactive(phyi); 12144 } 12145 if (turn_off & PHYI_STANDBY) { 12146 if (ipst->ips_ipmp_enable_failback) { 12147 /* 12148 * Reset PHYI_INACTIVE. 12149 */ 12150 phyi->phyint_flags &= ~PHYI_INACTIVE; 12151 } else if (ill_is_inactive(ill) && 12152 !(phyi->phyint_flags & PHYI_FAILED)) { 12153 /* 12154 * Need to set INACTIVE, when user sets 12155 * STANDBY on a non-STANDBY phyint and 12156 * later resets STANDBY 12157 */ 12158 phyint_inactive(phyi); 12159 } 12160 } 12161 /* 12162 * We should always send up a message so that the 12163 * daemons come to know of it. Note that the zeroth 12164 * interface can be down and the check below for IPIF_UP 12165 * will not make sense as we are actually setting 12166 * a phyint flag here. We assume that the ipif used 12167 * is always the zeroth ipif. (ip_rts_ifmsg does not 12168 * send up any message for non-zero ipifs). 12169 */ 12170 phyint_flags_modified = B_TRUE; 12171 12172 if (ill_v4 != NULL) { 12173 ire_walk_ill_v4(MATCH_IRE_ILL | MATCH_IRE_TYPE, 12174 IRE_CACHE, ill_stq_cache_delete, 12175 (char *)ill_v4, ill_v4); 12176 illgrp_reset_schednext(ill_v4); 12177 } 12178 if (ill_v6 != NULL) { 12179 ire_walk_ill_v6(MATCH_IRE_ILL | MATCH_IRE_TYPE, 12180 IRE_CACHE, ill_stq_cache_delete, 12181 (char *)ill_v6, ill_v6); 12182 illgrp_reset_schednext(ill_v6); 12183 } 12184 } 12185 12186 /* 12187 * If ILLF_ROUTER changes, we need to change the ip forwarding 12188 * status of the interface and, if the interface is part of an IPMP 12189 * group, all other interfaces that are part of the same IPMP 12190 * group. 12191 */ 12192 if ((turn_on | turn_off) & ILLF_ROUTER) { 12193 (void) ill_forward_set(q, mp, ((turn_on & ILLF_ROUTER) != 0), 12194 (caddr_t)ill); 12195 } 12196 12197 /* 12198 * If the interface is not UP and we are not going to 12199 * bring it UP, record the flags and return. When the 12200 * interface comes UP later, the right actions will be 12201 * taken. 12202 */ 12203 if (!(ipif->ipif_flags & IPIF_UP) && 12204 !(turn_on & IPIF_UP)) { 12205 /* Record new flags in their respective places. */ 12206 mutex_enter(&ill->ill_lock); 12207 mutex_enter(&ill->ill_phyint->phyint_lock); 12208 ipif->ipif_flags |= (turn_on & IFF_LOGINT_FLAGS); 12209 ipif->ipif_flags &= (~turn_off & IFF_LOGINT_FLAGS); 12210 ill->ill_flags |= (turn_on & IFF_PHYINTINST_FLAGS); 12211 ill->ill_flags &= (~turn_off & IFF_PHYINTINST_FLAGS); 12212 phyi->phyint_flags |= (turn_on & IFF_PHYINT_FLAGS); 12213 phyi->phyint_flags &= (~turn_off & IFF_PHYINT_FLAGS); 12214 mutex_exit(&ill->ill_lock); 12215 mutex_exit(&ill->ill_phyint->phyint_lock); 12216 12217 /* 12218 * We do the broadcast and nomination here rather 12219 * than waiting for a FAILOVER/FAILBACK to happen. In 12220 * the case of FAILBACK from INACTIVE standby to the 12221 * interface that has been repaired, PHYI_FAILED has not 12222 * been cleared yet. If there are only two interfaces in 12223 * that group, all we have is a FAILED and INACTIVE 12224 * interface. If we do the nomination soon after a failback, 12225 * the broadcast nomination code would select the 12226 * INACTIVE interface for receiving broadcasts as FAILED is 12227 * not yet cleared. As we don't want STANDBY/INACTIVE to 12228 * receive broadcast packets, we need to redo nomination 12229 * when the FAILED is cleared here. Thus, in general we 12230 * always do the nomination here for FAILED, STANDBY 12231 * and OFFLINE. 12232 */ 12233 if (((turn_on | turn_off) & 12234 (PHYI_FAILED|PHYI_STANDBY|PHYI_OFFLINE))) { 12235 ip_redo_nomination(phyi); 12236 } 12237 if (phyint_flags_modified) { 12238 if (phyi->phyint_illv4 != NULL) { 12239 ip_rts_ifmsg(phyi->phyint_illv4-> 12240 ill_ipif); 12241 } 12242 if (phyi->phyint_illv6 != NULL) { 12243 ip_rts_ifmsg(phyi->phyint_illv6-> 12244 ill_ipif); 12245 } 12246 } 12247 return (0); 12248 } else if (set_linklocal || zero_source) { 12249 mutex_enter(&ill->ill_lock); 12250 if (set_linklocal) 12251 ipif->ipif_state_flags |= IPIF_SET_LINKLOCAL; 12252 if (zero_source) 12253 ipif->ipif_state_flags |= IPIF_ZERO_SOURCE; 12254 mutex_exit(&ill->ill_lock); 12255 } 12256 12257 /* 12258 * Disallow IPv6 interfaces coming up that have the unspecified address, 12259 * or point-to-point interfaces with an unspecified destination. We do 12260 * allow the address to be unspecified for IPIF_NOLOCAL interfaces that 12261 * have a subnet assigned, which is how in.ndpd currently manages its 12262 * onlink prefix list when no addresses are configured with those 12263 * prefixes. 12264 */ 12265 if (ipif->ipif_isv6 && 12266 ((IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6lcl_addr) && 12267 (!(ipif->ipif_flags & IPIF_NOLOCAL) && !(turn_on & IPIF_NOLOCAL) || 12268 IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6subnet))) || 12269 ((ipif->ipif_flags & IPIF_POINTOPOINT) && 12270 IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6pp_dst_addr)))) { 12271 return (EINVAL); 12272 } 12273 12274 /* 12275 * Prevent IPv4 point-to-point interfaces with a 0.0.0.0 destination 12276 * from being brought up. 12277 */ 12278 if (!ipif->ipif_isv6 && 12279 ((ipif->ipif_flags & IPIF_POINTOPOINT) && 12280 ipif->ipif_pp_dst_addr == INADDR_ANY)) { 12281 return (EINVAL); 12282 } 12283 12284 /* 12285 * The only flag changes that we currently take specific action on 12286 * is IPIF_UP, IPIF_DEPRECATED, IPIF_NOXMIT, IPIF_NOLOCAL, 12287 * ILLF_NOARP, ILLF_NONUD, IPIF_PRIVATE, IPIF_ANYCAST, and 12288 * IPIF_PREFERRED. This is done by bring the ipif down, changing 12289 * the flags and bringing it back up again. 12290 */ 12291 if ((turn_on|turn_off) & 12292 (IPIF_UP|IPIF_DEPRECATED|IPIF_NOXMIT|IPIF_NOLOCAL|ILLF_NOARP| 12293 ILLF_NONUD|IPIF_PRIVATE|IPIF_ANYCAST|IPIF_PREFERRED)) { 12294 /* 12295 * Taking this ipif down, make sure we have 12296 * valid net and subnet bcast ire's for other 12297 * logical interfaces, if we need them. 12298 */ 12299 if (!ipif->ipif_isv6) 12300 ipif_check_bcast_ires(ipif); 12301 12302 if (((ipif->ipif_flags | turn_on) & IPIF_UP) && 12303 !(turn_off & IPIF_UP)) { 12304 need_up = B_TRUE; 12305 if (ipif->ipif_flags & IPIF_UP) 12306 ill->ill_logical_down = 1; 12307 turn_on &= ~IPIF_UP; 12308 } 12309 err = ipif_down(ipif, q, mp); 12310 ip1dbg(("ipif_down returns %d err ", err)); 12311 if (err == EINPROGRESS) 12312 return (err); 12313 ipif_down_tail(ipif); 12314 } 12315 return (ip_sioctl_flags_tail(ipif, flags, q, mp, need_up)); 12316 } 12317 12318 static int 12319 ip_sioctl_flags_tail(ipif_t *ipif, uint64_t flags, queue_t *q, mblk_t *mp, 12320 boolean_t need_up) 12321 { 12322 ill_t *ill; 12323 phyint_t *phyi; 12324 uint64_t turn_on; 12325 uint64_t turn_off; 12326 uint64_t intf_flags; 12327 boolean_t phyint_flags_modified = B_FALSE; 12328 int err = 0; 12329 boolean_t set_linklocal = B_FALSE; 12330 boolean_t zero_source = B_FALSE; 12331 12332 ip1dbg(("ip_sioctl_flags_tail(%s:%u)\n", 12333 ipif->ipif_ill->ill_name, ipif->ipif_id)); 12334 12335 ASSERT(IAM_WRITER_IPIF(ipif)); 12336 12337 ill = ipif->ipif_ill; 12338 phyi = ill->ill_phyint; 12339 12340 intf_flags = ipif->ipif_flags | ill->ill_flags | phyi->phyint_flags; 12341 turn_on = (flags ^ intf_flags) & ~(IFF_CANTCHANGE | IFF_UP); 12342 12343 turn_off = intf_flags & turn_on; 12344 turn_on ^= turn_off; 12345 12346 if ((turn_on|turn_off) & (PHYI_FAILED|PHYI_STANDBY|PHYI_OFFLINE)) 12347 phyint_flags_modified = B_TRUE; 12348 12349 /* 12350 * Now we change the flags. Track current value of 12351 * other flags in their respective places. 12352 */ 12353 mutex_enter(&ill->ill_lock); 12354 mutex_enter(&phyi->phyint_lock); 12355 ipif->ipif_flags |= (turn_on & IFF_LOGINT_FLAGS); 12356 ipif->ipif_flags &= (~turn_off & IFF_LOGINT_FLAGS); 12357 ill->ill_flags |= (turn_on & IFF_PHYINTINST_FLAGS); 12358 ill->ill_flags &= (~turn_off & IFF_PHYINTINST_FLAGS); 12359 phyi->phyint_flags |= (turn_on & IFF_PHYINT_FLAGS); 12360 phyi->phyint_flags &= (~turn_off & IFF_PHYINT_FLAGS); 12361 if (ipif->ipif_state_flags & IPIF_SET_LINKLOCAL) { 12362 set_linklocal = B_TRUE; 12363 ipif->ipif_state_flags &= ~IPIF_SET_LINKLOCAL; 12364 } 12365 if (ipif->ipif_state_flags & IPIF_ZERO_SOURCE) { 12366 zero_source = B_TRUE; 12367 ipif->ipif_state_flags &= ~IPIF_ZERO_SOURCE; 12368 } 12369 mutex_exit(&ill->ill_lock); 12370 mutex_exit(&phyi->phyint_lock); 12371 12372 if (((turn_on | turn_off) & (PHYI_FAILED|PHYI_STANDBY|PHYI_OFFLINE))) 12373 ip_redo_nomination(phyi); 12374 12375 if (set_linklocal) 12376 (void) ipif_setlinklocal(ipif); 12377 12378 if (zero_source) 12379 ipif->ipif_v6src_addr = ipv6_all_zeros; 12380 else 12381 ipif->ipif_v6src_addr = ipif->ipif_v6lcl_addr; 12382 12383 if (need_up) { 12384 /* 12385 * XXX ipif_up really does not know whether a phyint flags 12386 * was modified or not. So, it sends up information on 12387 * only one routing sockets message. As we don't bring up 12388 * the interface and also set STANDBY/FAILED simultaneously 12389 * it should be okay. 12390 */ 12391 err = ipif_up(ipif, q, mp); 12392 } else { 12393 /* 12394 * Make sure routing socket sees all changes to the flags. 12395 * ipif_up_done* handles this when we use ipif_up. 12396 */ 12397 if (phyint_flags_modified) { 12398 if (phyi->phyint_illv4 != NULL) { 12399 ip_rts_ifmsg(phyi->phyint_illv4-> 12400 ill_ipif); 12401 } 12402 if (phyi->phyint_illv6 != NULL) { 12403 ip_rts_ifmsg(phyi->phyint_illv6-> 12404 ill_ipif); 12405 } 12406 } else { 12407 ip_rts_ifmsg(ipif); 12408 } 12409 /* 12410 * Update the flags in SCTP's IPIF list, ipif_up() will do 12411 * this in need_up case. 12412 */ 12413 sctp_update_ipif(ipif, SCTP_IPIF_UPDATE); 12414 } 12415 return (err); 12416 } 12417 12418 /* 12419 * Restart entry point to restart the flags restart operation after the 12420 * refcounts have dropped to zero. 12421 */ 12422 /* ARGSUSED */ 12423 int 12424 ip_sioctl_flags_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12425 ip_ioctl_cmd_t *ipip, void *if_req) 12426 { 12427 int err; 12428 struct ifreq *ifr = (struct ifreq *)if_req; 12429 struct lifreq *lifr = (struct lifreq *)if_req; 12430 12431 ip1dbg(("ip_sioctl_flags_restart(%s:%u %p)\n", 12432 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12433 12434 ipif_down_tail(ipif); 12435 if (ipip->ipi_cmd_type == IF_CMD) { 12436 /* 12437 * Since ip_sioctl_flags expects an int and ifr_flags 12438 * is a short we need to cast ifr_flags into an int 12439 * to avoid having sign extension cause bits to get 12440 * set that should not be. 12441 */ 12442 err = ip_sioctl_flags_tail(ipif, 12443 (uint64_t)(ifr->ifr_flags & 0x0000ffff), 12444 q, mp, B_TRUE); 12445 } else { 12446 err = ip_sioctl_flags_tail(ipif, lifr->lifr_flags, 12447 q, mp, B_TRUE); 12448 } 12449 return (err); 12450 } 12451 12452 /* 12453 * Can operate on either a module or a driver queue. 12454 */ 12455 /* ARGSUSED */ 12456 int 12457 ip_sioctl_get_flags(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12458 ip_ioctl_cmd_t *ipip, void *if_req) 12459 { 12460 /* 12461 * Has the flags been set correctly till now ? 12462 */ 12463 ill_t *ill = ipif->ipif_ill; 12464 phyint_t *phyi = ill->ill_phyint; 12465 12466 ip1dbg(("ip_sioctl_get_flags(%s:%u %p)\n", 12467 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12468 ASSERT((phyi->phyint_flags & ~(IFF_PHYINT_FLAGS)) == 0); 12469 ASSERT((ill->ill_flags & ~(IFF_PHYINTINST_FLAGS)) == 0); 12470 ASSERT((ipif->ipif_flags & ~(IFF_LOGINT_FLAGS)) == 0); 12471 12472 /* 12473 * Need a lock since some flags can be set even when there are 12474 * references to the ipif. 12475 */ 12476 mutex_enter(&ill->ill_lock); 12477 if (ipip->ipi_cmd_type == IF_CMD) { 12478 struct ifreq *ifr = (struct ifreq *)if_req; 12479 12480 /* Get interface flags (low 16 only). */ 12481 ifr->ifr_flags = ((ipif->ipif_flags | 12482 ill->ill_flags | phyi->phyint_flags) & 0xffff); 12483 } else { 12484 struct lifreq *lifr = (struct lifreq *)if_req; 12485 12486 /* Get interface flags. */ 12487 lifr->lifr_flags = ipif->ipif_flags | 12488 ill->ill_flags | phyi->phyint_flags; 12489 } 12490 mutex_exit(&ill->ill_lock); 12491 return (0); 12492 } 12493 12494 /* ARGSUSED */ 12495 int 12496 ip_sioctl_mtu(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12497 ip_ioctl_cmd_t *ipip, void *if_req) 12498 { 12499 int mtu; 12500 int ip_min_mtu; 12501 struct ifreq *ifr; 12502 struct lifreq *lifr; 12503 ire_t *ire; 12504 ip_stack_t *ipst; 12505 12506 ip1dbg(("ip_sioctl_mtu(%s:%u %p)\n", ipif->ipif_ill->ill_name, 12507 ipif->ipif_id, (void *)ipif)); 12508 if (ipip->ipi_cmd_type == IF_CMD) { 12509 ifr = (struct ifreq *)if_req; 12510 mtu = ifr->ifr_metric; 12511 } else { 12512 lifr = (struct lifreq *)if_req; 12513 mtu = lifr->lifr_mtu; 12514 } 12515 12516 if (ipif->ipif_isv6) 12517 ip_min_mtu = IPV6_MIN_MTU; 12518 else 12519 ip_min_mtu = IP_MIN_MTU; 12520 12521 if (mtu > ipif->ipif_ill->ill_max_frag || mtu < ip_min_mtu) 12522 return (EINVAL); 12523 12524 /* 12525 * Change the MTU size in all relevant ire's. 12526 * Mtu change Vs. new ire creation - protocol below. 12527 * First change ipif_mtu and the ire_max_frag of the 12528 * interface ire. Then do an ire walk and change the 12529 * ire_max_frag of all affected ires. During ire_add 12530 * under the bucket lock, set the ire_max_frag of the 12531 * new ire being created from the ipif/ire from which 12532 * it is being derived. If an mtu change happens after 12533 * the ire is added, the new ire will be cleaned up. 12534 * Conversely if the mtu change happens before the ire 12535 * is added, ire_add will see the new value of the mtu. 12536 */ 12537 ipif->ipif_mtu = mtu; 12538 ipif->ipif_flags |= IPIF_FIXEDMTU; 12539 12540 if (ipif->ipif_isv6) 12541 ire = ipif_to_ire_v6(ipif); 12542 else 12543 ire = ipif_to_ire(ipif); 12544 if (ire != NULL) { 12545 ire->ire_max_frag = ipif->ipif_mtu; 12546 ire_refrele(ire); 12547 } 12548 ipst = ipif->ipif_ill->ill_ipst; 12549 if (ipif->ipif_flags & IPIF_UP) { 12550 if (ipif->ipif_isv6) 12551 ire_walk_v6(ipif_mtu_change, (char *)ipif, ALL_ZONES, 12552 ipst); 12553 else 12554 ire_walk_v4(ipif_mtu_change, (char *)ipif, ALL_ZONES, 12555 ipst); 12556 } 12557 /* Update the MTU in SCTP's list */ 12558 sctp_update_ipif(ipif, SCTP_IPIF_UPDATE); 12559 return (0); 12560 } 12561 12562 /* Get interface MTU. */ 12563 /* ARGSUSED */ 12564 int 12565 ip_sioctl_get_mtu(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12566 ip_ioctl_cmd_t *ipip, void *if_req) 12567 { 12568 struct ifreq *ifr; 12569 struct lifreq *lifr; 12570 12571 ip1dbg(("ip_sioctl_get_mtu(%s:%u %p)\n", 12572 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12573 if (ipip->ipi_cmd_type == IF_CMD) { 12574 ifr = (struct ifreq *)if_req; 12575 ifr->ifr_metric = ipif->ipif_mtu; 12576 } else { 12577 lifr = (struct lifreq *)if_req; 12578 lifr->lifr_mtu = ipif->ipif_mtu; 12579 } 12580 return (0); 12581 } 12582 12583 /* Set interface broadcast address. */ 12584 /* ARGSUSED2 */ 12585 int 12586 ip_sioctl_brdaddr(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12587 ip_ioctl_cmd_t *ipip, void *if_req) 12588 { 12589 ipaddr_t addr; 12590 ire_t *ire; 12591 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; 12592 12593 ip1dbg(("ip_sioctl_brdaddr(%s:%u)\n", ipif->ipif_ill->ill_name, 12594 ipif->ipif_id)); 12595 12596 ASSERT(IAM_WRITER_IPIF(ipif)); 12597 if (!(ipif->ipif_flags & IPIF_BROADCAST)) 12598 return (EADDRNOTAVAIL); 12599 12600 ASSERT(!(ipif->ipif_isv6)); /* No IPv6 broadcast */ 12601 12602 if (sin->sin_family != AF_INET) 12603 return (EAFNOSUPPORT); 12604 12605 addr = sin->sin_addr.s_addr; 12606 if (ipif->ipif_flags & IPIF_UP) { 12607 /* 12608 * If we are already up, make sure the new 12609 * broadcast address makes sense. If it does, 12610 * there should be an IRE for it already. 12611 * Don't match on ipif, only on the ill 12612 * since we are sharing these now. Don't use 12613 * MATCH_IRE_ILL_GROUP as we are looking for 12614 * the broadcast ire on this ill and each ill 12615 * in the group has its own broadcast ire. 12616 */ 12617 ire = ire_ctable_lookup(addr, 0, IRE_BROADCAST, 12618 ipif, ALL_ZONES, NULL, 12619 (MATCH_IRE_ILL | MATCH_IRE_TYPE), ipst); 12620 if (ire == NULL) { 12621 return (EINVAL); 12622 } else { 12623 ire_refrele(ire); 12624 } 12625 } 12626 /* 12627 * Changing the broadcast addr for this ipif. 12628 * Make sure we have valid net and subnet bcast 12629 * ire's for other logical interfaces, if needed. 12630 */ 12631 if (addr != ipif->ipif_brd_addr) 12632 ipif_check_bcast_ires(ipif); 12633 IN6_IPADDR_TO_V4MAPPED(addr, &ipif->ipif_v6brd_addr); 12634 return (0); 12635 } 12636 12637 /* Get interface broadcast address. */ 12638 /* ARGSUSED */ 12639 int 12640 ip_sioctl_get_brdaddr(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12641 ip_ioctl_cmd_t *ipip, void *if_req) 12642 { 12643 ip1dbg(("ip_sioctl_get_brdaddr(%s:%u %p)\n", 12644 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12645 if (!(ipif->ipif_flags & IPIF_BROADCAST)) 12646 return (EADDRNOTAVAIL); 12647 12648 /* IPIF_BROADCAST not possible with IPv6 */ 12649 ASSERT(!ipif->ipif_isv6); 12650 *sin = sin_null; 12651 sin->sin_family = AF_INET; 12652 sin->sin_addr.s_addr = ipif->ipif_brd_addr; 12653 return (0); 12654 } 12655 12656 /* 12657 * This routine is called to handle the SIOCS*IFNETMASK IOCTL. 12658 */ 12659 /* ARGSUSED */ 12660 int 12661 ip_sioctl_netmask(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12662 ip_ioctl_cmd_t *ipip, void *if_req) 12663 { 12664 int err = 0; 12665 in6_addr_t v6mask; 12666 12667 ip1dbg(("ip_sioctl_netmask(%s:%u %p)\n", 12668 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12669 12670 ASSERT(IAM_WRITER_IPIF(ipif)); 12671 12672 if (ipif->ipif_isv6) { 12673 sin6_t *sin6; 12674 12675 if (sin->sin_family != AF_INET6) 12676 return (EAFNOSUPPORT); 12677 12678 sin6 = (sin6_t *)sin; 12679 v6mask = sin6->sin6_addr; 12680 } else { 12681 ipaddr_t mask; 12682 12683 if (sin->sin_family != AF_INET) 12684 return (EAFNOSUPPORT); 12685 12686 mask = sin->sin_addr.s_addr; 12687 V4MASK_TO_V6(mask, v6mask); 12688 } 12689 12690 /* 12691 * No big deal if the interface isn't already up, or the mask 12692 * isn't really changing, or this is pt-pt. 12693 */ 12694 if (!(ipif->ipif_flags & IPIF_UP) || 12695 IN6_ARE_ADDR_EQUAL(&v6mask, &ipif->ipif_v6net_mask) || 12696 (ipif->ipif_flags & IPIF_POINTOPOINT)) { 12697 ipif->ipif_v6net_mask = v6mask; 12698 if ((ipif->ipif_flags & IPIF_POINTOPOINT) == 0) { 12699 V6_MASK_COPY(ipif->ipif_v6lcl_addr, 12700 ipif->ipif_v6net_mask, 12701 ipif->ipif_v6subnet); 12702 } 12703 return (0); 12704 } 12705 /* 12706 * Make sure we have valid net and subnet broadcast ire's 12707 * for the old netmask, if needed by other logical interfaces. 12708 */ 12709 if (!ipif->ipif_isv6) 12710 ipif_check_bcast_ires(ipif); 12711 12712 err = ipif_logical_down(ipif, q, mp); 12713 if (err == EINPROGRESS) 12714 return (err); 12715 ipif_down_tail(ipif); 12716 err = ip_sioctl_netmask_tail(ipif, sin, q, mp); 12717 return (err); 12718 } 12719 12720 static int 12721 ip_sioctl_netmask_tail(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp) 12722 { 12723 in6_addr_t v6mask; 12724 int err = 0; 12725 12726 ip1dbg(("ip_sioctl_netmask_tail(%s:%u %p)\n", 12727 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12728 12729 if (ipif->ipif_isv6) { 12730 sin6_t *sin6; 12731 12732 sin6 = (sin6_t *)sin; 12733 v6mask = sin6->sin6_addr; 12734 } else { 12735 ipaddr_t mask; 12736 12737 mask = sin->sin_addr.s_addr; 12738 V4MASK_TO_V6(mask, v6mask); 12739 } 12740 12741 ipif->ipif_v6net_mask = v6mask; 12742 if ((ipif->ipif_flags & IPIF_POINTOPOINT) == 0) { 12743 V6_MASK_COPY(ipif->ipif_v6lcl_addr, ipif->ipif_v6net_mask, 12744 ipif->ipif_v6subnet); 12745 } 12746 err = ipif_up(ipif, q, mp); 12747 12748 if (err == 0 || err == EINPROGRESS) { 12749 /* 12750 * The interface must be DL_BOUND if this packet has to 12751 * go out on the wire. Since we only go through a logical 12752 * down and are bound with the driver during an internal 12753 * down/up that is satisfied. 12754 */ 12755 if (!ipif->ipif_isv6 && ipif->ipif_ill->ill_wq != NULL) { 12756 /* Potentially broadcast an address mask reply. */ 12757 ipif_mask_reply(ipif); 12758 } 12759 } 12760 return (err); 12761 } 12762 12763 /* ARGSUSED */ 12764 int 12765 ip_sioctl_netmask_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12766 ip_ioctl_cmd_t *ipip, void *if_req) 12767 { 12768 ip1dbg(("ip_sioctl_netmask_restart(%s:%u %p)\n", 12769 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12770 ipif_down_tail(ipif); 12771 return (ip_sioctl_netmask_tail(ipif, sin, q, mp)); 12772 } 12773 12774 /* Get interface net mask. */ 12775 /* ARGSUSED */ 12776 int 12777 ip_sioctl_get_netmask(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12778 ip_ioctl_cmd_t *ipip, void *if_req) 12779 { 12780 struct lifreq *lifr = (struct lifreq *)if_req; 12781 struct sockaddr_in6 *sin6 = (sin6_t *)sin; 12782 12783 ip1dbg(("ip_sioctl_get_netmask(%s:%u %p)\n", 12784 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12785 12786 /* 12787 * net mask can't change since we have a reference to the ipif. 12788 */ 12789 if (ipif->ipif_isv6) { 12790 ASSERT(ipip->ipi_cmd_type == LIF_CMD); 12791 *sin6 = sin6_null; 12792 sin6->sin6_family = AF_INET6; 12793 sin6->sin6_addr = ipif->ipif_v6net_mask; 12794 lifr->lifr_addrlen = 12795 ip_mask_to_plen_v6(&ipif->ipif_v6net_mask); 12796 } else { 12797 *sin = sin_null; 12798 sin->sin_family = AF_INET; 12799 sin->sin_addr.s_addr = ipif->ipif_net_mask; 12800 if (ipip->ipi_cmd_type == LIF_CMD) { 12801 lifr->lifr_addrlen = 12802 ip_mask_to_plen(ipif->ipif_net_mask); 12803 } 12804 } 12805 return (0); 12806 } 12807 12808 /* ARGSUSED */ 12809 int 12810 ip_sioctl_metric(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12811 ip_ioctl_cmd_t *ipip, void *if_req) 12812 { 12813 12814 ip1dbg(("ip_sioctl_metric(%s:%u %p)\n", 12815 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12816 /* 12817 * Set interface metric. We don't use this for 12818 * anything but we keep track of it in case it is 12819 * important to routing applications or such. 12820 */ 12821 if (ipip->ipi_cmd_type == IF_CMD) { 12822 struct ifreq *ifr; 12823 12824 ifr = (struct ifreq *)if_req; 12825 ipif->ipif_metric = ifr->ifr_metric; 12826 } else { 12827 struct lifreq *lifr; 12828 12829 lifr = (struct lifreq *)if_req; 12830 ipif->ipif_metric = lifr->lifr_metric; 12831 } 12832 return (0); 12833 } 12834 12835 12836 /* ARGSUSED */ 12837 int 12838 ip_sioctl_get_metric(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12839 ip_ioctl_cmd_t *ipip, void *if_req) 12840 { 12841 12842 /* Get interface metric. */ 12843 ip1dbg(("ip_sioctl_get_metric(%s:%u %p)\n", 12844 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12845 if (ipip->ipi_cmd_type == IF_CMD) { 12846 struct ifreq *ifr; 12847 12848 ifr = (struct ifreq *)if_req; 12849 ifr->ifr_metric = ipif->ipif_metric; 12850 } else { 12851 struct lifreq *lifr; 12852 12853 lifr = (struct lifreq *)if_req; 12854 lifr->lifr_metric = ipif->ipif_metric; 12855 } 12856 12857 return (0); 12858 } 12859 12860 /* ARGSUSED */ 12861 int 12862 ip_sioctl_muxid(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12863 ip_ioctl_cmd_t *ipip, void *if_req) 12864 { 12865 12866 ip1dbg(("ip_sioctl_muxid(%s:%u %p)\n", 12867 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12868 /* 12869 * Set the muxid returned from I_PLINK. 12870 */ 12871 if (ipip->ipi_cmd_type == IF_CMD) { 12872 struct ifreq *ifr = (struct ifreq *)if_req; 12873 12874 ipif->ipif_ill->ill_ip_muxid = ifr->ifr_ip_muxid; 12875 ipif->ipif_ill->ill_arp_muxid = ifr->ifr_arp_muxid; 12876 } else { 12877 struct lifreq *lifr = (struct lifreq *)if_req; 12878 12879 ipif->ipif_ill->ill_ip_muxid = lifr->lifr_ip_muxid; 12880 ipif->ipif_ill->ill_arp_muxid = lifr->lifr_arp_muxid; 12881 } 12882 return (0); 12883 } 12884 12885 /* ARGSUSED */ 12886 int 12887 ip_sioctl_get_muxid(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12888 ip_ioctl_cmd_t *ipip, void *if_req) 12889 { 12890 12891 ip1dbg(("ip_sioctl_get_muxid(%s:%u %p)\n", 12892 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12893 /* 12894 * Get the muxid saved in ill for I_PUNLINK. 12895 */ 12896 if (ipip->ipi_cmd_type == IF_CMD) { 12897 struct ifreq *ifr = (struct ifreq *)if_req; 12898 12899 ifr->ifr_ip_muxid = ipif->ipif_ill->ill_ip_muxid; 12900 ifr->ifr_arp_muxid = ipif->ipif_ill->ill_arp_muxid; 12901 } else { 12902 struct lifreq *lifr = (struct lifreq *)if_req; 12903 12904 lifr->lifr_ip_muxid = ipif->ipif_ill->ill_ip_muxid; 12905 lifr->lifr_arp_muxid = ipif->ipif_ill->ill_arp_muxid; 12906 } 12907 return (0); 12908 } 12909 12910 /* 12911 * Set the subnet prefix. Does not modify the broadcast address. 12912 */ 12913 /* ARGSUSED */ 12914 int 12915 ip_sioctl_subnet(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12916 ip_ioctl_cmd_t *ipip, void *if_req) 12917 { 12918 int err = 0; 12919 in6_addr_t v6addr; 12920 in6_addr_t v6mask; 12921 boolean_t need_up = B_FALSE; 12922 int addrlen; 12923 12924 ip1dbg(("ip_sioctl_subnet(%s:%u %p)\n", 12925 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12926 12927 ASSERT(IAM_WRITER_IPIF(ipif)); 12928 addrlen = ((struct lifreq *)if_req)->lifr_addrlen; 12929 12930 if (ipif->ipif_isv6) { 12931 sin6_t *sin6; 12932 12933 if (sin->sin_family != AF_INET6) 12934 return (EAFNOSUPPORT); 12935 12936 sin6 = (sin6_t *)sin; 12937 v6addr = sin6->sin6_addr; 12938 if (!ip_remote_addr_ok_v6(&v6addr, &ipv6_all_ones)) 12939 return (EADDRNOTAVAIL); 12940 } else { 12941 ipaddr_t addr; 12942 12943 if (sin->sin_family != AF_INET) 12944 return (EAFNOSUPPORT); 12945 12946 addr = sin->sin_addr.s_addr; 12947 if (!ip_addr_ok_v4(addr, 0xFFFFFFFF)) 12948 return (EADDRNOTAVAIL); 12949 IN6_IPADDR_TO_V4MAPPED(addr, &v6addr); 12950 /* Add 96 bits */ 12951 addrlen += IPV6_ABITS - IP_ABITS; 12952 } 12953 12954 if (ip_plen_to_mask_v6(addrlen, &v6mask) == NULL) 12955 return (EINVAL); 12956 12957 /* Check if bits in the address is set past the mask */ 12958 if (!V6_MASK_EQ(v6addr, v6mask, v6addr)) 12959 return (EINVAL); 12960 12961 if (IN6_ARE_ADDR_EQUAL(&ipif->ipif_v6subnet, &v6addr) && 12962 IN6_ARE_ADDR_EQUAL(&ipif->ipif_v6net_mask, &v6mask)) 12963 return (0); /* No change */ 12964 12965 if (ipif->ipif_flags & IPIF_UP) { 12966 /* 12967 * If the interface is already marked up, 12968 * we call ipif_down which will take care 12969 * of ditching any IREs that have been set 12970 * up based on the old interface address. 12971 */ 12972 err = ipif_logical_down(ipif, q, mp); 12973 if (err == EINPROGRESS) 12974 return (err); 12975 ipif_down_tail(ipif); 12976 need_up = B_TRUE; 12977 } 12978 12979 err = ip_sioctl_subnet_tail(ipif, v6addr, v6mask, q, mp, need_up); 12980 return (err); 12981 } 12982 12983 static int 12984 ip_sioctl_subnet_tail(ipif_t *ipif, in6_addr_t v6addr, in6_addr_t v6mask, 12985 queue_t *q, mblk_t *mp, boolean_t need_up) 12986 { 12987 ill_t *ill = ipif->ipif_ill; 12988 int err = 0; 12989 12990 ip1dbg(("ip_sioctl_subnet_tail(%s:%u %p)\n", 12991 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 12992 12993 /* Set the new address. */ 12994 mutex_enter(&ill->ill_lock); 12995 ipif->ipif_v6net_mask = v6mask; 12996 if ((ipif->ipif_flags & IPIF_POINTOPOINT) == 0) { 12997 V6_MASK_COPY(v6addr, ipif->ipif_v6net_mask, 12998 ipif->ipif_v6subnet); 12999 } 13000 mutex_exit(&ill->ill_lock); 13001 13002 if (need_up) { 13003 /* 13004 * Now bring the interface back up. If this 13005 * is the only IPIF for the ILL, ipif_up 13006 * will have to re-bind to the device, so 13007 * we may get back EINPROGRESS, in which 13008 * case, this IOCTL will get completed in 13009 * ip_rput_dlpi when we see the DL_BIND_ACK. 13010 */ 13011 err = ipif_up(ipif, q, mp); 13012 if (err == EINPROGRESS) 13013 return (err); 13014 } 13015 return (err); 13016 } 13017 13018 /* ARGSUSED */ 13019 int 13020 ip_sioctl_subnet_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 13021 ip_ioctl_cmd_t *ipip, void *if_req) 13022 { 13023 int addrlen; 13024 in6_addr_t v6addr; 13025 in6_addr_t v6mask; 13026 struct lifreq *lifr = (struct lifreq *)if_req; 13027 13028 ip1dbg(("ip_sioctl_subnet_restart(%s:%u %p)\n", 13029 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 13030 ipif_down_tail(ipif); 13031 13032 addrlen = lifr->lifr_addrlen; 13033 if (ipif->ipif_isv6) { 13034 sin6_t *sin6; 13035 13036 sin6 = (sin6_t *)sin; 13037 v6addr = sin6->sin6_addr; 13038 } else { 13039 ipaddr_t addr; 13040 13041 addr = sin->sin_addr.s_addr; 13042 IN6_IPADDR_TO_V4MAPPED(addr, &v6addr); 13043 addrlen += IPV6_ABITS - IP_ABITS; 13044 } 13045 (void) ip_plen_to_mask_v6(addrlen, &v6mask); 13046 13047 return (ip_sioctl_subnet_tail(ipif, v6addr, v6mask, q, mp, B_TRUE)); 13048 } 13049 13050 /* ARGSUSED */ 13051 int 13052 ip_sioctl_get_subnet(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 13053 ip_ioctl_cmd_t *ipip, void *if_req) 13054 { 13055 struct lifreq *lifr = (struct lifreq *)if_req; 13056 struct sockaddr_in6 *sin6 = (struct sockaddr_in6 *)sin; 13057 13058 ip1dbg(("ip_sioctl_get_subnet(%s:%u %p)\n", 13059 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 13060 ASSERT(ipip->ipi_cmd_type == LIF_CMD); 13061 13062 if (ipif->ipif_isv6) { 13063 *sin6 = sin6_null; 13064 sin6->sin6_family = AF_INET6; 13065 sin6->sin6_addr = ipif->ipif_v6subnet; 13066 lifr->lifr_addrlen = 13067 ip_mask_to_plen_v6(&ipif->ipif_v6net_mask); 13068 } else { 13069 *sin = sin_null; 13070 sin->sin_family = AF_INET; 13071 sin->sin_addr.s_addr = ipif->ipif_subnet; 13072 lifr->lifr_addrlen = ip_mask_to_plen(ipif->ipif_net_mask); 13073 } 13074 return (0); 13075 } 13076 13077 /* 13078 * Set the IPv6 address token. 13079 */ 13080 /* ARGSUSED */ 13081 int 13082 ip_sioctl_token(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 13083 ip_ioctl_cmd_t *ipi, void *if_req) 13084 { 13085 ill_t *ill = ipif->ipif_ill; 13086 int err; 13087 in6_addr_t v6addr; 13088 in6_addr_t v6mask; 13089 boolean_t need_up = B_FALSE; 13090 int i; 13091 sin6_t *sin6 = (sin6_t *)sin; 13092 struct lifreq *lifr = (struct lifreq *)if_req; 13093 int addrlen; 13094 13095 ip1dbg(("ip_sioctl_token(%s:%u %p)\n", 13096 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 13097 ASSERT(IAM_WRITER_IPIF(ipif)); 13098 13099 addrlen = lifr->lifr_addrlen; 13100 /* Only allow for logical unit zero i.e. not on "le0:17" */ 13101 if (ipif->ipif_id != 0) 13102 return (EINVAL); 13103 13104 if (!ipif->ipif_isv6) 13105 return (EINVAL); 13106 13107 if (addrlen > IPV6_ABITS) 13108 return (EINVAL); 13109 13110 v6addr = sin6->sin6_addr; 13111 13112 /* 13113 * The length of the token is the length from the end. To get 13114 * the proper mask for this, compute the mask of the bits not 13115 * in the token; ie. the prefix, and then xor to get the mask. 13116 */ 13117 if (ip_plen_to_mask_v6(IPV6_ABITS - addrlen, &v6mask) == NULL) 13118 return (EINVAL); 13119 for (i = 0; i < 4; i++) { 13120 v6mask.s6_addr32[i] ^= (uint32_t)0xffffffff; 13121 } 13122 13123 if (V6_MASK_EQ(v6addr, v6mask, ill->ill_token) && 13124 ill->ill_token_length == addrlen) 13125 return (0); /* No change */ 13126 13127 if (ipif->ipif_flags & IPIF_UP) { 13128 err = ipif_logical_down(ipif, q, mp); 13129 if (err == EINPROGRESS) 13130 return (err); 13131 ipif_down_tail(ipif); 13132 need_up = B_TRUE; 13133 } 13134 err = ip_sioctl_token_tail(ipif, sin6, addrlen, q, mp, need_up); 13135 return (err); 13136 } 13137 13138 static int 13139 ip_sioctl_token_tail(ipif_t *ipif, sin6_t *sin6, int addrlen, queue_t *q, 13140 mblk_t *mp, boolean_t need_up) 13141 { 13142 in6_addr_t v6addr; 13143 in6_addr_t v6mask; 13144 ill_t *ill = ipif->ipif_ill; 13145 int i; 13146 int err = 0; 13147 13148 ip1dbg(("ip_sioctl_token_tail(%s:%u %p)\n", 13149 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 13150 v6addr = sin6->sin6_addr; 13151 /* 13152 * The length of the token is the length from the end. To get 13153 * the proper mask for this, compute the mask of the bits not 13154 * in the token; ie. the prefix, and then xor to get the mask. 13155 */ 13156 (void) ip_plen_to_mask_v6(IPV6_ABITS - addrlen, &v6mask); 13157 for (i = 0; i < 4; i++) 13158 v6mask.s6_addr32[i] ^= (uint32_t)0xffffffff; 13159 13160 mutex_enter(&ill->ill_lock); 13161 V6_MASK_COPY(v6addr, v6mask, ill->ill_token); 13162 ill->ill_token_length = addrlen; 13163 mutex_exit(&ill->ill_lock); 13164 13165 if (need_up) { 13166 /* 13167 * Now bring the interface back up. If this 13168 * is the only IPIF for the ILL, ipif_up 13169 * will have to re-bind to the device, so 13170 * we may get back EINPROGRESS, in which 13171 * case, this IOCTL will get completed in 13172 * ip_rput_dlpi when we see the DL_BIND_ACK. 13173 */ 13174 err = ipif_up(ipif, q, mp); 13175 if (err == EINPROGRESS) 13176 return (err); 13177 } 13178 return (err); 13179 } 13180 13181 /* ARGSUSED */ 13182 int 13183 ip_sioctl_get_token(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 13184 ip_ioctl_cmd_t *ipi, void *if_req) 13185 { 13186 ill_t *ill; 13187 sin6_t *sin6 = (sin6_t *)sin; 13188 struct lifreq *lifr = (struct lifreq *)if_req; 13189 13190 ip1dbg(("ip_sioctl_get_token(%s:%u %p)\n", 13191 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 13192 if (ipif->ipif_id != 0) 13193 return (EINVAL); 13194 13195 ill = ipif->ipif_ill; 13196 if (!ill->ill_isv6) 13197 return (ENXIO); 13198 13199 *sin6 = sin6_null; 13200 sin6->sin6_family = AF_INET6; 13201 ASSERT(!IN6_IS_ADDR_V4MAPPED(&ill->ill_token)); 13202 sin6->sin6_addr = ill->ill_token; 13203 lifr->lifr_addrlen = ill->ill_token_length; 13204 return (0); 13205 } 13206 13207 /* 13208 * Set (hardware) link specific information that might override 13209 * what was acquired through the DL_INFO_ACK. 13210 * The logic is as follows. 13211 * 13212 * become exclusive 13213 * set CHANGING flag 13214 * change mtu on affected IREs 13215 * clear CHANGING flag 13216 * 13217 * An ire add that occurs before the CHANGING flag is set will have its mtu 13218 * changed by the ip_sioctl_lnkinfo. 13219 * 13220 * During the time the CHANGING flag is set, no new ires will be added to the 13221 * bucket, and ire add will fail (due the CHANGING flag). 13222 * 13223 * An ire add that occurs after the CHANGING flag is set will have the right mtu 13224 * before it is added to the bucket. 13225 * 13226 * Obviously only 1 thread can set the CHANGING flag and we need to become 13227 * exclusive to set the flag. 13228 */ 13229 /* ARGSUSED */ 13230 int 13231 ip_sioctl_lnkinfo(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 13232 ip_ioctl_cmd_t *ipi, void *if_req) 13233 { 13234 ill_t *ill = ipif->ipif_ill; 13235 ipif_t *nipif; 13236 int ip_min_mtu; 13237 boolean_t mtu_walk = B_FALSE; 13238 struct lifreq *lifr = (struct lifreq *)if_req; 13239 lif_ifinfo_req_t *lir; 13240 ire_t *ire; 13241 13242 ip1dbg(("ip_sioctl_lnkinfo(%s:%u %p)\n", 13243 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 13244 lir = &lifr->lifr_ifinfo; 13245 ASSERT(IAM_WRITER_IPIF(ipif)); 13246 13247 /* Only allow for logical unit zero i.e. not on "le0:17" */ 13248 if (ipif->ipif_id != 0) 13249 return (EINVAL); 13250 13251 /* Set interface MTU. */ 13252 if (ipif->ipif_isv6) 13253 ip_min_mtu = IPV6_MIN_MTU; 13254 else 13255 ip_min_mtu = IP_MIN_MTU; 13256 13257 /* 13258 * Verify values before we set anything. Allow zero to 13259 * mean unspecified. 13260 */ 13261 if (lir->lir_maxmtu != 0 && 13262 (lir->lir_maxmtu > ill->ill_max_frag || 13263 lir->lir_maxmtu < ip_min_mtu)) 13264 return (EINVAL); 13265 if (lir->lir_reachtime != 0 && 13266 lir->lir_reachtime > ND_MAX_REACHTIME) 13267 return (EINVAL); 13268 if (lir->lir_reachretrans != 0 && 13269 lir->lir_reachretrans > ND_MAX_REACHRETRANSTIME) 13270 return (EINVAL); 13271 13272 mutex_enter(&ill->ill_lock); 13273 ill->ill_state_flags |= ILL_CHANGING; 13274 for (nipif = ill->ill_ipif; nipif != NULL; 13275 nipif = nipif->ipif_next) { 13276 nipif->ipif_state_flags |= IPIF_CHANGING; 13277 } 13278 13279 mutex_exit(&ill->ill_lock); 13280 13281 if (lir->lir_maxmtu != 0) { 13282 ill->ill_max_mtu = lir->lir_maxmtu; 13283 ill->ill_mtu_userspecified = 1; 13284 mtu_walk = B_TRUE; 13285 } 13286 13287 if (lir->lir_reachtime != 0) 13288 ill->ill_reachable_time = lir->lir_reachtime; 13289 13290 if (lir->lir_reachretrans != 0) 13291 ill->ill_reachable_retrans_time = lir->lir_reachretrans; 13292 13293 ill->ill_max_hops = lir->lir_maxhops; 13294 13295 ill->ill_max_buf = ND_MAX_Q; 13296 13297 if (mtu_walk) { 13298 /* 13299 * Set the MTU on all ipifs associated with this ill except 13300 * for those whose MTU was fixed via SIOCSLIFMTU. 13301 */ 13302 for (nipif = ill->ill_ipif; nipif != NULL; 13303 nipif = nipif->ipif_next) { 13304 if (nipif->ipif_flags & IPIF_FIXEDMTU) 13305 continue; 13306 13307 nipif->ipif_mtu = ill->ill_max_mtu; 13308 13309 if (!(nipif->ipif_flags & IPIF_UP)) 13310 continue; 13311 13312 if (nipif->ipif_isv6) 13313 ire = ipif_to_ire_v6(nipif); 13314 else 13315 ire = ipif_to_ire(nipif); 13316 if (ire != NULL) { 13317 ire->ire_max_frag = ipif->ipif_mtu; 13318 ire_refrele(ire); 13319 } 13320 if (ill->ill_isv6) { 13321 ire_walk_ill_v6(MATCH_IRE_ILL, 0, 13322 ipif_mtu_change, (char *)nipif, 13323 ill); 13324 } else { 13325 ire_walk_ill_v4(MATCH_IRE_ILL, 0, 13326 ipif_mtu_change, (char *)nipif, 13327 ill); 13328 } 13329 } 13330 } 13331 13332 mutex_enter(&ill->ill_lock); 13333 for (nipif = ill->ill_ipif; nipif != NULL; 13334 nipif = nipif->ipif_next) { 13335 nipif->ipif_state_flags &= ~IPIF_CHANGING; 13336 } 13337 ILL_UNMARK_CHANGING(ill); 13338 mutex_exit(&ill->ill_lock); 13339 13340 return (0); 13341 } 13342 13343 /* ARGSUSED */ 13344 int 13345 ip_sioctl_get_lnkinfo(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 13346 ip_ioctl_cmd_t *ipi, void *if_req) 13347 { 13348 struct lif_ifinfo_req *lir; 13349 ill_t *ill = ipif->ipif_ill; 13350 13351 ip1dbg(("ip_sioctl_get_lnkinfo(%s:%u %p)\n", 13352 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 13353 if (ipif->ipif_id != 0) 13354 return (EINVAL); 13355 13356 lir = &((struct lifreq *)if_req)->lifr_ifinfo; 13357 lir->lir_maxhops = ill->ill_max_hops; 13358 lir->lir_reachtime = ill->ill_reachable_time; 13359 lir->lir_reachretrans = ill->ill_reachable_retrans_time; 13360 lir->lir_maxmtu = ill->ill_max_mtu; 13361 13362 return (0); 13363 } 13364 13365 /* 13366 * Return best guess as to the subnet mask for the specified address. 13367 * Based on the subnet masks for all the configured interfaces. 13368 * 13369 * We end up returning a zero mask in the case of default, multicast or 13370 * experimental. 13371 */ 13372 static ipaddr_t 13373 ip_subnet_mask(ipaddr_t addr, ipif_t **ipifp, ip_stack_t *ipst) 13374 { 13375 ipaddr_t net_mask; 13376 ill_t *ill; 13377 ipif_t *ipif; 13378 ill_walk_context_t ctx; 13379 ipif_t *fallback_ipif = NULL; 13380 13381 net_mask = ip_net_mask(addr); 13382 if (net_mask == 0) { 13383 *ipifp = NULL; 13384 return (0); 13385 } 13386 13387 /* Let's check to see if this is maybe a local subnet route. */ 13388 /* this function only applies to IPv4 interfaces */ 13389 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 13390 ill = ILL_START_WALK_V4(&ctx, ipst); 13391 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 13392 mutex_enter(&ill->ill_lock); 13393 for (ipif = ill->ill_ipif; ipif != NULL; 13394 ipif = ipif->ipif_next) { 13395 if (!IPIF_CAN_LOOKUP(ipif)) 13396 continue; 13397 if (!(ipif->ipif_flags & IPIF_UP)) 13398 continue; 13399 if ((ipif->ipif_subnet & net_mask) == 13400 (addr & net_mask)) { 13401 /* 13402 * Don't trust pt-pt interfaces if there are 13403 * other interfaces. 13404 */ 13405 if (ipif->ipif_flags & IPIF_POINTOPOINT) { 13406 if (fallback_ipif == NULL) { 13407 ipif_refhold_locked(ipif); 13408 fallback_ipif = ipif; 13409 } 13410 continue; 13411 } 13412 13413 /* 13414 * Fine. Just assume the same net mask as the 13415 * directly attached subnet interface is using. 13416 */ 13417 ipif_refhold_locked(ipif); 13418 mutex_exit(&ill->ill_lock); 13419 rw_exit(&ipst->ips_ill_g_lock); 13420 if (fallback_ipif != NULL) 13421 ipif_refrele(fallback_ipif); 13422 *ipifp = ipif; 13423 return (ipif->ipif_net_mask); 13424 } 13425 } 13426 mutex_exit(&ill->ill_lock); 13427 } 13428 rw_exit(&ipst->ips_ill_g_lock); 13429 13430 *ipifp = fallback_ipif; 13431 return ((fallback_ipif != NULL) ? 13432 fallback_ipif->ipif_net_mask : net_mask); 13433 } 13434 13435 /* 13436 * ip_sioctl_copyin_setup calls ip_wput_ioctl to process the IP_IOCTL ioctl. 13437 */ 13438 static void 13439 ip_wput_ioctl(queue_t *q, mblk_t *mp) 13440 { 13441 IOCP iocp; 13442 ipft_t *ipft; 13443 ipllc_t *ipllc; 13444 mblk_t *mp1; 13445 cred_t *cr; 13446 int error = 0; 13447 conn_t *connp; 13448 13449 ip1dbg(("ip_wput_ioctl")); 13450 iocp = (IOCP)mp->b_rptr; 13451 mp1 = mp->b_cont; 13452 if (mp1 == NULL) { 13453 iocp->ioc_error = EINVAL; 13454 mp->b_datap->db_type = M_IOCNAK; 13455 iocp->ioc_count = 0; 13456 qreply(q, mp); 13457 return; 13458 } 13459 13460 /* 13461 * These IOCTLs provide various control capabilities to 13462 * upstream agents such as ULPs and processes. There 13463 * are currently two such IOCTLs implemented. They 13464 * are used by TCP to provide update information for 13465 * existing IREs and to forcibly delete an IRE for a 13466 * host that is not responding, thereby forcing an 13467 * attempt at a new route. 13468 */ 13469 iocp->ioc_error = EINVAL; 13470 if (!pullupmsg(mp1, sizeof (ipllc->ipllc_cmd))) 13471 goto done; 13472 13473 ipllc = (ipllc_t *)mp1->b_rptr; 13474 for (ipft = ip_ioctl_ftbl; ipft->ipft_pfi; ipft++) { 13475 if (ipllc->ipllc_cmd == ipft->ipft_cmd) 13476 break; 13477 } 13478 /* 13479 * prefer credential from mblk over ioctl; 13480 * see ip_sioctl_copyin_setup 13481 */ 13482 cr = DB_CREDDEF(mp, iocp->ioc_cr); 13483 13484 /* 13485 * Refhold the conn in case the request gets queued up in some lookup 13486 */ 13487 ASSERT(CONN_Q(q)); 13488 connp = Q_TO_CONN(q); 13489 CONN_INC_REF(connp); 13490 if (ipft->ipft_pfi && 13491 ((mp1->b_wptr - mp1->b_rptr) >= ipft->ipft_min_size || 13492 pullupmsg(mp1, ipft->ipft_min_size))) { 13493 error = (*ipft->ipft_pfi)(q, 13494 (ipft->ipft_flags & IPFT_F_SELF_REPLY) ? mp : mp1, cr); 13495 } 13496 if (ipft->ipft_flags & IPFT_F_SELF_REPLY) { 13497 /* 13498 * CONN_OPER_PENDING_DONE happens in the function called 13499 * through ipft_pfi above. 13500 */ 13501 return; 13502 } 13503 13504 CONN_OPER_PENDING_DONE(connp); 13505 if (ipft->ipft_flags & IPFT_F_NO_REPLY) { 13506 freemsg(mp); 13507 return; 13508 } 13509 iocp->ioc_error = error; 13510 13511 done: 13512 mp->b_datap->db_type = M_IOCACK; 13513 if (iocp->ioc_error) 13514 iocp->ioc_count = 0; 13515 qreply(q, mp); 13516 } 13517 13518 /* 13519 * Lookup an ipif using the sequence id (ipif_seqid) 13520 */ 13521 ipif_t * 13522 ipif_lookup_seqid(ill_t *ill, uint_t seqid) 13523 { 13524 ipif_t *ipif; 13525 13526 ASSERT(MUTEX_HELD(&ill->ill_lock)); 13527 13528 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 13529 if (ipif->ipif_seqid == seqid && IPIF_CAN_LOOKUP(ipif)) 13530 return (ipif); 13531 } 13532 return (NULL); 13533 } 13534 13535 /* 13536 * Assign a unique id for the ipif. This is used later when we send 13537 * IRES to ARP for resolution where we initialize ire_ipif_seqid 13538 * to the value pointed by ire_ipif->ipif_seqid. Later when the 13539 * IRE is added, we verify that ipif has not disappeared. 13540 */ 13541 13542 static void 13543 ipif_assign_seqid(ipif_t *ipif) 13544 { 13545 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; 13546 13547 ipif->ipif_seqid = atomic_add_64_nv(&ipst->ips_ipif_g_seqid, 1); 13548 } 13549 13550 /* 13551 * Insert the ipif, so that the list of ipifs on the ill will be sorted 13552 * with respect to ipif_id. Note that an ipif with an ipif_id of -1 will 13553 * be inserted into the first space available in the list. The value of 13554 * ipif_id will then be set to the appropriate value for its position. 13555 */ 13556 static int 13557 ipif_insert(ipif_t *ipif, boolean_t acquire_g_lock, boolean_t acquire_ill_lock) 13558 { 13559 ill_t *ill; 13560 ipif_t *tipif; 13561 ipif_t **tipifp; 13562 int id; 13563 ip_stack_t *ipst; 13564 13565 ASSERT(ipif->ipif_ill->ill_net_type == IRE_LOOPBACK || 13566 IAM_WRITER_IPIF(ipif)); 13567 13568 ill = ipif->ipif_ill; 13569 ASSERT(ill != NULL); 13570 ipst = ill->ill_ipst; 13571 13572 /* 13573 * In the case of lo0:0 we already hold the ill_g_lock. 13574 * ill_lookup_on_name (acquires ill_g_lock) -> ipif_allocate -> 13575 * ipif_insert. Another such caller is ipif_move. 13576 */ 13577 if (acquire_g_lock) 13578 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 13579 if (acquire_ill_lock) 13580 mutex_enter(&ill->ill_lock); 13581 id = ipif->ipif_id; 13582 tipifp = &(ill->ill_ipif); 13583 if (id == -1) { /* need to find a real id */ 13584 id = 0; 13585 while ((tipif = *tipifp) != NULL) { 13586 ASSERT(tipif->ipif_id >= id); 13587 if (tipif->ipif_id != id) 13588 break; /* non-consecutive id */ 13589 id++; 13590 tipifp = &(tipif->ipif_next); 13591 } 13592 /* limit number of logical interfaces */ 13593 if (id >= ipst->ips_ip_addrs_per_if) { 13594 if (acquire_ill_lock) 13595 mutex_exit(&ill->ill_lock); 13596 if (acquire_g_lock) 13597 rw_exit(&ipst->ips_ill_g_lock); 13598 return (-1); 13599 } 13600 ipif->ipif_id = id; /* assign new id */ 13601 } else if (id < ipst->ips_ip_addrs_per_if) { 13602 /* we have a real id; insert ipif in the right place */ 13603 while ((tipif = *tipifp) != NULL) { 13604 ASSERT(tipif->ipif_id != id); 13605 if (tipif->ipif_id > id) 13606 break; /* found correct location */ 13607 tipifp = &(tipif->ipif_next); 13608 } 13609 } else { 13610 if (acquire_ill_lock) 13611 mutex_exit(&ill->ill_lock); 13612 if (acquire_g_lock) 13613 rw_exit(&ipst->ips_ill_g_lock); 13614 return (-1); 13615 } 13616 13617 ASSERT(tipifp != &(ill->ill_ipif) || id == 0); 13618 13619 ipif->ipif_next = tipif; 13620 *tipifp = ipif; 13621 if (acquire_ill_lock) 13622 mutex_exit(&ill->ill_lock); 13623 if (acquire_g_lock) 13624 rw_exit(&ipst->ips_ill_g_lock); 13625 return (0); 13626 } 13627 13628 /* 13629 * Allocate and initialize a new interface control structure. (Always 13630 * called as writer.) 13631 * When ipif_allocate() is called from ip_ll_subnet_defaults, the ill 13632 * is not part of the global linked list of ills. ipif_seqid is unique 13633 * in the system and to preserve the uniqueness, it is assigned only 13634 * when ill becomes part of the global list. At that point ill will 13635 * have a name. If it doesn't get assigned here, it will get assigned 13636 * in ipif_set_values() as part of SIOCSLIFNAME processing. 13637 * Aditionally, if we come here from ip_ll_subnet_defaults, we don't set 13638 * the interface flags or any other information from the DL_INFO_ACK for 13639 * DL_STYLE2 drivers (initialize == B_FALSE), since we won't have them at 13640 * this point. The flags etc. will be set in ip_ll_subnet_defaults when the 13641 * second DL_INFO_ACK comes in from the driver. 13642 */ 13643 static ipif_t * 13644 ipif_allocate(ill_t *ill, int id, uint_t ire_type, boolean_t initialize) 13645 { 13646 ipif_t *ipif; 13647 phyint_t *phyi; 13648 13649 ip1dbg(("ipif_allocate(%s:%d ill %p)\n", 13650 ill->ill_name, id, (void *)ill)); 13651 ASSERT(ire_type == IRE_LOOPBACK || IAM_WRITER_ILL(ill)); 13652 13653 if ((ipif = (ipif_t *)mi_alloc(sizeof (ipif_t), BPRI_MED)) == NULL) 13654 return (NULL); 13655 *ipif = ipif_zero; /* start clean */ 13656 13657 ipif->ipif_ill = ill; 13658 ipif->ipif_id = id; /* could be -1 */ 13659 /* 13660 * Inherit the zoneid from the ill; for the shared stack instance 13661 * this is always the global zone 13662 */ 13663 ipif->ipif_zoneid = ill->ill_zoneid; 13664 13665 mutex_init(&ipif->ipif_saved_ire_lock, NULL, MUTEX_DEFAULT, NULL); 13666 13667 ipif->ipif_refcnt = 0; 13668 ipif->ipif_saved_ire_cnt = 0; 13669 13670 if (ipif_insert(ipif, ire_type != IRE_LOOPBACK, B_TRUE)) { 13671 mi_free(ipif); 13672 return (NULL); 13673 } 13674 /* -1 id should have been replaced by real id */ 13675 id = ipif->ipif_id; 13676 ASSERT(id >= 0); 13677 13678 if (ill->ill_name[0] != '\0') 13679 ipif_assign_seqid(ipif); 13680 13681 /* 13682 * Keep a copy of original id in ipif_orig_ipifid. Failback 13683 * will attempt to restore the original id. The SIOCSLIFOINDEX 13684 * ioctl sets ipif_orig_ipifid to zero. 13685 */ 13686 ipif->ipif_orig_ipifid = id; 13687 13688 /* 13689 * We grab the ill_lock and phyint_lock to protect the flag changes. 13690 * The ipif is still not up and can't be looked up until the 13691 * ioctl completes and the IPIF_CHANGING flag is cleared. 13692 */ 13693 mutex_enter(&ill->ill_lock); 13694 mutex_enter(&ill->ill_phyint->phyint_lock); 13695 /* 13696 * Set the running flag when logical interface zero is created. 13697 * For subsequent logical interfaces, a DLPI link down 13698 * notification message may have cleared the running flag to 13699 * indicate the link is down, so we shouldn't just blindly set it. 13700 */ 13701 if (id == 0) 13702 ill->ill_phyint->phyint_flags |= PHYI_RUNNING; 13703 ipif->ipif_ire_type = ire_type; 13704 phyi = ill->ill_phyint; 13705 ipif->ipif_orig_ifindex = phyi->phyint_ifindex; 13706 13707 if (ipif->ipif_isv6) { 13708 ill->ill_flags |= ILLF_IPV6; 13709 } else { 13710 ipaddr_t inaddr_any = INADDR_ANY; 13711 13712 ill->ill_flags |= ILLF_IPV4; 13713 13714 /* Keep the IN6_IS_ADDR_V4MAPPED assertions happy */ 13715 IN6_IPADDR_TO_V4MAPPED(inaddr_any, 13716 &ipif->ipif_v6lcl_addr); 13717 IN6_IPADDR_TO_V4MAPPED(inaddr_any, 13718 &ipif->ipif_v6src_addr); 13719 IN6_IPADDR_TO_V4MAPPED(inaddr_any, 13720 &ipif->ipif_v6subnet); 13721 IN6_IPADDR_TO_V4MAPPED(inaddr_any, 13722 &ipif->ipif_v6net_mask); 13723 IN6_IPADDR_TO_V4MAPPED(inaddr_any, 13724 &ipif->ipif_v6brd_addr); 13725 IN6_IPADDR_TO_V4MAPPED(inaddr_any, 13726 &ipif->ipif_v6pp_dst_addr); 13727 } 13728 13729 /* 13730 * Don't set the interface flags etc. now, will do it in 13731 * ip_ll_subnet_defaults. 13732 */ 13733 if (!initialize) { 13734 mutex_exit(&ill->ill_lock); 13735 mutex_exit(&ill->ill_phyint->phyint_lock); 13736 return (ipif); 13737 } 13738 ipif->ipif_mtu = ill->ill_max_mtu; 13739 13740 if (ill->ill_bcast_addr_length != 0) { 13741 /* 13742 * Later detect lack of DLPI driver multicast 13743 * capability by catching DL_ENABMULTI errors in 13744 * ip_rput_dlpi. 13745 */ 13746 ill->ill_flags |= ILLF_MULTICAST; 13747 if (!ipif->ipif_isv6) 13748 ipif->ipif_flags |= IPIF_BROADCAST; 13749 } else { 13750 if (ill->ill_net_type != IRE_LOOPBACK) { 13751 if (ipif->ipif_isv6) 13752 /* 13753 * Note: xresolv interfaces will eventually need 13754 * NOARP set here as well, but that will require 13755 * those external resolvers to have some 13756 * knowledge of that flag and act appropriately. 13757 * Not to be changed at present. 13758 */ 13759 ill->ill_flags |= ILLF_NONUD; 13760 else 13761 ill->ill_flags |= ILLF_NOARP; 13762 } 13763 if (ill->ill_phys_addr_length == 0) { 13764 if (ill->ill_media && 13765 ill->ill_media->ip_m_mac_type == SUNW_DL_VNI) { 13766 ipif->ipif_flags |= IPIF_NOXMIT; 13767 phyi->phyint_flags |= PHYI_VIRTUAL; 13768 } else { 13769 /* pt-pt supports multicast. */ 13770 ill->ill_flags |= ILLF_MULTICAST; 13771 if (ill->ill_net_type == IRE_LOOPBACK) { 13772 phyi->phyint_flags |= 13773 (PHYI_LOOPBACK | PHYI_VIRTUAL); 13774 } else { 13775 ipif->ipif_flags |= IPIF_POINTOPOINT; 13776 } 13777 } 13778 } 13779 } 13780 mutex_exit(&ill->ill_lock); 13781 mutex_exit(&ill->ill_phyint->phyint_lock); 13782 return (ipif); 13783 } 13784 13785 /* 13786 * If appropriate, send a message up to the resolver delete the entry 13787 * for the address of this interface which is going out of business. 13788 * (Always called as writer). 13789 * 13790 * NOTE : We need to check for NULL mps as some of the fields are 13791 * initialized only for some interface types. See ipif_resolver_up() 13792 * for details. 13793 */ 13794 void 13795 ipif_arp_down(ipif_t *ipif) 13796 { 13797 mblk_t *mp; 13798 ill_t *ill = ipif->ipif_ill; 13799 13800 ip1dbg(("ipif_arp_down(%s:%u)\n", ill->ill_name, ipif->ipif_id)); 13801 ASSERT(IAM_WRITER_IPIF(ipif)); 13802 13803 /* Delete the mapping for the local address */ 13804 mp = ipif->ipif_arp_del_mp; 13805 if (mp != NULL) { 13806 ip1dbg(("ipif_arp_down: arp cmd %x for %s:%u\n", 13807 *(unsigned *)mp->b_rptr, ill->ill_name, ipif->ipif_id)); 13808 putnext(ill->ill_rq, mp); 13809 ipif->ipif_arp_del_mp = NULL; 13810 } 13811 13812 /* 13813 * If this is the last ipif that is going down and there are no 13814 * duplicate addresses we may yet attempt to re-probe, then we need to 13815 * clean up ARP completely. 13816 */ 13817 if (ill->ill_ipif_up_count == 0 && ill->ill_ipif_dup_count == 0) { 13818 13819 /* Send up AR_INTERFACE_DOWN message */ 13820 mp = ill->ill_arp_down_mp; 13821 if (mp != NULL) { 13822 ip1dbg(("ipif_arp_down: arp cmd %x for %s:%u\n", 13823 *(unsigned *)mp->b_rptr, ill->ill_name, 13824 ipif->ipif_id)); 13825 putnext(ill->ill_rq, mp); 13826 ill->ill_arp_down_mp = NULL; 13827 } 13828 13829 /* Tell ARP to delete the multicast mappings */ 13830 mp = ill->ill_arp_del_mapping_mp; 13831 if (mp != NULL) { 13832 ip1dbg(("ipif_arp_down: arp cmd %x for %s:%u\n", 13833 *(unsigned *)mp->b_rptr, ill->ill_name, 13834 ipif->ipif_id)); 13835 putnext(ill->ill_rq, mp); 13836 ill->ill_arp_del_mapping_mp = NULL; 13837 } 13838 } 13839 } 13840 13841 /* 13842 * This function sets up the multicast mappings in ARP. When ipif_resolver_up 13843 * calls this function, it passes a non-NULL arp_add_mapping_mp indicating 13844 * that it wants the add_mp allocated in this function to be returned 13845 * wihtout sending it to arp. When ip_rput_dlpi_writer calls this to 13846 * just re-do the multicast, it wants us to send the add_mp to ARP also. 13847 * ipif_resolver_up does not want us to do the "add" i.e sending to ARP, 13848 * as it does a ipif_arp_down after calling this function - which will 13849 * remove what we add here. 13850 * 13851 * Returns -1 on failures and 0 on success. 13852 */ 13853 int 13854 ipif_arp_setup_multicast(ipif_t *ipif, mblk_t **arp_add_mapping_mp) 13855 { 13856 mblk_t *del_mp = NULL; 13857 mblk_t *add_mp = NULL; 13858 mblk_t *mp; 13859 ill_t *ill = ipif->ipif_ill; 13860 phyint_t *phyi = ill->ill_phyint; 13861 ipaddr_t addr, mask, extract_mask = 0; 13862 arma_t *arma; 13863 uint8_t *maddr, *bphys_addr; 13864 uint32_t hw_start; 13865 dl_unitdata_req_t *dlur; 13866 13867 ASSERT(IAM_WRITER_IPIF(ipif)); 13868 if (ipif->ipif_flags & IPIF_POINTOPOINT) 13869 return (0); 13870 13871 /* 13872 * Delete the existing mapping from ARP. Normally ipif_down 13873 * -> ipif_arp_down should send this up to ARP. The only 13874 * reason we would find this when we are switching from 13875 * Multicast to Broadcast where we did not do a down. 13876 */ 13877 mp = ill->ill_arp_del_mapping_mp; 13878 if (mp != NULL) { 13879 ip1dbg(("ipif_arp_down: arp cmd %x for %s:%u\n", 13880 *(unsigned *)mp->b_rptr, ill->ill_name, ipif->ipif_id)); 13881 putnext(ill->ill_rq, mp); 13882 ill->ill_arp_del_mapping_mp = NULL; 13883 } 13884 13885 if (arp_add_mapping_mp != NULL) 13886 *arp_add_mapping_mp = NULL; 13887 13888 /* 13889 * Check that the address is not to long for the constant 13890 * length reserved in the template arma_t. 13891 */ 13892 if (ill->ill_phys_addr_length > IP_MAX_HW_LEN) 13893 return (-1); 13894 13895 /* Add mapping mblk */ 13896 addr = (ipaddr_t)htonl(INADDR_UNSPEC_GROUP); 13897 mask = (ipaddr_t)htonl(IN_CLASSD_NET); 13898 add_mp = ill_arp_alloc(ill, (uchar_t *)&ip_arma_multi_template, 13899 (caddr_t)&addr); 13900 if (add_mp == NULL) 13901 return (-1); 13902 arma = (arma_t *)add_mp->b_rptr; 13903 maddr = (uint8_t *)arma + arma->arma_hw_addr_offset; 13904 bcopy(&mask, (char *)arma + arma->arma_proto_mask_offset, IP_ADDR_LEN); 13905 arma->arma_hw_addr_length = ill->ill_phys_addr_length; 13906 13907 /* 13908 * Determine the broadcast address. 13909 */ 13910 dlur = (dl_unitdata_req_t *)ill->ill_bcast_mp->b_rptr; 13911 if (ill->ill_sap_length < 0) 13912 bphys_addr = (uchar_t *)dlur + dlur->dl_dest_addr_offset; 13913 else 13914 bphys_addr = (uchar_t *)dlur + 13915 dlur->dl_dest_addr_offset + ill->ill_sap_length; 13916 /* 13917 * Check PHYI_MULTI_BCAST and length of physical 13918 * address to determine if we use the mapping or the 13919 * broadcast address. 13920 */ 13921 if (!(phyi->phyint_flags & PHYI_MULTI_BCAST)) 13922 if (!MEDIA_V4MINFO(ill->ill_media, ill->ill_phys_addr_length, 13923 bphys_addr, maddr, &hw_start, &extract_mask)) 13924 phyi->phyint_flags |= PHYI_MULTI_BCAST; 13925 13926 if ((phyi->phyint_flags & PHYI_MULTI_BCAST) || 13927 (ill->ill_flags & ILLF_MULTICAST)) { 13928 /* Make sure this will not match the "exact" entry. */ 13929 addr = (ipaddr_t)htonl(INADDR_ALLHOSTS_GROUP); 13930 del_mp = ill_arp_alloc(ill, (uchar_t *)&ip_ared_template, 13931 (caddr_t)&addr); 13932 if (del_mp == NULL) { 13933 freemsg(add_mp); 13934 return (-1); 13935 } 13936 bcopy(&extract_mask, (char *)arma + 13937 arma->arma_proto_extract_mask_offset, IP_ADDR_LEN); 13938 if (phyi->phyint_flags & PHYI_MULTI_BCAST) { 13939 /* Use link-layer broadcast address for MULTI_BCAST */ 13940 bcopy(bphys_addr, maddr, ill->ill_phys_addr_length); 13941 ip2dbg(("ipif_arp_setup_multicast: adding" 13942 " MULTI_BCAST ARP setup for %s\n", ill->ill_name)); 13943 } else { 13944 arma->arma_hw_mapping_start = hw_start; 13945 ip2dbg(("ipif_arp_setup_multicast: adding multicast" 13946 " ARP setup for %s\n", ill->ill_name)); 13947 } 13948 } else { 13949 freemsg(add_mp); 13950 ASSERT(del_mp == NULL); 13951 /* It is neither MULTICAST nor MULTI_BCAST */ 13952 return (0); 13953 } 13954 ASSERT(add_mp != NULL && del_mp != NULL); 13955 ASSERT(ill->ill_arp_del_mapping_mp == NULL); 13956 ill->ill_arp_del_mapping_mp = del_mp; 13957 if (arp_add_mapping_mp != NULL) { 13958 /* The caller just wants the mblks allocated */ 13959 *arp_add_mapping_mp = add_mp; 13960 } else { 13961 /* The caller wants us to send it to arp */ 13962 putnext(ill->ill_rq, add_mp); 13963 } 13964 return (0); 13965 } 13966 13967 /* 13968 * Get the resolver set up for a new interface address. 13969 * (Always called as writer.) 13970 * Called both for IPv4 and IPv6 interfaces, 13971 * though it only sets up the resolver for v6 13972 * if it's an xresolv interface (one using an external resolver). 13973 * Honors ILLF_NOARP. 13974 * The enumerated value res_act is used to tune the behavior. 13975 * If set to Res_act_initial, then we set up all the resolver 13976 * structures for a new interface. If set to Res_act_move, then 13977 * we just send an AR_ENTRY_ADD message up to ARP for IPv4 13978 * interfaces; this is called by ip_rput_dlpi_writer() to handle 13979 * asynchronous hardware address change notification. If set to 13980 * Res_act_defend, then we tell ARP that it needs to send a single 13981 * gratuitous message in defense of the address. 13982 * Returns error on failure. 13983 */ 13984 int 13985 ipif_resolver_up(ipif_t *ipif, enum ip_resolver_action res_act) 13986 { 13987 caddr_t addr; 13988 mblk_t *arp_up_mp = NULL; 13989 mblk_t *arp_down_mp = NULL; 13990 mblk_t *arp_add_mp = NULL; 13991 mblk_t *arp_del_mp = NULL; 13992 mblk_t *arp_add_mapping_mp = NULL; 13993 mblk_t *arp_del_mapping_mp = NULL; 13994 ill_t *ill = ipif->ipif_ill; 13995 uchar_t *area_p = NULL; 13996 uchar_t *ared_p = NULL; 13997 int err = ENOMEM; 13998 boolean_t was_dup; 13999 14000 ip1dbg(("ipif_resolver_up(%s:%u) flags 0x%x\n", 14001 ill->ill_name, ipif->ipif_id, (uint_t)ipif->ipif_flags)); 14002 ASSERT(IAM_WRITER_IPIF(ipif)); 14003 14004 was_dup = B_FALSE; 14005 if (res_act == Res_act_initial) { 14006 ipif->ipif_addr_ready = 0; 14007 /* 14008 * We're bringing an interface up here. There's no way that we 14009 * should need to shut down ARP now. 14010 */ 14011 mutex_enter(&ill->ill_lock); 14012 if (ipif->ipif_flags & IPIF_DUPLICATE) { 14013 ipif->ipif_flags &= ~IPIF_DUPLICATE; 14014 ill->ill_ipif_dup_count--; 14015 was_dup = B_TRUE; 14016 } 14017 mutex_exit(&ill->ill_lock); 14018 } 14019 if (ipif->ipif_recovery_id != 0) 14020 (void) untimeout(ipif->ipif_recovery_id); 14021 ipif->ipif_recovery_id = 0; 14022 if (ill->ill_net_type != IRE_IF_RESOLVER) { 14023 ipif->ipif_addr_ready = 1; 14024 return (0); 14025 } 14026 /* NDP will set the ipif_addr_ready flag when it's ready */ 14027 if (ill->ill_isv6 && !(ill->ill_flags & ILLF_XRESOLV)) 14028 return (0); 14029 14030 if (ill->ill_isv6) { 14031 /* 14032 * External resolver for IPv6 14033 */ 14034 ASSERT(res_act == Res_act_initial); 14035 if (!IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6lcl_addr)) { 14036 addr = (caddr_t)&ipif->ipif_v6lcl_addr; 14037 area_p = (uchar_t *)&ip6_area_template; 14038 ared_p = (uchar_t *)&ip6_ared_template; 14039 } 14040 } else { 14041 /* 14042 * IPv4 arp case. If the ARP stream has already started 14043 * closing, fail this request for ARP bringup. Else 14044 * record the fact that an ARP bringup is pending. 14045 */ 14046 mutex_enter(&ill->ill_lock); 14047 if (ill->ill_arp_closing) { 14048 mutex_exit(&ill->ill_lock); 14049 err = EINVAL; 14050 goto failed; 14051 } else { 14052 if (ill->ill_ipif_up_count == 0 && 14053 ill->ill_ipif_dup_count == 0 && !was_dup) 14054 ill->ill_arp_bringup_pending = 1; 14055 mutex_exit(&ill->ill_lock); 14056 } 14057 if (ipif->ipif_lcl_addr != INADDR_ANY) { 14058 addr = (caddr_t)&ipif->ipif_lcl_addr; 14059 area_p = (uchar_t *)&ip_area_template; 14060 ared_p = (uchar_t *)&ip_ared_template; 14061 } 14062 } 14063 14064 /* 14065 * Add an entry for the local address in ARP only if it 14066 * is not UNNUMBERED and the address is not INADDR_ANY. 14067 */ 14068 if (!(ipif->ipif_flags & IPIF_UNNUMBERED) && area_p != NULL) { 14069 area_t *area; 14070 14071 /* Now ask ARP to publish our address. */ 14072 arp_add_mp = ill_arp_alloc(ill, area_p, addr); 14073 if (arp_add_mp == NULL) 14074 goto failed; 14075 area = (area_t *)arp_add_mp->b_rptr; 14076 if (res_act != Res_act_initial) { 14077 /* 14078 * Copy the new hardware address and length into 14079 * arp_add_mp to be sent to ARP. 14080 */ 14081 area->area_hw_addr_length = ill->ill_phys_addr_length; 14082 bcopy(ill->ill_phys_addr, 14083 ((char *)area + area->area_hw_addr_offset), 14084 area->area_hw_addr_length); 14085 } 14086 14087 area->area_flags = ACE_F_PERMANENT | ACE_F_PUBLISH | 14088 ACE_F_MYADDR; 14089 14090 if (res_act == Res_act_defend) { 14091 area->area_flags |= ACE_F_DEFEND; 14092 /* 14093 * If we're just defending our address now, then 14094 * there's no need to set up ARP multicast mappings. 14095 * The publish command is enough. 14096 */ 14097 goto done; 14098 } 14099 14100 if (res_act != Res_act_initial) 14101 goto arp_setup_multicast; 14102 14103 /* 14104 * Allocate an ARP deletion message so we know we can tell ARP 14105 * when the interface goes down. 14106 */ 14107 arp_del_mp = ill_arp_alloc(ill, ared_p, addr); 14108 if (arp_del_mp == NULL) 14109 goto failed; 14110 14111 } else { 14112 if (res_act != Res_act_initial) 14113 goto done; 14114 } 14115 /* 14116 * Need to bring up ARP or setup multicast mapping only 14117 * when the first interface is coming UP. 14118 */ 14119 if (ill->ill_ipif_up_count != 0 || ill->ill_ipif_dup_count != 0 || 14120 was_dup) { 14121 goto done; 14122 } 14123 14124 /* 14125 * Allocate an ARP down message (to be saved) and an ARP up 14126 * message. 14127 */ 14128 arp_down_mp = ill_arp_alloc(ill, (uchar_t *)&ip_ard_template, 0); 14129 if (arp_down_mp == NULL) 14130 goto failed; 14131 14132 arp_up_mp = ill_arp_alloc(ill, (uchar_t *)&ip_aru_template, 0); 14133 if (arp_up_mp == NULL) 14134 goto failed; 14135 14136 if (ipif->ipif_flags & IPIF_POINTOPOINT) 14137 goto done; 14138 14139 arp_setup_multicast: 14140 /* 14141 * Setup the multicast mappings. This function initializes 14142 * ill_arp_del_mapping_mp also. This does not need to be done for 14143 * IPv6. 14144 */ 14145 if (!ill->ill_isv6) { 14146 err = ipif_arp_setup_multicast(ipif, &arp_add_mapping_mp); 14147 if (err != 0) 14148 goto failed; 14149 ASSERT(ill->ill_arp_del_mapping_mp != NULL); 14150 ASSERT(arp_add_mapping_mp != NULL); 14151 } 14152 14153 done: 14154 if (arp_del_mp != NULL) { 14155 ASSERT(ipif->ipif_arp_del_mp == NULL); 14156 ipif->ipif_arp_del_mp = arp_del_mp; 14157 } 14158 if (arp_down_mp != NULL) { 14159 ASSERT(ill->ill_arp_down_mp == NULL); 14160 ill->ill_arp_down_mp = arp_down_mp; 14161 } 14162 if (arp_del_mapping_mp != NULL) { 14163 ASSERT(ill->ill_arp_del_mapping_mp == NULL); 14164 ill->ill_arp_del_mapping_mp = arp_del_mapping_mp; 14165 } 14166 if (arp_up_mp != NULL) { 14167 ip1dbg(("ipif_resolver_up: ARP_UP for %s:%u\n", 14168 ill->ill_name, ipif->ipif_id)); 14169 putnext(ill->ill_rq, arp_up_mp); 14170 } 14171 if (arp_add_mp != NULL) { 14172 ip1dbg(("ipif_resolver_up: ARP_ADD for %s:%u\n", 14173 ill->ill_name, ipif->ipif_id)); 14174 /* 14175 * If it's an extended ARP implementation, then we'll wait to 14176 * hear that DAD has finished before using the interface. 14177 */ 14178 if (!ill->ill_arp_extend) 14179 ipif->ipif_addr_ready = 1; 14180 putnext(ill->ill_rq, arp_add_mp); 14181 } else { 14182 ipif->ipif_addr_ready = 1; 14183 } 14184 if (arp_add_mapping_mp != NULL) { 14185 ip1dbg(("ipif_resolver_up: MAPPING_ADD for %s:%u\n", 14186 ill->ill_name, ipif->ipif_id)); 14187 putnext(ill->ill_rq, arp_add_mapping_mp); 14188 } 14189 if (res_act != Res_act_initial) 14190 return (0); 14191 14192 if (ill->ill_flags & ILLF_NOARP) 14193 err = ill_arp_off(ill); 14194 else 14195 err = ill_arp_on(ill); 14196 if (err != 0) { 14197 ip0dbg(("ipif_resolver_up: arp_on/off failed %d\n", err)); 14198 freemsg(ipif->ipif_arp_del_mp); 14199 freemsg(ill->ill_arp_down_mp); 14200 freemsg(ill->ill_arp_del_mapping_mp); 14201 ipif->ipif_arp_del_mp = NULL; 14202 ill->ill_arp_down_mp = NULL; 14203 ill->ill_arp_del_mapping_mp = NULL; 14204 return (err); 14205 } 14206 return ((ill->ill_ipif_up_count != 0 || was_dup || 14207 ill->ill_ipif_dup_count != 0) ? 0 : EINPROGRESS); 14208 14209 failed: 14210 ip1dbg(("ipif_resolver_up: FAILED\n")); 14211 freemsg(arp_add_mp); 14212 freemsg(arp_del_mp); 14213 freemsg(arp_add_mapping_mp); 14214 freemsg(arp_up_mp); 14215 freemsg(arp_down_mp); 14216 ill->ill_arp_bringup_pending = 0; 14217 return (err); 14218 } 14219 14220 /* 14221 * This routine restarts IPv4 duplicate address detection (DAD) when a link has 14222 * just gone back up. 14223 */ 14224 static void 14225 ipif_arp_start_dad(ipif_t *ipif) 14226 { 14227 ill_t *ill = ipif->ipif_ill; 14228 mblk_t *arp_add_mp; 14229 area_t *area; 14230 14231 if (ill->ill_net_type != IRE_IF_RESOLVER || ill->ill_arp_closing || 14232 (ipif->ipif_flags & IPIF_UNNUMBERED) || 14233 ipif->ipif_lcl_addr == INADDR_ANY || 14234 (arp_add_mp = ill_arp_alloc(ill, (uchar_t *)&ip_area_template, 14235 (char *)&ipif->ipif_lcl_addr)) == NULL) { 14236 /* 14237 * If we can't contact ARP for some reason, that's not really a 14238 * problem. Just send out the routing socket notification that 14239 * DAD completion would have done, and continue. 14240 */ 14241 ipif_mask_reply(ipif); 14242 ip_rts_ifmsg(ipif); 14243 ip_rts_newaddrmsg(RTM_ADD, 0, ipif); 14244 sctp_update_ipif(ipif, SCTP_IPIF_UP); 14245 ipif->ipif_addr_ready = 1; 14246 return; 14247 } 14248 14249 /* Setting the 'unverified' flag restarts DAD */ 14250 area = (area_t *)arp_add_mp->b_rptr; 14251 area->area_flags = ACE_F_PERMANENT | ACE_F_PUBLISH | ACE_F_MYADDR | 14252 ACE_F_UNVERIFIED; 14253 putnext(ill->ill_rq, arp_add_mp); 14254 } 14255 14256 static void 14257 ipif_ndp_start_dad(ipif_t *ipif) 14258 { 14259 nce_t *nce; 14260 14261 nce = ndp_lookup_v6(ipif->ipif_ill, &ipif->ipif_v6lcl_addr, B_FALSE); 14262 if (nce == NULL) 14263 return; 14264 14265 if (!ndp_restart_dad(nce)) { 14266 /* 14267 * If we can't restart DAD for some reason, that's not really a 14268 * problem. Just send out the routing socket notification that 14269 * DAD completion would have done, and continue. 14270 */ 14271 ip_rts_ifmsg(ipif); 14272 ip_rts_newaddrmsg(RTM_ADD, 0, ipif); 14273 sctp_update_ipif(ipif, SCTP_IPIF_UP); 14274 ipif->ipif_addr_ready = 1; 14275 } 14276 NCE_REFRELE(nce); 14277 } 14278 14279 /* 14280 * Restart duplicate address detection on all interfaces on the given ill. 14281 * 14282 * This is called when an interface transitions from down to up 14283 * (DL_NOTE_LINK_UP) or up to down (DL_NOTE_LINK_DOWN). 14284 * 14285 * Note that since the underlying physical link has transitioned, we must cause 14286 * at least one routing socket message to be sent here, either via DAD 14287 * completion or just by default on the first ipif. (If we don't do this, then 14288 * in.mpathd will see long delays when doing link-based failure recovery.) 14289 */ 14290 void 14291 ill_restart_dad(ill_t *ill, boolean_t went_up) 14292 { 14293 ipif_t *ipif; 14294 14295 if (ill == NULL) 14296 return; 14297 14298 /* 14299 * If layer two doesn't support duplicate address detection, then just 14300 * send the routing socket message now and be done with it. 14301 */ 14302 if ((ill->ill_isv6 && (ill->ill_flags & ILLF_XRESOLV)) || 14303 (!ill->ill_isv6 && !ill->ill_arp_extend)) { 14304 ip_rts_ifmsg(ill->ill_ipif); 14305 return; 14306 } 14307 14308 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 14309 if (went_up) { 14310 if (ipif->ipif_flags & IPIF_UP) { 14311 if (ill->ill_isv6) 14312 ipif_ndp_start_dad(ipif); 14313 else 14314 ipif_arp_start_dad(ipif); 14315 } else if (ill->ill_isv6 && 14316 (ipif->ipif_flags & IPIF_DUPLICATE)) { 14317 /* 14318 * For IPv4, the ARP module itself will 14319 * automatically start the DAD process when it 14320 * sees DL_NOTE_LINK_UP. We respond to the 14321 * AR_CN_READY at the completion of that task. 14322 * For IPv6, we must kick off the bring-up 14323 * process now. 14324 */ 14325 ndp_do_recovery(ipif); 14326 } else { 14327 /* 14328 * Unfortunately, the first ipif is "special" 14329 * and represents the underlying ill in the 14330 * routing socket messages. Thus, when this 14331 * one ipif is down, we must still notify so 14332 * that the user knows the IFF_RUNNING status 14333 * change. (If the first ipif is up, then 14334 * we'll handle eventual routing socket 14335 * notification via DAD completion.) 14336 */ 14337 if (ipif == ill->ill_ipif) 14338 ip_rts_ifmsg(ill->ill_ipif); 14339 } 14340 } else { 14341 /* 14342 * After link down, we'll need to send a new routing 14343 * message when the link comes back, so clear 14344 * ipif_addr_ready. 14345 */ 14346 ipif->ipif_addr_ready = 0; 14347 } 14348 } 14349 14350 /* 14351 * If we've torn down links, then notify the user right away. 14352 */ 14353 if (!went_up) 14354 ip_rts_ifmsg(ill->ill_ipif); 14355 } 14356 14357 /* 14358 * Wakeup all threads waiting to enter the ipsq, and sleeping 14359 * on any of the ills in this ipsq. The ill_lock of the ill 14360 * must be held so that waiters don't miss wakeups 14361 */ 14362 static void 14363 ill_signal_ipsq_ills(ipsq_t *ipsq, boolean_t caller_holds_lock) 14364 { 14365 phyint_t *phyint; 14366 14367 phyint = ipsq->ipsq_phyint_list; 14368 while (phyint != NULL) { 14369 if (phyint->phyint_illv4) { 14370 if (!caller_holds_lock) 14371 mutex_enter(&phyint->phyint_illv4->ill_lock); 14372 ASSERT(MUTEX_HELD(&phyint->phyint_illv4->ill_lock)); 14373 cv_broadcast(&phyint->phyint_illv4->ill_cv); 14374 if (!caller_holds_lock) 14375 mutex_exit(&phyint->phyint_illv4->ill_lock); 14376 } 14377 if (phyint->phyint_illv6) { 14378 if (!caller_holds_lock) 14379 mutex_enter(&phyint->phyint_illv6->ill_lock); 14380 ASSERT(MUTEX_HELD(&phyint->phyint_illv6->ill_lock)); 14381 cv_broadcast(&phyint->phyint_illv6->ill_cv); 14382 if (!caller_holds_lock) 14383 mutex_exit(&phyint->phyint_illv6->ill_lock); 14384 } 14385 phyint = phyint->phyint_ipsq_next; 14386 } 14387 } 14388 14389 static ipsq_t * 14390 ipsq_create(char *groupname, ip_stack_t *ipst) 14391 { 14392 ipsq_t *ipsq; 14393 14394 ASSERT(RW_WRITE_HELD(&ipst->ips_ill_g_lock)); 14395 ipsq = kmem_zalloc(sizeof (ipsq_t), KM_NOSLEEP); 14396 if (ipsq == NULL) { 14397 return (NULL); 14398 } 14399 14400 if (groupname != NULL) 14401 (void) strcpy(ipsq->ipsq_name, groupname); 14402 else 14403 ipsq->ipsq_name[0] = '\0'; 14404 14405 mutex_init(&ipsq->ipsq_lock, NULL, MUTEX_DEFAULT, NULL); 14406 ipsq->ipsq_flags |= IPSQ_GROUP; 14407 ipsq->ipsq_next = ipst->ips_ipsq_g_head; 14408 ipst->ips_ipsq_g_head = ipsq; 14409 ipsq->ipsq_ipst = ipst; /* No netstack_hold */ 14410 return (ipsq); 14411 } 14412 14413 /* 14414 * Return an ipsq correspoding to the groupname. If 'create' is true 14415 * allocate a new ipsq if one does not exist. Usually an ipsq is associated 14416 * uniquely with an IPMP group. However during IPMP groupname operations, 14417 * multiple IPMP groups may be associated with a single ipsq. But no 14418 * IPMP group can be associated with more than 1 ipsq at any time. 14419 * For example 14420 * Interfaces IPMP grpname ipsq ipsq_name ipsq_refs 14421 * hme1, hme2 mpk17-84 ipsq1 mpk17-84 2 14422 * hme3, hme4 mpk17-85 ipsq2 mpk17-85 2 14423 * 14424 * Now the command ifconfig hme3 group mpk17-84 results in the temporary 14425 * status shown below during the execution of the above command. 14426 * hme1, hme2, hme3, hme4 mpk17-84, mpk17-85 ipsq1 mpk17-84 4 14427 * 14428 * After the completion of the above groupname command we return to the stable 14429 * state shown below. 14430 * hme1, hme2, hme3 mpk17-84 ipsq1 mpk17-84 3 14431 * hme4 mpk17-85 ipsq2 mpk17-85 1 14432 * 14433 * Because of the above, we don't search based on the ipsq_name since that 14434 * would miss the correct ipsq during certain windows as shown above. 14435 * The ipsq_name is only used during split of an ipsq to return the ipsq to its 14436 * natural state. 14437 */ 14438 static ipsq_t * 14439 ip_ipsq_lookup(char *groupname, boolean_t create, ipsq_t *exclude_ipsq, 14440 ip_stack_t *ipst) 14441 { 14442 ipsq_t *ipsq; 14443 int group_len; 14444 phyint_t *phyint; 14445 14446 ASSERT(RW_LOCK_HELD(&ipst->ips_ill_g_lock)); 14447 14448 group_len = strlen(groupname); 14449 ASSERT(group_len != 0); 14450 group_len++; 14451 14452 for (ipsq = ipst->ips_ipsq_g_head; 14453 ipsq != NULL; 14454 ipsq = ipsq->ipsq_next) { 14455 /* 14456 * When an ipsq is being split, and ill_split_ipsq 14457 * calls this function, we exclude it from being considered. 14458 */ 14459 if (ipsq == exclude_ipsq) 14460 continue; 14461 14462 /* 14463 * Compare against the ipsq_name. The groupname change happens 14464 * in 2 phases. The 1st phase merges the from group into 14465 * the to group's ipsq, by calling ill_merge_groups and restarts 14466 * the ioctl. The 2nd phase then locates the ipsq again thru 14467 * ipsq_name. At this point the phyint_groupname has not been 14468 * updated. 14469 */ 14470 if ((group_len == strlen(ipsq->ipsq_name) + 1) && 14471 (bcmp(ipsq->ipsq_name, groupname, group_len) == 0)) { 14472 /* 14473 * Verify that an ipmp groupname is exactly 14474 * part of 1 ipsq and is not found in any other 14475 * ipsq. 14476 */ 14477 ASSERT(ip_ipsq_lookup(groupname, B_FALSE, ipsq, ipst) == 14478 NULL); 14479 return (ipsq); 14480 } 14481 14482 /* 14483 * Comparison against ipsq_name alone is not sufficient. 14484 * In the case when groups are currently being 14485 * merged, the ipsq could hold other IPMP groups temporarily. 14486 * so we walk the phyint list and compare against the 14487 * phyint_groupname as well. 14488 */ 14489 phyint = ipsq->ipsq_phyint_list; 14490 while (phyint != NULL) { 14491 if ((group_len == phyint->phyint_groupname_len) && 14492 (bcmp(phyint->phyint_groupname, groupname, 14493 group_len) == 0)) { 14494 /* 14495 * Verify that an ipmp groupname is exactly 14496 * part of 1 ipsq and is not found in any other 14497 * ipsq. 14498 */ 14499 ASSERT(ip_ipsq_lookup(groupname, B_FALSE, ipsq, 14500 ipst) == NULL); 14501 return (ipsq); 14502 } 14503 phyint = phyint->phyint_ipsq_next; 14504 } 14505 } 14506 if (create) 14507 ipsq = ipsq_create(groupname, ipst); 14508 return (ipsq); 14509 } 14510 14511 static void 14512 ipsq_delete(ipsq_t *ipsq) 14513 { 14514 ipsq_t *nipsq; 14515 ipsq_t *pipsq = NULL; 14516 ip_stack_t *ipst = ipsq->ipsq_ipst; 14517 14518 /* 14519 * We don't hold the ipsq lock, but we are sure no new 14520 * messages can land up, since the ipsq_refs is zero. 14521 * i.e. this ipsq is unnamed and no phyint or phyint group 14522 * is associated with this ipsq. (Lookups are based on ill_name 14523 * or phyint_groupname) 14524 */ 14525 ASSERT(ipsq->ipsq_refs == 0); 14526 ASSERT(ipsq->ipsq_xopq_mphead == NULL && ipsq->ipsq_mphead == NULL); 14527 ASSERT(ipsq->ipsq_pending_mp == NULL); 14528 if (!(ipsq->ipsq_flags & IPSQ_GROUP)) { 14529 /* 14530 * This is not the ipsq of an IPMP group. 14531 */ 14532 ipsq->ipsq_ipst = NULL; 14533 kmem_free(ipsq, sizeof (ipsq_t)); 14534 return; 14535 } 14536 14537 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 14538 14539 /* 14540 * Locate the ipsq before we can remove it from 14541 * the singly linked list of ipsq's. 14542 */ 14543 for (nipsq = ipst->ips_ipsq_g_head; nipsq != NULL; 14544 nipsq = nipsq->ipsq_next) { 14545 if (nipsq == ipsq) { 14546 break; 14547 } 14548 pipsq = nipsq; 14549 } 14550 14551 ASSERT(nipsq == ipsq); 14552 14553 /* unlink ipsq from the list */ 14554 if (pipsq != NULL) 14555 pipsq->ipsq_next = ipsq->ipsq_next; 14556 else 14557 ipst->ips_ipsq_g_head = ipsq->ipsq_next; 14558 ipsq->ipsq_ipst = NULL; 14559 kmem_free(ipsq, sizeof (ipsq_t)); 14560 rw_exit(&ipst->ips_ill_g_lock); 14561 } 14562 14563 static void 14564 ill_move_to_new_ipsq(ipsq_t *old_ipsq, ipsq_t *new_ipsq, mblk_t *current_mp, 14565 queue_t *q) 14566 { 14567 ASSERT(MUTEX_HELD(&new_ipsq->ipsq_lock)); 14568 ASSERT(old_ipsq->ipsq_mphead == NULL && old_ipsq->ipsq_mptail == NULL); 14569 ASSERT(old_ipsq->ipsq_pending_ipif == NULL); 14570 ASSERT(old_ipsq->ipsq_pending_mp == NULL); 14571 ASSERT(current_mp != NULL); 14572 14573 ipsq_enq(new_ipsq, q, current_mp, (ipsq_func_t)ip_process_ioctl, 14574 NEW_OP, NULL); 14575 14576 ASSERT(new_ipsq->ipsq_xopq_mptail != NULL && 14577 new_ipsq->ipsq_xopq_mphead != NULL); 14578 14579 /* 14580 * move from old ipsq to the new ipsq. 14581 */ 14582 new_ipsq->ipsq_xopq_mptail->b_next = old_ipsq->ipsq_xopq_mphead; 14583 if (old_ipsq->ipsq_xopq_mphead != NULL) 14584 new_ipsq->ipsq_xopq_mptail = old_ipsq->ipsq_xopq_mptail; 14585 14586 old_ipsq->ipsq_xopq_mphead = old_ipsq->ipsq_xopq_mptail = NULL; 14587 } 14588 14589 void 14590 ill_group_cleanup(ill_t *ill) 14591 { 14592 ill_t *ill_v4; 14593 ill_t *ill_v6; 14594 ipif_t *ipif; 14595 14596 ill_v4 = ill->ill_phyint->phyint_illv4; 14597 ill_v6 = ill->ill_phyint->phyint_illv6; 14598 14599 if (ill_v4 != NULL) { 14600 mutex_enter(&ill_v4->ill_lock); 14601 for (ipif = ill_v4->ill_ipif; ipif != NULL; 14602 ipif = ipif->ipif_next) { 14603 IPIF_UNMARK_MOVING(ipif); 14604 } 14605 ill_v4->ill_up_ipifs = B_FALSE; 14606 mutex_exit(&ill_v4->ill_lock); 14607 } 14608 14609 if (ill_v6 != NULL) { 14610 mutex_enter(&ill_v6->ill_lock); 14611 for (ipif = ill_v6->ill_ipif; ipif != NULL; 14612 ipif = ipif->ipif_next) { 14613 IPIF_UNMARK_MOVING(ipif); 14614 } 14615 ill_v6->ill_up_ipifs = B_FALSE; 14616 mutex_exit(&ill_v6->ill_lock); 14617 } 14618 } 14619 /* 14620 * This function is called when an ill has had a change in its group status 14621 * to bring up all the ipifs that were up before the change. 14622 */ 14623 int 14624 ill_up_ipifs(ill_t *ill, queue_t *q, mblk_t *mp) 14625 { 14626 ipif_t *ipif; 14627 ill_t *ill_v4; 14628 ill_t *ill_v6; 14629 ill_t *from_ill; 14630 int err = 0; 14631 14632 14633 ASSERT(IAM_WRITER_ILL(ill)); 14634 14635 /* 14636 * Except for ipif_state_flags and ill_state_flags the other 14637 * fields of the ipif/ill that are modified below are protected 14638 * implicitly since we are a writer. We would have tried to down 14639 * even an ipif that was already down, in ill_down_ipifs. So we 14640 * just blindly clear the IPIF_CHANGING flag here on all ipifs. 14641 */ 14642 ill_v4 = ill->ill_phyint->phyint_illv4; 14643 ill_v6 = ill->ill_phyint->phyint_illv6; 14644 if (ill_v4 != NULL) { 14645 ill_v4->ill_up_ipifs = B_TRUE; 14646 for (ipif = ill_v4->ill_ipif; ipif != NULL; 14647 ipif = ipif->ipif_next) { 14648 mutex_enter(&ill_v4->ill_lock); 14649 ipif->ipif_state_flags &= ~IPIF_CHANGING; 14650 IPIF_UNMARK_MOVING(ipif); 14651 mutex_exit(&ill_v4->ill_lock); 14652 if (ipif->ipif_was_up) { 14653 if (!(ipif->ipif_flags & IPIF_UP)) 14654 err = ipif_up(ipif, q, mp); 14655 ipif->ipif_was_up = B_FALSE; 14656 if (err != 0) { 14657 /* 14658 * Can there be any other error ? 14659 */ 14660 ASSERT(err == EINPROGRESS); 14661 return (err); 14662 } 14663 } 14664 } 14665 mutex_enter(&ill_v4->ill_lock); 14666 ill_v4->ill_state_flags &= ~ILL_CHANGING; 14667 mutex_exit(&ill_v4->ill_lock); 14668 ill_v4->ill_up_ipifs = B_FALSE; 14669 if (ill_v4->ill_move_in_progress) { 14670 ASSERT(ill_v4->ill_move_peer != NULL); 14671 ill_v4->ill_move_in_progress = B_FALSE; 14672 from_ill = ill_v4->ill_move_peer; 14673 from_ill->ill_move_in_progress = B_FALSE; 14674 from_ill->ill_move_peer = NULL; 14675 mutex_enter(&from_ill->ill_lock); 14676 from_ill->ill_state_flags &= ~ILL_CHANGING; 14677 mutex_exit(&from_ill->ill_lock); 14678 if (ill_v6 == NULL) { 14679 if (from_ill->ill_phyint->phyint_flags & 14680 PHYI_STANDBY) { 14681 phyint_inactive(from_ill->ill_phyint); 14682 } 14683 if (ill_v4->ill_phyint->phyint_flags & 14684 PHYI_STANDBY) { 14685 phyint_inactive(ill_v4->ill_phyint); 14686 } 14687 } 14688 ill_v4->ill_move_peer = NULL; 14689 } 14690 } 14691 14692 if (ill_v6 != NULL) { 14693 ill_v6->ill_up_ipifs = B_TRUE; 14694 for (ipif = ill_v6->ill_ipif; ipif != NULL; 14695 ipif = ipif->ipif_next) { 14696 mutex_enter(&ill_v6->ill_lock); 14697 ipif->ipif_state_flags &= ~IPIF_CHANGING; 14698 IPIF_UNMARK_MOVING(ipif); 14699 mutex_exit(&ill_v6->ill_lock); 14700 if (ipif->ipif_was_up) { 14701 if (!(ipif->ipif_flags & IPIF_UP)) 14702 err = ipif_up(ipif, q, mp); 14703 ipif->ipif_was_up = B_FALSE; 14704 if (err != 0) { 14705 /* 14706 * Can there be any other error ? 14707 */ 14708 ASSERT(err == EINPROGRESS); 14709 return (err); 14710 } 14711 } 14712 } 14713 mutex_enter(&ill_v6->ill_lock); 14714 ill_v6->ill_state_flags &= ~ILL_CHANGING; 14715 mutex_exit(&ill_v6->ill_lock); 14716 ill_v6->ill_up_ipifs = B_FALSE; 14717 if (ill_v6->ill_move_in_progress) { 14718 ASSERT(ill_v6->ill_move_peer != NULL); 14719 ill_v6->ill_move_in_progress = B_FALSE; 14720 from_ill = ill_v6->ill_move_peer; 14721 from_ill->ill_move_in_progress = B_FALSE; 14722 from_ill->ill_move_peer = NULL; 14723 mutex_enter(&from_ill->ill_lock); 14724 from_ill->ill_state_flags &= ~ILL_CHANGING; 14725 mutex_exit(&from_ill->ill_lock); 14726 if (from_ill->ill_phyint->phyint_flags & PHYI_STANDBY) { 14727 phyint_inactive(from_ill->ill_phyint); 14728 } 14729 if (ill_v6->ill_phyint->phyint_flags & PHYI_STANDBY) { 14730 phyint_inactive(ill_v6->ill_phyint); 14731 } 14732 ill_v6->ill_move_peer = NULL; 14733 } 14734 } 14735 return (0); 14736 } 14737 14738 /* 14739 * bring down all the approriate ipifs. 14740 */ 14741 /* ARGSUSED */ 14742 static void 14743 ill_down_ipifs(ill_t *ill, mblk_t *mp, int index, boolean_t chk_nofailover) 14744 { 14745 ipif_t *ipif; 14746 14747 ASSERT(IAM_WRITER_ILL(ill)); 14748 14749 /* 14750 * Except for ipif_state_flags the other fields of the ipif/ill that 14751 * are modified below are protected implicitly since we are a writer 14752 */ 14753 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 14754 if (chk_nofailover && (ipif->ipif_flags & IPIF_NOFAILOVER)) 14755 continue; 14756 if (index == 0 || index == ipif->ipif_orig_ifindex) { 14757 /* 14758 * We go through the ipif_down logic even if the ipif 14759 * is already down, since routes can be added based 14760 * on down ipifs. Going through ipif_down once again 14761 * will delete any IREs created based on these routes. 14762 */ 14763 if (ipif->ipif_flags & IPIF_UP) 14764 ipif->ipif_was_up = B_TRUE; 14765 /* 14766 * If called with chk_nofailover true ipif is moving. 14767 */ 14768 mutex_enter(&ill->ill_lock); 14769 if (chk_nofailover) { 14770 ipif->ipif_state_flags |= 14771 IPIF_MOVING | IPIF_CHANGING; 14772 } else { 14773 ipif->ipif_state_flags |= IPIF_CHANGING; 14774 } 14775 mutex_exit(&ill->ill_lock); 14776 /* 14777 * Need to re-create net/subnet bcast ires if 14778 * they are dependent on ipif. 14779 */ 14780 if (!ipif->ipif_isv6) 14781 ipif_check_bcast_ires(ipif); 14782 (void) ipif_logical_down(ipif, NULL, NULL); 14783 ipif_non_duplicate(ipif); 14784 ipif_down_tail(ipif); 14785 /* 14786 * We don't do ipif_multicast_down for IPv4 in 14787 * ipif_down. We need to set this so that 14788 * ipif_multicast_up will join the 14789 * ALLHOSTS_GROUP on to_ill. 14790 */ 14791 ipif->ipif_multicast_up = B_FALSE; 14792 } 14793 } 14794 } 14795 14796 #define IPSQ_INC_REF(ipsq, ipst) { \ 14797 ASSERT(RW_WRITE_HELD(&ipst->ips_ill_g_lock)); \ 14798 (ipsq)->ipsq_refs++; \ 14799 } 14800 14801 #define IPSQ_DEC_REF(ipsq, ipst) { \ 14802 ASSERT(RW_WRITE_HELD(&ipst->ips_ill_g_lock)); \ 14803 (ipsq)->ipsq_refs--; \ 14804 if ((ipsq)->ipsq_refs == 0) \ 14805 (ipsq)->ipsq_name[0] = '\0'; \ 14806 } 14807 14808 /* 14809 * Change the ipsq of all the ill's whose current ipsq is 'cur_ipsq' to 14810 * new_ipsq. 14811 */ 14812 static void 14813 ill_merge_ipsq(ipsq_t *cur_ipsq, ipsq_t *new_ipsq, ip_stack_t *ipst) 14814 { 14815 phyint_t *phyint; 14816 phyint_t *next_phyint; 14817 14818 /* 14819 * To change the ipsq of an ill, we need to hold the ill_g_lock as 14820 * writer and the ill_lock of the ill in question. Also the dest 14821 * ipsq can't vanish while we hold the ill_g_lock as writer. 14822 */ 14823 ASSERT(RW_WRITE_HELD(&ipst->ips_ill_g_lock)); 14824 14825 phyint = cur_ipsq->ipsq_phyint_list; 14826 cur_ipsq->ipsq_phyint_list = NULL; 14827 while (phyint != NULL) { 14828 next_phyint = phyint->phyint_ipsq_next; 14829 IPSQ_DEC_REF(cur_ipsq, ipst); 14830 phyint->phyint_ipsq_next = new_ipsq->ipsq_phyint_list; 14831 new_ipsq->ipsq_phyint_list = phyint; 14832 IPSQ_INC_REF(new_ipsq, ipst); 14833 phyint->phyint_ipsq = new_ipsq; 14834 phyint = next_phyint; 14835 } 14836 } 14837 14838 #define SPLIT_SUCCESS 0 14839 #define SPLIT_NOT_NEEDED 1 14840 #define SPLIT_FAILED 2 14841 14842 int 14843 ill_split_to_grp_ipsq(phyint_t *phyint, ipsq_t *cur_ipsq, boolean_t need_retry, 14844 ip_stack_t *ipst) 14845 { 14846 ipsq_t *newipsq = NULL; 14847 14848 /* 14849 * Assertions denote pre-requisites for changing the ipsq of 14850 * a phyint 14851 */ 14852 ASSERT(RW_WRITE_HELD(&ipst->ips_ill_g_lock)); 14853 /* 14854 * <ill-phyint> assocs can't change while ill_g_lock 14855 * is held as writer. See ill_phyint_reinit() 14856 */ 14857 ASSERT(phyint->phyint_illv4 == NULL || 14858 MUTEX_HELD(&phyint->phyint_illv4->ill_lock)); 14859 ASSERT(phyint->phyint_illv6 == NULL || 14860 MUTEX_HELD(&phyint->phyint_illv6->ill_lock)); 14861 14862 if ((phyint->phyint_groupname_len != 14863 (strlen(cur_ipsq->ipsq_name) + 1) || 14864 bcmp(phyint->phyint_groupname, cur_ipsq->ipsq_name, 14865 phyint->phyint_groupname_len) != 0)) { 14866 /* 14867 * Once we fail in creating a new ipsq due to memory shortage, 14868 * don't attempt to create new ipsq again, based on another 14869 * phyint, since we want all phyints belonging to an IPMP group 14870 * to be in the same ipsq even in the event of mem alloc fails. 14871 */ 14872 newipsq = ip_ipsq_lookup(phyint->phyint_groupname, !need_retry, 14873 cur_ipsq, ipst); 14874 if (newipsq == NULL) { 14875 /* Memory allocation failure */ 14876 return (SPLIT_FAILED); 14877 } else { 14878 /* ipsq_refs protected by ill_g_lock (writer) */ 14879 IPSQ_DEC_REF(cur_ipsq, ipst); 14880 phyint->phyint_ipsq = newipsq; 14881 phyint->phyint_ipsq_next = newipsq->ipsq_phyint_list; 14882 newipsq->ipsq_phyint_list = phyint; 14883 IPSQ_INC_REF(newipsq, ipst); 14884 return (SPLIT_SUCCESS); 14885 } 14886 } 14887 return (SPLIT_NOT_NEEDED); 14888 } 14889 14890 /* 14891 * The ill locks of the phyint and the ill_g_lock (writer) must be held 14892 * to do this split 14893 */ 14894 static int 14895 ill_split_to_own_ipsq(phyint_t *phyint, ipsq_t *cur_ipsq, ip_stack_t *ipst) 14896 { 14897 ipsq_t *newipsq; 14898 14899 ASSERT(RW_WRITE_HELD(&ipst->ips_ill_g_lock)); 14900 /* 14901 * <ill-phyint> assocs can't change while ill_g_lock 14902 * is held as writer. See ill_phyint_reinit() 14903 */ 14904 14905 ASSERT(phyint->phyint_illv4 == NULL || 14906 MUTEX_HELD(&phyint->phyint_illv4->ill_lock)); 14907 ASSERT(phyint->phyint_illv6 == NULL || 14908 MUTEX_HELD(&phyint->phyint_illv6->ill_lock)); 14909 14910 if (!ipsq_init((phyint->phyint_illv4 != NULL) ? 14911 phyint->phyint_illv4: phyint->phyint_illv6)) { 14912 /* 14913 * ipsq_init failed due to no memory 14914 * caller will use the same ipsq 14915 */ 14916 return (SPLIT_FAILED); 14917 } 14918 14919 /* ipsq_ref is protected by ill_g_lock (writer) */ 14920 IPSQ_DEC_REF(cur_ipsq, ipst); 14921 14922 /* 14923 * This is a new ipsq that is unknown to the world. 14924 * So we don't need to hold ipsq_lock, 14925 */ 14926 newipsq = phyint->phyint_ipsq; 14927 newipsq->ipsq_writer = NULL; 14928 newipsq->ipsq_reentry_cnt--; 14929 ASSERT(newipsq->ipsq_reentry_cnt == 0); 14930 #ifdef ILL_DEBUG 14931 newipsq->ipsq_depth = 0; 14932 #endif 14933 14934 return (SPLIT_SUCCESS); 14935 } 14936 14937 /* 14938 * Change the ipsq of all the ill's whose current ipsq is 'cur_ipsq' to 14939 * ipsq's representing their individual groups or themselves. Return 14940 * whether split needs to be retried again later. 14941 */ 14942 static boolean_t 14943 ill_split_ipsq(ipsq_t *cur_ipsq) 14944 { 14945 phyint_t *phyint; 14946 phyint_t *next_phyint; 14947 int error; 14948 boolean_t need_retry = B_FALSE; 14949 ip_stack_t *ipst = cur_ipsq->ipsq_ipst; 14950 14951 phyint = cur_ipsq->ipsq_phyint_list; 14952 cur_ipsq->ipsq_phyint_list = NULL; 14953 while (phyint != NULL) { 14954 next_phyint = phyint->phyint_ipsq_next; 14955 /* 14956 * 'created' will tell us whether the callee actually 14957 * created an ipsq. Lack of memory may force the callee 14958 * to return without creating an ipsq. 14959 */ 14960 if (phyint->phyint_groupname == NULL) { 14961 error = ill_split_to_own_ipsq(phyint, cur_ipsq, ipst); 14962 } else { 14963 error = ill_split_to_grp_ipsq(phyint, cur_ipsq, 14964 need_retry, ipst); 14965 } 14966 14967 switch (error) { 14968 case SPLIT_FAILED: 14969 need_retry = B_TRUE; 14970 /* FALLTHRU */ 14971 case SPLIT_NOT_NEEDED: 14972 /* 14973 * Keep it on the list. 14974 */ 14975 phyint->phyint_ipsq_next = cur_ipsq->ipsq_phyint_list; 14976 cur_ipsq->ipsq_phyint_list = phyint; 14977 break; 14978 case SPLIT_SUCCESS: 14979 break; 14980 default: 14981 ASSERT(0); 14982 } 14983 14984 phyint = next_phyint; 14985 } 14986 return (need_retry); 14987 } 14988 14989 /* 14990 * given an ipsq 'ipsq' lock all ills associated with this ipsq. 14991 * and return the ills in the list. This list will be 14992 * needed to unlock all the ills later on by the caller. 14993 * The <ill-ipsq> associations could change between the 14994 * lock and unlock. Hence the unlock can't traverse the 14995 * ipsq to get the list of ills. 14996 */ 14997 static int 14998 ill_lock_ipsq_ills(ipsq_t *ipsq, ill_t **list, int list_max) 14999 { 15000 int cnt = 0; 15001 phyint_t *phyint; 15002 ip_stack_t *ipst = ipsq->ipsq_ipst; 15003 15004 /* 15005 * The caller holds ill_g_lock to ensure that the ill memberships 15006 * of the ipsq don't change 15007 */ 15008 ASSERT(RW_LOCK_HELD(&ipst->ips_ill_g_lock)); 15009 15010 phyint = ipsq->ipsq_phyint_list; 15011 while (phyint != NULL) { 15012 if (phyint->phyint_illv4 != NULL) { 15013 ASSERT(cnt < list_max); 15014 list[cnt++] = phyint->phyint_illv4; 15015 } 15016 if (phyint->phyint_illv6 != NULL) { 15017 ASSERT(cnt < list_max); 15018 list[cnt++] = phyint->phyint_illv6; 15019 } 15020 phyint = phyint->phyint_ipsq_next; 15021 } 15022 ill_lock_ills(list, cnt); 15023 return (cnt); 15024 } 15025 15026 void 15027 ill_lock_ills(ill_t **list, int cnt) 15028 { 15029 int i; 15030 15031 if (cnt > 1) { 15032 boolean_t try_again; 15033 do { 15034 try_again = B_FALSE; 15035 for (i = 0; i < cnt - 1; i++) { 15036 if (list[i] < list[i + 1]) { 15037 ill_t *tmp; 15038 15039 /* swap the elements */ 15040 tmp = list[i]; 15041 list[i] = list[i + 1]; 15042 list[i + 1] = tmp; 15043 try_again = B_TRUE; 15044 } 15045 } 15046 } while (try_again); 15047 } 15048 15049 for (i = 0; i < cnt; i++) { 15050 if (i == 0) { 15051 if (list[i] != NULL) 15052 mutex_enter(&list[i]->ill_lock); 15053 else 15054 return; 15055 } else if ((list[i-1] != list[i]) && (list[i] != NULL)) { 15056 mutex_enter(&list[i]->ill_lock); 15057 } 15058 } 15059 } 15060 15061 void 15062 ill_unlock_ills(ill_t **list, int cnt) 15063 { 15064 int i; 15065 15066 for (i = 0; i < cnt; i++) { 15067 if ((i == 0) && (list[i] != NULL)) { 15068 mutex_exit(&list[i]->ill_lock); 15069 } else if ((list[i-1] != list[i]) && (list[i] != NULL)) { 15070 mutex_exit(&list[i]->ill_lock); 15071 } 15072 } 15073 } 15074 15075 /* 15076 * Merge all the ills from 1 ipsq group into another ipsq group. 15077 * The source ipsq group is specified by the ipsq associated with 15078 * 'from_ill'. The destination ipsq group is specified by the ipsq 15079 * associated with 'to_ill' or 'groupname' respectively. 15080 * Note that ipsq itself does not have a reference count mechanism 15081 * and functions don't look up an ipsq and pass it around. Instead 15082 * functions pass around an ill or groupname, and the ipsq is looked 15083 * up from the ill or groupname and the required operation performed 15084 * atomically with the lookup on the ipsq. 15085 */ 15086 static int 15087 ill_merge_groups(ill_t *from_ill, ill_t *to_ill, char *groupname, mblk_t *mp, 15088 queue_t *q) 15089 { 15090 ipsq_t *old_ipsq; 15091 ipsq_t *new_ipsq; 15092 ill_t **ill_list; 15093 int cnt; 15094 size_t ill_list_size; 15095 boolean_t became_writer_on_new_sq = B_FALSE; 15096 ip_stack_t *ipst = from_ill->ill_ipst; 15097 15098 ASSERT(to_ill == NULL || ipst == to_ill->ill_ipst); 15099 /* Exactly 1 of 'to_ill' and groupname can be specified. */ 15100 ASSERT((to_ill != NULL) ^ (groupname != NULL)); 15101 15102 /* 15103 * Need to hold ill_g_lock as writer and also the ill_lock to 15104 * change the <ill-ipsq> assoc of an ill. Need to hold the 15105 * ipsq_lock to prevent new messages from landing on an ipsq. 15106 */ 15107 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 15108 15109 old_ipsq = from_ill->ill_phyint->phyint_ipsq; 15110 if (groupname != NULL) 15111 new_ipsq = ip_ipsq_lookup(groupname, B_TRUE, NULL, ipst); 15112 else { 15113 new_ipsq = to_ill->ill_phyint->phyint_ipsq; 15114 } 15115 15116 ASSERT(old_ipsq != NULL && new_ipsq != NULL); 15117 15118 /* 15119 * both groups are on the same ipsq. 15120 */ 15121 if (old_ipsq == new_ipsq) { 15122 rw_exit(&ipst->ips_ill_g_lock); 15123 return (0); 15124 } 15125 15126 cnt = old_ipsq->ipsq_refs << 1; 15127 ill_list_size = cnt * sizeof (ill_t *); 15128 ill_list = kmem_zalloc(ill_list_size, KM_NOSLEEP); 15129 if (ill_list == NULL) { 15130 rw_exit(&ipst->ips_ill_g_lock); 15131 return (ENOMEM); 15132 } 15133 cnt = ill_lock_ipsq_ills(old_ipsq, ill_list, cnt); 15134 15135 /* Need ipsq lock to enque messages on new ipsq or to become writer */ 15136 mutex_enter(&new_ipsq->ipsq_lock); 15137 if ((new_ipsq->ipsq_writer == NULL && 15138 new_ipsq->ipsq_current_ipif == NULL) || 15139 (new_ipsq->ipsq_writer == curthread)) { 15140 new_ipsq->ipsq_writer = curthread; 15141 new_ipsq->ipsq_reentry_cnt++; 15142 became_writer_on_new_sq = B_TRUE; 15143 } 15144 15145 /* 15146 * We are holding ill_g_lock as writer and all the ill locks of 15147 * the old ipsq. So the old_ipsq can't be looked up, and hence no new 15148 * message can land up on the old ipsq even though we don't hold the 15149 * ipsq_lock of the old_ipsq. Now move all messages to the newipsq. 15150 */ 15151 ill_move_to_new_ipsq(old_ipsq, new_ipsq, mp, q); 15152 15153 /* 15154 * now change the ipsq of all ills in the 'old_ipsq' to 'new_ipsq'. 15155 * 'new_ipsq' has been looked up, and it can't change its <ill-ipsq> 15156 * assocs. till we release the ill_g_lock, and hence it can't vanish. 15157 */ 15158 ill_merge_ipsq(old_ipsq, new_ipsq, ipst); 15159 15160 /* 15161 * Mark the new ipsq as needing a split since it is currently 15162 * being shared by more than 1 IPMP group. The split will 15163 * occur at the end of ipsq_exit 15164 */ 15165 new_ipsq->ipsq_split = B_TRUE; 15166 15167 /* Now release all the locks */ 15168 mutex_exit(&new_ipsq->ipsq_lock); 15169 ill_unlock_ills(ill_list, cnt); 15170 rw_exit(&ipst->ips_ill_g_lock); 15171 15172 kmem_free(ill_list, ill_list_size); 15173 15174 /* 15175 * If we succeeded in becoming writer on the new ipsq, then 15176 * drain the new ipsq and start processing all enqueued messages 15177 * including the current ioctl we are processing which is either 15178 * a set groupname or failover/failback. 15179 */ 15180 if (became_writer_on_new_sq) 15181 ipsq_exit(new_ipsq, B_TRUE, B_TRUE); 15182 15183 /* 15184 * syncq has been changed and all the messages have been moved. 15185 */ 15186 mutex_enter(&old_ipsq->ipsq_lock); 15187 old_ipsq->ipsq_current_ipif = NULL; 15188 old_ipsq->ipsq_current_ioctl = 0; 15189 mutex_exit(&old_ipsq->ipsq_lock); 15190 return (EINPROGRESS); 15191 } 15192 15193 /* 15194 * Delete and add the loopback copy and non-loopback copy of 15195 * the BROADCAST ire corresponding to ill and addr. Used to 15196 * group broadcast ires together when ill becomes part of 15197 * a group. 15198 * 15199 * This function is also called when ill is leaving the group 15200 * so that the ires belonging to the group gets re-grouped. 15201 */ 15202 static void 15203 ill_bcast_delete_and_add(ill_t *ill, ipaddr_t addr) 15204 { 15205 ire_t *ire, *nire, *nire_next, *ire_head = NULL; 15206 ire_t **ire_ptpn = &ire_head; 15207 ip_stack_t *ipst = ill->ill_ipst; 15208 15209 /* 15210 * The loopback and non-loopback IREs are inserted in the order in which 15211 * they're found, on the basis that they are correctly ordered (loopback 15212 * first). 15213 */ 15214 for (;;) { 15215 ire = ire_ctable_lookup(addr, 0, IRE_BROADCAST, ill->ill_ipif, 15216 ALL_ZONES, NULL, MATCH_IRE_TYPE | MATCH_IRE_ILL, ipst); 15217 if (ire == NULL) 15218 break; 15219 15220 /* 15221 * we are passing in KM_SLEEP because it is not easy to 15222 * go back to a sane state in case of memory failure. 15223 */ 15224 nire = kmem_cache_alloc(ire_cache, KM_SLEEP); 15225 ASSERT(nire != NULL); 15226 bzero(nire, sizeof (ire_t)); 15227 /* 15228 * Don't use ire_max_frag directly since we don't 15229 * hold on to 'ire' until we add the new ire 'nire' and 15230 * we don't want the new ire to have a dangling reference 15231 * to 'ire'. The ire_max_frag of a broadcast ire must 15232 * be in sync with the ipif_mtu of the associate ipif. 15233 * For eg. this happens as a result of SIOCSLIFNAME, 15234 * SIOCSLIFLNKINFO or a DL_NOTE_SDU_SIZE inititated by 15235 * the driver. A change in ire_max_frag triggered as 15236 * as a result of path mtu discovery, or due to an 15237 * IP_IOC_IRE_ADVISE_NOREPLY from the transport or due a 15238 * route change -mtu command does not apply to broadcast ires. 15239 * 15240 * XXX We need a recovery strategy here if ire_init fails 15241 */ 15242 if (ire_init(nire, 15243 (uchar_t *)&ire->ire_addr, 15244 (uchar_t *)&ire->ire_mask, 15245 (uchar_t *)&ire->ire_src_addr, 15246 (uchar_t *)&ire->ire_gateway_addr, 15247 (uchar_t *)&ire->ire_in_src_addr, 15248 ire->ire_stq == NULL ? &ip_loopback_mtu : 15249 &ire->ire_ipif->ipif_mtu, 15250 (ire->ire_nce != NULL ? ire->ire_nce->nce_fp_mp : NULL), 15251 ire->ire_rfq, 15252 ire->ire_stq, 15253 ire->ire_type, 15254 (ire->ire_nce != NULL? ire->ire_nce->nce_res_mp : NULL), 15255 ire->ire_ipif, 15256 ire->ire_in_ill, 15257 ire->ire_cmask, 15258 ire->ire_phandle, 15259 ire->ire_ihandle, 15260 ire->ire_flags, 15261 &ire->ire_uinfo, 15262 NULL, 15263 NULL, 15264 ipst) == NULL) { 15265 cmn_err(CE_PANIC, "ire_init() failed"); 15266 } 15267 ire_delete(ire); 15268 ire_refrele(ire); 15269 15270 /* 15271 * The newly created IREs are inserted at the tail of the list 15272 * starting with ire_head. As we've just allocated them no one 15273 * knows about them so it's safe. 15274 */ 15275 *ire_ptpn = nire; 15276 ire_ptpn = &nire->ire_next; 15277 } 15278 15279 for (nire = ire_head; nire != NULL; nire = nire_next) { 15280 int error; 15281 ire_t *oire; 15282 /* unlink the IRE from our list before calling ire_add() */ 15283 nire_next = nire->ire_next; 15284 nire->ire_next = NULL; 15285 15286 /* ire_add adds the ire at the right place in the list */ 15287 oire = nire; 15288 error = ire_add(&nire, NULL, NULL, NULL, B_FALSE); 15289 ASSERT(error == 0); 15290 ASSERT(oire == nire); 15291 ire_refrele(nire); /* Held in ire_add */ 15292 } 15293 } 15294 15295 /* 15296 * This function is usually called when an ill is inserted in 15297 * a group and all the ipifs are already UP. As all the ipifs 15298 * are already UP, the broadcast ires have already been created 15299 * and been inserted. But, ire_add_v4 would not have grouped properly. 15300 * We need to re-group for the benefit of ip_wput_ire which 15301 * expects BROADCAST ires to be grouped properly to avoid sending 15302 * more than one copy of the broadcast packet per group. 15303 * 15304 * NOTE : We don't check for ill_ipif_up_count to be non-zero here 15305 * because when ipif_up_done ends up calling this, ires have 15306 * already been added before illgrp_insert i.e before ill_group 15307 * has been initialized. 15308 */ 15309 static void 15310 ill_group_bcast_for_xmit(ill_t *ill) 15311 { 15312 ill_group_t *illgrp; 15313 ipif_t *ipif; 15314 ipaddr_t addr; 15315 ipaddr_t net_mask; 15316 ipaddr_t subnet_netmask; 15317 15318 illgrp = ill->ill_group; 15319 15320 /* 15321 * This function is called even when an ill is deleted from 15322 * the group. Hence, illgrp could be null. 15323 */ 15324 if (illgrp != NULL && illgrp->illgrp_ill_count == 1) 15325 return; 15326 15327 /* 15328 * Delete all the BROADCAST ires matching this ill and add 15329 * them back. This time, ire_add_v4 should take care of 15330 * grouping them with others because ill is part of the 15331 * group. 15332 */ 15333 ill_bcast_delete_and_add(ill, 0); 15334 ill_bcast_delete_and_add(ill, INADDR_BROADCAST); 15335 15336 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 15337 15338 if ((ipif->ipif_lcl_addr != INADDR_ANY) && 15339 !(ipif->ipif_flags & IPIF_NOLOCAL)) { 15340 net_mask = ip_net_mask(ipif->ipif_lcl_addr); 15341 } else { 15342 net_mask = htonl(IN_CLASSA_NET); 15343 } 15344 addr = net_mask & ipif->ipif_subnet; 15345 ill_bcast_delete_and_add(ill, addr); 15346 ill_bcast_delete_and_add(ill, ~net_mask | addr); 15347 15348 subnet_netmask = ipif->ipif_net_mask; 15349 addr = ipif->ipif_subnet; 15350 ill_bcast_delete_and_add(ill, addr); 15351 ill_bcast_delete_and_add(ill, ~subnet_netmask | addr); 15352 } 15353 } 15354 15355 /* 15356 * This function is called from illgrp_delete when ill is being deleted 15357 * from the group. 15358 * 15359 * As ill is not there in the group anymore, any address belonging 15360 * to this ill should be cleared of IRE_MARK_NORECV. 15361 */ 15362 static void 15363 ill_clear_bcast_mark(ill_t *ill, ipaddr_t addr) 15364 { 15365 ire_t *ire; 15366 irb_t *irb; 15367 ip_stack_t *ipst = ill->ill_ipst; 15368 15369 ASSERT(ill->ill_group == NULL); 15370 15371 ire = ire_ctable_lookup(addr, 0, IRE_BROADCAST, ill->ill_ipif, 15372 ALL_ZONES, NULL, MATCH_IRE_TYPE | MATCH_IRE_ILL, ipst); 15373 15374 if (ire != NULL) { 15375 /* 15376 * IPMP and plumbing operations are serialized on the ipsq, so 15377 * no one will insert or delete a broadcast ire under our feet. 15378 */ 15379 irb = ire->ire_bucket; 15380 rw_enter(&irb->irb_lock, RW_READER); 15381 ire_refrele(ire); 15382 15383 for (; ire != NULL; ire = ire->ire_next) { 15384 if (ire->ire_addr != addr) 15385 break; 15386 if (ire_to_ill(ire) != ill) 15387 continue; 15388 15389 ASSERT(!(ire->ire_marks & IRE_MARK_CONDEMNED)); 15390 ire->ire_marks &= ~IRE_MARK_NORECV; 15391 } 15392 rw_exit(&irb->irb_lock); 15393 } 15394 } 15395 15396 /* 15397 * This function must be called only after the broadcast ires 15398 * have been grouped together. For a given address addr, nominate 15399 * only one of the ires whose interface is not FAILED or OFFLINE. 15400 * 15401 * This is also called when an ipif goes down, so that we can nominate 15402 * a different ire with the same address for receiving. 15403 */ 15404 static void 15405 ill_mark_bcast(ill_group_t *illgrp, ipaddr_t addr, ip_stack_t *ipst) 15406 { 15407 irb_t *irb; 15408 ire_t *ire; 15409 ire_t *ire1; 15410 ire_t *save_ire; 15411 ire_t **irep = NULL; 15412 boolean_t first = B_TRUE; 15413 ire_t *clear_ire = NULL; 15414 ire_t *start_ire = NULL; 15415 ire_t *new_lb_ire; 15416 ire_t *new_nlb_ire; 15417 boolean_t new_lb_ire_used = B_FALSE; 15418 boolean_t new_nlb_ire_used = B_FALSE; 15419 uint64_t match_flags; 15420 uint64_t phyi_flags; 15421 boolean_t fallback = B_FALSE; 15422 uint_t max_frag; 15423 15424 ire = ire_ctable_lookup(addr, 0, IRE_BROADCAST, NULL, ALL_ZONES, 15425 NULL, MATCH_IRE_TYPE, ipst); 15426 /* 15427 * We may not be able to find some ires if a previous 15428 * ire_create failed. This happens when an ipif goes 15429 * down and we are unable to create BROADCAST ires due 15430 * to memory failure. Thus, we have to check for NULL 15431 * below. This should handle the case for LOOPBACK, 15432 * POINTOPOINT and interfaces with some POINTOPOINT 15433 * logicals for which there are no BROADCAST ires. 15434 */ 15435 if (ire == NULL) 15436 return; 15437 /* 15438 * Currently IRE_BROADCASTS are deleted when an ipif 15439 * goes down which runs exclusively. Thus, setting 15440 * IRE_MARK_RCVD should not race with ire_delete marking 15441 * IRE_MARK_CONDEMNED. We grab the lock below just to 15442 * be consistent with other parts of the code that walks 15443 * a given bucket. 15444 */ 15445 save_ire = ire; 15446 irb = ire->ire_bucket; 15447 new_lb_ire = kmem_cache_alloc(ire_cache, KM_NOSLEEP); 15448 if (new_lb_ire == NULL) { 15449 ire_refrele(ire); 15450 return; 15451 } 15452 new_nlb_ire = kmem_cache_alloc(ire_cache, KM_NOSLEEP); 15453 if (new_nlb_ire == NULL) { 15454 ire_refrele(ire); 15455 kmem_cache_free(ire_cache, new_lb_ire); 15456 return; 15457 } 15458 IRB_REFHOLD(irb); 15459 rw_enter(&irb->irb_lock, RW_WRITER); 15460 /* 15461 * Get to the first ire matching the address and the 15462 * group. If the address does not match we are done 15463 * as we could not find the IRE. If the address matches 15464 * we should get to the first one matching the group. 15465 */ 15466 while (ire != NULL) { 15467 if (ire->ire_addr != addr || 15468 ire->ire_ipif->ipif_ill->ill_group == illgrp) { 15469 break; 15470 } 15471 ire = ire->ire_next; 15472 } 15473 match_flags = PHYI_FAILED | PHYI_INACTIVE; 15474 start_ire = ire; 15475 redo: 15476 while (ire != NULL && ire->ire_addr == addr && 15477 ire->ire_ipif->ipif_ill->ill_group == illgrp) { 15478 /* 15479 * The first ire for any address within a group 15480 * should always be the one with IRE_MARK_NORECV cleared 15481 * so that ip_wput_ire can avoid searching for one. 15482 * Note down the insertion point which will be used 15483 * later. 15484 */ 15485 if (first && (irep == NULL)) 15486 irep = ire->ire_ptpn; 15487 /* 15488 * PHYI_FAILED is set when the interface fails. 15489 * This interface might have become good, but the 15490 * daemon has not yet detected. We should still 15491 * not receive on this. PHYI_OFFLINE should never 15492 * be picked as this has been offlined and soon 15493 * be removed. 15494 */ 15495 phyi_flags = ire->ire_ipif->ipif_ill->ill_phyint->phyint_flags; 15496 if (phyi_flags & PHYI_OFFLINE) { 15497 ire->ire_marks |= IRE_MARK_NORECV; 15498 ire = ire->ire_next; 15499 continue; 15500 } 15501 if (phyi_flags & match_flags) { 15502 ire->ire_marks |= IRE_MARK_NORECV; 15503 ire = ire->ire_next; 15504 if ((phyi_flags & (PHYI_FAILED | PHYI_INACTIVE)) == 15505 PHYI_INACTIVE) { 15506 fallback = B_TRUE; 15507 } 15508 continue; 15509 } 15510 if (first) { 15511 /* 15512 * We will move this to the front of the list later 15513 * on. 15514 */ 15515 clear_ire = ire; 15516 ire->ire_marks &= ~IRE_MARK_NORECV; 15517 } else { 15518 ire->ire_marks |= IRE_MARK_NORECV; 15519 } 15520 first = B_FALSE; 15521 ire = ire->ire_next; 15522 } 15523 /* 15524 * If we never nominated anybody, try nominating at least 15525 * an INACTIVE, if we found one. Do it only once though. 15526 */ 15527 if (first && (match_flags == (PHYI_FAILED | PHYI_INACTIVE)) && 15528 fallback) { 15529 match_flags = PHYI_FAILED; 15530 ire = start_ire; 15531 irep = NULL; 15532 goto redo; 15533 } 15534 ire_refrele(save_ire); 15535 15536 /* 15537 * irep non-NULL indicates that we entered the while loop 15538 * above. If clear_ire is at the insertion point, we don't 15539 * have to do anything. clear_ire will be NULL if all the 15540 * interfaces are failed. 15541 * 15542 * We cannot unlink and reinsert the ire at the right place 15543 * in the list since there can be other walkers of this bucket. 15544 * Instead we delete and recreate the ire 15545 */ 15546 if (clear_ire != NULL && irep != NULL && *irep != clear_ire) { 15547 ire_t *clear_ire_stq = NULL; 15548 mblk_t *fp_mp = NULL, *res_mp = NULL; 15549 15550 bzero(new_lb_ire, sizeof (ire_t)); 15551 if (clear_ire->ire_nce != NULL) { 15552 fp_mp = clear_ire->ire_nce->nce_fp_mp; 15553 res_mp = clear_ire->ire_nce->nce_res_mp; 15554 } 15555 /* XXX We need a recovery strategy here. */ 15556 if (ire_init(new_lb_ire, 15557 (uchar_t *)&clear_ire->ire_addr, 15558 (uchar_t *)&clear_ire->ire_mask, 15559 (uchar_t *)&clear_ire->ire_src_addr, 15560 (uchar_t *)&clear_ire->ire_gateway_addr, 15561 (uchar_t *)&clear_ire->ire_in_src_addr, 15562 &clear_ire->ire_max_frag, 15563 fp_mp, 15564 clear_ire->ire_rfq, 15565 clear_ire->ire_stq, 15566 clear_ire->ire_type, 15567 res_mp, 15568 clear_ire->ire_ipif, 15569 clear_ire->ire_in_ill, 15570 clear_ire->ire_cmask, 15571 clear_ire->ire_phandle, 15572 clear_ire->ire_ihandle, 15573 clear_ire->ire_flags, 15574 &clear_ire->ire_uinfo, 15575 NULL, 15576 NULL, 15577 ipst) == NULL) 15578 cmn_err(CE_PANIC, "ire_init() failed"); 15579 if (clear_ire->ire_stq == NULL) { 15580 ire_t *ire_next = clear_ire->ire_next; 15581 if (ire_next != NULL && 15582 ire_next->ire_stq != NULL && 15583 ire_next->ire_addr == clear_ire->ire_addr && 15584 ire_next->ire_ipif->ipif_ill == 15585 clear_ire->ire_ipif->ipif_ill) { 15586 clear_ire_stq = ire_next; 15587 15588 bzero(new_nlb_ire, sizeof (ire_t)); 15589 if (clear_ire_stq->ire_nce != NULL) { 15590 fp_mp = 15591 clear_ire_stq->ire_nce->nce_fp_mp; 15592 res_mp = 15593 clear_ire_stq->ire_nce->nce_res_mp; 15594 } else { 15595 fp_mp = res_mp = NULL; 15596 } 15597 /* XXX We need a recovery strategy here. */ 15598 if (ire_init(new_nlb_ire, 15599 (uchar_t *)&clear_ire_stq->ire_addr, 15600 (uchar_t *)&clear_ire_stq->ire_mask, 15601 (uchar_t *)&clear_ire_stq->ire_src_addr, 15602 (uchar_t *)&clear_ire_stq->ire_gateway_addr, 15603 (uchar_t *)&clear_ire_stq->ire_in_src_addr, 15604 &clear_ire_stq->ire_max_frag, 15605 fp_mp, 15606 clear_ire_stq->ire_rfq, 15607 clear_ire_stq->ire_stq, 15608 clear_ire_stq->ire_type, 15609 res_mp, 15610 clear_ire_stq->ire_ipif, 15611 clear_ire_stq->ire_in_ill, 15612 clear_ire_stq->ire_cmask, 15613 clear_ire_stq->ire_phandle, 15614 clear_ire_stq->ire_ihandle, 15615 clear_ire_stq->ire_flags, 15616 &clear_ire_stq->ire_uinfo, 15617 NULL, 15618 NULL, 15619 ipst) == NULL) 15620 cmn_err(CE_PANIC, "ire_init() failed"); 15621 } 15622 } 15623 15624 /* 15625 * Delete the ire. We can't call ire_delete() since 15626 * we are holding the bucket lock. We can't release the 15627 * bucket lock since we can't allow irep to change. So just 15628 * mark it CONDEMNED. The IRB_REFRELE will delete the 15629 * ire from the list and do the refrele. 15630 */ 15631 clear_ire->ire_marks |= IRE_MARK_CONDEMNED; 15632 irb->irb_marks |= IRB_MARK_CONDEMNED; 15633 15634 if (clear_ire_stq != NULL && clear_ire_stq->ire_nce != NULL) { 15635 nce_fastpath_list_delete(clear_ire_stq->ire_nce); 15636 clear_ire_stq->ire_marks |= IRE_MARK_CONDEMNED; 15637 } 15638 15639 /* 15640 * Also take care of otherfields like ib/ob pkt count 15641 * etc. Need to dup them. ditto in ill_bcast_delete_and_add 15642 */ 15643 15644 /* Set the max_frag before adding the ire */ 15645 max_frag = *new_lb_ire->ire_max_fragp; 15646 new_lb_ire->ire_max_fragp = NULL; 15647 new_lb_ire->ire_max_frag = max_frag; 15648 15649 /* Add the new ire's. Insert at *irep */ 15650 new_lb_ire->ire_bucket = clear_ire->ire_bucket; 15651 ire1 = *irep; 15652 if (ire1 != NULL) 15653 ire1->ire_ptpn = &new_lb_ire->ire_next; 15654 new_lb_ire->ire_next = ire1; 15655 /* Link the new one in. */ 15656 new_lb_ire->ire_ptpn = irep; 15657 membar_producer(); 15658 *irep = new_lb_ire; 15659 new_lb_ire_used = B_TRUE; 15660 BUMP_IRE_STATS(ipst->ips_ire_stats_v4, ire_stats_inserted); 15661 new_lb_ire->ire_bucket->irb_ire_cnt++; 15662 new_lb_ire->ire_ipif->ipif_ire_cnt++; 15663 15664 if (clear_ire_stq != NULL) { 15665 /* Set the max_frag before adding the ire */ 15666 max_frag = *new_nlb_ire->ire_max_fragp; 15667 new_nlb_ire->ire_max_fragp = NULL; 15668 new_nlb_ire->ire_max_frag = max_frag; 15669 15670 new_nlb_ire->ire_bucket = clear_ire->ire_bucket; 15671 irep = &new_lb_ire->ire_next; 15672 /* Add the new ire. Insert at *irep */ 15673 ire1 = *irep; 15674 if (ire1 != NULL) 15675 ire1->ire_ptpn = &new_nlb_ire->ire_next; 15676 new_nlb_ire->ire_next = ire1; 15677 /* Link the new one in. */ 15678 new_nlb_ire->ire_ptpn = irep; 15679 membar_producer(); 15680 *irep = new_nlb_ire; 15681 new_nlb_ire_used = B_TRUE; 15682 BUMP_IRE_STATS(ipst->ips_ire_stats_v4, 15683 ire_stats_inserted); 15684 new_nlb_ire->ire_bucket->irb_ire_cnt++; 15685 new_nlb_ire->ire_ipif->ipif_ire_cnt++; 15686 ((ill_t *)new_nlb_ire->ire_stq->q_ptr)->ill_ire_cnt++; 15687 } 15688 } 15689 rw_exit(&irb->irb_lock); 15690 if (!new_lb_ire_used) 15691 kmem_cache_free(ire_cache, new_lb_ire); 15692 if (!new_nlb_ire_used) 15693 kmem_cache_free(ire_cache, new_nlb_ire); 15694 IRB_REFRELE(irb); 15695 } 15696 15697 /* 15698 * Whenever an ipif goes down we have to renominate a different 15699 * broadcast ire to receive. Whenever an ipif comes up, we need 15700 * to make sure that we have only one nominated to receive. 15701 */ 15702 static void 15703 ipif_renominate_bcast(ipif_t *ipif) 15704 { 15705 ill_t *ill = ipif->ipif_ill; 15706 ipaddr_t subnet_addr; 15707 ipaddr_t net_addr; 15708 ipaddr_t net_mask = 0; 15709 ipaddr_t subnet_netmask; 15710 ipaddr_t addr; 15711 ill_group_t *illgrp; 15712 ip_stack_t *ipst = ill->ill_ipst; 15713 15714 illgrp = ill->ill_group; 15715 /* 15716 * If this is the last ipif going down, it might take 15717 * the ill out of the group. In that case ipif_down -> 15718 * illgrp_delete takes care of doing the nomination. 15719 * ipif_down does not call for this case. 15720 */ 15721 ASSERT(illgrp != NULL); 15722 15723 /* There could not have been any ires associated with this */ 15724 if (ipif->ipif_subnet == 0) 15725 return; 15726 15727 ill_mark_bcast(illgrp, 0, ipst); 15728 ill_mark_bcast(illgrp, INADDR_BROADCAST, ipst); 15729 15730 if ((ipif->ipif_lcl_addr != INADDR_ANY) && 15731 !(ipif->ipif_flags & IPIF_NOLOCAL)) { 15732 net_mask = ip_net_mask(ipif->ipif_lcl_addr); 15733 } else { 15734 net_mask = htonl(IN_CLASSA_NET); 15735 } 15736 addr = net_mask & ipif->ipif_subnet; 15737 ill_mark_bcast(illgrp, addr, ipst); 15738 15739 net_addr = ~net_mask | addr; 15740 ill_mark_bcast(illgrp, net_addr, ipst); 15741 15742 subnet_netmask = ipif->ipif_net_mask; 15743 addr = ipif->ipif_subnet; 15744 ill_mark_bcast(illgrp, addr, ipst); 15745 15746 subnet_addr = ~subnet_netmask | addr; 15747 ill_mark_bcast(illgrp, subnet_addr, ipst); 15748 } 15749 15750 /* 15751 * Whenever we form or delete ill groups, we need to nominate one set of 15752 * BROADCAST ires for receiving in the group. 15753 * 15754 * 1) When ipif_up_done -> ilgrp_insert calls this function, BROADCAST ires 15755 * have been added, but ill_ipif_up_count is 0. Thus, we don't assert 15756 * for ill_ipif_up_count to be non-zero. This is the only case where 15757 * ill_ipif_up_count is zero and we would still find the ires. 15758 * 15759 * 2) ip_sioctl_group_name/ifgrp_insert calls this function, at least one 15760 * ipif is UP and we just have to do the nomination. 15761 * 15762 * 3) When ill_handoff_responsibility calls us, some ill has been removed 15763 * from the group. So, we have to do the nomination. 15764 * 15765 * Because of (3), there could be just one ill in the group. But we have 15766 * to nominate still as IRE_MARK_NORCV may have been marked on this. 15767 * Thus, this function does not optimize when there is only one ill as 15768 * it is not correct for (3). 15769 */ 15770 static void 15771 ill_nominate_bcast_rcv(ill_group_t *illgrp) 15772 { 15773 ill_t *ill; 15774 ipif_t *ipif; 15775 ipaddr_t subnet_addr; 15776 ipaddr_t prev_subnet_addr = 0; 15777 ipaddr_t net_addr; 15778 ipaddr_t prev_net_addr = 0; 15779 ipaddr_t net_mask = 0; 15780 ipaddr_t subnet_netmask; 15781 ipaddr_t addr; 15782 ip_stack_t *ipst; 15783 15784 /* 15785 * When the last memeber is leaving, there is nothing to 15786 * nominate. 15787 */ 15788 if (illgrp->illgrp_ill_count == 0) { 15789 ASSERT(illgrp->illgrp_ill == NULL); 15790 return; 15791 } 15792 15793 ill = illgrp->illgrp_ill; 15794 ASSERT(!ill->ill_isv6); 15795 ipst = ill->ill_ipst; 15796 /* 15797 * We assume that ires with same address and belonging to the 15798 * same group, has been grouped together. Nominating a *single* 15799 * ill in the group for sending and receiving broadcast is done 15800 * by making sure that the first BROADCAST ire (which will be 15801 * the one returned by ire_ctable_lookup for ip_rput and the 15802 * one that will be used in ip_wput_ire) will be the one that 15803 * will not have IRE_MARK_NORECV set. 15804 * 15805 * 1) ip_rput checks and discards packets received on ires marked 15806 * with IRE_MARK_NORECV. Thus, we don't send up duplicate 15807 * broadcast packets. We need to clear IRE_MARK_NORECV on the 15808 * first ire in the group for every broadcast address in the group. 15809 * ip_rput will accept packets only on the first ire i.e only 15810 * one copy of the ill. 15811 * 15812 * 2) ip_wput_ire needs to send out just one copy of the broadcast 15813 * packet for the whole group. It needs to send out on the ill 15814 * whose ire has not been marked with IRE_MARK_NORECV. If it sends 15815 * on the one marked with IRE_MARK_NORECV, ip_rput will accept 15816 * the copy echoed back on other port where the ire is not marked 15817 * with IRE_MARK_NORECV. 15818 * 15819 * Note that we just need to have the first IRE either loopback or 15820 * non-loopback (either of them may not exist if ire_create failed 15821 * during ipif_down) with IRE_MARK_NORECV not set. ip_rput will 15822 * always hit the first one and hence will always accept one copy. 15823 * 15824 * We have a broadcast ire per ill for all the unique prefixes 15825 * hosted on that ill. As we don't have a way of knowing the 15826 * unique prefixes on a given ill and hence in the whole group, 15827 * we just call ill_mark_bcast on all the prefixes that exist 15828 * in the group. For the common case of one prefix, the code 15829 * below optimizes by remebering the last address used for 15830 * markng. In the case of multiple prefixes, this will still 15831 * optimize depending the order of prefixes. 15832 * 15833 * The only unique address across the whole group is 0.0.0.0 and 15834 * 255.255.255.255 and thus we call only once. ill_mark_bcast enables 15835 * the first ire in the bucket for receiving and disables the 15836 * others. 15837 */ 15838 ill_mark_bcast(illgrp, 0, ipst); 15839 ill_mark_bcast(illgrp, INADDR_BROADCAST, ipst); 15840 for (; ill != NULL; ill = ill->ill_group_next) { 15841 15842 for (ipif = ill->ill_ipif; ipif != NULL; 15843 ipif = ipif->ipif_next) { 15844 15845 if (!(ipif->ipif_flags & IPIF_UP) || 15846 ipif->ipif_subnet == 0) { 15847 continue; 15848 } 15849 if ((ipif->ipif_lcl_addr != INADDR_ANY) && 15850 !(ipif->ipif_flags & IPIF_NOLOCAL)) { 15851 net_mask = ip_net_mask(ipif->ipif_lcl_addr); 15852 } else { 15853 net_mask = htonl(IN_CLASSA_NET); 15854 } 15855 addr = net_mask & ipif->ipif_subnet; 15856 if (prev_net_addr == 0 || prev_net_addr != addr) { 15857 ill_mark_bcast(illgrp, addr, ipst); 15858 net_addr = ~net_mask | addr; 15859 ill_mark_bcast(illgrp, net_addr, ipst); 15860 } 15861 prev_net_addr = addr; 15862 15863 subnet_netmask = ipif->ipif_net_mask; 15864 addr = ipif->ipif_subnet; 15865 if (prev_subnet_addr == 0 || 15866 prev_subnet_addr != addr) { 15867 ill_mark_bcast(illgrp, addr, ipst); 15868 subnet_addr = ~subnet_netmask | addr; 15869 ill_mark_bcast(illgrp, subnet_addr, ipst); 15870 } 15871 prev_subnet_addr = addr; 15872 } 15873 } 15874 } 15875 15876 /* 15877 * This function is called while forming ill groups. 15878 * 15879 * Currently, we handle only allmulti groups. We want to join 15880 * allmulti on only one of the ills in the groups. In future, 15881 * when we have link aggregation, we may have to join normal 15882 * multicast groups on multiple ills as switch does inbound load 15883 * balancing. Following are the functions that calls this 15884 * function : 15885 * 15886 * 1) ill_recover_multicast : Interface is coming back UP. 15887 * When the first ipif comes back UP, ipif_up_done/ipif_up_done_v6 15888 * will call ill_recover_multicast to recover all the multicast 15889 * groups. We need to make sure that only one member is joined 15890 * in the ill group. 15891 * 15892 * 2) ip_addmulti/ip_addmulti_v6 : ill groups has already been formed. 15893 * Somebody is joining allmulti. We need to make sure that only one 15894 * member is joined in the group. 15895 * 15896 * 3) illgrp_insert : If allmulti has already joined, we need to make 15897 * sure that only one member is joined in the group. 15898 * 15899 * 4) ip_delmulti/ip_delmulti_v6 : Somebody in the group is leaving 15900 * allmulti who we have nominated. We need to pick someother ill. 15901 * 15902 * 5) illgrp_delete : The ill we nominated is leaving the group, 15903 * we need to pick a new ill to join the group. 15904 * 15905 * For (1), (2), (5) - we just have to check whether there is 15906 * a good ill joined in the group. If we could not find any ills 15907 * joined the group, we should join. 15908 * 15909 * For (4), the one that was nominated to receive, left the group. 15910 * There could be nobody joined in the group when this function is 15911 * called. 15912 * 15913 * For (3) - we need to explicitly check whether there are multiple 15914 * ills joined in the group. 15915 * 15916 * For simplicity, we don't differentiate any of the above cases. We 15917 * just leave the group if it is joined on any of them and join on 15918 * the first good ill. 15919 */ 15920 int 15921 ill_nominate_mcast_rcv(ill_group_t *illgrp) 15922 { 15923 ilm_t *ilm; 15924 ill_t *ill; 15925 ill_t *fallback_inactive_ill = NULL; 15926 ill_t *fallback_failed_ill = NULL; 15927 int ret = 0; 15928 15929 /* 15930 * Leave the allmulti on all the ills and start fresh. 15931 */ 15932 for (ill = illgrp->illgrp_ill; ill != NULL; 15933 ill = ill->ill_group_next) { 15934 if (ill->ill_join_allmulti) 15935 (void) ip_leave_allmulti(ill->ill_ipif); 15936 } 15937 15938 /* 15939 * Choose a good ill. Fallback to inactive or failed if 15940 * none available. We need to fallback to FAILED in the 15941 * case where we have 2 interfaces in a group - where 15942 * one of them is failed and another is a good one and 15943 * the good one (not marked inactive) is leaving the group. 15944 */ 15945 ret = 0; 15946 for (ill = illgrp->illgrp_ill; ill != NULL; 15947 ill = ill->ill_group_next) { 15948 /* Never pick an offline interface */ 15949 if (ill->ill_phyint->phyint_flags & PHYI_OFFLINE) 15950 continue; 15951 15952 if (ill->ill_phyint->phyint_flags & PHYI_FAILED) { 15953 fallback_failed_ill = ill; 15954 continue; 15955 } 15956 if (ill->ill_phyint->phyint_flags & PHYI_INACTIVE) { 15957 fallback_inactive_ill = ill; 15958 continue; 15959 } 15960 for (ilm = ill->ill_ilm; ilm != NULL; ilm = ilm->ilm_next) { 15961 if (IN6_IS_ADDR_UNSPECIFIED(&ilm->ilm_v6addr)) { 15962 ret = ip_join_allmulti(ill->ill_ipif); 15963 /* 15964 * ip_join_allmulti can fail because of memory 15965 * failures. So, make sure we join at least 15966 * on one ill. 15967 */ 15968 if (ill->ill_join_allmulti) 15969 return (0); 15970 } 15971 } 15972 } 15973 if (ret != 0) { 15974 /* 15975 * If we tried nominating above and failed to do so, 15976 * return error. We might have tried multiple times. 15977 * But, return the latest error. 15978 */ 15979 return (ret); 15980 } 15981 if ((ill = fallback_inactive_ill) != NULL) { 15982 for (ilm = ill->ill_ilm; ilm != NULL; ilm = ilm->ilm_next) { 15983 if (IN6_IS_ADDR_UNSPECIFIED(&ilm->ilm_v6addr)) { 15984 ret = ip_join_allmulti(ill->ill_ipif); 15985 return (ret); 15986 } 15987 } 15988 } else if ((ill = fallback_failed_ill) != NULL) { 15989 for (ilm = ill->ill_ilm; ilm != NULL; ilm = ilm->ilm_next) { 15990 if (IN6_IS_ADDR_UNSPECIFIED(&ilm->ilm_v6addr)) { 15991 ret = ip_join_allmulti(ill->ill_ipif); 15992 return (ret); 15993 } 15994 } 15995 } 15996 return (0); 15997 } 15998 15999 /* 16000 * This function is called from illgrp_delete after it is 16001 * deleted from the group to reschedule responsibilities 16002 * to a different ill. 16003 */ 16004 static void 16005 ill_handoff_responsibility(ill_t *ill, ill_group_t *illgrp) 16006 { 16007 ilm_t *ilm; 16008 ipif_t *ipif; 16009 ipaddr_t subnet_addr; 16010 ipaddr_t net_addr; 16011 ipaddr_t net_mask = 0; 16012 ipaddr_t subnet_netmask; 16013 ipaddr_t addr; 16014 ip_stack_t *ipst = ill->ill_ipst; 16015 16016 ASSERT(ill->ill_group == NULL); 16017 /* 16018 * Broadcast Responsibility: 16019 * 16020 * 1. If this ill has been nominated for receiving broadcast 16021 * packets, we need to find a new one. Before we find a new 16022 * one, we need to re-group the ires that are part of this new 16023 * group (assumed by ill_nominate_bcast_rcv). We do this by 16024 * calling ill_group_bcast_for_xmit(ill) which will do the right 16025 * thing for us. 16026 * 16027 * 2. If this ill was not nominated for receiving broadcast 16028 * packets, we need to clear the IRE_MARK_NORECV flag 16029 * so that we continue to send up broadcast packets. 16030 */ 16031 if (!ill->ill_isv6) { 16032 /* 16033 * Case 1 above : No optimization here. Just redo the 16034 * nomination. 16035 */ 16036 ill_group_bcast_for_xmit(ill); 16037 ill_nominate_bcast_rcv(illgrp); 16038 16039 /* 16040 * Case 2 above : Lookup and clear IRE_MARK_NORECV. 16041 */ 16042 ill_clear_bcast_mark(ill, 0); 16043 ill_clear_bcast_mark(ill, INADDR_BROADCAST); 16044 16045 for (ipif = ill->ill_ipif; ipif != NULL; 16046 ipif = ipif->ipif_next) { 16047 16048 if (!(ipif->ipif_flags & IPIF_UP) || 16049 ipif->ipif_subnet == 0) { 16050 continue; 16051 } 16052 if ((ipif->ipif_lcl_addr != INADDR_ANY) && 16053 !(ipif->ipif_flags & IPIF_NOLOCAL)) { 16054 net_mask = ip_net_mask(ipif->ipif_lcl_addr); 16055 } else { 16056 net_mask = htonl(IN_CLASSA_NET); 16057 } 16058 addr = net_mask & ipif->ipif_subnet; 16059 ill_clear_bcast_mark(ill, addr); 16060 16061 net_addr = ~net_mask | addr; 16062 ill_clear_bcast_mark(ill, net_addr); 16063 16064 subnet_netmask = ipif->ipif_net_mask; 16065 addr = ipif->ipif_subnet; 16066 ill_clear_bcast_mark(ill, addr); 16067 16068 subnet_addr = ~subnet_netmask | addr; 16069 ill_clear_bcast_mark(ill, subnet_addr); 16070 } 16071 } 16072 16073 /* 16074 * Multicast Responsibility. 16075 * 16076 * If we have joined allmulti on this one, find a new member 16077 * in the group to join allmulti. As this ill is already part 16078 * of allmulti, we don't have to join on this one. 16079 * 16080 * If we have not joined allmulti on this one, there is no 16081 * responsibility to handoff. But we need to take new 16082 * responsibility i.e, join allmulti on this one if we need 16083 * to. 16084 */ 16085 if (ill->ill_join_allmulti) { 16086 (void) ill_nominate_mcast_rcv(illgrp); 16087 } else { 16088 for (ilm = ill->ill_ilm; ilm != NULL; ilm = ilm->ilm_next) { 16089 if (IN6_IS_ADDR_UNSPECIFIED(&ilm->ilm_v6addr)) { 16090 (void) ip_join_allmulti(ill->ill_ipif); 16091 break; 16092 } 16093 } 16094 } 16095 16096 /* 16097 * We intentionally do the flushing of IRE_CACHES only matching 16098 * on the ill and not on groups. Note that we are already deleted 16099 * from the group. 16100 * 16101 * This will make sure that all IRE_CACHES whose stq is pointing 16102 * at ill_wq or ire_ipif->ipif_ill pointing at this ill will get 16103 * deleted and IRE_CACHES that are not pointing at this ill will 16104 * be left alone. 16105 */ 16106 if (ill->ill_isv6) { 16107 ire_walk_ill_v6(MATCH_IRE_ILL | MATCH_IRE_TYPE, 16108 IRE_CACHE, illgrp_cache_delete, (char *)ill, ill); 16109 } else { 16110 ire_walk_ill_v4(MATCH_IRE_ILL | MATCH_IRE_TYPE, 16111 IRE_CACHE, illgrp_cache_delete, (char *)ill, ill); 16112 } 16113 16114 /* 16115 * Some conn may have cached one of the IREs deleted above. By removing 16116 * the ire reference, we clean up the extra reference to the ill held in 16117 * ire->ire_stq. 16118 */ 16119 ipcl_walk(conn_cleanup_stale_ire, NULL, ipst); 16120 16121 /* 16122 * Re-do source address selection for all the members in the 16123 * group, if they borrowed source address from one of the ipifs 16124 * in this ill. 16125 */ 16126 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 16127 if (ill->ill_isv6) { 16128 ipif_update_other_ipifs_v6(ipif, illgrp); 16129 } else { 16130 ipif_update_other_ipifs(ipif, illgrp); 16131 } 16132 } 16133 } 16134 16135 /* 16136 * Delete the ill from the group. The caller makes sure that it is 16137 * in a group and it okay to delete from the group. So, we always 16138 * delete here. 16139 */ 16140 static void 16141 illgrp_delete(ill_t *ill) 16142 { 16143 ill_group_t *illgrp; 16144 ill_group_t *tmpg; 16145 ill_t *tmp_ill; 16146 ip_stack_t *ipst = ill->ill_ipst; 16147 16148 /* 16149 * Reset illgrp_ill_schednext if it was pointing at us. 16150 * We need to do this before we set ill_group to NULL. 16151 */ 16152 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 16153 mutex_enter(&ill->ill_lock); 16154 16155 illgrp_reset_schednext(ill); 16156 16157 illgrp = ill->ill_group; 16158 16159 /* Delete the ill from illgrp. */ 16160 if (illgrp->illgrp_ill == ill) { 16161 illgrp->illgrp_ill = ill->ill_group_next; 16162 } else { 16163 tmp_ill = illgrp->illgrp_ill; 16164 while (tmp_ill->ill_group_next != ill) { 16165 tmp_ill = tmp_ill->ill_group_next; 16166 ASSERT(tmp_ill != NULL); 16167 } 16168 tmp_ill->ill_group_next = ill->ill_group_next; 16169 } 16170 ill->ill_group = NULL; 16171 ill->ill_group_next = NULL; 16172 16173 illgrp->illgrp_ill_count--; 16174 mutex_exit(&ill->ill_lock); 16175 rw_exit(&ipst->ips_ill_g_lock); 16176 16177 /* 16178 * As this ill is leaving the group, we need to hand off 16179 * the responsibilities to the other ills in the group, if 16180 * this ill had some responsibilities. 16181 */ 16182 16183 ill_handoff_responsibility(ill, illgrp); 16184 16185 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 16186 16187 if (illgrp->illgrp_ill_count == 0) { 16188 16189 ASSERT(illgrp->illgrp_ill == NULL); 16190 if (ill->ill_isv6) { 16191 if (illgrp == ipst->ips_illgrp_head_v6) { 16192 ipst->ips_illgrp_head_v6 = illgrp->illgrp_next; 16193 } else { 16194 tmpg = ipst->ips_illgrp_head_v6; 16195 while (tmpg->illgrp_next != illgrp) { 16196 tmpg = tmpg->illgrp_next; 16197 ASSERT(tmpg != NULL); 16198 } 16199 tmpg->illgrp_next = illgrp->illgrp_next; 16200 } 16201 } else { 16202 if (illgrp == ipst->ips_illgrp_head_v4) { 16203 ipst->ips_illgrp_head_v4 = illgrp->illgrp_next; 16204 } else { 16205 tmpg = ipst->ips_illgrp_head_v4; 16206 while (tmpg->illgrp_next != illgrp) { 16207 tmpg = tmpg->illgrp_next; 16208 ASSERT(tmpg != NULL); 16209 } 16210 tmpg->illgrp_next = illgrp->illgrp_next; 16211 } 16212 } 16213 mutex_destroy(&illgrp->illgrp_lock); 16214 mi_free(illgrp); 16215 } 16216 rw_exit(&ipst->ips_ill_g_lock); 16217 16218 /* 16219 * Even though the ill is out of the group its not necessary 16220 * to set ipsq_split as TRUE as the ipifs could be down temporarily 16221 * We will split the ipsq when phyint_groupname is set to NULL. 16222 */ 16223 16224 /* 16225 * Send a routing sockets message if we are deleting from 16226 * groups with names. 16227 */ 16228 if (ill->ill_phyint->phyint_groupname_len != 0) 16229 ip_rts_ifmsg(ill->ill_ipif); 16230 } 16231 16232 /* 16233 * Re-do source address selection. This is normally called when 16234 * an ill joins the group or when a non-NOLOCAL/DEPRECATED/ANYCAST 16235 * ipif comes up. 16236 */ 16237 void 16238 ill_update_source_selection(ill_t *ill) 16239 { 16240 ipif_t *ipif; 16241 16242 ASSERT(IAM_WRITER_ILL(ill)); 16243 16244 if (ill->ill_group != NULL) 16245 ill = ill->ill_group->illgrp_ill; 16246 16247 for (; ill != NULL; ill = ill->ill_group_next) { 16248 for (ipif = ill->ill_ipif; ipif != NULL; 16249 ipif = ipif->ipif_next) { 16250 if (ill->ill_isv6) 16251 ipif_recreate_interface_routes_v6(NULL, ipif); 16252 else 16253 ipif_recreate_interface_routes(NULL, ipif); 16254 } 16255 } 16256 } 16257 16258 /* 16259 * Insert ill in a group headed by illgrp_head. The caller can either 16260 * pass a groupname in which case we search for a group with the 16261 * same name to insert in or pass a group to insert in. This function 16262 * would only search groups with names. 16263 * 16264 * NOTE : The caller should make sure that there is at least one ipif 16265 * UP on this ill so that illgrp_scheduler can pick this ill 16266 * for outbound packets. If ill_ipif_up_count is zero, we have 16267 * already sent a DL_UNBIND to the driver and we don't want to 16268 * send anymore packets. We don't assert for ipif_up_count 16269 * to be greater than zero, because ipif_up_done wants to call 16270 * this function before bumping up the ipif_up_count. See 16271 * ipif_up_done() for details. 16272 */ 16273 int 16274 illgrp_insert(ill_group_t **illgrp_head, ill_t *ill, char *groupname, 16275 ill_group_t *grp_to_insert, boolean_t ipif_is_coming_up) 16276 { 16277 ill_group_t *illgrp; 16278 ill_t *prev_ill; 16279 phyint_t *phyi; 16280 ip_stack_t *ipst = ill->ill_ipst; 16281 16282 ASSERT(ill->ill_group == NULL); 16283 16284 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 16285 mutex_enter(&ill->ill_lock); 16286 16287 if (groupname != NULL) { 16288 /* 16289 * Look for a group with a matching groupname to insert. 16290 */ 16291 for (illgrp = *illgrp_head; illgrp != NULL; 16292 illgrp = illgrp->illgrp_next) { 16293 16294 ill_t *tmp_ill; 16295 16296 /* 16297 * If we have an ill_group_t in the list which has 16298 * no ill_t assigned then we must be in the process of 16299 * removing this group. We skip this as illgrp_delete() 16300 * will remove it from the list. 16301 */ 16302 if ((tmp_ill = illgrp->illgrp_ill) == NULL) { 16303 ASSERT(illgrp->illgrp_ill_count == 0); 16304 continue; 16305 } 16306 16307 ASSERT(tmp_ill->ill_phyint != NULL); 16308 phyi = tmp_ill->ill_phyint; 16309 /* 16310 * Look at groups which has names only. 16311 */ 16312 if (phyi->phyint_groupname_len == 0) 16313 continue; 16314 /* 16315 * Names are stored in the phyint common to both 16316 * IPv4 and IPv6. 16317 */ 16318 if (mi_strcmp(phyi->phyint_groupname, 16319 groupname) == 0) { 16320 break; 16321 } 16322 } 16323 } else { 16324 /* 16325 * If the caller passes in a NULL "grp_to_insert", we 16326 * allocate one below and insert this singleton. 16327 */ 16328 illgrp = grp_to_insert; 16329 } 16330 16331 ill->ill_group_next = NULL; 16332 16333 if (illgrp == NULL) { 16334 illgrp = (ill_group_t *)mi_zalloc(sizeof (ill_group_t)); 16335 if (illgrp == NULL) { 16336 return (ENOMEM); 16337 } 16338 illgrp->illgrp_next = *illgrp_head; 16339 *illgrp_head = illgrp; 16340 illgrp->illgrp_ill = ill; 16341 illgrp->illgrp_ill_count = 1; 16342 ill->ill_group = illgrp; 16343 /* 16344 * Used in illgrp_scheduler to protect multiple threads 16345 * from traversing the list. 16346 */ 16347 mutex_init(&illgrp->illgrp_lock, NULL, MUTEX_DEFAULT, 0); 16348 } else { 16349 ASSERT(ill->ill_net_type == 16350 illgrp->illgrp_ill->ill_net_type); 16351 ASSERT(ill->ill_type == illgrp->illgrp_ill->ill_type); 16352 16353 /* Insert ill at tail of this group */ 16354 prev_ill = illgrp->illgrp_ill; 16355 while (prev_ill->ill_group_next != NULL) 16356 prev_ill = prev_ill->ill_group_next; 16357 prev_ill->ill_group_next = ill; 16358 ill->ill_group = illgrp; 16359 illgrp->illgrp_ill_count++; 16360 /* 16361 * Inherit group properties. Currently only forwarding 16362 * is the property we try to keep the same with all the 16363 * ills. When there are more, we will abstract this into 16364 * a function. 16365 */ 16366 ill->ill_flags &= ~ILLF_ROUTER; 16367 ill->ill_flags |= (illgrp->illgrp_ill->ill_flags & ILLF_ROUTER); 16368 } 16369 mutex_exit(&ill->ill_lock); 16370 rw_exit(&ipst->ips_ill_g_lock); 16371 16372 /* 16373 * 1) When ipif_up_done() calls this function, ipif_up_count 16374 * may be zero as it has not yet been bumped. But the ires 16375 * have already been added. So, we do the nomination here 16376 * itself. But, when ip_sioctl_groupname calls this, it checks 16377 * for ill_ipif_up_count != 0. Thus we don't check for 16378 * ill_ipif_up_count here while nominating broadcast ires for 16379 * receive. 16380 * 16381 * 2) Similarly, we need to call ill_group_bcast_for_xmit here 16382 * to group them properly as ire_add() has already happened 16383 * in the ipif_up_done() case. For ip_sioctl_groupname/ifgrp_insert 16384 * case, we need to do it here anyway. 16385 */ 16386 if (!ill->ill_isv6) { 16387 ill_group_bcast_for_xmit(ill); 16388 ill_nominate_bcast_rcv(illgrp); 16389 } 16390 16391 if (!ipif_is_coming_up) { 16392 /* 16393 * When ipif_up_done() calls this function, the multicast 16394 * groups have not been joined yet. So, there is no point in 16395 * nomination. ip_join_allmulti will handle groups when 16396 * ill_recover_multicast is called from ipif_up_done() later. 16397 */ 16398 (void) ill_nominate_mcast_rcv(illgrp); 16399 /* 16400 * ipif_up_done calls ill_update_source_selection 16401 * anyway. Moreover, we don't want to re-create 16402 * interface routes while ipif_up_done() still has reference 16403 * to them. Refer to ipif_up_done() for more details. 16404 */ 16405 ill_update_source_selection(ill); 16406 } 16407 16408 /* 16409 * Send a routing sockets message if we are inserting into 16410 * groups with names. 16411 */ 16412 if (groupname != NULL) 16413 ip_rts_ifmsg(ill->ill_ipif); 16414 return (0); 16415 } 16416 16417 /* 16418 * Return the first phyint matching the groupname. There could 16419 * be more than one when there are ill groups. 16420 * 16421 * If 'usable' is set, then we exclude ones that are marked with any of 16422 * (PHYI_FAILED|PHYI_STANDBY|PHYI_OFFLINE|PHYI_INACTIVE). 16423 * Needs work: called only from ip_sioctl_groupname and from the ipmp/netinfo 16424 * emulation of ipmp. 16425 */ 16426 phyint_t * 16427 phyint_lookup_group(char *groupname, boolean_t usable, ip_stack_t *ipst) 16428 { 16429 phyint_t *phyi; 16430 16431 ASSERT(RW_LOCK_HELD(&ipst->ips_ill_g_lock)); 16432 /* 16433 * Group names are stored in the phyint - a common structure 16434 * to both IPv4 and IPv6. 16435 */ 16436 phyi = avl_first(&ipst->ips_phyint_g_list->phyint_list_avl_by_index); 16437 for (; phyi != NULL; 16438 phyi = avl_walk(&ipst->ips_phyint_g_list->phyint_list_avl_by_index, 16439 phyi, AVL_AFTER)) { 16440 if (phyi->phyint_groupname_len == 0) 16441 continue; 16442 /* 16443 * Skip the ones that should not be used since the callers 16444 * sometime use this for sending packets. 16445 */ 16446 if (usable && (phyi->phyint_flags & 16447 (PHYI_FAILED|PHYI_STANDBY|PHYI_OFFLINE|PHYI_INACTIVE))) 16448 continue; 16449 16450 ASSERT(phyi->phyint_groupname != NULL); 16451 if (mi_strcmp(groupname, phyi->phyint_groupname) == 0) 16452 return (phyi); 16453 } 16454 return (NULL); 16455 } 16456 16457 16458 /* 16459 * Return the first usable phyint matching the group index. By 'usable' 16460 * we exclude ones that are marked ununsable with any of 16461 * (PHYI_FAILED|PHYI_STANDBY|PHYI_OFFLINE|PHYI_INACTIVE). 16462 * 16463 * Used only for the ipmp/netinfo emulation of ipmp. 16464 */ 16465 phyint_t * 16466 phyint_lookup_group_ifindex(uint_t group_ifindex, ip_stack_t *ipst) 16467 { 16468 phyint_t *phyi; 16469 16470 ASSERT(RW_LOCK_HELD(&ipst->ips_ill_g_lock)); 16471 16472 if (!ipst->ips_ipmp_hook_emulation) 16473 return (NULL); 16474 16475 /* 16476 * Group indicies are stored in the phyint - a common structure 16477 * to both IPv4 and IPv6. 16478 */ 16479 phyi = avl_first(&ipst->ips_phyint_g_list->phyint_list_avl_by_index); 16480 for (; phyi != NULL; 16481 phyi = avl_walk(&ipst->ips_phyint_g_list->phyint_list_avl_by_index, 16482 phyi, AVL_AFTER)) { 16483 /* Ignore the ones that do not have a group */ 16484 if (phyi->phyint_groupname_len == 0) 16485 continue; 16486 16487 ASSERT(phyi->phyint_group_ifindex != 0); 16488 /* 16489 * Skip the ones that should not be used since the callers 16490 * sometime use this for sending packets. 16491 */ 16492 if (phyi->phyint_flags & 16493 (PHYI_FAILED|PHYI_STANDBY|PHYI_OFFLINE|PHYI_INACTIVE)) 16494 continue; 16495 if (phyi->phyint_group_ifindex == group_ifindex) 16496 return (phyi); 16497 } 16498 return (NULL); 16499 } 16500 16501 16502 /* 16503 * MT notes on creation and deletion of IPMP groups 16504 * 16505 * Creation and deletion of IPMP groups introduce the need to merge or 16506 * split the associated serialization objects i.e the ipsq's. Normally all 16507 * the ills in an IPMP group would map to a single ipsq. If IPMP is not enabled 16508 * an ill-pair(v4, v6) i.e. phyint would map to a single ipsq. However during 16509 * the execution of the SIOCSLIFGROUPNAME command the picture changes. There 16510 * is a need to change the <ill-ipsq> association and we have to operate on both 16511 * the source and destination IPMP groups. For eg. attempting to set the 16512 * groupname of hme0 to mpk17-85 when it already belongs to mpk17-84 has to 16513 * handle 2 IPMP groups and 2 ipsqs. All the ills belonging to either of the 16514 * source or destination IPMP group are mapped to a single ipsq for executing 16515 * the SIOCSLIFGROUPNAME command. This is termed as a merge of the ipsq's. 16516 * The <ill-ipsq> mapping is restored back to normal at a later point. This is 16517 * termed as a split of the ipsq. The converse of the merge i.e. a split of the 16518 * ipsq happens while unwinding from ipsq_exit. If at least 1 set groupname 16519 * occurred on the ipsq, then the ipsq_split flag is set. This indicates the 16520 * ipsq has to be examined for redoing the <ill-ipsq> associations. 16521 * 16522 * In the above example the ioctl handling code locates the current ipsq of hme0 16523 * which is ipsq(mpk17-84). It then enters the above ipsq immediately or 16524 * eventually (after queueing the ioctl in ipsq(mpk17-84)). Then it locates 16525 * the destination ipsq which is ipsq(mpk17-85) and merges the source ipsq into 16526 * the destination ipsq. If the destination ipsq is not busy, it also enters 16527 * the destination ipsq exclusively. Now the actual groupname setting operation 16528 * can proceed. If the destination ipsq is busy, the operation is enqueued 16529 * on the destination (merged) ipsq and will be handled in the unwind from 16530 * ipsq_exit. 16531 * 16532 * To prevent other threads accessing the ill while the group name change is 16533 * in progres, we bring down the ipifs which also removes the ill from the 16534 * group. The group is changed in phyint and when the first ipif on the ill 16535 * is brought up, the ill is inserted into the right IPMP group by 16536 * illgrp_insert. 16537 */ 16538 /* ARGSUSED */ 16539 int 16540 ip_sioctl_groupname(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 16541 ip_ioctl_cmd_t *ipip, void *ifreq) 16542 { 16543 int i; 16544 char *tmp; 16545 int namelen; 16546 ill_t *ill = ipif->ipif_ill; 16547 ill_t *ill_v4, *ill_v6; 16548 int err = 0; 16549 phyint_t *phyi; 16550 phyint_t *phyi_tmp; 16551 struct lifreq *lifr; 16552 mblk_t *mp1; 16553 char *groupname; 16554 ipsq_t *ipsq; 16555 ip_stack_t *ipst = ill->ill_ipst; 16556 16557 ASSERT(IAM_WRITER_IPIF(ipif)); 16558 16559 /* Existance verified in ip_wput_nondata */ 16560 mp1 = mp->b_cont->b_cont; 16561 lifr = (struct lifreq *)mp1->b_rptr; 16562 groupname = lifr->lifr_groupname; 16563 16564 if (ipif->ipif_id != 0) 16565 return (EINVAL); 16566 16567 phyi = ill->ill_phyint; 16568 ASSERT(phyi != NULL); 16569 16570 if (phyi->phyint_flags & PHYI_VIRTUAL) 16571 return (EINVAL); 16572 16573 tmp = groupname; 16574 for (i = 0; i < LIFNAMSIZ && *tmp != '\0'; tmp++, i++) 16575 ; 16576 16577 if (i == LIFNAMSIZ) { 16578 /* no null termination */ 16579 return (EINVAL); 16580 } 16581 16582 /* 16583 * Calculate the namelen exclusive of the null 16584 * termination character. 16585 */ 16586 namelen = tmp - groupname; 16587 16588 ill_v4 = phyi->phyint_illv4; 16589 ill_v6 = phyi->phyint_illv6; 16590 16591 /* 16592 * ILL cannot be part of a usesrc group and and IPMP group at the 16593 * same time. No need to grab the ill_g_usesrc_lock here, see 16594 * synchronization notes in ip.c 16595 */ 16596 if (ipif->ipif_ill->ill_usesrc_grp_next != NULL) { 16597 return (EINVAL); 16598 } 16599 16600 /* 16601 * mark the ill as changing. 16602 * this should queue all new requests on the syncq. 16603 */ 16604 GRAB_ILL_LOCKS(ill_v4, ill_v6); 16605 16606 if (ill_v4 != NULL) 16607 ill_v4->ill_state_flags |= ILL_CHANGING; 16608 if (ill_v6 != NULL) 16609 ill_v6->ill_state_flags |= ILL_CHANGING; 16610 RELEASE_ILL_LOCKS(ill_v4, ill_v6); 16611 16612 if (namelen == 0) { 16613 /* 16614 * Null string means remove this interface from the 16615 * existing group. 16616 */ 16617 if (phyi->phyint_groupname_len == 0) { 16618 /* 16619 * Never was in a group. 16620 */ 16621 err = 0; 16622 goto done; 16623 } 16624 16625 /* 16626 * IPv4 or IPv6 may be temporarily out of the group when all 16627 * the ipifs are down. Thus, we need to check for ill_group to 16628 * be non-NULL. 16629 */ 16630 if (ill_v4 != NULL && ill_v4->ill_group != NULL) { 16631 ill_down_ipifs(ill_v4, mp, 0, B_FALSE); 16632 mutex_enter(&ill_v4->ill_lock); 16633 if (!ill_is_quiescent(ill_v4)) { 16634 /* 16635 * ipsq_pending_mp_add will not fail since 16636 * connp is NULL 16637 */ 16638 (void) ipsq_pending_mp_add(NULL, 16639 ill_v4->ill_ipif, q, mp, ILL_DOWN); 16640 mutex_exit(&ill_v4->ill_lock); 16641 err = EINPROGRESS; 16642 goto done; 16643 } 16644 mutex_exit(&ill_v4->ill_lock); 16645 } 16646 16647 if (ill_v6 != NULL && ill_v6->ill_group != NULL) { 16648 ill_down_ipifs(ill_v6, mp, 0, B_FALSE); 16649 mutex_enter(&ill_v6->ill_lock); 16650 if (!ill_is_quiescent(ill_v6)) { 16651 (void) ipsq_pending_mp_add(NULL, 16652 ill_v6->ill_ipif, q, mp, ILL_DOWN); 16653 mutex_exit(&ill_v6->ill_lock); 16654 err = EINPROGRESS; 16655 goto done; 16656 } 16657 mutex_exit(&ill_v6->ill_lock); 16658 } 16659 16660 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 16661 GRAB_ILL_LOCKS(ill_v4, ill_v6); 16662 mutex_enter(&phyi->phyint_lock); 16663 ASSERT(phyi->phyint_groupname != NULL); 16664 mi_free(phyi->phyint_groupname); 16665 phyi->phyint_groupname = NULL; 16666 phyi->phyint_groupname_len = 0; 16667 16668 /* Restore the ifindex used to be the per interface one */ 16669 phyi->phyint_group_ifindex = 0; 16670 phyi->phyint_hook_ifindex = phyi->phyint_ifindex; 16671 mutex_exit(&phyi->phyint_lock); 16672 RELEASE_ILL_LOCKS(ill_v4, ill_v6); 16673 rw_exit(&ipst->ips_ill_g_lock); 16674 err = ill_up_ipifs(ill, q, mp); 16675 16676 /* 16677 * set the split flag so that the ipsq can be split 16678 */ 16679 mutex_enter(&phyi->phyint_ipsq->ipsq_lock); 16680 phyi->phyint_ipsq->ipsq_split = B_TRUE; 16681 mutex_exit(&phyi->phyint_ipsq->ipsq_lock); 16682 16683 } else { 16684 if (phyi->phyint_groupname_len != 0) { 16685 ASSERT(phyi->phyint_groupname != NULL); 16686 /* Are we inserting in the same group ? */ 16687 if (mi_strcmp(groupname, 16688 phyi->phyint_groupname) == 0) { 16689 err = 0; 16690 goto done; 16691 } 16692 } 16693 16694 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 16695 /* 16696 * Merge ipsq for the group's. 16697 * This check is here as multiple groups/ills might be 16698 * sharing the same ipsq. 16699 * If we have to merege than the operation is restarted 16700 * on the new ipsq. 16701 */ 16702 ipsq = ip_ipsq_lookup(groupname, B_FALSE, NULL, ipst); 16703 if (phyi->phyint_ipsq != ipsq) { 16704 rw_exit(&ipst->ips_ill_g_lock); 16705 err = ill_merge_groups(ill, NULL, groupname, mp, q); 16706 goto done; 16707 } 16708 /* 16709 * Running exclusive on new ipsq. 16710 */ 16711 16712 ASSERT(ipsq != NULL); 16713 ASSERT(ipsq->ipsq_writer == curthread); 16714 16715 /* 16716 * Check whether the ill_type and ill_net_type matches before 16717 * we allocate any memory so that the cleanup is easier. 16718 * 16719 * We can't group dissimilar ones as we can't load spread 16720 * packets across the group because of potential link-level 16721 * header differences. 16722 */ 16723 phyi_tmp = phyint_lookup_group(groupname, B_FALSE, ipst); 16724 if (phyi_tmp != NULL) { 16725 if ((ill_v4 != NULL && 16726 phyi_tmp->phyint_illv4 != NULL) && 16727 ((ill_v4->ill_net_type != 16728 phyi_tmp->phyint_illv4->ill_net_type) || 16729 (ill_v4->ill_type != 16730 phyi_tmp->phyint_illv4->ill_type))) { 16731 mutex_enter(&phyi->phyint_ipsq->ipsq_lock); 16732 phyi->phyint_ipsq->ipsq_split = B_TRUE; 16733 mutex_exit(&phyi->phyint_ipsq->ipsq_lock); 16734 rw_exit(&ipst->ips_ill_g_lock); 16735 return (EINVAL); 16736 } 16737 if ((ill_v6 != NULL && 16738 phyi_tmp->phyint_illv6 != NULL) && 16739 ((ill_v6->ill_net_type != 16740 phyi_tmp->phyint_illv6->ill_net_type) || 16741 (ill_v6->ill_type != 16742 phyi_tmp->phyint_illv6->ill_type))) { 16743 mutex_enter(&phyi->phyint_ipsq->ipsq_lock); 16744 phyi->phyint_ipsq->ipsq_split = B_TRUE; 16745 mutex_exit(&phyi->phyint_ipsq->ipsq_lock); 16746 rw_exit(&ipst->ips_ill_g_lock); 16747 return (EINVAL); 16748 } 16749 } 16750 16751 rw_exit(&ipst->ips_ill_g_lock); 16752 16753 /* 16754 * bring down all v4 ipifs. 16755 */ 16756 if (ill_v4 != NULL) { 16757 ill_down_ipifs(ill_v4, mp, 0, B_FALSE); 16758 } 16759 16760 /* 16761 * bring down all v6 ipifs. 16762 */ 16763 if (ill_v6 != NULL) { 16764 ill_down_ipifs(ill_v6, mp, 0, B_FALSE); 16765 } 16766 16767 /* 16768 * make sure all ipifs are down and there are no active 16769 * references. Call to ipsq_pending_mp_add will not fail 16770 * since connp is NULL. 16771 */ 16772 if (ill_v4 != NULL) { 16773 mutex_enter(&ill_v4->ill_lock); 16774 if (!ill_is_quiescent(ill_v4)) { 16775 (void) ipsq_pending_mp_add(NULL, 16776 ill_v4->ill_ipif, q, mp, ILL_DOWN); 16777 mutex_exit(&ill_v4->ill_lock); 16778 err = EINPROGRESS; 16779 goto done; 16780 } 16781 mutex_exit(&ill_v4->ill_lock); 16782 } 16783 16784 if (ill_v6 != NULL) { 16785 mutex_enter(&ill_v6->ill_lock); 16786 if (!ill_is_quiescent(ill_v6)) { 16787 (void) ipsq_pending_mp_add(NULL, 16788 ill_v6->ill_ipif, q, mp, ILL_DOWN); 16789 mutex_exit(&ill_v6->ill_lock); 16790 err = EINPROGRESS; 16791 goto done; 16792 } 16793 mutex_exit(&ill_v6->ill_lock); 16794 } 16795 16796 /* 16797 * allocate including space for null terminator 16798 * before we insert. 16799 */ 16800 tmp = (char *)mi_alloc(namelen + 1, BPRI_MED); 16801 if (tmp == NULL) 16802 return (ENOMEM); 16803 16804 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 16805 GRAB_ILL_LOCKS(ill_v4, ill_v6); 16806 mutex_enter(&phyi->phyint_lock); 16807 if (phyi->phyint_groupname_len != 0) { 16808 ASSERT(phyi->phyint_groupname != NULL); 16809 mi_free(phyi->phyint_groupname); 16810 } 16811 16812 /* 16813 * setup the new group name. 16814 */ 16815 phyi->phyint_groupname = tmp; 16816 bcopy(groupname, phyi->phyint_groupname, namelen + 1); 16817 phyi->phyint_groupname_len = namelen + 1; 16818 16819 if (ipst->ips_ipmp_hook_emulation) { 16820 /* 16821 * If the group already exists we use the existing 16822 * group_ifindex, otherwise we pick a new index here. 16823 */ 16824 if (phyi_tmp != NULL) { 16825 phyi->phyint_group_ifindex = 16826 phyi_tmp->phyint_group_ifindex; 16827 } else { 16828 /* XXX We need a recovery strategy here. */ 16829 if (!ip_assign_ifindex( 16830 &phyi->phyint_group_ifindex, ipst)) 16831 cmn_err(CE_PANIC, 16832 "ip_assign_ifindex() failed"); 16833 } 16834 } 16835 /* 16836 * Select whether the netinfo and hook use the per-interface 16837 * or per-group ifindex. 16838 */ 16839 if (ipst->ips_ipmp_hook_emulation) 16840 phyi->phyint_hook_ifindex = phyi->phyint_group_ifindex; 16841 else 16842 phyi->phyint_hook_ifindex = phyi->phyint_ifindex; 16843 16844 if (ipst->ips_ipmp_hook_emulation && 16845 phyi_tmp != NULL) { 16846 /* First phyint in group - group PLUMB event */ 16847 ill_nic_info_plumb(ill, B_TRUE); 16848 } 16849 mutex_exit(&phyi->phyint_lock); 16850 RELEASE_ILL_LOCKS(ill_v4, ill_v6); 16851 rw_exit(&ipst->ips_ill_g_lock); 16852 16853 err = ill_up_ipifs(ill, q, mp); 16854 } 16855 16856 done: 16857 /* 16858 * normally ILL_CHANGING is cleared in ill_up_ipifs. 16859 */ 16860 if (err != EINPROGRESS) { 16861 GRAB_ILL_LOCKS(ill_v4, ill_v6); 16862 if (ill_v4 != NULL) 16863 ill_v4->ill_state_flags &= ~ILL_CHANGING; 16864 if (ill_v6 != NULL) 16865 ill_v6->ill_state_flags &= ~ILL_CHANGING; 16866 RELEASE_ILL_LOCKS(ill_v4, ill_v6); 16867 } 16868 return (err); 16869 } 16870 16871 /* ARGSUSED */ 16872 int 16873 ip_sioctl_get_groupname(ipif_t *ipif, sin_t *dummy_sin, queue_t *q, 16874 mblk_t *mp, ip_ioctl_cmd_t *ipip, void *dummy_ifreq) 16875 { 16876 ill_t *ill; 16877 phyint_t *phyi; 16878 struct lifreq *lifr; 16879 mblk_t *mp1; 16880 16881 /* Existence verified in ip_wput_nondata */ 16882 mp1 = mp->b_cont->b_cont; 16883 lifr = (struct lifreq *)mp1->b_rptr; 16884 ill = ipif->ipif_ill; 16885 phyi = ill->ill_phyint; 16886 16887 lifr->lifr_groupname[0] = '\0'; 16888 /* 16889 * ill_group may be null if all the interfaces 16890 * are down. But still, the phyint should always 16891 * hold the name. 16892 */ 16893 if (phyi->phyint_groupname_len != 0) { 16894 bcopy(phyi->phyint_groupname, lifr->lifr_groupname, 16895 phyi->phyint_groupname_len); 16896 } 16897 16898 return (0); 16899 } 16900 16901 16902 typedef struct conn_move_s { 16903 ill_t *cm_from_ill; 16904 ill_t *cm_to_ill; 16905 int cm_ifindex; 16906 } conn_move_t; 16907 16908 /* 16909 * ipcl_walk function for moving conn_multicast_ill for a given ill. 16910 */ 16911 static void 16912 conn_move(conn_t *connp, caddr_t arg) 16913 { 16914 conn_move_t *connm; 16915 int ifindex; 16916 int i; 16917 ill_t *from_ill; 16918 ill_t *to_ill; 16919 ilg_t *ilg; 16920 ilm_t *ret_ilm; 16921 16922 connm = (conn_move_t *)arg; 16923 ifindex = connm->cm_ifindex; 16924 from_ill = connm->cm_from_ill; 16925 to_ill = connm->cm_to_ill; 16926 16927 /* Change IP_BOUND_IF/IPV6_BOUND_IF associations. */ 16928 16929 /* All multicast fields protected by conn_lock */ 16930 mutex_enter(&connp->conn_lock); 16931 ASSERT(connp->conn_outgoing_ill == connp->conn_incoming_ill); 16932 if ((connp->conn_outgoing_ill == from_ill) && 16933 (ifindex == 0 || connp->conn_orig_bound_ifindex == ifindex)) { 16934 connp->conn_outgoing_ill = to_ill; 16935 connp->conn_incoming_ill = to_ill; 16936 } 16937 16938 /* Change IP_MULTICAST_IF/IPV6_MULTICAST_IF associations */ 16939 16940 if ((connp->conn_multicast_ill == from_ill) && 16941 (ifindex == 0 || connp->conn_orig_multicast_ifindex == ifindex)) { 16942 connp->conn_multicast_ill = connm->cm_to_ill; 16943 } 16944 16945 /* Change IP_XMIT_IF associations */ 16946 if ((connp->conn_xmit_if_ill == from_ill) && 16947 (ifindex == 0 || connp->conn_orig_xmit_ifindex == ifindex)) { 16948 connp->conn_xmit_if_ill = to_ill; 16949 } 16950 /* 16951 * Change the ilg_ill to point to the new one. This assumes 16952 * ilm_move_v6 has moved the ilms to new_ill and the driver 16953 * has been told to receive packets on this interface. 16954 * ilm_move_v6 FAILBACKS all the ilms successfully always. 16955 * But when doing a FAILOVER, it might fail with ENOMEM and so 16956 * some ilms may not have moved. We check to see whether 16957 * the ilms have moved to to_ill. We can't check on from_ill 16958 * as in the process of moving, we could have split an ilm 16959 * in to two - which has the same orig_ifindex and v6group. 16960 * 16961 * For IPv4, ilg_ipif moves implicitly. The code below really 16962 * does not do anything for IPv4 as ilg_ill is NULL for IPv4. 16963 */ 16964 for (i = connp->conn_ilg_inuse - 1; i >= 0; i--) { 16965 ilg = &connp->conn_ilg[i]; 16966 if ((ilg->ilg_ill == from_ill) && 16967 (ifindex == 0 || ilg->ilg_orig_ifindex == ifindex)) { 16968 /* ifindex != 0 indicates failback */ 16969 if (ifindex != 0) { 16970 connp->conn_ilg[i].ilg_ill = to_ill; 16971 continue; 16972 } 16973 16974 ret_ilm = ilm_lookup_ill_index_v6(to_ill, 16975 &ilg->ilg_v6group, ilg->ilg_orig_ifindex, 16976 connp->conn_zoneid); 16977 16978 if (ret_ilm != NULL) 16979 connp->conn_ilg[i].ilg_ill = to_ill; 16980 } 16981 } 16982 mutex_exit(&connp->conn_lock); 16983 } 16984 16985 static void 16986 conn_move_ill(ill_t *from_ill, ill_t *to_ill, int ifindex) 16987 { 16988 conn_move_t connm; 16989 ip_stack_t *ipst = from_ill->ill_ipst; 16990 16991 connm.cm_from_ill = from_ill; 16992 connm.cm_to_ill = to_ill; 16993 connm.cm_ifindex = ifindex; 16994 16995 ipcl_walk(conn_move, (caddr_t)&connm, ipst); 16996 } 16997 16998 /* 16999 * ilm has been moved from from_ill to to_ill. 17000 * Send DL_DISABMULTI_REQ to ill and DL_ENABMULTI_REQ on to_ill. 17001 * appropriately. 17002 * 17003 * NOTE : We can't reuse the code in ip_ll_addmulti/delmulti because 17004 * the code there de-references ipif_ill to get the ill to 17005 * send multicast requests. It does not work as ipif is on its 17006 * move and already moved when this function is called. 17007 * Thus, we need to use from_ill and to_ill send down multicast 17008 * requests. 17009 */ 17010 static void 17011 ilm_send_multicast_reqs(ill_t *from_ill, ill_t *to_ill) 17012 { 17013 ipif_t *ipif; 17014 ilm_t *ilm; 17015 17016 /* 17017 * See whether we need to send down DL_ENABMULTI_REQ on 17018 * to_ill as ilm has just been added. 17019 */ 17020 ASSERT(IAM_WRITER_ILL(to_ill)); 17021 ASSERT(IAM_WRITER_ILL(from_ill)); 17022 17023 ILM_WALKER_HOLD(to_ill); 17024 for (ilm = to_ill->ill_ilm; ilm != NULL; ilm = ilm->ilm_next) { 17025 17026 if (!ilm->ilm_is_new || (ilm->ilm_flags & ILM_DELETED)) 17027 continue; 17028 /* 17029 * no locks held, ill/ipif cannot dissappear as long 17030 * as we are writer. 17031 */ 17032 ipif = to_ill->ill_ipif; 17033 /* 17034 * No need to hold any lock as we are the writer and this 17035 * can only be changed by a writer. 17036 */ 17037 ilm->ilm_is_new = B_FALSE; 17038 17039 if (to_ill->ill_net_type != IRE_IF_RESOLVER || 17040 ipif->ipif_flags & IPIF_POINTOPOINT) { 17041 ip1dbg(("ilm_send_multicast_reqs: to_ill not " 17042 "resolver\n")); 17043 continue; /* Must be IRE_IF_NORESOLVER */ 17044 } 17045 17046 17047 if (to_ill->ill_phyint->phyint_flags & PHYI_MULTI_BCAST) { 17048 ip1dbg(("ilm_send_multicast_reqs: " 17049 "to_ill MULTI_BCAST\n")); 17050 goto from; 17051 } 17052 17053 if (to_ill->ill_isv6) 17054 mld_joingroup(ilm); 17055 else 17056 igmp_joingroup(ilm); 17057 17058 if (to_ill->ill_ipif_up_count == 0) { 17059 /* 17060 * Nobody there. All multicast addresses will be 17061 * re-joined when we get the DL_BIND_ACK bringing the 17062 * interface up. 17063 */ 17064 ilm->ilm_notify_driver = B_FALSE; 17065 ip1dbg(("ilm_send_multicast_reqs: to_ill nobody up\n")); 17066 goto from; 17067 } 17068 17069 /* 17070 * For allmulti address, we want to join on only one interface. 17071 * Checking for ilm_numentries_v6 is not correct as you may 17072 * find an ilm with zero address on to_ill, but we may not 17073 * have nominated to_ill for receiving. Thus, if we have 17074 * nominated from_ill (ill_join_allmulti is set), nominate 17075 * only if to_ill is not already nominated (to_ill normally 17076 * should not have been nominated if "from_ill" has already 17077 * been nominated. As we don't prevent failovers from happening 17078 * across groups, we don't assert). 17079 */ 17080 if (IN6_IS_ADDR_UNSPECIFIED(&ilm->ilm_v6addr)) { 17081 /* 17082 * There is no need to hold ill locks as we are 17083 * writer on both ills and when ill_join_allmulti 17084 * is changed the thread is always a writer. 17085 */ 17086 if (from_ill->ill_join_allmulti && 17087 !to_ill->ill_join_allmulti) { 17088 (void) ip_join_allmulti(to_ill->ill_ipif); 17089 } 17090 } else if (ilm->ilm_notify_driver) { 17091 17092 /* 17093 * This is a newly moved ilm so we need to tell the 17094 * driver about the new group. There can be more than 17095 * one ilm's for the same group in the list each with a 17096 * different orig_ifindex. We have to inform the driver 17097 * once. In ilm_move_v[4,6] we only set the flag 17098 * ilm_notify_driver for the first ilm. 17099 */ 17100 17101 (void) ip_ll_send_enabmulti_req(to_ill, 17102 &ilm->ilm_v6addr); 17103 } 17104 17105 ilm->ilm_notify_driver = B_FALSE; 17106 17107 /* 17108 * See whether we need to send down DL_DISABMULTI_REQ on 17109 * from_ill as ilm has just been removed. 17110 */ 17111 from: 17112 ipif = from_ill->ill_ipif; 17113 if (from_ill->ill_net_type != IRE_IF_RESOLVER || 17114 ipif->ipif_flags & IPIF_POINTOPOINT) { 17115 ip1dbg(("ilm_send_multicast_reqs: " 17116 "from_ill not resolver\n")); 17117 continue; /* Must be IRE_IF_NORESOLVER */ 17118 } 17119 17120 if (from_ill->ill_phyint->phyint_flags & PHYI_MULTI_BCAST) { 17121 ip1dbg(("ilm_send_multicast_reqs: " 17122 "from_ill MULTI_BCAST\n")); 17123 continue; 17124 } 17125 17126 if (IN6_IS_ADDR_UNSPECIFIED(&ilm->ilm_v6addr)) { 17127 if (from_ill->ill_join_allmulti) 17128 (void) ip_leave_allmulti(from_ill->ill_ipif); 17129 } else if (ilm_numentries_v6(from_ill, &ilm->ilm_v6addr) == 0) { 17130 (void) ip_ll_send_disabmulti_req(from_ill, 17131 &ilm->ilm_v6addr); 17132 } 17133 } 17134 ILM_WALKER_RELE(to_ill); 17135 } 17136 17137 /* 17138 * This function is called when all multicast memberships needs 17139 * to be moved from "from_ill" to "to_ill" for IPv6. This function is 17140 * called only once unlike the IPv4 counterpart where it is called after 17141 * every logical interface is moved. The reason is due to multicast 17142 * memberships are joined using an interface address in IPv4 while in 17143 * IPv6, interface index is used. 17144 */ 17145 static void 17146 ilm_move_v6(ill_t *from_ill, ill_t *to_ill, int ifindex) 17147 { 17148 ilm_t *ilm; 17149 ilm_t *ilm_next; 17150 ilm_t *new_ilm; 17151 ilm_t **ilmp; 17152 int count; 17153 char buf[INET6_ADDRSTRLEN]; 17154 in6_addr_t ipv6_snm = ipv6_solicited_node_mcast; 17155 ip_stack_t *ipst = from_ill->ill_ipst; 17156 17157 ASSERT(MUTEX_HELD(&to_ill->ill_lock)); 17158 ASSERT(MUTEX_HELD(&from_ill->ill_lock)); 17159 ASSERT(RW_WRITE_HELD(&ipst->ips_ill_g_lock)); 17160 17161 if (ifindex == 0) { 17162 /* 17163 * Form the solicited node mcast address which is used later. 17164 */ 17165 ipif_t *ipif; 17166 17167 ipif = from_ill->ill_ipif; 17168 ASSERT(ipif->ipif_id == 0); 17169 17170 ipv6_snm.s6_addr32[3] |= ipif->ipif_v6lcl_addr.s6_addr32[3]; 17171 } 17172 17173 ilmp = &from_ill->ill_ilm; 17174 for (ilm = from_ill->ill_ilm; ilm != NULL; ilm = ilm_next) { 17175 ilm_next = ilm->ilm_next; 17176 17177 if (ilm->ilm_flags & ILM_DELETED) { 17178 ilmp = &ilm->ilm_next; 17179 continue; 17180 } 17181 17182 new_ilm = ilm_lookup_ill_index_v6(to_ill, &ilm->ilm_v6addr, 17183 ilm->ilm_orig_ifindex, ilm->ilm_zoneid); 17184 ASSERT(ilm->ilm_orig_ifindex != 0); 17185 if (ilm->ilm_orig_ifindex == ifindex) { 17186 /* 17187 * We are failing back multicast memberships. 17188 * If the same ilm exists in to_ill, it means somebody 17189 * has joined the same group there e.g. ff02::1 17190 * is joined within the kernel when the interfaces 17191 * came UP. 17192 */ 17193 ASSERT(ilm->ilm_ipif == NULL); 17194 if (new_ilm != NULL) { 17195 new_ilm->ilm_refcnt += ilm->ilm_refcnt; 17196 if (new_ilm->ilm_fmode != MODE_IS_EXCLUDE || 17197 !SLIST_IS_EMPTY(new_ilm->ilm_filter)) { 17198 new_ilm->ilm_is_new = B_TRUE; 17199 } 17200 } else { 17201 /* 17202 * check if we can just move the ilm 17203 */ 17204 if (from_ill->ill_ilm_walker_cnt != 0) { 17205 /* 17206 * We have walkers we cannot move 17207 * the ilm, so allocate a new ilm, 17208 * this (old) ilm will be marked 17209 * ILM_DELETED at the end of the loop 17210 * and will be freed when the 17211 * last walker exits. 17212 */ 17213 new_ilm = (ilm_t *)mi_zalloc 17214 (sizeof (ilm_t)); 17215 if (new_ilm == NULL) { 17216 ip0dbg(("ilm_move_v6: " 17217 "FAILBACK of IPv6" 17218 " multicast address %s : " 17219 "from %s to" 17220 " %s failed : ENOMEM \n", 17221 inet_ntop(AF_INET6, 17222 &ilm->ilm_v6addr, buf, 17223 sizeof (buf)), 17224 from_ill->ill_name, 17225 to_ill->ill_name)); 17226 17227 ilmp = &ilm->ilm_next; 17228 continue; 17229 } 17230 *new_ilm = *ilm; 17231 /* 17232 * we don't want new_ilm linked to 17233 * ilm's filter list. 17234 */ 17235 new_ilm->ilm_filter = NULL; 17236 } else { 17237 /* 17238 * No walkers we can move the ilm. 17239 * lets take it out of the list. 17240 */ 17241 *ilmp = ilm->ilm_next; 17242 ilm->ilm_next = NULL; 17243 new_ilm = ilm; 17244 } 17245 17246 /* 17247 * if this is the first ilm for the group 17248 * set ilm_notify_driver so that we notify the 17249 * driver in ilm_send_multicast_reqs. 17250 */ 17251 if (ilm_lookup_ill_v6(to_ill, 17252 &new_ilm->ilm_v6addr, ALL_ZONES) == NULL) 17253 new_ilm->ilm_notify_driver = B_TRUE; 17254 17255 new_ilm->ilm_ill = to_ill; 17256 /* Add to the to_ill's list */ 17257 new_ilm->ilm_next = to_ill->ill_ilm; 17258 to_ill->ill_ilm = new_ilm; 17259 /* 17260 * set the flag so that mld_joingroup is 17261 * called in ilm_send_multicast_reqs(). 17262 */ 17263 new_ilm->ilm_is_new = B_TRUE; 17264 } 17265 goto bottom; 17266 } else if (ifindex != 0) { 17267 /* 17268 * If this is FAILBACK (ifindex != 0) and the ifindex 17269 * has not matched above, look at the next ilm. 17270 */ 17271 ilmp = &ilm->ilm_next; 17272 continue; 17273 } 17274 /* 17275 * If we are here, it means ifindex is 0. Failover 17276 * everything. 17277 * 17278 * We need to handle solicited node mcast address 17279 * and all_nodes mcast address differently as they 17280 * are joined witin the kenrel (ipif_multicast_up) 17281 * and potentially from the userland. We are called 17282 * after the ipifs of from_ill has been moved. 17283 * If we still find ilms on ill with solicited node 17284 * mcast address or all_nodes mcast address, it must 17285 * belong to the UP interface that has not moved e.g. 17286 * ipif_id 0 with the link local prefix does not move. 17287 * We join this on the new ill accounting for all the 17288 * userland memberships so that applications don't 17289 * see any failure. 17290 * 17291 * We need to make sure that we account only for the 17292 * solicited node and all node multicast addresses 17293 * that was brought UP on these. In the case of 17294 * a failover from A to B, we might have ilms belonging 17295 * to A (ilm_orig_ifindex pointing at A) on B accounting 17296 * for the membership from the userland. If we are failing 17297 * over from B to C now, we will find the ones belonging 17298 * to A on B. These don't account for the ill_ipif_up_count. 17299 * They just move from B to C. The check below on 17300 * ilm_orig_ifindex ensures that. 17301 */ 17302 if ((ilm->ilm_orig_ifindex == 17303 from_ill->ill_phyint->phyint_ifindex) && 17304 (IN6_ARE_ADDR_EQUAL(&ipv6_snm, &ilm->ilm_v6addr) || 17305 IN6_ARE_ADDR_EQUAL(&ipv6_all_hosts_mcast, 17306 &ilm->ilm_v6addr))) { 17307 ASSERT(ilm->ilm_refcnt > 0); 17308 count = ilm->ilm_refcnt - from_ill->ill_ipif_up_count; 17309 /* 17310 * For indentation reasons, we are not using a 17311 * "else" here. 17312 */ 17313 if (count == 0) { 17314 ilmp = &ilm->ilm_next; 17315 continue; 17316 } 17317 ilm->ilm_refcnt -= count; 17318 if (new_ilm != NULL) { 17319 /* 17320 * Can find one with the same 17321 * ilm_orig_ifindex, if we are failing 17322 * over to a STANDBY. This happens 17323 * when somebody wants to join a group 17324 * on a STANDBY interface and we 17325 * internally join on a different one. 17326 * If we had joined on from_ill then, a 17327 * failover now will find a new ilm 17328 * with this index. 17329 */ 17330 ip1dbg(("ilm_move_v6: FAILOVER, found" 17331 " new ilm on %s, group address %s\n", 17332 to_ill->ill_name, 17333 inet_ntop(AF_INET6, 17334 &ilm->ilm_v6addr, buf, 17335 sizeof (buf)))); 17336 new_ilm->ilm_refcnt += count; 17337 if (new_ilm->ilm_fmode != MODE_IS_EXCLUDE || 17338 !SLIST_IS_EMPTY(new_ilm->ilm_filter)) { 17339 new_ilm->ilm_is_new = B_TRUE; 17340 } 17341 } else { 17342 new_ilm = (ilm_t *)mi_zalloc(sizeof (ilm_t)); 17343 if (new_ilm == NULL) { 17344 ip0dbg(("ilm_move_v6: FAILOVER of IPv6" 17345 " multicast address %s : from %s to" 17346 " %s failed : ENOMEM \n", 17347 inet_ntop(AF_INET6, 17348 &ilm->ilm_v6addr, buf, 17349 sizeof (buf)), from_ill->ill_name, 17350 to_ill->ill_name)); 17351 ilmp = &ilm->ilm_next; 17352 continue; 17353 } 17354 *new_ilm = *ilm; 17355 new_ilm->ilm_filter = NULL; 17356 new_ilm->ilm_refcnt = count; 17357 new_ilm->ilm_timer = INFINITY; 17358 new_ilm->ilm_rtx.rtx_timer = INFINITY; 17359 new_ilm->ilm_is_new = B_TRUE; 17360 /* 17361 * If the to_ill has not joined this 17362 * group we need to tell the driver in 17363 * ill_send_multicast_reqs. 17364 */ 17365 if (ilm_lookup_ill_v6(to_ill, 17366 &new_ilm->ilm_v6addr, ALL_ZONES) == NULL) 17367 new_ilm->ilm_notify_driver = B_TRUE; 17368 17369 new_ilm->ilm_ill = to_ill; 17370 /* Add to the to_ill's list */ 17371 new_ilm->ilm_next = to_ill->ill_ilm; 17372 to_ill->ill_ilm = new_ilm; 17373 ASSERT(new_ilm->ilm_ipif == NULL); 17374 } 17375 if (ilm->ilm_refcnt == 0) { 17376 goto bottom; 17377 } else { 17378 new_ilm->ilm_fmode = MODE_IS_EXCLUDE; 17379 CLEAR_SLIST(new_ilm->ilm_filter); 17380 ilmp = &ilm->ilm_next; 17381 } 17382 continue; 17383 } else { 17384 /* 17385 * ifindex = 0 means, move everything pointing at 17386 * from_ill. We are doing this becuase ill has 17387 * either FAILED or became INACTIVE. 17388 * 17389 * As we would like to move things later back to 17390 * from_ill, we want to retain the identity of this 17391 * ilm. Thus, we don't blindly increment the reference 17392 * count on the ilms matching the address alone. We 17393 * need to match on the ilm_orig_index also. new_ilm 17394 * was obtained by matching ilm_orig_index also. 17395 */ 17396 if (new_ilm != NULL) { 17397 /* 17398 * This is possible only if a previous restore 17399 * was incomplete i.e restore to 17400 * ilm_orig_ifindex left some ilms because 17401 * of some failures. Thus when we are failing 17402 * again, we might find our old friends there. 17403 */ 17404 ip1dbg(("ilm_move_v6: FAILOVER, found new ilm" 17405 " on %s, group address %s\n", 17406 to_ill->ill_name, 17407 inet_ntop(AF_INET6, 17408 &ilm->ilm_v6addr, buf, 17409 sizeof (buf)))); 17410 new_ilm->ilm_refcnt += ilm->ilm_refcnt; 17411 if (new_ilm->ilm_fmode != MODE_IS_EXCLUDE || 17412 !SLIST_IS_EMPTY(new_ilm->ilm_filter)) { 17413 new_ilm->ilm_is_new = B_TRUE; 17414 } 17415 } else { 17416 if (from_ill->ill_ilm_walker_cnt != 0) { 17417 new_ilm = (ilm_t *) 17418 mi_zalloc(sizeof (ilm_t)); 17419 if (new_ilm == NULL) { 17420 ip0dbg(("ilm_move_v6: " 17421 "FAILOVER of IPv6" 17422 " multicast address %s : " 17423 "from %s to" 17424 " %s failed : ENOMEM \n", 17425 inet_ntop(AF_INET6, 17426 &ilm->ilm_v6addr, buf, 17427 sizeof (buf)), 17428 from_ill->ill_name, 17429 to_ill->ill_name)); 17430 17431 ilmp = &ilm->ilm_next; 17432 continue; 17433 } 17434 *new_ilm = *ilm; 17435 new_ilm->ilm_filter = NULL; 17436 } else { 17437 *ilmp = ilm->ilm_next; 17438 new_ilm = ilm; 17439 } 17440 /* 17441 * If the to_ill has not joined this 17442 * group we need to tell the driver in 17443 * ill_send_multicast_reqs. 17444 */ 17445 if (ilm_lookup_ill_v6(to_ill, 17446 &new_ilm->ilm_v6addr, ALL_ZONES) == NULL) 17447 new_ilm->ilm_notify_driver = B_TRUE; 17448 17449 /* Add to the to_ill's list */ 17450 new_ilm->ilm_next = to_ill->ill_ilm; 17451 to_ill->ill_ilm = new_ilm; 17452 ASSERT(ilm->ilm_ipif == NULL); 17453 new_ilm->ilm_ill = to_ill; 17454 new_ilm->ilm_is_new = B_TRUE; 17455 } 17456 17457 } 17458 17459 bottom: 17460 /* 17461 * Revert multicast filter state to (EXCLUDE, NULL). 17462 * new_ilm->ilm_is_new should already be set if needed. 17463 */ 17464 new_ilm->ilm_fmode = MODE_IS_EXCLUDE; 17465 CLEAR_SLIST(new_ilm->ilm_filter); 17466 /* 17467 * We allocated/got a new ilm, free the old one. 17468 */ 17469 if (new_ilm != ilm) { 17470 if (from_ill->ill_ilm_walker_cnt == 0) { 17471 *ilmp = ilm->ilm_next; 17472 ilm->ilm_next = NULL; 17473 FREE_SLIST(ilm->ilm_filter); 17474 FREE_SLIST(ilm->ilm_pendsrcs); 17475 FREE_SLIST(ilm->ilm_rtx.rtx_allow); 17476 FREE_SLIST(ilm->ilm_rtx.rtx_block); 17477 mi_free((char *)ilm); 17478 } else { 17479 ilm->ilm_flags |= ILM_DELETED; 17480 from_ill->ill_ilm_cleanup_reqd = 1; 17481 ilmp = &ilm->ilm_next; 17482 } 17483 } 17484 } 17485 } 17486 17487 /* 17488 * Move all the multicast memberships to to_ill. Called when 17489 * an ipif moves from "from_ill" to "to_ill". This function is slightly 17490 * different from IPv6 counterpart as multicast memberships are associated 17491 * with ills in IPv6. This function is called after every ipif is moved 17492 * unlike IPv6, where it is moved only once. 17493 */ 17494 static void 17495 ilm_move_v4(ill_t *from_ill, ill_t *to_ill, ipif_t *ipif) 17496 { 17497 ilm_t *ilm; 17498 ilm_t *ilm_next; 17499 ilm_t *new_ilm; 17500 ilm_t **ilmp; 17501 ip_stack_t *ipst = from_ill->ill_ipst; 17502 17503 ASSERT(MUTEX_HELD(&to_ill->ill_lock)); 17504 ASSERT(MUTEX_HELD(&from_ill->ill_lock)); 17505 ASSERT(RW_WRITE_HELD(&ipst->ips_ill_g_lock)); 17506 17507 ilmp = &from_ill->ill_ilm; 17508 for (ilm = from_ill->ill_ilm; ilm != NULL; ilm = ilm_next) { 17509 ilm_next = ilm->ilm_next; 17510 17511 if (ilm->ilm_flags & ILM_DELETED) { 17512 ilmp = &ilm->ilm_next; 17513 continue; 17514 } 17515 17516 ASSERT(ilm->ilm_ipif != NULL); 17517 17518 if (ilm->ilm_ipif != ipif) { 17519 ilmp = &ilm->ilm_next; 17520 continue; 17521 } 17522 17523 if (V4_PART_OF_V6(ilm->ilm_v6addr) == 17524 htonl(INADDR_ALLHOSTS_GROUP)) { 17525 /* 17526 * We joined this in ipif_multicast_up 17527 * and we never did an ipif_multicast_down 17528 * for IPv4. If nobody else from the userland 17529 * has reference, we free the ilm, and later 17530 * when this ipif comes up on the new ill, 17531 * we will join this again. 17532 */ 17533 if (--ilm->ilm_refcnt == 0) 17534 goto delete_ilm; 17535 17536 new_ilm = ilm_lookup_ipif(ipif, 17537 V4_PART_OF_V6(ilm->ilm_v6addr)); 17538 if (new_ilm != NULL) { 17539 new_ilm->ilm_refcnt += ilm->ilm_refcnt; 17540 /* 17541 * We still need to deal with the from_ill. 17542 */ 17543 new_ilm->ilm_is_new = B_TRUE; 17544 new_ilm->ilm_fmode = MODE_IS_EXCLUDE; 17545 CLEAR_SLIST(new_ilm->ilm_filter); 17546 goto delete_ilm; 17547 } 17548 /* 17549 * If we could not find one e.g. ipif is 17550 * still down on to_ill, we add this ilm 17551 * on ill_new to preserve the reference 17552 * count. 17553 */ 17554 } 17555 /* 17556 * When ipifs move, ilms always move with it 17557 * to the NEW ill. Thus we should never be 17558 * able to find ilm till we really move it here. 17559 */ 17560 ASSERT(ilm_lookup_ipif(ipif, 17561 V4_PART_OF_V6(ilm->ilm_v6addr)) == NULL); 17562 17563 if (from_ill->ill_ilm_walker_cnt != 0) { 17564 new_ilm = (ilm_t *)mi_zalloc(sizeof (ilm_t)); 17565 if (new_ilm == NULL) { 17566 char buf[INET6_ADDRSTRLEN]; 17567 ip0dbg(("ilm_move_v4: FAILBACK of IPv4" 17568 " multicast address %s : " 17569 "from %s to" 17570 " %s failed : ENOMEM \n", 17571 inet_ntop(AF_INET, 17572 &ilm->ilm_v6addr, buf, 17573 sizeof (buf)), 17574 from_ill->ill_name, 17575 to_ill->ill_name)); 17576 17577 ilmp = &ilm->ilm_next; 17578 continue; 17579 } 17580 *new_ilm = *ilm; 17581 /* We don't want new_ilm linked to ilm's filter list */ 17582 new_ilm->ilm_filter = NULL; 17583 } else { 17584 /* Remove from the list */ 17585 *ilmp = ilm->ilm_next; 17586 new_ilm = ilm; 17587 } 17588 17589 /* 17590 * If we have never joined this group on the to_ill 17591 * make sure we tell the driver. 17592 */ 17593 if (ilm_lookup_ill_v6(to_ill, &new_ilm->ilm_v6addr, 17594 ALL_ZONES) == NULL) 17595 new_ilm->ilm_notify_driver = B_TRUE; 17596 17597 /* Add to the to_ill's list */ 17598 new_ilm->ilm_next = to_ill->ill_ilm; 17599 to_ill->ill_ilm = new_ilm; 17600 new_ilm->ilm_is_new = B_TRUE; 17601 17602 /* 17603 * Revert multicast filter state to (EXCLUDE, NULL) 17604 */ 17605 new_ilm->ilm_fmode = MODE_IS_EXCLUDE; 17606 CLEAR_SLIST(new_ilm->ilm_filter); 17607 17608 /* 17609 * Delete only if we have allocated a new ilm. 17610 */ 17611 if (new_ilm != ilm) { 17612 delete_ilm: 17613 if (from_ill->ill_ilm_walker_cnt == 0) { 17614 /* Remove from the list */ 17615 *ilmp = ilm->ilm_next; 17616 ilm->ilm_next = NULL; 17617 FREE_SLIST(ilm->ilm_filter); 17618 FREE_SLIST(ilm->ilm_pendsrcs); 17619 FREE_SLIST(ilm->ilm_rtx.rtx_allow); 17620 FREE_SLIST(ilm->ilm_rtx.rtx_block); 17621 mi_free((char *)ilm); 17622 } else { 17623 ilm->ilm_flags |= ILM_DELETED; 17624 from_ill->ill_ilm_cleanup_reqd = 1; 17625 ilmp = &ilm->ilm_next; 17626 } 17627 } 17628 } 17629 } 17630 17631 static uint_t 17632 ipif_get_id(ill_t *ill, uint_t id) 17633 { 17634 uint_t unit; 17635 ipif_t *tipif; 17636 boolean_t found = B_FALSE; 17637 ip_stack_t *ipst = ill->ill_ipst; 17638 17639 /* 17640 * During failback, we want to go back to the same id 17641 * instead of the smallest id so that the original 17642 * configuration is maintained. id is non-zero in that 17643 * case. 17644 */ 17645 if (id != 0) { 17646 /* 17647 * While failing back, if we still have an ipif with 17648 * MAX_ADDRS_PER_IF, it means this will be replaced 17649 * as soon as we return from this function. It was 17650 * to set to MAX_ADDRS_PER_IF by the caller so that 17651 * we can choose the smallest id. Thus we return zero 17652 * in that case ignoring the hint. 17653 */ 17654 if (ill->ill_ipif->ipif_id == MAX_ADDRS_PER_IF) 17655 return (0); 17656 for (tipif = ill->ill_ipif; tipif != NULL; 17657 tipif = tipif->ipif_next) { 17658 if (tipif->ipif_id == id) { 17659 found = B_TRUE; 17660 break; 17661 } 17662 } 17663 /* 17664 * If somebody already plumbed another logical 17665 * with the same id, we won't be able to find it. 17666 */ 17667 if (!found) 17668 return (id); 17669 } 17670 for (unit = 0; unit <= ipst->ips_ip_addrs_per_if; unit++) { 17671 found = B_FALSE; 17672 for (tipif = ill->ill_ipif; tipif != NULL; 17673 tipif = tipif->ipif_next) { 17674 if (tipif->ipif_id == unit) { 17675 found = B_TRUE; 17676 break; 17677 } 17678 } 17679 if (!found) 17680 break; 17681 } 17682 return (unit); 17683 } 17684 17685 /* ARGSUSED */ 17686 static int 17687 ipif_move(ipif_t *ipif, ill_t *to_ill, queue_t *q, mblk_t *mp, 17688 ipif_t **rep_ipif_ptr) 17689 { 17690 ill_t *from_ill; 17691 ipif_t *rep_ipif; 17692 ipif_t **ipifp; 17693 uint_t unit; 17694 int err = 0; 17695 ipif_t *to_ipif; 17696 struct iocblk *iocp; 17697 boolean_t failback_cmd; 17698 boolean_t remove_ipif; 17699 int rc; 17700 ip_stack_t *ipst; 17701 17702 ASSERT(IAM_WRITER_ILL(to_ill)); 17703 ASSERT(IAM_WRITER_IPIF(ipif)); 17704 17705 iocp = (struct iocblk *)mp->b_rptr; 17706 failback_cmd = (iocp->ioc_cmd == SIOCLIFFAILBACK); 17707 remove_ipif = B_FALSE; 17708 17709 from_ill = ipif->ipif_ill; 17710 ipst = from_ill->ill_ipst; 17711 17712 ASSERT(MUTEX_HELD(&to_ill->ill_lock)); 17713 ASSERT(MUTEX_HELD(&from_ill->ill_lock)); 17714 ASSERT(RW_WRITE_HELD(&ipst->ips_ill_g_lock)); 17715 17716 /* 17717 * Don't move LINK LOCAL addresses as they are tied to 17718 * physical interface. 17719 */ 17720 if (from_ill->ill_isv6 && 17721 IN6_IS_ADDR_LINKLOCAL(&ipif->ipif_v6lcl_addr)) { 17722 ipif->ipif_was_up = B_FALSE; 17723 IPIF_UNMARK_MOVING(ipif); 17724 return (0); 17725 } 17726 17727 /* 17728 * We set the ipif_id to maximum so that the search for 17729 * ipif_id will pick the lowest number i.e 0 in the 17730 * following 2 cases : 17731 * 17732 * 1) We have a replacement ipif at the head of to_ill. 17733 * We can't remove it yet as we can exceed ip_addrs_per_if 17734 * on to_ill and hence the MOVE might fail. We want to 17735 * remove it only if we could move the ipif. Thus, by 17736 * setting it to the MAX value, we make the search in 17737 * ipif_get_id return the zeroth id. 17738 * 17739 * 2) When DR pulls out the NIC and re-plumbs the interface, 17740 * we might just have a zero address plumbed on the ipif 17741 * with zero id in the case of IPv4. We remove that while 17742 * doing the failback. We want to remove it only if we 17743 * could move the ipif. Thus, by setting it to the MAX 17744 * value, we make the search in ipif_get_id return the 17745 * zeroth id. 17746 * 17747 * Both (1) and (2) are done only when when we are moving 17748 * an ipif (either due to failover/failback) which originally 17749 * belonged to this interface i.e the ipif_orig_ifindex is 17750 * the same as to_ill's ifindex. This is needed so that 17751 * FAILOVER from A -> B ( A failed) followed by FAILOVER 17752 * from B -> A (B is being removed from the group) and 17753 * FAILBACK from A -> B restores the original configuration. 17754 * Without the check for orig_ifindex, the second FAILOVER 17755 * could make the ipif belonging to B replace the A's zeroth 17756 * ipif and the subsequent failback re-creating the replacement 17757 * ipif again. 17758 * 17759 * NOTE : We created the replacement ipif when we did a 17760 * FAILOVER (See below). We could check for FAILBACK and 17761 * then look for replacement ipif to be removed. But we don't 17762 * want to do that because we wan't to allow the possibility 17763 * of a FAILOVER from A -> B (which creates the replacement ipif), 17764 * followed by a *FAILOVER* from B -> A instead of a FAILBACK 17765 * from B -> A. 17766 */ 17767 to_ipif = to_ill->ill_ipif; 17768 if ((to_ill->ill_phyint->phyint_ifindex == 17769 ipif->ipif_orig_ifindex) && 17770 IPIF_REPL_CHECK(to_ipif, failback_cmd)) { 17771 ASSERT(to_ipif->ipif_id == 0); 17772 remove_ipif = B_TRUE; 17773 to_ipif->ipif_id = MAX_ADDRS_PER_IF; 17774 } 17775 /* 17776 * Find the lowest logical unit number on the to_ill. 17777 * If we are failing back, try to get the original id 17778 * rather than the lowest one so that the original 17779 * configuration is maintained. 17780 * 17781 * XXX need a better scheme for this. 17782 */ 17783 if (failback_cmd) { 17784 unit = ipif_get_id(to_ill, ipif->ipif_orig_ipifid); 17785 } else { 17786 unit = ipif_get_id(to_ill, 0); 17787 } 17788 17789 /* Reset back to zero in case we fail below */ 17790 if (to_ipif->ipif_id == MAX_ADDRS_PER_IF) 17791 to_ipif->ipif_id = 0; 17792 17793 if (unit == ipst->ips_ip_addrs_per_if) { 17794 ipif->ipif_was_up = B_FALSE; 17795 IPIF_UNMARK_MOVING(ipif); 17796 return (EINVAL); 17797 } 17798 17799 /* 17800 * ipif is ready to move from "from_ill" to "to_ill". 17801 * 17802 * 1) If we are moving ipif with id zero, create a 17803 * replacement ipif for this ipif on from_ill. If this fails 17804 * fail the MOVE operation. 17805 * 17806 * 2) Remove the replacement ipif on to_ill if any. 17807 * We could remove the replacement ipif when we are moving 17808 * the ipif with id zero. But what if somebody already 17809 * unplumbed it ? Thus we always remove it if it is present. 17810 * We want to do it only if we are sure we are going to 17811 * move the ipif to to_ill which is why there are no 17812 * returns due to error till ipif is linked to to_ill. 17813 * Note that the first ipif that we failback will always 17814 * be zero if it is present. 17815 */ 17816 if (ipif->ipif_id == 0) { 17817 ipaddr_t inaddr_any = INADDR_ANY; 17818 17819 rep_ipif = (ipif_t *)mi_alloc(sizeof (ipif_t), BPRI_MED); 17820 if (rep_ipif == NULL) { 17821 ipif->ipif_was_up = B_FALSE; 17822 IPIF_UNMARK_MOVING(ipif); 17823 return (ENOMEM); 17824 } 17825 *rep_ipif = ipif_zero; 17826 /* 17827 * Before we put the ipif on the list, store the addresses 17828 * as mapped addresses as some of the ioctls e.g SIOCGIFADDR 17829 * assumes so. This logic is not any different from what 17830 * ipif_allocate does. 17831 */ 17832 IN6_IPADDR_TO_V4MAPPED(inaddr_any, 17833 &rep_ipif->ipif_v6lcl_addr); 17834 IN6_IPADDR_TO_V4MAPPED(inaddr_any, 17835 &rep_ipif->ipif_v6src_addr); 17836 IN6_IPADDR_TO_V4MAPPED(inaddr_any, 17837 &rep_ipif->ipif_v6subnet); 17838 IN6_IPADDR_TO_V4MAPPED(inaddr_any, 17839 &rep_ipif->ipif_v6net_mask); 17840 IN6_IPADDR_TO_V4MAPPED(inaddr_any, 17841 &rep_ipif->ipif_v6brd_addr); 17842 IN6_IPADDR_TO_V4MAPPED(inaddr_any, 17843 &rep_ipif->ipif_v6pp_dst_addr); 17844 /* 17845 * We mark IPIF_NOFAILOVER so that this can never 17846 * move. 17847 */ 17848 rep_ipif->ipif_flags = ipif->ipif_flags | IPIF_NOFAILOVER; 17849 rep_ipif->ipif_flags &= ~IPIF_UP & ~IPIF_DUPLICATE; 17850 rep_ipif->ipif_replace_zero = B_TRUE; 17851 mutex_init(&rep_ipif->ipif_saved_ire_lock, NULL, 17852 MUTEX_DEFAULT, NULL); 17853 rep_ipif->ipif_id = 0; 17854 rep_ipif->ipif_ire_type = ipif->ipif_ire_type; 17855 rep_ipif->ipif_ill = from_ill; 17856 rep_ipif->ipif_orig_ifindex = 17857 from_ill->ill_phyint->phyint_ifindex; 17858 /* Insert at head */ 17859 rep_ipif->ipif_next = from_ill->ill_ipif; 17860 from_ill->ill_ipif = rep_ipif; 17861 /* 17862 * We don't really care to let apps know about 17863 * this interface. 17864 */ 17865 } 17866 17867 if (remove_ipif) { 17868 /* 17869 * We set to a max value above for this case to get 17870 * id zero. ASSERT that we did get one. 17871 */ 17872 ASSERT((to_ipif->ipif_id == 0) && (unit == 0)); 17873 rep_ipif = to_ipif; 17874 to_ill->ill_ipif = rep_ipif->ipif_next; 17875 rep_ipif->ipif_next = NULL; 17876 /* 17877 * If some apps scanned and find this interface, 17878 * it is time to let them know, so that they can 17879 * delete it. 17880 */ 17881 17882 *rep_ipif_ptr = rep_ipif; 17883 } 17884 17885 /* Get it out of the ILL interface list. */ 17886 ipifp = &ipif->ipif_ill->ill_ipif; 17887 for (; *ipifp != NULL; ipifp = &ipifp[0]->ipif_next) { 17888 if (*ipifp == ipif) { 17889 *ipifp = ipif->ipif_next; 17890 break; 17891 } 17892 } 17893 17894 /* Assign the new ill */ 17895 ipif->ipif_ill = to_ill; 17896 ipif->ipif_id = unit; 17897 /* id has already been checked */ 17898 rc = ipif_insert(ipif, B_FALSE, B_FALSE); 17899 ASSERT(rc == 0); 17900 /* Let SCTP update its list */ 17901 sctp_move_ipif(ipif, from_ill, to_ill); 17902 /* 17903 * Handle the failover and failback of ipif_t between 17904 * ill_t that have differing maximum mtu values. 17905 */ 17906 if (ipif->ipif_mtu > to_ill->ill_max_mtu) { 17907 if (ipif->ipif_saved_mtu == 0) { 17908 /* 17909 * As this ipif_t is moving to an ill_t 17910 * that has a lower ill_max_mtu, its 17911 * ipif_mtu needs to be saved so it can 17912 * be restored during failback or during 17913 * failover to an ill_t which has a 17914 * higher ill_max_mtu. 17915 */ 17916 ipif->ipif_saved_mtu = ipif->ipif_mtu; 17917 ipif->ipif_mtu = to_ill->ill_max_mtu; 17918 } else { 17919 /* 17920 * The ipif_t is, once again, moving to 17921 * an ill_t that has a lower maximum mtu 17922 * value. 17923 */ 17924 ipif->ipif_mtu = to_ill->ill_max_mtu; 17925 } 17926 } else if (ipif->ipif_mtu < to_ill->ill_max_mtu && 17927 ipif->ipif_saved_mtu != 0) { 17928 /* 17929 * The mtu of this ipif_t had to be reduced 17930 * during an earlier failover; this is an 17931 * opportunity for it to be increased (either as 17932 * part of another failover or a failback). 17933 */ 17934 if (ipif->ipif_saved_mtu <= to_ill->ill_max_mtu) { 17935 ipif->ipif_mtu = ipif->ipif_saved_mtu; 17936 ipif->ipif_saved_mtu = 0; 17937 } else { 17938 ipif->ipif_mtu = to_ill->ill_max_mtu; 17939 } 17940 } 17941 17942 /* 17943 * We preserve all the other fields of the ipif including 17944 * ipif_saved_ire_mp. The routes that are saved here will 17945 * be recreated on the new interface and back on the old 17946 * interface when we move back. 17947 */ 17948 ASSERT(ipif->ipif_arp_del_mp == NULL); 17949 17950 return (err); 17951 } 17952 17953 static int 17954 ipif_move_all(ill_t *from_ill, ill_t *to_ill, queue_t *q, mblk_t *mp, 17955 int ifindex, ipif_t **rep_ipif_ptr) 17956 { 17957 ipif_t *mipif; 17958 ipif_t *ipif_next; 17959 int err; 17960 17961 /* 17962 * We don't really try to MOVE back things if some of the 17963 * operations fail. The daemon will take care of moving again 17964 * later on. 17965 */ 17966 for (mipif = from_ill->ill_ipif; mipif != NULL; mipif = ipif_next) { 17967 ipif_next = mipif->ipif_next; 17968 if (!(mipif->ipif_flags & IPIF_NOFAILOVER) && 17969 (ifindex == 0 || ifindex == mipif->ipif_orig_ifindex)) { 17970 17971 err = ipif_move(mipif, to_ill, q, mp, rep_ipif_ptr); 17972 17973 /* 17974 * When the MOVE fails, it is the job of the 17975 * application to take care of this properly 17976 * i.e try again if it is ENOMEM. 17977 */ 17978 if (mipif->ipif_ill != from_ill) { 17979 /* 17980 * ipif has moved. 17981 * 17982 * Move the multicast memberships associated 17983 * with this ipif to the new ill. For IPv6, we 17984 * do it once after all the ipifs are moved 17985 * (in ill_move) as they are not associated 17986 * with ipifs. 17987 * 17988 * We need to move the ilms as the ipif has 17989 * already been moved to a new ill even 17990 * in the case of errors. Neither 17991 * ilm_free(ipif) will find the ilm 17992 * when somebody unplumbs this ipif nor 17993 * ilm_delete(ilm) will be able to find the 17994 * ilm, if we don't move now. 17995 */ 17996 if (!from_ill->ill_isv6) 17997 ilm_move_v4(from_ill, to_ill, mipif); 17998 } 17999 18000 if (err != 0) 18001 return (err); 18002 } 18003 } 18004 return (0); 18005 } 18006 18007 static int 18008 ill_move(ill_t *from_ill, ill_t *to_ill, queue_t *q, mblk_t *mp) 18009 { 18010 int ifindex; 18011 int err; 18012 struct iocblk *iocp; 18013 ipif_t *ipif; 18014 ipif_t *rep_ipif_ptr = NULL; 18015 ipif_t *from_ipif = NULL; 18016 boolean_t check_rep_if = B_FALSE; 18017 ip_stack_t *ipst = from_ill->ill_ipst; 18018 18019 iocp = (struct iocblk *)mp->b_rptr; 18020 if (iocp->ioc_cmd == SIOCLIFFAILOVER) { 18021 /* 18022 * Move everything pointing at from_ill to to_ill. 18023 * We acheive this by passing in 0 as ifindex. 18024 */ 18025 ifindex = 0; 18026 } else { 18027 /* 18028 * Move everything pointing at from_ill whose original 18029 * ifindex of connp, ipif, ilm points at to_ill->ill_index. 18030 * We acheive this by passing in ifindex rather than 0. 18031 * Multicast vifs, ilgs move implicitly because ipifs move. 18032 */ 18033 ASSERT(iocp->ioc_cmd == SIOCLIFFAILBACK); 18034 ifindex = to_ill->ill_phyint->phyint_ifindex; 18035 } 18036 18037 /* 18038 * Determine if there is at least one ipif that would move from 18039 * 'from_ill' to 'to_ill'. If so, it is possible that the replacement 18040 * ipif (if it exists) on the to_ill would be consumed as a result of 18041 * the move, in which case we need to quiesce the replacement ipif also. 18042 */ 18043 for (from_ipif = from_ill->ill_ipif; from_ipif != NULL; 18044 from_ipif = from_ipif->ipif_next) { 18045 if (((ifindex == 0) || 18046 (ifindex == from_ipif->ipif_orig_ifindex)) && 18047 !(from_ipif->ipif_flags & IPIF_NOFAILOVER)) { 18048 check_rep_if = B_TRUE; 18049 break; 18050 } 18051 } 18052 18053 18054 ill_down_ipifs(from_ill, mp, ifindex, B_TRUE); 18055 18056 GRAB_ILL_LOCKS(from_ill, to_ill); 18057 if ((ipif = ill_quiescent_to_move(from_ill)) != NULL) { 18058 (void) ipsq_pending_mp_add(NULL, ipif, q, 18059 mp, ILL_MOVE_OK); 18060 RELEASE_ILL_LOCKS(from_ill, to_ill); 18061 return (EINPROGRESS); 18062 } 18063 18064 /* Check if the replacement ipif is quiescent to delete */ 18065 if (check_rep_if && IPIF_REPL_CHECK(to_ill->ill_ipif, 18066 (iocp->ioc_cmd == SIOCLIFFAILBACK))) { 18067 to_ill->ill_ipif->ipif_state_flags |= 18068 IPIF_MOVING | IPIF_CHANGING; 18069 if ((ipif = ill_quiescent_to_move(to_ill)) != NULL) { 18070 (void) ipsq_pending_mp_add(NULL, ipif, q, 18071 mp, ILL_MOVE_OK); 18072 RELEASE_ILL_LOCKS(from_ill, to_ill); 18073 return (EINPROGRESS); 18074 } 18075 } 18076 RELEASE_ILL_LOCKS(from_ill, to_ill); 18077 18078 ASSERT(!MUTEX_HELD(&to_ill->ill_lock)); 18079 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 18080 GRAB_ILL_LOCKS(from_ill, to_ill); 18081 err = ipif_move_all(from_ill, to_ill, q, mp, ifindex, &rep_ipif_ptr); 18082 18083 /* ilm_move is done inside ipif_move for IPv4 */ 18084 if (err == 0 && from_ill->ill_isv6) 18085 ilm_move_v6(from_ill, to_ill, ifindex); 18086 18087 RELEASE_ILL_LOCKS(from_ill, to_ill); 18088 rw_exit(&ipst->ips_ill_g_lock); 18089 18090 /* 18091 * send rts messages and multicast messages. 18092 */ 18093 if (rep_ipif_ptr != NULL) { 18094 if (rep_ipif_ptr->ipif_recovery_id != 0) { 18095 (void) untimeout(rep_ipif_ptr->ipif_recovery_id); 18096 rep_ipif_ptr->ipif_recovery_id = 0; 18097 } 18098 ip_rts_ifmsg(rep_ipif_ptr); 18099 ip_rts_newaddrmsg(RTM_DELETE, 0, rep_ipif_ptr); 18100 IPIF_TRACE_CLEANUP(rep_ipif_ptr); 18101 mi_free(rep_ipif_ptr); 18102 } 18103 18104 conn_move_ill(from_ill, to_ill, ifindex); 18105 18106 return (err); 18107 } 18108 18109 /* 18110 * Used to extract arguments for FAILOVER/FAILBACK ioctls. 18111 * Also checks for the validity of the arguments. 18112 * Note: We are already exclusive inside the from group. 18113 * It is upto the caller to release refcnt on the to_ill's. 18114 */ 18115 static int 18116 ip_extract_move_args(queue_t *q, mblk_t *mp, ill_t **ill_from_v4, 18117 ill_t **ill_from_v6, ill_t **ill_to_v4, ill_t **ill_to_v6) 18118 { 18119 int dst_index; 18120 ipif_t *ipif_v4, *ipif_v6; 18121 struct lifreq *lifr; 18122 mblk_t *mp1; 18123 boolean_t exists; 18124 sin_t *sin; 18125 int err = 0; 18126 ip_stack_t *ipst; 18127 18128 if (CONN_Q(q)) 18129 ipst = CONNQ_TO_IPST(q); 18130 else 18131 ipst = ILLQ_TO_IPST(q); 18132 18133 18134 if ((mp1 = mp->b_cont) == NULL) 18135 return (EPROTO); 18136 18137 if ((mp1 = mp1->b_cont) == NULL) 18138 return (EPROTO); 18139 18140 lifr = (struct lifreq *)mp1->b_rptr; 18141 sin = (sin_t *)&lifr->lifr_addr; 18142 18143 /* 18144 * We operate on both IPv4 and IPv6. Thus, we don't allow IPv4/IPv6 18145 * specific operations. 18146 */ 18147 if (sin->sin_family != AF_UNSPEC) 18148 return (EINVAL); 18149 18150 /* 18151 * Get ipif with id 0. We are writer on the from ill. So we can pass 18152 * NULLs for the last 4 args and we know the lookup won't fail 18153 * with EINPROGRESS. 18154 */ 18155 ipif_v4 = ipif_lookup_on_name(lifr->lifr_name, 18156 mi_strlen(lifr->lifr_name), B_FALSE, &exists, B_FALSE, 18157 ALL_ZONES, NULL, NULL, NULL, NULL, ipst); 18158 ipif_v6 = ipif_lookup_on_name(lifr->lifr_name, 18159 mi_strlen(lifr->lifr_name), B_FALSE, &exists, B_TRUE, 18160 ALL_ZONES, NULL, NULL, NULL, NULL, ipst); 18161 18162 if (ipif_v4 == NULL && ipif_v6 == NULL) 18163 return (ENXIO); 18164 18165 if (ipif_v4 != NULL) { 18166 ASSERT(ipif_v4->ipif_refcnt != 0); 18167 if (ipif_v4->ipif_id != 0) { 18168 err = EINVAL; 18169 goto done; 18170 } 18171 18172 ASSERT(IAM_WRITER_IPIF(ipif_v4)); 18173 *ill_from_v4 = ipif_v4->ipif_ill; 18174 } 18175 18176 if (ipif_v6 != NULL) { 18177 ASSERT(ipif_v6->ipif_refcnt != 0); 18178 if (ipif_v6->ipif_id != 0) { 18179 err = EINVAL; 18180 goto done; 18181 } 18182 18183 ASSERT(IAM_WRITER_IPIF(ipif_v6)); 18184 *ill_from_v6 = ipif_v6->ipif_ill; 18185 } 18186 18187 err = 0; 18188 dst_index = lifr->lifr_movetoindex; 18189 *ill_to_v4 = ill_lookup_on_ifindex(dst_index, B_FALSE, 18190 q, mp, ip_process_ioctl, &err, ipst); 18191 if (err != 0) { 18192 /* 18193 * There could be only v6. 18194 */ 18195 if (err != ENXIO) 18196 goto done; 18197 err = 0; 18198 } 18199 18200 *ill_to_v6 = ill_lookup_on_ifindex(dst_index, B_TRUE, 18201 q, mp, ip_process_ioctl, &err, ipst); 18202 if (err != 0) { 18203 if (err != ENXIO) 18204 goto done; 18205 if (*ill_to_v4 == NULL) { 18206 err = ENXIO; 18207 goto done; 18208 } 18209 err = 0; 18210 } 18211 18212 /* 18213 * If we have something to MOVE i.e "from" not NULL, 18214 * "to" should be non-NULL. 18215 */ 18216 if ((*ill_from_v4 != NULL && *ill_to_v4 == NULL) || 18217 (*ill_from_v6 != NULL && *ill_to_v6 == NULL)) { 18218 err = EINVAL; 18219 } 18220 18221 done: 18222 if (ipif_v4 != NULL) 18223 ipif_refrele(ipif_v4); 18224 if (ipif_v6 != NULL) 18225 ipif_refrele(ipif_v6); 18226 return (err); 18227 } 18228 18229 /* 18230 * FAILOVER and FAILBACK are modelled as MOVE operations. 18231 * 18232 * We don't check whether the MOVE is within the same group or 18233 * not, because this ioctl can be used as a generic mechanism 18234 * to failover from interface A to B, though things will function 18235 * only if they are really part of the same group. Moreover, 18236 * all ipifs may be down and hence temporarily out of the group. 18237 * 18238 * ipif's that need to be moved are first brought down; V4 ipifs are brought 18239 * down first and then V6. For each we wait for the ipif's to become quiescent. 18240 * Bringing down the ipifs ensures that all ires pointing to these ipifs's 18241 * have been deleted and there are no active references. Once quiescent the 18242 * ipif's are moved and brought up on the new ill. 18243 * 18244 * Normally the source ill and destination ill belong to the same IPMP group 18245 * and hence the same ipsq_t. In the event they don't belong to the same 18246 * same group the two ipsq's are first merged into one ipsq - that of the 18247 * to_ill. The multicast memberships on the source and destination ill cannot 18248 * change during the move operation since multicast joins/leaves also have to 18249 * execute on the same ipsq and are hence serialized. 18250 */ 18251 /* ARGSUSED */ 18252 int 18253 ip_sioctl_move(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 18254 ip_ioctl_cmd_t *ipip, void *ifreq) 18255 { 18256 ill_t *ill_to_v4 = NULL; 18257 ill_t *ill_to_v6 = NULL; 18258 ill_t *ill_from_v4 = NULL; 18259 ill_t *ill_from_v6 = NULL; 18260 int err = 0; 18261 18262 /* 18263 * setup from and to ill's, we can get EINPROGRESS only for 18264 * to_ill's. 18265 */ 18266 err = ip_extract_move_args(q, mp, &ill_from_v4, &ill_from_v6, 18267 &ill_to_v4, &ill_to_v6); 18268 18269 if (err != 0) { 18270 ip0dbg(("ip_sioctl_move: extract args failed\n")); 18271 goto done; 18272 } 18273 18274 /* 18275 * nothing to do. 18276 */ 18277 if ((ill_from_v4 != NULL) && (ill_from_v4 == ill_to_v4)) { 18278 goto done; 18279 } 18280 18281 /* 18282 * nothing to do. 18283 */ 18284 if ((ill_from_v6 != NULL) && (ill_from_v6 == ill_to_v6)) { 18285 goto done; 18286 } 18287 18288 /* 18289 * Mark the ill as changing. 18290 * ILL_CHANGING flag is cleared when the ipif's are brought up 18291 * in ill_up_ipifs in case of error they are cleared below. 18292 */ 18293 18294 GRAB_ILL_LOCKS(ill_from_v4, ill_from_v6); 18295 if (ill_from_v4 != NULL) 18296 ill_from_v4->ill_state_flags |= ILL_CHANGING; 18297 if (ill_from_v6 != NULL) 18298 ill_from_v6->ill_state_flags |= ILL_CHANGING; 18299 RELEASE_ILL_LOCKS(ill_from_v4, ill_from_v6); 18300 18301 /* 18302 * Make sure that both src and dst are 18303 * in the same syncq group. If not make it happen. 18304 * We are not holding any locks because we are the writer 18305 * on the from_ipsq and we will hold locks in ill_merge_groups 18306 * to protect to_ipsq against changing. 18307 */ 18308 if (ill_from_v4 != NULL) { 18309 if (ill_from_v4->ill_phyint->phyint_ipsq != 18310 ill_to_v4->ill_phyint->phyint_ipsq) { 18311 err = ill_merge_groups(ill_from_v4, ill_to_v4, 18312 NULL, mp, q); 18313 goto err_ret; 18314 18315 } 18316 ASSERT(!MUTEX_HELD(&ill_to_v4->ill_lock)); 18317 } else { 18318 18319 if (ill_from_v6->ill_phyint->phyint_ipsq != 18320 ill_to_v6->ill_phyint->phyint_ipsq) { 18321 err = ill_merge_groups(ill_from_v6, ill_to_v6, 18322 NULL, mp, q); 18323 goto err_ret; 18324 18325 } 18326 ASSERT(!MUTEX_HELD(&ill_to_v6->ill_lock)); 18327 } 18328 18329 /* 18330 * Now that the ipsq's have been merged and we are the writer 18331 * lets mark to_ill as changing as well. 18332 */ 18333 18334 GRAB_ILL_LOCKS(ill_to_v4, ill_to_v6); 18335 if (ill_to_v4 != NULL) 18336 ill_to_v4->ill_state_flags |= ILL_CHANGING; 18337 if (ill_to_v6 != NULL) 18338 ill_to_v6->ill_state_flags |= ILL_CHANGING; 18339 RELEASE_ILL_LOCKS(ill_to_v4, ill_to_v6); 18340 18341 /* 18342 * Its ok for us to proceed with the move even if 18343 * ill_pending_mp is non null on one of the from ill's as the reply 18344 * should not be looking at the ipif, it should only care about the 18345 * ill itself. 18346 */ 18347 18348 /* 18349 * lets move ipv4 first. 18350 */ 18351 if (ill_from_v4 != NULL) { 18352 ASSERT(IAM_WRITER_ILL(ill_to_v4)); 18353 ill_from_v4->ill_move_in_progress = B_TRUE; 18354 ill_to_v4->ill_move_in_progress = B_TRUE; 18355 ill_to_v4->ill_move_peer = ill_from_v4; 18356 ill_from_v4->ill_move_peer = ill_to_v4; 18357 err = ill_move(ill_from_v4, ill_to_v4, q, mp); 18358 } 18359 18360 /* 18361 * Now lets move ipv6. 18362 */ 18363 if (err == 0 && ill_from_v6 != NULL) { 18364 ASSERT(IAM_WRITER_ILL(ill_to_v6)); 18365 ill_from_v6->ill_move_in_progress = B_TRUE; 18366 ill_to_v6->ill_move_in_progress = B_TRUE; 18367 ill_to_v6->ill_move_peer = ill_from_v6; 18368 ill_from_v6->ill_move_peer = ill_to_v6; 18369 err = ill_move(ill_from_v6, ill_to_v6, q, mp); 18370 } 18371 18372 err_ret: 18373 /* 18374 * EINPROGRESS means we are waiting for the ipif's that need to be 18375 * moved to become quiescent. 18376 */ 18377 if (err == EINPROGRESS) { 18378 goto done; 18379 } 18380 18381 /* 18382 * if err is set ill_up_ipifs will not be called 18383 * lets clear the flags. 18384 */ 18385 18386 GRAB_ILL_LOCKS(ill_to_v4, ill_to_v6); 18387 GRAB_ILL_LOCKS(ill_from_v4, ill_from_v6); 18388 /* 18389 * Some of the clearing may be redundant. But it is simple 18390 * not making any extra checks. 18391 */ 18392 if (ill_from_v6 != NULL) { 18393 ill_from_v6->ill_move_in_progress = B_FALSE; 18394 ill_from_v6->ill_move_peer = NULL; 18395 ill_from_v6->ill_state_flags &= ~ILL_CHANGING; 18396 } 18397 if (ill_from_v4 != NULL) { 18398 ill_from_v4->ill_move_in_progress = B_FALSE; 18399 ill_from_v4->ill_move_peer = NULL; 18400 ill_from_v4->ill_state_flags &= ~ILL_CHANGING; 18401 } 18402 if (ill_to_v6 != NULL) { 18403 ill_to_v6->ill_move_in_progress = B_FALSE; 18404 ill_to_v6->ill_move_peer = NULL; 18405 ill_to_v6->ill_state_flags &= ~ILL_CHANGING; 18406 } 18407 if (ill_to_v4 != NULL) { 18408 ill_to_v4->ill_move_in_progress = B_FALSE; 18409 ill_to_v4->ill_move_peer = NULL; 18410 ill_to_v4->ill_state_flags &= ~ILL_CHANGING; 18411 } 18412 18413 /* 18414 * Check for setting INACTIVE, if STANDBY is set and FAILED is not set. 18415 * Do this always to maintain proper state i.e even in case of errors. 18416 * As phyint_inactive looks at both v4 and v6 interfaces, 18417 * we need not call on both v4 and v6 interfaces. 18418 */ 18419 if (ill_from_v4 != NULL) { 18420 if ((ill_from_v4->ill_phyint->phyint_flags & 18421 (PHYI_STANDBY | PHYI_FAILED)) == PHYI_STANDBY) { 18422 phyint_inactive(ill_from_v4->ill_phyint); 18423 } 18424 } else if (ill_from_v6 != NULL) { 18425 if ((ill_from_v6->ill_phyint->phyint_flags & 18426 (PHYI_STANDBY | PHYI_FAILED)) == PHYI_STANDBY) { 18427 phyint_inactive(ill_from_v6->ill_phyint); 18428 } 18429 } 18430 18431 if (ill_to_v4 != NULL) { 18432 if (ill_to_v4->ill_phyint->phyint_flags & PHYI_INACTIVE) { 18433 ill_to_v4->ill_phyint->phyint_flags &= ~PHYI_INACTIVE; 18434 } 18435 } else if (ill_to_v6 != NULL) { 18436 if (ill_to_v6->ill_phyint->phyint_flags & PHYI_INACTIVE) { 18437 ill_to_v6->ill_phyint->phyint_flags &= ~PHYI_INACTIVE; 18438 } 18439 } 18440 18441 RELEASE_ILL_LOCKS(ill_to_v4, ill_to_v6); 18442 RELEASE_ILL_LOCKS(ill_from_v4, ill_from_v6); 18443 18444 no_err: 18445 /* 18446 * lets bring the interfaces up on the to_ill. 18447 */ 18448 if (err == 0) { 18449 err = ill_up_ipifs(ill_to_v4 == NULL ? ill_to_v6:ill_to_v4, 18450 q, mp); 18451 } 18452 18453 if (err == 0) { 18454 if (ill_from_v4 != NULL && ill_to_v4 != NULL) 18455 ilm_send_multicast_reqs(ill_from_v4, ill_to_v4); 18456 18457 if (ill_from_v6 != NULL && ill_to_v6 != NULL) 18458 ilm_send_multicast_reqs(ill_from_v6, ill_to_v6); 18459 } 18460 done: 18461 18462 if (ill_to_v4 != NULL) { 18463 ill_refrele(ill_to_v4); 18464 } 18465 if (ill_to_v6 != NULL) { 18466 ill_refrele(ill_to_v6); 18467 } 18468 18469 return (err); 18470 } 18471 18472 static void 18473 ill_dl_down(ill_t *ill) 18474 { 18475 /* 18476 * The ill is down; unbind but stay attached since we're still 18477 * associated with a PPA. If we have negotiated DLPI capabilites 18478 * with the data link service provider (IDS_OK) then reset them. 18479 * The interval between unbinding and rebinding is potentially 18480 * unbounded hence we cannot assume things will be the same. 18481 * The DLPI capabilities will be probed again when the data link 18482 * is brought up. 18483 */ 18484 mblk_t *mp = ill->ill_unbind_mp; 18485 hook_nic_event_t *info; 18486 18487 ip1dbg(("ill_dl_down(%s)\n", ill->ill_name)); 18488 18489 ill->ill_unbind_mp = NULL; 18490 if (mp != NULL) { 18491 ip1dbg(("ill_dl_down: %s (%u) for %s\n", 18492 dlpi_prim_str(*(int *)mp->b_rptr), *(int *)mp->b_rptr, 18493 ill->ill_name)); 18494 mutex_enter(&ill->ill_lock); 18495 ill->ill_state_flags |= ILL_DL_UNBIND_IN_PROGRESS; 18496 mutex_exit(&ill->ill_lock); 18497 if (ill->ill_dlpi_capab_state == IDS_OK) 18498 ill_capability_reset(ill); 18499 ill_dlpi_send(ill, mp); 18500 } 18501 18502 /* 18503 * Toss all of our multicast memberships. We could keep them, but 18504 * then we'd have to do bookkeeping of any joins and leaves performed 18505 * by the application while the the interface is down (we can't just 18506 * issue them because arp cannot currently process AR_ENTRY_SQUERY's 18507 * on a downed interface). 18508 */ 18509 ill_leave_multicast(ill); 18510 18511 mutex_enter(&ill->ill_lock); 18512 18513 ill->ill_dl_up = 0; 18514 18515 if ((info = ill->ill_nic_event_info) != NULL) { 18516 ip2dbg(("ill_dl_down:unexpected nic event %d attached for %s\n", 18517 info->hne_event, ill->ill_name)); 18518 if (info->hne_data != NULL) 18519 kmem_free(info->hne_data, info->hne_datalen); 18520 kmem_free(info, sizeof (hook_nic_event_t)); 18521 } 18522 18523 info = kmem_alloc(sizeof (hook_nic_event_t), KM_NOSLEEP); 18524 if (info != NULL) { 18525 ip_stack_t *ipst = ill->ill_ipst; 18526 18527 info->hne_nic = ill->ill_phyint->phyint_hook_ifindex; 18528 info->hne_lif = 0; 18529 info->hne_event = NE_DOWN; 18530 info->hne_data = NULL; 18531 info->hne_datalen = 0; 18532 info->hne_family = ill->ill_isv6 ? 18533 ipst->ips_ipv6_net_data : ipst->ips_ipv4_net_data; 18534 } else 18535 ip2dbg(("ill_dl_down: could not attach DOWN nic event " 18536 "information for %s (ENOMEM)\n", ill->ill_name)); 18537 18538 ill->ill_nic_event_info = info; 18539 18540 mutex_exit(&ill->ill_lock); 18541 } 18542 18543 void 18544 ill_dlpi_dispatch(ill_t *ill, mblk_t *mp) 18545 { 18546 union DL_primitives *dlp; 18547 t_uscalar_t prim; 18548 18549 ASSERT(DB_TYPE(mp) == M_PROTO || DB_TYPE(mp) == M_PCPROTO); 18550 18551 dlp = (union DL_primitives *)mp->b_rptr; 18552 prim = dlp->dl_primitive; 18553 18554 ip1dbg(("ill_dlpi_dispatch: sending %s (%u) to %s\n", 18555 dlpi_prim_str(prim), prim, ill->ill_name)); 18556 18557 switch (prim) { 18558 case DL_PHYS_ADDR_REQ: 18559 { 18560 dl_phys_addr_req_t *dlpap = (dl_phys_addr_req_t *)mp->b_rptr; 18561 ill->ill_phys_addr_pend = dlpap->dl_addr_type; 18562 break; 18563 } 18564 case DL_BIND_REQ: 18565 mutex_enter(&ill->ill_lock); 18566 ill->ill_state_flags &= ~ILL_DL_UNBIND_IN_PROGRESS; 18567 mutex_exit(&ill->ill_lock); 18568 break; 18569 } 18570 18571 /* 18572 * Except for the ACKs for the M_PCPROTO messages, all other ACKs 18573 * are dropped by ip_rput() if ILL_CONDEMNED is set. Therefore 18574 * we only wait for the ACK of the DL_UNBIND_REQ. 18575 */ 18576 mutex_enter(&ill->ill_lock); 18577 if (!(ill->ill_state_flags & ILL_CONDEMNED) || 18578 (prim == DL_UNBIND_REQ)) { 18579 ill->ill_dlpi_pending = prim; 18580 } 18581 mutex_exit(&ill->ill_lock); 18582 18583 /* 18584 * Some drivers send M_FLUSH up to IP as part of unbind 18585 * request. When this M_FLUSH is sent back to the driver, 18586 * this can go after we send the detach request if the 18587 * M_FLUSH ends up in IP's syncq. To avoid that, we reply 18588 * to the M_FLUSH in ip_rput and locally generate another 18589 * M_FLUSH for the correctness. This will get freed in 18590 * ip_wput_nondata. 18591 */ 18592 if (prim == DL_UNBIND_REQ) 18593 (void) putnextctl1(ill->ill_rq, M_FLUSH, FLUSHRW); 18594 18595 putnext(ill->ill_wq, mp); 18596 } 18597 18598 /* 18599 * Send a DLPI control message to the driver but make sure there 18600 * is only one outstanding message. Uses ill_dlpi_pending to tell 18601 * when it must queue. ip_rput_dlpi_writer calls ill_dlpi_done() 18602 * when an ACK or a NAK is received to process the next queued message. 18603 * 18604 * We don't protect ill_dlpi_pending with any lock. This is okay as 18605 * every place where its accessed, ip is exclusive while accessing 18606 * ill_dlpi_pending except when this function is called from ill_init() 18607 */ 18608 void 18609 ill_dlpi_send(ill_t *ill, mblk_t *mp) 18610 { 18611 mblk_t **mpp; 18612 18613 ASSERT(IAM_WRITER_ILL(ill)); 18614 ASSERT(DB_TYPE(mp) == M_PROTO || DB_TYPE(mp) == M_PCPROTO); 18615 18616 if (ill->ill_dlpi_pending != DL_PRIM_INVAL) { 18617 /* Must queue message. Tail insertion */ 18618 mpp = &ill->ill_dlpi_deferred; 18619 while (*mpp != NULL) 18620 mpp = &((*mpp)->b_next); 18621 18622 ip1dbg(("ill_dlpi_send: deferring request for %s\n", 18623 ill->ill_name)); 18624 18625 *mpp = mp; 18626 return; 18627 } 18628 18629 ill_dlpi_dispatch(ill, mp); 18630 } 18631 18632 /* 18633 * Called when an DLPI control message has been acked or nacked to 18634 * send down the next queued message (if any). 18635 */ 18636 void 18637 ill_dlpi_done(ill_t *ill, t_uscalar_t prim) 18638 { 18639 mblk_t *mp; 18640 18641 ASSERT(IAM_WRITER_ILL(ill)); 18642 18643 ASSERT(prim != DL_PRIM_INVAL); 18644 if (ill->ill_dlpi_pending != prim) { 18645 if (ill->ill_dlpi_pending == DL_PRIM_INVAL) { 18646 (void) mi_strlog(ill->ill_rq, 1, 18647 SL_CONSOLE|SL_ERROR|SL_TRACE, 18648 "ill_dlpi_done: unsolicited ack for %s from %s\n", 18649 dlpi_prim_str(prim), ill->ill_name); 18650 } else { 18651 (void) mi_strlog(ill->ill_rq, 1, 18652 SL_CONSOLE|SL_ERROR|SL_TRACE, 18653 "ill_dlpi_done: unexpected ack for %s from %s " 18654 "(expecting ack for %s)\n", 18655 dlpi_prim_str(prim), ill->ill_name, 18656 dlpi_prim_str(ill->ill_dlpi_pending)); 18657 } 18658 return; 18659 } 18660 18661 ip1dbg(("ill_dlpi_done: %s has completed %s (%u)\n", ill->ill_name, 18662 dlpi_prim_str(ill->ill_dlpi_pending), ill->ill_dlpi_pending)); 18663 18664 if ((mp = ill->ill_dlpi_deferred) == NULL) { 18665 mutex_enter(&ill->ill_lock); 18666 ill->ill_dlpi_pending = DL_PRIM_INVAL; 18667 cv_signal(&ill->ill_cv); 18668 mutex_exit(&ill->ill_lock); 18669 return; 18670 } 18671 18672 ill->ill_dlpi_deferred = mp->b_next; 18673 mp->b_next = NULL; 18674 18675 ill_dlpi_dispatch(ill, mp); 18676 } 18677 18678 void 18679 conn_delete_ire(conn_t *connp, caddr_t arg) 18680 { 18681 ipif_t *ipif = (ipif_t *)arg; 18682 ire_t *ire; 18683 18684 /* 18685 * Look at the cached ires on conns which has pointers to ipifs. 18686 * We just call ire_refrele which clears up the reference 18687 * to ire. Called when a conn closes. Also called from ipif_free 18688 * to cleanup indirect references to the stale ipif via the cached ire. 18689 */ 18690 mutex_enter(&connp->conn_lock); 18691 ire = connp->conn_ire_cache; 18692 if (ire != NULL && (ipif == NULL || ire->ire_ipif == ipif)) { 18693 connp->conn_ire_cache = NULL; 18694 mutex_exit(&connp->conn_lock); 18695 IRE_REFRELE_NOTR(ire); 18696 return; 18697 } 18698 mutex_exit(&connp->conn_lock); 18699 18700 } 18701 18702 /* 18703 * Some operations (illgrp_delete(), ipif_down()) conditionally delete a number 18704 * of IREs. Those IREs may have been previously cached in the conn structure. 18705 * This ipcl_walk() walker function releases all references to such IREs based 18706 * on the condemned flag. 18707 */ 18708 /* ARGSUSED */ 18709 void 18710 conn_cleanup_stale_ire(conn_t *connp, caddr_t arg) 18711 { 18712 ire_t *ire; 18713 18714 mutex_enter(&connp->conn_lock); 18715 ire = connp->conn_ire_cache; 18716 if (ire != NULL && (ire->ire_marks & IRE_MARK_CONDEMNED)) { 18717 connp->conn_ire_cache = NULL; 18718 mutex_exit(&connp->conn_lock); 18719 IRE_REFRELE_NOTR(ire); 18720 return; 18721 } 18722 mutex_exit(&connp->conn_lock); 18723 } 18724 18725 /* 18726 * Take down a specific interface, but don't lose any information about it. 18727 * Also delete interface from its interface group (ifgrp). 18728 * (Always called as writer.) 18729 * This function goes through the down sequence even if the interface is 18730 * already down. There are 2 reasons. 18731 * a. Currently we permit interface routes that depend on down interfaces 18732 * to be added. This behaviour itself is questionable. However it appears 18733 * that both Solaris and 4.3 BSD have exhibited this behaviour for a long 18734 * time. We go thru the cleanup in order to remove these routes. 18735 * b. The bringup of the interface could fail in ill_dl_up i.e. we get 18736 * DL_ERROR_ACK in response to the the DL_BIND request. The interface is 18737 * down, but we need to cleanup i.e. do ill_dl_down and 18738 * ip_rput_dlpi_writer (DL_ERROR_ACK) -> ipif_down. 18739 * 18740 * IP-MT notes: 18741 * 18742 * Model of reference to interfaces. 18743 * 18744 * The following members in ipif_t track references to the ipif. 18745 * int ipif_refcnt; Active reference count 18746 * uint_t ipif_ire_cnt; Number of ire's referencing this ipif 18747 * The following members in ill_t track references to the ill. 18748 * int ill_refcnt; active refcnt 18749 * uint_t ill_ire_cnt; Number of ires referencing ill 18750 * uint_t ill_nce_cnt; Number of nces referencing ill 18751 * 18752 * Reference to an ipif or ill can be obtained in any of the following ways. 18753 * 18754 * Through the lookup functions ipif_lookup_* / ill_lookup_* functions 18755 * Pointers to ipif / ill from other data structures viz ire and conn. 18756 * Implicit reference to the ipif / ill by holding a reference to the ire. 18757 * 18758 * The ipif/ill lookup functions return a reference held ipif / ill. 18759 * ipif_refcnt and ill_refcnt track the reference counts respectively. 18760 * This is a purely dynamic reference count associated with threads holding 18761 * references to the ipif / ill. Pointers from other structures do not 18762 * count towards this reference count. 18763 * 18764 * ipif_ire_cnt/ill_ire_cnt is the number of ire's associated with the 18765 * ipif/ill. This is incremented whenever a new ire is created referencing the 18766 * ipif/ill. This is done atomically inside ire_add_v[46] where the ire is 18767 * actually added to the ire hash table. The count is decremented in 18768 * ire_inactive where the ire is destroyed. 18769 * 18770 * nce's reference ill's thru nce_ill and the count of nce's associated with 18771 * an ill is recorded in ill_nce_cnt. This is incremented atomically in 18772 * ndp_add() where the nce is actually added to the table. Similarly it is 18773 * decremented in ndp_inactive where the nce is destroyed. 18774 * 18775 * Flow of ioctls involving interface down/up 18776 * 18777 * The following is the sequence of an attempt to set some critical flags on an 18778 * up interface. 18779 * ip_sioctl_flags 18780 * ipif_down 18781 * wait for ipif to be quiescent 18782 * ipif_down_tail 18783 * ip_sioctl_flags_tail 18784 * 18785 * All set ioctls that involve down/up sequence would have a skeleton similar 18786 * to the above. All the *tail functions are called after the refcounts have 18787 * dropped to the appropriate values. 18788 * 18789 * The mechanism to quiesce an ipif is as follows. 18790 * 18791 * Mark the ipif as IPIF_CHANGING. No more lookups will be allowed 18792 * on the ipif. Callers either pass a flag requesting wait or the lookup 18793 * functions will return NULL. 18794 * 18795 * Delete all ires referencing this ipif 18796 * 18797 * Any thread attempting to do an ipif_refhold on an ipif that has been 18798 * obtained thru a cached pointer will first make sure that 18799 * the ipif can be refheld using the macro IPIF_CAN_LOOKUP and only then 18800 * increment the refcount. 18801 * 18802 * The above guarantees that the ipif refcount will eventually come down to 18803 * zero and the ipif will quiesce, once all threads that currently hold a 18804 * reference to the ipif refrelease the ipif. The ipif is quiescent after the 18805 * ipif_refcount has dropped to zero and all ire's associated with this ipif 18806 * have also been ire_inactive'd. i.e. when ipif_ire_cnt and ipif_refcnt both 18807 * drop to zero. 18808 * 18809 * Lookups during the IPIF_CHANGING/ILL_CHANGING interval. 18810 * 18811 * Threads trying to lookup an ipif or ill can pass a flag requesting 18812 * wait and restart if the ipif / ill cannot be looked up currently. 18813 * For eg. bind, and route operations (Eg. route add / delete) cannot return 18814 * failure if the ipif is currently undergoing an exclusive operation, and 18815 * hence pass the flag. The mblk is then enqueued in the ipsq and the operation 18816 * is restarted by ipsq_exit() when the currently exclusive ioctl completes. 18817 * The lookup and enqueue is atomic using the ill_lock and ipsq_lock. The 18818 * lookup is done holding the ill_lock. Hence the ill/ipif state flags can't 18819 * change while the ill_lock is held. Before dropping the ill_lock we acquire 18820 * the ipsq_lock and call ipsq_enq. This ensures that ipsq_exit can't finish 18821 * until we release the ipsq_lock, even though the the ill/ipif state flags 18822 * can change after we drop the ill_lock. 18823 * 18824 * An attempt to send out a packet using an ipif that is currently 18825 * IPIF_CHANGING will fail. No attempt is made in this case to enqueue this 18826 * operation and restart it later when the exclusive condition on the ipif ends. 18827 * This is an example of not passing the wait flag to the lookup functions. For 18828 * example an attempt to refhold and use conn->conn_multicast_ipif and send 18829 * out a multicast packet on that ipif will fail while the ipif is 18830 * IPIF_CHANGING. An attempt to create an IRE_CACHE using an ipif that is 18831 * currently IPIF_CHANGING will also fail. 18832 */ 18833 int 18834 ipif_down(ipif_t *ipif, queue_t *q, mblk_t *mp) 18835 { 18836 ill_t *ill = ipif->ipif_ill; 18837 phyint_t *phyi; 18838 conn_t *connp; 18839 boolean_t success; 18840 boolean_t ipif_was_up = B_FALSE; 18841 ip_stack_t *ipst = ill->ill_ipst; 18842 18843 ASSERT(IAM_WRITER_IPIF(ipif)); 18844 18845 ip1dbg(("ipif_down(%s:%u)\n", ill->ill_name, ipif->ipif_id)); 18846 18847 if (ipif->ipif_flags & IPIF_UP) { 18848 mutex_enter(&ill->ill_lock); 18849 ipif->ipif_flags &= ~IPIF_UP; 18850 ASSERT(ill->ill_ipif_up_count > 0); 18851 --ill->ill_ipif_up_count; 18852 mutex_exit(&ill->ill_lock); 18853 ipif_was_up = B_TRUE; 18854 /* Update status in SCTP's list */ 18855 sctp_update_ipif(ipif, SCTP_IPIF_DOWN); 18856 } 18857 18858 /* 18859 * Blow away v6 memberships we established in ipif_multicast_up(); the 18860 * v4 ones are left alone (as is the ipif_multicast_up flag, so we 18861 * know not to rejoin when the interface is brought back up). 18862 */ 18863 if (ipif->ipif_isv6) 18864 ipif_multicast_down(ipif); 18865 /* 18866 * Remove from the mapping for __sin6_src_id. We insert only 18867 * when the address is not INADDR_ANY. As IPv4 addresses are 18868 * stored as mapped addresses, we need to check for mapped 18869 * INADDR_ANY also. 18870 */ 18871 if (ipif_was_up && !IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6lcl_addr) && 18872 !IN6_IS_ADDR_V4MAPPED_ANY(&ipif->ipif_v6lcl_addr) && 18873 !(ipif->ipif_flags & IPIF_NOLOCAL)) { 18874 int err; 18875 18876 err = ip_srcid_remove(&ipif->ipif_v6lcl_addr, 18877 ipif->ipif_zoneid, ipst); 18878 if (err != 0) { 18879 ip0dbg(("ipif_down: srcid_remove %d\n", err)); 18880 } 18881 } 18882 18883 /* 18884 * Before we delete the ill from the group (if any), we need 18885 * to make sure that we delete all the routes dependent on 18886 * this and also any ipifs dependent on this ipif for 18887 * source address. We need to do before we delete from 18888 * the group because 18889 * 18890 * 1) ipif_down_delete_ire de-references ill->ill_group. 18891 * 18892 * 2) ipif_update_other_ipifs needs to walk the whole group 18893 * for re-doing source address selection. Note that 18894 * ipif_select_source[_v6] called from 18895 * ipif_update_other_ipifs[_v6] will not pick this ipif 18896 * because we have already marked down here i.e cleared 18897 * IPIF_UP. 18898 */ 18899 if (ipif->ipif_isv6) { 18900 ire_walk_v6(ipif_down_delete_ire, (char *)ipif, ALL_ZONES, 18901 ipst); 18902 } else { 18903 ire_walk_v4(ipif_down_delete_ire, (char *)ipif, ALL_ZONES, 18904 ipst); 18905 } 18906 18907 /* 18908 * Need to add these also to be saved and restored when the 18909 * ipif is brought down and up 18910 */ 18911 mutex_enter(&ipst->ips_ire_mrtun_lock); 18912 if (ipst->ips_ire_mrtun_count != 0) { 18913 mutex_exit(&ipst->ips_ire_mrtun_lock); 18914 ire_walk_ill_mrtun(0, 0, ipif_down_delete_ire, 18915 (char *)ipif, NULL, ipst); 18916 } else { 18917 mutex_exit(&ipst->ips_ire_mrtun_lock); 18918 } 18919 18920 mutex_enter(&ipst->ips_ire_srcif_table_lock); 18921 if (ipst->ips_ire_srcif_table_count > 0) { 18922 mutex_exit(&ipst->ips_ire_srcif_table_lock); 18923 ire_walk_srcif_table_v4(ipif_down_delete_ire, (char *)ipif, 18924 ipst); 18925 } else { 18926 mutex_exit(&ipst->ips_ire_srcif_table_lock); 18927 } 18928 18929 /* 18930 * Cleaning up the conn_ire_cache or conns must be done only after the 18931 * ires have been deleted above. Otherwise a thread could end up 18932 * caching an ire in a conn after we have finished the cleanup of the 18933 * conn. The caching is done after making sure that the ire is not yet 18934 * condemned. Also documented in the block comment above ip_output 18935 */ 18936 ipcl_walk(conn_cleanup_stale_ire, NULL, ipst); 18937 /* Also, delete the ires cached in SCTP */ 18938 sctp_ire_cache_flush(ipif); 18939 18940 /* Resolve any IPsec/IKE NAT-T instances that depend on this ipif. */ 18941 nattymod_clean_ipif(ipif); 18942 18943 /* 18944 * Update any other ipifs which have used "our" local address as 18945 * a source address. This entails removing and recreating IRE_INTERFACE 18946 * entries for such ipifs. 18947 */ 18948 if (ipif->ipif_isv6) 18949 ipif_update_other_ipifs_v6(ipif, ill->ill_group); 18950 else 18951 ipif_update_other_ipifs(ipif, ill->ill_group); 18952 18953 if (ipif_was_up) { 18954 /* 18955 * Check whether it is last ipif to leave this group. 18956 * If this is the last ipif to leave, we should remove 18957 * this ill from the group as ipif_select_source will not 18958 * be able to find any useful ipifs if this ill is selected 18959 * for load balancing. 18960 * 18961 * For nameless groups, we should call ifgrp_delete if this 18962 * belongs to some group. As this ipif is going down, we may 18963 * need to reconstruct groups. 18964 */ 18965 phyi = ill->ill_phyint; 18966 /* 18967 * If the phyint_groupname_len is 0, it may or may not 18968 * be in the nameless group. If the phyint_groupname_len is 18969 * not 0, then this ill should be part of some group. 18970 * As we always insert this ill in the group if 18971 * phyint_groupname_len is not zero when the first ipif 18972 * comes up (in ipif_up_done), it should be in a group 18973 * when the namelen is not 0. 18974 * 18975 * NOTE : When we delete the ill from the group,it will 18976 * blow away all the IRE_CACHES pointing either at this ipif or 18977 * ill_wq (illgrp_cache_delete does this). Thus, no IRES 18978 * should be pointing at this ill. 18979 */ 18980 ASSERT(phyi->phyint_groupname_len == 0 || 18981 (phyi->phyint_groupname != NULL && ill->ill_group != NULL)); 18982 18983 if (phyi->phyint_groupname_len != 0) { 18984 if (ill->ill_ipif_up_count == 0) 18985 illgrp_delete(ill); 18986 } 18987 18988 /* 18989 * If we have deleted some of the broadcast ires associated 18990 * with this ipif, we need to re-nominate somebody else if 18991 * the ires that we deleted were the nominated ones. 18992 */ 18993 if (ill->ill_group != NULL && !ill->ill_isv6) 18994 ipif_renominate_bcast(ipif); 18995 } 18996 18997 /* 18998 * neighbor-discovery or arp entries for this interface. 18999 */ 19000 ipif_ndp_down(ipif); 19001 19002 /* 19003 * If mp is NULL the caller will wait for the appropriate refcnt. 19004 * Eg. ip_sioctl_removeif -> ipif_free -> ipif_down 19005 * and ill_delete -> ipif_free -> ipif_down 19006 */ 19007 if (mp == NULL) { 19008 ASSERT(q == NULL); 19009 return (0); 19010 } 19011 19012 if (CONN_Q(q)) { 19013 connp = Q_TO_CONN(q); 19014 mutex_enter(&connp->conn_lock); 19015 } else { 19016 connp = NULL; 19017 } 19018 mutex_enter(&ill->ill_lock); 19019 /* 19020 * Are there any ire's pointing to this ipif that are still active ? 19021 * If this is the last ipif going down, are there any ire's pointing 19022 * to this ill that are still active ? 19023 */ 19024 if (ipif_is_quiescent(ipif)) { 19025 mutex_exit(&ill->ill_lock); 19026 if (connp != NULL) 19027 mutex_exit(&connp->conn_lock); 19028 return (0); 19029 } 19030 19031 ip1dbg(("ipif_down: need to wait, adding pending mp %s ill %p", 19032 ill->ill_name, (void *)ill)); 19033 /* 19034 * Enqueue the mp atomically in ipsq_pending_mp. When the refcount 19035 * drops down, the operation will be restarted by ipif_ill_refrele_tail 19036 * which in turn is called by the last refrele on the ipif/ill/ire. 19037 */ 19038 success = ipsq_pending_mp_add(connp, ipif, q, mp, IPIF_DOWN); 19039 if (!success) { 19040 /* The conn is closing. So just return */ 19041 ASSERT(connp != NULL); 19042 mutex_exit(&ill->ill_lock); 19043 mutex_exit(&connp->conn_lock); 19044 return (EINTR); 19045 } 19046 19047 mutex_exit(&ill->ill_lock); 19048 if (connp != NULL) 19049 mutex_exit(&connp->conn_lock); 19050 return (EINPROGRESS); 19051 } 19052 19053 void 19054 ipif_down_tail(ipif_t *ipif) 19055 { 19056 ill_t *ill = ipif->ipif_ill; 19057 19058 /* 19059 * Skip any loopback interface (null wq). 19060 * If this is the last logical interface on the ill 19061 * have ill_dl_down tell the driver we are gone (unbind) 19062 * Note that lun 0 can ipif_down even though 19063 * there are other logical units that are up. 19064 * This occurs e.g. when we change a "significant" IFF_ flag. 19065 */ 19066 if (ill->ill_wq != NULL && !ill->ill_logical_down && 19067 ill->ill_ipif_up_count == 0 && ill->ill_ipif_dup_count == 0 && 19068 ill->ill_dl_up) { 19069 ill_dl_down(ill); 19070 } 19071 ill->ill_logical_down = 0; 19072 19073 /* 19074 * Have to be after removing the routes in ipif_down_delete_ire. 19075 */ 19076 if (ipif->ipif_isv6) { 19077 if (ill->ill_flags & ILLF_XRESOLV) 19078 ipif_arp_down(ipif); 19079 } else { 19080 ipif_arp_down(ipif); 19081 } 19082 19083 ip_rts_ifmsg(ipif); 19084 ip_rts_newaddrmsg(RTM_DELETE, 0, ipif); 19085 } 19086 19087 /* 19088 * Bring interface logically down without bringing the physical interface 19089 * down e.g. when the netmask is changed. This avoids long lasting link 19090 * negotiations between an ethernet interface and a certain switches. 19091 */ 19092 static int 19093 ipif_logical_down(ipif_t *ipif, queue_t *q, mblk_t *mp) 19094 { 19095 /* 19096 * The ill_logical_down flag is a transient flag. It is set here 19097 * and is cleared once the down has completed in ipif_down_tail. 19098 * This flag does not indicate whether the ill stream is in the 19099 * DL_BOUND state with the driver. Instead this flag is used by 19100 * ipif_down_tail to determine whether to DL_UNBIND the stream with 19101 * the driver. The state of the ill stream i.e. whether it is 19102 * DL_BOUND with the driver or not is indicated by the ill_dl_up flag. 19103 */ 19104 ipif->ipif_ill->ill_logical_down = 1; 19105 return (ipif_down(ipif, q, mp)); 19106 } 19107 19108 /* 19109 * This is called when the SIOCSLIFUSESRC ioctl is processed in IP. 19110 * If the usesrc client ILL is already part of a usesrc group or not, 19111 * in either case a ire_stq with the matching usesrc client ILL will 19112 * locate the IRE's that need to be deleted. We want IREs to be created 19113 * with the new source address. 19114 */ 19115 static void 19116 ipif_delete_cache_ire(ire_t *ire, char *ill_arg) 19117 { 19118 ill_t *ucill = (ill_t *)ill_arg; 19119 19120 ASSERT(IAM_WRITER_ILL(ucill)); 19121 19122 if (ire->ire_stq == NULL) 19123 return; 19124 19125 if ((ire->ire_type == IRE_CACHE) && 19126 ((ill_t *)ire->ire_stq->q_ptr == ucill)) 19127 ire_delete(ire); 19128 } 19129 19130 /* 19131 * ire_walk routine to delete every IRE dependent on the interface 19132 * address that is going down. (Always called as writer.) 19133 * Works for both v4 and v6. 19134 * In addition for checking for ire_ipif matches it also checks for 19135 * IRE_CACHE entries which have the same source address as the 19136 * disappearing ipif since ipif_select_source might have picked 19137 * that source. Note that ipif_down/ipif_update_other_ipifs takes 19138 * care of any IRE_INTERFACE with the disappearing source address. 19139 */ 19140 static void 19141 ipif_down_delete_ire(ire_t *ire, char *ipif_arg) 19142 { 19143 ipif_t *ipif = (ipif_t *)ipif_arg; 19144 ill_t *ire_ill; 19145 ill_t *ipif_ill; 19146 19147 ASSERT(IAM_WRITER_IPIF(ipif)); 19148 if (ire->ire_ipif == NULL) 19149 return; 19150 19151 /* 19152 * For IPv4, we derive source addresses for an IRE from ipif's 19153 * belonging to the same IPMP group as the IRE's outgoing 19154 * interface. If an IRE's outgoing interface isn't in the 19155 * same IPMP group as a particular ipif, then that ipif 19156 * couldn't have been used as a source address for this IRE. 19157 * 19158 * For IPv6, source addresses are only restricted to the IPMP group 19159 * if the IRE is for a link-local address or a multicast address. 19160 * Otherwise, source addresses for an IRE can be chosen from 19161 * interfaces other than the the outgoing interface for that IRE. 19162 * 19163 * For source address selection details, see ipif_select_source() 19164 * and ipif_select_source_v6(). 19165 */ 19166 if (ire->ire_ipversion == IPV4_VERSION || 19167 IN6_IS_ADDR_LINKLOCAL(&ire->ire_addr_v6) || 19168 IN6_IS_ADDR_MULTICAST(&ire->ire_addr_v6)) { 19169 ire_ill = ire->ire_ipif->ipif_ill; 19170 ipif_ill = ipif->ipif_ill; 19171 19172 if (ire_ill->ill_group != ipif_ill->ill_group) { 19173 return; 19174 } 19175 } 19176 19177 19178 if (ire->ire_ipif != ipif) { 19179 /* 19180 * Look for a matching source address. 19181 */ 19182 if (ire->ire_type != IRE_CACHE) 19183 return; 19184 if (ipif->ipif_flags & IPIF_NOLOCAL) 19185 return; 19186 19187 if (ire->ire_ipversion == IPV4_VERSION) { 19188 if (ire->ire_src_addr != ipif->ipif_src_addr) 19189 return; 19190 } else { 19191 if (!IN6_ARE_ADDR_EQUAL(&ire->ire_src_addr_v6, 19192 &ipif->ipif_v6lcl_addr)) 19193 return; 19194 } 19195 ire_delete(ire); 19196 return; 19197 } 19198 /* 19199 * ire_delete() will do an ire_flush_cache which will delete 19200 * all ire_ipif matches 19201 */ 19202 ire_delete(ire); 19203 } 19204 19205 /* 19206 * ire_walk_ill function for deleting all IRE_CACHE entries for an ill when 19207 * 1) an ipif (on that ill) changes the IPIF_DEPRECATED flags, or 19208 * 2) when an interface is brought up or down (on that ill). 19209 * This ensures that the IRE_CACHE entries don't retain stale source 19210 * address selection results. 19211 */ 19212 void 19213 ill_ipif_cache_delete(ire_t *ire, char *ill_arg) 19214 { 19215 ill_t *ill = (ill_t *)ill_arg; 19216 ill_t *ipif_ill; 19217 19218 ASSERT(IAM_WRITER_ILL(ill)); 19219 /* 19220 * We use MATCH_IRE_TYPE/IRE_CACHE while calling ire_walk_ill_v4. 19221 * Hence this should be IRE_CACHE. 19222 */ 19223 ASSERT(ire->ire_type == IRE_CACHE); 19224 19225 /* 19226 * We are called for IRE_CACHES whose ire_ipif matches ill. 19227 * We are only interested in IRE_CACHES that has borrowed 19228 * the source address from ill_arg e.g. ipif_up_done[_v6] 19229 * for which we need to look at ire_ipif->ipif_ill match 19230 * with ill. 19231 */ 19232 ASSERT(ire->ire_ipif != NULL); 19233 ipif_ill = ire->ire_ipif->ipif_ill; 19234 if (ipif_ill == ill || (ill->ill_group != NULL && 19235 ipif_ill->ill_group == ill->ill_group)) { 19236 ire_delete(ire); 19237 } 19238 } 19239 19240 /* 19241 * Delete all the ire whose stq references ill_arg. 19242 */ 19243 static void 19244 ill_stq_cache_delete(ire_t *ire, char *ill_arg) 19245 { 19246 ill_t *ill = (ill_t *)ill_arg; 19247 ill_t *ire_ill; 19248 19249 ASSERT(IAM_WRITER_ILL(ill)); 19250 /* 19251 * We use MATCH_IRE_TYPE/IRE_CACHE while calling ire_walk_ill_v4. 19252 * Hence this should be IRE_CACHE. 19253 */ 19254 ASSERT(ire->ire_type == IRE_CACHE); 19255 19256 /* 19257 * We are called for IRE_CACHES whose ire_stq and ire_ipif 19258 * matches ill. We are only interested in IRE_CACHES that 19259 * has ire_stq->q_ptr pointing at ill_arg. Thus we do the 19260 * filtering here. 19261 */ 19262 ire_ill = (ill_t *)ire->ire_stq->q_ptr; 19263 19264 if (ire_ill == ill) 19265 ire_delete(ire); 19266 } 19267 19268 /* 19269 * This is called when an ill leaves the group. We want to delete 19270 * all IRE_CACHES whose stq is pointing at ill_wq or ire_ipif is 19271 * pointing at ill. 19272 */ 19273 static void 19274 illgrp_cache_delete(ire_t *ire, char *ill_arg) 19275 { 19276 ill_t *ill = (ill_t *)ill_arg; 19277 19278 ASSERT(IAM_WRITER_ILL(ill)); 19279 ASSERT(ill->ill_group == NULL); 19280 /* 19281 * We use MATCH_IRE_TYPE/IRE_CACHE while calling ire_walk_ill_v4. 19282 * Hence this should be IRE_CACHE. 19283 */ 19284 ASSERT(ire->ire_type == IRE_CACHE); 19285 /* 19286 * We are called for IRE_CACHES whose ire_stq and ire_ipif 19287 * matches ill. We are interested in both. 19288 */ 19289 ASSERT((ill == (ill_t *)ire->ire_stq->q_ptr) || 19290 (ire->ire_ipif->ipif_ill == ill)); 19291 19292 ire_delete(ire); 19293 } 19294 19295 /* 19296 * Initiate deallocate of an IPIF. Always called as writer. Called by 19297 * ill_delete or ip_sioctl_removeif. 19298 */ 19299 static void 19300 ipif_free(ipif_t *ipif) 19301 { 19302 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; 19303 19304 ASSERT(IAM_WRITER_IPIF(ipif)); 19305 19306 if (ipif->ipif_recovery_id != 0) 19307 (void) untimeout(ipif->ipif_recovery_id); 19308 ipif->ipif_recovery_id = 0; 19309 19310 /* Remove conn references */ 19311 reset_conn_ipif(ipif); 19312 19313 /* 19314 * Make sure we have valid net and subnet broadcast ire's for the 19315 * other ipif's which share them with this ipif. 19316 */ 19317 if (!ipif->ipif_isv6) 19318 ipif_check_bcast_ires(ipif); 19319 19320 /* 19321 * Take down the interface. We can be called either from ill_delete 19322 * or from ip_sioctl_removeif. 19323 */ 19324 (void) ipif_down(ipif, NULL, NULL); 19325 19326 /* 19327 * Now that the interface is down, there's no chance it can still 19328 * become a duplicate. Cancel any timer that may have been set while 19329 * tearing down. 19330 */ 19331 if (ipif->ipif_recovery_id != 0) 19332 (void) untimeout(ipif->ipif_recovery_id); 19333 ipif->ipif_recovery_id = 0; 19334 19335 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 19336 /* Remove pointers to this ill in the multicast routing tables */ 19337 reset_mrt_vif_ipif(ipif); 19338 rw_exit(&ipst->ips_ill_g_lock); 19339 } 19340 19341 /* 19342 * Warning: this is not the only function that calls mi_free on an ipif_t. See 19343 * also ill_move(). 19344 */ 19345 static void 19346 ipif_free_tail(ipif_t *ipif) 19347 { 19348 mblk_t *mp; 19349 ipif_t **ipifp; 19350 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; 19351 19352 /* 19353 * Free state for addition IRE_IF_[NO]RESOLVER ire's. 19354 */ 19355 mutex_enter(&ipif->ipif_saved_ire_lock); 19356 mp = ipif->ipif_saved_ire_mp; 19357 ipif->ipif_saved_ire_mp = NULL; 19358 mutex_exit(&ipif->ipif_saved_ire_lock); 19359 freemsg(mp); 19360 19361 /* 19362 * Need to hold both ill_g_lock and ill_lock while 19363 * inserting or removing an ipif from the linked list 19364 * of ipifs hanging off the ill. 19365 */ 19366 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 19367 /* 19368 * Remove all multicast memberships on the interface now. 19369 * This removes IPv4 multicast memberships joined within 19370 * the kernel as ipif_down does not do ipif_multicast_down 19371 * for IPv4. IPv6 is not handled here as the multicast memberships 19372 * are based on ill and not on ipif. 19373 */ 19374 ilm_free(ipif); 19375 19376 /* 19377 * Since we held the ill_g_lock while doing the ilm_free above, 19378 * we can assert the ilms were really deleted and not just marked 19379 * ILM_DELETED. 19380 */ 19381 ASSERT(ilm_walk_ipif(ipif) == 0); 19382 19383 19384 IPIF_TRACE_CLEANUP(ipif); 19385 19386 /* Ask SCTP to take it out of it list */ 19387 sctp_update_ipif(ipif, SCTP_IPIF_REMOVE); 19388 19389 mutex_enter(&ipif->ipif_ill->ill_lock); 19390 /* Get it out of the ILL interface list. */ 19391 ipifp = &ipif->ipif_ill->ill_ipif; 19392 for (; *ipifp != NULL; ipifp = &ipifp[0]->ipif_next) { 19393 if (*ipifp == ipif) { 19394 *ipifp = ipif->ipif_next; 19395 break; 19396 } 19397 } 19398 19399 mutex_exit(&ipif->ipif_ill->ill_lock); 19400 rw_exit(&ipst->ips_ill_g_lock); 19401 19402 mutex_destroy(&ipif->ipif_saved_ire_lock); 19403 19404 ASSERT(!(ipif->ipif_flags & (IPIF_UP | IPIF_DUPLICATE))); 19405 ASSERT(ipif->ipif_recovery_id == 0); 19406 19407 /* Free the memory. */ 19408 mi_free((char *)ipif); 19409 } 19410 19411 /* 19412 * Returns an ipif name in the form "ill_name/unit" if ipif_id is not zero, 19413 * "ill_name" otherwise. 19414 */ 19415 char * 19416 ipif_get_name(const ipif_t *ipif, char *buf, int len) 19417 { 19418 char lbuf[32]; 19419 char *name; 19420 size_t name_len; 19421 19422 buf[0] = '\0'; 19423 if (!ipif) 19424 return (buf); 19425 name = ipif->ipif_ill->ill_name; 19426 name_len = ipif->ipif_ill->ill_name_length; 19427 if (ipif->ipif_id != 0) { 19428 (void) sprintf(lbuf, "%s%c%d", name, IPIF_SEPARATOR_CHAR, 19429 ipif->ipif_id); 19430 name = lbuf; 19431 name_len = mi_strlen(name) + 1; 19432 } 19433 len -= 1; 19434 buf[len] = '\0'; 19435 len = MIN(len, name_len); 19436 bcopy(name, buf, len); 19437 return (buf); 19438 } 19439 19440 /* 19441 * Find an IPIF based on the name passed in. Names can be of the 19442 * form <phys> (e.g., le0), <phys>:<#> (e.g., le0:1), 19443 * The <phys> string can have forms like <dev><#> (e.g., le0), 19444 * <dev><#>.<module> (e.g. le0.foo), or <dev>.<module><#> (e.g. ip.tun3). 19445 * When there is no colon, the implied unit id is zero. <phys> must 19446 * correspond to the name of an ILL. (May be called as writer.) 19447 */ 19448 static ipif_t * 19449 ipif_lookup_on_name(char *name, size_t namelen, boolean_t do_alloc, 19450 boolean_t *exists, boolean_t isv6, zoneid_t zoneid, queue_t *q, 19451 mblk_t *mp, ipsq_func_t func, int *error, ip_stack_t *ipst) 19452 { 19453 char *cp; 19454 char *endp; 19455 long id; 19456 ill_t *ill; 19457 ipif_t *ipif; 19458 uint_t ire_type; 19459 boolean_t did_alloc = B_FALSE; 19460 ipsq_t *ipsq; 19461 19462 if (error != NULL) 19463 *error = 0; 19464 19465 /* 19466 * If the caller wants to us to create the ipif, make sure we have a 19467 * valid zoneid 19468 */ 19469 ASSERT(!do_alloc || zoneid != ALL_ZONES); 19470 19471 if (namelen == 0) { 19472 if (error != NULL) 19473 *error = ENXIO; 19474 return (NULL); 19475 } 19476 19477 *exists = B_FALSE; 19478 /* Look for a colon in the name. */ 19479 endp = &name[namelen]; 19480 for (cp = endp; --cp > name; ) { 19481 if (*cp == IPIF_SEPARATOR_CHAR) 19482 break; 19483 } 19484 19485 if (*cp == IPIF_SEPARATOR_CHAR) { 19486 /* 19487 * Reject any non-decimal aliases for logical 19488 * interfaces. Aliases with leading zeroes 19489 * are also rejected as they introduce ambiguity 19490 * in the naming of the interfaces. 19491 * In order to confirm with existing semantics, 19492 * and to not break any programs/script relying 19493 * on that behaviour, if<0>:0 is considered to be 19494 * a valid interface. 19495 * 19496 * If alias has two or more digits and the first 19497 * is zero, fail. 19498 */ 19499 if (&cp[2] < endp && cp[1] == '0') 19500 return (NULL); 19501 } 19502 19503 if (cp <= name) { 19504 cp = endp; 19505 } else { 19506 *cp = '\0'; 19507 } 19508 19509 /* 19510 * Look up the ILL, based on the portion of the name 19511 * before the slash. ill_lookup_on_name returns a held ill. 19512 * Temporary to check whether ill exists already. If so 19513 * ill_lookup_on_name will clear it. 19514 */ 19515 ill = ill_lookup_on_name(name, do_alloc, isv6, 19516 q, mp, func, error, &did_alloc, ipst); 19517 if (cp != endp) 19518 *cp = IPIF_SEPARATOR_CHAR; 19519 if (ill == NULL) 19520 return (NULL); 19521 19522 /* Establish the unit number in the name. */ 19523 id = 0; 19524 if (cp < endp && *endp == '\0') { 19525 /* If there was a colon, the unit number follows. */ 19526 cp++; 19527 if (ddi_strtol(cp, NULL, 0, &id) != 0) { 19528 ill_refrele(ill); 19529 if (error != NULL) 19530 *error = ENXIO; 19531 return (NULL); 19532 } 19533 } 19534 19535 GRAB_CONN_LOCK(q); 19536 mutex_enter(&ill->ill_lock); 19537 /* Now see if there is an IPIF with this unit number. */ 19538 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 19539 if (ipif->ipif_id == id) { 19540 if (zoneid != ALL_ZONES && 19541 zoneid != ipif->ipif_zoneid && 19542 ipif->ipif_zoneid != ALL_ZONES) { 19543 mutex_exit(&ill->ill_lock); 19544 RELEASE_CONN_LOCK(q); 19545 ill_refrele(ill); 19546 if (error != NULL) 19547 *error = ENXIO; 19548 return (NULL); 19549 } 19550 /* 19551 * The block comment at the start of ipif_down 19552 * explains the use of the macros used below 19553 */ 19554 if (IPIF_CAN_LOOKUP(ipif)) { 19555 ipif_refhold_locked(ipif); 19556 mutex_exit(&ill->ill_lock); 19557 if (!did_alloc) 19558 *exists = B_TRUE; 19559 /* 19560 * Drop locks before calling ill_refrele 19561 * since it can potentially call into 19562 * ipif_ill_refrele_tail which can end up 19563 * in trying to acquire any lock. 19564 */ 19565 RELEASE_CONN_LOCK(q); 19566 ill_refrele(ill); 19567 return (ipif); 19568 } else if (IPIF_CAN_WAIT(ipif, q)) { 19569 ipsq = ill->ill_phyint->phyint_ipsq; 19570 mutex_enter(&ipsq->ipsq_lock); 19571 mutex_exit(&ill->ill_lock); 19572 ipsq_enq(ipsq, q, mp, func, NEW_OP, ill); 19573 mutex_exit(&ipsq->ipsq_lock); 19574 RELEASE_CONN_LOCK(q); 19575 ill_refrele(ill); 19576 *error = EINPROGRESS; 19577 return (NULL); 19578 } 19579 } 19580 } 19581 RELEASE_CONN_LOCK(q); 19582 19583 if (!do_alloc) { 19584 mutex_exit(&ill->ill_lock); 19585 ill_refrele(ill); 19586 if (error != NULL) 19587 *error = ENXIO; 19588 return (NULL); 19589 } 19590 19591 /* 19592 * If none found, atomically allocate and return a new one. 19593 * Historically, we used IRE_LOOPBACK only for lun 0, and IRE_LOCAL 19594 * to support "receive only" use of lo0:1 etc. as is still done 19595 * below as an initial guess. 19596 * However, this is now likely to be overriden later in ipif_up_done() 19597 * when we know for sure what address has been configured on the 19598 * interface, since we might have more than one loopback interface 19599 * with a loopback address, e.g. in the case of zones, and all the 19600 * interfaces with loopback addresses need to be marked IRE_LOOPBACK. 19601 */ 19602 if (ill->ill_net_type == IRE_LOOPBACK && id == 0) 19603 ire_type = IRE_LOOPBACK; 19604 else 19605 ire_type = IRE_LOCAL; 19606 ipif = ipif_allocate(ill, id, ire_type, B_TRUE); 19607 if (ipif != NULL) 19608 ipif_refhold_locked(ipif); 19609 else if (error != NULL) 19610 *error = ENOMEM; 19611 mutex_exit(&ill->ill_lock); 19612 ill_refrele(ill); 19613 return (ipif); 19614 } 19615 19616 /* 19617 * This routine is called whenever a new address comes up on an ipif. If 19618 * we are configured to respond to address mask requests, then we are supposed 19619 * to broadcast an address mask reply at this time. This routine is also 19620 * called if we are already up, but a netmask change is made. This is legal 19621 * but might not make the system manager very popular. (May be called 19622 * as writer.) 19623 */ 19624 void 19625 ipif_mask_reply(ipif_t *ipif) 19626 { 19627 icmph_t *icmph; 19628 ipha_t *ipha; 19629 mblk_t *mp; 19630 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; 19631 19632 #define REPLY_LEN (sizeof (icmp_ipha) + sizeof (icmph_t) + IP_ADDR_LEN) 19633 19634 if (!ipst->ips_ip_respond_to_address_mask_broadcast) 19635 return; 19636 19637 /* ICMP mask reply is IPv4 only */ 19638 ASSERT(!ipif->ipif_isv6); 19639 /* ICMP mask reply is not for a loopback interface */ 19640 ASSERT(ipif->ipif_ill->ill_wq != NULL); 19641 19642 mp = allocb(REPLY_LEN, BPRI_HI); 19643 if (mp == NULL) 19644 return; 19645 mp->b_wptr = mp->b_rptr + REPLY_LEN; 19646 19647 ipha = (ipha_t *)mp->b_rptr; 19648 bzero(ipha, REPLY_LEN); 19649 *ipha = icmp_ipha; 19650 ipha->ipha_ttl = ipst->ips_ip_broadcast_ttl; 19651 ipha->ipha_src = ipif->ipif_src_addr; 19652 ipha->ipha_dst = ipif->ipif_brd_addr; 19653 ipha->ipha_length = htons(REPLY_LEN); 19654 ipha->ipha_ident = 0; 19655 19656 icmph = (icmph_t *)&ipha[1]; 19657 icmph->icmph_type = ICMP_ADDRESS_MASK_REPLY; 19658 bcopy(&ipif->ipif_net_mask, &icmph[1], IP_ADDR_LEN); 19659 icmph->icmph_checksum = IP_CSUM(mp, sizeof (ipha_t), 0); 19660 19661 put(ipif->ipif_wq, mp); 19662 19663 #undef REPLY_LEN 19664 } 19665 19666 /* 19667 * When the mtu in the ipif changes, we call this routine through ire_walk 19668 * to update all the relevant IREs. 19669 * Skip IRE_LOCAL and "loopback" IRE_BROADCAST by checking ire_stq. 19670 */ 19671 static void 19672 ipif_mtu_change(ire_t *ire, char *ipif_arg) 19673 { 19674 ipif_t *ipif = (ipif_t *)ipif_arg; 19675 19676 if (ire->ire_stq == NULL || ire->ire_ipif != ipif) 19677 return; 19678 ire->ire_max_frag = MIN(ipif->ipif_mtu, IP_MAXPACKET); 19679 } 19680 19681 /* 19682 * When the mtu in the ill changes, we call this routine through ire_walk 19683 * to update all the relevant IREs. 19684 * Skip IRE_LOCAL and "loopback" IRE_BROADCAST by checking ire_stq. 19685 */ 19686 void 19687 ill_mtu_change(ire_t *ire, char *ill_arg) 19688 { 19689 ill_t *ill = (ill_t *)ill_arg; 19690 19691 if (ire->ire_stq == NULL || ire->ire_ipif->ipif_ill != ill) 19692 return; 19693 ire->ire_max_frag = ire->ire_ipif->ipif_mtu; 19694 } 19695 19696 /* 19697 * Join the ipif specific multicast groups. 19698 * Must be called after a mapping has been set up in the resolver. (Always 19699 * called as writer.) 19700 */ 19701 void 19702 ipif_multicast_up(ipif_t *ipif) 19703 { 19704 int err, index; 19705 ill_t *ill; 19706 19707 ASSERT(IAM_WRITER_IPIF(ipif)); 19708 19709 ill = ipif->ipif_ill; 19710 index = ill->ill_phyint->phyint_ifindex; 19711 19712 ip1dbg(("ipif_multicast_up\n")); 19713 if (!(ill->ill_flags & ILLF_MULTICAST) || ipif->ipif_multicast_up) 19714 return; 19715 19716 if (ipif->ipif_isv6) { 19717 if (IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6lcl_addr)) 19718 return; 19719 19720 /* Join the all hosts multicast address */ 19721 ip1dbg(("ipif_multicast_up - addmulti\n")); 19722 /* 19723 * Passing B_TRUE means we have to join the multicast 19724 * membership on this interface even though this is 19725 * FAILED. If we join on a different one in the group, 19726 * we will not be able to delete the membership later 19727 * as we currently don't track where we join when we 19728 * join within the kernel unlike applications where 19729 * we have ilg/ilg_orig_index. See ip_addmulti_v6 19730 * for more on this. 19731 */ 19732 err = ip_addmulti_v6(&ipv6_all_hosts_mcast, ill, index, 19733 ipif->ipif_zoneid, ILGSTAT_NONE, MODE_IS_EXCLUDE, NULL); 19734 if (err != 0) { 19735 ip0dbg(("ipif_multicast_up: " 19736 "all_hosts_mcast failed %d\n", 19737 err)); 19738 return; 19739 } 19740 /* 19741 * Enable multicast for the solicited node multicast address 19742 */ 19743 if (!(ipif->ipif_flags & IPIF_NOLOCAL)) { 19744 in6_addr_t ipv6_multi = ipv6_solicited_node_mcast; 19745 19746 ipv6_multi.s6_addr32[3] |= 19747 ipif->ipif_v6lcl_addr.s6_addr32[3]; 19748 19749 err = ip_addmulti_v6(&ipv6_multi, ill, index, 19750 ipif->ipif_zoneid, ILGSTAT_NONE, MODE_IS_EXCLUDE, 19751 NULL); 19752 if (err != 0) { 19753 ip0dbg(("ipif_multicast_up: solicited MC" 19754 " failed %d\n", err)); 19755 (void) ip_delmulti_v6(&ipv6_all_hosts_mcast, 19756 ill, ill->ill_phyint->phyint_ifindex, 19757 ipif->ipif_zoneid, B_TRUE, B_TRUE); 19758 return; 19759 } 19760 } 19761 } else { 19762 if (ipif->ipif_lcl_addr == INADDR_ANY) 19763 return; 19764 19765 /* Join the all hosts multicast address */ 19766 ip1dbg(("ipif_multicast_up - addmulti\n")); 19767 err = ip_addmulti(htonl(INADDR_ALLHOSTS_GROUP), ipif, 19768 ILGSTAT_NONE, MODE_IS_EXCLUDE, NULL); 19769 if (err) { 19770 ip0dbg(("ipif_multicast_up: failed %d\n", err)); 19771 return; 19772 } 19773 } 19774 ipif->ipif_multicast_up = 1; 19775 } 19776 19777 /* 19778 * Blow away any IPv6 multicast groups that we joined in ipif_multicast_up(); 19779 * any explicit memberships are blown away in ill_leave_multicast() when the 19780 * ill is brought down. 19781 */ 19782 static void 19783 ipif_multicast_down(ipif_t *ipif) 19784 { 19785 int err; 19786 19787 ASSERT(IAM_WRITER_IPIF(ipif)); 19788 19789 ip1dbg(("ipif_multicast_down\n")); 19790 if (!ipif->ipif_multicast_up) 19791 return; 19792 19793 ASSERT(ipif->ipif_isv6); 19794 19795 ip1dbg(("ipif_multicast_down - delmulti\n")); 19796 19797 /* 19798 * Leave the all hosts multicast address. Similar to ip_addmulti_v6, 19799 * we should look for ilms on this ill rather than the ones that have 19800 * been failed over here. They are here temporarily. As 19801 * ipif_multicast_up has joined on this ill, we should delete only 19802 * from this ill. 19803 */ 19804 err = ip_delmulti_v6(&ipv6_all_hosts_mcast, ipif->ipif_ill, 19805 ipif->ipif_ill->ill_phyint->phyint_ifindex, ipif->ipif_zoneid, 19806 B_TRUE, B_TRUE); 19807 if (err != 0) { 19808 ip0dbg(("ipif_multicast_down: all_hosts_mcast failed %d\n", 19809 err)); 19810 } 19811 /* 19812 * Disable multicast for the solicited node multicast address 19813 */ 19814 if (!(ipif->ipif_flags & IPIF_NOLOCAL)) { 19815 in6_addr_t ipv6_multi = ipv6_solicited_node_mcast; 19816 19817 ipv6_multi.s6_addr32[3] |= 19818 ipif->ipif_v6lcl_addr.s6_addr32[3]; 19819 19820 err = ip_delmulti_v6(&ipv6_multi, ipif->ipif_ill, 19821 ipif->ipif_ill->ill_phyint->phyint_ifindex, 19822 ipif->ipif_zoneid, B_TRUE, B_TRUE); 19823 19824 if (err != 0) { 19825 ip0dbg(("ipif_multicast_down: sol MC failed %d\n", 19826 err)); 19827 } 19828 } 19829 19830 ipif->ipif_multicast_up = 0; 19831 } 19832 19833 /* 19834 * Used when an interface comes up to recreate any extra routes on this 19835 * interface. 19836 */ 19837 static ire_t ** 19838 ipif_recover_ire(ipif_t *ipif) 19839 { 19840 mblk_t *mp; 19841 ire_t **ipif_saved_irep; 19842 ire_t **irep; 19843 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; 19844 19845 ip1dbg(("ipif_recover_ire(%s:%u)", ipif->ipif_ill->ill_name, 19846 ipif->ipif_id)); 19847 19848 mutex_enter(&ipif->ipif_saved_ire_lock); 19849 ipif_saved_irep = (ire_t **)kmem_zalloc(sizeof (ire_t *) * 19850 ipif->ipif_saved_ire_cnt, KM_NOSLEEP); 19851 if (ipif_saved_irep == NULL) { 19852 mutex_exit(&ipif->ipif_saved_ire_lock); 19853 return (NULL); 19854 } 19855 19856 irep = ipif_saved_irep; 19857 for (mp = ipif->ipif_saved_ire_mp; mp != NULL; mp = mp->b_cont) { 19858 ire_t *ire; 19859 queue_t *rfq; 19860 queue_t *stq; 19861 ifrt_t *ifrt; 19862 uchar_t *src_addr; 19863 uchar_t *gateway_addr; 19864 mblk_t *resolver_mp; 19865 ushort_t type; 19866 19867 /* 19868 * When the ire was initially created and then added in 19869 * ip_rt_add(), it was created either using ipif->ipif_net_type 19870 * in the case of a traditional interface route, or as one of 19871 * the IRE_OFFSUBNET types (with the exception of 19872 * IRE_HOST types ire which is created by icmp_redirect() and 19873 * which we don't need to save or recover). In the case where 19874 * ipif->ipif_net_type was IRE_LOOPBACK, ip_rt_add() will update 19875 * the ire_type to IRE_IF_NORESOLVER before calling ire_add() 19876 * to satisfy software like GateD and Sun Cluster which creates 19877 * routes using the the loopback interface's address as a 19878 * gateway. 19879 * 19880 * As ifrt->ifrt_type reflects the already updated ire_type and 19881 * since ire_create() expects that IRE_IF_NORESOLVER will have 19882 * a valid nce_res_mp field (which doesn't make sense for a 19883 * IRE_LOOPBACK), ire_create() will be called in the same way 19884 * here as in ip_rt_add(), namely using ipif->ipif_net_type when 19885 * the route looks like a traditional interface route (where 19886 * ifrt->ifrt_type & IRE_INTERFACE is true) and otherwise using 19887 * the saved ifrt->ifrt_type. This means that in the case where 19888 * ipif->ipif_net_type is IRE_LOOPBACK, the ire created by 19889 * ire_create() will be an IRE_LOOPBACK, it will then be turned 19890 * into an IRE_IF_NORESOLVER and then added by ire_add(). 19891 */ 19892 ifrt = (ifrt_t *)mp->b_rptr; 19893 if (ifrt->ifrt_type & IRE_INTERFACE) { 19894 rfq = NULL; 19895 stq = (ipif->ipif_net_type == IRE_IF_RESOLVER) 19896 ? ipif->ipif_rq : ipif->ipif_wq; 19897 src_addr = (ifrt->ifrt_flags & RTF_SETSRC) 19898 ? (uint8_t *)&ifrt->ifrt_src_addr 19899 : (uint8_t *)&ipif->ipif_src_addr; 19900 gateway_addr = NULL; 19901 resolver_mp = ipif->ipif_resolver_mp; 19902 type = ipif->ipif_net_type; 19903 } else if (ifrt->ifrt_type & IRE_BROADCAST) { 19904 /* Recover multiroute broadcast IRE. */ 19905 rfq = ipif->ipif_rq; 19906 stq = ipif->ipif_wq; 19907 src_addr = (ifrt->ifrt_flags & RTF_SETSRC) 19908 ? (uint8_t *)&ifrt->ifrt_src_addr 19909 : (uint8_t *)&ipif->ipif_src_addr; 19910 gateway_addr = (uint8_t *)&ifrt->ifrt_gateway_addr; 19911 resolver_mp = ipif->ipif_bcast_mp; 19912 type = ifrt->ifrt_type; 19913 } else { 19914 rfq = NULL; 19915 stq = NULL; 19916 src_addr = (ifrt->ifrt_flags & RTF_SETSRC) 19917 ? (uint8_t *)&ifrt->ifrt_src_addr : NULL; 19918 gateway_addr = (uint8_t *)&ifrt->ifrt_gateway_addr; 19919 resolver_mp = NULL; 19920 type = ifrt->ifrt_type; 19921 } 19922 19923 /* 19924 * Create a copy of the IRE with the saved address and netmask. 19925 */ 19926 ip1dbg(("ipif_recover_ire: creating IRE %s (%d) for " 19927 "0x%x/0x%x\n", 19928 ip_nv_lookup(ire_nv_tbl, ifrt->ifrt_type), ifrt->ifrt_type, 19929 ntohl(ifrt->ifrt_addr), 19930 ntohl(ifrt->ifrt_mask))); 19931 ire = ire_create( 19932 (uint8_t *)&ifrt->ifrt_addr, 19933 (uint8_t *)&ifrt->ifrt_mask, 19934 src_addr, 19935 gateway_addr, 19936 NULL, 19937 &ifrt->ifrt_max_frag, 19938 NULL, 19939 rfq, 19940 stq, 19941 type, 19942 resolver_mp, 19943 ipif, 19944 NULL, 19945 0, 19946 0, 19947 0, 19948 ifrt->ifrt_flags, 19949 &ifrt->ifrt_iulp_info, 19950 NULL, 19951 NULL, 19952 ipst); 19953 19954 if (ire == NULL) { 19955 mutex_exit(&ipif->ipif_saved_ire_lock); 19956 kmem_free(ipif_saved_irep, 19957 ipif->ipif_saved_ire_cnt * sizeof (ire_t *)); 19958 return (NULL); 19959 } 19960 19961 /* 19962 * Some software (for example, GateD and Sun Cluster) attempts 19963 * to create (what amount to) IRE_PREFIX routes with the 19964 * loopback address as the gateway. This is primarily done to 19965 * set up prefixes with the RTF_REJECT flag set (for example, 19966 * when generating aggregate routes.) 19967 * 19968 * If the IRE type (as defined by ipif->ipif_net_type) is 19969 * IRE_LOOPBACK, then we map the request into a 19970 * IRE_IF_NORESOLVER. 19971 */ 19972 if (ipif->ipif_net_type == IRE_LOOPBACK) 19973 ire->ire_type = IRE_IF_NORESOLVER; 19974 /* 19975 * ire held by ire_add, will be refreled' towards the 19976 * the end of ipif_up_done 19977 */ 19978 (void) ire_add(&ire, NULL, NULL, NULL, B_FALSE); 19979 *irep = ire; 19980 irep++; 19981 ip1dbg(("ipif_recover_ire: added ire %p\n", (void *)ire)); 19982 } 19983 mutex_exit(&ipif->ipif_saved_ire_lock); 19984 return (ipif_saved_irep); 19985 } 19986 19987 /* 19988 * Used to set the netmask and broadcast address to default values when the 19989 * interface is brought up. (Always called as writer.) 19990 */ 19991 static void 19992 ipif_set_default(ipif_t *ipif) 19993 { 19994 ASSERT(MUTEX_HELD(&ipif->ipif_ill->ill_lock)); 19995 19996 if (!ipif->ipif_isv6) { 19997 /* 19998 * Interface holds an IPv4 address. Default 19999 * mask is the natural netmask. 20000 */ 20001 if (!ipif->ipif_net_mask) { 20002 ipaddr_t v4mask; 20003 20004 v4mask = ip_net_mask(ipif->ipif_lcl_addr); 20005 V4MASK_TO_V6(v4mask, ipif->ipif_v6net_mask); 20006 } 20007 if (ipif->ipif_flags & IPIF_POINTOPOINT) { 20008 /* ipif_subnet is ipif_pp_dst_addr for pt-pt */ 20009 ipif->ipif_v6subnet = ipif->ipif_v6pp_dst_addr; 20010 } else { 20011 V6_MASK_COPY(ipif->ipif_v6lcl_addr, 20012 ipif->ipif_v6net_mask, ipif->ipif_v6subnet); 20013 } 20014 /* 20015 * NOTE: SunOS 4.X does this even if the broadcast address 20016 * has been already set thus we do the same here. 20017 */ 20018 if (ipif->ipif_flags & IPIF_BROADCAST) { 20019 ipaddr_t v4addr; 20020 20021 v4addr = ipif->ipif_subnet | ~ipif->ipif_net_mask; 20022 IN6_IPADDR_TO_V4MAPPED(v4addr, &ipif->ipif_v6brd_addr); 20023 } 20024 } else { 20025 /* 20026 * Interface holds an IPv6-only address. Default 20027 * mask is all-ones. 20028 */ 20029 if (IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6net_mask)) 20030 ipif->ipif_v6net_mask = ipv6_all_ones; 20031 if (ipif->ipif_flags & IPIF_POINTOPOINT) { 20032 /* ipif_subnet is ipif_pp_dst_addr for pt-pt */ 20033 ipif->ipif_v6subnet = ipif->ipif_v6pp_dst_addr; 20034 } else { 20035 V6_MASK_COPY(ipif->ipif_v6lcl_addr, 20036 ipif->ipif_v6net_mask, ipif->ipif_v6subnet); 20037 } 20038 } 20039 } 20040 20041 /* 20042 * Return 0 if this address can be used as local address without causing 20043 * duplicate address problems. Otherwise, return EADDRNOTAVAIL if the address 20044 * is already up on a different ill, and EADDRINUSE if it's up on the same ill. 20045 * Special checks are needed to allow the same IPv6 link-local address 20046 * on different ills. 20047 * TODO: allowing the same site-local address on different ill's. 20048 */ 20049 int 20050 ip_addr_availability_check(ipif_t *new_ipif) 20051 { 20052 in6_addr_t our_v6addr; 20053 ill_t *ill; 20054 ipif_t *ipif; 20055 ill_walk_context_t ctx; 20056 ip_stack_t *ipst = new_ipif->ipif_ill->ill_ipst; 20057 20058 ASSERT(IAM_WRITER_IPIF(new_ipif)); 20059 ASSERT(MUTEX_HELD(&ipst->ips_ip_addr_avail_lock)); 20060 ASSERT(RW_READ_HELD(&ipst->ips_ill_g_lock)); 20061 20062 new_ipif->ipif_flags &= ~IPIF_UNNUMBERED; 20063 if (IN6_IS_ADDR_UNSPECIFIED(&new_ipif->ipif_v6lcl_addr) || 20064 IN6_IS_ADDR_V4MAPPED_ANY(&new_ipif->ipif_v6lcl_addr)) 20065 return (0); 20066 20067 our_v6addr = new_ipif->ipif_v6lcl_addr; 20068 20069 if (new_ipif->ipif_isv6) 20070 ill = ILL_START_WALK_V6(&ctx, ipst); 20071 else 20072 ill = ILL_START_WALK_V4(&ctx, ipst); 20073 20074 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 20075 for (ipif = ill->ill_ipif; ipif != NULL; 20076 ipif = ipif->ipif_next) { 20077 if ((ipif == new_ipif) || 20078 !(ipif->ipif_flags & IPIF_UP) || 20079 (ipif->ipif_flags & IPIF_UNNUMBERED)) 20080 continue; 20081 if (IN6_ARE_ADDR_EQUAL(&ipif->ipif_v6lcl_addr, 20082 &our_v6addr)) { 20083 if (new_ipif->ipif_flags & IPIF_POINTOPOINT) 20084 new_ipif->ipif_flags |= IPIF_UNNUMBERED; 20085 else if (ipif->ipif_flags & IPIF_POINTOPOINT) 20086 ipif->ipif_flags |= IPIF_UNNUMBERED; 20087 else if (IN6_IS_ADDR_LINKLOCAL(&our_v6addr) && 20088 new_ipif->ipif_ill != ill) 20089 continue; 20090 else if (IN6_IS_ADDR_SITELOCAL(&our_v6addr) && 20091 new_ipif->ipif_ill != ill) 20092 continue; 20093 else if (new_ipif->ipif_zoneid != 20094 ipif->ipif_zoneid && 20095 ipif->ipif_zoneid != ALL_ZONES && 20096 (ill->ill_phyint->phyint_flags & 20097 PHYI_LOOPBACK)) 20098 continue; 20099 else if (new_ipif->ipif_ill == ill) 20100 return (EADDRINUSE); 20101 else 20102 return (EADDRNOTAVAIL); 20103 } 20104 } 20105 } 20106 20107 return (0); 20108 } 20109 20110 /* 20111 * Bring up an ipif: bring up arp/ndp, bring up the DLPI stream, and add 20112 * IREs for the ipif. 20113 * When the routine returns EINPROGRESS then mp has been consumed and 20114 * the ioctl will be acked from ip_rput_dlpi. 20115 */ 20116 static int 20117 ipif_up(ipif_t *ipif, queue_t *q, mblk_t *mp) 20118 { 20119 ill_t *ill = ipif->ipif_ill; 20120 boolean_t isv6 = ipif->ipif_isv6; 20121 int err = 0; 20122 boolean_t success; 20123 20124 ASSERT(IAM_WRITER_IPIF(ipif)); 20125 20126 ip1dbg(("ipif_up(%s:%u)\n", ill->ill_name, ipif->ipif_id)); 20127 20128 /* Shouldn't get here if it is already up. */ 20129 if (ipif->ipif_flags & IPIF_UP) 20130 return (EALREADY); 20131 20132 /* Skip arp/ndp for any loopback interface. */ 20133 if (ill->ill_wq != NULL) { 20134 conn_t *connp = CONN_Q(q) ? Q_TO_CONN(q) : NULL; 20135 ipsq_t *ipsq = ill->ill_phyint->phyint_ipsq; 20136 20137 if (!ill->ill_dl_up) { 20138 /* 20139 * ill_dl_up is not yet set. i.e. we are yet to 20140 * DL_BIND with the driver and this is the first 20141 * logical interface on the ill to become "up". 20142 * Tell the driver to get going (via DL_BIND_REQ). 20143 * Note that changing "significant" IFF_ flags 20144 * address/netmask etc cause a down/up dance, but 20145 * does not cause an unbind (DL_UNBIND) with the driver 20146 */ 20147 return (ill_dl_up(ill, ipif, mp, q)); 20148 } 20149 20150 /* 20151 * ipif_resolver_up may end up sending an 20152 * AR_INTERFACE_UP message to ARP, which would, in 20153 * turn send a DLPI message to the driver. ioctls are 20154 * serialized and so we cannot send more than one 20155 * interface up message at a time. If ipif_resolver_up 20156 * does send an interface up message to ARP, we get 20157 * EINPROGRESS and we will complete in ip_arp_done. 20158 */ 20159 20160 ASSERT(connp != NULL || !CONN_Q(q)); 20161 ASSERT(ipsq->ipsq_pending_mp == NULL); 20162 if (connp != NULL) 20163 mutex_enter(&connp->conn_lock); 20164 mutex_enter(&ill->ill_lock); 20165 success = ipsq_pending_mp_add(connp, ipif, q, mp, 0); 20166 mutex_exit(&ill->ill_lock); 20167 if (connp != NULL) 20168 mutex_exit(&connp->conn_lock); 20169 if (!success) 20170 return (EINTR); 20171 20172 /* 20173 * Crank up IPv6 neighbor discovery 20174 * Unlike ARP, this should complete when 20175 * ipif_ndp_up returns. However, for 20176 * ILLF_XRESOLV interfaces we also send a 20177 * AR_INTERFACE_UP to the external resolver. 20178 * That ioctl will complete in ip_rput. 20179 */ 20180 if (isv6) { 20181 err = ipif_ndp_up(ipif, &ipif->ipif_v6lcl_addr); 20182 if (err != 0) { 20183 if (err != EINPROGRESS) 20184 mp = ipsq_pending_mp_get(ipsq, &connp); 20185 return (err); 20186 } 20187 } 20188 /* Now, ARP */ 20189 err = ipif_resolver_up(ipif, Res_act_initial); 20190 if (err == EINPROGRESS) { 20191 /* We will complete it in ip_arp_done */ 20192 return (err); 20193 } 20194 mp = ipsq_pending_mp_get(ipsq, &connp); 20195 ASSERT(mp != NULL); 20196 if (err != 0) 20197 return (err); 20198 } else { 20199 /* 20200 * Interfaces without underlying hardware don't do duplicate 20201 * address detection. 20202 */ 20203 ASSERT(!(ipif->ipif_flags & IPIF_DUPLICATE)); 20204 ipif->ipif_addr_ready = 1; 20205 } 20206 return (isv6 ? ipif_up_done_v6(ipif) : ipif_up_done(ipif)); 20207 } 20208 20209 /* 20210 * Perform a bind for the physical device. 20211 * When the routine returns EINPROGRESS then mp has been consumed and 20212 * the ioctl will be acked from ip_rput_dlpi. 20213 * Allocate an unbind message and save it until ipif_down. 20214 */ 20215 static int 20216 ill_dl_up(ill_t *ill, ipif_t *ipif, mblk_t *mp, queue_t *q) 20217 { 20218 mblk_t *areq_mp = NULL; 20219 mblk_t *bind_mp = NULL; 20220 mblk_t *unbind_mp = NULL; 20221 conn_t *connp; 20222 boolean_t success; 20223 20224 ip1dbg(("ill_dl_up(%s)\n", ill->ill_name)); 20225 ASSERT(IAM_WRITER_ILL(ill)); 20226 20227 ASSERT(mp != NULL); 20228 20229 /* Create a resolver cookie for ARP */ 20230 if (!ill->ill_isv6 && ill->ill_net_type == IRE_IF_RESOLVER) { 20231 areq_t *areq; 20232 uint16_t sap_addr; 20233 20234 areq_mp = ill_arp_alloc(ill, 20235 (uchar_t *)&ip_areq_template, 0); 20236 if (areq_mp == NULL) { 20237 return (ENOMEM); 20238 } 20239 freemsg(ill->ill_resolver_mp); 20240 ill->ill_resolver_mp = areq_mp; 20241 areq = (areq_t *)areq_mp->b_rptr; 20242 sap_addr = ill->ill_sap; 20243 bcopy(&sap_addr, areq->areq_sap, sizeof (sap_addr)); 20244 /* 20245 * Wait till we call ill_pending_mp_add to determine 20246 * the success before we free the ill_resolver_mp and 20247 * attach areq_mp in it's place. 20248 */ 20249 } 20250 bind_mp = ip_dlpi_alloc(sizeof (dl_bind_req_t) + sizeof (long), 20251 DL_BIND_REQ); 20252 if (bind_mp == NULL) 20253 goto bad; 20254 ((dl_bind_req_t *)bind_mp->b_rptr)->dl_sap = ill->ill_sap; 20255 ((dl_bind_req_t *)bind_mp->b_rptr)->dl_service_mode = DL_CLDLS; 20256 20257 unbind_mp = ip_dlpi_alloc(sizeof (dl_unbind_req_t), DL_UNBIND_REQ); 20258 if (unbind_mp == NULL) 20259 goto bad; 20260 20261 /* 20262 * Record state needed to complete this operation when the 20263 * DL_BIND_ACK shows up. Also remember the pre-allocated mblks. 20264 */ 20265 ASSERT(WR(q)->q_next == NULL); 20266 connp = Q_TO_CONN(q); 20267 20268 mutex_enter(&connp->conn_lock); 20269 mutex_enter(&ipif->ipif_ill->ill_lock); 20270 success = ipsq_pending_mp_add(connp, ipif, q, mp, 0); 20271 mutex_exit(&ipif->ipif_ill->ill_lock); 20272 mutex_exit(&connp->conn_lock); 20273 if (!success) 20274 goto bad; 20275 20276 /* 20277 * Save the unbind message for ill_dl_down(); it will be consumed when 20278 * the interface goes down. 20279 */ 20280 ASSERT(ill->ill_unbind_mp == NULL); 20281 ill->ill_unbind_mp = unbind_mp; 20282 20283 ill_dlpi_send(ill, bind_mp); 20284 /* Send down link-layer capabilities probe if not already done. */ 20285 ill_capability_probe(ill); 20286 20287 /* 20288 * Sysid used to rely on the fact that netboots set domainname 20289 * and the like. Now that miniroot boots aren't strictly netboots 20290 * and miniroot network configuration is driven from userland 20291 * these things still need to be set. This situation can be detected 20292 * by comparing the interface being configured here to the one 20293 * dhcack was set to reference by the boot loader. Once sysid is 20294 * converted to use dhcp_ipc_getinfo() this call can go away. 20295 */ 20296 if ((ipif->ipif_flags & IPIF_DHCPRUNNING) && (dhcack != NULL) && 20297 (strcmp(ill->ill_name, dhcack) == 0) && 20298 (strlen(srpc_domain) == 0)) { 20299 if (dhcpinit() != 0) 20300 cmn_err(CE_WARN, "no cached dhcp response"); 20301 } 20302 20303 /* 20304 * This operation will complete in ip_rput_dlpi with either 20305 * a DL_BIND_ACK or DL_ERROR_ACK. 20306 */ 20307 return (EINPROGRESS); 20308 bad: 20309 ip1dbg(("ill_dl_up(%s) FAILED\n", ill->ill_name)); 20310 /* 20311 * We don't have to check for possible removal from illgrp 20312 * as we have not yet inserted in illgrp. For groups 20313 * without names, this ipif is still not UP and hence 20314 * this could not have possibly had any influence in forming 20315 * groups. 20316 */ 20317 20318 freemsg(bind_mp); 20319 freemsg(unbind_mp); 20320 return (ENOMEM); 20321 } 20322 20323 uint_t ip_loopback_mtuplus = IP_LOOPBACK_MTU + IP_SIMPLE_HDR_LENGTH + 20; 20324 20325 /* 20326 * DLPI and ARP is up. 20327 * Create all the IREs associated with an interface bring up multicast. 20328 * Set the interface flag and finish other initialization 20329 * that potentially had to be differed to after DL_BIND_ACK. 20330 */ 20331 int 20332 ipif_up_done(ipif_t *ipif) 20333 { 20334 ire_t *ire_array[20]; 20335 ire_t **irep = ire_array; 20336 ire_t **irep1; 20337 ipaddr_t net_mask = 0; 20338 ipaddr_t subnet_mask, route_mask; 20339 ill_t *ill = ipif->ipif_ill; 20340 queue_t *stq; 20341 ipif_t *src_ipif; 20342 ipif_t *tmp_ipif; 20343 boolean_t flush_ire_cache = B_TRUE; 20344 int err = 0; 20345 phyint_t *phyi; 20346 ire_t **ipif_saved_irep = NULL; 20347 int ipif_saved_ire_cnt; 20348 int cnt; 20349 boolean_t src_ipif_held = B_FALSE; 20350 boolean_t ire_added = B_FALSE; 20351 boolean_t loopback = B_FALSE; 20352 ip_stack_t *ipst = ill->ill_ipst; 20353 20354 ip1dbg(("ipif_up_done(%s:%u)\n", 20355 ipif->ipif_ill->ill_name, ipif->ipif_id)); 20356 /* Check if this is a loopback interface */ 20357 if (ipif->ipif_ill->ill_wq == NULL) 20358 loopback = B_TRUE; 20359 20360 ASSERT(!MUTEX_HELD(&ipif->ipif_ill->ill_lock)); 20361 /* 20362 * If all other interfaces for this ill are down or DEPRECATED, 20363 * or otherwise unsuitable for source address selection, remove 20364 * any IRE_CACHE entries for this ill to make sure source 20365 * address selection gets to take this new ipif into account. 20366 * No need to hold ill_lock while traversing the ipif list since 20367 * we are writer 20368 */ 20369 for (tmp_ipif = ill->ill_ipif; tmp_ipif; 20370 tmp_ipif = tmp_ipif->ipif_next) { 20371 if (((tmp_ipif->ipif_flags & 20372 (IPIF_NOXMIT|IPIF_ANYCAST|IPIF_NOLOCAL|IPIF_DEPRECATED)) || 20373 !(tmp_ipif->ipif_flags & IPIF_UP)) || 20374 (tmp_ipif == ipif)) 20375 continue; 20376 /* first useable pre-existing interface */ 20377 flush_ire_cache = B_FALSE; 20378 break; 20379 } 20380 if (flush_ire_cache) 20381 ire_walk_ill_v4(MATCH_IRE_ILL_GROUP | MATCH_IRE_TYPE, 20382 IRE_CACHE, ill_ipif_cache_delete, (char *)ill, ill); 20383 20384 /* 20385 * Figure out which way the send-to queue should go. Only 20386 * IRE_IF_RESOLVER or IRE_IF_NORESOLVER or IRE_LOOPBACK 20387 * should show up here. 20388 */ 20389 switch (ill->ill_net_type) { 20390 case IRE_IF_RESOLVER: 20391 stq = ill->ill_rq; 20392 break; 20393 case IRE_IF_NORESOLVER: 20394 case IRE_LOOPBACK: 20395 stq = ill->ill_wq; 20396 break; 20397 default: 20398 return (EINVAL); 20399 } 20400 20401 if (ill->ill_phyint->phyint_flags & PHYI_LOOPBACK) { 20402 /* 20403 * lo0:1 and subsequent ipifs were marked IRE_LOCAL in 20404 * ipif_lookup_on_name(), but in the case of zones we can have 20405 * several loopback addresses on lo0. So all the interfaces with 20406 * loopback addresses need to be marked IRE_LOOPBACK. 20407 */ 20408 if (V4_PART_OF_V6(ipif->ipif_v6lcl_addr) == 20409 htonl(INADDR_LOOPBACK)) 20410 ipif->ipif_ire_type = IRE_LOOPBACK; 20411 else 20412 ipif->ipif_ire_type = IRE_LOCAL; 20413 } 20414 20415 if (ipif->ipif_flags & (IPIF_NOLOCAL|IPIF_ANYCAST|IPIF_DEPRECATED)) { 20416 /* 20417 * Can't use our source address. Select a different 20418 * source address for the IRE_INTERFACE and IRE_LOCAL 20419 */ 20420 src_ipif = ipif_select_source(ipif->ipif_ill, 20421 ipif->ipif_subnet, ipif->ipif_zoneid); 20422 if (src_ipif == NULL) 20423 src_ipif = ipif; /* Last resort */ 20424 else 20425 src_ipif_held = B_TRUE; 20426 } else { 20427 src_ipif = ipif; 20428 } 20429 20430 /* Create all the IREs associated with this interface */ 20431 if ((ipif->ipif_lcl_addr != INADDR_ANY) && 20432 !(ipif->ipif_flags & IPIF_NOLOCAL)) { 20433 20434 /* 20435 * If we're on a labeled system then make sure that zone- 20436 * private addresses have proper remote host database entries. 20437 */ 20438 if (is_system_labeled() && 20439 ipif->ipif_ire_type != IRE_LOOPBACK && 20440 !tsol_check_interface_address(ipif)) 20441 return (EINVAL); 20442 20443 /* Register the source address for __sin6_src_id */ 20444 err = ip_srcid_insert(&ipif->ipif_v6lcl_addr, 20445 ipif->ipif_zoneid, ipst); 20446 if (err != 0) { 20447 ip0dbg(("ipif_up_done: srcid_insert %d\n", err)); 20448 return (err); 20449 } 20450 20451 /* If the interface address is set, create the local IRE. */ 20452 ip1dbg(("ipif_up_done: 0x%p creating IRE 0x%x for 0x%x\n", 20453 (void *)ipif, 20454 ipif->ipif_ire_type, 20455 ntohl(ipif->ipif_lcl_addr))); 20456 *irep++ = ire_create( 20457 (uchar_t *)&ipif->ipif_lcl_addr, /* dest address */ 20458 (uchar_t *)&ip_g_all_ones, /* mask */ 20459 (uchar_t *)&src_ipif->ipif_src_addr, /* source address */ 20460 NULL, /* no gateway */ 20461 NULL, 20462 &ip_loopback_mtuplus, /* max frag size */ 20463 NULL, 20464 ipif->ipif_rq, /* recv-from queue */ 20465 NULL, /* no send-to queue */ 20466 ipif->ipif_ire_type, /* LOCAL or LOOPBACK */ 20467 NULL, 20468 ipif, 20469 NULL, 20470 0, 20471 0, 20472 0, 20473 (ipif->ipif_flags & IPIF_PRIVATE) ? 20474 RTF_PRIVATE : 0, 20475 &ire_uinfo_null, 20476 NULL, 20477 NULL, 20478 ipst); 20479 } else { 20480 ip1dbg(( 20481 "ipif_up_done: not creating IRE %d for 0x%x: flags 0x%x\n", 20482 ipif->ipif_ire_type, 20483 ntohl(ipif->ipif_lcl_addr), 20484 (uint_t)ipif->ipif_flags)); 20485 } 20486 if ((ipif->ipif_lcl_addr != INADDR_ANY) && 20487 !(ipif->ipif_flags & IPIF_NOLOCAL)) { 20488 net_mask = ip_net_mask(ipif->ipif_lcl_addr); 20489 } else { 20490 net_mask = htonl(IN_CLASSA_NET); /* fallback */ 20491 } 20492 20493 subnet_mask = ipif->ipif_net_mask; 20494 20495 /* 20496 * If mask was not specified, use natural netmask of 20497 * interface address. Also, store this mask back into the 20498 * ipif struct. 20499 */ 20500 if (subnet_mask == 0) { 20501 subnet_mask = net_mask; 20502 V4MASK_TO_V6(subnet_mask, ipif->ipif_v6net_mask); 20503 V6_MASK_COPY(ipif->ipif_v6lcl_addr, ipif->ipif_v6net_mask, 20504 ipif->ipif_v6subnet); 20505 } 20506 20507 /* Set up the IRE_IF_RESOLVER or IRE_IF_NORESOLVER, as appropriate. */ 20508 if (stq != NULL && !(ipif->ipif_flags & IPIF_NOXMIT) && 20509 ipif->ipif_subnet != INADDR_ANY) { 20510 /* ipif_subnet is ipif_pp_dst_addr for pt-pt */ 20511 20512 if (ipif->ipif_flags & IPIF_POINTOPOINT) { 20513 route_mask = IP_HOST_MASK; 20514 } else { 20515 route_mask = subnet_mask; 20516 } 20517 20518 ip1dbg(("ipif_up_done: ipif 0x%p ill 0x%p " 20519 "creating if IRE ill_net_type 0x%x for 0x%x\n", 20520 (void *)ipif, (void *)ill, 20521 ill->ill_net_type, 20522 ntohl(ipif->ipif_subnet))); 20523 *irep++ = ire_create( 20524 (uchar_t *)&ipif->ipif_subnet, /* dest address */ 20525 (uchar_t *)&route_mask, /* mask */ 20526 (uchar_t *)&src_ipif->ipif_src_addr, /* src addr */ 20527 NULL, /* no gateway */ 20528 NULL, 20529 &ipif->ipif_mtu, /* max frag */ 20530 NULL, 20531 NULL, /* no recv queue */ 20532 stq, /* send-to queue */ 20533 ill->ill_net_type, /* IF_[NO]RESOLVER */ 20534 ill->ill_resolver_mp, /* xmit header */ 20535 ipif, 20536 NULL, 20537 0, 20538 0, 20539 0, 20540 (ipif->ipif_flags & IPIF_PRIVATE) ? RTF_PRIVATE: 0, 20541 &ire_uinfo_null, 20542 NULL, 20543 NULL, 20544 ipst); 20545 } 20546 20547 /* 20548 * If the interface address is set, create the broadcast IREs. 20549 * 20550 * ire_create_bcast checks if the proposed new IRE matches 20551 * any existing IRE's with the same physical interface (ILL). 20552 * This should get rid of duplicates. 20553 * ire_create_bcast also check IPIF_NOXMIT and does not create 20554 * any broadcast ires. 20555 */ 20556 if ((ipif->ipif_subnet != INADDR_ANY) && 20557 (ipif->ipif_flags & IPIF_BROADCAST)) { 20558 ipaddr_t addr; 20559 20560 ip1dbg(("ipif_up_done: creating broadcast IRE\n")); 20561 irep = ire_check_and_create_bcast(ipif, 0, irep, 20562 (MATCH_IRE_TYPE | MATCH_IRE_ILL)); 20563 irep = ire_check_and_create_bcast(ipif, INADDR_BROADCAST, irep, 20564 (MATCH_IRE_TYPE | MATCH_IRE_ILL)); 20565 20566 /* 20567 * For backward compatibility, we need to create net 20568 * broadcast ire's based on the old "IP address class 20569 * system." The reason is that some old machines only 20570 * respond to these class derived net broadcast. 20571 * 20572 * But we should not create these net broadcast ire's if 20573 * the subnet_mask is shorter than the IP address class based 20574 * derived netmask. Otherwise, we may create a net 20575 * broadcast address which is the same as an IP address 20576 * on the subnet. Then TCP will refuse to talk to that 20577 * address. 20578 * 20579 * Nor do we need IRE_BROADCAST ire's for the interface 20580 * with the netmask as 0xFFFFFFFF, as IRE_LOCAL for that 20581 * interface is already created. Creating these broadcast 20582 * ire's will only create confusion as the "addr" is going 20583 * to be same as that of the IP address of the interface. 20584 */ 20585 if (net_mask < subnet_mask) { 20586 addr = net_mask & ipif->ipif_subnet; 20587 irep = ire_check_and_create_bcast(ipif, addr, irep, 20588 (MATCH_IRE_TYPE | MATCH_IRE_ILL)); 20589 irep = ire_check_and_create_bcast(ipif, 20590 ~net_mask | addr, irep, 20591 (MATCH_IRE_TYPE | MATCH_IRE_ILL)); 20592 } 20593 20594 if (subnet_mask != 0xFFFFFFFF) { 20595 addr = ipif->ipif_subnet; 20596 irep = ire_check_and_create_bcast(ipif, addr, irep, 20597 (MATCH_IRE_TYPE | MATCH_IRE_ILL)); 20598 irep = ire_check_and_create_bcast(ipif, 20599 ~subnet_mask|addr, irep, 20600 (MATCH_IRE_TYPE | MATCH_IRE_ILL)); 20601 } 20602 } 20603 20604 ASSERT(!MUTEX_HELD(&ipif->ipif_ill->ill_lock)); 20605 20606 /* If an earlier ire_create failed, get out now */ 20607 for (irep1 = irep; irep1 > ire_array; ) { 20608 irep1--; 20609 if (*irep1 == NULL) { 20610 ip1dbg(("ipif_up_done: NULL ire found in ire_array\n")); 20611 err = ENOMEM; 20612 goto bad; 20613 } 20614 } 20615 20616 /* 20617 * Need to atomically check for ip_addr_availablity_check 20618 * under ip_addr_avail_lock, and if it fails got bad, and remove 20619 * from group also.The ill_g_lock is grabbed as reader 20620 * just to make sure no new ills or new ipifs are being added 20621 * to the system while we are checking the uniqueness of addresses. 20622 */ 20623 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 20624 mutex_enter(&ipst->ips_ip_addr_avail_lock); 20625 /* Mark it up, and increment counters. */ 20626 ipif->ipif_flags |= IPIF_UP; 20627 ill->ill_ipif_up_count++; 20628 err = ip_addr_availability_check(ipif); 20629 mutex_exit(&ipst->ips_ip_addr_avail_lock); 20630 rw_exit(&ipst->ips_ill_g_lock); 20631 20632 if (err != 0) { 20633 /* 20634 * Our address may already be up on the same ill. In this case, 20635 * the ARP entry for our ipif replaced the one for the other 20636 * ipif. So we don't want to delete it (otherwise the other ipif 20637 * would be unable to send packets). 20638 * ip_addr_availability_check() identifies this case for us and 20639 * returns EADDRINUSE; we need to turn it into EADDRNOTAVAIL 20640 * which is the expected error code. 20641 */ 20642 if (err == EADDRINUSE) { 20643 freemsg(ipif->ipif_arp_del_mp); 20644 ipif->ipif_arp_del_mp = NULL; 20645 err = EADDRNOTAVAIL; 20646 } 20647 ill->ill_ipif_up_count--; 20648 ipif->ipif_flags &= ~IPIF_UP; 20649 goto bad; 20650 } 20651 20652 /* 20653 * Add in all newly created IREs. ire_create_bcast() has 20654 * already checked for duplicates of the IRE_BROADCAST type. 20655 * We want to add before we call ifgrp_insert which wants 20656 * to know whether IRE_IF_RESOLVER exists or not. 20657 * 20658 * NOTE : We refrele the ire though we may branch to "bad" 20659 * later on where we do ire_delete. This is okay 20660 * because nobody can delete it as we are running 20661 * exclusively. 20662 */ 20663 for (irep1 = irep; irep1 > ire_array; ) { 20664 irep1--; 20665 ASSERT(!MUTEX_HELD(&((*irep1)->ire_ipif->ipif_ill->ill_lock))); 20666 /* 20667 * refheld by ire_add. refele towards the end of the func 20668 */ 20669 (void) ire_add(irep1, NULL, NULL, NULL, B_FALSE); 20670 } 20671 ire_added = B_TRUE; 20672 /* 20673 * Form groups if possible. 20674 * 20675 * If we are supposed to be in a ill_group with a name, insert it 20676 * now as we know that at least one ipif is UP. Otherwise form 20677 * nameless groups. 20678 * 20679 * If ip_enable_group_ifs is set and ipif address is not 0, insert 20680 * this ipif into the appropriate interface group, or create a 20681 * new one. If this is already in a nameless group, we try to form 20682 * a bigger group looking at other ills potentially sharing this 20683 * ipif's prefix. 20684 */ 20685 phyi = ill->ill_phyint; 20686 if (phyi->phyint_groupname_len != 0) { 20687 ASSERT(phyi->phyint_groupname != NULL); 20688 if (ill->ill_ipif_up_count == 1) { 20689 ASSERT(ill->ill_group == NULL); 20690 err = illgrp_insert(&ipst->ips_illgrp_head_v4, ill, 20691 phyi->phyint_groupname, NULL, B_TRUE); 20692 if (err != 0) { 20693 ip1dbg(("ipif_up_done: illgrp allocation " 20694 "failed, error %d\n", err)); 20695 goto bad; 20696 } 20697 } 20698 ASSERT(ill->ill_group != NULL); 20699 } 20700 20701 /* 20702 * When this is part of group, we need to make sure that 20703 * any broadcast ires created because of this ipif coming 20704 * UP gets marked/cleared with IRE_MARK_NORECV appropriately 20705 * so that we don't receive duplicate broadcast packets. 20706 */ 20707 if (ill->ill_group != NULL && ill->ill_ipif_up_count != 0) 20708 ipif_renominate_bcast(ipif); 20709 20710 /* Recover any additional IRE_IF_[NO]RESOLVER entries for this ipif */ 20711 ipif_saved_ire_cnt = ipif->ipif_saved_ire_cnt; 20712 ipif_saved_irep = ipif_recover_ire(ipif); 20713 20714 if (!loopback) { 20715 /* 20716 * If the broadcast address has been set, make sure it makes 20717 * sense based on the interface address. 20718 * Only match on ill since we are sharing broadcast addresses. 20719 */ 20720 if ((ipif->ipif_brd_addr != INADDR_ANY) && 20721 (ipif->ipif_flags & IPIF_BROADCAST)) { 20722 ire_t *ire; 20723 20724 ire = ire_ctable_lookup(ipif->ipif_brd_addr, 0, 20725 IRE_BROADCAST, ipif, ALL_ZONES, 20726 NULL, (MATCH_IRE_TYPE | MATCH_IRE_ILL), ipst); 20727 20728 if (ire == NULL) { 20729 /* 20730 * If there isn't a matching broadcast IRE, 20731 * revert to the default for this netmask. 20732 */ 20733 ipif->ipif_v6brd_addr = ipv6_all_zeros; 20734 mutex_enter(&ipif->ipif_ill->ill_lock); 20735 ipif_set_default(ipif); 20736 mutex_exit(&ipif->ipif_ill->ill_lock); 20737 } else { 20738 ire_refrele(ire); 20739 } 20740 } 20741 20742 } 20743 20744 /* This is the first interface on this ill */ 20745 if (ipif->ipif_ipif_up_count == 1 && !loopback) { 20746 /* 20747 * Need to recover all multicast memberships in the driver. 20748 * This had to be deferred until we had attached. 20749 */ 20750 ill_recover_multicast(ill); 20751 } 20752 /* Join the allhosts multicast address */ 20753 ipif_multicast_up(ipif); 20754 20755 if (!loopback) { 20756 /* 20757 * See whether anybody else would benefit from the 20758 * new ipif that we added. We call this always rather 20759 * than while adding a non-IPIF_NOLOCAL/DEPRECATED/ANYCAST 20760 * ipif is for the benefit of illgrp_insert (done above) 20761 * which does not do source address selection as it does 20762 * not want to re-create interface routes that we are 20763 * having reference to it here. 20764 */ 20765 ill_update_source_selection(ill); 20766 } 20767 20768 for (irep1 = irep; irep1 > ire_array; ) { 20769 irep1--; 20770 if (*irep1 != NULL) { 20771 /* was held in ire_add */ 20772 ire_refrele(*irep1); 20773 } 20774 } 20775 20776 cnt = ipif_saved_ire_cnt; 20777 for (irep1 = ipif_saved_irep; cnt > 0; irep1++, cnt--) { 20778 if (*irep1 != NULL) { 20779 /* was held in ire_add */ 20780 ire_refrele(*irep1); 20781 } 20782 } 20783 20784 if (!loopback && ipif->ipif_addr_ready) { 20785 /* Broadcast an address mask reply. */ 20786 ipif_mask_reply(ipif); 20787 } 20788 if (ipif_saved_irep != NULL) { 20789 kmem_free(ipif_saved_irep, 20790 ipif_saved_ire_cnt * sizeof (ire_t *)); 20791 } 20792 if (src_ipif_held) 20793 ipif_refrele(src_ipif); 20794 20795 /* 20796 * This had to be deferred until we had bound. Tell routing sockets and 20797 * others that this interface is up if it looks like the address has 20798 * been validated. Otherwise, if it isn't ready yet, wait for 20799 * duplicate address detection to do its thing. 20800 */ 20801 if (ipif->ipif_addr_ready) { 20802 ip_rts_ifmsg(ipif); 20803 ip_rts_newaddrmsg(RTM_ADD, 0, ipif); 20804 /* Let SCTP update the status for this ipif */ 20805 sctp_update_ipif(ipif, SCTP_IPIF_UP); 20806 } 20807 return (0); 20808 20809 bad: 20810 ip1dbg(("ipif_up_done: FAILED \n")); 20811 /* 20812 * We don't have to bother removing from ill groups because 20813 * 20814 * 1) For groups with names, we insert only when the first ipif 20815 * comes up. In that case if it fails, it will not be in any 20816 * group. So, we need not try to remove for that case. 20817 * 20818 * 2) For groups without names, either we tried to insert ipif_ill 20819 * in a group as singleton or found some other group to become 20820 * a bigger group. For the former, if it fails we don't have 20821 * anything to do as ipif_ill is not in the group and for the 20822 * latter, there are no failures in illgrp_insert/illgrp_delete 20823 * (ENOMEM can't occur for this. Check ifgrp_insert). 20824 */ 20825 while (irep > ire_array) { 20826 irep--; 20827 if (*irep != NULL) { 20828 ire_delete(*irep); 20829 if (ire_added) 20830 ire_refrele(*irep); 20831 } 20832 } 20833 (void) ip_srcid_remove(&ipif->ipif_v6lcl_addr, ipif->ipif_zoneid, ipst); 20834 20835 if (ipif_saved_irep != NULL) { 20836 kmem_free(ipif_saved_irep, 20837 ipif_saved_ire_cnt * sizeof (ire_t *)); 20838 } 20839 if (src_ipif_held) 20840 ipif_refrele(src_ipif); 20841 20842 ipif_arp_down(ipif); 20843 return (err); 20844 } 20845 20846 /* 20847 * Turn off the ARP with the ILLF_NOARP flag. 20848 */ 20849 static int 20850 ill_arp_off(ill_t *ill) 20851 { 20852 mblk_t *arp_off_mp = NULL; 20853 mblk_t *arp_on_mp = NULL; 20854 20855 ip1dbg(("ill_arp_off(%s)\n", ill->ill_name)); 20856 20857 ASSERT(IAM_WRITER_ILL(ill)); 20858 ASSERT(ill->ill_net_type == IRE_IF_RESOLVER); 20859 20860 /* 20861 * If the on message is still around we've already done 20862 * an arp_off without doing an arp_on thus there is no 20863 * work needed. 20864 */ 20865 if (ill->ill_arp_on_mp != NULL) 20866 return (0); 20867 20868 /* 20869 * Allocate an ARP on message (to be saved) and an ARP off message 20870 */ 20871 arp_off_mp = ill_arp_alloc(ill, (uchar_t *)&ip_aroff_template, 0); 20872 if (!arp_off_mp) 20873 return (ENOMEM); 20874 20875 arp_on_mp = ill_arp_alloc(ill, (uchar_t *)&ip_aron_template, 0); 20876 if (!arp_on_mp) 20877 goto failed; 20878 20879 ASSERT(ill->ill_arp_on_mp == NULL); 20880 ill->ill_arp_on_mp = arp_on_mp; 20881 20882 /* Send an AR_INTERFACE_OFF request */ 20883 putnext(ill->ill_rq, arp_off_mp); 20884 return (0); 20885 failed: 20886 20887 if (arp_off_mp) 20888 freemsg(arp_off_mp); 20889 return (ENOMEM); 20890 } 20891 20892 /* 20893 * Turn on ARP by turning off the ILLF_NOARP flag. 20894 */ 20895 static int 20896 ill_arp_on(ill_t *ill) 20897 { 20898 mblk_t *mp; 20899 20900 ip1dbg(("ipif_arp_on(%s)\n", ill->ill_name)); 20901 20902 ASSERT(ill->ill_net_type == IRE_IF_RESOLVER); 20903 20904 ASSERT(IAM_WRITER_ILL(ill)); 20905 /* 20906 * Send an AR_INTERFACE_ON request if we have already done 20907 * an arp_off (which allocated the message). 20908 */ 20909 if (ill->ill_arp_on_mp != NULL) { 20910 mp = ill->ill_arp_on_mp; 20911 ill->ill_arp_on_mp = NULL; 20912 putnext(ill->ill_rq, mp); 20913 } 20914 return (0); 20915 } 20916 20917 /* 20918 * Called after either deleting ill from the group or when setting 20919 * FAILED or STANDBY on the interface. 20920 */ 20921 static void 20922 illgrp_reset_schednext(ill_t *ill) 20923 { 20924 ill_group_t *illgrp; 20925 ill_t *save_ill; 20926 20927 ASSERT(IAM_WRITER_ILL(ill)); 20928 /* 20929 * When called from illgrp_delete, ill_group will be non-NULL. 20930 * But when called from ip_sioctl_flags, it could be NULL if 20931 * somebody is setting FAILED/INACTIVE on some interface which 20932 * is not part of a group. 20933 */ 20934 illgrp = ill->ill_group; 20935 if (illgrp == NULL) 20936 return; 20937 if (illgrp->illgrp_ill_schednext != ill) 20938 return; 20939 20940 illgrp->illgrp_ill_schednext = NULL; 20941 save_ill = ill; 20942 /* 20943 * Choose a good ill to be the next one for 20944 * outbound traffic. As the flags FAILED/STANDBY is 20945 * not yet marked when called from ip_sioctl_flags, 20946 * we check for ill separately. 20947 */ 20948 for (ill = illgrp->illgrp_ill; ill != NULL; 20949 ill = ill->ill_group_next) { 20950 if ((ill != save_ill) && 20951 !(ill->ill_phyint->phyint_flags & 20952 (PHYI_FAILED|PHYI_INACTIVE|PHYI_OFFLINE))) { 20953 illgrp->illgrp_ill_schednext = ill; 20954 return; 20955 } 20956 } 20957 } 20958 20959 /* 20960 * Given an ill, find the next ill in the group to be scheduled. 20961 * (This should be called by ip_newroute() before ire_create().) 20962 * The passed in ill may be pulled out of the group, after we have picked 20963 * up a different outgoing ill from the same group. However ire add will 20964 * atomically check this. 20965 */ 20966 ill_t * 20967 illgrp_scheduler(ill_t *ill) 20968 { 20969 ill_t *retill; 20970 ill_group_t *illgrp; 20971 int illcnt; 20972 int i; 20973 uint64_t flags; 20974 ip_stack_t *ipst = ill->ill_ipst; 20975 20976 /* 20977 * We don't use a lock to check for the ill_group. If this ill 20978 * is currently being inserted we may end up just returning this 20979 * ill itself. That is ok. 20980 */ 20981 if (ill->ill_group == NULL) { 20982 ill_refhold(ill); 20983 return (ill); 20984 } 20985 20986 /* 20987 * Grab the ill_g_lock as reader to make sure we are dealing with 20988 * a set of stable ills. No ill can be added or deleted or change 20989 * group while we hold the reader lock. 20990 */ 20991 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 20992 if ((illgrp = ill->ill_group) == NULL) { 20993 rw_exit(&ipst->ips_ill_g_lock); 20994 ill_refhold(ill); 20995 return (ill); 20996 } 20997 20998 illcnt = illgrp->illgrp_ill_count; 20999 mutex_enter(&illgrp->illgrp_lock); 21000 retill = illgrp->illgrp_ill_schednext; 21001 21002 if (retill == NULL) 21003 retill = illgrp->illgrp_ill; 21004 21005 /* 21006 * We do a circular search beginning at illgrp_ill_schednext 21007 * or illgrp_ill. We don't check the flags against the ill lock 21008 * since it can change anytime. The ire creation will be atomic 21009 * and will fail if the ill is FAILED or OFFLINE. 21010 */ 21011 for (i = 0; i < illcnt; i++) { 21012 flags = retill->ill_phyint->phyint_flags; 21013 21014 if (!(flags & (PHYI_FAILED|PHYI_INACTIVE|PHYI_OFFLINE)) && 21015 ILL_CAN_LOOKUP(retill)) { 21016 illgrp->illgrp_ill_schednext = retill->ill_group_next; 21017 ill_refhold(retill); 21018 break; 21019 } 21020 retill = retill->ill_group_next; 21021 if (retill == NULL) 21022 retill = illgrp->illgrp_ill; 21023 } 21024 mutex_exit(&illgrp->illgrp_lock); 21025 rw_exit(&ipst->ips_ill_g_lock); 21026 21027 return (i == illcnt ? NULL : retill); 21028 } 21029 21030 /* 21031 * Checks for availbility of a usable source address (if there is one) when the 21032 * destination ILL has the ill_usesrc_ifindex pointing to another ILL. Note 21033 * this selection is done regardless of the destination. 21034 */ 21035 boolean_t 21036 ipif_usesrc_avail(ill_t *ill, zoneid_t zoneid) 21037 { 21038 uint_t ifindex; 21039 ipif_t *ipif = NULL; 21040 ill_t *uill; 21041 boolean_t isv6; 21042 ip_stack_t *ipst = ill->ill_ipst; 21043 21044 ASSERT(ill != NULL); 21045 21046 isv6 = ill->ill_isv6; 21047 ifindex = ill->ill_usesrc_ifindex; 21048 if (ifindex != 0) { 21049 uill = ill_lookup_on_ifindex(ifindex, isv6, NULL, NULL, NULL, 21050 NULL, ipst); 21051 if (uill == NULL) 21052 return (NULL); 21053 mutex_enter(&uill->ill_lock); 21054 for (ipif = uill->ill_ipif; ipif != NULL; 21055 ipif = ipif->ipif_next) { 21056 if (!IPIF_CAN_LOOKUP(ipif)) 21057 continue; 21058 if (ipif->ipif_flags & (IPIF_NOLOCAL|IPIF_ANYCAST)) 21059 continue; 21060 if (!(ipif->ipif_flags & IPIF_UP)) 21061 continue; 21062 if (ipif->ipif_zoneid != zoneid) 21063 continue; 21064 if ((isv6 && 21065 IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6lcl_addr)) || 21066 (ipif->ipif_lcl_addr == INADDR_ANY)) 21067 continue; 21068 mutex_exit(&uill->ill_lock); 21069 ill_refrele(uill); 21070 return (B_TRUE); 21071 } 21072 mutex_exit(&uill->ill_lock); 21073 ill_refrele(uill); 21074 } 21075 return (B_FALSE); 21076 } 21077 21078 /* 21079 * Determine the best source address given a destination address and an ill. 21080 * Prefers non-deprecated over deprecated but will return a deprecated 21081 * address if there is no other choice. If there is a usable source address 21082 * on the interface pointed to by ill_usesrc_ifindex then that is given 21083 * first preference. 21084 * 21085 * Returns NULL if there is no suitable source address for the ill. 21086 * This only occurs when there is no valid source address for the ill. 21087 */ 21088 ipif_t * 21089 ipif_select_source(ill_t *ill, ipaddr_t dst, zoneid_t zoneid) 21090 { 21091 ipif_t *ipif; 21092 ipif_t *ipif_dep = NULL; /* Fallback to deprecated */ 21093 ipif_t *ipif_arr[MAX_IPIF_SELECT_SOURCE]; 21094 int index = 0; 21095 boolean_t wrapped = B_FALSE; 21096 boolean_t same_subnet_only = B_FALSE; 21097 boolean_t ipif_same_found, ipif_other_found; 21098 boolean_t specific_found; 21099 ill_t *till, *usill = NULL; 21100 tsol_tpc_t *src_rhtp, *dst_rhtp; 21101 ip_stack_t *ipst = ill->ill_ipst; 21102 21103 if (ill->ill_usesrc_ifindex != 0) { 21104 usill = ill_lookup_on_ifindex(ill->ill_usesrc_ifindex, 21105 B_FALSE, NULL, NULL, NULL, NULL, ipst); 21106 if (usill != NULL) 21107 ill = usill; /* Select source from usesrc ILL */ 21108 else 21109 return (NULL); 21110 } 21111 21112 /* 21113 * If we're dealing with an unlabeled destination on a labeled system, 21114 * make sure that we ignore source addresses that are incompatible with 21115 * the destination's default label. That destination's default label 21116 * must dominate the minimum label on the source address. 21117 */ 21118 dst_rhtp = NULL; 21119 if (is_system_labeled()) { 21120 dst_rhtp = find_tpc(&dst, IPV4_VERSION, B_FALSE); 21121 if (dst_rhtp == NULL) 21122 return (NULL); 21123 if (dst_rhtp->tpc_tp.host_type != UNLABELED) { 21124 TPC_RELE(dst_rhtp); 21125 dst_rhtp = NULL; 21126 } 21127 } 21128 21129 /* 21130 * Holds the ill_g_lock as reader. This makes sure that no ipif/ill 21131 * can be deleted. But an ipif/ill can get CONDEMNED any time. 21132 * After selecting the right ipif, under ill_lock make sure ipif is 21133 * not condemned, and increment refcnt. If ipif is CONDEMNED, 21134 * we retry. Inside the loop we still need to check for CONDEMNED, 21135 * but not under a lock. 21136 */ 21137 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 21138 21139 retry: 21140 till = ill; 21141 ipif_arr[0] = NULL; 21142 21143 if (till->ill_group != NULL) 21144 till = till->ill_group->illgrp_ill; 21145 21146 /* 21147 * Choose one good source address from each ill across the group. 21148 * If possible choose a source address in the same subnet as 21149 * the destination address. 21150 * 21151 * We don't check for PHYI_FAILED or PHYI_INACTIVE or PHYI_OFFLINE 21152 * This is okay because of the following. 21153 * 21154 * If PHYI_FAILED is set and we still have non-deprecated 21155 * addresses, it means the addresses have not yet been 21156 * failed over to a different interface. We potentially 21157 * select them to create IRE_CACHES, which will be later 21158 * flushed when the addresses move over. 21159 * 21160 * If PHYI_INACTIVE is set and we still have non-deprecated 21161 * addresses, it means either the user has configured them 21162 * or PHYI_INACTIVE has not been cleared after the addresses 21163 * been moved over. For the former, in.mpathd does a failover 21164 * when the interface becomes INACTIVE and hence we should 21165 * not find them. Once INACTIVE is set, we don't allow them 21166 * to create logical interfaces anymore. For the latter, a 21167 * flush will happen when INACTIVE is cleared which will 21168 * flush the IRE_CACHES. 21169 * 21170 * If PHYI_OFFLINE is set, all the addresses will be failed 21171 * over soon. We potentially select them to create IRE_CACHEs, 21172 * which will be later flushed when the addresses move over. 21173 * 21174 * NOTE : As ipif_select_source is called to borrow source address 21175 * for an ipif that is part of a group, source address selection 21176 * will be re-done whenever the group changes i.e either an 21177 * insertion/deletion in the group. 21178 * 21179 * Fill ipif_arr[] with source addresses, using these rules: 21180 * 21181 * 1. At most one source address from a given ill ends up 21182 * in ipif_arr[] -- that is, at most one of the ipif's 21183 * associated with a given ill ends up in ipif_arr[]. 21184 * 21185 * 2. If there is at least one non-deprecated ipif in the 21186 * IPMP group with a source address on the same subnet as 21187 * our destination, then fill ipif_arr[] only with 21188 * source addresses on the same subnet as our destination. 21189 * Note that because of (1), only the first 21190 * non-deprecated ipif found with a source address 21191 * matching the destination ends up in ipif_arr[]. 21192 * 21193 * 3. Otherwise, fill ipif_arr[] with non-deprecated source 21194 * addresses not in the same subnet as our destination. 21195 * Again, because of (1), only the first off-subnet source 21196 * address will be chosen. 21197 * 21198 * 4. If there are no non-deprecated ipifs, then just use 21199 * the source address associated with the last deprecated 21200 * one we find that happens to be on the same subnet, 21201 * otherwise the first one not in the same subnet. 21202 */ 21203 specific_found = B_FALSE; 21204 for (; till != NULL; till = till->ill_group_next) { 21205 ipif_same_found = B_FALSE; 21206 ipif_other_found = B_FALSE; 21207 for (ipif = till->ill_ipif; ipif != NULL; 21208 ipif = ipif->ipif_next) { 21209 if (!IPIF_CAN_LOOKUP(ipif)) 21210 continue; 21211 /* Always skip NOLOCAL and ANYCAST interfaces */ 21212 if (ipif->ipif_flags & (IPIF_NOLOCAL|IPIF_ANYCAST)) 21213 continue; 21214 if (!(ipif->ipif_flags & IPIF_UP) || 21215 !ipif->ipif_addr_ready) 21216 continue; 21217 if (ipif->ipif_zoneid != zoneid && 21218 ipif->ipif_zoneid != ALL_ZONES) 21219 continue; 21220 /* 21221 * Interfaces with 0.0.0.0 address are allowed to be UP, 21222 * but are not valid as source addresses. 21223 */ 21224 if (ipif->ipif_lcl_addr == INADDR_ANY) 21225 continue; 21226 21227 /* 21228 * Check compatibility of local address for 21229 * destination's default label if we're on a labeled 21230 * system. Incompatible addresses can't be used at 21231 * all. 21232 */ 21233 if (dst_rhtp != NULL) { 21234 boolean_t incompat; 21235 21236 src_rhtp = find_tpc(&ipif->ipif_lcl_addr, 21237 IPV4_VERSION, B_FALSE); 21238 if (src_rhtp == NULL) 21239 continue; 21240 incompat = 21241 src_rhtp->tpc_tp.host_type != SUN_CIPSO || 21242 src_rhtp->tpc_tp.tp_doi != 21243 dst_rhtp->tpc_tp.tp_doi || 21244 (!_blinrange(&dst_rhtp->tpc_tp.tp_def_label, 21245 &src_rhtp->tpc_tp.tp_sl_range_cipso) && 21246 !blinlset(&dst_rhtp->tpc_tp.tp_def_label, 21247 src_rhtp->tpc_tp.tp_sl_set_cipso)); 21248 TPC_RELE(src_rhtp); 21249 if (incompat) 21250 continue; 21251 } 21252 21253 /* 21254 * We prefer not to use all all-zones addresses, if we 21255 * can avoid it, as they pose problems with unlabeled 21256 * destinations. 21257 */ 21258 if (ipif->ipif_zoneid != ALL_ZONES) { 21259 if (!specific_found && 21260 (!same_subnet_only || 21261 (ipif->ipif_net_mask & dst) == 21262 ipif->ipif_subnet)) { 21263 index = 0; 21264 specific_found = B_TRUE; 21265 ipif_other_found = B_FALSE; 21266 } 21267 } else { 21268 if (specific_found) 21269 continue; 21270 } 21271 if (ipif->ipif_flags & IPIF_DEPRECATED) { 21272 if (ipif_dep == NULL || 21273 (ipif->ipif_net_mask & dst) == 21274 ipif->ipif_subnet) 21275 ipif_dep = ipif; 21276 continue; 21277 } 21278 if ((ipif->ipif_net_mask & dst) == ipif->ipif_subnet) { 21279 /* found a source address in the same subnet */ 21280 if (!same_subnet_only) { 21281 same_subnet_only = B_TRUE; 21282 index = 0; 21283 } 21284 ipif_same_found = B_TRUE; 21285 } else { 21286 if (same_subnet_only || ipif_other_found) 21287 continue; 21288 ipif_other_found = B_TRUE; 21289 } 21290 ipif_arr[index++] = ipif; 21291 if (index == MAX_IPIF_SELECT_SOURCE) { 21292 wrapped = B_TRUE; 21293 index = 0; 21294 } 21295 if (ipif_same_found) 21296 break; 21297 } 21298 } 21299 21300 if (ipif_arr[0] == NULL) { 21301 ipif = ipif_dep; 21302 } else { 21303 if (wrapped) 21304 index = MAX_IPIF_SELECT_SOURCE; 21305 ipif = ipif_arr[ipif_rand(ipst) % index]; 21306 ASSERT(ipif != NULL); 21307 } 21308 21309 if (ipif != NULL) { 21310 mutex_enter(&ipif->ipif_ill->ill_lock); 21311 if (!IPIF_CAN_LOOKUP(ipif)) { 21312 mutex_exit(&ipif->ipif_ill->ill_lock); 21313 goto retry; 21314 } 21315 ipif_refhold_locked(ipif); 21316 mutex_exit(&ipif->ipif_ill->ill_lock); 21317 } 21318 21319 rw_exit(&ipst->ips_ill_g_lock); 21320 if (usill != NULL) 21321 ill_refrele(usill); 21322 if (dst_rhtp != NULL) 21323 TPC_RELE(dst_rhtp); 21324 21325 #ifdef DEBUG 21326 if (ipif == NULL) { 21327 char buf1[INET6_ADDRSTRLEN]; 21328 21329 ip1dbg(("ipif_select_source(%s, %s) -> NULL\n", 21330 ill->ill_name, 21331 inet_ntop(AF_INET, &dst, buf1, sizeof (buf1)))); 21332 } else { 21333 char buf1[INET6_ADDRSTRLEN]; 21334 char buf2[INET6_ADDRSTRLEN]; 21335 21336 ip1dbg(("ipif_select_source(%s, %s) -> %s\n", 21337 ipif->ipif_ill->ill_name, 21338 inet_ntop(AF_INET, &dst, buf1, sizeof (buf1)), 21339 inet_ntop(AF_INET, &ipif->ipif_lcl_addr, 21340 buf2, sizeof (buf2)))); 21341 } 21342 #endif /* DEBUG */ 21343 return (ipif); 21344 } 21345 21346 21347 /* 21348 * If old_ipif is not NULL, see if ipif was derived from old 21349 * ipif and if so, recreate the interface route by re-doing 21350 * source address selection. This happens when ipif_down -> 21351 * ipif_update_other_ipifs calls us. 21352 * 21353 * If old_ipif is NULL, just redo the source address selection 21354 * if needed. This happens when illgrp_insert or ipif_up_done 21355 * calls us. 21356 */ 21357 static void 21358 ipif_recreate_interface_routes(ipif_t *old_ipif, ipif_t *ipif) 21359 { 21360 ire_t *ire; 21361 ire_t *ipif_ire; 21362 queue_t *stq; 21363 ipif_t *nipif; 21364 ill_t *ill; 21365 boolean_t need_rele = B_FALSE; 21366 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; 21367 21368 ASSERT(old_ipif == NULL || IAM_WRITER_IPIF(old_ipif)); 21369 ASSERT(IAM_WRITER_IPIF(ipif)); 21370 21371 ill = ipif->ipif_ill; 21372 if (!(ipif->ipif_flags & 21373 (IPIF_NOLOCAL|IPIF_ANYCAST|IPIF_DEPRECATED))) { 21374 /* 21375 * Can't possibly have borrowed the source 21376 * from old_ipif. 21377 */ 21378 return; 21379 } 21380 21381 /* 21382 * Is there any work to be done? No work if the address 21383 * is INADDR_ANY, loopback or NOLOCAL or ANYCAST ( 21384 * ipif_select_source() does not borrow addresses from 21385 * NOLOCAL and ANYCAST interfaces). 21386 */ 21387 if ((old_ipif != NULL) && 21388 ((old_ipif->ipif_lcl_addr == INADDR_ANY) || 21389 (old_ipif->ipif_ill->ill_wq == NULL) || 21390 (old_ipif->ipif_flags & 21391 (IPIF_NOLOCAL|IPIF_ANYCAST)))) { 21392 return; 21393 } 21394 21395 /* 21396 * Perform the same checks as when creating the 21397 * IRE_INTERFACE in ipif_up_done. 21398 */ 21399 if (!(ipif->ipif_flags & IPIF_UP)) 21400 return; 21401 21402 if ((ipif->ipif_flags & IPIF_NOXMIT) || 21403 (ipif->ipif_subnet == INADDR_ANY)) 21404 return; 21405 21406 ipif_ire = ipif_to_ire(ipif); 21407 if (ipif_ire == NULL) 21408 return; 21409 21410 /* 21411 * We know that ipif uses some other source for its 21412 * IRE_INTERFACE. Is it using the source of this 21413 * old_ipif? 21414 */ 21415 if (old_ipif != NULL && 21416 old_ipif->ipif_lcl_addr != ipif_ire->ire_src_addr) { 21417 ire_refrele(ipif_ire); 21418 return; 21419 } 21420 if (ip_debug > 2) { 21421 /* ip1dbg */ 21422 pr_addr_dbg("ipif_recreate_interface_routes: deleting IRE for" 21423 " src %s\n", AF_INET, &ipif_ire->ire_src_addr); 21424 } 21425 21426 stq = ipif_ire->ire_stq; 21427 21428 /* 21429 * Can't use our source address. Select a different 21430 * source address for the IRE_INTERFACE. 21431 */ 21432 nipif = ipif_select_source(ill, ipif->ipif_subnet, ipif->ipif_zoneid); 21433 if (nipif == NULL) { 21434 /* Last resort - all ipif's have IPIF_NOLOCAL */ 21435 nipif = ipif; 21436 } else { 21437 need_rele = B_TRUE; 21438 } 21439 21440 ire = ire_create( 21441 (uchar_t *)&ipif->ipif_subnet, /* dest pref */ 21442 (uchar_t *)&ipif->ipif_net_mask, /* mask */ 21443 (uchar_t *)&nipif->ipif_src_addr, /* src addr */ 21444 NULL, /* no gateway */ 21445 NULL, 21446 &ipif->ipif_mtu, /* max frag */ 21447 NULL, /* fast path header */ 21448 NULL, /* no recv from queue */ 21449 stq, /* send-to queue */ 21450 ill->ill_net_type, /* IF_[NO]RESOLVER */ 21451 ill->ill_resolver_mp, /* xmit header */ 21452 ipif, 21453 NULL, 21454 0, 21455 0, 21456 0, 21457 0, 21458 &ire_uinfo_null, 21459 NULL, 21460 NULL, 21461 ipst); 21462 21463 if (ire != NULL) { 21464 ire_t *ret_ire; 21465 int error; 21466 21467 /* 21468 * We don't need ipif_ire anymore. We need to delete 21469 * before we add so that ire_add does not detect 21470 * duplicates. 21471 */ 21472 ire_delete(ipif_ire); 21473 ret_ire = ire; 21474 error = ire_add(&ret_ire, NULL, NULL, NULL, B_FALSE); 21475 ASSERT(error == 0); 21476 ASSERT(ire == ret_ire); 21477 /* Held in ire_add */ 21478 ire_refrele(ret_ire); 21479 } 21480 /* 21481 * Either we are falling through from above or could not 21482 * allocate a replacement. 21483 */ 21484 ire_refrele(ipif_ire); 21485 if (need_rele) 21486 ipif_refrele(nipif); 21487 } 21488 21489 /* 21490 * This old_ipif is going away. 21491 * 21492 * Determine if any other ipif's is using our address as 21493 * ipif_lcl_addr (due to those being IPIF_NOLOCAL, IPIF_ANYCAST, or 21494 * IPIF_DEPRECATED). 21495 * Find the IRE_INTERFACE for such ipifs and recreate them 21496 * to use an different source address following the rules in 21497 * ipif_up_done. 21498 * 21499 * This function takes an illgrp as an argument so that illgrp_delete 21500 * can call this to update source address even after deleting the 21501 * old_ipif->ipif_ill from the ill group. 21502 */ 21503 static void 21504 ipif_update_other_ipifs(ipif_t *old_ipif, ill_group_t *illgrp) 21505 { 21506 ipif_t *ipif; 21507 ill_t *ill; 21508 char buf[INET6_ADDRSTRLEN]; 21509 21510 ASSERT(IAM_WRITER_IPIF(old_ipif)); 21511 ASSERT(illgrp == NULL || IAM_WRITER_IPIF(old_ipif)); 21512 21513 ill = old_ipif->ipif_ill; 21514 21515 ip1dbg(("ipif_update_other_ipifs(%s, %s)\n", 21516 ill->ill_name, 21517 inet_ntop(AF_INET, &old_ipif->ipif_lcl_addr, 21518 buf, sizeof (buf)))); 21519 /* 21520 * If this part of a group, look at all ills as ipif_select_source 21521 * borrows source address across all the ills in the group. 21522 */ 21523 if (illgrp != NULL) 21524 ill = illgrp->illgrp_ill; 21525 21526 for (; ill != NULL; ill = ill->ill_group_next) { 21527 for (ipif = ill->ill_ipif; ipif != NULL; 21528 ipif = ipif->ipif_next) { 21529 21530 if (ipif == old_ipif) 21531 continue; 21532 21533 ipif_recreate_interface_routes(old_ipif, ipif); 21534 } 21535 } 21536 } 21537 21538 /* ARGSUSED */ 21539 int 21540 if_unitsel_restart(ipif_t *ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, 21541 ip_ioctl_cmd_t *ipip, void *dummy_ifreq) 21542 { 21543 /* 21544 * ill_phyint_reinit merged the v4 and v6 into a single 21545 * ipsq. Could also have become part of a ipmp group in the 21546 * process, and we might not have been able to complete the 21547 * operation in ipif_set_values, if we could not become 21548 * exclusive. If so restart it here. 21549 */ 21550 return (ipif_set_values_tail(ipif->ipif_ill, ipif, mp, q)); 21551 } 21552 21553 21554 /* 21555 * Can operate on either a module or a driver queue. 21556 * Returns an error if not a module queue. 21557 */ 21558 /* ARGSUSED */ 21559 int 21560 if_unitsel(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, 21561 ip_ioctl_cmd_t *ipip, void *dummy_ifreq) 21562 { 21563 queue_t *q1 = q; 21564 char *cp; 21565 char interf_name[LIFNAMSIZ]; 21566 uint_t ppa = *(uint_t *)mp->b_cont->b_cont->b_rptr; 21567 21568 if (q->q_next == NULL) { 21569 ip1dbg(( 21570 "if_unitsel: IF_UNITSEL: no q_next\n")); 21571 return (EINVAL); 21572 } 21573 21574 if (((ill_t *)(q->q_ptr))->ill_name[0] != '\0') 21575 return (EALREADY); 21576 21577 do { 21578 q1 = q1->q_next; 21579 } while (q1->q_next); 21580 cp = q1->q_qinfo->qi_minfo->mi_idname; 21581 (void) sprintf(interf_name, "%s%d", cp, ppa); 21582 21583 /* 21584 * Here we are not going to delay the ioack until after 21585 * ACKs from DL_ATTACH_REQ/DL_BIND_REQ. So no need to save the 21586 * original ioctl message before sending the requests. 21587 */ 21588 return (ipif_set_values(q, mp, interf_name, &ppa)); 21589 } 21590 21591 /* ARGSUSED */ 21592 int 21593 ip_sioctl_sifname(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, 21594 ip_ioctl_cmd_t *ipip, void *dummy_ifreq) 21595 { 21596 return (ENXIO); 21597 } 21598 21599 /* 21600 * Net and subnet broadcast ire's are now specific to the particular 21601 * physical interface (ill) and not to any one locigal interface (ipif). 21602 * However, if a particular logical interface is being taken down, it's 21603 * associated ire's will be taken down as well. Hence, when we go to 21604 * take down or change the local address, broadcast address or netmask 21605 * of a specific logical interface, we must check to make sure that we 21606 * have valid net and subnet broadcast ire's for the other logical 21607 * interfaces which may have been shared with the logical interface 21608 * being brought down or changed. 21609 * 21610 * There is one set of 0.0.0.0 and 255.255.255.255 per ill. Usually it 21611 * is tied to the first interface coming UP. If that ipif is going down, 21612 * we need to recreate them on the next valid ipif. 21613 * 21614 * Note: assume that the ipif passed in is still up so that it's IRE 21615 * entries are still valid. 21616 */ 21617 static void 21618 ipif_check_bcast_ires(ipif_t *test_ipif) 21619 { 21620 ipif_t *ipif; 21621 ire_t *test_subnet_ire, *test_net_ire; 21622 ire_t *test_allzero_ire, *test_allone_ire; 21623 ire_t *ire_array[12]; 21624 ire_t **irep = &ire_array[0]; 21625 ire_t **irep1; 21626 ipaddr_t net_addr, subnet_addr, net_mask, subnet_mask; 21627 ipaddr_t test_net_addr, test_subnet_addr; 21628 ipaddr_t test_net_mask, test_subnet_mask; 21629 boolean_t need_net_bcast_ire = B_FALSE; 21630 boolean_t need_subnet_bcast_ire = B_FALSE; 21631 boolean_t allzero_bcast_ire_created = B_FALSE; 21632 boolean_t allone_bcast_ire_created = B_FALSE; 21633 boolean_t net_bcast_ire_created = B_FALSE; 21634 boolean_t subnet_bcast_ire_created = B_FALSE; 21635 21636 ipif_t *backup_ipif_net = (ipif_t *)NULL; 21637 ipif_t *backup_ipif_subnet = (ipif_t *)NULL; 21638 ipif_t *backup_ipif_allzeros = (ipif_t *)NULL; 21639 ipif_t *backup_ipif_allones = (ipif_t *)NULL; 21640 uint64_t check_flags = IPIF_DEPRECATED | IPIF_NOLOCAL | IPIF_ANYCAST; 21641 ip_stack_t *ipst = test_ipif->ipif_ill->ill_ipst; 21642 21643 ASSERT(!test_ipif->ipif_isv6); 21644 ASSERT(IAM_WRITER_IPIF(test_ipif)); 21645 21646 /* 21647 * No broadcast IREs for the LOOPBACK interface 21648 * or others such as point to point and IPIF_NOXMIT. 21649 */ 21650 if (!(test_ipif->ipif_flags & IPIF_BROADCAST) || 21651 (test_ipif->ipif_flags & IPIF_NOXMIT)) 21652 return; 21653 21654 test_allzero_ire = ire_ctable_lookup(0, 0, IRE_BROADCAST, 21655 test_ipif, ALL_ZONES, NULL, (MATCH_IRE_TYPE | MATCH_IRE_IPIF), 21656 ipst); 21657 21658 test_allone_ire = ire_ctable_lookup(INADDR_BROADCAST, 0, IRE_BROADCAST, 21659 test_ipif, ALL_ZONES, NULL, (MATCH_IRE_TYPE | MATCH_IRE_IPIF), 21660 ipst); 21661 21662 test_net_mask = ip_net_mask(test_ipif->ipif_subnet); 21663 test_subnet_mask = test_ipif->ipif_net_mask; 21664 21665 /* 21666 * If no net mask set, assume the default based on net class. 21667 */ 21668 if (test_subnet_mask == 0) 21669 test_subnet_mask = test_net_mask; 21670 21671 /* 21672 * Check if there is a network broadcast ire associated with this ipif 21673 */ 21674 test_net_addr = test_net_mask & test_ipif->ipif_subnet; 21675 test_net_ire = ire_ctable_lookup(test_net_addr, 0, IRE_BROADCAST, 21676 test_ipif, ALL_ZONES, NULL, (MATCH_IRE_TYPE | MATCH_IRE_IPIF), 21677 ipst); 21678 21679 /* 21680 * Check if there is a subnet broadcast IRE associated with this ipif 21681 */ 21682 test_subnet_addr = test_subnet_mask & test_ipif->ipif_subnet; 21683 test_subnet_ire = ire_ctable_lookup(test_subnet_addr, 0, IRE_BROADCAST, 21684 test_ipif, ALL_ZONES, NULL, (MATCH_IRE_TYPE | MATCH_IRE_IPIF), 21685 ipst); 21686 21687 /* 21688 * No broadcast ire's associated with this ipif. 21689 */ 21690 if ((test_subnet_ire == NULL) && (test_net_ire == NULL) && 21691 (test_allzero_ire == NULL) && (test_allone_ire == NULL)) { 21692 return; 21693 } 21694 21695 /* 21696 * We have established which bcast ires have to be replaced. 21697 * Next we try to locate ipifs that match there ires. 21698 * The rules are simple: If we find an ipif that matches on the subnet 21699 * address it will also match on the net address, the allzeros and 21700 * allones address. Any ipif that matches only on the net address will 21701 * also match the allzeros and allones addresses. 21702 * The other criterion is the ipif_flags. We look for non-deprecated 21703 * (and non-anycast and non-nolocal) ipifs as the best choice. 21704 * ipifs with check_flags matching (deprecated, etc) are used only 21705 * if good ipifs are not available. While looping, we save existing 21706 * deprecated ipifs as backup_ipif. 21707 * We loop through all the ipifs for this ill looking for ipifs 21708 * whose broadcast addr match the ipif passed in, but do not have 21709 * their own broadcast ires. For creating 0.0.0.0 and 21710 * 255.255.255.255 we just need an ipif on this ill to create. 21711 */ 21712 for (ipif = test_ipif->ipif_ill->ill_ipif; ipif != NULL; 21713 ipif = ipif->ipif_next) { 21714 21715 ASSERT(!ipif->ipif_isv6); 21716 /* 21717 * Already checked the ipif passed in. 21718 */ 21719 if (ipif == test_ipif) { 21720 continue; 21721 } 21722 21723 /* 21724 * We only need to recreate broadcast ires if another ipif in 21725 * the same zone uses them. The new ires must be created in the 21726 * same zone. 21727 */ 21728 if (ipif->ipif_zoneid != test_ipif->ipif_zoneid) { 21729 continue; 21730 } 21731 21732 /* 21733 * Only interested in logical interfaces with valid local 21734 * addresses or with the ability to broadcast. 21735 */ 21736 if ((ipif->ipif_subnet == 0) || 21737 !(ipif->ipif_flags & IPIF_BROADCAST) || 21738 (ipif->ipif_flags & IPIF_NOXMIT) || 21739 !(ipif->ipif_flags & IPIF_UP)) { 21740 continue; 21741 } 21742 /* 21743 * Check if there is a net broadcast ire for this 21744 * net address. If it turns out that the ipif we are 21745 * about to take down owns this ire, we must make a 21746 * new one because it is potentially going away. 21747 */ 21748 if (test_net_ire && (!net_bcast_ire_created)) { 21749 net_mask = ip_net_mask(ipif->ipif_subnet); 21750 net_addr = net_mask & ipif->ipif_subnet; 21751 if (net_addr == test_net_addr) { 21752 need_net_bcast_ire = B_TRUE; 21753 /* 21754 * Use DEPRECATED ipif only if no good 21755 * ires are available. subnet_addr is 21756 * a better match than net_addr. 21757 */ 21758 if ((ipif->ipif_flags & check_flags) && 21759 (backup_ipif_net == NULL)) { 21760 backup_ipif_net = ipif; 21761 } 21762 } 21763 } 21764 /* 21765 * Check if there is a subnet broadcast ire for this 21766 * net address. If it turns out that the ipif we are 21767 * about to take down owns this ire, we must make a 21768 * new one because it is potentially going away. 21769 */ 21770 if (test_subnet_ire && (!subnet_bcast_ire_created)) { 21771 subnet_mask = ipif->ipif_net_mask; 21772 subnet_addr = ipif->ipif_subnet; 21773 if (subnet_addr == test_subnet_addr) { 21774 need_subnet_bcast_ire = B_TRUE; 21775 if ((ipif->ipif_flags & check_flags) && 21776 (backup_ipif_subnet == NULL)) { 21777 backup_ipif_subnet = ipif; 21778 } 21779 } 21780 } 21781 21782 21783 /* Short circuit here if this ipif is deprecated */ 21784 if (ipif->ipif_flags & check_flags) { 21785 if ((test_allzero_ire != NULL) && 21786 (!allzero_bcast_ire_created) && 21787 (backup_ipif_allzeros == NULL)) { 21788 backup_ipif_allzeros = ipif; 21789 } 21790 if ((test_allone_ire != NULL) && 21791 (!allone_bcast_ire_created) && 21792 (backup_ipif_allones == NULL)) { 21793 backup_ipif_allones = ipif; 21794 } 21795 continue; 21796 } 21797 21798 /* 21799 * Found an ipif which has the same broadcast ire as the 21800 * ipif passed in and the ipif passed in "owns" the ire. 21801 * Create new broadcast ire's for this broadcast addr. 21802 */ 21803 if (need_net_bcast_ire && !net_bcast_ire_created) { 21804 irep = ire_create_bcast(ipif, net_addr, irep); 21805 irep = ire_create_bcast(ipif, 21806 ~net_mask | net_addr, irep); 21807 net_bcast_ire_created = B_TRUE; 21808 } 21809 if (need_subnet_bcast_ire && !subnet_bcast_ire_created) { 21810 irep = ire_create_bcast(ipif, subnet_addr, irep); 21811 irep = ire_create_bcast(ipif, 21812 ~subnet_mask | subnet_addr, irep); 21813 subnet_bcast_ire_created = B_TRUE; 21814 } 21815 if (test_allzero_ire != NULL && !allzero_bcast_ire_created) { 21816 irep = ire_create_bcast(ipif, 0, irep); 21817 allzero_bcast_ire_created = B_TRUE; 21818 } 21819 if (test_allone_ire != NULL && !allone_bcast_ire_created) { 21820 irep = ire_create_bcast(ipif, INADDR_BROADCAST, irep); 21821 allone_bcast_ire_created = B_TRUE; 21822 } 21823 /* 21824 * Once we have created all the appropriate ires, we 21825 * just break out of this loop to add what we have created. 21826 * This has been indented similar to ire_match_args for 21827 * readability. 21828 */ 21829 if (((test_net_ire == NULL) || 21830 (net_bcast_ire_created)) && 21831 ((test_subnet_ire == NULL) || 21832 (subnet_bcast_ire_created)) && 21833 ((test_allzero_ire == NULL) || 21834 (allzero_bcast_ire_created)) && 21835 ((test_allone_ire == NULL) || 21836 (allone_bcast_ire_created))) { 21837 break; 21838 } 21839 } 21840 21841 /* 21842 * Create bcast ires on deprecated ipifs if no non-deprecated ipifs 21843 * exist. 6 pairs of bcast ires are needed. 21844 * Note - the old ires are deleted in ipif_down. 21845 */ 21846 if (need_net_bcast_ire && !net_bcast_ire_created && backup_ipif_net) { 21847 ipif = backup_ipif_net; 21848 irep = ire_create_bcast(ipif, net_addr, irep); 21849 irep = ire_create_bcast(ipif, ~net_mask | net_addr, irep); 21850 net_bcast_ire_created = B_TRUE; 21851 } 21852 if (need_subnet_bcast_ire && !subnet_bcast_ire_created && 21853 backup_ipif_subnet) { 21854 ipif = backup_ipif_subnet; 21855 irep = ire_create_bcast(ipif, subnet_addr, irep); 21856 irep = ire_create_bcast(ipif, 21857 ~subnet_mask | subnet_addr, irep); 21858 subnet_bcast_ire_created = B_TRUE; 21859 } 21860 if (test_allzero_ire != NULL && !allzero_bcast_ire_created && 21861 backup_ipif_allzeros) { 21862 irep = ire_create_bcast(backup_ipif_allzeros, 0, irep); 21863 allzero_bcast_ire_created = B_TRUE; 21864 } 21865 if (test_allone_ire != NULL && !allone_bcast_ire_created && 21866 backup_ipif_allones) { 21867 irep = ire_create_bcast(backup_ipif_allones, 21868 INADDR_BROADCAST, irep); 21869 allone_bcast_ire_created = B_TRUE; 21870 } 21871 21872 /* 21873 * If we can't create all of them, don't add any of them. 21874 * Code in ip_wput_ire and ire_to_ill assumes that we 21875 * always have a non-loopback copy and loopback copy 21876 * for a given address. 21877 */ 21878 for (irep1 = irep; irep1 > ire_array; ) { 21879 irep1--; 21880 if (*irep1 == NULL) { 21881 ip0dbg(("ipif_check_bcast_ires: can't create " 21882 "IRE_BROADCAST, memory allocation failure\n")); 21883 while (irep > ire_array) { 21884 irep--; 21885 if (*irep != NULL) 21886 ire_delete(*irep); 21887 } 21888 goto bad; 21889 } 21890 } 21891 for (irep1 = irep; irep1 > ire_array; ) { 21892 int error; 21893 21894 irep1--; 21895 error = ire_add(irep1, NULL, NULL, NULL, B_FALSE); 21896 if (error == 0) { 21897 ire_refrele(*irep1); /* Held in ire_add */ 21898 } 21899 } 21900 bad: 21901 if (test_allzero_ire != NULL) 21902 ire_refrele(test_allzero_ire); 21903 if (test_allone_ire != NULL) 21904 ire_refrele(test_allone_ire); 21905 if (test_net_ire != NULL) 21906 ire_refrele(test_net_ire); 21907 if (test_subnet_ire != NULL) 21908 ire_refrele(test_subnet_ire); 21909 } 21910 21911 /* 21912 * Extract both the flags (including IFF_CANTCHANGE) such as IFF_IPV* 21913 * from lifr_flags and the name from lifr_name. 21914 * Set IFF_IPV* and ill_isv6 prior to doing the lookup 21915 * since ipif_lookup_on_name uses the _isv6 flags when matching. 21916 * Returns EINPROGRESS when mp has been consumed by queueing it on 21917 * ill_pending_mp and the ioctl will complete in ip_rput. 21918 * 21919 * Can operate on either a module or a driver queue. 21920 * Returns an error if not a module queue. 21921 */ 21922 /* ARGSUSED */ 21923 int 21924 ip_sioctl_slifname(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 21925 ip_ioctl_cmd_t *ipip, void *if_req) 21926 { 21927 int err; 21928 ill_t *ill; 21929 struct lifreq *lifr = (struct lifreq *)if_req; 21930 21931 ASSERT(ipif != NULL); 21932 ip1dbg(("ip_sioctl_slifname %s\n", lifr->lifr_name)); 21933 21934 if (q->q_next == NULL) { 21935 ip1dbg(( 21936 "if_sioctl_slifname: SIOCSLIFNAME: no q_next\n")); 21937 return (EINVAL); 21938 } 21939 21940 ill = (ill_t *)q->q_ptr; 21941 /* 21942 * If we are not writer on 'q' then this interface exists already 21943 * and previous lookups (ipif_extract_lifreq_cmn) found this ipif. 21944 * So return EALREADY 21945 */ 21946 if (ill != ipif->ipif_ill) 21947 return (EALREADY); 21948 21949 if (ill->ill_name[0] != '\0') 21950 return (EALREADY); 21951 21952 /* 21953 * Set all the flags. Allows all kinds of override. Provide some 21954 * sanity checking by not allowing IFF_BROADCAST and IFF_MULTICAST 21955 * unless there is either multicast/broadcast support in the driver 21956 * or it is a pt-pt link. 21957 */ 21958 if (lifr->lifr_flags & (IFF_PROMISC|IFF_ALLMULTI)) { 21959 /* Meaningless to IP thus don't allow them to be set. */ 21960 ip1dbg(("ip_setname: EINVAL 1\n")); 21961 return (EINVAL); 21962 } 21963 /* 21964 * For a DL_STYLE2 driver (ill_needs_attach), we would not have the 21965 * ill_bcast_addr_length info. 21966 */ 21967 if (!ill->ill_needs_attach && 21968 ((lifr->lifr_flags & IFF_MULTICAST) && 21969 !(lifr->lifr_flags & IFF_POINTOPOINT) && 21970 ill->ill_bcast_addr_length == 0)) { 21971 /* Link not broadcast/pt-pt capable i.e. no multicast */ 21972 ip1dbg(("ip_setname: EINVAL 2\n")); 21973 return (EINVAL); 21974 } 21975 if ((lifr->lifr_flags & IFF_BROADCAST) && 21976 ((lifr->lifr_flags & IFF_IPV6) || 21977 (!ill->ill_needs_attach && ill->ill_bcast_addr_length == 0))) { 21978 /* Link not broadcast capable or IPv6 i.e. no broadcast */ 21979 ip1dbg(("ip_setname: EINVAL 3\n")); 21980 return (EINVAL); 21981 } 21982 if (lifr->lifr_flags & IFF_UP) { 21983 /* Can only be set with SIOCSLIFFLAGS */ 21984 ip1dbg(("ip_setname: EINVAL 4\n")); 21985 return (EINVAL); 21986 } 21987 if ((lifr->lifr_flags & (IFF_IPV6|IFF_IPV4)) != IFF_IPV6 && 21988 (lifr->lifr_flags & (IFF_IPV6|IFF_IPV4)) != IFF_IPV4) { 21989 ip1dbg(("ip_setname: EINVAL 5\n")); 21990 return (EINVAL); 21991 } 21992 /* 21993 * Only allow the IFF_XRESOLV flag to be set on IPv6 interfaces. 21994 */ 21995 if ((lifr->lifr_flags & IFF_XRESOLV) && 21996 !(lifr->lifr_flags & IFF_IPV6) && 21997 !(ipif->ipif_isv6)) { 21998 ip1dbg(("ip_setname: EINVAL 6\n")); 21999 return (EINVAL); 22000 } 22001 22002 /* 22003 * The user has done SIOCGLIFFLAGS prior to this ioctl and hence 22004 * we have all the flags here. So, we assign rather than we OR. 22005 * We can't OR the flags here because we don't want to set 22006 * both IFF_IPV4 and IFF_IPV6. We start off as IFF_IPV4 in 22007 * ipif_allocate and become IFF_IPV4 or IFF_IPV6 here depending 22008 * on lifr_flags value here. 22009 */ 22010 /* 22011 * This ill has not been inserted into the global list. 22012 * So we are still single threaded and don't need any lock 22013 */ 22014 ipif->ipif_flags = lifr->lifr_flags & IFF_LOGINT_FLAGS & 22015 ~IFF_DUPLICATE; 22016 ill->ill_flags = lifr->lifr_flags & IFF_PHYINTINST_FLAGS; 22017 ill->ill_phyint->phyint_flags = lifr->lifr_flags & IFF_PHYINT_FLAGS; 22018 22019 /* We started off as V4. */ 22020 if (ill->ill_flags & ILLF_IPV6) { 22021 ill->ill_phyint->phyint_illv6 = ill; 22022 ill->ill_phyint->phyint_illv4 = NULL; 22023 } 22024 err = ipif_set_values(q, mp, lifr->lifr_name, &lifr->lifr_ppa); 22025 return (err); 22026 } 22027 22028 /* ARGSUSED */ 22029 int 22030 ip_sioctl_slifname_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 22031 ip_ioctl_cmd_t *ipip, void *if_req) 22032 { 22033 /* 22034 * ill_phyint_reinit merged the v4 and v6 into a single 22035 * ipsq. Could also have become part of a ipmp group in the 22036 * process, and we might not have been able to complete the 22037 * slifname in ipif_set_values, if we could not become 22038 * exclusive. If so restart it here 22039 */ 22040 return (ipif_set_values_tail(ipif->ipif_ill, ipif, mp, q)); 22041 } 22042 22043 /* 22044 * Return a pointer to the ipif which matches the index, IP version type and 22045 * zoneid. 22046 */ 22047 ipif_t * 22048 ipif_lookup_on_ifindex(uint_t index, boolean_t isv6, zoneid_t zoneid, 22049 queue_t *q, mblk_t *mp, ipsq_func_t func, int *err, ip_stack_t *ipst) 22050 { 22051 ill_t *ill; 22052 ipsq_t *ipsq; 22053 phyint_t *phyi; 22054 ipif_t *ipif; 22055 22056 ASSERT((q == NULL && mp == NULL && func == NULL && err == NULL) || 22057 (q != NULL && mp != NULL && func != NULL && err != NULL)); 22058 22059 if (err != NULL) 22060 *err = 0; 22061 22062 /* 22063 * Indexes are stored in the phyint - a common structure 22064 * to both IPv4 and IPv6. 22065 */ 22066 22067 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 22068 phyi = avl_find(&ipst->ips_phyint_g_list->phyint_list_avl_by_index, 22069 (void *) &index, NULL); 22070 if (phyi != NULL) { 22071 ill = isv6 ? phyi->phyint_illv6 : phyi->phyint_illv4; 22072 if (ill == NULL) { 22073 rw_exit(&ipst->ips_ill_g_lock); 22074 if (err != NULL) 22075 *err = ENXIO; 22076 return (NULL); 22077 } 22078 GRAB_CONN_LOCK(q); 22079 mutex_enter(&ill->ill_lock); 22080 if (ILL_CAN_LOOKUP(ill)) { 22081 for (ipif = ill->ill_ipif; ipif != NULL; 22082 ipif = ipif->ipif_next) { 22083 if (IPIF_CAN_LOOKUP(ipif) && 22084 (zoneid == ALL_ZONES || 22085 zoneid == ipif->ipif_zoneid || 22086 ipif->ipif_zoneid == ALL_ZONES)) { 22087 ipif_refhold_locked(ipif); 22088 mutex_exit(&ill->ill_lock); 22089 RELEASE_CONN_LOCK(q); 22090 rw_exit(&ipst->ips_ill_g_lock); 22091 return (ipif); 22092 } 22093 } 22094 } else if (ILL_CAN_WAIT(ill, q)) { 22095 ipsq = ill->ill_phyint->phyint_ipsq; 22096 mutex_enter(&ipsq->ipsq_lock); 22097 rw_exit(&ipst->ips_ill_g_lock); 22098 mutex_exit(&ill->ill_lock); 22099 ipsq_enq(ipsq, q, mp, func, NEW_OP, ill); 22100 mutex_exit(&ipsq->ipsq_lock); 22101 RELEASE_CONN_LOCK(q); 22102 *err = EINPROGRESS; 22103 return (NULL); 22104 } 22105 mutex_exit(&ill->ill_lock); 22106 RELEASE_CONN_LOCK(q); 22107 } 22108 rw_exit(&ipst->ips_ill_g_lock); 22109 if (err != NULL) 22110 *err = ENXIO; 22111 return (NULL); 22112 } 22113 22114 typedef struct conn_change_s { 22115 uint_t cc_old_ifindex; 22116 uint_t cc_new_ifindex; 22117 } conn_change_t; 22118 22119 /* 22120 * ipcl_walk function for changing interface index. 22121 */ 22122 static void 22123 conn_change_ifindex(conn_t *connp, caddr_t arg) 22124 { 22125 conn_change_t *connc; 22126 uint_t old_ifindex; 22127 uint_t new_ifindex; 22128 int i; 22129 ilg_t *ilg; 22130 22131 connc = (conn_change_t *)arg; 22132 old_ifindex = connc->cc_old_ifindex; 22133 new_ifindex = connc->cc_new_ifindex; 22134 22135 if (connp->conn_orig_bound_ifindex == old_ifindex) 22136 connp->conn_orig_bound_ifindex = new_ifindex; 22137 22138 if (connp->conn_orig_multicast_ifindex == old_ifindex) 22139 connp->conn_orig_multicast_ifindex = new_ifindex; 22140 22141 if (connp->conn_orig_xmit_ifindex == old_ifindex) 22142 connp->conn_orig_xmit_ifindex = new_ifindex; 22143 22144 for (i = connp->conn_ilg_inuse - 1; i >= 0; i--) { 22145 ilg = &connp->conn_ilg[i]; 22146 if (ilg->ilg_orig_ifindex == old_ifindex) 22147 ilg->ilg_orig_ifindex = new_ifindex; 22148 } 22149 } 22150 22151 /* 22152 * Walk all the ipifs and ilms on this ill and change the orig_ifindex 22153 * to new_index if it matches the old_index. 22154 * 22155 * Failovers typically happen within a group of ills. But somebody 22156 * can remove an ill from the group after a failover happened. If 22157 * we are setting the ifindex after this, we potentially need to 22158 * look at all the ills rather than just the ones in the group. 22159 * We cut down the work by looking at matching ill_net_types 22160 * and ill_types as we could not possibly grouped them together. 22161 */ 22162 static void 22163 ip_change_ifindex(ill_t *ill_orig, conn_change_t *connc) 22164 { 22165 ill_t *ill; 22166 ipif_t *ipif; 22167 uint_t old_ifindex; 22168 uint_t new_ifindex; 22169 ilm_t *ilm; 22170 ill_walk_context_t ctx; 22171 ip_stack_t *ipst = ill_orig->ill_ipst; 22172 22173 old_ifindex = connc->cc_old_ifindex; 22174 new_ifindex = connc->cc_new_ifindex; 22175 22176 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 22177 ill = ILL_START_WALK_ALL(&ctx, ipst); 22178 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 22179 if ((ill_orig->ill_net_type != ill->ill_net_type) || 22180 (ill_orig->ill_type != ill->ill_type)) { 22181 continue; 22182 } 22183 for (ipif = ill->ill_ipif; ipif != NULL; 22184 ipif = ipif->ipif_next) { 22185 if (ipif->ipif_orig_ifindex == old_ifindex) 22186 ipif->ipif_orig_ifindex = new_ifindex; 22187 } 22188 for (ilm = ill->ill_ilm; ilm != NULL; ilm = ilm->ilm_next) { 22189 if (ilm->ilm_orig_ifindex == old_ifindex) 22190 ilm->ilm_orig_ifindex = new_ifindex; 22191 } 22192 } 22193 rw_exit(&ipst->ips_ill_g_lock); 22194 } 22195 22196 /* 22197 * We first need to ensure that the new index is unique, and 22198 * then carry the change across both v4 and v6 ill representation 22199 * of the physical interface. 22200 */ 22201 /* ARGSUSED */ 22202 int 22203 ip_sioctl_slifindex(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 22204 ip_ioctl_cmd_t *ipip, void *ifreq) 22205 { 22206 ill_t *ill; 22207 ill_t *ill_other; 22208 phyint_t *phyi; 22209 int old_index; 22210 conn_change_t connc; 22211 struct ifreq *ifr = (struct ifreq *)ifreq; 22212 struct lifreq *lifr = (struct lifreq *)ifreq; 22213 uint_t index; 22214 ill_t *ill_v4; 22215 ill_t *ill_v6; 22216 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; 22217 22218 if (ipip->ipi_cmd_type == IF_CMD) 22219 index = ifr->ifr_index; 22220 else 22221 index = lifr->lifr_index; 22222 22223 /* 22224 * Only allow on physical interface. Also, index zero is illegal. 22225 * 22226 * Need to check for PHYI_FAILED and PHYI_INACTIVE 22227 * 22228 * 1) If PHYI_FAILED is set, a failover could have happened which 22229 * implies a possible failback might have to happen. As failback 22230 * depends on the old index, we should fail setting the index. 22231 * 22232 * 2) If PHYI_INACTIVE is set, in.mpathd does a failover so that 22233 * any addresses or multicast memberships are failed over to 22234 * a non-STANDBY interface. As failback depends on the old 22235 * index, we should fail setting the index for this case also. 22236 * 22237 * 3) If PHYI_OFFLINE is set, a possible failover has happened. 22238 * Be consistent with PHYI_FAILED and fail the ioctl. 22239 */ 22240 ill = ipif->ipif_ill; 22241 phyi = ill->ill_phyint; 22242 if ((phyi->phyint_flags & (PHYI_FAILED|PHYI_INACTIVE|PHYI_OFFLINE)) || 22243 ipif->ipif_id != 0 || index == 0) { 22244 return (EINVAL); 22245 } 22246 old_index = phyi->phyint_ifindex; 22247 22248 /* If the index is not changing, no work to do */ 22249 if (old_index == index) 22250 return (0); 22251 22252 /* 22253 * Use ill_lookup_on_ifindex to determine if the 22254 * new index is unused and if so allow the change. 22255 */ 22256 ill_v6 = ill_lookup_on_ifindex(index, B_TRUE, NULL, NULL, NULL, NULL, 22257 ipst); 22258 ill_v4 = ill_lookup_on_ifindex(index, B_FALSE, NULL, NULL, NULL, NULL, 22259 ipst); 22260 if (ill_v6 != NULL || ill_v4 != NULL) { 22261 if (ill_v4 != NULL) 22262 ill_refrele(ill_v4); 22263 if (ill_v6 != NULL) 22264 ill_refrele(ill_v6); 22265 return (EBUSY); 22266 } 22267 22268 /* 22269 * The new index is unused. Set it in the phyint. 22270 * Locate the other ill so that we can send a routing 22271 * sockets message. 22272 */ 22273 if (ill->ill_isv6) { 22274 ill_other = phyi->phyint_illv4; 22275 } else { 22276 ill_other = phyi->phyint_illv6; 22277 } 22278 22279 phyi->phyint_ifindex = index; 22280 22281 connc.cc_old_ifindex = old_index; 22282 connc.cc_new_ifindex = index; 22283 ip_change_ifindex(ill, &connc); 22284 ipcl_walk(conn_change_ifindex, (caddr_t)&connc, ipst); 22285 22286 /* Send the routing sockets message */ 22287 ip_rts_ifmsg(ipif); 22288 if (ill_other != NULL) 22289 ip_rts_ifmsg(ill_other->ill_ipif); 22290 22291 return (0); 22292 } 22293 22294 /* ARGSUSED */ 22295 int 22296 ip_sioctl_get_lifindex(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 22297 ip_ioctl_cmd_t *ipip, void *ifreq) 22298 { 22299 struct ifreq *ifr = (struct ifreq *)ifreq; 22300 struct lifreq *lifr = (struct lifreq *)ifreq; 22301 22302 ip1dbg(("ip_sioctl_get_lifindex(%s:%u %p)\n", 22303 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 22304 /* Get the interface index */ 22305 if (ipip->ipi_cmd_type == IF_CMD) { 22306 ifr->ifr_index = ipif->ipif_ill->ill_phyint->phyint_ifindex; 22307 } else { 22308 lifr->lifr_index = ipif->ipif_ill->ill_phyint->phyint_ifindex; 22309 } 22310 return (0); 22311 } 22312 22313 /* ARGSUSED */ 22314 int 22315 ip_sioctl_get_lifzone(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 22316 ip_ioctl_cmd_t *ipip, void *ifreq) 22317 { 22318 struct lifreq *lifr = (struct lifreq *)ifreq; 22319 22320 ip1dbg(("ip_sioctl_get_lifzone(%s:%u %p)\n", 22321 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 22322 /* Get the interface zone */ 22323 ASSERT(ipip->ipi_cmd_type == LIF_CMD); 22324 lifr->lifr_zoneid = ipif->ipif_zoneid; 22325 return (0); 22326 } 22327 22328 /* 22329 * Set the zoneid of an interface. 22330 */ 22331 /* ARGSUSED */ 22332 int 22333 ip_sioctl_slifzone(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 22334 ip_ioctl_cmd_t *ipip, void *ifreq) 22335 { 22336 struct lifreq *lifr = (struct lifreq *)ifreq; 22337 int err = 0; 22338 boolean_t need_up = B_FALSE; 22339 zone_t *zptr; 22340 zone_status_t status; 22341 zoneid_t zoneid; 22342 22343 ASSERT(ipip->ipi_cmd_type == LIF_CMD); 22344 if ((zoneid = lifr->lifr_zoneid) == ALL_ZONES) { 22345 if (!is_system_labeled()) 22346 return (ENOTSUP); 22347 zoneid = GLOBAL_ZONEID; 22348 } 22349 22350 /* cannot assign instance zero to a non-global zone */ 22351 if (ipif->ipif_id == 0 && zoneid != GLOBAL_ZONEID) 22352 return (ENOTSUP); 22353 22354 /* 22355 * Cannot assign to a zone that doesn't exist or is shutting down. In 22356 * the event of a race with the zone shutdown processing, since IP 22357 * serializes this ioctl and SIOCGLIFCONF/SIOCLIFREMOVEIF, we know the 22358 * interface will be cleaned up even if the zone is shut down 22359 * immediately after the status check. If the interface can't be brought 22360 * down right away, and the zone is shut down before the restart 22361 * function is called, we resolve the possible races by rechecking the 22362 * zone status in the restart function. 22363 */ 22364 if ((zptr = zone_find_by_id(zoneid)) == NULL) 22365 return (EINVAL); 22366 status = zone_status_get(zptr); 22367 zone_rele(zptr); 22368 22369 if (status != ZONE_IS_READY && status != ZONE_IS_RUNNING) 22370 return (EINVAL); 22371 22372 if (ipif->ipif_flags & IPIF_UP) { 22373 /* 22374 * If the interface is already marked up, 22375 * we call ipif_down which will take care 22376 * of ditching any IREs that have been set 22377 * up based on the old interface address. 22378 */ 22379 err = ipif_logical_down(ipif, q, mp); 22380 if (err == EINPROGRESS) 22381 return (err); 22382 ipif_down_tail(ipif); 22383 need_up = B_TRUE; 22384 } 22385 22386 err = ip_sioctl_slifzone_tail(ipif, lifr->lifr_zoneid, q, mp, need_up); 22387 return (err); 22388 } 22389 22390 static int 22391 ip_sioctl_slifzone_tail(ipif_t *ipif, zoneid_t zoneid, 22392 queue_t *q, mblk_t *mp, boolean_t need_up) 22393 { 22394 int err = 0; 22395 ip_stack_t *ipst; 22396 22397 ip1dbg(("ip_sioctl_zoneid_tail(%s:%u %p)\n", 22398 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 22399 22400 if (CONN_Q(q)) 22401 ipst = CONNQ_TO_IPST(q); 22402 else 22403 ipst = ILLQ_TO_IPST(q); 22404 22405 /* 22406 * For exclusive stacks we don't allow a different zoneid than 22407 * global. 22408 */ 22409 if (ipst->ips_netstack->netstack_stackid != GLOBAL_NETSTACKID && 22410 zoneid != GLOBAL_ZONEID) 22411 return (EINVAL); 22412 22413 /* Set the new zone id. */ 22414 ipif->ipif_zoneid = zoneid; 22415 22416 /* Update sctp list */ 22417 sctp_update_ipif(ipif, SCTP_IPIF_UPDATE); 22418 22419 if (need_up) { 22420 /* 22421 * Now bring the interface back up. If this 22422 * is the only IPIF for the ILL, ipif_up 22423 * will have to re-bind to the device, so 22424 * we may get back EINPROGRESS, in which 22425 * case, this IOCTL will get completed in 22426 * ip_rput_dlpi when we see the DL_BIND_ACK. 22427 */ 22428 err = ipif_up(ipif, q, mp); 22429 } 22430 return (err); 22431 } 22432 22433 /* ARGSUSED */ 22434 int 22435 ip_sioctl_slifzone_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 22436 ip_ioctl_cmd_t *ipip, void *if_req) 22437 { 22438 struct lifreq *lifr = (struct lifreq *)if_req; 22439 zoneid_t zoneid; 22440 zone_t *zptr; 22441 zone_status_t status; 22442 22443 ASSERT(ipif->ipif_id != 0); 22444 ASSERT(ipip->ipi_cmd_type == LIF_CMD); 22445 if ((zoneid = lifr->lifr_zoneid) == ALL_ZONES) 22446 zoneid = GLOBAL_ZONEID; 22447 22448 ip1dbg(("ip_sioctl_slifzone_restart(%s:%u %p)\n", 22449 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 22450 22451 /* 22452 * We recheck the zone status to resolve the following race condition: 22453 * 1) process sends SIOCSLIFZONE to put hme0:1 in zone "myzone"; 22454 * 2) hme0:1 is up and can't be brought down right away; 22455 * ip_sioctl_slifzone() returns EINPROGRESS and the request is queued; 22456 * 3) zone "myzone" is halted; the zone status switches to 22457 * 'shutting_down' and the zones framework sends SIOCGLIFCONF to list 22458 * the interfaces to remove - hme0:1 is not returned because it's not 22459 * yet in "myzone", so it won't be removed; 22460 * 4) the restart function for SIOCSLIFZONE is called; without the 22461 * status check here, we would have hme0:1 in "myzone" after it's been 22462 * destroyed. 22463 * Note that if the status check fails, we need to bring the interface 22464 * back to its state prior to ip_sioctl_slifzone(), hence the call to 22465 * ipif_up_done[_v6](). 22466 */ 22467 status = ZONE_IS_UNINITIALIZED; 22468 if ((zptr = zone_find_by_id(zoneid)) != NULL) { 22469 status = zone_status_get(zptr); 22470 zone_rele(zptr); 22471 } 22472 if (status != ZONE_IS_READY && status != ZONE_IS_RUNNING) { 22473 if (ipif->ipif_isv6) { 22474 (void) ipif_up_done_v6(ipif); 22475 } else { 22476 (void) ipif_up_done(ipif); 22477 } 22478 return (EINVAL); 22479 } 22480 22481 ipif_down_tail(ipif); 22482 22483 return (ip_sioctl_slifzone_tail(ipif, lifr->lifr_zoneid, q, mp, 22484 B_TRUE)); 22485 } 22486 22487 /* ARGSUSED */ 22488 int 22489 ip_sioctl_get_lifusesrc(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 22490 ip_ioctl_cmd_t *ipip, void *ifreq) 22491 { 22492 struct lifreq *lifr = ifreq; 22493 22494 ASSERT(q->q_next == NULL); 22495 ASSERT(CONN_Q(q)); 22496 22497 ip1dbg(("ip_sioctl_get_lifusesrc(%s:%u %p)\n", 22498 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 22499 lifr->lifr_index = ipif->ipif_ill->ill_usesrc_ifindex; 22500 ip1dbg(("ip_sioctl_get_lifusesrc:lifr_index = %d\n", lifr->lifr_index)); 22501 22502 return (0); 22503 } 22504 22505 22506 /* Find the previous ILL in this usesrc group */ 22507 static ill_t * 22508 ill_prev_usesrc(ill_t *uill) 22509 { 22510 ill_t *ill; 22511 22512 for (ill = uill->ill_usesrc_grp_next; 22513 ASSERT(ill), ill->ill_usesrc_grp_next != uill; 22514 ill = ill->ill_usesrc_grp_next) 22515 /* do nothing */; 22516 return (ill); 22517 } 22518 22519 /* 22520 * Release all members of the usesrc group. This routine is called 22521 * from ill_delete when the interface being unplumbed is the 22522 * group head. 22523 */ 22524 static void 22525 ill_disband_usesrc_group(ill_t *uill) 22526 { 22527 ill_t *next_ill, *tmp_ill; 22528 ip_stack_t *ipst = uill->ill_ipst; 22529 22530 ASSERT(RW_WRITE_HELD(&ipst->ips_ill_g_usesrc_lock)); 22531 next_ill = uill->ill_usesrc_grp_next; 22532 22533 do { 22534 ASSERT(next_ill != NULL); 22535 tmp_ill = next_ill->ill_usesrc_grp_next; 22536 ASSERT(tmp_ill != NULL); 22537 next_ill->ill_usesrc_grp_next = NULL; 22538 next_ill->ill_usesrc_ifindex = 0; 22539 next_ill = tmp_ill; 22540 } while (next_ill->ill_usesrc_ifindex != 0); 22541 uill->ill_usesrc_grp_next = NULL; 22542 } 22543 22544 /* 22545 * Remove the client usesrc ILL from the list and relink to a new list 22546 */ 22547 int 22548 ill_relink_usesrc_ills(ill_t *ucill, ill_t *uill, uint_t ifindex) 22549 { 22550 ill_t *ill, *tmp_ill; 22551 ip_stack_t *ipst = ucill->ill_ipst; 22552 22553 ASSERT((ucill != NULL) && (ucill->ill_usesrc_grp_next != NULL) && 22554 (uill != NULL) && RW_WRITE_HELD(&ipst->ips_ill_g_usesrc_lock)); 22555 22556 /* 22557 * Check if the usesrc client ILL passed in is not already 22558 * in use as a usesrc ILL i.e one whose source address is 22559 * in use OR a usesrc ILL is not already in use as a usesrc 22560 * client ILL 22561 */ 22562 if ((ucill->ill_usesrc_ifindex == 0) || 22563 (uill->ill_usesrc_ifindex != 0)) { 22564 return (-1); 22565 } 22566 22567 ill = ill_prev_usesrc(ucill); 22568 ASSERT(ill->ill_usesrc_grp_next != NULL); 22569 22570 /* Remove from the current list */ 22571 if (ill->ill_usesrc_grp_next->ill_usesrc_grp_next == ill) { 22572 /* Only two elements in the list */ 22573 ASSERT(ill->ill_usesrc_ifindex == 0); 22574 ill->ill_usesrc_grp_next = NULL; 22575 } else { 22576 ill->ill_usesrc_grp_next = ucill->ill_usesrc_grp_next; 22577 } 22578 22579 if (ifindex == 0) { 22580 ucill->ill_usesrc_ifindex = 0; 22581 ucill->ill_usesrc_grp_next = NULL; 22582 return (0); 22583 } 22584 22585 ucill->ill_usesrc_ifindex = ifindex; 22586 tmp_ill = uill->ill_usesrc_grp_next; 22587 uill->ill_usesrc_grp_next = ucill; 22588 ucill->ill_usesrc_grp_next = 22589 (tmp_ill != NULL) ? tmp_ill : uill; 22590 return (0); 22591 } 22592 22593 /* 22594 * Set the ill_usesrc and ill_usesrc_head fields. See synchronization notes in 22595 * ip.c for locking details. 22596 */ 22597 /* ARGSUSED */ 22598 int 22599 ip_sioctl_slifusesrc(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 22600 ip_ioctl_cmd_t *ipip, void *ifreq) 22601 { 22602 struct lifreq *lifr = (struct lifreq *)ifreq; 22603 boolean_t isv6 = B_FALSE, reset_flg = B_FALSE, 22604 ill_flag_changed = B_FALSE; 22605 ill_t *usesrc_ill, *usesrc_cli_ill = ipif->ipif_ill; 22606 int err = 0, ret; 22607 uint_t ifindex; 22608 phyint_t *us_phyint, *us_cli_phyint; 22609 ipsq_t *ipsq = NULL; 22610 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; 22611 22612 ASSERT(IAM_WRITER_IPIF(ipif)); 22613 ASSERT(q->q_next == NULL); 22614 ASSERT(CONN_Q(q)); 22615 22616 isv6 = (Q_TO_CONN(q))->conn_af_isv6; 22617 us_cli_phyint = usesrc_cli_ill->ill_phyint; 22618 22619 ASSERT(us_cli_phyint != NULL); 22620 22621 /* 22622 * If the client ILL is being used for IPMP, abort. 22623 * Note, this can be done before ipsq_try_enter since we are already 22624 * exclusive on this ILL 22625 */ 22626 if ((us_cli_phyint->phyint_groupname != NULL) || 22627 (us_cli_phyint->phyint_flags & PHYI_STANDBY)) { 22628 return (EINVAL); 22629 } 22630 22631 ifindex = lifr->lifr_index; 22632 if (ifindex == 0) { 22633 if (usesrc_cli_ill->ill_usesrc_grp_next == NULL) { 22634 /* non usesrc group interface, nothing to reset */ 22635 return (0); 22636 } 22637 ifindex = usesrc_cli_ill->ill_usesrc_ifindex; 22638 /* valid reset request */ 22639 reset_flg = B_TRUE; 22640 } 22641 22642 usesrc_ill = ill_lookup_on_ifindex(ifindex, isv6, q, mp, 22643 ip_process_ioctl, &err, ipst); 22644 22645 if (usesrc_ill == NULL) { 22646 return (err); 22647 } 22648 22649 /* 22650 * The usesrc_cli_ill or the usesrc_ill cannot be part of an IPMP 22651 * group nor can either of the interfaces be used for standy. So 22652 * to guarantee mutual exclusion with ip_sioctl_flags (which sets 22653 * PHYI_STANDBY) and ip_sioctl_groupname (which sets the groupname) 22654 * we need to be exclusive on the ipsq belonging to the usesrc_ill. 22655 * We are already exlusive on this ipsq i.e ipsq corresponding to 22656 * the usesrc_cli_ill 22657 */ 22658 ipsq = ipsq_try_enter(NULL, usesrc_ill, q, mp, ip_process_ioctl, 22659 NEW_OP, B_TRUE); 22660 if (ipsq == NULL) { 22661 err = EINPROGRESS; 22662 /* Operation enqueued on the ipsq of the usesrc ILL */ 22663 goto done; 22664 } 22665 22666 /* Check if the usesrc_ill is used for IPMP */ 22667 us_phyint = usesrc_ill->ill_phyint; 22668 if ((us_phyint->phyint_groupname != NULL) || 22669 (us_phyint->phyint_flags & PHYI_STANDBY)) { 22670 err = EINVAL; 22671 goto done; 22672 } 22673 22674 /* 22675 * If the client is already in use as a usesrc_ill or a usesrc_ill is 22676 * already a client then return EINVAL 22677 */ 22678 if (IS_USESRC_ILL(usesrc_cli_ill) || IS_USESRC_CLI_ILL(usesrc_ill)) { 22679 err = EINVAL; 22680 goto done; 22681 } 22682 22683 /* 22684 * If the ill_usesrc_ifindex field is already set to what it needs to 22685 * be then this is a duplicate operation. 22686 */ 22687 if (!reset_flg && usesrc_cli_ill->ill_usesrc_ifindex == ifindex) { 22688 err = 0; 22689 goto done; 22690 } 22691 22692 ip1dbg(("ip_sioctl_slifusesrc: usesrc_cli_ill %s, usesrc_ill %s," 22693 " v6 = %d", usesrc_cli_ill->ill_name, usesrc_ill->ill_name, 22694 usesrc_ill->ill_isv6)); 22695 22696 /* 22697 * The next step ensures that no new ires will be created referencing 22698 * the client ill, until the ILL_CHANGING flag is cleared. Then 22699 * we go through an ire walk deleting all ire caches that reference 22700 * the client ill. New ires referencing the client ill that are added 22701 * to the ire table before the ILL_CHANGING flag is set, will be 22702 * cleaned up by the ire walk below. Attempt to add new ires referencing 22703 * the client ill while the ILL_CHANGING flag is set will be failed 22704 * during the ire_add in ire_atomic_start. ire_atomic_start atomically 22705 * checks (under the ill_g_usesrc_lock) that the ire being added 22706 * is not stale, i.e the ire_stq and ire_ipif are consistent and 22707 * belong to the same usesrc group. 22708 */ 22709 mutex_enter(&usesrc_cli_ill->ill_lock); 22710 usesrc_cli_ill->ill_state_flags |= ILL_CHANGING; 22711 mutex_exit(&usesrc_cli_ill->ill_lock); 22712 ill_flag_changed = B_TRUE; 22713 22714 if (ipif->ipif_isv6) 22715 ire_walk_v6(ipif_delete_cache_ire, (char *)usesrc_cli_ill, 22716 ALL_ZONES, ipst); 22717 else 22718 ire_walk_v4(ipif_delete_cache_ire, (char *)usesrc_cli_ill, 22719 ALL_ZONES, ipst); 22720 22721 /* 22722 * ill_g_usesrc_lock global lock protects the ill_usesrc_grp_next 22723 * and the ill_usesrc_ifindex fields 22724 */ 22725 rw_enter(&ipst->ips_ill_g_usesrc_lock, RW_WRITER); 22726 22727 if (reset_flg) { 22728 ret = ill_relink_usesrc_ills(usesrc_cli_ill, usesrc_ill, 0); 22729 if (ret != 0) { 22730 err = EINVAL; 22731 } 22732 rw_exit(&ipst->ips_ill_g_usesrc_lock); 22733 goto done; 22734 } 22735 22736 /* 22737 * Four possibilities to consider: 22738 * 1. Both usesrc_ill and usesrc_cli_ill are not part of any usesrc grp 22739 * 2. usesrc_ill is part of a group but usesrc_cli_ill isn't 22740 * 3. usesrc_cli_ill is part of a group but usesrc_ill isn't 22741 * 4. Both are part of their respective usesrc groups 22742 */ 22743 if ((usesrc_ill->ill_usesrc_grp_next == NULL) && 22744 (usesrc_cli_ill->ill_usesrc_grp_next == NULL)) { 22745 ASSERT(usesrc_ill->ill_usesrc_ifindex == 0); 22746 usesrc_cli_ill->ill_usesrc_ifindex = ifindex; 22747 usesrc_ill->ill_usesrc_grp_next = usesrc_cli_ill; 22748 usesrc_cli_ill->ill_usesrc_grp_next = usesrc_ill; 22749 } else if ((usesrc_ill->ill_usesrc_grp_next != NULL) && 22750 (usesrc_cli_ill->ill_usesrc_grp_next == NULL)) { 22751 usesrc_cli_ill->ill_usesrc_ifindex = ifindex; 22752 /* Insert at head of list */ 22753 usesrc_cli_ill->ill_usesrc_grp_next = 22754 usesrc_ill->ill_usesrc_grp_next; 22755 usesrc_ill->ill_usesrc_grp_next = usesrc_cli_ill; 22756 } else { 22757 ret = ill_relink_usesrc_ills(usesrc_cli_ill, usesrc_ill, 22758 ifindex); 22759 if (ret != 0) 22760 err = EINVAL; 22761 } 22762 rw_exit(&ipst->ips_ill_g_usesrc_lock); 22763 22764 done: 22765 if (ill_flag_changed) { 22766 mutex_enter(&usesrc_cli_ill->ill_lock); 22767 usesrc_cli_ill->ill_state_flags &= ~ILL_CHANGING; 22768 mutex_exit(&usesrc_cli_ill->ill_lock); 22769 } 22770 if (ipsq != NULL) 22771 ipsq_exit(ipsq, B_TRUE, B_TRUE); 22772 /* The refrele on the lifr_name ipif is done by ip_process_ioctl */ 22773 ill_refrele(usesrc_ill); 22774 return (err); 22775 } 22776 22777 /* 22778 * comparison function used by avl. 22779 */ 22780 static int 22781 ill_phyint_compare_index(const void *index_ptr, const void *phyip) 22782 { 22783 22784 uint_t index; 22785 22786 ASSERT(phyip != NULL && index_ptr != NULL); 22787 22788 index = *((uint_t *)index_ptr); 22789 /* 22790 * let the phyint with the lowest index be on top. 22791 */ 22792 if (((phyint_t *)phyip)->phyint_ifindex < index) 22793 return (1); 22794 if (((phyint_t *)phyip)->phyint_ifindex > index) 22795 return (-1); 22796 return (0); 22797 } 22798 22799 /* 22800 * comparison function used by avl. 22801 */ 22802 static int 22803 ill_phyint_compare_name(const void *name_ptr, const void *phyip) 22804 { 22805 ill_t *ill; 22806 int res = 0; 22807 22808 ASSERT(phyip != NULL && name_ptr != NULL); 22809 22810 if (((phyint_t *)phyip)->phyint_illv4) 22811 ill = ((phyint_t *)phyip)->phyint_illv4; 22812 else 22813 ill = ((phyint_t *)phyip)->phyint_illv6; 22814 ASSERT(ill != NULL); 22815 22816 res = strcmp(ill->ill_name, (char *)name_ptr); 22817 if (res > 0) 22818 return (1); 22819 else if (res < 0) 22820 return (-1); 22821 return (0); 22822 } 22823 /* 22824 * This function is called from ill_delete when the ill is being 22825 * unplumbed. We remove the reference from the phyint and we also 22826 * free the phyint when there are no more references to it. 22827 */ 22828 static void 22829 ill_phyint_free(ill_t *ill) 22830 { 22831 phyint_t *phyi; 22832 phyint_t *next_phyint; 22833 ipsq_t *cur_ipsq; 22834 ip_stack_t *ipst = ill->ill_ipst; 22835 22836 ASSERT(ill->ill_phyint != NULL); 22837 22838 ASSERT(RW_WRITE_HELD(&ipst->ips_ill_g_lock)); 22839 phyi = ill->ill_phyint; 22840 ill->ill_phyint = NULL; 22841 /* 22842 * ill_init allocates a phyint always to store the copy 22843 * of flags relevant to phyint. At that point in time, we could 22844 * not assign the name and hence phyint_illv4/v6 could not be 22845 * initialized. Later in ipif_set_values, we assign the name to 22846 * the ill, at which point in time we assign phyint_illv4/v6. 22847 * Thus we don't rely on phyint_illv6 to be initialized always. 22848 */ 22849 if (ill->ill_flags & ILLF_IPV6) { 22850 phyi->phyint_illv6 = NULL; 22851 } else { 22852 phyi->phyint_illv4 = NULL; 22853 } 22854 /* 22855 * ipif_down removes it from the group when the last ipif goes 22856 * down. 22857 */ 22858 ASSERT(ill->ill_group == NULL); 22859 22860 if (phyi->phyint_illv4 != NULL || phyi->phyint_illv6 != NULL) 22861 return; 22862 22863 /* 22864 * Make sure this phyint was put in the list. 22865 */ 22866 if (phyi->phyint_ifindex > 0) { 22867 avl_remove(&ipst->ips_phyint_g_list->phyint_list_avl_by_index, 22868 phyi); 22869 avl_remove(&ipst->ips_phyint_g_list->phyint_list_avl_by_name, 22870 phyi); 22871 } 22872 /* 22873 * remove phyint from the ipsq list. 22874 */ 22875 cur_ipsq = phyi->phyint_ipsq; 22876 if (phyi == cur_ipsq->ipsq_phyint_list) { 22877 cur_ipsq->ipsq_phyint_list = phyi->phyint_ipsq_next; 22878 } else { 22879 next_phyint = cur_ipsq->ipsq_phyint_list; 22880 while (next_phyint != NULL) { 22881 if (next_phyint->phyint_ipsq_next == phyi) { 22882 next_phyint->phyint_ipsq_next = 22883 phyi->phyint_ipsq_next; 22884 break; 22885 } 22886 next_phyint = next_phyint->phyint_ipsq_next; 22887 } 22888 ASSERT(next_phyint != NULL); 22889 } 22890 IPSQ_DEC_REF(cur_ipsq, ipst); 22891 22892 if (phyi->phyint_groupname_len != 0) { 22893 ASSERT(phyi->phyint_groupname != NULL); 22894 mi_free(phyi->phyint_groupname); 22895 } 22896 mi_free(phyi); 22897 } 22898 22899 /* 22900 * Attach the ill to the phyint structure which can be shared by both 22901 * IPv4 and IPv6 ill. ill_init allocates a phyint to just hold flags. This 22902 * function is called from ipif_set_values and ill_lookup_on_name (for 22903 * loopback) where we know the name of the ill. We lookup the ill and if 22904 * there is one present already with the name use that phyint. Otherwise 22905 * reuse the one allocated by ill_init. 22906 */ 22907 static void 22908 ill_phyint_reinit(ill_t *ill) 22909 { 22910 boolean_t isv6 = ill->ill_isv6; 22911 phyint_t *phyi_old; 22912 phyint_t *phyi; 22913 avl_index_t where = 0; 22914 ill_t *ill_other = NULL; 22915 ipsq_t *ipsq; 22916 ip_stack_t *ipst = ill->ill_ipst; 22917 22918 ASSERT(RW_WRITE_HELD(&ipst->ips_ill_g_lock)); 22919 22920 phyi_old = ill->ill_phyint; 22921 ASSERT(isv6 || (phyi_old->phyint_illv4 == ill && 22922 phyi_old->phyint_illv6 == NULL)); 22923 ASSERT(!isv6 || (phyi_old->phyint_illv6 == ill && 22924 phyi_old->phyint_illv4 == NULL)); 22925 ASSERT(phyi_old->phyint_ifindex == 0); 22926 22927 phyi = avl_find(&ipst->ips_phyint_g_list->phyint_list_avl_by_name, 22928 ill->ill_name, &where); 22929 22930 /* 22931 * 1. We grabbed the ill_g_lock before inserting this ill into 22932 * the global list of ills. So no other thread could have located 22933 * this ill and hence the ipsq of this ill is guaranteed to be empty. 22934 * 2. Now locate the other protocol instance of this ill. 22935 * 3. Now grab both ill locks in the right order, and the phyint lock of 22936 * the new ipsq. Holding ill locks + ill_g_lock ensures that the ipsq 22937 * of neither ill can change. 22938 * 4. Merge the phyint and thus the ipsq as well of this ill onto the 22939 * other ill. 22940 * 5. Release all locks. 22941 */ 22942 22943 /* 22944 * Look for IPv4 if we are initializing IPv6 or look for IPv6 if 22945 * we are initializing IPv4. 22946 */ 22947 if (phyi != NULL) { 22948 ill_other = (isv6) ? phyi->phyint_illv4 : 22949 phyi->phyint_illv6; 22950 ASSERT(ill_other->ill_phyint != NULL); 22951 ASSERT((isv6 && !ill_other->ill_isv6) || 22952 (!isv6 && ill_other->ill_isv6)); 22953 GRAB_ILL_LOCKS(ill, ill_other); 22954 /* 22955 * We are potentially throwing away phyint_flags which 22956 * could be different from the one that we obtain from 22957 * ill_other->ill_phyint. But it is okay as we are assuming 22958 * that the state maintained within IP is correct. 22959 */ 22960 mutex_enter(&phyi->phyint_lock); 22961 if (isv6) { 22962 ASSERT(phyi->phyint_illv6 == NULL); 22963 phyi->phyint_illv6 = ill; 22964 } else { 22965 ASSERT(phyi->phyint_illv4 == NULL); 22966 phyi->phyint_illv4 = ill; 22967 } 22968 /* 22969 * This is a new ill, currently undergoing SLIFNAME 22970 * So we could not have joined an IPMP group until now. 22971 */ 22972 ASSERT(phyi_old->phyint_ipsq_next == NULL && 22973 phyi_old->phyint_groupname == NULL); 22974 22975 /* 22976 * This phyi_old is going away. Decref ipsq_refs and 22977 * assert it is zero. The ipsq itself will be freed in 22978 * ipsq_exit 22979 */ 22980 ipsq = phyi_old->phyint_ipsq; 22981 IPSQ_DEC_REF(ipsq, ipst); 22982 ASSERT(ipsq->ipsq_refs == 0); 22983 /* Get the singleton phyint out of the ipsq list */ 22984 ASSERT(phyi_old->phyint_ipsq_next == NULL); 22985 ipsq->ipsq_phyint_list = NULL; 22986 phyi_old->phyint_illv4 = NULL; 22987 phyi_old->phyint_illv6 = NULL; 22988 mi_free(phyi_old); 22989 } else { 22990 mutex_enter(&ill->ill_lock); 22991 /* 22992 * We don't need to acquire any lock, since 22993 * the ill is not yet visible globally and we 22994 * have not yet released the ill_g_lock. 22995 */ 22996 phyi = phyi_old; 22997 mutex_enter(&phyi->phyint_lock); 22998 /* XXX We need a recovery strategy here. */ 22999 if (!phyint_assign_ifindex(phyi, ipst)) 23000 cmn_err(CE_PANIC, "phyint_assign_ifindex() failed"); 23001 23002 /* No IPMP group yet, thus the hook uses the ifindex */ 23003 phyi->phyint_hook_ifindex = phyi->phyint_ifindex; 23004 23005 avl_insert(&ipst->ips_phyint_g_list->phyint_list_avl_by_name, 23006 (void *)phyi, where); 23007 23008 (void) avl_find(&ipst->ips_phyint_g_list-> 23009 phyint_list_avl_by_index, 23010 &phyi->phyint_ifindex, &where); 23011 avl_insert(&ipst->ips_phyint_g_list->phyint_list_avl_by_index, 23012 (void *)phyi, where); 23013 } 23014 23015 /* 23016 * Reassigning ill_phyint automatically reassigns the ipsq also. 23017 * pending mp is not affected because that is per ill basis. 23018 */ 23019 ill->ill_phyint = phyi; 23020 23021 /* 23022 * Keep the index on ipif_orig_index to be used by FAILOVER. 23023 * We do this here as when the first ipif was allocated, 23024 * ipif_allocate does not know the right interface index. 23025 */ 23026 23027 ill->ill_ipif->ipif_orig_ifindex = ill->ill_phyint->phyint_ifindex; 23028 /* 23029 * Now that the phyint's ifindex has been assigned, complete the 23030 * remaining 23031 */ 23032 23033 ill->ill_ip_mib->ipIfStatsIfIndex = ill->ill_phyint->phyint_ifindex; 23034 if (ill->ill_isv6) { 23035 ill->ill_icmp6_mib->ipv6IfIcmpIfIndex = 23036 ill->ill_phyint->phyint_ifindex; 23037 } 23038 23039 /* 23040 * Generate an event within the hooks framework to indicate that 23041 * a new interface has just been added to IP. For this event to 23042 * be generated, the network interface must, at least, have an 23043 * ifindex assigned to it. 23044 * 23045 * This needs to be run inside the ill_g_lock perimeter to ensure 23046 * that the ordering of delivered events to listeners matches the 23047 * order of them in the kernel. 23048 * 23049 * This function could be called from ill_lookup_on_name. In that case 23050 * the interface is loopback "lo", which will not generate a NIC event. 23051 */ 23052 if (ill->ill_name_length <= 2 || 23053 ill->ill_name[0] != 'l' || ill->ill_name[1] != 'o') { 23054 /* 23055 * Generate nic plumb event for ill_name even if 23056 * ipmp_hook_emulation is set. That avoids generating events 23057 * for the ill_names should ipmp_hook_emulation be turned on 23058 * later. 23059 */ 23060 ill_nic_info_plumb(ill, B_FALSE); 23061 } 23062 RELEASE_ILL_LOCKS(ill, ill_other); 23063 mutex_exit(&phyi->phyint_lock); 23064 } 23065 23066 /* 23067 * Allocate a NE_PLUMB nic info event and store in the ill. 23068 * If 'group' is set we do it for the group name, otherwise the ill name. 23069 * It will be sent when we leave the ipsq. 23070 */ 23071 void 23072 ill_nic_info_plumb(ill_t *ill, boolean_t group) 23073 { 23074 phyint_t *phyi = ill->ill_phyint; 23075 ip_stack_t *ipst = ill->ill_ipst; 23076 hook_nic_event_t *info; 23077 char *name; 23078 int namelen; 23079 23080 ASSERT(MUTEX_HELD(&ill->ill_lock)); 23081 23082 if ((info = ill->ill_nic_event_info) != NULL) { 23083 ip2dbg(("ill_nic_info_plumb: unexpected nic event %d " 23084 "attached for %s\n", info->hne_event, 23085 ill->ill_name)); 23086 if (info->hne_data != NULL) 23087 kmem_free(info->hne_data, info->hne_datalen); 23088 kmem_free(info, sizeof (hook_nic_event_t)); 23089 ill->ill_nic_event_info = NULL; 23090 } 23091 23092 info = kmem_alloc(sizeof (hook_nic_event_t), KM_NOSLEEP); 23093 if (info == NULL) { 23094 ip2dbg(("ill_nic_info_plumb: could not attach PLUMB nic " 23095 "event information for %s (ENOMEM)\n", 23096 ill->ill_name)); 23097 return; 23098 } 23099 23100 if (group) { 23101 ASSERT(phyi->phyint_groupname_len != 0); 23102 namelen = phyi->phyint_groupname_len; 23103 name = phyi->phyint_groupname; 23104 } else { 23105 namelen = ill->ill_name_length; 23106 name = ill->ill_name; 23107 } 23108 23109 info->hne_nic = phyi->phyint_hook_ifindex; 23110 info->hne_lif = 0; 23111 info->hne_event = NE_PLUMB; 23112 info->hne_family = ill->ill_isv6 ? 23113 ipst->ips_ipv6_net_data : ipst->ips_ipv4_net_data; 23114 23115 info->hne_data = kmem_alloc(namelen, KM_NOSLEEP); 23116 if (info->hne_data != NULL) { 23117 info->hne_datalen = namelen; 23118 bcopy(name, info->hne_data, info->hne_datalen); 23119 } else { 23120 ip2dbg(("ill_nic_info_plumb: could not attach " 23121 "name information for PLUMB nic event " 23122 "of %s (ENOMEM)\n", name)); 23123 kmem_free(info, sizeof (hook_nic_event_t)); 23124 info = NULL; 23125 } 23126 ill->ill_nic_event_info = info; 23127 } 23128 23129 /* 23130 * Unhook the nic event message from the ill and enqueue it 23131 * into the nic event taskq. 23132 */ 23133 void 23134 ill_nic_info_dispatch(ill_t *ill) 23135 { 23136 hook_nic_event_t *info; 23137 23138 ASSERT(MUTEX_HELD(&ill->ill_lock)); 23139 23140 if ((info = ill->ill_nic_event_info) != NULL) { 23141 if (ddi_taskq_dispatch(eventq_queue_nic, 23142 ip_ne_queue_func, info, DDI_SLEEP) == DDI_FAILURE) { 23143 ip2dbg(("ill_nic_info_dispatch: " 23144 "ddi_taskq_dispatch failed\n")); 23145 if (info->hne_data != NULL) 23146 kmem_free(info->hne_data, info->hne_datalen); 23147 kmem_free(info, sizeof (hook_nic_event_t)); 23148 } 23149 ill->ill_nic_event_info = NULL; 23150 } 23151 } 23152 23153 /* 23154 * Notify any downstream modules of the name of this interface. 23155 * An M_IOCTL is used even though we don't expect a successful reply. 23156 * Any reply message from the driver (presumably an M_IOCNAK) will 23157 * eventually get discarded somewhere upstream. The message format is 23158 * simply an SIOCSLIFNAME ioctl just as might be sent from ifconfig 23159 * to IP. 23160 */ 23161 static void 23162 ip_ifname_notify(ill_t *ill, queue_t *q) 23163 { 23164 mblk_t *mp1, *mp2; 23165 struct iocblk *iocp; 23166 struct lifreq *lifr; 23167 23168 mp1 = mkiocb(SIOCSLIFNAME); 23169 if (mp1 == NULL) 23170 return; 23171 mp2 = allocb(sizeof (struct lifreq), BPRI_HI); 23172 if (mp2 == NULL) { 23173 freeb(mp1); 23174 return; 23175 } 23176 23177 mp1->b_cont = mp2; 23178 iocp = (struct iocblk *)mp1->b_rptr; 23179 iocp->ioc_count = sizeof (struct lifreq); 23180 23181 lifr = (struct lifreq *)mp2->b_rptr; 23182 mp2->b_wptr += sizeof (struct lifreq); 23183 bzero(lifr, sizeof (struct lifreq)); 23184 23185 (void) strncpy(lifr->lifr_name, ill->ill_name, LIFNAMSIZ); 23186 lifr->lifr_ppa = ill->ill_ppa; 23187 lifr->lifr_flags = (ill->ill_flags & (ILLF_IPV4|ILLF_IPV6)); 23188 23189 putnext(q, mp1); 23190 } 23191 23192 static int 23193 ipif_set_values_tail(ill_t *ill, ipif_t *ipif, mblk_t *mp, queue_t *q) 23194 { 23195 int err; 23196 ip_stack_t *ipst = ill->ill_ipst; 23197 23198 /* Set the obsolete NDD per-interface forwarding name. */ 23199 err = ill_set_ndd_name(ill); 23200 if (err != 0) { 23201 cmn_err(CE_WARN, "ipif_set_values: ill_set_ndd_name (%d)\n", 23202 err); 23203 } 23204 23205 /* Tell downstream modules where they are. */ 23206 ip_ifname_notify(ill, q); 23207 23208 /* 23209 * ill_dl_phys returns EINPROGRESS in the usual case. 23210 * Error cases are ENOMEM ... 23211 */ 23212 err = ill_dl_phys(ill, ipif, mp, q); 23213 23214 /* 23215 * If there is no IRE expiration timer running, get one started. 23216 * igmp and mld timers will be triggered by the first multicast 23217 */ 23218 if (ipst->ips_ip_ire_expire_id == 0) { 23219 /* 23220 * acquire the lock and check again. 23221 */ 23222 mutex_enter(&ipst->ips_ip_trash_timer_lock); 23223 if (ipst->ips_ip_ire_expire_id == 0) { 23224 ipst->ips_ip_ire_expire_id = timeout( 23225 ip_trash_timer_expire, ipst, 23226 MSEC_TO_TICK(ipst->ips_ip_timer_interval)); 23227 } 23228 mutex_exit(&ipst->ips_ip_trash_timer_lock); 23229 } 23230 23231 if (ill->ill_isv6) { 23232 mutex_enter(&ipst->ips_mld_slowtimeout_lock); 23233 if (ipst->ips_mld_slowtimeout_id == 0) { 23234 ipst->ips_mld_slowtimeout_id = timeout(mld_slowtimo, 23235 (void *)ipst, 23236 MSEC_TO_TICK(MCAST_SLOWTIMO_INTERVAL)); 23237 } 23238 mutex_exit(&ipst->ips_mld_slowtimeout_lock); 23239 } else { 23240 mutex_enter(&ipst->ips_igmp_slowtimeout_lock); 23241 if (ipst->ips_igmp_slowtimeout_id == 0) { 23242 ipst->ips_igmp_slowtimeout_id = timeout(igmp_slowtimo, 23243 (void *)ipst, 23244 MSEC_TO_TICK(MCAST_SLOWTIMO_INTERVAL)); 23245 } 23246 mutex_exit(&ipst->ips_igmp_slowtimeout_lock); 23247 } 23248 23249 return (err); 23250 } 23251 23252 /* 23253 * Common routine for ppa and ifname setting. Should be called exclusive. 23254 * 23255 * Returns EINPROGRESS when mp has been consumed by queueing it on 23256 * ill_pending_mp and the ioctl will complete in ip_rput. 23257 * 23258 * NOTE : If ppa is UNIT_MAX, we assign the next valid ppa and return 23259 * the new name and new ppa in lifr_name and lifr_ppa respectively. 23260 * For SLIFNAME, we pass these values back to the userland. 23261 */ 23262 static int 23263 ipif_set_values(queue_t *q, mblk_t *mp, char *interf_name, uint_t *new_ppa_ptr) 23264 { 23265 ill_t *ill; 23266 ipif_t *ipif; 23267 ipsq_t *ipsq; 23268 char *ppa_ptr; 23269 char *old_ptr; 23270 char old_char; 23271 int error; 23272 ip_stack_t *ipst; 23273 23274 ip1dbg(("ipif_set_values: interface %s\n", interf_name)); 23275 ASSERT(q->q_next != NULL); 23276 ASSERT(interf_name != NULL); 23277 23278 ill = (ill_t *)q->q_ptr; 23279 ipst = ill->ill_ipst; 23280 23281 ASSERT(ill->ill_ipst != NULL); 23282 ASSERT(ill->ill_name[0] == '\0'); 23283 ASSERT(IAM_WRITER_ILL(ill)); 23284 ASSERT((mi_strlen(interf_name) + 1) <= LIFNAMSIZ); 23285 ASSERT(ill->ill_ppa == UINT_MAX); 23286 23287 /* The ppa is sent down by ifconfig or is chosen */ 23288 if ((ppa_ptr = ill_get_ppa_ptr(interf_name)) == NULL) { 23289 return (EINVAL); 23290 } 23291 23292 /* 23293 * make sure ppa passed in is same as ppa in the name. 23294 * This check is not made when ppa == UINT_MAX in that case ppa 23295 * in the name could be anything. System will choose a ppa and 23296 * update new_ppa_ptr and inter_name to contain the choosen ppa. 23297 */ 23298 if (*new_ppa_ptr != UINT_MAX) { 23299 /* stoi changes the pointer */ 23300 old_ptr = ppa_ptr; 23301 /* 23302 * ifconfig passed in 0 for the ppa for DLPI 1 style devices 23303 * (they don't have an externally visible ppa). We assign one 23304 * here so that we can manage the interface. Note that in 23305 * the past this value was always 0 for DLPI 1 drivers. 23306 */ 23307 if (*new_ppa_ptr == 0) 23308 *new_ppa_ptr = stoi(&old_ptr); 23309 else if (*new_ppa_ptr != (uint_t)stoi(&old_ptr)) 23310 return (EINVAL); 23311 } 23312 /* 23313 * terminate string before ppa 23314 * save char at that location. 23315 */ 23316 old_char = ppa_ptr[0]; 23317 ppa_ptr[0] = '\0'; 23318 23319 ill->ill_ppa = *new_ppa_ptr; 23320 /* 23321 * Finish as much work now as possible before calling ill_glist_insert 23322 * which makes the ill globally visible and also merges it with the 23323 * other protocol instance of this phyint. The remaining work is 23324 * done after entering the ipsq which may happen sometime later. 23325 * ill_set_ndd_name occurs after the ill has been made globally visible. 23326 */ 23327 ipif = ill->ill_ipif; 23328 23329 /* We didn't do this when we allocated ipif in ip_ll_subnet_defaults */ 23330 ipif_assign_seqid(ipif); 23331 23332 if (!(ill->ill_flags & (ILLF_IPV4|ILLF_IPV6))) 23333 ill->ill_flags |= ILLF_IPV4; 23334 23335 ASSERT(ipif->ipif_next == NULL); /* Only one ipif on ill */ 23336 ASSERT((ipif->ipif_flags & IPIF_UP) == 0); 23337 23338 if (ill->ill_flags & ILLF_IPV6) { 23339 23340 ill->ill_isv6 = B_TRUE; 23341 if (ill->ill_rq != NULL) { 23342 ill->ill_rq->q_qinfo = &rinit_ipv6; 23343 ill->ill_wq->q_qinfo = &winit_ipv6; 23344 } 23345 23346 /* Keep the !IN6_IS_ADDR_V4MAPPED assertions happy */ 23347 ipif->ipif_v6lcl_addr = ipv6_all_zeros; 23348 ipif->ipif_v6src_addr = ipv6_all_zeros; 23349 ipif->ipif_v6subnet = ipv6_all_zeros; 23350 ipif->ipif_v6net_mask = ipv6_all_zeros; 23351 ipif->ipif_v6brd_addr = ipv6_all_zeros; 23352 ipif->ipif_v6pp_dst_addr = ipv6_all_zeros; 23353 /* 23354 * point-to-point or Non-mulicast capable 23355 * interfaces won't do NUD unless explicitly 23356 * configured to do so. 23357 */ 23358 if (ipif->ipif_flags & IPIF_POINTOPOINT || 23359 !(ill->ill_flags & ILLF_MULTICAST)) { 23360 ill->ill_flags |= ILLF_NONUD; 23361 } 23362 /* Make sure IPv4 specific flag is not set on IPv6 if */ 23363 if (ill->ill_flags & ILLF_NOARP) { 23364 /* 23365 * Note: xresolv interfaces will eventually need 23366 * NOARP set here as well, but that will require 23367 * those external resolvers to have some 23368 * knowledge of that flag and act appropriately. 23369 * Not to be changed at present. 23370 */ 23371 ill->ill_flags &= ~ILLF_NOARP; 23372 } 23373 /* 23374 * Set the ILLF_ROUTER flag according to the global 23375 * IPv6 forwarding policy. 23376 */ 23377 if (ipst->ips_ipv6_forward != 0) 23378 ill->ill_flags |= ILLF_ROUTER; 23379 } else if (ill->ill_flags & ILLF_IPV4) { 23380 ill->ill_isv6 = B_FALSE; 23381 IN6_IPADDR_TO_V4MAPPED(INADDR_ANY, &ipif->ipif_v6lcl_addr); 23382 IN6_IPADDR_TO_V4MAPPED(INADDR_ANY, &ipif->ipif_v6src_addr); 23383 IN6_IPADDR_TO_V4MAPPED(INADDR_ANY, &ipif->ipif_v6subnet); 23384 IN6_IPADDR_TO_V4MAPPED(INADDR_ANY, &ipif->ipif_v6net_mask); 23385 IN6_IPADDR_TO_V4MAPPED(INADDR_ANY, &ipif->ipif_v6brd_addr); 23386 IN6_IPADDR_TO_V4MAPPED(INADDR_ANY, &ipif->ipif_v6pp_dst_addr); 23387 /* 23388 * Set the ILLF_ROUTER flag according to the global 23389 * IPv4 forwarding policy. 23390 */ 23391 if (ipst->ips_ip_g_forward != 0) 23392 ill->ill_flags |= ILLF_ROUTER; 23393 } 23394 23395 ASSERT(ill->ill_phyint != NULL); 23396 23397 /* 23398 * The ipIfStatsIfindex and ipv6IfIcmpIfIndex assignments will 23399 * be completed in ill_glist_insert -> ill_phyint_reinit 23400 */ 23401 if (!ill_allocate_mibs(ill)) 23402 return (ENOMEM); 23403 23404 /* 23405 * Pick a default sap until we get the DL_INFO_ACK back from 23406 * the driver. 23407 */ 23408 if (ill->ill_sap == 0) { 23409 if (ill->ill_isv6) 23410 ill->ill_sap = IP6_DL_SAP; 23411 else 23412 ill->ill_sap = IP_DL_SAP; 23413 } 23414 23415 ill->ill_ifname_pending = 1; 23416 ill->ill_ifname_pending_err = 0; 23417 23418 ill_refhold(ill); 23419 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 23420 if ((error = ill_glist_insert(ill, interf_name, 23421 (ill->ill_flags & ILLF_IPV6) == ILLF_IPV6)) > 0) { 23422 ill->ill_ppa = UINT_MAX; 23423 ill->ill_name[0] = '\0'; 23424 /* 23425 * undo null termination done above. 23426 */ 23427 ppa_ptr[0] = old_char; 23428 rw_exit(&ipst->ips_ill_g_lock); 23429 ill_refrele(ill); 23430 return (error); 23431 } 23432 23433 ASSERT(ill->ill_name_length <= LIFNAMSIZ); 23434 23435 /* 23436 * When we return the buffer pointed to by interf_name should contain 23437 * the same name as in ill_name. 23438 * If a ppa was choosen by the system (ppa passed in was UINT_MAX) 23439 * the buffer pointed to by new_ppa_ptr would not contain the right ppa 23440 * so copy full name and update the ppa ptr. 23441 * When ppa passed in != UINT_MAX all values are correct just undo 23442 * null termination, this saves a bcopy. 23443 */ 23444 if (*new_ppa_ptr == UINT_MAX) { 23445 bcopy(ill->ill_name, interf_name, ill->ill_name_length); 23446 *new_ppa_ptr = ill->ill_ppa; 23447 } else { 23448 /* 23449 * undo null termination done above. 23450 */ 23451 ppa_ptr[0] = old_char; 23452 } 23453 23454 /* Let SCTP know about this ILL */ 23455 sctp_update_ill(ill, SCTP_ILL_INSERT); 23456 23457 ipsq = ipsq_try_enter(NULL, ill, q, mp, ip_reprocess_ioctl, NEW_OP, 23458 B_TRUE); 23459 23460 rw_exit(&ipst->ips_ill_g_lock); 23461 ill_refrele(ill); 23462 if (ipsq == NULL) 23463 return (EINPROGRESS); 23464 23465 /* 23466 * If ill_phyint_reinit() changed our ipsq, then start on the new ipsq. 23467 */ 23468 if (ipsq->ipsq_current_ipif == NULL) 23469 ipsq_current_start(ipsq, ipif, SIOCSLIFNAME); 23470 else 23471 ASSERT(ipsq->ipsq_current_ipif == ipif); 23472 23473 error = ipif_set_values_tail(ill, ipif, mp, q); 23474 ipsq_exit(ipsq, B_TRUE, B_TRUE); 23475 if (error != 0 && error != EINPROGRESS) { 23476 /* 23477 * restore previous values 23478 */ 23479 ill->ill_isv6 = B_FALSE; 23480 } 23481 return (error); 23482 } 23483 23484 23485 void 23486 ipif_init(ip_stack_t *ipst) 23487 { 23488 hrtime_t hrt; 23489 int i; 23490 23491 /* 23492 * Can't call drv_getparm here as it is too early in the boot. 23493 * As we use ipif_src_random just for picking a different 23494 * source address everytime, this need not be really random. 23495 */ 23496 hrt = gethrtime(); 23497 ipst->ips_ipif_src_random = 23498 ((hrt >> 32) & 0xffffffff) * (hrt & 0xffffffff); 23499 23500 for (i = 0; i < MAX_G_HEADS; i++) { 23501 ipst->ips_ill_g_heads[i].ill_g_list_head = 23502 (ill_if_t *)&ipst->ips_ill_g_heads[i]; 23503 ipst->ips_ill_g_heads[i].ill_g_list_tail = 23504 (ill_if_t *)&ipst->ips_ill_g_heads[i]; 23505 } 23506 23507 avl_create(&ipst->ips_phyint_g_list->phyint_list_avl_by_index, 23508 ill_phyint_compare_index, 23509 sizeof (phyint_t), 23510 offsetof(struct phyint, phyint_avl_by_index)); 23511 avl_create(&ipst->ips_phyint_g_list->phyint_list_avl_by_name, 23512 ill_phyint_compare_name, 23513 sizeof (phyint_t), 23514 offsetof(struct phyint, phyint_avl_by_name)); 23515 } 23516 23517 /* 23518 * This is called by ip_rt_add when src_addr value is other than zero. 23519 * src_addr signifies the source address of the incoming packet. For 23520 * reverse tunnel route we need to create a source addr based routing 23521 * table. This routine creates ip_mrtun_table if it's empty and then 23522 * it adds the route entry hashed by source address. It verifies that 23523 * the outgoing interface is always a non-resolver interface (tunnel). 23524 */ 23525 int 23526 ip_mrtun_rt_add(ipaddr_t in_src_addr, int flags, ipif_t *ipif_arg, 23527 ipif_t *src_ipif, ire_t **ire_arg, queue_t *q, mblk_t *mp, ipsq_func_t func, 23528 ip_stack_t *ipst) 23529 { 23530 ire_t *ire; 23531 ire_t *save_ire; 23532 ipif_t *ipif; 23533 ill_t *in_ill = NULL; 23534 ill_t *out_ill; 23535 queue_t *stq; 23536 mblk_t *dlureq_mp; 23537 int error; 23538 23539 if (ire_arg != NULL) 23540 *ire_arg = NULL; 23541 ASSERT(in_src_addr != INADDR_ANY); 23542 23543 ipif = ipif_arg; 23544 if (ipif != NULL) { 23545 out_ill = ipif->ipif_ill; 23546 } else { 23547 ip1dbg(("ip_mrtun_rt_add: ipif is NULL\n")); 23548 return (EINVAL); 23549 } 23550 23551 if (src_ipif == NULL) { 23552 ip1dbg(("ip_mrtun_rt_add: src_ipif is NULL\n")); 23553 return (EINVAL); 23554 } 23555 in_ill = src_ipif->ipif_ill; 23556 23557 /* 23558 * Check for duplicates. We don't need to 23559 * match out_ill, because the uniqueness of 23560 * a route is only dependent on src_addr and 23561 * in_ill. 23562 */ 23563 ire = ire_mrtun_lookup(in_src_addr, in_ill); 23564 if (ire != NULL) { 23565 ire_refrele(ire); 23566 return (EEXIST); 23567 } 23568 if (ipif->ipif_net_type != IRE_IF_NORESOLVER) { 23569 ip2dbg(("ip_mrtun_rt_add: outgoing interface is type %d\n", 23570 ipif->ipif_net_type)); 23571 return (EINVAL); 23572 } 23573 23574 stq = ipif->ipif_wq; 23575 ASSERT(stq != NULL); 23576 23577 /* 23578 * The outgoing interface must be non-resolver 23579 * interface. 23580 */ 23581 dlureq_mp = ill_dlur_gen(NULL, 23582 out_ill->ill_phys_addr_length, out_ill->ill_sap, 23583 out_ill->ill_sap_length); 23584 23585 if (dlureq_mp == NULL) { 23586 ip1dbg(("ip_newroute: dlureq_mp NULL\n")); 23587 return (ENOMEM); 23588 } 23589 23590 /* Create the IRE. */ 23591 23592 ire = ire_create( 23593 NULL, /* Zero dst addr */ 23594 NULL, /* Zero mask */ 23595 NULL, /* Zero gateway addr */ 23596 NULL, /* Zero ipif_src addr */ 23597 (uint8_t *)&in_src_addr, /* in_src-addr */ 23598 &ipif->ipif_mtu, 23599 NULL, 23600 NULL, /* rfq */ 23601 stq, 23602 IRE_MIPRTUN, 23603 dlureq_mp, 23604 ipif, 23605 in_ill, 23606 0, 23607 0, 23608 0, 23609 flags, 23610 &ire_uinfo_null, 23611 NULL, 23612 NULL, 23613 ipst); 23614 23615 if (ire == NULL) { 23616 freeb(dlureq_mp); 23617 return (ENOMEM); 23618 } 23619 ip2dbg(("ip_mrtun_rt_add: mrtun route is created with type %d\n", 23620 ire->ire_type)); 23621 save_ire = ire; 23622 ASSERT(save_ire != NULL); 23623 error = ire_add_mrtun(&ire, q, mp, func); 23624 /* 23625 * If ire_add_mrtun() failed, the ire passed in was freed 23626 * so there is no need to do so here. 23627 */ 23628 if (error != 0) { 23629 return (error); 23630 } 23631 23632 /* Duplicate check */ 23633 if (ire != save_ire) { 23634 /* route already exists by now */ 23635 ire_refrele(ire); 23636 return (EEXIST); 23637 } 23638 23639 if (ire_arg != NULL) { 23640 /* 23641 * Store the ire that was just added. the caller 23642 * ip_rts_request responsible for doing ire_refrele() 23643 * on it. 23644 */ 23645 *ire_arg = ire; 23646 } else { 23647 ire_refrele(ire); /* held in ire_add_mrtun */ 23648 } 23649 23650 return (0); 23651 } 23652 23653 /* 23654 * It is called by ip_rt_delete() only when mipagent requests to delete 23655 * a reverse tunnel route that was added by ip_mrtun_rt_add() before. 23656 */ 23657 23658 int 23659 ip_mrtun_rt_delete(ipaddr_t in_src_addr, ipif_t *src_ipif) 23660 { 23661 ire_t *ire = NULL; 23662 23663 if (in_src_addr == INADDR_ANY) 23664 return (EINVAL); 23665 if (src_ipif == NULL) 23666 return (EINVAL); 23667 23668 /* search if this route exists in the ip_mrtun_table */ 23669 ire = ire_mrtun_lookup(in_src_addr, src_ipif->ipif_ill); 23670 if (ire == NULL) { 23671 ip2dbg(("ip_mrtun_rt_delete: ire not found\n")); 23672 return (ESRCH); 23673 } 23674 ire_delete(ire); 23675 ire_refrele(ire); 23676 return (0); 23677 } 23678 23679 /* 23680 * Lookup the ipif corresponding to the onlink destination address. For 23681 * point-to-point interfaces, it matches with remote endpoint destination 23682 * address. For point-to-multipoint interfaces it only tries to match the 23683 * destination with the interface's subnet address. The longest, most specific 23684 * match is found to take care of such rare network configurations like - 23685 * le0: 129.146.1.1/16 23686 * le1: 129.146.2.2/24 23687 * It is used only by SO_DONTROUTE at the moment. 23688 */ 23689 ipif_t * 23690 ipif_lookup_onlink_addr(ipaddr_t addr, zoneid_t zoneid, ip_stack_t *ipst) 23691 { 23692 ipif_t *ipif, *best_ipif; 23693 ill_t *ill; 23694 ill_walk_context_t ctx; 23695 23696 ASSERT(zoneid != ALL_ZONES); 23697 best_ipif = NULL; 23698 23699 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 23700 ill = ILL_START_WALK_V4(&ctx, ipst); 23701 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 23702 mutex_enter(&ill->ill_lock); 23703 for (ipif = ill->ill_ipif; ipif != NULL; 23704 ipif = ipif->ipif_next) { 23705 if (!IPIF_CAN_LOOKUP(ipif)) 23706 continue; 23707 if (ipif->ipif_zoneid != zoneid && 23708 ipif->ipif_zoneid != ALL_ZONES) 23709 continue; 23710 /* 23711 * Point-to-point case. Look for exact match with 23712 * destination address. 23713 */ 23714 if (ipif->ipif_flags & IPIF_POINTOPOINT) { 23715 if (ipif->ipif_pp_dst_addr == addr) { 23716 ipif_refhold_locked(ipif); 23717 mutex_exit(&ill->ill_lock); 23718 rw_exit(&ipst->ips_ill_g_lock); 23719 if (best_ipif != NULL) 23720 ipif_refrele(best_ipif); 23721 return (ipif); 23722 } 23723 } else if (ipif->ipif_subnet == (addr & 23724 ipif->ipif_net_mask)) { 23725 /* 23726 * Point-to-multipoint case. Looping through to 23727 * find the most specific match. If there are 23728 * multiple best match ipif's then prefer ipif's 23729 * that are UP. If there is only one best match 23730 * ipif and it is DOWN we must still return it. 23731 */ 23732 if ((best_ipif == NULL) || 23733 (ipif->ipif_net_mask > 23734 best_ipif->ipif_net_mask) || 23735 ((ipif->ipif_net_mask == 23736 best_ipif->ipif_net_mask) && 23737 ((ipif->ipif_flags & IPIF_UP) && 23738 (!(best_ipif->ipif_flags & IPIF_UP))))) { 23739 ipif_refhold_locked(ipif); 23740 mutex_exit(&ill->ill_lock); 23741 rw_exit(&ipst->ips_ill_g_lock); 23742 if (best_ipif != NULL) 23743 ipif_refrele(best_ipif); 23744 best_ipif = ipif; 23745 rw_enter(&ipst->ips_ill_g_lock, 23746 RW_READER); 23747 mutex_enter(&ill->ill_lock); 23748 } 23749 } 23750 } 23751 mutex_exit(&ill->ill_lock); 23752 } 23753 rw_exit(&ipst->ips_ill_g_lock); 23754 return (best_ipif); 23755 } 23756 23757 23758 /* 23759 * Save enough information so that we can recreate the IRE if 23760 * the interface goes down and then up. 23761 */ 23762 static void 23763 ipif_save_ire(ipif_t *ipif, ire_t *ire) 23764 { 23765 mblk_t *save_mp; 23766 23767 save_mp = allocb(sizeof (ifrt_t), BPRI_MED); 23768 if (save_mp != NULL) { 23769 ifrt_t *ifrt; 23770 23771 save_mp->b_wptr += sizeof (ifrt_t); 23772 ifrt = (ifrt_t *)save_mp->b_rptr; 23773 bzero(ifrt, sizeof (ifrt_t)); 23774 ifrt->ifrt_type = ire->ire_type; 23775 ifrt->ifrt_addr = ire->ire_addr; 23776 ifrt->ifrt_gateway_addr = ire->ire_gateway_addr; 23777 ifrt->ifrt_src_addr = ire->ire_src_addr; 23778 ifrt->ifrt_mask = ire->ire_mask; 23779 ifrt->ifrt_flags = ire->ire_flags; 23780 ifrt->ifrt_max_frag = ire->ire_max_frag; 23781 mutex_enter(&ipif->ipif_saved_ire_lock); 23782 save_mp->b_cont = ipif->ipif_saved_ire_mp; 23783 ipif->ipif_saved_ire_mp = save_mp; 23784 ipif->ipif_saved_ire_cnt++; 23785 mutex_exit(&ipif->ipif_saved_ire_lock); 23786 } 23787 } 23788 23789 23790 static void 23791 ipif_remove_ire(ipif_t *ipif, ire_t *ire) 23792 { 23793 mblk_t **mpp; 23794 mblk_t *mp; 23795 ifrt_t *ifrt; 23796 23797 /* Remove from ipif_saved_ire_mp list if it is there */ 23798 mutex_enter(&ipif->ipif_saved_ire_lock); 23799 for (mpp = &ipif->ipif_saved_ire_mp; *mpp != NULL; 23800 mpp = &(*mpp)->b_cont) { 23801 /* 23802 * On a given ipif, the triple of address, gateway and 23803 * mask is unique for each saved IRE (in the case of 23804 * ordinary interface routes, the gateway address is 23805 * all-zeroes). 23806 */ 23807 mp = *mpp; 23808 ifrt = (ifrt_t *)mp->b_rptr; 23809 if (ifrt->ifrt_addr == ire->ire_addr && 23810 ifrt->ifrt_gateway_addr == ire->ire_gateway_addr && 23811 ifrt->ifrt_mask == ire->ire_mask) { 23812 *mpp = mp->b_cont; 23813 ipif->ipif_saved_ire_cnt--; 23814 freeb(mp); 23815 break; 23816 } 23817 } 23818 mutex_exit(&ipif->ipif_saved_ire_lock); 23819 } 23820 23821 23822 /* 23823 * IP multirouting broadcast routes handling 23824 * Append CGTP broadcast IREs to regular ones created 23825 * at ifconfig time. 23826 */ 23827 static void 23828 ip_cgtp_bcast_add(ire_t *ire, ire_t *ire_dst, ip_stack_t *ipst) 23829 { 23830 ire_t *ire_prim; 23831 23832 ASSERT(ire != NULL); 23833 ASSERT(ire_dst != NULL); 23834 23835 ire_prim = ire_ctable_lookup(ire->ire_gateway_addr, 0, 23836 IRE_BROADCAST, NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 23837 if (ire_prim != NULL) { 23838 /* 23839 * We are in the special case of broadcasts for 23840 * CGTP. We add an IRE_BROADCAST that holds 23841 * the RTF_MULTIRT flag, the destination 23842 * address of ire_dst and the low level 23843 * info of ire_prim. In other words, CGTP 23844 * broadcast is added to the redundant ipif. 23845 */ 23846 ipif_t *ipif_prim; 23847 ire_t *bcast_ire; 23848 23849 ipif_prim = ire_prim->ire_ipif; 23850 23851 ip2dbg(("ip_cgtp_filter_bcast_add: " 23852 "ire_dst %p, ire_prim %p, ipif_prim %p\n", 23853 (void *)ire_dst, (void *)ire_prim, 23854 (void *)ipif_prim)); 23855 23856 bcast_ire = ire_create( 23857 (uchar_t *)&ire->ire_addr, 23858 (uchar_t *)&ip_g_all_ones, 23859 (uchar_t *)&ire_dst->ire_src_addr, 23860 (uchar_t *)&ire->ire_gateway_addr, 23861 NULL, 23862 &ipif_prim->ipif_mtu, 23863 NULL, 23864 ipif_prim->ipif_rq, 23865 ipif_prim->ipif_wq, 23866 IRE_BROADCAST, 23867 ipif_prim->ipif_bcast_mp, 23868 ipif_prim, 23869 NULL, 23870 0, 23871 0, 23872 0, 23873 ire->ire_flags, 23874 &ire_uinfo_null, 23875 NULL, 23876 NULL, 23877 ipst); 23878 23879 if (bcast_ire != NULL) { 23880 23881 if (ire_add(&bcast_ire, NULL, NULL, NULL, 23882 B_FALSE) == 0) { 23883 ip2dbg(("ip_cgtp_filter_bcast_add: " 23884 "added bcast_ire %p\n", 23885 (void *)bcast_ire)); 23886 23887 ipif_save_ire(bcast_ire->ire_ipif, 23888 bcast_ire); 23889 ire_refrele(bcast_ire); 23890 } 23891 } 23892 ire_refrele(ire_prim); 23893 } 23894 } 23895 23896 23897 /* 23898 * IP multirouting broadcast routes handling 23899 * Remove the broadcast ire 23900 */ 23901 static void 23902 ip_cgtp_bcast_delete(ire_t *ire, ip_stack_t *ipst) 23903 { 23904 ire_t *ire_dst; 23905 23906 ASSERT(ire != NULL); 23907 ire_dst = ire_ctable_lookup(ire->ire_addr, 0, IRE_BROADCAST, 23908 NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 23909 if (ire_dst != NULL) { 23910 ire_t *ire_prim; 23911 23912 ire_prim = ire_ctable_lookup(ire->ire_gateway_addr, 0, 23913 IRE_BROADCAST, NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, ipst); 23914 if (ire_prim != NULL) { 23915 ipif_t *ipif_prim; 23916 ire_t *bcast_ire; 23917 23918 ipif_prim = ire_prim->ire_ipif; 23919 23920 ip2dbg(("ip_cgtp_filter_bcast_delete: " 23921 "ire_dst %p, ire_prim %p, ipif_prim %p\n", 23922 (void *)ire_dst, (void *)ire_prim, 23923 (void *)ipif_prim)); 23924 23925 bcast_ire = ire_ctable_lookup(ire->ire_addr, 23926 ire->ire_gateway_addr, 23927 IRE_BROADCAST, 23928 ipif_prim, ALL_ZONES, 23929 NULL, 23930 MATCH_IRE_TYPE | MATCH_IRE_GW | MATCH_IRE_IPIF | 23931 MATCH_IRE_MASK, ipst); 23932 23933 if (bcast_ire != NULL) { 23934 ip2dbg(("ip_cgtp_filter_bcast_delete: " 23935 "looked up bcast_ire %p\n", 23936 (void *)bcast_ire)); 23937 ipif_remove_ire(bcast_ire->ire_ipif, 23938 bcast_ire); 23939 ire_delete(bcast_ire); 23940 } 23941 ire_refrele(ire_prim); 23942 } 23943 ire_refrele(ire_dst); 23944 } 23945 } 23946 23947 /* 23948 * IPsec hardware acceleration capabilities related functions. 23949 */ 23950 23951 /* 23952 * Free a per-ill IPsec capabilities structure. 23953 */ 23954 static void 23955 ill_ipsec_capab_free(ill_ipsec_capab_t *capab) 23956 { 23957 if (capab->auth_hw_algs != NULL) 23958 kmem_free(capab->auth_hw_algs, capab->algs_size); 23959 if (capab->encr_hw_algs != NULL) 23960 kmem_free(capab->encr_hw_algs, capab->algs_size); 23961 if (capab->encr_algparm != NULL) 23962 kmem_free(capab->encr_algparm, capab->encr_algparm_size); 23963 kmem_free(capab, sizeof (ill_ipsec_capab_t)); 23964 } 23965 23966 /* 23967 * Allocate a new per-ill IPsec capabilities structure. This structure 23968 * is specific to an IPsec protocol (AH or ESP). It is implemented as 23969 * an array which specifies, for each algorithm, whether this algorithm 23970 * is supported by the ill or not. 23971 */ 23972 static ill_ipsec_capab_t * 23973 ill_ipsec_capab_alloc(void) 23974 { 23975 ill_ipsec_capab_t *capab; 23976 uint_t nelems; 23977 23978 capab = kmem_zalloc(sizeof (ill_ipsec_capab_t), KM_NOSLEEP); 23979 if (capab == NULL) 23980 return (NULL); 23981 23982 /* we need one bit per algorithm */ 23983 nelems = MAX_IPSEC_ALGS / BITS(ipsec_capab_elem_t); 23984 capab->algs_size = nelems * sizeof (ipsec_capab_elem_t); 23985 23986 /* allocate memory to store algorithm flags */ 23987 capab->encr_hw_algs = kmem_zalloc(capab->algs_size, KM_NOSLEEP); 23988 if (capab->encr_hw_algs == NULL) 23989 goto nomem; 23990 capab->auth_hw_algs = kmem_zalloc(capab->algs_size, KM_NOSLEEP); 23991 if (capab->auth_hw_algs == NULL) 23992 goto nomem; 23993 /* 23994 * Leave encr_algparm NULL for now since we won't need it half 23995 * the time 23996 */ 23997 return (capab); 23998 23999 nomem: 24000 ill_ipsec_capab_free(capab); 24001 return (NULL); 24002 } 24003 24004 /* 24005 * Resize capability array. Since we're exclusive, this is OK. 24006 */ 24007 static boolean_t 24008 ill_ipsec_capab_resize_algparm(ill_ipsec_capab_t *capab, int algid) 24009 { 24010 ipsec_capab_algparm_t *nalp, *oalp; 24011 uint32_t olen, nlen; 24012 24013 oalp = capab->encr_algparm; 24014 olen = capab->encr_algparm_size; 24015 24016 if (oalp != NULL) { 24017 if (algid < capab->encr_algparm_end) 24018 return (B_TRUE); 24019 } 24020 24021 nlen = (algid + 1) * sizeof (*nalp); 24022 nalp = kmem_zalloc(nlen, KM_NOSLEEP); 24023 if (nalp == NULL) 24024 return (B_FALSE); 24025 24026 if (oalp != NULL) { 24027 bcopy(oalp, nalp, olen); 24028 kmem_free(oalp, olen); 24029 } 24030 capab->encr_algparm = nalp; 24031 capab->encr_algparm_size = nlen; 24032 capab->encr_algparm_end = algid + 1; 24033 24034 return (B_TRUE); 24035 } 24036 24037 /* 24038 * Compare the capabilities of the specified ill with the protocol 24039 * and algorithms specified by the SA passed as argument. 24040 * If they match, returns B_TRUE, B_FALSE if they do not match. 24041 * 24042 * The ill can be passed as a pointer to it, or by specifying its index 24043 * and whether it is an IPv6 ill (ill_index and ill_isv6 arguments). 24044 * 24045 * Called by ipsec_out_is_accelerated() do decide whether an outbound 24046 * packet is eligible for hardware acceleration, and by 24047 * ill_ipsec_capab_send_all() to decide whether a SA must be sent down 24048 * to a particular ill. 24049 */ 24050 boolean_t 24051 ipsec_capab_match(ill_t *ill, uint_t ill_index, boolean_t ill_isv6, 24052 ipsa_t *sa, netstack_t *ns) 24053 { 24054 boolean_t sa_isv6; 24055 uint_t algid; 24056 struct ill_ipsec_capab_s *cpp; 24057 boolean_t need_refrele = B_FALSE; 24058 ip_stack_t *ipst = ns->netstack_ip; 24059 24060 if (ill == NULL) { 24061 ill = ill_lookup_on_ifindex(ill_index, ill_isv6, NULL, 24062 NULL, NULL, NULL, ipst); 24063 if (ill == NULL) { 24064 ip0dbg(("ipsec_capab_match: ill doesn't exist\n")); 24065 return (B_FALSE); 24066 } 24067 need_refrele = B_TRUE; 24068 } 24069 24070 /* 24071 * Use the address length specified by the SA to determine 24072 * if it corresponds to a IPv6 address, and fail the matching 24073 * if the isv6 flag passed as argument does not match. 24074 * Note: this check is used for SADB capability checking before 24075 * sending SA information to an ill. 24076 */ 24077 sa_isv6 = (sa->ipsa_addrfam == AF_INET6); 24078 if (sa_isv6 != ill_isv6) 24079 /* protocol mismatch */ 24080 goto done; 24081 24082 /* 24083 * Check if the ill supports the protocol, algorithm(s) and 24084 * key size(s) specified by the SA, and get the pointers to 24085 * the algorithms supported by the ill. 24086 */ 24087 switch (sa->ipsa_type) { 24088 24089 case SADB_SATYPE_ESP: 24090 if (!(ill->ill_capabilities & ILL_CAPAB_ESP)) 24091 /* ill does not support ESP acceleration */ 24092 goto done; 24093 cpp = ill->ill_ipsec_capab_esp; 24094 algid = sa->ipsa_auth_alg; 24095 if (!IPSEC_ALG_IS_ENABLED(algid, cpp->auth_hw_algs)) 24096 goto done; 24097 algid = sa->ipsa_encr_alg; 24098 if (!IPSEC_ALG_IS_ENABLED(algid, cpp->encr_hw_algs)) 24099 goto done; 24100 if (algid < cpp->encr_algparm_end) { 24101 ipsec_capab_algparm_t *alp = &cpp->encr_algparm[algid]; 24102 if (sa->ipsa_encrkeybits < alp->minkeylen) 24103 goto done; 24104 if (sa->ipsa_encrkeybits > alp->maxkeylen) 24105 goto done; 24106 } 24107 break; 24108 24109 case SADB_SATYPE_AH: 24110 if (!(ill->ill_capabilities & ILL_CAPAB_AH)) 24111 /* ill does not support AH acceleration */ 24112 goto done; 24113 if (!IPSEC_ALG_IS_ENABLED(sa->ipsa_auth_alg, 24114 ill->ill_ipsec_capab_ah->auth_hw_algs)) 24115 goto done; 24116 break; 24117 } 24118 24119 if (need_refrele) 24120 ill_refrele(ill); 24121 return (B_TRUE); 24122 done: 24123 if (need_refrele) 24124 ill_refrele(ill); 24125 return (B_FALSE); 24126 } 24127 24128 24129 /* 24130 * Add a new ill to the list of IPsec capable ills. 24131 * Called from ill_capability_ipsec_ack() when an ACK was received 24132 * indicating that IPsec hardware processing was enabled for an ill. 24133 * 24134 * ill must point to the ill for which acceleration was enabled. 24135 * dl_cap must be set to DL_CAPAB_IPSEC_AH or DL_CAPAB_IPSEC_ESP. 24136 */ 24137 static void 24138 ill_ipsec_capab_add(ill_t *ill, uint_t dl_cap, boolean_t sadb_resync) 24139 { 24140 ipsec_capab_ill_t **ills, *cur_ill, *new_ill; 24141 uint_t sa_type; 24142 uint_t ipproto; 24143 ip_stack_t *ipst = ill->ill_ipst; 24144 24145 ASSERT((dl_cap == DL_CAPAB_IPSEC_AH) || 24146 (dl_cap == DL_CAPAB_IPSEC_ESP)); 24147 24148 switch (dl_cap) { 24149 case DL_CAPAB_IPSEC_AH: 24150 sa_type = SADB_SATYPE_AH; 24151 ills = &ipst->ips_ipsec_capab_ills_ah; 24152 ipproto = IPPROTO_AH; 24153 break; 24154 case DL_CAPAB_IPSEC_ESP: 24155 sa_type = SADB_SATYPE_ESP; 24156 ills = &ipst->ips_ipsec_capab_ills_esp; 24157 ipproto = IPPROTO_ESP; 24158 break; 24159 } 24160 24161 rw_enter(&ipst->ips_ipsec_capab_ills_lock, RW_WRITER); 24162 24163 /* 24164 * Add ill index to list of hardware accelerators. If 24165 * already in list, do nothing. 24166 */ 24167 for (cur_ill = *ills; cur_ill != NULL && 24168 (cur_ill->ill_index != ill->ill_phyint->phyint_ifindex || 24169 cur_ill->ill_isv6 != ill->ill_isv6); cur_ill = cur_ill->next) 24170 ; 24171 24172 if (cur_ill == NULL) { 24173 /* if this is a new entry for this ill */ 24174 new_ill = kmem_zalloc(sizeof (ipsec_capab_ill_t), KM_NOSLEEP); 24175 if (new_ill == NULL) { 24176 rw_exit(&ipst->ips_ipsec_capab_ills_lock); 24177 return; 24178 } 24179 24180 new_ill->ill_index = ill->ill_phyint->phyint_ifindex; 24181 new_ill->ill_isv6 = ill->ill_isv6; 24182 new_ill->next = *ills; 24183 *ills = new_ill; 24184 } else if (!sadb_resync) { 24185 /* not resync'ing SADB and an entry exists for this ill */ 24186 rw_exit(&ipst->ips_ipsec_capab_ills_lock); 24187 return; 24188 } 24189 24190 rw_exit(&ipst->ips_ipsec_capab_ills_lock); 24191 24192 if (ipst->ips_ipcl_proto_fanout_v6[ipproto].connf_head != NULL) 24193 /* 24194 * IPsec module for protocol loaded, initiate dump 24195 * of the SADB to this ill. 24196 */ 24197 sadb_ill_download(ill, sa_type); 24198 } 24199 24200 /* 24201 * Remove an ill from the list of IPsec capable ills. 24202 */ 24203 static void 24204 ill_ipsec_capab_delete(ill_t *ill, uint_t dl_cap) 24205 { 24206 ipsec_capab_ill_t **ills, *cur_ill, *prev_ill; 24207 ip_stack_t *ipst = ill->ill_ipst; 24208 24209 ASSERT(dl_cap == DL_CAPAB_IPSEC_AH || 24210 dl_cap == DL_CAPAB_IPSEC_ESP); 24211 24212 ills = (dl_cap == DL_CAPAB_IPSEC_AH) ? &ipst->ips_ipsec_capab_ills_ah : 24213 &ipst->ips_ipsec_capab_ills_esp; 24214 24215 rw_enter(&ipst->ips_ipsec_capab_ills_lock, RW_WRITER); 24216 24217 prev_ill = NULL; 24218 for (cur_ill = *ills; cur_ill != NULL && (cur_ill->ill_index != 24219 ill->ill_phyint->phyint_ifindex || cur_ill->ill_isv6 != 24220 ill->ill_isv6); prev_ill = cur_ill, cur_ill = cur_ill->next) 24221 ; 24222 if (cur_ill == NULL) { 24223 /* entry not found */ 24224 rw_exit(&ipst->ips_ipsec_capab_ills_lock); 24225 return; 24226 } 24227 if (prev_ill == NULL) { 24228 /* entry at front of list */ 24229 *ills = NULL; 24230 } else { 24231 prev_ill->next = cur_ill->next; 24232 } 24233 kmem_free(cur_ill, sizeof (ipsec_capab_ill_t)); 24234 rw_exit(&ipst->ips_ipsec_capab_ills_lock); 24235 } 24236 24237 24238 /* 24239 * Handling of DL_CONTROL_REQ messages that must be sent down to 24240 * an ill while having exclusive access. 24241 */ 24242 /* ARGSUSED */ 24243 static void 24244 ill_ipsec_capab_send_writer(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *arg) 24245 { 24246 ill_t *ill = (ill_t *)q->q_ptr; 24247 24248 ill_dlpi_send(ill, mp); 24249 } 24250 24251 24252 /* 24253 * Called by SADB to send a DL_CONTROL_REQ message to every ill 24254 * supporting the specified IPsec protocol acceleration. 24255 * sa_type must be SADB_SATYPE_AH or SADB_SATYPE_ESP. 24256 * We free the mblk and, if sa is non-null, release the held referece. 24257 */ 24258 void 24259 ill_ipsec_capab_send_all(uint_t sa_type, mblk_t *mp, ipsa_t *sa, 24260 netstack_t *ns) 24261 { 24262 ipsec_capab_ill_t *ici, *cur_ici; 24263 ill_t *ill; 24264 mblk_t *nmp, *mp_ship_list = NULL, *next_mp; 24265 ip_stack_t *ipst = ns->netstack_ip; 24266 24267 ici = (sa_type == SADB_SATYPE_AH) ? ipst->ips_ipsec_capab_ills_ah : 24268 ipst->ips_ipsec_capab_ills_esp; 24269 24270 rw_enter(&ipst->ips_ipsec_capab_ills_lock, RW_READER); 24271 24272 for (cur_ici = ici; cur_ici != NULL; cur_ici = cur_ici->next) { 24273 ill = ill_lookup_on_ifindex(cur_ici->ill_index, 24274 cur_ici->ill_isv6, NULL, NULL, NULL, NULL, ipst); 24275 24276 /* 24277 * Handle the case where the ill goes away while the SADB is 24278 * attempting to send messages. If it's going away, it's 24279 * nuking its shadow SADB, so we don't care.. 24280 */ 24281 24282 if (ill == NULL) 24283 continue; 24284 24285 if (sa != NULL) { 24286 /* 24287 * Make sure capabilities match before 24288 * sending SA to ill. 24289 */ 24290 if (!ipsec_capab_match(ill, cur_ici->ill_index, 24291 cur_ici->ill_isv6, sa, ipst->ips_netstack)) { 24292 ill_refrele(ill); 24293 continue; 24294 } 24295 24296 mutex_enter(&sa->ipsa_lock); 24297 sa->ipsa_flags |= IPSA_F_HW; 24298 mutex_exit(&sa->ipsa_lock); 24299 } 24300 24301 /* 24302 * Copy template message, and add it to the front 24303 * of the mblk ship list. We want to avoid holding 24304 * the ipsec_capab_ills_lock while sending the 24305 * message to the ills. 24306 * 24307 * The b_next and b_prev are temporarily used 24308 * to build a list of mblks to be sent down, and to 24309 * save the ill to which they must be sent. 24310 */ 24311 nmp = copymsg(mp); 24312 if (nmp == NULL) { 24313 ill_refrele(ill); 24314 continue; 24315 } 24316 ASSERT(nmp->b_next == NULL && nmp->b_prev == NULL); 24317 nmp->b_next = mp_ship_list; 24318 mp_ship_list = nmp; 24319 nmp->b_prev = (mblk_t *)ill; 24320 } 24321 24322 rw_exit(&ipst->ips_ipsec_capab_ills_lock); 24323 24324 nmp = mp_ship_list; 24325 while (nmp != NULL) { 24326 /* restore the mblk to a sane state */ 24327 next_mp = nmp->b_next; 24328 nmp->b_next = NULL; 24329 ill = (ill_t *)nmp->b_prev; 24330 nmp->b_prev = NULL; 24331 24332 /* 24333 * Ship the mblk to the ill, must be exclusive. Keep the 24334 * reference to the ill as qwriter_ip() does a ill_referele(). 24335 */ 24336 (void) qwriter_ip(NULL, ill, ill->ill_wq, nmp, 24337 ill_ipsec_capab_send_writer, NEW_OP, B_TRUE); 24338 24339 nmp = next_mp; 24340 } 24341 24342 if (sa != NULL) 24343 IPSA_REFRELE(sa); 24344 freemsg(mp); 24345 } 24346 24347 24348 /* 24349 * Derive an interface id from the link layer address. 24350 * Knows about IEEE 802 and IEEE EUI-64 mappings. 24351 */ 24352 static boolean_t 24353 ip_ether_v6intfid(uint_t phys_length, uint8_t *phys_addr, in6_addr_t *v6addr) 24354 { 24355 char *addr; 24356 24357 if (phys_length != ETHERADDRL) 24358 return (B_FALSE); 24359 24360 /* Form EUI-64 like address */ 24361 addr = (char *)&v6addr->s6_addr32[2]; 24362 bcopy((char *)phys_addr, addr, 3); 24363 addr[0] ^= 0x2; /* Toggle Universal/Local bit */ 24364 addr[3] = (char)0xff; 24365 addr[4] = (char)0xfe; 24366 bcopy((char *)phys_addr + 3, addr + 5, 3); 24367 return (B_TRUE); 24368 } 24369 24370 /* ARGSUSED */ 24371 static boolean_t 24372 ip_nodef_v6intfid(uint_t phys_length, uint8_t *phys_addr, in6_addr_t *v6addr) 24373 { 24374 return (B_FALSE); 24375 } 24376 24377 /* ARGSUSED */ 24378 static boolean_t 24379 ip_ether_v6mapinfo(uint_t lla_length, uint8_t *bphys_addr, uint8_t *maddr, 24380 uint32_t *hw_start, in6_addr_t *v6_extract_mask) 24381 { 24382 /* 24383 * Multicast address mappings used over Ethernet/802.X. 24384 * This address is used as a base for mappings. 24385 */ 24386 static uint8_t ipv6_g_phys_multi_addr[] = {0x33, 0x33, 0x00, 24387 0x00, 0x00, 0x00}; 24388 24389 /* 24390 * Extract low order 32 bits from IPv6 multicast address. 24391 * Or that into the link layer address, starting from the 24392 * second byte. 24393 */ 24394 *hw_start = 2; 24395 v6_extract_mask->s6_addr32[0] = 0; 24396 v6_extract_mask->s6_addr32[1] = 0; 24397 v6_extract_mask->s6_addr32[2] = 0; 24398 v6_extract_mask->s6_addr32[3] = 0xffffffffU; 24399 bcopy(ipv6_g_phys_multi_addr, maddr, lla_length); 24400 return (B_TRUE); 24401 } 24402 24403 /* 24404 * Indicate by return value whether multicast is supported. If not, 24405 * this code should not touch/change any parameters. 24406 */ 24407 /* ARGSUSED */ 24408 static boolean_t 24409 ip_ether_v4mapinfo(uint_t phys_length, uint8_t *bphys_addr, uint8_t *maddr, 24410 uint32_t *hw_start, ipaddr_t *extract_mask) 24411 { 24412 /* 24413 * Multicast address mappings used over Ethernet/802.X. 24414 * This address is used as a base for mappings. 24415 */ 24416 static uint8_t ip_g_phys_multi_addr[] = { 0x01, 0x00, 0x5e, 24417 0x00, 0x00, 0x00 }; 24418 24419 if (phys_length != ETHERADDRL) 24420 return (B_FALSE); 24421 24422 *extract_mask = htonl(0x007fffff); 24423 *hw_start = 2; 24424 bcopy(ip_g_phys_multi_addr, maddr, ETHERADDRL); 24425 return (B_TRUE); 24426 } 24427 24428 /* 24429 * Derive IPoIB interface id from the link layer address. 24430 */ 24431 static boolean_t 24432 ip_ib_v6intfid(uint_t phys_length, uint8_t *phys_addr, in6_addr_t *v6addr) 24433 { 24434 char *addr; 24435 24436 if (phys_length != 20) 24437 return (B_FALSE); 24438 addr = (char *)&v6addr->s6_addr32[2]; 24439 bcopy(phys_addr + 12, addr, 8); 24440 /* 24441 * In IBA 1.1 timeframe, some vendors erroneously set the u/l bit 24442 * in the globally assigned EUI-64 GUID to 1, in violation of IEEE 24443 * rules. In these cases, the IBA considers these GUIDs to be in 24444 * "Modified EUI-64" format, and thus toggling the u/l bit is not 24445 * required; vendors are required not to assign global EUI-64's 24446 * that differ only in u/l bit values, thus guaranteeing uniqueness 24447 * of the interface identifier. Whether the GUID is in modified 24448 * or proper EUI-64 format, the ipv6 identifier must have the u/l 24449 * bit set to 1. 24450 */ 24451 addr[0] |= 2; /* Set Universal/Local bit to 1 */ 24452 return (B_TRUE); 24453 } 24454 24455 /* 24456 * Note on mapping from multicast IP addresses to IPoIB multicast link 24457 * addresses. IPoIB multicast link addresses are based on IBA link addresses. 24458 * The format of an IPoIB multicast address is: 24459 * 24460 * 4 byte QPN Scope Sign. Pkey 24461 * +--------------------------------------------+ 24462 * | 00FFFFFF | FF | 1X | X01B | Pkey | GroupID | 24463 * +--------------------------------------------+ 24464 * 24465 * The Scope and Pkey components are properties of the IBA port and 24466 * network interface. They can be ascertained from the broadcast address. 24467 * The Sign. part is the signature, and is 401B for IPv4 and 601B for IPv6. 24468 */ 24469 24470 static boolean_t 24471 ip_ib_v6mapinfo(uint_t lla_length, uint8_t *bphys_addr, uint8_t *maddr, 24472 uint32_t *hw_start, in6_addr_t *v6_extract_mask) 24473 { 24474 /* 24475 * Base IPoIB IPv6 multicast address used for mappings. 24476 * Does not contain the IBA scope/Pkey values. 24477 */ 24478 static uint8_t ipv6_g_phys_ibmulti_addr[] = { 0x00, 0xff, 0xff, 0xff, 24479 0xff, 0x10, 0x60, 0x1b, 0x00, 0x00, 0x00, 0x00, 24480 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 }; 24481 24482 /* 24483 * Extract low order 80 bits from IPv6 multicast address. 24484 * Or that into the link layer address, starting from the 24485 * sixth byte. 24486 */ 24487 *hw_start = 6; 24488 bcopy(ipv6_g_phys_ibmulti_addr, maddr, lla_length); 24489 24490 /* 24491 * Now fill in the IBA scope/Pkey values from the broadcast address. 24492 */ 24493 *(maddr + 5) = *(bphys_addr + 5); 24494 *(maddr + 8) = *(bphys_addr + 8); 24495 *(maddr + 9) = *(bphys_addr + 9); 24496 24497 v6_extract_mask->s6_addr32[0] = 0; 24498 v6_extract_mask->s6_addr32[1] = htonl(0x0000ffff); 24499 v6_extract_mask->s6_addr32[2] = 0xffffffffU; 24500 v6_extract_mask->s6_addr32[3] = 0xffffffffU; 24501 return (B_TRUE); 24502 } 24503 24504 static boolean_t 24505 ip_ib_v4mapinfo(uint_t phys_length, uint8_t *bphys_addr, uint8_t *maddr, 24506 uint32_t *hw_start, ipaddr_t *extract_mask) 24507 { 24508 /* 24509 * Base IPoIB IPv4 multicast address used for mappings. 24510 * Does not contain the IBA scope/Pkey values. 24511 */ 24512 static uint8_t ipv4_g_phys_ibmulti_addr[] = { 0x00, 0xff, 0xff, 0xff, 24513 0xff, 0x10, 0x40, 0x1b, 0x00, 0x00, 0x00, 0x00, 24514 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 }; 24515 24516 if (phys_length != sizeof (ipv4_g_phys_ibmulti_addr)) 24517 return (B_FALSE); 24518 24519 /* 24520 * Extract low order 28 bits from IPv4 multicast address. 24521 * Or that into the link layer address, starting from the 24522 * sixteenth byte. 24523 */ 24524 *extract_mask = htonl(0x0fffffff); 24525 *hw_start = 16; 24526 bcopy(ipv4_g_phys_ibmulti_addr, maddr, phys_length); 24527 24528 /* 24529 * Now fill in the IBA scope/Pkey values from the broadcast address. 24530 */ 24531 *(maddr + 5) = *(bphys_addr + 5); 24532 *(maddr + 8) = *(bphys_addr + 8); 24533 *(maddr + 9) = *(bphys_addr + 9); 24534 return (B_TRUE); 24535 } 24536 24537 /* 24538 * Returns B_TRUE if an ipif is present in the given zone, matching some flags 24539 * (typically IPIF_UP). If ipifp is non-null, the held ipif is returned there. 24540 * This works for both IPv4 and IPv6; if the passed-in ill is v6, the ipif with 24541 * the link-local address is preferred. 24542 */ 24543 boolean_t 24544 ipif_lookup_zoneid(ill_t *ill, zoneid_t zoneid, int flags, ipif_t **ipifp) 24545 { 24546 ipif_t *ipif; 24547 ipif_t *maybe_ipif = NULL; 24548 24549 mutex_enter(&ill->ill_lock); 24550 if (ill->ill_state_flags & ILL_CONDEMNED) { 24551 mutex_exit(&ill->ill_lock); 24552 if (ipifp != NULL) 24553 *ipifp = NULL; 24554 return (B_FALSE); 24555 } 24556 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 24557 if (!IPIF_CAN_LOOKUP(ipif)) 24558 continue; 24559 if (zoneid != ALL_ZONES && ipif->ipif_zoneid != zoneid && 24560 ipif->ipif_zoneid != ALL_ZONES) 24561 continue; 24562 if ((ipif->ipif_flags & flags) != flags) 24563 continue; 24564 24565 if (ipifp == NULL) { 24566 mutex_exit(&ill->ill_lock); 24567 ASSERT(maybe_ipif == NULL); 24568 return (B_TRUE); 24569 } 24570 if (!ill->ill_isv6 || 24571 IN6_IS_ADDR_LINKLOCAL(&ipif->ipif_v6src_addr)) { 24572 ipif_refhold_locked(ipif); 24573 mutex_exit(&ill->ill_lock); 24574 *ipifp = ipif; 24575 return (B_TRUE); 24576 } 24577 if (maybe_ipif == NULL) 24578 maybe_ipif = ipif; 24579 } 24580 if (ipifp != NULL) { 24581 if (maybe_ipif != NULL) 24582 ipif_refhold_locked(maybe_ipif); 24583 *ipifp = maybe_ipif; 24584 } 24585 mutex_exit(&ill->ill_lock); 24586 return (maybe_ipif != NULL); 24587 } 24588 24589 /* 24590 * Same as ipif_lookup_zoneid() but looks at all the ills in the same group. 24591 */ 24592 boolean_t 24593 ipif_lookup_zoneid_group(ill_t *ill, zoneid_t zoneid, int flags, ipif_t **ipifp) 24594 { 24595 ill_t *illg; 24596 ip_stack_t *ipst = ill->ill_ipst; 24597 24598 /* 24599 * We look at the passed-in ill first without grabbing ill_g_lock. 24600 */ 24601 if (ipif_lookup_zoneid(ill, zoneid, flags, ipifp)) { 24602 return (B_TRUE); 24603 } 24604 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 24605 if (ill->ill_group == NULL) { 24606 /* ill not in a group */ 24607 rw_exit(&ipst->ips_ill_g_lock); 24608 return (B_FALSE); 24609 } 24610 24611 /* 24612 * There's no ipif in the zone on ill, however ill is part of an IPMP 24613 * group. We need to look for an ipif in the zone on all the ills in the 24614 * group. 24615 */ 24616 illg = ill->ill_group->illgrp_ill; 24617 do { 24618 /* 24619 * We don't call ipif_lookup_zoneid() on ill as we already know 24620 * that it's not there. 24621 */ 24622 if (illg != ill && 24623 ipif_lookup_zoneid(illg, zoneid, flags, ipifp)) { 24624 break; 24625 } 24626 } while ((illg = illg->ill_group_next) != NULL); 24627 rw_exit(&ipst->ips_ill_g_lock); 24628 return (illg != NULL); 24629 } 24630 24631 /* 24632 * Check if this ill is only being used to send ICMP probes for IPMP 24633 */ 24634 boolean_t 24635 ill_is_probeonly(ill_t *ill) 24636 { 24637 /* 24638 * Check if the interface is FAILED, or INACTIVE 24639 */ 24640 if (ill->ill_phyint->phyint_flags & (PHYI_FAILED|PHYI_INACTIVE)) 24641 return (B_TRUE); 24642 24643 return (B_FALSE); 24644 } 24645 24646 /* 24647 * Return a pointer to an ipif_t given a combination of (ill_idx,ipif_id) 24648 * If a pointer to an ipif_t is returned then the caller will need to do 24649 * an ill_refrele(). 24650 * 24651 * If there is no real interface which matches the ifindex, then it looks 24652 * for a group that has a matching index. In the case of a group match the 24653 * lifidx must be zero. We don't need emulate the logical interfaces 24654 * since IP Filter's use of netinfo doesn't use that. 24655 */ 24656 ipif_t * 24657 ipif_getby_indexes(uint_t ifindex, uint_t lifidx, boolean_t isv6, 24658 ip_stack_t *ipst) 24659 { 24660 ipif_t *ipif; 24661 ill_t *ill; 24662 24663 ill = ill_lookup_on_ifindex(ifindex, isv6, NULL, NULL, NULL, NULL, 24664 ipst); 24665 24666 if (ill == NULL) { 24667 /* Fallback to group names only if hook_emulation set */ 24668 if (!ipst->ips_ipmp_hook_emulation) 24669 return (NULL); 24670 24671 if (lifidx != 0) 24672 return (NULL); 24673 ill = ill_group_lookup_on_ifindex(ifindex, isv6, ipst); 24674 if (ill == NULL) 24675 return (NULL); 24676 } 24677 24678 mutex_enter(&ill->ill_lock); 24679 if (ill->ill_state_flags & ILL_CONDEMNED) { 24680 mutex_exit(&ill->ill_lock); 24681 ill_refrele(ill); 24682 return (NULL); 24683 } 24684 24685 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 24686 if (!IPIF_CAN_LOOKUP(ipif)) 24687 continue; 24688 if (lifidx == ipif->ipif_id) { 24689 ipif_refhold_locked(ipif); 24690 break; 24691 } 24692 } 24693 24694 mutex_exit(&ill->ill_lock); 24695 ill_refrele(ill); 24696 return (ipif); 24697 } 24698 24699 /* 24700 * Flush the fastpath by deleting any nce's that are waiting for the fastpath, 24701 * There is one exceptions IRE_BROADCAST are difficult to recreate, 24702 * so instead we just nuke their nce_fp_mp's; see ndp_fastpath_flush() 24703 * for details. 24704 */ 24705 void 24706 ill_fastpath_flush(ill_t *ill) 24707 { 24708 ip_stack_t *ipst = ill->ill_ipst; 24709 24710 nce_fastpath_list_dispatch(ill, NULL, NULL); 24711 ndp_walk_common((ill->ill_isv6 ? ipst->ips_ndp6 : ipst->ips_ndp4), 24712 ill, (pfi_t)ndp_fastpath_flush, NULL, B_TRUE); 24713 } 24714 24715 /* 24716 * Set the physical address information for `ill' to the contents of the 24717 * dl_notify_ind_t pointed to by `mp'. Must be called as writer, and will be 24718 * asynchronous if `ill' cannot immediately be quiesced -- in which case 24719 * EINPROGRESS will be returned. 24720 */ 24721 int 24722 ill_set_phys_addr(ill_t *ill, mblk_t *mp) 24723 { 24724 ipsq_t *ipsq = ill->ill_phyint->phyint_ipsq; 24725 dl_notify_ind_t *dlindp = (dl_notify_ind_t *)mp->b_rptr; 24726 24727 ASSERT(IAM_WRITER_IPSQ(ipsq)); 24728 24729 if (dlindp->dl_data != DL_IPV6_LINK_LAYER_ADDR && 24730 dlindp->dl_data != DL_CURR_PHYS_ADDR) { 24731 /* Changing DL_IPV6_TOKEN is not yet supported */ 24732 return (0); 24733 } 24734 24735 /* 24736 * We need to store up to two copies of `mp' in `ill'. Due to the 24737 * design of ipsq_pending_mp_add(), we can't pass them as separate 24738 * arguments to ill_set_phys_addr_tail(). Instead, chain them 24739 * together here, then pull 'em apart in ill_set_phys_addr_tail(). 24740 */ 24741 if ((mp = copyb(mp)) == NULL || (mp->b_cont = copyb(mp)) == NULL) { 24742 freemsg(mp); 24743 return (ENOMEM); 24744 } 24745 24746 ipsq_current_start(ipsq, ill->ill_ipif, 0); 24747 24748 /* 24749 * If we can quiesce the ill, then set the address. If not, then 24750 * ill_set_phys_addr_tail() will be called from ipif_ill_refrele_tail(). 24751 */ 24752 ill_down_ipifs(ill, NULL, 0, B_FALSE); 24753 mutex_enter(&ill->ill_lock); 24754 if (!ill_is_quiescent(ill)) { 24755 /* call cannot fail since `conn_t *' argument is NULL */ 24756 (void) ipsq_pending_mp_add(NULL, ill->ill_ipif, ill->ill_rq, 24757 mp, ILL_DOWN); 24758 mutex_exit(&ill->ill_lock); 24759 return (EINPROGRESS); 24760 } 24761 mutex_exit(&ill->ill_lock); 24762 24763 ill_set_phys_addr_tail(ipsq, ill->ill_rq, mp, NULL); 24764 return (0); 24765 } 24766 24767 /* 24768 * Once the ill associated with `q' has quiesced, set its physical address 24769 * information to the values in `addrmp'. Note that two copies of `addrmp' 24770 * are passed (linked by b_cont), since we sometimes need to save two distinct 24771 * copies in the ill_t, and our context doesn't permit sleeping or allocation 24772 * failure (we'll free the other copy if it's not needed). Since the ill_t 24773 * is quiesced, we know any stale IREs with the old address information have 24774 * already been removed, so we don't need to call ill_fastpath_flush(). 24775 */ 24776 /* ARGSUSED */ 24777 static void 24778 ill_set_phys_addr_tail(ipsq_t *ipsq, queue_t *q, mblk_t *addrmp, void *dummy) 24779 { 24780 ill_t *ill = q->q_ptr; 24781 mblk_t *addrmp2 = unlinkb(addrmp); 24782 dl_notify_ind_t *dlindp = (dl_notify_ind_t *)addrmp->b_rptr; 24783 uint_t addrlen, addroff; 24784 24785 ASSERT(IAM_WRITER_IPSQ(ipsq)); 24786 24787 addroff = dlindp->dl_addr_offset; 24788 addrlen = dlindp->dl_addr_length - ABS(ill->ill_sap_length); 24789 24790 switch (dlindp->dl_data) { 24791 case DL_IPV6_LINK_LAYER_ADDR: 24792 ill_set_ndmp(ill, addrmp, addroff, addrlen); 24793 freemsg(addrmp2); 24794 break; 24795 24796 case DL_CURR_PHYS_ADDR: 24797 freemsg(ill->ill_phys_addr_mp); 24798 ill->ill_phys_addr = addrmp->b_rptr + addroff; 24799 ill->ill_phys_addr_mp = addrmp; 24800 ill->ill_phys_addr_length = addrlen; 24801 24802 if (ill->ill_isv6 && !(ill->ill_flags & ILLF_XRESOLV)) 24803 ill_set_ndmp(ill, addrmp2, addroff, addrlen); 24804 else 24805 freemsg(addrmp2); 24806 break; 24807 default: 24808 ASSERT(0); 24809 } 24810 24811 /* 24812 * If there are ipifs to bring up, ill_up_ipifs() will return nonzero, 24813 * and ipsq_current_finish() will be called by ip_rput_dlpi_writer() 24814 * or ip_arp_done() when the last ipif is brought up. 24815 */ 24816 if (ill_up_ipifs(ill, q, addrmp) == 0) 24817 ipsq_current_finish(ipsq); 24818 } 24819 24820 /* 24821 * Helper routine for setting the ill_nd_lla fields. 24822 */ 24823 void 24824 ill_set_ndmp(ill_t *ill, mblk_t *ndmp, uint_t addroff, uint_t addrlen) 24825 { 24826 freemsg(ill->ill_nd_lla_mp); 24827 ill->ill_nd_lla = ndmp->b_rptr + addroff; 24828 ill->ill_nd_lla_mp = ndmp; 24829 ill->ill_nd_lla_len = addrlen; 24830 } 24831 24832 24833 24834 major_t IP_MAJ; 24835 #define IP "ip" 24836 24837 #define UDP6DEV "/devices/pseudo/udp6@0:udp6" 24838 #define UDPDEV "/devices/pseudo/udp@0:udp" 24839 24840 /* 24841 * Issue REMOVEIF ioctls to have the loopback interfaces 24842 * go away. Other interfaces are either I_LINKed or I_PLINKed; 24843 * the former going away when the user-level processes in the zone 24844 * are killed * and the latter are cleaned up by the stream head 24845 * str_stack_shutdown callback that undoes all I_PLINKs. 24846 */ 24847 void 24848 ip_loopback_cleanup(ip_stack_t *ipst) 24849 { 24850 int error; 24851 ldi_handle_t lh = NULL; 24852 ldi_ident_t li = NULL; 24853 int rval; 24854 cred_t *cr; 24855 struct strioctl iocb; 24856 struct lifreq lifreq; 24857 24858 IP_MAJ = ddi_name_to_major(IP); 24859 24860 #ifdef NS_DEBUG 24861 (void) printf("ip_loopback_cleanup() stackid %d\n", 24862 ipst->ips_netstack->netstack_stackid); 24863 #endif 24864 24865 bzero(&lifreq, sizeof (lifreq)); 24866 (void) strcpy(lifreq.lifr_name, ipif_loopback_name); 24867 24868 error = ldi_ident_from_major(IP_MAJ, &li); 24869 if (error) { 24870 #ifdef DEBUG 24871 printf("ip_loopback_cleanup: lyr ident get failed error %d\n", 24872 error); 24873 #endif 24874 return; 24875 } 24876 24877 cr = zone_get_kcred(netstackid_to_zoneid( 24878 ipst->ips_netstack->netstack_stackid)); 24879 ASSERT(cr != NULL); 24880 error = ldi_open_by_name(UDP6DEV, FREAD|FWRITE, cr, &lh, li); 24881 if (error) { 24882 #ifdef DEBUG 24883 printf("ip_loopback_cleanup: open of UDP6DEV failed error %d\n", 24884 error); 24885 #endif 24886 goto out; 24887 } 24888 iocb.ic_cmd = SIOCLIFREMOVEIF; 24889 iocb.ic_timout = 15; 24890 iocb.ic_len = sizeof (lifreq); 24891 iocb.ic_dp = (char *)&lifreq; 24892 24893 error = ldi_ioctl(lh, I_STR, (intptr_t)&iocb, FKIOCTL, cr, &rval); 24894 /* LINTED - statement has no consequent */ 24895 if (error) { 24896 #ifdef NS_DEBUG 24897 printf("ip_loopback_cleanup: ioctl SIOCLIFREMOVEIF failed on " 24898 "UDP6 error %d\n", error); 24899 #endif 24900 } 24901 (void) ldi_close(lh, FREAD|FWRITE, cr); 24902 lh = NULL; 24903 24904 error = ldi_open_by_name(UDPDEV, FREAD|FWRITE, cr, &lh, li); 24905 if (error) { 24906 #ifdef NS_DEBUG 24907 printf("ip_loopback_cleanup: open of UDPDEV failed error %d\n", 24908 error); 24909 #endif 24910 goto out; 24911 } 24912 24913 iocb.ic_cmd = SIOCLIFREMOVEIF; 24914 iocb.ic_timout = 15; 24915 iocb.ic_len = sizeof (lifreq); 24916 iocb.ic_dp = (char *)&lifreq; 24917 24918 error = ldi_ioctl(lh, I_STR, (intptr_t)&iocb, FKIOCTL, cr, &rval); 24919 /* LINTED - statement has no consequent */ 24920 if (error) { 24921 #ifdef NS_DEBUG 24922 printf("ip_loopback_cleanup: ioctl SIOCLIFREMOVEIF failed on " 24923 "UDP error %d\n", error); 24924 #endif 24925 } 24926 (void) ldi_close(lh, FREAD|FWRITE, cr); 24927 lh = NULL; 24928 24929 out: 24930 /* Close layered handles */ 24931 if (lh) 24932 (void) ldi_close(lh, FREAD|FWRITE, cr); 24933 if (li) 24934 ldi_ident_release(li); 24935 24936 crfree(cr); 24937 } 24938