1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2010 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 /* Copyright (c) 1990 Mentat Inc. */ 26 27 /* 28 * This file contains the interface control functions for IP. 29 */ 30 31 #include <sys/types.h> 32 #include <sys/stream.h> 33 #include <sys/dlpi.h> 34 #include <sys/stropts.h> 35 #include <sys/strsun.h> 36 #include <sys/sysmacros.h> 37 #include <sys/strsubr.h> 38 #include <sys/strlog.h> 39 #include <sys/ddi.h> 40 #include <sys/sunddi.h> 41 #include <sys/cmn_err.h> 42 #include <sys/kstat.h> 43 #include <sys/debug.h> 44 #include <sys/zone.h> 45 #include <sys/sunldi.h> 46 #include <sys/file.h> 47 #include <sys/bitmap.h> 48 #include <sys/cpuvar.h> 49 #include <sys/time.h> 50 #include <sys/ctype.h> 51 #include <sys/kmem.h> 52 #include <sys/systm.h> 53 #include <sys/param.h> 54 #include <sys/socket.h> 55 #include <sys/isa_defs.h> 56 #include <net/if.h> 57 #include <net/if_arp.h> 58 #include <net/if_types.h> 59 #include <net/if_dl.h> 60 #include <net/route.h> 61 #include <sys/sockio.h> 62 #include <netinet/in.h> 63 #include <netinet/ip6.h> 64 #include <netinet/icmp6.h> 65 #include <netinet/igmp_var.h> 66 #include <sys/policy.h> 67 #include <sys/ethernet.h> 68 #include <sys/callb.h> 69 #include <sys/md5.h> 70 71 #include <inet/common.h> /* for various inet/mi.h and inet/nd.h needs */ 72 #include <inet/mi.h> 73 #include <inet/nd.h> 74 #include <inet/arp.h> 75 #include <inet/ip_arp.h> 76 #include <inet/mib2.h> 77 #include <inet/ip.h> 78 #include <inet/ip6.h> 79 #include <inet/ip6_asp.h> 80 #include <inet/tcp.h> 81 #include <inet/ip_multi.h> 82 #include <inet/ip_ire.h> 83 #include <inet/ip_ftable.h> 84 #include <inet/ip_rts.h> 85 #include <inet/ip_ndp.h> 86 #include <inet/ip_if.h> 87 #include <inet/ip_impl.h> 88 #include <inet/sctp_ip.h> 89 #include <inet/ip_netinfo.h> 90 #include <inet/ilb_ip.h> 91 92 #include <netinet/igmp.h> 93 #include <inet/ip_listutils.h> 94 #include <inet/ipclassifier.h> 95 #include <sys/mac_client.h> 96 #include <sys/dld.h> 97 98 #include <sys/systeminfo.h> 99 #include <sys/bootconf.h> 100 101 #include <sys/tsol/tndb.h> 102 #include <sys/tsol/tnet.h> 103 104 /* The character which tells where the ill_name ends */ 105 #define IPIF_SEPARATOR_CHAR ':' 106 107 /* IP ioctl function table entry */ 108 typedef struct ipft_s { 109 int ipft_cmd; 110 pfi_t ipft_pfi; 111 int ipft_min_size; 112 int ipft_flags; 113 } ipft_t; 114 #define IPFT_F_NO_REPLY 0x1 /* IP ioctl does not expect any reply */ 115 #define IPFT_F_SELF_REPLY 0x2 /* ioctl callee does the ioctl reply */ 116 117 static int nd_ill_forward_get(queue_t *, mblk_t *, caddr_t, cred_t *); 118 static int nd_ill_forward_set(queue_t *q, mblk_t *mp, 119 char *value, caddr_t cp, cred_t *ioc_cr); 120 121 static boolean_t ill_is_quiescent(ill_t *); 122 static boolean_t ip_addr_ok_v4(ipaddr_t addr, ipaddr_t subnet_mask); 123 static ip_m_t *ip_m_lookup(t_uscalar_t mac_type); 124 static int ip_sioctl_addr_tail(ipif_t *ipif, sin_t *sin, queue_t *q, 125 mblk_t *mp, boolean_t need_up); 126 static int ip_sioctl_dstaddr_tail(ipif_t *ipif, sin_t *sin, queue_t *q, 127 mblk_t *mp, boolean_t need_up); 128 static int ip_sioctl_slifzone_tail(ipif_t *ipif, zoneid_t zoneid, 129 queue_t *q, mblk_t *mp, boolean_t need_up); 130 static int ip_sioctl_flags_tail(ipif_t *ipif, uint64_t flags, queue_t *q, 131 mblk_t *mp); 132 static int ip_sioctl_netmask_tail(ipif_t *ipif, sin_t *sin, queue_t *q, 133 mblk_t *mp); 134 static int ip_sioctl_subnet_tail(ipif_t *ipif, in6_addr_t, in6_addr_t, 135 queue_t *q, mblk_t *mp, boolean_t need_up); 136 static int ip_sioctl_plink_ipmod(ipsq_t *ipsq, queue_t *q, mblk_t *mp, 137 int ioccmd, struct linkblk *li); 138 static ipaddr_t ip_subnet_mask(ipaddr_t addr, ipif_t **, ip_stack_t *); 139 static void ip_wput_ioctl(queue_t *q, mblk_t *mp); 140 static void ipsq_flush(ill_t *ill); 141 142 static int ip_sioctl_token_tail(ipif_t *ipif, sin6_t *sin6, int addrlen, 143 queue_t *q, mblk_t *mp, boolean_t need_up); 144 static void ipsq_delete(ipsq_t *); 145 146 static ipif_t *ipif_allocate(ill_t *ill, int id, uint_t ire_type, 147 boolean_t initialize, boolean_t insert, int *errorp); 148 static ire_t **ipif_create_bcast_ires(ipif_t *ipif, ire_t **irep); 149 static void ipif_delete_bcast_ires(ipif_t *ipif); 150 static int ipif_add_ires_v4(ipif_t *, boolean_t); 151 static boolean_t ipif_comp_multi(ipif_t *old_ipif, ipif_t *new_ipif, 152 boolean_t isv6); 153 static int ipif_logical_down(ipif_t *ipif, queue_t *q, mblk_t *mp); 154 static void ipif_free(ipif_t *ipif); 155 static void ipif_free_tail(ipif_t *ipif); 156 static void ipif_set_default(ipif_t *ipif); 157 static int ipif_set_values(queue_t *q, mblk_t *mp, 158 char *interf_name, uint_t *ppa); 159 static int ipif_set_values_tail(ill_t *ill, ipif_t *ipif, mblk_t *mp, 160 queue_t *q); 161 static ipif_t *ipif_lookup_on_name(char *name, size_t namelen, 162 boolean_t do_alloc, boolean_t *exists, boolean_t isv6, zoneid_t zoneid, 163 ip_stack_t *); 164 165 static int ill_alloc_ppa(ill_if_t *, ill_t *); 166 static void ill_delete_interface_type(ill_if_t *); 167 static int ill_dl_up(ill_t *ill, ipif_t *ipif, mblk_t *mp, queue_t *q); 168 static void ill_dl_down(ill_t *ill); 169 static void ill_down(ill_t *ill); 170 static void ill_down_ipifs(ill_t *, boolean_t); 171 static void ill_free_mib(ill_t *ill); 172 static void ill_glist_delete(ill_t *); 173 static void ill_phyint_reinit(ill_t *ill); 174 static void ill_set_nce_router_flags(ill_t *, boolean_t); 175 static void ill_set_phys_addr_tail(ipsq_t *, queue_t *, mblk_t *, void *); 176 static void ill_replumb_tail(ipsq_t *, queue_t *, mblk_t *, void *); 177 178 static ip_v6intfid_func_t ip_ether_v6intfid, ip_ib_v6intfid; 179 static ip_v6intfid_func_t ip_ipv4_v6intfid, ip_ipv6_v6intfid; 180 static ip_v6intfid_func_t ip_ipmp_v6intfid, ip_nodef_v6intfid; 181 static ip_v6intfid_func_t ip_ipv4_v6destintfid, ip_ipv6_v6destintfid; 182 static ip_v4mapinfo_func_t ip_ether_v4_mapping; 183 static ip_v6mapinfo_func_t ip_ether_v6_mapping; 184 static ip_v4mapinfo_func_t ip_ib_v4_mapping; 185 static ip_v6mapinfo_func_t ip_ib_v6_mapping; 186 static ip_v4mapinfo_func_t ip_mbcast_mapping; 187 static void ip_cgtp_bcast_add(ire_t *, ip_stack_t *); 188 static void ip_cgtp_bcast_delete(ire_t *, ip_stack_t *); 189 static void phyint_free(phyint_t *); 190 191 static void ill_capability_dispatch(ill_t *, mblk_t *, dl_capability_sub_t *); 192 static void ill_capability_id_ack(ill_t *, mblk_t *, dl_capability_sub_t *); 193 static void ill_capability_vrrp_ack(ill_t *, mblk_t *, dl_capability_sub_t *); 194 static void ill_capability_hcksum_ack(ill_t *, mblk_t *, dl_capability_sub_t *); 195 static void ill_capability_hcksum_reset_fill(ill_t *, mblk_t *); 196 static void ill_capability_zerocopy_ack(ill_t *, mblk_t *, 197 dl_capability_sub_t *); 198 static void ill_capability_zerocopy_reset_fill(ill_t *, mblk_t *); 199 static void ill_capability_dld_reset_fill(ill_t *, mblk_t *); 200 static void ill_capability_dld_ack(ill_t *, mblk_t *, 201 dl_capability_sub_t *); 202 static void ill_capability_dld_enable(ill_t *); 203 static void ill_capability_ack_thr(void *); 204 static void ill_capability_lso_enable(ill_t *); 205 206 static ill_t *ill_prev_usesrc(ill_t *); 207 static int ill_relink_usesrc_ills(ill_t *, ill_t *, uint_t); 208 static void ill_disband_usesrc_group(ill_t *); 209 static void ip_sioctl_garp_reply(mblk_t *, ill_t *, void *, int); 210 211 #ifdef DEBUG 212 static void ill_trace_cleanup(const ill_t *); 213 static void ipif_trace_cleanup(const ipif_t *); 214 #endif 215 216 static void ill_dlpi_clear_deferred(ill_t *ill); 217 218 /* 219 * if we go over the memory footprint limit more than once in this msec 220 * interval, we'll start pruning aggressively. 221 */ 222 int ip_min_frag_prune_time = 0; 223 224 static ipft_t ip_ioctl_ftbl[] = { 225 { IP_IOC_IRE_DELETE, ip_ire_delete, sizeof (ipid_t), 0 }, 226 { IP_IOC_IRE_DELETE_NO_REPLY, ip_ire_delete, sizeof (ipid_t), 227 IPFT_F_NO_REPLY }, 228 { IP_IOC_RTS_REQUEST, ip_rts_request, 0, IPFT_F_SELF_REPLY }, 229 { 0 } 230 }; 231 232 /* Simple ICMP IP Header Template */ 233 static ipha_t icmp_ipha = { 234 IP_SIMPLE_HDR_VERSION, 0, 0, 0, 0, 0, IPPROTO_ICMP 235 }; 236 237 static uchar_t ip_six_byte_all_ones[] = { 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF }; 238 239 static ip_m_t ip_m_tbl[] = { 240 { DL_ETHER, IFT_ETHER, ETHERTYPE_IP, ETHERTYPE_IPV6, 241 ip_ether_v4_mapping, ip_ether_v6_mapping, ip_ether_v6intfid, 242 ip_nodef_v6intfid }, 243 { DL_CSMACD, IFT_ISO88023, ETHERTYPE_IP, ETHERTYPE_IPV6, 244 ip_ether_v4_mapping, ip_ether_v6_mapping, ip_nodef_v6intfid, 245 ip_nodef_v6intfid }, 246 { DL_TPB, IFT_ISO88024, ETHERTYPE_IP, ETHERTYPE_IPV6, 247 ip_ether_v4_mapping, ip_ether_v6_mapping, ip_nodef_v6intfid, 248 ip_nodef_v6intfid }, 249 { DL_TPR, IFT_ISO88025, ETHERTYPE_IP, ETHERTYPE_IPV6, 250 ip_ether_v4_mapping, ip_ether_v6_mapping, ip_nodef_v6intfid, 251 ip_nodef_v6intfid }, 252 { DL_FDDI, IFT_FDDI, ETHERTYPE_IP, ETHERTYPE_IPV6, 253 ip_ether_v4_mapping, ip_ether_v6_mapping, ip_ether_v6intfid, 254 ip_nodef_v6intfid }, 255 { DL_IB, IFT_IB, ETHERTYPE_IP, ETHERTYPE_IPV6, 256 ip_ib_v4_mapping, ip_ib_v6_mapping, ip_ib_v6intfid, 257 ip_nodef_v6intfid }, 258 { DL_IPV4, IFT_IPV4, IPPROTO_ENCAP, IPPROTO_IPV6, 259 ip_mbcast_mapping, ip_mbcast_mapping, ip_ipv4_v6intfid, 260 ip_ipv4_v6destintfid }, 261 { DL_IPV6, IFT_IPV6, IPPROTO_ENCAP, IPPROTO_IPV6, 262 ip_mbcast_mapping, ip_mbcast_mapping, ip_ipv6_v6intfid, 263 ip_ipv6_v6destintfid }, 264 { DL_6TO4, IFT_6TO4, IPPROTO_ENCAP, IPPROTO_IPV6, 265 ip_mbcast_mapping, ip_mbcast_mapping, ip_ipv4_v6intfid, 266 ip_nodef_v6intfid }, 267 { SUNW_DL_VNI, IFT_OTHER, ETHERTYPE_IP, ETHERTYPE_IPV6, 268 NULL, NULL, ip_nodef_v6intfid, ip_nodef_v6intfid }, 269 { SUNW_DL_IPMP, IFT_OTHER, ETHERTYPE_IP, ETHERTYPE_IPV6, 270 NULL, NULL, ip_ipmp_v6intfid, ip_nodef_v6intfid }, 271 { DL_OTHER, IFT_OTHER, ETHERTYPE_IP, ETHERTYPE_IPV6, 272 ip_ether_v4_mapping, ip_ether_v6_mapping, ip_nodef_v6intfid, 273 ip_nodef_v6intfid } 274 }; 275 276 static ill_t ill_null; /* Empty ILL for init. */ 277 char ipif_loopback_name[] = "lo0"; 278 static char *ipv4_forward_suffix = ":ip_forwarding"; 279 static char *ipv6_forward_suffix = ":ip6_forwarding"; 280 static sin6_t sin6_null; /* Zero address for quick clears */ 281 static sin_t sin_null; /* Zero address for quick clears */ 282 283 /* When set search for unused ipif_seqid */ 284 static ipif_t ipif_zero; 285 286 /* 287 * ppa arena is created after these many 288 * interfaces have been plumbed. 289 */ 290 uint_t ill_no_arena = 12; /* Setable in /etc/system */ 291 292 /* 293 * Allocate per-interface mibs. 294 * Returns true if ok. False otherwise. 295 * ipsq may not yet be allocated (loopback case ). 296 */ 297 static boolean_t 298 ill_allocate_mibs(ill_t *ill) 299 { 300 /* Already allocated? */ 301 if (ill->ill_ip_mib != NULL) { 302 if (ill->ill_isv6) 303 ASSERT(ill->ill_icmp6_mib != NULL); 304 return (B_TRUE); 305 } 306 307 ill->ill_ip_mib = kmem_zalloc(sizeof (*ill->ill_ip_mib), 308 KM_NOSLEEP); 309 if (ill->ill_ip_mib == NULL) { 310 return (B_FALSE); 311 } 312 313 /* Setup static information */ 314 SET_MIB(ill->ill_ip_mib->ipIfStatsEntrySize, 315 sizeof (mib2_ipIfStatsEntry_t)); 316 if (ill->ill_isv6) { 317 ill->ill_ip_mib->ipIfStatsIPVersion = MIB2_INETADDRESSTYPE_ipv6; 318 SET_MIB(ill->ill_ip_mib->ipIfStatsAddrEntrySize, 319 sizeof (mib2_ipv6AddrEntry_t)); 320 SET_MIB(ill->ill_ip_mib->ipIfStatsRouteEntrySize, 321 sizeof (mib2_ipv6RouteEntry_t)); 322 SET_MIB(ill->ill_ip_mib->ipIfStatsNetToMediaEntrySize, 323 sizeof (mib2_ipv6NetToMediaEntry_t)); 324 SET_MIB(ill->ill_ip_mib->ipIfStatsMemberEntrySize, 325 sizeof (ipv6_member_t)); 326 SET_MIB(ill->ill_ip_mib->ipIfStatsGroupSourceEntrySize, 327 sizeof (ipv6_grpsrc_t)); 328 } else { 329 ill->ill_ip_mib->ipIfStatsIPVersion = MIB2_INETADDRESSTYPE_ipv4; 330 SET_MIB(ill->ill_ip_mib->ipIfStatsAddrEntrySize, 331 sizeof (mib2_ipAddrEntry_t)); 332 SET_MIB(ill->ill_ip_mib->ipIfStatsRouteEntrySize, 333 sizeof (mib2_ipRouteEntry_t)); 334 SET_MIB(ill->ill_ip_mib->ipIfStatsNetToMediaEntrySize, 335 sizeof (mib2_ipNetToMediaEntry_t)); 336 SET_MIB(ill->ill_ip_mib->ipIfStatsMemberEntrySize, 337 sizeof (ip_member_t)); 338 SET_MIB(ill->ill_ip_mib->ipIfStatsGroupSourceEntrySize, 339 sizeof (ip_grpsrc_t)); 340 341 /* 342 * For a v4 ill, we are done at this point, because per ill 343 * icmp mibs are only used for v6. 344 */ 345 return (B_TRUE); 346 } 347 348 ill->ill_icmp6_mib = kmem_zalloc(sizeof (*ill->ill_icmp6_mib), 349 KM_NOSLEEP); 350 if (ill->ill_icmp6_mib == NULL) { 351 kmem_free(ill->ill_ip_mib, sizeof (*ill->ill_ip_mib)); 352 ill->ill_ip_mib = NULL; 353 return (B_FALSE); 354 } 355 /* static icmp info */ 356 ill->ill_icmp6_mib->ipv6IfIcmpEntrySize = 357 sizeof (mib2_ipv6IfIcmpEntry_t); 358 /* 359 * The ipIfStatsIfindex and ipv6IfIcmpIndex will be assigned later 360 * after the phyint merge occurs in ipif_set_values -> ill_glist_insert 361 * -> ill_phyint_reinit 362 */ 363 return (B_TRUE); 364 } 365 366 /* 367 * Completely vaporize a lower level tap and all associated interfaces. 368 * ill_delete is called only out of ip_close when the device control 369 * stream is being closed. 370 */ 371 void 372 ill_delete(ill_t *ill) 373 { 374 ipif_t *ipif; 375 ill_t *prev_ill; 376 ip_stack_t *ipst = ill->ill_ipst; 377 378 /* 379 * ill_delete may be forcibly entering the ipsq. The previous 380 * ioctl may not have completed and may need to be aborted. 381 * ipsq_flush takes care of it. If we don't need to enter the 382 * the ipsq forcibly, the 2nd invocation of ipsq_flush in 383 * ill_delete_tail is sufficient. 384 */ 385 ipsq_flush(ill); 386 387 /* 388 * Nuke all interfaces. ipif_free will take down the interface, 389 * remove it from the list, and free the data structure. 390 * Walk down the ipif list and remove the logical interfaces 391 * first before removing the main ipif. We can't unplumb 392 * zeroth interface first in the case of IPv6 as update_conn_ill 393 * -> ip_ll_multireq de-references ill_ipif for checking 394 * POINTOPOINT. 395 * 396 * If ill_ipif was not properly initialized (i.e low on memory), 397 * then no interfaces to clean up. In this case just clean up the 398 * ill. 399 */ 400 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) 401 ipif_free(ipif); 402 403 /* 404 * clean out all the nce_t entries that depend on this 405 * ill for the ill_phys_addr. 406 */ 407 nce_flush(ill, B_TRUE); 408 409 /* Clean up msgs on pending upcalls for mrouted */ 410 reset_mrt_ill(ill); 411 412 update_conn_ill(ill, ipst); 413 414 /* 415 * Remove multicast references added as a result of calls to 416 * ip_join_allmulti(). 417 */ 418 ip_purge_allmulti(ill); 419 420 /* 421 * If the ill being deleted is under IPMP, boot it out of the illgrp. 422 */ 423 if (IS_UNDER_IPMP(ill)) 424 ipmp_ill_leave_illgrp(ill); 425 426 /* 427 * ill_down will arrange to blow off any IRE's dependent on this 428 * ILL, and shut down fragmentation reassembly. 429 */ 430 ill_down(ill); 431 432 /* Let SCTP know, so that it can remove this from its list. */ 433 sctp_update_ill(ill, SCTP_ILL_REMOVE); 434 435 /* 436 * Walk all CONNs that can have a reference on an ire or nce for this 437 * ill (we actually walk all that now have stale references). 438 */ 439 ipcl_walk(conn_ixa_cleanup, (void *)B_TRUE, ipst); 440 441 /* With IPv6 we have dce_ifindex. Cleanup for neatness */ 442 if (ill->ill_isv6) 443 dce_cleanup(ill->ill_phyint->phyint_ifindex, ipst); 444 445 /* 446 * If an address on this ILL is being used as a source address then 447 * clear out the pointers in other ILLs that point to this ILL. 448 */ 449 rw_enter(&ipst->ips_ill_g_usesrc_lock, RW_WRITER); 450 if (ill->ill_usesrc_grp_next != NULL) { 451 if (ill->ill_usesrc_ifindex == 0) { /* usesrc ILL ? */ 452 ill_disband_usesrc_group(ill); 453 } else { /* consumer of the usesrc ILL */ 454 prev_ill = ill_prev_usesrc(ill); 455 prev_ill->ill_usesrc_grp_next = 456 ill->ill_usesrc_grp_next; 457 } 458 } 459 rw_exit(&ipst->ips_ill_g_usesrc_lock); 460 } 461 462 static void 463 ipif_non_duplicate(ipif_t *ipif) 464 { 465 ill_t *ill = ipif->ipif_ill; 466 mutex_enter(&ill->ill_lock); 467 if (ipif->ipif_flags & IPIF_DUPLICATE) { 468 ipif->ipif_flags &= ~IPIF_DUPLICATE; 469 ASSERT(ill->ill_ipif_dup_count > 0); 470 ill->ill_ipif_dup_count--; 471 } 472 mutex_exit(&ill->ill_lock); 473 } 474 475 /* 476 * ill_delete_tail is called from ip_modclose after all references 477 * to the closing ill are gone. The wait is done in ip_modclose 478 */ 479 void 480 ill_delete_tail(ill_t *ill) 481 { 482 mblk_t **mpp; 483 ipif_t *ipif; 484 ip_stack_t *ipst = ill->ill_ipst; 485 486 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 487 ipif_non_duplicate(ipif); 488 (void) ipif_down_tail(ipif); 489 } 490 491 ASSERT(ill->ill_ipif_dup_count == 0); 492 493 /* 494 * If polling capability is enabled (which signifies direct 495 * upcall into IP and driver has ill saved as a handle), 496 * we need to make sure that unbind has completed before we 497 * let the ill disappear and driver no longer has any reference 498 * to this ill. 499 */ 500 mutex_enter(&ill->ill_lock); 501 while (ill->ill_state_flags & ILL_DL_UNBIND_IN_PROGRESS) 502 cv_wait(&ill->ill_cv, &ill->ill_lock); 503 mutex_exit(&ill->ill_lock); 504 ASSERT(!(ill->ill_capabilities & 505 (ILL_CAPAB_DLD | ILL_CAPAB_DLD_POLL | ILL_CAPAB_DLD_DIRECT))); 506 507 if (ill->ill_net_type != IRE_LOOPBACK) 508 qprocsoff(ill->ill_rq); 509 510 /* 511 * We do an ipsq_flush once again now. New messages could have 512 * landed up from below (M_ERROR or M_HANGUP). Similarly ioctls 513 * could also have landed up if an ioctl thread had looked up 514 * the ill before we set the ILL_CONDEMNED flag, but not yet 515 * enqueued the ioctl when we did the ipsq_flush last time. 516 */ 517 ipsq_flush(ill); 518 519 /* 520 * Free capabilities. 521 */ 522 if (ill->ill_hcksum_capab != NULL) { 523 kmem_free(ill->ill_hcksum_capab, sizeof (ill_hcksum_capab_t)); 524 ill->ill_hcksum_capab = NULL; 525 } 526 527 if (ill->ill_zerocopy_capab != NULL) { 528 kmem_free(ill->ill_zerocopy_capab, 529 sizeof (ill_zerocopy_capab_t)); 530 ill->ill_zerocopy_capab = NULL; 531 } 532 533 if (ill->ill_lso_capab != NULL) { 534 kmem_free(ill->ill_lso_capab, sizeof (ill_lso_capab_t)); 535 ill->ill_lso_capab = NULL; 536 } 537 538 if (ill->ill_dld_capab != NULL) { 539 kmem_free(ill->ill_dld_capab, sizeof (ill_dld_capab_t)); 540 ill->ill_dld_capab = NULL; 541 } 542 543 while (ill->ill_ipif != NULL) 544 ipif_free_tail(ill->ill_ipif); 545 546 /* 547 * We have removed all references to ilm from conn and the ones joined 548 * within the kernel. 549 * 550 * We don't walk conns, mrts and ires because 551 * 552 * 1) update_conn_ill and reset_mrt_ill cleans up conns and mrts. 553 * 2) ill_down ->ill_downi walks all the ires and cleans up 554 * ill references. 555 */ 556 557 /* 558 * If this ill is an IPMP meta-interface, blow away the illgrp. This 559 * is safe to do because the illgrp has already been unlinked from the 560 * group by I_PUNLINK, and thus SIOCSLIFGROUPNAME cannot find it. 561 */ 562 if (IS_IPMP(ill)) { 563 ipmp_illgrp_destroy(ill->ill_grp); 564 ill->ill_grp = NULL; 565 } 566 567 /* 568 * Take us out of the list of ILLs. ill_glist_delete -> phyint_free 569 * could free the phyint. No more reference to the phyint after this 570 * point. 571 */ 572 (void) ill_glist_delete(ill); 573 574 rw_enter(&ipst->ips_ip_g_nd_lock, RW_WRITER); 575 if (ill->ill_ndd_name != NULL) 576 nd_unload(&ipst->ips_ip_g_nd, ill->ill_ndd_name); 577 rw_exit(&ipst->ips_ip_g_nd_lock); 578 579 if (ill->ill_frag_ptr != NULL) { 580 uint_t count; 581 582 for (count = 0; count < ILL_FRAG_HASH_TBL_COUNT; count++) { 583 mutex_destroy(&ill->ill_frag_hash_tbl[count].ipfb_lock); 584 } 585 mi_free(ill->ill_frag_ptr); 586 ill->ill_frag_ptr = NULL; 587 ill->ill_frag_hash_tbl = NULL; 588 } 589 590 freemsg(ill->ill_nd_lla_mp); 591 /* Free all retained control messages. */ 592 mpp = &ill->ill_first_mp_to_free; 593 do { 594 while (mpp[0]) { 595 mblk_t *mp; 596 mblk_t *mp1; 597 598 mp = mpp[0]; 599 mpp[0] = mp->b_next; 600 for (mp1 = mp; mp1 != NULL; mp1 = mp1->b_cont) { 601 mp1->b_next = NULL; 602 mp1->b_prev = NULL; 603 } 604 freemsg(mp); 605 } 606 } while (mpp++ != &ill->ill_last_mp_to_free); 607 608 ill_free_mib(ill); 609 610 #ifdef DEBUG 611 ill_trace_cleanup(ill); 612 #endif 613 614 /* The default multicast interface might have changed */ 615 ire_increment_multicast_generation(ipst, ill->ill_isv6); 616 617 /* Drop refcnt here */ 618 netstack_rele(ill->ill_ipst->ips_netstack); 619 ill->ill_ipst = NULL; 620 } 621 622 static void 623 ill_free_mib(ill_t *ill) 624 { 625 ip_stack_t *ipst = ill->ill_ipst; 626 627 /* 628 * MIB statistics must not be lost, so when an interface 629 * goes away the counter values will be added to the global 630 * MIBs. 631 */ 632 if (ill->ill_ip_mib != NULL) { 633 if (ill->ill_isv6) { 634 ip_mib2_add_ip_stats(&ipst->ips_ip6_mib, 635 ill->ill_ip_mib); 636 } else { 637 ip_mib2_add_ip_stats(&ipst->ips_ip_mib, 638 ill->ill_ip_mib); 639 } 640 641 kmem_free(ill->ill_ip_mib, sizeof (*ill->ill_ip_mib)); 642 ill->ill_ip_mib = NULL; 643 } 644 if (ill->ill_icmp6_mib != NULL) { 645 ip_mib2_add_icmp6_stats(&ipst->ips_icmp6_mib, 646 ill->ill_icmp6_mib); 647 kmem_free(ill->ill_icmp6_mib, sizeof (*ill->ill_icmp6_mib)); 648 ill->ill_icmp6_mib = NULL; 649 } 650 } 651 652 /* 653 * Concatenate together a physical address and a sap. 654 * 655 * Sap_lengths are interpreted as follows: 656 * sap_length == 0 ==> no sap 657 * sap_length > 0 ==> sap is at the head of the dlpi address 658 * sap_length < 0 ==> sap is at the tail of the dlpi address 659 */ 660 static void 661 ill_dlur_copy_address(uchar_t *phys_src, uint_t phys_length, 662 t_scalar_t sap_src, t_scalar_t sap_length, uchar_t *dst) 663 { 664 uint16_t sap_addr = (uint16_t)sap_src; 665 666 if (sap_length == 0) { 667 if (phys_src == NULL) 668 bzero(dst, phys_length); 669 else 670 bcopy(phys_src, dst, phys_length); 671 } else if (sap_length < 0) { 672 if (phys_src == NULL) 673 bzero(dst, phys_length); 674 else 675 bcopy(phys_src, dst, phys_length); 676 bcopy(&sap_addr, (char *)dst + phys_length, sizeof (sap_addr)); 677 } else { 678 bcopy(&sap_addr, dst, sizeof (sap_addr)); 679 if (phys_src == NULL) 680 bzero((char *)dst + sap_length, phys_length); 681 else 682 bcopy(phys_src, (char *)dst + sap_length, phys_length); 683 } 684 } 685 686 /* 687 * Generate a dl_unitdata_req mblk for the device and address given. 688 * addr_length is the length of the physical portion of the address. 689 * If addr is NULL include an all zero address of the specified length. 690 * TRUE? In any case, addr_length is taken to be the entire length of the 691 * dlpi address, including the absolute value of sap_length. 692 */ 693 mblk_t * 694 ill_dlur_gen(uchar_t *addr, uint_t addr_length, t_uscalar_t sap, 695 t_scalar_t sap_length) 696 { 697 dl_unitdata_req_t *dlur; 698 mblk_t *mp; 699 t_scalar_t abs_sap_length; /* absolute value */ 700 701 abs_sap_length = ABS(sap_length); 702 mp = ip_dlpi_alloc(sizeof (*dlur) + addr_length + abs_sap_length, 703 DL_UNITDATA_REQ); 704 if (mp == NULL) 705 return (NULL); 706 dlur = (dl_unitdata_req_t *)mp->b_rptr; 707 /* HACK: accomodate incompatible DLPI drivers */ 708 if (addr_length == 8) 709 addr_length = 6; 710 dlur->dl_dest_addr_length = addr_length + abs_sap_length; 711 dlur->dl_dest_addr_offset = sizeof (*dlur); 712 dlur->dl_priority.dl_min = 0; 713 dlur->dl_priority.dl_max = 0; 714 ill_dlur_copy_address(addr, addr_length, sap, sap_length, 715 (uchar_t *)&dlur[1]); 716 return (mp); 717 } 718 719 /* 720 * Add the pending mp to the list. There can be only 1 pending mp 721 * in the list. Any exclusive ioctl that needs to wait for a response 722 * from another module or driver needs to use this function to set 723 * the ipx_pending_mp to the ioctl mblk and wait for the response from 724 * the other module/driver. This is also used while waiting for the 725 * ipif/ill/ire refcnts to drop to zero in bringing down an ipif. 726 */ 727 boolean_t 728 ipsq_pending_mp_add(conn_t *connp, ipif_t *ipif, queue_t *q, mblk_t *add_mp, 729 int waitfor) 730 { 731 ipxop_t *ipx = ipif->ipif_ill->ill_phyint->phyint_ipsq->ipsq_xop; 732 733 ASSERT(IAM_WRITER_IPIF(ipif)); 734 ASSERT(MUTEX_HELD(&ipif->ipif_ill->ill_lock)); 735 ASSERT((add_mp->b_next == NULL) && (add_mp->b_prev == NULL)); 736 ASSERT(ipx->ipx_pending_mp == NULL); 737 /* 738 * The caller may be using a different ipif than the one passed into 739 * ipsq_current_start() (e.g., suppose an ioctl that came in on the V4 740 * ill needs to wait for the V6 ill to quiesce). So we can't ASSERT 741 * that `ipx_current_ipif == ipif'. 742 */ 743 ASSERT(ipx->ipx_current_ipif != NULL); 744 745 /* 746 * M_IOCDATA from ioctls, M_ERROR/M_HANGUP/M_PROTO/M_PCPROTO from the 747 * driver. 748 */ 749 ASSERT((DB_TYPE(add_mp) == M_IOCDATA) || (DB_TYPE(add_mp) == M_ERROR) || 750 (DB_TYPE(add_mp) == M_HANGUP) || (DB_TYPE(add_mp) == M_PROTO) || 751 (DB_TYPE(add_mp) == M_PCPROTO)); 752 753 if (connp != NULL) { 754 ASSERT(MUTEX_HELD(&connp->conn_lock)); 755 /* 756 * Return error if the conn has started closing. The conn 757 * could have finished cleaning up the pending mp list, 758 * If so we should not add another mp to the list negating 759 * the cleanup. 760 */ 761 if (connp->conn_state_flags & CONN_CLOSING) 762 return (B_FALSE); 763 } 764 mutex_enter(&ipx->ipx_lock); 765 ipx->ipx_pending_ipif = ipif; 766 /* 767 * Note down the queue in b_queue. This will be returned by 768 * ipsq_pending_mp_get. Caller will then use these values to restart 769 * the processing 770 */ 771 add_mp->b_next = NULL; 772 add_mp->b_queue = q; 773 ipx->ipx_pending_mp = add_mp; 774 ipx->ipx_waitfor = waitfor; 775 mutex_exit(&ipx->ipx_lock); 776 777 if (connp != NULL) 778 connp->conn_oper_pending_ill = ipif->ipif_ill; 779 780 return (B_TRUE); 781 } 782 783 /* 784 * Retrieve the ipx_pending_mp and return it. There can be only 1 mp 785 * queued in the list. 786 */ 787 mblk_t * 788 ipsq_pending_mp_get(ipsq_t *ipsq, conn_t **connpp) 789 { 790 mblk_t *curr = NULL; 791 ipxop_t *ipx = ipsq->ipsq_xop; 792 793 *connpp = NULL; 794 mutex_enter(&ipx->ipx_lock); 795 if (ipx->ipx_pending_mp == NULL) { 796 mutex_exit(&ipx->ipx_lock); 797 return (NULL); 798 } 799 800 /* There can be only 1 such excl message */ 801 curr = ipx->ipx_pending_mp; 802 ASSERT(curr->b_next == NULL); 803 ipx->ipx_pending_ipif = NULL; 804 ipx->ipx_pending_mp = NULL; 805 ipx->ipx_waitfor = 0; 806 mutex_exit(&ipx->ipx_lock); 807 808 if (CONN_Q(curr->b_queue)) { 809 /* 810 * This mp did a refhold on the conn, at the start of the ioctl. 811 * So we can safely return a pointer to the conn to the caller. 812 */ 813 *connpp = Q_TO_CONN(curr->b_queue); 814 } else { 815 *connpp = NULL; 816 } 817 curr->b_next = NULL; 818 curr->b_prev = NULL; 819 return (curr); 820 } 821 822 /* 823 * Cleanup the ioctl mp queued in ipx_pending_mp 824 * - Called in the ill_delete path 825 * - Called in the M_ERROR or M_HANGUP path on the ill. 826 * - Called in the conn close path. 827 * 828 * Returns success on finding the pending mblk associated with the ioctl or 829 * exclusive operation in progress, failure otherwise. 830 */ 831 boolean_t 832 ipsq_pending_mp_cleanup(ill_t *ill, conn_t *connp) 833 { 834 mblk_t *mp; 835 ipxop_t *ipx; 836 queue_t *q; 837 ipif_t *ipif; 838 int cmd; 839 840 ASSERT(IAM_WRITER_ILL(ill)); 841 ipx = ill->ill_phyint->phyint_ipsq->ipsq_xop; 842 843 /* 844 * If connp is null, unconditionally clean up the ipx_pending_mp. 845 * This happens in M_ERROR/M_HANGUP. We need to abort the current ioctl 846 * even if it is meant for another ill, since we have to enqueue 847 * a new mp now in ipx_pending_mp to complete the ipif_down. 848 * If connp is non-null we are called from the conn close path. 849 */ 850 mutex_enter(&ipx->ipx_lock); 851 mp = ipx->ipx_pending_mp; 852 if ((connp != NULL) && 853 (mp == NULL || mp->b_queue != CONNP_TO_WQ(connp))) { 854 mutex_exit(&ipx->ipx_lock); 855 return (B_FALSE); 856 } 857 858 /* Now remove from the ipx_pending_mp */ 859 ipx->ipx_pending_mp = NULL; 860 ipif = ipx->ipx_pending_ipif; 861 ipx->ipx_pending_ipif = NULL; 862 ipx->ipx_waitfor = 0; 863 ipx->ipx_current_ipif = NULL; 864 cmd = ipx->ipx_current_ioctl; 865 ipx->ipx_current_ioctl = 0; 866 ipx->ipx_current_done = B_TRUE; 867 mutex_exit(&ipx->ipx_lock); 868 869 if (mp == NULL) 870 return (B_FALSE); 871 872 q = mp->b_queue; 873 mp->b_next = NULL; 874 mp->b_prev = NULL; 875 mp->b_queue = NULL; 876 877 if (DB_TYPE(mp) == M_IOCTL || DB_TYPE(mp) == M_IOCDATA) { 878 DTRACE_PROBE4(ipif__ioctl, 879 char *, "ipsq_pending_mp_cleanup", 880 int, cmd, ill_t *, ipif == NULL ? NULL : ipif->ipif_ill, 881 ipif_t *, ipif); 882 if (connp == NULL) { 883 ip_ioctl_finish(q, mp, ENXIO, NO_COPYOUT, NULL); 884 } else { 885 ip_ioctl_finish(q, mp, ENXIO, CONN_CLOSE, NULL); 886 mutex_enter(&ipif->ipif_ill->ill_lock); 887 ipif->ipif_state_flags &= ~IPIF_CHANGING; 888 mutex_exit(&ipif->ipif_ill->ill_lock); 889 } 890 } else { 891 inet_freemsg(mp); 892 } 893 return (B_TRUE); 894 } 895 896 /* 897 * Called in the conn close path and ill delete path 898 */ 899 static void 900 ipsq_xopq_mp_cleanup(ill_t *ill, conn_t *connp) 901 { 902 ipsq_t *ipsq; 903 mblk_t *prev; 904 mblk_t *curr; 905 mblk_t *next; 906 queue_t *wq, *rq = NULL; 907 mblk_t *tmp_list = NULL; 908 909 ASSERT(IAM_WRITER_ILL(ill)); 910 if (connp != NULL) 911 wq = CONNP_TO_WQ(connp); 912 else 913 wq = ill->ill_wq; 914 915 /* 916 * In the case of lo0 being unplumbed, ill_wq will be NULL. Guard 917 * against this here. 918 */ 919 if (wq != NULL) 920 rq = RD(wq); 921 922 ipsq = ill->ill_phyint->phyint_ipsq; 923 /* 924 * Cleanup the ioctl mp's queued in ipsq_xopq_pending_mp if any. 925 * In the case of ioctl from a conn, there can be only 1 mp 926 * queued on the ipsq. If an ill is being unplumbed, only messages 927 * related to this ill are flushed, like M_ERROR or M_HANGUP message. 928 * ioctls meant for this ill form conn's are not flushed. They will 929 * be processed during ipsq_exit and will not find the ill and will 930 * return error. 931 */ 932 mutex_enter(&ipsq->ipsq_lock); 933 for (prev = NULL, curr = ipsq->ipsq_xopq_mphead; curr != NULL; 934 curr = next) { 935 next = curr->b_next; 936 if (curr->b_queue == wq || curr->b_queue == rq) { 937 /* Unlink the mblk from the pending mp list */ 938 if (prev != NULL) { 939 prev->b_next = curr->b_next; 940 } else { 941 ASSERT(ipsq->ipsq_xopq_mphead == curr); 942 ipsq->ipsq_xopq_mphead = curr->b_next; 943 } 944 if (ipsq->ipsq_xopq_mptail == curr) 945 ipsq->ipsq_xopq_mptail = prev; 946 /* 947 * Create a temporary list and release the ipsq lock 948 * New elements are added to the head of the tmp_list 949 */ 950 curr->b_next = tmp_list; 951 tmp_list = curr; 952 } else { 953 prev = curr; 954 } 955 } 956 mutex_exit(&ipsq->ipsq_lock); 957 958 while (tmp_list != NULL) { 959 curr = tmp_list; 960 tmp_list = curr->b_next; 961 curr->b_next = NULL; 962 curr->b_prev = NULL; 963 curr->b_queue = NULL; 964 if (DB_TYPE(curr) == M_IOCTL || DB_TYPE(curr) == M_IOCDATA) { 965 DTRACE_PROBE4(ipif__ioctl, 966 char *, "ipsq_xopq_mp_cleanup", 967 int, 0, ill_t *, NULL, ipif_t *, NULL); 968 ip_ioctl_finish(wq, curr, ENXIO, connp != NULL ? 969 CONN_CLOSE : NO_COPYOUT, NULL); 970 } else { 971 /* 972 * IP-MT XXX In the case of TLI/XTI bind / optmgmt 973 * this can't be just inet_freemsg. we have to 974 * restart it otherwise the thread will be stuck. 975 */ 976 inet_freemsg(curr); 977 } 978 } 979 } 980 981 /* 982 * This conn has started closing. Cleanup any pending ioctl from this conn. 983 * STREAMS ensures that there can be at most 1 active ioctl on a stream. 984 */ 985 void 986 conn_ioctl_cleanup(conn_t *connp) 987 { 988 ipsq_t *ipsq; 989 ill_t *ill; 990 boolean_t refheld; 991 992 /* 993 * Check for a queued ioctl. If the ioctl has not yet started, the mp 994 * is pending in the list headed by ipsq_xopq_head. If the ioctl has 995 * started the mp could be present in ipx_pending_mp. Note that if 996 * conn_oper_pending_ill is NULL, the ioctl may still be in flight and 997 * not yet queued anywhere. In this case, the conn close code will wait 998 * until the conn_ref is dropped. If the stream was a tcp stream, then 999 * tcp_close will wait first until all ioctls have completed for this 1000 * conn. 1001 */ 1002 mutex_enter(&connp->conn_lock); 1003 ill = connp->conn_oper_pending_ill; 1004 if (ill == NULL) { 1005 mutex_exit(&connp->conn_lock); 1006 return; 1007 } 1008 1009 /* 1010 * We may not be able to refhold the ill if the ill/ipif 1011 * is changing. But we need to make sure that the ill will 1012 * not vanish. So we just bump up the ill_waiter count. 1013 */ 1014 refheld = ill_waiter_inc(ill); 1015 mutex_exit(&connp->conn_lock); 1016 if (refheld) { 1017 if (ipsq_enter(ill, B_TRUE, NEW_OP)) { 1018 ill_waiter_dcr(ill); 1019 /* 1020 * Check whether this ioctl has started and is 1021 * pending. If it is not found there then check 1022 * whether this ioctl has not even started and is in 1023 * the ipsq_xopq list. 1024 */ 1025 if (!ipsq_pending_mp_cleanup(ill, connp)) 1026 ipsq_xopq_mp_cleanup(ill, connp); 1027 ipsq = ill->ill_phyint->phyint_ipsq; 1028 ipsq_exit(ipsq); 1029 return; 1030 } 1031 } 1032 1033 /* 1034 * The ill is also closing and we could not bump up the 1035 * ill_waiter_count or we could not enter the ipsq. Leave 1036 * the cleanup to ill_delete 1037 */ 1038 mutex_enter(&connp->conn_lock); 1039 while (connp->conn_oper_pending_ill != NULL) 1040 cv_wait(&connp->conn_refcv, &connp->conn_lock); 1041 mutex_exit(&connp->conn_lock); 1042 if (refheld) 1043 ill_waiter_dcr(ill); 1044 } 1045 1046 /* 1047 * ipcl_walk function for cleaning up conn_*_ill fields. 1048 * Note that we leave ixa_multicast_ifindex, conn_incoming_ifindex, and 1049 * conn_bound_if in place. We prefer dropping 1050 * packets instead of sending them out the wrong interface, or accepting 1051 * packets from the wrong ifindex. 1052 */ 1053 static void 1054 conn_cleanup_ill(conn_t *connp, caddr_t arg) 1055 { 1056 ill_t *ill = (ill_t *)arg; 1057 1058 mutex_enter(&connp->conn_lock); 1059 if (connp->conn_dhcpinit_ill == ill) { 1060 connp->conn_dhcpinit_ill = NULL; 1061 ASSERT(ill->ill_dhcpinit != 0); 1062 atomic_dec_32(&ill->ill_dhcpinit); 1063 ill_set_inputfn(ill); 1064 } 1065 mutex_exit(&connp->conn_lock); 1066 } 1067 1068 static int 1069 ill_down_ipifs_tail(ill_t *ill) 1070 { 1071 ipif_t *ipif; 1072 int err; 1073 1074 ASSERT(IAM_WRITER_ILL(ill)); 1075 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 1076 ipif_non_duplicate(ipif); 1077 /* 1078 * ipif_down_tail will call arp_ll_down on the last ipif 1079 * and typically return EINPROGRESS when the DL_UNBIND is sent. 1080 */ 1081 if ((err = ipif_down_tail(ipif)) != 0) 1082 return (err); 1083 } 1084 return (0); 1085 } 1086 1087 /* ARGSUSED */ 1088 void 1089 ipif_all_down_tail(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy_arg) 1090 { 1091 ASSERT(IAM_WRITER_IPSQ(ipsq)); 1092 (void) ill_down_ipifs_tail(q->q_ptr); 1093 freemsg(mp); 1094 ipsq_current_finish(ipsq); 1095 } 1096 1097 /* 1098 * ill_down_start is called when we want to down this ill and bring it up again 1099 * It is called when we receive an M_ERROR / M_HANGUP. In this case we shut down 1100 * all interfaces, but don't tear down any plumbing. 1101 */ 1102 boolean_t 1103 ill_down_start(queue_t *q, mblk_t *mp) 1104 { 1105 ill_t *ill = q->q_ptr; 1106 ipif_t *ipif; 1107 1108 ASSERT(IAM_WRITER_ILL(ill)); 1109 mutex_enter(&ill->ill_lock); 1110 ill->ill_state_flags |= ILL_DOWN_IN_PROGRESS; 1111 /* no more nce addition allowed */ 1112 mutex_exit(&ill->ill_lock); 1113 1114 /* 1115 * It is possible that some ioctl is already in progress while we 1116 * received the M_ERROR / M_HANGUP in which case, we need to abort 1117 * the ioctl. (ill_down_start() is being processed as CUR_OP since 1118 * the cause of the M_ERROR / M_HANGUP may prevent the in progress 1119 * ioctl from completion.) 1120 */ 1121 (void) ipsq_pending_mp_cleanup(ill, NULL); 1122 ill_dlpi_clear_deferred(ill); 1123 1124 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) 1125 (void) ipif_down(ipif, NULL, NULL); 1126 1127 ill_down(ill); 1128 1129 /* 1130 * Walk all CONNs that can have a reference on an ire or nce for this 1131 * ill (we actually walk all that now have stale references). 1132 */ 1133 ipcl_walk(conn_ixa_cleanup, (void *)B_TRUE, ill->ill_ipst); 1134 1135 /* With IPv6 we have dce_ifindex. Cleanup for neatness */ 1136 if (ill->ill_isv6) 1137 dce_cleanup(ill->ill_phyint->phyint_ifindex, ill->ill_ipst); 1138 1139 ipsq_current_start(ill->ill_phyint->phyint_ipsq, ill->ill_ipif, 0); 1140 1141 /* 1142 * Atomically test and add the pending mp if references are active. 1143 */ 1144 mutex_enter(&ill->ill_lock); 1145 if (!ill_is_quiescent(ill)) { 1146 /* call cannot fail since `conn_t *' argument is NULL */ 1147 (void) ipsq_pending_mp_add(NULL, ill->ill_ipif, ill->ill_rq, 1148 mp, ILL_DOWN); 1149 mutex_exit(&ill->ill_lock); 1150 return (B_FALSE); 1151 } 1152 mutex_exit(&ill->ill_lock); 1153 return (B_TRUE); 1154 } 1155 1156 static void 1157 ill_down(ill_t *ill) 1158 { 1159 mblk_t *mp; 1160 ip_stack_t *ipst = ill->ill_ipst; 1161 1162 /* 1163 * Blow off any IREs dependent on this ILL. 1164 * The caller needs to handle conn_ixa_cleanup 1165 */ 1166 ill_delete_ires(ill); 1167 1168 ire_walk_ill(0, 0, ill_downi, ill, ill); 1169 1170 /* Remove any conn_*_ill depending on this ill */ 1171 ipcl_walk(conn_cleanup_ill, (caddr_t)ill, ipst); 1172 1173 /* 1174 * Free state for additional IREs. 1175 */ 1176 mutex_enter(&ill->ill_saved_ire_lock); 1177 mp = ill->ill_saved_ire_mp; 1178 ill->ill_saved_ire_mp = NULL; 1179 ill->ill_saved_ire_cnt = 0; 1180 mutex_exit(&ill->ill_saved_ire_lock); 1181 freemsg(mp); 1182 } 1183 1184 /* 1185 * ire_walk routine used to delete every IRE that depends on 1186 * 'ill'. (Always called as writer.) 1187 * 1188 * Note: since the routes added by the kernel are deleted separately, 1189 * this will only be 1) IRE_IF_CLONE and 2) manually added IRE_INTERFACE. 1190 * 1191 * We also remove references on ire_nce_cache entries that refer to the ill. 1192 */ 1193 void 1194 ill_downi(ire_t *ire, char *ill_arg) 1195 { 1196 ill_t *ill = (ill_t *)ill_arg; 1197 nce_t *nce; 1198 1199 mutex_enter(&ire->ire_lock); 1200 nce = ire->ire_nce_cache; 1201 if (nce != NULL && nce->nce_ill == ill) 1202 ire->ire_nce_cache = NULL; 1203 else 1204 nce = NULL; 1205 mutex_exit(&ire->ire_lock); 1206 if (nce != NULL) 1207 nce_refrele(nce); 1208 if (ire->ire_ill == ill) 1209 ire_delete(ire); 1210 } 1211 1212 /* Remove IRE_IF_CLONE on this ill */ 1213 void 1214 ill_downi_if_clone(ire_t *ire, char *ill_arg) 1215 { 1216 ill_t *ill = (ill_t *)ill_arg; 1217 1218 ASSERT(ire->ire_type & IRE_IF_CLONE); 1219 if (ire->ire_ill == ill) 1220 ire_delete(ire); 1221 } 1222 1223 /* Consume an M_IOCACK of the fastpath probe. */ 1224 void 1225 ill_fastpath_ack(ill_t *ill, mblk_t *mp) 1226 { 1227 mblk_t *mp1 = mp; 1228 1229 /* 1230 * If this was the first attempt turn on the fastpath probing. 1231 */ 1232 mutex_enter(&ill->ill_lock); 1233 if (ill->ill_dlpi_fastpath_state == IDS_INPROGRESS) 1234 ill->ill_dlpi_fastpath_state = IDS_OK; 1235 mutex_exit(&ill->ill_lock); 1236 1237 /* Free the M_IOCACK mblk, hold on to the data */ 1238 mp = mp->b_cont; 1239 freeb(mp1); 1240 if (mp == NULL) 1241 return; 1242 if (mp->b_cont != NULL) 1243 nce_fastpath_update(ill, mp); 1244 else 1245 ip0dbg(("ill_fastpath_ack: no b_cont\n")); 1246 freemsg(mp); 1247 } 1248 1249 /* 1250 * Throw an M_IOCTL message downstream asking "do you know fastpath?" 1251 * The data portion of the request is a dl_unitdata_req_t template for 1252 * what we would send downstream in the absence of a fastpath confirmation. 1253 */ 1254 int 1255 ill_fastpath_probe(ill_t *ill, mblk_t *dlur_mp) 1256 { 1257 struct iocblk *ioc; 1258 mblk_t *mp; 1259 1260 if (dlur_mp == NULL) 1261 return (EINVAL); 1262 1263 mutex_enter(&ill->ill_lock); 1264 switch (ill->ill_dlpi_fastpath_state) { 1265 case IDS_FAILED: 1266 /* 1267 * Driver NAKed the first fastpath ioctl - assume it doesn't 1268 * support it. 1269 */ 1270 mutex_exit(&ill->ill_lock); 1271 return (ENOTSUP); 1272 case IDS_UNKNOWN: 1273 /* This is the first probe */ 1274 ill->ill_dlpi_fastpath_state = IDS_INPROGRESS; 1275 break; 1276 default: 1277 break; 1278 } 1279 mutex_exit(&ill->ill_lock); 1280 1281 if ((mp = mkiocb(DL_IOC_HDR_INFO)) == NULL) 1282 return (EAGAIN); 1283 1284 mp->b_cont = copyb(dlur_mp); 1285 if (mp->b_cont == NULL) { 1286 freeb(mp); 1287 return (EAGAIN); 1288 } 1289 1290 ioc = (struct iocblk *)mp->b_rptr; 1291 ioc->ioc_count = msgdsize(mp->b_cont); 1292 1293 DTRACE_PROBE3(ill__dlpi, char *, "ill_fastpath_probe", 1294 char *, "DL_IOC_HDR_INFO", ill_t *, ill); 1295 putnext(ill->ill_wq, mp); 1296 return (0); 1297 } 1298 1299 void 1300 ill_capability_probe(ill_t *ill) 1301 { 1302 mblk_t *mp; 1303 1304 ASSERT(IAM_WRITER_ILL(ill)); 1305 1306 if (ill->ill_dlpi_capab_state != IDCS_UNKNOWN && 1307 ill->ill_dlpi_capab_state != IDCS_FAILED) 1308 return; 1309 1310 /* 1311 * We are starting a new cycle of capability negotiation. 1312 * Free up the capab reset messages of any previous incarnation. 1313 * We will do a fresh allocation when we get the response to our probe 1314 */ 1315 if (ill->ill_capab_reset_mp != NULL) { 1316 freemsg(ill->ill_capab_reset_mp); 1317 ill->ill_capab_reset_mp = NULL; 1318 } 1319 1320 ip1dbg(("ill_capability_probe: starting capability negotiation\n")); 1321 1322 mp = ip_dlpi_alloc(sizeof (dl_capability_req_t), DL_CAPABILITY_REQ); 1323 if (mp == NULL) 1324 return; 1325 1326 ill_capability_send(ill, mp); 1327 ill->ill_dlpi_capab_state = IDCS_PROBE_SENT; 1328 } 1329 1330 void 1331 ill_capability_reset(ill_t *ill, boolean_t reneg) 1332 { 1333 ASSERT(IAM_WRITER_ILL(ill)); 1334 1335 if (ill->ill_dlpi_capab_state != IDCS_OK) 1336 return; 1337 1338 ill->ill_dlpi_capab_state = reneg ? IDCS_RENEG : IDCS_RESET_SENT; 1339 1340 ill_capability_send(ill, ill->ill_capab_reset_mp); 1341 ill->ill_capab_reset_mp = NULL; 1342 /* 1343 * We turn off all capabilities except those pertaining to 1344 * direct function call capabilities viz. ILL_CAPAB_DLD* 1345 * which will be turned off by the corresponding reset functions. 1346 */ 1347 ill->ill_capabilities &= ~(ILL_CAPAB_HCKSUM | ILL_CAPAB_ZEROCOPY); 1348 } 1349 1350 static void 1351 ill_capability_reset_alloc(ill_t *ill) 1352 { 1353 mblk_t *mp; 1354 size_t size = 0; 1355 int err; 1356 dl_capability_req_t *capb; 1357 1358 ASSERT(IAM_WRITER_ILL(ill)); 1359 ASSERT(ill->ill_capab_reset_mp == NULL); 1360 1361 if (ILL_HCKSUM_CAPABLE(ill)) { 1362 size += sizeof (dl_capability_sub_t) + 1363 sizeof (dl_capab_hcksum_t); 1364 } 1365 1366 if (ill->ill_capabilities & ILL_CAPAB_ZEROCOPY) { 1367 size += sizeof (dl_capability_sub_t) + 1368 sizeof (dl_capab_zerocopy_t); 1369 } 1370 1371 if (ill->ill_capabilities & ILL_CAPAB_DLD) { 1372 size += sizeof (dl_capability_sub_t) + 1373 sizeof (dl_capab_dld_t); 1374 } 1375 1376 mp = allocb_wait(size + sizeof (dl_capability_req_t), BPRI_MED, 1377 STR_NOSIG, &err); 1378 1379 mp->b_datap->db_type = M_PROTO; 1380 bzero(mp->b_rptr, size + sizeof (dl_capability_req_t)); 1381 1382 capb = (dl_capability_req_t *)mp->b_rptr; 1383 capb->dl_primitive = DL_CAPABILITY_REQ; 1384 capb->dl_sub_offset = sizeof (dl_capability_req_t); 1385 capb->dl_sub_length = size; 1386 1387 mp->b_wptr += sizeof (dl_capability_req_t); 1388 1389 /* 1390 * Each handler fills in the corresponding dl_capability_sub_t 1391 * inside the mblk, 1392 */ 1393 ill_capability_hcksum_reset_fill(ill, mp); 1394 ill_capability_zerocopy_reset_fill(ill, mp); 1395 ill_capability_dld_reset_fill(ill, mp); 1396 1397 ill->ill_capab_reset_mp = mp; 1398 } 1399 1400 static void 1401 ill_capability_id_ack(ill_t *ill, mblk_t *mp, dl_capability_sub_t *outers) 1402 { 1403 dl_capab_id_t *id_ic; 1404 uint_t sub_dl_cap = outers->dl_cap; 1405 dl_capability_sub_t *inners; 1406 uint8_t *capend; 1407 1408 ASSERT(sub_dl_cap == DL_CAPAB_ID_WRAPPER); 1409 1410 /* 1411 * Note: range checks here are not absolutely sufficient to 1412 * make us robust against malformed messages sent by drivers; 1413 * this is in keeping with the rest of IP's dlpi handling. 1414 * (Remember, it's coming from something else in the kernel 1415 * address space) 1416 */ 1417 1418 capend = (uint8_t *)(outers + 1) + outers->dl_length; 1419 if (capend > mp->b_wptr) { 1420 cmn_err(CE_WARN, "ill_capability_id_ack: " 1421 "malformed sub-capability too long for mblk"); 1422 return; 1423 } 1424 1425 id_ic = (dl_capab_id_t *)(outers + 1); 1426 1427 if (outers->dl_length < sizeof (*id_ic) || 1428 (inners = &id_ic->id_subcap, 1429 inners->dl_length > (outers->dl_length - sizeof (*inners)))) { 1430 cmn_err(CE_WARN, "ill_capability_id_ack: malformed " 1431 "encapsulated capab type %d too long for mblk", 1432 inners->dl_cap); 1433 return; 1434 } 1435 1436 if (!dlcapabcheckqid(&id_ic->id_mid, ill->ill_lmod_rq)) { 1437 ip1dbg(("ill_capability_id_ack: mid token for capab type %d " 1438 "isn't as expected; pass-thru module(s) detected, " 1439 "discarding capability\n", inners->dl_cap)); 1440 return; 1441 } 1442 1443 /* Process the encapsulated sub-capability */ 1444 ill_capability_dispatch(ill, mp, inners); 1445 } 1446 1447 static void 1448 ill_capability_dld_reset_fill(ill_t *ill, mblk_t *mp) 1449 { 1450 dl_capability_sub_t *dl_subcap; 1451 1452 if (!(ill->ill_capabilities & ILL_CAPAB_DLD)) 1453 return; 1454 1455 /* 1456 * The dl_capab_dld_t that follows the dl_capability_sub_t is not 1457 * initialized below since it is not used by DLD. 1458 */ 1459 dl_subcap = (dl_capability_sub_t *)mp->b_wptr; 1460 dl_subcap->dl_cap = DL_CAPAB_DLD; 1461 dl_subcap->dl_length = sizeof (dl_capab_dld_t); 1462 1463 mp->b_wptr += sizeof (dl_capability_sub_t) + sizeof (dl_capab_dld_t); 1464 } 1465 1466 static void 1467 ill_capability_dispatch(ill_t *ill, mblk_t *mp, dl_capability_sub_t *subp) 1468 { 1469 /* 1470 * If no ipif was brought up over this ill, this DL_CAPABILITY_REQ/ACK 1471 * is only to get the VRRP capability. 1472 * 1473 * Note that we cannot check ill_ipif_up_count here since 1474 * ill_ipif_up_count is only incremented when the resolver is setup. 1475 * That is done asynchronously, and can race with this function. 1476 */ 1477 if (!ill->ill_dl_up) { 1478 if (subp->dl_cap == DL_CAPAB_VRRP) 1479 ill_capability_vrrp_ack(ill, mp, subp); 1480 return; 1481 } 1482 1483 switch (subp->dl_cap) { 1484 case DL_CAPAB_HCKSUM: 1485 ill_capability_hcksum_ack(ill, mp, subp); 1486 break; 1487 case DL_CAPAB_ZEROCOPY: 1488 ill_capability_zerocopy_ack(ill, mp, subp); 1489 break; 1490 case DL_CAPAB_DLD: 1491 ill_capability_dld_ack(ill, mp, subp); 1492 break; 1493 case DL_CAPAB_VRRP: 1494 break; 1495 default: 1496 ip1dbg(("ill_capability_dispatch: unknown capab type %d\n", 1497 subp->dl_cap)); 1498 } 1499 } 1500 1501 /* 1502 * Process the vrrp capability received from a DLS Provider. isub must point 1503 * to the sub-capability (DL_CAPAB_VRRP) of a DL_CAPABILITY_ACK message. 1504 */ 1505 static void 1506 ill_capability_vrrp_ack(ill_t *ill, mblk_t *mp, dl_capability_sub_t *isub) 1507 { 1508 dl_capab_vrrp_t *vrrp; 1509 uint_t sub_dl_cap = isub->dl_cap; 1510 uint8_t *capend; 1511 1512 ASSERT(IAM_WRITER_ILL(ill)); 1513 ASSERT(sub_dl_cap == DL_CAPAB_VRRP); 1514 1515 /* 1516 * Note: range checks here are not absolutely sufficient to 1517 * make us robust against malformed messages sent by drivers; 1518 * this is in keeping with the rest of IP's dlpi handling. 1519 * (Remember, it's coming from something else in the kernel 1520 * address space) 1521 */ 1522 capend = (uint8_t *)(isub + 1) + isub->dl_length; 1523 if (capend > mp->b_wptr) { 1524 cmn_err(CE_WARN, "ill_capability_vrrp_ack: " 1525 "malformed sub-capability too long for mblk"); 1526 return; 1527 } 1528 vrrp = (dl_capab_vrrp_t *)(isub + 1); 1529 1530 /* 1531 * Compare the IP address family and set ILLF_VRRP for the right ill. 1532 */ 1533 if ((vrrp->vrrp_af == AF_INET6 && ill->ill_isv6) || 1534 (vrrp->vrrp_af == AF_INET && !ill->ill_isv6)) { 1535 ill->ill_flags |= ILLF_VRRP; 1536 } 1537 } 1538 1539 /* 1540 * Process a hardware checksum offload capability negotiation ack received 1541 * from a DLS Provider.isub must point to the sub-capability (DL_CAPAB_HCKSUM) 1542 * of a DL_CAPABILITY_ACK message. 1543 */ 1544 static void 1545 ill_capability_hcksum_ack(ill_t *ill, mblk_t *mp, dl_capability_sub_t *isub) 1546 { 1547 dl_capability_req_t *ocap; 1548 dl_capab_hcksum_t *ihck, *ohck; 1549 ill_hcksum_capab_t **ill_hcksum; 1550 mblk_t *nmp = NULL; 1551 uint_t sub_dl_cap = isub->dl_cap; 1552 uint8_t *capend; 1553 1554 ASSERT(sub_dl_cap == DL_CAPAB_HCKSUM); 1555 1556 ill_hcksum = (ill_hcksum_capab_t **)&ill->ill_hcksum_capab; 1557 1558 /* 1559 * Note: range checks here are not absolutely sufficient to 1560 * make us robust against malformed messages sent by drivers; 1561 * this is in keeping with the rest of IP's dlpi handling. 1562 * (Remember, it's coming from something else in the kernel 1563 * address space) 1564 */ 1565 capend = (uint8_t *)(isub + 1) + isub->dl_length; 1566 if (capend > mp->b_wptr) { 1567 cmn_err(CE_WARN, "ill_capability_hcksum_ack: " 1568 "malformed sub-capability too long for mblk"); 1569 return; 1570 } 1571 1572 /* 1573 * There are two types of acks we process here: 1574 * 1. acks in reply to a (first form) generic capability req 1575 * (no ENABLE flag set) 1576 * 2. acks in reply to a ENABLE capability req. 1577 * (ENABLE flag set) 1578 */ 1579 ihck = (dl_capab_hcksum_t *)(isub + 1); 1580 1581 if (ihck->hcksum_version != HCKSUM_VERSION_1) { 1582 cmn_err(CE_CONT, "ill_capability_hcksum_ack: " 1583 "unsupported hardware checksum " 1584 "sub-capability (version %d, expected %d)", 1585 ihck->hcksum_version, HCKSUM_VERSION_1); 1586 return; 1587 } 1588 1589 if (!dlcapabcheckqid(&ihck->hcksum_mid, ill->ill_lmod_rq)) { 1590 ip1dbg(("ill_capability_hcksum_ack: mid token for hardware " 1591 "checksum capability isn't as expected; pass-thru " 1592 "module(s) detected, discarding capability\n")); 1593 return; 1594 } 1595 1596 #define CURR_HCKSUM_CAPAB \ 1597 (HCKSUM_INET_PARTIAL | HCKSUM_INET_FULL_V4 | \ 1598 HCKSUM_INET_FULL_V6 | HCKSUM_IPHDRCKSUM) 1599 1600 if ((ihck->hcksum_txflags & HCKSUM_ENABLE) && 1601 (ihck->hcksum_txflags & CURR_HCKSUM_CAPAB)) { 1602 /* do ENABLE processing */ 1603 if (*ill_hcksum == NULL) { 1604 *ill_hcksum = kmem_zalloc(sizeof (ill_hcksum_capab_t), 1605 KM_NOSLEEP); 1606 1607 if (*ill_hcksum == NULL) { 1608 cmn_err(CE_WARN, "ill_capability_hcksum_ack: " 1609 "could not enable hcksum version %d " 1610 "for %s (ENOMEM)\n", HCKSUM_CURRENT_VERSION, 1611 ill->ill_name); 1612 return; 1613 } 1614 } 1615 1616 (*ill_hcksum)->ill_hcksum_version = ihck->hcksum_version; 1617 (*ill_hcksum)->ill_hcksum_txflags = ihck->hcksum_txflags; 1618 ill->ill_capabilities |= ILL_CAPAB_HCKSUM; 1619 ip1dbg(("ill_capability_hcksum_ack: interface %s " 1620 "has enabled hardware checksumming\n ", 1621 ill->ill_name)); 1622 } else if (ihck->hcksum_txflags & CURR_HCKSUM_CAPAB) { 1623 /* 1624 * Enabling hardware checksum offload 1625 * Currently IP supports {TCP,UDP}/IPv4 1626 * partial and full cksum offload and 1627 * IPv4 header checksum offload. 1628 * Allocate new mblk which will 1629 * contain a new capability request 1630 * to enable hardware checksum offload. 1631 */ 1632 uint_t size; 1633 uchar_t *rptr; 1634 1635 size = sizeof (dl_capability_req_t) + 1636 sizeof (dl_capability_sub_t) + isub->dl_length; 1637 1638 if ((nmp = ip_dlpi_alloc(size, DL_CAPABILITY_REQ)) == NULL) { 1639 cmn_err(CE_WARN, "ill_capability_hcksum_ack: " 1640 "could not enable hardware cksum for %s (ENOMEM)\n", 1641 ill->ill_name); 1642 return; 1643 } 1644 1645 rptr = nmp->b_rptr; 1646 /* initialize dl_capability_req_t */ 1647 ocap = (dl_capability_req_t *)nmp->b_rptr; 1648 ocap->dl_sub_offset = 1649 sizeof (dl_capability_req_t); 1650 ocap->dl_sub_length = 1651 sizeof (dl_capability_sub_t) + 1652 isub->dl_length; 1653 nmp->b_rptr += sizeof (dl_capability_req_t); 1654 1655 /* initialize dl_capability_sub_t */ 1656 bcopy(isub, nmp->b_rptr, sizeof (*isub)); 1657 nmp->b_rptr += sizeof (*isub); 1658 1659 /* initialize dl_capab_hcksum_t */ 1660 ohck = (dl_capab_hcksum_t *)nmp->b_rptr; 1661 bcopy(ihck, ohck, sizeof (*ihck)); 1662 1663 nmp->b_rptr = rptr; 1664 ASSERT(nmp->b_wptr == (nmp->b_rptr + size)); 1665 1666 /* Set ENABLE flag */ 1667 ohck->hcksum_txflags &= CURR_HCKSUM_CAPAB; 1668 ohck->hcksum_txflags |= HCKSUM_ENABLE; 1669 1670 /* 1671 * nmp points to a DL_CAPABILITY_REQ message to enable 1672 * hardware checksum acceleration. 1673 */ 1674 ill_capability_send(ill, nmp); 1675 } else { 1676 ip1dbg(("ill_capability_hcksum_ack: interface %s has " 1677 "advertised %x hardware checksum capability flags\n", 1678 ill->ill_name, ihck->hcksum_txflags)); 1679 } 1680 } 1681 1682 static void 1683 ill_capability_hcksum_reset_fill(ill_t *ill, mblk_t *mp) 1684 { 1685 dl_capab_hcksum_t *hck_subcap; 1686 dl_capability_sub_t *dl_subcap; 1687 1688 if (!ILL_HCKSUM_CAPABLE(ill)) 1689 return; 1690 1691 ASSERT(ill->ill_hcksum_capab != NULL); 1692 1693 dl_subcap = (dl_capability_sub_t *)mp->b_wptr; 1694 dl_subcap->dl_cap = DL_CAPAB_HCKSUM; 1695 dl_subcap->dl_length = sizeof (*hck_subcap); 1696 1697 hck_subcap = (dl_capab_hcksum_t *)(dl_subcap + 1); 1698 hck_subcap->hcksum_version = ill->ill_hcksum_capab->ill_hcksum_version; 1699 hck_subcap->hcksum_txflags = 0; 1700 1701 mp->b_wptr += sizeof (*dl_subcap) + sizeof (*hck_subcap); 1702 } 1703 1704 static void 1705 ill_capability_zerocopy_ack(ill_t *ill, mblk_t *mp, dl_capability_sub_t *isub) 1706 { 1707 mblk_t *nmp = NULL; 1708 dl_capability_req_t *oc; 1709 dl_capab_zerocopy_t *zc_ic, *zc_oc; 1710 ill_zerocopy_capab_t **ill_zerocopy_capab; 1711 uint_t sub_dl_cap = isub->dl_cap; 1712 uint8_t *capend; 1713 1714 ASSERT(sub_dl_cap == DL_CAPAB_ZEROCOPY); 1715 1716 ill_zerocopy_capab = (ill_zerocopy_capab_t **)&ill->ill_zerocopy_capab; 1717 1718 /* 1719 * Note: range checks here are not absolutely sufficient to 1720 * make us robust against malformed messages sent by drivers; 1721 * this is in keeping with the rest of IP's dlpi handling. 1722 * (Remember, it's coming from something else in the kernel 1723 * address space) 1724 */ 1725 capend = (uint8_t *)(isub + 1) + isub->dl_length; 1726 if (capend > mp->b_wptr) { 1727 cmn_err(CE_WARN, "ill_capability_zerocopy_ack: " 1728 "malformed sub-capability too long for mblk"); 1729 return; 1730 } 1731 1732 zc_ic = (dl_capab_zerocopy_t *)(isub + 1); 1733 if (zc_ic->zerocopy_version != ZEROCOPY_VERSION_1) { 1734 cmn_err(CE_CONT, "ill_capability_zerocopy_ack: " 1735 "unsupported ZEROCOPY sub-capability (version %d, " 1736 "expected %d)", zc_ic->zerocopy_version, 1737 ZEROCOPY_VERSION_1); 1738 return; 1739 } 1740 1741 if (!dlcapabcheckqid(&zc_ic->zerocopy_mid, ill->ill_lmod_rq)) { 1742 ip1dbg(("ill_capability_zerocopy_ack: mid token for zerocopy " 1743 "capability isn't as expected; pass-thru module(s) " 1744 "detected, discarding capability\n")); 1745 return; 1746 } 1747 1748 if ((zc_ic->zerocopy_flags & DL_CAPAB_VMSAFE_MEM) != 0) { 1749 if (*ill_zerocopy_capab == NULL) { 1750 *ill_zerocopy_capab = 1751 kmem_zalloc(sizeof (ill_zerocopy_capab_t), 1752 KM_NOSLEEP); 1753 1754 if (*ill_zerocopy_capab == NULL) { 1755 cmn_err(CE_WARN, "ill_capability_zerocopy_ack: " 1756 "could not enable Zero-copy version %d " 1757 "for %s (ENOMEM)\n", ZEROCOPY_VERSION_1, 1758 ill->ill_name); 1759 return; 1760 } 1761 } 1762 1763 ip1dbg(("ill_capability_zerocopy_ack: interface %s " 1764 "supports Zero-copy version %d\n", ill->ill_name, 1765 ZEROCOPY_VERSION_1)); 1766 1767 (*ill_zerocopy_capab)->ill_zerocopy_version = 1768 zc_ic->zerocopy_version; 1769 (*ill_zerocopy_capab)->ill_zerocopy_flags = 1770 zc_ic->zerocopy_flags; 1771 1772 ill->ill_capabilities |= ILL_CAPAB_ZEROCOPY; 1773 } else { 1774 uint_t size; 1775 uchar_t *rptr; 1776 1777 size = sizeof (dl_capability_req_t) + 1778 sizeof (dl_capability_sub_t) + 1779 sizeof (dl_capab_zerocopy_t); 1780 1781 if ((nmp = ip_dlpi_alloc(size, DL_CAPABILITY_REQ)) == NULL) { 1782 cmn_err(CE_WARN, "ill_capability_zerocopy_ack: " 1783 "could not enable zerocopy for %s (ENOMEM)\n", 1784 ill->ill_name); 1785 return; 1786 } 1787 1788 rptr = nmp->b_rptr; 1789 /* initialize dl_capability_req_t */ 1790 oc = (dl_capability_req_t *)rptr; 1791 oc->dl_sub_offset = sizeof (dl_capability_req_t); 1792 oc->dl_sub_length = sizeof (dl_capability_sub_t) + 1793 sizeof (dl_capab_zerocopy_t); 1794 rptr += sizeof (dl_capability_req_t); 1795 1796 /* initialize dl_capability_sub_t */ 1797 bcopy(isub, rptr, sizeof (*isub)); 1798 rptr += sizeof (*isub); 1799 1800 /* initialize dl_capab_zerocopy_t */ 1801 zc_oc = (dl_capab_zerocopy_t *)rptr; 1802 *zc_oc = *zc_ic; 1803 1804 ip1dbg(("ill_capability_zerocopy_ack: asking interface %s " 1805 "to enable zero-copy version %d\n", ill->ill_name, 1806 ZEROCOPY_VERSION_1)); 1807 1808 /* set VMSAFE_MEM flag */ 1809 zc_oc->zerocopy_flags |= DL_CAPAB_VMSAFE_MEM; 1810 1811 /* nmp points to a DL_CAPABILITY_REQ message to enable zcopy */ 1812 ill_capability_send(ill, nmp); 1813 } 1814 } 1815 1816 static void 1817 ill_capability_zerocopy_reset_fill(ill_t *ill, mblk_t *mp) 1818 { 1819 dl_capab_zerocopy_t *zerocopy_subcap; 1820 dl_capability_sub_t *dl_subcap; 1821 1822 if (!(ill->ill_capabilities & ILL_CAPAB_ZEROCOPY)) 1823 return; 1824 1825 ASSERT(ill->ill_zerocopy_capab != NULL); 1826 1827 dl_subcap = (dl_capability_sub_t *)mp->b_wptr; 1828 dl_subcap->dl_cap = DL_CAPAB_ZEROCOPY; 1829 dl_subcap->dl_length = sizeof (*zerocopy_subcap); 1830 1831 zerocopy_subcap = (dl_capab_zerocopy_t *)(dl_subcap + 1); 1832 zerocopy_subcap->zerocopy_version = 1833 ill->ill_zerocopy_capab->ill_zerocopy_version; 1834 zerocopy_subcap->zerocopy_flags = 0; 1835 1836 mp->b_wptr += sizeof (*dl_subcap) + sizeof (*zerocopy_subcap); 1837 } 1838 1839 /* 1840 * DLD capability 1841 * Refer to dld.h for more information regarding the purpose and usage 1842 * of this capability. 1843 */ 1844 static void 1845 ill_capability_dld_ack(ill_t *ill, mblk_t *mp, dl_capability_sub_t *isub) 1846 { 1847 dl_capab_dld_t *dld_ic, dld; 1848 uint_t sub_dl_cap = isub->dl_cap; 1849 uint8_t *capend; 1850 ill_dld_capab_t *idc; 1851 1852 ASSERT(IAM_WRITER_ILL(ill)); 1853 ASSERT(sub_dl_cap == DL_CAPAB_DLD); 1854 1855 /* 1856 * Note: range checks here are not absolutely sufficient to 1857 * make us robust against malformed messages sent by drivers; 1858 * this is in keeping with the rest of IP's dlpi handling. 1859 * (Remember, it's coming from something else in the kernel 1860 * address space) 1861 */ 1862 capend = (uint8_t *)(isub + 1) + isub->dl_length; 1863 if (capend > mp->b_wptr) { 1864 cmn_err(CE_WARN, "ill_capability_dld_ack: " 1865 "malformed sub-capability too long for mblk"); 1866 return; 1867 } 1868 dld_ic = (dl_capab_dld_t *)(isub + 1); 1869 if (dld_ic->dld_version != DLD_CURRENT_VERSION) { 1870 cmn_err(CE_CONT, "ill_capability_dld_ack: " 1871 "unsupported DLD sub-capability (version %d, " 1872 "expected %d)", dld_ic->dld_version, 1873 DLD_CURRENT_VERSION); 1874 return; 1875 } 1876 if (!dlcapabcheckqid(&dld_ic->dld_mid, ill->ill_lmod_rq)) { 1877 ip1dbg(("ill_capability_dld_ack: mid token for dld " 1878 "capability isn't as expected; pass-thru module(s) " 1879 "detected, discarding capability\n")); 1880 return; 1881 } 1882 1883 /* 1884 * Copy locally to ensure alignment. 1885 */ 1886 bcopy(dld_ic, &dld, sizeof (dl_capab_dld_t)); 1887 1888 if ((idc = ill->ill_dld_capab) == NULL) { 1889 idc = kmem_zalloc(sizeof (ill_dld_capab_t), KM_NOSLEEP); 1890 if (idc == NULL) { 1891 cmn_err(CE_WARN, "ill_capability_dld_ack: " 1892 "could not enable DLD version %d " 1893 "for %s (ENOMEM)\n", DLD_CURRENT_VERSION, 1894 ill->ill_name); 1895 return; 1896 } 1897 ill->ill_dld_capab = idc; 1898 } 1899 idc->idc_capab_df = (ip_capab_func_t)dld.dld_capab; 1900 idc->idc_capab_dh = (void *)dld.dld_capab_handle; 1901 ip1dbg(("ill_capability_dld_ack: interface %s " 1902 "supports DLD version %d\n", ill->ill_name, DLD_CURRENT_VERSION)); 1903 1904 ill_capability_dld_enable(ill); 1905 } 1906 1907 /* 1908 * Typically capability negotiation between IP and the driver happens via 1909 * DLPI message exchange. However GLD also offers a direct function call 1910 * mechanism to exchange the DLD_DIRECT_CAPAB and DLD_POLL_CAPAB capabilities, 1911 * But arbitrary function calls into IP or GLD are not permitted, since both 1912 * of them are protected by their own perimeter mechanism. The perimeter can 1913 * be viewed as a coarse lock or serialization mechanism. The hierarchy of 1914 * these perimeters is IP -> MAC. Thus for example to enable the squeue 1915 * polling, IP needs to enter its perimeter, then call ill_mac_perim_enter 1916 * to enter the mac perimeter and then do the direct function calls into 1917 * GLD to enable squeue polling. The ring related callbacks from the mac into 1918 * the stack to add, bind, quiesce, restart or cleanup a ring are all 1919 * protected by the mac perimeter. 1920 */ 1921 static void 1922 ill_mac_perim_enter(ill_t *ill, mac_perim_handle_t *mphp) 1923 { 1924 ill_dld_capab_t *idc = ill->ill_dld_capab; 1925 int err; 1926 1927 err = idc->idc_capab_df(idc->idc_capab_dh, DLD_CAPAB_PERIM, mphp, 1928 DLD_ENABLE); 1929 ASSERT(err == 0); 1930 } 1931 1932 static void 1933 ill_mac_perim_exit(ill_t *ill, mac_perim_handle_t mph) 1934 { 1935 ill_dld_capab_t *idc = ill->ill_dld_capab; 1936 int err; 1937 1938 err = idc->idc_capab_df(idc->idc_capab_dh, DLD_CAPAB_PERIM, mph, 1939 DLD_DISABLE); 1940 ASSERT(err == 0); 1941 } 1942 1943 boolean_t 1944 ill_mac_perim_held(ill_t *ill) 1945 { 1946 ill_dld_capab_t *idc = ill->ill_dld_capab; 1947 1948 return (idc->idc_capab_df(idc->idc_capab_dh, DLD_CAPAB_PERIM, NULL, 1949 DLD_QUERY)); 1950 } 1951 1952 static void 1953 ill_capability_direct_enable(ill_t *ill) 1954 { 1955 ill_dld_capab_t *idc = ill->ill_dld_capab; 1956 ill_dld_direct_t *idd = &idc->idc_direct; 1957 dld_capab_direct_t direct; 1958 int rc; 1959 1960 ASSERT(!ill->ill_isv6 && IAM_WRITER_ILL(ill)); 1961 1962 bzero(&direct, sizeof (direct)); 1963 direct.di_rx_cf = (uintptr_t)ip_input; 1964 direct.di_rx_ch = ill; 1965 1966 rc = idc->idc_capab_df(idc->idc_capab_dh, DLD_CAPAB_DIRECT, &direct, 1967 DLD_ENABLE); 1968 if (rc == 0) { 1969 idd->idd_tx_df = (ip_dld_tx_t)direct.di_tx_df; 1970 idd->idd_tx_dh = direct.di_tx_dh; 1971 idd->idd_tx_cb_df = (ip_dld_callb_t)direct.di_tx_cb_df; 1972 idd->idd_tx_cb_dh = direct.di_tx_cb_dh; 1973 idd->idd_tx_fctl_df = (ip_dld_fctl_t)direct.di_tx_fctl_df; 1974 idd->idd_tx_fctl_dh = direct.di_tx_fctl_dh; 1975 ASSERT(idd->idd_tx_cb_df != NULL); 1976 ASSERT(idd->idd_tx_fctl_df != NULL); 1977 ASSERT(idd->idd_tx_df != NULL); 1978 /* 1979 * One time registration of flow enable callback function 1980 */ 1981 ill->ill_flownotify_mh = idd->idd_tx_cb_df(idd->idd_tx_cb_dh, 1982 ill_flow_enable, ill); 1983 ill->ill_capabilities |= ILL_CAPAB_DLD_DIRECT; 1984 DTRACE_PROBE1(direct_on, (ill_t *), ill); 1985 } else { 1986 cmn_err(CE_WARN, "warning: could not enable DIRECT " 1987 "capability, rc = %d\n", rc); 1988 DTRACE_PROBE2(direct_off, (ill_t *), ill, (int), rc); 1989 } 1990 } 1991 1992 static void 1993 ill_capability_poll_enable(ill_t *ill) 1994 { 1995 ill_dld_capab_t *idc = ill->ill_dld_capab; 1996 dld_capab_poll_t poll; 1997 int rc; 1998 1999 ASSERT(!ill->ill_isv6 && IAM_WRITER_ILL(ill)); 2000 2001 bzero(&poll, sizeof (poll)); 2002 poll.poll_ring_add_cf = (uintptr_t)ip_squeue_add_ring; 2003 poll.poll_ring_remove_cf = (uintptr_t)ip_squeue_clean_ring; 2004 poll.poll_ring_quiesce_cf = (uintptr_t)ip_squeue_quiesce_ring; 2005 poll.poll_ring_restart_cf = (uintptr_t)ip_squeue_restart_ring; 2006 poll.poll_ring_bind_cf = (uintptr_t)ip_squeue_bind_ring; 2007 poll.poll_ring_ch = ill; 2008 rc = idc->idc_capab_df(idc->idc_capab_dh, DLD_CAPAB_POLL, &poll, 2009 DLD_ENABLE); 2010 if (rc == 0) { 2011 ill->ill_capabilities |= ILL_CAPAB_DLD_POLL; 2012 DTRACE_PROBE1(poll_on, (ill_t *), ill); 2013 } else { 2014 ip1dbg(("warning: could not enable POLL " 2015 "capability, rc = %d\n", rc)); 2016 DTRACE_PROBE2(poll_off, (ill_t *), ill, (int), rc); 2017 } 2018 } 2019 2020 /* 2021 * Enable the LSO capability. 2022 */ 2023 static void 2024 ill_capability_lso_enable(ill_t *ill) 2025 { 2026 ill_dld_capab_t *idc = ill->ill_dld_capab; 2027 dld_capab_lso_t lso; 2028 int rc; 2029 2030 ASSERT(!ill->ill_isv6 && IAM_WRITER_ILL(ill)); 2031 2032 if (ill->ill_lso_capab == NULL) { 2033 ill->ill_lso_capab = kmem_zalloc(sizeof (ill_lso_capab_t), 2034 KM_NOSLEEP); 2035 if (ill->ill_lso_capab == NULL) { 2036 cmn_err(CE_WARN, "ill_capability_lso_enable: " 2037 "could not enable LSO for %s (ENOMEM)\n", 2038 ill->ill_name); 2039 return; 2040 } 2041 } 2042 2043 bzero(&lso, sizeof (lso)); 2044 if ((rc = idc->idc_capab_df(idc->idc_capab_dh, DLD_CAPAB_LSO, &lso, 2045 DLD_ENABLE)) == 0) { 2046 ill->ill_lso_capab->ill_lso_flags = lso.lso_flags; 2047 ill->ill_lso_capab->ill_lso_max = lso.lso_max; 2048 ill->ill_capabilities |= ILL_CAPAB_LSO; 2049 ip1dbg(("ill_capability_lso_enable: interface %s " 2050 "has enabled LSO\n ", ill->ill_name)); 2051 } else { 2052 kmem_free(ill->ill_lso_capab, sizeof (ill_lso_capab_t)); 2053 ill->ill_lso_capab = NULL; 2054 DTRACE_PROBE2(lso_off, (ill_t *), ill, (int), rc); 2055 } 2056 } 2057 2058 static void 2059 ill_capability_dld_enable(ill_t *ill) 2060 { 2061 mac_perim_handle_t mph; 2062 2063 ASSERT(IAM_WRITER_ILL(ill)); 2064 2065 if (ill->ill_isv6) 2066 return; 2067 2068 ill_mac_perim_enter(ill, &mph); 2069 if (!ill->ill_isv6) { 2070 ill_capability_direct_enable(ill); 2071 ill_capability_poll_enable(ill); 2072 ill_capability_lso_enable(ill); 2073 } 2074 ill->ill_capabilities |= ILL_CAPAB_DLD; 2075 ill_mac_perim_exit(ill, mph); 2076 } 2077 2078 static void 2079 ill_capability_dld_disable(ill_t *ill) 2080 { 2081 ill_dld_capab_t *idc; 2082 ill_dld_direct_t *idd; 2083 mac_perim_handle_t mph; 2084 2085 ASSERT(IAM_WRITER_ILL(ill)); 2086 2087 if (!(ill->ill_capabilities & ILL_CAPAB_DLD)) 2088 return; 2089 2090 ill_mac_perim_enter(ill, &mph); 2091 2092 idc = ill->ill_dld_capab; 2093 if ((ill->ill_capabilities & ILL_CAPAB_DLD_DIRECT) != 0) { 2094 /* 2095 * For performance we avoid locks in the transmit data path 2096 * and don't maintain a count of the number of threads using 2097 * direct calls. Thus some threads could be using direct 2098 * transmit calls to GLD, even after the capability mechanism 2099 * turns it off. This is still safe since the handles used in 2100 * the direct calls continue to be valid until the unplumb is 2101 * completed. Remove the callback that was added (1-time) at 2102 * capab enable time. 2103 */ 2104 mutex_enter(&ill->ill_lock); 2105 ill->ill_capabilities &= ~ILL_CAPAB_DLD_DIRECT; 2106 mutex_exit(&ill->ill_lock); 2107 if (ill->ill_flownotify_mh != NULL) { 2108 idd = &idc->idc_direct; 2109 idd->idd_tx_cb_df(idd->idd_tx_cb_dh, NULL, 2110 ill->ill_flownotify_mh); 2111 ill->ill_flownotify_mh = NULL; 2112 } 2113 (void) idc->idc_capab_df(idc->idc_capab_dh, DLD_CAPAB_DIRECT, 2114 NULL, DLD_DISABLE); 2115 } 2116 2117 if ((ill->ill_capabilities & ILL_CAPAB_DLD_POLL) != 0) { 2118 ill->ill_capabilities &= ~ILL_CAPAB_DLD_POLL; 2119 ip_squeue_clean_all(ill); 2120 (void) idc->idc_capab_df(idc->idc_capab_dh, DLD_CAPAB_POLL, 2121 NULL, DLD_DISABLE); 2122 } 2123 2124 if ((ill->ill_capabilities & ILL_CAPAB_LSO) != 0) { 2125 ASSERT(ill->ill_lso_capab != NULL); 2126 /* 2127 * Clear the capability flag for LSO but retain the 2128 * ill_lso_capab structure since it's possible that another 2129 * thread is still referring to it. The structure only gets 2130 * deallocated when we destroy the ill. 2131 */ 2132 2133 ill->ill_capabilities &= ~ILL_CAPAB_LSO; 2134 (void) idc->idc_capab_df(idc->idc_capab_dh, DLD_CAPAB_LSO, 2135 NULL, DLD_DISABLE); 2136 } 2137 2138 ill->ill_capabilities &= ~ILL_CAPAB_DLD; 2139 ill_mac_perim_exit(ill, mph); 2140 } 2141 2142 /* 2143 * Capability Negotiation protocol 2144 * 2145 * We don't wait for DLPI capability operations to finish during interface 2146 * bringup or teardown. Doing so would introduce more asynchrony and the 2147 * interface up/down operations will need multiple return and restarts. 2148 * Instead the 'ipsq_current_ipif' of the ipsq is not cleared as long as 2149 * the 'ill_dlpi_deferred' chain is non-empty. This ensures that the next 2150 * exclusive operation won't start until the DLPI operations of the previous 2151 * exclusive operation complete. 2152 * 2153 * The capability state machine is shown below. 2154 * 2155 * state next state event, action 2156 * 2157 * IDCS_UNKNOWN IDCS_PROBE_SENT ill_capability_probe 2158 * IDCS_PROBE_SENT IDCS_OK ill_capability_ack 2159 * IDCS_PROBE_SENT IDCS_FAILED ip_rput_dlpi_writer (nack) 2160 * IDCS_OK IDCS_RENEG Receipt of DL_NOTE_CAPAB_RENEG 2161 * IDCS_OK IDCS_RESET_SENT ill_capability_reset 2162 * IDCS_RESET_SENT IDCS_UNKNOWN ill_capability_ack_thr 2163 * IDCS_RENEG IDCS_PROBE_SENT ill_capability_ack_thr -> 2164 * ill_capability_probe. 2165 */ 2166 2167 /* 2168 * Dedicated thread started from ip_stack_init that handles capability 2169 * disable. This thread ensures the taskq dispatch does not fail by waiting 2170 * for resources using TQ_SLEEP. The taskq mechanism is used to ensure 2171 * that direct calls to DLD are done in a cv_waitable context. 2172 */ 2173 void 2174 ill_taskq_dispatch(ip_stack_t *ipst) 2175 { 2176 callb_cpr_t cprinfo; 2177 char name[64]; 2178 mblk_t *mp; 2179 2180 (void) snprintf(name, sizeof (name), "ill_taskq_dispatch_%d", 2181 ipst->ips_netstack->netstack_stackid); 2182 CALLB_CPR_INIT(&cprinfo, &ipst->ips_capab_taskq_lock, callb_generic_cpr, 2183 name); 2184 mutex_enter(&ipst->ips_capab_taskq_lock); 2185 2186 for (;;) { 2187 mp = ipst->ips_capab_taskq_head; 2188 while (mp != NULL) { 2189 ipst->ips_capab_taskq_head = mp->b_next; 2190 if (ipst->ips_capab_taskq_head == NULL) 2191 ipst->ips_capab_taskq_tail = NULL; 2192 mutex_exit(&ipst->ips_capab_taskq_lock); 2193 mp->b_next = NULL; 2194 2195 VERIFY(taskq_dispatch(system_taskq, 2196 ill_capability_ack_thr, mp, TQ_SLEEP) != 0); 2197 mutex_enter(&ipst->ips_capab_taskq_lock); 2198 mp = ipst->ips_capab_taskq_head; 2199 } 2200 2201 if (ipst->ips_capab_taskq_quit) 2202 break; 2203 CALLB_CPR_SAFE_BEGIN(&cprinfo); 2204 cv_wait(&ipst->ips_capab_taskq_cv, &ipst->ips_capab_taskq_lock); 2205 CALLB_CPR_SAFE_END(&cprinfo, &ipst->ips_capab_taskq_lock); 2206 } 2207 VERIFY(ipst->ips_capab_taskq_head == NULL); 2208 VERIFY(ipst->ips_capab_taskq_tail == NULL); 2209 CALLB_CPR_EXIT(&cprinfo); 2210 thread_exit(); 2211 } 2212 2213 /* 2214 * Consume a new-style hardware capabilities negotiation ack. 2215 * Called via taskq on receipt of DL_CAPABILITY_ACK. 2216 */ 2217 static void 2218 ill_capability_ack_thr(void *arg) 2219 { 2220 mblk_t *mp = arg; 2221 dl_capability_ack_t *capp; 2222 dl_capability_sub_t *subp, *endp; 2223 ill_t *ill; 2224 boolean_t reneg; 2225 2226 ill = (ill_t *)mp->b_prev; 2227 mp->b_prev = NULL; 2228 2229 VERIFY(ipsq_enter(ill, B_FALSE, CUR_OP) == B_TRUE); 2230 2231 if (ill->ill_dlpi_capab_state == IDCS_RESET_SENT || 2232 ill->ill_dlpi_capab_state == IDCS_RENEG) { 2233 /* 2234 * We have received the ack for our DL_CAPAB reset request. 2235 * There isnt' anything in the message that needs processing. 2236 * All message based capabilities have been disabled, now 2237 * do the function call based capability disable. 2238 */ 2239 reneg = ill->ill_dlpi_capab_state == IDCS_RENEG; 2240 ill_capability_dld_disable(ill); 2241 ill->ill_dlpi_capab_state = IDCS_UNKNOWN; 2242 if (reneg) 2243 ill_capability_probe(ill); 2244 goto done; 2245 } 2246 2247 if (ill->ill_dlpi_capab_state == IDCS_PROBE_SENT) 2248 ill->ill_dlpi_capab_state = IDCS_OK; 2249 2250 capp = (dl_capability_ack_t *)mp->b_rptr; 2251 2252 if (capp->dl_sub_length == 0) { 2253 /* no new-style capabilities */ 2254 goto done; 2255 } 2256 2257 /* make sure the driver supplied correct dl_sub_length */ 2258 if ((sizeof (*capp) + capp->dl_sub_length) > MBLKL(mp)) { 2259 ip0dbg(("ill_capability_ack: bad DL_CAPABILITY_ACK, " 2260 "invalid dl_sub_length (%d)\n", capp->dl_sub_length)); 2261 goto done; 2262 } 2263 2264 #define SC(base, offset) (dl_capability_sub_t *)(((uchar_t *)(base))+(offset)) 2265 /* 2266 * There are sub-capabilities. Process the ones we know about. 2267 * Loop until we don't have room for another sub-cap header.. 2268 */ 2269 for (subp = SC(capp, capp->dl_sub_offset), 2270 endp = SC(subp, capp->dl_sub_length - sizeof (*subp)); 2271 subp <= endp; 2272 subp = SC(subp, sizeof (dl_capability_sub_t) + subp->dl_length)) { 2273 2274 switch (subp->dl_cap) { 2275 case DL_CAPAB_ID_WRAPPER: 2276 ill_capability_id_ack(ill, mp, subp); 2277 break; 2278 default: 2279 ill_capability_dispatch(ill, mp, subp); 2280 break; 2281 } 2282 } 2283 #undef SC 2284 done: 2285 inet_freemsg(mp); 2286 ill_capability_done(ill); 2287 ipsq_exit(ill->ill_phyint->phyint_ipsq); 2288 } 2289 2290 /* 2291 * This needs to be started in a taskq thread to provide a cv_waitable 2292 * context. 2293 */ 2294 void 2295 ill_capability_ack(ill_t *ill, mblk_t *mp) 2296 { 2297 ip_stack_t *ipst = ill->ill_ipst; 2298 2299 mp->b_prev = (mblk_t *)ill; 2300 ASSERT(mp->b_next == NULL); 2301 2302 if (taskq_dispatch(system_taskq, ill_capability_ack_thr, mp, 2303 TQ_NOSLEEP) != 0) 2304 return; 2305 2306 /* 2307 * The taskq dispatch failed. Signal the ill_taskq_dispatch thread 2308 * which will do the dispatch using TQ_SLEEP to guarantee success. 2309 */ 2310 mutex_enter(&ipst->ips_capab_taskq_lock); 2311 if (ipst->ips_capab_taskq_head == NULL) { 2312 ASSERT(ipst->ips_capab_taskq_tail == NULL); 2313 ipst->ips_capab_taskq_head = mp; 2314 } else { 2315 ipst->ips_capab_taskq_tail->b_next = mp; 2316 } 2317 ipst->ips_capab_taskq_tail = mp; 2318 2319 cv_signal(&ipst->ips_capab_taskq_cv); 2320 mutex_exit(&ipst->ips_capab_taskq_lock); 2321 } 2322 2323 /* 2324 * This routine is called to scan the fragmentation reassembly table for 2325 * the specified ILL for any packets that are starting to smell. 2326 * dead_interval is the maximum time in seconds that will be tolerated. It 2327 * will either be the value specified in ip_g_frag_timeout, or zero if the 2328 * ILL is shutting down and it is time to blow everything off. 2329 * 2330 * It returns the number of seconds (as a time_t) that the next frag timer 2331 * should be scheduled for, 0 meaning that the timer doesn't need to be 2332 * re-started. Note that the method of calculating next_timeout isn't 2333 * entirely accurate since time will flow between the time we grab 2334 * current_time and the time we schedule the next timeout. This isn't a 2335 * big problem since this is the timer for sending an ICMP reassembly time 2336 * exceeded messages, and it doesn't have to be exactly accurate. 2337 * 2338 * This function is 2339 * sometimes called as writer, although this is not required. 2340 */ 2341 time_t 2342 ill_frag_timeout(ill_t *ill, time_t dead_interval) 2343 { 2344 ipfb_t *ipfb; 2345 ipfb_t *endp; 2346 ipf_t *ipf; 2347 ipf_t *ipfnext; 2348 mblk_t *mp; 2349 time_t current_time = gethrestime_sec(); 2350 time_t next_timeout = 0; 2351 uint32_t hdr_length; 2352 mblk_t *send_icmp_head; 2353 mblk_t *send_icmp_head_v6; 2354 ip_stack_t *ipst = ill->ill_ipst; 2355 ip_recv_attr_t iras; 2356 2357 bzero(&iras, sizeof (iras)); 2358 iras.ira_flags = 0; 2359 iras.ira_ill = iras.ira_rill = ill; 2360 iras.ira_ruifindex = ill->ill_phyint->phyint_ifindex; 2361 iras.ira_rifindex = iras.ira_ruifindex; 2362 2363 ipfb = ill->ill_frag_hash_tbl; 2364 if (ipfb == NULL) 2365 return (B_FALSE); 2366 endp = &ipfb[ILL_FRAG_HASH_TBL_COUNT]; 2367 /* Walk the frag hash table. */ 2368 for (; ipfb < endp; ipfb++) { 2369 send_icmp_head = NULL; 2370 send_icmp_head_v6 = NULL; 2371 mutex_enter(&ipfb->ipfb_lock); 2372 while ((ipf = ipfb->ipfb_ipf) != 0) { 2373 time_t frag_time = current_time - ipf->ipf_timestamp; 2374 time_t frag_timeout; 2375 2376 if (frag_time < dead_interval) { 2377 /* 2378 * There are some outstanding fragments 2379 * that will timeout later. Make note of 2380 * the time so that we can reschedule the 2381 * next timeout appropriately. 2382 */ 2383 frag_timeout = dead_interval - frag_time; 2384 if (next_timeout == 0 || 2385 frag_timeout < next_timeout) { 2386 next_timeout = frag_timeout; 2387 } 2388 break; 2389 } 2390 /* Time's up. Get it out of here. */ 2391 hdr_length = ipf->ipf_nf_hdr_len; 2392 ipfnext = ipf->ipf_hash_next; 2393 if (ipfnext) 2394 ipfnext->ipf_ptphn = ipf->ipf_ptphn; 2395 *ipf->ipf_ptphn = ipfnext; 2396 mp = ipf->ipf_mp->b_cont; 2397 for (; mp; mp = mp->b_cont) { 2398 /* Extra points for neatness. */ 2399 IP_REASS_SET_START(mp, 0); 2400 IP_REASS_SET_END(mp, 0); 2401 } 2402 mp = ipf->ipf_mp->b_cont; 2403 atomic_add_32(&ill->ill_frag_count, -ipf->ipf_count); 2404 ASSERT(ipfb->ipfb_count >= ipf->ipf_count); 2405 ipfb->ipfb_count -= ipf->ipf_count; 2406 ASSERT(ipfb->ipfb_frag_pkts > 0); 2407 ipfb->ipfb_frag_pkts--; 2408 /* 2409 * We do not send any icmp message from here because 2410 * we currently are holding the ipfb_lock for this 2411 * hash chain. If we try and send any icmp messages 2412 * from here we may end up via a put back into ip 2413 * trying to get the same lock, causing a recursive 2414 * mutex panic. Instead we build a list and send all 2415 * the icmp messages after we have dropped the lock. 2416 */ 2417 if (ill->ill_isv6) { 2418 if (hdr_length != 0) { 2419 mp->b_next = send_icmp_head_v6; 2420 send_icmp_head_v6 = mp; 2421 } else { 2422 freemsg(mp); 2423 } 2424 } else { 2425 if (hdr_length != 0) { 2426 mp->b_next = send_icmp_head; 2427 send_icmp_head = mp; 2428 } else { 2429 freemsg(mp); 2430 } 2431 } 2432 BUMP_MIB(ill->ill_ip_mib, ipIfStatsReasmFails); 2433 ip_drop_input("ipIfStatsReasmFails", ipf->ipf_mp, ill); 2434 freeb(ipf->ipf_mp); 2435 } 2436 mutex_exit(&ipfb->ipfb_lock); 2437 /* 2438 * Now need to send any icmp messages that we delayed from 2439 * above. 2440 */ 2441 while (send_icmp_head_v6 != NULL) { 2442 ip6_t *ip6h; 2443 2444 mp = send_icmp_head_v6; 2445 send_icmp_head_v6 = send_icmp_head_v6->b_next; 2446 mp->b_next = NULL; 2447 ip6h = (ip6_t *)mp->b_rptr; 2448 iras.ira_flags = 0; 2449 /* 2450 * This will result in an incorrect ALL_ZONES zoneid 2451 * for multicast packets, but we 2452 * don't send ICMP errors for those in any case. 2453 */ 2454 iras.ira_zoneid = 2455 ipif_lookup_addr_zoneid_v6(&ip6h->ip6_dst, 2456 ill, ipst); 2457 ip_drop_input("ICMP_TIME_EXCEEDED reass", mp, ill); 2458 icmp_time_exceeded_v6(mp, 2459 ICMP_REASSEMBLY_TIME_EXCEEDED, B_FALSE, 2460 &iras); 2461 ASSERT(!(iras.ira_flags & IRAF_IPSEC_SECURE)); 2462 } 2463 while (send_icmp_head != NULL) { 2464 ipaddr_t dst; 2465 2466 mp = send_icmp_head; 2467 send_icmp_head = send_icmp_head->b_next; 2468 mp->b_next = NULL; 2469 2470 dst = ((ipha_t *)mp->b_rptr)->ipha_dst; 2471 2472 iras.ira_flags = IRAF_IS_IPV4; 2473 /* 2474 * This will result in an incorrect ALL_ZONES zoneid 2475 * for broadcast and multicast packets, but we 2476 * don't send ICMP errors for those in any case. 2477 */ 2478 iras.ira_zoneid = ipif_lookup_addr_zoneid(dst, 2479 ill, ipst); 2480 ip_drop_input("ICMP_TIME_EXCEEDED reass", mp, ill); 2481 icmp_time_exceeded(mp, 2482 ICMP_REASSEMBLY_TIME_EXCEEDED, &iras); 2483 ASSERT(!(iras.ira_flags & IRAF_IPSEC_SECURE)); 2484 } 2485 } 2486 /* 2487 * A non-dying ILL will use the return value to decide whether to 2488 * restart the frag timer, and for how long. 2489 */ 2490 return (next_timeout); 2491 } 2492 2493 /* 2494 * This routine is called when the approximate count of mblk memory used 2495 * for the specified ILL has exceeded max_count. 2496 */ 2497 void 2498 ill_frag_prune(ill_t *ill, uint_t max_count) 2499 { 2500 ipfb_t *ipfb; 2501 ipf_t *ipf; 2502 size_t count; 2503 clock_t now; 2504 2505 /* 2506 * If we are here within ip_min_frag_prune_time msecs remove 2507 * ill_frag_free_num_pkts oldest packets from each bucket and increment 2508 * ill_frag_free_num_pkts. 2509 */ 2510 mutex_enter(&ill->ill_lock); 2511 now = ddi_get_lbolt(); 2512 if (TICK_TO_MSEC(now - ill->ill_last_frag_clean_time) <= 2513 (ip_min_frag_prune_time != 0 ? 2514 ip_min_frag_prune_time : msec_per_tick)) { 2515 2516 ill->ill_frag_free_num_pkts++; 2517 2518 } else { 2519 ill->ill_frag_free_num_pkts = 0; 2520 } 2521 ill->ill_last_frag_clean_time = now; 2522 mutex_exit(&ill->ill_lock); 2523 2524 /* 2525 * free ill_frag_free_num_pkts oldest packets from each bucket. 2526 */ 2527 if (ill->ill_frag_free_num_pkts != 0) { 2528 int ix; 2529 2530 for (ix = 0; ix < ILL_FRAG_HASH_TBL_COUNT; ix++) { 2531 ipfb = &ill->ill_frag_hash_tbl[ix]; 2532 mutex_enter(&ipfb->ipfb_lock); 2533 if (ipfb->ipfb_ipf != NULL) { 2534 ill_frag_free_pkts(ill, ipfb, ipfb->ipfb_ipf, 2535 ill->ill_frag_free_num_pkts); 2536 } 2537 mutex_exit(&ipfb->ipfb_lock); 2538 } 2539 } 2540 /* 2541 * While the reassembly list for this ILL is too big, prune a fragment 2542 * queue by age, oldest first. 2543 */ 2544 while (ill->ill_frag_count > max_count) { 2545 int ix; 2546 ipfb_t *oipfb = NULL; 2547 uint_t oldest = UINT_MAX; 2548 2549 count = 0; 2550 for (ix = 0; ix < ILL_FRAG_HASH_TBL_COUNT; ix++) { 2551 ipfb = &ill->ill_frag_hash_tbl[ix]; 2552 mutex_enter(&ipfb->ipfb_lock); 2553 ipf = ipfb->ipfb_ipf; 2554 if (ipf != NULL && ipf->ipf_gen < oldest) { 2555 oldest = ipf->ipf_gen; 2556 oipfb = ipfb; 2557 } 2558 count += ipfb->ipfb_count; 2559 mutex_exit(&ipfb->ipfb_lock); 2560 } 2561 if (oipfb == NULL) 2562 break; 2563 2564 if (count <= max_count) 2565 return; /* Somebody beat us to it, nothing to do */ 2566 mutex_enter(&oipfb->ipfb_lock); 2567 ipf = oipfb->ipfb_ipf; 2568 if (ipf != NULL) { 2569 ill_frag_free_pkts(ill, oipfb, ipf, 1); 2570 } 2571 mutex_exit(&oipfb->ipfb_lock); 2572 } 2573 } 2574 2575 /* 2576 * free 'free_cnt' fragmented packets starting at ipf. 2577 */ 2578 void 2579 ill_frag_free_pkts(ill_t *ill, ipfb_t *ipfb, ipf_t *ipf, int free_cnt) 2580 { 2581 size_t count; 2582 mblk_t *mp; 2583 mblk_t *tmp; 2584 ipf_t **ipfp = ipf->ipf_ptphn; 2585 2586 ASSERT(MUTEX_HELD(&ipfb->ipfb_lock)); 2587 ASSERT(ipfp != NULL); 2588 ASSERT(ipf != NULL); 2589 2590 while (ipf != NULL && free_cnt-- > 0) { 2591 count = ipf->ipf_count; 2592 mp = ipf->ipf_mp; 2593 ipf = ipf->ipf_hash_next; 2594 for (tmp = mp; tmp; tmp = tmp->b_cont) { 2595 IP_REASS_SET_START(tmp, 0); 2596 IP_REASS_SET_END(tmp, 0); 2597 } 2598 atomic_add_32(&ill->ill_frag_count, -count); 2599 ASSERT(ipfb->ipfb_count >= count); 2600 ipfb->ipfb_count -= count; 2601 ASSERT(ipfb->ipfb_frag_pkts > 0); 2602 ipfb->ipfb_frag_pkts--; 2603 BUMP_MIB(ill->ill_ip_mib, ipIfStatsReasmFails); 2604 ip_drop_input("ipIfStatsReasmFails", mp, ill); 2605 freemsg(mp); 2606 } 2607 2608 if (ipf) 2609 ipf->ipf_ptphn = ipfp; 2610 ipfp[0] = ipf; 2611 } 2612 2613 #define ND_FORWARD_WARNING "The <if>:ip*_forwarding ndd variables are " \ 2614 "obsolete and may be removed in a future release of Solaris. Use " \ 2615 "ifconfig(1M) to manipulate the forwarding status of an interface." 2616 2617 /* 2618 * For obsolete per-interface forwarding configuration; 2619 * called in response to ND_GET. 2620 */ 2621 /* ARGSUSED */ 2622 static int 2623 nd_ill_forward_get(queue_t *q, mblk_t *mp, caddr_t cp, cred_t *ioc_cr) 2624 { 2625 ill_t *ill = (ill_t *)cp; 2626 2627 cmn_err(CE_WARN, ND_FORWARD_WARNING); 2628 2629 (void) mi_mpprintf(mp, "%d", (ill->ill_flags & ILLF_ROUTER) != 0); 2630 return (0); 2631 } 2632 2633 /* 2634 * For obsolete per-interface forwarding configuration; 2635 * called in response to ND_SET. 2636 */ 2637 /* ARGSUSED */ 2638 static int 2639 nd_ill_forward_set(queue_t *q, mblk_t *mp, char *valuestr, caddr_t cp, 2640 cred_t *ioc_cr) 2641 { 2642 long value; 2643 int retval; 2644 ip_stack_t *ipst = CONNQ_TO_IPST(q); 2645 2646 cmn_err(CE_WARN, ND_FORWARD_WARNING); 2647 2648 if (ddi_strtol(valuestr, NULL, 10, &value) != 0 || 2649 value < 0 || value > 1) { 2650 return (EINVAL); 2651 } 2652 2653 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 2654 retval = ill_forward_set((ill_t *)cp, (value != 0)); 2655 rw_exit(&ipst->ips_ill_g_lock); 2656 return (retval); 2657 } 2658 2659 /* 2660 * Helper function for ill_forward_set(). 2661 */ 2662 static void 2663 ill_forward_set_on_ill(ill_t *ill, boolean_t enable) 2664 { 2665 ip_stack_t *ipst = ill->ill_ipst; 2666 2667 ASSERT(IAM_WRITER_ILL(ill) || RW_READ_HELD(&ipst->ips_ill_g_lock)); 2668 2669 ip1dbg(("ill_forward_set: %s %s forwarding on %s", 2670 (enable ? "Enabling" : "Disabling"), 2671 (ill->ill_isv6 ? "IPv6" : "IPv4"), ill->ill_name)); 2672 mutex_enter(&ill->ill_lock); 2673 if (enable) 2674 ill->ill_flags |= ILLF_ROUTER; 2675 else 2676 ill->ill_flags &= ~ILLF_ROUTER; 2677 mutex_exit(&ill->ill_lock); 2678 if (ill->ill_isv6) 2679 ill_set_nce_router_flags(ill, enable); 2680 /* Notify routing socket listeners of this change. */ 2681 if (ill->ill_ipif != NULL) 2682 ip_rts_ifmsg(ill->ill_ipif, RTSQ_DEFAULT); 2683 } 2684 2685 /* 2686 * Set an ill's ILLF_ROUTER flag appropriately. Send up RTS_IFINFO routing 2687 * socket messages for each interface whose flags we change. 2688 */ 2689 int 2690 ill_forward_set(ill_t *ill, boolean_t enable) 2691 { 2692 ipmp_illgrp_t *illg; 2693 ip_stack_t *ipst = ill->ill_ipst; 2694 2695 ASSERT(IAM_WRITER_ILL(ill) || RW_READ_HELD(&ipst->ips_ill_g_lock)); 2696 2697 if ((enable && (ill->ill_flags & ILLF_ROUTER)) || 2698 (!enable && !(ill->ill_flags & ILLF_ROUTER))) 2699 return (0); 2700 2701 if (IS_LOOPBACK(ill)) 2702 return (EINVAL); 2703 2704 if (IS_IPMP(ill) || IS_UNDER_IPMP(ill)) { 2705 /* 2706 * Update all of the interfaces in the group. 2707 */ 2708 illg = ill->ill_grp; 2709 ill = list_head(&illg->ig_if); 2710 for (; ill != NULL; ill = list_next(&illg->ig_if, ill)) 2711 ill_forward_set_on_ill(ill, enable); 2712 2713 /* 2714 * Update the IPMP meta-interface. 2715 */ 2716 ill_forward_set_on_ill(ipmp_illgrp_ipmp_ill(illg), enable); 2717 return (0); 2718 } 2719 2720 ill_forward_set_on_ill(ill, enable); 2721 return (0); 2722 } 2723 2724 /* 2725 * Based on the ILLF_ROUTER flag of an ill, make sure all local nce's for 2726 * addresses assigned to the ill have the NCE_F_ISROUTER flag appropriately 2727 * set or clear. 2728 */ 2729 static void 2730 ill_set_nce_router_flags(ill_t *ill, boolean_t enable) 2731 { 2732 ipif_t *ipif; 2733 ncec_t *ncec; 2734 nce_t *nce; 2735 2736 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 2737 /* 2738 * NOTE: we match across the illgrp because nce's for 2739 * addresses on IPMP interfaces have an nce_ill that points to 2740 * the bound underlying ill. 2741 */ 2742 nce = nce_lookup_v6(ill, &ipif->ipif_v6lcl_addr); 2743 if (nce != NULL) { 2744 ncec = nce->nce_common; 2745 mutex_enter(&ncec->ncec_lock); 2746 if (enable) 2747 ncec->ncec_flags |= NCE_F_ISROUTER; 2748 else 2749 ncec->ncec_flags &= ~NCE_F_ISROUTER; 2750 mutex_exit(&ncec->ncec_lock); 2751 nce_refrele(nce); 2752 } 2753 } 2754 } 2755 2756 /* 2757 * Given an ill with a _valid_ name, add the ip_forwarding ndd variable 2758 * for this ill. Make sure the v6/v4 question has been answered about this 2759 * ill. The creation of this ndd variable is only for backwards compatibility. 2760 * The preferred way to control per-interface IP forwarding is through the 2761 * ILLF_ROUTER interface flag. 2762 */ 2763 static int 2764 ill_set_ndd_name(ill_t *ill) 2765 { 2766 char *suffix; 2767 ip_stack_t *ipst = ill->ill_ipst; 2768 2769 ASSERT(IAM_WRITER_ILL(ill)); 2770 2771 if (ill->ill_isv6) 2772 suffix = ipv6_forward_suffix; 2773 else 2774 suffix = ipv4_forward_suffix; 2775 2776 ill->ill_ndd_name = ill->ill_name + ill->ill_name_length; 2777 bcopy(ill->ill_name, ill->ill_ndd_name, ill->ill_name_length - 1); 2778 /* 2779 * Copies over the '\0'. 2780 * Note that strlen(suffix) is always bounded. 2781 */ 2782 bcopy(suffix, ill->ill_ndd_name + ill->ill_name_length - 1, 2783 strlen(suffix) + 1); 2784 2785 /* 2786 * Use of the nd table requires holding the reader lock. 2787 * Modifying the nd table thru nd_load/nd_unload requires 2788 * the writer lock. 2789 */ 2790 rw_enter(&ipst->ips_ip_g_nd_lock, RW_WRITER); 2791 if (!nd_load(&ipst->ips_ip_g_nd, ill->ill_ndd_name, nd_ill_forward_get, 2792 nd_ill_forward_set, (caddr_t)ill)) { 2793 /* 2794 * If the nd_load failed, it only meant that it could not 2795 * allocate a new bunch of room for further NDD expansion. 2796 * Because of that, the ill_ndd_name will be set to 0, and 2797 * this interface is at the mercy of the global ip_forwarding 2798 * variable. 2799 */ 2800 rw_exit(&ipst->ips_ip_g_nd_lock); 2801 ill->ill_ndd_name = NULL; 2802 return (ENOMEM); 2803 } 2804 rw_exit(&ipst->ips_ip_g_nd_lock); 2805 return (0); 2806 } 2807 2808 /* 2809 * Intializes the context structure and returns the first ill in the list 2810 * cuurently start_list and end_list can have values: 2811 * MAX_G_HEADS Traverse both IPV4 and IPV6 lists. 2812 * IP_V4_G_HEAD Traverse IPV4 list only. 2813 * IP_V6_G_HEAD Traverse IPV6 list only. 2814 */ 2815 2816 /* 2817 * We don't check for CONDEMNED ills here. Caller must do that if 2818 * necessary under the ill lock. 2819 */ 2820 ill_t * 2821 ill_first(int start_list, int end_list, ill_walk_context_t *ctx, 2822 ip_stack_t *ipst) 2823 { 2824 ill_if_t *ifp; 2825 ill_t *ill; 2826 avl_tree_t *avl_tree; 2827 2828 ASSERT(RW_LOCK_HELD(&ipst->ips_ill_g_lock)); 2829 ASSERT(end_list <= MAX_G_HEADS && start_list >= 0); 2830 2831 /* 2832 * setup the lists to search 2833 */ 2834 if (end_list != MAX_G_HEADS) { 2835 ctx->ctx_current_list = start_list; 2836 ctx->ctx_last_list = end_list; 2837 } else { 2838 ctx->ctx_last_list = MAX_G_HEADS - 1; 2839 ctx->ctx_current_list = 0; 2840 } 2841 2842 while (ctx->ctx_current_list <= ctx->ctx_last_list) { 2843 ifp = IP_VX_ILL_G_LIST(ctx->ctx_current_list, ipst); 2844 if (ifp != (ill_if_t *) 2845 &IP_VX_ILL_G_LIST(ctx->ctx_current_list, ipst)) { 2846 avl_tree = &ifp->illif_avl_by_ppa; 2847 ill = avl_first(avl_tree); 2848 /* 2849 * ill is guaranteed to be non NULL or ifp should have 2850 * not existed. 2851 */ 2852 ASSERT(ill != NULL); 2853 return (ill); 2854 } 2855 ctx->ctx_current_list++; 2856 } 2857 2858 return (NULL); 2859 } 2860 2861 /* 2862 * returns the next ill in the list. ill_first() must have been called 2863 * before calling ill_next() or bad things will happen. 2864 */ 2865 2866 /* 2867 * We don't check for CONDEMNED ills here. Caller must do that if 2868 * necessary under the ill lock. 2869 */ 2870 ill_t * 2871 ill_next(ill_walk_context_t *ctx, ill_t *lastill) 2872 { 2873 ill_if_t *ifp; 2874 ill_t *ill; 2875 ip_stack_t *ipst = lastill->ill_ipst; 2876 2877 ASSERT(lastill->ill_ifptr != (ill_if_t *) 2878 &IP_VX_ILL_G_LIST(ctx->ctx_current_list, ipst)); 2879 if ((ill = avl_walk(&lastill->ill_ifptr->illif_avl_by_ppa, lastill, 2880 AVL_AFTER)) != NULL) { 2881 return (ill); 2882 } 2883 2884 /* goto next ill_ifp in the list. */ 2885 ifp = lastill->ill_ifptr->illif_next; 2886 2887 /* make sure not at end of circular list */ 2888 while (ifp == 2889 (ill_if_t *)&IP_VX_ILL_G_LIST(ctx->ctx_current_list, ipst)) { 2890 if (++ctx->ctx_current_list > ctx->ctx_last_list) 2891 return (NULL); 2892 ifp = IP_VX_ILL_G_LIST(ctx->ctx_current_list, ipst); 2893 } 2894 2895 return (avl_first(&ifp->illif_avl_by_ppa)); 2896 } 2897 2898 /* 2899 * Check interface name for correct format: [a-zA-Z]+[a-zA-Z0-9._]*[0-9]+ 2900 * The final number (PPA) must not have any leading zeros. Upon success, a 2901 * pointer to the start of the PPA is returned; otherwise NULL is returned. 2902 */ 2903 static char * 2904 ill_get_ppa_ptr(char *name) 2905 { 2906 int namelen = strlen(name); 2907 int end_ndx = namelen - 1; 2908 int ppa_ndx, i; 2909 2910 /* 2911 * Check that the first character is [a-zA-Z], and that the last 2912 * character is [0-9]. 2913 */ 2914 if (namelen == 0 || !isalpha(name[0]) || !isdigit(name[end_ndx])) 2915 return (NULL); 2916 2917 /* 2918 * Set `ppa_ndx' to the PPA start, and check for leading zeroes. 2919 */ 2920 for (ppa_ndx = end_ndx; ppa_ndx > 0; ppa_ndx--) 2921 if (!isdigit(name[ppa_ndx - 1])) 2922 break; 2923 2924 if (name[ppa_ndx] == '0' && ppa_ndx < end_ndx) 2925 return (NULL); 2926 2927 /* 2928 * Check that the intermediate characters are [a-z0-9.] 2929 */ 2930 for (i = 1; i < ppa_ndx; i++) { 2931 if (!isalpha(name[i]) && !isdigit(name[i]) && 2932 name[i] != '.' && name[i] != '_') { 2933 return (NULL); 2934 } 2935 } 2936 2937 return (name + ppa_ndx); 2938 } 2939 2940 /* 2941 * use avl tree to locate the ill. 2942 */ 2943 static ill_t * 2944 ill_find_by_name(char *name, boolean_t isv6, ip_stack_t *ipst) 2945 { 2946 char *ppa_ptr = NULL; 2947 int len; 2948 uint_t ppa; 2949 ill_t *ill = NULL; 2950 ill_if_t *ifp; 2951 int list; 2952 2953 /* 2954 * get ppa ptr 2955 */ 2956 if (isv6) 2957 list = IP_V6_G_HEAD; 2958 else 2959 list = IP_V4_G_HEAD; 2960 2961 if ((ppa_ptr = ill_get_ppa_ptr(name)) == NULL) { 2962 return (NULL); 2963 } 2964 2965 len = ppa_ptr - name + 1; 2966 2967 ppa = stoi(&ppa_ptr); 2968 2969 ifp = IP_VX_ILL_G_LIST(list, ipst); 2970 2971 while (ifp != (ill_if_t *)&IP_VX_ILL_G_LIST(list, ipst)) { 2972 /* 2973 * match is done on len - 1 as the name is not null 2974 * terminated it contains ppa in addition to the interface 2975 * name. 2976 */ 2977 if ((ifp->illif_name_len == len) && 2978 bcmp(ifp->illif_name, name, len - 1) == 0) { 2979 break; 2980 } else { 2981 ifp = ifp->illif_next; 2982 } 2983 } 2984 2985 if (ifp == (ill_if_t *)&IP_VX_ILL_G_LIST(list, ipst)) { 2986 /* 2987 * Even the interface type does not exist. 2988 */ 2989 return (NULL); 2990 } 2991 2992 ill = avl_find(&ifp->illif_avl_by_ppa, (void *) &ppa, NULL); 2993 if (ill != NULL) { 2994 mutex_enter(&ill->ill_lock); 2995 if (ILL_CAN_LOOKUP(ill)) { 2996 ill_refhold_locked(ill); 2997 mutex_exit(&ill->ill_lock); 2998 return (ill); 2999 } 3000 mutex_exit(&ill->ill_lock); 3001 } 3002 return (NULL); 3003 } 3004 3005 /* 3006 * comparison function for use with avl. 3007 */ 3008 static int 3009 ill_compare_ppa(const void *ppa_ptr, const void *ill_ptr) 3010 { 3011 uint_t ppa; 3012 uint_t ill_ppa; 3013 3014 ASSERT(ppa_ptr != NULL && ill_ptr != NULL); 3015 3016 ppa = *((uint_t *)ppa_ptr); 3017 ill_ppa = ((const ill_t *)ill_ptr)->ill_ppa; 3018 /* 3019 * We want the ill with the lowest ppa to be on the 3020 * top. 3021 */ 3022 if (ill_ppa < ppa) 3023 return (1); 3024 if (ill_ppa > ppa) 3025 return (-1); 3026 return (0); 3027 } 3028 3029 /* 3030 * remove an interface type from the global list. 3031 */ 3032 static void 3033 ill_delete_interface_type(ill_if_t *interface) 3034 { 3035 ASSERT(interface != NULL); 3036 ASSERT(avl_numnodes(&interface->illif_avl_by_ppa) == 0); 3037 3038 avl_destroy(&interface->illif_avl_by_ppa); 3039 if (interface->illif_ppa_arena != NULL) 3040 vmem_destroy(interface->illif_ppa_arena); 3041 3042 remque(interface); 3043 3044 mi_free(interface); 3045 } 3046 3047 /* 3048 * remove ill from the global list. 3049 */ 3050 static void 3051 ill_glist_delete(ill_t *ill) 3052 { 3053 ip_stack_t *ipst; 3054 phyint_t *phyi; 3055 3056 if (ill == NULL) 3057 return; 3058 ipst = ill->ill_ipst; 3059 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 3060 3061 /* 3062 * If the ill was never inserted into the AVL tree 3063 * we skip the if branch. 3064 */ 3065 if (ill->ill_ifptr != NULL) { 3066 /* 3067 * remove from AVL tree and free ppa number 3068 */ 3069 avl_remove(&ill->ill_ifptr->illif_avl_by_ppa, ill); 3070 3071 if (ill->ill_ifptr->illif_ppa_arena != NULL) { 3072 vmem_free(ill->ill_ifptr->illif_ppa_arena, 3073 (void *)(uintptr_t)(ill->ill_ppa+1), 1); 3074 } 3075 if (avl_numnodes(&ill->ill_ifptr->illif_avl_by_ppa) == 0) { 3076 ill_delete_interface_type(ill->ill_ifptr); 3077 } 3078 3079 /* 3080 * Indicate ill is no longer in the list. 3081 */ 3082 ill->ill_ifptr = NULL; 3083 ill->ill_name_length = 0; 3084 ill->ill_name[0] = '\0'; 3085 ill->ill_ppa = UINT_MAX; 3086 } 3087 3088 /* Generate one last event for this ill. */ 3089 ill_nic_event_dispatch(ill, 0, NE_UNPLUMB, ill->ill_name, 3090 ill->ill_name_length); 3091 3092 ASSERT(ill->ill_phyint != NULL); 3093 phyi = ill->ill_phyint; 3094 ill->ill_phyint = NULL; 3095 3096 /* 3097 * ill_init allocates a phyint always to store the copy 3098 * of flags relevant to phyint. At that point in time, we could 3099 * not assign the name and hence phyint_illv4/v6 could not be 3100 * initialized. Later in ipif_set_values, we assign the name to 3101 * the ill, at which point in time we assign phyint_illv4/v6. 3102 * Thus we don't rely on phyint_illv6 to be initialized always. 3103 */ 3104 if (ill->ill_flags & ILLF_IPV6) 3105 phyi->phyint_illv6 = NULL; 3106 else 3107 phyi->phyint_illv4 = NULL; 3108 3109 if (phyi->phyint_illv4 != NULL || phyi->phyint_illv6 != NULL) { 3110 rw_exit(&ipst->ips_ill_g_lock); 3111 return; 3112 } 3113 3114 /* 3115 * There are no ills left on this phyint; pull it out of the phyint 3116 * avl trees, and free it. 3117 */ 3118 if (phyi->phyint_ifindex > 0) { 3119 avl_remove(&ipst->ips_phyint_g_list->phyint_list_avl_by_index, 3120 phyi); 3121 avl_remove(&ipst->ips_phyint_g_list->phyint_list_avl_by_name, 3122 phyi); 3123 } 3124 rw_exit(&ipst->ips_ill_g_lock); 3125 3126 phyint_free(phyi); 3127 } 3128 3129 /* 3130 * allocate a ppa, if the number of plumbed interfaces of this type are 3131 * less than ill_no_arena do a linear search to find a unused ppa. 3132 * When the number goes beyond ill_no_arena switch to using an arena. 3133 * Note: ppa value of zero cannot be allocated from vmem_arena as it 3134 * is the return value for an error condition, so allocation starts at one 3135 * and is decremented by one. 3136 */ 3137 static int 3138 ill_alloc_ppa(ill_if_t *ifp, ill_t *ill) 3139 { 3140 ill_t *tmp_ill; 3141 uint_t start, end; 3142 int ppa; 3143 3144 if (ifp->illif_ppa_arena == NULL && 3145 (avl_numnodes(&ifp->illif_avl_by_ppa) + 1 > ill_no_arena)) { 3146 /* 3147 * Create an arena. 3148 */ 3149 ifp->illif_ppa_arena = vmem_create(ifp->illif_name, 3150 (void *)1, UINT_MAX - 1, 1, NULL, NULL, 3151 NULL, 0, VM_SLEEP | VMC_IDENTIFIER); 3152 /* allocate what has already been assigned */ 3153 for (tmp_ill = avl_first(&ifp->illif_avl_by_ppa); 3154 tmp_ill != NULL; tmp_ill = avl_walk(&ifp->illif_avl_by_ppa, 3155 tmp_ill, AVL_AFTER)) { 3156 ppa = (int)(uintptr_t)vmem_xalloc(ifp->illif_ppa_arena, 3157 1, /* size */ 3158 1, /* align/quantum */ 3159 0, /* phase */ 3160 0, /* nocross */ 3161 /* minaddr */ 3162 (void *)((uintptr_t)tmp_ill->ill_ppa + 1), 3163 /* maxaddr */ 3164 (void *)((uintptr_t)tmp_ill->ill_ppa + 2), 3165 VM_NOSLEEP|VM_FIRSTFIT); 3166 if (ppa == 0) { 3167 ip1dbg(("ill_alloc_ppa: ppa allocation" 3168 " failed while switching")); 3169 vmem_destroy(ifp->illif_ppa_arena); 3170 ifp->illif_ppa_arena = NULL; 3171 break; 3172 } 3173 } 3174 } 3175 3176 if (ifp->illif_ppa_arena != NULL) { 3177 if (ill->ill_ppa == UINT_MAX) { 3178 ppa = (int)(uintptr_t)vmem_alloc(ifp->illif_ppa_arena, 3179 1, VM_NOSLEEP|VM_FIRSTFIT); 3180 if (ppa == 0) 3181 return (EAGAIN); 3182 ill->ill_ppa = --ppa; 3183 } else { 3184 ppa = (int)(uintptr_t)vmem_xalloc(ifp->illif_ppa_arena, 3185 1, /* size */ 3186 1, /* align/quantum */ 3187 0, /* phase */ 3188 0, /* nocross */ 3189 (void *)(uintptr_t)(ill->ill_ppa + 1), /* minaddr */ 3190 (void *)(uintptr_t)(ill->ill_ppa + 2), /* maxaddr */ 3191 VM_NOSLEEP|VM_FIRSTFIT); 3192 /* 3193 * Most likely the allocation failed because 3194 * the requested ppa was in use. 3195 */ 3196 if (ppa == 0) 3197 return (EEXIST); 3198 } 3199 return (0); 3200 } 3201 3202 /* 3203 * No arena is in use and not enough (>ill_no_arena) interfaces have 3204 * been plumbed to create one. Do a linear search to get a unused ppa. 3205 */ 3206 if (ill->ill_ppa == UINT_MAX) { 3207 end = UINT_MAX - 1; 3208 start = 0; 3209 } else { 3210 end = start = ill->ill_ppa; 3211 } 3212 3213 tmp_ill = avl_find(&ifp->illif_avl_by_ppa, (void *)&start, NULL); 3214 while (tmp_ill != NULL && tmp_ill->ill_ppa == start) { 3215 if (start++ >= end) { 3216 if (ill->ill_ppa == UINT_MAX) 3217 return (EAGAIN); 3218 else 3219 return (EEXIST); 3220 } 3221 tmp_ill = avl_walk(&ifp->illif_avl_by_ppa, tmp_ill, AVL_AFTER); 3222 } 3223 ill->ill_ppa = start; 3224 return (0); 3225 } 3226 3227 /* 3228 * Insert ill into the list of configured ill's. Once this function completes, 3229 * the ill is globally visible and is available through lookups. More precisely 3230 * this happens after the caller drops the ill_g_lock. 3231 */ 3232 static int 3233 ill_glist_insert(ill_t *ill, char *name, boolean_t isv6) 3234 { 3235 ill_if_t *ill_interface; 3236 avl_index_t where = 0; 3237 int error; 3238 int name_length; 3239 int index; 3240 boolean_t check_length = B_FALSE; 3241 ip_stack_t *ipst = ill->ill_ipst; 3242 3243 ASSERT(RW_WRITE_HELD(&ipst->ips_ill_g_lock)); 3244 3245 name_length = mi_strlen(name) + 1; 3246 3247 if (isv6) 3248 index = IP_V6_G_HEAD; 3249 else 3250 index = IP_V4_G_HEAD; 3251 3252 ill_interface = IP_VX_ILL_G_LIST(index, ipst); 3253 /* 3254 * Search for interface type based on name 3255 */ 3256 while (ill_interface != (ill_if_t *)&IP_VX_ILL_G_LIST(index, ipst)) { 3257 if ((ill_interface->illif_name_len == name_length) && 3258 (strcmp(ill_interface->illif_name, name) == 0)) { 3259 break; 3260 } 3261 ill_interface = ill_interface->illif_next; 3262 } 3263 3264 /* 3265 * Interface type not found, create one. 3266 */ 3267 if (ill_interface == (ill_if_t *)&IP_VX_ILL_G_LIST(index, ipst)) { 3268 ill_g_head_t ghead; 3269 3270 /* 3271 * allocate ill_if_t structure 3272 */ 3273 ill_interface = (ill_if_t *)mi_zalloc(sizeof (ill_if_t)); 3274 if (ill_interface == NULL) { 3275 return (ENOMEM); 3276 } 3277 3278 (void) strcpy(ill_interface->illif_name, name); 3279 ill_interface->illif_name_len = name_length; 3280 3281 avl_create(&ill_interface->illif_avl_by_ppa, 3282 ill_compare_ppa, sizeof (ill_t), 3283 offsetof(struct ill_s, ill_avl_byppa)); 3284 3285 /* 3286 * link the structure in the back to maintain order 3287 * of configuration for ifconfig output. 3288 */ 3289 ghead = ipst->ips_ill_g_heads[index]; 3290 insque(ill_interface, ghead.ill_g_list_tail); 3291 } 3292 3293 if (ill->ill_ppa == UINT_MAX) 3294 check_length = B_TRUE; 3295 3296 error = ill_alloc_ppa(ill_interface, ill); 3297 if (error != 0) { 3298 if (avl_numnodes(&ill_interface->illif_avl_by_ppa) == 0) 3299 ill_delete_interface_type(ill->ill_ifptr); 3300 return (error); 3301 } 3302 3303 /* 3304 * When the ppa is choosen by the system, check that there is 3305 * enough space to insert ppa. if a specific ppa was passed in this 3306 * check is not required as the interface name passed in will have 3307 * the right ppa in it. 3308 */ 3309 if (check_length) { 3310 /* 3311 * UINT_MAX - 1 should fit in 10 chars, alloc 12 chars. 3312 */ 3313 char buf[sizeof (uint_t) * 3]; 3314 3315 /* 3316 * convert ppa to string to calculate the amount of space 3317 * required for it in the name. 3318 */ 3319 numtos(ill->ill_ppa, buf); 3320 3321 /* Do we have enough space to insert ppa ? */ 3322 3323 if ((mi_strlen(name) + mi_strlen(buf) + 1) > LIFNAMSIZ) { 3324 /* Free ppa and interface type struct */ 3325 if (ill_interface->illif_ppa_arena != NULL) { 3326 vmem_free(ill_interface->illif_ppa_arena, 3327 (void *)(uintptr_t)(ill->ill_ppa+1), 1); 3328 } 3329 if (avl_numnodes(&ill_interface->illif_avl_by_ppa) == 0) 3330 ill_delete_interface_type(ill->ill_ifptr); 3331 3332 return (EINVAL); 3333 } 3334 } 3335 3336 (void) sprintf(ill->ill_name, "%s%u", name, ill->ill_ppa); 3337 ill->ill_name_length = mi_strlen(ill->ill_name) + 1; 3338 3339 (void) avl_find(&ill_interface->illif_avl_by_ppa, &ill->ill_ppa, 3340 &where); 3341 ill->ill_ifptr = ill_interface; 3342 avl_insert(&ill_interface->illif_avl_by_ppa, ill, where); 3343 3344 ill_phyint_reinit(ill); 3345 return (0); 3346 } 3347 3348 /* Initialize the per phyint ipsq used for serialization */ 3349 static boolean_t 3350 ipsq_init(ill_t *ill, boolean_t enter) 3351 { 3352 ipsq_t *ipsq; 3353 ipxop_t *ipx; 3354 3355 if ((ipsq = kmem_zalloc(sizeof (ipsq_t), KM_NOSLEEP)) == NULL) 3356 return (B_FALSE); 3357 3358 ill->ill_phyint->phyint_ipsq = ipsq; 3359 ipx = ipsq->ipsq_xop = &ipsq->ipsq_ownxop; 3360 ipx->ipx_ipsq = ipsq; 3361 ipsq->ipsq_next = ipsq; 3362 ipsq->ipsq_phyint = ill->ill_phyint; 3363 mutex_init(&ipsq->ipsq_lock, NULL, MUTEX_DEFAULT, 0); 3364 mutex_init(&ipx->ipx_lock, NULL, MUTEX_DEFAULT, 0); 3365 ipsq->ipsq_ipst = ill->ill_ipst; /* No netstack_hold */ 3366 if (enter) { 3367 ipx->ipx_writer = curthread; 3368 ipx->ipx_forced = B_FALSE; 3369 ipx->ipx_reentry_cnt = 1; 3370 #ifdef DEBUG 3371 ipx->ipx_depth = getpcstack(ipx->ipx_stack, IPX_STACK_DEPTH); 3372 #endif 3373 } 3374 return (B_TRUE); 3375 } 3376 3377 /* 3378 * ill_init is called by ip_open when a device control stream is opened. 3379 * It does a few initializations, and shoots a DL_INFO_REQ message down 3380 * to the driver. The response is later picked up in ip_rput_dlpi and 3381 * used to set up default mechanisms for talking to the driver. (Always 3382 * called as writer.) 3383 * 3384 * If this function returns error, ip_open will call ip_close which in 3385 * turn will call ill_delete to clean up any memory allocated here that 3386 * is not yet freed. 3387 */ 3388 int 3389 ill_init(queue_t *q, ill_t *ill) 3390 { 3391 int count; 3392 dl_info_req_t *dlir; 3393 mblk_t *info_mp; 3394 uchar_t *frag_ptr; 3395 3396 /* 3397 * The ill is initialized to zero by mi_alloc*(). In addition 3398 * some fields already contain valid values, initialized in 3399 * ip_open(), before we reach here. 3400 */ 3401 mutex_init(&ill->ill_lock, NULL, MUTEX_DEFAULT, 0); 3402 mutex_init(&ill->ill_saved_ire_lock, NULL, MUTEX_DEFAULT, NULL); 3403 ill->ill_saved_ire_cnt = 0; 3404 3405 ill->ill_rq = q; 3406 ill->ill_wq = WR(q); 3407 3408 info_mp = allocb(MAX(sizeof (dl_info_req_t), sizeof (dl_info_ack_t)), 3409 BPRI_HI); 3410 if (info_mp == NULL) 3411 return (ENOMEM); 3412 3413 /* 3414 * Allocate sufficient space to contain our fragment hash table and 3415 * the device name. 3416 */ 3417 frag_ptr = (uchar_t *)mi_zalloc(ILL_FRAG_HASH_TBL_SIZE + 3418 2 * LIFNAMSIZ + strlen(ipv6_forward_suffix)); 3419 if (frag_ptr == NULL) { 3420 freemsg(info_mp); 3421 return (ENOMEM); 3422 } 3423 ill->ill_frag_ptr = frag_ptr; 3424 ill->ill_frag_free_num_pkts = 0; 3425 ill->ill_last_frag_clean_time = 0; 3426 ill->ill_frag_hash_tbl = (ipfb_t *)frag_ptr; 3427 ill->ill_name = (char *)(frag_ptr + ILL_FRAG_HASH_TBL_SIZE); 3428 for (count = 0; count < ILL_FRAG_HASH_TBL_COUNT; count++) { 3429 mutex_init(&ill->ill_frag_hash_tbl[count].ipfb_lock, 3430 NULL, MUTEX_DEFAULT, NULL); 3431 } 3432 3433 ill->ill_phyint = (phyint_t *)mi_zalloc(sizeof (phyint_t)); 3434 if (ill->ill_phyint == NULL) { 3435 freemsg(info_mp); 3436 mi_free(frag_ptr); 3437 return (ENOMEM); 3438 } 3439 3440 mutex_init(&ill->ill_phyint->phyint_lock, NULL, MUTEX_DEFAULT, 0); 3441 /* 3442 * For now pretend this is a v4 ill. We need to set phyint_ill* 3443 * at this point because of the following reason. If we can't 3444 * enter the ipsq at some point and cv_wait, the writer that 3445 * wakes us up tries to locate us using the list of all phyints 3446 * in an ipsq and the ills from the phyint thru the phyint_ill*. 3447 * If we don't set it now, we risk a missed wakeup. 3448 */ 3449 ill->ill_phyint->phyint_illv4 = ill; 3450 ill->ill_ppa = UINT_MAX; 3451 list_create(&ill->ill_nce, sizeof (nce_t), offsetof(nce_t, nce_node)); 3452 3453 ill_set_inputfn(ill); 3454 3455 if (!ipsq_init(ill, B_TRUE)) { 3456 freemsg(info_mp); 3457 mi_free(frag_ptr); 3458 mi_free(ill->ill_phyint); 3459 return (ENOMEM); 3460 } 3461 3462 ill->ill_state_flags |= ILL_LL_SUBNET_PENDING; 3463 3464 /* Frag queue limit stuff */ 3465 ill->ill_frag_count = 0; 3466 ill->ill_ipf_gen = 0; 3467 3468 rw_init(&ill->ill_mcast_lock, NULL, RW_DEFAULT, NULL); 3469 mutex_init(&ill->ill_mcast_serializer, NULL, MUTEX_DEFAULT, NULL); 3470 ill->ill_global_timer = INFINITY; 3471 ill->ill_mcast_v1_time = ill->ill_mcast_v2_time = 0; 3472 ill->ill_mcast_v1_tset = ill->ill_mcast_v2_tset = 0; 3473 ill->ill_mcast_rv = MCAST_DEF_ROBUSTNESS; 3474 ill->ill_mcast_qi = MCAST_DEF_QUERY_INTERVAL; 3475 3476 /* 3477 * Initialize IPv6 configuration variables. The IP module is always 3478 * opened as an IPv4 module. Instead tracking down the cases where 3479 * it switches to do ipv6, we'll just initialize the IPv6 configuration 3480 * here for convenience, this has no effect until the ill is set to do 3481 * IPv6. 3482 */ 3483 ill->ill_reachable_time = ND_REACHABLE_TIME; 3484 ill->ill_xmit_count = ND_MAX_MULTICAST_SOLICIT; 3485 ill->ill_max_buf = ND_MAX_Q; 3486 ill->ill_refcnt = 0; 3487 3488 /* Send down the Info Request to the driver. */ 3489 info_mp->b_datap->db_type = M_PCPROTO; 3490 dlir = (dl_info_req_t *)info_mp->b_rptr; 3491 info_mp->b_wptr = (uchar_t *)&dlir[1]; 3492 dlir->dl_primitive = DL_INFO_REQ; 3493 3494 ill->ill_dlpi_pending = DL_PRIM_INVAL; 3495 3496 qprocson(q); 3497 ill_dlpi_send(ill, info_mp); 3498 3499 return (0); 3500 } 3501 3502 /* 3503 * ill_dls_info 3504 * creates datalink socket info from the device. 3505 */ 3506 int 3507 ill_dls_info(struct sockaddr_dl *sdl, const ill_t *ill) 3508 { 3509 size_t len; 3510 3511 sdl->sdl_family = AF_LINK; 3512 sdl->sdl_index = ill_get_upper_ifindex(ill); 3513 sdl->sdl_type = ill->ill_type; 3514 ill_get_name(ill, sdl->sdl_data, sizeof (sdl->sdl_data)); 3515 len = strlen(sdl->sdl_data); 3516 ASSERT(len < 256); 3517 sdl->sdl_nlen = (uchar_t)len; 3518 sdl->sdl_alen = ill->ill_phys_addr_length; 3519 sdl->sdl_slen = 0; 3520 if (ill->ill_phys_addr_length != 0 && ill->ill_phys_addr != NULL) 3521 bcopy(ill->ill_phys_addr, &sdl->sdl_data[len], sdl->sdl_alen); 3522 3523 return (sizeof (struct sockaddr_dl)); 3524 } 3525 3526 /* 3527 * ill_xarp_info 3528 * creates xarp info from the device. 3529 */ 3530 static int 3531 ill_xarp_info(struct sockaddr_dl *sdl, ill_t *ill) 3532 { 3533 sdl->sdl_family = AF_LINK; 3534 sdl->sdl_index = ill->ill_phyint->phyint_ifindex; 3535 sdl->sdl_type = ill->ill_type; 3536 ill_get_name(ill, sdl->sdl_data, sizeof (sdl->sdl_data)); 3537 sdl->sdl_nlen = (uchar_t)mi_strlen(sdl->sdl_data); 3538 sdl->sdl_alen = ill->ill_phys_addr_length; 3539 sdl->sdl_slen = 0; 3540 return (sdl->sdl_nlen); 3541 } 3542 3543 static int 3544 loopback_kstat_update(kstat_t *ksp, int rw) 3545 { 3546 kstat_named_t *kn; 3547 netstackid_t stackid; 3548 netstack_t *ns; 3549 ip_stack_t *ipst; 3550 3551 if (ksp == NULL || ksp->ks_data == NULL) 3552 return (EIO); 3553 3554 if (rw == KSTAT_WRITE) 3555 return (EACCES); 3556 3557 kn = KSTAT_NAMED_PTR(ksp); 3558 stackid = (zoneid_t)(uintptr_t)ksp->ks_private; 3559 3560 ns = netstack_find_by_stackid(stackid); 3561 if (ns == NULL) 3562 return (-1); 3563 3564 ipst = ns->netstack_ip; 3565 if (ipst == NULL) { 3566 netstack_rele(ns); 3567 return (-1); 3568 } 3569 kn[0].value.ui32 = ipst->ips_loopback_packets; 3570 kn[1].value.ui32 = ipst->ips_loopback_packets; 3571 netstack_rele(ns); 3572 return (0); 3573 } 3574 3575 /* 3576 * Has ifindex been plumbed already? 3577 */ 3578 static boolean_t 3579 phyint_exists(uint_t index, ip_stack_t *ipst) 3580 { 3581 ASSERT(index != 0); 3582 ASSERT(RW_LOCK_HELD(&ipst->ips_ill_g_lock)); 3583 3584 return (avl_find(&ipst->ips_phyint_g_list->phyint_list_avl_by_index, 3585 &index, NULL) != NULL); 3586 } 3587 3588 /* Pick a unique ifindex */ 3589 boolean_t 3590 ip_assign_ifindex(uint_t *indexp, ip_stack_t *ipst) 3591 { 3592 uint_t starting_index; 3593 3594 if (!ipst->ips_ill_index_wrap) { 3595 *indexp = ipst->ips_ill_index++; 3596 if (ipst->ips_ill_index == 0) { 3597 /* Reached the uint_t limit Next time wrap */ 3598 ipst->ips_ill_index_wrap = B_TRUE; 3599 } 3600 return (B_TRUE); 3601 } 3602 3603 /* 3604 * Start reusing unused indexes. Note that we hold the ill_g_lock 3605 * at this point and don't want to call any function that attempts 3606 * to get the lock again. 3607 */ 3608 starting_index = ipst->ips_ill_index++; 3609 for (; ipst->ips_ill_index != starting_index; ipst->ips_ill_index++) { 3610 if (ipst->ips_ill_index != 0 && 3611 !phyint_exists(ipst->ips_ill_index, ipst)) { 3612 /* found unused index - use it */ 3613 *indexp = ipst->ips_ill_index; 3614 return (B_TRUE); 3615 } 3616 } 3617 3618 /* 3619 * all interface indicies are inuse. 3620 */ 3621 return (B_FALSE); 3622 } 3623 3624 /* 3625 * Assign a unique interface index for the phyint. 3626 */ 3627 static boolean_t 3628 phyint_assign_ifindex(phyint_t *phyi, ip_stack_t *ipst) 3629 { 3630 ASSERT(phyi->phyint_ifindex == 0); 3631 return (ip_assign_ifindex(&phyi->phyint_ifindex, ipst)); 3632 } 3633 3634 /* 3635 * Initialize the flags on `phyi' as per the provided mactype. 3636 */ 3637 static void 3638 phyint_flags_init(phyint_t *phyi, t_uscalar_t mactype) 3639 { 3640 uint64_t flags = 0; 3641 3642 /* 3643 * Initialize PHYI_RUNNING and PHYI_FAILED. For non-IPMP interfaces, 3644 * we always presume the underlying hardware is working and set 3645 * PHYI_RUNNING (if it's not, the driver will subsequently send a 3646 * DL_NOTE_LINK_DOWN message). For IPMP interfaces, at initialization 3647 * there are no active interfaces in the group so we set PHYI_FAILED. 3648 */ 3649 if (mactype == SUNW_DL_IPMP) 3650 flags |= PHYI_FAILED; 3651 else 3652 flags |= PHYI_RUNNING; 3653 3654 switch (mactype) { 3655 case SUNW_DL_VNI: 3656 flags |= PHYI_VIRTUAL; 3657 break; 3658 case SUNW_DL_IPMP: 3659 flags |= PHYI_IPMP; 3660 break; 3661 case DL_LOOP: 3662 flags |= (PHYI_LOOPBACK | PHYI_VIRTUAL); 3663 break; 3664 } 3665 3666 mutex_enter(&phyi->phyint_lock); 3667 phyi->phyint_flags |= flags; 3668 mutex_exit(&phyi->phyint_lock); 3669 } 3670 3671 /* 3672 * Return a pointer to the ill which matches the supplied name. Note that 3673 * the ill name length includes the null termination character. (May be 3674 * called as writer.) 3675 * If do_alloc and the interface is "lo0" it will be automatically created. 3676 * Cannot bump up reference on condemned ills. So dup detect can't be done 3677 * using this func. 3678 */ 3679 ill_t * 3680 ill_lookup_on_name(char *name, boolean_t do_alloc, boolean_t isv6, 3681 boolean_t *did_alloc, ip_stack_t *ipst) 3682 { 3683 ill_t *ill; 3684 ipif_t *ipif; 3685 ipsq_t *ipsq; 3686 kstat_named_t *kn; 3687 boolean_t isloopback; 3688 in6_addr_t ov6addr; 3689 3690 isloopback = mi_strcmp(name, ipif_loopback_name) == 0; 3691 3692 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 3693 ill = ill_find_by_name(name, isv6, ipst); 3694 rw_exit(&ipst->ips_ill_g_lock); 3695 if (ill != NULL) 3696 return (ill); 3697 3698 /* 3699 * Couldn't find it. Does this happen to be a lookup for the 3700 * loopback device and are we allowed to allocate it? 3701 */ 3702 if (!isloopback || !do_alloc) 3703 return (NULL); 3704 3705 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 3706 ill = ill_find_by_name(name, isv6, ipst); 3707 if (ill != NULL) { 3708 rw_exit(&ipst->ips_ill_g_lock); 3709 return (ill); 3710 } 3711 3712 /* Create the loopback device on demand */ 3713 ill = (ill_t *)(mi_alloc(sizeof (ill_t) + 3714 sizeof (ipif_loopback_name), BPRI_MED)); 3715 if (ill == NULL) 3716 goto done; 3717 3718 *ill = ill_null; 3719 mutex_init(&ill->ill_lock, NULL, MUTEX_DEFAULT, NULL); 3720 ill->ill_ipst = ipst; 3721 list_create(&ill->ill_nce, sizeof (nce_t), offsetof(nce_t, nce_node)); 3722 netstack_hold(ipst->ips_netstack); 3723 /* 3724 * For exclusive stacks we set the zoneid to zero 3725 * to make IP operate as if in the global zone. 3726 */ 3727 ill->ill_zoneid = GLOBAL_ZONEID; 3728 3729 ill->ill_phyint = (phyint_t *)mi_zalloc(sizeof (phyint_t)); 3730 if (ill->ill_phyint == NULL) 3731 goto done; 3732 3733 if (isv6) 3734 ill->ill_phyint->phyint_illv6 = ill; 3735 else 3736 ill->ill_phyint->phyint_illv4 = ill; 3737 mutex_init(&ill->ill_phyint->phyint_lock, NULL, MUTEX_DEFAULT, 0); 3738 phyint_flags_init(ill->ill_phyint, DL_LOOP); 3739 3740 if (isv6) { 3741 ill->ill_isv6 = B_TRUE; 3742 ill->ill_max_frag = ip_loopback_mtu_v6plus; 3743 } else { 3744 ill->ill_max_frag = ip_loopback_mtuplus; 3745 } 3746 if (!ill_allocate_mibs(ill)) 3747 goto done; 3748 ill->ill_current_frag = ill->ill_max_frag; 3749 ill->ill_mtu = ill->ill_max_frag; /* Initial value */ 3750 /* 3751 * ipif_loopback_name can't be pointed at directly because its used 3752 * by both the ipv4 and ipv6 interfaces. When the ill is removed 3753 * from the glist, ill_glist_delete() sets the first character of 3754 * ill_name to '\0'. 3755 */ 3756 ill->ill_name = (char *)ill + sizeof (*ill); 3757 (void) strcpy(ill->ill_name, ipif_loopback_name); 3758 ill->ill_name_length = sizeof (ipif_loopback_name); 3759 /* Set ill_dlpi_pending for ipsq_current_finish() to work properly */ 3760 ill->ill_dlpi_pending = DL_PRIM_INVAL; 3761 3762 rw_init(&ill->ill_mcast_lock, NULL, RW_DEFAULT, NULL); 3763 mutex_init(&ill->ill_mcast_serializer, NULL, MUTEX_DEFAULT, NULL); 3764 ill->ill_global_timer = INFINITY; 3765 ill->ill_mcast_v1_time = ill->ill_mcast_v2_time = 0; 3766 ill->ill_mcast_v1_tset = ill->ill_mcast_v2_tset = 0; 3767 ill->ill_mcast_rv = MCAST_DEF_ROBUSTNESS; 3768 ill->ill_mcast_qi = MCAST_DEF_QUERY_INTERVAL; 3769 3770 /* No resolver here. */ 3771 ill->ill_net_type = IRE_LOOPBACK; 3772 3773 /* Initialize the ipsq */ 3774 if (!ipsq_init(ill, B_FALSE)) 3775 goto done; 3776 3777 ipif = ipif_allocate(ill, 0L, IRE_LOOPBACK, B_TRUE, B_TRUE, NULL); 3778 if (ipif == NULL) 3779 goto done; 3780 3781 ill->ill_flags = ILLF_MULTICAST; 3782 3783 ov6addr = ipif->ipif_v6lcl_addr; 3784 /* Set up default loopback address and mask. */ 3785 if (!isv6) { 3786 ipaddr_t inaddr_loopback = htonl(INADDR_LOOPBACK); 3787 3788 IN6_IPADDR_TO_V4MAPPED(inaddr_loopback, &ipif->ipif_v6lcl_addr); 3789 V4MASK_TO_V6(htonl(IN_CLASSA_NET), ipif->ipif_v6net_mask); 3790 V6_MASK_COPY(ipif->ipif_v6lcl_addr, ipif->ipif_v6net_mask, 3791 ipif->ipif_v6subnet); 3792 ill->ill_flags |= ILLF_IPV4; 3793 } else { 3794 ipif->ipif_v6lcl_addr = ipv6_loopback; 3795 ipif->ipif_v6net_mask = ipv6_all_ones; 3796 V6_MASK_COPY(ipif->ipif_v6lcl_addr, ipif->ipif_v6net_mask, 3797 ipif->ipif_v6subnet); 3798 ill->ill_flags |= ILLF_IPV6; 3799 } 3800 3801 /* 3802 * Chain us in at the end of the ill list. hold the ill 3803 * before we make it globally visible. 1 for the lookup. 3804 */ 3805 ill->ill_refcnt = 0; 3806 ill_refhold(ill); 3807 3808 ill->ill_frag_count = 0; 3809 ill->ill_frag_free_num_pkts = 0; 3810 ill->ill_last_frag_clean_time = 0; 3811 3812 ipsq = ill->ill_phyint->phyint_ipsq; 3813 3814 ill_set_inputfn(ill); 3815 3816 if (ill_glist_insert(ill, "lo", isv6) != 0) 3817 cmn_err(CE_PANIC, "cannot insert loopback interface"); 3818 3819 /* Let SCTP know so that it can add this to its list */ 3820 sctp_update_ill(ill, SCTP_ILL_INSERT); 3821 3822 /* 3823 * We have already assigned ipif_v6lcl_addr above, but we need to 3824 * call sctp_update_ipif_addr() after SCTP_ILL_INSERT, which 3825 * requires to be after ill_glist_insert() since we need the 3826 * ill_index set. Pass on ipv6_loopback as the old address. 3827 */ 3828 sctp_update_ipif_addr(ipif, ov6addr); 3829 3830 ip_rts_newaddrmsg(RTM_CHGADDR, 0, ipif, RTSQ_DEFAULT); 3831 3832 /* 3833 * ill_glist_insert() -> ill_phyint_reinit() may have merged IPSQs. 3834 * If so, free our original one. 3835 */ 3836 if (ipsq != ill->ill_phyint->phyint_ipsq) 3837 ipsq_delete(ipsq); 3838 3839 if (ipst->ips_loopback_ksp == NULL) { 3840 /* Export loopback interface statistics */ 3841 ipst->ips_loopback_ksp = kstat_create_netstack("lo", 0, 3842 ipif_loopback_name, "net", 3843 KSTAT_TYPE_NAMED, 2, 0, 3844 ipst->ips_netstack->netstack_stackid); 3845 if (ipst->ips_loopback_ksp != NULL) { 3846 ipst->ips_loopback_ksp->ks_update = 3847 loopback_kstat_update; 3848 kn = KSTAT_NAMED_PTR(ipst->ips_loopback_ksp); 3849 kstat_named_init(&kn[0], "ipackets", KSTAT_DATA_UINT32); 3850 kstat_named_init(&kn[1], "opackets", KSTAT_DATA_UINT32); 3851 ipst->ips_loopback_ksp->ks_private = 3852 (void *)(uintptr_t)ipst->ips_netstack-> 3853 netstack_stackid; 3854 kstat_install(ipst->ips_loopback_ksp); 3855 } 3856 } 3857 3858 *did_alloc = B_TRUE; 3859 rw_exit(&ipst->ips_ill_g_lock); 3860 ill_nic_event_dispatch(ill, MAP_IPIF_ID(ill->ill_ipif->ipif_id), 3861 NE_PLUMB, ill->ill_name, ill->ill_name_length); 3862 return (ill); 3863 done: 3864 if (ill != NULL) { 3865 if (ill->ill_phyint != NULL) { 3866 ipsq = ill->ill_phyint->phyint_ipsq; 3867 if (ipsq != NULL) { 3868 ipsq->ipsq_phyint = NULL; 3869 ipsq_delete(ipsq); 3870 } 3871 mi_free(ill->ill_phyint); 3872 } 3873 ill_free_mib(ill); 3874 if (ill->ill_ipst != NULL) 3875 netstack_rele(ill->ill_ipst->ips_netstack); 3876 mi_free(ill); 3877 } 3878 rw_exit(&ipst->ips_ill_g_lock); 3879 return (NULL); 3880 } 3881 3882 /* 3883 * For IPP calls - use the ip_stack_t for global stack. 3884 */ 3885 ill_t * 3886 ill_lookup_on_ifindex_global_instance(uint_t index, boolean_t isv6) 3887 { 3888 ip_stack_t *ipst; 3889 ill_t *ill; 3890 3891 ipst = netstack_find_by_stackid(GLOBAL_NETSTACKID)->netstack_ip; 3892 if (ipst == NULL) { 3893 cmn_err(CE_WARN, "No ip_stack_t for zoneid zero!\n"); 3894 return (NULL); 3895 } 3896 3897 ill = ill_lookup_on_ifindex(index, isv6, ipst); 3898 netstack_rele(ipst->ips_netstack); 3899 return (ill); 3900 } 3901 3902 /* 3903 * Return a pointer to the ill which matches the index and IP version type. 3904 */ 3905 ill_t * 3906 ill_lookup_on_ifindex(uint_t index, boolean_t isv6, ip_stack_t *ipst) 3907 { 3908 ill_t *ill; 3909 phyint_t *phyi; 3910 3911 /* 3912 * Indexes are stored in the phyint - a common structure 3913 * to both IPv4 and IPv6. 3914 */ 3915 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 3916 phyi = avl_find(&ipst->ips_phyint_g_list->phyint_list_avl_by_index, 3917 (void *) &index, NULL); 3918 if (phyi != NULL) { 3919 ill = isv6 ? phyi->phyint_illv6: phyi->phyint_illv4; 3920 if (ill != NULL) { 3921 mutex_enter(&ill->ill_lock); 3922 if (!ILL_IS_CONDEMNED(ill)) { 3923 ill_refhold_locked(ill); 3924 mutex_exit(&ill->ill_lock); 3925 rw_exit(&ipst->ips_ill_g_lock); 3926 return (ill); 3927 } 3928 mutex_exit(&ill->ill_lock); 3929 } 3930 } 3931 rw_exit(&ipst->ips_ill_g_lock); 3932 return (NULL); 3933 } 3934 3935 /* 3936 * Verify whether or not an interface index is valid for the specified zoneid 3937 * to transmit packets. 3938 * It can be zero (meaning "reset") or an interface index assigned 3939 * to a non-VNI interface. (We don't use VNI interface to send packets.) 3940 */ 3941 boolean_t 3942 ip_xmit_ifindex_valid(uint_t ifindex, zoneid_t zoneid, boolean_t isv6, 3943 ip_stack_t *ipst) 3944 { 3945 ill_t *ill; 3946 3947 if (ifindex == 0) 3948 return (B_TRUE); 3949 3950 ill = ill_lookup_on_ifindex_zoneid(ifindex, zoneid, isv6, ipst); 3951 if (ill == NULL) 3952 return (B_FALSE); 3953 if (IS_VNI(ill)) { 3954 ill_refrele(ill); 3955 return (B_FALSE); 3956 } 3957 ill_refrele(ill); 3958 return (B_TRUE); 3959 } 3960 3961 /* 3962 * Return the ifindex next in sequence after the passed in ifindex. 3963 * If there is no next ifindex for the given protocol, return 0. 3964 */ 3965 uint_t 3966 ill_get_next_ifindex(uint_t index, boolean_t isv6, ip_stack_t *ipst) 3967 { 3968 phyint_t *phyi; 3969 phyint_t *phyi_initial; 3970 uint_t ifindex; 3971 3972 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 3973 3974 if (index == 0) { 3975 phyi = avl_first( 3976 &ipst->ips_phyint_g_list->phyint_list_avl_by_index); 3977 } else { 3978 phyi = phyi_initial = avl_find( 3979 &ipst->ips_phyint_g_list->phyint_list_avl_by_index, 3980 (void *) &index, NULL); 3981 } 3982 3983 for (; phyi != NULL; 3984 phyi = avl_walk(&ipst->ips_phyint_g_list->phyint_list_avl_by_index, 3985 phyi, AVL_AFTER)) { 3986 /* 3987 * If we're not returning the first interface in the tree 3988 * and we still haven't moved past the phyint_t that 3989 * corresponds to index, avl_walk needs to be called again 3990 */ 3991 if (!((index != 0) && (phyi == phyi_initial))) { 3992 if (isv6) { 3993 if ((phyi->phyint_illv6) && 3994 ILL_CAN_LOOKUP(phyi->phyint_illv6) && 3995 (phyi->phyint_illv6->ill_isv6 == 1)) 3996 break; 3997 } else { 3998 if ((phyi->phyint_illv4) && 3999 ILL_CAN_LOOKUP(phyi->phyint_illv4) && 4000 (phyi->phyint_illv4->ill_isv6 == 0)) 4001 break; 4002 } 4003 } 4004 } 4005 4006 rw_exit(&ipst->ips_ill_g_lock); 4007 4008 if (phyi != NULL) 4009 ifindex = phyi->phyint_ifindex; 4010 else 4011 ifindex = 0; 4012 4013 return (ifindex); 4014 } 4015 4016 /* 4017 * Return the ifindex for the named interface. 4018 * If there is no next ifindex for the interface, return 0. 4019 */ 4020 uint_t 4021 ill_get_ifindex_by_name(char *name, ip_stack_t *ipst) 4022 { 4023 phyint_t *phyi; 4024 avl_index_t where = 0; 4025 uint_t ifindex; 4026 4027 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 4028 4029 if ((phyi = avl_find(&ipst->ips_phyint_g_list->phyint_list_avl_by_name, 4030 name, &where)) == NULL) { 4031 rw_exit(&ipst->ips_ill_g_lock); 4032 return (0); 4033 } 4034 4035 ifindex = phyi->phyint_ifindex; 4036 4037 rw_exit(&ipst->ips_ill_g_lock); 4038 4039 return (ifindex); 4040 } 4041 4042 /* 4043 * Return the ifindex to be used by upper layer protocols for instance 4044 * for IPV6_RECVPKTINFO. If IPMP this is the one for the upper ill. 4045 */ 4046 uint_t 4047 ill_get_upper_ifindex(const ill_t *ill) 4048 { 4049 if (IS_UNDER_IPMP(ill)) 4050 return (ipmp_ill_get_ipmp_ifindex(ill)); 4051 else 4052 return (ill->ill_phyint->phyint_ifindex); 4053 } 4054 4055 4056 /* 4057 * Obtain a reference to the ill. The ill_refcnt is a dynamic refcnt 4058 * that gives a running thread a reference to the ill. This reference must be 4059 * released by the thread when it is done accessing the ill and related 4060 * objects. ill_refcnt can not be used to account for static references 4061 * such as other structures pointing to an ill. Callers must generally 4062 * check whether an ill can be refheld by using ILL_CAN_LOOKUP macros 4063 * or be sure that the ill is not being deleted or changing state before 4064 * calling the refhold functions. A non-zero ill_refcnt ensures that the 4065 * ill won't change any of its critical state such as address, netmask etc. 4066 */ 4067 void 4068 ill_refhold(ill_t *ill) 4069 { 4070 mutex_enter(&ill->ill_lock); 4071 ill->ill_refcnt++; 4072 ILL_TRACE_REF(ill); 4073 mutex_exit(&ill->ill_lock); 4074 } 4075 4076 void 4077 ill_refhold_locked(ill_t *ill) 4078 { 4079 ASSERT(MUTEX_HELD(&ill->ill_lock)); 4080 ill->ill_refcnt++; 4081 ILL_TRACE_REF(ill); 4082 } 4083 4084 /* Returns true if we managed to get a refhold */ 4085 boolean_t 4086 ill_check_and_refhold(ill_t *ill) 4087 { 4088 mutex_enter(&ill->ill_lock); 4089 if (!ILL_IS_CONDEMNED(ill)) { 4090 ill_refhold_locked(ill); 4091 mutex_exit(&ill->ill_lock); 4092 return (B_TRUE); 4093 } 4094 mutex_exit(&ill->ill_lock); 4095 return (B_FALSE); 4096 } 4097 4098 /* 4099 * Must not be called while holding any locks. Otherwise if this is 4100 * the last reference to be released, there is a chance of recursive mutex 4101 * panic due to ill_refrele -> ipif_ill_refrele_tail -> qwriter_ip trying 4102 * to restart an ioctl. 4103 */ 4104 void 4105 ill_refrele(ill_t *ill) 4106 { 4107 mutex_enter(&ill->ill_lock); 4108 ASSERT(ill->ill_refcnt != 0); 4109 ill->ill_refcnt--; 4110 ILL_UNTRACE_REF(ill); 4111 if (ill->ill_refcnt != 0) { 4112 /* Every ire pointing to the ill adds 1 to ill_refcnt */ 4113 mutex_exit(&ill->ill_lock); 4114 return; 4115 } 4116 4117 /* Drops the ill_lock */ 4118 ipif_ill_refrele_tail(ill); 4119 } 4120 4121 /* 4122 * Obtain a weak reference count on the ill. This reference ensures the 4123 * ill won't be freed, but the ill may change any of its critical state 4124 * such as netmask, address etc. Returns an error if the ill has started 4125 * closing. 4126 */ 4127 boolean_t 4128 ill_waiter_inc(ill_t *ill) 4129 { 4130 mutex_enter(&ill->ill_lock); 4131 if (ill->ill_state_flags & ILL_CONDEMNED) { 4132 mutex_exit(&ill->ill_lock); 4133 return (B_FALSE); 4134 } 4135 ill->ill_waiters++; 4136 mutex_exit(&ill->ill_lock); 4137 return (B_TRUE); 4138 } 4139 4140 void 4141 ill_waiter_dcr(ill_t *ill) 4142 { 4143 mutex_enter(&ill->ill_lock); 4144 ill->ill_waiters--; 4145 if (ill->ill_waiters == 0) 4146 cv_broadcast(&ill->ill_cv); 4147 mutex_exit(&ill->ill_lock); 4148 } 4149 4150 /* 4151 * ip_ll_subnet_defaults is called when we get the DL_INFO_ACK back from the 4152 * driver. We construct best guess defaults for lower level information that 4153 * we need. If an interface is brought up without injection of any overriding 4154 * information from outside, we have to be ready to go with these defaults. 4155 * When we get the first DL_INFO_ACK (from ip_open() sending a DL_INFO_REQ) 4156 * we primarely want the dl_provider_style. 4157 * The subsequent DL_INFO_ACK is received after doing a DL_ATTACH and DL_BIND 4158 * at which point we assume the other part of the information is valid. 4159 */ 4160 void 4161 ip_ll_subnet_defaults(ill_t *ill, mblk_t *mp) 4162 { 4163 uchar_t *brdcst_addr; 4164 uint_t brdcst_addr_length, phys_addr_length; 4165 t_scalar_t sap_length; 4166 dl_info_ack_t *dlia; 4167 ip_m_t *ipm; 4168 dl_qos_cl_sel1_t *sel1; 4169 int min_mtu; 4170 4171 ASSERT(IAM_WRITER_ILL(ill)); 4172 4173 /* 4174 * Till the ill is fully up the ill is not globally visible. 4175 * So no need for a lock. 4176 */ 4177 dlia = (dl_info_ack_t *)mp->b_rptr; 4178 ill->ill_mactype = dlia->dl_mac_type; 4179 4180 ipm = ip_m_lookup(dlia->dl_mac_type); 4181 if (ipm == NULL) { 4182 ipm = ip_m_lookup(DL_OTHER); 4183 ASSERT(ipm != NULL); 4184 } 4185 ill->ill_media = ipm; 4186 4187 /* 4188 * When the new DLPI stuff is ready we'll pull lengths 4189 * from dlia. 4190 */ 4191 if (dlia->dl_version == DL_VERSION_2) { 4192 brdcst_addr_length = dlia->dl_brdcst_addr_length; 4193 brdcst_addr = mi_offset_param(mp, dlia->dl_brdcst_addr_offset, 4194 brdcst_addr_length); 4195 if (brdcst_addr == NULL) { 4196 brdcst_addr_length = 0; 4197 } 4198 sap_length = dlia->dl_sap_length; 4199 phys_addr_length = dlia->dl_addr_length - ABS(sap_length); 4200 ip1dbg(("ip: bcast_len %d, sap_len %d, phys_len %d\n", 4201 brdcst_addr_length, sap_length, phys_addr_length)); 4202 } else { 4203 brdcst_addr_length = 6; 4204 brdcst_addr = ip_six_byte_all_ones; 4205 sap_length = -2; 4206 phys_addr_length = brdcst_addr_length; 4207 } 4208 4209 ill->ill_bcast_addr_length = brdcst_addr_length; 4210 ill->ill_phys_addr_length = phys_addr_length; 4211 ill->ill_sap_length = sap_length; 4212 4213 /* 4214 * Synthetic DLPI types such as SUNW_DL_IPMP specify a zero SDU, 4215 * but we must ensure a minimum IP MTU is used since other bits of 4216 * IP will fly apart otherwise. 4217 */ 4218 min_mtu = ill->ill_isv6 ? IPV6_MIN_MTU : IP_MIN_MTU; 4219 ill->ill_max_frag = MAX(min_mtu, dlia->dl_max_sdu); 4220 ill->ill_current_frag = ill->ill_max_frag; 4221 ill->ill_mtu = ill->ill_max_frag; 4222 4223 ill->ill_type = ipm->ip_m_type; 4224 4225 if (!ill->ill_dlpi_style_set) { 4226 if (dlia->dl_provider_style == DL_STYLE2) 4227 ill->ill_needs_attach = 1; 4228 4229 phyint_flags_init(ill->ill_phyint, ill->ill_mactype); 4230 4231 /* 4232 * Allocate the first ipif on this ill. We don't delay it 4233 * further as ioctl handling assumes at least one ipif exists. 4234 * 4235 * At this point we don't know whether the ill is v4 or v6. 4236 * We will know this whan the SIOCSLIFNAME happens and 4237 * the correct value for ill_isv6 will be assigned in 4238 * ipif_set_values(). We need to hold the ill lock and 4239 * clear the ILL_LL_SUBNET_PENDING flag and atomically do 4240 * the wakeup. 4241 */ 4242 (void) ipif_allocate(ill, 0, IRE_LOCAL, 4243 dlia->dl_provider_style != DL_STYLE2, B_TRUE, NULL); 4244 mutex_enter(&ill->ill_lock); 4245 ASSERT(ill->ill_dlpi_style_set == 0); 4246 ill->ill_dlpi_style_set = 1; 4247 ill->ill_state_flags &= ~ILL_LL_SUBNET_PENDING; 4248 cv_broadcast(&ill->ill_cv); 4249 mutex_exit(&ill->ill_lock); 4250 freemsg(mp); 4251 return; 4252 } 4253 ASSERT(ill->ill_ipif != NULL); 4254 /* 4255 * We know whether it is IPv4 or IPv6 now, as this is the 4256 * second DL_INFO_ACK we are recieving in response to the 4257 * DL_INFO_REQ sent in ipif_set_values. 4258 */ 4259 ill->ill_sap = (ill->ill_isv6) ? ipm->ip_m_ipv6sap : ipm->ip_m_ipv4sap; 4260 /* 4261 * Clear all the flags that were set based on ill_bcast_addr_length 4262 * and ill_phys_addr_length (in ipif_set_values) as these could have 4263 * changed now and we need to re-evaluate. 4264 */ 4265 ill->ill_flags &= ~(ILLF_MULTICAST | ILLF_NONUD | ILLF_NOARP); 4266 ill->ill_ipif->ipif_flags &= ~(IPIF_BROADCAST | IPIF_POINTOPOINT); 4267 4268 /* 4269 * Free ill_bcast_mp as things could have changed now. 4270 * 4271 * NOTE: The IPMP meta-interface is special-cased because it starts 4272 * with no underlying interfaces (and thus an unknown broadcast 4273 * address length), but we enforce that an interface is broadcast- 4274 * capable as part of allowing it to join a group. 4275 */ 4276 if (ill->ill_bcast_addr_length == 0 && !IS_IPMP(ill)) { 4277 if (ill->ill_bcast_mp != NULL) 4278 freemsg(ill->ill_bcast_mp); 4279 ill->ill_net_type = IRE_IF_NORESOLVER; 4280 4281 ill->ill_bcast_mp = ill_dlur_gen(NULL, 4282 ill->ill_phys_addr_length, 4283 ill->ill_sap, 4284 ill->ill_sap_length); 4285 4286 if (ill->ill_isv6) 4287 /* 4288 * Note: xresolv interfaces will eventually need NOARP 4289 * set here as well, but that will require those 4290 * external resolvers to have some knowledge of 4291 * that flag and act appropriately. Not to be changed 4292 * at present. 4293 */ 4294 ill->ill_flags |= ILLF_NONUD; 4295 else 4296 ill->ill_flags |= ILLF_NOARP; 4297 4298 if (ill->ill_mactype == SUNW_DL_VNI) { 4299 ill->ill_ipif->ipif_flags |= IPIF_NOXMIT; 4300 } else if (ill->ill_phys_addr_length == 0 || 4301 ill->ill_mactype == DL_IPV4 || 4302 ill->ill_mactype == DL_IPV6) { 4303 /* 4304 * The underying link is point-to-point, so mark the 4305 * interface as such. We can do IP multicast over 4306 * such a link since it transmits all network-layer 4307 * packets to the remote side the same way. 4308 */ 4309 ill->ill_flags |= ILLF_MULTICAST; 4310 ill->ill_ipif->ipif_flags |= IPIF_POINTOPOINT; 4311 } 4312 } else { 4313 ill->ill_net_type = IRE_IF_RESOLVER; 4314 if (ill->ill_bcast_mp != NULL) 4315 freemsg(ill->ill_bcast_mp); 4316 ill->ill_bcast_mp = ill_dlur_gen(brdcst_addr, 4317 ill->ill_bcast_addr_length, ill->ill_sap, 4318 ill->ill_sap_length); 4319 /* 4320 * Later detect lack of DLPI driver multicast 4321 * capability by catching DL_ENABMULTI errors in 4322 * ip_rput_dlpi. 4323 */ 4324 ill->ill_flags |= ILLF_MULTICAST; 4325 if (!ill->ill_isv6) 4326 ill->ill_ipif->ipif_flags |= IPIF_BROADCAST; 4327 } 4328 4329 /* For IPMP, PHYI_IPMP should already be set by phyint_flags_init() */ 4330 if (ill->ill_mactype == SUNW_DL_IPMP) 4331 ASSERT(ill->ill_phyint->phyint_flags & PHYI_IPMP); 4332 4333 /* By default an interface does not support any CoS marking */ 4334 ill->ill_flags &= ~ILLF_COS_ENABLED; 4335 4336 /* 4337 * If we get QoS information in DL_INFO_ACK, the device supports 4338 * some form of CoS marking, set ILLF_COS_ENABLED. 4339 */ 4340 sel1 = (dl_qos_cl_sel1_t *)mi_offset_param(mp, dlia->dl_qos_offset, 4341 dlia->dl_qos_length); 4342 if ((sel1 != NULL) && (sel1->dl_qos_type == DL_QOS_CL_SEL1)) { 4343 ill->ill_flags |= ILLF_COS_ENABLED; 4344 } 4345 4346 /* Clear any previous error indication. */ 4347 ill->ill_error = 0; 4348 freemsg(mp); 4349 } 4350 4351 /* 4352 * Perform various checks to verify that an address would make sense as a 4353 * local, remote, or subnet interface address. 4354 */ 4355 static boolean_t 4356 ip_addr_ok_v4(ipaddr_t addr, ipaddr_t subnet_mask) 4357 { 4358 ipaddr_t net_mask; 4359 4360 /* 4361 * Don't allow all zeroes, or all ones, but allow 4362 * all ones netmask. 4363 */ 4364 if ((net_mask = ip_net_mask(addr)) == 0) 4365 return (B_FALSE); 4366 /* A given netmask overrides the "guess" netmask */ 4367 if (subnet_mask != 0) 4368 net_mask = subnet_mask; 4369 if ((net_mask != ~(ipaddr_t)0) && ((addr == (addr & net_mask)) || 4370 (addr == (addr | ~net_mask)))) { 4371 return (B_FALSE); 4372 } 4373 4374 /* 4375 * Even if the netmask is all ones, we do not allow address to be 4376 * 255.255.255.255 4377 */ 4378 if (addr == INADDR_BROADCAST) 4379 return (B_FALSE); 4380 4381 if (CLASSD(addr)) 4382 return (B_FALSE); 4383 4384 return (B_TRUE); 4385 } 4386 4387 #define V6_IPIF_LINKLOCAL(p) \ 4388 IN6_IS_ADDR_LINKLOCAL(&(p)->ipif_v6lcl_addr) 4389 4390 /* 4391 * Compare two given ipifs and check if the second one is better than 4392 * the first one using the order of preference (not taking deprecated 4393 * into acount) specified in ipif_lookup_multicast(). 4394 */ 4395 static boolean_t 4396 ipif_comp_multi(ipif_t *old_ipif, ipif_t *new_ipif, boolean_t isv6) 4397 { 4398 /* Check the least preferred first. */ 4399 if (IS_LOOPBACK(old_ipif->ipif_ill)) { 4400 /* If both ipifs are the same, use the first one. */ 4401 if (IS_LOOPBACK(new_ipif->ipif_ill)) 4402 return (B_FALSE); 4403 else 4404 return (B_TRUE); 4405 } 4406 4407 /* For IPv6, check for link local address. */ 4408 if (isv6 && V6_IPIF_LINKLOCAL(old_ipif)) { 4409 if (IS_LOOPBACK(new_ipif->ipif_ill) || 4410 V6_IPIF_LINKLOCAL(new_ipif)) { 4411 /* The second one is equal or less preferred. */ 4412 return (B_FALSE); 4413 } else { 4414 return (B_TRUE); 4415 } 4416 } 4417 4418 /* Then check for point to point interface. */ 4419 if (old_ipif->ipif_flags & IPIF_POINTOPOINT) { 4420 if (IS_LOOPBACK(new_ipif->ipif_ill) || 4421 (isv6 && V6_IPIF_LINKLOCAL(new_ipif)) || 4422 (new_ipif->ipif_flags & IPIF_POINTOPOINT)) { 4423 return (B_FALSE); 4424 } else { 4425 return (B_TRUE); 4426 } 4427 } 4428 4429 /* old_ipif is a normal interface, so no need to use the new one. */ 4430 return (B_FALSE); 4431 } 4432 4433 /* 4434 * Find a mulitcast-capable ipif given an IP instance and zoneid. 4435 * The ipif must be up, and its ill must multicast-capable, not 4436 * condemned, not an underlying interface in an IPMP group, and 4437 * not a VNI interface. Order of preference: 4438 * 4439 * 1a. normal 4440 * 1b. normal, but deprecated 4441 * 2a. point to point 4442 * 2b. point to point, but deprecated 4443 * 3a. link local 4444 * 3b. link local, but deprecated 4445 * 4. loopback. 4446 */ 4447 static ipif_t * 4448 ipif_lookup_multicast(ip_stack_t *ipst, zoneid_t zoneid, boolean_t isv6) 4449 { 4450 ill_t *ill; 4451 ill_walk_context_t ctx; 4452 ipif_t *ipif; 4453 ipif_t *saved_ipif = NULL; 4454 ipif_t *dep_ipif = NULL; 4455 4456 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 4457 if (isv6) 4458 ill = ILL_START_WALK_V6(&ctx, ipst); 4459 else 4460 ill = ILL_START_WALK_V4(&ctx, ipst); 4461 4462 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 4463 mutex_enter(&ill->ill_lock); 4464 if (IS_VNI(ill) || IS_UNDER_IPMP(ill) || 4465 ILL_IS_CONDEMNED(ill) || 4466 !(ill->ill_flags & ILLF_MULTICAST)) { 4467 mutex_exit(&ill->ill_lock); 4468 continue; 4469 } 4470 for (ipif = ill->ill_ipif; ipif != NULL; 4471 ipif = ipif->ipif_next) { 4472 if (zoneid != ipif->ipif_zoneid && 4473 zoneid != ALL_ZONES && 4474 ipif->ipif_zoneid != ALL_ZONES) { 4475 continue; 4476 } 4477 if (!(ipif->ipif_flags & IPIF_UP) || 4478 IPIF_IS_CONDEMNED(ipif)) { 4479 continue; 4480 } 4481 4482 /* 4483 * Found one candidate. If it is deprecated, 4484 * remember it in dep_ipif. If it is not deprecated, 4485 * remember it in saved_ipif. 4486 */ 4487 if (ipif->ipif_flags & IPIF_DEPRECATED) { 4488 if (dep_ipif == NULL) { 4489 dep_ipif = ipif; 4490 } else if (ipif_comp_multi(dep_ipif, ipif, 4491 isv6)) { 4492 /* 4493 * If the previous dep_ipif does not 4494 * belong to the same ill, we've done 4495 * a ipif_refhold() on it. So we need 4496 * to release it. 4497 */ 4498 if (dep_ipif->ipif_ill != ill) 4499 ipif_refrele(dep_ipif); 4500 dep_ipif = ipif; 4501 } 4502 continue; 4503 } 4504 if (saved_ipif == NULL) { 4505 saved_ipif = ipif; 4506 } else { 4507 if (ipif_comp_multi(saved_ipif, ipif, isv6)) { 4508 if (saved_ipif->ipif_ill != ill) 4509 ipif_refrele(saved_ipif); 4510 saved_ipif = ipif; 4511 } 4512 } 4513 } 4514 /* 4515 * Before going to the next ill, do a ipif_refhold() on the 4516 * saved ones. 4517 */ 4518 if (saved_ipif != NULL && saved_ipif->ipif_ill == ill) 4519 ipif_refhold_locked(saved_ipif); 4520 if (dep_ipif != NULL && dep_ipif->ipif_ill == ill) 4521 ipif_refhold_locked(dep_ipif); 4522 mutex_exit(&ill->ill_lock); 4523 } 4524 rw_exit(&ipst->ips_ill_g_lock); 4525 4526 /* 4527 * If we have only the saved_ipif, return it. But if we have both 4528 * saved_ipif and dep_ipif, check to see which one is better. 4529 */ 4530 if (saved_ipif != NULL) { 4531 if (dep_ipif != NULL) { 4532 if (ipif_comp_multi(saved_ipif, dep_ipif, isv6)) { 4533 ipif_refrele(saved_ipif); 4534 return (dep_ipif); 4535 } else { 4536 ipif_refrele(dep_ipif); 4537 return (saved_ipif); 4538 } 4539 } 4540 return (saved_ipif); 4541 } else { 4542 return (dep_ipif); 4543 } 4544 } 4545 4546 ill_t * 4547 ill_lookup_multicast(ip_stack_t *ipst, zoneid_t zoneid, boolean_t isv6) 4548 { 4549 ipif_t *ipif; 4550 ill_t *ill; 4551 4552 ipif = ipif_lookup_multicast(ipst, zoneid, isv6); 4553 if (ipif == NULL) 4554 return (NULL); 4555 4556 ill = ipif->ipif_ill; 4557 ill_refhold(ill); 4558 ipif_refrele(ipif); 4559 return (ill); 4560 } 4561 4562 /* 4563 * This function is called when an application does not specify an interface 4564 * to be used for multicast traffic (joining a group/sending data). It 4565 * calls ire_lookup_multi() to look for an interface route for the 4566 * specified multicast group. Doing this allows the administrator to add 4567 * prefix routes for multicast to indicate which interface to be used for 4568 * multicast traffic in the above scenario. The route could be for all 4569 * multicast (224.0/4), for a single multicast group (a /32 route) or 4570 * anything in between. If there is no such multicast route, we just find 4571 * any multicast capable interface and return it. The returned ipif 4572 * is refhold'ed. 4573 * 4574 * We support MULTIRT and RTF_SETSRC on the multicast routes added to the 4575 * unicast table. This is used by CGTP. 4576 */ 4577 ill_t * 4578 ill_lookup_group_v4(ipaddr_t group, zoneid_t zoneid, ip_stack_t *ipst, 4579 boolean_t *multirtp, ipaddr_t *setsrcp) 4580 { 4581 ill_t *ill; 4582 4583 ill = ire_lookup_multi_ill_v4(group, zoneid, ipst, multirtp, setsrcp); 4584 if (ill != NULL) 4585 return (ill); 4586 4587 return (ill_lookup_multicast(ipst, zoneid, B_FALSE)); 4588 } 4589 4590 /* 4591 * Look for an ipif with the specified interface address and destination. 4592 * The destination address is used only for matching point-to-point interfaces. 4593 */ 4594 ipif_t * 4595 ipif_lookup_interface(ipaddr_t if_addr, ipaddr_t dst, ip_stack_t *ipst) 4596 { 4597 ipif_t *ipif; 4598 ill_t *ill; 4599 ill_walk_context_t ctx; 4600 4601 /* 4602 * First match all the point-to-point interfaces 4603 * before looking at non-point-to-point interfaces. 4604 * This is done to avoid returning non-point-to-point 4605 * ipif instead of unnumbered point-to-point ipif. 4606 */ 4607 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 4608 ill = ILL_START_WALK_V4(&ctx, ipst); 4609 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 4610 mutex_enter(&ill->ill_lock); 4611 for (ipif = ill->ill_ipif; ipif != NULL; 4612 ipif = ipif->ipif_next) { 4613 /* Allow the ipif to be down */ 4614 if ((ipif->ipif_flags & IPIF_POINTOPOINT) && 4615 (ipif->ipif_lcl_addr == if_addr) && 4616 (ipif->ipif_pp_dst_addr == dst)) { 4617 if (!IPIF_IS_CONDEMNED(ipif)) { 4618 ipif_refhold_locked(ipif); 4619 mutex_exit(&ill->ill_lock); 4620 rw_exit(&ipst->ips_ill_g_lock); 4621 return (ipif); 4622 } 4623 } 4624 } 4625 mutex_exit(&ill->ill_lock); 4626 } 4627 rw_exit(&ipst->ips_ill_g_lock); 4628 4629 /* lookup the ipif based on interface address */ 4630 ipif = ipif_lookup_addr(if_addr, NULL, ALL_ZONES, ipst); 4631 ASSERT(ipif == NULL || !ipif->ipif_isv6); 4632 return (ipif); 4633 } 4634 4635 /* 4636 * Common function for ipif_lookup_addr() and ipif_lookup_addr_exact(). 4637 */ 4638 static ipif_t * 4639 ipif_lookup_addr_common(ipaddr_t addr, ill_t *match_ill, uint32_t match_flags, 4640 zoneid_t zoneid, ip_stack_t *ipst) 4641 { 4642 ipif_t *ipif; 4643 ill_t *ill; 4644 boolean_t ptp = B_FALSE; 4645 ill_walk_context_t ctx; 4646 boolean_t match_illgrp = (match_flags & IPIF_MATCH_ILLGRP); 4647 boolean_t no_duplicate = (match_flags & IPIF_MATCH_NONDUP); 4648 4649 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 4650 /* 4651 * Repeat twice, first based on local addresses and 4652 * next time for pointopoint. 4653 */ 4654 repeat: 4655 ill = ILL_START_WALK_V4(&ctx, ipst); 4656 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 4657 if (match_ill != NULL && ill != match_ill && 4658 (!match_illgrp || !IS_IN_SAME_ILLGRP(ill, match_ill))) { 4659 continue; 4660 } 4661 mutex_enter(&ill->ill_lock); 4662 for (ipif = ill->ill_ipif; ipif != NULL; 4663 ipif = ipif->ipif_next) { 4664 if (zoneid != ALL_ZONES && 4665 zoneid != ipif->ipif_zoneid && 4666 ipif->ipif_zoneid != ALL_ZONES) 4667 continue; 4668 4669 if (no_duplicate && !(ipif->ipif_flags & IPIF_UP)) 4670 continue; 4671 4672 /* Allow the ipif to be down */ 4673 if ((!ptp && (ipif->ipif_lcl_addr == addr) && 4674 ((ipif->ipif_flags & IPIF_UNNUMBERED) == 0)) || 4675 (ptp && (ipif->ipif_flags & IPIF_POINTOPOINT) && 4676 (ipif->ipif_pp_dst_addr == addr))) { 4677 if (!IPIF_IS_CONDEMNED(ipif)) { 4678 ipif_refhold_locked(ipif); 4679 mutex_exit(&ill->ill_lock); 4680 rw_exit(&ipst->ips_ill_g_lock); 4681 return (ipif); 4682 } 4683 } 4684 } 4685 mutex_exit(&ill->ill_lock); 4686 } 4687 4688 /* If we already did the ptp case, then we are done */ 4689 if (ptp) { 4690 rw_exit(&ipst->ips_ill_g_lock); 4691 return (NULL); 4692 } 4693 ptp = B_TRUE; 4694 goto repeat; 4695 } 4696 4697 /* 4698 * Lookup an ipif with the specified address. For point-to-point links we 4699 * look for matches on either the destination address or the local address, 4700 * but we skip the local address check if IPIF_UNNUMBERED is set. If the 4701 * `match_ill' argument is non-NULL, the lookup is restricted to that ill 4702 * (or illgrp if `match_ill' is in an IPMP group). 4703 */ 4704 ipif_t * 4705 ipif_lookup_addr(ipaddr_t addr, ill_t *match_ill, zoneid_t zoneid, 4706 ip_stack_t *ipst) 4707 { 4708 return (ipif_lookup_addr_common(addr, match_ill, IPIF_MATCH_ILLGRP, 4709 zoneid, ipst)); 4710 } 4711 4712 /* 4713 * Lookup an ipif with the specified address. Similar to ipif_lookup_addr, 4714 * except that we will only return an address if it is not marked as 4715 * IPIF_DUPLICATE 4716 */ 4717 ipif_t * 4718 ipif_lookup_addr_nondup(ipaddr_t addr, ill_t *match_ill, zoneid_t zoneid, 4719 ip_stack_t *ipst) 4720 { 4721 return (ipif_lookup_addr_common(addr, match_ill, 4722 (IPIF_MATCH_ILLGRP | IPIF_MATCH_NONDUP), 4723 zoneid, ipst)); 4724 } 4725 4726 /* 4727 * Special abbreviated version of ipif_lookup_addr() that doesn't match 4728 * `match_ill' across the IPMP group. This function is only needed in some 4729 * corner-cases; almost everything should use ipif_lookup_addr(). 4730 */ 4731 ipif_t * 4732 ipif_lookup_addr_exact(ipaddr_t addr, ill_t *match_ill, ip_stack_t *ipst) 4733 { 4734 ASSERT(match_ill != NULL); 4735 return (ipif_lookup_addr_common(addr, match_ill, 0, ALL_ZONES, 4736 ipst)); 4737 } 4738 4739 /* 4740 * Look for an ipif with the specified address. For point-point links 4741 * we look for matches on either the destination address and the local 4742 * address, but we ignore the check on the local address if IPIF_UNNUMBERED 4743 * is set. 4744 * If the `match_ill' argument is non-NULL, the lookup is restricted to that 4745 * ill (or illgrp if `match_ill' is in an IPMP group). 4746 * Return the zoneid for the ipif which matches. ALL_ZONES if no match. 4747 */ 4748 zoneid_t 4749 ipif_lookup_addr_zoneid(ipaddr_t addr, ill_t *match_ill, ip_stack_t *ipst) 4750 { 4751 zoneid_t zoneid; 4752 ipif_t *ipif; 4753 ill_t *ill; 4754 boolean_t ptp = B_FALSE; 4755 ill_walk_context_t ctx; 4756 4757 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 4758 /* 4759 * Repeat twice, first based on local addresses and 4760 * next time for pointopoint. 4761 */ 4762 repeat: 4763 ill = ILL_START_WALK_V4(&ctx, ipst); 4764 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 4765 if (match_ill != NULL && ill != match_ill && 4766 !IS_IN_SAME_ILLGRP(ill, match_ill)) { 4767 continue; 4768 } 4769 mutex_enter(&ill->ill_lock); 4770 for (ipif = ill->ill_ipif; ipif != NULL; 4771 ipif = ipif->ipif_next) { 4772 /* Allow the ipif to be down */ 4773 if ((!ptp && (ipif->ipif_lcl_addr == addr) && 4774 ((ipif->ipif_flags & IPIF_UNNUMBERED) == 0)) || 4775 (ptp && (ipif->ipif_flags & IPIF_POINTOPOINT) && 4776 (ipif->ipif_pp_dst_addr == addr)) && 4777 !(ipif->ipif_state_flags & IPIF_CONDEMNED)) { 4778 zoneid = ipif->ipif_zoneid; 4779 mutex_exit(&ill->ill_lock); 4780 rw_exit(&ipst->ips_ill_g_lock); 4781 /* 4782 * If ipif_zoneid was ALL_ZONES then we have 4783 * a trusted extensions shared IP address. 4784 * In that case GLOBAL_ZONEID works to send. 4785 */ 4786 if (zoneid == ALL_ZONES) 4787 zoneid = GLOBAL_ZONEID; 4788 return (zoneid); 4789 } 4790 } 4791 mutex_exit(&ill->ill_lock); 4792 } 4793 4794 /* If we already did the ptp case, then we are done */ 4795 if (ptp) { 4796 rw_exit(&ipst->ips_ill_g_lock); 4797 return (ALL_ZONES); 4798 } 4799 ptp = B_TRUE; 4800 goto repeat; 4801 } 4802 4803 /* 4804 * Look for an ipif that matches the specified remote address i.e. the 4805 * ipif that would receive the specified packet. 4806 * First look for directly connected interfaces and then do a recursive 4807 * IRE lookup and pick the first ipif corresponding to the source address in the 4808 * ire. 4809 * Returns: held ipif 4810 * 4811 * This is only used for ICMP_ADDRESS_MASK_REQUESTs 4812 */ 4813 ipif_t * 4814 ipif_lookup_remote(ill_t *ill, ipaddr_t addr, zoneid_t zoneid) 4815 { 4816 ipif_t *ipif; 4817 4818 ASSERT(!ill->ill_isv6); 4819 4820 /* 4821 * Someone could be changing this ipif currently or change it 4822 * after we return this. Thus a few packets could use the old 4823 * old values. However structure updates/creates (ire, ilg, ilm etc) 4824 * will atomically be updated or cleaned up with the new value 4825 * Thus we don't need a lock to check the flags or other attrs below. 4826 */ 4827 mutex_enter(&ill->ill_lock); 4828 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 4829 if (IPIF_IS_CONDEMNED(ipif)) 4830 continue; 4831 if (zoneid != ALL_ZONES && zoneid != ipif->ipif_zoneid && 4832 ipif->ipif_zoneid != ALL_ZONES) 4833 continue; 4834 /* Allow the ipif to be down */ 4835 if (ipif->ipif_flags & IPIF_POINTOPOINT) { 4836 if ((ipif->ipif_pp_dst_addr == addr) || 4837 (!(ipif->ipif_flags & IPIF_UNNUMBERED) && 4838 ipif->ipif_lcl_addr == addr)) { 4839 ipif_refhold_locked(ipif); 4840 mutex_exit(&ill->ill_lock); 4841 return (ipif); 4842 } 4843 } else if (ipif->ipif_subnet == (addr & ipif->ipif_net_mask)) { 4844 ipif_refhold_locked(ipif); 4845 mutex_exit(&ill->ill_lock); 4846 return (ipif); 4847 } 4848 } 4849 mutex_exit(&ill->ill_lock); 4850 /* 4851 * For a remote destination it isn't possible to nail down a particular 4852 * ipif. 4853 */ 4854 4855 /* Pick the first interface */ 4856 ipif = ipif_get_next_ipif(NULL, ill); 4857 return (ipif); 4858 } 4859 4860 /* 4861 * This func does not prevent refcnt from increasing. But if 4862 * the caller has taken steps to that effect, then this func 4863 * can be used to determine whether the ill has become quiescent 4864 */ 4865 static boolean_t 4866 ill_is_quiescent(ill_t *ill) 4867 { 4868 ipif_t *ipif; 4869 4870 ASSERT(MUTEX_HELD(&ill->ill_lock)); 4871 4872 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 4873 if (ipif->ipif_refcnt != 0) 4874 return (B_FALSE); 4875 } 4876 if (!ILL_DOWN_OK(ill) || ill->ill_refcnt != 0) { 4877 return (B_FALSE); 4878 } 4879 return (B_TRUE); 4880 } 4881 4882 boolean_t 4883 ill_is_freeable(ill_t *ill) 4884 { 4885 ipif_t *ipif; 4886 4887 ASSERT(MUTEX_HELD(&ill->ill_lock)); 4888 4889 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 4890 if (ipif->ipif_refcnt != 0) { 4891 return (B_FALSE); 4892 } 4893 } 4894 if (!ILL_FREE_OK(ill) || ill->ill_refcnt != 0) { 4895 return (B_FALSE); 4896 } 4897 return (B_TRUE); 4898 } 4899 4900 /* 4901 * This func does not prevent refcnt from increasing. But if 4902 * the caller has taken steps to that effect, then this func 4903 * can be used to determine whether the ipif has become quiescent 4904 */ 4905 static boolean_t 4906 ipif_is_quiescent(ipif_t *ipif) 4907 { 4908 ill_t *ill; 4909 4910 ASSERT(MUTEX_HELD(&ipif->ipif_ill->ill_lock)); 4911 4912 if (ipif->ipif_refcnt != 0) 4913 return (B_FALSE); 4914 4915 ill = ipif->ipif_ill; 4916 if (ill->ill_ipif_up_count != 0 || ill->ill_ipif_dup_count != 0 || 4917 ill->ill_logical_down) { 4918 return (B_TRUE); 4919 } 4920 4921 /* This is the last ipif going down or being deleted on this ill */ 4922 if (ill->ill_ire_cnt != 0 || ill->ill_refcnt != 0) { 4923 return (B_FALSE); 4924 } 4925 4926 return (B_TRUE); 4927 } 4928 4929 /* 4930 * return true if the ipif can be destroyed: the ipif has to be quiescent 4931 * with zero references from ire/ilm to it. 4932 */ 4933 static boolean_t 4934 ipif_is_freeable(ipif_t *ipif) 4935 { 4936 ASSERT(MUTEX_HELD(&ipif->ipif_ill->ill_lock)); 4937 ASSERT(ipif->ipif_id != 0); 4938 return (ipif->ipif_refcnt == 0); 4939 } 4940 4941 /* 4942 * The ipif/ill/ire has been refreled. Do the tail processing. 4943 * Determine if the ipif or ill in question has become quiescent and if so 4944 * wakeup close and/or restart any queued pending ioctl that is waiting 4945 * for the ipif_down (or ill_down) 4946 */ 4947 void 4948 ipif_ill_refrele_tail(ill_t *ill) 4949 { 4950 mblk_t *mp; 4951 conn_t *connp; 4952 ipsq_t *ipsq; 4953 ipxop_t *ipx; 4954 ipif_t *ipif; 4955 dl_notify_ind_t *dlindp; 4956 4957 ASSERT(MUTEX_HELD(&ill->ill_lock)); 4958 4959 if ((ill->ill_state_flags & ILL_CONDEMNED) && ill_is_freeable(ill)) { 4960 /* ip_modclose() may be waiting */ 4961 cv_broadcast(&ill->ill_cv); 4962 } 4963 4964 ipsq = ill->ill_phyint->phyint_ipsq; 4965 mutex_enter(&ipsq->ipsq_lock); 4966 ipx = ipsq->ipsq_xop; 4967 mutex_enter(&ipx->ipx_lock); 4968 if (ipx->ipx_waitfor == 0) /* no one's waiting; bail */ 4969 goto unlock; 4970 4971 ASSERT(ipx->ipx_pending_mp != NULL && ipx->ipx_pending_ipif != NULL); 4972 4973 ipif = ipx->ipx_pending_ipif; 4974 if (ipif->ipif_ill != ill) /* wait is for another ill; bail */ 4975 goto unlock; 4976 4977 switch (ipx->ipx_waitfor) { 4978 case IPIF_DOWN: 4979 if (!ipif_is_quiescent(ipif)) 4980 goto unlock; 4981 break; 4982 case IPIF_FREE: 4983 if (!ipif_is_freeable(ipif)) 4984 goto unlock; 4985 break; 4986 case ILL_DOWN: 4987 if (!ill_is_quiescent(ill)) 4988 goto unlock; 4989 break; 4990 case ILL_FREE: 4991 /* 4992 * ILL_FREE is only for loopback; normal ill teardown waits 4993 * synchronously in ip_modclose() without using ipx_waitfor, 4994 * handled by the cv_broadcast() at the top of this function. 4995 */ 4996 if (!ill_is_freeable(ill)) 4997 goto unlock; 4998 break; 4999 default: 5000 cmn_err(CE_PANIC, "ipsq: %p unknown ipx_waitfor %d\n", 5001 (void *)ipsq, ipx->ipx_waitfor); 5002 } 5003 5004 ill_refhold_locked(ill); /* for qwriter_ip() call below */ 5005 mutex_exit(&ipx->ipx_lock); 5006 mp = ipsq_pending_mp_get(ipsq, &connp); 5007 mutex_exit(&ipsq->ipsq_lock); 5008 mutex_exit(&ill->ill_lock); 5009 5010 ASSERT(mp != NULL); 5011 /* 5012 * NOTE: all of the qwriter_ip() calls below use CUR_OP since 5013 * we can only get here when the current operation decides it 5014 * it needs to quiesce via ipsq_pending_mp_add(). 5015 */ 5016 switch (mp->b_datap->db_type) { 5017 case M_PCPROTO: 5018 case M_PROTO: 5019 /* 5020 * For now, only DL_NOTIFY_IND messages can use this facility. 5021 */ 5022 dlindp = (dl_notify_ind_t *)mp->b_rptr; 5023 ASSERT(dlindp->dl_primitive == DL_NOTIFY_IND); 5024 5025 switch (dlindp->dl_notification) { 5026 case DL_NOTE_PHYS_ADDR: 5027 qwriter_ip(ill, ill->ill_rq, mp, 5028 ill_set_phys_addr_tail, CUR_OP, B_TRUE); 5029 return; 5030 case DL_NOTE_REPLUMB: 5031 qwriter_ip(ill, ill->ill_rq, mp, 5032 ill_replumb_tail, CUR_OP, B_TRUE); 5033 return; 5034 default: 5035 ASSERT(0); 5036 ill_refrele(ill); 5037 } 5038 break; 5039 5040 case M_ERROR: 5041 case M_HANGUP: 5042 qwriter_ip(ill, ill->ill_rq, mp, ipif_all_down_tail, CUR_OP, 5043 B_TRUE); 5044 return; 5045 5046 case M_IOCTL: 5047 case M_IOCDATA: 5048 qwriter_ip(ill, (connp != NULL ? CONNP_TO_WQ(connp) : 5049 ill->ill_wq), mp, ip_reprocess_ioctl, CUR_OP, B_TRUE); 5050 return; 5051 5052 default: 5053 cmn_err(CE_PANIC, "ipif_ill_refrele_tail mp %p " 5054 "db_type %d\n", (void *)mp, mp->b_datap->db_type); 5055 } 5056 return; 5057 unlock: 5058 mutex_exit(&ipsq->ipsq_lock); 5059 mutex_exit(&ipx->ipx_lock); 5060 mutex_exit(&ill->ill_lock); 5061 } 5062 5063 #ifdef DEBUG 5064 /* Reuse trace buffer from beginning (if reached the end) and record trace */ 5065 static void 5066 th_trace_rrecord(th_trace_t *th_trace) 5067 { 5068 tr_buf_t *tr_buf; 5069 uint_t lastref; 5070 5071 lastref = th_trace->th_trace_lastref; 5072 lastref++; 5073 if (lastref == TR_BUF_MAX) 5074 lastref = 0; 5075 th_trace->th_trace_lastref = lastref; 5076 tr_buf = &th_trace->th_trbuf[lastref]; 5077 tr_buf->tr_time = ddi_get_lbolt(); 5078 tr_buf->tr_depth = getpcstack(tr_buf->tr_stack, TR_STACK_DEPTH); 5079 } 5080 5081 static void 5082 th_trace_free(void *value) 5083 { 5084 th_trace_t *th_trace = value; 5085 5086 ASSERT(th_trace->th_refcnt == 0); 5087 kmem_free(th_trace, sizeof (*th_trace)); 5088 } 5089 5090 /* 5091 * Find or create the per-thread hash table used to track object references. 5092 * The ipst argument is NULL if we shouldn't allocate. 5093 * 5094 * Accesses per-thread data, so there's no need to lock here. 5095 */ 5096 static mod_hash_t * 5097 th_trace_gethash(ip_stack_t *ipst) 5098 { 5099 th_hash_t *thh; 5100 5101 if ((thh = tsd_get(ip_thread_data)) == NULL && ipst != NULL) { 5102 mod_hash_t *mh; 5103 char name[256]; 5104 size_t objsize, rshift; 5105 int retv; 5106 5107 if ((thh = kmem_alloc(sizeof (*thh), KM_NOSLEEP)) == NULL) 5108 return (NULL); 5109 (void) snprintf(name, sizeof (name), "th_trace_%p", 5110 (void *)curthread); 5111 5112 /* 5113 * We use mod_hash_create_extended here rather than the more 5114 * obvious mod_hash_create_ptrhash because the latter has a 5115 * hard-coded KM_SLEEP, and we'd prefer to fail rather than 5116 * block. 5117 */ 5118 objsize = MAX(MAX(sizeof (ill_t), sizeof (ipif_t)), 5119 MAX(sizeof (ire_t), sizeof (ncec_t))); 5120 rshift = highbit(objsize); 5121 mh = mod_hash_create_extended(name, 64, mod_hash_null_keydtor, 5122 th_trace_free, mod_hash_byptr, (void *)rshift, 5123 mod_hash_ptrkey_cmp, KM_NOSLEEP); 5124 if (mh == NULL) { 5125 kmem_free(thh, sizeof (*thh)); 5126 return (NULL); 5127 } 5128 thh->thh_hash = mh; 5129 thh->thh_ipst = ipst; 5130 /* 5131 * We trace ills, ipifs, ires, and nces. All of these are 5132 * per-IP-stack, so the lock on the thread list is as well. 5133 */ 5134 rw_enter(&ip_thread_rwlock, RW_WRITER); 5135 list_insert_tail(&ip_thread_list, thh); 5136 rw_exit(&ip_thread_rwlock); 5137 retv = tsd_set(ip_thread_data, thh); 5138 ASSERT(retv == 0); 5139 } 5140 return (thh != NULL ? thh->thh_hash : NULL); 5141 } 5142 5143 boolean_t 5144 th_trace_ref(const void *obj, ip_stack_t *ipst) 5145 { 5146 th_trace_t *th_trace; 5147 mod_hash_t *mh; 5148 mod_hash_val_t val; 5149 5150 if ((mh = th_trace_gethash(ipst)) == NULL) 5151 return (B_FALSE); 5152 5153 /* 5154 * Attempt to locate the trace buffer for this obj and thread. 5155 * If it does not exist, then allocate a new trace buffer and 5156 * insert into the hash. 5157 */ 5158 if (mod_hash_find(mh, (mod_hash_key_t)obj, &val) == MH_ERR_NOTFOUND) { 5159 th_trace = kmem_zalloc(sizeof (th_trace_t), KM_NOSLEEP); 5160 if (th_trace == NULL) 5161 return (B_FALSE); 5162 5163 th_trace->th_id = curthread; 5164 if (mod_hash_insert(mh, (mod_hash_key_t)obj, 5165 (mod_hash_val_t)th_trace) != 0) { 5166 kmem_free(th_trace, sizeof (th_trace_t)); 5167 return (B_FALSE); 5168 } 5169 } else { 5170 th_trace = (th_trace_t *)val; 5171 } 5172 5173 ASSERT(th_trace->th_refcnt >= 0 && 5174 th_trace->th_refcnt < TR_BUF_MAX - 1); 5175 5176 th_trace->th_refcnt++; 5177 th_trace_rrecord(th_trace); 5178 return (B_TRUE); 5179 } 5180 5181 /* 5182 * For the purpose of tracing a reference release, we assume that global 5183 * tracing is always on and that the same thread initiated the reference hold 5184 * is releasing. 5185 */ 5186 void 5187 th_trace_unref(const void *obj) 5188 { 5189 int retv; 5190 mod_hash_t *mh; 5191 th_trace_t *th_trace; 5192 mod_hash_val_t val; 5193 5194 mh = th_trace_gethash(NULL); 5195 retv = mod_hash_find(mh, (mod_hash_key_t)obj, &val); 5196 ASSERT(retv == 0); 5197 th_trace = (th_trace_t *)val; 5198 5199 ASSERT(th_trace->th_refcnt > 0); 5200 th_trace->th_refcnt--; 5201 th_trace_rrecord(th_trace); 5202 } 5203 5204 /* 5205 * If tracing has been disabled, then we assume that the reference counts are 5206 * now useless, and we clear them out before destroying the entries. 5207 */ 5208 void 5209 th_trace_cleanup(const void *obj, boolean_t trace_disable) 5210 { 5211 th_hash_t *thh; 5212 mod_hash_t *mh; 5213 mod_hash_val_t val; 5214 th_trace_t *th_trace; 5215 int retv; 5216 5217 rw_enter(&ip_thread_rwlock, RW_READER); 5218 for (thh = list_head(&ip_thread_list); thh != NULL; 5219 thh = list_next(&ip_thread_list, thh)) { 5220 if (mod_hash_find(mh = thh->thh_hash, (mod_hash_key_t)obj, 5221 &val) == 0) { 5222 th_trace = (th_trace_t *)val; 5223 if (trace_disable) 5224 th_trace->th_refcnt = 0; 5225 retv = mod_hash_destroy(mh, (mod_hash_key_t)obj); 5226 ASSERT(retv == 0); 5227 } 5228 } 5229 rw_exit(&ip_thread_rwlock); 5230 } 5231 5232 void 5233 ipif_trace_ref(ipif_t *ipif) 5234 { 5235 ASSERT(MUTEX_HELD(&ipif->ipif_ill->ill_lock)); 5236 5237 if (ipif->ipif_trace_disable) 5238 return; 5239 5240 if (!th_trace_ref(ipif, ipif->ipif_ill->ill_ipst)) { 5241 ipif->ipif_trace_disable = B_TRUE; 5242 ipif_trace_cleanup(ipif); 5243 } 5244 } 5245 5246 void 5247 ipif_untrace_ref(ipif_t *ipif) 5248 { 5249 ASSERT(MUTEX_HELD(&ipif->ipif_ill->ill_lock)); 5250 5251 if (!ipif->ipif_trace_disable) 5252 th_trace_unref(ipif); 5253 } 5254 5255 void 5256 ill_trace_ref(ill_t *ill) 5257 { 5258 ASSERT(MUTEX_HELD(&ill->ill_lock)); 5259 5260 if (ill->ill_trace_disable) 5261 return; 5262 5263 if (!th_trace_ref(ill, ill->ill_ipst)) { 5264 ill->ill_trace_disable = B_TRUE; 5265 ill_trace_cleanup(ill); 5266 } 5267 } 5268 5269 void 5270 ill_untrace_ref(ill_t *ill) 5271 { 5272 ASSERT(MUTEX_HELD(&ill->ill_lock)); 5273 5274 if (!ill->ill_trace_disable) 5275 th_trace_unref(ill); 5276 } 5277 5278 /* 5279 * Called when ipif is unplumbed or when memory alloc fails. Note that on 5280 * failure, ipif_trace_disable is set. 5281 */ 5282 static void 5283 ipif_trace_cleanup(const ipif_t *ipif) 5284 { 5285 th_trace_cleanup(ipif, ipif->ipif_trace_disable); 5286 } 5287 5288 /* 5289 * Called when ill is unplumbed or when memory alloc fails. Note that on 5290 * failure, ill_trace_disable is set. 5291 */ 5292 static void 5293 ill_trace_cleanup(const ill_t *ill) 5294 { 5295 th_trace_cleanup(ill, ill->ill_trace_disable); 5296 } 5297 #endif /* DEBUG */ 5298 5299 void 5300 ipif_refhold_locked(ipif_t *ipif) 5301 { 5302 ASSERT(MUTEX_HELD(&ipif->ipif_ill->ill_lock)); 5303 ipif->ipif_refcnt++; 5304 IPIF_TRACE_REF(ipif); 5305 } 5306 5307 void 5308 ipif_refhold(ipif_t *ipif) 5309 { 5310 ill_t *ill; 5311 5312 ill = ipif->ipif_ill; 5313 mutex_enter(&ill->ill_lock); 5314 ipif->ipif_refcnt++; 5315 IPIF_TRACE_REF(ipif); 5316 mutex_exit(&ill->ill_lock); 5317 } 5318 5319 /* 5320 * Must not be called while holding any locks. Otherwise if this is 5321 * the last reference to be released there is a chance of recursive mutex 5322 * panic due to ipif_refrele -> ipif_ill_refrele_tail -> qwriter_ip trying 5323 * to restart an ioctl. 5324 */ 5325 void 5326 ipif_refrele(ipif_t *ipif) 5327 { 5328 ill_t *ill; 5329 5330 ill = ipif->ipif_ill; 5331 5332 mutex_enter(&ill->ill_lock); 5333 ASSERT(ipif->ipif_refcnt != 0); 5334 ipif->ipif_refcnt--; 5335 IPIF_UNTRACE_REF(ipif); 5336 if (ipif->ipif_refcnt != 0) { 5337 mutex_exit(&ill->ill_lock); 5338 return; 5339 } 5340 5341 /* Drops the ill_lock */ 5342 ipif_ill_refrele_tail(ill); 5343 } 5344 5345 ipif_t * 5346 ipif_get_next_ipif(ipif_t *curr, ill_t *ill) 5347 { 5348 ipif_t *ipif; 5349 5350 mutex_enter(&ill->ill_lock); 5351 for (ipif = (curr == NULL ? ill->ill_ipif : curr->ipif_next); 5352 ipif != NULL; ipif = ipif->ipif_next) { 5353 if (IPIF_IS_CONDEMNED(ipif)) 5354 continue; 5355 ipif_refhold_locked(ipif); 5356 mutex_exit(&ill->ill_lock); 5357 return (ipif); 5358 } 5359 mutex_exit(&ill->ill_lock); 5360 return (NULL); 5361 } 5362 5363 /* 5364 * TODO: make this table extendible at run time 5365 * Return a pointer to the mac type info for 'mac_type' 5366 */ 5367 static ip_m_t * 5368 ip_m_lookup(t_uscalar_t mac_type) 5369 { 5370 ip_m_t *ipm; 5371 5372 for (ipm = ip_m_tbl; ipm < A_END(ip_m_tbl); ipm++) 5373 if (ipm->ip_m_mac_type == mac_type) 5374 return (ipm); 5375 return (NULL); 5376 } 5377 5378 /* 5379 * Make a link layer address from the multicast IP address *addr. 5380 * To form the link layer address, invoke the ip_m_v*mapping function 5381 * associated with the link-layer type. 5382 */ 5383 void 5384 ip_mcast_mapping(ill_t *ill, uchar_t *addr, uchar_t *hwaddr) 5385 { 5386 ip_m_t *ipm; 5387 5388 if (ill->ill_net_type == IRE_IF_NORESOLVER) 5389 return; 5390 5391 ASSERT(addr != NULL); 5392 5393 ipm = ip_m_lookup(ill->ill_mactype); 5394 if (ipm == NULL || 5395 (ill->ill_isv6 && ipm->ip_m_v6mapping == NULL) || 5396 (!ill->ill_isv6 && ipm->ip_m_v4mapping == NULL)) { 5397 ip0dbg(("no mapping for ill %s mactype 0x%x\n", 5398 ill->ill_name, ill->ill_mactype)); 5399 return; 5400 } 5401 if (ill->ill_isv6) 5402 (*ipm->ip_m_v6mapping)(ill, addr, hwaddr); 5403 else 5404 (*ipm->ip_m_v4mapping)(ill, addr, hwaddr); 5405 } 5406 5407 /* 5408 * ip_rt_add is called to add an IPv4 route to the forwarding table. 5409 * ill is passed in to associate it with the correct interface. 5410 * If ire_arg is set, then we return the held IRE in that location. 5411 */ 5412 int 5413 ip_rt_add(ipaddr_t dst_addr, ipaddr_t mask, ipaddr_t gw_addr, 5414 ipaddr_t src_addr, int flags, ill_t *ill, ire_t **ire_arg, 5415 boolean_t ioctl_msg, struct rtsa_s *sp, ip_stack_t *ipst, zoneid_t zoneid) 5416 { 5417 ire_t *ire, *nire; 5418 ire_t *gw_ire = NULL; 5419 ipif_t *ipif = NULL; 5420 uint_t type; 5421 int match_flags = MATCH_IRE_TYPE; 5422 tsol_gc_t *gc = NULL; 5423 tsol_gcgrp_t *gcgrp = NULL; 5424 boolean_t gcgrp_xtraref = B_FALSE; 5425 boolean_t cgtp_broadcast; 5426 5427 ip1dbg(("ip_rt_add:")); 5428 5429 if (ire_arg != NULL) 5430 *ire_arg = NULL; 5431 5432 /* 5433 * If this is the case of RTF_HOST being set, then we set the netmask 5434 * to all ones (regardless if one was supplied). 5435 */ 5436 if (flags & RTF_HOST) 5437 mask = IP_HOST_MASK; 5438 5439 /* 5440 * Prevent routes with a zero gateway from being created (since 5441 * interfaces can currently be plumbed and brought up no assigned 5442 * address). 5443 */ 5444 if (gw_addr == 0) 5445 return (ENETUNREACH); 5446 /* 5447 * Get the ipif, if any, corresponding to the gw_addr 5448 * If -ifp was specified we restrict ourselves to the ill, otherwise 5449 * we match on the gatway and destination to handle unnumbered pt-pt 5450 * interfaces. 5451 */ 5452 if (ill != NULL) 5453 ipif = ipif_lookup_addr(gw_addr, ill, ALL_ZONES, ipst); 5454 else 5455 ipif = ipif_lookup_interface(gw_addr, dst_addr, ipst); 5456 if (ipif != NULL) { 5457 if (IS_VNI(ipif->ipif_ill)) { 5458 ipif_refrele(ipif); 5459 return (EINVAL); 5460 } 5461 } 5462 5463 /* 5464 * GateD will attempt to create routes with a loopback interface 5465 * address as the gateway and with RTF_GATEWAY set. We allow 5466 * these routes to be added, but create them as interface routes 5467 * since the gateway is an interface address. 5468 */ 5469 if ((ipif != NULL) && (ipif->ipif_ire_type == IRE_LOOPBACK)) { 5470 flags &= ~RTF_GATEWAY; 5471 if (gw_addr == INADDR_LOOPBACK && dst_addr == INADDR_LOOPBACK && 5472 mask == IP_HOST_MASK) { 5473 ire = ire_ftable_lookup_v4(dst_addr, 0, 0, IRE_LOOPBACK, 5474 NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, 0, ipst, 5475 NULL); 5476 if (ire != NULL) { 5477 ire_refrele(ire); 5478 ipif_refrele(ipif); 5479 return (EEXIST); 5480 } 5481 ip1dbg(("ip_rt_add: 0x%p creating IRE 0x%x" 5482 "for 0x%x\n", (void *)ipif, 5483 ipif->ipif_ire_type, 5484 ntohl(ipif->ipif_lcl_addr))); 5485 ire = ire_create( 5486 (uchar_t *)&dst_addr, /* dest address */ 5487 (uchar_t *)&mask, /* mask */ 5488 NULL, /* no gateway */ 5489 ipif->ipif_ire_type, /* LOOPBACK */ 5490 ipif->ipif_ill, 5491 zoneid, 5492 (ipif->ipif_flags & IPIF_PRIVATE) ? RTF_PRIVATE : 0, 5493 NULL, 5494 ipst); 5495 5496 if (ire == NULL) { 5497 ipif_refrele(ipif); 5498 return (ENOMEM); 5499 } 5500 /* src address assigned by the caller? */ 5501 if ((src_addr != INADDR_ANY) && (flags & RTF_SETSRC)) 5502 ire->ire_setsrc_addr = src_addr; 5503 5504 nire = ire_add(ire); 5505 if (nire == NULL) { 5506 /* 5507 * In the result of failure, ire_add() will have 5508 * already deleted the ire in question, so there 5509 * is no need to do that here. 5510 */ 5511 ipif_refrele(ipif); 5512 return (ENOMEM); 5513 } 5514 /* 5515 * Check if it was a duplicate entry. This handles 5516 * the case of two racing route adds for the same route 5517 */ 5518 if (nire != ire) { 5519 ASSERT(nire->ire_identical_ref > 1); 5520 ire_delete(nire); 5521 ire_refrele(nire); 5522 ipif_refrele(ipif); 5523 return (EEXIST); 5524 } 5525 ire = nire; 5526 goto save_ire; 5527 } 5528 } 5529 5530 /* 5531 * The routes for multicast with CGTP are quite special in that 5532 * the gateway is the local interface address, yet RTF_GATEWAY 5533 * is set. We turn off RTF_GATEWAY to provide compatibility with 5534 * this undocumented and unusual use of multicast routes. 5535 */ 5536 if ((flags & RTF_MULTIRT) && ipif != NULL) 5537 flags &= ~RTF_GATEWAY; 5538 5539 /* 5540 * Traditionally, interface routes are ones where RTF_GATEWAY isn't set 5541 * and the gateway address provided is one of the system's interface 5542 * addresses. By using the routing socket interface and supplying an 5543 * RTA_IFP sockaddr with an interface index, an alternate method of 5544 * specifying an interface route to be created is available which uses 5545 * the interface index that specifies the outgoing interface rather than 5546 * the address of an outgoing interface (which may not be able to 5547 * uniquely identify an interface). When coupled with the RTF_GATEWAY 5548 * flag, routes can be specified which not only specify the next-hop to 5549 * be used when routing to a certain prefix, but also which outgoing 5550 * interface should be used. 5551 * 5552 * Previously, interfaces would have unique addresses assigned to them 5553 * and so the address assigned to a particular interface could be used 5554 * to identify a particular interface. One exception to this was the 5555 * case of an unnumbered interface (where IPIF_UNNUMBERED was set). 5556 * 5557 * With the advent of IPv6 and its link-local addresses, this 5558 * restriction was relaxed and interfaces could share addresses between 5559 * themselves. In fact, typically all of the link-local interfaces on 5560 * an IPv6 node or router will have the same link-local address. In 5561 * order to differentiate between these interfaces, the use of an 5562 * interface index is necessary and this index can be carried inside a 5563 * RTA_IFP sockaddr (which is actually a sockaddr_dl). One restriction 5564 * of using the interface index, however, is that all of the ipif's that 5565 * are part of an ill have the same index and so the RTA_IFP sockaddr 5566 * cannot be used to differentiate between ipif's (or logical 5567 * interfaces) that belong to the same ill (physical interface). 5568 * 5569 * For example, in the following case involving IPv4 interfaces and 5570 * logical interfaces 5571 * 5572 * 192.0.2.32 255.255.255.224 192.0.2.33 U if0 5573 * 192.0.2.32 255.255.255.224 192.0.2.34 U if0 5574 * 192.0.2.32 255.255.255.224 192.0.2.35 U if0 5575 * 5576 * the ipif's corresponding to each of these interface routes can be 5577 * uniquely identified by the "gateway" (actually interface address). 5578 * 5579 * In this case involving multiple IPv6 default routes to a particular 5580 * link-local gateway, the use of RTA_IFP is necessary to specify which 5581 * default route is of interest: 5582 * 5583 * default fe80::123:4567:89ab:cdef U if0 5584 * default fe80::123:4567:89ab:cdef U if1 5585 */ 5586 5587 /* RTF_GATEWAY not set */ 5588 if (!(flags & RTF_GATEWAY)) { 5589 if (sp != NULL) { 5590 ip2dbg(("ip_rt_add: gateway security attributes " 5591 "cannot be set with interface route\n")); 5592 if (ipif != NULL) 5593 ipif_refrele(ipif); 5594 return (EINVAL); 5595 } 5596 5597 /* 5598 * Whether or not ill (RTA_IFP) is set, we require that 5599 * the gateway is one of our local addresses. 5600 */ 5601 if (ipif == NULL) 5602 return (ENETUNREACH); 5603 5604 /* 5605 * We use MATCH_IRE_ILL here. If the caller specified an 5606 * interface (from the RTA_IFP sockaddr) we use it, otherwise 5607 * we use the ill derived from the gateway address. 5608 * We can always match the gateway address since we record it 5609 * in ire_gateway_addr. 5610 * We don't allow RTA_IFP to specify a different ill than the 5611 * one matching the ipif to make sure we can delete the route. 5612 */ 5613 match_flags |= MATCH_IRE_GW | MATCH_IRE_ILL; 5614 if (ill == NULL) { 5615 ill = ipif->ipif_ill; 5616 } else if (ill != ipif->ipif_ill) { 5617 ipif_refrele(ipif); 5618 return (EINVAL); 5619 } 5620 5621 /* 5622 * We check for an existing entry at this point. 5623 * 5624 * Since a netmask isn't passed in via the ioctl interface 5625 * (SIOCADDRT), we don't check for a matching netmask in that 5626 * case. 5627 */ 5628 if (!ioctl_msg) 5629 match_flags |= MATCH_IRE_MASK; 5630 ire = ire_ftable_lookup_v4(dst_addr, mask, gw_addr, 5631 IRE_INTERFACE, ill, ALL_ZONES, NULL, match_flags, 0, ipst, 5632 NULL); 5633 if (ire != NULL) { 5634 ire_refrele(ire); 5635 ipif_refrele(ipif); 5636 return (EEXIST); 5637 } 5638 5639 /* 5640 * Create a copy of the IRE_LOOPBACK, IRE_IF_NORESOLVER or 5641 * IRE_IF_RESOLVER with the modified address, netmask, and 5642 * gateway. 5643 */ 5644 ire = ire_create( 5645 (uchar_t *)&dst_addr, 5646 (uint8_t *)&mask, 5647 (uint8_t *)&gw_addr, 5648 ill->ill_net_type, 5649 ill, 5650 zoneid, 5651 flags, 5652 NULL, 5653 ipst); 5654 if (ire == NULL) { 5655 ipif_refrele(ipif); 5656 return (ENOMEM); 5657 } 5658 5659 /* 5660 * Some software (for example, GateD and Sun Cluster) attempts 5661 * to create (what amount to) IRE_PREFIX routes with the 5662 * loopback address as the gateway. This is primarily done to 5663 * set up prefixes with the RTF_REJECT flag set (for example, 5664 * when generating aggregate routes.) 5665 * 5666 * If the IRE type (as defined by ill->ill_net_type) is 5667 * IRE_LOOPBACK, then we map the request into a 5668 * IRE_IF_NORESOLVER. We also OR in the RTF_BLACKHOLE flag as 5669 * these interface routes, by definition, can only be that. 5670 * 5671 * Needless to say, the real IRE_LOOPBACK is NOT created by this 5672 * routine, but rather using ire_create() directly. 5673 * 5674 */ 5675 if (ill->ill_net_type == IRE_LOOPBACK) { 5676 ire->ire_type = IRE_IF_NORESOLVER; 5677 ire->ire_flags |= RTF_BLACKHOLE; 5678 } 5679 5680 /* src address assigned by the caller? */ 5681 if ((src_addr != INADDR_ANY) && (flags & RTF_SETSRC)) 5682 ire->ire_setsrc_addr = src_addr; 5683 5684 nire = ire_add(ire); 5685 if (nire == NULL) { 5686 /* 5687 * In the result of failure, ire_add() will have 5688 * already deleted the ire in question, so there 5689 * is no need to do that here. 5690 */ 5691 ipif_refrele(ipif); 5692 return (ENOMEM); 5693 } 5694 /* 5695 * Check if it was a duplicate entry. This handles 5696 * the case of two racing route adds for the same route 5697 */ 5698 if (nire != ire) { 5699 ire_delete(nire); 5700 ire_refrele(nire); 5701 ipif_refrele(ipif); 5702 return (EEXIST); 5703 } 5704 ire = nire; 5705 goto save_ire; 5706 } 5707 5708 /* 5709 * Get an interface IRE for the specified gateway. 5710 * If we don't have an IRE_IF_NORESOLVER or IRE_IF_RESOLVER for the 5711 * gateway, it is currently unreachable and we fail the request 5712 * accordingly. We reject any RTF_GATEWAY routes where the gateway 5713 * is an IRE_LOCAL or IRE_LOOPBACK. 5714 * If RTA_IFP was specified we look on that particular ill. 5715 */ 5716 if (ill != NULL) 5717 match_flags |= MATCH_IRE_ILL; 5718 5719 /* Check whether the gateway is reachable. */ 5720 again: 5721 type = IRE_INTERFACE | IRE_LOCAL | IRE_LOOPBACK; 5722 if (flags & RTF_INDIRECT) 5723 type |= IRE_OFFLINK; 5724 5725 gw_ire = ire_ftable_lookup_v4(gw_addr, 0, 0, type, ill, 5726 ALL_ZONES, NULL, match_flags, 0, ipst, NULL); 5727 if (gw_ire == NULL) { 5728 /* 5729 * With IPMP, we allow host routes to influence in.mpathd's 5730 * target selection. However, if the test addresses are on 5731 * their own network, the above lookup will fail since the 5732 * underlying IRE_INTERFACEs are marked hidden. So allow 5733 * hidden test IREs to be found and try again. 5734 */ 5735 if (!(match_flags & MATCH_IRE_TESTHIDDEN)) { 5736 match_flags |= MATCH_IRE_TESTHIDDEN; 5737 goto again; 5738 } 5739 if (ipif != NULL) 5740 ipif_refrele(ipif); 5741 return (ENETUNREACH); 5742 } 5743 if (gw_ire->ire_type & (IRE_LOCAL|IRE_LOOPBACK)) { 5744 ire_refrele(gw_ire); 5745 if (ipif != NULL) 5746 ipif_refrele(ipif); 5747 return (ENETUNREACH); 5748 } 5749 5750 /* 5751 * We create one of three types of IREs as a result of this request 5752 * based on the netmask. A netmask of all ones (which is automatically 5753 * assumed when RTF_HOST is set) results in an IRE_HOST being created. 5754 * An all zeroes netmask implies a default route so an IRE_DEFAULT is 5755 * created. Otherwise, an IRE_PREFIX route is created for the 5756 * destination prefix. 5757 */ 5758 if (mask == IP_HOST_MASK) 5759 type = IRE_HOST; 5760 else if (mask == 0) 5761 type = IRE_DEFAULT; 5762 else 5763 type = IRE_PREFIX; 5764 5765 /* check for a duplicate entry */ 5766 ire = ire_ftable_lookup_v4(dst_addr, mask, gw_addr, type, ill, 5767 ALL_ZONES, NULL, match_flags | MATCH_IRE_MASK | MATCH_IRE_GW, 5768 0, ipst, NULL); 5769 if (ire != NULL) { 5770 if (ipif != NULL) 5771 ipif_refrele(ipif); 5772 ire_refrele(gw_ire); 5773 ire_refrele(ire); 5774 return (EEXIST); 5775 } 5776 5777 /* Security attribute exists */ 5778 if (sp != NULL) { 5779 tsol_gcgrp_addr_t ga; 5780 5781 /* find or create the gateway credentials group */ 5782 ga.ga_af = AF_INET; 5783 IN6_IPADDR_TO_V4MAPPED(gw_addr, &ga.ga_addr); 5784 5785 /* we hold reference to it upon success */ 5786 gcgrp = gcgrp_lookup(&ga, B_TRUE); 5787 if (gcgrp == NULL) { 5788 if (ipif != NULL) 5789 ipif_refrele(ipif); 5790 ire_refrele(gw_ire); 5791 return (ENOMEM); 5792 } 5793 5794 /* 5795 * Create and add the security attribute to the group; a 5796 * reference to the group is made upon allocating a new 5797 * entry successfully. If it finds an already-existing 5798 * entry for the security attribute in the group, it simply 5799 * returns it and no new reference is made to the group. 5800 */ 5801 gc = gc_create(sp, gcgrp, &gcgrp_xtraref); 5802 if (gc == NULL) { 5803 if (ipif != NULL) 5804 ipif_refrele(ipif); 5805 /* release reference held by gcgrp_lookup */ 5806 GCGRP_REFRELE(gcgrp); 5807 ire_refrele(gw_ire); 5808 return (ENOMEM); 5809 } 5810 } 5811 5812 /* Create the IRE. */ 5813 ire = ire_create( 5814 (uchar_t *)&dst_addr, /* dest address */ 5815 (uchar_t *)&mask, /* mask */ 5816 (uchar_t *)&gw_addr, /* gateway address */ 5817 (ushort_t)type, /* IRE type */ 5818 ill, 5819 zoneid, 5820 flags, 5821 gc, /* security attribute */ 5822 ipst); 5823 5824 /* 5825 * The ire holds a reference to the 'gc' and the 'gc' holds a 5826 * reference to the 'gcgrp'. We can now release the extra reference 5827 * the 'gcgrp' acquired in the gcgrp_lookup, if it was not used. 5828 */ 5829 if (gcgrp_xtraref) 5830 GCGRP_REFRELE(gcgrp); 5831 if (ire == NULL) { 5832 if (gc != NULL) 5833 GC_REFRELE(gc); 5834 if (ipif != NULL) 5835 ipif_refrele(ipif); 5836 ire_refrele(gw_ire); 5837 return (ENOMEM); 5838 } 5839 5840 /* Before we add, check if an extra CGTP broadcast is needed */ 5841 cgtp_broadcast = ((flags & RTF_MULTIRT) && 5842 ip_type_v4(ire->ire_addr, ipst) == IRE_BROADCAST); 5843 5844 /* src address assigned by the caller? */ 5845 if ((src_addr != INADDR_ANY) && (flags & RTF_SETSRC)) 5846 ire->ire_setsrc_addr = src_addr; 5847 5848 /* 5849 * POLICY: should we allow an RTF_HOST with address INADDR_ANY? 5850 * SUN/OS socket stuff does but do we really want to allow 0.0.0.0? 5851 */ 5852 5853 /* Add the new IRE. */ 5854 nire = ire_add(ire); 5855 if (nire == NULL) { 5856 /* 5857 * In the result of failure, ire_add() will have 5858 * already deleted the ire in question, so there 5859 * is no need to do that here. 5860 */ 5861 if (ipif != NULL) 5862 ipif_refrele(ipif); 5863 ire_refrele(gw_ire); 5864 return (ENOMEM); 5865 } 5866 /* 5867 * Check if it was a duplicate entry. This handles 5868 * the case of two racing route adds for the same route 5869 */ 5870 if (nire != ire) { 5871 ire_delete(nire); 5872 ire_refrele(nire); 5873 if (ipif != NULL) 5874 ipif_refrele(ipif); 5875 ire_refrele(gw_ire); 5876 return (EEXIST); 5877 } 5878 ire = nire; 5879 5880 if (flags & RTF_MULTIRT) { 5881 /* 5882 * Invoke the CGTP (multirouting) filtering module 5883 * to add the dst address in the filtering database. 5884 * Replicated inbound packets coming from that address 5885 * will be filtered to discard the duplicates. 5886 * It is not necessary to call the CGTP filter hook 5887 * when the dst address is a broadcast or multicast, 5888 * because an IP source address cannot be a broadcast 5889 * or a multicast. 5890 */ 5891 if (cgtp_broadcast) { 5892 ip_cgtp_bcast_add(ire, ipst); 5893 goto save_ire; 5894 } 5895 if (ipst->ips_ip_cgtp_filter_ops != NULL && 5896 !CLASSD(ire->ire_addr)) { 5897 int res; 5898 ipif_t *src_ipif; 5899 5900 /* Find the source address corresponding to gw_ire */ 5901 src_ipif = ipif_lookup_addr(gw_ire->ire_gateway_addr, 5902 NULL, zoneid, ipst); 5903 if (src_ipif != NULL) { 5904 res = ipst->ips_ip_cgtp_filter_ops-> 5905 cfo_add_dest_v4( 5906 ipst->ips_netstack->netstack_stackid, 5907 ire->ire_addr, 5908 ire->ire_gateway_addr, 5909 ire->ire_setsrc_addr, 5910 src_ipif->ipif_lcl_addr); 5911 ipif_refrele(src_ipif); 5912 } else { 5913 res = EADDRNOTAVAIL; 5914 } 5915 if (res != 0) { 5916 if (ipif != NULL) 5917 ipif_refrele(ipif); 5918 ire_refrele(gw_ire); 5919 ire_delete(ire); 5920 ire_refrele(ire); /* Held in ire_add */ 5921 return (res); 5922 } 5923 } 5924 } 5925 5926 save_ire: 5927 if (gw_ire != NULL) { 5928 ire_refrele(gw_ire); 5929 gw_ire = NULL; 5930 } 5931 if (ill != NULL) { 5932 /* 5933 * Save enough information so that we can recreate the IRE if 5934 * the interface goes down and then up. The metrics associated 5935 * with the route will be saved as well when rts_setmetrics() is 5936 * called after the IRE has been created. In the case where 5937 * memory cannot be allocated, none of this information will be 5938 * saved. 5939 */ 5940 ill_save_ire(ill, ire); 5941 } 5942 if (ioctl_msg) 5943 ip_rts_rtmsg(RTM_OLDADD, ire, 0, ipst); 5944 if (ire_arg != NULL) { 5945 /* 5946 * Store the ire that was successfully added into where ire_arg 5947 * points to so that callers don't have to look it up 5948 * themselves (but they are responsible for ire_refrele()ing 5949 * the ire when they are finished with it). 5950 */ 5951 *ire_arg = ire; 5952 } else { 5953 ire_refrele(ire); /* Held in ire_add */ 5954 } 5955 if (ipif != NULL) 5956 ipif_refrele(ipif); 5957 return (0); 5958 } 5959 5960 /* 5961 * ip_rt_delete is called to delete an IPv4 route. 5962 * ill is passed in to associate it with the correct interface. 5963 */ 5964 /* ARGSUSED4 */ 5965 int 5966 ip_rt_delete(ipaddr_t dst_addr, ipaddr_t mask, ipaddr_t gw_addr, 5967 uint_t rtm_addrs, int flags, ill_t *ill, boolean_t ioctl_msg, 5968 ip_stack_t *ipst, zoneid_t zoneid) 5969 { 5970 ire_t *ire = NULL; 5971 ipif_t *ipif; 5972 uint_t type; 5973 uint_t match_flags = MATCH_IRE_TYPE; 5974 int err = 0; 5975 5976 ip1dbg(("ip_rt_delete:")); 5977 /* 5978 * If this is the case of RTF_HOST being set, then we set the netmask 5979 * to all ones. Otherwise, we use the netmask if one was supplied. 5980 */ 5981 if (flags & RTF_HOST) { 5982 mask = IP_HOST_MASK; 5983 match_flags |= MATCH_IRE_MASK; 5984 } else if (rtm_addrs & RTA_NETMASK) { 5985 match_flags |= MATCH_IRE_MASK; 5986 } 5987 5988 /* 5989 * Note that RTF_GATEWAY is never set on a delete, therefore 5990 * we check if the gateway address is one of our interfaces first, 5991 * and fall back on RTF_GATEWAY routes. 5992 * 5993 * This makes it possible to delete an original 5994 * IRE_IF_NORESOLVER/IRE_IF_RESOLVER - consistent with SunOS 4.1. 5995 * However, we have RTF_KERNEL set on the ones created by ipif_up 5996 * and those can not be deleted here. 5997 * 5998 * We use MATCH_IRE_ILL if we know the interface. If the caller 5999 * specified an interface (from the RTA_IFP sockaddr) we use it, 6000 * otherwise we use the ill derived from the gateway address. 6001 * We can always match the gateway address since we record it 6002 * in ire_gateway_addr. 6003 * 6004 * For more detail on specifying routes by gateway address and by 6005 * interface index, see the comments in ip_rt_add(). 6006 */ 6007 ipif = ipif_lookup_interface(gw_addr, dst_addr, ipst); 6008 if (ipif != NULL) { 6009 ill_t *ill_match; 6010 6011 if (ill != NULL) 6012 ill_match = ill; 6013 else 6014 ill_match = ipif->ipif_ill; 6015 6016 match_flags |= MATCH_IRE_ILL; 6017 if (ipif->ipif_ire_type == IRE_LOOPBACK) { 6018 ire = ire_ftable_lookup_v4(dst_addr, 0, 0, IRE_LOOPBACK, 6019 ill_match, ALL_ZONES, NULL, match_flags, 0, ipst, 6020 NULL); 6021 } 6022 if (ire == NULL) { 6023 match_flags |= MATCH_IRE_GW; 6024 ire = ire_ftable_lookup_v4(dst_addr, mask, gw_addr, 6025 IRE_INTERFACE, ill_match, ALL_ZONES, NULL, 6026 match_flags, 0, ipst, NULL); 6027 } 6028 /* Avoid deleting routes created by kernel from an ipif */ 6029 if (ire != NULL && (ire->ire_flags & RTF_KERNEL)) { 6030 ire_refrele(ire); 6031 ire = NULL; 6032 } 6033 6034 /* Restore in case we didn't find a match */ 6035 match_flags &= ~(MATCH_IRE_GW|MATCH_IRE_ILL); 6036 } 6037 6038 if (ire == NULL) { 6039 /* 6040 * At this point, the gateway address is not one of our own 6041 * addresses or a matching interface route was not found. We 6042 * set the IRE type to lookup based on whether 6043 * this is a host route, a default route or just a prefix. 6044 * 6045 * If an ill was passed in, then the lookup is based on an 6046 * interface index so MATCH_IRE_ILL is added to match_flags. 6047 */ 6048 match_flags |= MATCH_IRE_GW; 6049 if (ill != NULL) 6050 match_flags |= MATCH_IRE_ILL; 6051 if (mask == IP_HOST_MASK) 6052 type = IRE_HOST; 6053 else if (mask == 0) 6054 type = IRE_DEFAULT; 6055 else 6056 type = IRE_PREFIX; 6057 ire = ire_ftable_lookup_v4(dst_addr, mask, gw_addr, type, ill, 6058 ALL_ZONES, NULL, match_flags, 0, ipst, NULL); 6059 } 6060 6061 if (ipif != NULL) { 6062 ipif_refrele(ipif); 6063 ipif = NULL; 6064 } 6065 6066 if (ire == NULL) 6067 return (ESRCH); 6068 6069 if (ire->ire_flags & RTF_MULTIRT) { 6070 /* 6071 * Invoke the CGTP (multirouting) filtering module 6072 * to remove the dst address from the filtering database. 6073 * Packets coming from that address will no longer be 6074 * filtered to remove duplicates. 6075 */ 6076 if (ipst->ips_ip_cgtp_filter_ops != NULL) { 6077 err = ipst->ips_ip_cgtp_filter_ops->cfo_del_dest_v4( 6078 ipst->ips_netstack->netstack_stackid, 6079 ire->ire_addr, ire->ire_gateway_addr); 6080 } 6081 ip_cgtp_bcast_delete(ire, ipst); 6082 } 6083 6084 ill = ire->ire_ill; 6085 if (ill != NULL) 6086 ill_remove_saved_ire(ill, ire); 6087 if (ioctl_msg) 6088 ip_rts_rtmsg(RTM_OLDDEL, ire, 0, ipst); 6089 ire_delete(ire); 6090 ire_refrele(ire); 6091 return (err); 6092 } 6093 6094 /* 6095 * ip_siocaddrt is called to complete processing of an SIOCADDRT IOCTL. 6096 */ 6097 /* ARGSUSED */ 6098 int 6099 ip_siocaddrt(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, 6100 ip_ioctl_cmd_t *ipip, void *dummy_if_req) 6101 { 6102 ipaddr_t dst_addr; 6103 ipaddr_t gw_addr; 6104 ipaddr_t mask; 6105 int error = 0; 6106 mblk_t *mp1; 6107 struct rtentry *rt; 6108 ipif_t *ipif = NULL; 6109 ip_stack_t *ipst; 6110 6111 ASSERT(q->q_next == NULL); 6112 ipst = CONNQ_TO_IPST(q); 6113 6114 ip1dbg(("ip_siocaddrt:")); 6115 /* Existence of mp1 verified in ip_wput_nondata */ 6116 mp1 = mp->b_cont->b_cont; 6117 rt = (struct rtentry *)mp1->b_rptr; 6118 6119 dst_addr = ((sin_t *)&rt->rt_dst)->sin_addr.s_addr; 6120 gw_addr = ((sin_t *)&rt->rt_gateway)->sin_addr.s_addr; 6121 6122 /* 6123 * If the RTF_HOST flag is on, this is a request to assign a gateway 6124 * to a particular host address. In this case, we set the netmask to 6125 * all ones for the particular destination address. Otherwise, 6126 * determine the netmask to be used based on dst_addr and the interfaces 6127 * in use. 6128 */ 6129 if (rt->rt_flags & RTF_HOST) { 6130 mask = IP_HOST_MASK; 6131 } else { 6132 /* 6133 * Note that ip_subnet_mask returns a zero mask in the case of 6134 * default (an all-zeroes address). 6135 */ 6136 mask = ip_subnet_mask(dst_addr, &ipif, ipst); 6137 } 6138 6139 error = ip_rt_add(dst_addr, mask, gw_addr, 0, rt->rt_flags, NULL, NULL, 6140 B_TRUE, NULL, ipst, ALL_ZONES); 6141 if (ipif != NULL) 6142 ipif_refrele(ipif); 6143 return (error); 6144 } 6145 6146 /* 6147 * ip_siocdelrt is called to complete processing of an SIOCDELRT IOCTL. 6148 */ 6149 /* ARGSUSED */ 6150 int 6151 ip_siocdelrt(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, 6152 ip_ioctl_cmd_t *ipip, void *dummy_if_req) 6153 { 6154 ipaddr_t dst_addr; 6155 ipaddr_t gw_addr; 6156 ipaddr_t mask; 6157 int error; 6158 mblk_t *mp1; 6159 struct rtentry *rt; 6160 ipif_t *ipif = NULL; 6161 ip_stack_t *ipst; 6162 6163 ASSERT(q->q_next == NULL); 6164 ipst = CONNQ_TO_IPST(q); 6165 6166 ip1dbg(("ip_siocdelrt:")); 6167 /* Existence of mp1 verified in ip_wput_nondata */ 6168 mp1 = mp->b_cont->b_cont; 6169 rt = (struct rtentry *)mp1->b_rptr; 6170 6171 dst_addr = ((sin_t *)&rt->rt_dst)->sin_addr.s_addr; 6172 gw_addr = ((sin_t *)&rt->rt_gateway)->sin_addr.s_addr; 6173 6174 /* 6175 * If the RTF_HOST flag is on, this is a request to delete a gateway 6176 * to a particular host address. In this case, we set the netmask to 6177 * all ones for the particular destination address. Otherwise, 6178 * determine the netmask to be used based on dst_addr and the interfaces 6179 * in use. 6180 */ 6181 if (rt->rt_flags & RTF_HOST) { 6182 mask = IP_HOST_MASK; 6183 } else { 6184 /* 6185 * Note that ip_subnet_mask returns a zero mask in the case of 6186 * default (an all-zeroes address). 6187 */ 6188 mask = ip_subnet_mask(dst_addr, &ipif, ipst); 6189 } 6190 6191 error = ip_rt_delete(dst_addr, mask, gw_addr, 6192 RTA_DST | RTA_GATEWAY | RTA_NETMASK, rt->rt_flags, NULL, B_TRUE, 6193 ipst, ALL_ZONES); 6194 if (ipif != NULL) 6195 ipif_refrele(ipif); 6196 return (error); 6197 } 6198 6199 /* 6200 * Enqueue the mp onto the ipsq, chained by b_next. 6201 * b_prev stores the function to be executed later, and b_queue the queue 6202 * where this mp originated. 6203 */ 6204 void 6205 ipsq_enq(ipsq_t *ipsq, queue_t *q, mblk_t *mp, ipsq_func_t func, int type, 6206 ill_t *pending_ill) 6207 { 6208 conn_t *connp; 6209 ipxop_t *ipx = ipsq->ipsq_xop; 6210 6211 ASSERT(MUTEX_HELD(&ipsq->ipsq_lock)); 6212 ASSERT(MUTEX_HELD(&ipx->ipx_lock)); 6213 ASSERT(func != NULL); 6214 6215 mp->b_queue = q; 6216 mp->b_prev = (void *)func; 6217 mp->b_next = NULL; 6218 6219 switch (type) { 6220 case CUR_OP: 6221 if (ipx->ipx_mptail != NULL) { 6222 ASSERT(ipx->ipx_mphead != NULL); 6223 ipx->ipx_mptail->b_next = mp; 6224 } else { 6225 ASSERT(ipx->ipx_mphead == NULL); 6226 ipx->ipx_mphead = mp; 6227 } 6228 ipx->ipx_mptail = mp; 6229 break; 6230 6231 case NEW_OP: 6232 if (ipsq->ipsq_xopq_mptail != NULL) { 6233 ASSERT(ipsq->ipsq_xopq_mphead != NULL); 6234 ipsq->ipsq_xopq_mptail->b_next = mp; 6235 } else { 6236 ASSERT(ipsq->ipsq_xopq_mphead == NULL); 6237 ipsq->ipsq_xopq_mphead = mp; 6238 } 6239 ipsq->ipsq_xopq_mptail = mp; 6240 ipx->ipx_ipsq_queued = B_TRUE; 6241 break; 6242 6243 case SWITCH_OP: 6244 ASSERT(ipsq->ipsq_swxop != NULL); 6245 /* only one switch operation is currently allowed */ 6246 ASSERT(ipsq->ipsq_switch_mp == NULL); 6247 ipsq->ipsq_switch_mp = mp; 6248 ipx->ipx_ipsq_queued = B_TRUE; 6249 break; 6250 default: 6251 cmn_err(CE_PANIC, "ipsq_enq %d type \n", type); 6252 } 6253 6254 if (CONN_Q(q) && pending_ill != NULL) { 6255 connp = Q_TO_CONN(q); 6256 ASSERT(MUTEX_HELD(&connp->conn_lock)); 6257 connp->conn_oper_pending_ill = pending_ill; 6258 } 6259 } 6260 6261 /* 6262 * Dequeue the next message that requested exclusive access to this IPSQ's 6263 * xop. Specifically: 6264 * 6265 * 1. If we're still processing the current operation on `ipsq', then 6266 * dequeue the next message for the operation (from ipx_mphead), or 6267 * return NULL if there are no queued messages for the operation. 6268 * These messages are queued via CUR_OP to qwriter_ip() and friends. 6269 * 6270 * 2. If the current operation on `ipsq' has completed (ipx_current_ipif is 6271 * not set) see if the ipsq has requested an xop switch. If so, switch 6272 * `ipsq' to a different xop. Xop switches only happen when joining or 6273 * leaving IPMP groups and require a careful dance -- see the comments 6274 * in-line below for details. If we're leaving a group xop or if we're 6275 * joining a group xop and become writer on it, then we proceed to (3). 6276 * Otherwise, we return NULL and exit the xop. 6277 * 6278 * 3. For each IPSQ in the xop, return any switch operation stored on 6279 * ipsq_switch_mp (set via SWITCH_OP); these must be processed before 6280 * any other messages queued on the IPSQ. Otherwise, dequeue the next 6281 * exclusive operation (queued via NEW_OP) stored on ipsq_xopq_mphead. 6282 * Note that if the phyint tied to `ipsq' is not using IPMP there will 6283 * only be one IPSQ in the xop. Otherwise, there will be one IPSQ for 6284 * each phyint in the group, including the IPMP meta-interface phyint. 6285 */ 6286 static mblk_t * 6287 ipsq_dq(ipsq_t *ipsq) 6288 { 6289 ill_t *illv4, *illv6; 6290 mblk_t *mp; 6291 ipsq_t *xopipsq; 6292 ipsq_t *leftipsq = NULL; 6293 ipxop_t *ipx; 6294 phyint_t *phyi = ipsq->ipsq_phyint; 6295 ip_stack_t *ipst = ipsq->ipsq_ipst; 6296 boolean_t emptied = B_FALSE; 6297 6298 /* 6299 * Grab all the locks we need in the defined order (ill_g_lock -> 6300 * ipsq_lock -> ipx_lock); ill_g_lock is needed to use ipsq_next. 6301 */ 6302 rw_enter(&ipst->ips_ill_g_lock, 6303 ipsq->ipsq_swxop != NULL ? RW_WRITER : RW_READER); 6304 mutex_enter(&ipsq->ipsq_lock); 6305 ipx = ipsq->ipsq_xop; 6306 mutex_enter(&ipx->ipx_lock); 6307 6308 /* 6309 * Dequeue the next message associated with the current exclusive 6310 * operation, if any. 6311 */ 6312 if ((mp = ipx->ipx_mphead) != NULL) { 6313 ipx->ipx_mphead = mp->b_next; 6314 if (ipx->ipx_mphead == NULL) 6315 ipx->ipx_mptail = NULL; 6316 mp->b_next = (void *)ipsq; 6317 goto out; 6318 } 6319 6320 if (ipx->ipx_current_ipif != NULL) 6321 goto empty; 6322 6323 if (ipsq->ipsq_swxop != NULL) { 6324 /* 6325 * The exclusive operation that is now being completed has 6326 * requested a switch to a different xop. This happens 6327 * when an interface joins or leaves an IPMP group. Joins 6328 * happen through SIOCSLIFGROUPNAME (ip_sioctl_groupname()). 6329 * Leaves happen via SIOCSLIFGROUPNAME, interface unplumb 6330 * (phyint_free()), or interface plumb for an ill type 6331 * not in the IPMP group (ip_rput_dlpi_writer()). 6332 * 6333 * Xop switches are not allowed on the IPMP meta-interface. 6334 */ 6335 ASSERT(phyi == NULL || !(phyi->phyint_flags & PHYI_IPMP)); 6336 ASSERT(RW_WRITE_HELD(&ipst->ips_ill_g_lock)); 6337 DTRACE_PROBE1(ipsq__switch, (ipsq_t *), ipsq); 6338 6339 if (ipsq->ipsq_swxop == &ipsq->ipsq_ownxop) { 6340 /* 6341 * We're switching back to our own xop, so we have two 6342 * xop's to drain/exit: our own, and the group xop 6343 * that we are leaving. 6344 * 6345 * First, pull ourselves out of the group ipsq list. 6346 * This is safe since we're writer on ill_g_lock. 6347 */ 6348 ASSERT(ipsq->ipsq_xop != &ipsq->ipsq_ownxop); 6349 6350 xopipsq = ipx->ipx_ipsq; 6351 while (xopipsq->ipsq_next != ipsq) 6352 xopipsq = xopipsq->ipsq_next; 6353 6354 xopipsq->ipsq_next = ipsq->ipsq_next; 6355 ipsq->ipsq_next = ipsq; 6356 ipsq->ipsq_xop = ipsq->ipsq_swxop; 6357 ipsq->ipsq_swxop = NULL; 6358 6359 /* 6360 * Second, prepare to exit the group xop. The actual 6361 * ipsq_exit() is done at the end of this function 6362 * since we cannot hold any locks across ipsq_exit(). 6363 * Note that although we drop the group's ipx_lock, no 6364 * threads can proceed since we're still ipx_writer. 6365 */ 6366 leftipsq = xopipsq; 6367 mutex_exit(&ipx->ipx_lock); 6368 6369 /* 6370 * Third, set ipx to point to our own xop (which was 6371 * inactive and therefore can be entered). 6372 */ 6373 ipx = ipsq->ipsq_xop; 6374 mutex_enter(&ipx->ipx_lock); 6375 ASSERT(ipx->ipx_writer == NULL); 6376 ASSERT(ipx->ipx_current_ipif == NULL); 6377 } else { 6378 /* 6379 * We're switching from our own xop to a group xop. 6380 * The requestor of the switch must ensure that the 6381 * group xop cannot go away (e.g. by ensuring the 6382 * phyint associated with the xop cannot go away). 6383 * 6384 * If we can become writer on our new xop, then we'll 6385 * do the drain. Otherwise, the current writer of our 6386 * new xop will do the drain when it exits. 6387 * 6388 * First, splice ourselves into the group IPSQ list. 6389 * This is safe since we're writer on ill_g_lock. 6390 */ 6391 ASSERT(ipsq->ipsq_xop == &ipsq->ipsq_ownxop); 6392 6393 xopipsq = ipsq->ipsq_swxop->ipx_ipsq; 6394 while (xopipsq->ipsq_next != ipsq->ipsq_swxop->ipx_ipsq) 6395 xopipsq = xopipsq->ipsq_next; 6396 6397 xopipsq->ipsq_next = ipsq; 6398 ipsq->ipsq_next = ipsq->ipsq_swxop->ipx_ipsq; 6399 ipsq->ipsq_xop = ipsq->ipsq_swxop; 6400 ipsq->ipsq_swxop = NULL; 6401 6402 /* 6403 * Second, exit our own xop, since it's now unused. 6404 * This is safe since we've got the only reference. 6405 */ 6406 ASSERT(ipx->ipx_writer == curthread); 6407 ipx->ipx_writer = NULL; 6408 VERIFY(--ipx->ipx_reentry_cnt == 0); 6409 ipx->ipx_ipsq_queued = B_FALSE; 6410 mutex_exit(&ipx->ipx_lock); 6411 6412 /* 6413 * Third, set ipx to point to our new xop, and check 6414 * if we can become writer on it. If we cannot, then 6415 * the current writer will drain the IPSQ group when 6416 * it exits. Our ipsq_xop is guaranteed to be stable 6417 * because we're still holding ipsq_lock. 6418 */ 6419 ipx = ipsq->ipsq_xop; 6420 mutex_enter(&ipx->ipx_lock); 6421 if (ipx->ipx_writer != NULL || 6422 ipx->ipx_current_ipif != NULL) { 6423 goto out; 6424 } 6425 } 6426 6427 /* 6428 * Fourth, become writer on our new ipx before we continue 6429 * with the drain. Note that we never dropped ipsq_lock 6430 * above, so no other thread could've raced with us to 6431 * become writer first. Also, we're holding ipx_lock, so 6432 * no other thread can examine the ipx right now. 6433 */ 6434 ASSERT(ipx->ipx_current_ipif == NULL); 6435 ASSERT(ipx->ipx_mphead == NULL && ipx->ipx_mptail == NULL); 6436 VERIFY(ipx->ipx_reentry_cnt++ == 0); 6437 ipx->ipx_writer = curthread; 6438 ipx->ipx_forced = B_FALSE; 6439 #ifdef DEBUG 6440 ipx->ipx_depth = getpcstack(ipx->ipx_stack, IPX_STACK_DEPTH); 6441 #endif 6442 } 6443 6444 xopipsq = ipsq; 6445 do { 6446 /* 6447 * So that other operations operate on a consistent and 6448 * complete phyint, a switch message on an IPSQ must be 6449 * handled prior to any other operations on that IPSQ. 6450 */ 6451 if ((mp = xopipsq->ipsq_switch_mp) != NULL) { 6452 xopipsq->ipsq_switch_mp = NULL; 6453 ASSERT(mp->b_next == NULL); 6454 mp->b_next = (void *)xopipsq; 6455 goto out; 6456 } 6457 6458 if ((mp = xopipsq->ipsq_xopq_mphead) != NULL) { 6459 xopipsq->ipsq_xopq_mphead = mp->b_next; 6460 if (xopipsq->ipsq_xopq_mphead == NULL) 6461 xopipsq->ipsq_xopq_mptail = NULL; 6462 mp->b_next = (void *)xopipsq; 6463 goto out; 6464 } 6465 } while ((xopipsq = xopipsq->ipsq_next) != ipsq); 6466 empty: 6467 /* 6468 * There are no messages. Further, we are holding ipx_lock, hence no 6469 * new messages can end up on any IPSQ in the xop. 6470 */ 6471 ipx->ipx_writer = NULL; 6472 ipx->ipx_forced = B_FALSE; 6473 VERIFY(--ipx->ipx_reentry_cnt == 0); 6474 ipx->ipx_ipsq_queued = B_FALSE; 6475 emptied = B_TRUE; 6476 #ifdef DEBUG 6477 ipx->ipx_depth = 0; 6478 #endif 6479 out: 6480 mutex_exit(&ipx->ipx_lock); 6481 mutex_exit(&ipsq->ipsq_lock); 6482 6483 /* 6484 * If we completely emptied the xop, then wake up any threads waiting 6485 * to enter any of the IPSQ's associated with it. 6486 */ 6487 if (emptied) { 6488 xopipsq = ipsq; 6489 do { 6490 if ((phyi = xopipsq->ipsq_phyint) == NULL) 6491 continue; 6492 6493 illv4 = phyi->phyint_illv4; 6494 illv6 = phyi->phyint_illv6; 6495 6496 GRAB_ILL_LOCKS(illv4, illv6); 6497 if (illv4 != NULL) 6498 cv_broadcast(&illv4->ill_cv); 6499 if (illv6 != NULL) 6500 cv_broadcast(&illv6->ill_cv); 6501 RELEASE_ILL_LOCKS(illv4, illv6); 6502 } while ((xopipsq = xopipsq->ipsq_next) != ipsq); 6503 } 6504 rw_exit(&ipst->ips_ill_g_lock); 6505 6506 /* 6507 * Now that all locks are dropped, exit the IPSQ we left. 6508 */ 6509 if (leftipsq != NULL) 6510 ipsq_exit(leftipsq); 6511 6512 return (mp); 6513 } 6514 6515 /* 6516 * Return completion status of previously initiated DLPI operations on 6517 * ills in the purview of an ipsq. 6518 */ 6519 static boolean_t 6520 ipsq_dlpi_done(ipsq_t *ipsq) 6521 { 6522 ipsq_t *ipsq_start; 6523 phyint_t *phyi; 6524 ill_t *ill; 6525 6526 ASSERT(RW_LOCK_HELD(&ipsq->ipsq_ipst->ips_ill_g_lock)); 6527 ipsq_start = ipsq; 6528 6529 do { 6530 /* 6531 * The only current users of this function are ipsq_try_enter 6532 * and ipsq_enter which have made sure that ipsq_writer is 6533 * NULL before we reach here. ill_dlpi_pending is modified 6534 * only by an ipsq writer 6535 */ 6536 ASSERT(ipsq->ipsq_xop->ipx_writer == NULL); 6537 phyi = ipsq->ipsq_phyint; 6538 /* 6539 * phyi could be NULL if a phyint that is part of an 6540 * IPMP group is being unplumbed. A more detailed 6541 * comment is in ipmp_grp_update_kstats() 6542 */ 6543 if (phyi != NULL) { 6544 ill = phyi->phyint_illv4; 6545 if (ill != NULL && 6546 (ill->ill_dlpi_pending != DL_PRIM_INVAL || 6547 ill->ill_arl_dlpi_pending)) 6548 return (B_FALSE); 6549 6550 ill = phyi->phyint_illv6; 6551 if (ill != NULL && 6552 ill->ill_dlpi_pending != DL_PRIM_INVAL) 6553 return (B_FALSE); 6554 } 6555 6556 } while ((ipsq = ipsq->ipsq_next) != ipsq_start); 6557 6558 return (B_TRUE); 6559 } 6560 6561 /* 6562 * Enter the ipsq corresponding to ill, by waiting synchronously till 6563 * we can enter the ipsq exclusively. Unless 'force' is used, the ipsq 6564 * will have to drain completely before ipsq_enter returns success. 6565 * ipx_current_ipif will be set if some exclusive op is in progress, 6566 * and the ipsq_exit logic will start the next enqueued op after 6567 * completion of the current op. If 'force' is used, we don't wait 6568 * for the enqueued ops. This is needed when a conn_close wants to 6569 * enter the ipsq and abort an ioctl that is somehow stuck. Unplumb 6570 * of an ill can also use this option. But we dont' use it currently. 6571 */ 6572 #define ENTER_SQ_WAIT_TICKS 100 6573 boolean_t 6574 ipsq_enter(ill_t *ill, boolean_t force, int type) 6575 { 6576 ipsq_t *ipsq; 6577 ipxop_t *ipx; 6578 boolean_t waited_enough = B_FALSE; 6579 ip_stack_t *ipst = ill->ill_ipst; 6580 6581 /* 6582 * Note that the relationship between ill and ipsq is fixed as long as 6583 * the ill is not ILL_CONDEMNED. Holding ipsq_lock ensures the 6584 * relationship between the IPSQ and xop cannot change. However, 6585 * since we cannot hold ipsq_lock across the cv_wait(), it may change 6586 * while we're waiting. We wait on ill_cv and rely on ipsq_exit() 6587 * waking up all ills in the xop when it becomes available. 6588 */ 6589 for (;;) { 6590 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 6591 mutex_enter(&ill->ill_lock); 6592 if (ill->ill_state_flags & ILL_CONDEMNED) { 6593 mutex_exit(&ill->ill_lock); 6594 rw_exit(&ipst->ips_ill_g_lock); 6595 return (B_FALSE); 6596 } 6597 6598 ipsq = ill->ill_phyint->phyint_ipsq; 6599 mutex_enter(&ipsq->ipsq_lock); 6600 ipx = ipsq->ipsq_xop; 6601 mutex_enter(&ipx->ipx_lock); 6602 6603 if (ipx->ipx_writer == NULL && (type == CUR_OP || 6604 (ipx->ipx_current_ipif == NULL && ipsq_dlpi_done(ipsq)) || 6605 waited_enough)) 6606 break; 6607 6608 rw_exit(&ipst->ips_ill_g_lock); 6609 6610 if (!force || ipx->ipx_writer != NULL) { 6611 mutex_exit(&ipx->ipx_lock); 6612 mutex_exit(&ipsq->ipsq_lock); 6613 cv_wait(&ill->ill_cv, &ill->ill_lock); 6614 } else { 6615 mutex_exit(&ipx->ipx_lock); 6616 mutex_exit(&ipsq->ipsq_lock); 6617 (void) cv_reltimedwait(&ill->ill_cv, 6618 &ill->ill_lock, ENTER_SQ_WAIT_TICKS, TR_CLOCK_TICK); 6619 waited_enough = B_TRUE; 6620 } 6621 mutex_exit(&ill->ill_lock); 6622 } 6623 6624 ASSERT(ipx->ipx_mphead == NULL && ipx->ipx_mptail == NULL); 6625 ASSERT(ipx->ipx_reentry_cnt == 0); 6626 ipx->ipx_writer = curthread; 6627 ipx->ipx_forced = (ipx->ipx_current_ipif != NULL); 6628 ipx->ipx_reentry_cnt++; 6629 #ifdef DEBUG 6630 ipx->ipx_depth = getpcstack(ipx->ipx_stack, IPX_STACK_DEPTH); 6631 #endif 6632 mutex_exit(&ipx->ipx_lock); 6633 mutex_exit(&ipsq->ipsq_lock); 6634 mutex_exit(&ill->ill_lock); 6635 rw_exit(&ipst->ips_ill_g_lock); 6636 6637 return (B_TRUE); 6638 } 6639 6640 /* 6641 * ipif_set_values() has a constraint that it cannot drop the ips_ill_g_lock 6642 * across the call to the core interface ipsq_try_enter() and hence calls this 6643 * function directly. This is explained more fully in ipif_set_values(). 6644 * In order to support the above constraint, ipsq_try_enter is implemented as 6645 * a wrapper that grabs the ips_ill_g_lock and calls this function subsequently 6646 */ 6647 static ipsq_t * 6648 ipsq_try_enter_internal(ill_t *ill, queue_t *q, mblk_t *mp, ipsq_func_t func, 6649 int type, boolean_t reentry_ok) 6650 { 6651 ipsq_t *ipsq; 6652 ipxop_t *ipx; 6653 ip_stack_t *ipst = ill->ill_ipst; 6654 6655 /* 6656 * lock ordering: 6657 * ill_g_lock -> conn_lock -> ill_lock -> ipsq_lock -> ipx_lock. 6658 * 6659 * ipx of an ipsq can't change when ipsq_lock is held. 6660 */ 6661 ASSERT(RW_LOCK_HELD(&ipst->ips_ill_g_lock)); 6662 GRAB_CONN_LOCK(q); 6663 mutex_enter(&ill->ill_lock); 6664 ipsq = ill->ill_phyint->phyint_ipsq; 6665 mutex_enter(&ipsq->ipsq_lock); 6666 ipx = ipsq->ipsq_xop; 6667 mutex_enter(&ipx->ipx_lock); 6668 6669 /* 6670 * 1. Enter the ipsq if we are already writer and reentry is ok. 6671 * (Note: If the caller does not specify reentry_ok then neither 6672 * 'func' nor any of its callees must ever attempt to enter the ipsq 6673 * again. Otherwise it can lead to an infinite loop 6674 * 2. Enter the ipsq if there is no current writer and this attempted 6675 * entry is part of the current operation 6676 * 3. Enter the ipsq if there is no current writer and this is a new 6677 * operation and the operation queue is empty and there is no 6678 * operation currently in progress and if all previously initiated 6679 * DLPI operations have completed. 6680 */ 6681 if ((ipx->ipx_writer == curthread && reentry_ok) || 6682 (ipx->ipx_writer == NULL && (type == CUR_OP || (type == NEW_OP && 6683 !ipx->ipx_ipsq_queued && ipx->ipx_current_ipif == NULL && 6684 ipsq_dlpi_done(ipsq))))) { 6685 /* Success. */ 6686 ipx->ipx_reentry_cnt++; 6687 ipx->ipx_writer = curthread; 6688 ipx->ipx_forced = B_FALSE; 6689 mutex_exit(&ipx->ipx_lock); 6690 mutex_exit(&ipsq->ipsq_lock); 6691 mutex_exit(&ill->ill_lock); 6692 RELEASE_CONN_LOCK(q); 6693 #ifdef DEBUG 6694 ipx->ipx_depth = getpcstack(ipx->ipx_stack, IPX_STACK_DEPTH); 6695 #endif 6696 return (ipsq); 6697 } 6698 6699 if (func != NULL) 6700 ipsq_enq(ipsq, q, mp, func, type, ill); 6701 6702 mutex_exit(&ipx->ipx_lock); 6703 mutex_exit(&ipsq->ipsq_lock); 6704 mutex_exit(&ill->ill_lock); 6705 RELEASE_CONN_LOCK(q); 6706 return (NULL); 6707 } 6708 6709 /* 6710 * The ipsq_t (ipsq) is the synchronization data structure used to serialize 6711 * certain critical operations like plumbing (i.e. most set ioctls), etc. 6712 * There is one ipsq per phyint. The ipsq 6713 * serializes exclusive ioctls issued by applications on a per ipsq basis in 6714 * ipsq_xopq_mphead. It also protects against multiple threads executing in 6715 * the ipsq. Responses from the driver pertain to the current ioctl (say a 6716 * DL_BIND_ACK in response to a DL_BIND_REQ initiated as part of bringing 6717 * up the interface) and are enqueued in ipx_mphead. 6718 * 6719 * If a thread does not want to reenter the ipsq when it is already writer, 6720 * it must make sure that the specified reentry point to be called later 6721 * when the ipsq is empty, nor any code path starting from the specified reentry 6722 * point must never ever try to enter the ipsq again. Otherwise it can lead 6723 * to an infinite loop. The reentry point ip_rput_dlpi_writer is an example. 6724 * When the thread that is currently exclusive finishes, it (ipsq_exit) 6725 * dequeues the requests waiting to become exclusive in ipx_mphead and calls 6726 * the reentry point. When the list at ipx_mphead becomes empty ipsq_exit 6727 * proceeds to dequeue the next ioctl in ipsq_xopq_mphead and start the next 6728 * ioctl if the current ioctl has completed. If the current ioctl is still 6729 * in progress it simply returns. The current ioctl could be waiting for 6730 * a response from another module (the driver or could be waiting for 6731 * the ipif/ill/ire refcnts to drop to zero. In such a case the ipx_pending_mp 6732 * and ipx_pending_ipif are set. ipx_current_ipif is set throughout the 6733 * execution of the ioctl and ipsq_exit does not start the next ioctl unless 6734 * ipx_current_ipif is NULL which happens only once the ioctl is complete and 6735 * all associated DLPI operations have completed. 6736 */ 6737 6738 /* 6739 * Try to enter the IPSQ corresponding to `ipif' or `ill' exclusively (`ipif' 6740 * and `ill' cannot both be specified). Returns a pointer to the entered IPSQ 6741 * on success, or NULL on failure. The caller ensures ipif/ill is valid by 6742 * refholding it as necessary. If the IPSQ cannot be entered and `func' is 6743 * non-NULL, then `func' will be called back with `q' and `mp' once the IPSQ 6744 * can be entered. If `func' is NULL, then `q' and `mp' are ignored. 6745 */ 6746 ipsq_t * 6747 ipsq_try_enter(ipif_t *ipif, ill_t *ill, queue_t *q, mblk_t *mp, 6748 ipsq_func_t func, int type, boolean_t reentry_ok) 6749 { 6750 ip_stack_t *ipst; 6751 ipsq_t *ipsq; 6752 6753 /* Only 1 of ipif or ill can be specified */ 6754 ASSERT((ipif != NULL) ^ (ill != NULL)); 6755 6756 if (ipif != NULL) 6757 ill = ipif->ipif_ill; 6758 ipst = ill->ill_ipst; 6759 6760 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 6761 ipsq = ipsq_try_enter_internal(ill, q, mp, func, type, reentry_ok); 6762 rw_exit(&ipst->ips_ill_g_lock); 6763 6764 return (ipsq); 6765 } 6766 6767 /* 6768 * Try to enter the IPSQ corresponding to `ill' as writer. The caller ensures 6769 * ill is valid by refholding it if necessary; we will refrele. If the IPSQ 6770 * cannot be entered, the mp is queued for completion. 6771 */ 6772 void 6773 qwriter_ip(ill_t *ill, queue_t *q, mblk_t *mp, ipsq_func_t func, int type, 6774 boolean_t reentry_ok) 6775 { 6776 ipsq_t *ipsq; 6777 6778 ipsq = ipsq_try_enter(NULL, ill, q, mp, func, type, reentry_ok); 6779 6780 /* 6781 * Drop the caller's refhold on the ill. This is safe since we either 6782 * entered the IPSQ (and thus are exclusive), or failed to enter the 6783 * IPSQ, in which case we return without accessing ill anymore. This 6784 * is needed because func needs to see the correct refcount. 6785 * e.g. removeif can work only then. 6786 */ 6787 ill_refrele(ill); 6788 if (ipsq != NULL) { 6789 (*func)(ipsq, q, mp, NULL); 6790 ipsq_exit(ipsq); 6791 } 6792 } 6793 6794 /* 6795 * Exit the specified IPSQ. If this is the final exit on it then drain it 6796 * prior to exiting. Caller must be writer on the specified IPSQ. 6797 */ 6798 void 6799 ipsq_exit(ipsq_t *ipsq) 6800 { 6801 mblk_t *mp; 6802 ipsq_t *mp_ipsq; 6803 queue_t *q; 6804 phyint_t *phyi; 6805 ipsq_func_t func; 6806 6807 ASSERT(IAM_WRITER_IPSQ(ipsq)); 6808 6809 ASSERT(ipsq->ipsq_xop->ipx_reentry_cnt >= 1); 6810 if (ipsq->ipsq_xop->ipx_reentry_cnt != 1) { 6811 ipsq->ipsq_xop->ipx_reentry_cnt--; 6812 return; 6813 } 6814 6815 for (;;) { 6816 phyi = ipsq->ipsq_phyint; 6817 mp = ipsq_dq(ipsq); 6818 mp_ipsq = (mp == NULL) ? NULL : (ipsq_t *)mp->b_next; 6819 6820 /* 6821 * If we've changed to a new IPSQ, and the phyint associated 6822 * with the old one has gone away, free the old IPSQ. Note 6823 * that this cannot happen while the IPSQ is in a group. 6824 */ 6825 if (mp_ipsq != ipsq && phyi == NULL) { 6826 ASSERT(ipsq->ipsq_next == ipsq); 6827 ASSERT(ipsq->ipsq_xop == &ipsq->ipsq_ownxop); 6828 ipsq_delete(ipsq); 6829 } 6830 6831 if (mp == NULL) 6832 break; 6833 6834 q = mp->b_queue; 6835 func = (ipsq_func_t)mp->b_prev; 6836 ipsq = mp_ipsq; 6837 mp->b_next = mp->b_prev = NULL; 6838 mp->b_queue = NULL; 6839 6840 /* 6841 * If 'q' is an conn queue, it is valid, since we did a 6842 * a refhold on the conn at the start of the ioctl. 6843 * If 'q' is an ill queue, it is valid, since close of an 6844 * ill will clean up its IPSQ. 6845 */ 6846 (*func)(ipsq, q, mp, NULL); 6847 } 6848 } 6849 6850 /* 6851 * Used to start any igmp or mld timers that could not be started 6852 * while holding ill_mcast_lock. The timers can't be started while holding 6853 * the lock, since mld/igmp_start_timers may need to call untimeout() 6854 * which can't be done while holding the lock which the timeout handler 6855 * acquires. Otherwise 6856 * there could be a deadlock since the timeout handlers 6857 * mld_timeout_handler_per_ill/igmp_timeout_handler_per_ill also acquire 6858 * ill_mcast_lock. 6859 */ 6860 void 6861 ill_mcast_timer_start(ip_stack_t *ipst) 6862 { 6863 int next; 6864 6865 mutex_enter(&ipst->ips_igmp_timer_lock); 6866 next = ipst->ips_igmp_deferred_next; 6867 ipst->ips_igmp_deferred_next = INFINITY; 6868 mutex_exit(&ipst->ips_igmp_timer_lock); 6869 6870 if (next != INFINITY) 6871 igmp_start_timers(next, ipst); 6872 6873 mutex_enter(&ipst->ips_mld_timer_lock); 6874 next = ipst->ips_mld_deferred_next; 6875 ipst->ips_mld_deferred_next = INFINITY; 6876 mutex_exit(&ipst->ips_mld_timer_lock); 6877 6878 if (next != INFINITY) 6879 mld_start_timers(next, ipst); 6880 } 6881 6882 /* 6883 * Start the current exclusive operation on `ipsq'; associate it with `ipif' 6884 * and `ioccmd'. 6885 */ 6886 void 6887 ipsq_current_start(ipsq_t *ipsq, ipif_t *ipif, int ioccmd) 6888 { 6889 ill_t *ill = ipif->ipif_ill; 6890 ipxop_t *ipx = ipsq->ipsq_xop; 6891 6892 ASSERT(IAM_WRITER_IPSQ(ipsq)); 6893 ASSERT(ipx->ipx_current_ipif == NULL); 6894 ASSERT(ipx->ipx_current_ioctl == 0); 6895 6896 ipx->ipx_current_done = B_FALSE; 6897 ipx->ipx_current_ioctl = ioccmd; 6898 mutex_enter(&ipx->ipx_lock); 6899 ipx->ipx_current_ipif = ipif; 6900 mutex_exit(&ipx->ipx_lock); 6901 6902 /* 6903 * Set IPIF_CHANGING on one or more ipifs associated with the 6904 * current exclusive operation. IPIF_CHANGING prevents any new 6905 * references to the ipif (so that the references will eventually 6906 * drop to zero) and also prevents any "get" operations (e.g., 6907 * SIOCGLIFFLAGS) from being able to access the ipif until the 6908 * operation has completed and the ipif is again in a stable state. 6909 * 6910 * For ioctls, IPIF_CHANGING is set on the ipif associated with the 6911 * ioctl. For internal operations (where ioccmd is zero), all ipifs 6912 * on the ill are marked with IPIF_CHANGING since it's unclear which 6913 * ipifs will be affected. 6914 * 6915 * Note that SIOCLIFREMOVEIF is a special case as it sets 6916 * IPIF_CONDEMNED internally after identifying the right ipif to 6917 * operate on. 6918 */ 6919 switch (ioccmd) { 6920 case SIOCLIFREMOVEIF: 6921 break; 6922 case 0: 6923 mutex_enter(&ill->ill_lock); 6924 ipif = ipif->ipif_ill->ill_ipif; 6925 for (; ipif != NULL; ipif = ipif->ipif_next) 6926 ipif->ipif_state_flags |= IPIF_CHANGING; 6927 mutex_exit(&ill->ill_lock); 6928 break; 6929 default: 6930 mutex_enter(&ill->ill_lock); 6931 ipif->ipif_state_flags |= IPIF_CHANGING; 6932 mutex_exit(&ill->ill_lock); 6933 } 6934 } 6935 6936 /* 6937 * Finish the current exclusive operation on `ipsq'. Usually, this will allow 6938 * the next exclusive operation to begin once we ipsq_exit(). However, if 6939 * pending DLPI operations remain, then we will wait for the queue to drain 6940 * before allowing the next exclusive operation to begin. This ensures that 6941 * DLPI operations from one exclusive operation are never improperly processed 6942 * as part of a subsequent exclusive operation. 6943 */ 6944 void 6945 ipsq_current_finish(ipsq_t *ipsq) 6946 { 6947 ipxop_t *ipx = ipsq->ipsq_xop; 6948 t_uscalar_t dlpi_pending = DL_PRIM_INVAL; 6949 ipif_t *ipif = ipx->ipx_current_ipif; 6950 6951 ASSERT(IAM_WRITER_IPSQ(ipsq)); 6952 6953 /* 6954 * For SIOCLIFREMOVEIF, the ipif has been already been blown away 6955 * (but in that case, IPIF_CHANGING will already be clear and no 6956 * pending DLPI messages can remain). 6957 */ 6958 if (ipx->ipx_current_ioctl != SIOCLIFREMOVEIF) { 6959 ill_t *ill = ipif->ipif_ill; 6960 6961 mutex_enter(&ill->ill_lock); 6962 dlpi_pending = ill->ill_dlpi_pending; 6963 if (ipx->ipx_current_ioctl == 0) { 6964 ipif = ill->ill_ipif; 6965 for (; ipif != NULL; ipif = ipif->ipif_next) 6966 ipif->ipif_state_flags &= ~IPIF_CHANGING; 6967 } else { 6968 ipif->ipif_state_flags &= ~IPIF_CHANGING; 6969 } 6970 mutex_exit(&ill->ill_lock); 6971 } 6972 6973 ASSERT(!ipx->ipx_current_done); 6974 ipx->ipx_current_done = B_TRUE; 6975 ipx->ipx_current_ioctl = 0; 6976 if (dlpi_pending == DL_PRIM_INVAL) { 6977 mutex_enter(&ipx->ipx_lock); 6978 ipx->ipx_current_ipif = NULL; 6979 mutex_exit(&ipx->ipx_lock); 6980 } 6981 } 6982 6983 /* 6984 * The ill is closing. Flush all messages on the ipsq that originated 6985 * from this ill. Usually there wont' be any messages on the ipsq_xopq_mphead 6986 * for this ill since ipsq_enter could not have entered until then. 6987 * New messages can't be queued since the CONDEMNED flag is set. 6988 */ 6989 static void 6990 ipsq_flush(ill_t *ill) 6991 { 6992 queue_t *q; 6993 mblk_t *prev; 6994 mblk_t *mp; 6995 mblk_t *mp_next; 6996 ipxop_t *ipx = ill->ill_phyint->phyint_ipsq->ipsq_xop; 6997 6998 ASSERT(IAM_WRITER_ILL(ill)); 6999 7000 /* 7001 * Flush any messages sent up by the driver. 7002 */ 7003 mutex_enter(&ipx->ipx_lock); 7004 for (prev = NULL, mp = ipx->ipx_mphead; mp != NULL; mp = mp_next) { 7005 mp_next = mp->b_next; 7006 q = mp->b_queue; 7007 if (q == ill->ill_rq || q == ill->ill_wq) { 7008 /* dequeue mp */ 7009 if (prev == NULL) 7010 ipx->ipx_mphead = mp->b_next; 7011 else 7012 prev->b_next = mp->b_next; 7013 if (ipx->ipx_mptail == mp) { 7014 ASSERT(mp_next == NULL); 7015 ipx->ipx_mptail = prev; 7016 } 7017 inet_freemsg(mp); 7018 } else { 7019 prev = mp; 7020 } 7021 } 7022 mutex_exit(&ipx->ipx_lock); 7023 (void) ipsq_pending_mp_cleanup(ill, NULL); 7024 ipsq_xopq_mp_cleanup(ill, NULL); 7025 } 7026 7027 /* 7028 * Parse an ifreq or lifreq struct coming down ioctls and refhold 7029 * and return the associated ipif. 7030 * Return value: 7031 * Non zero: An error has occurred. ci may not be filled out. 7032 * zero : ci is filled out with the ioctl cmd in ci.ci_name, and 7033 * a held ipif in ci.ci_ipif. 7034 */ 7035 int 7036 ip_extract_lifreq(queue_t *q, mblk_t *mp, const ip_ioctl_cmd_t *ipip, 7037 cmd_info_t *ci) 7038 { 7039 char *name; 7040 struct ifreq *ifr; 7041 struct lifreq *lifr; 7042 ipif_t *ipif = NULL; 7043 ill_t *ill; 7044 conn_t *connp; 7045 boolean_t isv6; 7046 boolean_t exists; 7047 mblk_t *mp1; 7048 zoneid_t zoneid; 7049 ip_stack_t *ipst; 7050 7051 if (q->q_next != NULL) { 7052 ill = (ill_t *)q->q_ptr; 7053 isv6 = ill->ill_isv6; 7054 connp = NULL; 7055 zoneid = ALL_ZONES; 7056 ipst = ill->ill_ipst; 7057 } else { 7058 ill = NULL; 7059 connp = Q_TO_CONN(q); 7060 isv6 = (connp->conn_family == AF_INET6); 7061 zoneid = connp->conn_zoneid; 7062 if (zoneid == GLOBAL_ZONEID) { 7063 /* global zone can access ipifs in all zones */ 7064 zoneid = ALL_ZONES; 7065 } 7066 ipst = connp->conn_netstack->netstack_ip; 7067 } 7068 7069 /* Has been checked in ip_wput_nondata */ 7070 mp1 = mp->b_cont->b_cont; 7071 7072 if (ipip->ipi_cmd_type == IF_CMD) { 7073 /* This a old style SIOC[GS]IF* command */ 7074 ifr = (struct ifreq *)mp1->b_rptr; 7075 /* 7076 * Null terminate the string to protect against buffer 7077 * overrun. String was generated by user code and may not 7078 * be trusted. 7079 */ 7080 ifr->ifr_name[IFNAMSIZ - 1] = '\0'; 7081 name = ifr->ifr_name; 7082 ci->ci_sin = (sin_t *)&ifr->ifr_addr; 7083 ci->ci_sin6 = NULL; 7084 ci->ci_lifr = (struct lifreq *)ifr; 7085 } else { 7086 /* This a new style SIOC[GS]LIF* command */ 7087 ASSERT(ipip->ipi_cmd_type == LIF_CMD); 7088 lifr = (struct lifreq *)mp1->b_rptr; 7089 /* 7090 * Null terminate the string to protect against buffer 7091 * overrun. String was generated by user code and may not 7092 * be trusted. 7093 */ 7094 lifr->lifr_name[LIFNAMSIZ - 1] = '\0'; 7095 name = lifr->lifr_name; 7096 ci->ci_sin = (sin_t *)&lifr->lifr_addr; 7097 ci->ci_sin6 = (sin6_t *)&lifr->lifr_addr; 7098 ci->ci_lifr = lifr; 7099 } 7100 7101 if (ipip->ipi_cmd == SIOCSLIFNAME) { 7102 /* 7103 * The ioctl will be failed if the ioctl comes down 7104 * an conn stream 7105 */ 7106 if (ill == NULL) { 7107 /* 7108 * Not an ill queue, return EINVAL same as the 7109 * old error code. 7110 */ 7111 return (ENXIO); 7112 } 7113 ipif = ill->ill_ipif; 7114 ipif_refhold(ipif); 7115 } else { 7116 ipif = ipif_lookup_on_name(name, mi_strlen(name), B_FALSE, 7117 &exists, isv6, zoneid, ipst); 7118 7119 /* 7120 * Ensure that get ioctls don't see any internal state changes 7121 * caused by set ioctls by deferring them if IPIF_CHANGING is 7122 * set. 7123 */ 7124 if (ipif != NULL && !(ipip->ipi_flags & IPI_WR) && 7125 !IAM_WRITER_IPIF(ipif)) { 7126 ipsq_t *ipsq; 7127 7128 if (connp != NULL) 7129 mutex_enter(&connp->conn_lock); 7130 mutex_enter(&ipif->ipif_ill->ill_lock); 7131 if (IPIF_IS_CHANGING(ipif) && 7132 !IPIF_IS_CONDEMNED(ipif)) { 7133 ipsq = ipif->ipif_ill->ill_phyint->phyint_ipsq; 7134 mutex_enter(&ipsq->ipsq_lock); 7135 mutex_enter(&ipsq->ipsq_xop->ipx_lock); 7136 mutex_exit(&ipif->ipif_ill->ill_lock); 7137 ipsq_enq(ipsq, q, mp, ip_process_ioctl, 7138 NEW_OP, ipif->ipif_ill); 7139 mutex_exit(&ipsq->ipsq_xop->ipx_lock); 7140 mutex_exit(&ipsq->ipsq_lock); 7141 if (connp != NULL) 7142 mutex_exit(&connp->conn_lock); 7143 ipif_refrele(ipif); 7144 return (EINPROGRESS); 7145 } 7146 mutex_exit(&ipif->ipif_ill->ill_lock); 7147 if (connp != NULL) 7148 mutex_exit(&connp->conn_lock); 7149 } 7150 } 7151 7152 /* 7153 * Old style [GS]IFCMD does not admit IPv6 ipif 7154 */ 7155 if (ipif != NULL && ipif->ipif_isv6 && ipip->ipi_cmd_type == IF_CMD) { 7156 ipif_refrele(ipif); 7157 return (ENXIO); 7158 } 7159 7160 if (ipif == NULL && ill != NULL && ill->ill_ipif != NULL && 7161 name[0] == '\0') { 7162 /* 7163 * Handle a or a SIOC?IF* with a null name 7164 * during plumb (on the ill queue before the I_PLINK). 7165 */ 7166 ipif = ill->ill_ipif; 7167 ipif_refhold(ipif); 7168 } 7169 7170 if (ipif == NULL) 7171 return (ENXIO); 7172 7173 DTRACE_PROBE4(ipif__ioctl, char *, "ip_extract_lifreq", 7174 int, ipip->ipi_cmd, ill_t *, ipif->ipif_ill, ipif_t *, ipif); 7175 7176 ci->ci_ipif = ipif; 7177 return (0); 7178 } 7179 7180 /* 7181 * Return the total number of ipifs. 7182 */ 7183 static uint_t 7184 ip_get_numifs(zoneid_t zoneid, ip_stack_t *ipst) 7185 { 7186 uint_t numifs = 0; 7187 ill_t *ill; 7188 ill_walk_context_t ctx; 7189 ipif_t *ipif; 7190 7191 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 7192 ill = ILL_START_WALK_V4(&ctx, ipst); 7193 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 7194 if (IS_UNDER_IPMP(ill)) 7195 continue; 7196 for (ipif = ill->ill_ipif; ipif != NULL; 7197 ipif = ipif->ipif_next) { 7198 if (ipif->ipif_zoneid == zoneid || 7199 ipif->ipif_zoneid == ALL_ZONES) 7200 numifs++; 7201 } 7202 } 7203 rw_exit(&ipst->ips_ill_g_lock); 7204 return (numifs); 7205 } 7206 7207 /* 7208 * Return the total number of ipifs. 7209 */ 7210 static uint_t 7211 ip_get_numlifs(int family, int lifn_flags, zoneid_t zoneid, ip_stack_t *ipst) 7212 { 7213 uint_t numifs = 0; 7214 ill_t *ill; 7215 ipif_t *ipif; 7216 ill_walk_context_t ctx; 7217 7218 ip1dbg(("ip_get_numlifs(%d %u %d)\n", family, lifn_flags, (int)zoneid)); 7219 7220 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 7221 if (family == AF_INET) 7222 ill = ILL_START_WALK_V4(&ctx, ipst); 7223 else if (family == AF_INET6) 7224 ill = ILL_START_WALK_V6(&ctx, ipst); 7225 else 7226 ill = ILL_START_WALK_ALL(&ctx, ipst); 7227 7228 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 7229 if (IS_UNDER_IPMP(ill) && !(lifn_flags & LIFC_UNDER_IPMP)) 7230 continue; 7231 7232 for (ipif = ill->ill_ipif; ipif != NULL; 7233 ipif = ipif->ipif_next) { 7234 if ((ipif->ipif_flags & IPIF_NOXMIT) && 7235 !(lifn_flags & LIFC_NOXMIT)) 7236 continue; 7237 if ((ipif->ipif_flags & IPIF_TEMPORARY) && 7238 !(lifn_flags & LIFC_TEMPORARY)) 7239 continue; 7240 if (((ipif->ipif_flags & 7241 (IPIF_NOXMIT|IPIF_NOLOCAL| 7242 IPIF_DEPRECATED)) || 7243 IS_LOOPBACK(ill) || 7244 !(ipif->ipif_flags & IPIF_UP)) && 7245 (lifn_flags & LIFC_EXTERNAL_SOURCE)) 7246 continue; 7247 7248 if (zoneid != ipif->ipif_zoneid && 7249 ipif->ipif_zoneid != ALL_ZONES && 7250 (zoneid != GLOBAL_ZONEID || 7251 !(lifn_flags & LIFC_ALLZONES))) 7252 continue; 7253 7254 numifs++; 7255 } 7256 } 7257 rw_exit(&ipst->ips_ill_g_lock); 7258 return (numifs); 7259 } 7260 7261 uint_t 7262 ip_get_lifsrcofnum(ill_t *ill) 7263 { 7264 uint_t numifs = 0; 7265 ill_t *ill_head = ill; 7266 ip_stack_t *ipst = ill->ill_ipst; 7267 7268 /* 7269 * ill_g_usesrc_lock protects ill_usesrc_grp_next, for example, some 7270 * other thread may be trying to relink the ILLs in this usesrc group 7271 * and adjusting the ill_usesrc_grp_next pointers 7272 */ 7273 rw_enter(&ipst->ips_ill_g_usesrc_lock, RW_READER); 7274 if ((ill->ill_usesrc_ifindex == 0) && 7275 (ill->ill_usesrc_grp_next != NULL)) { 7276 for (; (ill != NULL) && (ill->ill_usesrc_grp_next != ill_head); 7277 ill = ill->ill_usesrc_grp_next) 7278 numifs++; 7279 } 7280 rw_exit(&ipst->ips_ill_g_usesrc_lock); 7281 7282 return (numifs); 7283 } 7284 7285 /* Null values are passed in for ipif, sin, and ifreq */ 7286 /* ARGSUSED */ 7287 int 7288 ip_sioctl_get_ifnum(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, 7289 mblk_t *mp, ip_ioctl_cmd_t *ipip, void *ifreq) 7290 { 7291 int *nump; 7292 conn_t *connp = Q_TO_CONN(q); 7293 7294 ASSERT(q->q_next == NULL); /* not a valid ioctl for ip as a module */ 7295 7296 /* Existence of b_cont->b_cont checked in ip_wput_nondata */ 7297 nump = (int *)mp->b_cont->b_cont->b_rptr; 7298 7299 *nump = ip_get_numifs(connp->conn_zoneid, 7300 connp->conn_netstack->netstack_ip); 7301 ip1dbg(("ip_sioctl_get_ifnum numifs %d", *nump)); 7302 return (0); 7303 } 7304 7305 /* Null values are passed in for ipif, sin, and ifreq */ 7306 /* ARGSUSED */ 7307 int 7308 ip_sioctl_get_lifnum(ipif_t *dummy_ipif, sin_t *dummy_sin, 7309 queue_t *q, mblk_t *mp, ip_ioctl_cmd_t *ipip, void *ifreq) 7310 { 7311 struct lifnum *lifn; 7312 mblk_t *mp1; 7313 conn_t *connp = Q_TO_CONN(q); 7314 7315 ASSERT(q->q_next == NULL); /* not a valid ioctl for ip as a module */ 7316 7317 /* Existence checked in ip_wput_nondata */ 7318 mp1 = mp->b_cont->b_cont; 7319 7320 lifn = (struct lifnum *)mp1->b_rptr; 7321 switch (lifn->lifn_family) { 7322 case AF_UNSPEC: 7323 case AF_INET: 7324 case AF_INET6: 7325 break; 7326 default: 7327 return (EAFNOSUPPORT); 7328 } 7329 7330 lifn->lifn_count = ip_get_numlifs(lifn->lifn_family, lifn->lifn_flags, 7331 connp->conn_zoneid, connp->conn_netstack->netstack_ip); 7332 ip1dbg(("ip_sioctl_get_lifnum numifs %d", lifn->lifn_count)); 7333 return (0); 7334 } 7335 7336 /* ARGSUSED */ 7337 int 7338 ip_sioctl_get_ifconf(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, 7339 mblk_t *mp, ip_ioctl_cmd_t *ipip, void *ifreq) 7340 { 7341 STRUCT_HANDLE(ifconf, ifc); 7342 mblk_t *mp1; 7343 struct iocblk *iocp; 7344 struct ifreq *ifr; 7345 ill_walk_context_t ctx; 7346 ill_t *ill; 7347 ipif_t *ipif; 7348 struct sockaddr_in *sin; 7349 int32_t ifclen; 7350 zoneid_t zoneid; 7351 ip_stack_t *ipst = CONNQ_TO_IPST(q); 7352 7353 ASSERT(q->q_next == NULL); /* not valid ioctls for ip as a module */ 7354 7355 ip1dbg(("ip_sioctl_get_ifconf")); 7356 /* Existence verified in ip_wput_nondata */ 7357 mp1 = mp->b_cont->b_cont; 7358 iocp = (struct iocblk *)mp->b_rptr; 7359 zoneid = Q_TO_CONN(q)->conn_zoneid; 7360 7361 /* 7362 * The original SIOCGIFCONF passed in a struct ifconf which specified 7363 * the user buffer address and length into which the list of struct 7364 * ifreqs was to be copied. Since AT&T Streams does not seem to 7365 * allow M_COPYOUT to be used in conjunction with I_STR IOCTLS, 7366 * the SIOCGIFCONF operation was redefined to simply provide 7367 * a large output buffer into which we are supposed to jam the ifreq 7368 * array. The same ioctl command code was used, despite the fact that 7369 * both the applications and the kernel code had to change, thus making 7370 * it impossible to support both interfaces. 7371 * 7372 * For reasons not good enough to try to explain, the following 7373 * algorithm is used for deciding what to do with one of these: 7374 * If the IOCTL comes in as an I_STR, it is assumed to be of the new 7375 * form with the output buffer coming down as the continuation message. 7376 * If it arrives as a TRANSPARENT IOCTL, it is assumed to be old style, 7377 * and we have to copy in the ifconf structure to find out how big the 7378 * output buffer is and where to copy out to. Sure no problem... 7379 * 7380 */ 7381 STRUCT_SET_HANDLE(ifc, iocp->ioc_flag, NULL); 7382 if ((mp1->b_wptr - mp1->b_rptr) == STRUCT_SIZE(ifc)) { 7383 int numifs = 0; 7384 size_t ifc_bufsize; 7385 7386 /* 7387 * Must be (better be!) continuation of a TRANSPARENT 7388 * IOCTL. We just copied in the ifconf structure. 7389 */ 7390 STRUCT_SET_HANDLE(ifc, iocp->ioc_flag, 7391 (struct ifconf *)mp1->b_rptr); 7392 7393 /* 7394 * Allocate a buffer to hold requested information. 7395 * 7396 * If ifc_len is larger than what is needed, we only 7397 * allocate what we will use. 7398 * 7399 * If ifc_len is smaller than what is needed, return 7400 * EINVAL. 7401 * 7402 * XXX: the ill_t structure can hava 2 counters, for 7403 * v4 and v6 (not just ill_ipif_up_count) to store the 7404 * number of interfaces for a device, so we don't need 7405 * to count them here... 7406 */ 7407 numifs = ip_get_numifs(zoneid, ipst); 7408 7409 ifclen = STRUCT_FGET(ifc, ifc_len); 7410 ifc_bufsize = numifs * sizeof (struct ifreq); 7411 if (ifc_bufsize > ifclen) { 7412 if (iocp->ioc_cmd == O_SIOCGIFCONF) { 7413 /* old behaviour */ 7414 return (EINVAL); 7415 } else { 7416 ifc_bufsize = ifclen; 7417 } 7418 } 7419 7420 mp1 = mi_copyout_alloc(q, mp, 7421 STRUCT_FGETP(ifc, ifc_buf), ifc_bufsize, B_FALSE); 7422 if (mp1 == NULL) 7423 return (ENOMEM); 7424 7425 mp1->b_wptr = mp1->b_rptr + ifc_bufsize; 7426 } 7427 bzero(mp1->b_rptr, mp1->b_wptr - mp1->b_rptr); 7428 /* 7429 * the SIOCGIFCONF ioctl only knows about 7430 * IPv4 addresses, so don't try to tell 7431 * it about interfaces with IPv6-only 7432 * addresses. (Last parm 'isv6' is B_FALSE) 7433 */ 7434 7435 ifr = (struct ifreq *)mp1->b_rptr; 7436 7437 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 7438 ill = ILL_START_WALK_V4(&ctx, ipst); 7439 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 7440 if (IS_UNDER_IPMP(ill)) 7441 continue; 7442 for (ipif = ill->ill_ipif; ipif != NULL; 7443 ipif = ipif->ipif_next) { 7444 if (zoneid != ipif->ipif_zoneid && 7445 ipif->ipif_zoneid != ALL_ZONES) 7446 continue; 7447 if ((uchar_t *)&ifr[1] > mp1->b_wptr) { 7448 if (iocp->ioc_cmd == O_SIOCGIFCONF) { 7449 /* old behaviour */ 7450 rw_exit(&ipst->ips_ill_g_lock); 7451 return (EINVAL); 7452 } else { 7453 goto if_copydone; 7454 } 7455 } 7456 ipif_get_name(ipif, ifr->ifr_name, 7457 sizeof (ifr->ifr_name)); 7458 sin = (sin_t *)&ifr->ifr_addr; 7459 *sin = sin_null; 7460 sin->sin_family = AF_INET; 7461 sin->sin_addr.s_addr = ipif->ipif_lcl_addr; 7462 ifr++; 7463 } 7464 } 7465 if_copydone: 7466 rw_exit(&ipst->ips_ill_g_lock); 7467 mp1->b_wptr = (uchar_t *)ifr; 7468 7469 if (STRUCT_BUF(ifc) != NULL) { 7470 STRUCT_FSET(ifc, ifc_len, 7471 (int)((uchar_t *)ifr - mp1->b_rptr)); 7472 } 7473 return (0); 7474 } 7475 7476 /* 7477 * Get the interfaces using the address hosted on the interface passed in, 7478 * as a source adddress 7479 */ 7480 /* ARGSUSED */ 7481 int 7482 ip_sioctl_get_lifsrcof(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, 7483 mblk_t *mp, ip_ioctl_cmd_t *ipip, void *ifreq) 7484 { 7485 mblk_t *mp1; 7486 ill_t *ill, *ill_head; 7487 ipif_t *ipif, *orig_ipif; 7488 int numlifs = 0; 7489 size_t lifs_bufsize, lifsmaxlen; 7490 struct lifreq *lifr; 7491 struct iocblk *iocp = (struct iocblk *)mp->b_rptr; 7492 uint_t ifindex; 7493 zoneid_t zoneid; 7494 boolean_t isv6 = B_FALSE; 7495 struct sockaddr_in *sin; 7496 struct sockaddr_in6 *sin6; 7497 STRUCT_HANDLE(lifsrcof, lifs); 7498 ip_stack_t *ipst; 7499 7500 ipst = CONNQ_TO_IPST(q); 7501 7502 ASSERT(q->q_next == NULL); 7503 7504 zoneid = Q_TO_CONN(q)->conn_zoneid; 7505 7506 /* Existence verified in ip_wput_nondata */ 7507 mp1 = mp->b_cont->b_cont; 7508 7509 /* 7510 * Must be (better be!) continuation of a TRANSPARENT 7511 * IOCTL. We just copied in the lifsrcof structure. 7512 */ 7513 STRUCT_SET_HANDLE(lifs, iocp->ioc_flag, 7514 (struct lifsrcof *)mp1->b_rptr); 7515 7516 if (MBLKL(mp1) != STRUCT_SIZE(lifs)) 7517 return (EINVAL); 7518 7519 ifindex = STRUCT_FGET(lifs, lifs_ifindex); 7520 isv6 = (Q_TO_CONN(q))->conn_family == AF_INET6; 7521 ipif = ipif_lookup_on_ifindex(ifindex, isv6, zoneid, ipst); 7522 if (ipif == NULL) { 7523 ip1dbg(("ip_sioctl_get_lifsrcof: no ipif for ifindex %d\n", 7524 ifindex)); 7525 return (ENXIO); 7526 } 7527 7528 /* Allocate a buffer to hold requested information */ 7529 numlifs = ip_get_lifsrcofnum(ipif->ipif_ill); 7530 lifs_bufsize = numlifs * sizeof (struct lifreq); 7531 lifsmaxlen = STRUCT_FGET(lifs, lifs_maxlen); 7532 /* The actual size needed is always returned in lifs_len */ 7533 STRUCT_FSET(lifs, lifs_len, lifs_bufsize); 7534 7535 /* If the amount we need is more than what is passed in, abort */ 7536 if (lifs_bufsize > lifsmaxlen || lifs_bufsize == 0) { 7537 ipif_refrele(ipif); 7538 return (0); 7539 } 7540 7541 mp1 = mi_copyout_alloc(q, mp, 7542 STRUCT_FGETP(lifs, lifs_buf), lifs_bufsize, B_FALSE); 7543 if (mp1 == NULL) { 7544 ipif_refrele(ipif); 7545 return (ENOMEM); 7546 } 7547 7548 mp1->b_wptr = mp1->b_rptr + lifs_bufsize; 7549 bzero(mp1->b_rptr, lifs_bufsize); 7550 7551 lifr = (struct lifreq *)mp1->b_rptr; 7552 7553 ill = ill_head = ipif->ipif_ill; 7554 orig_ipif = ipif; 7555 7556 /* ill_g_usesrc_lock protects ill_usesrc_grp_next */ 7557 rw_enter(&ipst->ips_ill_g_usesrc_lock, RW_READER); 7558 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 7559 7560 ill = ill->ill_usesrc_grp_next; /* start from next ill */ 7561 for (; (ill != NULL) && (ill != ill_head); 7562 ill = ill->ill_usesrc_grp_next) { 7563 7564 if ((uchar_t *)&lifr[1] > mp1->b_wptr) 7565 break; 7566 7567 ipif = ill->ill_ipif; 7568 ipif_get_name(ipif, lifr->lifr_name, sizeof (lifr->lifr_name)); 7569 if (ipif->ipif_isv6) { 7570 sin6 = (sin6_t *)&lifr->lifr_addr; 7571 *sin6 = sin6_null; 7572 sin6->sin6_family = AF_INET6; 7573 sin6->sin6_addr = ipif->ipif_v6lcl_addr; 7574 lifr->lifr_addrlen = ip_mask_to_plen_v6( 7575 &ipif->ipif_v6net_mask); 7576 } else { 7577 sin = (sin_t *)&lifr->lifr_addr; 7578 *sin = sin_null; 7579 sin->sin_family = AF_INET; 7580 sin->sin_addr.s_addr = ipif->ipif_lcl_addr; 7581 lifr->lifr_addrlen = ip_mask_to_plen( 7582 ipif->ipif_net_mask); 7583 } 7584 lifr++; 7585 } 7586 rw_exit(&ipst->ips_ill_g_usesrc_lock); 7587 rw_exit(&ipst->ips_ill_g_lock); 7588 ipif_refrele(orig_ipif); 7589 mp1->b_wptr = (uchar_t *)lifr; 7590 STRUCT_FSET(lifs, lifs_len, (int)((uchar_t *)lifr - mp1->b_rptr)); 7591 7592 return (0); 7593 } 7594 7595 /* ARGSUSED */ 7596 int 7597 ip_sioctl_get_lifconf(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, 7598 mblk_t *mp, ip_ioctl_cmd_t *ipip, void *ifreq) 7599 { 7600 mblk_t *mp1; 7601 int list; 7602 ill_t *ill; 7603 ipif_t *ipif; 7604 int flags; 7605 int numlifs = 0; 7606 size_t lifc_bufsize; 7607 struct lifreq *lifr; 7608 sa_family_t family; 7609 struct sockaddr_in *sin; 7610 struct sockaddr_in6 *sin6; 7611 ill_walk_context_t ctx; 7612 struct iocblk *iocp = (struct iocblk *)mp->b_rptr; 7613 int32_t lifclen; 7614 zoneid_t zoneid; 7615 STRUCT_HANDLE(lifconf, lifc); 7616 ip_stack_t *ipst = CONNQ_TO_IPST(q); 7617 7618 ip1dbg(("ip_sioctl_get_lifconf")); 7619 7620 ASSERT(q->q_next == NULL); 7621 7622 zoneid = Q_TO_CONN(q)->conn_zoneid; 7623 7624 /* Existence verified in ip_wput_nondata */ 7625 mp1 = mp->b_cont->b_cont; 7626 7627 /* 7628 * An extended version of SIOCGIFCONF that takes an 7629 * additional address family and flags field. 7630 * AF_UNSPEC retrieve both IPv4 and IPv6. 7631 * Unless LIFC_NOXMIT is specified the IPIF_NOXMIT 7632 * interfaces are omitted. 7633 * Similarly, IPIF_TEMPORARY interfaces are omitted 7634 * unless LIFC_TEMPORARY is specified. 7635 * If LIFC_EXTERNAL_SOURCE is specified, IPIF_NOXMIT, 7636 * IPIF_NOLOCAL, PHYI_LOOPBACK, IPIF_DEPRECATED and 7637 * not IPIF_UP interfaces are omitted. LIFC_EXTERNAL_SOURCE 7638 * has priority over LIFC_NOXMIT. 7639 */ 7640 STRUCT_SET_HANDLE(lifc, iocp->ioc_flag, NULL); 7641 7642 if ((mp1->b_wptr - mp1->b_rptr) != STRUCT_SIZE(lifc)) 7643 return (EINVAL); 7644 7645 /* 7646 * Must be (better be!) continuation of a TRANSPARENT 7647 * IOCTL. We just copied in the lifconf structure. 7648 */ 7649 STRUCT_SET_HANDLE(lifc, iocp->ioc_flag, (struct lifconf *)mp1->b_rptr); 7650 7651 family = STRUCT_FGET(lifc, lifc_family); 7652 flags = STRUCT_FGET(lifc, lifc_flags); 7653 7654 switch (family) { 7655 case AF_UNSPEC: 7656 /* 7657 * walk all ILL's. 7658 */ 7659 list = MAX_G_HEADS; 7660 break; 7661 case AF_INET: 7662 /* 7663 * walk only IPV4 ILL's. 7664 */ 7665 list = IP_V4_G_HEAD; 7666 break; 7667 case AF_INET6: 7668 /* 7669 * walk only IPV6 ILL's. 7670 */ 7671 list = IP_V6_G_HEAD; 7672 break; 7673 default: 7674 return (EAFNOSUPPORT); 7675 } 7676 7677 /* 7678 * Allocate a buffer to hold requested information. 7679 * 7680 * If lifc_len is larger than what is needed, we only 7681 * allocate what we will use. 7682 * 7683 * If lifc_len is smaller than what is needed, return 7684 * EINVAL. 7685 */ 7686 numlifs = ip_get_numlifs(family, flags, zoneid, ipst); 7687 lifc_bufsize = numlifs * sizeof (struct lifreq); 7688 lifclen = STRUCT_FGET(lifc, lifc_len); 7689 if (lifc_bufsize > lifclen) { 7690 if (iocp->ioc_cmd == O_SIOCGLIFCONF) 7691 return (EINVAL); 7692 else 7693 lifc_bufsize = lifclen; 7694 } 7695 7696 mp1 = mi_copyout_alloc(q, mp, 7697 STRUCT_FGETP(lifc, lifc_buf), lifc_bufsize, B_FALSE); 7698 if (mp1 == NULL) 7699 return (ENOMEM); 7700 7701 mp1->b_wptr = mp1->b_rptr + lifc_bufsize; 7702 bzero(mp1->b_rptr, mp1->b_wptr - mp1->b_rptr); 7703 7704 lifr = (struct lifreq *)mp1->b_rptr; 7705 7706 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 7707 ill = ill_first(list, list, &ctx, ipst); 7708 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 7709 if (IS_UNDER_IPMP(ill) && !(flags & LIFC_UNDER_IPMP)) 7710 continue; 7711 7712 for (ipif = ill->ill_ipif; ipif != NULL; 7713 ipif = ipif->ipif_next) { 7714 if ((ipif->ipif_flags & IPIF_NOXMIT) && 7715 !(flags & LIFC_NOXMIT)) 7716 continue; 7717 7718 if ((ipif->ipif_flags & IPIF_TEMPORARY) && 7719 !(flags & LIFC_TEMPORARY)) 7720 continue; 7721 7722 if (((ipif->ipif_flags & 7723 (IPIF_NOXMIT|IPIF_NOLOCAL| 7724 IPIF_DEPRECATED)) || 7725 IS_LOOPBACK(ill) || 7726 !(ipif->ipif_flags & IPIF_UP)) && 7727 (flags & LIFC_EXTERNAL_SOURCE)) 7728 continue; 7729 7730 if (zoneid != ipif->ipif_zoneid && 7731 ipif->ipif_zoneid != ALL_ZONES && 7732 (zoneid != GLOBAL_ZONEID || 7733 !(flags & LIFC_ALLZONES))) 7734 continue; 7735 7736 if ((uchar_t *)&lifr[1] > mp1->b_wptr) { 7737 if (iocp->ioc_cmd == O_SIOCGLIFCONF) { 7738 rw_exit(&ipst->ips_ill_g_lock); 7739 return (EINVAL); 7740 } else { 7741 goto lif_copydone; 7742 } 7743 } 7744 7745 ipif_get_name(ipif, lifr->lifr_name, 7746 sizeof (lifr->lifr_name)); 7747 lifr->lifr_type = ill->ill_type; 7748 if (ipif->ipif_isv6) { 7749 sin6 = (sin6_t *)&lifr->lifr_addr; 7750 *sin6 = sin6_null; 7751 sin6->sin6_family = AF_INET6; 7752 sin6->sin6_addr = 7753 ipif->ipif_v6lcl_addr; 7754 lifr->lifr_addrlen = 7755 ip_mask_to_plen_v6( 7756 &ipif->ipif_v6net_mask); 7757 } else { 7758 sin = (sin_t *)&lifr->lifr_addr; 7759 *sin = sin_null; 7760 sin->sin_family = AF_INET; 7761 sin->sin_addr.s_addr = 7762 ipif->ipif_lcl_addr; 7763 lifr->lifr_addrlen = 7764 ip_mask_to_plen( 7765 ipif->ipif_net_mask); 7766 } 7767 lifr++; 7768 } 7769 } 7770 lif_copydone: 7771 rw_exit(&ipst->ips_ill_g_lock); 7772 7773 mp1->b_wptr = (uchar_t *)lifr; 7774 if (STRUCT_BUF(lifc) != NULL) { 7775 STRUCT_FSET(lifc, lifc_len, 7776 (int)((uchar_t *)lifr - mp1->b_rptr)); 7777 } 7778 return (0); 7779 } 7780 7781 static void 7782 ip_sioctl_ip6addrpolicy(queue_t *q, mblk_t *mp) 7783 { 7784 ip6_asp_t *table; 7785 size_t table_size; 7786 mblk_t *data_mp; 7787 struct iocblk *iocp = (struct iocblk *)mp->b_rptr; 7788 ip_stack_t *ipst; 7789 7790 if (q->q_next == NULL) 7791 ipst = CONNQ_TO_IPST(q); 7792 else 7793 ipst = ILLQ_TO_IPST(q); 7794 7795 /* These two ioctls are I_STR only */ 7796 if (iocp->ioc_count == TRANSPARENT) { 7797 miocnak(q, mp, 0, EINVAL); 7798 return; 7799 } 7800 7801 data_mp = mp->b_cont; 7802 if (data_mp == NULL) { 7803 /* The user passed us a NULL argument */ 7804 table = NULL; 7805 table_size = iocp->ioc_count; 7806 } else { 7807 /* 7808 * The user provided a table. The stream head 7809 * may have copied in the user data in chunks, 7810 * so make sure everything is pulled up 7811 * properly. 7812 */ 7813 if (MBLKL(data_mp) < iocp->ioc_count) { 7814 mblk_t *new_data_mp; 7815 if ((new_data_mp = msgpullup(data_mp, -1)) == 7816 NULL) { 7817 miocnak(q, mp, 0, ENOMEM); 7818 return; 7819 } 7820 freemsg(data_mp); 7821 data_mp = new_data_mp; 7822 mp->b_cont = data_mp; 7823 } 7824 table = (ip6_asp_t *)data_mp->b_rptr; 7825 table_size = iocp->ioc_count; 7826 } 7827 7828 switch (iocp->ioc_cmd) { 7829 case SIOCGIP6ADDRPOLICY: 7830 iocp->ioc_rval = ip6_asp_get(table, table_size, ipst); 7831 if (iocp->ioc_rval == -1) 7832 iocp->ioc_error = EINVAL; 7833 #if defined(_SYSCALL32_IMPL) && _LONG_LONG_ALIGNMENT_32 == 4 7834 else if (table != NULL && 7835 (iocp->ioc_flag & IOC_MODELS) == IOC_ILP32) { 7836 ip6_asp_t *src = table; 7837 ip6_asp32_t *dst = (void *)table; 7838 int count = table_size / sizeof (ip6_asp_t); 7839 int i; 7840 7841 /* 7842 * We need to do an in-place shrink of the array 7843 * to match the alignment attributes of the 7844 * 32-bit ABI looking at it. 7845 */ 7846 /* LINTED: logical expression always true: op "||" */ 7847 ASSERT(sizeof (*src) > sizeof (*dst)); 7848 for (i = 1; i < count; i++) 7849 bcopy(src + i, dst + i, sizeof (*dst)); 7850 } 7851 #endif 7852 break; 7853 7854 case SIOCSIP6ADDRPOLICY: 7855 ASSERT(mp->b_prev == NULL); 7856 mp->b_prev = (void *)q; 7857 #if defined(_SYSCALL32_IMPL) && _LONG_LONG_ALIGNMENT_32 == 4 7858 /* 7859 * We pass in the datamodel here so that the ip6_asp_replace() 7860 * routine can handle converting from 32-bit to native formats 7861 * where necessary. 7862 * 7863 * A better way to handle this might be to convert the inbound 7864 * data structure here, and hang it off a new 'mp'; thus the 7865 * ip6_asp_replace() logic would always be dealing with native 7866 * format data structures.. 7867 * 7868 * (An even simpler way to handle these ioctls is to just 7869 * add a 32-bit trailing 'pad' field to the ip6_asp_t structure 7870 * and just recompile everything that depends on it.) 7871 */ 7872 #endif 7873 ip6_asp_replace(mp, table, table_size, B_FALSE, ipst, 7874 iocp->ioc_flag & IOC_MODELS); 7875 return; 7876 } 7877 7878 DB_TYPE(mp) = (iocp->ioc_error == 0) ? M_IOCACK : M_IOCNAK; 7879 qreply(q, mp); 7880 } 7881 7882 static void 7883 ip_sioctl_dstinfo(queue_t *q, mblk_t *mp) 7884 { 7885 mblk_t *data_mp; 7886 struct dstinforeq *dir; 7887 uint8_t *end, *cur; 7888 in6_addr_t *daddr, *saddr; 7889 ipaddr_t v4daddr; 7890 ire_t *ire; 7891 ipaddr_t v4setsrc; 7892 in6_addr_t v6setsrc; 7893 char *slabel, *dlabel; 7894 boolean_t isipv4; 7895 int match_ire; 7896 ill_t *dst_ill; 7897 struct iocblk *iocp = (struct iocblk *)mp->b_rptr; 7898 conn_t *connp = Q_TO_CONN(q); 7899 zoneid_t zoneid = IPCL_ZONEID(connp); 7900 ip_stack_t *ipst = connp->conn_netstack->netstack_ip; 7901 uint64_t ipif_flags; 7902 7903 ASSERT(q->q_next == NULL); /* this ioctl not allowed if ip is module */ 7904 7905 /* 7906 * This ioctl is I_STR only, and must have a 7907 * data mblk following the M_IOCTL mblk. 7908 */ 7909 data_mp = mp->b_cont; 7910 if (iocp->ioc_count == TRANSPARENT || data_mp == NULL) { 7911 miocnak(q, mp, 0, EINVAL); 7912 return; 7913 } 7914 7915 if (MBLKL(data_mp) < iocp->ioc_count) { 7916 mblk_t *new_data_mp; 7917 7918 if ((new_data_mp = msgpullup(data_mp, -1)) == NULL) { 7919 miocnak(q, mp, 0, ENOMEM); 7920 return; 7921 } 7922 freemsg(data_mp); 7923 data_mp = new_data_mp; 7924 mp->b_cont = data_mp; 7925 } 7926 match_ire = MATCH_IRE_DSTONLY; 7927 7928 for (cur = data_mp->b_rptr, end = data_mp->b_wptr; 7929 end - cur >= sizeof (struct dstinforeq); 7930 cur += sizeof (struct dstinforeq)) { 7931 dir = (struct dstinforeq *)cur; 7932 daddr = &dir->dir_daddr; 7933 saddr = &dir->dir_saddr; 7934 7935 /* 7936 * ip_addr_scope_v6() and ip6_asp_lookup() handle 7937 * v4 mapped addresses; ire_ftable_lookup_v6() 7938 * and ip_select_source_v6() do not. 7939 */ 7940 dir->dir_dscope = ip_addr_scope_v6(daddr); 7941 dlabel = ip6_asp_lookup(daddr, &dir->dir_precedence, ipst); 7942 7943 isipv4 = IN6_IS_ADDR_V4MAPPED(daddr); 7944 if (isipv4) { 7945 IN6_V4MAPPED_TO_IPADDR(daddr, v4daddr); 7946 v4setsrc = INADDR_ANY; 7947 ire = ire_route_recursive_v4(v4daddr, 0, NULL, zoneid, 7948 NULL, match_ire, IRR_ALLOCATE, 0, ipst, &v4setsrc, 7949 NULL, NULL); 7950 } else { 7951 v6setsrc = ipv6_all_zeros; 7952 ire = ire_route_recursive_v6(daddr, 0, NULL, zoneid, 7953 NULL, match_ire, IRR_ALLOCATE, 0, ipst, &v6setsrc, 7954 NULL, NULL); 7955 } 7956 ASSERT(ire != NULL); 7957 if (ire->ire_flags & (RTF_REJECT|RTF_BLACKHOLE)) { 7958 ire_refrele(ire); 7959 dir->dir_dreachable = 0; 7960 7961 /* move on to next dst addr */ 7962 continue; 7963 } 7964 dir->dir_dreachable = 1; 7965 7966 dst_ill = ire_nexthop_ill(ire); 7967 if (dst_ill == NULL) { 7968 ire_refrele(ire); 7969 continue; 7970 } 7971 7972 /* With ipmp we most likely look at the ipmp ill here */ 7973 dir->dir_dmactype = dst_ill->ill_mactype; 7974 7975 if (isipv4) { 7976 ipaddr_t v4saddr; 7977 7978 if (ip_select_source_v4(dst_ill, v4setsrc, v4daddr, 7979 connp->conn_ixa->ixa_multicast_ifaddr, zoneid, ipst, 7980 &v4saddr, NULL, &ipif_flags) != 0) { 7981 v4saddr = INADDR_ANY; 7982 ipif_flags = 0; 7983 } 7984 IN6_IPADDR_TO_V4MAPPED(v4saddr, saddr); 7985 } else { 7986 if (ip_select_source_v6(dst_ill, &v6setsrc, daddr, 7987 zoneid, ipst, B_FALSE, IPV6_PREFER_SRC_DEFAULT, 7988 saddr, NULL, &ipif_flags) != 0) { 7989 *saddr = ipv6_all_zeros; 7990 ipif_flags = 0; 7991 } 7992 } 7993 7994 dir->dir_sscope = ip_addr_scope_v6(saddr); 7995 slabel = ip6_asp_lookup(saddr, NULL, ipst); 7996 dir->dir_labelmatch = ip6_asp_labelcmp(dlabel, slabel); 7997 dir->dir_sdeprecated = (ipif_flags & IPIF_DEPRECATED) ? 1 : 0; 7998 ire_refrele(ire); 7999 ill_refrele(dst_ill); 8000 } 8001 miocack(q, mp, iocp->ioc_count, 0); 8002 } 8003 8004 /* 8005 * Check if this is an address assigned to this machine. 8006 * Skips interfaces that are down by using ire checks. 8007 * Translates mapped addresses to v4 addresses and then 8008 * treats them as such, returning true if the v4 address 8009 * associated with this mapped address is configured. 8010 * Note: Applications will have to be careful what they do 8011 * with the response; use of mapped addresses limits 8012 * what can be done with the socket, especially with 8013 * respect to socket options and ioctls - neither IPv4 8014 * options nor IPv6 sticky options/ancillary data options 8015 * may be used. 8016 */ 8017 /* ARGSUSED */ 8018 int 8019 ip_sioctl_tmyaddr(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, 8020 ip_ioctl_cmd_t *ipip, void *dummy_ifreq) 8021 { 8022 struct sioc_addrreq *sia; 8023 sin_t *sin; 8024 ire_t *ire; 8025 mblk_t *mp1; 8026 zoneid_t zoneid; 8027 ip_stack_t *ipst; 8028 8029 ip1dbg(("ip_sioctl_tmyaddr")); 8030 8031 ASSERT(q->q_next == NULL); /* this ioctl not allowed if ip is module */ 8032 zoneid = Q_TO_CONN(q)->conn_zoneid; 8033 ipst = CONNQ_TO_IPST(q); 8034 8035 /* Existence verified in ip_wput_nondata */ 8036 mp1 = mp->b_cont->b_cont; 8037 sia = (struct sioc_addrreq *)mp1->b_rptr; 8038 sin = (sin_t *)&sia->sa_addr; 8039 switch (sin->sin_family) { 8040 case AF_INET6: { 8041 sin6_t *sin6 = (sin6_t *)sin; 8042 8043 if (IN6_IS_ADDR_V4MAPPED(&sin6->sin6_addr)) { 8044 ipaddr_t v4_addr; 8045 8046 IN6_V4MAPPED_TO_IPADDR(&sin6->sin6_addr, 8047 v4_addr); 8048 ire = ire_ftable_lookup_v4(v4_addr, 0, 0, 8049 IRE_LOCAL|IRE_LOOPBACK, NULL, zoneid, NULL, 8050 MATCH_IRE_TYPE | MATCH_IRE_ZONEONLY, 0, ipst, NULL); 8051 } else { 8052 in6_addr_t v6addr; 8053 8054 v6addr = sin6->sin6_addr; 8055 ire = ire_ftable_lookup_v6(&v6addr, 0, 0, 8056 IRE_LOCAL|IRE_LOOPBACK, NULL, zoneid, NULL, 8057 MATCH_IRE_TYPE | MATCH_IRE_ZONEONLY, 0, ipst, NULL); 8058 } 8059 break; 8060 } 8061 case AF_INET: { 8062 ipaddr_t v4addr; 8063 8064 v4addr = sin->sin_addr.s_addr; 8065 ire = ire_ftable_lookup_v4(v4addr, 0, 0, 8066 IRE_LOCAL|IRE_LOOPBACK, NULL, zoneid, 8067 NULL, MATCH_IRE_TYPE | MATCH_IRE_ZONEONLY, 0, ipst, NULL); 8068 break; 8069 } 8070 default: 8071 return (EAFNOSUPPORT); 8072 } 8073 if (ire != NULL) { 8074 sia->sa_res = 1; 8075 ire_refrele(ire); 8076 } else { 8077 sia->sa_res = 0; 8078 } 8079 return (0); 8080 } 8081 8082 /* 8083 * Check if this is an address assigned on-link i.e. neighbor, 8084 * and makes sure it's reachable from the current zone. 8085 * Returns true for my addresses as well. 8086 * Translates mapped addresses to v4 addresses and then 8087 * treats them as such, returning true if the v4 address 8088 * associated with this mapped address is configured. 8089 * Note: Applications will have to be careful what they do 8090 * with the response; use of mapped addresses limits 8091 * what can be done with the socket, especially with 8092 * respect to socket options and ioctls - neither IPv4 8093 * options nor IPv6 sticky options/ancillary data options 8094 * may be used. 8095 */ 8096 /* ARGSUSED */ 8097 int 8098 ip_sioctl_tonlink(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, 8099 ip_ioctl_cmd_t *ipip, void *duymmy_ifreq) 8100 { 8101 struct sioc_addrreq *sia; 8102 sin_t *sin; 8103 mblk_t *mp1; 8104 ire_t *ire = NULL; 8105 zoneid_t zoneid; 8106 ip_stack_t *ipst; 8107 8108 ip1dbg(("ip_sioctl_tonlink")); 8109 8110 ASSERT(q->q_next == NULL); /* this ioctl not allowed if ip is module */ 8111 zoneid = Q_TO_CONN(q)->conn_zoneid; 8112 ipst = CONNQ_TO_IPST(q); 8113 8114 /* Existence verified in ip_wput_nondata */ 8115 mp1 = mp->b_cont->b_cont; 8116 sia = (struct sioc_addrreq *)mp1->b_rptr; 8117 sin = (sin_t *)&sia->sa_addr; 8118 8119 /* 8120 * We check for IRE_ONLINK and exclude IRE_BROADCAST|IRE_MULTICAST 8121 * to make sure we only look at on-link unicast address. 8122 */ 8123 switch (sin->sin_family) { 8124 case AF_INET6: { 8125 sin6_t *sin6 = (sin6_t *)sin; 8126 8127 if (IN6_IS_ADDR_V4MAPPED(&sin6->sin6_addr)) { 8128 ipaddr_t v4_addr; 8129 8130 IN6_V4MAPPED_TO_IPADDR(&sin6->sin6_addr, 8131 v4_addr); 8132 if (!CLASSD(v4_addr)) { 8133 ire = ire_ftable_lookup_v4(v4_addr, 0, 0, 0, 8134 NULL, zoneid, NULL, MATCH_IRE_DSTONLY, 8135 0, ipst, NULL); 8136 } 8137 } else { 8138 in6_addr_t v6addr; 8139 8140 v6addr = sin6->sin6_addr; 8141 if (!IN6_IS_ADDR_MULTICAST(&v6addr)) { 8142 ire = ire_ftable_lookup_v6(&v6addr, 0, 0, 0, 8143 NULL, zoneid, NULL, MATCH_IRE_DSTONLY, 0, 8144 ipst, NULL); 8145 } 8146 } 8147 break; 8148 } 8149 case AF_INET: { 8150 ipaddr_t v4addr; 8151 8152 v4addr = sin->sin_addr.s_addr; 8153 if (!CLASSD(v4addr)) { 8154 ire = ire_ftable_lookup_v4(v4addr, 0, 0, 0, NULL, 8155 zoneid, NULL, MATCH_IRE_DSTONLY, 0, ipst, NULL); 8156 } 8157 break; 8158 } 8159 default: 8160 return (EAFNOSUPPORT); 8161 } 8162 sia->sa_res = 0; 8163 if (ire != NULL) { 8164 ASSERT(!(ire->ire_type & IRE_MULTICAST)); 8165 8166 if ((ire->ire_type & IRE_ONLINK) && 8167 !(ire->ire_type & IRE_BROADCAST)) 8168 sia->sa_res = 1; 8169 ire_refrele(ire); 8170 } 8171 return (0); 8172 } 8173 8174 /* 8175 * TBD: implement when kernel maintaines a list of site prefixes. 8176 */ 8177 /* ARGSUSED */ 8178 int 8179 ip_sioctl_tmysite(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 8180 ip_ioctl_cmd_t *ipip, void *ifreq) 8181 { 8182 return (ENXIO); 8183 } 8184 8185 /* ARP IOCTLs. */ 8186 /* ARGSUSED */ 8187 int 8188 ip_sioctl_arp(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 8189 ip_ioctl_cmd_t *ipip, void *dummy_ifreq) 8190 { 8191 int err; 8192 ipaddr_t ipaddr; 8193 struct iocblk *iocp; 8194 conn_t *connp; 8195 struct arpreq *ar; 8196 struct xarpreq *xar; 8197 int arp_flags, flags, alength; 8198 uchar_t *lladdr; 8199 ip_stack_t *ipst; 8200 ill_t *ill = ipif->ipif_ill; 8201 ill_t *proxy_ill = NULL; 8202 ipmp_arpent_t *entp = NULL; 8203 boolean_t proxyarp = B_FALSE; 8204 boolean_t if_arp_ioctl = B_FALSE; 8205 ncec_t *ncec = NULL; 8206 nce_t *nce; 8207 8208 ASSERT(!(q->q_flag & QREADR) && q->q_next == NULL); 8209 connp = Q_TO_CONN(q); 8210 ipst = connp->conn_netstack->netstack_ip; 8211 iocp = (struct iocblk *)mp->b_rptr; 8212 8213 if (ipip->ipi_cmd_type == XARP_CMD) { 8214 /* We have a chain - M_IOCTL-->MI_COPY_MBLK-->XARPREQ_MBLK */ 8215 xar = (struct xarpreq *)mp->b_cont->b_cont->b_rptr; 8216 ar = NULL; 8217 8218 arp_flags = xar->xarp_flags; 8219 lladdr = (uchar_t *)LLADDR(&xar->xarp_ha); 8220 if_arp_ioctl = (xar->xarp_ha.sdl_nlen != 0); 8221 /* 8222 * Validate against user's link layer address length 8223 * input and name and addr length limits. 8224 */ 8225 alength = ill->ill_phys_addr_length; 8226 if (ipip->ipi_cmd == SIOCSXARP) { 8227 if (alength != xar->xarp_ha.sdl_alen || 8228 (alength + xar->xarp_ha.sdl_nlen > 8229 sizeof (xar->xarp_ha.sdl_data))) 8230 return (EINVAL); 8231 } 8232 } else { 8233 /* We have a chain - M_IOCTL-->MI_COPY_MBLK-->ARPREQ_MBLK */ 8234 ar = (struct arpreq *)mp->b_cont->b_cont->b_rptr; 8235 xar = NULL; 8236 8237 arp_flags = ar->arp_flags; 8238 lladdr = (uchar_t *)ar->arp_ha.sa_data; 8239 /* 8240 * Theoretically, the sa_family could tell us what link 8241 * layer type this operation is trying to deal with. By 8242 * common usage AF_UNSPEC means ethernet. We'll assume 8243 * any attempt to use the SIOC?ARP ioctls is for ethernet, 8244 * for now. Our new SIOC*XARP ioctls can be used more 8245 * generally. 8246 * 8247 * If the underlying media happens to have a non 6 byte 8248 * address, arp module will fail set/get, but the del 8249 * operation will succeed. 8250 */ 8251 alength = 6; 8252 if ((ipip->ipi_cmd != SIOCDARP) && 8253 (alength != ill->ill_phys_addr_length)) { 8254 return (EINVAL); 8255 } 8256 } 8257 8258 /* Translate ATF* flags to NCE* flags */ 8259 flags = 0; 8260 if (arp_flags & ATF_AUTHORITY) 8261 flags |= NCE_F_AUTHORITY; 8262 if (arp_flags & ATF_PERM) 8263 flags |= NCE_F_NONUD; /* not subject to aging */ 8264 if (arp_flags & ATF_PUBL) 8265 flags |= NCE_F_PUBLISH; 8266 8267 /* 8268 * IPMP ARP special handling: 8269 * 8270 * 1. Since ARP mappings must appear consistent across the group, 8271 * prohibit changing ARP mappings on the underlying interfaces. 8272 * 8273 * 2. Since ARP mappings for IPMP data addresses are maintained by 8274 * IP itself, prohibit changing them. 8275 * 8276 * 3. For proxy ARP, use a functioning hardware address in the group, 8277 * provided one exists. If one doesn't, just add the entry as-is; 8278 * ipmp_illgrp_refresh_arpent() will refresh it if things change. 8279 */ 8280 if (IS_UNDER_IPMP(ill)) { 8281 if (ipip->ipi_cmd != SIOCGARP && ipip->ipi_cmd != SIOCGXARP) 8282 return (EPERM); 8283 } 8284 if (IS_IPMP(ill)) { 8285 ipmp_illgrp_t *illg = ill->ill_grp; 8286 8287 switch (ipip->ipi_cmd) { 8288 case SIOCSARP: 8289 case SIOCSXARP: 8290 proxy_ill = ipmp_illgrp_find_ill(illg, lladdr, alength); 8291 if (proxy_ill != NULL) { 8292 proxyarp = B_TRUE; 8293 if (!ipmp_ill_is_active(proxy_ill)) 8294 proxy_ill = ipmp_illgrp_next_ill(illg); 8295 if (proxy_ill != NULL) 8296 lladdr = proxy_ill->ill_phys_addr; 8297 } 8298 /* FALLTHRU */ 8299 } 8300 } 8301 8302 ipaddr = sin->sin_addr.s_addr; 8303 /* 8304 * don't match across illgrp per case (1) and (2). 8305 * XXX use IS_IPMP(ill) like ndp_sioc_update? 8306 */ 8307 nce = nce_lookup_v4(ill, &ipaddr); 8308 if (nce != NULL) 8309 ncec = nce->nce_common; 8310 8311 switch (iocp->ioc_cmd) { 8312 case SIOCDARP: 8313 case SIOCDXARP: { 8314 /* 8315 * Delete the NCE if any. 8316 */ 8317 if (ncec == NULL) { 8318 iocp->ioc_error = ENXIO; 8319 break; 8320 } 8321 /* Don't allow changes to arp mappings of local addresses. */ 8322 if (NCE_MYADDR(ncec)) { 8323 nce_refrele(nce); 8324 return (ENOTSUP); 8325 } 8326 iocp->ioc_error = 0; 8327 8328 /* 8329 * Delete the nce_common which has ncec_ill set to ipmp_ill. 8330 * This will delete all the nce entries on the under_ills. 8331 */ 8332 ncec_delete(ncec); 8333 /* 8334 * Once the NCE has been deleted, then the ire_dep* consistency 8335 * mechanism will find any IRE which depended on the now 8336 * condemned NCE (as part of sending packets). 8337 * That mechanism handles redirects by deleting redirects 8338 * that refer to UNREACHABLE nces. 8339 */ 8340 break; 8341 } 8342 case SIOCGARP: 8343 case SIOCGXARP: 8344 if (ncec != NULL) { 8345 lladdr = ncec->ncec_lladdr; 8346 flags = ncec->ncec_flags; 8347 iocp->ioc_error = 0; 8348 ip_sioctl_garp_reply(mp, ncec->ncec_ill, lladdr, flags); 8349 } else { 8350 iocp->ioc_error = ENXIO; 8351 } 8352 break; 8353 case SIOCSARP: 8354 case SIOCSXARP: 8355 /* Don't allow changes to arp mappings of local addresses. */ 8356 if (ncec != NULL && NCE_MYADDR(ncec)) { 8357 nce_refrele(nce); 8358 return (ENOTSUP); 8359 } 8360 8361 /* static arp entries will undergo NUD if ATF_PERM is not set */ 8362 flags |= NCE_F_STATIC; 8363 if (!if_arp_ioctl) { 8364 ip_nce_lookup_and_update(&ipaddr, NULL, ipst, 8365 lladdr, alength, flags); 8366 } else { 8367 ipif_t *ipif = ipif_get_next_ipif(NULL, ill); 8368 if (ipif != NULL) { 8369 ip_nce_lookup_and_update(&ipaddr, ipif, ipst, 8370 lladdr, alength, flags); 8371 ipif_refrele(ipif); 8372 } 8373 } 8374 if (nce != NULL) { 8375 nce_refrele(nce); 8376 nce = NULL; 8377 } 8378 /* 8379 * NCE_F_STATIC entries will be added in state ND_REACHABLE 8380 * by nce_add_common() 8381 */ 8382 err = nce_lookup_then_add_v4(ill, lladdr, 8383 ill->ill_phys_addr_length, &ipaddr, flags, ND_UNCHANGED, 8384 &nce); 8385 if (err == EEXIST) { 8386 ncec = nce->nce_common; 8387 mutex_enter(&ncec->ncec_lock); 8388 ncec->ncec_state = ND_REACHABLE; 8389 ncec->ncec_flags = flags; 8390 nce_update(ncec, ND_UNCHANGED, lladdr); 8391 mutex_exit(&ncec->ncec_lock); 8392 err = 0; 8393 } 8394 if (nce != NULL) { 8395 nce_refrele(nce); 8396 nce = NULL; 8397 } 8398 if (IS_IPMP(ill) && err == 0) { 8399 entp = ipmp_illgrp_create_arpent(ill->ill_grp, 8400 proxyarp, ipaddr, lladdr, ill->ill_phys_addr_length, 8401 flags); 8402 if (entp == NULL || (proxyarp && proxy_ill == NULL)) { 8403 iocp->ioc_error = (entp == NULL ? ENOMEM : 0); 8404 break; 8405 } 8406 } 8407 iocp->ioc_error = err; 8408 } 8409 8410 if (nce != NULL) { 8411 nce_refrele(nce); 8412 } 8413 8414 /* 8415 * If we created an IPMP ARP entry, mark that we've notified ARP. 8416 */ 8417 if (entp != NULL) 8418 ipmp_illgrp_mark_arpent(ill->ill_grp, entp); 8419 8420 return (iocp->ioc_error); 8421 } 8422 8423 /* 8424 * Parse an [x]arpreq structure coming down SIOC[GSD][X]ARP ioctls, identify 8425 * the associated sin and refhold and return the associated ipif via `ci'. 8426 */ 8427 int 8428 ip_extract_arpreq(queue_t *q, mblk_t *mp, const ip_ioctl_cmd_t *ipip, 8429 cmd_info_t *ci) 8430 { 8431 mblk_t *mp1; 8432 sin_t *sin; 8433 conn_t *connp; 8434 ipif_t *ipif; 8435 ire_t *ire = NULL; 8436 ill_t *ill = NULL; 8437 boolean_t exists; 8438 ip_stack_t *ipst; 8439 struct arpreq *ar; 8440 struct xarpreq *xar; 8441 struct sockaddr_dl *sdl; 8442 8443 /* ioctl comes down on a conn */ 8444 ASSERT(!(q->q_flag & QREADR) && q->q_next == NULL); 8445 connp = Q_TO_CONN(q); 8446 if (connp->conn_family == AF_INET6) 8447 return (ENXIO); 8448 8449 ipst = connp->conn_netstack->netstack_ip; 8450 8451 /* Verified in ip_wput_nondata */ 8452 mp1 = mp->b_cont->b_cont; 8453 8454 if (ipip->ipi_cmd_type == XARP_CMD) { 8455 ASSERT(MBLKL(mp1) >= sizeof (struct xarpreq)); 8456 xar = (struct xarpreq *)mp1->b_rptr; 8457 sin = (sin_t *)&xar->xarp_pa; 8458 sdl = &xar->xarp_ha; 8459 8460 if (sdl->sdl_family != AF_LINK || sin->sin_family != AF_INET) 8461 return (ENXIO); 8462 if (sdl->sdl_nlen >= LIFNAMSIZ) 8463 return (EINVAL); 8464 } else { 8465 ASSERT(ipip->ipi_cmd_type == ARP_CMD); 8466 ASSERT(MBLKL(mp1) >= sizeof (struct arpreq)); 8467 ar = (struct arpreq *)mp1->b_rptr; 8468 sin = (sin_t *)&ar->arp_pa; 8469 } 8470 8471 if (ipip->ipi_cmd_type == XARP_CMD && sdl->sdl_nlen != 0) { 8472 ipif = ipif_lookup_on_name(sdl->sdl_data, sdl->sdl_nlen, 8473 B_FALSE, &exists, B_FALSE, ALL_ZONES, ipst); 8474 if (ipif == NULL) 8475 return (ENXIO); 8476 if (ipif->ipif_id != 0) { 8477 ipif_refrele(ipif); 8478 return (ENXIO); 8479 } 8480 } else { 8481 /* 8482 * Either an SIOC[DGS]ARP or an SIOC[DGS]XARP with an sdl_nlen 8483 * of 0: use the IP address to find the ipif. If the IP 8484 * address is an IPMP test address, ire_ftable_lookup() will 8485 * find the wrong ill, so we first do an ipif_lookup_addr(). 8486 */ 8487 ipif = ipif_lookup_addr(sin->sin_addr.s_addr, NULL, ALL_ZONES, 8488 ipst); 8489 if (ipif == NULL) { 8490 ire = ire_ftable_lookup_v4(sin->sin_addr.s_addr, 8491 0, 0, IRE_IF_RESOLVER, NULL, ALL_ZONES, 8492 NULL, MATCH_IRE_TYPE, 0, ipst, NULL); 8493 if (ire == NULL || ((ill = ire->ire_ill) == NULL)) { 8494 if (ire != NULL) 8495 ire_refrele(ire); 8496 return (ENXIO); 8497 } 8498 ASSERT(ire != NULL && ill != NULL); 8499 ipif = ill->ill_ipif; 8500 ipif_refhold(ipif); 8501 ire_refrele(ire); 8502 } 8503 } 8504 8505 if (ipif->ipif_ill->ill_net_type != IRE_IF_RESOLVER) { 8506 ipif_refrele(ipif); 8507 return (ENXIO); 8508 } 8509 8510 ci->ci_sin = sin; 8511 ci->ci_ipif = ipif; 8512 return (0); 8513 } 8514 8515 /* 8516 * Link or unlink the illgrp on IPMP meta-interface `ill' depending on the 8517 * value of `ioccmd'. While an illgrp is linked to an ipmp_grp_t, it is 8518 * accessible from that ipmp_grp_t, which means SIOCSLIFGROUPNAME can look it 8519 * up and thus an ill can join that illgrp. 8520 * 8521 * We use I_PLINK/I_PUNLINK to do the link/unlink operations rather than 8522 * open()/close() primarily because close() is not allowed to fail or block 8523 * forever. On the other hand, I_PUNLINK *can* fail, and there's no reason 8524 * why anyone should ever need to I_PUNLINK an in-use IPMP stream. To ensure 8525 * symmetric behavior (e.g., doing an I_PLINK after and I_PUNLINK undoes the 8526 * I_PUNLINK) we defer linking to I_PLINK. Separately, we also fail attempts 8527 * to I_LINK since I_UNLINK is optional and we'd end up in an inconsistent 8528 * state if I_UNLINK didn't occur. 8529 * 8530 * Note that for each plumb/unplumb operation, we may end up here more than 8531 * once because of the way ifconfig works. However, it's OK to link the same 8532 * illgrp more than once, or unlink an illgrp that's already unlinked. 8533 */ 8534 static int 8535 ip_sioctl_plink_ipmp(ill_t *ill, int ioccmd) 8536 { 8537 int err; 8538 ip_stack_t *ipst = ill->ill_ipst; 8539 8540 ASSERT(IS_IPMP(ill)); 8541 ASSERT(IAM_WRITER_ILL(ill)); 8542 8543 switch (ioccmd) { 8544 case I_LINK: 8545 return (ENOTSUP); 8546 8547 case I_PLINK: 8548 rw_enter(&ipst->ips_ipmp_lock, RW_WRITER); 8549 ipmp_illgrp_link_grp(ill->ill_grp, ill->ill_phyint->phyint_grp); 8550 rw_exit(&ipst->ips_ipmp_lock); 8551 break; 8552 8553 case I_PUNLINK: 8554 /* 8555 * Require all UP ipifs be brought down prior to unlinking the 8556 * illgrp so any associated IREs (and other state) is torched. 8557 */ 8558 if (ill->ill_ipif_up_count + ill->ill_ipif_dup_count > 0) 8559 return (EBUSY); 8560 8561 /* 8562 * NOTE: We hold ipmp_lock across the unlink to prevent a race 8563 * with an SIOCSLIFGROUPNAME request from an ill trying to 8564 * join this group. Specifically: ills trying to join grab 8565 * ipmp_lock and bump a "pending join" counter checked by 8566 * ipmp_illgrp_unlink_grp(). During the unlink no new pending 8567 * joins can occur (since we have ipmp_lock). Once we drop 8568 * ipmp_lock, subsequent SIOCSLIFGROUPNAME requests will not 8569 * find the illgrp (since we unlinked it) and will return 8570 * EAFNOSUPPORT. This will then take them back through the 8571 * IPMP meta-interface plumbing logic in ifconfig, and thus 8572 * back through I_PLINK above. 8573 */ 8574 rw_enter(&ipst->ips_ipmp_lock, RW_WRITER); 8575 err = ipmp_illgrp_unlink_grp(ill->ill_grp); 8576 rw_exit(&ipst->ips_ipmp_lock); 8577 return (err); 8578 default: 8579 break; 8580 } 8581 return (0); 8582 } 8583 8584 /* 8585 * Do I_PLINK/I_LINK or I_PUNLINK/I_UNLINK with consistency checks and also 8586 * atomically set/clear the muxids. Also complete the ioctl by acking or 8587 * naking it. Note that the code is structured such that the link type, 8588 * whether it's persistent or not, is treated equally. ifconfig(1M) and 8589 * its clones use the persistent link, while pppd(1M) and perhaps many 8590 * other daemons may use non-persistent link. When combined with some 8591 * ill_t states, linking and unlinking lower streams may be used as 8592 * indicators of dynamic re-plumbing events [see PSARC/1999/348]. 8593 */ 8594 /* ARGSUSED */ 8595 void 8596 ip_sioctl_plink(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy_arg) 8597 { 8598 mblk_t *mp1; 8599 struct linkblk *li; 8600 int ioccmd = ((struct iocblk *)mp->b_rptr)->ioc_cmd; 8601 int err = 0; 8602 8603 ASSERT(ioccmd == I_PLINK || ioccmd == I_PUNLINK || 8604 ioccmd == I_LINK || ioccmd == I_UNLINK); 8605 8606 mp1 = mp->b_cont; /* This is the linkblk info */ 8607 li = (struct linkblk *)mp1->b_rptr; 8608 8609 err = ip_sioctl_plink_ipmod(ipsq, q, mp, ioccmd, li); 8610 if (err == EINPROGRESS) 8611 return; 8612 done: 8613 if (err == 0) 8614 miocack(q, mp, 0, 0); 8615 else 8616 miocnak(q, mp, 0, err); 8617 8618 /* Conn was refheld in ip_sioctl_copyin_setup */ 8619 if (CONN_Q(q)) 8620 CONN_OPER_PENDING_DONE(Q_TO_CONN(q)); 8621 } 8622 8623 /* 8624 * Process I_{P}LINK and I_{P}UNLINK requests named by `ioccmd' and pointed to 8625 * by `mp' and `li' for the IP module stream (if li->q_bot is in fact an IP 8626 * module stream). If `doconsist' is set, then do the extended consistency 8627 * checks requested by ifconfig(1M) and (atomically) set ill_muxid here. 8628 * Returns zero on success, EINPROGRESS if the operation is still pending, or 8629 * an error code on failure. 8630 */ 8631 static int 8632 ip_sioctl_plink_ipmod(ipsq_t *ipsq, queue_t *q, mblk_t *mp, int ioccmd, 8633 struct linkblk *li) 8634 { 8635 int err = 0; 8636 ill_t *ill; 8637 queue_t *ipwq, *dwq; 8638 const char *name; 8639 struct qinit *qinfo; 8640 boolean_t islink = (ioccmd == I_PLINK || ioccmd == I_LINK); 8641 boolean_t entered_ipsq = B_FALSE; 8642 boolean_t is_ip = B_FALSE; 8643 arl_t *arl; 8644 8645 /* 8646 * Walk the lower stream to verify it's the IP module stream. 8647 * The IP module is identified by its name, wput function, 8648 * and non-NULL q_next. STREAMS ensures that the lower stream 8649 * (li->l_qbot) will not vanish until this ioctl completes. 8650 */ 8651 for (ipwq = li->l_qbot; ipwq != NULL; ipwq = ipwq->q_next) { 8652 qinfo = ipwq->q_qinfo; 8653 name = qinfo->qi_minfo->mi_idname; 8654 if (name != NULL && strcmp(name, ip_mod_info.mi_idname) == 0 && 8655 qinfo->qi_putp != (pfi_t)ip_lwput && ipwq->q_next != NULL) { 8656 is_ip = B_TRUE; 8657 break; 8658 } 8659 if (name != NULL && strcmp(name, arp_mod_info.mi_idname) == 0 && 8660 qinfo->qi_putp != (pfi_t)ip_lwput && ipwq->q_next != NULL) { 8661 break; 8662 } 8663 } 8664 8665 /* 8666 * If this isn't an IP module stream, bail. 8667 */ 8668 if (ipwq == NULL) 8669 return (0); 8670 8671 if (!is_ip) { 8672 arl = (arl_t *)ipwq->q_ptr; 8673 ill = arl_to_ill(arl); 8674 if (ill == NULL) 8675 return (0); 8676 } else { 8677 ill = ipwq->q_ptr; 8678 } 8679 ASSERT(ill != NULL); 8680 8681 if (ipsq == NULL) { 8682 ipsq = ipsq_try_enter(NULL, ill, q, mp, ip_sioctl_plink, 8683 NEW_OP, B_FALSE); 8684 if (ipsq == NULL) { 8685 if (!is_ip) 8686 ill_refrele(ill); 8687 return (EINPROGRESS); 8688 } 8689 entered_ipsq = B_TRUE; 8690 } 8691 ASSERT(IAM_WRITER_ILL(ill)); 8692 mutex_enter(&ill->ill_lock); 8693 if (!is_ip) { 8694 if (islink && ill->ill_muxid == 0) { 8695 /* 8696 * Plumbing has to be done with IP plumbed first, arp 8697 * second, but here we have arp being plumbed first. 8698 */ 8699 mutex_exit(&ill->ill_lock); 8700 ipsq_exit(ipsq); 8701 ill_refrele(ill); 8702 return (EINVAL); 8703 } 8704 } 8705 mutex_exit(&ill->ill_lock); 8706 if (!is_ip) { 8707 arl->arl_muxid = islink ? li->l_index : 0; 8708 ill_refrele(ill); 8709 goto done; 8710 } 8711 8712 if (IS_IPMP(ill) && (err = ip_sioctl_plink_ipmp(ill, ioccmd)) != 0) 8713 goto done; 8714 8715 /* 8716 * As part of I_{P}LINKing, stash the number of downstream modules and 8717 * the read queue of the module immediately below IP in the ill. 8718 * These are used during the capability negotiation below. 8719 */ 8720 ill->ill_lmod_rq = NULL; 8721 ill->ill_lmod_cnt = 0; 8722 if (islink && ((dwq = ipwq->q_next) != NULL)) { 8723 ill->ill_lmod_rq = RD(dwq); 8724 for (; dwq != NULL; dwq = dwq->q_next) 8725 ill->ill_lmod_cnt++; 8726 } 8727 8728 ill->ill_muxid = islink ? li->l_index : 0; 8729 8730 /* 8731 * Mark the ipsq busy until the capability operations initiated below 8732 * complete. The PLINK/UNLINK ioctl itself completes when our caller 8733 * returns, but the capability operation may complete asynchronously 8734 * much later. 8735 */ 8736 ipsq_current_start(ipsq, ill->ill_ipif, ioccmd); 8737 /* 8738 * If there's at least one up ipif on this ill, then we're bound to 8739 * the underlying driver via DLPI. In that case, renegotiate 8740 * capabilities to account for any possible change in modules 8741 * interposed between IP and the driver. 8742 */ 8743 if (ill->ill_ipif_up_count > 0) { 8744 if (islink) 8745 ill_capability_probe(ill); 8746 else 8747 ill_capability_reset(ill, B_FALSE); 8748 } 8749 ipsq_current_finish(ipsq); 8750 done: 8751 if (entered_ipsq) 8752 ipsq_exit(ipsq); 8753 8754 return (err); 8755 } 8756 8757 /* 8758 * Search the ioctl command in the ioctl tables and return a pointer 8759 * to the ioctl command information. The ioctl command tables are 8760 * static and fully populated at compile time. 8761 */ 8762 ip_ioctl_cmd_t * 8763 ip_sioctl_lookup(int ioc_cmd) 8764 { 8765 int index; 8766 ip_ioctl_cmd_t *ipip; 8767 ip_ioctl_cmd_t *ipip_end; 8768 8769 if (ioc_cmd == IPI_DONTCARE) 8770 return (NULL); 8771 8772 /* 8773 * Do a 2 step search. First search the indexed table 8774 * based on the least significant byte of the ioctl cmd. 8775 * If we don't find a match, then search the misc table 8776 * serially. 8777 */ 8778 index = ioc_cmd & 0xFF; 8779 if (index < ip_ndx_ioctl_count) { 8780 ipip = &ip_ndx_ioctl_table[index]; 8781 if (ipip->ipi_cmd == ioc_cmd) { 8782 /* Found a match in the ndx table */ 8783 return (ipip); 8784 } 8785 } 8786 8787 /* Search the misc table */ 8788 ipip_end = &ip_misc_ioctl_table[ip_misc_ioctl_count]; 8789 for (ipip = ip_misc_ioctl_table; ipip < ipip_end; ipip++) { 8790 if (ipip->ipi_cmd == ioc_cmd) 8791 /* Found a match in the misc table */ 8792 return (ipip); 8793 } 8794 8795 return (NULL); 8796 } 8797 8798 /* 8799 * Wrapper function for resuming deferred ioctl processing 8800 * Used for SIOCGDSTINFO, SIOCGIP6ADDRPOLICY, SIOCGMSFILTER, 8801 * SIOCSMSFILTER, SIOCGIPMSFILTER, and SIOCSIPMSFILTER currently. 8802 */ 8803 /* ARGSUSED */ 8804 void 8805 ip_sioctl_copyin_resume(ipsq_t *dummy_ipsq, queue_t *q, mblk_t *mp, 8806 void *dummy_arg) 8807 { 8808 ip_sioctl_copyin_setup(q, mp); 8809 } 8810 8811 /* 8812 * ip_sioctl_copyin_setup is called by ip_wput_nondata with any M_IOCTL message 8813 * that arrives. Most of the IOCTLs are "socket" IOCTLs which we handle 8814 * in either I_STR or TRANSPARENT form, using the mi_copy facility. 8815 * We establish here the size of the block to be copied in. mi_copyin 8816 * arranges for this to happen, an processing continues in ip_wput_nondata with 8817 * an M_IOCDATA message. 8818 */ 8819 void 8820 ip_sioctl_copyin_setup(queue_t *q, mblk_t *mp) 8821 { 8822 int copyin_size; 8823 struct iocblk *iocp = (struct iocblk *)mp->b_rptr; 8824 ip_ioctl_cmd_t *ipip; 8825 cred_t *cr; 8826 ip_stack_t *ipst; 8827 8828 if (CONN_Q(q)) 8829 ipst = CONNQ_TO_IPST(q); 8830 else 8831 ipst = ILLQ_TO_IPST(q); 8832 8833 ipip = ip_sioctl_lookup(iocp->ioc_cmd); 8834 if (ipip == NULL) { 8835 /* 8836 * The ioctl is not one we understand or own. 8837 * Pass it along to be processed down stream, 8838 * if this is a module instance of IP, else nak 8839 * the ioctl. 8840 */ 8841 if (q->q_next == NULL) { 8842 goto nak; 8843 } else { 8844 putnext(q, mp); 8845 return; 8846 } 8847 } 8848 8849 /* 8850 * If this is deferred, then we will do all the checks when we 8851 * come back. 8852 */ 8853 if ((iocp->ioc_cmd == SIOCGDSTINFO || 8854 iocp->ioc_cmd == SIOCGIP6ADDRPOLICY) && !ip6_asp_can_lookup(ipst)) { 8855 ip6_asp_pending_op(q, mp, ip_sioctl_copyin_resume); 8856 return; 8857 } 8858 8859 /* 8860 * Only allow a very small subset of IP ioctls on this stream if 8861 * IP is a module and not a driver. Allowing ioctls to be processed 8862 * in this case may cause assert failures or data corruption. 8863 * Typically G[L]IFFLAGS, SLIFNAME/IF_UNITSEL are the only few 8864 * ioctls allowed on an IP module stream, after which this stream 8865 * normally becomes a multiplexor (at which time the stream head 8866 * will fail all ioctls). 8867 */ 8868 if ((q->q_next != NULL) && !(ipip->ipi_flags & IPI_MODOK)) { 8869 goto nak; 8870 } 8871 8872 /* Make sure we have ioctl data to process. */ 8873 if (mp->b_cont == NULL && !(ipip->ipi_flags & IPI_NULL_BCONT)) 8874 goto nak; 8875 8876 /* 8877 * Prefer dblk credential over ioctl credential; some synthesized 8878 * ioctls have kcred set because there's no way to crhold() 8879 * a credential in some contexts. (ioc_cr is not crfree() by 8880 * the framework; the caller of ioctl needs to hold the reference 8881 * for the duration of the call). 8882 */ 8883 cr = msg_getcred(mp, NULL); 8884 if (cr == NULL) 8885 cr = iocp->ioc_cr; 8886 8887 /* Make sure normal users don't send down privileged ioctls */ 8888 if ((ipip->ipi_flags & IPI_PRIV) && 8889 (cr != NULL) && secpolicy_ip_config(cr, B_TRUE) != 0) { 8890 /* We checked the privilege earlier but log it here */ 8891 miocnak(q, mp, 0, secpolicy_ip_config(cr, B_FALSE)); 8892 return; 8893 } 8894 8895 /* 8896 * The ioctl command tables can only encode fixed length 8897 * ioctl data. If the length is variable, the table will 8898 * encode the length as zero. Such special cases are handled 8899 * below in the switch. 8900 */ 8901 if (ipip->ipi_copyin_size != 0) { 8902 mi_copyin(q, mp, NULL, ipip->ipi_copyin_size); 8903 return; 8904 } 8905 8906 switch (iocp->ioc_cmd) { 8907 case O_SIOCGIFCONF: 8908 case SIOCGIFCONF: 8909 /* 8910 * This IOCTL is hilarious. See comments in 8911 * ip_sioctl_get_ifconf for the story. 8912 */ 8913 if (iocp->ioc_count == TRANSPARENT) 8914 copyin_size = SIZEOF_STRUCT(ifconf, 8915 iocp->ioc_flag); 8916 else 8917 copyin_size = iocp->ioc_count; 8918 mi_copyin(q, mp, NULL, copyin_size); 8919 return; 8920 8921 case O_SIOCGLIFCONF: 8922 case SIOCGLIFCONF: 8923 copyin_size = SIZEOF_STRUCT(lifconf, iocp->ioc_flag); 8924 mi_copyin(q, mp, NULL, copyin_size); 8925 return; 8926 8927 case SIOCGLIFSRCOF: 8928 copyin_size = SIZEOF_STRUCT(lifsrcof, iocp->ioc_flag); 8929 mi_copyin(q, mp, NULL, copyin_size); 8930 return; 8931 case SIOCGIP6ADDRPOLICY: 8932 ip_sioctl_ip6addrpolicy(q, mp); 8933 ip6_asp_table_refrele(ipst); 8934 return; 8935 8936 case SIOCSIP6ADDRPOLICY: 8937 ip_sioctl_ip6addrpolicy(q, mp); 8938 return; 8939 8940 case SIOCGDSTINFO: 8941 ip_sioctl_dstinfo(q, mp); 8942 ip6_asp_table_refrele(ipst); 8943 return; 8944 8945 case I_PLINK: 8946 case I_PUNLINK: 8947 case I_LINK: 8948 case I_UNLINK: 8949 /* 8950 * We treat non-persistent link similarly as the persistent 8951 * link case, in terms of plumbing/unplumbing, as well as 8952 * dynamic re-plumbing events indicator. See comments 8953 * in ip_sioctl_plink() for more. 8954 * 8955 * Request can be enqueued in the 'ipsq' while waiting 8956 * to become exclusive. So bump up the conn ref. 8957 */ 8958 if (CONN_Q(q)) 8959 CONN_INC_REF(Q_TO_CONN(q)); 8960 ip_sioctl_plink(NULL, q, mp, NULL); 8961 return; 8962 8963 case ND_GET: 8964 case ND_SET: 8965 /* 8966 * Use of the nd table requires holding the reader lock. 8967 * Modifying the nd table thru nd_load/nd_unload requires 8968 * the writer lock. 8969 */ 8970 rw_enter(&ipst->ips_ip_g_nd_lock, RW_READER); 8971 if (nd_getset(q, ipst->ips_ip_g_nd, mp)) { 8972 rw_exit(&ipst->ips_ip_g_nd_lock); 8973 8974 if (iocp->ioc_error) 8975 iocp->ioc_count = 0; 8976 mp->b_datap->db_type = M_IOCACK; 8977 qreply(q, mp); 8978 return; 8979 } 8980 rw_exit(&ipst->ips_ip_g_nd_lock); 8981 /* 8982 * We don't understand this subioctl of ND_GET / ND_SET. 8983 * Maybe intended for some driver / module below us 8984 */ 8985 if (q->q_next) { 8986 putnext(q, mp); 8987 } else { 8988 iocp->ioc_error = ENOENT; 8989 mp->b_datap->db_type = M_IOCNAK; 8990 iocp->ioc_count = 0; 8991 qreply(q, mp); 8992 } 8993 return; 8994 8995 case IP_IOCTL: 8996 ip_wput_ioctl(q, mp); 8997 return; 8998 8999 case SIOCILB: 9000 /* The ioctl length varies depending on the ILB command. */ 9001 copyin_size = iocp->ioc_count; 9002 if (copyin_size < sizeof (ilb_cmd_t)) 9003 goto nak; 9004 mi_copyin(q, mp, NULL, copyin_size); 9005 return; 9006 9007 default: 9008 cmn_err(CE_PANIC, "should not happen "); 9009 } 9010 nak: 9011 if (mp->b_cont != NULL) { 9012 freemsg(mp->b_cont); 9013 mp->b_cont = NULL; 9014 } 9015 iocp->ioc_error = EINVAL; 9016 mp->b_datap->db_type = M_IOCNAK; 9017 iocp->ioc_count = 0; 9018 qreply(q, mp); 9019 } 9020 9021 static void 9022 ip_sioctl_garp_reply(mblk_t *mp, ill_t *ill, void *hwaddr, int flags) 9023 { 9024 struct arpreq *ar; 9025 struct xarpreq *xar; 9026 mblk_t *tmp; 9027 struct iocblk *iocp; 9028 int x_arp_ioctl = B_FALSE; 9029 int *flagsp; 9030 char *storage = NULL; 9031 9032 ASSERT(ill != NULL); 9033 9034 iocp = (struct iocblk *)mp->b_rptr; 9035 ASSERT(iocp->ioc_cmd == SIOCGXARP || iocp->ioc_cmd == SIOCGARP); 9036 9037 tmp = (mp->b_cont)->b_cont; /* xarpreq/arpreq */ 9038 if ((iocp->ioc_cmd == SIOCGXARP) || 9039 (iocp->ioc_cmd == SIOCSXARP)) { 9040 x_arp_ioctl = B_TRUE; 9041 xar = (struct xarpreq *)tmp->b_rptr; 9042 flagsp = &xar->xarp_flags; 9043 storage = xar->xarp_ha.sdl_data; 9044 } else { 9045 ar = (struct arpreq *)tmp->b_rptr; 9046 flagsp = &ar->arp_flags; 9047 storage = ar->arp_ha.sa_data; 9048 } 9049 9050 /* 9051 * We're done if this is not an SIOCG{X}ARP 9052 */ 9053 if (x_arp_ioctl) { 9054 storage += ill_xarp_info(&xar->xarp_ha, ill); 9055 if ((ill->ill_phys_addr_length + ill->ill_name_length) > 9056 sizeof (xar->xarp_ha.sdl_data)) { 9057 iocp->ioc_error = EINVAL; 9058 return; 9059 } 9060 } 9061 *flagsp = ATF_INUSE; 9062 /* 9063 * If /sbin/arp told us we are the authority using the "permanent" 9064 * flag, or if this is one of my addresses print "permanent" 9065 * in the /sbin/arp output. 9066 */ 9067 if ((flags & NCE_F_MYADDR) || (flags & NCE_F_AUTHORITY)) 9068 *flagsp |= ATF_AUTHORITY; 9069 if (flags & NCE_F_NONUD) 9070 *flagsp |= ATF_PERM; /* not subject to aging */ 9071 if (flags & NCE_F_PUBLISH) 9072 *flagsp |= ATF_PUBL; 9073 if (hwaddr != NULL) { 9074 *flagsp |= ATF_COM; 9075 bcopy((char *)hwaddr, storage, ill->ill_phys_addr_length); 9076 } 9077 } 9078 9079 /* 9080 * Create a new logical interface. If ipif_id is zero (i.e. not a logical 9081 * interface) create the next available logical interface for this 9082 * physical interface. 9083 * If ipif is NULL (i.e. the lookup didn't find one) attempt to create an 9084 * ipif with the specified name. 9085 * 9086 * If the address family is not AF_UNSPEC then set the address as well. 9087 * 9088 * If ip_sioctl_addr returns EINPROGRESS then the ioctl (the copyout) 9089 * is completed when the DL_BIND_ACK arrive in ip_rput_dlpi_writer. 9090 * 9091 * Executed as a writer on the ill. 9092 * So no lock is needed to traverse the ipif chain, or examine the 9093 * phyint flags. 9094 */ 9095 /* ARGSUSED */ 9096 int 9097 ip_sioctl_addif(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, 9098 ip_ioctl_cmd_t *dummy_ipip, void *dummy_ifreq) 9099 { 9100 mblk_t *mp1; 9101 struct lifreq *lifr; 9102 boolean_t isv6; 9103 boolean_t exists; 9104 char *name; 9105 char *endp; 9106 char *cp; 9107 int namelen; 9108 ipif_t *ipif; 9109 long id; 9110 ipsq_t *ipsq; 9111 ill_t *ill; 9112 sin_t *sin; 9113 int err = 0; 9114 boolean_t found_sep = B_FALSE; 9115 conn_t *connp; 9116 zoneid_t zoneid; 9117 ip_stack_t *ipst = CONNQ_TO_IPST(q); 9118 9119 ASSERT(q->q_next == NULL); 9120 ip1dbg(("ip_sioctl_addif\n")); 9121 /* Existence of mp1 has been checked in ip_wput_nondata */ 9122 mp1 = mp->b_cont->b_cont; 9123 /* 9124 * Null terminate the string to protect against buffer 9125 * overrun. String was generated by user code and may not 9126 * be trusted. 9127 */ 9128 lifr = (struct lifreq *)mp1->b_rptr; 9129 lifr->lifr_name[LIFNAMSIZ - 1] = '\0'; 9130 name = lifr->lifr_name; 9131 ASSERT(CONN_Q(q)); 9132 connp = Q_TO_CONN(q); 9133 isv6 = (connp->conn_family == AF_INET6); 9134 zoneid = connp->conn_zoneid; 9135 namelen = mi_strlen(name); 9136 if (namelen == 0) 9137 return (EINVAL); 9138 9139 exists = B_FALSE; 9140 if ((namelen + 1 == sizeof (ipif_loopback_name)) && 9141 (mi_strcmp(name, ipif_loopback_name) == 0)) { 9142 /* 9143 * Allow creating lo0 using SIOCLIFADDIF. 9144 * can't be any other writer thread. So can pass null below 9145 * for the last 4 args to ipif_lookup_name. 9146 */ 9147 ipif = ipif_lookup_on_name(lifr->lifr_name, namelen, B_TRUE, 9148 &exists, isv6, zoneid, ipst); 9149 /* Prevent any further action */ 9150 if (ipif == NULL) { 9151 return (ENOBUFS); 9152 } else if (!exists) { 9153 /* We created the ipif now and as writer */ 9154 ipif_refrele(ipif); 9155 return (0); 9156 } else { 9157 ill = ipif->ipif_ill; 9158 ill_refhold(ill); 9159 ipif_refrele(ipif); 9160 } 9161 } else { 9162 /* Look for a colon in the name. */ 9163 endp = &name[namelen]; 9164 for (cp = endp; --cp > name; ) { 9165 if (*cp == IPIF_SEPARATOR_CHAR) { 9166 found_sep = B_TRUE; 9167 /* 9168 * Reject any non-decimal aliases for plumbing 9169 * of logical interfaces. Aliases with leading 9170 * zeroes are also rejected as they introduce 9171 * ambiguity in the naming of the interfaces. 9172 * Comparing with "0" takes care of all such 9173 * cases. 9174 */ 9175 if ((strncmp("0", cp+1, 1)) == 0) 9176 return (EINVAL); 9177 9178 if (ddi_strtol(cp+1, &endp, 10, &id) != 0 || 9179 id <= 0 || *endp != '\0') { 9180 return (EINVAL); 9181 } 9182 *cp = '\0'; 9183 break; 9184 } 9185 } 9186 ill = ill_lookup_on_name(name, B_FALSE, isv6, NULL, ipst); 9187 if (found_sep) 9188 *cp = IPIF_SEPARATOR_CHAR; 9189 if (ill == NULL) 9190 return (ENXIO); 9191 } 9192 9193 ipsq = ipsq_try_enter(NULL, ill, q, mp, ip_process_ioctl, NEW_OP, 9194 B_TRUE); 9195 9196 /* 9197 * Release the refhold due to the lookup, now that we are excl 9198 * or we are just returning 9199 */ 9200 ill_refrele(ill); 9201 9202 if (ipsq == NULL) 9203 return (EINPROGRESS); 9204 9205 /* We are now exclusive on the IPSQ */ 9206 ASSERT(IAM_WRITER_ILL(ill)); 9207 9208 if (found_sep) { 9209 /* Now see if there is an IPIF with this unit number. */ 9210 for (ipif = ill->ill_ipif; ipif != NULL; 9211 ipif = ipif->ipif_next) { 9212 if (ipif->ipif_id == id) { 9213 err = EEXIST; 9214 goto done; 9215 } 9216 } 9217 } 9218 9219 /* 9220 * We use IRE_LOCAL for lo0:1 etc. for "receive only" use 9221 * of lo0. Plumbing for lo0:0 happens in ipif_lookup_on_name() 9222 * instead. 9223 */ 9224 if ((ipif = ipif_allocate(ill, found_sep ? id : -1, IRE_LOCAL, 9225 B_TRUE, B_TRUE, &err)) == NULL) { 9226 goto done; 9227 } 9228 9229 /* Return created name with ioctl */ 9230 (void) sprintf(lifr->lifr_name, "%s%c%d", ill->ill_name, 9231 IPIF_SEPARATOR_CHAR, ipif->ipif_id); 9232 ip1dbg(("created %s\n", lifr->lifr_name)); 9233 9234 /* Set address */ 9235 sin = (sin_t *)&lifr->lifr_addr; 9236 if (sin->sin_family != AF_UNSPEC) { 9237 err = ip_sioctl_addr(ipif, sin, q, mp, 9238 &ip_ndx_ioctl_table[SIOCLIFADDR_NDX], lifr); 9239 } 9240 9241 done: 9242 ipsq_exit(ipsq); 9243 return (err); 9244 } 9245 9246 /* 9247 * Remove an existing logical interface. If ipif_id is zero (i.e. not a logical 9248 * interface) delete it based on the IP address (on this physical interface). 9249 * Otherwise delete it based on the ipif_id. 9250 * Also, special handling to allow a removeif of lo0. 9251 */ 9252 /* ARGSUSED */ 9253 int 9254 ip_sioctl_removeif(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 9255 ip_ioctl_cmd_t *ipip, void *dummy_if_req) 9256 { 9257 conn_t *connp; 9258 ill_t *ill = ipif->ipif_ill; 9259 boolean_t success; 9260 ip_stack_t *ipst; 9261 9262 ipst = CONNQ_TO_IPST(q); 9263 9264 ASSERT(q->q_next == NULL); 9265 ip1dbg(("ip_sioctl_remove_if(%s:%u %p)\n", 9266 ill->ill_name, ipif->ipif_id, (void *)ipif)); 9267 ASSERT(IAM_WRITER_IPIF(ipif)); 9268 9269 connp = Q_TO_CONN(q); 9270 /* 9271 * Special case for unplumbing lo0 (the loopback physical interface). 9272 * If unplumbing lo0, the incoming address structure has been 9273 * initialized to all zeros. When unplumbing lo0, all its logical 9274 * interfaces must be removed too. 9275 * 9276 * Note that this interface may be called to remove a specific 9277 * loopback logical interface (eg, lo0:1). But in that case 9278 * ipif->ipif_id != 0 so that the code path for that case is the 9279 * same as any other interface (meaning it skips the code directly 9280 * below). 9281 */ 9282 if (ipif->ipif_id == 0 && ill->ill_net_type == IRE_LOOPBACK) { 9283 if (sin->sin_family == AF_UNSPEC && 9284 (IN6_IS_ADDR_UNSPECIFIED(&((sin6_t *)sin)->sin6_addr))) { 9285 /* 9286 * Mark it condemned. No new ref. will be made to ill. 9287 */ 9288 mutex_enter(&ill->ill_lock); 9289 ill->ill_state_flags |= ILL_CONDEMNED; 9290 for (ipif = ill->ill_ipif; ipif != NULL; 9291 ipif = ipif->ipif_next) { 9292 ipif->ipif_state_flags |= IPIF_CONDEMNED; 9293 } 9294 mutex_exit(&ill->ill_lock); 9295 9296 ipif = ill->ill_ipif; 9297 /* unplumb the loopback interface */ 9298 ill_delete(ill); 9299 mutex_enter(&connp->conn_lock); 9300 mutex_enter(&ill->ill_lock); 9301 9302 /* Are any references to this ill active */ 9303 if (ill_is_freeable(ill)) { 9304 mutex_exit(&ill->ill_lock); 9305 mutex_exit(&connp->conn_lock); 9306 ill_delete_tail(ill); 9307 mi_free(ill); 9308 return (0); 9309 } 9310 success = ipsq_pending_mp_add(connp, ipif, 9311 CONNP_TO_WQ(connp), mp, ILL_FREE); 9312 mutex_exit(&connp->conn_lock); 9313 mutex_exit(&ill->ill_lock); 9314 if (success) 9315 return (EINPROGRESS); 9316 else 9317 return (EINTR); 9318 } 9319 } 9320 9321 if (ipif->ipif_id == 0) { 9322 ipsq_t *ipsq; 9323 9324 /* Find based on address */ 9325 if (ipif->ipif_isv6) { 9326 sin6_t *sin6; 9327 9328 if (sin->sin_family != AF_INET6) 9329 return (EAFNOSUPPORT); 9330 9331 sin6 = (sin6_t *)sin; 9332 /* We are a writer, so we should be able to lookup */ 9333 ipif = ipif_lookup_addr_exact_v6(&sin6->sin6_addr, ill, 9334 ipst); 9335 } else { 9336 if (sin->sin_family != AF_INET) 9337 return (EAFNOSUPPORT); 9338 9339 /* We are a writer, so we should be able to lookup */ 9340 ipif = ipif_lookup_addr_exact(sin->sin_addr.s_addr, ill, 9341 ipst); 9342 } 9343 if (ipif == NULL) { 9344 return (EADDRNOTAVAIL); 9345 } 9346 9347 /* 9348 * It is possible for a user to send an SIOCLIFREMOVEIF with 9349 * lifr_name of the physical interface but with an ip address 9350 * lifr_addr of a logical interface plumbed over it. 9351 * So update ipx_current_ipif now that ipif points to the 9352 * correct one. 9353 */ 9354 ipsq = ipif->ipif_ill->ill_phyint->phyint_ipsq; 9355 ipsq->ipsq_xop->ipx_current_ipif = ipif; 9356 9357 /* This is a writer */ 9358 ipif_refrele(ipif); 9359 } 9360 9361 /* 9362 * Can not delete instance zero since it is tied to the ill. 9363 */ 9364 if (ipif->ipif_id == 0) 9365 return (EBUSY); 9366 9367 mutex_enter(&ill->ill_lock); 9368 ipif->ipif_state_flags |= IPIF_CONDEMNED; 9369 mutex_exit(&ill->ill_lock); 9370 9371 ipif_free(ipif); 9372 9373 mutex_enter(&connp->conn_lock); 9374 mutex_enter(&ill->ill_lock); 9375 9376 /* Are any references to this ipif active */ 9377 if (ipif_is_freeable(ipif)) { 9378 mutex_exit(&ill->ill_lock); 9379 mutex_exit(&connp->conn_lock); 9380 ipif_non_duplicate(ipif); 9381 (void) ipif_down_tail(ipif); 9382 ipif_free_tail(ipif); /* frees ipif */ 9383 return (0); 9384 } 9385 success = ipsq_pending_mp_add(connp, ipif, CONNP_TO_WQ(connp), mp, 9386 IPIF_FREE); 9387 mutex_exit(&ill->ill_lock); 9388 mutex_exit(&connp->conn_lock); 9389 if (success) 9390 return (EINPROGRESS); 9391 else 9392 return (EINTR); 9393 } 9394 9395 /* 9396 * Restart the removeif ioctl. The refcnt has gone down to 0. 9397 * The ipif is already condemned. So can't find it thru lookups. 9398 */ 9399 /* ARGSUSED */ 9400 int 9401 ip_sioctl_removeif_restart(ipif_t *ipif, sin_t *dummy_sin, queue_t *q, 9402 mblk_t *mp, ip_ioctl_cmd_t *ipip, void *dummy_if_req) 9403 { 9404 ill_t *ill = ipif->ipif_ill; 9405 9406 ASSERT(IAM_WRITER_IPIF(ipif)); 9407 ASSERT(ipif->ipif_state_flags & IPIF_CONDEMNED); 9408 9409 ip1dbg(("ip_sioctl_removeif_restart(%s:%u %p)\n", 9410 ill->ill_name, ipif->ipif_id, (void *)ipif)); 9411 9412 if (ipif->ipif_id == 0 && ill->ill_net_type == IRE_LOOPBACK) { 9413 ASSERT(ill->ill_state_flags & ILL_CONDEMNED); 9414 ill_delete_tail(ill); 9415 mi_free(ill); 9416 return (0); 9417 } 9418 9419 ipif_non_duplicate(ipif); 9420 (void) ipif_down_tail(ipif); 9421 ipif_free_tail(ipif); 9422 9423 return (0); 9424 } 9425 9426 /* 9427 * Set the local interface address. 9428 * Allow an address of all zero when the interface is down. 9429 */ 9430 /* ARGSUSED */ 9431 int 9432 ip_sioctl_addr(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 9433 ip_ioctl_cmd_t *dummy_ipip, void *dummy_ifreq) 9434 { 9435 int err = 0; 9436 in6_addr_t v6addr; 9437 boolean_t need_up = B_FALSE; 9438 9439 ip1dbg(("ip_sioctl_addr(%s:%u %p)\n", 9440 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 9441 9442 ASSERT(IAM_WRITER_IPIF(ipif)); 9443 9444 if (ipif->ipif_isv6) { 9445 sin6_t *sin6; 9446 ill_t *ill; 9447 phyint_t *phyi; 9448 9449 if (sin->sin_family != AF_INET6) 9450 return (EAFNOSUPPORT); 9451 9452 sin6 = (sin6_t *)sin; 9453 v6addr = sin6->sin6_addr; 9454 ill = ipif->ipif_ill; 9455 phyi = ill->ill_phyint; 9456 9457 /* 9458 * Enforce that true multicast interfaces have a link-local 9459 * address for logical unit 0. 9460 */ 9461 if (ipif->ipif_id == 0 && 9462 (ill->ill_flags & ILLF_MULTICAST) && 9463 !(ipif->ipif_flags & (IPIF_POINTOPOINT)) && 9464 !(phyi->phyint_flags & (PHYI_LOOPBACK)) && 9465 !IN6_IS_ADDR_LINKLOCAL(&v6addr)) { 9466 return (EADDRNOTAVAIL); 9467 } 9468 9469 /* 9470 * up interfaces shouldn't have the unspecified address 9471 * unless they also have the IPIF_NOLOCAL flags set and 9472 * have a subnet assigned. 9473 */ 9474 if ((ipif->ipif_flags & IPIF_UP) && 9475 IN6_IS_ADDR_UNSPECIFIED(&v6addr) && 9476 (!(ipif->ipif_flags & IPIF_NOLOCAL) || 9477 IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6subnet))) { 9478 return (EADDRNOTAVAIL); 9479 } 9480 9481 if (!ip_local_addr_ok_v6(&v6addr, &ipif->ipif_v6net_mask)) 9482 return (EADDRNOTAVAIL); 9483 } else { 9484 ipaddr_t addr; 9485 9486 if (sin->sin_family != AF_INET) 9487 return (EAFNOSUPPORT); 9488 9489 addr = sin->sin_addr.s_addr; 9490 9491 /* Allow 0 as the local address. */ 9492 if (addr != 0 && !ip_addr_ok_v4(addr, ipif->ipif_net_mask)) 9493 return (EADDRNOTAVAIL); 9494 9495 IN6_IPADDR_TO_V4MAPPED(addr, &v6addr); 9496 } 9497 9498 /* 9499 * Even if there is no change we redo things just to rerun 9500 * ipif_set_default. 9501 */ 9502 if (ipif->ipif_flags & IPIF_UP) { 9503 /* 9504 * Setting a new local address, make sure 9505 * we have net and subnet bcast ire's for 9506 * the old address if we need them. 9507 */ 9508 /* 9509 * If the interface is already marked up, 9510 * we call ipif_down which will take care 9511 * of ditching any IREs that have been set 9512 * up based on the old interface address. 9513 */ 9514 err = ipif_logical_down(ipif, q, mp); 9515 if (err == EINPROGRESS) 9516 return (err); 9517 (void) ipif_down_tail(ipif); 9518 need_up = 1; 9519 } 9520 9521 err = ip_sioctl_addr_tail(ipif, sin, q, mp, need_up); 9522 return (err); 9523 } 9524 9525 int 9526 ip_sioctl_addr_tail(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 9527 boolean_t need_up) 9528 { 9529 in6_addr_t v6addr; 9530 in6_addr_t ov6addr; 9531 ipaddr_t addr; 9532 sin6_t *sin6; 9533 int sinlen; 9534 int err = 0; 9535 ill_t *ill = ipif->ipif_ill; 9536 boolean_t need_dl_down; 9537 boolean_t need_arp_down; 9538 struct iocblk *iocp; 9539 9540 iocp = (mp != NULL) ? (struct iocblk *)mp->b_rptr : NULL; 9541 9542 ip1dbg(("ip_sioctl_addr_tail(%s:%u %p)\n", 9543 ill->ill_name, ipif->ipif_id, (void *)ipif)); 9544 ASSERT(IAM_WRITER_IPIF(ipif)); 9545 9546 /* Must cancel any pending timer before taking the ill_lock */ 9547 if (ipif->ipif_recovery_id != 0) 9548 (void) untimeout(ipif->ipif_recovery_id); 9549 ipif->ipif_recovery_id = 0; 9550 9551 if (ipif->ipif_isv6) { 9552 sin6 = (sin6_t *)sin; 9553 v6addr = sin6->sin6_addr; 9554 sinlen = sizeof (struct sockaddr_in6); 9555 } else { 9556 addr = sin->sin_addr.s_addr; 9557 IN6_IPADDR_TO_V4MAPPED(addr, &v6addr); 9558 sinlen = sizeof (struct sockaddr_in); 9559 } 9560 mutex_enter(&ill->ill_lock); 9561 ov6addr = ipif->ipif_v6lcl_addr; 9562 ipif->ipif_v6lcl_addr = v6addr; 9563 sctp_update_ipif_addr(ipif, ov6addr); 9564 ipif->ipif_addr_ready = 0; 9565 9566 ip_rts_newaddrmsg(RTM_CHGADDR, 0, ipif, RTSQ_DEFAULT); 9567 9568 /* 9569 * If the interface was previously marked as a duplicate, then since 9570 * we've now got a "new" address, it should no longer be considered a 9571 * duplicate -- even if the "new" address is the same as the old one. 9572 * Note that if all ipifs are down, we may have a pending ARP down 9573 * event to handle. This is because we want to recover from duplicates 9574 * and thus delay tearing down ARP until the duplicates have been 9575 * removed or disabled. 9576 */ 9577 need_dl_down = need_arp_down = B_FALSE; 9578 if (ipif->ipif_flags & IPIF_DUPLICATE) { 9579 need_arp_down = !need_up; 9580 ipif->ipif_flags &= ~IPIF_DUPLICATE; 9581 if (--ill->ill_ipif_dup_count == 0 && !need_up && 9582 ill->ill_ipif_up_count == 0 && ill->ill_dl_up) { 9583 need_dl_down = B_TRUE; 9584 } 9585 } 9586 9587 ipif_set_default(ipif); 9588 9589 /* 9590 * If we've just manually set the IPv6 link-local address (0th ipif), 9591 * tag the ill so that future updates to the interface ID don't result 9592 * in this address getting automatically reconfigured from under the 9593 * administrator. 9594 */ 9595 if (ipif->ipif_isv6 && ipif->ipif_id == 0) 9596 ill->ill_manual_linklocal = 1; 9597 9598 /* 9599 * When publishing an interface address change event, we only notify 9600 * the event listeners of the new address. It is assumed that if they 9601 * actively care about the addresses assigned that they will have 9602 * already discovered the previous address assigned (if there was one.) 9603 * 9604 * Don't attach nic event message for SIOCLIFADDIF ioctl. 9605 */ 9606 if (iocp != NULL && iocp->ioc_cmd != SIOCLIFADDIF) { 9607 ill_nic_event_dispatch(ill, MAP_IPIF_ID(ipif->ipif_id), 9608 NE_ADDRESS_CHANGE, sin, sinlen); 9609 } 9610 9611 mutex_exit(&ill->ill_lock); 9612 9613 if (need_up) { 9614 /* 9615 * Now bring the interface back up. If this 9616 * is the only IPIF for the ILL, ipif_up 9617 * will have to re-bind to the device, so 9618 * we may get back EINPROGRESS, in which 9619 * case, this IOCTL will get completed in 9620 * ip_rput_dlpi when we see the DL_BIND_ACK. 9621 */ 9622 err = ipif_up(ipif, q, mp); 9623 } else { 9624 /* Perhaps ilgs should use this ill */ 9625 update_conn_ill(NULL, ill->ill_ipst); 9626 } 9627 9628 if (need_dl_down) 9629 ill_dl_down(ill); 9630 9631 if (need_arp_down && !ill->ill_isv6) 9632 (void) ipif_arp_down(ipif); 9633 9634 /* 9635 * The default multicast interface might have changed (for 9636 * instance if the IPv6 scope of the address changed) 9637 */ 9638 ire_increment_multicast_generation(ill->ill_ipst, ill->ill_isv6); 9639 9640 return (err); 9641 } 9642 9643 /* 9644 * Restart entry point to restart the address set operation after the 9645 * refcounts have dropped to zero. 9646 */ 9647 /* ARGSUSED */ 9648 int 9649 ip_sioctl_addr_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 9650 ip_ioctl_cmd_t *ipip, void *ifreq) 9651 { 9652 ip1dbg(("ip_sioctl_addr_restart(%s:%u %p)\n", 9653 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 9654 ASSERT(IAM_WRITER_IPIF(ipif)); 9655 (void) ipif_down_tail(ipif); 9656 return (ip_sioctl_addr_tail(ipif, sin, q, mp, B_TRUE)); 9657 } 9658 9659 /* ARGSUSED */ 9660 int 9661 ip_sioctl_get_addr(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 9662 ip_ioctl_cmd_t *ipip, void *if_req) 9663 { 9664 sin6_t *sin6 = (struct sockaddr_in6 *)sin; 9665 struct lifreq *lifr = (struct lifreq *)if_req; 9666 9667 ip1dbg(("ip_sioctl_get_addr(%s:%u %p)\n", 9668 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 9669 /* 9670 * The net mask and address can't change since we have a 9671 * reference to the ipif. So no lock is necessary. 9672 */ 9673 if (ipif->ipif_isv6) { 9674 *sin6 = sin6_null; 9675 sin6->sin6_family = AF_INET6; 9676 sin6->sin6_addr = ipif->ipif_v6lcl_addr; 9677 ASSERT(ipip->ipi_cmd_type == LIF_CMD); 9678 lifr->lifr_addrlen = 9679 ip_mask_to_plen_v6(&ipif->ipif_v6net_mask); 9680 } else { 9681 *sin = sin_null; 9682 sin->sin_family = AF_INET; 9683 sin->sin_addr.s_addr = ipif->ipif_lcl_addr; 9684 if (ipip->ipi_cmd_type == LIF_CMD) { 9685 lifr->lifr_addrlen = 9686 ip_mask_to_plen(ipif->ipif_net_mask); 9687 } 9688 } 9689 return (0); 9690 } 9691 9692 /* 9693 * Set the destination address for a pt-pt interface. 9694 */ 9695 /* ARGSUSED */ 9696 int 9697 ip_sioctl_dstaddr(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 9698 ip_ioctl_cmd_t *ipip, void *if_req) 9699 { 9700 int err = 0; 9701 in6_addr_t v6addr; 9702 boolean_t need_up = B_FALSE; 9703 9704 ip1dbg(("ip_sioctl_dstaddr(%s:%u %p)\n", 9705 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 9706 ASSERT(IAM_WRITER_IPIF(ipif)); 9707 9708 if (ipif->ipif_isv6) { 9709 sin6_t *sin6; 9710 9711 if (sin->sin_family != AF_INET6) 9712 return (EAFNOSUPPORT); 9713 9714 sin6 = (sin6_t *)sin; 9715 v6addr = sin6->sin6_addr; 9716 9717 if (!ip_remote_addr_ok_v6(&v6addr, &ipif->ipif_v6net_mask)) 9718 return (EADDRNOTAVAIL); 9719 } else { 9720 ipaddr_t addr; 9721 9722 if (sin->sin_family != AF_INET) 9723 return (EAFNOSUPPORT); 9724 9725 addr = sin->sin_addr.s_addr; 9726 if (!ip_addr_ok_v4(addr, ipif->ipif_net_mask)) 9727 return (EADDRNOTAVAIL); 9728 9729 IN6_IPADDR_TO_V4MAPPED(addr, &v6addr); 9730 } 9731 9732 if (IN6_ARE_ADDR_EQUAL(&ipif->ipif_v6pp_dst_addr, &v6addr)) 9733 return (0); /* No change */ 9734 9735 if (ipif->ipif_flags & IPIF_UP) { 9736 /* 9737 * If the interface is already marked up, 9738 * we call ipif_down which will take care 9739 * of ditching any IREs that have been set 9740 * up based on the old pp dst address. 9741 */ 9742 err = ipif_logical_down(ipif, q, mp); 9743 if (err == EINPROGRESS) 9744 return (err); 9745 (void) ipif_down_tail(ipif); 9746 need_up = B_TRUE; 9747 } 9748 /* 9749 * could return EINPROGRESS. If so ioctl will complete in 9750 * ip_rput_dlpi_writer 9751 */ 9752 err = ip_sioctl_dstaddr_tail(ipif, sin, q, mp, need_up); 9753 return (err); 9754 } 9755 9756 static int 9757 ip_sioctl_dstaddr_tail(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 9758 boolean_t need_up) 9759 { 9760 in6_addr_t v6addr; 9761 ill_t *ill = ipif->ipif_ill; 9762 int err = 0; 9763 boolean_t need_dl_down; 9764 boolean_t need_arp_down; 9765 9766 ip1dbg(("ip_sioctl_dstaddr_tail(%s:%u %p)\n", ill->ill_name, 9767 ipif->ipif_id, (void *)ipif)); 9768 9769 /* Must cancel any pending timer before taking the ill_lock */ 9770 if (ipif->ipif_recovery_id != 0) 9771 (void) untimeout(ipif->ipif_recovery_id); 9772 ipif->ipif_recovery_id = 0; 9773 9774 if (ipif->ipif_isv6) { 9775 sin6_t *sin6; 9776 9777 sin6 = (sin6_t *)sin; 9778 v6addr = sin6->sin6_addr; 9779 } else { 9780 ipaddr_t addr; 9781 9782 addr = sin->sin_addr.s_addr; 9783 IN6_IPADDR_TO_V4MAPPED(addr, &v6addr); 9784 } 9785 mutex_enter(&ill->ill_lock); 9786 /* Set point to point destination address. */ 9787 if ((ipif->ipif_flags & IPIF_POINTOPOINT) == 0) { 9788 /* 9789 * Allow this as a means of creating logical 9790 * pt-pt interfaces on top of e.g. an Ethernet. 9791 * XXX Undocumented HACK for testing. 9792 * pt-pt interfaces are created with NUD disabled. 9793 */ 9794 ipif->ipif_flags |= IPIF_POINTOPOINT; 9795 ipif->ipif_flags &= ~IPIF_BROADCAST; 9796 if (ipif->ipif_isv6) 9797 ill->ill_flags |= ILLF_NONUD; 9798 } 9799 9800 /* 9801 * If the interface was previously marked as a duplicate, then since 9802 * we've now got a "new" address, it should no longer be considered a 9803 * duplicate -- even if the "new" address is the same as the old one. 9804 * Note that if all ipifs are down, we may have a pending ARP down 9805 * event to handle. 9806 */ 9807 need_dl_down = need_arp_down = B_FALSE; 9808 if (ipif->ipif_flags & IPIF_DUPLICATE) { 9809 need_arp_down = !need_up; 9810 ipif->ipif_flags &= ~IPIF_DUPLICATE; 9811 if (--ill->ill_ipif_dup_count == 0 && !need_up && 9812 ill->ill_ipif_up_count == 0 && ill->ill_dl_up) { 9813 need_dl_down = B_TRUE; 9814 } 9815 } 9816 9817 /* 9818 * If we've just manually set the IPv6 destination link-local address 9819 * (0th ipif), tag the ill so that future updates to the destination 9820 * interface ID (as can happen with interfaces over IP tunnels) don't 9821 * result in this address getting automatically reconfigured from 9822 * under the administrator. 9823 */ 9824 if (ipif->ipif_isv6 && ipif->ipif_id == 0) 9825 ill->ill_manual_dst_linklocal = 1; 9826 9827 /* Set the new address. */ 9828 ipif->ipif_v6pp_dst_addr = v6addr; 9829 /* Make sure subnet tracks pp_dst */ 9830 ipif->ipif_v6subnet = ipif->ipif_v6pp_dst_addr; 9831 mutex_exit(&ill->ill_lock); 9832 9833 if (need_up) { 9834 /* 9835 * Now bring the interface back up. If this 9836 * is the only IPIF for the ILL, ipif_up 9837 * will have to re-bind to the device, so 9838 * we may get back EINPROGRESS, in which 9839 * case, this IOCTL will get completed in 9840 * ip_rput_dlpi when we see the DL_BIND_ACK. 9841 */ 9842 err = ipif_up(ipif, q, mp); 9843 } 9844 9845 if (need_dl_down) 9846 ill_dl_down(ill); 9847 if (need_arp_down && !ipif->ipif_isv6) 9848 (void) ipif_arp_down(ipif); 9849 9850 return (err); 9851 } 9852 9853 /* 9854 * Restart entry point to restart the dstaddress set operation after the 9855 * refcounts have dropped to zero. 9856 */ 9857 /* ARGSUSED */ 9858 int 9859 ip_sioctl_dstaddr_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 9860 ip_ioctl_cmd_t *ipip, void *ifreq) 9861 { 9862 ip1dbg(("ip_sioctl_dstaddr_restart(%s:%u %p)\n", 9863 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 9864 (void) ipif_down_tail(ipif); 9865 return (ip_sioctl_dstaddr_tail(ipif, sin, q, mp, B_TRUE)); 9866 } 9867 9868 /* ARGSUSED */ 9869 int 9870 ip_sioctl_get_dstaddr(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 9871 ip_ioctl_cmd_t *ipip, void *if_req) 9872 { 9873 sin6_t *sin6 = (struct sockaddr_in6 *)sin; 9874 9875 ip1dbg(("ip_sioctl_get_dstaddr(%s:%u %p)\n", 9876 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 9877 /* 9878 * Get point to point destination address. The addresses can't 9879 * change since we hold a reference to the ipif. 9880 */ 9881 if ((ipif->ipif_flags & IPIF_POINTOPOINT) == 0) 9882 return (EADDRNOTAVAIL); 9883 9884 if (ipif->ipif_isv6) { 9885 ASSERT(ipip->ipi_cmd_type == LIF_CMD); 9886 *sin6 = sin6_null; 9887 sin6->sin6_family = AF_INET6; 9888 sin6->sin6_addr = ipif->ipif_v6pp_dst_addr; 9889 } else { 9890 *sin = sin_null; 9891 sin->sin_family = AF_INET; 9892 sin->sin_addr.s_addr = ipif->ipif_pp_dst_addr; 9893 } 9894 return (0); 9895 } 9896 9897 /* 9898 * Check which flags will change by the given flags being set 9899 * silently ignore flags which userland is not allowed to control. 9900 * (Because these flags may change between SIOCGLIFFLAGS and 9901 * SIOCSLIFFLAGS, and that's outside of userland's control, 9902 * we need to silently ignore them rather than fail.) 9903 */ 9904 static void 9905 ip_sioctl_flags_onoff(ipif_t *ipif, uint64_t flags, uint64_t *onp, 9906 uint64_t *offp) 9907 { 9908 ill_t *ill = ipif->ipif_ill; 9909 phyint_t *phyi = ill->ill_phyint; 9910 uint64_t cantchange_flags, intf_flags; 9911 uint64_t turn_on, turn_off; 9912 9913 intf_flags = ipif->ipif_flags | ill->ill_flags | phyi->phyint_flags; 9914 cantchange_flags = IFF_CANTCHANGE; 9915 if (IS_IPMP(ill)) 9916 cantchange_flags |= IFF_IPMP_CANTCHANGE; 9917 turn_on = (flags ^ intf_flags) & ~cantchange_flags; 9918 turn_off = intf_flags & turn_on; 9919 turn_on ^= turn_off; 9920 *onp = turn_on; 9921 *offp = turn_off; 9922 } 9923 9924 /* 9925 * Set interface flags. Many flags require special handling (e.g., 9926 * bringing the interface down); see below for details. 9927 * 9928 * NOTE : We really don't enforce that ipif_id zero should be used 9929 * for setting any flags other than IFF_LOGINT_FLAGS. This 9930 * is because applications generally does SICGLIFFLAGS and 9931 * ORs in the new flags (that affects the logical) and does a 9932 * SIOCSLIFFLAGS. Thus, "flags" below could contain bits other 9933 * than IFF_LOGINT_FLAGS. One could check whether "turn_on" - the 9934 * flags that will be turned on is correct with respect to 9935 * ipif_id 0. For backward compatibility reasons, it is not done. 9936 */ 9937 /* ARGSUSED */ 9938 int 9939 ip_sioctl_flags(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 9940 ip_ioctl_cmd_t *ipip, void *if_req) 9941 { 9942 uint64_t turn_on; 9943 uint64_t turn_off; 9944 int err = 0; 9945 phyint_t *phyi; 9946 ill_t *ill; 9947 conn_t *connp; 9948 uint64_t intf_flags; 9949 boolean_t phyint_flags_modified = B_FALSE; 9950 uint64_t flags; 9951 struct ifreq *ifr; 9952 struct lifreq *lifr; 9953 boolean_t set_linklocal = B_FALSE; 9954 9955 ip1dbg(("ip_sioctl_flags(%s:%u %p)\n", 9956 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 9957 9958 ASSERT(IAM_WRITER_IPIF(ipif)); 9959 9960 ill = ipif->ipif_ill; 9961 phyi = ill->ill_phyint; 9962 9963 if (ipip->ipi_cmd_type == IF_CMD) { 9964 ifr = (struct ifreq *)if_req; 9965 flags = (uint64_t)(ifr->ifr_flags & 0x0000ffff); 9966 } else { 9967 lifr = (struct lifreq *)if_req; 9968 flags = lifr->lifr_flags; 9969 } 9970 9971 intf_flags = ipif->ipif_flags | ill->ill_flags | phyi->phyint_flags; 9972 9973 /* 9974 * Have the flags been set correctly until now? 9975 */ 9976 ASSERT((phyi->phyint_flags & ~(IFF_PHYINT_FLAGS)) == 0); 9977 ASSERT((ill->ill_flags & ~(IFF_PHYINTINST_FLAGS)) == 0); 9978 ASSERT((ipif->ipif_flags & ~(IFF_LOGINT_FLAGS)) == 0); 9979 /* 9980 * Compare the new flags to the old, and partition 9981 * into those coming on and those going off. 9982 * For the 16 bit command keep the bits above bit 16 unchanged. 9983 */ 9984 if (ipip->ipi_cmd == SIOCSIFFLAGS) 9985 flags |= intf_flags & ~0xFFFF; 9986 9987 /* 9988 * Explicitly fail attempts to change flags that are always invalid on 9989 * an IPMP meta-interface. 9990 */ 9991 if (IS_IPMP(ill) && ((flags ^ intf_flags) & IFF_IPMP_INVALID)) 9992 return (EINVAL); 9993 9994 ip_sioctl_flags_onoff(ipif, flags, &turn_on, &turn_off); 9995 if ((turn_on|turn_off) == 0) 9996 return (0); /* No change */ 9997 9998 /* 9999 * All test addresses must be IFF_DEPRECATED (to ensure source address 10000 * selection avoids them) -- so force IFF_DEPRECATED on, and do not 10001 * allow it to be turned off. 10002 */ 10003 if ((turn_off & (IFF_DEPRECATED|IFF_NOFAILOVER)) == IFF_DEPRECATED && 10004 (turn_on|intf_flags) & IFF_NOFAILOVER) 10005 return (EINVAL); 10006 10007 if ((connp = Q_TO_CONN(q)) == NULL) 10008 return (EINVAL); 10009 10010 /* 10011 * Only vrrp control socket is allowed to change IFF_UP and 10012 * IFF_NOACCEPT flags when IFF_VRRP is set. 10013 */ 10014 if ((intf_flags & IFF_VRRP) && ((turn_off | turn_on) & IFF_UP)) { 10015 if (!connp->conn_isvrrp) 10016 return (EINVAL); 10017 } 10018 10019 /* 10020 * The IFF_NOACCEPT flag can only be set on an IFF_VRRP IP address by 10021 * VRRP control socket. 10022 */ 10023 if ((turn_off | turn_on) & IFF_NOACCEPT) { 10024 if (!connp->conn_isvrrp || !(intf_flags & IFF_VRRP)) 10025 return (EINVAL); 10026 } 10027 10028 if (turn_on & IFF_NOFAILOVER) { 10029 turn_on |= IFF_DEPRECATED; 10030 flags |= IFF_DEPRECATED; 10031 } 10032 10033 /* 10034 * On underlying interfaces, only allow applications to manage test 10035 * addresses -- otherwise, they may get confused when the address 10036 * moves as part of being brought up. Likewise, prevent an 10037 * application-managed test address from being converted to a data 10038 * address. To prevent migration of administratively up addresses in 10039 * the kernel, we don't allow them to be converted either. 10040 */ 10041 if (IS_UNDER_IPMP(ill)) { 10042 const uint64_t appflags = IFF_DHCPRUNNING | IFF_ADDRCONF; 10043 10044 if ((turn_on & appflags) && !(flags & IFF_NOFAILOVER)) 10045 return (EINVAL); 10046 10047 if ((turn_off & IFF_NOFAILOVER) && 10048 (flags & (appflags | IFF_UP | IFF_DUPLICATE))) 10049 return (EINVAL); 10050 } 10051 10052 /* 10053 * Only allow IFF_TEMPORARY flag to be set on 10054 * IPv6 interfaces. 10055 */ 10056 if ((turn_on & IFF_TEMPORARY) && !(ipif->ipif_isv6)) 10057 return (EINVAL); 10058 10059 /* 10060 * cannot turn off IFF_NOXMIT on VNI interfaces. 10061 */ 10062 if ((turn_off & IFF_NOXMIT) && IS_VNI(ipif->ipif_ill)) 10063 return (EINVAL); 10064 10065 /* 10066 * Don't allow the IFF_ROUTER flag to be turned on on loopback 10067 * interfaces. It makes no sense in that context. 10068 */ 10069 if ((turn_on & IFF_ROUTER) && (phyi->phyint_flags & PHYI_LOOPBACK)) 10070 return (EINVAL); 10071 10072 /* 10073 * For IPv6 ipif_id 0, don't allow the interface to be up without 10074 * a link local address if IFF_NOLOCAL or IFF_ANYCAST are not set. 10075 * If the link local address isn't set, and can be set, it will get 10076 * set later on in this function. 10077 */ 10078 if (ipif->ipif_id == 0 && ipif->ipif_isv6 && 10079 (flags & IFF_UP) && !(flags & (IFF_NOLOCAL|IFF_ANYCAST)) && 10080 IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6lcl_addr)) { 10081 if (ipif_cant_setlinklocal(ipif)) 10082 return (EINVAL); 10083 set_linklocal = B_TRUE; 10084 } 10085 10086 /* 10087 * If we modify physical interface flags, we'll potentially need to 10088 * send up two routing socket messages for the changes (one for the 10089 * IPv4 ill, and another for the IPv6 ill). Note that here. 10090 */ 10091 if ((turn_on|turn_off) & IFF_PHYINT_FLAGS) 10092 phyint_flags_modified = B_TRUE; 10093 10094 /* 10095 * All functioning PHYI_STANDBY interfaces start life PHYI_INACTIVE 10096 * (otherwise, we'd immediately use them, defeating standby). Also, 10097 * since PHYI_INACTIVE has a separate meaning when PHYI_STANDBY is not 10098 * set, don't allow PHYI_STANDBY to be set if PHYI_INACTIVE is already 10099 * set, and clear PHYI_INACTIVE if PHYI_STANDBY is being cleared. We 10100 * also don't allow PHYI_STANDBY if VNI is enabled since its semantics 10101 * will not be honored. 10102 */ 10103 if (turn_on & PHYI_STANDBY) { 10104 /* 10105 * No need to grab ill_g_usesrc_lock here; see the 10106 * synchronization notes in ip.c. 10107 */ 10108 if (ill->ill_usesrc_grp_next != NULL || 10109 intf_flags & PHYI_INACTIVE) 10110 return (EINVAL); 10111 if (!(flags & PHYI_FAILED)) { 10112 flags |= PHYI_INACTIVE; 10113 turn_on |= PHYI_INACTIVE; 10114 } 10115 } 10116 10117 if (turn_off & PHYI_STANDBY) { 10118 flags &= ~PHYI_INACTIVE; 10119 turn_off |= PHYI_INACTIVE; 10120 } 10121 10122 /* 10123 * PHYI_FAILED and PHYI_INACTIVE are mutually exclusive; fail if both 10124 * would end up on. 10125 */ 10126 if ((flags & (PHYI_FAILED | PHYI_INACTIVE)) == 10127 (PHYI_FAILED | PHYI_INACTIVE)) 10128 return (EINVAL); 10129 10130 /* 10131 * If ILLF_ROUTER changes, we need to change the ip forwarding 10132 * status of the interface. 10133 */ 10134 if ((turn_on | turn_off) & ILLF_ROUTER) 10135 (void) ill_forward_set(ill, ((turn_on & ILLF_ROUTER) != 0)); 10136 10137 /* 10138 * If the interface is not UP and we are not going to 10139 * bring it UP, record the flags and return. When the 10140 * interface comes UP later, the right actions will be 10141 * taken. 10142 */ 10143 if (!(ipif->ipif_flags & IPIF_UP) && 10144 !(turn_on & IPIF_UP)) { 10145 /* Record new flags in their respective places. */ 10146 mutex_enter(&ill->ill_lock); 10147 mutex_enter(&ill->ill_phyint->phyint_lock); 10148 ipif->ipif_flags |= (turn_on & IFF_LOGINT_FLAGS); 10149 ipif->ipif_flags &= (~turn_off & IFF_LOGINT_FLAGS); 10150 ill->ill_flags |= (turn_on & IFF_PHYINTINST_FLAGS); 10151 ill->ill_flags &= (~turn_off & IFF_PHYINTINST_FLAGS); 10152 phyi->phyint_flags |= (turn_on & IFF_PHYINT_FLAGS); 10153 phyi->phyint_flags &= (~turn_off & IFF_PHYINT_FLAGS); 10154 mutex_exit(&ill->ill_lock); 10155 mutex_exit(&ill->ill_phyint->phyint_lock); 10156 10157 /* 10158 * PHYI_FAILED, PHYI_INACTIVE, and PHYI_OFFLINE are all the 10159 * same to the kernel: if any of them has been set by 10160 * userland, the interface cannot be used for data traffic. 10161 */ 10162 if ((turn_on|turn_off) & 10163 (PHYI_FAILED | PHYI_INACTIVE | PHYI_OFFLINE)) { 10164 ASSERT(!IS_IPMP(ill)); 10165 /* 10166 * It's possible the ill is part of an "anonymous" 10167 * IPMP group rather than a real group. In that case, 10168 * there are no other interfaces in the group and thus 10169 * no need to call ipmp_phyint_refresh_active(). 10170 */ 10171 if (IS_UNDER_IPMP(ill)) 10172 ipmp_phyint_refresh_active(phyi); 10173 } 10174 10175 if (phyint_flags_modified) { 10176 if (phyi->phyint_illv4 != NULL) { 10177 ip_rts_ifmsg(phyi->phyint_illv4-> 10178 ill_ipif, RTSQ_DEFAULT); 10179 } 10180 if (phyi->phyint_illv6 != NULL) { 10181 ip_rts_ifmsg(phyi->phyint_illv6-> 10182 ill_ipif, RTSQ_DEFAULT); 10183 } 10184 } 10185 /* The default multicast interface might have changed */ 10186 ire_increment_multicast_generation(ill->ill_ipst, 10187 ill->ill_isv6); 10188 10189 return (0); 10190 } else if (set_linklocal) { 10191 mutex_enter(&ill->ill_lock); 10192 if (set_linklocal) 10193 ipif->ipif_state_flags |= IPIF_SET_LINKLOCAL; 10194 mutex_exit(&ill->ill_lock); 10195 } 10196 10197 /* 10198 * Disallow IPv6 interfaces coming up that have the unspecified address, 10199 * or point-to-point interfaces with an unspecified destination. We do 10200 * allow the address to be unspecified for IPIF_NOLOCAL interfaces that 10201 * have a subnet assigned, which is how in.ndpd currently manages its 10202 * onlink prefix list when no addresses are configured with those 10203 * prefixes. 10204 */ 10205 if (ipif->ipif_isv6 && 10206 ((IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6lcl_addr) && 10207 (!(ipif->ipif_flags & IPIF_NOLOCAL) && !(turn_on & IPIF_NOLOCAL) || 10208 IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6subnet))) || 10209 ((ipif->ipif_flags & IPIF_POINTOPOINT) && 10210 IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6pp_dst_addr)))) { 10211 return (EINVAL); 10212 } 10213 10214 /* 10215 * Prevent IPv4 point-to-point interfaces with a 0.0.0.0 destination 10216 * from being brought up. 10217 */ 10218 if (!ipif->ipif_isv6 && 10219 ((ipif->ipif_flags & IPIF_POINTOPOINT) && 10220 ipif->ipif_pp_dst_addr == INADDR_ANY)) { 10221 return (EINVAL); 10222 } 10223 10224 /* 10225 * If we are going to change one or more of the flags that are 10226 * IPIF_UP, IPIF_DEPRECATED, IPIF_NOXMIT, IPIF_NOLOCAL, ILLF_NOARP, 10227 * ILLF_NONUD, IPIF_PRIVATE, IPIF_ANYCAST, IPIF_PREFERRED, and 10228 * IPIF_NOFAILOVER, we will take special action. This is 10229 * done by bring the ipif down, changing the flags and bringing 10230 * it back up again. For IPIF_NOFAILOVER, the act of bringing it 10231 * back up will trigger the address to be moved. 10232 * 10233 * If we are going to change IFF_NOACCEPT, we need to bring 10234 * all the ipifs down then bring them up again. The act of 10235 * bringing all the ipifs back up will trigger the local 10236 * ires being recreated with "no_accept" set/cleared. 10237 * 10238 * Note that ILLF_NOACCEPT is always set separately from the 10239 * other flags. 10240 */ 10241 if ((turn_on|turn_off) & 10242 (IPIF_UP|IPIF_DEPRECATED|IPIF_NOXMIT|IPIF_NOLOCAL|ILLF_NOARP| 10243 ILLF_NONUD|IPIF_PRIVATE|IPIF_ANYCAST|IPIF_PREFERRED| 10244 IPIF_NOFAILOVER)) { 10245 /* 10246 * ipif_down() will ire_delete bcast ire's for the subnet, 10247 * while the ire_identical_ref tracks the case of IRE_BROADCAST 10248 * entries shared between multiple ipifs on the same subnet. 10249 */ 10250 if (((ipif->ipif_flags | turn_on) & IPIF_UP) && 10251 !(turn_off & IPIF_UP)) { 10252 if (ipif->ipif_flags & IPIF_UP) 10253 ill->ill_logical_down = 1; 10254 turn_on &= ~IPIF_UP; 10255 } 10256 err = ipif_down(ipif, q, mp); 10257 ip1dbg(("ipif_down returns %d err ", err)); 10258 if (err == EINPROGRESS) 10259 return (err); 10260 (void) ipif_down_tail(ipif); 10261 } else if ((turn_on|turn_off) & ILLF_NOACCEPT) { 10262 /* 10263 * If we can quiesce the ill, then continue. If not, then 10264 * ip_sioctl_flags_tail() will be called from 10265 * ipif_ill_refrele_tail(). 10266 */ 10267 ill_down_ipifs(ill, B_TRUE); 10268 10269 mutex_enter(&connp->conn_lock); 10270 mutex_enter(&ill->ill_lock); 10271 if (!ill_is_quiescent(ill)) { 10272 boolean_t success; 10273 10274 success = ipsq_pending_mp_add(connp, ill->ill_ipif, 10275 q, mp, ILL_DOWN); 10276 mutex_exit(&ill->ill_lock); 10277 mutex_exit(&connp->conn_lock); 10278 return (success ? EINPROGRESS : EINTR); 10279 } 10280 mutex_exit(&ill->ill_lock); 10281 mutex_exit(&connp->conn_lock); 10282 } 10283 return (ip_sioctl_flags_tail(ipif, flags, q, mp)); 10284 } 10285 10286 static int 10287 ip_sioctl_flags_tail(ipif_t *ipif, uint64_t flags, queue_t *q, mblk_t *mp) 10288 { 10289 ill_t *ill; 10290 phyint_t *phyi; 10291 uint64_t turn_on, turn_off; 10292 boolean_t phyint_flags_modified = B_FALSE; 10293 int err = 0; 10294 boolean_t set_linklocal = B_FALSE; 10295 10296 ip1dbg(("ip_sioctl_flags_tail(%s:%u)\n", 10297 ipif->ipif_ill->ill_name, ipif->ipif_id)); 10298 10299 ASSERT(IAM_WRITER_IPIF(ipif)); 10300 10301 ill = ipif->ipif_ill; 10302 phyi = ill->ill_phyint; 10303 10304 ip_sioctl_flags_onoff(ipif, flags, &turn_on, &turn_off); 10305 10306 /* 10307 * IFF_UP is handled separately. 10308 */ 10309 turn_on &= ~IFF_UP; 10310 turn_off &= ~IFF_UP; 10311 10312 if ((turn_on|turn_off) & IFF_PHYINT_FLAGS) 10313 phyint_flags_modified = B_TRUE; 10314 10315 /* 10316 * Now we change the flags. Track current value of 10317 * other flags in their respective places. 10318 */ 10319 mutex_enter(&ill->ill_lock); 10320 mutex_enter(&phyi->phyint_lock); 10321 ipif->ipif_flags |= (turn_on & IFF_LOGINT_FLAGS); 10322 ipif->ipif_flags &= (~turn_off & IFF_LOGINT_FLAGS); 10323 ill->ill_flags |= (turn_on & IFF_PHYINTINST_FLAGS); 10324 ill->ill_flags &= (~turn_off & IFF_PHYINTINST_FLAGS); 10325 phyi->phyint_flags |= (turn_on & IFF_PHYINT_FLAGS); 10326 phyi->phyint_flags &= (~turn_off & IFF_PHYINT_FLAGS); 10327 if (ipif->ipif_state_flags & IPIF_SET_LINKLOCAL) { 10328 set_linklocal = B_TRUE; 10329 ipif->ipif_state_flags &= ~IPIF_SET_LINKLOCAL; 10330 } 10331 10332 mutex_exit(&ill->ill_lock); 10333 mutex_exit(&phyi->phyint_lock); 10334 10335 if (set_linklocal) 10336 (void) ipif_setlinklocal(ipif); 10337 10338 /* 10339 * PHYI_FAILED, PHYI_INACTIVE, and PHYI_OFFLINE are all the same to 10340 * the kernel: if any of them has been set by userland, the interface 10341 * cannot be used for data traffic. 10342 */ 10343 if ((turn_on|turn_off) & (PHYI_FAILED | PHYI_INACTIVE | PHYI_OFFLINE)) { 10344 ASSERT(!IS_IPMP(ill)); 10345 /* 10346 * It's possible the ill is part of an "anonymous" IPMP group 10347 * rather than a real group. In that case, there are no other 10348 * interfaces in the group and thus no need for us to call 10349 * ipmp_phyint_refresh_active(). 10350 */ 10351 if (IS_UNDER_IPMP(ill)) 10352 ipmp_phyint_refresh_active(phyi); 10353 } 10354 10355 if ((turn_on|turn_off) & ILLF_NOACCEPT) { 10356 /* 10357 * If the ILLF_NOACCEPT flag is changed, bring up all the 10358 * ipifs that were brought down. 10359 * 10360 * The routing sockets messages are sent as the result 10361 * of ill_up_ipifs(), further, SCTP's IPIF list was updated 10362 * as well. 10363 */ 10364 err = ill_up_ipifs(ill, q, mp); 10365 } else if ((flags & IFF_UP) && !(ipif->ipif_flags & IPIF_UP)) { 10366 /* 10367 * XXX ipif_up really does not know whether a phyint flags 10368 * was modified or not. So, it sends up information on 10369 * only one routing sockets message. As we don't bring up 10370 * the interface and also set PHYI_ flags simultaneously 10371 * it should be okay. 10372 */ 10373 err = ipif_up(ipif, q, mp); 10374 } else { 10375 /* 10376 * Make sure routing socket sees all changes to the flags. 10377 * ipif_up_done* handles this when we use ipif_up. 10378 */ 10379 if (phyint_flags_modified) { 10380 if (phyi->phyint_illv4 != NULL) { 10381 ip_rts_ifmsg(phyi->phyint_illv4-> 10382 ill_ipif, RTSQ_DEFAULT); 10383 } 10384 if (phyi->phyint_illv6 != NULL) { 10385 ip_rts_ifmsg(phyi->phyint_illv6-> 10386 ill_ipif, RTSQ_DEFAULT); 10387 } 10388 } else { 10389 ip_rts_ifmsg(ipif, RTSQ_DEFAULT); 10390 } 10391 /* 10392 * Update the flags in SCTP's IPIF list, ipif_up() will do 10393 * this in need_up case. 10394 */ 10395 sctp_update_ipif(ipif, SCTP_IPIF_UPDATE); 10396 } 10397 10398 /* The default multicast interface might have changed */ 10399 ire_increment_multicast_generation(ill->ill_ipst, ill->ill_isv6); 10400 return (err); 10401 } 10402 10403 /* 10404 * Restart the flags operation now that the refcounts have dropped to zero. 10405 */ 10406 /* ARGSUSED */ 10407 int 10408 ip_sioctl_flags_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 10409 ip_ioctl_cmd_t *ipip, void *if_req) 10410 { 10411 uint64_t flags; 10412 struct ifreq *ifr = if_req; 10413 struct lifreq *lifr = if_req; 10414 uint64_t turn_on, turn_off; 10415 10416 ip1dbg(("ip_sioctl_flags_restart(%s:%u %p)\n", 10417 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 10418 10419 if (ipip->ipi_cmd_type == IF_CMD) { 10420 /* cast to uint16_t prevents unwanted sign extension */ 10421 flags = (uint16_t)ifr->ifr_flags; 10422 } else { 10423 flags = lifr->lifr_flags; 10424 } 10425 10426 /* 10427 * If this function call is a result of the ILLF_NOACCEPT flag 10428 * change, do not call ipif_down_tail(). See ip_sioctl_flags(). 10429 */ 10430 ip_sioctl_flags_onoff(ipif, flags, &turn_on, &turn_off); 10431 if (!((turn_on|turn_off) & ILLF_NOACCEPT)) 10432 (void) ipif_down_tail(ipif); 10433 10434 return (ip_sioctl_flags_tail(ipif, flags, q, mp)); 10435 } 10436 10437 /* 10438 * Can operate on either a module or a driver queue. 10439 */ 10440 /* ARGSUSED */ 10441 int 10442 ip_sioctl_get_flags(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 10443 ip_ioctl_cmd_t *ipip, void *if_req) 10444 { 10445 /* 10446 * Has the flags been set correctly till now ? 10447 */ 10448 ill_t *ill = ipif->ipif_ill; 10449 phyint_t *phyi = ill->ill_phyint; 10450 10451 ip1dbg(("ip_sioctl_get_flags(%s:%u %p)\n", 10452 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 10453 ASSERT((phyi->phyint_flags & ~(IFF_PHYINT_FLAGS)) == 0); 10454 ASSERT((ill->ill_flags & ~(IFF_PHYINTINST_FLAGS)) == 0); 10455 ASSERT((ipif->ipif_flags & ~(IFF_LOGINT_FLAGS)) == 0); 10456 10457 /* 10458 * Need a lock since some flags can be set even when there are 10459 * references to the ipif. 10460 */ 10461 mutex_enter(&ill->ill_lock); 10462 if (ipip->ipi_cmd_type == IF_CMD) { 10463 struct ifreq *ifr = (struct ifreq *)if_req; 10464 10465 /* Get interface flags (low 16 only). */ 10466 ifr->ifr_flags = ((ipif->ipif_flags | 10467 ill->ill_flags | phyi->phyint_flags) & 0xffff); 10468 } else { 10469 struct lifreq *lifr = (struct lifreq *)if_req; 10470 10471 /* Get interface flags. */ 10472 lifr->lifr_flags = ipif->ipif_flags | 10473 ill->ill_flags | phyi->phyint_flags; 10474 } 10475 mutex_exit(&ill->ill_lock); 10476 return (0); 10477 } 10478 10479 /* 10480 * We allow the MTU to be set on an ILL, but not have it be different 10481 * for different IPIFs since we don't actually send packets on IPIFs. 10482 */ 10483 /* ARGSUSED */ 10484 int 10485 ip_sioctl_mtu(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 10486 ip_ioctl_cmd_t *ipip, void *if_req) 10487 { 10488 int mtu; 10489 int ip_min_mtu; 10490 struct ifreq *ifr; 10491 struct lifreq *lifr; 10492 ill_t *ill; 10493 10494 ip1dbg(("ip_sioctl_mtu(%s:%u %p)\n", ipif->ipif_ill->ill_name, 10495 ipif->ipif_id, (void *)ipif)); 10496 if (ipip->ipi_cmd_type == IF_CMD) { 10497 ifr = (struct ifreq *)if_req; 10498 mtu = ifr->ifr_metric; 10499 } else { 10500 lifr = (struct lifreq *)if_req; 10501 mtu = lifr->lifr_mtu; 10502 } 10503 /* Only allow for logical unit zero i.e. not on "bge0:17" */ 10504 if (ipif->ipif_id != 0) 10505 return (EINVAL); 10506 10507 ill = ipif->ipif_ill; 10508 if (ipif->ipif_isv6) 10509 ip_min_mtu = IPV6_MIN_MTU; 10510 else 10511 ip_min_mtu = IP_MIN_MTU; 10512 10513 mutex_enter(&ill->ill_lock); 10514 if (mtu > ill->ill_max_frag || mtu < ip_min_mtu) { 10515 mutex_exit(&ill->ill_lock); 10516 return (EINVAL); 10517 } 10518 /* 10519 * The dce and fragmentation code can handle changes to ill_mtu 10520 * concurrent with sending/fragmenting packets. 10521 */ 10522 ill->ill_mtu = mtu; 10523 ill->ill_flags |= ILLF_FIXEDMTU; 10524 mutex_exit(&ill->ill_lock); 10525 10526 /* 10527 * Make sure all dce_generation checks find out 10528 * that ill_mtu has changed. 10529 */ 10530 dce_increment_all_generations(ill->ill_isv6, ill->ill_ipst); 10531 10532 /* Update the MTU in SCTP's list */ 10533 sctp_update_ipif(ipif, SCTP_IPIF_UPDATE); 10534 return (0); 10535 } 10536 10537 /* Get interface MTU. */ 10538 /* ARGSUSED */ 10539 int 10540 ip_sioctl_get_mtu(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 10541 ip_ioctl_cmd_t *ipip, void *if_req) 10542 { 10543 struct ifreq *ifr; 10544 struct lifreq *lifr; 10545 10546 ip1dbg(("ip_sioctl_get_mtu(%s:%u %p)\n", 10547 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 10548 10549 /* 10550 * We allow a get on any logical interface even though the set 10551 * can only be done on logical unit 0. 10552 */ 10553 if (ipip->ipi_cmd_type == IF_CMD) { 10554 ifr = (struct ifreq *)if_req; 10555 ifr->ifr_metric = ipif->ipif_ill->ill_mtu; 10556 } else { 10557 lifr = (struct lifreq *)if_req; 10558 lifr->lifr_mtu = ipif->ipif_ill->ill_mtu; 10559 } 10560 return (0); 10561 } 10562 10563 /* Set interface broadcast address. */ 10564 /* ARGSUSED2 */ 10565 int 10566 ip_sioctl_brdaddr(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 10567 ip_ioctl_cmd_t *ipip, void *if_req) 10568 { 10569 ipaddr_t addr; 10570 ire_t *ire; 10571 ill_t *ill = ipif->ipif_ill; 10572 ip_stack_t *ipst = ill->ill_ipst; 10573 10574 ip1dbg(("ip_sioctl_brdaddr(%s:%u)\n", ill->ill_name, 10575 ipif->ipif_id)); 10576 10577 ASSERT(IAM_WRITER_IPIF(ipif)); 10578 if (!(ipif->ipif_flags & IPIF_BROADCAST)) 10579 return (EADDRNOTAVAIL); 10580 10581 ASSERT(!(ipif->ipif_isv6)); /* No IPv6 broadcast */ 10582 10583 if (sin->sin_family != AF_INET) 10584 return (EAFNOSUPPORT); 10585 10586 addr = sin->sin_addr.s_addr; 10587 if (ipif->ipif_flags & IPIF_UP) { 10588 /* 10589 * If we are already up, make sure the new 10590 * broadcast address makes sense. If it does, 10591 * there should be an IRE for it already. 10592 */ 10593 ire = ire_ftable_lookup_v4(addr, 0, 0, IRE_BROADCAST, 10594 ill, ipif->ipif_zoneid, NULL, 10595 (MATCH_IRE_ILL | MATCH_IRE_TYPE), 0, ipst, NULL); 10596 if (ire == NULL) { 10597 return (EINVAL); 10598 } else { 10599 ire_refrele(ire); 10600 } 10601 } 10602 /* 10603 * Changing the broadcast addr for this ipif. Since the IRE_BROADCAST 10604 * needs to already exist we never need to change the set of 10605 * IRE_BROADCASTs when we are UP. 10606 */ 10607 if (addr != ipif->ipif_brd_addr) 10608 IN6_IPADDR_TO_V4MAPPED(addr, &ipif->ipif_v6brd_addr); 10609 10610 return (0); 10611 } 10612 10613 /* Get interface broadcast address. */ 10614 /* ARGSUSED */ 10615 int 10616 ip_sioctl_get_brdaddr(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 10617 ip_ioctl_cmd_t *ipip, void *if_req) 10618 { 10619 ip1dbg(("ip_sioctl_get_brdaddr(%s:%u %p)\n", 10620 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 10621 if (!(ipif->ipif_flags & IPIF_BROADCAST)) 10622 return (EADDRNOTAVAIL); 10623 10624 /* IPIF_BROADCAST not possible with IPv6 */ 10625 ASSERT(!ipif->ipif_isv6); 10626 *sin = sin_null; 10627 sin->sin_family = AF_INET; 10628 sin->sin_addr.s_addr = ipif->ipif_brd_addr; 10629 return (0); 10630 } 10631 10632 /* 10633 * This routine is called to handle the SIOCS*IFNETMASK IOCTL. 10634 */ 10635 /* ARGSUSED */ 10636 int 10637 ip_sioctl_netmask(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 10638 ip_ioctl_cmd_t *ipip, void *if_req) 10639 { 10640 int err = 0; 10641 in6_addr_t v6mask; 10642 10643 ip1dbg(("ip_sioctl_netmask(%s:%u %p)\n", 10644 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 10645 10646 ASSERT(IAM_WRITER_IPIF(ipif)); 10647 10648 if (ipif->ipif_isv6) { 10649 sin6_t *sin6; 10650 10651 if (sin->sin_family != AF_INET6) 10652 return (EAFNOSUPPORT); 10653 10654 sin6 = (sin6_t *)sin; 10655 v6mask = sin6->sin6_addr; 10656 } else { 10657 ipaddr_t mask; 10658 10659 if (sin->sin_family != AF_INET) 10660 return (EAFNOSUPPORT); 10661 10662 mask = sin->sin_addr.s_addr; 10663 V4MASK_TO_V6(mask, v6mask); 10664 } 10665 10666 /* 10667 * No big deal if the interface isn't already up, or the mask 10668 * isn't really changing, or this is pt-pt. 10669 */ 10670 if (!(ipif->ipif_flags & IPIF_UP) || 10671 IN6_ARE_ADDR_EQUAL(&v6mask, &ipif->ipif_v6net_mask) || 10672 (ipif->ipif_flags & IPIF_POINTOPOINT)) { 10673 ipif->ipif_v6net_mask = v6mask; 10674 if ((ipif->ipif_flags & IPIF_POINTOPOINT) == 0) { 10675 V6_MASK_COPY(ipif->ipif_v6lcl_addr, 10676 ipif->ipif_v6net_mask, 10677 ipif->ipif_v6subnet); 10678 } 10679 return (0); 10680 } 10681 /* 10682 * Make sure we have valid net and subnet broadcast ire's 10683 * for the old netmask, if needed by other logical interfaces. 10684 */ 10685 err = ipif_logical_down(ipif, q, mp); 10686 if (err == EINPROGRESS) 10687 return (err); 10688 (void) ipif_down_tail(ipif); 10689 err = ip_sioctl_netmask_tail(ipif, sin, q, mp); 10690 return (err); 10691 } 10692 10693 static int 10694 ip_sioctl_netmask_tail(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp) 10695 { 10696 in6_addr_t v6mask; 10697 int err = 0; 10698 10699 ip1dbg(("ip_sioctl_netmask_tail(%s:%u %p)\n", 10700 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 10701 10702 if (ipif->ipif_isv6) { 10703 sin6_t *sin6; 10704 10705 sin6 = (sin6_t *)sin; 10706 v6mask = sin6->sin6_addr; 10707 } else { 10708 ipaddr_t mask; 10709 10710 mask = sin->sin_addr.s_addr; 10711 V4MASK_TO_V6(mask, v6mask); 10712 } 10713 10714 ipif->ipif_v6net_mask = v6mask; 10715 if ((ipif->ipif_flags & IPIF_POINTOPOINT) == 0) { 10716 V6_MASK_COPY(ipif->ipif_v6lcl_addr, ipif->ipif_v6net_mask, 10717 ipif->ipif_v6subnet); 10718 } 10719 err = ipif_up(ipif, q, mp); 10720 10721 if (err == 0 || err == EINPROGRESS) { 10722 /* 10723 * The interface must be DL_BOUND if this packet has to 10724 * go out on the wire. Since we only go through a logical 10725 * down and are bound with the driver during an internal 10726 * down/up that is satisfied. 10727 */ 10728 if (!ipif->ipif_isv6 && ipif->ipif_ill->ill_wq != NULL) { 10729 /* Potentially broadcast an address mask reply. */ 10730 ipif_mask_reply(ipif); 10731 } 10732 } 10733 return (err); 10734 } 10735 10736 /* ARGSUSED */ 10737 int 10738 ip_sioctl_netmask_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 10739 ip_ioctl_cmd_t *ipip, void *if_req) 10740 { 10741 ip1dbg(("ip_sioctl_netmask_restart(%s:%u %p)\n", 10742 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 10743 (void) ipif_down_tail(ipif); 10744 return (ip_sioctl_netmask_tail(ipif, sin, q, mp)); 10745 } 10746 10747 /* Get interface net mask. */ 10748 /* ARGSUSED */ 10749 int 10750 ip_sioctl_get_netmask(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 10751 ip_ioctl_cmd_t *ipip, void *if_req) 10752 { 10753 struct lifreq *lifr = (struct lifreq *)if_req; 10754 struct sockaddr_in6 *sin6 = (sin6_t *)sin; 10755 10756 ip1dbg(("ip_sioctl_get_netmask(%s:%u %p)\n", 10757 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 10758 10759 /* 10760 * net mask can't change since we have a reference to the ipif. 10761 */ 10762 if (ipif->ipif_isv6) { 10763 ASSERT(ipip->ipi_cmd_type == LIF_CMD); 10764 *sin6 = sin6_null; 10765 sin6->sin6_family = AF_INET6; 10766 sin6->sin6_addr = ipif->ipif_v6net_mask; 10767 lifr->lifr_addrlen = 10768 ip_mask_to_plen_v6(&ipif->ipif_v6net_mask); 10769 } else { 10770 *sin = sin_null; 10771 sin->sin_family = AF_INET; 10772 sin->sin_addr.s_addr = ipif->ipif_net_mask; 10773 if (ipip->ipi_cmd_type == LIF_CMD) { 10774 lifr->lifr_addrlen = 10775 ip_mask_to_plen(ipif->ipif_net_mask); 10776 } 10777 } 10778 return (0); 10779 } 10780 10781 /* ARGSUSED */ 10782 int 10783 ip_sioctl_metric(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 10784 ip_ioctl_cmd_t *ipip, void *if_req) 10785 { 10786 ip1dbg(("ip_sioctl_metric(%s:%u %p)\n", 10787 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 10788 10789 /* 10790 * Since no applications should ever be setting metrics on underlying 10791 * interfaces, we explicitly fail to smoke 'em out. 10792 */ 10793 if (IS_UNDER_IPMP(ipif->ipif_ill)) 10794 return (EINVAL); 10795 10796 /* 10797 * Set interface metric. We don't use this for 10798 * anything but we keep track of it in case it is 10799 * important to routing applications or such. 10800 */ 10801 if (ipip->ipi_cmd_type == IF_CMD) { 10802 struct ifreq *ifr; 10803 10804 ifr = (struct ifreq *)if_req; 10805 ipif->ipif_metric = ifr->ifr_metric; 10806 } else { 10807 struct lifreq *lifr; 10808 10809 lifr = (struct lifreq *)if_req; 10810 ipif->ipif_metric = lifr->lifr_metric; 10811 } 10812 return (0); 10813 } 10814 10815 /* ARGSUSED */ 10816 int 10817 ip_sioctl_get_metric(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 10818 ip_ioctl_cmd_t *ipip, void *if_req) 10819 { 10820 /* Get interface metric. */ 10821 ip1dbg(("ip_sioctl_get_metric(%s:%u %p)\n", 10822 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 10823 10824 if (ipip->ipi_cmd_type == IF_CMD) { 10825 struct ifreq *ifr; 10826 10827 ifr = (struct ifreq *)if_req; 10828 ifr->ifr_metric = ipif->ipif_metric; 10829 } else { 10830 struct lifreq *lifr; 10831 10832 lifr = (struct lifreq *)if_req; 10833 lifr->lifr_metric = ipif->ipif_metric; 10834 } 10835 10836 return (0); 10837 } 10838 10839 /* ARGSUSED */ 10840 int 10841 ip_sioctl_muxid(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 10842 ip_ioctl_cmd_t *ipip, void *if_req) 10843 { 10844 int arp_muxid; 10845 10846 ip1dbg(("ip_sioctl_muxid(%s:%u %p)\n", 10847 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 10848 /* 10849 * Set the muxid returned from I_PLINK. 10850 */ 10851 if (ipip->ipi_cmd_type == IF_CMD) { 10852 struct ifreq *ifr = (struct ifreq *)if_req; 10853 10854 ipif->ipif_ill->ill_muxid = ifr->ifr_ip_muxid; 10855 arp_muxid = ifr->ifr_arp_muxid; 10856 } else { 10857 struct lifreq *lifr = (struct lifreq *)if_req; 10858 10859 ipif->ipif_ill->ill_muxid = lifr->lifr_ip_muxid; 10860 arp_muxid = lifr->lifr_arp_muxid; 10861 } 10862 arl_set_muxid(ipif->ipif_ill, arp_muxid); 10863 return (0); 10864 } 10865 10866 /* ARGSUSED */ 10867 int 10868 ip_sioctl_get_muxid(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 10869 ip_ioctl_cmd_t *ipip, void *if_req) 10870 { 10871 int arp_muxid = 0; 10872 10873 ip1dbg(("ip_sioctl_get_muxid(%s:%u %p)\n", 10874 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 10875 /* 10876 * Get the muxid saved in ill for I_PUNLINK. 10877 */ 10878 arp_muxid = arl_get_muxid(ipif->ipif_ill); 10879 if (ipip->ipi_cmd_type == IF_CMD) { 10880 struct ifreq *ifr = (struct ifreq *)if_req; 10881 10882 ifr->ifr_ip_muxid = ipif->ipif_ill->ill_muxid; 10883 ifr->ifr_arp_muxid = arp_muxid; 10884 } else { 10885 struct lifreq *lifr = (struct lifreq *)if_req; 10886 10887 lifr->lifr_ip_muxid = ipif->ipif_ill->ill_muxid; 10888 lifr->lifr_arp_muxid = arp_muxid; 10889 } 10890 return (0); 10891 } 10892 10893 /* 10894 * Set the subnet prefix. Does not modify the broadcast address. 10895 */ 10896 /* ARGSUSED */ 10897 int 10898 ip_sioctl_subnet(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 10899 ip_ioctl_cmd_t *ipip, void *if_req) 10900 { 10901 int err = 0; 10902 in6_addr_t v6addr; 10903 in6_addr_t v6mask; 10904 boolean_t need_up = B_FALSE; 10905 int addrlen; 10906 10907 ip1dbg(("ip_sioctl_subnet(%s:%u %p)\n", 10908 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 10909 10910 ASSERT(IAM_WRITER_IPIF(ipif)); 10911 addrlen = ((struct lifreq *)if_req)->lifr_addrlen; 10912 10913 if (ipif->ipif_isv6) { 10914 sin6_t *sin6; 10915 10916 if (sin->sin_family != AF_INET6) 10917 return (EAFNOSUPPORT); 10918 10919 sin6 = (sin6_t *)sin; 10920 v6addr = sin6->sin6_addr; 10921 if (!ip_remote_addr_ok_v6(&v6addr, &ipv6_all_ones)) 10922 return (EADDRNOTAVAIL); 10923 } else { 10924 ipaddr_t addr; 10925 10926 if (sin->sin_family != AF_INET) 10927 return (EAFNOSUPPORT); 10928 10929 addr = sin->sin_addr.s_addr; 10930 if (!ip_addr_ok_v4(addr, 0xFFFFFFFF)) 10931 return (EADDRNOTAVAIL); 10932 IN6_IPADDR_TO_V4MAPPED(addr, &v6addr); 10933 /* Add 96 bits */ 10934 addrlen += IPV6_ABITS - IP_ABITS; 10935 } 10936 10937 if (ip_plen_to_mask_v6(addrlen, &v6mask) == NULL) 10938 return (EINVAL); 10939 10940 /* Check if bits in the address is set past the mask */ 10941 if (!V6_MASK_EQ(v6addr, v6mask, v6addr)) 10942 return (EINVAL); 10943 10944 if (IN6_ARE_ADDR_EQUAL(&ipif->ipif_v6subnet, &v6addr) && 10945 IN6_ARE_ADDR_EQUAL(&ipif->ipif_v6net_mask, &v6mask)) 10946 return (0); /* No change */ 10947 10948 if (ipif->ipif_flags & IPIF_UP) { 10949 /* 10950 * If the interface is already marked up, 10951 * we call ipif_down which will take care 10952 * of ditching any IREs that have been set 10953 * up based on the old interface address. 10954 */ 10955 err = ipif_logical_down(ipif, q, mp); 10956 if (err == EINPROGRESS) 10957 return (err); 10958 (void) ipif_down_tail(ipif); 10959 need_up = B_TRUE; 10960 } 10961 10962 err = ip_sioctl_subnet_tail(ipif, v6addr, v6mask, q, mp, need_up); 10963 return (err); 10964 } 10965 10966 static int 10967 ip_sioctl_subnet_tail(ipif_t *ipif, in6_addr_t v6addr, in6_addr_t v6mask, 10968 queue_t *q, mblk_t *mp, boolean_t need_up) 10969 { 10970 ill_t *ill = ipif->ipif_ill; 10971 int err = 0; 10972 10973 ip1dbg(("ip_sioctl_subnet_tail(%s:%u %p)\n", 10974 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 10975 10976 /* Set the new address. */ 10977 mutex_enter(&ill->ill_lock); 10978 ipif->ipif_v6net_mask = v6mask; 10979 if ((ipif->ipif_flags & IPIF_POINTOPOINT) == 0) { 10980 V6_MASK_COPY(v6addr, ipif->ipif_v6net_mask, 10981 ipif->ipif_v6subnet); 10982 } 10983 mutex_exit(&ill->ill_lock); 10984 10985 if (need_up) { 10986 /* 10987 * Now bring the interface back up. If this 10988 * is the only IPIF for the ILL, ipif_up 10989 * will have to re-bind to the device, so 10990 * we may get back EINPROGRESS, in which 10991 * case, this IOCTL will get completed in 10992 * ip_rput_dlpi when we see the DL_BIND_ACK. 10993 */ 10994 err = ipif_up(ipif, q, mp); 10995 if (err == EINPROGRESS) 10996 return (err); 10997 } 10998 return (err); 10999 } 11000 11001 /* ARGSUSED */ 11002 int 11003 ip_sioctl_subnet_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11004 ip_ioctl_cmd_t *ipip, void *if_req) 11005 { 11006 int addrlen; 11007 in6_addr_t v6addr; 11008 in6_addr_t v6mask; 11009 struct lifreq *lifr = (struct lifreq *)if_req; 11010 11011 ip1dbg(("ip_sioctl_subnet_restart(%s:%u %p)\n", 11012 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11013 (void) ipif_down_tail(ipif); 11014 11015 addrlen = lifr->lifr_addrlen; 11016 if (ipif->ipif_isv6) { 11017 sin6_t *sin6; 11018 11019 sin6 = (sin6_t *)sin; 11020 v6addr = sin6->sin6_addr; 11021 } else { 11022 ipaddr_t addr; 11023 11024 addr = sin->sin_addr.s_addr; 11025 IN6_IPADDR_TO_V4MAPPED(addr, &v6addr); 11026 addrlen += IPV6_ABITS - IP_ABITS; 11027 } 11028 (void) ip_plen_to_mask_v6(addrlen, &v6mask); 11029 11030 return (ip_sioctl_subnet_tail(ipif, v6addr, v6mask, q, mp, B_TRUE)); 11031 } 11032 11033 /* ARGSUSED */ 11034 int 11035 ip_sioctl_get_subnet(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11036 ip_ioctl_cmd_t *ipip, void *if_req) 11037 { 11038 struct lifreq *lifr = (struct lifreq *)if_req; 11039 struct sockaddr_in6 *sin6 = (struct sockaddr_in6 *)sin; 11040 11041 ip1dbg(("ip_sioctl_get_subnet(%s:%u %p)\n", 11042 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11043 ASSERT(ipip->ipi_cmd_type == LIF_CMD); 11044 11045 if (ipif->ipif_isv6) { 11046 *sin6 = sin6_null; 11047 sin6->sin6_family = AF_INET6; 11048 sin6->sin6_addr = ipif->ipif_v6subnet; 11049 lifr->lifr_addrlen = 11050 ip_mask_to_plen_v6(&ipif->ipif_v6net_mask); 11051 } else { 11052 *sin = sin_null; 11053 sin->sin_family = AF_INET; 11054 sin->sin_addr.s_addr = ipif->ipif_subnet; 11055 lifr->lifr_addrlen = ip_mask_to_plen(ipif->ipif_net_mask); 11056 } 11057 return (0); 11058 } 11059 11060 /* 11061 * Set the IPv6 address token. 11062 */ 11063 /* ARGSUSED */ 11064 int 11065 ip_sioctl_token(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11066 ip_ioctl_cmd_t *ipi, void *if_req) 11067 { 11068 ill_t *ill = ipif->ipif_ill; 11069 int err; 11070 in6_addr_t v6addr; 11071 in6_addr_t v6mask; 11072 boolean_t need_up = B_FALSE; 11073 int i; 11074 sin6_t *sin6 = (sin6_t *)sin; 11075 struct lifreq *lifr = (struct lifreq *)if_req; 11076 int addrlen; 11077 11078 ip1dbg(("ip_sioctl_token(%s:%u %p)\n", 11079 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11080 ASSERT(IAM_WRITER_IPIF(ipif)); 11081 11082 addrlen = lifr->lifr_addrlen; 11083 /* Only allow for logical unit zero i.e. not on "le0:17" */ 11084 if (ipif->ipif_id != 0) 11085 return (EINVAL); 11086 11087 if (!ipif->ipif_isv6) 11088 return (EINVAL); 11089 11090 if (addrlen > IPV6_ABITS) 11091 return (EINVAL); 11092 11093 v6addr = sin6->sin6_addr; 11094 11095 /* 11096 * The length of the token is the length from the end. To get 11097 * the proper mask for this, compute the mask of the bits not 11098 * in the token; ie. the prefix, and then xor to get the mask. 11099 */ 11100 if (ip_plen_to_mask_v6(IPV6_ABITS - addrlen, &v6mask) == NULL) 11101 return (EINVAL); 11102 for (i = 0; i < 4; i++) { 11103 v6mask.s6_addr32[i] ^= (uint32_t)0xffffffff; 11104 } 11105 11106 if (V6_MASK_EQ(v6addr, v6mask, ill->ill_token) && 11107 ill->ill_token_length == addrlen) 11108 return (0); /* No change */ 11109 11110 if (ipif->ipif_flags & IPIF_UP) { 11111 err = ipif_logical_down(ipif, q, mp); 11112 if (err == EINPROGRESS) 11113 return (err); 11114 (void) ipif_down_tail(ipif); 11115 need_up = B_TRUE; 11116 } 11117 err = ip_sioctl_token_tail(ipif, sin6, addrlen, q, mp, need_up); 11118 return (err); 11119 } 11120 11121 static int 11122 ip_sioctl_token_tail(ipif_t *ipif, sin6_t *sin6, int addrlen, queue_t *q, 11123 mblk_t *mp, boolean_t need_up) 11124 { 11125 in6_addr_t v6addr; 11126 in6_addr_t v6mask; 11127 ill_t *ill = ipif->ipif_ill; 11128 int i; 11129 int err = 0; 11130 11131 ip1dbg(("ip_sioctl_token_tail(%s:%u %p)\n", 11132 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11133 v6addr = sin6->sin6_addr; 11134 /* 11135 * The length of the token is the length from the end. To get 11136 * the proper mask for this, compute the mask of the bits not 11137 * in the token; ie. the prefix, and then xor to get the mask. 11138 */ 11139 (void) ip_plen_to_mask_v6(IPV6_ABITS - addrlen, &v6mask); 11140 for (i = 0; i < 4; i++) 11141 v6mask.s6_addr32[i] ^= (uint32_t)0xffffffff; 11142 11143 mutex_enter(&ill->ill_lock); 11144 V6_MASK_COPY(v6addr, v6mask, ill->ill_token); 11145 ill->ill_token_length = addrlen; 11146 ill->ill_manual_token = 1; 11147 11148 /* Reconfigure the link-local address based on this new token */ 11149 ipif_setlinklocal(ill->ill_ipif); 11150 11151 mutex_exit(&ill->ill_lock); 11152 11153 if (need_up) { 11154 /* 11155 * Now bring the interface back up. If this 11156 * is the only IPIF for the ILL, ipif_up 11157 * will have to re-bind to the device, so 11158 * we may get back EINPROGRESS, in which 11159 * case, this IOCTL will get completed in 11160 * ip_rput_dlpi when we see the DL_BIND_ACK. 11161 */ 11162 err = ipif_up(ipif, q, mp); 11163 if (err == EINPROGRESS) 11164 return (err); 11165 } 11166 return (err); 11167 } 11168 11169 /* ARGSUSED */ 11170 int 11171 ip_sioctl_get_token(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11172 ip_ioctl_cmd_t *ipi, void *if_req) 11173 { 11174 ill_t *ill; 11175 sin6_t *sin6 = (sin6_t *)sin; 11176 struct lifreq *lifr = (struct lifreq *)if_req; 11177 11178 ip1dbg(("ip_sioctl_get_token(%s:%u %p)\n", 11179 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11180 if (ipif->ipif_id != 0) 11181 return (EINVAL); 11182 11183 ill = ipif->ipif_ill; 11184 if (!ill->ill_isv6) 11185 return (ENXIO); 11186 11187 *sin6 = sin6_null; 11188 sin6->sin6_family = AF_INET6; 11189 ASSERT(!IN6_IS_ADDR_V4MAPPED(&ill->ill_token)); 11190 sin6->sin6_addr = ill->ill_token; 11191 lifr->lifr_addrlen = ill->ill_token_length; 11192 return (0); 11193 } 11194 11195 /* 11196 * Set (hardware) link specific information that might override 11197 * what was acquired through the DL_INFO_ACK. 11198 */ 11199 /* ARGSUSED */ 11200 int 11201 ip_sioctl_lnkinfo(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11202 ip_ioctl_cmd_t *ipi, void *if_req) 11203 { 11204 ill_t *ill = ipif->ipif_ill; 11205 int ip_min_mtu; 11206 struct lifreq *lifr = (struct lifreq *)if_req; 11207 lif_ifinfo_req_t *lir; 11208 11209 ip1dbg(("ip_sioctl_lnkinfo(%s:%u %p)\n", 11210 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11211 lir = &lifr->lifr_ifinfo; 11212 ASSERT(IAM_WRITER_IPIF(ipif)); 11213 11214 /* Only allow for logical unit zero i.e. not on "bge0:17" */ 11215 if (ipif->ipif_id != 0) 11216 return (EINVAL); 11217 11218 /* Set interface MTU. */ 11219 if (ipif->ipif_isv6) 11220 ip_min_mtu = IPV6_MIN_MTU; 11221 else 11222 ip_min_mtu = IP_MIN_MTU; 11223 11224 /* 11225 * Verify values before we set anything. Allow zero to 11226 * mean unspecified. 11227 * 11228 * XXX We should be able to set the user-defined lir_mtu to some value 11229 * that is greater than ill_current_frag but less than ill_max_frag- the 11230 * ill_max_frag value tells us the max MTU that can be handled by the 11231 * datalink, whereas the ill_current_frag is dynamically computed for 11232 * some link-types like tunnels, based on the tunnel PMTU. However, 11233 * since there is currently no way of distinguishing between 11234 * administratively fixed link mtu values (e.g., those set via 11235 * /sbin/dladm) and dynamically discovered MTUs (e.g., those discovered 11236 * for tunnels) we conservatively choose the ill_current_frag as the 11237 * upper-bound. 11238 */ 11239 if (lir->lir_maxmtu != 0 && 11240 (lir->lir_maxmtu > ill->ill_current_frag || 11241 lir->lir_maxmtu < ip_min_mtu)) 11242 return (EINVAL); 11243 if (lir->lir_reachtime != 0 && 11244 lir->lir_reachtime > ND_MAX_REACHTIME) 11245 return (EINVAL); 11246 if (lir->lir_reachretrans != 0 && 11247 lir->lir_reachretrans > ND_MAX_REACHRETRANSTIME) 11248 return (EINVAL); 11249 11250 mutex_enter(&ill->ill_lock); 11251 /* 11252 * The dce and fragmentation code can handle changes to ill_mtu 11253 * concurrent with sending/fragmenting packets. 11254 */ 11255 if (lir->lir_maxmtu != 0) 11256 ill->ill_user_mtu = lir->lir_maxmtu; 11257 11258 if (lir->lir_reachtime != 0) 11259 ill->ill_reachable_time = lir->lir_reachtime; 11260 11261 if (lir->lir_reachretrans != 0) 11262 ill->ill_reachable_retrans_time = lir->lir_reachretrans; 11263 11264 ill->ill_max_hops = lir->lir_maxhops; 11265 ill->ill_max_buf = ND_MAX_Q; 11266 if (!(ill->ill_flags & ILLF_FIXEDMTU) && ill->ill_user_mtu != 0) { 11267 /* 11268 * ill_mtu is the actual interface MTU, obtained as the min 11269 * of user-configured mtu and the value announced by the 11270 * driver (via DL_NOTE_SDU_SIZE/DL_INFO_ACK). Note that since 11271 * we have already made the choice of requiring 11272 * ill_user_mtu < ill_current_frag by the time we get here, 11273 * the ill_mtu effectively gets assigned to the ill_user_mtu 11274 * here. 11275 */ 11276 ill->ill_mtu = MIN(ill->ill_current_frag, ill->ill_user_mtu); 11277 } 11278 mutex_exit(&ill->ill_lock); 11279 11280 /* 11281 * Make sure all dce_generation checks find out 11282 * that ill_mtu has changed. 11283 */ 11284 if (!(ill->ill_flags & ILLF_FIXEDMTU) && (lir->lir_maxmtu != 0)) 11285 dce_increment_all_generations(ill->ill_isv6, ill->ill_ipst); 11286 11287 /* 11288 * Refresh IPMP meta-interface MTU if necessary. 11289 */ 11290 if (IS_UNDER_IPMP(ill)) 11291 ipmp_illgrp_refresh_mtu(ill->ill_grp); 11292 11293 return (0); 11294 } 11295 11296 /* ARGSUSED */ 11297 int 11298 ip_sioctl_get_lnkinfo(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 11299 ip_ioctl_cmd_t *ipi, void *if_req) 11300 { 11301 struct lif_ifinfo_req *lir; 11302 ill_t *ill = ipif->ipif_ill; 11303 11304 ip1dbg(("ip_sioctl_get_lnkinfo(%s:%u %p)\n", 11305 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 11306 if (ipif->ipif_id != 0) 11307 return (EINVAL); 11308 11309 lir = &((struct lifreq *)if_req)->lifr_ifinfo; 11310 lir->lir_maxhops = ill->ill_max_hops; 11311 lir->lir_reachtime = ill->ill_reachable_time; 11312 lir->lir_reachretrans = ill->ill_reachable_retrans_time; 11313 lir->lir_maxmtu = ill->ill_mtu; 11314 11315 return (0); 11316 } 11317 11318 /* 11319 * Return best guess as to the subnet mask for the specified address. 11320 * Based on the subnet masks for all the configured interfaces. 11321 * 11322 * We end up returning a zero mask in the case of default, multicast or 11323 * experimental. 11324 */ 11325 static ipaddr_t 11326 ip_subnet_mask(ipaddr_t addr, ipif_t **ipifp, ip_stack_t *ipst) 11327 { 11328 ipaddr_t net_mask; 11329 ill_t *ill; 11330 ipif_t *ipif; 11331 ill_walk_context_t ctx; 11332 ipif_t *fallback_ipif = NULL; 11333 11334 net_mask = ip_net_mask(addr); 11335 if (net_mask == 0) { 11336 *ipifp = NULL; 11337 return (0); 11338 } 11339 11340 /* Let's check to see if this is maybe a local subnet route. */ 11341 /* this function only applies to IPv4 interfaces */ 11342 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 11343 ill = ILL_START_WALK_V4(&ctx, ipst); 11344 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 11345 mutex_enter(&ill->ill_lock); 11346 for (ipif = ill->ill_ipif; ipif != NULL; 11347 ipif = ipif->ipif_next) { 11348 if (IPIF_IS_CONDEMNED(ipif)) 11349 continue; 11350 if (!(ipif->ipif_flags & IPIF_UP)) 11351 continue; 11352 if ((ipif->ipif_subnet & net_mask) == 11353 (addr & net_mask)) { 11354 /* 11355 * Don't trust pt-pt interfaces if there are 11356 * other interfaces. 11357 */ 11358 if (ipif->ipif_flags & IPIF_POINTOPOINT) { 11359 if (fallback_ipif == NULL) { 11360 ipif_refhold_locked(ipif); 11361 fallback_ipif = ipif; 11362 } 11363 continue; 11364 } 11365 11366 /* 11367 * Fine. Just assume the same net mask as the 11368 * directly attached subnet interface is using. 11369 */ 11370 ipif_refhold_locked(ipif); 11371 mutex_exit(&ill->ill_lock); 11372 rw_exit(&ipst->ips_ill_g_lock); 11373 if (fallback_ipif != NULL) 11374 ipif_refrele(fallback_ipif); 11375 *ipifp = ipif; 11376 return (ipif->ipif_net_mask); 11377 } 11378 } 11379 mutex_exit(&ill->ill_lock); 11380 } 11381 rw_exit(&ipst->ips_ill_g_lock); 11382 11383 *ipifp = fallback_ipif; 11384 return ((fallback_ipif != NULL) ? 11385 fallback_ipif->ipif_net_mask : net_mask); 11386 } 11387 11388 /* 11389 * ip_sioctl_copyin_setup calls ip_wput_ioctl to process the IP_IOCTL ioctl. 11390 */ 11391 static void 11392 ip_wput_ioctl(queue_t *q, mblk_t *mp) 11393 { 11394 IOCP iocp; 11395 ipft_t *ipft; 11396 ipllc_t *ipllc; 11397 mblk_t *mp1; 11398 cred_t *cr; 11399 int error = 0; 11400 conn_t *connp; 11401 11402 ip1dbg(("ip_wput_ioctl")); 11403 iocp = (IOCP)mp->b_rptr; 11404 mp1 = mp->b_cont; 11405 if (mp1 == NULL) { 11406 iocp->ioc_error = EINVAL; 11407 mp->b_datap->db_type = M_IOCNAK; 11408 iocp->ioc_count = 0; 11409 qreply(q, mp); 11410 return; 11411 } 11412 11413 /* 11414 * These IOCTLs provide various control capabilities to 11415 * upstream agents such as ULPs and processes. There 11416 * are currently two such IOCTLs implemented. They 11417 * are used by TCP to provide update information for 11418 * existing IREs and to forcibly delete an IRE for a 11419 * host that is not responding, thereby forcing an 11420 * attempt at a new route. 11421 */ 11422 iocp->ioc_error = EINVAL; 11423 if (!pullupmsg(mp1, sizeof (ipllc->ipllc_cmd))) 11424 goto done; 11425 11426 ipllc = (ipllc_t *)mp1->b_rptr; 11427 for (ipft = ip_ioctl_ftbl; ipft->ipft_pfi; ipft++) { 11428 if (ipllc->ipllc_cmd == ipft->ipft_cmd) 11429 break; 11430 } 11431 /* 11432 * prefer credential from mblk over ioctl; 11433 * see ip_sioctl_copyin_setup 11434 */ 11435 cr = msg_getcred(mp, NULL); 11436 if (cr == NULL) 11437 cr = iocp->ioc_cr; 11438 11439 /* 11440 * Refhold the conn in case the request gets queued up in some lookup 11441 */ 11442 ASSERT(CONN_Q(q)); 11443 connp = Q_TO_CONN(q); 11444 CONN_INC_REF(connp); 11445 if (ipft->ipft_pfi && 11446 ((mp1->b_wptr - mp1->b_rptr) >= ipft->ipft_min_size || 11447 pullupmsg(mp1, ipft->ipft_min_size))) { 11448 error = (*ipft->ipft_pfi)(q, 11449 (ipft->ipft_flags & IPFT_F_SELF_REPLY) ? mp : mp1, cr); 11450 } 11451 if (ipft->ipft_flags & IPFT_F_SELF_REPLY) { 11452 /* 11453 * CONN_OPER_PENDING_DONE happens in the function called 11454 * through ipft_pfi above. 11455 */ 11456 return; 11457 } 11458 11459 CONN_OPER_PENDING_DONE(connp); 11460 if (ipft->ipft_flags & IPFT_F_NO_REPLY) { 11461 freemsg(mp); 11462 return; 11463 } 11464 iocp->ioc_error = error; 11465 11466 done: 11467 mp->b_datap->db_type = M_IOCACK; 11468 if (iocp->ioc_error) 11469 iocp->ioc_count = 0; 11470 qreply(q, mp); 11471 } 11472 11473 /* 11474 * Assign a unique id for the ipif. This is used by sctp_addr.c 11475 * Note: remove if sctp_addr.c is redone to not shadow ill/ipif data structures. 11476 */ 11477 static void 11478 ipif_assign_seqid(ipif_t *ipif) 11479 { 11480 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; 11481 11482 ipif->ipif_seqid = atomic_add_64_nv(&ipst->ips_ipif_g_seqid, 1); 11483 } 11484 11485 /* 11486 * Clone the contents of `sipif' to `dipif'. Requires that both ipifs are 11487 * administratively down (i.e., no DAD), of the same type, and locked. Note 11488 * that the clone is complete -- including the seqid -- and the expectation is 11489 * that the caller will either free or overwrite `sipif' before it's unlocked. 11490 */ 11491 static void 11492 ipif_clone(const ipif_t *sipif, ipif_t *dipif) 11493 { 11494 ASSERT(MUTEX_HELD(&sipif->ipif_ill->ill_lock)); 11495 ASSERT(MUTEX_HELD(&dipif->ipif_ill->ill_lock)); 11496 ASSERT(!(sipif->ipif_flags & (IPIF_UP|IPIF_DUPLICATE))); 11497 ASSERT(!(dipif->ipif_flags & (IPIF_UP|IPIF_DUPLICATE))); 11498 ASSERT(sipif->ipif_ire_type == dipif->ipif_ire_type); 11499 11500 dipif->ipif_flags = sipif->ipif_flags; 11501 dipif->ipif_metric = sipif->ipif_metric; 11502 dipif->ipif_zoneid = sipif->ipif_zoneid; 11503 dipif->ipif_v6subnet = sipif->ipif_v6subnet; 11504 dipif->ipif_v6lcl_addr = sipif->ipif_v6lcl_addr; 11505 dipif->ipif_v6net_mask = sipif->ipif_v6net_mask; 11506 dipif->ipif_v6brd_addr = sipif->ipif_v6brd_addr; 11507 dipif->ipif_v6pp_dst_addr = sipif->ipif_v6pp_dst_addr; 11508 11509 /* 11510 * As per the comment atop the function, we assume that these sipif 11511 * fields will be changed before sipif is unlocked. 11512 */ 11513 dipif->ipif_seqid = sipif->ipif_seqid; 11514 dipif->ipif_state_flags = sipif->ipif_state_flags; 11515 } 11516 11517 /* 11518 * Transfer the contents of `sipif' to `dipif', and then free (if `virgipif' 11519 * is NULL) or overwrite `sipif' with `virgipif', which must be a virgin 11520 * (unreferenced) ipif. Also, if `sipif' is used by the current xop, then 11521 * transfer the xop to `dipif'. Requires that all ipifs are administratively 11522 * down (i.e., no DAD), of the same type, and unlocked. 11523 */ 11524 static void 11525 ipif_transfer(ipif_t *sipif, ipif_t *dipif, ipif_t *virgipif) 11526 { 11527 ipsq_t *ipsq = sipif->ipif_ill->ill_phyint->phyint_ipsq; 11528 ipxop_t *ipx = ipsq->ipsq_xop; 11529 11530 ASSERT(sipif != dipif); 11531 ASSERT(sipif != virgipif); 11532 11533 /* 11534 * Grab all of the locks that protect the ipif in a defined order. 11535 */ 11536 GRAB_ILL_LOCKS(sipif->ipif_ill, dipif->ipif_ill); 11537 11538 ipif_clone(sipif, dipif); 11539 if (virgipif != NULL) { 11540 ipif_clone(virgipif, sipif); 11541 mi_free(virgipif); 11542 } 11543 11544 RELEASE_ILL_LOCKS(sipif->ipif_ill, dipif->ipif_ill); 11545 11546 /* 11547 * Transfer ownership of the current xop, if necessary. 11548 */ 11549 if (ipx->ipx_current_ipif == sipif) { 11550 ASSERT(ipx->ipx_pending_ipif == NULL); 11551 mutex_enter(&ipx->ipx_lock); 11552 ipx->ipx_current_ipif = dipif; 11553 mutex_exit(&ipx->ipx_lock); 11554 } 11555 11556 if (virgipif == NULL) 11557 mi_free(sipif); 11558 } 11559 11560 /* 11561 * checks if: 11562 * - <ill_name>:<ipif_id> is at most LIFNAMSIZ - 1 and 11563 * - logical interface is within the allowed range 11564 */ 11565 static int 11566 is_lifname_valid(ill_t *ill, unsigned int ipif_id) 11567 { 11568 if (snprintf(NULL, 0, "%s:%d", ill->ill_name, ipif_id) >= LIFNAMSIZ) 11569 return (ENAMETOOLONG); 11570 11571 if (ipif_id >= ill->ill_ipst->ips_ip_addrs_per_if) 11572 return (ERANGE); 11573 return (0); 11574 } 11575 11576 /* 11577 * Insert the ipif, so that the list of ipifs on the ill will be sorted 11578 * with respect to ipif_id. Note that an ipif with an ipif_id of -1 will 11579 * be inserted into the first space available in the list. The value of 11580 * ipif_id will then be set to the appropriate value for its position. 11581 */ 11582 static int 11583 ipif_insert(ipif_t *ipif, boolean_t acquire_g_lock) 11584 { 11585 ill_t *ill; 11586 ipif_t *tipif; 11587 ipif_t **tipifp; 11588 int id, err; 11589 ip_stack_t *ipst; 11590 11591 ASSERT(ipif->ipif_ill->ill_net_type == IRE_LOOPBACK || 11592 IAM_WRITER_IPIF(ipif)); 11593 11594 ill = ipif->ipif_ill; 11595 ASSERT(ill != NULL); 11596 ipst = ill->ill_ipst; 11597 11598 /* 11599 * In the case of lo0:0 we already hold the ill_g_lock. 11600 * ill_lookup_on_name (acquires ill_g_lock) -> ipif_allocate -> 11601 * ipif_insert. 11602 */ 11603 if (acquire_g_lock) 11604 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 11605 mutex_enter(&ill->ill_lock); 11606 id = ipif->ipif_id; 11607 tipifp = &(ill->ill_ipif); 11608 if (id == -1) { /* need to find a real id */ 11609 id = 0; 11610 while ((tipif = *tipifp) != NULL) { 11611 ASSERT(tipif->ipif_id >= id); 11612 if (tipif->ipif_id != id) 11613 break; /* non-consecutive id */ 11614 id++; 11615 tipifp = &(tipif->ipif_next); 11616 } 11617 if ((err = is_lifname_valid(ill, id)) != 0) { 11618 mutex_exit(&ill->ill_lock); 11619 if (acquire_g_lock) 11620 rw_exit(&ipst->ips_ill_g_lock); 11621 return (err); 11622 } 11623 ipif->ipif_id = id; /* assign new id */ 11624 } else if ((err = is_lifname_valid(ill, id)) == 0) { 11625 /* we have a real id; insert ipif in the right place */ 11626 while ((tipif = *tipifp) != NULL) { 11627 ASSERT(tipif->ipif_id != id); 11628 if (tipif->ipif_id > id) 11629 break; /* found correct location */ 11630 tipifp = &(tipif->ipif_next); 11631 } 11632 } else { 11633 mutex_exit(&ill->ill_lock); 11634 if (acquire_g_lock) 11635 rw_exit(&ipst->ips_ill_g_lock); 11636 return (err); 11637 } 11638 11639 ASSERT(tipifp != &(ill->ill_ipif) || id == 0); 11640 11641 ipif->ipif_next = tipif; 11642 *tipifp = ipif; 11643 mutex_exit(&ill->ill_lock); 11644 if (acquire_g_lock) 11645 rw_exit(&ipst->ips_ill_g_lock); 11646 11647 return (0); 11648 } 11649 11650 static void 11651 ipif_remove(ipif_t *ipif) 11652 { 11653 ipif_t **ipifp; 11654 ill_t *ill = ipif->ipif_ill; 11655 11656 ASSERT(RW_WRITE_HELD(&ill->ill_ipst->ips_ill_g_lock)); 11657 11658 mutex_enter(&ill->ill_lock); 11659 ipifp = &ill->ill_ipif; 11660 for (; *ipifp != NULL; ipifp = &ipifp[0]->ipif_next) { 11661 if (*ipifp == ipif) { 11662 *ipifp = ipif->ipif_next; 11663 break; 11664 } 11665 } 11666 mutex_exit(&ill->ill_lock); 11667 } 11668 11669 /* 11670 * Allocate and initialize a new interface control structure. (Always 11671 * called as writer.) 11672 * When ipif_allocate() is called from ip_ll_subnet_defaults, the ill 11673 * is not part of the global linked list of ills. ipif_seqid is unique 11674 * in the system and to preserve the uniqueness, it is assigned only 11675 * when ill becomes part of the global list. At that point ill will 11676 * have a name. If it doesn't get assigned here, it will get assigned 11677 * in ipif_set_values() as part of SIOCSLIFNAME processing. 11678 * Aditionally, if we come here from ip_ll_subnet_defaults, we don't set 11679 * the interface flags or any other information from the DL_INFO_ACK for 11680 * DL_STYLE2 drivers (initialize == B_FALSE), since we won't have them at 11681 * this point. The flags etc. will be set in ip_ll_subnet_defaults when the 11682 * second DL_INFO_ACK comes in from the driver. 11683 */ 11684 static ipif_t * 11685 ipif_allocate(ill_t *ill, int id, uint_t ire_type, boolean_t initialize, 11686 boolean_t insert, int *errorp) 11687 { 11688 int err; 11689 ipif_t *ipif; 11690 ip_stack_t *ipst = ill->ill_ipst; 11691 11692 ip1dbg(("ipif_allocate(%s:%d ill %p)\n", 11693 ill->ill_name, id, (void *)ill)); 11694 ASSERT(ire_type == IRE_LOOPBACK || IAM_WRITER_ILL(ill)); 11695 11696 if (errorp != NULL) 11697 *errorp = 0; 11698 11699 if ((ipif = mi_alloc(sizeof (ipif_t), BPRI_MED)) == NULL) { 11700 if (errorp != NULL) 11701 *errorp = ENOMEM; 11702 return (NULL); 11703 } 11704 *ipif = ipif_zero; /* start clean */ 11705 11706 ipif->ipif_ill = ill; 11707 ipif->ipif_id = id; /* could be -1 */ 11708 /* 11709 * Inherit the zoneid from the ill; for the shared stack instance 11710 * this is always the global zone 11711 */ 11712 ipif->ipif_zoneid = ill->ill_zoneid; 11713 11714 ipif->ipif_refcnt = 0; 11715 11716 if (insert) { 11717 if ((err = ipif_insert(ipif, ire_type != IRE_LOOPBACK)) != 0) { 11718 mi_free(ipif); 11719 if (errorp != NULL) 11720 *errorp = err; 11721 return (NULL); 11722 } 11723 /* -1 id should have been replaced by real id */ 11724 id = ipif->ipif_id; 11725 ASSERT(id >= 0); 11726 } 11727 11728 if (ill->ill_name[0] != '\0') 11729 ipif_assign_seqid(ipif); 11730 11731 /* 11732 * If this is the zeroth ipif on the IPMP ill, create the illgrp 11733 * (which must not exist yet because the zeroth ipif is created once 11734 * per ill). However, do not not link it to the ipmp_grp_t until 11735 * I_PLINK is called; see ip_sioctl_plink_ipmp() for details. 11736 */ 11737 if (id == 0 && IS_IPMP(ill)) { 11738 if (ipmp_illgrp_create(ill) == NULL) { 11739 if (insert) { 11740 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 11741 ipif_remove(ipif); 11742 rw_exit(&ipst->ips_ill_g_lock); 11743 } 11744 mi_free(ipif); 11745 if (errorp != NULL) 11746 *errorp = ENOMEM; 11747 return (NULL); 11748 } 11749 } 11750 11751 /* 11752 * We grab ill_lock to protect the flag changes. The ipif is still 11753 * not up and can't be looked up until the ioctl completes and the 11754 * IPIF_CHANGING flag is cleared. 11755 */ 11756 mutex_enter(&ill->ill_lock); 11757 11758 ipif->ipif_ire_type = ire_type; 11759 11760 if (ipif->ipif_isv6) { 11761 ill->ill_flags |= ILLF_IPV6; 11762 } else { 11763 ipaddr_t inaddr_any = INADDR_ANY; 11764 11765 ill->ill_flags |= ILLF_IPV4; 11766 11767 /* Keep the IN6_IS_ADDR_V4MAPPED assertions happy */ 11768 IN6_IPADDR_TO_V4MAPPED(inaddr_any, 11769 &ipif->ipif_v6lcl_addr); 11770 IN6_IPADDR_TO_V4MAPPED(inaddr_any, 11771 &ipif->ipif_v6subnet); 11772 IN6_IPADDR_TO_V4MAPPED(inaddr_any, 11773 &ipif->ipif_v6net_mask); 11774 IN6_IPADDR_TO_V4MAPPED(inaddr_any, 11775 &ipif->ipif_v6brd_addr); 11776 IN6_IPADDR_TO_V4MAPPED(inaddr_any, 11777 &ipif->ipif_v6pp_dst_addr); 11778 } 11779 11780 /* 11781 * Don't set the interface flags etc. now, will do it in 11782 * ip_ll_subnet_defaults. 11783 */ 11784 if (!initialize) 11785 goto out; 11786 11787 /* 11788 * NOTE: The IPMP meta-interface is special-cased because it starts 11789 * with no underlying interfaces (and thus an unknown broadcast 11790 * address length), but all interfaces that can be placed into an IPMP 11791 * group are required to be broadcast-capable. 11792 */ 11793 if (ill->ill_bcast_addr_length != 0 || IS_IPMP(ill)) { 11794 /* 11795 * Later detect lack of DLPI driver multicast capability by 11796 * catching DL_ENABMULTI_REQ errors in ip_rput_dlpi(). 11797 */ 11798 ill->ill_flags |= ILLF_MULTICAST; 11799 if (!ipif->ipif_isv6) 11800 ipif->ipif_flags |= IPIF_BROADCAST; 11801 } else { 11802 if (ill->ill_net_type != IRE_LOOPBACK) { 11803 if (ipif->ipif_isv6) 11804 /* 11805 * Note: xresolv interfaces will eventually need 11806 * NOARP set here as well, but that will require 11807 * those external resolvers to have some 11808 * knowledge of that flag and act appropriately. 11809 * Not to be changed at present. 11810 */ 11811 ill->ill_flags |= ILLF_NONUD; 11812 else 11813 ill->ill_flags |= ILLF_NOARP; 11814 } 11815 if (ill->ill_phys_addr_length == 0) { 11816 if (IS_VNI(ill)) { 11817 ipif->ipif_flags |= IPIF_NOXMIT; 11818 } else { 11819 /* pt-pt supports multicast. */ 11820 ill->ill_flags |= ILLF_MULTICAST; 11821 if (ill->ill_net_type != IRE_LOOPBACK) 11822 ipif->ipif_flags |= IPIF_POINTOPOINT; 11823 } 11824 } 11825 } 11826 out: 11827 mutex_exit(&ill->ill_lock); 11828 return (ipif); 11829 } 11830 11831 /* 11832 * Remove the neighbor cache entries associated with this logical 11833 * interface. 11834 */ 11835 int 11836 ipif_arp_down(ipif_t *ipif) 11837 { 11838 ill_t *ill = ipif->ipif_ill; 11839 int err = 0; 11840 11841 ip1dbg(("ipif_arp_down(%s:%u)\n", ill->ill_name, ipif->ipif_id)); 11842 ASSERT(IAM_WRITER_IPIF(ipif)); 11843 11844 DTRACE_PROBE3(ipif__downup, char *, "ipif_arp_down", 11845 ill_t *, ill, ipif_t *, ipif); 11846 ipif_nce_down(ipif); 11847 11848 /* 11849 * If this is the last ipif that is going down and there are no 11850 * duplicate addresses we may yet attempt to re-probe, then we need to 11851 * clean up ARP completely. 11852 */ 11853 if (ill->ill_ipif_up_count == 0 && ill->ill_ipif_dup_count == 0 && 11854 !ill->ill_logical_down && ill->ill_net_type == IRE_IF_RESOLVER) { 11855 /* 11856 * If this was the last ipif on an IPMP interface, purge any 11857 * static ARP entries associated with it. 11858 */ 11859 if (IS_IPMP(ill)) 11860 ipmp_illgrp_refresh_arpent(ill->ill_grp); 11861 11862 /* UNBIND, DETACH */ 11863 err = arp_ll_down(ill); 11864 } 11865 11866 return (err); 11867 } 11868 11869 /* 11870 * Get the resolver set up for a new IP address. (Always called as writer.) 11871 * Called both for IPv4 and IPv6 interfaces, though it only does some 11872 * basic DAD related initialization for IPv6. Honors ILLF_NOARP. 11873 * 11874 * The enumerated value res_act tunes the behavior: 11875 * * Res_act_initial: set up all the resolver structures for a new 11876 * IP address. 11877 * * Res_act_defend: tell ARP that it needs to send a single gratuitous 11878 * ARP message in defense of the address. 11879 * * Res_act_rebind: tell ARP to change the hardware address for an IP 11880 * address (and issue gratuitous ARPs). Used by ipmp_ill_bind_ipif(). 11881 * 11882 * Returns zero on success, or an errno upon failure. 11883 */ 11884 int 11885 ipif_resolver_up(ipif_t *ipif, enum ip_resolver_action res_act) 11886 { 11887 ill_t *ill = ipif->ipif_ill; 11888 int err; 11889 boolean_t was_dup; 11890 11891 ip1dbg(("ipif_resolver_up(%s:%u) flags 0x%x\n", 11892 ill->ill_name, ipif->ipif_id, (uint_t)ipif->ipif_flags)); 11893 ASSERT(IAM_WRITER_IPIF(ipif)); 11894 11895 was_dup = B_FALSE; 11896 if (res_act == Res_act_initial) { 11897 ipif->ipif_addr_ready = 0; 11898 /* 11899 * We're bringing an interface up here. There's no way that we 11900 * should need to shut down ARP now. 11901 */ 11902 mutex_enter(&ill->ill_lock); 11903 if (ipif->ipif_flags & IPIF_DUPLICATE) { 11904 ipif->ipif_flags &= ~IPIF_DUPLICATE; 11905 ill->ill_ipif_dup_count--; 11906 was_dup = B_TRUE; 11907 } 11908 mutex_exit(&ill->ill_lock); 11909 } 11910 if (ipif->ipif_recovery_id != 0) 11911 (void) untimeout(ipif->ipif_recovery_id); 11912 ipif->ipif_recovery_id = 0; 11913 if (ill->ill_net_type != IRE_IF_RESOLVER) { 11914 ipif->ipif_addr_ready = 1; 11915 return (0); 11916 } 11917 /* NDP will set the ipif_addr_ready flag when it's ready */ 11918 if (ill->ill_isv6) 11919 return (0); 11920 11921 err = ipif_arp_up(ipif, res_act, was_dup); 11922 return (err); 11923 } 11924 11925 /* 11926 * This routine restarts IPv4/IPv6 duplicate address detection (DAD) 11927 * when a link has just gone back up. 11928 */ 11929 static void 11930 ipif_nce_start_dad(ipif_t *ipif) 11931 { 11932 ncec_t *ncec; 11933 ill_t *ill = ipif->ipif_ill; 11934 boolean_t isv6 = ill->ill_isv6; 11935 11936 if (isv6) { 11937 ncec = ncec_lookup_illgrp_v6(ipif->ipif_ill, 11938 &ipif->ipif_v6lcl_addr); 11939 } else { 11940 ipaddr_t v4addr; 11941 11942 if (ill->ill_net_type != IRE_IF_RESOLVER || 11943 (ipif->ipif_flags & IPIF_UNNUMBERED) || 11944 ipif->ipif_lcl_addr == INADDR_ANY) { 11945 /* 11946 * If we can't contact ARP for some reason, 11947 * that's not really a problem. Just send 11948 * out the routing socket notification that 11949 * DAD completion would have done, and continue. 11950 */ 11951 ipif_mask_reply(ipif); 11952 ipif_up_notify(ipif); 11953 ipif->ipif_addr_ready = 1; 11954 return; 11955 } 11956 11957 IN6_V4MAPPED_TO_IPADDR(&ipif->ipif_v6lcl_addr, v4addr); 11958 ncec = ncec_lookup_illgrp_v4(ipif->ipif_ill, &v4addr); 11959 } 11960 11961 if (ncec == NULL) { 11962 ip1dbg(("couldn't find ncec for ipif %p leaving !ready\n", 11963 (void *)ipif)); 11964 return; 11965 } 11966 if (!nce_restart_dad(ncec)) { 11967 /* 11968 * If we can't restart DAD for some reason, that's not really a 11969 * problem. Just send out the routing socket notification that 11970 * DAD completion would have done, and continue. 11971 */ 11972 ipif_up_notify(ipif); 11973 ipif->ipif_addr_ready = 1; 11974 } 11975 ncec_refrele(ncec); 11976 } 11977 11978 /* 11979 * Restart duplicate address detection on all interfaces on the given ill. 11980 * 11981 * This is called when an interface transitions from down to up 11982 * (DL_NOTE_LINK_UP) or up to down (DL_NOTE_LINK_DOWN). 11983 * 11984 * Note that since the underlying physical link has transitioned, we must cause 11985 * at least one routing socket message to be sent here, either via DAD 11986 * completion or just by default on the first ipif. (If we don't do this, then 11987 * in.mpathd will see long delays when doing link-based failure recovery.) 11988 */ 11989 void 11990 ill_restart_dad(ill_t *ill, boolean_t went_up) 11991 { 11992 ipif_t *ipif; 11993 11994 if (ill == NULL) 11995 return; 11996 11997 /* 11998 * If layer two doesn't support duplicate address detection, then just 11999 * send the routing socket message now and be done with it. 12000 */ 12001 if (!ill->ill_isv6 && arp_no_defense) { 12002 ip_rts_ifmsg(ill->ill_ipif, RTSQ_DEFAULT); 12003 return; 12004 } 12005 12006 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 12007 if (went_up) { 12008 12009 if (ipif->ipif_flags & IPIF_UP) { 12010 ipif_nce_start_dad(ipif); 12011 } else if (ipif->ipif_flags & IPIF_DUPLICATE) { 12012 /* 12013 * kick off the bring-up process now. 12014 */ 12015 ipif_do_recovery(ipif); 12016 } else { 12017 /* 12018 * Unfortunately, the first ipif is "special" 12019 * and represents the underlying ill in the 12020 * routing socket messages. Thus, when this 12021 * one ipif is down, we must still notify so 12022 * that the user knows the IFF_RUNNING status 12023 * change. (If the first ipif is up, then 12024 * we'll handle eventual routing socket 12025 * notification via DAD completion.) 12026 */ 12027 if (ipif == ill->ill_ipif) { 12028 ip_rts_ifmsg(ill->ill_ipif, 12029 RTSQ_DEFAULT); 12030 } 12031 } 12032 } else { 12033 /* 12034 * After link down, we'll need to send a new routing 12035 * message when the link comes back, so clear 12036 * ipif_addr_ready. 12037 */ 12038 ipif->ipif_addr_ready = 0; 12039 } 12040 } 12041 12042 /* 12043 * If we've torn down links, then notify the user right away. 12044 */ 12045 if (!went_up) 12046 ip_rts_ifmsg(ill->ill_ipif, RTSQ_DEFAULT); 12047 } 12048 12049 static void 12050 ipsq_delete(ipsq_t *ipsq) 12051 { 12052 ipxop_t *ipx = ipsq->ipsq_xop; 12053 12054 ipsq->ipsq_ipst = NULL; 12055 ASSERT(ipsq->ipsq_phyint == NULL); 12056 ASSERT(ipsq->ipsq_xop != NULL); 12057 ASSERT(ipsq->ipsq_xopq_mphead == NULL && ipx->ipx_mphead == NULL); 12058 ASSERT(ipx->ipx_pending_mp == NULL); 12059 kmem_free(ipsq, sizeof (ipsq_t)); 12060 } 12061 12062 static int 12063 ill_up_ipifs_on_ill(ill_t *ill, queue_t *q, mblk_t *mp) 12064 { 12065 int err = 0; 12066 ipif_t *ipif; 12067 12068 if (ill == NULL) 12069 return (0); 12070 12071 ASSERT(IAM_WRITER_ILL(ill)); 12072 ill->ill_up_ipifs = B_TRUE; 12073 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 12074 if (ipif->ipif_was_up) { 12075 if (!(ipif->ipif_flags & IPIF_UP)) 12076 err = ipif_up(ipif, q, mp); 12077 ipif->ipif_was_up = B_FALSE; 12078 if (err != 0) { 12079 ASSERT(err == EINPROGRESS); 12080 return (err); 12081 } 12082 } 12083 } 12084 ill->ill_up_ipifs = B_FALSE; 12085 return (0); 12086 } 12087 12088 /* 12089 * This function is called to bring up all the ipifs that were up before 12090 * bringing the ill down via ill_down_ipifs(). 12091 */ 12092 int 12093 ill_up_ipifs(ill_t *ill, queue_t *q, mblk_t *mp) 12094 { 12095 int err; 12096 12097 ASSERT(IAM_WRITER_ILL(ill)); 12098 12099 if (ill->ill_replumbing) { 12100 ill->ill_replumbing = 0; 12101 /* 12102 * Send down REPLUMB_DONE notification followed by the 12103 * BIND_REQ on the arp stream. 12104 */ 12105 if (!ill->ill_isv6) 12106 arp_send_replumb_conf(ill); 12107 } 12108 err = ill_up_ipifs_on_ill(ill->ill_phyint->phyint_illv4, q, mp); 12109 if (err != 0) 12110 return (err); 12111 12112 return (ill_up_ipifs_on_ill(ill->ill_phyint->phyint_illv6, q, mp)); 12113 } 12114 12115 /* 12116 * Bring down any IPIF_UP ipifs on ill. If "logical" is B_TRUE, we bring 12117 * down the ipifs without sending DL_UNBIND_REQ to the driver. 12118 */ 12119 static void 12120 ill_down_ipifs(ill_t *ill, boolean_t logical) 12121 { 12122 ipif_t *ipif; 12123 12124 ASSERT(IAM_WRITER_ILL(ill)); 12125 12126 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 12127 /* 12128 * We go through the ipif_down logic even if the ipif 12129 * is already down, since routes can be added based 12130 * on down ipifs. Going through ipif_down once again 12131 * will delete any IREs created based on these routes. 12132 */ 12133 if (ipif->ipif_flags & IPIF_UP) 12134 ipif->ipif_was_up = B_TRUE; 12135 12136 if (logical) { 12137 (void) ipif_logical_down(ipif, NULL, NULL); 12138 ipif_non_duplicate(ipif); 12139 (void) ipif_down_tail(ipif); 12140 } else { 12141 (void) ipif_down(ipif, NULL, NULL); 12142 } 12143 } 12144 } 12145 12146 /* 12147 * Redo source address selection. This makes IXAF_VERIFY_SOURCE take 12148 * a look again at valid source addresses. 12149 * This should be called each time after the set of source addresses has been 12150 * changed. 12151 */ 12152 void 12153 ip_update_source_selection(ip_stack_t *ipst) 12154 { 12155 /* We skip past SRC_GENERATION_VERIFY */ 12156 if (atomic_add_32_nv(&ipst->ips_src_generation, 1) == 12157 SRC_GENERATION_VERIFY) 12158 atomic_add_32(&ipst->ips_src_generation, 1); 12159 } 12160 12161 /* 12162 * Finish the group join started in ip_sioctl_groupname(). 12163 */ 12164 /* ARGSUSED */ 12165 static void 12166 ip_join_illgrps(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy) 12167 { 12168 ill_t *ill = q->q_ptr; 12169 phyint_t *phyi = ill->ill_phyint; 12170 ipmp_grp_t *grp = phyi->phyint_grp; 12171 ip_stack_t *ipst = ill->ill_ipst; 12172 12173 /* IS_UNDER_IPMP() won't work until ipmp_ill_join_illgrp() is called */ 12174 ASSERT(!IS_IPMP(ill) && grp != NULL); 12175 ASSERT(IAM_WRITER_IPSQ(ipsq)); 12176 12177 if (phyi->phyint_illv4 != NULL) { 12178 rw_enter(&ipst->ips_ipmp_lock, RW_WRITER); 12179 VERIFY(grp->gr_pendv4-- > 0); 12180 rw_exit(&ipst->ips_ipmp_lock); 12181 ipmp_ill_join_illgrp(phyi->phyint_illv4, grp->gr_v4); 12182 } 12183 if (phyi->phyint_illv6 != NULL) { 12184 rw_enter(&ipst->ips_ipmp_lock, RW_WRITER); 12185 VERIFY(grp->gr_pendv6-- > 0); 12186 rw_exit(&ipst->ips_ipmp_lock); 12187 ipmp_ill_join_illgrp(phyi->phyint_illv6, grp->gr_v6); 12188 } 12189 freemsg(mp); 12190 } 12191 12192 /* 12193 * Process an SIOCSLIFGROUPNAME request. 12194 */ 12195 /* ARGSUSED */ 12196 int 12197 ip_sioctl_groupname(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12198 ip_ioctl_cmd_t *ipip, void *ifreq) 12199 { 12200 struct lifreq *lifr = ifreq; 12201 ill_t *ill = ipif->ipif_ill; 12202 ip_stack_t *ipst = ill->ill_ipst; 12203 phyint_t *phyi = ill->ill_phyint; 12204 ipmp_grp_t *grp = phyi->phyint_grp; 12205 mblk_t *ipsq_mp; 12206 int err = 0; 12207 12208 /* 12209 * Note that phyint_grp can only change here, where we're exclusive. 12210 */ 12211 ASSERT(IAM_WRITER_ILL(ill)); 12212 12213 if (ipif->ipif_id != 0 || ill->ill_usesrc_grp_next != NULL || 12214 (phyi->phyint_flags & PHYI_VIRTUAL)) 12215 return (EINVAL); 12216 12217 lifr->lifr_groupname[LIFGRNAMSIZ - 1] = '\0'; 12218 12219 rw_enter(&ipst->ips_ipmp_lock, RW_WRITER); 12220 12221 /* 12222 * If the name hasn't changed, there's nothing to do. 12223 */ 12224 if (grp != NULL && strcmp(grp->gr_name, lifr->lifr_groupname) == 0) 12225 goto unlock; 12226 12227 /* 12228 * Handle requests to rename an IPMP meta-interface. 12229 * 12230 * Note that creation of the IPMP meta-interface is handled in 12231 * userland through the standard plumbing sequence. As part of the 12232 * plumbing the IPMP meta-interface, its initial groupname is set to 12233 * the name of the interface (see ipif_set_values_tail()). 12234 */ 12235 if (IS_IPMP(ill)) { 12236 err = ipmp_grp_rename(grp, lifr->lifr_groupname); 12237 goto unlock; 12238 } 12239 12240 /* 12241 * Handle requests to add or remove an IP interface from a group. 12242 */ 12243 if (lifr->lifr_groupname[0] != '\0') { /* add */ 12244 /* 12245 * Moves are handled by first removing the interface from 12246 * its existing group, and then adding it to another group. 12247 * So, fail if it's already in a group. 12248 */ 12249 if (IS_UNDER_IPMP(ill)) { 12250 err = EALREADY; 12251 goto unlock; 12252 } 12253 12254 grp = ipmp_grp_lookup(lifr->lifr_groupname, ipst); 12255 if (grp == NULL) { 12256 err = ENOENT; 12257 goto unlock; 12258 } 12259 12260 /* 12261 * Check if the phyint and its ills are suitable for 12262 * inclusion into the group. 12263 */ 12264 if ((err = ipmp_grp_vet_phyint(grp, phyi)) != 0) 12265 goto unlock; 12266 12267 /* 12268 * Checks pass; join the group, and enqueue the remaining 12269 * illgrp joins for when we've become part of the group xop 12270 * and are exclusive across its IPSQs. Since qwriter_ip() 12271 * requires an mblk_t to scribble on, and since `mp' will be 12272 * freed as part of completing the ioctl, allocate another. 12273 */ 12274 if ((ipsq_mp = allocb(0, BPRI_MED)) == NULL) { 12275 err = ENOMEM; 12276 goto unlock; 12277 } 12278 12279 /* 12280 * Before we drop ipmp_lock, bump gr_pend* to ensure that the 12281 * IPMP meta-interface ills needed by `phyi' cannot go away 12282 * before ip_join_illgrps() is called back. See the comments 12283 * in ip_sioctl_plink_ipmp() for more. 12284 */ 12285 if (phyi->phyint_illv4 != NULL) 12286 grp->gr_pendv4++; 12287 if (phyi->phyint_illv6 != NULL) 12288 grp->gr_pendv6++; 12289 12290 rw_exit(&ipst->ips_ipmp_lock); 12291 12292 ipmp_phyint_join_grp(phyi, grp); 12293 ill_refhold(ill); 12294 qwriter_ip(ill, ill->ill_rq, ipsq_mp, ip_join_illgrps, 12295 SWITCH_OP, B_FALSE); 12296 return (0); 12297 } else { 12298 /* 12299 * Request to remove the interface from a group. If the 12300 * interface is not in a group, this trivially succeeds. 12301 */ 12302 rw_exit(&ipst->ips_ipmp_lock); 12303 if (IS_UNDER_IPMP(ill)) 12304 ipmp_phyint_leave_grp(phyi); 12305 return (0); 12306 } 12307 unlock: 12308 rw_exit(&ipst->ips_ipmp_lock); 12309 return (err); 12310 } 12311 12312 /* 12313 * Process an SIOCGLIFBINDING request. 12314 */ 12315 /* ARGSUSED */ 12316 int 12317 ip_sioctl_get_binding(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12318 ip_ioctl_cmd_t *ipip, void *ifreq) 12319 { 12320 ill_t *ill; 12321 struct lifreq *lifr = ifreq; 12322 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; 12323 12324 if (!IS_IPMP(ipif->ipif_ill)) 12325 return (EINVAL); 12326 12327 rw_enter(&ipst->ips_ipmp_lock, RW_READER); 12328 if ((ill = ipif->ipif_bound_ill) == NULL) 12329 lifr->lifr_binding[0] = '\0'; 12330 else 12331 (void) strlcpy(lifr->lifr_binding, ill->ill_name, LIFNAMSIZ); 12332 rw_exit(&ipst->ips_ipmp_lock); 12333 return (0); 12334 } 12335 12336 /* 12337 * Process an SIOCGLIFGROUPNAME request. 12338 */ 12339 /* ARGSUSED */ 12340 int 12341 ip_sioctl_get_groupname(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12342 ip_ioctl_cmd_t *ipip, void *ifreq) 12343 { 12344 ipmp_grp_t *grp; 12345 struct lifreq *lifr = ifreq; 12346 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; 12347 12348 rw_enter(&ipst->ips_ipmp_lock, RW_READER); 12349 if ((grp = ipif->ipif_ill->ill_phyint->phyint_grp) == NULL) 12350 lifr->lifr_groupname[0] = '\0'; 12351 else 12352 (void) strlcpy(lifr->lifr_groupname, grp->gr_name, LIFGRNAMSIZ); 12353 rw_exit(&ipst->ips_ipmp_lock); 12354 return (0); 12355 } 12356 12357 /* 12358 * Process an SIOCGLIFGROUPINFO request. 12359 */ 12360 /* ARGSUSED */ 12361 int 12362 ip_sioctl_groupinfo(ipif_t *dummy_ipif, sin_t *sin, queue_t *q, mblk_t *mp, 12363 ip_ioctl_cmd_t *ipip, void *dummy) 12364 { 12365 ipmp_grp_t *grp; 12366 lifgroupinfo_t *lifgr; 12367 ip_stack_t *ipst = CONNQ_TO_IPST(q); 12368 12369 /* ip_wput_nondata() verified mp->b_cont->b_cont */ 12370 lifgr = (lifgroupinfo_t *)mp->b_cont->b_cont->b_rptr; 12371 lifgr->gi_grname[LIFGRNAMSIZ - 1] = '\0'; 12372 12373 rw_enter(&ipst->ips_ipmp_lock, RW_READER); 12374 if ((grp = ipmp_grp_lookup(lifgr->gi_grname, ipst)) == NULL) { 12375 rw_exit(&ipst->ips_ipmp_lock); 12376 return (ENOENT); 12377 } 12378 ipmp_grp_info(grp, lifgr); 12379 rw_exit(&ipst->ips_ipmp_lock); 12380 return (0); 12381 } 12382 12383 static void 12384 ill_dl_down(ill_t *ill) 12385 { 12386 DTRACE_PROBE2(ill__downup, char *, "ill_dl_down", ill_t *, ill); 12387 12388 /* 12389 * The ill is down; unbind but stay attached since we're still 12390 * associated with a PPA. If we have negotiated DLPI capabilites 12391 * with the data link service provider (IDS_OK) then reset them. 12392 * The interval between unbinding and rebinding is potentially 12393 * unbounded hence we cannot assume things will be the same. 12394 * The DLPI capabilities will be probed again when the data link 12395 * is brought up. 12396 */ 12397 mblk_t *mp = ill->ill_unbind_mp; 12398 12399 ip1dbg(("ill_dl_down(%s)\n", ill->ill_name)); 12400 12401 if (!ill->ill_replumbing) { 12402 /* Free all ilms for this ill */ 12403 update_conn_ill(ill, ill->ill_ipst); 12404 } else { 12405 ill_leave_multicast(ill); 12406 } 12407 12408 ill->ill_unbind_mp = NULL; 12409 if (mp != NULL) { 12410 ip1dbg(("ill_dl_down: %s (%u) for %s\n", 12411 dl_primstr(*(int *)mp->b_rptr), *(int *)mp->b_rptr, 12412 ill->ill_name)); 12413 mutex_enter(&ill->ill_lock); 12414 ill->ill_state_flags |= ILL_DL_UNBIND_IN_PROGRESS; 12415 mutex_exit(&ill->ill_lock); 12416 /* 12417 * ip_rput does not pass up normal (M_PROTO) DLPI messages 12418 * after ILL_CONDEMNED is set. So in the unplumb case, we call 12419 * ill_capability_dld_disable disable rightaway. If this is not 12420 * an unplumb operation then the disable happens on receipt of 12421 * the capab ack via ip_rput_dlpi_writer -> 12422 * ill_capability_ack_thr. In both cases the order of 12423 * the operations seen by DLD is capability disable followed 12424 * by DL_UNBIND. Also the DLD capability disable needs a 12425 * cv_wait'able context. 12426 */ 12427 if (ill->ill_state_flags & ILL_CONDEMNED) 12428 ill_capability_dld_disable(ill); 12429 ill_capability_reset(ill, B_FALSE); 12430 ill_dlpi_send(ill, mp); 12431 } 12432 mutex_enter(&ill->ill_lock); 12433 ill->ill_dl_up = 0; 12434 ill_nic_event_dispatch(ill, 0, NE_DOWN, NULL, 0); 12435 mutex_exit(&ill->ill_lock); 12436 } 12437 12438 void 12439 ill_dlpi_dispatch(ill_t *ill, mblk_t *mp) 12440 { 12441 union DL_primitives *dlp; 12442 t_uscalar_t prim; 12443 boolean_t waitack = B_FALSE; 12444 12445 ASSERT(DB_TYPE(mp) == M_PROTO || DB_TYPE(mp) == M_PCPROTO); 12446 12447 dlp = (union DL_primitives *)mp->b_rptr; 12448 prim = dlp->dl_primitive; 12449 12450 ip1dbg(("ill_dlpi_dispatch: sending %s (%u) to %s\n", 12451 dl_primstr(prim), prim, ill->ill_name)); 12452 12453 switch (prim) { 12454 case DL_PHYS_ADDR_REQ: 12455 { 12456 dl_phys_addr_req_t *dlpap = (dl_phys_addr_req_t *)mp->b_rptr; 12457 ill->ill_phys_addr_pend = dlpap->dl_addr_type; 12458 break; 12459 } 12460 case DL_BIND_REQ: 12461 mutex_enter(&ill->ill_lock); 12462 ill->ill_state_flags &= ~ILL_DL_UNBIND_IN_PROGRESS; 12463 mutex_exit(&ill->ill_lock); 12464 break; 12465 } 12466 12467 /* 12468 * Except for the ACKs for the M_PCPROTO messages, all other ACKs 12469 * are dropped by ip_rput() if ILL_CONDEMNED is set. Therefore 12470 * we only wait for the ACK of the DL_UNBIND_REQ. 12471 */ 12472 mutex_enter(&ill->ill_lock); 12473 if (!(ill->ill_state_flags & ILL_CONDEMNED) || 12474 (prim == DL_UNBIND_REQ)) { 12475 ill->ill_dlpi_pending = prim; 12476 waitack = B_TRUE; 12477 } 12478 12479 mutex_exit(&ill->ill_lock); 12480 DTRACE_PROBE3(ill__dlpi, char *, "ill_dlpi_dispatch", 12481 char *, dl_primstr(prim), ill_t *, ill); 12482 putnext(ill->ill_wq, mp); 12483 12484 /* 12485 * There is no ack for DL_NOTIFY_CONF messages 12486 */ 12487 if (waitack && prim == DL_NOTIFY_CONF) 12488 ill_dlpi_done(ill, prim); 12489 } 12490 12491 /* 12492 * Helper function for ill_dlpi_send(). 12493 */ 12494 /* ARGSUSED */ 12495 static void 12496 ill_dlpi_send_writer(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *arg) 12497 { 12498 ill_dlpi_send(q->q_ptr, mp); 12499 } 12500 12501 /* 12502 * Send a DLPI control message to the driver but make sure there 12503 * is only one outstanding message. Uses ill_dlpi_pending to tell 12504 * when it must queue. ip_rput_dlpi_writer calls ill_dlpi_done() 12505 * when an ACK or a NAK is received to process the next queued message. 12506 */ 12507 void 12508 ill_dlpi_send(ill_t *ill, mblk_t *mp) 12509 { 12510 mblk_t **mpp; 12511 12512 ASSERT(DB_TYPE(mp) == M_PROTO || DB_TYPE(mp) == M_PCPROTO); 12513 12514 /* 12515 * To ensure that any DLPI requests for current exclusive operation 12516 * are always completely sent before any DLPI messages for other 12517 * operations, require writer access before enqueuing. 12518 */ 12519 if (!IAM_WRITER_ILL(ill)) { 12520 ill_refhold(ill); 12521 /* qwriter_ip() does the ill_refrele() */ 12522 qwriter_ip(ill, ill->ill_wq, mp, ill_dlpi_send_writer, 12523 NEW_OP, B_TRUE); 12524 return; 12525 } 12526 12527 mutex_enter(&ill->ill_lock); 12528 if (ill->ill_dlpi_pending != DL_PRIM_INVAL) { 12529 /* Must queue message. Tail insertion */ 12530 mpp = &ill->ill_dlpi_deferred; 12531 while (*mpp != NULL) 12532 mpp = &((*mpp)->b_next); 12533 12534 ip1dbg(("ill_dlpi_send: deferring request for %s " 12535 "while %s pending\n", ill->ill_name, 12536 dl_primstr(ill->ill_dlpi_pending))); 12537 12538 *mpp = mp; 12539 mutex_exit(&ill->ill_lock); 12540 return; 12541 } 12542 mutex_exit(&ill->ill_lock); 12543 ill_dlpi_dispatch(ill, mp); 12544 } 12545 12546 void 12547 ill_capability_send(ill_t *ill, mblk_t *mp) 12548 { 12549 ill->ill_capab_pending_cnt++; 12550 ill_dlpi_send(ill, mp); 12551 } 12552 12553 void 12554 ill_capability_done(ill_t *ill) 12555 { 12556 ASSERT(ill->ill_capab_pending_cnt != 0); 12557 12558 ill_dlpi_done(ill, DL_CAPABILITY_REQ); 12559 12560 ill->ill_capab_pending_cnt--; 12561 if (ill->ill_capab_pending_cnt == 0 && 12562 ill->ill_dlpi_capab_state == IDCS_OK) 12563 ill_capability_reset_alloc(ill); 12564 } 12565 12566 /* 12567 * Send all deferred DLPI messages without waiting for their ACKs. 12568 */ 12569 void 12570 ill_dlpi_send_deferred(ill_t *ill) 12571 { 12572 mblk_t *mp, *nextmp; 12573 12574 /* 12575 * Clear ill_dlpi_pending so that the message is not queued in 12576 * ill_dlpi_send(). 12577 */ 12578 mutex_enter(&ill->ill_lock); 12579 ill->ill_dlpi_pending = DL_PRIM_INVAL; 12580 mp = ill->ill_dlpi_deferred; 12581 ill->ill_dlpi_deferred = NULL; 12582 mutex_exit(&ill->ill_lock); 12583 12584 for (; mp != NULL; mp = nextmp) { 12585 nextmp = mp->b_next; 12586 mp->b_next = NULL; 12587 ill_dlpi_send(ill, mp); 12588 } 12589 } 12590 12591 /* 12592 * Clear all the deferred DLPI messages. Called on receiving an M_ERROR 12593 * or M_HANGUP 12594 */ 12595 static void 12596 ill_dlpi_clear_deferred(ill_t *ill) 12597 { 12598 mblk_t *mp, *nextmp; 12599 12600 mutex_enter(&ill->ill_lock); 12601 ill->ill_dlpi_pending = DL_PRIM_INVAL; 12602 mp = ill->ill_dlpi_deferred; 12603 ill->ill_dlpi_deferred = NULL; 12604 mutex_exit(&ill->ill_lock); 12605 12606 for (; mp != NULL; mp = nextmp) { 12607 nextmp = mp->b_next; 12608 inet_freemsg(mp); 12609 } 12610 } 12611 12612 /* 12613 * Check if the DLPI primitive `prim' is pending; print a warning if not. 12614 */ 12615 boolean_t 12616 ill_dlpi_pending(ill_t *ill, t_uscalar_t prim) 12617 { 12618 t_uscalar_t pending; 12619 12620 mutex_enter(&ill->ill_lock); 12621 if (ill->ill_dlpi_pending == prim) { 12622 mutex_exit(&ill->ill_lock); 12623 return (B_TRUE); 12624 } 12625 12626 /* 12627 * During teardown, ill_dlpi_dispatch() will send DLPI requests 12628 * without waiting, so don't print any warnings in that case. 12629 */ 12630 if (ill->ill_state_flags & ILL_CONDEMNED) { 12631 mutex_exit(&ill->ill_lock); 12632 return (B_FALSE); 12633 } 12634 pending = ill->ill_dlpi_pending; 12635 mutex_exit(&ill->ill_lock); 12636 12637 if (pending == DL_PRIM_INVAL) { 12638 (void) mi_strlog(ill->ill_rq, 1, SL_CONSOLE|SL_ERROR|SL_TRACE, 12639 "received unsolicited ack for %s on %s\n", 12640 dl_primstr(prim), ill->ill_name); 12641 } else { 12642 (void) mi_strlog(ill->ill_rq, 1, SL_CONSOLE|SL_ERROR|SL_TRACE, 12643 "received unexpected ack for %s on %s (expecting %s)\n", 12644 dl_primstr(prim), ill->ill_name, dl_primstr(pending)); 12645 } 12646 return (B_FALSE); 12647 } 12648 12649 /* 12650 * Complete the current DLPI operation associated with `prim' on `ill' and 12651 * start the next queued DLPI operation (if any). If there are no queued DLPI 12652 * operations and the ill's current exclusive IPSQ operation has finished 12653 * (i.e., ipsq_current_finish() was called), then clear ipsq_current_ipif to 12654 * allow the next exclusive IPSQ operation to begin upon ipsq_exit(). See 12655 * the comments above ipsq_current_finish() for details. 12656 */ 12657 void 12658 ill_dlpi_done(ill_t *ill, t_uscalar_t prim) 12659 { 12660 mblk_t *mp; 12661 ipsq_t *ipsq = ill->ill_phyint->phyint_ipsq; 12662 ipxop_t *ipx = ipsq->ipsq_xop; 12663 12664 ASSERT(IAM_WRITER_IPSQ(ipsq)); 12665 mutex_enter(&ill->ill_lock); 12666 12667 ASSERT(prim != DL_PRIM_INVAL); 12668 ASSERT(ill->ill_dlpi_pending == prim); 12669 12670 ip1dbg(("ill_dlpi_done: %s has completed %s (%u)\n", ill->ill_name, 12671 dl_primstr(ill->ill_dlpi_pending), ill->ill_dlpi_pending)); 12672 12673 if ((mp = ill->ill_dlpi_deferred) == NULL) { 12674 ill->ill_dlpi_pending = DL_PRIM_INVAL; 12675 if (ipx->ipx_current_done) { 12676 mutex_enter(&ipx->ipx_lock); 12677 ipx->ipx_current_ipif = NULL; 12678 mutex_exit(&ipx->ipx_lock); 12679 } 12680 cv_signal(&ill->ill_cv); 12681 mutex_exit(&ill->ill_lock); 12682 return; 12683 } 12684 12685 ill->ill_dlpi_deferred = mp->b_next; 12686 mp->b_next = NULL; 12687 mutex_exit(&ill->ill_lock); 12688 12689 ill_dlpi_dispatch(ill, mp); 12690 } 12691 12692 /* 12693 * Queue a (multicast) DLPI control message to be sent to the driver by 12694 * later calling ill_dlpi_send_queued. 12695 * We queue them while holding a lock (ill_mcast_lock) to ensure that they 12696 * are sent in order i.e., prevent a DL_DISABMULTI_REQ and DL_ENABMULTI_REQ 12697 * for the same group to race. 12698 * We send DLPI control messages in order using ill_lock. 12699 * For IPMP we should be called on the cast_ill. 12700 */ 12701 void 12702 ill_dlpi_queue(ill_t *ill, mblk_t *mp) 12703 { 12704 mblk_t **mpp; 12705 12706 ASSERT(DB_TYPE(mp) == M_PROTO || DB_TYPE(mp) == M_PCPROTO); 12707 12708 mutex_enter(&ill->ill_lock); 12709 /* Must queue message. Tail insertion */ 12710 mpp = &ill->ill_dlpi_deferred; 12711 while (*mpp != NULL) 12712 mpp = &((*mpp)->b_next); 12713 12714 *mpp = mp; 12715 mutex_exit(&ill->ill_lock); 12716 } 12717 12718 /* 12719 * Send the messages that were queued. Make sure there is only 12720 * one outstanding message. ip_rput_dlpi_writer calls ill_dlpi_done() 12721 * when an ACK or a NAK is received to process the next queued message. 12722 * For IPMP we are called on the upper ill, but when send what is queued 12723 * on the cast_ill. 12724 */ 12725 void 12726 ill_dlpi_send_queued(ill_t *ill) 12727 { 12728 mblk_t *mp; 12729 union DL_primitives *dlp; 12730 t_uscalar_t prim; 12731 ill_t *release_ill = NULL; 12732 12733 if (IS_IPMP(ill)) { 12734 /* On the upper IPMP ill. */ 12735 release_ill = ipmp_illgrp_hold_cast_ill(ill->ill_grp); 12736 if (release_ill == NULL) { 12737 /* Avoid ever sending anything down to the ipmpstub */ 12738 return; 12739 } 12740 ill = release_ill; 12741 } 12742 mutex_enter(&ill->ill_lock); 12743 while ((mp = ill->ill_dlpi_deferred) != NULL) { 12744 if (ill->ill_dlpi_pending != DL_PRIM_INVAL) { 12745 /* Can't send. Somebody else will send it */ 12746 mutex_exit(&ill->ill_lock); 12747 goto done; 12748 } 12749 ill->ill_dlpi_deferred = mp->b_next; 12750 mp->b_next = NULL; 12751 if (!ill->ill_dl_up) { 12752 /* 12753 * Nobody there. All multicast addresses will be 12754 * re-joined when we get the DL_BIND_ACK bringing the 12755 * interface up. 12756 */ 12757 freemsg(mp); 12758 continue; 12759 } 12760 dlp = (union DL_primitives *)mp->b_rptr; 12761 prim = dlp->dl_primitive; 12762 12763 if (!(ill->ill_state_flags & ILL_CONDEMNED) || 12764 (prim == DL_UNBIND_REQ)) { 12765 ill->ill_dlpi_pending = prim; 12766 } 12767 mutex_exit(&ill->ill_lock); 12768 12769 DTRACE_PROBE3(ill__dlpi, char *, "ill_dlpi_send_queued", 12770 char *, dl_primstr(prim), ill_t *, ill); 12771 putnext(ill->ill_wq, mp); 12772 mutex_enter(&ill->ill_lock); 12773 } 12774 mutex_exit(&ill->ill_lock); 12775 done: 12776 if (release_ill != NULL) 12777 ill_refrele(release_ill); 12778 } 12779 12780 /* 12781 * Queue an IP (IGMP/MLD) message to be sent by IP from 12782 * ill_mcast_send_queued 12783 * We queue them while holding a lock (ill_mcast_lock) to ensure that they 12784 * are sent in order i.e., prevent a IGMP leave and IGMP join for the same 12785 * group to race. 12786 * We send them in order using ill_lock. 12787 * For IPMP we are called on the upper ill, but we queue on the cast_ill. 12788 */ 12789 void 12790 ill_mcast_queue(ill_t *ill, mblk_t *mp) 12791 { 12792 mblk_t **mpp; 12793 ill_t *release_ill = NULL; 12794 12795 ASSERT(RW_LOCK_HELD(&ill->ill_mcast_lock)); 12796 12797 if (IS_IPMP(ill)) { 12798 /* On the upper IPMP ill. */ 12799 release_ill = ipmp_illgrp_hold_cast_ill(ill->ill_grp); 12800 if (release_ill == NULL) { 12801 /* Discard instead of queuing for the ipmp interface */ 12802 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutDiscards); 12803 ip_drop_output("ipIfStatsOutDiscards - no cast_ill", 12804 mp, ill); 12805 freemsg(mp); 12806 return; 12807 } 12808 ill = release_ill; 12809 } 12810 12811 mutex_enter(&ill->ill_lock); 12812 /* Must queue message. Tail insertion */ 12813 mpp = &ill->ill_mcast_deferred; 12814 while (*mpp != NULL) 12815 mpp = &((*mpp)->b_next); 12816 12817 *mpp = mp; 12818 mutex_exit(&ill->ill_lock); 12819 if (release_ill != NULL) 12820 ill_refrele(release_ill); 12821 } 12822 12823 /* 12824 * Send the IP packets that were queued by ill_mcast_queue. 12825 * These are IGMP/MLD packets. 12826 * 12827 * For IPMP we are called on the upper ill, but when send what is queued 12828 * on the cast_ill. 12829 * 12830 * Request loopback of the report if we are acting as a multicast 12831 * router, so that the process-level routing demon can hear it. 12832 * This will run multiple times for the same group if there are members 12833 * on the same group for multiple ipif's on the same ill. The 12834 * igmp_input/mld_input code will suppress this due to the loopback thus we 12835 * always loopback membership report. 12836 * 12837 * We also need to make sure that this does not get load balanced 12838 * by IPMP. We do this by passing an ill to ip_output_simple. 12839 */ 12840 void 12841 ill_mcast_send_queued(ill_t *ill) 12842 { 12843 mblk_t *mp; 12844 ip_xmit_attr_t ixas; 12845 ill_t *release_ill = NULL; 12846 12847 if (IS_IPMP(ill)) { 12848 /* On the upper IPMP ill. */ 12849 release_ill = ipmp_illgrp_hold_cast_ill(ill->ill_grp); 12850 if (release_ill == NULL) { 12851 /* 12852 * We should have no messages on the ipmp interface 12853 * but no point in trying to send them. 12854 */ 12855 return; 12856 } 12857 ill = release_ill; 12858 } 12859 bzero(&ixas, sizeof (ixas)); 12860 ixas.ixa_zoneid = ALL_ZONES; 12861 ixas.ixa_cred = kcred; 12862 ixas.ixa_cpid = NOPID; 12863 ixas.ixa_tsl = NULL; 12864 /* 12865 * Here we set ixa_ifindex. If IPMP it will be the lower ill which 12866 * makes ip_select_route pick the IRE_MULTICAST for the cast_ill. 12867 * That is necessary to handle IGMP/MLD snooping switches. 12868 */ 12869 ixas.ixa_ifindex = ill->ill_phyint->phyint_ifindex; 12870 ixas.ixa_ipst = ill->ill_ipst; 12871 12872 mutex_enter(&ill->ill_lock); 12873 while ((mp = ill->ill_mcast_deferred) != NULL) { 12874 ill->ill_mcast_deferred = mp->b_next; 12875 mp->b_next = NULL; 12876 if (!ill->ill_dl_up) { 12877 /* 12878 * Nobody there. Just drop the ip packets. 12879 * IGMP/MLD will resend later, if this is a replumb. 12880 */ 12881 freemsg(mp); 12882 continue; 12883 } 12884 mutex_enter(&ill->ill_phyint->phyint_lock); 12885 if (IS_UNDER_IPMP(ill) && !ipmp_ill_is_active(ill)) { 12886 /* 12887 * When the ill is getting deactivated, we only want to 12888 * send the DLPI messages, so drop IGMP/MLD packets. 12889 * DLPI messages are handled by ill_dlpi_send_queued() 12890 */ 12891 mutex_exit(&ill->ill_phyint->phyint_lock); 12892 freemsg(mp); 12893 continue; 12894 } 12895 mutex_exit(&ill->ill_phyint->phyint_lock); 12896 mutex_exit(&ill->ill_lock); 12897 12898 /* Check whether we are sending IPv4 or IPv6. */ 12899 if (ill->ill_isv6) { 12900 ip6_t *ip6h = (ip6_t *)mp->b_rptr; 12901 12902 ixas.ixa_multicast_ttl = ip6h->ip6_hops; 12903 ixas.ixa_flags = IXAF_BASIC_SIMPLE_V6; 12904 } else { 12905 ipha_t *ipha = (ipha_t *)mp->b_rptr; 12906 12907 ixas.ixa_multicast_ttl = ipha->ipha_ttl; 12908 ixas.ixa_flags = IXAF_BASIC_SIMPLE_V4; 12909 ixas.ixa_flags &= ~IXAF_SET_ULP_CKSUM; 12910 } 12911 12912 ixas.ixa_flags |= IXAF_MULTICAST_LOOP | IXAF_SET_SOURCE; 12913 (void) ip_output_simple(mp, &ixas); 12914 ixa_cleanup(&ixas); 12915 12916 mutex_enter(&ill->ill_lock); 12917 } 12918 mutex_exit(&ill->ill_lock); 12919 12920 done: 12921 if (release_ill != NULL) 12922 ill_refrele(release_ill); 12923 } 12924 12925 /* 12926 * Take down a specific interface, but don't lose any information about it. 12927 * (Always called as writer.) 12928 * This function goes through the down sequence even if the interface is 12929 * already down. There are 2 reasons. 12930 * a. Currently we permit interface routes that depend on down interfaces 12931 * to be added. This behaviour itself is questionable. However it appears 12932 * that both Solaris and 4.3 BSD have exhibited this behaviour for a long 12933 * time. We go thru the cleanup in order to remove these routes. 12934 * b. The bringup of the interface could fail in ill_dl_up i.e. we get 12935 * DL_ERROR_ACK in response to the DL_BIND request. The interface is 12936 * down, but we need to cleanup i.e. do ill_dl_down and 12937 * ip_rput_dlpi_writer (DL_ERROR_ACK) -> ipif_down. 12938 * 12939 * IP-MT notes: 12940 * 12941 * Model of reference to interfaces. 12942 * 12943 * The following members in ipif_t track references to the ipif. 12944 * int ipif_refcnt; Active reference count 12945 * 12946 * The following members in ill_t track references to the ill. 12947 * int ill_refcnt; active refcnt 12948 * uint_t ill_ire_cnt; Number of ires referencing ill 12949 * uint_t ill_ncec_cnt; Number of ncecs referencing ill 12950 * uint_t ill_nce_cnt; Number of nces referencing ill 12951 * uint_t ill_ilm_cnt; Number of ilms referencing ill 12952 * 12953 * Reference to an ipif or ill can be obtained in any of the following ways. 12954 * 12955 * Through the lookup functions ipif_lookup_* / ill_lookup_* functions 12956 * Pointers to ipif / ill from other data structures viz ire and conn. 12957 * Implicit reference to the ipif / ill by holding a reference to the ire. 12958 * 12959 * The ipif/ill lookup functions return a reference held ipif / ill. 12960 * ipif_refcnt and ill_refcnt track the reference counts respectively. 12961 * This is a purely dynamic reference count associated with threads holding 12962 * references to the ipif / ill. Pointers from other structures do not 12963 * count towards this reference count. 12964 * 12965 * ill_ire_cnt is the number of ire's associated with the 12966 * ill. This is incremented whenever a new ire is created referencing the 12967 * ill. This is done atomically inside ire_add_v[46] where the ire is 12968 * actually added to the ire hash table. The count is decremented in 12969 * ire_inactive where the ire is destroyed. 12970 * 12971 * ill_ncec_cnt is the number of ncec's referencing the ill thru ncec_ill. 12972 * This is incremented atomically in 12973 * ndp_add_v4()/ndp_add_v6() where the nce is actually added to the 12974 * table. Similarly it is decremented in ncec_inactive() where the ncec 12975 * is destroyed. 12976 * 12977 * ill_nce_cnt is the number of nce's referencing the ill thru nce_ill. This is 12978 * incremented atomically in nce_add() where the nce is actually added to the 12979 * ill_nce. Similarly it is decremented in nce_inactive() where the nce 12980 * is destroyed. 12981 * 12982 * ill_ilm_cnt is the ilm's reference to the ill. It is incremented in 12983 * ilm_add() and decremented before the ilm is freed in ilm_delete(). 12984 * 12985 * Flow of ioctls involving interface down/up 12986 * 12987 * The following is the sequence of an attempt to set some critical flags on an 12988 * up interface. 12989 * ip_sioctl_flags 12990 * ipif_down 12991 * wait for ipif to be quiescent 12992 * ipif_down_tail 12993 * ip_sioctl_flags_tail 12994 * 12995 * All set ioctls that involve down/up sequence would have a skeleton similar 12996 * to the above. All the *tail functions are called after the refcounts have 12997 * dropped to the appropriate values. 12998 * 12999 * SIOC ioctls during the IPIF_CHANGING interval. 13000 * 13001 * Threads handling SIOC set ioctls serialize on the squeue, but this 13002 * is not done for SIOC get ioctls. Since a set ioctl can cause several 13003 * steps of internal changes to the state, some of which are visible in 13004 * ipif_flags (such as IFF_UP being cleared and later set), and we want 13005 * the set ioctl to be atomic related to the get ioctls, the SIOC get code 13006 * will wait and restart ioctls if IPIF_CHANGING is set. The mblk is then 13007 * enqueued in the ipsq and the operation is restarted by ipsq_exit() when 13008 * the current exclusive operation completes. The IPIF_CHANGING check 13009 * and enqueue is atomic using the ill_lock and ipsq_lock. The 13010 * lookup is done holding the ill_lock. Hence the ill/ipif state flags can't 13011 * change while the ill_lock is held. Before dropping the ill_lock we acquire 13012 * the ipsq_lock and call ipsq_enq. This ensures that ipsq_exit can't finish 13013 * until we release the ipsq_lock, even though the ill/ipif state flags 13014 * can change after we drop the ill_lock. 13015 */ 13016 int 13017 ipif_down(ipif_t *ipif, queue_t *q, mblk_t *mp) 13018 { 13019 ill_t *ill = ipif->ipif_ill; 13020 conn_t *connp; 13021 boolean_t success; 13022 boolean_t ipif_was_up = B_FALSE; 13023 ip_stack_t *ipst = ill->ill_ipst; 13024 13025 ASSERT(IAM_WRITER_IPIF(ipif)); 13026 13027 ip1dbg(("ipif_down(%s:%u)\n", ill->ill_name, ipif->ipif_id)); 13028 13029 DTRACE_PROBE3(ipif__downup, char *, "ipif_down", 13030 ill_t *, ill, ipif_t *, ipif); 13031 13032 if (ipif->ipif_flags & IPIF_UP) { 13033 mutex_enter(&ill->ill_lock); 13034 ipif->ipif_flags &= ~IPIF_UP; 13035 ASSERT(ill->ill_ipif_up_count > 0); 13036 --ill->ill_ipif_up_count; 13037 mutex_exit(&ill->ill_lock); 13038 ipif_was_up = B_TRUE; 13039 /* Update status in SCTP's list */ 13040 sctp_update_ipif(ipif, SCTP_IPIF_DOWN); 13041 ill_nic_event_dispatch(ipif->ipif_ill, 13042 MAP_IPIF_ID(ipif->ipif_id), NE_LIF_DOWN, NULL, 0); 13043 } 13044 13045 /* 13046 * Blow away memberships we established in ipif_multicast_up(). 13047 */ 13048 ipif_multicast_down(ipif); 13049 13050 /* 13051 * Remove from the mapping for __sin6_src_id. We insert only 13052 * when the address is not INADDR_ANY. As IPv4 addresses are 13053 * stored as mapped addresses, we need to check for mapped 13054 * INADDR_ANY also. 13055 */ 13056 if (ipif_was_up && !IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6lcl_addr) && 13057 !IN6_IS_ADDR_V4MAPPED_ANY(&ipif->ipif_v6lcl_addr) && 13058 !(ipif->ipif_flags & IPIF_NOLOCAL)) { 13059 int err; 13060 13061 err = ip_srcid_remove(&ipif->ipif_v6lcl_addr, 13062 ipif->ipif_zoneid, ipst); 13063 if (err != 0) { 13064 ip0dbg(("ipif_down: srcid_remove %d\n", err)); 13065 } 13066 } 13067 13068 if (ipif_was_up) { 13069 /* only delete if we'd added ire's before */ 13070 if (ipif->ipif_isv6) 13071 ipif_delete_ires_v6(ipif); 13072 else 13073 ipif_delete_ires_v4(ipif); 13074 } 13075 13076 if (ipif_was_up && ill->ill_ipif_up_count == 0) { 13077 /* 13078 * Since the interface is now down, it may have just become 13079 * inactive. Note that this needs to be done even for a 13080 * lll_logical_down(), or ARP entries will not get correctly 13081 * restored when the interface comes back up. 13082 */ 13083 if (IS_UNDER_IPMP(ill)) 13084 ipmp_ill_refresh_active(ill); 13085 } 13086 13087 /* 13088 * neighbor-discovery or arp entries for this interface. The ipif 13089 * has to be quiesced, so we walk all the nce's and delete those 13090 * that point at the ipif->ipif_ill. At the same time, we also 13091 * update IPMP so that ipifs for data addresses are unbound. We dont 13092 * call ipif_arp_down to DL_UNBIND the arp stream itself here, but defer 13093 * that for ipif_down_tail() 13094 */ 13095 ipif_nce_down(ipif); 13096 13097 /* 13098 * If this is the last ipif on the ill, we also need to remove 13099 * any IREs with ire_ill set. Otherwise ipif_is_quiescent() will 13100 * never succeed. 13101 */ 13102 if (ill->ill_ipif_up_count == 0 && ill->ill_ipif_dup_count == 0) 13103 ire_walk_ill(0, 0, ill_downi, ill, ill); 13104 13105 /* 13106 * Walk all CONNs that can have a reference on an ire for this 13107 * ipif (we actually walk all that now have stale references). 13108 */ 13109 ipcl_walk(conn_ixa_cleanup, (void *)B_TRUE, ipst); 13110 13111 /* 13112 * If mp is NULL the caller will wait for the appropriate refcnt. 13113 * Eg. ip_sioctl_removeif -> ipif_free -> ipif_down 13114 * and ill_delete -> ipif_free -> ipif_down 13115 */ 13116 if (mp == NULL) { 13117 ASSERT(q == NULL); 13118 return (0); 13119 } 13120 13121 if (CONN_Q(q)) { 13122 connp = Q_TO_CONN(q); 13123 mutex_enter(&connp->conn_lock); 13124 } else { 13125 connp = NULL; 13126 } 13127 mutex_enter(&ill->ill_lock); 13128 /* 13129 * Are there any ire's pointing to this ipif that are still active ? 13130 * If this is the last ipif going down, are there any ire's pointing 13131 * to this ill that are still active ? 13132 */ 13133 if (ipif_is_quiescent(ipif)) { 13134 mutex_exit(&ill->ill_lock); 13135 if (connp != NULL) 13136 mutex_exit(&connp->conn_lock); 13137 return (0); 13138 } 13139 13140 ip1dbg(("ipif_down: need to wait, adding pending mp %s ill %p", 13141 ill->ill_name, (void *)ill)); 13142 /* 13143 * Enqueue the mp atomically in ipsq_pending_mp. When the refcount 13144 * drops down, the operation will be restarted by ipif_ill_refrele_tail 13145 * which in turn is called by the last refrele on the ipif/ill/ire. 13146 */ 13147 success = ipsq_pending_mp_add(connp, ipif, q, mp, IPIF_DOWN); 13148 if (!success) { 13149 /* The conn is closing. So just return */ 13150 ASSERT(connp != NULL); 13151 mutex_exit(&ill->ill_lock); 13152 mutex_exit(&connp->conn_lock); 13153 return (EINTR); 13154 } 13155 13156 mutex_exit(&ill->ill_lock); 13157 if (connp != NULL) 13158 mutex_exit(&connp->conn_lock); 13159 return (EINPROGRESS); 13160 } 13161 13162 int 13163 ipif_down_tail(ipif_t *ipif) 13164 { 13165 ill_t *ill = ipif->ipif_ill; 13166 int err = 0; 13167 13168 DTRACE_PROBE3(ipif__downup, char *, "ipif_down_tail", 13169 ill_t *, ill, ipif_t *, ipif); 13170 13171 /* 13172 * Skip any loopback interface (null wq). 13173 * If this is the last logical interface on the ill 13174 * have ill_dl_down tell the driver we are gone (unbind) 13175 * Note that lun 0 can ipif_down even though 13176 * there are other logical units that are up. 13177 * This occurs e.g. when we change a "significant" IFF_ flag. 13178 */ 13179 if (ill->ill_wq != NULL && !ill->ill_logical_down && 13180 ill->ill_ipif_up_count == 0 && ill->ill_ipif_dup_count == 0 && 13181 ill->ill_dl_up) { 13182 ill_dl_down(ill); 13183 } 13184 if (!ipif->ipif_isv6) 13185 err = ipif_arp_down(ipif); 13186 13187 ill->ill_logical_down = 0; 13188 13189 ip_rts_ifmsg(ipif, RTSQ_DEFAULT); 13190 ip_rts_newaddrmsg(RTM_DELETE, 0, ipif, RTSQ_DEFAULT); 13191 return (err); 13192 } 13193 13194 /* 13195 * Bring interface logically down without bringing the physical interface 13196 * down e.g. when the netmask is changed. This avoids long lasting link 13197 * negotiations between an ethernet interface and a certain switches. 13198 */ 13199 static int 13200 ipif_logical_down(ipif_t *ipif, queue_t *q, mblk_t *mp) 13201 { 13202 DTRACE_PROBE3(ipif__downup, char *, "ipif_logical_down", 13203 ill_t *, ipif->ipif_ill, ipif_t *, ipif); 13204 13205 /* 13206 * The ill_logical_down flag is a transient flag. It is set here 13207 * and is cleared once the down has completed in ipif_down_tail. 13208 * This flag does not indicate whether the ill stream is in the 13209 * DL_BOUND state with the driver. Instead this flag is used by 13210 * ipif_down_tail to determine whether to DL_UNBIND the stream with 13211 * the driver. The state of the ill stream i.e. whether it is 13212 * DL_BOUND with the driver or not is indicated by the ill_dl_up flag. 13213 */ 13214 ipif->ipif_ill->ill_logical_down = 1; 13215 return (ipif_down(ipif, q, mp)); 13216 } 13217 13218 /* 13219 * Initiate deallocate of an IPIF. Always called as writer. Called by 13220 * ill_delete or ip_sioctl_removeif. 13221 */ 13222 static void 13223 ipif_free(ipif_t *ipif) 13224 { 13225 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; 13226 13227 ASSERT(IAM_WRITER_IPIF(ipif)); 13228 13229 if (ipif->ipif_recovery_id != 0) 13230 (void) untimeout(ipif->ipif_recovery_id); 13231 ipif->ipif_recovery_id = 0; 13232 13233 /* 13234 * Take down the interface. We can be called either from ill_delete 13235 * or from ip_sioctl_removeif. 13236 */ 13237 (void) ipif_down(ipif, NULL, NULL); 13238 13239 /* 13240 * Now that the interface is down, there's no chance it can still 13241 * become a duplicate. Cancel any timer that may have been set while 13242 * tearing down. 13243 */ 13244 if (ipif->ipif_recovery_id != 0) 13245 (void) untimeout(ipif->ipif_recovery_id); 13246 ipif->ipif_recovery_id = 0; 13247 13248 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 13249 /* Remove pointers to this ill in the multicast routing tables */ 13250 reset_mrt_vif_ipif(ipif); 13251 /* If necessary, clear the cached source ipif rotor. */ 13252 if (ipif->ipif_ill->ill_src_ipif == ipif) 13253 ipif->ipif_ill->ill_src_ipif = NULL; 13254 rw_exit(&ipst->ips_ill_g_lock); 13255 } 13256 13257 static void 13258 ipif_free_tail(ipif_t *ipif) 13259 { 13260 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; 13261 13262 /* 13263 * Need to hold both ill_g_lock and ill_lock while 13264 * inserting or removing an ipif from the linked list 13265 * of ipifs hanging off the ill. 13266 */ 13267 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 13268 13269 #ifdef DEBUG 13270 ipif_trace_cleanup(ipif); 13271 #endif 13272 13273 /* Ask SCTP to take it out of it list */ 13274 sctp_update_ipif(ipif, SCTP_IPIF_REMOVE); 13275 ip_rts_newaddrmsg(RTM_FREEADDR, 0, ipif, RTSQ_DEFAULT); 13276 13277 /* Get it out of the ILL interface list. */ 13278 ipif_remove(ipif); 13279 rw_exit(&ipst->ips_ill_g_lock); 13280 13281 ASSERT(!(ipif->ipif_flags & (IPIF_UP | IPIF_DUPLICATE))); 13282 ASSERT(ipif->ipif_recovery_id == 0); 13283 ASSERT(ipif->ipif_ire_local == NULL); 13284 ASSERT(ipif->ipif_ire_if == NULL); 13285 13286 /* Free the memory. */ 13287 mi_free(ipif); 13288 } 13289 13290 /* 13291 * Sets `buf' to an ipif name of the form "ill_name:id", or "ill_name" if "id" 13292 * is zero. 13293 */ 13294 void 13295 ipif_get_name(const ipif_t *ipif, char *buf, int len) 13296 { 13297 char lbuf[LIFNAMSIZ]; 13298 char *name; 13299 size_t name_len; 13300 13301 buf[0] = '\0'; 13302 name = ipif->ipif_ill->ill_name; 13303 name_len = ipif->ipif_ill->ill_name_length; 13304 if (ipif->ipif_id != 0) { 13305 (void) sprintf(lbuf, "%s%c%d", name, IPIF_SEPARATOR_CHAR, 13306 ipif->ipif_id); 13307 name = lbuf; 13308 name_len = mi_strlen(name) + 1; 13309 } 13310 len -= 1; 13311 buf[len] = '\0'; 13312 len = MIN(len, name_len); 13313 bcopy(name, buf, len); 13314 } 13315 13316 /* 13317 * Sets `buf' to an ill name. 13318 */ 13319 void 13320 ill_get_name(const ill_t *ill, char *buf, int len) 13321 { 13322 char *name; 13323 size_t name_len; 13324 13325 name = ill->ill_name; 13326 name_len = ill->ill_name_length; 13327 len -= 1; 13328 buf[len] = '\0'; 13329 len = MIN(len, name_len); 13330 bcopy(name, buf, len); 13331 } 13332 13333 /* 13334 * Find an IPIF based on the name passed in. Names can be of the form <phys> 13335 * (e.g., le0) or <phys>:<#> (e.g., le0:1). When there is no colon, the 13336 * implied unit id is zero. <phys> must correspond to the name of an ILL. 13337 * (May be called as writer.) 13338 */ 13339 static ipif_t * 13340 ipif_lookup_on_name(char *name, size_t namelen, boolean_t do_alloc, 13341 boolean_t *exists, boolean_t isv6, zoneid_t zoneid, ip_stack_t *ipst) 13342 { 13343 char *cp; 13344 char *endp; 13345 long id; 13346 ill_t *ill; 13347 ipif_t *ipif; 13348 uint_t ire_type; 13349 boolean_t did_alloc = B_FALSE; 13350 13351 /* 13352 * If the caller wants to us to create the ipif, make sure we have a 13353 * valid zoneid 13354 */ 13355 ASSERT(!do_alloc || zoneid != ALL_ZONES); 13356 13357 if (namelen == 0) { 13358 return (NULL); 13359 } 13360 13361 *exists = B_FALSE; 13362 /* Look for a colon in the name. */ 13363 endp = &name[namelen]; 13364 for (cp = endp; --cp > name; ) { 13365 if (*cp == IPIF_SEPARATOR_CHAR) 13366 break; 13367 } 13368 13369 if (*cp == IPIF_SEPARATOR_CHAR) { 13370 /* 13371 * Reject any non-decimal aliases for logical 13372 * interfaces. Aliases with leading zeroes 13373 * are also rejected as they introduce ambiguity 13374 * in the naming of the interfaces. 13375 * In order to confirm with existing semantics, 13376 * and to not break any programs/script relying 13377 * on that behaviour, if<0>:0 is considered to be 13378 * a valid interface. 13379 * 13380 * If alias has two or more digits and the first 13381 * is zero, fail. 13382 */ 13383 if (&cp[2] < endp && cp[1] == '0') { 13384 return (NULL); 13385 } 13386 } 13387 13388 if (cp <= name) { 13389 cp = endp; 13390 } else { 13391 *cp = '\0'; 13392 } 13393 13394 /* 13395 * Look up the ILL, based on the portion of the name 13396 * before the slash. ill_lookup_on_name returns a held ill. 13397 * Temporary to check whether ill exists already. If so 13398 * ill_lookup_on_name will clear it. 13399 */ 13400 ill = ill_lookup_on_name(name, do_alloc, isv6, 13401 &did_alloc, ipst); 13402 if (cp != endp) 13403 *cp = IPIF_SEPARATOR_CHAR; 13404 if (ill == NULL) 13405 return (NULL); 13406 13407 /* Establish the unit number in the name. */ 13408 id = 0; 13409 if (cp < endp && *endp == '\0') { 13410 /* If there was a colon, the unit number follows. */ 13411 cp++; 13412 if (ddi_strtol(cp, NULL, 0, &id) != 0) { 13413 ill_refrele(ill); 13414 return (NULL); 13415 } 13416 } 13417 13418 mutex_enter(&ill->ill_lock); 13419 /* Now see if there is an IPIF with this unit number. */ 13420 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 13421 if (ipif->ipif_id == id) { 13422 if (zoneid != ALL_ZONES && 13423 zoneid != ipif->ipif_zoneid && 13424 ipif->ipif_zoneid != ALL_ZONES) { 13425 mutex_exit(&ill->ill_lock); 13426 ill_refrele(ill); 13427 return (NULL); 13428 } 13429 if (IPIF_CAN_LOOKUP(ipif)) { 13430 ipif_refhold_locked(ipif); 13431 mutex_exit(&ill->ill_lock); 13432 if (!did_alloc) 13433 *exists = B_TRUE; 13434 /* 13435 * Drop locks before calling ill_refrele 13436 * since it can potentially call into 13437 * ipif_ill_refrele_tail which can end up 13438 * in trying to acquire any lock. 13439 */ 13440 ill_refrele(ill); 13441 return (ipif); 13442 } 13443 } 13444 } 13445 13446 if (!do_alloc) { 13447 mutex_exit(&ill->ill_lock); 13448 ill_refrele(ill); 13449 return (NULL); 13450 } 13451 13452 /* 13453 * If none found, atomically allocate and return a new one. 13454 * Historically, we used IRE_LOOPBACK only for lun 0, and IRE_LOCAL 13455 * to support "receive only" use of lo0:1 etc. as is still done 13456 * below as an initial guess. 13457 * However, this is now likely to be overriden later in ipif_up_done() 13458 * when we know for sure what address has been configured on the 13459 * interface, since we might have more than one loopback interface 13460 * with a loopback address, e.g. in the case of zones, and all the 13461 * interfaces with loopback addresses need to be marked IRE_LOOPBACK. 13462 */ 13463 if (ill->ill_net_type == IRE_LOOPBACK && id == 0) 13464 ire_type = IRE_LOOPBACK; 13465 else 13466 ire_type = IRE_LOCAL; 13467 ipif = ipif_allocate(ill, id, ire_type, B_TRUE, B_TRUE, NULL); 13468 if (ipif != NULL) 13469 ipif_refhold_locked(ipif); 13470 mutex_exit(&ill->ill_lock); 13471 ill_refrele(ill); 13472 return (ipif); 13473 } 13474 13475 /* 13476 * This routine is called whenever a new address comes up on an ipif. If 13477 * we are configured to respond to address mask requests, then we are supposed 13478 * to broadcast an address mask reply at this time. This routine is also 13479 * called if we are already up, but a netmask change is made. This is legal 13480 * but might not make the system manager very popular. (May be called 13481 * as writer.) 13482 */ 13483 void 13484 ipif_mask_reply(ipif_t *ipif) 13485 { 13486 icmph_t *icmph; 13487 ipha_t *ipha; 13488 mblk_t *mp; 13489 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; 13490 ip_xmit_attr_t ixas; 13491 13492 #define REPLY_LEN (sizeof (icmp_ipha) + sizeof (icmph_t) + IP_ADDR_LEN) 13493 13494 if (!ipst->ips_ip_respond_to_address_mask_broadcast) 13495 return; 13496 13497 /* ICMP mask reply is IPv4 only */ 13498 ASSERT(!ipif->ipif_isv6); 13499 /* ICMP mask reply is not for a loopback interface */ 13500 ASSERT(ipif->ipif_ill->ill_wq != NULL); 13501 13502 if (ipif->ipif_lcl_addr == INADDR_ANY) 13503 return; 13504 13505 mp = allocb(REPLY_LEN, BPRI_HI); 13506 if (mp == NULL) 13507 return; 13508 mp->b_wptr = mp->b_rptr + REPLY_LEN; 13509 13510 ipha = (ipha_t *)mp->b_rptr; 13511 bzero(ipha, REPLY_LEN); 13512 *ipha = icmp_ipha; 13513 ipha->ipha_ttl = ipst->ips_ip_broadcast_ttl; 13514 ipha->ipha_src = ipif->ipif_lcl_addr; 13515 ipha->ipha_dst = ipif->ipif_brd_addr; 13516 ipha->ipha_length = htons(REPLY_LEN); 13517 ipha->ipha_ident = 0; 13518 13519 icmph = (icmph_t *)&ipha[1]; 13520 icmph->icmph_type = ICMP_ADDRESS_MASK_REPLY; 13521 bcopy(&ipif->ipif_net_mask, &icmph[1], IP_ADDR_LEN); 13522 icmph->icmph_checksum = IP_CSUM(mp, sizeof (ipha_t), 0); 13523 13524 bzero(&ixas, sizeof (ixas)); 13525 ixas.ixa_flags = IXAF_BASIC_SIMPLE_V4; 13526 ixas.ixa_flags |= IXAF_SET_SOURCE; 13527 ixas.ixa_zoneid = ALL_ZONES; 13528 ixas.ixa_ifindex = 0; 13529 ixas.ixa_ipst = ipst; 13530 ixas.ixa_multicast_ttl = IP_DEFAULT_MULTICAST_TTL; 13531 (void) ip_output_simple(mp, &ixas); 13532 ixa_cleanup(&ixas); 13533 #undef REPLY_LEN 13534 } 13535 13536 /* 13537 * Join the ipif specific multicast groups. 13538 * Must be called after a mapping has been set up in the resolver. (Always 13539 * called as writer.) 13540 */ 13541 void 13542 ipif_multicast_up(ipif_t *ipif) 13543 { 13544 int err; 13545 ill_t *ill; 13546 ilm_t *ilm; 13547 13548 ASSERT(IAM_WRITER_IPIF(ipif)); 13549 13550 ill = ipif->ipif_ill; 13551 13552 ip1dbg(("ipif_multicast_up\n")); 13553 if (!(ill->ill_flags & ILLF_MULTICAST) || 13554 ipif->ipif_allhosts_ilm != NULL) 13555 return; 13556 13557 if (ipif->ipif_isv6) { 13558 in6_addr_t v6allmc = ipv6_all_hosts_mcast; 13559 in6_addr_t v6solmc = ipv6_solicited_node_mcast; 13560 13561 v6solmc.s6_addr32[3] |= ipif->ipif_v6lcl_addr.s6_addr32[3]; 13562 13563 if (IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6lcl_addr)) 13564 return; 13565 13566 ip1dbg(("ipif_multicast_up - addmulti\n")); 13567 13568 /* 13569 * Join the all hosts multicast address. We skip this for 13570 * underlying IPMP interfaces since they should be invisible. 13571 */ 13572 if (!IS_UNDER_IPMP(ill)) { 13573 ilm = ip_addmulti(&v6allmc, ill, ipif->ipif_zoneid, 13574 &err); 13575 if (ilm == NULL) { 13576 ASSERT(err != 0); 13577 ip0dbg(("ipif_multicast_up: " 13578 "all_hosts_mcast failed %d\n", err)); 13579 return; 13580 } 13581 ipif->ipif_allhosts_ilm = ilm; 13582 } 13583 13584 /* 13585 * Enable multicast for the solicited node multicast address. 13586 * If IPMP we need to put the membership on the upper ill. 13587 */ 13588 if (!(ipif->ipif_flags & IPIF_NOLOCAL)) { 13589 ill_t *mcast_ill = NULL; 13590 boolean_t need_refrele; 13591 13592 if (IS_UNDER_IPMP(ill) && 13593 (mcast_ill = ipmp_ill_hold_ipmp_ill(ill)) != NULL) { 13594 need_refrele = B_TRUE; 13595 } else { 13596 mcast_ill = ill; 13597 need_refrele = B_FALSE; 13598 } 13599 13600 ilm = ip_addmulti(&v6solmc, mcast_ill, 13601 ipif->ipif_zoneid, &err); 13602 if (need_refrele) 13603 ill_refrele(mcast_ill); 13604 13605 if (ilm == NULL) { 13606 ASSERT(err != 0); 13607 ip0dbg(("ipif_multicast_up: solicited MC" 13608 " failed %d\n", err)); 13609 if ((ilm = ipif->ipif_allhosts_ilm) != NULL) { 13610 ipif->ipif_allhosts_ilm = NULL; 13611 (void) ip_delmulti(ilm); 13612 } 13613 return; 13614 } 13615 ipif->ipif_solmulti_ilm = ilm; 13616 } 13617 } else { 13618 in6_addr_t v6group; 13619 13620 if (ipif->ipif_lcl_addr == INADDR_ANY || IS_UNDER_IPMP(ill)) 13621 return; 13622 13623 /* Join the all hosts multicast address */ 13624 ip1dbg(("ipif_multicast_up - addmulti\n")); 13625 IN6_IPADDR_TO_V4MAPPED(htonl(INADDR_ALLHOSTS_GROUP), &v6group); 13626 13627 ilm = ip_addmulti(&v6group, ill, ipif->ipif_zoneid, &err); 13628 if (ilm == NULL) { 13629 ASSERT(err != 0); 13630 ip0dbg(("ipif_multicast_up: failed %d\n", err)); 13631 return; 13632 } 13633 ipif->ipif_allhosts_ilm = ilm; 13634 } 13635 } 13636 13637 /* 13638 * Blow away any multicast groups that we joined in ipif_multicast_up(). 13639 * (ilms from explicit memberships are handled in conn_update_ill.) 13640 */ 13641 void 13642 ipif_multicast_down(ipif_t *ipif) 13643 { 13644 ASSERT(IAM_WRITER_IPIF(ipif)); 13645 13646 ip1dbg(("ipif_multicast_down\n")); 13647 13648 if (ipif->ipif_allhosts_ilm != NULL) { 13649 (void) ip_delmulti(ipif->ipif_allhosts_ilm); 13650 ipif->ipif_allhosts_ilm = NULL; 13651 } 13652 if (ipif->ipif_solmulti_ilm != NULL) { 13653 (void) ip_delmulti(ipif->ipif_solmulti_ilm); 13654 ipif->ipif_solmulti_ilm = NULL; 13655 } 13656 } 13657 13658 /* 13659 * Used when an interface comes up to recreate any extra routes on this 13660 * interface. 13661 */ 13662 int 13663 ill_recover_saved_ire(ill_t *ill) 13664 { 13665 mblk_t *mp; 13666 ip_stack_t *ipst = ill->ill_ipst; 13667 13668 ip1dbg(("ill_recover_saved_ire(%s)", ill->ill_name)); 13669 13670 mutex_enter(&ill->ill_saved_ire_lock); 13671 for (mp = ill->ill_saved_ire_mp; mp != NULL; mp = mp->b_cont) { 13672 ire_t *ire, *nire; 13673 ifrt_t *ifrt; 13674 13675 ifrt = (ifrt_t *)mp->b_rptr; 13676 /* 13677 * Create a copy of the IRE with the saved address and netmask. 13678 */ 13679 if (ill->ill_isv6) { 13680 ire = ire_create_v6( 13681 &ifrt->ifrt_v6addr, 13682 &ifrt->ifrt_v6mask, 13683 &ifrt->ifrt_v6gateway_addr, 13684 ifrt->ifrt_type, 13685 ill, 13686 ifrt->ifrt_zoneid, 13687 ifrt->ifrt_flags, 13688 NULL, 13689 ipst); 13690 } else { 13691 ire = ire_create( 13692 (uint8_t *)&ifrt->ifrt_addr, 13693 (uint8_t *)&ifrt->ifrt_mask, 13694 (uint8_t *)&ifrt->ifrt_gateway_addr, 13695 ifrt->ifrt_type, 13696 ill, 13697 ifrt->ifrt_zoneid, 13698 ifrt->ifrt_flags, 13699 NULL, 13700 ipst); 13701 } 13702 if (ire == NULL) { 13703 mutex_exit(&ill->ill_saved_ire_lock); 13704 return (ENOMEM); 13705 } 13706 13707 if (ifrt->ifrt_flags & RTF_SETSRC) { 13708 if (ill->ill_isv6) { 13709 ire->ire_setsrc_addr_v6 = 13710 ifrt->ifrt_v6setsrc_addr; 13711 } else { 13712 ire->ire_setsrc_addr = ifrt->ifrt_setsrc_addr; 13713 } 13714 } 13715 13716 /* 13717 * Some software (for example, GateD and Sun Cluster) attempts 13718 * to create (what amount to) IRE_PREFIX routes with the 13719 * loopback address as the gateway. This is primarily done to 13720 * set up prefixes with the RTF_REJECT flag set (for example, 13721 * when generating aggregate routes.) 13722 * 13723 * If the IRE type (as defined by ill->ill_net_type) is 13724 * IRE_LOOPBACK, then we map the request into a 13725 * IRE_IF_NORESOLVER. 13726 */ 13727 if (ill->ill_net_type == IRE_LOOPBACK) 13728 ire->ire_type = IRE_IF_NORESOLVER; 13729 13730 /* 13731 * ire held by ire_add, will be refreled' towards the 13732 * the end of ipif_up_done 13733 */ 13734 nire = ire_add(ire); 13735 /* 13736 * Check if it was a duplicate entry. This handles 13737 * the case of two racing route adds for the same route 13738 */ 13739 if (nire == NULL) { 13740 ip1dbg(("ill_recover_saved_ire: FAILED\n")); 13741 } else if (nire != ire) { 13742 ip1dbg(("ill_recover_saved_ire: duplicate ire %p\n", 13743 (void *)nire)); 13744 ire_delete(nire); 13745 } else { 13746 ip1dbg(("ill_recover_saved_ire: added ire %p\n", 13747 (void *)nire)); 13748 } 13749 if (nire != NULL) 13750 ire_refrele(nire); 13751 } 13752 mutex_exit(&ill->ill_saved_ire_lock); 13753 return (0); 13754 } 13755 13756 /* 13757 * Used to set the netmask and broadcast address to default values when the 13758 * interface is brought up. (Always called as writer.) 13759 */ 13760 static void 13761 ipif_set_default(ipif_t *ipif) 13762 { 13763 ASSERT(MUTEX_HELD(&ipif->ipif_ill->ill_lock)); 13764 13765 if (!ipif->ipif_isv6) { 13766 /* 13767 * Interface holds an IPv4 address. Default 13768 * mask is the natural netmask. 13769 */ 13770 if (!ipif->ipif_net_mask) { 13771 ipaddr_t v4mask; 13772 13773 v4mask = ip_net_mask(ipif->ipif_lcl_addr); 13774 V4MASK_TO_V6(v4mask, ipif->ipif_v6net_mask); 13775 } 13776 if (ipif->ipif_flags & IPIF_POINTOPOINT) { 13777 /* ipif_subnet is ipif_pp_dst_addr for pt-pt */ 13778 ipif->ipif_v6subnet = ipif->ipif_v6pp_dst_addr; 13779 } else { 13780 V6_MASK_COPY(ipif->ipif_v6lcl_addr, 13781 ipif->ipif_v6net_mask, ipif->ipif_v6subnet); 13782 } 13783 /* 13784 * NOTE: SunOS 4.X does this even if the broadcast address 13785 * has been already set thus we do the same here. 13786 */ 13787 if (ipif->ipif_flags & IPIF_BROADCAST) { 13788 ipaddr_t v4addr; 13789 13790 v4addr = ipif->ipif_subnet | ~ipif->ipif_net_mask; 13791 IN6_IPADDR_TO_V4MAPPED(v4addr, &ipif->ipif_v6brd_addr); 13792 } 13793 } else { 13794 /* 13795 * Interface holds an IPv6-only address. Default 13796 * mask is all-ones. 13797 */ 13798 if (IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6net_mask)) 13799 ipif->ipif_v6net_mask = ipv6_all_ones; 13800 if (ipif->ipif_flags & IPIF_POINTOPOINT) { 13801 /* ipif_subnet is ipif_pp_dst_addr for pt-pt */ 13802 ipif->ipif_v6subnet = ipif->ipif_v6pp_dst_addr; 13803 } else { 13804 V6_MASK_COPY(ipif->ipif_v6lcl_addr, 13805 ipif->ipif_v6net_mask, ipif->ipif_v6subnet); 13806 } 13807 } 13808 } 13809 13810 /* 13811 * Return 0 if this address can be used as local address without causing 13812 * duplicate address problems. Otherwise, return EADDRNOTAVAIL if the address 13813 * is already up on a different ill, and EADDRINUSE if it's up on the same ill. 13814 * Note that the same IPv6 link-local address is allowed as long as the ills 13815 * are not on the same link. 13816 */ 13817 int 13818 ip_addr_availability_check(ipif_t *new_ipif) 13819 { 13820 in6_addr_t our_v6addr; 13821 ill_t *ill; 13822 ipif_t *ipif; 13823 ill_walk_context_t ctx; 13824 ip_stack_t *ipst = new_ipif->ipif_ill->ill_ipst; 13825 13826 ASSERT(IAM_WRITER_IPIF(new_ipif)); 13827 ASSERT(MUTEX_HELD(&ipst->ips_ip_addr_avail_lock)); 13828 ASSERT(RW_READ_HELD(&ipst->ips_ill_g_lock)); 13829 13830 new_ipif->ipif_flags &= ~IPIF_UNNUMBERED; 13831 if (IN6_IS_ADDR_UNSPECIFIED(&new_ipif->ipif_v6lcl_addr) || 13832 IN6_IS_ADDR_V4MAPPED_ANY(&new_ipif->ipif_v6lcl_addr)) 13833 return (0); 13834 13835 our_v6addr = new_ipif->ipif_v6lcl_addr; 13836 13837 if (new_ipif->ipif_isv6) 13838 ill = ILL_START_WALK_V6(&ctx, ipst); 13839 else 13840 ill = ILL_START_WALK_V4(&ctx, ipst); 13841 13842 for (; ill != NULL; ill = ill_next(&ctx, ill)) { 13843 for (ipif = ill->ill_ipif; ipif != NULL; 13844 ipif = ipif->ipif_next) { 13845 if ((ipif == new_ipif) || 13846 !(ipif->ipif_flags & IPIF_UP) || 13847 (ipif->ipif_flags & IPIF_UNNUMBERED) || 13848 !IN6_ARE_ADDR_EQUAL(&ipif->ipif_v6lcl_addr, 13849 &our_v6addr)) 13850 continue; 13851 13852 if (new_ipif->ipif_flags & IPIF_POINTOPOINT) 13853 new_ipif->ipif_flags |= IPIF_UNNUMBERED; 13854 else if (ipif->ipif_flags & IPIF_POINTOPOINT) 13855 ipif->ipif_flags |= IPIF_UNNUMBERED; 13856 else if ((IN6_IS_ADDR_LINKLOCAL(&our_v6addr) || 13857 IN6_IS_ADDR_SITELOCAL(&our_v6addr)) && 13858 !IS_ON_SAME_LAN(ill, new_ipif->ipif_ill)) 13859 continue; 13860 else if (new_ipif->ipif_zoneid != ipif->ipif_zoneid && 13861 ipif->ipif_zoneid != ALL_ZONES && IS_LOOPBACK(ill)) 13862 continue; 13863 else if (new_ipif->ipif_ill == ill) 13864 return (EADDRINUSE); 13865 else 13866 return (EADDRNOTAVAIL); 13867 } 13868 } 13869 13870 return (0); 13871 } 13872 13873 /* 13874 * Bring up an ipif: bring up arp/ndp, bring up the DLPI stream, and add 13875 * IREs for the ipif. 13876 * When the routine returns EINPROGRESS then mp has been consumed and 13877 * the ioctl will be acked from ip_rput_dlpi. 13878 */ 13879 int 13880 ipif_up(ipif_t *ipif, queue_t *q, mblk_t *mp) 13881 { 13882 ill_t *ill = ipif->ipif_ill; 13883 boolean_t isv6 = ipif->ipif_isv6; 13884 int err = 0; 13885 boolean_t success; 13886 uint_t ipif_orig_id; 13887 ip_stack_t *ipst = ill->ill_ipst; 13888 13889 ASSERT(IAM_WRITER_IPIF(ipif)); 13890 13891 ip1dbg(("ipif_up(%s:%u)\n", ill->ill_name, ipif->ipif_id)); 13892 DTRACE_PROBE3(ipif__downup, char *, "ipif_up", 13893 ill_t *, ill, ipif_t *, ipif); 13894 13895 /* Shouldn't get here if it is already up. */ 13896 if (ipif->ipif_flags & IPIF_UP) 13897 return (EALREADY); 13898 13899 /* 13900 * If this is a request to bring up a data address on an interface 13901 * under IPMP, then move the address to its IPMP meta-interface and 13902 * try to bring it up. One complication is that the zeroth ipif for 13903 * an ill is special, in that every ill always has one, and that code 13904 * throughout IP deferences ill->ill_ipif without holding any locks. 13905 */ 13906 if (IS_UNDER_IPMP(ill) && ipmp_ipif_is_dataaddr(ipif) && 13907 (!ipif->ipif_isv6 || !V6_IPIF_LINKLOCAL(ipif))) { 13908 ipif_t *stubipif = NULL, *moveipif = NULL; 13909 ill_t *ipmp_ill = ipmp_illgrp_ipmp_ill(ill->ill_grp); 13910 13911 /* 13912 * The ipif being brought up should be quiesced. If it's not, 13913 * something has gone amiss and we need to bail out. (If it's 13914 * quiesced, we know it will remain so via IPIF_CONDEMNED.) 13915 */ 13916 mutex_enter(&ill->ill_lock); 13917 if (!ipif_is_quiescent(ipif)) { 13918 mutex_exit(&ill->ill_lock); 13919 return (EINVAL); 13920 } 13921 mutex_exit(&ill->ill_lock); 13922 13923 /* 13924 * If we're going to need to allocate ipifs, do it prior 13925 * to starting the move (and grabbing locks). 13926 */ 13927 if (ipif->ipif_id == 0) { 13928 if ((moveipif = ipif_allocate(ill, 0, IRE_LOCAL, B_TRUE, 13929 B_FALSE, &err)) == NULL) { 13930 return (err); 13931 } 13932 if ((stubipif = ipif_allocate(ill, 0, IRE_LOCAL, B_TRUE, 13933 B_FALSE, &err)) == NULL) { 13934 mi_free(moveipif); 13935 return (err); 13936 } 13937 } 13938 13939 /* 13940 * Grab or transfer the ipif to move. During the move, keep 13941 * ill_g_lock held to prevent any ill walker threads from 13942 * seeing things in an inconsistent state. 13943 */ 13944 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 13945 if (ipif->ipif_id != 0) { 13946 ipif_remove(ipif); 13947 } else { 13948 ipif_transfer(ipif, moveipif, stubipif); 13949 ipif = moveipif; 13950 } 13951 13952 /* 13953 * Place the ipif on the IPMP ill. If the zeroth ipif on 13954 * the IPMP ill is a stub (0.0.0.0 down address) then we 13955 * replace that one. Otherwise, pick the next available slot. 13956 */ 13957 ipif->ipif_ill = ipmp_ill; 13958 ipif_orig_id = ipif->ipif_id; 13959 13960 if (ipmp_ipif_is_stubaddr(ipmp_ill->ill_ipif)) { 13961 ipif_transfer(ipif, ipmp_ill->ill_ipif, NULL); 13962 ipif = ipmp_ill->ill_ipif; 13963 } else { 13964 ipif->ipif_id = -1; 13965 if ((err = ipif_insert(ipif, B_FALSE)) != 0) { 13966 /* 13967 * No more available ipif_id's -- put it back 13968 * on the original ill and fail the operation. 13969 * Since we're writer on the ill, we can be 13970 * sure our old slot is still available. 13971 */ 13972 ipif->ipif_id = ipif_orig_id; 13973 ipif->ipif_ill = ill; 13974 if (ipif_orig_id == 0) { 13975 ipif_transfer(ipif, ill->ill_ipif, 13976 NULL); 13977 } else { 13978 VERIFY(ipif_insert(ipif, B_FALSE) == 0); 13979 } 13980 rw_exit(&ipst->ips_ill_g_lock); 13981 return (err); 13982 } 13983 } 13984 rw_exit(&ipst->ips_ill_g_lock); 13985 13986 /* 13987 * Tell SCTP that the ipif has moved. Note that even if we 13988 * had to allocate a new ipif, the original sequence id was 13989 * preserved and therefore SCTP won't know. 13990 */ 13991 sctp_move_ipif(ipif, ill, ipmp_ill); 13992 13993 /* 13994 * If the ipif being brought up was on slot zero, then we 13995 * first need to bring up the placeholder we stuck there. In 13996 * ip_rput_dlpi_writer(), arp_bringup_done(), or the recursive 13997 * call to ipif_up() itself, if we successfully bring up the 13998 * placeholder, we'll check ill_move_ipif and bring it up too. 13999 */ 14000 if (ipif_orig_id == 0) { 14001 ASSERT(ill->ill_move_ipif == NULL); 14002 ill->ill_move_ipif = ipif; 14003 if ((err = ipif_up(ill->ill_ipif, q, mp)) == 0) 14004 ASSERT(ill->ill_move_ipif == NULL); 14005 if (err != EINPROGRESS) 14006 ill->ill_move_ipif = NULL; 14007 return (err); 14008 } 14009 14010 /* 14011 * Bring it up on the IPMP ill. 14012 */ 14013 return (ipif_up(ipif, q, mp)); 14014 } 14015 14016 /* Skip arp/ndp for any loopback interface. */ 14017 if (ill->ill_wq != NULL) { 14018 conn_t *connp = CONN_Q(q) ? Q_TO_CONN(q) : NULL; 14019 ipsq_t *ipsq = ill->ill_phyint->phyint_ipsq; 14020 14021 if (!ill->ill_dl_up) { 14022 /* 14023 * ill_dl_up is not yet set. i.e. we are yet to 14024 * DL_BIND with the driver and this is the first 14025 * logical interface on the ill to become "up". 14026 * Tell the driver to get going (via DL_BIND_REQ). 14027 * Note that changing "significant" IFF_ flags 14028 * address/netmask etc cause a down/up dance, but 14029 * does not cause an unbind (DL_UNBIND) with the driver 14030 */ 14031 return (ill_dl_up(ill, ipif, mp, q)); 14032 } 14033 14034 /* 14035 * ipif_resolver_up may end up needeing to bind/attach 14036 * the ARP stream, which in turn necessitates a 14037 * DLPI message exchange with the driver. ioctls are 14038 * serialized and so we cannot send more than one 14039 * interface up message at a time. If ipif_resolver_up 14040 * does need to wait for the DLPI handshake for the ARP stream, 14041 * we get EINPROGRESS and we will complete in arp_bringup_done. 14042 */ 14043 14044 ASSERT(connp != NULL || !CONN_Q(q)); 14045 if (connp != NULL) 14046 mutex_enter(&connp->conn_lock); 14047 mutex_enter(&ill->ill_lock); 14048 success = ipsq_pending_mp_add(connp, ipif, q, mp, 0); 14049 mutex_exit(&ill->ill_lock); 14050 if (connp != NULL) 14051 mutex_exit(&connp->conn_lock); 14052 if (!success) 14053 return (EINTR); 14054 14055 /* 14056 * Crank up IPv6 neighbor discovery. Unlike ARP, this should 14057 * complete when ipif_ndp_up returns. 14058 */ 14059 err = ipif_resolver_up(ipif, Res_act_initial); 14060 if (err == EINPROGRESS) { 14061 /* We will complete it in arp_bringup_done() */ 14062 return (err); 14063 } 14064 14065 if (isv6 && err == 0) 14066 err = ipif_ndp_up(ipif, B_TRUE); 14067 14068 ASSERT(err != EINPROGRESS); 14069 mp = ipsq_pending_mp_get(ipsq, &connp); 14070 ASSERT(mp != NULL); 14071 if (err != 0) 14072 return (err); 14073 } else { 14074 /* 14075 * Interfaces without underlying hardware don't do duplicate 14076 * address detection. 14077 */ 14078 ASSERT(!(ipif->ipif_flags & IPIF_DUPLICATE)); 14079 ipif->ipif_addr_ready = 1; 14080 err = ill_add_ires(ill); 14081 /* allocation failure? */ 14082 if (err != 0) 14083 return (err); 14084 } 14085 14086 err = (isv6 ? ipif_up_done_v6(ipif) : ipif_up_done(ipif)); 14087 if (err == 0 && ill->ill_move_ipif != NULL) { 14088 ipif = ill->ill_move_ipif; 14089 ill->ill_move_ipif = NULL; 14090 return (ipif_up(ipif, q, mp)); 14091 } 14092 return (err); 14093 } 14094 14095 /* 14096 * Add any IREs tied to the ill. For now this is just an IRE_MULTICAST. 14097 * The identical set of IREs need to be removed in ill_delete_ires(). 14098 */ 14099 int 14100 ill_add_ires(ill_t *ill) 14101 { 14102 ire_t *ire; 14103 in6_addr_t dummy6 = {(uint32_t)V6_MCAST, 0, 0, 1}; 14104 in_addr_t dummy4 = htonl(INADDR_ALLHOSTS_GROUP); 14105 14106 if (ill->ill_ire_multicast != NULL) 14107 return (0); 14108 14109 /* 14110 * provide some dummy ire_addr for creating the ire. 14111 */ 14112 if (ill->ill_isv6) { 14113 ire = ire_create_v6(&dummy6, 0, 0, IRE_MULTICAST, ill, 14114 ALL_ZONES, RTF_UP, NULL, ill->ill_ipst); 14115 } else { 14116 ire = ire_create((uchar_t *)&dummy4, 0, 0, IRE_MULTICAST, ill, 14117 ALL_ZONES, RTF_UP, NULL, ill->ill_ipst); 14118 } 14119 if (ire == NULL) 14120 return (ENOMEM); 14121 14122 ill->ill_ire_multicast = ire; 14123 return (0); 14124 } 14125 14126 void 14127 ill_delete_ires(ill_t *ill) 14128 { 14129 if (ill->ill_ire_multicast != NULL) { 14130 /* 14131 * BIND/ATTACH completed; Release the ref for ill_ire_multicast 14132 * which was taken without any th_tracing enabled. 14133 * We also mark it as condemned (note that it was never added) 14134 * so that caching conn's can move off of it. 14135 */ 14136 ire_make_condemned(ill->ill_ire_multicast); 14137 ire_refrele_notr(ill->ill_ire_multicast); 14138 ill->ill_ire_multicast = NULL; 14139 } 14140 } 14141 14142 /* 14143 * Perform a bind for the physical device. 14144 * When the routine returns EINPROGRESS then mp has been consumed and 14145 * the ioctl will be acked from ip_rput_dlpi. 14146 * Allocate an unbind message and save it until ipif_down. 14147 */ 14148 static int 14149 ill_dl_up(ill_t *ill, ipif_t *ipif, mblk_t *mp, queue_t *q) 14150 { 14151 mblk_t *bind_mp = NULL; 14152 mblk_t *unbind_mp = NULL; 14153 conn_t *connp; 14154 boolean_t success; 14155 int err; 14156 14157 DTRACE_PROBE2(ill__downup, char *, "ill_dl_up", ill_t *, ill); 14158 14159 ip1dbg(("ill_dl_up(%s)\n", ill->ill_name)); 14160 ASSERT(IAM_WRITER_ILL(ill)); 14161 ASSERT(mp != NULL); 14162 14163 /* 14164 * Make sure we have an IRE_MULTICAST in case we immediately 14165 * start receiving packets. 14166 */ 14167 err = ill_add_ires(ill); 14168 if (err != 0) 14169 goto bad; 14170 14171 bind_mp = ip_dlpi_alloc(sizeof (dl_bind_req_t) + sizeof (long), 14172 DL_BIND_REQ); 14173 if (bind_mp == NULL) 14174 goto bad; 14175 ((dl_bind_req_t *)bind_mp->b_rptr)->dl_sap = ill->ill_sap; 14176 ((dl_bind_req_t *)bind_mp->b_rptr)->dl_service_mode = DL_CLDLS; 14177 14178 unbind_mp = ip_dlpi_alloc(sizeof (dl_unbind_req_t), DL_UNBIND_REQ); 14179 if (unbind_mp == NULL) 14180 goto bad; 14181 14182 /* 14183 * Record state needed to complete this operation when the 14184 * DL_BIND_ACK shows up. Also remember the pre-allocated mblks. 14185 */ 14186 connp = CONN_Q(q) ? Q_TO_CONN(q) : NULL; 14187 ASSERT(connp != NULL || !CONN_Q(q)); 14188 GRAB_CONN_LOCK(q); 14189 mutex_enter(&ipif->ipif_ill->ill_lock); 14190 success = ipsq_pending_mp_add(connp, ipif, q, mp, 0); 14191 mutex_exit(&ipif->ipif_ill->ill_lock); 14192 RELEASE_CONN_LOCK(q); 14193 if (!success) 14194 goto bad; 14195 14196 /* 14197 * Save the unbind message for ill_dl_down(); it will be consumed when 14198 * the interface goes down. 14199 */ 14200 ASSERT(ill->ill_unbind_mp == NULL); 14201 ill->ill_unbind_mp = unbind_mp; 14202 14203 ill_dlpi_send(ill, bind_mp); 14204 /* Send down link-layer capabilities probe if not already done. */ 14205 ill_capability_probe(ill); 14206 14207 /* 14208 * Sysid used to rely on the fact that netboots set domainname 14209 * and the like. Now that miniroot boots aren't strictly netboots 14210 * and miniroot network configuration is driven from userland 14211 * these things still need to be set. This situation can be detected 14212 * by comparing the interface being configured here to the one 14213 * dhcifname was set to reference by the boot loader. Once sysid is 14214 * converted to use dhcp_ipc_getinfo() this call can go away. 14215 */ 14216 if ((ipif->ipif_flags & IPIF_DHCPRUNNING) && 14217 (strcmp(ill->ill_name, dhcifname) == 0) && 14218 (strlen(srpc_domain) == 0)) { 14219 if (dhcpinit() != 0) 14220 cmn_err(CE_WARN, "no cached dhcp response"); 14221 } 14222 14223 /* 14224 * This operation will complete in ip_rput_dlpi with either 14225 * a DL_BIND_ACK or DL_ERROR_ACK. 14226 */ 14227 return (EINPROGRESS); 14228 bad: 14229 ip1dbg(("ill_dl_up(%s) FAILED\n", ill->ill_name)); 14230 14231 freemsg(bind_mp); 14232 freemsg(unbind_mp); 14233 return (ENOMEM); 14234 } 14235 14236 /* Add room for tcp+ip headers */ 14237 uint_t ip_loopback_mtuplus = IP_LOOPBACK_MTU + IP_SIMPLE_HDR_LENGTH + 20; 14238 14239 /* 14240 * DLPI and ARP is up. 14241 * Create all the IREs associated with an interface. Bring up multicast. 14242 * Set the interface flag and finish other initialization 14243 * that potentially had to be deferred to after DL_BIND_ACK. 14244 */ 14245 int 14246 ipif_up_done(ipif_t *ipif) 14247 { 14248 ill_t *ill = ipif->ipif_ill; 14249 int err = 0; 14250 boolean_t loopback = B_FALSE; 14251 boolean_t update_src_selection = B_TRUE; 14252 ipif_t *tmp_ipif; 14253 14254 ip1dbg(("ipif_up_done(%s:%u)\n", 14255 ipif->ipif_ill->ill_name, ipif->ipif_id)); 14256 DTRACE_PROBE3(ipif__downup, char *, "ipif_up_done", 14257 ill_t *, ill, ipif_t *, ipif); 14258 14259 /* Check if this is a loopback interface */ 14260 if (ipif->ipif_ill->ill_wq == NULL) 14261 loopback = B_TRUE; 14262 14263 ASSERT(!MUTEX_HELD(&ipif->ipif_ill->ill_lock)); 14264 14265 /* 14266 * If all other interfaces for this ill are down or DEPRECATED, 14267 * or otherwise unsuitable for source address selection, 14268 * reset the src generation numbers to make sure source 14269 * address selection gets to take this new ipif into account. 14270 * No need to hold ill_lock while traversing the ipif list since 14271 * we are writer 14272 */ 14273 for (tmp_ipif = ill->ill_ipif; tmp_ipif; 14274 tmp_ipif = tmp_ipif->ipif_next) { 14275 if (((tmp_ipif->ipif_flags & 14276 (IPIF_NOXMIT|IPIF_ANYCAST|IPIF_NOLOCAL|IPIF_DEPRECATED)) || 14277 !(tmp_ipif->ipif_flags & IPIF_UP)) || 14278 (tmp_ipif == ipif)) 14279 continue; 14280 /* first useable pre-existing interface */ 14281 update_src_selection = B_FALSE; 14282 break; 14283 } 14284 if (update_src_selection) 14285 ip_update_source_selection(ill->ill_ipst); 14286 14287 if (IS_LOOPBACK(ill) || ill->ill_net_type == IRE_IF_NORESOLVER) { 14288 nce_t *loop_nce = NULL; 14289 uint16_t flags = (NCE_F_MYADDR | NCE_F_AUTHORITY | NCE_F_NONUD); 14290 14291 /* 14292 * lo0:1 and subsequent ipifs were marked IRE_LOCAL in 14293 * ipif_lookup_on_name(), but in the case of zones we can have 14294 * several loopback addresses on lo0. So all the interfaces with 14295 * loopback addresses need to be marked IRE_LOOPBACK. 14296 */ 14297 if (V4_PART_OF_V6(ipif->ipif_v6lcl_addr) == 14298 htonl(INADDR_LOOPBACK)) 14299 ipif->ipif_ire_type = IRE_LOOPBACK; 14300 else 14301 ipif->ipif_ire_type = IRE_LOCAL; 14302 if (ill->ill_net_type != IRE_LOOPBACK) 14303 flags |= NCE_F_PUBLISH; 14304 14305 /* add unicast nce for the local addr */ 14306 err = nce_lookup_then_add_v4(ill, NULL, 14307 ill->ill_phys_addr_length, &ipif->ipif_lcl_addr, flags, 14308 ND_REACHABLE, &loop_nce); 14309 /* A shared-IP zone sees EEXIST for lo0:N */ 14310 if (err == 0 || err == EEXIST) { 14311 ipif->ipif_added_nce = 1; 14312 loop_nce->nce_ipif_cnt++; 14313 nce_refrele(loop_nce); 14314 err = 0; 14315 } else { 14316 ASSERT(loop_nce == NULL); 14317 return (err); 14318 } 14319 } 14320 14321 /* Create all the IREs associated with this interface */ 14322 err = ipif_add_ires_v4(ipif, loopback); 14323 if (err != 0) { 14324 /* 14325 * see comments about return value from 14326 * ip_addr_availability_check() in ipif_add_ires_v4(). 14327 */ 14328 if (err != EADDRINUSE) { 14329 (void) ipif_arp_down(ipif); 14330 } else { 14331 /* 14332 * Make IPMP aware of the deleted ipif so that 14333 * the needed ipmp cleanup (e.g., of ipif_bound_ill) 14334 * can be completed. Note that we do not want to 14335 * destroy the nce that was created on the ipmp_ill 14336 * for the active copy of the duplicate address in 14337 * use. 14338 */ 14339 if (IS_IPMP(ill)) 14340 ipmp_illgrp_del_ipif(ill->ill_grp, ipif); 14341 err = EADDRNOTAVAIL; 14342 } 14343 return (err); 14344 } 14345 14346 if (ill->ill_ipif_up_count == 1 && !loopback) { 14347 /* Recover any additional IREs entries for this ill */ 14348 (void) ill_recover_saved_ire(ill); 14349 } 14350 14351 if (ill->ill_need_recover_multicast) { 14352 /* 14353 * Need to recover all multicast memberships in the driver. 14354 * This had to be deferred until we had attached. The same 14355 * code exists in ipif_up_done_v6() to recover IPv6 14356 * memberships. 14357 * 14358 * Note that it would be preferable to unconditionally do the 14359 * ill_recover_multicast() in ill_dl_up(), but we cannot do 14360 * that since ill_join_allmulti() depends on ill_dl_up being 14361 * set, and it is not set until we receive a DL_BIND_ACK after 14362 * having called ill_dl_up(). 14363 */ 14364 ill_recover_multicast(ill); 14365 } 14366 14367 if (ill->ill_ipif_up_count == 1) { 14368 /* 14369 * Since the interface is now up, it may now be active. 14370 */ 14371 if (IS_UNDER_IPMP(ill)) 14372 ipmp_ill_refresh_active(ill); 14373 14374 /* 14375 * If this is an IPMP interface, we may now be able to 14376 * establish ARP entries. 14377 */ 14378 if (IS_IPMP(ill)) 14379 ipmp_illgrp_refresh_arpent(ill->ill_grp); 14380 } 14381 14382 /* Join the allhosts multicast address */ 14383 ipif_multicast_up(ipif); 14384 14385 if (!loopback && !update_src_selection && 14386 !(ipif->ipif_flags & (IPIF_NOLOCAL|IPIF_ANYCAST|IPIF_DEPRECATED))) 14387 ip_update_source_selection(ill->ill_ipst); 14388 14389 if (!loopback && ipif->ipif_addr_ready) { 14390 /* Broadcast an address mask reply. */ 14391 ipif_mask_reply(ipif); 14392 } 14393 /* Perhaps ilgs should use this ill */ 14394 update_conn_ill(NULL, ill->ill_ipst); 14395 14396 /* 14397 * This had to be deferred until we had bound. Tell routing sockets and 14398 * others that this interface is up if it looks like the address has 14399 * been validated. Otherwise, if it isn't ready yet, wait for 14400 * duplicate address detection to do its thing. 14401 */ 14402 if (ipif->ipif_addr_ready) 14403 ipif_up_notify(ipif); 14404 return (0); 14405 } 14406 14407 /* 14408 * Add the IREs associated with the ipif. 14409 * Those MUST be explicitly removed in ipif_delete_ires_v4. 14410 */ 14411 static int 14412 ipif_add_ires_v4(ipif_t *ipif, boolean_t loopback) 14413 { 14414 ill_t *ill = ipif->ipif_ill; 14415 ip_stack_t *ipst = ill->ill_ipst; 14416 ire_t *ire_array[20]; 14417 ire_t **irep = ire_array; 14418 ire_t **irep1; 14419 ipaddr_t net_mask = 0; 14420 ipaddr_t subnet_mask, route_mask; 14421 int err; 14422 ire_t *ire_local = NULL; /* LOCAL or LOOPBACK */ 14423 ire_t *ire_if = NULL; 14424 14425 if ((ipif->ipif_lcl_addr != INADDR_ANY) && 14426 !(ipif->ipif_flags & IPIF_NOLOCAL)) { 14427 /* 14428 * If we're on a labeled system then make sure that zone- 14429 * private addresses have proper remote host database entries. 14430 */ 14431 if (is_system_labeled() && 14432 ipif->ipif_ire_type != IRE_LOOPBACK && 14433 !tsol_check_interface_address(ipif)) 14434 return (EINVAL); 14435 14436 /* Register the source address for __sin6_src_id */ 14437 err = ip_srcid_insert(&ipif->ipif_v6lcl_addr, 14438 ipif->ipif_zoneid, ipst); 14439 if (err != 0) { 14440 ip0dbg(("ipif_add_ires: srcid_insert %d\n", err)); 14441 return (err); 14442 } 14443 14444 /* If the interface address is set, create the local IRE. */ 14445 ire_local = ire_create( 14446 (uchar_t *)&ipif->ipif_lcl_addr, /* dest address */ 14447 (uchar_t *)&ip_g_all_ones, /* mask */ 14448 NULL, /* no gateway */ 14449 ipif->ipif_ire_type, /* LOCAL or LOOPBACK */ 14450 ipif->ipif_ill, 14451 ipif->ipif_zoneid, 14452 ((ipif->ipif_flags & IPIF_PRIVATE) ? 14453 RTF_PRIVATE : 0) | RTF_KERNEL, 14454 NULL, 14455 ipst); 14456 ip1dbg(("ipif_add_ires: 0x%p creating IRE %p type 0x%x" 14457 " for 0x%x\n", (void *)ipif, (void *)ire_local, 14458 ipif->ipif_ire_type, 14459 ntohl(ipif->ipif_lcl_addr))); 14460 if (ire_local == NULL) { 14461 ip1dbg(("ipif_up_done: NULL ire_local\n")); 14462 err = ENOMEM; 14463 goto bad; 14464 } 14465 } else { 14466 ip1dbg(( 14467 "ipif_add_ires: not creating IRE %d for 0x%x: flags 0x%x\n", 14468 ipif->ipif_ire_type, 14469 ntohl(ipif->ipif_lcl_addr), 14470 (uint_t)ipif->ipif_flags)); 14471 } 14472 if ((ipif->ipif_lcl_addr != INADDR_ANY) && 14473 !(ipif->ipif_flags & IPIF_NOLOCAL)) { 14474 net_mask = ip_net_mask(ipif->ipif_lcl_addr); 14475 } else { 14476 net_mask = htonl(IN_CLASSA_NET); /* fallback */ 14477 } 14478 14479 subnet_mask = ipif->ipif_net_mask; 14480 14481 /* 14482 * If mask was not specified, use natural netmask of 14483 * interface address. Also, store this mask back into the 14484 * ipif struct. 14485 */ 14486 if (subnet_mask == 0) { 14487 subnet_mask = net_mask; 14488 V4MASK_TO_V6(subnet_mask, ipif->ipif_v6net_mask); 14489 V6_MASK_COPY(ipif->ipif_v6lcl_addr, ipif->ipif_v6net_mask, 14490 ipif->ipif_v6subnet); 14491 } 14492 14493 /* Set up the IRE_IF_RESOLVER or IRE_IF_NORESOLVER, as appropriate. */ 14494 if (!loopback && !(ipif->ipif_flags & IPIF_NOXMIT) && 14495 ipif->ipif_subnet != INADDR_ANY) { 14496 /* ipif_subnet is ipif_pp_dst_addr for pt-pt */ 14497 14498 if (ipif->ipif_flags & IPIF_POINTOPOINT) { 14499 route_mask = IP_HOST_MASK; 14500 } else { 14501 route_mask = subnet_mask; 14502 } 14503 14504 ip1dbg(("ipif_add_ires: ipif 0x%p ill 0x%p " 14505 "creating if IRE ill_net_type 0x%x for 0x%x\n", 14506 (void *)ipif, (void *)ill, ill->ill_net_type, 14507 ntohl(ipif->ipif_subnet))); 14508 ire_if = ire_create( 14509 (uchar_t *)&ipif->ipif_subnet, 14510 (uchar_t *)&route_mask, 14511 (uchar_t *)&ipif->ipif_lcl_addr, 14512 ill->ill_net_type, 14513 ill, 14514 ipif->ipif_zoneid, 14515 ((ipif->ipif_flags & IPIF_PRIVATE) ? 14516 RTF_PRIVATE: 0) | RTF_KERNEL, 14517 NULL, 14518 ipst); 14519 if (ire_if == NULL) { 14520 ip1dbg(("ipif_up_done: NULL ire_if\n")); 14521 err = ENOMEM; 14522 goto bad; 14523 } 14524 } 14525 14526 /* 14527 * Create any necessary broadcast IREs. 14528 */ 14529 if ((ipif->ipif_flags & IPIF_BROADCAST) && 14530 !(ipif->ipif_flags & IPIF_NOXMIT)) 14531 irep = ipif_create_bcast_ires(ipif, irep); 14532 14533 /* If an earlier ire_create failed, get out now */ 14534 for (irep1 = irep; irep1 > ire_array; ) { 14535 irep1--; 14536 if (*irep1 == NULL) { 14537 ip1dbg(("ipif_up_done: NULL ire found in ire_array\n")); 14538 err = ENOMEM; 14539 goto bad; 14540 } 14541 } 14542 14543 /* 14544 * Need to atomically check for IP address availability under 14545 * ip_addr_avail_lock. ill_g_lock is held as reader to ensure no new 14546 * ills or new ipifs can be added while we are checking availability. 14547 */ 14548 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 14549 mutex_enter(&ipst->ips_ip_addr_avail_lock); 14550 /* Mark it up, and increment counters. */ 14551 ipif->ipif_flags |= IPIF_UP; 14552 ill->ill_ipif_up_count++; 14553 err = ip_addr_availability_check(ipif); 14554 mutex_exit(&ipst->ips_ip_addr_avail_lock); 14555 rw_exit(&ipst->ips_ill_g_lock); 14556 14557 if (err != 0) { 14558 /* 14559 * Our address may already be up on the same ill. In this case, 14560 * the ARP entry for our ipif replaced the one for the other 14561 * ipif. So we don't want to delete it (otherwise the other ipif 14562 * would be unable to send packets). 14563 * ip_addr_availability_check() identifies this case for us and 14564 * returns EADDRINUSE; Caller should turn it into EADDRNOTAVAIL 14565 * which is the expected error code. 14566 */ 14567 ill->ill_ipif_up_count--; 14568 ipif->ipif_flags &= ~IPIF_UP; 14569 goto bad; 14570 } 14571 14572 /* 14573 * Add in all newly created IREs. ire_create_bcast() has 14574 * already checked for duplicates of the IRE_BROADCAST type. 14575 * We add the IRE_INTERFACE before the IRE_LOCAL to ensure 14576 * that lookups find the IRE_LOCAL even if the IRE_INTERFACE is 14577 * a /32 route. 14578 */ 14579 if (ire_if != NULL) { 14580 ire_if = ire_add(ire_if); 14581 if (ire_if == NULL) { 14582 err = ENOMEM; 14583 goto bad2; 14584 } 14585 #ifdef DEBUG 14586 ire_refhold_notr(ire_if); 14587 ire_refrele(ire_if); 14588 #endif 14589 } 14590 if (ire_local != NULL) { 14591 ire_local = ire_add(ire_local); 14592 if (ire_local == NULL) { 14593 err = ENOMEM; 14594 goto bad2; 14595 } 14596 #ifdef DEBUG 14597 ire_refhold_notr(ire_local); 14598 ire_refrele(ire_local); 14599 #endif 14600 } 14601 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 14602 if (ire_local != NULL) 14603 ipif->ipif_ire_local = ire_local; 14604 if (ire_if != NULL) 14605 ipif->ipif_ire_if = ire_if; 14606 rw_exit(&ipst->ips_ill_g_lock); 14607 ire_local = NULL; 14608 ire_if = NULL; 14609 14610 /* 14611 * We first add all of them, and if that succeeds we refrele the 14612 * bunch. That enables us to delete all of them should any of the 14613 * ire_adds fail. 14614 */ 14615 for (irep1 = irep; irep1 > ire_array; ) { 14616 irep1--; 14617 ASSERT(!MUTEX_HELD(&((*irep1)->ire_ill->ill_lock))); 14618 *irep1 = ire_add(*irep1); 14619 if (*irep1 == NULL) { 14620 err = ENOMEM; 14621 goto bad2; 14622 } 14623 } 14624 14625 for (irep1 = irep; irep1 > ire_array; ) { 14626 irep1--; 14627 /* refheld by ire_add. */ 14628 if (*irep1 != NULL) { 14629 ire_refrele(*irep1); 14630 *irep1 = NULL; 14631 } 14632 } 14633 14634 if (!loopback) { 14635 /* 14636 * If the broadcast address has been set, make sure it makes 14637 * sense based on the interface address. 14638 * Only match on ill since we are sharing broadcast addresses. 14639 */ 14640 if ((ipif->ipif_brd_addr != INADDR_ANY) && 14641 (ipif->ipif_flags & IPIF_BROADCAST)) { 14642 ire_t *ire; 14643 14644 ire = ire_ftable_lookup_v4(ipif->ipif_brd_addr, 0, 0, 14645 IRE_BROADCAST, ipif->ipif_ill, ALL_ZONES, NULL, 14646 (MATCH_IRE_TYPE | MATCH_IRE_ILL), 0, ipst, NULL); 14647 14648 if (ire == NULL) { 14649 /* 14650 * If there isn't a matching broadcast IRE, 14651 * revert to the default for this netmask. 14652 */ 14653 ipif->ipif_v6brd_addr = ipv6_all_zeros; 14654 mutex_enter(&ipif->ipif_ill->ill_lock); 14655 ipif_set_default(ipif); 14656 mutex_exit(&ipif->ipif_ill->ill_lock); 14657 } else { 14658 ire_refrele(ire); 14659 } 14660 } 14661 14662 } 14663 return (0); 14664 14665 bad2: 14666 ill->ill_ipif_up_count--; 14667 ipif->ipif_flags &= ~IPIF_UP; 14668 14669 bad: 14670 ip1dbg(("ipif_add_ires: FAILED \n")); 14671 if (ire_local != NULL) 14672 ire_delete(ire_local); 14673 if (ire_if != NULL) 14674 ire_delete(ire_if); 14675 14676 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 14677 ire_local = ipif->ipif_ire_local; 14678 ipif->ipif_ire_local = NULL; 14679 ire_if = ipif->ipif_ire_if; 14680 ipif->ipif_ire_if = NULL; 14681 rw_exit(&ipst->ips_ill_g_lock); 14682 if (ire_local != NULL) { 14683 ire_delete(ire_local); 14684 ire_refrele_notr(ire_local); 14685 } 14686 if (ire_if != NULL) { 14687 ire_delete(ire_if); 14688 ire_refrele_notr(ire_if); 14689 } 14690 14691 while (irep > ire_array) { 14692 irep--; 14693 if (*irep != NULL) { 14694 ire_delete(*irep); 14695 } 14696 } 14697 (void) ip_srcid_remove(&ipif->ipif_v6lcl_addr, ipif->ipif_zoneid, ipst); 14698 14699 return (err); 14700 } 14701 14702 /* Remove all the IREs created by ipif_add_ires_v4 */ 14703 void 14704 ipif_delete_ires_v4(ipif_t *ipif) 14705 { 14706 ill_t *ill = ipif->ipif_ill; 14707 ip_stack_t *ipst = ill->ill_ipst; 14708 ire_t *ire; 14709 14710 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 14711 ire = ipif->ipif_ire_local; 14712 ipif->ipif_ire_local = NULL; 14713 rw_exit(&ipst->ips_ill_g_lock); 14714 if (ire != NULL) { 14715 /* 14716 * Move count to ipif so we don't loose the count due to 14717 * a down/up dance. 14718 */ 14719 atomic_add_32(&ipif->ipif_ib_pkt_count, ire->ire_ib_pkt_count); 14720 14721 ire_delete(ire); 14722 ire_refrele_notr(ire); 14723 } 14724 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 14725 ire = ipif->ipif_ire_if; 14726 ipif->ipif_ire_if = NULL; 14727 rw_exit(&ipst->ips_ill_g_lock); 14728 if (ire != NULL) { 14729 ire_delete(ire); 14730 ire_refrele_notr(ire); 14731 } 14732 14733 /* 14734 * Delete the broadcast IREs. 14735 */ 14736 if ((ipif->ipif_flags & IPIF_BROADCAST) && 14737 !(ipif->ipif_flags & IPIF_NOXMIT)) 14738 ipif_delete_bcast_ires(ipif); 14739 } 14740 14741 /* 14742 * Checks for availbility of a usable source address (if there is one) when the 14743 * destination ILL has the ill_usesrc_ifindex pointing to another ILL. Note 14744 * this selection is done regardless of the destination. 14745 */ 14746 boolean_t 14747 ipif_zone_avail(uint_t ifindex, boolean_t isv6, zoneid_t zoneid, 14748 ip_stack_t *ipst) 14749 { 14750 ipif_t *ipif = NULL; 14751 ill_t *uill; 14752 14753 ASSERT(ifindex != 0); 14754 14755 uill = ill_lookup_on_ifindex(ifindex, isv6, ipst); 14756 if (uill == NULL) 14757 return (B_FALSE); 14758 14759 mutex_enter(&uill->ill_lock); 14760 for (ipif = uill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 14761 if (IPIF_IS_CONDEMNED(ipif)) 14762 continue; 14763 if (ipif->ipif_flags & (IPIF_NOLOCAL|IPIF_ANYCAST)) 14764 continue; 14765 if (!(ipif->ipif_flags & IPIF_UP)) 14766 continue; 14767 if (ipif->ipif_zoneid != zoneid) 14768 continue; 14769 if (isv6 ? IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6lcl_addr) : 14770 ipif->ipif_lcl_addr == INADDR_ANY) 14771 continue; 14772 mutex_exit(&uill->ill_lock); 14773 ill_refrele(uill); 14774 return (B_TRUE); 14775 } 14776 mutex_exit(&uill->ill_lock); 14777 ill_refrele(uill); 14778 return (B_FALSE); 14779 } 14780 14781 /* 14782 * Find an ipif with a good local address on the ill+zoneid. 14783 */ 14784 ipif_t * 14785 ipif_good_addr(ill_t *ill, zoneid_t zoneid) 14786 { 14787 ipif_t *ipif; 14788 14789 mutex_enter(&ill->ill_lock); 14790 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 14791 if (IPIF_IS_CONDEMNED(ipif)) 14792 continue; 14793 if (ipif->ipif_flags & (IPIF_NOLOCAL|IPIF_ANYCAST)) 14794 continue; 14795 if (!(ipif->ipif_flags & IPIF_UP)) 14796 continue; 14797 if (ipif->ipif_zoneid != zoneid && 14798 ipif->ipif_zoneid != ALL_ZONES && zoneid != ALL_ZONES) 14799 continue; 14800 if (ill->ill_isv6 ? 14801 IN6_IS_ADDR_UNSPECIFIED(&ipif->ipif_v6lcl_addr) : 14802 ipif->ipif_lcl_addr == INADDR_ANY) 14803 continue; 14804 ipif_refhold_locked(ipif); 14805 mutex_exit(&ill->ill_lock); 14806 return (ipif); 14807 } 14808 mutex_exit(&ill->ill_lock); 14809 return (NULL); 14810 } 14811 14812 /* 14813 * IP source address type, sorted from worst to best. For a given type, 14814 * always prefer IP addresses on the same subnet. All-zones addresses are 14815 * suboptimal because they pose problems with unlabeled destinations. 14816 */ 14817 typedef enum { 14818 IPIF_NONE, 14819 IPIF_DIFFNET_DEPRECATED, /* deprecated and different subnet */ 14820 IPIF_SAMENET_DEPRECATED, /* deprecated and same subnet */ 14821 IPIF_DIFFNET_ALLZONES, /* allzones and different subnet */ 14822 IPIF_SAMENET_ALLZONES, /* allzones and same subnet */ 14823 IPIF_DIFFNET, /* normal and different subnet */ 14824 IPIF_SAMENET, /* normal and same subnet */ 14825 IPIF_LOCALADDR /* local loopback */ 14826 } ipif_type_t; 14827 14828 /* 14829 * Pick the optimal ipif on `ill' for sending to destination `dst' from zone 14830 * `zoneid'. We rate usable ipifs from low -> high as per the ipif_type_t 14831 * enumeration, and return the highest-rated ipif. If there's a tie, we pick 14832 * the first one, unless IPMP is used in which case we round-robin among them; 14833 * see below for more. 14834 * 14835 * Returns NULL if there is no suitable source address for the ill. 14836 * This only occurs when there is no valid source address for the ill. 14837 */ 14838 ipif_t * 14839 ipif_select_source_v4(ill_t *ill, ipaddr_t dst, zoneid_t zoneid, 14840 boolean_t allow_usesrc, boolean_t *notreadyp) 14841 { 14842 ill_t *usill = NULL; 14843 ill_t *ipmp_ill = NULL; 14844 ipif_t *start_ipif, *next_ipif, *ipif, *best_ipif; 14845 ipif_type_t type, best_type; 14846 tsol_tpc_t *src_rhtp, *dst_rhtp; 14847 ip_stack_t *ipst = ill->ill_ipst; 14848 boolean_t samenet; 14849 14850 if (ill->ill_usesrc_ifindex != 0 && allow_usesrc) { 14851 usill = ill_lookup_on_ifindex(ill->ill_usesrc_ifindex, 14852 B_FALSE, ipst); 14853 if (usill != NULL) 14854 ill = usill; /* Select source from usesrc ILL */ 14855 else 14856 return (NULL); 14857 } 14858 14859 /* 14860 * Test addresses should never be used for source address selection, 14861 * so if we were passed one, switch to the IPMP meta-interface. 14862 */ 14863 if (IS_UNDER_IPMP(ill)) { 14864 if ((ipmp_ill = ipmp_ill_hold_ipmp_ill(ill)) != NULL) 14865 ill = ipmp_ill; /* Select source from IPMP ill */ 14866 else 14867 return (NULL); 14868 } 14869 14870 /* 14871 * If we're dealing with an unlabeled destination on a labeled system, 14872 * make sure that we ignore source addresses that are incompatible with 14873 * the destination's default label. That destination's default label 14874 * must dominate the minimum label on the source address. 14875 */ 14876 dst_rhtp = NULL; 14877 if (is_system_labeled()) { 14878 dst_rhtp = find_tpc(&dst, IPV4_VERSION, B_FALSE); 14879 if (dst_rhtp == NULL) 14880 return (NULL); 14881 if (dst_rhtp->tpc_tp.host_type != UNLABELED) { 14882 TPC_RELE(dst_rhtp); 14883 dst_rhtp = NULL; 14884 } 14885 } 14886 14887 /* 14888 * Hold the ill_g_lock as reader. This makes sure that no ipif/ill 14889 * can be deleted. But an ipif/ill can get CONDEMNED any time. 14890 * After selecting the right ipif, under ill_lock make sure ipif is 14891 * not condemned, and increment refcnt. If ipif is CONDEMNED, 14892 * we retry. Inside the loop we still need to check for CONDEMNED, 14893 * but not under a lock. 14894 */ 14895 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 14896 retry: 14897 /* 14898 * For source address selection, we treat the ipif list as circular 14899 * and continue until we get back to where we started. This allows 14900 * IPMP to vary source address selection (which improves inbound load 14901 * spreading) by caching its last ending point and starting from 14902 * there. NOTE: we don't have to worry about ill_src_ipif changing 14903 * ills since that can't happen on the IPMP ill. 14904 */ 14905 start_ipif = ill->ill_ipif; 14906 if (IS_IPMP(ill) && ill->ill_src_ipif != NULL) 14907 start_ipif = ill->ill_src_ipif; 14908 14909 ipif = start_ipif; 14910 best_ipif = NULL; 14911 best_type = IPIF_NONE; 14912 do { 14913 if ((next_ipif = ipif->ipif_next) == NULL) 14914 next_ipif = ill->ill_ipif; 14915 14916 if (IPIF_IS_CONDEMNED(ipif)) 14917 continue; 14918 /* Always skip NOLOCAL and ANYCAST interfaces */ 14919 if (ipif->ipif_flags & (IPIF_NOLOCAL|IPIF_ANYCAST)) 14920 continue; 14921 /* Always skip NOACCEPT interfaces */ 14922 if (ipif->ipif_ill->ill_flags & ILLF_NOACCEPT) 14923 continue; 14924 if (!(ipif->ipif_flags & IPIF_UP)) 14925 continue; 14926 14927 if (!ipif->ipif_addr_ready) { 14928 if (notreadyp != NULL) 14929 *notreadyp = B_TRUE; 14930 continue; 14931 } 14932 14933 if (zoneid != ALL_ZONES && 14934 ipif->ipif_zoneid != zoneid && 14935 ipif->ipif_zoneid != ALL_ZONES) 14936 continue; 14937 14938 /* 14939 * Interfaces with 0.0.0.0 address are allowed to be UP, but 14940 * are not valid as source addresses. 14941 */ 14942 if (ipif->ipif_lcl_addr == INADDR_ANY) 14943 continue; 14944 14945 /* 14946 * Check compatibility of local address for destination's 14947 * default label if we're on a labeled system. Incompatible 14948 * addresses can't be used at all. 14949 */ 14950 if (dst_rhtp != NULL) { 14951 boolean_t incompat; 14952 14953 src_rhtp = find_tpc(&ipif->ipif_lcl_addr, 14954 IPV4_VERSION, B_FALSE); 14955 if (src_rhtp == NULL) 14956 continue; 14957 incompat = src_rhtp->tpc_tp.host_type != SUN_CIPSO || 14958 src_rhtp->tpc_tp.tp_doi != 14959 dst_rhtp->tpc_tp.tp_doi || 14960 (!_blinrange(&dst_rhtp->tpc_tp.tp_def_label, 14961 &src_rhtp->tpc_tp.tp_sl_range_cipso) && 14962 !blinlset(&dst_rhtp->tpc_tp.tp_def_label, 14963 src_rhtp->tpc_tp.tp_sl_set_cipso)); 14964 TPC_RELE(src_rhtp); 14965 if (incompat) 14966 continue; 14967 } 14968 14969 samenet = ((ipif->ipif_net_mask & dst) == ipif->ipif_subnet); 14970 14971 if (ipif->ipif_lcl_addr == dst) { 14972 type = IPIF_LOCALADDR; 14973 } else if (ipif->ipif_flags & IPIF_DEPRECATED) { 14974 type = samenet ? IPIF_SAMENET_DEPRECATED : 14975 IPIF_DIFFNET_DEPRECATED; 14976 } else if (ipif->ipif_zoneid == ALL_ZONES) { 14977 type = samenet ? IPIF_SAMENET_ALLZONES : 14978 IPIF_DIFFNET_ALLZONES; 14979 } else { 14980 type = samenet ? IPIF_SAMENET : IPIF_DIFFNET; 14981 } 14982 14983 if (type > best_type) { 14984 best_type = type; 14985 best_ipif = ipif; 14986 if (best_type == IPIF_LOCALADDR) 14987 break; /* can't get better */ 14988 } 14989 } while ((ipif = next_ipif) != start_ipif); 14990 14991 if ((ipif = best_ipif) != NULL) { 14992 mutex_enter(&ipif->ipif_ill->ill_lock); 14993 if (IPIF_IS_CONDEMNED(ipif)) { 14994 mutex_exit(&ipif->ipif_ill->ill_lock); 14995 goto retry; 14996 } 14997 ipif_refhold_locked(ipif); 14998 14999 /* 15000 * For IPMP, update the source ipif rotor to the next ipif, 15001 * provided we can look it up. (We must not use it if it's 15002 * IPIF_CONDEMNED since we may have grabbed ill_g_lock after 15003 * ipif_free() checked ill_src_ipif.) 15004 */ 15005 if (IS_IPMP(ill) && ipif != NULL) { 15006 next_ipif = ipif->ipif_next; 15007 if (next_ipif != NULL && !IPIF_IS_CONDEMNED(next_ipif)) 15008 ill->ill_src_ipif = next_ipif; 15009 else 15010 ill->ill_src_ipif = NULL; 15011 } 15012 mutex_exit(&ipif->ipif_ill->ill_lock); 15013 } 15014 15015 rw_exit(&ipst->ips_ill_g_lock); 15016 if (usill != NULL) 15017 ill_refrele(usill); 15018 if (ipmp_ill != NULL) 15019 ill_refrele(ipmp_ill); 15020 if (dst_rhtp != NULL) 15021 TPC_RELE(dst_rhtp); 15022 15023 #ifdef DEBUG 15024 if (ipif == NULL) { 15025 char buf1[INET6_ADDRSTRLEN]; 15026 15027 ip1dbg(("ipif_select_source_v4(%s, %s) -> NULL\n", 15028 ill->ill_name, 15029 inet_ntop(AF_INET, &dst, buf1, sizeof (buf1)))); 15030 } else { 15031 char buf1[INET6_ADDRSTRLEN]; 15032 char buf2[INET6_ADDRSTRLEN]; 15033 15034 ip1dbg(("ipif_select_source_v4(%s, %s) -> %s\n", 15035 ipif->ipif_ill->ill_name, 15036 inet_ntop(AF_INET, &dst, buf1, sizeof (buf1)), 15037 inet_ntop(AF_INET, &ipif->ipif_lcl_addr, 15038 buf2, sizeof (buf2)))); 15039 } 15040 #endif /* DEBUG */ 15041 return (ipif); 15042 } 15043 15044 /* 15045 * Pick a source address based on the destination ill and an optional setsrc 15046 * address. 15047 * The result is stored in srcp. If generation is set, then put the source 15048 * generation number there before we look for the source address (to avoid 15049 * missing changes in the set of source addresses. 15050 * If flagsp is set, then us it to pass back ipif_flags. 15051 * 15052 * If the caller wants to cache the returned source address and detect when 15053 * that might be stale, the caller should pass in a generation argument, 15054 * which the caller can later compare against ips_src_generation 15055 * 15056 * The precedence order for selecting an IPv4 source address is: 15057 * - RTF_SETSRC on the offlink ire always wins. 15058 * - If usrsrc is set, swap the ill to be the usesrc one. 15059 * - If IPMP is used on the ill, select a random address from the most 15060 * preferred ones below: 15061 * 1. If onlink destination, same subnet and not deprecated, not ALL_ZONES 15062 * 2. Not deprecated, not ALL_ZONES 15063 * 3. If onlink destination, same subnet and not deprecated, ALL_ZONES 15064 * 4. Not deprecated, ALL_ZONES 15065 * 5. If onlink destination, same subnet and deprecated 15066 * 6. Deprecated. 15067 * 15068 * We have lower preference for ALL_ZONES IP addresses, 15069 * as they pose problems with unlabeled destinations. 15070 * 15071 * Note that when multiple IP addresses match e.g., #1 we pick 15072 * the first one if IPMP is not in use. With IPMP we randomize. 15073 */ 15074 int 15075 ip_select_source_v4(ill_t *ill, ipaddr_t setsrc, ipaddr_t dst, 15076 ipaddr_t multicast_ifaddr, 15077 zoneid_t zoneid, ip_stack_t *ipst, ipaddr_t *srcp, 15078 uint32_t *generation, uint64_t *flagsp) 15079 { 15080 ipif_t *ipif; 15081 boolean_t notready = B_FALSE; /* Set if !ipif_addr_ready found */ 15082 15083 if (flagsp != NULL) 15084 *flagsp = 0; 15085 15086 /* 15087 * Need to grab the generation number before we check to 15088 * avoid a race with a change to the set of local addresses. 15089 * No lock needed since the thread which updates the set of local 15090 * addresses use ipif/ill locks and exit those (hence a store memory 15091 * barrier) before doing the atomic increase of ips_src_generation. 15092 */ 15093 if (generation != NULL) { 15094 *generation = ipst->ips_src_generation; 15095 } 15096 15097 if (CLASSD(dst) && multicast_ifaddr != INADDR_ANY) { 15098 *srcp = multicast_ifaddr; 15099 return (0); 15100 } 15101 15102 /* Was RTF_SETSRC set on the first IRE in the recursive lookup? */ 15103 if (setsrc != INADDR_ANY) { 15104 *srcp = setsrc; 15105 return (0); 15106 } 15107 ipif = ipif_select_source_v4(ill, dst, zoneid, B_TRUE, ¬ready); 15108 if (ipif == NULL) { 15109 if (notready) 15110 return (ENETDOWN); 15111 else 15112 return (EADDRNOTAVAIL); 15113 } 15114 *srcp = ipif->ipif_lcl_addr; 15115 if (flagsp != NULL) 15116 *flagsp = ipif->ipif_flags; 15117 ipif_refrele(ipif); 15118 return (0); 15119 } 15120 15121 /* ARGSUSED */ 15122 int 15123 if_unitsel_restart(ipif_t *ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, 15124 ip_ioctl_cmd_t *ipip, void *dummy_ifreq) 15125 { 15126 /* 15127 * ill_phyint_reinit merged the v4 and v6 into a single 15128 * ipsq. We might not have been able to complete the 15129 * operation in ipif_set_values, if we could not become 15130 * exclusive. If so restart it here. 15131 */ 15132 return (ipif_set_values_tail(ipif->ipif_ill, ipif, mp, q)); 15133 } 15134 15135 /* 15136 * Can operate on either a module or a driver queue. 15137 * Returns an error if not a module queue. 15138 */ 15139 /* ARGSUSED */ 15140 int 15141 if_unitsel(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, 15142 ip_ioctl_cmd_t *ipip, void *dummy_ifreq) 15143 { 15144 queue_t *q1 = q; 15145 char *cp; 15146 char interf_name[LIFNAMSIZ]; 15147 uint_t ppa = *(uint_t *)mp->b_cont->b_cont->b_rptr; 15148 15149 if (q->q_next == NULL) { 15150 ip1dbg(( 15151 "if_unitsel: IF_UNITSEL: no q_next\n")); 15152 return (EINVAL); 15153 } 15154 15155 if (((ill_t *)(q->q_ptr))->ill_name[0] != '\0') 15156 return (EALREADY); 15157 15158 do { 15159 q1 = q1->q_next; 15160 } while (q1->q_next); 15161 cp = q1->q_qinfo->qi_minfo->mi_idname; 15162 (void) sprintf(interf_name, "%s%d", cp, ppa); 15163 15164 /* 15165 * Here we are not going to delay the ioack until after 15166 * ACKs from DL_ATTACH_REQ/DL_BIND_REQ. So no need to save the 15167 * original ioctl message before sending the requests. 15168 */ 15169 return (ipif_set_values(q, mp, interf_name, &ppa)); 15170 } 15171 15172 /* ARGSUSED */ 15173 int 15174 ip_sioctl_sifname(ipif_t *dummy_ipif, sin_t *dummy_sin, queue_t *q, mblk_t *mp, 15175 ip_ioctl_cmd_t *ipip, void *dummy_ifreq) 15176 { 15177 return (ENXIO); 15178 } 15179 15180 /* 15181 * Create any IRE_BROADCAST entries for `ipif', and store those entries in 15182 * `irep'. Returns a pointer to the next free `irep' entry 15183 * A mirror exists in ipif_delete_bcast_ires(). 15184 * 15185 * The management of any "extra" or seemingly duplicate IRE_BROADCASTs is 15186 * done in ire_add. 15187 */ 15188 static ire_t ** 15189 ipif_create_bcast_ires(ipif_t *ipif, ire_t **irep) 15190 { 15191 ipaddr_t addr; 15192 ipaddr_t netmask = ip_net_mask(ipif->ipif_lcl_addr); 15193 ipaddr_t subnetmask = ipif->ipif_net_mask; 15194 ill_t *ill = ipif->ipif_ill; 15195 zoneid_t zoneid = ipif->ipif_zoneid; 15196 15197 ip1dbg(("ipif_create_bcast_ires: creating broadcast IREs\n")); 15198 15199 ASSERT(ipif->ipif_flags & IPIF_BROADCAST); 15200 ASSERT(!(ipif->ipif_flags & IPIF_NOXMIT)); 15201 15202 if (ipif->ipif_lcl_addr == INADDR_ANY || 15203 (ipif->ipif_flags & IPIF_NOLOCAL)) 15204 netmask = htonl(IN_CLASSA_NET); /* fallback */ 15205 15206 irep = ire_create_bcast(ill, 0, zoneid, irep); 15207 irep = ire_create_bcast(ill, INADDR_BROADCAST, zoneid, irep); 15208 15209 /* 15210 * For backward compatibility, we create net broadcast IREs based on 15211 * the old "IP address class system", since some old machines only 15212 * respond to these class derived net broadcast. However, we must not 15213 * create these net broadcast IREs if the subnetmask is shorter than 15214 * the IP address class based derived netmask. Otherwise, we may 15215 * create a net broadcast address which is the same as an IP address 15216 * on the subnet -- and then TCP will refuse to talk to that address. 15217 */ 15218 if (netmask < subnetmask) { 15219 addr = netmask & ipif->ipif_subnet; 15220 irep = ire_create_bcast(ill, addr, zoneid, irep); 15221 irep = ire_create_bcast(ill, ~netmask | addr, zoneid, irep); 15222 } 15223 15224 /* 15225 * Don't create IRE_BROADCAST IREs for the interface if the subnetmask 15226 * is 0xFFFFFFFF, as an IRE_LOCAL for that interface is already 15227 * created. Creating these broadcast IREs will only create confusion 15228 * as `addr' will be the same as the IP address. 15229 */ 15230 if (subnetmask != 0xFFFFFFFF) { 15231 addr = ipif->ipif_subnet; 15232 irep = ire_create_bcast(ill, addr, zoneid, irep); 15233 irep = ire_create_bcast(ill, ~subnetmask | addr, zoneid, irep); 15234 } 15235 15236 return (irep); 15237 } 15238 15239 /* 15240 * Mirror of ipif_create_bcast_ires() 15241 */ 15242 static void 15243 ipif_delete_bcast_ires(ipif_t *ipif) 15244 { 15245 ipaddr_t addr; 15246 ipaddr_t netmask = ip_net_mask(ipif->ipif_lcl_addr); 15247 ipaddr_t subnetmask = ipif->ipif_net_mask; 15248 ill_t *ill = ipif->ipif_ill; 15249 zoneid_t zoneid = ipif->ipif_zoneid; 15250 ire_t *ire; 15251 15252 ASSERT(ipif->ipif_flags & IPIF_BROADCAST); 15253 ASSERT(!(ipif->ipif_flags & IPIF_NOXMIT)); 15254 15255 if (ipif->ipif_lcl_addr == INADDR_ANY || 15256 (ipif->ipif_flags & IPIF_NOLOCAL)) 15257 netmask = htonl(IN_CLASSA_NET); /* fallback */ 15258 15259 ire = ire_lookup_bcast(ill, 0, zoneid); 15260 ASSERT(ire != NULL); 15261 ire_delete(ire); ire_refrele(ire); 15262 ire = ire_lookup_bcast(ill, INADDR_BROADCAST, zoneid); 15263 ASSERT(ire != NULL); 15264 ire_delete(ire); ire_refrele(ire); 15265 15266 /* 15267 * For backward compatibility, we create net broadcast IREs based on 15268 * the old "IP address class system", since some old machines only 15269 * respond to these class derived net broadcast. However, we must not 15270 * create these net broadcast IREs if the subnetmask is shorter than 15271 * the IP address class based derived netmask. Otherwise, we may 15272 * create a net broadcast address which is the same as an IP address 15273 * on the subnet -- and then TCP will refuse to talk to that address. 15274 */ 15275 if (netmask < subnetmask) { 15276 addr = netmask & ipif->ipif_subnet; 15277 ire = ire_lookup_bcast(ill, addr, zoneid); 15278 ASSERT(ire != NULL); 15279 ire_delete(ire); ire_refrele(ire); 15280 ire = ire_lookup_bcast(ill, ~netmask | addr, zoneid); 15281 ASSERT(ire != NULL); 15282 ire_delete(ire); ire_refrele(ire); 15283 } 15284 15285 /* 15286 * Don't create IRE_BROADCAST IREs for the interface if the subnetmask 15287 * is 0xFFFFFFFF, as an IRE_LOCAL for that interface is already 15288 * created. Creating these broadcast IREs will only create confusion 15289 * as `addr' will be the same as the IP address. 15290 */ 15291 if (subnetmask != 0xFFFFFFFF) { 15292 addr = ipif->ipif_subnet; 15293 ire = ire_lookup_bcast(ill, addr, zoneid); 15294 ASSERT(ire != NULL); 15295 ire_delete(ire); ire_refrele(ire); 15296 ire = ire_lookup_bcast(ill, ~subnetmask | addr, zoneid); 15297 ASSERT(ire != NULL); 15298 ire_delete(ire); ire_refrele(ire); 15299 } 15300 } 15301 15302 /* 15303 * Extract both the flags (including IFF_CANTCHANGE) such as IFF_IPV* 15304 * from lifr_flags and the name from lifr_name. 15305 * Set IFF_IPV* and ill_isv6 prior to doing the lookup 15306 * since ipif_lookup_on_name uses the _isv6 flags when matching. 15307 * Returns EINPROGRESS when mp has been consumed by queueing it on 15308 * ipx_pending_mp and the ioctl will complete in ip_rput. 15309 * 15310 * Can operate on either a module or a driver queue. 15311 * Returns an error if not a module queue. 15312 */ 15313 /* ARGSUSED */ 15314 int 15315 ip_sioctl_slifname(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 15316 ip_ioctl_cmd_t *ipip, void *if_req) 15317 { 15318 ill_t *ill = q->q_ptr; 15319 phyint_t *phyi; 15320 ip_stack_t *ipst; 15321 struct lifreq *lifr = if_req; 15322 uint64_t new_flags; 15323 15324 ASSERT(ipif != NULL); 15325 ip1dbg(("ip_sioctl_slifname %s\n", lifr->lifr_name)); 15326 15327 if (q->q_next == NULL) { 15328 ip1dbg(("if_sioctl_slifname: SIOCSLIFNAME: no q_next\n")); 15329 return (EINVAL); 15330 } 15331 15332 /* 15333 * If we are not writer on 'q' then this interface exists already 15334 * and previous lookups (ip_extract_lifreq()) found this ipif -- 15335 * so return EALREADY. 15336 */ 15337 if (ill != ipif->ipif_ill) 15338 return (EALREADY); 15339 15340 if (ill->ill_name[0] != '\0') 15341 return (EALREADY); 15342 15343 /* 15344 * If there's another ill already with the requested name, ensure 15345 * that it's of the same type. Otherwise, ill_phyint_reinit() will 15346 * fuse together two unrelated ills, which will cause chaos. 15347 */ 15348 ipst = ill->ill_ipst; 15349 phyi = avl_find(&ipst->ips_phyint_g_list->phyint_list_avl_by_name, 15350 lifr->lifr_name, NULL); 15351 if (phyi != NULL) { 15352 ill_t *ill_mate = phyi->phyint_illv4; 15353 15354 if (ill_mate == NULL) 15355 ill_mate = phyi->phyint_illv6; 15356 ASSERT(ill_mate != NULL); 15357 15358 if (ill_mate->ill_media->ip_m_mac_type != 15359 ill->ill_media->ip_m_mac_type) { 15360 ip1dbg(("if_sioctl_slifname: SIOCSLIFNAME: attempt to " 15361 "use the same ill name on differing media\n")); 15362 return (EINVAL); 15363 } 15364 } 15365 15366 /* 15367 * We start off as IFF_IPV4 in ipif_allocate and become 15368 * IFF_IPV4 or IFF_IPV6 here depending on lifr_flags value. 15369 * The only flags that we read from user space are IFF_IPV4, 15370 * IFF_IPV6, and IFF_BROADCAST. 15371 * 15372 * This ill has not been inserted into the global list. 15373 * So we are still single threaded and don't need any lock 15374 * 15375 * Saniy check the flags. 15376 */ 15377 15378 if ((lifr->lifr_flags & IFF_BROADCAST) && 15379 ((lifr->lifr_flags & IFF_IPV6) || 15380 (!ill->ill_needs_attach && ill->ill_bcast_addr_length == 0))) { 15381 ip1dbg(("ip_sioctl_slifname: link not broadcast capable " 15382 "or IPv6 i.e., no broadcast \n")); 15383 return (EINVAL); 15384 } 15385 15386 new_flags = 15387 lifr->lifr_flags & (IFF_IPV6|IFF_IPV4|IFF_BROADCAST); 15388 15389 if ((new_flags ^ (IFF_IPV6|IFF_IPV4)) == 0) { 15390 ip1dbg(("ip_sioctl_slifname: flags must be exactly one of " 15391 "IFF_IPV4 or IFF_IPV6\n")); 15392 return (EINVAL); 15393 } 15394 15395 /* 15396 * We always start off as IPv4, so only need to check for IPv6. 15397 */ 15398 if ((new_flags & IFF_IPV6) != 0) { 15399 ill->ill_flags |= ILLF_IPV6; 15400 ill->ill_flags &= ~ILLF_IPV4; 15401 } 15402 15403 if ((new_flags & IFF_BROADCAST) != 0) 15404 ipif->ipif_flags |= IPIF_BROADCAST; 15405 else 15406 ipif->ipif_flags &= ~IPIF_BROADCAST; 15407 15408 /* We started off as V4. */ 15409 if (ill->ill_flags & ILLF_IPV6) { 15410 ill->ill_phyint->phyint_illv6 = ill; 15411 ill->ill_phyint->phyint_illv4 = NULL; 15412 } 15413 15414 return (ipif_set_values(q, mp, lifr->lifr_name, &lifr->lifr_ppa)); 15415 } 15416 15417 /* ARGSUSED */ 15418 int 15419 ip_sioctl_slifname_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 15420 ip_ioctl_cmd_t *ipip, void *if_req) 15421 { 15422 /* 15423 * ill_phyint_reinit merged the v4 and v6 into a single 15424 * ipsq. We might not have been able to complete the 15425 * slifname in ipif_set_values, if we could not become 15426 * exclusive. If so restart it here 15427 */ 15428 return (ipif_set_values_tail(ipif->ipif_ill, ipif, mp, q)); 15429 } 15430 15431 /* 15432 * Return a pointer to the ipif which matches the index, IP version type and 15433 * zoneid. 15434 */ 15435 ipif_t * 15436 ipif_lookup_on_ifindex(uint_t index, boolean_t isv6, zoneid_t zoneid, 15437 ip_stack_t *ipst) 15438 { 15439 ill_t *ill; 15440 ipif_t *ipif = NULL; 15441 15442 ill = ill_lookup_on_ifindex(index, isv6, ipst); 15443 if (ill != NULL) { 15444 mutex_enter(&ill->ill_lock); 15445 for (ipif = ill->ill_ipif; ipif != NULL; 15446 ipif = ipif->ipif_next) { 15447 if (!IPIF_IS_CONDEMNED(ipif) && (zoneid == ALL_ZONES || 15448 zoneid == ipif->ipif_zoneid || 15449 ipif->ipif_zoneid == ALL_ZONES)) { 15450 ipif_refhold_locked(ipif); 15451 break; 15452 } 15453 } 15454 mutex_exit(&ill->ill_lock); 15455 ill_refrele(ill); 15456 } 15457 return (ipif); 15458 } 15459 15460 /* 15461 * Change an existing physical interface's index. If the new index 15462 * is acceptable we update the index and the phyint_list_avl_by_index tree. 15463 * Finally, we update other systems which may have a dependence on the 15464 * index value. 15465 */ 15466 /* ARGSUSED */ 15467 int 15468 ip_sioctl_slifindex(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 15469 ip_ioctl_cmd_t *ipip, void *ifreq) 15470 { 15471 ill_t *ill; 15472 phyint_t *phyi; 15473 struct ifreq *ifr = (struct ifreq *)ifreq; 15474 struct lifreq *lifr = (struct lifreq *)ifreq; 15475 uint_t old_index, index; 15476 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; 15477 avl_index_t where; 15478 15479 if (ipip->ipi_cmd_type == IF_CMD) 15480 index = ifr->ifr_index; 15481 else 15482 index = lifr->lifr_index; 15483 15484 /* 15485 * Only allow on physical interface. Also, index zero is illegal. 15486 */ 15487 ill = ipif->ipif_ill; 15488 phyi = ill->ill_phyint; 15489 if (ipif->ipif_id != 0 || index == 0) { 15490 return (EINVAL); 15491 } 15492 15493 /* If the index is not changing, no work to do */ 15494 if (phyi->phyint_ifindex == index) 15495 return (0); 15496 15497 /* 15498 * Use phyint_exists() to determine if the new interface index 15499 * is already in use. If the index is unused then we need to 15500 * change the phyint's position in the phyint_list_avl_by_index 15501 * tree. If we do not do this, subsequent lookups (using the new 15502 * index value) will not find the phyint. 15503 */ 15504 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 15505 if (phyint_exists(index, ipst)) { 15506 rw_exit(&ipst->ips_ill_g_lock); 15507 return (EEXIST); 15508 } 15509 15510 /* 15511 * The new index is unused. Set it in the phyint. However we must not 15512 * forget to trigger NE_IFINDEX_CHANGE event before the ifindex 15513 * changes. The event must be bound to old ifindex value. 15514 */ 15515 ill_nic_event_dispatch(ill, 0, NE_IFINDEX_CHANGE, 15516 &index, sizeof (index)); 15517 15518 old_index = phyi->phyint_ifindex; 15519 phyi->phyint_ifindex = index; 15520 15521 avl_remove(&ipst->ips_phyint_g_list->phyint_list_avl_by_index, phyi); 15522 (void) avl_find(&ipst->ips_phyint_g_list->phyint_list_avl_by_index, 15523 &index, &where); 15524 avl_insert(&ipst->ips_phyint_g_list->phyint_list_avl_by_index, 15525 phyi, where); 15526 rw_exit(&ipst->ips_ill_g_lock); 15527 15528 /* Update SCTP's ILL list */ 15529 sctp_ill_reindex(ill, old_index); 15530 15531 /* Send the routing sockets message */ 15532 ip_rts_ifmsg(ipif, RTSQ_DEFAULT); 15533 if (ILL_OTHER(ill)) 15534 ip_rts_ifmsg(ILL_OTHER(ill)->ill_ipif, RTSQ_DEFAULT); 15535 15536 /* Perhaps ilgs should use this ill */ 15537 update_conn_ill(NULL, ill->ill_ipst); 15538 return (0); 15539 } 15540 15541 /* ARGSUSED */ 15542 int 15543 ip_sioctl_get_lifindex(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 15544 ip_ioctl_cmd_t *ipip, void *ifreq) 15545 { 15546 struct ifreq *ifr = (struct ifreq *)ifreq; 15547 struct lifreq *lifr = (struct lifreq *)ifreq; 15548 15549 ip1dbg(("ip_sioctl_get_lifindex(%s:%u %p)\n", 15550 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 15551 /* Get the interface index */ 15552 if (ipip->ipi_cmd_type == IF_CMD) { 15553 ifr->ifr_index = ipif->ipif_ill->ill_phyint->phyint_ifindex; 15554 } else { 15555 lifr->lifr_index = ipif->ipif_ill->ill_phyint->phyint_ifindex; 15556 } 15557 return (0); 15558 } 15559 15560 /* ARGSUSED */ 15561 int 15562 ip_sioctl_get_lifzone(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 15563 ip_ioctl_cmd_t *ipip, void *ifreq) 15564 { 15565 struct lifreq *lifr = (struct lifreq *)ifreq; 15566 15567 ip1dbg(("ip_sioctl_get_lifzone(%s:%u %p)\n", 15568 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 15569 /* Get the interface zone */ 15570 ASSERT(ipip->ipi_cmd_type == LIF_CMD); 15571 lifr->lifr_zoneid = ipif->ipif_zoneid; 15572 return (0); 15573 } 15574 15575 /* 15576 * Set the zoneid of an interface. 15577 */ 15578 /* ARGSUSED */ 15579 int 15580 ip_sioctl_slifzone(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 15581 ip_ioctl_cmd_t *ipip, void *ifreq) 15582 { 15583 struct lifreq *lifr = (struct lifreq *)ifreq; 15584 int err = 0; 15585 boolean_t need_up = B_FALSE; 15586 zone_t *zptr; 15587 zone_status_t status; 15588 zoneid_t zoneid; 15589 15590 ASSERT(ipip->ipi_cmd_type == LIF_CMD); 15591 if ((zoneid = lifr->lifr_zoneid) == ALL_ZONES) { 15592 if (!is_system_labeled()) 15593 return (ENOTSUP); 15594 zoneid = GLOBAL_ZONEID; 15595 } 15596 15597 /* cannot assign instance zero to a non-global zone */ 15598 if (ipif->ipif_id == 0 && zoneid != GLOBAL_ZONEID) 15599 return (ENOTSUP); 15600 15601 /* 15602 * Cannot assign to a zone that doesn't exist or is shutting down. In 15603 * the event of a race with the zone shutdown processing, since IP 15604 * serializes this ioctl and SIOCGLIFCONF/SIOCLIFREMOVEIF, we know the 15605 * interface will be cleaned up even if the zone is shut down 15606 * immediately after the status check. If the interface can't be brought 15607 * down right away, and the zone is shut down before the restart 15608 * function is called, we resolve the possible races by rechecking the 15609 * zone status in the restart function. 15610 */ 15611 if ((zptr = zone_find_by_id(zoneid)) == NULL) 15612 return (EINVAL); 15613 status = zone_status_get(zptr); 15614 zone_rele(zptr); 15615 15616 if (status != ZONE_IS_READY && status != ZONE_IS_RUNNING) 15617 return (EINVAL); 15618 15619 if (ipif->ipif_flags & IPIF_UP) { 15620 /* 15621 * If the interface is already marked up, 15622 * we call ipif_down which will take care 15623 * of ditching any IREs that have been set 15624 * up based on the old interface address. 15625 */ 15626 err = ipif_logical_down(ipif, q, mp); 15627 if (err == EINPROGRESS) 15628 return (err); 15629 (void) ipif_down_tail(ipif); 15630 need_up = B_TRUE; 15631 } 15632 15633 err = ip_sioctl_slifzone_tail(ipif, lifr->lifr_zoneid, q, mp, need_up); 15634 return (err); 15635 } 15636 15637 static int 15638 ip_sioctl_slifzone_tail(ipif_t *ipif, zoneid_t zoneid, 15639 queue_t *q, mblk_t *mp, boolean_t need_up) 15640 { 15641 int err = 0; 15642 ip_stack_t *ipst; 15643 15644 ip1dbg(("ip_sioctl_zoneid_tail(%s:%u %p)\n", 15645 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 15646 15647 if (CONN_Q(q)) 15648 ipst = CONNQ_TO_IPST(q); 15649 else 15650 ipst = ILLQ_TO_IPST(q); 15651 15652 /* 15653 * For exclusive stacks we don't allow a different zoneid than 15654 * global. 15655 */ 15656 if (ipst->ips_netstack->netstack_stackid != GLOBAL_NETSTACKID && 15657 zoneid != GLOBAL_ZONEID) 15658 return (EINVAL); 15659 15660 /* Set the new zone id. */ 15661 ipif->ipif_zoneid = zoneid; 15662 15663 /* Update sctp list */ 15664 sctp_update_ipif(ipif, SCTP_IPIF_UPDATE); 15665 15666 /* The default multicast interface might have changed */ 15667 ire_increment_multicast_generation(ipst, ipif->ipif_ill->ill_isv6); 15668 15669 if (need_up) { 15670 /* 15671 * Now bring the interface back up. If this 15672 * is the only IPIF for the ILL, ipif_up 15673 * will have to re-bind to the device, so 15674 * we may get back EINPROGRESS, in which 15675 * case, this IOCTL will get completed in 15676 * ip_rput_dlpi when we see the DL_BIND_ACK. 15677 */ 15678 err = ipif_up(ipif, q, mp); 15679 } 15680 return (err); 15681 } 15682 15683 /* ARGSUSED */ 15684 int 15685 ip_sioctl_slifzone_restart(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 15686 ip_ioctl_cmd_t *ipip, void *if_req) 15687 { 15688 struct lifreq *lifr = (struct lifreq *)if_req; 15689 zoneid_t zoneid; 15690 zone_t *zptr; 15691 zone_status_t status; 15692 15693 ASSERT(ipip->ipi_cmd_type == LIF_CMD); 15694 if ((zoneid = lifr->lifr_zoneid) == ALL_ZONES) 15695 zoneid = GLOBAL_ZONEID; 15696 15697 ip1dbg(("ip_sioctl_slifzone_restart(%s:%u %p)\n", 15698 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 15699 15700 /* 15701 * We recheck the zone status to resolve the following race condition: 15702 * 1) process sends SIOCSLIFZONE to put hme0:1 in zone "myzone"; 15703 * 2) hme0:1 is up and can't be brought down right away; 15704 * ip_sioctl_slifzone() returns EINPROGRESS and the request is queued; 15705 * 3) zone "myzone" is halted; the zone status switches to 15706 * 'shutting_down' and the zones framework sends SIOCGLIFCONF to list 15707 * the interfaces to remove - hme0:1 is not returned because it's not 15708 * yet in "myzone", so it won't be removed; 15709 * 4) the restart function for SIOCSLIFZONE is called; without the 15710 * status check here, we would have hme0:1 in "myzone" after it's been 15711 * destroyed. 15712 * Note that if the status check fails, we need to bring the interface 15713 * back to its state prior to ip_sioctl_slifzone(), hence the call to 15714 * ipif_up_done[_v6](). 15715 */ 15716 status = ZONE_IS_UNINITIALIZED; 15717 if ((zptr = zone_find_by_id(zoneid)) != NULL) { 15718 status = zone_status_get(zptr); 15719 zone_rele(zptr); 15720 } 15721 if (status != ZONE_IS_READY && status != ZONE_IS_RUNNING) { 15722 if (ipif->ipif_isv6) { 15723 (void) ipif_up_done_v6(ipif); 15724 } else { 15725 (void) ipif_up_done(ipif); 15726 } 15727 return (EINVAL); 15728 } 15729 15730 (void) ipif_down_tail(ipif); 15731 15732 return (ip_sioctl_slifzone_tail(ipif, lifr->lifr_zoneid, q, mp, 15733 B_TRUE)); 15734 } 15735 15736 /* 15737 * Return the number of addresses on `ill' with one or more of the values 15738 * in `set' set and all of the values in `clear' clear. 15739 */ 15740 static uint_t 15741 ill_flagaddr_cnt(const ill_t *ill, uint64_t set, uint64_t clear) 15742 { 15743 ipif_t *ipif; 15744 uint_t cnt = 0; 15745 15746 ASSERT(IAM_WRITER_ILL(ill)); 15747 15748 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) 15749 if ((ipif->ipif_flags & set) && !(ipif->ipif_flags & clear)) 15750 cnt++; 15751 15752 return (cnt); 15753 } 15754 15755 /* 15756 * Return the number of migratable addresses on `ill' that are under 15757 * application control. 15758 */ 15759 uint_t 15760 ill_appaddr_cnt(const ill_t *ill) 15761 { 15762 return (ill_flagaddr_cnt(ill, IPIF_DHCPRUNNING | IPIF_ADDRCONF, 15763 IPIF_NOFAILOVER)); 15764 } 15765 15766 /* 15767 * Return the number of point-to-point addresses on `ill'. 15768 */ 15769 uint_t 15770 ill_ptpaddr_cnt(const ill_t *ill) 15771 { 15772 return (ill_flagaddr_cnt(ill, IPIF_POINTOPOINT, 0)); 15773 } 15774 15775 /* ARGSUSED */ 15776 int 15777 ip_sioctl_get_lifusesrc(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 15778 ip_ioctl_cmd_t *ipip, void *ifreq) 15779 { 15780 struct lifreq *lifr = ifreq; 15781 15782 ASSERT(q->q_next == NULL); 15783 ASSERT(CONN_Q(q)); 15784 15785 ip1dbg(("ip_sioctl_get_lifusesrc(%s:%u %p)\n", 15786 ipif->ipif_ill->ill_name, ipif->ipif_id, (void *)ipif)); 15787 lifr->lifr_index = ipif->ipif_ill->ill_usesrc_ifindex; 15788 ip1dbg(("ip_sioctl_get_lifusesrc:lifr_index = %d\n", lifr->lifr_index)); 15789 15790 return (0); 15791 } 15792 15793 /* Find the previous ILL in this usesrc group */ 15794 static ill_t * 15795 ill_prev_usesrc(ill_t *uill) 15796 { 15797 ill_t *ill; 15798 15799 for (ill = uill->ill_usesrc_grp_next; 15800 ASSERT(ill), ill->ill_usesrc_grp_next != uill; 15801 ill = ill->ill_usesrc_grp_next) 15802 /* do nothing */; 15803 return (ill); 15804 } 15805 15806 /* 15807 * Release all members of the usesrc group. This routine is called 15808 * from ill_delete when the interface being unplumbed is the 15809 * group head. 15810 * 15811 * This silently clears the usesrc that ifconfig setup. 15812 * An alternative would be to keep that ifindex, and drop packets on the floor 15813 * since no source address can be selected. 15814 * Even if we keep the current semantics, don't need a lock and a linked list. 15815 * Can walk all the ills checking if they have a ill_usesrc_ifindex matching 15816 * the one that is being removed. Issue is how we return the usesrc users 15817 * (SIOCGLIFSRCOF). We want to be able to find the ills which have an 15818 * ill_usesrc_ifindex matching a target ill. We could also do that with an 15819 * ill walk, but the walker would need to insert in the ioctl response. 15820 */ 15821 static void 15822 ill_disband_usesrc_group(ill_t *uill) 15823 { 15824 ill_t *next_ill, *tmp_ill; 15825 ip_stack_t *ipst = uill->ill_ipst; 15826 15827 ASSERT(RW_WRITE_HELD(&ipst->ips_ill_g_usesrc_lock)); 15828 next_ill = uill->ill_usesrc_grp_next; 15829 15830 do { 15831 ASSERT(next_ill != NULL); 15832 tmp_ill = next_ill->ill_usesrc_grp_next; 15833 ASSERT(tmp_ill != NULL); 15834 next_ill->ill_usesrc_grp_next = NULL; 15835 next_ill->ill_usesrc_ifindex = 0; 15836 next_ill = tmp_ill; 15837 } while (next_ill->ill_usesrc_ifindex != 0); 15838 uill->ill_usesrc_grp_next = NULL; 15839 } 15840 15841 /* 15842 * Remove the client usesrc ILL from the list and relink to a new list 15843 */ 15844 int 15845 ill_relink_usesrc_ills(ill_t *ucill, ill_t *uill, uint_t ifindex) 15846 { 15847 ill_t *ill, *tmp_ill; 15848 ip_stack_t *ipst = ucill->ill_ipst; 15849 15850 ASSERT((ucill != NULL) && (ucill->ill_usesrc_grp_next != NULL) && 15851 (uill != NULL) && RW_WRITE_HELD(&ipst->ips_ill_g_usesrc_lock)); 15852 15853 /* 15854 * Check if the usesrc client ILL passed in is not already 15855 * in use as a usesrc ILL i.e one whose source address is 15856 * in use OR a usesrc ILL is not already in use as a usesrc 15857 * client ILL 15858 */ 15859 if ((ucill->ill_usesrc_ifindex == 0) || 15860 (uill->ill_usesrc_ifindex != 0)) { 15861 return (-1); 15862 } 15863 15864 ill = ill_prev_usesrc(ucill); 15865 ASSERT(ill->ill_usesrc_grp_next != NULL); 15866 15867 /* Remove from the current list */ 15868 if (ill->ill_usesrc_grp_next->ill_usesrc_grp_next == ill) { 15869 /* Only two elements in the list */ 15870 ASSERT(ill->ill_usesrc_ifindex == 0); 15871 ill->ill_usesrc_grp_next = NULL; 15872 } else { 15873 ill->ill_usesrc_grp_next = ucill->ill_usesrc_grp_next; 15874 } 15875 15876 if (ifindex == 0) { 15877 ucill->ill_usesrc_ifindex = 0; 15878 ucill->ill_usesrc_grp_next = NULL; 15879 return (0); 15880 } 15881 15882 ucill->ill_usesrc_ifindex = ifindex; 15883 tmp_ill = uill->ill_usesrc_grp_next; 15884 uill->ill_usesrc_grp_next = ucill; 15885 ucill->ill_usesrc_grp_next = 15886 (tmp_ill != NULL) ? tmp_ill : uill; 15887 return (0); 15888 } 15889 15890 /* 15891 * Set the ill_usesrc and ill_usesrc_head fields. See synchronization notes in 15892 * ip.c for locking details. 15893 */ 15894 /* ARGSUSED */ 15895 int 15896 ip_sioctl_slifusesrc(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 15897 ip_ioctl_cmd_t *ipip, void *ifreq) 15898 { 15899 struct lifreq *lifr = (struct lifreq *)ifreq; 15900 boolean_t isv6 = B_FALSE, reset_flg = B_FALSE; 15901 ill_t *usesrc_ill, *usesrc_cli_ill = ipif->ipif_ill; 15902 int err = 0, ret; 15903 uint_t ifindex; 15904 ipsq_t *ipsq = NULL; 15905 ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; 15906 15907 ASSERT(IAM_WRITER_IPIF(ipif)); 15908 ASSERT(q->q_next == NULL); 15909 ASSERT(CONN_Q(q)); 15910 15911 isv6 = (Q_TO_CONN(q))->conn_family == AF_INET6; 15912 15913 ifindex = lifr->lifr_index; 15914 if (ifindex == 0) { 15915 if (usesrc_cli_ill->ill_usesrc_grp_next == NULL) { 15916 /* non usesrc group interface, nothing to reset */ 15917 return (0); 15918 } 15919 ifindex = usesrc_cli_ill->ill_usesrc_ifindex; 15920 /* valid reset request */ 15921 reset_flg = B_TRUE; 15922 } 15923 15924 usesrc_ill = ill_lookup_on_ifindex(ifindex, isv6, ipst); 15925 if (usesrc_ill == NULL) { 15926 return (ENXIO); 15927 } 15928 15929 ipsq = ipsq_try_enter(NULL, usesrc_ill, q, mp, ip_process_ioctl, 15930 NEW_OP, B_TRUE); 15931 if (ipsq == NULL) { 15932 err = EINPROGRESS; 15933 /* Operation enqueued on the ipsq of the usesrc ILL */ 15934 goto done; 15935 } 15936 15937 /* USESRC isn't currently supported with IPMP */ 15938 if (IS_IPMP(usesrc_ill) || IS_UNDER_IPMP(usesrc_ill)) { 15939 err = ENOTSUP; 15940 goto done; 15941 } 15942 15943 /* 15944 * USESRC isn't compatible with the STANDBY flag. (STANDBY is only 15945 * used by IPMP underlying interfaces, but someone might think it's 15946 * more general and try to use it independently with VNI.) 15947 */ 15948 if (usesrc_ill->ill_phyint->phyint_flags & PHYI_STANDBY) { 15949 err = ENOTSUP; 15950 goto done; 15951 } 15952 15953 /* 15954 * If the client is already in use as a usesrc_ill or a usesrc_ill is 15955 * already a client then return EINVAL 15956 */ 15957 if (IS_USESRC_ILL(usesrc_cli_ill) || IS_USESRC_CLI_ILL(usesrc_ill)) { 15958 err = EINVAL; 15959 goto done; 15960 } 15961 15962 /* 15963 * If the ill_usesrc_ifindex field is already set to what it needs to 15964 * be then this is a duplicate operation. 15965 */ 15966 if (!reset_flg && usesrc_cli_ill->ill_usesrc_ifindex == ifindex) { 15967 err = 0; 15968 goto done; 15969 } 15970 15971 ip1dbg(("ip_sioctl_slifusesrc: usesrc_cli_ill %s, usesrc_ill %s," 15972 " v6 = %d", usesrc_cli_ill->ill_name, usesrc_ill->ill_name, 15973 usesrc_ill->ill_isv6)); 15974 15975 /* 15976 * ill_g_usesrc_lock global lock protects the ill_usesrc_grp_next 15977 * and the ill_usesrc_ifindex fields 15978 */ 15979 rw_enter(&ipst->ips_ill_g_usesrc_lock, RW_WRITER); 15980 15981 if (reset_flg) { 15982 ret = ill_relink_usesrc_ills(usesrc_cli_ill, usesrc_ill, 0); 15983 if (ret != 0) { 15984 err = EINVAL; 15985 } 15986 rw_exit(&ipst->ips_ill_g_usesrc_lock); 15987 goto done; 15988 } 15989 15990 /* 15991 * Four possibilities to consider: 15992 * 1. Both usesrc_ill and usesrc_cli_ill are not part of any usesrc grp 15993 * 2. usesrc_ill is part of a group but usesrc_cli_ill isn't 15994 * 3. usesrc_cli_ill is part of a group but usesrc_ill isn't 15995 * 4. Both are part of their respective usesrc groups 15996 */ 15997 if ((usesrc_ill->ill_usesrc_grp_next == NULL) && 15998 (usesrc_cli_ill->ill_usesrc_grp_next == NULL)) { 15999 ASSERT(usesrc_ill->ill_usesrc_ifindex == 0); 16000 usesrc_cli_ill->ill_usesrc_ifindex = ifindex; 16001 usesrc_ill->ill_usesrc_grp_next = usesrc_cli_ill; 16002 usesrc_cli_ill->ill_usesrc_grp_next = usesrc_ill; 16003 } else if ((usesrc_ill->ill_usesrc_grp_next != NULL) && 16004 (usesrc_cli_ill->ill_usesrc_grp_next == NULL)) { 16005 usesrc_cli_ill->ill_usesrc_ifindex = ifindex; 16006 /* Insert at head of list */ 16007 usesrc_cli_ill->ill_usesrc_grp_next = 16008 usesrc_ill->ill_usesrc_grp_next; 16009 usesrc_ill->ill_usesrc_grp_next = usesrc_cli_ill; 16010 } else { 16011 ret = ill_relink_usesrc_ills(usesrc_cli_ill, usesrc_ill, 16012 ifindex); 16013 if (ret != 0) 16014 err = EINVAL; 16015 } 16016 rw_exit(&ipst->ips_ill_g_usesrc_lock); 16017 16018 done: 16019 if (ipsq != NULL) 16020 ipsq_exit(ipsq); 16021 /* The refrele on the lifr_name ipif is done by ip_process_ioctl */ 16022 ill_refrele(usesrc_ill); 16023 16024 /* Let conn_ixa caching know that source address selection changed */ 16025 ip_update_source_selection(ipst); 16026 16027 return (err); 16028 } 16029 16030 /* 16031 * comparison function used by avl. 16032 */ 16033 static int 16034 ill_phyint_compare_index(const void *index_ptr, const void *phyip) 16035 { 16036 16037 uint_t index; 16038 16039 ASSERT(phyip != NULL && index_ptr != NULL); 16040 16041 index = *((uint_t *)index_ptr); 16042 /* 16043 * let the phyint with the lowest index be on top. 16044 */ 16045 if (((phyint_t *)phyip)->phyint_ifindex < index) 16046 return (1); 16047 if (((phyint_t *)phyip)->phyint_ifindex > index) 16048 return (-1); 16049 return (0); 16050 } 16051 16052 /* 16053 * comparison function used by avl. 16054 */ 16055 static int 16056 ill_phyint_compare_name(const void *name_ptr, const void *phyip) 16057 { 16058 ill_t *ill; 16059 int res = 0; 16060 16061 ASSERT(phyip != NULL && name_ptr != NULL); 16062 16063 if (((phyint_t *)phyip)->phyint_illv4) 16064 ill = ((phyint_t *)phyip)->phyint_illv4; 16065 else 16066 ill = ((phyint_t *)phyip)->phyint_illv6; 16067 ASSERT(ill != NULL); 16068 16069 res = strcmp(ill->ill_name, (char *)name_ptr); 16070 if (res > 0) 16071 return (1); 16072 else if (res < 0) 16073 return (-1); 16074 return (0); 16075 } 16076 16077 /* 16078 * This function is called on the unplumb path via ill_glist_delete() when 16079 * there are no ills left on the phyint and thus the phyint can be freed. 16080 */ 16081 static void 16082 phyint_free(phyint_t *phyi) 16083 { 16084 ip_stack_t *ipst = PHYINT_TO_IPST(phyi); 16085 16086 ASSERT(phyi->phyint_illv4 == NULL && phyi->phyint_illv6 == NULL); 16087 16088 /* 16089 * If this phyint was an IPMP meta-interface, blow away the group. 16090 * This is safe to do because all of the illgrps have already been 16091 * removed by I_PUNLINK, and thus SIOCSLIFGROUPNAME cannot find us. 16092 * If we're cleaning up as a result of failed initialization, 16093 * phyint_grp may be NULL. 16094 */ 16095 if ((phyi->phyint_flags & PHYI_IPMP) && (phyi->phyint_grp != NULL)) { 16096 rw_enter(&ipst->ips_ipmp_lock, RW_WRITER); 16097 ipmp_grp_destroy(phyi->phyint_grp); 16098 phyi->phyint_grp = NULL; 16099 rw_exit(&ipst->ips_ipmp_lock); 16100 } 16101 16102 /* 16103 * If this interface was under IPMP, take it out of the group. 16104 */ 16105 if (phyi->phyint_grp != NULL) 16106 ipmp_phyint_leave_grp(phyi); 16107 16108 /* 16109 * Delete the phyint and disassociate its ipsq. The ipsq itself 16110 * will be freed in ipsq_exit(). 16111 */ 16112 phyi->phyint_ipsq->ipsq_phyint = NULL; 16113 phyi->phyint_name[0] = '\0'; 16114 16115 mi_free(phyi); 16116 } 16117 16118 /* 16119 * Attach the ill to the phyint structure which can be shared by both 16120 * IPv4 and IPv6 ill. ill_init allocates a phyint to just hold flags. This 16121 * function is called from ipif_set_values and ill_lookup_on_name (for 16122 * loopback) where we know the name of the ill. We lookup the ill and if 16123 * there is one present already with the name use that phyint. Otherwise 16124 * reuse the one allocated by ill_init. 16125 */ 16126 static void 16127 ill_phyint_reinit(ill_t *ill) 16128 { 16129 boolean_t isv6 = ill->ill_isv6; 16130 phyint_t *phyi_old; 16131 phyint_t *phyi; 16132 avl_index_t where = 0; 16133 ill_t *ill_other = NULL; 16134 ip_stack_t *ipst = ill->ill_ipst; 16135 16136 ASSERT(RW_WRITE_HELD(&ipst->ips_ill_g_lock)); 16137 16138 phyi_old = ill->ill_phyint; 16139 ASSERT(isv6 || (phyi_old->phyint_illv4 == ill && 16140 phyi_old->phyint_illv6 == NULL)); 16141 ASSERT(!isv6 || (phyi_old->phyint_illv6 == ill && 16142 phyi_old->phyint_illv4 == NULL)); 16143 ASSERT(phyi_old->phyint_ifindex == 0); 16144 16145 /* 16146 * Now that our ill has a name, set it in the phyint. 16147 */ 16148 (void) strlcpy(ill->ill_phyint->phyint_name, ill->ill_name, LIFNAMSIZ); 16149 16150 phyi = avl_find(&ipst->ips_phyint_g_list->phyint_list_avl_by_name, 16151 ill->ill_name, &where); 16152 16153 /* 16154 * 1. We grabbed the ill_g_lock before inserting this ill into 16155 * the global list of ills. So no other thread could have located 16156 * this ill and hence the ipsq of this ill is guaranteed to be empty. 16157 * 2. Now locate the other protocol instance of this ill. 16158 * 3. Now grab both ill locks in the right order, and the phyint lock of 16159 * the new ipsq. Holding ill locks + ill_g_lock ensures that the ipsq 16160 * of neither ill can change. 16161 * 4. Merge the phyint and thus the ipsq as well of this ill onto the 16162 * other ill. 16163 * 5. Release all locks. 16164 */ 16165 16166 /* 16167 * Look for IPv4 if we are initializing IPv6 or look for IPv6 if 16168 * we are initializing IPv4. 16169 */ 16170 if (phyi != NULL) { 16171 ill_other = (isv6) ? phyi->phyint_illv4 : phyi->phyint_illv6; 16172 ASSERT(ill_other->ill_phyint != NULL); 16173 ASSERT((isv6 && !ill_other->ill_isv6) || 16174 (!isv6 && ill_other->ill_isv6)); 16175 GRAB_ILL_LOCKS(ill, ill_other); 16176 /* 16177 * We are potentially throwing away phyint_flags which 16178 * could be different from the one that we obtain from 16179 * ill_other->ill_phyint. But it is okay as we are assuming 16180 * that the state maintained within IP is correct. 16181 */ 16182 mutex_enter(&phyi->phyint_lock); 16183 if (isv6) { 16184 ASSERT(phyi->phyint_illv6 == NULL); 16185 phyi->phyint_illv6 = ill; 16186 } else { 16187 ASSERT(phyi->phyint_illv4 == NULL); 16188 phyi->phyint_illv4 = ill; 16189 } 16190 16191 /* 16192 * Delete the old phyint and make its ipsq eligible 16193 * to be freed in ipsq_exit(). 16194 */ 16195 phyi_old->phyint_illv4 = NULL; 16196 phyi_old->phyint_illv6 = NULL; 16197 phyi_old->phyint_ipsq->ipsq_phyint = NULL; 16198 phyi_old->phyint_name[0] = '\0'; 16199 mi_free(phyi_old); 16200 } else { 16201 mutex_enter(&ill->ill_lock); 16202 /* 16203 * We don't need to acquire any lock, since 16204 * the ill is not yet visible globally and we 16205 * have not yet released the ill_g_lock. 16206 */ 16207 phyi = phyi_old; 16208 mutex_enter(&phyi->phyint_lock); 16209 /* XXX We need a recovery strategy here. */ 16210 if (!phyint_assign_ifindex(phyi, ipst)) 16211 cmn_err(CE_PANIC, "phyint_assign_ifindex() failed"); 16212 16213 avl_insert(&ipst->ips_phyint_g_list->phyint_list_avl_by_name, 16214 (void *)phyi, where); 16215 16216 (void) avl_find(&ipst->ips_phyint_g_list-> 16217 phyint_list_avl_by_index, 16218 &phyi->phyint_ifindex, &where); 16219 avl_insert(&ipst->ips_phyint_g_list->phyint_list_avl_by_index, 16220 (void *)phyi, where); 16221 } 16222 16223 /* 16224 * Reassigning ill_phyint automatically reassigns the ipsq also. 16225 * pending mp is not affected because that is per ill basis. 16226 */ 16227 ill->ill_phyint = phyi; 16228 16229 /* 16230 * Now that the phyint's ifindex has been assigned, complete the 16231 * remaining 16232 */ 16233 ill->ill_ip_mib->ipIfStatsIfIndex = ill->ill_phyint->phyint_ifindex; 16234 if (ill->ill_isv6) { 16235 ill->ill_icmp6_mib->ipv6IfIcmpIfIndex = 16236 ill->ill_phyint->phyint_ifindex; 16237 ill->ill_mcast_type = ipst->ips_mld_max_version; 16238 } else { 16239 ill->ill_mcast_type = ipst->ips_igmp_max_version; 16240 } 16241 16242 /* 16243 * Generate an event within the hooks framework to indicate that 16244 * a new interface has just been added to IP. For this event to 16245 * be generated, the network interface must, at least, have an 16246 * ifindex assigned to it. (We don't generate the event for 16247 * loopback since ill_lookup_on_name() has its own NE_PLUMB event.) 16248 * 16249 * This needs to be run inside the ill_g_lock perimeter to ensure 16250 * that the ordering of delivered events to listeners matches the 16251 * order of them in the kernel. 16252 */ 16253 if (!IS_LOOPBACK(ill)) { 16254 ill_nic_event_dispatch(ill, 0, NE_PLUMB, ill->ill_name, 16255 ill->ill_name_length); 16256 } 16257 RELEASE_ILL_LOCKS(ill, ill_other); 16258 mutex_exit(&phyi->phyint_lock); 16259 } 16260 16261 /* 16262 * Notify any downstream modules of the name of this interface. 16263 * An M_IOCTL is used even though we don't expect a successful reply. 16264 * Any reply message from the driver (presumably an M_IOCNAK) will 16265 * eventually get discarded somewhere upstream. The message format is 16266 * simply an SIOCSLIFNAME ioctl just as might be sent from ifconfig 16267 * to IP. 16268 */ 16269 static void 16270 ip_ifname_notify(ill_t *ill, queue_t *q) 16271 { 16272 mblk_t *mp1, *mp2; 16273 struct iocblk *iocp; 16274 struct lifreq *lifr; 16275 16276 mp1 = mkiocb(SIOCSLIFNAME); 16277 if (mp1 == NULL) 16278 return; 16279 mp2 = allocb(sizeof (struct lifreq), BPRI_HI); 16280 if (mp2 == NULL) { 16281 freeb(mp1); 16282 return; 16283 } 16284 16285 mp1->b_cont = mp2; 16286 iocp = (struct iocblk *)mp1->b_rptr; 16287 iocp->ioc_count = sizeof (struct lifreq); 16288 16289 lifr = (struct lifreq *)mp2->b_rptr; 16290 mp2->b_wptr += sizeof (struct lifreq); 16291 bzero(lifr, sizeof (struct lifreq)); 16292 16293 (void) strncpy(lifr->lifr_name, ill->ill_name, LIFNAMSIZ); 16294 lifr->lifr_ppa = ill->ill_ppa; 16295 lifr->lifr_flags = (ill->ill_flags & (ILLF_IPV4|ILLF_IPV6)); 16296 16297 DTRACE_PROBE3(ill__dlpi, char *, "ip_ifname_notify", 16298 char *, "SIOCSLIFNAME", ill_t *, ill); 16299 putnext(q, mp1); 16300 } 16301 16302 static int 16303 ipif_set_values_tail(ill_t *ill, ipif_t *ipif, mblk_t *mp, queue_t *q) 16304 { 16305 int err; 16306 ip_stack_t *ipst = ill->ill_ipst; 16307 phyint_t *phyi = ill->ill_phyint; 16308 16309 /* Set the obsolete NDD per-interface forwarding name. */ 16310 err = ill_set_ndd_name(ill); 16311 if (err != 0) { 16312 cmn_err(CE_WARN, "ipif_set_values: ill_set_ndd_name (%d)\n", 16313 err); 16314 } 16315 16316 /* 16317 * Now that ill_name is set, the configuration for the IPMP 16318 * meta-interface can be performed. 16319 */ 16320 if (IS_IPMP(ill)) { 16321 rw_enter(&ipst->ips_ipmp_lock, RW_WRITER); 16322 /* 16323 * If phyi->phyint_grp is NULL, then this is the first IPMP 16324 * meta-interface and we need to create the IPMP group. 16325 */ 16326 if (phyi->phyint_grp == NULL) { 16327 /* 16328 * If someone has renamed another IPMP group to have 16329 * the same name as our interface, bail. 16330 */ 16331 if (ipmp_grp_lookup(ill->ill_name, ipst) != NULL) { 16332 rw_exit(&ipst->ips_ipmp_lock); 16333 return (EEXIST); 16334 } 16335 phyi->phyint_grp = ipmp_grp_create(ill->ill_name, phyi); 16336 if (phyi->phyint_grp == NULL) { 16337 rw_exit(&ipst->ips_ipmp_lock); 16338 return (ENOMEM); 16339 } 16340 } 16341 rw_exit(&ipst->ips_ipmp_lock); 16342 } 16343 16344 /* Tell downstream modules where they are. */ 16345 ip_ifname_notify(ill, q); 16346 16347 /* 16348 * ill_dl_phys returns EINPROGRESS in the usual case. 16349 * Error cases are ENOMEM ... 16350 */ 16351 err = ill_dl_phys(ill, ipif, mp, q); 16352 16353 if (ill->ill_isv6) { 16354 mutex_enter(&ipst->ips_mld_slowtimeout_lock); 16355 if (ipst->ips_mld_slowtimeout_id == 0) { 16356 ipst->ips_mld_slowtimeout_id = timeout(mld_slowtimo, 16357 (void *)ipst, 16358 MSEC_TO_TICK(MCAST_SLOWTIMO_INTERVAL)); 16359 } 16360 mutex_exit(&ipst->ips_mld_slowtimeout_lock); 16361 } else { 16362 mutex_enter(&ipst->ips_igmp_slowtimeout_lock); 16363 if (ipst->ips_igmp_slowtimeout_id == 0) { 16364 ipst->ips_igmp_slowtimeout_id = timeout(igmp_slowtimo, 16365 (void *)ipst, 16366 MSEC_TO_TICK(MCAST_SLOWTIMO_INTERVAL)); 16367 } 16368 mutex_exit(&ipst->ips_igmp_slowtimeout_lock); 16369 } 16370 16371 return (err); 16372 } 16373 16374 /* 16375 * Common routine for ppa and ifname setting. Should be called exclusive. 16376 * 16377 * Returns EINPROGRESS when mp has been consumed by queueing it on 16378 * ipx_pending_mp and the ioctl will complete in ip_rput. 16379 * 16380 * NOTE : If ppa is UNIT_MAX, we assign the next valid ppa and return 16381 * the new name and new ppa in lifr_name and lifr_ppa respectively. 16382 * For SLIFNAME, we pass these values back to the userland. 16383 */ 16384 static int 16385 ipif_set_values(queue_t *q, mblk_t *mp, char *interf_name, uint_t *new_ppa_ptr) 16386 { 16387 ill_t *ill; 16388 ipif_t *ipif; 16389 ipsq_t *ipsq; 16390 char *ppa_ptr; 16391 char *old_ptr; 16392 char old_char; 16393 int error; 16394 ip_stack_t *ipst; 16395 16396 ip1dbg(("ipif_set_values: interface %s\n", interf_name)); 16397 ASSERT(q->q_next != NULL); 16398 ASSERT(interf_name != NULL); 16399 16400 ill = (ill_t *)q->q_ptr; 16401 ipst = ill->ill_ipst; 16402 16403 ASSERT(ill->ill_ipst != NULL); 16404 ASSERT(ill->ill_name[0] == '\0'); 16405 ASSERT(IAM_WRITER_ILL(ill)); 16406 ASSERT((mi_strlen(interf_name) + 1) <= LIFNAMSIZ); 16407 ASSERT(ill->ill_ppa == UINT_MAX); 16408 16409 ill->ill_defend_start = ill->ill_defend_count = 0; 16410 /* The ppa is sent down by ifconfig or is chosen */ 16411 if ((ppa_ptr = ill_get_ppa_ptr(interf_name)) == NULL) { 16412 return (EINVAL); 16413 } 16414 16415 /* 16416 * make sure ppa passed in is same as ppa in the name. 16417 * This check is not made when ppa == UINT_MAX in that case ppa 16418 * in the name could be anything. System will choose a ppa and 16419 * update new_ppa_ptr and inter_name to contain the choosen ppa. 16420 */ 16421 if (*new_ppa_ptr != UINT_MAX) { 16422 /* stoi changes the pointer */ 16423 old_ptr = ppa_ptr; 16424 /* 16425 * ifconfig passed in 0 for the ppa for DLPI 1 style devices 16426 * (they don't have an externally visible ppa). We assign one 16427 * here so that we can manage the interface. Note that in 16428 * the past this value was always 0 for DLPI 1 drivers. 16429 */ 16430 if (*new_ppa_ptr == 0) 16431 *new_ppa_ptr = stoi(&old_ptr); 16432 else if (*new_ppa_ptr != (uint_t)stoi(&old_ptr)) 16433 return (EINVAL); 16434 } 16435 /* 16436 * terminate string before ppa 16437 * save char at that location. 16438 */ 16439 old_char = ppa_ptr[0]; 16440 ppa_ptr[0] = '\0'; 16441 16442 ill->ill_ppa = *new_ppa_ptr; 16443 /* 16444 * Finish as much work now as possible before calling ill_glist_insert 16445 * which makes the ill globally visible and also merges it with the 16446 * other protocol instance of this phyint. The remaining work is 16447 * done after entering the ipsq which may happen sometime later. 16448 * ill_set_ndd_name occurs after the ill has been made globally visible. 16449 */ 16450 ipif = ill->ill_ipif; 16451 16452 /* We didn't do this when we allocated ipif in ip_ll_subnet_defaults */ 16453 ipif_assign_seqid(ipif); 16454 16455 if (!(ill->ill_flags & (ILLF_IPV4|ILLF_IPV6))) 16456 ill->ill_flags |= ILLF_IPV4; 16457 16458 ASSERT(ipif->ipif_next == NULL); /* Only one ipif on ill */ 16459 ASSERT((ipif->ipif_flags & IPIF_UP) == 0); 16460 16461 if (ill->ill_flags & ILLF_IPV6) { 16462 16463 ill->ill_isv6 = B_TRUE; 16464 ill_set_inputfn(ill); 16465 if (ill->ill_rq != NULL) { 16466 ill->ill_rq->q_qinfo = &iprinitv6; 16467 } 16468 16469 /* Keep the !IN6_IS_ADDR_V4MAPPED assertions happy */ 16470 ipif->ipif_v6lcl_addr = ipv6_all_zeros; 16471 ipif->ipif_v6subnet = ipv6_all_zeros; 16472 ipif->ipif_v6net_mask = ipv6_all_zeros; 16473 ipif->ipif_v6brd_addr = ipv6_all_zeros; 16474 ipif->ipif_v6pp_dst_addr = ipv6_all_zeros; 16475 ill->ill_reachable_retrans_time = ND_RETRANS_TIMER; 16476 /* 16477 * point-to-point or Non-mulicast capable 16478 * interfaces won't do NUD unless explicitly 16479 * configured to do so. 16480 */ 16481 if (ipif->ipif_flags & IPIF_POINTOPOINT || 16482 !(ill->ill_flags & ILLF_MULTICAST)) { 16483 ill->ill_flags |= ILLF_NONUD; 16484 } 16485 /* Make sure IPv4 specific flag is not set on IPv6 if */ 16486 if (ill->ill_flags & ILLF_NOARP) { 16487 /* 16488 * Note: xresolv interfaces will eventually need 16489 * NOARP set here as well, but that will require 16490 * those external resolvers to have some 16491 * knowledge of that flag and act appropriately. 16492 * Not to be changed at present. 16493 */ 16494 ill->ill_flags &= ~ILLF_NOARP; 16495 } 16496 /* 16497 * Set the ILLF_ROUTER flag according to the global 16498 * IPv6 forwarding policy. 16499 */ 16500 if (ipst->ips_ipv6_forward != 0) 16501 ill->ill_flags |= ILLF_ROUTER; 16502 } else if (ill->ill_flags & ILLF_IPV4) { 16503 ill->ill_isv6 = B_FALSE; 16504 ill_set_inputfn(ill); 16505 ill->ill_reachable_retrans_time = ARP_RETRANS_TIMER; 16506 IN6_IPADDR_TO_V4MAPPED(INADDR_ANY, &ipif->ipif_v6lcl_addr); 16507 IN6_IPADDR_TO_V4MAPPED(INADDR_ANY, &ipif->ipif_v6subnet); 16508 IN6_IPADDR_TO_V4MAPPED(INADDR_ANY, &ipif->ipif_v6net_mask); 16509 IN6_IPADDR_TO_V4MAPPED(INADDR_ANY, &ipif->ipif_v6brd_addr); 16510 IN6_IPADDR_TO_V4MAPPED(INADDR_ANY, &ipif->ipif_v6pp_dst_addr); 16511 /* 16512 * Set the ILLF_ROUTER flag according to the global 16513 * IPv4 forwarding policy. 16514 */ 16515 if (ipst->ips_ip_g_forward != 0) 16516 ill->ill_flags |= ILLF_ROUTER; 16517 } 16518 16519 ASSERT(ill->ill_phyint != NULL); 16520 16521 /* 16522 * The ipIfStatsIfindex and ipv6IfIcmpIfIndex assignments will 16523 * be completed in ill_glist_insert -> ill_phyint_reinit 16524 */ 16525 if (!ill_allocate_mibs(ill)) 16526 return (ENOMEM); 16527 16528 /* 16529 * Pick a default sap until we get the DL_INFO_ACK back from 16530 * the driver. 16531 */ 16532 ill->ill_sap = (ill->ill_isv6) ? ill->ill_media->ip_m_ipv6sap : 16533 ill->ill_media->ip_m_ipv4sap; 16534 16535 ill->ill_ifname_pending = 1; 16536 ill->ill_ifname_pending_err = 0; 16537 16538 /* 16539 * When the first ipif comes up in ipif_up_done(), multicast groups 16540 * that were joined while this ill was not bound to the DLPI link need 16541 * to be recovered by ill_recover_multicast(). 16542 */ 16543 ill->ill_need_recover_multicast = 1; 16544 16545 ill_refhold(ill); 16546 rw_enter(&ipst->ips_ill_g_lock, RW_WRITER); 16547 if ((error = ill_glist_insert(ill, interf_name, 16548 (ill->ill_flags & ILLF_IPV6) == ILLF_IPV6)) > 0) { 16549 ill->ill_ppa = UINT_MAX; 16550 ill->ill_name[0] = '\0'; 16551 /* 16552 * undo null termination done above. 16553 */ 16554 ppa_ptr[0] = old_char; 16555 rw_exit(&ipst->ips_ill_g_lock); 16556 ill_refrele(ill); 16557 return (error); 16558 } 16559 16560 ASSERT(ill->ill_name_length <= LIFNAMSIZ); 16561 16562 /* 16563 * When we return the buffer pointed to by interf_name should contain 16564 * the same name as in ill_name. 16565 * If a ppa was choosen by the system (ppa passed in was UINT_MAX) 16566 * the buffer pointed to by new_ppa_ptr would not contain the right ppa 16567 * so copy full name and update the ppa ptr. 16568 * When ppa passed in != UINT_MAX all values are correct just undo 16569 * null termination, this saves a bcopy. 16570 */ 16571 if (*new_ppa_ptr == UINT_MAX) { 16572 bcopy(ill->ill_name, interf_name, ill->ill_name_length); 16573 *new_ppa_ptr = ill->ill_ppa; 16574 } else { 16575 /* 16576 * undo null termination done above. 16577 */ 16578 ppa_ptr[0] = old_char; 16579 } 16580 16581 /* Let SCTP know about this ILL */ 16582 sctp_update_ill(ill, SCTP_ILL_INSERT); 16583 16584 /* 16585 * ill_glist_insert has made the ill visible globally, and 16586 * ill_phyint_reinit could have changed the ipsq. At this point, 16587 * we need to hold the ips_ill_g_lock across the call to enter the 16588 * ipsq to enforce atomicity and prevent reordering. In the event 16589 * the ipsq has changed, and if the new ipsq is currently busy, 16590 * we need to make sure that this half-completed ioctl is ahead of 16591 * any subsequent ioctl. We achieve this by not dropping the 16592 * ips_ill_g_lock which prevents any ill lookup itself thereby 16593 * ensuring that new ioctls can't start. 16594 */ 16595 ipsq = ipsq_try_enter_internal(ill, q, mp, ip_reprocess_ioctl, NEW_OP, 16596 B_TRUE); 16597 16598 rw_exit(&ipst->ips_ill_g_lock); 16599 ill_refrele(ill); 16600 if (ipsq == NULL) 16601 return (EINPROGRESS); 16602 16603 /* 16604 * If ill_phyint_reinit() changed our ipsq, then start on the new ipsq. 16605 */ 16606 if (ipsq->ipsq_xop->ipx_current_ipif == NULL) 16607 ipsq_current_start(ipsq, ipif, SIOCSLIFNAME); 16608 else 16609 ASSERT(ipsq->ipsq_xop->ipx_current_ipif == ipif); 16610 16611 error = ipif_set_values_tail(ill, ipif, mp, q); 16612 ipsq_exit(ipsq); 16613 if (error != 0 && error != EINPROGRESS) { 16614 /* 16615 * restore previous values 16616 */ 16617 ill->ill_isv6 = B_FALSE; 16618 ill_set_inputfn(ill); 16619 } 16620 return (error); 16621 } 16622 16623 void 16624 ipif_init(ip_stack_t *ipst) 16625 { 16626 int i; 16627 16628 for (i = 0; i < MAX_G_HEADS; i++) { 16629 ipst->ips_ill_g_heads[i].ill_g_list_head = 16630 (ill_if_t *)&ipst->ips_ill_g_heads[i]; 16631 ipst->ips_ill_g_heads[i].ill_g_list_tail = 16632 (ill_if_t *)&ipst->ips_ill_g_heads[i]; 16633 } 16634 16635 avl_create(&ipst->ips_phyint_g_list->phyint_list_avl_by_index, 16636 ill_phyint_compare_index, 16637 sizeof (phyint_t), 16638 offsetof(struct phyint, phyint_avl_by_index)); 16639 avl_create(&ipst->ips_phyint_g_list->phyint_list_avl_by_name, 16640 ill_phyint_compare_name, 16641 sizeof (phyint_t), 16642 offsetof(struct phyint, phyint_avl_by_name)); 16643 } 16644 16645 /* 16646 * Save enough information so that we can recreate the IRE if 16647 * the interface goes down and then up. 16648 */ 16649 void 16650 ill_save_ire(ill_t *ill, ire_t *ire) 16651 { 16652 mblk_t *save_mp; 16653 16654 save_mp = allocb(sizeof (ifrt_t), BPRI_MED); 16655 if (save_mp != NULL) { 16656 ifrt_t *ifrt; 16657 16658 save_mp->b_wptr += sizeof (ifrt_t); 16659 ifrt = (ifrt_t *)save_mp->b_rptr; 16660 bzero(ifrt, sizeof (ifrt_t)); 16661 ifrt->ifrt_type = ire->ire_type; 16662 if (ire->ire_ipversion == IPV4_VERSION) { 16663 ASSERT(!ill->ill_isv6); 16664 ifrt->ifrt_addr = ire->ire_addr; 16665 ifrt->ifrt_gateway_addr = ire->ire_gateway_addr; 16666 ifrt->ifrt_setsrc_addr = ire->ire_setsrc_addr; 16667 ifrt->ifrt_mask = ire->ire_mask; 16668 } else { 16669 ASSERT(ill->ill_isv6); 16670 ifrt->ifrt_v6addr = ire->ire_addr_v6; 16671 /* ire_gateway_addr_v6 can change due to RTM_CHANGE */ 16672 mutex_enter(&ire->ire_lock); 16673 ifrt->ifrt_v6gateway_addr = ire->ire_gateway_addr_v6; 16674 mutex_exit(&ire->ire_lock); 16675 ifrt->ifrt_v6setsrc_addr = ire->ire_setsrc_addr_v6; 16676 ifrt->ifrt_v6mask = ire->ire_mask_v6; 16677 } 16678 ifrt->ifrt_flags = ire->ire_flags; 16679 ifrt->ifrt_zoneid = ire->ire_zoneid; 16680 mutex_enter(&ill->ill_saved_ire_lock); 16681 save_mp->b_cont = ill->ill_saved_ire_mp; 16682 ill->ill_saved_ire_mp = save_mp; 16683 ill->ill_saved_ire_cnt++; 16684 mutex_exit(&ill->ill_saved_ire_lock); 16685 } 16686 } 16687 16688 /* 16689 * Remove one entry from ill_saved_ire_mp. 16690 */ 16691 void 16692 ill_remove_saved_ire(ill_t *ill, ire_t *ire) 16693 { 16694 mblk_t **mpp; 16695 mblk_t *mp; 16696 ifrt_t *ifrt; 16697 16698 /* Remove from ill_saved_ire_mp list if it is there */ 16699 mutex_enter(&ill->ill_saved_ire_lock); 16700 for (mpp = &ill->ill_saved_ire_mp; *mpp != NULL; 16701 mpp = &(*mpp)->b_cont) { 16702 in6_addr_t gw_addr_v6; 16703 16704 /* 16705 * On a given ill, the tuple of address, gateway, mask, 16706 * ire_type, and zoneid is unique for each saved IRE. 16707 */ 16708 mp = *mpp; 16709 ifrt = (ifrt_t *)mp->b_rptr; 16710 /* ire_gateway_addr_v6 can change - need lock */ 16711 mutex_enter(&ire->ire_lock); 16712 gw_addr_v6 = ire->ire_gateway_addr_v6; 16713 mutex_exit(&ire->ire_lock); 16714 16715 if (ifrt->ifrt_zoneid != ire->ire_zoneid || 16716 ifrt->ifrt_type != ire->ire_type) 16717 continue; 16718 16719 if (ill->ill_isv6 ? 16720 (IN6_ARE_ADDR_EQUAL(&ifrt->ifrt_v6addr, 16721 &ire->ire_addr_v6) && 16722 IN6_ARE_ADDR_EQUAL(&ifrt->ifrt_v6gateway_addr, 16723 &gw_addr_v6) && 16724 IN6_ARE_ADDR_EQUAL(&ifrt->ifrt_v6mask, 16725 &ire->ire_mask_v6)) : 16726 (ifrt->ifrt_addr == ire->ire_addr && 16727 ifrt->ifrt_gateway_addr == ire->ire_gateway_addr && 16728 ifrt->ifrt_mask == ire->ire_mask)) { 16729 *mpp = mp->b_cont; 16730 ill->ill_saved_ire_cnt--; 16731 freeb(mp); 16732 break; 16733 } 16734 } 16735 mutex_exit(&ill->ill_saved_ire_lock); 16736 } 16737 16738 /* 16739 * IP multirouting broadcast routes handling 16740 * Append CGTP broadcast IREs to regular ones created 16741 * at ifconfig time. 16742 * The usage is a route add <cgtp_bc> <nic_bc> -multirt i.e., both 16743 * the destination and the gateway are broadcast addresses. 16744 * The caller has verified that the destination is an IRE_BROADCAST and that 16745 * RTF_MULTIRT was set. Here if the gateway is a broadcast address, then 16746 * we create a MULTIRT IRE_BROADCAST. 16747 * Note that the IRE_HOST created by ire_rt_add doesn't get found by anything 16748 * since the IRE_BROADCAST takes precedence; ire_add_v4 does head insertion. 16749 */ 16750 static void 16751 ip_cgtp_bcast_add(ire_t *ire, ip_stack_t *ipst) 16752 { 16753 ire_t *ire_prim; 16754 16755 ASSERT(ire != NULL); 16756 16757 ire_prim = ire_ftable_lookup_v4(ire->ire_gateway_addr, 0, 0, 16758 IRE_BROADCAST, NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, 0, ipst, 16759 NULL); 16760 if (ire_prim != NULL) { 16761 /* 16762 * We are in the special case of broadcasts for 16763 * CGTP. We add an IRE_BROADCAST that holds 16764 * the RTF_MULTIRT flag, the destination 16765 * address and the low level 16766 * info of ire_prim. In other words, CGTP 16767 * broadcast is added to the redundant ipif. 16768 */ 16769 ill_t *ill_prim; 16770 ire_t *bcast_ire; 16771 16772 ill_prim = ire_prim->ire_ill; 16773 16774 ip2dbg(("ip_cgtp_filter_bcast_add: ire_prim %p, ill_prim %p\n", 16775 (void *)ire_prim, (void *)ill_prim)); 16776 16777 bcast_ire = ire_create( 16778 (uchar_t *)&ire->ire_addr, 16779 (uchar_t *)&ip_g_all_ones, 16780 (uchar_t *)&ire->ire_gateway_addr, 16781 IRE_BROADCAST, 16782 ill_prim, 16783 GLOBAL_ZONEID, /* CGTP is only for the global zone */ 16784 ire->ire_flags | RTF_KERNEL, 16785 NULL, 16786 ipst); 16787 16788 /* 16789 * Here we assume that ire_add does head insertion so that 16790 * the added IRE_BROADCAST comes before the existing IRE_HOST. 16791 */ 16792 if (bcast_ire != NULL) { 16793 if (ire->ire_flags & RTF_SETSRC) { 16794 bcast_ire->ire_setsrc_addr = 16795 ire->ire_setsrc_addr; 16796 } 16797 bcast_ire = ire_add(bcast_ire); 16798 if (bcast_ire != NULL) { 16799 ip2dbg(("ip_cgtp_filter_bcast_add: " 16800 "added bcast_ire %p\n", 16801 (void *)bcast_ire)); 16802 16803 ill_save_ire(ill_prim, bcast_ire); 16804 ire_refrele(bcast_ire); 16805 } 16806 } 16807 ire_refrele(ire_prim); 16808 } 16809 } 16810 16811 /* 16812 * IP multirouting broadcast routes handling 16813 * Remove the broadcast ire. 16814 * The usage is a route delete <cgtp_bc> <nic_bc> -multirt i.e., both 16815 * the destination and the gateway are broadcast addresses. 16816 * The caller has only verified that RTF_MULTIRT was set. We check 16817 * that the destination is broadcast and that the gateway is a broadcast 16818 * address, and if so delete the IRE added by ip_cgtp_bcast_add(). 16819 */ 16820 static void 16821 ip_cgtp_bcast_delete(ire_t *ire, ip_stack_t *ipst) 16822 { 16823 ASSERT(ire != NULL); 16824 16825 if (ip_type_v4(ire->ire_addr, ipst) == IRE_BROADCAST) { 16826 ire_t *ire_prim; 16827 16828 ire_prim = ire_ftable_lookup_v4(ire->ire_gateway_addr, 0, 0, 16829 IRE_BROADCAST, NULL, ALL_ZONES, NULL, MATCH_IRE_TYPE, 0, 16830 ipst, NULL); 16831 if (ire_prim != NULL) { 16832 ill_t *ill_prim; 16833 ire_t *bcast_ire; 16834 16835 ill_prim = ire_prim->ire_ill; 16836 16837 ip2dbg(("ip_cgtp_filter_bcast_delete: " 16838 "ire_prim %p, ill_prim %p\n", 16839 (void *)ire_prim, (void *)ill_prim)); 16840 16841 bcast_ire = ire_ftable_lookup_v4(ire->ire_addr, 0, 16842 ire->ire_gateway_addr, IRE_BROADCAST, 16843 ill_prim, ALL_ZONES, NULL, 16844 MATCH_IRE_TYPE | MATCH_IRE_GW | MATCH_IRE_ILL | 16845 MATCH_IRE_MASK, 0, ipst, NULL); 16846 16847 if (bcast_ire != NULL) { 16848 ip2dbg(("ip_cgtp_filter_bcast_delete: " 16849 "looked up bcast_ire %p\n", 16850 (void *)bcast_ire)); 16851 ill_remove_saved_ire(bcast_ire->ire_ill, 16852 bcast_ire); 16853 ire_delete(bcast_ire); 16854 ire_refrele(bcast_ire); 16855 } 16856 ire_refrele(ire_prim); 16857 } 16858 } 16859 } 16860 16861 /* 16862 * Derive an interface id from the link layer address. 16863 * Knows about IEEE 802 and IEEE EUI-64 mappings. 16864 */ 16865 static void 16866 ip_ether_v6intfid(ill_t *ill, in6_addr_t *v6addr) 16867 { 16868 char *addr; 16869 16870 /* 16871 * Note that some IPv6 interfaces get plumbed over links that claim to 16872 * be DL_ETHER, but don't actually have Ethernet MAC addresses (e.g. 16873 * PPP links). The ETHERADDRL check here ensures that we only set the 16874 * interface ID on IPv6 interfaces above links that actually have real 16875 * Ethernet addresses. 16876 */ 16877 if (ill->ill_phys_addr_length == ETHERADDRL) { 16878 /* Form EUI-64 like address */ 16879 addr = (char *)&v6addr->s6_addr32[2]; 16880 bcopy(ill->ill_phys_addr, addr, 3); 16881 addr[0] ^= 0x2; /* Toggle Universal/Local bit */ 16882 addr[3] = (char)0xff; 16883 addr[4] = (char)0xfe; 16884 bcopy(ill->ill_phys_addr + 3, addr + 5, 3); 16885 } 16886 } 16887 16888 /* ARGSUSED */ 16889 static void 16890 ip_nodef_v6intfid(ill_t *ill, in6_addr_t *v6addr) 16891 { 16892 } 16893 16894 typedef struct ipmp_ifcookie { 16895 uint32_t ic_hostid; 16896 char ic_ifname[LIFNAMSIZ]; 16897 char ic_zonename[ZONENAME_MAX]; 16898 } ipmp_ifcookie_t; 16899 16900 /* 16901 * Construct a pseudo-random interface ID for the IPMP interface that's both 16902 * predictable and (almost) guaranteed to be unique. 16903 */ 16904 static void 16905 ip_ipmp_v6intfid(ill_t *ill, in6_addr_t *v6addr) 16906 { 16907 zone_t *zp; 16908 uint8_t *addr; 16909 uchar_t hash[16]; 16910 ulong_t hostid; 16911 MD5_CTX ctx; 16912 ipmp_ifcookie_t ic = { 0 }; 16913 16914 ASSERT(IS_IPMP(ill)); 16915 16916 (void) ddi_strtoul(hw_serial, NULL, 10, &hostid); 16917 ic.ic_hostid = htonl((uint32_t)hostid); 16918 16919 (void) strlcpy(ic.ic_ifname, ill->ill_name, LIFNAMSIZ); 16920 16921 if ((zp = zone_find_by_id(ill->ill_zoneid)) != NULL) { 16922 (void) strlcpy(ic.ic_zonename, zp->zone_name, ZONENAME_MAX); 16923 zone_rele(zp); 16924 } 16925 16926 MD5Init(&ctx); 16927 MD5Update(&ctx, &ic, sizeof (ic)); 16928 MD5Final(hash, &ctx); 16929 16930 /* 16931 * Map the hash to an interface ID per the basic approach in RFC3041. 16932 */ 16933 addr = &v6addr->s6_addr8[8]; 16934 bcopy(hash + 8, addr, sizeof (uint64_t)); 16935 addr[0] &= ~0x2; /* set local bit */ 16936 } 16937 16938 /* 16939 * Map the multicast in6_addr_t in m_ip6addr to the physaddr for ethernet. 16940 */ 16941 static void 16942 ip_ether_v6_mapping(ill_t *ill, uchar_t *m_ip6addr, uchar_t *m_physaddr) 16943 { 16944 phyint_t *phyi = ill->ill_phyint; 16945 16946 /* 16947 * Check PHYI_MULTI_BCAST and length of physical 16948 * address to determine if we use the mapping or the 16949 * broadcast address. 16950 */ 16951 if ((phyi->phyint_flags & PHYI_MULTI_BCAST) != 0 || 16952 ill->ill_phys_addr_length != ETHERADDRL) { 16953 ip_mbcast_mapping(ill, m_ip6addr, m_physaddr); 16954 return; 16955 } 16956 m_physaddr[0] = 0x33; 16957 m_physaddr[1] = 0x33; 16958 m_physaddr[2] = m_ip6addr[12]; 16959 m_physaddr[3] = m_ip6addr[13]; 16960 m_physaddr[4] = m_ip6addr[14]; 16961 m_physaddr[5] = m_ip6addr[15]; 16962 } 16963 16964 /* 16965 * Map the multicast ipaddr_t in m_ipaddr to the physaddr for ethernet. 16966 */ 16967 static void 16968 ip_ether_v4_mapping(ill_t *ill, uchar_t *m_ipaddr, uchar_t *m_physaddr) 16969 { 16970 phyint_t *phyi = ill->ill_phyint; 16971 16972 /* 16973 * Check PHYI_MULTI_BCAST and length of physical 16974 * address to determine if we use the mapping or the 16975 * broadcast address. 16976 */ 16977 if ((phyi->phyint_flags & PHYI_MULTI_BCAST) != 0 || 16978 ill->ill_phys_addr_length != ETHERADDRL) { 16979 ip_mbcast_mapping(ill, m_ipaddr, m_physaddr); 16980 return; 16981 } 16982 m_physaddr[0] = 0x01; 16983 m_physaddr[1] = 0x00; 16984 m_physaddr[2] = 0x5e; 16985 m_physaddr[3] = m_ipaddr[1] & 0x7f; 16986 m_physaddr[4] = m_ipaddr[2]; 16987 m_physaddr[5] = m_ipaddr[3]; 16988 } 16989 16990 /* ARGSUSED */ 16991 static void 16992 ip_mbcast_mapping(ill_t *ill, uchar_t *m_ipaddr, uchar_t *m_physaddr) 16993 { 16994 /* 16995 * for the MULTI_BCAST case and other cases when we want to 16996 * use the link-layer broadcast address for multicast. 16997 */ 16998 uint8_t *bphys_addr; 16999 dl_unitdata_req_t *dlur; 17000 17001 dlur = (dl_unitdata_req_t *)ill->ill_bcast_mp->b_rptr; 17002 if (ill->ill_sap_length < 0) { 17003 bphys_addr = (uchar_t *)dlur + 17004 dlur->dl_dest_addr_offset; 17005 } else { 17006 bphys_addr = (uchar_t *)dlur + 17007 dlur->dl_dest_addr_offset + ill->ill_sap_length; 17008 } 17009 17010 bcopy(bphys_addr, m_physaddr, ill->ill_phys_addr_length); 17011 } 17012 17013 /* 17014 * Derive IPoIB interface id from the link layer address. 17015 */ 17016 static void 17017 ip_ib_v6intfid(ill_t *ill, in6_addr_t *v6addr) 17018 { 17019 char *addr; 17020 17021 ASSERT(ill->ill_phys_addr_length == 20); 17022 addr = (char *)&v6addr->s6_addr32[2]; 17023 bcopy(ill->ill_phys_addr + 12, addr, 8); 17024 /* 17025 * In IBA 1.1 timeframe, some vendors erroneously set the u/l bit 17026 * in the globally assigned EUI-64 GUID to 1, in violation of IEEE 17027 * rules. In these cases, the IBA considers these GUIDs to be in 17028 * "Modified EUI-64" format, and thus toggling the u/l bit is not 17029 * required; vendors are required not to assign global EUI-64's 17030 * that differ only in u/l bit values, thus guaranteeing uniqueness 17031 * of the interface identifier. Whether the GUID is in modified 17032 * or proper EUI-64 format, the ipv6 identifier must have the u/l 17033 * bit set to 1. 17034 */ 17035 addr[0] |= 2; /* Set Universal/Local bit to 1 */ 17036 } 17037 17038 /* 17039 * Map the multicast ipaddr_t in m_ipaddr to the physaddr for InfiniBand. 17040 * Note on mapping from multicast IP addresses to IPoIB multicast link 17041 * addresses. IPoIB multicast link addresses are based on IBA link addresses. 17042 * The format of an IPoIB multicast address is: 17043 * 17044 * 4 byte QPN Scope Sign. Pkey 17045 * +--------------------------------------------+ 17046 * | 00FFFFFF | FF | 1X | X01B | Pkey | GroupID | 17047 * +--------------------------------------------+ 17048 * 17049 * The Scope and Pkey components are properties of the IBA port and 17050 * network interface. They can be ascertained from the broadcast address. 17051 * The Sign. part is the signature, and is 401B for IPv4 and 601B for IPv6. 17052 */ 17053 static void 17054 ip_ib_v4_mapping(ill_t *ill, uchar_t *m_ipaddr, uchar_t *m_physaddr) 17055 { 17056 static uint8_t ipv4_g_phys_ibmulti_addr[] = { 0x00, 0xff, 0xff, 0xff, 17057 0xff, 0x10, 0x40, 0x1b, 0x00, 0x00, 0x00, 0x00, 17058 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 }; 17059 uint8_t *bphys_addr; 17060 dl_unitdata_req_t *dlur; 17061 17062 bcopy(ipv4_g_phys_ibmulti_addr, m_physaddr, ill->ill_phys_addr_length); 17063 17064 /* 17065 * RFC 4391: IPv4 MGID is 28-bit long. 17066 */ 17067 m_physaddr[16] = m_ipaddr[0] & 0x0f; 17068 m_physaddr[17] = m_ipaddr[1]; 17069 m_physaddr[18] = m_ipaddr[2]; 17070 m_physaddr[19] = m_ipaddr[3]; 17071 17072 17073 dlur = (dl_unitdata_req_t *)ill->ill_bcast_mp->b_rptr; 17074 if (ill->ill_sap_length < 0) { 17075 bphys_addr = (uchar_t *)dlur + dlur->dl_dest_addr_offset; 17076 } else { 17077 bphys_addr = (uchar_t *)dlur + dlur->dl_dest_addr_offset + 17078 ill->ill_sap_length; 17079 } 17080 /* 17081 * Now fill in the IBA scope/Pkey values from the broadcast address. 17082 */ 17083 m_physaddr[5] = bphys_addr[5]; 17084 m_physaddr[8] = bphys_addr[8]; 17085 m_physaddr[9] = bphys_addr[9]; 17086 } 17087 17088 static void 17089 ip_ib_v6_mapping(ill_t *ill, uchar_t *m_ipaddr, uchar_t *m_physaddr) 17090 { 17091 static uint8_t ipv4_g_phys_ibmulti_addr[] = { 0x00, 0xff, 0xff, 0xff, 17092 0xff, 0x10, 0x60, 0x1b, 0x00, 0x00, 0x00, 0x00, 17093 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 }; 17094 uint8_t *bphys_addr; 17095 dl_unitdata_req_t *dlur; 17096 17097 bcopy(ipv4_g_phys_ibmulti_addr, m_physaddr, ill->ill_phys_addr_length); 17098 17099 /* 17100 * RFC 4391: IPv4 MGID is 80-bit long. 17101 */ 17102 bcopy(&m_ipaddr[6], &m_physaddr[10], 10); 17103 17104 dlur = (dl_unitdata_req_t *)ill->ill_bcast_mp->b_rptr; 17105 if (ill->ill_sap_length < 0) { 17106 bphys_addr = (uchar_t *)dlur + dlur->dl_dest_addr_offset; 17107 } else { 17108 bphys_addr = (uchar_t *)dlur + dlur->dl_dest_addr_offset + 17109 ill->ill_sap_length; 17110 } 17111 /* 17112 * Now fill in the IBA scope/Pkey values from the broadcast address. 17113 */ 17114 m_physaddr[5] = bphys_addr[5]; 17115 m_physaddr[8] = bphys_addr[8]; 17116 m_physaddr[9] = bphys_addr[9]; 17117 } 17118 17119 /* 17120 * Derive IPv6 interface id from an IPv4 link-layer address (e.g. from an IPv4 17121 * tunnel). The IPv4 address simply get placed in the lower 4 bytes of the 17122 * IPv6 interface id. This is a suggested mechanism described in section 3.7 17123 * of RFC4213. 17124 */ 17125 static void 17126 ip_ipv4_genv6intfid(ill_t *ill, uint8_t *physaddr, in6_addr_t *v6addr) 17127 { 17128 ASSERT(ill->ill_phys_addr_length == sizeof (ipaddr_t)); 17129 v6addr->s6_addr32[2] = 0; 17130 bcopy(physaddr, &v6addr->s6_addr32[3], sizeof (ipaddr_t)); 17131 } 17132 17133 /* 17134 * Derive IPv6 interface id from an IPv6 link-layer address (e.g. from an IPv6 17135 * tunnel). The lower 8 bytes of the IPv6 address simply become the interface 17136 * id. 17137 */ 17138 static void 17139 ip_ipv6_genv6intfid(ill_t *ill, uint8_t *physaddr, in6_addr_t *v6addr) 17140 { 17141 in6_addr_t *v6lladdr = (in6_addr_t *)physaddr; 17142 17143 ASSERT(ill->ill_phys_addr_length == sizeof (in6_addr_t)); 17144 bcopy(&v6lladdr->s6_addr32[2], &v6addr->s6_addr32[2], 8); 17145 } 17146 17147 static void 17148 ip_ipv6_v6intfid(ill_t *ill, in6_addr_t *v6addr) 17149 { 17150 ip_ipv6_genv6intfid(ill, ill->ill_phys_addr, v6addr); 17151 } 17152 17153 static void 17154 ip_ipv6_v6destintfid(ill_t *ill, in6_addr_t *v6addr) 17155 { 17156 ip_ipv6_genv6intfid(ill, ill->ill_dest_addr, v6addr); 17157 } 17158 17159 static void 17160 ip_ipv4_v6intfid(ill_t *ill, in6_addr_t *v6addr) 17161 { 17162 ip_ipv4_genv6intfid(ill, ill->ill_phys_addr, v6addr); 17163 } 17164 17165 static void 17166 ip_ipv4_v6destintfid(ill_t *ill, in6_addr_t *v6addr) 17167 { 17168 ip_ipv4_genv6intfid(ill, ill->ill_dest_addr, v6addr); 17169 } 17170 17171 /* 17172 * Lookup an ill and verify that the zoneid has an ipif on that ill. 17173 * Returns an held ill, or NULL. 17174 */ 17175 ill_t * 17176 ill_lookup_on_ifindex_zoneid(uint_t index, zoneid_t zoneid, boolean_t isv6, 17177 ip_stack_t *ipst) 17178 { 17179 ill_t *ill; 17180 ipif_t *ipif; 17181 17182 ill = ill_lookup_on_ifindex(index, isv6, ipst); 17183 if (ill == NULL) 17184 return (NULL); 17185 17186 mutex_enter(&ill->ill_lock); 17187 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 17188 if (IPIF_IS_CONDEMNED(ipif)) 17189 continue; 17190 if (zoneid != ALL_ZONES && ipif->ipif_zoneid != zoneid && 17191 ipif->ipif_zoneid != ALL_ZONES) 17192 continue; 17193 17194 mutex_exit(&ill->ill_lock); 17195 return (ill); 17196 } 17197 mutex_exit(&ill->ill_lock); 17198 ill_refrele(ill); 17199 return (NULL); 17200 } 17201 17202 /* 17203 * Return a pointer to an ipif_t given a combination of (ill_idx,ipif_id) 17204 * If a pointer to an ipif_t is returned then the caller will need to do 17205 * an ill_refrele(). 17206 */ 17207 ipif_t * 17208 ipif_getby_indexes(uint_t ifindex, uint_t lifidx, boolean_t isv6, 17209 ip_stack_t *ipst) 17210 { 17211 ipif_t *ipif; 17212 ill_t *ill; 17213 17214 ill = ill_lookup_on_ifindex(ifindex, isv6, ipst); 17215 if (ill == NULL) 17216 return (NULL); 17217 17218 mutex_enter(&ill->ill_lock); 17219 if (ill->ill_state_flags & ILL_CONDEMNED) { 17220 mutex_exit(&ill->ill_lock); 17221 ill_refrele(ill); 17222 return (NULL); 17223 } 17224 17225 for (ipif = ill->ill_ipif; ipif != NULL; ipif = ipif->ipif_next) { 17226 if (!IPIF_CAN_LOOKUP(ipif)) 17227 continue; 17228 if (lifidx == ipif->ipif_id) { 17229 ipif_refhold_locked(ipif); 17230 break; 17231 } 17232 } 17233 17234 mutex_exit(&ill->ill_lock); 17235 ill_refrele(ill); 17236 return (ipif); 17237 } 17238 17239 /* 17240 * Set ill_inputfn based on the current know state. 17241 * This needs to be called when any of the factors taken into 17242 * account changes. 17243 */ 17244 void 17245 ill_set_inputfn(ill_t *ill) 17246 { 17247 ip_stack_t *ipst = ill->ill_ipst; 17248 17249 if (ill->ill_isv6) { 17250 if (is_system_labeled()) 17251 ill->ill_inputfn = ill_input_full_v6; 17252 else 17253 ill->ill_inputfn = ill_input_short_v6; 17254 } else { 17255 if (is_system_labeled()) 17256 ill->ill_inputfn = ill_input_full_v4; 17257 else if (ill->ill_dhcpinit != 0) 17258 ill->ill_inputfn = ill_input_full_v4; 17259 else if (ipst->ips_ipcl_proto_fanout_v4[IPPROTO_RSVP].connf_head 17260 != NULL) 17261 ill->ill_inputfn = ill_input_full_v4; 17262 else if (ipst->ips_ip_cgtp_filter && 17263 ipst->ips_ip_cgtp_filter_ops != NULL) 17264 ill->ill_inputfn = ill_input_full_v4; 17265 else 17266 ill->ill_inputfn = ill_input_short_v4; 17267 } 17268 } 17269 17270 /* 17271 * Re-evaluate ill_inputfn for all the IPv4 ills. 17272 * Used when RSVP and CGTP comes and goes. 17273 */ 17274 void 17275 ill_set_inputfn_all(ip_stack_t *ipst) 17276 { 17277 ill_walk_context_t ctx; 17278 ill_t *ill; 17279 17280 rw_enter(&ipst->ips_ill_g_lock, RW_READER); 17281 ill = ILL_START_WALK_V4(&ctx, ipst); 17282 for (; ill != NULL; ill = ill_next(&ctx, ill)) 17283 ill_set_inputfn(ill); 17284 17285 rw_exit(&ipst->ips_ill_g_lock); 17286 } 17287 17288 /* 17289 * Set the physical address information for `ill' to the contents of the 17290 * dl_notify_ind_t pointed to by `mp'. Must be called as writer, and will be 17291 * asynchronous if `ill' cannot immediately be quiesced -- in which case 17292 * EINPROGRESS will be returned. 17293 */ 17294 int 17295 ill_set_phys_addr(ill_t *ill, mblk_t *mp) 17296 { 17297 ipsq_t *ipsq = ill->ill_phyint->phyint_ipsq; 17298 dl_notify_ind_t *dlindp = (dl_notify_ind_t *)mp->b_rptr; 17299 17300 ASSERT(IAM_WRITER_IPSQ(ipsq)); 17301 17302 if (dlindp->dl_data != DL_IPV6_LINK_LAYER_ADDR && 17303 dlindp->dl_data != DL_CURR_DEST_ADDR && 17304 dlindp->dl_data != DL_CURR_PHYS_ADDR) { 17305 /* Changing DL_IPV6_TOKEN is not yet supported */ 17306 return (0); 17307 } 17308 17309 /* 17310 * We need to store up to two copies of `mp' in `ill'. Due to the 17311 * design of ipsq_pending_mp_add(), we can't pass them as separate 17312 * arguments to ill_set_phys_addr_tail(). Instead, chain them 17313 * together here, then pull 'em apart in ill_set_phys_addr_tail(). 17314 */ 17315 if ((mp = copyb(mp)) == NULL || (mp->b_cont = copyb(mp)) == NULL) { 17316 freemsg(mp); 17317 return (ENOMEM); 17318 } 17319 17320 ipsq_current_start(ipsq, ill->ill_ipif, 0); 17321 mutex_enter(&ill->ill_lock); 17322 ill->ill_state_flags |= ILL_DOWN_IN_PROGRESS; 17323 /* no more nce addition allowed */ 17324 mutex_exit(&ill->ill_lock); 17325 17326 /* 17327 * If we can quiesce the ill, then set the address. If not, then 17328 * ill_set_phys_addr_tail() will be called from ipif_ill_refrele_tail(). 17329 */ 17330 ill_down_ipifs(ill, B_TRUE); 17331 mutex_enter(&ill->ill_lock); 17332 if (!ill_is_quiescent(ill)) { 17333 /* call cannot fail since `conn_t *' argument is NULL */ 17334 (void) ipsq_pending_mp_add(NULL, ill->ill_ipif, ill->ill_rq, 17335 mp, ILL_DOWN); 17336 mutex_exit(&ill->ill_lock); 17337 return (EINPROGRESS); 17338 } 17339 mutex_exit(&ill->ill_lock); 17340 17341 ill_set_phys_addr_tail(ipsq, ill->ill_rq, mp, NULL); 17342 return (0); 17343 } 17344 17345 /* 17346 * Once the ill associated with `q' has quiesced, set its physical address 17347 * information to the values in `addrmp'. Note that two copies of `addrmp' 17348 * are passed (linked by b_cont), since we sometimes need to save two distinct 17349 * copies in the ill_t, and our context doesn't permit sleeping or allocation 17350 * failure (we'll free the other copy if it's not needed). Since the ill_t 17351 * is quiesced, we know any stale nce's with the old address information have 17352 * already been removed, so we don't need to call nce_flush(). 17353 */ 17354 /* ARGSUSED */ 17355 static void 17356 ill_set_phys_addr_tail(ipsq_t *ipsq, queue_t *q, mblk_t *addrmp, void *dummy) 17357 { 17358 ill_t *ill = q->q_ptr; 17359 mblk_t *addrmp2 = unlinkb(addrmp); 17360 dl_notify_ind_t *dlindp = (dl_notify_ind_t *)addrmp->b_rptr; 17361 uint_t addrlen, addroff; 17362 int status; 17363 17364 ASSERT(IAM_WRITER_IPSQ(ipsq)); 17365 17366 addroff = dlindp->dl_addr_offset; 17367 addrlen = dlindp->dl_addr_length - ABS(ill->ill_sap_length); 17368 17369 switch (dlindp->dl_data) { 17370 case DL_IPV6_LINK_LAYER_ADDR: 17371 ill_set_ndmp(ill, addrmp, addroff, addrlen); 17372 freemsg(addrmp2); 17373 break; 17374 17375 case DL_CURR_DEST_ADDR: 17376 freemsg(ill->ill_dest_addr_mp); 17377 ill->ill_dest_addr = addrmp->b_rptr + addroff; 17378 ill->ill_dest_addr_mp = addrmp; 17379 if (ill->ill_isv6) { 17380 ill_setdesttoken(ill); 17381 ipif_setdestlinklocal(ill->ill_ipif); 17382 } 17383 freemsg(addrmp2); 17384 break; 17385 17386 case DL_CURR_PHYS_ADDR: 17387 freemsg(ill->ill_phys_addr_mp); 17388 ill->ill_phys_addr = addrmp->b_rptr + addroff; 17389 ill->ill_phys_addr_mp = addrmp; 17390 ill->ill_phys_addr_length = addrlen; 17391 if (ill->ill_isv6) 17392 ill_set_ndmp(ill, addrmp2, addroff, addrlen); 17393 else 17394 freemsg(addrmp2); 17395 if (ill->ill_isv6) { 17396 ill_setdefaulttoken(ill); 17397 ipif_setlinklocal(ill->ill_ipif); 17398 } 17399 break; 17400 default: 17401 ASSERT(0); 17402 } 17403 17404 /* 17405 * If there are ipifs to bring up, ill_up_ipifs() will return 17406 * EINPROGRESS, and ipsq_current_finish() will be called by 17407 * ip_rput_dlpi_writer() or arp_bringup_done() when the last ipif is 17408 * brought up. 17409 */ 17410 status = ill_up_ipifs(ill, q, addrmp); 17411 mutex_enter(&ill->ill_lock); 17412 if (ill->ill_dl_up) 17413 ill->ill_state_flags &= ~ILL_DOWN_IN_PROGRESS; 17414 mutex_exit(&ill->ill_lock); 17415 if (status != EINPROGRESS) 17416 ipsq_current_finish(ipsq); 17417 } 17418 17419 /* 17420 * Helper routine for setting the ill_nd_lla fields. 17421 */ 17422 void 17423 ill_set_ndmp(ill_t *ill, mblk_t *ndmp, uint_t addroff, uint_t addrlen) 17424 { 17425 freemsg(ill->ill_nd_lla_mp); 17426 ill->ill_nd_lla = ndmp->b_rptr + addroff; 17427 ill->ill_nd_lla_mp = ndmp; 17428 ill->ill_nd_lla_len = addrlen; 17429 } 17430 17431 /* 17432 * Replumb the ill. 17433 */ 17434 int 17435 ill_replumb(ill_t *ill, mblk_t *mp) 17436 { 17437 ipsq_t *ipsq = ill->ill_phyint->phyint_ipsq; 17438 17439 ASSERT(IAM_WRITER_IPSQ(ipsq)); 17440 17441 ipsq_current_start(ipsq, ill->ill_ipif, 0); 17442 17443 mutex_enter(&ill->ill_lock); 17444 ill->ill_state_flags |= ILL_DOWN_IN_PROGRESS; 17445 /* no more nce addition allowed */ 17446 mutex_exit(&ill->ill_lock); 17447 17448 /* 17449 * If we can quiesce the ill, then continue. If not, then 17450 * ill_replumb_tail() will be called from ipif_ill_refrele_tail(). 17451 */ 17452 ill_down_ipifs(ill, B_FALSE); 17453 17454 mutex_enter(&ill->ill_lock); 17455 if (!ill_is_quiescent(ill)) { 17456 /* call cannot fail since `conn_t *' argument is NULL */ 17457 (void) ipsq_pending_mp_add(NULL, ill->ill_ipif, ill->ill_rq, 17458 mp, ILL_DOWN); 17459 mutex_exit(&ill->ill_lock); 17460 return (EINPROGRESS); 17461 } 17462 mutex_exit(&ill->ill_lock); 17463 17464 ill_replumb_tail(ipsq, ill->ill_rq, mp, NULL); 17465 return (0); 17466 } 17467 17468 /* ARGSUSED */ 17469 static void 17470 ill_replumb_tail(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy) 17471 { 17472 ill_t *ill = q->q_ptr; 17473 int err; 17474 conn_t *connp = NULL; 17475 17476 ASSERT(IAM_WRITER_IPSQ(ipsq)); 17477 freemsg(ill->ill_replumb_mp); 17478 ill->ill_replumb_mp = copyb(mp); 17479 17480 if (ill->ill_replumb_mp == NULL) { 17481 /* out of memory */ 17482 ipsq_current_finish(ipsq); 17483 return; 17484 } 17485 17486 mutex_enter(&ill->ill_lock); 17487 ill->ill_up_ipifs = ipsq_pending_mp_add(NULL, ill->ill_ipif, 17488 ill->ill_rq, ill->ill_replumb_mp, 0); 17489 mutex_exit(&ill->ill_lock); 17490 17491 if (!ill->ill_up_ipifs) { 17492 /* already closing */ 17493 ipsq_current_finish(ipsq); 17494 return; 17495 } 17496 ill->ill_replumbing = 1; 17497 err = ill_down_ipifs_tail(ill); 17498 17499 /* 17500 * Successfully quiesced and brought down the interface, now we send 17501 * the DL_NOTE_REPLUMB_DONE message down to the driver. Reuse the 17502 * DL_NOTE_REPLUMB message. 17503 */ 17504 mp = mexchange(NULL, mp, sizeof (dl_notify_conf_t), M_PROTO, 17505 DL_NOTIFY_CONF); 17506 ASSERT(mp != NULL); 17507 ((dl_notify_conf_t *)mp->b_rptr)->dl_notification = 17508 DL_NOTE_REPLUMB_DONE; 17509 ill_dlpi_send(ill, mp); 17510 17511 /* 17512 * For IPv4, we would usually get EINPROGRESS because the ETHERTYPE_ARP 17513 * streams have to be unbound. When all the DLPI exchanges are done, 17514 * ipsq_current_finish() will be called by arp_bringup_done(). The 17515 * remainder of ipif bringup via ill_up_ipifs() will also be done in 17516 * arp_bringup_done(). 17517 */ 17518 ASSERT(ill->ill_replumb_mp != NULL); 17519 if (err == EINPROGRESS) 17520 return; 17521 else 17522 ill->ill_replumb_mp = ipsq_pending_mp_get(ipsq, &connp); 17523 ASSERT(connp == NULL); 17524 if (err == 0 && ill->ill_replumb_mp != NULL && 17525 ill_up_ipifs(ill, q, ill->ill_replumb_mp) == EINPROGRESS) { 17526 return; 17527 } 17528 ipsq_current_finish(ipsq); 17529 } 17530 17531 /* 17532 * Issue ioctl `cmd' on `lh'; caller provides the initial payload in `buf' 17533 * which is `bufsize' bytes. On success, zero is returned and `buf' updated 17534 * as per the ioctl. On failure, an errno is returned. 17535 */ 17536 static int 17537 ip_ioctl(ldi_handle_t lh, int cmd, void *buf, uint_t bufsize, cred_t *cr) 17538 { 17539 int rval; 17540 struct strioctl iocb; 17541 17542 iocb.ic_cmd = cmd; 17543 iocb.ic_timout = 15; 17544 iocb.ic_len = bufsize; 17545 iocb.ic_dp = buf; 17546 17547 return (ldi_ioctl(lh, I_STR, (intptr_t)&iocb, FKIOCTL, cr, &rval)); 17548 } 17549 17550 /* 17551 * Issue an SIOCGLIFCONF for address family `af' and store the result into a 17552 * dynamically-allocated `lifcp' that will be `bufsizep' bytes on success. 17553 */ 17554 static int 17555 ip_lifconf_ioctl(ldi_handle_t lh, int af, struct lifconf *lifcp, 17556 uint_t *bufsizep, cred_t *cr) 17557 { 17558 int err; 17559 struct lifnum lifn; 17560 17561 bzero(&lifn, sizeof (lifn)); 17562 lifn.lifn_family = af; 17563 lifn.lifn_flags = LIFC_UNDER_IPMP; 17564 17565 if ((err = ip_ioctl(lh, SIOCGLIFNUM, &lifn, sizeof (lifn), cr)) != 0) 17566 return (err); 17567 17568 /* 17569 * Pad the interface count to account for additional interfaces that 17570 * may have been configured between the SIOCGLIFNUM and SIOCGLIFCONF. 17571 */ 17572 lifn.lifn_count += 4; 17573 bzero(lifcp, sizeof (*lifcp)); 17574 lifcp->lifc_flags = LIFC_UNDER_IPMP; 17575 lifcp->lifc_family = af; 17576 lifcp->lifc_len = *bufsizep = lifn.lifn_count * sizeof (struct lifreq); 17577 lifcp->lifc_buf = kmem_zalloc(*bufsizep, KM_SLEEP); 17578 17579 err = ip_ioctl(lh, SIOCGLIFCONF, lifcp, sizeof (*lifcp), cr); 17580 if (err != 0) { 17581 kmem_free(lifcp->lifc_buf, *bufsizep); 17582 return (err); 17583 } 17584 17585 return (0); 17586 } 17587 17588 /* 17589 * Helper for ip_interface_cleanup() that removes the loopback interface. 17590 */ 17591 static void 17592 ip_loopback_removeif(ldi_handle_t lh, boolean_t isv6, cred_t *cr) 17593 { 17594 int err; 17595 struct lifreq lifr; 17596 17597 bzero(&lifr, sizeof (lifr)); 17598 (void) strcpy(lifr.lifr_name, ipif_loopback_name); 17599 17600 err = ip_ioctl(lh, SIOCLIFREMOVEIF, &lifr, sizeof (lifr), cr); 17601 if (err != 0) { 17602 ip0dbg(("ip_loopback_removeif: IP%s SIOCLIFREMOVEIF failed: " 17603 "error %d\n", isv6 ? "v6" : "v4", err)); 17604 } 17605 } 17606 17607 /* 17608 * Helper for ip_interface_cleanup() that ensures no IP interfaces are in IPMP 17609 * groups and that IPMP data addresses are down. These conditions must be met 17610 * so that IPMP interfaces can be I_PUNLINK'd, as per ip_sioctl_plink_ipmp(). 17611 */ 17612 static void 17613 ip_ipmp_cleanup(ldi_handle_t lh, boolean_t isv6, cred_t *cr) 17614 { 17615 int af = isv6 ? AF_INET6 : AF_INET; 17616 int i, nifs; 17617 int err; 17618 uint_t bufsize; 17619 uint_t lifrsize = sizeof (struct lifreq); 17620 struct lifconf lifc; 17621 struct lifreq *lifrp; 17622 17623 if ((err = ip_lifconf_ioctl(lh, af, &lifc, &bufsize, cr)) != 0) { 17624 cmn_err(CE_WARN, "ip_ipmp_cleanup: cannot get interface list " 17625 "(error %d); any IPMP interfaces cannot be shutdown", err); 17626 return; 17627 } 17628 17629 nifs = lifc.lifc_len / lifrsize; 17630 for (lifrp = lifc.lifc_req, i = 0; i < nifs; i++, lifrp++) { 17631 err = ip_ioctl(lh, SIOCGLIFFLAGS, lifrp, lifrsize, cr); 17632 if (err != 0) { 17633 cmn_err(CE_WARN, "ip_ipmp_cleanup: %s: cannot get " 17634 "flags: error %d", lifrp->lifr_name, err); 17635 continue; 17636 } 17637 17638 if (lifrp->lifr_flags & IFF_IPMP) { 17639 if ((lifrp->lifr_flags & (IFF_UP|IFF_DUPLICATE)) == 0) 17640 continue; 17641 17642 lifrp->lifr_flags &= ~IFF_UP; 17643 err = ip_ioctl(lh, SIOCSLIFFLAGS, lifrp, lifrsize, cr); 17644 if (err != 0) { 17645 cmn_err(CE_WARN, "ip_ipmp_cleanup: %s: cannot " 17646 "bring down (error %d); IPMP interface may " 17647 "not be shutdown", lifrp->lifr_name, err); 17648 } 17649 17650 /* 17651 * Check if IFF_DUPLICATE is still set -- and if so, 17652 * reset the address to clear it. 17653 */ 17654 err = ip_ioctl(lh, SIOCGLIFFLAGS, lifrp, lifrsize, cr); 17655 if (err != 0 || !(lifrp->lifr_flags & IFF_DUPLICATE)) 17656 continue; 17657 17658 err = ip_ioctl(lh, SIOCGLIFADDR, lifrp, lifrsize, cr); 17659 if (err != 0 || (err = ip_ioctl(lh, SIOCGLIFADDR, 17660 lifrp, lifrsize, cr)) != 0) { 17661 cmn_err(CE_WARN, "ip_ipmp_cleanup: %s: cannot " 17662 "reset DAD (error %d); IPMP interface may " 17663 "not be shutdown", lifrp->lifr_name, err); 17664 } 17665 continue; 17666 } 17667 17668 lifrp->lifr_groupname[0] = '\0'; 17669 err = ip_ioctl(lh, SIOCSLIFGROUPNAME, lifrp, lifrsize, cr); 17670 if (err != 0) { 17671 cmn_err(CE_WARN, "ip_ipmp_cleanup: %s: cannot leave " 17672 "IPMP group (error %d); associated IPMP interface " 17673 "may not be shutdown", lifrp->lifr_name, err); 17674 continue; 17675 } 17676 } 17677 17678 kmem_free(lifc.lifc_buf, bufsize); 17679 } 17680 17681 #define UDPDEV "/devices/pseudo/udp@0:udp" 17682 #define UDP6DEV "/devices/pseudo/udp6@0:udp6" 17683 17684 /* 17685 * Remove the loopback interfaces and prep the IPMP interfaces to be torn down. 17686 * Non-loopback interfaces are either I_LINK'd or I_PLINK'd; the former go away 17687 * when the user-level processes in the zone are killed and the latter are 17688 * cleaned up by str_stack_shutdown(). 17689 */ 17690 void 17691 ip_interface_cleanup(ip_stack_t *ipst) 17692 { 17693 ldi_handle_t lh; 17694 ldi_ident_t li; 17695 cred_t *cr; 17696 int err; 17697 int i; 17698 char *devs[] = { UDP6DEV, UDPDEV }; 17699 netstackid_t stackid = ipst->ips_netstack->netstack_stackid; 17700 17701 if ((err = ldi_ident_from_major(ddi_name_to_major("ip"), &li)) != 0) { 17702 cmn_err(CE_WARN, "ip_interface_cleanup: cannot get ldi ident:" 17703 " error %d", err); 17704 return; 17705 } 17706 17707 cr = zone_get_kcred(netstackid_to_zoneid(stackid)); 17708 ASSERT(cr != NULL); 17709 17710 /* 17711 * NOTE: loop executes exactly twice and is hardcoded to know that the 17712 * first iteration is IPv6. (Unrolling yields repetitious code, hence 17713 * the loop.) 17714 */ 17715 for (i = 0; i < 2; i++) { 17716 err = ldi_open_by_name(devs[i], FREAD|FWRITE, cr, &lh, li); 17717 if (err != 0) { 17718 cmn_err(CE_WARN, "ip_interface_cleanup: cannot open %s:" 17719 " error %d", devs[i], err); 17720 continue; 17721 } 17722 17723 ip_loopback_removeif(lh, i == 0, cr); 17724 ip_ipmp_cleanup(lh, i == 0, cr); 17725 17726 (void) ldi_close(lh, FREAD|FWRITE, cr); 17727 } 17728 17729 ldi_ident_release(li); 17730 crfree(cr); 17731 } 17732 17733 /* 17734 * This needs to be in-sync with nic_event_t definition 17735 */ 17736 static const char * 17737 ill_hook_event2str(nic_event_t event) 17738 { 17739 switch (event) { 17740 case NE_PLUMB: 17741 return ("PLUMB"); 17742 case NE_UNPLUMB: 17743 return ("UNPLUMB"); 17744 case NE_UP: 17745 return ("UP"); 17746 case NE_DOWN: 17747 return ("DOWN"); 17748 case NE_ADDRESS_CHANGE: 17749 return ("ADDRESS_CHANGE"); 17750 case NE_LIF_UP: 17751 return ("LIF_UP"); 17752 case NE_LIF_DOWN: 17753 return ("LIF_DOWN"); 17754 case NE_IFINDEX_CHANGE: 17755 return ("IFINDEX_CHANGE"); 17756 default: 17757 return ("UNKNOWN"); 17758 } 17759 } 17760 17761 void 17762 ill_nic_event_dispatch(ill_t *ill, lif_if_t lif, nic_event_t event, 17763 nic_event_data_t data, size_t datalen) 17764 { 17765 ip_stack_t *ipst = ill->ill_ipst; 17766 hook_nic_event_int_t *info; 17767 const char *str = NULL; 17768 17769 /* create a new nic event info */ 17770 if ((info = kmem_alloc(sizeof (*info), KM_NOSLEEP)) == NULL) 17771 goto fail; 17772 17773 info->hnei_event.hne_nic = ill->ill_phyint->phyint_ifindex; 17774 info->hnei_event.hne_lif = lif; 17775 info->hnei_event.hne_event = event; 17776 info->hnei_event.hne_protocol = ill->ill_isv6 ? 17777 ipst->ips_ipv6_net_data : ipst->ips_ipv4_net_data; 17778 info->hnei_event.hne_data = NULL; 17779 info->hnei_event.hne_datalen = 0; 17780 info->hnei_stackid = ipst->ips_netstack->netstack_stackid; 17781 17782 if (data != NULL && datalen != 0) { 17783 info->hnei_event.hne_data = kmem_alloc(datalen, KM_NOSLEEP); 17784 if (info->hnei_event.hne_data == NULL) 17785 goto fail; 17786 bcopy(data, info->hnei_event.hne_data, datalen); 17787 info->hnei_event.hne_datalen = datalen; 17788 } 17789 17790 if (ddi_taskq_dispatch(eventq_queue_nic, ip_ne_queue_func, info, 17791 DDI_NOSLEEP) == DDI_SUCCESS) 17792 return; 17793 17794 fail: 17795 if (info != NULL) { 17796 if (info->hnei_event.hne_data != NULL) { 17797 kmem_free(info->hnei_event.hne_data, 17798 info->hnei_event.hne_datalen); 17799 } 17800 kmem_free(info, sizeof (hook_nic_event_t)); 17801 } 17802 str = ill_hook_event2str(event); 17803 ip2dbg(("ill_nic_event_dispatch: could not dispatch %s nic event " 17804 "information for %s (ENOMEM)\n", str, ill->ill_name)); 17805 } 17806 17807 static int 17808 ipif_arp_up_done_tail(ipif_t *ipif, enum ip_resolver_action res_act) 17809 { 17810 int err = 0; 17811 const in_addr_t *addr = NULL; 17812 nce_t *nce = NULL; 17813 ill_t *ill = ipif->ipif_ill; 17814 ill_t *bound_ill; 17815 boolean_t added_ipif = B_FALSE; 17816 uint16_t state; 17817 uint16_t flags; 17818 17819 DTRACE_PROBE3(ipif__downup, char *, "ipif_arp_up_done_tail", 17820 ill_t *, ill, ipif_t *, ipif); 17821 if (ipif->ipif_lcl_addr != INADDR_ANY) { 17822 addr = &ipif->ipif_lcl_addr; 17823 } 17824 17825 if ((ipif->ipif_flags & IPIF_UNNUMBERED) || addr == NULL) { 17826 if (res_act != Res_act_initial) 17827 return (EINVAL); 17828 } 17829 17830 if (addr != NULL) { 17831 ipmp_illgrp_t *illg = ill->ill_grp; 17832 17833 /* add unicast nce for the local addr */ 17834 17835 if (IS_IPMP(ill)) { 17836 /* 17837 * If we're here via ipif_up(), then the ipif 17838 * won't be bound yet -- add it to the group, 17839 * which will bind it if possible. (We would 17840 * add it in ipif_up(), but deleting on failure 17841 * there is gruesome.) If we're here via 17842 * ipmp_ill_bind_ipif(), then the ipif has 17843 * already been added to the group and we 17844 * just need to use the binding. 17845 */ 17846 if ((bound_ill = ipmp_ipif_bound_ill(ipif)) == NULL) { 17847 bound_ill = ipmp_illgrp_add_ipif(illg, ipif); 17848 if (bound_ill == NULL) { 17849 /* 17850 * We couldn't bind the ipif to an ill 17851 * yet, so we have nothing to publish. 17852 * Mark the address as ready and return. 17853 */ 17854 ipif->ipif_addr_ready = 1; 17855 return (0); 17856 } 17857 added_ipif = B_TRUE; 17858 } 17859 } else { 17860 bound_ill = ill; 17861 } 17862 17863 flags = (NCE_F_MYADDR | NCE_F_PUBLISH | NCE_F_AUTHORITY | 17864 NCE_F_NONUD); 17865 /* 17866 * If this is an initial bring-up (or the ipif was never 17867 * completely brought up), do DAD. Otherwise, we're here 17868 * because IPMP has rebound an address to this ill: send 17869 * unsolicited advertisements (ARP announcements) to 17870 * inform others. 17871 */ 17872 if (res_act == Res_act_initial || !ipif->ipif_addr_ready) { 17873 state = ND_UNCHANGED; /* compute in nce_add_common() */ 17874 } else { 17875 state = ND_REACHABLE; 17876 flags |= NCE_F_UNSOL_ADV; 17877 } 17878 17879 retry: 17880 err = nce_lookup_then_add_v4(ill, 17881 bound_ill->ill_phys_addr, bound_ill->ill_phys_addr_length, 17882 addr, flags, state, &nce); 17883 17884 /* 17885 * note that we may encounter EEXIST if we are moving 17886 * the nce as a result of a rebind operation. 17887 */ 17888 switch (err) { 17889 case 0: 17890 ipif->ipif_added_nce = 1; 17891 nce->nce_ipif_cnt++; 17892 break; 17893 case EEXIST: 17894 ip1dbg(("ipif_arp_up: NCE already exists for %s\n", 17895 ill->ill_name)); 17896 if (!NCE_MYADDR(nce->nce_common)) { 17897 /* 17898 * A leftover nce from before this address 17899 * existed 17900 */ 17901 ncec_delete(nce->nce_common); 17902 nce_refrele(nce); 17903 nce = NULL; 17904 goto retry; 17905 } 17906 if ((ipif->ipif_flags & IPIF_POINTOPOINT) == 0) { 17907 nce_refrele(nce); 17908 nce = NULL; 17909 ip1dbg(("ipif_arp_up: NCE already exists " 17910 "for %s:%u\n", ill->ill_name, 17911 ipif->ipif_id)); 17912 goto arp_up_done; 17913 } 17914 /* 17915 * Duplicate local addresses are permissible for 17916 * IPIF_POINTOPOINT interfaces which will get marked 17917 * IPIF_UNNUMBERED later in 17918 * ip_addr_availability_check(). 17919 * 17920 * The nce_ipif_cnt field tracks the number of 17921 * ipifs that have nce_addr as their local address. 17922 */ 17923 ipif->ipif_addr_ready = 1; 17924 ipif->ipif_added_nce = 1; 17925 nce->nce_ipif_cnt++; 17926 err = 0; 17927 break; 17928 default: 17929 ASSERT(nce == NULL); 17930 goto arp_up_done; 17931 } 17932 if (arp_no_defense) { 17933 if ((ipif->ipif_flags & IPIF_UP) && 17934 !ipif->ipif_addr_ready) 17935 ipif_up_notify(ipif); 17936 ipif->ipif_addr_ready = 1; 17937 } 17938 } else { 17939 /* zero address. nothing to publish */ 17940 ipif->ipif_addr_ready = 1; 17941 } 17942 if (nce != NULL) 17943 nce_refrele(nce); 17944 arp_up_done: 17945 if (added_ipif && err != 0) 17946 ipmp_illgrp_del_ipif(ill->ill_grp, ipif); 17947 return (err); 17948 } 17949 17950 int 17951 ipif_arp_up(ipif_t *ipif, enum ip_resolver_action res_act, boolean_t was_dup) 17952 { 17953 int err = 0; 17954 ill_t *ill = ipif->ipif_ill; 17955 boolean_t first_interface, wait_for_dlpi = B_FALSE; 17956 17957 DTRACE_PROBE3(ipif__downup, char *, "ipif_arp_up", 17958 ill_t *, ill, ipif_t *, ipif); 17959 17960 /* 17961 * need to bring up ARP or setup mcast mapping only 17962 * when the first interface is coming UP. 17963 */ 17964 first_interface = (ill->ill_ipif_up_count == 0 && 17965 ill->ill_ipif_dup_count == 0 && !was_dup); 17966 17967 if (res_act == Res_act_initial && first_interface) { 17968 /* 17969 * Send ATTACH + BIND 17970 */ 17971 err = arp_ll_up(ill); 17972 if (err != EINPROGRESS && err != 0) 17973 return (err); 17974 17975 /* 17976 * Add NCE for local address. Start DAD. 17977 * we'll wait to hear that DAD has finished 17978 * before using the interface. 17979 */ 17980 if (err == EINPROGRESS) 17981 wait_for_dlpi = B_TRUE; 17982 } 17983 17984 if (!wait_for_dlpi) 17985 (void) ipif_arp_up_done_tail(ipif, res_act); 17986 17987 return (!wait_for_dlpi ? 0 : EINPROGRESS); 17988 } 17989 17990 /* 17991 * Finish processing of "arp_up" after all the DLPI message 17992 * exchanges have completed between arp and the driver. 17993 */ 17994 void 17995 arp_bringup_done(ill_t *ill, int err) 17996 { 17997 mblk_t *mp1; 17998 ipif_t *ipif; 17999 conn_t *connp = NULL; 18000 ipsq_t *ipsq; 18001 queue_t *q; 18002 18003 ip1dbg(("arp_bringup_done(%s)\n", ill->ill_name)); 18004 18005 ASSERT(IAM_WRITER_ILL(ill)); 18006 18007 ipsq = ill->ill_phyint->phyint_ipsq; 18008 ipif = ipsq->ipsq_xop->ipx_pending_ipif; 18009 mp1 = ipsq_pending_mp_get(ipsq, &connp); 18010 ASSERT(!((mp1 != NULL) ^ (ipif != NULL))); 18011 if (mp1 == NULL) /* bringup was aborted by the user */ 18012 return; 18013 18014 /* 18015 * If an IOCTL is waiting on this (ipsq_current_ioctl != 0), then we 18016 * must have an associated conn_t. Otherwise, we're bringing this 18017 * interface back up as part of handling an asynchronous event (e.g., 18018 * physical address change). 18019 */ 18020 if (ipsq->ipsq_xop->ipx_current_ioctl != 0) { 18021 ASSERT(connp != NULL); 18022 q = CONNP_TO_WQ(connp); 18023 } else { 18024 ASSERT(connp == NULL); 18025 q = ill->ill_rq; 18026 } 18027 if (err == 0) { 18028 if (ipif->ipif_isv6) { 18029 if ((err = ipif_up_done_v6(ipif)) != 0) 18030 ip0dbg(("arp_bringup_done: init failed\n")); 18031 } else { 18032 err = ipif_arp_up_done_tail(ipif, Res_act_initial); 18033 if (err != 0 || 18034 (err = ipif_up_done(ipif)) != 0) { 18035 ip0dbg(("arp_bringup_done: " 18036 "init failed err %x\n", err)); 18037 (void) ipif_arp_down(ipif); 18038 } 18039 18040 } 18041 } else { 18042 ip0dbg(("arp_bringup_done: DL_BIND_REQ failed\n")); 18043 } 18044 18045 if ((err == 0) && (ill->ill_up_ipifs)) { 18046 err = ill_up_ipifs(ill, q, mp1); 18047 if (err == EINPROGRESS) 18048 return; 18049 } 18050 18051 /* 18052 * If we have a moved ipif to bring up, and everything has succeeded 18053 * to this point, bring it up on the IPMP ill. Otherwise, leave it 18054 * down -- the admin can try to bring it up by hand if need be. 18055 */ 18056 if (ill->ill_move_ipif != NULL) { 18057 ipif = ill->ill_move_ipif; 18058 ip1dbg(("bringing up ipif %p on ill %s\n", (void *)ipif, 18059 ipif->ipif_ill->ill_name)); 18060 ill->ill_move_ipif = NULL; 18061 if (err == 0) { 18062 err = ipif_up(ipif, q, mp1); 18063 if (err == EINPROGRESS) 18064 return; 18065 } 18066 } 18067 18068 /* 18069 * The operation must complete without EINPROGRESS since 18070 * ipsq_pending_mp_get() has removed the mblk from ipsq_pending_mp. 18071 * Otherwise, the operation will be stuck forever in the ipsq. 18072 */ 18073 ASSERT(err != EINPROGRESS); 18074 if (ipsq->ipsq_xop->ipx_current_ioctl != 0) { 18075 DTRACE_PROBE4(ipif__ioctl, char *, "arp_bringup_done finish", 18076 int, ipsq->ipsq_xop->ipx_current_ioctl, 18077 ill_t *, ill, ipif_t *, ipif); 18078 ip_ioctl_finish(q, mp1, err, NO_COPYOUT, ipsq); 18079 } else { 18080 ipsq_current_finish(ipsq); 18081 } 18082 } 18083 18084 /* 18085 * Finish processing of arp replumb after all the DLPI message 18086 * exchanges have completed between arp and the driver. 18087 */ 18088 void 18089 arp_replumb_done(ill_t *ill, int err) 18090 { 18091 mblk_t *mp1; 18092 ipif_t *ipif; 18093 conn_t *connp = NULL; 18094 ipsq_t *ipsq; 18095 queue_t *q; 18096 18097 ASSERT(IAM_WRITER_ILL(ill)); 18098 18099 ipsq = ill->ill_phyint->phyint_ipsq; 18100 ipif = ipsq->ipsq_xop->ipx_pending_ipif; 18101 mp1 = ipsq_pending_mp_get(ipsq, &connp); 18102 ASSERT(!((mp1 != NULL) ^ (ipif != NULL))); 18103 if (mp1 == NULL) { 18104 ip0dbg(("arp_replumb_done: bringup aborted ioctl %x\n", 18105 ipsq->ipsq_xop->ipx_current_ioctl)); 18106 /* bringup was aborted by the user */ 18107 return; 18108 } 18109 /* 18110 * If an IOCTL is waiting on this (ipsq_current_ioctl != 0), then we 18111 * must have an associated conn_t. Otherwise, we're bringing this 18112 * interface back up as part of handling an asynchronous event (e.g., 18113 * physical address change). 18114 */ 18115 if (ipsq->ipsq_xop->ipx_current_ioctl != 0) { 18116 ASSERT(connp != NULL); 18117 q = CONNP_TO_WQ(connp); 18118 } else { 18119 ASSERT(connp == NULL); 18120 q = ill->ill_rq; 18121 } 18122 if ((err == 0) && (ill->ill_up_ipifs)) { 18123 err = ill_up_ipifs(ill, q, mp1); 18124 if (err == EINPROGRESS) 18125 return; 18126 } 18127 /* 18128 * The operation must complete without EINPROGRESS since 18129 * ipsq_pending_mp_get() has removed the mblk from ipsq_pending_mp. 18130 * Otherwise, the operation will be stuck forever in the ipsq. 18131 */ 18132 ASSERT(err != EINPROGRESS); 18133 if (ipsq->ipsq_xop->ipx_current_ioctl != 0) { 18134 DTRACE_PROBE4(ipif__ioctl, char *, 18135 "arp_replumb_done finish", 18136 int, ipsq->ipsq_xop->ipx_current_ioctl, 18137 ill_t *, ill, ipif_t *, ipif); 18138 ip_ioctl_finish(q, mp1, err, NO_COPYOUT, ipsq); 18139 } else { 18140 ipsq_current_finish(ipsq); 18141 } 18142 } 18143 18144 void 18145 ipif_up_notify(ipif_t *ipif) 18146 { 18147 ip_rts_ifmsg(ipif, RTSQ_DEFAULT); 18148 ip_rts_newaddrmsg(RTM_ADD, 0, ipif, RTSQ_DEFAULT); 18149 sctp_update_ipif(ipif, SCTP_IPIF_UP); 18150 ill_nic_event_dispatch(ipif->ipif_ill, MAP_IPIF_ID(ipif->ipif_id), 18151 NE_LIF_UP, NULL, 0); 18152 } 18153 18154 /* 18155 * ILB ioctl uses cv_wait (such as deleting a rule or adding a server) and 18156 * this assumes the context is cv_wait'able. Hence it shouldnt' be used on 18157 * TPI end points with STREAMS modules pushed above. This is assured by not 18158 * having the IPI_MODOK flag for the ioctl. And IP ensures the ILB ioctl 18159 * never ends up on an ipsq, otherwise we may end up processing the ioctl 18160 * while unwinding from the ispq and that could be a thread from the bottom. 18161 */ 18162 /* ARGSUSED */ 18163 int 18164 ip_sioctl_ilb_cmd(ipif_t *ipif, sin_t *sin, queue_t *q, mblk_t *mp, 18165 ip_ioctl_cmd_t *ipip, void *arg) 18166 { 18167 mblk_t *cmd_mp = mp->b_cont->b_cont; 18168 ilb_cmd_t command = *((ilb_cmd_t *)cmd_mp->b_rptr); 18169 int ret = 0; 18170 int i; 18171 size_t size; 18172 ip_stack_t *ipst; 18173 zoneid_t zoneid; 18174 ilb_stack_t *ilbs; 18175 18176 ipst = CONNQ_TO_IPST(q); 18177 ilbs = ipst->ips_netstack->netstack_ilb; 18178 zoneid = Q_TO_CONN(q)->conn_zoneid; 18179 18180 switch (command) { 18181 case ILB_CREATE_RULE: { 18182 ilb_rule_cmd_t *cmd = (ilb_rule_cmd_t *)cmd_mp->b_rptr; 18183 18184 if (MBLKL(cmd_mp) != sizeof (ilb_rule_cmd_t)) { 18185 ret = EINVAL; 18186 break; 18187 } 18188 18189 ret = ilb_rule_add(ilbs, zoneid, cmd); 18190 break; 18191 } 18192 case ILB_DESTROY_RULE: 18193 case ILB_ENABLE_RULE: 18194 case ILB_DISABLE_RULE: { 18195 ilb_name_cmd_t *cmd = (ilb_name_cmd_t *)cmd_mp->b_rptr; 18196 18197 if (MBLKL(cmd_mp) != sizeof (ilb_name_cmd_t)) { 18198 ret = EINVAL; 18199 break; 18200 } 18201 18202 if (cmd->flags & ILB_RULE_ALLRULES) { 18203 if (command == ILB_DESTROY_RULE) { 18204 ilb_rule_del_all(ilbs, zoneid); 18205 break; 18206 } else if (command == ILB_ENABLE_RULE) { 18207 ilb_rule_enable_all(ilbs, zoneid); 18208 break; 18209 } else if (command == ILB_DISABLE_RULE) { 18210 ilb_rule_disable_all(ilbs, zoneid); 18211 break; 18212 } 18213 } else { 18214 if (command == ILB_DESTROY_RULE) { 18215 ret = ilb_rule_del(ilbs, zoneid, cmd->name); 18216 } else if (command == ILB_ENABLE_RULE) { 18217 ret = ilb_rule_enable(ilbs, zoneid, cmd->name, 18218 NULL); 18219 } else if (command == ILB_DISABLE_RULE) { 18220 ret = ilb_rule_disable(ilbs, zoneid, cmd->name, 18221 NULL); 18222 } 18223 } 18224 break; 18225 } 18226 case ILB_NUM_RULES: { 18227 ilb_num_rules_cmd_t *cmd; 18228 18229 if (MBLKL(cmd_mp) != sizeof (ilb_num_rules_cmd_t)) { 18230 ret = EINVAL; 18231 break; 18232 } 18233 cmd = (ilb_num_rules_cmd_t *)cmd_mp->b_rptr; 18234 ilb_get_num_rules(ilbs, zoneid, &(cmd->num)); 18235 break; 18236 } 18237 case ILB_RULE_NAMES: { 18238 ilb_rule_names_cmd_t *cmd; 18239 18240 cmd = (ilb_rule_names_cmd_t *)cmd_mp->b_rptr; 18241 if (MBLKL(cmd_mp) < sizeof (ilb_rule_names_cmd_t) || 18242 cmd->num_names == 0) { 18243 ret = EINVAL; 18244 break; 18245 } 18246 size = cmd->num_names * ILB_RULE_NAMESZ; 18247 if (cmd_mp->b_rptr + offsetof(ilb_rule_names_cmd_t, buf) + 18248 size != cmd_mp->b_wptr) { 18249 ret = EINVAL; 18250 break; 18251 } 18252 ilb_get_rulenames(ilbs, zoneid, &cmd->num_names, cmd->buf); 18253 break; 18254 } 18255 case ILB_NUM_SERVERS: { 18256 ilb_num_servers_cmd_t *cmd; 18257 18258 if (MBLKL(cmd_mp) != sizeof (ilb_num_servers_cmd_t)) { 18259 ret = EINVAL; 18260 break; 18261 } 18262 cmd = (ilb_num_servers_cmd_t *)cmd_mp->b_rptr; 18263 ret = ilb_get_num_servers(ilbs, zoneid, cmd->name, 18264 &(cmd->num)); 18265 break; 18266 } 18267 case ILB_LIST_RULE: { 18268 ilb_rule_cmd_t *cmd = (ilb_rule_cmd_t *)cmd_mp->b_rptr; 18269 18270 if (MBLKL(cmd_mp) != sizeof (ilb_rule_cmd_t)) { 18271 ret = EINVAL; 18272 break; 18273 } 18274 ret = ilb_rule_list(ilbs, zoneid, cmd); 18275 break; 18276 } 18277 case ILB_LIST_SERVERS: { 18278 ilb_servers_info_cmd_t *cmd; 18279 18280 cmd = (ilb_servers_info_cmd_t *)cmd_mp->b_rptr; 18281 if (MBLKL(cmd_mp) < sizeof (ilb_servers_info_cmd_t) || 18282 cmd->num_servers == 0) { 18283 ret = EINVAL; 18284 break; 18285 } 18286 size = cmd->num_servers * sizeof (ilb_server_info_t); 18287 if (cmd_mp->b_rptr + offsetof(ilb_servers_info_cmd_t, servers) + 18288 size != cmd_mp->b_wptr) { 18289 ret = EINVAL; 18290 break; 18291 } 18292 18293 ret = ilb_get_servers(ilbs, zoneid, cmd->name, cmd->servers, 18294 &cmd->num_servers); 18295 break; 18296 } 18297 case ILB_ADD_SERVERS: { 18298 ilb_servers_info_cmd_t *cmd; 18299 ilb_rule_t *rule; 18300 18301 cmd = (ilb_servers_info_cmd_t *)cmd_mp->b_rptr; 18302 if (MBLKL(cmd_mp) < sizeof (ilb_servers_info_cmd_t)) { 18303 ret = EINVAL; 18304 break; 18305 } 18306 size = cmd->num_servers * sizeof (ilb_server_info_t); 18307 if (cmd_mp->b_rptr + offsetof(ilb_servers_info_cmd_t, servers) + 18308 size != cmd_mp->b_wptr) { 18309 ret = EINVAL; 18310 break; 18311 } 18312 rule = ilb_find_rule(ilbs, zoneid, cmd->name, &ret); 18313 if (rule == NULL) { 18314 ASSERT(ret != 0); 18315 break; 18316 } 18317 for (i = 0; i < cmd->num_servers; i++) { 18318 ilb_server_info_t *s; 18319 18320 s = &cmd->servers[i]; 18321 s->err = ilb_server_add(ilbs, rule, s); 18322 } 18323 ILB_RULE_REFRELE(rule); 18324 break; 18325 } 18326 case ILB_DEL_SERVERS: 18327 case ILB_ENABLE_SERVERS: 18328 case ILB_DISABLE_SERVERS: { 18329 ilb_servers_cmd_t *cmd; 18330 ilb_rule_t *rule; 18331 int (*f)(); 18332 18333 cmd = (ilb_servers_cmd_t *)cmd_mp->b_rptr; 18334 if (MBLKL(cmd_mp) < sizeof (ilb_servers_cmd_t)) { 18335 ret = EINVAL; 18336 break; 18337 } 18338 size = cmd->num_servers * sizeof (ilb_server_arg_t); 18339 if (cmd_mp->b_rptr + offsetof(ilb_servers_cmd_t, servers) + 18340 size != cmd_mp->b_wptr) { 18341 ret = EINVAL; 18342 break; 18343 } 18344 18345 if (command == ILB_DEL_SERVERS) 18346 f = ilb_server_del; 18347 else if (command == ILB_ENABLE_SERVERS) 18348 f = ilb_server_enable; 18349 else if (command == ILB_DISABLE_SERVERS) 18350 f = ilb_server_disable; 18351 18352 rule = ilb_find_rule(ilbs, zoneid, cmd->name, &ret); 18353 if (rule == NULL) { 18354 ASSERT(ret != 0); 18355 break; 18356 } 18357 18358 for (i = 0; i < cmd->num_servers; i++) { 18359 ilb_server_arg_t *s; 18360 18361 s = &cmd->servers[i]; 18362 s->err = f(ilbs, zoneid, NULL, rule, &s->addr); 18363 } 18364 ILB_RULE_REFRELE(rule); 18365 break; 18366 } 18367 case ILB_LIST_NAT_TABLE: { 18368 ilb_list_nat_cmd_t *cmd; 18369 18370 cmd = (ilb_list_nat_cmd_t *)cmd_mp->b_rptr; 18371 if (MBLKL(cmd_mp) < sizeof (ilb_list_nat_cmd_t)) { 18372 ret = EINVAL; 18373 break; 18374 } 18375 size = cmd->num_nat * sizeof (ilb_nat_entry_t); 18376 if (cmd_mp->b_rptr + offsetof(ilb_list_nat_cmd_t, entries) + 18377 size != cmd_mp->b_wptr) { 18378 ret = EINVAL; 18379 break; 18380 } 18381 18382 ret = ilb_list_nat(ilbs, zoneid, cmd->entries, &cmd->num_nat, 18383 &cmd->flags); 18384 break; 18385 } 18386 case ILB_LIST_STICKY_TABLE: { 18387 ilb_list_sticky_cmd_t *cmd; 18388 18389 cmd = (ilb_list_sticky_cmd_t *)cmd_mp->b_rptr; 18390 if (MBLKL(cmd_mp) < sizeof (ilb_list_sticky_cmd_t)) { 18391 ret = EINVAL; 18392 break; 18393 } 18394 size = cmd->num_sticky * sizeof (ilb_sticky_entry_t); 18395 if (cmd_mp->b_rptr + offsetof(ilb_list_sticky_cmd_t, entries) + 18396 size != cmd_mp->b_wptr) { 18397 ret = EINVAL; 18398 break; 18399 } 18400 18401 ret = ilb_list_sticky(ilbs, zoneid, cmd->entries, 18402 &cmd->num_sticky, &cmd->flags); 18403 break; 18404 } 18405 default: 18406 ret = EINVAL; 18407 break; 18408 } 18409 done: 18410 return (ret); 18411 } 18412 18413 /* Remove all cache entries for this logical interface */ 18414 void 18415 ipif_nce_down(ipif_t *ipif) 18416 { 18417 ill_t *ill = ipif->ipif_ill; 18418 nce_t *nce; 18419 18420 DTRACE_PROBE3(ipif__downup, char *, "ipif_nce_down", 18421 ill_t *, ill, ipif_t *, ipif); 18422 if (ipif->ipif_added_nce) { 18423 if (ipif->ipif_isv6) 18424 nce = nce_lookup_v6(ill, &ipif->ipif_v6lcl_addr); 18425 else 18426 nce = nce_lookup_v4(ill, &ipif->ipif_lcl_addr); 18427 if (nce != NULL) { 18428 if (--nce->nce_ipif_cnt == 0) 18429 ncec_delete(nce->nce_common); 18430 ipif->ipif_added_nce = 0; 18431 nce_refrele(nce); 18432 } else { 18433 /* 18434 * nce may already be NULL because it was already 18435 * flushed, e.g., due to a call to nce_flush 18436 */ 18437 ipif->ipif_added_nce = 0; 18438 } 18439 } 18440 /* 18441 * Make IPMP aware of the deleted data address. 18442 */ 18443 if (IS_IPMP(ill)) 18444 ipmp_illgrp_del_ipif(ill->ill_grp, ipif); 18445 18446 /* 18447 * Remove all other nces dependent on this ill when the last ipif 18448 * is going away. 18449 */ 18450 if (ill->ill_ipif_up_count == 0) { 18451 ncec_walk(ill, (pfi_t)ncec_delete_per_ill, 18452 (uchar_t *)ill, ill->ill_ipst); 18453 if (IS_UNDER_IPMP(ill)) 18454 nce_flush(ill, B_TRUE); 18455 } 18456 } 18457